// This file is intended to be consumed by a compiler. Do not read. // **Browse to any of the sources in engine/split/ folder instead** // ---------------------------------------------------------------- // #define V4K_IMPLEMENTATION early in **one** C file to unroll the // implementation. The symbol must be defined in a C (not C++) file // ---------------------------------------------------------------- #pragma once // Generated by https://github.com/juliettef/IconFontCppHeaders script GenerateIconFontCppHeaders.py for languages C and C++ // from https://github.com/google/material-design-icons/raw/master/font/MaterialIcons-Regular.codepoints // for use with https://github.com/google/material-design-icons/blob/master/font/MaterialIcons-Regular.ttf #ifndef ICON_MD_H #define ICON_MD_H #define FONT_ICON_FILE_NAME_MD "MaterialIcons-Regular.ttf" #define ICON_MIN_MD 0xe000 #define ICON_MAX_16_MD 0xf8ff #define ICON_MAX_MD 0x10fffd #define ICON_MD_10K "\xee\xa5\x91" // U+e951 #define ICON_MD_10MP "\xee\xa5\x92" // U+e952 #define ICON_MD_11MP "\xee\xa5\x93" // U+e953 #define ICON_MD_123 "\xee\xae\x8d" // U+eb8d #define ICON_MD_12MP "\xee\xa5\x94" // U+e954 #define ICON_MD_13MP "\xee\xa5\x95" // U+e955 #define ICON_MD_14MP "\xee\xa5\x96" // U+e956 #define ICON_MD_15MP "\xee\xa5\x97" // U+e957 #define ICON_MD_16MP "\xee\xa5\x98" // U+e958 #define ICON_MD_17MP "\xee\xa5\x99" // U+e959 #define ICON_MD_18_UP_RATING "\xef\xa3\xbd" // U+f8fd #define ICON_MD_18MP "\xee\xa5\x9a" // U+e95a #define ICON_MD_19MP "\xee\xa5\x9b" // U+e95b #define ICON_MD_1K "\xee\xa5\x9c" // U+e95c #define ICON_MD_1K_PLUS "\xee\xa5\x9d" // U+e95d #define ICON_MD_1X_MOBILEDATA "\xee\xbf\x8d" // U+efcd #define ICON_MD_20MP "\xee\xa5\x9e" // U+e95e #define ICON_MD_21MP "\xee\xa5\x9f" // U+e95f #define ICON_MD_22MP "\xee\xa5\xa0" // U+e960 #define ICON_MD_23MP "\xee\xa5\xa1" // U+e961 #define ICON_MD_24MP "\xee\xa5\xa2" // U+e962 #define ICON_MD_2K "\xee\xa5\xa3" // U+e963 #define ICON_MD_2K_PLUS "\xee\xa5\xa4" // U+e964 #define ICON_MD_2MP "\xee\xa5\xa5" // U+e965 #define ICON_MD_30FPS "\xee\xbf\x8e" // U+efce #define ICON_MD_30FPS_SELECT "\xee\xbf\x8f" // U+efcf #define ICON_MD_360 "\xee\x95\xb7" // U+e577 #define ICON_MD_3D_ROTATION "\xee\xa1\x8d" // U+e84d #define ICON_MD_3G_MOBILEDATA "\xee\xbf\x90" // U+efd0 #define ICON_MD_3K "\xee\xa5\xa6" // U+e966 #define ICON_MD_3K_PLUS "\xee\xa5\xa7" // U+e967 #define ICON_MD_3MP "\xee\xa5\xa8" // U+e968 #define ICON_MD_3P "\xee\xbf\x91" // U+efd1 #define ICON_MD_4G_MOBILEDATA "\xee\xbf\x92" // U+efd2 #define ICON_MD_4G_PLUS_MOBILEDATA "\xee\xbf\x93" // U+efd3 #define ICON_MD_4K "\xee\x81\xb2" // U+e072 #define ICON_MD_4K_PLUS "\xee\xa5\xa9" // U+e969 #define ICON_MD_4MP "\xee\xa5\xaa" // U+e96a #define ICON_MD_5G "\xee\xbc\xb8" // U+ef38 #define ICON_MD_5K "\xee\xa5\xab" // U+e96b #define ICON_MD_5K_PLUS "\xee\xa5\xac" // U+e96c #define ICON_MD_5MP "\xee\xa5\xad" // U+e96d #define ICON_MD_60FPS "\xee\xbf\x94" // U+efd4 #define ICON_MD_60FPS_SELECT "\xee\xbf\x95" // U+efd5 #define ICON_MD_6_FT_APART "\xef\x88\x9e" // U+f21e #define ICON_MD_6K "\xee\xa5\xae" // U+e96e #define ICON_MD_6K_PLUS "\xee\xa5\xaf" // U+e96f #define ICON_MD_6MP "\xee\xa5\xb0" // U+e970 #define ICON_MD_7K "\xee\xa5\xb1" // U+e971 #define ICON_MD_7K_PLUS "\xee\xa5\xb2" // U+e972 #define ICON_MD_7MP "\xee\xa5\xb3" // U+e973 #define ICON_MD_8K "\xee\xa5\xb4" // U+e974 #define ICON_MD_8K_PLUS "\xee\xa5\xb5" // U+e975 #define ICON_MD_8MP "\xee\xa5\xb6" // U+e976 #define ICON_MD_9K "\xee\xa5\xb7" // U+e977 #define ICON_MD_9K_PLUS "\xee\xa5\xb8" // U+e978 #define ICON_MD_9MP "\xee\xa5\xb9" // U+e979 #define ICON_MD_ABC "\xee\xae\x94" // U+eb94 #define ICON_MD_AC_UNIT "\xee\xac\xbb" // U+eb3b #define ICON_MD_ACCESS_ALARM "\xee\x86\x90" // U+e190 #define ICON_MD_ACCESS_ALARMS "\xee\x86\x91" // U+e191 #define ICON_MD_ACCESS_TIME "\xee\x86\x92" // U+e192 #define ICON_MD_ACCESS_TIME_FILLED "\xee\xbf\x96" // U+efd6 #define ICON_MD_ACCESSIBILITY "\xee\xa1\x8e" // U+e84e #define ICON_MD_ACCESSIBILITY_NEW "\xee\xa4\xac" // U+e92c #define ICON_MD_ACCESSIBLE "\xee\xa4\x94" // U+e914 #define ICON_MD_ACCESSIBLE_FORWARD "\xee\xa4\xb4" // U+e934 #define ICON_MD_ACCOUNT_BALANCE "\xee\xa1\x8f" // U+e84f #define ICON_MD_ACCOUNT_BALANCE_WALLET "\xee\xa1\x90" // U+e850 #define ICON_MD_ACCOUNT_BOX "\xee\xa1\x91" // U+e851 #define ICON_MD_ACCOUNT_CIRCLE "\xee\xa1\x93" // U+e853 #define ICON_MD_ACCOUNT_TREE "\xee\xa5\xba" // U+e97a #define ICON_MD_AD_UNITS "\xee\xbc\xb9" // U+ef39 #define ICON_MD_ADB "\xee\x98\x8e" // U+e60e #define ICON_MD_ADD "\xee\x85\x85" // U+e145 #define ICON_MD_ADD_A_PHOTO "\xee\x90\xb9" // U+e439 #define ICON_MD_ADD_ALARM "\xee\x86\x93" // U+e193 #define ICON_MD_ADD_ALERT "\xee\x80\x83" // U+e003 #define ICON_MD_ADD_BOX "\xee\x85\x86" // U+e146 #define ICON_MD_ADD_BUSINESS "\xee\x9c\xa9" // U+e729 #define ICON_MD_ADD_CALL "\xee\x83\xa8" // U+e0e8 #define ICON_MD_ADD_CARD "\xee\xae\x86" // U+eb86 #define ICON_MD_ADD_CHART "\xee\xa5\xbb" // U+e97b #define ICON_MD_ADD_CIRCLE "\xee\x85\x87" // U+e147 #define ICON_MD_ADD_CIRCLE_OUTLINE "\xee\x85\x88" // U+e148 #define ICON_MD_ADD_COMMENT "\xee\x89\xa6" // U+e266 #define ICON_MD_ADD_HOME "\xef\xa3\xab" // U+f8eb #define ICON_MD_ADD_HOME_WORK "\xef\xa3\xad" // U+f8ed #define ICON_MD_ADD_IC_CALL "\xee\xa5\xbc" // U+e97c #define ICON_MD_ADD_LINK "\xee\x85\xb8" // U+e178 #define ICON_MD_ADD_LOCATION "\xee\x95\xa7" // U+e567 #define ICON_MD_ADD_LOCATION_ALT "\xee\xbc\xba" // U+ef3a #define ICON_MD_ADD_MODERATOR "\xee\xa5\xbd" // U+e97d #define ICON_MD_ADD_PHOTO_ALTERNATE "\xee\x90\xbe" // U+e43e #define ICON_MD_ADD_REACTION "\xee\x87\x93" // U+e1d3 #define ICON_MD_ADD_ROAD "\xee\xbc\xbb" // U+ef3b #define ICON_MD_ADD_SHOPPING_CART "\xee\xa1\x94" // U+e854 #define ICON_MD_ADD_TASK "\xef\x88\xba" // U+f23a #define ICON_MD_ADD_TO_DRIVE "\xee\x99\x9c" // U+e65c #define ICON_MD_ADD_TO_HOME_SCREEN "\xee\x87\xbe" // U+e1fe #define ICON_MD_ADD_TO_PHOTOS "\xee\x8e\x9d" // U+e39d #define ICON_MD_ADD_TO_QUEUE "\xee\x81\x9c" // U+e05c #define ICON_MD_ADDCHART "\xee\xbc\xbc" // U+ef3c #define ICON_MD_ADF_SCANNER "\xee\xab\x9a" // U+eada #define ICON_MD_ADJUST "\xee\x8e\x9e" // U+e39e #define ICON_MD_ADMIN_PANEL_SETTINGS "\xee\xbc\xbd" // U+ef3d #define ICON_MD_ADOBE "\xee\xaa\x96" // U+ea96 #define ICON_MD_ADS_CLICK "\xee\x9d\xa2" // U+e762 #define ICON_MD_AGRICULTURE "\xee\xa9\xb9" // U+ea79 #define ICON_MD_AIR "\xee\xbf\x98" // U+efd8 #define ICON_MD_AIRLINE_SEAT_FLAT "\xee\x98\xb0" // U+e630 #define ICON_MD_AIRLINE_SEAT_FLAT_ANGLED "\xee\x98\xb1" // U+e631 #define ICON_MD_AIRLINE_SEAT_INDIVIDUAL_SUITE "\xee\x98\xb2" // U+e632 #define ICON_MD_AIRLINE_SEAT_LEGROOM_EXTRA "\xee\x98\xb3" // U+e633 #define ICON_MD_AIRLINE_SEAT_LEGROOM_NORMAL "\xee\x98\xb4" // U+e634 #define ICON_MD_AIRLINE_SEAT_LEGROOM_REDUCED "\xee\x98\xb5" // U+e635 #define ICON_MD_AIRLINE_SEAT_RECLINE_EXTRA "\xee\x98\xb6" // U+e636 #define ICON_MD_AIRLINE_SEAT_RECLINE_NORMAL "\xee\x98\xb7" // U+e637 #define ICON_MD_AIRLINE_STOPS "\xee\x9f\x90" // U+e7d0 #define ICON_MD_AIRLINES "\xee\x9f\x8a" // U+e7ca #define ICON_MD_AIRPLANE_TICKET "\xee\xbf\x99" // U+efd9 #define ICON_MD_AIRPLANEMODE_ACTIVE "\xee\x86\x95" // U+e195 #define ICON_MD_AIRPLANEMODE_INACTIVE "\xee\x86\x94" // U+e194 #define ICON_MD_AIRPLANEMODE_OFF "\xee\x86\x94" // U+e194 #define ICON_MD_AIRPLANEMODE_ON "\xee\x86\x95" // U+e195 #define ICON_MD_AIRPLAY "\xee\x81\x95" // U+e055 #define ICON_MD_AIRPORT_SHUTTLE "\xee\xac\xbc" // U+eb3c #define ICON_MD_ALARM "\xee\xa1\x95" // U+e855 #define ICON_MD_ALARM_ADD "\xee\xa1\x96" // U+e856 #define ICON_MD_ALARM_OFF "\xee\xa1\x97" // U+e857 #define ICON_MD_ALARM_ON "\xee\xa1\x98" // U+e858 #define ICON_MD_ALBUM "\xee\x80\x99" // U+e019 #define ICON_MD_ALIGN_HORIZONTAL_CENTER "\xee\x80\x8f" // U+e00f #define ICON_MD_ALIGN_HORIZONTAL_LEFT "\xee\x80\x8d" // U+e00d #define ICON_MD_ALIGN_HORIZONTAL_RIGHT "\xee\x80\x90" // U+e010 #define ICON_MD_ALIGN_VERTICAL_BOTTOM "\xee\x80\x95" // U+e015 #define ICON_MD_ALIGN_VERTICAL_CENTER "\xee\x80\x91" // U+e011 #define ICON_MD_ALIGN_VERTICAL_TOP "\xee\x80\x8c" // U+e00c #define ICON_MD_ALL_INBOX "\xee\xa5\xbf" // U+e97f #define ICON_MD_ALL_INCLUSIVE "\xee\xac\xbd" // U+eb3d #define ICON_MD_ALL_OUT "\xee\xa4\x8b" // U+e90b #define ICON_MD_ALT_ROUTE "\xef\x86\x84" // U+f184 #define ICON_MD_ALTERNATE_EMAIL "\xee\x83\xa6" // U+e0e6 #define ICON_MD_AMP_STORIES "\xee\xa8\x93" // U+ea13 #define ICON_MD_ANALYTICS "\xee\xbc\xbe" // U+ef3e #define ICON_MD_ANCHOR "\xef\x87\x8d" // U+f1cd #define ICON_MD_ANDROID "\xee\xa1\x99" // U+e859 #define ICON_MD_ANIMATION "\xee\x9c\x9c" // U+e71c #define ICON_MD_ANNOUNCEMENT "\xee\xa1\x9a" // U+e85a #define ICON_MD_AOD "\xee\xbf\x9a" // U+efda #define ICON_MD_APARTMENT "\xee\xa9\x80" // U+ea40 #define ICON_MD_API "\xef\x86\xb7" // U+f1b7 #define ICON_MD_APP_BLOCKING "\xee\xbc\xbf" // U+ef3f #define ICON_MD_APP_REGISTRATION "\xee\xbd\x80" // U+ef40 #define ICON_MD_APP_SETTINGS_ALT "\xee\xbd\x81" // U+ef41 #define ICON_MD_APP_SHORTCUT "\xee\xab\xa4" // U+eae4 #define ICON_MD_APPLE "\xee\xaa\x80" // U+ea80 #define ICON_MD_APPROVAL "\xee\xa6\x82" // U+e982 #define ICON_MD_APPS "\xee\x97\x83" // U+e5c3 #define ICON_MD_APPS_OUTAGE "\xee\x9f\x8c" // U+e7cc #define ICON_MD_ARCHITECTURE "\xee\xa8\xbb" // U+ea3b #define ICON_MD_ARCHIVE "\xee\x85\x89" // U+e149 #define ICON_MD_AREA_CHART "\xee\x9d\xb0" // U+e770 #define ICON_MD_ARROW_BACK "\xee\x97\x84" // U+e5c4 #define ICON_MD_ARROW_BACK_IOS "\xee\x97\xa0" // U+e5e0 #define ICON_MD_ARROW_BACK_IOS_NEW "\xee\x8b\xaa" // U+e2ea #define ICON_MD_ARROW_CIRCLE_DOWN "\xef\x86\x81" // U+f181 #define ICON_MD_ARROW_CIRCLE_LEFT "\xee\xaa\xa7" // U+eaa7 #define ICON_MD_ARROW_CIRCLE_RIGHT "\xee\xaa\xaa" // U+eaaa #define ICON_MD_ARROW_CIRCLE_UP "\xef\x86\x82" // U+f182 #define ICON_MD_ARROW_DOWNWARD "\xee\x97\x9b" // U+e5db #define ICON_MD_ARROW_DROP_DOWN "\xee\x97\x85" // U+e5c5 #define ICON_MD_ARROW_DROP_DOWN_CIRCLE "\xee\x97\x86" // U+e5c6 #define ICON_MD_ARROW_DROP_UP "\xee\x97\x87" // U+e5c7 #define ICON_MD_ARROW_FORWARD "\xee\x97\x88" // U+e5c8 #define ICON_MD_ARROW_FORWARD_IOS "\xee\x97\xa1" // U+e5e1 #define ICON_MD_ARROW_LEFT "\xee\x97\x9e" // U+e5de #define ICON_MD_ARROW_OUTWARD "\xef\xa3\x8e" // U+f8ce #define ICON_MD_ARROW_RIGHT "\xee\x97\x9f" // U+e5df #define ICON_MD_ARROW_RIGHT_ALT "\xee\xa5\x81" // U+e941 #define ICON_MD_ARROW_UPWARD "\xee\x97\x98" // U+e5d8 #define ICON_MD_ART_TRACK "\xee\x81\xa0" // U+e060 #define ICON_MD_ARTICLE "\xee\xbd\x82" // U+ef42 #define ICON_MD_ASPECT_RATIO "\xee\xa1\x9b" // U+e85b #define ICON_MD_ASSESSMENT "\xee\xa1\x9c" // U+e85c #define ICON_MD_ASSIGNMENT "\xee\xa1\x9d" // U+e85d #define ICON_MD_ASSIGNMENT_ADD "\xef\xa1\x88" // U+f848 #define ICON_MD_ASSIGNMENT_IND "\xee\xa1\x9e" // U+e85e #define ICON_MD_ASSIGNMENT_LATE "\xee\xa1\x9f" // U+e85f #define ICON_MD_ASSIGNMENT_RETURN "\xee\xa1\xa0" // U+e860 #define ICON_MD_ASSIGNMENT_RETURNED "\xee\xa1\xa1" // U+e861 #define ICON_MD_ASSIGNMENT_TURNED_IN "\xee\xa1\xa2" // U+e862 #define ICON_MD_ASSIST_WALKER "\xef\xa3\x95" // U+f8d5 #define ICON_MD_ASSISTANT "\xee\x8e\x9f" // U+e39f #define ICON_MD_ASSISTANT_DIRECTION "\xee\xa6\x88" // U+e988 #define ICON_MD_ASSISTANT_NAVIGATION "\xee\xa6\x89" // U+e989 #define ICON_MD_ASSISTANT_PHOTO "\xee\x8e\xa0" // U+e3a0 #define ICON_MD_ASSURED_WORKLOAD "\xee\xad\xaf" // U+eb6f #define ICON_MD_ATM "\xee\x95\xb3" // U+e573 #define ICON_MD_ATTACH_EMAIL "\xee\xa9\x9e" // U+ea5e #define ICON_MD_ATTACH_FILE "\xee\x88\xa6" // U+e226 #define ICON_MD_ATTACH_MONEY "\xee\x88\xa7" // U+e227 #define ICON_MD_ATTACHMENT "\xee\x8a\xbc" // U+e2bc #define ICON_MD_ATTRACTIONS "\xee\xa9\x92" // U+ea52 #define ICON_MD_ATTRIBUTION "\xee\xbf\x9b" // U+efdb #define ICON_MD_AUDIO_FILE "\xee\xae\x82" // U+eb82 #define ICON_MD_AUDIOTRACK "\xee\x8e\xa1" // U+e3a1 #define ICON_MD_AUTO_AWESOME "\xee\x99\x9f" // U+e65f #define ICON_MD_AUTO_AWESOME_MOSAIC "\xee\x99\xa0" // U+e660 #define ICON_MD_AUTO_AWESOME_MOTION "\xee\x99\xa1" // U+e661 #define ICON_MD_AUTO_DELETE "\xee\xa9\x8c" // U+ea4c #define ICON_MD_AUTO_FIX_HIGH "\xee\x99\xa3" // U+e663 #define ICON_MD_AUTO_FIX_NORMAL "\xee\x99\xa4" // U+e664 #define ICON_MD_AUTO_FIX_OFF "\xee\x99\xa5" // U+e665 #define ICON_MD_AUTO_GRAPH "\xee\x93\xbb" // U+e4fb #define ICON_MD_AUTO_MODE "\xee\xb0\xa0" // U+ec20 #define ICON_MD_AUTO_STORIES "\xee\x99\xa6" // U+e666 #define ICON_MD_AUTOFPS_SELECT "\xee\xbf\x9c" // U+efdc #define ICON_MD_AUTORENEW "\xee\xa1\xa3" // U+e863 #define ICON_MD_AV_TIMER "\xee\x80\x9b" // U+e01b #define ICON_MD_BABY_CHANGING_STATION "\xef\x86\x9b" // U+f19b #define ICON_MD_BACK_HAND "\xee\x9d\xa4" // U+e764 #define ICON_MD_BACKPACK "\xef\x86\x9c" // U+f19c #define ICON_MD_BACKSPACE "\xee\x85\x8a" // U+e14a #define ICON_MD_BACKUP "\xee\xa1\xa4" // U+e864 #define ICON_MD_BACKUP_TABLE "\xee\xbd\x83" // U+ef43 #define ICON_MD_BADGE "\xee\xa9\xa7" // U+ea67 #define ICON_MD_BAKERY_DINING "\xee\xa9\x93" // U+ea53 #define ICON_MD_BALANCE "\xee\xab\xb6" // U+eaf6 #define ICON_MD_BALCONY "\xee\x96\x8f" // U+e58f #define ICON_MD_BALLOT "\xee\x85\xb2" // U+e172 #define ICON_MD_BAR_CHART "\xee\x89\xab" // U+e26b #define ICON_MD_BARCODE_READER "\xef\xa1\x9c" // U+f85c #define ICON_MD_BATCH_PREDICTION "\xef\x83\xb5" // U+f0f5 #define ICON_MD_BATHROOM "\xee\xbf\x9d" // U+efdd #define ICON_MD_BATHTUB "\xee\xa9\x81" // U+ea41 #define ICON_MD_BATTERY_0_BAR "\xee\xaf\x9c" // U+ebdc #define ICON_MD_BATTERY_1_BAR "\xee\xaf\x99" // U+ebd9 #define ICON_MD_BATTERY_2_BAR "\xee\xaf\xa0" // U+ebe0 #define ICON_MD_BATTERY_3_BAR "\xee\xaf\x9d" // U+ebdd #define ICON_MD_BATTERY_4_BAR "\xee\xaf\xa2" // U+ebe2 #define ICON_MD_BATTERY_5_BAR "\xee\xaf\x94" // U+ebd4 #define ICON_MD_BATTERY_6_BAR "\xee\xaf\x92" // U+ebd2 #define ICON_MD_BATTERY_ALERT "\xee\x86\x9c" // U+e19c #define ICON_MD_BATTERY_CHARGING_FULL "\xee\x86\xa3" // U+e1a3 #define ICON_MD_BATTERY_FULL "\xee\x86\xa4" // U+e1a4 #define ICON_MD_BATTERY_SAVER "\xee\xbf\x9e" // U+efde #define ICON_MD_BATTERY_STD "\xee\x86\xa5" // U+e1a5 #define ICON_MD_BATTERY_UNKNOWN "\xee\x86\xa6" // U+e1a6 #define ICON_MD_BEACH_ACCESS "\xee\xac\xbe" // U+eb3e #define ICON_MD_BED "\xee\xbf\x9f" // U+efdf #define ICON_MD_BEDROOM_BABY "\xee\xbf\xa0" // U+efe0 #define ICON_MD_BEDROOM_CHILD "\xee\xbf\xa1" // U+efe1 #define ICON_MD_BEDROOM_PARENT "\xee\xbf\xa2" // U+efe2 #define ICON_MD_BEDTIME "\xee\xbd\x84" // U+ef44 #define ICON_MD_BEDTIME_OFF "\xee\xad\xb6" // U+eb76 #define ICON_MD_BEENHERE "\xee\x94\xad" // U+e52d #define ICON_MD_BENTO "\xef\x87\xb4" // U+f1f4 #define ICON_MD_BIKE_SCOOTER "\xee\xbd\x85" // U+ef45 #define ICON_MD_BIOTECH "\xee\xa8\xba" // U+ea3a #define ICON_MD_BLENDER "\xee\xbf\xa3" // U+efe3 #define ICON_MD_BLIND "\xef\xa3\x96" // U+f8d6 #define ICON_MD_BLINDS "\xee\x8a\x86" // U+e286 #define ICON_MD_BLINDS_CLOSED "\xee\xb0\x9f" // U+ec1f #define ICON_MD_BLOCK "\xee\x85\x8b" // U+e14b #define ICON_MD_BLOCK_FLIPPED "\xee\xbd\x86" // U+ef46 #define ICON_MD_BLOODTYPE "\xee\xbf\xa4" // U+efe4 #define ICON_MD_BLUETOOTH "\xee\x86\xa7" // U+e1a7 #define ICON_MD_BLUETOOTH_AUDIO "\xee\x98\x8f" // U+e60f #define ICON_MD_BLUETOOTH_CONNECTED "\xee\x86\xa8" // U+e1a8 #define ICON_MD_BLUETOOTH_DISABLED "\xee\x86\xa9" // U+e1a9 #define ICON_MD_BLUETOOTH_DRIVE "\xee\xbf\xa5" // U+efe5 #define ICON_MD_BLUETOOTH_SEARCHING "\xee\x86\xaa" // U+e1aa #define ICON_MD_BLUR_CIRCULAR "\xee\x8e\xa2" // U+e3a2 #define ICON_MD_BLUR_LINEAR "\xee\x8e\xa3" // U+e3a3 #define ICON_MD_BLUR_OFF "\xee\x8e\xa4" // U+e3a4 #define ICON_MD_BLUR_ON "\xee\x8e\xa5" // U+e3a5 #define ICON_MD_BOLT "\xee\xa8\x8b" // U+ea0b #define ICON_MD_BOOK "\xee\xa1\xa5" // U+e865 #define ICON_MD_BOOK_ONLINE "\xef\x88\x97" // U+f217 #define ICON_MD_BOOKMARK "\xee\xa1\xa6" // U+e866 #define ICON_MD_BOOKMARK_ADD "\xee\x96\x98" // U+e598 #define ICON_MD_BOOKMARK_ADDED "\xee\x96\x99" // U+e599 #define ICON_MD_BOOKMARK_BORDER "\xee\xa1\xa7" // U+e867 #define ICON_MD_BOOKMARK_OUTLINE "\xee\xa1\xa7" // U+e867 #define ICON_MD_BOOKMARK_REMOVE "\xee\x96\x9a" // U+e59a #define ICON_MD_BOOKMARKS "\xee\xa6\x8b" // U+e98b #define ICON_MD_BORDER_ALL "\xee\x88\xa8" // U+e228 #define ICON_MD_BORDER_BOTTOM "\xee\x88\xa9" // U+e229 #define ICON_MD_BORDER_CLEAR "\xee\x88\xaa" // U+e22a #define ICON_MD_BORDER_COLOR "\xee\x88\xab" // U+e22b #define ICON_MD_BORDER_HORIZONTAL "\xee\x88\xac" // U+e22c #define ICON_MD_BORDER_INNER "\xee\x88\xad" // U+e22d #define ICON_MD_BORDER_LEFT "\xee\x88\xae" // U+e22e #define ICON_MD_BORDER_OUTER "\xee\x88\xaf" // U+e22f #define ICON_MD_BORDER_RIGHT "\xee\x88\xb0" // U+e230 #define ICON_MD_BORDER_STYLE "\xee\x88\xb1" // U+e231 #define ICON_MD_BORDER_TOP "\xee\x88\xb2" // U+e232 #define ICON_MD_BORDER_VERTICAL "\xee\x88\xb3" // U+e233 #define ICON_MD_BOY "\xee\xad\xa7" // U+eb67 #define ICON_MD_BRANDING_WATERMARK "\xee\x81\xab" // U+e06b #define ICON_MD_BREAKFAST_DINING "\xee\xa9\x94" // U+ea54 #define ICON_MD_BRIGHTNESS_1 "\xee\x8e\xa6" // U+e3a6 #define ICON_MD_BRIGHTNESS_2 "\xee\x8e\xa7" // U+e3a7 #define ICON_MD_BRIGHTNESS_3 "\xee\x8e\xa8" // U+e3a8 #define ICON_MD_BRIGHTNESS_4 "\xee\x8e\xa9" // U+e3a9 #define ICON_MD_BRIGHTNESS_5 "\xee\x8e\xaa" // U+e3aa #define ICON_MD_BRIGHTNESS_6 "\xee\x8e\xab" // U+e3ab #define ICON_MD_BRIGHTNESS_7 "\xee\x8e\xac" // U+e3ac #define ICON_MD_BRIGHTNESS_AUTO "\xee\x86\xab" // U+e1ab #define ICON_MD_BRIGHTNESS_HIGH "\xee\x86\xac" // U+e1ac #define ICON_MD_BRIGHTNESS_LOW "\xee\x86\xad" // U+e1ad #define ICON_MD_BRIGHTNESS_MEDIUM "\xee\x86\xae" // U+e1ae #define ICON_MD_BROADCAST_ON_HOME "\xef\xa3\xb8" // U+f8f8 #define ICON_MD_BROADCAST_ON_PERSONAL "\xef\xa3\xb9" // U+f8f9 #define ICON_MD_BROKEN_IMAGE "\xee\x8e\xad" // U+e3ad #define ICON_MD_BROWSE_GALLERY "\xee\xaf\x91" // U+ebd1 #define ICON_MD_BROWSER_NOT_SUPPORTED "\xee\xbd\x87" // U+ef47 #define ICON_MD_BROWSER_UPDATED "\xee\x9f\x8f" // U+e7cf #define ICON_MD_BRUNCH_DINING "\xee\xa9\xb3" // U+ea73 #define ICON_MD_BRUSH "\xee\x8e\xae" // U+e3ae #define ICON_MD_BUBBLE_CHART "\xee\x9b\x9d" // U+e6dd #define ICON_MD_BUG_REPORT "\xee\xa1\xa8" // U+e868 #define ICON_MD_BUILD "\xee\xa1\xa9" // U+e869 #define ICON_MD_BUILD_CIRCLE "\xee\xbd\x88" // U+ef48 #define ICON_MD_BUNGALOW "\xee\x96\x91" // U+e591 #define ICON_MD_BURST_MODE "\xee\x90\xbc" // U+e43c #define ICON_MD_BUS_ALERT "\xee\xa6\x8f" // U+e98f #define ICON_MD_BUSINESS "\xee\x82\xaf" // U+e0af #define ICON_MD_BUSINESS_CENTER "\xee\xac\xbf" // U+eb3f #define ICON_MD_CABIN "\xee\x96\x89" // U+e589 #define ICON_MD_CABLE "\xee\xbf\xa6" // U+efe6 #define ICON_MD_CACHED "\xee\xa1\xaa" // U+e86a #define ICON_MD_CAKE "\xee\x9f\xa9" // U+e7e9 #define ICON_MD_CALCULATE "\xee\xa9\x9f" // U+ea5f #define ICON_MD_CALENDAR_MONTH "\xee\xaf\x8c" // U+ebcc #define ICON_MD_CALENDAR_TODAY "\xee\xa4\xb5" // U+e935 #define ICON_MD_CALENDAR_VIEW_DAY "\xee\xa4\xb6" // U+e936 #define ICON_MD_CALENDAR_VIEW_MONTH "\xee\xbf\xa7" // U+efe7 #define ICON_MD_CALENDAR_VIEW_WEEK "\xee\xbf\xa8" // U+efe8 #define ICON_MD_CALL "\xee\x82\xb0" // U+e0b0 #define ICON_MD_CALL_END "\xee\x82\xb1" // U+e0b1 #define ICON_MD_CALL_MADE "\xee\x82\xb2" // U+e0b2 #define ICON_MD_CALL_MERGE "\xee\x82\xb3" // U+e0b3 #define ICON_MD_CALL_MISSED "\xee\x82\xb4" // U+e0b4 #define ICON_MD_CALL_MISSED_OUTGOING "\xee\x83\xa4" // U+e0e4 #define ICON_MD_CALL_RECEIVED "\xee\x82\xb5" // U+e0b5 #define ICON_MD_CALL_SPLIT "\xee\x82\xb6" // U+e0b6 #define ICON_MD_CALL_TO_ACTION "\xee\x81\xac" // U+e06c #define ICON_MD_CAMERA "\xee\x8e\xaf" // U+e3af #define ICON_MD_CAMERA_ALT "\xee\x8e\xb0" // U+e3b0 #define ICON_MD_CAMERA_ENHANCE "\xee\xa3\xbc" // U+e8fc #define ICON_MD_CAMERA_FRONT "\xee\x8e\xb1" // U+e3b1 #define ICON_MD_CAMERA_INDOOR "\xee\xbf\xa9" // U+efe9 #define ICON_MD_CAMERA_OUTDOOR "\xee\xbf\xaa" // U+efea #define ICON_MD_CAMERA_REAR "\xee\x8e\xb2" // U+e3b2 #define ICON_MD_CAMERA_ROLL "\xee\x8e\xb3" // U+e3b3 #define ICON_MD_CAMERASWITCH "\xee\xbf\xab" // U+efeb #define ICON_MD_CAMPAIGN "\xee\xbd\x89" // U+ef49 #define ICON_MD_CANCEL "\xee\x97\x89" // U+e5c9 #define ICON_MD_CANCEL_PRESENTATION "\xee\x83\xa9" // U+e0e9 #define ICON_MD_CANCEL_SCHEDULE_SEND "\xee\xa8\xb9" // U+ea39 #define ICON_MD_CANDLESTICK_CHART "\xee\xab\x94" // U+ead4 #define ICON_MD_CAR_CRASH "\xee\xaf\xb2" // U+ebf2 #define ICON_MD_CAR_RENTAL "\xee\xa9\x95" // U+ea55 #define ICON_MD_CAR_REPAIR "\xee\xa9\x96" // U+ea56 #define ICON_MD_CARD_GIFTCARD "\xee\xa3\xb6" // U+e8f6 #define ICON_MD_CARD_MEMBERSHIP "\xee\xa3\xb7" // U+e8f7 #define ICON_MD_CARD_TRAVEL "\xee\xa3\xb8" // U+e8f8 #define ICON_MD_CARPENTER "\xef\x87\xb8" // U+f1f8 #define ICON_MD_CASES "\xee\xa6\x92" // U+e992 #define ICON_MD_CASINO "\xee\xad\x80" // U+eb40 #define ICON_MD_CAST "\xee\x8c\x87" // U+e307 #define ICON_MD_CAST_CONNECTED "\xee\x8c\x88" // U+e308 #define ICON_MD_CAST_FOR_EDUCATION "\xee\xbf\xac" // U+efec #define ICON_MD_CASTLE "\xee\xaa\xb1" // U+eab1 #define ICON_MD_CATCHING_POKEMON "\xee\x94\x88" // U+e508 #define ICON_MD_CATEGORY "\xee\x95\xb4" // U+e574 #define ICON_MD_CELEBRATION "\xee\xa9\xa5" // U+ea65 #define ICON_MD_CELL_TOWER "\xee\xae\xba" // U+ebba #define ICON_MD_CELL_WIFI "\xee\x83\xac" // U+e0ec #define ICON_MD_CENTER_FOCUS_STRONG "\xee\x8e\xb4" // U+e3b4 #define ICON_MD_CENTER_FOCUS_WEAK "\xee\x8e\xb5" // U+e3b5 #define ICON_MD_CHAIR "\xee\xbf\xad" // U+efed #define ICON_MD_CHAIR_ALT "\xee\xbf\xae" // U+efee #define ICON_MD_CHALET "\xee\x96\x85" // U+e585 #define ICON_MD_CHANGE_CIRCLE "\xee\x8b\xa7" // U+e2e7 #define ICON_MD_CHANGE_HISTORY "\xee\xa1\xab" // U+e86b #define ICON_MD_CHARGING_STATION "\xef\x86\x9d" // U+f19d #define ICON_MD_CHAT "\xee\x82\xb7" // U+e0b7 #define ICON_MD_CHAT_BUBBLE "\xee\x83\x8a" // U+e0ca #define ICON_MD_CHAT_BUBBLE_OUTLINE "\xee\x83\x8b" // U+e0cb #define ICON_MD_CHECK "\xee\x97\x8a" // U+e5ca #define ICON_MD_CHECK_BOX "\xee\xa0\xb4" // U+e834 #define ICON_MD_CHECK_BOX_OUTLINE_BLANK "\xee\xa0\xb5" // U+e835 #define ICON_MD_CHECK_CIRCLE "\xee\xa1\xac" // U+e86c #define ICON_MD_CHECK_CIRCLE_OUTLINE "\xee\xa4\xad" // U+e92d #define ICON_MD_CHECKLIST "\xee\x9a\xb1" // U+e6b1 #define ICON_MD_CHECKLIST_RTL "\xee\x9a\xb3" // U+e6b3 #define ICON_MD_CHECKROOM "\xef\x86\x9e" // U+f19e #define ICON_MD_CHEVRON_LEFT "\xee\x97\x8b" // U+e5cb #define ICON_MD_CHEVRON_RIGHT "\xee\x97\x8c" // U+e5cc #define ICON_MD_CHILD_CARE "\xee\xad\x81" // U+eb41 #define ICON_MD_CHILD_FRIENDLY "\xee\xad\x82" // U+eb42 #define ICON_MD_CHROME_READER_MODE "\xee\xa1\xad" // U+e86d #define ICON_MD_CHURCH "\xee\xaa\xae" // U+eaae #define ICON_MD_CIRCLE "\xee\xbd\x8a" // U+ef4a #define ICON_MD_CIRCLE_NOTIFICATIONS "\xee\xa6\x94" // U+e994 #define ICON_MD_CLASS "\xee\xa1\xae" // U+e86e #define ICON_MD_CLEAN_HANDS "\xef\x88\x9f" // U+f21f #define ICON_MD_CLEANING_SERVICES "\xef\x83\xbf" // U+f0ff #define ICON_MD_CLEAR "\xee\x85\x8c" // U+e14c #define ICON_MD_CLEAR_ALL "\xee\x82\xb8" // U+e0b8 #define ICON_MD_CLOSE "\xee\x97\x8d" // U+e5cd #define ICON_MD_CLOSE_FULLSCREEN "\xef\x87\x8f" // U+f1cf #define ICON_MD_CLOSED_CAPTION "\xee\x80\x9c" // U+e01c #define ICON_MD_CLOSED_CAPTION_DISABLED "\xef\x87\x9c" // U+f1dc #define ICON_MD_CLOSED_CAPTION_OFF "\xee\xa6\x96" // U+e996 #define ICON_MD_CLOUD "\xee\x8a\xbd" // U+e2bd #define ICON_MD_CLOUD_CIRCLE "\xee\x8a\xbe" // U+e2be #define ICON_MD_CLOUD_DONE "\xee\x8a\xbf" // U+e2bf #define ICON_MD_CLOUD_DOWNLOAD "\xee\x8b\x80" // U+e2c0 #define ICON_MD_CLOUD_OFF "\xee\x8b\x81" // U+e2c1 #define ICON_MD_CLOUD_QUEUE "\xee\x8b\x82" // U+e2c2 #define ICON_MD_CLOUD_SYNC "\xee\xad\x9a" // U+eb5a #define ICON_MD_CLOUD_UPLOAD "\xee\x8b\x83" // U+e2c3 #define ICON_MD_CLOUDY_SNOWING "\xee\xa0\x90" // U+e810 #define ICON_MD_CO2 "\xee\x9e\xb0" // U+e7b0 #define ICON_MD_CO_PRESENT "\xee\xab\xb0" // U+eaf0 #define ICON_MD_CODE "\xee\xa1\xaf" // U+e86f #define ICON_MD_CODE_OFF "\xee\x93\xb3" // U+e4f3 #define ICON_MD_COFFEE "\xee\xbf\xaf" // U+efef #define ICON_MD_COFFEE_MAKER "\xee\xbf\xb0" // U+eff0 #define ICON_MD_COLLECTIONS "\xee\x8e\xb6" // U+e3b6 #define ICON_MD_COLLECTIONS_BOOKMARK "\xee\x90\xb1" // U+e431 #define ICON_MD_COLOR_LENS "\xee\x8e\xb7" // U+e3b7 #define ICON_MD_COLORIZE "\xee\x8e\xb8" // U+e3b8 #define ICON_MD_COMMENT "\xee\x82\xb9" // U+e0b9 #define ICON_MD_COMMENT_BANK "\xee\xa9\x8e" // U+ea4e #define ICON_MD_COMMENTS_DISABLED "\xee\x9e\xa2" // U+e7a2 #define ICON_MD_COMMIT "\xee\xab\xb5" // U+eaf5 #define ICON_MD_COMMUTE "\xee\xa5\x80" // U+e940 #define ICON_MD_COMPARE "\xee\x8e\xb9" // U+e3b9 #define ICON_MD_COMPARE_ARROWS "\xee\xa4\x95" // U+e915 #define ICON_MD_COMPASS_CALIBRATION "\xee\x95\xbc" // U+e57c #define ICON_MD_COMPOST "\xee\x9d\xa1" // U+e761 #define ICON_MD_COMPRESS "\xee\xa5\x8d" // U+e94d #define ICON_MD_COMPUTER "\xee\x8c\x8a" // U+e30a #define ICON_MD_CONFIRMATION_NUM "\xee\x98\xb8" // U+e638 #define ICON_MD_CONFIRMATION_NUMBER "\xee\x98\xb8" // U+e638 #define ICON_MD_CONNECT_WITHOUT_CONTACT "\xef\x88\xa3" // U+f223 #define ICON_MD_CONNECTED_TV "\xee\xa6\x98" // U+e998 #define ICON_MD_CONNECTING_AIRPORTS "\xee\x9f\x89" // U+e7c9 #define ICON_MD_CONSTRUCTION "\xee\xa8\xbc" // U+ea3c #define ICON_MD_CONTACT_EMERGENCY "\xef\xa3\x91" // U+f8d1 #define ICON_MD_CONTACT_MAIL "\xee\x83\x90" // U+e0d0 #define ICON_MD_CONTACT_PAGE "\xef\x88\xae" // U+f22e #define ICON_MD_CONTACT_PHONE "\xee\x83\x8f" // U+e0cf #define ICON_MD_CONTACT_SUPPORT "\xee\xa5\x8c" // U+e94c #define ICON_MD_CONTACTLESS "\xee\xa9\xb1" // U+ea71 #define ICON_MD_CONTACTS "\xee\x82\xba" // U+e0ba #define ICON_MD_CONTENT_COPY "\xee\x85\x8d" // U+e14d #define ICON_MD_CONTENT_CUT "\xee\x85\x8e" // U+e14e #define ICON_MD_CONTENT_PASTE "\xee\x85\x8f" // U+e14f #define ICON_MD_CONTENT_PASTE_GO "\xee\xaa\x8e" // U+ea8e #define ICON_MD_CONTENT_PASTE_OFF "\xee\x93\xb8" // U+e4f8 #define ICON_MD_CONTENT_PASTE_SEARCH "\xee\xaa\x9b" // U+ea9b #define ICON_MD_CONTRAST "\xee\xac\xb7" // U+eb37 #define ICON_MD_CONTROL_CAMERA "\xee\x81\xb4" // U+e074 #define ICON_MD_CONTROL_POINT "\xee\x8e\xba" // U+e3ba #define ICON_MD_CONTROL_POINT_DUPLICATE "\xee\x8e\xbb" // U+e3bb #define ICON_MD_CONVEYOR_BELT "\xef\xa1\xa7" // U+f867 #define ICON_MD_COOKIE "\xee\xaa\xac" // U+eaac #define ICON_MD_COPY_ALL "\xee\x8b\xac" // U+e2ec #define ICON_MD_COPYRIGHT "\xee\xa4\x8c" // U+e90c #define ICON_MD_CORONAVIRUS "\xef\x88\xa1" // U+f221 #define ICON_MD_CORPORATE_FARE "\xef\x87\x90" // U+f1d0 #define ICON_MD_COTTAGE "\xee\x96\x87" // U+e587 #define ICON_MD_COUNTERTOPS "\xef\x87\xb7" // U+f1f7 #define ICON_MD_CREATE "\xee\x85\x90" // U+e150 #define ICON_MD_CREATE_NEW_FOLDER "\xee\x8b\x8c" // U+e2cc #define ICON_MD_CREDIT_CARD "\xee\xa1\xb0" // U+e870 #define ICON_MD_CREDIT_CARD_OFF "\xee\x93\xb4" // U+e4f4 #define ICON_MD_CREDIT_SCORE "\xee\xbf\xb1" // U+eff1 #define ICON_MD_CRIB "\xee\x96\x88" // U+e588 #define ICON_MD_CRISIS_ALERT "\xee\xaf\xa9" // U+ebe9 #define ICON_MD_CROP "\xee\x8e\xbe" // U+e3be #define ICON_MD_CROP_16_9 "\xee\x8e\xbc" // U+e3bc #define ICON_MD_CROP_3_2 "\xee\x8e\xbd" // U+e3bd #define ICON_MD_CROP_5_4 "\xee\x8e\xbf" // U+e3bf #define ICON_MD_CROP_7_5 "\xee\x8f\x80" // U+e3c0 #define ICON_MD_CROP_DIN "\xee\x8f\x81" // U+e3c1 #define ICON_MD_CROP_FREE "\xee\x8f\x82" // U+e3c2 #define ICON_MD_CROP_LANDSCAPE "\xee\x8f\x83" // U+e3c3 #define ICON_MD_CROP_ORIGINAL "\xee\x8f\x84" // U+e3c4 #define ICON_MD_CROP_PORTRAIT "\xee\x8f\x85" // U+e3c5 #define ICON_MD_CROP_ROTATE "\xee\x90\xb7" // U+e437 #define ICON_MD_CROP_SQUARE "\xee\x8f\x86" // U+e3c6 #define ICON_MD_CRUELTY_FREE "\xee\x9e\x99" // U+e799 #define ICON_MD_CSS "\xee\xae\x93" // U+eb93 #define ICON_MD_CURRENCY_BITCOIN "\xee\xaf\x85" // U+ebc5 #define ICON_MD_CURRENCY_EXCHANGE "\xee\xad\xb0" // U+eb70 #define ICON_MD_CURRENCY_FRANC "\xee\xab\xba" // U+eafa #define ICON_MD_CURRENCY_LIRA "\xee\xab\xaf" // U+eaef #define ICON_MD_CURRENCY_POUND "\xee\xab\xb1" // U+eaf1 #define ICON_MD_CURRENCY_RUBLE "\xee\xab\xac" // U+eaec #define ICON_MD_CURRENCY_RUPEE "\xee\xab\xb7" // U+eaf7 #define ICON_MD_CURRENCY_YEN "\xee\xab\xbb" // U+eafb #define ICON_MD_CURRENCY_YUAN "\xee\xab\xb9" // U+eaf9 #define ICON_MD_CURTAINS "\xee\xb0\x9e" // U+ec1e #define ICON_MD_CURTAINS_CLOSED "\xee\xb0\x9d" // U+ec1d #define ICON_MD_CYCLONE "\xee\xaf\x95" // U+ebd5 #define ICON_MD_DANGEROUS "\xee\xa6\x9a" // U+e99a #define ICON_MD_DARK_MODE "\xee\x94\x9c" // U+e51c #define ICON_MD_DASHBOARD "\xee\xa1\xb1" // U+e871 #define ICON_MD_DASHBOARD_CUSTOMIZE "\xee\xa6\x9b" // U+e99b #define ICON_MD_DATA_ARRAY "\xee\xab\x91" // U+ead1 #define ICON_MD_DATA_EXPLORATION "\xee\x9d\xaf" // U+e76f #define ICON_MD_DATA_OBJECT "\xee\xab\x93" // U+ead3 #define ICON_MD_DATA_SAVER_OFF "\xee\xbf\xb2" // U+eff2 #define ICON_MD_DATA_SAVER_ON "\xee\xbf\xb3" // U+eff3 #define ICON_MD_DATA_THRESHOLDING "\xee\xae\x9f" // U+eb9f #define ICON_MD_DATA_USAGE "\xee\x86\xaf" // U+e1af #define ICON_MD_DATASET "\xef\xa3\xae" // U+f8ee #define ICON_MD_DATASET_LINKED "\xef\xa3\xaf" // U+f8ef #define ICON_MD_DATE_RANGE "\xee\xa4\x96" // U+e916 #define ICON_MD_DEBLUR "\xee\xad\xb7" // U+eb77 #define ICON_MD_DECK "\xee\xa9\x82" // U+ea42 #define ICON_MD_DEHAZE "\xee\x8f\x87" // U+e3c7 #define ICON_MD_DELETE "\xee\xa1\xb2" // U+e872 #define ICON_MD_DELETE_FOREVER "\xee\xa4\xab" // U+e92b #define ICON_MD_DELETE_OUTLINE "\xee\xa4\xae" // U+e92e #define ICON_MD_DELETE_SWEEP "\xee\x85\xac" // U+e16c #define ICON_MD_DELIVERY_DINING "\xee\xa9\xb2" // U+ea72 #define ICON_MD_DENSITY_LARGE "\xee\xae\xa9" // U+eba9 #define ICON_MD_DENSITY_MEDIUM "\xee\xae\x9e" // U+eb9e #define ICON_MD_DENSITY_SMALL "\xee\xae\xa8" // U+eba8 #define ICON_MD_DEPARTURE_BOARD "\xee\x95\xb6" // U+e576 #define ICON_MD_DESCRIPTION "\xee\xa1\xb3" // U+e873 #define ICON_MD_DESELECT "\xee\xae\xb6" // U+ebb6 #define ICON_MD_DESIGN_SERVICES "\xef\x84\x8a" // U+f10a #define ICON_MD_DESK "\xef\xa3\xb4" // U+f8f4 #define ICON_MD_DESKTOP_ACCESS_DISABLED "\xee\xa6\x9d" // U+e99d #define ICON_MD_DESKTOP_MAC "\xee\x8c\x8b" // U+e30b #define ICON_MD_DESKTOP_WINDOWS "\xee\x8c\x8c" // U+e30c #define ICON_MD_DETAILS "\xee\x8f\x88" // U+e3c8 #define ICON_MD_DEVELOPER_BOARD "\xee\x8c\x8d" // U+e30d #define ICON_MD_DEVELOPER_BOARD_OFF "\xee\x93\xbf" // U+e4ff #define ICON_MD_DEVELOPER_MODE "\xee\x86\xb0" // U+e1b0 #define ICON_MD_DEVICE_HUB "\xee\x8c\xb5" // U+e335 #define ICON_MD_DEVICE_THERMOSTAT "\xee\x87\xbf" // U+e1ff #define ICON_MD_DEVICE_UNKNOWN "\xee\x8c\xb9" // U+e339 #define ICON_MD_DEVICES "\xee\x86\xb1" // U+e1b1 #define ICON_MD_DEVICES_FOLD "\xee\xaf\x9e" // U+ebde #define ICON_MD_DEVICES_OTHER "\xee\x8c\xb7" // U+e337 #define ICON_MD_DEW_POINT "\xef\xa1\xb9" // U+f879 #define ICON_MD_DIALER_SIP "\xee\x82\xbb" // U+e0bb #define ICON_MD_DIALPAD "\xee\x82\xbc" // U+e0bc #define ICON_MD_DIAMOND "\xee\xab\x95" // U+ead5 #define ICON_MD_DIFFERENCE "\xee\xad\xbd" // U+eb7d #define ICON_MD_DINING "\xee\xbf\xb4" // U+eff4 #define ICON_MD_DINNER_DINING "\xee\xa9\x97" // U+ea57 #define ICON_MD_DIRECTIONS "\xee\x94\xae" // U+e52e #define ICON_MD_DIRECTIONS_BIKE "\xee\x94\xaf" // U+e52f #define ICON_MD_DIRECTIONS_BOAT "\xee\x94\xb2" // U+e532 #define ICON_MD_DIRECTIONS_BOAT_FILLED "\xee\xbf\xb5" // U+eff5 #define ICON_MD_DIRECTIONS_BUS "\xee\x94\xb0" // U+e530 #define ICON_MD_DIRECTIONS_BUS_FILLED "\xee\xbf\xb6" // U+eff6 #define ICON_MD_DIRECTIONS_CAR "\xee\x94\xb1" // U+e531 #define ICON_MD_DIRECTIONS_CAR_FILLED "\xee\xbf\xb7" // U+eff7 #define ICON_MD_DIRECTIONS_FERRY "\xee\x94\xb2" // U+e532 #define ICON_MD_DIRECTIONS_OFF "\xef\x84\x8f" // U+f10f #define ICON_MD_DIRECTIONS_RAILWAY "\xee\x94\xb4" // U+e534 #define ICON_MD_DIRECTIONS_RAILWAY_FILLED "\xee\xbf\xb8" // U+eff8 #define ICON_MD_DIRECTIONS_RUN "\xee\x95\xa6" // U+e566 #define ICON_MD_DIRECTIONS_SUBWAY "\xee\x94\xb3" // U+e533 #define ICON_MD_DIRECTIONS_SUBWAY_FILLED "\xee\xbf\xb9" // U+eff9 #define ICON_MD_DIRECTIONS_TRAIN "\xee\x94\xb4" // U+e534 #define ICON_MD_DIRECTIONS_TRANSIT "\xee\x94\xb5" // U+e535 #define ICON_MD_DIRECTIONS_TRANSIT_FILLED "\xee\xbf\xba" // U+effa #define ICON_MD_DIRECTIONS_WALK "\xee\x94\xb6" // U+e536 #define ICON_MD_DIRTY_LENS "\xee\xbd\x8b" // U+ef4b #define ICON_MD_DISABLED_BY_DEFAULT "\xef\x88\xb0" // U+f230 #define ICON_MD_DISABLED_VISIBLE "\xee\x9d\xae" // U+e76e #define ICON_MD_DISC_FULL "\xee\x98\x90" // U+e610 #define ICON_MD_DISCORD "\xee\xa9\xac" // U+ea6c #define ICON_MD_DISCOUNT "\xee\xaf\x89" // U+ebc9 #define ICON_MD_DISPLAY_SETTINGS "\xee\xae\x97" // U+eb97 #define ICON_MD_DIVERSITY_1 "\xef\xa3\x97" // U+f8d7 #define ICON_MD_DIVERSITY_2 "\xef\xa3\x98" // U+f8d8 #define ICON_MD_DIVERSITY_3 "\xef\xa3\x99" // U+f8d9 #define ICON_MD_DND_FORWARDSLASH "\xee\x98\x91" // U+e611 #define ICON_MD_DNS "\xee\xa1\xb5" // U+e875 #define ICON_MD_DO_DISTURB "\xef\x82\x8c" // U+f08c #define ICON_MD_DO_DISTURB_ALT "\xef\x82\x8d" // U+f08d #define ICON_MD_DO_DISTURB_OFF "\xef\x82\x8e" // U+f08e #define ICON_MD_DO_DISTURB_ON "\xef\x82\x8f" // U+f08f #define ICON_MD_DO_NOT_DISTURB "\xee\x98\x92" // U+e612 #define ICON_MD_DO_NOT_DISTURB_ALT "\xee\x98\x91" // U+e611 #define ICON_MD_DO_NOT_DISTURB_OFF "\xee\x99\x83" // U+e643 #define ICON_MD_DO_NOT_DISTURB_ON "\xee\x99\x84" // U+e644 #define ICON_MD_DO_NOT_DISTURB_ON_TOTAL_SILENCE "\xee\xbf\xbb" // U+effb #define ICON_MD_DO_NOT_STEP "\xef\x86\x9f" // U+f19f #define ICON_MD_DO_NOT_TOUCH "\xef\x86\xb0" // U+f1b0 #define ICON_MD_DOCK "\xee\x8c\x8e" // U+e30e #define ICON_MD_DOCUMENT_SCANNER "\xee\x97\xba" // U+e5fa #define ICON_MD_DOMAIN "\xee\x9f\xae" // U+e7ee #define ICON_MD_DOMAIN_ADD "\xee\xad\xa2" // U+eb62 #define ICON_MD_DOMAIN_DISABLED "\xee\x83\xaf" // U+e0ef #define ICON_MD_DOMAIN_VERIFICATION "\xee\xbd\x8c" // U+ef4c #define ICON_MD_DONE "\xee\xa1\xb6" // U+e876 #define ICON_MD_DONE_ALL "\xee\xa1\xb7" // U+e877 #define ICON_MD_DONE_OUTLINE "\xee\xa4\xaf" // U+e92f #define ICON_MD_DONUT_LARGE "\xee\xa4\x97" // U+e917 #define ICON_MD_DONUT_SMALL "\xee\xa4\x98" // U+e918 #define ICON_MD_DOOR_BACK "\xee\xbf\xbc" // U+effc #define ICON_MD_DOOR_FRONT "\xee\xbf\xbd" // U+effd #define ICON_MD_DOOR_SLIDING "\xee\xbf\xbe" // U+effe #define ICON_MD_DOORBELL "\xee\xbf\xbf" // U+efff #define ICON_MD_DOUBLE_ARROW "\xee\xa9\x90" // U+ea50 #define ICON_MD_DOWNHILL_SKIING "\xee\x94\x89" // U+e509 #define ICON_MD_DOWNLOAD "\xef\x82\x90" // U+f090 #define ICON_MD_DOWNLOAD_DONE "\xef\x82\x91" // U+f091 #define ICON_MD_DOWNLOAD_FOR_OFFLINE "\xef\x80\x80" // U+f000 #define ICON_MD_DOWNLOADING "\xef\x80\x81" // U+f001 #define ICON_MD_DRAFTS "\xee\x85\x91" // U+e151 #define ICON_MD_DRAG_HANDLE "\xee\x89\x9d" // U+e25d #define ICON_MD_DRAG_INDICATOR "\xee\xa5\x85" // U+e945 #define ICON_MD_DRAW "\xee\x9d\x86" // U+e746 #define ICON_MD_DRIVE_ETA "\xee\x98\x93" // U+e613 #define ICON_MD_DRIVE_FILE_MOVE "\xee\x99\xb5" // U+e675 #define ICON_MD_DRIVE_FILE_MOVE_OUTLINE "\xee\xa6\xa1" // U+e9a1 #define ICON_MD_DRIVE_FILE_MOVE_RTL "\xee\x9d\xad" // U+e76d #define ICON_MD_DRIVE_FILE_RENAME_OUTLINE "\xee\xa6\xa2" // U+e9a2 #define ICON_MD_DRIVE_FOLDER_UPLOAD "\xee\xa6\xa3" // U+e9a3 #define ICON_MD_DRY "\xef\x86\xb3" // U+f1b3 #define ICON_MD_DRY_CLEANING "\xee\xa9\x98" // U+ea58 #define ICON_MD_DUO "\xee\xa6\xa5" // U+e9a5 #define ICON_MD_DVR "\xee\x86\xb2" // U+e1b2 #define ICON_MD_DYNAMIC_FEED "\xee\xa8\x94" // U+ea14 #define ICON_MD_DYNAMIC_FORM "\xef\x86\xbf" // U+f1bf #define ICON_MD_E_MOBILEDATA "\xef\x80\x82" // U+f002 #define ICON_MD_EARBUDS "\xef\x80\x83" // U+f003 #define ICON_MD_EARBUDS_BATTERY "\xef\x80\x84" // U+f004 #define ICON_MD_EAST "\xef\x87\x9f" // U+f1df #define ICON_MD_ECO "\xee\xa8\xb5" // U+ea35 #define ICON_MD_EDGESENSOR_HIGH "\xef\x80\x85" // U+f005 #define ICON_MD_EDGESENSOR_LOW "\xef\x80\x86" // U+f006 #define ICON_MD_EDIT "\xee\x8f\x89" // U+e3c9 #define ICON_MD_EDIT_ATTRIBUTES "\xee\x95\xb8" // U+e578 #define ICON_MD_EDIT_CALENDAR "\xee\x9d\x82" // U+e742 #define ICON_MD_EDIT_DOCUMENT "\xef\xa2\x8c" // U+f88c #define ICON_MD_EDIT_LOCATION "\xee\x95\xa8" // U+e568 #define ICON_MD_EDIT_LOCATION_ALT "\xee\x87\x85" // U+e1c5 #define ICON_MD_EDIT_NOTE "\xee\x9d\x85" // U+e745 #define ICON_MD_EDIT_NOTIFICATIONS "\xee\x94\xa5" // U+e525 #define ICON_MD_EDIT_OFF "\xee\xa5\x90" // U+e950 #define ICON_MD_EDIT_ROAD "\xee\xbd\x8d" // U+ef4d #define ICON_MD_EDIT_SQUARE "\xef\xa2\x8d" // U+f88d #define ICON_MD_EGG "\xee\xab\x8c" // U+eacc #define ICON_MD_EGG_ALT "\xee\xab\x88" // U+eac8 #define ICON_MD_EJECT "\xee\xa3\xbb" // U+e8fb #define ICON_MD_ELDERLY "\xef\x88\x9a" // U+f21a #define ICON_MD_ELDERLY_WOMAN "\xee\xad\xa9" // U+eb69 #define ICON_MD_ELECTRIC_BIKE "\xee\xac\x9b" // U+eb1b #define ICON_MD_ELECTRIC_BOLT "\xee\xb0\x9c" // U+ec1c #define ICON_MD_ELECTRIC_CAR "\xee\xac\x9c" // U+eb1c #define ICON_MD_ELECTRIC_METER "\xee\xb0\x9b" // U+ec1b #define ICON_MD_ELECTRIC_MOPED "\xee\xac\x9d" // U+eb1d #define ICON_MD_ELECTRIC_RICKSHAW "\xee\xac\x9e" // U+eb1e #define ICON_MD_ELECTRIC_SCOOTER "\xee\xac\x9f" // U+eb1f #define ICON_MD_ELECTRICAL_SERVICES "\xef\x84\x82" // U+f102 #define ICON_MD_ELEVATOR "\xef\x86\xa0" // U+f1a0 #define ICON_MD_EMAIL "\xee\x82\xbe" // U+e0be #define ICON_MD_EMERGENCY "\xee\x87\xab" // U+e1eb #define ICON_MD_EMERGENCY_RECORDING "\xee\xaf\xb4" // U+ebf4 #define ICON_MD_EMERGENCY_SHARE "\xee\xaf\xb6" // U+ebf6 #define ICON_MD_EMOJI_EMOTIONS "\xee\xa8\xa2" // U+ea22 #define ICON_MD_EMOJI_EVENTS "\xee\xa8\xa3" // U+ea23 #define ICON_MD_EMOJI_FLAGS "\xee\xa8\x9a" // U+ea1a #define ICON_MD_EMOJI_FOOD_BEVERAGE "\xee\xa8\x9b" // U+ea1b #define ICON_MD_EMOJI_NATURE "\xee\xa8\x9c" // U+ea1c #define ICON_MD_EMOJI_OBJECTS "\xee\xa8\xa4" // U+ea24 #define ICON_MD_EMOJI_PEOPLE "\xee\xa8\x9d" // U+ea1d #define ICON_MD_EMOJI_SYMBOLS "\xee\xa8\x9e" // U+ea1e #define ICON_MD_EMOJI_TRANSPORTATION "\xee\xa8\x9f" // U+ea1f #define ICON_MD_ENERGY_SAVINGS_LEAF "\xee\xb0\x9a" // U+ec1a #define ICON_MD_ENGINEERING "\xee\xa8\xbd" // U+ea3d #define ICON_MD_ENHANCE_PHOTO_TRANSLATE "\xee\xa3\xbc" // U+e8fc #define ICON_MD_ENHANCED_ENCRYPTION "\xee\x98\xbf" // U+e63f #define ICON_MD_EQUALIZER "\xee\x80\x9d" // U+e01d #define ICON_MD_ERROR "\xee\x80\x80" // U+e000 #define ICON_MD_ERROR_OUTLINE "\xee\x80\x81" // U+e001 #define ICON_MD_ESCALATOR "\xef\x86\xa1" // U+f1a1 #define ICON_MD_ESCALATOR_WARNING "\xef\x86\xac" // U+f1ac #define ICON_MD_EURO "\xee\xa8\x95" // U+ea15 #define ICON_MD_EURO_SYMBOL "\xee\xa4\xa6" // U+e926 #define ICON_MD_EV_STATION "\xee\x95\xad" // U+e56d #define ICON_MD_EVENT "\xee\xa1\xb8" // U+e878 #define ICON_MD_EVENT_AVAILABLE "\xee\x98\x94" // U+e614 #define ICON_MD_EVENT_BUSY "\xee\x98\x95" // U+e615 #define ICON_MD_EVENT_NOTE "\xee\x98\x96" // U+e616 #define ICON_MD_EVENT_REPEAT "\xee\xad\xbb" // U+eb7b #define ICON_MD_EVENT_SEAT "\xee\xa4\x83" // U+e903 #define ICON_MD_EXIT_TO_APP "\xee\xa1\xb9" // U+e879 #define ICON_MD_EXPAND "\xee\xa5\x8f" // U+e94f #define ICON_MD_EXPAND_CIRCLE_DOWN "\xee\x9f\x8d" // U+e7cd #define ICON_MD_EXPAND_LESS "\xee\x97\x8e" // U+e5ce #define ICON_MD_EXPAND_MORE "\xee\x97\x8f" // U+e5cf #define ICON_MD_EXPLICIT "\xee\x80\x9e" // U+e01e #define ICON_MD_EXPLORE "\xee\xa1\xba" // U+e87a #define ICON_MD_EXPLORE_OFF "\xee\xa6\xa8" // U+e9a8 #define ICON_MD_EXPOSURE "\xee\x8f\x8a" // U+e3ca #define ICON_MD_EXPOSURE_MINUS_1 "\xee\x8f\x8b" // U+e3cb #define ICON_MD_EXPOSURE_MINUS_2 "\xee\x8f\x8c" // U+e3cc #define ICON_MD_EXPOSURE_NEG_1 "\xee\x8f\x8b" // U+e3cb #define ICON_MD_EXPOSURE_NEG_2 "\xee\x8f\x8c" // U+e3cc #define ICON_MD_EXPOSURE_PLUS_1 "\xee\x8f\x8d" // U+e3cd #define ICON_MD_EXPOSURE_PLUS_2 "\xee\x8f\x8e" // U+e3ce #define ICON_MD_EXPOSURE_ZERO "\xee\x8f\x8f" // U+e3cf #define ICON_MD_EXTENSION "\xee\xa1\xbb" // U+e87b #define ICON_MD_EXTENSION_OFF "\xee\x93\xb5" // U+e4f5 #define ICON_MD_FACE "\xee\xa1\xbc" // U+e87c #define ICON_MD_FACE_2 "\xef\xa3\x9a" // U+f8da #define ICON_MD_FACE_3 "\xef\xa3\x9b" // U+f8db #define ICON_MD_FACE_4 "\xef\xa3\x9c" // U+f8dc #define ICON_MD_FACE_5 "\xef\xa3\x9d" // U+f8dd #define ICON_MD_FACE_6 "\xef\xa3\x9e" // U+f8de #define ICON_MD_FACE_RETOUCHING_NATURAL "\xee\xbd\x8e" // U+ef4e #define ICON_MD_FACE_RETOUCHING_OFF "\xef\x80\x87" // U+f007 #define ICON_MD_FACEBOOK "\xef\x88\xb4" // U+f234 #define ICON_MD_FACT_CHECK "\xef\x83\x85" // U+f0c5 #define ICON_MD_FACTORY "\xee\xae\xbc" // U+ebbc #define ICON_MD_FAMILY_RESTROOM "\xef\x86\xa2" // U+f1a2 #define ICON_MD_FAST_FORWARD "\xee\x80\x9f" // U+e01f #define ICON_MD_FAST_REWIND "\xee\x80\xa0" // U+e020 #define ICON_MD_FASTFOOD "\xee\x95\xba" // U+e57a #define ICON_MD_FAVORITE "\xee\xa1\xbd" // U+e87d #define ICON_MD_FAVORITE_BORDER "\xee\xa1\xbe" // U+e87e #define ICON_MD_FAVORITE_OUTLINE "\xee\xa1\xbe" // U+e87e #define ICON_MD_FAX "\xee\xab\x98" // U+ead8 #define ICON_MD_FEATURED_PLAY_LIST "\xee\x81\xad" // U+e06d #define ICON_MD_FEATURED_VIDEO "\xee\x81\xae" // U+e06e #define ICON_MD_FEED "\xef\x80\x89" // U+f009 #define ICON_MD_FEEDBACK "\xee\xa1\xbf" // U+e87f #define ICON_MD_FEMALE "\xee\x96\x90" // U+e590 #define ICON_MD_FENCE "\xef\x87\xb6" // U+f1f6 #define ICON_MD_FESTIVAL "\xee\xa9\xa8" // U+ea68 #define ICON_MD_FIBER_DVR "\xee\x81\x9d" // U+e05d #define ICON_MD_FIBER_MANUAL_RECORD "\xee\x81\xa1" // U+e061 #define ICON_MD_FIBER_NEW "\xee\x81\x9e" // U+e05e #define ICON_MD_FIBER_PIN "\xee\x81\xaa" // U+e06a #define ICON_MD_FIBER_SMART_RECORD "\xee\x81\xa2" // U+e062 #define ICON_MD_FILE_COPY "\xee\x85\xb3" // U+e173 #define ICON_MD_FILE_DOWNLOAD "\xee\x8b\x84" // U+e2c4 #define ICON_MD_FILE_DOWNLOAD_DONE "\xee\xa6\xaa" // U+e9aa #define ICON_MD_FILE_DOWNLOAD_OFF "\xee\x93\xbe" // U+e4fe #define ICON_MD_FILE_OPEN "\xee\xab\xb3" // U+eaf3 #define ICON_MD_FILE_PRESENT "\xee\xa8\x8e" // U+ea0e #define ICON_MD_FILE_UPLOAD "\xee\x8b\x86" // U+e2c6 #define ICON_MD_FILE_UPLOAD_OFF "\xef\xa2\x86" // U+f886 #define ICON_MD_FILTER "\xee\x8f\x93" // U+e3d3 #define ICON_MD_FILTER_1 "\xee\x8f\x90" // U+e3d0 #define ICON_MD_FILTER_2 "\xee\x8f\x91" // U+e3d1 #define ICON_MD_FILTER_3 "\xee\x8f\x92" // U+e3d2 #define ICON_MD_FILTER_4 "\xee\x8f\x94" // U+e3d4 #define ICON_MD_FILTER_5 "\xee\x8f\x95" // U+e3d5 #define ICON_MD_FILTER_6 "\xee\x8f\x96" // U+e3d6 #define ICON_MD_FILTER_7 "\xee\x8f\x97" // U+e3d7 #define ICON_MD_FILTER_8 "\xee\x8f\x98" // U+e3d8 #define ICON_MD_FILTER_9 "\xee\x8f\x99" // U+e3d9 #define ICON_MD_FILTER_9_PLUS "\xee\x8f\x9a" // U+e3da #define ICON_MD_FILTER_ALT "\xee\xbd\x8f" // U+ef4f #define ICON_MD_FILTER_ALT_OFF "\xee\xac\xb2" // U+eb32 #define ICON_MD_FILTER_B_AND_W "\xee\x8f\x9b" // U+e3db #define ICON_MD_FILTER_CENTER_FOCUS "\xee\x8f\x9c" // U+e3dc #define ICON_MD_FILTER_DRAMA "\xee\x8f\x9d" // U+e3dd #define ICON_MD_FILTER_FRAMES "\xee\x8f\x9e" // U+e3de #define ICON_MD_FILTER_HDR "\xee\x8f\x9f" // U+e3df #define ICON_MD_FILTER_LIST "\xee\x85\x92" // U+e152 #define ICON_MD_FILTER_LIST_ALT "\xee\xa5\x8e" // U+e94e #define ICON_MD_FILTER_LIST_OFF "\xee\xad\x97" // U+eb57 #define ICON_MD_FILTER_NONE "\xee\x8f\xa0" // U+e3e0 #define ICON_MD_FILTER_TILT_SHIFT "\xee\x8f\xa2" // U+e3e2 #define ICON_MD_FILTER_VINTAGE "\xee\x8f\xa3" // U+e3e3 #define ICON_MD_FIND_IN_PAGE "\xee\xa2\x80" // U+e880 #define ICON_MD_FIND_REPLACE "\xee\xa2\x81" // U+e881 #define ICON_MD_FINGERPRINT "\xee\xa4\x8d" // U+e90d #define ICON_MD_FIRE_EXTINGUISHER "\xef\x87\x98" // U+f1d8 #define ICON_MD_FIRE_HYDRANT "\xef\x86\xa3" // U+f1a3 #define ICON_MD_FIRE_HYDRANT_ALT "\xef\xa3\xb1" // U+f8f1 #define ICON_MD_FIRE_TRUCK "\xef\xa3\xb2" // U+f8f2 #define ICON_MD_FIREPLACE "\xee\xa9\x83" // U+ea43 #define ICON_MD_FIRST_PAGE "\xee\x97\x9c" // U+e5dc #define ICON_MD_FIT_SCREEN "\xee\xa8\x90" // U+ea10 #define ICON_MD_FITBIT "\xee\xa0\xab" // U+e82b #define ICON_MD_FITNESS_CENTER "\xee\xad\x83" // U+eb43 #define ICON_MD_FLAG "\xee\x85\x93" // U+e153 #define ICON_MD_FLAG_CIRCLE "\xee\xab\xb8" // U+eaf8 #define ICON_MD_FLAKY "\xee\xbd\x90" // U+ef50 #define ICON_MD_FLARE "\xee\x8f\xa4" // U+e3e4 #define ICON_MD_FLASH_AUTO "\xee\x8f\xa5" // U+e3e5 #define ICON_MD_FLASH_OFF "\xee\x8f\xa6" // U+e3e6 #define ICON_MD_FLASH_ON "\xee\x8f\xa7" // U+e3e7 #define ICON_MD_FLASHLIGHT_OFF "\xef\x80\x8a" // U+f00a #define ICON_MD_FLASHLIGHT_ON "\xef\x80\x8b" // U+f00b #define ICON_MD_FLATWARE "\xef\x80\x8c" // U+f00c #define ICON_MD_FLIGHT "\xee\x94\xb9" // U+e539 #define ICON_MD_FLIGHT_CLASS "\xee\x9f\x8b" // U+e7cb #define ICON_MD_FLIGHT_LAND "\xee\xa4\x84" // U+e904 #define ICON_MD_FLIGHT_TAKEOFF "\xee\xa4\x85" // U+e905 #define ICON_MD_FLIP "\xee\x8f\xa8" // U+e3e8 #define ICON_MD_FLIP_CAMERA_ANDROID "\xee\xa8\xb7" // U+ea37 #define ICON_MD_FLIP_CAMERA_IOS "\xee\xa8\xb8" // U+ea38 #define ICON_MD_FLIP_TO_BACK "\xee\xa2\x82" // U+e882 #define ICON_MD_FLIP_TO_FRONT "\xee\xa2\x83" // U+e883 #define ICON_MD_FLOOD "\xee\xaf\xa6" // U+ebe6 #define ICON_MD_FLOURESCENT "\xef\x80\x8d" // U+f00d #define ICON_MD_FLUORESCENT "\xee\xb0\xb1" // U+ec31 #define ICON_MD_FLUTTER_DASH "\xee\x80\x8b" // U+e00b #define ICON_MD_FMD_BAD "\xef\x80\x8e" // U+f00e #define ICON_MD_FMD_GOOD "\xef\x80\x8f" // U+f00f #define ICON_MD_FOGGY "\xee\xa0\x98" // U+e818 #define ICON_MD_FOLDER "\xee\x8b\x87" // U+e2c7 #define ICON_MD_FOLDER_COPY "\xee\xae\xbd" // U+ebbd #define ICON_MD_FOLDER_DELETE "\xee\xac\xb4" // U+eb34 #define ICON_MD_FOLDER_OFF "\xee\xae\x83" // U+eb83 #define ICON_MD_FOLDER_OPEN "\xee\x8b\x88" // U+e2c8 #define ICON_MD_FOLDER_SHARED "\xee\x8b\x89" // U+e2c9 #define ICON_MD_FOLDER_SPECIAL "\xee\x98\x97" // U+e617 #define ICON_MD_FOLDER_ZIP "\xee\xac\xac" // U+eb2c #define ICON_MD_FOLLOW_THE_SIGNS "\xef\x88\xa2" // U+f222 #define ICON_MD_FONT_DOWNLOAD "\xee\x85\xa7" // U+e167 #define ICON_MD_FONT_DOWNLOAD_OFF "\xee\x93\xb9" // U+e4f9 #define ICON_MD_FOOD_BANK "\xef\x87\xb2" // U+f1f2 #define ICON_MD_FOREST "\xee\xaa\x99" // U+ea99 #define ICON_MD_FORK_LEFT "\xee\xae\xa0" // U+eba0 #define ICON_MD_FORK_RIGHT "\xee\xae\xac" // U+ebac #define ICON_MD_FORKLIFT "\xef\xa1\xa8" // U+f868 #define ICON_MD_FORMAT_ALIGN_CENTER "\xee\x88\xb4" // U+e234 #define ICON_MD_FORMAT_ALIGN_JUSTIFY "\xee\x88\xb5" // U+e235 #define ICON_MD_FORMAT_ALIGN_LEFT "\xee\x88\xb6" // U+e236 #define ICON_MD_FORMAT_ALIGN_RIGHT "\xee\x88\xb7" // U+e237 #define ICON_MD_FORMAT_BOLD "\xee\x88\xb8" // U+e238 #define ICON_MD_FORMAT_CLEAR "\xee\x88\xb9" // U+e239 #define ICON_MD_FORMAT_COLOR_FILL "\xee\x88\xba" // U+e23a #define ICON_MD_FORMAT_COLOR_RESET "\xee\x88\xbb" // U+e23b #define ICON_MD_FORMAT_COLOR_TEXT "\xee\x88\xbc" // U+e23c #define ICON_MD_FORMAT_INDENT_DECREASE "\xee\x88\xbd" // U+e23d #define ICON_MD_FORMAT_INDENT_INCREASE "\xee\x88\xbe" // U+e23e #define ICON_MD_FORMAT_ITALIC "\xee\x88\xbf" // U+e23f #define ICON_MD_FORMAT_LINE_SPACING "\xee\x89\x80" // U+e240 #define ICON_MD_FORMAT_LIST_BULLETED "\xee\x89\x81" // U+e241 #define ICON_MD_FORMAT_LIST_BULLETED_ADD "\xef\xa1\x89" // U+f849 #define ICON_MD_FORMAT_LIST_NUMBERED "\xee\x89\x82" // U+e242 #define ICON_MD_FORMAT_LIST_NUMBERED_RTL "\xee\x89\xa7" // U+e267 #define ICON_MD_FORMAT_OVERLINE "\xee\xad\xa5" // U+eb65 #define ICON_MD_FORMAT_PAINT "\xee\x89\x83" // U+e243 #define ICON_MD_FORMAT_QUOTE "\xee\x89\x84" // U+e244 #define ICON_MD_FORMAT_SHAPES "\xee\x89\x9e" // U+e25e #define ICON_MD_FORMAT_SIZE "\xee\x89\x85" // U+e245 #define ICON_MD_FORMAT_STRIKETHROUGH "\xee\x89\x86" // U+e246 #define ICON_MD_FORMAT_TEXTDIRECTION_L_TO_R "\xee\x89\x87" // U+e247 #define ICON_MD_FORMAT_TEXTDIRECTION_R_TO_L "\xee\x89\x88" // U+e248 #define ICON_MD_FORMAT_UNDERLINE "\xee\x89\x89" // U+e249 #define ICON_MD_FORMAT_UNDERLINED "\xee\x89\x89" // U+e249 #define ICON_MD_FORT "\xee\xaa\xad" // U+eaad #define ICON_MD_FORUM "\xee\x82\xbf" // U+e0bf #define ICON_MD_FORWARD "\xee\x85\x94" // U+e154 #define ICON_MD_FORWARD_10 "\xee\x81\x96" // U+e056 #define ICON_MD_FORWARD_30 "\xee\x81\x97" // U+e057 #define ICON_MD_FORWARD_5 "\xee\x81\x98" // U+e058 #define ICON_MD_FORWARD_TO_INBOX "\xef\x86\x87" // U+f187 #define ICON_MD_FOUNDATION "\xef\x88\x80" // U+f200 #define ICON_MD_FREE_BREAKFAST "\xee\xad\x84" // U+eb44 #define ICON_MD_FREE_CANCELLATION "\xee\x9d\x88" // U+e748 #define ICON_MD_FRONT_HAND "\xee\x9d\xa9" // U+e769 #define ICON_MD_FRONT_LOADER "\xef\xa1\xa9" // U+f869 #define ICON_MD_FULLSCREEN "\xee\x97\x90" // U+e5d0 #define ICON_MD_FULLSCREEN_EXIT "\xee\x97\x91" // U+e5d1 #define ICON_MD_FUNCTIONS "\xee\x89\x8a" // U+e24a #define ICON_MD_G_MOBILEDATA "\xef\x80\x90" // U+f010 #define ICON_MD_G_TRANSLATE "\xee\xa4\xa7" // U+e927 #define ICON_MD_GAMEPAD "\xee\x8c\x8f" // U+e30f #define ICON_MD_GAMES "\xee\x80\xa1" // U+e021 #define ICON_MD_GARAGE "\xef\x80\x91" // U+f011 #define ICON_MD_GAS_METER "\xee\xb0\x99" // U+ec19 #define ICON_MD_GAVEL "\xee\xa4\x8e" // U+e90e #define ICON_MD_GENERATING_TOKENS "\xee\x9d\x89" // U+e749 #define ICON_MD_GESTURE "\xee\x85\x95" // U+e155 #define ICON_MD_GET_APP "\xee\xa2\x84" // U+e884 #define ICON_MD_GIF "\xee\xa4\x88" // U+e908 #define ICON_MD_GIF_BOX "\xee\x9e\xa3" // U+e7a3 #define ICON_MD_GIRL "\xee\xad\xa8" // U+eb68 #define ICON_MD_GITE "\xee\x96\x8b" // U+e58b #define ICON_MD_GOAT "\xf4\x8f\xbf\xbd" // U+10fffd #define ICON_MD_GOLF_COURSE "\xee\xad\x85" // U+eb45 #define ICON_MD_GPP_BAD "\xef\x80\x92" // U+f012 #define ICON_MD_GPP_GOOD "\xef\x80\x93" // U+f013 #define ICON_MD_GPP_MAYBE "\xef\x80\x94" // U+f014 #define ICON_MD_GPS_FIXED "\xee\x86\xb3" // U+e1b3 #define ICON_MD_GPS_NOT_FIXED "\xee\x86\xb4" // U+e1b4 #define ICON_MD_GPS_OFF "\xee\x86\xb5" // U+e1b5 #define ICON_MD_GRADE "\xee\xa2\x85" // U+e885 #define ICON_MD_GRADIENT "\xee\x8f\xa9" // U+e3e9 #define ICON_MD_GRADING "\xee\xa9\x8f" // U+ea4f #define ICON_MD_GRAIN "\xee\x8f\xaa" // U+e3ea #define ICON_MD_GRAPHIC_EQ "\xee\x86\xb8" // U+e1b8 #define ICON_MD_GRASS "\xef\x88\x85" // U+f205 #define ICON_MD_GRID_3X3 "\xef\x80\x95" // U+f015 #define ICON_MD_GRID_4X4 "\xef\x80\x96" // U+f016 #define ICON_MD_GRID_GOLDENRATIO "\xef\x80\x97" // U+f017 #define ICON_MD_GRID_OFF "\xee\x8f\xab" // U+e3eb #define ICON_MD_GRID_ON "\xee\x8f\xac" // U+e3ec #define ICON_MD_GRID_VIEW "\xee\xa6\xb0" // U+e9b0 #define ICON_MD_GROUP "\xee\x9f\xaf" // U+e7ef #define ICON_MD_GROUP_ADD "\xee\x9f\xb0" // U+e7f0 #define ICON_MD_GROUP_OFF "\xee\x9d\x87" // U+e747 #define ICON_MD_GROUP_REMOVE "\xee\x9e\xad" // U+e7ad #define ICON_MD_GROUP_WORK "\xee\xa2\x86" // U+e886 #define ICON_MD_GROUPS "\xef\x88\xb3" // U+f233 #define ICON_MD_GROUPS_2 "\xef\xa3\x9f" // U+f8df #define ICON_MD_GROUPS_3 "\xef\xa3\xa0" // U+f8e0 #define ICON_MD_H_MOBILEDATA "\xef\x80\x98" // U+f018 #define ICON_MD_H_PLUS_MOBILEDATA "\xef\x80\x99" // U+f019 #define ICON_MD_HAIL "\xee\xa6\xb1" // U+e9b1 #define ICON_MD_HANDSHAKE "\xee\xaf\x8b" // U+ebcb #define ICON_MD_HANDYMAN "\xef\x84\x8b" // U+f10b #define ICON_MD_HARDWARE "\xee\xa9\x99" // U+ea59 #define ICON_MD_HD "\xee\x81\x92" // U+e052 #define ICON_MD_HDR_AUTO "\xef\x80\x9a" // U+f01a #define ICON_MD_HDR_AUTO_SELECT "\xef\x80\x9b" // U+f01b #define ICON_MD_HDR_ENHANCED_SELECT "\xee\xbd\x91" // U+ef51 #define ICON_MD_HDR_OFF "\xee\x8f\xad" // U+e3ed #define ICON_MD_HDR_OFF_SELECT "\xef\x80\x9c" // U+f01c #define ICON_MD_HDR_ON "\xee\x8f\xae" // U+e3ee #define ICON_MD_HDR_ON_SELECT "\xef\x80\x9d" // U+f01d #define ICON_MD_HDR_PLUS "\xef\x80\x9e" // U+f01e #define ICON_MD_HDR_STRONG "\xee\x8f\xb1" // U+e3f1 #define ICON_MD_HDR_WEAK "\xee\x8f\xb2" // U+e3f2 #define ICON_MD_HEADPHONES "\xef\x80\x9f" // U+f01f #define ICON_MD_HEADPHONES_BATTERY "\xef\x80\xa0" // U+f020 #define ICON_MD_HEADSET "\xee\x8c\x90" // U+e310 #define ICON_MD_HEADSET_MIC "\xee\x8c\x91" // U+e311 #define ICON_MD_HEADSET_OFF "\xee\x8c\xba" // U+e33a #define ICON_MD_HEALING "\xee\x8f\xb3" // U+e3f3 #define ICON_MD_HEALTH_AND_SAFETY "\xee\x87\x95" // U+e1d5 #define ICON_MD_HEARING "\xee\x80\xa3" // U+e023 #define ICON_MD_HEARING_DISABLED "\xef\x84\x84" // U+f104 #define ICON_MD_HEART_BROKEN "\xee\xab\x82" // U+eac2 #define ICON_MD_HEAT_PUMP "\xee\xb0\x98" // U+ec18 #define ICON_MD_HEIGHT "\xee\xa8\x96" // U+ea16 #define ICON_MD_HELP "\xee\xa2\x87" // U+e887 #define ICON_MD_HELP_CENTER "\xef\x87\x80" // U+f1c0 #define ICON_MD_HELP_OUTLINE "\xee\xa3\xbd" // U+e8fd #define ICON_MD_HEVC "\xef\x80\xa1" // U+f021 #define ICON_MD_HEXAGON "\xee\xac\xb9" // U+eb39 #define ICON_MD_HIDE_IMAGE "\xef\x80\xa2" // U+f022 #define ICON_MD_HIDE_SOURCE "\xef\x80\xa3" // U+f023 #define ICON_MD_HIGH_QUALITY "\xee\x80\xa4" // U+e024 #define ICON_MD_HIGHLIGHT "\xee\x89\x9f" // U+e25f #define ICON_MD_HIGHLIGHT_ALT "\xee\xbd\x92" // U+ef52 #define ICON_MD_HIGHLIGHT_OFF "\xee\xa2\x88" // U+e888 #define ICON_MD_HIGHLIGHT_REMOVE "\xee\xa2\x88" // U+e888 #define ICON_MD_HIKING "\xee\x94\x8a" // U+e50a #define ICON_MD_HISTORY "\xee\xa2\x89" // U+e889 #define ICON_MD_HISTORY_EDU "\xee\xa8\xbe" // U+ea3e #define ICON_MD_HISTORY_TOGGLE_OFF "\xef\x85\xbd" // U+f17d #define ICON_MD_HIVE "\xee\xaa\xa6" // U+eaa6 #define ICON_MD_HLS "\xee\xae\x8a" // U+eb8a #define ICON_MD_HLS_OFF "\xee\xae\x8c" // U+eb8c #define ICON_MD_HOLIDAY_VILLAGE "\xee\x96\x8a" // U+e58a #define ICON_MD_HOME "\xee\xa2\x8a" // U+e88a #define ICON_MD_HOME_FILLED "\xee\xa6\xb2" // U+e9b2 #define ICON_MD_HOME_MAX "\xef\x80\xa4" // U+f024 #define ICON_MD_HOME_MINI "\xef\x80\xa5" // U+f025 #define ICON_MD_HOME_REPAIR_SERVICE "\xef\x84\x80" // U+f100 #define ICON_MD_HOME_WORK "\xee\xa8\x89" // U+ea09 #define ICON_MD_HORIZONTAL_DISTRIBUTE "\xee\x80\x94" // U+e014 #define ICON_MD_HORIZONTAL_RULE "\xef\x84\x88" // U+f108 #define ICON_MD_HORIZONTAL_SPLIT "\xee\xa5\x87" // U+e947 #define ICON_MD_HOT_TUB "\xee\xad\x86" // U+eb46 #define ICON_MD_HOTEL "\xee\x94\xba" // U+e53a #define ICON_MD_HOTEL_CLASS "\xee\x9d\x83" // U+e743 #define ICON_MD_HOURGLASS_BOTTOM "\xee\xa9\x9c" // U+ea5c #define ICON_MD_HOURGLASS_DISABLED "\xee\xbd\x93" // U+ef53 #define ICON_MD_HOURGLASS_EMPTY "\xee\xa2\x8b" // U+e88b #define ICON_MD_HOURGLASS_FULL "\xee\xa2\x8c" // U+e88c #define ICON_MD_HOURGLASS_TOP "\xee\xa9\x9b" // U+ea5b #define ICON_MD_HOUSE "\xee\xa9\x84" // U+ea44 #define ICON_MD_HOUSE_SIDING "\xef\x88\x82" // U+f202 #define ICON_MD_HOUSEBOAT "\xee\x96\x84" // U+e584 #define ICON_MD_HOW_TO_REG "\xee\x85\xb4" // U+e174 #define ICON_MD_HOW_TO_VOTE "\xee\x85\xb5" // U+e175 #define ICON_MD_HTML "\xee\xad\xbe" // U+eb7e #define ICON_MD_HTTP "\xee\xa4\x82" // U+e902 #define ICON_MD_HTTPS "\xee\xa2\x8d" // U+e88d #define ICON_MD_HUB "\xee\xa7\xb4" // U+e9f4 #define ICON_MD_HVAC "\xef\x84\x8e" // U+f10e #define ICON_MD_ICE_SKATING "\xee\x94\x8b" // U+e50b #define ICON_MD_ICECREAM "\xee\xa9\xa9" // U+ea69 #define ICON_MD_IMAGE "\xee\x8f\xb4" // U+e3f4 #define ICON_MD_IMAGE_ASPECT_RATIO "\xee\x8f\xb5" // U+e3f5 #define ICON_MD_IMAGE_NOT_SUPPORTED "\xef\x84\x96" // U+f116 #define ICON_MD_IMAGE_SEARCH "\xee\x90\xbf" // U+e43f #define ICON_MD_IMAGESEARCH_ROLLER "\xee\xa6\xb4" // U+e9b4 #define ICON_MD_IMPORT_CONTACTS "\xee\x83\xa0" // U+e0e0 #define ICON_MD_IMPORT_EXPORT "\xee\x83\x83" // U+e0c3 #define ICON_MD_IMPORTANT_DEVICES "\xee\xa4\x92" // U+e912 #define ICON_MD_INBOX "\xee\x85\x96" // U+e156 #define ICON_MD_INCOMPLETE_CIRCLE "\xee\x9e\x9b" // U+e79b #define ICON_MD_INDETERMINATE_CHECK_BOX "\xee\xa4\x89" // U+e909 #define ICON_MD_INFO "\xee\xa2\x8e" // U+e88e #define ICON_MD_INFO_OUTLINE "\xee\xa2\x8f" // U+e88f #define ICON_MD_INPUT "\xee\xa2\x90" // U+e890 #define ICON_MD_INSERT_CHART "\xee\x89\x8b" // U+e24b #define ICON_MD_INSERT_CHART_OUTLINED "\xee\x89\xaa" // U+e26a #define ICON_MD_INSERT_COMMENT "\xee\x89\x8c" // U+e24c #define ICON_MD_INSERT_DRIVE_FILE "\xee\x89\x8d" // U+e24d #define ICON_MD_INSERT_EMOTICON "\xee\x89\x8e" // U+e24e #define ICON_MD_INSERT_INVITATION "\xee\x89\x8f" // U+e24f #define ICON_MD_INSERT_LINK "\xee\x89\x90" // U+e250 #define ICON_MD_INSERT_PAGE_BREAK "\xee\xab\x8a" // U+eaca #define ICON_MD_INSERT_PHOTO "\xee\x89\x91" // U+e251 #define ICON_MD_INSIGHTS "\xef\x82\x92" // U+f092 #define ICON_MD_INSTALL_DESKTOP "\xee\xad\xb1" // U+eb71 #define ICON_MD_INSTALL_MOBILE "\xee\xad\xb2" // U+eb72 #define ICON_MD_INTEGRATION_INSTRUCTIONS "\xee\xbd\x94" // U+ef54 #define ICON_MD_INTERESTS "\xee\x9f\x88" // U+e7c8 #define ICON_MD_INTERPRETER_MODE "\xee\xa0\xbb" // U+e83b #define ICON_MD_INVENTORY "\xee\x85\xb9" // U+e179 #define ICON_MD_INVENTORY_2 "\xee\x86\xa1" // U+e1a1 #define ICON_MD_INVERT_COLORS "\xee\xa2\x91" // U+e891 #define ICON_MD_INVERT_COLORS_OFF "\xee\x83\x84" // U+e0c4 #define ICON_MD_INVERT_COLORS_ON "\xee\xa2\x91" // U+e891 #define ICON_MD_IOS_SHARE "\xee\x9a\xb8" // U+e6b8 #define ICON_MD_IRON "\xee\x96\x83" // U+e583 #define ICON_MD_ISO "\xee\x8f\xb6" // U+e3f6 #define ICON_MD_JAVASCRIPT "\xee\xad\xbc" // U+eb7c #define ICON_MD_JOIN_FULL "\xee\xab\xab" // U+eaeb #define ICON_MD_JOIN_INNER "\xee\xab\xb4" // U+eaf4 #define ICON_MD_JOIN_LEFT "\xee\xab\xb2" // U+eaf2 #define ICON_MD_JOIN_RIGHT "\xee\xab\xaa" // U+eaea #define ICON_MD_KAYAKING "\xee\x94\x8c" // U+e50c #define ICON_MD_KEBAB_DINING "\xee\xa1\x82" // U+e842 #define ICON_MD_KEY "\xee\x9c\xbc" // U+e73c #define ICON_MD_KEY_OFF "\xee\xae\x84" // U+eb84 #define ICON_MD_KEYBOARD "\xee\x8c\x92" // U+e312 #define ICON_MD_KEYBOARD_ALT "\xef\x80\xa8" // U+f028 #define ICON_MD_KEYBOARD_ARROW_DOWN "\xee\x8c\x93" // U+e313 #define ICON_MD_KEYBOARD_ARROW_LEFT "\xee\x8c\x94" // U+e314 #define ICON_MD_KEYBOARD_ARROW_RIGHT "\xee\x8c\x95" // U+e315 #define ICON_MD_KEYBOARD_ARROW_UP "\xee\x8c\x96" // U+e316 #define ICON_MD_KEYBOARD_BACKSPACE "\xee\x8c\x97" // U+e317 #define ICON_MD_KEYBOARD_CAPSLOCK "\xee\x8c\x98" // U+e318 #define ICON_MD_KEYBOARD_COMMAND "\xee\xab\xa0" // U+eae0 #define ICON_MD_KEYBOARD_COMMAND_KEY "\xee\xab\xa7" // U+eae7 #define ICON_MD_KEYBOARD_CONTROL "\xee\x97\x93" // U+e5d3 #define ICON_MD_KEYBOARD_CONTROL_KEY "\xee\xab\xa6" // U+eae6 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_DOWN "\xee\xab\x90" // U+ead0 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_LEFT "\xee\xab\x83" // U+eac3 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_RIGHT "\xee\xab\x89" // U+eac9 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_UP "\xee\xab\x8f" // U+eacf #define ICON_MD_KEYBOARD_HIDE "\xee\x8c\x9a" // U+e31a #define ICON_MD_KEYBOARD_OPTION "\xee\xab\x9f" // U+eadf #define ICON_MD_KEYBOARD_OPTION_KEY "\xee\xab\xa8" // U+eae8 #define ICON_MD_KEYBOARD_RETURN "\xee\x8c\x9b" // U+e31b #define ICON_MD_KEYBOARD_TAB "\xee\x8c\x9c" // U+e31c #define ICON_MD_KEYBOARD_VOICE "\xee\x8c\x9d" // U+e31d #define ICON_MD_KING_BED "\xee\xa9\x85" // U+ea45 #define ICON_MD_KITCHEN "\xee\xad\x87" // U+eb47 #define ICON_MD_KITESURFING "\xee\x94\x8d" // U+e50d #define ICON_MD_LABEL "\xee\xa2\x92" // U+e892 #define ICON_MD_LABEL_IMPORTANT "\xee\xa4\xb7" // U+e937 #define ICON_MD_LABEL_IMPORTANT_OUTLINE "\xee\xa5\x88" // U+e948 #define ICON_MD_LABEL_OFF "\xee\xa6\xb6" // U+e9b6 #define ICON_MD_LABEL_OUTLINE "\xee\xa2\x93" // U+e893 #define ICON_MD_LAN "\xee\xac\xaf" // U+eb2f #define ICON_MD_LANDSCAPE "\xee\x8f\xb7" // U+e3f7 #define ICON_MD_LANDSLIDE "\xee\xaf\x97" // U+ebd7 #define ICON_MD_LANGUAGE "\xee\xa2\x94" // U+e894 #define ICON_MD_LAPTOP "\xee\x8c\x9e" // U+e31e #define ICON_MD_LAPTOP_CHROMEBOOK "\xee\x8c\x9f" // U+e31f #define ICON_MD_LAPTOP_MAC "\xee\x8c\xa0" // U+e320 #define ICON_MD_LAPTOP_WINDOWS "\xee\x8c\xa1" // U+e321 #define ICON_MD_LAST_PAGE "\xee\x97\x9d" // U+e5dd #define ICON_MD_LAUNCH "\xee\xa2\x95" // U+e895 #define ICON_MD_LAYERS "\xee\x94\xbb" // U+e53b #define ICON_MD_LAYERS_CLEAR "\xee\x94\xbc" // U+e53c #define ICON_MD_LEADERBOARD "\xef\x88\x8c" // U+f20c #define ICON_MD_LEAK_ADD "\xee\x8f\xb8" // U+e3f8 #define ICON_MD_LEAK_REMOVE "\xee\x8f\xb9" // U+e3f9 #define ICON_MD_LEAVE_BAGS_AT_HOME "\xef\x88\x9b" // U+f21b #define ICON_MD_LEGEND_TOGGLE "\xef\x84\x9b" // U+f11b #define ICON_MD_LENS "\xee\x8f\xba" // U+e3fa #define ICON_MD_LENS_BLUR "\xef\x80\xa9" // U+f029 #define ICON_MD_LIBRARY_ADD "\xee\x80\xae" // U+e02e #define ICON_MD_LIBRARY_ADD_CHECK "\xee\xa6\xb7" // U+e9b7 #define ICON_MD_LIBRARY_BOOKS "\xee\x80\xaf" // U+e02f #define ICON_MD_LIBRARY_MUSIC "\xee\x80\xb0" // U+e030 #define ICON_MD_LIGHT "\xef\x80\xaa" // U+f02a #define ICON_MD_LIGHT_MODE "\xee\x94\x98" // U+e518 #define ICON_MD_LIGHTBULB "\xee\x83\xb0" // U+e0f0 #define ICON_MD_LIGHTBULB_CIRCLE "\xee\xaf\xbe" // U+ebfe #define ICON_MD_LIGHTBULB_OUTLINE "\xee\xa4\x8f" // U+e90f #define ICON_MD_LINE_AXIS "\xee\xaa\x9a" // U+ea9a #define ICON_MD_LINE_STYLE "\xee\xa4\x99" // U+e919 #define ICON_MD_LINE_WEIGHT "\xee\xa4\x9a" // U+e91a #define ICON_MD_LINEAR_SCALE "\xee\x89\xa0" // U+e260 #define ICON_MD_LINK "\xee\x85\x97" // U+e157 #define ICON_MD_LINK_OFF "\xee\x85\xaf" // U+e16f #define ICON_MD_LINKED_CAMERA "\xee\x90\xb8" // U+e438 #define ICON_MD_LIQUOR "\xee\xa9\xa0" // U+ea60 #define ICON_MD_LIST "\xee\xa2\x96" // U+e896 #define ICON_MD_LIST_ALT "\xee\x83\xae" // U+e0ee #define ICON_MD_LIVE_HELP "\xee\x83\x86" // U+e0c6 #define ICON_MD_LIVE_TV "\xee\x98\xb9" // U+e639 #define ICON_MD_LIVING "\xef\x80\xab" // U+f02b #define ICON_MD_LOCAL_ACTIVITY "\xee\x94\xbf" // U+e53f #define ICON_MD_LOCAL_AIRPORT "\xee\x94\xbd" // U+e53d #define ICON_MD_LOCAL_ATM "\xee\x94\xbe" // U+e53e #define ICON_MD_LOCAL_ATTRACTION "\xee\x94\xbf" // U+e53f #define ICON_MD_LOCAL_BAR "\xee\x95\x80" // U+e540 #define ICON_MD_LOCAL_CAFE "\xee\x95\x81" // U+e541 #define ICON_MD_LOCAL_CAR_WASH "\xee\x95\x82" // U+e542 #define ICON_MD_LOCAL_CONVENIENCE_STORE "\xee\x95\x83" // U+e543 #define ICON_MD_LOCAL_DINING "\xee\x95\x96" // U+e556 #define ICON_MD_LOCAL_DRINK "\xee\x95\x84" // U+e544 #define ICON_MD_LOCAL_FIRE_DEPARTMENT "\xee\xbd\x95" // U+ef55 #define ICON_MD_LOCAL_FLORIST "\xee\x95\x85" // U+e545 #define ICON_MD_LOCAL_GAS_STATION "\xee\x95\x86" // U+e546 #define ICON_MD_LOCAL_GROCERY_STORE "\xee\x95\x87" // U+e547 #define ICON_MD_LOCAL_HOSPITAL "\xee\x95\x88" // U+e548 #define ICON_MD_LOCAL_HOTEL "\xee\x95\x89" // U+e549 #define ICON_MD_LOCAL_LAUNDRY_SERVICE "\xee\x95\x8a" // U+e54a #define ICON_MD_LOCAL_LIBRARY "\xee\x95\x8b" // U+e54b #define ICON_MD_LOCAL_MALL "\xee\x95\x8c" // U+e54c #define ICON_MD_LOCAL_MOVIES "\xee\x95\x8d" // U+e54d #define ICON_MD_LOCAL_OFFER "\xee\x95\x8e" // U+e54e #define ICON_MD_LOCAL_PARKING "\xee\x95\x8f" // U+e54f #define ICON_MD_LOCAL_PHARMACY "\xee\x95\x90" // U+e550 #define ICON_MD_LOCAL_PHONE "\xee\x95\x91" // U+e551 #define ICON_MD_LOCAL_PIZZA "\xee\x95\x92" // U+e552 #define ICON_MD_LOCAL_PLAY "\xee\x95\x93" // U+e553 #define ICON_MD_LOCAL_POLICE "\xee\xbd\x96" // U+ef56 #define ICON_MD_LOCAL_POST_OFFICE "\xee\x95\x94" // U+e554 #define ICON_MD_LOCAL_PRINT_SHOP "\xee\x95\x95" // U+e555 #define ICON_MD_LOCAL_PRINTSHOP "\xee\x95\x95" // U+e555 #define ICON_MD_LOCAL_RESTAURANT "\xee\x95\x96" // U+e556 #define ICON_MD_LOCAL_SEE "\xee\x95\x97" // U+e557 #define ICON_MD_LOCAL_SHIPPING "\xee\x95\x98" // U+e558 #define ICON_MD_LOCAL_TAXI "\xee\x95\x99" // U+e559 #define ICON_MD_LOCATION_CITY "\xee\x9f\xb1" // U+e7f1 #define ICON_MD_LOCATION_DISABLED "\xee\x86\xb6" // U+e1b6 #define ICON_MD_LOCATION_HISTORY "\xee\x95\x9a" // U+e55a #define ICON_MD_LOCATION_OFF "\xee\x83\x87" // U+e0c7 #define ICON_MD_LOCATION_ON "\xee\x83\x88" // U+e0c8 #define ICON_MD_LOCATION_PIN "\xef\x87\x9b" // U+f1db #define ICON_MD_LOCATION_SEARCHING "\xee\x86\xb7" // U+e1b7 #define ICON_MD_LOCK "\xee\xa2\x97" // U+e897 #define ICON_MD_LOCK_CLOCK "\xee\xbd\x97" // U+ef57 #define ICON_MD_LOCK_OPEN "\xee\xa2\x98" // U+e898 #define ICON_MD_LOCK_OUTLINE "\xee\xa2\x99" // U+e899 #define ICON_MD_LOCK_PERSON "\xef\xa3\xb3" // U+f8f3 #define ICON_MD_LOCK_RESET "\xee\xab\x9e" // U+eade #define ICON_MD_LOGIN "\xee\xa9\xb7" // U+ea77 #define ICON_MD_LOGO_DEV "\xee\xab\x96" // U+ead6 #define ICON_MD_LOGOUT "\xee\xa6\xba" // U+e9ba #define ICON_MD_LOOKS "\xee\x8f\xbc" // U+e3fc #define ICON_MD_LOOKS_3 "\xee\x8f\xbb" // U+e3fb #define ICON_MD_LOOKS_4 "\xee\x8f\xbd" // U+e3fd #define ICON_MD_LOOKS_5 "\xee\x8f\xbe" // U+e3fe #define ICON_MD_LOOKS_6 "\xee\x8f\xbf" // U+e3ff #define ICON_MD_LOOKS_ONE "\xee\x90\x80" // U+e400 #define ICON_MD_LOOKS_TWO "\xee\x90\x81" // U+e401 #define ICON_MD_LOOP "\xee\x80\xa8" // U+e028 #define ICON_MD_LOUPE "\xee\x90\x82" // U+e402 #define ICON_MD_LOW_PRIORITY "\xee\x85\xad" // U+e16d #define ICON_MD_LOYALTY "\xee\xa2\x9a" // U+e89a #define ICON_MD_LTE_MOBILEDATA "\xef\x80\xac" // U+f02c #define ICON_MD_LTE_PLUS_MOBILEDATA "\xef\x80\xad" // U+f02d #define ICON_MD_LUGGAGE "\xef\x88\xb5" // U+f235 #define ICON_MD_LUNCH_DINING "\xee\xa9\xa1" // U+ea61 #define ICON_MD_LYRICS "\xee\xb0\x8b" // U+ec0b #define ICON_MD_MACRO_OFF "\xef\xa3\x92" // U+f8d2 #define ICON_MD_MAIL "\xee\x85\x98" // U+e158 #define ICON_MD_MAIL_LOCK "\xee\xb0\x8a" // U+ec0a #define ICON_MD_MAIL_OUTLINE "\xee\x83\xa1" // U+e0e1 #define ICON_MD_MALE "\xee\x96\x8e" // U+e58e #define ICON_MD_MAN "\xee\x93\xab" // U+e4eb #define ICON_MD_MAN_2 "\xef\xa3\xa1" // U+f8e1 #define ICON_MD_MAN_3 "\xef\xa3\xa2" // U+f8e2 #define ICON_MD_MAN_4 "\xef\xa3\xa3" // U+f8e3 #define ICON_MD_MANAGE_ACCOUNTS "\xef\x80\xae" // U+f02e #define ICON_MD_MANAGE_HISTORY "\xee\xaf\xa7" // U+ebe7 #define ICON_MD_MANAGE_SEARCH "\xef\x80\xaf" // U+f02f #define ICON_MD_MAP "\xee\x95\x9b" // U+e55b #define ICON_MD_MAPS_HOME_WORK "\xef\x80\xb0" // U+f030 #define ICON_MD_MAPS_UGC "\xee\xbd\x98" // U+ef58 #define ICON_MD_MARGIN "\xee\xa6\xbb" // U+e9bb #define ICON_MD_MARK_AS_UNREAD "\xee\xa6\xbc" // U+e9bc #define ICON_MD_MARK_CHAT_READ "\xef\x86\x8b" // U+f18b #define ICON_MD_MARK_CHAT_UNREAD "\xef\x86\x89" // U+f189 #define ICON_MD_MARK_EMAIL_READ "\xef\x86\x8c" // U+f18c #define ICON_MD_MARK_EMAIL_UNREAD "\xef\x86\x8a" // U+f18a #define ICON_MD_MARK_UNREAD_CHAT_ALT "\xee\xae\x9d" // U+eb9d #define ICON_MD_MARKUNREAD "\xee\x85\x99" // U+e159 #define ICON_MD_MARKUNREAD_MAILBOX "\xee\xa2\x9b" // U+e89b #define ICON_MD_MASKS "\xef\x88\x98" // U+f218 #define ICON_MD_MAXIMIZE "\xee\xa4\xb0" // U+e930 #define ICON_MD_MEDIA_BLUETOOTH_OFF "\xef\x80\xb1" // U+f031 #define ICON_MD_MEDIA_BLUETOOTH_ON "\xef\x80\xb2" // U+f032 #define ICON_MD_MEDIATION "\xee\xbe\xa7" // U+efa7 #define ICON_MD_MEDICAL_INFORMATION "\xee\xaf\xad" // U+ebed #define ICON_MD_MEDICAL_SERVICES "\xef\x84\x89" // U+f109 #define ICON_MD_MEDICATION "\xef\x80\xb3" // U+f033 #define ICON_MD_MEDICATION_LIQUID "\xee\xaa\x87" // U+ea87 #define ICON_MD_MEETING_ROOM "\xee\xad\x8f" // U+eb4f #define ICON_MD_MEMORY "\xee\x8c\xa2" // U+e322 #define ICON_MD_MENU "\xee\x97\x92" // U+e5d2 #define ICON_MD_MENU_BOOK "\xee\xa8\x99" // U+ea19 #define ICON_MD_MENU_OPEN "\xee\xa6\xbd" // U+e9bd #define ICON_MD_MERGE "\xee\xae\x98" // U+eb98 #define ICON_MD_MERGE_TYPE "\xee\x89\x92" // U+e252 #define ICON_MD_MESSAGE "\xee\x83\x89" // U+e0c9 #define ICON_MD_MESSENGER "\xee\x83\x8a" // U+e0ca #define ICON_MD_MESSENGER_OUTLINE "\xee\x83\x8b" // U+e0cb #define ICON_MD_MIC "\xee\x80\xa9" // U+e029 #define ICON_MD_MIC_EXTERNAL_OFF "\xee\xbd\x99" // U+ef59 #define ICON_MD_MIC_EXTERNAL_ON "\xee\xbd\x9a" // U+ef5a #define ICON_MD_MIC_NONE "\xee\x80\xaa" // U+e02a #define ICON_MD_MIC_OFF "\xee\x80\xab" // U+e02b #define ICON_MD_MICROWAVE "\xef\x88\x84" // U+f204 #define ICON_MD_MILITARY_TECH "\xee\xa8\xbf" // U+ea3f #define ICON_MD_MINIMIZE "\xee\xa4\xb1" // U+e931 #define ICON_MD_MINOR_CRASH "\xee\xaf\xb1" // U+ebf1 #define ICON_MD_MISCELLANEOUS_SERVICES "\xef\x84\x8c" // U+f10c #define ICON_MD_MISSED_VIDEO_CALL "\xee\x81\xb3" // U+e073 #define ICON_MD_MMS "\xee\x98\x98" // U+e618 #define ICON_MD_MOBILE_FRIENDLY "\xee\x88\x80" // U+e200 #define ICON_MD_MOBILE_OFF "\xee\x88\x81" // U+e201 #define ICON_MD_MOBILE_SCREEN_SHARE "\xee\x83\xa7" // U+e0e7 #define ICON_MD_MOBILEDATA_OFF "\xef\x80\xb4" // U+f034 #define ICON_MD_MODE "\xef\x82\x97" // U+f097 #define ICON_MD_MODE_COMMENT "\xee\x89\x93" // U+e253 #define ICON_MD_MODE_EDIT "\xee\x89\x94" // U+e254 #define ICON_MD_MODE_EDIT_OUTLINE "\xef\x80\xb5" // U+f035 #define ICON_MD_MODE_FAN_OFF "\xee\xb0\x97" // U+ec17 #define ICON_MD_MODE_NIGHT "\xef\x80\xb6" // U+f036 #define ICON_MD_MODE_OF_TRAVEL "\xee\x9f\x8e" // U+e7ce #define ICON_MD_MODE_STANDBY "\xef\x80\xb7" // U+f037 #define ICON_MD_MODEL_TRAINING "\xef\x83\x8f" // U+f0cf #define ICON_MD_MONETIZATION_ON "\xee\x89\xa3" // U+e263 #define ICON_MD_MONEY "\xee\x95\xbd" // U+e57d #define ICON_MD_MONEY_OFF "\xee\x89\x9c" // U+e25c #define ICON_MD_MONEY_OFF_CSRED "\xef\x80\xb8" // U+f038 #define ICON_MD_MONITOR "\xee\xbd\x9b" // U+ef5b #define ICON_MD_MONITOR_HEART "\xee\xaa\xa2" // U+eaa2 #define ICON_MD_MONITOR_WEIGHT "\xef\x80\xb9" // U+f039 #define ICON_MD_MONOCHROME_PHOTOS "\xee\x90\x83" // U+e403 #define ICON_MD_MOOD "\xee\x9f\xb2" // U+e7f2 #define ICON_MD_MOOD_BAD "\xee\x9f\xb3" // U+e7f3 #define ICON_MD_MOPED "\xee\xac\xa8" // U+eb28 #define ICON_MD_MORE "\xee\x98\x99" // U+e619 #define ICON_MD_MORE_HORIZ "\xee\x97\x93" // U+e5d3 #define ICON_MD_MORE_TIME "\xee\xa9\x9d" // U+ea5d #define ICON_MD_MORE_VERT "\xee\x97\x94" // U+e5d4 #define ICON_MD_MOSQUE "\xee\xaa\xb2" // U+eab2 #define ICON_MD_MOTION_PHOTOS_AUTO "\xef\x80\xba" // U+f03a #define ICON_MD_MOTION_PHOTOS_OFF "\xee\xa7\x80" // U+e9c0 #define ICON_MD_MOTION_PHOTOS_ON "\xee\xa7\x81" // U+e9c1 #define ICON_MD_MOTION_PHOTOS_PAUSE "\xef\x88\xa7" // U+f227 #define ICON_MD_MOTION_PHOTOS_PAUSED "\xee\xa7\x82" // U+e9c2 #define ICON_MD_MOTORCYCLE "\xee\xa4\x9b" // U+e91b #define ICON_MD_MOUSE "\xee\x8c\xa3" // U+e323 #define ICON_MD_MOVE_DOWN "\xee\xad\xa1" // U+eb61 #define ICON_MD_MOVE_TO_INBOX "\xee\x85\xa8" // U+e168 #define ICON_MD_MOVE_UP "\xee\xad\xa4" // U+eb64 #define ICON_MD_MOVIE "\xee\x80\xac" // U+e02c #define ICON_MD_MOVIE_CREATION "\xee\x90\x84" // U+e404 #define ICON_MD_MOVIE_EDIT "\xef\xa1\x80" // U+f840 #define ICON_MD_MOVIE_FILTER "\xee\x90\xba" // U+e43a #define ICON_MD_MOVING "\xee\x94\x81" // U+e501 #define ICON_MD_MP "\xee\xa7\x83" // U+e9c3 #define ICON_MD_MULTILINE_CHART "\xee\x9b\x9f" // U+e6df #define ICON_MD_MULTIPLE_STOP "\xef\x86\xb9" // U+f1b9 #define ICON_MD_MULTITRACK_AUDIO "\xee\x86\xb8" // U+e1b8 #define ICON_MD_MUSEUM "\xee\xa8\xb6" // U+ea36 #define ICON_MD_MUSIC_NOTE "\xee\x90\x85" // U+e405 #define ICON_MD_MUSIC_OFF "\xee\x91\x80" // U+e440 #define ICON_MD_MUSIC_VIDEO "\xee\x81\xa3" // U+e063 #define ICON_MD_MY_LIBRARY_ADD "\xee\x80\xae" // U+e02e #define ICON_MD_MY_LIBRARY_BOOKS "\xee\x80\xaf" // U+e02f #define ICON_MD_MY_LIBRARY_MUSIC "\xee\x80\xb0" // U+e030 #define ICON_MD_MY_LOCATION "\xee\x95\x9c" // U+e55c #define ICON_MD_NAT "\xee\xbd\x9c" // U+ef5c #define ICON_MD_NATURE "\xee\x90\x86" // U+e406 #define ICON_MD_NATURE_PEOPLE "\xee\x90\x87" // U+e407 #define ICON_MD_NAVIGATE_BEFORE "\xee\x90\x88" // U+e408 #define ICON_MD_NAVIGATE_NEXT "\xee\x90\x89" // U+e409 #define ICON_MD_NAVIGATION "\xee\x95\x9d" // U+e55d #define ICON_MD_NEAR_ME "\xee\x95\xa9" // U+e569 #define ICON_MD_NEAR_ME_DISABLED "\xef\x87\xaf" // U+f1ef #define ICON_MD_NEARBY_ERROR "\xef\x80\xbb" // U+f03b #define ICON_MD_NEARBY_OFF "\xef\x80\xbc" // U+f03c #define ICON_MD_NEST_CAM_WIRED_STAND "\xee\xb0\x96" // U+ec16 #define ICON_MD_NETWORK_CELL "\xee\x86\xb9" // U+e1b9 #define ICON_MD_NETWORK_CHECK "\xee\x99\x80" // U+e640 #define ICON_MD_NETWORK_LOCKED "\xee\x98\x9a" // U+e61a #define ICON_MD_NETWORK_PING "\xee\xaf\x8a" // U+ebca #define ICON_MD_NETWORK_WIFI "\xee\x86\xba" // U+e1ba #define ICON_MD_NETWORK_WIFI_1_BAR "\xee\xaf\xa4" // U+ebe4 #define ICON_MD_NETWORK_WIFI_2_BAR "\xee\xaf\x96" // U+ebd6 #define ICON_MD_NETWORK_WIFI_3_BAR "\xee\xaf\xa1" // U+ebe1 #define ICON_MD_NEW_LABEL "\xee\x98\x89" // U+e609 #define ICON_MD_NEW_RELEASES "\xee\x80\xb1" // U+e031 #define ICON_MD_NEWSPAPER "\xee\xae\x81" // U+eb81 #define ICON_MD_NEXT_PLAN "\xee\xbd\x9d" // U+ef5d #define ICON_MD_NEXT_WEEK "\xee\x85\xaa" // U+e16a #define ICON_MD_NFC "\xee\x86\xbb" // U+e1bb #define ICON_MD_NIGHT_SHELTER "\xef\x87\xb1" // U+f1f1 #define ICON_MD_NIGHTLIFE "\xee\xa9\xa2" // U+ea62 #define ICON_MD_NIGHTLIGHT "\xef\x80\xbd" // U+f03d #define ICON_MD_NIGHTLIGHT_ROUND "\xee\xbd\x9e" // U+ef5e #define ICON_MD_NIGHTS_STAY "\xee\xa9\x86" // U+ea46 #define ICON_MD_NO_ACCOUNTS "\xef\x80\xbe" // U+f03e #define ICON_MD_NO_ADULT_CONTENT "\xef\xa3\xbe" // U+f8fe #define ICON_MD_NO_BACKPACK "\xef\x88\xb7" // U+f237 #define ICON_MD_NO_CELL "\xef\x86\xa4" // U+f1a4 #define ICON_MD_NO_CRASH "\xee\xaf\xb0" // U+ebf0 #define ICON_MD_NO_DRINKS "\xef\x86\xa5" // U+f1a5 #define ICON_MD_NO_ENCRYPTION "\xee\x99\x81" // U+e641 #define ICON_MD_NO_ENCRYPTION_GMAILERRORRED "\xef\x80\xbf" // U+f03f #define ICON_MD_NO_FLASH "\xef\x86\xa6" // U+f1a6 #define ICON_MD_NO_FOOD "\xef\x86\xa7" // U+f1a7 #define ICON_MD_NO_LUGGAGE "\xef\x88\xbb" // U+f23b #define ICON_MD_NO_MEALS "\xef\x87\x96" // U+f1d6 #define ICON_MD_NO_MEALS_OULINE "\xef\x88\xa9" // U+f229 #define ICON_MD_NO_MEETING_ROOM "\xee\xad\x8e" // U+eb4e #define ICON_MD_NO_PHOTOGRAPHY "\xef\x86\xa8" // U+f1a8 #define ICON_MD_NO_SIM "\xee\x83\x8c" // U+e0cc #define ICON_MD_NO_STROLLER "\xef\x86\xaf" // U+f1af #define ICON_MD_NO_TRANSFER "\xef\x87\x95" // U+f1d5 #define ICON_MD_NOISE_AWARE "\xee\xaf\xac" // U+ebec #define ICON_MD_NOISE_CONTROL_OFF "\xee\xaf\xb3" // U+ebf3 #define ICON_MD_NORDIC_WALKING "\xee\x94\x8e" // U+e50e #define ICON_MD_NORTH "\xef\x87\xa0" // U+f1e0 #define ICON_MD_NORTH_EAST "\xef\x87\xa1" // U+f1e1 #define ICON_MD_NORTH_WEST "\xef\x87\xa2" // U+f1e2 #define ICON_MD_NOT_ACCESSIBLE "\xef\x83\xbe" // U+f0fe #define ICON_MD_NOT_INTERESTED "\xee\x80\xb3" // U+e033 #define ICON_MD_NOT_LISTED_LOCATION "\xee\x95\xb5" // U+e575 #define ICON_MD_NOT_STARTED "\xef\x83\x91" // U+f0d1 #define ICON_MD_NOTE "\xee\x81\xaf" // U+e06f #define ICON_MD_NOTE_ADD "\xee\xa2\x9c" // U+e89c #define ICON_MD_NOTE_ALT "\xef\x81\x80" // U+f040 #define ICON_MD_NOTES "\xee\x89\xac" // U+e26c #define ICON_MD_NOTIFICATION_ADD "\xee\x8e\x99" // U+e399 #define ICON_MD_NOTIFICATION_IMPORTANT "\xee\x80\x84" // U+e004 #define ICON_MD_NOTIFICATIONS "\xee\x9f\xb4" // U+e7f4 #define ICON_MD_NOTIFICATIONS_ACTIVE "\xee\x9f\xb7" // U+e7f7 #define ICON_MD_NOTIFICATIONS_NONE "\xee\x9f\xb5" // U+e7f5 #define ICON_MD_NOTIFICATIONS_OFF "\xee\x9f\xb6" // U+e7f6 #define ICON_MD_NOTIFICATIONS_ON "\xee\x9f\xb7" // U+e7f7 #define ICON_MD_NOTIFICATIONS_PAUSED "\xee\x9f\xb8" // U+e7f8 #define ICON_MD_NOW_WALLPAPER "\xee\x86\xbc" // U+e1bc #define ICON_MD_NOW_WIDGETS "\xee\x86\xbd" // U+e1bd #define ICON_MD_NUMBERS "\xee\xab\x87" // U+eac7 #define ICON_MD_OFFLINE_BOLT "\xee\xa4\xb2" // U+e932 #define ICON_MD_OFFLINE_PIN "\xee\xa4\x8a" // U+e90a #define ICON_MD_OFFLINE_SHARE "\xee\xa7\x85" // U+e9c5 #define ICON_MD_OIL_BARREL "\xee\xb0\x95" // U+ec15 #define ICON_MD_ON_DEVICE_TRAINING "\xee\xaf\xbd" // U+ebfd #define ICON_MD_ONDEMAND_VIDEO "\xee\x98\xba" // U+e63a #define ICON_MD_ONLINE_PREDICTION "\xef\x83\xab" // U+f0eb #define ICON_MD_OPACITY "\xee\xa4\x9c" // U+e91c #define ICON_MD_OPEN_IN_BROWSER "\xee\xa2\x9d" // U+e89d #define ICON_MD_OPEN_IN_FULL "\xef\x87\x8e" // U+f1ce #define ICON_MD_OPEN_IN_NEW "\xee\xa2\x9e" // U+e89e #define ICON_MD_OPEN_IN_NEW_OFF "\xee\x93\xb6" // U+e4f6 #define ICON_MD_OPEN_WITH "\xee\xa2\x9f" // U+e89f #define ICON_MD_OTHER_HOUSES "\xee\x96\x8c" // U+e58c #define ICON_MD_OUTBOND "\xef\x88\xa8" // U+f228 #define ICON_MD_OUTBOUND "\xee\x87\x8a" // U+e1ca #define ICON_MD_OUTBOX "\xee\xbd\x9f" // U+ef5f #define ICON_MD_OUTDOOR_GRILL "\xee\xa9\x87" // U+ea47 #define ICON_MD_OUTGOING_MAIL "\xef\x83\x92" // U+f0d2 #define ICON_MD_OUTLET "\xef\x87\x94" // U+f1d4 #define ICON_MD_OUTLINED_FLAG "\xee\x85\xae" // U+e16e #define ICON_MD_OUTPUT "\xee\xae\xbe" // U+ebbe #define ICON_MD_PADDING "\xee\xa7\x88" // U+e9c8 #define ICON_MD_PAGES "\xee\x9f\xb9" // U+e7f9 #define ICON_MD_PAGEVIEW "\xee\xa2\xa0" // U+e8a0 #define ICON_MD_PAID "\xef\x81\x81" // U+f041 #define ICON_MD_PALETTE "\xee\x90\x8a" // U+e40a #define ICON_MD_PALLET "\xef\xa1\xaa" // U+f86a #define ICON_MD_PAN_TOOL "\xee\xa4\xa5" // U+e925 #define ICON_MD_PAN_TOOL_ALT "\xee\xae\xb9" // U+ebb9 #define ICON_MD_PANORAMA "\xee\x90\x8b" // U+e40b #define ICON_MD_PANORAMA_FISH_EYE "\xee\x90\x8c" // U+e40c #define ICON_MD_PANORAMA_FISHEYE "\xee\x90\x8c" // U+e40c #define ICON_MD_PANORAMA_HORIZONTAL "\xee\x90\x8d" // U+e40d #define ICON_MD_PANORAMA_HORIZONTAL_SELECT "\xee\xbd\xa0" // U+ef60 #define ICON_MD_PANORAMA_PHOTOSPHERE "\xee\xa7\x89" // U+e9c9 #define ICON_MD_PANORAMA_PHOTOSPHERE_SELECT "\xee\xa7\x8a" // U+e9ca #define ICON_MD_PANORAMA_VERTICAL "\xee\x90\x8e" // U+e40e #define ICON_MD_PANORAMA_VERTICAL_SELECT "\xee\xbd\xa1" // U+ef61 #define ICON_MD_PANORAMA_WIDE_ANGLE "\xee\x90\x8f" // U+e40f #define ICON_MD_PANORAMA_WIDE_ANGLE_SELECT "\xee\xbd\xa2" // U+ef62 #define ICON_MD_PARAGLIDING "\xee\x94\x8f" // U+e50f #define ICON_MD_PARK "\xee\xa9\xa3" // U+ea63 #define ICON_MD_PARTY_MODE "\xee\x9f\xba" // U+e7fa #define ICON_MD_PASSWORD "\xef\x81\x82" // U+f042 #define ICON_MD_PATTERN "\xef\x81\x83" // U+f043 #define ICON_MD_PAUSE "\xee\x80\xb4" // U+e034 #define ICON_MD_PAUSE_CIRCLE "\xee\x86\xa2" // U+e1a2 #define ICON_MD_PAUSE_CIRCLE_FILLED "\xee\x80\xb5" // U+e035 #define ICON_MD_PAUSE_CIRCLE_OUTLINE "\xee\x80\xb6" // U+e036 #define ICON_MD_PAUSE_PRESENTATION "\xee\x83\xaa" // U+e0ea #define ICON_MD_PAYMENT "\xee\xa2\xa1" // U+e8a1 #define ICON_MD_PAYMENTS "\xee\xbd\xa3" // U+ef63 #define ICON_MD_PAYPAL "\xee\xaa\x8d" // U+ea8d #define ICON_MD_PEDAL_BIKE "\xee\xac\xa9" // U+eb29 #define ICON_MD_PENDING "\xee\xbd\xa4" // U+ef64 #define ICON_MD_PENDING_ACTIONS "\xef\x86\xbb" // U+f1bb #define ICON_MD_PENTAGON "\xee\xad\x90" // U+eb50 #define ICON_MD_PEOPLE "\xee\x9f\xbb" // U+e7fb #define ICON_MD_PEOPLE_ALT "\xee\xa8\xa1" // U+ea21 #define ICON_MD_PEOPLE_OUTLINE "\xee\x9f\xbc" // U+e7fc #define ICON_MD_PERCENT "\xee\xad\x98" // U+eb58 #define ICON_MD_PERM_CAMERA_MIC "\xee\xa2\xa2" // U+e8a2 #define ICON_MD_PERM_CONTACT_CAL "\xee\xa2\xa3" // U+e8a3 #define ICON_MD_PERM_CONTACT_CALENDAR "\xee\xa2\xa3" // U+e8a3 #define ICON_MD_PERM_DATA_SETTING "\xee\xa2\xa4" // U+e8a4 #define ICON_MD_PERM_DEVICE_INFO "\xee\xa2\xa5" // U+e8a5 #define ICON_MD_PERM_DEVICE_INFORMATION "\xee\xa2\xa5" // U+e8a5 #define ICON_MD_PERM_IDENTITY "\xee\xa2\xa6" // U+e8a6 #define ICON_MD_PERM_MEDIA "\xee\xa2\xa7" // U+e8a7 #define ICON_MD_PERM_PHONE_MSG "\xee\xa2\xa8" // U+e8a8 #define ICON_MD_PERM_SCAN_WIFI "\xee\xa2\xa9" // U+e8a9 #define ICON_MD_PERSON "\xee\x9f\xbd" // U+e7fd #define ICON_MD_PERSON_2 "\xef\xa3\xa4" // U+f8e4 #define ICON_MD_PERSON_3 "\xef\xa3\xa5" // U+f8e5 #define ICON_MD_PERSON_4 "\xef\xa3\xa6" // U+f8e6 #define ICON_MD_PERSON_ADD "\xee\x9f\xbe" // U+e7fe #define ICON_MD_PERSON_ADD_ALT "\xee\xa9\x8d" // U+ea4d #define ICON_MD_PERSON_ADD_ALT_1 "\xee\xbd\xa5" // U+ef65 #define ICON_MD_PERSON_ADD_DISABLED "\xee\xa7\x8b" // U+e9cb #define ICON_MD_PERSON_OFF "\xee\x94\x90" // U+e510 #define ICON_MD_PERSON_OUTLINE "\xee\x9f\xbf" // U+e7ff #define ICON_MD_PERSON_PIN "\xee\x95\x9a" // U+e55a #define ICON_MD_PERSON_PIN_CIRCLE "\xee\x95\xaa" // U+e56a #define ICON_MD_PERSON_REMOVE "\xee\xbd\xa6" // U+ef66 #define ICON_MD_PERSON_REMOVE_ALT_1 "\xee\xbd\xa7" // U+ef67 #define ICON_MD_PERSON_SEARCH "\xef\x84\x86" // U+f106 #define ICON_MD_PERSONAL_INJURY "\xee\x9b\x9a" // U+e6da #define ICON_MD_PERSONAL_VIDEO "\xee\x98\xbb" // U+e63b #define ICON_MD_PEST_CONTROL "\xef\x83\xba" // U+f0fa #define ICON_MD_PEST_CONTROL_RODENT "\xef\x83\xbd" // U+f0fd #define ICON_MD_PETS "\xee\xa4\x9d" // U+e91d #define ICON_MD_PHISHING "\xee\xab\x97" // U+ead7 #define ICON_MD_PHONE "\xee\x83\x8d" // U+e0cd #define ICON_MD_PHONE_ANDROID "\xee\x8c\xa4" // U+e324 #define ICON_MD_PHONE_BLUETOOTH_SPEAKER "\xee\x98\x9b" // U+e61b #define ICON_MD_PHONE_CALLBACK "\xee\x99\x89" // U+e649 #define ICON_MD_PHONE_DISABLED "\xee\xa7\x8c" // U+e9cc #define ICON_MD_PHONE_ENABLED "\xee\xa7\x8d" // U+e9cd #define ICON_MD_PHONE_FORWARDED "\xee\x98\x9c" // U+e61c #define ICON_MD_PHONE_IN_TALK "\xee\x98\x9d" // U+e61d #define ICON_MD_PHONE_IPHONE "\xee\x8c\xa5" // U+e325 #define ICON_MD_PHONE_LOCKED "\xee\x98\x9e" // U+e61e #define ICON_MD_PHONE_MISSED "\xee\x98\x9f" // U+e61f #define ICON_MD_PHONE_PAUSED "\xee\x98\xa0" // U+e620 #define ICON_MD_PHONELINK "\xee\x8c\xa6" // U+e326 #define ICON_MD_PHONELINK_ERASE "\xee\x83\x9b" // U+e0db #define ICON_MD_PHONELINK_LOCK "\xee\x83\x9c" // U+e0dc #define ICON_MD_PHONELINK_OFF "\xee\x8c\xa7" // U+e327 #define ICON_MD_PHONELINK_RING "\xee\x83\x9d" // U+e0dd #define ICON_MD_PHONELINK_SETUP "\xee\x83\x9e" // U+e0de #define ICON_MD_PHOTO "\xee\x90\x90" // U+e410 #define ICON_MD_PHOTO_ALBUM "\xee\x90\x91" // U+e411 #define ICON_MD_PHOTO_CAMERA "\xee\x90\x92" // U+e412 #define ICON_MD_PHOTO_CAMERA_BACK "\xee\xbd\xa8" // U+ef68 #define ICON_MD_PHOTO_CAMERA_FRONT "\xee\xbd\xa9" // U+ef69 #define ICON_MD_PHOTO_FILTER "\xee\x90\xbb" // U+e43b #define ICON_MD_PHOTO_LIBRARY "\xee\x90\x93" // U+e413 #define ICON_MD_PHOTO_SIZE_SELECT_ACTUAL "\xee\x90\xb2" // U+e432 #define ICON_MD_PHOTO_SIZE_SELECT_LARGE "\xee\x90\xb3" // U+e433 #define ICON_MD_PHOTO_SIZE_SELECT_SMALL "\xee\x90\xb4" // U+e434 #define ICON_MD_PHP "\xee\xae\x8f" // U+eb8f #define ICON_MD_PIANO "\xee\x94\xa1" // U+e521 #define ICON_MD_PIANO_OFF "\xee\x94\xa0" // U+e520 #define ICON_MD_PICTURE_AS_PDF "\xee\x90\x95" // U+e415 #define ICON_MD_PICTURE_IN_PICTURE "\xee\xa2\xaa" // U+e8aa #define ICON_MD_PICTURE_IN_PICTURE_ALT "\xee\xa4\x91" // U+e911 #define ICON_MD_PIE_CHART "\xee\x9b\x84" // U+e6c4 #define ICON_MD_PIE_CHART_OUTLINE "\xef\x81\x84" // U+f044 #define ICON_MD_PIE_CHART_OUTLINED "\xee\x9b\x85" // U+e6c5 #define ICON_MD_PIN "\xef\x81\x85" // U+f045 #define ICON_MD_PIN_DROP "\xee\x95\x9e" // U+e55e #define ICON_MD_PIN_END "\xee\x9d\xa7" // U+e767 #define ICON_MD_PIN_INVOKE "\xee\x9d\xa3" // U+e763 #define ICON_MD_PINCH "\xee\xac\xb8" // U+eb38 #define ICON_MD_PIVOT_TABLE_CHART "\xee\xa7\x8e" // U+e9ce #define ICON_MD_PIX "\xee\xaa\xa3" // U+eaa3 #define ICON_MD_PLACE "\xee\x95\x9f" // U+e55f #define ICON_MD_PLAGIARISM "\xee\xa9\x9a" // U+ea5a #define ICON_MD_PLAY_ARROW "\xee\x80\xb7" // U+e037 #define ICON_MD_PLAY_CIRCLE "\xee\x87\x84" // U+e1c4 #define ICON_MD_PLAY_CIRCLE_FILL "\xee\x80\xb8" // U+e038 #define ICON_MD_PLAY_CIRCLE_FILLED "\xee\x80\xb8" // U+e038 #define ICON_MD_PLAY_CIRCLE_OUTLINE "\xee\x80\xb9" // U+e039 #define ICON_MD_PLAY_DISABLED "\xee\xbd\xaa" // U+ef6a #define ICON_MD_PLAY_FOR_WORK "\xee\xa4\x86" // U+e906 #define ICON_MD_PLAY_LESSON "\xef\x81\x87" // U+f047 #define ICON_MD_PLAYLIST_ADD "\xee\x80\xbb" // U+e03b #define ICON_MD_PLAYLIST_ADD_CHECK "\xee\x81\xa5" // U+e065 #define ICON_MD_PLAYLIST_ADD_CHECK_CIRCLE "\xee\x9f\xa6" // U+e7e6 #define ICON_MD_PLAYLIST_ADD_CIRCLE "\xee\x9f\xa5" // U+e7e5 #define ICON_MD_PLAYLIST_PLAY "\xee\x81\x9f" // U+e05f #define ICON_MD_PLAYLIST_REMOVE "\xee\xae\x80" // U+eb80 #define ICON_MD_PLUMBING "\xef\x84\x87" // U+f107 #define ICON_MD_PLUS_ONE "\xee\xa0\x80" // U+e800 #define ICON_MD_PODCASTS "\xef\x81\x88" // U+f048 #define ICON_MD_POINT_OF_SALE "\xef\x85\xbe" // U+f17e #define ICON_MD_POLICY "\xee\xa8\x97" // U+ea17 #define ICON_MD_POLL "\xee\xa0\x81" // U+e801 #define ICON_MD_POLYLINE "\xee\xae\xbb" // U+ebbb #define ICON_MD_POLYMER "\xee\xa2\xab" // U+e8ab #define ICON_MD_POOL "\xee\xad\x88" // U+eb48 #define ICON_MD_PORTABLE_WIFI_OFF "\xee\x83\x8e" // U+e0ce #define ICON_MD_PORTRAIT "\xee\x90\x96" // U+e416 #define ICON_MD_POST_ADD "\xee\xa8\xa0" // U+ea20 #define ICON_MD_POWER "\xee\x98\xbc" // U+e63c #define ICON_MD_POWER_INPUT "\xee\x8c\xb6" // U+e336 #define ICON_MD_POWER_OFF "\xee\x99\x86" // U+e646 #define ICON_MD_POWER_SETTINGS_NEW "\xee\xa2\xac" // U+e8ac #define ICON_MD_PRECISION_MANUFACTURING "\xef\x81\x89" // U+f049 #define ICON_MD_PREGNANT_WOMAN "\xee\xa4\x9e" // U+e91e #define ICON_MD_PRESENT_TO_ALL "\xee\x83\x9f" // U+e0df #define ICON_MD_PREVIEW "\xef\x87\x85" // U+f1c5 #define ICON_MD_PRICE_CHANGE "\xef\x81\x8a" // U+f04a #define ICON_MD_PRICE_CHECK "\xef\x81\x8b" // U+f04b #define ICON_MD_PRINT "\xee\xa2\xad" // U+e8ad #define ICON_MD_PRINT_DISABLED "\xee\xa7\x8f" // U+e9cf #define ICON_MD_PRIORITY_HIGH "\xee\x99\x85" // U+e645 #define ICON_MD_PRIVACY_TIP "\xef\x83\x9c" // U+f0dc #define ICON_MD_PRIVATE_CONNECTIVITY "\xee\x9d\x84" // U+e744 #define ICON_MD_PRODUCTION_QUANTITY_LIMITS "\xee\x87\x91" // U+e1d1 #define ICON_MD_PROPANE "\xee\xb0\x94" // U+ec14 #define ICON_MD_PROPANE_TANK "\xee\xb0\x93" // U+ec13 #define ICON_MD_PSYCHOLOGY "\xee\xa9\x8a" // U+ea4a #define ICON_MD_PSYCHOLOGY_ALT "\xef\xa3\xaa" // U+f8ea #define ICON_MD_PUBLIC "\xee\xa0\x8b" // U+e80b #define ICON_MD_PUBLIC_OFF "\xef\x87\x8a" // U+f1ca #define ICON_MD_PUBLISH "\xee\x89\x95" // U+e255 #define ICON_MD_PUBLISHED_WITH_CHANGES "\xef\x88\xb2" // U+f232 #define ICON_MD_PUNCH_CLOCK "\xee\xaa\xa8" // U+eaa8 #define ICON_MD_PUSH_PIN "\xef\x84\x8d" // U+f10d #define ICON_MD_QR_CODE "\xee\xbd\xab" // U+ef6b #define ICON_MD_QR_CODE_2 "\xee\x80\x8a" // U+e00a #define ICON_MD_QR_CODE_SCANNER "\xef\x88\x86" // U+f206 #define ICON_MD_QUERY_BUILDER "\xee\xa2\xae" // U+e8ae #define ICON_MD_QUERY_STATS "\xee\x93\xbc" // U+e4fc #define ICON_MD_QUESTION_ANSWER "\xee\xa2\xaf" // U+e8af #define ICON_MD_QUESTION_MARK "\xee\xae\x8b" // U+eb8b #define ICON_MD_QUEUE "\xee\x80\xbc" // U+e03c #define ICON_MD_QUEUE_MUSIC "\xee\x80\xbd" // U+e03d #define ICON_MD_QUEUE_PLAY_NEXT "\xee\x81\xa6" // U+e066 #define ICON_MD_QUICK_CONTACTS_DIALER "\xee\x83\x8f" // U+e0cf #define ICON_MD_QUICK_CONTACTS_MAIL "\xee\x83\x90" // U+e0d0 #define ICON_MD_QUICKREPLY "\xee\xbd\xac" // U+ef6c #define ICON_MD_QUIZ "\xef\x81\x8c" // U+f04c #define ICON_MD_QUORA "\xee\xaa\x98" // U+ea98 #define ICON_MD_R_MOBILEDATA "\xef\x81\x8d" // U+f04d #define ICON_MD_RADAR "\xef\x81\x8e" // U+f04e #define ICON_MD_RADIO "\xee\x80\xbe" // U+e03e #define ICON_MD_RADIO_BUTTON_CHECKED "\xee\xa0\xb7" // U+e837 #define ICON_MD_RADIO_BUTTON_OFF "\xee\xa0\xb6" // U+e836 #define ICON_MD_RADIO_BUTTON_ON "\xee\xa0\xb7" // U+e837 #define ICON_MD_RADIO_BUTTON_UNCHECKED "\xee\xa0\xb6" // U+e836 #define ICON_MD_RAILWAY_ALERT "\xee\xa7\x91" // U+e9d1 #define ICON_MD_RAMEN_DINING "\xee\xa9\xa4" // U+ea64 #define ICON_MD_RAMP_LEFT "\xee\xae\x9c" // U+eb9c #define ICON_MD_RAMP_RIGHT "\xee\xae\x96" // U+eb96 #define ICON_MD_RATE_REVIEW "\xee\x95\xa0" // U+e560 #define ICON_MD_RAW_OFF "\xef\x81\x8f" // U+f04f #define ICON_MD_RAW_ON "\xef\x81\x90" // U+f050 #define ICON_MD_READ_MORE "\xee\xbd\xad" // U+ef6d #define ICON_MD_REAL_ESTATE_AGENT "\xee\x9c\xba" // U+e73a #define ICON_MD_REBASE_EDIT "\xef\xa1\x86" // U+f846 #define ICON_MD_RECEIPT "\xee\xa2\xb0" // U+e8b0 #define ICON_MD_RECEIPT_LONG "\xee\xbd\xae" // U+ef6e #define ICON_MD_RECENT_ACTORS "\xee\x80\xbf" // U+e03f #define ICON_MD_RECOMMEND "\xee\xa7\x92" // U+e9d2 #define ICON_MD_RECORD_VOICE_OVER "\xee\xa4\x9f" // U+e91f #define ICON_MD_RECTANGLE "\xee\xad\x94" // U+eb54 #define ICON_MD_RECYCLING "\xee\x9d\xa0" // U+e760 #define ICON_MD_REDDIT "\xee\xaa\xa0" // U+eaa0 #define ICON_MD_REDEEM "\xee\xa2\xb1" // U+e8b1 #define ICON_MD_REDO "\xee\x85\x9a" // U+e15a #define ICON_MD_REDUCE_CAPACITY "\xef\x88\x9c" // U+f21c #define ICON_MD_REFRESH "\xee\x97\x95" // U+e5d5 #define ICON_MD_REMEMBER_ME "\xef\x81\x91" // U+f051 #define ICON_MD_REMOVE "\xee\x85\x9b" // U+e15b #define ICON_MD_REMOVE_CIRCLE "\xee\x85\x9c" // U+e15c #define ICON_MD_REMOVE_CIRCLE_OUTLINE "\xee\x85\x9d" // U+e15d #define ICON_MD_REMOVE_DONE "\xee\xa7\x93" // U+e9d3 #define ICON_MD_REMOVE_FROM_QUEUE "\xee\x81\xa7" // U+e067 #define ICON_MD_REMOVE_MODERATOR "\xee\xa7\x94" // U+e9d4 #define ICON_MD_REMOVE_RED_EYE "\xee\x90\x97" // U+e417 #define ICON_MD_REMOVE_ROAD "\xee\xaf\xbc" // U+ebfc #define ICON_MD_REMOVE_SHOPPING_CART "\xee\xa4\xa8" // U+e928 #define ICON_MD_REORDER "\xee\xa3\xbe" // U+e8fe #define ICON_MD_REPARTITION "\xef\xa3\xa8" // U+f8e8 #define ICON_MD_REPEAT "\xee\x81\x80" // U+e040 #define ICON_MD_REPEAT_ON "\xee\xa7\x96" // U+e9d6 #define ICON_MD_REPEAT_ONE "\xee\x81\x81" // U+e041 #define ICON_MD_REPEAT_ONE_ON "\xee\xa7\x97" // U+e9d7 #define ICON_MD_REPLAY "\xee\x81\x82" // U+e042 #define ICON_MD_REPLAY_10 "\xee\x81\x99" // U+e059 #define ICON_MD_REPLAY_30 "\xee\x81\x9a" // U+e05a #define ICON_MD_REPLAY_5 "\xee\x81\x9b" // U+e05b #define ICON_MD_REPLAY_CIRCLE_FILLED "\xee\xa7\x98" // U+e9d8 #define ICON_MD_REPLY "\xee\x85\x9e" // U+e15e #define ICON_MD_REPLY_ALL "\xee\x85\x9f" // U+e15f #define ICON_MD_REPORT "\xee\x85\xa0" // U+e160 #define ICON_MD_REPORT_GMAILERRORRED "\xef\x81\x92" // U+f052 #define ICON_MD_REPORT_OFF "\xee\x85\xb0" // U+e170 #define ICON_MD_REPORT_PROBLEM "\xee\xa2\xb2" // U+e8b2 #define ICON_MD_REQUEST_PAGE "\xef\x88\xac" // U+f22c #define ICON_MD_REQUEST_QUOTE "\xef\x86\xb6" // U+f1b6 #define ICON_MD_RESET_TV "\xee\xa7\x99" // U+e9d9 #define ICON_MD_RESTART_ALT "\xef\x81\x93" // U+f053 #define ICON_MD_RESTAURANT "\xee\x95\xac" // U+e56c #define ICON_MD_RESTAURANT_MENU "\xee\x95\xa1" // U+e561 #define ICON_MD_RESTORE "\xee\xa2\xb3" // U+e8b3 #define ICON_MD_RESTORE_FROM_TRASH "\xee\xa4\xb8" // U+e938 #define ICON_MD_RESTORE_PAGE "\xee\xa4\xa9" // U+e929 #define ICON_MD_REVIEWS "\xef\x81\x94" // U+f054 #define ICON_MD_RICE_BOWL "\xef\x87\xb5" // U+f1f5 #define ICON_MD_RING_VOLUME "\xee\x83\x91" // U+e0d1 #define ICON_MD_ROCKET "\xee\xae\xa5" // U+eba5 #define ICON_MD_ROCKET_LAUNCH "\xee\xae\x9b" // U+eb9b #define ICON_MD_ROLLER_SHADES "\xee\xb0\x92" // U+ec12 #define ICON_MD_ROLLER_SHADES_CLOSED "\xee\xb0\x91" // U+ec11 #define ICON_MD_ROLLER_SKATING "\xee\xaf\x8d" // U+ebcd #define ICON_MD_ROOFING "\xef\x88\x81" // U+f201 #define ICON_MD_ROOM "\xee\xa2\xb4" // U+e8b4 #define ICON_MD_ROOM_PREFERENCES "\xef\x86\xb8" // U+f1b8 #define ICON_MD_ROOM_SERVICE "\xee\xad\x89" // U+eb49 #define ICON_MD_ROTATE_90_DEGREES_CCW "\xee\x90\x98" // U+e418 #define ICON_MD_ROTATE_90_DEGREES_CW "\xee\xaa\xab" // U+eaab #define ICON_MD_ROTATE_LEFT "\xee\x90\x99" // U+e419 #define ICON_MD_ROTATE_RIGHT "\xee\x90\x9a" // U+e41a #define ICON_MD_ROUNDABOUT_LEFT "\xee\xae\x99" // U+eb99 #define ICON_MD_ROUNDABOUT_RIGHT "\xee\xae\xa3" // U+eba3 #define ICON_MD_ROUNDED_CORNER "\xee\xa4\xa0" // U+e920 #define ICON_MD_ROUTE "\xee\xab\x8d" // U+eacd #define ICON_MD_ROUTER "\xee\x8c\xa8" // U+e328 #define ICON_MD_ROWING "\xee\xa4\xa1" // U+e921 #define ICON_MD_RSS_FEED "\xee\x83\xa5" // U+e0e5 #define ICON_MD_RSVP "\xef\x81\x95" // U+f055 #define ICON_MD_RTT "\xee\xa6\xad" // U+e9ad #define ICON_MD_RULE "\xef\x87\x82" // U+f1c2 #define ICON_MD_RULE_FOLDER "\xef\x87\x89" // U+f1c9 #define ICON_MD_RUN_CIRCLE "\xee\xbd\xaf" // U+ef6f #define ICON_MD_RUNNING_WITH_ERRORS "\xee\x94\x9d" // U+e51d #define ICON_MD_RV_HOOKUP "\xee\x99\x82" // U+e642 #define ICON_MD_SAFETY_CHECK "\xee\xaf\xaf" // U+ebef #define ICON_MD_SAFETY_DIVIDER "\xee\x87\x8c" // U+e1cc #define ICON_MD_SAILING "\xee\x94\x82" // U+e502 #define ICON_MD_SANITIZER "\xef\x88\x9d" // U+f21d #define ICON_MD_SATELLITE "\xee\x95\xa2" // U+e562 #define ICON_MD_SATELLITE_ALT "\xee\xac\xba" // U+eb3a #define ICON_MD_SAVE "\xee\x85\xa1" // U+e161 #define ICON_MD_SAVE_ALT "\xee\x85\xb1" // U+e171 #define ICON_MD_SAVE_AS "\xee\xad\xa0" // U+eb60 #define ICON_MD_SAVED_SEARCH "\xee\xa8\x91" // U+ea11 #define ICON_MD_SAVINGS "\xee\x8b\xab" // U+e2eb #define ICON_MD_SCALE "\xee\xad\x9f" // U+eb5f #define ICON_MD_SCANNER "\xee\x8c\xa9" // U+e329 #define ICON_MD_SCATTER_PLOT "\xee\x89\xa8" // U+e268 #define ICON_MD_SCHEDULE "\xee\xa2\xb5" // U+e8b5 #define ICON_MD_SCHEDULE_SEND "\xee\xa8\x8a" // U+ea0a #define ICON_MD_SCHEMA "\xee\x93\xbd" // U+e4fd #define ICON_MD_SCHOOL "\xee\xa0\x8c" // U+e80c #define ICON_MD_SCIENCE "\xee\xa9\x8b" // U+ea4b #define ICON_MD_SCORE "\xee\x89\xa9" // U+e269 #define ICON_MD_SCOREBOARD "\xee\xaf\x90" // U+ebd0 #define ICON_MD_SCREEN_LOCK_LANDSCAPE "\xee\x86\xbe" // U+e1be #define ICON_MD_SCREEN_LOCK_PORTRAIT "\xee\x86\xbf" // U+e1bf #define ICON_MD_SCREEN_LOCK_ROTATION "\xee\x87\x80" // U+e1c0 #define ICON_MD_SCREEN_ROTATION "\xee\x87\x81" // U+e1c1 #define ICON_MD_SCREEN_ROTATION_ALT "\xee\xaf\xae" // U+ebee #define ICON_MD_SCREEN_SEARCH_DESKTOP "\xee\xbd\xb0" // U+ef70 #define ICON_MD_SCREEN_SHARE "\xee\x83\xa2" // U+e0e2 #define ICON_MD_SCREENSHOT "\xef\x81\x96" // U+f056 #define ICON_MD_SCREENSHOT_MONITOR "\xee\xb0\x88" // U+ec08 #define ICON_MD_SCUBA_DIVING "\xee\xaf\x8e" // U+ebce #define ICON_MD_SD "\xee\xa7\x9d" // U+e9dd #define ICON_MD_SD_CARD "\xee\x98\xa3" // U+e623 #define ICON_MD_SD_CARD_ALERT "\xef\x81\x97" // U+f057 #define ICON_MD_SD_STORAGE "\xee\x87\x82" // U+e1c2 #define ICON_MD_SEARCH "\xee\xa2\xb6" // U+e8b6 #define ICON_MD_SEARCH_OFF "\xee\xa9\xb6" // U+ea76 #define ICON_MD_SECURITY "\xee\x8c\xaa" // U+e32a #define ICON_MD_SECURITY_UPDATE "\xef\x81\x98" // U+f058 #define ICON_MD_SECURITY_UPDATE_GOOD "\xef\x81\x99" // U+f059 #define ICON_MD_SECURITY_UPDATE_WARNING "\xef\x81\x9a" // U+f05a #define ICON_MD_SEGMENT "\xee\xa5\x8b" // U+e94b #define ICON_MD_SELECT_ALL "\xee\x85\xa2" // U+e162 #define ICON_MD_SELF_IMPROVEMENT "\xee\xa9\xb8" // U+ea78 #define ICON_MD_SELL "\xef\x81\x9b" // U+f05b #define ICON_MD_SEND "\xee\x85\xa3" // U+e163 #define ICON_MD_SEND_AND_ARCHIVE "\xee\xa8\x8c" // U+ea0c #define ICON_MD_SEND_TIME_EXTENSION "\xee\xab\x9b" // U+eadb #define ICON_MD_SEND_TO_MOBILE "\xef\x81\x9c" // U+f05c #define ICON_MD_SENSOR_DOOR "\xef\x86\xb5" // U+f1b5 #define ICON_MD_SENSOR_OCCUPIED "\xee\xb0\x90" // U+ec10 #define ICON_MD_SENSOR_WINDOW "\xef\x86\xb4" // U+f1b4 #define ICON_MD_SENSORS "\xee\x94\x9e" // U+e51e #define ICON_MD_SENSORS_OFF "\xee\x94\x9f" // U+e51f #define ICON_MD_SENTIMENT_DISSATISFIED "\xee\xa0\x91" // U+e811 #define ICON_MD_SENTIMENT_NEUTRAL "\xee\xa0\x92" // U+e812 #define ICON_MD_SENTIMENT_SATISFIED "\xee\xa0\x93" // U+e813 #define ICON_MD_SENTIMENT_SATISFIED_ALT "\xee\x83\xad" // U+e0ed #define ICON_MD_SENTIMENT_VERY_DISSATISFIED "\xee\xa0\x94" // U+e814 #define ICON_MD_SENTIMENT_VERY_SATISFIED "\xee\xa0\x95" // U+e815 #define ICON_MD_SET_MEAL "\xef\x87\xaa" // U+f1ea #define ICON_MD_SETTINGS "\xee\xa2\xb8" // U+e8b8 #define ICON_MD_SETTINGS_ACCESSIBILITY "\xef\x81\x9d" // U+f05d #define ICON_MD_SETTINGS_APPLICATIONS "\xee\xa2\xb9" // U+e8b9 #define ICON_MD_SETTINGS_BACKUP_RESTORE "\xee\xa2\xba" // U+e8ba #define ICON_MD_SETTINGS_BLUETOOTH "\xee\xa2\xbb" // U+e8bb #define ICON_MD_SETTINGS_BRIGHTNESS "\xee\xa2\xbd" // U+e8bd #define ICON_MD_SETTINGS_CELL "\xee\xa2\xbc" // U+e8bc #define ICON_MD_SETTINGS_DISPLAY "\xee\xa2\xbd" // U+e8bd #define ICON_MD_SETTINGS_ETHERNET "\xee\xa2\xbe" // U+e8be #define ICON_MD_SETTINGS_INPUT_ANTENNA "\xee\xa2\xbf" // U+e8bf #define ICON_MD_SETTINGS_INPUT_COMPONENT "\xee\xa3\x80" // U+e8c0 #define ICON_MD_SETTINGS_INPUT_COMPOSITE "\xee\xa3\x81" // U+e8c1 #define ICON_MD_SETTINGS_INPUT_HDMI "\xee\xa3\x82" // U+e8c2 #define ICON_MD_SETTINGS_INPUT_SVIDEO "\xee\xa3\x83" // U+e8c3 #define ICON_MD_SETTINGS_OVERSCAN "\xee\xa3\x84" // U+e8c4 #define ICON_MD_SETTINGS_PHONE "\xee\xa3\x85" // U+e8c5 #define ICON_MD_SETTINGS_POWER "\xee\xa3\x86" // U+e8c6 #define ICON_MD_SETTINGS_REMOTE "\xee\xa3\x87" // U+e8c7 #define ICON_MD_SETTINGS_SUGGEST "\xef\x81\x9e" // U+f05e #define ICON_MD_SETTINGS_SYSTEM_DAYDREAM "\xee\x87\x83" // U+e1c3 #define ICON_MD_SETTINGS_VOICE "\xee\xa3\x88" // U+e8c8 #define ICON_MD_SEVERE_COLD "\xee\xaf\x93" // U+ebd3 #define ICON_MD_SHAPE_LINE "\xef\xa3\x93" // U+f8d3 #define ICON_MD_SHARE "\xee\xa0\x8d" // U+e80d #define ICON_MD_SHARE_ARRIVAL_TIME "\xee\x94\xa4" // U+e524 #define ICON_MD_SHARE_LOCATION "\xef\x81\x9f" // U+f05f #define ICON_MD_SHELVES "\xef\xa1\xae" // U+f86e #define ICON_MD_SHIELD "\xee\xa7\xa0" // U+e9e0 #define ICON_MD_SHIELD_MOON "\xee\xaa\xa9" // U+eaa9 #define ICON_MD_SHOP "\xee\xa3\x89" // U+e8c9 #define ICON_MD_SHOP_2 "\xee\x86\x9e" // U+e19e #define ICON_MD_SHOP_TWO "\xee\xa3\x8a" // U+e8ca #define ICON_MD_SHOPIFY "\xee\xaa\x9d" // U+ea9d #define ICON_MD_SHOPPING_BAG "\xef\x87\x8c" // U+f1cc #define ICON_MD_SHOPPING_BASKET "\xee\xa3\x8b" // U+e8cb #define ICON_MD_SHOPPING_CART "\xee\xa3\x8c" // U+e8cc #define ICON_MD_SHOPPING_CART_CHECKOUT "\xee\xae\x88" // U+eb88 #define ICON_MD_SHORT_TEXT "\xee\x89\xa1" // U+e261 #define ICON_MD_SHORTCUT "\xef\x81\xa0" // U+f060 #define ICON_MD_SHOW_CHART "\xee\x9b\xa1" // U+e6e1 #define ICON_MD_SHOWER "\xef\x81\xa1" // U+f061 #define ICON_MD_SHUFFLE "\xee\x81\x83" // U+e043 #define ICON_MD_SHUFFLE_ON "\xee\xa7\xa1" // U+e9e1 #define ICON_MD_SHUTTER_SPEED "\xee\x90\xbd" // U+e43d #define ICON_MD_SICK "\xef\x88\xa0" // U+f220 #define ICON_MD_SIGN_LANGUAGE "\xee\xaf\xa5" // U+ebe5 #define ICON_MD_SIGNAL_CELLULAR_0_BAR "\xef\x82\xa8" // U+f0a8 #define ICON_MD_SIGNAL_CELLULAR_4_BAR "\xee\x87\x88" // U+e1c8 #define ICON_MD_SIGNAL_CELLULAR_ALT "\xee\x88\x82" // U+e202 #define ICON_MD_SIGNAL_CELLULAR_ALT_1_BAR "\xee\xaf\x9f" // U+ebdf #define ICON_MD_SIGNAL_CELLULAR_ALT_2_BAR "\xee\xaf\xa3" // U+ebe3 #define ICON_MD_SIGNAL_CELLULAR_CONNECTED_NO_INTERNET_0_BAR "\xef\x82\xac" // U+f0ac #define ICON_MD_SIGNAL_CELLULAR_CONNECTED_NO_INTERNET_4_BAR "\xee\x87\x8d" // U+e1cd #define ICON_MD_SIGNAL_CELLULAR_NO_SIM "\xee\x87\x8e" // U+e1ce #define ICON_MD_SIGNAL_CELLULAR_NODATA "\xef\x81\xa2" // U+f062 #define ICON_MD_SIGNAL_CELLULAR_NULL "\xee\x87\x8f" // U+e1cf #define ICON_MD_SIGNAL_CELLULAR_OFF "\xee\x87\x90" // U+e1d0 #define ICON_MD_SIGNAL_WIFI_0_BAR "\xef\x82\xb0" // U+f0b0 #define ICON_MD_SIGNAL_WIFI_4_BAR "\xee\x87\x98" // U+e1d8 #define ICON_MD_SIGNAL_WIFI_4_BAR_LOCK "\xee\x87\x99" // U+e1d9 #define ICON_MD_SIGNAL_WIFI_BAD "\xef\x81\xa3" // U+f063 #define ICON_MD_SIGNAL_WIFI_CONNECTED_NO_INTERNET_4 "\xef\x81\xa4" // U+f064 #define ICON_MD_SIGNAL_WIFI_OFF "\xee\x87\x9a" // U+e1da #define ICON_MD_SIGNAL_WIFI_STATUSBAR_4_BAR "\xef\x81\xa5" // U+f065 #define ICON_MD_SIGNAL_WIFI_STATUSBAR_CONNECTED_NO_INTERNET_4 "\xef\x81\xa6" // U+f066 #define ICON_MD_SIGNAL_WIFI_STATUSBAR_NULL "\xef\x81\xa7" // U+f067 #define ICON_MD_SIGNPOST "\xee\xae\x91" // U+eb91 #define ICON_MD_SIM_CARD "\xee\x8c\xab" // U+e32b #define ICON_MD_SIM_CARD_ALERT "\xee\x98\xa4" // U+e624 #define ICON_MD_SIM_CARD_DOWNLOAD "\xef\x81\xa8" // U+f068 #define ICON_MD_SINGLE_BED "\xee\xa9\x88" // U+ea48 #define ICON_MD_SIP "\xef\x81\xa9" // U+f069 #define ICON_MD_SKATEBOARDING "\xee\x94\x91" // U+e511 #define ICON_MD_SKIP_NEXT "\xee\x81\x84" // U+e044 #define ICON_MD_SKIP_PREVIOUS "\xee\x81\x85" // U+e045 #define ICON_MD_SLEDDING "\xee\x94\x92" // U+e512 #define ICON_MD_SLIDESHOW "\xee\x90\x9b" // U+e41b #define ICON_MD_SLOW_MOTION_VIDEO "\xee\x81\xa8" // U+e068 #define ICON_MD_SMART_BUTTON "\xef\x87\x81" // U+f1c1 #define ICON_MD_SMART_DISPLAY "\xef\x81\xaa" // U+f06a #define ICON_MD_SMART_SCREEN "\xef\x81\xab" // U+f06b #define ICON_MD_SMART_TOY "\xef\x81\xac" // U+f06c #define ICON_MD_SMARTPHONE "\xee\x8c\xac" // U+e32c #define ICON_MD_SMOKE_FREE "\xee\xad\x8a" // U+eb4a #define ICON_MD_SMOKING_ROOMS "\xee\xad\x8b" // U+eb4b #define ICON_MD_SMS "\xee\x98\xa5" // U+e625 #define ICON_MD_SMS_FAILED "\xee\x98\xa6" // U+e626 #define ICON_MD_SNAPCHAT "\xee\xa9\xae" // U+ea6e #define ICON_MD_SNIPPET_FOLDER "\xef\x87\x87" // U+f1c7 #define ICON_MD_SNOOZE "\xee\x81\x86" // U+e046 #define ICON_MD_SNOWBOARDING "\xee\x94\x93" // U+e513 #define ICON_MD_SNOWING "\xee\xa0\x8f" // U+e80f #define ICON_MD_SNOWMOBILE "\xee\x94\x83" // U+e503 #define ICON_MD_SNOWSHOEING "\xee\x94\x94" // U+e514 #define ICON_MD_SOAP "\xef\x86\xb2" // U+f1b2 #define ICON_MD_SOCIAL_DISTANCE "\xee\x87\x8b" // U+e1cb #define ICON_MD_SOLAR_POWER "\xee\xb0\x8f" // U+ec0f #define ICON_MD_SORT "\xee\x85\xa4" // U+e164 #define ICON_MD_SORT_BY_ALPHA "\xee\x81\x93" // U+e053 #define ICON_MD_SOS "\xee\xaf\xb7" // U+ebf7 #define ICON_MD_SOUP_KITCHEN "\xee\x9f\x93" // U+e7d3 #define ICON_MD_SOURCE "\xef\x87\x84" // U+f1c4 #define ICON_MD_SOUTH "\xef\x87\xa3" // U+f1e3 #define ICON_MD_SOUTH_AMERICA "\xee\x9f\xa4" // U+e7e4 #define ICON_MD_SOUTH_EAST "\xef\x87\xa4" // U+f1e4 #define ICON_MD_SOUTH_WEST "\xef\x87\xa5" // U+f1e5 #define ICON_MD_SPA "\xee\xad\x8c" // U+eb4c #define ICON_MD_SPACE_BAR "\xee\x89\x96" // U+e256 #define ICON_MD_SPACE_DASHBOARD "\xee\x99\xab" // U+e66b #define ICON_MD_SPATIAL_AUDIO "\xee\xaf\xab" // U+ebeb #define ICON_MD_SPATIAL_AUDIO_OFF "\xee\xaf\xa8" // U+ebe8 #define ICON_MD_SPATIAL_TRACKING "\xee\xaf\xaa" // U+ebea #define ICON_MD_SPEAKER "\xee\x8c\xad" // U+e32d #define ICON_MD_SPEAKER_GROUP "\xee\x8c\xae" // U+e32e #define ICON_MD_SPEAKER_NOTES "\xee\xa3\x8d" // U+e8cd #define ICON_MD_SPEAKER_NOTES_OFF "\xee\xa4\xaa" // U+e92a #define ICON_MD_SPEAKER_PHONE "\xee\x83\x92" // U+e0d2 #define ICON_MD_SPEED "\xee\xa7\xa4" // U+e9e4 #define ICON_MD_SPELLCHECK "\xee\xa3\x8e" // U+e8ce #define ICON_MD_SPLITSCREEN "\xef\x81\xad" // U+f06d #define ICON_MD_SPOKE "\xee\xa6\xa7" // U+e9a7 #define ICON_MD_SPORTS "\xee\xa8\xb0" // U+ea30 #define ICON_MD_SPORTS_BAR "\xef\x87\xb3" // U+f1f3 #define ICON_MD_SPORTS_BASEBALL "\xee\xa9\x91" // U+ea51 #define ICON_MD_SPORTS_BASKETBALL "\xee\xa8\xa6" // U+ea26 #define ICON_MD_SPORTS_CRICKET "\xee\xa8\xa7" // U+ea27 #define ICON_MD_SPORTS_ESPORTS "\xee\xa8\xa8" // U+ea28 #define ICON_MD_SPORTS_FOOTBALL "\xee\xa8\xa9" // U+ea29 #define ICON_MD_SPORTS_GOLF "\xee\xa8\xaa" // U+ea2a #define ICON_MD_SPORTS_GYMNASTICS "\xee\xaf\x84" // U+ebc4 #define ICON_MD_SPORTS_HANDBALL "\xee\xa8\xb3" // U+ea33 #define ICON_MD_SPORTS_HOCKEY "\xee\xa8\xab" // U+ea2b #define ICON_MD_SPORTS_KABADDI "\xee\xa8\xb4" // U+ea34 #define ICON_MD_SPORTS_MARTIAL_ARTS "\xee\xab\xa9" // U+eae9 #define ICON_MD_SPORTS_MMA "\xee\xa8\xac" // U+ea2c #define ICON_MD_SPORTS_MOTORSPORTS "\xee\xa8\xad" // U+ea2d #define ICON_MD_SPORTS_RUGBY "\xee\xa8\xae" // U+ea2e #define ICON_MD_SPORTS_SCORE "\xef\x81\xae" // U+f06e #define ICON_MD_SPORTS_SOCCER "\xee\xa8\xaf" // U+ea2f #define ICON_MD_SPORTS_TENNIS "\xee\xa8\xb2" // U+ea32 #define ICON_MD_SPORTS_VOLLEYBALL "\xee\xa8\xb1" // U+ea31 #define ICON_MD_SQUARE "\xee\xac\xb6" // U+eb36 #define ICON_MD_SQUARE_FOOT "\xee\xa9\x89" // U+ea49 #define ICON_MD_SSID_CHART "\xee\xad\xa6" // U+eb66 #define ICON_MD_STACKED_BAR_CHART "\xee\xa7\xa6" // U+e9e6 #define ICON_MD_STACKED_LINE_CHART "\xef\x88\xab" // U+f22b #define ICON_MD_STADIUM "\xee\xae\x90" // U+eb90 #define ICON_MD_STAIRS "\xef\x86\xa9" // U+f1a9 #define ICON_MD_STAR "\xee\xa0\xb8" // U+e838 #define ICON_MD_STAR_BORDER "\xee\xa0\xba" // U+e83a #define ICON_MD_STAR_BORDER_PURPLE500 "\xef\x82\x99" // U+f099 #define ICON_MD_STAR_HALF "\xee\xa0\xb9" // U+e839 #define ICON_MD_STAR_OUTLINE "\xef\x81\xaf" // U+f06f #define ICON_MD_STAR_PURPLE500 "\xef\x82\x9a" // U+f09a #define ICON_MD_STAR_RATE "\xef\x83\xac" // U+f0ec #define ICON_MD_STARS "\xee\xa3\x90" // U+e8d0 #define ICON_MD_START "\xee\x82\x89" // U+e089 #define ICON_MD_STAY_CURRENT_LANDSCAPE "\xee\x83\x93" // U+e0d3 #define ICON_MD_STAY_CURRENT_PORTRAIT "\xee\x83\x94" // U+e0d4 #define ICON_MD_STAY_PRIMARY_LANDSCAPE "\xee\x83\x95" // U+e0d5 #define ICON_MD_STAY_PRIMARY_PORTRAIT "\xee\x83\x96" // U+e0d6 #define ICON_MD_STICKY_NOTE_2 "\xef\x87\xbc" // U+f1fc #define ICON_MD_STOP "\xee\x81\x87" // U+e047 #define ICON_MD_STOP_CIRCLE "\xee\xbd\xb1" // U+ef71 #define ICON_MD_STOP_SCREEN_SHARE "\xee\x83\xa3" // U+e0e3 #define ICON_MD_STORAGE "\xee\x87\x9b" // U+e1db #define ICON_MD_STORE "\xee\xa3\x91" // U+e8d1 #define ICON_MD_STORE_MALL_DIRECTORY "\xee\x95\xa3" // U+e563 #define ICON_MD_STOREFRONT "\xee\xa8\x92" // U+ea12 #define ICON_MD_STORM "\xef\x81\xb0" // U+f070 #define ICON_MD_STRAIGHT "\xee\xae\x95" // U+eb95 #define ICON_MD_STRAIGHTEN "\xee\x90\x9c" // U+e41c #define ICON_MD_STREAM "\xee\xa7\xa9" // U+e9e9 #define ICON_MD_STREETVIEW "\xee\x95\xae" // U+e56e #define ICON_MD_STRIKETHROUGH_S "\xee\x89\x97" // U+e257 #define ICON_MD_STROLLER "\xef\x86\xae" // U+f1ae #define ICON_MD_STYLE "\xee\x90\x9d" // U+e41d #define ICON_MD_SUBDIRECTORY_ARROW_LEFT "\xee\x97\x99" // U+e5d9 #define ICON_MD_SUBDIRECTORY_ARROW_RIGHT "\xee\x97\x9a" // U+e5da #define ICON_MD_SUBJECT "\xee\xa3\x92" // U+e8d2 #define ICON_MD_SUBSCRIPT "\xef\x84\x91" // U+f111 #define ICON_MD_SUBSCRIPTIONS "\xee\x81\xa4" // U+e064 #define ICON_MD_SUBTITLES "\xee\x81\x88" // U+e048 #define ICON_MD_SUBTITLES_OFF "\xee\xbd\xb2" // U+ef72 #define ICON_MD_SUBWAY "\xee\x95\xaf" // U+e56f #define ICON_MD_SUMMARIZE "\xef\x81\xb1" // U+f071 #define ICON_MD_SUNNY "\xee\xa0\x9a" // U+e81a #define ICON_MD_SUNNY_SNOWING "\xee\xa0\x99" // U+e819 #define ICON_MD_SUPERSCRIPT "\xef\x84\x92" // U+f112 #define ICON_MD_SUPERVISED_USER_CIRCLE "\xee\xa4\xb9" // U+e939 #define ICON_MD_SUPERVISOR_ACCOUNT "\xee\xa3\x93" // U+e8d3 #define ICON_MD_SUPPORT "\xee\xbd\xb3" // U+ef73 #define ICON_MD_SUPPORT_AGENT "\xef\x83\xa2" // U+f0e2 #define ICON_MD_SURFING "\xee\x94\x95" // U+e515 #define ICON_MD_SURROUND_SOUND "\xee\x81\x89" // U+e049 #define ICON_MD_SWAP_CALLS "\xee\x83\x97" // U+e0d7 #define ICON_MD_SWAP_HORIZ "\xee\xa3\x94" // U+e8d4 #define ICON_MD_SWAP_HORIZONTAL_CIRCLE "\xee\xa4\xb3" // U+e933 #define ICON_MD_SWAP_VERT "\xee\xa3\x95" // U+e8d5 #define ICON_MD_SWAP_VERT_CIRCLE "\xee\xa3\x96" // U+e8d6 #define ICON_MD_SWAP_VERTICAL_CIRCLE "\xee\xa3\x96" // U+e8d6 #define ICON_MD_SWIPE "\xee\xa7\xac" // U+e9ec #define ICON_MD_SWIPE_DOWN "\xee\xad\x93" // U+eb53 #define ICON_MD_SWIPE_DOWN_ALT "\xee\xac\xb0" // U+eb30 #define ICON_MD_SWIPE_LEFT "\xee\xad\x99" // U+eb59 #define ICON_MD_SWIPE_LEFT_ALT "\xee\xac\xb3" // U+eb33 #define ICON_MD_SWIPE_RIGHT "\xee\xad\x92" // U+eb52 #define ICON_MD_SWIPE_RIGHT_ALT "\xee\xad\x96" // U+eb56 #define ICON_MD_SWIPE_UP "\xee\xac\xae" // U+eb2e #define ICON_MD_SWIPE_UP_ALT "\xee\xac\xb5" // U+eb35 #define ICON_MD_SWIPE_VERTICAL "\xee\xad\x91" // U+eb51 #define ICON_MD_SWITCH_ACCESS_SHORTCUT "\xee\x9f\xa1" // U+e7e1 #define ICON_MD_SWITCH_ACCESS_SHORTCUT_ADD "\xee\x9f\xa2" // U+e7e2 #define ICON_MD_SWITCH_ACCOUNT "\xee\xa7\xad" // U+e9ed #define ICON_MD_SWITCH_CAMERA "\xee\x90\x9e" // U+e41e #define ICON_MD_SWITCH_LEFT "\xef\x87\x91" // U+f1d1 #define ICON_MD_SWITCH_RIGHT "\xef\x87\x92" // U+f1d2 #define ICON_MD_SWITCH_VIDEO "\xee\x90\x9f" // U+e41f #define ICON_MD_SYNAGOGUE "\xee\xaa\xb0" // U+eab0 #define ICON_MD_SYNC "\xee\x98\xa7" // U+e627 #define ICON_MD_SYNC_ALT "\xee\xa8\x98" // U+ea18 #define ICON_MD_SYNC_DISABLED "\xee\x98\xa8" // U+e628 #define ICON_MD_SYNC_LOCK "\xee\xab\xae" // U+eaee #define ICON_MD_SYNC_PROBLEM "\xee\x98\xa9" // U+e629 #define ICON_MD_SYSTEM_SECURITY_UPDATE "\xef\x81\xb2" // U+f072 #define ICON_MD_SYSTEM_SECURITY_UPDATE_GOOD "\xef\x81\xb3" // U+f073 #define ICON_MD_SYSTEM_SECURITY_UPDATE_WARNING "\xef\x81\xb4" // U+f074 #define ICON_MD_SYSTEM_UPDATE "\xee\x98\xaa" // U+e62a #define ICON_MD_SYSTEM_UPDATE_ALT "\xee\xa3\x97" // U+e8d7 #define ICON_MD_SYSTEM_UPDATE_TV "\xee\xa3\x97" // U+e8d7 #define ICON_MD_TAB "\xee\xa3\x98" // U+e8d8 #define ICON_MD_TAB_UNSELECTED "\xee\xa3\x99" // U+e8d9 #define ICON_MD_TABLE_BAR "\xee\xab\x92" // U+ead2 #define ICON_MD_TABLE_CHART "\xee\x89\xa5" // U+e265 #define ICON_MD_TABLE_RESTAURANT "\xee\xab\x86" // U+eac6 #define ICON_MD_TABLE_ROWS "\xef\x84\x81" // U+f101 #define ICON_MD_TABLE_VIEW "\xef\x86\xbe" // U+f1be #define ICON_MD_TABLET "\xee\x8c\xaf" // U+e32f #define ICON_MD_TABLET_ANDROID "\xee\x8c\xb0" // U+e330 #define ICON_MD_TABLET_MAC "\xee\x8c\xb1" // U+e331 #define ICON_MD_TAG "\xee\xa7\xaf" // U+e9ef #define ICON_MD_TAG_FACES "\xee\x90\xa0" // U+e420 #define ICON_MD_TAKEOUT_DINING "\xee\xa9\xb4" // U+ea74 #define ICON_MD_TAP_AND_PLAY "\xee\x98\xab" // U+e62b #define ICON_MD_TAPAS "\xef\x87\xa9" // U+f1e9 #define ICON_MD_TASK "\xef\x81\xb5" // U+f075 #define ICON_MD_TASK_ALT "\xee\x8b\xa6" // U+e2e6 #define ICON_MD_TAXI_ALERT "\xee\xbd\xb4" // U+ef74 #define ICON_MD_TELEGRAM "\xee\xa9\xab" // U+ea6b #define ICON_MD_TEMPLE_BUDDHIST "\xee\xaa\xb3" // U+eab3 #define ICON_MD_TEMPLE_HINDU "\xee\xaa\xaf" // U+eaaf #define ICON_MD_TERMINAL "\xee\xae\x8e" // U+eb8e #define ICON_MD_TERRAIN "\xee\x95\xa4" // U+e564 #define ICON_MD_TEXT_DECREASE "\xee\xab\x9d" // U+eadd #define ICON_MD_TEXT_FIELDS "\xee\x89\xa2" // U+e262 #define ICON_MD_TEXT_FORMAT "\xee\x85\xa5" // U+e165 #define ICON_MD_TEXT_INCREASE "\xee\xab\xa2" // U+eae2 #define ICON_MD_TEXT_ROTATE_UP "\xee\xa4\xba" // U+e93a #define ICON_MD_TEXT_ROTATE_VERTICAL "\xee\xa4\xbb" // U+e93b #define ICON_MD_TEXT_ROTATION_ANGLEDOWN "\xee\xa4\xbc" // U+e93c #define ICON_MD_TEXT_ROTATION_ANGLEUP "\xee\xa4\xbd" // U+e93d #define ICON_MD_TEXT_ROTATION_DOWN "\xee\xa4\xbe" // U+e93e #define ICON_MD_TEXT_ROTATION_NONE "\xee\xa4\xbf" // U+e93f #define ICON_MD_TEXT_SNIPPET "\xef\x87\x86" // U+f1c6 #define ICON_MD_TEXTSMS "\xee\x83\x98" // U+e0d8 #define ICON_MD_TEXTURE "\xee\x90\xa1" // U+e421 #define ICON_MD_THEATER_COMEDY "\xee\xa9\xa6" // U+ea66 #define ICON_MD_THEATERS "\xee\xa3\x9a" // U+e8da #define ICON_MD_THERMOSTAT "\xef\x81\xb6" // U+f076 #define ICON_MD_THERMOSTAT_AUTO "\xef\x81\xb7" // U+f077 #define ICON_MD_THUMB_DOWN "\xee\xa3\x9b" // U+e8db #define ICON_MD_THUMB_DOWN_ALT "\xee\xa0\x96" // U+e816 #define ICON_MD_THUMB_DOWN_OFF_ALT "\xee\xa7\xb2" // U+e9f2 #define ICON_MD_THUMB_UP "\xee\xa3\x9c" // U+e8dc #define ICON_MD_THUMB_UP_ALT "\xee\xa0\x97" // U+e817 #define ICON_MD_THUMB_UP_OFF_ALT "\xee\xa7\xb3" // U+e9f3 #define ICON_MD_THUMBS_UP_DOWN "\xee\xa3\x9d" // U+e8dd #define ICON_MD_THUNDERSTORM "\xee\xaf\x9b" // U+ebdb #define ICON_MD_TIKTOK "\xee\xa9\xbe" // U+ea7e #define ICON_MD_TIME_TO_LEAVE "\xee\x98\xac" // U+e62c #define ICON_MD_TIMELAPSE "\xee\x90\xa2" // U+e422 #define ICON_MD_TIMELINE "\xee\xa4\xa2" // U+e922 #define ICON_MD_TIMER "\xee\x90\xa5" // U+e425 #define ICON_MD_TIMER_10 "\xee\x90\xa3" // U+e423 #define ICON_MD_TIMER_10_SELECT "\xef\x81\xba" // U+f07a #define ICON_MD_TIMER_3 "\xee\x90\xa4" // U+e424 #define ICON_MD_TIMER_3_SELECT "\xef\x81\xbb" // U+f07b #define ICON_MD_TIMER_OFF "\xee\x90\xa6" // U+e426 #define ICON_MD_TIPS_AND_UPDATES "\xee\x9e\x9a" // U+e79a #define ICON_MD_TIRE_REPAIR "\xee\xaf\x88" // U+ebc8 #define ICON_MD_TITLE "\xee\x89\xa4" // U+e264 #define ICON_MD_TOC "\xee\xa3\x9e" // U+e8de #define ICON_MD_TODAY "\xee\xa3\x9f" // U+e8df #define ICON_MD_TOGGLE_OFF "\xee\xa7\xb5" // U+e9f5 #define ICON_MD_TOGGLE_ON "\xee\xa7\xb6" // U+e9f6 #define ICON_MD_TOKEN "\xee\xa8\xa5" // U+ea25 #define ICON_MD_TOLL "\xee\xa3\xa0" // U+e8e0 #define ICON_MD_TONALITY "\xee\x90\xa7" // U+e427 #define ICON_MD_TOPIC "\xef\x87\x88" // U+f1c8 #define ICON_MD_TORNADO "\xee\x86\x99" // U+e199 #define ICON_MD_TOUCH_APP "\xee\xa4\x93" // U+e913 #define ICON_MD_TOUR "\xee\xbd\xb5" // U+ef75 #define ICON_MD_TOYS "\xee\x8c\xb2" // U+e332 #define ICON_MD_TRACK_CHANGES "\xee\xa3\xa1" // U+e8e1 #define ICON_MD_TRAFFIC "\xee\x95\xa5" // U+e565 #define ICON_MD_TRAIN "\xee\x95\xb0" // U+e570 #define ICON_MD_TRAM "\xee\x95\xb1" // U+e571 #define ICON_MD_TRANSCRIBE "\xef\xa3\xac" // U+f8ec #define ICON_MD_TRANSFER_WITHIN_A_STATION "\xee\x95\xb2" // U+e572 #define ICON_MD_TRANSFORM "\xee\x90\xa8" // U+e428 #define ICON_MD_TRANSGENDER "\xee\x96\x8d" // U+e58d #define ICON_MD_TRANSIT_ENTEREXIT "\xee\x95\xb9" // U+e579 #define ICON_MD_TRANSLATE "\xee\xa3\xa2" // U+e8e2 #define ICON_MD_TRAVEL_EXPLORE "\xee\x8b\x9b" // U+e2db #define ICON_MD_TRENDING_DOWN "\xee\xa3\xa3" // U+e8e3 #define ICON_MD_TRENDING_FLAT "\xee\xa3\xa4" // U+e8e4 #define ICON_MD_TRENDING_NEUTRAL "\xee\xa3\xa4" // U+e8e4 #define ICON_MD_TRENDING_UP "\xee\xa3\xa5" // U+e8e5 #define ICON_MD_TRIP_ORIGIN "\xee\x95\xbb" // U+e57b #define ICON_MD_TROLLEY "\xef\xa1\xab" // U+f86b #define ICON_MD_TROUBLESHOOT "\xee\x87\x92" // U+e1d2 #define ICON_MD_TRY "\xef\x81\xbc" // U+f07c #define ICON_MD_TSUNAMI "\xee\xaf\x98" // U+ebd8 #define ICON_MD_TTY "\xef\x86\xaa" // U+f1aa #define ICON_MD_TUNE "\xee\x90\xa9" // U+e429 #define ICON_MD_TUNGSTEN "\xef\x81\xbd" // U+f07d #define ICON_MD_TURN_LEFT "\xee\xae\xa6" // U+eba6 #define ICON_MD_TURN_RIGHT "\xee\xae\xab" // U+ebab #define ICON_MD_TURN_SHARP_LEFT "\xee\xae\xa7" // U+eba7 #define ICON_MD_TURN_SHARP_RIGHT "\xee\xae\xaa" // U+ebaa #define ICON_MD_TURN_SLIGHT_LEFT "\xee\xae\xa4" // U+eba4 #define ICON_MD_TURN_SLIGHT_RIGHT "\xee\xae\x9a" // U+eb9a #define ICON_MD_TURNED_IN "\xee\xa3\xa6" // U+e8e6 #define ICON_MD_TURNED_IN_NOT "\xee\xa3\xa7" // U+e8e7 #define ICON_MD_TV "\xee\x8c\xb3" // U+e333 #define ICON_MD_TV_OFF "\xee\x99\x87" // U+e647 #define ICON_MD_TWO_WHEELER "\xee\xa7\xb9" // U+e9f9 #define ICON_MD_TYPE_SPECIMEN "\xef\xa3\xb0" // U+f8f0 #define ICON_MD_U_TURN_LEFT "\xee\xae\xa1" // U+eba1 #define ICON_MD_U_TURN_RIGHT "\xee\xae\xa2" // U+eba2 #define ICON_MD_UMBRELLA "\xef\x86\xad" // U+f1ad #define ICON_MD_UNARCHIVE "\xee\x85\xa9" // U+e169 #define ICON_MD_UNDO "\xee\x85\xa6" // U+e166 #define ICON_MD_UNFOLD_LESS "\xee\x97\x96" // U+e5d6 #define ICON_MD_UNFOLD_LESS_DOUBLE "\xef\xa3\x8f" // U+f8cf #define ICON_MD_UNFOLD_MORE "\xee\x97\x97" // U+e5d7 #define ICON_MD_UNFOLD_MORE_DOUBLE "\xef\xa3\x90" // U+f8d0 #define ICON_MD_UNPUBLISHED "\xef\x88\xb6" // U+f236 #define ICON_MD_UNSUBSCRIBE "\xee\x83\xab" // U+e0eb #define ICON_MD_UPCOMING "\xef\x81\xbe" // U+f07e #define ICON_MD_UPDATE "\xee\xa4\xa3" // U+e923 #define ICON_MD_UPDATE_DISABLED "\xee\x81\xb5" // U+e075 #define ICON_MD_UPGRADE "\xef\x83\xbb" // U+f0fb #define ICON_MD_UPLOAD "\xef\x82\x9b" // U+f09b #define ICON_MD_UPLOAD_FILE "\xee\xa7\xbc" // U+e9fc #define ICON_MD_USB "\xee\x87\xa0" // U+e1e0 #define ICON_MD_USB_OFF "\xee\x93\xba" // U+e4fa #define ICON_MD_VACCINES "\xee\x84\xb8" // U+e138 #define ICON_MD_VAPE_FREE "\xee\xaf\x86" // U+ebc6 #define ICON_MD_VAPING_ROOMS "\xee\xaf\x8f" // U+ebcf #define ICON_MD_VERIFIED "\xee\xbd\xb6" // U+ef76 #define ICON_MD_VERIFIED_USER "\xee\xa3\xa8" // U+e8e8 #define ICON_MD_VERTICAL_ALIGN_BOTTOM "\xee\x89\x98" // U+e258 #define ICON_MD_VERTICAL_ALIGN_CENTER "\xee\x89\x99" // U+e259 #define ICON_MD_VERTICAL_ALIGN_TOP "\xee\x89\x9a" // U+e25a #define ICON_MD_VERTICAL_DISTRIBUTE "\xee\x81\xb6" // U+e076 #define ICON_MD_VERTICAL_SHADES "\xee\xb0\x8e" // U+ec0e #define ICON_MD_VERTICAL_SHADES_CLOSED "\xee\xb0\x8d" // U+ec0d #define ICON_MD_VERTICAL_SPLIT "\xee\xa5\x89" // U+e949 #define ICON_MD_VIBRATION "\xee\x98\xad" // U+e62d #define ICON_MD_VIDEO_CALL "\xee\x81\xb0" // U+e070 #define ICON_MD_VIDEO_CAMERA_BACK "\xef\x81\xbf" // U+f07f #define ICON_MD_VIDEO_CAMERA_FRONT "\xef\x82\x80" // U+f080 #define ICON_MD_VIDEO_CHAT "\xef\xa2\xa0" // U+f8a0 #define ICON_MD_VIDEO_COLLECTION "\xee\x81\x8a" // U+e04a #define ICON_MD_VIDEO_FILE "\xee\xae\x87" // U+eb87 #define ICON_MD_VIDEO_LABEL "\xee\x81\xb1" // U+e071 #define ICON_MD_VIDEO_LIBRARY "\xee\x81\x8a" // U+e04a #define ICON_MD_VIDEO_SETTINGS "\xee\xa9\xb5" // U+ea75 #define ICON_MD_VIDEO_STABLE "\xef\x82\x81" // U+f081 #define ICON_MD_VIDEOCAM "\xee\x81\x8b" // U+e04b #define ICON_MD_VIDEOCAM_OFF "\xee\x81\x8c" // U+e04c #define ICON_MD_VIDEOGAME_ASSET "\xee\x8c\xb8" // U+e338 #define ICON_MD_VIDEOGAME_ASSET_OFF "\xee\x94\x80" // U+e500 #define ICON_MD_VIEW_AGENDA "\xee\xa3\xa9" // U+e8e9 #define ICON_MD_VIEW_ARRAY "\xee\xa3\xaa" // U+e8ea #define ICON_MD_VIEW_CAROUSEL "\xee\xa3\xab" // U+e8eb #define ICON_MD_VIEW_COLUMN "\xee\xa3\xac" // U+e8ec #define ICON_MD_VIEW_COMFORTABLE "\xee\x90\xaa" // U+e42a #define ICON_MD_VIEW_COMFY "\xee\x90\xaa" // U+e42a #define ICON_MD_VIEW_COMFY_ALT "\xee\xad\xb3" // U+eb73 #define ICON_MD_VIEW_COMPACT "\xee\x90\xab" // U+e42b #define ICON_MD_VIEW_COMPACT_ALT "\xee\xad\xb4" // U+eb74 #define ICON_MD_VIEW_COZY "\xee\xad\xb5" // U+eb75 #define ICON_MD_VIEW_DAY "\xee\xa3\xad" // U+e8ed #define ICON_MD_VIEW_HEADLINE "\xee\xa3\xae" // U+e8ee #define ICON_MD_VIEW_IN_AR "\xee\xa7\xbe" // U+e9fe #define ICON_MD_VIEW_KANBAN "\xee\xad\xbf" // U+eb7f #define ICON_MD_VIEW_LIST "\xee\xa3\xaf" // U+e8ef #define ICON_MD_VIEW_MODULE "\xee\xa3\xb0" // U+e8f0 #define ICON_MD_VIEW_QUILT "\xee\xa3\xb1" // U+e8f1 #define ICON_MD_VIEW_SIDEBAR "\xef\x84\x94" // U+f114 #define ICON_MD_VIEW_STREAM "\xee\xa3\xb2" // U+e8f2 #define ICON_MD_VIEW_TIMELINE "\xee\xae\x85" // U+eb85 #define ICON_MD_VIEW_WEEK "\xee\xa3\xb3" // U+e8f3 #define ICON_MD_VIGNETTE "\xee\x90\xb5" // U+e435 #define ICON_MD_VILLA "\xee\x96\x86" // U+e586 #define ICON_MD_VISIBILITY "\xee\xa3\xb4" // U+e8f4 #define ICON_MD_VISIBILITY_OFF "\xee\xa3\xb5" // U+e8f5 #define ICON_MD_VOICE_CHAT "\xee\x98\xae" // U+e62e #define ICON_MD_VOICE_OVER_OFF "\xee\xa5\x8a" // U+e94a #define ICON_MD_VOICEMAIL "\xee\x83\x99" // U+e0d9 #define ICON_MD_VOLCANO "\xee\xaf\x9a" // U+ebda #define ICON_MD_VOLUME_DOWN "\xee\x81\x8d" // U+e04d #define ICON_MD_VOLUME_DOWN_ALT "\xee\x9e\x9c" // U+e79c #define ICON_MD_VOLUME_MUTE "\xee\x81\x8e" // U+e04e #define ICON_MD_VOLUME_OFF "\xee\x81\x8f" // U+e04f #define ICON_MD_VOLUME_UP "\xee\x81\x90" // U+e050 #define ICON_MD_VOLUNTEER_ACTIVISM "\xee\xa9\xb0" // U+ea70 #define ICON_MD_VPN_KEY "\xee\x83\x9a" // U+e0da #define ICON_MD_VPN_KEY_OFF "\xee\xad\xba" // U+eb7a #define ICON_MD_VPN_LOCK "\xee\x98\xaf" // U+e62f #define ICON_MD_VRPANO "\xef\x82\x82" // U+f082 #define ICON_MD_WALLET "\xef\xa3\xbf" // U+f8ff #define ICON_MD_WALLET_GIFTCARD "\xee\xa3\xb6" // U+e8f6 #define ICON_MD_WALLET_MEMBERSHIP "\xee\xa3\xb7" // U+e8f7 #define ICON_MD_WALLET_TRAVEL "\xee\xa3\xb8" // U+e8f8 #define ICON_MD_WALLPAPER "\xee\x86\xbc" // U+e1bc #define ICON_MD_WAREHOUSE "\xee\xae\xb8" // U+ebb8 #define ICON_MD_WARNING "\xee\x80\x82" // U+e002 #define ICON_MD_WARNING_AMBER "\xef\x82\x83" // U+f083 #define ICON_MD_WASH "\xef\x86\xb1" // U+f1b1 #define ICON_MD_WATCH "\xee\x8c\xb4" // U+e334 #define ICON_MD_WATCH_LATER "\xee\xa4\xa4" // U+e924 #define ICON_MD_WATCH_OFF "\xee\xab\xa3" // U+eae3 #define ICON_MD_WATER "\xef\x82\x84" // U+f084 #define ICON_MD_WATER_DAMAGE "\xef\x88\x83" // U+f203 #define ICON_MD_WATER_DROP "\xee\x9e\x98" // U+e798 #define ICON_MD_WATERFALL_CHART "\xee\xa8\x80" // U+ea00 #define ICON_MD_WAVES "\xee\x85\xb6" // U+e176 #define ICON_MD_WAVING_HAND "\xee\x9d\xa6" // U+e766 #define ICON_MD_WB_AUTO "\xee\x90\xac" // U+e42c #define ICON_MD_WB_CLOUDY "\xee\x90\xad" // U+e42d #define ICON_MD_WB_INCANDESCENT "\xee\x90\xae" // U+e42e #define ICON_MD_WB_IRIDESCENT "\xee\x90\xb6" // U+e436 #define ICON_MD_WB_SHADE "\xee\xa8\x81" // U+ea01 #define ICON_MD_WB_SUNNY "\xee\x90\xb0" // U+e430 #define ICON_MD_WB_TWIGHLIGHT "\xee\xa8\x82" // U+ea02 #define ICON_MD_WB_TWILIGHT "\xee\x87\x86" // U+e1c6 #define ICON_MD_WC "\xee\x98\xbd" // U+e63d #define ICON_MD_WEB "\xee\x81\x91" // U+e051 #define ICON_MD_WEB_ASSET "\xee\x81\xa9" // U+e069 #define ICON_MD_WEB_ASSET_OFF "\xee\x93\xb7" // U+e4f7 #define ICON_MD_WEB_STORIES "\xee\x96\x95" // U+e595 #define ICON_MD_WEBHOOK "\xee\xae\x92" // U+eb92 #define ICON_MD_WECHAT "\xee\xaa\x81" // U+ea81 #define ICON_MD_WEEKEND "\xee\x85\xab" // U+e16b #define ICON_MD_WEST "\xef\x87\xa6" // U+f1e6 #define ICON_MD_WHATSHOT "\xee\xa0\x8e" // U+e80e #define ICON_MD_WHEELCHAIR_PICKUP "\xef\x86\xab" // U+f1ab #define ICON_MD_WHERE_TO_VOTE "\xee\x85\xb7" // U+e177 #define ICON_MD_WIDGETS "\xee\x86\xbd" // U+e1bd #define ICON_MD_WIDTH_FULL "\xef\xa3\xb5" // U+f8f5 #define ICON_MD_WIDTH_NORMAL "\xef\xa3\xb6" // U+f8f6 #define ICON_MD_WIDTH_WIDE "\xef\xa3\xb7" // U+f8f7 #define ICON_MD_WIFI "\xee\x98\xbe" // U+e63e #define ICON_MD_WIFI_1_BAR "\xee\x93\x8a" // U+e4ca #define ICON_MD_WIFI_2_BAR "\xee\x93\x99" // U+e4d9 #define ICON_MD_WIFI_CALLING "\xee\xbd\xb7" // U+ef77 #define ICON_MD_WIFI_CALLING_3 "\xef\x82\x85" // U+f085 #define ICON_MD_WIFI_CHANNEL "\xee\xad\xaa" // U+eb6a #define ICON_MD_WIFI_FIND "\xee\xac\xb1" // U+eb31 #define ICON_MD_WIFI_LOCK "\xee\x87\xa1" // U+e1e1 #define ICON_MD_WIFI_OFF "\xee\x99\x88" // U+e648 #define ICON_MD_WIFI_PASSWORD "\xee\xad\xab" // U+eb6b #define ICON_MD_WIFI_PROTECTED_SETUP "\xef\x83\xbc" // U+f0fc #define ICON_MD_WIFI_TETHERING "\xee\x87\xa2" // U+e1e2 #define ICON_MD_WIFI_TETHERING_ERROR "\xee\xab\x99" // U+ead9 #define ICON_MD_WIFI_TETHERING_ERROR_ROUNDED "\xef\x82\x86" // U+f086 #define ICON_MD_WIFI_TETHERING_OFF "\xef\x82\x87" // U+f087 #define ICON_MD_WIND_POWER "\xee\xb0\x8c" // U+ec0c #define ICON_MD_WINDOW "\xef\x82\x88" // U+f088 #define ICON_MD_WINE_BAR "\xef\x87\xa8" // U+f1e8 #define ICON_MD_WOMAN "\xee\x84\xbe" // U+e13e #define ICON_MD_WOMAN_2 "\xef\xa3\xa7" // U+f8e7 #define ICON_MD_WOO_COMMERCE "\xee\xa9\xad" // U+ea6d #define ICON_MD_WORDPRESS "\xee\xaa\x9f" // U+ea9f #define ICON_MD_WORK "\xee\xa3\xb9" // U+e8f9 #define ICON_MD_WORK_HISTORY "\xee\xb0\x89" // U+ec09 #define ICON_MD_WORK_OFF "\xee\xa5\x82" // U+e942 #define ICON_MD_WORK_OUTLINE "\xee\xa5\x83" // U+e943 #define ICON_MD_WORKSPACE_PREMIUM "\xee\x9e\xaf" // U+e7af #define ICON_MD_WORKSPACES "\xee\x86\xa0" // U+e1a0 #define ICON_MD_WORKSPACES_FILLED "\xee\xa8\x8d" // U+ea0d #define ICON_MD_WORKSPACES_OUTLINE "\xee\xa8\x8f" // U+ea0f #define ICON_MD_WRAP_TEXT "\xee\x89\x9b" // U+e25b #define ICON_MD_WRONG_LOCATION "\xee\xbd\xb8" // U+ef78 #define ICON_MD_WYSIWYG "\xef\x87\x83" // U+f1c3 #define ICON_MD_YARD "\xef\x82\x89" // U+f089 #define ICON_MD_YOUTUBE_SEARCHED_FOR "\xee\xa3\xba" // U+e8fa #define ICON_MD_ZOOM_IN "\xee\xa3\xbf" // U+e8ff #define ICON_MD_ZOOM_IN_MAP "\xee\xac\xad" // U+eb2d #define ICON_MD_ZOOM_OUT "\xee\xa4\x80" // U+e900 #define ICON_MD_ZOOM_OUT_MAP "\xee\x95\xab" // U+e56b #endif // ICON_MD_H #ifndef __EMSCRIPTEN__ #ifndef _GNU_SOURCE // juicy linux headers #define _GNU_SOURCE #endif #if defined(_MSC_VER) && defined(_WIN32) // for VC IDE #define _CRT_SECURE_NO_WARNINGS #define _CRT_NONSTDC_NO_DEPRECATE #define _WINSOCK_DEPRECATED_NO_WARNINGS #endif /** * Loader generated by glad 2.0.0-beta on Sat Mar 28 10:21:14 2020 * * Generator: C/C++ * Specification: gl * Extensions: 183 * * APIs: * - gl:compatibility=3.3 * * Options: * - MX_GLOBAL = False * - ON_DEMAND = False * - LOADER = False * - ALIAS = False * - HEADER_ONLY = True * - DEBUG = False * - MX = False * - MERGE = True * * Commandline: * --api='gl:compatibility=3.3' --extensions='GL_ARB_ES2_compatibility,GL_ARB_ES3_1_compatibility,GL_ARB_ES3_2_compatibility,GL_ARB_ES3_compatibility,GL_ARB_arrays_of_arrays,GL_ARB_base_instance,GL_ARB_bindless_texture,GL_ARB_blend_func_extended,GL_ARB_buffer_storage,GL_ARB_cl_event,GL_ARB_clear_buffer_object,GL_ARB_clear_texture,GL_ARB_clip_control,GL_ARB_color_buffer_float,GL_ARB_compatibility,GL_ARB_compressed_texture_pixel_storage,GL_ARB_compute_shader,GL_ARB_compute_variable_group_size,GL_ARB_conditional_render_inverted,GL_ARB_conservative_depth,GL_ARB_copy_buffer,GL_ARB_copy_image,GL_ARB_cull_distance,GL_ARB_debug_output,GL_ARB_depth_buffer_float,GL_ARB_depth_clamp,GL_ARB_depth_texture,GL_ARB_derivative_control,GL_ARB_direct_state_access,GL_ARB_draw_buffers,GL_ARB_draw_buffers_blend,GL_ARB_draw_elements_base_vertex,GL_ARB_draw_indirect,GL_ARB_draw_instanced,GL_ARB_enhanced_layouts,GL_ARB_explicit_attrib_location,GL_ARB_explicit_uniform_location,GL_ARB_fragment_coord_conventions,GL_ARB_fragment_layer_viewport,GL_ARB_fragment_program,GL_ARB_fragment_program_shadow,GL_ARB_fragment_shader,GL_ARB_fragment_shader_interlock,GL_ARB_framebuffer_no_attachments,GL_ARB_framebuffer_object,GL_ARB_framebuffer_sRGB,GL_ARB_geometry_shader4,GL_ARB_get_program_binary,GL_ARB_get_texture_sub_image,GL_ARB_gl_spirv,GL_ARB_gpu_shader5,GL_ARB_gpu_shader_fp64,GL_ARB_gpu_shader_int64,GL_ARB_half_float_pixel,GL_ARB_half_float_vertex,GL_ARB_imaging,GL_ARB_indirect_parameters,GL_ARB_instanced_arrays,GL_ARB_internalformat_query,GL_ARB_internalformat_query2,GL_ARB_invalidate_subdata,GL_ARB_map_buffer_alignment,GL_ARB_map_buffer_range,GL_ARB_matrix_palette,GL_ARB_multi_bind,GL_ARB_multi_draw_indirect,GL_ARB_multisample,GL_ARB_multitexture,GL_ARB_occlusion_query,GL_ARB_occlusion_query2,GL_ARB_parallel_shader_compile,GL_ARB_pipeline_statistics_query,GL_ARB_pixel_buffer_object,GL_ARB_point_parameters,GL_ARB_point_sprite,GL_ARB_polygon_offset_clamp,GL_ARB_post_depth_coverage,GL_ARB_program_interface_query,GL_ARB_provoking_vertex,GL_ARB_query_buffer_object,GL_ARB_robust_buffer_access_behavior,GL_ARB_robustness,GL_ARB_robustness_isolation,GL_ARB_sample_locations,GL_ARB_sample_shading,GL_ARB_sampler_objects,GL_ARB_seamless_cube_map,GL_ARB_seamless_cubemap_per_texture,GL_ARB_separate_shader_objects,GL_ARB_shader_atomic_counter_ops,GL_ARB_shader_atomic_counters,GL_ARB_shader_ballot,GL_ARB_shader_bit_encoding,GL_ARB_shader_clock,GL_ARB_shader_draw_parameters,GL_ARB_shader_group_vote,GL_ARB_shader_image_load_store,GL_ARB_shader_image_size,GL_ARB_shader_objects,GL_ARB_shader_precision,GL_ARB_shader_stencil_export,GL_ARB_shader_storage_buffer_object,GL_ARB_shader_subroutine,GL_ARB_shader_texture_image_samples,GL_ARB_shader_texture_lod,GL_ARB_shader_viewport_layer_array,GL_ARB_shading_language_100,GL_ARB_shading_language_420pack,GL_ARB_shading_language_include,GL_ARB_shading_language_packing,GL_ARB_shadow,GL_ARB_shadow_ambient,GL_ARB_sparse_buffer,GL_ARB_sparse_texture,GL_ARB_sparse_texture2,GL_ARB_sparse_texture_clamp,GL_ARB_spirv_extensions,GL_ARB_stencil_texturing,GL_ARB_sync,GL_ARB_tessellation_shader,GL_ARB_texture_barrier,GL_ARB_texture_border_clamp,GL_ARB_texture_buffer_object,GL_ARB_texture_buffer_object_rgb32,GL_ARB_texture_buffer_range,GL_ARB_texture_compression,GL_ARB_texture_compression_bptc,GL_ARB_texture_compression_rgtc,GL_ARB_texture_cube_map,GL_ARB_texture_cube_map_array,GL_ARB_texture_env_add,GL_ARB_texture_env_combine,GL_ARB_texture_env_crossbar,GL_ARB_texture_env_dot3,GL_ARB_texture_filter_anisotropic,GL_ARB_texture_filter_minmax,GL_ARB_texture_float,GL_ARB_texture_gather,GL_ARB_texture_mirror_clamp_to_edge,GL_ARB_texture_mirrored_repeat,GL_ARB_texture_multisample,GL_ARB_texture_non_power_of_two,GL_ARB_texture_query_levels,GL_ARB_texture_query_lod,GL_ARB_texture_rectangle,GL_ARB_texture_rg,GL_ARB_texture_rgb10_a2ui,GL_ARB_texture_stencil8,GL_ARB_texture_storage,GL_ARB_texture_storage_multisample,GL_ARB_texture_swizzle,GL_ARB_texture_view,GL_ARB_timer_query,GL_ARB_transform_feedback2,GL_ARB_transform_feedback3,GL_ARB_transform_feedback_instanced,GL_ARB_transform_feedback_overflow_query,GL_ARB_transpose_matrix,GL_ARB_uniform_buffer_object,GL_ARB_vertex_array_bgra,GL_ARB_vertex_array_object,GL_ARB_vertex_attrib_64bit,GL_ARB_vertex_attrib_binding,GL_ARB_vertex_blend,GL_ARB_vertex_buffer_object,GL_ARB_vertex_program,GL_ARB_vertex_shader,GL_ARB_vertex_type_10f_11f_11f_rev,GL_ARB_vertex_type_2_10_10_10_rev,GL_ARB_viewport_array,GL_ARB_window_pos,GL_KHR_blend_equation_advanced,GL_KHR_blend_equation_advanced_coherent,GL_KHR_context_flush_control,GL_KHR_debug,GL_KHR_no_error,GL_KHR_parallel_shader_compile,GL_KHR_robust_buffer_access_behavior,GL_KHR_robustness,GL_KHR_shader_subgroup,GL_KHR_texture_compression_astc_hdr,GL_KHR_texture_compression_astc_ldr,GL_KHR_texture_compression_astc_sliced_3d' c --header-only * * Online: * http://glad.sh/#api=gl%3Acompatibility%3D3.3&generator=c&options=HEADER_ONLY * */ #ifndef GLAD_GL_H_ #define GLAD_GL_H_ #ifdef __gl_h_ #error OpenGL header already included (API: gl), remove previous include! #endif #define __gl_h_ 1 #define GLAD_GL //#define GLAD_OPTION_GL_HEADER_ONLY #ifdef __cplusplus extern "C" { #endif #ifndef GLAD_PLATFORM_H_ #define GLAD_PLATFORM_H_ #ifndef GLAD_PLATFORM_WIN32 #if defined(_WIN32) || defined(__WIN32__) || defined(WIN32) || defined(__MINGW32__) #define GLAD_PLATFORM_WIN32 1 #else #define GLAD_PLATFORM_WIN32 0 #endif #endif #ifndef GLAD_PLATFORM_APPLE #ifdef __APPLE__ #define GLAD_PLATFORM_APPLE 1 #else #define GLAD_PLATFORM_APPLE 0 #endif #endif #ifndef GLAD_PLATFORM_EMSCRIPTEN #ifdef __EMSCRIPTEN__ #define GLAD_PLATFORM_EMSCRIPTEN 1 #else #define GLAD_PLATFORM_EMSCRIPTEN 0 #endif #endif #ifndef GLAD_PLATFORM_UWP #if defined(_MSC_VER) && !defined(GLAD_INTERNAL_HAVE_WINAPIFAMILY) #ifdef __has_include #if __has_include() #define GLAD_INTERNAL_HAVE_WINAPIFAMILY 1 #endif #elif _MSC_VER >= 1700 && !_USING_V110_SDK71_ #define GLAD_INTERNAL_HAVE_WINAPIFAMILY 1 #endif #endif #ifdef GLAD_INTERNAL_HAVE_WINAPIFAMILY #include #if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) && WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) #define GLAD_PLATFORM_UWP 1 #endif #endif #ifndef GLAD_PLATFORM_UWP #define GLAD_PLATFORM_UWP 0 #endif #endif #ifdef __GNUC__ #define GLAD_GNUC_EXTENSION __extension__ #else #define GLAD_GNUC_EXTENSION #endif #ifndef GLAD_API_CALL #if defined(GLAD_API_CALL_EXPORT) || (defined API) // @r-lyeh #if GLAD_PLATFORM_WIN32 || defined(__CYGWIN__) #if defined(GLAD_API_CALL_EXPORT_BUILD) #if defined(__GNUC__) #define GLAD_API_CALL __attribute__ ((dllexport)) extern #else #define GLAD_API_CALL __declspec(dllexport) extern #endif #else #if defined(__GNUC__) #define GLAD_API_CALL __attribute__ ((dllimport)) extern #else #define GLAD_API_CALL __declspec(dllimport) extern #endif #endif #elif defined(__GNUC__) && defined(GLAD_API_CALL_EXPORT_BUILD) #define GLAD_API_CALL __attribute__ ((visibility ("default"))) extern #else #define GLAD_API_CALL extern #endif #else #define GLAD_API_CALL extern #endif #endif #ifdef APIENTRY #define GLAD_API_PTR APIENTRY #elif GLAD_PLATFORM_WIN32 #define GLAD_API_PTR __stdcall #else #define GLAD_API_PTR #endif #ifndef GLAPI #define GLAPI GLAD_API_CALL #endif #ifndef GLAPIENTRY #define GLAPIENTRY GLAD_API_PTR #endif #define GLAD_MAKE_VERSION(major, minor) (major * 10000 + minor) #define GLAD_VERSION_MAJOR(version) (version / 10000) #define GLAD_VERSION_MINOR(version) (version % 10000) #define GLAD_GENERATOR_VERSION "2.0.0-beta" typedef void (*GLADapiproc)(void); typedef GLADapiproc (*GLADloadfunc)(const char *name); typedef GLADapiproc (*GLADuserptrloadfunc)(void *userptr, const char *name); typedef void (*GLADprecallback)(const char *name, GLADapiproc apiproc, int len_args, ...); typedef void (*GLADpostcallback)(void *ret, const char *name, GLADapiproc apiproc, int len_args, ...); #endif /* GLAD_PLATFORM_H_ */ #define GL_2D 0x0600 #define GL_2_BYTES 0x1407 #define GL_3D 0x0601 #define GL_3D_COLOR 0x0602 #define GL_3D_COLOR_TEXTURE 0x0603 #define GL_3_BYTES 0x1408 #define GL_4D_COLOR_TEXTURE 0x0604 #define GL_4_BYTES 0x1409 #define GL_ACCUM 0x0100 #define GL_ACCUM_ALPHA_BITS 0x0D5B #define GL_ACCUM_BLUE_BITS 0x0D5A #define GL_ACCUM_BUFFER_BIT 0x00000200 #define GL_ACCUM_CLEAR_VALUE 0x0B80 #define GL_ACCUM_GREEN_BITS 0x0D59 #define GL_ACCUM_RED_BITS 0x0D58 #define GL_ACTIVE_ATOMIC_COUNTER_BUFFERS 0x92D9 #define GL_ACTIVE_ATTRIBUTES 0x8B89 #define GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 0x8B8A #define GL_ACTIVE_PROGRAM 0x8259 #define GL_ACTIVE_RESOURCES 0x92F5 #define GL_ACTIVE_SUBROUTINES 0x8DE5 #define GL_ACTIVE_SUBROUTINE_MAX_LENGTH 0x8E48 #define GL_ACTIVE_SUBROUTINE_UNIFORMS 0x8DE6 #define GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS 0x8E47 #define GL_ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH 0x8E49 #define GL_ACTIVE_TEXTURE 0x84E0 #define GL_ACTIVE_TEXTURE_ARB 0x84E0 #define GL_ACTIVE_UNIFORMS 0x8B86 #define GL_ACTIVE_UNIFORM_BLOCKS 0x8A36 #define GL_ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH 0x8A35 #define GL_ACTIVE_UNIFORM_MAX_LENGTH 0x8B87 #define GL_ACTIVE_VARIABLES 0x9305 #define GL_ACTIVE_VERTEX_UNITS_ARB 0x86A5 #define GL_ADD 0x0104 #define GL_ADD_SIGNED 0x8574 #define GL_ADD_SIGNED_ARB 0x8574 #define GL_ALIASED_LINE_WIDTH_RANGE 0x846E #define GL_ALIASED_POINT_SIZE_RANGE 0x846D #define GL_ALL_ATTRIB_BITS 0xFFFFFFFF #define GL_ALL_BARRIER_BITS 0xFFFFFFFF #define GL_ALL_SHADER_BITS 0xFFFFFFFF #define GL_ALPHA 0x1906 #define GL_ALPHA12 0x803D #define GL_ALPHA16 0x803E #define GL_ALPHA16F_ARB 0x881C #define GL_ALPHA32F_ARB 0x8816 #define GL_ALPHA4 0x803B #define GL_ALPHA8 0x803C #define GL_ALPHA_BIAS 0x0D1D #define GL_ALPHA_BITS 0x0D55 #define GL_ALPHA_INTEGER 0x8D97 #define GL_ALPHA_SCALE 0x0D1C #define GL_ALPHA_TEST 0x0BC0 #define GL_ALPHA_TEST_FUNC 0x0BC1 #define GL_ALPHA_TEST_REF 0x0BC2 #define GL_ALREADY_SIGNALED 0x911A #define GL_ALWAYS 0x0207 #define GL_AMBIENT 0x1200 #define GL_AMBIENT_AND_DIFFUSE 0x1602 #define GL_AND 0x1501 #define GL_AND_INVERTED 0x1504 #define GL_AND_REVERSE 0x1502 #define GL_ANY_SAMPLES_PASSED 0x8C2F #define GL_ANY_SAMPLES_PASSED_CONSERVATIVE 0x8D6A #define GL_ARRAY_BUFFER 0x8892 #define GL_ARRAY_BUFFER_ARB 0x8892 #define GL_ARRAY_BUFFER_BINDING 0x8894 #define GL_ARRAY_BUFFER_BINDING_ARB 0x8894 #define GL_ARRAY_SIZE 0x92FB #define GL_ARRAY_STRIDE 0x92FE #define GL_ATOMIC_COUNTER_BARRIER_BIT 0x00001000 #define GL_ATOMIC_COUNTER_BUFFER 0x92C0 #define GL_ATOMIC_COUNTER_BUFFER_ACTIVE_ATOMIC_COUNTERS 0x92C5 #define GL_ATOMIC_COUNTER_BUFFER_ACTIVE_ATOMIC_COUNTER_INDICES 0x92C6 #define GL_ATOMIC_COUNTER_BUFFER_BINDING 0x92C1 #define GL_ATOMIC_COUNTER_BUFFER_DATA_SIZE 0x92C4 #define GL_ATOMIC_COUNTER_BUFFER_INDEX 0x9301 #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_COMPUTE_SHADER 0x90ED #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_FRAGMENT_SHADER 0x92CB #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_GEOMETRY_SHADER 0x92CA #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_TESS_CONTROL_SHADER 0x92C8 #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_TESS_EVALUATION_SHADER 0x92C9 #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_VERTEX_SHADER 0x92C7 #define GL_ATOMIC_COUNTER_BUFFER_SIZE 0x92C3 #define GL_ATOMIC_COUNTER_BUFFER_START 0x92C2 #define GL_ATTACHED_SHADERS 0x8B85 #define GL_ATTRIB_STACK_DEPTH 0x0BB0 #define GL_AUTO_GENERATE_MIPMAP 0x8295 #define GL_AUTO_NORMAL 0x0D80 #define GL_AUX0 0x0409 #define GL_AUX1 0x040A #define GL_AUX2 0x040B #define GL_AUX3 0x040C #define GL_AUX_BUFFERS 0x0C00 #define GL_BACK 0x0405 #define GL_BACK_LEFT 0x0402 #define GL_BACK_RIGHT 0x0403 #define GL_BGR 0x80E0 #define GL_BGRA 0x80E1 #define GL_BGRA_INTEGER 0x8D9B #define GL_BGR_INTEGER 0x8D9A #define GL_BITMAP 0x1A00 #define GL_BITMAP_TOKEN 0x0704 #define GL_BLEND 0x0BE2 #define GL_BLEND_ADVANCED_COHERENT_KHR 0x9285 #define GL_BLEND_COLOR 0x8005 #define GL_BLEND_DST 0x0BE0 #define GL_BLEND_DST_ALPHA 0x80CA #define GL_BLEND_DST_RGB 0x80C8 #define GL_BLEND_EQUATION 0x8009 #define GL_BLEND_EQUATION_ALPHA 0x883D #define GL_BLEND_EQUATION_RGB 0x8009 #define GL_BLEND_SRC 0x0BE1 #define GL_BLEND_SRC_ALPHA 0x80CB #define GL_BLEND_SRC_RGB 0x80C9 #define GL_BLOCK_INDEX 0x92FD #define GL_BLUE 0x1905 #define GL_BLUE_BIAS 0x0D1B #define GL_BLUE_BITS 0x0D54 #define GL_BLUE_INTEGER 0x8D96 #define GL_BLUE_SCALE 0x0D1A #define GL_BOOL 0x8B56 #define GL_BOOL_ARB 0x8B56 #define GL_BOOL_VEC2 0x8B57 #define GL_BOOL_VEC2_ARB 0x8B57 #define GL_BOOL_VEC3 0x8B58 #define GL_BOOL_VEC3_ARB 0x8B58 #define GL_BOOL_VEC4 0x8B59 #define GL_BOOL_VEC4_ARB 0x8B59 #define GL_BUFFER 0x82E0 #define GL_BUFFER_ACCESS 0x88BB #define GL_BUFFER_ACCESS_ARB 0x88BB #define GL_BUFFER_ACCESS_FLAGS 0x911F #define GL_BUFFER_BINDING 0x9302 #define GL_BUFFER_DATA_SIZE 0x9303 #define GL_BUFFER_IMMUTABLE_STORAGE 0x821F #define GL_BUFFER_MAPPED 0x88BC #define GL_BUFFER_MAPPED_ARB 0x88BC #define GL_BUFFER_MAP_LENGTH 0x9120 #define GL_BUFFER_MAP_OFFSET 0x9121 #define GL_BUFFER_MAP_POINTER 0x88BD #define GL_BUFFER_MAP_POINTER_ARB 0x88BD #define GL_BUFFER_SIZE 0x8764 #define GL_BUFFER_SIZE_ARB 0x8764 #define GL_BUFFER_STORAGE_FLAGS 0x8220 #define GL_BUFFER_UPDATE_BARRIER_BIT 0x00000200 #define GL_BUFFER_USAGE 0x8765 #define GL_BUFFER_USAGE_ARB 0x8765 #define GL_BUFFER_VARIABLE 0x92E5 #define GL_BYTE 0x1400 #define GL_C3F_V3F 0x2A24 #define GL_C4F_N3F_V3F 0x2A26 #define GL_C4UB_V2F 0x2A22 #define GL_C4UB_V3F 0x2A23 #define GL_CAVEAT_SUPPORT 0x82B8 #define GL_CCW 0x0901 #define GL_CLAMP 0x2900 #define GL_CLAMP_FRAGMENT_COLOR 0x891B #define GL_CLAMP_FRAGMENT_COLOR_ARB 0x891B #define GL_CLAMP_READ_COLOR 0x891C #define GL_CLAMP_READ_COLOR_ARB 0x891C #define GL_CLAMP_TO_BORDER 0x812D #define GL_CLAMP_TO_BORDER_ARB 0x812D #define GL_CLAMP_TO_EDGE 0x812F #define GL_CLAMP_VERTEX_COLOR 0x891A #define GL_CLAMP_VERTEX_COLOR_ARB 0x891A #define GL_CLEAR 0x1500 #define GL_CLEAR_BUFFER 0x82B4 #define GL_CLEAR_TEXTURE 0x9365 #define GL_CLIENT_ACTIVE_TEXTURE 0x84E1 #define GL_CLIENT_ACTIVE_TEXTURE_ARB 0x84E1 #define GL_CLIENT_ALL_ATTRIB_BITS 0xFFFFFFFF #define GL_CLIENT_ATTRIB_STACK_DEPTH 0x0BB1 #define GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT 0x00004000 #define GL_CLIENT_PIXEL_STORE_BIT 0x00000001 #define GL_CLIENT_STORAGE_BIT 0x0200 #define GL_CLIENT_VERTEX_ARRAY_BIT 0x00000002 #define GL_CLIPPING_INPUT_PRIMITIVES 0x82F6 #define GL_CLIPPING_INPUT_PRIMITIVES_ARB 0x82F6 #define GL_CLIPPING_OUTPUT_PRIMITIVES 0x82F7 #define GL_CLIPPING_OUTPUT_PRIMITIVES_ARB 0x82F7 #define GL_CLIP_DEPTH_MODE 0x935D #define GL_CLIP_DISTANCE0 0x3000 #define GL_CLIP_DISTANCE1 0x3001 #define GL_CLIP_DISTANCE2 0x3002 #define GL_CLIP_DISTANCE3 0x3003 #define GL_CLIP_DISTANCE4 0x3004 #define GL_CLIP_DISTANCE5 0x3005 #define GL_CLIP_DISTANCE6 0x3006 #define GL_CLIP_DISTANCE7 0x3007 #define GL_CLIP_ORIGIN 0x935C #define GL_CLIP_PLANE0 0x3000 #define GL_CLIP_PLANE1 0x3001 #define GL_CLIP_PLANE2 0x3002 #define GL_CLIP_PLANE3 0x3003 #define GL_CLIP_PLANE4 0x3004 #define GL_CLIP_PLANE5 0x3005 #define GL_COEFF 0x0A00 #define GL_COLOR 0x1800 #define GL_COLORBURN_KHR 0x929A #define GL_COLORDODGE_KHR 0x9299 #define GL_COLOR_ARRAY 0x8076 #define GL_COLOR_ARRAY_BUFFER_BINDING 0x8898 #define GL_COLOR_ARRAY_BUFFER_BINDING_ARB 0x8898 #define GL_COLOR_ARRAY_POINTER 0x8090 #define GL_COLOR_ARRAY_SIZE 0x8081 #define GL_COLOR_ARRAY_STRIDE 0x8083 #define GL_COLOR_ARRAY_TYPE 0x8082 #define GL_COLOR_ATTACHMENT0 0x8CE0 #define GL_COLOR_ATTACHMENT1 0x8CE1 #define GL_COLOR_ATTACHMENT10 0x8CEA #define GL_COLOR_ATTACHMENT11 0x8CEB #define GL_COLOR_ATTACHMENT12 0x8CEC #define GL_COLOR_ATTACHMENT13 0x8CED #define GL_COLOR_ATTACHMENT14 0x8CEE #define GL_COLOR_ATTACHMENT15 0x8CEF #define GL_COLOR_ATTACHMENT16 0x8CF0 #define GL_COLOR_ATTACHMENT17 0x8CF1 #define GL_COLOR_ATTACHMENT18 0x8CF2 #define GL_COLOR_ATTACHMENT19 0x8CF3 #define GL_COLOR_ATTACHMENT2 0x8CE2 #define GL_COLOR_ATTACHMENT20 0x8CF4 #define GL_COLOR_ATTACHMENT21 0x8CF5 #define GL_COLOR_ATTACHMENT22 0x8CF6 #define GL_COLOR_ATTACHMENT23 0x8CF7 #define GL_COLOR_ATTACHMENT24 0x8CF8 #define GL_COLOR_ATTACHMENT25 0x8CF9 #define GL_COLOR_ATTACHMENT26 0x8CFA #define GL_COLOR_ATTACHMENT27 0x8CFB #define GL_COLOR_ATTACHMENT28 0x8CFC #define GL_COLOR_ATTACHMENT29 0x8CFD #define GL_COLOR_ATTACHMENT3 0x8CE3 #define GL_COLOR_ATTACHMENT30 0x8CFE #define GL_COLOR_ATTACHMENT31 0x8CFF #define GL_COLOR_ATTACHMENT4 0x8CE4 #define GL_COLOR_ATTACHMENT5 0x8CE5 #define GL_COLOR_ATTACHMENT6 0x8CE6 #define GL_COLOR_ATTACHMENT7 0x8CE7 #define GL_COLOR_ATTACHMENT8 0x8CE8 #define GL_COLOR_ATTACHMENT9 0x8CE9 #define GL_COLOR_BUFFER_BIT 0x00004000 #define GL_COLOR_CLEAR_VALUE 0x0C22 #define GL_COLOR_COMPONENTS 0x8283 #define GL_COLOR_ENCODING 0x8296 #define GL_COLOR_INDEX 0x1900 #define GL_COLOR_INDEXES 0x1603 #define GL_COLOR_LOGIC_OP 0x0BF2 #define GL_COLOR_MATERIAL 0x0B57 #define GL_COLOR_MATERIAL_FACE 0x0B55 #define GL_COLOR_MATERIAL_PARAMETER 0x0B56 #define GL_COLOR_MATRIX 0x80B1 #define GL_COLOR_MATRIX_STACK_DEPTH 0x80B2 #define GL_COLOR_RENDERABLE 0x8286 #define GL_COLOR_SUM 0x8458 #define GL_COLOR_SUM_ARB 0x8458 #define GL_COLOR_TABLE 0x80D0 #define GL_COLOR_TABLE_ALPHA_SIZE 0x80DD #define GL_COLOR_TABLE_BIAS 0x80D7 #define GL_COLOR_TABLE_BLUE_SIZE 0x80DC #define GL_COLOR_TABLE_FORMAT 0x80D8 #define GL_COLOR_TABLE_GREEN_SIZE 0x80DB #define GL_COLOR_TABLE_INTENSITY_SIZE 0x80DF #define GL_COLOR_TABLE_LUMINANCE_SIZE 0x80DE #define GL_COLOR_TABLE_RED_SIZE 0x80DA #define GL_COLOR_TABLE_SCALE 0x80D6 #define GL_COLOR_TABLE_WIDTH 0x80D9 #define GL_COLOR_WRITEMASK 0x0C23 #define GL_COMBINE 0x8570 #define GL_COMBINE_ALPHA 0x8572 #define GL_COMBINE_ALPHA_ARB 0x8572 #define GL_COMBINE_ARB 0x8570 #define GL_COMBINE_RGB 0x8571 #define GL_COMBINE_RGB_ARB 0x8571 #define GL_COMMAND_BARRIER_BIT 0x00000040 #define GL_COMPARE_REF_TO_TEXTURE 0x884E #define GL_COMPARE_R_TO_TEXTURE 0x884E #define GL_COMPARE_R_TO_TEXTURE_ARB 0x884E #define GL_COMPATIBLE_SUBROUTINES 0x8E4B #define GL_COMPILE 0x1300 #define GL_COMPILE_AND_EXECUTE 0x1301 #define GL_COMPILE_STATUS 0x8B81 #define GL_COMPLETION_STATUS_ARB 0x91B1 #define GL_COMPLETION_STATUS_KHR 0x91B1 #define GL_COMPRESSED_ALPHA 0x84E9 #define GL_COMPRESSED_ALPHA_ARB 0x84E9 #define GL_COMPRESSED_INTENSITY 0x84EC #define GL_COMPRESSED_INTENSITY_ARB 0x84EC #define GL_COMPRESSED_LUMINANCE 0x84EA #define GL_COMPRESSED_LUMINANCE_ALPHA 0x84EB #define GL_COMPRESSED_LUMINANCE_ALPHA_ARB 0x84EB #define GL_COMPRESSED_LUMINANCE_ARB 0x84EA #define GL_COMPRESSED_R11_EAC 0x9270 #define GL_COMPRESSED_RED 0x8225 #define GL_COMPRESSED_RED_RGTC1 0x8DBB #define GL_COMPRESSED_RG 0x8226 #define GL_COMPRESSED_RG11_EAC 0x9272 #define GL_COMPRESSED_RGB 0x84ED #define GL_COMPRESSED_RGB8_ETC2 0x9274 #define GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276 #define GL_COMPRESSED_RGBA 0x84EE #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #define GL_COMPRESSED_RGBA_ARB 0x84EE #define GL_COMPRESSED_RGBA_ASTC_10x10_KHR 0x93BB #define GL_COMPRESSED_RGBA_ASTC_10x5_KHR 0x93B8 #define GL_COMPRESSED_RGBA_ASTC_10x6_KHR 0x93B9 #define GL_COMPRESSED_RGBA_ASTC_10x8_KHR 0x93BA #define GL_COMPRESSED_RGBA_ASTC_12x10_KHR 0x93BC #define GL_COMPRESSED_RGBA_ASTC_12x12_KHR 0x93BD #define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93B0 #define GL_COMPRESSED_RGBA_ASTC_5x4_KHR 0x93B1 #define GL_COMPRESSED_RGBA_ASTC_5x5_KHR 0x93B2 #define GL_COMPRESSED_RGBA_ASTC_6x5_KHR 0x93B3 #define GL_COMPRESSED_RGBA_ASTC_6x6_KHR 0x93B4 #define GL_COMPRESSED_RGBA_ASTC_8x5_KHR 0x93B5 #define GL_COMPRESSED_RGBA_ASTC_8x6_KHR 0x93B6 #define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93B7 #define GL_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C #define GL_COMPRESSED_RGB_ARB 0x84ED #define GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E #define GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F #define GL_COMPRESSED_RG_RGTC2 0x8DBD #define GL_COMPRESSED_SIGNED_R11_EAC 0x9271 #define GL_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC #define GL_COMPRESSED_SIGNED_RG11_EAC 0x9273 #define GL_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE #define GL_COMPRESSED_SLUMINANCE 0x8C4A #define GL_COMPRESSED_SLUMINANCE_ALPHA 0x8C4B #define GL_COMPRESSED_SRGB 0x8C48 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR 0x93DB #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR 0x93D8 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR 0x93D9 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR 0x93DA #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR 0x93DC #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR 0x93DD #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR 0x93D0 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR 0x93D1 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR 0x93D2 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR 0x93D3 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR 0x93D4 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR 0x93D5 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR 0x93D6 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR 0x93D7 #define GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279 #define GL_COMPRESSED_SRGB8_ETC2 0x9275 #define GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277 #define GL_COMPRESSED_SRGB_ALPHA 0x8C49 #define GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D #define GL_COMPRESSED_TEXTURE_FORMATS 0x86A3 #define GL_COMPRESSED_TEXTURE_FORMATS_ARB 0x86A3 #define GL_COMPUTE_SHADER 0x91B9 #define GL_COMPUTE_SHADER_BIT 0x00000020 #define GL_COMPUTE_SHADER_INVOCATIONS 0x82F5 #define GL_COMPUTE_SHADER_INVOCATIONS_ARB 0x82F5 #define GL_COMPUTE_SUBROUTINE 0x92ED #define GL_COMPUTE_SUBROUTINE_UNIFORM 0x92F3 #define GL_COMPUTE_TEXTURE 0x82A0 #define GL_COMPUTE_WORK_GROUP_SIZE 0x8267 #define GL_CONDITION_SATISFIED 0x911C #define GL_CONSTANT 0x8576 #define GL_CONSTANT_ALPHA 0x8003 #define GL_CONSTANT_ARB 0x8576 #define GL_CONSTANT_ATTENUATION 0x1207 #define GL_CONSTANT_BORDER 0x8151 #define GL_CONSTANT_COLOR 0x8001 #define GL_CONTEXT_COMPATIBILITY_PROFILE_BIT 0x00000002 #define GL_CONTEXT_CORE_PROFILE_BIT 0x00000001 #define GL_CONTEXT_FLAGS 0x821E #define GL_CONTEXT_FLAG_DEBUG_BIT 0x00000002 #define GL_CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT 0x00000001 #define GL_CONTEXT_FLAG_NO_ERROR_BIT 0x00000008 #define GL_CONTEXT_FLAG_NO_ERROR_BIT_KHR 0x00000008 #define GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB 0x00000004 #define GL_CONTEXT_LOST 0x0507 #define GL_CONTEXT_PROFILE_MASK 0x9126 #define GL_CONTEXT_RELEASE_BEHAVIOR 0x82FB #define GL_CONTEXT_RELEASE_BEHAVIOR_FLUSH 0x82FC #define GL_CONTEXT_ROBUST_ACCESS 0x90F3 #define GL_CONVOLUTION_1D 0x8010 #define GL_CONVOLUTION_2D 0x8011 #define GL_CONVOLUTION_BORDER_COLOR 0x8154 #define GL_CONVOLUTION_BORDER_MODE 0x8013 #define GL_CONVOLUTION_FILTER_BIAS 0x8015 #define GL_CONVOLUTION_FILTER_SCALE 0x8014 #define GL_CONVOLUTION_FORMAT 0x8017 #define GL_CONVOLUTION_HEIGHT 0x8019 #define GL_CONVOLUTION_WIDTH 0x8018 #define GL_COORD_REPLACE 0x8862 #define GL_COORD_REPLACE_ARB 0x8862 #define GL_COPY 0x1503 #define GL_COPY_INVERTED 0x150C #define GL_COPY_PIXEL_TOKEN 0x0706 #define GL_COPY_READ_BUFFER 0x8F36 #define GL_COPY_WRITE_BUFFER 0x8F37 #define GL_CULL_FACE 0x0B44 #define GL_CULL_FACE_MODE 0x0B45 #define GL_CURRENT_BIT 0x00000001 #define GL_CURRENT_COLOR 0x0B00 #define GL_CURRENT_FOG_COORD 0x8453 #define GL_CURRENT_FOG_COORDINATE 0x8453 #define GL_CURRENT_INDEX 0x0B01 #define GL_CURRENT_MATRIX_ARB 0x8641 #define GL_CURRENT_MATRIX_INDEX_ARB 0x8845 #define GL_CURRENT_MATRIX_STACK_DEPTH_ARB 0x8640 #define GL_CURRENT_NORMAL 0x0B02 #define GL_CURRENT_PALETTE_MATRIX_ARB 0x8843 #define GL_CURRENT_PROGRAM 0x8B8D #define GL_CURRENT_QUERY 0x8865 #define GL_CURRENT_QUERY_ARB 0x8865 #define GL_CURRENT_RASTER_COLOR 0x0B04 #define GL_CURRENT_RASTER_DISTANCE 0x0B09 #define GL_CURRENT_RASTER_INDEX 0x0B05 #define GL_CURRENT_RASTER_POSITION 0x0B07 #define GL_CURRENT_RASTER_POSITION_VALID 0x0B08 #define GL_CURRENT_RASTER_SECONDARY_COLOR 0x845F #define GL_CURRENT_RASTER_TEXTURE_COORDS 0x0B06 #define GL_CURRENT_SECONDARY_COLOR 0x8459 #define GL_CURRENT_TEXTURE_COORDS 0x0B03 #define GL_CURRENT_VERTEX_ATTRIB 0x8626 #define GL_CURRENT_VERTEX_ATTRIB_ARB 0x8626 #define GL_CURRENT_WEIGHT_ARB 0x86A8 #define GL_CW 0x0900 #define GL_DARKEN_KHR 0x9297 #define GL_DEBUG_CALLBACK_FUNCTION 0x8244 #define GL_DEBUG_CALLBACK_FUNCTION_ARB 0x8244 #define GL_DEBUG_CALLBACK_USER_PARAM 0x8245 #define GL_DEBUG_CALLBACK_USER_PARAM_ARB 0x8245 #define GL_DEBUG_GROUP_STACK_DEPTH 0x826D #define GL_DEBUG_LOGGED_MESSAGES 0x9145 #define GL_DEBUG_LOGGED_MESSAGES_ARB 0x9145 #define GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH 0x8243 #define GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH_ARB 0x8243 #define GL_DEBUG_OUTPUT 0x92E0 #define GL_DEBUG_OUTPUT_SYNCHRONOUS 0x8242 #define GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB 0x8242 #define GL_DEBUG_SEVERITY_HIGH 0x9146 #define GL_DEBUG_SEVERITY_HIGH_ARB 0x9146 #define GL_DEBUG_SEVERITY_LOW 0x9148 #define GL_DEBUG_SEVERITY_LOW_ARB 0x9148 #define GL_DEBUG_SEVERITY_MEDIUM 0x9147 #define GL_DEBUG_SEVERITY_MEDIUM_ARB 0x9147 #define GL_DEBUG_SEVERITY_NOTIFICATION 0x826B #define GL_DEBUG_SOURCE_API 0x8246 #define GL_DEBUG_SOURCE_API_ARB 0x8246 #define GL_DEBUG_SOURCE_APPLICATION 0x824A #define GL_DEBUG_SOURCE_APPLICATION_ARB 0x824A #define GL_DEBUG_SOURCE_OTHER 0x824B #define GL_DEBUG_SOURCE_OTHER_ARB 0x824B #define GL_DEBUG_SOURCE_SHADER_COMPILER 0x8248 #define GL_DEBUG_SOURCE_SHADER_COMPILER_ARB 0x8248 #define GL_DEBUG_SOURCE_THIRD_PARTY 0x8249 #define GL_DEBUG_SOURCE_THIRD_PARTY_ARB 0x8249 #define GL_DEBUG_SOURCE_WINDOW_SYSTEM 0x8247 #define GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB 0x8247 #define GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR 0x824D #define GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB 0x824D #define GL_DEBUG_TYPE_ERROR 0x824C #define GL_DEBUG_TYPE_ERROR_ARB 0x824C #define GL_DEBUG_TYPE_MARKER 0x8268 #define GL_DEBUG_TYPE_OTHER 0x8251 #define GL_DEBUG_TYPE_OTHER_ARB 0x8251 #define GL_DEBUG_TYPE_PERFORMANCE 0x8250 #define GL_DEBUG_TYPE_PERFORMANCE_ARB 0x8250 #define GL_DEBUG_TYPE_POP_GROUP 0x826A #define GL_DEBUG_TYPE_PORTABILITY 0x824F #define GL_DEBUG_TYPE_PORTABILITY_ARB 0x824F #define GL_DEBUG_TYPE_PUSH_GROUP 0x8269 #define GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR 0x824E #define GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB 0x824E #define GL_DECAL 0x2101 #define GL_DECR 0x1E03 #define GL_DECR_WRAP 0x8508 #define GL_DELETE_STATUS 0x8B80 #define GL_DEPTH 0x1801 #define GL_DEPTH24_STENCIL8 0x88F0 #define GL_DEPTH32F_STENCIL8 0x8CAD #define GL_DEPTH_ATTACHMENT 0x8D00 #define GL_DEPTH_BIAS 0x0D1F #define GL_DEPTH_BITS 0x0D56 #define GL_DEPTH_BUFFER_BIT 0x00000100 #define GL_DEPTH_CLAMP 0x864F #define GL_DEPTH_CLEAR_VALUE 0x0B73 #define GL_DEPTH_COMPONENT 0x1902 #define GL_DEPTH_COMPONENT16 0x81A5 #define GL_DEPTH_COMPONENT16_ARB 0x81A5 #define GL_DEPTH_COMPONENT24 0x81A6 #define GL_DEPTH_COMPONENT24_ARB 0x81A6 #define GL_DEPTH_COMPONENT32 0x81A7 #define GL_DEPTH_COMPONENT32F 0x8CAC #define GL_DEPTH_COMPONENT32_ARB 0x81A7 #define GL_DEPTH_COMPONENTS 0x8284 #define GL_DEPTH_FUNC 0x0B74 #define GL_DEPTH_RANGE 0x0B70 #define GL_DEPTH_RENDERABLE 0x8287 #define GL_DEPTH_SCALE 0x0D1E #define GL_DEPTH_STENCIL 0x84F9 #define GL_DEPTH_STENCIL_ATTACHMENT 0x821A #define GL_DEPTH_STENCIL_TEXTURE_MODE 0x90EA #define GL_DEPTH_TEST 0x0B71 #define GL_DEPTH_TEXTURE_MODE 0x884B #define GL_DEPTH_TEXTURE_MODE_ARB 0x884B #define GL_DEPTH_WRITEMASK 0x0B72 #define GL_DIFFERENCE_KHR 0x929E #define GL_DIFFUSE 0x1201 #define GL_DISPATCH_INDIRECT_BUFFER 0x90EE #define GL_DISPATCH_INDIRECT_BUFFER_BINDING 0x90EF #define GL_DISPLAY_LIST 0x82E7 #define GL_DITHER 0x0BD0 #define GL_DOMAIN 0x0A02 #define GL_DONT_CARE 0x1100 #define GL_DOT3_RGB 0x86AE #define GL_DOT3_RGBA 0x86AF #define GL_DOT3_RGBA_ARB 0x86AF #define GL_DOT3_RGB_ARB 0x86AE #define GL_DOUBLE 0x140A #define GL_DOUBLEBUFFER 0x0C32 #define GL_DOUBLE_MAT2 0x8F46 #define GL_DOUBLE_MAT2x3 0x8F49 #define GL_DOUBLE_MAT2x4 0x8F4A #define GL_DOUBLE_MAT3 0x8F47 #define GL_DOUBLE_MAT3x2 0x8F4B #define GL_DOUBLE_MAT3x4 0x8F4C #define GL_DOUBLE_MAT4 0x8F48 #define GL_DOUBLE_MAT4x2 0x8F4D #define GL_DOUBLE_MAT4x3 0x8F4E #define GL_DOUBLE_VEC2 0x8FFC #define GL_DOUBLE_VEC3 0x8FFD #define GL_DOUBLE_VEC4 0x8FFE #define GL_DRAW_BUFFER 0x0C01 #define GL_DRAW_BUFFER0 0x8825 #define GL_DRAW_BUFFER0_ARB 0x8825 #define GL_DRAW_BUFFER1 0x8826 #define GL_DRAW_BUFFER10 0x882F #define GL_DRAW_BUFFER10_ARB 0x882F #define GL_DRAW_BUFFER11 0x8830 #define GL_DRAW_BUFFER11_ARB 0x8830 #define GL_DRAW_BUFFER12 0x8831 #define GL_DRAW_BUFFER12_ARB 0x8831 #define GL_DRAW_BUFFER13 0x8832 #define GL_DRAW_BUFFER13_ARB 0x8832 #define GL_DRAW_BUFFER14 0x8833 #define GL_DRAW_BUFFER14_ARB 0x8833 #define GL_DRAW_BUFFER15 0x8834 #define GL_DRAW_BUFFER15_ARB 0x8834 #define GL_DRAW_BUFFER1_ARB 0x8826 #define GL_DRAW_BUFFER2 0x8827 #define GL_DRAW_BUFFER2_ARB 0x8827 #define GL_DRAW_BUFFER3 0x8828 #define GL_DRAW_BUFFER3_ARB 0x8828 #define GL_DRAW_BUFFER4 0x8829 #define GL_DRAW_BUFFER4_ARB 0x8829 #define GL_DRAW_BUFFER5 0x882A #define GL_DRAW_BUFFER5_ARB 0x882A #define GL_DRAW_BUFFER6 0x882B #define GL_DRAW_BUFFER6_ARB 0x882B #define GL_DRAW_BUFFER7 0x882C #define GL_DRAW_BUFFER7_ARB 0x882C #define GL_DRAW_BUFFER8 0x882D #define GL_DRAW_BUFFER8_ARB 0x882D #define GL_DRAW_BUFFER9 0x882E #define GL_DRAW_BUFFER9_ARB 0x882E #define GL_DRAW_FRAMEBUFFER 0x8CA9 #define GL_DRAW_FRAMEBUFFER_BINDING 0x8CA6 #define GL_DRAW_INDIRECT_BUFFER 0x8F3F #define GL_DRAW_INDIRECT_BUFFER_BINDING 0x8F43 #define GL_DRAW_PIXEL_TOKEN 0x0705 #define GL_DST_ALPHA 0x0304 #define GL_DST_COLOR 0x0306 #define GL_DYNAMIC_COPY 0x88EA #define GL_DYNAMIC_COPY_ARB 0x88EA #define GL_DYNAMIC_DRAW 0x88E8 #define GL_DYNAMIC_DRAW_ARB 0x88E8 #define GL_DYNAMIC_READ 0x88E9 #define GL_DYNAMIC_READ_ARB 0x88E9 #define GL_DYNAMIC_STORAGE_BIT 0x0100 #define GL_EDGE_FLAG 0x0B43 #define GL_EDGE_FLAG_ARRAY 0x8079 #define GL_EDGE_FLAG_ARRAY_BUFFER_BINDING 0x889B #define GL_EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB 0x889B #define GL_EDGE_FLAG_ARRAY_POINTER 0x8093 #define GL_EDGE_FLAG_ARRAY_STRIDE 0x808C #define GL_ELEMENT_ARRAY_BARRIER_BIT 0x00000002 #define GL_ELEMENT_ARRAY_BUFFER 0x8893 #define GL_ELEMENT_ARRAY_BUFFER_ARB 0x8893 #define GL_ELEMENT_ARRAY_BUFFER_BINDING 0x8895 #define GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB 0x8895 #define GL_EMISSION 0x1600 #define GL_ENABLE_BIT 0x00002000 #define GL_EQUAL 0x0202 #define GL_EQUIV 0x1509 #define GL_EVAL_BIT 0x00010000 #define GL_EXCLUSION_KHR 0x92A0 #define GL_EXP 0x0800 #define GL_EXP2 0x0801 #define GL_EXTENSIONS 0x1F03 #define GL_EYE_LINEAR 0x2400 #define GL_EYE_PLANE 0x2502 #define GL_FALSE 0 #define GL_FASTEST 0x1101 #define GL_FEEDBACK 0x1C01 #define GL_FEEDBACK_BUFFER_POINTER 0x0DF0 #define GL_FEEDBACK_BUFFER_SIZE 0x0DF1 #define GL_FEEDBACK_BUFFER_TYPE 0x0DF2 #define GL_FILL 0x1B02 #define GL_FILTER 0x829A #define GL_FIRST_VERTEX_CONVENTION 0x8E4D #define GL_FIXED 0x140C #define GL_FIXED_ONLY 0x891D #define GL_FIXED_ONLY_ARB 0x891D #define GL_FLAT 0x1D00 #define GL_FLOAT 0x1406 #define GL_FLOAT_32_UNSIGNED_INT_24_8_REV 0x8DAD #define GL_FLOAT_MAT2 0x8B5A #define GL_FLOAT_MAT2_ARB 0x8B5A #define GL_FLOAT_MAT2x3 0x8B65 #define GL_FLOAT_MAT2x4 0x8B66 #define GL_FLOAT_MAT3 0x8B5B #define GL_FLOAT_MAT3_ARB 0x8B5B #define GL_FLOAT_MAT3x2 0x8B67 #define GL_FLOAT_MAT3x4 0x8B68 #define GL_FLOAT_MAT4 0x8B5C #define GL_FLOAT_MAT4_ARB 0x8B5C #define GL_FLOAT_MAT4x2 0x8B69 #define GL_FLOAT_MAT4x3 0x8B6A #define GL_FLOAT_VEC2 0x8B50 #define GL_FLOAT_VEC2_ARB 0x8B50 #define GL_FLOAT_VEC3 0x8B51 #define GL_FLOAT_VEC3_ARB 0x8B51 #define GL_FLOAT_VEC4 0x8B52 #define GL_FLOAT_VEC4_ARB 0x8B52 #define GL_FOG 0x0B60 #define GL_FOG_BIT 0x00000080 #define GL_FOG_COLOR 0x0B66 #define GL_FOG_COORD 0x8451 #define GL_FOG_COORDINATE 0x8451 #define GL_FOG_COORDINATE_ARRAY 0x8457 #define GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING 0x889D #define GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB 0x889D #define GL_FOG_COORDINATE_ARRAY_POINTER 0x8456 #define GL_FOG_COORDINATE_ARRAY_STRIDE 0x8455 #define GL_FOG_COORDINATE_ARRAY_TYPE 0x8454 #define GL_FOG_COORDINATE_SOURCE 0x8450 #define GL_FOG_COORD_ARRAY 0x8457 #define GL_FOG_COORD_ARRAY_BUFFER_BINDING 0x889D #define GL_FOG_COORD_ARRAY_POINTER 0x8456 #define GL_FOG_COORD_ARRAY_STRIDE 0x8455 #define GL_FOG_COORD_ARRAY_TYPE 0x8454 #define GL_FOG_COORD_SRC 0x8450 #define GL_FOG_DENSITY 0x0B62 #define GL_FOG_END 0x0B64 #define GL_FOG_HINT 0x0C54 #define GL_FOG_INDEX 0x0B61 #define GL_FOG_MODE 0x0B65 #define GL_FOG_START 0x0B63 #define GL_FRACTIONAL_EVEN 0x8E7C #define GL_FRACTIONAL_ODD 0x8E7B #define GL_FRAGMENT_DEPTH 0x8452 #define GL_FRAGMENT_INTERPOLATION_OFFSET_BITS 0x8E5D #define GL_FRAGMENT_PROGRAM_ARB 0x8804 #define GL_FRAGMENT_SHADER 0x8B30 #define GL_FRAGMENT_SHADER_ARB 0x8B30 #define GL_FRAGMENT_SHADER_BIT 0x00000002 #define GL_FRAGMENT_SHADER_DERIVATIVE_HINT 0x8B8B #define GL_FRAGMENT_SHADER_DERIVATIVE_HINT_ARB 0x8B8B #define GL_FRAGMENT_SHADER_INVOCATIONS 0x82F4 #define GL_FRAGMENT_SHADER_INVOCATIONS_ARB 0x82F4 #define GL_FRAGMENT_SUBROUTINE 0x92EC #define GL_FRAGMENT_SUBROUTINE_UNIFORM 0x92F2 #define GL_FRAGMENT_TEXTURE 0x829F #define GL_FRAMEBUFFER 0x8D40 #define GL_FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE 0x8215 #define GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE 0x8214 #define GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING 0x8210 #define GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE 0x8211 #define GL_FRAMEBUFFER_ATTACHMENT_DEPTH_SIZE 0x8216 #define GL_FRAMEBUFFER_ATTACHMENT_GREEN_SIZE 0x8213 #define GL_FRAMEBUFFER_ATTACHMENT_LAYERED 0x8DA7 #define GL_FRAMEBUFFER_ATTACHMENT_LAYERED_ARB 0x8DA7 #define GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME 0x8CD1 #define GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE 0x8CD0 #define GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE 0x8212 #define GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE 0x8217 #define GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE 0x8CD3 #define GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER 0x8CD4 #define GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL 0x8CD2 #define GL_FRAMEBUFFER_BARRIER_BIT 0x00000400 #define GL_FRAMEBUFFER_BINDING 0x8CA6 #define GL_FRAMEBUFFER_BLEND 0x828B #define GL_FRAMEBUFFER_COMPLETE 0x8CD5 #define GL_FRAMEBUFFER_DEFAULT 0x8218 #define GL_FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS 0x9314 #define GL_FRAMEBUFFER_DEFAULT_HEIGHT 0x9311 #define GL_FRAMEBUFFER_DEFAULT_LAYERS 0x9312 #define GL_FRAMEBUFFER_DEFAULT_SAMPLES 0x9313 #define GL_FRAMEBUFFER_DEFAULT_WIDTH 0x9310 #define GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT 0x8CD6 #define GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER 0x8CDB #define GL_FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_ARB 0x8DA9 #define GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS 0x8DA8 #define GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_ARB 0x8DA8 #define GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT 0x8CD7 #define GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE 0x8D56 #define GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER 0x8CDC #define GL_FRAMEBUFFER_PROGRAMMABLE_SAMPLE_LOCATIONS_ARB 0x9342 #define GL_FRAMEBUFFER_RENDERABLE 0x8289 #define GL_FRAMEBUFFER_RENDERABLE_LAYERED 0x828A #define GL_FRAMEBUFFER_SAMPLE_LOCATION_PIXEL_GRID_ARB 0x9343 #define GL_FRAMEBUFFER_SRGB 0x8DB9 #define GL_FRAMEBUFFER_UNDEFINED 0x8219 #define GL_FRAMEBUFFER_UNSUPPORTED 0x8CDD #define GL_FRONT 0x0404 #define GL_FRONT_AND_BACK 0x0408 #define GL_FRONT_FACE 0x0B46 #define GL_FRONT_LEFT 0x0400 #define GL_FRONT_RIGHT 0x0401 #define GL_FULL_SUPPORT 0x82B7 #define GL_FUNC_ADD 0x8006 #define GL_FUNC_REVERSE_SUBTRACT 0x800B #define GL_FUNC_SUBTRACT 0x800A #define GL_GENERATE_MIPMAP 0x8191 #define GL_GENERATE_MIPMAP_HINT 0x8192 #define GL_GEOMETRY_INPUT_TYPE 0x8917 #define GL_GEOMETRY_INPUT_TYPE_ARB 0x8DDB #define GL_GEOMETRY_OUTPUT_TYPE 0x8918 #define GL_GEOMETRY_OUTPUT_TYPE_ARB 0x8DDC #define GL_GEOMETRY_SHADER 0x8DD9 #define GL_GEOMETRY_SHADER_ARB 0x8DD9 #define GL_GEOMETRY_SHADER_BIT 0x00000004 #define GL_GEOMETRY_SHADER_INVOCATIONS 0x887F #define GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED 0x82F3 #define GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED_ARB 0x82F3 #define GL_GEOMETRY_SUBROUTINE 0x92EB #define GL_GEOMETRY_SUBROUTINE_UNIFORM 0x92F1 #define GL_GEOMETRY_TEXTURE 0x829E #define GL_GEOMETRY_VERTICES_OUT 0x8916 #define GL_GEOMETRY_VERTICES_OUT_ARB 0x8DDA #define GL_GEQUAL 0x0206 #define GL_GET_TEXTURE_IMAGE_FORMAT 0x8291 #define GL_GET_TEXTURE_IMAGE_TYPE 0x8292 #define GL_GREATER 0x0204 #define GL_GREEN 0x1904 #define GL_GREEN_BIAS 0x0D19 #define GL_GREEN_BITS 0x0D53 #define GL_GREEN_INTEGER 0x8D95 #define GL_GREEN_SCALE 0x0D18 #define GL_GUILTY_CONTEXT_RESET 0x8253 #define GL_GUILTY_CONTEXT_RESET_ARB 0x8253 #define GL_HALF_FLOAT 0x140B #define GL_HALF_FLOAT_ARB 0x140B #define GL_HARDLIGHT_KHR 0x929B #define GL_HIGH_FLOAT 0x8DF2 #define GL_HIGH_INT 0x8DF5 #define GL_HINT_BIT 0x00008000 #define GL_HISTOGRAM 0x8024 #define GL_HISTOGRAM_ALPHA_SIZE 0x802B #define GL_HISTOGRAM_BLUE_SIZE 0x802A #define GL_HISTOGRAM_FORMAT 0x8027 #define GL_HISTOGRAM_GREEN_SIZE 0x8029 #define GL_HISTOGRAM_LUMINANCE_SIZE 0x802C #define GL_HISTOGRAM_RED_SIZE 0x8028 #define GL_HISTOGRAM_SINK 0x802D #define GL_HISTOGRAM_WIDTH 0x8026 #define GL_HSL_COLOR_KHR 0x92AF #define GL_HSL_HUE_KHR 0x92AD #define GL_HSL_LUMINOSITY_KHR 0x92B0 #define GL_HSL_SATURATION_KHR 0x92AE #define GL_IMAGE_1D 0x904C #define GL_IMAGE_1D_ARRAY 0x9052 #define GL_IMAGE_2D 0x904D #define GL_IMAGE_2D_ARRAY 0x9053 #define GL_IMAGE_2D_MULTISAMPLE 0x9055 #define GL_IMAGE_2D_MULTISAMPLE_ARRAY 0x9056 #define GL_IMAGE_2D_RECT 0x904F #define GL_IMAGE_3D 0x904E #define GL_IMAGE_BINDING_ACCESS 0x8F3E #define GL_IMAGE_BINDING_FORMAT 0x906E #define GL_IMAGE_BINDING_LAYER 0x8F3D #define GL_IMAGE_BINDING_LAYERED 0x8F3C #define GL_IMAGE_BINDING_LEVEL 0x8F3B #define GL_IMAGE_BINDING_NAME 0x8F3A #define GL_IMAGE_BUFFER 0x9051 #define GL_IMAGE_CLASS_10_10_10_2 0x82C3 #define GL_IMAGE_CLASS_11_11_10 0x82C2 #define GL_IMAGE_CLASS_1_X_16 0x82BE #define GL_IMAGE_CLASS_1_X_32 0x82BB #define GL_IMAGE_CLASS_1_X_8 0x82C1 #define GL_IMAGE_CLASS_2_X_16 0x82BD #define GL_IMAGE_CLASS_2_X_32 0x82BA #define GL_IMAGE_CLASS_2_X_8 0x82C0 #define GL_IMAGE_CLASS_4_X_16 0x82BC #define GL_IMAGE_CLASS_4_X_32 0x82B9 #define GL_IMAGE_CLASS_4_X_8 0x82BF #define GL_IMAGE_COMPATIBILITY_CLASS 0x82A8 #define GL_IMAGE_CUBE 0x9050 #define GL_IMAGE_CUBE_MAP_ARRAY 0x9054 #define GL_IMAGE_FORMAT_COMPATIBILITY_BY_CLASS 0x90C9 #define GL_IMAGE_FORMAT_COMPATIBILITY_BY_SIZE 0x90C8 #define GL_IMAGE_FORMAT_COMPATIBILITY_TYPE 0x90C7 #define GL_IMAGE_PIXEL_FORMAT 0x82A9 #define GL_IMAGE_PIXEL_TYPE 0x82AA #define GL_IMAGE_TEXEL_SIZE 0x82A7 #define GL_IMPLEMENTATION_COLOR_READ_FORMAT 0x8B9B #define GL_IMPLEMENTATION_COLOR_READ_TYPE 0x8B9A #define GL_INCR 0x1E02 #define GL_INCR_WRAP 0x8507 #define GL_INDEX 0x8222 #define GL_INDEX_ARRAY 0x8077 #define GL_INDEX_ARRAY_BUFFER_BINDING 0x8899 #define GL_INDEX_ARRAY_BUFFER_BINDING_ARB 0x8899 #define GL_INDEX_ARRAY_POINTER 0x8091 #define GL_INDEX_ARRAY_STRIDE 0x8086 #define GL_INDEX_ARRAY_TYPE 0x8085 #define GL_INDEX_BITS 0x0D51 #define GL_INDEX_CLEAR_VALUE 0x0C20 #define GL_INDEX_LOGIC_OP 0x0BF1 #define GL_INDEX_MODE 0x0C30 #define GL_INDEX_OFFSET 0x0D13 #define GL_INDEX_SHIFT 0x0D12 #define GL_INDEX_WRITEMASK 0x0C21 #define GL_INFO_LOG_LENGTH 0x8B84 #define GL_INNOCENT_CONTEXT_RESET 0x8254 #define GL_INNOCENT_CONTEXT_RESET_ARB 0x8254 #define GL_INT 0x1404 #define GL_INT64_ARB 0x140E #define GL_INT64_VEC2_ARB 0x8FE9 #define GL_INT64_VEC3_ARB 0x8FEA #define GL_INT64_VEC4_ARB 0x8FEB #define GL_INTENSITY 0x8049 #define GL_INTENSITY12 0x804C #define GL_INTENSITY16 0x804D #define GL_INTENSITY16F_ARB 0x881D #define GL_INTENSITY32F_ARB 0x8817 #define GL_INTENSITY4 0x804A #define GL_INTENSITY8 0x804B #define GL_INTERLEAVED_ATTRIBS 0x8C8C #define GL_INTERNALFORMAT_ALPHA_SIZE 0x8274 #define GL_INTERNALFORMAT_ALPHA_TYPE 0x827B #define GL_INTERNALFORMAT_BLUE_SIZE 0x8273 #define GL_INTERNALFORMAT_BLUE_TYPE 0x827A #define GL_INTERNALFORMAT_DEPTH_SIZE 0x8275 #define GL_INTERNALFORMAT_DEPTH_TYPE 0x827C #define GL_INTERNALFORMAT_GREEN_SIZE 0x8272 #define GL_INTERNALFORMAT_GREEN_TYPE 0x8279 #define GL_INTERNALFORMAT_PREFERRED 0x8270 #define GL_INTERNALFORMAT_RED_SIZE 0x8271 #define GL_INTERNALFORMAT_RED_TYPE 0x8278 #define GL_INTERNALFORMAT_SHARED_SIZE 0x8277 #define GL_INTERNALFORMAT_STENCIL_SIZE 0x8276 #define GL_INTERNALFORMAT_STENCIL_TYPE 0x827D #define GL_INTERNALFORMAT_SUPPORTED 0x826F #define GL_INTERPOLATE 0x8575 #define GL_INTERPOLATE_ARB 0x8575 #define GL_INT_2_10_10_10_REV 0x8D9F #define GL_INT_IMAGE_1D 0x9057 #define GL_INT_IMAGE_1D_ARRAY 0x905D #define GL_INT_IMAGE_2D 0x9058 #define GL_INT_IMAGE_2D_ARRAY 0x905E #define GL_INT_IMAGE_2D_MULTISAMPLE 0x9060 #define GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY 0x9061 #define GL_INT_IMAGE_2D_RECT 0x905A #define GL_INT_IMAGE_3D 0x9059 #define GL_INT_IMAGE_BUFFER 0x905C #define GL_INT_IMAGE_CUBE 0x905B #define GL_INT_IMAGE_CUBE_MAP_ARRAY 0x905F #define GL_INT_SAMPLER_1D 0x8DC9 #define GL_INT_SAMPLER_1D_ARRAY 0x8DCE #define GL_INT_SAMPLER_2D 0x8DCA #define GL_INT_SAMPLER_2D_ARRAY 0x8DCF #define GL_INT_SAMPLER_2D_MULTISAMPLE 0x9109 #define GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY 0x910C #define GL_INT_SAMPLER_2D_RECT 0x8DCD #define GL_INT_SAMPLER_3D 0x8DCB #define GL_INT_SAMPLER_BUFFER 0x8DD0 #define GL_INT_SAMPLER_CUBE 0x8DCC #define GL_INT_SAMPLER_CUBE_MAP_ARRAY_ARB 0x900E #define GL_INT_VEC2 0x8B53 #define GL_INT_VEC2_ARB 0x8B53 #define GL_INT_VEC3 0x8B54 #define GL_INT_VEC3_ARB 0x8B54 #define GL_INT_VEC4 0x8B55 #define GL_INT_VEC4_ARB 0x8B55 #define GL_INVALID_ENUM 0x0500 #define GL_INVALID_FRAMEBUFFER_OPERATION 0x0506 #define GL_INVALID_INDEX 0xFFFFFFFF #define GL_INVALID_OPERATION 0x0502 #define GL_INVALID_VALUE 0x0501 #define GL_INVERT 0x150A #define GL_ISOLINES 0x8E7A #define GL_IS_PER_PATCH 0x92E7 #define GL_IS_ROW_MAJOR 0x9300 #define GL_KEEP 0x1E00 #define GL_LAST_VERTEX_CONVENTION 0x8E4E #define GL_LAYER_PROVOKING_VERTEX 0x825E #define GL_LEFT 0x0406 #define GL_LEQUAL 0x0203 #define GL_LESS 0x0201 #define GL_LIGHT0 0x4000 #define GL_LIGHT1 0x4001 #define GL_LIGHT2 0x4002 #define GL_LIGHT3 0x4003 #define GL_LIGHT4 0x4004 #define GL_LIGHT5 0x4005 #define GL_LIGHT6 0x4006 #define GL_LIGHT7 0x4007 #define GL_LIGHTEN_KHR 0x9298 #define GL_LIGHTING 0x0B50 #define GL_LIGHTING_BIT 0x00000040 #define GL_LIGHT_MODEL_AMBIENT 0x0B53 #define GL_LIGHT_MODEL_COLOR_CONTROL 0x81F8 #define GL_LIGHT_MODEL_LOCAL_VIEWER 0x0B51 #define GL_LIGHT_MODEL_TWO_SIDE 0x0B52 #define GL_LINE 0x1B01 #define GL_LINEAR 0x2601 #define GL_LINEAR_ATTENUATION 0x1208 #define GL_LINEAR_MIPMAP_LINEAR 0x2703 #define GL_LINEAR_MIPMAP_NEAREST 0x2701 #define GL_LINES 0x0001 #define GL_LINES_ADJACENCY 0x000A #define GL_LINES_ADJACENCY_ARB 0x000A #define GL_LINE_BIT 0x00000004 #define GL_LINE_LOOP 0x0002 #define GL_LINE_RESET_TOKEN 0x0707 #define GL_LINE_SMOOTH 0x0B20 #define GL_LINE_SMOOTH_HINT 0x0C52 #define GL_LINE_STIPPLE 0x0B24 #define GL_LINE_STIPPLE_PATTERN 0x0B25 #define GL_LINE_STIPPLE_REPEAT 0x0B26 #define GL_LINE_STRIP 0x0003 #define GL_LINE_STRIP_ADJACENCY 0x000B #define GL_LINE_STRIP_ADJACENCY_ARB 0x000B #define GL_LINE_TOKEN 0x0702 #define GL_LINE_WIDTH 0x0B21 #define GL_LINE_WIDTH_GRANULARITY 0x0B23 #define GL_LINE_WIDTH_RANGE 0x0B22 #define GL_LINK_STATUS 0x8B82 #define GL_LIST_BASE 0x0B32 #define GL_LIST_BIT 0x00020000 #define GL_LIST_INDEX 0x0B33 #define GL_LIST_MODE 0x0B30 #define GL_LOAD 0x0101 #define GL_LOCATION 0x930E #define GL_LOCATION_COMPONENT 0x934A #define GL_LOCATION_INDEX 0x930F #define GL_LOGIC_OP 0x0BF1 #define GL_LOGIC_OP_MODE 0x0BF0 #define GL_LOSE_CONTEXT_ON_RESET 0x8252 #define GL_LOSE_CONTEXT_ON_RESET_ARB 0x8252 #define GL_LOWER_LEFT 0x8CA1 #define GL_LOW_FLOAT 0x8DF0 #define GL_LOW_INT 0x8DF3 #define GL_LUMINANCE 0x1909 #define GL_LUMINANCE12 0x8041 #define GL_LUMINANCE12_ALPHA12 0x8047 #define GL_LUMINANCE12_ALPHA4 0x8046 #define GL_LUMINANCE16 0x8042 #define GL_LUMINANCE16F_ARB 0x881E #define GL_LUMINANCE16_ALPHA16 0x8048 #define GL_LUMINANCE32F_ARB 0x8818 #define GL_LUMINANCE4 0x803F #define GL_LUMINANCE4_ALPHA4 0x8043 #define GL_LUMINANCE6_ALPHA2 0x8044 #define GL_LUMINANCE8 0x8040 #define GL_LUMINANCE8_ALPHA8 0x8045 #define GL_LUMINANCE_ALPHA 0x190A #define GL_LUMINANCE_ALPHA16F_ARB 0x881F #define GL_LUMINANCE_ALPHA32F_ARB 0x8819 #define GL_MAJOR_VERSION 0x821B #define GL_MANUAL_GENERATE_MIPMAP 0x8294 #define GL_MAP1_COLOR_4 0x0D90 #define GL_MAP1_GRID_DOMAIN 0x0DD0 #define GL_MAP1_GRID_SEGMENTS 0x0DD1 #define GL_MAP1_INDEX 0x0D91 #define GL_MAP1_NORMAL 0x0D92 #define GL_MAP1_TEXTURE_COORD_1 0x0D93 #define GL_MAP1_TEXTURE_COORD_2 0x0D94 #define GL_MAP1_TEXTURE_COORD_3 0x0D95 #define GL_MAP1_TEXTURE_COORD_4 0x0D96 #define GL_MAP1_VERTEX_3 0x0D97 #define GL_MAP1_VERTEX_4 0x0D98 #define GL_MAP2_COLOR_4 0x0DB0 #define GL_MAP2_GRID_DOMAIN 0x0DD2 #define GL_MAP2_GRID_SEGMENTS 0x0DD3 #define GL_MAP2_INDEX 0x0DB1 #define GL_MAP2_NORMAL 0x0DB2 #define GL_MAP2_TEXTURE_COORD_1 0x0DB3 #define GL_MAP2_TEXTURE_COORD_2 0x0DB4 #define GL_MAP2_TEXTURE_COORD_3 0x0DB5 #define GL_MAP2_TEXTURE_COORD_4 0x0DB6 #define GL_MAP2_VERTEX_3 0x0DB7 #define GL_MAP2_VERTEX_4 0x0DB8 #define GL_MAP_COHERENT_BIT 0x0080 #define GL_MAP_COLOR 0x0D10 #define GL_MAP_FLUSH_EXPLICIT_BIT 0x0010 #define GL_MAP_INVALIDATE_BUFFER_BIT 0x0008 #define GL_MAP_INVALIDATE_RANGE_BIT 0x0004 #define GL_MAP_PERSISTENT_BIT 0x0040 #define GL_MAP_READ_BIT 0x0001 #define GL_MAP_STENCIL 0x0D11 #define GL_MAP_UNSYNCHRONIZED_BIT 0x0020 #define GL_MAP_WRITE_BIT 0x0002 #define GL_MATRIX0_ARB 0x88C0 #define GL_MATRIX10_ARB 0x88CA #define GL_MATRIX11_ARB 0x88CB #define GL_MATRIX12_ARB 0x88CC #define GL_MATRIX13_ARB 0x88CD #define GL_MATRIX14_ARB 0x88CE #define GL_MATRIX15_ARB 0x88CF #define GL_MATRIX16_ARB 0x88D0 #define GL_MATRIX17_ARB 0x88D1 #define GL_MATRIX18_ARB 0x88D2 #define GL_MATRIX19_ARB 0x88D3 #define GL_MATRIX1_ARB 0x88C1 #define GL_MATRIX20_ARB 0x88D4 #define GL_MATRIX21_ARB 0x88D5 #define GL_MATRIX22_ARB 0x88D6 #define GL_MATRIX23_ARB 0x88D7 #define GL_MATRIX24_ARB 0x88D8 #define GL_MATRIX25_ARB 0x88D9 #define GL_MATRIX26_ARB 0x88DA #define GL_MATRIX27_ARB 0x88DB #define GL_MATRIX28_ARB 0x88DC #define GL_MATRIX29_ARB 0x88DD #define GL_MATRIX2_ARB 0x88C2 #define GL_MATRIX30_ARB 0x88DE #define GL_MATRIX31_ARB 0x88DF #define GL_MATRIX3_ARB 0x88C3 #define GL_MATRIX4_ARB 0x88C4 #define GL_MATRIX5_ARB 0x88C5 #define GL_MATRIX6_ARB 0x88C6 #define GL_MATRIX7_ARB 0x88C7 #define GL_MATRIX8_ARB 0x88C8 #define GL_MATRIX9_ARB 0x88C9 #define GL_MATRIX_INDEX_ARRAY_ARB 0x8844 #define GL_MATRIX_INDEX_ARRAY_POINTER_ARB 0x8849 #define GL_MATRIX_INDEX_ARRAY_SIZE_ARB 0x8846 #define GL_MATRIX_INDEX_ARRAY_STRIDE_ARB 0x8848 #define GL_MATRIX_INDEX_ARRAY_TYPE_ARB 0x8847 #define GL_MATRIX_MODE 0x0BA0 #define GL_MATRIX_PALETTE_ARB 0x8840 #define GL_MATRIX_STRIDE 0x92FF #define GL_MAX 0x8008 #define GL_MAX_3D_TEXTURE_SIZE 0x8073 #define GL_MAX_ARRAY_TEXTURE_LAYERS 0x88FF #define GL_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS 0x92DC #define GL_MAX_ATOMIC_COUNTER_BUFFER_SIZE 0x92D8 #define GL_MAX_ATTRIB_STACK_DEPTH 0x0D35 #define GL_MAX_CLIENT_ATTRIB_STACK_DEPTH 0x0D3B #define GL_MAX_CLIP_DISTANCES 0x0D32 #define GL_MAX_CLIP_PLANES 0x0D32 #define GL_MAX_COLOR_ATTACHMENTS 0x8CDF #define GL_MAX_COLOR_MATRIX_STACK_DEPTH 0x80B3 #define GL_MAX_COLOR_TEXTURE_SAMPLES 0x910E #define GL_MAX_COMBINED_ATOMIC_COUNTERS 0x92D7 #define GL_MAX_COMBINED_ATOMIC_COUNTER_BUFFERS 0x92D1 #define GL_MAX_COMBINED_CLIP_AND_CULL_DISTANCES 0x82FA #define GL_MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS 0x8266 #define GL_MAX_COMBINED_DIMENSIONS 0x8282 #define GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS 0x8A33 #define GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS 0x8A32 #define GL_MAX_COMBINED_IMAGE_UNIFORMS 0x90CF #define GL_MAX_COMBINED_IMAGE_UNITS_AND_FRAGMENT_OUTPUTS 0x8F39 #define GL_MAX_COMBINED_SHADER_OUTPUT_RESOURCES 0x8F39 #define GL_MAX_COMBINED_SHADER_STORAGE_BLOCKS 0x90DC #define GL_MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS 0x8E1E #define GL_MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS 0x8E1F #define GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 0x8B4D #define GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB 0x8B4D #define GL_MAX_COMBINED_UNIFORM_BLOCKS 0x8A2E #define GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS 0x8A31 #define GL_MAX_COMPUTE_ATOMIC_COUNTERS 0x8265 #define GL_MAX_COMPUTE_ATOMIC_COUNTER_BUFFERS 0x8264 #define GL_MAX_COMPUTE_FIXED_GROUP_INVOCATIONS_ARB 0x90EB #define GL_MAX_COMPUTE_FIXED_GROUP_SIZE_ARB 0x91BF #define GL_MAX_COMPUTE_IMAGE_UNIFORMS 0x91BD #define GL_MAX_COMPUTE_SHADER_STORAGE_BLOCKS 0x90DB #define GL_MAX_COMPUTE_SHARED_MEMORY_SIZE 0x8262 #define GL_MAX_COMPUTE_TEXTURE_IMAGE_UNITS 0x91BC #define GL_MAX_COMPUTE_UNIFORM_BLOCKS 0x91BB #define GL_MAX_COMPUTE_UNIFORM_COMPONENTS 0x8263 #define GL_MAX_COMPUTE_VARIABLE_GROUP_INVOCATIONS_ARB 0x9344 #define GL_MAX_COMPUTE_VARIABLE_GROUP_SIZE_ARB 0x9345 #define GL_MAX_COMPUTE_WORK_GROUP_COUNT 0x91BE #define GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS 0x90EB #define GL_MAX_COMPUTE_WORK_GROUP_SIZE 0x91BF #define GL_MAX_CONVOLUTION_HEIGHT 0x801B #define GL_MAX_CONVOLUTION_WIDTH 0x801A #define GL_MAX_CUBE_MAP_TEXTURE_SIZE 0x851C #define GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB 0x851C #define GL_MAX_CULL_DISTANCES 0x82F9 #define GL_MAX_DEBUG_GROUP_STACK_DEPTH 0x826C #define GL_MAX_DEBUG_LOGGED_MESSAGES 0x9144 #define GL_MAX_DEBUG_LOGGED_MESSAGES_ARB 0x9144 #define GL_MAX_DEBUG_MESSAGE_LENGTH 0x9143 #define GL_MAX_DEBUG_MESSAGE_LENGTH_ARB 0x9143 #define GL_MAX_DEPTH 0x8280 #define GL_MAX_DEPTH_TEXTURE_SAMPLES 0x910F #define GL_MAX_DRAW_BUFFERS 0x8824 #define GL_MAX_DRAW_BUFFERS_ARB 0x8824 #define GL_MAX_DUAL_SOURCE_DRAW_BUFFERS 0x88FC #define GL_MAX_ELEMENTS_INDICES 0x80E9 #define GL_MAX_ELEMENTS_VERTICES 0x80E8 #define GL_MAX_ELEMENT_INDEX 0x8D6B #define GL_MAX_EVAL_ORDER 0x0D30 #define GL_MAX_FRAGMENT_ATOMIC_COUNTERS 0x92D6 #define GL_MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS 0x92D0 #define GL_MAX_FRAGMENT_IMAGE_UNIFORMS 0x90CE #define GL_MAX_FRAGMENT_INPUT_COMPONENTS 0x9125 #define GL_MAX_FRAGMENT_INTERPOLATION_OFFSET 0x8E5C #define GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS 0x90DA #define GL_MAX_FRAGMENT_UNIFORM_BLOCKS 0x8A2D #define GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 0x8B49 #define GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB 0x8B49 #define GL_MAX_FRAGMENT_UNIFORM_VECTORS 0x8DFD #define GL_MAX_FRAMEBUFFER_HEIGHT 0x9316 #define GL_MAX_FRAMEBUFFER_LAYERS 0x9317 #define GL_MAX_FRAMEBUFFER_SAMPLES 0x9318 #define GL_MAX_FRAMEBUFFER_WIDTH 0x9315 #define GL_MAX_GEOMETRY_ATOMIC_COUNTERS 0x92D5 #define GL_MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS 0x92CF #define GL_MAX_GEOMETRY_IMAGE_UNIFORMS 0x90CD #define GL_MAX_GEOMETRY_INPUT_COMPONENTS 0x9123 #define GL_MAX_GEOMETRY_OUTPUT_COMPONENTS 0x9124 #define GL_MAX_GEOMETRY_OUTPUT_VERTICES 0x8DE0 #define GL_MAX_GEOMETRY_OUTPUT_VERTICES_ARB 0x8DE0 #define GL_MAX_GEOMETRY_SHADER_INVOCATIONS 0x8E5A #define GL_MAX_GEOMETRY_SHADER_STORAGE_BLOCKS 0x90D7 #define GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS 0x8C29 #define GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_ARB 0x8C29 #define GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS 0x8DE1 #define GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_ARB 0x8DE1 #define GL_MAX_GEOMETRY_UNIFORM_BLOCKS 0x8A2C #define GL_MAX_GEOMETRY_UNIFORM_COMPONENTS 0x8DDF #define GL_MAX_GEOMETRY_UNIFORM_COMPONENTS_ARB 0x8DDF #define GL_MAX_GEOMETRY_VARYING_COMPONENTS_ARB 0x8DDD #define GL_MAX_HEIGHT 0x827F #define GL_MAX_IMAGE_SAMPLES 0x906D #define GL_MAX_IMAGE_UNITS 0x8F38 #define GL_MAX_INTEGER_SAMPLES 0x9110 #define GL_MAX_LABEL_LENGTH 0x82E8 #define GL_MAX_LAYERS 0x8281 #define GL_MAX_LIGHTS 0x0D31 #define GL_MAX_LIST_NESTING 0x0B31 #define GL_MAX_MATRIX_PALETTE_STACK_DEPTH_ARB 0x8841 #define GL_MAX_MODELVIEW_STACK_DEPTH 0x0D36 #define GL_MAX_NAME_LENGTH 0x92F6 #define GL_MAX_NAME_STACK_DEPTH 0x0D37 #define GL_MAX_NUM_ACTIVE_VARIABLES 0x92F7 #define GL_MAX_NUM_COMPATIBLE_SUBROUTINES 0x92F8 #define GL_MAX_PALETTE_MATRICES_ARB 0x8842 #define GL_MAX_PATCH_VERTICES 0x8E7D #define GL_MAX_PIXEL_MAP_TABLE 0x0D34 #define GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B1 #define GL_MAX_PROGRAM_ALU_INSTRUCTIONS_ARB 0x880B #define GL_MAX_PROGRAM_ATTRIBS_ARB 0x88AD #define GL_MAX_PROGRAM_ENV_PARAMETERS_ARB 0x88B5 #define GL_MAX_PROGRAM_INSTRUCTIONS_ARB 0x88A1 #define GL_MAX_PROGRAM_LOCAL_PARAMETERS_ARB 0x88B4 #define GL_MAX_PROGRAM_MATRICES_ARB 0x862F #define GL_MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB 0x862E #define GL_MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B3 #define GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x880E #define GL_MAX_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AF #define GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A3 #define GL_MAX_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AB #define GL_MAX_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A7 #define GL_MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x8810 #define GL_MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x880F #define GL_MAX_PROGRAM_PARAMETERS_ARB 0x88A9 #define GL_MAX_PROGRAM_TEMPORARIES_ARB 0x88A5 #define GL_MAX_PROGRAM_TEXEL_OFFSET 0x8905 #define GL_MAX_PROGRAM_TEXTURE_GATHER_COMPONENTS_ARB 0x8F9F #define GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET_ARB 0x8E5F #define GL_MAX_PROGRAM_TEX_INDIRECTIONS_ARB 0x880D #define GL_MAX_PROGRAM_TEX_INSTRUCTIONS_ARB 0x880C #define GL_MAX_PROJECTION_STACK_DEPTH 0x0D38 #define GL_MAX_RECTANGLE_TEXTURE_SIZE 0x84F8 #define GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB 0x84F8 #define GL_MAX_RENDERBUFFER_SIZE 0x84E8 #define GL_MAX_SAMPLES 0x8D57 #define GL_MAX_SAMPLE_MASK_WORDS 0x8E59 #define GL_MAX_SERVER_WAIT_TIMEOUT 0x9111 #define GL_MAX_SHADER_COMPILER_THREADS_ARB 0x91B0 #define GL_MAX_SHADER_COMPILER_THREADS_KHR 0x91B0 #define GL_MAX_SHADER_STORAGE_BLOCK_SIZE 0x90DE #define GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS 0x90DD #define GL_MAX_SPARSE_3D_TEXTURE_SIZE_ARB 0x9199 #define GL_MAX_SPARSE_ARRAY_TEXTURE_LAYERS_ARB 0x919A #define GL_MAX_SPARSE_TEXTURE_SIZE_ARB 0x9198 #define GL_MAX_SUBROUTINES 0x8DE7 #define GL_MAX_SUBROUTINE_UNIFORM_LOCATIONS 0x8DE8 #define GL_MAX_TESS_CONTROL_ATOMIC_COUNTERS 0x92D3 #define GL_MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS 0x92CD #define GL_MAX_TESS_CONTROL_IMAGE_UNIFORMS 0x90CB #define GL_MAX_TESS_CONTROL_INPUT_COMPONENTS 0x886C #define GL_MAX_TESS_CONTROL_OUTPUT_COMPONENTS 0x8E83 #define GL_MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS 0x90D8 #define GL_MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS 0x8E81 #define GL_MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS 0x8E85 #define GL_MAX_TESS_CONTROL_UNIFORM_BLOCKS 0x8E89 #define GL_MAX_TESS_CONTROL_UNIFORM_COMPONENTS 0x8E7F #define GL_MAX_TESS_EVALUATION_ATOMIC_COUNTERS 0x92D4 #define GL_MAX_TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS 0x92CE #define GL_MAX_TESS_EVALUATION_IMAGE_UNIFORMS 0x90CC #define GL_MAX_TESS_EVALUATION_INPUT_COMPONENTS 0x886D #define GL_MAX_TESS_EVALUATION_OUTPUT_COMPONENTS 0x8E86 #define GL_MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS 0x90D9 #define GL_MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS 0x8E82 #define GL_MAX_TESS_EVALUATION_UNIFORM_BLOCKS 0x8E8A #define GL_MAX_TESS_EVALUATION_UNIFORM_COMPONENTS 0x8E80 #define GL_MAX_TESS_GEN_LEVEL 0x8E7E #define GL_MAX_TESS_PATCH_COMPONENTS 0x8E84 #define GL_MAX_TEXTURE_BUFFER_SIZE 0x8C2B #define GL_MAX_TEXTURE_BUFFER_SIZE_ARB 0x8C2B #define GL_MAX_TEXTURE_COORDS 0x8871 #define GL_MAX_TEXTURE_COORDS_ARB 0x8871 #define GL_MAX_TEXTURE_IMAGE_UNITS 0x8872 #define GL_MAX_TEXTURE_IMAGE_UNITS_ARB 0x8872 #define GL_MAX_TEXTURE_LOD_BIAS 0x84FD #define GL_MAX_TEXTURE_MAX_ANISOTROPY 0x84FF #define GL_MAX_TEXTURE_SIZE 0x0D33 #define GL_MAX_TEXTURE_STACK_DEPTH 0x0D39 #define GL_MAX_TEXTURE_UNITS 0x84E2 #define GL_MAX_TEXTURE_UNITS_ARB 0x84E2 #define GL_MAX_TRANSFORM_FEEDBACK_BUFFERS 0x8E70 #define GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS 0x8C8A #define GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS 0x8C8B #define GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS 0x8C80 #define GL_MAX_UNIFORM_BLOCK_SIZE 0x8A30 #define GL_MAX_UNIFORM_BUFFER_BINDINGS 0x8A2F #define GL_MAX_UNIFORM_LOCATIONS 0x826E #define GL_MAX_VARYING_COMPONENTS 0x8B4B #define GL_MAX_VARYING_FLOATS 0x8B4B #define GL_MAX_VARYING_FLOATS_ARB 0x8B4B #define GL_MAX_VARYING_VECTORS 0x8DFC #define GL_MAX_VERTEX_ATOMIC_COUNTERS 0x92D2 #define GL_MAX_VERTEX_ATOMIC_COUNTER_BUFFERS 0x92CC #define GL_MAX_VERTEX_ATTRIBS 0x8869 #define GL_MAX_VERTEX_ATTRIBS_ARB 0x8869 #define GL_MAX_VERTEX_ATTRIB_BINDINGS 0x82DA #define GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET 0x82D9 #define GL_MAX_VERTEX_IMAGE_UNIFORMS 0x90CA #define GL_MAX_VERTEX_OUTPUT_COMPONENTS 0x9122 #define GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS 0x90D6 #define GL_MAX_VERTEX_STREAMS 0x8E71 #define GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 0x8B4C #define GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB 0x8B4C #define GL_MAX_VERTEX_UNIFORM_BLOCKS 0x8A2B #define GL_MAX_VERTEX_UNIFORM_COMPONENTS 0x8B4A #define GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB 0x8B4A #define GL_MAX_VERTEX_UNIFORM_VECTORS 0x8DFB #define GL_MAX_VERTEX_UNITS_ARB 0x86A4 #define GL_MAX_VERTEX_VARYING_COMPONENTS_ARB 0x8DDE #define GL_MAX_VIEWPORTS 0x825B #define GL_MAX_VIEWPORT_DIMS 0x0D3A #define GL_MAX_WIDTH 0x827E #define GL_MEDIUM_FLOAT 0x8DF1 #define GL_MEDIUM_INT 0x8DF4 #define GL_MIN 0x8007 #define GL_MINMAX 0x802E #define GL_MINMAX_FORMAT 0x802F #define GL_MINMAX_SINK 0x8030 #define GL_MINOR_VERSION 0x821C #define GL_MIN_FRAGMENT_INTERPOLATION_OFFSET 0x8E5B #define GL_MIN_MAP_BUFFER_ALIGNMENT 0x90BC #define GL_MIN_PROGRAM_TEXEL_OFFSET 0x8904 #define GL_MIN_PROGRAM_TEXTURE_GATHER_OFFSET_ARB 0x8E5E #define GL_MIN_SAMPLE_SHADING_VALUE_ARB 0x8C37 #define GL_MIPMAP 0x8293 #define GL_MIRRORED_REPEAT 0x8370 #define GL_MIRRORED_REPEAT_ARB 0x8370 #define GL_MIRROR_CLAMP_TO_EDGE 0x8743 #define GL_MODELVIEW 0x1700 #define GL_MODELVIEW0_ARB 0x1700 #define GL_MODELVIEW10_ARB 0x872A #define GL_MODELVIEW11_ARB 0x872B #define GL_MODELVIEW12_ARB 0x872C #define GL_MODELVIEW13_ARB 0x872D #define GL_MODELVIEW14_ARB 0x872E #define GL_MODELVIEW15_ARB 0x872F #define GL_MODELVIEW16_ARB 0x8730 #define GL_MODELVIEW17_ARB 0x8731 #define GL_MODELVIEW18_ARB 0x8732 #define GL_MODELVIEW19_ARB 0x8733 #define GL_MODELVIEW1_ARB 0x850A #define GL_MODELVIEW20_ARB 0x8734 #define GL_MODELVIEW21_ARB 0x8735 #define GL_MODELVIEW22_ARB 0x8736 #define GL_MODELVIEW23_ARB 0x8737 #define GL_MODELVIEW24_ARB 0x8738 #define GL_MODELVIEW25_ARB 0x8739 #define GL_MODELVIEW26_ARB 0x873A #define GL_MODELVIEW27_ARB 0x873B #define GL_MODELVIEW28_ARB 0x873C #define GL_MODELVIEW29_ARB 0x873D #define GL_MODELVIEW2_ARB 0x8722 #define GL_MODELVIEW30_ARB 0x873E #define GL_MODELVIEW31_ARB 0x873F #define GL_MODELVIEW3_ARB 0x8723 #define GL_MODELVIEW4_ARB 0x8724 #define GL_MODELVIEW5_ARB 0x8725 #define GL_MODELVIEW6_ARB 0x8726 #define GL_MODELVIEW7_ARB 0x8727 #define GL_MODELVIEW8_ARB 0x8728 #define GL_MODELVIEW9_ARB 0x8729 #define GL_MODELVIEW_MATRIX 0x0BA6 #define GL_MODELVIEW_STACK_DEPTH 0x0BA3 #define GL_MODULATE 0x2100 #define GL_MULT 0x0103 #define GL_MULTIPLY_KHR 0x9294 #define GL_MULTISAMPLE 0x809D #define GL_MULTISAMPLE_ARB 0x809D #define GL_MULTISAMPLE_BIT 0x20000000 #define GL_MULTISAMPLE_BIT_ARB 0x20000000 #define GL_MULTISAMPLE_LINE_WIDTH_GRANULARITY_ARB 0x9382 #define GL_MULTISAMPLE_LINE_WIDTH_RANGE_ARB 0x9381 #define GL_N3F_V3F 0x2A25 #define GL_NAMED_STRING_LENGTH_ARB 0x8DE9 #define GL_NAMED_STRING_TYPE_ARB 0x8DEA #define GL_NAME_LENGTH 0x92F9 #define GL_NAME_STACK_DEPTH 0x0D70 #define GL_NAND 0x150E #define GL_NEAREST 0x2600 #define GL_NEAREST_MIPMAP_LINEAR 0x2702 #define GL_NEAREST_MIPMAP_NEAREST 0x2700 #define GL_NEGATIVE_ONE_TO_ONE 0x935E #define GL_NEVER 0x0200 #define GL_NICEST 0x1102 #define GL_NONE 0 #define GL_NOOP 0x1505 #define GL_NOR 0x1508 #define GL_NORMALIZE 0x0BA1 #define GL_NORMAL_ARRAY 0x8075 #define GL_NORMAL_ARRAY_BUFFER_BINDING 0x8897 #define GL_NORMAL_ARRAY_BUFFER_BINDING_ARB 0x8897 #define GL_NORMAL_ARRAY_POINTER 0x808F #define GL_NORMAL_ARRAY_STRIDE 0x807F #define GL_NORMAL_ARRAY_TYPE 0x807E #define GL_NORMAL_MAP 0x8511 #define GL_NORMAL_MAP_ARB 0x8511 #define GL_NOTEQUAL 0x0205 #define GL_NO_ERROR 0 #define GL_NO_RESET_NOTIFICATION 0x8261 #define GL_NO_RESET_NOTIFICATION_ARB 0x8261 #define GL_NUM_ACTIVE_VARIABLES 0x9304 #define GL_NUM_COMPATIBLE_SUBROUTINES 0x8E4A #define GL_NUM_COMPRESSED_TEXTURE_FORMATS 0x86A2 #define GL_NUM_COMPRESSED_TEXTURE_FORMATS_ARB 0x86A2 #define GL_NUM_EXTENSIONS 0x821D #define GL_NUM_PROGRAM_BINARY_FORMATS 0x87FE #define GL_NUM_SAMPLE_COUNTS 0x9380 #define GL_NUM_SHADER_BINARY_FORMATS 0x8DF9 #define GL_NUM_SPARSE_LEVELS_ARB 0x91AA #define GL_NUM_SPIR_V_EXTENSIONS 0x9554 #define GL_NUM_VIRTUAL_PAGE_SIZES_ARB 0x91A8 #define GL_OBJECT_ACTIVE_ATTRIBUTES_ARB 0x8B89 #define GL_OBJECT_ACTIVE_ATTRIBUTE_MAX_LENGTH_ARB 0x8B8A #define GL_OBJECT_ACTIVE_UNIFORMS_ARB 0x8B86 #define GL_OBJECT_ACTIVE_UNIFORM_MAX_LENGTH_ARB 0x8B87 #define GL_OBJECT_ATTACHED_OBJECTS_ARB 0x8B85 #define GL_OBJECT_COMPILE_STATUS_ARB 0x8B81 #define GL_OBJECT_DELETE_STATUS_ARB 0x8B80 #define GL_OBJECT_INFO_LOG_LENGTH_ARB 0x8B84 #define GL_OBJECT_LINEAR 0x2401 #define GL_OBJECT_LINK_STATUS_ARB 0x8B82 #define GL_OBJECT_PLANE 0x2501 #define GL_OBJECT_SHADER_SOURCE_LENGTH_ARB 0x8B88 #define GL_OBJECT_SUBTYPE_ARB 0x8B4F #define GL_OBJECT_TYPE 0x9112 #define GL_OBJECT_TYPE_ARB 0x8B4E #define GL_OBJECT_VALIDATE_STATUS_ARB 0x8B83 #define GL_OFFSET 0x92FC #define GL_ONE 1 #define GL_ONE_MINUS_CONSTANT_ALPHA 0x8004 #define GL_ONE_MINUS_CONSTANT_COLOR 0x8002 #define GL_ONE_MINUS_DST_ALPHA 0x0305 #define GL_ONE_MINUS_DST_COLOR 0x0307 #define GL_ONE_MINUS_SRC1_ALPHA 0x88FB #define GL_ONE_MINUS_SRC1_COLOR 0x88FA #define GL_ONE_MINUS_SRC_ALPHA 0x0303 #define GL_ONE_MINUS_SRC_COLOR 0x0301 #define GL_OPERAND0_ALPHA 0x8598 #define GL_OPERAND0_ALPHA_ARB 0x8598 #define GL_OPERAND0_RGB 0x8590 #define GL_OPERAND0_RGB_ARB 0x8590 #define GL_OPERAND1_ALPHA 0x8599 #define GL_OPERAND1_ALPHA_ARB 0x8599 #define GL_OPERAND1_RGB 0x8591 #define GL_OPERAND1_RGB_ARB 0x8591 #define GL_OPERAND2_ALPHA 0x859A #define GL_OPERAND2_ALPHA_ARB 0x859A #define GL_OPERAND2_RGB 0x8592 #define GL_OPERAND2_RGB_ARB 0x8592 #define GL_OR 0x1507 #define GL_ORDER 0x0A01 #define GL_OR_INVERTED 0x150D #define GL_OR_REVERSE 0x150B #define GL_OUT_OF_MEMORY 0x0505 #define GL_OVERLAY_KHR 0x9296 #define GL_PACK_ALIGNMENT 0x0D05 #define GL_PACK_COMPRESSED_BLOCK_DEPTH 0x912D #define GL_PACK_COMPRESSED_BLOCK_HEIGHT 0x912C #define GL_PACK_COMPRESSED_BLOCK_SIZE 0x912E #define GL_PACK_COMPRESSED_BLOCK_WIDTH 0x912B #define GL_PACK_IMAGE_HEIGHT 0x806C #define GL_PACK_LSB_FIRST 0x0D01 #define GL_PACK_ROW_LENGTH 0x0D02 #define GL_PACK_SKIP_IMAGES 0x806B #define GL_PACK_SKIP_PIXELS 0x0D04 #define GL_PACK_SKIP_ROWS 0x0D03 #define GL_PACK_SWAP_BYTES 0x0D00 #define GL_PARAMETER_BUFFER 0x80EE #define GL_PARAMETER_BUFFER_ARB 0x80EE #define GL_PARAMETER_BUFFER_BINDING 0x80EF #define GL_PARAMETER_BUFFER_BINDING_ARB 0x80EF #define GL_PASS_THROUGH_TOKEN 0x0700 #define GL_PATCHES 0x000E #define GL_PATCH_DEFAULT_INNER_LEVEL 0x8E73 #define GL_PATCH_DEFAULT_OUTER_LEVEL 0x8E74 #define GL_PATCH_VERTICES 0x8E72 #define GL_PERSPECTIVE_CORRECTION_HINT 0x0C50 #define GL_PIXEL_BUFFER_BARRIER_BIT 0x00000080 #define GL_PIXEL_MAP_A_TO_A 0x0C79 #define GL_PIXEL_MAP_A_TO_A_SIZE 0x0CB9 #define GL_PIXEL_MAP_B_TO_B 0x0C78 #define GL_PIXEL_MAP_B_TO_B_SIZE 0x0CB8 #define GL_PIXEL_MAP_G_TO_G 0x0C77 #define GL_PIXEL_MAP_G_TO_G_SIZE 0x0CB7 #define GL_PIXEL_MAP_I_TO_A 0x0C75 #define GL_PIXEL_MAP_I_TO_A_SIZE 0x0CB5 #define GL_PIXEL_MAP_I_TO_B 0x0C74 #define GL_PIXEL_MAP_I_TO_B_SIZE 0x0CB4 #define GL_PIXEL_MAP_I_TO_G 0x0C73 #define GL_PIXEL_MAP_I_TO_G_SIZE 0x0CB3 #define GL_PIXEL_MAP_I_TO_I 0x0C70 #define GL_PIXEL_MAP_I_TO_I_SIZE 0x0CB0 #define GL_PIXEL_MAP_I_TO_R 0x0C72 #define GL_PIXEL_MAP_I_TO_R_SIZE 0x0CB2 #define GL_PIXEL_MAP_R_TO_R 0x0C76 #define GL_PIXEL_MAP_R_TO_R_SIZE 0x0CB6 #define GL_PIXEL_MAP_S_TO_S 0x0C71 #define GL_PIXEL_MAP_S_TO_S_SIZE 0x0CB1 #define GL_PIXEL_MODE_BIT 0x00000020 #define GL_PIXEL_PACK_BUFFER 0x88EB #define GL_PIXEL_PACK_BUFFER_ARB 0x88EB #define GL_PIXEL_PACK_BUFFER_BINDING 0x88ED #define GL_PIXEL_PACK_BUFFER_BINDING_ARB 0x88ED #define GL_PIXEL_UNPACK_BUFFER 0x88EC #define GL_PIXEL_UNPACK_BUFFER_ARB 0x88EC #define GL_PIXEL_UNPACK_BUFFER_BINDING 0x88EF #define GL_PIXEL_UNPACK_BUFFER_BINDING_ARB 0x88EF #define GL_POINT 0x1B00 #define GL_POINTS 0x0000 #define GL_POINT_BIT 0x00000002 #define GL_POINT_DISTANCE_ATTENUATION 0x8129 #define GL_POINT_DISTANCE_ATTENUATION_ARB 0x8129 #define GL_POINT_FADE_THRESHOLD_SIZE 0x8128 #define GL_POINT_FADE_THRESHOLD_SIZE_ARB 0x8128 #define GL_POINT_SIZE 0x0B11 #define GL_POINT_SIZE_GRANULARITY 0x0B13 #define GL_POINT_SIZE_MAX 0x8127 #define GL_POINT_SIZE_MAX_ARB 0x8127 #define GL_POINT_SIZE_MIN 0x8126 #define GL_POINT_SIZE_MIN_ARB 0x8126 #define GL_POINT_SIZE_RANGE 0x0B12 #define GL_POINT_SMOOTH 0x0B10 #define GL_POINT_SMOOTH_HINT 0x0C51 #define GL_POINT_SPRITE 0x8861 #define GL_POINT_SPRITE_ARB 0x8861 #define GL_POINT_SPRITE_COORD_ORIGIN 0x8CA0 #define GL_POINT_TOKEN 0x0701 #define GL_POLYGON 0x0009 #define GL_POLYGON_BIT 0x00000008 #define GL_POLYGON_MODE 0x0B40 #define GL_POLYGON_OFFSET_CLAMP 0x8E1B #define GL_POLYGON_OFFSET_FACTOR 0x8038 #define GL_POLYGON_OFFSET_FILL 0x8037 #define GL_POLYGON_OFFSET_LINE 0x2A02 #define GL_POLYGON_OFFSET_POINT 0x2A01 #define GL_POLYGON_OFFSET_UNITS 0x2A00 #define GL_POLYGON_SMOOTH 0x0B41 #define GL_POLYGON_SMOOTH_HINT 0x0C53 #define GL_POLYGON_STIPPLE 0x0B42 #define GL_POLYGON_STIPPLE_BIT 0x00000010 #define GL_POLYGON_TOKEN 0x0703 #define GL_POSITION 0x1203 #define GL_POST_COLOR_MATRIX_ALPHA_BIAS 0x80BB #define GL_POST_COLOR_MATRIX_ALPHA_SCALE 0x80B7 #define GL_POST_COLOR_MATRIX_BLUE_BIAS 0x80BA #define GL_POST_COLOR_MATRIX_BLUE_SCALE 0x80B6 #define GL_POST_COLOR_MATRIX_COLOR_TABLE 0x80D2 #define GL_POST_COLOR_MATRIX_GREEN_BIAS 0x80B9 #define GL_POST_COLOR_MATRIX_GREEN_SCALE 0x80B5 #define GL_POST_COLOR_MATRIX_RED_BIAS 0x80B8 #define GL_POST_COLOR_MATRIX_RED_SCALE 0x80B4 #define GL_POST_CONVOLUTION_ALPHA_BIAS 0x8023 #define GL_POST_CONVOLUTION_ALPHA_SCALE 0x801F #define GL_POST_CONVOLUTION_BLUE_BIAS 0x8022 #define GL_POST_CONVOLUTION_BLUE_SCALE 0x801E #define GL_POST_CONVOLUTION_COLOR_TABLE 0x80D1 #define GL_POST_CONVOLUTION_GREEN_BIAS 0x8021 #define GL_POST_CONVOLUTION_GREEN_SCALE 0x801D #define GL_POST_CONVOLUTION_RED_BIAS 0x8020 #define GL_POST_CONVOLUTION_RED_SCALE 0x801C #define GL_PREVIOUS 0x8578 #define GL_PREVIOUS_ARB 0x8578 #define GL_PRIMARY_COLOR 0x8577 #define GL_PRIMARY_COLOR_ARB 0x8577 #define GL_PRIMITIVES_GENERATED 0x8C87 #define GL_PRIMITIVES_SUBMITTED 0x82EF #define GL_PRIMITIVES_SUBMITTED_ARB 0x82EF #define GL_PRIMITIVE_BOUNDING_BOX_ARB 0x92BE #define GL_PRIMITIVE_RESTART 0x8F9D #define GL_PRIMITIVE_RESTART_FIXED_INDEX 0x8D69 #define GL_PRIMITIVE_RESTART_INDEX 0x8F9E #define GL_PROGRAM 0x82E2 #define GL_PROGRAMMABLE_SAMPLE_LOCATION_ARB 0x9341 #define GL_PROGRAMMABLE_SAMPLE_LOCATION_TABLE_SIZE_ARB 0x9340 #define GL_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B0 #define GL_PROGRAM_ALU_INSTRUCTIONS_ARB 0x8805 #define GL_PROGRAM_ATTRIBS_ARB 0x88AC #define GL_PROGRAM_BINARY_FORMATS 0x87FF #define GL_PROGRAM_BINARY_LENGTH 0x8741 #define GL_PROGRAM_BINARY_RETRIEVABLE_HINT 0x8257 #define GL_PROGRAM_BINDING_ARB 0x8677 #define GL_PROGRAM_ERROR_POSITION_ARB 0x864B #define GL_PROGRAM_ERROR_STRING_ARB 0x8874 #define GL_PROGRAM_FORMAT_ARB 0x8876 #define GL_PROGRAM_FORMAT_ASCII_ARB 0x8875 #define GL_PROGRAM_INPUT 0x92E3 #define GL_PROGRAM_INSTRUCTIONS_ARB 0x88A0 #define GL_PROGRAM_LENGTH_ARB 0x8627 #define GL_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B2 #define GL_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x8808 #define GL_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AE #define GL_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A2 #define GL_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AA #define GL_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A6 #define GL_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x880A #define GL_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x8809 #define GL_PROGRAM_OBJECT_ARB 0x8B40 #define GL_PROGRAM_OUTPUT 0x92E4 #define GL_PROGRAM_PARAMETERS_ARB 0x88A8 #define GL_PROGRAM_PIPELINE 0x82E4 #define GL_PROGRAM_PIPELINE_BINDING 0x825A #define GL_PROGRAM_POINT_SIZE 0x8642 #define GL_PROGRAM_POINT_SIZE_ARB 0x8642 #define GL_PROGRAM_SEPARABLE 0x8258 #define GL_PROGRAM_STRING_ARB 0x8628 #define GL_PROGRAM_TEMPORARIES_ARB 0x88A4 #define GL_PROGRAM_TEX_INDIRECTIONS_ARB 0x8807 #define GL_PROGRAM_TEX_INSTRUCTIONS_ARB 0x8806 #define GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB 0x88B6 #define GL_PROJECTION 0x1701 #define GL_PROJECTION_MATRIX 0x0BA7 #define GL_PROJECTION_STACK_DEPTH 0x0BA4 #define GL_PROVOKING_VERTEX 0x8E4F #define GL_PROXY_COLOR_TABLE 0x80D3 #define GL_PROXY_HISTOGRAM 0x8025 #define GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE 0x80D5 #define GL_PROXY_POST_CONVOLUTION_COLOR_TABLE 0x80D4 #define GL_PROXY_TEXTURE_1D 0x8063 #define GL_PROXY_TEXTURE_1D_ARRAY 0x8C19 #define GL_PROXY_TEXTURE_2D 0x8064 #define GL_PROXY_TEXTURE_2D_ARRAY 0x8C1B #define GL_PROXY_TEXTURE_2D_MULTISAMPLE 0x9101 #define GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY 0x9103 #define GL_PROXY_TEXTURE_3D 0x8070 #define GL_PROXY_TEXTURE_CUBE_MAP 0x851B #define GL_PROXY_TEXTURE_CUBE_MAP_ARB 0x851B #define GL_PROXY_TEXTURE_CUBE_MAP_ARRAY_ARB 0x900B #define GL_PROXY_TEXTURE_RECTANGLE 0x84F7 #define GL_PROXY_TEXTURE_RECTANGLE_ARB 0x84F7 #define GL_Q 0x2003 #define GL_QUADRATIC_ATTENUATION 0x1209 #define GL_QUADS 0x0007 #define GL_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION 0x8E4C #define GL_QUAD_STRIP 0x0008 #define GL_QUERY 0x82E3 #define GL_QUERY_BUFFER 0x9192 #define GL_QUERY_BUFFER_BARRIER_BIT 0x00008000 #define GL_QUERY_BUFFER_BINDING 0x9193 #define GL_QUERY_BY_REGION_NO_WAIT 0x8E16 #define GL_QUERY_BY_REGION_NO_WAIT_INVERTED 0x8E1A #define GL_QUERY_BY_REGION_WAIT 0x8E15 #define GL_QUERY_BY_REGION_WAIT_INVERTED 0x8E19 #define GL_QUERY_COUNTER_BITS 0x8864 #define GL_QUERY_COUNTER_BITS_ARB 0x8864 #define GL_QUERY_NO_WAIT 0x8E14 #define GL_QUERY_NO_WAIT_INVERTED 0x8E18 #define GL_QUERY_RESULT 0x8866 #define GL_QUERY_RESULT_ARB 0x8866 #define GL_QUERY_RESULT_AVAILABLE 0x8867 #define GL_QUERY_RESULT_AVAILABLE_ARB 0x8867 #define GL_QUERY_RESULT_NO_WAIT 0x9194 #define GL_QUERY_TARGET 0x82EA #define GL_QUERY_WAIT 0x8E13 #define GL_QUERY_WAIT_INVERTED 0x8E17 #define GL_R 0x2002 #define GL_R11F_G11F_B10F 0x8C3A #define GL_R16 0x822A #define GL_R16F 0x822D #define GL_R16I 0x8233 #define GL_R16UI 0x8234 #define GL_R16_SNORM 0x8F98 #define GL_R32F 0x822E #define GL_R32I 0x8235 #define GL_R32UI 0x8236 #define GL_R3_G3_B2 0x2A10 #define GL_R8 0x8229 #define GL_R8I 0x8231 #define GL_R8UI 0x8232 #define GL_R8_SNORM 0x8F94 #define GL_RASTERIZER_DISCARD 0x8C89 #define GL_READ_BUFFER 0x0C02 #define GL_READ_FRAMEBUFFER 0x8CA8 #define GL_READ_FRAMEBUFFER_BINDING 0x8CAA #define GL_READ_ONLY 0x88B8 #define GL_READ_ONLY_ARB 0x88B8 #define GL_READ_PIXELS 0x828C #define GL_READ_PIXELS_FORMAT 0x828D #define GL_READ_PIXELS_TYPE 0x828E #define GL_READ_WRITE 0x88BA #define GL_READ_WRITE_ARB 0x88BA #define GL_RED 0x1903 #define GL_REDUCE 0x8016 #define GL_RED_BIAS 0x0D15 #define GL_RED_BITS 0x0D52 #define GL_RED_INTEGER 0x8D94 #define GL_RED_SCALE 0x0D14 #define GL_REFERENCED_BY_COMPUTE_SHADER 0x930B #define GL_REFERENCED_BY_FRAGMENT_SHADER 0x930A #define GL_REFERENCED_BY_GEOMETRY_SHADER 0x9309 #define GL_REFERENCED_BY_TESS_CONTROL_SHADER 0x9307 #define GL_REFERENCED_BY_TESS_EVALUATION_SHADER 0x9308 #define GL_REFERENCED_BY_VERTEX_SHADER 0x9306 #define GL_REFLECTION_MAP 0x8512 #define GL_REFLECTION_MAP_ARB 0x8512 #define GL_RENDER 0x1C00 #define GL_RENDERBUFFER 0x8D41 #define GL_RENDERBUFFER_ALPHA_SIZE 0x8D53 #define GL_RENDERBUFFER_BINDING 0x8CA7 #define GL_RENDERBUFFER_BLUE_SIZE 0x8D52 #define GL_RENDERBUFFER_DEPTH_SIZE 0x8D54 #define GL_RENDERBUFFER_GREEN_SIZE 0x8D51 #define GL_RENDERBUFFER_HEIGHT 0x8D43 #define GL_RENDERBUFFER_INTERNAL_FORMAT 0x8D44 #define GL_RENDERBUFFER_RED_SIZE 0x8D50 #define GL_RENDERBUFFER_SAMPLES 0x8CAB #define GL_RENDERBUFFER_STENCIL_SIZE 0x8D55 #define GL_RENDERBUFFER_WIDTH 0x8D42 #define GL_RENDERER 0x1F01 #define GL_RENDER_MODE 0x0C40 #define GL_REPEAT 0x2901 #define GL_REPLACE 0x1E01 #define GL_REPLICATE_BORDER 0x8153 #define GL_RESCALE_NORMAL 0x803A #define GL_RESET_NOTIFICATION_STRATEGY 0x8256 #define GL_RESET_NOTIFICATION_STRATEGY_ARB 0x8256 #define GL_RETURN 0x0102 #define GL_RG 0x8227 #define GL_RG16 0x822C #define GL_RG16F 0x822F #define GL_RG16I 0x8239 #define GL_RG16UI 0x823A #define GL_RG16_SNORM 0x8F99 #define GL_RG32F 0x8230 #define GL_RG32I 0x823B #define GL_RG32UI 0x823C #define GL_RG8 0x822B #define GL_RG8I 0x8237 #define GL_RG8UI 0x8238 #define GL_RG8_SNORM 0x8F95 #define GL_RGB 0x1907 #define GL_RGB10 0x8052 #define GL_RGB10_A2 0x8059 #define GL_RGB10_A2UI 0x906F #define GL_RGB12 0x8053 #define GL_RGB16 0x8054 #define GL_RGB16F 0x881B #define GL_RGB16F_ARB 0x881B #define GL_RGB16I 0x8D89 #define GL_RGB16UI 0x8D77 #define GL_RGB16_SNORM 0x8F9A #define GL_RGB32F 0x8815 #define GL_RGB32F_ARB 0x8815 #define GL_RGB32I 0x8D83 #define GL_RGB32UI 0x8D71 #define GL_RGB4 0x804F #define GL_RGB5 0x8050 #define GL_RGB565 0x8D62 #define GL_RGB5_A1 0x8057 #define GL_RGB8 0x8051 #define GL_RGB8I 0x8D8F #define GL_RGB8UI 0x8D7D #define GL_RGB8_SNORM 0x8F96 #define GL_RGB9_E5 0x8C3D #define GL_RGBA 0x1908 #define GL_RGBA12 0x805A #define GL_RGBA16 0x805B #define GL_RGBA16F 0x881A #define GL_RGBA16F_ARB 0x881A #define GL_RGBA16I 0x8D88 #define GL_RGBA16UI 0x8D76 #define GL_RGBA16_SNORM 0x8F9B #define GL_RGBA2 0x8055 #define GL_RGBA32F 0x8814 #define GL_RGBA32F_ARB 0x8814 #define GL_RGBA32I 0x8D82 #define GL_RGBA32UI 0x8D70 #define GL_RGBA4 0x8056 #define GL_RGBA8 0x8058 #define GL_RGBA8I 0x8D8E #define GL_RGBA8UI 0x8D7C #define GL_RGBA8_SNORM 0x8F97 #define GL_RGBA_FLOAT_MODE_ARB 0x8820 #define GL_RGBA_INTEGER 0x8D99 #define GL_RGBA_MODE 0x0C31 #define GL_RGB_INTEGER 0x8D98 #define GL_RGB_SCALE 0x8573 #define GL_RGB_SCALE_ARB 0x8573 #define GL_RG_INTEGER 0x8228 #define GL_RIGHT 0x0407 #define GL_S 0x2000 #define GL_SAMPLER 0x82E6 #define GL_SAMPLER_1D 0x8B5D #define GL_SAMPLER_1D_ARB 0x8B5D #define GL_SAMPLER_1D_ARRAY 0x8DC0 #define GL_SAMPLER_1D_ARRAY_SHADOW 0x8DC3 #define GL_SAMPLER_1D_SHADOW 0x8B61 #define GL_SAMPLER_1D_SHADOW_ARB 0x8B61 #define GL_SAMPLER_2D 0x8B5E #define GL_SAMPLER_2D_ARB 0x8B5E #define GL_SAMPLER_2D_ARRAY 0x8DC1 #define GL_SAMPLER_2D_ARRAY_SHADOW 0x8DC4 #define GL_SAMPLER_2D_MULTISAMPLE 0x9108 #define GL_SAMPLER_2D_MULTISAMPLE_ARRAY 0x910B #define GL_SAMPLER_2D_RECT 0x8B63 #define GL_SAMPLER_2D_RECT_ARB 0x8B63 #define GL_SAMPLER_2D_RECT_SHADOW 0x8B64 #define GL_SAMPLER_2D_RECT_SHADOW_ARB 0x8B64 #define GL_SAMPLER_2D_SHADOW 0x8B62 #define GL_SAMPLER_2D_SHADOW_ARB 0x8B62 #define GL_SAMPLER_3D 0x8B5F #define GL_SAMPLER_3D_ARB 0x8B5F #define GL_SAMPLER_BINDING 0x8919 #define GL_SAMPLER_BUFFER 0x8DC2 #define GL_SAMPLER_CUBE 0x8B60 #define GL_SAMPLER_CUBE_ARB 0x8B60 #define GL_SAMPLER_CUBE_MAP_ARRAY_ARB 0x900C #define GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW_ARB 0x900D #define GL_SAMPLER_CUBE_SHADOW 0x8DC5 #define GL_SAMPLES 0x80A9 #define GL_SAMPLES_ARB 0x80A9 #define GL_SAMPLES_PASSED 0x8914 #define GL_SAMPLES_PASSED_ARB 0x8914 #define GL_SAMPLE_ALPHA_TO_COVERAGE 0x809E #define GL_SAMPLE_ALPHA_TO_COVERAGE_ARB 0x809E #define GL_SAMPLE_ALPHA_TO_ONE 0x809F #define GL_SAMPLE_ALPHA_TO_ONE_ARB 0x809F #define GL_SAMPLE_BUFFERS 0x80A8 #define GL_SAMPLE_BUFFERS_ARB 0x80A8 #define GL_SAMPLE_COVERAGE 0x80A0 #define GL_SAMPLE_COVERAGE_ARB 0x80A0 #define GL_SAMPLE_COVERAGE_INVERT 0x80AB #define GL_SAMPLE_COVERAGE_INVERT_ARB 0x80AB #define GL_SAMPLE_COVERAGE_VALUE 0x80AA #define GL_SAMPLE_COVERAGE_VALUE_ARB 0x80AA #define GL_SAMPLE_LOCATION_ARB 0x8E50 #define GL_SAMPLE_LOCATION_PIXEL_GRID_HEIGHT_ARB 0x933F #define GL_SAMPLE_LOCATION_PIXEL_GRID_WIDTH_ARB 0x933E #define GL_SAMPLE_LOCATION_SUBPIXEL_BITS_ARB 0x933D #define GL_SAMPLE_MASK 0x8E51 #define GL_SAMPLE_MASK_VALUE 0x8E52 #define GL_SAMPLE_POSITION 0x8E50 #define GL_SAMPLE_SHADING_ARB 0x8C36 #define GL_SCISSOR_BIT 0x00080000 #define GL_SCISSOR_BOX 0x0C10 #define GL_SCISSOR_TEST 0x0C11 #define GL_SCREEN_KHR 0x9295 #define GL_SECONDARY_COLOR_ARRAY 0x845E #define GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING 0x889C #define GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB 0x889C #define GL_SECONDARY_COLOR_ARRAY_POINTER 0x845D #define GL_SECONDARY_COLOR_ARRAY_SIZE 0x845A #define GL_SECONDARY_COLOR_ARRAY_STRIDE 0x845C #define GL_SECONDARY_COLOR_ARRAY_TYPE 0x845B #define GL_SELECT 0x1C02 #define GL_SELECTION_BUFFER_POINTER 0x0DF3 #define GL_SELECTION_BUFFER_SIZE 0x0DF4 #define GL_SEPARABLE_2D 0x8012 #define GL_SEPARATE_ATTRIBS 0x8C8D #define GL_SEPARATE_SPECULAR_COLOR 0x81FA #define GL_SET 0x150F #define GL_SHADER 0x82E1 #define GL_SHADER_BINARY_FORMATS 0x8DF8 #define GL_SHADER_BINARY_FORMAT_SPIR_V 0x9551 #define GL_SHADER_BINARY_FORMAT_SPIR_V_ARB 0x9551 #define GL_SHADER_COMPILER 0x8DFA #define GL_SHADER_IMAGE_ACCESS_BARRIER_BIT 0x00000020 #define GL_SHADER_IMAGE_ATOMIC 0x82A6 #define GL_SHADER_IMAGE_LOAD 0x82A4 #define GL_SHADER_IMAGE_STORE 0x82A5 #define GL_SHADER_INCLUDE_ARB 0x8DAE #define GL_SHADER_OBJECT_ARB 0x8B48 #define GL_SHADER_SOURCE_LENGTH 0x8B88 #define GL_SHADER_STORAGE_BARRIER_BIT 0x00002000 #define GL_SHADER_STORAGE_BLOCK 0x92E6 #define GL_SHADER_STORAGE_BUFFER 0x90D2 #define GL_SHADER_STORAGE_BUFFER_BINDING 0x90D3 #define GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT 0x90DF #define GL_SHADER_STORAGE_BUFFER_SIZE 0x90D5 #define GL_SHADER_STORAGE_BUFFER_START 0x90D4 #define GL_SHADER_TYPE 0x8B4F #define GL_SHADE_MODEL 0x0B54 #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #define GL_SHADING_LANGUAGE_VERSION_ARB 0x8B8C #define GL_SHININESS 0x1601 #define GL_SHORT 0x1402 #define GL_SIGNALED 0x9119 #define GL_SIGNED_NORMALIZED 0x8F9C #define GL_SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST 0x82AC #define GL_SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE 0x82AE #define GL_SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST 0x82AD #define GL_SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE 0x82AF #define GL_SINGLE_COLOR 0x81F9 #define GL_SLUMINANCE 0x8C46 #define GL_SLUMINANCE8 0x8C47 #define GL_SLUMINANCE8_ALPHA8 0x8C45 #define GL_SLUMINANCE_ALPHA 0x8C44 #define GL_SMOOTH 0x1D01 #define GL_SMOOTH_LINE_WIDTH_GRANULARITY 0x0B23 #define GL_SMOOTH_LINE_WIDTH_RANGE 0x0B22 #define GL_SMOOTH_POINT_SIZE_GRANULARITY 0x0B13 #define GL_SMOOTH_POINT_SIZE_RANGE 0x0B12 #define GL_SOFTLIGHT_KHR 0x929C #define GL_SOURCE0_ALPHA 0x8588 #define GL_SOURCE0_ALPHA_ARB 0x8588 #define GL_SOURCE0_RGB 0x8580 #define GL_SOURCE0_RGB_ARB 0x8580 #define GL_SOURCE1_ALPHA 0x8589 #define GL_SOURCE1_ALPHA_ARB 0x8589 #define GL_SOURCE1_RGB 0x8581 #define GL_SOURCE1_RGB_ARB 0x8581 #define GL_SOURCE2_ALPHA 0x858A #define GL_SOURCE2_ALPHA_ARB 0x858A #define GL_SOURCE2_RGB 0x8582 #define GL_SOURCE2_RGB_ARB 0x8582 #define GL_SPARSE_BUFFER_PAGE_SIZE_ARB 0x82F8 #define GL_SPARSE_STORAGE_BIT_ARB 0x0400 #define GL_SPARSE_TEXTURE_FULL_ARRAY_CUBE_MIPMAPS_ARB 0x91A9 #define GL_SPECULAR 0x1202 #define GL_SPHERE_MAP 0x2402 #define GL_SPIR_V_BINARY 0x9552 #define GL_SPIR_V_BINARY_ARB 0x9552 #define GL_SPIR_V_EXTENSIONS 0x9553 #define GL_SPOT_CUTOFF 0x1206 #define GL_SPOT_DIRECTION 0x1204 #define GL_SPOT_EXPONENT 0x1205 #define GL_SRC0_ALPHA 0x8588 #define GL_SRC0_RGB 0x8580 #define GL_SRC1_ALPHA 0x8589 #define GL_SRC1_COLOR 0x88F9 #define GL_SRC1_RGB 0x8581 #define GL_SRC2_ALPHA 0x858A #define GL_SRC2_RGB 0x8582 #define GL_SRC_ALPHA 0x0302 #define GL_SRC_ALPHA_SATURATE 0x0308 #define GL_SRC_COLOR 0x0300 #define GL_SRGB 0x8C40 #define GL_SRGB8 0x8C41 #define GL_SRGB8_ALPHA8 0x8C43 #define GL_SRGB_ALPHA 0x8C42 #define GL_SRGB_DECODE_ARB 0x8299 #define GL_SRGB_READ 0x8297 #define GL_SRGB_WRITE 0x8298 #define GL_STACK_OVERFLOW 0x0503 #define GL_STACK_UNDERFLOW 0x0504 #define GL_STATIC_COPY 0x88E6 #define GL_STATIC_COPY_ARB 0x88E6 #define GL_STATIC_DRAW 0x88E4 #define GL_STATIC_DRAW_ARB 0x88E4 #define GL_STATIC_READ 0x88E5 #define GL_STATIC_READ_ARB 0x88E5 #define GL_STENCIL 0x1802 #define GL_STENCIL_ATTACHMENT 0x8D20 #define GL_STENCIL_BACK_FAIL 0x8801 #define GL_STENCIL_BACK_FUNC 0x8800 #define GL_STENCIL_BACK_PASS_DEPTH_FAIL 0x8802 #define GL_STENCIL_BACK_PASS_DEPTH_PASS 0x8803 #define GL_STENCIL_BACK_REF 0x8CA3 #define GL_STENCIL_BACK_VALUE_MASK 0x8CA4 #define GL_STENCIL_BACK_WRITEMASK 0x8CA5 #define GL_STENCIL_BITS 0x0D57 #define GL_STENCIL_BUFFER_BIT 0x00000400 #define GL_STENCIL_CLEAR_VALUE 0x0B91 #define GL_STENCIL_COMPONENTS 0x8285 #define GL_STENCIL_FAIL 0x0B94 #define GL_STENCIL_FUNC 0x0B92 #define GL_STENCIL_INDEX 0x1901 #define GL_STENCIL_INDEX1 0x8D46 #define GL_STENCIL_INDEX16 0x8D49 #define GL_STENCIL_INDEX4 0x8D47 #define GL_STENCIL_INDEX8 0x8D48 #define GL_STENCIL_PASS_DEPTH_FAIL 0x0B95 #define GL_STENCIL_PASS_DEPTH_PASS 0x0B96 #define GL_STENCIL_REF 0x0B97 #define GL_STENCIL_RENDERABLE 0x8288 #define GL_STENCIL_TEST 0x0B90 #define GL_STENCIL_VALUE_MASK 0x0B93 #define GL_STENCIL_WRITEMASK 0x0B98 #define GL_STEREO 0x0C33 #define GL_STREAM_COPY 0x88E2 #define GL_STREAM_COPY_ARB 0x88E2 #define GL_STREAM_DRAW 0x88E0 #define GL_STREAM_DRAW_ARB 0x88E0 #define GL_STREAM_READ 0x88E1 #define GL_STREAM_READ_ARB 0x88E1 #define GL_SUBGROUP_FEATURE_ARITHMETIC_BIT_KHR 0x00000004 #define GL_SUBGROUP_FEATURE_BALLOT_BIT_KHR 0x00000008 #define GL_SUBGROUP_FEATURE_BASIC_BIT_KHR 0x00000001 #define GL_SUBGROUP_FEATURE_CLUSTERED_BIT_KHR 0x00000040 #define GL_SUBGROUP_FEATURE_QUAD_BIT_KHR 0x00000080 #define GL_SUBGROUP_FEATURE_SHUFFLE_BIT_KHR 0x00000010 #define GL_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT_KHR 0x00000020 #define GL_SUBGROUP_FEATURE_VOTE_BIT_KHR 0x00000002 #define GL_SUBGROUP_QUAD_ALL_STAGES_KHR 0x9535 #define GL_SUBGROUP_SIZE_KHR 0x9532 #define GL_SUBGROUP_SUPPORTED_FEATURES_KHR 0x9534 #define GL_SUBGROUP_SUPPORTED_STAGES_KHR 0x9533 #define GL_SUBPIXEL_BITS 0x0D50 #define GL_SUBTRACT 0x84E7 #define GL_SUBTRACT_ARB 0x84E7 #define GL_SYNC_CL_EVENT_ARB 0x8240 #define GL_SYNC_CL_EVENT_COMPLETE_ARB 0x8241 #define GL_SYNC_CONDITION 0x9113 #define GL_SYNC_FENCE 0x9116 #define GL_SYNC_FLAGS 0x9115 #define GL_SYNC_FLUSH_COMMANDS_BIT 0x00000001 #define GL_SYNC_GPU_COMMANDS_COMPLETE 0x9117 #define GL_SYNC_STATUS 0x9114 #define GL_T 0x2001 #define GL_T2F_C3F_V3F 0x2A2A #define GL_T2F_C4F_N3F_V3F 0x2A2C #define GL_T2F_C4UB_V3F 0x2A29 #define GL_T2F_N3F_V3F 0x2A2B #define GL_T2F_V3F 0x2A27 #define GL_T4F_C4F_N3F_V4F 0x2A2D #define GL_T4F_V4F 0x2A28 #define GL_TABLE_TOO_LARGE 0x8031 #define GL_TESS_CONTROL_OUTPUT_VERTICES 0x8E75 #define GL_TESS_CONTROL_SHADER 0x8E88 #define GL_TESS_CONTROL_SHADER_BIT 0x00000008 #define GL_TESS_CONTROL_SHADER_PATCHES 0x82F1 #define GL_TESS_CONTROL_SHADER_PATCHES_ARB 0x82F1 #define GL_TESS_CONTROL_SUBROUTINE 0x92E9 #define GL_TESS_CONTROL_SUBROUTINE_UNIFORM 0x92EF #define GL_TESS_CONTROL_TEXTURE 0x829C #define GL_TESS_EVALUATION_SHADER 0x8E87 #define GL_TESS_EVALUATION_SHADER_BIT 0x00000010 #define GL_TESS_EVALUATION_SHADER_INVOCATIONS 0x82F2 #define GL_TESS_EVALUATION_SHADER_INVOCATIONS_ARB 0x82F2 #define GL_TESS_EVALUATION_SUBROUTINE 0x92EA #define GL_TESS_EVALUATION_SUBROUTINE_UNIFORM 0x92F0 #define GL_TESS_EVALUATION_TEXTURE 0x829D #define GL_TESS_GEN_MODE 0x8E76 #define GL_TESS_GEN_POINT_MODE 0x8E79 #define GL_TESS_GEN_SPACING 0x8E77 #define GL_TESS_GEN_VERTEX_ORDER 0x8E78 #define GL_TEXTURE 0x1702 #define GL_TEXTURE0 0x84C0 #define GL_TEXTURE0_ARB 0x84C0 #define GL_TEXTURE1 0x84C1 #define GL_TEXTURE10 0x84CA #define GL_TEXTURE10_ARB 0x84CA #define GL_TEXTURE11 0x84CB #define GL_TEXTURE11_ARB 0x84CB #define GL_TEXTURE12 0x84CC #define GL_TEXTURE12_ARB 0x84CC #define GL_TEXTURE13 0x84CD #define GL_TEXTURE13_ARB 0x84CD #define GL_TEXTURE14 0x84CE #define GL_TEXTURE14_ARB 0x84CE #define GL_TEXTURE15 0x84CF #define GL_TEXTURE15_ARB 0x84CF #define GL_TEXTURE16 0x84D0 #define GL_TEXTURE16_ARB 0x84D0 #define GL_TEXTURE17 0x84D1 #define GL_TEXTURE17_ARB 0x84D1 #define GL_TEXTURE18 0x84D2 #define GL_TEXTURE18_ARB 0x84D2 #define GL_TEXTURE19 0x84D3 #define GL_TEXTURE19_ARB 0x84D3 #define GL_TEXTURE1_ARB 0x84C1 #define GL_TEXTURE2 0x84C2 #define GL_TEXTURE20 0x84D4 #define GL_TEXTURE20_ARB 0x84D4 #define GL_TEXTURE21 0x84D5 #define GL_TEXTURE21_ARB 0x84D5 #define GL_TEXTURE22 0x84D6 #define GL_TEXTURE22_ARB 0x84D6 #define GL_TEXTURE23 0x84D7 #define GL_TEXTURE23_ARB 0x84D7 #define GL_TEXTURE24 0x84D8 #define GL_TEXTURE24_ARB 0x84D8 #define GL_TEXTURE25 0x84D9 #define GL_TEXTURE25_ARB 0x84D9 #define GL_TEXTURE26 0x84DA #define GL_TEXTURE26_ARB 0x84DA #define GL_TEXTURE27 0x84DB #define GL_TEXTURE27_ARB 0x84DB #define GL_TEXTURE28 0x84DC #define GL_TEXTURE28_ARB 0x84DC #define GL_TEXTURE29 0x84DD #define GL_TEXTURE29_ARB 0x84DD #define GL_TEXTURE2_ARB 0x84C2 #define GL_TEXTURE3 0x84C3 #define GL_TEXTURE30 0x84DE #define GL_TEXTURE30_ARB 0x84DE #define GL_TEXTURE31 0x84DF #define GL_TEXTURE31_ARB 0x84DF #define GL_TEXTURE3_ARB 0x84C3 #define GL_TEXTURE4 0x84C4 #define GL_TEXTURE4_ARB 0x84C4 #define GL_TEXTURE5 0x84C5 #define GL_TEXTURE5_ARB 0x84C5 #define GL_TEXTURE6 0x84C6 #define GL_TEXTURE6_ARB 0x84C6 #define GL_TEXTURE7 0x84C7 #define GL_TEXTURE7_ARB 0x84C7 #define GL_TEXTURE8 0x84C8 #define GL_TEXTURE8_ARB 0x84C8 #define GL_TEXTURE9 0x84C9 #define GL_TEXTURE9_ARB 0x84C9 #define GL_TEXTURE_1D 0x0DE0 #define GL_TEXTURE_1D_ARRAY 0x8C18 #define GL_TEXTURE_2D 0x0DE1 #define GL_TEXTURE_2D_ARRAY 0x8C1A #define GL_TEXTURE_2D_MULTISAMPLE 0x9100 #define GL_TEXTURE_2D_MULTISAMPLE_ARRAY 0x9102 #define GL_TEXTURE_3D 0x806F #define GL_TEXTURE_ALPHA_SIZE 0x805F #define GL_TEXTURE_ALPHA_TYPE 0x8C13 #define GL_TEXTURE_ALPHA_TYPE_ARB 0x8C13 #define GL_TEXTURE_BASE_LEVEL 0x813C #define GL_TEXTURE_BINDING_1D 0x8068 #define GL_TEXTURE_BINDING_1D_ARRAY 0x8C1C #define GL_TEXTURE_BINDING_2D 0x8069 #define GL_TEXTURE_BINDING_2D_ARRAY 0x8C1D #define GL_TEXTURE_BINDING_2D_MULTISAMPLE 0x9104 #define GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY 0x9105 #define GL_TEXTURE_BINDING_3D 0x806A #define GL_TEXTURE_BINDING_BUFFER 0x8C2C #define GL_TEXTURE_BINDING_BUFFER_ARB 0x8C2C #define GL_TEXTURE_BINDING_CUBE_MAP 0x8514 #define GL_TEXTURE_BINDING_CUBE_MAP_ARB 0x8514 #define GL_TEXTURE_BINDING_CUBE_MAP_ARRAY 0x900A #define GL_TEXTURE_BINDING_CUBE_MAP_ARRAY_ARB 0x900A #define GL_TEXTURE_BINDING_RECTANGLE 0x84F6 #define GL_TEXTURE_BINDING_RECTANGLE_ARB 0x84F6 #define GL_TEXTURE_BIT 0x00040000 #define GL_TEXTURE_BLUE_SIZE 0x805E #define GL_TEXTURE_BLUE_TYPE 0x8C12 #define GL_TEXTURE_BLUE_TYPE_ARB 0x8C12 #define GL_TEXTURE_BORDER 0x1005 #define GL_TEXTURE_BORDER_COLOR 0x1004 #define GL_TEXTURE_BUFFER 0x8C2A #define GL_TEXTURE_BUFFER_ARB 0x8C2A #define GL_TEXTURE_BUFFER_DATA_STORE_BINDING 0x8C2D #define GL_TEXTURE_BUFFER_DATA_STORE_BINDING_ARB 0x8C2D #define GL_TEXTURE_BUFFER_FORMAT_ARB 0x8C2E #define GL_TEXTURE_BUFFER_OFFSET 0x919D #define GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT 0x919F #define GL_TEXTURE_BUFFER_SIZE 0x919E #define GL_TEXTURE_COMPARE_FAIL_VALUE_ARB 0x80BF #define GL_TEXTURE_COMPARE_FUNC 0x884D #define GL_TEXTURE_COMPARE_FUNC_ARB 0x884D #define GL_TEXTURE_COMPARE_MODE 0x884C #define GL_TEXTURE_COMPARE_MODE_ARB 0x884C #define GL_TEXTURE_COMPONENTS 0x1003 #define GL_TEXTURE_COMPRESSED 0x86A1 #define GL_TEXTURE_COMPRESSED_ARB 0x86A1 #define GL_TEXTURE_COMPRESSED_BLOCK_HEIGHT 0x82B2 #define GL_TEXTURE_COMPRESSED_BLOCK_SIZE 0x82B3 #define GL_TEXTURE_COMPRESSED_BLOCK_WIDTH 0x82B1 #define GL_TEXTURE_COMPRESSED_IMAGE_SIZE 0x86A0 #define GL_TEXTURE_COMPRESSED_IMAGE_SIZE_ARB 0x86A0 #define GL_TEXTURE_COMPRESSION_HINT 0x84EF #define GL_TEXTURE_COMPRESSION_HINT_ARB 0x84EF #define GL_TEXTURE_COORD_ARRAY 0x8078 #define GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING 0x889A #define GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB 0x889A #define GL_TEXTURE_COORD_ARRAY_POINTER 0x8092 #define GL_TEXTURE_COORD_ARRAY_SIZE 0x8088 #define GL_TEXTURE_COORD_ARRAY_STRIDE 0x808A #define GL_TEXTURE_COORD_ARRAY_TYPE 0x8089 #define GL_TEXTURE_CUBE_MAP 0x8513 #define GL_TEXTURE_CUBE_MAP_ARB 0x8513 #define GL_TEXTURE_CUBE_MAP_ARRAY 0x9009 #define GL_TEXTURE_CUBE_MAP_ARRAY_ARB 0x9009 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_X 0x8516 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB 0x8516 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Y 0x8518 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB 0x8518 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Z 0x851A #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB 0x851A #define GL_TEXTURE_CUBE_MAP_POSITIVE_X 0x8515 #define GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB 0x8515 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Y 0x8517 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB 0x8517 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Z 0x8519 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB 0x8519 #define GL_TEXTURE_CUBE_MAP_SEAMLESS 0x884F #define GL_TEXTURE_DEPTH 0x8071 #define GL_TEXTURE_DEPTH_SIZE 0x884A #define GL_TEXTURE_DEPTH_SIZE_ARB 0x884A #define GL_TEXTURE_DEPTH_TYPE 0x8C16 #define GL_TEXTURE_DEPTH_TYPE_ARB 0x8C16 #define GL_TEXTURE_ENV 0x2300 #define GL_TEXTURE_ENV_COLOR 0x2201 #define GL_TEXTURE_ENV_MODE 0x2200 #define GL_TEXTURE_FETCH_BARRIER_BIT 0x00000008 #define GL_TEXTURE_FILTER_CONTROL 0x8500 #define GL_TEXTURE_FIXED_SAMPLE_LOCATIONS 0x9107 #define GL_TEXTURE_GATHER 0x82A2 #define GL_TEXTURE_GATHER_SHADOW 0x82A3 #define GL_TEXTURE_GEN_MODE 0x2500 #define GL_TEXTURE_GEN_Q 0x0C63 #define GL_TEXTURE_GEN_R 0x0C62 #define GL_TEXTURE_GEN_S 0x0C60 #define GL_TEXTURE_GEN_T 0x0C61 #define GL_TEXTURE_GREEN_SIZE 0x805D #define GL_TEXTURE_GREEN_TYPE 0x8C11 #define GL_TEXTURE_GREEN_TYPE_ARB 0x8C11 #define GL_TEXTURE_HEIGHT 0x1001 #define GL_TEXTURE_IMAGE_FORMAT 0x828F #define GL_TEXTURE_IMAGE_TYPE 0x8290 #define GL_TEXTURE_IMMUTABLE_FORMAT 0x912F #define GL_TEXTURE_IMMUTABLE_LEVELS 0x82DF #define GL_TEXTURE_INTENSITY_SIZE 0x8061 #define GL_TEXTURE_INTENSITY_TYPE 0x8C15 #define GL_TEXTURE_INTENSITY_TYPE_ARB 0x8C15 #define GL_TEXTURE_INTERNAL_FORMAT 0x1003 #define GL_TEXTURE_LOD_BIAS 0x8501 #define GL_TEXTURE_LUMINANCE_SIZE 0x8060 #define GL_TEXTURE_LUMINANCE_TYPE 0x8C14 #define GL_TEXTURE_LUMINANCE_TYPE_ARB 0x8C14 #define GL_TEXTURE_MAG_FILTER 0x2800 #define GL_TEXTURE_MATRIX 0x0BA8 #define GL_TEXTURE_MAX_ANISOTROPY 0x84FE #define GL_TEXTURE_MAX_LEVEL 0x813D #define GL_TEXTURE_MAX_LOD 0x813B #define GL_TEXTURE_MIN_FILTER 0x2801 #define GL_TEXTURE_MIN_LOD 0x813A #define GL_TEXTURE_PRIORITY 0x8066 #define GL_TEXTURE_RECTANGLE 0x84F5 #define GL_TEXTURE_RECTANGLE_ARB 0x84F5 #define GL_TEXTURE_REDUCTION_MODE_ARB 0x9366 #define GL_TEXTURE_RED_SIZE 0x805C #define GL_TEXTURE_RED_TYPE 0x8C10 #define GL_TEXTURE_RED_TYPE_ARB 0x8C10 #define GL_TEXTURE_RESIDENT 0x8067 #define GL_TEXTURE_SAMPLES 0x9106 #define GL_TEXTURE_SHADOW 0x82A1 #define GL_TEXTURE_SHARED_SIZE 0x8C3F #define GL_TEXTURE_SPARSE_ARB 0x91A6 #define GL_TEXTURE_STACK_DEPTH 0x0BA5 #define GL_TEXTURE_STENCIL_SIZE 0x88F1 #define GL_TEXTURE_SWIZZLE_A 0x8E45 #define GL_TEXTURE_SWIZZLE_B 0x8E44 #define GL_TEXTURE_SWIZZLE_G 0x8E43 #define GL_TEXTURE_SWIZZLE_R 0x8E42 #define GL_TEXTURE_SWIZZLE_RGBA 0x8E46 #define GL_TEXTURE_TARGET 0x1006 #define GL_TEXTURE_UPDATE_BARRIER_BIT 0x00000100 #define GL_TEXTURE_VIEW 0x82B5 #define GL_TEXTURE_VIEW_MIN_LAYER 0x82DD #define GL_TEXTURE_VIEW_MIN_LEVEL 0x82DB #define GL_TEXTURE_VIEW_NUM_LAYERS 0x82DE #define GL_TEXTURE_VIEW_NUM_LEVELS 0x82DC #define GL_TEXTURE_WIDTH 0x1000 #define GL_TEXTURE_WRAP_R 0x8072 #define GL_TEXTURE_WRAP_S 0x2802 #define GL_TEXTURE_WRAP_T 0x2803 #define GL_TIMEOUT_EXPIRED 0x911B #define GL_TIMEOUT_IGNORED 0xFFFFFFFFFFFFFFFF #define GL_TIMESTAMP 0x8E28 #define GL_TIME_ELAPSED 0x88BF #define GL_TOP_LEVEL_ARRAY_SIZE 0x930C #define GL_TOP_LEVEL_ARRAY_STRIDE 0x930D #define GL_TRANSFORM_BIT 0x00001000 #define GL_TRANSFORM_FEEDBACK 0x8E22 #define GL_TRANSFORM_FEEDBACK_BARRIER_BIT 0x00000800 #define GL_TRANSFORM_FEEDBACK_BINDING 0x8E25 #define GL_TRANSFORM_FEEDBACK_BUFFER 0x8C8E #define GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE 0x8E24 #define GL_TRANSFORM_FEEDBACK_BUFFER_BINDING 0x8C8F #define GL_TRANSFORM_FEEDBACK_BUFFER_INDEX 0x934B #define GL_TRANSFORM_FEEDBACK_BUFFER_MODE 0x8C7F #define GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED 0x8E23 #define GL_TRANSFORM_FEEDBACK_BUFFER_SIZE 0x8C85 #define GL_TRANSFORM_FEEDBACK_BUFFER_START 0x8C84 #define GL_TRANSFORM_FEEDBACK_BUFFER_STRIDE 0x934C #define GL_TRANSFORM_FEEDBACK_OVERFLOW 0x82EC #define GL_TRANSFORM_FEEDBACK_OVERFLOW_ARB 0x82EC #define GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN 0x8C88 #define GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW 0x82ED #define GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW_ARB 0x82ED #define GL_TRANSFORM_FEEDBACK_VARYING 0x92F4 #define GL_TRANSFORM_FEEDBACK_VARYINGS 0x8C83 #define GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH 0x8C76 #define GL_TRANSPOSE_COLOR_MATRIX 0x84E6 #define GL_TRANSPOSE_COLOR_MATRIX_ARB 0x84E6 #define GL_TRANSPOSE_CURRENT_MATRIX_ARB 0x88B7 #define GL_TRANSPOSE_MODELVIEW_MATRIX 0x84E3 #define GL_TRANSPOSE_MODELVIEW_MATRIX_ARB 0x84E3 #define GL_TRANSPOSE_PROJECTION_MATRIX 0x84E4 #define GL_TRANSPOSE_PROJECTION_MATRIX_ARB 0x84E4 #define GL_TRANSPOSE_TEXTURE_MATRIX 0x84E5 #define GL_TRANSPOSE_TEXTURE_MATRIX_ARB 0x84E5 #define GL_TRIANGLES 0x0004 #define GL_TRIANGLES_ADJACENCY 0x000C #define GL_TRIANGLES_ADJACENCY_ARB 0x000C #define GL_TRIANGLE_FAN 0x0006 #define GL_TRIANGLE_STRIP 0x0005 #define GL_TRIANGLE_STRIP_ADJACENCY 0x000D #define GL_TRIANGLE_STRIP_ADJACENCY_ARB 0x000D #define GL_TRUE 1 #define GL_TYPE 0x92FA #define GL_UNDEFINED_VERTEX 0x8260 #define GL_UNIFORM 0x92E1 #define GL_UNIFORM_ARRAY_STRIDE 0x8A3C #define GL_UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX 0x92DA #define GL_UNIFORM_BARRIER_BIT 0x00000004 #define GL_UNIFORM_BLOCK 0x92E2 #define GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS 0x8A42 #define GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES 0x8A43 #define GL_UNIFORM_BLOCK_BINDING 0x8A3F #define GL_UNIFORM_BLOCK_DATA_SIZE 0x8A40 #define GL_UNIFORM_BLOCK_INDEX 0x8A3A #define GL_UNIFORM_BLOCK_NAME_LENGTH 0x8A41 #define GL_UNIFORM_BLOCK_REFERENCED_BY_COMPUTE_SHADER 0x90EC #define GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER 0x8A46 #define GL_UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER 0x8A45 #define GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_CONTROL_SHADER 0x84F0 #define GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER 0x84F1 #define GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER 0x8A44 #define GL_UNIFORM_BUFFER 0x8A11 #define GL_UNIFORM_BUFFER_BINDING 0x8A28 #define GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT 0x8A34 #define GL_UNIFORM_BUFFER_SIZE 0x8A2A #define GL_UNIFORM_BUFFER_START 0x8A29 #define GL_UNIFORM_IS_ROW_MAJOR 0x8A3E #define GL_UNIFORM_MATRIX_STRIDE 0x8A3D #define GL_UNIFORM_NAME_LENGTH 0x8A39 #define GL_UNIFORM_OFFSET 0x8A3B #define GL_UNIFORM_SIZE 0x8A38 #define GL_UNIFORM_TYPE 0x8A37 #define GL_UNKNOWN_CONTEXT_RESET 0x8255 #define GL_UNKNOWN_CONTEXT_RESET_ARB 0x8255 #define GL_UNPACK_ALIGNMENT 0x0CF5 #define GL_UNPACK_COMPRESSED_BLOCK_DEPTH 0x9129 #define GL_UNPACK_COMPRESSED_BLOCK_HEIGHT 0x9128 #define GL_UNPACK_COMPRESSED_BLOCK_SIZE 0x912A #define GL_UNPACK_COMPRESSED_BLOCK_WIDTH 0x9127 #define GL_UNPACK_IMAGE_HEIGHT 0x806E #define GL_UNPACK_LSB_FIRST 0x0CF1 #define GL_UNPACK_ROW_LENGTH 0x0CF2 #define GL_UNPACK_SKIP_IMAGES 0x806D #define GL_UNPACK_SKIP_PIXELS 0x0CF4 #define GL_UNPACK_SKIP_ROWS 0x0CF3 #define GL_UNPACK_SWAP_BYTES 0x0CF0 #define GL_UNSIGNALED 0x9118 #define GL_UNSIGNED_BYTE 0x1401 #define GL_UNSIGNED_BYTE_2_3_3_REV 0x8362 #define GL_UNSIGNED_BYTE_3_3_2 0x8032 #define GL_UNSIGNED_INT 0x1405 #define GL_UNSIGNED_INT64_ARB 0x140F #define GL_UNSIGNED_INT64_VEC2_ARB 0x8FF5 #define GL_UNSIGNED_INT64_VEC3_ARB 0x8FF6 #define GL_UNSIGNED_INT64_VEC4_ARB 0x8FF7 #define GL_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B #define GL_UNSIGNED_INT_10_10_10_2 0x8036 #define GL_UNSIGNED_INT_24_8 0x84FA #define GL_UNSIGNED_INT_2_10_10_10_REV 0x8368 #define GL_UNSIGNED_INT_5_9_9_9_REV 0x8C3E #define GL_UNSIGNED_INT_8_8_8_8 0x8035 #define GL_UNSIGNED_INT_8_8_8_8_REV 0x8367 #define GL_UNSIGNED_INT_ATOMIC_COUNTER 0x92DB #define GL_UNSIGNED_INT_IMAGE_1D 0x9062 #define GL_UNSIGNED_INT_IMAGE_1D_ARRAY 0x9068 #define GL_UNSIGNED_INT_IMAGE_2D 0x9063 #define GL_UNSIGNED_INT_IMAGE_2D_ARRAY 0x9069 #define GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE 0x906B #define GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY 0x906C #define GL_UNSIGNED_INT_IMAGE_2D_RECT 0x9065 #define GL_UNSIGNED_INT_IMAGE_3D 0x9064 #define GL_UNSIGNED_INT_IMAGE_BUFFER 0x9067 #define GL_UNSIGNED_INT_IMAGE_CUBE 0x9066 #define GL_UNSIGNED_INT_IMAGE_CUBE_MAP_ARRAY 0x906A #define GL_UNSIGNED_INT_SAMPLER_1D 0x8DD1 #define GL_UNSIGNED_INT_SAMPLER_1D_ARRAY 0x8DD6 #define GL_UNSIGNED_INT_SAMPLER_2D 0x8DD2 #define GL_UNSIGNED_INT_SAMPLER_2D_ARRAY 0x8DD7 #define GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE 0x910A #define GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY 0x910D #define GL_UNSIGNED_INT_SAMPLER_2D_RECT 0x8DD5 #define GL_UNSIGNED_INT_SAMPLER_3D 0x8DD3 #define GL_UNSIGNED_INT_SAMPLER_BUFFER 0x8DD8 #define GL_UNSIGNED_INT_SAMPLER_CUBE 0x8DD4 #define GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY_ARB 0x900F #define GL_UNSIGNED_INT_VEC2 0x8DC6 #define GL_UNSIGNED_INT_VEC3 0x8DC7 #define GL_UNSIGNED_INT_VEC4 0x8DC8 #define GL_UNSIGNED_NORMALIZED 0x8C17 #define GL_UNSIGNED_NORMALIZED_ARB 0x8C17 #define GL_UNSIGNED_SHORT 0x1403 #define GL_UNSIGNED_SHORT_1_5_5_5_REV 0x8366 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #define GL_UNSIGNED_SHORT_4_4_4_4_REV 0x8365 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_6_5_REV 0x8364 #define GL_UPPER_LEFT 0x8CA2 #define GL_V2F 0x2A20 #define GL_V3F 0x2A21 #define GL_VALIDATE_STATUS 0x8B83 #define GL_VENDOR 0x1F00 #define GL_VERSION 0x1F02 #define GL_VERTEX_ARRAY 0x8074 #define GL_VERTEX_ARRAY_BINDING 0x85B5 #define GL_VERTEX_ARRAY_BUFFER_BINDING 0x8896 #define GL_VERTEX_ARRAY_BUFFER_BINDING_ARB 0x8896 #define GL_VERTEX_ARRAY_POINTER 0x808E #define GL_VERTEX_ARRAY_SIZE 0x807A #define GL_VERTEX_ARRAY_STRIDE 0x807C #define GL_VERTEX_ARRAY_TYPE 0x807B #define GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT 0x00000001 #define GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING 0x889F #define GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING_ARB 0x889F #define GL_VERTEX_ATTRIB_ARRAY_DIVISOR 0x88FE #define GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ARB 0x88FE #define GL_VERTEX_ATTRIB_ARRAY_ENABLED 0x8622 #define GL_VERTEX_ATTRIB_ARRAY_ENABLED_ARB 0x8622 #define GL_VERTEX_ATTRIB_ARRAY_INTEGER 0x88FD #define GL_VERTEX_ATTRIB_ARRAY_NORMALIZED 0x886A #define GL_VERTEX_ATTRIB_ARRAY_NORMALIZED_ARB 0x886A #define GL_VERTEX_ATTRIB_ARRAY_POINTER 0x8645 #define GL_VERTEX_ATTRIB_ARRAY_POINTER_ARB 0x8645 #define GL_VERTEX_ATTRIB_ARRAY_SIZE 0x8623 #define GL_VERTEX_ATTRIB_ARRAY_SIZE_ARB 0x8623 #define GL_VERTEX_ATTRIB_ARRAY_STRIDE 0x8624 #define GL_VERTEX_ATTRIB_ARRAY_STRIDE_ARB 0x8624 #define GL_VERTEX_ATTRIB_ARRAY_TYPE 0x8625 #define GL_VERTEX_ATTRIB_ARRAY_TYPE_ARB 0x8625 #define GL_VERTEX_ATTRIB_BINDING 0x82D4 #define GL_VERTEX_ATTRIB_RELATIVE_OFFSET 0x82D5 #define GL_VERTEX_BINDING_DIVISOR 0x82D6 #define GL_VERTEX_BINDING_OFFSET 0x82D7 #define GL_VERTEX_BINDING_STRIDE 0x82D8 #define GL_VERTEX_BLEND_ARB 0x86A7 #define GL_VERTEX_PROGRAM_ARB 0x8620 #define GL_VERTEX_PROGRAM_POINT_SIZE 0x8642 #define GL_VERTEX_PROGRAM_POINT_SIZE_ARB 0x8642 #define GL_VERTEX_PROGRAM_TWO_SIDE 0x8643 #define GL_VERTEX_PROGRAM_TWO_SIDE_ARB 0x8643 #define GL_VERTEX_SHADER 0x8B31 #define GL_VERTEX_SHADER_ARB 0x8B31 #define GL_VERTEX_SHADER_BIT 0x00000001 #define GL_VERTEX_SHADER_INVOCATIONS 0x82F0 #define GL_VERTEX_SHADER_INVOCATIONS_ARB 0x82F0 #define GL_VERTEX_SUBROUTINE 0x92E8 #define GL_VERTEX_SUBROUTINE_UNIFORM 0x92EE #define GL_VERTEX_TEXTURE 0x829B #define GL_VERTICES_SUBMITTED 0x82EE #define GL_VERTICES_SUBMITTED_ARB 0x82EE #define GL_VIEWPORT 0x0BA2 #define GL_VIEWPORT_BIT 0x00000800 #define GL_VIEWPORT_BOUNDS_RANGE 0x825D #define GL_VIEWPORT_INDEX_PROVOKING_VERTEX 0x825F #define GL_VIEWPORT_SUBPIXEL_BITS 0x825C #define GL_VIEW_CLASS_128_BITS 0x82C4 #define GL_VIEW_CLASS_16_BITS 0x82CA #define GL_VIEW_CLASS_24_BITS 0x82C9 #define GL_VIEW_CLASS_32_BITS 0x82C8 #define GL_VIEW_CLASS_48_BITS 0x82C7 #define GL_VIEW_CLASS_64_BITS 0x82C6 #define GL_VIEW_CLASS_8_BITS 0x82CB #define GL_VIEW_CLASS_96_BITS 0x82C5 #define GL_VIEW_CLASS_ASTC_10x10_RGBA 0x9393 #define GL_VIEW_CLASS_ASTC_10x5_RGBA 0x9390 #define GL_VIEW_CLASS_ASTC_10x6_RGBA 0x9391 #define GL_VIEW_CLASS_ASTC_10x8_RGBA 0x9392 #define GL_VIEW_CLASS_ASTC_12x10_RGBA 0x9394 #define GL_VIEW_CLASS_ASTC_12x12_RGBA 0x9395 #define GL_VIEW_CLASS_ASTC_4x4_RGBA 0x9388 #define GL_VIEW_CLASS_ASTC_5x4_RGBA 0x9389 #define GL_VIEW_CLASS_ASTC_5x5_RGBA 0x938A #define GL_VIEW_CLASS_ASTC_6x5_RGBA 0x938B #define GL_VIEW_CLASS_ASTC_6x6_RGBA 0x938C #define GL_VIEW_CLASS_ASTC_8x5_RGBA 0x938D #define GL_VIEW_CLASS_ASTC_8x6_RGBA 0x938E #define GL_VIEW_CLASS_ASTC_8x8_RGBA 0x938F #define GL_VIEW_CLASS_BPTC_FLOAT 0x82D3 #define GL_VIEW_CLASS_BPTC_UNORM 0x82D2 #define GL_VIEW_CLASS_EAC_R11 0x9383 #define GL_VIEW_CLASS_EAC_RG11 0x9384 #define GL_VIEW_CLASS_ETC2_EAC_RGBA 0x9387 #define GL_VIEW_CLASS_ETC2_RGB 0x9385 #define GL_VIEW_CLASS_ETC2_RGBA 0x9386 #define GL_VIEW_CLASS_RGTC1_RED 0x82D0 #define GL_VIEW_CLASS_RGTC2_RG 0x82D1 #define GL_VIEW_CLASS_S3TC_DXT1_RGB 0x82CC #define GL_VIEW_CLASS_S3TC_DXT1_RGBA 0x82CD #define GL_VIEW_CLASS_S3TC_DXT3_RGBA 0x82CE #define GL_VIEW_CLASS_S3TC_DXT5_RGBA 0x82CF #define GL_VIEW_COMPATIBILITY_CLASS 0x82B6 #define GL_VIRTUAL_PAGE_SIZE_INDEX_ARB 0x91A7 #define GL_VIRTUAL_PAGE_SIZE_X_ARB 0x9195 #define GL_VIRTUAL_PAGE_SIZE_Y_ARB 0x9196 #define GL_VIRTUAL_PAGE_SIZE_Z_ARB 0x9197 #define GL_WAIT_FAILED 0x911D #define GL_WEIGHTED_AVERAGE_ARB 0x9367 #define GL_WEIGHT_ARRAY_ARB 0x86AD #define GL_WEIGHT_ARRAY_BUFFER_BINDING 0x889E #define GL_WEIGHT_ARRAY_BUFFER_BINDING_ARB 0x889E #define GL_WEIGHT_ARRAY_POINTER_ARB 0x86AC #define GL_WEIGHT_ARRAY_SIZE_ARB 0x86AB #define GL_WEIGHT_ARRAY_STRIDE_ARB 0x86AA #define GL_WEIGHT_ARRAY_TYPE_ARB 0x86A9 #define GL_WEIGHT_SUM_UNITY_ARB 0x86A6 #define GL_WRITE_ONLY 0x88B9 #define GL_WRITE_ONLY_ARB 0x88B9 #define GL_XOR 0x1506 #define GL_ZERO 0 #define GL_ZERO_TO_ONE 0x935F #define GL_ZOOM_X 0x0D16 #define GL_ZOOM_Y 0x0D17 #ifndef __khrplatform_h_ #define __khrplatform_h_ /* ** Copyright (c) 2008-2018 The Khronos Group Inc. ** ** Permission is hereby granted, free of charge, to any person obtaining a ** copy of this software and/or associated documentation files (the ** "Materials"), to deal in the Materials without restriction, including ** without limitation the rights to use, copy, modify, merge, publish, ** distribute, sublicense, and/or sell copies of the Materials, and to ** permit persons to whom the Materials are furnished to do so, subject to ** the following conditions: ** ** The above copyright notice and this permission notice shall be included ** in all copies or substantial portions of the Materials. ** ** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. */ /* Khronos platform-specific types and definitions. * * The master copy of khrplatform.h is maintained in the Khronos EGL * Registry repository at https://github.com/KhronosGroup/EGL-Registry * The last semantic modification to khrplatform.h was at commit ID: * 67a3e0864c2d75ea5287b9f3d2eb74a745936692 * * Adopters may modify this file to suit their platform. Adopters are * encouraged to submit platform specific modifications to the Khronos * group so that they can be included in future versions of this file. * Please submit changes by filing pull requests or issues on * the EGL Registry repository linked above. * * * See the Implementer's Guidelines for information about where this file * should be located on your system and for more details of its use: * http://www.khronos.org/registry/implementers_guide.pdf * * This file should be included as * #include * by Khronos client API header files that use its types and defines. * * The types in khrplatform.h should only be used to define API-specific types. * * Types defined in khrplatform.h: * khronos_int8_t signed 8 bit * khronos_uint8_t unsigned 8 bit * khronos_int16_t signed 16 bit * khronos_uint16_t unsigned 16 bit * khronos_int32_t signed 32 bit * khronos_uint32_t unsigned 32 bit * khronos_int64_t signed 64 bit * khronos_uint64_t unsigned 64 bit * khronos_intptr_t signed same number of bits as a pointer * khronos_uintptr_t unsigned same number of bits as a pointer * khronos_ssize_t signed size * khronos_usize_t unsigned size * khronos_float_t signed 32 bit floating point * khronos_time_ns_t unsigned 64 bit time in nanoseconds * khronos_utime_nanoseconds_t unsigned time interval or absolute time in * nanoseconds * khronos_stime_nanoseconds_t signed time interval in nanoseconds * khronos_boolean_enum_t enumerated boolean type. This should * only be used as a base type when a client API's boolean type is * an enum. Client APIs which use an integer or other type for * booleans cannot use this as the base type for their boolean. * * Tokens defined in khrplatform.h: * * KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values. * * KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0. * KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0. * * Calling convention macros defined in this file: * KHRONOS_APICALL * KHRONOS_GLAD_API_PTR * KHRONOS_APIATTRIBUTES * * These may be used in function prototypes as: * * KHRONOS_APICALL void KHRONOS_GLAD_API_PTR funcname( * int arg1, * int arg2) KHRONOS_APIATTRIBUTES; */ #if defined(__SCITECH_SNAP__) && !defined(KHRONOS_STATIC) # define KHRONOS_STATIC 1 #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_APICALL *------------------------------------------------------------------------- * This precedes the return type of the function in the function prototype. */ #if defined(KHRONOS_STATIC) /* If the preprocessor constant KHRONOS_STATIC is defined, make the * header compatible with static linking. */ # define KHRONOS_APICALL #elif defined(_WIN32) # define KHRONOS_APICALL __declspec(dllimport) #elif defined (__SYMBIAN32__) # define KHRONOS_APICALL IMPORT_C #elif defined(__ANDROID__) # define KHRONOS_APICALL __attribute__((visibility("default"))) #else # define KHRONOS_APICALL #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_GLAD_API_PTR *------------------------------------------------------------------------- * This follows the return type of the function and precedes the function * name in the function prototype. */ #if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(KHRONOS_STATIC) /* Win32 but not WinCE */ # define KHRONOS_GLAD_API_PTR __stdcall #else # define KHRONOS_GLAD_API_PTR #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_APIATTRIBUTES *------------------------------------------------------------------------- * This follows the closing parenthesis of the function prototype arguments. */ #if defined (__ARMCC_2__) #define KHRONOS_APIATTRIBUTES __softfp #else #define KHRONOS_APIATTRIBUTES #endif /*------------------------------------------------------------------------- * basic type definitions *-----------------------------------------------------------------------*/ #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__) /* * Using */ #include typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(__VMS ) || defined(__sgi) /* * Using */ #include typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(_WIN32) && !defined(__SCITECH_SNAP__) /* * Win32 */ typedef __int32 khronos_int32_t; typedef unsigned __int32 khronos_uint32_t; typedef __int64 khronos_int64_t; typedef unsigned __int64 khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(__sun__) || defined(__digital__) /* * Sun or Digital */ typedef int khronos_int32_t; typedef unsigned int khronos_uint32_t; #if defined(__arch64__) || defined(_LP64) typedef long int khronos_int64_t; typedef unsigned long int khronos_uint64_t; #else typedef long long int khronos_int64_t; typedef unsigned long long int khronos_uint64_t; #endif /* __arch64__ */ #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif 0 /* * Hypothetical platform with no float or int64 support */ typedef int khronos_int32_t; typedef unsigned int khronos_uint32_t; #define KHRONOS_SUPPORT_INT64 0 #define KHRONOS_SUPPORT_FLOAT 0 #else /* * Generic fallback */ #include typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #endif /* * Types that are (so far) the same on all platforms */ typedef signed char khronos_int8_t; typedef unsigned char khronos_uint8_t; typedef signed short int khronos_int16_t; typedef unsigned short int khronos_uint16_t; /* * Types that differ between LLP64 and LP64 architectures - in LLP64, * pointers are 64 bits, but 'long' is still 32 bits. Win64 appears * to be the only LLP64 architecture in current use. */ #ifdef _WIN64 typedef signed long long int khronos_intptr_t; typedef unsigned long long int khronos_uintptr_t; typedef signed long long int khronos_ssize_t; typedef unsigned long long int khronos_usize_t; #else typedef signed long int khronos_intptr_t; typedef unsigned long int khronos_uintptr_t; typedef signed long int khronos_ssize_t; typedef unsigned long int khronos_usize_t; #endif #if KHRONOS_SUPPORT_FLOAT /* * Float type */ typedef float khronos_float_t; #endif #if KHRONOS_SUPPORT_INT64 /* Time types * * These types can be used to represent a time interval in nanoseconds or * an absolute Unadjusted System Time. Unadjusted System Time is the number * of nanoseconds since some arbitrary system event (e.g. since the last * time the system booted). The Unadjusted System Time is an unsigned * 64 bit value that wraps back to 0 every 584 years. Time intervals * may be either signed or unsigned. */ typedef khronos_uint64_t khronos_utime_nanoseconds_t; typedef khronos_int64_t khronos_stime_nanoseconds_t; #endif /* * Dummy value used to pad enum types to 32 bits. */ #ifndef KHRONOS_MAX_ENUM #define KHRONOS_MAX_ENUM 0x7FFFFFFF #endif /* * Enumerated boolean type * * Values other than zero should be considered to be true. Therefore * comparisons should not be made against KHRONOS_TRUE. */ typedef enum { KHRONOS_FALSE = 0, KHRONOS_TRUE = 1, KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM } khronos_boolean_enum_t; #endif /* __khrplatform_h_ */ typedef unsigned int GLenum; typedef unsigned char GLboolean; typedef unsigned int GLbitfield; typedef void GLvoid; typedef khronos_int8_t GLbyte; typedef khronos_uint8_t GLubyte; typedef khronos_int16_t GLshort; typedef khronos_uint16_t GLushort; typedef int GLint; typedef unsigned int GLuint; typedef khronos_int32_t GLclampx; typedef int GLsizei; typedef khronos_float_t GLfloat; typedef khronos_float_t GLclampf; typedef double GLdouble; typedef double GLclampd; typedef void *GLeglClientBufferEXT; typedef void *GLeglImageOES; typedef char GLchar; typedef char GLcharARB; #ifdef __APPLE__ typedef void *GLhandleARB; #else typedef unsigned int GLhandleARB; #endif typedef khronos_uint16_t GLhalf; typedef khronos_uint16_t GLhalfARB; typedef khronos_int32_t GLfixed; #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_intptr_t GLintptr; #else typedef khronos_intptr_t GLintptr; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_intptr_t GLintptrARB; #else typedef khronos_intptr_t GLintptrARB; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_ssize_t GLsizeiptr; #else typedef khronos_ssize_t GLsizeiptr; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_ssize_t GLsizeiptrARB; #else typedef khronos_ssize_t GLsizeiptrARB; #endif typedef khronos_int64_t GLint64; typedef khronos_int64_t GLint64EXT; typedef khronos_uint64_t GLuint64; typedef khronos_uint64_t GLuint64EXT; typedef struct __GLsync *GLsync; struct _cl_context; struct _cl_event; typedef void (GLAD_API_PTR *GLDEBUGPROC)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (GLAD_API_PTR *GLDEBUGPROCARB)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (GLAD_API_PTR *GLDEBUGPROCKHR)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (GLAD_API_PTR *GLDEBUGPROCAMD)(GLuint id,GLenum category,GLenum severity,GLsizei length,const GLchar *message,void *userParam); typedef unsigned short GLhalfNV; typedef GLintptr GLvdpauSurfaceNV; typedef void (GLAD_API_PTR *GLVULKANPROCNV)(void); #define GL_VERSION_1_0 1 GLAD_API_CALL int GLAD_GL_VERSION_1_0; #define GL_VERSION_1_1 1 GLAD_API_CALL int GLAD_GL_VERSION_1_1; #define GL_VERSION_1_2 1 GLAD_API_CALL int GLAD_GL_VERSION_1_2; #define GL_VERSION_1_3 1 GLAD_API_CALL int GLAD_GL_VERSION_1_3; #define GL_VERSION_1_4 1 GLAD_API_CALL int GLAD_GL_VERSION_1_4; #define GL_VERSION_1_5 1 GLAD_API_CALL int GLAD_GL_VERSION_1_5; #define GL_VERSION_2_0 1 GLAD_API_CALL int GLAD_GL_VERSION_2_0; #define GL_VERSION_2_1 1 GLAD_API_CALL int GLAD_GL_VERSION_2_1; #define GL_VERSION_3_0 1 GLAD_API_CALL int GLAD_GL_VERSION_3_0; #define GL_VERSION_3_1 1 GLAD_API_CALL int GLAD_GL_VERSION_3_1; #define GL_VERSION_3_2 1 GLAD_API_CALL int GLAD_GL_VERSION_3_2; #define GL_VERSION_3_3 1 GLAD_API_CALL int GLAD_GL_VERSION_3_3; #define GL_ARB_ES2_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES2_compatibility; #define GL_ARB_ES3_1_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES3_1_compatibility; #define GL_ARB_ES3_2_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES3_2_compatibility; #define GL_ARB_ES3_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES3_compatibility; #define GL_ARB_arrays_of_arrays 1 GLAD_API_CALL int GLAD_GL_ARB_arrays_of_arrays; #define GL_ARB_base_instance 1 GLAD_API_CALL int GLAD_GL_ARB_base_instance; #define GL_ARB_bindless_texture 1 GLAD_API_CALL int GLAD_GL_ARB_bindless_texture; #define GL_ARB_blend_func_extended 1 GLAD_API_CALL int GLAD_GL_ARB_blend_func_extended; #define GL_ARB_buffer_storage 1 GLAD_API_CALL int GLAD_GL_ARB_buffer_storage; #define GL_ARB_cl_event 1 GLAD_API_CALL int GLAD_GL_ARB_cl_event; #define GL_ARB_clear_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_clear_buffer_object; #define GL_ARB_clear_texture 1 GLAD_API_CALL int GLAD_GL_ARB_clear_texture; #define GL_ARB_clip_control 1 GLAD_API_CALL int GLAD_GL_ARB_clip_control; #define GL_ARB_color_buffer_float 1 GLAD_API_CALL int GLAD_GL_ARB_color_buffer_float; #define GL_ARB_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_compatibility; #define GL_ARB_compressed_texture_pixel_storage 1 GLAD_API_CALL int GLAD_GL_ARB_compressed_texture_pixel_storage; #define GL_ARB_compute_shader 1 GLAD_API_CALL int GLAD_GL_ARB_compute_shader; #define GL_ARB_compute_variable_group_size 1 GLAD_API_CALL int GLAD_GL_ARB_compute_variable_group_size; #define GL_ARB_conditional_render_inverted 1 GLAD_API_CALL int GLAD_GL_ARB_conditional_render_inverted; #define GL_ARB_conservative_depth 1 GLAD_API_CALL int GLAD_GL_ARB_conservative_depth; #define GL_ARB_copy_buffer 1 GLAD_API_CALL int GLAD_GL_ARB_copy_buffer; #define GL_ARB_copy_image 1 GLAD_API_CALL int GLAD_GL_ARB_copy_image; #define GL_ARB_cull_distance 1 GLAD_API_CALL int GLAD_GL_ARB_cull_distance; #define GL_ARB_debug_output 1 GLAD_API_CALL int GLAD_GL_ARB_debug_output; #define GL_ARB_depth_buffer_float 1 GLAD_API_CALL int GLAD_GL_ARB_depth_buffer_float; #define GL_ARB_depth_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_depth_clamp; #define GL_ARB_depth_texture 1 GLAD_API_CALL int GLAD_GL_ARB_depth_texture; #define GL_ARB_derivative_control 1 GLAD_API_CALL int GLAD_GL_ARB_derivative_control; #define GL_ARB_direct_state_access 1 GLAD_API_CALL int GLAD_GL_ARB_direct_state_access; #define GL_ARB_draw_buffers 1 GLAD_API_CALL int GLAD_GL_ARB_draw_buffers; #define GL_ARB_draw_buffers_blend 1 GLAD_API_CALL int GLAD_GL_ARB_draw_buffers_blend; #define GL_ARB_draw_elements_base_vertex 1 GLAD_API_CALL int GLAD_GL_ARB_draw_elements_base_vertex; #define GL_ARB_draw_indirect 1 GLAD_API_CALL int GLAD_GL_ARB_draw_indirect; #define GL_ARB_draw_instanced 1 GLAD_API_CALL int GLAD_GL_ARB_draw_instanced; #define GL_ARB_enhanced_layouts 1 GLAD_API_CALL int GLAD_GL_ARB_enhanced_layouts; #define GL_ARB_explicit_attrib_location 1 GLAD_API_CALL int GLAD_GL_ARB_explicit_attrib_location; #define GL_ARB_explicit_uniform_location 1 GLAD_API_CALL int GLAD_GL_ARB_explicit_uniform_location; #define GL_ARB_fragment_coord_conventions 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_coord_conventions; #define GL_ARB_fragment_layer_viewport 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_layer_viewport; #define GL_ARB_fragment_program 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_program; #define GL_ARB_fragment_program_shadow 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_program_shadow; #define GL_ARB_fragment_shader 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_shader; #define GL_ARB_fragment_shader_interlock 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_shader_interlock; #define GL_ARB_framebuffer_no_attachments 1 GLAD_API_CALL int GLAD_GL_ARB_framebuffer_no_attachments; #define GL_ARB_framebuffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_framebuffer_object; #define GL_ARB_framebuffer_sRGB 1 GLAD_API_CALL int GLAD_GL_ARB_framebuffer_sRGB; #define GL_ARB_geometry_shader4 1 GLAD_API_CALL int GLAD_GL_ARB_geometry_shader4; #define GL_ARB_get_program_binary 1 GLAD_API_CALL int GLAD_GL_ARB_get_program_binary; #define GL_ARB_get_texture_sub_image 1 GLAD_API_CALL int GLAD_GL_ARB_get_texture_sub_image; #define GL_ARB_gl_spirv 1 GLAD_API_CALL int GLAD_GL_ARB_gl_spirv; #define GL_ARB_gpu_shader5 1 GLAD_API_CALL int GLAD_GL_ARB_gpu_shader5; #define GL_ARB_gpu_shader_fp64 1 GLAD_API_CALL int GLAD_GL_ARB_gpu_shader_fp64; #define GL_ARB_gpu_shader_int64 1 GLAD_API_CALL int GLAD_GL_ARB_gpu_shader_int64; #define GL_ARB_half_float_pixel 1 GLAD_API_CALL int GLAD_GL_ARB_half_float_pixel; #define GL_ARB_half_float_vertex 1 GLAD_API_CALL int GLAD_GL_ARB_half_float_vertex; #define GL_ARB_imaging 1 GLAD_API_CALL int GLAD_GL_ARB_imaging; #define GL_ARB_indirect_parameters 1 GLAD_API_CALL int GLAD_GL_ARB_indirect_parameters; #define GL_ARB_instanced_arrays 1 GLAD_API_CALL int GLAD_GL_ARB_instanced_arrays; #define GL_ARB_internalformat_query 1 GLAD_API_CALL int GLAD_GL_ARB_internalformat_query; #define GL_ARB_internalformat_query2 1 GLAD_API_CALL int GLAD_GL_ARB_internalformat_query2; #define GL_ARB_invalidate_subdata 1 GLAD_API_CALL int GLAD_GL_ARB_invalidate_subdata; #define GL_ARB_map_buffer_alignment 1 GLAD_API_CALL int GLAD_GL_ARB_map_buffer_alignment; #define GL_ARB_map_buffer_range 1 GLAD_API_CALL int GLAD_GL_ARB_map_buffer_range; #define GL_ARB_matrix_palette 1 GLAD_API_CALL int GLAD_GL_ARB_matrix_palette; #define GL_ARB_multi_bind 1 GLAD_API_CALL int GLAD_GL_ARB_multi_bind; #define GL_ARB_multi_draw_indirect 1 GLAD_API_CALL int GLAD_GL_ARB_multi_draw_indirect; #define GL_ARB_multisample 1 GLAD_API_CALL int GLAD_GL_ARB_multisample; #define GL_ARB_multitexture 1 GLAD_API_CALL int GLAD_GL_ARB_multitexture; #define GL_ARB_occlusion_query 1 GLAD_API_CALL int GLAD_GL_ARB_occlusion_query; #define GL_ARB_occlusion_query2 1 GLAD_API_CALL int GLAD_GL_ARB_occlusion_query2; #define GL_ARB_parallel_shader_compile 1 GLAD_API_CALL int GLAD_GL_ARB_parallel_shader_compile; #define GL_ARB_pipeline_statistics_query 1 GLAD_API_CALL int GLAD_GL_ARB_pipeline_statistics_query; #define GL_ARB_pixel_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_pixel_buffer_object; #define GL_ARB_point_parameters 1 GLAD_API_CALL int GLAD_GL_ARB_point_parameters; #define GL_ARB_point_sprite 1 GLAD_API_CALL int GLAD_GL_ARB_point_sprite; #define GL_ARB_polygon_offset_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_polygon_offset_clamp; #define GL_ARB_post_depth_coverage 1 GLAD_API_CALL int GLAD_GL_ARB_post_depth_coverage; #define GL_ARB_program_interface_query 1 GLAD_API_CALL int GLAD_GL_ARB_program_interface_query; #define GL_ARB_provoking_vertex 1 GLAD_API_CALL int GLAD_GL_ARB_provoking_vertex; #define GL_ARB_query_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_query_buffer_object; #define GL_ARB_robust_buffer_access_behavior 1 GLAD_API_CALL int GLAD_GL_ARB_robust_buffer_access_behavior; #define GL_ARB_robustness 1 GLAD_API_CALL int GLAD_GL_ARB_robustness; #define GL_ARB_robustness_isolation 1 GLAD_API_CALL int GLAD_GL_ARB_robustness_isolation; #define GL_ARB_sample_locations 1 GLAD_API_CALL int GLAD_GL_ARB_sample_locations; #define GL_ARB_sample_shading 1 GLAD_API_CALL int GLAD_GL_ARB_sample_shading; #define GL_ARB_sampler_objects 1 GLAD_API_CALL int GLAD_GL_ARB_sampler_objects; #define GL_ARB_seamless_cube_map 1 GLAD_API_CALL int GLAD_GL_ARB_seamless_cube_map; #define GL_ARB_seamless_cubemap_per_texture 1 GLAD_API_CALL int GLAD_GL_ARB_seamless_cubemap_per_texture; #define GL_ARB_separate_shader_objects 1 GLAD_API_CALL int GLAD_GL_ARB_separate_shader_objects; #define GL_ARB_shader_atomic_counter_ops 1 GLAD_API_CALL int GLAD_GL_ARB_shader_atomic_counter_ops; #define GL_ARB_shader_atomic_counters 1 GLAD_API_CALL int GLAD_GL_ARB_shader_atomic_counters; #define GL_ARB_shader_ballot 1 GLAD_API_CALL int GLAD_GL_ARB_shader_ballot; #define GL_ARB_shader_bit_encoding 1 GLAD_API_CALL int GLAD_GL_ARB_shader_bit_encoding; #define GL_ARB_shader_clock 1 GLAD_API_CALL int GLAD_GL_ARB_shader_clock; #define GL_ARB_shader_draw_parameters 1 GLAD_API_CALL int GLAD_GL_ARB_shader_draw_parameters; #define GL_ARB_shader_group_vote 1 GLAD_API_CALL int GLAD_GL_ARB_shader_group_vote; #define GL_ARB_shader_image_load_store 1 GLAD_API_CALL int GLAD_GL_ARB_shader_image_load_store; #define GL_ARB_shader_image_size 1 GLAD_API_CALL int GLAD_GL_ARB_shader_image_size; #define GL_ARB_shader_objects 1 GLAD_API_CALL int GLAD_GL_ARB_shader_objects; #define GL_ARB_shader_precision 1 GLAD_API_CALL int GLAD_GL_ARB_shader_precision; #define GL_ARB_shader_stencil_export 1 GLAD_API_CALL int GLAD_GL_ARB_shader_stencil_export; #define GL_ARB_shader_storage_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_shader_storage_buffer_object; #define GL_ARB_shader_subroutine 1 GLAD_API_CALL int GLAD_GL_ARB_shader_subroutine; #define GL_ARB_shader_texture_image_samples 1 GLAD_API_CALL int GLAD_GL_ARB_shader_texture_image_samples; #define GL_ARB_shader_texture_lod 1 GLAD_API_CALL int GLAD_GL_ARB_shader_texture_lod; #define GL_ARB_shader_viewport_layer_array 1 GLAD_API_CALL int GLAD_GL_ARB_shader_viewport_layer_array; #define GL_ARB_shading_language_100 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_100; #define GL_ARB_shading_language_420pack 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_420pack; #define GL_ARB_shading_language_include 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_include; #define GL_ARB_shading_language_packing 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_packing; #define GL_ARB_shadow 1 GLAD_API_CALL int GLAD_GL_ARB_shadow; #define GL_ARB_shadow_ambient 1 GLAD_API_CALL int GLAD_GL_ARB_shadow_ambient; #define GL_ARB_sparse_buffer 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_buffer; #define GL_ARB_sparse_texture 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_texture; #define GL_ARB_sparse_texture2 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_texture2; #define GL_ARB_sparse_texture_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_texture_clamp; #define GL_ARB_spirv_extensions 1 GLAD_API_CALL int GLAD_GL_ARB_spirv_extensions; #define GL_ARB_stencil_texturing 1 GLAD_API_CALL int GLAD_GL_ARB_stencil_texturing; #define GL_ARB_sync 1 GLAD_API_CALL int GLAD_GL_ARB_sync; #define GL_ARB_tessellation_shader 1 GLAD_API_CALL int GLAD_GL_ARB_tessellation_shader; #define GL_ARB_texture_barrier 1 GLAD_API_CALL int GLAD_GL_ARB_texture_barrier; #define GL_ARB_texture_border_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_texture_border_clamp; #define GL_ARB_texture_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_texture_buffer_object; #define GL_ARB_texture_buffer_object_rgb32 1 GLAD_API_CALL int GLAD_GL_ARB_texture_buffer_object_rgb32; #define GL_ARB_texture_buffer_range 1 GLAD_API_CALL int GLAD_GL_ARB_texture_buffer_range; #define GL_ARB_texture_compression 1 GLAD_API_CALL int GLAD_GL_ARB_texture_compression; #define GL_ARB_texture_compression_bptc 1 GLAD_API_CALL int GLAD_GL_ARB_texture_compression_bptc; #define GL_ARB_texture_compression_rgtc 1 GLAD_API_CALL int GLAD_GL_ARB_texture_compression_rgtc; #define GL_ARB_texture_cube_map 1 GLAD_API_CALL int GLAD_GL_ARB_texture_cube_map; #define GL_ARB_texture_cube_map_array 1 GLAD_API_CALL int GLAD_GL_ARB_texture_cube_map_array; #define GL_ARB_texture_env_add 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_add; #define GL_ARB_texture_env_combine 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_combine; #define GL_ARB_texture_env_crossbar 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_crossbar; #define GL_ARB_texture_env_dot3 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_dot3; #define GL_ARB_texture_filter_anisotropic 1 GLAD_API_CALL int GLAD_GL_ARB_texture_filter_anisotropic; #define GL_ARB_texture_filter_minmax 1 GLAD_API_CALL int GLAD_GL_ARB_texture_filter_minmax; #define GL_ARB_texture_float 1 GLAD_API_CALL int GLAD_GL_ARB_texture_float; #define GL_ARB_texture_gather 1 GLAD_API_CALL int GLAD_GL_ARB_texture_gather; #define GL_ARB_texture_mirror_clamp_to_edge 1 GLAD_API_CALL int GLAD_GL_ARB_texture_mirror_clamp_to_edge; #define GL_ARB_texture_mirrored_repeat 1 GLAD_API_CALL int GLAD_GL_ARB_texture_mirrored_repeat; #define GL_ARB_texture_multisample 1 GLAD_API_CALL int GLAD_GL_ARB_texture_multisample; #define GL_ARB_texture_non_power_of_two 1 GLAD_API_CALL int GLAD_GL_ARB_texture_non_power_of_two; #define GL_ARB_texture_query_levels 1 GLAD_API_CALL int GLAD_GL_ARB_texture_query_levels; #define GL_ARB_texture_query_lod 1 GLAD_API_CALL int GLAD_GL_ARB_texture_query_lod; #define GL_ARB_texture_rectangle 1 GLAD_API_CALL int GLAD_GL_ARB_texture_rectangle; #define GL_ARB_texture_rg 1 GLAD_API_CALL int GLAD_GL_ARB_texture_rg; #define GL_ARB_texture_rgb10_a2ui 1 GLAD_API_CALL int GLAD_GL_ARB_texture_rgb10_a2ui; #define GL_ARB_texture_stencil8 1 GLAD_API_CALL int GLAD_GL_ARB_texture_stencil8; #define GL_ARB_texture_storage 1 GLAD_API_CALL int GLAD_GL_ARB_texture_storage; #define GL_ARB_texture_storage_multisample 1 GLAD_API_CALL int GLAD_GL_ARB_texture_storage_multisample; #define GL_ARB_texture_swizzle 1 GLAD_API_CALL int GLAD_GL_ARB_texture_swizzle; #define GL_ARB_texture_view 1 GLAD_API_CALL int GLAD_GL_ARB_texture_view; #define GL_ARB_timer_query 1 GLAD_API_CALL int GLAD_GL_ARB_timer_query; #define GL_ARB_transform_feedback2 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback2; #define GL_ARB_transform_feedback3 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback3; #define GL_ARB_transform_feedback_instanced 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback_instanced; #define GL_ARB_transform_feedback_overflow_query 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback_overflow_query; #define GL_ARB_transpose_matrix 1 GLAD_API_CALL int GLAD_GL_ARB_transpose_matrix; #define GL_ARB_uniform_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_uniform_buffer_object; #define GL_ARB_vertex_array_bgra 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_array_bgra; #define GL_ARB_vertex_array_object 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_array_object; #define GL_ARB_vertex_attrib_64bit 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_attrib_64bit; #define GL_ARB_vertex_attrib_binding 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_attrib_binding; #define GL_ARB_vertex_blend 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_blend; #define GL_ARB_vertex_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_buffer_object; #define GL_ARB_vertex_program 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_program; #define GL_ARB_vertex_shader 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_shader; #define GL_ARB_vertex_type_10f_11f_11f_rev 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_type_10f_11f_11f_rev; #define GL_ARB_vertex_type_2_10_10_10_rev 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_type_2_10_10_10_rev; #define GL_ARB_viewport_array 1 GLAD_API_CALL int GLAD_GL_ARB_viewport_array; #define GL_ARB_window_pos 1 GLAD_API_CALL int GLAD_GL_ARB_window_pos; #define GL_KHR_blend_equation_advanced 1 GLAD_API_CALL int GLAD_GL_KHR_blend_equation_advanced; #define GL_KHR_blend_equation_advanced_coherent 1 GLAD_API_CALL int GLAD_GL_KHR_blend_equation_advanced_coherent; #define GL_KHR_context_flush_control 1 GLAD_API_CALL int GLAD_GL_KHR_context_flush_control; #define GL_KHR_debug 1 GLAD_API_CALL int GLAD_GL_KHR_debug; #define GL_KHR_no_error 1 GLAD_API_CALL int GLAD_GL_KHR_no_error; #define GL_KHR_parallel_shader_compile 1 GLAD_API_CALL int GLAD_GL_KHR_parallel_shader_compile; #define GL_KHR_robust_buffer_access_behavior 1 GLAD_API_CALL int GLAD_GL_KHR_robust_buffer_access_behavior; #define GL_KHR_robustness 1 GLAD_API_CALL int GLAD_GL_KHR_robustness; #define GL_KHR_shader_subgroup 1 GLAD_API_CALL int GLAD_GL_KHR_shader_subgroup; #define GL_KHR_texture_compression_astc_hdr 1 GLAD_API_CALL int GLAD_GL_KHR_texture_compression_astc_hdr; #define GL_KHR_texture_compression_astc_ldr 1 GLAD_API_CALL int GLAD_GL_KHR_texture_compression_astc_ldr; #define GL_KHR_texture_compression_astc_sliced_3d 1 GLAD_API_CALL int GLAD_GL_KHR_texture_compression_astc_sliced_3d; typedef void (GLAD_API_PTR *PFNGLACCUMPROC)(GLenum op, GLfloat value); typedef void (GLAD_API_PTR *PFNGLACTIVESHADERPROGRAMPROC)(GLuint pipeline, GLuint program); typedef void (GLAD_API_PTR *PFNGLACTIVETEXTUREPROC)(GLenum texture); typedef void (GLAD_API_PTR *PFNGLACTIVETEXTUREARBPROC)(GLenum texture); typedef void (GLAD_API_PTR *PFNGLALPHAFUNCPROC)(GLenum func, GLfloat ref); typedef GLboolean (GLAD_API_PTR *PFNGLARETEXTURESRESIDENTPROC)(GLsizei n, const GLuint * textures, GLboolean * residences); typedef void (GLAD_API_PTR *PFNGLARRAYELEMENTPROC)(GLint i); typedef void (GLAD_API_PTR *PFNGLATTACHOBJECTARBPROC)(GLhandleARB containerObj, GLhandleARB obj); typedef void (GLAD_API_PTR *PFNGLATTACHSHADERPROC)(GLuint program, GLuint shader); typedef void (GLAD_API_PTR *PFNGLBEGINPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLBEGINCONDITIONALRENDERPROC)(GLuint id, GLenum mode); typedef void (GLAD_API_PTR *PFNGLBEGINQUERYPROC)(GLenum target, GLuint id); typedef void (GLAD_API_PTR *PFNGLBEGINQUERYARBPROC)(GLenum target, GLuint id); typedef void (GLAD_API_PTR *PFNGLBEGINQUERYINDEXEDPROC)(GLenum target, GLuint index, GLuint id); typedef void (GLAD_API_PTR *PFNGLBEGINTRANSFORMFEEDBACKPROC)(GLenum primitiveMode); typedef void (GLAD_API_PTR *PFNGLBINDATTRIBLOCATIONPROC)(GLuint program, GLuint index, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLBINDATTRIBLOCATIONARBPROC)(GLhandleARB programObj, GLuint index, const GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERPROC)(GLenum target, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERARBPROC)(GLenum target, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERBASEPROC)(GLenum target, GLuint index, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERRANGEPROC)(GLenum target, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERSBASEPROC)(GLenum target, GLuint first, GLsizei count, const GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERSRANGEPROC)(GLenum target, GLuint first, GLsizei count, const GLuint * buffers, const GLintptr * offsets, const GLsizeiptr * sizes); typedef void (GLAD_API_PTR *PFNGLBINDFRAGDATALOCATIONPROC)(GLuint program, GLuint color, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLBINDFRAGDATALOCATIONINDEXEDPROC)(GLuint program, GLuint colorNumber, GLuint index, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLBINDFRAMEBUFFERPROC)(GLenum target, GLuint framebuffer); typedef void (GLAD_API_PTR *PFNGLBINDIMAGETEXTUREPROC)(GLuint unit, GLuint texture, GLint level, GLboolean layered, GLint layer, GLenum access, GLenum format); typedef void (GLAD_API_PTR *PFNGLBINDIMAGETEXTURESPROC)(GLuint first, GLsizei count, const GLuint * textures); typedef void (GLAD_API_PTR *PFNGLBINDPROGRAMARBPROC)(GLenum target, GLuint program); typedef void (GLAD_API_PTR *PFNGLBINDPROGRAMPIPELINEPROC)(GLuint pipeline); typedef void (GLAD_API_PTR *PFNGLBINDRENDERBUFFERPROC)(GLenum target, GLuint renderbuffer); typedef void (GLAD_API_PTR *PFNGLBINDSAMPLERPROC)(GLuint unit, GLuint sampler); typedef void (GLAD_API_PTR *PFNGLBINDSAMPLERSPROC)(GLuint first, GLsizei count, const GLuint * samplers); typedef void (GLAD_API_PTR *PFNGLBINDTEXTUREPROC)(GLenum target, GLuint texture); typedef void (GLAD_API_PTR *PFNGLBINDTEXTUREUNITPROC)(GLuint unit, GLuint texture); typedef void (GLAD_API_PTR *PFNGLBINDTEXTURESPROC)(GLuint first, GLsizei count, const GLuint * textures); typedef void (GLAD_API_PTR *PFNGLBINDTRANSFORMFEEDBACKPROC)(GLenum target, GLuint id); typedef void (GLAD_API_PTR *PFNGLBINDVERTEXARRAYPROC)(GLuint array); typedef void (GLAD_API_PTR *PFNGLBINDVERTEXBUFFERPROC)(GLuint bindingindex, GLuint buffer, GLintptr offset, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLBINDVERTEXBUFFERSPROC)(GLuint first, GLsizei count, const GLuint * buffers, const GLintptr * offsets, const GLsizei * strides); typedef void (GLAD_API_PTR *PFNGLBITMAPPROC)(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, const GLubyte * bitmap); typedef void (GLAD_API_PTR *PFNGLBLENDBARRIERPROC)(void); typedef void (GLAD_API_PTR *PFNGLBLENDBARRIERKHRPROC)(void); typedef void (GLAD_API_PTR *PFNGLBLENDCOLORPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONSEPARATEPROC)(GLenum modeRGB, GLenum modeAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONSEPARATEIPROC)(GLuint buf, GLenum modeRGB, GLenum modeAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONSEPARATEIARBPROC)(GLuint buf, GLenum modeRGB, GLenum modeAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONIPROC)(GLuint buf, GLenum mode); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONIARBPROC)(GLuint buf, GLenum mode); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCPROC)(GLenum sfactor, GLenum dfactor); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCSEPARATEPROC)(GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorAlpha, GLenum dfactorAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCSEPARATEIPROC)(GLuint buf, GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCSEPARATEIARBPROC)(GLuint buf, GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCIPROC)(GLuint buf, GLenum src, GLenum dst); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCIARBPROC)(GLuint buf, GLenum src, GLenum dst); typedef void (GLAD_API_PTR *PFNGLBLITFRAMEBUFFERPROC)(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter); typedef void (GLAD_API_PTR *PFNGLBLITNAMEDFRAMEBUFFERPROC)(GLuint readFramebuffer, GLuint drawFramebuffer, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter); typedef void (GLAD_API_PTR *PFNGLBUFFERDATAPROC)(GLenum target, GLsizeiptr size, const void * data, GLenum usage); typedef void (GLAD_API_PTR *PFNGLBUFFERDATAARBPROC)(GLenum target, GLsizeiptrARB size, const void * data, GLenum usage); typedef void (GLAD_API_PTR *PFNGLBUFFERPAGECOMMITMENTARBPROC)(GLenum target, GLintptr offset, GLsizeiptr size, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLBUFFERSTORAGEPROC)(GLenum target, GLsizeiptr size, const void * data, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLBUFFERSUBDATAPROC)(GLenum target, GLintptr offset, GLsizeiptr size, const void * data); typedef void (GLAD_API_PTR *PFNGLBUFFERSUBDATAARBPROC)(GLenum target, GLintptrARB offset, GLsizeiptrARB size, const void * data); typedef void (GLAD_API_PTR *PFNGLCALLLISTPROC)(GLuint list); typedef void (GLAD_API_PTR *PFNGLCALLLISTSPROC)(GLsizei n, GLenum type, const void * lists); typedef GLenum (GLAD_API_PTR *PFNGLCHECKFRAMEBUFFERSTATUSPROC)(GLenum target); typedef GLenum (GLAD_API_PTR *PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC)(GLuint framebuffer, GLenum target); typedef void (GLAD_API_PTR *PFNGLCLAMPCOLORPROC)(GLenum target, GLenum clamp); typedef void (GLAD_API_PTR *PFNGLCLAMPCOLORARBPROC)(GLenum target, GLenum clamp); typedef void (GLAD_API_PTR *PFNGLCLEARPROC)(GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLCLEARACCUMPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERDATAPROC)(GLenum target, GLenum internalformat, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERSUBDATAPROC)(GLenum target, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERFIPROC)(GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERFVPROC)(GLenum buffer, GLint drawbuffer, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERIVPROC)(GLenum buffer, GLint drawbuffer, const GLint * value); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERUIVPROC)(GLenum buffer, GLint drawbuffer, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLCLEARCOLORPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLCLEARDEPTHPROC)(GLdouble depth); typedef void (GLAD_API_PTR *PFNGLCLEARDEPTHFPROC)(GLfloat d); typedef void (GLAD_API_PTR *PFNGLCLEARINDEXPROC)(GLfloat c); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDBUFFERDATAPROC)(GLuint buffer, GLenum internalformat, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDBUFFERSUBDATAPROC)(GLuint buffer, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERFIPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERFVPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERIVPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, const GLint * value); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLCLEARSTENCILPROC)(GLint s); typedef void (GLAD_API_PTR *PFNGLCLEARTEXIMAGEPROC)(GLuint texture, GLint level, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARTEXSUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLIENTACTIVETEXTUREPROC)(GLenum texture); typedef void (GLAD_API_PTR *PFNGLCLIENTACTIVETEXTUREARBPROC)(GLenum texture); typedef GLenum (GLAD_API_PTR *PFNGLCLIENTWAITSYNCPROC)(GLsync sync, GLbitfield flags, GLuint64 timeout); typedef void (GLAD_API_PTR *PFNGLCLIPCONTROLPROC)(GLenum origin, GLenum depth); typedef void (GLAD_API_PTR *PFNGLCLIPPLANEPROC)(GLenum plane, const GLdouble * equation); typedef void (GLAD_API_PTR *PFNGLCOLOR3BPROC)(GLbyte red, GLbyte green, GLbyte blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3DPROC)(GLdouble red, GLdouble green, GLdouble blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3FPROC)(GLfloat red, GLfloat green, GLfloat blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3IPROC)(GLint red, GLint green, GLint blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3SPROC)(GLshort red, GLshort green, GLshort blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3UBPROC)(GLubyte red, GLubyte green, GLubyte blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3UBVPROC)(const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3UIPROC)(GLuint red, GLuint green, GLuint blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3UIVPROC)(const GLuint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3USPROC)(GLushort red, GLushort green, GLushort blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3USVPROC)(const GLushort * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4BPROC)(GLbyte red, GLbyte green, GLbyte blue, GLbyte alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4DPROC)(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4FPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4IPROC)(GLint red, GLint green, GLint blue, GLint alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4SPROC)(GLshort red, GLshort green, GLshort blue, GLshort alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4UBPROC)(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4UBVPROC)(const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4UIPROC)(GLuint red, GLuint green, GLuint blue, GLuint alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4UIVPROC)(const GLuint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4USPROC)(GLushort red, GLushort green, GLushort blue, GLushort alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4USVPROC)(const GLushort * v); typedef void (GLAD_API_PTR *PFNGLCOLORMASKPROC)(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha); typedef void (GLAD_API_PTR *PFNGLCOLORMASKIPROC)(GLuint index, GLboolean r, GLboolean g, GLboolean b, GLboolean a); typedef void (GLAD_API_PTR *PFNGLCOLORMATERIALPROC)(GLenum face, GLenum mode); typedef void (GLAD_API_PTR *PFNGLCOLORP3UIPROC)(GLenum type, GLuint color); typedef void (GLAD_API_PTR *PFNGLCOLORP3UIVPROC)(GLenum type, const GLuint * color); typedef void (GLAD_API_PTR *PFNGLCOLORP4UIPROC)(GLenum type, GLuint color); typedef void (GLAD_API_PTR *PFNGLCOLORP4UIVPROC)(GLenum type, const GLuint * color); typedef void (GLAD_API_PTR *PFNGLCOLORPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLCOLORSUBTABLEPROC)(GLenum target, GLsizei start, GLsizei count, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCOLORTABLEPROC)(GLenum target, GLenum internalformat, GLsizei width, GLenum format, GLenum type, const void * table); typedef void (GLAD_API_PTR *PFNGLCOLORTABLEPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLCOLORTABLEPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLCOMPILESHADERPROC)(GLuint shader); typedef void (GLAD_API_PTR *PFNGLCOMPILESHADERARBPROC)(GLhandleARB shaderObj); typedef void (GLAD_API_PTR *PFNGLCOMPILESHADERINCLUDEARBPROC)(GLuint shader, GLsizei count, const GLchar *const* path, const GLint * length); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE1DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE1DARBPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE2DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE2DARBPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE3DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE3DARBPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC)(GLuint texture, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONFILTER1DPROC)(GLenum target, GLenum internalformat, GLsizei width, GLenum format, GLenum type, const void * image); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONFILTER2DPROC)(GLenum target, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * image); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERFPROC)(GLenum target, GLenum pname, GLfloat params); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERIPROC)(GLenum target, GLenum pname, GLint params); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLCOPYBUFFERSUBDATAPROC)(GLenum readTarget, GLenum writeTarget, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLCOPYCOLORSUBTABLEPROC)(GLenum target, GLsizei start, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYCOLORTABLEPROC)(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYCONVOLUTIONFILTER1DPROC)(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYCONVOLUTIONFILTER2DPROC)(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYIMAGESUBDATAPROC)(GLuint srcName, GLenum srcTarget, GLint srcLevel, GLint srcX, GLint srcY, GLint srcZ, GLuint dstName, GLenum dstTarget, GLint dstLevel, GLint dstX, GLint dstY, GLint dstZ, GLsizei srcWidth, GLsizei srcHeight, GLsizei srcDepth); typedef void (GLAD_API_PTR *PFNGLCOPYNAMEDBUFFERSUBDATAPROC)(GLuint readBuffer, GLuint writeBuffer, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLCOPYPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type); typedef void (GLAD_API_PTR *PFNGLCOPYTEXIMAGE1DPROC)(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLint border); typedef void (GLAD_API_PTR *PFNGLCOPYTEXIMAGE2DPROC)(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border); typedef void (GLAD_API_PTR *PFNGLCOPYTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYTEXTURESUBIMAGE1DPROC)(GLuint texture, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYTEXTURESUBIMAGE2DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYTEXTURESUBIMAGE3DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCREATEBUFFERSPROC)(GLsizei n, GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLCREATEFRAMEBUFFERSPROC)(GLsizei n, GLuint * framebuffers); typedef GLuint (GLAD_API_PTR *PFNGLCREATEPROGRAMPROC)(void); typedef GLhandleARB (GLAD_API_PTR *PFNGLCREATEPROGRAMOBJECTARBPROC)(void); typedef void (GLAD_API_PTR *PFNGLCREATEPROGRAMPIPELINESPROC)(GLsizei n, GLuint * pipelines); typedef void (GLAD_API_PTR *PFNGLCREATEQUERIESPROC)(GLenum target, GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLCREATERENDERBUFFERSPROC)(GLsizei n, GLuint * renderbuffers); typedef void (GLAD_API_PTR *PFNGLCREATESAMPLERSPROC)(GLsizei n, GLuint * samplers); typedef GLuint (GLAD_API_PTR *PFNGLCREATESHADERPROC)(GLenum type); typedef GLhandleARB (GLAD_API_PTR *PFNGLCREATESHADEROBJECTARBPROC)(GLenum shaderType); typedef GLuint (GLAD_API_PTR *PFNGLCREATESHADERPROGRAMVPROC)(GLenum type, GLsizei count, const GLchar *const* strings); typedef GLsync (GLAD_API_PTR *PFNGLCREATESYNCFROMCLEVENTARBPROC)(struct _cl_context * context, struct _cl_event * event, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLCREATETEXTURESPROC)(GLenum target, GLsizei n, GLuint * textures); typedef void (GLAD_API_PTR *PFNGLCREATETRANSFORMFEEDBACKSPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLCREATEVERTEXARRAYSPROC)(GLsizei n, GLuint * arrays); typedef void (GLAD_API_PTR *PFNGLCULLFACEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLCURRENTPALETTEMATRIXARBPROC)(GLint index); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECALLBACKPROC)(GLDEBUGPROC callback, const void * userParam); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECALLBACKARBPROC)(GLDEBUGPROCARB callback, const void * userParam); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECONTROLPROC)(GLenum source, GLenum type, GLenum severity, GLsizei count, const GLuint * ids, GLboolean enabled); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECONTROLARBPROC)(GLenum source, GLenum type, GLenum severity, GLsizei count, const GLuint * ids, GLboolean enabled); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGEINSERTPROC)(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar * buf); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGEINSERTARBPROC)(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar * buf); typedef void (GLAD_API_PTR *PFNGLDELETEBUFFERSPROC)(GLsizei n, const GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLDELETEBUFFERSARBPROC)(GLsizei n, const GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLDELETEFRAMEBUFFERSPROC)(GLsizei n, const GLuint * framebuffers); typedef void (GLAD_API_PTR *PFNGLDELETELISTSPROC)(GLuint list, GLsizei range); typedef void (GLAD_API_PTR *PFNGLDELETENAMEDSTRINGARBPROC)(GLint namelen, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLDELETEOBJECTARBPROC)(GLhandleARB obj); typedef void (GLAD_API_PTR *PFNGLDELETEPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLDELETEPROGRAMPIPELINESPROC)(GLsizei n, const GLuint * pipelines); typedef void (GLAD_API_PTR *PFNGLDELETEPROGRAMSARBPROC)(GLsizei n, const GLuint * programs); typedef void (GLAD_API_PTR *PFNGLDELETEQUERIESPROC)(GLsizei n, const GLuint * ids); typedef void (GLAD_API_PTR *PFNGLDELETEQUERIESARBPROC)(GLsizei n, const GLuint * ids); typedef void (GLAD_API_PTR *PFNGLDELETERENDERBUFFERSPROC)(GLsizei n, const GLuint * renderbuffers); typedef void (GLAD_API_PTR *PFNGLDELETESAMPLERSPROC)(GLsizei count, const GLuint * samplers); typedef void (GLAD_API_PTR *PFNGLDELETESHADERPROC)(GLuint shader); typedef void (GLAD_API_PTR *PFNGLDELETESYNCPROC)(GLsync sync); typedef void (GLAD_API_PTR *PFNGLDELETETEXTURESPROC)(GLsizei n, const GLuint * textures); typedef void (GLAD_API_PTR *PFNGLDELETETRANSFORMFEEDBACKSPROC)(GLsizei n, const GLuint * ids); typedef void (GLAD_API_PTR *PFNGLDELETEVERTEXARRAYSPROC)(GLsizei n, const GLuint * arrays); typedef void (GLAD_API_PTR *PFNGLDEPTHFUNCPROC)(GLenum func); typedef void (GLAD_API_PTR *PFNGLDEPTHMASKPROC)(GLboolean flag); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEPROC)(GLdouble n, GLdouble f); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEARRAYDVNVPROC)(GLuint first, GLsizei count, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEARRAYVPROC)(GLuint first, GLsizei count, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEINDEXEDPROC)(GLuint index, GLdouble n, GLdouble f); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEINDEXEDDNVPROC)(GLuint index, GLdouble n, GLdouble f); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEFPROC)(GLfloat n, GLfloat f); typedef void (GLAD_API_PTR *PFNGLDETACHOBJECTARBPROC)(GLhandleARB containerObj, GLhandleARB attachedObj); typedef void (GLAD_API_PTR *PFNGLDETACHSHADERPROC)(GLuint program, GLuint shader); typedef void (GLAD_API_PTR *PFNGLDISABLEPROC)(GLenum cap); typedef void (GLAD_API_PTR *PFNGLDISABLECLIENTSTATEPROC)(GLenum array); typedef void (GLAD_API_PTR *PFNGLDISABLEVERTEXARRAYATTRIBPROC)(GLuint vaobj, GLuint index); typedef void (GLAD_API_PTR *PFNGLDISABLEVERTEXATTRIBARRAYPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLDISABLEVERTEXATTRIBARRAYARBPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLDISABLEIPROC)(GLenum target, GLuint index); typedef void (GLAD_API_PTR *PFNGLDISPATCHCOMPUTEPROC)(GLuint num_groups_x, GLuint num_groups_y, GLuint num_groups_z); typedef void (GLAD_API_PTR *PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC)(GLuint num_groups_x, GLuint num_groups_y, GLuint num_groups_z, GLuint group_size_x, GLuint group_size_y, GLuint group_size_z); typedef void (GLAD_API_PTR *PFNGLDISPATCHCOMPUTEINDIRECTPROC)(GLintptr indirect); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSPROC)(GLenum mode, GLint first, GLsizei count); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINDIRECTPROC)(GLenum mode, const void * indirect); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINSTANCEDPROC)(GLenum mode, GLint first, GLsizei count, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINSTANCEDARBPROC)(GLenum mode, GLint first, GLsizei count, GLsizei primcount); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC)(GLenum mode, GLint first, GLsizei count, GLsizei instancecount, GLuint baseinstance); typedef void (GLAD_API_PTR *PFNGLDRAWBUFFERPROC)(GLenum buf); typedef void (GLAD_API_PTR *PFNGLDRAWBUFFERSPROC)(GLsizei n, const GLenum * bufs); typedef void (GLAD_API_PTR *PFNGLDRAWBUFFERSARBPROC)(GLsizei n, const GLenum * bufs); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSBASEVERTEXPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLint basevertex); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINDIRECTPROC)(GLenum mode, GLenum type, const void * indirect); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDARBPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei primcount); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount, GLuint baseinstance); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount, GLint basevertex); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount, GLint basevertex, GLuint baseinstance); typedef void (GLAD_API_PTR *PFNGLDRAWPIXELSPROC)(GLsizei width, GLsizei height, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLDRAWRANGEELEMENTSPROC)(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void * indices); typedef void (GLAD_API_PTR *PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC)(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void * indices, GLint basevertex); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKPROC)(GLenum mode, GLuint id); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC)(GLenum mode, GLuint id, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC)(GLenum mode, GLuint id, GLuint stream); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC)(GLenum mode, GLuint id, GLuint stream, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLEDGEFLAGPROC)(GLboolean flag); typedef void (GLAD_API_PTR *PFNGLEDGEFLAGPOINTERPROC)(GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLEDGEFLAGVPROC)(const GLboolean * flag); typedef void (GLAD_API_PTR *PFNGLENABLEPROC)(GLenum cap); typedef void (GLAD_API_PTR *PFNGLENABLECLIENTSTATEPROC)(GLenum array); typedef void (GLAD_API_PTR *PFNGLENABLEVERTEXARRAYATTRIBPROC)(GLuint vaobj, GLuint index); typedef void (GLAD_API_PTR *PFNGLENABLEVERTEXATTRIBARRAYPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLENABLEVERTEXATTRIBARRAYARBPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLENABLEIPROC)(GLenum target, GLuint index); typedef void (GLAD_API_PTR *PFNGLENDPROC)(void); typedef void (GLAD_API_PTR *PFNGLENDCONDITIONALRENDERPROC)(void); typedef void (GLAD_API_PTR *PFNGLENDLISTPROC)(void); typedef void (GLAD_API_PTR *PFNGLENDQUERYPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLENDQUERYARBPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLENDQUERYINDEXEDPROC)(GLenum target, GLuint index); typedef void (GLAD_API_PTR *PFNGLENDTRANSFORMFEEDBACKPROC)(void); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1DPROC)(GLdouble u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1DVPROC)(const GLdouble * u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1FPROC)(GLfloat u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1FVPROC)(const GLfloat * u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2DPROC)(GLdouble u, GLdouble v); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2DVPROC)(const GLdouble * u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2FPROC)(GLfloat u, GLfloat v); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2FVPROC)(const GLfloat * u); typedef void (GLAD_API_PTR *PFNGLEVALMESH1PROC)(GLenum mode, GLint i1, GLint i2); typedef void (GLAD_API_PTR *PFNGLEVALMESH2PROC)(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2); typedef void (GLAD_API_PTR *PFNGLEVALPOINT1PROC)(GLint i); typedef void (GLAD_API_PTR *PFNGLEVALPOINT2PROC)(GLint i, GLint j); typedef void (GLAD_API_PTR *PFNGLEVALUATEDEPTHVALUESARBPROC)(void); typedef void (GLAD_API_PTR *PFNGLFEEDBACKBUFFERPROC)(GLsizei size, GLenum type, GLfloat * buffer); typedef GLsync (GLAD_API_PTR *PFNGLFENCESYNCPROC)(GLenum condition, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLFINISHPROC)(void); typedef void (GLAD_API_PTR *PFNGLFLUSHPROC)(void); typedef void (GLAD_API_PTR *PFNGLFLUSHMAPPEDBUFFERRANGEPROC)(GLenum target, GLintptr offset, GLsizeiptr length); typedef void (GLAD_API_PTR *PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC)(GLuint buffer, GLintptr offset, GLsizeiptr length); typedef void (GLAD_API_PTR *PFNGLFOGCOORDPOINTERPROC)(GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLFOGCOORDDPROC)(GLdouble coord); typedef void (GLAD_API_PTR *PFNGLFOGCOORDDVPROC)(const GLdouble * coord); typedef void (GLAD_API_PTR *PFNGLFOGCOORDFPROC)(GLfloat coord); typedef void (GLAD_API_PTR *PFNGLFOGCOORDFVPROC)(const GLfloat * coord); typedef void (GLAD_API_PTR *PFNGLFOGFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLFOGFVPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLFOGIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLFOGIVPROC)(GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERPARAMETERIPROC)(GLenum target, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERRENDERBUFFERPROC)(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC)(GLenum target, GLuint start, GLsizei count, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTUREPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURE1DPROC)(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURE2DPROC)(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURE3DPROC)(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level, GLint zoffset); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTUREARBPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTUREFACEARBPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLenum face); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURELAYERPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLint layer); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURELAYERARBPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLint layer); typedef void (GLAD_API_PTR *PFNGLFRONTFACEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLFRUSTUMPROC)(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar); typedef void (GLAD_API_PTR *PFNGLGENBUFFERSPROC)(GLsizei n, GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLGENBUFFERSARBPROC)(GLsizei n, GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLGENFRAMEBUFFERSPROC)(GLsizei n, GLuint * framebuffers); typedef GLuint (GLAD_API_PTR *PFNGLGENLISTSPROC)(GLsizei range); typedef void (GLAD_API_PTR *PFNGLGENPROGRAMPIPELINESPROC)(GLsizei n, GLuint * pipelines); typedef void (GLAD_API_PTR *PFNGLGENPROGRAMSARBPROC)(GLsizei n, GLuint * programs); typedef void (GLAD_API_PTR *PFNGLGENQUERIESPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLGENQUERIESARBPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLGENRENDERBUFFERSPROC)(GLsizei n, GLuint * renderbuffers); typedef void (GLAD_API_PTR *PFNGLGENSAMPLERSPROC)(GLsizei count, GLuint * samplers); typedef void (GLAD_API_PTR *PFNGLGENTEXTURESPROC)(GLsizei n, GLuint * textures); typedef void (GLAD_API_PTR *PFNGLGENTRANSFORMFEEDBACKSPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLGENVERTEXARRAYSPROC)(GLsizei n, GLuint * arrays); typedef void (GLAD_API_PTR *PFNGLGENERATEMIPMAPPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLGENERATETEXTUREMIPMAPPROC)(GLuint texture); typedef void (GLAD_API_PTR *PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC)(GLuint program, GLuint bufferIndex, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETACTIVEATTRIBPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei * length, GLint * size, GLenum * type, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVEATTRIBARBPROC)(GLhandleARB programObj, GLuint index, GLsizei maxLength, GLsizei * length, GLint * size, GLenum * type, GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVESUBROUTINENAMEPROC)(GLuint program, GLenum shadertype, GLuint index, GLsizei bufSize, GLsizei * length, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC)(GLuint program, GLenum shadertype, GLuint index, GLsizei bufSize, GLsizei * length, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC)(GLuint program, GLenum shadertype, GLuint index, GLenum pname, GLint * values); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei * length, GLint * size, GLenum * type, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMARBPROC)(GLhandleARB programObj, GLuint index, GLsizei maxLength, GLsizei * length, GLint * size, GLenum * type, GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC)(GLuint program, GLuint uniformBlockIndex, GLsizei bufSize, GLsizei * length, GLchar * uniformBlockName); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMBLOCKIVPROC)(GLuint program, GLuint uniformBlockIndex, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMNAMEPROC)(GLuint program, GLuint uniformIndex, GLsizei bufSize, GLsizei * length, GLchar * uniformName); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMSIVPROC)(GLuint program, GLsizei uniformCount, const GLuint * uniformIndices, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETATTACHEDOBJECTSARBPROC)(GLhandleARB containerObj, GLsizei maxCount, GLsizei * count, GLhandleARB * obj); typedef void (GLAD_API_PTR *PFNGLGETATTACHEDSHADERSPROC)(GLuint program, GLsizei maxCount, GLsizei * count, GLuint * shaders); typedef GLint (GLAD_API_PTR *PFNGLGETATTRIBLOCATIONPROC)(GLuint program, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETATTRIBLOCATIONARBPROC)(GLhandleARB programObj, const GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETBOOLEANI_VPROC)(GLenum target, GLuint index, GLboolean * data); typedef void (GLAD_API_PTR *PFNGLGETBOOLEANVPROC)(GLenum pname, GLboolean * data); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPARAMETERI64VPROC)(GLenum target, GLenum pname, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPARAMETERIVARBPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPOINTERVPROC)(GLenum target, GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPOINTERVARBPROC)(GLenum target, GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERSUBDATAPROC)(GLenum target, GLintptr offset, GLsizeiptr size, void * data); typedef void (GLAD_API_PTR *PFNGLGETBUFFERSUBDATAARBPROC)(GLenum target, GLintptrARB offset, GLsizeiptrARB size, void * data); typedef void (GLAD_API_PTR *PFNGLGETCLIPPLANEPROC)(GLenum plane, GLdouble * equation); typedef void (GLAD_API_PTR *PFNGLGETCOLORTABLEPROC)(GLenum target, GLenum format, GLenum type, void * table); typedef void (GLAD_API_PTR *PFNGLGETCOLORTABLEPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETCOLORTABLEPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXIMAGEPROC)(GLenum target, GLint level, void * img); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXIMAGEARBPROC)(GLenum target, GLint level, void * img); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC)(GLuint texture, GLint level, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETCONVOLUTIONFILTERPROC)(GLenum target, GLenum format, GLenum type, void * image); typedef void (GLAD_API_PTR *PFNGLGETCONVOLUTIONPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETCONVOLUTIONPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLuint (GLAD_API_PTR *PFNGLGETDEBUGMESSAGELOGPROC)(GLuint count, GLsizei bufSize, GLenum * sources, GLenum * types, GLuint * ids, GLenum * severities, GLsizei * lengths, GLchar * messageLog); typedef GLuint (GLAD_API_PTR *PFNGLGETDEBUGMESSAGELOGARBPROC)(GLuint count, GLsizei bufSize, GLenum * sources, GLenum * types, GLuint * ids, GLenum * severities, GLsizei * lengths, GLchar * messageLog); typedef void (GLAD_API_PTR *PFNGLGETDOUBLEI_VPROC)(GLenum target, GLuint index, GLdouble * data); typedef void (GLAD_API_PTR *PFNGLGETDOUBLEVPROC)(GLenum pname, GLdouble * data); typedef GLenum (GLAD_API_PTR *PFNGLGETERRORPROC)(void); typedef void (GLAD_API_PTR *PFNGLGETFLOATI_VPROC)(GLenum target, GLuint index, GLfloat * data); typedef void (GLAD_API_PTR *PFNGLGETFLOATVPROC)(GLenum pname, GLfloat * data); typedef GLint (GLAD_API_PTR *PFNGLGETFRAGDATAINDEXPROC)(GLuint program, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETFRAGDATALOCATIONPROC)(GLuint program, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC)(GLenum target, GLenum attachment, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETFRAMEBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLenum (GLAD_API_PTR *PFNGLGETGRAPHICSRESETSTATUSPROC)(void); typedef GLenum (GLAD_API_PTR *PFNGLGETGRAPHICSRESETSTATUSARBPROC)(void); typedef GLhandleARB (GLAD_API_PTR *PFNGLGETHANDLEARBPROC)(GLenum pname); typedef void (GLAD_API_PTR *PFNGLGETHISTOGRAMPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, void * values); typedef void (GLAD_API_PTR *PFNGLGETHISTOGRAMPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETHISTOGRAMPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLuint64 (GLAD_API_PTR *PFNGLGETIMAGEHANDLEARBPROC)(GLuint texture, GLint level, GLboolean layered, GLint layer, GLenum format); typedef void (GLAD_API_PTR *PFNGLGETINFOLOGARBPROC)(GLhandleARB obj, GLsizei maxLength, GLsizei * length, GLcharARB * infoLog); typedef void (GLAD_API_PTR *PFNGLGETINTEGER64I_VPROC)(GLenum target, GLuint index, GLint64 * data); typedef void (GLAD_API_PTR *PFNGLGETINTEGER64VPROC)(GLenum pname, GLint64 * data); typedef void (GLAD_API_PTR *PFNGLGETINTEGERI_VPROC)(GLenum target, GLuint index, GLint * data); typedef void (GLAD_API_PTR *PFNGLGETINTEGERVPROC)(GLenum pname, GLint * data); typedef void (GLAD_API_PTR *PFNGLGETINTERNALFORMATI64VPROC)(GLenum target, GLenum internalformat, GLenum pname, GLsizei count, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETINTERNALFORMATIVPROC)(GLenum target, GLenum internalformat, GLenum pname, GLsizei count, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETLIGHTFVPROC)(GLenum light, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETLIGHTIVPROC)(GLenum light, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETMAPDVPROC)(GLenum target, GLenum query, GLdouble * v); typedef void (GLAD_API_PTR *PFNGLGETMAPFVPROC)(GLenum target, GLenum query, GLfloat * v); typedef void (GLAD_API_PTR *PFNGLGETMAPIVPROC)(GLenum target, GLenum query, GLint * v); typedef void (GLAD_API_PTR *PFNGLGETMATERIALFVPROC)(GLenum face, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETMATERIALIVPROC)(GLenum face, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETMINMAXPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, void * values); typedef void (GLAD_API_PTR *PFNGLGETMINMAXPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETMINMAXPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETMULTISAMPLEFVPROC)(GLenum pname, GLuint index, GLfloat * val); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERPARAMETERI64VPROC)(GLuint buffer, GLenum pname, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERPARAMETERIVPROC)(GLuint buffer, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERPOINTERVPROC)(GLuint buffer, GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERSUBDATAPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, void * data); typedef void (GLAD_API_PTR *PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC)(GLuint framebuffer, GLenum attachment, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC)(GLuint framebuffer, GLenum pname, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC)(GLuint renderbuffer, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDSTRINGARBPROC)(GLint namelen, const GLchar * name, GLsizei bufSize, GLint * stringlen, GLchar * string); typedef void (GLAD_API_PTR *PFNGLGETNAMEDSTRINGIVARBPROC)(GLint namelen, const GLchar * name, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETOBJECTLABELPROC)(GLenum identifier, GLuint name, GLsizei bufSize, GLsizei * length, GLchar * label); typedef void (GLAD_API_PTR *PFNGLGETOBJECTPARAMETERFVARBPROC)(GLhandleARB obj, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETOBJECTPARAMETERIVARBPROC)(GLhandleARB obj, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETOBJECTPTRLABELPROC)(const void * ptr, GLsizei bufSize, GLsizei * length, GLchar * label); typedef void (GLAD_API_PTR *PFNGLGETPIXELMAPFVPROC)(GLenum map, GLfloat * values); typedef void (GLAD_API_PTR *PFNGLGETPIXELMAPUIVPROC)(GLenum map, GLuint * values); typedef void (GLAD_API_PTR *PFNGLGETPIXELMAPUSVPROC)(GLenum map, GLushort * values); typedef void (GLAD_API_PTR *PFNGLGETPOINTERVPROC)(GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETPOLYGONSTIPPLEPROC)(GLubyte * mask); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMBINARYPROC)(GLuint program, GLsizei bufSize, GLsizei * length, GLenum * binaryFormat, void * binary); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMENVPARAMETERDVARBPROC)(GLenum target, GLuint index, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMENVPARAMETERFVARBPROC)(GLenum target, GLuint index, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMINFOLOGPROC)(GLuint program, GLsizei bufSize, GLsizei * length, GLchar * infoLog); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMINTERFACEIVPROC)(GLuint program, GLenum programInterface, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC)(GLenum target, GLuint index, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC)(GLenum target, GLuint index, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMPIPELINEINFOLOGPROC)(GLuint pipeline, GLsizei bufSize, GLsizei * length, GLchar * infoLog); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMPIPELINEIVPROC)(GLuint pipeline, GLenum pname, GLint * params); typedef GLuint (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCEINDEXPROC)(GLuint program, GLenum programInterface, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCELOCATIONPROC)(GLuint program, GLenum programInterface, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC)(GLuint program, GLenum programInterface, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCENAMEPROC)(GLuint program, GLenum programInterface, GLuint index, GLsizei bufSize, GLsizei * length, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCEIVPROC)(GLuint program, GLenum programInterface, GLuint index, GLsizei propCount, const GLenum * props, GLsizei count, GLsizei * length, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMSTAGEIVPROC)(GLuint program, GLenum shadertype, GLenum pname, GLint * values); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMSTRINGARBPROC)(GLenum target, GLenum pname, void * string); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMIVPROC)(GLuint program, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMIVARBPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTI64VPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTIVPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTUI64VPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTUIVPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYINDEXEDIVPROC)(GLenum target, GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTI64VPROC)(GLuint id, GLenum pname, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTIVPROC)(GLuint id, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTIVARBPROC)(GLuint id, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTUI64VPROC)(GLuint id, GLenum pname, GLuint64 * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTUIVPROC)(GLuint id, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTUIVARBPROC)(GLuint id, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYIVARBPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETRENDERBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERIIVPROC)(GLuint sampler, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERIUIVPROC)(GLuint sampler, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERFVPROC)(GLuint sampler, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERIVPROC)(GLuint sampler, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETSEPARABLEFILTERPROC)(GLenum target, GLenum format, GLenum type, void * row, void * column, void * span); typedef void (GLAD_API_PTR *PFNGLGETSHADERINFOLOGPROC)(GLuint shader, GLsizei bufSize, GLsizei * length, GLchar * infoLog); typedef void (GLAD_API_PTR *PFNGLGETSHADERPRECISIONFORMATPROC)(GLenum shadertype, GLenum precisiontype, GLint * range, GLint * precision); typedef void (GLAD_API_PTR *PFNGLGETSHADERSOURCEPROC)(GLuint shader, GLsizei bufSize, GLsizei * length, GLchar * source); typedef void (GLAD_API_PTR *PFNGLGETSHADERSOURCEARBPROC)(GLhandleARB obj, GLsizei maxLength, GLsizei * length, GLcharARB * source); typedef void (GLAD_API_PTR *PFNGLGETSHADERIVPROC)(GLuint shader, GLenum pname, GLint * params); typedef const GLubyte * (GLAD_API_PTR *PFNGLGETSTRINGPROC)(GLenum name); typedef const GLubyte * (GLAD_API_PTR *PFNGLGETSTRINGIPROC)(GLenum name, GLuint index); typedef GLuint (GLAD_API_PTR *PFNGLGETSUBROUTINEINDEXPROC)(GLuint program, GLenum shadertype, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC)(GLuint program, GLenum shadertype, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETSYNCIVPROC)(GLsync sync, GLenum pname, GLsizei count, GLsizei * length, GLint * values); typedef void (GLAD_API_PTR *PFNGLGETTEXENVFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXENVIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXGENDVPROC)(GLenum coord, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETTEXGENFVPROC)(GLenum coord, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXGENIVPROC)(GLenum coord, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXIMAGEPROC)(GLenum target, GLint level, GLenum format, GLenum type, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETTEXLEVELPARAMETERFVPROC)(GLenum target, GLint level, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXLEVELPARAMETERIVPROC)(GLenum target, GLint level, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERIIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERIUIVPROC)(GLenum target, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLuint64 (GLAD_API_PTR *PFNGLGETTEXTUREHANDLEARBPROC)(GLuint texture); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREIMAGEPROC)(GLuint texture, GLint level, GLenum format, GLenum type, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETTEXTURELEVELPARAMETERFVPROC)(GLuint texture, GLint level, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTURELEVELPARAMETERIVPROC)(GLuint texture, GLint level, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERIIVPROC)(GLuint texture, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERIUIVPROC)(GLuint texture, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERFVPROC)(GLuint texture, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERIVPROC)(GLuint texture, GLenum pname, GLint * params); typedef GLuint64 (GLAD_API_PTR *PFNGLGETTEXTURESAMPLERHANDLEARBPROC)(GLuint texture, GLuint sampler); typedef void (GLAD_API_PTR *PFNGLGETTEXTURESUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKVARYINGPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei * length, GLsizei * size, GLenum * type, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKI64_VPROC)(GLuint xfb, GLenum pname, GLuint index, GLint64 * param); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKI_VPROC)(GLuint xfb, GLenum pname, GLuint index, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKIVPROC)(GLuint xfb, GLenum pname, GLint * param); typedef GLuint (GLAD_API_PTR *PFNGLGETUNIFORMBLOCKINDEXPROC)(GLuint program, const GLchar * uniformBlockName); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMINDICESPROC)(GLuint program, GLsizei uniformCount, const GLchar *const* uniformNames, GLuint * uniformIndices); typedef GLint (GLAD_API_PTR *PFNGLGETUNIFORMLOCATIONPROC)(GLuint program, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETUNIFORMLOCATIONARBPROC)(GLhandleARB programObj, const GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMSUBROUTINEUIVPROC)(GLenum shadertype, GLint location, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMDVPROC)(GLuint program, GLint location, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMFVPROC)(GLuint program, GLint location, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMFVARBPROC)(GLhandleARB programObj, GLint location, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMI64VARBPROC)(GLuint program, GLint location, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMIVPROC)(GLuint program, GLint location, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMIVARBPROC)(GLhandleARB programObj, GLint location, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMUI64VARBPROC)(GLuint program, GLint location, GLuint64 * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMUIVPROC)(GLuint program, GLint location, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXARRAYINDEXED64IVPROC)(GLuint vaobj, GLuint index, GLenum pname, GLint64 * param); typedef void (GLAD_API_PTR *PFNGLGETVERTEXARRAYINDEXEDIVPROC)(GLuint vaobj, GLuint index, GLenum pname, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETVERTEXARRAYIVPROC)(GLuint vaobj, GLenum pname, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIIVPROC)(GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIUIVPROC)(GLuint index, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBLDVPROC)(GLuint index, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBLUI64VARBPROC)(GLuint index, GLenum pname, GLuint64EXT * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBPOINTERVPROC)(GLuint index, GLenum pname, void ** pointer); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBPOINTERVARBPROC)(GLuint index, GLenum pname, void ** pointer); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBDVPROC)(GLuint index, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBDVARBPROC)(GLuint index, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBFVPROC)(GLuint index, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBFVARBPROC)(GLuint index, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIVPROC)(GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIVARBPROC)(GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNCOLORTABLEARBPROC)(GLenum target, GLenum format, GLenum type, GLsizei bufSize, void * table); typedef void (GLAD_API_PTR *PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC)(GLenum target, GLint lod, GLsizei bufSize, void * img); typedef void (GLAD_API_PTR *PFNGLGETNCONVOLUTIONFILTERARBPROC)(GLenum target, GLenum format, GLenum type, GLsizei bufSize, void * image); typedef void (GLAD_API_PTR *PFNGLGETNHISTOGRAMARBPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, GLsizei bufSize, void * values); typedef void (GLAD_API_PTR *PFNGLGETNMAPDVARBPROC)(GLenum target, GLenum query, GLsizei bufSize, GLdouble * v); typedef void (GLAD_API_PTR *PFNGLGETNMAPFVARBPROC)(GLenum target, GLenum query, GLsizei bufSize, GLfloat * v); typedef void (GLAD_API_PTR *PFNGLGETNMAPIVARBPROC)(GLenum target, GLenum query, GLsizei bufSize, GLint * v); typedef void (GLAD_API_PTR *PFNGLGETNMINMAXARBPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, GLsizei bufSize, void * values); typedef void (GLAD_API_PTR *PFNGLGETNPIXELMAPFVARBPROC)(GLenum map, GLsizei bufSize, GLfloat * values); typedef void (GLAD_API_PTR *PFNGLGETNPIXELMAPUIVARBPROC)(GLenum map, GLsizei bufSize, GLuint * values); typedef void (GLAD_API_PTR *PFNGLGETNPIXELMAPUSVARBPROC)(GLenum map, GLsizei bufSize, GLushort * values); typedef void (GLAD_API_PTR *PFNGLGETNPOLYGONSTIPPLEARBPROC)(GLsizei bufSize, GLubyte * pattern); typedef void (GLAD_API_PTR *PFNGLGETNSEPARABLEFILTERARBPROC)(GLenum target, GLenum format, GLenum type, GLsizei rowBufSize, void * row, GLsizei columnBufSize, void * column, void * span); typedef void (GLAD_API_PTR *PFNGLGETNTEXIMAGEARBPROC)(GLenum target, GLint level, GLenum format, GLenum type, GLsizei bufSize, void * img); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMDVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMFVPROC)(GLuint program, GLint location, GLsizei bufSize, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMFVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMI64VARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMIVPROC)(GLuint program, GLint location, GLsizei bufSize, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMIVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMUI64VARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLuint64 * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMUIVPROC)(GLuint program, GLint location, GLsizei bufSize, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMUIVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLuint * params); typedef void (GLAD_API_PTR *PFNGLHINTPROC)(GLenum target, GLenum mode); typedef void (GLAD_API_PTR *PFNGLHISTOGRAMPROC)(GLenum target, GLsizei width, GLenum internalformat, GLboolean sink); typedef void (GLAD_API_PTR *PFNGLINDEXMASKPROC)(GLuint mask); typedef void (GLAD_API_PTR *PFNGLINDEXPOINTERPROC)(GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLINDEXDPROC)(GLdouble c); typedef void (GLAD_API_PTR *PFNGLINDEXDVPROC)(const GLdouble * c); typedef void (GLAD_API_PTR *PFNGLINDEXFPROC)(GLfloat c); typedef void (GLAD_API_PTR *PFNGLINDEXFVPROC)(const GLfloat * c); typedef void (GLAD_API_PTR *PFNGLINDEXIPROC)(GLint c); typedef void (GLAD_API_PTR *PFNGLINDEXIVPROC)(const GLint * c); typedef void (GLAD_API_PTR *PFNGLINDEXSPROC)(GLshort c); typedef void (GLAD_API_PTR *PFNGLINDEXSVPROC)(const GLshort * c); typedef void (GLAD_API_PTR *PFNGLINDEXUBPROC)(GLubyte c); typedef void (GLAD_API_PTR *PFNGLINDEXUBVPROC)(const GLubyte * c); typedef void (GLAD_API_PTR *PFNGLINITNAMESPROC)(void); typedef void (GLAD_API_PTR *PFNGLINTERLEAVEDARRAYSPROC)(GLenum format, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLINVALIDATEBUFFERDATAPROC)(GLuint buffer); typedef void (GLAD_API_PTR *PFNGLINVALIDATEBUFFERSUBDATAPROC)(GLuint buffer, GLintptr offset, GLsizeiptr length); typedef void (GLAD_API_PTR *PFNGLINVALIDATEFRAMEBUFFERPROC)(GLenum target, GLsizei numAttachments, const GLenum * attachments); typedef void (GLAD_API_PTR *PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC)(GLuint framebuffer, GLsizei numAttachments, const GLenum * attachments); typedef void (GLAD_API_PTR *PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC)(GLuint framebuffer, GLsizei numAttachments, const GLenum * attachments, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLINVALIDATESUBFRAMEBUFFERPROC)(GLenum target, GLsizei numAttachments, const GLenum * attachments, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLINVALIDATETEXIMAGEPROC)(GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLINVALIDATETEXSUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth); typedef GLboolean (GLAD_API_PTR *PFNGLISBUFFERPROC)(GLuint buffer); typedef GLboolean (GLAD_API_PTR *PFNGLISBUFFERARBPROC)(GLuint buffer); typedef GLboolean (GLAD_API_PTR *PFNGLISENABLEDPROC)(GLenum cap); typedef GLboolean (GLAD_API_PTR *PFNGLISENABLEDIPROC)(GLenum target, GLuint index); typedef GLboolean (GLAD_API_PTR *PFNGLISFRAMEBUFFERPROC)(GLuint framebuffer); typedef GLboolean (GLAD_API_PTR *PFNGLISIMAGEHANDLERESIDENTARBPROC)(GLuint64 handle); typedef GLboolean (GLAD_API_PTR *PFNGLISLISTPROC)(GLuint list); typedef GLboolean (GLAD_API_PTR *PFNGLISNAMEDSTRINGARBPROC)(GLint namelen, const GLchar * name); typedef GLboolean (GLAD_API_PTR *PFNGLISPROGRAMPROC)(GLuint program); typedef GLboolean (GLAD_API_PTR *PFNGLISPROGRAMARBPROC)(GLuint program); typedef GLboolean (GLAD_API_PTR *PFNGLISPROGRAMPIPELINEPROC)(GLuint pipeline); typedef GLboolean (GLAD_API_PTR *PFNGLISQUERYPROC)(GLuint id); typedef GLboolean (GLAD_API_PTR *PFNGLISQUERYARBPROC)(GLuint id); typedef GLboolean (GLAD_API_PTR *PFNGLISRENDERBUFFERPROC)(GLuint renderbuffer); typedef GLboolean (GLAD_API_PTR *PFNGLISSAMPLERPROC)(GLuint sampler); typedef GLboolean (GLAD_API_PTR *PFNGLISSHADERPROC)(GLuint shader); typedef GLboolean (GLAD_API_PTR *PFNGLISSYNCPROC)(GLsync sync); typedef GLboolean (GLAD_API_PTR *PFNGLISTEXTUREPROC)(GLuint texture); typedef GLboolean (GLAD_API_PTR *PFNGLISTEXTUREHANDLERESIDENTARBPROC)(GLuint64 handle); typedef GLboolean (GLAD_API_PTR *PFNGLISTRANSFORMFEEDBACKPROC)(GLuint id); typedef GLboolean (GLAD_API_PTR *PFNGLISVERTEXARRAYPROC)(GLuint array); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELFVPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELIVPROC)(GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLLIGHTFPROC)(GLenum light, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLLIGHTFVPROC)(GLenum light, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLLIGHTIPROC)(GLenum light, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLLIGHTIVPROC)(GLenum light, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLLINESTIPPLEPROC)(GLint factor, GLushort pattern); typedef void (GLAD_API_PTR *PFNGLLINEWIDTHPROC)(GLfloat width); typedef void (GLAD_API_PTR *PFNGLLINKPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLLINKPROGRAMARBPROC)(GLhandleARB programObj); typedef void (GLAD_API_PTR *PFNGLLISTBASEPROC)(GLuint base); typedef void (GLAD_API_PTR *PFNGLLOADIDENTITYPROC)(void); typedef void (GLAD_API_PTR *PFNGLLOADMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLLOADMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLLOADNAMEPROC)(GLuint name); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXDARBPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXFARBPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLLOGICOPPROC)(GLenum opcode); typedef void (GLAD_API_PTR *PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC)(GLuint64 handle); typedef void (GLAD_API_PTR *PFNGLMAKEIMAGEHANDLERESIDENTARBPROC)(GLuint64 handle, GLenum access); typedef void (GLAD_API_PTR *PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC)(GLuint64 handle); typedef void (GLAD_API_PTR *PFNGLMAKETEXTUREHANDLERESIDENTARBPROC)(GLuint64 handle); typedef void (GLAD_API_PTR *PFNGLMAP1DPROC)(GLenum target, GLdouble u1, GLdouble u2, GLint stride, GLint order, const GLdouble * points); typedef void (GLAD_API_PTR *PFNGLMAP1FPROC)(GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat * points); typedef void (GLAD_API_PTR *PFNGLMAP2DPROC)(GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder, GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble * points); typedef void (GLAD_API_PTR *PFNGLMAP2FPROC)(GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat * points); typedef void * (GLAD_API_PTR *PFNGLMAPBUFFERPROC)(GLenum target, GLenum access); typedef void * (GLAD_API_PTR *PFNGLMAPBUFFERARBPROC)(GLenum target, GLenum access); typedef void * (GLAD_API_PTR *PFNGLMAPBUFFERRANGEPROC)(GLenum target, GLintptr offset, GLsizeiptr length, GLbitfield access); typedef void (GLAD_API_PTR *PFNGLMAPGRID1DPROC)(GLint un, GLdouble u1, GLdouble u2); typedef void (GLAD_API_PTR *PFNGLMAPGRID1FPROC)(GLint un, GLfloat u1, GLfloat u2); typedef void (GLAD_API_PTR *PFNGLMAPGRID2DPROC)(GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1, GLdouble v2); typedef void (GLAD_API_PTR *PFNGLMAPGRID2FPROC)(GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2); typedef void * (GLAD_API_PTR *PFNGLMAPNAMEDBUFFERPROC)(GLuint buffer, GLenum access); typedef void * (GLAD_API_PTR *PFNGLMAPNAMEDBUFFERRANGEPROC)(GLuint buffer, GLintptr offset, GLsizeiptr length, GLbitfield access); typedef void (GLAD_API_PTR *PFNGLMATERIALFPROC)(GLenum face, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLMATERIALFVPROC)(GLenum face, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLMATERIALIPROC)(GLenum face, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLMATERIALIVPROC)(GLenum face, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXPOINTERARBPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXUBVARBPROC)(GLint size, const GLubyte * indices); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXUIVARBPROC)(GLint size, const GLuint * indices); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXUSVARBPROC)(GLint size, const GLushort * indices); typedef void (GLAD_API_PTR *PFNGLMATRIXMODEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLMAXSHADERCOMPILERTHREADSARBPROC)(GLuint count); typedef void (GLAD_API_PTR *PFNGLMAXSHADERCOMPILERTHREADSKHRPROC)(GLuint count); typedef void (GLAD_API_PTR *PFNGLMEMORYBARRIERPROC)(GLbitfield barriers); typedef void (GLAD_API_PTR *PFNGLMEMORYBARRIERBYREGIONPROC)(GLbitfield barriers); typedef void (GLAD_API_PTR *PFNGLMINSAMPLESHADINGPROC)(GLfloat value); typedef void (GLAD_API_PTR *PFNGLMINSAMPLESHADINGARBPROC)(GLfloat value); typedef void (GLAD_API_PTR *PFNGLMINMAXPROC)(GLenum target, GLenum internalformat, GLboolean sink); typedef void (GLAD_API_PTR *PFNGLMULTMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLMULTMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXDARBPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXFARBPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSPROC)(GLenum mode, const GLint * first, const GLsizei * count, GLsizei drawcount); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSINDIRECTPROC)(GLenum mode, const void * indirect, GLsizei drawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC)(GLenum mode, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC)(GLenum mode, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSPROC)(GLenum mode, const GLsizei * count, GLenum type, const void *const* indices, GLsizei drawcount); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC)(GLenum mode, const GLsizei * count, GLenum type, const void *const* indices, GLsizei drawcount, const GLint * basevertex); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSINDIRECTPROC)(GLenum mode, GLenum type, const void * indirect, GLsizei drawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC)(GLenum mode, GLenum type, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC)(GLenum mode, GLenum type, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DPROC)(GLenum target, GLdouble s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DARBPROC)(GLenum target, GLdouble s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FPROC)(GLenum target, GLfloat s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FARBPROC)(GLenum target, GLfloat s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IPROC)(GLenum target, GLint s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IARBPROC)(GLenum target, GLint s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SPROC)(GLenum target, GLshort s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SARBPROC)(GLenum target, GLshort s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DPROC)(GLenum target, GLdouble s, GLdouble t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DARBPROC)(GLenum target, GLdouble s, GLdouble t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FPROC)(GLenum target, GLfloat s, GLfloat t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FARBPROC)(GLenum target, GLfloat s, GLfloat t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IPROC)(GLenum target, GLint s, GLint t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IARBPROC)(GLenum target, GLint s, GLint t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SPROC)(GLenum target, GLshort s, GLshort t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SARBPROC)(GLenum target, GLshort s, GLshort t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DARBPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FARBPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IPROC)(GLenum target, GLint s, GLint t, GLint r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IARBPROC)(GLenum target, GLint s, GLint t, GLint r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SPROC)(GLenum target, GLshort s, GLshort t, GLshort r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SARBPROC)(GLenum target, GLshort s, GLshort t, GLshort r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r, GLdouble q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DARBPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r, GLdouble q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FARBPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IPROC)(GLenum target, GLint s, GLint t, GLint r, GLint q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IARBPROC)(GLenum target, GLint s, GLint t, GLint r, GLint q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SPROC)(GLenum target, GLshort s, GLshort t, GLshort r, GLshort q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SARBPROC)(GLenum target, GLshort s, GLshort t, GLshort r, GLshort q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP1UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP1UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP2UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP2UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP3UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP3UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP4UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP4UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERDATAPROC)(GLuint buffer, GLsizeiptr size, const void * data, GLenum usage); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERSTORAGEPROC)(GLuint buffer, GLsizeiptr size, const void * data, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERSUBDATAPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, const void * data); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC)(GLuint framebuffer, GLenum buf); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC)(GLuint framebuffer, GLsizei n, const GLenum * bufs); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC)(GLuint framebuffer, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC)(GLuint framebuffer, GLenum src); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC)(GLuint framebuffer, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC)(GLuint framebuffer, GLuint start, GLsizei count, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERTEXTUREPROC)(GLuint framebuffer, GLenum attachment, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC)(GLuint framebuffer, GLenum attachment, GLuint texture, GLint level, GLint layer); typedef void (GLAD_API_PTR *PFNGLNAMEDRENDERBUFFERSTORAGEPROC)(GLuint renderbuffer, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC)(GLuint renderbuffer, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLNAMEDSTRINGARBPROC)(GLenum type, GLint namelen, const GLchar * name, GLint stringlen, const GLchar * string); typedef void (GLAD_API_PTR *PFNGLNEWLISTPROC)(GLuint list, GLenum mode); typedef void (GLAD_API_PTR *PFNGLNORMAL3BPROC)(GLbyte nx, GLbyte ny, GLbyte nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3DPROC)(GLdouble nx, GLdouble ny, GLdouble nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3FPROC)(GLfloat nx, GLfloat ny, GLfloat nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3IPROC)(GLint nx, GLint ny, GLint nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3SPROC)(GLshort nx, GLshort ny, GLshort nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLNORMALP3UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLNORMALP3UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLNORMALPOINTERPROC)(GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLOBJECTLABELPROC)(GLenum identifier, GLuint name, GLsizei length, const GLchar * label); typedef void (GLAD_API_PTR *PFNGLOBJECTPTRLABELPROC)(const void * ptr, GLsizei length, const GLchar * label); typedef void (GLAD_API_PTR *PFNGLORTHOPROC)(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar); typedef void (GLAD_API_PTR *PFNGLPASSTHROUGHPROC)(GLfloat token); typedef void (GLAD_API_PTR *PFNGLPATCHPARAMETERFVPROC)(GLenum pname, const GLfloat * values); typedef void (GLAD_API_PTR *PFNGLPATCHPARAMETERIPROC)(GLenum pname, GLint value); typedef void (GLAD_API_PTR *PFNGLPAUSETRANSFORMFEEDBACKPROC)(void); typedef void (GLAD_API_PTR *PFNGLPIXELMAPFVPROC)(GLenum map, GLsizei mapsize, const GLfloat * values); typedef void (GLAD_API_PTR *PFNGLPIXELMAPUIVPROC)(GLenum map, GLsizei mapsize, const GLuint * values); typedef void (GLAD_API_PTR *PFNGLPIXELMAPUSVPROC)(GLenum map, GLsizei mapsize, const GLushort * values); typedef void (GLAD_API_PTR *PFNGLPIXELSTOREFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPIXELSTOREIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLPIXELTRANSFERFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPIXELTRANSFERIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLPIXELZOOMPROC)(GLfloat xfactor, GLfloat yfactor); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFARBPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFVPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFVARBPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERIVPROC)(GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLPOINTSIZEPROC)(GLfloat size); typedef void (GLAD_API_PTR *PFNGLPOLYGONMODEPROC)(GLenum face, GLenum mode); typedef void (GLAD_API_PTR *PFNGLPOLYGONOFFSETPROC)(GLfloat factor, GLfloat units); typedef void (GLAD_API_PTR *PFNGLPOLYGONOFFSETCLAMPPROC)(GLfloat factor, GLfloat units, GLfloat clamp); typedef void (GLAD_API_PTR *PFNGLPOLYGONSTIPPLEPROC)(const GLubyte * mask); typedef void (GLAD_API_PTR *PFNGLPOPATTRIBPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPCLIENTATTRIBPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPDEBUGGROUPPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPMATRIXPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPNAMEPROC)(void); typedef void (GLAD_API_PTR *PFNGLPRIMITIVEBOUNDINGBOXPROC)(GLfloat minX, GLfloat minY, GLfloat minZ, GLfloat minW, GLfloat maxX, GLfloat maxY, GLfloat maxZ, GLfloat maxW); typedef void (GLAD_API_PTR *PFNGLPRIMITIVEBOUNDINGBOXARBPROC)(GLfloat minX, GLfloat minY, GLfloat minZ, GLfloat minW, GLfloat maxX, GLfloat maxY, GLfloat maxZ, GLfloat maxW); typedef void (GLAD_API_PTR *PFNGLPRIMITIVERESTARTINDEXPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLPRIORITIZETEXTURESPROC)(GLsizei n, const GLuint * textures, const GLfloat * priorities); typedef void (GLAD_API_PTR *PFNGLPROGRAMBINARYPROC)(GLuint program, GLenum binaryFormat, const void * binary, GLsizei length); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4DARBPROC)(GLenum target, GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4DVARBPROC)(GLenum target, GLuint index, const GLdouble * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4FARBPROC)(GLenum target, GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4FVARBPROC)(GLenum target, GLuint index, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4DARBPROC)(GLenum target, GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4DVARBPROC)(GLenum target, GLuint index, const GLdouble * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4FARBPROC)(GLenum target, GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4FVARBPROC)(GLenum target, GLuint index, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMPARAMETERIPROC)(GLuint program, GLenum pname, GLint value); typedef void (GLAD_API_PTR *PFNGLPROGRAMPARAMETERIARBPROC)(GLuint program, GLenum pname, GLint value); typedef void (GLAD_API_PTR *PFNGLPROGRAMSTRINGARBPROC)(GLenum target, GLenum format, GLsizei len, const void * string); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1DPROC)(GLuint program, GLint location, GLdouble v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1FPROC)(GLuint program, GLint location, GLfloat v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1IPROC)(GLuint program, GLint location, GLint v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1I64ARBPROC)(GLuint program, GLint location, GLint64 x); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UIPROC)(GLuint program, GLint location, GLuint v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UI64ARBPROC)(GLuint program, GLint location, GLuint64 x); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2DPROC)(GLuint program, GLint location, GLdouble v0, GLdouble v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2FPROC)(GLuint program, GLint location, GLfloat v0, GLfloat v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2IPROC)(GLuint program, GLint location, GLint v0, GLint v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2I64ARBPROC)(GLuint program, GLint location, GLint64 x, GLint64 y); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UIPROC)(GLuint program, GLint location, GLuint v0, GLuint v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UI64ARBPROC)(GLuint program, GLint location, GLuint64 x, GLuint64 y); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3DPROC)(GLuint program, GLint location, GLdouble v0, GLdouble v1, GLdouble v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3FPROC)(GLuint program, GLint location, GLfloat v0, GLfloat v1, GLfloat v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3IPROC)(GLuint program, GLint location, GLint v0, GLint v1, GLint v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3I64ARBPROC)(GLuint program, GLint location, GLint64 x, GLint64 y, GLint64 z); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UIPROC)(GLuint program, GLint location, GLuint v0, GLuint v1, GLuint v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UI64ARBPROC)(GLuint program, GLint location, GLuint64 x, GLuint64 y, GLuint64 z); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4DPROC)(GLuint program, GLint location, GLdouble v0, GLdouble v1, GLdouble v2, GLdouble v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4FPROC)(GLuint program, GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4IPROC)(GLuint program, GLint location, GLint v0, GLint v1, GLint v2, GLint v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4I64ARBPROC)(GLuint program, GLint location, GLint64 x, GLint64 y, GLint64 z, GLint64 w); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UIPROC)(GLuint program, GLint location, GLuint v0, GLuint v1, GLuint v2, GLuint v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UI64ARBPROC)(GLuint program, GLint location, GLuint64 x, GLuint64 y, GLuint64 z, GLuint64 w); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC)(GLuint program, GLint location, GLuint64 value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * values); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROVOKINGVERTEXPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLPUSHATTRIBPROC)(GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLPUSHCLIENTATTRIBPROC)(GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLPUSHDEBUGGROUPPROC)(GLenum source, GLuint id, GLsizei length, const GLchar * message); typedef void (GLAD_API_PTR *PFNGLPUSHMATRIXPROC)(void); typedef void (GLAD_API_PTR *PFNGLPUSHNAMEPROC)(GLuint name); typedef void (GLAD_API_PTR *PFNGLQUERYCOUNTERPROC)(GLuint id, GLenum target); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2DPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2FPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2IPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2SPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3DPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3FPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3IPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3SPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4DPROC)(GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4FPROC)(GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4IPROC)(GLint x, GLint y, GLint z, GLint w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4SPROC)(GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLREADBUFFERPROC)(GLenum src); typedef void (GLAD_API_PTR *PFNGLREADPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, void * pixels); typedef void (GLAD_API_PTR *PFNGLREADNPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei bufSize, void * data); typedef void (GLAD_API_PTR *PFNGLREADNPIXELSARBPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei bufSize, void * data); typedef void (GLAD_API_PTR *PFNGLRECTDPROC)(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2); typedef void (GLAD_API_PTR *PFNGLRECTDVPROC)(const GLdouble * v1, const GLdouble * v2); typedef void (GLAD_API_PTR *PFNGLRECTFPROC)(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2); typedef void (GLAD_API_PTR *PFNGLRECTFVPROC)(const GLfloat * v1, const GLfloat * v2); typedef void (GLAD_API_PTR *PFNGLRECTIPROC)(GLint x1, GLint y1, GLint x2, GLint y2); typedef void (GLAD_API_PTR *PFNGLRECTIVPROC)(const GLint * v1, const GLint * v2); typedef void (GLAD_API_PTR *PFNGLRECTSPROC)(GLshort x1, GLshort y1, GLshort x2, GLshort y2); typedef void (GLAD_API_PTR *PFNGLRECTSVPROC)(const GLshort * v1, const GLshort * v2); typedef void (GLAD_API_PTR *PFNGLRELEASESHADERCOMPILERPROC)(void); typedef GLint (GLAD_API_PTR *PFNGLRENDERMODEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLRENDERBUFFERSTORAGEPROC)(GLenum target, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLRESETHISTOGRAMPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLRESETMINMAXPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLRESUMETRANSFORMFEEDBACKPROC)(void); typedef void (GLAD_API_PTR *PFNGLROTATEDPROC)(GLdouble angle, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLROTATEFPROC)(GLfloat angle, GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLSAMPLECOVERAGEPROC)(GLfloat value, GLboolean invert); typedef void (GLAD_API_PTR *PFNGLSAMPLECOVERAGEARBPROC)(GLfloat value, GLboolean invert); typedef void (GLAD_API_PTR *PFNGLSAMPLEMASKIPROC)(GLuint maskNumber, GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIIVPROC)(GLuint sampler, GLenum pname, const GLint * param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIUIVPROC)(GLuint sampler, GLenum pname, const GLuint * param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERFPROC)(GLuint sampler, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERFVPROC)(GLuint sampler, GLenum pname, const GLfloat * param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIPROC)(GLuint sampler, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIVPROC)(GLuint sampler, GLenum pname, const GLint * param); typedef void (GLAD_API_PTR *PFNGLSCALEDPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLSCALEFPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLSCISSORPROC)(GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLSCISSORARRAYVPROC)(GLuint first, GLsizei count, const GLint * v); typedef void (GLAD_API_PTR *PFNGLSCISSORINDEXEDPROC)(GLuint index, GLint left, GLint bottom, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLSCISSORINDEXEDVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3BPROC)(GLbyte red, GLbyte green, GLbyte blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3DPROC)(GLdouble red, GLdouble green, GLdouble blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3FPROC)(GLfloat red, GLfloat green, GLfloat blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3IPROC)(GLint red, GLint green, GLint blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3SPROC)(GLshort red, GLshort green, GLshort blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UBPROC)(GLubyte red, GLubyte green, GLubyte blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UBVPROC)(const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UIPROC)(GLuint red, GLuint green, GLuint blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UIVPROC)(const GLuint * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3USPROC)(GLushort red, GLushort green, GLushort blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3USVPROC)(const GLushort * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLORP3UIPROC)(GLenum type, GLuint color); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLORP3UIVPROC)(GLenum type, const GLuint * color); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLORPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLSELECTBUFFERPROC)(GLsizei size, GLuint * buffer); typedef void (GLAD_API_PTR *PFNGLSEPARABLEFILTER2DPROC)(GLenum target, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * row, const void * column); typedef void (GLAD_API_PTR *PFNGLSHADEMODELPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLSHADERBINARYPROC)(GLsizei count, const GLuint * shaders, GLenum binaryformat, const void * binary, GLsizei length); typedef void (GLAD_API_PTR *PFNGLSHADERSOURCEPROC)(GLuint shader, GLsizei count, const GLchar *const* string, const GLint * length); typedef void (GLAD_API_PTR *PFNGLSHADERSOURCEARBPROC)(GLhandleARB shaderObj, GLsizei count, const GLcharARB ** string, const GLint * length); typedef void (GLAD_API_PTR *PFNGLSHADERSTORAGEBLOCKBINDINGPROC)(GLuint program, GLuint storageBlockIndex, GLuint storageBlockBinding); typedef void (GLAD_API_PTR *PFNGLSPECIALIZESHADERPROC)(GLuint shader, const GLchar * pEntryPoint, GLuint numSpecializationConstants, const GLuint * pConstantIndex, const GLuint * pConstantValue); typedef void (GLAD_API_PTR *PFNGLSPECIALIZESHADERARBPROC)(GLuint shader, const GLchar * pEntryPoint, GLuint numSpecializationConstants, const GLuint * pConstantIndex, const GLuint * pConstantValue); typedef void (GLAD_API_PTR *PFNGLSTENCILFUNCPROC)(GLenum func, GLint ref, GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILFUNCSEPARATEPROC)(GLenum face, GLenum func, GLint ref, GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILMASKPROC)(GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILMASKSEPARATEPROC)(GLenum face, GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILOPPROC)(GLenum fail, GLenum zfail, GLenum zpass); typedef void (GLAD_API_PTR *PFNGLSTENCILOPSEPARATEPROC)(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass); typedef void (GLAD_API_PTR *PFNGLTEXBUFFERPROC)(GLenum target, GLenum internalformat, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTEXBUFFERARBPROC)(GLenum target, GLenum internalformat, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTEXBUFFERRANGEPROC)(GLenum target, GLenum internalformat, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1DPROC)(GLdouble s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1FPROC)(GLfloat s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1IPROC)(GLint s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1SPROC)(GLshort s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2DPROC)(GLdouble s, GLdouble t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2FPROC)(GLfloat s, GLfloat t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2IPROC)(GLint s, GLint t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2SPROC)(GLshort s, GLshort t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3DPROC)(GLdouble s, GLdouble t, GLdouble r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3FPROC)(GLfloat s, GLfloat t, GLfloat r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3IPROC)(GLint s, GLint t, GLint r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3SPROC)(GLshort s, GLshort t, GLshort r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4DPROC)(GLdouble s, GLdouble t, GLdouble r, GLdouble q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4FPROC)(GLfloat s, GLfloat t, GLfloat r, GLfloat q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4IPROC)(GLint s, GLint t, GLint r, GLint q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4SPROC)(GLshort s, GLshort t, GLshort r, GLshort q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP1UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP1UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP2UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP2UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP3UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP3UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP4UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP4UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLTEXENVFPROC)(GLenum target, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXENVFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLTEXENVIPROC)(GLenum target, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXENVIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXGENDPROC)(GLenum coord, GLenum pname, GLdouble param); typedef void (GLAD_API_PTR *PFNGLTEXGENDVPROC)(GLenum coord, GLenum pname, const GLdouble * params); typedef void (GLAD_API_PTR *PFNGLTEXGENFPROC)(GLenum coord, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXGENFVPROC)(GLenum coord, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLTEXGENIPROC)(GLenum coord, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXGENIVPROC)(GLenum coord, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE1DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLint border, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE2DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE2DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE3DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE3DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXPAGECOMMITMENTARBPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIUIVPROC)(GLenum target, GLenum pname, const GLuint * params); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERFPROC)(GLenum target, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIPROC)(GLenum target, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE1DPROC)(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE2DPROC)(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE2DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE3DPROC)(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE3DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTUREBARRIERPROC)(void); typedef void (GLAD_API_PTR *PFNGLTEXTUREBUFFERPROC)(GLuint texture, GLenum internalformat, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTEXTUREBUFFERRANGEPROC)(GLuint texture, GLenum internalformat, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIIVPROC)(GLuint texture, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIUIVPROC)(GLuint texture, GLenum pname, const GLuint * params); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERFPROC)(GLuint texture, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERFVPROC)(GLuint texture, GLenum pname, const GLfloat * param); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIPROC)(GLuint texture, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIVPROC)(GLuint texture, GLenum pname, const GLint * param); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE1DPROC)(GLuint texture, GLsizei levels, GLenum internalformat, GLsizei width); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE2DPROC)(GLuint texture, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC)(GLuint texture, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE3DPROC)(GLuint texture, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC)(GLuint texture, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXTURESUBIMAGE1DPROC)(GLuint texture, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTURESUBIMAGE2DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTURESUBIMAGE3DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTUREVIEWPROC)(GLuint texture, GLenum target, GLuint origtexture, GLenum internalformat, GLuint minlevel, GLuint numlevels, GLuint minlayer, GLuint numlayers); typedef void (GLAD_API_PTR *PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC)(GLuint xfb, GLuint index, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC)(GLuint xfb, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLTRANSFORMFEEDBACKVARYINGSPROC)(GLuint program, GLsizei count, const GLchar *const* varyings, GLenum bufferMode); typedef void (GLAD_API_PTR *PFNGLTRANSLATEDPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLTRANSLATEFPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLUNIFORM1DPROC)(GLint location, GLdouble x); typedef void (GLAD_API_PTR *PFNGLUNIFORM1DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FPROC)(GLint location, GLfloat v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FARBPROC)(GLint location, GLfloat v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IPROC)(GLint location, GLint v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1I64ARBPROC)(GLint location, GLint64 x); typedef void (GLAD_API_PTR *PFNGLUNIFORM1I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IARBPROC)(GLint location, GLint v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UIPROC)(GLint location, GLuint v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UI64ARBPROC)(GLint location, GLuint64 x); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2DPROC)(GLint location, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLUNIFORM2DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FPROC)(GLint location, GLfloat v0, GLfloat v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FARBPROC)(GLint location, GLfloat v0, GLfloat v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IPROC)(GLint location, GLint v0, GLint v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2I64ARBPROC)(GLint location, GLint64 x, GLint64 y); typedef void (GLAD_API_PTR *PFNGLUNIFORM2I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IARBPROC)(GLint location, GLint v0, GLint v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UIPROC)(GLint location, GLuint v0, GLuint v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UI64ARBPROC)(GLint location, GLuint64 x, GLuint64 y); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3DPROC)(GLint location, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLUNIFORM3DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FARBPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IPROC)(GLint location, GLint v0, GLint v1, GLint v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3I64ARBPROC)(GLint location, GLint64 x, GLint64 y, GLint64 z); typedef void (GLAD_API_PTR *PFNGLUNIFORM3I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IARBPROC)(GLint location, GLint v0, GLint v1, GLint v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UIPROC)(GLint location, GLuint v0, GLuint v1, GLuint v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UI64ARBPROC)(GLint location, GLuint64 x, GLuint64 y, GLuint64 z); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4DPROC)(GLint location, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLUNIFORM4DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FARBPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IPROC)(GLint location, GLint v0, GLint v1, GLint v2, GLint v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4I64ARBPROC)(GLint location, GLint64 x, GLint64 y, GLint64 z, GLint64 w); typedef void (GLAD_API_PTR *PFNGLUNIFORM4I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IARBPROC)(GLint location, GLint v0, GLint v1, GLint v2, GLint v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UIPROC)(GLint location, GLuint v0, GLuint v1, GLuint v2, GLuint v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UI64ARBPROC)(GLint location, GLuint64 x, GLuint64 y, GLuint64 z, GLuint64 w); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMBLOCKBINDINGPROC)(GLuint program, GLuint uniformBlockIndex, GLuint uniformBlockBinding); typedef void (GLAD_API_PTR *PFNGLUNIFORMHANDLEUI64ARBPROC)(GLint location, GLuint64 value); typedef void (GLAD_API_PTR *PFNGLUNIFORMHANDLEUI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2FVARBPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X3DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X4DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3FVARBPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X2DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X4DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4FVARBPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X2DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X3DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMSUBROUTINESUIVPROC)(GLenum shadertype, GLsizei count, const GLuint * indices); typedef GLboolean (GLAD_API_PTR *PFNGLUNMAPBUFFERPROC)(GLenum target); typedef GLboolean (GLAD_API_PTR *PFNGLUNMAPBUFFERARBPROC)(GLenum target); typedef GLboolean (GLAD_API_PTR *PFNGLUNMAPNAMEDBUFFERPROC)(GLuint buffer); typedef void (GLAD_API_PTR *PFNGLUSEPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLUSEPROGRAMOBJECTARBPROC)(GLhandleARB programObj); typedef void (GLAD_API_PTR *PFNGLUSEPROGRAMSTAGESPROC)(GLuint pipeline, GLbitfield stages, GLuint program); typedef void (GLAD_API_PTR *PFNGLVALIDATEPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLVALIDATEPROGRAMARBPROC)(GLhandleARB programObj); typedef void (GLAD_API_PTR *PFNGLVALIDATEPROGRAMPIPELINEPROC)(GLuint pipeline); typedef void (GLAD_API_PTR *PFNGLVERTEX2DPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEX2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEX2FPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLVERTEX2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEX2IPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLVERTEX2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEX2SPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLVERTEX2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3DPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEX3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3FPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLVERTEX3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3IPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLVERTEX3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3SPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLVERTEX3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4DPROC)(GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEX4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4FPROC)(GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLVERTEX4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4IPROC)(GLint x, GLint y, GLint z, GLint w); typedef void (GLAD_API_PTR *PFNGLVERTEX4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4SPROC)(GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLVERTEX4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBBINDINGPROC)(GLuint vaobj, GLuint attribindex, GLuint bindingindex); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBFORMATPROC)(GLuint vaobj, GLuint attribindex, GLint size, GLenum type, GLboolean normalized, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBIFORMATPROC)(GLuint vaobj, GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBLFORMATPROC)(GLuint vaobj, GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYBINDINGDIVISORPROC)(GLuint vaobj, GLuint bindingindex, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYELEMENTBUFFERPROC)(GLuint vaobj, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYVERTEXBUFFERPROC)(GLuint vaobj, GLuint bindingindex, GLuint buffer, GLintptr offset, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYVERTEXBUFFERSPROC)(GLuint vaobj, GLuint first, GLsizei count, const GLuint * buffers, const GLintptr * offsets, const GLsizei * strides); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DPROC)(GLuint index, GLdouble x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DARBPROC)(GLuint index, GLdouble x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FPROC)(GLuint index, GLfloat x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FARBPROC)(GLuint index, GLfloat x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SPROC)(GLuint index, GLshort x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SARBPROC)(GLuint index, GLshort x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DPROC)(GLuint index, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DARBPROC)(GLuint index, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FPROC)(GLuint index, GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FARBPROC)(GLuint index, GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SPROC)(GLuint index, GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SARBPROC)(GLuint index, GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DARBPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FARBPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SPROC)(GLuint index, GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SARBPROC)(GLuint index, GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NBVPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NBVARBPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NIVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NIVARBPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NSVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NSVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBPROC)(GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBARBPROC)(GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBVPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBVARBPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUIVARBPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUSVPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUSVARBPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4BVPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4BVARBPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DARBPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FARBPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4IVARBPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SPROC)(GLuint index, GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SARBPROC)(GLuint index, GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UBVPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UBVARBPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UIVARBPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4USVPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4USVARBPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBBINDINGPROC)(GLuint attribindex, GLuint bindingindex); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBDIVISORPROC)(GLuint index, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBDIVISORARBPROC)(GLuint index, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBFORMATPROC)(GLuint attribindex, GLint size, GLenum type, GLboolean normalized, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1IPROC)(GLuint index, GLint x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1UIPROC)(GLuint index, GLuint x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2IPROC)(GLuint index, GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2UIPROC)(GLuint index, GLuint x, GLuint y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3IPROC)(GLuint index, GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3UIPROC)(GLuint index, GLuint x, GLuint y, GLuint z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4BVPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4IPROC)(GLuint index, GLint x, GLint y, GLint z, GLint w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4UBVPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4UIPROC)(GLuint index, GLuint x, GLuint y, GLuint z, GLuint w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4USVPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBIFORMATPROC)(GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBIPOINTERPROC)(GLuint index, GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1DPROC)(GLuint index, GLdouble x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1UI64ARBPROC)(GLuint index, GLuint64EXT x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1UI64VARBPROC)(GLuint index, const GLuint64EXT * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL2DPROC)(GLuint index, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL2DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL3DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL3DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL4DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL4DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBLFORMATPROC)(GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBLPOINTERPROC)(GLuint index, GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP1UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP1UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP2UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP2UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP3UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP3UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP4UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP4UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBPOINTERPROC)(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBPOINTERARBPROC)(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXBINDINGDIVISORPROC)(GLuint bindingindex, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXBLENDARBPROC)(GLint count); typedef void (GLAD_API_PTR *PFNGLVERTEXP2UIPROC)(GLenum type, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXP2UIVPROC)(GLenum type, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXP3UIPROC)(GLenum type, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXP3UIVPROC)(GLenum type, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXP4UIPROC)(GLenum type, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXP4UIVPROC)(GLenum type, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVIEWPORTPROC)(GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLVIEWPORTARRAYVPROC)(GLuint first, GLsizei count, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVIEWPORTINDEXEDFPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat w, GLfloat h); typedef void (GLAD_API_PTR *PFNGLVIEWPORTINDEXEDFVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWAITSYNCPROC)(GLsync sync, GLbitfield flags, GLuint64 timeout); typedef void (GLAD_API_PTR *PFNGLWEIGHTPOINTERARBPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLWEIGHTBVARBPROC)(GLint size, const GLbyte * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTDVARBPROC)(GLint size, const GLdouble * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTFVARBPROC)(GLint size, const GLfloat * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTIVARBPROC)(GLint size, const GLint * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTSVARBPROC)(GLint size, const GLshort * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTUBVARBPROC)(GLint size, const GLubyte * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTUIVARBPROC)(GLint size, const GLuint * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTUSVARBPROC)(GLint size, const GLushort * weights); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DARBPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DVARBPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FARBPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FVARBPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IARBPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IVARBPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SARBPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SVARBPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DARBPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DVARBPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FARBPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FVARBPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IARBPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IVARBPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SARBPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SVARBPROC)(const GLshort * v); GLAD_API_CALL PFNGLACCUMPROC glad_glAccum; #define glAccum glad_glAccum GLAD_API_CALL PFNGLACTIVESHADERPROGRAMPROC glad_glActiveShaderProgram; #define glActiveShaderProgram glad_glActiveShaderProgram GLAD_API_CALL PFNGLACTIVETEXTUREPROC glad_glActiveTexture; #define glActiveTexture glad_glActiveTexture GLAD_API_CALL PFNGLACTIVETEXTUREARBPROC glad_glActiveTextureARB; #define glActiveTextureARB glad_glActiveTextureARB GLAD_API_CALL PFNGLALPHAFUNCPROC glad_glAlphaFunc; #define glAlphaFunc glad_glAlphaFunc GLAD_API_CALL PFNGLARETEXTURESRESIDENTPROC glad_glAreTexturesResident; #define glAreTexturesResident glad_glAreTexturesResident GLAD_API_CALL PFNGLARRAYELEMENTPROC glad_glArrayElement; #define glArrayElement glad_glArrayElement GLAD_API_CALL PFNGLATTACHOBJECTARBPROC glad_glAttachObjectARB; #define glAttachObjectARB glad_glAttachObjectARB GLAD_API_CALL PFNGLATTACHSHADERPROC glad_glAttachShader; #define glAttachShader glad_glAttachShader GLAD_API_CALL PFNGLBEGINPROC glad_glBegin; #define glBegin glad_glBegin GLAD_API_CALL PFNGLBEGINCONDITIONALRENDERPROC glad_glBeginConditionalRender; #define glBeginConditionalRender glad_glBeginConditionalRender GLAD_API_CALL PFNGLBEGINQUERYPROC glad_glBeginQuery; #define glBeginQuery glad_glBeginQuery GLAD_API_CALL PFNGLBEGINQUERYARBPROC glad_glBeginQueryARB; #define glBeginQueryARB glad_glBeginQueryARB GLAD_API_CALL PFNGLBEGINQUERYINDEXEDPROC glad_glBeginQueryIndexed; #define glBeginQueryIndexed glad_glBeginQueryIndexed GLAD_API_CALL PFNGLBEGINTRANSFORMFEEDBACKPROC glad_glBeginTransformFeedback; #define glBeginTransformFeedback glad_glBeginTransformFeedback GLAD_API_CALL PFNGLBINDATTRIBLOCATIONPROC glad_glBindAttribLocation; #define glBindAttribLocation glad_glBindAttribLocation GLAD_API_CALL PFNGLBINDATTRIBLOCATIONARBPROC glad_glBindAttribLocationARB; #define glBindAttribLocationARB glad_glBindAttribLocationARB GLAD_API_CALL PFNGLBINDBUFFERPROC glad_glBindBuffer; #define glBindBuffer glad_glBindBuffer GLAD_API_CALL PFNGLBINDBUFFERARBPROC glad_glBindBufferARB; #define glBindBufferARB glad_glBindBufferARB GLAD_API_CALL PFNGLBINDBUFFERBASEPROC glad_glBindBufferBase; #define glBindBufferBase glad_glBindBufferBase GLAD_API_CALL PFNGLBINDBUFFERRANGEPROC glad_glBindBufferRange; #define glBindBufferRange glad_glBindBufferRange GLAD_API_CALL PFNGLBINDBUFFERSBASEPROC glad_glBindBuffersBase; #define glBindBuffersBase glad_glBindBuffersBase GLAD_API_CALL PFNGLBINDBUFFERSRANGEPROC glad_glBindBuffersRange; #define glBindBuffersRange glad_glBindBuffersRange GLAD_API_CALL PFNGLBINDFRAGDATALOCATIONPROC glad_glBindFragDataLocation; #define glBindFragDataLocation glad_glBindFragDataLocation GLAD_API_CALL PFNGLBINDFRAGDATALOCATIONINDEXEDPROC glad_glBindFragDataLocationIndexed; #define glBindFragDataLocationIndexed glad_glBindFragDataLocationIndexed GLAD_API_CALL PFNGLBINDFRAMEBUFFERPROC glad_glBindFramebuffer; #define glBindFramebuffer glad_glBindFramebuffer GLAD_API_CALL PFNGLBINDIMAGETEXTUREPROC glad_glBindImageTexture; #define glBindImageTexture glad_glBindImageTexture GLAD_API_CALL PFNGLBINDIMAGETEXTURESPROC glad_glBindImageTextures; #define glBindImageTextures glad_glBindImageTextures GLAD_API_CALL PFNGLBINDPROGRAMARBPROC glad_glBindProgramARB; #define glBindProgramARB glad_glBindProgramARB GLAD_API_CALL PFNGLBINDPROGRAMPIPELINEPROC glad_glBindProgramPipeline; #define glBindProgramPipeline glad_glBindProgramPipeline GLAD_API_CALL PFNGLBINDRENDERBUFFERPROC glad_glBindRenderbuffer; #define glBindRenderbuffer glad_glBindRenderbuffer GLAD_API_CALL PFNGLBINDSAMPLERPROC glad_glBindSampler; #define glBindSampler glad_glBindSampler GLAD_API_CALL PFNGLBINDSAMPLERSPROC glad_glBindSamplers; #define glBindSamplers glad_glBindSamplers GLAD_API_CALL PFNGLBINDTEXTUREPROC glad_glBindTexture; #define glBindTexture glad_glBindTexture GLAD_API_CALL PFNGLBINDTEXTUREUNITPROC glad_glBindTextureUnit; #define glBindTextureUnit glad_glBindTextureUnit GLAD_API_CALL PFNGLBINDTEXTURESPROC glad_glBindTextures; #define glBindTextures glad_glBindTextures GLAD_API_CALL PFNGLBINDTRANSFORMFEEDBACKPROC glad_glBindTransformFeedback; #define glBindTransformFeedback glad_glBindTransformFeedback GLAD_API_CALL PFNGLBINDVERTEXARRAYPROC glad_glBindVertexArray; #define glBindVertexArray glad_glBindVertexArray GLAD_API_CALL PFNGLBINDVERTEXBUFFERPROC glad_glBindVertexBuffer; #define glBindVertexBuffer glad_glBindVertexBuffer GLAD_API_CALL PFNGLBINDVERTEXBUFFERSPROC glad_glBindVertexBuffers; #define glBindVertexBuffers glad_glBindVertexBuffers GLAD_API_CALL PFNGLBITMAPPROC glad_glBitmap; #define glBitmap glad_glBitmap GLAD_API_CALL PFNGLBLENDBARRIERPROC glad_glBlendBarrier; #define glBlendBarrier glad_glBlendBarrier GLAD_API_CALL PFNGLBLENDBARRIERKHRPROC glad_glBlendBarrierKHR; #define glBlendBarrierKHR glad_glBlendBarrierKHR GLAD_API_CALL PFNGLBLENDCOLORPROC glad_glBlendColor; #define glBlendColor glad_glBlendColor GLAD_API_CALL PFNGLBLENDEQUATIONPROC glad_glBlendEquation; #define glBlendEquation glad_glBlendEquation GLAD_API_CALL PFNGLBLENDEQUATIONSEPARATEPROC glad_glBlendEquationSeparate; #define glBlendEquationSeparate glad_glBlendEquationSeparate GLAD_API_CALL PFNGLBLENDEQUATIONSEPARATEIPROC glad_glBlendEquationSeparatei; #define glBlendEquationSeparatei glad_glBlendEquationSeparatei GLAD_API_CALL PFNGLBLENDEQUATIONSEPARATEIARBPROC glad_glBlendEquationSeparateiARB; #define glBlendEquationSeparateiARB glad_glBlendEquationSeparateiARB GLAD_API_CALL PFNGLBLENDEQUATIONIPROC glad_glBlendEquationi; #define glBlendEquationi glad_glBlendEquationi GLAD_API_CALL PFNGLBLENDEQUATIONIARBPROC glad_glBlendEquationiARB; #define glBlendEquationiARB glad_glBlendEquationiARB GLAD_API_CALL PFNGLBLENDFUNCPROC glad_glBlendFunc; #define glBlendFunc glad_glBlendFunc GLAD_API_CALL PFNGLBLENDFUNCSEPARATEPROC glad_glBlendFuncSeparate; #define glBlendFuncSeparate glad_glBlendFuncSeparate GLAD_API_CALL PFNGLBLENDFUNCSEPARATEIPROC glad_glBlendFuncSeparatei; #define glBlendFuncSeparatei glad_glBlendFuncSeparatei GLAD_API_CALL PFNGLBLENDFUNCSEPARATEIARBPROC glad_glBlendFuncSeparateiARB; #define glBlendFuncSeparateiARB glad_glBlendFuncSeparateiARB GLAD_API_CALL PFNGLBLENDFUNCIPROC glad_glBlendFunci; #define glBlendFunci glad_glBlendFunci GLAD_API_CALL PFNGLBLENDFUNCIARBPROC glad_glBlendFunciARB; #define glBlendFunciARB glad_glBlendFunciARB GLAD_API_CALL PFNGLBLITFRAMEBUFFERPROC glad_glBlitFramebuffer; #define glBlitFramebuffer glad_glBlitFramebuffer GLAD_API_CALL PFNGLBLITNAMEDFRAMEBUFFERPROC glad_glBlitNamedFramebuffer; #define glBlitNamedFramebuffer glad_glBlitNamedFramebuffer GLAD_API_CALL PFNGLBUFFERDATAPROC glad_glBufferData; #define glBufferData glad_glBufferData GLAD_API_CALL PFNGLBUFFERDATAARBPROC glad_glBufferDataARB; #define glBufferDataARB glad_glBufferDataARB GLAD_API_CALL PFNGLBUFFERPAGECOMMITMENTARBPROC glad_glBufferPageCommitmentARB; #define glBufferPageCommitmentARB glad_glBufferPageCommitmentARB GLAD_API_CALL PFNGLBUFFERSTORAGEPROC glad_glBufferStorage; #define glBufferStorage glad_glBufferStorage GLAD_API_CALL PFNGLBUFFERSUBDATAPROC glad_glBufferSubData; #define glBufferSubData glad_glBufferSubData GLAD_API_CALL PFNGLBUFFERSUBDATAARBPROC glad_glBufferSubDataARB; #define glBufferSubDataARB glad_glBufferSubDataARB GLAD_API_CALL PFNGLCALLLISTPROC glad_glCallList; #define glCallList glad_glCallList GLAD_API_CALL PFNGLCALLLISTSPROC glad_glCallLists; #define glCallLists glad_glCallLists GLAD_API_CALL PFNGLCHECKFRAMEBUFFERSTATUSPROC glad_glCheckFramebufferStatus; #define glCheckFramebufferStatus glad_glCheckFramebufferStatus GLAD_API_CALL PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC glad_glCheckNamedFramebufferStatus; #define glCheckNamedFramebufferStatus glad_glCheckNamedFramebufferStatus GLAD_API_CALL PFNGLCLAMPCOLORPROC glad_glClampColor; #define glClampColor glad_glClampColor GLAD_API_CALL PFNGLCLAMPCOLORARBPROC glad_glClampColorARB; #define glClampColorARB glad_glClampColorARB GLAD_API_CALL PFNGLCLEARPROC glad_glClear; #define glClear glad_glClear GLAD_API_CALL PFNGLCLEARACCUMPROC glad_glClearAccum; #define glClearAccum glad_glClearAccum GLAD_API_CALL PFNGLCLEARBUFFERDATAPROC glad_glClearBufferData; #define glClearBufferData glad_glClearBufferData GLAD_API_CALL PFNGLCLEARBUFFERSUBDATAPROC glad_glClearBufferSubData; #define glClearBufferSubData glad_glClearBufferSubData GLAD_API_CALL PFNGLCLEARBUFFERFIPROC glad_glClearBufferfi; #define glClearBufferfi glad_glClearBufferfi GLAD_API_CALL PFNGLCLEARBUFFERFVPROC glad_glClearBufferfv; #define glClearBufferfv glad_glClearBufferfv GLAD_API_CALL PFNGLCLEARBUFFERIVPROC glad_glClearBufferiv; #define glClearBufferiv glad_glClearBufferiv GLAD_API_CALL PFNGLCLEARBUFFERUIVPROC glad_glClearBufferuiv; #define glClearBufferuiv glad_glClearBufferuiv GLAD_API_CALL PFNGLCLEARCOLORPROC glad_glClearColor; #define glClearColor glad_glClearColor GLAD_API_CALL PFNGLCLEARDEPTHPROC glad_glClearDepth; #define glClearDepth glad_glClearDepth GLAD_API_CALL PFNGLCLEARDEPTHFPROC glad_glClearDepthf; #define glClearDepthf glad_glClearDepthf GLAD_API_CALL PFNGLCLEARINDEXPROC glad_glClearIndex; #define glClearIndex glad_glClearIndex GLAD_API_CALL PFNGLCLEARNAMEDBUFFERDATAPROC glad_glClearNamedBufferData; #define glClearNamedBufferData glad_glClearNamedBufferData GLAD_API_CALL PFNGLCLEARNAMEDBUFFERSUBDATAPROC glad_glClearNamedBufferSubData; #define glClearNamedBufferSubData glad_glClearNamedBufferSubData GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERFIPROC glad_glClearNamedFramebufferfi; #define glClearNamedFramebufferfi glad_glClearNamedFramebufferfi GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERFVPROC glad_glClearNamedFramebufferfv; #define glClearNamedFramebufferfv glad_glClearNamedFramebufferfv GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERIVPROC glad_glClearNamedFramebufferiv; #define glClearNamedFramebufferiv glad_glClearNamedFramebufferiv GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC glad_glClearNamedFramebufferuiv; #define glClearNamedFramebufferuiv glad_glClearNamedFramebufferuiv GLAD_API_CALL PFNGLCLEARSTENCILPROC glad_glClearStencil; #define glClearStencil glad_glClearStencil GLAD_API_CALL PFNGLCLEARTEXIMAGEPROC glad_glClearTexImage; #define glClearTexImage glad_glClearTexImage GLAD_API_CALL PFNGLCLEARTEXSUBIMAGEPROC glad_glClearTexSubImage; #define glClearTexSubImage glad_glClearTexSubImage GLAD_API_CALL PFNGLCLIENTACTIVETEXTUREPROC glad_glClientActiveTexture; #define glClientActiveTexture glad_glClientActiveTexture GLAD_API_CALL PFNGLCLIENTACTIVETEXTUREARBPROC glad_glClientActiveTextureARB; #define glClientActiveTextureARB glad_glClientActiveTextureARB GLAD_API_CALL PFNGLCLIENTWAITSYNCPROC glad_glClientWaitSync; #define glClientWaitSync glad_glClientWaitSync GLAD_API_CALL PFNGLCLIPCONTROLPROC glad_glClipControl; #define glClipControl glad_glClipControl GLAD_API_CALL PFNGLCLIPPLANEPROC glad_glClipPlane; #define glClipPlane glad_glClipPlane GLAD_API_CALL PFNGLCOLOR3BPROC glad_glColor3b; #define glColor3b glad_glColor3b GLAD_API_CALL PFNGLCOLOR3BVPROC glad_glColor3bv; #define glColor3bv glad_glColor3bv GLAD_API_CALL PFNGLCOLOR3DPROC glad_glColor3d; #define glColor3d glad_glColor3d GLAD_API_CALL PFNGLCOLOR3DVPROC glad_glColor3dv; #define glColor3dv glad_glColor3dv GLAD_API_CALL PFNGLCOLOR3FPROC glad_glColor3f; #define glColor3f glad_glColor3f GLAD_API_CALL PFNGLCOLOR3FVPROC glad_glColor3fv; #define glColor3fv glad_glColor3fv GLAD_API_CALL PFNGLCOLOR3IPROC glad_glColor3i; #define glColor3i glad_glColor3i GLAD_API_CALL PFNGLCOLOR3IVPROC glad_glColor3iv; #define glColor3iv glad_glColor3iv GLAD_API_CALL PFNGLCOLOR3SPROC glad_glColor3s; #define glColor3s glad_glColor3s GLAD_API_CALL PFNGLCOLOR3SVPROC glad_glColor3sv; #define glColor3sv glad_glColor3sv GLAD_API_CALL PFNGLCOLOR3UBPROC glad_glColor3ub; #define glColor3ub glad_glColor3ub GLAD_API_CALL PFNGLCOLOR3UBVPROC glad_glColor3ubv; #define glColor3ubv glad_glColor3ubv GLAD_API_CALL PFNGLCOLOR3UIPROC glad_glColor3ui; #define glColor3ui glad_glColor3ui GLAD_API_CALL PFNGLCOLOR3UIVPROC glad_glColor3uiv; #define glColor3uiv glad_glColor3uiv GLAD_API_CALL PFNGLCOLOR3USPROC glad_glColor3us; #define glColor3us glad_glColor3us GLAD_API_CALL PFNGLCOLOR3USVPROC glad_glColor3usv; #define glColor3usv glad_glColor3usv GLAD_API_CALL PFNGLCOLOR4BPROC glad_glColor4b; #define glColor4b glad_glColor4b GLAD_API_CALL PFNGLCOLOR4BVPROC glad_glColor4bv; #define glColor4bv glad_glColor4bv GLAD_API_CALL PFNGLCOLOR4DPROC glad_glColor4d; #define glColor4d glad_glColor4d GLAD_API_CALL PFNGLCOLOR4DVPROC glad_glColor4dv; #define glColor4dv glad_glColor4dv GLAD_API_CALL PFNGLCOLOR4FPROC glad_glColor4f; #define glColor4f glad_glColor4f GLAD_API_CALL PFNGLCOLOR4FVPROC glad_glColor4fv; #define glColor4fv glad_glColor4fv GLAD_API_CALL PFNGLCOLOR4IPROC glad_glColor4i; #define glColor4i glad_glColor4i GLAD_API_CALL PFNGLCOLOR4IVPROC glad_glColor4iv; #define glColor4iv glad_glColor4iv GLAD_API_CALL PFNGLCOLOR4SPROC glad_glColor4s; #define glColor4s glad_glColor4s GLAD_API_CALL PFNGLCOLOR4SVPROC glad_glColor4sv; #define glColor4sv glad_glColor4sv GLAD_API_CALL PFNGLCOLOR4UBPROC glad_glColor4ub; #define glColor4ub glad_glColor4ub GLAD_API_CALL PFNGLCOLOR4UBVPROC glad_glColor4ubv; #define glColor4ubv glad_glColor4ubv GLAD_API_CALL PFNGLCOLOR4UIPROC glad_glColor4ui; #define glColor4ui glad_glColor4ui GLAD_API_CALL PFNGLCOLOR4UIVPROC glad_glColor4uiv; #define glColor4uiv glad_glColor4uiv GLAD_API_CALL PFNGLCOLOR4USPROC glad_glColor4us; #define glColor4us glad_glColor4us GLAD_API_CALL PFNGLCOLOR4USVPROC glad_glColor4usv; #define glColor4usv glad_glColor4usv GLAD_API_CALL PFNGLCOLORMASKPROC glad_glColorMask; #define glColorMask glad_glColorMask GLAD_API_CALL PFNGLCOLORMASKIPROC glad_glColorMaski; #define glColorMaski glad_glColorMaski GLAD_API_CALL PFNGLCOLORMATERIALPROC glad_glColorMaterial; #define glColorMaterial glad_glColorMaterial GLAD_API_CALL PFNGLCOLORP3UIPROC glad_glColorP3ui; #define glColorP3ui glad_glColorP3ui GLAD_API_CALL PFNGLCOLORP3UIVPROC glad_glColorP3uiv; #define glColorP3uiv glad_glColorP3uiv GLAD_API_CALL PFNGLCOLORP4UIPROC glad_glColorP4ui; #define glColorP4ui glad_glColorP4ui GLAD_API_CALL PFNGLCOLORP4UIVPROC glad_glColorP4uiv; #define glColorP4uiv glad_glColorP4uiv GLAD_API_CALL PFNGLCOLORPOINTERPROC glad_glColorPointer; #define glColorPointer glad_glColorPointer GLAD_API_CALL PFNGLCOLORSUBTABLEPROC glad_glColorSubTable; #define glColorSubTable glad_glColorSubTable GLAD_API_CALL PFNGLCOLORTABLEPROC glad_glColorTable; #define glColorTable glad_glColorTable GLAD_API_CALL PFNGLCOLORTABLEPARAMETERFVPROC glad_glColorTableParameterfv; #define glColorTableParameterfv glad_glColorTableParameterfv GLAD_API_CALL PFNGLCOLORTABLEPARAMETERIVPROC glad_glColorTableParameteriv; #define glColorTableParameteriv glad_glColorTableParameteriv GLAD_API_CALL PFNGLCOMPILESHADERPROC glad_glCompileShader; #define glCompileShader glad_glCompileShader GLAD_API_CALL PFNGLCOMPILESHADERARBPROC glad_glCompileShaderARB; #define glCompileShaderARB glad_glCompileShaderARB GLAD_API_CALL PFNGLCOMPILESHADERINCLUDEARBPROC glad_glCompileShaderIncludeARB; #define glCompileShaderIncludeARB glad_glCompileShaderIncludeARB GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE1DPROC glad_glCompressedTexImage1D; #define glCompressedTexImage1D glad_glCompressedTexImage1D GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE1DARBPROC glad_glCompressedTexImage1DARB; #define glCompressedTexImage1DARB glad_glCompressedTexImage1DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE2DPROC glad_glCompressedTexImage2D; #define glCompressedTexImage2D glad_glCompressedTexImage2D GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE2DARBPROC glad_glCompressedTexImage2DARB; #define glCompressedTexImage2DARB glad_glCompressedTexImage2DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE3DPROC glad_glCompressedTexImage3D; #define glCompressedTexImage3D glad_glCompressedTexImage3D GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE3DARBPROC glad_glCompressedTexImage3DARB; #define glCompressedTexImage3DARB glad_glCompressedTexImage3DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC glad_glCompressedTexSubImage1D; #define glCompressedTexSubImage1D glad_glCompressedTexSubImage1D GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC glad_glCompressedTexSubImage1DARB; #define glCompressedTexSubImage1DARB glad_glCompressedTexSubImage1DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC glad_glCompressedTexSubImage2D; #define glCompressedTexSubImage2D glad_glCompressedTexSubImage2D GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC glad_glCompressedTexSubImage2DARB; #define glCompressedTexSubImage2DARB glad_glCompressedTexSubImage2DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC glad_glCompressedTexSubImage3D; #define glCompressedTexSubImage3D glad_glCompressedTexSubImage3D GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC glad_glCompressedTexSubImage3DARB; #define glCompressedTexSubImage3DARB glad_glCompressedTexSubImage3DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC glad_glCompressedTextureSubImage1D; #define glCompressedTextureSubImage1D glad_glCompressedTextureSubImage1D GLAD_API_CALL PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC glad_glCompressedTextureSubImage2D; #define glCompressedTextureSubImage2D glad_glCompressedTextureSubImage2D GLAD_API_CALL PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC glad_glCompressedTextureSubImage3D; #define glCompressedTextureSubImage3D glad_glCompressedTextureSubImage3D GLAD_API_CALL PFNGLCONVOLUTIONFILTER1DPROC glad_glConvolutionFilter1D; #define glConvolutionFilter1D glad_glConvolutionFilter1D GLAD_API_CALL PFNGLCONVOLUTIONFILTER2DPROC glad_glConvolutionFilter2D; #define glConvolutionFilter2D glad_glConvolutionFilter2D GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERFPROC glad_glConvolutionParameterf; #define glConvolutionParameterf glad_glConvolutionParameterf GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERFVPROC glad_glConvolutionParameterfv; #define glConvolutionParameterfv glad_glConvolutionParameterfv GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERIPROC glad_glConvolutionParameteri; #define glConvolutionParameteri glad_glConvolutionParameteri GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERIVPROC glad_glConvolutionParameteriv; #define glConvolutionParameteriv glad_glConvolutionParameteriv GLAD_API_CALL PFNGLCOPYBUFFERSUBDATAPROC glad_glCopyBufferSubData; #define glCopyBufferSubData glad_glCopyBufferSubData GLAD_API_CALL PFNGLCOPYCOLORSUBTABLEPROC glad_glCopyColorSubTable; #define glCopyColorSubTable glad_glCopyColorSubTable GLAD_API_CALL PFNGLCOPYCOLORTABLEPROC glad_glCopyColorTable; #define glCopyColorTable glad_glCopyColorTable GLAD_API_CALL PFNGLCOPYCONVOLUTIONFILTER1DPROC glad_glCopyConvolutionFilter1D; #define glCopyConvolutionFilter1D glad_glCopyConvolutionFilter1D GLAD_API_CALL PFNGLCOPYCONVOLUTIONFILTER2DPROC glad_glCopyConvolutionFilter2D; #define glCopyConvolutionFilter2D glad_glCopyConvolutionFilter2D GLAD_API_CALL PFNGLCOPYIMAGESUBDATAPROC glad_glCopyImageSubData; #define glCopyImageSubData glad_glCopyImageSubData GLAD_API_CALL PFNGLCOPYNAMEDBUFFERSUBDATAPROC glad_glCopyNamedBufferSubData; #define glCopyNamedBufferSubData glad_glCopyNamedBufferSubData GLAD_API_CALL PFNGLCOPYPIXELSPROC glad_glCopyPixels; #define glCopyPixels glad_glCopyPixels GLAD_API_CALL PFNGLCOPYTEXIMAGE1DPROC glad_glCopyTexImage1D; #define glCopyTexImage1D glad_glCopyTexImage1D GLAD_API_CALL PFNGLCOPYTEXIMAGE2DPROC glad_glCopyTexImage2D; #define glCopyTexImage2D glad_glCopyTexImage2D GLAD_API_CALL PFNGLCOPYTEXSUBIMAGE1DPROC glad_glCopyTexSubImage1D; #define glCopyTexSubImage1D glad_glCopyTexSubImage1D GLAD_API_CALL PFNGLCOPYTEXSUBIMAGE2DPROC glad_glCopyTexSubImage2D; #define glCopyTexSubImage2D glad_glCopyTexSubImage2D GLAD_API_CALL PFNGLCOPYTEXSUBIMAGE3DPROC glad_glCopyTexSubImage3D; #define glCopyTexSubImage3D glad_glCopyTexSubImage3D GLAD_API_CALL PFNGLCOPYTEXTURESUBIMAGE1DPROC glad_glCopyTextureSubImage1D; #define glCopyTextureSubImage1D glad_glCopyTextureSubImage1D GLAD_API_CALL PFNGLCOPYTEXTURESUBIMAGE2DPROC glad_glCopyTextureSubImage2D; #define glCopyTextureSubImage2D glad_glCopyTextureSubImage2D GLAD_API_CALL PFNGLCOPYTEXTURESUBIMAGE3DPROC glad_glCopyTextureSubImage3D; #define glCopyTextureSubImage3D glad_glCopyTextureSubImage3D GLAD_API_CALL PFNGLCREATEBUFFERSPROC glad_glCreateBuffers; #define glCreateBuffers glad_glCreateBuffers GLAD_API_CALL PFNGLCREATEFRAMEBUFFERSPROC glad_glCreateFramebuffers; #define glCreateFramebuffers glad_glCreateFramebuffers GLAD_API_CALL PFNGLCREATEPROGRAMPROC glad_glCreateProgram; #define glCreateProgram glad_glCreateProgram GLAD_API_CALL PFNGLCREATEPROGRAMOBJECTARBPROC glad_glCreateProgramObjectARB; #define glCreateProgramObjectARB glad_glCreateProgramObjectARB GLAD_API_CALL PFNGLCREATEPROGRAMPIPELINESPROC glad_glCreateProgramPipelines; #define glCreateProgramPipelines glad_glCreateProgramPipelines GLAD_API_CALL PFNGLCREATEQUERIESPROC glad_glCreateQueries; #define glCreateQueries glad_glCreateQueries GLAD_API_CALL PFNGLCREATERENDERBUFFERSPROC glad_glCreateRenderbuffers; #define glCreateRenderbuffers glad_glCreateRenderbuffers GLAD_API_CALL PFNGLCREATESAMPLERSPROC glad_glCreateSamplers; #define glCreateSamplers glad_glCreateSamplers GLAD_API_CALL PFNGLCREATESHADERPROC glad_glCreateShader; #define glCreateShader glad_glCreateShader GLAD_API_CALL PFNGLCREATESHADEROBJECTARBPROC glad_glCreateShaderObjectARB; #define glCreateShaderObjectARB glad_glCreateShaderObjectARB GLAD_API_CALL PFNGLCREATESHADERPROGRAMVPROC glad_glCreateShaderProgramv; #define glCreateShaderProgramv glad_glCreateShaderProgramv GLAD_API_CALL PFNGLCREATESYNCFROMCLEVENTARBPROC glad_glCreateSyncFromCLeventARB; #define glCreateSyncFromCLeventARB glad_glCreateSyncFromCLeventARB GLAD_API_CALL PFNGLCREATETEXTURESPROC glad_glCreateTextures; #define glCreateTextures glad_glCreateTextures GLAD_API_CALL PFNGLCREATETRANSFORMFEEDBACKSPROC glad_glCreateTransformFeedbacks; #define glCreateTransformFeedbacks glad_glCreateTransformFeedbacks GLAD_API_CALL PFNGLCREATEVERTEXARRAYSPROC glad_glCreateVertexArrays; #define glCreateVertexArrays glad_glCreateVertexArrays GLAD_API_CALL PFNGLCULLFACEPROC glad_glCullFace; #define glCullFace glad_glCullFace GLAD_API_CALL PFNGLCURRENTPALETTEMATRIXARBPROC glad_glCurrentPaletteMatrixARB; #define glCurrentPaletteMatrixARB glad_glCurrentPaletteMatrixARB GLAD_API_CALL PFNGLDEBUGMESSAGECALLBACKPROC glad_glDebugMessageCallback; #define glDebugMessageCallback glad_glDebugMessageCallback GLAD_API_CALL PFNGLDEBUGMESSAGECALLBACKARBPROC glad_glDebugMessageCallbackARB; #define glDebugMessageCallbackARB glad_glDebugMessageCallbackARB GLAD_API_CALL PFNGLDEBUGMESSAGECONTROLPROC glad_glDebugMessageControl; #define glDebugMessageControl glad_glDebugMessageControl GLAD_API_CALL PFNGLDEBUGMESSAGECONTROLARBPROC glad_glDebugMessageControlARB; #define glDebugMessageControlARB glad_glDebugMessageControlARB GLAD_API_CALL PFNGLDEBUGMESSAGEINSERTPROC glad_glDebugMessageInsert; #define glDebugMessageInsert glad_glDebugMessageInsert GLAD_API_CALL PFNGLDEBUGMESSAGEINSERTARBPROC glad_glDebugMessageInsertARB; #define glDebugMessageInsertARB glad_glDebugMessageInsertARB GLAD_API_CALL PFNGLDELETEBUFFERSPROC glad_glDeleteBuffers; #define glDeleteBuffers glad_glDeleteBuffers GLAD_API_CALL PFNGLDELETEBUFFERSARBPROC glad_glDeleteBuffersARB; #define glDeleteBuffersARB glad_glDeleteBuffersARB GLAD_API_CALL PFNGLDELETEFRAMEBUFFERSPROC glad_glDeleteFramebuffers; #define glDeleteFramebuffers glad_glDeleteFramebuffers GLAD_API_CALL PFNGLDELETELISTSPROC glad_glDeleteLists; #define glDeleteLists glad_glDeleteLists GLAD_API_CALL PFNGLDELETENAMEDSTRINGARBPROC glad_glDeleteNamedStringARB; #define glDeleteNamedStringARB glad_glDeleteNamedStringARB GLAD_API_CALL PFNGLDELETEOBJECTARBPROC glad_glDeleteObjectARB; #define glDeleteObjectARB glad_glDeleteObjectARB GLAD_API_CALL PFNGLDELETEPROGRAMPROC glad_glDeleteProgram; #define glDeleteProgram glad_glDeleteProgram GLAD_API_CALL PFNGLDELETEPROGRAMPIPELINESPROC glad_glDeleteProgramPipelines; #define glDeleteProgramPipelines glad_glDeleteProgramPipelines GLAD_API_CALL PFNGLDELETEPROGRAMSARBPROC glad_glDeleteProgramsARB; #define glDeleteProgramsARB glad_glDeleteProgramsARB GLAD_API_CALL PFNGLDELETEQUERIESPROC glad_glDeleteQueries; #define glDeleteQueries glad_glDeleteQueries GLAD_API_CALL PFNGLDELETEQUERIESARBPROC glad_glDeleteQueriesARB; #define glDeleteQueriesARB glad_glDeleteQueriesARB GLAD_API_CALL PFNGLDELETERENDERBUFFERSPROC glad_glDeleteRenderbuffers; #define glDeleteRenderbuffers glad_glDeleteRenderbuffers GLAD_API_CALL PFNGLDELETESAMPLERSPROC glad_glDeleteSamplers; #define glDeleteSamplers glad_glDeleteSamplers GLAD_API_CALL PFNGLDELETESHADERPROC glad_glDeleteShader; #define glDeleteShader glad_glDeleteShader GLAD_API_CALL PFNGLDELETESYNCPROC glad_glDeleteSync; #define glDeleteSync glad_glDeleteSync GLAD_API_CALL PFNGLDELETETEXTURESPROC glad_glDeleteTextures; #define glDeleteTextures glad_glDeleteTextures GLAD_API_CALL PFNGLDELETETRANSFORMFEEDBACKSPROC glad_glDeleteTransformFeedbacks; #define glDeleteTransformFeedbacks glad_glDeleteTransformFeedbacks GLAD_API_CALL PFNGLDELETEVERTEXARRAYSPROC glad_glDeleteVertexArrays; #define glDeleteVertexArrays glad_glDeleteVertexArrays GLAD_API_CALL PFNGLDEPTHFUNCPROC glad_glDepthFunc; #define glDepthFunc glad_glDepthFunc GLAD_API_CALL PFNGLDEPTHMASKPROC glad_glDepthMask; #define glDepthMask glad_glDepthMask GLAD_API_CALL PFNGLDEPTHRANGEPROC glad_glDepthRange; #define glDepthRange glad_glDepthRange GLAD_API_CALL PFNGLDEPTHRANGEARRAYDVNVPROC glad_glDepthRangeArraydvNV; #define glDepthRangeArraydvNV glad_glDepthRangeArraydvNV GLAD_API_CALL PFNGLDEPTHRANGEARRAYVPROC glad_glDepthRangeArrayv; #define glDepthRangeArrayv glad_glDepthRangeArrayv GLAD_API_CALL PFNGLDEPTHRANGEINDEXEDPROC glad_glDepthRangeIndexed; #define glDepthRangeIndexed glad_glDepthRangeIndexed GLAD_API_CALL PFNGLDEPTHRANGEINDEXEDDNVPROC glad_glDepthRangeIndexeddNV; #define glDepthRangeIndexeddNV glad_glDepthRangeIndexeddNV GLAD_API_CALL PFNGLDEPTHRANGEFPROC glad_glDepthRangef; #define glDepthRangef glad_glDepthRangef GLAD_API_CALL PFNGLDETACHOBJECTARBPROC glad_glDetachObjectARB; #define glDetachObjectARB glad_glDetachObjectARB GLAD_API_CALL PFNGLDETACHSHADERPROC glad_glDetachShader; #define glDetachShader glad_glDetachShader GLAD_API_CALL PFNGLDISABLEPROC glad_glDisable; #define glDisable glad_glDisable GLAD_API_CALL PFNGLDISABLECLIENTSTATEPROC glad_glDisableClientState; #define glDisableClientState glad_glDisableClientState GLAD_API_CALL PFNGLDISABLEVERTEXARRAYATTRIBPROC glad_glDisableVertexArrayAttrib; #define glDisableVertexArrayAttrib glad_glDisableVertexArrayAttrib GLAD_API_CALL PFNGLDISABLEVERTEXATTRIBARRAYPROC glad_glDisableVertexAttribArray; #define glDisableVertexAttribArray glad_glDisableVertexAttribArray GLAD_API_CALL PFNGLDISABLEVERTEXATTRIBARRAYARBPROC glad_glDisableVertexAttribArrayARB; #define glDisableVertexAttribArrayARB glad_glDisableVertexAttribArrayARB GLAD_API_CALL PFNGLDISABLEIPROC glad_glDisablei; #define glDisablei glad_glDisablei GLAD_API_CALL PFNGLDISPATCHCOMPUTEPROC glad_glDispatchCompute; #define glDispatchCompute glad_glDispatchCompute GLAD_API_CALL PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC glad_glDispatchComputeGroupSizeARB; #define glDispatchComputeGroupSizeARB glad_glDispatchComputeGroupSizeARB GLAD_API_CALL PFNGLDISPATCHCOMPUTEINDIRECTPROC glad_glDispatchComputeIndirect; #define glDispatchComputeIndirect glad_glDispatchComputeIndirect GLAD_API_CALL PFNGLDRAWARRAYSPROC glad_glDrawArrays; #define glDrawArrays glad_glDrawArrays GLAD_API_CALL PFNGLDRAWARRAYSINDIRECTPROC glad_glDrawArraysIndirect; #define glDrawArraysIndirect glad_glDrawArraysIndirect GLAD_API_CALL PFNGLDRAWARRAYSINSTANCEDPROC glad_glDrawArraysInstanced; #define glDrawArraysInstanced glad_glDrawArraysInstanced GLAD_API_CALL PFNGLDRAWARRAYSINSTANCEDARBPROC glad_glDrawArraysInstancedARB; #define glDrawArraysInstancedARB glad_glDrawArraysInstancedARB GLAD_API_CALL PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC glad_glDrawArraysInstancedBaseInstance; #define glDrawArraysInstancedBaseInstance glad_glDrawArraysInstancedBaseInstance GLAD_API_CALL PFNGLDRAWBUFFERPROC glad_glDrawBuffer; #define glDrawBuffer glad_glDrawBuffer GLAD_API_CALL PFNGLDRAWBUFFERSPROC glad_glDrawBuffers; #define glDrawBuffers glad_glDrawBuffers GLAD_API_CALL PFNGLDRAWBUFFERSARBPROC glad_glDrawBuffersARB; #define glDrawBuffersARB glad_glDrawBuffersARB GLAD_API_CALL PFNGLDRAWELEMENTSPROC glad_glDrawElements; #define glDrawElements glad_glDrawElements GLAD_API_CALL PFNGLDRAWELEMENTSBASEVERTEXPROC glad_glDrawElementsBaseVertex; #define glDrawElementsBaseVertex glad_glDrawElementsBaseVertex GLAD_API_CALL PFNGLDRAWELEMENTSINDIRECTPROC glad_glDrawElementsIndirect; #define glDrawElementsIndirect glad_glDrawElementsIndirect GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDPROC glad_glDrawElementsInstanced; #define glDrawElementsInstanced glad_glDrawElementsInstanced GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDARBPROC glad_glDrawElementsInstancedARB; #define glDrawElementsInstancedARB glad_glDrawElementsInstancedARB GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC glad_glDrawElementsInstancedBaseInstance; #define glDrawElementsInstancedBaseInstance glad_glDrawElementsInstancedBaseInstance GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC glad_glDrawElementsInstancedBaseVertex; #define glDrawElementsInstancedBaseVertex glad_glDrawElementsInstancedBaseVertex GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC glad_glDrawElementsInstancedBaseVertexBaseInstance; #define glDrawElementsInstancedBaseVertexBaseInstance glad_glDrawElementsInstancedBaseVertexBaseInstance GLAD_API_CALL PFNGLDRAWPIXELSPROC glad_glDrawPixels; #define glDrawPixels glad_glDrawPixels GLAD_API_CALL PFNGLDRAWRANGEELEMENTSPROC glad_glDrawRangeElements; #define glDrawRangeElements glad_glDrawRangeElements GLAD_API_CALL PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC glad_glDrawRangeElementsBaseVertex; #define glDrawRangeElementsBaseVertex glad_glDrawRangeElementsBaseVertex GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKPROC glad_glDrawTransformFeedback; #define glDrawTransformFeedback glad_glDrawTransformFeedback GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC glad_glDrawTransformFeedbackInstanced; #define glDrawTransformFeedbackInstanced glad_glDrawTransformFeedbackInstanced GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC glad_glDrawTransformFeedbackStream; #define glDrawTransformFeedbackStream glad_glDrawTransformFeedbackStream GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC glad_glDrawTransformFeedbackStreamInstanced; #define glDrawTransformFeedbackStreamInstanced glad_glDrawTransformFeedbackStreamInstanced GLAD_API_CALL PFNGLEDGEFLAGPROC glad_glEdgeFlag; #define glEdgeFlag glad_glEdgeFlag GLAD_API_CALL PFNGLEDGEFLAGPOINTERPROC glad_glEdgeFlagPointer; #define glEdgeFlagPointer glad_glEdgeFlagPointer GLAD_API_CALL PFNGLEDGEFLAGVPROC glad_glEdgeFlagv; #define glEdgeFlagv glad_glEdgeFlagv GLAD_API_CALL PFNGLENABLEPROC glad_glEnable; #define glEnable glad_glEnable GLAD_API_CALL PFNGLENABLECLIENTSTATEPROC glad_glEnableClientState; #define glEnableClientState glad_glEnableClientState GLAD_API_CALL PFNGLENABLEVERTEXARRAYATTRIBPROC glad_glEnableVertexArrayAttrib; #define glEnableVertexArrayAttrib glad_glEnableVertexArrayAttrib GLAD_API_CALL PFNGLENABLEVERTEXATTRIBARRAYPROC glad_glEnableVertexAttribArray; #define glEnableVertexAttribArray glad_glEnableVertexAttribArray GLAD_API_CALL PFNGLENABLEVERTEXATTRIBARRAYARBPROC glad_glEnableVertexAttribArrayARB; #define glEnableVertexAttribArrayARB glad_glEnableVertexAttribArrayARB GLAD_API_CALL PFNGLENABLEIPROC glad_glEnablei; #define glEnablei glad_glEnablei GLAD_API_CALL PFNGLENDPROC glad_glEnd; #define glEnd glad_glEnd GLAD_API_CALL PFNGLENDCONDITIONALRENDERPROC glad_glEndConditionalRender; #define glEndConditionalRender glad_glEndConditionalRender GLAD_API_CALL PFNGLENDLISTPROC glad_glEndList; #define glEndList glad_glEndList GLAD_API_CALL PFNGLENDQUERYPROC glad_glEndQuery; #define glEndQuery glad_glEndQuery GLAD_API_CALL PFNGLENDQUERYARBPROC glad_glEndQueryARB; #define glEndQueryARB glad_glEndQueryARB GLAD_API_CALL PFNGLENDQUERYINDEXEDPROC glad_glEndQueryIndexed; #define glEndQueryIndexed glad_glEndQueryIndexed GLAD_API_CALL PFNGLENDTRANSFORMFEEDBACKPROC glad_glEndTransformFeedback; #define glEndTransformFeedback glad_glEndTransformFeedback GLAD_API_CALL PFNGLEVALCOORD1DPROC glad_glEvalCoord1d; #define glEvalCoord1d glad_glEvalCoord1d GLAD_API_CALL PFNGLEVALCOORD1DVPROC glad_glEvalCoord1dv; #define glEvalCoord1dv glad_glEvalCoord1dv GLAD_API_CALL PFNGLEVALCOORD1FPROC glad_glEvalCoord1f; #define glEvalCoord1f glad_glEvalCoord1f GLAD_API_CALL PFNGLEVALCOORD1FVPROC glad_glEvalCoord1fv; #define glEvalCoord1fv glad_glEvalCoord1fv GLAD_API_CALL PFNGLEVALCOORD2DPROC glad_glEvalCoord2d; #define glEvalCoord2d glad_glEvalCoord2d GLAD_API_CALL PFNGLEVALCOORD2DVPROC glad_glEvalCoord2dv; #define glEvalCoord2dv glad_glEvalCoord2dv GLAD_API_CALL PFNGLEVALCOORD2FPROC glad_glEvalCoord2f; #define glEvalCoord2f glad_glEvalCoord2f GLAD_API_CALL PFNGLEVALCOORD2FVPROC glad_glEvalCoord2fv; #define glEvalCoord2fv glad_glEvalCoord2fv GLAD_API_CALL PFNGLEVALMESH1PROC glad_glEvalMesh1; #define glEvalMesh1 glad_glEvalMesh1 GLAD_API_CALL PFNGLEVALMESH2PROC glad_glEvalMesh2; #define glEvalMesh2 glad_glEvalMesh2 GLAD_API_CALL PFNGLEVALPOINT1PROC glad_glEvalPoint1; #define glEvalPoint1 glad_glEvalPoint1 GLAD_API_CALL PFNGLEVALPOINT2PROC glad_glEvalPoint2; #define glEvalPoint2 glad_glEvalPoint2 GLAD_API_CALL PFNGLEVALUATEDEPTHVALUESARBPROC glad_glEvaluateDepthValuesARB; #define glEvaluateDepthValuesARB glad_glEvaluateDepthValuesARB GLAD_API_CALL PFNGLFEEDBACKBUFFERPROC glad_glFeedbackBuffer; #define glFeedbackBuffer glad_glFeedbackBuffer GLAD_API_CALL PFNGLFENCESYNCPROC glad_glFenceSync; #define glFenceSync glad_glFenceSync GLAD_API_CALL PFNGLFINISHPROC glad_glFinish; #define glFinish glad_glFinish GLAD_API_CALL PFNGLFLUSHPROC glad_glFlush; #define glFlush glad_glFlush GLAD_API_CALL PFNGLFLUSHMAPPEDBUFFERRANGEPROC glad_glFlushMappedBufferRange; #define glFlushMappedBufferRange glad_glFlushMappedBufferRange GLAD_API_CALL PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC glad_glFlushMappedNamedBufferRange; #define glFlushMappedNamedBufferRange glad_glFlushMappedNamedBufferRange GLAD_API_CALL PFNGLFOGCOORDPOINTERPROC glad_glFogCoordPointer; #define glFogCoordPointer glad_glFogCoordPointer GLAD_API_CALL PFNGLFOGCOORDDPROC glad_glFogCoordd; #define glFogCoordd glad_glFogCoordd GLAD_API_CALL PFNGLFOGCOORDDVPROC glad_glFogCoorddv; #define glFogCoorddv glad_glFogCoorddv GLAD_API_CALL PFNGLFOGCOORDFPROC glad_glFogCoordf; #define glFogCoordf glad_glFogCoordf GLAD_API_CALL PFNGLFOGCOORDFVPROC glad_glFogCoordfv; #define glFogCoordfv glad_glFogCoordfv GLAD_API_CALL PFNGLFOGFPROC glad_glFogf; #define glFogf glad_glFogf GLAD_API_CALL PFNGLFOGFVPROC glad_glFogfv; #define glFogfv glad_glFogfv GLAD_API_CALL PFNGLFOGIPROC glad_glFogi; #define glFogi glad_glFogi GLAD_API_CALL PFNGLFOGIVPROC glad_glFogiv; #define glFogiv glad_glFogiv GLAD_API_CALL PFNGLFRAMEBUFFERPARAMETERIPROC glad_glFramebufferParameteri; #define glFramebufferParameteri glad_glFramebufferParameteri GLAD_API_CALL PFNGLFRAMEBUFFERRENDERBUFFERPROC glad_glFramebufferRenderbuffer; #define glFramebufferRenderbuffer glad_glFramebufferRenderbuffer GLAD_API_CALL PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glFramebufferSampleLocationsfvARB; #define glFramebufferSampleLocationsfvARB glad_glFramebufferSampleLocationsfvARB GLAD_API_CALL PFNGLFRAMEBUFFERTEXTUREPROC glad_glFramebufferTexture; #define glFramebufferTexture glad_glFramebufferTexture GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURE1DPROC glad_glFramebufferTexture1D; #define glFramebufferTexture1D glad_glFramebufferTexture1D GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURE2DPROC glad_glFramebufferTexture2D; #define glFramebufferTexture2D glad_glFramebufferTexture2D GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURE3DPROC glad_glFramebufferTexture3D; #define glFramebufferTexture3D glad_glFramebufferTexture3D GLAD_API_CALL PFNGLFRAMEBUFFERTEXTUREARBPROC glad_glFramebufferTextureARB; #define glFramebufferTextureARB glad_glFramebufferTextureARB GLAD_API_CALL PFNGLFRAMEBUFFERTEXTUREFACEARBPROC glad_glFramebufferTextureFaceARB; #define glFramebufferTextureFaceARB glad_glFramebufferTextureFaceARB GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURELAYERPROC glad_glFramebufferTextureLayer; #define glFramebufferTextureLayer glad_glFramebufferTextureLayer GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURELAYERARBPROC glad_glFramebufferTextureLayerARB; #define glFramebufferTextureLayerARB glad_glFramebufferTextureLayerARB GLAD_API_CALL PFNGLFRONTFACEPROC glad_glFrontFace; #define glFrontFace glad_glFrontFace GLAD_API_CALL PFNGLFRUSTUMPROC glad_glFrustum; #define glFrustum glad_glFrustum GLAD_API_CALL PFNGLGENBUFFERSPROC glad_glGenBuffers; #define glGenBuffers glad_glGenBuffers GLAD_API_CALL PFNGLGENBUFFERSARBPROC glad_glGenBuffersARB; #define glGenBuffersARB glad_glGenBuffersARB GLAD_API_CALL PFNGLGENFRAMEBUFFERSPROC glad_glGenFramebuffers; #define glGenFramebuffers glad_glGenFramebuffers GLAD_API_CALL PFNGLGENLISTSPROC glad_glGenLists; #define glGenLists glad_glGenLists GLAD_API_CALL PFNGLGENPROGRAMPIPELINESPROC glad_glGenProgramPipelines; #define glGenProgramPipelines glad_glGenProgramPipelines GLAD_API_CALL PFNGLGENPROGRAMSARBPROC glad_glGenProgramsARB; #define glGenProgramsARB glad_glGenProgramsARB GLAD_API_CALL PFNGLGENQUERIESPROC glad_glGenQueries; #define glGenQueries glad_glGenQueries GLAD_API_CALL PFNGLGENQUERIESARBPROC glad_glGenQueriesARB; #define glGenQueriesARB glad_glGenQueriesARB GLAD_API_CALL PFNGLGENRENDERBUFFERSPROC glad_glGenRenderbuffers; #define glGenRenderbuffers glad_glGenRenderbuffers GLAD_API_CALL PFNGLGENSAMPLERSPROC glad_glGenSamplers; #define glGenSamplers glad_glGenSamplers GLAD_API_CALL PFNGLGENTEXTURESPROC glad_glGenTextures; #define glGenTextures glad_glGenTextures GLAD_API_CALL PFNGLGENTRANSFORMFEEDBACKSPROC glad_glGenTransformFeedbacks; #define glGenTransformFeedbacks glad_glGenTransformFeedbacks GLAD_API_CALL PFNGLGENVERTEXARRAYSPROC glad_glGenVertexArrays; #define glGenVertexArrays glad_glGenVertexArrays GLAD_API_CALL PFNGLGENERATEMIPMAPPROC glad_glGenerateMipmap; #define glGenerateMipmap glad_glGenerateMipmap GLAD_API_CALL PFNGLGENERATETEXTUREMIPMAPPROC glad_glGenerateTextureMipmap; #define glGenerateTextureMipmap glad_glGenerateTextureMipmap GLAD_API_CALL PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC glad_glGetActiveAtomicCounterBufferiv; #define glGetActiveAtomicCounterBufferiv glad_glGetActiveAtomicCounterBufferiv GLAD_API_CALL PFNGLGETACTIVEATTRIBPROC glad_glGetActiveAttrib; #define glGetActiveAttrib glad_glGetActiveAttrib GLAD_API_CALL PFNGLGETACTIVEATTRIBARBPROC glad_glGetActiveAttribARB; #define glGetActiveAttribARB glad_glGetActiveAttribARB GLAD_API_CALL PFNGLGETACTIVESUBROUTINENAMEPROC glad_glGetActiveSubroutineName; #define glGetActiveSubroutineName glad_glGetActiveSubroutineName GLAD_API_CALL PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC glad_glGetActiveSubroutineUniformName; #define glGetActiveSubroutineUniformName glad_glGetActiveSubroutineUniformName GLAD_API_CALL PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC glad_glGetActiveSubroutineUniformiv; #define glGetActiveSubroutineUniformiv glad_glGetActiveSubroutineUniformiv GLAD_API_CALL PFNGLGETACTIVEUNIFORMPROC glad_glGetActiveUniform; #define glGetActiveUniform glad_glGetActiveUniform GLAD_API_CALL PFNGLGETACTIVEUNIFORMARBPROC glad_glGetActiveUniformARB; #define glGetActiveUniformARB glad_glGetActiveUniformARB GLAD_API_CALL PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC glad_glGetActiveUniformBlockName; #define glGetActiveUniformBlockName glad_glGetActiveUniformBlockName GLAD_API_CALL PFNGLGETACTIVEUNIFORMBLOCKIVPROC glad_glGetActiveUniformBlockiv; #define glGetActiveUniformBlockiv glad_glGetActiveUniformBlockiv GLAD_API_CALL PFNGLGETACTIVEUNIFORMNAMEPROC glad_glGetActiveUniformName; #define glGetActiveUniformName glad_glGetActiveUniformName GLAD_API_CALL PFNGLGETACTIVEUNIFORMSIVPROC glad_glGetActiveUniformsiv; #define glGetActiveUniformsiv glad_glGetActiveUniformsiv GLAD_API_CALL PFNGLGETATTACHEDOBJECTSARBPROC glad_glGetAttachedObjectsARB; #define glGetAttachedObjectsARB glad_glGetAttachedObjectsARB GLAD_API_CALL PFNGLGETATTACHEDSHADERSPROC glad_glGetAttachedShaders; #define glGetAttachedShaders glad_glGetAttachedShaders GLAD_API_CALL PFNGLGETATTRIBLOCATIONPROC glad_glGetAttribLocation; #define glGetAttribLocation glad_glGetAttribLocation GLAD_API_CALL PFNGLGETATTRIBLOCATIONARBPROC glad_glGetAttribLocationARB; #define glGetAttribLocationARB glad_glGetAttribLocationARB GLAD_API_CALL PFNGLGETBOOLEANI_VPROC glad_glGetBooleani_v; #define glGetBooleani_v glad_glGetBooleani_v GLAD_API_CALL PFNGLGETBOOLEANVPROC glad_glGetBooleanv; #define glGetBooleanv glad_glGetBooleanv GLAD_API_CALL PFNGLGETBUFFERPARAMETERI64VPROC glad_glGetBufferParameteri64v; #define glGetBufferParameteri64v glad_glGetBufferParameteri64v GLAD_API_CALL PFNGLGETBUFFERPARAMETERIVPROC glad_glGetBufferParameteriv; #define glGetBufferParameteriv glad_glGetBufferParameteriv GLAD_API_CALL PFNGLGETBUFFERPARAMETERIVARBPROC glad_glGetBufferParameterivARB; #define glGetBufferParameterivARB glad_glGetBufferParameterivARB GLAD_API_CALL PFNGLGETBUFFERPOINTERVPROC glad_glGetBufferPointerv; #define glGetBufferPointerv glad_glGetBufferPointerv GLAD_API_CALL PFNGLGETBUFFERPOINTERVARBPROC glad_glGetBufferPointervARB; #define glGetBufferPointervARB glad_glGetBufferPointervARB GLAD_API_CALL PFNGLGETBUFFERSUBDATAPROC glad_glGetBufferSubData; #define glGetBufferSubData glad_glGetBufferSubData GLAD_API_CALL PFNGLGETBUFFERSUBDATAARBPROC glad_glGetBufferSubDataARB; #define glGetBufferSubDataARB glad_glGetBufferSubDataARB GLAD_API_CALL PFNGLGETCLIPPLANEPROC glad_glGetClipPlane; #define glGetClipPlane glad_glGetClipPlane GLAD_API_CALL PFNGLGETCOLORTABLEPROC glad_glGetColorTable; #define glGetColorTable glad_glGetColorTable GLAD_API_CALL PFNGLGETCOLORTABLEPARAMETERFVPROC glad_glGetColorTableParameterfv; #define glGetColorTableParameterfv glad_glGetColorTableParameterfv GLAD_API_CALL PFNGLGETCOLORTABLEPARAMETERIVPROC glad_glGetColorTableParameteriv; #define glGetColorTableParameteriv glad_glGetColorTableParameteriv GLAD_API_CALL PFNGLGETCOMPRESSEDTEXIMAGEPROC glad_glGetCompressedTexImage; #define glGetCompressedTexImage glad_glGetCompressedTexImage GLAD_API_CALL PFNGLGETCOMPRESSEDTEXIMAGEARBPROC glad_glGetCompressedTexImageARB; #define glGetCompressedTexImageARB glad_glGetCompressedTexImageARB GLAD_API_CALL PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC glad_glGetCompressedTextureImage; #define glGetCompressedTextureImage glad_glGetCompressedTextureImage GLAD_API_CALL PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC glad_glGetCompressedTextureSubImage; #define glGetCompressedTextureSubImage glad_glGetCompressedTextureSubImage GLAD_API_CALL PFNGLGETCONVOLUTIONFILTERPROC glad_glGetConvolutionFilter; #define glGetConvolutionFilter glad_glGetConvolutionFilter GLAD_API_CALL PFNGLGETCONVOLUTIONPARAMETERFVPROC glad_glGetConvolutionParameterfv; #define glGetConvolutionParameterfv glad_glGetConvolutionParameterfv GLAD_API_CALL PFNGLGETCONVOLUTIONPARAMETERIVPROC glad_glGetConvolutionParameteriv; #define glGetConvolutionParameteriv glad_glGetConvolutionParameteriv GLAD_API_CALL PFNGLGETDEBUGMESSAGELOGPROC glad_glGetDebugMessageLog; #define glGetDebugMessageLog glad_glGetDebugMessageLog GLAD_API_CALL PFNGLGETDEBUGMESSAGELOGARBPROC glad_glGetDebugMessageLogARB; #define glGetDebugMessageLogARB glad_glGetDebugMessageLogARB GLAD_API_CALL PFNGLGETDOUBLEI_VPROC glad_glGetDoublei_v; #define glGetDoublei_v glad_glGetDoublei_v GLAD_API_CALL PFNGLGETDOUBLEVPROC glad_glGetDoublev; #define glGetDoublev glad_glGetDoublev GLAD_API_CALL PFNGLGETERRORPROC glad_glGetError; #define glGetError glad_glGetError GLAD_API_CALL PFNGLGETFLOATI_VPROC glad_glGetFloati_v; #define glGetFloati_v glad_glGetFloati_v GLAD_API_CALL PFNGLGETFLOATVPROC glad_glGetFloatv; #define glGetFloatv glad_glGetFloatv GLAD_API_CALL PFNGLGETFRAGDATAINDEXPROC glad_glGetFragDataIndex; #define glGetFragDataIndex glad_glGetFragDataIndex GLAD_API_CALL PFNGLGETFRAGDATALOCATIONPROC glad_glGetFragDataLocation; #define glGetFragDataLocation glad_glGetFragDataLocation GLAD_API_CALL PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetFramebufferAttachmentParameteriv; #define glGetFramebufferAttachmentParameteriv glad_glGetFramebufferAttachmentParameteriv GLAD_API_CALL PFNGLGETFRAMEBUFFERPARAMETERIVPROC glad_glGetFramebufferParameteriv; #define glGetFramebufferParameteriv glad_glGetFramebufferParameteriv GLAD_API_CALL PFNGLGETGRAPHICSRESETSTATUSPROC glad_glGetGraphicsResetStatus; #define glGetGraphicsResetStatus glad_glGetGraphicsResetStatus GLAD_API_CALL PFNGLGETGRAPHICSRESETSTATUSARBPROC glad_glGetGraphicsResetStatusARB; #define glGetGraphicsResetStatusARB glad_glGetGraphicsResetStatusARB GLAD_API_CALL PFNGLGETHANDLEARBPROC glad_glGetHandleARB; #define glGetHandleARB glad_glGetHandleARB GLAD_API_CALL PFNGLGETHISTOGRAMPROC glad_glGetHistogram; #define glGetHistogram glad_glGetHistogram GLAD_API_CALL PFNGLGETHISTOGRAMPARAMETERFVPROC glad_glGetHistogramParameterfv; #define glGetHistogramParameterfv glad_glGetHistogramParameterfv GLAD_API_CALL PFNGLGETHISTOGRAMPARAMETERIVPROC glad_glGetHistogramParameteriv; #define glGetHistogramParameteriv glad_glGetHistogramParameteriv GLAD_API_CALL PFNGLGETIMAGEHANDLEARBPROC glad_glGetImageHandleARB; #define glGetImageHandleARB glad_glGetImageHandleARB GLAD_API_CALL PFNGLGETINFOLOGARBPROC glad_glGetInfoLogARB; #define glGetInfoLogARB glad_glGetInfoLogARB GLAD_API_CALL PFNGLGETINTEGER64I_VPROC glad_glGetInteger64i_v; #define glGetInteger64i_v glad_glGetInteger64i_v GLAD_API_CALL PFNGLGETINTEGER64VPROC glad_glGetInteger64v; #define glGetInteger64v glad_glGetInteger64v GLAD_API_CALL PFNGLGETINTEGERI_VPROC glad_glGetIntegeri_v; #define glGetIntegeri_v glad_glGetIntegeri_v GLAD_API_CALL PFNGLGETINTEGERVPROC glad_glGetIntegerv; #define glGetIntegerv glad_glGetIntegerv GLAD_API_CALL PFNGLGETINTERNALFORMATI64VPROC glad_glGetInternalformati64v; #define glGetInternalformati64v glad_glGetInternalformati64v GLAD_API_CALL PFNGLGETINTERNALFORMATIVPROC glad_glGetInternalformativ; #define glGetInternalformativ glad_glGetInternalformativ GLAD_API_CALL PFNGLGETLIGHTFVPROC glad_glGetLightfv; #define glGetLightfv glad_glGetLightfv GLAD_API_CALL PFNGLGETLIGHTIVPROC glad_glGetLightiv; #define glGetLightiv glad_glGetLightiv GLAD_API_CALL PFNGLGETMAPDVPROC glad_glGetMapdv; #define glGetMapdv glad_glGetMapdv GLAD_API_CALL PFNGLGETMAPFVPROC glad_glGetMapfv; #define glGetMapfv glad_glGetMapfv GLAD_API_CALL PFNGLGETMAPIVPROC glad_glGetMapiv; #define glGetMapiv glad_glGetMapiv GLAD_API_CALL PFNGLGETMATERIALFVPROC glad_glGetMaterialfv; #define glGetMaterialfv glad_glGetMaterialfv GLAD_API_CALL PFNGLGETMATERIALIVPROC glad_glGetMaterialiv; #define glGetMaterialiv glad_glGetMaterialiv GLAD_API_CALL PFNGLGETMINMAXPROC glad_glGetMinmax; #define glGetMinmax glad_glGetMinmax GLAD_API_CALL PFNGLGETMINMAXPARAMETERFVPROC glad_glGetMinmaxParameterfv; #define glGetMinmaxParameterfv glad_glGetMinmaxParameterfv GLAD_API_CALL PFNGLGETMINMAXPARAMETERIVPROC glad_glGetMinmaxParameteriv; #define glGetMinmaxParameteriv glad_glGetMinmaxParameteriv GLAD_API_CALL PFNGLGETMULTISAMPLEFVPROC glad_glGetMultisamplefv; #define glGetMultisamplefv glad_glGetMultisamplefv GLAD_API_CALL PFNGLGETNAMEDBUFFERPARAMETERI64VPROC glad_glGetNamedBufferParameteri64v; #define glGetNamedBufferParameteri64v glad_glGetNamedBufferParameteri64v GLAD_API_CALL PFNGLGETNAMEDBUFFERPARAMETERIVPROC glad_glGetNamedBufferParameteriv; #define glGetNamedBufferParameteriv glad_glGetNamedBufferParameteriv GLAD_API_CALL PFNGLGETNAMEDBUFFERPOINTERVPROC glad_glGetNamedBufferPointerv; #define glGetNamedBufferPointerv glad_glGetNamedBufferPointerv GLAD_API_CALL PFNGLGETNAMEDBUFFERSUBDATAPROC glad_glGetNamedBufferSubData; #define glGetNamedBufferSubData glad_glGetNamedBufferSubData GLAD_API_CALL PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetNamedFramebufferAttachmentParameteriv; #define glGetNamedFramebufferAttachmentParameteriv glad_glGetNamedFramebufferAttachmentParameteriv GLAD_API_CALL PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC glad_glGetNamedFramebufferParameteriv; #define glGetNamedFramebufferParameteriv glad_glGetNamedFramebufferParameteriv GLAD_API_CALL PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC glad_glGetNamedRenderbufferParameteriv; #define glGetNamedRenderbufferParameteriv glad_glGetNamedRenderbufferParameteriv GLAD_API_CALL PFNGLGETNAMEDSTRINGARBPROC glad_glGetNamedStringARB; #define glGetNamedStringARB glad_glGetNamedStringARB GLAD_API_CALL PFNGLGETNAMEDSTRINGIVARBPROC glad_glGetNamedStringivARB; #define glGetNamedStringivARB glad_glGetNamedStringivARB GLAD_API_CALL PFNGLGETOBJECTLABELPROC glad_glGetObjectLabel; #define glGetObjectLabel glad_glGetObjectLabel GLAD_API_CALL PFNGLGETOBJECTPARAMETERFVARBPROC glad_glGetObjectParameterfvARB; #define glGetObjectParameterfvARB glad_glGetObjectParameterfvARB GLAD_API_CALL PFNGLGETOBJECTPARAMETERIVARBPROC glad_glGetObjectParameterivARB; #define glGetObjectParameterivARB glad_glGetObjectParameterivARB GLAD_API_CALL PFNGLGETOBJECTPTRLABELPROC glad_glGetObjectPtrLabel; #define glGetObjectPtrLabel glad_glGetObjectPtrLabel GLAD_API_CALL PFNGLGETPIXELMAPFVPROC glad_glGetPixelMapfv; #define glGetPixelMapfv glad_glGetPixelMapfv GLAD_API_CALL PFNGLGETPIXELMAPUIVPROC glad_glGetPixelMapuiv; #define glGetPixelMapuiv glad_glGetPixelMapuiv GLAD_API_CALL PFNGLGETPIXELMAPUSVPROC glad_glGetPixelMapusv; #define glGetPixelMapusv glad_glGetPixelMapusv GLAD_API_CALL PFNGLGETPOINTERVPROC glad_glGetPointerv; #define glGetPointerv glad_glGetPointerv GLAD_API_CALL PFNGLGETPOLYGONSTIPPLEPROC glad_glGetPolygonStipple; #define glGetPolygonStipple glad_glGetPolygonStipple GLAD_API_CALL PFNGLGETPROGRAMBINARYPROC glad_glGetProgramBinary; #define glGetProgramBinary glad_glGetProgramBinary GLAD_API_CALL PFNGLGETPROGRAMENVPARAMETERDVARBPROC glad_glGetProgramEnvParameterdvARB; #define glGetProgramEnvParameterdvARB glad_glGetProgramEnvParameterdvARB GLAD_API_CALL PFNGLGETPROGRAMENVPARAMETERFVARBPROC glad_glGetProgramEnvParameterfvARB; #define glGetProgramEnvParameterfvARB glad_glGetProgramEnvParameterfvARB GLAD_API_CALL PFNGLGETPROGRAMINFOLOGPROC glad_glGetProgramInfoLog; #define glGetProgramInfoLog glad_glGetProgramInfoLog GLAD_API_CALL PFNGLGETPROGRAMINTERFACEIVPROC glad_glGetProgramInterfaceiv; #define glGetProgramInterfaceiv glad_glGetProgramInterfaceiv GLAD_API_CALL PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC glad_glGetProgramLocalParameterdvARB; #define glGetProgramLocalParameterdvARB glad_glGetProgramLocalParameterdvARB GLAD_API_CALL PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC glad_glGetProgramLocalParameterfvARB; #define glGetProgramLocalParameterfvARB glad_glGetProgramLocalParameterfvARB GLAD_API_CALL PFNGLGETPROGRAMPIPELINEINFOLOGPROC glad_glGetProgramPipelineInfoLog; #define glGetProgramPipelineInfoLog glad_glGetProgramPipelineInfoLog GLAD_API_CALL PFNGLGETPROGRAMPIPELINEIVPROC glad_glGetProgramPipelineiv; #define glGetProgramPipelineiv glad_glGetProgramPipelineiv GLAD_API_CALL PFNGLGETPROGRAMRESOURCEINDEXPROC glad_glGetProgramResourceIndex; #define glGetProgramResourceIndex glad_glGetProgramResourceIndex GLAD_API_CALL PFNGLGETPROGRAMRESOURCELOCATIONPROC glad_glGetProgramResourceLocation; #define glGetProgramResourceLocation glad_glGetProgramResourceLocation GLAD_API_CALL PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC glad_glGetProgramResourceLocationIndex; #define glGetProgramResourceLocationIndex glad_glGetProgramResourceLocationIndex GLAD_API_CALL PFNGLGETPROGRAMRESOURCENAMEPROC glad_glGetProgramResourceName; #define glGetProgramResourceName glad_glGetProgramResourceName GLAD_API_CALL PFNGLGETPROGRAMRESOURCEIVPROC glad_glGetProgramResourceiv; #define glGetProgramResourceiv glad_glGetProgramResourceiv GLAD_API_CALL PFNGLGETPROGRAMSTAGEIVPROC glad_glGetProgramStageiv; #define glGetProgramStageiv glad_glGetProgramStageiv GLAD_API_CALL PFNGLGETPROGRAMSTRINGARBPROC glad_glGetProgramStringARB; #define glGetProgramStringARB glad_glGetProgramStringARB GLAD_API_CALL PFNGLGETPROGRAMIVPROC glad_glGetProgramiv; #define glGetProgramiv glad_glGetProgramiv GLAD_API_CALL PFNGLGETPROGRAMIVARBPROC glad_glGetProgramivARB; #define glGetProgramivARB glad_glGetProgramivARB GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTI64VPROC glad_glGetQueryBufferObjecti64v; #define glGetQueryBufferObjecti64v glad_glGetQueryBufferObjecti64v GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTIVPROC glad_glGetQueryBufferObjectiv; #define glGetQueryBufferObjectiv glad_glGetQueryBufferObjectiv GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTUI64VPROC glad_glGetQueryBufferObjectui64v; #define glGetQueryBufferObjectui64v glad_glGetQueryBufferObjectui64v GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTUIVPROC glad_glGetQueryBufferObjectuiv; #define glGetQueryBufferObjectuiv glad_glGetQueryBufferObjectuiv GLAD_API_CALL PFNGLGETQUERYINDEXEDIVPROC glad_glGetQueryIndexediv; #define glGetQueryIndexediv glad_glGetQueryIndexediv GLAD_API_CALL PFNGLGETQUERYOBJECTI64VPROC glad_glGetQueryObjecti64v; #define glGetQueryObjecti64v glad_glGetQueryObjecti64v GLAD_API_CALL PFNGLGETQUERYOBJECTIVPROC glad_glGetQueryObjectiv; #define glGetQueryObjectiv glad_glGetQueryObjectiv GLAD_API_CALL PFNGLGETQUERYOBJECTIVARBPROC glad_glGetQueryObjectivARB; #define glGetQueryObjectivARB glad_glGetQueryObjectivARB GLAD_API_CALL PFNGLGETQUERYOBJECTUI64VPROC glad_glGetQueryObjectui64v; #define glGetQueryObjectui64v glad_glGetQueryObjectui64v GLAD_API_CALL PFNGLGETQUERYOBJECTUIVPROC glad_glGetQueryObjectuiv; #define glGetQueryObjectuiv glad_glGetQueryObjectuiv GLAD_API_CALL PFNGLGETQUERYOBJECTUIVARBPROC glad_glGetQueryObjectuivARB; #define glGetQueryObjectuivARB glad_glGetQueryObjectuivARB GLAD_API_CALL PFNGLGETQUERYIVPROC glad_glGetQueryiv; #define glGetQueryiv glad_glGetQueryiv GLAD_API_CALL PFNGLGETQUERYIVARBPROC glad_glGetQueryivARB; #define glGetQueryivARB glad_glGetQueryivARB GLAD_API_CALL PFNGLGETRENDERBUFFERPARAMETERIVPROC glad_glGetRenderbufferParameteriv; #define glGetRenderbufferParameteriv glad_glGetRenderbufferParameteriv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERIIVPROC glad_glGetSamplerParameterIiv; #define glGetSamplerParameterIiv glad_glGetSamplerParameterIiv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERIUIVPROC glad_glGetSamplerParameterIuiv; #define glGetSamplerParameterIuiv glad_glGetSamplerParameterIuiv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERFVPROC glad_glGetSamplerParameterfv; #define glGetSamplerParameterfv glad_glGetSamplerParameterfv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERIVPROC glad_glGetSamplerParameteriv; #define glGetSamplerParameteriv glad_glGetSamplerParameteriv GLAD_API_CALL PFNGLGETSEPARABLEFILTERPROC glad_glGetSeparableFilter; #define glGetSeparableFilter glad_glGetSeparableFilter GLAD_API_CALL PFNGLGETSHADERINFOLOGPROC glad_glGetShaderInfoLog; #define glGetShaderInfoLog glad_glGetShaderInfoLog GLAD_API_CALL PFNGLGETSHADERPRECISIONFORMATPROC glad_glGetShaderPrecisionFormat; #define glGetShaderPrecisionFormat glad_glGetShaderPrecisionFormat GLAD_API_CALL PFNGLGETSHADERSOURCEPROC glad_glGetShaderSource; #define glGetShaderSource glad_glGetShaderSource GLAD_API_CALL PFNGLGETSHADERSOURCEARBPROC glad_glGetShaderSourceARB; #define glGetShaderSourceARB glad_glGetShaderSourceARB GLAD_API_CALL PFNGLGETSHADERIVPROC glad_glGetShaderiv; #define glGetShaderiv glad_glGetShaderiv GLAD_API_CALL PFNGLGETSTRINGPROC glad_glGetString; #define glGetString glad_glGetString GLAD_API_CALL PFNGLGETSTRINGIPROC glad_glGetStringi; #define glGetStringi glad_glGetStringi GLAD_API_CALL PFNGLGETSUBROUTINEINDEXPROC glad_glGetSubroutineIndex; #define glGetSubroutineIndex glad_glGetSubroutineIndex GLAD_API_CALL PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC glad_glGetSubroutineUniformLocation; #define glGetSubroutineUniformLocation glad_glGetSubroutineUniformLocation GLAD_API_CALL PFNGLGETSYNCIVPROC glad_glGetSynciv; #define glGetSynciv glad_glGetSynciv GLAD_API_CALL PFNGLGETTEXENVFVPROC glad_glGetTexEnvfv; #define glGetTexEnvfv glad_glGetTexEnvfv GLAD_API_CALL PFNGLGETTEXENVIVPROC glad_glGetTexEnviv; #define glGetTexEnviv glad_glGetTexEnviv GLAD_API_CALL PFNGLGETTEXGENDVPROC glad_glGetTexGendv; #define glGetTexGendv glad_glGetTexGendv GLAD_API_CALL PFNGLGETTEXGENFVPROC glad_glGetTexGenfv; #define glGetTexGenfv glad_glGetTexGenfv GLAD_API_CALL PFNGLGETTEXGENIVPROC glad_glGetTexGeniv; #define glGetTexGeniv glad_glGetTexGeniv GLAD_API_CALL PFNGLGETTEXIMAGEPROC glad_glGetTexImage; #define glGetTexImage glad_glGetTexImage GLAD_API_CALL PFNGLGETTEXLEVELPARAMETERFVPROC glad_glGetTexLevelParameterfv; #define glGetTexLevelParameterfv glad_glGetTexLevelParameterfv GLAD_API_CALL PFNGLGETTEXLEVELPARAMETERIVPROC glad_glGetTexLevelParameteriv; #define glGetTexLevelParameteriv glad_glGetTexLevelParameteriv GLAD_API_CALL PFNGLGETTEXPARAMETERIIVPROC glad_glGetTexParameterIiv; #define glGetTexParameterIiv glad_glGetTexParameterIiv GLAD_API_CALL PFNGLGETTEXPARAMETERIUIVPROC glad_glGetTexParameterIuiv; #define glGetTexParameterIuiv glad_glGetTexParameterIuiv GLAD_API_CALL PFNGLGETTEXPARAMETERFVPROC glad_glGetTexParameterfv; #define glGetTexParameterfv glad_glGetTexParameterfv GLAD_API_CALL PFNGLGETTEXPARAMETERIVPROC glad_glGetTexParameteriv; #define glGetTexParameteriv glad_glGetTexParameteriv GLAD_API_CALL PFNGLGETTEXTUREHANDLEARBPROC glad_glGetTextureHandleARB; #define glGetTextureHandleARB glad_glGetTextureHandleARB GLAD_API_CALL PFNGLGETTEXTUREIMAGEPROC glad_glGetTextureImage; #define glGetTextureImage glad_glGetTextureImage GLAD_API_CALL PFNGLGETTEXTURELEVELPARAMETERFVPROC glad_glGetTextureLevelParameterfv; #define glGetTextureLevelParameterfv glad_glGetTextureLevelParameterfv GLAD_API_CALL PFNGLGETTEXTURELEVELPARAMETERIVPROC glad_glGetTextureLevelParameteriv; #define glGetTextureLevelParameteriv glad_glGetTextureLevelParameteriv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERIIVPROC glad_glGetTextureParameterIiv; #define glGetTextureParameterIiv glad_glGetTextureParameterIiv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERIUIVPROC glad_glGetTextureParameterIuiv; #define glGetTextureParameterIuiv glad_glGetTextureParameterIuiv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERFVPROC glad_glGetTextureParameterfv; #define glGetTextureParameterfv glad_glGetTextureParameterfv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERIVPROC glad_glGetTextureParameteriv; #define glGetTextureParameteriv glad_glGetTextureParameteriv GLAD_API_CALL PFNGLGETTEXTURESAMPLERHANDLEARBPROC glad_glGetTextureSamplerHandleARB; #define glGetTextureSamplerHandleARB glad_glGetTextureSamplerHandleARB GLAD_API_CALL PFNGLGETTEXTURESUBIMAGEPROC glad_glGetTextureSubImage; #define glGetTextureSubImage glad_glGetTextureSubImage GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKVARYINGPROC glad_glGetTransformFeedbackVarying; #define glGetTransformFeedbackVarying glad_glGetTransformFeedbackVarying GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKI64_VPROC glad_glGetTransformFeedbacki64_v; #define glGetTransformFeedbacki64_v glad_glGetTransformFeedbacki64_v GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKI_VPROC glad_glGetTransformFeedbacki_v; #define glGetTransformFeedbacki_v glad_glGetTransformFeedbacki_v GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKIVPROC glad_glGetTransformFeedbackiv; #define glGetTransformFeedbackiv glad_glGetTransformFeedbackiv GLAD_API_CALL PFNGLGETUNIFORMBLOCKINDEXPROC glad_glGetUniformBlockIndex; #define glGetUniformBlockIndex glad_glGetUniformBlockIndex GLAD_API_CALL PFNGLGETUNIFORMINDICESPROC glad_glGetUniformIndices; #define glGetUniformIndices glad_glGetUniformIndices GLAD_API_CALL PFNGLGETUNIFORMLOCATIONPROC glad_glGetUniformLocation; #define glGetUniformLocation glad_glGetUniformLocation GLAD_API_CALL PFNGLGETUNIFORMLOCATIONARBPROC glad_glGetUniformLocationARB; #define glGetUniformLocationARB glad_glGetUniformLocationARB GLAD_API_CALL PFNGLGETUNIFORMSUBROUTINEUIVPROC glad_glGetUniformSubroutineuiv; #define glGetUniformSubroutineuiv glad_glGetUniformSubroutineuiv GLAD_API_CALL PFNGLGETUNIFORMDVPROC glad_glGetUniformdv; #define glGetUniformdv glad_glGetUniformdv GLAD_API_CALL PFNGLGETUNIFORMFVPROC glad_glGetUniformfv; #define glGetUniformfv glad_glGetUniformfv GLAD_API_CALL PFNGLGETUNIFORMFVARBPROC glad_glGetUniformfvARB; #define glGetUniformfvARB glad_glGetUniformfvARB GLAD_API_CALL PFNGLGETUNIFORMI64VARBPROC glad_glGetUniformi64vARB; #define glGetUniformi64vARB glad_glGetUniformi64vARB GLAD_API_CALL PFNGLGETUNIFORMIVPROC glad_glGetUniformiv; #define glGetUniformiv glad_glGetUniformiv GLAD_API_CALL PFNGLGETUNIFORMIVARBPROC glad_glGetUniformivARB; #define glGetUniformivARB glad_glGetUniformivARB GLAD_API_CALL PFNGLGETUNIFORMUI64VARBPROC glad_glGetUniformui64vARB; #define glGetUniformui64vARB glad_glGetUniformui64vARB GLAD_API_CALL PFNGLGETUNIFORMUIVPROC glad_glGetUniformuiv; #define glGetUniformuiv glad_glGetUniformuiv GLAD_API_CALL PFNGLGETVERTEXARRAYINDEXED64IVPROC glad_glGetVertexArrayIndexed64iv; #define glGetVertexArrayIndexed64iv glad_glGetVertexArrayIndexed64iv GLAD_API_CALL PFNGLGETVERTEXARRAYINDEXEDIVPROC glad_glGetVertexArrayIndexediv; #define glGetVertexArrayIndexediv glad_glGetVertexArrayIndexediv GLAD_API_CALL PFNGLGETVERTEXARRAYIVPROC glad_glGetVertexArrayiv; #define glGetVertexArrayiv glad_glGetVertexArrayiv GLAD_API_CALL PFNGLGETVERTEXATTRIBIIVPROC glad_glGetVertexAttribIiv; #define glGetVertexAttribIiv glad_glGetVertexAttribIiv GLAD_API_CALL PFNGLGETVERTEXATTRIBIUIVPROC glad_glGetVertexAttribIuiv; #define glGetVertexAttribIuiv glad_glGetVertexAttribIuiv GLAD_API_CALL PFNGLGETVERTEXATTRIBLDVPROC glad_glGetVertexAttribLdv; #define glGetVertexAttribLdv glad_glGetVertexAttribLdv GLAD_API_CALL PFNGLGETVERTEXATTRIBLUI64VARBPROC glad_glGetVertexAttribLui64vARB; #define glGetVertexAttribLui64vARB glad_glGetVertexAttribLui64vARB GLAD_API_CALL PFNGLGETVERTEXATTRIBPOINTERVPROC glad_glGetVertexAttribPointerv; #define glGetVertexAttribPointerv glad_glGetVertexAttribPointerv GLAD_API_CALL PFNGLGETVERTEXATTRIBPOINTERVARBPROC glad_glGetVertexAttribPointervARB; #define glGetVertexAttribPointervARB glad_glGetVertexAttribPointervARB GLAD_API_CALL PFNGLGETVERTEXATTRIBDVPROC glad_glGetVertexAttribdv; #define glGetVertexAttribdv glad_glGetVertexAttribdv GLAD_API_CALL PFNGLGETVERTEXATTRIBDVARBPROC glad_glGetVertexAttribdvARB; #define glGetVertexAttribdvARB glad_glGetVertexAttribdvARB GLAD_API_CALL PFNGLGETVERTEXATTRIBFVPROC glad_glGetVertexAttribfv; #define glGetVertexAttribfv glad_glGetVertexAttribfv GLAD_API_CALL PFNGLGETVERTEXATTRIBFVARBPROC glad_glGetVertexAttribfvARB; #define glGetVertexAttribfvARB glad_glGetVertexAttribfvARB GLAD_API_CALL PFNGLGETVERTEXATTRIBIVPROC glad_glGetVertexAttribiv; #define glGetVertexAttribiv glad_glGetVertexAttribiv GLAD_API_CALL PFNGLGETVERTEXATTRIBIVARBPROC glad_glGetVertexAttribivARB; #define glGetVertexAttribivARB glad_glGetVertexAttribivARB GLAD_API_CALL PFNGLGETNCOLORTABLEARBPROC glad_glGetnColorTableARB; #define glGetnColorTableARB glad_glGetnColorTableARB GLAD_API_CALL PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC glad_glGetnCompressedTexImageARB; #define glGetnCompressedTexImageARB glad_glGetnCompressedTexImageARB GLAD_API_CALL PFNGLGETNCONVOLUTIONFILTERARBPROC glad_glGetnConvolutionFilterARB; #define glGetnConvolutionFilterARB glad_glGetnConvolutionFilterARB GLAD_API_CALL PFNGLGETNHISTOGRAMARBPROC glad_glGetnHistogramARB; #define glGetnHistogramARB glad_glGetnHistogramARB GLAD_API_CALL PFNGLGETNMAPDVARBPROC glad_glGetnMapdvARB; #define glGetnMapdvARB glad_glGetnMapdvARB GLAD_API_CALL PFNGLGETNMAPFVARBPROC glad_glGetnMapfvARB; #define glGetnMapfvARB glad_glGetnMapfvARB GLAD_API_CALL PFNGLGETNMAPIVARBPROC glad_glGetnMapivARB; #define glGetnMapivARB glad_glGetnMapivARB GLAD_API_CALL PFNGLGETNMINMAXARBPROC glad_glGetnMinmaxARB; #define glGetnMinmaxARB glad_glGetnMinmaxARB GLAD_API_CALL PFNGLGETNPIXELMAPFVARBPROC glad_glGetnPixelMapfvARB; #define glGetnPixelMapfvARB glad_glGetnPixelMapfvARB GLAD_API_CALL PFNGLGETNPIXELMAPUIVARBPROC glad_glGetnPixelMapuivARB; #define glGetnPixelMapuivARB glad_glGetnPixelMapuivARB GLAD_API_CALL PFNGLGETNPIXELMAPUSVARBPROC glad_glGetnPixelMapusvARB; #define glGetnPixelMapusvARB glad_glGetnPixelMapusvARB GLAD_API_CALL PFNGLGETNPOLYGONSTIPPLEARBPROC glad_glGetnPolygonStippleARB; #define glGetnPolygonStippleARB glad_glGetnPolygonStippleARB GLAD_API_CALL PFNGLGETNSEPARABLEFILTERARBPROC glad_glGetnSeparableFilterARB; #define glGetnSeparableFilterARB glad_glGetnSeparableFilterARB GLAD_API_CALL PFNGLGETNTEXIMAGEARBPROC glad_glGetnTexImageARB; #define glGetnTexImageARB glad_glGetnTexImageARB GLAD_API_CALL PFNGLGETNUNIFORMDVARBPROC glad_glGetnUniformdvARB; #define glGetnUniformdvARB glad_glGetnUniformdvARB GLAD_API_CALL PFNGLGETNUNIFORMFVPROC glad_glGetnUniformfv; #define glGetnUniformfv glad_glGetnUniformfv GLAD_API_CALL PFNGLGETNUNIFORMFVARBPROC glad_glGetnUniformfvARB; #define glGetnUniformfvARB glad_glGetnUniformfvARB GLAD_API_CALL PFNGLGETNUNIFORMI64VARBPROC glad_glGetnUniformi64vARB; #define glGetnUniformi64vARB glad_glGetnUniformi64vARB GLAD_API_CALL PFNGLGETNUNIFORMIVPROC glad_glGetnUniformiv; #define glGetnUniformiv glad_glGetnUniformiv GLAD_API_CALL PFNGLGETNUNIFORMIVARBPROC glad_glGetnUniformivARB; #define glGetnUniformivARB glad_glGetnUniformivARB GLAD_API_CALL PFNGLGETNUNIFORMUI64VARBPROC glad_glGetnUniformui64vARB; #define glGetnUniformui64vARB glad_glGetnUniformui64vARB GLAD_API_CALL PFNGLGETNUNIFORMUIVPROC glad_glGetnUniformuiv; #define glGetnUniformuiv glad_glGetnUniformuiv GLAD_API_CALL PFNGLGETNUNIFORMUIVARBPROC glad_glGetnUniformuivARB; #define glGetnUniformuivARB glad_glGetnUniformuivARB GLAD_API_CALL PFNGLHINTPROC glad_glHint; #define glHint glad_glHint GLAD_API_CALL PFNGLHISTOGRAMPROC glad_glHistogram; #define glHistogram glad_glHistogram GLAD_API_CALL PFNGLINDEXMASKPROC glad_glIndexMask; #define glIndexMask glad_glIndexMask GLAD_API_CALL PFNGLINDEXPOINTERPROC glad_glIndexPointer; #define glIndexPointer glad_glIndexPointer GLAD_API_CALL PFNGLINDEXDPROC glad_glIndexd; #define glIndexd glad_glIndexd GLAD_API_CALL PFNGLINDEXDVPROC glad_glIndexdv; #define glIndexdv glad_glIndexdv GLAD_API_CALL PFNGLINDEXFPROC glad_glIndexf; #define glIndexf glad_glIndexf GLAD_API_CALL PFNGLINDEXFVPROC glad_glIndexfv; #define glIndexfv glad_glIndexfv GLAD_API_CALL PFNGLINDEXIPROC glad_glIndexi; #define glIndexi glad_glIndexi GLAD_API_CALL PFNGLINDEXIVPROC glad_glIndexiv; #define glIndexiv glad_glIndexiv GLAD_API_CALL PFNGLINDEXSPROC glad_glIndexs; #define glIndexs glad_glIndexs GLAD_API_CALL PFNGLINDEXSVPROC glad_glIndexsv; #define glIndexsv glad_glIndexsv GLAD_API_CALL PFNGLINDEXUBPROC glad_glIndexub; #define glIndexub glad_glIndexub GLAD_API_CALL PFNGLINDEXUBVPROC glad_glIndexubv; #define glIndexubv glad_glIndexubv GLAD_API_CALL PFNGLINITNAMESPROC glad_glInitNames; #define glInitNames glad_glInitNames GLAD_API_CALL PFNGLINTERLEAVEDARRAYSPROC glad_glInterleavedArrays; #define glInterleavedArrays glad_glInterleavedArrays GLAD_API_CALL PFNGLINVALIDATEBUFFERDATAPROC glad_glInvalidateBufferData; #define glInvalidateBufferData glad_glInvalidateBufferData GLAD_API_CALL PFNGLINVALIDATEBUFFERSUBDATAPROC glad_glInvalidateBufferSubData; #define glInvalidateBufferSubData glad_glInvalidateBufferSubData GLAD_API_CALL PFNGLINVALIDATEFRAMEBUFFERPROC glad_glInvalidateFramebuffer; #define glInvalidateFramebuffer glad_glInvalidateFramebuffer GLAD_API_CALL PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC glad_glInvalidateNamedFramebufferData; #define glInvalidateNamedFramebufferData glad_glInvalidateNamedFramebufferData GLAD_API_CALL PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC glad_glInvalidateNamedFramebufferSubData; #define glInvalidateNamedFramebufferSubData glad_glInvalidateNamedFramebufferSubData GLAD_API_CALL PFNGLINVALIDATESUBFRAMEBUFFERPROC glad_glInvalidateSubFramebuffer; #define glInvalidateSubFramebuffer glad_glInvalidateSubFramebuffer GLAD_API_CALL PFNGLINVALIDATETEXIMAGEPROC glad_glInvalidateTexImage; #define glInvalidateTexImage glad_glInvalidateTexImage GLAD_API_CALL PFNGLINVALIDATETEXSUBIMAGEPROC glad_glInvalidateTexSubImage; #define glInvalidateTexSubImage glad_glInvalidateTexSubImage GLAD_API_CALL PFNGLISBUFFERPROC glad_glIsBuffer; #define glIsBuffer glad_glIsBuffer GLAD_API_CALL PFNGLISBUFFERARBPROC glad_glIsBufferARB; #define glIsBufferARB glad_glIsBufferARB GLAD_API_CALL PFNGLISENABLEDPROC glad_glIsEnabled; #define glIsEnabled glad_glIsEnabled GLAD_API_CALL PFNGLISENABLEDIPROC glad_glIsEnabledi; #define glIsEnabledi glad_glIsEnabledi GLAD_API_CALL PFNGLISFRAMEBUFFERPROC glad_glIsFramebuffer; #define glIsFramebuffer glad_glIsFramebuffer GLAD_API_CALL PFNGLISIMAGEHANDLERESIDENTARBPROC glad_glIsImageHandleResidentARB; #define glIsImageHandleResidentARB glad_glIsImageHandleResidentARB GLAD_API_CALL PFNGLISLISTPROC glad_glIsList; #define glIsList glad_glIsList GLAD_API_CALL PFNGLISNAMEDSTRINGARBPROC glad_glIsNamedStringARB; #define glIsNamedStringARB glad_glIsNamedStringARB GLAD_API_CALL PFNGLISPROGRAMPROC glad_glIsProgram; #define glIsProgram glad_glIsProgram GLAD_API_CALL PFNGLISPROGRAMARBPROC glad_glIsProgramARB; #define glIsProgramARB glad_glIsProgramARB GLAD_API_CALL PFNGLISPROGRAMPIPELINEPROC glad_glIsProgramPipeline; #define glIsProgramPipeline glad_glIsProgramPipeline GLAD_API_CALL PFNGLISQUERYPROC glad_glIsQuery; #define glIsQuery glad_glIsQuery GLAD_API_CALL PFNGLISQUERYARBPROC glad_glIsQueryARB; #define glIsQueryARB glad_glIsQueryARB GLAD_API_CALL PFNGLISRENDERBUFFERPROC glad_glIsRenderbuffer; #define glIsRenderbuffer glad_glIsRenderbuffer GLAD_API_CALL PFNGLISSAMPLERPROC glad_glIsSampler; #define glIsSampler glad_glIsSampler GLAD_API_CALL PFNGLISSHADERPROC glad_glIsShader; #define glIsShader glad_glIsShader GLAD_API_CALL PFNGLISSYNCPROC glad_glIsSync; #define glIsSync glad_glIsSync GLAD_API_CALL PFNGLISTEXTUREPROC glad_glIsTexture; #define glIsTexture glad_glIsTexture GLAD_API_CALL PFNGLISTEXTUREHANDLERESIDENTARBPROC glad_glIsTextureHandleResidentARB; #define glIsTextureHandleResidentARB glad_glIsTextureHandleResidentARB GLAD_API_CALL PFNGLISTRANSFORMFEEDBACKPROC glad_glIsTransformFeedback; #define glIsTransformFeedback glad_glIsTransformFeedback GLAD_API_CALL PFNGLISVERTEXARRAYPROC glad_glIsVertexArray; #define glIsVertexArray glad_glIsVertexArray GLAD_API_CALL PFNGLLIGHTMODELFPROC glad_glLightModelf; #define glLightModelf glad_glLightModelf GLAD_API_CALL PFNGLLIGHTMODELFVPROC glad_glLightModelfv; #define glLightModelfv glad_glLightModelfv GLAD_API_CALL PFNGLLIGHTMODELIPROC glad_glLightModeli; #define glLightModeli glad_glLightModeli GLAD_API_CALL PFNGLLIGHTMODELIVPROC glad_glLightModeliv; #define glLightModeliv glad_glLightModeliv GLAD_API_CALL PFNGLLIGHTFPROC glad_glLightf; #define glLightf glad_glLightf GLAD_API_CALL PFNGLLIGHTFVPROC glad_glLightfv; #define glLightfv glad_glLightfv GLAD_API_CALL PFNGLLIGHTIPROC glad_glLighti; #define glLighti glad_glLighti GLAD_API_CALL PFNGLLIGHTIVPROC glad_glLightiv; #define glLightiv glad_glLightiv GLAD_API_CALL PFNGLLINESTIPPLEPROC glad_glLineStipple; #define glLineStipple glad_glLineStipple GLAD_API_CALL PFNGLLINEWIDTHPROC glad_glLineWidth; #define glLineWidth glad_glLineWidth GLAD_API_CALL PFNGLLINKPROGRAMPROC glad_glLinkProgram; #define glLinkProgram glad_glLinkProgram GLAD_API_CALL PFNGLLINKPROGRAMARBPROC glad_glLinkProgramARB; #define glLinkProgramARB glad_glLinkProgramARB GLAD_API_CALL PFNGLLISTBASEPROC glad_glListBase; #define glListBase glad_glListBase GLAD_API_CALL PFNGLLOADIDENTITYPROC glad_glLoadIdentity; #define glLoadIdentity glad_glLoadIdentity GLAD_API_CALL PFNGLLOADMATRIXDPROC glad_glLoadMatrixd; #define glLoadMatrixd glad_glLoadMatrixd GLAD_API_CALL PFNGLLOADMATRIXFPROC glad_glLoadMatrixf; #define glLoadMatrixf glad_glLoadMatrixf GLAD_API_CALL PFNGLLOADNAMEPROC glad_glLoadName; #define glLoadName glad_glLoadName GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXDPROC glad_glLoadTransposeMatrixd; #define glLoadTransposeMatrixd glad_glLoadTransposeMatrixd GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXDARBPROC glad_glLoadTransposeMatrixdARB; #define glLoadTransposeMatrixdARB glad_glLoadTransposeMatrixdARB GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXFPROC glad_glLoadTransposeMatrixf; #define glLoadTransposeMatrixf glad_glLoadTransposeMatrixf GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXFARBPROC glad_glLoadTransposeMatrixfARB; #define glLoadTransposeMatrixfARB glad_glLoadTransposeMatrixfARB GLAD_API_CALL PFNGLLOGICOPPROC glad_glLogicOp; #define glLogicOp glad_glLogicOp GLAD_API_CALL PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC glad_glMakeImageHandleNonResidentARB; #define glMakeImageHandleNonResidentARB glad_glMakeImageHandleNonResidentARB GLAD_API_CALL PFNGLMAKEIMAGEHANDLERESIDENTARBPROC glad_glMakeImageHandleResidentARB; #define glMakeImageHandleResidentARB glad_glMakeImageHandleResidentARB GLAD_API_CALL PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC glad_glMakeTextureHandleNonResidentARB; #define glMakeTextureHandleNonResidentARB glad_glMakeTextureHandleNonResidentARB GLAD_API_CALL PFNGLMAKETEXTUREHANDLERESIDENTARBPROC glad_glMakeTextureHandleResidentARB; #define glMakeTextureHandleResidentARB glad_glMakeTextureHandleResidentARB GLAD_API_CALL PFNGLMAP1DPROC glad_glMap1d; #define glMap1d glad_glMap1d GLAD_API_CALL PFNGLMAP1FPROC glad_glMap1f; #define glMap1f glad_glMap1f GLAD_API_CALL PFNGLMAP2DPROC glad_glMap2d; #define glMap2d glad_glMap2d GLAD_API_CALL PFNGLMAP2FPROC glad_glMap2f; #define glMap2f glad_glMap2f GLAD_API_CALL PFNGLMAPBUFFERPROC glad_glMapBuffer; #define glMapBuffer glad_glMapBuffer GLAD_API_CALL PFNGLMAPBUFFERARBPROC glad_glMapBufferARB; #define glMapBufferARB glad_glMapBufferARB GLAD_API_CALL PFNGLMAPBUFFERRANGEPROC glad_glMapBufferRange; #define glMapBufferRange glad_glMapBufferRange GLAD_API_CALL PFNGLMAPGRID1DPROC glad_glMapGrid1d; #define glMapGrid1d glad_glMapGrid1d GLAD_API_CALL PFNGLMAPGRID1FPROC glad_glMapGrid1f; #define glMapGrid1f glad_glMapGrid1f GLAD_API_CALL PFNGLMAPGRID2DPROC glad_glMapGrid2d; #define glMapGrid2d glad_glMapGrid2d GLAD_API_CALL PFNGLMAPGRID2FPROC glad_glMapGrid2f; #define glMapGrid2f glad_glMapGrid2f GLAD_API_CALL PFNGLMAPNAMEDBUFFERPROC glad_glMapNamedBuffer; #define glMapNamedBuffer glad_glMapNamedBuffer GLAD_API_CALL PFNGLMAPNAMEDBUFFERRANGEPROC glad_glMapNamedBufferRange; #define glMapNamedBufferRange glad_glMapNamedBufferRange GLAD_API_CALL PFNGLMATERIALFPROC glad_glMaterialf; #define glMaterialf glad_glMaterialf GLAD_API_CALL PFNGLMATERIALFVPROC glad_glMaterialfv; #define glMaterialfv glad_glMaterialfv GLAD_API_CALL PFNGLMATERIALIPROC glad_glMateriali; #define glMateriali glad_glMateriali GLAD_API_CALL PFNGLMATERIALIVPROC glad_glMaterialiv; #define glMaterialiv glad_glMaterialiv GLAD_API_CALL PFNGLMATRIXINDEXPOINTERARBPROC glad_glMatrixIndexPointerARB; #define glMatrixIndexPointerARB glad_glMatrixIndexPointerARB GLAD_API_CALL PFNGLMATRIXINDEXUBVARBPROC glad_glMatrixIndexubvARB; #define glMatrixIndexubvARB glad_glMatrixIndexubvARB GLAD_API_CALL PFNGLMATRIXINDEXUIVARBPROC glad_glMatrixIndexuivARB; #define glMatrixIndexuivARB glad_glMatrixIndexuivARB GLAD_API_CALL PFNGLMATRIXINDEXUSVARBPROC glad_glMatrixIndexusvARB; #define glMatrixIndexusvARB glad_glMatrixIndexusvARB GLAD_API_CALL PFNGLMATRIXMODEPROC glad_glMatrixMode; #define glMatrixMode glad_glMatrixMode GLAD_API_CALL PFNGLMAXSHADERCOMPILERTHREADSARBPROC glad_glMaxShaderCompilerThreadsARB; #define glMaxShaderCompilerThreadsARB glad_glMaxShaderCompilerThreadsARB GLAD_API_CALL PFNGLMAXSHADERCOMPILERTHREADSKHRPROC glad_glMaxShaderCompilerThreadsKHR; #define glMaxShaderCompilerThreadsKHR glad_glMaxShaderCompilerThreadsKHR GLAD_API_CALL PFNGLMEMORYBARRIERPROC glad_glMemoryBarrier; #define glMemoryBarrier glad_glMemoryBarrier GLAD_API_CALL PFNGLMEMORYBARRIERBYREGIONPROC glad_glMemoryBarrierByRegion; #define glMemoryBarrierByRegion glad_glMemoryBarrierByRegion GLAD_API_CALL PFNGLMINSAMPLESHADINGPROC glad_glMinSampleShading; #define glMinSampleShading glad_glMinSampleShading GLAD_API_CALL PFNGLMINSAMPLESHADINGARBPROC glad_glMinSampleShadingARB; #define glMinSampleShadingARB glad_glMinSampleShadingARB GLAD_API_CALL PFNGLMINMAXPROC glad_glMinmax; #define glMinmax glad_glMinmax GLAD_API_CALL PFNGLMULTMATRIXDPROC glad_glMultMatrixd; #define glMultMatrixd glad_glMultMatrixd GLAD_API_CALL PFNGLMULTMATRIXFPROC glad_glMultMatrixf; #define glMultMatrixf glad_glMultMatrixf GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXDPROC glad_glMultTransposeMatrixd; #define glMultTransposeMatrixd glad_glMultTransposeMatrixd GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXDARBPROC glad_glMultTransposeMatrixdARB; #define glMultTransposeMatrixdARB glad_glMultTransposeMatrixdARB GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXFPROC glad_glMultTransposeMatrixf; #define glMultTransposeMatrixf glad_glMultTransposeMatrixf GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXFARBPROC glad_glMultTransposeMatrixfARB; #define glMultTransposeMatrixfARB glad_glMultTransposeMatrixfARB GLAD_API_CALL PFNGLMULTIDRAWARRAYSPROC glad_glMultiDrawArrays; #define glMultiDrawArrays glad_glMultiDrawArrays GLAD_API_CALL PFNGLMULTIDRAWARRAYSINDIRECTPROC glad_glMultiDrawArraysIndirect; #define glMultiDrawArraysIndirect glad_glMultiDrawArraysIndirect GLAD_API_CALL PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC glad_glMultiDrawArraysIndirectCount; #define glMultiDrawArraysIndirectCount glad_glMultiDrawArraysIndirectCount GLAD_API_CALL PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC glad_glMultiDrawArraysIndirectCountARB; #define glMultiDrawArraysIndirectCountARB glad_glMultiDrawArraysIndirectCountARB GLAD_API_CALL PFNGLMULTIDRAWELEMENTSPROC glad_glMultiDrawElements; #define glMultiDrawElements glad_glMultiDrawElements GLAD_API_CALL PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC glad_glMultiDrawElementsBaseVertex; #define glMultiDrawElementsBaseVertex glad_glMultiDrawElementsBaseVertex GLAD_API_CALL PFNGLMULTIDRAWELEMENTSINDIRECTPROC glad_glMultiDrawElementsIndirect; #define glMultiDrawElementsIndirect glad_glMultiDrawElementsIndirect GLAD_API_CALL PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC glad_glMultiDrawElementsIndirectCount; #define glMultiDrawElementsIndirectCount glad_glMultiDrawElementsIndirectCount GLAD_API_CALL PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC glad_glMultiDrawElementsIndirectCountARB; #define glMultiDrawElementsIndirectCountARB glad_glMultiDrawElementsIndirectCountARB GLAD_API_CALL PFNGLMULTITEXCOORD1DPROC glad_glMultiTexCoord1d; #define glMultiTexCoord1d glad_glMultiTexCoord1d GLAD_API_CALL PFNGLMULTITEXCOORD1DARBPROC glad_glMultiTexCoord1dARB; #define glMultiTexCoord1dARB glad_glMultiTexCoord1dARB GLAD_API_CALL PFNGLMULTITEXCOORD1DVPROC glad_glMultiTexCoord1dv; #define glMultiTexCoord1dv glad_glMultiTexCoord1dv GLAD_API_CALL PFNGLMULTITEXCOORD1DVARBPROC glad_glMultiTexCoord1dvARB; #define glMultiTexCoord1dvARB glad_glMultiTexCoord1dvARB GLAD_API_CALL PFNGLMULTITEXCOORD1FPROC glad_glMultiTexCoord1f; #define glMultiTexCoord1f glad_glMultiTexCoord1f GLAD_API_CALL PFNGLMULTITEXCOORD1FARBPROC glad_glMultiTexCoord1fARB; #define glMultiTexCoord1fARB glad_glMultiTexCoord1fARB GLAD_API_CALL PFNGLMULTITEXCOORD1FVPROC glad_glMultiTexCoord1fv; #define glMultiTexCoord1fv glad_glMultiTexCoord1fv GLAD_API_CALL PFNGLMULTITEXCOORD1FVARBPROC glad_glMultiTexCoord1fvARB; #define glMultiTexCoord1fvARB glad_glMultiTexCoord1fvARB GLAD_API_CALL PFNGLMULTITEXCOORD1IPROC glad_glMultiTexCoord1i; #define glMultiTexCoord1i glad_glMultiTexCoord1i GLAD_API_CALL PFNGLMULTITEXCOORD1IARBPROC glad_glMultiTexCoord1iARB; #define glMultiTexCoord1iARB glad_glMultiTexCoord1iARB GLAD_API_CALL PFNGLMULTITEXCOORD1IVPROC glad_glMultiTexCoord1iv; #define glMultiTexCoord1iv glad_glMultiTexCoord1iv GLAD_API_CALL PFNGLMULTITEXCOORD1IVARBPROC glad_glMultiTexCoord1ivARB; #define glMultiTexCoord1ivARB glad_glMultiTexCoord1ivARB GLAD_API_CALL PFNGLMULTITEXCOORD1SPROC glad_glMultiTexCoord1s; #define glMultiTexCoord1s glad_glMultiTexCoord1s GLAD_API_CALL PFNGLMULTITEXCOORD1SARBPROC glad_glMultiTexCoord1sARB; #define glMultiTexCoord1sARB glad_glMultiTexCoord1sARB GLAD_API_CALL PFNGLMULTITEXCOORD1SVPROC glad_glMultiTexCoord1sv; #define glMultiTexCoord1sv glad_glMultiTexCoord1sv GLAD_API_CALL PFNGLMULTITEXCOORD1SVARBPROC glad_glMultiTexCoord1svARB; #define glMultiTexCoord1svARB glad_glMultiTexCoord1svARB GLAD_API_CALL PFNGLMULTITEXCOORD2DPROC glad_glMultiTexCoord2d; #define glMultiTexCoord2d glad_glMultiTexCoord2d GLAD_API_CALL PFNGLMULTITEXCOORD2DARBPROC glad_glMultiTexCoord2dARB; #define glMultiTexCoord2dARB glad_glMultiTexCoord2dARB GLAD_API_CALL PFNGLMULTITEXCOORD2DVPROC glad_glMultiTexCoord2dv; #define glMultiTexCoord2dv glad_glMultiTexCoord2dv GLAD_API_CALL PFNGLMULTITEXCOORD2DVARBPROC glad_glMultiTexCoord2dvARB; #define glMultiTexCoord2dvARB glad_glMultiTexCoord2dvARB GLAD_API_CALL PFNGLMULTITEXCOORD2FPROC glad_glMultiTexCoord2f; #define glMultiTexCoord2f glad_glMultiTexCoord2f GLAD_API_CALL PFNGLMULTITEXCOORD2FARBPROC glad_glMultiTexCoord2fARB; #define glMultiTexCoord2fARB glad_glMultiTexCoord2fARB GLAD_API_CALL PFNGLMULTITEXCOORD2FVPROC glad_glMultiTexCoord2fv; #define glMultiTexCoord2fv glad_glMultiTexCoord2fv GLAD_API_CALL PFNGLMULTITEXCOORD2FVARBPROC glad_glMultiTexCoord2fvARB; #define glMultiTexCoord2fvARB glad_glMultiTexCoord2fvARB GLAD_API_CALL PFNGLMULTITEXCOORD2IPROC glad_glMultiTexCoord2i; #define glMultiTexCoord2i glad_glMultiTexCoord2i GLAD_API_CALL PFNGLMULTITEXCOORD2IARBPROC glad_glMultiTexCoord2iARB; #define glMultiTexCoord2iARB glad_glMultiTexCoord2iARB GLAD_API_CALL PFNGLMULTITEXCOORD2IVPROC glad_glMultiTexCoord2iv; #define glMultiTexCoord2iv glad_glMultiTexCoord2iv GLAD_API_CALL PFNGLMULTITEXCOORD2IVARBPROC glad_glMultiTexCoord2ivARB; #define glMultiTexCoord2ivARB glad_glMultiTexCoord2ivARB GLAD_API_CALL PFNGLMULTITEXCOORD2SPROC glad_glMultiTexCoord2s; #define glMultiTexCoord2s glad_glMultiTexCoord2s GLAD_API_CALL PFNGLMULTITEXCOORD2SARBPROC glad_glMultiTexCoord2sARB; #define glMultiTexCoord2sARB glad_glMultiTexCoord2sARB GLAD_API_CALL PFNGLMULTITEXCOORD2SVPROC glad_glMultiTexCoord2sv; #define glMultiTexCoord2sv glad_glMultiTexCoord2sv GLAD_API_CALL PFNGLMULTITEXCOORD2SVARBPROC glad_glMultiTexCoord2svARB; #define glMultiTexCoord2svARB glad_glMultiTexCoord2svARB GLAD_API_CALL PFNGLMULTITEXCOORD3DPROC glad_glMultiTexCoord3d; #define glMultiTexCoord3d glad_glMultiTexCoord3d GLAD_API_CALL PFNGLMULTITEXCOORD3DARBPROC glad_glMultiTexCoord3dARB; #define glMultiTexCoord3dARB glad_glMultiTexCoord3dARB GLAD_API_CALL PFNGLMULTITEXCOORD3DVPROC glad_glMultiTexCoord3dv; #define glMultiTexCoord3dv glad_glMultiTexCoord3dv GLAD_API_CALL PFNGLMULTITEXCOORD3DVARBPROC glad_glMultiTexCoord3dvARB; #define glMultiTexCoord3dvARB glad_glMultiTexCoord3dvARB GLAD_API_CALL PFNGLMULTITEXCOORD3FPROC glad_glMultiTexCoord3f; #define glMultiTexCoord3f glad_glMultiTexCoord3f GLAD_API_CALL PFNGLMULTITEXCOORD3FARBPROC glad_glMultiTexCoord3fARB; #define glMultiTexCoord3fARB glad_glMultiTexCoord3fARB GLAD_API_CALL PFNGLMULTITEXCOORD3FVPROC glad_glMultiTexCoord3fv; #define glMultiTexCoord3fv glad_glMultiTexCoord3fv GLAD_API_CALL PFNGLMULTITEXCOORD3FVARBPROC glad_glMultiTexCoord3fvARB; #define glMultiTexCoord3fvARB glad_glMultiTexCoord3fvARB GLAD_API_CALL PFNGLMULTITEXCOORD3IPROC glad_glMultiTexCoord3i; #define glMultiTexCoord3i glad_glMultiTexCoord3i GLAD_API_CALL PFNGLMULTITEXCOORD3IARBPROC glad_glMultiTexCoord3iARB; #define glMultiTexCoord3iARB glad_glMultiTexCoord3iARB GLAD_API_CALL PFNGLMULTITEXCOORD3IVPROC glad_glMultiTexCoord3iv; #define glMultiTexCoord3iv glad_glMultiTexCoord3iv GLAD_API_CALL PFNGLMULTITEXCOORD3IVARBPROC glad_glMultiTexCoord3ivARB; #define glMultiTexCoord3ivARB glad_glMultiTexCoord3ivARB GLAD_API_CALL PFNGLMULTITEXCOORD3SPROC glad_glMultiTexCoord3s; #define glMultiTexCoord3s glad_glMultiTexCoord3s GLAD_API_CALL PFNGLMULTITEXCOORD3SARBPROC glad_glMultiTexCoord3sARB; #define glMultiTexCoord3sARB glad_glMultiTexCoord3sARB GLAD_API_CALL PFNGLMULTITEXCOORD3SVPROC glad_glMultiTexCoord3sv; #define glMultiTexCoord3sv glad_glMultiTexCoord3sv GLAD_API_CALL PFNGLMULTITEXCOORD3SVARBPROC glad_glMultiTexCoord3svARB; #define glMultiTexCoord3svARB glad_glMultiTexCoord3svARB GLAD_API_CALL PFNGLMULTITEXCOORD4DPROC glad_glMultiTexCoord4d; #define glMultiTexCoord4d glad_glMultiTexCoord4d GLAD_API_CALL PFNGLMULTITEXCOORD4DARBPROC glad_glMultiTexCoord4dARB; #define glMultiTexCoord4dARB glad_glMultiTexCoord4dARB GLAD_API_CALL PFNGLMULTITEXCOORD4DVPROC glad_glMultiTexCoord4dv; #define glMultiTexCoord4dv glad_glMultiTexCoord4dv GLAD_API_CALL PFNGLMULTITEXCOORD4DVARBPROC glad_glMultiTexCoord4dvARB; #define glMultiTexCoord4dvARB glad_glMultiTexCoord4dvARB GLAD_API_CALL PFNGLMULTITEXCOORD4FPROC glad_glMultiTexCoord4f; #define glMultiTexCoord4f glad_glMultiTexCoord4f GLAD_API_CALL PFNGLMULTITEXCOORD4FARBPROC glad_glMultiTexCoord4fARB; #define glMultiTexCoord4fARB glad_glMultiTexCoord4fARB GLAD_API_CALL PFNGLMULTITEXCOORD4FVPROC glad_glMultiTexCoord4fv; #define glMultiTexCoord4fv glad_glMultiTexCoord4fv GLAD_API_CALL PFNGLMULTITEXCOORD4FVARBPROC glad_glMultiTexCoord4fvARB; #define glMultiTexCoord4fvARB glad_glMultiTexCoord4fvARB GLAD_API_CALL PFNGLMULTITEXCOORD4IPROC glad_glMultiTexCoord4i; #define glMultiTexCoord4i glad_glMultiTexCoord4i GLAD_API_CALL PFNGLMULTITEXCOORD4IARBPROC glad_glMultiTexCoord4iARB; #define glMultiTexCoord4iARB glad_glMultiTexCoord4iARB GLAD_API_CALL PFNGLMULTITEXCOORD4IVPROC glad_glMultiTexCoord4iv; #define glMultiTexCoord4iv glad_glMultiTexCoord4iv GLAD_API_CALL PFNGLMULTITEXCOORD4IVARBPROC glad_glMultiTexCoord4ivARB; #define glMultiTexCoord4ivARB glad_glMultiTexCoord4ivARB GLAD_API_CALL PFNGLMULTITEXCOORD4SPROC glad_glMultiTexCoord4s; #define glMultiTexCoord4s glad_glMultiTexCoord4s GLAD_API_CALL PFNGLMULTITEXCOORD4SARBPROC glad_glMultiTexCoord4sARB; #define glMultiTexCoord4sARB glad_glMultiTexCoord4sARB GLAD_API_CALL PFNGLMULTITEXCOORD4SVPROC glad_glMultiTexCoord4sv; #define glMultiTexCoord4sv glad_glMultiTexCoord4sv GLAD_API_CALL PFNGLMULTITEXCOORD4SVARBPROC glad_glMultiTexCoord4svARB; #define glMultiTexCoord4svARB glad_glMultiTexCoord4svARB GLAD_API_CALL PFNGLMULTITEXCOORDP1UIPROC glad_glMultiTexCoordP1ui; #define glMultiTexCoordP1ui glad_glMultiTexCoordP1ui GLAD_API_CALL PFNGLMULTITEXCOORDP1UIVPROC glad_glMultiTexCoordP1uiv; #define glMultiTexCoordP1uiv glad_glMultiTexCoordP1uiv GLAD_API_CALL PFNGLMULTITEXCOORDP2UIPROC glad_glMultiTexCoordP2ui; #define glMultiTexCoordP2ui glad_glMultiTexCoordP2ui GLAD_API_CALL PFNGLMULTITEXCOORDP2UIVPROC glad_glMultiTexCoordP2uiv; #define glMultiTexCoordP2uiv glad_glMultiTexCoordP2uiv GLAD_API_CALL PFNGLMULTITEXCOORDP3UIPROC glad_glMultiTexCoordP3ui; #define glMultiTexCoordP3ui glad_glMultiTexCoordP3ui GLAD_API_CALL PFNGLMULTITEXCOORDP3UIVPROC glad_glMultiTexCoordP3uiv; #define glMultiTexCoordP3uiv glad_glMultiTexCoordP3uiv GLAD_API_CALL PFNGLMULTITEXCOORDP4UIPROC glad_glMultiTexCoordP4ui; #define glMultiTexCoordP4ui glad_glMultiTexCoordP4ui GLAD_API_CALL PFNGLMULTITEXCOORDP4UIVPROC glad_glMultiTexCoordP4uiv; #define glMultiTexCoordP4uiv glad_glMultiTexCoordP4uiv GLAD_API_CALL PFNGLNAMEDBUFFERDATAPROC glad_glNamedBufferData; #define glNamedBufferData glad_glNamedBufferData GLAD_API_CALL PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC glad_glNamedBufferPageCommitmentARB; #define glNamedBufferPageCommitmentARB glad_glNamedBufferPageCommitmentARB GLAD_API_CALL PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC glad_glNamedBufferPageCommitmentEXT; #define glNamedBufferPageCommitmentEXT glad_glNamedBufferPageCommitmentEXT GLAD_API_CALL PFNGLNAMEDBUFFERSTORAGEPROC glad_glNamedBufferStorage; #define glNamedBufferStorage glad_glNamedBufferStorage GLAD_API_CALL PFNGLNAMEDBUFFERSUBDATAPROC glad_glNamedBufferSubData; #define glNamedBufferSubData glad_glNamedBufferSubData GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC glad_glNamedFramebufferDrawBuffer; #define glNamedFramebufferDrawBuffer glad_glNamedFramebufferDrawBuffer GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC glad_glNamedFramebufferDrawBuffers; #define glNamedFramebufferDrawBuffers glad_glNamedFramebufferDrawBuffers GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC glad_glNamedFramebufferParameteri; #define glNamedFramebufferParameteri glad_glNamedFramebufferParameteri GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC glad_glNamedFramebufferReadBuffer; #define glNamedFramebufferReadBuffer glad_glNamedFramebufferReadBuffer GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC glad_glNamedFramebufferRenderbuffer; #define glNamedFramebufferRenderbuffer glad_glNamedFramebufferRenderbuffer GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glNamedFramebufferSampleLocationsfvARB; #define glNamedFramebufferSampleLocationsfvARB glad_glNamedFramebufferSampleLocationsfvARB GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERTEXTUREPROC glad_glNamedFramebufferTexture; #define glNamedFramebufferTexture glad_glNamedFramebufferTexture GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC glad_glNamedFramebufferTextureLayer; #define glNamedFramebufferTextureLayer glad_glNamedFramebufferTextureLayer GLAD_API_CALL PFNGLNAMEDRENDERBUFFERSTORAGEPROC glad_glNamedRenderbufferStorage; #define glNamedRenderbufferStorage glad_glNamedRenderbufferStorage GLAD_API_CALL PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glNamedRenderbufferStorageMultisample; #define glNamedRenderbufferStorageMultisample glad_glNamedRenderbufferStorageMultisample GLAD_API_CALL PFNGLNAMEDSTRINGARBPROC glad_glNamedStringARB; #define glNamedStringARB glad_glNamedStringARB GLAD_API_CALL PFNGLNEWLISTPROC glad_glNewList; #define glNewList glad_glNewList GLAD_API_CALL PFNGLNORMAL3BPROC glad_glNormal3b; #define glNormal3b glad_glNormal3b GLAD_API_CALL PFNGLNORMAL3BVPROC glad_glNormal3bv; #define glNormal3bv glad_glNormal3bv GLAD_API_CALL PFNGLNORMAL3DPROC glad_glNormal3d; #define glNormal3d glad_glNormal3d GLAD_API_CALL PFNGLNORMAL3DVPROC glad_glNormal3dv; #define glNormal3dv glad_glNormal3dv GLAD_API_CALL PFNGLNORMAL3FPROC glad_glNormal3f; #define glNormal3f glad_glNormal3f GLAD_API_CALL PFNGLNORMAL3FVPROC glad_glNormal3fv; #define glNormal3fv glad_glNormal3fv GLAD_API_CALL PFNGLNORMAL3IPROC glad_glNormal3i; #define glNormal3i glad_glNormal3i GLAD_API_CALL PFNGLNORMAL3IVPROC glad_glNormal3iv; #define glNormal3iv glad_glNormal3iv GLAD_API_CALL PFNGLNORMAL3SPROC glad_glNormal3s; #define glNormal3s glad_glNormal3s GLAD_API_CALL PFNGLNORMAL3SVPROC glad_glNormal3sv; #define glNormal3sv glad_glNormal3sv GLAD_API_CALL PFNGLNORMALP3UIPROC glad_glNormalP3ui; #define glNormalP3ui glad_glNormalP3ui GLAD_API_CALL PFNGLNORMALP3UIVPROC glad_glNormalP3uiv; #define glNormalP3uiv glad_glNormalP3uiv GLAD_API_CALL PFNGLNORMALPOINTERPROC glad_glNormalPointer; #define glNormalPointer glad_glNormalPointer GLAD_API_CALL PFNGLOBJECTLABELPROC glad_glObjectLabel; #define glObjectLabel glad_glObjectLabel GLAD_API_CALL PFNGLOBJECTPTRLABELPROC glad_glObjectPtrLabel; #define glObjectPtrLabel glad_glObjectPtrLabel GLAD_API_CALL PFNGLORTHOPROC glad_glOrtho; #define glOrtho glad_glOrtho GLAD_API_CALL PFNGLPASSTHROUGHPROC glad_glPassThrough; #define glPassThrough glad_glPassThrough GLAD_API_CALL PFNGLPATCHPARAMETERFVPROC glad_glPatchParameterfv; #define glPatchParameterfv glad_glPatchParameterfv GLAD_API_CALL PFNGLPATCHPARAMETERIPROC glad_glPatchParameteri; #define glPatchParameteri glad_glPatchParameteri GLAD_API_CALL PFNGLPAUSETRANSFORMFEEDBACKPROC glad_glPauseTransformFeedback; #define glPauseTransformFeedback glad_glPauseTransformFeedback GLAD_API_CALL PFNGLPIXELMAPFVPROC glad_glPixelMapfv; #define glPixelMapfv glad_glPixelMapfv GLAD_API_CALL PFNGLPIXELMAPUIVPROC glad_glPixelMapuiv; #define glPixelMapuiv glad_glPixelMapuiv GLAD_API_CALL PFNGLPIXELMAPUSVPROC glad_glPixelMapusv; #define glPixelMapusv glad_glPixelMapusv GLAD_API_CALL PFNGLPIXELSTOREFPROC glad_glPixelStoref; #define glPixelStoref glad_glPixelStoref GLAD_API_CALL PFNGLPIXELSTOREIPROC glad_glPixelStorei; #define glPixelStorei glad_glPixelStorei GLAD_API_CALL PFNGLPIXELTRANSFERFPROC glad_glPixelTransferf; #define glPixelTransferf glad_glPixelTransferf GLAD_API_CALL PFNGLPIXELTRANSFERIPROC glad_glPixelTransferi; #define glPixelTransferi glad_glPixelTransferi GLAD_API_CALL PFNGLPIXELZOOMPROC glad_glPixelZoom; #define glPixelZoom glad_glPixelZoom GLAD_API_CALL PFNGLPOINTPARAMETERFPROC glad_glPointParameterf; #define glPointParameterf glad_glPointParameterf GLAD_API_CALL PFNGLPOINTPARAMETERFARBPROC glad_glPointParameterfARB; #define glPointParameterfARB glad_glPointParameterfARB GLAD_API_CALL PFNGLPOINTPARAMETERFVPROC glad_glPointParameterfv; #define glPointParameterfv glad_glPointParameterfv GLAD_API_CALL PFNGLPOINTPARAMETERFVARBPROC glad_glPointParameterfvARB; #define glPointParameterfvARB glad_glPointParameterfvARB GLAD_API_CALL PFNGLPOINTPARAMETERIPROC glad_glPointParameteri; #define glPointParameteri glad_glPointParameteri GLAD_API_CALL PFNGLPOINTPARAMETERIVPROC glad_glPointParameteriv; #define glPointParameteriv glad_glPointParameteriv GLAD_API_CALL PFNGLPOINTSIZEPROC glad_glPointSize; #define glPointSize glad_glPointSize GLAD_API_CALL PFNGLPOLYGONMODEPROC glad_glPolygonMode; #define glPolygonMode glad_glPolygonMode GLAD_API_CALL PFNGLPOLYGONOFFSETPROC glad_glPolygonOffset; #define glPolygonOffset glad_glPolygonOffset GLAD_API_CALL PFNGLPOLYGONOFFSETCLAMPPROC glad_glPolygonOffsetClamp; #define glPolygonOffsetClamp glad_glPolygonOffsetClamp GLAD_API_CALL PFNGLPOLYGONSTIPPLEPROC glad_glPolygonStipple; #define glPolygonStipple glad_glPolygonStipple GLAD_API_CALL PFNGLPOPATTRIBPROC glad_glPopAttrib; #define glPopAttrib glad_glPopAttrib GLAD_API_CALL PFNGLPOPCLIENTATTRIBPROC glad_glPopClientAttrib; #define glPopClientAttrib glad_glPopClientAttrib GLAD_API_CALL PFNGLPOPDEBUGGROUPPROC glad_glPopDebugGroup; #define glPopDebugGroup glad_glPopDebugGroup GLAD_API_CALL PFNGLPOPMATRIXPROC glad_glPopMatrix; #define glPopMatrix glad_glPopMatrix GLAD_API_CALL PFNGLPOPNAMEPROC glad_glPopName; #define glPopName glad_glPopName GLAD_API_CALL PFNGLPRIMITIVEBOUNDINGBOXPROC glad_glPrimitiveBoundingBox; #define glPrimitiveBoundingBox glad_glPrimitiveBoundingBox GLAD_API_CALL PFNGLPRIMITIVEBOUNDINGBOXARBPROC glad_glPrimitiveBoundingBoxARB; #define glPrimitiveBoundingBoxARB glad_glPrimitiveBoundingBoxARB GLAD_API_CALL PFNGLPRIMITIVERESTARTINDEXPROC glad_glPrimitiveRestartIndex; #define glPrimitiveRestartIndex glad_glPrimitiveRestartIndex GLAD_API_CALL PFNGLPRIORITIZETEXTURESPROC glad_glPrioritizeTextures; #define glPrioritizeTextures glad_glPrioritizeTextures GLAD_API_CALL PFNGLPROGRAMBINARYPROC glad_glProgramBinary; #define glProgramBinary glad_glProgramBinary GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4DARBPROC glad_glProgramEnvParameter4dARB; #define glProgramEnvParameter4dARB glad_glProgramEnvParameter4dARB GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4DVARBPROC glad_glProgramEnvParameter4dvARB; #define glProgramEnvParameter4dvARB glad_glProgramEnvParameter4dvARB GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4FARBPROC glad_glProgramEnvParameter4fARB; #define glProgramEnvParameter4fARB glad_glProgramEnvParameter4fARB GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4FVARBPROC glad_glProgramEnvParameter4fvARB; #define glProgramEnvParameter4fvARB glad_glProgramEnvParameter4fvARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4DARBPROC glad_glProgramLocalParameter4dARB; #define glProgramLocalParameter4dARB glad_glProgramLocalParameter4dARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4DVARBPROC glad_glProgramLocalParameter4dvARB; #define glProgramLocalParameter4dvARB glad_glProgramLocalParameter4dvARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4FARBPROC glad_glProgramLocalParameter4fARB; #define glProgramLocalParameter4fARB glad_glProgramLocalParameter4fARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4FVARBPROC glad_glProgramLocalParameter4fvARB; #define glProgramLocalParameter4fvARB glad_glProgramLocalParameter4fvARB GLAD_API_CALL PFNGLPROGRAMPARAMETERIPROC glad_glProgramParameteri; #define glProgramParameteri glad_glProgramParameteri GLAD_API_CALL PFNGLPROGRAMPARAMETERIARBPROC glad_glProgramParameteriARB; #define glProgramParameteriARB glad_glProgramParameteriARB GLAD_API_CALL PFNGLPROGRAMSTRINGARBPROC glad_glProgramStringARB; #define glProgramStringARB glad_glProgramStringARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1DPROC glad_glProgramUniform1d; #define glProgramUniform1d glad_glProgramUniform1d GLAD_API_CALL PFNGLPROGRAMUNIFORM1DVPROC glad_glProgramUniform1dv; #define glProgramUniform1dv glad_glProgramUniform1dv GLAD_API_CALL PFNGLPROGRAMUNIFORM1FPROC glad_glProgramUniform1f; #define glProgramUniform1f glad_glProgramUniform1f GLAD_API_CALL PFNGLPROGRAMUNIFORM1FVPROC glad_glProgramUniform1fv; #define glProgramUniform1fv glad_glProgramUniform1fv GLAD_API_CALL PFNGLPROGRAMUNIFORM1IPROC glad_glProgramUniform1i; #define glProgramUniform1i glad_glProgramUniform1i GLAD_API_CALL PFNGLPROGRAMUNIFORM1I64ARBPROC glad_glProgramUniform1i64ARB; #define glProgramUniform1i64ARB glad_glProgramUniform1i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1I64VARBPROC glad_glProgramUniform1i64vARB; #define glProgramUniform1i64vARB glad_glProgramUniform1i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1IVPROC glad_glProgramUniform1iv; #define glProgramUniform1iv glad_glProgramUniform1iv GLAD_API_CALL PFNGLPROGRAMUNIFORM1UIPROC glad_glProgramUniform1ui; #define glProgramUniform1ui glad_glProgramUniform1ui GLAD_API_CALL PFNGLPROGRAMUNIFORM1UI64ARBPROC glad_glProgramUniform1ui64ARB; #define glProgramUniform1ui64ARB glad_glProgramUniform1ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1UI64VARBPROC glad_glProgramUniform1ui64vARB; #define glProgramUniform1ui64vARB glad_glProgramUniform1ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1UIVPROC glad_glProgramUniform1uiv; #define glProgramUniform1uiv glad_glProgramUniform1uiv GLAD_API_CALL PFNGLPROGRAMUNIFORM2DPROC glad_glProgramUniform2d; #define glProgramUniform2d glad_glProgramUniform2d GLAD_API_CALL PFNGLPROGRAMUNIFORM2DVPROC glad_glProgramUniform2dv; #define glProgramUniform2dv glad_glProgramUniform2dv GLAD_API_CALL PFNGLPROGRAMUNIFORM2FPROC glad_glProgramUniform2f; #define glProgramUniform2f glad_glProgramUniform2f GLAD_API_CALL PFNGLPROGRAMUNIFORM2FVPROC glad_glProgramUniform2fv; #define glProgramUniform2fv glad_glProgramUniform2fv GLAD_API_CALL PFNGLPROGRAMUNIFORM2IPROC glad_glProgramUniform2i; #define glProgramUniform2i glad_glProgramUniform2i GLAD_API_CALL PFNGLPROGRAMUNIFORM2I64ARBPROC glad_glProgramUniform2i64ARB; #define glProgramUniform2i64ARB glad_glProgramUniform2i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2I64VARBPROC glad_glProgramUniform2i64vARB; #define glProgramUniform2i64vARB glad_glProgramUniform2i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2IVPROC glad_glProgramUniform2iv; #define glProgramUniform2iv glad_glProgramUniform2iv GLAD_API_CALL PFNGLPROGRAMUNIFORM2UIPROC glad_glProgramUniform2ui; #define glProgramUniform2ui glad_glProgramUniform2ui GLAD_API_CALL PFNGLPROGRAMUNIFORM2UI64ARBPROC glad_glProgramUniform2ui64ARB; #define glProgramUniform2ui64ARB glad_glProgramUniform2ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2UI64VARBPROC glad_glProgramUniform2ui64vARB; #define glProgramUniform2ui64vARB glad_glProgramUniform2ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2UIVPROC glad_glProgramUniform2uiv; #define glProgramUniform2uiv glad_glProgramUniform2uiv GLAD_API_CALL PFNGLPROGRAMUNIFORM3DPROC glad_glProgramUniform3d; #define glProgramUniform3d glad_glProgramUniform3d GLAD_API_CALL PFNGLPROGRAMUNIFORM3DVPROC glad_glProgramUniform3dv; #define glProgramUniform3dv glad_glProgramUniform3dv GLAD_API_CALL PFNGLPROGRAMUNIFORM3FPROC glad_glProgramUniform3f; #define glProgramUniform3f glad_glProgramUniform3f GLAD_API_CALL PFNGLPROGRAMUNIFORM3FVPROC glad_glProgramUniform3fv; #define glProgramUniform3fv glad_glProgramUniform3fv GLAD_API_CALL PFNGLPROGRAMUNIFORM3IPROC glad_glProgramUniform3i; #define glProgramUniform3i glad_glProgramUniform3i GLAD_API_CALL PFNGLPROGRAMUNIFORM3I64ARBPROC glad_glProgramUniform3i64ARB; #define glProgramUniform3i64ARB glad_glProgramUniform3i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3I64VARBPROC glad_glProgramUniform3i64vARB; #define glProgramUniform3i64vARB glad_glProgramUniform3i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3IVPROC glad_glProgramUniform3iv; #define glProgramUniform3iv glad_glProgramUniform3iv GLAD_API_CALL PFNGLPROGRAMUNIFORM3UIPROC glad_glProgramUniform3ui; #define glProgramUniform3ui glad_glProgramUniform3ui GLAD_API_CALL PFNGLPROGRAMUNIFORM3UI64ARBPROC glad_glProgramUniform3ui64ARB; #define glProgramUniform3ui64ARB glad_glProgramUniform3ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3UI64VARBPROC glad_glProgramUniform3ui64vARB; #define glProgramUniform3ui64vARB glad_glProgramUniform3ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3UIVPROC glad_glProgramUniform3uiv; #define glProgramUniform3uiv glad_glProgramUniform3uiv GLAD_API_CALL PFNGLPROGRAMUNIFORM4DPROC glad_glProgramUniform4d; #define glProgramUniform4d glad_glProgramUniform4d GLAD_API_CALL PFNGLPROGRAMUNIFORM4DVPROC glad_glProgramUniform4dv; #define glProgramUniform4dv glad_glProgramUniform4dv GLAD_API_CALL PFNGLPROGRAMUNIFORM4FPROC glad_glProgramUniform4f; #define glProgramUniform4f glad_glProgramUniform4f GLAD_API_CALL PFNGLPROGRAMUNIFORM4FVPROC glad_glProgramUniform4fv; #define glProgramUniform4fv glad_glProgramUniform4fv GLAD_API_CALL PFNGLPROGRAMUNIFORM4IPROC glad_glProgramUniform4i; #define glProgramUniform4i glad_glProgramUniform4i GLAD_API_CALL PFNGLPROGRAMUNIFORM4I64ARBPROC glad_glProgramUniform4i64ARB; #define glProgramUniform4i64ARB glad_glProgramUniform4i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4I64VARBPROC glad_glProgramUniform4i64vARB; #define glProgramUniform4i64vARB glad_glProgramUniform4i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4IVPROC glad_glProgramUniform4iv; #define glProgramUniform4iv glad_glProgramUniform4iv GLAD_API_CALL PFNGLPROGRAMUNIFORM4UIPROC glad_glProgramUniform4ui; #define glProgramUniform4ui glad_glProgramUniform4ui GLAD_API_CALL PFNGLPROGRAMUNIFORM4UI64ARBPROC glad_glProgramUniform4ui64ARB; #define glProgramUniform4ui64ARB glad_glProgramUniform4ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4UI64VARBPROC glad_glProgramUniform4ui64vARB; #define glProgramUniform4ui64vARB glad_glProgramUniform4ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4UIVPROC glad_glProgramUniform4uiv; #define glProgramUniform4uiv glad_glProgramUniform4uiv GLAD_API_CALL PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC glad_glProgramUniformHandleui64ARB; #define glProgramUniformHandleui64ARB glad_glProgramUniformHandleui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC glad_glProgramUniformHandleui64vARB; #define glProgramUniformHandleui64vARB glad_glProgramUniformHandleui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2DVPROC glad_glProgramUniformMatrix2dv; #define glProgramUniformMatrix2dv glad_glProgramUniformMatrix2dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2FVPROC glad_glProgramUniformMatrix2fv; #define glProgramUniformMatrix2fv glad_glProgramUniformMatrix2fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC glad_glProgramUniformMatrix2x3dv; #define glProgramUniformMatrix2x3dv glad_glProgramUniformMatrix2x3dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC glad_glProgramUniformMatrix2x3fv; #define glProgramUniformMatrix2x3fv glad_glProgramUniformMatrix2x3fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC glad_glProgramUniformMatrix2x4dv; #define glProgramUniformMatrix2x4dv glad_glProgramUniformMatrix2x4dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC glad_glProgramUniformMatrix2x4fv; #define glProgramUniformMatrix2x4fv glad_glProgramUniformMatrix2x4fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3DVPROC glad_glProgramUniformMatrix3dv; #define glProgramUniformMatrix3dv glad_glProgramUniformMatrix3dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3FVPROC glad_glProgramUniformMatrix3fv; #define glProgramUniformMatrix3fv glad_glProgramUniformMatrix3fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC glad_glProgramUniformMatrix3x2dv; #define glProgramUniformMatrix3x2dv glad_glProgramUniformMatrix3x2dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC glad_glProgramUniformMatrix3x2fv; #define glProgramUniformMatrix3x2fv glad_glProgramUniformMatrix3x2fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC glad_glProgramUniformMatrix3x4dv; #define glProgramUniformMatrix3x4dv glad_glProgramUniformMatrix3x4dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC glad_glProgramUniformMatrix3x4fv; #define glProgramUniformMatrix3x4fv glad_glProgramUniformMatrix3x4fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4DVPROC glad_glProgramUniformMatrix4dv; #define glProgramUniformMatrix4dv glad_glProgramUniformMatrix4dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4FVPROC glad_glProgramUniformMatrix4fv; #define glProgramUniformMatrix4fv glad_glProgramUniformMatrix4fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC glad_glProgramUniformMatrix4x2dv; #define glProgramUniformMatrix4x2dv glad_glProgramUniformMatrix4x2dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC glad_glProgramUniformMatrix4x2fv; #define glProgramUniformMatrix4x2fv glad_glProgramUniformMatrix4x2fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC glad_glProgramUniformMatrix4x3dv; #define glProgramUniformMatrix4x3dv glad_glProgramUniformMatrix4x3dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC glad_glProgramUniformMatrix4x3fv; #define glProgramUniformMatrix4x3fv glad_glProgramUniformMatrix4x3fv GLAD_API_CALL PFNGLPROVOKINGVERTEXPROC glad_glProvokingVertex; #define glProvokingVertex glad_glProvokingVertex GLAD_API_CALL PFNGLPUSHATTRIBPROC glad_glPushAttrib; #define glPushAttrib glad_glPushAttrib GLAD_API_CALL PFNGLPUSHCLIENTATTRIBPROC glad_glPushClientAttrib; #define glPushClientAttrib glad_glPushClientAttrib GLAD_API_CALL PFNGLPUSHDEBUGGROUPPROC glad_glPushDebugGroup; #define glPushDebugGroup glad_glPushDebugGroup GLAD_API_CALL PFNGLPUSHMATRIXPROC glad_glPushMatrix; #define glPushMatrix glad_glPushMatrix GLAD_API_CALL PFNGLPUSHNAMEPROC glad_glPushName; #define glPushName glad_glPushName GLAD_API_CALL PFNGLQUERYCOUNTERPROC glad_glQueryCounter; #define glQueryCounter glad_glQueryCounter GLAD_API_CALL PFNGLRASTERPOS2DPROC glad_glRasterPos2d; #define glRasterPos2d glad_glRasterPos2d GLAD_API_CALL PFNGLRASTERPOS2DVPROC glad_glRasterPos2dv; #define glRasterPos2dv glad_glRasterPos2dv GLAD_API_CALL PFNGLRASTERPOS2FPROC glad_glRasterPos2f; #define glRasterPos2f glad_glRasterPos2f GLAD_API_CALL PFNGLRASTERPOS2FVPROC glad_glRasterPos2fv; #define glRasterPos2fv glad_glRasterPos2fv GLAD_API_CALL PFNGLRASTERPOS2IPROC glad_glRasterPos2i; #define glRasterPos2i glad_glRasterPos2i GLAD_API_CALL PFNGLRASTERPOS2IVPROC glad_glRasterPos2iv; #define glRasterPos2iv glad_glRasterPos2iv GLAD_API_CALL PFNGLRASTERPOS2SPROC glad_glRasterPos2s; #define glRasterPos2s glad_glRasterPos2s GLAD_API_CALL PFNGLRASTERPOS2SVPROC glad_glRasterPos2sv; #define glRasterPos2sv glad_glRasterPos2sv GLAD_API_CALL PFNGLRASTERPOS3DPROC glad_glRasterPos3d; #define glRasterPos3d glad_glRasterPos3d GLAD_API_CALL PFNGLRASTERPOS3DVPROC glad_glRasterPos3dv; #define glRasterPos3dv glad_glRasterPos3dv GLAD_API_CALL PFNGLRASTERPOS3FPROC glad_glRasterPos3f; #define glRasterPos3f glad_glRasterPos3f GLAD_API_CALL PFNGLRASTERPOS3FVPROC glad_glRasterPos3fv; #define glRasterPos3fv glad_glRasterPos3fv GLAD_API_CALL PFNGLRASTERPOS3IPROC glad_glRasterPos3i; #define glRasterPos3i glad_glRasterPos3i GLAD_API_CALL PFNGLRASTERPOS3IVPROC glad_glRasterPos3iv; #define glRasterPos3iv glad_glRasterPos3iv GLAD_API_CALL PFNGLRASTERPOS3SPROC glad_glRasterPos3s; #define glRasterPos3s glad_glRasterPos3s GLAD_API_CALL PFNGLRASTERPOS3SVPROC glad_glRasterPos3sv; #define glRasterPos3sv glad_glRasterPos3sv GLAD_API_CALL PFNGLRASTERPOS4DPROC glad_glRasterPos4d; #define glRasterPos4d glad_glRasterPos4d GLAD_API_CALL PFNGLRASTERPOS4DVPROC glad_glRasterPos4dv; #define glRasterPos4dv glad_glRasterPos4dv GLAD_API_CALL PFNGLRASTERPOS4FPROC glad_glRasterPos4f; #define glRasterPos4f glad_glRasterPos4f GLAD_API_CALL PFNGLRASTERPOS4FVPROC glad_glRasterPos4fv; #define glRasterPos4fv glad_glRasterPos4fv GLAD_API_CALL PFNGLRASTERPOS4IPROC glad_glRasterPos4i; #define glRasterPos4i glad_glRasterPos4i GLAD_API_CALL PFNGLRASTERPOS4IVPROC glad_glRasterPos4iv; #define glRasterPos4iv glad_glRasterPos4iv GLAD_API_CALL PFNGLRASTERPOS4SPROC glad_glRasterPos4s; #define glRasterPos4s glad_glRasterPos4s GLAD_API_CALL PFNGLRASTERPOS4SVPROC glad_glRasterPos4sv; #define glRasterPos4sv glad_glRasterPos4sv GLAD_API_CALL PFNGLREADBUFFERPROC glad_glReadBuffer; #define glReadBuffer glad_glReadBuffer GLAD_API_CALL PFNGLREADPIXELSPROC glad_glReadPixels; #define glReadPixels glad_glReadPixels GLAD_API_CALL PFNGLREADNPIXELSPROC glad_glReadnPixels; #define glReadnPixels glad_glReadnPixels GLAD_API_CALL PFNGLREADNPIXELSARBPROC glad_glReadnPixelsARB; #define glReadnPixelsARB glad_glReadnPixelsARB GLAD_API_CALL PFNGLRECTDPROC glad_glRectd; #define glRectd glad_glRectd GLAD_API_CALL PFNGLRECTDVPROC glad_glRectdv; #define glRectdv glad_glRectdv GLAD_API_CALL PFNGLRECTFPROC glad_glRectf; #define glRectf glad_glRectf GLAD_API_CALL PFNGLRECTFVPROC glad_glRectfv; #define glRectfv glad_glRectfv GLAD_API_CALL PFNGLRECTIPROC glad_glRecti; #define glRecti glad_glRecti GLAD_API_CALL PFNGLRECTIVPROC glad_glRectiv; #define glRectiv glad_glRectiv GLAD_API_CALL PFNGLRECTSPROC glad_glRects; #define glRects glad_glRects GLAD_API_CALL PFNGLRECTSVPROC glad_glRectsv; #define glRectsv glad_glRectsv GLAD_API_CALL PFNGLRELEASESHADERCOMPILERPROC glad_glReleaseShaderCompiler; #define glReleaseShaderCompiler glad_glReleaseShaderCompiler GLAD_API_CALL PFNGLRENDERMODEPROC glad_glRenderMode; #define glRenderMode glad_glRenderMode GLAD_API_CALL PFNGLRENDERBUFFERSTORAGEPROC glad_glRenderbufferStorage; #define glRenderbufferStorage glad_glRenderbufferStorage GLAD_API_CALL PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glRenderbufferStorageMultisample; #define glRenderbufferStorageMultisample glad_glRenderbufferStorageMultisample GLAD_API_CALL PFNGLRESETHISTOGRAMPROC glad_glResetHistogram; #define glResetHistogram glad_glResetHistogram GLAD_API_CALL PFNGLRESETMINMAXPROC glad_glResetMinmax; #define glResetMinmax glad_glResetMinmax GLAD_API_CALL PFNGLRESUMETRANSFORMFEEDBACKPROC glad_glResumeTransformFeedback; #define glResumeTransformFeedback glad_glResumeTransformFeedback GLAD_API_CALL PFNGLROTATEDPROC glad_glRotated; #define glRotated glad_glRotated GLAD_API_CALL PFNGLROTATEFPROC glad_glRotatef; #define glRotatef glad_glRotatef GLAD_API_CALL PFNGLSAMPLECOVERAGEPROC glad_glSampleCoverage; #define glSampleCoverage glad_glSampleCoverage GLAD_API_CALL PFNGLSAMPLECOVERAGEARBPROC glad_glSampleCoverageARB; #define glSampleCoverageARB glad_glSampleCoverageARB GLAD_API_CALL PFNGLSAMPLEMASKIPROC glad_glSampleMaski; #define glSampleMaski glad_glSampleMaski GLAD_API_CALL PFNGLSAMPLERPARAMETERIIVPROC glad_glSamplerParameterIiv; #define glSamplerParameterIiv glad_glSamplerParameterIiv GLAD_API_CALL PFNGLSAMPLERPARAMETERIUIVPROC glad_glSamplerParameterIuiv; #define glSamplerParameterIuiv glad_glSamplerParameterIuiv GLAD_API_CALL PFNGLSAMPLERPARAMETERFPROC glad_glSamplerParameterf; #define glSamplerParameterf glad_glSamplerParameterf GLAD_API_CALL PFNGLSAMPLERPARAMETERFVPROC glad_glSamplerParameterfv; #define glSamplerParameterfv glad_glSamplerParameterfv GLAD_API_CALL PFNGLSAMPLERPARAMETERIPROC glad_glSamplerParameteri; #define glSamplerParameteri glad_glSamplerParameteri GLAD_API_CALL PFNGLSAMPLERPARAMETERIVPROC glad_glSamplerParameteriv; #define glSamplerParameteriv glad_glSamplerParameteriv GLAD_API_CALL PFNGLSCALEDPROC glad_glScaled; #define glScaled glad_glScaled GLAD_API_CALL PFNGLSCALEFPROC glad_glScalef; #define glScalef glad_glScalef GLAD_API_CALL PFNGLSCISSORPROC glad_glScissor; #define glScissor glad_glScissor GLAD_API_CALL PFNGLSCISSORARRAYVPROC glad_glScissorArrayv; #define glScissorArrayv glad_glScissorArrayv GLAD_API_CALL PFNGLSCISSORINDEXEDPROC glad_glScissorIndexed; #define glScissorIndexed glad_glScissorIndexed GLAD_API_CALL PFNGLSCISSORINDEXEDVPROC glad_glScissorIndexedv; #define glScissorIndexedv glad_glScissorIndexedv GLAD_API_CALL PFNGLSECONDARYCOLOR3BPROC glad_glSecondaryColor3b; #define glSecondaryColor3b glad_glSecondaryColor3b GLAD_API_CALL PFNGLSECONDARYCOLOR3BVPROC glad_glSecondaryColor3bv; #define glSecondaryColor3bv glad_glSecondaryColor3bv GLAD_API_CALL PFNGLSECONDARYCOLOR3DPROC glad_glSecondaryColor3d; #define glSecondaryColor3d glad_glSecondaryColor3d GLAD_API_CALL PFNGLSECONDARYCOLOR3DVPROC glad_glSecondaryColor3dv; #define glSecondaryColor3dv glad_glSecondaryColor3dv GLAD_API_CALL PFNGLSECONDARYCOLOR3FPROC glad_glSecondaryColor3f; #define glSecondaryColor3f glad_glSecondaryColor3f GLAD_API_CALL PFNGLSECONDARYCOLOR3FVPROC glad_glSecondaryColor3fv; #define glSecondaryColor3fv glad_glSecondaryColor3fv GLAD_API_CALL PFNGLSECONDARYCOLOR3IPROC glad_glSecondaryColor3i; #define glSecondaryColor3i glad_glSecondaryColor3i GLAD_API_CALL PFNGLSECONDARYCOLOR3IVPROC glad_glSecondaryColor3iv; #define glSecondaryColor3iv glad_glSecondaryColor3iv GLAD_API_CALL PFNGLSECONDARYCOLOR3SPROC glad_glSecondaryColor3s; #define glSecondaryColor3s glad_glSecondaryColor3s GLAD_API_CALL PFNGLSECONDARYCOLOR3SVPROC glad_glSecondaryColor3sv; #define glSecondaryColor3sv glad_glSecondaryColor3sv GLAD_API_CALL PFNGLSECONDARYCOLOR3UBPROC glad_glSecondaryColor3ub; #define glSecondaryColor3ub glad_glSecondaryColor3ub GLAD_API_CALL PFNGLSECONDARYCOLOR3UBVPROC glad_glSecondaryColor3ubv; #define glSecondaryColor3ubv glad_glSecondaryColor3ubv GLAD_API_CALL PFNGLSECONDARYCOLOR3UIPROC glad_glSecondaryColor3ui; #define glSecondaryColor3ui glad_glSecondaryColor3ui GLAD_API_CALL PFNGLSECONDARYCOLOR3UIVPROC glad_glSecondaryColor3uiv; #define glSecondaryColor3uiv glad_glSecondaryColor3uiv GLAD_API_CALL PFNGLSECONDARYCOLOR3USPROC glad_glSecondaryColor3us; #define glSecondaryColor3us glad_glSecondaryColor3us GLAD_API_CALL PFNGLSECONDARYCOLOR3USVPROC glad_glSecondaryColor3usv; #define glSecondaryColor3usv glad_glSecondaryColor3usv GLAD_API_CALL PFNGLSECONDARYCOLORP3UIPROC glad_glSecondaryColorP3ui; #define glSecondaryColorP3ui glad_glSecondaryColorP3ui GLAD_API_CALL PFNGLSECONDARYCOLORP3UIVPROC glad_glSecondaryColorP3uiv; #define glSecondaryColorP3uiv glad_glSecondaryColorP3uiv GLAD_API_CALL PFNGLSECONDARYCOLORPOINTERPROC glad_glSecondaryColorPointer; #define glSecondaryColorPointer glad_glSecondaryColorPointer GLAD_API_CALL PFNGLSELECTBUFFERPROC glad_glSelectBuffer; #define glSelectBuffer glad_glSelectBuffer GLAD_API_CALL PFNGLSEPARABLEFILTER2DPROC glad_glSeparableFilter2D; #define glSeparableFilter2D glad_glSeparableFilter2D GLAD_API_CALL PFNGLSHADEMODELPROC glad_glShadeModel; #define glShadeModel glad_glShadeModel GLAD_API_CALL PFNGLSHADERBINARYPROC glad_glShaderBinary; #define glShaderBinary glad_glShaderBinary GLAD_API_CALL PFNGLSHADERSOURCEPROC glad_glShaderSource; #define glShaderSource glad_glShaderSource GLAD_API_CALL PFNGLSHADERSOURCEARBPROC glad_glShaderSourceARB; #define glShaderSourceARB glad_glShaderSourceARB GLAD_API_CALL PFNGLSHADERSTORAGEBLOCKBINDINGPROC glad_glShaderStorageBlockBinding; #define glShaderStorageBlockBinding glad_glShaderStorageBlockBinding GLAD_API_CALL PFNGLSPECIALIZESHADERPROC glad_glSpecializeShader; #define glSpecializeShader glad_glSpecializeShader GLAD_API_CALL PFNGLSPECIALIZESHADERARBPROC glad_glSpecializeShaderARB; #define glSpecializeShaderARB glad_glSpecializeShaderARB GLAD_API_CALL PFNGLSTENCILFUNCPROC glad_glStencilFunc; #define glStencilFunc glad_glStencilFunc GLAD_API_CALL PFNGLSTENCILFUNCSEPARATEPROC glad_glStencilFuncSeparate; #define glStencilFuncSeparate glad_glStencilFuncSeparate GLAD_API_CALL PFNGLSTENCILMASKPROC glad_glStencilMask; #define glStencilMask glad_glStencilMask GLAD_API_CALL PFNGLSTENCILMASKSEPARATEPROC glad_glStencilMaskSeparate; #define glStencilMaskSeparate glad_glStencilMaskSeparate GLAD_API_CALL PFNGLSTENCILOPPROC glad_glStencilOp; #define glStencilOp glad_glStencilOp GLAD_API_CALL PFNGLSTENCILOPSEPARATEPROC glad_glStencilOpSeparate; #define glStencilOpSeparate glad_glStencilOpSeparate GLAD_API_CALL PFNGLTEXBUFFERPROC glad_glTexBuffer; #define glTexBuffer glad_glTexBuffer GLAD_API_CALL PFNGLTEXBUFFERARBPROC glad_glTexBufferARB; #define glTexBufferARB glad_glTexBufferARB GLAD_API_CALL PFNGLTEXBUFFERRANGEPROC glad_glTexBufferRange; #define glTexBufferRange glad_glTexBufferRange GLAD_API_CALL PFNGLTEXCOORD1DPROC glad_glTexCoord1d; #define glTexCoord1d glad_glTexCoord1d GLAD_API_CALL PFNGLTEXCOORD1DVPROC glad_glTexCoord1dv; #define glTexCoord1dv glad_glTexCoord1dv GLAD_API_CALL PFNGLTEXCOORD1FPROC glad_glTexCoord1f; #define glTexCoord1f glad_glTexCoord1f GLAD_API_CALL PFNGLTEXCOORD1FVPROC glad_glTexCoord1fv; #define glTexCoord1fv glad_glTexCoord1fv GLAD_API_CALL PFNGLTEXCOORD1IPROC glad_glTexCoord1i; #define glTexCoord1i glad_glTexCoord1i GLAD_API_CALL PFNGLTEXCOORD1IVPROC glad_glTexCoord1iv; #define glTexCoord1iv glad_glTexCoord1iv GLAD_API_CALL PFNGLTEXCOORD1SPROC glad_glTexCoord1s; #define glTexCoord1s glad_glTexCoord1s GLAD_API_CALL PFNGLTEXCOORD1SVPROC glad_glTexCoord1sv; #define glTexCoord1sv glad_glTexCoord1sv GLAD_API_CALL PFNGLTEXCOORD2DPROC glad_glTexCoord2d; #define glTexCoord2d glad_glTexCoord2d GLAD_API_CALL PFNGLTEXCOORD2DVPROC glad_glTexCoord2dv; #define glTexCoord2dv glad_glTexCoord2dv GLAD_API_CALL PFNGLTEXCOORD2FPROC glad_glTexCoord2f; #define glTexCoord2f glad_glTexCoord2f GLAD_API_CALL PFNGLTEXCOORD2FVPROC glad_glTexCoord2fv; #define glTexCoord2fv glad_glTexCoord2fv GLAD_API_CALL PFNGLTEXCOORD2IPROC glad_glTexCoord2i; #define glTexCoord2i glad_glTexCoord2i GLAD_API_CALL PFNGLTEXCOORD2IVPROC glad_glTexCoord2iv; #define glTexCoord2iv glad_glTexCoord2iv GLAD_API_CALL PFNGLTEXCOORD2SPROC glad_glTexCoord2s; #define glTexCoord2s glad_glTexCoord2s GLAD_API_CALL PFNGLTEXCOORD2SVPROC glad_glTexCoord2sv; #define glTexCoord2sv glad_glTexCoord2sv GLAD_API_CALL PFNGLTEXCOORD3DPROC glad_glTexCoord3d; #define glTexCoord3d glad_glTexCoord3d GLAD_API_CALL PFNGLTEXCOORD3DVPROC glad_glTexCoord3dv; #define glTexCoord3dv glad_glTexCoord3dv GLAD_API_CALL PFNGLTEXCOORD3FPROC glad_glTexCoord3f; #define glTexCoord3f glad_glTexCoord3f GLAD_API_CALL PFNGLTEXCOORD3FVPROC glad_glTexCoord3fv; #define glTexCoord3fv glad_glTexCoord3fv GLAD_API_CALL PFNGLTEXCOORD3IPROC glad_glTexCoord3i; #define glTexCoord3i glad_glTexCoord3i GLAD_API_CALL PFNGLTEXCOORD3IVPROC glad_glTexCoord3iv; #define glTexCoord3iv glad_glTexCoord3iv GLAD_API_CALL PFNGLTEXCOORD3SPROC glad_glTexCoord3s; #define glTexCoord3s glad_glTexCoord3s GLAD_API_CALL PFNGLTEXCOORD3SVPROC glad_glTexCoord3sv; #define glTexCoord3sv glad_glTexCoord3sv GLAD_API_CALL PFNGLTEXCOORD4DPROC glad_glTexCoord4d; #define glTexCoord4d glad_glTexCoord4d GLAD_API_CALL PFNGLTEXCOORD4DVPROC glad_glTexCoord4dv; #define glTexCoord4dv glad_glTexCoord4dv GLAD_API_CALL PFNGLTEXCOORD4FPROC glad_glTexCoord4f; #define glTexCoord4f glad_glTexCoord4f GLAD_API_CALL PFNGLTEXCOORD4FVPROC glad_glTexCoord4fv; #define glTexCoord4fv glad_glTexCoord4fv GLAD_API_CALL PFNGLTEXCOORD4IPROC glad_glTexCoord4i; #define glTexCoord4i glad_glTexCoord4i GLAD_API_CALL PFNGLTEXCOORD4IVPROC glad_glTexCoord4iv; #define glTexCoord4iv glad_glTexCoord4iv GLAD_API_CALL PFNGLTEXCOORD4SPROC glad_glTexCoord4s; #define glTexCoord4s glad_glTexCoord4s GLAD_API_CALL PFNGLTEXCOORD4SVPROC glad_glTexCoord4sv; #define glTexCoord4sv glad_glTexCoord4sv GLAD_API_CALL PFNGLTEXCOORDP1UIPROC glad_glTexCoordP1ui; #define glTexCoordP1ui glad_glTexCoordP1ui GLAD_API_CALL PFNGLTEXCOORDP1UIVPROC glad_glTexCoordP1uiv; #define glTexCoordP1uiv glad_glTexCoordP1uiv GLAD_API_CALL PFNGLTEXCOORDP2UIPROC glad_glTexCoordP2ui; #define glTexCoordP2ui glad_glTexCoordP2ui GLAD_API_CALL PFNGLTEXCOORDP2UIVPROC glad_glTexCoordP2uiv; #define glTexCoordP2uiv glad_glTexCoordP2uiv GLAD_API_CALL PFNGLTEXCOORDP3UIPROC glad_glTexCoordP3ui; #define glTexCoordP3ui glad_glTexCoordP3ui GLAD_API_CALL PFNGLTEXCOORDP3UIVPROC glad_glTexCoordP3uiv; #define glTexCoordP3uiv glad_glTexCoordP3uiv GLAD_API_CALL PFNGLTEXCOORDP4UIPROC glad_glTexCoordP4ui; #define glTexCoordP4ui glad_glTexCoordP4ui GLAD_API_CALL PFNGLTEXCOORDP4UIVPROC glad_glTexCoordP4uiv; #define glTexCoordP4uiv glad_glTexCoordP4uiv GLAD_API_CALL PFNGLTEXCOORDPOINTERPROC glad_glTexCoordPointer; #define glTexCoordPointer glad_glTexCoordPointer GLAD_API_CALL PFNGLTEXENVFPROC glad_glTexEnvf; #define glTexEnvf glad_glTexEnvf GLAD_API_CALL PFNGLTEXENVFVPROC glad_glTexEnvfv; #define glTexEnvfv glad_glTexEnvfv GLAD_API_CALL PFNGLTEXENVIPROC glad_glTexEnvi; #define glTexEnvi glad_glTexEnvi GLAD_API_CALL PFNGLTEXENVIVPROC glad_glTexEnviv; #define glTexEnviv glad_glTexEnviv GLAD_API_CALL PFNGLTEXGENDPROC glad_glTexGend; #define glTexGend glad_glTexGend GLAD_API_CALL PFNGLTEXGENDVPROC glad_glTexGendv; #define glTexGendv glad_glTexGendv GLAD_API_CALL PFNGLTEXGENFPROC glad_glTexGenf; #define glTexGenf glad_glTexGenf GLAD_API_CALL PFNGLTEXGENFVPROC glad_glTexGenfv; #define glTexGenfv glad_glTexGenfv GLAD_API_CALL PFNGLTEXGENIPROC glad_glTexGeni; #define glTexGeni glad_glTexGeni GLAD_API_CALL PFNGLTEXGENIVPROC glad_glTexGeniv; #define glTexGeniv glad_glTexGeniv GLAD_API_CALL PFNGLTEXIMAGE1DPROC glad_glTexImage1D; #define glTexImage1D glad_glTexImage1D GLAD_API_CALL PFNGLTEXIMAGE2DPROC glad_glTexImage2D; #define glTexImage2D glad_glTexImage2D GLAD_API_CALL PFNGLTEXIMAGE2DMULTISAMPLEPROC glad_glTexImage2DMultisample; #define glTexImage2DMultisample glad_glTexImage2DMultisample GLAD_API_CALL PFNGLTEXIMAGE3DPROC glad_glTexImage3D; #define glTexImage3D glad_glTexImage3D GLAD_API_CALL PFNGLTEXIMAGE3DMULTISAMPLEPROC glad_glTexImage3DMultisample; #define glTexImage3DMultisample glad_glTexImage3DMultisample GLAD_API_CALL PFNGLTEXPAGECOMMITMENTARBPROC glad_glTexPageCommitmentARB; #define glTexPageCommitmentARB glad_glTexPageCommitmentARB GLAD_API_CALL PFNGLTEXPARAMETERIIVPROC glad_glTexParameterIiv; #define glTexParameterIiv glad_glTexParameterIiv GLAD_API_CALL PFNGLTEXPARAMETERIUIVPROC glad_glTexParameterIuiv; #define glTexParameterIuiv glad_glTexParameterIuiv GLAD_API_CALL PFNGLTEXPARAMETERFPROC glad_glTexParameterf; #define glTexParameterf glad_glTexParameterf GLAD_API_CALL PFNGLTEXPARAMETERFVPROC glad_glTexParameterfv; #define glTexParameterfv glad_glTexParameterfv GLAD_API_CALL PFNGLTEXPARAMETERIPROC glad_glTexParameteri; #define glTexParameteri glad_glTexParameteri GLAD_API_CALL PFNGLTEXPARAMETERIVPROC glad_glTexParameteriv; #define glTexParameteriv glad_glTexParameteriv GLAD_API_CALL PFNGLTEXSTORAGE1DPROC glad_glTexStorage1D; #define glTexStorage1D glad_glTexStorage1D GLAD_API_CALL PFNGLTEXSTORAGE2DPROC glad_glTexStorage2D; #define glTexStorage2D glad_glTexStorage2D GLAD_API_CALL PFNGLTEXSTORAGE2DMULTISAMPLEPROC glad_glTexStorage2DMultisample; #define glTexStorage2DMultisample glad_glTexStorage2DMultisample GLAD_API_CALL PFNGLTEXSTORAGE3DPROC glad_glTexStorage3D; #define glTexStorage3D glad_glTexStorage3D GLAD_API_CALL PFNGLTEXSTORAGE3DMULTISAMPLEPROC glad_glTexStorage3DMultisample; #define glTexStorage3DMultisample glad_glTexStorage3DMultisample GLAD_API_CALL PFNGLTEXSUBIMAGE1DPROC glad_glTexSubImage1D; #define glTexSubImage1D glad_glTexSubImage1D GLAD_API_CALL PFNGLTEXSUBIMAGE2DPROC glad_glTexSubImage2D; #define glTexSubImage2D glad_glTexSubImage2D GLAD_API_CALL PFNGLTEXSUBIMAGE3DPROC glad_glTexSubImage3D; #define glTexSubImage3D glad_glTexSubImage3D GLAD_API_CALL PFNGLTEXTUREBARRIERPROC glad_glTextureBarrier; #define glTextureBarrier glad_glTextureBarrier GLAD_API_CALL PFNGLTEXTUREBUFFERPROC glad_glTextureBuffer; #define glTextureBuffer glad_glTextureBuffer GLAD_API_CALL PFNGLTEXTUREBUFFERRANGEPROC glad_glTextureBufferRange; #define glTextureBufferRange glad_glTextureBufferRange GLAD_API_CALL PFNGLTEXTUREPARAMETERIIVPROC glad_glTextureParameterIiv; #define glTextureParameterIiv glad_glTextureParameterIiv GLAD_API_CALL PFNGLTEXTUREPARAMETERIUIVPROC glad_glTextureParameterIuiv; #define glTextureParameterIuiv glad_glTextureParameterIuiv GLAD_API_CALL PFNGLTEXTUREPARAMETERFPROC glad_glTextureParameterf; #define glTextureParameterf glad_glTextureParameterf GLAD_API_CALL PFNGLTEXTUREPARAMETERFVPROC glad_glTextureParameterfv; #define glTextureParameterfv glad_glTextureParameterfv GLAD_API_CALL PFNGLTEXTUREPARAMETERIPROC glad_glTextureParameteri; #define glTextureParameteri glad_glTextureParameteri GLAD_API_CALL PFNGLTEXTUREPARAMETERIVPROC glad_glTextureParameteriv; #define glTextureParameteriv glad_glTextureParameteriv GLAD_API_CALL PFNGLTEXTURESTORAGE1DPROC glad_glTextureStorage1D; #define glTextureStorage1D glad_glTextureStorage1D GLAD_API_CALL PFNGLTEXTURESTORAGE2DPROC glad_glTextureStorage2D; #define glTextureStorage2D glad_glTextureStorage2D GLAD_API_CALL PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC glad_glTextureStorage2DMultisample; #define glTextureStorage2DMultisample glad_glTextureStorage2DMultisample GLAD_API_CALL PFNGLTEXTURESTORAGE3DPROC glad_glTextureStorage3D; #define glTextureStorage3D glad_glTextureStorage3D GLAD_API_CALL PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC glad_glTextureStorage3DMultisample; #define glTextureStorage3DMultisample glad_glTextureStorage3DMultisample GLAD_API_CALL PFNGLTEXTURESUBIMAGE1DPROC glad_glTextureSubImage1D; #define glTextureSubImage1D glad_glTextureSubImage1D GLAD_API_CALL PFNGLTEXTURESUBIMAGE2DPROC glad_glTextureSubImage2D; #define glTextureSubImage2D glad_glTextureSubImage2D GLAD_API_CALL PFNGLTEXTURESUBIMAGE3DPROC glad_glTextureSubImage3D; #define glTextureSubImage3D glad_glTextureSubImage3D GLAD_API_CALL PFNGLTEXTUREVIEWPROC glad_glTextureView; #define glTextureView glad_glTextureView GLAD_API_CALL PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC glad_glTransformFeedbackBufferBase; #define glTransformFeedbackBufferBase glad_glTransformFeedbackBufferBase GLAD_API_CALL PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC glad_glTransformFeedbackBufferRange; #define glTransformFeedbackBufferRange glad_glTransformFeedbackBufferRange GLAD_API_CALL PFNGLTRANSFORMFEEDBACKVARYINGSPROC glad_glTransformFeedbackVaryings; #define glTransformFeedbackVaryings glad_glTransformFeedbackVaryings GLAD_API_CALL PFNGLTRANSLATEDPROC glad_glTranslated; #define glTranslated glad_glTranslated GLAD_API_CALL PFNGLTRANSLATEFPROC glad_glTranslatef; #define glTranslatef glad_glTranslatef GLAD_API_CALL PFNGLUNIFORM1DPROC glad_glUniform1d; #define glUniform1d glad_glUniform1d GLAD_API_CALL PFNGLUNIFORM1DVPROC glad_glUniform1dv; #define glUniform1dv glad_glUniform1dv GLAD_API_CALL PFNGLUNIFORM1FPROC glad_glUniform1f; #define glUniform1f glad_glUniform1f GLAD_API_CALL PFNGLUNIFORM1FARBPROC glad_glUniform1fARB; #define glUniform1fARB glad_glUniform1fARB GLAD_API_CALL PFNGLUNIFORM1FVPROC glad_glUniform1fv; #define glUniform1fv glad_glUniform1fv GLAD_API_CALL PFNGLUNIFORM1FVARBPROC glad_glUniform1fvARB; #define glUniform1fvARB glad_glUniform1fvARB GLAD_API_CALL PFNGLUNIFORM1IPROC glad_glUniform1i; #define glUniform1i glad_glUniform1i GLAD_API_CALL PFNGLUNIFORM1I64ARBPROC glad_glUniform1i64ARB; #define glUniform1i64ARB glad_glUniform1i64ARB GLAD_API_CALL PFNGLUNIFORM1I64VARBPROC glad_glUniform1i64vARB; #define glUniform1i64vARB glad_glUniform1i64vARB GLAD_API_CALL PFNGLUNIFORM1IARBPROC glad_glUniform1iARB; #define glUniform1iARB glad_glUniform1iARB GLAD_API_CALL PFNGLUNIFORM1IVPROC glad_glUniform1iv; #define glUniform1iv glad_glUniform1iv GLAD_API_CALL PFNGLUNIFORM1IVARBPROC glad_glUniform1ivARB; #define glUniform1ivARB glad_glUniform1ivARB GLAD_API_CALL PFNGLUNIFORM1UIPROC glad_glUniform1ui; #define glUniform1ui glad_glUniform1ui GLAD_API_CALL PFNGLUNIFORM1UI64ARBPROC glad_glUniform1ui64ARB; #define glUniform1ui64ARB glad_glUniform1ui64ARB GLAD_API_CALL PFNGLUNIFORM1UI64VARBPROC glad_glUniform1ui64vARB; #define glUniform1ui64vARB glad_glUniform1ui64vARB GLAD_API_CALL PFNGLUNIFORM1UIVPROC glad_glUniform1uiv; #define glUniform1uiv glad_glUniform1uiv GLAD_API_CALL PFNGLUNIFORM2DPROC glad_glUniform2d; #define glUniform2d glad_glUniform2d GLAD_API_CALL PFNGLUNIFORM2DVPROC glad_glUniform2dv; #define glUniform2dv glad_glUniform2dv GLAD_API_CALL PFNGLUNIFORM2FPROC glad_glUniform2f; #define glUniform2f glad_glUniform2f GLAD_API_CALL PFNGLUNIFORM2FARBPROC glad_glUniform2fARB; #define glUniform2fARB glad_glUniform2fARB GLAD_API_CALL PFNGLUNIFORM2FVPROC glad_glUniform2fv; #define glUniform2fv glad_glUniform2fv GLAD_API_CALL PFNGLUNIFORM2FVARBPROC glad_glUniform2fvARB; #define glUniform2fvARB glad_glUniform2fvARB GLAD_API_CALL PFNGLUNIFORM2IPROC glad_glUniform2i; #define glUniform2i glad_glUniform2i GLAD_API_CALL PFNGLUNIFORM2I64ARBPROC glad_glUniform2i64ARB; #define glUniform2i64ARB glad_glUniform2i64ARB GLAD_API_CALL PFNGLUNIFORM2I64VARBPROC glad_glUniform2i64vARB; #define glUniform2i64vARB glad_glUniform2i64vARB GLAD_API_CALL PFNGLUNIFORM2IARBPROC glad_glUniform2iARB; #define glUniform2iARB glad_glUniform2iARB GLAD_API_CALL PFNGLUNIFORM2IVPROC glad_glUniform2iv; #define glUniform2iv glad_glUniform2iv GLAD_API_CALL PFNGLUNIFORM2IVARBPROC glad_glUniform2ivARB; #define glUniform2ivARB glad_glUniform2ivARB GLAD_API_CALL PFNGLUNIFORM2UIPROC glad_glUniform2ui; #define glUniform2ui glad_glUniform2ui GLAD_API_CALL PFNGLUNIFORM2UI64ARBPROC glad_glUniform2ui64ARB; #define glUniform2ui64ARB glad_glUniform2ui64ARB GLAD_API_CALL PFNGLUNIFORM2UI64VARBPROC glad_glUniform2ui64vARB; #define glUniform2ui64vARB glad_glUniform2ui64vARB GLAD_API_CALL PFNGLUNIFORM2UIVPROC glad_glUniform2uiv; #define glUniform2uiv glad_glUniform2uiv GLAD_API_CALL PFNGLUNIFORM3DPROC glad_glUniform3d; #define glUniform3d glad_glUniform3d GLAD_API_CALL PFNGLUNIFORM3DVPROC glad_glUniform3dv; #define glUniform3dv glad_glUniform3dv GLAD_API_CALL PFNGLUNIFORM3FPROC glad_glUniform3f; #define glUniform3f glad_glUniform3f GLAD_API_CALL PFNGLUNIFORM3FARBPROC glad_glUniform3fARB; #define glUniform3fARB glad_glUniform3fARB GLAD_API_CALL PFNGLUNIFORM3FVPROC glad_glUniform3fv; #define glUniform3fv glad_glUniform3fv GLAD_API_CALL PFNGLUNIFORM3FVARBPROC glad_glUniform3fvARB; #define glUniform3fvARB glad_glUniform3fvARB GLAD_API_CALL PFNGLUNIFORM3IPROC glad_glUniform3i; #define glUniform3i glad_glUniform3i GLAD_API_CALL PFNGLUNIFORM3I64ARBPROC glad_glUniform3i64ARB; #define glUniform3i64ARB glad_glUniform3i64ARB GLAD_API_CALL PFNGLUNIFORM3I64VARBPROC glad_glUniform3i64vARB; #define glUniform3i64vARB glad_glUniform3i64vARB GLAD_API_CALL PFNGLUNIFORM3IARBPROC glad_glUniform3iARB; #define glUniform3iARB glad_glUniform3iARB GLAD_API_CALL PFNGLUNIFORM3IVPROC glad_glUniform3iv; #define glUniform3iv glad_glUniform3iv GLAD_API_CALL PFNGLUNIFORM3IVARBPROC glad_glUniform3ivARB; #define glUniform3ivARB glad_glUniform3ivARB GLAD_API_CALL PFNGLUNIFORM3UIPROC glad_glUniform3ui; #define glUniform3ui glad_glUniform3ui GLAD_API_CALL PFNGLUNIFORM3UI64ARBPROC glad_glUniform3ui64ARB; #define glUniform3ui64ARB glad_glUniform3ui64ARB GLAD_API_CALL PFNGLUNIFORM3UI64VARBPROC glad_glUniform3ui64vARB; #define glUniform3ui64vARB glad_glUniform3ui64vARB GLAD_API_CALL PFNGLUNIFORM3UIVPROC glad_glUniform3uiv; #define glUniform3uiv glad_glUniform3uiv GLAD_API_CALL PFNGLUNIFORM4DPROC glad_glUniform4d; #define glUniform4d glad_glUniform4d GLAD_API_CALL PFNGLUNIFORM4DVPROC glad_glUniform4dv; #define glUniform4dv glad_glUniform4dv GLAD_API_CALL PFNGLUNIFORM4FPROC glad_glUniform4f; #define glUniform4f glad_glUniform4f GLAD_API_CALL PFNGLUNIFORM4FARBPROC glad_glUniform4fARB; #define glUniform4fARB glad_glUniform4fARB GLAD_API_CALL PFNGLUNIFORM4FVPROC glad_glUniform4fv; #define glUniform4fv glad_glUniform4fv GLAD_API_CALL PFNGLUNIFORM4FVARBPROC glad_glUniform4fvARB; #define glUniform4fvARB glad_glUniform4fvARB GLAD_API_CALL PFNGLUNIFORM4IPROC glad_glUniform4i; #define glUniform4i glad_glUniform4i GLAD_API_CALL PFNGLUNIFORM4I64ARBPROC glad_glUniform4i64ARB; #define glUniform4i64ARB glad_glUniform4i64ARB GLAD_API_CALL PFNGLUNIFORM4I64VARBPROC glad_glUniform4i64vARB; #define glUniform4i64vARB glad_glUniform4i64vARB GLAD_API_CALL PFNGLUNIFORM4IARBPROC glad_glUniform4iARB; #define glUniform4iARB glad_glUniform4iARB GLAD_API_CALL PFNGLUNIFORM4IVPROC glad_glUniform4iv; #define glUniform4iv glad_glUniform4iv GLAD_API_CALL PFNGLUNIFORM4IVARBPROC glad_glUniform4ivARB; #define glUniform4ivARB glad_glUniform4ivARB GLAD_API_CALL PFNGLUNIFORM4UIPROC glad_glUniform4ui; #define glUniform4ui glad_glUniform4ui GLAD_API_CALL PFNGLUNIFORM4UI64ARBPROC glad_glUniform4ui64ARB; #define glUniform4ui64ARB glad_glUniform4ui64ARB GLAD_API_CALL PFNGLUNIFORM4UI64VARBPROC glad_glUniform4ui64vARB; #define glUniform4ui64vARB glad_glUniform4ui64vARB GLAD_API_CALL PFNGLUNIFORM4UIVPROC glad_glUniform4uiv; #define glUniform4uiv glad_glUniform4uiv GLAD_API_CALL PFNGLUNIFORMBLOCKBINDINGPROC glad_glUniformBlockBinding; #define glUniformBlockBinding glad_glUniformBlockBinding GLAD_API_CALL PFNGLUNIFORMHANDLEUI64ARBPROC glad_glUniformHandleui64ARB; #define glUniformHandleui64ARB glad_glUniformHandleui64ARB GLAD_API_CALL PFNGLUNIFORMHANDLEUI64VARBPROC glad_glUniformHandleui64vARB; #define glUniformHandleui64vARB glad_glUniformHandleui64vARB GLAD_API_CALL PFNGLUNIFORMMATRIX2DVPROC glad_glUniformMatrix2dv; #define glUniformMatrix2dv glad_glUniformMatrix2dv GLAD_API_CALL PFNGLUNIFORMMATRIX2FVPROC glad_glUniformMatrix2fv; #define glUniformMatrix2fv glad_glUniformMatrix2fv GLAD_API_CALL PFNGLUNIFORMMATRIX2FVARBPROC glad_glUniformMatrix2fvARB; #define glUniformMatrix2fvARB glad_glUniformMatrix2fvARB GLAD_API_CALL PFNGLUNIFORMMATRIX2X3DVPROC glad_glUniformMatrix2x3dv; #define glUniformMatrix2x3dv glad_glUniformMatrix2x3dv GLAD_API_CALL PFNGLUNIFORMMATRIX2X3FVPROC glad_glUniformMatrix2x3fv; #define glUniformMatrix2x3fv glad_glUniformMatrix2x3fv GLAD_API_CALL PFNGLUNIFORMMATRIX2X4DVPROC glad_glUniformMatrix2x4dv; #define glUniformMatrix2x4dv glad_glUniformMatrix2x4dv GLAD_API_CALL PFNGLUNIFORMMATRIX2X4FVPROC glad_glUniformMatrix2x4fv; #define glUniformMatrix2x4fv glad_glUniformMatrix2x4fv GLAD_API_CALL PFNGLUNIFORMMATRIX3DVPROC glad_glUniformMatrix3dv; #define glUniformMatrix3dv glad_glUniformMatrix3dv GLAD_API_CALL PFNGLUNIFORMMATRIX3FVPROC glad_glUniformMatrix3fv; #define glUniformMatrix3fv glad_glUniformMatrix3fv GLAD_API_CALL PFNGLUNIFORMMATRIX3FVARBPROC glad_glUniformMatrix3fvARB; #define glUniformMatrix3fvARB glad_glUniformMatrix3fvARB GLAD_API_CALL PFNGLUNIFORMMATRIX3X2DVPROC glad_glUniformMatrix3x2dv; #define glUniformMatrix3x2dv glad_glUniformMatrix3x2dv GLAD_API_CALL PFNGLUNIFORMMATRIX3X2FVPROC glad_glUniformMatrix3x2fv; #define glUniformMatrix3x2fv glad_glUniformMatrix3x2fv GLAD_API_CALL PFNGLUNIFORMMATRIX3X4DVPROC glad_glUniformMatrix3x4dv; #define glUniformMatrix3x4dv glad_glUniformMatrix3x4dv GLAD_API_CALL PFNGLUNIFORMMATRIX3X4FVPROC glad_glUniformMatrix3x4fv; #define glUniformMatrix3x4fv glad_glUniformMatrix3x4fv GLAD_API_CALL PFNGLUNIFORMMATRIX4DVPROC glad_glUniformMatrix4dv; #define glUniformMatrix4dv glad_glUniformMatrix4dv GLAD_API_CALL PFNGLUNIFORMMATRIX4FVPROC glad_glUniformMatrix4fv; #define glUniformMatrix4fv glad_glUniformMatrix4fv GLAD_API_CALL PFNGLUNIFORMMATRIX4FVARBPROC glad_glUniformMatrix4fvARB; #define glUniformMatrix4fvARB glad_glUniformMatrix4fvARB GLAD_API_CALL PFNGLUNIFORMMATRIX4X2DVPROC glad_glUniformMatrix4x2dv; #define glUniformMatrix4x2dv glad_glUniformMatrix4x2dv GLAD_API_CALL PFNGLUNIFORMMATRIX4X2FVPROC glad_glUniformMatrix4x2fv; #define glUniformMatrix4x2fv glad_glUniformMatrix4x2fv GLAD_API_CALL PFNGLUNIFORMMATRIX4X3DVPROC glad_glUniformMatrix4x3dv; #define glUniformMatrix4x3dv glad_glUniformMatrix4x3dv GLAD_API_CALL PFNGLUNIFORMMATRIX4X3FVPROC glad_glUniformMatrix4x3fv; #define glUniformMatrix4x3fv glad_glUniformMatrix4x3fv GLAD_API_CALL PFNGLUNIFORMSUBROUTINESUIVPROC glad_glUniformSubroutinesuiv; #define glUniformSubroutinesuiv glad_glUniformSubroutinesuiv GLAD_API_CALL PFNGLUNMAPBUFFERPROC glad_glUnmapBuffer; #define glUnmapBuffer glad_glUnmapBuffer GLAD_API_CALL PFNGLUNMAPBUFFERARBPROC glad_glUnmapBufferARB; #define glUnmapBufferARB glad_glUnmapBufferARB GLAD_API_CALL PFNGLUNMAPNAMEDBUFFERPROC glad_glUnmapNamedBuffer; #define glUnmapNamedBuffer glad_glUnmapNamedBuffer GLAD_API_CALL PFNGLUSEPROGRAMPROC glad_glUseProgram; #define glUseProgram glad_glUseProgram GLAD_API_CALL PFNGLUSEPROGRAMOBJECTARBPROC glad_glUseProgramObjectARB; #define glUseProgramObjectARB glad_glUseProgramObjectARB GLAD_API_CALL PFNGLUSEPROGRAMSTAGESPROC glad_glUseProgramStages; #define glUseProgramStages glad_glUseProgramStages GLAD_API_CALL PFNGLVALIDATEPROGRAMPROC glad_glValidateProgram; #define glValidateProgram glad_glValidateProgram GLAD_API_CALL PFNGLVALIDATEPROGRAMARBPROC glad_glValidateProgramARB; #define glValidateProgramARB glad_glValidateProgramARB GLAD_API_CALL PFNGLVALIDATEPROGRAMPIPELINEPROC glad_glValidateProgramPipeline; #define glValidateProgramPipeline glad_glValidateProgramPipeline GLAD_API_CALL PFNGLVERTEX2DPROC glad_glVertex2d; #define glVertex2d glad_glVertex2d GLAD_API_CALL PFNGLVERTEX2DVPROC glad_glVertex2dv; #define glVertex2dv glad_glVertex2dv GLAD_API_CALL PFNGLVERTEX2FPROC glad_glVertex2f; #define glVertex2f glad_glVertex2f GLAD_API_CALL PFNGLVERTEX2FVPROC glad_glVertex2fv; #define glVertex2fv glad_glVertex2fv GLAD_API_CALL PFNGLVERTEX2IPROC glad_glVertex2i; #define glVertex2i glad_glVertex2i GLAD_API_CALL PFNGLVERTEX2IVPROC glad_glVertex2iv; #define glVertex2iv glad_glVertex2iv GLAD_API_CALL PFNGLVERTEX2SPROC glad_glVertex2s; #define glVertex2s glad_glVertex2s GLAD_API_CALL PFNGLVERTEX2SVPROC glad_glVertex2sv; #define glVertex2sv glad_glVertex2sv GLAD_API_CALL PFNGLVERTEX3DPROC glad_glVertex3d; #define glVertex3d glad_glVertex3d GLAD_API_CALL PFNGLVERTEX3DVPROC glad_glVertex3dv; #define glVertex3dv glad_glVertex3dv GLAD_API_CALL PFNGLVERTEX3FPROC glad_glVertex3f; #define glVertex3f glad_glVertex3f GLAD_API_CALL PFNGLVERTEX3FVPROC glad_glVertex3fv; #define glVertex3fv glad_glVertex3fv GLAD_API_CALL PFNGLVERTEX3IPROC glad_glVertex3i; #define glVertex3i glad_glVertex3i GLAD_API_CALL PFNGLVERTEX3IVPROC glad_glVertex3iv; #define glVertex3iv glad_glVertex3iv GLAD_API_CALL PFNGLVERTEX3SPROC glad_glVertex3s; #define glVertex3s glad_glVertex3s GLAD_API_CALL PFNGLVERTEX3SVPROC glad_glVertex3sv; #define glVertex3sv glad_glVertex3sv GLAD_API_CALL PFNGLVERTEX4DPROC glad_glVertex4d; #define glVertex4d glad_glVertex4d GLAD_API_CALL PFNGLVERTEX4DVPROC glad_glVertex4dv; #define glVertex4dv glad_glVertex4dv GLAD_API_CALL PFNGLVERTEX4FPROC glad_glVertex4f; #define glVertex4f glad_glVertex4f GLAD_API_CALL PFNGLVERTEX4FVPROC glad_glVertex4fv; #define glVertex4fv glad_glVertex4fv GLAD_API_CALL PFNGLVERTEX4IPROC glad_glVertex4i; #define glVertex4i glad_glVertex4i GLAD_API_CALL PFNGLVERTEX4IVPROC glad_glVertex4iv; #define glVertex4iv glad_glVertex4iv GLAD_API_CALL PFNGLVERTEX4SPROC glad_glVertex4s; #define glVertex4s glad_glVertex4s GLAD_API_CALL PFNGLVERTEX4SVPROC glad_glVertex4sv; #define glVertex4sv glad_glVertex4sv GLAD_API_CALL PFNGLVERTEXARRAYATTRIBBINDINGPROC glad_glVertexArrayAttribBinding; #define glVertexArrayAttribBinding glad_glVertexArrayAttribBinding GLAD_API_CALL PFNGLVERTEXARRAYATTRIBFORMATPROC glad_glVertexArrayAttribFormat; #define glVertexArrayAttribFormat glad_glVertexArrayAttribFormat GLAD_API_CALL PFNGLVERTEXARRAYATTRIBIFORMATPROC glad_glVertexArrayAttribIFormat; #define glVertexArrayAttribIFormat glad_glVertexArrayAttribIFormat GLAD_API_CALL PFNGLVERTEXARRAYATTRIBLFORMATPROC glad_glVertexArrayAttribLFormat; #define glVertexArrayAttribLFormat glad_glVertexArrayAttribLFormat GLAD_API_CALL PFNGLVERTEXARRAYBINDINGDIVISORPROC glad_glVertexArrayBindingDivisor; #define glVertexArrayBindingDivisor glad_glVertexArrayBindingDivisor GLAD_API_CALL PFNGLVERTEXARRAYELEMENTBUFFERPROC glad_glVertexArrayElementBuffer; #define glVertexArrayElementBuffer glad_glVertexArrayElementBuffer GLAD_API_CALL PFNGLVERTEXARRAYVERTEXBUFFERPROC glad_glVertexArrayVertexBuffer; #define glVertexArrayVertexBuffer glad_glVertexArrayVertexBuffer GLAD_API_CALL PFNGLVERTEXARRAYVERTEXBUFFERSPROC glad_glVertexArrayVertexBuffers; #define glVertexArrayVertexBuffers glad_glVertexArrayVertexBuffers GLAD_API_CALL PFNGLVERTEXATTRIB1DPROC glad_glVertexAttrib1d; #define glVertexAttrib1d glad_glVertexAttrib1d GLAD_API_CALL PFNGLVERTEXATTRIB1DARBPROC glad_glVertexAttrib1dARB; #define glVertexAttrib1dARB glad_glVertexAttrib1dARB GLAD_API_CALL PFNGLVERTEXATTRIB1DVPROC glad_glVertexAttrib1dv; #define glVertexAttrib1dv glad_glVertexAttrib1dv GLAD_API_CALL PFNGLVERTEXATTRIB1DVARBPROC glad_glVertexAttrib1dvARB; #define glVertexAttrib1dvARB glad_glVertexAttrib1dvARB GLAD_API_CALL PFNGLVERTEXATTRIB1FPROC glad_glVertexAttrib1f; #define glVertexAttrib1f glad_glVertexAttrib1f GLAD_API_CALL PFNGLVERTEXATTRIB1FARBPROC glad_glVertexAttrib1fARB; #define glVertexAttrib1fARB glad_glVertexAttrib1fARB GLAD_API_CALL PFNGLVERTEXATTRIB1FVPROC glad_glVertexAttrib1fv; #define glVertexAttrib1fv glad_glVertexAttrib1fv GLAD_API_CALL PFNGLVERTEXATTRIB1FVARBPROC glad_glVertexAttrib1fvARB; #define glVertexAttrib1fvARB glad_glVertexAttrib1fvARB GLAD_API_CALL PFNGLVERTEXATTRIB1SPROC glad_glVertexAttrib1s; #define glVertexAttrib1s glad_glVertexAttrib1s GLAD_API_CALL PFNGLVERTEXATTRIB1SARBPROC glad_glVertexAttrib1sARB; #define glVertexAttrib1sARB glad_glVertexAttrib1sARB GLAD_API_CALL PFNGLVERTEXATTRIB1SVPROC glad_glVertexAttrib1sv; #define glVertexAttrib1sv glad_glVertexAttrib1sv GLAD_API_CALL PFNGLVERTEXATTRIB1SVARBPROC glad_glVertexAttrib1svARB; #define glVertexAttrib1svARB glad_glVertexAttrib1svARB GLAD_API_CALL PFNGLVERTEXATTRIB2DPROC glad_glVertexAttrib2d; #define glVertexAttrib2d glad_glVertexAttrib2d GLAD_API_CALL PFNGLVERTEXATTRIB2DARBPROC glad_glVertexAttrib2dARB; #define glVertexAttrib2dARB glad_glVertexAttrib2dARB GLAD_API_CALL PFNGLVERTEXATTRIB2DVPROC glad_glVertexAttrib2dv; #define glVertexAttrib2dv glad_glVertexAttrib2dv GLAD_API_CALL PFNGLVERTEXATTRIB2DVARBPROC glad_glVertexAttrib2dvARB; #define glVertexAttrib2dvARB glad_glVertexAttrib2dvARB GLAD_API_CALL PFNGLVERTEXATTRIB2FPROC glad_glVertexAttrib2f; #define glVertexAttrib2f glad_glVertexAttrib2f GLAD_API_CALL PFNGLVERTEXATTRIB2FARBPROC glad_glVertexAttrib2fARB; #define glVertexAttrib2fARB glad_glVertexAttrib2fARB GLAD_API_CALL PFNGLVERTEXATTRIB2FVPROC glad_glVertexAttrib2fv; #define glVertexAttrib2fv glad_glVertexAttrib2fv GLAD_API_CALL PFNGLVERTEXATTRIB2FVARBPROC glad_glVertexAttrib2fvARB; #define glVertexAttrib2fvARB glad_glVertexAttrib2fvARB GLAD_API_CALL PFNGLVERTEXATTRIB2SPROC glad_glVertexAttrib2s; #define glVertexAttrib2s glad_glVertexAttrib2s GLAD_API_CALL PFNGLVERTEXATTRIB2SARBPROC glad_glVertexAttrib2sARB; #define glVertexAttrib2sARB glad_glVertexAttrib2sARB GLAD_API_CALL PFNGLVERTEXATTRIB2SVPROC glad_glVertexAttrib2sv; #define glVertexAttrib2sv glad_glVertexAttrib2sv GLAD_API_CALL PFNGLVERTEXATTRIB2SVARBPROC glad_glVertexAttrib2svARB; #define glVertexAttrib2svARB glad_glVertexAttrib2svARB GLAD_API_CALL PFNGLVERTEXATTRIB3DPROC glad_glVertexAttrib3d; #define glVertexAttrib3d glad_glVertexAttrib3d GLAD_API_CALL PFNGLVERTEXATTRIB3DARBPROC glad_glVertexAttrib3dARB; #define glVertexAttrib3dARB glad_glVertexAttrib3dARB GLAD_API_CALL PFNGLVERTEXATTRIB3DVPROC glad_glVertexAttrib3dv; #define glVertexAttrib3dv glad_glVertexAttrib3dv GLAD_API_CALL PFNGLVERTEXATTRIB3DVARBPROC glad_glVertexAttrib3dvARB; #define glVertexAttrib3dvARB glad_glVertexAttrib3dvARB GLAD_API_CALL PFNGLVERTEXATTRIB3FPROC glad_glVertexAttrib3f; #define glVertexAttrib3f glad_glVertexAttrib3f GLAD_API_CALL PFNGLVERTEXATTRIB3FARBPROC glad_glVertexAttrib3fARB; #define glVertexAttrib3fARB glad_glVertexAttrib3fARB GLAD_API_CALL PFNGLVERTEXATTRIB3FVPROC glad_glVertexAttrib3fv; #define glVertexAttrib3fv glad_glVertexAttrib3fv GLAD_API_CALL PFNGLVERTEXATTRIB3FVARBPROC glad_glVertexAttrib3fvARB; #define glVertexAttrib3fvARB glad_glVertexAttrib3fvARB GLAD_API_CALL PFNGLVERTEXATTRIB3SPROC glad_glVertexAttrib3s; #define glVertexAttrib3s glad_glVertexAttrib3s GLAD_API_CALL PFNGLVERTEXATTRIB3SARBPROC glad_glVertexAttrib3sARB; #define glVertexAttrib3sARB glad_glVertexAttrib3sARB GLAD_API_CALL PFNGLVERTEXATTRIB3SVPROC glad_glVertexAttrib3sv; #define glVertexAttrib3sv glad_glVertexAttrib3sv GLAD_API_CALL PFNGLVERTEXATTRIB3SVARBPROC glad_glVertexAttrib3svARB; #define glVertexAttrib3svARB glad_glVertexAttrib3svARB GLAD_API_CALL PFNGLVERTEXATTRIB4NBVPROC glad_glVertexAttrib4Nbv; #define glVertexAttrib4Nbv glad_glVertexAttrib4Nbv GLAD_API_CALL PFNGLVERTEXATTRIB4NBVARBPROC glad_glVertexAttrib4NbvARB; #define glVertexAttrib4NbvARB glad_glVertexAttrib4NbvARB GLAD_API_CALL PFNGLVERTEXATTRIB4NIVPROC glad_glVertexAttrib4Niv; #define glVertexAttrib4Niv glad_glVertexAttrib4Niv GLAD_API_CALL PFNGLVERTEXATTRIB4NIVARBPROC glad_glVertexAttrib4NivARB; #define glVertexAttrib4NivARB glad_glVertexAttrib4NivARB GLAD_API_CALL PFNGLVERTEXATTRIB4NSVPROC glad_glVertexAttrib4Nsv; #define glVertexAttrib4Nsv glad_glVertexAttrib4Nsv GLAD_API_CALL PFNGLVERTEXATTRIB4NSVARBPROC glad_glVertexAttrib4NsvARB; #define glVertexAttrib4NsvARB glad_glVertexAttrib4NsvARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUBPROC glad_glVertexAttrib4Nub; #define glVertexAttrib4Nub glad_glVertexAttrib4Nub GLAD_API_CALL PFNGLVERTEXATTRIB4NUBARBPROC glad_glVertexAttrib4NubARB; #define glVertexAttrib4NubARB glad_glVertexAttrib4NubARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUBVPROC glad_glVertexAttrib4Nubv; #define glVertexAttrib4Nubv glad_glVertexAttrib4Nubv GLAD_API_CALL PFNGLVERTEXATTRIB4NUBVARBPROC glad_glVertexAttrib4NubvARB; #define glVertexAttrib4NubvARB glad_glVertexAttrib4NubvARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUIVPROC glad_glVertexAttrib4Nuiv; #define glVertexAttrib4Nuiv glad_glVertexAttrib4Nuiv GLAD_API_CALL PFNGLVERTEXATTRIB4NUIVARBPROC glad_glVertexAttrib4NuivARB; #define glVertexAttrib4NuivARB glad_glVertexAttrib4NuivARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUSVPROC glad_glVertexAttrib4Nusv; #define glVertexAttrib4Nusv glad_glVertexAttrib4Nusv GLAD_API_CALL PFNGLVERTEXATTRIB4NUSVARBPROC glad_glVertexAttrib4NusvARB; #define glVertexAttrib4NusvARB glad_glVertexAttrib4NusvARB GLAD_API_CALL PFNGLVERTEXATTRIB4BVPROC glad_glVertexAttrib4bv; #define glVertexAttrib4bv glad_glVertexAttrib4bv GLAD_API_CALL PFNGLVERTEXATTRIB4BVARBPROC glad_glVertexAttrib4bvARB; #define glVertexAttrib4bvARB glad_glVertexAttrib4bvARB GLAD_API_CALL PFNGLVERTEXATTRIB4DPROC glad_glVertexAttrib4d; #define glVertexAttrib4d glad_glVertexAttrib4d GLAD_API_CALL PFNGLVERTEXATTRIB4DARBPROC glad_glVertexAttrib4dARB; #define glVertexAttrib4dARB glad_glVertexAttrib4dARB GLAD_API_CALL PFNGLVERTEXATTRIB4DVPROC glad_glVertexAttrib4dv; #define glVertexAttrib4dv glad_glVertexAttrib4dv GLAD_API_CALL PFNGLVERTEXATTRIB4DVARBPROC glad_glVertexAttrib4dvARB; #define glVertexAttrib4dvARB glad_glVertexAttrib4dvARB GLAD_API_CALL PFNGLVERTEXATTRIB4FPROC glad_glVertexAttrib4f; #define glVertexAttrib4f glad_glVertexAttrib4f GLAD_API_CALL PFNGLVERTEXATTRIB4FARBPROC glad_glVertexAttrib4fARB; #define glVertexAttrib4fARB glad_glVertexAttrib4fARB GLAD_API_CALL PFNGLVERTEXATTRIB4FVPROC glad_glVertexAttrib4fv; #define glVertexAttrib4fv glad_glVertexAttrib4fv GLAD_API_CALL PFNGLVERTEXATTRIB4FVARBPROC glad_glVertexAttrib4fvARB; #define glVertexAttrib4fvARB glad_glVertexAttrib4fvARB GLAD_API_CALL PFNGLVERTEXATTRIB4IVPROC glad_glVertexAttrib4iv; #define glVertexAttrib4iv glad_glVertexAttrib4iv GLAD_API_CALL PFNGLVERTEXATTRIB4IVARBPROC glad_glVertexAttrib4ivARB; #define glVertexAttrib4ivARB glad_glVertexAttrib4ivARB GLAD_API_CALL PFNGLVERTEXATTRIB4SPROC glad_glVertexAttrib4s; #define glVertexAttrib4s glad_glVertexAttrib4s GLAD_API_CALL PFNGLVERTEXATTRIB4SARBPROC glad_glVertexAttrib4sARB; #define glVertexAttrib4sARB glad_glVertexAttrib4sARB GLAD_API_CALL PFNGLVERTEXATTRIB4SVPROC glad_glVertexAttrib4sv; #define glVertexAttrib4sv glad_glVertexAttrib4sv GLAD_API_CALL PFNGLVERTEXATTRIB4SVARBPROC glad_glVertexAttrib4svARB; #define glVertexAttrib4svARB glad_glVertexAttrib4svARB GLAD_API_CALL PFNGLVERTEXATTRIB4UBVPROC glad_glVertexAttrib4ubv; #define glVertexAttrib4ubv glad_glVertexAttrib4ubv GLAD_API_CALL PFNGLVERTEXATTRIB4UBVARBPROC glad_glVertexAttrib4ubvARB; #define glVertexAttrib4ubvARB glad_glVertexAttrib4ubvARB GLAD_API_CALL PFNGLVERTEXATTRIB4UIVPROC glad_glVertexAttrib4uiv; #define glVertexAttrib4uiv glad_glVertexAttrib4uiv GLAD_API_CALL PFNGLVERTEXATTRIB4UIVARBPROC glad_glVertexAttrib4uivARB; #define glVertexAttrib4uivARB glad_glVertexAttrib4uivARB GLAD_API_CALL PFNGLVERTEXATTRIB4USVPROC glad_glVertexAttrib4usv; #define glVertexAttrib4usv glad_glVertexAttrib4usv GLAD_API_CALL PFNGLVERTEXATTRIB4USVARBPROC glad_glVertexAttrib4usvARB; #define glVertexAttrib4usvARB glad_glVertexAttrib4usvARB GLAD_API_CALL PFNGLVERTEXATTRIBBINDINGPROC glad_glVertexAttribBinding; #define glVertexAttribBinding glad_glVertexAttribBinding GLAD_API_CALL PFNGLVERTEXATTRIBDIVISORPROC glad_glVertexAttribDivisor; #define glVertexAttribDivisor glad_glVertexAttribDivisor GLAD_API_CALL PFNGLVERTEXATTRIBDIVISORARBPROC glad_glVertexAttribDivisorARB; #define glVertexAttribDivisorARB glad_glVertexAttribDivisorARB GLAD_API_CALL PFNGLVERTEXATTRIBFORMATPROC glad_glVertexAttribFormat; #define glVertexAttribFormat glad_glVertexAttribFormat GLAD_API_CALL PFNGLVERTEXATTRIBI1IPROC glad_glVertexAttribI1i; #define glVertexAttribI1i glad_glVertexAttribI1i GLAD_API_CALL PFNGLVERTEXATTRIBI1IVPROC glad_glVertexAttribI1iv; #define glVertexAttribI1iv glad_glVertexAttribI1iv GLAD_API_CALL PFNGLVERTEXATTRIBI1UIPROC glad_glVertexAttribI1ui; #define glVertexAttribI1ui glad_glVertexAttribI1ui GLAD_API_CALL PFNGLVERTEXATTRIBI1UIVPROC glad_glVertexAttribI1uiv; #define glVertexAttribI1uiv glad_glVertexAttribI1uiv GLAD_API_CALL PFNGLVERTEXATTRIBI2IPROC glad_glVertexAttribI2i; #define glVertexAttribI2i glad_glVertexAttribI2i GLAD_API_CALL PFNGLVERTEXATTRIBI2IVPROC glad_glVertexAttribI2iv; #define glVertexAttribI2iv glad_glVertexAttribI2iv GLAD_API_CALL PFNGLVERTEXATTRIBI2UIPROC glad_glVertexAttribI2ui; #define glVertexAttribI2ui glad_glVertexAttribI2ui GLAD_API_CALL PFNGLVERTEXATTRIBI2UIVPROC glad_glVertexAttribI2uiv; #define glVertexAttribI2uiv glad_glVertexAttribI2uiv GLAD_API_CALL PFNGLVERTEXATTRIBI3IPROC glad_glVertexAttribI3i; #define glVertexAttribI3i glad_glVertexAttribI3i GLAD_API_CALL PFNGLVERTEXATTRIBI3IVPROC glad_glVertexAttribI3iv; #define glVertexAttribI3iv glad_glVertexAttribI3iv GLAD_API_CALL PFNGLVERTEXATTRIBI3UIPROC glad_glVertexAttribI3ui; #define glVertexAttribI3ui glad_glVertexAttribI3ui GLAD_API_CALL PFNGLVERTEXATTRIBI3UIVPROC glad_glVertexAttribI3uiv; #define glVertexAttribI3uiv glad_glVertexAttribI3uiv GLAD_API_CALL PFNGLVERTEXATTRIBI4BVPROC glad_glVertexAttribI4bv; #define glVertexAttribI4bv glad_glVertexAttribI4bv GLAD_API_CALL PFNGLVERTEXATTRIBI4IPROC glad_glVertexAttribI4i; #define glVertexAttribI4i glad_glVertexAttribI4i GLAD_API_CALL PFNGLVERTEXATTRIBI4IVPROC glad_glVertexAttribI4iv; #define glVertexAttribI4iv glad_glVertexAttribI4iv GLAD_API_CALL PFNGLVERTEXATTRIBI4SVPROC glad_glVertexAttribI4sv; #define glVertexAttribI4sv glad_glVertexAttribI4sv GLAD_API_CALL PFNGLVERTEXATTRIBI4UBVPROC glad_glVertexAttribI4ubv; #define glVertexAttribI4ubv glad_glVertexAttribI4ubv GLAD_API_CALL PFNGLVERTEXATTRIBI4UIPROC glad_glVertexAttribI4ui; #define glVertexAttribI4ui glad_glVertexAttribI4ui GLAD_API_CALL PFNGLVERTEXATTRIBI4UIVPROC glad_glVertexAttribI4uiv; #define glVertexAttribI4uiv glad_glVertexAttribI4uiv GLAD_API_CALL PFNGLVERTEXATTRIBI4USVPROC glad_glVertexAttribI4usv; #define glVertexAttribI4usv glad_glVertexAttribI4usv GLAD_API_CALL PFNGLVERTEXATTRIBIFORMATPROC glad_glVertexAttribIFormat; #define glVertexAttribIFormat glad_glVertexAttribIFormat GLAD_API_CALL PFNGLVERTEXATTRIBIPOINTERPROC glad_glVertexAttribIPointer; #define glVertexAttribIPointer glad_glVertexAttribIPointer GLAD_API_CALL PFNGLVERTEXATTRIBL1DPROC glad_glVertexAttribL1d; #define glVertexAttribL1d glad_glVertexAttribL1d GLAD_API_CALL PFNGLVERTEXATTRIBL1DVPROC glad_glVertexAttribL1dv; #define glVertexAttribL1dv glad_glVertexAttribL1dv GLAD_API_CALL PFNGLVERTEXATTRIBL1UI64ARBPROC glad_glVertexAttribL1ui64ARB; #define glVertexAttribL1ui64ARB glad_glVertexAttribL1ui64ARB GLAD_API_CALL PFNGLVERTEXATTRIBL1UI64VARBPROC glad_glVertexAttribL1ui64vARB; #define glVertexAttribL1ui64vARB glad_glVertexAttribL1ui64vARB GLAD_API_CALL PFNGLVERTEXATTRIBL2DPROC glad_glVertexAttribL2d; #define glVertexAttribL2d glad_glVertexAttribL2d GLAD_API_CALL PFNGLVERTEXATTRIBL2DVPROC glad_glVertexAttribL2dv; #define glVertexAttribL2dv glad_glVertexAttribL2dv GLAD_API_CALL PFNGLVERTEXATTRIBL3DPROC glad_glVertexAttribL3d; #define glVertexAttribL3d glad_glVertexAttribL3d GLAD_API_CALL PFNGLVERTEXATTRIBL3DVPROC glad_glVertexAttribL3dv; #define glVertexAttribL3dv glad_glVertexAttribL3dv GLAD_API_CALL PFNGLVERTEXATTRIBL4DPROC glad_glVertexAttribL4d; #define glVertexAttribL4d glad_glVertexAttribL4d GLAD_API_CALL PFNGLVERTEXATTRIBL4DVPROC glad_glVertexAttribL4dv; #define glVertexAttribL4dv glad_glVertexAttribL4dv GLAD_API_CALL PFNGLVERTEXATTRIBLFORMATPROC glad_glVertexAttribLFormat; #define glVertexAttribLFormat glad_glVertexAttribLFormat GLAD_API_CALL PFNGLVERTEXATTRIBLPOINTERPROC glad_glVertexAttribLPointer; #define glVertexAttribLPointer glad_glVertexAttribLPointer GLAD_API_CALL PFNGLVERTEXATTRIBP1UIPROC glad_glVertexAttribP1ui; #define glVertexAttribP1ui glad_glVertexAttribP1ui GLAD_API_CALL PFNGLVERTEXATTRIBP1UIVPROC glad_glVertexAttribP1uiv; #define glVertexAttribP1uiv glad_glVertexAttribP1uiv GLAD_API_CALL PFNGLVERTEXATTRIBP2UIPROC glad_glVertexAttribP2ui; #define glVertexAttribP2ui glad_glVertexAttribP2ui GLAD_API_CALL PFNGLVERTEXATTRIBP2UIVPROC glad_glVertexAttribP2uiv; #define glVertexAttribP2uiv glad_glVertexAttribP2uiv GLAD_API_CALL PFNGLVERTEXATTRIBP3UIPROC glad_glVertexAttribP3ui; #define glVertexAttribP3ui glad_glVertexAttribP3ui GLAD_API_CALL PFNGLVERTEXATTRIBP3UIVPROC glad_glVertexAttribP3uiv; #define glVertexAttribP3uiv glad_glVertexAttribP3uiv GLAD_API_CALL PFNGLVERTEXATTRIBP4UIPROC glad_glVertexAttribP4ui; #define glVertexAttribP4ui glad_glVertexAttribP4ui GLAD_API_CALL PFNGLVERTEXATTRIBP4UIVPROC glad_glVertexAttribP4uiv; #define glVertexAttribP4uiv glad_glVertexAttribP4uiv GLAD_API_CALL PFNGLVERTEXATTRIBPOINTERPROC glad_glVertexAttribPointer; #define glVertexAttribPointer glad_glVertexAttribPointer GLAD_API_CALL PFNGLVERTEXATTRIBPOINTERARBPROC glad_glVertexAttribPointerARB; #define glVertexAttribPointerARB glad_glVertexAttribPointerARB GLAD_API_CALL PFNGLVERTEXBINDINGDIVISORPROC glad_glVertexBindingDivisor; #define glVertexBindingDivisor glad_glVertexBindingDivisor GLAD_API_CALL PFNGLVERTEXBLENDARBPROC glad_glVertexBlendARB; #define glVertexBlendARB glad_glVertexBlendARB GLAD_API_CALL PFNGLVERTEXP2UIPROC glad_glVertexP2ui; #define glVertexP2ui glad_glVertexP2ui GLAD_API_CALL PFNGLVERTEXP2UIVPROC glad_glVertexP2uiv; #define glVertexP2uiv glad_glVertexP2uiv GLAD_API_CALL PFNGLVERTEXP3UIPROC glad_glVertexP3ui; #define glVertexP3ui glad_glVertexP3ui GLAD_API_CALL PFNGLVERTEXP3UIVPROC glad_glVertexP3uiv; #define glVertexP3uiv glad_glVertexP3uiv GLAD_API_CALL PFNGLVERTEXP4UIPROC glad_glVertexP4ui; #define glVertexP4ui glad_glVertexP4ui GLAD_API_CALL PFNGLVERTEXP4UIVPROC glad_glVertexP4uiv; #define glVertexP4uiv glad_glVertexP4uiv GLAD_API_CALL PFNGLVERTEXPOINTERPROC glad_glVertexPointer; #define glVertexPointer glad_glVertexPointer GLAD_API_CALL PFNGLVIEWPORTPROC glad_glViewport; #define glViewport glad_glViewport GLAD_API_CALL PFNGLVIEWPORTARRAYVPROC glad_glViewportArrayv; #define glViewportArrayv glad_glViewportArrayv GLAD_API_CALL PFNGLVIEWPORTINDEXEDFPROC glad_glViewportIndexedf; #define glViewportIndexedf glad_glViewportIndexedf GLAD_API_CALL PFNGLVIEWPORTINDEXEDFVPROC glad_glViewportIndexedfv; #define glViewportIndexedfv glad_glViewportIndexedfv GLAD_API_CALL PFNGLWAITSYNCPROC glad_glWaitSync; #define glWaitSync glad_glWaitSync GLAD_API_CALL PFNGLWEIGHTPOINTERARBPROC glad_glWeightPointerARB; #define glWeightPointerARB glad_glWeightPointerARB GLAD_API_CALL PFNGLWEIGHTBVARBPROC glad_glWeightbvARB; #define glWeightbvARB glad_glWeightbvARB GLAD_API_CALL PFNGLWEIGHTDVARBPROC glad_glWeightdvARB; #define glWeightdvARB glad_glWeightdvARB GLAD_API_CALL PFNGLWEIGHTFVARBPROC glad_glWeightfvARB; #define glWeightfvARB glad_glWeightfvARB GLAD_API_CALL PFNGLWEIGHTIVARBPROC glad_glWeightivARB; #define glWeightivARB glad_glWeightivARB GLAD_API_CALL PFNGLWEIGHTSVARBPROC glad_glWeightsvARB; #define glWeightsvARB glad_glWeightsvARB GLAD_API_CALL PFNGLWEIGHTUBVARBPROC glad_glWeightubvARB; #define glWeightubvARB glad_glWeightubvARB GLAD_API_CALL PFNGLWEIGHTUIVARBPROC glad_glWeightuivARB; #define glWeightuivARB glad_glWeightuivARB GLAD_API_CALL PFNGLWEIGHTUSVARBPROC glad_glWeightusvARB; #define glWeightusvARB glad_glWeightusvARB GLAD_API_CALL PFNGLWINDOWPOS2DPROC glad_glWindowPos2d; #define glWindowPos2d glad_glWindowPos2d GLAD_API_CALL PFNGLWINDOWPOS2DARBPROC glad_glWindowPos2dARB; #define glWindowPos2dARB glad_glWindowPos2dARB GLAD_API_CALL PFNGLWINDOWPOS2DVPROC glad_glWindowPos2dv; #define glWindowPos2dv glad_glWindowPos2dv GLAD_API_CALL PFNGLWINDOWPOS2DVARBPROC glad_glWindowPos2dvARB; #define glWindowPos2dvARB glad_glWindowPos2dvARB GLAD_API_CALL PFNGLWINDOWPOS2FPROC glad_glWindowPos2f; #define glWindowPos2f glad_glWindowPos2f GLAD_API_CALL PFNGLWINDOWPOS2FARBPROC glad_glWindowPos2fARB; #define glWindowPos2fARB glad_glWindowPos2fARB GLAD_API_CALL PFNGLWINDOWPOS2FVPROC glad_glWindowPos2fv; #define glWindowPos2fv glad_glWindowPos2fv GLAD_API_CALL PFNGLWINDOWPOS2FVARBPROC glad_glWindowPos2fvARB; #define glWindowPos2fvARB glad_glWindowPos2fvARB GLAD_API_CALL PFNGLWINDOWPOS2IPROC glad_glWindowPos2i; #define glWindowPos2i glad_glWindowPos2i GLAD_API_CALL PFNGLWINDOWPOS2IARBPROC glad_glWindowPos2iARB; #define glWindowPos2iARB glad_glWindowPos2iARB GLAD_API_CALL PFNGLWINDOWPOS2IVPROC glad_glWindowPos2iv; #define glWindowPos2iv glad_glWindowPos2iv GLAD_API_CALL PFNGLWINDOWPOS2IVARBPROC glad_glWindowPos2ivARB; #define glWindowPos2ivARB glad_glWindowPos2ivARB GLAD_API_CALL PFNGLWINDOWPOS2SPROC glad_glWindowPos2s; #define glWindowPos2s glad_glWindowPos2s GLAD_API_CALL PFNGLWINDOWPOS2SARBPROC glad_glWindowPos2sARB; #define glWindowPos2sARB glad_glWindowPos2sARB GLAD_API_CALL PFNGLWINDOWPOS2SVPROC glad_glWindowPos2sv; #define glWindowPos2sv glad_glWindowPos2sv GLAD_API_CALL PFNGLWINDOWPOS2SVARBPROC glad_glWindowPos2svARB; #define glWindowPos2svARB glad_glWindowPos2svARB GLAD_API_CALL PFNGLWINDOWPOS3DPROC glad_glWindowPos3d; #define glWindowPos3d glad_glWindowPos3d GLAD_API_CALL PFNGLWINDOWPOS3DARBPROC glad_glWindowPos3dARB; #define glWindowPos3dARB glad_glWindowPos3dARB GLAD_API_CALL PFNGLWINDOWPOS3DVPROC glad_glWindowPos3dv; #define glWindowPos3dv glad_glWindowPos3dv GLAD_API_CALL PFNGLWINDOWPOS3DVARBPROC glad_glWindowPos3dvARB; #define glWindowPos3dvARB glad_glWindowPos3dvARB GLAD_API_CALL PFNGLWINDOWPOS3FPROC glad_glWindowPos3f; #define glWindowPos3f glad_glWindowPos3f GLAD_API_CALL PFNGLWINDOWPOS3FARBPROC glad_glWindowPos3fARB; #define glWindowPos3fARB glad_glWindowPos3fARB GLAD_API_CALL PFNGLWINDOWPOS3FVPROC glad_glWindowPos3fv; #define glWindowPos3fv glad_glWindowPos3fv GLAD_API_CALL PFNGLWINDOWPOS3FVARBPROC glad_glWindowPos3fvARB; #define glWindowPos3fvARB glad_glWindowPos3fvARB GLAD_API_CALL PFNGLWINDOWPOS3IPROC glad_glWindowPos3i; #define glWindowPos3i glad_glWindowPos3i GLAD_API_CALL PFNGLWINDOWPOS3IARBPROC glad_glWindowPos3iARB; #define glWindowPos3iARB glad_glWindowPos3iARB GLAD_API_CALL PFNGLWINDOWPOS3IVPROC glad_glWindowPos3iv; #define glWindowPos3iv glad_glWindowPos3iv GLAD_API_CALL PFNGLWINDOWPOS3IVARBPROC glad_glWindowPos3ivARB; #define glWindowPos3ivARB glad_glWindowPos3ivARB GLAD_API_CALL PFNGLWINDOWPOS3SPROC glad_glWindowPos3s; #define glWindowPos3s glad_glWindowPos3s GLAD_API_CALL PFNGLWINDOWPOS3SARBPROC glad_glWindowPos3sARB; #define glWindowPos3sARB glad_glWindowPos3sARB GLAD_API_CALL PFNGLWINDOWPOS3SVPROC glad_glWindowPos3sv; #define glWindowPos3sv glad_glWindowPos3sv GLAD_API_CALL PFNGLWINDOWPOS3SVARBPROC glad_glWindowPos3svARB; #define glWindowPos3svARB glad_glWindowPos3svARB GLAD_API_CALL int gladLoadGLUserPtr( GLADuserptrloadfunc load, void *userptr); GLAD_API_CALL int gladLoadGL( GLADloadfunc load); #ifdef __cplusplus } #endif #endif /* Source */ #ifdef GLAD_GL_IMPLEMENTATION #include #include #include #ifndef GLAD_IMPL_UTIL_C_ #define GLAD_IMPL_UTIL_C_ #ifdef _MSC_VER #define GLAD_IMPL_UTIL_SSCANF sscanf_s #else #define GLAD_IMPL_UTIL_SSCANF sscanf #endif #endif /* GLAD_IMPL_UTIL_C_ */ int GLAD_GL_VERSION_1_0 = 0; int GLAD_GL_VERSION_1_1 = 0; int GLAD_GL_VERSION_1_2 = 0; int GLAD_GL_VERSION_1_3 = 0; int GLAD_GL_VERSION_1_4 = 0; int GLAD_GL_VERSION_1_5 = 0; int GLAD_GL_VERSION_2_0 = 0; int GLAD_GL_VERSION_2_1 = 0; int GLAD_GL_VERSION_3_0 = 0; int GLAD_GL_VERSION_3_1 = 0; int GLAD_GL_VERSION_3_2 = 0; int GLAD_GL_VERSION_3_3 = 0; int GLAD_GL_ARB_ES2_compatibility = 0; int GLAD_GL_ARB_ES3_1_compatibility = 0; int GLAD_GL_ARB_ES3_2_compatibility = 0; int GLAD_GL_ARB_ES3_compatibility = 0; int GLAD_GL_ARB_arrays_of_arrays = 0; int GLAD_GL_ARB_base_instance = 0; int GLAD_GL_ARB_bindless_texture = 0; int GLAD_GL_ARB_blend_func_extended = 0; int GLAD_GL_ARB_buffer_storage = 0; int GLAD_GL_ARB_cl_event = 0; int GLAD_GL_ARB_clear_buffer_object = 0; int GLAD_GL_ARB_clear_texture = 0; int GLAD_GL_ARB_clip_control = 0; int GLAD_GL_ARB_color_buffer_float = 0; int GLAD_GL_ARB_compatibility = 0; int GLAD_GL_ARB_compressed_texture_pixel_storage = 0; int GLAD_GL_ARB_compute_shader = 0; int GLAD_GL_ARB_compute_variable_group_size = 0; int GLAD_GL_ARB_conditional_render_inverted = 0; int GLAD_GL_ARB_conservative_depth = 0; int GLAD_GL_ARB_copy_buffer = 0; int GLAD_GL_ARB_copy_image = 0; int GLAD_GL_ARB_cull_distance = 0; int GLAD_GL_ARB_debug_output = 0; int GLAD_GL_ARB_depth_buffer_float = 0; int GLAD_GL_ARB_depth_clamp = 0; int GLAD_GL_ARB_depth_texture = 0; int GLAD_GL_ARB_derivative_control = 0; int GLAD_GL_ARB_direct_state_access = 0; int GLAD_GL_ARB_draw_buffers = 0; int GLAD_GL_ARB_draw_buffers_blend = 0; int GLAD_GL_ARB_draw_elements_base_vertex = 0; int GLAD_GL_ARB_draw_indirect = 0; int GLAD_GL_ARB_draw_instanced = 0; int GLAD_GL_ARB_enhanced_layouts = 0; int GLAD_GL_ARB_explicit_attrib_location = 0; int GLAD_GL_ARB_explicit_uniform_location = 0; int GLAD_GL_ARB_fragment_coord_conventions = 0; int GLAD_GL_ARB_fragment_layer_viewport = 0; int GLAD_GL_ARB_fragment_program = 0; int GLAD_GL_ARB_fragment_program_shadow = 0; int GLAD_GL_ARB_fragment_shader = 0; int GLAD_GL_ARB_fragment_shader_interlock = 0; int GLAD_GL_ARB_framebuffer_no_attachments = 0; int GLAD_GL_ARB_framebuffer_object = 0; int GLAD_GL_ARB_framebuffer_sRGB = 0; int GLAD_GL_ARB_geometry_shader4 = 0; int GLAD_GL_ARB_get_program_binary = 0; int GLAD_GL_ARB_get_texture_sub_image = 0; int GLAD_GL_ARB_gl_spirv = 0; int GLAD_GL_ARB_gpu_shader5 = 0; int GLAD_GL_ARB_gpu_shader_fp64 = 0; int GLAD_GL_ARB_gpu_shader_int64 = 0; int GLAD_GL_ARB_half_float_pixel = 0; int GLAD_GL_ARB_half_float_vertex = 0; int GLAD_GL_ARB_imaging = 0; int GLAD_GL_ARB_indirect_parameters = 0; int GLAD_GL_ARB_instanced_arrays = 0; int GLAD_GL_ARB_internalformat_query = 0; int GLAD_GL_ARB_internalformat_query2 = 0; int GLAD_GL_ARB_invalidate_subdata = 0; int GLAD_GL_ARB_map_buffer_alignment = 0; int GLAD_GL_ARB_map_buffer_range = 0; int GLAD_GL_ARB_matrix_palette = 0; int GLAD_GL_ARB_multi_bind = 0; int GLAD_GL_ARB_multi_draw_indirect = 0; int GLAD_GL_ARB_multisample = 0; int GLAD_GL_ARB_multitexture = 0; int GLAD_GL_ARB_occlusion_query = 0; int GLAD_GL_ARB_occlusion_query2 = 0; int GLAD_GL_ARB_parallel_shader_compile = 0; int GLAD_GL_ARB_pipeline_statistics_query = 0; int GLAD_GL_ARB_pixel_buffer_object = 0; int GLAD_GL_ARB_point_parameters = 0; int GLAD_GL_ARB_point_sprite = 0; int GLAD_GL_ARB_polygon_offset_clamp = 0; int GLAD_GL_ARB_post_depth_coverage = 0; int GLAD_GL_ARB_program_interface_query = 0; int GLAD_GL_ARB_provoking_vertex = 0; int GLAD_GL_ARB_query_buffer_object = 0; int GLAD_GL_ARB_robust_buffer_access_behavior = 0; int GLAD_GL_ARB_robustness = 0; int GLAD_GL_ARB_robustness_isolation = 0; int GLAD_GL_ARB_sample_locations = 0; int GLAD_GL_ARB_sample_shading = 0; int GLAD_GL_ARB_sampler_objects = 0; int GLAD_GL_ARB_seamless_cube_map = 0; int GLAD_GL_ARB_seamless_cubemap_per_texture = 0; int GLAD_GL_ARB_separate_shader_objects = 0; int GLAD_GL_ARB_shader_atomic_counter_ops = 0; int GLAD_GL_ARB_shader_atomic_counters = 0; int GLAD_GL_ARB_shader_ballot = 0; int GLAD_GL_ARB_shader_bit_encoding = 0; int GLAD_GL_ARB_shader_clock = 0; int GLAD_GL_ARB_shader_draw_parameters = 0; int GLAD_GL_ARB_shader_group_vote = 0; int GLAD_GL_ARB_shader_image_load_store = 0; int GLAD_GL_ARB_shader_image_size = 0; int GLAD_GL_ARB_shader_objects = 0; int GLAD_GL_ARB_shader_precision = 0; int GLAD_GL_ARB_shader_stencil_export = 0; int GLAD_GL_ARB_shader_storage_buffer_object = 0; int GLAD_GL_ARB_shader_subroutine = 0; int GLAD_GL_ARB_shader_texture_image_samples = 0; int GLAD_GL_ARB_shader_texture_lod = 0; int GLAD_GL_ARB_shader_viewport_layer_array = 0; int GLAD_GL_ARB_shading_language_100 = 0; int GLAD_GL_ARB_shading_language_420pack = 0; int GLAD_GL_ARB_shading_language_include = 0; int GLAD_GL_ARB_shading_language_packing = 0; int GLAD_GL_ARB_shadow = 0; int GLAD_GL_ARB_shadow_ambient = 0; int GLAD_GL_ARB_sparse_buffer = 0; int GLAD_GL_ARB_sparse_texture = 0; int GLAD_GL_ARB_sparse_texture2 = 0; int GLAD_GL_ARB_sparse_texture_clamp = 0; int GLAD_GL_ARB_spirv_extensions = 0; int GLAD_GL_ARB_stencil_texturing = 0; int GLAD_GL_ARB_sync = 0; int GLAD_GL_ARB_tessellation_shader = 0; int GLAD_GL_ARB_texture_barrier = 0; int GLAD_GL_ARB_texture_border_clamp = 0; int GLAD_GL_ARB_texture_buffer_object = 0; int GLAD_GL_ARB_texture_buffer_object_rgb32 = 0; int GLAD_GL_ARB_texture_buffer_range = 0; int GLAD_GL_ARB_texture_compression = 0; int GLAD_GL_ARB_texture_compression_bptc = 0; int GLAD_GL_ARB_texture_compression_rgtc = 0; int GLAD_GL_ARB_texture_cube_map = 0; int GLAD_GL_ARB_texture_cube_map_array = 0; int GLAD_GL_ARB_texture_env_add = 0; int GLAD_GL_ARB_texture_env_combine = 0; int GLAD_GL_ARB_texture_env_crossbar = 0; int GLAD_GL_ARB_texture_env_dot3 = 0; int GLAD_GL_ARB_texture_filter_anisotropic = 0; int GLAD_GL_ARB_texture_filter_minmax = 0; int GLAD_GL_ARB_texture_float = 0; int GLAD_GL_ARB_texture_gather = 0; int GLAD_GL_ARB_texture_mirror_clamp_to_edge = 0; int GLAD_GL_ARB_texture_mirrored_repeat = 0; int GLAD_GL_ARB_texture_multisample = 0; int GLAD_GL_ARB_texture_non_power_of_two = 0; int GLAD_GL_ARB_texture_query_levels = 0; int GLAD_GL_ARB_texture_query_lod = 0; int GLAD_GL_ARB_texture_rectangle = 0; int GLAD_GL_ARB_texture_rg = 0; int GLAD_GL_ARB_texture_rgb10_a2ui = 0; int GLAD_GL_ARB_texture_stencil8 = 0; int GLAD_GL_ARB_texture_storage = 0; int GLAD_GL_ARB_texture_storage_multisample = 0; int GLAD_GL_ARB_texture_swizzle = 0; int GLAD_GL_ARB_texture_view = 0; int GLAD_GL_ARB_timer_query = 0; int GLAD_GL_ARB_transform_feedback2 = 0; int GLAD_GL_ARB_transform_feedback3 = 0; int GLAD_GL_ARB_transform_feedback_instanced = 0; int GLAD_GL_ARB_transform_feedback_overflow_query = 0; int GLAD_GL_ARB_transpose_matrix = 0; int GLAD_GL_ARB_uniform_buffer_object = 0; int GLAD_GL_ARB_vertex_array_bgra = 0; int GLAD_GL_ARB_vertex_array_object = 0; int GLAD_GL_ARB_vertex_attrib_64bit = 0; int GLAD_GL_ARB_vertex_attrib_binding = 0; int GLAD_GL_ARB_vertex_blend = 0; int GLAD_GL_ARB_vertex_buffer_object = 0; int GLAD_GL_ARB_vertex_program = 0; int GLAD_GL_ARB_vertex_shader = 0; int GLAD_GL_ARB_vertex_type_10f_11f_11f_rev = 0; int GLAD_GL_ARB_vertex_type_2_10_10_10_rev = 0; int GLAD_GL_ARB_viewport_array = 0; int GLAD_GL_ARB_window_pos = 0; int GLAD_GL_KHR_blend_equation_advanced = 0; int GLAD_GL_KHR_blend_equation_advanced_coherent = 0; int GLAD_GL_KHR_context_flush_control = 0; int GLAD_GL_KHR_debug = 0; int GLAD_GL_KHR_no_error = 0; int GLAD_GL_KHR_parallel_shader_compile = 0; int GLAD_GL_KHR_robust_buffer_access_behavior = 0; int GLAD_GL_KHR_robustness = 0; int GLAD_GL_KHR_shader_subgroup = 0; int GLAD_GL_KHR_texture_compression_astc_hdr = 0; int GLAD_GL_KHR_texture_compression_astc_ldr = 0; int GLAD_GL_KHR_texture_compression_astc_sliced_3d = 0; PFNGLACCUMPROC glad_glAccum = NULL; PFNGLACTIVESHADERPROGRAMPROC glad_glActiveShaderProgram = NULL; PFNGLACTIVETEXTUREPROC glad_glActiveTexture = NULL; PFNGLACTIVETEXTUREARBPROC glad_glActiveTextureARB = NULL; PFNGLALPHAFUNCPROC glad_glAlphaFunc = NULL; PFNGLARETEXTURESRESIDENTPROC glad_glAreTexturesResident = NULL; PFNGLARRAYELEMENTPROC glad_glArrayElement = NULL; PFNGLATTACHOBJECTARBPROC glad_glAttachObjectARB = NULL; PFNGLATTACHSHADERPROC glad_glAttachShader = NULL; PFNGLBEGINPROC glad_glBegin = NULL; PFNGLBEGINCONDITIONALRENDERPROC glad_glBeginConditionalRender = NULL; PFNGLBEGINQUERYPROC glad_glBeginQuery = NULL; PFNGLBEGINQUERYARBPROC glad_glBeginQueryARB = NULL; PFNGLBEGINQUERYINDEXEDPROC glad_glBeginQueryIndexed = NULL; PFNGLBEGINTRANSFORMFEEDBACKPROC glad_glBeginTransformFeedback = NULL; PFNGLBINDATTRIBLOCATIONPROC glad_glBindAttribLocation = NULL; PFNGLBINDATTRIBLOCATIONARBPROC glad_glBindAttribLocationARB = NULL; PFNGLBINDBUFFERPROC glad_glBindBuffer = NULL; PFNGLBINDBUFFERARBPROC glad_glBindBufferARB = NULL; PFNGLBINDBUFFERBASEPROC glad_glBindBufferBase = NULL; PFNGLBINDBUFFERRANGEPROC glad_glBindBufferRange = NULL; PFNGLBINDBUFFERSBASEPROC glad_glBindBuffersBase = NULL; PFNGLBINDBUFFERSRANGEPROC glad_glBindBuffersRange = NULL; PFNGLBINDFRAGDATALOCATIONPROC glad_glBindFragDataLocation = NULL; PFNGLBINDFRAGDATALOCATIONINDEXEDPROC glad_glBindFragDataLocationIndexed = NULL; PFNGLBINDFRAMEBUFFERPROC glad_glBindFramebuffer = NULL; PFNGLBINDIMAGETEXTUREPROC glad_glBindImageTexture = NULL; PFNGLBINDIMAGETEXTURESPROC glad_glBindImageTextures = NULL; PFNGLBINDPROGRAMARBPROC glad_glBindProgramARB = NULL; PFNGLBINDPROGRAMPIPELINEPROC glad_glBindProgramPipeline = NULL; PFNGLBINDRENDERBUFFERPROC glad_glBindRenderbuffer = NULL; PFNGLBINDSAMPLERPROC glad_glBindSampler = NULL; PFNGLBINDSAMPLERSPROC glad_glBindSamplers = NULL; PFNGLBINDTEXTUREPROC glad_glBindTexture = NULL; PFNGLBINDTEXTUREUNITPROC glad_glBindTextureUnit = NULL; PFNGLBINDTEXTURESPROC glad_glBindTextures = NULL; PFNGLBINDTRANSFORMFEEDBACKPROC glad_glBindTransformFeedback = NULL; PFNGLBINDVERTEXARRAYPROC glad_glBindVertexArray = NULL; PFNGLBINDVERTEXBUFFERPROC glad_glBindVertexBuffer = NULL; PFNGLBINDVERTEXBUFFERSPROC glad_glBindVertexBuffers = NULL; PFNGLBITMAPPROC glad_glBitmap = NULL; PFNGLBLENDBARRIERPROC glad_glBlendBarrier = NULL; PFNGLBLENDBARRIERKHRPROC glad_glBlendBarrierKHR = NULL; PFNGLBLENDCOLORPROC glad_glBlendColor = NULL; PFNGLBLENDEQUATIONPROC glad_glBlendEquation = NULL; PFNGLBLENDEQUATIONSEPARATEPROC glad_glBlendEquationSeparate = NULL; PFNGLBLENDEQUATIONSEPARATEIPROC glad_glBlendEquationSeparatei = NULL; PFNGLBLENDEQUATIONSEPARATEIARBPROC glad_glBlendEquationSeparateiARB = NULL; PFNGLBLENDEQUATIONIPROC glad_glBlendEquationi = NULL; PFNGLBLENDEQUATIONIARBPROC glad_glBlendEquationiARB = NULL; PFNGLBLENDFUNCPROC glad_glBlendFunc = NULL; PFNGLBLENDFUNCSEPARATEPROC glad_glBlendFuncSeparate = NULL; PFNGLBLENDFUNCSEPARATEIPROC glad_glBlendFuncSeparatei = NULL; PFNGLBLENDFUNCSEPARATEIARBPROC glad_glBlendFuncSeparateiARB = NULL; PFNGLBLENDFUNCIPROC glad_glBlendFunci = NULL; PFNGLBLENDFUNCIARBPROC glad_glBlendFunciARB = NULL; PFNGLBLITFRAMEBUFFERPROC glad_glBlitFramebuffer = NULL; PFNGLBLITNAMEDFRAMEBUFFERPROC glad_glBlitNamedFramebuffer = NULL; PFNGLBUFFERDATAPROC glad_glBufferData = NULL; PFNGLBUFFERDATAARBPROC glad_glBufferDataARB = NULL; PFNGLBUFFERPAGECOMMITMENTARBPROC glad_glBufferPageCommitmentARB = NULL; PFNGLBUFFERSTORAGEPROC glad_glBufferStorage = NULL; PFNGLBUFFERSUBDATAPROC glad_glBufferSubData = NULL; PFNGLBUFFERSUBDATAARBPROC glad_glBufferSubDataARB = NULL; PFNGLCALLLISTPROC glad_glCallList = NULL; PFNGLCALLLISTSPROC glad_glCallLists = NULL; PFNGLCHECKFRAMEBUFFERSTATUSPROC glad_glCheckFramebufferStatus = NULL; PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC glad_glCheckNamedFramebufferStatus = NULL; PFNGLCLAMPCOLORPROC glad_glClampColor = NULL; PFNGLCLAMPCOLORARBPROC glad_glClampColorARB = NULL; PFNGLCLEARPROC glad_glClear = NULL; PFNGLCLEARACCUMPROC glad_glClearAccum = NULL; PFNGLCLEARBUFFERDATAPROC glad_glClearBufferData = NULL; PFNGLCLEARBUFFERSUBDATAPROC glad_glClearBufferSubData = NULL; PFNGLCLEARBUFFERFIPROC glad_glClearBufferfi = NULL; PFNGLCLEARBUFFERFVPROC glad_glClearBufferfv = NULL; PFNGLCLEARBUFFERIVPROC glad_glClearBufferiv = NULL; PFNGLCLEARBUFFERUIVPROC glad_glClearBufferuiv = NULL; PFNGLCLEARCOLORPROC glad_glClearColor = NULL; PFNGLCLEARDEPTHPROC glad_glClearDepth = NULL; PFNGLCLEARDEPTHFPROC glad_glClearDepthf = NULL; PFNGLCLEARINDEXPROC glad_glClearIndex = NULL; PFNGLCLEARNAMEDBUFFERDATAPROC glad_glClearNamedBufferData = NULL; PFNGLCLEARNAMEDBUFFERSUBDATAPROC glad_glClearNamedBufferSubData = NULL; PFNGLCLEARNAMEDFRAMEBUFFERFIPROC glad_glClearNamedFramebufferfi = NULL; PFNGLCLEARNAMEDFRAMEBUFFERFVPROC glad_glClearNamedFramebufferfv = NULL; PFNGLCLEARNAMEDFRAMEBUFFERIVPROC glad_glClearNamedFramebufferiv = NULL; PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC glad_glClearNamedFramebufferuiv = NULL; PFNGLCLEARSTENCILPROC glad_glClearStencil = NULL; PFNGLCLEARTEXIMAGEPROC glad_glClearTexImage = NULL; PFNGLCLEARTEXSUBIMAGEPROC glad_glClearTexSubImage = NULL; PFNGLCLIENTACTIVETEXTUREPROC glad_glClientActiveTexture = NULL; PFNGLCLIENTACTIVETEXTUREARBPROC glad_glClientActiveTextureARB = NULL; PFNGLCLIENTWAITSYNCPROC glad_glClientWaitSync = NULL; PFNGLCLIPCONTROLPROC glad_glClipControl = NULL; PFNGLCLIPPLANEPROC glad_glClipPlane = NULL; PFNGLCOLOR3BPROC glad_glColor3b = NULL; PFNGLCOLOR3BVPROC glad_glColor3bv = NULL; PFNGLCOLOR3DPROC glad_glColor3d = NULL; PFNGLCOLOR3DVPROC glad_glColor3dv = NULL; PFNGLCOLOR3FPROC glad_glColor3f = NULL; PFNGLCOLOR3FVPROC glad_glColor3fv = NULL; PFNGLCOLOR3IPROC glad_glColor3i = NULL; PFNGLCOLOR3IVPROC glad_glColor3iv = NULL; PFNGLCOLOR3SPROC glad_glColor3s = NULL; PFNGLCOLOR3SVPROC glad_glColor3sv = NULL; PFNGLCOLOR3UBPROC glad_glColor3ub = NULL; PFNGLCOLOR3UBVPROC glad_glColor3ubv = NULL; PFNGLCOLOR3UIPROC glad_glColor3ui = NULL; PFNGLCOLOR3UIVPROC glad_glColor3uiv = NULL; PFNGLCOLOR3USPROC glad_glColor3us = NULL; PFNGLCOLOR3USVPROC glad_glColor3usv = NULL; PFNGLCOLOR4BPROC glad_glColor4b = NULL; PFNGLCOLOR4BVPROC glad_glColor4bv = NULL; PFNGLCOLOR4DPROC glad_glColor4d = NULL; PFNGLCOLOR4DVPROC glad_glColor4dv = NULL; PFNGLCOLOR4FPROC glad_glColor4f = NULL; PFNGLCOLOR4FVPROC glad_glColor4fv = NULL; PFNGLCOLOR4IPROC glad_glColor4i = NULL; PFNGLCOLOR4IVPROC glad_glColor4iv = NULL; PFNGLCOLOR4SPROC glad_glColor4s = NULL; PFNGLCOLOR4SVPROC glad_glColor4sv = NULL; PFNGLCOLOR4UBPROC glad_glColor4ub = NULL; PFNGLCOLOR4UBVPROC glad_glColor4ubv = NULL; PFNGLCOLOR4UIPROC glad_glColor4ui = NULL; PFNGLCOLOR4UIVPROC glad_glColor4uiv = NULL; PFNGLCOLOR4USPROC glad_glColor4us = NULL; PFNGLCOLOR4USVPROC glad_glColor4usv = NULL; PFNGLCOLORMASKPROC glad_glColorMask = NULL; PFNGLCOLORMASKIPROC glad_glColorMaski = NULL; PFNGLCOLORMATERIALPROC glad_glColorMaterial = NULL; PFNGLCOLORP3UIPROC glad_glColorP3ui = NULL; PFNGLCOLORP3UIVPROC glad_glColorP3uiv = NULL; PFNGLCOLORP4UIPROC glad_glColorP4ui = NULL; PFNGLCOLORP4UIVPROC glad_glColorP4uiv = NULL; PFNGLCOLORPOINTERPROC glad_glColorPointer = NULL; PFNGLCOLORSUBTABLEPROC glad_glColorSubTable = NULL; PFNGLCOLORTABLEPROC glad_glColorTable = NULL; PFNGLCOLORTABLEPARAMETERFVPROC glad_glColorTableParameterfv = NULL; PFNGLCOLORTABLEPARAMETERIVPROC glad_glColorTableParameteriv = NULL; PFNGLCOMPILESHADERPROC glad_glCompileShader = NULL; PFNGLCOMPILESHADERARBPROC glad_glCompileShaderARB = NULL; PFNGLCOMPILESHADERINCLUDEARBPROC glad_glCompileShaderIncludeARB = NULL; PFNGLCOMPRESSEDTEXIMAGE1DPROC glad_glCompressedTexImage1D = NULL; PFNGLCOMPRESSEDTEXIMAGE1DARBPROC glad_glCompressedTexImage1DARB = NULL; PFNGLCOMPRESSEDTEXIMAGE2DPROC glad_glCompressedTexImage2D = NULL; PFNGLCOMPRESSEDTEXIMAGE2DARBPROC glad_glCompressedTexImage2DARB = NULL; PFNGLCOMPRESSEDTEXIMAGE3DPROC glad_glCompressedTexImage3D = NULL; PFNGLCOMPRESSEDTEXIMAGE3DARBPROC glad_glCompressedTexImage3DARB = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC glad_glCompressedTexSubImage1D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC glad_glCompressedTexSubImage1DARB = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC glad_glCompressedTexSubImage2D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC glad_glCompressedTexSubImage2DARB = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC glad_glCompressedTexSubImage3D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC glad_glCompressedTexSubImage3DARB = NULL; PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC glad_glCompressedTextureSubImage1D = NULL; PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC glad_glCompressedTextureSubImage2D = NULL; PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC glad_glCompressedTextureSubImage3D = NULL; PFNGLCONVOLUTIONFILTER1DPROC glad_glConvolutionFilter1D = NULL; PFNGLCONVOLUTIONFILTER2DPROC glad_glConvolutionFilter2D = NULL; PFNGLCONVOLUTIONPARAMETERFPROC glad_glConvolutionParameterf = NULL; PFNGLCONVOLUTIONPARAMETERFVPROC glad_glConvolutionParameterfv = NULL; PFNGLCONVOLUTIONPARAMETERIPROC glad_glConvolutionParameteri = NULL; PFNGLCONVOLUTIONPARAMETERIVPROC glad_glConvolutionParameteriv = NULL; PFNGLCOPYBUFFERSUBDATAPROC glad_glCopyBufferSubData = NULL; PFNGLCOPYCOLORSUBTABLEPROC glad_glCopyColorSubTable = NULL; PFNGLCOPYCOLORTABLEPROC glad_glCopyColorTable = NULL; PFNGLCOPYCONVOLUTIONFILTER1DPROC glad_glCopyConvolutionFilter1D = NULL; PFNGLCOPYCONVOLUTIONFILTER2DPROC glad_glCopyConvolutionFilter2D = NULL; PFNGLCOPYIMAGESUBDATAPROC glad_glCopyImageSubData = NULL; PFNGLCOPYNAMEDBUFFERSUBDATAPROC glad_glCopyNamedBufferSubData = NULL; PFNGLCOPYPIXELSPROC glad_glCopyPixels = NULL; PFNGLCOPYTEXIMAGE1DPROC glad_glCopyTexImage1D = NULL; PFNGLCOPYTEXIMAGE2DPROC glad_glCopyTexImage2D = NULL; PFNGLCOPYTEXSUBIMAGE1DPROC glad_glCopyTexSubImage1D = NULL; PFNGLCOPYTEXSUBIMAGE2DPROC glad_glCopyTexSubImage2D = NULL; PFNGLCOPYTEXSUBIMAGE3DPROC glad_glCopyTexSubImage3D = NULL; PFNGLCOPYTEXTURESUBIMAGE1DPROC glad_glCopyTextureSubImage1D = NULL; PFNGLCOPYTEXTURESUBIMAGE2DPROC glad_glCopyTextureSubImage2D = NULL; PFNGLCOPYTEXTURESUBIMAGE3DPROC glad_glCopyTextureSubImage3D = NULL; PFNGLCREATEBUFFERSPROC glad_glCreateBuffers = NULL; PFNGLCREATEFRAMEBUFFERSPROC glad_glCreateFramebuffers = NULL; PFNGLCREATEPROGRAMPROC glad_glCreateProgram = NULL; PFNGLCREATEPROGRAMOBJECTARBPROC glad_glCreateProgramObjectARB = NULL; PFNGLCREATEPROGRAMPIPELINESPROC glad_glCreateProgramPipelines = NULL; PFNGLCREATEQUERIESPROC glad_glCreateQueries = NULL; PFNGLCREATERENDERBUFFERSPROC glad_glCreateRenderbuffers = NULL; PFNGLCREATESAMPLERSPROC glad_glCreateSamplers = NULL; PFNGLCREATESHADERPROC glad_glCreateShader = NULL; PFNGLCREATESHADEROBJECTARBPROC glad_glCreateShaderObjectARB = NULL; PFNGLCREATESHADERPROGRAMVPROC glad_glCreateShaderProgramv = NULL; PFNGLCREATESYNCFROMCLEVENTARBPROC glad_glCreateSyncFromCLeventARB = NULL; PFNGLCREATETEXTURESPROC glad_glCreateTextures = NULL; PFNGLCREATETRANSFORMFEEDBACKSPROC glad_glCreateTransformFeedbacks = NULL; PFNGLCREATEVERTEXARRAYSPROC glad_glCreateVertexArrays = NULL; PFNGLCULLFACEPROC glad_glCullFace = NULL; PFNGLCURRENTPALETTEMATRIXARBPROC glad_glCurrentPaletteMatrixARB = NULL; PFNGLDEBUGMESSAGECALLBACKPROC glad_glDebugMessageCallback = NULL; PFNGLDEBUGMESSAGECALLBACKARBPROC glad_glDebugMessageCallbackARB = NULL; PFNGLDEBUGMESSAGECONTROLPROC glad_glDebugMessageControl = NULL; PFNGLDEBUGMESSAGECONTROLARBPROC glad_glDebugMessageControlARB = NULL; PFNGLDEBUGMESSAGEINSERTPROC glad_glDebugMessageInsert = NULL; PFNGLDEBUGMESSAGEINSERTARBPROC glad_glDebugMessageInsertARB = NULL; PFNGLDELETEBUFFERSPROC glad_glDeleteBuffers = NULL; PFNGLDELETEBUFFERSARBPROC glad_glDeleteBuffersARB = NULL; PFNGLDELETEFRAMEBUFFERSPROC glad_glDeleteFramebuffers = NULL; PFNGLDELETELISTSPROC glad_glDeleteLists = NULL; PFNGLDELETENAMEDSTRINGARBPROC glad_glDeleteNamedStringARB = NULL; PFNGLDELETEOBJECTARBPROC glad_glDeleteObjectARB = NULL; PFNGLDELETEPROGRAMPROC glad_glDeleteProgram = NULL; PFNGLDELETEPROGRAMPIPELINESPROC glad_glDeleteProgramPipelines = NULL; PFNGLDELETEPROGRAMSARBPROC glad_glDeleteProgramsARB = NULL; PFNGLDELETEQUERIESPROC glad_glDeleteQueries = NULL; PFNGLDELETEQUERIESARBPROC glad_glDeleteQueriesARB = NULL; PFNGLDELETERENDERBUFFERSPROC glad_glDeleteRenderbuffers = NULL; PFNGLDELETESAMPLERSPROC glad_glDeleteSamplers = NULL; PFNGLDELETESHADERPROC glad_glDeleteShader = NULL; PFNGLDELETESYNCPROC glad_glDeleteSync = NULL; PFNGLDELETETEXTURESPROC glad_glDeleteTextures = NULL; PFNGLDELETETRANSFORMFEEDBACKSPROC glad_glDeleteTransformFeedbacks = NULL; PFNGLDELETEVERTEXARRAYSPROC glad_glDeleteVertexArrays = NULL; PFNGLDEPTHFUNCPROC glad_glDepthFunc = NULL; PFNGLDEPTHMASKPROC glad_glDepthMask = NULL; PFNGLDEPTHRANGEPROC glad_glDepthRange = NULL; PFNGLDEPTHRANGEARRAYDVNVPROC glad_glDepthRangeArraydvNV = NULL; PFNGLDEPTHRANGEARRAYVPROC glad_glDepthRangeArrayv = NULL; PFNGLDEPTHRANGEINDEXEDPROC glad_glDepthRangeIndexed = NULL; PFNGLDEPTHRANGEINDEXEDDNVPROC glad_glDepthRangeIndexeddNV = NULL; PFNGLDEPTHRANGEFPROC glad_glDepthRangef = NULL; PFNGLDETACHOBJECTARBPROC glad_glDetachObjectARB = NULL; PFNGLDETACHSHADERPROC glad_glDetachShader = NULL; PFNGLDISABLEPROC glad_glDisable = NULL; PFNGLDISABLECLIENTSTATEPROC glad_glDisableClientState = NULL; PFNGLDISABLEVERTEXARRAYATTRIBPROC glad_glDisableVertexArrayAttrib = NULL; PFNGLDISABLEVERTEXATTRIBARRAYPROC glad_glDisableVertexAttribArray = NULL; PFNGLDISABLEVERTEXATTRIBARRAYARBPROC glad_glDisableVertexAttribArrayARB = NULL; PFNGLDISABLEIPROC glad_glDisablei = NULL; PFNGLDISPATCHCOMPUTEPROC glad_glDispatchCompute = NULL; PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC glad_glDispatchComputeGroupSizeARB = NULL; PFNGLDISPATCHCOMPUTEINDIRECTPROC glad_glDispatchComputeIndirect = NULL; PFNGLDRAWARRAYSPROC glad_glDrawArrays = NULL; PFNGLDRAWARRAYSINDIRECTPROC glad_glDrawArraysIndirect = NULL; PFNGLDRAWARRAYSINSTANCEDPROC glad_glDrawArraysInstanced = NULL; PFNGLDRAWARRAYSINSTANCEDARBPROC glad_glDrawArraysInstancedARB = NULL; PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC glad_glDrawArraysInstancedBaseInstance = NULL; PFNGLDRAWBUFFERPROC glad_glDrawBuffer = NULL; PFNGLDRAWBUFFERSPROC glad_glDrawBuffers = NULL; PFNGLDRAWBUFFERSARBPROC glad_glDrawBuffersARB = NULL; PFNGLDRAWELEMENTSPROC glad_glDrawElements = NULL; PFNGLDRAWELEMENTSBASEVERTEXPROC glad_glDrawElementsBaseVertex = NULL; PFNGLDRAWELEMENTSINDIRECTPROC glad_glDrawElementsIndirect = NULL; PFNGLDRAWELEMENTSINSTANCEDPROC glad_glDrawElementsInstanced = NULL; PFNGLDRAWELEMENTSINSTANCEDARBPROC glad_glDrawElementsInstancedARB = NULL; PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC glad_glDrawElementsInstancedBaseInstance = NULL; PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC glad_glDrawElementsInstancedBaseVertex = NULL; PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC glad_glDrawElementsInstancedBaseVertexBaseInstance = NULL; PFNGLDRAWPIXELSPROC glad_glDrawPixels = NULL; PFNGLDRAWRANGEELEMENTSPROC glad_glDrawRangeElements = NULL; PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC glad_glDrawRangeElementsBaseVertex = NULL; PFNGLDRAWTRANSFORMFEEDBACKPROC glad_glDrawTransformFeedback = NULL; PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC glad_glDrawTransformFeedbackInstanced = NULL; PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC glad_glDrawTransformFeedbackStream = NULL; PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC glad_glDrawTransformFeedbackStreamInstanced = NULL; PFNGLEDGEFLAGPROC glad_glEdgeFlag = NULL; PFNGLEDGEFLAGPOINTERPROC glad_glEdgeFlagPointer = NULL; PFNGLEDGEFLAGVPROC glad_glEdgeFlagv = NULL; PFNGLENABLEPROC glad_glEnable = NULL; PFNGLENABLECLIENTSTATEPROC glad_glEnableClientState = NULL; PFNGLENABLEVERTEXARRAYATTRIBPROC glad_glEnableVertexArrayAttrib = NULL; PFNGLENABLEVERTEXATTRIBARRAYPROC glad_glEnableVertexAttribArray = NULL; PFNGLENABLEVERTEXATTRIBARRAYARBPROC glad_glEnableVertexAttribArrayARB = NULL; PFNGLENABLEIPROC glad_glEnablei = NULL; PFNGLENDPROC glad_glEnd = NULL; PFNGLENDCONDITIONALRENDERPROC glad_glEndConditionalRender = NULL; PFNGLENDLISTPROC glad_glEndList = NULL; PFNGLENDQUERYPROC glad_glEndQuery = NULL; PFNGLENDQUERYARBPROC glad_glEndQueryARB = NULL; PFNGLENDQUERYINDEXEDPROC glad_glEndQueryIndexed = NULL; PFNGLENDTRANSFORMFEEDBACKPROC glad_glEndTransformFeedback = NULL; PFNGLEVALCOORD1DPROC glad_glEvalCoord1d = NULL; PFNGLEVALCOORD1DVPROC glad_glEvalCoord1dv = NULL; PFNGLEVALCOORD1FPROC glad_glEvalCoord1f = NULL; PFNGLEVALCOORD1FVPROC glad_glEvalCoord1fv = NULL; PFNGLEVALCOORD2DPROC glad_glEvalCoord2d = NULL; PFNGLEVALCOORD2DVPROC glad_glEvalCoord2dv = NULL; PFNGLEVALCOORD2FPROC glad_glEvalCoord2f = NULL; PFNGLEVALCOORD2FVPROC glad_glEvalCoord2fv = NULL; PFNGLEVALMESH1PROC glad_glEvalMesh1 = NULL; PFNGLEVALMESH2PROC glad_glEvalMesh2 = NULL; PFNGLEVALPOINT1PROC glad_glEvalPoint1 = NULL; PFNGLEVALPOINT2PROC glad_glEvalPoint2 = NULL; PFNGLEVALUATEDEPTHVALUESARBPROC glad_glEvaluateDepthValuesARB = NULL; PFNGLFEEDBACKBUFFERPROC glad_glFeedbackBuffer = NULL; PFNGLFENCESYNCPROC glad_glFenceSync = NULL; PFNGLFINISHPROC glad_glFinish = NULL; PFNGLFLUSHPROC glad_glFlush = NULL; PFNGLFLUSHMAPPEDBUFFERRANGEPROC glad_glFlushMappedBufferRange = NULL; PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC glad_glFlushMappedNamedBufferRange = NULL; PFNGLFOGCOORDPOINTERPROC glad_glFogCoordPointer = NULL; PFNGLFOGCOORDDPROC glad_glFogCoordd = NULL; PFNGLFOGCOORDDVPROC glad_glFogCoorddv = NULL; PFNGLFOGCOORDFPROC glad_glFogCoordf = NULL; PFNGLFOGCOORDFVPROC glad_glFogCoordfv = NULL; PFNGLFOGFPROC glad_glFogf = NULL; PFNGLFOGFVPROC glad_glFogfv = NULL; PFNGLFOGIPROC glad_glFogi = NULL; PFNGLFOGIVPROC glad_glFogiv = NULL; PFNGLFRAMEBUFFERPARAMETERIPROC glad_glFramebufferParameteri = NULL; PFNGLFRAMEBUFFERRENDERBUFFERPROC glad_glFramebufferRenderbuffer = NULL; PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glFramebufferSampleLocationsfvARB = NULL; PFNGLFRAMEBUFFERTEXTUREPROC glad_glFramebufferTexture = NULL; PFNGLFRAMEBUFFERTEXTURE1DPROC glad_glFramebufferTexture1D = NULL; PFNGLFRAMEBUFFERTEXTURE2DPROC glad_glFramebufferTexture2D = NULL; PFNGLFRAMEBUFFERTEXTURE3DPROC glad_glFramebufferTexture3D = NULL; PFNGLFRAMEBUFFERTEXTUREARBPROC glad_glFramebufferTextureARB = NULL; PFNGLFRAMEBUFFERTEXTUREFACEARBPROC glad_glFramebufferTextureFaceARB = NULL; PFNGLFRAMEBUFFERTEXTURELAYERPROC glad_glFramebufferTextureLayer = NULL; PFNGLFRAMEBUFFERTEXTURELAYERARBPROC glad_glFramebufferTextureLayerARB = NULL; PFNGLFRONTFACEPROC glad_glFrontFace = NULL; PFNGLFRUSTUMPROC glad_glFrustum = NULL; PFNGLGENBUFFERSPROC glad_glGenBuffers = NULL; PFNGLGENBUFFERSARBPROC glad_glGenBuffersARB = NULL; PFNGLGENFRAMEBUFFERSPROC glad_glGenFramebuffers = NULL; PFNGLGENLISTSPROC glad_glGenLists = NULL; PFNGLGENPROGRAMPIPELINESPROC glad_glGenProgramPipelines = NULL; PFNGLGENPROGRAMSARBPROC glad_glGenProgramsARB = NULL; PFNGLGENQUERIESPROC glad_glGenQueries = NULL; PFNGLGENQUERIESARBPROC glad_glGenQueriesARB = NULL; PFNGLGENRENDERBUFFERSPROC glad_glGenRenderbuffers = NULL; PFNGLGENSAMPLERSPROC glad_glGenSamplers = NULL; PFNGLGENTEXTURESPROC glad_glGenTextures = NULL; PFNGLGENTRANSFORMFEEDBACKSPROC glad_glGenTransformFeedbacks = NULL; PFNGLGENVERTEXARRAYSPROC glad_glGenVertexArrays = NULL; PFNGLGENERATEMIPMAPPROC glad_glGenerateMipmap = NULL; PFNGLGENERATETEXTUREMIPMAPPROC glad_glGenerateTextureMipmap = NULL; PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC glad_glGetActiveAtomicCounterBufferiv = NULL; PFNGLGETACTIVEATTRIBPROC glad_glGetActiveAttrib = NULL; PFNGLGETACTIVEATTRIBARBPROC glad_glGetActiveAttribARB = NULL; PFNGLGETACTIVESUBROUTINENAMEPROC glad_glGetActiveSubroutineName = NULL; PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC glad_glGetActiveSubroutineUniformName = NULL; PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC glad_glGetActiveSubroutineUniformiv = NULL; PFNGLGETACTIVEUNIFORMPROC glad_glGetActiveUniform = NULL; PFNGLGETACTIVEUNIFORMARBPROC glad_glGetActiveUniformARB = NULL; PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC glad_glGetActiveUniformBlockName = NULL; PFNGLGETACTIVEUNIFORMBLOCKIVPROC glad_glGetActiveUniformBlockiv = NULL; PFNGLGETACTIVEUNIFORMNAMEPROC glad_glGetActiveUniformName = NULL; PFNGLGETACTIVEUNIFORMSIVPROC glad_glGetActiveUniformsiv = NULL; PFNGLGETATTACHEDOBJECTSARBPROC glad_glGetAttachedObjectsARB = NULL; PFNGLGETATTACHEDSHADERSPROC glad_glGetAttachedShaders = NULL; PFNGLGETATTRIBLOCATIONPROC glad_glGetAttribLocation = NULL; PFNGLGETATTRIBLOCATIONARBPROC glad_glGetAttribLocationARB = NULL; PFNGLGETBOOLEANI_VPROC glad_glGetBooleani_v = NULL; PFNGLGETBOOLEANVPROC glad_glGetBooleanv = NULL; PFNGLGETBUFFERPARAMETERI64VPROC glad_glGetBufferParameteri64v = NULL; PFNGLGETBUFFERPARAMETERIVPROC glad_glGetBufferParameteriv = NULL; PFNGLGETBUFFERPARAMETERIVARBPROC glad_glGetBufferParameterivARB = NULL; PFNGLGETBUFFERPOINTERVPROC glad_glGetBufferPointerv = NULL; PFNGLGETBUFFERPOINTERVARBPROC glad_glGetBufferPointervARB = NULL; PFNGLGETBUFFERSUBDATAPROC glad_glGetBufferSubData = NULL; PFNGLGETBUFFERSUBDATAARBPROC glad_glGetBufferSubDataARB = NULL; PFNGLGETCLIPPLANEPROC glad_glGetClipPlane = NULL; PFNGLGETCOLORTABLEPROC glad_glGetColorTable = NULL; PFNGLGETCOLORTABLEPARAMETERFVPROC glad_glGetColorTableParameterfv = NULL; PFNGLGETCOLORTABLEPARAMETERIVPROC glad_glGetColorTableParameteriv = NULL; PFNGLGETCOMPRESSEDTEXIMAGEPROC glad_glGetCompressedTexImage = NULL; PFNGLGETCOMPRESSEDTEXIMAGEARBPROC glad_glGetCompressedTexImageARB = NULL; PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC glad_glGetCompressedTextureImage = NULL; PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC glad_glGetCompressedTextureSubImage = NULL; PFNGLGETCONVOLUTIONFILTERPROC glad_glGetConvolutionFilter = NULL; PFNGLGETCONVOLUTIONPARAMETERFVPROC glad_glGetConvolutionParameterfv = NULL; PFNGLGETCONVOLUTIONPARAMETERIVPROC glad_glGetConvolutionParameteriv = NULL; PFNGLGETDEBUGMESSAGELOGPROC glad_glGetDebugMessageLog = NULL; PFNGLGETDEBUGMESSAGELOGARBPROC glad_glGetDebugMessageLogARB = NULL; PFNGLGETDOUBLEI_VPROC glad_glGetDoublei_v = NULL; PFNGLGETDOUBLEVPROC glad_glGetDoublev = NULL; PFNGLGETERRORPROC glad_glGetError = NULL; PFNGLGETFLOATI_VPROC glad_glGetFloati_v = NULL; PFNGLGETFLOATVPROC glad_glGetFloatv = NULL; PFNGLGETFRAGDATAINDEXPROC glad_glGetFragDataIndex = NULL; PFNGLGETFRAGDATALOCATIONPROC glad_glGetFragDataLocation = NULL; PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetFramebufferAttachmentParameteriv = NULL; PFNGLGETFRAMEBUFFERPARAMETERIVPROC glad_glGetFramebufferParameteriv = NULL; PFNGLGETGRAPHICSRESETSTATUSPROC glad_glGetGraphicsResetStatus = NULL; PFNGLGETGRAPHICSRESETSTATUSARBPROC glad_glGetGraphicsResetStatusARB = NULL; PFNGLGETHANDLEARBPROC glad_glGetHandleARB = NULL; PFNGLGETHISTOGRAMPROC glad_glGetHistogram = NULL; PFNGLGETHISTOGRAMPARAMETERFVPROC glad_glGetHistogramParameterfv = NULL; PFNGLGETHISTOGRAMPARAMETERIVPROC glad_glGetHistogramParameteriv = NULL; PFNGLGETIMAGEHANDLEARBPROC glad_glGetImageHandleARB = NULL; PFNGLGETINFOLOGARBPROC glad_glGetInfoLogARB = NULL; PFNGLGETINTEGER64I_VPROC glad_glGetInteger64i_v = NULL; PFNGLGETINTEGER64VPROC glad_glGetInteger64v = NULL; PFNGLGETINTEGERI_VPROC glad_glGetIntegeri_v = NULL; PFNGLGETINTEGERVPROC glad_glGetIntegerv = NULL; PFNGLGETINTERNALFORMATI64VPROC glad_glGetInternalformati64v = NULL; PFNGLGETINTERNALFORMATIVPROC glad_glGetInternalformativ = NULL; PFNGLGETLIGHTFVPROC glad_glGetLightfv = NULL; PFNGLGETLIGHTIVPROC glad_glGetLightiv = NULL; PFNGLGETMAPDVPROC glad_glGetMapdv = NULL; PFNGLGETMAPFVPROC glad_glGetMapfv = NULL; PFNGLGETMAPIVPROC glad_glGetMapiv = NULL; PFNGLGETMATERIALFVPROC glad_glGetMaterialfv = NULL; PFNGLGETMATERIALIVPROC glad_glGetMaterialiv = NULL; PFNGLGETMINMAXPROC glad_glGetMinmax = NULL; PFNGLGETMINMAXPARAMETERFVPROC glad_glGetMinmaxParameterfv = NULL; PFNGLGETMINMAXPARAMETERIVPROC glad_glGetMinmaxParameteriv = NULL; PFNGLGETMULTISAMPLEFVPROC glad_glGetMultisamplefv = NULL; PFNGLGETNAMEDBUFFERPARAMETERI64VPROC glad_glGetNamedBufferParameteri64v = NULL; PFNGLGETNAMEDBUFFERPARAMETERIVPROC glad_glGetNamedBufferParameteriv = NULL; PFNGLGETNAMEDBUFFERPOINTERVPROC glad_glGetNamedBufferPointerv = NULL; PFNGLGETNAMEDBUFFERSUBDATAPROC glad_glGetNamedBufferSubData = NULL; PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetNamedFramebufferAttachmentParameteriv = NULL; PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC glad_glGetNamedFramebufferParameteriv = NULL; PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC glad_glGetNamedRenderbufferParameteriv = NULL; PFNGLGETNAMEDSTRINGARBPROC glad_glGetNamedStringARB = NULL; PFNGLGETNAMEDSTRINGIVARBPROC glad_glGetNamedStringivARB = NULL; PFNGLGETOBJECTLABELPROC glad_glGetObjectLabel = NULL; PFNGLGETOBJECTPARAMETERFVARBPROC glad_glGetObjectParameterfvARB = NULL; PFNGLGETOBJECTPARAMETERIVARBPROC glad_glGetObjectParameterivARB = NULL; PFNGLGETOBJECTPTRLABELPROC glad_glGetObjectPtrLabel = NULL; PFNGLGETPIXELMAPFVPROC glad_glGetPixelMapfv = NULL; PFNGLGETPIXELMAPUIVPROC glad_glGetPixelMapuiv = NULL; PFNGLGETPIXELMAPUSVPROC glad_glGetPixelMapusv = NULL; PFNGLGETPOINTERVPROC glad_glGetPointerv = NULL; PFNGLGETPOLYGONSTIPPLEPROC glad_glGetPolygonStipple = NULL; PFNGLGETPROGRAMBINARYPROC glad_glGetProgramBinary = NULL; PFNGLGETPROGRAMENVPARAMETERDVARBPROC glad_glGetProgramEnvParameterdvARB = NULL; PFNGLGETPROGRAMENVPARAMETERFVARBPROC glad_glGetProgramEnvParameterfvARB = NULL; PFNGLGETPROGRAMINFOLOGPROC glad_glGetProgramInfoLog = NULL; PFNGLGETPROGRAMINTERFACEIVPROC glad_glGetProgramInterfaceiv = NULL; PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC glad_glGetProgramLocalParameterdvARB = NULL; PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC glad_glGetProgramLocalParameterfvARB = NULL; PFNGLGETPROGRAMPIPELINEINFOLOGPROC glad_glGetProgramPipelineInfoLog = NULL; PFNGLGETPROGRAMPIPELINEIVPROC glad_glGetProgramPipelineiv = NULL; PFNGLGETPROGRAMRESOURCEINDEXPROC glad_glGetProgramResourceIndex = NULL; PFNGLGETPROGRAMRESOURCELOCATIONPROC glad_glGetProgramResourceLocation = NULL; PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC glad_glGetProgramResourceLocationIndex = NULL; PFNGLGETPROGRAMRESOURCENAMEPROC glad_glGetProgramResourceName = NULL; PFNGLGETPROGRAMRESOURCEIVPROC glad_glGetProgramResourceiv = NULL; PFNGLGETPROGRAMSTAGEIVPROC glad_glGetProgramStageiv = NULL; PFNGLGETPROGRAMSTRINGARBPROC glad_glGetProgramStringARB = NULL; PFNGLGETPROGRAMIVPROC glad_glGetProgramiv = NULL; PFNGLGETPROGRAMIVARBPROC glad_glGetProgramivARB = NULL; PFNGLGETQUERYBUFFEROBJECTI64VPROC glad_glGetQueryBufferObjecti64v = NULL; PFNGLGETQUERYBUFFEROBJECTIVPROC glad_glGetQueryBufferObjectiv = NULL; PFNGLGETQUERYBUFFEROBJECTUI64VPROC glad_glGetQueryBufferObjectui64v = NULL; PFNGLGETQUERYBUFFEROBJECTUIVPROC glad_glGetQueryBufferObjectuiv = NULL; PFNGLGETQUERYINDEXEDIVPROC glad_glGetQueryIndexediv = NULL; PFNGLGETQUERYOBJECTI64VPROC glad_glGetQueryObjecti64v = NULL; PFNGLGETQUERYOBJECTIVPROC glad_glGetQueryObjectiv = NULL; PFNGLGETQUERYOBJECTIVARBPROC glad_glGetQueryObjectivARB = NULL; PFNGLGETQUERYOBJECTUI64VPROC glad_glGetQueryObjectui64v = NULL; PFNGLGETQUERYOBJECTUIVPROC glad_glGetQueryObjectuiv = NULL; PFNGLGETQUERYOBJECTUIVARBPROC glad_glGetQueryObjectuivARB = NULL; PFNGLGETQUERYIVPROC glad_glGetQueryiv = NULL; PFNGLGETQUERYIVARBPROC glad_glGetQueryivARB = NULL; PFNGLGETRENDERBUFFERPARAMETERIVPROC glad_glGetRenderbufferParameteriv = NULL; PFNGLGETSAMPLERPARAMETERIIVPROC glad_glGetSamplerParameterIiv = NULL; PFNGLGETSAMPLERPARAMETERIUIVPROC glad_glGetSamplerParameterIuiv = NULL; PFNGLGETSAMPLERPARAMETERFVPROC glad_glGetSamplerParameterfv = NULL; PFNGLGETSAMPLERPARAMETERIVPROC glad_glGetSamplerParameteriv = NULL; PFNGLGETSEPARABLEFILTERPROC glad_glGetSeparableFilter = NULL; PFNGLGETSHADERINFOLOGPROC glad_glGetShaderInfoLog = NULL; PFNGLGETSHADERPRECISIONFORMATPROC glad_glGetShaderPrecisionFormat = NULL; PFNGLGETSHADERSOURCEPROC glad_glGetShaderSource = NULL; PFNGLGETSHADERSOURCEARBPROC glad_glGetShaderSourceARB = NULL; PFNGLGETSHADERIVPROC glad_glGetShaderiv = NULL; PFNGLGETSTRINGPROC glad_glGetString = NULL; PFNGLGETSTRINGIPROC glad_glGetStringi = NULL; PFNGLGETSUBROUTINEINDEXPROC glad_glGetSubroutineIndex = NULL; PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC glad_glGetSubroutineUniformLocation = NULL; PFNGLGETSYNCIVPROC glad_glGetSynciv = NULL; PFNGLGETTEXENVFVPROC glad_glGetTexEnvfv = NULL; PFNGLGETTEXENVIVPROC glad_glGetTexEnviv = NULL; PFNGLGETTEXGENDVPROC glad_glGetTexGendv = NULL; PFNGLGETTEXGENFVPROC glad_glGetTexGenfv = NULL; PFNGLGETTEXGENIVPROC glad_glGetTexGeniv = NULL; PFNGLGETTEXIMAGEPROC glad_glGetTexImage = NULL; PFNGLGETTEXLEVELPARAMETERFVPROC glad_glGetTexLevelParameterfv = NULL; PFNGLGETTEXLEVELPARAMETERIVPROC glad_glGetTexLevelParameteriv = NULL; PFNGLGETTEXPARAMETERIIVPROC glad_glGetTexParameterIiv = NULL; PFNGLGETTEXPARAMETERIUIVPROC glad_glGetTexParameterIuiv = NULL; PFNGLGETTEXPARAMETERFVPROC glad_glGetTexParameterfv = NULL; PFNGLGETTEXPARAMETERIVPROC glad_glGetTexParameteriv = NULL; PFNGLGETTEXTUREHANDLEARBPROC glad_glGetTextureHandleARB = NULL; PFNGLGETTEXTUREIMAGEPROC glad_glGetTextureImage = NULL; PFNGLGETTEXTURELEVELPARAMETERFVPROC glad_glGetTextureLevelParameterfv = NULL; PFNGLGETTEXTURELEVELPARAMETERIVPROC glad_glGetTextureLevelParameteriv = NULL; PFNGLGETTEXTUREPARAMETERIIVPROC glad_glGetTextureParameterIiv = NULL; PFNGLGETTEXTUREPARAMETERIUIVPROC glad_glGetTextureParameterIuiv = NULL; PFNGLGETTEXTUREPARAMETERFVPROC glad_glGetTextureParameterfv = NULL; PFNGLGETTEXTUREPARAMETERIVPROC glad_glGetTextureParameteriv = NULL; PFNGLGETTEXTURESAMPLERHANDLEARBPROC glad_glGetTextureSamplerHandleARB = NULL; PFNGLGETTEXTURESUBIMAGEPROC glad_glGetTextureSubImage = NULL; PFNGLGETTRANSFORMFEEDBACKVARYINGPROC glad_glGetTransformFeedbackVarying = NULL; PFNGLGETTRANSFORMFEEDBACKI64_VPROC glad_glGetTransformFeedbacki64_v = NULL; PFNGLGETTRANSFORMFEEDBACKI_VPROC glad_glGetTransformFeedbacki_v = NULL; PFNGLGETTRANSFORMFEEDBACKIVPROC glad_glGetTransformFeedbackiv = NULL; PFNGLGETUNIFORMBLOCKINDEXPROC glad_glGetUniformBlockIndex = NULL; PFNGLGETUNIFORMINDICESPROC glad_glGetUniformIndices = NULL; PFNGLGETUNIFORMLOCATIONPROC glad_glGetUniformLocation = NULL; PFNGLGETUNIFORMLOCATIONARBPROC glad_glGetUniformLocationARB = NULL; PFNGLGETUNIFORMSUBROUTINEUIVPROC glad_glGetUniformSubroutineuiv = NULL; PFNGLGETUNIFORMDVPROC glad_glGetUniformdv = NULL; PFNGLGETUNIFORMFVPROC glad_glGetUniformfv = NULL; PFNGLGETUNIFORMFVARBPROC glad_glGetUniformfvARB = NULL; PFNGLGETUNIFORMI64VARBPROC glad_glGetUniformi64vARB = NULL; PFNGLGETUNIFORMIVPROC glad_glGetUniformiv = NULL; PFNGLGETUNIFORMIVARBPROC glad_glGetUniformivARB = NULL; PFNGLGETUNIFORMUI64VARBPROC glad_glGetUniformui64vARB = NULL; PFNGLGETUNIFORMUIVPROC glad_glGetUniformuiv = NULL; PFNGLGETVERTEXARRAYINDEXED64IVPROC glad_glGetVertexArrayIndexed64iv = NULL; PFNGLGETVERTEXARRAYINDEXEDIVPROC glad_glGetVertexArrayIndexediv = NULL; PFNGLGETVERTEXARRAYIVPROC glad_glGetVertexArrayiv = NULL; PFNGLGETVERTEXATTRIBIIVPROC glad_glGetVertexAttribIiv = NULL; PFNGLGETVERTEXATTRIBIUIVPROC glad_glGetVertexAttribIuiv = NULL; PFNGLGETVERTEXATTRIBLDVPROC glad_glGetVertexAttribLdv = NULL; PFNGLGETVERTEXATTRIBLUI64VARBPROC glad_glGetVertexAttribLui64vARB = NULL; PFNGLGETVERTEXATTRIBPOINTERVPROC glad_glGetVertexAttribPointerv = NULL; PFNGLGETVERTEXATTRIBPOINTERVARBPROC glad_glGetVertexAttribPointervARB = NULL; PFNGLGETVERTEXATTRIBDVPROC glad_glGetVertexAttribdv = NULL; PFNGLGETVERTEXATTRIBDVARBPROC glad_glGetVertexAttribdvARB = NULL; PFNGLGETVERTEXATTRIBFVPROC glad_glGetVertexAttribfv = NULL; PFNGLGETVERTEXATTRIBFVARBPROC glad_glGetVertexAttribfvARB = NULL; PFNGLGETVERTEXATTRIBIVPROC glad_glGetVertexAttribiv = NULL; PFNGLGETVERTEXATTRIBIVARBPROC glad_glGetVertexAttribivARB = NULL; PFNGLGETNCOLORTABLEARBPROC glad_glGetnColorTableARB = NULL; PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC glad_glGetnCompressedTexImageARB = NULL; PFNGLGETNCONVOLUTIONFILTERARBPROC glad_glGetnConvolutionFilterARB = NULL; PFNGLGETNHISTOGRAMARBPROC glad_glGetnHistogramARB = NULL; PFNGLGETNMAPDVARBPROC glad_glGetnMapdvARB = NULL; PFNGLGETNMAPFVARBPROC glad_glGetnMapfvARB = NULL; PFNGLGETNMAPIVARBPROC glad_glGetnMapivARB = NULL; PFNGLGETNMINMAXARBPROC glad_glGetnMinmaxARB = NULL; PFNGLGETNPIXELMAPFVARBPROC glad_glGetnPixelMapfvARB = NULL; PFNGLGETNPIXELMAPUIVARBPROC glad_glGetnPixelMapuivARB = NULL; PFNGLGETNPIXELMAPUSVARBPROC glad_glGetnPixelMapusvARB = NULL; PFNGLGETNPOLYGONSTIPPLEARBPROC glad_glGetnPolygonStippleARB = NULL; PFNGLGETNSEPARABLEFILTERARBPROC glad_glGetnSeparableFilterARB = NULL; PFNGLGETNTEXIMAGEARBPROC glad_glGetnTexImageARB = NULL; PFNGLGETNUNIFORMDVARBPROC glad_glGetnUniformdvARB = NULL; PFNGLGETNUNIFORMFVPROC glad_glGetnUniformfv = NULL; PFNGLGETNUNIFORMFVARBPROC glad_glGetnUniformfvARB = NULL; PFNGLGETNUNIFORMI64VARBPROC glad_glGetnUniformi64vARB = NULL; PFNGLGETNUNIFORMIVPROC glad_glGetnUniformiv = NULL; PFNGLGETNUNIFORMIVARBPROC glad_glGetnUniformivARB = NULL; PFNGLGETNUNIFORMUI64VARBPROC glad_glGetnUniformui64vARB = NULL; PFNGLGETNUNIFORMUIVPROC glad_glGetnUniformuiv = NULL; PFNGLGETNUNIFORMUIVARBPROC glad_glGetnUniformuivARB = NULL; PFNGLHINTPROC glad_glHint = NULL; PFNGLHISTOGRAMPROC glad_glHistogram = NULL; PFNGLINDEXMASKPROC glad_glIndexMask = NULL; PFNGLINDEXPOINTERPROC glad_glIndexPointer = NULL; PFNGLINDEXDPROC glad_glIndexd = NULL; PFNGLINDEXDVPROC glad_glIndexdv = NULL; PFNGLINDEXFPROC glad_glIndexf = NULL; PFNGLINDEXFVPROC glad_glIndexfv = NULL; PFNGLINDEXIPROC glad_glIndexi = NULL; PFNGLINDEXIVPROC glad_glIndexiv = NULL; PFNGLINDEXSPROC glad_glIndexs = NULL; PFNGLINDEXSVPROC glad_glIndexsv = NULL; PFNGLINDEXUBPROC glad_glIndexub = NULL; PFNGLINDEXUBVPROC glad_glIndexubv = NULL; PFNGLINITNAMESPROC glad_glInitNames = NULL; PFNGLINTERLEAVEDARRAYSPROC glad_glInterleavedArrays = NULL; PFNGLINVALIDATEBUFFERDATAPROC glad_glInvalidateBufferData = NULL; PFNGLINVALIDATEBUFFERSUBDATAPROC glad_glInvalidateBufferSubData = NULL; PFNGLINVALIDATEFRAMEBUFFERPROC glad_glInvalidateFramebuffer = NULL; PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC glad_glInvalidateNamedFramebufferData = NULL; PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC glad_glInvalidateNamedFramebufferSubData = NULL; PFNGLINVALIDATESUBFRAMEBUFFERPROC glad_glInvalidateSubFramebuffer = NULL; PFNGLINVALIDATETEXIMAGEPROC glad_glInvalidateTexImage = NULL; PFNGLINVALIDATETEXSUBIMAGEPROC glad_glInvalidateTexSubImage = NULL; PFNGLISBUFFERPROC glad_glIsBuffer = NULL; PFNGLISBUFFERARBPROC glad_glIsBufferARB = NULL; PFNGLISENABLEDPROC glad_glIsEnabled = NULL; PFNGLISENABLEDIPROC glad_glIsEnabledi = NULL; PFNGLISFRAMEBUFFERPROC glad_glIsFramebuffer = NULL; PFNGLISIMAGEHANDLERESIDENTARBPROC glad_glIsImageHandleResidentARB = NULL; PFNGLISLISTPROC glad_glIsList = NULL; PFNGLISNAMEDSTRINGARBPROC glad_glIsNamedStringARB = NULL; PFNGLISPROGRAMPROC glad_glIsProgram = NULL; PFNGLISPROGRAMARBPROC glad_glIsProgramARB = NULL; PFNGLISPROGRAMPIPELINEPROC glad_glIsProgramPipeline = NULL; PFNGLISQUERYPROC glad_glIsQuery = NULL; PFNGLISQUERYARBPROC glad_glIsQueryARB = NULL; PFNGLISRENDERBUFFERPROC glad_glIsRenderbuffer = NULL; PFNGLISSAMPLERPROC glad_glIsSampler = NULL; PFNGLISSHADERPROC glad_glIsShader = NULL; PFNGLISSYNCPROC glad_glIsSync = NULL; PFNGLISTEXTUREPROC glad_glIsTexture = NULL; PFNGLISTEXTUREHANDLERESIDENTARBPROC glad_glIsTextureHandleResidentARB = NULL; PFNGLISTRANSFORMFEEDBACKPROC glad_glIsTransformFeedback = NULL; PFNGLISVERTEXARRAYPROC glad_glIsVertexArray = NULL; PFNGLLIGHTMODELFPROC glad_glLightModelf = NULL; PFNGLLIGHTMODELFVPROC glad_glLightModelfv = NULL; PFNGLLIGHTMODELIPROC glad_glLightModeli = NULL; PFNGLLIGHTMODELIVPROC glad_glLightModeliv = NULL; PFNGLLIGHTFPROC glad_glLightf = NULL; PFNGLLIGHTFVPROC glad_glLightfv = NULL; PFNGLLIGHTIPROC glad_glLighti = NULL; PFNGLLIGHTIVPROC glad_glLightiv = NULL; PFNGLLINESTIPPLEPROC glad_glLineStipple = NULL; PFNGLLINEWIDTHPROC glad_glLineWidth = NULL; PFNGLLINKPROGRAMPROC glad_glLinkProgram = NULL; PFNGLLINKPROGRAMARBPROC glad_glLinkProgramARB = NULL; PFNGLLISTBASEPROC glad_glListBase = NULL; PFNGLLOADIDENTITYPROC glad_glLoadIdentity = NULL; PFNGLLOADMATRIXDPROC glad_glLoadMatrixd = NULL; PFNGLLOADMATRIXFPROC glad_glLoadMatrixf = NULL; PFNGLLOADNAMEPROC glad_glLoadName = NULL; PFNGLLOADTRANSPOSEMATRIXDPROC glad_glLoadTransposeMatrixd = NULL; PFNGLLOADTRANSPOSEMATRIXDARBPROC glad_glLoadTransposeMatrixdARB = NULL; PFNGLLOADTRANSPOSEMATRIXFPROC glad_glLoadTransposeMatrixf = NULL; PFNGLLOADTRANSPOSEMATRIXFARBPROC glad_glLoadTransposeMatrixfARB = NULL; PFNGLLOGICOPPROC glad_glLogicOp = NULL; PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC glad_glMakeImageHandleNonResidentARB = NULL; PFNGLMAKEIMAGEHANDLERESIDENTARBPROC glad_glMakeImageHandleResidentARB = NULL; PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC glad_glMakeTextureHandleNonResidentARB = NULL; PFNGLMAKETEXTUREHANDLERESIDENTARBPROC glad_glMakeTextureHandleResidentARB = NULL; PFNGLMAP1DPROC glad_glMap1d = NULL; PFNGLMAP1FPROC glad_glMap1f = NULL; PFNGLMAP2DPROC glad_glMap2d = NULL; PFNGLMAP2FPROC glad_glMap2f = NULL; PFNGLMAPBUFFERPROC glad_glMapBuffer = NULL; PFNGLMAPBUFFERARBPROC glad_glMapBufferARB = NULL; PFNGLMAPBUFFERRANGEPROC glad_glMapBufferRange = NULL; PFNGLMAPGRID1DPROC glad_glMapGrid1d = NULL; PFNGLMAPGRID1FPROC glad_glMapGrid1f = NULL; PFNGLMAPGRID2DPROC glad_glMapGrid2d = NULL; PFNGLMAPGRID2FPROC glad_glMapGrid2f = NULL; PFNGLMAPNAMEDBUFFERPROC glad_glMapNamedBuffer = NULL; PFNGLMAPNAMEDBUFFERRANGEPROC glad_glMapNamedBufferRange = NULL; PFNGLMATERIALFPROC glad_glMaterialf = NULL; PFNGLMATERIALFVPROC glad_glMaterialfv = NULL; PFNGLMATERIALIPROC glad_glMateriali = NULL; PFNGLMATERIALIVPROC glad_glMaterialiv = NULL; PFNGLMATRIXINDEXPOINTERARBPROC glad_glMatrixIndexPointerARB = NULL; PFNGLMATRIXINDEXUBVARBPROC glad_glMatrixIndexubvARB = NULL; PFNGLMATRIXINDEXUIVARBPROC glad_glMatrixIndexuivARB = NULL; PFNGLMATRIXINDEXUSVARBPROC glad_glMatrixIndexusvARB = NULL; PFNGLMATRIXMODEPROC glad_glMatrixMode = NULL; PFNGLMAXSHADERCOMPILERTHREADSARBPROC glad_glMaxShaderCompilerThreadsARB = NULL; PFNGLMAXSHADERCOMPILERTHREADSKHRPROC glad_glMaxShaderCompilerThreadsKHR = NULL; PFNGLMEMORYBARRIERPROC glad_glMemoryBarrier = NULL; PFNGLMEMORYBARRIERBYREGIONPROC glad_glMemoryBarrierByRegion = NULL; PFNGLMINSAMPLESHADINGPROC glad_glMinSampleShading = NULL; PFNGLMINSAMPLESHADINGARBPROC glad_glMinSampleShadingARB = NULL; PFNGLMINMAXPROC glad_glMinmax = NULL; PFNGLMULTMATRIXDPROC glad_glMultMatrixd = NULL; PFNGLMULTMATRIXFPROC glad_glMultMatrixf = NULL; PFNGLMULTTRANSPOSEMATRIXDPROC glad_glMultTransposeMatrixd = NULL; PFNGLMULTTRANSPOSEMATRIXDARBPROC glad_glMultTransposeMatrixdARB = NULL; PFNGLMULTTRANSPOSEMATRIXFPROC glad_glMultTransposeMatrixf = NULL; PFNGLMULTTRANSPOSEMATRIXFARBPROC glad_glMultTransposeMatrixfARB = NULL; PFNGLMULTIDRAWARRAYSPROC glad_glMultiDrawArrays = NULL; PFNGLMULTIDRAWARRAYSINDIRECTPROC glad_glMultiDrawArraysIndirect = NULL; PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC glad_glMultiDrawArraysIndirectCount = NULL; PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC glad_glMultiDrawArraysIndirectCountARB = NULL; PFNGLMULTIDRAWELEMENTSPROC glad_glMultiDrawElements = NULL; PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC glad_glMultiDrawElementsBaseVertex = NULL; PFNGLMULTIDRAWELEMENTSINDIRECTPROC glad_glMultiDrawElementsIndirect = NULL; PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC glad_glMultiDrawElementsIndirectCount = NULL; PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC glad_glMultiDrawElementsIndirectCountARB = NULL; PFNGLMULTITEXCOORD1DPROC glad_glMultiTexCoord1d = NULL; PFNGLMULTITEXCOORD1DARBPROC glad_glMultiTexCoord1dARB = NULL; PFNGLMULTITEXCOORD1DVPROC glad_glMultiTexCoord1dv = NULL; PFNGLMULTITEXCOORD1DVARBPROC glad_glMultiTexCoord1dvARB = NULL; PFNGLMULTITEXCOORD1FPROC glad_glMultiTexCoord1f = NULL; PFNGLMULTITEXCOORD1FARBPROC glad_glMultiTexCoord1fARB = NULL; PFNGLMULTITEXCOORD1FVPROC glad_glMultiTexCoord1fv = NULL; PFNGLMULTITEXCOORD1FVARBPROC glad_glMultiTexCoord1fvARB = NULL; PFNGLMULTITEXCOORD1IPROC glad_glMultiTexCoord1i = NULL; PFNGLMULTITEXCOORD1IARBPROC glad_glMultiTexCoord1iARB = NULL; PFNGLMULTITEXCOORD1IVPROC glad_glMultiTexCoord1iv = NULL; PFNGLMULTITEXCOORD1IVARBPROC glad_glMultiTexCoord1ivARB = NULL; PFNGLMULTITEXCOORD1SPROC glad_glMultiTexCoord1s = NULL; PFNGLMULTITEXCOORD1SARBPROC glad_glMultiTexCoord1sARB = NULL; PFNGLMULTITEXCOORD1SVPROC glad_glMultiTexCoord1sv = NULL; PFNGLMULTITEXCOORD1SVARBPROC glad_glMultiTexCoord1svARB = NULL; PFNGLMULTITEXCOORD2DPROC glad_glMultiTexCoord2d = NULL; PFNGLMULTITEXCOORD2DARBPROC glad_glMultiTexCoord2dARB = NULL; PFNGLMULTITEXCOORD2DVPROC glad_glMultiTexCoord2dv = NULL; PFNGLMULTITEXCOORD2DVARBPROC glad_glMultiTexCoord2dvARB = NULL; PFNGLMULTITEXCOORD2FPROC glad_glMultiTexCoord2f = NULL; PFNGLMULTITEXCOORD2FARBPROC glad_glMultiTexCoord2fARB = NULL; PFNGLMULTITEXCOORD2FVPROC glad_glMultiTexCoord2fv = NULL; PFNGLMULTITEXCOORD2FVARBPROC glad_glMultiTexCoord2fvARB = NULL; PFNGLMULTITEXCOORD2IPROC glad_glMultiTexCoord2i = NULL; PFNGLMULTITEXCOORD2IARBPROC glad_glMultiTexCoord2iARB = NULL; PFNGLMULTITEXCOORD2IVPROC glad_glMultiTexCoord2iv = NULL; PFNGLMULTITEXCOORD2IVARBPROC glad_glMultiTexCoord2ivARB = NULL; PFNGLMULTITEXCOORD2SPROC glad_glMultiTexCoord2s = NULL; PFNGLMULTITEXCOORD2SARBPROC glad_glMultiTexCoord2sARB = NULL; PFNGLMULTITEXCOORD2SVPROC glad_glMultiTexCoord2sv = NULL; PFNGLMULTITEXCOORD2SVARBPROC glad_glMultiTexCoord2svARB = NULL; PFNGLMULTITEXCOORD3DPROC glad_glMultiTexCoord3d = NULL; PFNGLMULTITEXCOORD3DARBPROC glad_glMultiTexCoord3dARB = NULL; PFNGLMULTITEXCOORD3DVPROC glad_glMultiTexCoord3dv = NULL; PFNGLMULTITEXCOORD3DVARBPROC glad_glMultiTexCoord3dvARB = NULL; PFNGLMULTITEXCOORD3FPROC glad_glMultiTexCoord3f = NULL; PFNGLMULTITEXCOORD3FARBPROC glad_glMultiTexCoord3fARB = NULL; PFNGLMULTITEXCOORD3FVPROC glad_glMultiTexCoord3fv = NULL; PFNGLMULTITEXCOORD3FVARBPROC glad_glMultiTexCoord3fvARB = NULL; PFNGLMULTITEXCOORD3IPROC glad_glMultiTexCoord3i = NULL; PFNGLMULTITEXCOORD3IARBPROC glad_glMultiTexCoord3iARB = NULL; PFNGLMULTITEXCOORD3IVPROC glad_glMultiTexCoord3iv = NULL; PFNGLMULTITEXCOORD3IVARBPROC glad_glMultiTexCoord3ivARB = NULL; PFNGLMULTITEXCOORD3SPROC glad_glMultiTexCoord3s = NULL; PFNGLMULTITEXCOORD3SARBPROC glad_glMultiTexCoord3sARB = NULL; PFNGLMULTITEXCOORD3SVPROC glad_glMultiTexCoord3sv = NULL; PFNGLMULTITEXCOORD3SVARBPROC glad_glMultiTexCoord3svARB = NULL; PFNGLMULTITEXCOORD4DPROC glad_glMultiTexCoord4d = NULL; PFNGLMULTITEXCOORD4DARBPROC glad_glMultiTexCoord4dARB = NULL; PFNGLMULTITEXCOORD4DVPROC glad_glMultiTexCoord4dv = NULL; PFNGLMULTITEXCOORD4DVARBPROC glad_glMultiTexCoord4dvARB = NULL; PFNGLMULTITEXCOORD4FPROC glad_glMultiTexCoord4f = NULL; PFNGLMULTITEXCOORD4FARBPROC glad_glMultiTexCoord4fARB = NULL; PFNGLMULTITEXCOORD4FVPROC glad_glMultiTexCoord4fv = NULL; PFNGLMULTITEXCOORD4FVARBPROC glad_glMultiTexCoord4fvARB = NULL; PFNGLMULTITEXCOORD4IPROC glad_glMultiTexCoord4i = NULL; PFNGLMULTITEXCOORD4IARBPROC glad_glMultiTexCoord4iARB = NULL; PFNGLMULTITEXCOORD4IVPROC glad_glMultiTexCoord4iv = NULL; PFNGLMULTITEXCOORD4IVARBPROC glad_glMultiTexCoord4ivARB = NULL; PFNGLMULTITEXCOORD4SPROC glad_glMultiTexCoord4s = NULL; PFNGLMULTITEXCOORD4SARBPROC glad_glMultiTexCoord4sARB = NULL; PFNGLMULTITEXCOORD4SVPROC glad_glMultiTexCoord4sv = NULL; PFNGLMULTITEXCOORD4SVARBPROC glad_glMultiTexCoord4svARB = NULL; PFNGLMULTITEXCOORDP1UIPROC glad_glMultiTexCoordP1ui = NULL; PFNGLMULTITEXCOORDP1UIVPROC glad_glMultiTexCoordP1uiv = NULL; PFNGLMULTITEXCOORDP2UIPROC glad_glMultiTexCoordP2ui = NULL; PFNGLMULTITEXCOORDP2UIVPROC glad_glMultiTexCoordP2uiv = NULL; PFNGLMULTITEXCOORDP3UIPROC glad_glMultiTexCoordP3ui = NULL; PFNGLMULTITEXCOORDP3UIVPROC glad_glMultiTexCoordP3uiv = NULL; PFNGLMULTITEXCOORDP4UIPROC glad_glMultiTexCoordP4ui = NULL; PFNGLMULTITEXCOORDP4UIVPROC glad_glMultiTexCoordP4uiv = NULL; PFNGLNAMEDBUFFERDATAPROC glad_glNamedBufferData = NULL; PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC glad_glNamedBufferPageCommitmentARB = NULL; PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC glad_glNamedBufferPageCommitmentEXT = NULL; PFNGLNAMEDBUFFERSTORAGEPROC glad_glNamedBufferStorage = NULL; PFNGLNAMEDBUFFERSUBDATAPROC glad_glNamedBufferSubData = NULL; PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC glad_glNamedFramebufferDrawBuffer = NULL; PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC glad_glNamedFramebufferDrawBuffers = NULL; PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC glad_glNamedFramebufferParameteri = NULL; PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC glad_glNamedFramebufferReadBuffer = NULL; PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC glad_glNamedFramebufferRenderbuffer = NULL; PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glNamedFramebufferSampleLocationsfvARB = NULL; PFNGLNAMEDFRAMEBUFFERTEXTUREPROC glad_glNamedFramebufferTexture = NULL; PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC glad_glNamedFramebufferTextureLayer = NULL; PFNGLNAMEDRENDERBUFFERSTORAGEPROC glad_glNamedRenderbufferStorage = NULL; PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glNamedRenderbufferStorageMultisample = NULL; PFNGLNAMEDSTRINGARBPROC glad_glNamedStringARB = NULL; PFNGLNEWLISTPROC glad_glNewList = NULL; PFNGLNORMAL3BPROC glad_glNormal3b = NULL; PFNGLNORMAL3BVPROC glad_glNormal3bv = NULL; PFNGLNORMAL3DPROC glad_glNormal3d = NULL; PFNGLNORMAL3DVPROC glad_glNormal3dv = NULL; PFNGLNORMAL3FPROC glad_glNormal3f = NULL; PFNGLNORMAL3FVPROC glad_glNormal3fv = NULL; PFNGLNORMAL3IPROC glad_glNormal3i = NULL; PFNGLNORMAL3IVPROC glad_glNormal3iv = NULL; PFNGLNORMAL3SPROC glad_glNormal3s = NULL; PFNGLNORMAL3SVPROC glad_glNormal3sv = NULL; PFNGLNORMALP3UIPROC glad_glNormalP3ui = NULL; PFNGLNORMALP3UIVPROC glad_glNormalP3uiv = NULL; PFNGLNORMALPOINTERPROC glad_glNormalPointer = NULL; PFNGLOBJECTLABELPROC glad_glObjectLabel = NULL; PFNGLOBJECTPTRLABELPROC glad_glObjectPtrLabel = NULL; PFNGLORTHOPROC glad_glOrtho = NULL; PFNGLPASSTHROUGHPROC glad_glPassThrough = NULL; PFNGLPATCHPARAMETERFVPROC glad_glPatchParameterfv = NULL; PFNGLPATCHPARAMETERIPROC glad_glPatchParameteri = NULL; PFNGLPAUSETRANSFORMFEEDBACKPROC glad_glPauseTransformFeedback = NULL; PFNGLPIXELMAPFVPROC glad_glPixelMapfv = NULL; PFNGLPIXELMAPUIVPROC glad_glPixelMapuiv = NULL; PFNGLPIXELMAPUSVPROC glad_glPixelMapusv = NULL; PFNGLPIXELSTOREFPROC glad_glPixelStoref = NULL; PFNGLPIXELSTOREIPROC glad_glPixelStorei = NULL; PFNGLPIXELTRANSFERFPROC glad_glPixelTransferf = NULL; PFNGLPIXELTRANSFERIPROC glad_glPixelTransferi = NULL; PFNGLPIXELZOOMPROC glad_glPixelZoom = NULL; PFNGLPOINTPARAMETERFPROC glad_glPointParameterf = NULL; PFNGLPOINTPARAMETERFARBPROC glad_glPointParameterfARB = NULL; PFNGLPOINTPARAMETERFVPROC glad_glPointParameterfv = NULL; PFNGLPOINTPARAMETERFVARBPROC glad_glPointParameterfvARB = NULL; PFNGLPOINTPARAMETERIPROC glad_glPointParameteri = NULL; PFNGLPOINTPARAMETERIVPROC glad_glPointParameteriv = NULL; PFNGLPOINTSIZEPROC glad_glPointSize = NULL; PFNGLPOLYGONMODEPROC glad_glPolygonMode = NULL; PFNGLPOLYGONOFFSETPROC glad_glPolygonOffset = NULL; PFNGLPOLYGONOFFSETCLAMPPROC glad_glPolygonOffsetClamp = NULL; PFNGLPOLYGONSTIPPLEPROC glad_glPolygonStipple = NULL; PFNGLPOPATTRIBPROC glad_glPopAttrib = NULL; PFNGLPOPCLIENTATTRIBPROC glad_glPopClientAttrib = NULL; PFNGLPOPDEBUGGROUPPROC glad_glPopDebugGroup = NULL; PFNGLPOPMATRIXPROC glad_glPopMatrix = NULL; PFNGLPOPNAMEPROC glad_glPopName = NULL; PFNGLPRIMITIVEBOUNDINGBOXPROC glad_glPrimitiveBoundingBox = NULL; PFNGLPRIMITIVEBOUNDINGBOXARBPROC glad_glPrimitiveBoundingBoxARB = NULL; PFNGLPRIMITIVERESTARTINDEXPROC glad_glPrimitiveRestartIndex = NULL; PFNGLPRIORITIZETEXTURESPROC glad_glPrioritizeTextures = NULL; PFNGLPROGRAMBINARYPROC glad_glProgramBinary = NULL; PFNGLPROGRAMENVPARAMETER4DARBPROC glad_glProgramEnvParameter4dARB = NULL; PFNGLPROGRAMENVPARAMETER4DVARBPROC glad_glProgramEnvParameter4dvARB = NULL; PFNGLPROGRAMENVPARAMETER4FARBPROC glad_glProgramEnvParameter4fARB = NULL; PFNGLPROGRAMENVPARAMETER4FVARBPROC glad_glProgramEnvParameter4fvARB = NULL; PFNGLPROGRAMLOCALPARAMETER4DARBPROC glad_glProgramLocalParameter4dARB = NULL; PFNGLPROGRAMLOCALPARAMETER4DVARBPROC glad_glProgramLocalParameter4dvARB = NULL; PFNGLPROGRAMLOCALPARAMETER4FARBPROC glad_glProgramLocalParameter4fARB = NULL; PFNGLPROGRAMLOCALPARAMETER4FVARBPROC glad_glProgramLocalParameter4fvARB = NULL; PFNGLPROGRAMPARAMETERIPROC glad_glProgramParameteri = NULL; PFNGLPROGRAMPARAMETERIARBPROC glad_glProgramParameteriARB = NULL; PFNGLPROGRAMSTRINGARBPROC glad_glProgramStringARB = NULL; PFNGLPROGRAMUNIFORM1DPROC glad_glProgramUniform1d = NULL; PFNGLPROGRAMUNIFORM1DVPROC glad_glProgramUniform1dv = NULL; PFNGLPROGRAMUNIFORM1FPROC glad_glProgramUniform1f = NULL; PFNGLPROGRAMUNIFORM1FVPROC glad_glProgramUniform1fv = NULL; PFNGLPROGRAMUNIFORM1IPROC glad_glProgramUniform1i = NULL; PFNGLPROGRAMUNIFORM1I64ARBPROC glad_glProgramUniform1i64ARB = NULL; PFNGLPROGRAMUNIFORM1I64VARBPROC glad_glProgramUniform1i64vARB = NULL; PFNGLPROGRAMUNIFORM1IVPROC glad_glProgramUniform1iv = NULL; PFNGLPROGRAMUNIFORM1UIPROC glad_glProgramUniform1ui = NULL; PFNGLPROGRAMUNIFORM1UI64ARBPROC glad_glProgramUniform1ui64ARB = NULL; PFNGLPROGRAMUNIFORM1UI64VARBPROC glad_glProgramUniform1ui64vARB = NULL; PFNGLPROGRAMUNIFORM1UIVPROC glad_glProgramUniform1uiv = NULL; PFNGLPROGRAMUNIFORM2DPROC glad_glProgramUniform2d = NULL; PFNGLPROGRAMUNIFORM2DVPROC glad_glProgramUniform2dv = NULL; PFNGLPROGRAMUNIFORM2FPROC glad_glProgramUniform2f = NULL; PFNGLPROGRAMUNIFORM2FVPROC glad_glProgramUniform2fv = NULL; PFNGLPROGRAMUNIFORM2IPROC glad_glProgramUniform2i = NULL; PFNGLPROGRAMUNIFORM2I64ARBPROC glad_glProgramUniform2i64ARB = NULL; PFNGLPROGRAMUNIFORM2I64VARBPROC glad_glProgramUniform2i64vARB = NULL; PFNGLPROGRAMUNIFORM2IVPROC glad_glProgramUniform2iv = NULL; PFNGLPROGRAMUNIFORM2UIPROC glad_glProgramUniform2ui = NULL; PFNGLPROGRAMUNIFORM2UI64ARBPROC glad_glProgramUniform2ui64ARB = NULL; PFNGLPROGRAMUNIFORM2UI64VARBPROC glad_glProgramUniform2ui64vARB = NULL; PFNGLPROGRAMUNIFORM2UIVPROC glad_glProgramUniform2uiv = NULL; PFNGLPROGRAMUNIFORM3DPROC glad_glProgramUniform3d = NULL; PFNGLPROGRAMUNIFORM3DVPROC glad_glProgramUniform3dv = NULL; PFNGLPROGRAMUNIFORM3FPROC glad_glProgramUniform3f = NULL; PFNGLPROGRAMUNIFORM3FVPROC glad_glProgramUniform3fv = NULL; PFNGLPROGRAMUNIFORM3IPROC glad_glProgramUniform3i = NULL; PFNGLPROGRAMUNIFORM3I64ARBPROC glad_glProgramUniform3i64ARB = NULL; PFNGLPROGRAMUNIFORM3I64VARBPROC glad_glProgramUniform3i64vARB = NULL; PFNGLPROGRAMUNIFORM3IVPROC glad_glProgramUniform3iv = NULL; PFNGLPROGRAMUNIFORM3UIPROC glad_glProgramUniform3ui = NULL; PFNGLPROGRAMUNIFORM3UI64ARBPROC glad_glProgramUniform3ui64ARB = NULL; PFNGLPROGRAMUNIFORM3UI64VARBPROC glad_glProgramUniform3ui64vARB = NULL; PFNGLPROGRAMUNIFORM3UIVPROC glad_glProgramUniform3uiv = NULL; PFNGLPROGRAMUNIFORM4DPROC glad_glProgramUniform4d = NULL; PFNGLPROGRAMUNIFORM4DVPROC glad_glProgramUniform4dv = NULL; PFNGLPROGRAMUNIFORM4FPROC glad_glProgramUniform4f = NULL; PFNGLPROGRAMUNIFORM4FVPROC glad_glProgramUniform4fv = NULL; PFNGLPROGRAMUNIFORM4IPROC glad_glProgramUniform4i = NULL; PFNGLPROGRAMUNIFORM4I64ARBPROC glad_glProgramUniform4i64ARB = NULL; PFNGLPROGRAMUNIFORM4I64VARBPROC glad_glProgramUniform4i64vARB = NULL; PFNGLPROGRAMUNIFORM4IVPROC glad_glProgramUniform4iv = NULL; PFNGLPROGRAMUNIFORM4UIPROC glad_glProgramUniform4ui = NULL; PFNGLPROGRAMUNIFORM4UI64ARBPROC glad_glProgramUniform4ui64ARB = NULL; PFNGLPROGRAMUNIFORM4UI64VARBPROC glad_glProgramUniform4ui64vARB = NULL; PFNGLPROGRAMUNIFORM4UIVPROC glad_glProgramUniform4uiv = NULL; PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC glad_glProgramUniformHandleui64ARB = NULL; PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC glad_glProgramUniformHandleui64vARB = NULL; PFNGLPROGRAMUNIFORMMATRIX2DVPROC glad_glProgramUniformMatrix2dv = NULL; PFNGLPROGRAMUNIFORMMATRIX2FVPROC glad_glProgramUniformMatrix2fv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC glad_glProgramUniformMatrix2x3dv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC glad_glProgramUniformMatrix2x3fv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC glad_glProgramUniformMatrix2x4dv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC glad_glProgramUniformMatrix2x4fv = NULL; PFNGLPROGRAMUNIFORMMATRIX3DVPROC glad_glProgramUniformMatrix3dv = NULL; PFNGLPROGRAMUNIFORMMATRIX3FVPROC glad_glProgramUniformMatrix3fv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC glad_glProgramUniformMatrix3x2dv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC glad_glProgramUniformMatrix3x2fv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC glad_glProgramUniformMatrix3x4dv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC glad_glProgramUniformMatrix3x4fv = NULL; PFNGLPROGRAMUNIFORMMATRIX4DVPROC glad_glProgramUniformMatrix4dv = NULL; PFNGLPROGRAMUNIFORMMATRIX4FVPROC glad_glProgramUniformMatrix4fv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC glad_glProgramUniformMatrix4x2dv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC glad_glProgramUniformMatrix4x2fv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC glad_glProgramUniformMatrix4x3dv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC glad_glProgramUniformMatrix4x3fv = NULL; PFNGLPROVOKINGVERTEXPROC glad_glProvokingVertex = NULL; PFNGLPUSHATTRIBPROC glad_glPushAttrib = NULL; PFNGLPUSHCLIENTATTRIBPROC glad_glPushClientAttrib = NULL; PFNGLPUSHDEBUGGROUPPROC glad_glPushDebugGroup = NULL; PFNGLPUSHMATRIXPROC glad_glPushMatrix = NULL; PFNGLPUSHNAMEPROC glad_glPushName = NULL; PFNGLQUERYCOUNTERPROC glad_glQueryCounter = NULL; PFNGLRASTERPOS2DPROC glad_glRasterPos2d = NULL; PFNGLRASTERPOS2DVPROC glad_glRasterPos2dv = NULL; PFNGLRASTERPOS2FPROC glad_glRasterPos2f = NULL; PFNGLRASTERPOS2FVPROC glad_glRasterPos2fv = NULL; PFNGLRASTERPOS2IPROC glad_glRasterPos2i = NULL; PFNGLRASTERPOS2IVPROC glad_glRasterPos2iv = NULL; PFNGLRASTERPOS2SPROC glad_glRasterPos2s = NULL; PFNGLRASTERPOS2SVPROC glad_glRasterPos2sv = NULL; PFNGLRASTERPOS3DPROC glad_glRasterPos3d = NULL; PFNGLRASTERPOS3DVPROC glad_glRasterPos3dv = NULL; PFNGLRASTERPOS3FPROC glad_glRasterPos3f = NULL; PFNGLRASTERPOS3FVPROC glad_glRasterPos3fv = NULL; PFNGLRASTERPOS3IPROC glad_glRasterPos3i = NULL; PFNGLRASTERPOS3IVPROC glad_glRasterPos3iv = NULL; PFNGLRASTERPOS3SPROC glad_glRasterPos3s = NULL; PFNGLRASTERPOS3SVPROC glad_glRasterPos3sv = NULL; PFNGLRASTERPOS4DPROC glad_glRasterPos4d = NULL; PFNGLRASTERPOS4DVPROC glad_glRasterPos4dv = NULL; PFNGLRASTERPOS4FPROC glad_glRasterPos4f = NULL; PFNGLRASTERPOS4FVPROC glad_glRasterPos4fv = NULL; PFNGLRASTERPOS4IPROC glad_glRasterPos4i = NULL; PFNGLRASTERPOS4IVPROC glad_glRasterPos4iv = NULL; PFNGLRASTERPOS4SPROC glad_glRasterPos4s = NULL; PFNGLRASTERPOS4SVPROC glad_glRasterPos4sv = NULL; PFNGLREADBUFFERPROC glad_glReadBuffer = NULL; PFNGLREADPIXELSPROC glad_glReadPixels = NULL; PFNGLREADNPIXELSPROC glad_glReadnPixels = NULL; PFNGLREADNPIXELSARBPROC glad_glReadnPixelsARB = NULL; PFNGLRECTDPROC glad_glRectd = NULL; PFNGLRECTDVPROC glad_glRectdv = NULL; PFNGLRECTFPROC glad_glRectf = NULL; PFNGLRECTFVPROC glad_glRectfv = NULL; PFNGLRECTIPROC glad_glRecti = NULL; PFNGLRECTIVPROC glad_glRectiv = NULL; PFNGLRECTSPROC glad_glRects = NULL; PFNGLRECTSVPROC glad_glRectsv = NULL; PFNGLRELEASESHADERCOMPILERPROC glad_glReleaseShaderCompiler = NULL; PFNGLRENDERMODEPROC glad_glRenderMode = NULL; PFNGLRENDERBUFFERSTORAGEPROC glad_glRenderbufferStorage = NULL; PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glRenderbufferStorageMultisample = NULL; PFNGLRESETHISTOGRAMPROC glad_glResetHistogram = NULL; PFNGLRESETMINMAXPROC glad_glResetMinmax = NULL; PFNGLRESUMETRANSFORMFEEDBACKPROC glad_glResumeTransformFeedback = NULL; PFNGLROTATEDPROC glad_glRotated = NULL; PFNGLROTATEFPROC glad_glRotatef = NULL; PFNGLSAMPLECOVERAGEPROC glad_glSampleCoverage = NULL; PFNGLSAMPLECOVERAGEARBPROC glad_glSampleCoverageARB = NULL; PFNGLSAMPLEMASKIPROC glad_glSampleMaski = NULL; PFNGLSAMPLERPARAMETERIIVPROC glad_glSamplerParameterIiv = NULL; PFNGLSAMPLERPARAMETERIUIVPROC glad_glSamplerParameterIuiv = NULL; PFNGLSAMPLERPARAMETERFPROC glad_glSamplerParameterf = NULL; PFNGLSAMPLERPARAMETERFVPROC glad_glSamplerParameterfv = NULL; PFNGLSAMPLERPARAMETERIPROC glad_glSamplerParameteri = NULL; PFNGLSAMPLERPARAMETERIVPROC glad_glSamplerParameteriv = NULL; PFNGLSCALEDPROC glad_glScaled = NULL; PFNGLSCALEFPROC glad_glScalef = NULL; PFNGLSCISSORPROC glad_glScissor = NULL; PFNGLSCISSORARRAYVPROC glad_glScissorArrayv = NULL; PFNGLSCISSORINDEXEDPROC glad_glScissorIndexed = NULL; PFNGLSCISSORINDEXEDVPROC glad_glScissorIndexedv = NULL; PFNGLSECONDARYCOLOR3BPROC glad_glSecondaryColor3b = NULL; PFNGLSECONDARYCOLOR3BVPROC glad_glSecondaryColor3bv = NULL; PFNGLSECONDARYCOLOR3DPROC glad_glSecondaryColor3d = NULL; PFNGLSECONDARYCOLOR3DVPROC glad_glSecondaryColor3dv = NULL; PFNGLSECONDARYCOLOR3FPROC glad_glSecondaryColor3f = NULL; PFNGLSECONDARYCOLOR3FVPROC glad_glSecondaryColor3fv = NULL; PFNGLSECONDARYCOLOR3IPROC glad_glSecondaryColor3i = NULL; PFNGLSECONDARYCOLOR3IVPROC glad_glSecondaryColor3iv = NULL; PFNGLSECONDARYCOLOR3SPROC glad_glSecondaryColor3s = NULL; PFNGLSECONDARYCOLOR3SVPROC glad_glSecondaryColor3sv = NULL; PFNGLSECONDARYCOLOR3UBPROC glad_glSecondaryColor3ub = NULL; PFNGLSECONDARYCOLOR3UBVPROC glad_glSecondaryColor3ubv = NULL; PFNGLSECONDARYCOLOR3UIPROC glad_glSecondaryColor3ui = NULL; PFNGLSECONDARYCOLOR3UIVPROC glad_glSecondaryColor3uiv = NULL; PFNGLSECONDARYCOLOR3USPROC glad_glSecondaryColor3us = NULL; PFNGLSECONDARYCOLOR3USVPROC glad_glSecondaryColor3usv = NULL; PFNGLSECONDARYCOLORP3UIPROC glad_glSecondaryColorP3ui = NULL; PFNGLSECONDARYCOLORP3UIVPROC glad_glSecondaryColorP3uiv = NULL; PFNGLSECONDARYCOLORPOINTERPROC glad_glSecondaryColorPointer = NULL; PFNGLSELECTBUFFERPROC glad_glSelectBuffer = NULL; PFNGLSEPARABLEFILTER2DPROC glad_glSeparableFilter2D = NULL; PFNGLSHADEMODELPROC glad_glShadeModel = NULL; PFNGLSHADERBINARYPROC glad_glShaderBinary = NULL; PFNGLSHADERSOURCEPROC glad_glShaderSource = NULL; PFNGLSHADERSOURCEARBPROC glad_glShaderSourceARB = NULL; PFNGLSHADERSTORAGEBLOCKBINDINGPROC glad_glShaderStorageBlockBinding = NULL; PFNGLSPECIALIZESHADERPROC glad_glSpecializeShader = NULL; PFNGLSPECIALIZESHADERARBPROC glad_glSpecializeShaderARB = NULL; PFNGLSTENCILFUNCPROC glad_glStencilFunc = NULL; PFNGLSTENCILFUNCSEPARATEPROC glad_glStencilFuncSeparate = NULL; PFNGLSTENCILMASKPROC glad_glStencilMask = NULL; PFNGLSTENCILMASKSEPARATEPROC glad_glStencilMaskSeparate = NULL; PFNGLSTENCILOPPROC glad_glStencilOp = NULL; PFNGLSTENCILOPSEPARATEPROC glad_glStencilOpSeparate = NULL; PFNGLTEXBUFFERPROC glad_glTexBuffer = NULL; PFNGLTEXBUFFERARBPROC glad_glTexBufferARB = NULL; PFNGLTEXBUFFERRANGEPROC glad_glTexBufferRange = NULL; PFNGLTEXCOORD1DPROC glad_glTexCoord1d = NULL; PFNGLTEXCOORD1DVPROC glad_glTexCoord1dv = NULL; PFNGLTEXCOORD1FPROC glad_glTexCoord1f = NULL; PFNGLTEXCOORD1FVPROC glad_glTexCoord1fv = NULL; PFNGLTEXCOORD1IPROC glad_glTexCoord1i = NULL; PFNGLTEXCOORD1IVPROC glad_glTexCoord1iv = NULL; PFNGLTEXCOORD1SPROC glad_glTexCoord1s = NULL; PFNGLTEXCOORD1SVPROC glad_glTexCoord1sv = NULL; PFNGLTEXCOORD2DPROC glad_glTexCoord2d = NULL; PFNGLTEXCOORD2DVPROC glad_glTexCoord2dv = NULL; PFNGLTEXCOORD2FPROC glad_glTexCoord2f = NULL; PFNGLTEXCOORD2FVPROC glad_glTexCoord2fv = NULL; PFNGLTEXCOORD2IPROC glad_glTexCoord2i = NULL; PFNGLTEXCOORD2IVPROC glad_glTexCoord2iv = NULL; PFNGLTEXCOORD2SPROC glad_glTexCoord2s = NULL; PFNGLTEXCOORD2SVPROC glad_glTexCoord2sv = NULL; PFNGLTEXCOORD3DPROC glad_glTexCoord3d = NULL; PFNGLTEXCOORD3DVPROC glad_glTexCoord3dv = NULL; PFNGLTEXCOORD3FPROC glad_glTexCoord3f = NULL; PFNGLTEXCOORD3FVPROC glad_glTexCoord3fv = NULL; PFNGLTEXCOORD3IPROC glad_glTexCoord3i = NULL; PFNGLTEXCOORD3IVPROC glad_glTexCoord3iv = NULL; PFNGLTEXCOORD3SPROC glad_glTexCoord3s = NULL; PFNGLTEXCOORD3SVPROC glad_glTexCoord3sv = NULL; PFNGLTEXCOORD4DPROC glad_glTexCoord4d = NULL; PFNGLTEXCOORD4DVPROC glad_glTexCoord4dv = NULL; PFNGLTEXCOORD4FPROC glad_glTexCoord4f = NULL; PFNGLTEXCOORD4FVPROC glad_glTexCoord4fv = NULL; PFNGLTEXCOORD4IPROC glad_glTexCoord4i = NULL; PFNGLTEXCOORD4IVPROC glad_glTexCoord4iv = NULL; PFNGLTEXCOORD4SPROC glad_glTexCoord4s = NULL; PFNGLTEXCOORD4SVPROC glad_glTexCoord4sv = NULL; PFNGLTEXCOORDP1UIPROC glad_glTexCoordP1ui = NULL; PFNGLTEXCOORDP1UIVPROC glad_glTexCoordP1uiv = NULL; PFNGLTEXCOORDP2UIPROC glad_glTexCoordP2ui = NULL; PFNGLTEXCOORDP2UIVPROC glad_glTexCoordP2uiv = NULL; PFNGLTEXCOORDP3UIPROC glad_glTexCoordP3ui = NULL; PFNGLTEXCOORDP3UIVPROC glad_glTexCoordP3uiv = NULL; PFNGLTEXCOORDP4UIPROC glad_glTexCoordP4ui = NULL; PFNGLTEXCOORDP4UIVPROC glad_glTexCoordP4uiv = NULL; PFNGLTEXCOORDPOINTERPROC glad_glTexCoordPointer = NULL; PFNGLTEXENVFPROC glad_glTexEnvf = NULL; PFNGLTEXENVFVPROC glad_glTexEnvfv = NULL; PFNGLTEXENVIPROC glad_glTexEnvi = NULL; PFNGLTEXENVIVPROC glad_glTexEnviv = NULL; PFNGLTEXGENDPROC glad_glTexGend = NULL; PFNGLTEXGENDVPROC glad_glTexGendv = NULL; PFNGLTEXGENFPROC glad_glTexGenf = NULL; PFNGLTEXGENFVPROC glad_glTexGenfv = NULL; PFNGLTEXGENIPROC glad_glTexGeni = NULL; PFNGLTEXGENIVPROC glad_glTexGeniv = NULL; PFNGLTEXIMAGE1DPROC glad_glTexImage1D = NULL; PFNGLTEXIMAGE2DPROC glad_glTexImage2D = NULL; PFNGLTEXIMAGE2DMULTISAMPLEPROC glad_glTexImage2DMultisample = NULL; PFNGLTEXIMAGE3DPROC glad_glTexImage3D = NULL; PFNGLTEXIMAGE3DMULTISAMPLEPROC glad_glTexImage3DMultisample = NULL; PFNGLTEXPAGECOMMITMENTARBPROC glad_glTexPageCommitmentARB = NULL; PFNGLTEXPARAMETERIIVPROC glad_glTexParameterIiv = NULL; PFNGLTEXPARAMETERIUIVPROC glad_glTexParameterIuiv = NULL; PFNGLTEXPARAMETERFPROC glad_glTexParameterf = NULL; PFNGLTEXPARAMETERFVPROC glad_glTexParameterfv = NULL; PFNGLTEXPARAMETERIPROC glad_glTexParameteri = NULL; PFNGLTEXPARAMETERIVPROC glad_glTexParameteriv = NULL; PFNGLTEXSTORAGE1DPROC glad_glTexStorage1D = NULL; PFNGLTEXSTORAGE2DPROC glad_glTexStorage2D = NULL; PFNGLTEXSTORAGE2DMULTISAMPLEPROC glad_glTexStorage2DMultisample = NULL; PFNGLTEXSTORAGE3DPROC glad_glTexStorage3D = NULL; PFNGLTEXSTORAGE3DMULTISAMPLEPROC glad_glTexStorage3DMultisample = NULL; PFNGLTEXSUBIMAGE1DPROC glad_glTexSubImage1D = NULL; PFNGLTEXSUBIMAGE2DPROC glad_glTexSubImage2D = NULL; PFNGLTEXSUBIMAGE3DPROC glad_glTexSubImage3D = NULL; PFNGLTEXTUREBARRIERPROC glad_glTextureBarrier = NULL; PFNGLTEXTUREBUFFERPROC glad_glTextureBuffer = NULL; PFNGLTEXTUREBUFFERRANGEPROC glad_glTextureBufferRange = NULL; PFNGLTEXTUREPARAMETERIIVPROC glad_glTextureParameterIiv = NULL; PFNGLTEXTUREPARAMETERIUIVPROC glad_glTextureParameterIuiv = NULL; PFNGLTEXTUREPARAMETERFPROC glad_glTextureParameterf = NULL; PFNGLTEXTUREPARAMETERFVPROC glad_glTextureParameterfv = NULL; PFNGLTEXTUREPARAMETERIPROC glad_glTextureParameteri = NULL; PFNGLTEXTUREPARAMETERIVPROC glad_glTextureParameteriv = NULL; PFNGLTEXTURESTORAGE1DPROC glad_glTextureStorage1D = NULL; PFNGLTEXTURESTORAGE2DPROC glad_glTextureStorage2D = NULL; PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC glad_glTextureStorage2DMultisample = NULL; PFNGLTEXTURESTORAGE3DPROC glad_glTextureStorage3D = NULL; PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC glad_glTextureStorage3DMultisample = NULL; PFNGLTEXTURESUBIMAGE1DPROC glad_glTextureSubImage1D = NULL; PFNGLTEXTURESUBIMAGE2DPROC glad_glTextureSubImage2D = NULL; PFNGLTEXTURESUBIMAGE3DPROC glad_glTextureSubImage3D = NULL; PFNGLTEXTUREVIEWPROC glad_glTextureView = NULL; PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC glad_glTransformFeedbackBufferBase = NULL; PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC glad_glTransformFeedbackBufferRange = NULL; PFNGLTRANSFORMFEEDBACKVARYINGSPROC glad_glTransformFeedbackVaryings = NULL; PFNGLTRANSLATEDPROC glad_glTranslated = NULL; PFNGLTRANSLATEFPROC glad_glTranslatef = NULL; PFNGLUNIFORM1DPROC glad_glUniform1d = NULL; PFNGLUNIFORM1DVPROC glad_glUniform1dv = NULL; PFNGLUNIFORM1FPROC glad_glUniform1f = NULL; PFNGLUNIFORM1FARBPROC glad_glUniform1fARB = NULL; PFNGLUNIFORM1FVPROC glad_glUniform1fv = NULL; PFNGLUNIFORM1FVARBPROC glad_glUniform1fvARB = NULL; PFNGLUNIFORM1IPROC glad_glUniform1i = NULL; PFNGLUNIFORM1I64ARBPROC glad_glUniform1i64ARB = NULL; PFNGLUNIFORM1I64VARBPROC glad_glUniform1i64vARB = NULL; PFNGLUNIFORM1IARBPROC glad_glUniform1iARB = NULL; PFNGLUNIFORM1IVPROC glad_glUniform1iv = NULL; PFNGLUNIFORM1IVARBPROC glad_glUniform1ivARB = NULL; PFNGLUNIFORM1UIPROC glad_glUniform1ui = NULL; PFNGLUNIFORM1UI64ARBPROC glad_glUniform1ui64ARB = NULL; PFNGLUNIFORM1UI64VARBPROC glad_glUniform1ui64vARB = NULL; PFNGLUNIFORM1UIVPROC glad_glUniform1uiv = NULL; PFNGLUNIFORM2DPROC glad_glUniform2d = NULL; PFNGLUNIFORM2DVPROC glad_glUniform2dv = NULL; PFNGLUNIFORM2FPROC glad_glUniform2f = NULL; PFNGLUNIFORM2FARBPROC glad_glUniform2fARB = NULL; PFNGLUNIFORM2FVPROC glad_glUniform2fv = NULL; PFNGLUNIFORM2FVARBPROC glad_glUniform2fvARB = NULL; PFNGLUNIFORM2IPROC glad_glUniform2i = NULL; PFNGLUNIFORM2I64ARBPROC glad_glUniform2i64ARB = NULL; PFNGLUNIFORM2I64VARBPROC glad_glUniform2i64vARB = NULL; PFNGLUNIFORM2IARBPROC glad_glUniform2iARB = NULL; PFNGLUNIFORM2IVPROC glad_glUniform2iv = NULL; PFNGLUNIFORM2IVARBPROC glad_glUniform2ivARB = NULL; PFNGLUNIFORM2UIPROC glad_glUniform2ui = NULL; PFNGLUNIFORM2UI64ARBPROC glad_glUniform2ui64ARB = NULL; PFNGLUNIFORM2UI64VARBPROC glad_glUniform2ui64vARB = NULL; PFNGLUNIFORM2UIVPROC glad_glUniform2uiv = NULL; PFNGLUNIFORM3DPROC glad_glUniform3d = NULL; PFNGLUNIFORM3DVPROC glad_glUniform3dv = NULL; PFNGLUNIFORM3FPROC glad_glUniform3f = NULL; PFNGLUNIFORM3FARBPROC glad_glUniform3fARB = NULL; PFNGLUNIFORM3FVPROC glad_glUniform3fv = NULL; PFNGLUNIFORM3FVARBPROC glad_glUniform3fvARB = NULL; PFNGLUNIFORM3IPROC glad_glUniform3i = NULL; PFNGLUNIFORM3I64ARBPROC glad_glUniform3i64ARB = NULL; PFNGLUNIFORM3I64VARBPROC glad_glUniform3i64vARB = NULL; PFNGLUNIFORM3IARBPROC glad_glUniform3iARB = NULL; PFNGLUNIFORM3IVPROC glad_glUniform3iv = NULL; PFNGLUNIFORM3IVARBPROC glad_glUniform3ivARB = NULL; PFNGLUNIFORM3UIPROC glad_glUniform3ui = NULL; PFNGLUNIFORM3UI64ARBPROC glad_glUniform3ui64ARB = NULL; PFNGLUNIFORM3UI64VARBPROC glad_glUniform3ui64vARB = NULL; PFNGLUNIFORM3UIVPROC glad_glUniform3uiv = NULL; PFNGLUNIFORM4DPROC glad_glUniform4d = NULL; PFNGLUNIFORM4DVPROC glad_glUniform4dv = NULL; PFNGLUNIFORM4FPROC glad_glUniform4f = NULL; PFNGLUNIFORM4FARBPROC glad_glUniform4fARB = NULL; PFNGLUNIFORM4FVPROC glad_glUniform4fv = NULL; PFNGLUNIFORM4FVARBPROC glad_glUniform4fvARB = NULL; PFNGLUNIFORM4IPROC glad_glUniform4i = NULL; PFNGLUNIFORM4I64ARBPROC glad_glUniform4i64ARB = NULL; PFNGLUNIFORM4I64VARBPROC glad_glUniform4i64vARB = NULL; PFNGLUNIFORM4IARBPROC glad_glUniform4iARB = NULL; PFNGLUNIFORM4IVPROC glad_glUniform4iv = NULL; PFNGLUNIFORM4IVARBPROC glad_glUniform4ivARB = NULL; PFNGLUNIFORM4UIPROC glad_glUniform4ui = NULL; PFNGLUNIFORM4UI64ARBPROC glad_glUniform4ui64ARB = NULL; PFNGLUNIFORM4UI64VARBPROC glad_glUniform4ui64vARB = NULL; PFNGLUNIFORM4UIVPROC glad_glUniform4uiv = NULL; PFNGLUNIFORMBLOCKBINDINGPROC glad_glUniformBlockBinding = NULL; PFNGLUNIFORMHANDLEUI64ARBPROC glad_glUniformHandleui64ARB = NULL; PFNGLUNIFORMHANDLEUI64VARBPROC glad_glUniformHandleui64vARB = NULL; PFNGLUNIFORMMATRIX2DVPROC glad_glUniformMatrix2dv = NULL; PFNGLUNIFORMMATRIX2FVPROC glad_glUniformMatrix2fv = NULL; PFNGLUNIFORMMATRIX2FVARBPROC glad_glUniformMatrix2fvARB = NULL; PFNGLUNIFORMMATRIX2X3DVPROC glad_glUniformMatrix2x3dv = NULL; PFNGLUNIFORMMATRIX2X3FVPROC glad_glUniformMatrix2x3fv = NULL; PFNGLUNIFORMMATRIX2X4DVPROC glad_glUniformMatrix2x4dv = NULL; PFNGLUNIFORMMATRIX2X4FVPROC glad_glUniformMatrix2x4fv = NULL; PFNGLUNIFORMMATRIX3DVPROC glad_glUniformMatrix3dv = NULL; PFNGLUNIFORMMATRIX3FVPROC glad_glUniformMatrix3fv = NULL; PFNGLUNIFORMMATRIX3FVARBPROC glad_glUniformMatrix3fvARB = NULL; PFNGLUNIFORMMATRIX3X2DVPROC glad_glUniformMatrix3x2dv = NULL; PFNGLUNIFORMMATRIX3X2FVPROC glad_glUniformMatrix3x2fv = NULL; PFNGLUNIFORMMATRIX3X4DVPROC glad_glUniformMatrix3x4dv = NULL; PFNGLUNIFORMMATRIX3X4FVPROC glad_glUniformMatrix3x4fv = NULL; PFNGLUNIFORMMATRIX4DVPROC glad_glUniformMatrix4dv = NULL; PFNGLUNIFORMMATRIX4FVPROC glad_glUniformMatrix4fv = NULL; PFNGLUNIFORMMATRIX4FVARBPROC glad_glUniformMatrix4fvARB = NULL; PFNGLUNIFORMMATRIX4X2DVPROC glad_glUniformMatrix4x2dv = NULL; PFNGLUNIFORMMATRIX4X2FVPROC glad_glUniformMatrix4x2fv = NULL; PFNGLUNIFORMMATRIX4X3DVPROC glad_glUniformMatrix4x3dv = NULL; PFNGLUNIFORMMATRIX4X3FVPROC glad_glUniformMatrix4x3fv = NULL; PFNGLUNIFORMSUBROUTINESUIVPROC glad_glUniformSubroutinesuiv = NULL; PFNGLUNMAPBUFFERPROC glad_glUnmapBuffer = NULL; PFNGLUNMAPBUFFERARBPROC glad_glUnmapBufferARB = NULL; PFNGLUNMAPNAMEDBUFFERPROC glad_glUnmapNamedBuffer = NULL; PFNGLUSEPROGRAMPROC glad_glUseProgram = NULL; PFNGLUSEPROGRAMOBJECTARBPROC glad_glUseProgramObjectARB = NULL; PFNGLUSEPROGRAMSTAGESPROC glad_glUseProgramStages = NULL; PFNGLVALIDATEPROGRAMPROC glad_glValidateProgram = NULL; PFNGLVALIDATEPROGRAMARBPROC glad_glValidateProgramARB = NULL; PFNGLVALIDATEPROGRAMPIPELINEPROC glad_glValidateProgramPipeline = NULL; PFNGLVERTEX2DPROC glad_glVertex2d = NULL; PFNGLVERTEX2DVPROC glad_glVertex2dv = NULL; PFNGLVERTEX2FPROC glad_glVertex2f = NULL; PFNGLVERTEX2FVPROC glad_glVertex2fv = NULL; PFNGLVERTEX2IPROC glad_glVertex2i = NULL; PFNGLVERTEX2IVPROC glad_glVertex2iv = NULL; PFNGLVERTEX2SPROC glad_glVertex2s = NULL; PFNGLVERTEX2SVPROC glad_glVertex2sv = NULL; PFNGLVERTEX3DPROC glad_glVertex3d = NULL; PFNGLVERTEX3DVPROC glad_glVertex3dv = NULL; PFNGLVERTEX3FPROC glad_glVertex3f = NULL; PFNGLVERTEX3FVPROC glad_glVertex3fv = NULL; PFNGLVERTEX3IPROC glad_glVertex3i = NULL; PFNGLVERTEX3IVPROC glad_glVertex3iv = NULL; PFNGLVERTEX3SPROC glad_glVertex3s = NULL; PFNGLVERTEX3SVPROC glad_glVertex3sv = NULL; PFNGLVERTEX4DPROC glad_glVertex4d = NULL; PFNGLVERTEX4DVPROC glad_glVertex4dv = NULL; PFNGLVERTEX4FPROC glad_glVertex4f = NULL; PFNGLVERTEX4FVPROC glad_glVertex4fv = NULL; PFNGLVERTEX4IPROC glad_glVertex4i = NULL; PFNGLVERTEX4IVPROC glad_glVertex4iv = NULL; PFNGLVERTEX4SPROC glad_glVertex4s = NULL; PFNGLVERTEX4SVPROC glad_glVertex4sv = NULL; PFNGLVERTEXARRAYATTRIBBINDINGPROC glad_glVertexArrayAttribBinding = NULL; PFNGLVERTEXARRAYATTRIBFORMATPROC glad_glVertexArrayAttribFormat = NULL; PFNGLVERTEXARRAYATTRIBIFORMATPROC glad_glVertexArrayAttribIFormat = NULL; PFNGLVERTEXARRAYATTRIBLFORMATPROC glad_glVertexArrayAttribLFormat = NULL; PFNGLVERTEXARRAYBINDINGDIVISORPROC glad_glVertexArrayBindingDivisor = NULL; PFNGLVERTEXARRAYELEMENTBUFFERPROC glad_glVertexArrayElementBuffer = NULL; PFNGLVERTEXARRAYVERTEXBUFFERPROC glad_glVertexArrayVertexBuffer = NULL; PFNGLVERTEXARRAYVERTEXBUFFERSPROC glad_glVertexArrayVertexBuffers = NULL; PFNGLVERTEXATTRIB1DPROC glad_glVertexAttrib1d = NULL; PFNGLVERTEXATTRIB1DARBPROC glad_glVertexAttrib1dARB = NULL; PFNGLVERTEXATTRIB1DVPROC glad_glVertexAttrib1dv = NULL; PFNGLVERTEXATTRIB1DVARBPROC glad_glVertexAttrib1dvARB = NULL; PFNGLVERTEXATTRIB1FPROC glad_glVertexAttrib1f = NULL; PFNGLVERTEXATTRIB1FARBPROC glad_glVertexAttrib1fARB = NULL; PFNGLVERTEXATTRIB1FVPROC glad_glVertexAttrib1fv = NULL; PFNGLVERTEXATTRIB1FVARBPROC glad_glVertexAttrib1fvARB = NULL; PFNGLVERTEXATTRIB1SPROC glad_glVertexAttrib1s = NULL; PFNGLVERTEXATTRIB1SARBPROC glad_glVertexAttrib1sARB = NULL; PFNGLVERTEXATTRIB1SVPROC glad_glVertexAttrib1sv = NULL; PFNGLVERTEXATTRIB1SVARBPROC glad_glVertexAttrib1svARB = NULL; PFNGLVERTEXATTRIB2DPROC glad_glVertexAttrib2d = NULL; PFNGLVERTEXATTRIB2DARBPROC glad_glVertexAttrib2dARB = NULL; PFNGLVERTEXATTRIB2DVPROC glad_glVertexAttrib2dv = NULL; PFNGLVERTEXATTRIB2DVARBPROC glad_glVertexAttrib2dvARB = NULL; PFNGLVERTEXATTRIB2FPROC glad_glVertexAttrib2f = NULL; PFNGLVERTEXATTRIB2FARBPROC glad_glVertexAttrib2fARB = NULL; PFNGLVERTEXATTRIB2FVPROC glad_glVertexAttrib2fv = NULL; PFNGLVERTEXATTRIB2FVARBPROC glad_glVertexAttrib2fvARB = NULL; PFNGLVERTEXATTRIB2SPROC glad_glVertexAttrib2s = NULL; PFNGLVERTEXATTRIB2SARBPROC glad_glVertexAttrib2sARB = NULL; PFNGLVERTEXATTRIB2SVPROC glad_glVertexAttrib2sv = NULL; PFNGLVERTEXATTRIB2SVARBPROC glad_glVertexAttrib2svARB = NULL; PFNGLVERTEXATTRIB3DPROC glad_glVertexAttrib3d = NULL; PFNGLVERTEXATTRIB3DARBPROC glad_glVertexAttrib3dARB = NULL; PFNGLVERTEXATTRIB3DVPROC glad_glVertexAttrib3dv = NULL; PFNGLVERTEXATTRIB3DVARBPROC glad_glVertexAttrib3dvARB = NULL; PFNGLVERTEXATTRIB3FPROC glad_glVertexAttrib3f = NULL; PFNGLVERTEXATTRIB3FARBPROC glad_glVertexAttrib3fARB = NULL; PFNGLVERTEXATTRIB3FVPROC glad_glVertexAttrib3fv = NULL; PFNGLVERTEXATTRIB3FVARBPROC glad_glVertexAttrib3fvARB = NULL; PFNGLVERTEXATTRIB3SPROC glad_glVertexAttrib3s = NULL; PFNGLVERTEXATTRIB3SARBPROC glad_glVertexAttrib3sARB = NULL; PFNGLVERTEXATTRIB3SVPROC glad_glVertexAttrib3sv = NULL; PFNGLVERTEXATTRIB3SVARBPROC glad_glVertexAttrib3svARB = NULL; PFNGLVERTEXATTRIB4NBVPROC glad_glVertexAttrib4Nbv = NULL; PFNGLVERTEXATTRIB4NBVARBPROC glad_glVertexAttrib4NbvARB = NULL; PFNGLVERTEXATTRIB4NIVPROC glad_glVertexAttrib4Niv = NULL; PFNGLVERTEXATTRIB4NIVARBPROC glad_glVertexAttrib4NivARB = NULL; PFNGLVERTEXATTRIB4NSVPROC glad_glVertexAttrib4Nsv = NULL; PFNGLVERTEXATTRIB4NSVARBPROC glad_glVertexAttrib4NsvARB = NULL; PFNGLVERTEXATTRIB4NUBPROC glad_glVertexAttrib4Nub = NULL; PFNGLVERTEXATTRIB4NUBARBPROC glad_glVertexAttrib4NubARB = NULL; PFNGLVERTEXATTRIB4NUBVPROC glad_glVertexAttrib4Nubv = NULL; PFNGLVERTEXATTRIB4NUBVARBPROC glad_glVertexAttrib4NubvARB = NULL; PFNGLVERTEXATTRIB4NUIVPROC glad_glVertexAttrib4Nuiv = NULL; PFNGLVERTEXATTRIB4NUIVARBPROC glad_glVertexAttrib4NuivARB = NULL; PFNGLVERTEXATTRIB4NUSVPROC glad_glVertexAttrib4Nusv = NULL; PFNGLVERTEXATTRIB4NUSVARBPROC glad_glVertexAttrib4NusvARB = NULL; PFNGLVERTEXATTRIB4BVPROC glad_glVertexAttrib4bv = NULL; PFNGLVERTEXATTRIB4BVARBPROC glad_glVertexAttrib4bvARB = NULL; PFNGLVERTEXATTRIB4DPROC glad_glVertexAttrib4d = NULL; PFNGLVERTEXATTRIB4DARBPROC glad_glVertexAttrib4dARB = NULL; PFNGLVERTEXATTRIB4DVPROC glad_glVertexAttrib4dv = NULL; PFNGLVERTEXATTRIB4DVARBPROC glad_glVertexAttrib4dvARB = NULL; PFNGLVERTEXATTRIB4FPROC glad_glVertexAttrib4f = NULL; PFNGLVERTEXATTRIB4FARBPROC glad_glVertexAttrib4fARB = NULL; PFNGLVERTEXATTRIB4FVPROC glad_glVertexAttrib4fv = NULL; PFNGLVERTEXATTRIB4FVARBPROC glad_glVertexAttrib4fvARB = NULL; PFNGLVERTEXATTRIB4IVPROC glad_glVertexAttrib4iv = NULL; PFNGLVERTEXATTRIB4IVARBPROC glad_glVertexAttrib4ivARB = NULL; PFNGLVERTEXATTRIB4SPROC glad_glVertexAttrib4s = NULL; PFNGLVERTEXATTRIB4SARBPROC glad_glVertexAttrib4sARB = NULL; PFNGLVERTEXATTRIB4SVPROC glad_glVertexAttrib4sv = NULL; PFNGLVERTEXATTRIB4SVARBPROC glad_glVertexAttrib4svARB = NULL; PFNGLVERTEXATTRIB4UBVPROC glad_glVertexAttrib4ubv = NULL; PFNGLVERTEXATTRIB4UBVARBPROC glad_glVertexAttrib4ubvARB = NULL; PFNGLVERTEXATTRIB4UIVPROC glad_glVertexAttrib4uiv = NULL; PFNGLVERTEXATTRIB4UIVARBPROC glad_glVertexAttrib4uivARB = NULL; PFNGLVERTEXATTRIB4USVPROC glad_glVertexAttrib4usv = NULL; PFNGLVERTEXATTRIB4USVARBPROC glad_glVertexAttrib4usvARB = NULL; PFNGLVERTEXATTRIBBINDINGPROC glad_glVertexAttribBinding = NULL; PFNGLVERTEXATTRIBDIVISORPROC glad_glVertexAttribDivisor = NULL; PFNGLVERTEXATTRIBDIVISORARBPROC glad_glVertexAttribDivisorARB = NULL; PFNGLVERTEXATTRIBFORMATPROC glad_glVertexAttribFormat = NULL; PFNGLVERTEXATTRIBI1IPROC glad_glVertexAttribI1i = NULL; PFNGLVERTEXATTRIBI1IVPROC glad_glVertexAttribI1iv = NULL; PFNGLVERTEXATTRIBI1UIPROC glad_glVertexAttribI1ui = NULL; PFNGLVERTEXATTRIBI1UIVPROC glad_glVertexAttribI1uiv = NULL; PFNGLVERTEXATTRIBI2IPROC glad_glVertexAttribI2i = NULL; PFNGLVERTEXATTRIBI2IVPROC glad_glVertexAttribI2iv = NULL; PFNGLVERTEXATTRIBI2UIPROC glad_glVertexAttribI2ui = NULL; PFNGLVERTEXATTRIBI2UIVPROC glad_glVertexAttribI2uiv = NULL; PFNGLVERTEXATTRIBI3IPROC glad_glVertexAttribI3i = NULL; PFNGLVERTEXATTRIBI3IVPROC glad_glVertexAttribI3iv = NULL; PFNGLVERTEXATTRIBI3UIPROC glad_glVertexAttribI3ui = NULL; PFNGLVERTEXATTRIBI3UIVPROC glad_glVertexAttribI3uiv = NULL; PFNGLVERTEXATTRIBI4BVPROC glad_glVertexAttribI4bv = NULL; PFNGLVERTEXATTRIBI4IPROC glad_glVertexAttribI4i = NULL; PFNGLVERTEXATTRIBI4IVPROC glad_glVertexAttribI4iv = NULL; PFNGLVERTEXATTRIBI4SVPROC glad_glVertexAttribI4sv = NULL; PFNGLVERTEXATTRIBI4UBVPROC glad_glVertexAttribI4ubv = NULL; PFNGLVERTEXATTRIBI4UIPROC glad_glVertexAttribI4ui = NULL; PFNGLVERTEXATTRIBI4UIVPROC glad_glVertexAttribI4uiv = NULL; PFNGLVERTEXATTRIBI4USVPROC glad_glVertexAttribI4usv = NULL; PFNGLVERTEXATTRIBIFORMATPROC glad_glVertexAttribIFormat = NULL; PFNGLVERTEXATTRIBIPOINTERPROC glad_glVertexAttribIPointer = NULL; PFNGLVERTEXATTRIBL1DPROC glad_glVertexAttribL1d = NULL; PFNGLVERTEXATTRIBL1DVPROC glad_glVertexAttribL1dv = NULL; PFNGLVERTEXATTRIBL1UI64ARBPROC glad_glVertexAttribL1ui64ARB = NULL; PFNGLVERTEXATTRIBL1UI64VARBPROC glad_glVertexAttribL1ui64vARB = NULL; PFNGLVERTEXATTRIBL2DPROC glad_glVertexAttribL2d = NULL; PFNGLVERTEXATTRIBL2DVPROC glad_glVertexAttribL2dv = NULL; PFNGLVERTEXATTRIBL3DPROC glad_glVertexAttribL3d = NULL; PFNGLVERTEXATTRIBL3DVPROC glad_glVertexAttribL3dv = NULL; PFNGLVERTEXATTRIBL4DPROC glad_glVertexAttribL4d = NULL; PFNGLVERTEXATTRIBL4DVPROC glad_glVertexAttribL4dv = NULL; PFNGLVERTEXATTRIBLFORMATPROC glad_glVertexAttribLFormat = NULL; PFNGLVERTEXATTRIBLPOINTERPROC glad_glVertexAttribLPointer = NULL; PFNGLVERTEXATTRIBP1UIPROC glad_glVertexAttribP1ui = NULL; PFNGLVERTEXATTRIBP1UIVPROC glad_glVertexAttribP1uiv = NULL; PFNGLVERTEXATTRIBP2UIPROC glad_glVertexAttribP2ui = NULL; PFNGLVERTEXATTRIBP2UIVPROC glad_glVertexAttribP2uiv = NULL; PFNGLVERTEXATTRIBP3UIPROC glad_glVertexAttribP3ui = NULL; PFNGLVERTEXATTRIBP3UIVPROC glad_glVertexAttribP3uiv = NULL; PFNGLVERTEXATTRIBP4UIPROC glad_glVertexAttribP4ui = NULL; PFNGLVERTEXATTRIBP4UIVPROC glad_glVertexAttribP4uiv = NULL; PFNGLVERTEXATTRIBPOINTERPROC glad_glVertexAttribPointer = NULL; PFNGLVERTEXATTRIBPOINTERARBPROC glad_glVertexAttribPointerARB = NULL; PFNGLVERTEXBINDINGDIVISORPROC glad_glVertexBindingDivisor = NULL; PFNGLVERTEXBLENDARBPROC glad_glVertexBlendARB = NULL; PFNGLVERTEXP2UIPROC glad_glVertexP2ui = NULL; PFNGLVERTEXP2UIVPROC glad_glVertexP2uiv = NULL; PFNGLVERTEXP3UIPROC glad_glVertexP3ui = NULL; PFNGLVERTEXP3UIVPROC glad_glVertexP3uiv = NULL; PFNGLVERTEXP4UIPROC glad_glVertexP4ui = NULL; PFNGLVERTEXP4UIVPROC glad_glVertexP4uiv = NULL; PFNGLVERTEXPOINTERPROC glad_glVertexPointer = NULL; PFNGLVIEWPORTPROC glad_glViewport = NULL; PFNGLVIEWPORTARRAYVPROC glad_glViewportArrayv = NULL; PFNGLVIEWPORTINDEXEDFPROC glad_glViewportIndexedf = NULL; PFNGLVIEWPORTINDEXEDFVPROC glad_glViewportIndexedfv = NULL; PFNGLWAITSYNCPROC glad_glWaitSync = NULL; PFNGLWEIGHTPOINTERARBPROC glad_glWeightPointerARB = NULL; PFNGLWEIGHTBVARBPROC glad_glWeightbvARB = NULL; PFNGLWEIGHTDVARBPROC glad_glWeightdvARB = NULL; PFNGLWEIGHTFVARBPROC glad_glWeightfvARB = NULL; PFNGLWEIGHTIVARBPROC glad_glWeightivARB = NULL; PFNGLWEIGHTSVARBPROC glad_glWeightsvARB = NULL; PFNGLWEIGHTUBVARBPROC glad_glWeightubvARB = NULL; PFNGLWEIGHTUIVARBPROC glad_glWeightuivARB = NULL; PFNGLWEIGHTUSVARBPROC glad_glWeightusvARB = NULL; PFNGLWINDOWPOS2DPROC glad_glWindowPos2d = NULL; PFNGLWINDOWPOS2DARBPROC glad_glWindowPos2dARB = NULL; PFNGLWINDOWPOS2DVPROC glad_glWindowPos2dv = NULL; PFNGLWINDOWPOS2DVARBPROC glad_glWindowPos2dvARB = NULL; PFNGLWINDOWPOS2FPROC glad_glWindowPos2f = NULL; PFNGLWINDOWPOS2FARBPROC glad_glWindowPos2fARB = NULL; PFNGLWINDOWPOS2FVPROC glad_glWindowPos2fv = NULL; PFNGLWINDOWPOS2FVARBPROC glad_glWindowPos2fvARB = NULL; PFNGLWINDOWPOS2IPROC glad_glWindowPos2i = NULL; PFNGLWINDOWPOS2IARBPROC glad_glWindowPos2iARB = NULL; PFNGLWINDOWPOS2IVPROC glad_glWindowPos2iv = NULL; PFNGLWINDOWPOS2IVARBPROC glad_glWindowPos2ivARB = NULL; PFNGLWINDOWPOS2SPROC glad_glWindowPos2s = NULL; PFNGLWINDOWPOS2SARBPROC glad_glWindowPos2sARB = NULL; PFNGLWINDOWPOS2SVPROC glad_glWindowPos2sv = NULL; PFNGLWINDOWPOS2SVARBPROC glad_glWindowPos2svARB = NULL; PFNGLWINDOWPOS3DPROC glad_glWindowPos3d = NULL; PFNGLWINDOWPOS3DARBPROC glad_glWindowPos3dARB = NULL; PFNGLWINDOWPOS3DVPROC glad_glWindowPos3dv = NULL; PFNGLWINDOWPOS3DVARBPROC glad_glWindowPos3dvARB = NULL; PFNGLWINDOWPOS3FPROC glad_glWindowPos3f = NULL; PFNGLWINDOWPOS3FARBPROC glad_glWindowPos3fARB = NULL; PFNGLWINDOWPOS3FVPROC glad_glWindowPos3fv = NULL; PFNGLWINDOWPOS3FVARBPROC glad_glWindowPos3fvARB = NULL; PFNGLWINDOWPOS3IPROC glad_glWindowPos3i = NULL; PFNGLWINDOWPOS3IARBPROC glad_glWindowPos3iARB = NULL; PFNGLWINDOWPOS3IVPROC glad_glWindowPos3iv = NULL; PFNGLWINDOWPOS3IVARBPROC glad_glWindowPos3ivARB = NULL; PFNGLWINDOWPOS3SPROC glad_glWindowPos3s = NULL; PFNGLWINDOWPOS3SARBPROC glad_glWindowPos3sARB = NULL; PFNGLWINDOWPOS3SVPROC glad_glWindowPos3sv = NULL; PFNGLWINDOWPOS3SVARBPROC glad_glWindowPos3svARB = NULL; static void glad_gl_load_GL_VERSION_1_0( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_0) return; glad_glAccum = (PFNGLACCUMPROC) load(userptr, "glAccum"); glad_glAlphaFunc = (PFNGLALPHAFUNCPROC) load(userptr, "glAlphaFunc"); glad_glBegin = (PFNGLBEGINPROC) load(userptr, "glBegin"); glad_glBitmap = (PFNGLBITMAPPROC) load(userptr, "glBitmap"); glad_glBlendFunc = (PFNGLBLENDFUNCPROC) load(userptr, "glBlendFunc"); glad_glCallList = (PFNGLCALLLISTPROC) load(userptr, "glCallList"); glad_glCallLists = (PFNGLCALLLISTSPROC) load(userptr, "glCallLists"); glad_glClear = (PFNGLCLEARPROC) load(userptr, "glClear"); glad_glClearAccum = (PFNGLCLEARACCUMPROC) load(userptr, "glClearAccum"); glad_glClearColor = (PFNGLCLEARCOLORPROC) load(userptr, "glClearColor"); glad_glClearDepth = (PFNGLCLEARDEPTHPROC) load(userptr, "glClearDepth"); glad_glClearIndex = (PFNGLCLEARINDEXPROC) load(userptr, "glClearIndex"); glad_glClearStencil = (PFNGLCLEARSTENCILPROC) load(userptr, "glClearStencil"); glad_glClipPlane = (PFNGLCLIPPLANEPROC) load(userptr, "glClipPlane"); glad_glColor3b = (PFNGLCOLOR3BPROC) load(userptr, "glColor3b"); glad_glColor3bv = (PFNGLCOLOR3BVPROC) load(userptr, "glColor3bv"); glad_glColor3d = (PFNGLCOLOR3DPROC) load(userptr, "glColor3d"); glad_glColor3dv = (PFNGLCOLOR3DVPROC) load(userptr, "glColor3dv"); glad_glColor3f = (PFNGLCOLOR3FPROC) load(userptr, "glColor3f"); glad_glColor3fv = (PFNGLCOLOR3FVPROC) load(userptr, "glColor3fv"); glad_glColor3i = (PFNGLCOLOR3IPROC) load(userptr, "glColor3i"); glad_glColor3iv = (PFNGLCOLOR3IVPROC) load(userptr, "glColor3iv"); glad_glColor3s = (PFNGLCOLOR3SPROC) load(userptr, "glColor3s"); glad_glColor3sv = (PFNGLCOLOR3SVPROC) load(userptr, "glColor3sv"); glad_glColor3ub = (PFNGLCOLOR3UBPROC) load(userptr, "glColor3ub"); glad_glColor3ubv = (PFNGLCOLOR3UBVPROC) load(userptr, "glColor3ubv"); glad_glColor3ui = (PFNGLCOLOR3UIPROC) load(userptr, "glColor3ui"); glad_glColor3uiv = (PFNGLCOLOR3UIVPROC) load(userptr, "glColor3uiv"); glad_glColor3us = (PFNGLCOLOR3USPROC) load(userptr, "glColor3us"); glad_glColor3usv = (PFNGLCOLOR3USVPROC) load(userptr, "glColor3usv"); glad_glColor4b = (PFNGLCOLOR4BPROC) load(userptr, "glColor4b"); glad_glColor4bv = (PFNGLCOLOR4BVPROC) load(userptr, "glColor4bv"); glad_glColor4d = (PFNGLCOLOR4DPROC) load(userptr, "glColor4d"); glad_glColor4dv = (PFNGLCOLOR4DVPROC) load(userptr, "glColor4dv"); glad_glColor4f = (PFNGLCOLOR4FPROC) load(userptr, "glColor4f"); glad_glColor4fv = (PFNGLCOLOR4FVPROC) load(userptr, "glColor4fv"); glad_glColor4i = (PFNGLCOLOR4IPROC) load(userptr, "glColor4i"); glad_glColor4iv = (PFNGLCOLOR4IVPROC) load(userptr, "glColor4iv"); glad_glColor4s = (PFNGLCOLOR4SPROC) load(userptr, "glColor4s"); glad_glColor4sv = (PFNGLCOLOR4SVPROC) load(userptr, "glColor4sv"); glad_glColor4ub = (PFNGLCOLOR4UBPROC) load(userptr, "glColor4ub"); glad_glColor4ubv = (PFNGLCOLOR4UBVPROC) load(userptr, "glColor4ubv"); glad_glColor4ui = (PFNGLCOLOR4UIPROC) load(userptr, "glColor4ui"); glad_glColor4uiv = (PFNGLCOLOR4UIVPROC) load(userptr, "glColor4uiv"); glad_glColor4us = (PFNGLCOLOR4USPROC) load(userptr, "glColor4us"); glad_glColor4usv = (PFNGLCOLOR4USVPROC) load(userptr, "glColor4usv"); glad_glColorMask = (PFNGLCOLORMASKPROC) load(userptr, "glColorMask"); glad_glColorMaterial = (PFNGLCOLORMATERIALPROC) load(userptr, "glColorMaterial"); glad_glCopyPixels = (PFNGLCOPYPIXELSPROC) load(userptr, "glCopyPixels"); glad_glCullFace = (PFNGLCULLFACEPROC) load(userptr, "glCullFace"); glad_glDeleteLists = (PFNGLDELETELISTSPROC) load(userptr, "glDeleteLists"); glad_glDepthFunc = (PFNGLDEPTHFUNCPROC) load(userptr, "glDepthFunc"); glad_glDepthMask = (PFNGLDEPTHMASKPROC) load(userptr, "glDepthMask"); glad_glDepthRange = (PFNGLDEPTHRANGEPROC) load(userptr, "glDepthRange"); glad_glDisable = (PFNGLDISABLEPROC) load(userptr, "glDisable"); glad_glDrawBuffer = (PFNGLDRAWBUFFERPROC) load(userptr, "glDrawBuffer"); glad_glDrawPixels = (PFNGLDRAWPIXELSPROC) load(userptr, "glDrawPixels"); glad_glEdgeFlag = (PFNGLEDGEFLAGPROC) load(userptr, "glEdgeFlag"); glad_glEdgeFlagv = (PFNGLEDGEFLAGVPROC) load(userptr, "glEdgeFlagv"); glad_glEnable = (PFNGLENABLEPROC) load(userptr, "glEnable"); glad_glEnd = (PFNGLENDPROC) load(userptr, "glEnd"); glad_glEndList = (PFNGLENDLISTPROC) load(userptr, "glEndList"); glad_glEvalCoord1d = (PFNGLEVALCOORD1DPROC) load(userptr, "glEvalCoord1d"); glad_glEvalCoord1dv = (PFNGLEVALCOORD1DVPROC) load(userptr, "glEvalCoord1dv"); glad_glEvalCoord1f = (PFNGLEVALCOORD1FPROC) load(userptr, "glEvalCoord1f"); glad_glEvalCoord1fv = (PFNGLEVALCOORD1FVPROC) load(userptr, "glEvalCoord1fv"); glad_glEvalCoord2d = (PFNGLEVALCOORD2DPROC) load(userptr, "glEvalCoord2d"); glad_glEvalCoord2dv = (PFNGLEVALCOORD2DVPROC) load(userptr, "glEvalCoord2dv"); glad_glEvalCoord2f = (PFNGLEVALCOORD2FPROC) load(userptr, "glEvalCoord2f"); glad_glEvalCoord2fv = (PFNGLEVALCOORD2FVPROC) load(userptr, "glEvalCoord2fv"); glad_glEvalMesh1 = (PFNGLEVALMESH1PROC) load(userptr, "glEvalMesh1"); glad_glEvalMesh2 = (PFNGLEVALMESH2PROC) load(userptr, "glEvalMesh2"); glad_glEvalPoint1 = (PFNGLEVALPOINT1PROC) load(userptr, "glEvalPoint1"); glad_glEvalPoint2 = (PFNGLEVALPOINT2PROC) load(userptr, "glEvalPoint2"); glad_glFeedbackBuffer = (PFNGLFEEDBACKBUFFERPROC) load(userptr, "glFeedbackBuffer"); glad_glFinish = (PFNGLFINISHPROC) load(userptr, "glFinish"); glad_glFlush = (PFNGLFLUSHPROC) load(userptr, "glFlush"); glad_glFogf = (PFNGLFOGFPROC) load(userptr, "glFogf"); glad_glFogfv = (PFNGLFOGFVPROC) load(userptr, "glFogfv"); glad_glFogi = (PFNGLFOGIPROC) load(userptr, "glFogi"); glad_glFogiv = (PFNGLFOGIVPROC) load(userptr, "glFogiv"); glad_glFrontFace = (PFNGLFRONTFACEPROC) load(userptr, "glFrontFace"); glad_glFrustum = (PFNGLFRUSTUMPROC) load(userptr, "glFrustum"); glad_glGenLists = (PFNGLGENLISTSPROC) load(userptr, "glGenLists"); glad_glGetBooleanv = (PFNGLGETBOOLEANVPROC) load(userptr, "glGetBooleanv"); glad_glGetClipPlane = (PFNGLGETCLIPPLANEPROC) load(userptr, "glGetClipPlane"); glad_glGetDoublev = (PFNGLGETDOUBLEVPROC) load(userptr, "glGetDoublev"); glad_glGetError = (PFNGLGETERRORPROC) load(userptr, "glGetError"); glad_glGetFloatv = (PFNGLGETFLOATVPROC) load(userptr, "glGetFloatv"); glad_glGetIntegerv = (PFNGLGETINTEGERVPROC) load(userptr, "glGetIntegerv"); glad_glGetLightfv = (PFNGLGETLIGHTFVPROC) load(userptr, "glGetLightfv"); glad_glGetLightiv = (PFNGLGETLIGHTIVPROC) load(userptr, "glGetLightiv"); glad_glGetMapdv = (PFNGLGETMAPDVPROC) load(userptr, "glGetMapdv"); glad_glGetMapfv = (PFNGLGETMAPFVPROC) load(userptr, "glGetMapfv"); glad_glGetMapiv = (PFNGLGETMAPIVPROC) load(userptr, "glGetMapiv"); glad_glGetMaterialfv = (PFNGLGETMATERIALFVPROC) load(userptr, "glGetMaterialfv"); glad_glGetMaterialiv = (PFNGLGETMATERIALIVPROC) load(userptr, "glGetMaterialiv"); glad_glGetPixelMapfv = (PFNGLGETPIXELMAPFVPROC) load(userptr, "glGetPixelMapfv"); glad_glGetPixelMapuiv = (PFNGLGETPIXELMAPUIVPROC) load(userptr, "glGetPixelMapuiv"); glad_glGetPixelMapusv = (PFNGLGETPIXELMAPUSVPROC) load(userptr, "glGetPixelMapusv"); glad_glGetPolygonStipple = (PFNGLGETPOLYGONSTIPPLEPROC) load(userptr, "glGetPolygonStipple"); glad_glGetString = (PFNGLGETSTRINGPROC) load(userptr, "glGetString"); glad_glGetTexEnvfv = (PFNGLGETTEXENVFVPROC) load(userptr, "glGetTexEnvfv"); glad_glGetTexEnviv = (PFNGLGETTEXENVIVPROC) load(userptr, "glGetTexEnviv"); glad_glGetTexGendv = (PFNGLGETTEXGENDVPROC) load(userptr, "glGetTexGendv"); glad_glGetTexGenfv = (PFNGLGETTEXGENFVPROC) load(userptr, "glGetTexGenfv"); glad_glGetTexGeniv = (PFNGLGETTEXGENIVPROC) load(userptr, "glGetTexGeniv"); glad_glGetTexImage = (PFNGLGETTEXIMAGEPROC) load(userptr, "glGetTexImage"); glad_glGetTexLevelParameterfv = (PFNGLGETTEXLEVELPARAMETERFVPROC) load(userptr, "glGetTexLevelParameterfv"); glad_glGetTexLevelParameteriv = (PFNGLGETTEXLEVELPARAMETERIVPROC) load(userptr, "glGetTexLevelParameteriv"); glad_glGetTexParameterfv = (PFNGLGETTEXPARAMETERFVPROC) load(userptr, "glGetTexParameterfv"); glad_glGetTexParameteriv = (PFNGLGETTEXPARAMETERIVPROC) load(userptr, "glGetTexParameteriv"); glad_glHint = (PFNGLHINTPROC) load(userptr, "glHint"); glad_glIndexMask = (PFNGLINDEXMASKPROC) load(userptr, "glIndexMask"); glad_glIndexd = (PFNGLINDEXDPROC) load(userptr, "glIndexd"); glad_glIndexdv = (PFNGLINDEXDVPROC) load(userptr, "glIndexdv"); glad_glIndexf = (PFNGLINDEXFPROC) load(userptr, "glIndexf"); glad_glIndexfv = (PFNGLINDEXFVPROC) load(userptr, "glIndexfv"); glad_glIndexi = (PFNGLINDEXIPROC) load(userptr, "glIndexi"); glad_glIndexiv = (PFNGLINDEXIVPROC) load(userptr, "glIndexiv"); glad_glIndexs = (PFNGLINDEXSPROC) load(userptr, "glIndexs"); glad_glIndexsv = (PFNGLINDEXSVPROC) load(userptr, "glIndexsv"); glad_glInitNames = (PFNGLINITNAMESPROC) load(userptr, "glInitNames"); glad_glIsEnabled = (PFNGLISENABLEDPROC) load(userptr, "glIsEnabled"); glad_glIsList = (PFNGLISLISTPROC) load(userptr, "glIsList"); glad_glLightModelf = (PFNGLLIGHTMODELFPROC) load(userptr, "glLightModelf"); glad_glLightModelfv = (PFNGLLIGHTMODELFVPROC) load(userptr, "glLightModelfv"); glad_glLightModeli = (PFNGLLIGHTMODELIPROC) load(userptr, "glLightModeli"); glad_glLightModeliv = (PFNGLLIGHTMODELIVPROC) load(userptr, "glLightModeliv"); glad_glLightf = (PFNGLLIGHTFPROC) load(userptr, "glLightf"); glad_glLightfv = (PFNGLLIGHTFVPROC) load(userptr, "glLightfv"); glad_glLighti = (PFNGLLIGHTIPROC) load(userptr, "glLighti"); glad_glLightiv = (PFNGLLIGHTIVPROC) load(userptr, "glLightiv"); glad_glLineStipple = (PFNGLLINESTIPPLEPROC) load(userptr, "glLineStipple"); glad_glLineWidth = (PFNGLLINEWIDTHPROC) load(userptr, "glLineWidth"); glad_glListBase = (PFNGLLISTBASEPROC) load(userptr, "glListBase"); glad_glLoadIdentity = (PFNGLLOADIDENTITYPROC) load(userptr, "glLoadIdentity"); glad_glLoadMatrixd = (PFNGLLOADMATRIXDPROC) load(userptr, "glLoadMatrixd"); glad_glLoadMatrixf = (PFNGLLOADMATRIXFPROC) load(userptr, "glLoadMatrixf"); glad_glLoadName = (PFNGLLOADNAMEPROC) load(userptr, "glLoadName"); glad_glLogicOp = (PFNGLLOGICOPPROC) load(userptr, "glLogicOp"); glad_glMap1d = (PFNGLMAP1DPROC) load(userptr, "glMap1d"); glad_glMap1f = (PFNGLMAP1FPROC) load(userptr, "glMap1f"); glad_glMap2d = (PFNGLMAP2DPROC) load(userptr, "glMap2d"); glad_glMap2f = (PFNGLMAP2FPROC) load(userptr, "glMap2f"); glad_glMapGrid1d = (PFNGLMAPGRID1DPROC) load(userptr, "glMapGrid1d"); glad_glMapGrid1f = (PFNGLMAPGRID1FPROC) load(userptr, "glMapGrid1f"); glad_glMapGrid2d = (PFNGLMAPGRID2DPROC) load(userptr, "glMapGrid2d"); glad_glMapGrid2f = (PFNGLMAPGRID2FPROC) load(userptr, "glMapGrid2f"); glad_glMaterialf = (PFNGLMATERIALFPROC) load(userptr, "glMaterialf"); glad_glMaterialfv = (PFNGLMATERIALFVPROC) load(userptr, "glMaterialfv"); glad_glMateriali = (PFNGLMATERIALIPROC) load(userptr, "glMateriali"); glad_glMaterialiv = (PFNGLMATERIALIVPROC) load(userptr, "glMaterialiv"); glad_glMatrixMode = (PFNGLMATRIXMODEPROC) load(userptr, "glMatrixMode"); glad_glMultMatrixd = (PFNGLMULTMATRIXDPROC) load(userptr, "glMultMatrixd"); glad_glMultMatrixf = (PFNGLMULTMATRIXFPROC) load(userptr, "glMultMatrixf"); glad_glNewList = (PFNGLNEWLISTPROC) load(userptr, "glNewList"); glad_glNormal3b = (PFNGLNORMAL3BPROC) load(userptr, "glNormal3b"); glad_glNormal3bv = (PFNGLNORMAL3BVPROC) load(userptr, "glNormal3bv"); glad_glNormal3d = (PFNGLNORMAL3DPROC) load(userptr, "glNormal3d"); glad_glNormal3dv = (PFNGLNORMAL3DVPROC) load(userptr, "glNormal3dv"); glad_glNormal3f = (PFNGLNORMAL3FPROC) load(userptr, "glNormal3f"); glad_glNormal3fv = (PFNGLNORMAL3FVPROC) load(userptr, "glNormal3fv"); glad_glNormal3i = (PFNGLNORMAL3IPROC) load(userptr, "glNormal3i"); glad_glNormal3iv = (PFNGLNORMAL3IVPROC) load(userptr, "glNormal3iv"); glad_glNormal3s = (PFNGLNORMAL3SPROC) load(userptr, "glNormal3s"); glad_glNormal3sv = (PFNGLNORMAL3SVPROC) load(userptr, "glNormal3sv"); glad_glOrtho = (PFNGLORTHOPROC) load(userptr, "glOrtho"); glad_glPassThrough = (PFNGLPASSTHROUGHPROC) load(userptr, "glPassThrough"); glad_glPixelMapfv = (PFNGLPIXELMAPFVPROC) load(userptr, "glPixelMapfv"); glad_glPixelMapuiv = (PFNGLPIXELMAPUIVPROC) load(userptr, "glPixelMapuiv"); glad_glPixelMapusv = (PFNGLPIXELMAPUSVPROC) load(userptr, "glPixelMapusv"); glad_glPixelStoref = (PFNGLPIXELSTOREFPROC) load(userptr, "glPixelStoref"); glad_glPixelStorei = (PFNGLPIXELSTOREIPROC) load(userptr, "glPixelStorei"); glad_glPixelTransferf = (PFNGLPIXELTRANSFERFPROC) load(userptr, "glPixelTransferf"); glad_glPixelTransferi = (PFNGLPIXELTRANSFERIPROC) load(userptr, "glPixelTransferi"); glad_glPixelZoom = (PFNGLPIXELZOOMPROC) load(userptr, "glPixelZoom"); glad_glPointSize = (PFNGLPOINTSIZEPROC) load(userptr, "glPointSize"); glad_glPolygonMode = (PFNGLPOLYGONMODEPROC) load(userptr, "glPolygonMode"); glad_glPolygonStipple = (PFNGLPOLYGONSTIPPLEPROC) load(userptr, "glPolygonStipple"); glad_glPopAttrib = (PFNGLPOPATTRIBPROC) load(userptr, "glPopAttrib"); glad_glPopMatrix = (PFNGLPOPMATRIXPROC) load(userptr, "glPopMatrix"); glad_glPopName = (PFNGLPOPNAMEPROC) load(userptr, "glPopName"); glad_glPushAttrib = (PFNGLPUSHATTRIBPROC) load(userptr, "glPushAttrib"); glad_glPushMatrix = (PFNGLPUSHMATRIXPROC) load(userptr, "glPushMatrix"); glad_glPushName = (PFNGLPUSHNAMEPROC) load(userptr, "glPushName"); glad_glRasterPos2d = (PFNGLRASTERPOS2DPROC) load(userptr, "glRasterPos2d"); glad_glRasterPos2dv = (PFNGLRASTERPOS2DVPROC) load(userptr, "glRasterPos2dv"); glad_glRasterPos2f = (PFNGLRASTERPOS2FPROC) load(userptr, "glRasterPos2f"); glad_glRasterPos2fv = (PFNGLRASTERPOS2FVPROC) load(userptr, "glRasterPos2fv"); glad_glRasterPos2i = (PFNGLRASTERPOS2IPROC) load(userptr, "glRasterPos2i"); glad_glRasterPos2iv = (PFNGLRASTERPOS2IVPROC) load(userptr, "glRasterPos2iv"); glad_glRasterPos2s = (PFNGLRASTERPOS2SPROC) load(userptr, "glRasterPos2s"); glad_glRasterPos2sv = (PFNGLRASTERPOS2SVPROC) load(userptr, "glRasterPos2sv"); glad_glRasterPos3d = (PFNGLRASTERPOS3DPROC) load(userptr, "glRasterPos3d"); glad_glRasterPos3dv = (PFNGLRASTERPOS3DVPROC) load(userptr, "glRasterPos3dv"); glad_glRasterPos3f = (PFNGLRASTERPOS3FPROC) load(userptr, "glRasterPos3f"); glad_glRasterPos3fv = (PFNGLRASTERPOS3FVPROC) load(userptr, "glRasterPos3fv"); glad_glRasterPos3i = (PFNGLRASTERPOS3IPROC) load(userptr, "glRasterPos3i"); glad_glRasterPos3iv = (PFNGLRASTERPOS3IVPROC) load(userptr, "glRasterPos3iv"); glad_glRasterPos3s = (PFNGLRASTERPOS3SPROC) load(userptr, "glRasterPos3s"); glad_glRasterPos3sv = (PFNGLRASTERPOS3SVPROC) load(userptr, "glRasterPos3sv"); glad_glRasterPos4d = (PFNGLRASTERPOS4DPROC) load(userptr, "glRasterPos4d"); glad_glRasterPos4dv = (PFNGLRASTERPOS4DVPROC) load(userptr, "glRasterPos4dv"); glad_glRasterPos4f = (PFNGLRASTERPOS4FPROC) load(userptr, "glRasterPos4f"); glad_glRasterPos4fv = (PFNGLRASTERPOS4FVPROC) load(userptr, "glRasterPos4fv"); glad_glRasterPos4i = (PFNGLRASTERPOS4IPROC) load(userptr, "glRasterPos4i"); glad_glRasterPos4iv = (PFNGLRASTERPOS4IVPROC) load(userptr, "glRasterPos4iv"); glad_glRasterPos4s = (PFNGLRASTERPOS4SPROC) load(userptr, "glRasterPos4s"); glad_glRasterPos4sv = (PFNGLRASTERPOS4SVPROC) load(userptr, "glRasterPos4sv"); glad_glReadBuffer = (PFNGLREADBUFFERPROC) load(userptr, "glReadBuffer"); glad_glReadPixels = (PFNGLREADPIXELSPROC) load(userptr, "glReadPixels"); glad_glRectd = (PFNGLRECTDPROC) load(userptr, "glRectd"); glad_glRectdv = (PFNGLRECTDVPROC) load(userptr, "glRectdv"); glad_glRectf = (PFNGLRECTFPROC) load(userptr, "glRectf"); glad_glRectfv = (PFNGLRECTFVPROC) load(userptr, "glRectfv"); glad_glRecti = (PFNGLRECTIPROC) load(userptr, "glRecti"); glad_glRectiv = (PFNGLRECTIVPROC) load(userptr, "glRectiv"); glad_glRects = (PFNGLRECTSPROC) load(userptr, "glRects"); glad_glRectsv = (PFNGLRECTSVPROC) load(userptr, "glRectsv"); glad_glRenderMode = (PFNGLRENDERMODEPROC) load(userptr, "glRenderMode"); glad_glRotated = (PFNGLROTATEDPROC) load(userptr, "glRotated"); glad_glRotatef = (PFNGLROTATEFPROC) load(userptr, "glRotatef"); glad_glScaled = (PFNGLSCALEDPROC) load(userptr, "glScaled"); glad_glScalef = (PFNGLSCALEFPROC) load(userptr, "glScalef"); glad_glScissor = (PFNGLSCISSORPROC) load(userptr, "glScissor"); glad_glSelectBuffer = (PFNGLSELECTBUFFERPROC) load(userptr, "glSelectBuffer"); glad_glShadeModel = (PFNGLSHADEMODELPROC) load(userptr, "glShadeModel"); glad_glStencilFunc = (PFNGLSTENCILFUNCPROC) load(userptr, "glStencilFunc"); glad_glStencilMask = (PFNGLSTENCILMASKPROC) load(userptr, "glStencilMask"); glad_glStencilOp = (PFNGLSTENCILOPPROC) load(userptr, "glStencilOp"); glad_glTexCoord1d = (PFNGLTEXCOORD1DPROC) load(userptr, "glTexCoord1d"); glad_glTexCoord1dv = (PFNGLTEXCOORD1DVPROC) load(userptr, "glTexCoord1dv"); glad_glTexCoord1f = (PFNGLTEXCOORD1FPROC) load(userptr, "glTexCoord1f"); glad_glTexCoord1fv = (PFNGLTEXCOORD1FVPROC) load(userptr, "glTexCoord1fv"); glad_glTexCoord1i = (PFNGLTEXCOORD1IPROC) load(userptr, "glTexCoord1i"); glad_glTexCoord1iv = (PFNGLTEXCOORD1IVPROC) load(userptr, "glTexCoord1iv"); glad_glTexCoord1s = (PFNGLTEXCOORD1SPROC) load(userptr, "glTexCoord1s"); glad_glTexCoord1sv = (PFNGLTEXCOORD1SVPROC) load(userptr, "glTexCoord1sv"); glad_glTexCoord2d = (PFNGLTEXCOORD2DPROC) load(userptr, "glTexCoord2d"); glad_glTexCoord2dv = (PFNGLTEXCOORD2DVPROC) load(userptr, "glTexCoord2dv"); glad_glTexCoord2f = (PFNGLTEXCOORD2FPROC) load(userptr, "glTexCoord2f"); glad_glTexCoord2fv = (PFNGLTEXCOORD2FVPROC) load(userptr, "glTexCoord2fv"); glad_glTexCoord2i = (PFNGLTEXCOORD2IPROC) load(userptr, "glTexCoord2i"); glad_glTexCoord2iv = (PFNGLTEXCOORD2IVPROC) load(userptr, "glTexCoord2iv"); glad_glTexCoord2s = (PFNGLTEXCOORD2SPROC) load(userptr, "glTexCoord2s"); glad_glTexCoord2sv = (PFNGLTEXCOORD2SVPROC) load(userptr, "glTexCoord2sv"); glad_glTexCoord3d = (PFNGLTEXCOORD3DPROC) load(userptr, "glTexCoord3d"); glad_glTexCoord3dv = (PFNGLTEXCOORD3DVPROC) load(userptr, "glTexCoord3dv"); glad_glTexCoord3f = (PFNGLTEXCOORD3FPROC) load(userptr, "glTexCoord3f"); glad_glTexCoord3fv = (PFNGLTEXCOORD3FVPROC) load(userptr, "glTexCoord3fv"); glad_glTexCoord3i = (PFNGLTEXCOORD3IPROC) load(userptr, "glTexCoord3i"); glad_glTexCoord3iv = (PFNGLTEXCOORD3IVPROC) load(userptr, "glTexCoord3iv"); glad_glTexCoord3s = (PFNGLTEXCOORD3SPROC) load(userptr, "glTexCoord3s"); glad_glTexCoord3sv = (PFNGLTEXCOORD3SVPROC) load(userptr, "glTexCoord3sv"); glad_glTexCoord4d = (PFNGLTEXCOORD4DPROC) load(userptr, "glTexCoord4d"); glad_glTexCoord4dv = (PFNGLTEXCOORD4DVPROC) load(userptr, "glTexCoord4dv"); glad_glTexCoord4f = (PFNGLTEXCOORD4FPROC) load(userptr, "glTexCoord4f"); glad_glTexCoord4fv = (PFNGLTEXCOORD4FVPROC) load(userptr, "glTexCoord4fv"); glad_glTexCoord4i = (PFNGLTEXCOORD4IPROC) load(userptr, "glTexCoord4i"); glad_glTexCoord4iv = (PFNGLTEXCOORD4IVPROC) load(userptr, "glTexCoord4iv"); glad_glTexCoord4s = (PFNGLTEXCOORD4SPROC) load(userptr, "glTexCoord4s"); glad_glTexCoord4sv = (PFNGLTEXCOORD4SVPROC) load(userptr, "glTexCoord4sv"); glad_glTexEnvf = (PFNGLTEXENVFPROC) load(userptr, "glTexEnvf"); glad_glTexEnvfv = (PFNGLTEXENVFVPROC) load(userptr, "glTexEnvfv"); glad_glTexEnvi = (PFNGLTEXENVIPROC) load(userptr, "glTexEnvi"); glad_glTexEnviv = (PFNGLTEXENVIVPROC) load(userptr, "glTexEnviv"); glad_glTexGend = (PFNGLTEXGENDPROC) load(userptr, "glTexGend"); glad_glTexGendv = (PFNGLTEXGENDVPROC) load(userptr, "glTexGendv"); glad_glTexGenf = (PFNGLTEXGENFPROC) load(userptr, "glTexGenf"); glad_glTexGenfv = (PFNGLTEXGENFVPROC) load(userptr, "glTexGenfv"); glad_glTexGeni = (PFNGLTEXGENIPROC) load(userptr, "glTexGeni"); glad_glTexGeniv = (PFNGLTEXGENIVPROC) load(userptr, "glTexGeniv"); glad_glTexImage1D = (PFNGLTEXIMAGE1DPROC) load(userptr, "glTexImage1D"); glad_glTexImage2D = (PFNGLTEXIMAGE2DPROC) load(userptr, "glTexImage2D"); glad_glTexParameterf = (PFNGLTEXPARAMETERFPROC) load(userptr, "glTexParameterf"); glad_glTexParameterfv = (PFNGLTEXPARAMETERFVPROC) load(userptr, "glTexParameterfv"); glad_glTexParameteri = (PFNGLTEXPARAMETERIPROC) load(userptr, "glTexParameteri"); glad_glTexParameteriv = (PFNGLTEXPARAMETERIVPROC) load(userptr, "glTexParameteriv"); glad_glTranslated = (PFNGLTRANSLATEDPROC) load(userptr, "glTranslated"); glad_glTranslatef = (PFNGLTRANSLATEFPROC) load(userptr, "glTranslatef"); glad_glVertex2d = (PFNGLVERTEX2DPROC) load(userptr, "glVertex2d"); glad_glVertex2dv = (PFNGLVERTEX2DVPROC) load(userptr, "glVertex2dv"); glad_glVertex2f = (PFNGLVERTEX2FPROC) load(userptr, "glVertex2f"); glad_glVertex2fv = (PFNGLVERTEX2FVPROC) load(userptr, "glVertex2fv"); glad_glVertex2i = (PFNGLVERTEX2IPROC) load(userptr, "glVertex2i"); glad_glVertex2iv = (PFNGLVERTEX2IVPROC) load(userptr, "glVertex2iv"); glad_glVertex2s = (PFNGLVERTEX2SPROC) load(userptr, "glVertex2s"); glad_glVertex2sv = (PFNGLVERTEX2SVPROC) load(userptr, "glVertex2sv"); glad_glVertex3d = (PFNGLVERTEX3DPROC) load(userptr, "glVertex3d"); glad_glVertex3dv = (PFNGLVERTEX3DVPROC) load(userptr, "glVertex3dv"); glad_glVertex3f = (PFNGLVERTEX3FPROC) load(userptr, "glVertex3f"); glad_glVertex3fv = (PFNGLVERTEX3FVPROC) load(userptr, "glVertex3fv"); glad_glVertex3i = (PFNGLVERTEX3IPROC) load(userptr, "glVertex3i"); glad_glVertex3iv = (PFNGLVERTEX3IVPROC) load(userptr, "glVertex3iv"); glad_glVertex3s = (PFNGLVERTEX3SPROC) load(userptr, "glVertex3s"); glad_glVertex3sv = (PFNGLVERTEX3SVPROC) load(userptr, "glVertex3sv"); glad_glVertex4d = (PFNGLVERTEX4DPROC) load(userptr, "glVertex4d"); glad_glVertex4dv = (PFNGLVERTEX4DVPROC) load(userptr, "glVertex4dv"); glad_glVertex4f = (PFNGLVERTEX4FPROC) load(userptr, "glVertex4f"); glad_glVertex4fv = (PFNGLVERTEX4FVPROC) load(userptr, "glVertex4fv"); glad_glVertex4i = (PFNGLVERTEX4IPROC) load(userptr, "glVertex4i"); glad_glVertex4iv = (PFNGLVERTEX4IVPROC) load(userptr, "glVertex4iv"); glad_glVertex4s = (PFNGLVERTEX4SPROC) load(userptr, "glVertex4s"); glad_glVertex4sv = (PFNGLVERTEX4SVPROC) load(userptr, "glVertex4sv"); glad_glViewport = (PFNGLVIEWPORTPROC) load(userptr, "glViewport"); } static void glad_gl_load_GL_VERSION_1_1( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_1) return; glad_glAreTexturesResident = (PFNGLARETEXTURESRESIDENTPROC) load(userptr, "glAreTexturesResident"); glad_glArrayElement = (PFNGLARRAYELEMENTPROC) load(userptr, "glArrayElement"); glad_glBindTexture = (PFNGLBINDTEXTUREPROC) load(userptr, "glBindTexture"); glad_glColorPointer = (PFNGLCOLORPOINTERPROC) load(userptr, "glColorPointer"); glad_glCopyTexImage1D = (PFNGLCOPYTEXIMAGE1DPROC) load(userptr, "glCopyTexImage1D"); glad_glCopyTexImage2D = (PFNGLCOPYTEXIMAGE2DPROC) load(userptr, "glCopyTexImage2D"); glad_glCopyTexSubImage1D = (PFNGLCOPYTEXSUBIMAGE1DPROC) load(userptr, "glCopyTexSubImage1D"); glad_glCopyTexSubImage2D = (PFNGLCOPYTEXSUBIMAGE2DPROC) load(userptr, "glCopyTexSubImage2D"); glad_glDeleteTextures = (PFNGLDELETETEXTURESPROC) load(userptr, "glDeleteTextures"); glad_glDisableClientState = (PFNGLDISABLECLIENTSTATEPROC) load(userptr, "glDisableClientState"); glad_glDrawArrays = (PFNGLDRAWARRAYSPROC) load(userptr, "glDrawArrays"); glad_glDrawElements = (PFNGLDRAWELEMENTSPROC) load(userptr, "glDrawElements"); glad_glEdgeFlagPointer = (PFNGLEDGEFLAGPOINTERPROC) load(userptr, "glEdgeFlagPointer"); glad_glEnableClientState = (PFNGLENABLECLIENTSTATEPROC) load(userptr, "glEnableClientState"); glad_glGenTextures = (PFNGLGENTEXTURESPROC) load(userptr, "glGenTextures"); glad_glGetPointerv = (PFNGLGETPOINTERVPROC) load(userptr, "glGetPointerv"); glad_glIndexPointer = (PFNGLINDEXPOINTERPROC) load(userptr, "glIndexPointer"); glad_glIndexub = (PFNGLINDEXUBPROC) load(userptr, "glIndexub"); glad_glIndexubv = (PFNGLINDEXUBVPROC) load(userptr, "glIndexubv"); glad_glInterleavedArrays = (PFNGLINTERLEAVEDARRAYSPROC) load(userptr, "glInterleavedArrays"); glad_glIsTexture = (PFNGLISTEXTUREPROC) load(userptr, "glIsTexture"); glad_glNormalPointer = (PFNGLNORMALPOINTERPROC) load(userptr, "glNormalPointer"); glad_glPolygonOffset = (PFNGLPOLYGONOFFSETPROC) load(userptr, "glPolygonOffset"); glad_glPopClientAttrib = (PFNGLPOPCLIENTATTRIBPROC) load(userptr, "glPopClientAttrib"); glad_glPrioritizeTextures = (PFNGLPRIORITIZETEXTURESPROC) load(userptr, "glPrioritizeTextures"); glad_glPushClientAttrib = (PFNGLPUSHCLIENTATTRIBPROC) load(userptr, "glPushClientAttrib"); glad_glTexCoordPointer = (PFNGLTEXCOORDPOINTERPROC) load(userptr, "glTexCoordPointer"); glad_glTexSubImage1D = (PFNGLTEXSUBIMAGE1DPROC) load(userptr, "glTexSubImage1D"); glad_glTexSubImage2D = (PFNGLTEXSUBIMAGE2DPROC) load(userptr, "glTexSubImage2D"); glad_glVertexPointer = (PFNGLVERTEXPOINTERPROC) load(userptr, "glVertexPointer"); } static void glad_gl_load_GL_VERSION_1_2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_2) return; glad_glCopyTexSubImage3D = (PFNGLCOPYTEXSUBIMAGE3DPROC) load(userptr, "glCopyTexSubImage3D"); glad_glDrawRangeElements = (PFNGLDRAWRANGEELEMENTSPROC) load(userptr, "glDrawRangeElements"); glad_glTexImage3D = (PFNGLTEXIMAGE3DPROC) load(userptr, "glTexImage3D"); glad_glTexSubImage3D = (PFNGLTEXSUBIMAGE3DPROC) load(userptr, "glTexSubImage3D"); } static void glad_gl_load_GL_VERSION_1_3( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_3) return; glad_glActiveTexture = (PFNGLACTIVETEXTUREPROC) load(userptr, "glActiveTexture"); glad_glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREPROC) load(userptr, "glClientActiveTexture"); glad_glCompressedTexImage1D = (PFNGLCOMPRESSEDTEXIMAGE1DPROC) load(userptr, "glCompressedTexImage1D"); glad_glCompressedTexImage2D = (PFNGLCOMPRESSEDTEXIMAGE2DPROC) load(userptr, "glCompressedTexImage2D"); glad_glCompressedTexImage3D = (PFNGLCOMPRESSEDTEXIMAGE3DPROC) load(userptr, "glCompressedTexImage3D"); glad_glCompressedTexSubImage1D = (PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC) load(userptr, "glCompressedTexSubImage1D"); glad_glCompressedTexSubImage2D = (PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC) load(userptr, "glCompressedTexSubImage2D"); glad_glCompressedTexSubImage3D = (PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC) load(userptr, "glCompressedTexSubImage3D"); glad_glGetCompressedTexImage = (PFNGLGETCOMPRESSEDTEXIMAGEPROC) load(userptr, "glGetCompressedTexImage"); glad_glLoadTransposeMatrixd = (PFNGLLOADTRANSPOSEMATRIXDPROC) load(userptr, "glLoadTransposeMatrixd"); glad_glLoadTransposeMatrixf = (PFNGLLOADTRANSPOSEMATRIXFPROC) load(userptr, "glLoadTransposeMatrixf"); glad_glMultTransposeMatrixd = (PFNGLMULTTRANSPOSEMATRIXDPROC) load(userptr, "glMultTransposeMatrixd"); glad_glMultTransposeMatrixf = (PFNGLMULTTRANSPOSEMATRIXFPROC) load(userptr, "glMultTransposeMatrixf"); glad_glMultiTexCoord1d = (PFNGLMULTITEXCOORD1DPROC) load(userptr, "glMultiTexCoord1d"); glad_glMultiTexCoord1dv = (PFNGLMULTITEXCOORD1DVPROC) load(userptr, "glMultiTexCoord1dv"); glad_glMultiTexCoord1f = (PFNGLMULTITEXCOORD1FPROC) load(userptr, "glMultiTexCoord1f"); glad_glMultiTexCoord1fv = (PFNGLMULTITEXCOORD1FVPROC) load(userptr, "glMultiTexCoord1fv"); glad_glMultiTexCoord1i = (PFNGLMULTITEXCOORD1IPROC) load(userptr, "glMultiTexCoord1i"); glad_glMultiTexCoord1iv = (PFNGLMULTITEXCOORD1IVPROC) load(userptr, "glMultiTexCoord1iv"); glad_glMultiTexCoord1s = (PFNGLMULTITEXCOORD1SPROC) load(userptr, "glMultiTexCoord1s"); glad_glMultiTexCoord1sv = (PFNGLMULTITEXCOORD1SVPROC) load(userptr, "glMultiTexCoord1sv"); glad_glMultiTexCoord2d = (PFNGLMULTITEXCOORD2DPROC) load(userptr, "glMultiTexCoord2d"); glad_glMultiTexCoord2dv = (PFNGLMULTITEXCOORD2DVPROC) load(userptr, "glMultiTexCoord2dv"); glad_glMultiTexCoord2f = (PFNGLMULTITEXCOORD2FPROC) load(userptr, "glMultiTexCoord2f"); glad_glMultiTexCoord2fv = (PFNGLMULTITEXCOORD2FVPROC) load(userptr, "glMultiTexCoord2fv"); glad_glMultiTexCoord2i = (PFNGLMULTITEXCOORD2IPROC) load(userptr, "glMultiTexCoord2i"); glad_glMultiTexCoord2iv = (PFNGLMULTITEXCOORD2IVPROC) load(userptr, "glMultiTexCoord2iv"); glad_glMultiTexCoord2s = (PFNGLMULTITEXCOORD2SPROC) load(userptr, "glMultiTexCoord2s"); glad_glMultiTexCoord2sv = (PFNGLMULTITEXCOORD2SVPROC) load(userptr, "glMultiTexCoord2sv"); glad_glMultiTexCoord3d = (PFNGLMULTITEXCOORD3DPROC) load(userptr, "glMultiTexCoord3d"); glad_glMultiTexCoord3dv = (PFNGLMULTITEXCOORD3DVPROC) load(userptr, "glMultiTexCoord3dv"); glad_glMultiTexCoord3f = (PFNGLMULTITEXCOORD3FPROC) load(userptr, "glMultiTexCoord3f"); glad_glMultiTexCoord3fv = (PFNGLMULTITEXCOORD3FVPROC) load(userptr, "glMultiTexCoord3fv"); glad_glMultiTexCoord3i = (PFNGLMULTITEXCOORD3IPROC) load(userptr, "glMultiTexCoord3i"); glad_glMultiTexCoord3iv = (PFNGLMULTITEXCOORD3IVPROC) load(userptr, "glMultiTexCoord3iv"); glad_glMultiTexCoord3s = (PFNGLMULTITEXCOORD3SPROC) load(userptr, "glMultiTexCoord3s"); glad_glMultiTexCoord3sv = (PFNGLMULTITEXCOORD3SVPROC) load(userptr, "glMultiTexCoord3sv"); glad_glMultiTexCoord4d = (PFNGLMULTITEXCOORD4DPROC) load(userptr, "glMultiTexCoord4d"); glad_glMultiTexCoord4dv = (PFNGLMULTITEXCOORD4DVPROC) load(userptr, "glMultiTexCoord4dv"); glad_glMultiTexCoord4f = (PFNGLMULTITEXCOORD4FPROC) load(userptr, "glMultiTexCoord4f"); glad_glMultiTexCoord4fv = (PFNGLMULTITEXCOORD4FVPROC) load(userptr, "glMultiTexCoord4fv"); glad_glMultiTexCoord4i = (PFNGLMULTITEXCOORD4IPROC) load(userptr, "glMultiTexCoord4i"); glad_glMultiTexCoord4iv = (PFNGLMULTITEXCOORD4IVPROC) load(userptr, "glMultiTexCoord4iv"); glad_glMultiTexCoord4s = (PFNGLMULTITEXCOORD4SPROC) load(userptr, "glMultiTexCoord4s"); glad_glMultiTexCoord4sv = (PFNGLMULTITEXCOORD4SVPROC) load(userptr, "glMultiTexCoord4sv"); glad_glSampleCoverage = (PFNGLSAMPLECOVERAGEPROC) load(userptr, "glSampleCoverage"); } static void glad_gl_load_GL_VERSION_1_4( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_4) return; glad_glBlendColor = (PFNGLBLENDCOLORPROC) load(userptr, "glBlendColor"); glad_glBlendEquation = (PFNGLBLENDEQUATIONPROC) load(userptr, "glBlendEquation"); glad_glBlendFuncSeparate = (PFNGLBLENDFUNCSEPARATEPROC) load(userptr, "glBlendFuncSeparate"); glad_glFogCoordPointer = (PFNGLFOGCOORDPOINTERPROC) load(userptr, "glFogCoordPointer"); glad_glFogCoordd = (PFNGLFOGCOORDDPROC) load(userptr, "glFogCoordd"); glad_glFogCoorddv = (PFNGLFOGCOORDDVPROC) load(userptr, "glFogCoorddv"); glad_glFogCoordf = (PFNGLFOGCOORDFPROC) load(userptr, "glFogCoordf"); glad_glFogCoordfv = (PFNGLFOGCOORDFVPROC) load(userptr, "glFogCoordfv"); glad_glMultiDrawArrays = (PFNGLMULTIDRAWARRAYSPROC) load(userptr, "glMultiDrawArrays"); glad_glMultiDrawElements = (PFNGLMULTIDRAWELEMENTSPROC) load(userptr, "glMultiDrawElements"); glad_glPointParameterf = (PFNGLPOINTPARAMETERFPROC) load(userptr, "glPointParameterf"); glad_glPointParameterfv = (PFNGLPOINTPARAMETERFVPROC) load(userptr, "glPointParameterfv"); glad_glPointParameteri = (PFNGLPOINTPARAMETERIPROC) load(userptr, "glPointParameteri"); glad_glPointParameteriv = (PFNGLPOINTPARAMETERIVPROC) load(userptr, "glPointParameteriv"); glad_glSecondaryColor3b = (PFNGLSECONDARYCOLOR3BPROC) load(userptr, "glSecondaryColor3b"); glad_glSecondaryColor3bv = (PFNGLSECONDARYCOLOR3BVPROC) load(userptr, "glSecondaryColor3bv"); glad_glSecondaryColor3d = (PFNGLSECONDARYCOLOR3DPROC) load(userptr, "glSecondaryColor3d"); glad_glSecondaryColor3dv = (PFNGLSECONDARYCOLOR3DVPROC) load(userptr, "glSecondaryColor3dv"); glad_glSecondaryColor3f = (PFNGLSECONDARYCOLOR3FPROC) load(userptr, "glSecondaryColor3f"); glad_glSecondaryColor3fv = (PFNGLSECONDARYCOLOR3FVPROC) load(userptr, "glSecondaryColor3fv"); glad_glSecondaryColor3i = (PFNGLSECONDARYCOLOR3IPROC) load(userptr, "glSecondaryColor3i"); glad_glSecondaryColor3iv = (PFNGLSECONDARYCOLOR3IVPROC) load(userptr, "glSecondaryColor3iv"); glad_glSecondaryColor3s = (PFNGLSECONDARYCOLOR3SPROC) load(userptr, "glSecondaryColor3s"); glad_glSecondaryColor3sv = (PFNGLSECONDARYCOLOR3SVPROC) load(userptr, "glSecondaryColor3sv"); glad_glSecondaryColor3ub = (PFNGLSECONDARYCOLOR3UBPROC) load(userptr, "glSecondaryColor3ub"); glad_glSecondaryColor3ubv = (PFNGLSECONDARYCOLOR3UBVPROC) load(userptr, "glSecondaryColor3ubv"); glad_glSecondaryColor3ui = (PFNGLSECONDARYCOLOR3UIPROC) load(userptr, "glSecondaryColor3ui"); glad_glSecondaryColor3uiv = (PFNGLSECONDARYCOLOR3UIVPROC) load(userptr, "glSecondaryColor3uiv"); glad_glSecondaryColor3us = (PFNGLSECONDARYCOLOR3USPROC) load(userptr, "glSecondaryColor3us"); glad_glSecondaryColor3usv = (PFNGLSECONDARYCOLOR3USVPROC) load(userptr, "glSecondaryColor3usv"); glad_glSecondaryColorPointer = (PFNGLSECONDARYCOLORPOINTERPROC) load(userptr, "glSecondaryColorPointer"); glad_glWindowPos2d = (PFNGLWINDOWPOS2DPROC) load(userptr, "glWindowPos2d"); glad_glWindowPos2dv = (PFNGLWINDOWPOS2DVPROC) load(userptr, "glWindowPos2dv"); glad_glWindowPos2f = (PFNGLWINDOWPOS2FPROC) load(userptr, "glWindowPos2f"); glad_glWindowPos2fv = (PFNGLWINDOWPOS2FVPROC) load(userptr, "glWindowPos2fv"); glad_glWindowPos2i = (PFNGLWINDOWPOS2IPROC) load(userptr, "glWindowPos2i"); glad_glWindowPos2iv = (PFNGLWINDOWPOS2IVPROC) load(userptr, "glWindowPos2iv"); glad_glWindowPos2s = (PFNGLWINDOWPOS2SPROC) load(userptr, "glWindowPos2s"); glad_glWindowPos2sv = (PFNGLWINDOWPOS2SVPROC) load(userptr, "glWindowPos2sv"); glad_glWindowPos3d = (PFNGLWINDOWPOS3DPROC) load(userptr, "glWindowPos3d"); glad_glWindowPos3dv = (PFNGLWINDOWPOS3DVPROC) load(userptr, "glWindowPos3dv"); glad_glWindowPos3f = (PFNGLWINDOWPOS3FPROC) load(userptr, "glWindowPos3f"); glad_glWindowPos3fv = (PFNGLWINDOWPOS3FVPROC) load(userptr, "glWindowPos3fv"); glad_glWindowPos3i = (PFNGLWINDOWPOS3IPROC) load(userptr, "glWindowPos3i"); glad_glWindowPos3iv = (PFNGLWINDOWPOS3IVPROC) load(userptr, "glWindowPos3iv"); glad_glWindowPos3s = (PFNGLWINDOWPOS3SPROC) load(userptr, "glWindowPos3s"); glad_glWindowPos3sv = (PFNGLWINDOWPOS3SVPROC) load(userptr, "glWindowPos3sv"); } static void glad_gl_load_GL_VERSION_1_5( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_5) return; glad_glBeginQuery = (PFNGLBEGINQUERYPROC) load(userptr, "glBeginQuery"); glad_glBindBuffer = (PFNGLBINDBUFFERPROC) load(userptr, "glBindBuffer"); glad_glBufferData = (PFNGLBUFFERDATAPROC) load(userptr, "glBufferData"); glad_glBufferSubData = (PFNGLBUFFERSUBDATAPROC) load(userptr, "glBufferSubData"); glad_glDeleteBuffers = (PFNGLDELETEBUFFERSPROC) load(userptr, "glDeleteBuffers"); glad_glDeleteQueries = (PFNGLDELETEQUERIESPROC) load(userptr, "glDeleteQueries"); glad_glEndQuery = (PFNGLENDQUERYPROC) load(userptr, "glEndQuery"); glad_glGenBuffers = (PFNGLGENBUFFERSPROC) load(userptr, "glGenBuffers"); glad_glGenQueries = (PFNGLGENQUERIESPROC) load(userptr, "glGenQueries"); glad_glGetBufferParameteriv = (PFNGLGETBUFFERPARAMETERIVPROC) load(userptr, "glGetBufferParameteriv"); glad_glGetBufferPointerv = (PFNGLGETBUFFERPOINTERVPROC) load(userptr, "glGetBufferPointerv"); glad_glGetBufferSubData = (PFNGLGETBUFFERSUBDATAPROC) load(userptr, "glGetBufferSubData"); glad_glGetQueryObjectiv = (PFNGLGETQUERYOBJECTIVPROC) load(userptr, "glGetQueryObjectiv"); glad_glGetQueryObjectuiv = (PFNGLGETQUERYOBJECTUIVPROC) load(userptr, "glGetQueryObjectuiv"); glad_glGetQueryiv = (PFNGLGETQUERYIVPROC) load(userptr, "glGetQueryiv"); glad_glIsBuffer = (PFNGLISBUFFERPROC) load(userptr, "glIsBuffer"); glad_glIsQuery = (PFNGLISQUERYPROC) load(userptr, "glIsQuery"); glad_glMapBuffer = (PFNGLMAPBUFFERPROC) load(userptr, "glMapBuffer"); glad_glUnmapBuffer = (PFNGLUNMAPBUFFERPROC) load(userptr, "glUnmapBuffer"); } static void glad_gl_load_GL_VERSION_2_0( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_2_0) return; glad_glAttachShader = (PFNGLATTACHSHADERPROC) load(userptr, "glAttachShader"); glad_glBindAttribLocation = (PFNGLBINDATTRIBLOCATIONPROC) load(userptr, "glBindAttribLocation"); glad_glBlendEquationSeparate = (PFNGLBLENDEQUATIONSEPARATEPROC) load(userptr, "glBlendEquationSeparate"); glad_glCompileShader = (PFNGLCOMPILESHADERPROC) load(userptr, "glCompileShader"); glad_glCreateProgram = (PFNGLCREATEPROGRAMPROC) load(userptr, "glCreateProgram"); glad_glCreateShader = (PFNGLCREATESHADERPROC) load(userptr, "glCreateShader"); glad_glDeleteProgram = (PFNGLDELETEPROGRAMPROC) load(userptr, "glDeleteProgram"); glad_glDeleteShader = (PFNGLDELETESHADERPROC) load(userptr, "glDeleteShader"); glad_glDetachShader = (PFNGLDETACHSHADERPROC) load(userptr, "glDetachShader"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC) load(userptr, "glDisableVertexAttribArray"); glad_glDrawBuffers = (PFNGLDRAWBUFFERSPROC) load(userptr, "glDrawBuffers"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC) load(userptr, "glEnableVertexAttribArray"); glad_glGetActiveAttrib = (PFNGLGETACTIVEATTRIBPROC) load(userptr, "glGetActiveAttrib"); glad_glGetActiveUniform = (PFNGLGETACTIVEUNIFORMPROC) load(userptr, "glGetActiveUniform"); glad_glGetAttachedShaders = (PFNGLGETATTACHEDSHADERSPROC) load(userptr, "glGetAttachedShaders"); glad_glGetAttribLocation = (PFNGLGETATTRIBLOCATIONPROC) load(userptr, "glGetAttribLocation"); glad_glGetProgramInfoLog = (PFNGLGETPROGRAMINFOLOGPROC) load(userptr, "glGetProgramInfoLog"); glad_glGetProgramiv = (PFNGLGETPROGRAMIVPROC) load(userptr, "glGetProgramiv"); glad_glGetShaderInfoLog = (PFNGLGETSHADERINFOLOGPROC) load(userptr, "glGetShaderInfoLog"); glad_glGetShaderSource = (PFNGLGETSHADERSOURCEPROC) load(userptr, "glGetShaderSource"); glad_glGetShaderiv = (PFNGLGETSHADERIVPROC) load(userptr, "glGetShaderiv"); glad_glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC) load(userptr, "glGetUniformLocation"); glad_glGetUniformfv = (PFNGLGETUNIFORMFVPROC) load(userptr, "glGetUniformfv"); glad_glGetUniformiv = (PFNGLGETUNIFORMIVPROC) load(userptr, "glGetUniformiv"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC) load(userptr, "glGetVertexAttribPointerv"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC) load(userptr, "glGetVertexAttribdv"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC) load(userptr, "glGetVertexAttribfv"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC) load(userptr, "glGetVertexAttribiv"); glad_glIsProgram = (PFNGLISPROGRAMPROC) load(userptr, "glIsProgram"); glad_glIsShader = (PFNGLISSHADERPROC) load(userptr, "glIsShader"); glad_glLinkProgram = (PFNGLLINKPROGRAMPROC) load(userptr, "glLinkProgram"); glad_glShaderSource = (PFNGLSHADERSOURCEPROC) load(userptr, "glShaderSource"); glad_glStencilFuncSeparate = (PFNGLSTENCILFUNCSEPARATEPROC) load(userptr, "glStencilFuncSeparate"); glad_glStencilMaskSeparate = (PFNGLSTENCILMASKSEPARATEPROC) load(userptr, "glStencilMaskSeparate"); glad_glStencilOpSeparate = (PFNGLSTENCILOPSEPARATEPROC) load(userptr, "glStencilOpSeparate"); glad_glUniform1f = (PFNGLUNIFORM1FPROC) load(userptr, "glUniform1f"); glad_glUniform1fv = (PFNGLUNIFORM1FVPROC) load(userptr, "glUniform1fv"); glad_glUniform1i = (PFNGLUNIFORM1IPROC) load(userptr, "glUniform1i"); glad_glUniform1iv = (PFNGLUNIFORM1IVPROC) load(userptr, "glUniform1iv"); glad_glUniform2f = (PFNGLUNIFORM2FPROC) load(userptr, "glUniform2f"); glad_glUniform2fv = (PFNGLUNIFORM2FVPROC) load(userptr, "glUniform2fv"); glad_glUniform2i = (PFNGLUNIFORM2IPROC) load(userptr, "glUniform2i"); glad_glUniform2iv = (PFNGLUNIFORM2IVPROC) load(userptr, "glUniform2iv"); glad_glUniform3f = (PFNGLUNIFORM3FPROC) load(userptr, "glUniform3f"); glad_glUniform3fv = (PFNGLUNIFORM3FVPROC) load(userptr, "glUniform3fv"); glad_glUniform3i = (PFNGLUNIFORM3IPROC) load(userptr, "glUniform3i"); glad_glUniform3iv = (PFNGLUNIFORM3IVPROC) load(userptr, "glUniform3iv"); glad_glUniform4f = (PFNGLUNIFORM4FPROC) load(userptr, "glUniform4f"); glad_glUniform4fv = (PFNGLUNIFORM4FVPROC) load(userptr, "glUniform4fv"); glad_glUniform4i = (PFNGLUNIFORM4IPROC) load(userptr, "glUniform4i"); glad_glUniform4iv = (PFNGLUNIFORM4IVPROC) load(userptr, "glUniform4iv"); glad_glUniformMatrix2fv = (PFNGLUNIFORMMATRIX2FVPROC) load(userptr, "glUniformMatrix2fv"); glad_glUniformMatrix3fv = (PFNGLUNIFORMMATRIX3FVPROC) load(userptr, "glUniformMatrix3fv"); glad_glUniformMatrix4fv = (PFNGLUNIFORMMATRIX4FVPROC) load(userptr, "glUniformMatrix4fv"); glad_glUseProgram = (PFNGLUSEPROGRAMPROC) load(userptr, "glUseProgram"); glad_glValidateProgram = (PFNGLVALIDATEPROGRAMPROC) load(userptr, "glValidateProgram"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC) load(userptr, "glVertexAttrib1d"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC) load(userptr, "glVertexAttrib1dv"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC) load(userptr, "glVertexAttrib1f"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC) load(userptr, "glVertexAttrib1fv"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC) load(userptr, "glVertexAttrib1s"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC) load(userptr, "glVertexAttrib1sv"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC) load(userptr, "glVertexAttrib2d"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC) load(userptr, "glVertexAttrib2dv"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC) load(userptr, "glVertexAttrib2f"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC) load(userptr, "glVertexAttrib2fv"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC) load(userptr, "glVertexAttrib2s"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC) load(userptr, "glVertexAttrib2sv"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC) load(userptr, "glVertexAttrib3d"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC) load(userptr, "glVertexAttrib3dv"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC) load(userptr, "glVertexAttrib3f"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC) load(userptr, "glVertexAttrib3fv"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC) load(userptr, "glVertexAttrib3s"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC) load(userptr, "glVertexAttrib3sv"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC) load(userptr, "glVertexAttrib4Nbv"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC) load(userptr, "glVertexAttrib4Niv"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC) load(userptr, "glVertexAttrib4Nsv"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC) load(userptr, "glVertexAttrib4Nub"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC) load(userptr, "glVertexAttrib4Nubv"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC) load(userptr, "glVertexAttrib4Nuiv"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC) load(userptr, "glVertexAttrib4Nusv"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC) load(userptr, "glVertexAttrib4bv"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC) load(userptr, "glVertexAttrib4d"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC) load(userptr, "glVertexAttrib4dv"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC) load(userptr, "glVertexAttrib4f"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC) load(userptr, "glVertexAttrib4fv"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC) load(userptr, "glVertexAttrib4iv"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC) load(userptr, "glVertexAttrib4s"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC) load(userptr, "glVertexAttrib4sv"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC) load(userptr, "glVertexAttrib4ubv"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC) load(userptr, "glVertexAttrib4uiv"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC) load(userptr, "glVertexAttrib4usv"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC) load(userptr, "glVertexAttribPointer"); } static void glad_gl_load_GL_VERSION_2_1( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_2_1) return; glad_glUniformMatrix2x3fv = (PFNGLUNIFORMMATRIX2X3FVPROC) load(userptr, "glUniformMatrix2x3fv"); glad_glUniformMatrix2x4fv = (PFNGLUNIFORMMATRIX2X4FVPROC) load(userptr, "glUniformMatrix2x4fv"); glad_glUniformMatrix3x2fv = (PFNGLUNIFORMMATRIX3X2FVPROC) load(userptr, "glUniformMatrix3x2fv"); glad_glUniformMatrix3x4fv = (PFNGLUNIFORMMATRIX3X4FVPROC) load(userptr, "glUniformMatrix3x4fv"); glad_glUniformMatrix4x2fv = (PFNGLUNIFORMMATRIX4X2FVPROC) load(userptr, "glUniformMatrix4x2fv"); glad_glUniformMatrix4x3fv = (PFNGLUNIFORMMATRIX4X3FVPROC) load(userptr, "glUniformMatrix4x3fv"); } static void glad_gl_load_GL_VERSION_3_0( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_0) return; glad_glBeginConditionalRender = (PFNGLBEGINCONDITIONALRENDERPROC) load(userptr, "glBeginConditionalRender"); glad_glBeginTransformFeedback = (PFNGLBEGINTRANSFORMFEEDBACKPROC) load(userptr, "glBeginTransformFeedback"); glad_glBindBufferBase = (PFNGLBINDBUFFERBASEPROC) load(userptr, "glBindBufferBase"); glad_glBindBufferRange = (PFNGLBINDBUFFERRANGEPROC) load(userptr, "glBindBufferRange"); glad_glBindFragDataLocation = (PFNGLBINDFRAGDATALOCATIONPROC) load(userptr, "glBindFragDataLocation"); glad_glBindFramebuffer = (PFNGLBINDFRAMEBUFFERPROC) load(userptr, "glBindFramebuffer"); glad_glBindRenderbuffer = (PFNGLBINDRENDERBUFFERPROC) load(userptr, "glBindRenderbuffer"); glad_glBindVertexArray = (PFNGLBINDVERTEXARRAYPROC) load(userptr, "glBindVertexArray"); glad_glBlitFramebuffer = (PFNGLBLITFRAMEBUFFERPROC) load(userptr, "glBlitFramebuffer"); glad_glCheckFramebufferStatus = (PFNGLCHECKFRAMEBUFFERSTATUSPROC) load(userptr, "glCheckFramebufferStatus"); glad_glClampColor = (PFNGLCLAMPCOLORPROC) load(userptr, "glClampColor"); glad_glClearBufferfi = (PFNGLCLEARBUFFERFIPROC) load(userptr, "glClearBufferfi"); glad_glClearBufferfv = (PFNGLCLEARBUFFERFVPROC) load(userptr, "glClearBufferfv"); glad_glClearBufferiv = (PFNGLCLEARBUFFERIVPROC) load(userptr, "glClearBufferiv"); glad_glClearBufferuiv = (PFNGLCLEARBUFFERUIVPROC) load(userptr, "glClearBufferuiv"); glad_glColorMaski = (PFNGLCOLORMASKIPROC) load(userptr, "glColorMaski"); glad_glDeleteFramebuffers = (PFNGLDELETEFRAMEBUFFERSPROC) load(userptr, "glDeleteFramebuffers"); glad_glDeleteRenderbuffers = (PFNGLDELETERENDERBUFFERSPROC) load(userptr, "glDeleteRenderbuffers"); glad_glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSPROC) load(userptr, "glDeleteVertexArrays"); glad_glDisablei = (PFNGLDISABLEIPROC) load(userptr, "glDisablei"); glad_glEnablei = (PFNGLENABLEIPROC) load(userptr, "glEnablei"); glad_glEndConditionalRender = (PFNGLENDCONDITIONALRENDERPROC) load(userptr, "glEndConditionalRender"); glad_glEndTransformFeedback = (PFNGLENDTRANSFORMFEEDBACKPROC) load(userptr, "glEndTransformFeedback"); glad_glFlushMappedBufferRange = (PFNGLFLUSHMAPPEDBUFFERRANGEPROC) load(userptr, "glFlushMappedBufferRange"); glad_glFramebufferRenderbuffer = (PFNGLFRAMEBUFFERRENDERBUFFERPROC) load(userptr, "glFramebufferRenderbuffer"); glad_glFramebufferTexture1D = (PFNGLFRAMEBUFFERTEXTURE1DPROC) load(userptr, "glFramebufferTexture1D"); glad_glFramebufferTexture2D = (PFNGLFRAMEBUFFERTEXTURE2DPROC) load(userptr, "glFramebufferTexture2D"); glad_glFramebufferTexture3D = (PFNGLFRAMEBUFFERTEXTURE3DPROC) load(userptr, "glFramebufferTexture3D"); glad_glFramebufferTextureLayer = (PFNGLFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glFramebufferTextureLayer"); glad_glGenFramebuffers = (PFNGLGENFRAMEBUFFERSPROC) load(userptr, "glGenFramebuffers"); glad_glGenRenderbuffers = (PFNGLGENRENDERBUFFERSPROC) load(userptr, "glGenRenderbuffers"); glad_glGenVertexArrays = (PFNGLGENVERTEXARRAYSPROC) load(userptr, "glGenVertexArrays"); glad_glGenerateMipmap = (PFNGLGENERATEMIPMAPPROC) load(userptr, "glGenerateMipmap"); glad_glGetBooleani_v = (PFNGLGETBOOLEANI_VPROC) load(userptr, "glGetBooleani_v"); glad_glGetFragDataLocation = (PFNGLGETFRAGDATALOCATIONPROC) load(userptr, "glGetFragDataLocation"); glad_glGetFramebufferAttachmentParameteriv = (PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC) load(userptr, "glGetFramebufferAttachmentParameteriv"); glad_glGetIntegeri_v = (PFNGLGETINTEGERI_VPROC) load(userptr, "glGetIntegeri_v"); glad_glGetRenderbufferParameteriv = (PFNGLGETRENDERBUFFERPARAMETERIVPROC) load(userptr, "glGetRenderbufferParameteriv"); glad_glGetStringi = (PFNGLGETSTRINGIPROC) load(userptr, "glGetStringi"); glad_glGetTexParameterIiv = (PFNGLGETTEXPARAMETERIIVPROC) load(userptr, "glGetTexParameterIiv"); glad_glGetTexParameterIuiv = (PFNGLGETTEXPARAMETERIUIVPROC) load(userptr, "glGetTexParameterIuiv"); glad_glGetTransformFeedbackVarying = (PFNGLGETTRANSFORMFEEDBACKVARYINGPROC) load(userptr, "glGetTransformFeedbackVarying"); glad_glGetUniformuiv = (PFNGLGETUNIFORMUIVPROC) load(userptr, "glGetUniformuiv"); glad_glGetVertexAttribIiv = (PFNGLGETVERTEXATTRIBIIVPROC) load(userptr, "glGetVertexAttribIiv"); glad_glGetVertexAttribIuiv = (PFNGLGETVERTEXATTRIBIUIVPROC) load(userptr, "glGetVertexAttribIuiv"); glad_glIsEnabledi = (PFNGLISENABLEDIPROC) load(userptr, "glIsEnabledi"); glad_glIsFramebuffer = (PFNGLISFRAMEBUFFERPROC) load(userptr, "glIsFramebuffer"); glad_glIsRenderbuffer = (PFNGLISRENDERBUFFERPROC) load(userptr, "glIsRenderbuffer"); glad_glIsVertexArray = (PFNGLISVERTEXARRAYPROC) load(userptr, "glIsVertexArray"); glad_glMapBufferRange = (PFNGLMAPBUFFERRANGEPROC) load(userptr, "glMapBufferRange"); glad_glRenderbufferStorage = (PFNGLRENDERBUFFERSTORAGEPROC) load(userptr, "glRenderbufferStorage"); glad_glRenderbufferStorageMultisample = (PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC) load(userptr, "glRenderbufferStorageMultisample"); glad_glTexParameterIiv = (PFNGLTEXPARAMETERIIVPROC) load(userptr, "glTexParameterIiv"); glad_glTexParameterIuiv = (PFNGLTEXPARAMETERIUIVPROC) load(userptr, "glTexParameterIuiv"); glad_glTransformFeedbackVaryings = (PFNGLTRANSFORMFEEDBACKVARYINGSPROC) load(userptr, "glTransformFeedbackVaryings"); glad_glUniform1ui = (PFNGLUNIFORM1UIPROC) load(userptr, "glUniform1ui"); glad_glUniform1uiv = (PFNGLUNIFORM1UIVPROC) load(userptr, "glUniform1uiv"); glad_glUniform2ui = (PFNGLUNIFORM2UIPROC) load(userptr, "glUniform2ui"); glad_glUniform2uiv = (PFNGLUNIFORM2UIVPROC) load(userptr, "glUniform2uiv"); glad_glUniform3ui = (PFNGLUNIFORM3UIPROC) load(userptr, "glUniform3ui"); glad_glUniform3uiv = (PFNGLUNIFORM3UIVPROC) load(userptr, "glUniform3uiv"); glad_glUniform4ui = (PFNGLUNIFORM4UIPROC) load(userptr, "glUniform4ui"); glad_glUniform4uiv = (PFNGLUNIFORM4UIVPROC) load(userptr, "glUniform4uiv"); glad_glVertexAttribI1i = (PFNGLVERTEXATTRIBI1IPROC) load(userptr, "glVertexAttribI1i"); glad_glVertexAttribI1iv = (PFNGLVERTEXATTRIBI1IVPROC) load(userptr, "glVertexAttribI1iv"); glad_glVertexAttribI1ui = (PFNGLVERTEXATTRIBI1UIPROC) load(userptr, "glVertexAttribI1ui"); glad_glVertexAttribI1uiv = (PFNGLVERTEXATTRIBI1UIVPROC) load(userptr, "glVertexAttribI1uiv"); glad_glVertexAttribI2i = (PFNGLVERTEXATTRIBI2IPROC) load(userptr, "glVertexAttribI2i"); glad_glVertexAttribI2iv = (PFNGLVERTEXATTRIBI2IVPROC) load(userptr, "glVertexAttribI2iv"); glad_glVertexAttribI2ui = (PFNGLVERTEXATTRIBI2UIPROC) load(userptr, "glVertexAttribI2ui"); glad_glVertexAttribI2uiv = (PFNGLVERTEXATTRIBI2UIVPROC) load(userptr, "glVertexAttribI2uiv"); glad_glVertexAttribI3i = (PFNGLVERTEXATTRIBI3IPROC) load(userptr, "glVertexAttribI3i"); glad_glVertexAttribI3iv = (PFNGLVERTEXATTRIBI3IVPROC) load(userptr, "glVertexAttribI3iv"); glad_glVertexAttribI3ui = (PFNGLVERTEXATTRIBI3UIPROC) load(userptr, "glVertexAttribI3ui"); glad_glVertexAttribI3uiv = (PFNGLVERTEXATTRIBI3UIVPROC) load(userptr, "glVertexAttribI3uiv"); glad_glVertexAttribI4bv = (PFNGLVERTEXATTRIBI4BVPROC) load(userptr, "glVertexAttribI4bv"); glad_glVertexAttribI4i = (PFNGLVERTEXATTRIBI4IPROC) load(userptr, "glVertexAttribI4i"); glad_glVertexAttribI4iv = (PFNGLVERTEXATTRIBI4IVPROC) load(userptr, "glVertexAttribI4iv"); glad_glVertexAttribI4sv = (PFNGLVERTEXATTRIBI4SVPROC) load(userptr, "glVertexAttribI4sv"); glad_glVertexAttribI4ubv = (PFNGLVERTEXATTRIBI4UBVPROC) load(userptr, "glVertexAttribI4ubv"); glad_glVertexAttribI4ui = (PFNGLVERTEXATTRIBI4UIPROC) load(userptr, "glVertexAttribI4ui"); glad_glVertexAttribI4uiv = (PFNGLVERTEXATTRIBI4UIVPROC) load(userptr, "glVertexAttribI4uiv"); glad_glVertexAttribI4usv = (PFNGLVERTEXATTRIBI4USVPROC) load(userptr, "glVertexAttribI4usv"); glad_glVertexAttribIPointer = (PFNGLVERTEXATTRIBIPOINTERPROC) load(userptr, "glVertexAttribIPointer"); } static void glad_gl_load_GL_VERSION_3_1( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_1) return; glad_glBindBufferBase = (PFNGLBINDBUFFERBASEPROC) load(userptr, "glBindBufferBase"); glad_glBindBufferRange = (PFNGLBINDBUFFERRANGEPROC) load(userptr, "glBindBufferRange"); glad_glCopyBufferSubData = (PFNGLCOPYBUFFERSUBDATAPROC) load(userptr, "glCopyBufferSubData"); glad_glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDPROC) load(userptr, "glDrawArraysInstanced"); glad_glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDPROC) load(userptr, "glDrawElementsInstanced"); glad_glGetActiveUniformBlockName = (PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC) load(userptr, "glGetActiveUniformBlockName"); glad_glGetActiveUniformBlockiv = (PFNGLGETACTIVEUNIFORMBLOCKIVPROC) load(userptr, "glGetActiveUniformBlockiv"); glad_glGetActiveUniformName = (PFNGLGETACTIVEUNIFORMNAMEPROC) load(userptr, "glGetActiveUniformName"); glad_glGetActiveUniformsiv = (PFNGLGETACTIVEUNIFORMSIVPROC) load(userptr, "glGetActiveUniformsiv"); glad_glGetIntegeri_v = (PFNGLGETINTEGERI_VPROC) load(userptr, "glGetIntegeri_v"); glad_glGetUniformBlockIndex = (PFNGLGETUNIFORMBLOCKINDEXPROC) load(userptr, "glGetUniformBlockIndex"); glad_glGetUniformIndices = (PFNGLGETUNIFORMINDICESPROC) load(userptr, "glGetUniformIndices"); glad_glPrimitiveRestartIndex = (PFNGLPRIMITIVERESTARTINDEXPROC) load(userptr, "glPrimitiveRestartIndex"); glad_glTexBuffer = (PFNGLTEXBUFFERPROC) load(userptr, "glTexBuffer"); glad_glUniformBlockBinding = (PFNGLUNIFORMBLOCKBINDINGPROC) load(userptr, "glUniformBlockBinding"); } static void glad_gl_load_GL_VERSION_3_2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_2) return; glad_glClientWaitSync = (PFNGLCLIENTWAITSYNCPROC) load(userptr, "glClientWaitSync"); glad_glDeleteSync = (PFNGLDELETESYNCPROC) load(userptr, "glDeleteSync"); glad_glDrawElementsBaseVertex = (PFNGLDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glDrawElementsBaseVertex"); glad_glDrawElementsInstancedBaseVertex = (PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC) load(userptr, "glDrawElementsInstancedBaseVertex"); glad_glDrawRangeElementsBaseVertex = (PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC) load(userptr, "glDrawRangeElementsBaseVertex"); glad_glFenceSync = (PFNGLFENCESYNCPROC) load(userptr, "glFenceSync"); glad_glFramebufferTexture = (PFNGLFRAMEBUFFERTEXTUREPROC) load(userptr, "glFramebufferTexture"); glad_glGetBufferParameteri64v = (PFNGLGETBUFFERPARAMETERI64VPROC) load(userptr, "glGetBufferParameteri64v"); glad_glGetInteger64i_v = (PFNGLGETINTEGER64I_VPROC) load(userptr, "glGetInteger64i_v"); glad_glGetInteger64v = (PFNGLGETINTEGER64VPROC) load(userptr, "glGetInteger64v"); glad_glGetMultisamplefv = (PFNGLGETMULTISAMPLEFVPROC) load(userptr, "glGetMultisamplefv"); glad_glGetSynciv = (PFNGLGETSYNCIVPROC) load(userptr, "glGetSynciv"); glad_glIsSync = (PFNGLISSYNCPROC) load(userptr, "glIsSync"); glad_glMultiDrawElementsBaseVertex = (PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glMultiDrawElementsBaseVertex"); glad_glProvokingVertex = (PFNGLPROVOKINGVERTEXPROC) load(userptr, "glProvokingVertex"); glad_glSampleMaski = (PFNGLSAMPLEMASKIPROC) load(userptr, "glSampleMaski"); glad_glTexImage2DMultisample = (PFNGLTEXIMAGE2DMULTISAMPLEPROC) load(userptr, "glTexImage2DMultisample"); glad_glTexImage3DMultisample = (PFNGLTEXIMAGE3DMULTISAMPLEPROC) load(userptr, "glTexImage3DMultisample"); glad_glWaitSync = (PFNGLWAITSYNCPROC) load(userptr, "glWaitSync"); } static void glad_gl_load_GL_VERSION_3_3( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_3) return; glad_glBindFragDataLocationIndexed = (PFNGLBINDFRAGDATALOCATIONINDEXEDPROC) load(userptr, "glBindFragDataLocationIndexed"); glad_glBindSampler = (PFNGLBINDSAMPLERPROC) load(userptr, "glBindSampler"); glad_glColorP3ui = (PFNGLCOLORP3UIPROC) load(userptr, "glColorP3ui"); glad_glColorP3uiv = (PFNGLCOLORP3UIVPROC) load(userptr, "glColorP3uiv"); glad_glColorP4ui = (PFNGLCOLORP4UIPROC) load(userptr, "glColorP4ui"); glad_glColorP4uiv = (PFNGLCOLORP4UIVPROC) load(userptr, "glColorP4uiv"); glad_glDeleteSamplers = (PFNGLDELETESAMPLERSPROC) load(userptr, "glDeleteSamplers"); glad_glGenSamplers = (PFNGLGENSAMPLERSPROC) load(userptr, "glGenSamplers"); glad_glGetFragDataIndex = (PFNGLGETFRAGDATAINDEXPROC) load(userptr, "glGetFragDataIndex"); glad_glGetQueryObjecti64v = (PFNGLGETQUERYOBJECTI64VPROC) load(userptr, "glGetQueryObjecti64v"); glad_glGetQueryObjectui64v = (PFNGLGETQUERYOBJECTUI64VPROC) load(userptr, "glGetQueryObjectui64v"); glad_glGetSamplerParameterIiv = (PFNGLGETSAMPLERPARAMETERIIVPROC) load(userptr, "glGetSamplerParameterIiv"); glad_glGetSamplerParameterIuiv = (PFNGLGETSAMPLERPARAMETERIUIVPROC) load(userptr, "glGetSamplerParameterIuiv"); glad_glGetSamplerParameterfv = (PFNGLGETSAMPLERPARAMETERFVPROC) load(userptr, "glGetSamplerParameterfv"); glad_glGetSamplerParameteriv = (PFNGLGETSAMPLERPARAMETERIVPROC) load(userptr, "glGetSamplerParameteriv"); glad_glIsSampler = (PFNGLISSAMPLERPROC) load(userptr, "glIsSampler"); glad_glMultiTexCoordP1ui = (PFNGLMULTITEXCOORDP1UIPROC) load(userptr, "glMultiTexCoordP1ui"); glad_glMultiTexCoordP1uiv = (PFNGLMULTITEXCOORDP1UIVPROC) load(userptr, "glMultiTexCoordP1uiv"); glad_glMultiTexCoordP2ui = (PFNGLMULTITEXCOORDP2UIPROC) load(userptr, "glMultiTexCoordP2ui"); glad_glMultiTexCoordP2uiv = (PFNGLMULTITEXCOORDP2UIVPROC) load(userptr, "glMultiTexCoordP2uiv"); glad_glMultiTexCoordP3ui = (PFNGLMULTITEXCOORDP3UIPROC) load(userptr, "glMultiTexCoordP3ui"); glad_glMultiTexCoordP3uiv = (PFNGLMULTITEXCOORDP3UIVPROC) load(userptr, "glMultiTexCoordP3uiv"); glad_glMultiTexCoordP4ui = (PFNGLMULTITEXCOORDP4UIPROC) load(userptr, "glMultiTexCoordP4ui"); glad_glMultiTexCoordP4uiv = (PFNGLMULTITEXCOORDP4UIVPROC) load(userptr, "glMultiTexCoordP4uiv"); glad_glNormalP3ui = (PFNGLNORMALP3UIPROC) load(userptr, "glNormalP3ui"); glad_glNormalP3uiv = (PFNGLNORMALP3UIVPROC) load(userptr, "glNormalP3uiv"); glad_glQueryCounter = (PFNGLQUERYCOUNTERPROC) load(userptr, "glQueryCounter"); glad_glSamplerParameterIiv = (PFNGLSAMPLERPARAMETERIIVPROC) load(userptr, "glSamplerParameterIiv"); glad_glSamplerParameterIuiv = (PFNGLSAMPLERPARAMETERIUIVPROC) load(userptr, "glSamplerParameterIuiv"); glad_glSamplerParameterf = (PFNGLSAMPLERPARAMETERFPROC) load(userptr, "glSamplerParameterf"); glad_glSamplerParameterfv = (PFNGLSAMPLERPARAMETERFVPROC) load(userptr, "glSamplerParameterfv"); glad_glSamplerParameteri = (PFNGLSAMPLERPARAMETERIPROC) load(userptr, "glSamplerParameteri"); glad_glSamplerParameteriv = (PFNGLSAMPLERPARAMETERIVPROC) load(userptr, "glSamplerParameteriv"); glad_glSecondaryColorP3ui = (PFNGLSECONDARYCOLORP3UIPROC) load(userptr, "glSecondaryColorP3ui"); glad_glSecondaryColorP3uiv = (PFNGLSECONDARYCOLORP3UIVPROC) load(userptr, "glSecondaryColorP3uiv"); glad_glTexCoordP1ui = (PFNGLTEXCOORDP1UIPROC) load(userptr, "glTexCoordP1ui"); glad_glTexCoordP1uiv = (PFNGLTEXCOORDP1UIVPROC) load(userptr, "glTexCoordP1uiv"); glad_glTexCoordP2ui = (PFNGLTEXCOORDP2UIPROC) load(userptr, "glTexCoordP2ui"); glad_glTexCoordP2uiv = (PFNGLTEXCOORDP2UIVPROC) load(userptr, "glTexCoordP2uiv"); glad_glTexCoordP3ui = (PFNGLTEXCOORDP3UIPROC) load(userptr, "glTexCoordP3ui"); glad_glTexCoordP3uiv = (PFNGLTEXCOORDP3UIVPROC) load(userptr, "glTexCoordP3uiv"); glad_glTexCoordP4ui = (PFNGLTEXCOORDP4UIPROC) load(userptr, "glTexCoordP4ui"); glad_glTexCoordP4uiv = (PFNGLTEXCOORDP4UIVPROC) load(userptr, "glTexCoordP4uiv"); glad_glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISORPROC) load(userptr, "glVertexAttribDivisor"); glad_glVertexAttribP1ui = (PFNGLVERTEXATTRIBP1UIPROC) load(userptr, "glVertexAttribP1ui"); glad_glVertexAttribP1uiv = (PFNGLVERTEXATTRIBP1UIVPROC) load(userptr, "glVertexAttribP1uiv"); glad_glVertexAttribP2ui = (PFNGLVERTEXATTRIBP2UIPROC) load(userptr, "glVertexAttribP2ui"); glad_glVertexAttribP2uiv = (PFNGLVERTEXATTRIBP2UIVPROC) load(userptr, "glVertexAttribP2uiv"); glad_glVertexAttribP3ui = (PFNGLVERTEXATTRIBP3UIPROC) load(userptr, "glVertexAttribP3ui"); glad_glVertexAttribP3uiv = (PFNGLVERTEXATTRIBP3UIVPROC) load(userptr, "glVertexAttribP3uiv"); glad_glVertexAttribP4ui = (PFNGLVERTEXATTRIBP4UIPROC) load(userptr, "glVertexAttribP4ui"); glad_glVertexAttribP4uiv = (PFNGLVERTEXATTRIBP4UIVPROC) load(userptr, "glVertexAttribP4uiv"); glad_glVertexP2ui = (PFNGLVERTEXP2UIPROC) load(userptr, "glVertexP2ui"); glad_glVertexP2uiv = (PFNGLVERTEXP2UIVPROC) load(userptr, "glVertexP2uiv"); glad_glVertexP3ui = (PFNGLVERTEXP3UIPROC) load(userptr, "glVertexP3ui"); glad_glVertexP3uiv = (PFNGLVERTEXP3UIVPROC) load(userptr, "glVertexP3uiv"); glad_glVertexP4ui = (PFNGLVERTEXP4UIPROC) load(userptr, "glVertexP4ui"); glad_glVertexP4uiv = (PFNGLVERTEXP4UIVPROC) load(userptr, "glVertexP4uiv"); } static void glad_gl_load_GL_ARB_ES2_compatibility( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_ES2_compatibility) return; glad_glClearDepthf = (PFNGLCLEARDEPTHFPROC) load(userptr, "glClearDepthf"); glad_glDepthRangef = (PFNGLDEPTHRANGEFPROC) load(userptr, "glDepthRangef"); glad_glGetShaderPrecisionFormat = (PFNGLGETSHADERPRECISIONFORMATPROC) load(userptr, "glGetShaderPrecisionFormat"); glad_glReleaseShaderCompiler = (PFNGLRELEASESHADERCOMPILERPROC) load(userptr, "glReleaseShaderCompiler"); glad_glShaderBinary = (PFNGLSHADERBINARYPROC) load(userptr, "glShaderBinary"); } static void glad_gl_load_GL_ARB_ES3_1_compatibility( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_ES3_1_compatibility) return; glad_glMemoryBarrierByRegion = (PFNGLMEMORYBARRIERBYREGIONPROC) load(userptr, "glMemoryBarrierByRegion"); } static void glad_gl_load_GL_ARB_ES3_2_compatibility( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_ES3_2_compatibility) return; glad_glPrimitiveBoundingBox = (PFNGLPRIMITIVEBOUNDINGBOXPROC) load(userptr, "glPrimitiveBoundingBox"); glad_glPrimitiveBoundingBoxARB = (PFNGLPRIMITIVEBOUNDINGBOXARBPROC) load(userptr, "glPrimitiveBoundingBoxARB"); } static void glad_gl_load_GL_ARB_base_instance( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_base_instance) return; glad_glDrawArraysInstancedBaseInstance = (PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC) load(userptr, "glDrawArraysInstancedBaseInstance"); glad_glDrawElementsInstancedBaseInstance = (PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC) load(userptr, "glDrawElementsInstancedBaseInstance"); glad_glDrawElementsInstancedBaseVertexBaseInstance = (PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC) load(userptr, "glDrawElementsInstancedBaseVertexBaseInstance"); } static void glad_gl_load_GL_ARB_bindless_texture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_bindless_texture) return; glad_glGetImageHandleARB = (PFNGLGETIMAGEHANDLEARBPROC) load(userptr, "glGetImageHandleARB"); glad_glGetTextureHandleARB = (PFNGLGETTEXTUREHANDLEARBPROC) load(userptr, "glGetTextureHandleARB"); glad_glGetTextureSamplerHandleARB = (PFNGLGETTEXTURESAMPLERHANDLEARBPROC) load(userptr, "glGetTextureSamplerHandleARB"); glad_glGetVertexAttribLui64vARB = (PFNGLGETVERTEXATTRIBLUI64VARBPROC) load(userptr, "glGetVertexAttribLui64vARB"); glad_glIsImageHandleResidentARB = (PFNGLISIMAGEHANDLERESIDENTARBPROC) load(userptr, "glIsImageHandleResidentARB"); glad_glIsTextureHandleResidentARB = (PFNGLISTEXTUREHANDLERESIDENTARBPROC) load(userptr, "glIsTextureHandleResidentARB"); glad_glMakeImageHandleNonResidentARB = (PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC) load(userptr, "glMakeImageHandleNonResidentARB"); glad_glMakeImageHandleResidentARB = (PFNGLMAKEIMAGEHANDLERESIDENTARBPROC) load(userptr, "glMakeImageHandleResidentARB"); glad_glMakeTextureHandleNonResidentARB = (PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC) load(userptr, "glMakeTextureHandleNonResidentARB"); glad_glMakeTextureHandleResidentARB = (PFNGLMAKETEXTUREHANDLERESIDENTARBPROC) load(userptr, "glMakeTextureHandleResidentARB"); glad_glProgramUniformHandleui64ARB = (PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC) load(userptr, "glProgramUniformHandleui64ARB"); glad_glProgramUniformHandleui64vARB = (PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC) load(userptr, "glProgramUniformHandleui64vARB"); glad_glUniformHandleui64ARB = (PFNGLUNIFORMHANDLEUI64ARBPROC) load(userptr, "glUniformHandleui64ARB"); glad_glUniformHandleui64vARB = (PFNGLUNIFORMHANDLEUI64VARBPROC) load(userptr, "glUniformHandleui64vARB"); glad_glVertexAttribL1ui64ARB = (PFNGLVERTEXATTRIBL1UI64ARBPROC) load(userptr, "glVertexAttribL1ui64ARB"); glad_glVertexAttribL1ui64vARB = (PFNGLVERTEXATTRIBL1UI64VARBPROC) load(userptr, "glVertexAttribL1ui64vARB"); } static void glad_gl_load_GL_ARB_blend_func_extended( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_blend_func_extended) return; glad_glBindFragDataLocationIndexed = (PFNGLBINDFRAGDATALOCATIONINDEXEDPROC) load(userptr, "glBindFragDataLocationIndexed"); glad_glGetFragDataIndex = (PFNGLGETFRAGDATAINDEXPROC) load(userptr, "glGetFragDataIndex"); } static void glad_gl_load_GL_ARB_buffer_storage( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_buffer_storage) return; glad_glBufferStorage = (PFNGLBUFFERSTORAGEPROC) load(userptr, "glBufferStorage"); } static void glad_gl_load_GL_ARB_cl_event( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_cl_event) return; glad_glCreateSyncFromCLeventARB = (PFNGLCREATESYNCFROMCLEVENTARBPROC) load(userptr, "glCreateSyncFromCLeventARB"); } static void glad_gl_load_GL_ARB_clear_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_clear_buffer_object) return; glad_glClearBufferData = (PFNGLCLEARBUFFERDATAPROC) load(userptr, "glClearBufferData"); glad_glClearBufferSubData = (PFNGLCLEARBUFFERSUBDATAPROC) load(userptr, "glClearBufferSubData"); } static void glad_gl_load_GL_ARB_clear_texture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_clear_texture) return; glad_glClearTexImage = (PFNGLCLEARTEXIMAGEPROC) load(userptr, "glClearTexImage"); glad_glClearTexSubImage = (PFNGLCLEARTEXSUBIMAGEPROC) load(userptr, "glClearTexSubImage"); } static void glad_gl_load_GL_ARB_clip_control( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_clip_control) return; glad_glClipControl = (PFNGLCLIPCONTROLPROC) load(userptr, "glClipControl"); } static void glad_gl_load_GL_ARB_color_buffer_float( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_color_buffer_float) return; glad_glClampColor = (PFNGLCLAMPCOLORPROC) load(userptr, "glClampColor"); glad_glClampColorARB = (PFNGLCLAMPCOLORARBPROC) load(userptr, "glClampColorARB"); } static void glad_gl_load_GL_ARB_compute_shader( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_compute_shader) return; glad_glDispatchCompute = (PFNGLDISPATCHCOMPUTEPROC) load(userptr, "glDispatchCompute"); glad_glDispatchComputeIndirect = (PFNGLDISPATCHCOMPUTEINDIRECTPROC) load(userptr, "glDispatchComputeIndirect"); } static void glad_gl_load_GL_ARB_compute_variable_group_size( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_compute_variable_group_size) return; glad_glDispatchComputeGroupSizeARB = (PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC) load(userptr, "glDispatchComputeGroupSizeARB"); } static void glad_gl_load_GL_ARB_copy_buffer( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_copy_buffer) return; glad_glCopyBufferSubData = (PFNGLCOPYBUFFERSUBDATAPROC) load(userptr, "glCopyBufferSubData"); } static void glad_gl_load_GL_ARB_copy_image( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_copy_image) return; glad_glCopyImageSubData = (PFNGLCOPYIMAGESUBDATAPROC) load(userptr, "glCopyImageSubData"); } static void glad_gl_load_GL_ARB_debug_output( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_debug_output) return; glad_glDebugMessageCallback = (PFNGLDEBUGMESSAGECALLBACKPROC) load(userptr, "glDebugMessageCallback"); glad_glDebugMessageCallbackARB = (PFNGLDEBUGMESSAGECALLBACKARBPROC) load(userptr, "glDebugMessageCallbackARB"); glad_glDebugMessageControl = (PFNGLDEBUGMESSAGECONTROLPROC) load(userptr, "glDebugMessageControl"); glad_glDebugMessageControlARB = (PFNGLDEBUGMESSAGECONTROLARBPROC) load(userptr, "glDebugMessageControlARB"); glad_glDebugMessageInsert = (PFNGLDEBUGMESSAGEINSERTPROC) load(userptr, "glDebugMessageInsert"); glad_glDebugMessageInsertARB = (PFNGLDEBUGMESSAGEINSERTARBPROC) load(userptr, "glDebugMessageInsertARB"); glad_glGetDebugMessageLog = (PFNGLGETDEBUGMESSAGELOGPROC) load(userptr, "glGetDebugMessageLog"); glad_glGetDebugMessageLogARB = (PFNGLGETDEBUGMESSAGELOGARBPROC) load(userptr, "glGetDebugMessageLogARB"); } static void glad_gl_load_GL_ARB_direct_state_access( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_direct_state_access) return; glad_glBindTextureUnit = (PFNGLBINDTEXTUREUNITPROC) load(userptr, "glBindTextureUnit"); glad_glBlitNamedFramebuffer = (PFNGLBLITNAMEDFRAMEBUFFERPROC) load(userptr, "glBlitNamedFramebuffer"); glad_glCheckNamedFramebufferStatus = (PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC) load(userptr, "glCheckNamedFramebufferStatus"); glad_glClearNamedBufferData = (PFNGLCLEARNAMEDBUFFERDATAPROC) load(userptr, "glClearNamedBufferData"); glad_glClearNamedBufferSubData = (PFNGLCLEARNAMEDBUFFERSUBDATAPROC) load(userptr, "glClearNamedBufferSubData"); glad_glClearNamedFramebufferfi = (PFNGLCLEARNAMEDFRAMEBUFFERFIPROC) load(userptr, "glClearNamedFramebufferfi"); glad_glClearNamedFramebufferfv = (PFNGLCLEARNAMEDFRAMEBUFFERFVPROC) load(userptr, "glClearNamedFramebufferfv"); glad_glClearNamedFramebufferiv = (PFNGLCLEARNAMEDFRAMEBUFFERIVPROC) load(userptr, "glClearNamedFramebufferiv"); glad_glClearNamedFramebufferuiv = (PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC) load(userptr, "glClearNamedFramebufferuiv"); glad_glCompressedTextureSubImage1D = (PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC) load(userptr, "glCompressedTextureSubImage1D"); glad_glCompressedTextureSubImage2D = (PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC) load(userptr, "glCompressedTextureSubImage2D"); glad_glCompressedTextureSubImage3D = (PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC) load(userptr, "glCompressedTextureSubImage3D"); glad_glCopyNamedBufferSubData = (PFNGLCOPYNAMEDBUFFERSUBDATAPROC) load(userptr, "glCopyNamedBufferSubData"); glad_glCopyTextureSubImage1D = (PFNGLCOPYTEXTURESUBIMAGE1DPROC) load(userptr, "glCopyTextureSubImage1D"); glad_glCopyTextureSubImage2D = (PFNGLCOPYTEXTURESUBIMAGE2DPROC) load(userptr, "glCopyTextureSubImage2D"); glad_glCopyTextureSubImage3D = (PFNGLCOPYTEXTURESUBIMAGE3DPROC) load(userptr, "glCopyTextureSubImage3D"); glad_glCreateBuffers = (PFNGLCREATEBUFFERSPROC) load(userptr, "glCreateBuffers"); glad_glCreateFramebuffers = (PFNGLCREATEFRAMEBUFFERSPROC) load(userptr, "glCreateFramebuffers"); glad_glCreateProgramPipelines = (PFNGLCREATEPROGRAMPIPELINESPROC) load(userptr, "glCreateProgramPipelines"); glad_glCreateQueries = (PFNGLCREATEQUERIESPROC) load(userptr, "glCreateQueries"); glad_glCreateRenderbuffers = (PFNGLCREATERENDERBUFFERSPROC) load(userptr, "glCreateRenderbuffers"); glad_glCreateSamplers = (PFNGLCREATESAMPLERSPROC) load(userptr, "glCreateSamplers"); glad_glCreateTextures = (PFNGLCREATETEXTURESPROC) load(userptr, "glCreateTextures"); glad_glCreateTransformFeedbacks = (PFNGLCREATETRANSFORMFEEDBACKSPROC) load(userptr, "glCreateTransformFeedbacks"); glad_glCreateVertexArrays = (PFNGLCREATEVERTEXARRAYSPROC) load(userptr, "glCreateVertexArrays"); glad_glDisableVertexArrayAttrib = (PFNGLDISABLEVERTEXARRAYATTRIBPROC) load(userptr, "glDisableVertexArrayAttrib"); glad_glEnableVertexArrayAttrib = (PFNGLENABLEVERTEXARRAYATTRIBPROC) load(userptr, "glEnableVertexArrayAttrib"); glad_glFlushMappedNamedBufferRange = (PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC) load(userptr, "glFlushMappedNamedBufferRange"); glad_glGenerateTextureMipmap = (PFNGLGENERATETEXTUREMIPMAPPROC) load(userptr, "glGenerateTextureMipmap"); glad_glGetCompressedTextureImage = (PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC) load(userptr, "glGetCompressedTextureImage"); glad_glGetNamedBufferParameteri64v = (PFNGLGETNAMEDBUFFERPARAMETERI64VPROC) load(userptr, "glGetNamedBufferParameteri64v"); glad_glGetNamedBufferParameteriv = (PFNGLGETNAMEDBUFFERPARAMETERIVPROC) load(userptr, "glGetNamedBufferParameteriv"); glad_glGetNamedBufferPointerv = (PFNGLGETNAMEDBUFFERPOINTERVPROC) load(userptr, "glGetNamedBufferPointerv"); glad_glGetNamedBufferSubData = (PFNGLGETNAMEDBUFFERSUBDATAPROC) load(userptr, "glGetNamedBufferSubData"); glad_glGetNamedFramebufferAttachmentParameteriv = (PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC) load(userptr, "glGetNamedFramebufferAttachmentParameteriv"); glad_glGetNamedFramebufferParameteriv = (PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC) load(userptr, "glGetNamedFramebufferParameteriv"); glad_glGetNamedRenderbufferParameteriv = (PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC) load(userptr, "glGetNamedRenderbufferParameteriv"); glad_glGetQueryBufferObjecti64v = (PFNGLGETQUERYBUFFEROBJECTI64VPROC) load(userptr, "glGetQueryBufferObjecti64v"); glad_glGetQueryBufferObjectiv = (PFNGLGETQUERYBUFFEROBJECTIVPROC) load(userptr, "glGetQueryBufferObjectiv"); glad_glGetQueryBufferObjectui64v = (PFNGLGETQUERYBUFFEROBJECTUI64VPROC) load(userptr, "glGetQueryBufferObjectui64v"); glad_glGetQueryBufferObjectuiv = (PFNGLGETQUERYBUFFEROBJECTUIVPROC) load(userptr, "glGetQueryBufferObjectuiv"); glad_glGetTextureImage = (PFNGLGETTEXTUREIMAGEPROC) load(userptr, "glGetTextureImage"); glad_glGetTextureLevelParameterfv = (PFNGLGETTEXTURELEVELPARAMETERFVPROC) load(userptr, "glGetTextureLevelParameterfv"); glad_glGetTextureLevelParameteriv = (PFNGLGETTEXTURELEVELPARAMETERIVPROC) load(userptr, "glGetTextureLevelParameteriv"); glad_glGetTextureParameterIiv = (PFNGLGETTEXTUREPARAMETERIIVPROC) load(userptr, "glGetTextureParameterIiv"); glad_glGetTextureParameterIuiv = (PFNGLGETTEXTUREPARAMETERIUIVPROC) load(userptr, "glGetTextureParameterIuiv"); glad_glGetTextureParameterfv = (PFNGLGETTEXTUREPARAMETERFVPROC) load(userptr, "glGetTextureParameterfv"); glad_glGetTextureParameteriv = (PFNGLGETTEXTUREPARAMETERIVPROC) load(userptr, "glGetTextureParameteriv"); glad_glGetTransformFeedbacki64_v = (PFNGLGETTRANSFORMFEEDBACKI64_VPROC) load(userptr, "glGetTransformFeedbacki64_v"); glad_glGetTransformFeedbacki_v = (PFNGLGETTRANSFORMFEEDBACKI_VPROC) load(userptr, "glGetTransformFeedbacki_v"); glad_glGetTransformFeedbackiv = (PFNGLGETTRANSFORMFEEDBACKIVPROC) load(userptr, "glGetTransformFeedbackiv"); glad_glGetVertexArrayIndexed64iv = (PFNGLGETVERTEXARRAYINDEXED64IVPROC) load(userptr, "glGetVertexArrayIndexed64iv"); glad_glGetVertexArrayIndexediv = (PFNGLGETVERTEXARRAYINDEXEDIVPROC) load(userptr, "glGetVertexArrayIndexediv"); glad_glGetVertexArrayiv = (PFNGLGETVERTEXARRAYIVPROC) load(userptr, "glGetVertexArrayiv"); glad_glInvalidateNamedFramebufferData = (PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC) load(userptr, "glInvalidateNamedFramebufferData"); glad_glInvalidateNamedFramebufferSubData = (PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC) load(userptr, "glInvalidateNamedFramebufferSubData"); glad_glMapNamedBuffer = (PFNGLMAPNAMEDBUFFERPROC) load(userptr, "glMapNamedBuffer"); glad_glMapNamedBufferRange = (PFNGLMAPNAMEDBUFFERRANGEPROC) load(userptr, "glMapNamedBufferRange"); glad_glNamedBufferData = (PFNGLNAMEDBUFFERDATAPROC) load(userptr, "glNamedBufferData"); glad_glNamedBufferStorage = (PFNGLNAMEDBUFFERSTORAGEPROC) load(userptr, "glNamedBufferStorage"); glad_glNamedBufferSubData = (PFNGLNAMEDBUFFERSUBDATAPROC) load(userptr, "glNamedBufferSubData"); glad_glNamedFramebufferDrawBuffer = (PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC) load(userptr, "glNamedFramebufferDrawBuffer"); glad_glNamedFramebufferDrawBuffers = (PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC) load(userptr, "glNamedFramebufferDrawBuffers"); glad_glNamedFramebufferParameteri = (PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC) load(userptr, "glNamedFramebufferParameteri"); glad_glNamedFramebufferReadBuffer = (PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC) load(userptr, "glNamedFramebufferReadBuffer"); glad_glNamedFramebufferRenderbuffer = (PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC) load(userptr, "glNamedFramebufferRenderbuffer"); glad_glNamedFramebufferTexture = (PFNGLNAMEDFRAMEBUFFERTEXTUREPROC) load(userptr, "glNamedFramebufferTexture"); glad_glNamedFramebufferTextureLayer = (PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glNamedFramebufferTextureLayer"); glad_glNamedRenderbufferStorage = (PFNGLNAMEDRENDERBUFFERSTORAGEPROC) load(userptr, "glNamedRenderbufferStorage"); glad_glNamedRenderbufferStorageMultisample = (PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC) load(userptr, "glNamedRenderbufferStorageMultisample"); glad_glTextureBuffer = (PFNGLTEXTUREBUFFERPROC) load(userptr, "glTextureBuffer"); glad_glTextureBufferRange = (PFNGLTEXTUREBUFFERRANGEPROC) load(userptr, "glTextureBufferRange"); glad_glTextureParameterIiv = (PFNGLTEXTUREPARAMETERIIVPROC) load(userptr, "glTextureParameterIiv"); glad_glTextureParameterIuiv = (PFNGLTEXTUREPARAMETERIUIVPROC) load(userptr, "glTextureParameterIuiv"); glad_glTextureParameterf = (PFNGLTEXTUREPARAMETERFPROC) load(userptr, "glTextureParameterf"); glad_glTextureParameterfv = (PFNGLTEXTUREPARAMETERFVPROC) load(userptr, "glTextureParameterfv"); glad_glTextureParameteri = (PFNGLTEXTUREPARAMETERIPROC) load(userptr, "glTextureParameteri"); glad_glTextureParameteriv = (PFNGLTEXTUREPARAMETERIVPROC) load(userptr, "glTextureParameteriv"); glad_glTextureStorage1D = (PFNGLTEXTURESTORAGE1DPROC) load(userptr, "glTextureStorage1D"); glad_glTextureStorage2D = (PFNGLTEXTURESTORAGE2DPROC) load(userptr, "glTextureStorage2D"); glad_glTextureStorage2DMultisample = (PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC) load(userptr, "glTextureStorage2DMultisample"); glad_glTextureStorage3D = (PFNGLTEXTURESTORAGE3DPROC) load(userptr, "glTextureStorage3D"); glad_glTextureStorage3DMultisample = (PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC) load(userptr, "glTextureStorage3DMultisample"); glad_glTextureSubImage1D = (PFNGLTEXTURESUBIMAGE1DPROC) load(userptr, "glTextureSubImage1D"); glad_glTextureSubImage2D = (PFNGLTEXTURESUBIMAGE2DPROC) load(userptr, "glTextureSubImage2D"); glad_glTextureSubImage3D = (PFNGLTEXTURESUBIMAGE3DPROC) load(userptr, "glTextureSubImage3D"); glad_glTransformFeedbackBufferBase = (PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC) load(userptr, "glTransformFeedbackBufferBase"); glad_glTransformFeedbackBufferRange = (PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC) load(userptr, "glTransformFeedbackBufferRange"); glad_glUnmapNamedBuffer = (PFNGLUNMAPNAMEDBUFFERPROC) load(userptr, "glUnmapNamedBuffer"); glad_glVertexArrayAttribBinding = (PFNGLVERTEXARRAYATTRIBBINDINGPROC) load(userptr, "glVertexArrayAttribBinding"); glad_glVertexArrayAttribFormat = (PFNGLVERTEXARRAYATTRIBFORMATPROC) load(userptr, "glVertexArrayAttribFormat"); glad_glVertexArrayAttribIFormat = (PFNGLVERTEXARRAYATTRIBIFORMATPROC) load(userptr, "glVertexArrayAttribIFormat"); glad_glVertexArrayAttribLFormat = (PFNGLVERTEXARRAYATTRIBLFORMATPROC) load(userptr, "glVertexArrayAttribLFormat"); glad_glVertexArrayBindingDivisor = (PFNGLVERTEXARRAYBINDINGDIVISORPROC) load(userptr, "glVertexArrayBindingDivisor"); glad_glVertexArrayElementBuffer = (PFNGLVERTEXARRAYELEMENTBUFFERPROC) load(userptr, "glVertexArrayElementBuffer"); glad_glVertexArrayVertexBuffer = (PFNGLVERTEXARRAYVERTEXBUFFERPROC) load(userptr, "glVertexArrayVertexBuffer"); glad_glVertexArrayVertexBuffers = (PFNGLVERTEXARRAYVERTEXBUFFERSPROC) load(userptr, "glVertexArrayVertexBuffers"); } static void glad_gl_load_GL_ARB_draw_buffers( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_buffers) return; glad_glDrawBuffers = (PFNGLDRAWBUFFERSPROC) load(userptr, "glDrawBuffers"); glad_glDrawBuffersARB = (PFNGLDRAWBUFFERSARBPROC) load(userptr, "glDrawBuffersARB"); } static void glad_gl_load_GL_ARB_draw_buffers_blend( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_buffers_blend) return; glad_glBlendEquationSeparatei = (PFNGLBLENDEQUATIONSEPARATEIPROC) load(userptr, "glBlendEquationSeparatei"); glad_glBlendEquationSeparateiARB = (PFNGLBLENDEQUATIONSEPARATEIARBPROC) load(userptr, "glBlendEquationSeparateiARB"); glad_glBlendEquationi = (PFNGLBLENDEQUATIONIPROC) load(userptr, "glBlendEquationi"); glad_glBlendEquationiARB = (PFNGLBLENDEQUATIONIARBPROC) load(userptr, "glBlendEquationiARB"); glad_glBlendFuncSeparatei = (PFNGLBLENDFUNCSEPARATEIPROC) load(userptr, "glBlendFuncSeparatei"); glad_glBlendFuncSeparateiARB = (PFNGLBLENDFUNCSEPARATEIARBPROC) load(userptr, "glBlendFuncSeparateiARB"); glad_glBlendFunci = (PFNGLBLENDFUNCIPROC) load(userptr, "glBlendFunci"); glad_glBlendFunciARB = (PFNGLBLENDFUNCIARBPROC) load(userptr, "glBlendFunciARB"); } static void glad_gl_load_GL_ARB_draw_elements_base_vertex( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_elements_base_vertex) return; glad_glDrawElementsBaseVertex = (PFNGLDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glDrawElementsBaseVertex"); glad_glDrawElementsInstancedBaseVertex = (PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC) load(userptr, "glDrawElementsInstancedBaseVertex"); glad_glDrawRangeElementsBaseVertex = (PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC) load(userptr, "glDrawRangeElementsBaseVertex"); glad_glMultiDrawElementsBaseVertex = (PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glMultiDrawElementsBaseVertex"); } static void glad_gl_load_GL_ARB_draw_indirect( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_indirect) return; glad_glDrawArraysIndirect = (PFNGLDRAWARRAYSINDIRECTPROC) load(userptr, "glDrawArraysIndirect"); glad_glDrawElementsIndirect = (PFNGLDRAWELEMENTSINDIRECTPROC) load(userptr, "glDrawElementsIndirect"); } static void glad_gl_load_GL_ARB_draw_instanced( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_instanced) return; glad_glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDPROC) load(userptr, "glDrawArraysInstanced"); glad_glDrawArraysInstancedARB = (PFNGLDRAWARRAYSINSTANCEDARBPROC) load(userptr, "glDrawArraysInstancedARB"); glad_glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDPROC) load(userptr, "glDrawElementsInstanced"); glad_glDrawElementsInstancedARB = (PFNGLDRAWELEMENTSINSTANCEDARBPROC) load(userptr, "glDrawElementsInstancedARB"); } static void glad_gl_load_GL_ARB_fragment_program( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_fragment_program) return; glad_glBindProgramARB = (PFNGLBINDPROGRAMARBPROC) load(userptr, "glBindProgramARB"); glad_glDeleteProgramsARB = (PFNGLDELETEPROGRAMSARBPROC) load(userptr, "glDeleteProgramsARB"); glad_glGenProgramsARB = (PFNGLGENPROGRAMSARBPROC) load(userptr, "glGenProgramsARB"); glad_glGetProgramEnvParameterdvARB = (PFNGLGETPROGRAMENVPARAMETERDVARBPROC) load(userptr, "glGetProgramEnvParameterdvARB"); glad_glGetProgramEnvParameterfvARB = (PFNGLGETPROGRAMENVPARAMETERFVARBPROC) load(userptr, "glGetProgramEnvParameterfvARB"); glad_glGetProgramLocalParameterdvARB = (PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC) load(userptr, "glGetProgramLocalParameterdvARB"); glad_glGetProgramLocalParameterfvARB = (PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC) load(userptr, "glGetProgramLocalParameterfvARB"); glad_glGetProgramStringARB = (PFNGLGETPROGRAMSTRINGARBPROC) load(userptr, "glGetProgramStringARB"); glad_glGetProgramivARB = (PFNGLGETPROGRAMIVARBPROC) load(userptr, "glGetProgramivARB"); glad_glIsProgramARB = (PFNGLISPROGRAMARBPROC) load(userptr, "glIsProgramARB"); glad_glProgramEnvParameter4dARB = (PFNGLPROGRAMENVPARAMETER4DARBPROC) load(userptr, "glProgramEnvParameter4dARB"); glad_glProgramEnvParameter4dvARB = (PFNGLPROGRAMENVPARAMETER4DVARBPROC) load(userptr, "glProgramEnvParameter4dvARB"); glad_glProgramEnvParameter4fARB = (PFNGLPROGRAMENVPARAMETER4FARBPROC) load(userptr, "glProgramEnvParameter4fARB"); glad_glProgramEnvParameter4fvARB = (PFNGLPROGRAMENVPARAMETER4FVARBPROC) load(userptr, "glProgramEnvParameter4fvARB"); glad_glProgramLocalParameter4dARB = (PFNGLPROGRAMLOCALPARAMETER4DARBPROC) load(userptr, "glProgramLocalParameter4dARB"); glad_glProgramLocalParameter4dvARB = (PFNGLPROGRAMLOCALPARAMETER4DVARBPROC) load(userptr, "glProgramLocalParameter4dvARB"); glad_glProgramLocalParameter4fARB = (PFNGLPROGRAMLOCALPARAMETER4FARBPROC) load(userptr, "glProgramLocalParameter4fARB"); glad_glProgramLocalParameter4fvARB = (PFNGLPROGRAMLOCALPARAMETER4FVARBPROC) load(userptr, "glProgramLocalParameter4fvARB"); glad_glProgramStringARB = (PFNGLPROGRAMSTRINGARBPROC) load(userptr, "glProgramStringARB"); } static void glad_gl_load_GL_ARB_framebuffer_no_attachments( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_framebuffer_no_attachments) return; glad_glFramebufferParameteri = (PFNGLFRAMEBUFFERPARAMETERIPROC) load(userptr, "glFramebufferParameteri"); glad_glGetFramebufferParameteriv = (PFNGLGETFRAMEBUFFERPARAMETERIVPROC) load(userptr, "glGetFramebufferParameteriv"); } static void glad_gl_load_GL_ARB_framebuffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_framebuffer_object) return; glad_glBindFramebuffer = (PFNGLBINDFRAMEBUFFERPROC) load(userptr, "glBindFramebuffer"); glad_glBindRenderbuffer = (PFNGLBINDRENDERBUFFERPROC) load(userptr, "glBindRenderbuffer"); glad_glBlitFramebuffer = (PFNGLBLITFRAMEBUFFERPROC) load(userptr, "glBlitFramebuffer"); glad_glCheckFramebufferStatus = (PFNGLCHECKFRAMEBUFFERSTATUSPROC) load(userptr, "glCheckFramebufferStatus"); glad_glDeleteFramebuffers = (PFNGLDELETEFRAMEBUFFERSPROC) load(userptr, "glDeleteFramebuffers"); glad_glDeleteRenderbuffers = (PFNGLDELETERENDERBUFFERSPROC) load(userptr, "glDeleteRenderbuffers"); glad_glFramebufferRenderbuffer = (PFNGLFRAMEBUFFERRENDERBUFFERPROC) load(userptr, "glFramebufferRenderbuffer"); glad_glFramebufferTexture1D = (PFNGLFRAMEBUFFERTEXTURE1DPROC) load(userptr, "glFramebufferTexture1D"); glad_glFramebufferTexture2D = (PFNGLFRAMEBUFFERTEXTURE2DPROC) load(userptr, "glFramebufferTexture2D"); glad_glFramebufferTexture3D = (PFNGLFRAMEBUFFERTEXTURE3DPROC) load(userptr, "glFramebufferTexture3D"); glad_glFramebufferTextureLayer = (PFNGLFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glFramebufferTextureLayer"); glad_glGenFramebuffers = (PFNGLGENFRAMEBUFFERSPROC) load(userptr, "glGenFramebuffers"); glad_glGenRenderbuffers = (PFNGLGENRENDERBUFFERSPROC) load(userptr, "glGenRenderbuffers"); glad_glGenerateMipmap = (PFNGLGENERATEMIPMAPPROC) load(userptr, "glGenerateMipmap"); glad_glGetFramebufferAttachmentParameteriv = (PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC) load(userptr, "glGetFramebufferAttachmentParameteriv"); glad_glGetRenderbufferParameteriv = (PFNGLGETRENDERBUFFERPARAMETERIVPROC) load(userptr, "glGetRenderbufferParameteriv"); glad_glIsFramebuffer = (PFNGLISFRAMEBUFFERPROC) load(userptr, "glIsFramebuffer"); glad_glIsRenderbuffer = (PFNGLISRENDERBUFFERPROC) load(userptr, "glIsRenderbuffer"); glad_glRenderbufferStorage = (PFNGLRENDERBUFFERSTORAGEPROC) load(userptr, "glRenderbufferStorage"); glad_glRenderbufferStorageMultisample = (PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC) load(userptr, "glRenderbufferStorageMultisample"); } static void glad_gl_load_GL_ARB_geometry_shader4( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_geometry_shader4) return; glad_glFramebufferTexture = (PFNGLFRAMEBUFFERTEXTUREPROC) load(userptr, "glFramebufferTexture"); glad_glFramebufferTextureARB = (PFNGLFRAMEBUFFERTEXTUREARBPROC) load(userptr, "glFramebufferTextureARB"); glad_glFramebufferTextureFaceARB = (PFNGLFRAMEBUFFERTEXTUREFACEARBPROC) load(userptr, "glFramebufferTextureFaceARB"); glad_glFramebufferTextureLayer = (PFNGLFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glFramebufferTextureLayer"); glad_glFramebufferTextureLayerARB = (PFNGLFRAMEBUFFERTEXTURELAYERARBPROC) load(userptr, "glFramebufferTextureLayerARB"); glad_glProgramParameteri = (PFNGLPROGRAMPARAMETERIPROC) load(userptr, "glProgramParameteri"); glad_glProgramParameteriARB = (PFNGLPROGRAMPARAMETERIARBPROC) load(userptr, "glProgramParameteriARB"); } static void glad_gl_load_GL_ARB_get_program_binary( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_get_program_binary) return; glad_glGetProgramBinary = (PFNGLGETPROGRAMBINARYPROC) load(userptr, "glGetProgramBinary"); glad_glProgramBinary = (PFNGLPROGRAMBINARYPROC) load(userptr, "glProgramBinary"); glad_glProgramParameteri = (PFNGLPROGRAMPARAMETERIPROC) load(userptr, "glProgramParameteri"); } static void glad_gl_load_GL_ARB_get_texture_sub_image( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_get_texture_sub_image) return; glad_glGetCompressedTextureSubImage = (PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC) load(userptr, "glGetCompressedTextureSubImage"); glad_glGetTextureSubImage = (PFNGLGETTEXTURESUBIMAGEPROC) load(userptr, "glGetTextureSubImage"); } static void glad_gl_load_GL_ARB_gl_spirv( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_gl_spirv) return; glad_glSpecializeShader = (PFNGLSPECIALIZESHADERPROC) load(userptr, "glSpecializeShader"); glad_glSpecializeShaderARB = (PFNGLSPECIALIZESHADERARBPROC) load(userptr, "glSpecializeShaderARB"); } static void glad_gl_load_GL_ARB_gpu_shader_fp64( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_gpu_shader_fp64) return; glad_glGetUniformdv = (PFNGLGETUNIFORMDVPROC) load(userptr, "glGetUniformdv"); glad_glUniform1d = (PFNGLUNIFORM1DPROC) load(userptr, "glUniform1d"); glad_glUniform1dv = (PFNGLUNIFORM1DVPROC) load(userptr, "glUniform1dv"); glad_glUniform2d = (PFNGLUNIFORM2DPROC) load(userptr, "glUniform2d"); glad_glUniform2dv = (PFNGLUNIFORM2DVPROC) load(userptr, "glUniform2dv"); glad_glUniform3d = (PFNGLUNIFORM3DPROC) load(userptr, "glUniform3d"); glad_glUniform3dv = (PFNGLUNIFORM3DVPROC) load(userptr, "glUniform3dv"); glad_glUniform4d = (PFNGLUNIFORM4DPROC) load(userptr, "glUniform4d"); glad_glUniform4dv = (PFNGLUNIFORM4DVPROC) load(userptr, "glUniform4dv"); glad_glUniformMatrix2dv = (PFNGLUNIFORMMATRIX2DVPROC) load(userptr, "glUniformMatrix2dv"); glad_glUniformMatrix2x3dv = (PFNGLUNIFORMMATRIX2X3DVPROC) load(userptr, "glUniformMatrix2x3dv"); glad_glUniformMatrix2x4dv = (PFNGLUNIFORMMATRIX2X4DVPROC) load(userptr, "glUniformMatrix2x4dv"); glad_glUniformMatrix3dv = (PFNGLUNIFORMMATRIX3DVPROC) load(userptr, "glUniformMatrix3dv"); glad_glUniformMatrix3x2dv = (PFNGLUNIFORMMATRIX3X2DVPROC) load(userptr, "glUniformMatrix3x2dv"); glad_glUniformMatrix3x4dv = (PFNGLUNIFORMMATRIX3X4DVPROC) load(userptr, "glUniformMatrix3x4dv"); glad_glUniformMatrix4dv = (PFNGLUNIFORMMATRIX4DVPROC) load(userptr, "glUniformMatrix4dv"); glad_glUniformMatrix4x2dv = (PFNGLUNIFORMMATRIX4X2DVPROC) load(userptr, "glUniformMatrix4x2dv"); glad_glUniformMatrix4x3dv = (PFNGLUNIFORMMATRIX4X3DVPROC) load(userptr, "glUniformMatrix4x3dv"); } static void glad_gl_load_GL_ARB_gpu_shader_int64( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_gpu_shader_int64) return; glad_glGetUniformi64vARB = (PFNGLGETUNIFORMI64VARBPROC) load(userptr, "glGetUniformi64vARB"); glad_glGetUniformui64vARB = (PFNGLGETUNIFORMUI64VARBPROC) load(userptr, "glGetUniformui64vARB"); glad_glGetnUniformi64vARB = (PFNGLGETNUNIFORMI64VARBPROC) load(userptr, "glGetnUniformi64vARB"); glad_glGetnUniformui64vARB = (PFNGLGETNUNIFORMUI64VARBPROC) load(userptr, "glGetnUniformui64vARB"); glad_glProgramUniform1i64ARB = (PFNGLPROGRAMUNIFORM1I64ARBPROC) load(userptr, "glProgramUniform1i64ARB"); glad_glProgramUniform1i64vARB = (PFNGLPROGRAMUNIFORM1I64VARBPROC) load(userptr, "glProgramUniform1i64vARB"); glad_glProgramUniform1ui64ARB = (PFNGLPROGRAMUNIFORM1UI64ARBPROC) load(userptr, "glProgramUniform1ui64ARB"); glad_glProgramUniform1ui64vARB = (PFNGLPROGRAMUNIFORM1UI64VARBPROC) load(userptr, "glProgramUniform1ui64vARB"); glad_glProgramUniform2i64ARB = (PFNGLPROGRAMUNIFORM2I64ARBPROC) load(userptr, "glProgramUniform2i64ARB"); glad_glProgramUniform2i64vARB = (PFNGLPROGRAMUNIFORM2I64VARBPROC) load(userptr, "glProgramUniform2i64vARB"); glad_glProgramUniform2ui64ARB = (PFNGLPROGRAMUNIFORM2UI64ARBPROC) load(userptr, "glProgramUniform2ui64ARB"); glad_glProgramUniform2ui64vARB = (PFNGLPROGRAMUNIFORM2UI64VARBPROC) load(userptr, "glProgramUniform2ui64vARB"); glad_glProgramUniform3i64ARB = (PFNGLPROGRAMUNIFORM3I64ARBPROC) load(userptr, "glProgramUniform3i64ARB"); glad_glProgramUniform3i64vARB = (PFNGLPROGRAMUNIFORM3I64VARBPROC) load(userptr, "glProgramUniform3i64vARB"); glad_glProgramUniform3ui64ARB = (PFNGLPROGRAMUNIFORM3UI64ARBPROC) load(userptr, "glProgramUniform3ui64ARB"); glad_glProgramUniform3ui64vARB = (PFNGLPROGRAMUNIFORM3UI64VARBPROC) load(userptr, "glProgramUniform3ui64vARB"); glad_glProgramUniform4i64ARB = (PFNGLPROGRAMUNIFORM4I64ARBPROC) load(userptr, "glProgramUniform4i64ARB"); glad_glProgramUniform4i64vARB = (PFNGLPROGRAMUNIFORM4I64VARBPROC) load(userptr, "glProgramUniform4i64vARB"); glad_glProgramUniform4ui64ARB = (PFNGLPROGRAMUNIFORM4UI64ARBPROC) load(userptr, "glProgramUniform4ui64ARB"); glad_glProgramUniform4ui64vARB = (PFNGLPROGRAMUNIFORM4UI64VARBPROC) load(userptr, "glProgramUniform4ui64vARB"); glad_glUniform1i64ARB = (PFNGLUNIFORM1I64ARBPROC) load(userptr, "glUniform1i64ARB"); glad_glUniform1i64vARB = (PFNGLUNIFORM1I64VARBPROC) load(userptr, "glUniform1i64vARB"); glad_glUniform1ui64ARB = (PFNGLUNIFORM1UI64ARBPROC) load(userptr, "glUniform1ui64ARB"); glad_glUniform1ui64vARB = (PFNGLUNIFORM1UI64VARBPROC) load(userptr, "glUniform1ui64vARB"); glad_glUniform2i64ARB = (PFNGLUNIFORM2I64ARBPROC) load(userptr, "glUniform2i64ARB"); glad_glUniform2i64vARB = (PFNGLUNIFORM2I64VARBPROC) load(userptr, "glUniform2i64vARB"); glad_glUniform2ui64ARB = (PFNGLUNIFORM2UI64ARBPROC) load(userptr, "glUniform2ui64ARB"); glad_glUniform2ui64vARB = (PFNGLUNIFORM2UI64VARBPROC) load(userptr, "glUniform2ui64vARB"); glad_glUniform3i64ARB = (PFNGLUNIFORM3I64ARBPROC) load(userptr, "glUniform3i64ARB"); glad_glUniform3i64vARB = (PFNGLUNIFORM3I64VARBPROC) load(userptr, "glUniform3i64vARB"); glad_glUniform3ui64ARB = (PFNGLUNIFORM3UI64ARBPROC) load(userptr, "glUniform3ui64ARB"); glad_glUniform3ui64vARB = (PFNGLUNIFORM3UI64VARBPROC) load(userptr, "glUniform3ui64vARB"); glad_glUniform4i64ARB = (PFNGLUNIFORM4I64ARBPROC) load(userptr, "glUniform4i64ARB"); glad_glUniform4i64vARB = (PFNGLUNIFORM4I64VARBPROC) load(userptr, "glUniform4i64vARB"); glad_glUniform4ui64ARB = (PFNGLUNIFORM4UI64ARBPROC) load(userptr, "glUniform4ui64ARB"); glad_glUniform4ui64vARB = (PFNGLUNIFORM4UI64VARBPROC) load(userptr, "glUniform4ui64vARB"); } static void glad_gl_load_GL_ARB_imaging( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_imaging) return; glad_glBlendColor = (PFNGLBLENDCOLORPROC) load(userptr, "glBlendColor"); glad_glBlendEquation = (PFNGLBLENDEQUATIONPROC) load(userptr, "glBlendEquation"); glad_glColorSubTable = (PFNGLCOLORSUBTABLEPROC) load(userptr, "glColorSubTable"); glad_glColorTable = (PFNGLCOLORTABLEPROC) load(userptr, "glColorTable"); glad_glColorTableParameterfv = (PFNGLCOLORTABLEPARAMETERFVPROC) load(userptr, "glColorTableParameterfv"); glad_glColorTableParameteriv = (PFNGLCOLORTABLEPARAMETERIVPROC) load(userptr, "glColorTableParameteriv"); glad_glConvolutionFilter1D = (PFNGLCONVOLUTIONFILTER1DPROC) load(userptr, "glConvolutionFilter1D"); glad_glConvolutionFilter2D = (PFNGLCONVOLUTIONFILTER2DPROC) load(userptr, "glConvolutionFilter2D"); glad_glConvolutionParameterf = (PFNGLCONVOLUTIONPARAMETERFPROC) load(userptr, "glConvolutionParameterf"); glad_glConvolutionParameterfv = (PFNGLCONVOLUTIONPARAMETERFVPROC) load(userptr, "glConvolutionParameterfv"); glad_glConvolutionParameteri = (PFNGLCONVOLUTIONPARAMETERIPROC) load(userptr, "glConvolutionParameteri"); glad_glConvolutionParameteriv = (PFNGLCONVOLUTIONPARAMETERIVPROC) load(userptr, "glConvolutionParameteriv"); glad_glCopyColorSubTable = (PFNGLCOPYCOLORSUBTABLEPROC) load(userptr, "glCopyColorSubTable"); glad_glCopyColorTable = (PFNGLCOPYCOLORTABLEPROC) load(userptr, "glCopyColorTable"); glad_glCopyConvolutionFilter1D = (PFNGLCOPYCONVOLUTIONFILTER1DPROC) load(userptr, "glCopyConvolutionFilter1D"); glad_glCopyConvolutionFilter2D = (PFNGLCOPYCONVOLUTIONFILTER2DPROC) load(userptr, "glCopyConvolutionFilter2D"); glad_glGetColorTable = (PFNGLGETCOLORTABLEPROC) load(userptr, "glGetColorTable"); glad_glGetColorTableParameterfv = (PFNGLGETCOLORTABLEPARAMETERFVPROC) load(userptr, "glGetColorTableParameterfv"); glad_glGetColorTableParameteriv = (PFNGLGETCOLORTABLEPARAMETERIVPROC) load(userptr, "glGetColorTableParameteriv"); glad_glGetConvolutionFilter = (PFNGLGETCONVOLUTIONFILTERPROC) load(userptr, "glGetConvolutionFilter"); glad_glGetConvolutionParameterfv = (PFNGLGETCONVOLUTIONPARAMETERFVPROC) load(userptr, "glGetConvolutionParameterfv"); glad_glGetConvolutionParameteriv = (PFNGLGETCONVOLUTIONPARAMETERIVPROC) load(userptr, "glGetConvolutionParameteriv"); glad_glGetHistogram = (PFNGLGETHISTOGRAMPROC) load(userptr, "glGetHistogram"); glad_glGetHistogramParameterfv = (PFNGLGETHISTOGRAMPARAMETERFVPROC) load(userptr, "glGetHistogramParameterfv"); glad_glGetHistogramParameteriv = (PFNGLGETHISTOGRAMPARAMETERIVPROC) load(userptr, "glGetHistogramParameteriv"); glad_glGetMinmax = (PFNGLGETMINMAXPROC) load(userptr, "glGetMinmax"); glad_glGetMinmaxParameterfv = (PFNGLGETMINMAXPARAMETERFVPROC) load(userptr, "glGetMinmaxParameterfv"); glad_glGetMinmaxParameteriv = (PFNGLGETMINMAXPARAMETERIVPROC) load(userptr, "glGetMinmaxParameteriv"); glad_glGetSeparableFilter = (PFNGLGETSEPARABLEFILTERPROC) load(userptr, "glGetSeparableFilter"); glad_glHistogram = (PFNGLHISTOGRAMPROC) load(userptr, "glHistogram"); glad_glMinmax = (PFNGLMINMAXPROC) load(userptr, "glMinmax"); glad_glResetHistogram = (PFNGLRESETHISTOGRAMPROC) load(userptr, "glResetHistogram"); glad_glResetMinmax = (PFNGLRESETMINMAXPROC) load(userptr, "glResetMinmax"); glad_glSeparableFilter2D = (PFNGLSEPARABLEFILTER2DPROC) load(userptr, "glSeparableFilter2D"); } static void glad_gl_load_GL_ARB_indirect_parameters( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_indirect_parameters) return; glad_glMultiDrawArraysIndirectCount = (PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC) load(userptr, "glMultiDrawArraysIndirectCount"); glad_glMultiDrawArraysIndirectCountARB = (PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC) load(userptr, "glMultiDrawArraysIndirectCountARB"); glad_glMultiDrawElementsIndirectCount = (PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC) load(userptr, "glMultiDrawElementsIndirectCount"); glad_glMultiDrawElementsIndirectCountARB = (PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC) load(userptr, "glMultiDrawElementsIndirectCountARB"); } static void glad_gl_load_GL_ARB_instanced_arrays( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_instanced_arrays) return; glad_glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISORPROC) load(userptr, "glVertexAttribDivisor"); glad_glVertexAttribDivisorARB = (PFNGLVERTEXATTRIBDIVISORARBPROC) load(userptr, "glVertexAttribDivisorARB"); } static void glad_gl_load_GL_ARB_internalformat_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_internalformat_query) return; glad_glGetInternalformativ = (PFNGLGETINTERNALFORMATIVPROC) load(userptr, "glGetInternalformativ"); } static void glad_gl_load_GL_ARB_internalformat_query2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_internalformat_query2) return; glad_glGetInternalformati64v = (PFNGLGETINTERNALFORMATI64VPROC) load(userptr, "glGetInternalformati64v"); } static void glad_gl_load_GL_ARB_invalidate_subdata( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_invalidate_subdata) return; glad_glInvalidateBufferData = (PFNGLINVALIDATEBUFFERDATAPROC) load(userptr, "glInvalidateBufferData"); glad_glInvalidateBufferSubData = (PFNGLINVALIDATEBUFFERSUBDATAPROC) load(userptr, "glInvalidateBufferSubData"); glad_glInvalidateFramebuffer = (PFNGLINVALIDATEFRAMEBUFFERPROC) load(userptr, "glInvalidateFramebuffer"); glad_glInvalidateSubFramebuffer = (PFNGLINVALIDATESUBFRAMEBUFFERPROC) load(userptr, "glInvalidateSubFramebuffer"); glad_glInvalidateTexImage = (PFNGLINVALIDATETEXIMAGEPROC) load(userptr, "glInvalidateTexImage"); glad_glInvalidateTexSubImage = (PFNGLINVALIDATETEXSUBIMAGEPROC) load(userptr, "glInvalidateTexSubImage"); } static void glad_gl_load_GL_ARB_map_buffer_range( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_map_buffer_range) return; glad_glFlushMappedBufferRange = (PFNGLFLUSHMAPPEDBUFFERRANGEPROC) load(userptr, "glFlushMappedBufferRange"); glad_glMapBufferRange = (PFNGLMAPBUFFERRANGEPROC) load(userptr, "glMapBufferRange"); } static void glad_gl_load_GL_ARB_matrix_palette( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_matrix_palette) return; glad_glCurrentPaletteMatrixARB = (PFNGLCURRENTPALETTEMATRIXARBPROC) load(userptr, "glCurrentPaletteMatrixARB"); glad_glMatrixIndexPointerARB = (PFNGLMATRIXINDEXPOINTERARBPROC) load(userptr, "glMatrixIndexPointerARB"); glad_glMatrixIndexubvARB = (PFNGLMATRIXINDEXUBVARBPROC) load(userptr, "glMatrixIndexubvARB"); glad_glMatrixIndexuivARB = (PFNGLMATRIXINDEXUIVARBPROC) load(userptr, "glMatrixIndexuivARB"); glad_glMatrixIndexusvARB = (PFNGLMATRIXINDEXUSVARBPROC) load(userptr, "glMatrixIndexusvARB"); } static void glad_gl_load_GL_ARB_multi_bind( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multi_bind) return; glad_glBindBuffersBase = (PFNGLBINDBUFFERSBASEPROC) load(userptr, "glBindBuffersBase"); glad_glBindBuffersRange = (PFNGLBINDBUFFERSRANGEPROC) load(userptr, "glBindBuffersRange"); glad_glBindImageTextures = (PFNGLBINDIMAGETEXTURESPROC) load(userptr, "glBindImageTextures"); glad_glBindSamplers = (PFNGLBINDSAMPLERSPROC) load(userptr, "glBindSamplers"); glad_glBindTextures = (PFNGLBINDTEXTURESPROC) load(userptr, "glBindTextures"); glad_glBindVertexBuffers = (PFNGLBINDVERTEXBUFFERSPROC) load(userptr, "glBindVertexBuffers"); } static void glad_gl_load_GL_ARB_multi_draw_indirect( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multi_draw_indirect) return; glad_glMultiDrawArraysIndirect = (PFNGLMULTIDRAWARRAYSINDIRECTPROC) load(userptr, "glMultiDrawArraysIndirect"); glad_glMultiDrawElementsIndirect = (PFNGLMULTIDRAWELEMENTSINDIRECTPROC) load(userptr, "glMultiDrawElementsIndirect"); } static void glad_gl_load_GL_ARB_multisample( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multisample) return; glad_glSampleCoverage = (PFNGLSAMPLECOVERAGEPROC) load(userptr, "glSampleCoverage"); glad_glSampleCoverageARB = (PFNGLSAMPLECOVERAGEARBPROC) load(userptr, "glSampleCoverageARB"); } static void glad_gl_load_GL_ARB_multitexture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multitexture) return; glad_glActiveTexture = (PFNGLACTIVETEXTUREPROC) load(userptr, "glActiveTexture"); glad_glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC) load(userptr, "glActiveTextureARB"); glad_glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREPROC) load(userptr, "glClientActiveTexture"); glad_glClientActiveTextureARB = (PFNGLCLIENTACTIVETEXTUREARBPROC) load(userptr, "glClientActiveTextureARB"); glad_glMultiTexCoord1d = (PFNGLMULTITEXCOORD1DPROC) load(userptr, "glMultiTexCoord1d"); glad_glMultiTexCoord1dARB = (PFNGLMULTITEXCOORD1DARBPROC) load(userptr, "glMultiTexCoord1dARB"); glad_glMultiTexCoord1dv = (PFNGLMULTITEXCOORD1DVPROC) load(userptr, "glMultiTexCoord1dv"); glad_glMultiTexCoord1dvARB = (PFNGLMULTITEXCOORD1DVARBPROC) load(userptr, "glMultiTexCoord1dvARB"); glad_glMultiTexCoord1f = (PFNGLMULTITEXCOORD1FPROC) load(userptr, "glMultiTexCoord1f"); glad_glMultiTexCoord1fARB = (PFNGLMULTITEXCOORD1FARBPROC) load(userptr, "glMultiTexCoord1fARB"); glad_glMultiTexCoord1fv = (PFNGLMULTITEXCOORD1FVPROC) load(userptr, "glMultiTexCoord1fv"); glad_glMultiTexCoord1fvARB = (PFNGLMULTITEXCOORD1FVARBPROC) load(userptr, "glMultiTexCoord1fvARB"); glad_glMultiTexCoord1i = (PFNGLMULTITEXCOORD1IPROC) load(userptr, "glMultiTexCoord1i"); glad_glMultiTexCoord1iARB = (PFNGLMULTITEXCOORD1IARBPROC) load(userptr, "glMultiTexCoord1iARB"); glad_glMultiTexCoord1iv = (PFNGLMULTITEXCOORD1IVPROC) load(userptr, "glMultiTexCoord1iv"); glad_glMultiTexCoord1ivARB = (PFNGLMULTITEXCOORD1IVARBPROC) load(userptr, "glMultiTexCoord1ivARB"); glad_glMultiTexCoord1s = (PFNGLMULTITEXCOORD1SPROC) load(userptr, "glMultiTexCoord1s"); glad_glMultiTexCoord1sARB = (PFNGLMULTITEXCOORD1SARBPROC) load(userptr, "glMultiTexCoord1sARB"); glad_glMultiTexCoord1sv = (PFNGLMULTITEXCOORD1SVPROC) load(userptr, "glMultiTexCoord1sv"); glad_glMultiTexCoord1svARB = (PFNGLMULTITEXCOORD1SVARBPROC) load(userptr, "glMultiTexCoord1svARB"); glad_glMultiTexCoord2d = (PFNGLMULTITEXCOORD2DPROC) load(userptr, "glMultiTexCoord2d"); glad_glMultiTexCoord2dARB = (PFNGLMULTITEXCOORD2DARBPROC) load(userptr, "glMultiTexCoord2dARB"); glad_glMultiTexCoord2dv = (PFNGLMULTITEXCOORD2DVPROC) load(userptr, "glMultiTexCoord2dv"); glad_glMultiTexCoord2dvARB = (PFNGLMULTITEXCOORD2DVARBPROC) load(userptr, "glMultiTexCoord2dvARB"); glad_glMultiTexCoord2f = (PFNGLMULTITEXCOORD2FPROC) load(userptr, "glMultiTexCoord2f"); glad_glMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC) load(userptr, "glMultiTexCoord2fARB"); glad_glMultiTexCoord2fv = (PFNGLMULTITEXCOORD2FVPROC) load(userptr, "glMultiTexCoord2fv"); glad_glMultiTexCoord2fvARB = (PFNGLMULTITEXCOORD2FVARBPROC) load(userptr, "glMultiTexCoord2fvARB"); glad_glMultiTexCoord2i = (PFNGLMULTITEXCOORD2IPROC) load(userptr, "glMultiTexCoord2i"); glad_glMultiTexCoord2iARB = (PFNGLMULTITEXCOORD2IARBPROC) load(userptr, "glMultiTexCoord2iARB"); glad_glMultiTexCoord2iv = (PFNGLMULTITEXCOORD2IVPROC) load(userptr, "glMultiTexCoord2iv"); glad_glMultiTexCoord2ivARB = (PFNGLMULTITEXCOORD2IVARBPROC) load(userptr, "glMultiTexCoord2ivARB"); glad_glMultiTexCoord2s = (PFNGLMULTITEXCOORD2SPROC) load(userptr, "glMultiTexCoord2s"); glad_glMultiTexCoord2sARB = (PFNGLMULTITEXCOORD2SARBPROC) load(userptr, "glMultiTexCoord2sARB"); glad_glMultiTexCoord2sv = (PFNGLMULTITEXCOORD2SVPROC) load(userptr, "glMultiTexCoord2sv"); glad_glMultiTexCoord2svARB = (PFNGLMULTITEXCOORD2SVARBPROC) load(userptr, "glMultiTexCoord2svARB"); glad_glMultiTexCoord3d = (PFNGLMULTITEXCOORD3DPROC) load(userptr, "glMultiTexCoord3d"); glad_glMultiTexCoord3dARB = (PFNGLMULTITEXCOORD3DARBPROC) load(userptr, "glMultiTexCoord3dARB"); glad_glMultiTexCoord3dv = (PFNGLMULTITEXCOORD3DVPROC) load(userptr, "glMultiTexCoord3dv"); glad_glMultiTexCoord3dvARB = (PFNGLMULTITEXCOORD3DVARBPROC) load(userptr, "glMultiTexCoord3dvARB"); glad_glMultiTexCoord3f = (PFNGLMULTITEXCOORD3FPROC) load(userptr, "glMultiTexCoord3f"); glad_glMultiTexCoord3fARB = (PFNGLMULTITEXCOORD3FARBPROC) load(userptr, "glMultiTexCoord3fARB"); glad_glMultiTexCoord3fv = (PFNGLMULTITEXCOORD3FVPROC) load(userptr, "glMultiTexCoord3fv"); glad_glMultiTexCoord3fvARB = (PFNGLMULTITEXCOORD3FVARBPROC) load(userptr, "glMultiTexCoord3fvARB"); glad_glMultiTexCoord3i = (PFNGLMULTITEXCOORD3IPROC) load(userptr, "glMultiTexCoord3i"); glad_glMultiTexCoord3iARB = (PFNGLMULTITEXCOORD3IARBPROC) load(userptr, "glMultiTexCoord3iARB"); glad_glMultiTexCoord3iv = (PFNGLMULTITEXCOORD3IVPROC) load(userptr, "glMultiTexCoord3iv"); glad_glMultiTexCoord3ivARB = (PFNGLMULTITEXCOORD3IVARBPROC) load(userptr, "glMultiTexCoord3ivARB"); glad_glMultiTexCoord3s = (PFNGLMULTITEXCOORD3SPROC) load(userptr, "glMultiTexCoord3s"); glad_glMultiTexCoord3sARB = (PFNGLMULTITEXCOORD3SARBPROC) load(userptr, "glMultiTexCoord3sARB"); glad_glMultiTexCoord3sv = (PFNGLMULTITEXCOORD3SVPROC) load(userptr, "glMultiTexCoord3sv"); glad_glMultiTexCoord3svARB = (PFNGLMULTITEXCOORD3SVARBPROC) load(userptr, "glMultiTexCoord3svARB"); glad_glMultiTexCoord4d = (PFNGLMULTITEXCOORD4DPROC) load(userptr, "glMultiTexCoord4d"); glad_glMultiTexCoord4dARB = (PFNGLMULTITEXCOORD4DARBPROC) load(userptr, "glMultiTexCoord4dARB"); glad_glMultiTexCoord4dv = (PFNGLMULTITEXCOORD4DVPROC) load(userptr, "glMultiTexCoord4dv"); glad_glMultiTexCoord4dvARB = (PFNGLMULTITEXCOORD4DVARBPROC) load(userptr, "glMultiTexCoord4dvARB"); glad_glMultiTexCoord4f = (PFNGLMULTITEXCOORD4FPROC) load(userptr, "glMultiTexCoord4f"); glad_glMultiTexCoord4fARB = (PFNGLMULTITEXCOORD4FARBPROC) load(userptr, "glMultiTexCoord4fARB"); glad_glMultiTexCoord4fv = (PFNGLMULTITEXCOORD4FVPROC) load(userptr, "glMultiTexCoord4fv"); glad_glMultiTexCoord4fvARB = (PFNGLMULTITEXCOORD4FVARBPROC) load(userptr, "glMultiTexCoord4fvARB"); glad_glMultiTexCoord4i = (PFNGLMULTITEXCOORD4IPROC) load(userptr, "glMultiTexCoord4i"); glad_glMultiTexCoord4iARB = (PFNGLMULTITEXCOORD4IARBPROC) load(userptr, "glMultiTexCoord4iARB"); glad_glMultiTexCoord4iv = (PFNGLMULTITEXCOORD4IVPROC) load(userptr, "glMultiTexCoord4iv"); glad_glMultiTexCoord4ivARB = (PFNGLMULTITEXCOORD4IVARBPROC) load(userptr, "glMultiTexCoord4ivARB"); glad_glMultiTexCoord4s = (PFNGLMULTITEXCOORD4SPROC) load(userptr, "glMultiTexCoord4s"); glad_glMultiTexCoord4sARB = (PFNGLMULTITEXCOORD4SARBPROC) load(userptr, "glMultiTexCoord4sARB"); glad_glMultiTexCoord4sv = (PFNGLMULTITEXCOORD4SVPROC) load(userptr, "glMultiTexCoord4sv"); glad_glMultiTexCoord4svARB = (PFNGLMULTITEXCOORD4SVARBPROC) load(userptr, "glMultiTexCoord4svARB"); } static void glad_gl_load_GL_ARB_occlusion_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_occlusion_query) return; glad_glBeginQuery = (PFNGLBEGINQUERYPROC) load(userptr, "glBeginQuery"); glad_glBeginQueryARB = (PFNGLBEGINQUERYARBPROC) load(userptr, "glBeginQueryARB"); glad_glDeleteQueries = (PFNGLDELETEQUERIESPROC) load(userptr, "glDeleteQueries"); glad_glDeleteQueriesARB = (PFNGLDELETEQUERIESARBPROC) load(userptr, "glDeleteQueriesARB"); glad_glEndQuery = (PFNGLENDQUERYPROC) load(userptr, "glEndQuery"); glad_glEndQueryARB = (PFNGLENDQUERYARBPROC) load(userptr, "glEndQueryARB"); glad_glGenQueries = (PFNGLGENQUERIESPROC) load(userptr, "glGenQueries"); glad_glGenQueriesARB = (PFNGLGENQUERIESARBPROC) load(userptr, "glGenQueriesARB"); glad_glGetQueryObjectiv = (PFNGLGETQUERYOBJECTIVPROC) load(userptr, "glGetQueryObjectiv"); glad_glGetQueryObjectivARB = (PFNGLGETQUERYOBJECTIVARBPROC) load(userptr, "glGetQueryObjectivARB"); glad_glGetQueryObjectuiv = (PFNGLGETQUERYOBJECTUIVPROC) load(userptr, "glGetQueryObjectuiv"); glad_glGetQueryObjectuivARB = (PFNGLGETQUERYOBJECTUIVARBPROC) load(userptr, "glGetQueryObjectuivARB"); glad_glGetQueryiv = (PFNGLGETQUERYIVPROC) load(userptr, "glGetQueryiv"); glad_glGetQueryivARB = (PFNGLGETQUERYIVARBPROC) load(userptr, "glGetQueryivARB"); glad_glIsQuery = (PFNGLISQUERYPROC) load(userptr, "glIsQuery"); glad_glIsQueryARB = (PFNGLISQUERYARBPROC) load(userptr, "glIsQueryARB"); } static void glad_gl_load_GL_ARB_parallel_shader_compile( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_parallel_shader_compile) return; glad_glMaxShaderCompilerThreadsARB = (PFNGLMAXSHADERCOMPILERTHREADSARBPROC) load(userptr, "glMaxShaderCompilerThreadsARB"); glad_glMaxShaderCompilerThreadsKHR = (PFNGLMAXSHADERCOMPILERTHREADSKHRPROC) load(userptr, "glMaxShaderCompilerThreadsKHR"); } static void glad_gl_load_GL_ARB_point_parameters( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_point_parameters) return; glad_glPointParameterf = (PFNGLPOINTPARAMETERFPROC) load(userptr, "glPointParameterf"); glad_glPointParameterfARB = (PFNGLPOINTPARAMETERFARBPROC) load(userptr, "glPointParameterfARB"); glad_glPointParameterfv = (PFNGLPOINTPARAMETERFVPROC) load(userptr, "glPointParameterfv"); glad_glPointParameterfvARB = (PFNGLPOINTPARAMETERFVARBPROC) load(userptr, "glPointParameterfvARB"); } static void glad_gl_load_GL_ARB_polygon_offset_clamp( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_polygon_offset_clamp) return; glad_glPolygonOffsetClamp = (PFNGLPOLYGONOFFSETCLAMPPROC) load(userptr, "glPolygonOffsetClamp"); } static void glad_gl_load_GL_ARB_program_interface_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_program_interface_query) return; glad_glGetProgramInterfaceiv = (PFNGLGETPROGRAMINTERFACEIVPROC) load(userptr, "glGetProgramInterfaceiv"); glad_glGetProgramResourceIndex = (PFNGLGETPROGRAMRESOURCEINDEXPROC) load(userptr, "glGetProgramResourceIndex"); glad_glGetProgramResourceLocation = (PFNGLGETPROGRAMRESOURCELOCATIONPROC) load(userptr, "glGetProgramResourceLocation"); glad_glGetProgramResourceLocationIndex = (PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC) load(userptr, "glGetProgramResourceLocationIndex"); glad_glGetProgramResourceName = (PFNGLGETPROGRAMRESOURCENAMEPROC) load(userptr, "glGetProgramResourceName"); glad_glGetProgramResourceiv = (PFNGLGETPROGRAMRESOURCEIVPROC) load(userptr, "glGetProgramResourceiv"); } static void glad_gl_load_GL_ARB_provoking_vertex( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_provoking_vertex) return; glad_glProvokingVertex = (PFNGLPROVOKINGVERTEXPROC) load(userptr, "glProvokingVertex"); } static void glad_gl_load_GL_ARB_robustness( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_robustness) return; glad_glGetGraphicsResetStatusARB = (PFNGLGETGRAPHICSRESETSTATUSARBPROC) load(userptr, "glGetGraphicsResetStatusARB"); glad_glGetnColorTableARB = (PFNGLGETNCOLORTABLEARBPROC) load(userptr, "glGetnColorTableARB"); glad_glGetnCompressedTexImageARB = (PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC) load(userptr, "glGetnCompressedTexImageARB"); glad_glGetnConvolutionFilterARB = (PFNGLGETNCONVOLUTIONFILTERARBPROC) load(userptr, "glGetnConvolutionFilterARB"); glad_glGetnHistogramARB = (PFNGLGETNHISTOGRAMARBPROC) load(userptr, "glGetnHistogramARB"); glad_glGetnMapdvARB = (PFNGLGETNMAPDVARBPROC) load(userptr, "glGetnMapdvARB"); glad_glGetnMapfvARB = (PFNGLGETNMAPFVARBPROC) load(userptr, "glGetnMapfvARB"); glad_glGetnMapivARB = (PFNGLGETNMAPIVARBPROC) load(userptr, "glGetnMapivARB"); glad_glGetnMinmaxARB = (PFNGLGETNMINMAXARBPROC) load(userptr, "glGetnMinmaxARB"); glad_glGetnPixelMapfvARB = (PFNGLGETNPIXELMAPFVARBPROC) load(userptr, "glGetnPixelMapfvARB"); glad_glGetnPixelMapuivARB = (PFNGLGETNPIXELMAPUIVARBPROC) load(userptr, "glGetnPixelMapuivARB"); glad_glGetnPixelMapusvARB = (PFNGLGETNPIXELMAPUSVARBPROC) load(userptr, "glGetnPixelMapusvARB"); glad_glGetnPolygonStippleARB = (PFNGLGETNPOLYGONSTIPPLEARBPROC) load(userptr, "glGetnPolygonStippleARB"); glad_glGetnSeparableFilterARB = (PFNGLGETNSEPARABLEFILTERARBPROC) load(userptr, "glGetnSeparableFilterARB"); glad_glGetnTexImageARB = (PFNGLGETNTEXIMAGEARBPROC) load(userptr, "glGetnTexImageARB"); glad_glGetnUniformdvARB = (PFNGLGETNUNIFORMDVARBPROC) load(userptr, "glGetnUniformdvARB"); glad_glGetnUniformfvARB = (PFNGLGETNUNIFORMFVARBPROC) load(userptr, "glGetnUniformfvARB"); glad_glGetnUniformivARB = (PFNGLGETNUNIFORMIVARBPROC) load(userptr, "glGetnUniformivARB"); glad_glGetnUniformuivARB = (PFNGLGETNUNIFORMUIVARBPROC) load(userptr, "glGetnUniformuivARB"); glad_glReadnPixels = (PFNGLREADNPIXELSPROC) load(userptr, "glReadnPixels"); glad_glReadnPixelsARB = (PFNGLREADNPIXELSARBPROC) load(userptr, "glReadnPixelsARB"); } static void glad_gl_load_GL_ARB_sample_locations( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sample_locations) return; glad_glEvaluateDepthValuesARB = (PFNGLEVALUATEDEPTHVALUESARBPROC) load(userptr, "glEvaluateDepthValuesARB"); glad_glFramebufferSampleLocationsfvARB = (PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC) load(userptr, "glFramebufferSampleLocationsfvARB"); glad_glNamedFramebufferSampleLocationsfvARB = (PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC) load(userptr, "glNamedFramebufferSampleLocationsfvARB"); } static void glad_gl_load_GL_ARB_sample_shading( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sample_shading) return; glad_glMinSampleShading = (PFNGLMINSAMPLESHADINGPROC) load(userptr, "glMinSampleShading"); glad_glMinSampleShadingARB = (PFNGLMINSAMPLESHADINGARBPROC) load(userptr, "glMinSampleShadingARB"); } static void glad_gl_load_GL_ARB_sampler_objects( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sampler_objects) return; glad_glBindSampler = (PFNGLBINDSAMPLERPROC) load(userptr, "glBindSampler"); glad_glDeleteSamplers = (PFNGLDELETESAMPLERSPROC) load(userptr, "glDeleteSamplers"); glad_glGenSamplers = (PFNGLGENSAMPLERSPROC) load(userptr, "glGenSamplers"); glad_glGetSamplerParameterIiv = (PFNGLGETSAMPLERPARAMETERIIVPROC) load(userptr, "glGetSamplerParameterIiv"); glad_glGetSamplerParameterIuiv = (PFNGLGETSAMPLERPARAMETERIUIVPROC) load(userptr, "glGetSamplerParameterIuiv"); glad_glGetSamplerParameterfv = (PFNGLGETSAMPLERPARAMETERFVPROC) load(userptr, "glGetSamplerParameterfv"); glad_glGetSamplerParameteriv = (PFNGLGETSAMPLERPARAMETERIVPROC) load(userptr, "glGetSamplerParameteriv"); glad_glIsSampler = (PFNGLISSAMPLERPROC) load(userptr, "glIsSampler"); glad_glSamplerParameterIiv = (PFNGLSAMPLERPARAMETERIIVPROC) load(userptr, "glSamplerParameterIiv"); glad_glSamplerParameterIuiv = (PFNGLSAMPLERPARAMETERIUIVPROC) load(userptr, "glSamplerParameterIuiv"); glad_glSamplerParameterf = (PFNGLSAMPLERPARAMETERFPROC) load(userptr, "glSamplerParameterf"); glad_glSamplerParameterfv = (PFNGLSAMPLERPARAMETERFVPROC) load(userptr, "glSamplerParameterfv"); glad_glSamplerParameteri = (PFNGLSAMPLERPARAMETERIPROC) load(userptr, "glSamplerParameteri"); glad_glSamplerParameteriv = (PFNGLSAMPLERPARAMETERIVPROC) load(userptr, "glSamplerParameteriv"); } static void glad_gl_load_GL_ARB_separate_shader_objects( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_separate_shader_objects) return; glad_glActiveShaderProgram = (PFNGLACTIVESHADERPROGRAMPROC) load(userptr, "glActiveShaderProgram"); glad_glBindProgramPipeline = (PFNGLBINDPROGRAMPIPELINEPROC) load(userptr, "glBindProgramPipeline"); glad_glCreateShaderProgramv = (PFNGLCREATESHADERPROGRAMVPROC) load(userptr, "glCreateShaderProgramv"); glad_glDeleteProgramPipelines = (PFNGLDELETEPROGRAMPIPELINESPROC) load(userptr, "glDeleteProgramPipelines"); glad_glGenProgramPipelines = (PFNGLGENPROGRAMPIPELINESPROC) load(userptr, "glGenProgramPipelines"); glad_glGetProgramPipelineInfoLog = (PFNGLGETPROGRAMPIPELINEINFOLOGPROC) load(userptr, "glGetProgramPipelineInfoLog"); glad_glGetProgramPipelineiv = (PFNGLGETPROGRAMPIPELINEIVPROC) load(userptr, "glGetProgramPipelineiv"); glad_glIsProgramPipeline = (PFNGLISPROGRAMPIPELINEPROC) load(userptr, "glIsProgramPipeline"); glad_glProgramParameteri = (PFNGLPROGRAMPARAMETERIPROC) load(userptr, "glProgramParameteri"); glad_glProgramUniform1d = (PFNGLPROGRAMUNIFORM1DPROC) load(userptr, "glProgramUniform1d"); glad_glProgramUniform1dv = (PFNGLPROGRAMUNIFORM1DVPROC) load(userptr, "glProgramUniform1dv"); glad_glProgramUniform1f = (PFNGLPROGRAMUNIFORM1FPROC) load(userptr, "glProgramUniform1f"); glad_glProgramUniform1fv = (PFNGLPROGRAMUNIFORM1FVPROC) load(userptr, "glProgramUniform1fv"); glad_glProgramUniform1i = (PFNGLPROGRAMUNIFORM1IPROC) load(userptr, "glProgramUniform1i"); glad_glProgramUniform1iv = (PFNGLPROGRAMUNIFORM1IVPROC) load(userptr, "glProgramUniform1iv"); glad_glProgramUniform1ui = (PFNGLPROGRAMUNIFORM1UIPROC) load(userptr, "glProgramUniform1ui"); glad_glProgramUniform1uiv = (PFNGLPROGRAMUNIFORM1UIVPROC) load(userptr, "glProgramUniform1uiv"); glad_glProgramUniform2d = (PFNGLPROGRAMUNIFORM2DPROC) load(userptr, "glProgramUniform2d"); glad_glProgramUniform2dv = (PFNGLPROGRAMUNIFORM2DVPROC) load(userptr, "glProgramUniform2dv"); glad_glProgramUniform2f = (PFNGLPROGRAMUNIFORM2FPROC) load(userptr, "glProgramUniform2f"); glad_glProgramUniform2fv = (PFNGLPROGRAMUNIFORM2FVPROC) load(userptr, "glProgramUniform2fv"); glad_glProgramUniform2i = (PFNGLPROGRAMUNIFORM2IPROC) load(userptr, "glProgramUniform2i"); glad_glProgramUniform2iv = (PFNGLPROGRAMUNIFORM2IVPROC) load(userptr, "glProgramUniform2iv"); glad_glProgramUniform2ui = (PFNGLPROGRAMUNIFORM2UIPROC) load(userptr, "glProgramUniform2ui"); glad_glProgramUniform2uiv = (PFNGLPROGRAMUNIFORM2UIVPROC) load(userptr, "glProgramUniform2uiv"); glad_glProgramUniform3d = (PFNGLPROGRAMUNIFORM3DPROC) load(userptr, "glProgramUniform3d"); glad_glProgramUniform3dv = (PFNGLPROGRAMUNIFORM3DVPROC) load(userptr, "glProgramUniform3dv"); glad_glProgramUniform3f = (PFNGLPROGRAMUNIFORM3FPROC) load(userptr, "glProgramUniform3f"); glad_glProgramUniform3fv = (PFNGLPROGRAMUNIFORM3FVPROC) load(userptr, "glProgramUniform3fv"); glad_glProgramUniform3i = (PFNGLPROGRAMUNIFORM3IPROC) load(userptr, "glProgramUniform3i"); glad_glProgramUniform3iv = (PFNGLPROGRAMUNIFORM3IVPROC) load(userptr, "glProgramUniform3iv"); glad_glProgramUniform3ui = (PFNGLPROGRAMUNIFORM3UIPROC) load(userptr, "glProgramUniform3ui"); glad_glProgramUniform3uiv = (PFNGLPROGRAMUNIFORM3UIVPROC) load(userptr, "glProgramUniform3uiv"); glad_glProgramUniform4d = (PFNGLPROGRAMUNIFORM4DPROC) load(userptr, "glProgramUniform4d"); glad_glProgramUniform4dv = (PFNGLPROGRAMUNIFORM4DVPROC) load(userptr, "glProgramUniform4dv"); glad_glProgramUniform4f = (PFNGLPROGRAMUNIFORM4FPROC) load(userptr, "glProgramUniform4f"); glad_glProgramUniform4fv = (PFNGLPROGRAMUNIFORM4FVPROC) load(userptr, "glProgramUniform4fv"); glad_glProgramUniform4i = (PFNGLPROGRAMUNIFORM4IPROC) load(userptr, "glProgramUniform4i"); glad_glProgramUniform4iv = (PFNGLPROGRAMUNIFORM4IVPROC) load(userptr, "glProgramUniform4iv"); glad_glProgramUniform4ui = (PFNGLPROGRAMUNIFORM4UIPROC) load(userptr, "glProgramUniform4ui"); glad_glProgramUniform4uiv = (PFNGLPROGRAMUNIFORM4UIVPROC) load(userptr, "glProgramUniform4uiv"); glad_glProgramUniformMatrix2dv = (PFNGLPROGRAMUNIFORMMATRIX2DVPROC) load(userptr, "glProgramUniformMatrix2dv"); glad_glProgramUniformMatrix2fv = (PFNGLPROGRAMUNIFORMMATRIX2FVPROC) load(userptr, "glProgramUniformMatrix2fv"); glad_glProgramUniformMatrix2x3dv = (PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC) load(userptr, "glProgramUniformMatrix2x3dv"); glad_glProgramUniformMatrix2x3fv = (PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC) load(userptr, "glProgramUniformMatrix2x3fv"); glad_glProgramUniformMatrix2x4dv = (PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC) load(userptr, "glProgramUniformMatrix2x4dv"); glad_glProgramUniformMatrix2x4fv = (PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC) load(userptr, "glProgramUniformMatrix2x4fv"); glad_glProgramUniformMatrix3dv = (PFNGLPROGRAMUNIFORMMATRIX3DVPROC) load(userptr, "glProgramUniformMatrix3dv"); glad_glProgramUniformMatrix3fv = (PFNGLPROGRAMUNIFORMMATRIX3FVPROC) load(userptr, "glProgramUniformMatrix3fv"); glad_glProgramUniformMatrix3x2dv = (PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC) load(userptr, "glProgramUniformMatrix3x2dv"); glad_glProgramUniformMatrix3x2fv = (PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC) load(userptr, "glProgramUniformMatrix3x2fv"); glad_glProgramUniformMatrix3x4dv = (PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC) load(userptr, "glProgramUniformMatrix3x4dv"); glad_glProgramUniformMatrix3x4fv = (PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC) load(userptr, "glProgramUniformMatrix3x4fv"); glad_glProgramUniformMatrix4dv = (PFNGLPROGRAMUNIFORMMATRIX4DVPROC) load(userptr, "glProgramUniformMatrix4dv"); glad_glProgramUniformMatrix4fv = (PFNGLPROGRAMUNIFORMMATRIX4FVPROC) load(userptr, "glProgramUniformMatrix4fv"); glad_glProgramUniformMatrix4x2dv = (PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC) load(userptr, "glProgramUniformMatrix4x2dv"); glad_glProgramUniformMatrix4x2fv = (PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC) load(userptr, "glProgramUniformMatrix4x2fv"); glad_glProgramUniformMatrix4x3dv = (PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC) load(userptr, "glProgramUniformMatrix4x3dv"); glad_glProgramUniformMatrix4x3fv = (PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC) load(userptr, "glProgramUniformMatrix4x3fv"); glad_glUseProgramStages = (PFNGLUSEPROGRAMSTAGESPROC) load(userptr, "glUseProgramStages"); glad_glValidateProgramPipeline = (PFNGLVALIDATEPROGRAMPIPELINEPROC) load(userptr, "glValidateProgramPipeline"); } static void glad_gl_load_GL_ARB_shader_atomic_counters( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_atomic_counters) return; glad_glGetActiveAtomicCounterBufferiv = (PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC) load(userptr, "glGetActiveAtomicCounterBufferiv"); } static void glad_gl_load_GL_ARB_shader_image_load_store( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_image_load_store) return; glad_glBindImageTexture = (PFNGLBINDIMAGETEXTUREPROC) load(userptr, "glBindImageTexture"); glad_glMemoryBarrier = (PFNGLMEMORYBARRIERPROC) load(userptr, "glMemoryBarrier"); } static void glad_gl_load_GL_ARB_shader_objects( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_objects) return; glad_glAttachObjectARB = (PFNGLATTACHOBJECTARBPROC) load(userptr, "glAttachObjectARB"); glad_glAttachShader = (PFNGLATTACHSHADERPROC) load(userptr, "glAttachShader"); glad_glCompileShader = (PFNGLCOMPILESHADERPROC) load(userptr, "glCompileShader"); glad_glCompileShaderARB = (PFNGLCOMPILESHADERARBPROC) load(userptr, "glCompileShaderARB"); glad_glCreateProgram = (PFNGLCREATEPROGRAMPROC) load(userptr, "glCreateProgram"); glad_glCreateProgramObjectARB = (PFNGLCREATEPROGRAMOBJECTARBPROC) load(userptr, "glCreateProgramObjectARB"); glad_glCreateShader = (PFNGLCREATESHADERPROC) load(userptr, "glCreateShader"); glad_glCreateShaderObjectARB = (PFNGLCREATESHADEROBJECTARBPROC) load(userptr, "glCreateShaderObjectARB"); glad_glDeleteObjectARB = (PFNGLDELETEOBJECTARBPROC) load(userptr, "glDeleteObjectARB"); glad_glDetachObjectARB = (PFNGLDETACHOBJECTARBPROC) load(userptr, "glDetachObjectARB"); glad_glDetachShader = (PFNGLDETACHSHADERPROC) load(userptr, "glDetachShader"); glad_glGetActiveUniform = (PFNGLGETACTIVEUNIFORMPROC) load(userptr, "glGetActiveUniform"); glad_glGetActiveUniformARB = (PFNGLGETACTIVEUNIFORMARBPROC) load(userptr, "glGetActiveUniformARB"); glad_glGetAttachedObjectsARB = (PFNGLGETATTACHEDOBJECTSARBPROC) load(userptr, "glGetAttachedObjectsARB"); glad_glGetHandleARB = (PFNGLGETHANDLEARBPROC) load(userptr, "glGetHandleARB"); glad_glGetInfoLogARB = (PFNGLGETINFOLOGARBPROC) load(userptr, "glGetInfoLogARB"); glad_glGetObjectParameterfvARB = (PFNGLGETOBJECTPARAMETERFVARBPROC) load(userptr, "glGetObjectParameterfvARB"); glad_glGetObjectParameterivARB = (PFNGLGETOBJECTPARAMETERIVARBPROC) load(userptr, "glGetObjectParameterivARB"); glad_glGetShaderSource = (PFNGLGETSHADERSOURCEPROC) load(userptr, "glGetShaderSource"); glad_glGetShaderSourceARB = (PFNGLGETSHADERSOURCEARBPROC) load(userptr, "glGetShaderSourceARB"); glad_glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC) load(userptr, "glGetUniformLocation"); glad_glGetUniformLocationARB = (PFNGLGETUNIFORMLOCATIONARBPROC) load(userptr, "glGetUniformLocationARB"); glad_glGetUniformfv = (PFNGLGETUNIFORMFVPROC) load(userptr, "glGetUniformfv"); glad_glGetUniformfvARB = (PFNGLGETUNIFORMFVARBPROC) load(userptr, "glGetUniformfvARB"); glad_glGetUniformiv = (PFNGLGETUNIFORMIVPROC) load(userptr, "glGetUniformiv"); glad_glGetUniformivARB = (PFNGLGETUNIFORMIVARBPROC) load(userptr, "glGetUniformivARB"); glad_glLinkProgram = (PFNGLLINKPROGRAMPROC) load(userptr, "glLinkProgram"); glad_glLinkProgramARB = (PFNGLLINKPROGRAMARBPROC) load(userptr, "glLinkProgramARB"); glad_glShaderSource = (PFNGLSHADERSOURCEPROC) load(userptr, "glShaderSource"); glad_glShaderSourceARB = (PFNGLSHADERSOURCEARBPROC) load(userptr, "glShaderSourceARB"); glad_glUniform1f = (PFNGLUNIFORM1FPROC) load(userptr, "glUniform1f"); glad_glUniform1fARB = (PFNGLUNIFORM1FARBPROC) load(userptr, "glUniform1fARB"); glad_glUniform1fv = (PFNGLUNIFORM1FVPROC) load(userptr, "glUniform1fv"); glad_glUniform1fvARB = (PFNGLUNIFORM1FVARBPROC) load(userptr, "glUniform1fvARB"); glad_glUniform1i = (PFNGLUNIFORM1IPROC) load(userptr, "glUniform1i"); glad_glUniform1iARB = (PFNGLUNIFORM1IARBPROC) load(userptr, "glUniform1iARB"); glad_glUniform1iv = (PFNGLUNIFORM1IVPROC) load(userptr, "glUniform1iv"); glad_glUniform1ivARB = (PFNGLUNIFORM1IVARBPROC) load(userptr, "glUniform1ivARB"); glad_glUniform2f = (PFNGLUNIFORM2FPROC) load(userptr, "glUniform2f"); glad_glUniform2fARB = (PFNGLUNIFORM2FARBPROC) load(userptr, "glUniform2fARB"); glad_glUniform2fv = (PFNGLUNIFORM2FVPROC) load(userptr, "glUniform2fv"); glad_glUniform2fvARB = (PFNGLUNIFORM2FVARBPROC) load(userptr, "glUniform2fvARB"); glad_glUniform2i = (PFNGLUNIFORM2IPROC) load(userptr, "glUniform2i"); glad_glUniform2iARB = (PFNGLUNIFORM2IARBPROC) load(userptr, "glUniform2iARB"); glad_glUniform2iv = (PFNGLUNIFORM2IVPROC) load(userptr, "glUniform2iv"); glad_glUniform2ivARB = (PFNGLUNIFORM2IVARBPROC) load(userptr, "glUniform2ivARB"); glad_glUniform3f = (PFNGLUNIFORM3FPROC) load(userptr, "glUniform3f"); glad_glUniform3fARB = (PFNGLUNIFORM3FARBPROC) load(userptr, "glUniform3fARB"); glad_glUniform3fv = (PFNGLUNIFORM3FVPROC) load(userptr, "glUniform3fv"); glad_glUniform3fvARB = (PFNGLUNIFORM3FVARBPROC) load(userptr, "glUniform3fvARB"); glad_glUniform3i = (PFNGLUNIFORM3IPROC) load(userptr, "glUniform3i"); glad_glUniform3iARB = (PFNGLUNIFORM3IARBPROC) load(userptr, "glUniform3iARB"); glad_glUniform3iv = (PFNGLUNIFORM3IVPROC) load(userptr, "glUniform3iv"); glad_glUniform3ivARB = (PFNGLUNIFORM3IVARBPROC) load(userptr, "glUniform3ivARB"); glad_glUniform4f = (PFNGLUNIFORM4FPROC) load(userptr, "glUniform4f"); glad_glUniform4fARB = (PFNGLUNIFORM4FARBPROC) load(userptr, "glUniform4fARB"); glad_glUniform4fv = (PFNGLUNIFORM4FVPROC) load(userptr, "glUniform4fv"); glad_glUniform4fvARB = (PFNGLUNIFORM4FVARBPROC) load(userptr, "glUniform4fvARB"); glad_glUniform4i = (PFNGLUNIFORM4IPROC) load(userptr, "glUniform4i"); glad_glUniform4iARB = (PFNGLUNIFORM4IARBPROC) load(userptr, "glUniform4iARB"); glad_glUniform4iv = (PFNGLUNIFORM4IVPROC) load(userptr, "glUniform4iv"); glad_glUniform4ivARB = (PFNGLUNIFORM4IVARBPROC) load(userptr, "glUniform4ivARB"); glad_glUniformMatrix2fv = (PFNGLUNIFORMMATRIX2FVPROC) load(userptr, "glUniformMatrix2fv"); glad_glUniformMatrix2fvARB = (PFNGLUNIFORMMATRIX2FVARBPROC) load(userptr, "glUniformMatrix2fvARB"); glad_glUniformMatrix3fv = (PFNGLUNIFORMMATRIX3FVPROC) load(userptr, "glUniformMatrix3fv"); glad_glUniformMatrix3fvARB = (PFNGLUNIFORMMATRIX3FVARBPROC) load(userptr, "glUniformMatrix3fvARB"); glad_glUniformMatrix4fv = (PFNGLUNIFORMMATRIX4FVPROC) load(userptr, "glUniformMatrix4fv"); glad_glUniformMatrix4fvARB = (PFNGLUNIFORMMATRIX4FVARBPROC) load(userptr, "glUniformMatrix4fvARB"); glad_glUseProgram = (PFNGLUSEPROGRAMPROC) load(userptr, "glUseProgram"); glad_glUseProgramObjectARB = (PFNGLUSEPROGRAMOBJECTARBPROC) load(userptr, "glUseProgramObjectARB"); glad_glValidateProgram = (PFNGLVALIDATEPROGRAMPROC) load(userptr, "glValidateProgram"); glad_glValidateProgramARB = (PFNGLVALIDATEPROGRAMARBPROC) load(userptr, "glValidateProgramARB"); } static void glad_gl_load_GL_ARB_shader_storage_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_storage_buffer_object) return; glad_glShaderStorageBlockBinding = (PFNGLSHADERSTORAGEBLOCKBINDINGPROC) load(userptr, "glShaderStorageBlockBinding"); } static void glad_gl_load_GL_ARB_shader_subroutine( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_subroutine) return; glad_glGetActiveSubroutineName = (PFNGLGETACTIVESUBROUTINENAMEPROC) load(userptr, "glGetActiveSubroutineName"); glad_glGetActiveSubroutineUniformName = (PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC) load(userptr, "glGetActiveSubroutineUniformName"); glad_glGetActiveSubroutineUniformiv = (PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC) load(userptr, "glGetActiveSubroutineUniformiv"); glad_glGetProgramStageiv = (PFNGLGETPROGRAMSTAGEIVPROC) load(userptr, "glGetProgramStageiv"); glad_glGetSubroutineIndex = (PFNGLGETSUBROUTINEINDEXPROC) load(userptr, "glGetSubroutineIndex"); glad_glGetSubroutineUniformLocation = (PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC) load(userptr, "glGetSubroutineUniformLocation"); glad_glGetUniformSubroutineuiv = (PFNGLGETUNIFORMSUBROUTINEUIVPROC) load(userptr, "glGetUniformSubroutineuiv"); glad_glUniformSubroutinesuiv = (PFNGLUNIFORMSUBROUTINESUIVPROC) load(userptr, "glUniformSubroutinesuiv"); } static void glad_gl_load_GL_ARB_shading_language_include( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shading_language_include) return; glad_glCompileShaderIncludeARB = (PFNGLCOMPILESHADERINCLUDEARBPROC) load(userptr, "glCompileShaderIncludeARB"); glad_glDeleteNamedStringARB = (PFNGLDELETENAMEDSTRINGARBPROC) load(userptr, "glDeleteNamedStringARB"); glad_glGetNamedStringARB = (PFNGLGETNAMEDSTRINGARBPROC) load(userptr, "glGetNamedStringARB"); glad_glGetNamedStringivARB = (PFNGLGETNAMEDSTRINGIVARBPROC) load(userptr, "glGetNamedStringivARB"); glad_glIsNamedStringARB = (PFNGLISNAMEDSTRINGARBPROC) load(userptr, "glIsNamedStringARB"); glad_glNamedStringARB = (PFNGLNAMEDSTRINGARBPROC) load(userptr, "glNamedStringARB"); } static void glad_gl_load_GL_ARB_sparse_buffer( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sparse_buffer) return; glad_glBufferPageCommitmentARB = (PFNGLBUFFERPAGECOMMITMENTARBPROC) load(userptr, "glBufferPageCommitmentARB"); glad_glNamedBufferPageCommitmentARB = (PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC) load(userptr, "glNamedBufferPageCommitmentARB"); glad_glNamedBufferPageCommitmentEXT = (PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC) load(userptr, "glNamedBufferPageCommitmentEXT"); } static void glad_gl_load_GL_ARB_sparse_texture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sparse_texture) return; glad_glTexPageCommitmentARB = (PFNGLTEXPAGECOMMITMENTARBPROC) load(userptr, "glTexPageCommitmentARB"); } static void glad_gl_load_GL_ARB_sync( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sync) return; glad_glClientWaitSync = (PFNGLCLIENTWAITSYNCPROC) load(userptr, "glClientWaitSync"); glad_glDeleteSync = (PFNGLDELETESYNCPROC) load(userptr, "glDeleteSync"); glad_glFenceSync = (PFNGLFENCESYNCPROC) load(userptr, "glFenceSync"); glad_glGetInteger64v = (PFNGLGETINTEGER64VPROC) load(userptr, "glGetInteger64v"); glad_glGetSynciv = (PFNGLGETSYNCIVPROC) load(userptr, "glGetSynciv"); glad_glIsSync = (PFNGLISSYNCPROC) load(userptr, "glIsSync"); glad_glWaitSync = (PFNGLWAITSYNCPROC) load(userptr, "glWaitSync"); } static void glad_gl_load_GL_ARB_tessellation_shader( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_tessellation_shader) return; glad_glPatchParameterfv = (PFNGLPATCHPARAMETERFVPROC) load(userptr, "glPatchParameterfv"); glad_glPatchParameteri = (PFNGLPATCHPARAMETERIPROC) load(userptr, "glPatchParameteri"); } static void glad_gl_load_GL_ARB_texture_barrier( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_barrier) return; glad_glTextureBarrier = (PFNGLTEXTUREBARRIERPROC) load(userptr, "glTextureBarrier"); } static void glad_gl_load_GL_ARB_texture_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_buffer_object) return; glad_glTexBuffer = (PFNGLTEXBUFFERPROC) load(userptr, "glTexBuffer"); glad_glTexBufferARB = (PFNGLTEXBUFFERARBPROC) load(userptr, "glTexBufferARB"); } static void glad_gl_load_GL_ARB_texture_buffer_range( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_buffer_range) return; glad_glTexBufferRange = (PFNGLTEXBUFFERRANGEPROC) load(userptr, "glTexBufferRange"); } static void glad_gl_load_GL_ARB_texture_compression( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_compression) return; glad_glCompressedTexImage1D = (PFNGLCOMPRESSEDTEXIMAGE1DPROC) load(userptr, "glCompressedTexImage1D"); glad_glCompressedTexImage1DARB = (PFNGLCOMPRESSEDTEXIMAGE1DARBPROC) load(userptr, "glCompressedTexImage1DARB"); glad_glCompressedTexImage2D = (PFNGLCOMPRESSEDTEXIMAGE2DPROC) load(userptr, "glCompressedTexImage2D"); glad_glCompressedTexImage2DARB = (PFNGLCOMPRESSEDTEXIMAGE2DARBPROC) load(userptr, "glCompressedTexImage2DARB"); glad_glCompressedTexImage3D = (PFNGLCOMPRESSEDTEXIMAGE3DPROC) load(userptr, "glCompressedTexImage3D"); glad_glCompressedTexImage3DARB = (PFNGLCOMPRESSEDTEXIMAGE3DARBPROC) load(userptr, "glCompressedTexImage3DARB"); glad_glCompressedTexSubImage1D = (PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC) load(userptr, "glCompressedTexSubImage1D"); glad_glCompressedTexSubImage1DARB = (PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC) load(userptr, "glCompressedTexSubImage1DARB"); glad_glCompressedTexSubImage2D = (PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC) load(userptr, "glCompressedTexSubImage2D"); glad_glCompressedTexSubImage2DARB = (PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC) load(userptr, "glCompressedTexSubImage2DARB"); glad_glCompressedTexSubImage3D = (PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC) load(userptr, "glCompressedTexSubImage3D"); glad_glCompressedTexSubImage3DARB = (PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC) load(userptr, "glCompressedTexSubImage3DARB"); glad_glGetCompressedTexImage = (PFNGLGETCOMPRESSEDTEXIMAGEPROC) load(userptr, "glGetCompressedTexImage"); glad_glGetCompressedTexImageARB = (PFNGLGETCOMPRESSEDTEXIMAGEARBPROC) load(userptr, "glGetCompressedTexImageARB"); } static void glad_gl_load_GL_ARB_texture_multisample( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_multisample) return; glad_glGetMultisamplefv = (PFNGLGETMULTISAMPLEFVPROC) load(userptr, "glGetMultisamplefv"); glad_glSampleMaski = (PFNGLSAMPLEMASKIPROC) load(userptr, "glSampleMaski"); glad_glTexImage2DMultisample = (PFNGLTEXIMAGE2DMULTISAMPLEPROC) load(userptr, "glTexImage2DMultisample"); glad_glTexImage3DMultisample = (PFNGLTEXIMAGE3DMULTISAMPLEPROC) load(userptr, "glTexImage3DMultisample"); } static void glad_gl_load_GL_ARB_texture_storage( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_storage) return; glad_glTexStorage1D = (PFNGLTEXSTORAGE1DPROC) load(userptr, "glTexStorage1D"); glad_glTexStorage2D = (PFNGLTEXSTORAGE2DPROC) load(userptr, "glTexStorage2D"); glad_glTexStorage3D = (PFNGLTEXSTORAGE3DPROC) load(userptr, "glTexStorage3D"); } static void glad_gl_load_GL_ARB_texture_storage_multisample( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_storage_multisample) return; glad_glTexStorage2DMultisample = (PFNGLTEXSTORAGE2DMULTISAMPLEPROC) load(userptr, "glTexStorage2DMultisample"); glad_glTexStorage3DMultisample = (PFNGLTEXSTORAGE3DMULTISAMPLEPROC) load(userptr, "glTexStorage3DMultisample"); } static void glad_gl_load_GL_ARB_texture_view( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_view) return; glad_glTextureView = (PFNGLTEXTUREVIEWPROC) load(userptr, "glTextureView"); } static void glad_gl_load_GL_ARB_timer_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_timer_query) return; glad_glGetQueryObjecti64v = (PFNGLGETQUERYOBJECTI64VPROC) load(userptr, "glGetQueryObjecti64v"); glad_glGetQueryObjectui64v = (PFNGLGETQUERYOBJECTUI64VPROC) load(userptr, "glGetQueryObjectui64v"); glad_glQueryCounter = (PFNGLQUERYCOUNTERPROC) load(userptr, "glQueryCounter"); } static void glad_gl_load_GL_ARB_transform_feedback2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transform_feedback2) return; glad_glBindTransformFeedback = (PFNGLBINDTRANSFORMFEEDBACKPROC) load(userptr, "glBindTransformFeedback"); glad_glDeleteTransformFeedbacks = (PFNGLDELETETRANSFORMFEEDBACKSPROC) load(userptr, "glDeleteTransformFeedbacks"); glad_glDrawTransformFeedback = (PFNGLDRAWTRANSFORMFEEDBACKPROC) load(userptr, "glDrawTransformFeedback"); glad_glGenTransformFeedbacks = (PFNGLGENTRANSFORMFEEDBACKSPROC) load(userptr, "glGenTransformFeedbacks"); glad_glIsTransformFeedback = (PFNGLISTRANSFORMFEEDBACKPROC) load(userptr, "glIsTransformFeedback"); glad_glPauseTransformFeedback = (PFNGLPAUSETRANSFORMFEEDBACKPROC) load(userptr, "glPauseTransformFeedback"); glad_glResumeTransformFeedback = (PFNGLRESUMETRANSFORMFEEDBACKPROC) load(userptr, "glResumeTransformFeedback"); } static void glad_gl_load_GL_ARB_transform_feedback3( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transform_feedback3) return; glad_glBeginQueryIndexed = (PFNGLBEGINQUERYINDEXEDPROC) load(userptr, "glBeginQueryIndexed"); glad_glDrawTransformFeedbackStream = (PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC) load(userptr, "glDrawTransformFeedbackStream"); glad_glEndQueryIndexed = (PFNGLENDQUERYINDEXEDPROC) load(userptr, "glEndQueryIndexed"); glad_glGetQueryIndexediv = (PFNGLGETQUERYINDEXEDIVPROC) load(userptr, "glGetQueryIndexediv"); } static void glad_gl_load_GL_ARB_transform_feedback_instanced( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transform_feedback_instanced) return; glad_glDrawTransformFeedbackInstanced = (PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC) load(userptr, "glDrawTransformFeedbackInstanced"); glad_glDrawTransformFeedbackStreamInstanced = (PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC) load(userptr, "glDrawTransformFeedbackStreamInstanced"); } static void glad_gl_load_GL_ARB_transpose_matrix( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transpose_matrix) return; glad_glLoadTransposeMatrixd = (PFNGLLOADTRANSPOSEMATRIXDPROC) load(userptr, "glLoadTransposeMatrixd"); glad_glLoadTransposeMatrixdARB = (PFNGLLOADTRANSPOSEMATRIXDARBPROC) load(userptr, "glLoadTransposeMatrixdARB"); glad_glLoadTransposeMatrixf = (PFNGLLOADTRANSPOSEMATRIXFPROC) load(userptr, "glLoadTransposeMatrixf"); glad_glLoadTransposeMatrixfARB = (PFNGLLOADTRANSPOSEMATRIXFARBPROC) load(userptr, "glLoadTransposeMatrixfARB"); glad_glMultTransposeMatrixd = (PFNGLMULTTRANSPOSEMATRIXDPROC) load(userptr, "glMultTransposeMatrixd"); glad_glMultTransposeMatrixdARB = (PFNGLMULTTRANSPOSEMATRIXDARBPROC) load(userptr, "glMultTransposeMatrixdARB"); glad_glMultTransposeMatrixf = (PFNGLMULTTRANSPOSEMATRIXFPROC) load(userptr, "glMultTransposeMatrixf"); glad_glMultTransposeMatrixfARB = (PFNGLMULTTRANSPOSEMATRIXFARBPROC) load(userptr, "glMultTransposeMatrixfARB"); } static void glad_gl_load_GL_ARB_uniform_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_uniform_buffer_object) return; glad_glBindBufferBase = (PFNGLBINDBUFFERBASEPROC) load(userptr, "glBindBufferBase"); glad_glBindBufferRange = (PFNGLBINDBUFFERRANGEPROC) load(userptr, "glBindBufferRange"); glad_glGetActiveUniformBlockName = (PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC) load(userptr, "glGetActiveUniformBlockName"); glad_glGetActiveUniformBlockiv = (PFNGLGETACTIVEUNIFORMBLOCKIVPROC) load(userptr, "glGetActiveUniformBlockiv"); glad_glGetActiveUniformName = (PFNGLGETACTIVEUNIFORMNAMEPROC) load(userptr, "glGetActiveUniformName"); glad_glGetActiveUniformsiv = (PFNGLGETACTIVEUNIFORMSIVPROC) load(userptr, "glGetActiveUniformsiv"); glad_glGetIntegeri_v = (PFNGLGETINTEGERI_VPROC) load(userptr, "glGetIntegeri_v"); glad_glGetUniformBlockIndex = (PFNGLGETUNIFORMBLOCKINDEXPROC) load(userptr, "glGetUniformBlockIndex"); glad_glGetUniformIndices = (PFNGLGETUNIFORMINDICESPROC) load(userptr, "glGetUniformIndices"); glad_glUniformBlockBinding = (PFNGLUNIFORMBLOCKBINDINGPROC) load(userptr, "glUniformBlockBinding"); } static void glad_gl_load_GL_ARB_vertex_array_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_array_object) return; glad_glBindVertexArray = (PFNGLBINDVERTEXARRAYPROC) load(userptr, "glBindVertexArray"); glad_glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSPROC) load(userptr, "glDeleteVertexArrays"); glad_glGenVertexArrays = (PFNGLGENVERTEXARRAYSPROC) load(userptr, "glGenVertexArrays"); glad_glIsVertexArray = (PFNGLISVERTEXARRAYPROC) load(userptr, "glIsVertexArray"); } static void glad_gl_load_GL_ARB_vertex_attrib_64bit( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_attrib_64bit) return; glad_glGetVertexAttribLdv = (PFNGLGETVERTEXATTRIBLDVPROC) load(userptr, "glGetVertexAttribLdv"); glad_glVertexAttribL1d = (PFNGLVERTEXATTRIBL1DPROC) load(userptr, "glVertexAttribL1d"); glad_glVertexAttribL1dv = (PFNGLVERTEXATTRIBL1DVPROC) load(userptr, "glVertexAttribL1dv"); glad_glVertexAttribL2d = (PFNGLVERTEXATTRIBL2DPROC) load(userptr, "glVertexAttribL2d"); glad_glVertexAttribL2dv = (PFNGLVERTEXATTRIBL2DVPROC) load(userptr, "glVertexAttribL2dv"); glad_glVertexAttribL3d = (PFNGLVERTEXATTRIBL3DPROC) load(userptr, "glVertexAttribL3d"); glad_glVertexAttribL3dv = (PFNGLVERTEXATTRIBL3DVPROC) load(userptr, "glVertexAttribL3dv"); glad_glVertexAttribL4d = (PFNGLVERTEXATTRIBL4DPROC) load(userptr, "glVertexAttribL4d"); glad_glVertexAttribL4dv = (PFNGLVERTEXATTRIBL4DVPROC) load(userptr, "glVertexAttribL4dv"); glad_glVertexAttribLPointer = (PFNGLVERTEXATTRIBLPOINTERPROC) load(userptr, "glVertexAttribLPointer"); } static void glad_gl_load_GL_ARB_vertex_attrib_binding( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_attrib_binding) return; glad_glBindVertexBuffer = (PFNGLBINDVERTEXBUFFERPROC) load(userptr, "glBindVertexBuffer"); glad_glVertexAttribBinding = (PFNGLVERTEXATTRIBBINDINGPROC) load(userptr, "glVertexAttribBinding"); glad_glVertexAttribFormat = (PFNGLVERTEXATTRIBFORMATPROC) load(userptr, "glVertexAttribFormat"); glad_glVertexAttribIFormat = (PFNGLVERTEXATTRIBIFORMATPROC) load(userptr, "glVertexAttribIFormat"); glad_glVertexAttribLFormat = (PFNGLVERTEXATTRIBLFORMATPROC) load(userptr, "glVertexAttribLFormat"); glad_glVertexBindingDivisor = (PFNGLVERTEXBINDINGDIVISORPROC) load(userptr, "glVertexBindingDivisor"); } static void glad_gl_load_GL_ARB_vertex_blend( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_blend) return; glad_glVertexBlendARB = (PFNGLVERTEXBLENDARBPROC) load(userptr, "glVertexBlendARB"); glad_glWeightPointerARB = (PFNGLWEIGHTPOINTERARBPROC) load(userptr, "glWeightPointerARB"); glad_glWeightbvARB = (PFNGLWEIGHTBVARBPROC) load(userptr, "glWeightbvARB"); glad_glWeightdvARB = (PFNGLWEIGHTDVARBPROC) load(userptr, "glWeightdvARB"); glad_glWeightfvARB = (PFNGLWEIGHTFVARBPROC) load(userptr, "glWeightfvARB"); glad_glWeightivARB = (PFNGLWEIGHTIVARBPROC) load(userptr, "glWeightivARB"); glad_glWeightsvARB = (PFNGLWEIGHTSVARBPROC) load(userptr, "glWeightsvARB"); glad_glWeightubvARB = (PFNGLWEIGHTUBVARBPROC) load(userptr, "glWeightubvARB"); glad_glWeightuivARB = (PFNGLWEIGHTUIVARBPROC) load(userptr, "glWeightuivARB"); glad_glWeightusvARB = (PFNGLWEIGHTUSVARBPROC) load(userptr, "glWeightusvARB"); } static void glad_gl_load_GL_ARB_vertex_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_buffer_object) return; glad_glBindBuffer = (PFNGLBINDBUFFERPROC) load(userptr, "glBindBuffer"); glad_glBindBufferARB = (PFNGLBINDBUFFERARBPROC) load(userptr, "glBindBufferARB"); glad_glBufferData = (PFNGLBUFFERDATAPROC) load(userptr, "glBufferData"); glad_glBufferDataARB = (PFNGLBUFFERDATAARBPROC) load(userptr, "glBufferDataARB"); glad_glBufferSubData = (PFNGLBUFFERSUBDATAPROC) load(userptr, "glBufferSubData"); glad_glBufferSubDataARB = (PFNGLBUFFERSUBDATAARBPROC) load(userptr, "glBufferSubDataARB"); glad_glDeleteBuffers = (PFNGLDELETEBUFFERSPROC) load(userptr, "glDeleteBuffers"); glad_glDeleteBuffersARB = (PFNGLDELETEBUFFERSARBPROC) load(userptr, "glDeleteBuffersARB"); glad_glGenBuffers = (PFNGLGENBUFFERSPROC) load(userptr, "glGenBuffers"); glad_glGenBuffersARB = (PFNGLGENBUFFERSARBPROC) load(userptr, "glGenBuffersARB"); glad_glGetBufferParameteriv = (PFNGLGETBUFFERPARAMETERIVPROC) load(userptr, "glGetBufferParameteriv"); glad_glGetBufferParameterivARB = (PFNGLGETBUFFERPARAMETERIVARBPROC) load(userptr, "glGetBufferParameterivARB"); glad_glGetBufferPointerv = (PFNGLGETBUFFERPOINTERVPROC) load(userptr, "glGetBufferPointerv"); glad_glGetBufferPointervARB = (PFNGLGETBUFFERPOINTERVARBPROC) load(userptr, "glGetBufferPointervARB"); glad_glGetBufferSubData = (PFNGLGETBUFFERSUBDATAPROC) load(userptr, "glGetBufferSubData"); glad_glGetBufferSubDataARB = (PFNGLGETBUFFERSUBDATAARBPROC) load(userptr, "glGetBufferSubDataARB"); glad_glIsBuffer = (PFNGLISBUFFERPROC) load(userptr, "glIsBuffer"); glad_glIsBufferARB = (PFNGLISBUFFERARBPROC) load(userptr, "glIsBufferARB"); glad_glMapBuffer = (PFNGLMAPBUFFERPROC) load(userptr, "glMapBuffer"); glad_glMapBufferARB = (PFNGLMAPBUFFERARBPROC) load(userptr, "glMapBufferARB"); glad_glUnmapBuffer = (PFNGLUNMAPBUFFERPROC) load(userptr, "glUnmapBuffer"); glad_glUnmapBufferARB = (PFNGLUNMAPBUFFERARBPROC) load(userptr, "glUnmapBufferARB"); } static void glad_gl_load_GL_ARB_vertex_program( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_program) return; glad_glBindProgramARB = (PFNGLBINDPROGRAMARBPROC) load(userptr, "glBindProgramARB"); glad_glDeleteProgramsARB = (PFNGLDELETEPROGRAMSARBPROC) load(userptr, "glDeleteProgramsARB"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC) load(userptr, "glDisableVertexAttribArray"); glad_glDisableVertexAttribArrayARB = (PFNGLDISABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glDisableVertexAttribArrayARB"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC) load(userptr, "glEnableVertexAttribArray"); glad_glEnableVertexAttribArrayARB = (PFNGLENABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glEnableVertexAttribArrayARB"); glad_glGenProgramsARB = (PFNGLGENPROGRAMSARBPROC) load(userptr, "glGenProgramsARB"); glad_glGetProgramEnvParameterdvARB = (PFNGLGETPROGRAMENVPARAMETERDVARBPROC) load(userptr, "glGetProgramEnvParameterdvARB"); glad_glGetProgramEnvParameterfvARB = (PFNGLGETPROGRAMENVPARAMETERFVARBPROC) load(userptr, "glGetProgramEnvParameterfvARB"); glad_glGetProgramLocalParameterdvARB = (PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC) load(userptr, "glGetProgramLocalParameterdvARB"); glad_glGetProgramLocalParameterfvARB = (PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC) load(userptr, "glGetProgramLocalParameterfvARB"); glad_glGetProgramStringARB = (PFNGLGETPROGRAMSTRINGARBPROC) load(userptr, "glGetProgramStringARB"); glad_glGetProgramivARB = (PFNGLGETPROGRAMIVARBPROC) load(userptr, "glGetProgramivARB"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC) load(userptr, "glGetVertexAttribPointerv"); glad_glGetVertexAttribPointervARB = (PFNGLGETVERTEXATTRIBPOINTERVARBPROC) load(userptr, "glGetVertexAttribPointervARB"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC) load(userptr, "glGetVertexAttribdv"); glad_glGetVertexAttribdvARB = (PFNGLGETVERTEXATTRIBDVARBPROC) load(userptr, "glGetVertexAttribdvARB"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC) load(userptr, "glGetVertexAttribfv"); glad_glGetVertexAttribfvARB = (PFNGLGETVERTEXATTRIBFVARBPROC) load(userptr, "glGetVertexAttribfvARB"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC) load(userptr, "glGetVertexAttribiv"); glad_glGetVertexAttribivARB = (PFNGLGETVERTEXATTRIBIVARBPROC) load(userptr, "glGetVertexAttribivARB"); glad_glIsProgramARB = (PFNGLISPROGRAMARBPROC) load(userptr, "glIsProgramARB"); glad_glProgramEnvParameter4dARB = (PFNGLPROGRAMENVPARAMETER4DARBPROC) load(userptr, "glProgramEnvParameter4dARB"); glad_glProgramEnvParameter4dvARB = (PFNGLPROGRAMENVPARAMETER4DVARBPROC) load(userptr, "glProgramEnvParameter4dvARB"); glad_glProgramEnvParameter4fARB = (PFNGLPROGRAMENVPARAMETER4FARBPROC) load(userptr, "glProgramEnvParameter4fARB"); glad_glProgramEnvParameter4fvARB = (PFNGLPROGRAMENVPARAMETER4FVARBPROC) load(userptr, "glProgramEnvParameter4fvARB"); glad_glProgramLocalParameter4dARB = (PFNGLPROGRAMLOCALPARAMETER4DARBPROC) load(userptr, "glProgramLocalParameter4dARB"); glad_glProgramLocalParameter4dvARB = (PFNGLPROGRAMLOCALPARAMETER4DVARBPROC) load(userptr, "glProgramLocalParameter4dvARB"); glad_glProgramLocalParameter4fARB = (PFNGLPROGRAMLOCALPARAMETER4FARBPROC) load(userptr, "glProgramLocalParameter4fARB"); glad_glProgramLocalParameter4fvARB = (PFNGLPROGRAMLOCALPARAMETER4FVARBPROC) load(userptr, "glProgramLocalParameter4fvARB"); glad_glProgramStringARB = (PFNGLPROGRAMSTRINGARBPROC) load(userptr, "glProgramStringARB"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC) load(userptr, "glVertexAttrib1d"); glad_glVertexAttrib1dARB = (PFNGLVERTEXATTRIB1DARBPROC) load(userptr, "glVertexAttrib1dARB"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC) load(userptr, "glVertexAttrib1dv"); glad_glVertexAttrib1dvARB = (PFNGLVERTEXATTRIB1DVARBPROC) load(userptr, "glVertexAttrib1dvARB"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC) load(userptr, "glVertexAttrib1f"); glad_glVertexAttrib1fARB = (PFNGLVERTEXATTRIB1FARBPROC) load(userptr, "glVertexAttrib1fARB"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC) load(userptr, "glVertexAttrib1fv"); glad_glVertexAttrib1fvARB = (PFNGLVERTEXATTRIB1FVARBPROC) load(userptr, "glVertexAttrib1fvARB"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC) load(userptr, "glVertexAttrib1s"); glad_glVertexAttrib1sARB = (PFNGLVERTEXATTRIB1SARBPROC) load(userptr, "glVertexAttrib1sARB"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC) load(userptr, "glVertexAttrib1sv"); glad_glVertexAttrib1svARB = (PFNGLVERTEXATTRIB1SVARBPROC) load(userptr, "glVertexAttrib1svARB"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC) load(userptr, "glVertexAttrib2d"); glad_glVertexAttrib2dARB = (PFNGLVERTEXATTRIB2DARBPROC) load(userptr, "glVertexAttrib2dARB"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC) load(userptr, "glVertexAttrib2dv"); glad_glVertexAttrib2dvARB = (PFNGLVERTEXATTRIB2DVARBPROC) load(userptr, "glVertexAttrib2dvARB"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC) load(userptr, "glVertexAttrib2f"); glad_glVertexAttrib2fARB = (PFNGLVERTEXATTRIB2FARBPROC) load(userptr, "glVertexAttrib2fARB"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC) load(userptr, "glVertexAttrib2fv"); glad_glVertexAttrib2fvARB = (PFNGLVERTEXATTRIB2FVARBPROC) load(userptr, "glVertexAttrib2fvARB"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC) load(userptr, "glVertexAttrib2s"); glad_glVertexAttrib2sARB = (PFNGLVERTEXATTRIB2SARBPROC) load(userptr, "glVertexAttrib2sARB"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC) load(userptr, "glVertexAttrib2sv"); glad_glVertexAttrib2svARB = (PFNGLVERTEXATTRIB2SVARBPROC) load(userptr, "glVertexAttrib2svARB"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC) load(userptr, "glVertexAttrib3d"); glad_glVertexAttrib3dARB = (PFNGLVERTEXATTRIB3DARBPROC) load(userptr, "glVertexAttrib3dARB"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC) load(userptr, "glVertexAttrib3dv"); glad_glVertexAttrib3dvARB = (PFNGLVERTEXATTRIB3DVARBPROC) load(userptr, "glVertexAttrib3dvARB"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC) load(userptr, "glVertexAttrib3f"); glad_glVertexAttrib3fARB = (PFNGLVERTEXATTRIB3FARBPROC) load(userptr, "glVertexAttrib3fARB"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC) load(userptr, "glVertexAttrib3fv"); glad_glVertexAttrib3fvARB = (PFNGLVERTEXATTRIB3FVARBPROC) load(userptr, "glVertexAttrib3fvARB"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC) load(userptr, "glVertexAttrib3s"); glad_glVertexAttrib3sARB = (PFNGLVERTEXATTRIB3SARBPROC) load(userptr, "glVertexAttrib3sARB"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC) load(userptr, "glVertexAttrib3sv"); glad_glVertexAttrib3svARB = (PFNGLVERTEXATTRIB3SVARBPROC) load(userptr, "glVertexAttrib3svARB"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC) load(userptr, "glVertexAttrib4Nbv"); glad_glVertexAttrib4NbvARB = (PFNGLVERTEXATTRIB4NBVARBPROC) load(userptr, "glVertexAttrib4NbvARB"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC) load(userptr, "glVertexAttrib4Niv"); glad_glVertexAttrib4NivARB = (PFNGLVERTEXATTRIB4NIVARBPROC) load(userptr, "glVertexAttrib4NivARB"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC) load(userptr, "glVertexAttrib4Nsv"); glad_glVertexAttrib4NsvARB = (PFNGLVERTEXATTRIB4NSVARBPROC) load(userptr, "glVertexAttrib4NsvARB"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC) load(userptr, "glVertexAttrib4Nub"); glad_glVertexAttrib4NubARB = (PFNGLVERTEXATTRIB4NUBARBPROC) load(userptr, "glVertexAttrib4NubARB"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC) load(userptr, "glVertexAttrib4Nubv"); glad_glVertexAttrib4NubvARB = (PFNGLVERTEXATTRIB4NUBVARBPROC) load(userptr, "glVertexAttrib4NubvARB"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC) load(userptr, "glVertexAttrib4Nuiv"); glad_glVertexAttrib4NuivARB = (PFNGLVERTEXATTRIB4NUIVARBPROC) load(userptr, "glVertexAttrib4NuivARB"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC) load(userptr, "glVertexAttrib4Nusv"); glad_glVertexAttrib4NusvARB = (PFNGLVERTEXATTRIB4NUSVARBPROC) load(userptr, "glVertexAttrib4NusvARB"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC) load(userptr, "glVertexAttrib4bv"); glad_glVertexAttrib4bvARB = (PFNGLVERTEXATTRIB4BVARBPROC) load(userptr, "glVertexAttrib4bvARB"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC) load(userptr, "glVertexAttrib4d"); glad_glVertexAttrib4dARB = (PFNGLVERTEXATTRIB4DARBPROC) load(userptr, "glVertexAttrib4dARB"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC) load(userptr, "glVertexAttrib4dv"); glad_glVertexAttrib4dvARB = (PFNGLVERTEXATTRIB4DVARBPROC) load(userptr, "glVertexAttrib4dvARB"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC) load(userptr, "glVertexAttrib4f"); glad_glVertexAttrib4fARB = (PFNGLVERTEXATTRIB4FARBPROC) load(userptr, "glVertexAttrib4fARB"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC) load(userptr, "glVertexAttrib4fv"); glad_glVertexAttrib4fvARB = (PFNGLVERTEXATTRIB4FVARBPROC) load(userptr, "glVertexAttrib4fvARB"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC) load(userptr, "glVertexAttrib4iv"); glad_glVertexAttrib4ivARB = (PFNGLVERTEXATTRIB4IVARBPROC) load(userptr, "glVertexAttrib4ivARB"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC) load(userptr, "glVertexAttrib4s"); glad_glVertexAttrib4sARB = (PFNGLVERTEXATTRIB4SARBPROC) load(userptr, "glVertexAttrib4sARB"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC) load(userptr, "glVertexAttrib4sv"); glad_glVertexAttrib4svARB = (PFNGLVERTEXATTRIB4SVARBPROC) load(userptr, "glVertexAttrib4svARB"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC) load(userptr, "glVertexAttrib4ubv"); glad_glVertexAttrib4ubvARB = (PFNGLVERTEXATTRIB4UBVARBPROC) load(userptr, "glVertexAttrib4ubvARB"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC) load(userptr, "glVertexAttrib4uiv"); glad_glVertexAttrib4uivARB = (PFNGLVERTEXATTRIB4UIVARBPROC) load(userptr, "glVertexAttrib4uivARB"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC) load(userptr, "glVertexAttrib4usv"); glad_glVertexAttrib4usvARB = (PFNGLVERTEXATTRIB4USVARBPROC) load(userptr, "glVertexAttrib4usvARB"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC) load(userptr, "glVertexAttribPointer"); glad_glVertexAttribPointerARB = (PFNGLVERTEXATTRIBPOINTERARBPROC) load(userptr, "glVertexAttribPointerARB"); } static void glad_gl_load_GL_ARB_vertex_shader( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_shader) return; glad_glBindAttribLocation = (PFNGLBINDATTRIBLOCATIONPROC) load(userptr, "glBindAttribLocation"); glad_glBindAttribLocationARB = (PFNGLBINDATTRIBLOCATIONARBPROC) load(userptr, "glBindAttribLocationARB"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC) load(userptr, "glDisableVertexAttribArray"); glad_glDisableVertexAttribArrayARB = (PFNGLDISABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glDisableVertexAttribArrayARB"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC) load(userptr, "glEnableVertexAttribArray"); glad_glEnableVertexAttribArrayARB = (PFNGLENABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glEnableVertexAttribArrayARB"); glad_glGetActiveAttrib = (PFNGLGETACTIVEATTRIBPROC) load(userptr, "glGetActiveAttrib"); glad_glGetActiveAttribARB = (PFNGLGETACTIVEATTRIBARBPROC) load(userptr, "glGetActiveAttribARB"); glad_glGetAttribLocation = (PFNGLGETATTRIBLOCATIONPROC) load(userptr, "glGetAttribLocation"); glad_glGetAttribLocationARB = (PFNGLGETATTRIBLOCATIONARBPROC) load(userptr, "glGetAttribLocationARB"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC) load(userptr, "glGetVertexAttribPointerv"); glad_glGetVertexAttribPointervARB = (PFNGLGETVERTEXATTRIBPOINTERVARBPROC) load(userptr, "glGetVertexAttribPointervARB"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC) load(userptr, "glGetVertexAttribdv"); glad_glGetVertexAttribdvARB = (PFNGLGETVERTEXATTRIBDVARBPROC) load(userptr, "glGetVertexAttribdvARB"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC) load(userptr, "glGetVertexAttribfv"); glad_glGetVertexAttribfvARB = (PFNGLGETVERTEXATTRIBFVARBPROC) load(userptr, "glGetVertexAttribfvARB"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC) load(userptr, "glGetVertexAttribiv"); glad_glGetVertexAttribivARB = (PFNGLGETVERTEXATTRIBIVARBPROC) load(userptr, "glGetVertexAttribivARB"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC) load(userptr, "glVertexAttrib1d"); glad_glVertexAttrib1dARB = (PFNGLVERTEXATTRIB1DARBPROC) load(userptr, "glVertexAttrib1dARB"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC) load(userptr, "glVertexAttrib1dv"); glad_glVertexAttrib1dvARB = (PFNGLVERTEXATTRIB1DVARBPROC) load(userptr, "glVertexAttrib1dvARB"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC) load(userptr, "glVertexAttrib1f"); glad_glVertexAttrib1fARB = (PFNGLVERTEXATTRIB1FARBPROC) load(userptr, "glVertexAttrib1fARB"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC) load(userptr, "glVertexAttrib1fv"); glad_glVertexAttrib1fvARB = (PFNGLVERTEXATTRIB1FVARBPROC) load(userptr, "glVertexAttrib1fvARB"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC) load(userptr, "glVertexAttrib1s"); glad_glVertexAttrib1sARB = (PFNGLVERTEXATTRIB1SARBPROC) load(userptr, "glVertexAttrib1sARB"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC) load(userptr, "glVertexAttrib1sv"); glad_glVertexAttrib1svARB = (PFNGLVERTEXATTRIB1SVARBPROC) load(userptr, "glVertexAttrib1svARB"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC) load(userptr, "glVertexAttrib2d"); glad_glVertexAttrib2dARB = (PFNGLVERTEXATTRIB2DARBPROC) load(userptr, "glVertexAttrib2dARB"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC) load(userptr, "glVertexAttrib2dv"); glad_glVertexAttrib2dvARB = (PFNGLVERTEXATTRIB2DVARBPROC) load(userptr, "glVertexAttrib2dvARB"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC) load(userptr, "glVertexAttrib2f"); glad_glVertexAttrib2fARB = (PFNGLVERTEXATTRIB2FARBPROC) load(userptr, "glVertexAttrib2fARB"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC) load(userptr, "glVertexAttrib2fv"); glad_glVertexAttrib2fvARB = (PFNGLVERTEXATTRIB2FVARBPROC) load(userptr, "glVertexAttrib2fvARB"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC) load(userptr, "glVertexAttrib2s"); glad_glVertexAttrib2sARB = (PFNGLVERTEXATTRIB2SARBPROC) load(userptr, "glVertexAttrib2sARB"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC) load(userptr, "glVertexAttrib2sv"); glad_glVertexAttrib2svARB = (PFNGLVERTEXATTRIB2SVARBPROC) load(userptr, "glVertexAttrib2svARB"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC) load(userptr, "glVertexAttrib3d"); glad_glVertexAttrib3dARB = (PFNGLVERTEXATTRIB3DARBPROC) load(userptr, "glVertexAttrib3dARB"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC) load(userptr, "glVertexAttrib3dv"); glad_glVertexAttrib3dvARB = (PFNGLVERTEXATTRIB3DVARBPROC) load(userptr, "glVertexAttrib3dvARB"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC) load(userptr, "glVertexAttrib3f"); glad_glVertexAttrib3fARB = (PFNGLVERTEXATTRIB3FARBPROC) load(userptr, "glVertexAttrib3fARB"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC) load(userptr, "glVertexAttrib3fv"); glad_glVertexAttrib3fvARB = (PFNGLVERTEXATTRIB3FVARBPROC) load(userptr, "glVertexAttrib3fvARB"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC) load(userptr, "glVertexAttrib3s"); glad_glVertexAttrib3sARB = (PFNGLVERTEXATTRIB3SARBPROC) load(userptr, "glVertexAttrib3sARB"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC) load(userptr, "glVertexAttrib3sv"); glad_glVertexAttrib3svARB = (PFNGLVERTEXATTRIB3SVARBPROC) load(userptr, "glVertexAttrib3svARB"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC) load(userptr, "glVertexAttrib4Nbv"); glad_glVertexAttrib4NbvARB = (PFNGLVERTEXATTRIB4NBVARBPROC) load(userptr, "glVertexAttrib4NbvARB"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC) load(userptr, "glVertexAttrib4Niv"); glad_glVertexAttrib4NivARB = (PFNGLVERTEXATTRIB4NIVARBPROC) load(userptr, "glVertexAttrib4NivARB"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC) load(userptr, "glVertexAttrib4Nsv"); glad_glVertexAttrib4NsvARB = (PFNGLVERTEXATTRIB4NSVARBPROC) load(userptr, "glVertexAttrib4NsvARB"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC) load(userptr, "glVertexAttrib4Nub"); glad_glVertexAttrib4NubARB = (PFNGLVERTEXATTRIB4NUBARBPROC) load(userptr, "glVertexAttrib4NubARB"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC) load(userptr, "glVertexAttrib4Nubv"); glad_glVertexAttrib4NubvARB = (PFNGLVERTEXATTRIB4NUBVARBPROC) load(userptr, "glVertexAttrib4NubvARB"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC) load(userptr, "glVertexAttrib4Nuiv"); glad_glVertexAttrib4NuivARB = (PFNGLVERTEXATTRIB4NUIVARBPROC) load(userptr, "glVertexAttrib4NuivARB"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC) load(userptr, "glVertexAttrib4Nusv"); glad_glVertexAttrib4NusvARB = (PFNGLVERTEXATTRIB4NUSVARBPROC) load(userptr, "glVertexAttrib4NusvARB"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC) load(userptr, "glVertexAttrib4bv"); glad_glVertexAttrib4bvARB = (PFNGLVERTEXATTRIB4BVARBPROC) load(userptr, "glVertexAttrib4bvARB"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC) load(userptr, "glVertexAttrib4d"); glad_glVertexAttrib4dARB = (PFNGLVERTEXATTRIB4DARBPROC) load(userptr, "glVertexAttrib4dARB"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC) load(userptr, "glVertexAttrib4dv"); glad_glVertexAttrib4dvARB = (PFNGLVERTEXATTRIB4DVARBPROC) load(userptr, "glVertexAttrib4dvARB"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC) load(userptr, "glVertexAttrib4f"); glad_glVertexAttrib4fARB = (PFNGLVERTEXATTRIB4FARBPROC) load(userptr, "glVertexAttrib4fARB"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC) load(userptr, "glVertexAttrib4fv"); glad_glVertexAttrib4fvARB = (PFNGLVERTEXATTRIB4FVARBPROC) load(userptr, "glVertexAttrib4fvARB"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC) load(userptr, "glVertexAttrib4iv"); glad_glVertexAttrib4ivARB = (PFNGLVERTEXATTRIB4IVARBPROC) load(userptr, "glVertexAttrib4ivARB"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC) load(userptr, "glVertexAttrib4s"); glad_glVertexAttrib4sARB = (PFNGLVERTEXATTRIB4SARBPROC) load(userptr, "glVertexAttrib4sARB"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC) load(userptr, "glVertexAttrib4sv"); glad_glVertexAttrib4svARB = (PFNGLVERTEXATTRIB4SVARBPROC) load(userptr, "glVertexAttrib4svARB"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC) load(userptr, "glVertexAttrib4ubv"); glad_glVertexAttrib4ubvARB = (PFNGLVERTEXATTRIB4UBVARBPROC) load(userptr, "glVertexAttrib4ubvARB"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC) load(userptr, "glVertexAttrib4uiv"); glad_glVertexAttrib4uivARB = (PFNGLVERTEXATTRIB4UIVARBPROC) load(userptr, "glVertexAttrib4uivARB"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC) load(userptr, "glVertexAttrib4usv"); glad_glVertexAttrib4usvARB = (PFNGLVERTEXATTRIB4USVARBPROC) load(userptr, "glVertexAttrib4usvARB"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC) load(userptr, "glVertexAttribPointer"); glad_glVertexAttribPointerARB = (PFNGLVERTEXATTRIBPOINTERARBPROC) load(userptr, "glVertexAttribPointerARB"); } static void glad_gl_load_GL_ARB_vertex_type_2_10_10_10_rev( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_type_2_10_10_10_rev) return; glad_glColorP3ui = (PFNGLCOLORP3UIPROC) load(userptr, "glColorP3ui"); glad_glColorP3uiv = (PFNGLCOLORP3UIVPROC) load(userptr, "glColorP3uiv"); glad_glColorP4ui = (PFNGLCOLORP4UIPROC) load(userptr, "glColorP4ui"); glad_glColorP4uiv = (PFNGLCOLORP4UIVPROC) load(userptr, "glColorP4uiv"); glad_glMultiTexCoordP1ui = (PFNGLMULTITEXCOORDP1UIPROC) load(userptr, "glMultiTexCoordP1ui"); glad_glMultiTexCoordP1uiv = (PFNGLMULTITEXCOORDP1UIVPROC) load(userptr, "glMultiTexCoordP1uiv"); glad_glMultiTexCoordP2ui = (PFNGLMULTITEXCOORDP2UIPROC) load(userptr, "glMultiTexCoordP2ui"); glad_glMultiTexCoordP2uiv = (PFNGLMULTITEXCOORDP2UIVPROC) load(userptr, "glMultiTexCoordP2uiv"); glad_glMultiTexCoordP3ui = (PFNGLMULTITEXCOORDP3UIPROC) load(userptr, "glMultiTexCoordP3ui"); glad_glMultiTexCoordP3uiv = (PFNGLMULTITEXCOORDP3UIVPROC) load(userptr, "glMultiTexCoordP3uiv"); glad_glMultiTexCoordP4ui = (PFNGLMULTITEXCOORDP4UIPROC) load(userptr, "glMultiTexCoordP4ui"); glad_glMultiTexCoordP4uiv = (PFNGLMULTITEXCOORDP4UIVPROC) load(userptr, "glMultiTexCoordP4uiv"); glad_glNormalP3ui = (PFNGLNORMALP3UIPROC) load(userptr, "glNormalP3ui"); glad_glNormalP3uiv = (PFNGLNORMALP3UIVPROC) load(userptr, "glNormalP3uiv"); glad_glSecondaryColorP3ui = (PFNGLSECONDARYCOLORP3UIPROC) load(userptr, "glSecondaryColorP3ui"); glad_glSecondaryColorP3uiv = (PFNGLSECONDARYCOLORP3UIVPROC) load(userptr, "glSecondaryColorP3uiv"); glad_glTexCoordP1ui = (PFNGLTEXCOORDP1UIPROC) load(userptr, "glTexCoordP1ui"); glad_glTexCoordP1uiv = (PFNGLTEXCOORDP1UIVPROC) load(userptr, "glTexCoordP1uiv"); glad_glTexCoordP2ui = (PFNGLTEXCOORDP2UIPROC) load(userptr, "glTexCoordP2ui"); glad_glTexCoordP2uiv = (PFNGLTEXCOORDP2UIVPROC) load(userptr, "glTexCoordP2uiv"); glad_glTexCoordP3ui = (PFNGLTEXCOORDP3UIPROC) load(userptr, "glTexCoordP3ui"); glad_glTexCoordP3uiv = (PFNGLTEXCOORDP3UIVPROC) load(userptr, "glTexCoordP3uiv"); glad_glTexCoordP4ui = (PFNGLTEXCOORDP4UIPROC) load(userptr, "glTexCoordP4ui"); glad_glTexCoordP4uiv = (PFNGLTEXCOORDP4UIVPROC) load(userptr, "glTexCoordP4uiv"); glad_glVertexAttribP1ui = (PFNGLVERTEXATTRIBP1UIPROC) load(userptr, "glVertexAttribP1ui"); glad_glVertexAttribP1uiv = (PFNGLVERTEXATTRIBP1UIVPROC) load(userptr, "glVertexAttribP1uiv"); glad_glVertexAttribP2ui = (PFNGLVERTEXATTRIBP2UIPROC) load(userptr, "glVertexAttribP2ui"); glad_glVertexAttribP2uiv = (PFNGLVERTEXATTRIBP2UIVPROC) load(userptr, "glVertexAttribP2uiv"); glad_glVertexAttribP3ui = (PFNGLVERTEXATTRIBP3UIPROC) load(userptr, "glVertexAttribP3ui"); glad_glVertexAttribP3uiv = (PFNGLVERTEXATTRIBP3UIVPROC) load(userptr, "glVertexAttribP3uiv"); glad_glVertexAttribP4ui = (PFNGLVERTEXATTRIBP4UIPROC) load(userptr, "glVertexAttribP4ui"); glad_glVertexAttribP4uiv = (PFNGLVERTEXATTRIBP4UIVPROC) load(userptr, "glVertexAttribP4uiv"); glad_glVertexP2ui = (PFNGLVERTEXP2UIPROC) load(userptr, "glVertexP2ui"); glad_glVertexP2uiv = (PFNGLVERTEXP2UIVPROC) load(userptr, "glVertexP2uiv"); glad_glVertexP3ui = (PFNGLVERTEXP3UIPROC) load(userptr, "glVertexP3ui"); glad_glVertexP3uiv = (PFNGLVERTEXP3UIVPROC) load(userptr, "glVertexP3uiv"); glad_glVertexP4ui = (PFNGLVERTEXP4UIPROC) load(userptr, "glVertexP4ui"); glad_glVertexP4uiv = (PFNGLVERTEXP4UIVPROC) load(userptr, "glVertexP4uiv"); } static void glad_gl_load_GL_ARB_viewport_array( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_viewport_array) return; glad_glDepthRangeArraydvNV = (PFNGLDEPTHRANGEARRAYDVNVPROC) load(userptr, "glDepthRangeArraydvNV"); glad_glDepthRangeArrayv = (PFNGLDEPTHRANGEARRAYVPROC) load(userptr, "glDepthRangeArrayv"); glad_glDepthRangeIndexed = (PFNGLDEPTHRANGEINDEXEDPROC) load(userptr, "glDepthRangeIndexed"); glad_glDepthRangeIndexeddNV = (PFNGLDEPTHRANGEINDEXEDDNVPROC) load(userptr, "glDepthRangeIndexeddNV"); glad_glGetDoublei_v = (PFNGLGETDOUBLEI_VPROC) load(userptr, "glGetDoublei_v"); glad_glGetFloati_v = (PFNGLGETFLOATI_VPROC) load(userptr, "glGetFloati_v"); glad_glScissorArrayv = (PFNGLSCISSORARRAYVPROC) load(userptr, "glScissorArrayv"); glad_glScissorIndexed = (PFNGLSCISSORINDEXEDPROC) load(userptr, "glScissorIndexed"); glad_glScissorIndexedv = (PFNGLSCISSORINDEXEDVPROC) load(userptr, "glScissorIndexedv"); glad_glViewportArrayv = (PFNGLVIEWPORTARRAYVPROC) load(userptr, "glViewportArrayv"); glad_glViewportIndexedf = (PFNGLVIEWPORTINDEXEDFPROC) load(userptr, "glViewportIndexedf"); glad_glViewportIndexedfv = (PFNGLVIEWPORTINDEXEDFVPROC) load(userptr, "glViewportIndexedfv"); } static void glad_gl_load_GL_ARB_window_pos( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_window_pos) return; glad_glWindowPos2d = (PFNGLWINDOWPOS2DPROC) load(userptr, "glWindowPos2d"); glad_glWindowPos2dARB = (PFNGLWINDOWPOS2DARBPROC) load(userptr, "glWindowPos2dARB"); glad_glWindowPos2dv = (PFNGLWINDOWPOS2DVPROC) load(userptr, "glWindowPos2dv"); glad_glWindowPos2dvARB = (PFNGLWINDOWPOS2DVARBPROC) load(userptr, "glWindowPos2dvARB"); glad_glWindowPos2f = (PFNGLWINDOWPOS2FPROC) load(userptr, "glWindowPos2f"); glad_glWindowPos2fARB = (PFNGLWINDOWPOS2FARBPROC) load(userptr, "glWindowPos2fARB"); glad_glWindowPos2fv = (PFNGLWINDOWPOS2FVPROC) load(userptr, "glWindowPos2fv"); glad_glWindowPos2fvARB = (PFNGLWINDOWPOS2FVARBPROC) load(userptr, "glWindowPos2fvARB"); glad_glWindowPos2i = (PFNGLWINDOWPOS2IPROC) load(userptr, "glWindowPos2i"); glad_glWindowPos2iARB = (PFNGLWINDOWPOS2IARBPROC) load(userptr, "glWindowPos2iARB"); glad_glWindowPos2iv = (PFNGLWINDOWPOS2IVPROC) load(userptr, "glWindowPos2iv"); glad_glWindowPos2ivARB = (PFNGLWINDOWPOS2IVARBPROC) load(userptr, "glWindowPos2ivARB"); glad_glWindowPos2s = (PFNGLWINDOWPOS2SPROC) load(userptr, "glWindowPos2s"); glad_glWindowPos2sARB = (PFNGLWINDOWPOS2SARBPROC) load(userptr, "glWindowPos2sARB"); glad_glWindowPos2sv = (PFNGLWINDOWPOS2SVPROC) load(userptr, "glWindowPos2sv"); glad_glWindowPos2svARB = (PFNGLWINDOWPOS2SVARBPROC) load(userptr, "glWindowPos2svARB"); glad_glWindowPos3d = (PFNGLWINDOWPOS3DPROC) load(userptr, "glWindowPos3d"); glad_glWindowPos3dARB = (PFNGLWINDOWPOS3DARBPROC) load(userptr, "glWindowPos3dARB"); glad_glWindowPos3dv = (PFNGLWINDOWPOS3DVPROC) load(userptr, "glWindowPos3dv"); glad_glWindowPos3dvARB = (PFNGLWINDOWPOS3DVARBPROC) load(userptr, "glWindowPos3dvARB"); glad_glWindowPos3f = (PFNGLWINDOWPOS3FPROC) load(userptr, "glWindowPos3f"); glad_glWindowPos3fARB = (PFNGLWINDOWPOS3FARBPROC) load(userptr, "glWindowPos3fARB"); glad_glWindowPos3fv = (PFNGLWINDOWPOS3FVPROC) load(userptr, "glWindowPos3fv"); glad_glWindowPos3fvARB = (PFNGLWINDOWPOS3FVARBPROC) load(userptr, "glWindowPos3fvARB"); glad_glWindowPos3i = (PFNGLWINDOWPOS3IPROC) load(userptr, "glWindowPos3i"); glad_glWindowPos3iARB = (PFNGLWINDOWPOS3IARBPROC) load(userptr, "glWindowPos3iARB"); glad_glWindowPos3iv = (PFNGLWINDOWPOS3IVPROC) load(userptr, "glWindowPos3iv"); glad_glWindowPos3ivARB = (PFNGLWINDOWPOS3IVARBPROC) load(userptr, "glWindowPos3ivARB"); glad_glWindowPos3s = (PFNGLWINDOWPOS3SPROC) load(userptr, "glWindowPos3s"); glad_glWindowPos3sARB = (PFNGLWINDOWPOS3SARBPROC) load(userptr, "glWindowPos3sARB"); glad_glWindowPos3sv = (PFNGLWINDOWPOS3SVPROC) load(userptr, "glWindowPos3sv"); glad_glWindowPos3svARB = (PFNGLWINDOWPOS3SVARBPROC) load(userptr, "glWindowPos3svARB"); } static void glad_gl_load_GL_KHR_blend_equation_advanced( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_blend_equation_advanced) return; glad_glBlendBarrier = (PFNGLBLENDBARRIERPROC) load(userptr, "glBlendBarrier"); glad_glBlendBarrierKHR = (PFNGLBLENDBARRIERKHRPROC) load(userptr, "glBlendBarrierKHR"); } static void glad_gl_load_GL_KHR_debug( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_debug) return; glad_glDebugMessageCallback = (PFNGLDEBUGMESSAGECALLBACKPROC) load(userptr, "glDebugMessageCallback"); glad_glDebugMessageControl = (PFNGLDEBUGMESSAGECONTROLPROC) load(userptr, "glDebugMessageControl"); glad_glDebugMessageInsert = (PFNGLDEBUGMESSAGEINSERTPROC) load(userptr, "glDebugMessageInsert"); glad_glGetDebugMessageLog = (PFNGLGETDEBUGMESSAGELOGPROC) load(userptr, "glGetDebugMessageLog"); glad_glGetObjectLabel = (PFNGLGETOBJECTLABELPROC) load(userptr, "glGetObjectLabel"); glad_glGetObjectPtrLabel = (PFNGLGETOBJECTPTRLABELPROC) load(userptr, "glGetObjectPtrLabel"); glad_glGetPointerv = (PFNGLGETPOINTERVPROC) load(userptr, "glGetPointerv"); glad_glObjectLabel = (PFNGLOBJECTLABELPROC) load(userptr, "glObjectLabel"); glad_glObjectPtrLabel = (PFNGLOBJECTPTRLABELPROC) load(userptr, "glObjectPtrLabel"); glad_glPopDebugGroup = (PFNGLPOPDEBUGGROUPPROC) load(userptr, "glPopDebugGroup"); glad_glPushDebugGroup = (PFNGLPUSHDEBUGGROUPPROC) load(userptr, "glPushDebugGroup"); } static void glad_gl_load_GL_KHR_parallel_shader_compile( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_parallel_shader_compile) return; glad_glMaxShaderCompilerThreadsKHR = (PFNGLMAXSHADERCOMPILERTHREADSKHRPROC) load(userptr, "glMaxShaderCompilerThreadsKHR"); } static void glad_gl_load_GL_KHR_robustness( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_robustness) return; glad_glGetGraphicsResetStatus = (PFNGLGETGRAPHICSRESETSTATUSPROC) load(userptr, "glGetGraphicsResetStatus"); glad_glGetnUniformfv = (PFNGLGETNUNIFORMFVPROC) load(userptr, "glGetnUniformfv"); glad_glGetnUniformiv = (PFNGLGETNUNIFORMIVPROC) load(userptr, "glGetnUniformiv"); glad_glGetnUniformuiv = (PFNGLGETNUNIFORMUIVPROC) load(userptr, "glGetnUniformuiv"); glad_glReadnPixels = (PFNGLREADNPIXELSPROC) load(userptr, "glReadnPixels"); } #if defined(GL_ES_VERSION_3_0) || defined(GL_VERSION_3_0) #define GLAD_GL_IS_SOME_NEW_VERSION 1 #else #define GLAD_GL_IS_SOME_NEW_VERSION 0 #endif static int glad_gl_get_extensions( int version, const char **out_exts, unsigned int *out_num_exts_i, char ***out_exts_i) { #if GLAD_GL_IS_SOME_NEW_VERSION if(GLAD_VERSION_MAJOR(version) < 3) { #else (void) version; (void) out_num_exts_i; (void) out_exts_i; #endif if (glad_glGetString == NULL) { return 0; } *out_exts = (const char *)glad_glGetString(GL_EXTENSIONS); #if GLAD_GL_IS_SOME_NEW_VERSION } else { unsigned int index = 0; unsigned int num_exts_i = 0; char **exts_i = NULL; if (glad_glGetStringi == NULL || glad_glGetIntegerv == NULL) { return 0; } glad_glGetIntegerv(GL_NUM_EXTENSIONS, (int*) &num_exts_i); if (num_exts_i > 0) { exts_i = (char **) malloc(num_exts_i * (sizeof *exts_i)); } if (exts_i == NULL) { return 0; } for(index = 0; index < num_exts_i; index++) { const char *gl_str_tmp = (const char*) glad_glGetStringi(GL_EXTENSIONS, index); size_t len = strlen(gl_str_tmp) + 1; char *local_str = (char*) malloc(len * sizeof(char)); if(local_str != NULL) { memcpy(local_str, gl_str_tmp, len * sizeof(char)); } exts_i[index] = local_str; } *out_num_exts_i = num_exts_i; *out_exts_i = exts_i; } #endif return 1; } static void glad_gl_free_extensions(char **exts_i, unsigned int num_exts_i) { if (exts_i != NULL) { unsigned int index; for(index = 0; index < num_exts_i; index++) { free((void *) (exts_i[index])); } free((void *)exts_i); exts_i = NULL; } } static int glad_gl_has_extension(int version, const char *exts, unsigned int num_exts_i, char **exts_i, const char *ext) { if(GLAD_VERSION_MAJOR(version) < 3 || !GLAD_GL_IS_SOME_NEW_VERSION) { const char *extensions; const char *loc; const char *terminator; extensions = exts; if(extensions == NULL || ext == NULL) { return 0; } while(1) { loc = strstr(extensions, ext); if(loc == NULL) { return 0; } terminator = loc + strlen(ext); if((loc == extensions || *(loc - 1) == ' ') && (*terminator == ' ' || *terminator == '\0')) { return 1; } extensions = terminator; } } else { unsigned int index; for(index = 0; index < num_exts_i; index++) { const char *e = exts_i[index]; if(strcmp(e, ext) == 0) { return 1; } } } return 0; } static GLADapiproc glad_gl_get_proc_from_userptr(void *userptr, const char* name) { return (GLAD_GNUC_EXTENSION (GLADapiproc (*)(const char *name)) userptr)(name); } static int glad_gl_find_extensions_gl( int version) { const char *exts = NULL; unsigned int num_exts_i = 0; char **exts_i = NULL; if (!glad_gl_get_extensions(version, &exts, &num_exts_i, &exts_i)) return 0; GLAD_GL_ARB_ES2_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES2_compatibility"); GLAD_GL_ARB_ES3_1_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES3_1_compatibility"); GLAD_GL_ARB_ES3_2_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES3_2_compatibility"); GLAD_GL_ARB_ES3_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES3_compatibility"); GLAD_GL_ARB_arrays_of_arrays = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_arrays_of_arrays"); GLAD_GL_ARB_base_instance = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_base_instance"); GLAD_GL_ARB_bindless_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_bindless_texture"); GLAD_GL_ARB_blend_func_extended = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_blend_func_extended"); GLAD_GL_ARB_buffer_storage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_buffer_storage"); GLAD_GL_ARB_cl_event = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_cl_event"); GLAD_GL_ARB_clear_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_clear_buffer_object"); GLAD_GL_ARB_clear_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_clear_texture"); GLAD_GL_ARB_clip_control = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_clip_control"); GLAD_GL_ARB_color_buffer_float = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_color_buffer_float"); GLAD_GL_ARB_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compatibility"); GLAD_GL_ARB_compressed_texture_pixel_storage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compressed_texture_pixel_storage"); GLAD_GL_ARB_compute_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compute_shader"); GLAD_GL_ARB_compute_variable_group_size = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compute_variable_group_size"); GLAD_GL_ARB_conditional_render_inverted = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_conditional_render_inverted"); GLAD_GL_ARB_conservative_depth = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_conservative_depth"); GLAD_GL_ARB_copy_buffer = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_copy_buffer"); GLAD_GL_ARB_copy_image = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_copy_image"); GLAD_GL_ARB_cull_distance = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_cull_distance"); GLAD_GL_ARB_debug_output = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_debug_output"); GLAD_GL_ARB_depth_buffer_float = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_depth_buffer_float"); GLAD_GL_ARB_depth_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_depth_clamp"); GLAD_GL_ARB_depth_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_depth_texture"); GLAD_GL_ARB_derivative_control = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_derivative_control"); GLAD_GL_ARB_direct_state_access = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_direct_state_access"); GLAD_GL_ARB_draw_buffers = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_buffers"); GLAD_GL_ARB_draw_buffers_blend = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_buffers_blend"); GLAD_GL_ARB_draw_elements_base_vertex = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_elements_base_vertex"); GLAD_GL_ARB_draw_indirect = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_indirect"); GLAD_GL_ARB_draw_instanced = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_instanced"); GLAD_GL_ARB_enhanced_layouts = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_enhanced_layouts"); GLAD_GL_ARB_explicit_attrib_location = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_explicit_attrib_location"); GLAD_GL_ARB_explicit_uniform_location = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_explicit_uniform_location"); GLAD_GL_ARB_fragment_coord_conventions = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_coord_conventions"); GLAD_GL_ARB_fragment_layer_viewport = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_layer_viewport"); GLAD_GL_ARB_fragment_program = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_program"); GLAD_GL_ARB_fragment_program_shadow = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_program_shadow"); GLAD_GL_ARB_fragment_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_shader"); GLAD_GL_ARB_fragment_shader_interlock = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_shader_interlock"); GLAD_GL_ARB_framebuffer_no_attachments = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_framebuffer_no_attachments"); GLAD_GL_ARB_framebuffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_framebuffer_object"); GLAD_GL_ARB_framebuffer_sRGB = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_framebuffer_sRGB"); GLAD_GL_ARB_geometry_shader4 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_geometry_shader4"); GLAD_GL_ARB_get_program_binary = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_get_program_binary"); GLAD_GL_ARB_get_texture_sub_image = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_get_texture_sub_image"); GLAD_GL_ARB_gl_spirv = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gl_spirv"); GLAD_GL_ARB_gpu_shader5 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gpu_shader5"); GLAD_GL_ARB_gpu_shader_fp64 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gpu_shader_fp64"); GLAD_GL_ARB_gpu_shader_int64 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gpu_shader_int64"); GLAD_GL_ARB_half_float_pixel = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_half_float_pixel"); GLAD_GL_ARB_half_float_vertex = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_half_float_vertex"); GLAD_GL_ARB_imaging = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_imaging"); GLAD_GL_ARB_indirect_parameters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_indirect_parameters"); GLAD_GL_ARB_instanced_arrays = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_instanced_arrays"); GLAD_GL_ARB_internalformat_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_internalformat_query"); GLAD_GL_ARB_internalformat_query2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_internalformat_query2"); GLAD_GL_ARB_invalidate_subdata = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_invalidate_subdata"); GLAD_GL_ARB_map_buffer_alignment = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_map_buffer_alignment"); GLAD_GL_ARB_map_buffer_range = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_map_buffer_range"); GLAD_GL_ARB_matrix_palette = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_matrix_palette"); GLAD_GL_ARB_multi_bind = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multi_bind"); GLAD_GL_ARB_multi_draw_indirect = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multi_draw_indirect"); GLAD_GL_ARB_multisample = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multisample"); GLAD_GL_ARB_multitexture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multitexture"); GLAD_GL_ARB_occlusion_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_occlusion_query"); GLAD_GL_ARB_occlusion_query2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_occlusion_query2"); GLAD_GL_ARB_parallel_shader_compile = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_parallel_shader_compile"); GLAD_GL_ARB_pipeline_statistics_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_pipeline_statistics_query"); GLAD_GL_ARB_pixel_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_pixel_buffer_object"); GLAD_GL_ARB_point_parameters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_point_parameters"); GLAD_GL_ARB_point_sprite = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_point_sprite"); GLAD_GL_ARB_polygon_offset_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_polygon_offset_clamp"); GLAD_GL_ARB_post_depth_coverage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_post_depth_coverage"); GLAD_GL_ARB_program_interface_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_program_interface_query"); GLAD_GL_ARB_provoking_vertex = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_provoking_vertex"); GLAD_GL_ARB_query_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_query_buffer_object"); GLAD_GL_ARB_robust_buffer_access_behavior = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_robust_buffer_access_behavior"); GLAD_GL_ARB_robustness = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_robustness"); GLAD_GL_ARB_robustness_isolation = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_robustness_isolation"); GLAD_GL_ARB_sample_locations = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sample_locations"); GLAD_GL_ARB_sample_shading = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sample_shading"); GLAD_GL_ARB_sampler_objects = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sampler_objects"); GLAD_GL_ARB_seamless_cube_map = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_seamless_cube_map"); GLAD_GL_ARB_seamless_cubemap_per_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_seamless_cubemap_per_texture"); GLAD_GL_ARB_separate_shader_objects = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_separate_shader_objects"); GLAD_GL_ARB_shader_atomic_counter_ops = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_atomic_counter_ops"); GLAD_GL_ARB_shader_atomic_counters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_atomic_counters"); GLAD_GL_ARB_shader_ballot = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_ballot"); GLAD_GL_ARB_shader_bit_encoding = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_bit_encoding"); GLAD_GL_ARB_shader_clock = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_clock"); GLAD_GL_ARB_shader_draw_parameters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_draw_parameters"); GLAD_GL_ARB_shader_group_vote = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_group_vote"); GLAD_GL_ARB_shader_image_load_store = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_image_load_store"); GLAD_GL_ARB_shader_image_size = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_image_size"); GLAD_GL_ARB_shader_objects = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_objects"); GLAD_GL_ARB_shader_precision = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_precision"); GLAD_GL_ARB_shader_stencil_export = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_stencil_export"); GLAD_GL_ARB_shader_storage_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_storage_buffer_object"); GLAD_GL_ARB_shader_subroutine = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_subroutine"); GLAD_GL_ARB_shader_texture_image_samples = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_texture_image_samples"); GLAD_GL_ARB_shader_texture_lod = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_texture_lod"); GLAD_GL_ARB_shader_viewport_layer_array = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_viewport_layer_array"); GLAD_GL_ARB_shading_language_100 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_100"); GLAD_GL_ARB_shading_language_420pack = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_420pack"); GLAD_GL_ARB_shading_language_include = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_include"); GLAD_GL_ARB_shading_language_packing = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_packing"); GLAD_GL_ARB_shadow = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shadow"); GLAD_GL_ARB_shadow_ambient = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shadow_ambient"); GLAD_GL_ARB_sparse_buffer = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_buffer"); GLAD_GL_ARB_sparse_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_texture"); GLAD_GL_ARB_sparse_texture2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_texture2"); GLAD_GL_ARB_sparse_texture_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_texture_clamp"); GLAD_GL_ARB_spirv_extensions = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_spirv_extensions"); GLAD_GL_ARB_stencil_texturing = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_stencil_texturing"); GLAD_GL_ARB_sync = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sync"); GLAD_GL_ARB_tessellation_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_tessellation_shader"); GLAD_GL_ARB_texture_barrier = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_barrier"); GLAD_GL_ARB_texture_border_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_border_clamp"); GLAD_GL_ARB_texture_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_buffer_object"); GLAD_GL_ARB_texture_buffer_object_rgb32 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_buffer_object_rgb32"); GLAD_GL_ARB_texture_buffer_range = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_buffer_range"); GLAD_GL_ARB_texture_compression = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_compression"); GLAD_GL_ARB_texture_compression_bptc = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_compression_bptc"); GLAD_GL_ARB_texture_compression_rgtc = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_compression_rgtc"); GLAD_GL_ARB_texture_cube_map = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_cube_map"); GLAD_GL_ARB_texture_cube_map_array = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_cube_map_array"); GLAD_GL_ARB_texture_env_add = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_add"); GLAD_GL_ARB_texture_env_combine = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_combine"); GLAD_GL_ARB_texture_env_crossbar = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_crossbar"); GLAD_GL_ARB_texture_env_dot3 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_dot3"); GLAD_GL_ARB_texture_filter_anisotropic = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_filter_anisotropic"); GLAD_GL_ARB_texture_filter_minmax = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_filter_minmax"); GLAD_GL_ARB_texture_float = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_float"); GLAD_GL_ARB_texture_gather = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_gather"); GLAD_GL_ARB_texture_mirror_clamp_to_edge = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_mirror_clamp_to_edge"); GLAD_GL_ARB_texture_mirrored_repeat = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_mirrored_repeat"); GLAD_GL_ARB_texture_multisample = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_multisample"); GLAD_GL_ARB_texture_non_power_of_two = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_non_power_of_two"); GLAD_GL_ARB_texture_query_levels = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_query_levels"); GLAD_GL_ARB_texture_query_lod = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_query_lod"); GLAD_GL_ARB_texture_rectangle = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_rectangle"); GLAD_GL_ARB_texture_rg = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_rg"); GLAD_GL_ARB_texture_rgb10_a2ui = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_rgb10_a2ui"); GLAD_GL_ARB_texture_stencil8 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_stencil8"); GLAD_GL_ARB_texture_storage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_storage"); GLAD_GL_ARB_texture_storage_multisample = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_storage_multisample"); GLAD_GL_ARB_texture_swizzle = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_swizzle"); GLAD_GL_ARB_texture_view = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_view"); GLAD_GL_ARB_timer_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_timer_query"); GLAD_GL_ARB_transform_feedback2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback2"); GLAD_GL_ARB_transform_feedback3 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback3"); GLAD_GL_ARB_transform_feedback_instanced = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback_instanced"); GLAD_GL_ARB_transform_feedback_overflow_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback_overflow_query"); GLAD_GL_ARB_transpose_matrix = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transpose_matrix"); GLAD_GL_ARB_uniform_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_uniform_buffer_object"); GLAD_GL_ARB_vertex_array_bgra = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_array_bgra"); GLAD_GL_ARB_vertex_array_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_array_object"); GLAD_GL_ARB_vertex_attrib_64bit = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_attrib_64bit"); GLAD_GL_ARB_vertex_attrib_binding = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_attrib_binding"); GLAD_GL_ARB_vertex_blend = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_blend"); GLAD_GL_ARB_vertex_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_buffer_object"); GLAD_GL_ARB_vertex_program = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_program"); GLAD_GL_ARB_vertex_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_shader"); GLAD_GL_ARB_vertex_type_10f_11f_11f_rev = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_type_10f_11f_11f_rev"); GLAD_GL_ARB_vertex_type_2_10_10_10_rev = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_type_2_10_10_10_rev"); GLAD_GL_ARB_viewport_array = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_viewport_array"); GLAD_GL_ARB_window_pos = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_window_pos"); GLAD_GL_KHR_blend_equation_advanced = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_blend_equation_advanced"); GLAD_GL_KHR_blend_equation_advanced_coherent = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_blend_equation_advanced_coherent"); GLAD_GL_KHR_context_flush_control = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_context_flush_control"); GLAD_GL_KHR_debug = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_debug"); GLAD_GL_KHR_no_error = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_no_error"); GLAD_GL_KHR_parallel_shader_compile = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_parallel_shader_compile"); GLAD_GL_KHR_robust_buffer_access_behavior = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_robust_buffer_access_behavior"); GLAD_GL_KHR_robustness = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_robustness"); GLAD_GL_KHR_shader_subgroup = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_shader_subgroup"); GLAD_GL_KHR_texture_compression_astc_hdr = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_texture_compression_astc_hdr"); GLAD_GL_KHR_texture_compression_astc_ldr = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_texture_compression_astc_ldr"); GLAD_GL_KHR_texture_compression_astc_sliced_3d = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_texture_compression_astc_sliced_3d"); glad_gl_free_extensions(exts_i, num_exts_i); return 1; } static int glad_gl_find_core_gl(void) { int i, major, minor; const char* version; const char* prefixes[] = { "OpenGL ES-CM ", "OpenGL ES-CL ", "OpenGL ES ", NULL }; version = (const char*) glad_glGetString(GL_VERSION); if (!version) return 0; for (i = 0; prefixes[i]; i++) { const size_t length = strlen(prefixes[i]); if (strncmp(version, prefixes[i], length) == 0) { version += length; break; } } GLAD_IMPL_UTIL_SSCANF(version, "%d.%d", &major, &minor); GLAD_GL_VERSION_1_0 = (major == 1 && minor >= 0) || major > 1; GLAD_GL_VERSION_1_1 = (major == 1 && minor >= 1) || major > 1; GLAD_GL_VERSION_1_2 = (major == 1 && minor >= 2) || major > 1; GLAD_GL_VERSION_1_3 = (major == 1 && minor >= 3) || major > 1; GLAD_GL_VERSION_1_4 = (major == 1 && minor >= 4) || major > 1; GLAD_GL_VERSION_1_5 = (major == 1 && minor >= 5) || major > 1; GLAD_GL_VERSION_2_0 = (major == 2 && minor >= 0) || major > 2; GLAD_GL_VERSION_2_1 = (major == 2 && minor >= 1) || major > 2; GLAD_GL_VERSION_3_0 = (major == 3 && minor >= 0) || major > 3; GLAD_GL_VERSION_3_1 = (major == 3 && minor >= 1) || major > 3; GLAD_GL_VERSION_3_2 = (major == 3 && minor >= 2) || major > 3; GLAD_GL_VERSION_3_3 = (major == 3 && minor >= 3) || major > 3; return GLAD_MAKE_VERSION(major, minor); } int gladLoadGLUserPtr( GLADuserptrloadfunc load, void *userptr) { int version; glad_glGetString = (PFNGLGETSTRINGPROC) load(userptr, "glGetString"); if(glad_glGetString == NULL) return 0; if(glad_glGetString(GL_VERSION) == NULL) return 0; version = glad_gl_find_core_gl(); glad_gl_load_GL_VERSION_1_0(load, userptr); glad_gl_load_GL_VERSION_1_1(load, userptr); glad_gl_load_GL_VERSION_1_2(load, userptr); glad_gl_load_GL_VERSION_1_3(load, userptr); glad_gl_load_GL_VERSION_1_4(load, userptr); glad_gl_load_GL_VERSION_1_5(load, userptr); glad_gl_load_GL_VERSION_2_0(load, userptr); glad_gl_load_GL_VERSION_2_1(load, userptr); glad_gl_load_GL_VERSION_3_0(load, userptr); glad_gl_load_GL_VERSION_3_1(load, userptr); glad_gl_load_GL_VERSION_3_2(load, userptr); glad_gl_load_GL_VERSION_3_3(load, userptr); if (!glad_gl_find_extensions_gl(version)) return 0; glad_gl_load_GL_ARB_ES2_compatibility(load, userptr); glad_gl_load_GL_ARB_ES3_1_compatibility(load, userptr); glad_gl_load_GL_ARB_ES3_2_compatibility(load, userptr); glad_gl_load_GL_ARB_base_instance(load, userptr); glad_gl_load_GL_ARB_bindless_texture(load, userptr); glad_gl_load_GL_ARB_blend_func_extended(load, userptr); glad_gl_load_GL_ARB_buffer_storage(load, userptr); glad_gl_load_GL_ARB_cl_event(load, userptr); glad_gl_load_GL_ARB_clear_buffer_object(load, userptr); glad_gl_load_GL_ARB_clear_texture(load, userptr); glad_gl_load_GL_ARB_clip_control(load, userptr); glad_gl_load_GL_ARB_color_buffer_float(load, userptr); glad_gl_load_GL_ARB_compute_shader(load, userptr); glad_gl_load_GL_ARB_compute_variable_group_size(load, userptr); glad_gl_load_GL_ARB_copy_buffer(load, userptr); glad_gl_load_GL_ARB_copy_image(load, userptr); glad_gl_load_GL_ARB_debug_output(load, userptr); glad_gl_load_GL_ARB_direct_state_access(load, userptr); glad_gl_load_GL_ARB_draw_buffers(load, userptr); glad_gl_load_GL_ARB_draw_buffers_blend(load, userptr); glad_gl_load_GL_ARB_draw_elements_base_vertex(load, userptr); glad_gl_load_GL_ARB_draw_indirect(load, userptr); glad_gl_load_GL_ARB_draw_instanced(load, userptr); glad_gl_load_GL_ARB_fragment_program(load, userptr); glad_gl_load_GL_ARB_framebuffer_no_attachments(load, userptr); glad_gl_load_GL_ARB_framebuffer_object(load, userptr); glad_gl_load_GL_ARB_geometry_shader4(load, userptr); glad_gl_load_GL_ARB_get_program_binary(load, userptr); glad_gl_load_GL_ARB_get_texture_sub_image(load, userptr); glad_gl_load_GL_ARB_gl_spirv(load, userptr); glad_gl_load_GL_ARB_gpu_shader_fp64(load, userptr); glad_gl_load_GL_ARB_gpu_shader_int64(load, userptr); glad_gl_load_GL_ARB_imaging(load, userptr); glad_gl_load_GL_ARB_indirect_parameters(load, userptr); glad_gl_load_GL_ARB_instanced_arrays(load, userptr); glad_gl_load_GL_ARB_internalformat_query(load, userptr); glad_gl_load_GL_ARB_internalformat_query2(load, userptr); glad_gl_load_GL_ARB_invalidate_subdata(load, userptr); glad_gl_load_GL_ARB_map_buffer_range(load, userptr); glad_gl_load_GL_ARB_matrix_palette(load, userptr); glad_gl_load_GL_ARB_multi_bind(load, userptr); glad_gl_load_GL_ARB_multi_draw_indirect(load, userptr); glad_gl_load_GL_ARB_multisample(load, userptr); glad_gl_load_GL_ARB_multitexture(load, userptr); glad_gl_load_GL_ARB_occlusion_query(load, userptr); glad_gl_load_GL_ARB_parallel_shader_compile(load, userptr); glad_gl_load_GL_ARB_point_parameters(load, userptr); glad_gl_load_GL_ARB_polygon_offset_clamp(load, userptr); glad_gl_load_GL_ARB_program_interface_query(load, userptr); glad_gl_load_GL_ARB_provoking_vertex(load, userptr); glad_gl_load_GL_ARB_robustness(load, userptr); glad_gl_load_GL_ARB_sample_locations(load, userptr); glad_gl_load_GL_ARB_sample_shading(load, userptr); glad_gl_load_GL_ARB_sampler_objects(load, userptr); glad_gl_load_GL_ARB_separate_shader_objects(load, userptr); glad_gl_load_GL_ARB_shader_atomic_counters(load, userptr); glad_gl_load_GL_ARB_shader_image_load_store(load, userptr); glad_gl_load_GL_ARB_shader_objects(load, userptr); glad_gl_load_GL_ARB_shader_storage_buffer_object(load, userptr); glad_gl_load_GL_ARB_shader_subroutine(load, userptr); glad_gl_load_GL_ARB_shading_language_include(load, userptr); glad_gl_load_GL_ARB_sparse_buffer(load, userptr); glad_gl_load_GL_ARB_sparse_texture(load, userptr); glad_gl_load_GL_ARB_sync(load, userptr); glad_gl_load_GL_ARB_tessellation_shader(load, userptr); glad_gl_load_GL_ARB_texture_barrier(load, userptr); glad_gl_load_GL_ARB_texture_buffer_object(load, userptr); glad_gl_load_GL_ARB_texture_buffer_range(load, userptr); glad_gl_load_GL_ARB_texture_compression(load, userptr); glad_gl_load_GL_ARB_texture_multisample(load, userptr); glad_gl_load_GL_ARB_texture_storage(load, userptr); glad_gl_load_GL_ARB_texture_storage_multisample(load, userptr); glad_gl_load_GL_ARB_texture_view(load, userptr); glad_gl_load_GL_ARB_timer_query(load, userptr); glad_gl_load_GL_ARB_transform_feedback2(load, userptr); glad_gl_load_GL_ARB_transform_feedback3(load, userptr); glad_gl_load_GL_ARB_transform_feedback_instanced(load, userptr); glad_gl_load_GL_ARB_transpose_matrix(load, userptr); glad_gl_load_GL_ARB_uniform_buffer_object(load, userptr); glad_gl_load_GL_ARB_vertex_array_object(load, userptr); glad_gl_load_GL_ARB_vertex_attrib_64bit(load, userptr); glad_gl_load_GL_ARB_vertex_attrib_binding(load, userptr); glad_gl_load_GL_ARB_vertex_blend(load, userptr); glad_gl_load_GL_ARB_vertex_buffer_object(load, userptr); glad_gl_load_GL_ARB_vertex_program(load, userptr); glad_gl_load_GL_ARB_vertex_shader(load, userptr); glad_gl_load_GL_ARB_vertex_type_2_10_10_10_rev(load, userptr); glad_gl_load_GL_ARB_viewport_array(load, userptr); glad_gl_load_GL_ARB_window_pos(load, userptr); glad_gl_load_GL_KHR_blend_equation_advanced(load, userptr); glad_gl_load_GL_KHR_debug(load, userptr); glad_gl_load_GL_KHR_parallel_shader_compile(load, userptr); glad_gl_load_GL_KHR_robustness(load, userptr); return version; } int gladLoadGL( GLADloadfunc load) { return gladLoadGLUserPtr( glad_gl_get_proc_from_userptr, GLAD_GNUC_EXTENSION (void*) load); } #endif /* GLAD_GL_IMPLEMENTATION */ #endif /* __EMSCRIPTEN__ */ /* game framework. * - rlyeh, public domain * * ## V4K License * * This software is available under 3 licenses. Choose whichever you prefer. * ------------------------------------------------------------------------------ * ALTERNATIVE A - Public Domain (https://unlicense.org/) * ------------------------------------------------------------------------------ * This is free and unencumbered software released into the public domain. * * Anyone is free to copy, modify, publish, use, compile, sell, or distribute this * software, either in source code form or as a compiled binary, for any purpose, * commercial or non-commercial, and by any means. * * In jurisdictions that recognize copyright laws, the author or authors of this * software dedicate any and all copyright interest in the software to the public * domain. We make this dedication for the benefit of the public at large and to * the detriment of our heirs and successors. We intend this dedication to be an * overt act of relinquishment in perpetuity of all present and future rights to * this software under copyright law. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ------------------------------------------------------------------------------ * ALTERNATIVE B - MIT-0 (No Attribution clause) * ------------------------------------------------------------------------------ * Permission is hereby granted, free of charge, to any person obtaining a copy of this * software and associated documentation files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ------------------------------------------------------------------------------ * ALTERNATIVE C - Zero BSD License (https://opensource.org/licenses/FPL-1.0.0) * ------------------------------------------------------------------------------ * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. * * ## License: Contributed Code ------------------------------------------------ * * Dear Contributor, * * In order to ensure this project remains completely free and unencumbered by * anyone's copyright monopoly, it is advisable that you dedicate your code-base * contributions to the three licensing terms above. This removes any possible * ambiguity as to what terms somebody might have thought they were contributing * under, in case of a future dispute. These concerns are not unique to public * domain software. Most large, established open-source projects have a * Contributor License Agreement (CLA) process, of varying degrees of formality. * * Please add yourself to the list below before contributing. * Thanks. * * -- * * "I dedicate any and all copyright interest in this software to the three * license terms listed above. I make this dedication for the benefit of the * public at large and to the detriment of my heirs and successors. I intend * this dedication to be an overt act of relinquishment in perpetuity of all * present and future rights to this software under copyright law." * * Author (name) I agree (YES/NO) Files/Features (optional) * ------------------------------------------------------------------------------ * @r-lyeh YES Initial codebase * @zak@v4.games YES N/A * ------------------------------------------------------------------------------ */ #ifndef V4K_H #define V4K_H #ifdef __cplusplus extern "C" { #endif //----------------------------------------------------------------------------- // Headers #line 1 "v4k_config.h" // ----------------------------------------------------------------------------- // config directives #ifndef ENABLE_FASTCALL_LUA #define ENABLE_FASTCALL_LUA 1 ///+ #endif #ifndef ENABLE_PROFILER #define ENABLE_PROFILER ifdef(debug, 1, 0) ///+ #endif #ifndef ENABLE_SELFIES #define ENABLE_SELFIES 0 ///+ #endif #ifndef ENABLE_MEMORY_POISON #define ENABLE_MEMORY_POISON ifdef(debug, 1, 0) ///+ #endif #ifndef ENABLE_MEMORY_LEAKS #define ENABLE_MEMORY_LEAKS 0 ///+ #endif #ifndef ENABLE_LINUX_CALLSTACKS #define ENABLE_LINUX_CALLSTACKS 0 ///+ #endif // ----------------------------------------------------------------------------- // if/n/def hell #define ifdef(macro, yes, /*no*/...) ifdef_##macro(yes, __VA_ARGS__) #define ifndef(macro, yes, /*no*/...) ifdef_##macro(__VA_ARGS__, yes) #define is(macro) ifdef_##macro(1,0) #define isnt(macro) ifdef_##macro(0,1) #define ifdef_true(yes, /*no*/...) yes #define ifdef_false(yes, /*no*/...) __VA_ARGS__ #ifdef _MSC_VER #define ifdef_gcc ifdef_false #define ifdef_mingw ifdef_false #define ifdef_tcc ifdef_false #define ifdef_cl ifdef_true #elif defined __TINYC__ #define ifdef_gcc ifdef_false #define ifdef_mingw ifdef_false #define ifdef_tcc ifdef_true #define ifdef_cl ifdef_false #elif defined __MINGW64__ || defined __MINGW32__ #define ifdef_gcc ifdef_true #define ifdef_mingw ifdef_true #define ifdef_tcc ifdef_false #define ifdef_cl ifdef_false #else // also __clang__ #define ifdef_gcc ifdef_true #define ifdef_mingw ifdef_false #define ifdef_tcc ifdef_false #define ifdef_cl ifdef_false #endif #ifdef __cplusplus #define ifdef_cpp ifdef_true #define ifdef_c ifdef_false #else #define ifdef_c ifdef_true #define ifdef_cpp ifdef_false #endif #if defined _WIN32 #define ifdef_win32 ifdef_true #define ifdef_linux ifdef_false #define ifdef_osx ifdef_false #define ifdef_bsd ifdef_false #define ifdef_ems ifdef_false #elif defined __linux__ #define ifdef_win32 ifdef_false #define ifdef_linux ifdef_true #define ifdef_osx ifdef_false #define ifdef_bsd ifdef_false #define ifdef_ems ifdef_false #elif defined __APPLE__ #define ifdef_win32 ifdef_false #define ifdef_linux ifdef_false #define ifdef_osx ifdef_true #define ifdef_bsd ifdef_false #define ifdef_ems ifdef_false #elif defined __EMSCRIPTEN__ #define ifdef_win32 ifdef_false #define ifdef_linux ifdef_false #define ifdef_osx ifdef_false #define ifdef_bsd ifdef_false #define ifdef_ems ifdef_true #else // __FreeBSD__ || @todo: __ANDROID_API__ #define ifdef_win32 ifdef_false #define ifdef_linux ifdef_false #define ifdef_osx ifdef_false #define ifdef_bsd ifdef_true #define ifdef_ems ifdef_false #endif #ifdef NDEBUG // rely on NDEBUG as the official/portable way to disable asserts #define ifdef_debug ifdef_false #define ifdef_release ifdef_true #else #define ifdef_debug ifdef_true #define ifdef_release ifdef_false #endif #include #if (defined INTPTR_MAX && INTPTR_MAX == INT64_MAX) || defined(_M_X64) || defined(__amd64__) || defined(__x86_64__) || defined(__ppc64__) || __WORDSIZE == 64 #define ifdef_64 ifdef_true #define ifdef_32 ifdef_false #else #define ifdef_64 ifdef_false #define ifdef_32 ifdef_true #endif // ----------------------------------------------------------------------------- // new C keywords // @todo: autorun (needed?) #define countof(x) (int)(sizeof (x) / sizeof 0[x]) #define concat(a,b) conc4t(a,b) #define conc4t(a,b) a##b ///- #define macro(name) concat(name, __LINE__) #define defer(begin,end) for(int macro(i) = ((begin), 0); !macro(i); macro(i) = ((end), 1)) #define scope(end) defer((void)0, end) #define benchmark for(double macro(t) = -time_ss(); macro(t) < 0; printf("%.2fs (" FILELINE ")\n", macro(t)+=time_ss())) #define do_once static int macro(once) = 0; for(;!macro(once);macro(once)=1) #if is(cl) #define __thread __declspec(thread) #elif is(tcc) && is(win32) #define __thread __declspec(thread) // compiles fine, but does not work apparently #elif is(tcc) #define __thread #endif // usage: bool static(audio_is_init) = audio_init(); //#define static(var) static var; do_once var //----------------------------------------------------------------------------- // new C macros #define ASSERT(expr, ...) do { int fool_msvc[] = {0,}; if(!(expr)) { fool_msvc[0]++; breakpoint(va("!Expression failed: " #expr " " FILELINE "\n" __VA_ARGS__)); } } while(0) #define ASSERT_ONCE(expr, ...) do { int fool_msvc[] = {0,}; if(!(expr)) { fool_msvc[0]++; static int seen = 0; if(!seen) seen = 1, breakpoint(va("!Expression failed: " #expr " " FILELINE "\n" __VA_ARGS__)); } } while(0) #define STATIC_ASSERT(EXPR) typedef struct { unsigned macro(static_assert_on_line_) : !!(EXPR); } macro(static_assert_on_line_) #define FILELINE __FILE__ ":" STRINGIZE(__LINE__) #define STRINGIZE(x) STRINGIZ3(x) #define STRINGIZ3(x) #x ///- #define EXPAND(name, ...) EXPAND_QUOTE(EXPAND_JOIN(name, EXPAND_COUNT_ARGS(__VA_ARGS__)), (__VA_ARGS__)) #define EXPAND_QUOTE(x, y) x y ///- #define EXPAND_JOIN(name, count) EXPAND_J0IN(name, count) ///- #define EXPAND_J0IN(name, count) EXPAND_J01N(name, count) ///- #define EXPAND_J01N(name, count) name##count ///- #define EXPAND_COUNT_ARGS(...) EXPAND_ARGS((__VA_ARGS__, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) ///- #define EXPAND_ARGS(args) EXPAND_RETURN_COUNT args ///- #define EXPAND_RETURN_COUNT(_1_, _2_, _3_, _4_, _5_, _6_, _7_, _8_, _9_, count, ...) count ///- #if is(cl) && !is(cpp) #define INLINE __inline #else #define INLINE inline #endif #if is(cl) #define FORCE_INLINE __forceinline #elif is(gcc) #define FORCE_INLINE __attribute__((always_inline)) inline #else #define FORCE_INLINE INLINE #endif #if is(cl) && (_MSC_VER <= 1700) #define FINITE _finite #else #define FINITE isfinite #endif // usage: #define vec2(...) C_CAST(vec2, __VA_ARGS__) // typedef union vec2 { float X,Y; }; vec2 a = {0,1}, b = vec2(0,1); #define C_CAST(type, ...) ( ifdef(c,(type),type) { __VA_ARGS__ } ) // ----------------------------------------------------------------------------- // build info #ifndef BUILD_VERSION #define BUILD_VERSION "" #endif // ----------------------------------------------------------------------------- // visibility // win32 users would need to -DAPI=IMPORT/EXPORT as needed when using/building V4K as DLL. #define IMPORT ifdef(win32, ifdef(gcc, __attribute__ ((dllimport)), __declspec(dllimport))) #define EXPORT ifdef(win32, ifdef(gcc, __attribute__ ((dllexport)), __declspec(dllexport))) #define STATIC #ifndef API #define API STATIC #endif // ----------------------------------------------------------------------------- // system headers #ifndef _GNU_SOURCE #define _GNU_SOURCE ///- for linux #endif #if is(cl) && is(win32) // for VC IDE #define _CRT_SECURE_NO_WARNINGS ///- #define _CRT_NONSTDC_NO_DEPRECATE ///- #define _WINSOCK_DEPRECATED_NO_WARNINGS ///- #define _WIN32_WINNT 0x0600 ///- 0x0502 // GetInfoAddrW/FreeAddrInfoW for X86 #endif #if is(cl) #include // compile with /openmp to speed up some computations #endif #include //#include //#include #include // NAN #include // va_*(), ... #include // bool,true,false #include // u/int8/16/32/64_t #include // FILE,NULL #include // malloc,free,exit, #include // strlen,memset,memcpy, #if is(tcc) && is(win32) && defined(__x86_64) #include // @fixme workarounds on `tcc0.9.27 -m64` (win) for fmod()/trunc() functions. test: 00-easing broken otherwise //#define trunc(x) ((double)(int64_t)(x)) //#define fmod(x,y) ((x) - trunc((x) / (y)) * (y)) // @fixme workarounds on `tcc0.9.27 -m64` (win) for all functions with ending bool argument. test: 00-anims crashes otherwise #undef bool typedef char bool; // missing libm symbols on tinycc HEAD repo (tcc-x64 pre-0.9.28) //#define fabsf fabs #define sqrtf sqrt #define sinf sin #define asinf asin #define cosf cos #define acosf acos #define tanf tan #define atan2f atan2 #define powf pow #define floorf floor #define logf log #define ceilf ceil #define copysignf copysign //#define ldexpf ldexp #define expf exp //#define frexpf frexp #define fmodf fmod #define log10f log10 //#define logf log #define hypotf hypot #endif // ----------------------------------------------------------------------------- // pragma libs #if is(win32) && (is(cl) || is(tcc)) #pragma comment(lib, "advapi32") #pragma comment(lib, "comdlg32") #pragma comment(lib, "dbghelp") #pragma comment(lib, "gdi32") #pragma comment(lib, "ole32") #pragma comment(lib, "shell32") #pragma comment(lib, "user32") #pragma comment(lib, "winmm") #pragma comment(lib, "wininet") #pragma comment(lib, "ws2_32") #endif #if is(linux) && is(tcc) #pragma comment(lib, "dl") #pragma comment(lib, "m") #pragma comment(lib, "pthread") #endif #line 0 #line 1 "v4k_ds.h" // data structures and utils: array, set, map, hash, sort. // - rlyeh, public domain // ----------------------------------------------------------------------------- // sort API int sort_64(const void *a, const void *b); // ----------------------------------------------------------------------------- // less API int less_64(uint64_t a, uint64_t b); API int less_int(int a, int b); API int less_ptr(void *a, void *b); API int less_str(char *a, char *b); // ----------------------------------------------------------------------------- // un/hash API uint32_t unhash_32(uint32_t x); API uint32_t hash_32(uint32_t x); API uint64_t hash_64(uint64_t x); API uint64_t hash_flt(double x); API uint64_t hash_int(int key); API uint64_t hash_ptr(const void* ptr); API uint64_t hash_bin(const void* ptr, unsigned len); API uint64_t hash_str(const char* str); // ----------------------------------------------------------------------------- // bits API uint64_t popcnt64(uint64_t x); // ----------------------------------------------------------------------------- // vector based allocator (x1.75 enlarge factor) API void* vrealloc( void* p, size_t sz ); API size_t vlen( void* p ); // ----------------------------------------------------------------------------- // arrays #if is(cpp) #define array_cast(x) (decltype x) #else #define array_cast(x) (void *) #endif #define array(t) t* #define array_init(t) ( (t) = 0 ) #define array_resize(t, n) ( array_c_ = array_count(t), array_n_ = (n), array_realloc_((t),array_n_), (array_n_>array_c_? memset(array_c_+(t),0,(array_n_-array_c_)*sizeof(0[t])) : (void*)0), (t) ) #define array_push(t, ...) ( array_realloc_((t),array_count(t)+1), (t)[ array_count(t) - 1 ] = (__VA_ARGS__) ) #define array_pop(t) ( array_realloc_((t), array_count(t)-1) ) #define array_back(t) ( &(t)[ array_count(t)-1 ] ) // ( (t) ? &(t)[ array_count(t)-1 ] : NULL ) #define array_data(t) (t) #define array_at(t,i) (t[i]) #define array_count(t) (int)( (t) ? array_vlen_(t) / sizeof(0[t]) : 0u ) #define array_bytes(t) (int)( (t) ? array_vlen_(t) : 0u ) #define array_sort(t, cmpfunc) qsort( t, array_count(t), sizeof(0[t]), (uintptr_t)cmpfunc == (uintptr_t)strcmp ? (void*)strcmp_qsort : (void*)cmpfunc ) #define array_empty(t) ( !array_count(t) ) #define array_push_front(arr,x) \ (array_resize((arr), array_count(arr)+1), memmove((arr)+1, (arr), sizeof(0[arr])*array_count(arr)), 0[arr] = (x)) #define array_pop_front(arr) ( \ (array_count(arr) > 1 ? memmove((arr), (arr)+1, sizeof(0[arr])*(array_count(arr)-1)) : (void*)0), \ (array_count(arr) > 0 ? array_resize(arr, array_count(arr) - 1 ) : array_resize( arr, 0 ) ) ) static __thread unsigned array_c_; static __thread unsigned array_n_; #if 0 // original: no reserve support #define array_reserve(t, n) ((void)0) // not implemented #define array_clear(t) ( array_realloc_((t), 0), (t) = 0 ) #define array_vlen_(t) ( vlen(t) - 0 ) #define array_realloc_(t,n) ( (t) = array_cast(t) vrealloc((t), ((n)+0) * sizeof(0[t])) ) #define array_free(t) array_clear(t) #else // new: with reserve support (bugs?) #define array_reserve(t, n) ( array_realloc_((t),(n)), array_clear(t) ) #define array_clear(t) ( array_realloc_((t),0) ) // -1 #define array_vlen_(t) ( vlen(t) - sizeof(0[t]) ) // -1 #define array_realloc_(t,n) ( (t) = array_cast(t) vrealloc((t), ((n)+1) * sizeof(0[t])) ) // +1 #define array_free(t) ( array_realloc_((t), -1), (t) = 0 ) // -1 #endif #define array_reverse(t) \ do if( array_count(t) ) { \ for(int l = array_count(t), e = l-1, i = (array_push(t, 0[t]), 0); i <= e/2; ++i ) \ { l[t] = i[t]; i[t] = (e-i)[t]; (e-i)[t] = l[t]; } \ array_pop(t); \ } while(0) #define array_foreach(t,val_t,v) for each_array(t,val_t,v) #define each_array(t,val_t,v) \ ( int __it = 0, __end = array_count(t); __it < __end; ++__it ) \ for( val_t v = __it[t], *on__ = &v; on__; on__ = 0 ) #define array_foreach_ptr(t,val_t,v) for each_array_ptr(t,val_t,v) #define each_array_ptr(t,val_t,v) \ ( int __it = 0, __end = array_count(t); __it < __end; ++__it ) \ for( val_t *v = (val_t*)&__it[t]; v; v = 0 ) #define array_search(t, key, cmpfn) /* requires sorted array beforehand */ \ bsearch(&key, t, array_count(t), sizeof(t[0]), cmpfn ) #define array_insert(t, i, n) do { \ int ac = array_count(t); \ if( i >= ac ) { \ array_push(t, n); \ } else { \ array_push(t, array_back(t)); \ memmove( &(t)[(i)+1], &(t)[i], (ac - (i)) * sizeof(t[0]) ); \ (t)[ i ] = (n); \ } \ } while(0) #define array_copy(t, src) do { /*todo: review old vrealloc call!*/ \ array_free(t); \ (t) = vrealloc( (t), array_count(src) * sizeof(0[t])); \ memcpy( (t), src, array_count(src) * sizeof(0[t])); \ } while(0) #define array_erase(t, i) do { /*may alter ordering*/ \ memcpy( &(t)[i], &(t)[array_count(t) - 1], sizeof(0[t])); \ array_pop(t); \ } while(0) #define array_unique(t, cmpfunc) do { /*@todo: optimize me. requires array_sort() beforehand*/ \ int cnt = array_count(t), cnt_bak = cnt; \ if( cnt > 1 ) { \ for( int i = 1; i < cnt; ++i ) { \ while( i < cnt && !cmpfunc(&(t)[i-1], &(t)[i]) ) { \ memmove(&(t)[i-1], &(t)[i], (cnt - 1 - i) * sizeof((t)[0]) ) ; \ --cnt; \ } \ } \ if( cnt_bak != cnt ) array_resize((t), cnt); \ } \ } while(0) #if 0 // snippet below does work #define array_unique(t, cmpfunc) \ array_sort(t, cmpfunc); \ for( int i = 0, end = array_count(t) - 1; i < end; ) { \ if( !strcmp(t[i], t[i+1]) ) { \ /* array_erase(t, i+1); */ \ memmove(&(t)[i+1], &(t)[i+2], (end - 1 - i) * sizeof((t)[0]) ); \ array_pop(t); \ --end; \ } else { \ ++i; \ } \ } #endif #define array_shuffle(t) do { /* https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle */ \ void* tmp = stack(sizeof(0[t])); \ for( int i = 0, n = array_count(t); i < n; ++i ) { \ int j = randi(i, n); /* j random integer such that [i,n) i<=j // ideas from: https://en.wikipedia.org/wiki/Hash_table // ideas from: https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/ // ideas from: http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/ // config #ifndef SET_HASHSIZE #define SET_HASHSIZE (4096 << 4) #endif #ifndef SET_DONT_ERASE #define SET_DONT_ERASE 1 #endif // public api #define set(K) \ struct { set base; struct { set_item p; K key; } tmp, *ptr; K *tmpval; \ int (*typed_cmp)(K, K); uint64_t (*typed_hash)(K); } * #define set_init(m, cmpfn, hashfn) ( \ (m) = set_cast(m) REALLOC(0, sizeof(*m)), \ set_init(&(m)->base), \ (m)->base.cmp = (int(*)(void*,void*))( (m)->typed_cmp = set_cast(cmpfn) cmpfn ), \ (m)->base.hash = (uint64_t(*)(void*))( (m)->typed_hash = set_cast(hashfn) hashfn ) \ ) #define set_free(m) ( \ set_clear(m), \ set_free(&(m)->base), \ (m) = set_cast(m) REALLOC((m), 0), \ (m) = 0 \ ) #define set_insert(m, k) ( \ (m)->ptr = set_cast((m)->ptr) REALLOC(0, sizeof((m)->tmp)), \ (m)->ptr->p.keyhash = (m)->typed_hash((m)->ptr->key = (k)), \ set_insert(&(m)->base, &(m)->ptr->p, &(m)->ptr->key, (m)->ptr->p.keyhash, (m)->ptr), \ &(m)->ptr->key \ ) #define set_find(m, k) ( \ (m)->ptr = &(m)->tmp, \ (m)->ptr->p.keyhash = (m)->typed_hash((m)->ptr->key = (k)), \ (m)->ptr = set_cast((m)->ptr) set_find(&(m)->base, &(m)->ptr->key, (m)->ptr->p.keyhash), \ (m)->ptr ? &(m)->ptr->key : 0 \ ) #define set_find_or_add(m, k) ( \ (m)->tmp.key = (k), \ (m)->tmpval = set_find((m), ((m)->tmp.key)), \ (m)->tmpval = (m)->tmpval ? (m)->tmpval : set_insert((m), ((m)->tmp.key)) \ ) #define set_find_or_add_allocated_key(m, k) ( \ (m)->tmp.key = (k), \ (m)->tmpval = set_find((m), ((m)->tmp.key)), \ (m)->tmpval = (m)->tmpval ? FREE((m)->tmp.key), (m)->tmpval : set_insert((m), ((m)->tmp.key)) \ ) #define set_erase(m, k) ( \ (m)->ptr = &(m)->tmp, \ (m)->ptr->p.keyhash = (m)->typed_hash((m)->ptr->key = (k)), \ set_erase(&(m)->base, &(m)->ptr->key, (m)->ptr->p.keyhash) \ ) #define set_foreach for each_set #define each_set(m,key_t,k) \ ( int i_ = (m)->base.count ? 0 : SET_HASHSIZE; i_ < SET_HASHSIZE; ++i_) \ for( set_item *cur_ = (m)->base.array[i_], *on_ = cur_; cur_; on_ = cur_ = cur_->next ) \ for( key_t k = *(key_t *)cur_->key; on_; on_ = 0 ) #define set_foreach_ptr for each_set_ptr #define each_set_ptr(m,key_t,k) \ ( int i_ = (m)->base.count ? 0 : SET_HASHSIZE; i_ < SET_HASHSIZE; ++i_) \ for( set_item *cur_ = (m)->base.array[i_], *on_ = cur_; cur_; on_ = cur_ = cur_->next ) \ for( key_t *k = (key_t *)cur_->key; on_; on_ = 0 ) #define set_clear(m) ( \ set_clear(&(m)->base) \ ) #define set_isempty(m) set_isempty(&(m)->base) #define set_count(m) set_count(&(m)->base) #define set_gc(m) set_gc(&(m)->base) #ifndef set_init_int #define set_init_int(m) set_init((m), less_int, hash_64) // hash_int) #define set_init_str(m) set_init((m), less_str, hash_str) #define set_init_ptr(m) set_init((m), less_ptr, hash_ptr) #endif // private: #if is(cpp) #define set_cast(t) (decltype(t)) #else #define set_cast(t) (void *) #endif typedef struct set_item { struct set_item *next; uint64_t keyhash; void *key; void *super; } set_item; typedef struct set { array(set_item*) array; int (*cmp)(void *, void *); uint64_t (*hash)(void *); int count; } set; API void (set_init)(set *m); API void (set_free)(set *m); API void (set_insert)(set *m, set_item *p, void *key, uint64_t keyhash, void *super); API void (set_erase)(set *m, void *key, uint64_t keyhash); API void* (set_find)(const set *m, void *key, uint64_t keyhash); API int (set_isempty)(const set *m); API int (set_count)(const set *m); API void (set_gc)(set *m); // only if using SET_DONT_ERASE API void (set_clear)(set* m); // ----------------------------------------------------------------------------- // map // ideas from: https://en.wikipedia.org/wiki/Hash_table // ideas from: https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/ // ideas from: http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/ // config #ifndef MAP_HASHSIZE #define MAP_HASHSIZE (4096 << 4) #endif #ifndef MAP_DONT_ERASE #define MAP_DONT_ERASE 1 #endif // public api #define map(K,V) \ struct { map base; struct { pair p; K key; V val; } tmp, *ptr; V* tmpval; \ int (*typed_cmp)(K, K); uint64_t (*typed_hash)(K); } * #define map_init(m, cmpfn, hashfn) ( \ (m) = map_cast(m) REALLOC(0, sizeof(*(m))), \ map_init(&(m)->base), \ (m)->base.cmp = (int(*)(void*,void*))( (m)->typed_cmp = map_cast((m)->typed_cmp) cmpfn), \ (m)->base.hash = (uint64_t(*)(void*))( (m)->typed_hash = map_cast((m)->typed_hash) hashfn ) \ ) #define map_free(m) ( \ map_free(&(m)->base), \ map_cast(m) REALLOC((m), sizeof(*(m))), (m) = 0 \ ) #define map_insert(m, k, v) ( \ (m)->ptr = map_cast((m)->ptr) REALLOC(0, sizeof((m)->tmp)), \ (m)->ptr->val = (v), \ (m)->ptr->p.keyhash = (m)->typed_hash((m)->ptr->key = (k)), \ map_insert(&(m)->base, &(m)->ptr->p, &(m)->ptr->key, &(m)->ptr->val, (m)->ptr->p.keyhash, (m)->ptr), \ &(m)->ptr->val \ ) #define map_find(m, k) ( \ (m)->ptr = &(m)->tmp, \ (m)->ptr->p.keyhash = (m)->typed_hash((m)->ptr->key = (k)), \ (m)->ptr = map_cast((m)->ptr) map_find(&(m)->base, &(m)->ptr->key, (m)->ptr->p.keyhash), \ (m)->ptr ? &(m)->ptr->val : 0 \ ) #define map_find_or_add(m, k, v) ( \ (m)->tmp.key = (k), (m)->tmp.val = (v), \ (m)->tmpval = map_find((m), ((m)->tmp.key)), \ (m)->tmpval = (m)->tmpval ? (m)->tmpval : map_insert((m), ((m)->tmp.key), ((m)->tmp.val)) \ ) #define map_find_or_add_allocated_key(m, k, v) ( \ (m)->tmp.key = (k), (m)->tmp.val = (v), \ (m)->tmpval = map_find((m), ((m)->tmp.key)), \ (m)->tmpval = (m)->tmpval ? FREE((m)->tmp.key), (m)->tmpval : map_insert((m), ((m)->tmp.key), ((m)->tmp.val)) \ ) #define map_erase(m, k) ( \ (m)->ptr = &(m)->tmp, \ (m)->ptr->p.keyhash = (m)->typed_hash((m)->ptr->key = (k)), \ map_erase(&(m)->base, &(m)->ptr->key, (m)->ptr->p.keyhash) \ ) #define map_foreach for each_map #define each_map(m,key_t,k,val_t,v) \ ( int i_ = (m)->base.count ? 0 : MAP_HASHSIZE; i_ < MAP_HASHSIZE; ++i_) \ for( pair *cur_ = (m)->base.array[i_], *on_ = cur_; cur_; on_ = cur_ = cur_->next ) \ for( key_t k = *(key_t *)cur_->key; on_; ) \ for( val_t v = *(val_t *)cur_->value; on_; on_ = 0 ) #define map_foreach_ptr for each_map_ptr #define each_map_ptr(m,key_t,k,val_t,v) \ ( int i_ = (m)->base.count ? 0 : MAP_HASHSIZE; i_ < MAP_HASHSIZE; ++i_) \ for( pair *cur_ = (m)->base.array[i_], *on_ = cur_; cur_; on_ = cur_ = cur_->next ) \ for( key_t *k = (key_t *)cur_->key; on_; ) \ for( val_t *v = (val_t *)cur_->value; on_; on_ = 0 ) #define map_foreach_ptr_sorted for each_map_ptr_sorted #define each_map_ptr_sorted(m,key_t,k,val_t,v) \ ( int i_ = (map_sort(&(m)->base), 0); i_ < array_count((m)->base.sorted); ++i_) \ for( pair *cur_ = (m)->base.sorted[i_]; cur_; ) \ for( key_t *k = (key_t *)cur_->key; cur_; ) \ for( val_t *v = (val_t *)cur_->value; cur_; cur_ = 0 ) #define map_clear(m) ( \ map_clear(&(m)->base) \ ) #define map_isempty(m) map_isempty(&(m)->base) #define map_count(m) map_count(&(m)->base) #define map_gc(m) map_gc(&(m)->base) // aliases: #ifndef map_init_int #define map_init_int(m) map_init((m), less_int, hash_64) // hash_int #define map_init_str(m) map_init((m), less_str, hash_str) #define map_init_ptr(m) map_init((m), less_ptr, hash_ptr) #endif // private: #if is(cpp) #define map_cast(t) (decltype(t)) #else #define map_cast(t) (void *) #endif typedef struct pair { struct pair *next; uint64_t keyhash; void *key; void *value; void *super; } pair; typedef struct map { array(pair*) array; int (*cmp)(void *, void *); uint64_t (*hash)(void *); int count:31; int is_sorted:1; array(pair*) sorted; } map; API void (map_init)(map *m); API void (map_free)(map *m); API void (map_insert)(map *m, pair *p, void *key, void *value, uint64_t keyhash, void *super); API void (map_erase)(map *m, void *key, uint64_t keyhash); API void* (map_find)(map *m, void *key, uint64_t keyhash); API int (map_isempty)(map *m); API int (map_count)(map *m); API void (map_gc)(map *m); // only if using MAP_DONT_ERASE API bool (map_sort)(map* m); API void (map_clear)(map* m); // ----------------------------------------------------------------------------- // compile-time fourcc, eightcc API char *cc4str(unsigned cc); API char *cc8str(uint64_t cc); enum { # define _(a,b,c,d,e) cc__##a, cc__##b, cc__##c, cc__##d, cc__##e cc__1 = '1', _(2,3,4,5,6),_(7,8,9,0,_), cc__ = ' ', cc__A = 'A', _(B,C,D,E,F),_(G,H,I,J,K),_(L,M,N,O,P),_(Q,R,S,T,U),_(V,W,X,Y,Z), cc__a = 'a', _(b,c,d,e,f),_(g,h,i,j,k),_(l,m,n,o,p),_(q,r,s,t,u),_(v,w,x,y,z), # undef _ }; #ifdef BIG #define cc4(a,b,c,d) ((uint32_t)(cc__##a<<24) | (cc__##b<<16) | (cc__##c<<8) | (cc__##d<<0)) #define cc8(a,b,c,d,e,f,g,h) (((uint64_t)cc4(a,b,c,d) << 32ULL) | cc4(e,f,g,h)) #else #define cc4(a,b,c,d) ((uint32_t)(cc__##d<<24) | (cc__##c<<16) | (cc__##b<<8) | (cc__##a<<0)) #define cc8(a,b,c,d,e,f,g,h) (((uint64_t)cc4(e,f,g,h) << 32ULL) | cc4(a,b,c,d)) #endif #define cc3(a,b,c) cc4(,a,b,c) #define cc5(a,b,c,d,e) cc6(,a,b,c,d,e) #define cc6(a,b,c,d,e,f) cc7(,a,b,c,d,e,f) #define cc7(a,b,c,d,e,f,g) cc8(,a,b,c,d,e,f,g) #line 0 #line 1 "v4k_math.h" // ----------------------------------------------------------------------------- // math framework: rand, ease, vec2, vec3, vec4, quat, mat2, mat33, mat34, mat4 // - rlyeh, public domain // // Credits: @ands+@krig+@vurtun (PD), @datenwolf (WTFPL2), @evanw+@barerose (CC0), @sgorsten (Unlicense). #define C_EPSILON (1e-6) #define C_PI (3.141592654f) // (3.14159265358979323846f) #define TO_RAD (C_PI/180.f) #define TO_DEG (180.f/C_PI) // ---------------------------------------------------------------------------- //#define ptr(type) 0[&(type).x] #define vec2i(x, y ) C_CAST(vec2i,(int)(x), (int)(y) ) #define vec3i(x, y, z ) C_CAST(vec3i,(int)(x), (int)(y), (int)(z) ) #define vec2(x, y ) C_CAST(vec2, (float)(x), (float)(y) ) #define vec3(x, y, z ) C_CAST(vec3, (float)(x), (float)(y), (float)(z), ) #define vec4(x, y, z, w) C_CAST(vec4, (float)(x), (float)(y), (float)(z), (float)(w)) #define quat(x, y, z, w) C_CAST(quat, (float)(x), (float)(y), (float)(z), (float)(w)) #define axis(x, y, z) C_CAST(axis, (float)(x), (float)(y), (float)(z)) #define mat33(...) C_CAST(mat33, __VA_ARGS__ ) #define mat34(...) C_CAST(mat34, __VA_ARGS__ ) #define mat44(...) C_CAST(mat44, __VA_ARGS__ ) typedef union vec2i{ struct { int X,Y; }; struct { int x,y; }; struct { int r,g; }; struct { int w,h; }; struct { int min,max; }; struct { int from,to; }; struct { int src,dst; }; int v2[2]; int array[1]; } vec2i; typedef union vec3i{ struct { int X,Y,Z; }; struct { int x,y,z; }; struct { int r,g,b; }; struct { int w,h,d; }; struct { int min,max; }; struct { int from,to,step; }; struct { int src,dst; }; int v3[3]; int array[1]; } vec3i; typedef union vec2 { struct { float X,Y; }; struct { float x,y; }; struct { float r,g; }; struct { float w,h; }; struct { float min,max; }; struct { float from,to; }; struct { float src,dst; }; float v2[2]; float array[1]; } vec2; typedef union vec3 { struct { float X,Y,Z; }; struct { float x,y,z; }; struct { float r,g,b; }; struct { float min,max; }; struct { float from,to; }; vec2 xy; vec2 rg; vec2 wh; float v3[3]; float array[1]; } vec3; typedef union vec4 { struct { float X,Y,Z,W; }; struct { float x,y,z,w; }; struct { float r,g,b,a; }; struct { float min,max; }; struct { float from,to; }; vec2 xy; vec3 xyz; vec2 rg; vec3 rgb; vec2 wh; vec3 whd; float v4[4]; float array[1]; } vec4; typedef union quat { struct { float X,Y,Z,W; }; struct { float x,y,z,w; }; vec3 xyz; vec4 xyzw; float v4[4]; float array[1]; } quat; typedef float mat33[9]; typedef float mat34[12]; typedef float mat44[16]; // ---------------------------------------------------------------------------- API void randset(uint64_t state); API uint64_t rand64(void); API double randf(void); // [0, 1) interval API int randi(int mini, int maxi); // [mini, maxi) interval //API double rng(void); // [0..1) Lehmer RNG "minimal standard" // ---------------------------------------------------------------------------- API float simplex1( float x ); API float simplex2( vec2 xy ); API float simplex3( vec3 xyz ); API float simplex4( vec4 xyzw ); // ---------------------------------------------------------------------------- API float ease_linear(float t); API float ease_out_sine(float t); API float ease_out_quad(float t); API float ease_out_cubic(float t); API float ease_out_quart(float t); API float ease_out_quint(float t); API float ease_out_expo(float t); API float ease_out_circ(float t); API float ease_out_back(float t); API float ease_out_elastic(float t); API float ease_out_bounce(float t); API float ease_in_sine(float t); API float ease_in_quad(float t); API float ease_in_cubic(float t); API float ease_in_quart(float t); API float ease_in_quint(float t); API float ease_in_expo(float t); API float ease_in_circ(float t); API float ease_in_back(float t); API float ease_in_elastic(float t); API float ease_in_bounce(float t); API float ease_inout_sine(float t); API float ease_inout_quad(float t); API float ease_inout_cubic(float t); API float ease_inout_quart(float t); API float ease_inout_quint(float t); API float ease_inout_expo(float t); API float ease_inout_circ(float t); API float ease_inout_back(float t); API float ease_inout_elastic(float t); API float ease_inout_bounce(float t); API float ease_inout_perlin(float t); enum EASE_FLAGS { EASE_LINEAR, EASE_SINE, EASE_QUAD, EASE_CUBIC, EASE_QUART, EASE_QUINT, EASE_EXPO, EASE_CIRC, EASE_BACK, EASE_ELASTIC, EASE_BOUNCE, EASE_IN, EASE_INOUT = EASE_IN * 2, EASE_OUT = 0, }; API float ease(float t01, unsigned mode); // 0=linear,1=out_sine...31=inout_perlin API float ease_ping_pong(float t, float(*fn1)(float), float(*fn2)(float)); API float ease_pong_ping(float t, float(*fn1)(float), float(*fn2)(float)); // ---------------------------------------------------------------------------- API float deg (float radians); API float rad (float degrees); API int mini (int a, int b); API int maxi (int a, int b); API int absi (int a ); API int clampi (int v,int a,int b); API float minf (float a, float b); API float maxf (float a, float b); API float absf (float a ); API float pmodf (float a, float b); API float signf (float a) ; API float clampf (float v,float a,float b); API float mixf (float a,float b,float t); API float fractf (float a); // ---------------------------------------------------------------------------- API vec2 ptr2 (const float *a ); // API vec2 neg2 (vec2 a ); API vec2 add2 (vec2 a, vec2 b); API vec2 sub2 (vec2 a, vec2 b); API vec2 mul2 (vec2 a, vec2 b); API vec2 div2 (vec2 a, vec2 b); API vec2 inc2 (vec2 a, float b); API vec2 dec2 (vec2 a, float b); API vec2 scale2 (vec2 a, float b); API vec2 pmod2 (vec2 a, float b); API vec2 min2 (vec2 a, vec2 b); API vec2 max2 (vec2 a, vec2 b); API vec2 abs2 (vec2 a ); API vec2 floor2 (vec2 a ); API vec2 fract2 (vec2 a ); API vec2 ceil2 (vec2 a ); API float dot2 (vec2 a, vec2 b); API vec2 refl2 (vec2 a, vec2 b); API float cross2 (vec2 a, vec2 b); API float len2sq (vec2 a ); API float len2 (vec2 a ); API vec2 norm2 (vec2 a ); API int finite2 (vec2 a ); API vec2 mix2 (vec2 a,vec2 b,float t); API vec2 clamp2(vec2 v,vec2 a,vec2 b); API vec2 clamp2f(vec2 v,float a,float b); // ---------------------------------------------------------------------------- API vec3 rnd3 (void); // @todo: rnd2,rnd4,rndq API vec3 ptr3 (const float *a ); API vec3 vec23 (vec2 a, float z ); // API vec3 neg3 (vec3 a ); API vec3 add3 (vec3 a, vec3 b); API vec3 sub3 (vec3 a, vec3 b); API vec3 mul3 (vec3 a, vec3 b); API vec3 div3 (vec3 a, vec3 b); API vec3 inc3 (vec3 a, float b); API vec3 dec3 (vec3 a, float b); API vec3 scale3 (vec3 a, float b); API vec3 pmod3 (vec3 a, float b); API vec3 min3 (vec3 a, vec3 b); API vec3 max3 (vec3 a, vec3 b); API vec3 abs3 (vec3 a ); API vec3 floor3 (vec3 a ); API vec3 fract3 (vec3 a ); API vec3 ceil3 (vec3 a ); API vec3 cross3 (vec3 a, vec3 b); API float dot3 (vec3 a, vec3 b); API vec3 refl3 (vec3 a, vec3 b); API float len3sq (vec3 a ); API float len3 (vec3 a ); API vec3 norm3 (vec3 a ); API vec3 norm3sq (vec3 a ); API int finite3 (vec3 a ); API vec3 mix3 (vec3 a,vec3 b,float t); API vec3 clamp3(vec3 v,vec3 a,vec3 b); API vec3 clamp3f(vec3 v,float a,float b); //vec3 tricross3 (vec3 a, vec3 b, vec3 c); API void ortho3 (vec3 *left, vec3 *up, vec3 v); API vec3 rotatex3 (vec3 dir, float degrees); API vec3 rotatey3 (vec3 dir, float degrees); API vec3 rotatez3 (vec3 dir, float degrees); // ---------------------------------------------------------------------------- API vec4 ptr4 (const float *a ); API vec4 vec34 (vec3 a, float w ); // API vec4 neg4 (vec4 a ); API vec4 add4 (vec4 a, vec4 b); API vec4 sub4 (vec4 a, vec4 b); API vec4 mul4 (vec4 a, vec4 b); API vec4 div4 (vec4 a, vec4 b); API vec4 inc4 (vec4 a, float b); API vec4 dec4 (vec4 a, float b); API vec4 scale4 (vec4 a, float b); API vec4 pmod4 (vec4 a, float b); API vec4 min4 (vec4 a, vec4 b); API vec4 max4 (vec4 a, vec4 b); API vec4 abs4 (vec4 a ); API vec4 floor4 (vec4 a ); API vec4 fract4 (vec4 a ); API vec4 ceil4 (vec4 a ); API float dot4 (vec4 a, vec4 b); API vec4 refl4 (vec4 a, vec4 b); API float len4sq (vec4 a ); API float len4 (vec4 a ); API vec4 norm4 (vec4 a ); API vec4 norm4sq (vec4 a ); API int finite4 (vec4 a ); API vec4 mix4 (vec4 a,vec4 b,float t); API vec4 clamp4(vec4 v,vec4 a,vec4 b); API vec4 clamp4f(vec4 v,float a,float b); // vec4 cross4(vec4 v0, vec4 v1); // ---------------------------------------------------------------------------- API quat idq ( ); API quat ptrq (const float *a ); API quat vec3q (vec3 a, float w ); API quat vec4q (vec4 a ); // API quat negq (quat a ); API quat conjq (quat a ); API quat addq (quat a, quat b); API quat subq (quat a, quat b); API quat mulq (quat p, quat q); API quat scaleq (quat a, float s); API quat normq (quat a ); API float dotq (quat a, quat b); API quat mixq(quat a, quat b, float t); /* quat lerpq(quat a, quat b, float s); return norm(quat((1-s)*a.x + s*b.x, (1-s)*a.y + s*b.y, (1-s)*a.z + s*b.z, (1-s)*a.w + s*b.w)); }*/ API quat slerpq(quat a, quat b, float s); API quat rotationq(float deg,float x,float y,float z); API quat mat44q (mat44 M); API vec3 rotate3q_2(vec3 v, quat q); API vec3 rotate3q(vec3 v, quat r); // euler <-> quat API vec3 euler (quat q); API quat eulerq (vec3 pyr_degrees); // ---------------------------------------------------------------------------- API void scaling33(mat33 m, float x, float y, float z); API void scale33(mat33 m, float x, float y, float z); API void id33(mat33 m); API void extract33(mat33 m, const mat44 m4); API void copy33(mat33 m, const mat33 a);// API vec3 mulv33(mat33 m, vec3 v); API void multiply33x2(mat33 m, const mat33 a, const mat33 b); API void rotation33(mat33 m, float degrees, float x,float y,float z); API void rotationq33(mat33 m, quat q); API void rotate33(mat33 r, float degrees, float x,float y,float z); API void compose33(mat33 m, quat r, vec3 s); // ---------------------------------------------------------------------------- API void id34(mat34 m); API void copy34(mat34 m, const mat34 a); API void scale34(mat34 m, float s); API void add34(mat34 m, mat34 n); API void muladd34(mat34 m, mat34 n, float s); API void add34x2(mat34 m, mat34 n, mat34 o); API void lerp34(mat34 m, mat34 n, mat34 o, float alpha); // mix34? API void multiply34x2(mat34 m, const mat34 m0, const mat34 m1); API void multiply34(mat34 m, const mat34 a); API void multiply34x3(mat34 m, const mat34 a, const mat34 b, const mat34 c); API void compose34(mat34 m, vec3 t, quat q, vec3 s); API void invert34(mat34 m, const mat34 o); // ---------------------------------------------------------------------------- API void id44(mat44 m); API void identity44(mat44 m); API void copy44(mat44 m, const mat44 a); API void multiply44x2(mat44 m, const mat44 a, const mat44 b); API void multiply44x3(mat44 m, const mat44 a, const mat44 b, const mat44 c); API void multiply44(mat44 m, const mat44 a); // --- API void ortho44(mat44 m, float l, float r, float b, float t, float n, float f); API void frustum44(mat44 m, float l, float r, float b, float t, float n, float f); API void perspective44(mat44 m, float fovy_degrees, float aspect, float nearp, float farp); API void lookat44(mat44 m, vec3 eye, vec3 center, vec3 up); // --- API void translation44(mat44 m, float x, float y, float z); API void translate44(mat44 m, float x, float y, float z); API void relocate44(mat44 m, float x, float y, float z); API void rotationq44(mat44 m, quat q); API void rotation44(mat44 m, float degrees, float x, float y, float z); API void rotate44(mat44 m, float degrees, float x, float y, float z); API void scaling44(mat44 m, float x, float y, float z); API void scale44(mat44 m, float x, float y, float z); // --- API void transpose44(mat44 m, const mat44 a); API float det44(const mat44 M); API bool invert44(mat44 T, const mat44 M); API void compose44(mat44 m, vec3 t, quat q, vec3 s); // ---------------------------------------------------------------------------- API vec3 transformq(const quat q, const vec3 v); API vec3 transform33(const mat33 m, vec3 p); API vec3 transform344(const mat44 m, const vec3 p); API vec4 transform444(const mat44 m, const vec4 p); API bool unproject44(vec3 *out, vec3 xyd, vec4 viewport, mat44 mvp); // ---------------------------------------------------------------------------- // debugging and utils API void print2i( vec2i v ); API void print3i( vec3i v ); API void print2( vec2 v ); API void print3( vec3 v ); API void print4( vec4 v ); API void printq( quat q ); API void print33( float *m ); API void print34( float *m ); API void print44( float *m ); API vec2 atof2(const char *s); API vec3 atof3(const char *s); API vec4 atof4(const char *s); API char* ftoa(float f); API char* ftoa2(vec2 v); API char* ftoa3(vec3 v); API char* ftoa4(vec4 v); API void swapf(float *a, float *b); API void swapf2(vec2 *a, vec2 *b); API void swapf3(vec3 *a, vec3 *b); API void swapf4(vec4 *a, vec4 *b); #line 0 #line 1 "v4k_ai.h" typedef enum SWARM_DISTANCE { SWARM_DISTANCE_LINEAR, SWARM_DISTANCE_INVERSE_LINEAR, SWARM_DISTANCE_QUADRATIC, SWARM_DISTANCE_INVERSE_QUADRATIC } SWARM_DISTANCE; #define boid(...) C_CAST(boid_t, __VA_ARGS__) typedef struct boid_t { vec3 position; vec3 velocity; vec3 acceleration; vec3 prev_position; } boid_t; typedef struct swarm_t { array(boid_t) boids; float perception_radius; // determines the vision radius of each boid. Only boids within this distance influence each other. float separation_weight; // how much boids repel each other SWARM_DISTANCE separation_type; float alignment_weight; // how much boids want go in the same direction float cohesion_weight; // how much boids want to be in the center of the swarm float steering_weight; array(vec3) steering_targets; SWARM_DISTANCE steering_target_type; float blindspot_angledeg; float max_acceleration; // how fast each boid can change its direction float max_velocity; // how fast each boid can move // private: map(vec3*, array(boid_t*)) voxel_cache_; float blindspot_angledeg_compare_value_; } swarm_t; API swarm_t swarm(); API void swarm_update(swarm_t *self, float delta); // acc,vel,pos API void swarm_update_acceleration_only(swarm_t *self); // acc API void swarm_update_acceleration_and_velocity_only(swarm_t *self, float delta); // acc,vel API int ui_swarm(swarm_t *self); // pathfinding ----------------------------------------------------------------- API int pathfind_astar(int width, int height, const unsigned* map, vec2i src, vec2i dst, vec2i* path, size_t maxpath); #line 0 #line 1 "v4k_bt.h" // Behavior trees: decision planning and decision making. // Supersedes finite state-machines (FSM) and hierarchical finite state-machines (HFSM). // - rlyeh, public domain. // // [ref] https://outforafight.wordpress.com/2014/07/15/behaviour-behavior-trees-for-ai-dudes-part-1/ // [ref] https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter06_The_Behavior_Tree_Starter_Kit.pdf // [ref] https://gitlab.com/NotYetGames/DlgSystem/-/wikis/Dialogue-Manual // [ref] https://towardsdatascience.com/designing-ai-agents-behaviors-with-behavior-trees-b28aa1c3cf8a // [ref] https://docs.nvidia.com/isaac/packages/behavior_tree/doc/behavior_trees.html // [ref] https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/ // [ref] gdc ChampandardDaweHernandezCerpa_BehaviorTrees.pdf @todo debugging // [ref] https://docs.cocos.com/cocos2d-x/manual/en/actions/ // The nodes in a behavior tree can be broadly categorized into three main types: control nodes, task nodes, and decorator nodes. Here is a brief description of each category: // Control Nodes: Control nodes are used to control the flow of the behavior tree. They determine the order in which child nodes are executed and how the results of those nodes are combined. They are usually parent nodes. // Action Nodes: Action nodes are used to perform specific actions or tasks within the behavior tree. They can include actions such as moving, attacking, or interacting with objects in the game world. They are usually leaf nodes. // Decorator Nodes: Decorator nodes are used to modify the behavior of child nodes in some way. They can be used to repeat child nodes, invert the result of a child node, or add a cooldown period between executions. They are usually located between control and action nodes. // --- VARIABLES // Key Prefixes: // {visiblity:(l)ocal,s(q)uad,(r)ace,(f)action,(g)lobal} // [persistence:(t)emp,(u)serdata,(s)avegame,(c)loud] + '_' + name. // [persistence:(tmp),(usr)data,(sav)egame,(net)cloud] + '_' + name. // Ie, l_health = 123.4, gsav_player = "john" // --- ACTION NODES // [ ] * Actions/Behaviors have a common structure: // [ ] - Entry point (function name) for a C call or Lua script. // [ ] * Status: // [ ] - Uninitialized (never run) // [ ] - Running (in progress) // [ ] - Suspended (on hold till resumed) // [ ] - Success (finished and succeeded) // [ ] - Failure (finished and failed) // [ ] * Optional callbacks: // [ ] - on_enter // [ ] - on_leave // [ ] - on_success // [ ] - on_failure // [ ] - on_suspend // [ ] - on_resume // [x] Action Node: This node performs a single action, such as moving to a specific location or attacking a target. // [ ] Blackboard Node: Node that reads and writes data to a shared memory space known as a blackboard. The blackboard can be used to store information that is relevant to multiple nodes in the behavior tree. // [ ] SetKey(keyVar,object) // [ ] HasKey(keyVar) // [ ] CompareKeys(keyVar1, operator < <= > >= == !=, keyVar2) // [ ] SetTags(names=blank,cooldownTime=inf,bIsCooldownAdditive=false) // [ ] HasTags(names=blank,bAllRequired=true) // [ ] PushToStack(keyVar,itemObj): creates a new stack if one doesn’t exist, and stores it in the passed variable name, and then pushes ‘item’ object onto it. // [ ] PopFromStack(keyVar,itemVar): pop pops an item off the stack, and stores it in the itemVar variable, failing if the stack is already empty. // [ ] IsEmptyStack(keyVar): checks if the stack passed is empty and returns success if it is, and failure if its not. // [ ] Communication Node: This is a type of action node that allows an AI agent to communicate with other agents or entities in the game world. The node takes an input specifying the message to be communicated and the recipient(s) of the message (wildmask,l/p/f/g prefixes). The node then sends the message to the designated recipient(s) and returns success when the communication is completed. This node can be useful for implementing behaviors that require the AI agent to coordinate with other agents or to convey information to the player. It could use a radius argument to specify the maximum allowed distance for the recipients. // [ ] Condition Node: A leaf node that checks a specific condition, such as the distance to an object, the presence of an enemy, or the status of a health bar. // [ ] Distance Condition Node: This is a type of condition node that evaluates whether an AI agent is within a specified distance of a target object or location. The node takes two inputs: the current position of the AI agent and the position of the target object or location. If the distance between the two is within a specified range, the node returns success. If the distance is outside of the specified range, the node returns failure. This node can be useful for implementing behaviors that require the AI agent to maintain a certain distance from a target, such as following or avoiding an object. Could use a flag to disambiguate between linear distance and path distance. // [ ] Query Node: This node checks a condition and returns success or failure based on the result. For example, a query node could check whether an enemy is within range or whether a door is locked. // [ ] Query Node: A type of decorator node that retrieves information from a database or external system, such as a web service or file system. The Query node can be used to retrieve data that is not available within the game engine, such as weather or traffic conditions. // [ ] A condition is made of: // [ ] - Optional [!] negate // [ ] - Mandatory Value1(Int/Flt/Bool/VarName/FuncName) // [ ] - Optional operator [< <= > >= == !=] and Value2(Int/Flt/Bool/VarName/FuncName) // [ ] AllConditions(...) : SUCCESS if ( empty array || all conditions met) // [ ] AnyConditions(...) : SUCCESS if (!empty array && one conditions met) // --- DECORATOR NODES // [ ] Cooldown Node: Decorator node that adds a cooldown period between the execution of a child node, preventing it from being executed again until the cooldown period has elapsed. // [x] Counter Node: Decorator node that limits the number of times that a child node can execute. For example, if the child node has executed a certain number of times, the Counter node will return a failure. // [x] Once Node: Decorator node that triggers a specified action when a condition is met for the first time. This can be useful for triggering a one-time event, such as when an AI agent discovers a hidden item or reaches a new area of the game world. // [x] Inverter Node: Decorator node that inverts the result of a child node, returning success if the child node fails and failure if the child node succeeds. This can be useful for negating the outcome of a particular behavior, such as avoiding a certain area of the game world. // [x] Repeater Node: Decorator node that repeats the execution of a child node a specified number of times or indefinitely. // [x] Repeat(times=inf): Runs child node given times. These are often used at the very base of the tree, to make the tree to run continuously. // [ ] RepeatIf(strong/weak condition): Runs child node as long as the conditions are met. // [ ] RepeatIfOk(times=inf): Runs child node if it succeedes, max given times. // [ ] RepeatIfFail(times=inf): Runs child node if it fails, max given times. // [ ] Branch Node: 2 children [0] for true, [1] for false // [ ] Resource Node: Decorator node that manages a shared resource, such as a limited supply of ammunition or a limited amount of processing power. The Resource node The node can be used to decide when to use or conserve the resource. For example, if the AI agent is low on ammunition, the node may decide to switch to a melee weapon or to retreat to a safer location. This node can be useful for implementing behaviors that require the AI agent to make strategic decisions about resource use. // [x] Result Node: Decorator node that tracks the result of a child action node and returns either success or failure depending on the outcome. This can be useful for determining whether an action was successful or not, and then adjusting the AI agent's behavior accordingly. // [x] Succeeder Node: Decorator node that always returns success, regardless of the result of its child node. This can be useful for ensuring that certain behaviors are always executed, regardless of the overall success or failure of the behavior tree. // [x] Success(): FAILURE becomes SUCCESS (TRUE). // [x] Failure(): SUCCESS becomes FAILURE (FALSE). // [ ] Throttle Node: Decorator node that limits the rate at which a child node can execute. For example, a Throttle node might ensure that an AI agent can only fire its weapon, or using a special ability, only a certain number of times per second. // [x] Delay Node: Decorator node that adds a delay to the execution of a child node. The delay might be configured to sleep before the execution, after the execution, or both. // [x] Defer Delay(duration_ss=1): Runs the child node, then sleeps for given seconds. // [ ] Ease(time,name): Clamps child time to [0,1] range, and applies easing function on it. // [ ] Dilate(Mul=1,Add=0): Dilates child time // --- CONTROL NODES // [x] Root Node: The topmost node in a behavior tree that represents the start of the decision-making process. Returns success if any of its child nodes suceedes. // [x] Root-Failure Node: Control node that only returns failure if all of its child nodes fail. This can be useful for ensuring that a behavior tree is not prematurely terminated if one or more child nodes fail. // [ ] Event(name): When name event is raised, it suspends current tree and calls child. "Incoming projectile" -> Evade. Stimulus types: may be disabled by event, or autodisabled. // [ ] Raise(name): Triggers event name. // [ ] Checkpoint Node: Control node that saves a state in memory and then continues the tree execution from that point the next time the tree is executed. It can be useful in situations where the behavior tree needs to be interrupted and resumed later. // [ ] Decision Making Node: Control node that implements a decision-making process for the AI agent. The node takes input specifying the available options for the AI agent and the criteria for evaluating each option. The node then evaluates each option based on the specified criteria and selects the best option. This node can be useful for implementing behaviors that require the AI agent to make strategic decisions, such as choosing a target or selecting a path through the game world. // [ ] Could be extended with GOAP if dynamically inserting the scores on each update then calling a Probability Selector Node (0.2,0.3,0.5) // [ ] https://cdn.cloudflare.steamstatic.com/apps/valve/2012/GDC2012_Ruskin_Elan_DynamicDialog.pdf // [ ] Evaluate Node / Recheck(): // [ ] Actively rechecks all existing sub-conditions on a regular basis after having made decisions about them. // [ ] Use this feature to dynamically check for risks or opportunities in selected parts of the tree. // [ ] For example, interrupting a patrol with a search behavior if a disturbance is reported. // [ ] Interrupt Node: Control node that interrupts the execution of a lower-priority node when a higher-priority node needs to be executed. It can be useful for handling urgent tasks or emergency situations. // [ ] Monitor Node: Control node that continuously monitors a condition and triggers a specified action when the condition is met. For example, a Monitor node might monitor the distance between an AI agent and a target and trigger a "retreat" behavior when the distance falls below a certain threshold. // [ ] Observer Node: Control node that monitors the state of the game world and triggers a specified action when certain conditions are met. For example, an Observer node might trigger a "hide" behavior when an enemy is spotted. // [ ] Parallel Node: Control node that executes multiple child nodes simultaneously. The Parallel node continues to execute even if some of its child nodes fail. // [ ] Parallel All Node(required_successes=100%): Control node that executes multiple child nodes simultaneously. Returns false when first child fails, and aborts any other running tasks. Returns true if all its children succeed. // [ ] Parallel One Node(required_successes=1): Control node that executes multiple child nodes simultaneously. Returns true when first child suceedes, and aborts any other running tasks. Returns false if all its children fail. // [ ] Subsumption Node: Control node that allows multiple behaviors to be executed simultaneously, with higher-priority behaviors taking precedence over lower-priority ones. This can be useful for implementing complex, multi-level behaviors in autonomous systems. // [ ] Semaphore Node: Control node that blocks the execution of its child nodes until a certain condition is met. For example, a Semaphore node might block the execution of a behavior until a certain object is in range or a certain event occurs. // [ ] Semaphore Wait Node: Control node that blocks the execution of its child nodes until a resource becomes available. This can be useful for controlling access to shared resources such as a pathfinding system or a communication channel. // [ ] WaitTags(tags=blank,timeout_ss=inf): Stops execution of child node until the cooldown tag(s) do expire. May return earlier if timed out. // [ ] WaitEvent(name=blank,timeout_ss=inf): Stops execution of child node until event is raised. May return earlier if timed out. // [x] Sequence Node(reversed,iterator(From,To)): Control node that executes a series of child nodes in order. If any of the child nodes fail, the Sequence node stops executing and returns a failure. // [ ] Dynamic Sequence Node: Control node that dynamically changes the order in which its child nodes are executed based on certain conditions. For example, a Dynamic Sequence node might give higher priority to a child node that has recently failed or that is more likely to succeed. // [ ] Reverse(): iterates children in reversed order (Iterator:(-1,0) equivalent) // [ ] Iterator(from,to): allows negative indexing. increments if (abs from < abs to), decrements otherwise // [x] Selector Node: Control node that selects a child node to execute based on a predefined priority or set of conditions. The Selector node stops executing child nodes as soon as one of them succeeds. // [ ] Priority Selector Node: Control node that executes its child nodes in order of priority. If the first child node fails, it moves on to the next child node in the list until a successful node is found. This can be useful for implementing behaviors that require a specific order of execution, such as a patrol route or a search pattern. // [ ] Probability Selector Node: Control node that selects a child node to execute based on a probability distribution. For example, if there are three child nodes with probabilities of 0.2, 0.3, and 0.5, the Probability Selector node will execute the third child node 50% of the time. // [ ] Dynamic Selector Node: Control node that dynamically changes the order in which its child nodes are executed based on certain conditions. For example, a Dynamic Selector node might give higher priority to a child node that has recently succeeded or that is more likely to succeed. // [ ] Dynamic Selector Node: Control node that dynamically changes the order in which child nodes are executed based on certain conditions. For example, it may prioritize certain nodes when health is low, and other nodes when resources are scarce. // [ ] Dynamic Priority Node: Control node that dynamically changes the priority of its child nodes based on certain conditions. For example, if a child node is more likely to result in success, the Dynamic Priority node will give it a higher priority. // [ ] Weighted / Cover Selection Node: This is a type of selector node that evaluates the available cover options in the game world and selects the best cover position for the AI agent. The node takes input specifying the current position of the AI agent and the location of potential cover positions. The node then evaluates the cover positions based on criteria such as distance to enemy positions, line of sight, and available cover points, and selects the best option. This node can be useful for implementing behaviors that require the AI agent to take cover and avoid enemy fire. // [ ] Random Selector Node: Control node that selects a child node to execute at random. This can be useful for introducing variety and unpredictability into the behavior of an AI agent. // [ ] Random Weight / Stochastic Node(0.2,0.3,0.5): Control node that introduces randomness into the decision-making process of an AI agent. For example, a Stochastic node might randomly select a child node to execute, with the probability of each child node being proportional to its likelihood of success. // [ ] Break(bool): breaks parent sequence or selector. may return SUCCESS or FAILURE. // [ ] Hybrid Node: Control node that combines the functionality of multiple control nodes, such as a sequence node and a selector node. It can be useful for creating complex behavior patterns that require multiple control structures. The Hybrid Node has two modes of operation: strict mode and flexible mode. In strict mode, the child nodes are executed in a fixed order, similar to a Sequence Node. If any child node fails, the entire Hybrid Node fails. In flexible mode, the child nodes can be executed in any order, similar to a Selector Node. If any child node succeeds, the entire Hybrid Node succeeds. The Hybrid Node is often used when you need to create complex behavior patterns that require multiple control structures. For example, you might use a Hybrid Node to implement a search behavior where the AI agent first moves in a fixed direction for a certain distance (strict mode), but then switches to a more exploratory mode where it randomly explores nearby areas (flexible mode). // [ ] Subtree Node: Control node that calls another behavior tree as a subroutine. This is useful for breaking down complex behaviors into smaller, more manageable parts. // [ ] Call(name): Calls to the child node with the matching name within behavior tree. Returns FAILURE if name is invalid or if invoked behavior returns FAILURE. // [ ] Return(boolean): Exits current Call. // [ ] AttachTree(Name,bDetachAfterUse=true): Attaches subtree to main tree. When a NPC founds the actor, it attaches the behavior to the tree. Ie, Level specific content: Patrols, Initial setups, Story driven events, etc. Ie, DLCs: Behaviors are added to actors in the DLC level (enticers). // [ ] DetachTree(Name) // [ ] Switch Node: Control node that evaluates a condition and then selects one of several possible child nodes to execute based on the result of the condition. // [ ] Switch(name): Jumps to the child node with the matching name within behavior tree. If name is invalid will defer to Fallback child node. // [ ] Timeout Node: Control node that aborts the execution of its child node after a certain amount of time has elapsed. This can be useful for preventing an AI agent from getting stuck in a loop or waiting indefinitely for a particular event to occur. // [ ] TimeLimit(timeout_ss=inf): Give the child any amount of time to finish before it gets canceled. The timer is reset every time the node gains focus. // [ ] Timer Node: Control node which invokes its child node every XX seconds. The timer can repeat the action any given number of times, or indefinitely. // ## Proposal ----------------------------------------------------------------------------- // BehaviorTrees as case-insensitive INI files. Then, // - INI -> C INTERPRETER, OR // - INI -> LUA TRANSPILER -> LUA BYTECODE -> LUA VM. // ```ini // [bt] // recheck // sequence ;; Approach the player if seen! // conditions=IsPlayerVisible, // action=MoveTowardsPlayer // sequence ;; Attack the player if seen! // conditions=IsPlayerInRange, // repeat=3 // action=FireAtPlayer // sequence ;; Search near last known position // conditions=HaveWeGotASuspectedLocation, // action=MoveToPlayersLastKnownPosition // action=LookAround // sequence ;; Randomly scanning nearby // action=MoveToRandomPosition // action=LookAround // event=IncomingProjectile // action=Evade // ``` typedef int (*bt_func)(); typedef struct bt_t { uint64_t type; int (*action)(); union { int argi; float argf; }; array(struct bt_t) children; } bt_t; API bt_t bt(const char *ini_file, unsigned flags); API int bt_run(bt_t *b); API void bt_addfun(const char *name, int(*func)()); API bt_func bt_findfun(const char *name); API char *bt_funcname(bt_func fn); API int ui_bt(bt_t *b); #line 0 #line 1 "v4k_audio.h" // ----------------------------------------------------------------------------- // audio framework // - rlyeh, public domain // // fixme: leaks, audio_delete // @todo: audio_volume_fx, audio_volume_bgm, audio_volume_master instead? // @todo: destroystream() if( ss->type == WAV ) drwav_uninit(&ss->wav); // @todo: destroystream() if( ss->type == MOD ) jar_mod_unload(&ss->mod); // @todo: destroystream() if( ss->type == XM && ss->xm ) jar_xm_free_context(ss->xm); // midi interface API void midi_send(unsigned midi_msg); // audio interface typedef struct audio_handle* audio_t; API audio_t audio_clip( const char *pathfile ); API audio_t audio_stream( const char *pathfile ); API int audio_play( audio_t s, int flags ); API int audio_play_gain( audio_t a, int flags, float gain/*0*/ ); API int audio_play_gain_pitch( audio_t a, int flags, float gain, float pitch/*1*/ ); API int audio_play_gain_pitch_pan( audio_t a, int flags, float gain, float pitch, float pan/*0*/ ); API int audio_stop( audio_t a ); API float audio_volume_clip(float gain); // set fx volume if gain is in [0..1] range. return current fx volume in any case API float audio_volume_stream(float gain); // set bgm volume if gain is in [0..1] range. return current bgm volume in any case API float audio_volume_master(float gain); // set master volume if gain is in [0..1] range. return current master volume in any case API int ui_audio(); enum AUDIO_FLAGS { AUDIO_1CH = 0, // default AUDIO_2CH = 1, AUDIO_8 = 2, AUDIO_16 = 0, // default AUDIO_32 = 4, AUDIO_FLOAT = 8, AUDIO_8KHZ = 16, AUDIO_11KHZ = 32, AUDIO_22KHZ = 0, // default AUDIO_32KHZ = 64, AUDIO_44KHZ = 128, AUDIO_MIXER_GAIN = 0, // default AUDIO_IGNORE_MIXER_GAIN = 256, AUDIO_MULTIPLE_INSTANCES = 0, // default AUDIO_SINGLE_INSTANCE = 512, }; API int audio_queue( const void *samples, int num_samples, int flags ); #line 0 #line 1 "v4k_collide.h" // ----------------------------------------------------------------------------- // original code by @vurtun (PD) and @barerose (CC0). // [src] https://gist.github.com/vurtun/95f088e4889da2474ad1ce82d7911fee // - rlyeh, public domain. #ifndef GJK_H #define GJK_H #define GJK_MAX_ITERATIONS 20 typedef struct gjk_support { int aid, bid; vec3 a; vec3 b; } gjk_support; typedef struct gjk_vertex { vec3 a; vec3 b; vec3 p; int aid, bid; } gjk_vertex; typedef struct gjk_simplex { int max_iter, iter; int hit, cnt; gjk_vertex v[4]; float bc[4], D; } gjk_simplex; typedef struct gjk_result { int hit; vec3 p0; vec3 p1; float distance_squared; int iterations; } gjk_result; int gjk(gjk_simplex *s, const gjk_support *sup, vec3 *dv); gjk_result gjk_analyze(const gjk_simplex *s); gjk_result gjk_quad(float a_radius, float b_radius); #endif //typedef struct gjk_result gjk_result; typedef struct line { vec3 a, b; } line; typedef struct sphere { vec3 c; float r; } sphere; typedef struct aabb { vec3 min, max; } aabb; typedef struct plane { vec3 p, n; } plane; typedef struct capsule { vec3 a, b; float r; } capsule; typedef struct ray { vec3 p, d; } ray; typedef struct triangle { vec3 p0,p1,p2; } triangle; typedef struct poly { vec3* verts; int cnt; } poly; typedef union frustum { struct { vec4 l, r, t, b, n, f; }; vec4 pl[6]; float v[24]; } frustum; #define line(...) C_CAST(line, __VA_ARGS__) #define sphere(...) C_CAST(sphere, __VA_ARGS__) #define aabb(...) C_CAST(aabb, __VA_ARGS__) #define plane(...) C_CAST(plane, __VA_ARGS__) #define capsule(...) C_CAST(capsule, __VA_ARGS__) #define ray(p,normdir) C_CAST(ray, p, normdir) #define triangle(...) C_CAST(triangle, __VA_ARGS__) #define poly(...) C_CAST(poly, __VA_ARGS__) #define frustum(...) C_CAST(frustum, __VA_ARGS__) // ---------------------------------------------------------------------------- typedef struct hit { union { // general case float depth; // rays only: penetration (t0) and extraction (t1) points along ray line struct { float t0, t1; }; // gjk only struct { int hits; vec3 p0, p1; float distance2; int iterations; }; }; union { vec3 p; vec3 contact_point; }; union { vec3 n; vec3 normal; }; } hit; #define hit(...) C_CAST(hit, __VA_ARGS__) // ---------------------------------------------------------------------------- /* line/segment */ API float line_distance2_point(line l, vec3 p); API vec3 line_closest_point(line l, vec3 p); /* ray */ API float ray_test_plane(ray r, vec4 p4); API float ray_test_triangle(ray r, triangle t); API int ray_test_sphere(float *t0, float *t1, ray r, sphere s); API int ray_test_aabb(float *t0, float *t1, ray r, aabb a); API hit* ray_hit_plane(ray r, plane p); API hit* ray_hit_triangle(ray r, triangle t); API hit* ray_hit_sphere(ray r, sphere s); API hit* ray_hit_aabb(ray r, aabb a); /* sphere */ API vec3 sphere_closest_point(sphere s, vec3 p); API hit* sphere_hit_aabb(sphere s, aabb a); API hit* sphere_hit_capsule(sphere s, capsule c); API hit* sphere_hit_sphere(sphere a, sphere b); API int sphere_test_aabb(sphere s, aabb a); API int sphere_test_capsule(sphere s, capsule c); API int sphere_test_poly(sphere s, poly p); API int sphere_test_sphere(sphere a, sphere b); /* aabb */ API vec3 aabb_closest_point(aabb a, vec3 p); API float aabb_distance2_point(aabb a, vec3 p); API int aabb_contains_point(aabb a, vec3 p); API hit* aabb_hit_aabb(aabb a, aabb b); API hit* aabb_hit_capsule(aabb a, capsule c); API hit* aabb_hit_sphere(aabb a, sphere s); API int aabb_test_aabb(aabb a, aabb b); API int aabb_test_capsule(aabb a, capsule c); API int aabb_test_poly(aabb a, poly p); API int aabb_test_sphere(aabb a, sphere s); /* capsule */ API float capsule_distance2_point(capsule c, vec3 p); API vec3 capsule_closest_point(capsule c, vec3 p); API hit* capsule_hit_aabb(capsule c, aabb a); API hit* capsule_hit_capsule(capsule a, capsule b); API hit* capsule_hit_sphere(capsule c, sphere s); API int capsule_test_aabb(capsule c, aabb a); API int capsule_test_capsule(capsule a, capsule b); API int capsule_test_poly(capsule c, poly p); API int capsule_test_sphere(capsule c, sphere s); /* poly: query */ API int poly_test_sphere(poly p, sphere s); API int poly_test_aabb(poly p, aabb a); API int poly_test_capsule(poly p, capsule c); API int poly_test_poly(poly a, poly b); /* poly: query transformed */ API int poly_test_sphere_transform(poly p, vec3 pos3, mat33 rot33, sphere s); API int poly_test_aabb_transform(poly p, vec3 apos3, mat33 arot33, aabb a); API int poly_test_capsule_transform(poly p, vec3 pos3, mat33 rot33, capsule c); API int poly_test_poly_transform(poly a, vec3 apos3, mat33 arot33, poly b, vec3 bpos3, mat33 brot33); /* poly: gjk result */ API int poly_hit_sphere(struct gjk_result *res, poly p, sphere s); API int poly_hit_aabb(struct gjk_result *res, poly p, aabb a); API int poly_hit_capsule(struct gjk_result *res, poly p, capsule c); API int poly_hit_poly(struct gjk_result *res, poly a, poly b); /* poly: gjk result transformed */ API int poly_hit_sphere_transform(struct gjk_result *res, poly p, vec3 pos3, mat33 rot33, sphere s); API int poly_hit_aabb_transform(struct gjk_result *res, poly p, vec3 pos3, mat33 rot33, aabb a); API int poly_hit_capsule_transform(struct gjk_result *res, poly p, vec3 pos3, mat33 rot33, capsule c); API int poly_hit_poly_transform(struct gjk_result *res, poly a, vec3 at3, mat33 ar33, poly b, vec3 bt3, mat33 br33); API vec4 plane4(vec3 p, vec3 n); API frustum frustum_build(mat44 projview); API int frustum_test_sphere(frustum f, sphere s); API int frustum_test_aabb(frustum f, aabb a); API poly poly_alloc(int cnt); API void poly_free(poly *p); API poly pyramid(vec3 from, vec3 to, float size); // poly_free() required API poly diamond(vec3 from, vec3 to, float size); // poly_free() required API void collide_demo(); // debug draw collisions #line 0 #line 1 "v4k_cooker.h" // ----------------------------------------------------------------------------- // asset pipeline framework // - rlyeh, public domain. // // all cooked assets are stored inside zip file at root folder, which acts as an asset database. // during game boot, the database gets rebuilt as follows: (note: step 0 is an optional optimization) // 0. for N given cores, split list of infiles into N zipfiles. then, parallelize cooks. // 1. compare local disk files against file in zip database. for each mismatch do: // 2. - invalidate its entry in database, if local file was removed from disk. // 3. - write its *cooked* contents into database, if local file was created or modified from disk. // 4. mount any existing zipfile(s) after cooking. // // notes: meta-datas from every raw asset are stored into comment field, inside .cook.zip archive. // @todo: fix leaks // @todo: symlink exact files // @todo: idle threads should steal jobs from busy threads (maybe use jobs/coroutines for this?) ... enum COOK_FLAGS { COOK_SYNC = 0, COOK_ASYNC = 1, COOK_CANCELABLE = 2, COOK_DEBUGLOG = 4, // log all cooking commands to a batch file }; API void cook_config( const char *path_to_cook_ini ); // "tools/cook.ini" API bool cook_start( const char *path_to_cook_ini, const char *masks, int flags ); // COOK_INI, "**" API void cook_stop(); API void cook_cancel(); API int cook_jobs(); // [0..N] API int cook_progress(); // [0..100] #line 0 #line 1 "v4k_data.h" // ----------------------------------------------------------------------------- // data framework (json5, xml, compression) @todo:kvdb // - rlyeh, public domain // // @todo: vec2,vec3,vec4 typedef union json_t { char* s; double f; int64_t i; uintptr_t p; array(union json_t) arr; } json_t; // json api API bool json_push(const char *json_content); API const char* json_key(const char *keypath); API json_t* json_find(const char *type_keypath); API json_t json_get(const char *type_keypath); API int json_count(const char *keypath); #define json_int(...) (json_get(va("i" __VA_ARGS__)).i) #define json_float(...) (json_get(va("f" __VA_ARGS__)).f) #define json_string(...) (json_get(va("s" __VA_ARGS__)).s) #define json_key(...) json_key(va(__VA_ARGS__)) #define json_count(...) json_count(va(__VA_ARGS__)) API bool json_pop(); // xml api API int xml_push(const char *xml_content); API const char * xml_string(char *key); API unsigned xml_count(char *key); API array(char) xml_blob(char *key); #define xml_string(...) xml_string(va(__VA_ARGS__)) // syntax sugar: string #define xml_int(...) atoi(xml_string(__VA_ARGS__)) // syntax sugar: int #define xml_float(...) atof(xml_string(__VA_ARGS__)) // syntax sugar: float #define xml_blob(...) xml_blob(va(__VA_ARGS__)) // syntax sugar: base64 blob #define xml_count(...) xml_count(va(__VA_ARGS__)) // syntax sugar: count nodes API void xml_pop(); API bool data_tests(); // compression api enum COMPRESS_FLAGS { COMPRESS_RAW = 0, COMPRESS_PPP = (1<<4), COMPRESS_ULZ = (2<<4), COMPRESS_LZ4 = (3<<4), COMPRESS_CRUSH = (4<<4), COMPRESS_DEFLATE = (5<<4), COMPRESS_LZP1 = (6<<4), COMPRESS_LZMA = (7<<4), COMPRESS_BALZ = (8<<4), COMPRESS_LZW3 = (9<<4), COMPRESS_LZSS = (10<<4), COMPRESS_BCM = (11<<4), COMPRESS_ZLIB = (12<<4), // same as deflate with header }; API unsigned zbounds(unsigned inlen, unsigned flags); API unsigned zencode(void *out, unsigned outlen, const void *in, unsigned inlen, unsigned flags); API unsigned zexcess(unsigned flags); API unsigned zdecode(void *out, unsigned outlen, const void *in, unsigned inlen, unsigned flags); #line 0 #line 1 "v4k_dll.h" // dll utils // - rlyeh, public domain /// !!! `filename` must contain extension /// load dynamic library `file` and search for `symbol` /// return: NULL if not found, found symbol otherwise. /// filename: path to dynamic library file. must contain extension. /// symbol: symbol name. must not be NULL. /// see: dlopen^, dlclose^ /// > bool (*plugin_init)(void) = dll("plugin.dll", "init"); /// > assert(plugin_init()); API void* dll(const char *filename, const char *symbol); #line 0 #line 1 "v4k_editor.h" // ----------------------------------------------------------------------------- // in-game editor // - rlyeh, public domain. // // @todo: merge editor1.c and editor2.c internals into this api //API void editor(); //API bool editor_active(); API vec3 editor_pick(float mouse_x, float mouse_y); API char* editor_path(const char *path); // open file dialog API char* dialog_load(); API char* dialog_save(); // transform gizmos API int gizmo(vec3 *pos, vec3 *rot, vec3 *sca); API bool gizmo_active(); API bool gizmo_hover(); // localization kit (I18N, L10N) API void kit_locale( const char *langcode_iso639_1 ); // set context language: enUS, ptBR, esES, ... API void kit_set( const char *variable, const char *value ); // set context variable API void kit_reset(); // reset all variables in context API void kit_insert( const char *id, const char *translation ); // insert single translation API bool kit_load( const char *filename ); // load translations file (xlsx) API bool kit_merge( const char *filename ); // merge translations file into existing context API void kit_clear(); // delete all translations API char* kit_translate( const char *id ); // perform a translation, given current locale API char* kit_translate2( const char *id, const char *langcode_iso639_1 ); // perform a translation given explicit locale API void kit_dump_state( FILE *fp ); #line 0 #line 1 "v4k_file.h" // ----------------------------------------------------------------------------- // files, cache and virtual filesystem (registered directories and/or compressed zip archives). // - rlyeh, public domain. // // - note: vfs_mount() order matters (last mounts have higher priority). // - note: directory/with/trailing/slash/ as mount_point, or zip/tar/pak archive otherwise. // // @todo: file_mmap // @todo: file_find() from first file_scan() // physical filesystem. files API const char** file_list(const char *path, const char *masks); // **.png;*.c API bool file_write( const char *file, const void *ptr, int len ); API bool file_append( const char *file, const void *ptr, int len ); API char * file_read(const char *filename); API char * file_load(const char *filename, int *len); API uint64_t file_size(const char *pathfile); API bool file_directory(const char *pathfile); API char * file_pathabs(const char *pathfile); // ../dir/./file.ext -> c:/prj/dir/file.ext API char * file_path(const char *pathfile); // c:/prj/dir/file.ext -> c:/prj/dir/ API char * file_name(const char *pathfile); // c:/prj/dir/file.ext -> file.ext API char * file_base(const char *pathfile); // c:/prj/dir/file.ext -> file API char * file_ext(const char *pathfile); // c:/prj/dir/file.ext -> .ext API char * file_id(const char *pathfile); // c:/prj/dir/file.ext -> file/dir/prj (name then alphabetical) API char * file_normalize(const char *pathfile); // c:/prj/dir/file.ext -> c/prj/dir/file_ext //API char * file_normalize_with_folder(const char *pathfile); // c:/prj/dir/file.ext -> dir/file_ext API char * file_counter(const char *pathfile); // in: v4k.ini -> out: v4k(001).ini -> out: v4k(002).ini [-> etc...] API uint64_t file_stamp(const char *pathfile); // 1616153596 (seconds since unix epoch) API uint64_t file_stamp10(const char *pathfile); // 20210319113316 (absolute datetime in base10) API bool file_exist(const char *pathfile); API bool file_delete(const char *pathfile); API bool file_copy(const char *src, const char *dst); API bool file_move(const char *src, const char *dst); API FILE* file_temp(); API char* file_tempname(); API void* file_md5(const char *file); // 16 bytes API void* file_sha1(const char *file); // 20 bytes API void* file_crc32(const char *file); // 4 bytes // compressed files API array(char*) file_zip_list(const char *zipfile); API array(char) file_zip_extract(const char *zipfile, const char *filename); API bool file_zip_append(const char *zipfile, const char *filename, int clevel); API bool file_zip_appendmem(const char *zipfile, const char *entryname, const void *ptr, unsigned len, int clevel); // storage (emscripten only) // Mounts local storage folder for writing. Useful for Emscripten only. @path_folder: "/save" for example // Reads local storage to memory. Usually call it one time only, after mount. Useful for Emscripten only. // Writes memory contents to local storage. Usually call it after all fclose API void storage_mount(const char* folder); API void storage_read(); API void storage_flush(); // virtual filesystem API bool vfs_mount(const char *mount_point); API const char** vfs_list(const char *masks); // **.png;*.c API char * vfs_read(const char *pathfile); API char * vfs_load(const char *pathfile, int *size); API int vfs_size(const char *pathfile); API const char * vfs_resolve(const char *fuzzyname); // guess best match. @todo: fuzzy path //API const char*vfs_extract(const char *pathfile); // extracts vfs file into local filesystem (temporary file), so it can be read by foreign/3rd party libs API FILE* vfs_handle(const char *pathfile); // same as above, but returns file handle instead. preferred way, will clean descriptors at exit // cache API void * cache_insert(const char *key, void *value, int size); API void * cache_lookup(const char *key, int *size); // ini // @todo: evaluate alt api #1 // char *ini(filename, section.key, default); // float inif(filename, section.key, default); // @todo: evaluate alt api #2 // char *val = ini(filename, section_key); // int count = ini_count(filename); // char *key = ini_key_id(filename, id); // char *val = ini_val_id(filename, id); typedef map(char*,char*) ini_t; API ini_t ini(const char *filename); API ini_t ini_from_mem(const char *data); API void ini_destroy(ini_t); API bool ini_write(const char *filename, const char *section, const char *key, const char *value); #line 0 #line 1 "v4k_font.h" // ----------------------------------------------------------------------------- // font framework // - rlyeh, public domain // font size tags #define FONT_H1 "\1" // largest #define FONT_H2 "\2" #define FONT_H3 "\3" #define FONT_H4 "\4" #define FONT_H5 "\5" #define FONT_H6 "\6" // smallest // font color tags #define FONT_COLOR1 "\x10" #define FONT_COLOR2 "\x11" #define FONT_COLOR3 "\x12" #define FONT_COLOR4 "\x13" #define FONT_COLOR5 "\x14" #define FONT_COLOR6 "\x15" #define FONT_COLOR7 "\x16" #define FONT_COLOR8 "\x17" #define FONT_COLOR9 "\x18" #define FONT_COLOR10 "\x19" // font face tags #define FONT_FACE1 "\x1a" #define FONT_FACE2 "\x1b" #define FONT_FACE3 "\x1c" #define FONT_FACE4 "\x1d" #define FONT_FACE5 "\x1e" #define FONT_FACE6 "\x1f" // font align tags #define FONT_LEFT "\\<" #define FONT_CENTER "\\|" #define FONT_RIGHT "\\>" #define FONT_TOP "\\^" #define FONT_MIDDLE "\\-" #define FONT_BASELINE "\\_" #define FONT_BOTTOM "\\v" // font flags enum FONT_FLAGS { // font atlas size FONT_512 = 0x0, FONT_1024 = 0x1, FONT_2048 = 0x2, FONT_4096 = 0x4, // font oversampling FONT_NO_OVERSAMPLE = 0x0, FONT_OVERSAMPLE_X = 0x08, FONT_OVERSAMPLE_Y = 0x10, // unicode ranges FONT_ASCII = 0x800, // Compatible charset FONT_AR = 0x001000, // Arabic and Arabic-Indic digits FONT_ZH = 0x002000, // Chinese Simplified (@todo: add ZH_FULL) FONT_EL = 0x004000, // Greek, Coptic, modern Georgian, Svan, Mingrelian, Ancient Greek FONT_EM = 0x008000, // Emoji FONT_EU = 0x010000, // Eastern/western Europe, IPA, Latin ext A/B FONT_HE = 0x020000, // Hebrew, Yiddish, Ladino, and other diaspora languages FONT_JP = 0x040000, // Hiragana, Katakana, Punctuations, Half-width chars FONT_KR = 0x080000, // Korean, Hangul FONT_RU = 0x100000, // Cyrillic + ext A/B FONT_TH = 0x200000, // Thai FONT_VI = 0x400000, // Vietnamese FONT_CJK = FONT_ZH|FONT_JP|FONT_KR, // FONT_DEFAULTS = FONT_512 | FONT_NO_OVERSAMPLE | FONT_ASCII, }; // configures API void font_face(const char *face_tag, const char *filename_ttf, float font_size, unsigned flags); API void font_face_from_mem(const char *tag, const void *ttf_buffer, unsigned ttf_len, float font_size, unsigned flags); API void font_scales(const char *face_tag, float h1, float h2, float h3, float h4, float h5, float h6); API void font_color(const char *color_tag, uint32_t color); // commands API vec2 font_xy(); API void font_goto(float x, float y); API vec2 font_print(const char *text); API vec2 font_rect(const char *text); // void font_clip(vec2 topleft, vec2 bottomright); // void font_wrap(vec2 topleft, vec2 bottomright); // syntax highlighting API void* font_colorize(const char *text, const char *comma_types, const char *comma_keywords); // comma separated tokens. expensive, please cache result. API vec2 font_highlight(const char *text, const void *colors); #line 0 #line 1 "v4k_input.h" // ----------------------------------------------------------------------------- // input framework // - rlyeh, public domain // // @todo: window // @todo: for extra savings (168->72 bytes), promote bits to real bits (/8 %8) & normalized floats [-1,+1] to shorts or chars // @todo: GAMEPAD_A|2, MOUSE_L|1, KEY_C|3 // @todo: load/save // @todo: send virtual presses & outputs (rumble, light, led, text, etc) // @todo: fix if logger !60 hz // @tofo: fix click2/repeat edge cases API int input_use( int controller_id ); // [0..3] // -- basic polling api (read input at current frame) API float input( int vk ); API vec2 input2( int vk ); API float input_diff( int vk ); // @todo: rename diff->delta API vec2 input_diff2( int vk ); // @todo: rename diff2->delta2 API const char* input_string( int vk ); // -- extended polling api (read input at Nth frame ago) API float input_frame( int vk, int Nth_frame ); API vec2 input_frame2( int vk, int Nth_frame ); // -- events api API int input_up( int vk ); // ON -> OFF (release) API int input_down( int vk ); // OFF -> ON (trigger) API int input_held( int vk ); // ON -> ON (pressed) API int input_idle( int vk ); // OFF -> OFF API int input_click( int vk, int ms ); // OFF -> ON -> OFF API int input_click2( int vk, int ms ); // OFF -> ON -> OFF -> ON -> OFF API int input_repeat( int vk, int ms ); // [...] ON -> ON -> ON API int input_chord2( int vk1, int vk2 ); // all vk1 && vk2 are ON API int input_chord3( int vk1, int vk2, int vk3 ); // all vk1 && vk2 && vk3 are ON API int input_chord4( int vk1, int vk2, int vk3, int vk4 ); // all vk1 && vk2 && vk3 && vk4 are ON // -- 1d/2d filters API float input_filter_positive( float v ); // [-1..1] -> [0..1] API vec2 input_filter_positive2( vec2 v ); // [-1..1] -> [0..1] API vec2 input_filter_deadzone( vec2 v, float deadzone_treshold ); API vec2 input_filter_deadzone_4way( vec2 v, float deadzone_treshold ); // -- multi-touch enum TOUCH_BUTTONS { TOUCH_0, // defaults to left screen area. input_touch_area() to override TOUCH_1, // defaults to right screen area. input_touch_area() to override }; API void input_touch_area(unsigned button, vec2 begin_coord_ndc, vec2 end_coord_ndc); API vec2 input_touch(unsigned button, float sensitivity); // absolute position in 2d coords API vec2 input_touch_delta(unsigned button, float sensitivity); // delta from previous position API vec2 input_touch_delta_from_origin(unsigned button, float sensitivity); // relative position from initial touch API bool input_touch_active(); // -- utils API void input_mappings(const char *filename); // update gamepad mappings (usually "gamecontrollerdb.txt" file) API char input_keychar(unsigned code); // Converts keyboard code to its latin char (if any) API int input_anykey(); // inject state API void input_send( int vk ); // @todo // load/save input API array(char) save_input(); // @todo API bool load_input(array(char) replay); // @todo // visualize input API int ui_keyboard(); API int ui_mouse(); API int ui_gamepad(int id); API int ui_gamepads(); // -- enum INPUT_ENUMS { // -- bits: x104 keyboard, x3 mouse, x15 gamepad, x7 window // keyboard gaming keys (53-bit): first-class keys for gaming KEY_ESC, KEY_TICK, KEY_1,KEY_2,KEY_3,KEY_4,KEY_5,KEY_6,KEY_7,KEY_8,KEY_9,KEY_0, KEY_BS, KEY_TAB, KEY_Q,KEY_W,KEY_E,KEY_R,KEY_T,KEY_Y,KEY_U,KEY_I,KEY_O,KEY_P, KEY_CAPS, KEY_A,KEY_S,KEY_D,KEY_F,KEY_G,KEY_H,KEY_J,KEY_K,KEY_L, KEY_ENTER, KEY_LSHIFT, KEY_Z,KEY_X,KEY_C,KEY_V,KEY_B,KEY_N,KEY_M, KEY_RSHIFT, KEY_UP, KEY_LCTRL,KEY_LALT, KEY_SPACE, KEY_RALT,KEY_RCTRL, KEY_LEFT,KEY_DOWN,KEY_RIGHT, // for completeness, secondary keys below (52-bit). beware! KEY_INS,KEY_HOME,KEY_PGUP,KEY_DEL,KEY_END,KEY_PGDN, // beware: different behavior win/osx (also, osx: no home/end). KEY_LMETA,KEY_RMETA,KEY_MENU,KEY_PRINT,KEY_PAUSE,KEY_SCROLL,KEY_NUMLOCK, // beware: may trigger unexpected OS behavior. (@todo: add RSHIFT here for win?) KEY_MINUS,KEY_EQUAL,KEY_LSQUARE,KEY_RSQUARE,KEY_SEMICOLON,KEY_QUOTE,KEY_HASH,KEY_BAR,KEY_COMMA,KEY_DOT,KEY_SLASH, // beware: non-us keyboard layouts KEY_F1,KEY_F2,KEY_F3,KEY_F4,KEY_F5,KEY_F6,KEY_F7,KEY_F8,KEY_F9,KEY_F10,KEY_F11,KEY_F12, // beware: complicated on laptops/osx KEY_PAD1,KEY_PAD2,KEY_PAD3,KEY_PAD4,KEY_PAD5,KEY_PAD6,KEY_PAD7,KEY_PAD8,KEY_PAD9,KEY_PAD0, // beware: complicated on laptops KEY_PADADD,KEY_PADSUB,KEY_PADMUL,KEY_PADDIV,KEY_PADDOT,KEY_PADENTER, // beware: complicated on laptops MOUSE_L, MOUSE_M, MOUSE_R, GAMEPAD_CONNECTED, GAMEPAD_A, GAMEPAD_B, GAMEPAD_X, GAMEPAD_Y, GAMEPAD_UP, GAMEPAD_DOWN, GAMEPAD_LEFT, GAMEPAD_RIGHT, GAMEPAD_MENU, GAMEPAD_START, GAMEPAD_LB, GAMEPAD_RB, GAMEPAD_LTHUMB, GAMEPAD_RTHUMB, WINDOW_BLUR, WINDOW_FOCUS, WINDOW_CLOSE, WINDOW_MINIMIZE, WINDOW_MAXIMIZE, WINDOW_FULLSCREEN, WINDOW_WINDOWED, // MINI/MAXI/RESTORED, SHOWN/HIDDEN // -- floats: x7 gamepad, x3 mouse, x4 touch, x4 window GAMEPAD_LPAD, GAMEPAD_LPADX = GAMEPAD_LPAD, GAMEPAD_LPADY, GAMEPAD_RPAD, GAMEPAD_RPADX = GAMEPAD_RPAD, GAMEPAD_RPADY, GAMEPAD_LTRIGGER, GAMEPAD_LT = GAMEPAD_LTRIGGER, GAMEPAD_RTRIGGER, GAMEPAD_RT = GAMEPAD_RTRIGGER, GAMEPAD_BATTERY, MOUSE, MOUSE_X = MOUSE, MOUSE_Y, MOUSE_W, TOUCH_X1, TOUCH_Y1, TOUCH_X2, TOUCH_Y2, WINDOW_RESIZE, WINDOW_RESIZEX = WINDOW_RESIZE, WINDOW_RESIZEY, WINDOW_ORIENTATION, WINDOW_BATTERY, // -- strings: x2 gamepad GAMEPAD_GUID, GAMEPAD_NAME, }; #line 0 #line 1 "v4k_memory.h" // ----------------------------------------------------------------------------- // memory framework // - rlyeh, public domain // memory leaks detector #if ENABLE_MEMORY_LEAKS #define WATCH(ptr,sz) watch((ptr), (sz)) #define FORGET(ptr) forget(ptr) #else #define WATCH(ptr,sz) (ptr) #define FORGET(ptr) (ptr) #endif // default allocator (aborts on out-of-mem) API void* xrealloc(void* p, size_t sz); API size_t xsize(void* p); API char* xstats(void); // stack based allocator (negative bytes does rewind stack, like when entering new frame) API void* stack(int bytes); // memory leaks api (this is already integrated as long as you compile with -DENABLE_MEMORY_LEAKS) API void* watch( void *ptr, int sz ); API void* forget( void *ptr ); // memory api #define ALLOCSIZE(p) xsize(p) #define MALLOC(n) REALLOC_(0,(n)) #define FREE(p) REALLOC_((p), 0) #define REALLOC(p,n) REALLOC_((p),(n)) #define CALLOC(m,n) CALLOC_((m),(n)) #define STRDUP(s) STRDUP_(s) static FORCE_INLINE void *(REALLOC_)(void *p, size_t n) { return n ? WATCH(xrealloc(p,n),n) : xrealloc(FORGET(p),0); } ///- static FORCE_INLINE void *(CALLOC_)(size_t m, size_t n) { return n *= m, memset(REALLOC(0,n),0,n); } ///- static FORCE_INLINE char *(STRDUP_)(const char *s) { size_t n = strlen(s)+1; return ((char*)memcpy(REALLOC(0,n), s, n)); } ///- #line 0 #line 1 "v4k_network.h" // ----------------------------------------------------------------------------- // network framework // - rlyeh, public domain API array(char) download( const char *url ); API int download_file( FILE *out, const char *url ); API int portname( const char *service_name, unsigned retries ); API bool network_tests(); // ----------------------------------------------------------------------------- // udp wrapper // - rlyeh, public domain. // server API int udp_bind(const char *address, const char *port); // client API int udp_open(const char *address, const char *port); // common API int udp_send(int, const void *buf, int len ); // <0 error, >0 bytes sent ok API int udp_sendto(int, const char *ip, const char *port, const void *buf, int len ); // <0 error, >0 bytes sent ok API int udp_recv(int, void *buf, int len ); // <0 error, 0 orderly shutdown, >0 received bytes API int udp_peek(int); // <0 error, 0 timeout, >0 data // ----------------------------------------------------------------------------- // tcp wrapper // - rlyeh, public domain // client API int tcp_open(const char *address, const char *port); // server API int tcp_bind(const char *interface_, const char *port, int queue); API int tcp_peek(int, int(*callback)(int)); // common API int tcp_send(int, const void* buf, int len); API int tcp_recv(int, void* buf, int len); API char* tcp_host(int); // info API char* tcp_port(int); // info API int tcp_close(int); // extras API int tcp_debug(int); // toggle traffic monitoring on/off for given socket //API int tcp_printf(int, const char *fmt, ...); // printf message in remote end //API int tcp_crypt(int,uint64_t); // set shared secret #line 0 #line 1 "v4k_netsync.h" // high-level, socket-less networking api. inspired by Quake, MPI and RenderBuckets theories. // - rlyeh, public domain // // Usage: // 1. configure networked memory buffers with flags (world, player1, player2, etc). network_buffer(); // 2. then during game loop: // - modify your buffers as much as needed. // - sync buffers at least once per frame. network_sync(); // - render your world // 3. optionally, monitor network status & variables. network_get(); // // @todo: maybe network_send(msg) + msg *network_recv(); instead of event queue of network_sync() ? //enum { NETWORK_HANDSHAKE, NETWORK_ENCRYPT, NETWORK_VERSIONED, NETWORK_CHECKSUM }; // negotiation //enum { NETWORK_TCP, NETWORK_UDP, NETWORK_KCP, NETWORK_ENET, NETWORK_WEBSOCKET }; // transport, where enum { NETWORK_BIND = 2, NETWORK_CONNECT = 4, NETWORK_NOFAIL = 8 }; API void network_create(unsigned max_clients, const char *ip, const char *port, unsigned flags); // both ip and port can be null //enum { NETWORK_LOSSY, NETWORK_COMPRESS }; // post-processes //enum { NETWORK_PREDICT, NETWORK_RECONCILE, NETWORK_INTERPOLATE, NETWORK_COMPENSATE }; // time authority, when //enum { NETWORK_LAGS, NETWORK_DROPS, NETWORK_THROTTLES, NETWORK_DUPES }; // quality sim, how much //enum { NETWORK_CONST = 1, NETWORK_64,NETWORK_32,NETWORK_16,NETWORK_8, NETWORK_FLT, NETWORK_STR, NETWORK_BLOB }; // type, what enum { NETWORK_SEND = 2, NETWORK_RECV = 4 }; enum { NETWORK_UNRELIABLE = 8, NETWORK_UNORDERED = 16/*, NETWORK_PRIORITY = 32*/ }; API void* network_buffer(void *ptr, unsigned sz, uint64_t flags, int64_t rank); // configures a shared/networked buffer API char** network_sync(unsigned timeout_ms); // syncs all buffers & returns null-terminated list of network events enum { NETWORK_EVENT_CONNECT, NETWORK_EVENT_DISCONNECT, NETWORK_EVENT_RECEIVE, NETWORK_EVENT_DISCONNECT_TIMEOUT, /* offset from internal networking events */ NETWORK_EVENT_RPC = 10, NETWORK_EVENT_RPC_RESP, }; /* errcode and errstr are optional arguments, pass NULL to ignore them, errstr is filled by va() */ API int network_event(const char *msg, int *errcode, char **errstr); enum { NETWORK_RANK = 0 }; // [0..N] where 0 is server enum { NETWORK_PING = 1 }; // NETWORK_BANDWIDTH, NETWORK_QUALITY }; enum { NETWORK_PORT = 2, NETWORK_IP, NETWORK_LIVE }; enum { NETWORK_SEND_MS = 4 }; enum { NETWORK_BUF_CLEAR_ON_JOIN = 5 }; enum { NETWORK_USERID = 7, /*NETWORK_SALT,*/ NETWORK_COUNT/*N users*/ /*...*/, NETWORK_CAPACITY }; API int64_t network_get(uint64_t key); API int64_t network_put(uint64_t key, int64_t value); API void network_rpc(const char *signature, void *function); API void network_rpc_send_to(int64_t rank, unsigned id, const char *cmdline); API void network_rpc_send(unsigned id, const char *cmdline); // ----------------------------------------------------------------------------- // low-level api (sockets based) API bool server_bind(int max_clients, int port); API char** server_poll(unsigned timeout_ms); API char** client_poll(unsigned timeout_ms); API void server_broadcast_bin_flags(const void *ptr, int len, uint64_t flags); API void server_broadcast_bin(const void *ptr, int len); API void server_broadcast_flags(const char *msg, uint64_t flags); API void server_broadcast(const char *msg); API void server_terminate(); API void server_send(int64_t handle, const char *msg); API void server_send_bin(int64_t handle, const void *ptr, int len); API void server_drop(int64_t handle); API int64_t client_join(const char *ip, int port); #define client_send_flags(msg,flags) server_broadcast(msg, flags) #define client_send(msg) server_broadcast(msg) #define client_send_bin_flags(ptr,len,flags) server_broadcast_bin(ptr, len, flags) #define client_send_bin(ptr,len) server_broadcast_bin(ptr, len) #define client_terminate() server_terminate() #define ANYHOST_IPV4 "0.0.0.0" #define ANYHOST_IPV6 "::0" #define LOCALHOST_IPV4 "127.0.0.1" #define LOCALHOST_IPV6 "::1" #line 0 #line 1 "v4k_obj.h" // ----------------------------------------------------------------------------- // semantic versioning in a single byte (octal) // - rlyeh, public domain. // // - single octal byte that represents semantic versioning (major.minor.patch). // - allowed range [0000..0377] ( <-> [0..255] decimal ) // - comparison checks only major.minor tuple as per convention. API int semver( int major, int minor, int patch ); API int semvercmp( int v1, int v2 ); #define SEMVER(major,minor,patch) (0100 * (major) + 010 * (minor) + (patch)) #define SEMVERCMP(v1,v2) (((v1) & 0110) - ((v2) & 0110)) #define SEMVERFMT "%03o" // ----------------------------------------------------------------------------- // autorun initializers for C // - rlyeh, public domain // // note: based on code by Joe Lowe (public domain). // note: XIU for C initializers, XCU for C++ initializers, XTU for C deinitializers #ifdef __cplusplus #define AUTORUN \ static void AUTORUN_U(f)(void); \ static const int AUTORUN_J(AUTORUN_U(f),__1) = (AUTORUN_U(f)(), 1); \ static void AUTORUN_U(f)(void) #elif _MSC_VER #define AUTORUN \ static void AUTORUN_U(f)(void); \ static int AUTORUN_J(AUTORUN_U(f),__1) (){ AUTORUN_U(f)(); return 0; } \ __pragma(section(".CRT$XIU", long, read)) \ __declspec(allocate(".CRT$XIU")) \ static int(* AUTORUN_J(AUTORUN_U(f),__2) )() = AUTORUN_J(AUTORUN_U(f),__1); \ static void AUTORUN_U(f)(void) #else #define AUTORUN \ __attribute__((constructor)) \ static void AUTORUN_U(f)(void) #endif // join + unique macro utils #define AUTORUN_j(a, b) a##b #define AUTORUN_J(a, b) AUTORUN_j(a, b) #define AUTORUN_U(x) AUTORUN_J(x, __LINE__) #if 0 // autorun demo void byebye(void) { puts("seen after main()"); } AUTORUN { puts("seen before main()"); } AUTORUN { puts("seen before main() too"); atexit( byebye ); } #endif // ----------------------------------------------------------------------------- // storage types. refer to vec2i/3i, vec2/3/4 if you plan to do math operations typedef struct byte2 { uint8_t x,y; } byte2; typedef struct byte3 { uint8_t x,y,z; } byte3; typedef struct byte4 { uint8_t x,y,z,w; } byte4; typedef struct int2 { int x,y; } int2; typedef struct int3 { int x,y,z; } int3; typedef struct int4 { int x,y,z,w; } int4; typedef struct uint2 { unsigned int x,y; } uint2; typedef struct uint3 { unsigned int x,y,z; } uint3; typedef struct uint4 { unsigned int x,y,z,w; } uint4; typedef struct float2 { float x,y; } float2; typedef struct float3 { float x,y,z; } float3; typedef struct float4 { float x,y,z,w; } float4; typedef struct double2 { double x,y; } double2; typedef struct double3 { double x,y,z; } double3; typedef struct double4 { double x,y,z,w; } double4; #define byte2(x,y) M_CAST(byte2, (uint8_t)(x), (uint8_t)(y) ) #define byte3(x,y,z) M_CAST(byte3, (uint8_t)(x), (uint8_t)(y), (uint8_t)(z) ) #define byte4(x,y,z,w) M_CAST(byte4, (uint8_t)(x), (uint8_t)(y), (uint8_t)(z), (uint8_t)(w) ) #define int2(x,y) M_CAST(int2, (int)(x), (int)(y) ) #define int3(x,y,z) M_CAST(int3, (int)(x), (int)(y), (int)(z) ) #define int4(x,y,z,w) M_CAST(int4, (int)(x), (int)(y), (int)(z), (int)(w) ) #define uint2(x,y) M_CAST(uint2, (unsigned)(x), (unsigned)(y) ) #define uint3(x,y,z) M_CAST(uint3, (unsigned)(x), (unsigned)(y), (unsigned)(z) ) #define uint4(x,y,z,w) M_CAST(uint4, (unsigned)(x), (unsigned)(y), (unsigned)(z), (unsigned)(w) ) #define float2(x,y) M_CAST(float2, (float)(x), (float)(y) ) #define float3(x,y,z) M_CAST(float3, (float)(x), (float)(y), (float)(z) ) #define float4(x,y,z,w) M_CAST(float4, (float)(x), (float)(y), (float)(z), (float)(w) ) #define double2(x,y) M_CAST(double2, (double)(x), (double)(y) ) #define double3(x,y,z) M_CAST(double3, (double)(x), (double)(y), (double)(z) ) #define double4(x,y,z,w) M_CAST(double4, (double)(x), (double)(y), (double)(z), (double)(w) ) #line 0 #line 1 "v4k_profile.h" // ----------------------------------------------------------------------------- // profiler & stats (@fixme: threadsafe) #if !ENABLE_PROFILER # define profile(section) for(int macro(i) = 1; macro(i); macro(i) = 0) # define profile_incstat(name, accum) do {} while(0) # define profile_setstat(name, value) do {} while(0) # define profiler_init() do {} while(0) # define profiler_enable(x) 0 # define ui_profiler() do {} while(0) #else # define profile(section) for( \ struct profile_t *found = profiler_enabled ? \ map_find_or_add(profiler, section "@" FILELINE, (struct profile_t){NAN} ) : NULL, \ *doit = found + ( found ? found->cost = -time_us(), 1 : 1 ); doit; \ doit = found ? found->cost += time_us(), found->avg = found->cost * 0.25 + found->avg * 0.75, NULL : NULL) ///+ # define profile_incstat(name, accum) for( \ struct profile_t *found = profiler_enabled ? map_find_or_add(profiler, name, (struct profile_t){0}) : NULL; \ found; found->stat += accum, found = NULL) ///+ # define profile_setstat(name, value) for( \ struct profile_t *found = profiler_enabled ? map_find_or_add(profiler, name, (struct profile_t){0}) : NULL; \ found; found->stat = value, found = NULL) ///+ API int profiler_enable(bool on); struct profile_t { double stat; int32_t cost, avg; }; ///- typedef map(char *, struct profile_t) profiler_t; ///- extern API profiler_t profiler; ///- extern API int profiler_enabled; ///- #endif #line 0 #line 1 "v4k_render.h" // ----------------------------------------------------------------------------- // naive rendering framework // - rlyeh, public domain // // IQM skeletal meshes by @lsalzman (public domain) - https://bit.ly/2OQh0Me // SH code by @ands (public domain) - https://github.com/ands/spherical_harmonics_playground // SHM code by @jarikomppa (unlicensed) - https://github.com/jarikomppa/shadertoolkit typedef unsigned handle; // GLuint // ----------------------------------------------------------------------------- // colors API unsigned rgba( uint8_t r, uint8_t g, uint8_t b, uint8_t a ); API unsigned bgra( uint8_t b, uint8_t g, uint8_t r, uint8_t a ); API unsigned rgbaf( float r, float g, float b, float a ); API unsigned bgraf( float b, float g, float r, float a ); API float alpha( unsigned rgba ); #define RGBX(rgb,x) ( ((rgb)&0xFFFFFF) | (((unsigned)(x))<<24) ) #define RGB3(r,g,b) ( (255<<24) | ((r)<<16) | ((g)<<8) | (b) ) #define RGB4(r,g,b,a) RGBX(RGB3(r,g,b),a) #define BLACK RGBX(0x000000,255) #define WHITE RGBX(0xFFF1E8,255) #if 0 #define RED RGBX(0xFF004D,255) #define GREEN RGBX(0x00B543,255) #define BLUE RGBX(0x065AB5,255) #define ORANGE RGBX(0xFF6C24,255) #define CYAN RGBX(0x29ADFF,255) #define PURPLE RGBX(0x7E2553,255) #define YELLOW RGBX(0xFFEC27,255) #define GRAY RGBX(0x725158,255) #else #define RED RGB3( 255,48,48 ) #define GREEN RGB3( 144,255,48 ) #define CYAN RGB3( 0,192,255 ) #define ORANGE RGB3( 255,144,48 ) #define PURPLE RGB3( 102,77,102 ) // 178,128,255 ) #define YELLOW RGB3( 255,224,0 ) #define GRAY RGB3( 32,32,32 ) // dark gray #define SILVER RGB3( 149,149,149 ) // dark white, gray-ish #define PINK RGB3( 255,48,144 ) #define AQUA RGB3( 48,255,144 ) #define BLUE RGBX(0x065AB5,255) #endif // ----------------------------------------------------------------------------- // images /// flags when constructing the image_t type. see: image, image_from_mem /// IMAGE_R: 1-channel image (R) /// IMAGE_RG: 2-channel image (R,G) /// IMAGE_RGB: 3-channel image (R,G,B) /// IMAGE_RGBA: 4-channel image (R,G,B,A) /// IMAGE_FLIP: Flip image vertically /// IMAGE_FLOAT: Float pixel components enum IMAGE_FLAGS { IMAGE_R = 0x01000, IMAGE_RG = 0x02000, IMAGE_RGB = 0x04000, IMAGE_RGBA = 0x08000, IMAGE_FLIP = 0x10000, IMAGE_FLOAT = 0x20000, }; /// type that holds linear uncompressed bitmap of any given dimensions. /// w,h: image dimensions in pixels. `x,y` alias. /// comps: number of components per pixel. `n` alias. /// pixels: untyped pointer to linear bitmap data. typed pointers use `pixels8/16/32/f` aliases. /// see: texture_t typedef struct image_t { union { unsigned x, w; }; union { unsigned y, h; }; union { unsigned n, comps; }; union { void *pixels; uint8_t *pixels8; uint16_t *pixels16; uint32_t *pixels32; float *pixelsf; }; } image_t; API image_t image(const char *pathfile, int flags); API image_t image_from_mem(const void *ptr, int len, int flags); API void image_destroy(image_t *img); // ----------------------------------------------------------------------------- // textures enum TEXTURE_FLAGS { // UNIT[0..7] TEXTURE_BC1 = 8, // DXT1, RGB with 8:1 compression ratio (+ optional 1bpp for alpha) TEXTURE_BC2 = 16, // DXT3, RGBA with 4:1 compression ratio (BC1 for RGB + 4bpp for alpha) TEXTURE_BC3 = 32, // DXT5, RGBA with 4:1 compression ratio (BC1 for RGB + BC4 for A) // TEXTURE_BC4, // Alpha TEXTURE_NEAREST = 0, TEXTURE_LINEAR = 64, TEXTURE_MIPMAPS = 128, TEXTURE_CLAMP = 0, TEXTURE_BORDER = 0x100, TEXTURE_REPEAT = 0x200, TEXTURE_BYTE = 0, TEXTURE_FLOAT = IMAGE_FLOAT, TEXTURE_COLOR = 0, TEXTURE_DEPTH = 0x800, TEXTURE_R = IMAGE_R, TEXTURE_RG = IMAGE_RG, TEXTURE_RGB = IMAGE_RGB, TEXTURE_RGBA = IMAGE_RGBA, TEXTURE_FLIP = IMAGE_FLIP, // @fixme TEXTURE_SRGB = 1 << 24, TEXTURE_BGR = 1 << 25, TEXTURE_ARRAY = 1 << 26, }; typedef struct texture_t { union { unsigned x, w; }; union { unsigned y, h; }; union { unsigned z, d; }; union { unsigned n, bpp; }; handle id, unit; unsigned texel_type; unsigned flags; char* filename; bool transparent; unsigned fbo; // for texture recording } texture_t; API texture_t texture_compressed(const char *filename, unsigned flags); API texture_t texture_compressed_from_mem(const void *data, int len, unsigned flags); API texture_t texture(const char* filename, int flags); API texture_t texture_from_mem(const void* ptr, int len, int flags); API texture_t texture_create(unsigned w, unsigned h, unsigned n, const void *pixels, int flags); API texture_t texture_checker(); API void texture_destroy(texture_t *t); // textureLod(filename, dir, lod); // void texture_add_loader( int(*loader)(const char *filename, int *w, int *h, int *bpp, int reqbpp, int flags) ); API unsigned texture_update(texture_t *t, unsigned w, unsigned h, unsigned n, const void *pixels, int flags); API bool texture_rec_begin(texture_t *t, unsigned w, unsigned h); // texture_rec API void texture_rec_end(texture_t *t); // texture_rec // ----------------------------------------------------------------------------- // brdf API texture_t brdf_lut(); // ----------------------------------------------------------------------------- // pbr materials typedef struct colormap_t { vec4 color; texture_t *texture; } colormap_t; API bool colormap( colormap_t *cm, const char *pbr_material_type, bool load_as_srgb ); typedef struct pbr_material_t { char* name; colormap_t diffuse; colormap_t normals; colormap_t specular; colormap_t albedo; colormap_t roughness; colormap_t metallic; colormap_t ao; colormap_t ambient; colormap_t emissive; float specular_shininess; } pbr_material_t; API bool pbr_material(pbr_material_t *pbr, const char *material); API void pbr_material_destroy(pbr_material_t *m); // ----------------------------------------------------------------------------- // fullscreen quads API void fullscreen_quad_rgb( texture_t texture_rgb, float gamma ); API void fullscreen_quad_rgb_flipped( texture_t texture, float gamma ); API void fullscreen_quad_ycbcr( texture_t texture_YCbCr[3], float gamma ); API void fullscreen_quad_ycbcr_flipped( texture_t texture_YCbCr[3], float gamma ); // ----------------------------------------------------------------------------- // sprites // texture id, position(x,y,depth sort), tint color, rotation angle API void sprite( texture_t texture, float position[3], float rotation /*0*/, uint32_t color /*~0u*/); // texture id, rect(x,y,w,h) is [0..1] normalized, z-index, pos(xy,scale), rotation (degrees), color (rgba) API void sprite_rect( texture_t t, vec4 rect, float zindex, vec3 pos, float tilt_deg, unsigned tint_rgba); // texture id, sheet(frameNumber,X,Y) (frame in a X*Y spritesheet), position(x,y,depth sort), rotation angle, offset(x,y), scale(x,y), is_additive, tint color API void sprite_sheet( texture_t texture, float sheet[3], float position[3], float rotation, float offset[2], float scale[2], int is_additive, uint32_t rgba, int resolution_independant); API void sprite_flush(); // ----------------------------------------------------------------------------- // tilemaps typedef struct tileset_t { texture_t tex; // spritesheet unsigned tile_w, tile_h; // dimensions per tile in pixels unsigned cols, rows; // tileset num_cols, num_rows unsigned selected; // active tile (while editing) } tileset_t; API tileset_t tileset(texture_t tex, unsigned tile_w, unsigned tile_h, unsigned cols, unsigned rows); API int tileset_ui( tileset_t t ); typedef struct tilemap_t { int blank_chr; // transparent tile unsigned cols, rows; // map dimensions (in tiles) array(int) map; vec3 position; // x,y,scale float zindex; float tilt; unsigned tint; bool is_additive; } tilemap_t; API tilemap_t tilemap(const char *map, int blank_chr, int linefeed_chr); API void tilemap_render( tilemap_t m, tileset_t style ); API void tilemap_render_ext( tilemap_t m, tileset_t style, float zindex, float xy_zoom[3], float tilt, unsigned tint, bool is_additive ); // ----------------------------------------------------------------------------- // tiled maps typedef struct tiled_t { char *map_name; unsigned first_gid, tilew, tileh, w, h; bool parallax; vec3 position; array(bool) visible; array(tilemap_t) layers; array(tileset_t) sets; array(char*) names; } tiled_t; API tiled_t tiled(const char *file_tmx); API void tiled_render(tiled_t tmx, vec3 pos); API void tiled_ui(tiled_t *t); // ----------------------------------------------------------------------------- // spines typedef struct spine_t spine_t; API spine_t*spine(const char *file_json, const char *file_atlas, unsigned flags); API void spine_skin(spine_t *p, unsigned skin); API void spine_render(spine_t *p, vec3 offset, unsigned flags); API void spine_animate(spine_t *p, float delta); API void spine_ui(spine_t *p); // ----------------------------------------------------------------------------- // cubemaps typedef struct cubemap_t { unsigned id; // texture id vec3 sh[9]; // precomputed spherical harmonics coefficients } cubemap_t; API cubemap_t cubemap( const image_t image, int flags ); // 1 equirectangular panorama API cubemap_t cubemap6( const image_t images[6], int flags ); // 6 cubemap faces API void cubemap_destroy(cubemap_t *c); API cubemap_t* cubemap_get_active(); // ----------------------------------------------------------------------------- // fbos API unsigned fbo( unsigned texture_color, unsigned texture_depth, int wr_flags ); API void fbo_bind(unsigned id); API void fbo_unbind(); API void fbo_destroy(unsigned id); // ----------------------------------------------------------------------------- // shadowmaps // #ifndef VSMCUBE // #define VSMCUBE 0 // #endif // #ifndef VSMBLUR // #define VSMBLUR 1 // #endif typedef struct shadowmap_t { mat44 shadowmatrix; mat44 mvp; mat44 mv; mat44 proj; vec4 light_position; int saved_fb; int saved_viewport[4]; handle fbo, texture; int texture_width; } shadowmap_t; API shadowmap_t shadowmap(int texture_width); // = 1024 API void shadowmap_destroy(shadowmap_t *s); API void shadowmap_set_shadowmatrix(shadowmap_t *s, vec3 aLightPos, vec3 aLightAt, vec3 aLightUp, const mat44 projection); API void shadowmap_begin(shadowmap_t *s); API void shadowmap_end(shadowmap_t *s); // shadowmap utils API void shadowmatrix_proj(mat44 shm_proj, float aLightFov, float znear, float zfar); API void shadowmatrix_ortho(mat44 shm_proj, float left, float right, float bottom, float top, float znear, float zfar); // ----------------------------------------------------------------------------- // shaders API unsigned shader(const char *vs, const char *fs, const char *attribs, const char *fragcolor, const char *defines); API unsigned shader_geom(const char *gs, const char *vs, const char *fs, const char *attribs, const char *fragcolor, const char *defines); API unsigned shader_bind(unsigned program); API void shader_bool(const char *uniform, bool i ); API void shader_int(const char *uniform, int i); API void shader_uint(const char *uniform, unsigned i ); API void shader_float(const char *uniform, float f); API void shader_vec2(const char *uniform, vec2 v); API void shader_vec3(const char *uniform, vec3 v); API void shader_vec3v(const char *uniform, int count, vec3 *v); API void shader_vec4(const char *uniform, vec4 v); API void shader_mat44(const char *uniform, mat44 m); API void shader_texture(const char *sampler, texture_t texture); API void shader_texture_unit(const char *sampler, unsigned texture, unsigned unit); API void shader_colormap(const char *name, colormap_t cm); API unsigned shader_get_active(); API void shader_destroy(unsigned shader); // reflection. [0..N] are shader properties API unsigned shader_properties(unsigned shader); API char** shader_property(unsigned shader, unsigned property_no); API void shader_apply_param(unsigned shader, unsigned param_no); API void shader_apply_params(unsigned shader, const char *parameter_mask); API int ui_shader(unsigned shader); API int ui_shaders(); // compute shaders enum BUFFER_MODE { BUFFER_READ, BUFFER_WRITE, BUFFER_READ_WRITE }; /// Loads the compute shader and compiles a GL program. /// return: GL program, 0 if failed. /// cs: shader source code API unsigned compute(const char *cs); /// Runs the compute program with provided global workgroup size on x y z grid. /// wx: global workgroup size x /// wy: global workgroup size y /// wz: global workgroup size z API void compute_dispatch(unsigned wx, unsigned wy, unsigned wz); /// Binds a texture to the program /// !!! Set `layer` to -1 to disable layered access. /// t: texture to bind /// unit: texture unit bind index /// level: texture level access (MIP0, MIP1, ...) /// layer: bind layer /// access: texture access policy /// see: BUFFER_MODE API void shader_image(texture_t t, unsigned unit, unsigned level, int layer, unsigned access); /// Binds a texture to the program /// !!! Set `layer` to -1 to disable layered access. /// texture: GL texture handle /// unit: texture unit bind index /// level: texture level access (MIP0, MIP1, ...) /// layer: bind layer /// texel_type: image texel format (RGBA8, RGBA32F, ...) /// access: texture access policy /// see: BUFFER_MODE API void shader_image_unit(unsigned texture, unsigned unit, unsigned level, int layer, unsigned texel_type, unsigned access); // gpu memory barriers /// Blocks main thread until all memory operations are done by the GPU. API void write_barrier(); /// Blocks main thread until all image operations are done by the GPU. API void write_barrier_image(); // ssbo /// `STATIC`, `DYNAMIC` AND `STREAM` specify the frequency at which we intend to access the data. /// `DRAW` favors CPU->GPU operations. /// `READ` favors GPU->CPU operations. /// `COPY` favors CPU->GPU->CPU operations. enum SSBO_USAGE { STATIC_DRAW, STATIC_READ, STATIC_COPY, DYNAMIC_DRAW, DYNAMIC_READ, DYNAMIC_COPY, STREAM_DRAW, STREAM_READ, STREAM_COPY }; enum SSBO_ACCESS { SSBO_READ = BUFFER_READ, SSBO_WRITE = BUFFER_WRITE, SSBO_READ_WRITE = BUFFER_READ_WRITE }; /// Create Shader Storage Buffer Object /// !!! `data` can be NULL /// data: optional pointer to data to upload /// len: buffer size, must not be 0 /// usage: buffer usage policy /// see: SSBO_USAGE API unsigned ssbo_create(const void *data, int len, unsigned usage); /// Destroys an SSBO resource API void ssbo_destroy(unsigned ssbo); /// Updates an existing SSBO /// !!! `len` can not exceed the original buffer size specified in `ssbo_create` ! /// offset: offset to buffer memory /// len: amount of data to write /// data: pointer to data we aim to write, can not be NULL API void ssbo_update(int offset, int len, const void *data); /// Bind an SSBO resource to the provided bind unit index /// ssbo: resource object /// unit: bind unit index API void ssbo_bind(unsigned ssbo, unsigned unit); /// Map an SSBO resource to the system memory /// !!! Make sure to `ssbo_unmap` the buffer once done working with it. /// access: buffer access policy /// return: pointer to physical memory of the buffer /// see: SSBO_ACCESS API void *ssbo_map(unsigned access); /// Unmaps an SSBO resource /// !!! Pointer provided by `ssbo_map` becomes invalid. API void ssbo_unmap(); /// Unbinds an SSBO resource API void ssbo_unbind(); // ----------------------------------------------------------------------------- // meshes (@fixme: deprecate?) enum MESH_FLAGS { MESH_STATIC = 0, // STATIC, DYNAMIC, STREAM // zero|single|many updates per frame MESH_STREAM = 1, MESH_TRIANGLE_STRIP = 2, }; typedef struct mesh_t { handle vao, vbo, ibo; unsigned vertex_count; unsigned index_count; unsigned flags; array(int) lod_collapse_map; // to which neighbor each vertex collapses. ie, [10] -> 7 (used by LODs) @leak // @leaks: following members are totally unused. convenient for end-users to keep their custom datas somewhere while processing. union { array(unsigned) in_index; array(vec3i) in_index3; }; union { array(unsigned) out_index; array(vec3i) out_index3; }; union { array(float) in_vertex; array(vec3) in_vertex3; }; union { array(float) out_vertex; array(vec3) out_vertex3; }; } mesh_t; API mesh_t mesh(); API void mesh_update(mesh_t *m, const char *format, int vertex_stride,int vertex_count,const void *interleaved_vertex_data, int index_count,const void *index_data, int flags); API void mesh_render(mesh_t *m); API void mesh_render_prim(mesh_t *sm, unsigned prim); API void mesh_destroy(mesh_t *m); API aabb mesh_bounds(mesh_t *m); // ----------------------------------------------------------------------------- // materials enum MATERIAL_ENUMS { MAX_CHANNELS_PER_MATERIAL = 8 }; typedef struct material_t { char *name; int count; struct material_layer_t { char texname[32]; handle texture; float value; vec4 color; // uint32_t } layer[MAX_CHANNELS_PER_MATERIAL]; } material_t; // ----------------------------------------------------------------------------- // shadertoys enum { SHADERTOY_FLIP_Y = 2, SHADERTOY_IGNORE_FBO = 4, SHADERTOY_IGNORE_MOUSE = 8, }; typedef struct shadertoy_t { handle vao, program; int uniforms[32]; int texture_channels[4]; int frame; float clickx, clicky; uint64_t t; texture_t tx; vec2i dims; int flags; } shadertoy_t; API shadertoy_t shadertoy( const char *shaderfile, unsigned flags ); API shadertoy_t* shadertoy_render( shadertoy_t *s, float delta ); // ----------------------------------------------------------------------------- // anims enum ANIM_FLAGS { ANIM_LOOP = 1, ANIM_DONT_RESET_AFTER_USE = 2, }; typedef struct anim_t { int from; int to; float blendtime; unsigned flags; float curframe; unsigned easing; float alpha; // refreshed at every tick float timer; // private bool active; vec3 pose; // private char* name; // debug } anim_t; API anim_t clip(float minframe, float maxframe, float blendtime, unsigned flags); API anim_t loop(float minframe, float maxframe, float blendtime, unsigned flags); //API array(anim_t) animlist(const char *filename); // @todo // ----------------------------------------------------------------------------- // models enum MODEL_FLAGS { MODEL_NO_ANIMATIONS = 1, MODEL_NO_MESHES = 2, MODEL_NO_TEXTURES = 4, MODEL_MATCAPS = 8, MODEL_RIMLIGHT = 16 }; //@todo: make this data-driven // enum SHADING_MODE { // SHADING_NONE, // SHADING_PHONG, // SHADING_CARTOON, // // SHADING_PBR, // }; typedef struct model_t { struct iqm_t *iqm; // private unsigned num_textures; handle *textures; char **texture_names; array(material_t) materials; unsigned num_meshes; unsigned num_triangles; unsigned num_joints; // num_poses; unsigned num_anims; unsigned num_frames; handle program; float curframe; mat44 pivot; int stride; // usually 60 bytes (12*4+4*3) for a p3 u2 n3 t4 i4B w4B c4B vertex stream void *verts; int num_verts; handle vao, ibo, vbo, vao_instanced; unsigned flags; unsigned billboard; float *instanced_matrices; unsigned num_instances; } model_t; API model_t model(const char *filename, int flags); API model_t model_from_mem(const void *mem, int sz, int flags); API float model_animate(model_t, float curframe); API float model_animate_clip(model_t, float curframe, int minframe, int maxframe, bool loop); API float model_animate_blends(model_t m, anim_t *primary, anim_t *secondary, float delta); API aabb model_aabb(model_t, mat44 transform); API void model_render(model_t, mat44 proj, mat44 view, mat44 model, int shader); API void model_render_skeleton(model_t, mat44 model); API void model_render_instanced(model_t, mat44 proj, mat44 view, mat44 *models, int shader, unsigned count); API void model_set_texture(model_t, texture_t t); API bool model_get_bone_pose(model_t m, unsigned joint, mat34 *out); API void model_destroy(model_t); API vec3 pose(bool forward, float curframe, int minframe, int maxframe, bool loop, float *opt_retframe); // ----------------------------------------------------------------------------- // model animations typedef struct anims_t { int inuse; // animation number in use float speed; // x1.00 array(anim_t) anims; // [begin,end,flags] frames of every animation in set } anims_t; API anims_t animations(const char *pathfile, int flags); // ----------------------------------------------------------------------------- // skyboxes typedef struct skybox_t { handle program; mesh_t geometry; cubemap_t cubemap; int flags; // mie int framebuffers[6]; int textures[6]; float *pixels; } skybox_t; API skybox_t skybox(const char *panorama_or_cubemap_folder, int flags); API int skybox_render(skybox_t *sky, mat44 proj, mat44 view); API void skybox_destroy(skybox_t *sky); API void skybox_mie_calc_sh(skybox_t *sky, float sky_intensity); API void skybox_sh_reset(skybox_t *sky); API void skybox_sh_add_light(skybox_t *sky, vec3 light, vec3 dir, float strength); API int skybox_push_state(skybox_t *sky, mat44 proj, mat44 view); // @to deprecate API int skybox_pop_state(); // @to deprecate // ----------------------------------------------------------------------------- // post-fxs API void viewport_clear(bool color, bool depth); API void viewport_clip(vec2 from, vec2 to); API int fx_load(const char *file); API int fx_load_from_mem(const char *nameid, const char *content); API void fx_begin(); API void fx_begin_res(int w, int h); API void fx_end(); API void fx_enable(int pass, int enabled); API int fx_enabled(int pass); API void fx_enable_all(int enabled); API char * fx_name(int pass); API int fx_find(const char *name); API int ui_fx(int pass); API int ui_fxs(); // ----------------------------------------------------------------------------- // utils API void* screenshot(int components); // 3 RGB, 4 RGBA, -3 BGR, -4 BGRA API void* screenshot_async(int components); // 3 RGB, 4 RGBA, -3 BGR, -4 BGRA #line 0 #line 1 "v4k_renderdd.h" // ----------------------------------------------------------------------------- // debugdraw framework // - rlyeh, public domain. // // Credits: Based on work by @glampert https://github.com/glampert/debug-draw (PD) // [x] grid, axis, frustum, cube, sphere, triangle, square, pentagon, hexagon, circle, normal. // [x] arrow, point, text, capsule, aabb, plane, flotilla-style locator, boid, bone, ring // [x] line batching // [*] line width and stipple // [*] (proper) gizmo, // [ ] camera, light bulb, light probe, API void ddraw_color(unsigned rgb); API void ddraw_color_push(unsigned rgb); API void ddraw_color_pop(); // API void ddraw_ontop(int enabled); API void ddraw_ontop_push(int enabled); API void ddraw_ontop_pop(); // API void ddraw_push_2d(); API void ddraw_pop_2d(); // API void ddraw_aabb(vec3 minbb, vec3 maxbb); API void ddraw_aabb_corners(vec3 minbb, vec3 maxbb); API void ddraw_arrow(vec3 begin, vec3 end); API void ddraw_axis(float units); API void ddraw_boid(vec3 pos, vec3 dir); API void ddraw_bone(vec3 center, vec3 end); // @todo: use me API void ddraw_bounds(const vec3 points[8]); API void ddraw_box(vec3 center, vec3 extents); API void ddraw_capsule(vec3 from, vec3 to, float radius); API void ddraw_circle(vec3 pos, vec3 n, float radius); API void ddraw_ring(vec3 pos, vec3 n, float radius); API void ddraw_cone(vec3 center, vec3 top, float radius); API void ddraw_cube(vec3 center, float radius); API void ddraw_cube33(vec3 center, vec3 radius, mat33 M); API void ddraw_diamond(vec3 from, vec3 to, float size); API void ddraw_frustum(float projview[16]); API void ddraw_ground(float scale); API void ddraw_grid(float scale); API void ddraw_hexagon(vec3 pos, float radius); API void ddraw_line(vec3 from, vec3 to); API void ddraw_line_dashed(vec3 from, vec3 to); API void ddraw_line_thin(vec3 from, vec3 to); API void ddraw_normal(vec3 pos, vec3 n); API void ddraw_pentagon(vec3 pos, float radius); API void ddraw_plane(vec3 p, vec3 n, float scale); API void ddraw_point(vec3 from); API void ddraw_position(vec3 pos, float radius); API void ddraw_position_dir(vec3 pos, vec3 dir, float radius); API void ddraw_pyramid(vec3 center, float height, int segments); API void ddraw_cylinder(vec3 center, float height, int segments); API void ddraw_sphere(vec3 pos, float radius); API void ddraw_square(vec3 pos, float radius); API void ddraw_text(vec3 pos, float scale, const char *text); API void ddraw_text2d(vec2 pos, const char *text); API void ddraw_triangle(vec3 p1, vec3 p2, vec3 p3); // API void ddraw_prism(vec3 center, float radius, float height, vec3 normal, int segments); // API void ddraw_demo(); API void ddraw_flush(); API void ddraw_flush_projview(mat44 proj, mat44 view); #line 0 #line 1 "v4k_scene.h" // ----------------------------------------------------------------------------- // scene framework // - rlyeh, public domain // camera typedef struct camera_t { mat44 view, proj; vec3 position, updir, lookdir; float yaw, pitch; // mirror of (x,y) lookdir in deg; float speed, fov; // fov in deg(45) float move_friction, move_damping; float look_friction, look_damping; vec2 last_look; vec3 last_move; // used for friction and damping bool damping; } camera_t; API camera_t camera(); API void camera_teleport(camera_t *cam, vec3 pos); API void camera_moveby(camera_t *cam, vec3 inc); API void camera_fov(camera_t *cam, float fov); API void camera_fps(camera_t *cam, float yaw, float pitch); API void camera_orbit(camera_t *cam, float yaw, float pitch, float inc_distance); API void camera_lookat(camera_t *cam, vec3 target); API void camera_enable(camera_t *cam); API camera_t *camera_get_active(); API int ui_camera(camera_t *cam); API void ddraw_camera(camera_t *cam); // object typedef struct object_t { uint64_t renderbucket; mat44 transform; quat rot; vec3 sca, pos, euler, pivot; array(handle) textures; model_t model; aabb bounds; unsigned billboard; // [0..7] x(4),y(2),z(1) masks bool light_cached; //< used by scene to update light data } object_t; API object_t object(); API void object_rotate(object_t *obj, vec3 euler); API void object_pivot(object_t *obj, vec3 euler); API void object_teleport(object_t *obj, vec3 pos); API void object_move(object_t *obj, vec3 inc); API vec3 object_position(object_t *obj); API void object_scale(object_t *obj, vec3 sca); // API void object_model(object_t *obj, model_t model); API void object_diffuse(object_t *obj, texture_t tex); API void object_diffuse_push(object_t *obj, texture_t tex); API void object_diffuse_pop(object_t *obj); API void object_billboard(object_t *obj, unsigned mode); // object_pose(transform); // @todo // light enum LIGHT_TYPE { LIGHT_DIRECTIONAL, LIGHT_POINT, LIGHT_SPOT, }; enum LIGHT_FLAGS { LIGHT_CAST_SHADOWS = 1, }; typedef struct light_t { char type; vec3 diffuse, specular, ambient; vec3 pos, dir; struct { float constant, linear, quadratic; } falloff; float specularPower; float innerCone, outerCone; //@todo: cookie, flare // internals bool cached; //< used by scene to invalidate cached light data } light_t; API light_t light(); // API void light_flags(int flags); API void light_type(light_t* l, char type); API void light_diffuse(light_t* l, vec3 color); API void light_specular(light_t* l, vec3 color); API void light_ambient(light_t* l, vec3 color); API void light_teleport(light_t* l, vec3 pos); API void light_dir(light_t* l, vec3 dir); API void light_power(light_t* l, float power); API void light_falloff(light_t* l, float constant, float linear, float quadratic); API void light_cone(light_t* l, float innerCone, float outerCone); API void light_update(unsigned num_lights, light_t *lv); // scene enum SCENE_FLAGS { SCENE_WIREFRAME = 1, SCENE_CULLFACE = 2, SCENE_BACKGROUND = 4, SCENE_FOREGROUND = 8, SCENE_UPDATE_SH_COEF = 16, }; typedef struct scene_t { array(object_t) objs; array(light_t) lights; // special objects below: skybox_t skybox; int u_coefficients_sh; } scene_t; API scene_t* scene_push(); API void scene_pop(); API scene_t* scene_get_active(); API int scene_merge(const char *source); API void scene_render(int flags); API object_t* scene_spawn(); API unsigned scene_count(); API object_t* scene_index(unsigned index); API light_t* scene_spawn_light(); API unsigned scene_count_light(); API light_t* scene_index_light(unsigned index); #line 0 #line 1 "v4k_script.h" // ----------------------------------------------------------------------------- // script framework // - rlyeh, public domain API void script_init(); API void script_run(const char *script); API void script_runfile(const char *pathfile); API void script_bind_class(const char *objname, int num_methods, const char **c_names, void **c_functions); API void script_bind_function(const char *c_name, void *c_function); API void script_call(const char *lua_function); API bool script_tests(); #line 0 #line 1 "v4k_string.h" // string framework // - rlyeh, public domain // string: temporary api (stack) API char* tempvl(const char *fmt, va_list); API char* tempva(const char *fmt, ...); #define va(...) (((&printf) || printf(__VA_ARGS__), tempva(__VA_ARGS__))) // vs2015 check trick // string: allocated api (heap). FREE() after use API char* strcatf(char **s, const char *buf); #define strcatf(s,fmt,...) strcatf((s), va(fmt, __VA_ARGS__)) #define stringf(fmt,...) STRDUP(va(fmt, __VA_ARGS__)) // (strcatf)(0, va(fmt, __VA_ARGS__)) #if is(cl) || (is(tcc) && is(win32)) #if!is(cl) char* strtok_s(char* str,const char* delimiters,char** context); // tcc misses this in #endif #define strtok_r strtok_s #endif #if 1 #define each_substring(str, delims, keyname) \ ( int len_ = strlen(str) + 1; len_; len_ = 0 ) \ for( char buf_[1024], *ptr_ = len_ < 1024 ? buf_ : REALLOC(0, len_), *lit_ = (char*)(str), *_bak = (snprintf(ptr_, len_, "%s", lit_), ptr_); _bak; _bak = 0, (ptr_ == buf_ ? 0 : REALLOC(ptr_, 0)) ) \ for( char *next_token = 0, *keyname = strtok_r(_bak, delims, &next_token); keyname; keyname = strtok_r(NULL, delims, &next_token) ) #else #define each_substring(str, delims, keyname) \ ( char** tokens_ = strsplit((str), (delims)), *keyname = 0; tokens_; tokens_ = 0) \ for( int i_ = 0, end_ = array_count(tokens_); i_ < (keyname = tokens_[i_], end_); ++i_ ) #endif // utils API int strmatch(const char *s, const char *wildcard); API int strmatchi(const char *s, const char *wildcard); API int strcmp_qsort(const void *a, const void *b); API int strcmpi_qsort(const void *a, const void *b); API bool strbeg(const char *src, const char *sub); // returns true if both strings match at beginning. case sensitive API bool strend(const char *src, const char *sub); // returns true if both strings match at end. case sensitive API bool strbegi(const char *src, const char *sub); // returns true if both strings match at beginning. case insensitive API bool strendi(const char *src, const char *sub); // returns true if both strings match at end. case insensitive API const char * strstri(const char *src, const char *sub); // returns find first substring in string. case insensitive. #define strcmpi ifdef(cl, _stricmp, strcasecmp) API char * strupper(const char *str); API char * strlower(const char *str); API char * strrepl(char **copy, const char *target, const char *replace); // replace any 'target' as 'repl' in 'copy'. 'copy' may change (heap). returns 'copy' API char * strswap(char *copy, const char *target, const char *replace); // replaced inline only if repl is shorter than target. no allocations. API char * strcut(char *copy, const char *target); // remove any 'target' in 'copy'. returns 'copy' API const char * strlerp(unsigned numpairs, const char **pairs, const char *str); // using key-value pairs, null-terminated #ifndef __APPLE__ // BSD provides these API size_t strlcat(char *dst, const char *src, size_t dstcap); // concat 2 strings safely. always NUL terminates. may truncate. API size_t strlcpy(char *dst, const char *src, size_t dstcap); // copy 2 strings safely. always NUL terminates. truncates if retval>=dstcap #endif /// split `string` after any of `delimiters` character is found. /// returns temporary array of split strings. see: strjoin /// > array(char*) tokens = strsplit("hello! world!", " !"); // [0]="hello",[1]="world", API array(char*) strsplit(const char *string, const char *delimiters); /// concatenate all elements within `list`, with `separator` string in between. /// returns: temporary joint string. see: strsplit /// > array(char*) tokens = strsplit("hello! world!", " !"); // [0]="hello",[1]="world", /// > char *joint = strjoin(tokens, "+"); // joint="hello+world" API char* strjoin(array(char*) list, const char *separator); API char * string8(const wchar_t *str); /// convert from wchar16(win) to utf8/ascii API array(uint32_t) string32( const char *utf8 ); /// convert from utf8 to utf32 // ----------------------------------------------------------------------------- // ## string interning (quarks) // - rlyeh, public domain. unsigned intern( const char *string ); const char *quark( unsigned key ); typedef array(char) quarks_db; unsigned quark_intern( quarks_db*, const char *string ); const char *quark_string( quarks_db*, unsigned key ); #line 0 #line 1 "v4k_time.h" // ----------------------------------------------------------------------------- // time framework utils // - rlyeh, public domain. API uint64_t date(); // YYYYMMDDhhmmss API uint64_t date_epoch(); // linux epoch API char* date_string(); // "YYYY-MM-DD hh:mm:ss" API double time_hh(); API double time_mm(); API double time_ss(); API uint64_t time_ms(); API uint64_t time_us(); API uint64_t time_ns(); API void sleep_ss(double ss); API void sleep_ms(double ms); API void sleep_us(double us); API void sleep_ns(double us); API unsigned timer(unsigned ms, unsigned (*callback)(unsigned ms, void *arg), void *arg); API void timer_destroy(unsigned timer_handle); // time sortable unique identifier (similar to ksuid/tuid; others: sno/xid/cuid/ulid) // - rlyeh, public domain. // // also similar to a mongo object id, 12 bytes as follows: // - 4-byte timestamp (ss). epoch: Tuesday, 12 September 2023 6:06:56 // - 2-byte (machine or app hash) // - 2-byte (thread-id) // - 4-byte (rand counter, that gets increased at every id creation) typedef vec3i guid; API guid guid_create(); /* AUTORUN { guid g1 = guid_create(); guid g2 = guid_create(); print3i(g1); hexdump(&g1, sizeof(g1)); print3i(g2); hexdump(&g2, sizeof(g2)); } */ #line 0 #line 1 "v4k_system.h" // ----------------------------------------------------------------------------- // system framework utils // - rlyeh, public domain. // // Note: Windows users add `/Zi` compilation flags, else add `-g` and/or `-ldl` flags // Note: If you are linking your binary using GNU ld you need to add --export-dynamic API void* thread( int (*thread_func)(void* user_data), void* user_data ); API void thread_destroy( void *thd ); API int argc(); API char* argv(int); API int flag(const char *commalist); // --arg // app_flag? API const char* option(const char *commalist, const char *defaults); // --arg=string or --arg string API int optioni(const char *commalist, int defaults); // --arg=integer or --arg integer // argvi() ? API float optionf(const char *commalist, float defaults); // --arg=float or --arg float // flagf() ? API void tty_attach(); API void tty_detach(); API void tty_color(unsigned color); API void tty_reset(); API const char* app_exec(const char *command); // returns ("%15d %s", retcode, output_last_line) API int app_spawn(const char *command); API int app_cores(); API int app_battery(); /// returns battery level [1..100]. also positive if charging (+), negative if discharging (-), and 0 if no battery is present. API const char* app_name(); API const char* app_path(); API const char* app_cache(); API const char* app_temp(); API const char* app_cmdline(); API void app_beep(); API void app_hang(); API void app_crash(); API void app_singleton(const char *guid); API bool app_open(const char *folder_file_or_url); API char* callstack( int traces ); // write callstack into a temporary string. <0 traces to invert order. do not free(). API int callstackf( FILE *fp, int traces ); // write callstack to file. <0 traces to invert order. API void die(const char *message); API void alert(const char *message); API void hexdump( const void *ptr, unsigned len ); API void hexdumpf( FILE *fp, const void *ptr, unsigned len, int width ); API void breakpoint(const char *optional_reason); API bool has_debugger(); API void trap_install(void); API const char *trap_name(int signal); // helper util API void trap_on_ignore(int signal); // helper util API void trap_on_quit(int signal); // helper util API void trap_on_abort(int signal); // helper util API void trap_on_debug(int signal); // helper util API uint16_t lil16(uint16_t n); // swap16 as lil API uint32_t lil32(uint32_t n); // swap32 as lil API float lil32f(float n); // swap32 as lil API uint64_t lil64(uint64_t n); // swap64 as lil API double lil64f(double n); // swap64 as lil API uint16_t big16(uint16_t n); // swap16 as big API uint32_t big32(uint32_t n); // swap32 as big API float big32f(float n); // swap32 as big API uint64_t big64(uint64_t n); // swap64 as big API double big64f(double n); // swap64 as big API uint16_t* lil16p(void *n, int sz); API uint32_t* lil32p(void *n, int sz); API float* lil32pf(void *n, int sz); API uint64_t* lil64p(void *n, int sz); API double* lil64pf(void *n, int sz); API uint16_t* big16p(void *n, int sz); API uint32_t* big32p(void *n, int sz); API float* big32pf(void *n, int sz); API uint64_t* big64p(void *n, int sz); API double* big64pf(void *n, int sz); #define PANIC(...) PANIC(va(__VA_ARGS__), __FILE__, __LINE__) // die() ? API int (PANIC)(const char *error, const char *file, int line); #define PRINTF(...) PRINTF(va(__VA_ARGS__), 1[#__VA_ARGS__] == '!' ? callstack(+48) : "", __FILE__, __LINE__, __FUNCTION__) API int (PRINTF)(const char *text, const char *stack, const char *file, int line, const char *function); #define test(expr) test(__FILE__,__LINE__,#expr,!!(expr)) API int (test)(const char *file, int line, const char *expr, bool result); // AUTORUN { test(1<2); } #line 0 #line 1 "v4k_ui.h" // ----------------------------------------------------------------------------- // immediate ui framework // - rlyeh, public domain // // @todo: logger/console // @todo: surround-adaptive window resizing. ie, surrounding windows adapting theirselves to fit dragged active window enum PANEL_FLAGS { PANEL_OPEN = 1, }; API int ui_notify(const char *title, const char *body); API int ui_window(const char *title, int *enabled); API int ui_panel(const char *title, int flags); // may be embedded inside a window, or standalone API int ui_collapse(const char *label, const char *id); API int ui_contextual(); API int ui_section(const char *title); API int ui_int(const char *label, int *value); API int ui_bool(const char *label, bool *value); API int ui_short(const char *label, short *value); API int ui_float(const char *label, float *value); API int ui_float2(const char *label, float value[2]); API int ui_float3(const char *label, float value[3]); API int ui_float4(const char *label, float value[4]); API int ui_mat33(const char *label, float mat33[9]); API int ui_mat34(const char *label, float mat34[12]); API int ui_mat44(const char *label, float mat44[16]); API int ui_double(const char *label, double *value); API int ui_buffer(const char *label, char *buffer, int buflen); API int ui_string(const char *label, char **string); API int ui_color3(const char *label, float *color3); //[0..255] API int ui_color3f(const char *label, float *color3); //[0..1] API int ui_color4(const char *label, float *color4); //[0..255] API int ui_color4f(const char *label, float *color4); //[0..1] API int ui_unsigned(const char *label, unsigned *value); API int ui_button(const char *label); API int ui_button_transparent(const char *label); API int ui_buttons(int buttons, /*labels*/...); API int ui_toolbar(const char *options); // int choice = ui_toolbar("A;B;C;D"); API int ui_submenu(const char *options); // int choice = ui_submenu("A;B;C;D"); API int ui_browse(const char **outfile, bool *inlined); // may be embedded inside a window or inside a panel API int ui_toggle(const char *label, bool *value); API int ui_dialog(const char *title, const char *text, int choices, bool *show); // @fixme: return API int ui_list(const char *label, const char **items, int num_items, int *selector); API int ui_radio(const char *label, const char **items, int num_items, int *selector); API int ui_texture(const char *label, texture_t t); API int ui_subtexture(const char *label, texture_t t, unsigned x, unsigned y, unsigned w, unsigned h); API int ui_image(const char *label, handle id, unsigned w, unsigned h); //(w,h) can be 0 API int ui_subimage(const char *label, handle id, unsigned iw, unsigned ih, unsigned sx, unsigned sy, unsigned sw, unsigned sh); API int ui_colormap(const char *label, colormap_t *cm); // returns num member changed: 1 for color, 2 for texture map API int ui_separator(); API int ui_bitmask8(const char *label, uint8_t *bits); API int ui_bitmask16(const char *label, uint16_t *bits); API int ui_console(); API int ui_clampf(const char *label, float *value, float minf, float maxf); API int ui_label(const char *label); API int ui_label2(const char *label, const char *caption); API int ui_label2_bool(const char *label, bool enabled); API int ui_label2_float(const char *label, float value); API int ui_label2_toolbar(const char *label, const char *icons); API int ui_slider(const char *label, float *value); API int ui_slider2(const char *label, float *value, const char *caption); API int ui_contextual_end(); API int ui_collapse_clicked(); API int ui_collapse_end(); API int ui_panel_end(); API int ui_window_end(); API int ui_show(const char *panel_or_window_title, int enabled); API int ui_dims(const char *panel_or_window_title, float width, float height); API int ui_visible(const char *panel_or_window_title); // @todo: include ui_collapse() items that are open as well? API vec2 ui_get_dims(); API int ui_enable(); API int ui_enabled(); API int ui_disable(); API int ui_has_menubar(); API int ui_menu(const char *items); // semicolon-separated or comma-separated items API int ui_menu_editbox(char *buf, int bufcap); API int ui_item(); API int ui_popups(); // ui_any_popup()? ui_has_popups()? API int ui_hover(); // ui_is_hover()? API int ui_active(); // ui_is_active()? API int ui_demo(int do_windows); #line 0 #line 1 "v4k_video.h" // ----------------------------------------------------------------------------- // video decoder (mpeg) // - rlyeh, public domain // // [ref] https://github.com/phoboslab/pl_mpeg/blob/master/pl_mpeg_player.c // [use] ffmpeg -i infile.mp4 -c:v mpeg1video -c:a mp2 -format mpeg outfile.mpg enum VIDEO_FLAGS { VIDEO_YCBCR = 0, VIDEO_RGB = 2, VIDEO_AUDIO = 0, VIDEO_NO_AUDIO = 4, VIDEO_LOOP = 8, }; typedef struct video_t video_t; API video_t* video( const char *filename, int flags ); API texture_t* video_decode( video_t *v ); // decodes next frame, returns associated texture(s) API texture_t* video_textures( video_t *v ); // returns last video textures. does not perform any decoding. API int video_has_finished(video_t *v); API double video_duration(video_t *v); API int video_seek(video_t *v, double seek_to); API double video_position(video_t *v); API void video_pause(video_t *v, bool paused); API bool video_is_paused(video_t *v); API bool video_is_rgb(video_t *v); API void video_destroy( video_t *v ); // ----------------------------------------------------------------------------- // video recorder (uses external ffmpeg and fallbacks to built-in mpeg1 encoder) // - rlyeh, public domain // // @fixme: MSAA can cause some artifacts with Intel PBOs: either use glDisable(GL_MULTISAMPLE) before recording or do not create window with WINDOW_MSAA at all. API bool record_start(const char *outfile_mp4); API bool record_active(); API void record_stop(void); #line 0 #line 1 "v4k_window.h" // ----------------------------------------------------------------------------- // window framework // - rlyeh, public domain // // @todo: window_cursor(ico); // @todo: if WINDOW_PORTRAIT && exist portrait monitor, use that instead of primary one // @todo: WINDOW_TRAY enum WINDOW_FLAGS { WINDOW_MSAA2 = 0x02, WINDOW_MSAA4 = 0x04, WINDOW_MSAA8 = 0x08, WINDOW_SQUARE = 0x20, WINDOW_PORTRAIT = 0x40, WINDOW_LANDSCAPE = 0x80, WINDOW_ASPECT = 0x100, // keep aspect WINDOW_FIXED = 0x200, // disable resizing WINDOW_TRANSPARENT = 0x400, WINDOW_VSYNC = 0, WINDOW_VSYNC_ADAPTIVE = 0x1000, WINDOW_VSYNC_DISABLED = 0x2000, }; API bool window_create(float scale, unsigned flags); API bool window_create_from_handle(void *handle, float scale, unsigned flags); API void window_reload(); API int window_frame_begin(); API void window_frame_end(); API void window_frame_swap(); API int window_swap(); // single function that combines above functions (desktop only) API void window_loop(void (*function)(void* loopArg), void* loopArg ); // run main loop function continuously (emscripten only) API void window_loop_exit(); // exit from main loop function (emscripten only) API void window_title(const char *title); API void window_icon(const char *file_icon); API void window_color(unsigned color); API vec2 window_canvas(); API void* window_handle(); API char* window_stats(); API uint64_t window_frame(); API int window_width(); API int window_height(); API double window_time(); API double window_delta(); // API bool window_hook(void (*func)(), void* userdata); // deprecated // API void window_unhook(void (*func)()); // deprecated API void window_focus(); // window attribute api using haz catz language for now API int window_has_focus(); API void window_fullscreen(int enabled); API int window_has_fullscreen(); API void window_cursor(int visible); API int window_has_cursor(); API void window_pause(int paused); API int window_has_pause(); API void window_visible(int visible); API int window_has_visible(); API void window_maximize(int enabled); API int window_has_maximize(); API void window_transparent(int enabled); API int window_has_transparent(); API double window_aspect(); API void window_aspect_lock(unsigned numer, unsigned denom); API void window_aspect_unlock(); API double window_fps(); API double window_fps_target(); API void window_fps_lock(float fps); API void window_fps_unlock(); API void window_screenshot(const char* outfile_png); // , bool record_cursor API int window_record(const char *outfile_mp4); // , bool record_cursor enum CURSOR_SHAPES { CURSOR_NONE, CURSOR_HW_ARROW, // default CURSOR_HW_IBEAM, // i-beam text cursor CURSOR_HW_CROSS, // crosshair CURSOR_HW_HAND, // hand, clickable CURSOR_HW_HDRAG, // horizontal drag/resize CURSOR_HW_VDRAG, // vertical drag/resize CURSOR_SW_AUTO, // software cursor, ui driven. note: this is the only icon that may be recorded or snapshotted }; API void window_cursor_shape(unsigned shape); #line 0 // ---- #if is(cpp) } // extern "C" #endif // expose glfw/glad apis #if is(ems) #include #include #include #include #define gladLoadGL(func) (glewExperimental = true, glewInit() == GLEW_OK) #else #if is(win32) /*&& is(tcc)*/ // && WITH_DLL #ifdef GLAD_API_CALL #undef GLAD_API_CALL #endif #define GLAD_API_CALL extern API #endif #ifndef GLAD_GL_H_ #include "v4k" #endif #endif #endif // V4K_H #ifdef V4K_IMPLEMENTATION #define V4K_3RD /* game framework (3rd libs) * - rlyeh, public domain */ #ifdef V4K_3RD #define GLAD_GL_IMPLEMENTATION // glad #endif #line 1 "3rd_glad.h" #ifndef __EMSCRIPTEN__ #ifndef _GNU_SOURCE // juicy linux headers #define _GNU_SOURCE #endif #if defined(_MSC_VER) && defined(_WIN32) // for VC IDE #define _CRT_SECURE_NO_WARNINGS #define _CRT_NONSTDC_NO_DEPRECATE #define _WINSOCK_DEPRECATED_NO_WARNINGS #endif /** * Loader generated by glad 2.0.0-beta on Sat Mar 28 10:21:14 2020 * * Generator: C/C++ * Specification: gl * Extensions: 183 * * APIs: * - gl:compatibility=3.3 * * Options: * - MX_GLOBAL = False * - ON_DEMAND = False * - LOADER = False * - ALIAS = False * - HEADER_ONLY = True * - DEBUG = False * - MX = False * - MERGE = True * * Commandline: * --api='gl:compatibility=3.3' --extensions='GL_ARB_ES2_compatibility,GL_ARB_ES3_1_compatibility,GL_ARB_ES3_2_compatibility,GL_ARB_ES3_compatibility,GL_ARB_arrays_of_arrays,GL_ARB_base_instance,GL_ARB_bindless_texture,GL_ARB_blend_func_extended,GL_ARB_buffer_storage,GL_ARB_cl_event,GL_ARB_clear_buffer_object,GL_ARB_clear_texture,GL_ARB_clip_control,GL_ARB_color_buffer_float,GL_ARB_compatibility,GL_ARB_compressed_texture_pixel_storage,GL_ARB_compute_shader,GL_ARB_compute_variable_group_size,GL_ARB_conditional_render_inverted,GL_ARB_conservative_depth,GL_ARB_copy_buffer,GL_ARB_copy_image,GL_ARB_cull_distance,GL_ARB_debug_output,GL_ARB_depth_buffer_float,GL_ARB_depth_clamp,GL_ARB_depth_texture,GL_ARB_derivative_control,GL_ARB_direct_state_access,GL_ARB_draw_buffers,GL_ARB_draw_buffers_blend,GL_ARB_draw_elements_base_vertex,GL_ARB_draw_indirect,GL_ARB_draw_instanced,GL_ARB_enhanced_layouts,GL_ARB_explicit_attrib_location,GL_ARB_explicit_uniform_location,GL_ARB_fragment_coord_conventions,GL_ARB_fragment_layer_viewport,GL_ARB_fragment_program,GL_ARB_fragment_program_shadow,GL_ARB_fragment_shader,GL_ARB_fragment_shader_interlock,GL_ARB_framebuffer_no_attachments,GL_ARB_framebuffer_object,GL_ARB_framebuffer_sRGB,GL_ARB_geometry_shader4,GL_ARB_get_program_binary,GL_ARB_get_texture_sub_image,GL_ARB_gl_spirv,GL_ARB_gpu_shader5,GL_ARB_gpu_shader_fp64,GL_ARB_gpu_shader_int64,GL_ARB_half_float_pixel,GL_ARB_half_float_vertex,GL_ARB_imaging,GL_ARB_indirect_parameters,GL_ARB_instanced_arrays,GL_ARB_internalformat_query,GL_ARB_internalformat_query2,GL_ARB_invalidate_subdata,GL_ARB_map_buffer_alignment,GL_ARB_map_buffer_range,GL_ARB_matrix_palette,GL_ARB_multi_bind,GL_ARB_multi_draw_indirect,GL_ARB_multisample,GL_ARB_multitexture,GL_ARB_occlusion_query,GL_ARB_occlusion_query2,GL_ARB_parallel_shader_compile,GL_ARB_pipeline_statistics_query,GL_ARB_pixel_buffer_object,GL_ARB_point_parameters,GL_ARB_point_sprite,GL_ARB_polygon_offset_clamp,GL_ARB_post_depth_coverage,GL_ARB_program_interface_query,GL_ARB_provoking_vertex,GL_ARB_query_buffer_object,GL_ARB_robust_buffer_access_behavior,GL_ARB_robustness,GL_ARB_robustness_isolation,GL_ARB_sample_locations,GL_ARB_sample_shading,GL_ARB_sampler_objects,GL_ARB_seamless_cube_map,GL_ARB_seamless_cubemap_per_texture,GL_ARB_separate_shader_objects,GL_ARB_shader_atomic_counter_ops,GL_ARB_shader_atomic_counters,GL_ARB_shader_ballot,GL_ARB_shader_bit_encoding,GL_ARB_shader_clock,GL_ARB_shader_draw_parameters,GL_ARB_shader_group_vote,GL_ARB_shader_image_load_store,GL_ARB_shader_image_size,GL_ARB_shader_objects,GL_ARB_shader_precision,GL_ARB_shader_stencil_export,GL_ARB_shader_storage_buffer_object,GL_ARB_shader_subroutine,GL_ARB_shader_texture_image_samples,GL_ARB_shader_texture_lod,GL_ARB_shader_viewport_layer_array,GL_ARB_shading_language_100,GL_ARB_shading_language_420pack,GL_ARB_shading_language_include,GL_ARB_shading_language_packing,GL_ARB_shadow,GL_ARB_shadow_ambient,GL_ARB_sparse_buffer,GL_ARB_sparse_texture,GL_ARB_sparse_texture2,GL_ARB_sparse_texture_clamp,GL_ARB_spirv_extensions,GL_ARB_stencil_texturing,GL_ARB_sync,GL_ARB_tessellation_shader,GL_ARB_texture_barrier,GL_ARB_texture_border_clamp,GL_ARB_texture_buffer_object,GL_ARB_texture_buffer_object_rgb32,GL_ARB_texture_buffer_range,GL_ARB_texture_compression,GL_ARB_texture_compression_bptc,GL_ARB_texture_compression_rgtc,GL_ARB_texture_cube_map,GL_ARB_texture_cube_map_array,GL_ARB_texture_env_add,GL_ARB_texture_env_combine,GL_ARB_texture_env_crossbar,GL_ARB_texture_env_dot3,GL_ARB_texture_filter_anisotropic,GL_ARB_texture_filter_minmax,GL_ARB_texture_float,GL_ARB_texture_gather,GL_ARB_texture_mirror_clamp_to_edge,GL_ARB_texture_mirrored_repeat,GL_ARB_texture_multisample,GL_ARB_texture_non_power_of_two,GL_ARB_texture_query_levels,GL_ARB_texture_query_lod,GL_ARB_texture_rectangle,GL_ARB_texture_rg,GL_ARB_texture_rgb10_a2ui,GL_ARB_texture_stencil8,GL_ARB_texture_storage,GL_ARB_texture_storage_multisample,GL_ARB_texture_swizzle,GL_ARB_texture_view,GL_ARB_timer_query,GL_ARB_transform_feedback2,GL_ARB_transform_feedback3,GL_ARB_transform_feedback_instanced,GL_ARB_transform_feedback_overflow_query,GL_ARB_transpose_matrix,GL_ARB_uniform_buffer_object,GL_ARB_vertex_array_bgra,GL_ARB_vertex_array_object,GL_ARB_vertex_attrib_64bit,GL_ARB_vertex_attrib_binding,GL_ARB_vertex_blend,GL_ARB_vertex_buffer_object,GL_ARB_vertex_program,GL_ARB_vertex_shader,GL_ARB_vertex_type_10f_11f_11f_rev,GL_ARB_vertex_type_2_10_10_10_rev,GL_ARB_viewport_array,GL_ARB_window_pos,GL_KHR_blend_equation_advanced,GL_KHR_blend_equation_advanced_coherent,GL_KHR_context_flush_control,GL_KHR_debug,GL_KHR_no_error,GL_KHR_parallel_shader_compile,GL_KHR_robust_buffer_access_behavior,GL_KHR_robustness,GL_KHR_shader_subgroup,GL_KHR_texture_compression_astc_hdr,GL_KHR_texture_compression_astc_ldr,GL_KHR_texture_compression_astc_sliced_3d' c --header-only * * Online: * http://glad.sh/#api=gl%3Acompatibility%3D3.3&generator=c&options=HEADER_ONLY * */ #ifndef GLAD_GL_H_ #define GLAD_GL_H_ #ifdef __gl_h_ #error OpenGL header already included (API: gl), remove previous include! #endif #define __gl_h_ 1 #define GLAD_GL //#define GLAD_OPTION_GL_HEADER_ONLY #ifdef __cplusplus extern "C" { #endif #ifndef GLAD_PLATFORM_H_ #define GLAD_PLATFORM_H_ #ifndef GLAD_PLATFORM_WIN32 #if defined(_WIN32) || defined(__WIN32__) || defined(WIN32) || defined(__MINGW32__) #define GLAD_PLATFORM_WIN32 1 #else #define GLAD_PLATFORM_WIN32 0 #endif #endif #ifndef GLAD_PLATFORM_APPLE #ifdef __APPLE__ #define GLAD_PLATFORM_APPLE 1 #else #define GLAD_PLATFORM_APPLE 0 #endif #endif #ifndef GLAD_PLATFORM_EMSCRIPTEN #ifdef __EMSCRIPTEN__ #define GLAD_PLATFORM_EMSCRIPTEN 1 #else #define GLAD_PLATFORM_EMSCRIPTEN 0 #endif #endif #ifndef GLAD_PLATFORM_UWP #if defined(_MSC_VER) && !defined(GLAD_INTERNAL_HAVE_WINAPIFAMILY) #ifdef __has_include #if __has_include() #define GLAD_INTERNAL_HAVE_WINAPIFAMILY 1 #endif #elif _MSC_VER >= 1700 && !_USING_V110_SDK71_ #define GLAD_INTERNAL_HAVE_WINAPIFAMILY 1 #endif #endif #ifdef GLAD_INTERNAL_HAVE_WINAPIFAMILY #include #if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) && WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) #define GLAD_PLATFORM_UWP 1 #endif #endif #ifndef GLAD_PLATFORM_UWP #define GLAD_PLATFORM_UWP 0 #endif #endif #ifdef __GNUC__ #define GLAD_GNUC_EXTENSION __extension__ #else #define GLAD_GNUC_EXTENSION #endif #ifndef GLAD_API_CALL #if defined(GLAD_API_CALL_EXPORT) || (defined API) // @r-lyeh #if GLAD_PLATFORM_WIN32 || defined(__CYGWIN__) #if defined(GLAD_API_CALL_EXPORT_BUILD) #if defined(__GNUC__) #define GLAD_API_CALL __attribute__ ((dllexport)) extern #else #define GLAD_API_CALL __declspec(dllexport) extern #endif #else #if defined(__GNUC__) #define GLAD_API_CALL __attribute__ ((dllimport)) extern #else #define GLAD_API_CALL __declspec(dllimport) extern #endif #endif #elif defined(__GNUC__) && defined(GLAD_API_CALL_EXPORT_BUILD) #define GLAD_API_CALL __attribute__ ((visibility ("default"))) extern #else #define GLAD_API_CALL extern #endif #else #define GLAD_API_CALL extern #endif #endif #ifdef APIENTRY #define GLAD_API_PTR APIENTRY #elif GLAD_PLATFORM_WIN32 #define GLAD_API_PTR __stdcall #else #define GLAD_API_PTR #endif #ifndef GLAPI #define GLAPI GLAD_API_CALL #endif #ifndef GLAPIENTRY #define GLAPIENTRY GLAD_API_PTR #endif #define GLAD_MAKE_VERSION(major, minor) (major * 10000 + minor) #define GLAD_VERSION_MAJOR(version) (version / 10000) #define GLAD_VERSION_MINOR(version) (version % 10000) #define GLAD_GENERATOR_VERSION "2.0.0-beta" typedef void (*GLADapiproc)(void); typedef GLADapiproc (*GLADloadfunc)(const char *name); typedef GLADapiproc (*GLADuserptrloadfunc)(void *userptr, const char *name); typedef void (*GLADprecallback)(const char *name, GLADapiproc apiproc, int len_args, ...); typedef void (*GLADpostcallback)(void *ret, const char *name, GLADapiproc apiproc, int len_args, ...); #endif /* GLAD_PLATFORM_H_ */ #define GL_2D 0x0600 #define GL_2_BYTES 0x1407 #define GL_3D 0x0601 #define GL_3D_COLOR 0x0602 #define GL_3D_COLOR_TEXTURE 0x0603 #define GL_3_BYTES 0x1408 #define GL_4D_COLOR_TEXTURE 0x0604 #define GL_4_BYTES 0x1409 #define GL_ACCUM 0x0100 #define GL_ACCUM_ALPHA_BITS 0x0D5B #define GL_ACCUM_BLUE_BITS 0x0D5A #define GL_ACCUM_BUFFER_BIT 0x00000200 #define GL_ACCUM_CLEAR_VALUE 0x0B80 #define GL_ACCUM_GREEN_BITS 0x0D59 #define GL_ACCUM_RED_BITS 0x0D58 #define GL_ACTIVE_ATOMIC_COUNTER_BUFFERS 0x92D9 #define GL_ACTIVE_ATTRIBUTES 0x8B89 #define GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 0x8B8A #define GL_ACTIVE_PROGRAM 0x8259 #define GL_ACTIVE_RESOURCES 0x92F5 #define GL_ACTIVE_SUBROUTINES 0x8DE5 #define GL_ACTIVE_SUBROUTINE_MAX_LENGTH 0x8E48 #define GL_ACTIVE_SUBROUTINE_UNIFORMS 0x8DE6 #define GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS 0x8E47 #define GL_ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH 0x8E49 #define GL_ACTIVE_TEXTURE 0x84E0 #define GL_ACTIVE_TEXTURE_ARB 0x84E0 #define GL_ACTIVE_UNIFORMS 0x8B86 #define GL_ACTIVE_UNIFORM_BLOCKS 0x8A36 #define GL_ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH 0x8A35 #define GL_ACTIVE_UNIFORM_MAX_LENGTH 0x8B87 #define GL_ACTIVE_VARIABLES 0x9305 #define GL_ACTIVE_VERTEX_UNITS_ARB 0x86A5 #define GL_ADD 0x0104 #define GL_ADD_SIGNED 0x8574 #define GL_ADD_SIGNED_ARB 0x8574 #define GL_ALIASED_LINE_WIDTH_RANGE 0x846E #define GL_ALIASED_POINT_SIZE_RANGE 0x846D #define GL_ALL_ATTRIB_BITS 0xFFFFFFFF #define GL_ALL_BARRIER_BITS 0xFFFFFFFF #define GL_ALL_SHADER_BITS 0xFFFFFFFF #define GL_ALPHA 0x1906 #define GL_ALPHA12 0x803D #define GL_ALPHA16 0x803E #define GL_ALPHA16F_ARB 0x881C #define GL_ALPHA32F_ARB 0x8816 #define GL_ALPHA4 0x803B #define GL_ALPHA8 0x803C #define GL_ALPHA_BIAS 0x0D1D #define GL_ALPHA_BITS 0x0D55 #define GL_ALPHA_INTEGER 0x8D97 #define GL_ALPHA_SCALE 0x0D1C #define GL_ALPHA_TEST 0x0BC0 #define GL_ALPHA_TEST_FUNC 0x0BC1 #define GL_ALPHA_TEST_REF 0x0BC2 #define GL_ALREADY_SIGNALED 0x911A #define GL_ALWAYS 0x0207 #define GL_AMBIENT 0x1200 #define GL_AMBIENT_AND_DIFFUSE 0x1602 #define GL_AND 0x1501 #define GL_AND_INVERTED 0x1504 #define GL_AND_REVERSE 0x1502 #define GL_ANY_SAMPLES_PASSED 0x8C2F #define GL_ANY_SAMPLES_PASSED_CONSERVATIVE 0x8D6A #define GL_ARRAY_BUFFER 0x8892 #define GL_ARRAY_BUFFER_ARB 0x8892 #define GL_ARRAY_BUFFER_BINDING 0x8894 #define GL_ARRAY_BUFFER_BINDING_ARB 0x8894 #define GL_ARRAY_SIZE 0x92FB #define GL_ARRAY_STRIDE 0x92FE #define GL_ATOMIC_COUNTER_BARRIER_BIT 0x00001000 #define GL_ATOMIC_COUNTER_BUFFER 0x92C0 #define GL_ATOMIC_COUNTER_BUFFER_ACTIVE_ATOMIC_COUNTERS 0x92C5 #define GL_ATOMIC_COUNTER_BUFFER_ACTIVE_ATOMIC_COUNTER_INDICES 0x92C6 #define GL_ATOMIC_COUNTER_BUFFER_BINDING 0x92C1 #define GL_ATOMIC_COUNTER_BUFFER_DATA_SIZE 0x92C4 #define GL_ATOMIC_COUNTER_BUFFER_INDEX 0x9301 #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_COMPUTE_SHADER 0x90ED #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_FRAGMENT_SHADER 0x92CB #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_GEOMETRY_SHADER 0x92CA #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_TESS_CONTROL_SHADER 0x92C8 #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_TESS_EVALUATION_SHADER 0x92C9 #define GL_ATOMIC_COUNTER_BUFFER_REFERENCED_BY_VERTEX_SHADER 0x92C7 #define GL_ATOMIC_COUNTER_BUFFER_SIZE 0x92C3 #define GL_ATOMIC_COUNTER_BUFFER_START 0x92C2 #define GL_ATTACHED_SHADERS 0x8B85 #define GL_ATTRIB_STACK_DEPTH 0x0BB0 #define GL_AUTO_GENERATE_MIPMAP 0x8295 #define GL_AUTO_NORMAL 0x0D80 #define GL_AUX0 0x0409 #define GL_AUX1 0x040A #define GL_AUX2 0x040B #define GL_AUX3 0x040C #define GL_AUX_BUFFERS 0x0C00 #define GL_BACK 0x0405 #define GL_BACK_LEFT 0x0402 #define GL_BACK_RIGHT 0x0403 #define GL_BGR 0x80E0 #define GL_BGRA 0x80E1 #define GL_BGRA_INTEGER 0x8D9B #define GL_BGR_INTEGER 0x8D9A #define GL_BITMAP 0x1A00 #define GL_BITMAP_TOKEN 0x0704 #define GL_BLEND 0x0BE2 #define GL_BLEND_ADVANCED_COHERENT_KHR 0x9285 #define GL_BLEND_COLOR 0x8005 #define GL_BLEND_DST 0x0BE0 #define GL_BLEND_DST_ALPHA 0x80CA #define GL_BLEND_DST_RGB 0x80C8 #define GL_BLEND_EQUATION 0x8009 #define GL_BLEND_EQUATION_ALPHA 0x883D #define GL_BLEND_EQUATION_RGB 0x8009 #define GL_BLEND_SRC 0x0BE1 #define GL_BLEND_SRC_ALPHA 0x80CB #define GL_BLEND_SRC_RGB 0x80C9 #define GL_BLOCK_INDEX 0x92FD #define GL_BLUE 0x1905 #define GL_BLUE_BIAS 0x0D1B #define GL_BLUE_BITS 0x0D54 #define GL_BLUE_INTEGER 0x8D96 #define GL_BLUE_SCALE 0x0D1A #define GL_BOOL 0x8B56 #define GL_BOOL_ARB 0x8B56 #define GL_BOOL_VEC2 0x8B57 #define GL_BOOL_VEC2_ARB 0x8B57 #define GL_BOOL_VEC3 0x8B58 #define GL_BOOL_VEC3_ARB 0x8B58 #define GL_BOOL_VEC4 0x8B59 #define GL_BOOL_VEC4_ARB 0x8B59 #define GL_BUFFER 0x82E0 #define GL_BUFFER_ACCESS 0x88BB #define GL_BUFFER_ACCESS_ARB 0x88BB #define GL_BUFFER_ACCESS_FLAGS 0x911F #define GL_BUFFER_BINDING 0x9302 #define GL_BUFFER_DATA_SIZE 0x9303 #define GL_BUFFER_IMMUTABLE_STORAGE 0x821F #define GL_BUFFER_MAPPED 0x88BC #define GL_BUFFER_MAPPED_ARB 0x88BC #define GL_BUFFER_MAP_LENGTH 0x9120 #define GL_BUFFER_MAP_OFFSET 0x9121 #define GL_BUFFER_MAP_POINTER 0x88BD #define GL_BUFFER_MAP_POINTER_ARB 0x88BD #define GL_BUFFER_SIZE 0x8764 #define GL_BUFFER_SIZE_ARB 0x8764 #define GL_BUFFER_STORAGE_FLAGS 0x8220 #define GL_BUFFER_UPDATE_BARRIER_BIT 0x00000200 #define GL_BUFFER_USAGE 0x8765 #define GL_BUFFER_USAGE_ARB 0x8765 #define GL_BUFFER_VARIABLE 0x92E5 #define GL_BYTE 0x1400 #define GL_C3F_V3F 0x2A24 #define GL_C4F_N3F_V3F 0x2A26 #define GL_C4UB_V2F 0x2A22 #define GL_C4UB_V3F 0x2A23 #define GL_CAVEAT_SUPPORT 0x82B8 #define GL_CCW 0x0901 #define GL_CLAMP 0x2900 #define GL_CLAMP_FRAGMENT_COLOR 0x891B #define GL_CLAMP_FRAGMENT_COLOR_ARB 0x891B #define GL_CLAMP_READ_COLOR 0x891C #define GL_CLAMP_READ_COLOR_ARB 0x891C #define GL_CLAMP_TO_BORDER 0x812D #define GL_CLAMP_TO_BORDER_ARB 0x812D #define GL_CLAMP_TO_EDGE 0x812F #define GL_CLAMP_VERTEX_COLOR 0x891A #define GL_CLAMP_VERTEX_COLOR_ARB 0x891A #define GL_CLEAR 0x1500 #define GL_CLEAR_BUFFER 0x82B4 #define GL_CLEAR_TEXTURE 0x9365 #define GL_CLIENT_ACTIVE_TEXTURE 0x84E1 #define GL_CLIENT_ACTIVE_TEXTURE_ARB 0x84E1 #define GL_CLIENT_ALL_ATTRIB_BITS 0xFFFFFFFF #define GL_CLIENT_ATTRIB_STACK_DEPTH 0x0BB1 #define GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT 0x00004000 #define GL_CLIENT_PIXEL_STORE_BIT 0x00000001 #define GL_CLIENT_STORAGE_BIT 0x0200 #define GL_CLIENT_VERTEX_ARRAY_BIT 0x00000002 #define GL_CLIPPING_INPUT_PRIMITIVES 0x82F6 #define GL_CLIPPING_INPUT_PRIMITIVES_ARB 0x82F6 #define GL_CLIPPING_OUTPUT_PRIMITIVES 0x82F7 #define GL_CLIPPING_OUTPUT_PRIMITIVES_ARB 0x82F7 #define GL_CLIP_DEPTH_MODE 0x935D #define GL_CLIP_DISTANCE0 0x3000 #define GL_CLIP_DISTANCE1 0x3001 #define GL_CLIP_DISTANCE2 0x3002 #define GL_CLIP_DISTANCE3 0x3003 #define GL_CLIP_DISTANCE4 0x3004 #define GL_CLIP_DISTANCE5 0x3005 #define GL_CLIP_DISTANCE6 0x3006 #define GL_CLIP_DISTANCE7 0x3007 #define GL_CLIP_ORIGIN 0x935C #define GL_CLIP_PLANE0 0x3000 #define GL_CLIP_PLANE1 0x3001 #define GL_CLIP_PLANE2 0x3002 #define GL_CLIP_PLANE3 0x3003 #define GL_CLIP_PLANE4 0x3004 #define GL_CLIP_PLANE5 0x3005 #define GL_COEFF 0x0A00 #define GL_COLOR 0x1800 #define GL_COLORBURN_KHR 0x929A #define GL_COLORDODGE_KHR 0x9299 #define GL_COLOR_ARRAY 0x8076 #define GL_COLOR_ARRAY_BUFFER_BINDING 0x8898 #define GL_COLOR_ARRAY_BUFFER_BINDING_ARB 0x8898 #define GL_COLOR_ARRAY_POINTER 0x8090 #define GL_COLOR_ARRAY_SIZE 0x8081 #define GL_COLOR_ARRAY_STRIDE 0x8083 #define GL_COLOR_ARRAY_TYPE 0x8082 #define GL_COLOR_ATTACHMENT0 0x8CE0 #define GL_COLOR_ATTACHMENT1 0x8CE1 #define GL_COLOR_ATTACHMENT10 0x8CEA #define GL_COLOR_ATTACHMENT11 0x8CEB #define GL_COLOR_ATTACHMENT12 0x8CEC #define GL_COLOR_ATTACHMENT13 0x8CED #define GL_COLOR_ATTACHMENT14 0x8CEE #define GL_COLOR_ATTACHMENT15 0x8CEF #define GL_COLOR_ATTACHMENT16 0x8CF0 #define GL_COLOR_ATTACHMENT17 0x8CF1 #define GL_COLOR_ATTACHMENT18 0x8CF2 #define GL_COLOR_ATTACHMENT19 0x8CF3 #define GL_COLOR_ATTACHMENT2 0x8CE2 #define GL_COLOR_ATTACHMENT20 0x8CF4 #define GL_COLOR_ATTACHMENT21 0x8CF5 #define GL_COLOR_ATTACHMENT22 0x8CF6 #define GL_COLOR_ATTACHMENT23 0x8CF7 #define GL_COLOR_ATTACHMENT24 0x8CF8 #define GL_COLOR_ATTACHMENT25 0x8CF9 #define GL_COLOR_ATTACHMENT26 0x8CFA #define GL_COLOR_ATTACHMENT27 0x8CFB #define GL_COLOR_ATTACHMENT28 0x8CFC #define GL_COLOR_ATTACHMENT29 0x8CFD #define GL_COLOR_ATTACHMENT3 0x8CE3 #define GL_COLOR_ATTACHMENT30 0x8CFE #define GL_COLOR_ATTACHMENT31 0x8CFF #define GL_COLOR_ATTACHMENT4 0x8CE4 #define GL_COLOR_ATTACHMENT5 0x8CE5 #define GL_COLOR_ATTACHMENT6 0x8CE6 #define GL_COLOR_ATTACHMENT7 0x8CE7 #define GL_COLOR_ATTACHMENT8 0x8CE8 #define GL_COLOR_ATTACHMENT9 0x8CE9 #define GL_COLOR_BUFFER_BIT 0x00004000 #define GL_COLOR_CLEAR_VALUE 0x0C22 #define GL_COLOR_COMPONENTS 0x8283 #define GL_COLOR_ENCODING 0x8296 #define GL_COLOR_INDEX 0x1900 #define GL_COLOR_INDEXES 0x1603 #define GL_COLOR_LOGIC_OP 0x0BF2 #define GL_COLOR_MATERIAL 0x0B57 #define GL_COLOR_MATERIAL_FACE 0x0B55 #define GL_COLOR_MATERIAL_PARAMETER 0x0B56 #define GL_COLOR_MATRIX 0x80B1 #define GL_COLOR_MATRIX_STACK_DEPTH 0x80B2 #define GL_COLOR_RENDERABLE 0x8286 #define GL_COLOR_SUM 0x8458 #define GL_COLOR_SUM_ARB 0x8458 #define GL_COLOR_TABLE 0x80D0 #define GL_COLOR_TABLE_ALPHA_SIZE 0x80DD #define GL_COLOR_TABLE_BIAS 0x80D7 #define GL_COLOR_TABLE_BLUE_SIZE 0x80DC #define GL_COLOR_TABLE_FORMAT 0x80D8 #define GL_COLOR_TABLE_GREEN_SIZE 0x80DB #define GL_COLOR_TABLE_INTENSITY_SIZE 0x80DF #define GL_COLOR_TABLE_LUMINANCE_SIZE 0x80DE #define GL_COLOR_TABLE_RED_SIZE 0x80DA #define GL_COLOR_TABLE_SCALE 0x80D6 #define GL_COLOR_TABLE_WIDTH 0x80D9 #define GL_COLOR_WRITEMASK 0x0C23 #define GL_COMBINE 0x8570 #define GL_COMBINE_ALPHA 0x8572 #define GL_COMBINE_ALPHA_ARB 0x8572 #define GL_COMBINE_ARB 0x8570 #define GL_COMBINE_RGB 0x8571 #define GL_COMBINE_RGB_ARB 0x8571 #define GL_COMMAND_BARRIER_BIT 0x00000040 #define GL_COMPARE_REF_TO_TEXTURE 0x884E #define GL_COMPARE_R_TO_TEXTURE 0x884E #define GL_COMPARE_R_TO_TEXTURE_ARB 0x884E #define GL_COMPATIBLE_SUBROUTINES 0x8E4B #define GL_COMPILE 0x1300 #define GL_COMPILE_AND_EXECUTE 0x1301 #define GL_COMPILE_STATUS 0x8B81 #define GL_COMPLETION_STATUS_ARB 0x91B1 #define GL_COMPLETION_STATUS_KHR 0x91B1 #define GL_COMPRESSED_ALPHA 0x84E9 #define GL_COMPRESSED_ALPHA_ARB 0x84E9 #define GL_COMPRESSED_INTENSITY 0x84EC #define GL_COMPRESSED_INTENSITY_ARB 0x84EC #define GL_COMPRESSED_LUMINANCE 0x84EA #define GL_COMPRESSED_LUMINANCE_ALPHA 0x84EB #define GL_COMPRESSED_LUMINANCE_ALPHA_ARB 0x84EB #define GL_COMPRESSED_LUMINANCE_ARB 0x84EA #define GL_COMPRESSED_R11_EAC 0x9270 #define GL_COMPRESSED_RED 0x8225 #define GL_COMPRESSED_RED_RGTC1 0x8DBB #define GL_COMPRESSED_RG 0x8226 #define GL_COMPRESSED_RG11_EAC 0x9272 #define GL_COMPRESSED_RGB 0x84ED #define GL_COMPRESSED_RGB8_ETC2 0x9274 #define GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276 #define GL_COMPRESSED_RGBA 0x84EE #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #define GL_COMPRESSED_RGBA_ARB 0x84EE #define GL_COMPRESSED_RGBA_ASTC_10x10_KHR 0x93BB #define GL_COMPRESSED_RGBA_ASTC_10x5_KHR 0x93B8 #define GL_COMPRESSED_RGBA_ASTC_10x6_KHR 0x93B9 #define GL_COMPRESSED_RGBA_ASTC_10x8_KHR 0x93BA #define GL_COMPRESSED_RGBA_ASTC_12x10_KHR 0x93BC #define GL_COMPRESSED_RGBA_ASTC_12x12_KHR 0x93BD #define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93B0 #define GL_COMPRESSED_RGBA_ASTC_5x4_KHR 0x93B1 #define GL_COMPRESSED_RGBA_ASTC_5x5_KHR 0x93B2 #define GL_COMPRESSED_RGBA_ASTC_6x5_KHR 0x93B3 #define GL_COMPRESSED_RGBA_ASTC_6x6_KHR 0x93B4 #define GL_COMPRESSED_RGBA_ASTC_8x5_KHR 0x93B5 #define GL_COMPRESSED_RGBA_ASTC_8x6_KHR 0x93B6 #define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93B7 #define GL_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C #define GL_COMPRESSED_RGB_ARB 0x84ED #define GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E #define GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F #define GL_COMPRESSED_RG_RGTC2 0x8DBD #define GL_COMPRESSED_SIGNED_R11_EAC 0x9271 #define GL_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC #define GL_COMPRESSED_SIGNED_RG11_EAC 0x9273 #define GL_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE #define GL_COMPRESSED_SLUMINANCE 0x8C4A #define GL_COMPRESSED_SLUMINANCE_ALPHA 0x8C4B #define GL_COMPRESSED_SRGB 0x8C48 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR 0x93DB #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR 0x93D8 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR 0x93D9 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR 0x93DA #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR 0x93DC #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR 0x93DD #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR 0x93D0 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR 0x93D1 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR 0x93D2 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR 0x93D3 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR 0x93D4 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR 0x93D5 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR 0x93D6 #define GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR 0x93D7 #define GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279 #define GL_COMPRESSED_SRGB8_ETC2 0x9275 #define GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277 #define GL_COMPRESSED_SRGB_ALPHA 0x8C49 #define GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D #define GL_COMPRESSED_TEXTURE_FORMATS 0x86A3 #define GL_COMPRESSED_TEXTURE_FORMATS_ARB 0x86A3 #define GL_COMPUTE_SHADER 0x91B9 #define GL_COMPUTE_SHADER_BIT 0x00000020 #define GL_COMPUTE_SHADER_INVOCATIONS 0x82F5 #define GL_COMPUTE_SHADER_INVOCATIONS_ARB 0x82F5 #define GL_COMPUTE_SUBROUTINE 0x92ED #define GL_COMPUTE_SUBROUTINE_UNIFORM 0x92F3 #define GL_COMPUTE_TEXTURE 0x82A0 #define GL_COMPUTE_WORK_GROUP_SIZE 0x8267 #define GL_CONDITION_SATISFIED 0x911C #define GL_CONSTANT 0x8576 #define GL_CONSTANT_ALPHA 0x8003 #define GL_CONSTANT_ARB 0x8576 #define GL_CONSTANT_ATTENUATION 0x1207 #define GL_CONSTANT_BORDER 0x8151 #define GL_CONSTANT_COLOR 0x8001 #define GL_CONTEXT_COMPATIBILITY_PROFILE_BIT 0x00000002 #define GL_CONTEXT_CORE_PROFILE_BIT 0x00000001 #define GL_CONTEXT_FLAGS 0x821E #define GL_CONTEXT_FLAG_DEBUG_BIT 0x00000002 #define GL_CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT 0x00000001 #define GL_CONTEXT_FLAG_NO_ERROR_BIT 0x00000008 #define GL_CONTEXT_FLAG_NO_ERROR_BIT_KHR 0x00000008 #define GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB 0x00000004 #define GL_CONTEXT_LOST 0x0507 #define GL_CONTEXT_PROFILE_MASK 0x9126 #define GL_CONTEXT_RELEASE_BEHAVIOR 0x82FB #define GL_CONTEXT_RELEASE_BEHAVIOR_FLUSH 0x82FC #define GL_CONTEXT_ROBUST_ACCESS 0x90F3 #define GL_CONVOLUTION_1D 0x8010 #define GL_CONVOLUTION_2D 0x8011 #define GL_CONVOLUTION_BORDER_COLOR 0x8154 #define GL_CONVOLUTION_BORDER_MODE 0x8013 #define GL_CONVOLUTION_FILTER_BIAS 0x8015 #define GL_CONVOLUTION_FILTER_SCALE 0x8014 #define GL_CONVOLUTION_FORMAT 0x8017 #define GL_CONVOLUTION_HEIGHT 0x8019 #define GL_CONVOLUTION_WIDTH 0x8018 #define GL_COORD_REPLACE 0x8862 #define GL_COORD_REPLACE_ARB 0x8862 #define GL_COPY 0x1503 #define GL_COPY_INVERTED 0x150C #define GL_COPY_PIXEL_TOKEN 0x0706 #define GL_COPY_READ_BUFFER 0x8F36 #define GL_COPY_WRITE_BUFFER 0x8F37 #define GL_CULL_FACE 0x0B44 #define GL_CULL_FACE_MODE 0x0B45 #define GL_CURRENT_BIT 0x00000001 #define GL_CURRENT_COLOR 0x0B00 #define GL_CURRENT_FOG_COORD 0x8453 #define GL_CURRENT_FOG_COORDINATE 0x8453 #define GL_CURRENT_INDEX 0x0B01 #define GL_CURRENT_MATRIX_ARB 0x8641 #define GL_CURRENT_MATRIX_INDEX_ARB 0x8845 #define GL_CURRENT_MATRIX_STACK_DEPTH_ARB 0x8640 #define GL_CURRENT_NORMAL 0x0B02 #define GL_CURRENT_PALETTE_MATRIX_ARB 0x8843 #define GL_CURRENT_PROGRAM 0x8B8D #define GL_CURRENT_QUERY 0x8865 #define GL_CURRENT_QUERY_ARB 0x8865 #define GL_CURRENT_RASTER_COLOR 0x0B04 #define GL_CURRENT_RASTER_DISTANCE 0x0B09 #define GL_CURRENT_RASTER_INDEX 0x0B05 #define GL_CURRENT_RASTER_POSITION 0x0B07 #define GL_CURRENT_RASTER_POSITION_VALID 0x0B08 #define GL_CURRENT_RASTER_SECONDARY_COLOR 0x845F #define GL_CURRENT_RASTER_TEXTURE_COORDS 0x0B06 #define GL_CURRENT_SECONDARY_COLOR 0x8459 #define GL_CURRENT_TEXTURE_COORDS 0x0B03 #define GL_CURRENT_VERTEX_ATTRIB 0x8626 #define GL_CURRENT_VERTEX_ATTRIB_ARB 0x8626 #define GL_CURRENT_WEIGHT_ARB 0x86A8 #define GL_CW 0x0900 #define GL_DARKEN_KHR 0x9297 #define GL_DEBUG_CALLBACK_FUNCTION 0x8244 #define GL_DEBUG_CALLBACK_FUNCTION_ARB 0x8244 #define GL_DEBUG_CALLBACK_USER_PARAM 0x8245 #define GL_DEBUG_CALLBACK_USER_PARAM_ARB 0x8245 #define GL_DEBUG_GROUP_STACK_DEPTH 0x826D #define GL_DEBUG_LOGGED_MESSAGES 0x9145 #define GL_DEBUG_LOGGED_MESSAGES_ARB 0x9145 #define GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH 0x8243 #define GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH_ARB 0x8243 #define GL_DEBUG_OUTPUT 0x92E0 #define GL_DEBUG_OUTPUT_SYNCHRONOUS 0x8242 #define GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB 0x8242 #define GL_DEBUG_SEVERITY_HIGH 0x9146 #define GL_DEBUG_SEVERITY_HIGH_ARB 0x9146 #define GL_DEBUG_SEVERITY_LOW 0x9148 #define GL_DEBUG_SEVERITY_LOW_ARB 0x9148 #define GL_DEBUG_SEVERITY_MEDIUM 0x9147 #define GL_DEBUG_SEVERITY_MEDIUM_ARB 0x9147 #define GL_DEBUG_SEVERITY_NOTIFICATION 0x826B #define GL_DEBUG_SOURCE_API 0x8246 #define GL_DEBUG_SOURCE_API_ARB 0x8246 #define GL_DEBUG_SOURCE_APPLICATION 0x824A #define GL_DEBUG_SOURCE_APPLICATION_ARB 0x824A #define GL_DEBUG_SOURCE_OTHER 0x824B #define GL_DEBUG_SOURCE_OTHER_ARB 0x824B #define GL_DEBUG_SOURCE_SHADER_COMPILER 0x8248 #define GL_DEBUG_SOURCE_SHADER_COMPILER_ARB 0x8248 #define GL_DEBUG_SOURCE_THIRD_PARTY 0x8249 #define GL_DEBUG_SOURCE_THIRD_PARTY_ARB 0x8249 #define GL_DEBUG_SOURCE_WINDOW_SYSTEM 0x8247 #define GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB 0x8247 #define GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR 0x824D #define GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB 0x824D #define GL_DEBUG_TYPE_ERROR 0x824C #define GL_DEBUG_TYPE_ERROR_ARB 0x824C #define GL_DEBUG_TYPE_MARKER 0x8268 #define GL_DEBUG_TYPE_OTHER 0x8251 #define GL_DEBUG_TYPE_OTHER_ARB 0x8251 #define GL_DEBUG_TYPE_PERFORMANCE 0x8250 #define GL_DEBUG_TYPE_PERFORMANCE_ARB 0x8250 #define GL_DEBUG_TYPE_POP_GROUP 0x826A #define GL_DEBUG_TYPE_PORTABILITY 0x824F #define GL_DEBUG_TYPE_PORTABILITY_ARB 0x824F #define GL_DEBUG_TYPE_PUSH_GROUP 0x8269 #define GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR 0x824E #define GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB 0x824E #define GL_DECAL 0x2101 #define GL_DECR 0x1E03 #define GL_DECR_WRAP 0x8508 #define GL_DELETE_STATUS 0x8B80 #define GL_DEPTH 0x1801 #define GL_DEPTH24_STENCIL8 0x88F0 #define GL_DEPTH32F_STENCIL8 0x8CAD #define GL_DEPTH_ATTACHMENT 0x8D00 #define GL_DEPTH_BIAS 0x0D1F #define GL_DEPTH_BITS 0x0D56 #define GL_DEPTH_BUFFER_BIT 0x00000100 #define GL_DEPTH_CLAMP 0x864F #define GL_DEPTH_CLEAR_VALUE 0x0B73 #define GL_DEPTH_COMPONENT 0x1902 #define GL_DEPTH_COMPONENT16 0x81A5 #define GL_DEPTH_COMPONENT16_ARB 0x81A5 #define GL_DEPTH_COMPONENT24 0x81A6 #define GL_DEPTH_COMPONENT24_ARB 0x81A6 #define GL_DEPTH_COMPONENT32 0x81A7 #define GL_DEPTH_COMPONENT32F 0x8CAC #define GL_DEPTH_COMPONENT32_ARB 0x81A7 #define GL_DEPTH_COMPONENTS 0x8284 #define GL_DEPTH_FUNC 0x0B74 #define GL_DEPTH_RANGE 0x0B70 #define GL_DEPTH_RENDERABLE 0x8287 #define GL_DEPTH_SCALE 0x0D1E #define GL_DEPTH_STENCIL 0x84F9 #define GL_DEPTH_STENCIL_ATTACHMENT 0x821A #define GL_DEPTH_STENCIL_TEXTURE_MODE 0x90EA #define GL_DEPTH_TEST 0x0B71 #define GL_DEPTH_TEXTURE_MODE 0x884B #define GL_DEPTH_TEXTURE_MODE_ARB 0x884B #define GL_DEPTH_WRITEMASK 0x0B72 #define GL_DIFFERENCE_KHR 0x929E #define GL_DIFFUSE 0x1201 #define GL_DISPATCH_INDIRECT_BUFFER 0x90EE #define GL_DISPATCH_INDIRECT_BUFFER_BINDING 0x90EF #define GL_DISPLAY_LIST 0x82E7 #define GL_DITHER 0x0BD0 #define GL_DOMAIN 0x0A02 #define GL_DONT_CARE 0x1100 #define GL_DOT3_RGB 0x86AE #define GL_DOT3_RGBA 0x86AF #define GL_DOT3_RGBA_ARB 0x86AF #define GL_DOT3_RGB_ARB 0x86AE #define GL_DOUBLE 0x140A #define GL_DOUBLEBUFFER 0x0C32 #define GL_DOUBLE_MAT2 0x8F46 #define GL_DOUBLE_MAT2x3 0x8F49 #define GL_DOUBLE_MAT2x4 0x8F4A #define GL_DOUBLE_MAT3 0x8F47 #define GL_DOUBLE_MAT3x2 0x8F4B #define GL_DOUBLE_MAT3x4 0x8F4C #define GL_DOUBLE_MAT4 0x8F48 #define GL_DOUBLE_MAT4x2 0x8F4D #define GL_DOUBLE_MAT4x3 0x8F4E #define GL_DOUBLE_VEC2 0x8FFC #define GL_DOUBLE_VEC3 0x8FFD #define GL_DOUBLE_VEC4 0x8FFE #define GL_DRAW_BUFFER 0x0C01 #define GL_DRAW_BUFFER0 0x8825 #define GL_DRAW_BUFFER0_ARB 0x8825 #define GL_DRAW_BUFFER1 0x8826 #define GL_DRAW_BUFFER10 0x882F #define GL_DRAW_BUFFER10_ARB 0x882F #define GL_DRAW_BUFFER11 0x8830 #define GL_DRAW_BUFFER11_ARB 0x8830 #define GL_DRAW_BUFFER12 0x8831 #define GL_DRAW_BUFFER12_ARB 0x8831 #define GL_DRAW_BUFFER13 0x8832 #define GL_DRAW_BUFFER13_ARB 0x8832 #define GL_DRAW_BUFFER14 0x8833 #define GL_DRAW_BUFFER14_ARB 0x8833 #define GL_DRAW_BUFFER15 0x8834 #define GL_DRAW_BUFFER15_ARB 0x8834 #define GL_DRAW_BUFFER1_ARB 0x8826 #define GL_DRAW_BUFFER2 0x8827 #define GL_DRAW_BUFFER2_ARB 0x8827 #define GL_DRAW_BUFFER3 0x8828 #define GL_DRAW_BUFFER3_ARB 0x8828 #define GL_DRAW_BUFFER4 0x8829 #define GL_DRAW_BUFFER4_ARB 0x8829 #define GL_DRAW_BUFFER5 0x882A #define GL_DRAW_BUFFER5_ARB 0x882A #define GL_DRAW_BUFFER6 0x882B #define GL_DRAW_BUFFER6_ARB 0x882B #define GL_DRAW_BUFFER7 0x882C #define GL_DRAW_BUFFER7_ARB 0x882C #define GL_DRAW_BUFFER8 0x882D #define GL_DRAW_BUFFER8_ARB 0x882D #define GL_DRAW_BUFFER9 0x882E #define GL_DRAW_BUFFER9_ARB 0x882E #define GL_DRAW_FRAMEBUFFER 0x8CA9 #define GL_DRAW_FRAMEBUFFER_BINDING 0x8CA6 #define GL_DRAW_INDIRECT_BUFFER 0x8F3F #define GL_DRAW_INDIRECT_BUFFER_BINDING 0x8F43 #define GL_DRAW_PIXEL_TOKEN 0x0705 #define GL_DST_ALPHA 0x0304 #define GL_DST_COLOR 0x0306 #define GL_DYNAMIC_COPY 0x88EA #define GL_DYNAMIC_COPY_ARB 0x88EA #define GL_DYNAMIC_DRAW 0x88E8 #define GL_DYNAMIC_DRAW_ARB 0x88E8 #define GL_DYNAMIC_READ 0x88E9 #define GL_DYNAMIC_READ_ARB 0x88E9 #define GL_DYNAMIC_STORAGE_BIT 0x0100 #define GL_EDGE_FLAG 0x0B43 #define GL_EDGE_FLAG_ARRAY 0x8079 #define GL_EDGE_FLAG_ARRAY_BUFFER_BINDING 0x889B #define GL_EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB 0x889B #define GL_EDGE_FLAG_ARRAY_POINTER 0x8093 #define GL_EDGE_FLAG_ARRAY_STRIDE 0x808C #define GL_ELEMENT_ARRAY_BARRIER_BIT 0x00000002 #define GL_ELEMENT_ARRAY_BUFFER 0x8893 #define GL_ELEMENT_ARRAY_BUFFER_ARB 0x8893 #define GL_ELEMENT_ARRAY_BUFFER_BINDING 0x8895 #define GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB 0x8895 #define GL_EMISSION 0x1600 #define GL_ENABLE_BIT 0x00002000 #define GL_EQUAL 0x0202 #define GL_EQUIV 0x1509 #define GL_EVAL_BIT 0x00010000 #define GL_EXCLUSION_KHR 0x92A0 #define GL_EXP 0x0800 #define GL_EXP2 0x0801 #define GL_EXTENSIONS 0x1F03 #define GL_EYE_LINEAR 0x2400 #define GL_EYE_PLANE 0x2502 #define GL_FALSE 0 #define GL_FASTEST 0x1101 #define GL_FEEDBACK 0x1C01 #define GL_FEEDBACK_BUFFER_POINTER 0x0DF0 #define GL_FEEDBACK_BUFFER_SIZE 0x0DF1 #define GL_FEEDBACK_BUFFER_TYPE 0x0DF2 #define GL_FILL 0x1B02 #define GL_FILTER 0x829A #define GL_FIRST_VERTEX_CONVENTION 0x8E4D #define GL_FIXED 0x140C #define GL_FIXED_ONLY 0x891D #define GL_FIXED_ONLY_ARB 0x891D #define GL_FLAT 0x1D00 #define GL_FLOAT 0x1406 #define GL_FLOAT_32_UNSIGNED_INT_24_8_REV 0x8DAD #define GL_FLOAT_MAT2 0x8B5A #define GL_FLOAT_MAT2_ARB 0x8B5A #define GL_FLOAT_MAT2x3 0x8B65 #define GL_FLOAT_MAT2x4 0x8B66 #define GL_FLOAT_MAT3 0x8B5B #define GL_FLOAT_MAT3_ARB 0x8B5B #define GL_FLOAT_MAT3x2 0x8B67 #define GL_FLOAT_MAT3x4 0x8B68 #define GL_FLOAT_MAT4 0x8B5C #define GL_FLOAT_MAT4_ARB 0x8B5C #define GL_FLOAT_MAT4x2 0x8B69 #define GL_FLOAT_MAT4x3 0x8B6A #define GL_FLOAT_VEC2 0x8B50 #define GL_FLOAT_VEC2_ARB 0x8B50 #define GL_FLOAT_VEC3 0x8B51 #define GL_FLOAT_VEC3_ARB 0x8B51 #define GL_FLOAT_VEC4 0x8B52 #define GL_FLOAT_VEC4_ARB 0x8B52 #define GL_FOG 0x0B60 #define GL_FOG_BIT 0x00000080 #define GL_FOG_COLOR 0x0B66 #define GL_FOG_COORD 0x8451 #define GL_FOG_COORDINATE 0x8451 #define GL_FOG_COORDINATE_ARRAY 0x8457 #define GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING 0x889D #define GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB 0x889D #define GL_FOG_COORDINATE_ARRAY_POINTER 0x8456 #define GL_FOG_COORDINATE_ARRAY_STRIDE 0x8455 #define GL_FOG_COORDINATE_ARRAY_TYPE 0x8454 #define GL_FOG_COORDINATE_SOURCE 0x8450 #define GL_FOG_COORD_ARRAY 0x8457 #define GL_FOG_COORD_ARRAY_BUFFER_BINDING 0x889D #define GL_FOG_COORD_ARRAY_POINTER 0x8456 #define GL_FOG_COORD_ARRAY_STRIDE 0x8455 #define GL_FOG_COORD_ARRAY_TYPE 0x8454 #define GL_FOG_COORD_SRC 0x8450 #define GL_FOG_DENSITY 0x0B62 #define GL_FOG_END 0x0B64 #define GL_FOG_HINT 0x0C54 #define GL_FOG_INDEX 0x0B61 #define GL_FOG_MODE 0x0B65 #define GL_FOG_START 0x0B63 #define GL_FRACTIONAL_EVEN 0x8E7C #define GL_FRACTIONAL_ODD 0x8E7B #define GL_FRAGMENT_DEPTH 0x8452 #define GL_FRAGMENT_INTERPOLATION_OFFSET_BITS 0x8E5D #define GL_FRAGMENT_PROGRAM_ARB 0x8804 #define GL_FRAGMENT_SHADER 0x8B30 #define GL_FRAGMENT_SHADER_ARB 0x8B30 #define GL_FRAGMENT_SHADER_BIT 0x00000002 #define GL_FRAGMENT_SHADER_DERIVATIVE_HINT 0x8B8B #define GL_FRAGMENT_SHADER_DERIVATIVE_HINT_ARB 0x8B8B #define GL_FRAGMENT_SHADER_INVOCATIONS 0x82F4 #define GL_FRAGMENT_SHADER_INVOCATIONS_ARB 0x82F4 #define GL_FRAGMENT_SUBROUTINE 0x92EC #define GL_FRAGMENT_SUBROUTINE_UNIFORM 0x92F2 #define GL_FRAGMENT_TEXTURE 0x829F #define GL_FRAMEBUFFER 0x8D40 #define GL_FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE 0x8215 #define GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE 0x8214 #define GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING 0x8210 #define GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE 0x8211 #define GL_FRAMEBUFFER_ATTACHMENT_DEPTH_SIZE 0x8216 #define GL_FRAMEBUFFER_ATTACHMENT_GREEN_SIZE 0x8213 #define GL_FRAMEBUFFER_ATTACHMENT_LAYERED 0x8DA7 #define GL_FRAMEBUFFER_ATTACHMENT_LAYERED_ARB 0x8DA7 #define GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME 0x8CD1 #define GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE 0x8CD0 #define GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE 0x8212 #define GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE 0x8217 #define GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE 0x8CD3 #define GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER 0x8CD4 #define GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL 0x8CD2 #define GL_FRAMEBUFFER_BARRIER_BIT 0x00000400 #define GL_FRAMEBUFFER_BINDING 0x8CA6 #define GL_FRAMEBUFFER_BLEND 0x828B #define GL_FRAMEBUFFER_COMPLETE 0x8CD5 #define GL_FRAMEBUFFER_DEFAULT 0x8218 #define GL_FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS 0x9314 #define GL_FRAMEBUFFER_DEFAULT_HEIGHT 0x9311 #define GL_FRAMEBUFFER_DEFAULT_LAYERS 0x9312 #define GL_FRAMEBUFFER_DEFAULT_SAMPLES 0x9313 #define GL_FRAMEBUFFER_DEFAULT_WIDTH 0x9310 #define GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT 0x8CD6 #define GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER 0x8CDB #define GL_FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_ARB 0x8DA9 #define GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS 0x8DA8 #define GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_ARB 0x8DA8 #define GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT 0x8CD7 #define GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE 0x8D56 #define GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER 0x8CDC #define GL_FRAMEBUFFER_PROGRAMMABLE_SAMPLE_LOCATIONS_ARB 0x9342 #define GL_FRAMEBUFFER_RENDERABLE 0x8289 #define GL_FRAMEBUFFER_RENDERABLE_LAYERED 0x828A #define GL_FRAMEBUFFER_SAMPLE_LOCATION_PIXEL_GRID_ARB 0x9343 #define GL_FRAMEBUFFER_SRGB 0x8DB9 #define GL_FRAMEBUFFER_UNDEFINED 0x8219 #define GL_FRAMEBUFFER_UNSUPPORTED 0x8CDD #define GL_FRONT 0x0404 #define GL_FRONT_AND_BACK 0x0408 #define GL_FRONT_FACE 0x0B46 #define GL_FRONT_LEFT 0x0400 #define GL_FRONT_RIGHT 0x0401 #define GL_FULL_SUPPORT 0x82B7 #define GL_FUNC_ADD 0x8006 #define GL_FUNC_REVERSE_SUBTRACT 0x800B #define GL_FUNC_SUBTRACT 0x800A #define GL_GENERATE_MIPMAP 0x8191 #define GL_GENERATE_MIPMAP_HINT 0x8192 #define GL_GEOMETRY_INPUT_TYPE 0x8917 #define GL_GEOMETRY_INPUT_TYPE_ARB 0x8DDB #define GL_GEOMETRY_OUTPUT_TYPE 0x8918 #define GL_GEOMETRY_OUTPUT_TYPE_ARB 0x8DDC #define GL_GEOMETRY_SHADER 0x8DD9 #define GL_GEOMETRY_SHADER_ARB 0x8DD9 #define GL_GEOMETRY_SHADER_BIT 0x00000004 #define GL_GEOMETRY_SHADER_INVOCATIONS 0x887F #define GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED 0x82F3 #define GL_GEOMETRY_SHADER_PRIMITIVES_EMITTED_ARB 0x82F3 #define GL_GEOMETRY_SUBROUTINE 0x92EB #define GL_GEOMETRY_SUBROUTINE_UNIFORM 0x92F1 #define GL_GEOMETRY_TEXTURE 0x829E #define GL_GEOMETRY_VERTICES_OUT 0x8916 #define GL_GEOMETRY_VERTICES_OUT_ARB 0x8DDA #define GL_GEQUAL 0x0206 #define GL_GET_TEXTURE_IMAGE_FORMAT 0x8291 #define GL_GET_TEXTURE_IMAGE_TYPE 0x8292 #define GL_GREATER 0x0204 #define GL_GREEN 0x1904 #define GL_GREEN_BIAS 0x0D19 #define GL_GREEN_BITS 0x0D53 #define GL_GREEN_INTEGER 0x8D95 #define GL_GREEN_SCALE 0x0D18 #define GL_GUILTY_CONTEXT_RESET 0x8253 #define GL_GUILTY_CONTEXT_RESET_ARB 0x8253 #define GL_HALF_FLOAT 0x140B #define GL_HALF_FLOAT_ARB 0x140B #define GL_HARDLIGHT_KHR 0x929B #define GL_HIGH_FLOAT 0x8DF2 #define GL_HIGH_INT 0x8DF5 #define GL_HINT_BIT 0x00008000 #define GL_HISTOGRAM 0x8024 #define GL_HISTOGRAM_ALPHA_SIZE 0x802B #define GL_HISTOGRAM_BLUE_SIZE 0x802A #define GL_HISTOGRAM_FORMAT 0x8027 #define GL_HISTOGRAM_GREEN_SIZE 0x8029 #define GL_HISTOGRAM_LUMINANCE_SIZE 0x802C #define GL_HISTOGRAM_RED_SIZE 0x8028 #define GL_HISTOGRAM_SINK 0x802D #define GL_HISTOGRAM_WIDTH 0x8026 #define GL_HSL_COLOR_KHR 0x92AF #define GL_HSL_HUE_KHR 0x92AD #define GL_HSL_LUMINOSITY_KHR 0x92B0 #define GL_HSL_SATURATION_KHR 0x92AE #define GL_IMAGE_1D 0x904C #define GL_IMAGE_1D_ARRAY 0x9052 #define GL_IMAGE_2D 0x904D #define GL_IMAGE_2D_ARRAY 0x9053 #define GL_IMAGE_2D_MULTISAMPLE 0x9055 #define GL_IMAGE_2D_MULTISAMPLE_ARRAY 0x9056 #define GL_IMAGE_2D_RECT 0x904F #define GL_IMAGE_3D 0x904E #define GL_IMAGE_BINDING_ACCESS 0x8F3E #define GL_IMAGE_BINDING_FORMAT 0x906E #define GL_IMAGE_BINDING_LAYER 0x8F3D #define GL_IMAGE_BINDING_LAYERED 0x8F3C #define GL_IMAGE_BINDING_LEVEL 0x8F3B #define GL_IMAGE_BINDING_NAME 0x8F3A #define GL_IMAGE_BUFFER 0x9051 #define GL_IMAGE_CLASS_10_10_10_2 0x82C3 #define GL_IMAGE_CLASS_11_11_10 0x82C2 #define GL_IMAGE_CLASS_1_X_16 0x82BE #define GL_IMAGE_CLASS_1_X_32 0x82BB #define GL_IMAGE_CLASS_1_X_8 0x82C1 #define GL_IMAGE_CLASS_2_X_16 0x82BD #define GL_IMAGE_CLASS_2_X_32 0x82BA #define GL_IMAGE_CLASS_2_X_8 0x82C0 #define GL_IMAGE_CLASS_4_X_16 0x82BC #define GL_IMAGE_CLASS_4_X_32 0x82B9 #define GL_IMAGE_CLASS_4_X_8 0x82BF #define GL_IMAGE_COMPATIBILITY_CLASS 0x82A8 #define GL_IMAGE_CUBE 0x9050 #define GL_IMAGE_CUBE_MAP_ARRAY 0x9054 #define GL_IMAGE_FORMAT_COMPATIBILITY_BY_CLASS 0x90C9 #define GL_IMAGE_FORMAT_COMPATIBILITY_BY_SIZE 0x90C8 #define GL_IMAGE_FORMAT_COMPATIBILITY_TYPE 0x90C7 #define GL_IMAGE_PIXEL_FORMAT 0x82A9 #define GL_IMAGE_PIXEL_TYPE 0x82AA #define GL_IMAGE_TEXEL_SIZE 0x82A7 #define GL_IMPLEMENTATION_COLOR_READ_FORMAT 0x8B9B #define GL_IMPLEMENTATION_COLOR_READ_TYPE 0x8B9A #define GL_INCR 0x1E02 #define GL_INCR_WRAP 0x8507 #define GL_INDEX 0x8222 #define GL_INDEX_ARRAY 0x8077 #define GL_INDEX_ARRAY_BUFFER_BINDING 0x8899 #define GL_INDEX_ARRAY_BUFFER_BINDING_ARB 0x8899 #define GL_INDEX_ARRAY_POINTER 0x8091 #define GL_INDEX_ARRAY_STRIDE 0x8086 #define GL_INDEX_ARRAY_TYPE 0x8085 #define GL_INDEX_BITS 0x0D51 #define GL_INDEX_CLEAR_VALUE 0x0C20 #define GL_INDEX_LOGIC_OP 0x0BF1 #define GL_INDEX_MODE 0x0C30 #define GL_INDEX_OFFSET 0x0D13 #define GL_INDEX_SHIFT 0x0D12 #define GL_INDEX_WRITEMASK 0x0C21 #define GL_INFO_LOG_LENGTH 0x8B84 #define GL_INNOCENT_CONTEXT_RESET 0x8254 #define GL_INNOCENT_CONTEXT_RESET_ARB 0x8254 #define GL_INT 0x1404 #define GL_INT64_ARB 0x140E #define GL_INT64_VEC2_ARB 0x8FE9 #define GL_INT64_VEC3_ARB 0x8FEA #define GL_INT64_VEC4_ARB 0x8FEB #define GL_INTENSITY 0x8049 #define GL_INTENSITY12 0x804C #define GL_INTENSITY16 0x804D #define GL_INTENSITY16F_ARB 0x881D #define GL_INTENSITY32F_ARB 0x8817 #define GL_INTENSITY4 0x804A #define GL_INTENSITY8 0x804B #define GL_INTERLEAVED_ATTRIBS 0x8C8C #define GL_INTERNALFORMAT_ALPHA_SIZE 0x8274 #define GL_INTERNALFORMAT_ALPHA_TYPE 0x827B #define GL_INTERNALFORMAT_BLUE_SIZE 0x8273 #define GL_INTERNALFORMAT_BLUE_TYPE 0x827A #define GL_INTERNALFORMAT_DEPTH_SIZE 0x8275 #define GL_INTERNALFORMAT_DEPTH_TYPE 0x827C #define GL_INTERNALFORMAT_GREEN_SIZE 0x8272 #define GL_INTERNALFORMAT_GREEN_TYPE 0x8279 #define GL_INTERNALFORMAT_PREFERRED 0x8270 #define GL_INTERNALFORMAT_RED_SIZE 0x8271 #define GL_INTERNALFORMAT_RED_TYPE 0x8278 #define GL_INTERNALFORMAT_SHARED_SIZE 0x8277 #define GL_INTERNALFORMAT_STENCIL_SIZE 0x8276 #define GL_INTERNALFORMAT_STENCIL_TYPE 0x827D #define GL_INTERNALFORMAT_SUPPORTED 0x826F #define GL_INTERPOLATE 0x8575 #define GL_INTERPOLATE_ARB 0x8575 #define GL_INT_2_10_10_10_REV 0x8D9F #define GL_INT_IMAGE_1D 0x9057 #define GL_INT_IMAGE_1D_ARRAY 0x905D #define GL_INT_IMAGE_2D 0x9058 #define GL_INT_IMAGE_2D_ARRAY 0x905E #define GL_INT_IMAGE_2D_MULTISAMPLE 0x9060 #define GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY 0x9061 #define GL_INT_IMAGE_2D_RECT 0x905A #define GL_INT_IMAGE_3D 0x9059 #define GL_INT_IMAGE_BUFFER 0x905C #define GL_INT_IMAGE_CUBE 0x905B #define GL_INT_IMAGE_CUBE_MAP_ARRAY 0x905F #define GL_INT_SAMPLER_1D 0x8DC9 #define GL_INT_SAMPLER_1D_ARRAY 0x8DCE #define GL_INT_SAMPLER_2D 0x8DCA #define GL_INT_SAMPLER_2D_ARRAY 0x8DCF #define GL_INT_SAMPLER_2D_MULTISAMPLE 0x9109 #define GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY 0x910C #define GL_INT_SAMPLER_2D_RECT 0x8DCD #define GL_INT_SAMPLER_3D 0x8DCB #define GL_INT_SAMPLER_BUFFER 0x8DD0 #define GL_INT_SAMPLER_CUBE 0x8DCC #define GL_INT_SAMPLER_CUBE_MAP_ARRAY_ARB 0x900E #define GL_INT_VEC2 0x8B53 #define GL_INT_VEC2_ARB 0x8B53 #define GL_INT_VEC3 0x8B54 #define GL_INT_VEC3_ARB 0x8B54 #define GL_INT_VEC4 0x8B55 #define GL_INT_VEC4_ARB 0x8B55 #define GL_INVALID_ENUM 0x0500 #define GL_INVALID_FRAMEBUFFER_OPERATION 0x0506 #define GL_INVALID_INDEX 0xFFFFFFFF #define GL_INVALID_OPERATION 0x0502 #define GL_INVALID_VALUE 0x0501 #define GL_INVERT 0x150A #define GL_ISOLINES 0x8E7A #define GL_IS_PER_PATCH 0x92E7 #define GL_IS_ROW_MAJOR 0x9300 #define GL_KEEP 0x1E00 #define GL_LAST_VERTEX_CONVENTION 0x8E4E #define GL_LAYER_PROVOKING_VERTEX 0x825E #define GL_LEFT 0x0406 #define GL_LEQUAL 0x0203 #define GL_LESS 0x0201 #define GL_LIGHT0 0x4000 #define GL_LIGHT1 0x4001 #define GL_LIGHT2 0x4002 #define GL_LIGHT3 0x4003 #define GL_LIGHT4 0x4004 #define GL_LIGHT5 0x4005 #define GL_LIGHT6 0x4006 #define GL_LIGHT7 0x4007 #define GL_LIGHTEN_KHR 0x9298 #define GL_LIGHTING 0x0B50 #define GL_LIGHTING_BIT 0x00000040 #define GL_LIGHT_MODEL_AMBIENT 0x0B53 #define GL_LIGHT_MODEL_COLOR_CONTROL 0x81F8 #define GL_LIGHT_MODEL_LOCAL_VIEWER 0x0B51 #define GL_LIGHT_MODEL_TWO_SIDE 0x0B52 #define GL_LINE 0x1B01 #define GL_LINEAR 0x2601 #define GL_LINEAR_ATTENUATION 0x1208 #define GL_LINEAR_MIPMAP_LINEAR 0x2703 #define GL_LINEAR_MIPMAP_NEAREST 0x2701 #define GL_LINES 0x0001 #define GL_LINES_ADJACENCY 0x000A #define GL_LINES_ADJACENCY_ARB 0x000A #define GL_LINE_BIT 0x00000004 #define GL_LINE_LOOP 0x0002 #define GL_LINE_RESET_TOKEN 0x0707 #define GL_LINE_SMOOTH 0x0B20 #define GL_LINE_SMOOTH_HINT 0x0C52 #define GL_LINE_STIPPLE 0x0B24 #define GL_LINE_STIPPLE_PATTERN 0x0B25 #define GL_LINE_STIPPLE_REPEAT 0x0B26 #define GL_LINE_STRIP 0x0003 #define GL_LINE_STRIP_ADJACENCY 0x000B #define GL_LINE_STRIP_ADJACENCY_ARB 0x000B #define GL_LINE_TOKEN 0x0702 #define GL_LINE_WIDTH 0x0B21 #define GL_LINE_WIDTH_GRANULARITY 0x0B23 #define GL_LINE_WIDTH_RANGE 0x0B22 #define GL_LINK_STATUS 0x8B82 #define GL_LIST_BASE 0x0B32 #define GL_LIST_BIT 0x00020000 #define GL_LIST_INDEX 0x0B33 #define GL_LIST_MODE 0x0B30 #define GL_LOAD 0x0101 #define GL_LOCATION 0x930E #define GL_LOCATION_COMPONENT 0x934A #define GL_LOCATION_INDEX 0x930F #define GL_LOGIC_OP 0x0BF1 #define GL_LOGIC_OP_MODE 0x0BF0 #define GL_LOSE_CONTEXT_ON_RESET 0x8252 #define GL_LOSE_CONTEXT_ON_RESET_ARB 0x8252 #define GL_LOWER_LEFT 0x8CA1 #define GL_LOW_FLOAT 0x8DF0 #define GL_LOW_INT 0x8DF3 #define GL_LUMINANCE 0x1909 #define GL_LUMINANCE12 0x8041 #define GL_LUMINANCE12_ALPHA12 0x8047 #define GL_LUMINANCE12_ALPHA4 0x8046 #define GL_LUMINANCE16 0x8042 #define GL_LUMINANCE16F_ARB 0x881E #define GL_LUMINANCE16_ALPHA16 0x8048 #define GL_LUMINANCE32F_ARB 0x8818 #define GL_LUMINANCE4 0x803F #define GL_LUMINANCE4_ALPHA4 0x8043 #define GL_LUMINANCE6_ALPHA2 0x8044 #define GL_LUMINANCE8 0x8040 #define GL_LUMINANCE8_ALPHA8 0x8045 #define GL_LUMINANCE_ALPHA 0x190A #define GL_LUMINANCE_ALPHA16F_ARB 0x881F #define GL_LUMINANCE_ALPHA32F_ARB 0x8819 #define GL_MAJOR_VERSION 0x821B #define GL_MANUAL_GENERATE_MIPMAP 0x8294 #define GL_MAP1_COLOR_4 0x0D90 #define GL_MAP1_GRID_DOMAIN 0x0DD0 #define GL_MAP1_GRID_SEGMENTS 0x0DD1 #define GL_MAP1_INDEX 0x0D91 #define GL_MAP1_NORMAL 0x0D92 #define GL_MAP1_TEXTURE_COORD_1 0x0D93 #define GL_MAP1_TEXTURE_COORD_2 0x0D94 #define GL_MAP1_TEXTURE_COORD_3 0x0D95 #define GL_MAP1_TEXTURE_COORD_4 0x0D96 #define GL_MAP1_VERTEX_3 0x0D97 #define GL_MAP1_VERTEX_4 0x0D98 #define GL_MAP2_COLOR_4 0x0DB0 #define GL_MAP2_GRID_DOMAIN 0x0DD2 #define GL_MAP2_GRID_SEGMENTS 0x0DD3 #define GL_MAP2_INDEX 0x0DB1 #define GL_MAP2_NORMAL 0x0DB2 #define GL_MAP2_TEXTURE_COORD_1 0x0DB3 #define GL_MAP2_TEXTURE_COORD_2 0x0DB4 #define GL_MAP2_TEXTURE_COORD_3 0x0DB5 #define GL_MAP2_TEXTURE_COORD_4 0x0DB6 #define GL_MAP2_VERTEX_3 0x0DB7 #define GL_MAP2_VERTEX_4 0x0DB8 #define GL_MAP_COHERENT_BIT 0x0080 #define GL_MAP_COLOR 0x0D10 #define GL_MAP_FLUSH_EXPLICIT_BIT 0x0010 #define GL_MAP_INVALIDATE_BUFFER_BIT 0x0008 #define GL_MAP_INVALIDATE_RANGE_BIT 0x0004 #define GL_MAP_PERSISTENT_BIT 0x0040 #define GL_MAP_READ_BIT 0x0001 #define GL_MAP_STENCIL 0x0D11 #define GL_MAP_UNSYNCHRONIZED_BIT 0x0020 #define GL_MAP_WRITE_BIT 0x0002 #define GL_MATRIX0_ARB 0x88C0 #define GL_MATRIX10_ARB 0x88CA #define GL_MATRIX11_ARB 0x88CB #define GL_MATRIX12_ARB 0x88CC #define GL_MATRIX13_ARB 0x88CD #define GL_MATRIX14_ARB 0x88CE #define GL_MATRIX15_ARB 0x88CF #define GL_MATRIX16_ARB 0x88D0 #define GL_MATRIX17_ARB 0x88D1 #define GL_MATRIX18_ARB 0x88D2 #define GL_MATRIX19_ARB 0x88D3 #define GL_MATRIX1_ARB 0x88C1 #define GL_MATRIX20_ARB 0x88D4 #define GL_MATRIX21_ARB 0x88D5 #define GL_MATRIX22_ARB 0x88D6 #define GL_MATRIX23_ARB 0x88D7 #define GL_MATRIX24_ARB 0x88D8 #define GL_MATRIX25_ARB 0x88D9 #define GL_MATRIX26_ARB 0x88DA #define GL_MATRIX27_ARB 0x88DB #define GL_MATRIX28_ARB 0x88DC #define GL_MATRIX29_ARB 0x88DD #define GL_MATRIX2_ARB 0x88C2 #define GL_MATRIX30_ARB 0x88DE #define GL_MATRIX31_ARB 0x88DF #define GL_MATRIX3_ARB 0x88C3 #define GL_MATRIX4_ARB 0x88C4 #define GL_MATRIX5_ARB 0x88C5 #define GL_MATRIX6_ARB 0x88C6 #define GL_MATRIX7_ARB 0x88C7 #define GL_MATRIX8_ARB 0x88C8 #define GL_MATRIX9_ARB 0x88C9 #define GL_MATRIX_INDEX_ARRAY_ARB 0x8844 #define GL_MATRIX_INDEX_ARRAY_POINTER_ARB 0x8849 #define GL_MATRIX_INDEX_ARRAY_SIZE_ARB 0x8846 #define GL_MATRIX_INDEX_ARRAY_STRIDE_ARB 0x8848 #define GL_MATRIX_INDEX_ARRAY_TYPE_ARB 0x8847 #define GL_MATRIX_MODE 0x0BA0 #define GL_MATRIX_PALETTE_ARB 0x8840 #define GL_MATRIX_STRIDE 0x92FF #define GL_MAX 0x8008 #define GL_MAX_3D_TEXTURE_SIZE 0x8073 #define GL_MAX_ARRAY_TEXTURE_LAYERS 0x88FF #define GL_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS 0x92DC #define GL_MAX_ATOMIC_COUNTER_BUFFER_SIZE 0x92D8 #define GL_MAX_ATTRIB_STACK_DEPTH 0x0D35 #define GL_MAX_CLIENT_ATTRIB_STACK_DEPTH 0x0D3B #define GL_MAX_CLIP_DISTANCES 0x0D32 #define GL_MAX_CLIP_PLANES 0x0D32 #define GL_MAX_COLOR_ATTACHMENTS 0x8CDF #define GL_MAX_COLOR_MATRIX_STACK_DEPTH 0x80B3 #define GL_MAX_COLOR_TEXTURE_SAMPLES 0x910E #define GL_MAX_COMBINED_ATOMIC_COUNTERS 0x92D7 #define GL_MAX_COMBINED_ATOMIC_COUNTER_BUFFERS 0x92D1 #define GL_MAX_COMBINED_CLIP_AND_CULL_DISTANCES 0x82FA #define GL_MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS 0x8266 #define GL_MAX_COMBINED_DIMENSIONS 0x8282 #define GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS 0x8A33 #define GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS 0x8A32 #define GL_MAX_COMBINED_IMAGE_UNIFORMS 0x90CF #define GL_MAX_COMBINED_IMAGE_UNITS_AND_FRAGMENT_OUTPUTS 0x8F39 #define GL_MAX_COMBINED_SHADER_OUTPUT_RESOURCES 0x8F39 #define GL_MAX_COMBINED_SHADER_STORAGE_BLOCKS 0x90DC #define GL_MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS 0x8E1E #define GL_MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS 0x8E1F #define GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 0x8B4D #define GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB 0x8B4D #define GL_MAX_COMBINED_UNIFORM_BLOCKS 0x8A2E #define GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS 0x8A31 #define GL_MAX_COMPUTE_ATOMIC_COUNTERS 0x8265 #define GL_MAX_COMPUTE_ATOMIC_COUNTER_BUFFERS 0x8264 #define GL_MAX_COMPUTE_FIXED_GROUP_INVOCATIONS_ARB 0x90EB #define GL_MAX_COMPUTE_FIXED_GROUP_SIZE_ARB 0x91BF #define GL_MAX_COMPUTE_IMAGE_UNIFORMS 0x91BD #define GL_MAX_COMPUTE_SHADER_STORAGE_BLOCKS 0x90DB #define GL_MAX_COMPUTE_SHARED_MEMORY_SIZE 0x8262 #define GL_MAX_COMPUTE_TEXTURE_IMAGE_UNITS 0x91BC #define GL_MAX_COMPUTE_UNIFORM_BLOCKS 0x91BB #define GL_MAX_COMPUTE_UNIFORM_COMPONENTS 0x8263 #define GL_MAX_COMPUTE_VARIABLE_GROUP_INVOCATIONS_ARB 0x9344 #define GL_MAX_COMPUTE_VARIABLE_GROUP_SIZE_ARB 0x9345 #define GL_MAX_COMPUTE_WORK_GROUP_COUNT 0x91BE #define GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS 0x90EB #define GL_MAX_COMPUTE_WORK_GROUP_SIZE 0x91BF #define GL_MAX_CONVOLUTION_HEIGHT 0x801B #define GL_MAX_CONVOLUTION_WIDTH 0x801A #define GL_MAX_CUBE_MAP_TEXTURE_SIZE 0x851C #define GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB 0x851C #define GL_MAX_CULL_DISTANCES 0x82F9 #define GL_MAX_DEBUG_GROUP_STACK_DEPTH 0x826C #define GL_MAX_DEBUG_LOGGED_MESSAGES 0x9144 #define GL_MAX_DEBUG_LOGGED_MESSAGES_ARB 0x9144 #define GL_MAX_DEBUG_MESSAGE_LENGTH 0x9143 #define GL_MAX_DEBUG_MESSAGE_LENGTH_ARB 0x9143 #define GL_MAX_DEPTH 0x8280 #define GL_MAX_DEPTH_TEXTURE_SAMPLES 0x910F #define GL_MAX_DRAW_BUFFERS 0x8824 #define GL_MAX_DRAW_BUFFERS_ARB 0x8824 #define GL_MAX_DUAL_SOURCE_DRAW_BUFFERS 0x88FC #define GL_MAX_ELEMENTS_INDICES 0x80E9 #define GL_MAX_ELEMENTS_VERTICES 0x80E8 #define GL_MAX_ELEMENT_INDEX 0x8D6B #define GL_MAX_EVAL_ORDER 0x0D30 #define GL_MAX_FRAGMENT_ATOMIC_COUNTERS 0x92D6 #define GL_MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS 0x92D0 #define GL_MAX_FRAGMENT_IMAGE_UNIFORMS 0x90CE #define GL_MAX_FRAGMENT_INPUT_COMPONENTS 0x9125 #define GL_MAX_FRAGMENT_INTERPOLATION_OFFSET 0x8E5C #define GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS 0x90DA #define GL_MAX_FRAGMENT_UNIFORM_BLOCKS 0x8A2D #define GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 0x8B49 #define GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB 0x8B49 #define GL_MAX_FRAGMENT_UNIFORM_VECTORS 0x8DFD #define GL_MAX_FRAMEBUFFER_HEIGHT 0x9316 #define GL_MAX_FRAMEBUFFER_LAYERS 0x9317 #define GL_MAX_FRAMEBUFFER_SAMPLES 0x9318 #define GL_MAX_FRAMEBUFFER_WIDTH 0x9315 #define GL_MAX_GEOMETRY_ATOMIC_COUNTERS 0x92D5 #define GL_MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS 0x92CF #define GL_MAX_GEOMETRY_IMAGE_UNIFORMS 0x90CD #define GL_MAX_GEOMETRY_INPUT_COMPONENTS 0x9123 #define GL_MAX_GEOMETRY_OUTPUT_COMPONENTS 0x9124 #define GL_MAX_GEOMETRY_OUTPUT_VERTICES 0x8DE0 #define GL_MAX_GEOMETRY_OUTPUT_VERTICES_ARB 0x8DE0 #define GL_MAX_GEOMETRY_SHADER_INVOCATIONS 0x8E5A #define GL_MAX_GEOMETRY_SHADER_STORAGE_BLOCKS 0x90D7 #define GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS 0x8C29 #define GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_ARB 0x8C29 #define GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS 0x8DE1 #define GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_ARB 0x8DE1 #define GL_MAX_GEOMETRY_UNIFORM_BLOCKS 0x8A2C #define GL_MAX_GEOMETRY_UNIFORM_COMPONENTS 0x8DDF #define GL_MAX_GEOMETRY_UNIFORM_COMPONENTS_ARB 0x8DDF #define GL_MAX_GEOMETRY_VARYING_COMPONENTS_ARB 0x8DDD #define GL_MAX_HEIGHT 0x827F #define GL_MAX_IMAGE_SAMPLES 0x906D #define GL_MAX_IMAGE_UNITS 0x8F38 #define GL_MAX_INTEGER_SAMPLES 0x9110 #define GL_MAX_LABEL_LENGTH 0x82E8 #define GL_MAX_LAYERS 0x8281 #define GL_MAX_LIGHTS 0x0D31 #define GL_MAX_LIST_NESTING 0x0B31 #define GL_MAX_MATRIX_PALETTE_STACK_DEPTH_ARB 0x8841 #define GL_MAX_MODELVIEW_STACK_DEPTH 0x0D36 #define GL_MAX_NAME_LENGTH 0x92F6 #define GL_MAX_NAME_STACK_DEPTH 0x0D37 #define GL_MAX_NUM_ACTIVE_VARIABLES 0x92F7 #define GL_MAX_NUM_COMPATIBLE_SUBROUTINES 0x92F8 #define GL_MAX_PALETTE_MATRICES_ARB 0x8842 #define GL_MAX_PATCH_VERTICES 0x8E7D #define GL_MAX_PIXEL_MAP_TABLE 0x0D34 #define GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B1 #define GL_MAX_PROGRAM_ALU_INSTRUCTIONS_ARB 0x880B #define GL_MAX_PROGRAM_ATTRIBS_ARB 0x88AD #define GL_MAX_PROGRAM_ENV_PARAMETERS_ARB 0x88B5 #define GL_MAX_PROGRAM_INSTRUCTIONS_ARB 0x88A1 #define GL_MAX_PROGRAM_LOCAL_PARAMETERS_ARB 0x88B4 #define GL_MAX_PROGRAM_MATRICES_ARB 0x862F #define GL_MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB 0x862E #define GL_MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B3 #define GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x880E #define GL_MAX_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AF #define GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A3 #define GL_MAX_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AB #define GL_MAX_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A7 #define GL_MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x8810 #define GL_MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x880F #define GL_MAX_PROGRAM_PARAMETERS_ARB 0x88A9 #define GL_MAX_PROGRAM_TEMPORARIES_ARB 0x88A5 #define GL_MAX_PROGRAM_TEXEL_OFFSET 0x8905 #define GL_MAX_PROGRAM_TEXTURE_GATHER_COMPONENTS_ARB 0x8F9F #define GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET_ARB 0x8E5F #define GL_MAX_PROGRAM_TEX_INDIRECTIONS_ARB 0x880D #define GL_MAX_PROGRAM_TEX_INSTRUCTIONS_ARB 0x880C #define GL_MAX_PROJECTION_STACK_DEPTH 0x0D38 #define GL_MAX_RECTANGLE_TEXTURE_SIZE 0x84F8 #define GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB 0x84F8 #define GL_MAX_RENDERBUFFER_SIZE 0x84E8 #define GL_MAX_SAMPLES 0x8D57 #define GL_MAX_SAMPLE_MASK_WORDS 0x8E59 #define GL_MAX_SERVER_WAIT_TIMEOUT 0x9111 #define GL_MAX_SHADER_COMPILER_THREADS_ARB 0x91B0 #define GL_MAX_SHADER_COMPILER_THREADS_KHR 0x91B0 #define GL_MAX_SHADER_STORAGE_BLOCK_SIZE 0x90DE #define GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS 0x90DD #define GL_MAX_SPARSE_3D_TEXTURE_SIZE_ARB 0x9199 #define GL_MAX_SPARSE_ARRAY_TEXTURE_LAYERS_ARB 0x919A #define GL_MAX_SPARSE_TEXTURE_SIZE_ARB 0x9198 #define GL_MAX_SUBROUTINES 0x8DE7 #define GL_MAX_SUBROUTINE_UNIFORM_LOCATIONS 0x8DE8 #define GL_MAX_TESS_CONTROL_ATOMIC_COUNTERS 0x92D3 #define GL_MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS 0x92CD #define GL_MAX_TESS_CONTROL_IMAGE_UNIFORMS 0x90CB #define GL_MAX_TESS_CONTROL_INPUT_COMPONENTS 0x886C #define GL_MAX_TESS_CONTROL_OUTPUT_COMPONENTS 0x8E83 #define GL_MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS 0x90D8 #define GL_MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS 0x8E81 #define GL_MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS 0x8E85 #define GL_MAX_TESS_CONTROL_UNIFORM_BLOCKS 0x8E89 #define GL_MAX_TESS_CONTROL_UNIFORM_COMPONENTS 0x8E7F #define GL_MAX_TESS_EVALUATION_ATOMIC_COUNTERS 0x92D4 #define GL_MAX_TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS 0x92CE #define GL_MAX_TESS_EVALUATION_IMAGE_UNIFORMS 0x90CC #define GL_MAX_TESS_EVALUATION_INPUT_COMPONENTS 0x886D #define GL_MAX_TESS_EVALUATION_OUTPUT_COMPONENTS 0x8E86 #define GL_MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS 0x90D9 #define GL_MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS 0x8E82 #define GL_MAX_TESS_EVALUATION_UNIFORM_BLOCKS 0x8E8A #define GL_MAX_TESS_EVALUATION_UNIFORM_COMPONENTS 0x8E80 #define GL_MAX_TESS_GEN_LEVEL 0x8E7E #define GL_MAX_TESS_PATCH_COMPONENTS 0x8E84 #define GL_MAX_TEXTURE_BUFFER_SIZE 0x8C2B #define GL_MAX_TEXTURE_BUFFER_SIZE_ARB 0x8C2B #define GL_MAX_TEXTURE_COORDS 0x8871 #define GL_MAX_TEXTURE_COORDS_ARB 0x8871 #define GL_MAX_TEXTURE_IMAGE_UNITS 0x8872 #define GL_MAX_TEXTURE_IMAGE_UNITS_ARB 0x8872 #define GL_MAX_TEXTURE_LOD_BIAS 0x84FD #define GL_MAX_TEXTURE_MAX_ANISOTROPY 0x84FF #define GL_MAX_TEXTURE_SIZE 0x0D33 #define GL_MAX_TEXTURE_STACK_DEPTH 0x0D39 #define GL_MAX_TEXTURE_UNITS 0x84E2 #define GL_MAX_TEXTURE_UNITS_ARB 0x84E2 #define GL_MAX_TRANSFORM_FEEDBACK_BUFFERS 0x8E70 #define GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS 0x8C8A #define GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS 0x8C8B #define GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS 0x8C80 #define GL_MAX_UNIFORM_BLOCK_SIZE 0x8A30 #define GL_MAX_UNIFORM_BUFFER_BINDINGS 0x8A2F #define GL_MAX_UNIFORM_LOCATIONS 0x826E #define GL_MAX_VARYING_COMPONENTS 0x8B4B #define GL_MAX_VARYING_FLOATS 0x8B4B #define GL_MAX_VARYING_FLOATS_ARB 0x8B4B #define GL_MAX_VARYING_VECTORS 0x8DFC #define GL_MAX_VERTEX_ATOMIC_COUNTERS 0x92D2 #define GL_MAX_VERTEX_ATOMIC_COUNTER_BUFFERS 0x92CC #define GL_MAX_VERTEX_ATTRIBS 0x8869 #define GL_MAX_VERTEX_ATTRIBS_ARB 0x8869 #define GL_MAX_VERTEX_ATTRIB_BINDINGS 0x82DA #define GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET 0x82D9 #define GL_MAX_VERTEX_IMAGE_UNIFORMS 0x90CA #define GL_MAX_VERTEX_OUTPUT_COMPONENTS 0x9122 #define GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS 0x90D6 #define GL_MAX_VERTEX_STREAMS 0x8E71 #define GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 0x8B4C #define GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB 0x8B4C #define GL_MAX_VERTEX_UNIFORM_BLOCKS 0x8A2B #define GL_MAX_VERTEX_UNIFORM_COMPONENTS 0x8B4A #define GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB 0x8B4A #define GL_MAX_VERTEX_UNIFORM_VECTORS 0x8DFB #define GL_MAX_VERTEX_UNITS_ARB 0x86A4 #define GL_MAX_VERTEX_VARYING_COMPONENTS_ARB 0x8DDE #define GL_MAX_VIEWPORTS 0x825B #define GL_MAX_VIEWPORT_DIMS 0x0D3A #define GL_MAX_WIDTH 0x827E #define GL_MEDIUM_FLOAT 0x8DF1 #define GL_MEDIUM_INT 0x8DF4 #define GL_MIN 0x8007 #define GL_MINMAX 0x802E #define GL_MINMAX_FORMAT 0x802F #define GL_MINMAX_SINK 0x8030 #define GL_MINOR_VERSION 0x821C #define GL_MIN_FRAGMENT_INTERPOLATION_OFFSET 0x8E5B #define GL_MIN_MAP_BUFFER_ALIGNMENT 0x90BC #define GL_MIN_PROGRAM_TEXEL_OFFSET 0x8904 #define GL_MIN_PROGRAM_TEXTURE_GATHER_OFFSET_ARB 0x8E5E #define GL_MIN_SAMPLE_SHADING_VALUE_ARB 0x8C37 #define GL_MIPMAP 0x8293 #define GL_MIRRORED_REPEAT 0x8370 #define GL_MIRRORED_REPEAT_ARB 0x8370 #define GL_MIRROR_CLAMP_TO_EDGE 0x8743 #define GL_MODELVIEW 0x1700 #define GL_MODELVIEW0_ARB 0x1700 #define GL_MODELVIEW10_ARB 0x872A #define GL_MODELVIEW11_ARB 0x872B #define GL_MODELVIEW12_ARB 0x872C #define GL_MODELVIEW13_ARB 0x872D #define GL_MODELVIEW14_ARB 0x872E #define GL_MODELVIEW15_ARB 0x872F #define GL_MODELVIEW16_ARB 0x8730 #define GL_MODELVIEW17_ARB 0x8731 #define GL_MODELVIEW18_ARB 0x8732 #define GL_MODELVIEW19_ARB 0x8733 #define GL_MODELVIEW1_ARB 0x850A #define GL_MODELVIEW20_ARB 0x8734 #define GL_MODELVIEW21_ARB 0x8735 #define GL_MODELVIEW22_ARB 0x8736 #define GL_MODELVIEW23_ARB 0x8737 #define GL_MODELVIEW24_ARB 0x8738 #define GL_MODELVIEW25_ARB 0x8739 #define GL_MODELVIEW26_ARB 0x873A #define GL_MODELVIEW27_ARB 0x873B #define GL_MODELVIEW28_ARB 0x873C #define GL_MODELVIEW29_ARB 0x873D #define GL_MODELVIEW2_ARB 0x8722 #define GL_MODELVIEW30_ARB 0x873E #define GL_MODELVIEW31_ARB 0x873F #define GL_MODELVIEW3_ARB 0x8723 #define GL_MODELVIEW4_ARB 0x8724 #define GL_MODELVIEW5_ARB 0x8725 #define GL_MODELVIEW6_ARB 0x8726 #define GL_MODELVIEW7_ARB 0x8727 #define GL_MODELVIEW8_ARB 0x8728 #define GL_MODELVIEW9_ARB 0x8729 #define GL_MODELVIEW_MATRIX 0x0BA6 #define GL_MODELVIEW_STACK_DEPTH 0x0BA3 #define GL_MODULATE 0x2100 #define GL_MULT 0x0103 #define GL_MULTIPLY_KHR 0x9294 #define GL_MULTISAMPLE 0x809D #define GL_MULTISAMPLE_ARB 0x809D #define GL_MULTISAMPLE_BIT 0x20000000 #define GL_MULTISAMPLE_BIT_ARB 0x20000000 #define GL_MULTISAMPLE_LINE_WIDTH_GRANULARITY_ARB 0x9382 #define GL_MULTISAMPLE_LINE_WIDTH_RANGE_ARB 0x9381 #define GL_N3F_V3F 0x2A25 #define GL_NAMED_STRING_LENGTH_ARB 0x8DE9 #define GL_NAMED_STRING_TYPE_ARB 0x8DEA #define GL_NAME_LENGTH 0x92F9 #define GL_NAME_STACK_DEPTH 0x0D70 #define GL_NAND 0x150E #define GL_NEAREST 0x2600 #define GL_NEAREST_MIPMAP_LINEAR 0x2702 #define GL_NEAREST_MIPMAP_NEAREST 0x2700 #define GL_NEGATIVE_ONE_TO_ONE 0x935E #define GL_NEVER 0x0200 #define GL_NICEST 0x1102 #define GL_NONE 0 #define GL_NOOP 0x1505 #define GL_NOR 0x1508 #define GL_NORMALIZE 0x0BA1 #define GL_NORMAL_ARRAY 0x8075 #define GL_NORMAL_ARRAY_BUFFER_BINDING 0x8897 #define GL_NORMAL_ARRAY_BUFFER_BINDING_ARB 0x8897 #define GL_NORMAL_ARRAY_POINTER 0x808F #define GL_NORMAL_ARRAY_STRIDE 0x807F #define GL_NORMAL_ARRAY_TYPE 0x807E #define GL_NORMAL_MAP 0x8511 #define GL_NORMAL_MAP_ARB 0x8511 #define GL_NOTEQUAL 0x0205 #define GL_NO_ERROR 0 #define GL_NO_RESET_NOTIFICATION 0x8261 #define GL_NO_RESET_NOTIFICATION_ARB 0x8261 #define GL_NUM_ACTIVE_VARIABLES 0x9304 #define GL_NUM_COMPATIBLE_SUBROUTINES 0x8E4A #define GL_NUM_COMPRESSED_TEXTURE_FORMATS 0x86A2 #define GL_NUM_COMPRESSED_TEXTURE_FORMATS_ARB 0x86A2 #define GL_NUM_EXTENSIONS 0x821D #define GL_NUM_PROGRAM_BINARY_FORMATS 0x87FE #define GL_NUM_SAMPLE_COUNTS 0x9380 #define GL_NUM_SHADER_BINARY_FORMATS 0x8DF9 #define GL_NUM_SPARSE_LEVELS_ARB 0x91AA #define GL_NUM_SPIR_V_EXTENSIONS 0x9554 #define GL_NUM_VIRTUAL_PAGE_SIZES_ARB 0x91A8 #define GL_OBJECT_ACTIVE_ATTRIBUTES_ARB 0x8B89 #define GL_OBJECT_ACTIVE_ATTRIBUTE_MAX_LENGTH_ARB 0x8B8A #define GL_OBJECT_ACTIVE_UNIFORMS_ARB 0x8B86 #define GL_OBJECT_ACTIVE_UNIFORM_MAX_LENGTH_ARB 0x8B87 #define GL_OBJECT_ATTACHED_OBJECTS_ARB 0x8B85 #define GL_OBJECT_COMPILE_STATUS_ARB 0x8B81 #define GL_OBJECT_DELETE_STATUS_ARB 0x8B80 #define GL_OBJECT_INFO_LOG_LENGTH_ARB 0x8B84 #define GL_OBJECT_LINEAR 0x2401 #define GL_OBJECT_LINK_STATUS_ARB 0x8B82 #define GL_OBJECT_PLANE 0x2501 #define GL_OBJECT_SHADER_SOURCE_LENGTH_ARB 0x8B88 #define GL_OBJECT_SUBTYPE_ARB 0x8B4F #define GL_OBJECT_TYPE 0x9112 #define GL_OBJECT_TYPE_ARB 0x8B4E #define GL_OBJECT_VALIDATE_STATUS_ARB 0x8B83 #define GL_OFFSET 0x92FC #define GL_ONE 1 #define GL_ONE_MINUS_CONSTANT_ALPHA 0x8004 #define GL_ONE_MINUS_CONSTANT_COLOR 0x8002 #define GL_ONE_MINUS_DST_ALPHA 0x0305 #define GL_ONE_MINUS_DST_COLOR 0x0307 #define GL_ONE_MINUS_SRC1_ALPHA 0x88FB #define GL_ONE_MINUS_SRC1_COLOR 0x88FA #define GL_ONE_MINUS_SRC_ALPHA 0x0303 #define GL_ONE_MINUS_SRC_COLOR 0x0301 #define GL_OPERAND0_ALPHA 0x8598 #define GL_OPERAND0_ALPHA_ARB 0x8598 #define GL_OPERAND0_RGB 0x8590 #define GL_OPERAND0_RGB_ARB 0x8590 #define GL_OPERAND1_ALPHA 0x8599 #define GL_OPERAND1_ALPHA_ARB 0x8599 #define GL_OPERAND1_RGB 0x8591 #define GL_OPERAND1_RGB_ARB 0x8591 #define GL_OPERAND2_ALPHA 0x859A #define GL_OPERAND2_ALPHA_ARB 0x859A #define GL_OPERAND2_RGB 0x8592 #define GL_OPERAND2_RGB_ARB 0x8592 #define GL_OR 0x1507 #define GL_ORDER 0x0A01 #define GL_OR_INVERTED 0x150D #define GL_OR_REVERSE 0x150B #define GL_OUT_OF_MEMORY 0x0505 #define GL_OVERLAY_KHR 0x9296 #define GL_PACK_ALIGNMENT 0x0D05 #define GL_PACK_COMPRESSED_BLOCK_DEPTH 0x912D #define GL_PACK_COMPRESSED_BLOCK_HEIGHT 0x912C #define GL_PACK_COMPRESSED_BLOCK_SIZE 0x912E #define GL_PACK_COMPRESSED_BLOCK_WIDTH 0x912B #define GL_PACK_IMAGE_HEIGHT 0x806C #define GL_PACK_LSB_FIRST 0x0D01 #define GL_PACK_ROW_LENGTH 0x0D02 #define GL_PACK_SKIP_IMAGES 0x806B #define GL_PACK_SKIP_PIXELS 0x0D04 #define GL_PACK_SKIP_ROWS 0x0D03 #define GL_PACK_SWAP_BYTES 0x0D00 #define GL_PARAMETER_BUFFER 0x80EE #define GL_PARAMETER_BUFFER_ARB 0x80EE #define GL_PARAMETER_BUFFER_BINDING 0x80EF #define GL_PARAMETER_BUFFER_BINDING_ARB 0x80EF #define GL_PASS_THROUGH_TOKEN 0x0700 #define GL_PATCHES 0x000E #define GL_PATCH_DEFAULT_INNER_LEVEL 0x8E73 #define GL_PATCH_DEFAULT_OUTER_LEVEL 0x8E74 #define GL_PATCH_VERTICES 0x8E72 #define GL_PERSPECTIVE_CORRECTION_HINT 0x0C50 #define GL_PIXEL_BUFFER_BARRIER_BIT 0x00000080 #define GL_PIXEL_MAP_A_TO_A 0x0C79 #define GL_PIXEL_MAP_A_TO_A_SIZE 0x0CB9 #define GL_PIXEL_MAP_B_TO_B 0x0C78 #define GL_PIXEL_MAP_B_TO_B_SIZE 0x0CB8 #define GL_PIXEL_MAP_G_TO_G 0x0C77 #define GL_PIXEL_MAP_G_TO_G_SIZE 0x0CB7 #define GL_PIXEL_MAP_I_TO_A 0x0C75 #define GL_PIXEL_MAP_I_TO_A_SIZE 0x0CB5 #define GL_PIXEL_MAP_I_TO_B 0x0C74 #define GL_PIXEL_MAP_I_TO_B_SIZE 0x0CB4 #define GL_PIXEL_MAP_I_TO_G 0x0C73 #define GL_PIXEL_MAP_I_TO_G_SIZE 0x0CB3 #define GL_PIXEL_MAP_I_TO_I 0x0C70 #define GL_PIXEL_MAP_I_TO_I_SIZE 0x0CB0 #define GL_PIXEL_MAP_I_TO_R 0x0C72 #define GL_PIXEL_MAP_I_TO_R_SIZE 0x0CB2 #define GL_PIXEL_MAP_R_TO_R 0x0C76 #define GL_PIXEL_MAP_R_TO_R_SIZE 0x0CB6 #define GL_PIXEL_MAP_S_TO_S 0x0C71 #define GL_PIXEL_MAP_S_TO_S_SIZE 0x0CB1 #define GL_PIXEL_MODE_BIT 0x00000020 #define GL_PIXEL_PACK_BUFFER 0x88EB #define GL_PIXEL_PACK_BUFFER_ARB 0x88EB #define GL_PIXEL_PACK_BUFFER_BINDING 0x88ED #define GL_PIXEL_PACK_BUFFER_BINDING_ARB 0x88ED #define GL_PIXEL_UNPACK_BUFFER 0x88EC #define GL_PIXEL_UNPACK_BUFFER_ARB 0x88EC #define GL_PIXEL_UNPACK_BUFFER_BINDING 0x88EF #define GL_PIXEL_UNPACK_BUFFER_BINDING_ARB 0x88EF #define GL_POINT 0x1B00 #define GL_POINTS 0x0000 #define GL_POINT_BIT 0x00000002 #define GL_POINT_DISTANCE_ATTENUATION 0x8129 #define GL_POINT_DISTANCE_ATTENUATION_ARB 0x8129 #define GL_POINT_FADE_THRESHOLD_SIZE 0x8128 #define GL_POINT_FADE_THRESHOLD_SIZE_ARB 0x8128 #define GL_POINT_SIZE 0x0B11 #define GL_POINT_SIZE_GRANULARITY 0x0B13 #define GL_POINT_SIZE_MAX 0x8127 #define GL_POINT_SIZE_MAX_ARB 0x8127 #define GL_POINT_SIZE_MIN 0x8126 #define GL_POINT_SIZE_MIN_ARB 0x8126 #define GL_POINT_SIZE_RANGE 0x0B12 #define GL_POINT_SMOOTH 0x0B10 #define GL_POINT_SMOOTH_HINT 0x0C51 #define GL_POINT_SPRITE 0x8861 #define GL_POINT_SPRITE_ARB 0x8861 #define GL_POINT_SPRITE_COORD_ORIGIN 0x8CA0 #define GL_POINT_TOKEN 0x0701 #define GL_POLYGON 0x0009 #define GL_POLYGON_BIT 0x00000008 #define GL_POLYGON_MODE 0x0B40 #define GL_POLYGON_OFFSET_CLAMP 0x8E1B #define GL_POLYGON_OFFSET_FACTOR 0x8038 #define GL_POLYGON_OFFSET_FILL 0x8037 #define GL_POLYGON_OFFSET_LINE 0x2A02 #define GL_POLYGON_OFFSET_POINT 0x2A01 #define GL_POLYGON_OFFSET_UNITS 0x2A00 #define GL_POLYGON_SMOOTH 0x0B41 #define GL_POLYGON_SMOOTH_HINT 0x0C53 #define GL_POLYGON_STIPPLE 0x0B42 #define GL_POLYGON_STIPPLE_BIT 0x00000010 #define GL_POLYGON_TOKEN 0x0703 #define GL_POSITION 0x1203 #define GL_POST_COLOR_MATRIX_ALPHA_BIAS 0x80BB #define GL_POST_COLOR_MATRIX_ALPHA_SCALE 0x80B7 #define GL_POST_COLOR_MATRIX_BLUE_BIAS 0x80BA #define GL_POST_COLOR_MATRIX_BLUE_SCALE 0x80B6 #define GL_POST_COLOR_MATRIX_COLOR_TABLE 0x80D2 #define GL_POST_COLOR_MATRIX_GREEN_BIAS 0x80B9 #define GL_POST_COLOR_MATRIX_GREEN_SCALE 0x80B5 #define GL_POST_COLOR_MATRIX_RED_BIAS 0x80B8 #define GL_POST_COLOR_MATRIX_RED_SCALE 0x80B4 #define GL_POST_CONVOLUTION_ALPHA_BIAS 0x8023 #define GL_POST_CONVOLUTION_ALPHA_SCALE 0x801F #define GL_POST_CONVOLUTION_BLUE_BIAS 0x8022 #define GL_POST_CONVOLUTION_BLUE_SCALE 0x801E #define GL_POST_CONVOLUTION_COLOR_TABLE 0x80D1 #define GL_POST_CONVOLUTION_GREEN_BIAS 0x8021 #define GL_POST_CONVOLUTION_GREEN_SCALE 0x801D #define GL_POST_CONVOLUTION_RED_BIAS 0x8020 #define GL_POST_CONVOLUTION_RED_SCALE 0x801C #define GL_PREVIOUS 0x8578 #define GL_PREVIOUS_ARB 0x8578 #define GL_PRIMARY_COLOR 0x8577 #define GL_PRIMARY_COLOR_ARB 0x8577 #define GL_PRIMITIVES_GENERATED 0x8C87 #define GL_PRIMITIVES_SUBMITTED 0x82EF #define GL_PRIMITIVES_SUBMITTED_ARB 0x82EF #define GL_PRIMITIVE_BOUNDING_BOX_ARB 0x92BE #define GL_PRIMITIVE_RESTART 0x8F9D #define GL_PRIMITIVE_RESTART_FIXED_INDEX 0x8D69 #define GL_PRIMITIVE_RESTART_INDEX 0x8F9E #define GL_PROGRAM 0x82E2 #define GL_PROGRAMMABLE_SAMPLE_LOCATION_ARB 0x9341 #define GL_PROGRAMMABLE_SAMPLE_LOCATION_TABLE_SIZE_ARB 0x9340 #define GL_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B0 #define GL_PROGRAM_ALU_INSTRUCTIONS_ARB 0x8805 #define GL_PROGRAM_ATTRIBS_ARB 0x88AC #define GL_PROGRAM_BINARY_FORMATS 0x87FF #define GL_PROGRAM_BINARY_LENGTH 0x8741 #define GL_PROGRAM_BINARY_RETRIEVABLE_HINT 0x8257 #define GL_PROGRAM_BINDING_ARB 0x8677 #define GL_PROGRAM_ERROR_POSITION_ARB 0x864B #define GL_PROGRAM_ERROR_STRING_ARB 0x8874 #define GL_PROGRAM_FORMAT_ARB 0x8876 #define GL_PROGRAM_FORMAT_ASCII_ARB 0x8875 #define GL_PROGRAM_INPUT 0x92E3 #define GL_PROGRAM_INSTRUCTIONS_ARB 0x88A0 #define GL_PROGRAM_LENGTH_ARB 0x8627 #define GL_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B2 #define GL_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x8808 #define GL_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AE #define GL_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A2 #define GL_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AA #define GL_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A6 #define GL_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x880A #define GL_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x8809 #define GL_PROGRAM_OBJECT_ARB 0x8B40 #define GL_PROGRAM_OUTPUT 0x92E4 #define GL_PROGRAM_PARAMETERS_ARB 0x88A8 #define GL_PROGRAM_PIPELINE 0x82E4 #define GL_PROGRAM_PIPELINE_BINDING 0x825A #define GL_PROGRAM_POINT_SIZE 0x8642 #define GL_PROGRAM_POINT_SIZE_ARB 0x8642 #define GL_PROGRAM_SEPARABLE 0x8258 #define GL_PROGRAM_STRING_ARB 0x8628 #define GL_PROGRAM_TEMPORARIES_ARB 0x88A4 #define GL_PROGRAM_TEX_INDIRECTIONS_ARB 0x8807 #define GL_PROGRAM_TEX_INSTRUCTIONS_ARB 0x8806 #define GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB 0x88B6 #define GL_PROJECTION 0x1701 #define GL_PROJECTION_MATRIX 0x0BA7 #define GL_PROJECTION_STACK_DEPTH 0x0BA4 #define GL_PROVOKING_VERTEX 0x8E4F #define GL_PROXY_COLOR_TABLE 0x80D3 #define GL_PROXY_HISTOGRAM 0x8025 #define GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE 0x80D5 #define GL_PROXY_POST_CONVOLUTION_COLOR_TABLE 0x80D4 #define GL_PROXY_TEXTURE_1D 0x8063 #define GL_PROXY_TEXTURE_1D_ARRAY 0x8C19 #define GL_PROXY_TEXTURE_2D 0x8064 #define GL_PROXY_TEXTURE_2D_ARRAY 0x8C1B #define GL_PROXY_TEXTURE_2D_MULTISAMPLE 0x9101 #define GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY 0x9103 #define GL_PROXY_TEXTURE_3D 0x8070 #define GL_PROXY_TEXTURE_CUBE_MAP 0x851B #define GL_PROXY_TEXTURE_CUBE_MAP_ARB 0x851B #define GL_PROXY_TEXTURE_CUBE_MAP_ARRAY_ARB 0x900B #define GL_PROXY_TEXTURE_RECTANGLE 0x84F7 #define GL_PROXY_TEXTURE_RECTANGLE_ARB 0x84F7 #define GL_Q 0x2003 #define GL_QUADRATIC_ATTENUATION 0x1209 #define GL_QUADS 0x0007 #define GL_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION 0x8E4C #define GL_QUAD_STRIP 0x0008 #define GL_QUERY 0x82E3 #define GL_QUERY_BUFFER 0x9192 #define GL_QUERY_BUFFER_BARRIER_BIT 0x00008000 #define GL_QUERY_BUFFER_BINDING 0x9193 #define GL_QUERY_BY_REGION_NO_WAIT 0x8E16 #define GL_QUERY_BY_REGION_NO_WAIT_INVERTED 0x8E1A #define GL_QUERY_BY_REGION_WAIT 0x8E15 #define GL_QUERY_BY_REGION_WAIT_INVERTED 0x8E19 #define GL_QUERY_COUNTER_BITS 0x8864 #define GL_QUERY_COUNTER_BITS_ARB 0x8864 #define GL_QUERY_NO_WAIT 0x8E14 #define GL_QUERY_NO_WAIT_INVERTED 0x8E18 #define GL_QUERY_RESULT 0x8866 #define GL_QUERY_RESULT_ARB 0x8866 #define GL_QUERY_RESULT_AVAILABLE 0x8867 #define GL_QUERY_RESULT_AVAILABLE_ARB 0x8867 #define GL_QUERY_RESULT_NO_WAIT 0x9194 #define GL_QUERY_TARGET 0x82EA #define GL_QUERY_WAIT 0x8E13 #define GL_QUERY_WAIT_INVERTED 0x8E17 #define GL_R 0x2002 #define GL_R11F_G11F_B10F 0x8C3A #define GL_R16 0x822A #define GL_R16F 0x822D #define GL_R16I 0x8233 #define GL_R16UI 0x8234 #define GL_R16_SNORM 0x8F98 #define GL_R32F 0x822E #define GL_R32I 0x8235 #define GL_R32UI 0x8236 #define GL_R3_G3_B2 0x2A10 #define GL_R8 0x8229 #define GL_R8I 0x8231 #define GL_R8UI 0x8232 #define GL_R8_SNORM 0x8F94 #define GL_RASTERIZER_DISCARD 0x8C89 #define GL_READ_BUFFER 0x0C02 #define GL_READ_FRAMEBUFFER 0x8CA8 #define GL_READ_FRAMEBUFFER_BINDING 0x8CAA #define GL_READ_ONLY 0x88B8 #define GL_READ_ONLY_ARB 0x88B8 #define GL_READ_PIXELS 0x828C #define GL_READ_PIXELS_FORMAT 0x828D #define GL_READ_PIXELS_TYPE 0x828E #define GL_READ_WRITE 0x88BA #define GL_READ_WRITE_ARB 0x88BA #define GL_RED 0x1903 #define GL_REDUCE 0x8016 #define GL_RED_BIAS 0x0D15 #define GL_RED_BITS 0x0D52 #define GL_RED_INTEGER 0x8D94 #define GL_RED_SCALE 0x0D14 #define GL_REFERENCED_BY_COMPUTE_SHADER 0x930B #define GL_REFERENCED_BY_FRAGMENT_SHADER 0x930A #define GL_REFERENCED_BY_GEOMETRY_SHADER 0x9309 #define GL_REFERENCED_BY_TESS_CONTROL_SHADER 0x9307 #define GL_REFERENCED_BY_TESS_EVALUATION_SHADER 0x9308 #define GL_REFERENCED_BY_VERTEX_SHADER 0x9306 #define GL_REFLECTION_MAP 0x8512 #define GL_REFLECTION_MAP_ARB 0x8512 #define GL_RENDER 0x1C00 #define GL_RENDERBUFFER 0x8D41 #define GL_RENDERBUFFER_ALPHA_SIZE 0x8D53 #define GL_RENDERBUFFER_BINDING 0x8CA7 #define GL_RENDERBUFFER_BLUE_SIZE 0x8D52 #define GL_RENDERBUFFER_DEPTH_SIZE 0x8D54 #define GL_RENDERBUFFER_GREEN_SIZE 0x8D51 #define GL_RENDERBUFFER_HEIGHT 0x8D43 #define GL_RENDERBUFFER_INTERNAL_FORMAT 0x8D44 #define GL_RENDERBUFFER_RED_SIZE 0x8D50 #define GL_RENDERBUFFER_SAMPLES 0x8CAB #define GL_RENDERBUFFER_STENCIL_SIZE 0x8D55 #define GL_RENDERBUFFER_WIDTH 0x8D42 #define GL_RENDERER 0x1F01 #define GL_RENDER_MODE 0x0C40 #define GL_REPEAT 0x2901 #define GL_REPLACE 0x1E01 #define GL_REPLICATE_BORDER 0x8153 #define GL_RESCALE_NORMAL 0x803A #define GL_RESET_NOTIFICATION_STRATEGY 0x8256 #define GL_RESET_NOTIFICATION_STRATEGY_ARB 0x8256 #define GL_RETURN 0x0102 #define GL_RG 0x8227 #define GL_RG16 0x822C #define GL_RG16F 0x822F #define GL_RG16I 0x8239 #define GL_RG16UI 0x823A #define GL_RG16_SNORM 0x8F99 #define GL_RG32F 0x8230 #define GL_RG32I 0x823B #define GL_RG32UI 0x823C #define GL_RG8 0x822B #define GL_RG8I 0x8237 #define GL_RG8UI 0x8238 #define GL_RG8_SNORM 0x8F95 #define GL_RGB 0x1907 #define GL_RGB10 0x8052 #define GL_RGB10_A2 0x8059 #define GL_RGB10_A2UI 0x906F #define GL_RGB12 0x8053 #define GL_RGB16 0x8054 #define GL_RGB16F 0x881B #define GL_RGB16F_ARB 0x881B #define GL_RGB16I 0x8D89 #define GL_RGB16UI 0x8D77 #define GL_RGB16_SNORM 0x8F9A #define GL_RGB32F 0x8815 #define GL_RGB32F_ARB 0x8815 #define GL_RGB32I 0x8D83 #define GL_RGB32UI 0x8D71 #define GL_RGB4 0x804F #define GL_RGB5 0x8050 #define GL_RGB565 0x8D62 #define GL_RGB5_A1 0x8057 #define GL_RGB8 0x8051 #define GL_RGB8I 0x8D8F #define GL_RGB8UI 0x8D7D #define GL_RGB8_SNORM 0x8F96 #define GL_RGB9_E5 0x8C3D #define GL_RGBA 0x1908 #define GL_RGBA12 0x805A #define GL_RGBA16 0x805B #define GL_RGBA16F 0x881A #define GL_RGBA16F_ARB 0x881A #define GL_RGBA16I 0x8D88 #define GL_RGBA16UI 0x8D76 #define GL_RGBA16_SNORM 0x8F9B #define GL_RGBA2 0x8055 #define GL_RGBA32F 0x8814 #define GL_RGBA32F_ARB 0x8814 #define GL_RGBA32I 0x8D82 #define GL_RGBA32UI 0x8D70 #define GL_RGBA4 0x8056 #define GL_RGBA8 0x8058 #define GL_RGBA8I 0x8D8E #define GL_RGBA8UI 0x8D7C #define GL_RGBA8_SNORM 0x8F97 #define GL_RGBA_FLOAT_MODE_ARB 0x8820 #define GL_RGBA_INTEGER 0x8D99 #define GL_RGBA_MODE 0x0C31 #define GL_RGB_INTEGER 0x8D98 #define GL_RGB_SCALE 0x8573 #define GL_RGB_SCALE_ARB 0x8573 #define GL_RG_INTEGER 0x8228 #define GL_RIGHT 0x0407 #define GL_S 0x2000 #define GL_SAMPLER 0x82E6 #define GL_SAMPLER_1D 0x8B5D #define GL_SAMPLER_1D_ARB 0x8B5D #define GL_SAMPLER_1D_ARRAY 0x8DC0 #define GL_SAMPLER_1D_ARRAY_SHADOW 0x8DC3 #define GL_SAMPLER_1D_SHADOW 0x8B61 #define GL_SAMPLER_1D_SHADOW_ARB 0x8B61 #define GL_SAMPLER_2D 0x8B5E #define GL_SAMPLER_2D_ARB 0x8B5E #define GL_SAMPLER_2D_ARRAY 0x8DC1 #define GL_SAMPLER_2D_ARRAY_SHADOW 0x8DC4 #define GL_SAMPLER_2D_MULTISAMPLE 0x9108 #define GL_SAMPLER_2D_MULTISAMPLE_ARRAY 0x910B #define GL_SAMPLER_2D_RECT 0x8B63 #define GL_SAMPLER_2D_RECT_ARB 0x8B63 #define GL_SAMPLER_2D_RECT_SHADOW 0x8B64 #define GL_SAMPLER_2D_RECT_SHADOW_ARB 0x8B64 #define GL_SAMPLER_2D_SHADOW 0x8B62 #define GL_SAMPLER_2D_SHADOW_ARB 0x8B62 #define GL_SAMPLER_3D 0x8B5F #define GL_SAMPLER_3D_ARB 0x8B5F #define GL_SAMPLER_BINDING 0x8919 #define GL_SAMPLER_BUFFER 0x8DC2 #define GL_SAMPLER_CUBE 0x8B60 #define GL_SAMPLER_CUBE_ARB 0x8B60 #define GL_SAMPLER_CUBE_MAP_ARRAY_ARB 0x900C #define GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW_ARB 0x900D #define GL_SAMPLER_CUBE_SHADOW 0x8DC5 #define GL_SAMPLES 0x80A9 #define GL_SAMPLES_ARB 0x80A9 #define GL_SAMPLES_PASSED 0x8914 #define GL_SAMPLES_PASSED_ARB 0x8914 #define GL_SAMPLE_ALPHA_TO_COVERAGE 0x809E #define GL_SAMPLE_ALPHA_TO_COVERAGE_ARB 0x809E #define GL_SAMPLE_ALPHA_TO_ONE 0x809F #define GL_SAMPLE_ALPHA_TO_ONE_ARB 0x809F #define GL_SAMPLE_BUFFERS 0x80A8 #define GL_SAMPLE_BUFFERS_ARB 0x80A8 #define GL_SAMPLE_COVERAGE 0x80A0 #define GL_SAMPLE_COVERAGE_ARB 0x80A0 #define GL_SAMPLE_COVERAGE_INVERT 0x80AB #define GL_SAMPLE_COVERAGE_INVERT_ARB 0x80AB #define GL_SAMPLE_COVERAGE_VALUE 0x80AA #define GL_SAMPLE_COVERAGE_VALUE_ARB 0x80AA #define GL_SAMPLE_LOCATION_ARB 0x8E50 #define GL_SAMPLE_LOCATION_PIXEL_GRID_HEIGHT_ARB 0x933F #define GL_SAMPLE_LOCATION_PIXEL_GRID_WIDTH_ARB 0x933E #define GL_SAMPLE_LOCATION_SUBPIXEL_BITS_ARB 0x933D #define GL_SAMPLE_MASK 0x8E51 #define GL_SAMPLE_MASK_VALUE 0x8E52 #define GL_SAMPLE_POSITION 0x8E50 #define GL_SAMPLE_SHADING_ARB 0x8C36 #define GL_SCISSOR_BIT 0x00080000 #define GL_SCISSOR_BOX 0x0C10 #define GL_SCISSOR_TEST 0x0C11 #define GL_SCREEN_KHR 0x9295 #define GL_SECONDARY_COLOR_ARRAY 0x845E #define GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING 0x889C #define GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB 0x889C #define GL_SECONDARY_COLOR_ARRAY_POINTER 0x845D #define GL_SECONDARY_COLOR_ARRAY_SIZE 0x845A #define GL_SECONDARY_COLOR_ARRAY_STRIDE 0x845C #define GL_SECONDARY_COLOR_ARRAY_TYPE 0x845B #define GL_SELECT 0x1C02 #define GL_SELECTION_BUFFER_POINTER 0x0DF3 #define GL_SELECTION_BUFFER_SIZE 0x0DF4 #define GL_SEPARABLE_2D 0x8012 #define GL_SEPARATE_ATTRIBS 0x8C8D #define GL_SEPARATE_SPECULAR_COLOR 0x81FA #define GL_SET 0x150F #define GL_SHADER 0x82E1 #define GL_SHADER_BINARY_FORMATS 0x8DF8 #define GL_SHADER_BINARY_FORMAT_SPIR_V 0x9551 #define GL_SHADER_BINARY_FORMAT_SPIR_V_ARB 0x9551 #define GL_SHADER_COMPILER 0x8DFA #define GL_SHADER_IMAGE_ACCESS_BARRIER_BIT 0x00000020 #define GL_SHADER_IMAGE_ATOMIC 0x82A6 #define GL_SHADER_IMAGE_LOAD 0x82A4 #define GL_SHADER_IMAGE_STORE 0x82A5 #define GL_SHADER_INCLUDE_ARB 0x8DAE #define GL_SHADER_OBJECT_ARB 0x8B48 #define GL_SHADER_SOURCE_LENGTH 0x8B88 #define GL_SHADER_STORAGE_BARRIER_BIT 0x00002000 #define GL_SHADER_STORAGE_BLOCK 0x92E6 #define GL_SHADER_STORAGE_BUFFER 0x90D2 #define GL_SHADER_STORAGE_BUFFER_BINDING 0x90D3 #define GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT 0x90DF #define GL_SHADER_STORAGE_BUFFER_SIZE 0x90D5 #define GL_SHADER_STORAGE_BUFFER_START 0x90D4 #define GL_SHADER_TYPE 0x8B4F #define GL_SHADE_MODEL 0x0B54 #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #define GL_SHADING_LANGUAGE_VERSION_ARB 0x8B8C #define GL_SHININESS 0x1601 #define GL_SHORT 0x1402 #define GL_SIGNALED 0x9119 #define GL_SIGNED_NORMALIZED 0x8F9C #define GL_SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST 0x82AC #define GL_SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE 0x82AE #define GL_SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST 0x82AD #define GL_SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE 0x82AF #define GL_SINGLE_COLOR 0x81F9 #define GL_SLUMINANCE 0x8C46 #define GL_SLUMINANCE8 0x8C47 #define GL_SLUMINANCE8_ALPHA8 0x8C45 #define GL_SLUMINANCE_ALPHA 0x8C44 #define GL_SMOOTH 0x1D01 #define GL_SMOOTH_LINE_WIDTH_GRANULARITY 0x0B23 #define GL_SMOOTH_LINE_WIDTH_RANGE 0x0B22 #define GL_SMOOTH_POINT_SIZE_GRANULARITY 0x0B13 #define GL_SMOOTH_POINT_SIZE_RANGE 0x0B12 #define GL_SOFTLIGHT_KHR 0x929C #define GL_SOURCE0_ALPHA 0x8588 #define GL_SOURCE0_ALPHA_ARB 0x8588 #define GL_SOURCE0_RGB 0x8580 #define GL_SOURCE0_RGB_ARB 0x8580 #define GL_SOURCE1_ALPHA 0x8589 #define GL_SOURCE1_ALPHA_ARB 0x8589 #define GL_SOURCE1_RGB 0x8581 #define GL_SOURCE1_RGB_ARB 0x8581 #define GL_SOURCE2_ALPHA 0x858A #define GL_SOURCE2_ALPHA_ARB 0x858A #define GL_SOURCE2_RGB 0x8582 #define GL_SOURCE2_RGB_ARB 0x8582 #define GL_SPARSE_BUFFER_PAGE_SIZE_ARB 0x82F8 #define GL_SPARSE_STORAGE_BIT_ARB 0x0400 #define GL_SPARSE_TEXTURE_FULL_ARRAY_CUBE_MIPMAPS_ARB 0x91A9 #define GL_SPECULAR 0x1202 #define GL_SPHERE_MAP 0x2402 #define GL_SPIR_V_BINARY 0x9552 #define GL_SPIR_V_BINARY_ARB 0x9552 #define GL_SPIR_V_EXTENSIONS 0x9553 #define GL_SPOT_CUTOFF 0x1206 #define GL_SPOT_DIRECTION 0x1204 #define GL_SPOT_EXPONENT 0x1205 #define GL_SRC0_ALPHA 0x8588 #define GL_SRC0_RGB 0x8580 #define GL_SRC1_ALPHA 0x8589 #define GL_SRC1_COLOR 0x88F9 #define GL_SRC1_RGB 0x8581 #define GL_SRC2_ALPHA 0x858A #define GL_SRC2_RGB 0x8582 #define GL_SRC_ALPHA 0x0302 #define GL_SRC_ALPHA_SATURATE 0x0308 #define GL_SRC_COLOR 0x0300 #define GL_SRGB 0x8C40 #define GL_SRGB8 0x8C41 #define GL_SRGB8_ALPHA8 0x8C43 #define GL_SRGB_ALPHA 0x8C42 #define GL_SRGB_DECODE_ARB 0x8299 #define GL_SRGB_READ 0x8297 #define GL_SRGB_WRITE 0x8298 #define GL_STACK_OVERFLOW 0x0503 #define GL_STACK_UNDERFLOW 0x0504 #define GL_STATIC_COPY 0x88E6 #define GL_STATIC_COPY_ARB 0x88E6 #define GL_STATIC_DRAW 0x88E4 #define GL_STATIC_DRAW_ARB 0x88E4 #define GL_STATIC_READ 0x88E5 #define GL_STATIC_READ_ARB 0x88E5 #define GL_STENCIL 0x1802 #define GL_STENCIL_ATTACHMENT 0x8D20 #define GL_STENCIL_BACK_FAIL 0x8801 #define GL_STENCIL_BACK_FUNC 0x8800 #define GL_STENCIL_BACK_PASS_DEPTH_FAIL 0x8802 #define GL_STENCIL_BACK_PASS_DEPTH_PASS 0x8803 #define GL_STENCIL_BACK_REF 0x8CA3 #define GL_STENCIL_BACK_VALUE_MASK 0x8CA4 #define GL_STENCIL_BACK_WRITEMASK 0x8CA5 #define GL_STENCIL_BITS 0x0D57 #define GL_STENCIL_BUFFER_BIT 0x00000400 #define GL_STENCIL_CLEAR_VALUE 0x0B91 #define GL_STENCIL_COMPONENTS 0x8285 #define GL_STENCIL_FAIL 0x0B94 #define GL_STENCIL_FUNC 0x0B92 #define GL_STENCIL_INDEX 0x1901 #define GL_STENCIL_INDEX1 0x8D46 #define GL_STENCIL_INDEX16 0x8D49 #define GL_STENCIL_INDEX4 0x8D47 #define GL_STENCIL_INDEX8 0x8D48 #define GL_STENCIL_PASS_DEPTH_FAIL 0x0B95 #define GL_STENCIL_PASS_DEPTH_PASS 0x0B96 #define GL_STENCIL_REF 0x0B97 #define GL_STENCIL_RENDERABLE 0x8288 #define GL_STENCIL_TEST 0x0B90 #define GL_STENCIL_VALUE_MASK 0x0B93 #define GL_STENCIL_WRITEMASK 0x0B98 #define GL_STEREO 0x0C33 #define GL_STREAM_COPY 0x88E2 #define GL_STREAM_COPY_ARB 0x88E2 #define GL_STREAM_DRAW 0x88E0 #define GL_STREAM_DRAW_ARB 0x88E0 #define GL_STREAM_READ 0x88E1 #define GL_STREAM_READ_ARB 0x88E1 #define GL_SUBGROUP_FEATURE_ARITHMETIC_BIT_KHR 0x00000004 #define GL_SUBGROUP_FEATURE_BALLOT_BIT_KHR 0x00000008 #define GL_SUBGROUP_FEATURE_BASIC_BIT_KHR 0x00000001 #define GL_SUBGROUP_FEATURE_CLUSTERED_BIT_KHR 0x00000040 #define GL_SUBGROUP_FEATURE_QUAD_BIT_KHR 0x00000080 #define GL_SUBGROUP_FEATURE_SHUFFLE_BIT_KHR 0x00000010 #define GL_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT_KHR 0x00000020 #define GL_SUBGROUP_FEATURE_VOTE_BIT_KHR 0x00000002 #define GL_SUBGROUP_QUAD_ALL_STAGES_KHR 0x9535 #define GL_SUBGROUP_SIZE_KHR 0x9532 #define GL_SUBGROUP_SUPPORTED_FEATURES_KHR 0x9534 #define GL_SUBGROUP_SUPPORTED_STAGES_KHR 0x9533 #define GL_SUBPIXEL_BITS 0x0D50 #define GL_SUBTRACT 0x84E7 #define GL_SUBTRACT_ARB 0x84E7 #define GL_SYNC_CL_EVENT_ARB 0x8240 #define GL_SYNC_CL_EVENT_COMPLETE_ARB 0x8241 #define GL_SYNC_CONDITION 0x9113 #define GL_SYNC_FENCE 0x9116 #define GL_SYNC_FLAGS 0x9115 #define GL_SYNC_FLUSH_COMMANDS_BIT 0x00000001 #define GL_SYNC_GPU_COMMANDS_COMPLETE 0x9117 #define GL_SYNC_STATUS 0x9114 #define GL_T 0x2001 #define GL_T2F_C3F_V3F 0x2A2A #define GL_T2F_C4F_N3F_V3F 0x2A2C #define GL_T2F_C4UB_V3F 0x2A29 #define GL_T2F_N3F_V3F 0x2A2B #define GL_T2F_V3F 0x2A27 #define GL_T4F_C4F_N3F_V4F 0x2A2D #define GL_T4F_V4F 0x2A28 #define GL_TABLE_TOO_LARGE 0x8031 #define GL_TESS_CONTROL_OUTPUT_VERTICES 0x8E75 #define GL_TESS_CONTROL_SHADER 0x8E88 #define GL_TESS_CONTROL_SHADER_BIT 0x00000008 #define GL_TESS_CONTROL_SHADER_PATCHES 0x82F1 #define GL_TESS_CONTROL_SHADER_PATCHES_ARB 0x82F1 #define GL_TESS_CONTROL_SUBROUTINE 0x92E9 #define GL_TESS_CONTROL_SUBROUTINE_UNIFORM 0x92EF #define GL_TESS_CONTROL_TEXTURE 0x829C #define GL_TESS_EVALUATION_SHADER 0x8E87 #define GL_TESS_EVALUATION_SHADER_BIT 0x00000010 #define GL_TESS_EVALUATION_SHADER_INVOCATIONS 0x82F2 #define GL_TESS_EVALUATION_SHADER_INVOCATIONS_ARB 0x82F2 #define GL_TESS_EVALUATION_SUBROUTINE 0x92EA #define GL_TESS_EVALUATION_SUBROUTINE_UNIFORM 0x92F0 #define GL_TESS_EVALUATION_TEXTURE 0x829D #define GL_TESS_GEN_MODE 0x8E76 #define GL_TESS_GEN_POINT_MODE 0x8E79 #define GL_TESS_GEN_SPACING 0x8E77 #define GL_TESS_GEN_VERTEX_ORDER 0x8E78 #define GL_TEXTURE 0x1702 #define GL_TEXTURE0 0x84C0 #define GL_TEXTURE0_ARB 0x84C0 #define GL_TEXTURE1 0x84C1 #define GL_TEXTURE10 0x84CA #define GL_TEXTURE10_ARB 0x84CA #define GL_TEXTURE11 0x84CB #define GL_TEXTURE11_ARB 0x84CB #define GL_TEXTURE12 0x84CC #define GL_TEXTURE12_ARB 0x84CC #define GL_TEXTURE13 0x84CD #define GL_TEXTURE13_ARB 0x84CD #define GL_TEXTURE14 0x84CE #define GL_TEXTURE14_ARB 0x84CE #define GL_TEXTURE15 0x84CF #define GL_TEXTURE15_ARB 0x84CF #define GL_TEXTURE16 0x84D0 #define GL_TEXTURE16_ARB 0x84D0 #define GL_TEXTURE17 0x84D1 #define GL_TEXTURE17_ARB 0x84D1 #define GL_TEXTURE18 0x84D2 #define GL_TEXTURE18_ARB 0x84D2 #define GL_TEXTURE19 0x84D3 #define GL_TEXTURE19_ARB 0x84D3 #define GL_TEXTURE1_ARB 0x84C1 #define GL_TEXTURE2 0x84C2 #define GL_TEXTURE20 0x84D4 #define GL_TEXTURE20_ARB 0x84D4 #define GL_TEXTURE21 0x84D5 #define GL_TEXTURE21_ARB 0x84D5 #define GL_TEXTURE22 0x84D6 #define GL_TEXTURE22_ARB 0x84D6 #define GL_TEXTURE23 0x84D7 #define GL_TEXTURE23_ARB 0x84D7 #define GL_TEXTURE24 0x84D8 #define GL_TEXTURE24_ARB 0x84D8 #define GL_TEXTURE25 0x84D9 #define GL_TEXTURE25_ARB 0x84D9 #define GL_TEXTURE26 0x84DA #define GL_TEXTURE26_ARB 0x84DA #define GL_TEXTURE27 0x84DB #define GL_TEXTURE27_ARB 0x84DB #define GL_TEXTURE28 0x84DC #define GL_TEXTURE28_ARB 0x84DC #define GL_TEXTURE29 0x84DD #define GL_TEXTURE29_ARB 0x84DD #define GL_TEXTURE2_ARB 0x84C2 #define GL_TEXTURE3 0x84C3 #define GL_TEXTURE30 0x84DE #define GL_TEXTURE30_ARB 0x84DE #define GL_TEXTURE31 0x84DF #define GL_TEXTURE31_ARB 0x84DF #define GL_TEXTURE3_ARB 0x84C3 #define GL_TEXTURE4 0x84C4 #define GL_TEXTURE4_ARB 0x84C4 #define GL_TEXTURE5 0x84C5 #define GL_TEXTURE5_ARB 0x84C5 #define GL_TEXTURE6 0x84C6 #define GL_TEXTURE6_ARB 0x84C6 #define GL_TEXTURE7 0x84C7 #define GL_TEXTURE7_ARB 0x84C7 #define GL_TEXTURE8 0x84C8 #define GL_TEXTURE8_ARB 0x84C8 #define GL_TEXTURE9 0x84C9 #define GL_TEXTURE9_ARB 0x84C9 #define GL_TEXTURE_1D 0x0DE0 #define GL_TEXTURE_1D_ARRAY 0x8C18 #define GL_TEXTURE_2D 0x0DE1 #define GL_TEXTURE_2D_ARRAY 0x8C1A #define GL_TEXTURE_2D_MULTISAMPLE 0x9100 #define GL_TEXTURE_2D_MULTISAMPLE_ARRAY 0x9102 #define GL_TEXTURE_3D 0x806F #define GL_TEXTURE_ALPHA_SIZE 0x805F #define GL_TEXTURE_ALPHA_TYPE 0x8C13 #define GL_TEXTURE_ALPHA_TYPE_ARB 0x8C13 #define GL_TEXTURE_BASE_LEVEL 0x813C #define GL_TEXTURE_BINDING_1D 0x8068 #define GL_TEXTURE_BINDING_1D_ARRAY 0x8C1C #define GL_TEXTURE_BINDING_2D 0x8069 #define GL_TEXTURE_BINDING_2D_ARRAY 0x8C1D #define GL_TEXTURE_BINDING_2D_MULTISAMPLE 0x9104 #define GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY 0x9105 #define GL_TEXTURE_BINDING_3D 0x806A #define GL_TEXTURE_BINDING_BUFFER 0x8C2C #define GL_TEXTURE_BINDING_BUFFER_ARB 0x8C2C #define GL_TEXTURE_BINDING_CUBE_MAP 0x8514 #define GL_TEXTURE_BINDING_CUBE_MAP_ARB 0x8514 #define GL_TEXTURE_BINDING_CUBE_MAP_ARRAY 0x900A #define GL_TEXTURE_BINDING_CUBE_MAP_ARRAY_ARB 0x900A #define GL_TEXTURE_BINDING_RECTANGLE 0x84F6 #define GL_TEXTURE_BINDING_RECTANGLE_ARB 0x84F6 #define GL_TEXTURE_BIT 0x00040000 #define GL_TEXTURE_BLUE_SIZE 0x805E #define GL_TEXTURE_BLUE_TYPE 0x8C12 #define GL_TEXTURE_BLUE_TYPE_ARB 0x8C12 #define GL_TEXTURE_BORDER 0x1005 #define GL_TEXTURE_BORDER_COLOR 0x1004 #define GL_TEXTURE_BUFFER 0x8C2A #define GL_TEXTURE_BUFFER_ARB 0x8C2A #define GL_TEXTURE_BUFFER_DATA_STORE_BINDING 0x8C2D #define GL_TEXTURE_BUFFER_DATA_STORE_BINDING_ARB 0x8C2D #define GL_TEXTURE_BUFFER_FORMAT_ARB 0x8C2E #define GL_TEXTURE_BUFFER_OFFSET 0x919D #define GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT 0x919F #define GL_TEXTURE_BUFFER_SIZE 0x919E #define GL_TEXTURE_COMPARE_FAIL_VALUE_ARB 0x80BF #define GL_TEXTURE_COMPARE_FUNC 0x884D #define GL_TEXTURE_COMPARE_FUNC_ARB 0x884D #define GL_TEXTURE_COMPARE_MODE 0x884C #define GL_TEXTURE_COMPARE_MODE_ARB 0x884C #define GL_TEXTURE_COMPONENTS 0x1003 #define GL_TEXTURE_COMPRESSED 0x86A1 #define GL_TEXTURE_COMPRESSED_ARB 0x86A1 #define GL_TEXTURE_COMPRESSED_BLOCK_HEIGHT 0x82B2 #define GL_TEXTURE_COMPRESSED_BLOCK_SIZE 0x82B3 #define GL_TEXTURE_COMPRESSED_BLOCK_WIDTH 0x82B1 #define GL_TEXTURE_COMPRESSED_IMAGE_SIZE 0x86A0 #define GL_TEXTURE_COMPRESSED_IMAGE_SIZE_ARB 0x86A0 #define GL_TEXTURE_COMPRESSION_HINT 0x84EF #define GL_TEXTURE_COMPRESSION_HINT_ARB 0x84EF #define GL_TEXTURE_COORD_ARRAY 0x8078 #define GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING 0x889A #define GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB 0x889A #define GL_TEXTURE_COORD_ARRAY_POINTER 0x8092 #define GL_TEXTURE_COORD_ARRAY_SIZE 0x8088 #define GL_TEXTURE_COORD_ARRAY_STRIDE 0x808A #define GL_TEXTURE_COORD_ARRAY_TYPE 0x8089 #define GL_TEXTURE_CUBE_MAP 0x8513 #define GL_TEXTURE_CUBE_MAP_ARB 0x8513 #define GL_TEXTURE_CUBE_MAP_ARRAY 0x9009 #define GL_TEXTURE_CUBE_MAP_ARRAY_ARB 0x9009 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_X 0x8516 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB 0x8516 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Y 0x8518 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB 0x8518 #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Z 0x851A #define GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB 0x851A #define GL_TEXTURE_CUBE_MAP_POSITIVE_X 0x8515 #define GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB 0x8515 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Y 0x8517 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB 0x8517 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Z 0x8519 #define GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB 0x8519 #define GL_TEXTURE_CUBE_MAP_SEAMLESS 0x884F #define GL_TEXTURE_DEPTH 0x8071 #define GL_TEXTURE_DEPTH_SIZE 0x884A #define GL_TEXTURE_DEPTH_SIZE_ARB 0x884A #define GL_TEXTURE_DEPTH_TYPE 0x8C16 #define GL_TEXTURE_DEPTH_TYPE_ARB 0x8C16 #define GL_TEXTURE_ENV 0x2300 #define GL_TEXTURE_ENV_COLOR 0x2201 #define GL_TEXTURE_ENV_MODE 0x2200 #define GL_TEXTURE_FETCH_BARRIER_BIT 0x00000008 #define GL_TEXTURE_FILTER_CONTROL 0x8500 #define GL_TEXTURE_FIXED_SAMPLE_LOCATIONS 0x9107 #define GL_TEXTURE_GATHER 0x82A2 #define GL_TEXTURE_GATHER_SHADOW 0x82A3 #define GL_TEXTURE_GEN_MODE 0x2500 #define GL_TEXTURE_GEN_Q 0x0C63 #define GL_TEXTURE_GEN_R 0x0C62 #define GL_TEXTURE_GEN_S 0x0C60 #define GL_TEXTURE_GEN_T 0x0C61 #define GL_TEXTURE_GREEN_SIZE 0x805D #define GL_TEXTURE_GREEN_TYPE 0x8C11 #define GL_TEXTURE_GREEN_TYPE_ARB 0x8C11 #define GL_TEXTURE_HEIGHT 0x1001 #define GL_TEXTURE_IMAGE_FORMAT 0x828F #define GL_TEXTURE_IMAGE_TYPE 0x8290 #define GL_TEXTURE_IMMUTABLE_FORMAT 0x912F #define GL_TEXTURE_IMMUTABLE_LEVELS 0x82DF #define GL_TEXTURE_INTENSITY_SIZE 0x8061 #define GL_TEXTURE_INTENSITY_TYPE 0x8C15 #define GL_TEXTURE_INTENSITY_TYPE_ARB 0x8C15 #define GL_TEXTURE_INTERNAL_FORMAT 0x1003 #define GL_TEXTURE_LOD_BIAS 0x8501 #define GL_TEXTURE_LUMINANCE_SIZE 0x8060 #define GL_TEXTURE_LUMINANCE_TYPE 0x8C14 #define GL_TEXTURE_LUMINANCE_TYPE_ARB 0x8C14 #define GL_TEXTURE_MAG_FILTER 0x2800 #define GL_TEXTURE_MATRIX 0x0BA8 #define GL_TEXTURE_MAX_ANISOTROPY 0x84FE #define GL_TEXTURE_MAX_LEVEL 0x813D #define GL_TEXTURE_MAX_LOD 0x813B #define GL_TEXTURE_MIN_FILTER 0x2801 #define GL_TEXTURE_MIN_LOD 0x813A #define GL_TEXTURE_PRIORITY 0x8066 #define GL_TEXTURE_RECTANGLE 0x84F5 #define GL_TEXTURE_RECTANGLE_ARB 0x84F5 #define GL_TEXTURE_REDUCTION_MODE_ARB 0x9366 #define GL_TEXTURE_RED_SIZE 0x805C #define GL_TEXTURE_RED_TYPE 0x8C10 #define GL_TEXTURE_RED_TYPE_ARB 0x8C10 #define GL_TEXTURE_RESIDENT 0x8067 #define GL_TEXTURE_SAMPLES 0x9106 #define GL_TEXTURE_SHADOW 0x82A1 #define GL_TEXTURE_SHARED_SIZE 0x8C3F #define GL_TEXTURE_SPARSE_ARB 0x91A6 #define GL_TEXTURE_STACK_DEPTH 0x0BA5 #define GL_TEXTURE_STENCIL_SIZE 0x88F1 #define GL_TEXTURE_SWIZZLE_A 0x8E45 #define GL_TEXTURE_SWIZZLE_B 0x8E44 #define GL_TEXTURE_SWIZZLE_G 0x8E43 #define GL_TEXTURE_SWIZZLE_R 0x8E42 #define GL_TEXTURE_SWIZZLE_RGBA 0x8E46 #define GL_TEXTURE_TARGET 0x1006 #define GL_TEXTURE_UPDATE_BARRIER_BIT 0x00000100 #define GL_TEXTURE_VIEW 0x82B5 #define GL_TEXTURE_VIEW_MIN_LAYER 0x82DD #define GL_TEXTURE_VIEW_MIN_LEVEL 0x82DB #define GL_TEXTURE_VIEW_NUM_LAYERS 0x82DE #define GL_TEXTURE_VIEW_NUM_LEVELS 0x82DC #define GL_TEXTURE_WIDTH 0x1000 #define GL_TEXTURE_WRAP_R 0x8072 #define GL_TEXTURE_WRAP_S 0x2802 #define GL_TEXTURE_WRAP_T 0x2803 #define GL_TIMEOUT_EXPIRED 0x911B #define GL_TIMEOUT_IGNORED 0xFFFFFFFFFFFFFFFF #define GL_TIMESTAMP 0x8E28 #define GL_TIME_ELAPSED 0x88BF #define GL_TOP_LEVEL_ARRAY_SIZE 0x930C #define GL_TOP_LEVEL_ARRAY_STRIDE 0x930D #define GL_TRANSFORM_BIT 0x00001000 #define GL_TRANSFORM_FEEDBACK 0x8E22 #define GL_TRANSFORM_FEEDBACK_BARRIER_BIT 0x00000800 #define GL_TRANSFORM_FEEDBACK_BINDING 0x8E25 #define GL_TRANSFORM_FEEDBACK_BUFFER 0x8C8E #define GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE 0x8E24 #define GL_TRANSFORM_FEEDBACK_BUFFER_BINDING 0x8C8F #define GL_TRANSFORM_FEEDBACK_BUFFER_INDEX 0x934B #define GL_TRANSFORM_FEEDBACK_BUFFER_MODE 0x8C7F #define GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED 0x8E23 #define GL_TRANSFORM_FEEDBACK_BUFFER_SIZE 0x8C85 #define GL_TRANSFORM_FEEDBACK_BUFFER_START 0x8C84 #define GL_TRANSFORM_FEEDBACK_BUFFER_STRIDE 0x934C #define GL_TRANSFORM_FEEDBACK_OVERFLOW 0x82EC #define GL_TRANSFORM_FEEDBACK_OVERFLOW_ARB 0x82EC #define GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN 0x8C88 #define GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW 0x82ED #define GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW_ARB 0x82ED #define GL_TRANSFORM_FEEDBACK_VARYING 0x92F4 #define GL_TRANSFORM_FEEDBACK_VARYINGS 0x8C83 #define GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH 0x8C76 #define GL_TRANSPOSE_COLOR_MATRIX 0x84E6 #define GL_TRANSPOSE_COLOR_MATRIX_ARB 0x84E6 #define GL_TRANSPOSE_CURRENT_MATRIX_ARB 0x88B7 #define GL_TRANSPOSE_MODELVIEW_MATRIX 0x84E3 #define GL_TRANSPOSE_MODELVIEW_MATRIX_ARB 0x84E3 #define GL_TRANSPOSE_PROJECTION_MATRIX 0x84E4 #define GL_TRANSPOSE_PROJECTION_MATRIX_ARB 0x84E4 #define GL_TRANSPOSE_TEXTURE_MATRIX 0x84E5 #define GL_TRANSPOSE_TEXTURE_MATRIX_ARB 0x84E5 #define GL_TRIANGLES 0x0004 #define GL_TRIANGLES_ADJACENCY 0x000C #define GL_TRIANGLES_ADJACENCY_ARB 0x000C #define GL_TRIANGLE_FAN 0x0006 #define GL_TRIANGLE_STRIP 0x0005 #define GL_TRIANGLE_STRIP_ADJACENCY 0x000D #define GL_TRIANGLE_STRIP_ADJACENCY_ARB 0x000D #define GL_TRUE 1 #define GL_TYPE 0x92FA #define GL_UNDEFINED_VERTEX 0x8260 #define GL_UNIFORM 0x92E1 #define GL_UNIFORM_ARRAY_STRIDE 0x8A3C #define GL_UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX 0x92DA #define GL_UNIFORM_BARRIER_BIT 0x00000004 #define GL_UNIFORM_BLOCK 0x92E2 #define GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS 0x8A42 #define GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES 0x8A43 #define GL_UNIFORM_BLOCK_BINDING 0x8A3F #define GL_UNIFORM_BLOCK_DATA_SIZE 0x8A40 #define GL_UNIFORM_BLOCK_INDEX 0x8A3A #define GL_UNIFORM_BLOCK_NAME_LENGTH 0x8A41 #define GL_UNIFORM_BLOCK_REFERENCED_BY_COMPUTE_SHADER 0x90EC #define GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER 0x8A46 #define GL_UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER 0x8A45 #define GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_CONTROL_SHADER 0x84F0 #define GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER 0x84F1 #define GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER 0x8A44 #define GL_UNIFORM_BUFFER 0x8A11 #define GL_UNIFORM_BUFFER_BINDING 0x8A28 #define GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT 0x8A34 #define GL_UNIFORM_BUFFER_SIZE 0x8A2A #define GL_UNIFORM_BUFFER_START 0x8A29 #define GL_UNIFORM_IS_ROW_MAJOR 0x8A3E #define GL_UNIFORM_MATRIX_STRIDE 0x8A3D #define GL_UNIFORM_NAME_LENGTH 0x8A39 #define GL_UNIFORM_OFFSET 0x8A3B #define GL_UNIFORM_SIZE 0x8A38 #define GL_UNIFORM_TYPE 0x8A37 #define GL_UNKNOWN_CONTEXT_RESET 0x8255 #define GL_UNKNOWN_CONTEXT_RESET_ARB 0x8255 #define GL_UNPACK_ALIGNMENT 0x0CF5 #define GL_UNPACK_COMPRESSED_BLOCK_DEPTH 0x9129 #define GL_UNPACK_COMPRESSED_BLOCK_HEIGHT 0x9128 #define GL_UNPACK_COMPRESSED_BLOCK_SIZE 0x912A #define GL_UNPACK_COMPRESSED_BLOCK_WIDTH 0x9127 #define GL_UNPACK_IMAGE_HEIGHT 0x806E #define GL_UNPACK_LSB_FIRST 0x0CF1 #define GL_UNPACK_ROW_LENGTH 0x0CF2 #define GL_UNPACK_SKIP_IMAGES 0x806D #define GL_UNPACK_SKIP_PIXELS 0x0CF4 #define GL_UNPACK_SKIP_ROWS 0x0CF3 #define GL_UNPACK_SWAP_BYTES 0x0CF0 #define GL_UNSIGNALED 0x9118 #define GL_UNSIGNED_BYTE 0x1401 #define GL_UNSIGNED_BYTE_2_3_3_REV 0x8362 #define GL_UNSIGNED_BYTE_3_3_2 0x8032 #define GL_UNSIGNED_INT 0x1405 #define GL_UNSIGNED_INT64_ARB 0x140F #define GL_UNSIGNED_INT64_VEC2_ARB 0x8FF5 #define GL_UNSIGNED_INT64_VEC3_ARB 0x8FF6 #define GL_UNSIGNED_INT64_VEC4_ARB 0x8FF7 #define GL_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B #define GL_UNSIGNED_INT_10_10_10_2 0x8036 #define GL_UNSIGNED_INT_24_8 0x84FA #define GL_UNSIGNED_INT_2_10_10_10_REV 0x8368 #define GL_UNSIGNED_INT_5_9_9_9_REV 0x8C3E #define GL_UNSIGNED_INT_8_8_8_8 0x8035 #define GL_UNSIGNED_INT_8_8_8_8_REV 0x8367 #define GL_UNSIGNED_INT_ATOMIC_COUNTER 0x92DB #define GL_UNSIGNED_INT_IMAGE_1D 0x9062 #define GL_UNSIGNED_INT_IMAGE_1D_ARRAY 0x9068 #define GL_UNSIGNED_INT_IMAGE_2D 0x9063 #define GL_UNSIGNED_INT_IMAGE_2D_ARRAY 0x9069 #define GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE 0x906B #define GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY 0x906C #define GL_UNSIGNED_INT_IMAGE_2D_RECT 0x9065 #define GL_UNSIGNED_INT_IMAGE_3D 0x9064 #define GL_UNSIGNED_INT_IMAGE_BUFFER 0x9067 #define GL_UNSIGNED_INT_IMAGE_CUBE 0x9066 #define GL_UNSIGNED_INT_IMAGE_CUBE_MAP_ARRAY 0x906A #define GL_UNSIGNED_INT_SAMPLER_1D 0x8DD1 #define GL_UNSIGNED_INT_SAMPLER_1D_ARRAY 0x8DD6 #define GL_UNSIGNED_INT_SAMPLER_2D 0x8DD2 #define GL_UNSIGNED_INT_SAMPLER_2D_ARRAY 0x8DD7 #define GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE 0x910A #define GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY 0x910D #define GL_UNSIGNED_INT_SAMPLER_2D_RECT 0x8DD5 #define GL_UNSIGNED_INT_SAMPLER_3D 0x8DD3 #define GL_UNSIGNED_INT_SAMPLER_BUFFER 0x8DD8 #define GL_UNSIGNED_INT_SAMPLER_CUBE 0x8DD4 #define GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY_ARB 0x900F #define GL_UNSIGNED_INT_VEC2 0x8DC6 #define GL_UNSIGNED_INT_VEC3 0x8DC7 #define GL_UNSIGNED_INT_VEC4 0x8DC8 #define GL_UNSIGNED_NORMALIZED 0x8C17 #define GL_UNSIGNED_NORMALIZED_ARB 0x8C17 #define GL_UNSIGNED_SHORT 0x1403 #define GL_UNSIGNED_SHORT_1_5_5_5_REV 0x8366 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #define GL_UNSIGNED_SHORT_4_4_4_4_REV 0x8365 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_6_5_REV 0x8364 #define GL_UPPER_LEFT 0x8CA2 #define GL_V2F 0x2A20 #define GL_V3F 0x2A21 #define GL_VALIDATE_STATUS 0x8B83 #define GL_VENDOR 0x1F00 #define GL_VERSION 0x1F02 #define GL_VERTEX_ARRAY 0x8074 #define GL_VERTEX_ARRAY_BINDING 0x85B5 #define GL_VERTEX_ARRAY_BUFFER_BINDING 0x8896 #define GL_VERTEX_ARRAY_BUFFER_BINDING_ARB 0x8896 #define GL_VERTEX_ARRAY_POINTER 0x808E #define GL_VERTEX_ARRAY_SIZE 0x807A #define GL_VERTEX_ARRAY_STRIDE 0x807C #define GL_VERTEX_ARRAY_TYPE 0x807B #define GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT 0x00000001 #define GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING 0x889F #define GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING_ARB 0x889F #define GL_VERTEX_ATTRIB_ARRAY_DIVISOR 0x88FE #define GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ARB 0x88FE #define GL_VERTEX_ATTRIB_ARRAY_ENABLED 0x8622 #define GL_VERTEX_ATTRIB_ARRAY_ENABLED_ARB 0x8622 #define GL_VERTEX_ATTRIB_ARRAY_INTEGER 0x88FD #define GL_VERTEX_ATTRIB_ARRAY_NORMALIZED 0x886A #define GL_VERTEX_ATTRIB_ARRAY_NORMALIZED_ARB 0x886A #define GL_VERTEX_ATTRIB_ARRAY_POINTER 0x8645 #define GL_VERTEX_ATTRIB_ARRAY_POINTER_ARB 0x8645 #define GL_VERTEX_ATTRIB_ARRAY_SIZE 0x8623 #define GL_VERTEX_ATTRIB_ARRAY_SIZE_ARB 0x8623 #define GL_VERTEX_ATTRIB_ARRAY_STRIDE 0x8624 #define GL_VERTEX_ATTRIB_ARRAY_STRIDE_ARB 0x8624 #define GL_VERTEX_ATTRIB_ARRAY_TYPE 0x8625 #define GL_VERTEX_ATTRIB_ARRAY_TYPE_ARB 0x8625 #define GL_VERTEX_ATTRIB_BINDING 0x82D4 #define GL_VERTEX_ATTRIB_RELATIVE_OFFSET 0x82D5 #define GL_VERTEX_BINDING_DIVISOR 0x82D6 #define GL_VERTEX_BINDING_OFFSET 0x82D7 #define GL_VERTEX_BINDING_STRIDE 0x82D8 #define GL_VERTEX_BLEND_ARB 0x86A7 #define GL_VERTEX_PROGRAM_ARB 0x8620 #define GL_VERTEX_PROGRAM_POINT_SIZE 0x8642 #define GL_VERTEX_PROGRAM_POINT_SIZE_ARB 0x8642 #define GL_VERTEX_PROGRAM_TWO_SIDE 0x8643 #define GL_VERTEX_PROGRAM_TWO_SIDE_ARB 0x8643 #define GL_VERTEX_SHADER 0x8B31 #define GL_VERTEX_SHADER_ARB 0x8B31 #define GL_VERTEX_SHADER_BIT 0x00000001 #define GL_VERTEX_SHADER_INVOCATIONS 0x82F0 #define GL_VERTEX_SHADER_INVOCATIONS_ARB 0x82F0 #define GL_VERTEX_SUBROUTINE 0x92E8 #define GL_VERTEX_SUBROUTINE_UNIFORM 0x92EE #define GL_VERTEX_TEXTURE 0x829B #define GL_VERTICES_SUBMITTED 0x82EE #define GL_VERTICES_SUBMITTED_ARB 0x82EE #define GL_VIEWPORT 0x0BA2 #define GL_VIEWPORT_BIT 0x00000800 #define GL_VIEWPORT_BOUNDS_RANGE 0x825D #define GL_VIEWPORT_INDEX_PROVOKING_VERTEX 0x825F #define GL_VIEWPORT_SUBPIXEL_BITS 0x825C #define GL_VIEW_CLASS_128_BITS 0x82C4 #define GL_VIEW_CLASS_16_BITS 0x82CA #define GL_VIEW_CLASS_24_BITS 0x82C9 #define GL_VIEW_CLASS_32_BITS 0x82C8 #define GL_VIEW_CLASS_48_BITS 0x82C7 #define GL_VIEW_CLASS_64_BITS 0x82C6 #define GL_VIEW_CLASS_8_BITS 0x82CB #define GL_VIEW_CLASS_96_BITS 0x82C5 #define GL_VIEW_CLASS_ASTC_10x10_RGBA 0x9393 #define GL_VIEW_CLASS_ASTC_10x5_RGBA 0x9390 #define GL_VIEW_CLASS_ASTC_10x6_RGBA 0x9391 #define GL_VIEW_CLASS_ASTC_10x8_RGBA 0x9392 #define GL_VIEW_CLASS_ASTC_12x10_RGBA 0x9394 #define GL_VIEW_CLASS_ASTC_12x12_RGBA 0x9395 #define GL_VIEW_CLASS_ASTC_4x4_RGBA 0x9388 #define GL_VIEW_CLASS_ASTC_5x4_RGBA 0x9389 #define GL_VIEW_CLASS_ASTC_5x5_RGBA 0x938A #define GL_VIEW_CLASS_ASTC_6x5_RGBA 0x938B #define GL_VIEW_CLASS_ASTC_6x6_RGBA 0x938C #define GL_VIEW_CLASS_ASTC_8x5_RGBA 0x938D #define GL_VIEW_CLASS_ASTC_8x6_RGBA 0x938E #define GL_VIEW_CLASS_ASTC_8x8_RGBA 0x938F #define GL_VIEW_CLASS_BPTC_FLOAT 0x82D3 #define GL_VIEW_CLASS_BPTC_UNORM 0x82D2 #define GL_VIEW_CLASS_EAC_R11 0x9383 #define GL_VIEW_CLASS_EAC_RG11 0x9384 #define GL_VIEW_CLASS_ETC2_EAC_RGBA 0x9387 #define GL_VIEW_CLASS_ETC2_RGB 0x9385 #define GL_VIEW_CLASS_ETC2_RGBA 0x9386 #define GL_VIEW_CLASS_RGTC1_RED 0x82D0 #define GL_VIEW_CLASS_RGTC2_RG 0x82D1 #define GL_VIEW_CLASS_S3TC_DXT1_RGB 0x82CC #define GL_VIEW_CLASS_S3TC_DXT1_RGBA 0x82CD #define GL_VIEW_CLASS_S3TC_DXT3_RGBA 0x82CE #define GL_VIEW_CLASS_S3TC_DXT5_RGBA 0x82CF #define GL_VIEW_COMPATIBILITY_CLASS 0x82B6 #define GL_VIRTUAL_PAGE_SIZE_INDEX_ARB 0x91A7 #define GL_VIRTUAL_PAGE_SIZE_X_ARB 0x9195 #define GL_VIRTUAL_PAGE_SIZE_Y_ARB 0x9196 #define GL_VIRTUAL_PAGE_SIZE_Z_ARB 0x9197 #define GL_WAIT_FAILED 0x911D #define GL_WEIGHTED_AVERAGE_ARB 0x9367 #define GL_WEIGHT_ARRAY_ARB 0x86AD #define GL_WEIGHT_ARRAY_BUFFER_BINDING 0x889E #define GL_WEIGHT_ARRAY_BUFFER_BINDING_ARB 0x889E #define GL_WEIGHT_ARRAY_POINTER_ARB 0x86AC #define GL_WEIGHT_ARRAY_SIZE_ARB 0x86AB #define GL_WEIGHT_ARRAY_STRIDE_ARB 0x86AA #define GL_WEIGHT_ARRAY_TYPE_ARB 0x86A9 #define GL_WEIGHT_SUM_UNITY_ARB 0x86A6 #define GL_WRITE_ONLY 0x88B9 #define GL_WRITE_ONLY_ARB 0x88B9 #define GL_XOR 0x1506 #define GL_ZERO 0 #define GL_ZERO_TO_ONE 0x935F #define GL_ZOOM_X 0x0D16 #define GL_ZOOM_Y 0x0D17 #ifndef __khrplatform_h_ #define __khrplatform_h_ /* ** Copyright (c) 2008-2018 The Khronos Group Inc. ** ** Permission is hereby granted, free of charge, to any person obtaining a ** copy of this software and/or associated documentation files (the ** "Materials"), to deal in the Materials without restriction, including ** without limitation the rights to use, copy, modify, merge, publish, ** distribute, sublicense, and/or sell copies of the Materials, and to ** permit persons to whom the Materials are furnished to do so, subject to ** the following conditions: ** ** The above copyright notice and this permission notice shall be included ** in all copies or substantial portions of the Materials. ** ** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. */ /* Khronos platform-specific types and definitions. * * The master copy of khrplatform.h is maintained in the Khronos EGL * Registry repository at https://github.com/KhronosGroup/EGL-Registry * The last semantic modification to khrplatform.h was at commit ID: * 67a3e0864c2d75ea5287b9f3d2eb74a745936692 * * Adopters may modify this file to suit their platform. Adopters are * encouraged to submit platform specific modifications to the Khronos * group so that they can be included in future versions of this file. * Please submit changes by filing pull requests or issues on * the EGL Registry repository linked above. * * * See the Implementer's Guidelines for information about where this file * should be located on your system and for more details of its use: * http://www.khronos.org/registry/implementers_guide.pdf * * This file should be included as * #include * by Khronos client API header files that use its types and defines. * * The types in khrplatform.h should only be used to define API-specific types. * * Types defined in khrplatform.h: * khronos_int8_t signed 8 bit * khronos_uint8_t unsigned 8 bit * khronos_int16_t signed 16 bit * khronos_uint16_t unsigned 16 bit * khronos_int32_t signed 32 bit * khronos_uint32_t unsigned 32 bit * khronos_int64_t signed 64 bit * khronos_uint64_t unsigned 64 bit * khronos_intptr_t signed same number of bits as a pointer * khronos_uintptr_t unsigned same number of bits as a pointer * khronos_ssize_t signed size * khronos_usize_t unsigned size * khronos_float_t signed 32 bit floating point * khronos_time_ns_t unsigned 64 bit time in nanoseconds * khronos_utime_nanoseconds_t unsigned time interval or absolute time in * nanoseconds * khronos_stime_nanoseconds_t signed time interval in nanoseconds * khronos_boolean_enum_t enumerated boolean type. This should * only be used as a base type when a client API's boolean type is * an enum. Client APIs which use an integer or other type for * booleans cannot use this as the base type for their boolean. * * Tokens defined in khrplatform.h: * * KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values. * * KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0. * KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0. * * Calling convention macros defined in this file: * KHRONOS_APICALL * KHRONOS_GLAD_API_PTR * KHRONOS_APIATTRIBUTES * * These may be used in function prototypes as: * * KHRONOS_APICALL void KHRONOS_GLAD_API_PTR funcname( * int arg1, * int arg2) KHRONOS_APIATTRIBUTES; */ #if defined(__SCITECH_SNAP__) && !defined(KHRONOS_STATIC) # define KHRONOS_STATIC 1 #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_APICALL *------------------------------------------------------------------------- * This precedes the return type of the function in the function prototype. */ #if defined(KHRONOS_STATIC) /* If the preprocessor constant KHRONOS_STATIC is defined, make the * header compatible with static linking. */ # define KHRONOS_APICALL #elif defined(_WIN32) # define KHRONOS_APICALL __declspec(dllimport) #elif defined (__SYMBIAN32__) # define KHRONOS_APICALL IMPORT_C #elif defined(__ANDROID__) # define KHRONOS_APICALL __attribute__((visibility("default"))) #else # define KHRONOS_APICALL #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_GLAD_API_PTR *------------------------------------------------------------------------- * This follows the return type of the function and precedes the function * name in the function prototype. */ #if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(KHRONOS_STATIC) /* Win32 but not WinCE */ # define KHRONOS_GLAD_API_PTR __stdcall #else # define KHRONOS_GLAD_API_PTR #endif /*------------------------------------------------------------------------- * Definition of KHRONOS_APIATTRIBUTES *------------------------------------------------------------------------- * This follows the closing parenthesis of the function prototype arguments. */ #if defined (__ARMCC_2__) #define KHRONOS_APIATTRIBUTES __softfp #else #define KHRONOS_APIATTRIBUTES #endif /*------------------------------------------------------------------------- * basic type definitions *-----------------------------------------------------------------------*/ #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__) /* * Using */ #include typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(__VMS ) || defined(__sgi) /* * Using */ #include typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(_WIN32) && !defined(__SCITECH_SNAP__) /* * Win32 */ typedef __int32 khronos_int32_t; typedef unsigned __int32 khronos_uint32_t; typedef __int64 khronos_int64_t; typedef unsigned __int64 khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif defined(__sun__) || defined(__digital__) /* * Sun or Digital */ typedef int khronos_int32_t; typedef unsigned int khronos_uint32_t; #if defined(__arch64__) || defined(_LP64) typedef long int khronos_int64_t; typedef unsigned long int khronos_uint64_t; #else typedef long long int khronos_int64_t; typedef unsigned long long int khronos_uint64_t; #endif /* __arch64__ */ #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #elif 0 /* * Hypothetical platform with no float or int64 support */ typedef int khronos_int32_t; typedef unsigned int khronos_uint32_t; #define KHRONOS_SUPPORT_INT64 0 #define KHRONOS_SUPPORT_FLOAT 0 #else /* * Generic fallback */ #include typedef int32_t khronos_int32_t; typedef uint32_t khronos_uint32_t; typedef int64_t khronos_int64_t; typedef uint64_t khronos_uint64_t; #define KHRONOS_SUPPORT_INT64 1 #define KHRONOS_SUPPORT_FLOAT 1 #endif /* * Types that are (so far) the same on all platforms */ typedef signed char khronos_int8_t; typedef unsigned char khronos_uint8_t; typedef signed short int khronos_int16_t; typedef unsigned short int khronos_uint16_t; /* * Types that differ between LLP64 and LP64 architectures - in LLP64, * pointers are 64 bits, but 'long' is still 32 bits. Win64 appears * to be the only LLP64 architecture in current use. */ #ifdef _WIN64 typedef signed long long int khronos_intptr_t; typedef unsigned long long int khronos_uintptr_t; typedef signed long long int khronos_ssize_t; typedef unsigned long long int khronos_usize_t; #else typedef signed long int khronos_intptr_t; typedef unsigned long int khronos_uintptr_t; typedef signed long int khronos_ssize_t; typedef unsigned long int khronos_usize_t; #endif #if KHRONOS_SUPPORT_FLOAT /* * Float type */ typedef float khronos_float_t; #endif #if KHRONOS_SUPPORT_INT64 /* Time types * * These types can be used to represent a time interval in nanoseconds or * an absolute Unadjusted System Time. Unadjusted System Time is the number * of nanoseconds since some arbitrary system event (e.g. since the last * time the system booted). The Unadjusted System Time is an unsigned * 64 bit value that wraps back to 0 every 584 years. Time intervals * may be either signed or unsigned. */ typedef khronos_uint64_t khronos_utime_nanoseconds_t; typedef khronos_int64_t khronos_stime_nanoseconds_t; #endif /* * Dummy value used to pad enum types to 32 bits. */ #ifndef KHRONOS_MAX_ENUM #define KHRONOS_MAX_ENUM 0x7FFFFFFF #endif /* * Enumerated boolean type * * Values other than zero should be considered to be true. Therefore * comparisons should not be made against KHRONOS_TRUE. */ typedef enum { KHRONOS_FALSE = 0, KHRONOS_TRUE = 1, KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM } khronos_boolean_enum_t; #endif /* __khrplatform_h_ */ typedef unsigned int GLenum; typedef unsigned char GLboolean; typedef unsigned int GLbitfield; typedef void GLvoid; typedef khronos_int8_t GLbyte; typedef khronos_uint8_t GLubyte; typedef khronos_int16_t GLshort; typedef khronos_uint16_t GLushort; typedef int GLint; typedef unsigned int GLuint; typedef khronos_int32_t GLclampx; typedef int GLsizei; typedef khronos_float_t GLfloat; typedef khronos_float_t GLclampf; typedef double GLdouble; typedef double GLclampd; typedef void *GLeglClientBufferEXT; typedef void *GLeglImageOES; typedef char GLchar; typedef char GLcharARB; #ifdef __APPLE__ typedef void *GLhandleARB; #else typedef unsigned int GLhandleARB; #endif typedef khronos_uint16_t GLhalf; typedef khronos_uint16_t GLhalfARB; typedef khronos_int32_t GLfixed; #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_intptr_t GLintptr; #else typedef khronos_intptr_t GLintptr; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_intptr_t GLintptrARB; #else typedef khronos_intptr_t GLintptrARB; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_ssize_t GLsizeiptr; #else typedef khronos_ssize_t GLsizeiptr; #endif #if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) && (__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ > 1060) typedef khronos_ssize_t GLsizeiptrARB; #else typedef khronos_ssize_t GLsizeiptrARB; #endif typedef khronos_int64_t GLint64; typedef khronos_int64_t GLint64EXT; typedef khronos_uint64_t GLuint64; typedef khronos_uint64_t GLuint64EXT; typedef struct __GLsync *GLsync; struct _cl_context; struct _cl_event; typedef void (GLAD_API_PTR *GLDEBUGPROC)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (GLAD_API_PTR *GLDEBUGPROCARB)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (GLAD_API_PTR *GLDEBUGPROCKHR)(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,const void *userParam); typedef void (GLAD_API_PTR *GLDEBUGPROCAMD)(GLuint id,GLenum category,GLenum severity,GLsizei length,const GLchar *message,void *userParam); typedef unsigned short GLhalfNV; typedef GLintptr GLvdpauSurfaceNV; typedef void (GLAD_API_PTR *GLVULKANPROCNV)(void); #define GL_VERSION_1_0 1 GLAD_API_CALL int GLAD_GL_VERSION_1_0; #define GL_VERSION_1_1 1 GLAD_API_CALL int GLAD_GL_VERSION_1_1; #define GL_VERSION_1_2 1 GLAD_API_CALL int GLAD_GL_VERSION_1_2; #define GL_VERSION_1_3 1 GLAD_API_CALL int GLAD_GL_VERSION_1_3; #define GL_VERSION_1_4 1 GLAD_API_CALL int GLAD_GL_VERSION_1_4; #define GL_VERSION_1_5 1 GLAD_API_CALL int GLAD_GL_VERSION_1_5; #define GL_VERSION_2_0 1 GLAD_API_CALL int GLAD_GL_VERSION_2_0; #define GL_VERSION_2_1 1 GLAD_API_CALL int GLAD_GL_VERSION_2_1; #define GL_VERSION_3_0 1 GLAD_API_CALL int GLAD_GL_VERSION_3_0; #define GL_VERSION_3_1 1 GLAD_API_CALL int GLAD_GL_VERSION_3_1; #define GL_VERSION_3_2 1 GLAD_API_CALL int GLAD_GL_VERSION_3_2; #define GL_VERSION_3_3 1 GLAD_API_CALL int GLAD_GL_VERSION_3_3; #define GL_ARB_ES2_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES2_compatibility; #define GL_ARB_ES3_1_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES3_1_compatibility; #define GL_ARB_ES3_2_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES3_2_compatibility; #define GL_ARB_ES3_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_ES3_compatibility; #define GL_ARB_arrays_of_arrays 1 GLAD_API_CALL int GLAD_GL_ARB_arrays_of_arrays; #define GL_ARB_base_instance 1 GLAD_API_CALL int GLAD_GL_ARB_base_instance; #define GL_ARB_bindless_texture 1 GLAD_API_CALL int GLAD_GL_ARB_bindless_texture; #define GL_ARB_blend_func_extended 1 GLAD_API_CALL int GLAD_GL_ARB_blend_func_extended; #define GL_ARB_buffer_storage 1 GLAD_API_CALL int GLAD_GL_ARB_buffer_storage; #define GL_ARB_cl_event 1 GLAD_API_CALL int GLAD_GL_ARB_cl_event; #define GL_ARB_clear_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_clear_buffer_object; #define GL_ARB_clear_texture 1 GLAD_API_CALL int GLAD_GL_ARB_clear_texture; #define GL_ARB_clip_control 1 GLAD_API_CALL int GLAD_GL_ARB_clip_control; #define GL_ARB_color_buffer_float 1 GLAD_API_CALL int GLAD_GL_ARB_color_buffer_float; #define GL_ARB_compatibility 1 GLAD_API_CALL int GLAD_GL_ARB_compatibility; #define GL_ARB_compressed_texture_pixel_storage 1 GLAD_API_CALL int GLAD_GL_ARB_compressed_texture_pixel_storage; #define GL_ARB_compute_shader 1 GLAD_API_CALL int GLAD_GL_ARB_compute_shader; #define GL_ARB_compute_variable_group_size 1 GLAD_API_CALL int GLAD_GL_ARB_compute_variable_group_size; #define GL_ARB_conditional_render_inverted 1 GLAD_API_CALL int GLAD_GL_ARB_conditional_render_inverted; #define GL_ARB_conservative_depth 1 GLAD_API_CALL int GLAD_GL_ARB_conservative_depth; #define GL_ARB_copy_buffer 1 GLAD_API_CALL int GLAD_GL_ARB_copy_buffer; #define GL_ARB_copy_image 1 GLAD_API_CALL int GLAD_GL_ARB_copy_image; #define GL_ARB_cull_distance 1 GLAD_API_CALL int GLAD_GL_ARB_cull_distance; #define GL_ARB_debug_output 1 GLAD_API_CALL int GLAD_GL_ARB_debug_output; #define GL_ARB_depth_buffer_float 1 GLAD_API_CALL int GLAD_GL_ARB_depth_buffer_float; #define GL_ARB_depth_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_depth_clamp; #define GL_ARB_depth_texture 1 GLAD_API_CALL int GLAD_GL_ARB_depth_texture; #define GL_ARB_derivative_control 1 GLAD_API_CALL int GLAD_GL_ARB_derivative_control; #define GL_ARB_direct_state_access 1 GLAD_API_CALL int GLAD_GL_ARB_direct_state_access; #define GL_ARB_draw_buffers 1 GLAD_API_CALL int GLAD_GL_ARB_draw_buffers; #define GL_ARB_draw_buffers_blend 1 GLAD_API_CALL int GLAD_GL_ARB_draw_buffers_blend; #define GL_ARB_draw_elements_base_vertex 1 GLAD_API_CALL int GLAD_GL_ARB_draw_elements_base_vertex; #define GL_ARB_draw_indirect 1 GLAD_API_CALL int GLAD_GL_ARB_draw_indirect; #define GL_ARB_draw_instanced 1 GLAD_API_CALL int GLAD_GL_ARB_draw_instanced; #define GL_ARB_enhanced_layouts 1 GLAD_API_CALL int GLAD_GL_ARB_enhanced_layouts; #define GL_ARB_explicit_attrib_location 1 GLAD_API_CALL int GLAD_GL_ARB_explicit_attrib_location; #define GL_ARB_explicit_uniform_location 1 GLAD_API_CALL int GLAD_GL_ARB_explicit_uniform_location; #define GL_ARB_fragment_coord_conventions 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_coord_conventions; #define GL_ARB_fragment_layer_viewport 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_layer_viewport; #define GL_ARB_fragment_program 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_program; #define GL_ARB_fragment_program_shadow 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_program_shadow; #define GL_ARB_fragment_shader 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_shader; #define GL_ARB_fragment_shader_interlock 1 GLAD_API_CALL int GLAD_GL_ARB_fragment_shader_interlock; #define GL_ARB_framebuffer_no_attachments 1 GLAD_API_CALL int GLAD_GL_ARB_framebuffer_no_attachments; #define GL_ARB_framebuffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_framebuffer_object; #define GL_ARB_framebuffer_sRGB 1 GLAD_API_CALL int GLAD_GL_ARB_framebuffer_sRGB; #define GL_ARB_geometry_shader4 1 GLAD_API_CALL int GLAD_GL_ARB_geometry_shader4; #define GL_ARB_get_program_binary 1 GLAD_API_CALL int GLAD_GL_ARB_get_program_binary; #define GL_ARB_get_texture_sub_image 1 GLAD_API_CALL int GLAD_GL_ARB_get_texture_sub_image; #define GL_ARB_gl_spirv 1 GLAD_API_CALL int GLAD_GL_ARB_gl_spirv; #define GL_ARB_gpu_shader5 1 GLAD_API_CALL int GLAD_GL_ARB_gpu_shader5; #define GL_ARB_gpu_shader_fp64 1 GLAD_API_CALL int GLAD_GL_ARB_gpu_shader_fp64; #define GL_ARB_gpu_shader_int64 1 GLAD_API_CALL int GLAD_GL_ARB_gpu_shader_int64; #define GL_ARB_half_float_pixel 1 GLAD_API_CALL int GLAD_GL_ARB_half_float_pixel; #define GL_ARB_half_float_vertex 1 GLAD_API_CALL int GLAD_GL_ARB_half_float_vertex; #define GL_ARB_imaging 1 GLAD_API_CALL int GLAD_GL_ARB_imaging; #define GL_ARB_indirect_parameters 1 GLAD_API_CALL int GLAD_GL_ARB_indirect_parameters; #define GL_ARB_instanced_arrays 1 GLAD_API_CALL int GLAD_GL_ARB_instanced_arrays; #define GL_ARB_internalformat_query 1 GLAD_API_CALL int GLAD_GL_ARB_internalformat_query; #define GL_ARB_internalformat_query2 1 GLAD_API_CALL int GLAD_GL_ARB_internalformat_query2; #define GL_ARB_invalidate_subdata 1 GLAD_API_CALL int GLAD_GL_ARB_invalidate_subdata; #define GL_ARB_map_buffer_alignment 1 GLAD_API_CALL int GLAD_GL_ARB_map_buffer_alignment; #define GL_ARB_map_buffer_range 1 GLAD_API_CALL int GLAD_GL_ARB_map_buffer_range; #define GL_ARB_matrix_palette 1 GLAD_API_CALL int GLAD_GL_ARB_matrix_palette; #define GL_ARB_multi_bind 1 GLAD_API_CALL int GLAD_GL_ARB_multi_bind; #define GL_ARB_multi_draw_indirect 1 GLAD_API_CALL int GLAD_GL_ARB_multi_draw_indirect; #define GL_ARB_multisample 1 GLAD_API_CALL int GLAD_GL_ARB_multisample; #define GL_ARB_multitexture 1 GLAD_API_CALL int GLAD_GL_ARB_multitexture; #define GL_ARB_occlusion_query 1 GLAD_API_CALL int GLAD_GL_ARB_occlusion_query; #define GL_ARB_occlusion_query2 1 GLAD_API_CALL int GLAD_GL_ARB_occlusion_query2; #define GL_ARB_parallel_shader_compile 1 GLAD_API_CALL int GLAD_GL_ARB_parallel_shader_compile; #define GL_ARB_pipeline_statistics_query 1 GLAD_API_CALL int GLAD_GL_ARB_pipeline_statistics_query; #define GL_ARB_pixel_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_pixel_buffer_object; #define GL_ARB_point_parameters 1 GLAD_API_CALL int GLAD_GL_ARB_point_parameters; #define GL_ARB_point_sprite 1 GLAD_API_CALL int GLAD_GL_ARB_point_sprite; #define GL_ARB_polygon_offset_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_polygon_offset_clamp; #define GL_ARB_post_depth_coverage 1 GLAD_API_CALL int GLAD_GL_ARB_post_depth_coverage; #define GL_ARB_program_interface_query 1 GLAD_API_CALL int GLAD_GL_ARB_program_interface_query; #define GL_ARB_provoking_vertex 1 GLAD_API_CALL int GLAD_GL_ARB_provoking_vertex; #define GL_ARB_query_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_query_buffer_object; #define GL_ARB_robust_buffer_access_behavior 1 GLAD_API_CALL int GLAD_GL_ARB_robust_buffer_access_behavior; #define GL_ARB_robustness 1 GLAD_API_CALL int GLAD_GL_ARB_robustness; #define GL_ARB_robustness_isolation 1 GLAD_API_CALL int GLAD_GL_ARB_robustness_isolation; #define GL_ARB_sample_locations 1 GLAD_API_CALL int GLAD_GL_ARB_sample_locations; #define GL_ARB_sample_shading 1 GLAD_API_CALL int GLAD_GL_ARB_sample_shading; #define GL_ARB_sampler_objects 1 GLAD_API_CALL int GLAD_GL_ARB_sampler_objects; #define GL_ARB_seamless_cube_map 1 GLAD_API_CALL int GLAD_GL_ARB_seamless_cube_map; #define GL_ARB_seamless_cubemap_per_texture 1 GLAD_API_CALL int GLAD_GL_ARB_seamless_cubemap_per_texture; #define GL_ARB_separate_shader_objects 1 GLAD_API_CALL int GLAD_GL_ARB_separate_shader_objects; #define GL_ARB_shader_atomic_counter_ops 1 GLAD_API_CALL int GLAD_GL_ARB_shader_atomic_counter_ops; #define GL_ARB_shader_atomic_counters 1 GLAD_API_CALL int GLAD_GL_ARB_shader_atomic_counters; #define GL_ARB_shader_ballot 1 GLAD_API_CALL int GLAD_GL_ARB_shader_ballot; #define GL_ARB_shader_bit_encoding 1 GLAD_API_CALL int GLAD_GL_ARB_shader_bit_encoding; #define GL_ARB_shader_clock 1 GLAD_API_CALL int GLAD_GL_ARB_shader_clock; #define GL_ARB_shader_draw_parameters 1 GLAD_API_CALL int GLAD_GL_ARB_shader_draw_parameters; #define GL_ARB_shader_group_vote 1 GLAD_API_CALL int GLAD_GL_ARB_shader_group_vote; #define GL_ARB_shader_image_load_store 1 GLAD_API_CALL int GLAD_GL_ARB_shader_image_load_store; #define GL_ARB_shader_image_size 1 GLAD_API_CALL int GLAD_GL_ARB_shader_image_size; #define GL_ARB_shader_objects 1 GLAD_API_CALL int GLAD_GL_ARB_shader_objects; #define GL_ARB_shader_precision 1 GLAD_API_CALL int GLAD_GL_ARB_shader_precision; #define GL_ARB_shader_stencil_export 1 GLAD_API_CALL int GLAD_GL_ARB_shader_stencil_export; #define GL_ARB_shader_storage_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_shader_storage_buffer_object; #define GL_ARB_shader_subroutine 1 GLAD_API_CALL int GLAD_GL_ARB_shader_subroutine; #define GL_ARB_shader_texture_image_samples 1 GLAD_API_CALL int GLAD_GL_ARB_shader_texture_image_samples; #define GL_ARB_shader_texture_lod 1 GLAD_API_CALL int GLAD_GL_ARB_shader_texture_lod; #define GL_ARB_shader_viewport_layer_array 1 GLAD_API_CALL int GLAD_GL_ARB_shader_viewport_layer_array; #define GL_ARB_shading_language_100 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_100; #define GL_ARB_shading_language_420pack 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_420pack; #define GL_ARB_shading_language_include 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_include; #define GL_ARB_shading_language_packing 1 GLAD_API_CALL int GLAD_GL_ARB_shading_language_packing; #define GL_ARB_shadow 1 GLAD_API_CALL int GLAD_GL_ARB_shadow; #define GL_ARB_shadow_ambient 1 GLAD_API_CALL int GLAD_GL_ARB_shadow_ambient; #define GL_ARB_sparse_buffer 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_buffer; #define GL_ARB_sparse_texture 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_texture; #define GL_ARB_sparse_texture2 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_texture2; #define GL_ARB_sparse_texture_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_sparse_texture_clamp; #define GL_ARB_spirv_extensions 1 GLAD_API_CALL int GLAD_GL_ARB_spirv_extensions; #define GL_ARB_stencil_texturing 1 GLAD_API_CALL int GLAD_GL_ARB_stencil_texturing; #define GL_ARB_sync 1 GLAD_API_CALL int GLAD_GL_ARB_sync; #define GL_ARB_tessellation_shader 1 GLAD_API_CALL int GLAD_GL_ARB_tessellation_shader; #define GL_ARB_texture_barrier 1 GLAD_API_CALL int GLAD_GL_ARB_texture_barrier; #define GL_ARB_texture_border_clamp 1 GLAD_API_CALL int GLAD_GL_ARB_texture_border_clamp; #define GL_ARB_texture_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_texture_buffer_object; #define GL_ARB_texture_buffer_object_rgb32 1 GLAD_API_CALL int GLAD_GL_ARB_texture_buffer_object_rgb32; #define GL_ARB_texture_buffer_range 1 GLAD_API_CALL int GLAD_GL_ARB_texture_buffer_range; #define GL_ARB_texture_compression 1 GLAD_API_CALL int GLAD_GL_ARB_texture_compression; #define GL_ARB_texture_compression_bptc 1 GLAD_API_CALL int GLAD_GL_ARB_texture_compression_bptc; #define GL_ARB_texture_compression_rgtc 1 GLAD_API_CALL int GLAD_GL_ARB_texture_compression_rgtc; #define GL_ARB_texture_cube_map 1 GLAD_API_CALL int GLAD_GL_ARB_texture_cube_map; #define GL_ARB_texture_cube_map_array 1 GLAD_API_CALL int GLAD_GL_ARB_texture_cube_map_array; #define GL_ARB_texture_env_add 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_add; #define GL_ARB_texture_env_combine 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_combine; #define GL_ARB_texture_env_crossbar 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_crossbar; #define GL_ARB_texture_env_dot3 1 GLAD_API_CALL int GLAD_GL_ARB_texture_env_dot3; #define GL_ARB_texture_filter_anisotropic 1 GLAD_API_CALL int GLAD_GL_ARB_texture_filter_anisotropic; #define GL_ARB_texture_filter_minmax 1 GLAD_API_CALL int GLAD_GL_ARB_texture_filter_minmax; #define GL_ARB_texture_float 1 GLAD_API_CALL int GLAD_GL_ARB_texture_float; #define GL_ARB_texture_gather 1 GLAD_API_CALL int GLAD_GL_ARB_texture_gather; #define GL_ARB_texture_mirror_clamp_to_edge 1 GLAD_API_CALL int GLAD_GL_ARB_texture_mirror_clamp_to_edge; #define GL_ARB_texture_mirrored_repeat 1 GLAD_API_CALL int GLAD_GL_ARB_texture_mirrored_repeat; #define GL_ARB_texture_multisample 1 GLAD_API_CALL int GLAD_GL_ARB_texture_multisample; #define GL_ARB_texture_non_power_of_two 1 GLAD_API_CALL int GLAD_GL_ARB_texture_non_power_of_two; #define GL_ARB_texture_query_levels 1 GLAD_API_CALL int GLAD_GL_ARB_texture_query_levels; #define GL_ARB_texture_query_lod 1 GLAD_API_CALL int GLAD_GL_ARB_texture_query_lod; #define GL_ARB_texture_rectangle 1 GLAD_API_CALL int GLAD_GL_ARB_texture_rectangle; #define GL_ARB_texture_rg 1 GLAD_API_CALL int GLAD_GL_ARB_texture_rg; #define GL_ARB_texture_rgb10_a2ui 1 GLAD_API_CALL int GLAD_GL_ARB_texture_rgb10_a2ui; #define GL_ARB_texture_stencil8 1 GLAD_API_CALL int GLAD_GL_ARB_texture_stencil8; #define GL_ARB_texture_storage 1 GLAD_API_CALL int GLAD_GL_ARB_texture_storage; #define GL_ARB_texture_storage_multisample 1 GLAD_API_CALL int GLAD_GL_ARB_texture_storage_multisample; #define GL_ARB_texture_swizzle 1 GLAD_API_CALL int GLAD_GL_ARB_texture_swizzle; #define GL_ARB_texture_view 1 GLAD_API_CALL int GLAD_GL_ARB_texture_view; #define GL_ARB_timer_query 1 GLAD_API_CALL int GLAD_GL_ARB_timer_query; #define GL_ARB_transform_feedback2 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback2; #define GL_ARB_transform_feedback3 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback3; #define GL_ARB_transform_feedback_instanced 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback_instanced; #define GL_ARB_transform_feedback_overflow_query 1 GLAD_API_CALL int GLAD_GL_ARB_transform_feedback_overflow_query; #define GL_ARB_transpose_matrix 1 GLAD_API_CALL int GLAD_GL_ARB_transpose_matrix; #define GL_ARB_uniform_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_uniform_buffer_object; #define GL_ARB_vertex_array_bgra 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_array_bgra; #define GL_ARB_vertex_array_object 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_array_object; #define GL_ARB_vertex_attrib_64bit 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_attrib_64bit; #define GL_ARB_vertex_attrib_binding 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_attrib_binding; #define GL_ARB_vertex_blend 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_blend; #define GL_ARB_vertex_buffer_object 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_buffer_object; #define GL_ARB_vertex_program 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_program; #define GL_ARB_vertex_shader 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_shader; #define GL_ARB_vertex_type_10f_11f_11f_rev 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_type_10f_11f_11f_rev; #define GL_ARB_vertex_type_2_10_10_10_rev 1 GLAD_API_CALL int GLAD_GL_ARB_vertex_type_2_10_10_10_rev; #define GL_ARB_viewport_array 1 GLAD_API_CALL int GLAD_GL_ARB_viewport_array; #define GL_ARB_window_pos 1 GLAD_API_CALL int GLAD_GL_ARB_window_pos; #define GL_KHR_blend_equation_advanced 1 GLAD_API_CALL int GLAD_GL_KHR_blend_equation_advanced; #define GL_KHR_blend_equation_advanced_coherent 1 GLAD_API_CALL int GLAD_GL_KHR_blend_equation_advanced_coherent; #define GL_KHR_context_flush_control 1 GLAD_API_CALL int GLAD_GL_KHR_context_flush_control; #define GL_KHR_debug 1 GLAD_API_CALL int GLAD_GL_KHR_debug; #define GL_KHR_no_error 1 GLAD_API_CALL int GLAD_GL_KHR_no_error; #define GL_KHR_parallel_shader_compile 1 GLAD_API_CALL int GLAD_GL_KHR_parallel_shader_compile; #define GL_KHR_robust_buffer_access_behavior 1 GLAD_API_CALL int GLAD_GL_KHR_robust_buffer_access_behavior; #define GL_KHR_robustness 1 GLAD_API_CALL int GLAD_GL_KHR_robustness; #define GL_KHR_shader_subgroup 1 GLAD_API_CALL int GLAD_GL_KHR_shader_subgroup; #define GL_KHR_texture_compression_astc_hdr 1 GLAD_API_CALL int GLAD_GL_KHR_texture_compression_astc_hdr; #define GL_KHR_texture_compression_astc_ldr 1 GLAD_API_CALL int GLAD_GL_KHR_texture_compression_astc_ldr; #define GL_KHR_texture_compression_astc_sliced_3d 1 GLAD_API_CALL int GLAD_GL_KHR_texture_compression_astc_sliced_3d; typedef void (GLAD_API_PTR *PFNGLACCUMPROC)(GLenum op, GLfloat value); typedef void (GLAD_API_PTR *PFNGLACTIVESHADERPROGRAMPROC)(GLuint pipeline, GLuint program); typedef void (GLAD_API_PTR *PFNGLACTIVETEXTUREPROC)(GLenum texture); typedef void (GLAD_API_PTR *PFNGLACTIVETEXTUREARBPROC)(GLenum texture); typedef void (GLAD_API_PTR *PFNGLALPHAFUNCPROC)(GLenum func, GLfloat ref); typedef GLboolean (GLAD_API_PTR *PFNGLARETEXTURESRESIDENTPROC)(GLsizei n, const GLuint * textures, GLboolean * residences); typedef void (GLAD_API_PTR *PFNGLARRAYELEMENTPROC)(GLint i); typedef void (GLAD_API_PTR *PFNGLATTACHOBJECTARBPROC)(GLhandleARB containerObj, GLhandleARB obj); typedef void (GLAD_API_PTR *PFNGLATTACHSHADERPROC)(GLuint program, GLuint shader); typedef void (GLAD_API_PTR *PFNGLBEGINPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLBEGINCONDITIONALRENDERPROC)(GLuint id, GLenum mode); typedef void (GLAD_API_PTR *PFNGLBEGINQUERYPROC)(GLenum target, GLuint id); typedef void (GLAD_API_PTR *PFNGLBEGINQUERYARBPROC)(GLenum target, GLuint id); typedef void (GLAD_API_PTR *PFNGLBEGINQUERYINDEXEDPROC)(GLenum target, GLuint index, GLuint id); typedef void (GLAD_API_PTR *PFNGLBEGINTRANSFORMFEEDBACKPROC)(GLenum primitiveMode); typedef void (GLAD_API_PTR *PFNGLBINDATTRIBLOCATIONPROC)(GLuint program, GLuint index, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLBINDATTRIBLOCATIONARBPROC)(GLhandleARB programObj, GLuint index, const GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERPROC)(GLenum target, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERARBPROC)(GLenum target, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERBASEPROC)(GLenum target, GLuint index, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERRANGEPROC)(GLenum target, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERSBASEPROC)(GLenum target, GLuint first, GLsizei count, const GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLBINDBUFFERSRANGEPROC)(GLenum target, GLuint first, GLsizei count, const GLuint * buffers, const GLintptr * offsets, const GLsizeiptr * sizes); typedef void (GLAD_API_PTR *PFNGLBINDFRAGDATALOCATIONPROC)(GLuint program, GLuint color, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLBINDFRAGDATALOCATIONINDEXEDPROC)(GLuint program, GLuint colorNumber, GLuint index, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLBINDFRAMEBUFFERPROC)(GLenum target, GLuint framebuffer); typedef void (GLAD_API_PTR *PFNGLBINDIMAGETEXTUREPROC)(GLuint unit, GLuint texture, GLint level, GLboolean layered, GLint layer, GLenum access, GLenum format); typedef void (GLAD_API_PTR *PFNGLBINDIMAGETEXTURESPROC)(GLuint first, GLsizei count, const GLuint * textures); typedef void (GLAD_API_PTR *PFNGLBINDPROGRAMARBPROC)(GLenum target, GLuint program); typedef void (GLAD_API_PTR *PFNGLBINDPROGRAMPIPELINEPROC)(GLuint pipeline); typedef void (GLAD_API_PTR *PFNGLBINDRENDERBUFFERPROC)(GLenum target, GLuint renderbuffer); typedef void (GLAD_API_PTR *PFNGLBINDSAMPLERPROC)(GLuint unit, GLuint sampler); typedef void (GLAD_API_PTR *PFNGLBINDSAMPLERSPROC)(GLuint first, GLsizei count, const GLuint * samplers); typedef void (GLAD_API_PTR *PFNGLBINDTEXTUREPROC)(GLenum target, GLuint texture); typedef void (GLAD_API_PTR *PFNGLBINDTEXTUREUNITPROC)(GLuint unit, GLuint texture); typedef void (GLAD_API_PTR *PFNGLBINDTEXTURESPROC)(GLuint first, GLsizei count, const GLuint * textures); typedef void (GLAD_API_PTR *PFNGLBINDTRANSFORMFEEDBACKPROC)(GLenum target, GLuint id); typedef void (GLAD_API_PTR *PFNGLBINDVERTEXARRAYPROC)(GLuint array); typedef void (GLAD_API_PTR *PFNGLBINDVERTEXBUFFERPROC)(GLuint bindingindex, GLuint buffer, GLintptr offset, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLBINDVERTEXBUFFERSPROC)(GLuint first, GLsizei count, const GLuint * buffers, const GLintptr * offsets, const GLsizei * strides); typedef void (GLAD_API_PTR *PFNGLBITMAPPROC)(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, const GLubyte * bitmap); typedef void (GLAD_API_PTR *PFNGLBLENDBARRIERPROC)(void); typedef void (GLAD_API_PTR *PFNGLBLENDBARRIERKHRPROC)(void); typedef void (GLAD_API_PTR *PFNGLBLENDCOLORPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONSEPARATEPROC)(GLenum modeRGB, GLenum modeAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONSEPARATEIPROC)(GLuint buf, GLenum modeRGB, GLenum modeAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONSEPARATEIARBPROC)(GLuint buf, GLenum modeRGB, GLenum modeAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONIPROC)(GLuint buf, GLenum mode); typedef void (GLAD_API_PTR *PFNGLBLENDEQUATIONIARBPROC)(GLuint buf, GLenum mode); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCPROC)(GLenum sfactor, GLenum dfactor); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCSEPARATEPROC)(GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorAlpha, GLenum dfactorAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCSEPARATEIPROC)(GLuint buf, GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCSEPARATEIARBPROC)(GLuint buf, GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCIPROC)(GLuint buf, GLenum src, GLenum dst); typedef void (GLAD_API_PTR *PFNGLBLENDFUNCIARBPROC)(GLuint buf, GLenum src, GLenum dst); typedef void (GLAD_API_PTR *PFNGLBLITFRAMEBUFFERPROC)(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter); typedef void (GLAD_API_PTR *PFNGLBLITNAMEDFRAMEBUFFERPROC)(GLuint readFramebuffer, GLuint drawFramebuffer, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter); typedef void (GLAD_API_PTR *PFNGLBUFFERDATAPROC)(GLenum target, GLsizeiptr size, const void * data, GLenum usage); typedef void (GLAD_API_PTR *PFNGLBUFFERDATAARBPROC)(GLenum target, GLsizeiptrARB size, const void * data, GLenum usage); typedef void (GLAD_API_PTR *PFNGLBUFFERPAGECOMMITMENTARBPROC)(GLenum target, GLintptr offset, GLsizeiptr size, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLBUFFERSTORAGEPROC)(GLenum target, GLsizeiptr size, const void * data, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLBUFFERSUBDATAPROC)(GLenum target, GLintptr offset, GLsizeiptr size, const void * data); typedef void (GLAD_API_PTR *PFNGLBUFFERSUBDATAARBPROC)(GLenum target, GLintptrARB offset, GLsizeiptrARB size, const void * data); typedef void (GLAD_API_PTR *PFNGLCALLLISTPROC)(GLuint list); typedef void (GLAD_API_PTR *PFNGLCALLLISTSPROC)(GLsizei n, GLenum type, const void * lists); typedef GLenum (GLAD_API_PTR *PFNGLCHECKFRAMEBUFFERSTATUSPROC)(GLenum target); typedef GLenum (GLAD_API_PTR *PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC)(GLuint framebuffer, GLenum target); typedef void (GLAD_API_PTR *PFNGLCLAMPCOLORPROC)(GLenum target, GLenum clamp); typedef void (GLAD_API_PTR *PFNGLCLAMPCOLORARBPROC)(GLenum target, GLenum clamp); typedef void (GLAD_API_PTR *PFNGLCLEARPROC)(GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLCLEARACCUMPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERDATAPROC)(GLenum target, GLenum internalformat, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERSUBDATAPROC)(GLenum target, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERFIPROC)(GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERFVPROC)(GLenum buffer, GLint drawbuffer, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERIVPROC)(GLenum buffer, GLint drawbuffer, const GLint * value); typedef void (GLAD_API_PTR *PFNGLCLEARBUFFERUIVPROC)(GLenum buffer, GLint drawbuffer, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLCLEARCOLORPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLCLEARDEPTHPROC)(GLdouble depth); typedef void (GLAD_API_PTR *PFNGLCLEARDEPTHFPROC)(GLfloat d); typedef void (GLAD_API_PTR *PFNGLCLEARINDEXPROC)(GLfloat c); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDBUFFERDATAPROC)(GLuint buffer, GLenum internalformat, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDBUFFERSUBDATAPROC)(GLuint buffer, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERFIPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERFVPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERIVPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, const GLint * value); typedef void (GLAD_API_PTR *PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC)(GLuint framebuffer, GLenum buffer, GLint drawbuffer, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLCLEARSTENCILPROC)(GLint s); typedef void (GLAD_API_PTR *PFNGLCLEARTEXIMAGEPROC)(GLuint texture, GLint level, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLEARTEXSUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCLIENTACTIVETEXTUREPROC)(GLenum texture); typedef void (GLAD_API_PTR *PFNGLCLIENTACTIVETEXTUREARBPROC)(GLenum texture); typedef GLenum (GLAD_API_PTR *PFNGLCLIENTWAITSYNCPROC)(GLsync sync, GLbitfield flags, GLuint64 timeout); typedef void (GLAD_API_PTR *PFNGLCLIPCONTROLPROC)(GLenum origin, GLenum depth); typedef void (GLAD_API_PTR *PFNGLCLIPPLANEPROC)(GLenum plane, const GLdouble * equation); typedef void (GLAD_API_PTR *PFNGLCOLOR3BPROC)(GLbyte red, GLbyte green, GLbyte blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3DPROC)(GLdouble red, GLdouble green, GLdouble blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3FPROC)(GLfloat red, GLfloat green, GLfloat blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3IPROC)(GLint red, GLint green, GLint blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3SPROC)(GLshort red, GLshort green, GLshort blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3UBPROC)(GLubyte red, GLubyte green, GLubyte blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3UBVPROC)(const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3UIPROC)(GLuint red, GLuint green, GLuint blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3UIVPROC)(const GLuint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR3USPROC)(GLushort red, GLushort green, GLushort blue); typedef void (GLAD_API_PTR *PFNGLCOLOR3USVPROC)(const GLushort * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4BPROC)(GLbyte red, GLbyte green, GLbyte blue, GLbyte alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4DPROC)(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4FPROC)(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4IPROC)(GLint red, GLint green, GLint blue, GLint alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4SPROC)(GLshort red, GLshort green, GLshort blue, GLshort alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4UBPROC)(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4UBVPROC)(const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4UIPROC)(GLuint red, GLuint green, GLuint blue, GLuint alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4UIVPROC)(const GLuint * v); typedef void (GLAD_API_PTR *PFNGLCOLOR4USPROC)(GLushort red, GLushort green, GLushort blue, GLushort alpha); typedef void (GLAD_API_PTR *PFNGLCOLOR4USVPROC)(const GLushort * v); typedef void (GLAD_API_PTR *PFNGLCOLORMASKPROC)(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha); typedef void (GLAD_API_PTR *PFNGLCOLORMASKIPROC)(GLuint index, GLboolean r, GLboolean g, GLboolean b, GLboolean a); typedef void (GLAD_API_PTR *PFNGLCOLORMATERIALPROC)(GLenum face, GLenum mode); typedef void (GLAD_API_PTR *PFNGLCOLORP3UIPROC)(GLenum type, GLuint color); typedef void (GLAD_API_PTR *PFNGLCOLORP3UIVPROC)(GLenum type, const GLuint * color); typedef void (GLAD_API_PTR *PFNGLCOLORP4UIPROC)(GLenum type, GLuint color); typedef void (GLAD_API_PTR *PFNGLCOLORP4UIVPROC)(GLenum type, const GLuint * color); typedef void (GLAD_API_PTR *PFNGLCOLORPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLCOLORSUBTABLEPROC)(GLenum target, GLsizei start, GLsizei count, GLenum format, GLenum type, const void * data); typedef void (GLAD_API_PTR *PFNGLCOLORTABLEPROC)(GLenum target, GLenum internalformat, GLsizei width, GLenum format, GLenum type, const void * table); typedef void (GLAD_API_PTR *PFNGLCOLORTABLEPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLCOLORTABLEPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLCOMPILESHADERPROC)(GLuint shader); typedef void (GLAD_API_PTR *PFNGLCOMPILESHADERARBPROC)(GLhandleARB shaderObj); typedef void (GLAD_API_PTR *PFNGLCOMPILESHADERINCLUDEARBPROC)(GLuint shader, GLsizei count, const GLchar *const* path, const GLint * length); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE1DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE1DARBPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE2DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE2DARBPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE3DPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXIMAGE3DARBPROC)(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC)(GLuint texture, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void * data); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONFILTER1DPROC)(GLenum target, GLenum internalformat, GLsizei width, GLenum format, GLenum type, const void * image); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONFILTER2DPROC)(GLenum target, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * image); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERFPROC)(GLenum target, GLenum pname, GLfloat params); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERIPROC)(GLenum target, GLenum pname, GLint params); typedef void (GLAD_API_PTR *PFNGLCONVOLUTIONPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLCOPYBUFFERSUBDATAPROC)(GLenum readTarget, GLenum writeTarget, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLCOPYCOLORSUBTABLEPROC)(GLenum target, GLsizei start, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYCOLORTABLEPROC)(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYCONVOLUTIONFILTER1DPROC)(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYCONVOLUTIONFILTER2DPROC)(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYIMAGESUBDATAPROC)(GLuint srcName, GLenum srcTarget, GLint srcLevel, GLint srcX, GLint srcY, GLint srcZ, GLuint dstName, GLenum dstTarget, GLint dstLevel, GLint dstX, GLint dstY, GLint dstZ, GLsizei srcWidth, GLsizei srcHeight, GLsizei srcDepth); typedef void (GLAD_API_PTR *PFNGLCOPYNAMEDBUFFERSUBDATAPROC)(GLuint readBuffer, GLuint writeBuffer, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLCOPYPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type); typedef void (GLAD_API_PTR *PFNGLCOPYTEXIMAGE1DPROC)(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLint border); typedef void (GLAD_API_PTR *PFNGLCOPYTEXIMAGE2DPROC)(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border); typedef void (GLAD_API_PTR *PFNGLCOPYTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYTEXTURESUBIMAGE1DPROC)(GLuint texture, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width); typedef void (GLAD_API_PTR *PFNGLCOPYTEXTURESUBIMAGE2DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCOPYTEXTURESUBIMAGE3DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLCREATEBUFFERSPROC)(GLsizei n, GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLCREATEFRAMEBUFFERSPROC)(GLsizei n, GLuint * framebuffers); typedef GLuint (GLAD_API_PTR *PFNGLCREATEPROGRAMPROC)(void); typedef GLhandleARB (GLAD_API_PTR *PFNGLCREATEPROGRAMOBJECTARBPROC)(void); typedef void (GLAD_API_PTR *PFNGLCREATEPROGRAMPIPELINESPROC)(GLsizei n, GLuint * pipelines); typedef void (GLAD_API_PTR *PFNGLCREATEQUERIESPROC)(GLenum target, GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLCREATERENDERBUFFERSPROC)(GLsizei n, GLuint * renderbuffers); typedef void (GLAD_API_PTR *PFNGLCREATESAMPLERSPROC)(GLsizei n, GLuint * samplers); typedef GLuint (GLAD_API_PTR *PFNGLCREATESHADERPROC)(GLenum type); typedef GLhandleARB (GLAD_API_PTR *PFNGLCREATESHADEROBJECTARBPROC)(GLenum shaderType); typedef GLuint (GLAD_API_PTR *PFNGLCREATESHADERPROGRAMVPROC)(GLenum type, GLsizei count, const GLchar *const* strings); typedef GLsync (GLAD_API_PTR *PFNGLCREATESYNCFROMCLEVENTARBPROC)(struct _cl_context * context, struct _cl_event * event, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLCREATETEXTURESPROC)(GLenum target, GLsizei n, GLuint * textures); typedef void (GLAD_API_PTR *PFNGLCREATETRANSFORMFEEDBACKSPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLCREATEVERTEXARRAYSPROC)(GLsizei n, GLuint * arrays); typedef void (GLAD_API_PTR *PFNGLCULLFACEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLCURRENTPALETTEMATRIXARBPROC)(GLint index); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECALLBACKPROC)(GLDEBUGPROC callback, const void * userParam); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECALLBACKARBPROC)(GLDEBUGPROCARB callback, const void * userParam); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECONTROLPROC)(GLenum source, GLenum type, GLenum severity, GLsizei count, const GLuint * ids, GLboolean enabled); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGECONTROLARBPROC)(GLenum source, GLenum type, GLenum severity, GLsizei count, const GLuint * ids, GLboolean enabled); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGEINSERTPROC)(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar * buf); typedef void (GLAD_API_PTR *PFNGLDEBUGMESSAGEINSERTARBPROC)(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar * buf); typedef void (GLAD_API_PTR *PFNGLDELETEBUFFERSPROC)(GLsizei n, const GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLDELETEBUFFERSARBPROC)(GLsizei n, const GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLDELETEFRAMEBUFFERSPROC)(GLsizei n, const GLuint * framebuffers); typedef void (GLAD_API_PTR *PFNGLDELETELISTSPROC)(GLuint list, GLsizei range); typedef void (GLAD_API_PTR *PFNGLDELETENAMEDSTRINGARBPROC)(GLint namelen, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLDELETEOBJECTARBPROC)(GLhandleARB obj); typedef void (GLAD_API_PTR *PFNGLDELETEPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLDELETEPROGRAMPIPELINESPROC)(GLsizei n, const GLuint * pipelines); typedef void (GLAD_API_PTR *PFNGLDELETEPROGRAMSARBPROC)(GLsizei n, const GLuint * programs); typedef void (GLAD_API_PTR *PFNGLDELETEQUERIESPROC)(GLsizei n, const GLuint * ids); typedef void (GLAD_API_PTR *PFNGLDELETEQUERIESARBPROC)(GLsizei n, const GLuint * ids); typedef void (GLAD_API_PTR *PFNGLDELETERENDERBUFFERSPROC)(GLsizei n, const GLuint * renderbuffers); typedef void (GLAD_API_PTR *PFNGLDELETESAMPLERSPROC)(GLsizei count, const GLuint * samplers); typedef void (GLAD_API_PTR *PFNGLDELETESHADERPROC)(GLuint shader); typedef void (GLAD_API_PTR *PFNGLDELETESYNCPROC)(GLsync sync); typedef void (GLAD_API_PTR *PFNGLDELETETEXTURESPROC)(GLsizei n, const GLuint * textures); typedef void (GLAD_API_PTR *PFNGLDELETETRANSFORMFEEDBACKSPROC)(GLsizei n, const GLuint * ids); typedef void (GLAD_API_PTR *PFNGLDELETEVERTEXARRAYSPROC)(GLsizei n, const GLuint * arrays); typedef void (GLAD_API_PTR *PFNGLDEPTHFUNCPROC)(GLenum func); typedef void (GLAD_API_PTR *PFNGLDEPTHMASKPROC)(GLboolean flag); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEPROC)(GLdouble n, GLdouble f); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEARRAYDVNVPROC)(GLuint first, GLsizei count, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEARRAYVPROC)(GLuint first, GLsizei count, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEINDEXEDPROC)(GLuint index, GLdouble n, GLdouble f); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEINDEXEDDNVPROC)(GLuint index, GLdouble n, GLdouble f); typedef void (GLAD_API_PTR *PFNGLDEPTHRANGEFPROC)(GLfloat n, GLfloat f); typedef void (GLAD_API_PTR *PFNGLDETACHOBJECTARBPROC)(GLhandleARB containerObj, GLhandleARB attachedObj); typedef void (GLAD_API_PTR *PFNGLDETACHSHADERPROC)(GLuint program, GLuint shader); typedef void (GLAD_API_PTR *PFNGLDISABLEPROC)(GLenum cap); typedef void (GLAD_API_PTR *PFNGLDISABLECLIENTSTATEPROC)(GLenum array); typedef void (GLAD_API_PTR *PFNGLDISABLEVERTEXARRAYATTRIBPROC)(GLuint vaobj, GLuint index); typedef void (GLAD_API_PTR *PFNGLDISABLEVERTEXATTRIBARRAYPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLDISABLEVERTEXATTRIBARRAYARBPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLDISABLEIPROC)(GLenum target, GLuint index); typedef void (GLAD_API_PTR *PFNGLDISPATCHCOMPUTEPROC)(GLuint num_groups_x, GLuint num_groups_y, GLuint num_groups_z); typedef void (GLAD_API_PTR *PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC)(GLuint num_groups_x, GLuint num_groups_y, GLuint num_groups_z, GLuint group_size_x, GLuint group_size_y, GLuint group_size_z); typedef void (GLAD_API_PTR *PFNGLDISPATCHCOMPUTEINDIRECTPROC)(GLintptr indirect); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSPROC)(GLenum mode, GLint first, GLsizei count); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINDIRECTPROC)(GLenum mode, const void * indirect); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINSTANCEDPROC)(GLenum mode, GLint first, GLsizei count, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINSTANCEDARBPROC)(GLenum mode, GLint first, GLsizei count, GLsizei primcount); typedef void (GLAD_API_PTR *PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC)(GLenum mode, GLint first, GLsizei count, GLsizei instancecount, GLuint baseinstance); typedef void (GLAD_API_PTR *PFNGLDRAWBUFFERPROC)(GLenum buf); typedef void (GLAD_API_PTR *PFNGLDRAWBUFFERSPROC)(GLsizei n, const GLenum * bufs); typedef void (GLAD_API_PTR *PFNGLDRAWBUFFERSARBPROC)(GLsizei n, const GLenum * bufs); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSBASEVERTEXPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLint basevertex); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINDIRECTPROC)(GLenum mode, GLenum type, const void * indirect); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDARBPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei primcount); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount, GLuint baseinstance); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount, GLint basevertex); typedef void (GLAD_API_PTR *PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC)(GLenum mode, GLsizei count, GLenum type, const void * indices, GLsizei instancecount, GLint basevertex, GLuint baseinstance); typedef void (GLAD_API_PTR *PFNGLDRAWPIXELSPROC)(GLsizei width, GLsizei height, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLDRAWRANGEELEMENTSPROC)(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void * indices); typedef void (GLAD_API_PTR *PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC)(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void * indices, GLint basevertex); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKPROC)(GLenum mode, GLuint id); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC)(GLenum mode, GLuint id, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC)(GLenum mode, GLuint id, GLuint stream); typedef void (GLAD_API_PTR *PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC)(GLenum mode, GLuint id, GLuint stream, GLsizei instancecount); typedef void (GLAD_API_PTR *PFNGLEDGEFLAGPROC)(GLboolean flag); typedef void (GLAD_API_PTR *PFNGLEDGEFLAGPOINTERPROC)(GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLEDGEFLAGVPROC)(const GLboolean * flag); typedef void (GLAD_API_PTR *PFNGLENABLEPROC)(GLenum cap); typedef void (GLAD_API_PTR *PFNGLENABLECLIENTSTATEPROC)(GLenum array); typedef void (GLAD_API_PTR *PFNGLENABLEVERTEXARRAYATTRIBPROC)(GLuint vaobj, GLuint index); typedef void (GLAD_API_PTR *PFNGLENABLEVERTEXATTRIBARRAYPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLENABLEVERTEXATTRIBARRAYARBPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLENABLEIPROC)(GLenum target, GLuint index); typedef void (GLAD_API_PTR *PFNGLENDPROC)(void); typedef void (GLAD_API_PTR *PFNGLENDCONDITIONALRENDERPROC)(void); typedef void (GLAD_API_PTR *PFNGLENDLISTPROC)(void); typedef void (GLAD_API_PTR *PFNGLENDQUERYPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLENDQUERYARBPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLENDQUERYINDEXEDPROC)(GLenum target, GLuint index); typedef void (GLAD_API_PTR *PFNGLENDTRANSFORMFEEDBACKPROC)(void); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1DPROC)(GLdouble u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1DVPROC)(const GLdouble * u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1FPROC)(GLfloat u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD1FVPROC)(const GLfloat * u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2DPROC)(GLdouble u, GLdouble v); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2DVPROC)(const GLdouble * u); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2FPROC)(GLfloat u, GLfloat v); typedef void (GLAD_API_PTR *PFNGLEVALCOORD2FVPROC)(const GLfloat * u); typedef void (GLAD_API_PTR *PFNGLEVALMESH1PROC)(GLenum mode, GLint i1, GLint i2); typedef void (GLAD_API_PTR *PFNGLEVALMESH2PROC)(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2); typedef void (GLAD_API_PTR *PFNGLEVALPOINT1PROC)(GLint i); typedef void (GLAD_API_PTR *PFNGLEVALPOINT2PROC)(GLint i, GLint j); typedef void (GLAD_API_PTR *PFNGLEVALUATEDEPTHVALUESARBPROC)(void); typedef void (GLAD_API_PTR *PFNGLFEEDBACKBUFFERPROC)(GLsizei size, GLenum type, GLfloat * buffer); typedef GLsync (GLAD_API_PTR *PFNGLFENCESYNCPROC)(GLenum condition, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLFINISHPROC)(void); typedef void (GLAD_API_PTR *PFNGLFLUSHPROC)(void); typedef void (GLAD_API_PTR *PFNGLFLUSHMAPPEDBUFFERRANGEPROC)(GLenum target, GLintptr offset, GLsizeiptr length); typedef void (GLAD_API_PTR *PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC)(GLuint buffer, GLintptr offset, GLsizeiptr length); typedef void (GLAD_API_PTR *PFNGLFOGCOORDPOINTERPROC)(GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLFOGCOORDDPROC)(GLdouble coord); typedef void (GLAD_API_PTR *PFNGLFOGCOORDDVPROC)(const GLdouble * coord); typedef void (GLAD_API_PTR *PFNGLFOGCOORDFPROC)(GLfloat coord); typedef void (GLAD_API_PTR *PFNGLFOGCOORDFVPROC)(const GLfloat * coord); typedef void (GLAD_API_PTR *PFNGLFOGFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLFOGFVPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLFOGIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLFOGIVPROC)(GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERPARAMETERIPROC)(GLenum target, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERRENDERBUFFERPROC)(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC)(GLenum target, GLuint start, GLsizei count, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTUREPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURE1DPROC)(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURE2DPROC)(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURE3DPROC)(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level, GLint zoffset); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTUREARBPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTUREFACEARBPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLenum face); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURELAYERPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLint layer); typedef void (GLAD_API_PTR *PFNGLFRAMEBUFFERTEXTURELAYERARBPROC)(GLenum target, GLenum attachment, GLuint texture, GLint level, GLint layer); typedef void (GLAD_API_PTR *PFNGLFRONTFACEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLFRUSTUMPROC)(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar); typedef void (GLAD_API_PTR *PFNGLGENBUFFERSPROC)(GLsizei n, GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLGENBUFFERSARBPROC)(GLsizei n, GLuint * buffers); typedef void (GLAD_API_PTR *PFNGLGENFRAMEBUFFERSPROC)(GLsizei n, GLuint * framebuffers); typedef GLuint (GLAD_API_PTR *PFNGLGENLISTSPROC)(GLsizei range); typedef void (GLAD_API_PTR *PFNGLGENPROGRAMPIPELINESPROC)(GLsizei n, GLuint * pipelines); typedef void (GLAD_API_PTR *PFNGLGENPROGRAMSARBPROC)(GLsizei n, GLuint * programs); typedef void (GLAD_API_PTR *PFNGLGENQUERIESPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLGENQUERIESARBPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLGENRENDERBUFFERSPROC)(GLsizei n, GLuint * renderbuffers); typedef void (GLAD_API_PTR *PFNGLGENSAMPLERSPROC)(GLsizei count, GLuint * samplers); typedef void (GLAD_API_PTR *PFNGLGENTEXTURESPROC)(GLsizei n, GLuint * textures); typedef void (GLAD_API_PTR *PFNGLGENTRANSFORMFEEDBACKSPROC)(GLsizei n, GLuint * ids); typedef void (GLAD_API_PTR *PFNGLGENVERTEXARRAYSPROC)(GLsizei n, GLuint * arrays); typedef void (GLAD_API_PTR *PFNGLGENERATEMIPMAPPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLGENERATETEXTUREMIPMAPPROC)(GLuint texture); typedef void (GLAD_API_PTR *PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC)(GLuint program, GLuint bufferIndex, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETACTIVEATTRIBPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei * length, GLint * size, GLenum * type, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVEATTRIBARBPROC)(GLhandleARB programObj, GLuint index, GLsizei maxLength, GLsizei * length, GLint * size, GLenum * type, GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVESUBROUTINENAMEPROC)(GLuint program, GLenum shadertype, GLuint index, GLsizei bufSize, GLsizei * length, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC)(GLuint program, GLenum shadertype, GLuint index, GLsizei bufSize, GLsizei * length, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC)(GLuint program, GLenum shadertype, GLuint index, GLenum pname, GLint * values); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei * length, GLint * size, GLenum * type, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMARBPROC)(GLhandleARB programObj, GLuint index, GLsizei maxLength, GLsizei * length, GLint * size, GLenum * type, GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC)(GLuint program, GLuint uniformBlockIndex, GLsizei bufSize, GLsizei * length, GLchar * uniformBlockName); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMBLOCKIVPROC)(GLuint program, GLuint uniformBlockIndex, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMNAMEPROC)(GLuint program, GLuint uniformIndex, GLsizei bufSize, GLsizei * length, GLchar * uniformName); typedef void (GLAD_API_PTR *PFNGLGETACTIVEUNIFORMSIVPROC)(GLuint program, GLsizei uniformCount, const GLuint * uniformIndices, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETATTACHEDOBJECTSARBPROC)(GLhandleARB containerObj, GLsizei maxCount, GLsizei * count, GLhandleARB * obj); typedef void (GLAD_API_PTR *PFNGLGETATTACHEDSHADERSPROC)(GLuint program, GLsizei maxCount, GLsizei * count, GLuint * shaders); typedef GLint (GLAD_API_PTR *PFNGLGETATTRIBLOCATIONPROC)(GLuint program, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETATTRIBLOCATIONARBPROC)(GLhandleARB programObj, const GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETBOOLEANI_VPROC)(GLenum target, GLuint index, GLboolean * data); typedef void (GLAD_API_PTR *PFNGLGETBOOLEANVPROC)(GLenum pname, GLboolean * data); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPARAMETERI64VPROC)(GLenum target, GLenum pname, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPARAMETERIVARBPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPOINTERVPROC)(GLenum target, GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERPOINTERVARBPROC)(GLenum target, GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETBUFFERSUBDATAPROC)(GLenum target, GLintptr offset, GLsizeiptr size, void * data); typedef void (GLAD_API_PTR *PFNGLGETBUFFERSUBDATAARBPROC)(GLenum target, GLintptrARB offset, GLsizeiptrARB size, void * data); typedef void (GLAD_API_PTR *PFNGLGETCLIPPLANEPROC)(GLenum plane, GLdouble * equation); typedef void (GLAD_API_PTR *PFNGLGETCOLORTABLEPROC)(GLenum target, GLenum format, GLenum type, void * table); typedef void (GLAD_API_PTR *PFNGLGETCOLORTABLEPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETCOLORTABLEPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXIMAGEPROC)(GLenum target, GLint level, void * img); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXIMAGEARBPROC)(GLenum target, GLint level, void * img); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC)(GLuint texture, GLint level, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETCONVOLUTIONFILTERPROC)(GLenum target, GLenum format, GLenum type, void * image); typedef void (GLAD_API_PTR *PFNGLGETCONVOLUTIONPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETCONVOLUTIONPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLuint (GLAD_API_PTR *PFNGLGETDEBUGMESSAGELOGPROC)(GLuint count, GLsizei bufSize, GLenum * sources, GLenum * types, GLuint * ids, GLenum * severities, GLsizei * lengths, GLchar * messageLog); typedef GLuint (GLAD_API_PTR *PFNGLGETDEBUGMESSAGELOGARBPROC)(GLuint count, GLsizei bufSize, GLenum * sources, GLenum * types, GLuint * ids, GLenum * severities, GLsizei * lengths, GLchar * messageLog); typedef void (GLAD_API_PTR *PFNGLGETDOUBLEI_VPROC)(GLenum target, GLuint index, GLdouble * data); typedef void (GLAD_API_PTR *PFNGLGETDOUBLEVPROC)(GLenum pname, GLdouble * data); typedef GLenum (GLAD_API_PTR *PFNGLGETERRORPROC)(void); typedef void (GLAD_API_PTR *PFNGLGETFLOATI_VPROC)(GLenum target, GLuint index, GLfloat * data); typedef void (GLAD_API_PTR *PFNGLGETFLOATVPROC)(GLenum pname, GLfloat * data); typedef GLint (GLAD_API_PTR *PFNGLGETFRAGDATAINDEXPROC)(GLuint program, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETFRAGDATALOCATIONPROC)(GLuint program, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC)(GLenum target, GLenum attachment, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETFRAMEBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLenum (GLAD_API_PTR *PFNGLGETGRAPHICSRESETSTATUSPROC)(void); typedef GLenum (GLAD_API_PTR *PFNGLGETGRAPHICSRESETSTATUSARBPROC)(void); typedef GLhandleARB (GLAD_API_PTR *PFNGLGETHANDLEARBPROC)(GLenum pname); typedef void (GLAD_API_PTR *PFNGLGETHISTOGRAMPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, void * values); typedef void (GLAD_API_PTR *PFNGLGETHISTOGRAMPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETHISTOGRAMPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLuint64 (GLAD_API_PTR *PFNGLGETIMAGEHANDLEARBPROC)(GLuint texture, GLint level, GLboolean layered, GLint layer, GLenum format); typedef void (GLAD_API_PTR *PFNGLGETINFOLOGARBPROC)(GLhandleARB obj, GLsizei maxLength, GLsizei * length, GLcharARB * infoLog); typedef void (GLAD_API_PTR *PFNGLGETINTEGER64I_VPROC)(GLenum target, GLuint index, GLint64 * data); typedef void (GLAD_API_PTR *PFNGLGETINTEGER64VPROC)(GLenum pname, GLint64 * data); typedef void (GLAD_API_PTR *PFNGLGETINTEGERI_VPROC)(GLenum target, GLuint index, GLint * data); typedef void (GLAD_API_PTR *PFNGLGETINTEGERVPROC)(GLenum pname, GLint * data); typedef void (GLAD_API_PTR *PFNGLGETINTERNALFORMATI64VPROC)(GLenum target, GLenum internalformat, GLenum pname, GLsizei count, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETINTERNALFORMATIVPROC)(GLenum target, GLenum internalformat, GLenum pname, GLsizei count, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETLIGHTFVPROC)(GLenum light, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETLIGHTIVPROC)(GLenum light, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETMAPDVPROC)(GLenum target, GLenum query, GLdouble * v); typedef void (GLAD_API_PTR *PFNGLGETMAPFVPROC)(GLenum target, GLenum query, GLfloat * v); typedef void (GLAD_API_PTR *PFNGLGETMAPIVPROC)(GLenum target, GLenum query, GLint * v); typedef void (GLAD_API_PTR *PFNGLGETMATERIALFVPROC)(GLenum face, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETMATERIALIVPROC)(GLenum face, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETMINMAXPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, void * values); typedef void (GLAD_API_PTR *PFNGLGETMINMAXPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETMINMAXPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETMULTISAMPLEFVPROC)(GLenum pname, GLuint index, GLfloat * val); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERPARAMETERI64VPROC)(GLuint buffer, GLenum pname, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERPARAMETERIVPROC)(GLuint buffer, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERPOINTERVPROC)(GLuint buffer, GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDBUFFERSUBDATAPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, void * data); typedef void (GLAD_API_PTR *PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC)(GLuint framebuffer, GLenum attachment, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC)(GLuint framebuffer, GLenum pname, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC)(GLuint renderbuffer, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNAMEDSTRINGARBPROC)(GLint namelen, const GLchar * name, GLsizei bufSize, GLint * stringlen, GLchar * string); typedef void (GLAD_API_PTR *PFNGLGETNAMEDSTRINGIVARBPROC)(GLint namelen, const GLchar * name, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETOBJECTLABELPROC)(GLenum identifier, GLuint name, GLsizei bufSize, GLsizei * length, GLchar * label); typedef void (GLAD_API_PTR *PFNGLGETOBJECTPARAMETERFVARBPROC)(GLhandleARB obj, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETOBJECTPARAMETERIVARBPROC)(GLhandleARB obj, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETOBJECTPTRLABELPROC)(const void * ptr, GLsizei bufSize, GLsizei * length, GLchar * label); typedef void (GLAD_API_PTR *PFNGLGETPIXELMAPFVPROC)(GLenum map, GLfloat * values); typedef void (GLAD_API_PTR *PFNGLGETPIXELMAPUIVPROC)(GLenum map, GLuint * values); typedef void (GLAD_API_PTR *PFNGLGETPIXELMAPUSVPROC)(GLenum map, GLushort * values); typedef void (GLAD_API_PTR *PFNGLGETPOINTERVPROC)(GLenum pname, void ** params); typedef void (GLAD_API_PTR *PFNGLGETPOLYGONSTIPPLEPROC)(GLubyte * mask); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMBINARYPROC)(GLuint program, GLsizei bufSize, GLsizei * length, GLenum * binaryFormat, void * binary); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMENVPARAMETERDVARBPROC)(GLenum target, GLuint index, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMENVPARAMETERFVARBPROC)(GLenum target, GLuint index, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMINFOLOGPROC)(GLuint program, GLsizei bufSize, GLsizei * length, GLchar * infoLog); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMINTERFACEIVPROC)(GLuint program, GLenum programInterface, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC)(GLenum target, GLuint index, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC)(GLenum target, GLuint index, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMPIPELINEINFOLOGPROC)(GLuint pipeline, GLsizei bufSize, GLsizei * length, GLchar * infoLog); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMPIPELINEIVPROC)(GLuint pipeline, GLenum pname, GLint * params); typedef GLuint (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCEINDEXPROC)(GLuint program, GLenum programInterface, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCELOCATIONPROC)(GLuint program, GLenum programInterface, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC)(GLuint program, GLenum programInterface, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCENAMEPROC)(GLuint program, GLenum programInterface, GLuint index, GLsizei bufSize, GLsizei * length, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMRESOURCEIVPROC)(GLuint program, GLenum programInterface, GLuint index, GLsizei propCount, const GLenum * props, GLsizei count, GLsizei * length, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMSTAGEIVPROC)(GLuint program, GLenum shadertype, GLenum pname, GLint * values); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMSTRINGARBPROC)(GLenum target, GLenum pname, void * string); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMIVPROC)(GLuint program, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETPROGRAMIVARBPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTI64VPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTIVPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTUI64VPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYBUFFEROBJECTUIVPROC)(GLuint id, GLuint buffer, GLenum pname, GLintptr offset); typedef void (GLAD_API_PTR *PFNGLGETQUERYINDEXEDIVPROC)(GLenum target, GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTI64VPROC)(GLuint id, GLenum pname, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTIVPROC)(GLuint id, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTIVARBPROC)(GLuint id, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTUI64VPROC)(GLuint id, GLenum pname, GLuint64 * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTUIVPROC)(GLuint id, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYOBJECTUIVARBPROC)(GLuint id, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETQUERYIVARBPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETRENDERBUFFERPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERIIVPROC)(GLuint sampler, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERIUIVPROC)(GLuint sampler, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERFVPROC)(GLuint sampler, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETSAMPLERPARAMETERIVPROC)(GLuint sampler, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETSEPARABLEFILTERPROC)(GLenum target, GLenum format, GLenum type, void * row, void * column, void * span); typedef void (GLAD_API_PTR *PFNGLGETSHADERINFOLOGPROC)(GLuint shader, GLsizei bufSize, GLsizei * length, GLchar * infoLog); typedef void (GLAD_API_PTR *PFNGLGETSHADERPRECISIONFORMATPROC)(GLenum shadertype, GLenum precisiontype, GLint * range, GLint * precision); typedef void (GLAD_API_PTR *PFNGLGETSHADERSOURCEPROC)(GLuint shader, GLsizei bufSize, GLsizei * length, GLchar * source); typedef void (GLAD_API_PTR *PFNGLGETSHADERSOURCEARBPROC)(GLhandleARB obj, GLsizei maxLength, GLsizei * length, GLcharARB * source); typedef void (GLAD_API_PTR *PFNGLGETSHADERIVPROC)(GLuint shader, GLenum pname, GLint * params); typedef const GLubyte * (GLAD_API_PTR *PFNGLGETSTRINGPROC)(GLenum name); typedef const GLubyte * (GLAD_API_PTR *PFNGLGETSTRINGIPROC)(GLenum name, GLuint index); typedef GLuint (GLAD_API_PTR *PFNGLGETSUBROUTINEINDEXPROC)(GLuint program, GLenum shadertype, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC)(GLuint program, GLenum shadertype, const GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETSYNCIVPROC)(GLsync sync, GLenum pname, GLsizei count, GLsizei * length, GLint * values); typedef void (GLAD_API_PTR *PFNGLGETTEXENVFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXENVIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXGENDVPROC)(GLenum coord, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETTEXGENFVPROC)(GLenum coord, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXGENIVPROC)(GLenum coord, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXIMAGEPROC)(GLenum target, GLint level, GLenum format, GLenum type, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETTEXLEVELPARAMETERFVPROC)(GLenum target, GLint level, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXLEVELPARAMETERIVPROC)(GLenum target, GLint level, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERIIVPROC)(GLenum target, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERIUIVPROC)(GLenum target, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERFVPROC)(GLenum target, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXPARAMETERIVPROC)(GLenum target, GLenum pname, GLint * params); typedef GLuint64 (GLAD_API_PTR *PFNGLGETTEXTUREHANDLEARBPROC)(GLuint texture); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREIMAGEPROC)(GLuint texture, GLint level, GLenum format, GLenum type, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETTEXTURELEVELPARAMETERFVPROC)(GLuint texture, GLint level, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTURELEVELPARAMETERIVPROC)(GLuint texture, GLint level, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERIIVPROC)(GLuint texture, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERIUIVPROC)(GLuint texture, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERFVPROC)(GLuint texture, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETTEXTUREPARAMETERIVPROC)(GLuint texture, GLenum pname, GLint * params); typedef GLuint64 (GLAD_API_PTR *PFNGLGETTEXTURESAMPLERHANDLEARBPROC)(GLuint texture, GLuint sampler); typedef void (GLAD_API_PTR *PFNGLGETTEXTURESUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, GLsizei bufSize, void * pixels); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKVARYINGPROC)(GLuint program, GLuint index, GLsizei bufSize, GLsizei * length, GLsizei * size, GLenum * type, GLchar * name); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKI64_VPROC)(GLuint xfb, GLenum pname, GLuint index, GLint64 * param); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKI_VPROC)(GLuint xfb, GLenum pname, GLuint index, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETTRANSFORMFEEDBACKIVPROC)(GLuint xfb, GLenum pname, GLint * param); typedef GLuint (GLAD_API_PTR *PFNGLGETUNIFORMBLOCKINDEXPROC)(GLuint program, const GLchar * uniformBlockName); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMINDICESPROC)(GLuint program, GLsizei uniformCount, const GLchar *const* uniformNames, GLuint * uniformIndices); typedef GLint (GLAD_API_PTR *PFNGLGETUNIFORMLOCATIONPROC)(GLuint program, const GLchar * name); typedef GLint (GLAD_API_PTR *PFNGLGETUNIFORMLOCATIONARBPROC)(GLhandleARB programObj, const GLcharARB * name); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMSUBROUTINEUIVPROC)(GLenum shadertype, GLint location, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMDVPROC)(GLuint program, GLint location, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMFVPROC)(GLuint program, GLint location, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMFVARBPROC)(GLhandleARB programObj, GLint location, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMI64VARBPROC)(GLuint program, GLint location, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMIVPROC)(GLuint program, GLint location, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMIVARBPROC)(GLhandleARB programObj, GLint location, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMUI64VARBPROC)(GLuint program, GLint location, GLuint64 * params); typedef void (GLAD_API_PTR *PFNGLGETUNIFORMUIVPROC)(GLuint program, GLint location, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXARRAYINDEXED64IVPROC)(GLuint vaobj, GLuint index, GLenum pname, GLint64 * param); typedef void (GLAD_API_PTR *PFNGLGETVERTEXARRAYINDEXEDIVPROC)(GLuint vaobj, GLuint index, GLenum pname, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETVERTEXARRAYIVPROC)(GLuint vaobj, GLenum pname, GLint * param); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIIVPROC)(GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIUIVPROC)(GLuint index, GLenum pname, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBLDVPROC)(GLuint index, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBLUI64VARBPROC)(GLuint index, GLenum pname, GLuint64EXT * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBPOINTERVPROC)(GLuint index, GLenum pname, void ** pointer); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBPOINTERVARBPROC)(GLuint index, GLenum pname, void ** pointer); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBDVPROC)(GLuint index, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBDVARBPROC)(GLuint index, GLenum pname, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBFVPROC)(GLuint index, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBFVARBPROC)(GLuint index, GLenum pname, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIVPROC)(GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETVERTEXATTRIBIVARBPROC)(GLuint index, GLenum pname, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNCOLORTABLEARBPROC)(GLenum target, GLenum format, GLenum type, GLsizei bufSize, void * table); typedef void (GLAD_API_PTR *PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC)(GLenum target, GLint lod, GLsizei bufSize, void * img); typedef void (GLAD_API_PTR *PFNGLGETNCONVOLUTIONFILTERARBPROC)(GLenum target, GLenum format, GLenum type, GLsizei bufSize, void * image); typedef void (GLAD_API_PTR *PFNGLGETNHISTOGRAMARBPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, GLsizei bufSize, void * values); typedef void (GLAD_API_PTR *PFNGLGETNMAPDVARBPROC)(GLenum target, GLenum query, GLsizei bufSize, GLdouble * v); typedef void (GLAD_API_PTR *PFNGLGETNMAPFVARBPROC)(GLenum target, GLenum query, GLsizei bufSize, GLfloat * v); typedef void (GLAD_API_PTR *PFNGLGETNMAPIVARBPROC)(GLenum target, GLenum query, GLsizei bufSize, GLint * v); typedef void (GLAD_API_PTR *PFNGLGETNMINMAXARBPROC)(GLenum target, GLboolean reset, GLenum format, GLenum type, GLsizei bufSize, void * values); typedef void (GLAD_API_PTR *PFNGLGETNPIXELMAPFVARBPROC)(GLenum map, GLsizei bufSize, GLfloat * values); typedef void (GLAD_API_PTR *PFNGLGETNPIXELMAPUIVARBPROC)(GLenum map, GLsizei bufSize, GLuint * values); typedef void (GLAD_API_PTR *PFNGLGETNPIXELMAPUSVARBPROC)(GLenum map, GLsizei bufSize, GLushort * values); typedef void (GLAD_API_PTR *PFNGLGETNPOLYGONSTIPPLEARBPROC)(GLsizei bufSize, GLubyte * pattern); typedef void (GLAD_API_PTR *PFNGLGETNSEPARABLEFILTERARBPROC)(GLenum target, GLenum format, GLenum type, GLsizei rowBufSize, void * row, GLsizei columnBufSize, void * column, void * span); typedef void (GLAD_API_PTR *PFNGLGETNTEXIMAGEARBPROC)(GLenum target, GLint level, GLenum format, GLenum type, GLsizei bufSize, void * img); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMDVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLdouble * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMFVPROC)(GLuint program, GLint location, GLsizei bufSize, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMFVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLfloat * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMI64VARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLint64 * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMIVPROC)(GLuint program, GLint location, GLsizei bufSize, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMIVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLint * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMUI64VARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLuint64 * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMUIVPROC)(GLuint program, GLint location, GLsizei bufSize, GLuint * params); typedef void (GLAD_API_PTR *PFNGLGETNUNIFORMUIVARBPROC)(GLuint program, GLint location, GLsizei bufSize, GLuint * params); typedef void (GLAD_API_PTR *PFNGLHINTPROC)(GLenum target, GLenum mode); typedef void (GLAD_API_PTR *PFNGLHISTOGRAMPROC)(GLenum target, GLsizei width, GLenum internalformat, GLboolean sink); typedef void (GLAD_API_PTR *PFNGLINDEXMASKPROC)(GLuint mask); typedef void (GLAD_API_PTR *PFNGLINDEXPOINTERPROC)(GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLINDEXDPROC)(GLdouble c); typedef void (GLAD_API_PTR *PFNGLINDEXDVPROC)(const GLdouble * c); typedef void (GLAD_API_PTR *PFNGLINDEXFPROC)(GLfloat c); typedef void (GLAD_API_PTR *PFNGLINDEXFVPROC)(const GLfloat * c); typedef void (GLAD_API_PTR *PFNGLINDEXIPROC)(GLint c); typedef void (GLAD_API_PTR *PFNGLINDEXIVPROC)(const GLint * c); typedef void (GLAD_API_PTR *PFNGLINDEXSPROC)(GLshort c); typedef void (GLAD_API_PTR *PFNGLINDEXSVPROC)(const GLshort * c); typedef void (GLAD_API_PTR *PFNGLINDEXUBPROC)(GLubyte c); typedef void (GLAD_API_PTR *PFNGLINDEXUBVPROC)(const GLubyte * c); typedef void (GLAD_API_PTR *PFNGLINITNAMESPROC)(void); typedef void (GLAD_API_PTR *PFNGLINTERLEAVEDARRAYSPROC)(GLenum format, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLINVALIDATEBUFFERDATAPROC)(GLuint buffer); typedef void (GLAD_API_PTR *PFNGLINVALIDATEBUFFERSUBDATAPROC)(GLuint buffer, GLintptr offset, GLsizeiptr length); typedef void (GLAD_API_PTR *PFNGLINVALIDATEFRAMEBUFFERPROC)(GLenum target, GLsizei numAttachments, const GLenum * attachments); typedef void (GLAD_API_PTR *PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC)(GLuint framebuffer, GLsizei numAttachments, const GLenum * attachments); typedef void (GLAD_API_PTR *PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC)(GLuint framebuffer, GLsizei numAttachments, const GLenum * attachments, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLINVALIDATESUBFRAMEBUFFERPROC)(GLenum target, GLsizei numAttachments, const GLenum * attachments, GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLINVALIDATETEXIMAGEPROC)(GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLINVALIDATETEXSUBIMAGEPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth); typedef GLboolean (GLAD_API_PTR *PFNGLISBUFFERPROC)(GLuint buffer); typedef GLboolean (GLAD_API_PTR *PFNGLISBUFFERARBPROC)(GLuint buffer); typedef GLboolean (GLAD_API_PTR *PFNGLISENABLEDPROC)(GLenum cap); typedef GLboolean (GLAD_API_PTR *PFNGLISENABLEDIPROC)(GLenum target, GLuint index); typedef GLboolean (GLAD_API_PTR *PFNGLISFRAMEBUFFERPROC)(GLuint framebuffer); typedef GLboolean (GLAD_API_PTR *PFNGLISIMAGEHANDLERESIDENTARBPROC)(GLuint64 handle); typedef GLboolean (GLAD_API_PTR *PFNGLISLISTPROC)(GLuint list); typedef GLboolean (GLAD_API_PTR *PFNGLISNAMEDSTRINGARBPROC)(GLint namelen, const GLchar * name); typedef GLboolean (GLAD_API_PTR *PFNGLISPROGRAMPROC)(GLuint program); typedef GLboolean (GLAD_API_PTR *PFNGLISPROGRAMARBPROC)(GLuint program); typedef GLboolean (GLAD_API_PTR *PFNGLISPROGRAMPIPELINEPROC)(GLuint pipeline); typedef GLboolean (GLAD_API_PTR *PFNGLISQUERYPROC)(GLuint id); typedef GLboolean (GLAD_API_PTR *PFNGLISQUERYARBPROC)(GLuint id); typedef GLboolean (GLAD_API_PTR *PFNGLISRENDERBUFFERPROC)(GLuint renderbuffer); typedef GLboolean (GLAD_API_PTR *PFNGLISSAMPLERPROC)(GLuint sampler); typedef GLboolean (GLAD_API_PTR *PFNGLISSHADERPROC)(GLuint shader); typedef GLboolean (GLAD_API_PTR *PFNGLISSYNCPROC)(GLsync sync); typedef GLboolean (GLAD_API_PTR *PFNGLISTEXTUREPROC)(GLuint texture); typedef GLboolean (GLAD_API_PTR *PFNGLISTEXTUREHANDLERESIDENTARBPROC)(GLuint64 handle); typedef GLboolean (GLAD_API_PTR *PFNGLISTRANSFORMFEEDBACKPROC)(GLuint id); typedef GLboolean (GLAD_API_PTR *PFNGLISVERTEXARRAYPROC)(GLuint array); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELFVPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLLIGHTMODELIVPROC)(GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLLIGHTFPROC)(GLenum light, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLLIGHTFVPROC)(GLenum light, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLLIGHTIPROC)(GLenum light, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLLIGHTIVPROC)(GLenum light, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLLINESTIPPLEPROC)(GLint factor, GLushort pattern); typedef void (GLAD_API_PTR *PFNGLLINEWIDTHPROC)(GLfloat width); typedef void (GLAD_API_PTR *PFNGLLINKPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLLINKPROGRAMARBPROC)(GLhandleARB programObj); typedef void (GLAD_API_PTR *PFNGLLISTBASEPROC)(GLuint base); typedef void (GLAD_API_PTR *PFNGLLOADIDENTITYPROC)(void); typedef void (GLAD_API_PTR *PFNGLLOADMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLLOADMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLLOADNAMEPROC)(GLuint name); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXDARBPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLLOADTRANSPOSEMATRIXFARBPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLLOGICOPPROC)(GLenum opcode); typedef void (GLAD_API_PTR *PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC)(GLuint64 handle); typedef void (GLAD_API_PTR *PFNGLMAKEIMAGEHANDLERESIDENTARBPROC)(GLuint64 handle, GLenum access); typedef void (GLAD_API_PTR *PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC)(GLuint64 handle); typedef void (GLAD_API_PTR *PFNGLMAKETEXTUREHANDLERESIDENTARBPROC)(GLuint64 handle); typedef void (GLAD_API_PTR *PFNGLMAP1DPROC)(GLenum target, GLdouble u1, GLdouble u2, GLint stride, GLint order, const GLdouble * points); typedef void (GLAD_API_PTR *PFNGLMAP1FPROC)(GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat * points); typedef void (GLAD_API_PTR *PFNGLMAP2DPROC)(GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder, GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble * points); typedef void (GLAD_API_PTR *PFNGLMAP2FPROC)(GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat * points); typedef void * (GLAD_API_PTR *PFNGLMAPBUFFERPROC)(GLenum target, GLenum access); typedef void * (GLAD_API_PTR *PFNGLMAPBUFFERARBPROC)(GLenum target, GLenum access); typedef void * (GLAD_API_PTR *PFNGLMAPBUFFERRANGEPROC)(GLenum target, GLintptr offset, GLsizeiptr length, GLbitfield access); typedef void (GLAD_API_PTR *PFNGLMAPGRID1DPROC)(GLint un, GLdouble u1, GLdouble u2); typedef void (GLAD_API_PTR *PFNGLMAPGRID1FPROC)(GLint un, GLfloat u1, GLfloat u2); typedef void (GLAD_API_PTR *PFNGLMAPGRID2DPROC)(GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1, GLdouble v2); typedef void (GLAD_API_PTR *PFNGLMAPGRID2FPROC)(GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2); typedef void * (GLAD_API_PTR *PFNGLMAPNAMEDBUFFERPROC)(GLuint buffer, GLenum access); typedef void * (GLAD_API_PTR *PFNGLMAPNAMEDBUFFERRANGEPROC)(GLuint buffer, GLintptr offset, GLsizeiptr length, GLbitfield access); typedef void (GLAD_API_PTR *PFNGLMATERIALFPROC)(GLenum face, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLMATERIALFVPROC)(GLenum face, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLMATERIALIPROC)(GLenum face, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLMATERIALIVPROC)(GLenum face, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXPOINTERARBPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXUBVARBPROC)(GLint size, const GLubyte * indices); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXUIVARBPROC)(GLint size, const GLuint * indices); typedef void (GLAD_API_PTR *PFNGLMATRIXINDEXUSVARBPROC)(GLint size, const GLushort * indices); typedef void (GLAD_API_PTR *PFNGLMATRIXMODEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLMAXSHADERCOMPILERTHREADSARBPROC)(GLuint count); typedef void (GLAD_API_PTR *PFNGLMAXSHADERCOMPILERTHREADSKHRPROC)(GLuint count); typedef void (GLAD_API_PTR *PFNGLMEMORYBARRIERPROC)(GLbitfield barriers); typedef void (GLAD_API_PTR *PFNGLMEMORYBARRIERBYREGIONPROC)(GLbitfield barriers); typedef void (GLAD_API_PTR *PFNGLMINSAMPLESHADINGPROC)(GLfloat value); typedef void (GLAD_API_PTR *PFNGLMINSAMPLESHADINGARBPROC)(GLfloat value); typedef void (GLAD_API_PTR *PFNGLMINMAXPROC)(GLenum target, GLenum internalformat, GLboolean sink); typedef void (GLAD_API_PTR *PFNGLMULTMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLMULTMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXDPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXDARBPROC)(const GLdouble * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXFPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLMULTTRANSPOSEMATRIXFARBPROC)(const GLfloat * m); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSPROC)(GLenum mode, const GLint * first, const GLsizei * count, GLsizei drawcount); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSINDIRECTPROC)(GLenum mode, const void * indirect, GLsizei drawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC)(GLenum mode, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC)(GLenum mode, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSPROC)(GLenum mode, const GLsizei * count, GLenum type, const void *const* indices, GLsizei drawcount); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC)(GLenum mode, const GLsizei * count, GLenum type, const void *const* indices, GLsizei drawcount, const GLint * basevertex); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSINDIRECTPROC)(GLenum mode, GLenum type, const void * indirect, GLsizei drawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC)(GLenum mode, GLenum type, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC)(GLenum mode, GLenum type, const void * indirect, GLintptr drawcount, GLsizei maxdrawcount, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DPROC)(GLenum target, GLdouble s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DARBPROC)(GLenum target, GLdouble s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FPROC)(GLenum target, GLfloat s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FARBPROC)(GLenum target, GLfloat s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IPROC)(GLenum target, GLint s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IARBPROC)(GLenum target, GLint s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SPROC)(GLenum target, GLshort s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SARBPROC)(GLenum target, GLshort s); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD1SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DPROC)(GLenum target, GLdouble s, GLdouble t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DARBPROC)(GLenum target, GLdouble s, GLdouble t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FPROC)(GLenum target, GLfloat s, GLfloat t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FARBPROC)(GLenum target, GLfloat s, GLfloat t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IPROC)(GLenum target, GLint s, GLint t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IARBPROC)(GLenum target, GLint s, GLint t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SPROC)(GLenum target, GLshort s, GLshort t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SARBPROC)(GLenum target, GLshort s, GLshort t); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD2SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DARBPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FARBPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IPROC)(GLenum target, GLint s, GLint t, GLint r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IARBPROC)(GLenum target, GLint s, GLint t, GLint r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SPROC)(GLenum target, GLshort s, GLshort t, GLshort r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SARBPROC)(GLenum target, GLshort s, GLshort t, GLshort r); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD3SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r, GLdouble q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DARBPROC)(GLenum target, GLdouble s, GLdouble t, GLdouble r, GLdouble q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DVPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4DVARBPROC)(GLenum target, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FARBPROC)(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FVPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4FVARBPROC)(GLenum target, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IPROC)(GLenum target, GLint s, GLint t, GLint r, GLint q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IARBPROC)(GLenum target, GLint s, GLint t, GLint r, GLint q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IVPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4IVARBPROC)(GLenum target, const GLint * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SPROC)(GLenum target, GLshort s, GLshort t, GLshort r, GLshort q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SARBPROC)(GLenum target, GLshort s, GLshort t, GLshort r, GLshort q); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SVPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORD4SVARBPROC)(GLenum target, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP1UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP1UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP2UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP2UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP3UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP3UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP4UIPROC)(GLenum texture, GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLMULTITEXCOORDP4UIVPROC)(GLenum texture, GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERDATAPROC)(GLuint buffer, GLsizeiptr size, const void * data, GLenum usage); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERSTORAGEPROC)(GLuint buffer, GLsizeiptr size, const void * data, GLbitfield flags); typedef void (GLAD_API_PTR *PFNGLNAMEDBUFFERSUBDATAPROC)(GLuint buffer, GLintptr offset, GLsizeiptr size, const void * data); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC)(GLuint framebuffer, GLenum buf); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC)(GLuint framebuffer, GLsizei n, const GLenum * bufs); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC)(GLuint framebuffer, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC)(GLuint framebuffer, GLenum src); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC)(GLuint framebuffer, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC)(GLuint framebuffer, GLuint start, GLsizei count, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERTEXTUREPROC)(GLuint framebuffer, GLenum attachment, GLuint texture, GLint level); typedef void (GLAD_API_PTR *PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC)(GLuint framebuffer, GLenum attachment, GLuint texture, GLint level, GLint layer); typedef void (GLAD_API_PTR *PFNGLNAMEDRENDERBUFFERSTORAGEPROC)(GLuint renderbuffer, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC)(GLuint renderbuffer, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLNAMEDSTRINGARBPROC)(GLenum type, GLint namelen, const GLchar * name, GLint stringlen, const GLchar * string); typedef void (GLAD_API_PTR *PFNGLNEWLISTPROC)(GLuint list, GLenum mode); typedef void (GLAD_API_PTR *PFNGLNORMAL3BPROC)(GLbyte nx, GLbyte ny, GLbyte nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3DPROC)(GLdouble nx, GLdouble ny, GLdouble nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3FPROC)(GLfloat nx, GLfloat ny, GLfloat nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3IPROC)(GLint nx, GLint ny, GLint nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLNORMAL3SPROC)(GLshort nx, GLshort ny, GLshort nz); typedef void (GLAD_API_PTR *PFNGLNORMAL3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLNORMALP3UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLNORMALP3UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLNORMALPOINTERPROC)(GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLOBJECTLABELPROC)(GLenum identifier, GLuint name, GLsizei length, const GLchar * label); typedef void (GLAD_API_PTR *PFNGLOBJECTPTRLABELPROC)(const void * ptr, GLsizei length, const GLchar * label); typedef void (GLAD_API_PTR *PFNGLORTHOPROC)(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar); typedef void (GLAD_API_PTR *PFNGLPASSTHROUGHPROC)(GLfloat token); typedef void (GLAD_API_PTR *PFNGLPATCHPARAMETERFVPROC)(GLenum pname, const GLfloat * values); typedef void (GLAD_API_PTR *PFNGLPATCHPARAMETERIPROC)(GLenum pname, GLint value); typedef void (GLAD_API_PTR *PFNGLPAUSETRANSFORMFEEDBACKPROC)(void); typedef void (GLAD_API_PTR *PFNGLPIXELMAPFVPROC)(GLenum map, GLsizei mapsize, const GLfloat * values); typedef void (GLAD_API_PTR *PFNGLPIXELMAPUIVPROC)(GLenum map, GLsizei mapsize, const GLuint * values); typedef void (GLAD_API_PTR *PFNGLPIXELMAPUSVPROC)(GLenum map, GLsizei mapsize, const GLushort * values); typedef void (GLAD_API_PTR *PFNGLPIXELSTOREFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPIXELSTOREIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLPIXELTRANSFERFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPIXELTRANSFERIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLPIXELZOOMPROC)(GLfloat xfactor, GLfloat yfactor); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFARBPROC)(GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFVPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERFVARBPROC)(GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERIPROC)(GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLPOINTPARAMETERIVPROC)(GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLPOINTSIZEPROC)(GLfloat size); typedef void (GLAD_API_PTR *PFNGLPOLYGONMODEPROC)(GLenum face, GLenum mode); typedef void (GLAD_API_PTR *PFNGLPOLYGONOFFSETPROC)(GLfloat factor, GLfloat units); typedef void (GLAD_API_PTR *PFNGLPOLYGONOFFSETCLAMPPROC)(GLfloat factor, GLfloat units, GLfloat clamp); typedef void (GLAD_API_PTR *PFNGLPOLYGONSTIPPLEPROC)(const GLubyte * mask); typedef void (GLAD_API_PTR *PFNGLPOPATTRIBPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPCLIENTATTRIBPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPDEBUGGROUPPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPMATRIXPROC)(void); typedef void (GLAD_API_PTR *PFNGLPOPNAMEPROC)(void); typedef void (GLAD_API_PTR *PFNGLPRIMITIVEBOUNDINGBOXPROC)(GLfloat minX, GLfloat minY, GLfloat minZ, GLfloat minW, GLfloat maxX, GLfloat maxY, GLfloat maxZ, GLfloat maxW); typedef void (GLAD_API_PTR *PFNGLPRIMITIVEBOUNDINGBOXARBPROC)(GLfloat minX, GLfloat minY, GLfloat minZ, GLfloat minW, GLfloat maxX, GLfloat maxY, GLfloat maxZ, GLfloat maxW); typedef void (GLAD_API_PTR *PFNGLPRIMITIVERESTARTINDEXPROC)(GLuint index); typedef void (GLAD_API_PTR *PFNGLPRIORITIZETEXTURESPROC)(GLsizei n, const GLuint * textures, const GLfloat * priorities); typedef void (GLAD_API_PTR *PFNGLPROGRAMBINARYPROC)(GLuint program, GLenum binaryFormat, const void * binary, GLsizei length); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4DARBPROC)(GLenum target, GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4DVARBPROC)(GLenum target, GLuint index, const GLdouble * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4FARBPROC)(GLenum target, GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLPROGRAMENVPARAMETER4FVARBPROC)(GLenum target, GLuint index, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4DARBPROC)(GLenum target, GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4DVARBPROC)(GLenum target, GLuint index, const GLdouble * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4FARBPROC)(GLenum target, GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLPROGRAMLOCALPARAMETER4FVARBPROC)(GLenum target, GLuint index, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLPROGRAMPARAMETERIPROC)(GLuint program, GLenum pname, GLint value); typedef void (GLAD_API_PTR *PFNGLPROGRAMPARAMETERIARBPROC)(GLuint program, GLenum pname, GLint value); typedef void (GLAD_API_PTR *PFNGLPROGRAMSTRINGARBPROC)(GLenum target, GLenum format, GLsizei len, const void * string); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1DPROC)(GLuint program, GLint location, GLdouble v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1FPROC)(GLuint program, GLint location, GLfloat v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1IPROC)(GLuint program, GLint location, GLint v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1I64ARBPROC)(GLuint program, GLint location, GLint64 x); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UIPROC)(GLuint program, GLint location, GLuint v0); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UI64ARBPROC)(GLuint program, GLint location, GLuint64 x); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM1UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2DPROC)(GLuint program, GLint location, GLdouble v0, GLdouble v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2FPROC)(GLuint program, GLint location, GLfloat v0, GLfloat v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2IPROC)(GLuint program, GLint location, GLint v0, GLint v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2I64ARBPROC)(GLuint program, GLint location, GLint64 x, GLint64 y); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UIPROC)(GLuint program, GLint location, GLuint v0, GLuint v1); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UI64ARBPROC)(GLuint program, GLint location, GLuint64 x, GLuint64 y); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM2UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3DPROC)(GLuint program, GLint location, GLdouble v0, GLdouble v1, GLdouble v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3FPROC)(GLuint program, GLint location, GLfloat v0, GLfloat v1, GLfloat v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3IPROC)(GLuint program, GLint location, GLint v0, GLint v1, GLint v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3I64ARBPROC)(GLuint program, GLint location, GLint64 x, GLint64 y, GLint64 z); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UIPROC)(GLuint program, GLint location, GLuint v0, GLuint v1, GLuint v2); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UI64ARBPROC)(GLuint program, GLint location, GLuint64 x, GLuint64 y, GLuint64 z); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM3UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4DPROC)(GLuint program, GLint location, GLdouble v0, GLdouble v1, GLdouble v2, GLdouble v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4DVPROC)(GLuint program, GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4FPROC)(GLuint program, GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4FVPROC)(GLuint program, GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4IPROC)(GLuint program, GLint location, GLint v0, GLint v1, GLint v2, GLint v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4I64ARBPROC)(GLuint program, GLint location, GLint64 x, GLint64 y, GLint64 z, GLint64 w); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4I64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4IVPROC)(GLuint program, GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UIPROC)(GLuint program, GLint location, GLuint v0, GLuint v1, GLuint v2, GLuint v3); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UI64ARBPROC)(GLuint program, GLint location, GLuint64 x, GLuint64 y, GLuint64 z, GLuint64 w); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORM4UIVPROC)(GLuint program, GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC)(GLuint program, GLint location, GLuint64 value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC)(GLuint program, GLint location, GLsizei count, const GLuint64 * values); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC)(GLuint program, GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLPROVOKINGVERTEXPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLPUSHATTRIBPROC)(GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLPUSHCLIENTATTRIBPROC)(GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLPUSHDEBUGGROUPPROC)(GLenum source, GLuint id, GLsizei length, const GLchar * message); typedef void (GLAD_API_PTR *PFNGLPUSHMATRIXPROC)(void); typedef void (GLAD_API_PTR *PFNGLPUSHNAMEPROC)(GLuint name); typedef void (GLAD_API_PTR *PFNGLQUERYCOUNTERPROC)(GLuint id, GLenum target); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2DPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2FPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2IPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2SPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLRASTERPOS2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3DPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3FPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3IPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3SPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLRASTERPOS3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4DPROC)(GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4FPROC)(GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4IPROC)(GLint x, GLint y, GLint z, GLint w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4SPROC)(GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLRASTERPOS4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLREADBUFFERPROC)(GLenum src); typedef void (GLAD_API_PTR *PFNGLREADPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, void * pixels); typedef void (GLAD_API_PTR *PFNGLREADNPIXELSPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei bufSize, void * data); typedef void (GLAD_API_PTR *PFNGLREADNPIXELSARBPROC)(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei bufSize, void * data); typedef void (GLAD_API_PTR *PFNGLRECTDPROC)(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2); typedef void (GLAD_API_PTR *PFNGLRECTDVPROC)(const GLdouble * v1, const GLdouble * v2); typedef void (GLAD_API_PTR *PFNGLRECTFPROC)(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2); typedef void (GLAD_API_PTR *PFNGLRECTFVPROC)(const GLfloat * v1, const GLfloat * v2); typedef void (GLAD_API_PTR *PFNGLRECTIPROC)(GLint x1, GLint y1, GLint x2, GLint y2); typedef void (GLAD_API_PTR *PFNGLRECTIVPROC)(const GLint * v1, const GLint * v2); typedef void (GLAD_API_PTR *PFNGLRECTSPROC)(GLshort x1, GLshort y1, GLshort x2, GLshort y2); typedef void (GLAD_API_PTR *PFNGLRECTSVPROC)(const GLshort * v1, const GLshort * v2); typedef void (GLAD_API_PTR *PFNGLRELEASESHADERCOMPILERPROC)(void); typedef GLint (GLAD_API_PTR *PFNGLRENDERMODEPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLRENDERBUFFERSTORAGEPROC)(GLenum target, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLRESETHISTOGRAMPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLRESETMINMAXPROC)(GLenum target); typedef void (GLAD_API_PTR *PFNGLRESUMETRANSFORMFEEDBACKPROC)(void); typedef void (GLAD_API_PTR *PFNGLROTATEDPROC)(GLdouble angle, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLROTATEFPROC)(GLfloat angle, GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLSAMPLECOVERAGEPROC)(GLfloat value, GLboolean invert); typedef void (GLAD_API_PTR *PFNGLSAMPLECOVERAGEARBPROC)(GLfloat value, GLboolean invert); typedef void (GLAD_API_PTR *PFNGLSAMPLEMASKIPROC)(GLuint maskNumber, GLbitfield mask); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIIVPROC)(GLuint sampler, GLenum pname, const GLint * param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIUIVPROC)(GLuint sampler, GLenum pname, const GLuint * param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERFPROC)(GLuint sampler, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERFVPROC)(GLuint sampler, GLenum pname, const GLfloat * param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIPROC)(GLuint sampler, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLSAMPLERPARAMETERIVPROC)(GLuint sampler, GLenum pname, const GLint * param); typedef void (GLAD_API_PTR *PFNGLSCALEDPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLSCALEFPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLSCISSORPROC)(GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLSCISSORARRAYVPROC)(GLuint first, GLsizei count, const GLint * v); typedef void (GLAD_API_PTR *PFNGLSCISSORINDEXEDPROC)(GLuint index, GLint left, GLint bottom, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLSCISSORINDEXEDVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3BPROC)(GLbyte red, GLbyte green, GLbyte blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3BVPROC)(const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3DPROC)(GLdouble red, GLdouble green, GLdouble blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3FPROC)(GLfloat red, GLfloat green, GLfloat blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3IPROC)(GLint red, GLint green, GLint blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3SPROC)(GLshort red, GLshort green, GLshort blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UBPROC)(GLubyte red, GLubyte green, GLubyte blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UBVPROC)(const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UIPROC)(GLuint red, GLuint green, GLuint blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3UIVPROC)(const GLuint * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3USPROC)(GLushort red, GLushort green, GLushort blue); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLOR3USVPROC)(const GLushort * v); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLORP3UIPROC)(GLenum type, GLuint color); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLORP3UIVPROC)(GLenum type, const GLuint * color); typedef void (GLAD_API_PTR *PFNGLSECONDARYCOLORPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLSELECTBUFFERPROC)(GLsizei size, GLuint * buffer); typedef void (GLAD_API_PTR *PFNGLSEPARABLEFILTER2DPROC)(GLenum target, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * row, const void * column); typedef void (GLAD_API_PTR *PFNGLSHADEMODELPROC)(GLenum mode); typedef void (GLAD_API_PTR *PFNGLSHADERBINARYPROC)(GLsizei count, const GLuint * shaders, GLenum binaryformat, const void * binary, GLsizei length); typedef void (GLAD_API_PTR *PFNGLSHADERSOURCEPROC)(GLuint shader, GLsizei count, const GLchar *const* string, const GLint * length); typedef void (GLAD_API_PTR *PFNGLSHADERSOURCEARBPROC)(GLhandleARB shaderObj, GLsizei count, const GLcharARB ** string, const GLint * length); typedef void (GLAD_API_PTR *PFNGLSHADERSTORAGEBLOCKBINDINGPROC)(GLuint program, GLuint storageBlockIndex, GLuint storageBlockBinding); typedef void (GLAD_API_PTR *PFNGLSPECIALIZESHADERPROC)(GLuint shader, const GLchar * pEntryPoint, GLuint numSpecializationConstants, const GLuint * pConstantIndex, const GLuint * pConstantValue); typedef void (GLAD_API_PTR *PFNGLSPECIALIZESHADERARBPROC)(GLuint shader, const GLchar * pEntryPoint, GLuint numSpecializationConstants, const GLuint * pConstantIndex, const GLuint * pConstantValue); typedef void (GLAD_API_PTR *PFNGLSTENCILFUNCPROC)(GLenum func, GLint ref, GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILFUNCSEPARATEPROC)(GLenum face, GLenum func, GLint ref, GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILMASKPROC)(GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILMASKSEPARATEPROC)(GLenum face, GLuint mask); typedef void (GLAD_API_PTR *PFNGLSTENCILOPPROC)(GLenum fail, GLenum zfail, GLenum zpass); typedef void (GLAD_API_PTR *PFNGLSTENCILOPSEPARATEPROC)(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass); typedef void (GLAD_API_PTR *PFNGLTEXBUFFERPROC)(GLenum target, GLenum internalformat, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTEXBUFFERARBPROC)(GLenum target, GLenum internalformat, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTEXBUFFERRANGEPROC)(GLenum target, GLenum internalformat, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1DPROC)(GLdouble s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1FPROC)(GLfloat s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1IPROC)(GLint s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1SPROC)(GLshort s); typedef void (GLAD_API_PTR *PFNGLTEXCOORD1SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2DPROC)(GLdouble s, GLdouble t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2FPROC)(GLfloat s, GLfloat t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2IPROC)(GLint s, GLint t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2SPROC)(GLshort s, GLshort t); typedef void (GLAD_API_PTR *PFNGLTEXCOORD2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3DPROC)(GLdouble s, GLdouble t, GLdouble r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3FPROC)(GLfloat s, GLfloat t, GLfloat r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3IPROC)(GLint s, GLint t, GLint r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3SPROC)(GLshort s, GLshort t, GLshort r); typedef void (GLAD_API_PTR *PFNGLTEXCOORD3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4DPROC)(GLdouble s, GLdouble t, GLdouble r, GLdouble q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4FPROC)(GLfloat s, GLfloat t, GLfloat r, GLfloat q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4IPROC)(GLint s, GLint t, GLint r, GLint q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4SPROC)(GLshort s, GLshort t, GLshort r, GLshort q); typedef void (GLAD_API_PTR *PFNGLTEXCOORD4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP1UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP1UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP2UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP2UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP3UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP3UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP4UIPROC)(GLenum type, GLuint coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDP4UIVPROC)(GLenum type, const GLuint * coords); typedef void (GLAD_API_PTR *PFNGLTEXCOORDPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLTEXENVFPROC)(GLenum target, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXENVFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLTEXENVIPROC)(GLenum target, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXENVIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXGENDPROC)(GLenum coord, GLenum pname, GLdouble param); typedef void (GLAD_API_PTR *PFNGLTEXGENDVPROC)(GLenum coord, GLenum pname, const GLdouble * params); typedef void (GLAD_API_PTR *PFNGLTEXGENFPROC)(GLenum coord, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXGENFVPROC)(GLenum coord, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLTEXGENIPROC)(GLenum coord, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXGENIVPROC)(GLenum coord, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE1DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLint border, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE2DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE2DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE3DPROC)(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXIMAGE3DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXPAGECOMMITMENTARBPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLboolean commit); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIUIVPROC)(GLenum target, GLenum pname, const GLuint * params); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERFPROC)(GLenum target, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERFVPROC)(GLenum target, GLenum pname, const GLfloat * params); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIPROC)(GLenum target, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXPARAMETERIVPROC)(GLenum target, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE1DPROC)(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE2DPROC)(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE2DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE3DPROC)(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth); typedef void (GLAD_API_PTR *PFNGLTEXSTORAGE3DMULTISAMPLEPROC)(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXSUBIMAGE1DPROC)(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXSUBIMAGE2DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXSUBIMAGE3DPROC)(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTUREBARRIERPROC)(void); typedef void (GLAD_API_PTR *PFNGLTEXTUREBUFFERPROC)(GLuint texture, GLenum internalformat, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTEXTUREBUFFERRANGEPROC)(GLuint texture, GLenum internalformat, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIIVPROC)(GLuint texture, GLenum pname, const GLint * params); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIUIVPROC)(GLuint texture, GLenum pname, const GLuint * params); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERFPROC)(GLuint texture, GLenum pname, GLfloat param); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERFVPROC)(GLuint texture, GLenum pname, const GLfloat * param); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIPROC)(GLuint texture, GLenum pname, GLint param); typedef void (GLAD_API_PTR *PFNGLTEXTUREPARAMETERIVPROC)(GLuint texture, GLenum pname, const GLint * param); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE1DPROC)(GLuint texture, GLsizei levels, GLenum internalformat, GLsizei width); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE2DPROC)(GLuint texture, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC)(GLuint texture, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE3DPROC)(GLuint texture, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth); typedef void (GLAD_API_PTR *PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC)(GLuint texture, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLboolean fixedsamplelocations); typedef void (GLAD_API_PTR *PFNGLTEXTURESUBIMAGE1DPROC)(GLuint texture, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTURESUBIMAGE2DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTURESUBIMAGE3DPROC)(GLuint texture, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void * pixels); typedef void (GLAD_API_PTR *PFNGLTEXTUREVIEWPROC)(GLuint texture, GLenum target, GLuint origtexture, GLenum internalformat, GLuint minlevel, GLuint numlevels, GLuint minlayer, GLuint numlayers); typedef void (GLAD_API_PTR *PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC)(GLuint xfb, GLuint index, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC)(GLuint xfb, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size); typedef void (GLAD_API_PTR *PFNGLTRANSFORMFEEDBACKVARYINGSPROC)(GLuint program, GLsizei count, const GLchar *const* varyings, GLenum bufferMode); typedef void (GLAD_API_PTR *PFNGLTRANSLATEDPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLTRANSLATEFPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLUNIFORM1DPROC)(GLint location, GLdouble x); typedef void (GLAD_API_PTR *PFNGLUNIFORM1DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FPROC)(GLint location, GLfloat v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FARBPROC)(GLint location, GLfloat v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IPROC)(GLint location, GLint v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1I64ARBPROC)(GLint location, GLint64 x); typedef void (GLAD_API_PTR *PFNGLUNIFORM1I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IARBPROC)(GLint location, GLint v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UIPROC)(GLint location, GLuint v0); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UI64ARBPROC)(GLint location, GLuint64 x); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM1UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2DPROC)(GLint location, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLUNIFORM2DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FPROC)(GLint location, GLfloat v0, GLfloat v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FARBPROC)(GLint location, GLfloat v0, GLfloat v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IPROC)(GLint location, GLint v0, GLint v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2I64ARBPROC)(GLint location, GLint64 x, GLint64 y); typedef void (GLAD_API_PTR *PFNGLUNIFORM2I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IARBPROC)(GLint location, GLint v0, GLint v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UIPROC)(GLint location, GLuint v0, GLuint v1); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UI64ARBPROC)(GLint location, GLuint64 x, GLuint64 y); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM2UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3DPROC)(GLint location, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLUNIFORM3DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FARBPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IPROC)(GLint location, GLint v0, GLint v1, GLint v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3I64ARBPROC)(GLint location, GLint64 x, GLint64 y, GLint64 z); typedef void (GLAD_API_PTR *PFNGLUNIFORM3I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IARBPROC)(GLint location, GLint v0, GLint v1, GLint v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UIPROC)(GLint location, GLuint v0, GLuint v1, GLuint v2); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UI64ARBPROC)(GLint location, GLuint64 x, GLuint64 y, GLuint64 z); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM3UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4DPROC)(GLint location, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLUNIFORM4DVPROC)(GLint location, GLsizei count, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FARBPROC)(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FVPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4FVARBPROC)(GLint location, GLsizei count, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IPROC)(GLint location, GLint v0, GLint v1, GLint v2, GLint v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4I64ARBPROC)(GLint location, GLint64 x, GLint64 y, GLint64 z, GLint64 w); typedef void (GLAD_API_PTR *PFNGLUNIFORM4I64VARBPROC)(GLint location, GLsizei count, const GLint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IARBPROC)(GLint location, GLint v0, GLint v1, GLint v2, GLint v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IVPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4IVARBPROC)(GLint location, GLsizei count, const GLint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UIPROC)(GLint location, GLuint v0, GLuint v1, GLuint v2, GLuint v3); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UI64ARBPROC)(GLint location, GLuint64 x, GLuint64 y, GLuint64 z, GLuint64 w); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORM4UIVPROC)(GLint location, GLsizei count, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMBLOCKBINDINGPROC)(GLuint program, GLuint uniformBlockIndex, GLuint uniformBlockBinding); typedef void (GLAD_API_PTR *PFNGLUNIFORMHANDLEUI64ARBPROC)(GLint location, GLuint64 value); typedef void (GLAD_API_PTR *PFNGLUNIFORMHANDLEUI64VARBPROC)(GLint location, GLsizei count, const GLuint64 * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2FVARBPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X3DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X4DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX2X4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3FVARBPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X2DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X4DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX3X4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4FVARBPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X2DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X2FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X3DVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLdouble * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMMATRIX4X3FVPROC)(GLint location, GLsizei count, GLboolean transpose, const GLfloat * value); typedef void (GLAD_API_PTR *PFNGLUNIFORMSUBROUTINESUIVPROC)(GLenum shadertype, GLsizei count, const GLuint * indices); typedef GLboolean (GLAD_API_PTR *PFNGLUNMAPBUFFERPROC)(GLenum target); typedef GLboolean (GLAD_API_PTR *PFNGLUNMAPBUFFERARBPROC)(GLenum target); typedef GLboolean (GLAD_API_PTR *PFNGLUNMAPNAMEDBUFFERPROC)(GLuint buffer); typedef void (GLAD_API_PTR *PFNGLUSEPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLUSEPROGRAMOBJECTARBPROC)(GLhandleARB programObj); typedef void (GLAD_API_PTR *PFNGLUSEPROGRAMSTAGESPROC)(GLuint pipeline, GLbitfield stages, GLuint program); typedef void (GLAD_API_PTR *PFNGLVALIDATEPROGRAMPROC)(GLuint program); typedef void (GLAD_API_PTR *PFNGLVALIDATEPROGRAMARBPROC)(GLhandleARB programObj); typedef void (GLAD_API_PTR *PFNGLVALIDATEPROGRAMPIPELINEPROC)(GLuint pipeline); typedef void (GLAD_API_PTR *PFNGLVERTEX2DPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEX2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEX2FPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLVERTEX2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEX2IPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLVERTEX2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEX2SPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLVERTEX2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3DPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEX3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3FPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLVERTEX3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3IPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLVERTEX3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEX3SPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLVERTEX3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4DPROC)(GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEX4DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4FPROC)(GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLVERTEX4FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4IPROC)(GLint x, GLint y, GLint z, GLint w); typedef void (GLAD_API_PTR *PFNGLVERTEX4IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEX4SPROC)(GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLVERTEX4SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBBINDINGPROC)(GLuint vaobj, GLuint attribindex, GLuint bindingindex); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBFORMATPROC)(GLuint vaobj, GLuint attribindex, GLint size, GLenum type, GLboolean normalized, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBIFORMATPROC)(GLuint vaobj, GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYATTRIBLFORMATPROC)(GLuint vaobj, GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYBINDINGDIVISORPROC)(GLuint vaobj, GLuint bindingindex, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYELEMENTBUFFERPROC)(GLuint vaobj, GLuint buffer); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYVERTEXBUFFERPROC)(GLuint vaobj, GLuint bindingindex, GLuint buffer, GLintptr offset, GLsizei stride); typedef void (GLAD_API_PTR *PFNGLVERTEXARRAYVERTEXBUFFERSPROC)(GLuint vaobj, GLuint first, GLsizei count, const GLuint * buffers, const GLintptr * offsets, const GLsizei * strides); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DPROC)(GLuint index, GLdouble x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DARBPROC)(GLuint index, GLdouble x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FPROC)(GLuint index, GLfloat x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FARBPROC)(GLuint index, GLfloat x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SPROC)(GLuint index, GLshort x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SARBPROC)(GLuint index, GLshort x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB1SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DPROC)(GLuint index, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DARBPROC)(GLuint index, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FPROC)(GLuint index, GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FARBPROC)(GLuint index, GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SPROC)(GLuint index, GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SARBPROC)(GLuint index, GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB2SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DARBPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FARBPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SPROC)(GLuint index, GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SARBPROC)(GLuint index, GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB3SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NBVPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NBVARBPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NIVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NIVARBPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NSVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NSVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBPROC)(GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBARBPROC)(GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBVPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUBVARBPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUIVARBPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUSVPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4NUSVARBPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4BVPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4BVARBPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DARBPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4DVARBPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FARBPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4FVARBPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4IVARBPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SPROC)(GLuint index, GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SARBPROC)(GLuint index, GLshort x, GLshort y, GLshort z, GLshort w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4SVARBPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UBVPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UBVARBPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4UIVARBPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4USVPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIB4USVARBPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBBINDINGPROC)(GLuint attribindex, GLuint bindingindex); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBDIVISORPROC)(GLuint index, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBDIVISORARBPROC)(GLuint index, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBFORMATPROC)(GLuint attribindex, GLint size, GLenum type, GLboolean normalized, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1IPROC)(GLuint index, GLint x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1UIPROC)(GLuint index, GLuint x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI1UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2IPROC)(GLuint index, GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2UIPROC)(GLuint index, GLuint x, GLuint y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI2UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3IPROC)(GLuint index, GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3UIPROC)(GLuint index, GLuint x, GLuint y, GLuint z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI3UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4BVPROC)(GLuint index, const GLbyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4IPROC)(GLuint index, GLint x, GLint y, GLint z, GLint w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4IVPROC)(GLuint index, const GLint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4SVPROC)(GLuint index, const GLshort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4UBVPROC)(GLuint index, const GLubyte * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4UIPROC)(GLuint index, GLuint x, GLuint y, GLuint z, GLuint w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4UIVPROC)(GLuint index, const GLuint * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBI4USVPROC)(GLuint index, const GLushort * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBIFORMATPROC)(GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBIPOINTERPROC)(GLuint index, GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1DPROC)(GLuint index, GLdouble x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1UI64ARBPROC)(GLuint index, GLuint64EXT x); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL1UI64VARBPROC)(GLuint index, const GLuint64EXT * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL2DPROC)(GLuint index, GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL2DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL3DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL3DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL4DPROC)(GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBL4DVPROC)(GLuint index, const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBLFORMATPROC)(GLuint attribindex, GLint size, GLenum type, GLuint relativeoffset); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBLPOINTERPROC)(GLuint index, GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP1UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP1UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP2UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP2UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP3UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP3UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP4UIPROC)(GLuint index, GLenum type, GLboolean normalized, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBP4UIVPROC)(GLuint index, GLenum type, GLboolean normalized, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBPOINTERPROC)(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXATTRIBPOINTERARBPROC)(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVERTEXBINDINGDIVISORPROC)(GLuint bindingindex, GLuint divisor); typedef void (GLAD_API_PTR *PFNGLVERTEXBLENDARBPROC)(GLint count); typedef void (GLAD_API_PTR *PFNGLVERTEXP2UIPROC)(GLenum type, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXP2UIVPROC)(GLenum type, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXP3UIPROC)(GLenum type, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXP3UIVPROC)(GLenum type, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXP4UIPROC)(GLenum type, GLuint value); typedef void (GLAD_API_PTR *PFNGLVERTEXP4UIVPROC)(GLenum type, const GLuint * value); typedef void (GLAD_API_PTR *PFNGLVERTEXPOINTERPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLVIEWPORTPROC)(GLint x, GLint y, GLsizei width, GLsizei height); typedef void (GLAD_API_PTR *PFNGLVIEWPORTARRAYVPROC)(GLuint first, GLsizei count, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLVIEWPORTINDEXEDFPROC)(GLuint index, GLfloat x, GLfloat y, GLfloat w, GLfloat h); typedef void (GLAD_API_PTR *PFNGLVIEWPORTINDEXEDFVPROC)(GLuint index, const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWAITSYNCPROC)(GLsync sync, GLbitfield flags, GLuint64 timeout); typedef void (GLAD_API_PTR *PFNGLWEIGHTPOINTERARBPROC)(GLint size, GLenum type, GLsizei stride, const void * pointer); typedef void (GLAD_API_PTR *PFNGLWEIGHTBVARBPROC)(GLint size, const GLbyte * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTDVARBPROC)(GLint size, const GLdouble * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTFVARBPROC)(GLint size, const GLfloat * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTIVARBPROC)(GLint size, const GLint * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTSVARBPROC)(GLint size, const GLshort * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTUBVARBPROC)(GLint size, const GLubyte * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTUIVARBPROC)(GLint size, const GLuint * weights); typedef void (GLAD_API_PTR *PFNGLWEIGHTUSVARBPROC)(GLint size, const GLushort * weights); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DARBPROC)(GLdouble x, GLdouble y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2DVARBPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FARBPROC)(GLfloat x, GLfloat y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2FVARBPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IARBPROC)(GLint x, GLint y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2IVARBPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SARBPROC)(GLshort x, GLshort y); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS2SVARBPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DARBPROC)(GLdouble x, GLdouble y, GLdouble z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DVPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3DVARBPROC)(const GLdouble * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FARBPROC)(GLfloat x, GLfloat y, GLfloat z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FVPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3FVARBPROC)(const GLfloat * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IARBPROC)(GLint x, GLint y, GLint z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IVPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3IVARBPROC)(const GLint * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SARBPROC)(GLshort x, GLshort y, GLshort z); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SVPROC)(const GLshort * v); typedef void (GLAD_API_PTR *PFNGLWINDOWPOS3SVARBPROC)(const GLshort * v); GLAD_API_CALL PFNGLACCUMPROC glad_glAccum; #define glAccum glad_glAccum GLAD_API_CALL PFNGLACTIVESHADERPROGRAMPROC glad_glActiveShaderProgram; #define glActiveShaderProgram glad_glActiveShaderProgram GLAD_API_CALL PFNGLACTIVETEXTUREPROC glad_glActiveTexture; #define glActiveTexture glad_glActiveTexture GLAD_API_CALL PFNGLACTIVETEXTUREARBPROC glad_glActiveTextureARB; #define glActiveTextureARB glad_glActiveTextureARB GLAD_API_CALL PFNGLALPHAFUNCPROC glad_glAlphaFunc; #define glAlphaFunc glad_glAlphaFunc GLAD_API_CALL PFNGLARETEXTURESRESIDENTPROC glad_glAreTexturesResident; #define glAreTexturesResident glad_glAreTexturesResident GLAD_API_CALL PFNGLARRAYELEMENTPROC glad_glArrayElement; #define glArrayElement glad_glArrayElement GLAD_API_CALL PFNGLATTACHOBJECTARBPROC glad_glAttachObjectARB; #define glAttachObjectARB glad_glAttachObjectARB GLAD_API_CALL PFNGLATTACHSHADERPROC glad_glAttachShader; #define glAttachShader glad_glAttachShader GLAD_API_CALL PFNGLBEGINPROC glad_glBegin; #define glBegin glad_glBegin GLAD_API_CALL PFNGLBEGINCONDITIONALRENDERPROC glad_glBeginConditionalRender; #define glBeginConditionalRender glad_glBeginConditionalRender GLAD_API_CALL PFNGLBEGINQUERYPROC glad_glBeginQuery; #define glBeginQuery glad_glBeginQuery GLAD_API_CALL PFNGLBEGINQUERYARBPROC glad_glBeginQueryARB; #define glBeginQueryARB glad_glBeginQueryARB GLAD_API_CALL PFNGLBEGINQUERYINDEXEDPROC glad_glBeginQueryIndexed; #define glBeginQueryIndexed glad_glBeginQueryIndexed GLAD_API_CALL PFNGLBEGINTRANSFORMFEEDBACKPROC glad_glBeginTransformFeedback; #define glBeginTransformFeedback glad_glBeginTransformFeedback GLAD_API_CALL PFNGLBINDATTRIBLOCATIONPROC glad_glBindAttribLocation; #define glBindAttribLocation glad_glBindAttribLocation GLAD_API_CALL PFNGLBINDATTRIBLOCATIONARBPROC glad_glBindAttribLocationARB; #define glBindAttribLocationARB glad_glBindAttribLocationARB GLAD_API_CALL PFNGLBINDBUFFERPROC glad_glBindBuffer; #define glBindBuffer glad_glBindBuffer GLAD_API_CALL PFNGLBINDBUFFERARBPROC glad_glBindBufferARB; #define glBindBufferARB glad_glBindBufferARB GLAD_API_CALL PFNGLBINDBUFFERBASEPROC glad_glBindBufferBase; #define glBindBufferBase glad_glBindBufferBase GLAD_API_CALL PFNGLBINDBUFFERRANGEPROC glad_glBindBufferRange; #define glBindBufferRange glad_glBindBufferRange GLAD_API_CALL PFNGLBINDBUFFERSBASEPROC glad_glBindBuffersBase; #define glBindBuffersBase glad_glBindBuffersBase GLAD_API_CALL PFNGLBINDBUFFERSRANGEPROC glad_glBindBuffersRange; #define glBindBuffersRange glad_glBindBuffersRange GLAD_API_CALL PFNGLBINDFRAGDATALOCATIONPROC glad_glBindFragDataLocation; #define glBindFragDataLocation glad_glBindFragDataLocation GLAD_API_CALL PFNGLBINDFRAGDATALOCATIONINDEXEDPROC glad_glBindFragDataLocationIndexed; #define glBindFragDataLocationIndexed glad_glBindFragDataLocationIndexed GLAD_API_CALL PFNGLBINDFRAMEBUFFERPROC glad_glBindFramebuffer; #define glBindFramebuffer glad_glBindFramebuffer GLAD_API_CALL PFNGLBINDIMAGETEXTUREPROC glad_glBindImageTexture; #define glBindImageTexture glad_glBindImageTexture GLAD_API_CALL PFNGLBINDIMAGETEXTURESPROC glad_glBindImageTextures; #define glBindImageTextures glad_glBindImageTextures GLAD_API_CALL PFNGLBINDPROGRAMARBPROC glad_glBindProgramARB; #define glBindProgramARB glad_glBindProgramARB GLAD_API_CALL PFNGLBINDPROGRAMPIPELINEPROC glad_glBindProgramPipeline; #define glBindProgramPipeline glad_glBindProgramPipeline GLAD_API_CALL PFNGLBINDRENDERBUFFERPROC glad_glBindRenderbuffer; #define glBindRenderbuffer glad_glBindRenderbuffer GLAD_API_CALL PFNGLBINDSAMPLERPROC glad_glBindSampler; #define glBindSampler glad_glBindSampler GLAD_API_CALL PFNGLBINDSAMPLERSPROC glad_glBindSamplers; #define glBindSamplers glad_glBindSamplers GLAD_API_CALL PFNGLBINDTEXTUREPROC glad_glBindTexture; #define glBindTexture glad_glBindTexture GLAD_API_CALL PFNGLBINDTEXTUREUNITPROC glad_glBindTextureUnit; #define glBindTextureUnit glad_glBindTextureUnit GLAD_API_CALL PFNGLBINDTEXTURESPROC glad_glBindTextures; #define glBindTextures glad_glBindTextures GLAD_API_CALL PFNGLBINDTRANSFORMFEEDBACKPROC glad_glBindTransformFeedback; #define glBindTransformFeedback glad_glBindTransformFeedback GLAD_API_CALL PFNGLBINDVERTEXARRAYPROC glad_glBindVertexArray; #define glBindVertexArray glad_glBindVertexArray GLAD_API_CALL PFNGLBINDVERTEXBUFFERPROC glad_glBindVertexBuffer; #define glBindVertexBuffer glad_glBindVertexBuffer GLAD_API_CALL PFNGLBINDVERTEXBUFFERSPROC glad_glBindVertexBuffers; #define glBindVertexBuffers glad_glBindVertexBuffers GLAD_API_CALL PFNGLBITMAPPROC glad_glBitmap; #define glBitmap glad_glBitmap GLAD_API_CALL PFNGLBLENDBARRIERPROC glad_glBlendBarrier; #define glBlendBarrier glad_glBlendBarrier GLAD_API_CALL PFNGLBLENDBARRIERKHRPROC glad_glBlendBarrierKHR; #define glBlendBarrierKHR glad_glBlendBarrierKHR GLAD_API_CALL PFNGLBLENDCOLORPROC glad_glBlendColor; #define glBlendColor glad_glBlendColor GLAD_API_CALL PFNGLBLENDEQUATIONPROC glad_glBlendEquation; #define glBlendEquation glad_glBlendEquation GLAD_API_CALL PFNGLBLENDEQUATIONSEPARATEPROC glad_glBlendEquationSeparate; #define glBlendEquationSeparate glad_glBlendEquationSeparate GLAD_API_CALL PFNGLBLENDEQUATIONSEPARATEIPROC glad_glBlendEquationSeparatei; #define glBlendEquationSeparatei glad_glBlendEquationSeparatei GLAD_API_CALL PFNGLBLENDEQUATIONSEPARATEIARBPROC glad_glBlendEquationSeparateiARB; #define glBlendEquationSeparateiARB glad_glBlendEquationSeparateiARB GLAD_API_CALL PFNGLBLENDEQUATIONIPROC glad_glBlendEquationi; #define glBlendEquationi glad_glBlendEquationi GLAD_API_CALL PFNGLBLENDEQUATIONIARBPROC glad_glBlendEquationiARB; #define glBlendEquationiARB glad_glBlendEquationiARB GLAD_API_CALL PFNGLBLENDFUNCPROC glad_glBlendFunc; #define glBlendFunc glad_glBlendFunc GLAD_API_CALL PFNGLBLENDFUNCSEPARATEPROC glad_glBlendFuncSeparate; #define glBlendFuncSeparate glad_glBlendFuncSeparate GLAD_API_CALL PFNGLBLENDFUNCSEPARATEIPROC glad_glBlendFuncSeparatei; #define glBlendFuncSeparatei glad_glBlendFuncSeparatei GLAD_API_CALL PFNGLBLENDFUNCSEPARATEIARBPROC glad_glBlendFuncSeparateiARB; #define glBlendFuncSeparateiARB glad_glBlendFuncSeparateiARB GLAD_API_CALL PFNGLBLENDFUNCIPROC glad_glBlendFunci; #define glBlendFunci glad_glBlendFunci GLAD_API_CALL PFNGLBLENDFUNCIARBPROC glad_glBlendFunciARB; #define glBlendFunciARB glad_glBlendFunciARB GLAD_API_CALL PFNGLBLITFRAMEBUFFERPROC glad_glBlitFramebuffer; #define glBlitFramebuffer glad_glBlitFramebuffer GLAD_API_CALL PFNGLBLITNAMEDFRAMEBUFFERPROC glad_glBlitNamedFramebuffer; #define glBlitNamedFramebuffer glad_glBlitNamedFramebuffer GLAD_API_CALL PFNGLBUFFERDATAPROC glad_glBufferData; #define glBufferData glad_glBufferData GLAD_API_CALL PFNGLBUFFERDATAARBPROC glad_glBufferDataARB; #define glBufferDataARB glad_glBufferDataARB GLAD_API_CALL PFNGLBUFFERPAGECOMMITMENTARBPROC glad_glBufferPageCommitmentARB; #define glBufferPageCommitmentARB glad_glBufferPageCommitmentARB GLAD_API_CALL PFNGLBUFFERSTORAGEPROC glad_glBufferStorage; #define glBufferStorage glad_glBufferStorage GLAD_API_CALL PFNGLBUFFERSUBDATAPROC glad_glBufferSubData; #define glBufferSubData glad_glBufferSubData GLAD_API_CALL PFNGLBUFFERSUBDATAARBPROC glad_glBufferSubDataARB; #define glBufferSubDataARB glad_glBufferSubDataARB GLAD_API_CALL PFNGLCALLLISTPROC glad_glCallList; #define glCallList glad_glCallList GLAD_API_CALL PFNGLCALLLISTSPROC glad_glCallLists; #define glCallLists glad_glCallLists GLAD_API_CALL PFNGLCHECKFRAMEBUFFERSTATUSPROC glad_glCheckFramebufferStatus; #define glCheckFramebufferStatus glad_glCheckFramebufferStatus GLAD_API_CALL PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC glad_glCheckNamedFramebufferStatus; #define glCheckNamedFramebufferStatus glad_glCheckNamedFramebufferStatus GLAD_API_CALL PFNGLCLAMPCOLORPROC glad_glClampColor; #define glClampColor glad_glClampColor GLAD_API_CALL PFNGLCLAMPCOLORARBPROC glad_glClampColorARB; #define glClampColorARB glad_glClampColorARB GLAD_API_CALL PFNGLCLEARPROC glad_glClear; #define glClear glad_glClear GLAD_API_CALL PFNGLCLEARACCUMPROC glad_glClearAccum; #define glClearAccum glad_glClearAccum GLAD_API_CALL PFNGLCLEARBUFFERDATAPROC glad_glClearBufferData; #define glClearBufferData glad_glClearBufferData GLAD_API_CALL PFNGLCLEARBUFFERSUBDATAPROC glad_glClearBufferSubData; #define glClearBufferSubData glad_glClearBufferSubData GLAD_API_CALL PFNGLCLEARBUFFERFIPROC glad_glClearBufferfi; #define glClearBufferfi glad_glClearBufferfi GLAD_API_CALL PFNGLCLEARBUFFERFVPROC glad_glClearBufferfv; #define glClearBufferfv glad_glClearBufferfv GLAD_API_CALL PFNGLCLEARBUFFERIVPROC glad_glClearBufferiv; #define glClearBufferiv glad_glClearBufferiv GLAD_API_CALL PFNGLCLEARBUFFERUIVPROC glad_glClearBufferuiv; #define glClearBufferuiv glad_glClearBufferuiv GLAD_API_CALL PFNGLCLEARCOLORPROC glad_glClearColor; #define glClearColor glad_glClearColor GLAD_API_CALL PFNGLCLEARDEPTHPROC glad_glClearDepth; #define glClearDepth glad_glClearDepth GLAD_API_CALL PFNGLCLEARDEPTHFPROC glad_glClearDepthf; #define glClearDepthf glad_glClearDepthf GLAD_API_CALL PFNGLCLEARINDEXPROC glad_glClearIndex; #define glClearIndex glad_glClearIndex GLAD_API_CALL PFNGLCLEARNAMEDBUFFERDATAPROC glad_glClearNamedBufferData; #define glClearNamedBufferData glad_glClearNamedBufferData GLAD_API_CALL PFNGLCLEARNAMEDBUFFERSUBDATAPROC glad_glClearNamedBufferSubData; #define glClearNamedBufferSubData glad_glClearNamedBufferSubData GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERFIPROC glad_glClearNamedFramebufferfi; #define glClearNamedFramebufferfi glad_glClearNamedFramebufferfi GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERFVPROC glad_glClearNamedFramebufferfv; #define glClearNamedFramebufferfv glad_glClearNamedFramebufferfv GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERIVPROC glad_glClearNamedFramebufferiv; #define glClearNamedFramebufferiv glad_glClearNamedFramebufferiv GLAD_API_CALL PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC glad_glClearNamedFramebufferuiv; #define glClearNamedFramebufferuiv glad_glClearNamedFramebufferuiv GLAD_API_CALL PFNGLCLEARSTENCILPROC glad_glClearStencil; #define glClearStencil glad_glClearStencil GLAD_API_CALL PFNGLCLEARTEXIMAGEPROC glad_glClearTexImage; #define glClearTexImage glad_glClearTexImage GLAD_API_CALL PFNGLCLEARTEXSUBIMAGEPROC glad_glClearTexSubImage; #define glClearTexSubImage glad_glClearTexSubImage GLAD_API_CALL PFNGLCLIENTACTIVETEXTUREPROC glad_glClientActiveTexture; #define glClientActiveTexture glad_glClientActiveTexture GLAD_API_CALL PFNGLCLIENTACTIVETEXTUREARBPROC glad_glClientActiveTextureARB; #define glClientActiveTextureARB glad_glClientActiveTextureARB GLAD_API_CALL PFNGLCLIENTWAITSYNCPROC glad_glClientWaitSync; #define glClientWaitSync glad_glClientWaitSync GLAD_API_CALL PFNGLCLIPCONTROLPROC glad_glClipControl; #define glClipControl glad_glClipControl GLAD_API_CALL PFNGLCLIPPLANEPROC glad_glClipPlane; #define glClipPlane glad_glClipPlane GLAD_API_CALL PFNGLCOLOR3BPROC glad_glColor3b; #define glColor3b glad_glColor3b GLAD_API_CALL PFNGLCOLOR3BVPROC glad_glColor3bv; #define glColor3bv glad_glColor3bv GLAD_API_CALL PFNGLCOLOR3DPROC glad_glColor3d; #define glColor3d glad_glColor3d GLAD_API_CALL PFNGLCOLOR3DVPROC glad_glColor3dv; #define glColor3dv glad_glColor3dv GLAD_API_CALL PFNGLCOLOR3FPROC glad_glColor3f; #define glColor3f glad_glColor3f GLAD_API_CALL PFNGLCOLOR3FVPROC glad_glColor3fv; #define glColor3fv glad_glColor3fv GLAD_API_CALL PFNGLCOLOR3IPROC glad_glColor3i; #define glColor3i glad_glColor3i GLAD_API_CALL PFNGLCOLOR3IVPROC glad_glColor3iv; #define glColor3iv glad_glColor3iv GLAD_API_CALL PFNGLCOLOR3SPROC glad_glColor3s; #define glColor3s glad_glColor3s GLAD_API_CALL PFNGLCOLOR3SVPROC glad_glColor3sv; #define glColor3sv glad_glColor3sv GLAD_API_CALL PFNGLCOLOR3UBPROC glad_glColor3ub; #define glColor3ub glad_glColor3ub GLAD_API_CALL PFNGLCOLOR3UBVPROC glad_glColor3ubv; #define glColor3ubv glad_glColor3ubv GLAD_API_CALL PFNGLCOLOR3UIPROC glad_glColor3ui; #define glColor3ui glad_glColor3ui GLAD_API_CALL PFNGLCOLOR3UIVPROC glad_glColor3uiv; #define glColor3uiv glad_glColor3uiv GLAD_API_CALL PFNGLCOLOR3USPROC glad_glColor3us; #define glColor3us glad_glColor3us GLAD_API_CALL PFNGLCOLOR3USVPROC glad_glColor3usv; #define glColor3usv glad_glColor3usv GLAD_API_CALL PFNGLCOLOR4BPROC glad_glColor4b; #define glColor4b glad_glColor4b GLAD_API_CALL PFNGLCOLOR4BVPROC glad_glColor4bv; #define glColor4bv glad_glColor4bv GLAD_API_CALL PFNGLCOLOR4DPROC glad_glColor4d; #define glColor4d glad_glColor4d GLAD_API_CALL PFNGLCOLOR4DVPROC glad_glColor4dv; #define glColor4dv glad_glColor4dv GLAD_API_CALL PFNGLCOLOR4FPROC glad_glColor4f; #define glColor4f glad_glColor4f GLAD_API_CALL PFNGLCOLOR4FVPROC glad_glColor4fv; #define glColor4fv glad_glColor4fv GLAD_API_CALL PFNGLCOLOR4IPROC glad_glColor4i; #define glColor4i glad_glColor4i GLAD_API_CALL PFNGLCOLOR4IVPROC glad_glColor4iv; #define glColor4iv glad_glColor4iv GLAD_API_CALL PFNGLCOLOR4SPROC glad_glColor4s; #define glColor4s glad_glColor4s GLAD_API_CALL PFNGLCOLOR4SVPROC glad_glColor4sv; #define glColor4sv glad_glColor4sv GLAD_API_CALL PFNGLCOLOR4UBPROC glad_glColor4ub; #define glColor4ub glad_glColor4ub GLAD_API_CALL PFNGLCOLOR4UBVPROC glad_glColor4ubv; #define glColor4ubv glad_glColor4ubv GLAD_API_CALL PFNGLCOLOR4UIPROC glad_glColor4ui; #define glColor4ui glad_glColor4ui GLAD_API_CALL PFNGLCOLOR4UIVPROC glad_glColor4uiv; #define glColor4uiv glad_glColor4uiv GLAD_API_CALL PFNGLCOLOR4USPROC glad_glColor4us; #define glColor4us glad_glColor4us GLAD_API_CALL PFNGLCOLOR4USVPROC glad_glColor4usv; #define glColor4usv glad_glColor4usv GLAD_API_CALL PFNGLCOLORMASKPROC glad_glColorMask; #define glColorMask glad_glColorMask GLAD_API_CALL PFNGLCOLORMASKIPROC glad_glColorMaski; #define glColorMaski glad_glColorMaski GLAD_API_CALL PFNGLCOLORMATERIALPROC glad_glColorMaterial; #define glColorMaterial glad_glColorMaterial GLAD_API_CALL PFNGLCOLORP3UIPROC glad_glColorP3ui; #define glColorP3ui glad_glColorP3ui GLAD_API_CALL PFNGLCOLORP3UIVPROC glad_glColorP3uiv; #define glColorP3uiv glad_glColorP3uiv GLAD_API_CALL PFNGLCOLORP4UIPROC glad_glColorP4ui; #define glColorP4ui glad_glColorP4ui GLAD_API_CALL PFNGLCOLORP4UIVPROC glad_glColorP4uiv; #define glColorP4uiv glad_glColorP4uiv GLAD_API_CALL PFNGLCOLORPOINTERPROC glad_glColorPointer; #define glColorPointer glad_glColorPointer GLAD_API_CALL PFNGLCOLORSUBTABLEPROC glad_glColorSubTable; #define glColorSubTable glad_glColorSubTable GLAD_API_CALL PFNGLCOLORTABLEPROC glad_glColorTable; #define glColorTable glad_glColorTable GLAD_API_CALL PFNGLCOLORTABLEPARAMETERFVPROC glad_glColorTableParameterfv; #define glColorTableParameterfv glad_glColorTableParameterfv GLAD_API_CALL PFNGLCOLORTABLEPARAMETERIVPROC glad_glColorTableParameteriv; #define glColorTableParameteriv glad_glColorTableParameteriv GLAD_API_CALL PFNGLCOMPILESHADERPROC glad_glCompileShader; #define glCompileShader glad_glCompileShader GLAD_API_CALL PFNGLCOMPILESHADERARBPROC glad_glCompileShaderARB; #define glCompileShaderARB glad_glCompileShaderARB GLAD_API_CALL PFNGLCOMPILESHADERINCLUDEARBPROC glad_glCompileShaderIncludeARB; #define glCompileShaderIncludeARB glad_glCompileShaderIncludeARB GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE1DPROC glad_glCompressedTexImage1D; #define glCompressedTexImage1D glad_glCompressedTexImage1D GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE1DARBPROC glad_glCompressedTexImage1DARB; #define glCompressedTexImage1DARB glad_glCompressedTexImage1DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE2DPROC glad_glCompressedTexImage2D; #define glCompressedTexImage2D glad_glCompressedTexImage2D GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE2DARBPROC glad_glCompressedTexImage2DARB; #define glCompressedTexImage2DARB glad_glCompressedTexImage2DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE3DPROC glad_glCompressedTexImage3D; #define glCompressedTexImage3D glad_glCompressedTexImage3D GLAD_API_CALL PFNGLCOMPRESSEDTEXIMAGE3DARBPROC glad_glCompressedTexImage3DARB; #define glCompressedTexImage3DARB glad_glCompressedTexImage3DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC glad_glCompressedTexSubImage1D; #define glCompressedTexSubImage1D glad_glCompressedTexSubImage1D GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC glad_glCompressedTexSubImage1DARB; #define glCompressedTexSubImage1DARB glad_glCompressedTexSubImage1DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC glad_glCompressedTexSubImage2D; #define glCompressedTexSubImage2D glad_glCompressedTexSubImage2D GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC glad_glCompressedTexSubImage2DARB; #define glCompressedTexSubImage2DARB glad_glCompressedTexSubImage2DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC glad_glCompressedTexSubImage3D; #define glCompressedTexSubImage3D glad_glCompressedTexSubImage3D GLAD_API_CALL PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC glad_glCompressedTexSubImage3DARB; #define glCompressedTexSubImage3DARB glad_glCompressedTexSubImage3DARB GLAD_API_CALL PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC glad_glCompressedTextureSubImage1D; #define glCompressedTextureSubImage1D glad_glCompressedTextureSubImage1D GLAD_API_CALL PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC glad_glCompressedTextureSubImage2D; #define glCompressedTextureSubImage2D glad_glCompressedTextureSubImage2D GLAD_API_CALL PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC glad_glCompressedTextureSubImage3D; #define glCompressedTextureSubImage3D glad_glCompressedTextureSubImage3D GLAD_API_CALL PFNGLCONVOLUTIONFILTER1DPROC glad_glConvolutionFilter1D; #define glConvolutionFilter1D glad_glConvolutionFilter1D GLAD_API_CALL PFNGLCONVOLUTIONFILTER2DPROC glad_glConvolutionFilter2D; #define glConvolutionFilter2D glad_glConvolutionFilter2D GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERFPROC glad_glConvolutionParameterf; #define glConvolutionParameterf glad_glConvolutionParameterf GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERFVPROC glad_glConvolutionParameterfv; #define glConvolutionParameterfv glad_glConvolutionParameterfv GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERIPROC glad_glConvolutionParameteri; #define glConvolutionParameteri glad_glConvolutionParameteri GLAD_API_CALL PFNGLCONVOLUTIONPARAMETERIVPROC glad_glConvolutionParameteriv; #define glConvolutionParameteriv glad_glConvolutionParameteriv GLAD_API_CALL PFNGLCOPYBUFFERSUBDATAPROC glad_glCopyBufferSubData; #define glCopyBufferSubData glad_glCopyBufferSubData GLAD_API_CALL PFNGLCOPYCOLORSUBTABLEPROC glad_glCopyColorSubTable; #define glCopyColorSubTable glad_glCopyColorSubTable GLAD_API_CALL PFNGLCOPYCOLORTABLEPROC glad_glCopyColorTable; #define glCopyColorTable glad_glCopyColorTable GLAD_API_CALL PFNGLCOPYCONVOLUTIONFILTER1DPROC glad_glCopyConvolutionFilter1D; #define glCopyConvolutionFilter1D glad_glCopyConvolutionFilter1D GLAD_API_CALL PFNGLCOPYCONVOLUTIONFILTER2DPROC glad_glCopyConvolutionFilter2D; #define glCopyConvolutionFilter2D glad_glCopyConvolutionFilter2D GLAD_API_CALL PFNGLCOPYIMAGESUBDATAPROC glad_glCopyImageSubData; #define glCopyImageSubData glad_glCopyImageSubData GLAD_API_CALL PFNGLCOPYNAMEDBUFFERSUBDATAPROC glad_glCopyNamedBufferSubData; #define glCopyNamedBufferSubData glad_glCopyNamedBufferSubData GLAD_API_CALL PFNGLCOPYPIXELSPROC glad_glCopyPixels; #define glCopyPixels glad_glCopyPixels GLAD_API_CALL PFNGLCOPYTEXIMAGE1DPROC glad_glCopyTexImage1D; #define glCopyTexImage1D glad_glCopyTexImage1D GLAD_API_CALL PFNGLCOPYTEXIMAGE2DPROC glad_glCopyTexImage2D; #define glCopyTexImage2D glad_glCopyTexImage2D GLAD_API_CALL PFNGLCOPYTEXSUBIMAGE1DPROC glad_glCopyTexSubImage1D; #define glCopyTexSubImage1D glad_glCopyTexSubImage1D GLAD_API_CALL PFNGLCOPYTEXSUBIMAGE2DPROC glad_glCopyTexSubImage2D; #define glCopyTexSubImage2D glad_glCopyTexSubImage2D GLAD_API_CALL PFNGLCOPYTEXSUBIMAGE3DPROC glad_glCopyTexSubImage3D; #define glCopyTexSubImage3D glad_glCopyTexSubImage3D GLAD_API_CALL PFNGLCOPYTEXTURESUBIMAGE1DPROC glad_glCopyTextureSubImage1D; #define glCopyTextureSubImage1D glad_glCopyTextureSubImage1D GLAD_API_CALL PFNGLCOPYTEXTURESUBIMAGE2DPROC glad_glCopyTextureSubImage2D; #define glCopyTextureSubImage2D glad_glCopyTextureSubImage2D GLAD_API_CALL PFNGLCOPYTEXTURESUBIMAGE3DPROC glad_glCopyTextureSubImage3D; #define glCopyTextureSubImage3D glad_glCopyTextureSubImage3D GLAD_API_CALL PFNGLCREATEBUFFERSPROC glad_glCreateBuffers; #define glCreateBuffers glad_glCreateBuffers GLAD_API_CALL PFNGLCREATEFRAMEBUFFERSPROC glad_glCreateFramebuffers; #define glCreateFramebuffers glad_glCreateFramebuffers GLAD_API_CALL PFNGLCREATEPROGRAMPROC glad_glCreateProgram; #define glCreateProgram glad_glCreateProgram GLAD_API_CALL PFNGLCREATEPROGRAMOBJECTARBPROC glad_glCreateProgramObjectARB; #define glCreateProgramObjectARB glad_glCreateProgramObjectARB GLAD_API_CALL PFNGLCREATEPROGRAMPIPELINESPROC glad_glCreateProgramPipelines; #define glCreateProgramPipelines glad_glCreateProgramPipelines GLAD_API_CALL PFNGLCREATEQUERIESPROC glad_glCreateQueries; #define glCreateQueries glad_glCreateQueries GLAD_API_CALL PFNGLCREATERENDERBUFFERSPROC glad_glCreateRenderbuffers; #define glCreateRenderbuffers glad_glCreateRenderbuffers GLAD_API_CALL PFNGLCREATESAMPLERSPROC glad_glCreateSamplers; #define glCreateSamplers glad_glCreateSamplers GLAD_API_CALL PFNGLCREATESHADERPROC glad_glCreateShader; #define glCreateShader glad_glCreateShader GLAD_API_CALL PFNGLCREATESHADEROBJECTARBPROC glad_glCreateShaderObjectARB; #define glCreateShaderObjectARB glad_glCreateShaderObjectARB GLAD_API_CALL PFNGLCREATESHADERPROGRAMVPROC glad_glCreateShaderProgramv; #define glCreateShaderProgramv glad_glCreateShaderProgramv GLAD_API_CALL PFNGLCREATESYNCFROMCLEVENTARBPROC glad_glCreateSyncFromCLeventARB; #define glCreateSyncFromCLeventARB glad_glCreateSyncFromCLeventARB GLAD_API_CALL PFNGLCREATETEXTURESPROC glad_glCreateTextures; #define glCreateTextures glad_glCreateTextures GLAD_API_CALL PFNGLCREATETRANSFORMFEEDBACKSPROC glad_glCreateTransformFeedbacks; #define glCreateTransformFeedbacks glad_glCreateTransformFeedbacks GLAD_API_CALL PFNGLCREATEVERTEXARRAYSPROC glad_glCreateVertexArrays; #define glCreateVertexArrays glad_glCreateVertexArrays GLAD_API_CALL PFNGLCULLFACEPROC glad_glCullFace; #define glCullFace glad_glCullFace GLAD_API_CALL PFNGLCURRENTPALETTEMATRIXARBPROC glad_glCurrentPaletteMatrixARB; #define glCurrentPaletteMatrixARB glad_glCurrentPaletteMatrixARB GLAD_API_CALL PFNGLDEBUGMESSAGECALLBACKPROC glad_glDebugMessageCallback; #define glDebugMessageCallback glad_glDebugMessageCallback GLAD_API_CALL PFNGLDEBUGMESSAGECALLBACKARBPROC glad_glDebugMessageCallbackARB; #define glDebugMessageCallbackARB glad_glDebugMessageCallbackARB GLAD_API_CALL PFNGLDEBUGMESSAGECONTROLPROC glad_glDebugMessageControl; #define glDebugMessageControl glad_glDebugMessageControl GLAD_API_CALL PFNGLDEBUGMESSAGECONTROLARBPROC glad_glDebugMessageControlARB; #define glDebugMessageControlARB glad_glDebugMessageControlARB GLAD_API_CALL PFNGLDEBUGMESSAGEINSERTPROC glad_glDebugMessageInsert; #define glDebugMessageInsert glad_glDebugMessageInsert GLAD_API_CALL PFNGLDEBUGMESSAGEINSERTARBPROC glad_glDebugMessageInsertARB; #define glDebugMessageInsertARB glad_glDebugMessageInsertARB GLAD_API_CALL PFNGLDELETEBUFFERSPROC glad_glDeleteBuffers; #define glDeleteBuffers glad_glDeleteBuffers GLAD_API_CALL PFNGLDELETEBUFFERSARBPROC glad_glDeleteBuffersARB; #define glDeleteBuffersARB glad_glDeleteBuffersARB GLAD_API_CALL PFNGLDELETEFRAMEBUFFERSPROC glad_glDeleteFramebuffers; #define glDeleteFramebuffers glad_glDeleteFramebuffers GLAD_API_CALL PFNGLDELETELISTSPROC glad_glDeleteLists; #define glDeleteLists glad_glDeleteLists GLAD_API_CALL PFNGLDELETENAMEDSTRINGARBPROC glad_glDeleteNamedStringARB; #define glDeleteNamedStringARB glad_glDeleteNamedStringARB GLAD_API_CALL PFNGLDELETEOBJECTARBPROC glad_glDeleteObjectARB; #define glDeleteObjectARB glad_glDeleteObjectARB GLAD_API_CALL PFNGLDELETEPROGRAMPROC glad_glDeleteProgram; #define glDeleteProgram glad_glDeleteProgram GLAD_API_CALL PFNGLDELETEPROGRAMPIPELINESPROC glad_glDeleteProgramPipelines; #define glDeleteProgramPipelines glad_glDeleteProgramPipelines GLAD_API_CALL PFNGLDELETEPROGRAMSARBPROC glad_glDeleteProgramsARB; #define glDeleteProgramsARB glad_glDeleteProgramsARB GLAD_API_CALL PFNGLDELETEQUERIESPROC glad_glDeleteQueries; #define glDeleteQueries glad_glDeleteQueries GLAD_API_CALL PFNGLDELETEQUERIESARBPROC glad_glDeleteQueriesARB; #define glDeleteQueriesARB glad_glDeleteQueriesARB GLAD_API_CALL PFNGLDELETERENDERBUFFERSPROC glad_glDeleteRenderbuffers; #define glDeleteRenderbuffers glad_glDeleteRenderbuffers GLAD_API_CALL PFNGLDELETESAMPLERSPROC glad_glDeleteSamplers; #define glDeleteSamplers glad_glDeleteSamplers GLAD_API_CALL PFNGLDELETESHADERPROC glad_glDeleteShader; #define glDeleteShader glad_glDeleteShader GLAD_API_CALL PFNGLDELETESYNCPROC glad_glDeleteSync; #define glDeleteSync glad_glDeleteSync GLAD_API_CALL PFNGLDELETETEXTURESPROC glad_glDeleteTextures; #define glDeleteTextures glad_glDeleteTextures GLAD_API_CALL PFNGLDELETETRANSFORMFEEDBACKSPROC glad_glDeleteTransformFeedbacks; #define glDeleteTransformFeedbacks glad_glDeleteTransformFeedbacks GLAD_API_CALL PFNGLDELETEVERTEXARRAYSPROC glad_glDeleteVertexArrays; #define glDeleteVertexArrays glad_glDeleteVertexArrays GLAD_API_CALL PFNGLDEPTHFUNCPROC glad_glDepthFunc; #define glDepthFunc glad_glDepthFunc GLAD_API_CALL PFNGLDEPTHMASKPROC glad_glDepthMask; #define glDepthMask glad_glDepthMask GLAD_API_CALL PFNGLDEPTHRANGEPROC glad_glDepthRange; #define glDepthRange glad_glDepthRange GLAD_API_CALL PFNGLDEPTHRANGEARRAYDVNVPROC glad_glDepthRangeArraydvNV; #define glDepthRangeArraydvNV glad_glDepthRangeArraydvNV GLAD_API_CALL PFNGLDEPTHRANGEARRAYVPROC glad_glDepthRangeArrayv; #define glDepthRangeArrayv glad_glDepthRangeArrayv GLAD_API_CALL PFNGLDEPTHRANGEINDEXEDPROC glad_glDepthRangeIndexed; #define glDepthRangeIndexed glad_glDepthRangeIndexed GLAD_API_CALL PFNGLDEPTHRANGEINDEXEDDNVPROC glad_glDepthRangeIndexeddNV; #define glDepthRangeIndexeddNV glad_glDepthRangeIndexeddNV GLAD_API_CALL PFNGLDEPTHRANGEFPROC glad_glDepthRangef; #define glDepthRangef glad_glDepthRangef GLAD_API_CALL PFNGLDETACHOBJECTARBPROC glad_glDetachObjectARB; #define glDetachObjectARB glad_glDetachObjectARB GLAD_API_CALL PFNGLDETACHSHADERPROC glad_glDetachShader; #define glDetachShader glad_glDetachShader GLAD_API_CALL PFNGLDISABLEPROC glad_glDisable; #define glDisable glad_glDisable GLAD_API_CALL PFNGLDISABLECLIENTSTATEPROC glad_glDisableClientState; #define glDisableClientState glad_glDisableClientState GLAD_API_CALL PFNGLDISABLEVERTEXARRAYATTRIBPROC glad_glDisableVertexArrayAttrib; #define glDisableVertexArrayAttrib glad_glDisableVertexArrayAttrib GLAD_API_CALL PFNGLDISABLEVERTEXATTRIBARRAYPROC glad_glDisableVertexAttribArray; #define glDisableVertexAttribArray glad_glDisableVertexAttribArray GLAD_API_CALL PFNGLDISABLEVERTEXATTRIBARRAYARBPROC glad_glDisableVertexAttribArrayARB; #define glDisableVertexAttribArrayARB glad_glDisableVertexAttribArrayARB GLAD_API_CALL PFNGLDISABLEIPROC glad_glDisablei; #define glDisablei glad_glDisablei GLAD_API_CALL PFNGLDISPATCHCOMPUTEPROC glad_glDispatchCompute; #define glDispatchCompute glad_glDispatchCompute GLAD_API_CALL PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC glad_glDispatchComputeGroupSizeARB; #define glDispatchComputeGroupSizeARB glad_glDispatchComputeGroupSizeARB GLAD_API_CALL PFNGLDISPATCHCOMPUTEINDIRECTPROC glad_glDispatchComputeIndirect; #define glDispatchComputeIndirect glad_glDispatchComputeIndirect GLAD_API_CALL PFNGLDRAWARRAYSPROC glad_glDrawArrays; #define glDrawArrays glad_glDrawArrays GLAD_API_CALL PFNGLDRAWARRAYSINDIRECTPROC glad_glDrawArraysIndirect; #define glDrawArraysIndirect glad_glDrawArraysIndirect GLAD_API_CALL PFNGLDRAWARRAYSINSTANCEDPROC glad_glDrawArraysInstanced; #define glDrawArraysInstanced glad_glDrawArraysInstanced GLAD_API_CALL PFNGLDRAWARRAYSINSTANCEDARBPROC glad_glDrawArraysInstancedARB; #define glDrawArraysInstancedARB glad_glDrawArraysInstancedARB GLAD_API_CALL PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC glad_glDrawArraysInstancedBaseInstance; #define glDrawArraysInstancedBaseInstance glad_glDrawArraysInstancedBaseInstance GLAD_API_CALL PFNGLDRAWBUFFERPROC glad_glDrawBuffer; #define glDrawBuffer glad_glDrawBuffer GLAD_API_CALL PFNGLDRAWBUFFERSPROC glad_glDrawBuffers; #define glDrawBuffers glad_glDrawBuffers GLAD_API_CALL PFNGLDRAWBUFFERSARBPROC glad_glDrawBuffersARB; #define glDrawBuffersARB glad_glDrawBuffersARB GLAD_API_CALL PFNGLDRAWELEMENTSPROC glad_glDrawElements; #define glDrawElements glad_glDrawElements GLAD_API_CALL PFNGLDRAWELEMENTSBASEVERTEXPROC glad_glDrawElementsBaseVertex; #define glDrawElementsBaseVertex glad_glDrawElementsBaseVertex GLAD_API_CALL PFNGLDRAWELEMENTSINDIRECTPROC glad_glDrawElementsIndirect; #define glDrawElementsIndirect glad_glDrawElementsIndirect GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDPROC glad_glDrawElementsInstanced; #define glDrawElementsInstanced glad_glDrawElementsInstanced GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDARBPROC glad_glDrawElementsInstancedARB; #define glDrawElementsInstancedARB glad_glDrawElementsInstancedARB GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC glad_glDrawElementsInstancedBaseInstance; #define glDrawElementsInstancedBaseInstance glad_glDrawElementsInstancedBaseInstance GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC glad_glDrawElementsInstancedBaseVertex; #define glDrawElementsInstancedBaseVertex glad_glDrawElementsInstancedBaseVertex GLAD_API_CALL PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC glad_glDrawElementsInstancedBaseVertexBaseInstance; #define glDrawElementsInstancedBaseVertexBaseInstance glad_glDrawElementsInstancedBaseVertexBaseInstance GLAD_API_CALL PFNGLDRAWPIXELSPROC glad_glDrawPixels; #define glDrawPixels glad_glDrawPixels GLAD_API_CALL PFNGLDRAWRANGEELEMENTSPROC glad_glDrawRangeElements; #define glDrawRangeElements glad_glDrawRangeElements GLAD_API_CALL PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC glad_glDrawRangeElementsBaseVertex; #define glDrawRangeElementsBaseVertex glad_glDrawRangeElementsBaseVertex GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKPROC glad_glDrawTransformFeedback; #define glDrawTransformFeedback glad_glDrawTransformFeedback GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC glad_glDrawTransformFeedbackInstanced; #define glDrawTransformFeedbackInstanced glad_glDrawTransformFeedbackInstanced GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC glad_glDrawTransformFeedbackStream; #define glDrawTransformFeedbackStream glad_glDrawTransformFeedbackStream GLAD_API_CALL PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC glad_glDrawTransformFeedbackStreamInstanced; #define glDrawTransformFeedbackStreamInstanced glad_glDrawTransformFeedbackStreamInstanced GLAD_API_CALL PFNGLEDGEFLAGPROC glad_glEdgeFlag; #define glEdgeFlag glad_glEdgeFlag GLAD_API_CALL PFNGLEDGEFLAGPOINTERPROC glad_glEdgeFlagPointer; #define glEdgeFlagPointer glad_glEdgeFlagPointer GLAD_API_CALL PFNGLEDGEFLAGVPROC glad_glEdgeFlagv; #define glEdgeFlagv glad_glEdgeFlagv GLAD_API_CALL PFNGLENABLEPROC glad_glEnable; #define glEnable glad_glEnable GLAD_API_CALL PFNGLENABLECLIENTSTATEPROC glad_glEnableClientState; #define glEnableClientState glad_glEnableClientState GLAD_API_CALL PFNGLENABLEVERTEXARRAYATTRIBPROC glad_glEnableVertexArrayAttrib; #define glEnableVertexArrayAttrib glad_glEnableVertexArrayAttrib GLAD_API_CALL PFNGLENABLEVERTEXATTRIBARRAYPROC glad_glEnableVertexAttribArray; #define glEnableVertexAttribArray glad_glEnableVertexAttribArray GLAD_API_CALL PFNGLENABLEVERTEXATTRIBARRAYARBPROC glad_glEnableVertexAttribArrayARB; #define glEnableVertexAttribArrayARB glad_glEnableVertexAttribArrayARB GLAD_API_CALL PFNGLENABLEIPROC glad_glEnablei; #define glEnablei glad_glEnablei GLAD_API_CALL PFNGLENDPROC glad_glEnd; #define glEnd glad_glEnd GLAD_API_CALL PFNGLENDCONDITIONALRENDERPROC glad_glEndConditionalRender; #define glEndConditionalRender glad_glEndConditionalRender GLAD_API_CALL PFNGLENDLISTPROC glad_glEndList; #define glEndList glad_glEndList GLAD_API_CALL PFNGLENDQUERYPROC glad_glEndQuery; #define glEndQuery glad_glEndQuery GLAD_API_CALL PFNGLENDQUERYARBPROC glad_glEndQueryARB; #define glEndQueryARB glad_glEndQueryARB GLAD_API_CALL PFNGLENDQUERYINDEXEDPROC glad_glEndQueryIndexed; #define glEndQueryIndexed glad_glEndQueryIndexed GLAD_API_CALL PFNGLENDTRANSFORMFEEDBACKPROC glad_glEndTransformFeedback; #define glEndTransformFeedback glad_glEndTransformFeedback GLAD_API_CALL PFNGLEVALCOORD1DPROC glad_glEvalCoord1d; #define glEvalCoord1d glad_glEvalCoord1d GLAD_API_CALL PFNGLEVALCOORD1DVPROC glad_glEvalCoord1dv; #define glEvalCoord1dv glad_glEvalCoord1dv GLAD_API_CALL PFNGLEVALCOORD1FPROC glad_glEvalCoord1f; #define glEvalCoord1f glad_glEvalCoord1f GLAD_API_CALL PFNGLEVALCOORD1FVPROC glad_glEvalCoord1fv; #define glEvalCoord1fv glad_glEvalCoord1fv GLAD_API_CALL PFNGLEVALCOORD2DPROC glad_glEvalCoord2d; #define glEvalCoord2d glad_glEvalCoord2d GLAD_API_CALL PFNGLEVALCOORD2DVPROC glad_glEvalCoord2dv; #define glEvalCoord2dv glad_glEvalCoord2dv GLAD_API_CALL PFNGLEVALCOORD2FPROC glad_glEvalCoord2f; #define glEvalCoord2f glad_glEvalCoord2f GLAD_API_CALL PFNGLEVALCOORD2FVPROC glad_glEvalCoord2fv; #define glEvalCoord2fv glad_glEvalCoord2fv GLAD_API_CALL PFNGLEVALMESH1PROC glad_glEvalMesh1; #define glEvalMesh1 glad_glEvalMesh1 GLAD_API_CALL PFNGLEVALMESH2PROC glad_glEvalMesh2; #define glEvalMesh2 glad_glEvalMesh2 GLAD_API_CALL PFNGLEVALPOINT1PROC glad_glEvalPoint1; #define glEvalPoint1 glad_glEvalPoint1 GLAD_API_CALL PFNGLEVALPOINT2PROC glad_glEvalPoint2; #define glEvalPoint2 glad_glEvalPoint2 GLAD_API_CALL PFNGLEVALUATEDEPTHVALUESARBPROC glad_glEvaluateDepthValuesARB; #define glEvaluateDepthValuesARB glad_glEvaluateDepthValuesARB GLAD_API_CALL PFNGLFEEDBACKBUFFERPROC glad_glFeedbackBuffer; #define glFeedbackBuffer glad_glFeedbackBuffer GLAD_API_CALL PFNGLFENCESYNCPROC glad_glFenceSync; #define glFenceSync glad_glFenceSync GLAD_API_CALL PFNGLFINISHPROC glad_glFinish; #define glFinish glad_glFinish GLAD_API_CALL PFNGLFLUSHPROC glad_glFlush; #define glFlush glad_glFlush GLAD_API_CALL PFNGLFLUSHMAPPEDBUFFERRANGEPROC glad_glFlushMappedBufferRange; #define glFlushMappedBufferRange glad_glFlushMappedBufferRange GLAD_API_CALL PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC glad_glFlushMappedNamedBufferRange; #define glFlushMappedNamedBufferRange glad_glFlushMappedNamedBufferRange GLAD_API_CALL PFNGLFOGCOORDPOINTERPROC glad_glFogCoordPointer; #define glFogCoordPointer glad_glFogCoordPointer GLAD_API_CALL PFNGLFOGCOORDDPROC glad_glFogCoordd; #define glFogCoordd glad_glFogCoordd GLAD_API_CALL PFNGLFOGCOORDDVPROC glad_glFogCoorddv; #define glFogCoorddv glad_glFogCoorddv GLAD_API_CALL PFNGLFOGCOORDFPROC glad_glFogCoordf; #define glFogCoordf glad_glFogCoordf GLAD_API_CALL PFNGLFOGCOORDFVPROC glad_glFogCoordfv; #define glFogCoordfv glad_glFogCoordfv GLAD_API_CALL PFNGLFOGFPROC glad_glFogf; #define glFogf glad_glFogf GLAD_API_CALL PFNGLFOGFVPROC glad_glFogfv; #define glFogfv glad_glFogfv GLAD_API_CALL PFNGLFOGIPROC glad_glFogi; #define glFogi glad_glFogi GLAD_API_CALL PFNGLFOGIVPROC glad_glFogiv; #define glFogiv glad_glFogiv GLAD_API_CALL PFNGLFRAMEBUFFERPARAMETERIPROC glad_glFramebufferParameteri; #define glFramebufferParameteri glad_glFramebufferParameteri GLAD_API_CALL PFNGLFRAMEBUFFERRENDERBUFFERPROC glad_glFramebufferRenderbuffer; #define glFramebufferRenderbuffer glad_glFramebufferRenderbuffer GLAD_API_CALL PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glFramebufferSampleLocationsfvARB; #define glFramebufferSampleLocationsfvARB glad_glFramebufferSampleLocationsfvARB GLAD_API_CALL PFNGLFRAMEBUFFERTEXTUREPROC glad_glFramebufferTexture; #define glFramebufferTexture glad_glFramebufferTexture GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURE1DPROC glad_glFramebufferTexture1D; #define glFramebufferTexture1D glad_glFramebufferTexture1D GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURE2DPROC glad_glFramebufferTexture2D; #define glFramebufferTexture2D glad_glFramebufferTexture2D GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURE3DPROC glad_glFramebufferTexture3D; #define glFramebufferTexture3D glad_glFramebufferTexture3D GLAD_API_CALL PFNGLFRAMEBUFFERTEXTUREARBPROC glad_glFramebufferTextureARB; #define glFramebufferTextureARB glad_glFramebufferTextureARB GLAD_API_CALL PFNGLFRAMEBUFFERTEXTUREFACEARBPROC glad_glFramebufferTextureFaceARB; #define glFramebufferTextureFaceARB glad_glFramebufferTextureFaceARB GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURELAYERPROC glad_glFramebufferTextureLayer; #define glFramebufferTextureLayer glad_glFramebufferTextureLayer GLAD_API_CALL PFNGLFRAMEBUFFERTEXTURELAYERARBPROC glad_glFramebufferTextureLayerARB; #define glFramebufferTextureLayerARB glad_glFramebufferTextureLayerARB GLAD_API_CALL PFNGLFRONTFACEPROC glad_glFrontFace; #define glFrontFace glad_glFrontFace GLAD_API_CALL PFNGLFRUSTUMPROC glad_glFrustum; #define glFrustum glad_glFrustum GLAD_API_CALL PFNGLGENBUFFERSPROC glad_glGenBuffers; #define glGenBuffers glad_glGenBuffers GLAD_API_CALL PFNGLGENBUFFERSARBPROC glad_glGenBuffersARB; #define glGenBuffersARB glad_glGenBuffersARB GLAD_API_CALL PFNGLGENFRAMEBUFFERSPROC glad_glGenFramebuffers; #define glGenFramebuffers glad_glGenFramebuffers GLAD_API_CALL PFNGLGENLISTSPROC glad_glGenLists; #define glGenLists glad_glGenLists GLAD_API_CALL PFNGLGENPROGRAMPIPELINESPROC glad_glGenProgramPipelines; #define glGenProgramPipelines glad_glGenProgramPipelines GLAD_API_CALL PFNGLGENPROGRAMSARBPROC glad_glGenProgramsARB; #define glGenProgramsARB glad_glGenProgramsARB GLAD_API_CALL PFNGLGENQUERIESPROC glad_glGenQueries; #define glGenQueries glad_glGenQueries GLAD_API_CALL PFNGLGENQUERIESARBPROC glad_glGenQueriesARB; #define glGenQueriesARB glad_glGenQueriesARB GLAD_API_CALL PFNGLGENRENDERBUFFERSPROC glad_glGenRenderbuffers; #define glGenRenderbuffers glad_glGenRenderbuffers GLAD_API_CALL PFNGLGENSAMPLERSPROC glad_glGenSamplers; #define glGenSamplers glad_glGenSamplers GLAD_API_CALL PFNGLGENTEXTURESPROC glad_glGenTextures; #define glGenTextures glad_glGenTextures GLAD_API_CALL PFNGLGENTRANSFORMFEEDBACKSPROC glad_glGenTransformFeedbacks; #define glGenTransformFeedbacks glad_glGenTransformFeedbacks GLAD_API_CALL PFNGLGENVERTEXARRAYSPROC glad_glGenVertexArrays; #define glGenVertexArrays glad_glGenVertexArrays GLAD_API_CALL PFNGLGENERATEMIPMAPPROC glad_glGenerateMipmap; #define glGenerateMipmap glad_glGenerateMipmap GLAD_API_CALL PFNGLGENERATETEXTUREMIPMAPPROC glad_glGenerateTextureMipmap; #define glGenerateTextureMipmap glad_glGenerateTextureMipmap GLAD_API_CALL PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC glad_glGetActiveAtomicCounterBufferiv; #define glGetActiveAtomicCounterBufferiv glad_glGetActiveAtomicCounterBufferiv GLAD_API_CALL PFNGLGETACTIVEATTRIBPROC glad_glGetActiveAttrib; #define glGetActiveAttrib glad_glGetActiveAttrib GLAD_API_CALL PFNGLGETACTIVEATTRIBARBPROC glad_glGetActiveAttribARB; #define glGetActiveAttribARB glad_glGetActiveAttribARB GLAD_API_CALL PFNGLGETACTIVESUBROUTINENAMEPROC glad_glGetActiveSubroutineName; #define glGetActiveSubroutineName glad_glGetActiveSubroutineName GLAD_API_CALL PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC glad_glGetActiveSubroutineUniformName; #define glGetActiveSubroutineUniformName glad_glGetActiveSubroutineUniformName GLAD_API_CALL PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC glad_glGetActiveSubroutineUniformiv; #define glGetActiveSubroutineUniformiv glad_glGetActiveSubroutineUniformiv GLAD_API_CALL PFNGLGETACTIVEUNIFORMPROC glad_glGetActiveUniform; #define glGetActiveUniform glad_glGetActiveUniform GLAD_API_CALL PFNGLGETACTIVEUNIFORMARBPROC glad_glGetActiveUniformARB; #define glGetActiveUniformARB glad_glGetActiveUniformARB GLAD_API_CALL PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC glad_glGetActiveUniformBlockName; #define glGetActiveUniformBlockName glad_glGetActiveUniformBlockName GLAD_API_CALL PFNGLGETACTIVEUNIFORMBLOCKIVPROC glad_glGetActiveUniformBlockiv; #define glGetActiveUniformBlockiv glad_glGetActiveUniformBlockiv GLAD_API_CALL PFNGLGETACTIVEUNIFORMNAMEPROC glad_glGetActiveUniformName; #define glGetActiveUniformName glad_glGetActiveUniformName GLAD_API_CALL PFNGLGETACTIVEUNIFORMSIVPROC glad_glGetActiveUniformsiv; #define glGetActiveUniformsiv glad_glGetActiveUniformsiv GLAD_API_CALL PFNGLGETATTACHEDOBJECTSARBPROC glad_glGetAttachedObjectsARB; #define glGetAttachedObjectsARB glad_glGetAttachedObjectsARB GLAD_API_CALL PFNGLGETATTACHEDSHADERSPROC glad_glGetAttachedShaders; #define glGetAttachedShaders glad_glGetAttachedShaders GLAD_API_CALL PFNGLGETATTRIBLOCATIONPROC glad_glGetAttribLocation; #define glGetAttribLocation glad_glGetAttribLocation GLAD_API_CALL PFNGLGETATTRIBLOCATIONARBPROC glad_glGetAttribLocationARB; #define glGetAttribLocationARB glad_glGetAttribLocationARB GLAD_API_CALL PFNGLGETBOOLEANI_VPROC glad_glGetBooleani_v; #define glGetBooleani_v glad_glGetBooleani_v GLAD_API_CALL PFNGLGETBOOLEANVPROC glad_glGetBooleanv; #define glGetBooleanv glad_glGetBooleanv GLAD_API_CALL PFNGLGETBUFFERPARAMETERI64VPROC glad_glGetBufferParameteri64v; #define glGetBufferParameteri64v glad_glGetBufferParameteri64v GLAD_API_CALL PFNGLGETBUFFERPARAMETERIVPROC glad_glGetBufferParameteriv; #define glGetBufferParameteriv glad_glGetBufferParameteriv GLAD_API_CALL PFNGLGETBUFFERPARAMETERIVARBPROC glad_glGetBufferParameterivARB; #define glGetBufferParameterivARB glad_glGetBufferParameterivARB GLAD_API_CALL PFNGLGETBUFFERPOINTERVPROC glad_glGetBufferPointerv; #define glGetBufferPointerv glad_glGetBufferPointerv GLAD_API_CALL PFNGLGETBUFFERPOINTERVARBPROC glad_glGetBufferPointervARB; #define glGetBufferPointervARB glad_glGetBufferPointervARB GLAD_API_CALL PFNGLGETBUFFERSUBDATAPROC glad_glGetBufferSubData; #define glGetBufferSubData glad_glGetBufferSubData GLAD_API_CALL PFNGLGETBUFFERSUBDATAARBPROC glad_glGetBufferSubDataARB; #define glGetBufferSubDataARB glad_glGetBufferSubDataARB GLAD_API_CALL PFNGLGETCLIPPLANEPROC glad_glGetClipPlane; #define glGetClipPlane glad_glGetClipPlane GLAD_API_CALL PFNGLGETCOLORTABLEPROC glad_glGetColorTable; #define glGetColorTable glad_glGetColorTable GLAD_API_CALL PFNGLGETCOLORTABLEPARAMETERFVPROC glad_glGetColorTableParameterfv; #define glGetColorTableParameterfv glad_glGetColorTableParameterfv GLAD_API_CALL PFNGLGETCOLORTABLEPARAMETERIVPROC glad_glGetColorTableParameteriv; #define glGetColorTableParameteriv glad_glGetColorTableParameteriv GLAD_API_CALL PFNGLGETCOMPRESSEDTEXIMAGEPROC glad_glGetCompressedTexImage; #define glGetCompressedTexImage glad_glGetCompressedTexImage GLAD_API_CALL PFNGLGETCOMPRESSEDTEXIMAGEARBPROC glad_glGetCompressedTexImageARB; #define glGetCompressedTexImageARB glad_glGetCompressedTexImageARB GLAD_API_CALL PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC glad_glGetCompressedTextureImage; #define glGetCompressedTextureImage glad_glGetCompressedTextureImage GLAD_API_CALL PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC glad_glGetCompressedTextureSubImage; #define glGetCompressedTextureSubImage glad_glGetCompressedTextureSubImage GLAD_API_CALL PFNGLGETCONVOLUTIONFILTERPROC glad_glGetConvolutionFilter; #define glGetConvolutionFilter glad_glGetConvolutionFilter GLAD_API_CALL PFNGLGETCONVOLUTIONPARAMETERFVPROC glad_glGetConvolutionParameterfv; #define glGetConvolutionParameterfv glad_glGetConvolutionParameterfv GLAD_API_CALL PFNGLGETCONVOLUTIONPARAMETERIVPROC glad_glGetConvolutionParameteriv; #define glGetConvolutionParameteriv glad_glGetConvolutionParameteriv GLAD_API_CALL PFNGLGETDEBUGMESSAGELOGPROC glad_glGetDebugMessageLog; #define glGetDebugMessageLog glad_glGetDebugMessageLog GLAD_API_CALL PFNGLGETDEBUGMESSAGELOGARBPROC glad_glGetDebugMessageLogARB; #define glGetDebugMessageLogARB glad_glGetDebugMessageLogARB GLAD_API_CALL PFNGLGETDOUBLEI_VPROC glad_glGetDoublei_v; #define glGetDoublei_v glad_glGetDoublei_v GLAD_API_CALL PFNGLGETDOUBLEVPROC glad_glGetDoublev; #define glGetDoublev glad_glGetDoublev GLAD_API_CALL PFNGLGETERRORPROC glad_glGetError; #define glGetError glad_glGetError GLAD_API_CALL PFNGLGETFLOATI_VPROC glad_glGetFloati_v; #define glGetFloati_v glad_glGetFloati_v GLAD_API_CALL PFNGLGETFLOATVPROC glad_glGetFloatv; #define glGetFloatv glad_glGetFloatv GLAD_API_CALL PFNGLGETFRAGDATAINDEXPROC glad_glGetFragDataIndex; #define glGetFragDataIndex glad_glGetFragDataIndex GLAD_API_CALL PFNGLGETFRAGDATALOCATIONPROC glad_glGetFragDataLocation; #define glGetFragDataLocation glad_glGetFragDataLocation GLAD_API_CALL PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetFramebufferAttachmentParameteriv; #define glGetFramebufferAttachmentParameteriv glad_glGetFramebufferAttachmentParameteriv GLAD_API_CALL PFNGLGETFRAMEBUFFERPARAMETERIVPROC glad_glGetFramebufferParameteriv; #define glGetFramebufferParameteriv glad_glGetFramebufferParameteriv GLAD_API_CALL PFNGLGETGRAPHICSRESETSTATUSPROC glad_glGetGraphicsResetStatus; #define glGetGraphicsResetStatus glad_glGetGraphicsResetStatus GLAD_API_CALL PFNGLGETGRAPHICSRESETSTATUSARBPROC glad_glGetGraphicsResetStatusARB; #define glGetGraphicsResetStatusARB glad_glGetGraphicsResetStatusARB GLAD_API_CALL PFNGLGETHANDLEARBPROC glad_glGetHandleARB; #define glGetHandleARB glad_glGetHandleARB GLAD_API_CALL PFNGLGETHISTOGRAMPROC glad_glGetHistogram; #define glGetHistogram glad_glGetHistogram GLAD_API_CALL PFNGLGETHISTOGRAMPARAMETERFVPROC glad_glGetHistogramParameterfv; #define glGetHistogramParameterfv glad_glGetHistogramParameterfv GLAD_API_CALL PFNGLGETHISTOGRAMPARAMETERIVPROC glad_glGetHistogramParameteriv; #define glGetHistogramParameteriv glad_glGetHistogramParameteriv GLAD_API_CALL PFNGLGETIMAGEHANDLEARBPROC glad_glGetImageHandleARB; #define glGetImageHandleARB glad_glGetImageHandleARB GLAD_API_CALL PFNGLGETINFOLOGARBPROC glad_glGetInfoLogARB; #define glGetInfoLogARB glad_glGetInfoLogARB GLAD_API_CALL PFNGLGETINTEGER64I_VPROC glad_glGetInteger64i_v; #define glGetInteger64i_v glad_glGetInteger64i_v GLAD_API_CALL PFNGLGETINTEGER64VPROC glad_glGetInteger64v; #define glGetInteger64v glad_glGetInteger64v GLAD_API_CALL PFNGLGETINTEGERI_VPROC glad_glGetIntegeri_v; #define glGetIntegeri_v glad_glGetIntegeri_v GLAD_API_CALL PFNGLGETINTEGERVPROC glad_glGetIntegerv; #define glGetIntegerv glad_glGetIntegerv GLAD_API_CALL PFNGLGETINTERNALFORMATI64VPROC glad_glGetInternalformati64v; #define glGetInternalformati64v glad_glGetInternalformati64v GLAD_API_CALL PFNGLGETINTERNALFORMATIVPROC glad_glGetInternalformativ; #define glGetInternalformativ glad_glGetInternalformativ GLAD_API_CALL PFNGLGETLIGHTFVPROC glad_glGetLightfv; #define glGetLightfv glad_glGetLightfv GLAD_API_CALL PFNGLGETLIGHTIVPROC glad_glGetLightiv; #define glGetLightiv glad_glGetLightiv GLAD_API_CALL PFNGLGETMAPDVPROC glad_glGetMapdv; #define glGetMapdv glad_glGetMapdv GLAD_API_CALL PFNGLGETMAPFVPROC glad_glGetMapfv; #define glGetMapfv glad_glGetMapfv GLAD_API_CALL PFNGLGETMAPIVPROC glad_glGetMapiv; #define glGetMapiv glad_glGetMapiv GLAD_API_CALL PFNGLGETMATERIALFVPROC glad_glGetMaterialfv; #define glGetMaterialfv glad_glGetMaterialfv GLAD_API_CALL PFNGLGETMATERIALIVPROC glad_glGetMaterialiv; #define glGetMaterialiv glad_glGetMaterialiv GLAD_API_CALL PFNGLGETMINMAXPROC glad_glGetMinmax; #define glGetMinmax glad_glGetMinmax GLAD_API_CALL PFNGLGETMINMAXPARAMETERFVPROC glad_glGetMinmaxParameterfv; #define glGetMinmaxParameterfv glad_glGetMinmaxParameterfv GLAD_API_CALL PFNGLGETMINMAXPARAMETERIVPROC glad_glGetMinmaxParameteriv; #define glGetMinmaxParameteriv glad_glGetMinmaxParameteriv GLAD_API_CALL PFNGLGETMULTISAMPLEFVPROC glad_glGetMultisamplefv; #define glGetMultisamplefv glad_glGetMultisamplefv GLAD_API_CALL PFNGLGETNAMEDBUFFERPARAMETERI64VPROC glad_glGetNamedBufferParameteri64v; #define glGetNamedBufferParameteri64v glad_glGetNamedBufferParameteri64v GLAD_API_CALL PFNGLGETNAMEDBUFFERPARAMETERIVPROC glad_glGetNamedBufferParameteriv; #define glGetNamedBufferParameteriv glad_glGetNamedBufferParameteriv GLAD_API_CALL PFNGLGETNAMEDBUFFERPOINTERVPROC glad_glGetNamedBufferPointerv; #define glGetNamedBufferPointerv glad_glGetNamedBufferPointerv GLAD_API_CALL PFNGLGETNAMEDBUFFERSUBDATAPROC glad_glGetNamedBufferSubData; #define glGetNamedBufferSubData glad_glGetNamedBufferSubData GLAD_API_CALL PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetNamedFramebufferAttachmentParameteriv; #define glGetNamedFramebufferAttachmentParameteriv glad_glGetNamedFramebufferAttachmentParameteriv GLAD_API_CALL PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC glad_glGetNamedFramebufferParameteriv; #define glGetNamedFramebufferParameteriv glad_glGetNamedFramebufferParameteriv GLAD_API_CALL PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC glad_glGetNamedRenderbufferParameteriv; #define glGetNamedRenderbufferParameteriv glad_glGetNamedRenderbufferParameteriv GLAD_API_CALL PFNGLGETNAMEDSTRINGARBPROC glad_glGetNamedStringARB; #define glGetNamedStringARB glad_glGetNamedStringARB GLAD_API_CALL PFNGLGETNAMEDSTRINGIVARBPROC glad_glGetNamedStringivARB; #define glGetNamedStringivARB glad_glGetNamedStringivARB GLAD_API_CALL PFNGLGETOBJECTLABELPROC glad_glGetObjectLabel; #define glGetObjectLabel glad_glGetObjectLabel GLAD_API_CALL PFNGLGETOBJECTPARAMETERFVARBPROC glad_glGetObjectParameterfvARB; #define glGetObjectParameterfvARB glad_glGetObjectParameterfvARB GLAD_API_CALL PFNGLGETOBJECTPARAMETERIVARBPROC glad_glGetObjectParameterivARB; #define glGetObjectParameterivARB glad_glGetObjectParameterivARB GLAD_API_CALL PFNGLGETOBJECTPTRLABELPROC glad_glGetObjectPtrLabel; #define glGetObjectPtrLabel glad_glGetObjectPtrLabel GLAD_API_CALL PFNGLGETPIXELMAPFVPROC glad_glGetPixelMapfv; #define glGetPixelMapfv glad_glGetPixelMapfv GLAD_API_CALL PFNGLGETPIXELMAPUIVPROC glad_glGetPixelMapuiv; #define glGetPixelMapuiv glad_glGetPixelMapuiv GLAD_API_CALL PFNGLGETPIXELMAPUSVPROC glad_glGetPixelMapusv; #define glGetPixelMapusv glad_glGetPixelMapusv GLAD_API_CALL PFNGLGETPOINTERVPROC glad_glGetPointerv; #define glGetPointerv glad_glGetPointerv GLAD_API_CALL PFNGLGETPOLYGONSTIPPLEPROC glad_glGetPolygonStipple; #define glGetPolygonStipple glad_glGetPolygonStipple GLAD_API_CALL PFNGLGETPROGRAMBINARYPROC glad_glGetProgramBinary; #define glGetProgramBinary glad_glGetProgramBinary GLAD_API_CALL PFNGLGETPROGRAMENVPARAMETERDVARBPROC glad_glGetProgramEnvParameterdvARB; #define glGetProgramEnvParameterdvARB glad_glGetProgramEnvParameterdvARB GLAD_API_CALL PFNGLGETPROGRAMENVPARAMETERFVARBPROC glad_glGetProgramEnvParameterfvARB; #define glGetProgramEnvParameterfvARB glad_glGetProgramEnvParameterfvARB GLAD_API_CALL PFNGLGETPROGRAMINFOLOGPROC glad_glGetProgramInfoLog; #define glGetProgramInfoLog glad_glGetProgramInfoLog GLAD_API_CALL PFNGLGETPROGRAMINTERFACEIVPROC glad_glGetProgramInterfaceiv; #define glGetProgramInterfaceiv glad_glGetProgramInterfaceiv GLAD_API_CALL PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC glad_glGetProgramLocalParameterdvARB; #define glGetProgramLocalParameterdvARB glad_glGetProgramLocalParameterdvARB GLAD_API_CALL PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC glad_glGetProgramLocalParameterfvARB; #define glGetProgramLocalParameterfvARB glad_glGetProgramLocalParameterfvARB GLAD_API_CALL PFNGLGETPROGRAMPIPELINEINFOLOGPROC glad_glGetProgramPipelineInfoLog; #define glGetProgramPipelineInfoLog glad_glGetProgramPipelineInfoLog GLAD_API_CALL PFNGLGETPROGRAMPIPELINEIVPROC glad_glGetProgramPipelineiv; #define glGetProgramPipelineiv glad_glGetProgramPipelineiv GLAD_API_CALL PFNGLGETPROGRAMRESOURCEINDEXPROC glad_glGetProgramResourceIndex; #define glGetProgramResourceIndex glad_glGetProgramResourceIndex GLAD_API_CALL PFNGLGETPROGRAMRESOURCELOCATIONPROC glad_glGetProgramResourceLocation; #define glGetProgramResourceLocation glad_glGetProgramResourceLocation GLAD_API_CALL PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC glad_glGetProgramResourceLocationIndex; #define glGetProgramResourceLocationIndex glad_glGetProgramResourceLocationIndex GLAD_API_CALL PFNGLGETPROGRAMRESOURCENAMEPROC glad_glGetProgramResourceName; #define glGetProgramResourceName glad_glGetProgramResourceName GLAD_API_CALL PFNGLGETPROGRAMRESOURCEIVPROC glad_glGetProgramResourceiv; #define glGetProgramResourceiv glad_glGetProgramResourceiv GLAD_API_CALL PFNGLGETPROGRAMSTAGEIVPROC glad_glGetProgramStageiv; #define glGetProgramStageiv glad_glGetProgramStageiv GLAD_API_CALL PFNGLGETPROGRAMSTRINGARBPROC glad_glGetProgramStringARB; #define glGetProgramStringARB glad_glGetProgramStringARB GLAD_API_CALL PFNGLGETPROGRAMIVPROC glad_glGetProgramiv; #define glGetProgramiv glad_glGetProgramiv GLAD_API_CALL PFNGLGETPROGRAMIVARBPROC glad_glGetProgramivARB; #define glGetProgramivARB glad_glGetProgramivARB GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTI64VPROC glad_glGetQueryBufferObjecti64v; #define glGetQueryBufferObjecti64v glad_glGetQueryBufferObjecti64v GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTIVPROC glad_glGetQueryBufferObjectiv; #define glGetQueryBufferObjectiv glad_glGetQueryBufferObjectiv GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTUI64VPROC glad_glGetQueryBufferObjectui64v; #define glGetQueryBufferObjectui64v glad_glGetQueryBufferObjectui64v GLAD_API_CALL PFNGLGETQUERYBUFFEROBJECTUIVPROC glad_glGetQueryBufferObjectuiv; #define glGetQueryBufferObjectuiv glad_glGetQueryBufferObjectuiv GLAD_API_CALL PFNGLGETQUERYINDEXEDIVPROC glad_glGetQueryIndexediv; #define glGetQueryIndexediv glad_glGetQueryIndexediv GLAD_API_CALL PFNGLGETQUERYOBJECTI64VPROC glad_glGetQueryObjecti64v; #define glGetQueryObjecti64v glad_glGetQueryObjecti64v GLAD_API_CALL PFNGLGETQUERYOBJECTIVPROC glad_glGetQueryObjectiv; #define glGetQueryObjectiv glad_glGetQueryObjectiv GLAD_API_CALL PFNGLGETQUERYOBJECTIVARBPROC glad_glGetQueryObjectivARB; #define glGetQueryObjectivARB glad_glGetQueryObjectivARB GLAD_API_CALL PFNGLGETQUERYOBJECTUI64VPROC glad_glGetQueryObjectui64v; #define glGetQueryObjectui64v glad_glGetQueryObjectui64v GLAD_API_CALL PFNGLGETQUERYOBJECTUIVPROC glad_glGetQueryObjectuiv; #define glGetQueryObjectuiv glad_glGetQueryObjectuiv GLAD_API_CALL PFNGLGETQUERYOBJECTUIVARBPROC glad_glGetQueryObjectuivARB; #define glGetQueryObjectuivARB glad_glGetQueryObjectuivARB GLAD_API_CALL PFNGLGETQUERYIVPROC glad_glGetQueryiv; #define glGetQueryiv glad_glGetQueryiv GLAD_API_CALL PFNGLGETQUERYIVARBPROC glad_glGetQueryivARB; #define glGetQueryivARB glad_glGetQueryivARB GLAD_API_CALL PFNGLGETRENDERBUFFERPARAMETERIVPROC glad_glGetRenderbufferParameteriv; #define glGetRenderbufferParameteriv glad_glGetRenderbufferParameteriv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERIIVPROC glad_glGetSamplerParameterIiv; #define glGetSamplerParameterIiv glad_glGetSamplerParameterIiv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERIUIVPROC glad_glGetSamplerParameterIuiv; #define glGetSamplerParameterIuiv glad_glGetSamplerParameterIuiv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERFVPROC glad_glGetSamplerParameterfv; #define glGetSamplerParameterfv glad_glGetSamplerParameterfv GLAD_API_CALL PFNGLGETSAMPLERPARAMETERIVPROC glad_glGetSamplerParameteriv; #define glGetSamplerParameteriv glad_glGetSamplerParameteriv GLAD_API_CALL PFNGLGETSEPARABLEFILTERPROC glad_glGetSeparableFilter; #define glGetSeparableFilter glad_glGetSeparableFilter GLAD_API_CALL PFNGLGETSHADERINFOLOGPROC glad_glGetShaderInfoLog; #define glGetShaderInfoLog glad_glGetShaderInfoLog GLAD_API_CALL PFNGLGETSHADERPRECISIONFORMATPROC glad_glGetShaderPrecisionFormat; #define glGetShaderPrecisionFormat glad_glGetShaderPrecisionFormat GLAD_API_CALL PFNGLGETSHADERSOURCEPROC glad_glGetShaderSource; #define glGetShaderSource glad_glGetShaderSource GLAD_API_CALL PFNGLGETSHADERSOURCEARBPROC glad_glGetShaderSourceARB; #define glGetShaderSourceARB glad_glGetShaderSourceARB GLAD_API_CALL PFNGLGETSHADERIVPROC glad_glGetShaderiv; #define glGetShaderiv glad_glGetShaderiv GLAD_API_CALL PFNGLGETSTRINGPROC glad_glGetString; #define glGetString glad_glGetString GLAD_API_CALL PFNGLGETSTRINGIPROC glad_glGetStringi; #define glGetStringi glad_glGetStringi GLAD_API_CALL PFNGLGETSUBROUTINEINDEXPROC glad_glGetSubroutineIndex; #define glGetSubroutineIndex glad_glGetSubroutineIndex GLAD_API_CALL PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC glad_glGetSubroutineUniformLocation; #define glGetSubroutineUniformLocation glad_glGetSubroutineUniformLocation GLAD_API_CALL PFNGLGETSYNCIVPROC glad_glGetSynciv; #define glGetSynciv glad_glGetSynciv GLAD_API_CALL PFNGLGETTEXENVFVPROC glad_glGetTexEnvfv; #define glGetTexEnvfv glad_glGetTexEnvfv GLAD_API_CALL PFNGLGETTEXENVIVPROC glad_glGetTexEnviv; #define glGetTexEnviv glad_glGetTexEnviv GLAD_API_CALL PFNGLGETTEXGENDVPROC glad_glGetTexGendv; #define glGetTexGendv glad_glGetTexGendv GLAD_API_CALL PFNGLGETTEXGENFVPROC glad_glGetTexGenfv; #define glGetTexGenfv glad_glGetTexGenfv GLAD_API_CALL PFNGLGETTEXGENIVPROC glad_glGetTexGeniv; #define glGetTexGeniv glad_glGetTexGeniv GLAD_API_CALL PFNGLGETTEXIMAGEPROC glad_glGetTexImage; #define glGetTexImage glad_glGetTexImage GLAD_API_CALL PFNGLGETTEXLEVELPARAMETERFVPROC glad_glGetTexLevelParameterfv; #define glGetTexLevelParameterfv glad_glGetTexLevelParameterfv GLAD_API_CALL PFNGLGETTEXLEVELPARAMETERIVPROC glad_glGetTexLevelParameteriv; #define glGetTexLevelParameteriv glad_glGetTexLevelParameteriv GLAD_API_CALL PFNGLGETTEXPARAMETERIIVPROC glad_glGetTexParameterIiv; #define glGetTexParameterIiv glad_glGetTexParameterIiv GLAD_API_CALL PFNGLGETTEXPARAMETERIUIVPROC glad_glGetTexParameterIuiv; #define glGetTexParameterIuiv glad_glGetTexParameterIuiv GLAD_API_CALL PFNGLGETTEXPARAMETERFVPROC glad_glGetTexParameterfv; #define glGetTexParameterfv glad_glGetTexParameterfv GLAD_API_CALL PFNGLGETTEXPARAMETERIVPROC glad_glGetTexParameteriv; #define glGetTexParameteriv glad_glGetTexParameteriv GLAD_API_CALL PFNGLGETTEXTUREHANDLEARBPROC glad_glGetTextureHandleARB; #define glGetTextureHandleARB glad_glGetTextureHandleARB GLAD_API_CALL PFNGLGETTEXTUREIMAGEPROC glad_glGetTextureImage; #define glGetTextureImage glad_glGetTextureImage GLAD_API_CALL PFNGLGETTEXTURELEVELPARAMETERFVPROC glad_glGetTextureLevelParameterfv; #define glGetTextureLevelParameterfv glad_glGetTextureLevelParameterfv GLAD_API_CALL PFNGLGETTEXTURELEVELPARAMETERIVPROC glad_glGetTextureLevelParameteriv; #define glGetTextureLevelParameteriv glad_glGetTextureLevelParameteriv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERIIVPROC glad_glGetTextureParameterIiv; #define glGetTextureParameterIiv glad_glGetTextureParameterIiv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERIUIVPROC glad_glGetTextureParameterIuiv; #define glGetTextureParameterIuiv glad_glGetTextureParameterIuiv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERFVPROC glad_glGetTextureParameterfv; #define glGetTextureParameterfv glad_glGetTextureParameterfv GLAD_API_CALL PFNGLGETTEXTUREPARAMETERIVPROC glad_glGetTextureParameteriv; #define glGetTextureParameteriv glad_glGetTextureParameteriv GLAD_API_CALL PFNGLGETTEXTURESAMPLERHANDLEARBPROC glad_glGetTextureSamplerHandleARB; #define glGetTextureSamplerHandleARB glad_glGetTextureSamplerHandleARB GLAD_API_CALL PFNGLGETTEXTURESUBIMAGEPROC glad_glGetTextureSubImage; #define glGetTextureSubImage glad_glGetTextureSubImage GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKVARYINGPROC glad_glGetTransformFeedbackVarying; #define glGetTransformFeedbackVarying glad_glGetTransformFeedbackVarying GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKI64_VPROC glad_glGetTransformFeedbacki64_v; #define glGetTransformFeedbacki64_v glad_glGetTransformFeedbacki64_v GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKI_VPROC glad_glGetTransformFeedbacki_v; #define glGetTransformFeedbacki_v glad_glGetTransformFeedbacki_v GLAD_API_CALL PFNGLGETTRANSFORMFEEDBACKIVPROC glad_glGetTransformFeedbackiv; #define glGetTransformFeedbackiv glad_glGetTransformFeedbackiv GLAD_API_CALL PFNGLGETUNIFORMBLOCKINDEXPROC glad_glGetUniformBlockIndex; #define glGetUniformBlockIndex glad_glGetUniformBlockIndex GLAD_API_CALL PFNGLGETUNIFORMINDICESPROC glad_glGetUniformIndices; #define glGetUniformIndices glad_glGetUniformIndices GLAD_API_CALL PFNGLGETUNIFORMLOCATIONPROC glad_glGetUniformLocation; #define glGetUniformLocation glad_glGetUniformLocation GLAD_API_CALL PFNGLGETUNIFORMLOCATIONARBPROC glad_glGetUniformLocationARB; #define glGetUniformLocationARB glad_glGetUniformLocationARB GLAD_API_CALL PFNGLGETUNIFORMSUBROUTINEUIVPROC glad_glGetUniformSubroutineuiv; #define glGetUniformSubroutineuiv glad_glGetUniformSubroutineuiv GLAD_API_CALL PFNGLGETUNIFORMDVPROC glad_glGetUniformdv; #define glGetUniformdv glad_glGetUniformdv GLAD_API_CALL PFNGLGETUNIFORMFVPROC glad_glGetUniformfv; #define glGetUniformfv glad_glGetUniformfv GLAD_API_CALL PFNGLGETUNIFORMFVARBPROC glad_glGetUniformfvARB; #define glGetUniformfvARB glad_glGetUniformfvARB GLAD_API_CALL PFNGLGETUNIFORMI64VARBPROC glad_glGetUniformi64vARB; #define glGetUniformi64vARB glad_glGetUniformi64vARB GLAD_API_CALL PFNGLGETUNIFORMIVPROC glad_glGetUniformiv; #define glGetUniformiv glad_glGetUniformiv GLAD_API_CALL PFNGLGETUNIFORMIVARBPROC glad_glGetUniformivARB; #define glGetUniformivARB glad_glGetUniformivARB GLAD_API_CALL PFNGLGETUNIFORMUI64VARBPROC glad_glGetUniformui64vARB; #define glGetUniformui64vARB glad_glGetUniformui64vARB GLAD_API_CALL PFNGLGETUNIFORMUIVPROC glad_glGetUniformuiv; #define glGetUniformuiv glad_glGetUniformuiv GLAD_API_CALL PFNGLGETVERTEXARRAYINDEXED64IVPROC glad_glGetVertexArrayIndexed64iv; #define glGetVertexArrayIndexed64iv glad_glGetVertexArrayIndexed64iv GLAD_API_CALL PFNGLGETVERTEXARRAYINDEXEDIVPROC glad_glGetVertexArrayIndexediv; #define glGetVertexArrayIndexediv glad_glGetVertexArrayIndexediv GLAD_API_CALL PFNGLGETVERTEXARRAYIVPROC glad_glGetVertexArrayiv; #define glGetVertexArrayiv glad_glGetVertexArrayiv GLAD_API_CALL PFNGLGETVERTEXATTRIBIIVPROC glad_glGetVertexAttribIiv; #define glGetVertexAttribIiv glad_glGetVertexAttribIiv GLAD_API_CALL PFNGLGETVERTEXATTRIBIUIVPROC glad_glGetVertexAttribIuiv; #define glGetVertexAttribIuiv glad_glGetVertexAttribIuiv GLAD_API_CALL PFNGLGETVERTEXATTRIBLDVPROC glad_glGetVertexAttribLdv; #define glGetVertexAttribLdv glad_glGetVertexAttribLdv GLAD_API_CALL PFNGLGETVERTEXATTRIBLUI64VARBPROC glad_glGetVertexAttribLui64vARB; #define glGetVertexAttribLui64vARB glad_glGetVertexAttribLui64vARB GLAD_API_CALL PFNGLGETVERTEXATTRIBPOINTERVPROC glad_glGetVertexAttribPointerv; #define glGetVertexAttribPointerv glad_glGetVertexAttribPointerv GLAD_API_CALL PFNGLGETVERTEXATTRIBPOINTERVARBPROC glad_glGetVertexAttribPointervARB; #define glGetVertexAttribPointervARB glad_glGetVertexAttribPointervARB GLAD_API_CALL PFNGLGETVERTEXATTRIBDVPROC glad_glGetVertexAttribdv; #define glGetVertexAttribdv glad_glGetVertexAttribdv GLAD_API_CALL PFNGLGETVERTEXATTRIBDVARBPROC glad_glGetVertexAttribdvARB; #define glGetVertexAttribdvARB glad_glGetVertexAttribdvARB GLAD_API_CALL PFNGLGETVERTEXATTRIBFVPROC glad_glGetVertexAttribfv; #define glGetVertexAttribfv glad_glGetVertexAttribfv GLAD_API_CALL PFNGLGETVERTEXATTRIBFVARBPROC glad_glGetVertexAttribfvARB; #define glGetVertexAttribfvARB glad_glGetVertexAttribfvARB GLAD_API_CALL PFNGLGETVERTEXATTRIBIVPROC glad_glGetVertexAttribiv; #define glGetVertexAttribiv glad_glGetVertexAttribiv GLAD_API_CALL PFNGLGETVERTEXATTRIBIVARBPROC glad_glGetVertexAttribivARB; #define glGetVertexAttribivARB glad_glGetVertexAttribivARB GLAD_API_CALL PFNGLGETNCOLORTABLEARBPROC glad_glGetnColorTableARB; #define glGetnColorTableARB glad_glGetnColorTableARB GLAD_API_CALL PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC glad_glGetnCompressedTexImageARB; #define glGetnCompressedTexImageARB glad_glGetnCompressedTexImageARB GLAD_API_CALL PFNGLGETNCONVOLUTIONFILTERARBPROC glad_glGetnConvolutionFilterARB; #define glGetnConvolutionFilterARB glad_glGetnConvolutionFilterARB GLAD_API_CALL PFNGLGETNHISTOGRAMARBPROC glad_glGetnHistogramARB; #define glGetnHistogramARB glad_glGetnHistogramARB GLAD_API_CALL PFNGLGETNMAPDVARBPROC glad_glGetnMapdvARB; #define glGetnMapdvARB glad_glGetnMapdvARB GLAD_API_CALL PFNGLGETNMAPFVARBPROC glad_glGetnMapfvARB; #define glGetnMapfvARB glad_glGetnMapfvARB GLAD_API_CALL PFNGLGETNMAPIVARBPROC glad_glGetnMapivARB; #define glGetnMapivARB glad_glGetnMapivARB GLAD_API_CALL PFNGLGETNMINMAXARBPROC glad_glGetnMinmaxARB; #define glGetnMinmaxARB glad_glGetnMinmaxARB GLAD_API_CALL PFNGLGETNPIXELMAPFVARBPROC glad_glGetnPixelMapfvARB; #define glGetnPixelMapfvARB glad_glGetnPixelMapfvARB GLAD_API_CALL PFNGLGETNPIXELMAPUIVARBPROC glad_glGetnPixelMapuivARB; #define glGetnPixelMapuivARB glad_glGetnPixelMapuivARB GLAD_API_CALL PFNGLGETNPIXELMAPUSVARBPROC glad_glGetnPixelMapusvARB; #define glGetnPixelMapusvARB glad_glGetnPixelMapusvARB GLAD_API_CALL PFNGLGETNPOLYGONSTIPPLEARBPROC glad_glGetnPolygonStippleARB; #define glGetnPolygonStippleARB glad_glGetnPolygonStippleARB GLAD_API_CALL PFNGLGETNSEPARABLEFILTERARBPROC glad_glGetnSeparableFilterARB; #define glGetnSeparableFilterARB glad_glGetnSeparableFilterARB GLAD_API_CALL PFNGLGETNTEXIMAGEARBPROC glad_glGetnTexImageARB; #define glGetnTexImageARB glad_glGetnTexImageARB GLAD_API_CALL PFNGLGETNUNIFORMDVARBPROC glad_glGetnUniformdvARB; #define glGetnUniformdvARB glad_glGetnUniformdvARB GLAD_API_CALL PFNGLGETNUNIFORMFVPROC glad_glGetnUniformfv; #define glGetnUniformfv glad_glGetnUniformfv GLAD_API_CALL PFNGLGETNUNIFORMFVARBPROC glad_glGetnUniformfvARB; #define glGetnUniformfvARB glad_glGetnUniformfvARB GLAD_API_CALL PFNGLGETNUNIFORMI64VARBPROC glad_glGetnUniformi64vARB; #define glGetnUniformi64vARB glad_glGetnUniformi64vARB GLAD_API_CALL PFNGLGETNUNIFORMIVPROC glad_glGetnUniformiv; #define glGetnUniformiv glad_glGetnUniformiv GLAD_API_CALL PFNGLGETNUNIFORMIVARBPROC glad_glGetnUniformivARB; #define glGetnUniformivARB glad_glGetnUniformivARB GLAD_API_CALL PFNGLGETNUNIFORMUI64VARBPROC glad_glGetnUniformui64vARB; #define glGetnUniformui64vARB glad_glGetnUniformui64vARB GLAD_API_CALL PFNGLGETNUNIFORMUIVPROC glad_glGetnUniformuiv; #define glGetnUniformuiv glad_glGetnUniformuiv GLAD_API_CALL PFNGLGETNUNIFORMUIVARBPROC glad_glGetnUniformuivARB; #define glGetnUniformuivARB glad_glGetnUniformuivARB GLAD_API_CALL PFNGLHINTPROC glad_glHint; #define glHint glad_glHint GLAD_API_CALL PFNGLHISTOGRAMPROC glad_glHistogram; #define glHistogram glad_glHistogram GLAD_API_CALL PFNGLINDEXMASKPROC glad_glIndexMask; #define glIndexMask glad_glIndexMask GLAD_API_CALL PFNGLINDEXPOINTERPROC glad_glIndexPointer; #define glIndexPointer glad_glIndexPointer GLAD_API_CALL PFNGLINDEXDPROC glad_glIndexd; #define glIndexd glad_glIndexd GLAD_API_CALL PFNGLINDEXDVPROC glad_glIndexdv; #define glIndexdv glad_glIndexdv GLAD_API_CALL PFNGLINDEXFPROC glad_glIndexf; #define glIndexf glad_glIndexf GLAD_API_CALL PFNGLINDEXFVPROC glad_glIndexfv; #define glIndexfv glad_glIndexfv GLAD_API_CALL PFNGLINDEXIPROC glad_glIndexi; #define glIndexi glad_glIndexi GLAD_API_CALL PFNGLINDEXIVPROC glad_glIndexiv; #define glIndexiv glad_glIndexiv GLAD_API_CALL PFNGLINDEXSPROC glad_glIndexs; #define glIndexs glad_glIndexs GLAD_API_CALL PFNGLINDEXSVPROC glad_glIndexsv; #define glIndexsv glad_glIndexsv GLAD_API_CALL PFNGLINDEXUBPROC glad_glIndexub; #define glIndexub glad_glIndexub GLAD_API_CALL PFNGLINDEXUBVPROC glad_glIndexubv; #define glIndexubv glad_glIndexubv GLAD_API_CALL PFNGLINITNAMESPROC glad_glInitNames; #define glInitNames glad_glInitNames GLAD_API_CALL PFNGLINTERLEAVEDARRAYSPROC glad_glInterleavedArrays; #define glInterleavedArrays glad_glInterleavedArrays GLAD_API_CALL PFNGLINVALIDATEBUFFERDATAPROC glad_glInvalidateBufferData; #define glInvalidateBufferData glad_glInvalidateBufferData GLAD_API_CALL PFNGLINVALIDATEBUFFERSUBDATAPROC glad_glInvalidateBufferSubData; #define glInvalidateBufferSubData glad_glInvalidateBufferSubData GLAD_API_CALL PFNGLINVALIDATEFRAMEBUFFERPROC glad_glInvalidateFramebuffer; #define glInvalidateFramebuffer glad_glInvalidateFramebuffer GLAD_API_CALL PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC glad_glInvalidateNamedFramebufferData; #define glInvalidateNamedFramebufferData glad_glInvalidateNamedFramebufferData GLAD_API_CALL PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC glad_glInvalidateNamedFramebufferSubData; #define glInvalidateNamedFramebufferSubData glad_glInvalidateNamedFramebufferSubData GLAD_API_CALL PFNGLINVALIDATESUBFRAMEBUFFERPROC glad_glInvalidateSubFramebuffer; #define glInvalidateSubFramebuffer glad_glInvalidateSubFramebuffer GLAD_API_CALL PFNGLINVALIDATETEXIMAGEPROC glad_glInvalidateTexImage; #define glInvalidateTexImage glad_glInvalidateTexImage GLAD_API_CALL PFNGLINVALIDATETEXSUBIMAGEPROC glad_glInvalidateTexSubImage; #define glInvalidateTexSubImage glad_glInvalidateTexSubImage GLAD_API_CALL PFNGLISBUFFERPROC glad_glIsBuffer; #define glIsBuffer glad_glIsBuffer GLAD_API_CALL PFNGLISBUFFERARBPROC glad_glIsBufferARB; #define glIsBufferARB glad_glIsBufferARB GLAD_API_CALL PFNGLISENABLEDPROC glad_glIsEnabled; #define glIsEnabled glad_glIsEnabled GLAD_API_CALL PFNGLISENABLEDIPROC glad_glIsEnabledi; #define glIsEnabledi glad_glIsEnabledi GLAD_API_CALL PFNGLISFRAMEBUFFERPROC glad_glIsFramebuffer; #define glIsFramebuffer glad_glIsFramebuffer GLAD_API_CALL PFNGLISIMAGEHANDLERESIDENTARBPROC glad_glIsImageHandleResidentARB; #define glIsImageHandleResidentARB glad_glIsImageHandleResidentARB GLAD_API_CALL PFNGLISLISTPROC glad_glIsList; #define glIsList glad_glIsList GLAD_API_CALL PFNGLISNAMEDSTRINGARBPROC glad_glIsNamedStringARB; #define glIsNamedStringARB glad_glIsNamedStringARB GLAD_API_CALL PFNGLISPROGRAMPROC glad_glIsProgram; #define glIsProgram glad_glIsProgram GLAD_API_CALL PFNGLISPROGRAMARBPROC glad_glIsProgramARB; #define glIsProgramARB glad_glIsProgramARB GLAD_API_CALL PFNGLISPROGRAMPIPELINEPROC glad_glIsProgramPipeline; #define glIsProgramPipeline glad_glIsProgramPipeline GLAD_API_CALL PFNGLISQUERYPROC glad_glIsQuery; #define glIsQuery glad_glIsQuery GLAD_API_CALL PFNGLISQUERYARBPROC glad_glIsQueryARB; #define glIsQueryARB glad_glIsQueryARB GLAD_API_CALL PFNGLISRENDERBUFFERPROC glad_glIsRenderbuffer; #define glIsRenderbuffer glad_glIsRenderbuffer GLAD_API_CALL PFNGLISSAMPLERPROC glad_glIsSampler; #define glIsSampler glad_glIsSampler GLAD_API_CALL PFNGLISSHADERPROC glad_glIsShader; #define glIsShader glad_glIsShader GLAD_API_CALL PFNGLISSYNCPROC glad_glIsSync; #define glIsSync glad_glIsSync GLAD_API_CALL PFNGLISTEXTUREPROC glad_glIsTexture; #define glIsTexture glad_glIsTexture GLAD_API_CALL PFNGLISTEXTUREHANDLERESIDENTARBPROC glad_glIsTextureHandleResidentARB; #define glIsTextureHandleResidentARB glad_glIsTextureHandleResidentARB GLAD_API_CALL PFNGLISTRANSFORMFEEDBACKPROC glad_glIsTransformFeedback; #define glIsTransformFeedback glad_glIsTransformFeedback GLAD_API_CALL PFNGLISVERTEXARRAYPROC glad_glIsVertexArray; #define glIsVertexArray glad_glIsVertexArray GLAD_API_CALL PFNGLLIGHTMODELFPROC glad_glLightModelf; #define glLightModelf glad_glLightModelf GLAD_API_CALL PFNGLLIGHTMODELFVPROC glad_glLightModelfv; #define glLightModelfv glad_glLightModelfv GLAD_API_CALL PFNGLLIGHTMODELIPROC glad_glLightModeli; #define glLightModeli glad_glLightModeli GLAD_API_CALL PFNGLLIGHTMODELIVPROC glad_glLightModeliv; #define glLightModeliv glad_glLightModeliv GLAD_API_CALL PFNGLLIGHTFPROC glad_glLightf; #define glLightf glad_glLightf GLAD_API_CALL PFNGLLIGHTFVPROC glad_glLightfv; #define glLightfv glad_glLightfv GLAD_API_CALL PFNGLLIGHTIPROC glad_glLighti; #define glLighti glad_glLighti GLAD_API_CALL PFNGLLIGHTIVPROC glad_glLightiv; #define glLightiv glad_glLightiv GLAD_API_CALL PFNGLLINESTIPPLEPROC glad_glLineStipple; #define glLineStipple glad_glLineStipple GLAD_API_CALL PFNGLLINEWIDTHPROC glad_glLineWidth; #define glLineWidth glad_glLineWidth GLAD_API_CALL PFNGLLINKPROGRAMPROC glad_glLinkProgram; #define glLinkProgram glad_glLinkProgram GLAD_API_CALL PFNGLLINKPROGRAMARBPROC glad_glLinkProgramARB; #define glLinkProgramARB glad_glLinkProgramARB GLAD_API_CALL PFNGLLISTBASEPROC glad_glListBase; #define glListBase glad_glListBase GLAD_API_CALL PFNGLLOADIDENTITYPROC glad_glLoadIdentity; #define glLoadIdentity glad_glLoadIdentity GLAD_API_CALL PFNGLLOADMATRIXDPROC glad_glLoadMatrixd; #define glLoadMatrixd glad_glLoadMatrixd GLAD_API_CALL PFNGLLOADMATRIXFPROC glad_glLoadMatrixf; #define glLoadMatrixf glad_glLoadMatrixf GLAD_API_CALL PFNGLLOADNAMEPROC glad_glLoadName; #define glLoadName glad_glLoadName GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXDPROC glad_glLoadTransposeMatrixd; #define glLoadTransposeMatrixd glad_glLoadTransposeMatrixd GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXDARBPROC glad_glLoadTransposeMatrixdARB; #define glLoadTransposeMatrixdARB glad_glLoadTransposeMatrixdARB GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXFPROC glad_glLoadTransposeMatrixf; #define glLoadTransposeMatrixf glad_glLoadTransposeMatrixf GLAD_API_CALL PFNGLLOADTRANSPOSEMATRIXFARBPROC glad_glLoadTransposeMatrixfARB; #define glLoadTransposeMatrixfARB glad_glLoadTransposeMatrixfARB GLAD_API_CALL PFNGLLOGICOPPROC glad_glLogicOp; #define glLogicOp glad_glLogicOp GLAD_API_CALL PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC glad_glMakeImageHandleNonResidentARB; #define glMakeImageHandleNonResidentARB glad_glMakeImageHandleNonResidentARB GLAD_API_CALL PFNGLMAKEIMAGEHANDLERESIDENTARBPROC glad_glMakeImageHandleResidentARB; #define glMakeImageHandleResidentARB glad_glMakeImageHandleResidentARB GLAD_API_CALL PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC glad_glMakeTextureHandleNonResidentARB; #define glMakeTextureHandleNonResidentARB glad_glMakeTextureHandleNonResidentARB GLAD_API_CALL PFNGLMAKETEXTUREHANDLERESIDENTARBPROC glad_glMakeTextureHandleResidentARB; #define glMakeTextureHandleResidentARB glad_glMakeTextureHandleResidentARB GLAD_API_CALL PFNGLMAP1DPROC glad_glMap1d; #define glMap1d glad_glMap1d GLAD_API_CALL PFNGLMAP1FPROC glad_glMap1f; #define glMap1f glad_glMap1f GLAD_API_CALL PFNGLMAP2DPROC glad_glMap2d; #define glMap2d glad_glMap2d GLAD_API_CALL PFNGLMAP2FPROC glad_glMap2f; #define glMap2f glad_glMap2f GLAD_API_CALL PFNGLMAPBUFFERPROC glad_glMapBuffer; #define glMapBuffer glad_glMapBuffer GLAD_API_CALL PFNGLMAPBUFFERARBPROC glad_glMapBufferARB; #define glMapBufferARB glad_glMapBufferARB GLAD_API_CALL PFNGLMAPBUFFERRANGEPROC glad_glMapBufferRange; #define glMapBufferRange glad_glMapBufferRange GLAD_API_CALL PFNGLMAPGRID1DPROC glad_glMapGrid1d; #define glMapGrid1d glad_glMapGrid1d GLAD_API_CALL PFNGLMAPGRID1FPROC glad_glMapGrid1f; #define glMapGrid1f glad_glMapGrid1f GLAD_API_CALL PFNGLMAPGRID2DPROC glad_glMapGrid2d; #define glMapGrid2d glad_glMapGrid2d GLAD_API_CALL PFNGLMAPGRID2FPROC glad_glMapGrid2f; #define glMapGrid2f glad_glMapGrid2f GLAD_API_CALL PFNGLMAPNAMEDBUFFERPROC glad_glMapNamedBuffer; #define glMapNamedBuffer glad_glMapNamedBuffer GLAD_API_CALL PFNGLMAPNAMEDBUFFERRANGEPROC glad_glMapNamedBufferRange; #define glMapNamedBufferRange glad_glMapNamedBufferRange GLAD_API_CALL PFNGLMATERIALFPROC glad_glMaterialf; #define glMaterialf glad_glMaterialf GLAD_API_CALL PFNGLMATERIALFVPROC glad_glMaterialfv; #define glMaterialfv glad_glMaterialfv GLAD_API_CALL PFNGLMATERIALIPROC glad_glMateriali; #define glMateriali glad_glMateriali GLAD_API_CALL PFNGLMATERIALIVPROC glad_glMaterialiv; #define glMaterialiv glad_glMaterialiv GLAD_API_CALL PFNGLMATRIXINDEXPOINTERARBPROC glad_glMatrixIndexPointerARB; #define glMatrixIndexPointerARB glad_glMatrixIndexPointerARB GLAD_API_CALL PFNGLMATRIXINDEXUBVARBPROC glad_glMatrixIndexubvARB; #define glMatrixIndexubvARB glad_glMatrixIndexubvARB GLAD_API_CALL PFNGLMATRIXINDEXUIVARBPROC glad_glMatrixIndexuivARB; #define glMatrixIndexuivARB glad_glMatrixIndexuivARB GLAD_API_CALL PFNGLMATRIXINDEXUSVARBPROC glad_glMatrixIndexusvARB; #define glMatrixIndexusvARB glad_glMatrixIndexusvARB GLAD_API_CALL PFNGLMATRIXMODEPROC glad_glMatrixMode; #define glMatrixMode glad_glMatrixMode GLAD_API_CALL PFNGLMAXSHADERCOMPILERTHREADSARBPROC glad_glMaxShaderCompilerThreadsARB; #define glMaxShaderCompilerThreadsARB glad_glMaxShaderCompilerThreadsARB GLAD_API_CALL PFNGLMAXSHADERCOMPILERTHREADSKHRPROC glad_glMaxShaderCompilerThreadsKHR; #define glMaxShaderCompilerThreadsKHR glad_glMaxShaderCompilerThreadsKHR GLAD_API_CALL PFNGLMEMORYBARRIERPROC glad_glMemoryBarrier; #define glMemoryBarrier glad_glMemoryBarrier GLAD_API_CALL PFNGLMEMORYBARRIERBYREGIONPROC glad_glMemoryBarrierByRegion; #define glMemoryBarrierByRegion glad_glMemoryBarrierByRegion GLAD_API_CALL PFNGLMINSAMPLESHADINGPROC glad_glMinSampleShading; #define glMinSampleShading glad_glMinSampleShading GLAD_API_CALL PFNGLMINSAMPLESHADINGARBPROC glad_glMinSampleShadingARB; #define glMinSampleShadingARB glad_glMinSampleShadingARB GLAD_API_CALL PFNGLMINMAXPROC glad_glMinmax; #define glMinmax glad_glMinmax GLAD_API_CALL PFNGLMULTMATRIXDPROC glad_glMultMatrixd; #define glMultMatrixd glad_glMultMatrixd GLAD_API_CALL PFNGLMULTMATRIXFPROC glad_glMultMatrixf; #define glMultMatrixf glad_glMultMatrixf GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXDPROC glad_glMultTransposeMatrixd; #define glMultTransposeMatrixd glad_glMultTransposeMatrixd GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXDARBPROC glad_glMultTransposeMatrixdARB; #define glMultTransposeMatrixdARB glad_glMultTransposeMatrixdARB GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXFPROC glad_glMultTransposeMatrixf; #define glMultTransposeMatrixf glad_glMultTransposeMatrixf GLAD_API_CALL PFNGLMULTTRANSPOSEMATRIXFARBPROC glad_glMultTransposeMatrixfARB; #define glMultTransposeMatrixfARB glad_glMultTransposeMatrixfARB GLAD_API_CALL PFNGLMULTIDRAWARRAYSPROC glad_glMultiDrawArrays; #define glMultiDrawArrays glad_glMultiDrawArrays GLAD_API_CALL PFNGLMULTIDRAWARRAYSINDIRECTPROC glad_glMultiDrawArraysIndirect; #define glMultiDrawArraysIndirect glad_glMultiDrawArraysIndirect GLAD_API_CALL PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC glad_glMultiDrawArraysIndirectCount; #define glMultiDrawArraysIndirectCount glad_glMultiDrawArraysIndirectCount GLAD_API_CALL PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC glad_glMultiDrawArraysIndirectCountARB; #define glMultiDrawArraysIndirectCountARB glad_glMultiDrawArraysIndirectCountARB GLAD_API_CALL PFNGLMULTIDRAWELEMENTSPROC glad_glMultiDrawElements; #define glMultiDrawElements glad_glMultiDrawElements GLAD_API_CALL PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC glad_glMultiDrawElementsBaseVertex; #define glMultiDrawElementsBaseVertex glad_glMultiDrawElementsBaseVertex GLAD_API_CALL PFNGLMULTIDRAWELEMENTSINDIRECTPROC glad_glMultiDrawElementsIndirect; #define glMultiDrawElementsIndirect glad_glMultiDrawElementsIndirect GLAD_API_CALL PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC glad_glMultiDrawElementsIndirectCount; #define glMultiDrawElementsIndirectCount glad_glMultiDrawElementsIndirectCount GLAD_API_CALL PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC glad_glMultiDrawElementsIndirectCountARB; #define glMultiDrawElementsIndirectCountARB glad_glMultiDrawElementsIndirectCountARB GLAD_API_CALL PFNGLMULTITEXCOORD1DPROC glad_glMultiTexCoord1d; #define glMultiTexCoord1d glad_glMultiTexCoord1d GLAD_API_CALL PFNGLMULTITEXCOORD1DARBPROC glad_glMultiTexCoord1dARB; #define glMultiTexCoord1dARB glad_glMultiTexCoord1dARB GLAD_API_CALL PFNGLMULTITEXCOORD1DVPROC glad_glMultiTexCoord1dv; #define glMultiTexCoord1dv glad_glMultiTexCoord1dv GLAD_API_CALL PFNGLMULTITEXCOORD1DVARBPROC glad_glMultiTexCoord1dvARB; #define glMultiTexCoord1dvARB glad_glMultiTexCoord1dvARB GLAD_API_CALL PFNGLMULTITEXCOORD1FPROC glad_glMultiTexCoord1f; #define glMultiTexCoord1f glad_glMultiTexCoord1f GLAD_API_CALL PFNGLMULTITEXCOORD1FARBPROC glad_glMultiTexCoord1fARB; #define glMultiTexCoord1fARB glad_glMultiTexCoord1fARB GLAD_API_CALL PFNGLMULTITEXCOORD1FVPROC glad_glMultiTexCoord1fv; #define glMultiTexCoord1fv glad_glMultiTexCoord1fv GLAD_API_CALL PFNGLMULTITEXCOORD1FVARBPROC glad_glMultiTexCoord1fvARB; #define glMultiTexCoord1fvARB glad_glMultiTexCoord1fvARB GLAD_API_CALL PFNGLMULTITEXCOORD1IPROC glad_glMultiTexCoord1i; #define glMultiTexCoord1i glad_glMultiTexCoord1i GLAD_API_CALL PFNGLMULTITEXCOORD1IARBPROC glad_glMultiTexCoord1iARB; #define glMultiTexCoord1iARB glad_glMultiTexCoord1iARB GLAD_API_CALL PFNGLMULTITEXCOORD1IVPROC glad_glMultiTexCoord1iv; #define glMultiTexCoord1iv glad_glMultiTexCoord1iv GLAD_API_CALL PFNGLMULTITEXCOORD1IVARBPROC glad_glMultiTexCoord1ivARB; #define glMultiTexCoord1ivARB glad_glMultiTexCoord1ivARB GLAD_API_CALL PFNGLMULTITEXCOORD1SPROC glad_glMultiTexCoord1s; #define glMultiTexCoord1s glad_glMultiTexCoord1s GLAD_API_CALL PFNGLMULTITEXCOORD1SARBPROC glad_glMultiTexCoord1sARB; #define glMultiTexCoord1sARB glad_glMultiTexCoord1sARB GLAD_API_CALL PFNGLMULTITEXCOORD1SVPROC glad_glMultiTexCoord1sv; #define glMultiTexCoord1sv glad_glMultiTexCoord1sv GLAD_API_CALL PFNGLMULTITEXCOORD1SVARBPROC glad_glMultiTexCoord1svARB; #define glMultiTexCoord1svARB glad_glMultiTexCoord1svARB GLAD_API_CALL PFNGLMULTITEXCOORD2DPROC glad_glMultiTexCoord2d; #define glMultiTexCoord2d glad_glMultiTexCoord2d GLAD_API_CALL PFNGLMULTITEXCOORD2DARBPROC glad_glMultiTexCoord2dARB; #define glMultiTexCoord2dARB glad_glMultiTexCoord2dARB GLAD_API_CALL PFNGLMULTITEXCOORD2DVPROC glad_glMultiTexCoord2dv; #define glMultiTexCoord2dv glad_glMultiTexCoord2dv GLAD_API_CALL PFNGLMULTITEXCOORD2DVARBPROC glad_glMultiTexCoord2dvARB; #define glMultiTexCoord2dvARB glad_glMultiTexCoord2dvARB GLAD_API_CALL PFNGLMULTITEXCOORD2FPROC glad_glMultiTexCoord2f; #define glMultiTexCoord2f glad_glMultiTexCoord2f GLAD_API_CALL PFNGLMULTITEXCOORD2FARBPROC glad_glMultiTexCoord2fARB; #define glMultiTexCoord2fARB glad_glMultiTexCoord2fARB GLAD_API_CALL PFNGLMULTITEXCOORD2FVPROC glad_glMultiTexCoord2fv; #define glMultiTexCoord2fv glad_glMultiTexCoord2fv GLAD_API_CALL PFNGLMULTITEXCOORD2FVARBPROC glad_glMultiTexCoord2fvARB; #define glMultiTexCoord2fvARB glad_glMultiTexCoord2fvARB GLAD_API_CALL PFNGLMULTITEXCOORD2IPROC glad_glMultiTexCoord2i; #define glMultiTexCoord2i glad_glMultiTexCoord2i GLAD_API_CALL PFNGLMULTITEXCOORD2IARBPROC glad_glMultiTexCoord2iARB; #define glMultiTexCoord2iARB glad_glMultiTexCoord2iARB GLAD_API_CALL PFNGLMULTITEXCOORD2IVPROC glad_glMultiTexCoord2iv; #define glMultiTexCoord2iv glad_glMultiTexCoord2iv GLAD_API_CALL PFNGLMULTITEXCOORD2IVARBPROC glad_glMultiTexCoord2ivARB; #define glMultiTexCoord2ivARB glad_glMultiTexCoord2ivARB GLAD_API_CALL PFNGLMULTITEXCOORD2SPROC glad_glMultiTexCoord2s; #define glMultiTexCoord2s glad_glMultiTexCoord2s GLAD_API_CALL PFNGLMULTITEXCOORD2SARBPROC glad_glMultiTexCoord2sARB; #define glMultiTexCoord2sARB glad_glMultiTexCoord2sARB GLAD_API_CALL PFNGLMULTITEXCOORD2SVPROC glad_glMultiTexCoord2sv; #define glMultiTexCoord2sv glad_glMultiTexCoord2sv GLAD_API_CALL PFNGLMULTITEXCOORD2SVARBPROC glad_glMultiTexCoord2svARB; #define glMultiTexCoord2svARB glad_glMultiTexCoord2svARB GLAD_API_CALL PFNGLMULTITEXCOORD3DPROC glad_glMultiTexCoord3d; #define glMultiTexCoord3d glad_glMultiTexCoord3d GLAD_API_CALL PFNGLMULTITEXCOORD3DARBPROC glad_glMultiTexCoord3dARB; #define glMultiTexCoord3dARB glad_glMultiTexCoord3dARB GLAD_API_CALL PFNGLMULTITEXCOORD3DVPROC glad_glMultiTexCoord3dv; #define glMultiTexCoord3dv glad_glMultiTexCoord3dv GLAD_API_CALL PFNGLMULTITEXCOORD3DVARBPROC glad_glMultiTexCoord3dvARB; #define glMultiTexCoord3dvARB glad_glMultiTexCoord3dvARB GLAD_API_CALL PFNGLMULTITEXCOORD3FPROC glad_glMultiTexCoord3f; #define glMultiTexCoord3f glad_glMultiTexCoord3f GLAD_API_CALL PFNGLMULTITEXCOORD3FARBPROC glad_glMultiTexCoord3fARB; #define glMultiTexCoord3fARB glad_glMultiTexCoord3fARB GLAD_API_CALL PFNGLMULTITEXCOORD3FVPROC glad_glMultiTexCoord3fv; #define glMultiTexCoord3fv glad_glMultiTexCoord3fv GLAD_API_CALL PFNGLMULTITEXCOORD3FVARBPROC glad_glMultiTexCoord3fvARB; #define glMultiTexCoord3fvARB glad_glMultiTexCoord3fvARB GLAD_API_CALL PFNGLMULTITEXCOORD3IPROC glad_glMultiTexCoord3i; #define glMultiTexCoord3i glad_glMultiTexCoord3i GLAD_API_CALL PFNGLMULTITEXCOORD3IARBPROC glad_glMultiTexCoord3iARB; #define glMultiTexCoord3iARB glad_glMultiTexCoord3iARB GLAD_API_CALL PFNGLMULTITEXCOORD3IVPROC glad_glMultiTexCoord3iv; #define glMultiTexCoord3iv glad_glMultiTexCoord3iv GLAD_API_CALL PFNGLMULTITEXCOORD3IVARBPROC glad_glMultiTexCoord3ivARB; #define glMultiTexCoord3ivARB glad_glMultiTexCoord3ivARB GLAD_API_CALL PFNGLMULTITEXCOORD3SPROC glad_glMultiTexCoord3s; #define glMultiTexCoord3s glad_glMultiTexCoord3s GLAD_API_CALL PFNGLMULTITEXCOORD3SARBPROC glad_glMultiTexCoord3sARB; #define glMultiTexCoord3sARB glad_glMultiTexCoord3sARB GLAD_API_CALL PFNGLMULTITEXCOORD3SVPROC glad_glMultiTexCoord3sv; #define glMultiTexCoord3sv glad_glMultiTexCoord3sv GLAD_API_CALL PFNGLMULTITEXCOORD3SVARBPROC glad_glMultiTexCoord3svARB; #define glMultiTexCoord3svARB glad_glMultiTexCoord3svARB GLAD_API_CALL PFNGLMULTITEXCOORD4DPROC glad_glMultiTexCoord4d; #define glMultiTexCoord4d glad_glMultiTexCoord4d GLAD_API_CALL PFNGLMULTITEXCOORD4DARBPROC glad_glMultiTexCoord4dARB; #define glMultiTexCoord4dARB glad_glMultiTexCoord4dARB GLAD_API_CALL PFNGLMULTITEXCOORD4DVPROC glad_glMultiTexCoord4dv; #define glMultiTexCoord4dv glad_glMultiTexCoord4dv GLAD_API_CALL PFNGLMULTITEXCOORD4DVARBPROC glad_glMultiTexCoord4dvARB; #define glMultiTexCoord4dvARB glad_glMultiTexCoord4dvARB GLAD_API_CALL PFNGLMULTITEXCOORD4FPROC glad_glMultiTexCoord4f; #define glMultiTexCoord4f glad_glMultiTexCoord4f GLAD_API_CALL PFNGLMULTITEXCOORD4FARBPROC glad_glMultiTexCoord4fARB; #define glMultiTexCoord4fARB glad_glMultiTexCoord4fARB GLAD_API_CALL PFNGLMULTITEXCOORD4FVPROC glad_glMultiTexCoord4fv; #define glMultiTexCoord4fv glad_glMultiTexCoord4fv GLAD_API_CALL PFNGLMULTITEXCOORD4FVARBPROC glad_glMultiTexCoord4fvARB; #define glMultiTexCoord4fvARB glad_glMultiTexCoord4fvARB GLAD_API_CALL PFNGLMULTITEXCOORD4IPROC glad_glMultiTexCoord4i; #define glMultiTexCoord4i glad_glMultiTexCoord4i GLAD_API_CALL PFNGLMULTITEXCOORD4IARBPROC glad_glMultiTexCoord4iARB; #define glMultiTexCoord4iARB glad_glMultiTexCoord4iARB GLAD_API_CALL PFNGLMULTITEXCOORD4IVPROC glad_glMultiTexCoord4iv; #define glMultiTexCoord4iv glad_glMultiTexCoord4iv GLAD_API_CALL PFNGLMULTITEXCOORD4IVARBPROC glad_glMultiTexCoord4ivARB; #define glMultiTexCoord4ivARB glad_glMultiTexCoord4ivARB GLAD_API_CALL PFNGLMULTITEXCOORD4SPROC glad_glMultiTexCoord4s; #define glMultiTexCoord4s glad_glMultiTexCoord4s GLAD_API_CALL PFNGLMULTITEXCOORD4SARBPROC glad_glMultiTexCoord4sARB; #define glMultiTexCoord4sARB glad_glMultiTexCoord4sARB GLAD_API_CALL PFNGLMULTITEXCOORD4SVPROC glad_glMultiTexCoord4sv; #define glMultiTexCoord4sv glad_glMultiTexCoord4sv GLAD_API_CALL PFNGLMULTITEXCOORD4SVARBPROC glad_glMultiTexCoord4svARB; #define glMultiTexCoord4svARB glad_glMultiTexCoord4svARB GLAD_API_CALL PFNGLMULTITEXCOORDP1UIPROC glad_glMultiTexCoordP1ui; #define glMultiTexCoordP1ui glad_glMultiTexCoordP1ui GLAD_API_CALL PFNGLMULTITEXCOORDP1UIVPROC glad_glMultiTexCoordP1uiv; #define glMultiTexCoordP1uiv glad_glMultiTexCoordP1uiv GLAD_API_CALL PFNGLMULTITEXCOORDP2UIPROC glad_glMultiTexCoordP2ui; #define glMultiTexCoordP2ui glad_glMultiTexCoordP2ui GLAD_API_CALL PFNGLMULTITEXCOORDP2UIVPROC glad_glMultiTexCoordP2uiv; #define glMultiTexCoordP2uiv glad_glMultiTexCoordP2uiv GLAD_API_CALL PFNGLMULTITEXCOORDP3UIPROC glad_glMultiTexCoordP3ui; #define glMultiTexCoordP3ui glad_glMultiTexCoordP3ui GLAD_API_CALL PFNGLMULTITEXCOORDP3UIVPROC glad_glMultiTexCoordP3uiv; #define glMultiTexCoordP3uiv glad_glMultiTexCoordP3uiv GLAD_API_CALL PFNGLMULTITEXCOORDP4UIPROC glad_glMultiTexCoordP4ui; #define glMultiTexCoordP4ui glad_glMultiTexCoordP4ui GLAD_API_CALL PFNGLMULTITEXCOORDP4UIVPROC glad_glMultiTexCoordP4uiv; #define glMultiTexCoordP4uiv glad_glMultiTexCoordP4uiv GLAD_API_CALL PFNGLNAMEDBUFFERDATAPROC glad_glNamedBufferData; #define glNamedBufferData glad_glNamedBufferData GLAD_API_CALL PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC glad_glNamedBufferPageCommitmentARB; #define glNamedBufferPageCommitmentARB glad_glNamedBufferPageCommitmentARB GLAD_API_CALL PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC glad_glNamedBufferPageCommitmentEXT; #define glNamedBufferPageCommitmentEXT glad_glNamedBufferPageCommitmentEXT GLAD_API_CALL PFNGLNAMEDBUFFERSTORAGEPROC glad_glNamedBufferStorage; #define glNamedBufferStorage glad_glNamedBufferStorage GLAD_API_CALL PFNGLNAMEDBUFFERSUBDATAPROC glad_glNamedBufferSubData; #define glNamedBufferSubData glad_glNamedBufferSubData GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC glad_glNamedFramebufferDrawBuffer; #define glNamedFramebufferDrawBuffer glad_glNamedFramebufferDrawBuffer GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC glad_glNamedFramebufferDrawBuffers; #define glNamedFramebufferDrawBuffers glad_glNamedFramebufferDrawBuffers GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC glad_glNamedFramebufferParameteri; #define glNamedFramebufferParameteri glad_glNamedFramebufferParameteri GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC glad_glNamedFramebufferReadBuffer; #define glNamedFramebufferReadBuffer glad_glNamedFramebufferReadBuffer GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC glad_glNamedFramebufferRenderbuffer; #define glNamedFramebufferRenderbuffer glad_glNamedFramebufferRenderbuffer GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glNamedFramebufferSampleLocationsfvARB; #define glNamedFramebufferSampleLocationsfvARB glad_glNamedFramebufferSampleLocationsfvARB GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERTEXTUREPROC glad_glNamedFramebufferTexture; #define glNamedFramebufferTexture glad_glNamedFramebufferTexture GLAD_API_CALL PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC glad_glNamedFramebufferTextureLayer; #define glNamedFramebufferTextureLayer glad_glNamedFramebufferTextureLayer GLAD_API_CALL PFNGLNAMEDRENDERBUFFERSTORAGEPROC glad_glNamedRenderbufferStorage; #define glNamedRenderbufferStorage glad_glNamedRenderbufferStorage GLAD_API_CALL PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glNamedRenderbufferStorageMultisample; #define glNamedRenderbufferStorageMultisample glad_glNamedRenderbufferStorageMultisample GLAD_API_CALL PFNGLNAMEDSTRINGARBPROC glad_glNamedStringARB; #define glNamedStringARB glad_glNamedStringARB GLAD_API_CALL PFNGLNEWLISTPROC glad_glNewList; #define glNewList glad_glNewList GLAD_API_CALL PFNGLNORMAL3BPROC glad_glNormal3b; #define glNormal3b glad_glNormal3b GLAD_API_CALL PFNGLNORMAL3BVPROC glad_glNormal3bv; #define glNormal3bv glad_glNormal3bv GLAD_API_CALL PFNGLNORMAL3DPROC glad_glNormal3d; #define glNormal3d glad_glNormal3d GLAD_API_CALL PFNGLNORMAL3DVPROC glad_glNormal3dv; #define glNormal3dv glad_glNormal3dv GLAD_API_CALL PFNGLNORMAL3FPROC glad_glNormal3f; #define glNormal3f glad_glNormal3f GLAD_API_CALL PFNGLNORMAL3FVPROC glad_glNormal3fv; #define glNormal3fv glad_glNormal3fv GLAD_API_CALL PFNGLNORMAL3IPROC glad_glNormal3i; #define glNormal3i glad_glNormal3i GLAD_API_CALL PFNGLNORMAL3IVPROC glad_glNormal3iv; #define glNormal3iv glad_glNormal3iv GLAD_API_CALL PFNGLNORMAL3SPROC glad_glNormal3s; #define glNormal3s glad_glNormal3s GLAD_API_CALL PFNGLNORMAL3SVPROC glad_glNormal3sv; #define glNormal3sv glad_glNormal3sv GLAD_API_CALL PFNGLNORMALP3UIPROC glad_glNormalP3ui; #define glNormalP3ui glad_glNormalP3ui GLAD_API_CALL PFNGLNORMALP3UIVPROC glad_glNormalP3uiv; #define glNormalP3uiv glad_glNormalP3uiv GLAD_API_CALL PFNGLNORMALPOINTERPROC glad_glNormalPointer; #define glNormalPointer glad_glNormalPointer GLAD_API_CALL PFNGLOBJECTLABELPROC glad_glObjectLabel; #define glObjectLabel glad_glObjectLabel GLAD_API_CALL PFNGLOBJECTPTRLABELPROC glad_glObjectPtrLabel; #define glObjectPtrLabel glad_glObjectPtrLabel GLAD_API_CALL PFNGLORTHOPROC glad_glOrtho; #define glOrtho glad_glOrtho GLAD_API_CALL PFNGLPASSTHROUGHPROC glad_glPassThrough; #define glPassThrough glad_glPassThrough GLAD_API_CALL PFNGLPATCHPARAMETERFVPROC glad_glPatchParameterfv; #define glPatchParameterfv glad_glPatchParameterfv GLAD_API_CALL PFNGLPATCHPARAMETERIPROC glad_glPatchParameteri; #define glPatchParameteri glad_glPatchParameteri GLAD_API_CALL PFNGLPAUSETRANSFORMFEEDBACKPROC glad_glPauseTransformFeedback; #define glPauseTransformFeedback glad_glPauseTransformFeedback GLAD_API_CALL PFNGLPIXELMAPFVPROC glad_glPixelMapfv; #define glPixelMapfv glad_glPixelMapfv GLAD_API_CALL PFNGLPIXELMAPUIVPROC glad_glPixelMapuiv; #define glPixelMapuiv glad_glPixelMapuiv GLAD_API_CALL PFNGLPIXELMAPUSVPROC glad_glPixelMapusv; #define glPixelMapusv glad_glPixelMapusv GLAD_API_CALL PFNGLPIXELSTOREFPROC glad_glPixelStoref; #define glPixelStoref glad_glPixelStoref GLAD_API_CALL PFNGLPIXELSTOREIPROC glad_glPixelStorei; #define glPixelStorei glad_glPixelStorei GLAD_API_CALL PFNGLPIXELTRANSFERFPROC glad_glPixelTransferf; #define glPixelTransferf glad_glPixelTransferf GLAD_API_CALL PFNGLPIXELTRANSFERIPROC glad_glPixelTransferi; #define glPixelTransferi glad_glPixelTransferi GLAD_API_CALL PFNGLPIXELZOOMPROC glad_glPixelZoom; #define glPixelZoom glad_glPixelZoom GLAD_API_CALL PFNGLPOINTPARAMETERFPROC glad_glPointParameterf; #define glPointParameterf glad_glPointParameterf GLAD_API_CALL PFNGLPOINTPARAMETERFARBPROC glad_glPointParameterfARB; #define glPointParameterfARB glad_glPointParameterfARB GLAD_API_CALL PFNGLPOINTPARAMETERFVPROC glad_glPointParameterfv; #define glPointParameterfv glad_glPointParameterfv GLAD_API_CALL PFNGLPOINTPARAMETERFVARBPROC glad_glPointParameterfvARB; #define glPointParameterfvARB glad_glPointParameterfvARB GLAD_API_CALL PFNGLPOINTPARAMETERIPROC glad_glPointParameteri; #define glPointParameteri glad_glPointParameteri GLAD_API_CALL PFNGLPOINTPARAMETERIVPROC glad_glPointParameteriv; #define glPointParameteriv glad_glPointParameteriv GLAD_API_CALL PFNGLPOINTSIZEPROC glad_glPointSize; #define glPointSize glad_glPointSize GLAD_API_CALL PFNGLPOLYGONMODEPROC glad_glPolygonMode; #define glPolygonMode glad_glPolygonMode GLAD_API_CALL PFNGLPOLYGONOFFSETPROC glad_glPolygonOffset; #define glPolygonOffset glad_glPolygonOffset GLAD_API_CALL PFNGLPOLYGONOFFSETCLAMPPROC glad_glPolygonOffsetClamp; #define glPolygonOffsetClamp glad_glPolygonOffsetClamp GLAD_API_CALL PFNGLPOLYGONSTIPPLEPROC glad_glPolygonStipple; #define glPolygonStipple glad_glPolygonStipple GLAD_API_CALL PFNGLPOPATTRIBPROC glad_glPopAttrib; #define glPopAttrib glad_glPopAttrib GLAD_API_CALL PFNGLPOPCLIENTATTRIBPROC glad_glPopClientAttrib; #define glPopClientAttrib glad_glPopClientAttrib GLAD_API_CALL PFNGLPOPDEBUGGROUPPROC glad_glPopDebugGroup; #define glPopDebugGroup glad_glPopDebugGroup GLAD_API_CALL PFNGLPOPMATRIXPROC glad_glPopMatrix; #define glPopMatrix glad_glPopMatrix GLAD_API_CALL PFNGLPOPNAMEPROC glad_glPopName; #define glPopName glad_glPopName GLAD_API_CALL PFNGLPRIMITIVEBOUNDINGBOXPROC glad_glPrimitiveBoundingBox; #define glPrimitiveBoundingBox glad_glPrimitiveBoundingBox GLAD_API_CALL PFNGLPRIMITIVEBOUNDINGBOXARBPROC glad_glPrimitiveBoundingBoxARB; #define glPrimitiveBoundingBoxARB glad_glPrimitiveBoundingBoxARB GLAD_API_CALL PFNGLPRIMITIVERESTARTINDEXPROC glad_glPrimitiveRestartIndex; #define glPrimitiveRestartIndex glad_glPrimitiveRestartIndex GLAD_API_CALL PFNGLPRIORITIZETEXTURESPROC glad_glPrioritizeTextures; #define glPrioritizeTextures glad_glPrioritizeTextures GLAD_API_CALL PFNGLPROGRAMBINARYPROC glad_glProgramBinary; #define glProgramBinary glad_glProgramBinary GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4DARBPROC glad_glProgramEnvParameter4dARB; #define glProgramEnvParameter4dARB glad_glProgramEnvParameter4dARB GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4DVARBPROC glad_glProgramEnvParameter4dvARB; #define glProgramEnvParameter4dvARB glad_glProgramEnvParameter4dvARB GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4FARBPROC glad_glProgramEnvParameter4fARB; #define glProgramEnvParameter4fARB glad_glProgramEnvParameter4fARB GLAD_API_CALL PFNGLPROGRAMENVPARAMETER4FVARBPROC glad_glProgramEnvParameter4fvARB; #define glProgramEnvParameter4fvARB glad_glProgramEnvParameter4fvARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4DARBPROC glad_glProgramLocalParameter4dARB; #define glProgramLocalParameter4dARB glad_glProgramLocalParameter4dARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4DVARBPROC glad_glProgramLocalParameter4dvARB; #define glProgramLocalParameter4dvARB glad_glProgramLocalParameter4dvARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4FARBPROC glad_glProgramLocalParameter4fARB; #define glProgramLocalParameter4fARB glad_glProgramLocalParameter4fARB GLAD_API_CALL PFNGLPROGRAMLOCALPARAMETER4FVARBPROC glad_glProgramLocalParameter4fvARB; #define glProgramLocalParameter4fvARB glad_glProgramLocalParameter4fvARB GLAD_API_CALL PFNGLPROGRAMPARAMETERIPROC glad_glProgramParameteri; #define glProgramParameteri glad_glProgramParameteri GLAD_API_CALL PFNGLPROGRAMPARAMETERIARBPROC glad_glProgramParameteriARB; #define glProgramParameteriARB glad_glProgramParameteriARB GLAD_API_CALL PFNGLPROGRAMSTRINGARBPROC glad_glProgramStringARB; #define glProgramStringARB glad_glProgramStringARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1DPROC glad_glProgramUniform1d; #define glProgramUniform1d glad_glProgramUniform1d GLAD_API_CALL PFNGLPROGRAMUNIFORM1DVPROC glad_glProgramUniform1dv; #define glProgramUniform1dv glad_glProgramUniform1dv GLAD_API_CALL PFNGLPROGRAMUNIFORM1FPROC glad_glProgramUniform1f; #define glProgramUniform1f glad_glProgramUniform1f GLAD_API_CALL PFNGLPROGRAMUNIFORM1FVPROC glad_glProgramUniform1fv; #define glProgramUniform1fv glad_glProgramUniform1fv GLAD_API_CALL PFNGLPROGRAMUNIFORM1IPROC glad_glProgramUniform1i; #define glProgramUniform1i glad_glProgramUniform1i GLAD_API_CALL PFNGLPROGRAMUNIFORM1I64ARBPROC glad_glProgramUniform1i64ARB; #define glProgramUniform1i64ARB glad_glProgramUniform1i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1I64VARBPROC glad_glProgramUniform1i64vARB; #define glProgramUniform1i64vARB glad_glProgramUniform1i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1IVPROC glad_glProgramUniform1iv; #define glProgramUniform1iv glad_glProgramUniform1iv GLAD_API_CALL PFNGLPROGRAMUNIFORM1UIPROC glad_glProgramUniform1ui; #define glProgramUniform1ui glad_glProgramUniform1ui GLAD_API_CALL PFNGLPROGRAMUNIFORM1UI64ARBPROC glad_glProgramUniform1ui64ARB; #define glProgramUniform1ui64ARB glad_glProgramUniform1ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1UI64VARBPROC glad_glProgramUniform1ui64vARB; #define glProgramUniform1ui64vARB glad_glProgramUniform1ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM1UIVPROC glad_glProgramUniform1uiv; #define glProgramUniform1uiv glad_glProgramUniform1uiv GLAD_API_CALL PFNGLPROGRAMUNIFORM2DPROC glad_glProgramUniform2d; #define glProgramUniform2d glad_glProgramUniform2d GLAD_API_CALL PFNGLPROGRAMUNIFORM2DVPROC glad_glProgramUniform2dv; #define glProgramUniform2dv glad_glProgramUniform2dv GLAD_API_CALL PFNGLPROGRAMUNIFORM2FPROC glad_glProgramUniform2f; #define glProgramUniform2f glad_glProgramUniform2f GLAD_API_CALL PFNGLPROGRAMUNIFORM2FVPROC glad_glProgramUniform2fv; #define glProgramUniform2fv glad_glProgramUniform2fv GLAD_API_CALL PFNGLPROGRAMUNIFORM2IPROC glad_glProgramUniform2i; #define glProgramUniform2i glad_glProgramUniform2i GLAD_API_CALL PFNGLPROGRAMUNIFORM2I64ARBPROC glad_glProgramUniform2i64ARB; #define glProgramUniform2i64ARB glad_glProgramUniform2i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2I64VARBPROC glad_glProgramUniform2i64vARB; #define glProgramUniform2i64vARB glad_glProgramUniform2i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2IVPROC glad_glProgramUniform2iv; #define glProgramUniform2iv glad_glProgramUniform2iv GLAD_API_CALL PFNGLPROGRAMUNIFORM2UIPROC glad_glProgramUniform2ui; #define glProgramUniform2ui glad_glProgramUniform2ui GLAD_API_CALL PFNGLPROGRAMUNIFORM2UI64ARBPROC glad_glProgramUniform2ui64ARB; #define glProgramUniform2ui64ARB glad_glProgramUniform2ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2UI64VARBPROC glad_glProgramUniform2ui64vARB; #define glProgramUniform2ui64vARB glad_glProgramUniform2ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM2UIVPROC glad_glProgramUniform2uiv; #define glProgramUniform2uiv glad_glProgramUniform2uiv GLAD_API_CALL PFNGLPROGRAMUNIFORM3DPROC glad_glProgramUniform3d; #define glProgramUniform3d glad_glProgramUniform3d GLAD_API_CALL PFNGLPROGRAMUNIFORM3DVPROC glad_glProgramUniform3dv; #define glProgramUniform3dv glad_glProgramUniform3dv GLAD_API_CALL PFNGLPROGRAMUNIFORM3FPROC glad_glProgramUniform3f; #define glProgramUniform3f glad_glProgramUniform3f GLAD_API_CALL PFNGLPROGRAMUNIFORM3FVPROC glad_glProgramUniform3fv; #define glProgramUniform3fv glad_glProgramUniform3fv GLAD_API_CALL PFNGLPROGRAMUNIFORM3IPROC glad_glProgramUniform3i; #define glProgramUniform3i glad_glProgramUniform3i GLAD_API_CALL PFNGLPROGRAMUNIFORM3I64ARBPROC glad_glProgramUniform3i64ARB; #define glProgramUniform3i64ARB glad_glProgramUniform3i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3I64VARBPROC glad_glProgramUniform3i64vARB; #define glProgramUniform3i64vARB glad_glProgramUniform3i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3IVPROC glad_glProgramUniform3iv; #define glProgramUniform3iv glad_glProgramUniform3iv GLAD_API_CALL PFNGLPROGRAMUNIFORM3UIPROC glad_glProgramUniform3ui; #define glProgramUniform3ui glad_glProgramUniform3ui GLAD_API_CALL PFNGLPROGRAMUNIFORM3UI64ARBPROC glad_glProgramUniform3ui64ARB; #define glProgramUniform3ui64ARB glad_glProgramUniform3ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3UI64VARBPROC glad_glProgramUniform3ui64vARB; #define glProgramUniform3ui64vARB glad_glProgramUniform3ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM3UIVPROC glad_glProgramUniform3uiv; #define glProgramUniform3uiv glad_glProgramUniform3uiv GLAD_API_CALL PFNGLPROGRAMUNIFORM4DPROC glad_glProgramUniform4d; #define glProgramUniform4d glad_glProgramUniform4d GLAD_API_CALL PFNGLPROGRAMUNIFORM4DVPROC glad_glProgramUniform4dv; #define glProgramUniform4dv glad_glProgramUniform4dv GLAD_API_CALL PFNGLPROGRAMUNIFORM4FPROC glad_glProgramUniform4f; #define glProgramUniform4f glad_glProgramUniform4f GLAD_API_CALL PFNGLPROGRAMUNIFORM4FVPROC glad_glProgramUniform4fv; #define glProgramUniform4fv glad_glProgramUniform4fv GLAD_API_CALL PFNGLPROGRAMUNIFORM4IPROC glad_glProgramUniform4i; #define glProgramUniform4i glad_glProgramUniform4i GLAD_API_CALL PFNGLPROGRAMUNIFORM4I64ARBPROC glad_glProgramUniform4i64ARB; #define glProgramUniform4i64ARB glad_glProgramUniform4i64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4I64VARBPROC glad_glProgramUniform4i64vARB; #define glProgramUniform4i64vARB glad_glProgramUniform4i64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4IVPROC glad_glProgramUniform4iv; #define glProgramUniform4iv glad_glProgramUniform4iv GLAD_API_CALL PFNGLPROGRAMUNIFORM4UIPROC glad_glProgramUniform4ui; #define glProgramUniform4ui glad_glProgramUniform4ui GLAD_API_CALL PFNGLPROGRAMUNIFORM4UI64ARBPROC glad_glProgramUniform4ui64ARB; #define glProgramUniform4ui64ARB glad_glProgramUniform4ui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4UI64VARBPROC glad_glProgramUniform4ui64vARB; #define glProgramUniform4ui64vARB glad_glProgramUniform4ui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORM4UIVPROC glad_glProgramUniform4uiv; #define glProgramUniform4uiv glad_glProgramUniform4uiv GLAD_API_CALL PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC glad_glProgramUniformHandleui64ARB; #define glProgramUniformHandleui64ARB glad_glProgramUniformHandleui64ARB GLAD_API_CALL PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC glad_glProgramUniformHandleui64vARB; #define glProgramUniformHandleui64vARB glad_glProgramUniformHandleui64vARB GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2DVPROC glad_glProgramUniformMatrix2dv; #define glProgramUniformMatrix2dv glad_glProgramUniformMatrix2dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2FVPROC glad_glProgramUniformMatrix2fv; #define glProgramUniformMatrix2fv glad_glProgramUniformMatrix2fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC glad_glProgramUniformMatrix2x3dv; #define glProgramUniformMatrix2x3dv glad_glProgramUniformMatrix2x3dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC glad_glProgramUniformMatrix2x3fv; #define glProgramUniformMatrix2x3fv glad_glProgramUniformMatrix2x3fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC glad_glProgramUniformMatrix2x4dv; #define glProgramUniformMatrix2x4dv glad_glProgramUniformMatrix2x4dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC glad_glProgramUniformMatrix2x4fv; #define glProgramUniformMatrix2x4fv glad_glProgramUniformMatrix2x4fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3DVPROC glad_glProgramUniformMatrix3dv; #define glProgramUniformMatrix3dv glad_glProgramUniformMatrix3dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3FVPROC glad_glProgramUniformMatrix3fv; #define glProgramUniformMatrix3fv glad_glProgramUniformMatrix3fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC glad_glProgramUniformMatrix3x2dv; #define glProgramUniformMatrix3x2dv glad_glProgramUniformMatrix3x2dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC glad_glProgramUniformMatrix3x2fv; #define glProgramUniformMatrix3x2fv glad_glProgramUniformMatrix3x2fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC glad_glProgramUniformMatrix3x4dv; #define glProgramUniformMatrix3x4dv glad_glProgramUniformMatrix3x4dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC glad_glProgramUniformMatrix3x4fv; #define glProgramUniformMatrix3x4fv glad_glProgramUniformMatrix3x4fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4DVPROC glad_glProgramUniformMatrix4dv; #define glProgramUniformMatrix4dv glad_glProgramUniformMatrix4dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4FVPROC glad_glProgramUniformMatrix4fv; #define glProgramUniformMatrix4fv glad_glProgramUniformMatrix4fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC glad_glProgramUniformMatrix4x2dv; #define glProgramUniformMatrix4x2dv glad_glProgramUniformMatrix4x2dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC glad_glProgramUniformMatrix4x2fv; #define glProgramUniformMatrix4x2fv glad_glProgramUniformMatrix4x2fv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC glad_glProgramUniformMatrix4x3dv; #define glProgramUniformMatrix4x3dv glad_glProgramUniformMatrix4x3dv GLAD_API_CALL PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC glad_glProgramUniformMatrix4x3fv; #define glProgramUniformMatrix4x3fv glad_glProgramUniformMatrix4x3fv GLAD_API_CALL PFNGLPROVOKINGVERTEXPROC glad_glProvokingVertex; #define glProvokingVertex glad_glProvokingVertex GLAD_API_CALL PFNGLPUSHATTRIBPROC glad_glPushAttrib; #define glPushAttrib glad_glPushAttrib GLAD_API_CALL PFNGLPUSHCLIENTATTRIBPROC glad_glPushClientAttrib; #define glPushClientAttrib glad_glPushClientAttrib GLAD_API_CALL PFNGLPUSHDEBUGGROUPPROC glad_glPushDebugGroup; #define glPushDebugGroup glad_glPushDebugGroup GLAD_API_CALL PFNGLPUSHMATRIXPROC glad_glPushMatrix; #define glPushMatrix glad_glPushMatrix GLAD_API_CALL PFNGLPUSHNAMEPROC glad_glPushName; #define glPushName glad_glPushName GLAD_API_CALL PFNGLQUERYCOUNTERPROC glad_glQueryCounter; #define glQueryCounter glad_glQueryCounter GLAD_API_CALL PFNGLRASTERPOS2DPROC glad_glRasterPos2d; #define glRasterPos2d glad_glRasterPos2d GLAD_API_CALL PFNGLRASTERPOS2DVPROC glad_glRasterPos2dv; #define glRasterPos2dv glad_glRasterPos2dv GLAD_API_CALL PFNGLRASTERPOS2FPROC glad_glRasterPos2f; #define glRasterPos2f glad_glRasterPos2f GLAD_API_CALL PFNGLRASTERPOS2FVPROC glad_glRasterPos2fv; #define glRasterPos2fv glad_glRasterPos2fv GLAD_API_CALL PFNGLRASTERPOS2IPROC glad_glRasterPos2i; #define glRasterPos2i glad_glRasterPos2i GLAD_API_CALL PFNGLRASTERPOS2IVPROC glad_glRasterPos2iv; #define glRasterPos2iv glad_glRasterPos2iv GLAD_API_CALL PFNGLRASTERPOS2SPROC glad_glRasterPos2s; #define glRasterPos2s glad_glRasterPos2s GLAD_API_CALL PFNGLRASTERPOS2SVPROC glad_glRasterPos2sv; #define glRasterPos2sv glad_glRasterPos2sv GLAD_API_CALL PFNGLRASTERPOS3DPROC glad_glRasterPos3d; #define glRasterPos3d glad_glRasterPos3d GLAD_API_CALL PFNGLRASTERPOS3DVPROC glad_glRasterPos3dv; #define glRasterPos3dv glad_glRasterPos3dv GLAD_API_CALL PFNGLRASTERPOS3FPROC glad_glRasterPos3f; #define glRasterPos3f glad_glRasterPos3f GLAD_API_CALL PFNGLRASTERPOS3FVPROC glad_glRasterPos3fv; #define glRasterPos3fv glad_glRasterPos3fv GLAD_API_CALL PFNGLRASTERPOS3IPROC glad_glRasterPos3i; #define glRasterPos3i glad_glRasterPos3i GLAD_API_CALL PFNGLRASTERPOS3IVPROC glad_glRasterPos3iv; #define glRasterPos3iv glad_glRasterPos3iv GLAD_API_CALL PFNGLRASTERPOS3SPROC glad_glRasterPos3s; #define glRasterPos3s glad_glRasterPos3s GLAD_API_CALL PFNGLRASTERPOS3SVPROC glad_glRasterPos3sv; #define glRasterPos3sv glad_glRasterPos3sv GLAD_API_CALL PFNGLRASTERPOS4DPROC glad_glRasterPos4d; #define glRasterPos4d glad_glRasterPos4d GLAD_API_CALL PFNGLRASTERPOS4DVPROC glad_glRasterPos4dv; #define glRasterPos4dv glad_glRasterPos4dv GLAD_API_CALL PFNGLRASTERPOS4FPROC glad_glRasterPos4f; #define glRasterPos4f glad_glRasterPos4f GLAD_API_CALL PFNGLRASTERPOS4FVPROC glad_glRasterPos4fv; #define glRasterPos4fv glad_glRasterPos4fv GLAD_API_CALL PFNGLRASTERPOS4IPROC glad_glRasterPos4i; #define glRasterPos4i glad_glRasterPos4i GLAD_API_CALL PFNGLRASTERPOS4IVPROC glad_glRasterPos4iv; #define glRasterPos4iv glad_glRasterPos4iv GLAD_API_CALL PFNGLRASTERPOS4SPROC glad_glRasterPos4s; #define glRasterPos4s glad_glRasterPos4s GLAD_API_CALL PFNGLRASTERPOS4SVPROC glad_glRasterPos4sv; #define glRasterPos4sv glad_glRasterPos4sv GLAD_API_CALL PFNGLREADBUFFERPROC glad_glReadBuffer; #define glReadBuffer glad_glReadBuffer GLAD_API_CALL PFNGLREADPIXELSPROC glad_glReadPixels; #define glReadPixels glad_glReadPixels GLAD_API_CALL PFNGLREADNPIXELSPROC glad_glReadnPixels; #define glReadnPixels glad_glReadnPixels GLAD_API_CALL PFNGLREADNPIXELSARBPROC glad_glReadnPixelsARB; #define glReadnPixelsARB glad_glReadnPixelsARB GLAD_API_CALL PFNGLRECTDPROC glad_glRectd; #define glRectd glad_glRectd GLAD_API_CALL PFNGLRECTDVPROC glad_glRectdv; #define glRectdv glad_glRectdv GLAD_API_CALL PFNGLRECTFPROC glad_glRectf; #define glRectf glad_glRectf GLAD_API_CALL PFNGLRECTFVPROC glad_glRectfv; #define glRectfv glad_glRectfv GLAD_API_CALL PFNGLRECTIPROC glad_glRecti; #define glRecti glad_glRecti GLAD_API_CALL PFNGLRECTIVPROC glad_glRectiv; #define glRectiv glad_glRectiv GLAD_API_CALL PFNGLRECTSPROC glad_glRects; #define glRects glad_glRects GLAD_API_CALL PFNGLRECTSVPROC glad_glRectsv; #define glRectsv glad_glRectsv GLAD_API_CALL PFNGLRELEASESHADERCOMPILERPROC glad_glReleaseShaderCompiler; #define glReleaseShaderCompiler glad_glReleaseShaderCompiler GLAD_API_CALL PFNGLRENDERMODEPROC glad_glRenderMode; #define glRenderMode glad_glRenderMode GLAD_API_CALL PFNGLRENDERBUFFERSTORAGEPROC glad_glRenderbufferStorage; #define glRenderbufferStorage glad_glRenderbufferStorage GLAD_API_CALL PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glRenderbufferStorageMultisample; #define glRenderbufferStorageMultisample glad_glRenderbufferStorageMultisample GLAD_API_CALL PFNGLRESETHISTOGRAMPROC glad_glResetHistogram; #define glResetHistogram glad_glResetHistogram GLAD_API_CALL PFNGLRESETMINMAXPROC glad_glResetMinmax; #define glResetMinmax glad_glResetMinmax GLAD_API_CALL PFNGLRESUMETRANSFORMFEEDBACKPROC glad_glResumeTransformFeedback; #define glResumeTransformFeedback glad_glResumeTransformFeedback GLAD_API_CALL PFNGLROTATEDPROC glad_glRotated; #define glRotated glad_glRotated GLAD_API_CALL PFNGLROTATEFPROC glad_glRotatef; #define glRotatef glad_glRotatef GLAD_API_CALL PFNGLSAMPLECOVERAGEPROC glad_glSampleCoverage; #define glSampleCoverage glad_glSampleCoverage GLAD_API_CALL PFNGLSAMPLECOVERAGEARBPROC glad_glSampleCoverageARB; #define glSampleCoverageARB glad_glSampleCoverageARB GLAD_API_CALL PFNGLSAMPLEMASKIPROC glad_glSampleMaski; #define glSampleMaski glad_glSampleMaski GLAD_API_CALL PFNGLSAMPLERPARAMETERIIVPROC glad_glSamplerParameterIiv; #define glSamplerParameterIiv glad_glSamplerParameterIiv GLAD_API_CALL PFNGLSAMPLERPARAMETERIUIVPROC glad_glSamplerParameterIuiv; #define glSamplerParameterIuiv glad_glSamplerParameterIuiv GLAD_API_CALL PFNGLSAMPLERPARAMETERFPROC glad_glSamplerParameterf; #define glSamplerParameterf glad_glSamplerParameterf GLAD_API_CALL PFNGLSAMPLERPARAMETERFVPROC glad_glSamplerParameterfv; #define glSamplerParameterfv glad_glSamplerParameterfv GLAD_API_CALL PFNGLSAMPLERPARAMETERIPROC glad_glSamplerParameteri; #define glSamplerParameteri glad_glSamplerParameteri GLAD_API_CALL PFNGLSAMPLERPARAMETERIVPROC glad_glSamplerParameteriv; #define glSamplerParameteriv glad_glSamplerParameteriv GLAD_API_CALL PFNGLSCALEDPROC glad_glScaled; #define glScaled glad_glScaled GLAD_API_CALL PFNGLSCALEFPROC glad_glScalef; #define glScalef glad_glScalef GLAD_API_CALL PFNGLSCISSORPROC glad_glScissor; #define glScissor glad_glScissor GLAD_API_CALL PFNGLSCISSORARRAYVPROC glad_glScissorArrayv; #define glScissorArrayv glad_glScissorArrayv GLAD_API_CALL PFNGLSCISSORINDEXEDPROC glad_glScissorIndexed; #define glScissorIndexed glad_glScissorIndexed GLAD_API_CALL PFNGLSCISSORINDEXEDVPROC glad_glScissorIndexedv; #define glScissorIndexedv glad_glScissorIndexedv GLAD_API_CALL PFNGLSECONDARYCOLOR3BPROC glad_glSecondaryColor3b; #define glSecondaryColor3b glad_glSecondaryColor3b GLAD_API_CALL PFNGLSECONDARYCOLOR3BVPROC glad_glSecondaryColor3bv; #define glSecondaryColor3bv glad_glSecondaryColor3bv GLAD_API_CALL PFNGLSECONDARYCOLOR3DPROC glad_glSecondaryColor3d; #define glSecondaryColor3d glad_glSecondaryColor3d GLAD_API_CALL PFNGLSECONDARYCOLOR3DVPROC glad_glSecondaryColor3dv; #define glSecondaryColor3dv glad_glSecondaryColor3dv GLAD_API_CALL PFNGLSECONDARYCOLOR3FPROC glad_glSecondaryColor3f; #define glSecondaryColor3f glad_glSecondaryColor3f GLAD_API_CALL PFNGLSECONDARYCOLOR3FVPROC glad_glSecondaryColor3fv; #define glSecondaryColor3fv glad_glSecondaryColor3fv GLAD_API_CALL PFNGLSECONDARYCOLOR3IPROC glad_glSecondaryColor3i; #define glSecondaryColor3i glad_glSecondaryColor3i GLAD_API_CALL PFNGLSECONDARYCOLOR3IVPROC glad_glSecondaryColor3iv; #define glSecondaryColor3iv glad_glSecondaryColor3iv GLAD_API_CALL PFNGLSECONDARYCOLOR3SPROC glad_glSecondaryColor3s; #define glSecondaryColor3s glad_glSecondaryColor3s GLAD_API_CALL PFNGLSECONDARYCOLOR3SVPROC glad_glSecondaryColor3sv; #define glSecondaryColor3sv glad_glSecondaryColor3sv GLAD_API_CALL PFNGLSECONDARYCOLOR3UBPROC glad_glSecondaryColor3ub; #define glSecondaryColor3ub glad_glSecondaryColor3ub GLAD_API_CALL PFNGLSECONDARYCOLOR3UBVPROC glad_glSecondaryColor3ubv; #define glSecondaryColor3ubv glad_glSecondaryColor3ubv GLAD_API_CALL PFNGLSECONDARYCOLOR3UIPROC glad_glSecondaryColor3ui; #define glSecondaryColor3ui glad_glSecondaryColor3ui GLAD_API_CALL PFNGLSECONDARYCOLOR3UIVPROC glad_glSecondaryColor3uiv; #define glSecondaryColor3uiv glad_glSecondaryColor3uiv GLAD_API_CALL PFNGLSECONDARYCOLOR3USPROC glad_glSecondaryColor3us; #define glSecondaryColor3us glad_glSecondaryColor3us GLAD_API_CALL PFNGLSECONDARYCOLOR3USVPROC glad_glSecondaryColor3usv; #define glSecondaryColor3usv glad_glSecondaryColor3usv GLAD_API_CALL PFNGLSECONDARYCOLORP3UIPROC glad_glSecondaryColorP3ui; #define glSecondaryColorP3ui glad_glSecondaryColorP3ui GLAD_API_CALL PFNGLSECONDARYCOLORP3UIVPROC glad_glSecondaryColorP3uiv; #define glSecondaryColorP3uiv glad_glSecondaryColorP3uiv GLAD_API_CALL PFNGLSECONDARYCOLORPOINTERPROC glad_glSecondaryColorPointer; #define glSecondaryColorPointer glad_glSecondaryColorPointer GLAD_API_CALL PFNGLSELECTBUFFERPROC glad_glSelectBuffer; #define glSelectBuffer glad_glSelectBuffer GLAD_API_CALL PFNGLSEPARABLEFILTER2DPROC glad_glSeparableFilter2D; #define glSeparableFilter2D glad_glSeparableFilter2D GLAD_API_CALL PFNGLSHADEMODELPROC glad_glShadeModel; #define glShadeModel glad_glShadeModel GLAD_API_CALL PFNGLSHADERBINARYPROC glad_glShaderBinary; #define glShaderBinary glad_glShaderBinary GLAD_API_CALL PFNGLSHADERSOURCEPROC glad_glShaderSource; #define glShaderSource glad_glShaderSource GLAD_API_CALL PFNGLSHADERSOURCEARBPROC glad_glShaderSourceARB; #define glShaderSourceARB glad_glShaderSourceARB GLAD_API_CALL PFNGLSHADERSTORAGEBLOCKBINDINGPROC glad_glShaderStorageBlockBinding; #define glShaderStorageBlockBinding glad_glShaderStorageBlockBinding GLAD_API_CALL PFNGLSPECIALIZESHADERPROC glad_glSpecializeShader; #define glSpecializeShader glad_glSpecializeShader GLAD_API_CALL PFNGLSPECIALIZESHADERARBPROC glad_glSpecializeShaderARB; #define glSpecializeShaderARB glad_glSpecializeShaderARB GLAD_API_CALL PFNGLSTENCILFUNCPROC glad_glStencilFunc; #define glStencilFunc glad_glStencilFunc GLAD_API_CALL PFNGLSTENCILFUNCSEPARATEPROC glad_glStencilFuncSeparate; #define glStencilFuncSeparate glad_glStencilFuncSeparate GLAD_API_CALL PFNGLSTENCILMASKPROC glad_glStencilMask; #define glStencilMask glad_glStencilMask GLAD_API_CALL PFNGLSTENCILMASKSEPARATEPROC glad_glStencilMaskSeparate; #define glStencilMaskSeparate glad_glStencilMaskSeparate GLAD_API_CALL PFNGLSTENCILOPPROC glad_glStencilOp; #define glStencilOp glad_glStencilOp GLAD_API_CALL PFNGLSTENCILOPSEPARATEPROC glad_glStencilOpSeparate; #define glStencilOpSeparate glad_glStencilOpSeparate GLAD_API_CALL PFNGLTEXBUFFERPROC glad_glTexBuffer; #define glTexBuffer glad_glTexBuffer GLAD_API_CALL PFNGLTEXBUFFERARBPROC glad_glTexBufferARB; #define glTexBufferARB glad_glTexBufferARB GLAD_API_CALL PFNGLTEXBUFFERRANGEPROC glad_glTexBufferRange; #define glTexBufferRange glad_glTexBufferRange GLAD_API_CALL PFNGLTEXCOORD1DPROC glad_glTexCoord1d; #define glTexCoord1d glad_glTexCoord1d GLAD_API_CALL PFNGLTEXCOORD1DVPROC glad_glTexCoord1dv; #define glTexCoord1dv glad_glTexCoord1dv GLAD_API_CALL PFNGLTEXCOORD1FPROC glad_glTexCoord1f; #define glTexCoord1f glad_glTexCoord1f GLAD_API_CALL PFNGLTEXCOORD1FVPROC glad_glTexCoord1fv; #define glTexCoord1fv glad_glTexCoord1fv GLAD_API_CALL PFNGLTEXCOORD1IPROC glad_glTexCoord1i; #define glTexCoord1i glad_glTexCoord1i GLAD_API_CALL PFNGLTEXCOORD1IVPROC glad_glTexCoord1iv; #define glTexCoord1iv glad_glTexCoord1iv GLAD_API_CALL PFNGLTEXCOORD1SPROC glad_glTexCoord1s; #define glTexCoord1s glad_glTexCoord1s GLAD_API_CALL PFNGLTEXCOORD1SVPROC glad_glTexCoord1sv; #define glTexCoord1sv glad_glTexCoord1sv GLAD_API_CALL PFNGLTEXCOORD2DPROC glad_glTexCoord2d; #define glTexCoord2d glad_glTexCoord2d GLAD_API_CALL PFNGLTEXCOORD2DVPROC glad_glTexCoord2dv; #define glTexCoord2dv glad_glTexCoord2dv GLAD_API_CALL PFNGLTEXCOORD2FPROC glad_glTexCoord2f; #define glTexCoord2f glad_glTexCoord2f GLAD_API_CALL PFNGLTEXCOORD2FVPROC glad_glTexCoord2fv; #define glTexCoord2fv glad_glTexCoord2fv GLAD_API_CALL PFNGLTEXCOORD2IPROC glad_glTexCoord2i; #define glTexCoord2i glad_glTexCoord2i GLAD_API_CALL PFNGLTEXCOORD2IVPROC glad_glTexCoord2iv; #define glTexCoord2iv glad_glTexCoord2iv GLAD_API_CALL PFNGLTEXCOORD2SPROC glad_glTexCoord2s; #define glTexCoord2s glad_glTexCoord2s GLAD_API_CALL PFNGLTEXCOORD2SVPROC glad_glTexCoord2sv; #define glTexCoord2sv glad_glTexCoord2sv GLAD_API_CALL PFNGLTEXCOORD3DPROC glad_glTexCoord3d; #define glTexCoord3d glad_glTexCoord3d GLAD_API_CALL PFNGLTEXCOORD3DVPROC glad_glTexCoord3dv; #define glTexCoord3dv glad_glTexCoord3dv GLAD_API_CALL PFNGLTEXCOORD3FPROC glad_glTexCoord3f; #define glTexCoord3f glad_glTexCoord3f GLAD_API_CALL PFNGLTEXCOORD3FVPROC glad_glTexCoord3fv; #define glTexCoord3fv glad_glTexCoord3fv GLAD_API_CALL PFNGLTEXCOORD3IPROC glad_glTexCoord3i; #define glTexCoord3i glad_glTexCoord3i GLAD_API_CALL PFNGLTEXCOORD3IVPROC glad_glTexCoord3iv; #define glTexCoord3iv glad_glTexCoord3iv GLAD_API_CALL PFNGLTEXCOORD3SPROC glad_glTexCoord3s; #define glTexCoord3s glad_glTexCoord3s GLAD_API_CALL PFNGLTEXCOORD3SVPROC glad_glTexCoord3sv; #define glTexCoord3sv glad_glTexCoord3sv GLAD_API_CALL PFNGLTEXCOORD4DPROC glad_glTexCoord4d; #define glTexCoord4d glad_glTexCoord4d GLAD_API_CALL PFNGLTEXCOORD4DVPROC glad_glTexCoord4dv; #define glTexCoord4dv glad_glTexCoord4dv GLAD_API_CALL PFNGLTEXCOORD4FPROC glad_glTexCoord4f; #define glTexCoord4f glad_glTexCoord4f GLAD_API_CALL PFNGLTEXCOORD4FVPROC glad_glTexCoord4fv; #define glTexCoord4fv glad_glTexCoord4fv GLAD_API_CALL PFNGLTEXCOORD4IPROC glad_glTexCoord4i; #define glTexCoord4i glad_glTexCoord4i GLAD_API_CALL PFNGLTEXCOORD4IVPROC glad_glTexCoord4iv; #define glTexCoord4iv glad_glTexCoord4iv GLAD_API_CALL PFNGLTEXCOORD4SPROC glad_glTexCoord4s; #define glTexCoord4s glad_glTexCoord4s GLAD_API_CALL PFNGLTEXCOORD4SVPROC glad_glTexCoord4sv; #define glTexCoord4sv glad_glTexCoord4sv GLAD_API_CALL PFNGLTEXCOORDP1UIPROC glad_glTexCoordP1ui; #define glTexCoordP1ui glad_glTexCoordP1ui GLAD_API_CALL PFNGLTEXCOORDP1UIVPROC glad_glTexCoordP1uiv; #define glTexCoordP1uiv glad_glTexCoordP1uiv GLAD_API_CALL PFNGLTEXCOORDP2UIPROC glad_glTexCoordP2ui; #define glTexCoordP2ui glad_glTexCoordP2ui GLAD_API_CALL PFNGLTEXCOORDP2UIVPROC glad_glTexCoordP2uiv; #define glTexCoordP2uiv glad_glTexCoordP2uiv GLAD_API_CALL PFNGLTEXCOORDP3UIPROC glad_glTexCoordP3ui; #define glTexCoordP3ui glad_glTexCoordP3ui GLAD_API_CALL PFNGLTEXCOORDP3UIVPROC glad_glTexCoordP3uiv; #define glTexCoordP3uiv glad_glTexCoordP3uiv GLAD_API_CALL PFNGLTEXCOORDP4UIPROC glad_glTexCoordP4ui; #define glTexCoordP4ui glad_glTexCoordP4ui GLAD_API_CALL PFNGLTEXCOORDP4UIVPROC glad_glTexCoordP4uiv; #define glTexCoordP4uiv glad_glTexCoordP4uiv GLAD_API_CALL PFNGLTEXCOORDPOINTERPROC glad_glTexCoordPointer; #define glTexCoordPointer glad_glTexCoordPointer GLAD_API_CALL PFNGLTEXENVFPROC glad_glTexEnvf; #define glTexEnvf glad_glTexEnvf GLAD_API_CALL PFNGLTEXENVFVPROC glad_glTexEnvfv; #define glTexEnvfv glad_glTexEnvfv GLAD_API_CALL PFNGLTEXENVIPROC glad_glTexEnvi; #define glTexEnvi glad_glTexEnvi GLAD_API_CALL PFNGLTEXENVIVPROC glad_glTexEnviv; #define glTexEnviv glad_glTexEnviv GLAD_API_CALL PFNGLTEXGENDPROC glad_glTexGend; #define glTexGend glad_glTexGend GLAD_API_CALL PFNGLTEXGENDVPROC glad_glTexGendv; #define glTexGendv glad_glTexGendv GLAD_API_CALL PFNGLTEXGENFPROC glad_glTexGenf; #define glTexGenf glad_glTexGenf GLAD_API_CALL PFNGLTEXGENFVPROC glad_glTexGenfv; #define glTexGenfv glad_glTexGenfv GLAD_API_CALL PFNGLTEXGENIPROC glad_glTexGeni; #define glTexGeni glad_glTexGeni GLAD_API_CALL PFNGLTEXGENIVPROC glad_glTexGeniv; #define glTexGeniv glad_glTexGeniv GLAD_API_CALL PFNGLTEXIMAGE1DPROC glad_glTexImage1D; #define glTexImage1D glad_glTexImage1D GLAD_API_CALL PFNGLTEXIMAGE2DPROC glad_glTexImage2D; #define glTexImage2D glad_glTexImage2D GLAD_API_CALL PFNGLTEXIMAGE2DMULTISAMPLEPROC glad_glTexImage2DMultisample; #define glTexImage2DMultisample glad_glTexImage2DMultisample GLAD_API_CALL PFNGLTEXIMAGE3DPROC glad_glTexImage3D; #define glTexImage3D glad_glTexImage3D GLAD_API_CALL PFNGLTEXIMAGE3DMULTISAMPLEPROC glad_glTexImage3DMultisample; #define glTexImage3DMultisample glad_glTexImage3DMultisample GLAD_API_CALL PFNGLTEXPAGECOMMITMENTARBPROC glad_glTexPageCommitmentARB; #define glTexPageCommitmentARB glad_glTexPageCommitmentARB GLAD_API_CALL PFNGLTEXPARAMETERIIVPROC glad_glTexParameterIiv; #define glTexParameterIiv glad_glTexParameterIiv GLAD_API_CALL PFNGLTEXPARAMETERIUIVPROC glad_glTexParameterIuiv; #define glTexParameterIuiv glad_glTexParameterIuiv GLAD_API_CALL PFNGLTEXPARAMETERFPROC glad_glTexParameterf; #define glTexParameterf glad_glTexParameterf GLAD_API_CALL PFNGLTEXPARAMETERFVPROC glad_glTexParameterfv; #define glTexParameterfv glad_glTexParameterfv GLAD_API_CALL PFNGLTEXPARAMETERIPROC glad_glTexParameteri; #define glTexParameteri glad_glTexParameteri GLAD_API_CALL PFNGLTEXPARAMETERIVPROC glad_glTexParameteriv; #define glTexParameteriv glad_glTexParameteriv GLAD_API_CALL PFNGLTEXSTORAGE1DPROC glad_glTexStorage1D; #define glTexStorage1D glad_glTexStorage1D GLAD_API_CALL PFNGLTEXSTORAGE2DPROC glad_glTexStorage2D; #define glTexStorage2D glad_glTexStorage2D GLAD_API_CALL PFNGLTEXSTORAGE2DMULTISAMPLEPROC glad_glTexStorage2DMultisample; #define glTexStorage2DMultisample glad_glTexStorage2DMultisample GLAD_API_CALL PFNGLTEXSTORAGE3DPROC glad_glTexStorage3D; #define glTexStorage3D glad_glTexStorage3D GLAD_API_CALL PFNGLTEXSTORAGE3DMULTISAMPLEPROC glad_glTexStorage3DMultisample; #define glTexStorage3DMultisample glad_glTexStorage3DMultisample GLAD_API_CALL PFNGLTEXSUBIMAGE1DPROC glad_glTexSubImage1D; #define glTexSubImage1D glad_glTexSubImage1D GLAD_API_CALL PFNGLTEXSUBIMAGE2DPROC glad_glTexSubImage2D; #define glTexSubImage2D glad_glTexSubImage2D GLAD_API_CALL PFNGLTEXSUBIMAGE3DPROC glad_glTexSubImage3D; #define glTexSubImage3D glad_glTexSubImage3D GLAD_API_CALL PFNGLTEXTUREBARRIERPROC glad_glTextureBarrier; #define glTextureBarrier glad_glTextureBarrier GLAD_API_CALL PFNGLTEXTUREBUFFERPROC glad_glTextureBuffer; #define glTextureBuffer glad_glTextureBuffer GLAD_API_CALL PFNGLTEXTUREBUFFERRANGEPROC glad_glTextureBufferRange; #define glTextureBufferRange glad_glTextureBufferRange GLAD_API_CALL PFNGLTEXTUREPARAMETERIIVPROC glad_glTextureParameterIiv; #define glTextureParameterIiv glad_glTextureParameterIiv GLAD_API_CALL PFNGLTEXTUREPARAMETERIUIVPROC glad_glTextureParameterIuiv; #define glTextureParameterIuiv glad_glTextureParameterIuiv GLAD_API_CALL PFNGLTEXTUREPARAMETERFPROC glad_glTextureParameterf; #define glTextureParameterf glad_glTextureParameterf GLAD_API_CALL PFNGLTEXTUREPARAMETERFVPROC glad_glTextureParameterfv; #define glTextureParameterfv glad_glTextureParameterfv GLAD_API_CALL PFNGLTEXTUREPARAMETERIPROC glad_glTextureParameteri; #define glTextureParameteri glad_glTextureParameteri GLAD_API_CALL PFNGLTEXTUREPARAMETERIVPROC glad_glTextureParameteriv; #define glTextureParameteriv glad_glTextureParameteriv GLAD_API_CALL PFNGLTEXTURESTORAGE1DPROC glad_glTextureStorage1D; #define glTextureStorage1D glad_glTextureStorage1D GLAD_API_CALL PFNGLTEXTURESTORAGE2DPROC glad_glTextureStorage2D; #define glTextureStorage2D glad_glTextureStorage2D GLAD_API_CALL PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC glad_glTextureStorage2DMultisample; #define glTextureStorage2DMultisample glad_glTextureStorage2DMultisample GLAD_API_CALL PFNGLTEXTURESTORAGE3DPROC glad_glTextureStorage3D; #define glTextureStorage3D glad_glTextureStorage3D GLAD_API_CALL PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC glad_glTextureStorage3DMultisample; #define glTextureStorage3DMultisample glad_glTextureStorage3DMultisample GLAD_API_CALL PFNGLTEXTURESUBIMAGE1DPROC glad_glTextureSubImage1D; #define glTextureSubImage1D glad_glTextureSubImage1D GLAD_API_CALL PFNGLTEXTURESUBIMAGE2DPROC glad_glTextureSubImage2D; #define glTextureSubImage2D glad_glTextureSubImage2D GLAD_API_CALL PFNGLTEXTURESUBIMAGE3DPROC glad_glTextureSubImage3D; #define glTextureSubImage3D glad_glTextureSubImage3D GLAD_API_CALL PFNGLTEXTUREVIEWPROC glad_glTextureView; #define glTextureView glad_glTextureView GLAD_API_CALL PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC glad_glTransformFeedbackBufferBase; #define glTransformFeedbackBufferBase glad_glTransformFeedbackBufferBase GLAD_API_CALL PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC glad_glTransformFeedbackBufferRange; #define glTransformFeedbackBufferRange glad_glTransformFeedbackBufferRange GLAD_API_CALL PFNGLTRANSFORMFEEDBACKVARYINGSPROC glad_glTransformFeedbackVaryings; #define glTransformFeedbackVaryings glad_glTransformFeedbackVaryings GLAD_API_CALL PFNGLTRANSLATEDPROC glad_glTranslated; #define glTranslated glad_glTranslated GLAD_API_CALL PFNGLTRANSLATEFPROC glad_glTranslatef; #define glTranslatef glad_glTranslatef GLAD_API_CALL PFNGLUNIFORM1DPROC glad_glUniform1d; #define glUniform1d glad_glUniform1d GLAD_API_CALL PFNGLUNIFORM1DVPROC glad_glUniform1dv; #define glUniform1dv glad_glUniform1dv GLAD_API_CALL PFNGLUNIFORM1FPROC glad_glUniform1f; #define glUniform1f glad_glUniform1f GLAD_API_CALL PFNGLUNIFORM1FARBPROC glad_glUniform1fARB; #define glUniform1fARB glad_glUniform1fARB GLAD_API_CALL PFNGLUNIFORM1FVPROC glad_glUniform1fv; #define glUniform1fv glad_glUniform1fv GLAD_API_CALL PFNGLUNIFORM1FVARBPROC glad_glUniform1fvARB; #define glUniform1fvARB glad_glUniform1fvARB GLAD_API_CALL PFNGLUNIFORM1IPROC glad_glUniform1i; #define glUniform1i glad_glUniform1i GLAD_API_CALL PFNGLUNIFORM1I64ARBPROC glad_glUniform1i64ARB; #define glUniform1i64ARB glad_glUniform1i64ARB GLAD_API_CALL PFNGLUNIFORM1I64VARBPROC glad_glUniform1i64vARB; #define glUniform1i64vARB glad_glUniform1i64vARB GLAD_API_CALL PFNGLUNIFORM1IARBPROC glad_glUniform1iARB; #define glUniform1iARB glad_glUniform1iARB GLAD_API_CALL PFNGLUNIFORM1IVPROC glad_glUniform1iv; #define glUniform1iv glad_glUniform1iv GLAD_API_CALL PFNGLUNIFORM1IVARBPROC glad_glUniform1ivARB; #define glUniform1ivARB glad_glUniform1ivARB GLAD_API_CALL PFNGLUNIFORM1UIPROC glad_glUniform1ui; #define glUniform1ui glad_glUniform1ui GLAD_API_CALL PFNGLUNIFORM1UI64ARBPROC glad_glUniform1ui64ARB; #define glUniform1ui64ARB glad_glUniform1ui64ARB GLAD_API_CALL PFNGLUNIFORM1UI64VARBPROC glad_glUniform1ui64vARB; #define glUniform1ui64vARB glad_glUniform1ui64vARB GLAD_API_CALL PFNGLUNIFORM1UIVPROC glad_glUniform1uiv; #define glUniform1uiv glad_glUniform1uiv GLAD_API_CALL PFNGLUNIFORM2DPROC glad_glUniform2d; #define glUniform2d glad_glUniform2d GLAD_API_CALL PFNGLUNIFORM2DVPROC glad_glUniform2dv; #define glUniform2dv glad_glUniform2dv GLAD_API_CALL PFNGLUNIFORM2FPROC glad_glUniform2f; #define glUniform2f glad_glUniform2f GLAD_API_CALL PFNGLUNIFORM2FARBPROC glad_glUniform2fARB; #define glUniform2fARB glad_glUniform2fARB GLAD_API_CALL PFNGLUNIFORM2FVPROC glad_glUniform2fv; #define glUniform2fv glad_glUniform2fv GLAD_API_CALL PFNGLUNIFORM2FVARBPROC glad_glUniform2fvARB; #define glUniform2fvARB glad_glUniform2fvARB GLAD_API_CALL PFNGLUNIFORM2IPROC glad_glUniform2i; #define glUniform2i glad_glUniform2i GLAD_API_CALL PFNGLUNIFORM2I64ARBPROC glad_glUniform2i64ARB; #define glUniform2i64ARB glad_glUniform2i64ARB GLAD_API_CALL PFNGLUNIFORM2I64VARBPROC glad_glUniform2i64vARB; #define glUniform2i64vARB glad_glUniform2i64vARB GLAD_API_CALL PFNGLUNIFORM2IARBPROC glad_glUniform2iARB; #define glUniform2iARB glad_glUniform2iARB GLAD_API_CALL PFNGLUNIFORM2IVPROC glad_glUniform2iv; #define glUniform2iv glad_glUniform2iv GLAD_API_CALL PFNGLUNIFORM2IVARBPROC glad_glUniform2ivARB; #define glUniform2ivARB glad_glUniform2ivARB GLAD_API_CALL PFNGLUNIFORM2UIPROC glad_glUniform2ui; #define glUniform2ui glad_glUniform2ui GLAD_API_CALL PFNGLUNIFORM2UI64ARBPROC glad_glUniform2ui64ARB; #define glUniform2ui64ARB glad_glUniform2ui64ARB GLAD_API_CALL PFNGLUNIFORM2UI64VARBPROC glad_glUniform2ui64vARB; #define glUniform2ui64vARB glad_glUniform2ui64vARB GLAD_API_CALL PFNGLUNIFORM2UIVPROC glad_glUniform2uiv; #define glUniform2uiv glad_glUniform2uiv GLAD_API_CALL PFNGLUNIFORM3DPROC glad_glUniform3d; #define glUniform3d glad_glUniform3d GLAD_API_CALL PFNGLUNIFORM3DVPROC glad_glUniform3dv; #define glUniform3dv glad_glUniform3dv GLAD_API_CALL PFNGLUNIFORM3FPROC glad_glUniform3f; #define glUniform3f glad_glUniform3f GLAD_API_CALL PFNGLUNIFORM3FARBPROC glad_glUniform3fARB; #define glUniform3fARB glad_glUniform3fARB GLAD_API_CALL PFNGLUNIFORM3FVPROC glad_glUniform3fv; #define glUniform3fv glad_glUniform3fv GLAD_API_CALL PFNGLUNIFORM3FVARBPROC glad_glUniform3fvARB; #define glUniform3fvARB glad_glUniform3fvARB GLAD_API_CALL PFNGLUNIFORM3IPROC glad_glUniform3i; #define glUniform3i glad_glUniform3i GLAD_API_CALL PFNGLUNIFORM3I64ARBPROC glad_glUniform3i64ARB; #define glUniform3i64ARB glad_glUniform3i64ARB GLAD_API_CALL PFNGLUNIFORM3I64VARBPROC glad_glUniform3i64vARB; #define glUniform3i64vARB glad_glUniform3i64vARB GLAD_API_CALL PFNGLUNIFORM3IARBPROC glad_glUniform3iARB; #define glUniform3iARB glad_glUniform3iARB GLAD_API_CALL PFNGLUNIFORM3IVPROC glad_glUniform3iv; #define glUniform3iv glad_glUniform3iv GLAD_API_CALL PFNGLUNIFORM3IVARBPROC glad_glUniform3ivARB; #define glUniform3ivARB glad_glUniform3ivARB GLAD_API_CALL PFNGLUNIFORM3UIPROC glad_glUniform3ui; #define glUniform3ui glad_glUniform3ui GLAD_API_CALL PFNGLUNIFORM3UI64ARBPROC glad_glUniform3ui64ARB; #define glUniform3ui64ARB glad_glUniform3ui64ARB GLAD_API_CALL PFNGLUNIFORM3UI64VARBPROC glad_glUniform3ui64vARB; #define glUniform3ui64vARB glad_glUniform3ui64vARB GLAD_API_CALL PFNGLUNIFORM3UIVPROC glad_glUniform3uiv; #define glUniform3uiv glad_glUniform3uiv GLAD_API_CALL PFNGLUNIFORM4DPROC glad_glUniform4d; #define glUniform4d glad_glUniform4d GLAD_API_CALL PFNGLUNIFORM4DVPROC glad_glUniform4dv; #define glUniform4dv glad_glUniform4dv GLAD_API_CALL PFNGLUNIFORM4FPROC glad_glUniform4f; #define glUniform4f glad_glUniform4f GLAD_API_CALL PFNGLUNIFORM4FARBPROC glad_glUniform4fARB; #define glUniform4fARB glad_glUniform4fARB GLAD_API_CALL PFNGLUNIFORM4FVPROC glad_glUniform4fv; #define glUniform4fv glad_glUniform4fv GLAD_API_CALL PFNGLUNIFORM4FVARBPROC glad_glUniform4fvARB; #define glUniform4fvARB glad_glUniform4fvARB GLAD_API_CALL PFNGLUNIFORM4IPROC glad_glUniform4i; #define glUniform4i glad_glUniform4i GLAD_API_CALL PFNGLUNIFORM4I64ARBPROC glad_glUniform4i64ARB; #define glUniform4i64ARB glad_glUniform4i64ARB GLAD_API_CALL PFNGLUNIFORM4I64VARBPROC glad_glUniform4i64vARB; #define glUniform4i64vARB glad_glUniform4i64vARB GLAD_API_CALL PFNGLUNIFORM4IARBPROC glad_glUniform4iARB; #define glUniform4iARB glad_glUniform4iARB GLAD_API_CALL PFNGLUNIFORM4IVPROC glad_glUniform4iv; #define glUniform4iv glad_glUniform4iv GLAD_API_CALL PFNGLUNIFORM4IVARBPROC glad_glUniform4ivARB; #define glUniform4ivARB glad_glUniform4ivARB GLAD_API_CALL PFNGLUNIFORM4UIPROC glad_glUniform4ui; #define glUniform4ui glad_glUniform4ui GLAD_API_CALL PFNGLUNIFORM4UI64ARBPROC glad_glUniform4ui64ARB; #define glUniform4ui64ARB glad_glUniform4ui64ARB GLAD_API_CALL PFNGLUNIFORM4UI64VARBPROC glad_glUniform4ui64vARB; #define glUniform4ui64vARB glad_glUniform4ui64vARB GLAD_API_CALL PFNGLUNIFORM4UIVPROC glad_glUniform4uiv; #define glUniform4uiv glad_glUniform4uiv GLAD_API_CALL PFNGLUNIFORMBLOCKBINDINGPROC glad_glUniformBlockBinding; #define glUniformBlockBinding glad_glUniformBlockBinding GLAD_API_CALL PFNGLUNIFORMHANDLEUI64ARBPROC glad_glUniformHandleui64ARB; #define glUniformHandleui64ARB glad_glUniformHandleui64ARB GLAD_API_CALL PFNGLUNIFORMHANDLEUI64VARBPROC glad_glUniformHandleui64vARB; #define glUniformHandleui64vARB glad_glUniformHandleui64vARB GLAD_API_CALL PFNGLUNIFORMMATRIX2DVPROC glad_glUniformMatrix2dv; #define glUniformMatrix2dv glad_glUniformMatrix2dv GLAD_API_CALL PFNGLUNIFORMMATRIX2FVPROC glad_glUniformMatrix2fv; #define glUniformMatrix2fv glad_glUniformMatrix2fv GLAD_API_CALL PFNGLUNIFORMMATRIX2FVARBPROC glad_glUniformMatrix2fvARB; #define glUniformMatrix2fvARB glad_glUniformMatrix2fvARB GLAD_API_CALL PFNGLUNIFORMMATRIX2X3DVPROC glad_glUniformMatrix2x3dv; #define glUniformMatrix2x3dv glad_glUniformMatrix2x3dv GLAD_API_CALL PFNGLUNIFORMMATRIX2X3FVPROC glad_glUniformMatrix2x3fv; #define glUniformMatrix2x3fv glad_glUniformMatrix2x3fv GLAD_API_CALL PFNGLUNIFORMMATRIX2X4DVPROC glad_glUniformMatrix2x4dv; #define glUniformMatrix2x4dv glad_glUniformMatrix2x4dv GLAD_API_CALL PFNGLUNIFORMMATRIX2X4FVPROC glad_glUniformMatrix2x4fv; #define glUniformMatrix2x4fv glad_glUniformMatrix2x4fv GLAD_API_CALL PFNGLUNIFORMMATRIX3DVPROC glad_glUniformMatrix3dv; #define glUniformMatrix3dv glad_glUniformMatrix3dv GLAD_API_CALL PFNGLUNIFORMMATRIX3FVPROC glad_glUniformMatrix3fv; #define glUniformMatrix3fv glad_glUniformMatrix3fv GLAD_API_CALL PFNGLUNIFORMMATRIX3FVARBPROC glad_glUniformMatrix3fvARB; #define glUniformMatrix3fvARB glad_glUniformMatrix3fvARB GLAD_API_CALL PFNGLUNIFORMMATRIX3X2DVPROC glad_glUniformMatrix3x2dv; #define glUniformMatrix3x2dv glad_glUniformMatrix3x2dv GLAD_API_CALL PFNGLUNIFORMMATRIX3X2FVPROC glad_glUniformMatrix3x2fv; #define glUniformMatrix3x2fv glad_glUniformMatrix3x2fv GLAD_API_CALL PFNGLUNIFORMMATRIX3X4DVPROC glad_glUniformMatrix3x4dv; #define glUniformMatrix3x4dv glad_glUniformMatrix3x4dv GLAD_API_CALL PFNGLUNIFORMMATRIX3X4FVPROC glad_glUniformMatrix3x4fv; #define glUniformMatrix3x4fv glad_glUniformMatrix3x4fv GLAD_API_CALL PFNGLUNIFORMMATRIX4DVPROC glad_glUniformMatrix4dv; #define glUniformMatrix4dv glad_glUniformMatrix4dv GLAD_API_CALL PFNGLUNIFORMMATRIX4FVPROC glad_glUniformMatrix4fv; #define glUniformMatrix4fv glad_glUniformMatrix4fv GLAD_API_CALL PFNGLUNIFORMMATRIX4FVARBPROC glad_glUniformMatrix4fvARB; #define glUniformMatrix4fvARB glad_glUniformMatrix4fvARB GLAD_API_CALL PFNGLUNIFORMMATRIX4X2DVPROC glad_glUniformMatrix4x2dv; #define glUniformMatrix4x2dv glad_glUniformMatrix4x2dv GLAD_API_CALL PFNGLUNIFORMMATRIX4X2FVPROC glad_glUniformMatrix4x2fv; #define glUniformMatrix4x2fv glad_glUniformMatrix4x2fv GLAD_API_CALL PFNGLUNIFORMMATRIX4X3DVPROC glad_glUniformMatrix4x3dv; #define glUniformMatrix4x3dv glad_glUniformMatrix4x3dv GLAD_API_CALL PFNGLUNIFORMMATRIX4X3FVPROC glad_glUniformMatrix4x3fv; #define glUniformMatrix4x3fv glad_glUniformMatrix4x3fv GLAD_API_CALL PFNGLUNIFORMSUBROUTINESUIVPROC glad_glUniformSubroutinesuiv; #define glUniformSubroutinesuiv glad_glUniformSubroutinesuiv GLAD_API_CALL PFNGLUNMAPBUFFERPROC glad_glUnmapBuffer; #define glUnmapBuffer glad_glUnmapBuffer GLAD_API_CALL PFNGLUNMAPBUFFERARBPROC glad_glUnmapBufferARB; #define glUnmapBufferARB glad_glUnmapBufferARB GLAD_API_CALL PFNGLUNMAPNAMEDBUFFERPROC glad_glUnmapNamedBuffer; #define glUnmapNamedBuffer glad_glUnmapNamedBuffer GLAD_API_CALL PFNGLUSEPROGRAMPROC glad_glUseProgram; #define glUseProgram glad_glUseProgram GLAD_API_CALL PFNGLUSEPROGRAMOBJECTARBPROC glad_glUseProgramObjectARB; #define glUseProgramObjectARB glad_glUseProgramObjectARB GLAD_API_CALL PFNGLUSEPROGRAMSTAGESPROC glad_glUseProgramStages; #define glUseProgramStages glad_glUseProgramStages GLAD_API_CALL PFNGLVALIDATEPROGRAMPROC glad_glValidateProgram; #define glValidateProgram glad_glValidateProgram GLAD_API_CALL PFNGLVALIDATEPROGRAMARBPROC glad_glValidateProgramARB; #define glValidateProgramARB glad_glValidateProgramARB GLAD_API_CALL PFNGLVALIDATEPROGRAMPIPELINEPROC glad_glValidateProgramPipeline; #define glValidateProgramPipeline glad_glValidateProgramPipeline GLAD_API_CALL PFNGLVERTEX2DPROC glad_glVertex2d; #define glVertex2d glad_glVertex2d GLAD_API_CALL PFNGLVERTEX2DVPROC glad_glVertex2dv; #define glVertex2dv glad_glVertex2dv GLAD_API_CALL PFNGLVERTEX2FPROC glad_glVertex2f; #define glVertex2f glad_glVertex2f GLAD_API_CALL PFNGLVERTEX2FVPROC glad_glVertex2fv; #define glVertex2fv glad_glVertex2fv GLAD_API_CALL PFNGLVERTEX2IPROC glad_glVertex2i; #define glVertex2i glad_glVertex2i GLAD_API_CALL PFNGLVERTEX2IVPROC glad_glVertex2iv; #define glVertex2iv glad_glVertex2iv GLAD_API_CALL PFNGLVERTEX2SPROC glad_glVertex2s; #define glVertex2s glad_glVertex2s GLAD_API_CALL PFNGLVERTEX2SVPROC glad_glVertex2sv; #define glVertex2sv glad_glVertex2sv GLAD_API_CALL PFNGLVERTEX3DPROC glad_glVertex3d; #define glVertex3d glad_glVertex3d GLAD_API_CALL PFNGLVERTEX3DVPROC glad_glVertex3dv; #define glVertex3dv glad_glVertex3dv GLAD_API_CALL PFNGLVERTEX3FPROC glad_glVertex3f; #define glVertex3f glad_glVertex3f GLAD_API_CALL PFNGLVERTEX3FVPROC glad_glVertex3fv; #define glVertex3fv glad_glVertex3fv GLAD_API_CALL PFNGLVERTEX3IPROC glad_glVertex3i; #define glVertex3i glad_glVertex3i GLAD_API_CALL PFNGLVERTEX3IVPROC glad_glVertex3iv; #define glVertex3iv glad_glVertex3iv GLAD_API_CALL PFNGLVERTEX3SPROC glad_glVertex3s; #define glVertex3s glad_glVertex3s GLAD_API_CALL PFNGLVERTEX3SVPROC glad_glVertex3sv; #define glVertex3sv glad_glVertex3sv GLAD_API_CALL PFNGLVERTEX4DPROC glad_glVertex4d; #define glVertex4d glad_glVertex4d GLAD_API_CALL PFNGLVERTEX4DVPROC glad_glVertex4dv; #define glVertex4dv glad_glVertex4dv GLAD_API_CALL PFNGLVERTEX4FPROC glad_glVertex4f; #define glVertex4f glad_glVertex4f GLAD_API_CALL PFNGLVERTEX4FVPROC glad_glVertex4fv; #define glVertex4fv glad_glVertex4fv GLAD_API_CALL PFNGLVERTEX4IPROC glad_glVertex4i; #define glVertex4i glad_glVertex4i GLAD_API_CALL PFNGLVERTEX4IVPROC glad_glVertex4iv; #define glVertex4iv glad_glVertex4iv GLAD_API_CALL PFNGLVERTEX4SPROC glad_glVertex4s; #define glVertex4s glad_glVertex4s GLAD_API_CALL PFNGLVERTEX4SVPROC glad_glVertex4sv; #define glVertex4sv glad_glVertex4sv GLAD_API_CALL PFNGLVERTEXARRAYATTRIBBINDINGPROC glad_glVertexArrayAttribBinding; #define glVertexArrayAttribBinding glad_glVertexArrayAttribBinding GLAD_API_CALL PFNGLVERTEXARRAYATTRIBFORMATPROC glad_glVertexArrayAttribFormat; #define glVertexArrayAttribFormat glad_glVertexArrayAttribFormat GLAD_API_CALL PFNGLVERTEXARRAYATTRIBIFORMATPROC glad_glVertexArrayAttribIFormat; #define glVertexArrayAttribIFormat glad_glVertexArrayAttribIFormat GLAD_API_CALL PFNGLVERTEXARRAYATTRIBLFORMATPROC glad_glVertexArrayAttribLFormat; #define glVertexArrayAttribLFormat glad_glVertexArrayAttribLFormat GLAD_API_CALL PFNGLVERTEXARRAYBINDINGDIVISORPROC glad_glVertexArrayBindingDivisor; #define glVertexArrayBindingDivisor glad_glVertexArrayBindingDivisor GLAD_API_CALL PFNGLVERTEXARRAYELEMENTBUFFERPROC glad_glVertexArrayElementBuffer; #define glVertexArrayElementBuffer glad_glVertexArrayElementBuffer GLAD_API_CALL PFNGLVERTEXARRAYVERTEXBUFFERPROC glad_glVertexArrayVertexBuffer; #define glVertexArrayVertexBuffer glad_glVertexArrayVertexBuffer GLAD_API_CALL PFNGLVERTEXARRAYVERTEXBUFFERSPROC glad_glVertexArrayVertexBuffers; #define glVertexArrayVertexBuffers glad_glVertexArrayVertexBuffers GLAD_API_CALL PFNGLVERTEXATTRIB1DPROC glad_glVertexAttrib1d; #define glVertexAttrib1d glad_glVertexAttrib1d GLAD_API_CALL PFNGLVERTEXATTRIB1DARBPROC glad_glVertexAttrib1dARB; #define glVertexAttrib1dARB glad_glVertexAttrib1dARB GLAD_API_CALL PFNGLVERTEXATTRIB1DVPROC glad_glVertexAttrib1dv; #define glVertexAttrib1dv glad_glVertexAttrib1dv GLAD_API_CALL PFNGLVERTEXATTRIB1DVARBPROC glad_glVertexAttrib1dvARB; #define glVertexAttrib1dvARB glad_glVertexAttrib1dvARB GLAD_API_CALL PFNGLVERTEXATTRIB1FPROC glad_glVertexAttrib1f; #define glVertexAttrib1f glad_glVertexAttrib1f GLAD_API_CALL PFNGLVERTEXATTRIB1FARBPROC glad_glVertexAttrib1fARB; #define glVertexAttrib1fARB glad_glVertexAttrib1fARB GLAD_API_CALL PFNGLVERTEXATTRIB1FVPROC glad_glVertexAttrib1fv; #define glVertexAttrib1fv glad_glVertexAttrib1fv GLAD_API_CALL PFNGLVERTEXATTRIB1FVARBPROC glad_glVertexAttrib1fvARB; #define glVertexAttrib1fvARB glad_glVertexAttrib1fvARB GLAD_API_CALL PFNGLVERTEXATTRIB1SPROC glad_glVertexAttrib1s; #define glVertexAttrib1s glad_glVertexAttrib1s GLAD_API_CALL PFNGLVERTEXATTRIB1SARBPROC glad_glVertexAttrib1sARB; #define glVertexAttrib1sARB glad_glVertexAttrib1sARB GLAD_API_CALL PFNGLVERTEXATTRIB1SVPROC glad_glVertexAttrib1sv; #define glVertexAttrib1sv glad_glVertexAttrib1sv GLAD_API_CALL PFNGLVERTEXATTRIB1SVARBPROC glad_glVertexAttrib1svARB; #define glVertexAttrib1svARB glad_glVertexAttrib1svARB GLAD_API_CALL PFNGLVERTEXATTRIB2DPROC glad_glVertexAttrib2d; #define glVertexAttrib2d glad_glVertexAttrib2d GLAD_API_CALL PFNGLVERTEXATTRIB2DARBPROC glad_glVertexAttrib2dARB; #define glVertexAttrib2dARB glad_glVertexAttrib2dARB GLAD_API_CALL PFNGLVERTEXATTRIB2DVPROC glad_glVertexAttrib2dv; #define glVertexAttrib2dv glad_glVertexAttrib2dv GLAD_API_CALL PFNGLVERTEXATTRIB2DVARBPROC glad_glVertexAttrib2dvARB; #define glVertexAttrib2dvARB glad_glVertexAttrib2dvARB GLAD_API_CALL PFNGLVERTEXATTRIB2FPROC glad_glVertexAttrib2f; #define glVertexAttrib2f glad_glVertexAttrib2f GLAD_API_CALL PFNGLVERTEXATTRIB2FARBPROC glad_glVertexAttrib2fARB; #define glVertexAttrib2fARB glad_glVertexAttrib2fARB GLAD_API_CALL PFNGLVERTEXATTRIB2FVPROC glad_glVertexAttrib2fv; #define glVertexAttrib2fv glad_glVertexAttrib2fv GLAD_API_CALL PFNGLVERTEXATTRIB2FVARBPROC glad_glVertexAttrib2fvARB; #define glVertexAttrib2fvARB glad_glVertexAttrib2fvARB GLAD_API_CALL PFNGLVERTEXATTRIB2SPROC glad_glVertexAttrib2s; #define glVertexAttrib2s glad_glVertexAttrib2s GLAD_API_CALL PFNGLVERTEXATTRIB2SARBPROC glad_glVertexAttrib2sARB; #define glVertexAttrib2sARB glad_glVertexAttrib2sARB GLAD_API_CALL PFNGLVERTEXATTRIB2SVPROC glad_glVertexAttrib2sv; #define glVertexAttrib2sv glad_glVertexAttrib2sv GLAD_API_CALL PFNGLVERTEXATTRIB2SVARBPROC glad_glVertexAttrib2svARB; #define glVertexAttrib2svARB glad_glVertexAttrib2svARB GLAD_API_CALL PFNGLVERTEXATTRIB3DPROC glad_glVertexAttrib3d; #define glVertexAttrib3d glad_glVertexAttrib3d GLAD_API_CALL PFNGLVERTEXATTRIB3DARBPROC glad_glVertexAttrib3dARB; #define glVertexAttrib3dARB glad_glVertexAttrib3dARB GLAD_API_CALL PFNGLVERTEXATTRIB3DVPROC glad_glVertexAttrib3dv; #define glVertexAttrib3dv glad_glVertexAttrib3dv GLAD_API_CALL PFNGLVERTEXATTRIB3DVARBPROC glad_glVertexAttrib3dvARB; #define glVertexAttrib3dvARB glad_glVertexAttrib3dvARB GLAD_API_CALL PFNGLVERTEXATTRIB3FPROC glad_glVertexAttrib3f; #define glVertexAttrib3f glad_glVertexAttrib3f GLAD_API_CALL PFNGLVERTEXATTRIB3FARBPROC glad_glVertexAttrib3fARB; #define glVertexAttrib3fARB glad_glVertexAttrib3fARB GLAD_API_CALL PFNGLVERTEXATTRIB3FVPROC glad_glVertexAttrib3fv; #define glVertexAttrib3fv glad_glVertexAttrib3fv GLAD_API_CALL PFNGLVERTEXATTRIB3FVARBPROC glad_glVertexAttrib3fvARB; #define glVertexAttrib3fvARB glad_glVertexAttrib3fvARB GLAD_API_CALL PFNGLVERTEXATTRIB3SPROC glad_glVertexAttrib3s; #define glVertexAttrib3s glad_glVertexAttrib3s GLAD_API_CALL PFNGLVERTEXATTRIB3SARBPROC glad_glVertexAttrib3sARB; #define glVertexAttrib3sARB glad_glVertexAttrib3sARB GLAD_API_CALL PFNGLVERTEXATTRIB3SVPROC glad_glVertexAttrib3sv; #define glVertexAttrib3sv glad_glVertexAttrib3sv GLAD_API_CALL PFNGLVERTEXATTRIB3SVARBPROC glad_glVertexAttrib3svARB; #define glVertexAttrib3svARB glad_glVertexAttrib3svARB GLAD_API_CALL PFNGLVERTEXATTRIB4NBVPROC glad_glVertexAttrib4Nbv; #define glVertexAttrib4Nbv glad_glVertexAttrib4Nbv GLAD_API_CALL PFNGLVERTEXATTRIB4NBVARBPROC glad_glVertexAttrib4NbvARB; #define glVertexAttrib4NbvARB glad_glVertexAttrib4NbvARB GLAD_API_CALL PFNGLVERTEXATTRIB4NIVPROC glad_glVertexAttrib4Niv; #define glVertexAttrib4Niv glad_glVertexAttrib4Niv GLAD_API_CALL PFNGLVERTEXATTRIB4NIVARBPROC glad_glVertexAttrib4NivARB; #define glVertexAttrib4NivARB glad_glVertexAttrib4NivARB GLAD_API_CALL PFNGLVERTEXATTRIB4NSVPROC glad_glVertexAttrib4Nsv; #define glVertexAttrib4Nsv glad_glVertexAttrib4Nsv GLAD_API_CALL PFNGLVERTEXATTRIB4NSVARBPROC glad_glVertexAttrib4NsvARB; #define glVertexAttrib4NsvARB glad_glVertexAttrib4NsvARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUBPROC glad_glVertexAttrib4Nub; #define glVertexAttrib4Nub glad_glVertexAttrib4Nub GLAD_API_CALL PFNGLVERTEXATTRIB4NUBARBPROC glad_glVertexAttrib4NubARB; #define glVertexAttrib4NubARB glad_glVertexAttrib4NubARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUBVPROC glad_glVertexAttrib4Nubv; #define glVertexAttrib4Nubv glad_glVertexAttrib4Nubv GLAD_API_CALL PFNGLVERTEXATTRIB4NUBVARBPROC glad_glVertexAttrib4NubvARB; #define glVertexAttrib4NubvARB glad_glVertexAttrib4NubvARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUIVPROC glad_glVertexAttrib4Nuiv; #define glVertexAttrib4Nuiv glad_glVertexAttrib4Nuiv GLAD_API_CALL PFNGLVERTEXATTRIB4NUIVARBPROC glad_glVertexAttrib4NuivARB; #define glVertexAttrib4NuivARB glad_glVertexAttrib4NuivARB GLAD_API_CALL PFNGLVERTEXATTRIB4NUSVPROC glad_glVertexAttrib4Nusv; #define glVertexAttrib4Nusv glad_glVertexAttrib4Nusv GLAD_API_CALL PFNGLVERTEXATTRIB4NUSVARBPROC glad_glVertexAttrib4NusvARB; #define glVertexAttrib4NusvARB glad_glVertexAttrib4NusvARB GLAD_API_CALL PFNGLVERTEXATTRIB4BVPROC glad_glVertexAttrib4bv; #define glVertexAttrib4bv glad_glVertexAttrib4bv GLAD_API_CALL PFNGLVERTEXATTRIB4BVARBPROC glad_glVertexAttrib4bvARB; #define glVertexAttrib4bvARB glad_glVertexAttrib4bvARB GLAD_API_CALL PFNGLVERTEXATTRIB4DPROC glad_glVertexAttrib4d; #define glVertexAttrib4d glad_glVertexAttrib4d GLAD_API_CALL PFNGLVERTEXATTRIB4DARBPROC glad_glVertexAttrib4dARB; #define glVertexAttrib4dARB glad_glVertexAttrib4dARB GLAD_API_CALL PFNGLVERTEXATTRIB4DVPROC glad_glVertexAttrib4dv; #define glVertexAttrib4dv glad_glVertexAttrib4dv GLAD_API_CALL PFNGLVERTEXATTRIB4DVARBPROC glad_glVertexAttrib4dvARB; #define glVertexAttrib4dvARB glad_glVertexAttrib4dvARB GLAD_API_CALL PFNGLVERTEXATTRIB4FPROC glad_glVertexAttrib4f; #define glVertexAttrib4f glad_glVertexAttrib4f GLAD_API_CALL PFNGLVERTEXATTRIB4FARBPROC glad_glVertexAttrib4fARB; #define glVertexAttrib4fARB glad_glVertexAttrib4fARB GLAD_API_CALL PFNGLVERTEXATTRIB4FVPROC glad_glVertexAttrib4fv; #define glVertexAttrib4fv glad_glVertexAttrib4fv GLAD_API_CALL PFNGLVERTEXATTRIB4FVARBPROC glad_glVertexAttrib4fvARB; #define glVertexAttrib4fvARB glad_glVertexAttrib4fvARB GLAD_API_CALL PFNGLVERTEXATTRIB4IVPROC glad_glVertexAttrib4iv; #define glVertexAttrib4iv glad_glVertexAttrib4iv GLAD_API_CALL PFNGLVERTEXATTRIB4IVARBPROC glad_glVertexAttrib4ivARB; #define glVertexAttrib4ivARB glad_glVertexAttrib4ivARB GLAD_API_CALL PFNGLVERTEXATTRIB4SPROC glad_glVertexAttrib4s; #define glVertexAttrib4s glad_glVertexAttrib4s GLAD_API_CALL PFNGLVERTEXATTRIB4SARBPROC glad_glVertexAttrib4sARB; #define glVertexAttrib4sARB glad_glVertexAttrib4sARB GLAD_API_CALL PFNGLVERTEXATTRIB4SVPROC glad_glVertexAttrib4sv; #define glVertexAttrib4sv glad_glVertexAttrib4sv GLAD_API_CALL PFNGLVERTEXATTRIB4SVARBPROC glad_glVertexAttrib4svARB; #define glVertexAttrib4svARB glad_glVertexAttrib4svARB GLAD_API_CALL PFNGLVERTEXATTRIB4UBVPROC glad_glVertexAttrib4ubv; #define glVertexAttrib4ubv glad_glVertexAttrib4ubv GLAD_API_CALL PFNGLVERTEXATTRIB4UBVARBPROC glad_glVertexAttrib4ubvARB; #define glVertexAttrib4ubvARB glad_glVertexAttrib4ubvARB GLAD_API_CALL PFNGLVERTEXATTRIB4UIVPROC glad_glVertexAttrib4uiv; #define glVertexAttrib4uiv glad_glVertexAttrib4uiv GLAD_API_CALL PFNGLVERTEXATTRIB4UIVARBPROC glad_glVertexAttrib4uivARB; #define glVertexAttrib4uivARB glad_glVertexAttrib4uivARB GLAD_API_CALL PFNGLVERTEXATTRIB4USVPROC glad_glVertexAttrib4usv; #define glVertexAttrib4usv glad_glVertexAttrib4usv GLAD_API_CALL PFNGLVERTEXATTRIB4USVARBPROC glad_glVertexAttrib4usvARB; #define glVertexAttrib4usvARB glad_glVertexAttrib4usvARB GLAD_API_CALL PFNGLVERTEXATTRIBBINDINGPROC glad_glVertexAttribBinding; #define glVertexAttribBinding glad_glVertexAttribBinding GLAD_API_CALL PFNGLVERTEXATTRIBDIVISORPROC glad_glVertexAttribDivisor; #define glVertexAttribDivisor glad_glVertexAttribDivisor GLAD_API_CALL PFNGLVERTEXATTRIBDIVISORARBPROC glad_glVertexAttribDivisorARB; #define glVertexAttribDivisorARB glad_glVertexAttribDivisorARB GLAD_API_CALL PFNGLVERTEXATTRIBFORMATPROC glad_glVertexAttribFormat; #define glVertexAttribFormat glad_glVertexAttribFormat GLAD_API_CALL PFNGLVERTEXATTRIBI1IPROC glad_glVertexAttribI1i; #define glVertexAttribI1i glad_glVertexAttribI1i GLAD_API_CALL PFNGLVERTEXATTRIBI1IVPROC glad_glVertexAttribI1iv; #define glVertexAttribI1iv glad_glVertexAttribI1iv GLAD_API_CALL PFNGLVERTEXATTRIBI1UIPROC glad_glVertexAttribI1ui; #define glVertexAttribI1ui glad_glVertexAttribI1ui GLAD_API_CALL PFNGLVERTEXATTRIBI1UIVPROC glad_glVertexAttribI1uiv; #define glVertexAttribI1uiv glad_glVertexAttribI1uiv GLAD_API_CALL PFNGLVERTEXATTRIBI2IPROC glad_glVertexAttribI2i; #define glVertexAttribI2i glad_glVertexAttribI2i GLAD_API_CALL PFNGLVERTEXATTRIBI2IVPROC glad_glVertexAttribI2iv; #define glVertexAttribI2iv glad_glVertexAttribI2iv GLAD_API_CALL PFNGLVERTEXATTRIBI2UIPROC glad_glVertexAttribI2ui; #define glVertexAttribI2ui glad_glVertexAttribI2ui GLAD_API_CALL PFNGLVERTEXATTRIBI2UIVPROC glad_glVertexAttribI2uiv; #define glVertexAttribI2uiv glad_glVertexAttribI2uiv GLAD_API_CALL PFNGLVERTEXATTRIBI3IPROC glad_glVertexAttribI3i; #define glVertexAttribI3i glad_glVertexAttribI3i GLAD_API_CALL PFNGLVERTEXATTRIBI3IVPROC glad_glVertexAttribI3iv; #define glVertexAttribI3iv glad_glVertexAttribI3iv GLAD_API_CALL PFNGLVERTEXATTRIBI3UIPROC glad_glVertexAttribI3ui; #define glVertexAttribI3ui glad_glVertexAttribI3ui GLAD_API_CALL PFNGLVERTEXATTRIBI3UIVPROC glad_glVertexAttribI3uiv; #define glVertexAttribI3uiv glad_glVertexAttribI3uiv GLAD_API_CALL PFNGLVERTEXATTRIBI4BVPROC glad_glVertexAttribI4bv; #define glVertexAttribI4bv glad_glVertexAttribI4bv GLAD_API_CALL PFNGLVERTEXATTRIBI4IPROC glad_glVertexAttribI4i; #define glVertexAttribI4i glad_glVertexAttribI4i GLAD_API_CALL PFNGLVERTEXATTRIBI4IVPROC glad_glVertexAttribI4iv; #define glVertexAttribI4iv glad_glVertexAttribI4iv GLAD_API_CALL PFNGLVERTEXATTRIBI4SVPROC glad_glVertexAttribI4sv; #define glVertexAttribI4sv glad_glVertexAttribI4sv GLAD_API_CALL PFNGLVERTEXATTRIBI4UBVPROC glad_glVertexAttribI4ubv; #define glVertexAttribI4ubv glad_glVertexAttribI4ubv GLAD_API_CALL PFNGLVERTEXATTRIBI4UIPROC glad_glVertexAttribI4ui; #define glVertexAttribI4ui glad_glVertexAttribI4ui GLAD_API_CALL PFNGLVERTEXATTRIBI4UIVPROC glad_glVertexAttribI4uiv; #define glVertexAttribI4uiv glad_glVertexAttribI4uiv GLAD_API_CALL PFNGLVERTEXATTRIBI4USVPROC glad_glVertexAttribI4usv; #define glVertexAttribI4usv glad_glVertexAttribI4usv GLAD_API_CALL PFNGLVERTEXATTRIBIFORMATPROC glad_glVertexAttribIFormat; #define glVertexAttribIFormat glad_glVertexAttribIFormat GLAD_API_CALL PFNGLVERTEXATTRIBIPOINTERPROC glad_glVertexAttribIPointer; #define glVertexAttribIPointer glad_glVertexAttribIPointer GLAD_API_CALL PFNGLVERTEXATTRIBL1DPROC glad_glVertexAttribL1d; #define glVertexAttribL1d glad_glVertexAttribL1d GLAD_API_CALL PFNGLVERTEXATTRIBL1DVPROC glad_glVertexAttribL1dv; #define glVertexAttribL1dv glad_glVertexAttribL1dv GLAD_API_CALL PFNGLVERTEXATTRIBL1UI64ARBPROC glad_glVertexAttribL1ui64ARB; #define glVertexAttribL1ui64ARB glad_glVertexAttribL1ui64ARB GLAD_API_CALL PFNGLVERTEXATTRIBL1UI64VARBPROC glad_glVertexAttribL1ui64vARB; #define glVertexAttribL1ui64vARB glad_glVertexAttribL1ui64vARB GLAD_API_CALL PFNGLVERTEXATTRIBL2DPROC glad_glVertexAttribL2d; #define glVertexAttribL2d glad_glVertexAttribL2d GLAD_API_CALL PFNGLVERTEXATTRIBL2DVPROC glad_glVertexAttribL2dv; #define glVertexAttribL2dv glad_glVertexAttribL2dv GLAD_API_CALL PFNGLVERTEXATTRIBL3DPROC glad_glVertexAttribL3d; #define glVertexAttribL3d glad_glVertexAttribL3d GLAD_API_CALL PFNGLVERTEXATTRIBL3DVPROC glad_glVertexAttribL3dv; #define glVertexAttribL3dv glad_glVertexAttribL3dv GLAD_API_CALL PFNGLVERTEXATTRIBL4DPROC glad_glVertexAttribL4d; #define glVertexAttribL4d glad_glVertexAttribL4d GLAD_API_CALL PFNGLVERTEXATTRIBL4DVPROC glad_glVertexAttribL4dv; #define glVertexAttribL4dv glad_glVertexAttribL4dv GLAD_API_CALL PFNGLVERTEXATTRIBLFORMATPROC glad_glVertexAttribLFormat; #define glVertexAttribLFormat glad_glVertexAttribLFormat GLAD_API_CALL PFNGLVERTEXATTRIBLPOINTERPROC glad_glVertexAttribLPointer; #define glVertexAttribLPointer glad_glVertexAttribLPointer GLAD_API_CALL PFNGLVERTEXATTRIBP1UIPROC glad_glVertexAttribP1ui; #define glVertexAttribP1ui glad_glVertexAttribP1ui GLAD_API_CALL PFNGLVERTEXATTRIBP1UIVPROC glad_glVertexAttribP1uiv; #define glVertexAttribP1uiv glad_glVertexAttribP1uiv GLAD_API_CALL PFNGLVERTEXATTRIBP2UIPROC glad_glVertexAttribP2ui; #define glVertexAttribP2ui glad_glVertexAttribP2ui GLAD_API_CALL PFNGLVERTEXATTRIBP2UIVPROC glad_glVertexAttribP2uiv; #define glVertexAttribP2uiv glad_glVertexAttribP2uiv GLAD_API_CALL PFNGLVERTEXATTRIBP3UIPROC glad_glVertexAttribP3ui; #define glVertexAttribP3ui glad_glVertexAttribP3ui GLAD_API_CALL PFNGLVERTEXATTRIBP3UIVPROC glad_glVertexAttribP3uiv; #define glVertexAttribP3uiv glad_glVertexAttribP3uiv GLAD_API_CALL PFNGLVERTEXATTRIBP4UIPROC glad_glVertexAttribP4ui; #define glVertexAttribP4ui glad_glVertexAttribP4ui GLAD_API_CALL PFNGLVERTEXATTRIBP4UIVPROC glad_glVertexAttribP4uiv; #define glVertexAttribP4uiv glad_glVertexAttribP4uiv GLAD_API_CALL PFNGLVERTEXATTRIBPOINTERPROC glad_glVertexAttribPointer; #define glVertexAttribPointer glad_glVertexAttribPointer GLAD_API_CALL PFNGLVERTEXATTRIBPOINTERARBPROC glad_glVertexAttribPointerARB; #define glVertexAttribPointerARB glad_glVertexAttribPointerARB GLAD_API_CALL PFNGLVERTEXBINDINGDIVISORPROC glad_glVertexBindingDivisor; #define glVertexBindingDivisor glad_glVertexBindingDivisor GLAD_API_CALL PFNGLVERTEXBLENDARBPROC glad_glVertexBlendARB; #define glVertexBlendARB glad_glVertexBlendARB GLAD_API_CALL PFNGLVERTEXP2UIPROC glad_glVertexP2ui; #define glVertexP2ui glad_glVertexP2ui GLAD_API_CALL PFNGLVERTEXP2UIVPROC glad_glVertexP2uiv; #define glVertexP2uiv glad_glVertexP2uiv GLAD_API_CALL PFNGLVERTEXP3UIPROC glad_glVertexP3ui; #define glVertexP3ui glad_glVertexP3ui GLAD_API_CALL PFNGLVERTEXP3UIVPROC glad_glVertexP3uiv; #define glVertexP3uiv glad_glVertexP3uiv GLAD_API_CALL PFNGLVERTEXP4UIPROC glad_glVertexP4ui; #define glVertexP4ui glad_glVertexP4ui GLAD_API_CALL PFNGLVERTEXP4UIVPROC glad_glVertexP4uiv; #define glVertexP4uiv glad_glVertexP4uiv GLAD_API_CALL PFNGLVERTEXPOINTERPROC glad_glVertexPointer; #define glVertexPointer glad_glVertexPointer GLAD_API_CALL PFNGLVIEWPORTPROC glad_glViewport; #define glViewport glad_glViewport GLAD_API_CALL PFNGLVIEWPORTARRAYVPROC glad_glViewportArrayv; #define glViewportArrayv glad_glViewportArrayv GLAD_API_CALL PFNGLVIEWPORTINDEXEDFPROC glad_glViewportIndexedf; #define glViewportIndexedf glad_glViewportIndexedf GLAD_API_CALL PFNGLVIEWPORTINDEXEDFVPROC glad_glViewportIndexedfv; #define glViewportIndexedfv glad_glViewportIndexedfv GLAD_API_CALL PFNGLWAITSYNCPROC glad_glWaitSync; #define glWaitSync glad_glWaitSync GLAD_API_CALL PFNGLWEIGHTPOINTERARBPROC glad_glWeightPointerARB; #define glWeightPointerARB glad_glWeightPointerARB GLAD_API_CALL PFNGLWEIGHTBVARBPROC glad_glWeightbvARB; #define glWeightbvARB glad_glWeightbvARB GLAD_API_CALL PFNGLWEIGHTDVARBPROC glad_glWeightdvARB; #define glWeightdvARB glad_glWeightdvARB GLAD_API_CALL PFNGLWEIGHTFVARBPROC glad_glWeightfvARB; #define glWeightfvARB glad_glWeightfvARB GLAD_API_CALL PFNGLWEIGHTIVARBPROC glad_glWeightivARB; #define glWeightivARB glad_glWeightivARB GLAD_API_CALL PFNGLWEIGHTSVARBPROC glad_glWeightsvARB; #define glWeightsvARB glad_glWeightsvARB GLAD_API_CALL PFNGLWEIGHTUBVARBPROC glad_glWeightubvARB; #define glWeightubvARB glad_glWeightubvARB GLAD_API_CALL PFNGLWEIGHTUIVARBPROC glad_glWeightuivARB; #define glWeightuivARB glad_glWeightuivARB GLAD_API_CALL PFNGLWEIGHTUSVARBPROC glad_glWeightusvARB; #define glWeightusvARB glad_glWeightusvARB GLAD_API_CALL PFNGLWINDOWPOS2DPROC glad_glWindowPos2d; #define glWindowPos2d glad_glWindowPos2d GLAD_API_CALL PFNGLWINDOWPOS2DARBPROC glad_glWindowPos2dARB; #define glWindowPos2dARB glad_glWindowPos2dARB GLAD_API_CALL PFNGLWINDOWPOS2DVPROC glad_glWindowPos2dv; #define glWindowPos2dv glad_glWindowPos2dv GLAD_API_CALL PFNGLWINDOWPOS2DVARBPROC glad_glWindowPos2dvARB; #define glWindowPos2dvARB glad_glWindowPos2dvARB GLAD_API_CALL PFNGLWINDOWPOS2FPROC glad_glWindowPos2f; #define glWindowPos2f glad_glWindowPos2f GLAD_API_CALL PFNGLWINDOWPOS2FARBPROC glad_glWindowPos2fARB; #define glWindowPos2fARB glad_glWindowPos2fARB GLAD_API_CALL PFNGLWINDOWPOS2FVPROC glad_glWindowPos2fv; #define glWindowPos2fv glad_glWindowPos2fv GLAD_API_CALL PFNGLWINDOWPOS2FVARBPROC glad_glWindowPos2fvARB; #define glWindowPos2fvARB glad_glWindowPos2fvARB GLAD_API_CALL PFNGLWINDOWPOS2IPROC glad_glWindowPos2i; #define glWindowPos2i glad_glWindowPos2i GLAD_API_CALL PFNGLWINDOWPOS2IARBPROC glad_glWindowPos2iARB; #define glWindowPos2iARB glad_glWindowPos2iARB GLAD_API_CALL PFNGLWINDOWPOS2IVPROC glad_glWindowPos2iv; #define glWindowPos2iv glad_glWindowPos2iv GLAD_API_CALL PFNGLWINDOWPOS2IVARBPROC glad_glWindowPos2ivARB; #define glWindowPos2ivARB glad_glWindowPos2ivARB GLAD_API_CALL PFNGLWINDOWPOS2SPROC glad_glWindowPos2s; #define glWindowPos2s glad_glWindowPos2s GLAD_API_CALL PFNGLWINDOWPOS2SARBPROC glad_glWindowPos2sARB; #define glWindowPos2sARB glad_glWindowPos2sARB GLAD_API_CALL PFNGLWINDOWPOS2SVPROC glad_glWindowPos2sv; #define glWindowPos2sv glad_glWindowPos2sv GLAD_API_CALL PFNGLWINDOWPOS2SVARBPROC glad_glWindowPos2svARB; #define glWindowPos2svARB glad_glWindowPos2svARB GLAD_API_CALL PFNGLWINDOWPOS3DPROC glad_glWindowPos3d; #define glWindowPos3d glad_glWindowPos3d GLAD_API_CALL PFNGLWINDOWPOS3DARBPROC glad_glWindowPos3dARB; #define glWindowPos3dARB glad_glWindowPos3dARB GLAD_API_CALL PFNGLWINDOWPOS3DVPROC glad_glWindowPos3dv; #define glWindowPos3dv glad_glWindowPos3dv GLAD_API_CALL PFNGLWINDOWPOS3DVARBPROC glad_glWindowPos3dvARB; #define glWindowPos3dvARB glad_glWindowPos3dvARB GLAD_API_CALL PFNGLWINDOWPOS3FPROC glad_glWindowPos3f; #define glWindowPos3f glad_glWindowPos3f GLAD_API_CALL PFNGLWINDOWPOS3FARBPROC glad_glWindowPos3fARB; #define glWindowPos3fARB glad_glWindowPos3fARB GLAD_API_CALL PFNGLWINDOWPOS3FVPROC glad_glWindowPos3fv; #define glWindowPos3fv glad_glWindowPos3fv GLAD_API_CALL PFNGLWINDOWPOS3FVARBPROC glad_glWindowPos3fvARB; #define glWindowPos3fvARB glad_glWindowPos3fvARB GLAD_API_CALL PFNGLWINDOWPOS3IPROC glad_glWindowPos3i; #define glWindowPos3i glad_glWindowPos3i GLAD_API_CALL PFNGLWINDOWPOS3IARBPROC glad_glWindowPos3iARB; #define glWindowPos3iARB glad_glWindowPos3iARB GLAD_API_CALL PFNGLWINDOWPOS3IVPROC glad_glWindowPos3iv; #define glWindowPos3iv glad_glWindowPos3iv GLAD_API_CALL PFNGLWINDOWPOS3IVARBPROC glad_glWindowPos3ivARB; #define glWindowPos3ivARB glad_glWindowPos3ivARB GLAD_API_CALL PFNGLWINDOWPOS3SPROC glad_glWindowPos3s; #define glWindowPos3s glad_glWindowPos3s GLAD_API_CALL PFNGLWINDOWPOS3SARBPROC glad_glWindowPos3sARB; #define glWindowPos3sARB glad_glWindowPos3sARB GLAD_API_CALL PFNGLWINDOWPOS3SVPROC glad_glWindowPos3sv; #define glWindowPos3sv glad_glWindowPos3sv GLAD_API_CALL PFNGLWINDOWPOS3SVARBPROC glad_glWindowPos3svARB; #define glWindowPos3svARB glad_glWindowPos3svARB GLAD_API_CALL int gladLoadGLUserPtr( GLADuserptrloadfunc load, void *userptr); GLAD_API_CALL int gladLoadGL( GLADloadfunc load); #ifdef __cplusplus } #endif #endif /* Source */ #ifdef GLAD_GL_IMPLEMENTATION #include #include #include #ifndef GLAD_IMPL_UTIL_C_ #define GLAD_IMPL_UTIL_C_ #ifdef _MSC_VER #define GLAD_IMPL_UTIL_SSCANF sscanf_s #else #define GLAD_IMPL_UTIL_SSCANF sscanf #endif #endif /* GLAD_IMPL_UTIL_C_ */ int GLAD_GL_VERSION_1_0 = 0; int GLAD_GL_VERSION_1_1 = 0; int GLAD_GL_VERSION_1_2 = 0; int GLAD_GL_VERSION_1_3 = 0; int GLAD_GL_VERSION_1_4 = 0; int GLAD_GL_VERSION_1_5 = 0; int GLAD_GL_VERSION_2_0 = 0; int GLAD_GL_VERSION_2_1 = 0; int GLAD_GL_VERSION_3_0 = 0; int GLAD_GL_VERSION_3_1 = 0; int GLAD_GL_VERSION_3_2 = 0; int GLAD_GL_VERSION_3_3 = 0; int GLAD_GL_ARB_ES2_compatibility = 0; int GLAD_GL_ARB_ES3_1_compatibility = 0; int GLAD_GL_ARB_ES3_2_compatibility = 0; int GLAD_GL_ARB_ES3_compatibility = 0; int GLAD_GL_ARB_arrays_of_arrays = 0; int GLAD_GL_ARB_base_instance = 0; int GLAD_GL_ARB_bindless_texture = 0; int GLAD_GL_ARB_blend_func_extended = 0; int GLAD_GL_ARB_buffer_storage = 0; int GLAD_GL_ARB_cl_event = 0; int GLAD_GL_ARB_clear_buffer_object = 0; int GLAD_GL_ARB_clear_texture = 0; int GLAD_GL_ARB_clip_control = 0; int GLAD_GL_ARB_color_buffer_float = 0; int GLAD_GL_ARB_compatibility = 0; int GLAD_GL_ARB_compressed_texture_pixel_storage = 0; int GLAD_GL_ARB_compute_shader = 0; int GLAD_GL_ARB_compute_variable_group_size = 0; int GLAD_GL_ARB_conditional_render_inverted = 0; int GLAD_GL_ARB_conservative_depth = 0; int GLAD_GL_ARB_copy_buffer = 0; int GLAD_GL_ARB_copy_image = 0; int GLAD_GL_ARB_cull_distance = 0; int GLAD_GL_ARB_debug_output = 0; int GLAD_GL_ARB_depth_buffer_float = 0; int GLAD_GL_ARB_depth_clamp = 0; int GLAD_GL_ARB_depth_texture = 0; int GLAD_GL_ARB_derivative_control = 0; int GLAD_GL_ARB_direct_state_access = 0; int GLAD_GL_ARB_draw_buffers = 0; int GLAD_GL_ARB_draw_buffers_blend = 0; int GLAD_GL_ARB_draw_elements_base_vertex = 0; int GLAD_GL_ARB_draw_indirect = 0; int GLAD_GL_ARB_draw_instanced = 0; int GLAD_GL_ARB_enhanced_layouts = 0; int GLAD_GL_ARB_explicit_attrib_location = 0; int GLAD_GL_ARB_explicit_uniform_location = 0; int GLAD_GL_ARB_fragment_coord_conventions = 0; int GLAD_GL_ARB_fragment_layer_viewport = 0; int GLAD_GL_ARB_fragment_program = 0; int GLAD_GL_ARB_fragment_program_shadow = 0; int GLAD_GL_ARB_fragment_shader = 0; int GLAD_GL_ARB_fragment_shader_interlock = 0; int GLAD_GL_ARB_framebuffer_no_attachments = 0; int GLAD_GL_ARB_framebuffer_object = 0; int GLAD_GL_ARB_framebuffer_sRGB = 0; int GLAD_GL_ARB_geometry_shader4 = 0; int GLAD_GL_ARB_get_program_binary = 0; int GLAD_GL_ARB_get_texture_sub_image = 0; int GLAD_GL_ARB_gl_spirv = 0; int GLAD_GL_ARB_gpu_shader5 = 0; int GLAD_GL_ARB_gpu_shader_fp64 = 0; int GLAD_GL_ARB_gpu_shader_int64 = 0; int GLAD_GL_ARB_half_float_pixel = 0; int GLAD_GL_ARB_half_float_vertex = 0; int GLAD_GL_ARB_imaging = 0; int GLAD_GL_ARB_indirect_parameters = 0; int GLAD_GL_ARB_instanced_arrays = 0; int GLAD_GL_ARB_internalformat_query = 0; int GLAD_GL_ARB_internalformat_query2 = 0; int GLAD_GL_ARB_invalidate_subdata = 0; int GLAD_GL_ARB_map_buffer_alignment = 0; int GLAD_GL_ARB_map_buffer_range = 0; int GLAD_GL_ARB_matrix_palette = 0; int GLAD_GL_ARB_multi_bind = 0; int GLAD_GL_ARB_multi_draw_indirect = 0; int GLAD_GL_ARB_multisample = 0; int GLAD_GL_ARB_multitexture = 0; int GLAD_GL_ARB_occlusion_query = 0; int GLAD_GL_ARB_occlusion_query2 = 0; int GLAD_GL_ARB_parallel_shader_compile = 0; int GLAD_GL_ARB_pipeline_statistics_query = 0; int GLAD_GL_ARB_pixel_buffer_object = 0; int GLAD_GL_ARB_point_parameters = 0; int GLAD_GL_ARB_point_sprite = 0; int GLAD_GL_ARB_polygon_offset_clamp = 0; int GLAD_GL_ARB_post_depth_coverage = 0; int GLAD_GL_ARB_program_interface_query = 0; int GLAD_GL_ARB_provoking_vertex = 0; int GLAD_GL_ARB_query_buffer_object = 0; int GLAD_GL_ARB_robust_buffer_access_behavior = 0; int GLAD_GL_ARB_robustness = 0; int GLAD_GL_ARB_robustness_isolation = 0; int GLAD_GL_ARB_sample_locations = 0; int GLAD_GL_ARB_sample_shading = 0; int GLAD_GL_ARB_sampler_objects = 0; int GLAD_GL_ARB_seamless_cube_map = 0; int GLAD_GL_ARB_seamless_cubemap_per_texture = 0; int GLAD_GL_ARB_separate_shader_objects = 0; int GLAD_GL_ARB_shader_atomic_counter_ops = 0; int GLAD_GL_ARB_shader_atomic_counters = 0; int GLAD_GL_ARB_shader_ballot = 0; int GLAD_GL_ARB_shader_bit_encoding = 0; int GLAD_GL_ARB_shader_clock = 0; int GLAD_GL_ARB_shader_draw_parameters = 0; int GLAD_GL_ARB_shader_group_vote = 0; int GLAD_GL_ARB_shader_image_load_store = 0; int GLAD_GL_ARB_shader_image_size = 0; int GLAD_GL_ARB_shader_objects = 0; int GLAD_GL_ARB_shader_precision = 0; int GLAD_GL_ARB_shader_stencil_export = 0; int GLAD_GL_ARB_shader_storage_buffer_object = 0; int GLAD_GL_ARB_shader_subroutine = 0; int GLAD_GL_ARB_shader_texture_image_samples = 0; int GLAD_GL_ARB_shader_texture_lod = 0; int GLAD_GL_ARB_shader_viewport_layer_array = 0; int GLAD_GL_ARB_shading_language_100 = 0; int GLAD_GL_ARB_shading_language_420pack = 0; int GLAD_GL_ARB_shading_language_include = 0; int GLAD_GL_ARB_shading_language_packing = 0; int GLAD_GL_ARB_shadow = 0; int GLAD_GL_ARB_shadow_ambient = 0; int GLAD_GL_ARB_sparse_buffer = 0; int GLAD_GL_ARB_sparse_texture = 0; int GLAD_GL_ARB_sparse_texture2 = 0; int GLAD_GL_ARB_sparse_texture_clamp = 0; int GLAD_GL_ARB_spirv_extensions = 0; int GLAD_GL_ARB_stencil_texturing = 0; int GLAD_GL_ARB_sync = 0; int GLAD_GL_ARB_tessellation_shader = 0; int GLAD_GL_ARB_texture_barrier = 0; int GLAD_GL_ARB_texture_border_clamp = 0; int GLAD_GL_ARB_texture_buffer_object = 0; int GLAD_GL_ARB_texture_buffer_object_rgb32 = 0; int GLAD_GL_ARB_texture_buffer_range = 0; int GLAD_GL_ARB_texture_compression = 0; int GLAD_GL_ARB_texture_compression_bptc = 0; int GLAD_GL_ARB_texture_compression_rgtc = 0; int GLAD_GL_ARB_texture_cube_map = 0; int GLAD_GL_ARB_texture_cube_map_array = 0; int GLAD_GL_ARB_texture_env_add = 0; int GLAD_GL_ARB_texture_env_combine = 0; int GLAD_GL_ARB_texture_env_crossbar = 0; int GLAD_GL_ARB_texture_env_dot3 = 0; int GLAD_GL_ARB_texture_filter_anisotropic = 0; int GLAD_GL_ARB_texture_filter_minmax = 0; int GLAD_GL_ARB_texture_float = 0; int GLAD_GL_ARB_texture_gather = 0; int GLAD_GL_ARB_texture_mirror_clamp_to_edge = 0; int GLAD_GL_ARB_texture_mirrored_repeat = 0; int GLAD_GL_ARB_texture_multisample = 0; int GLAD_GL_ARB_texture_non_power_of_two = 0; int GLAD_GL_ARB_texture_query_levels = 0; int GLAD_GL_ARB_texture_query_lod = 0; int GLAD_GL_ARB_texture_rectangle = 0; int GLAD_GL_ARB_texture_rg = 0; int GLAD_GL_ARB_texture_rgb10_a2ui = 0; int GLAD_GL_ARB_texture_stencil8 = 0; int GLAD_GL_ARB_texture_storage = 0; int GLAD_GL_ARB_texture_storage_multisample = 0; int GLAD_GL_ARB_texture_swizzle = 0; int GLAD_GL_ARB_texture_view = 0; int GLAD_GL_ARB_timer_query = 0; int GLAD_GL_ARB_transform_feedback2 = 0; int GLAD_GL_ARB_transform_feedback3 = 0; int GLAD_GL_ARB_transform_feedback_instanced = 0; int GLAD_GL_ARB_transform_feedback_overflow_query = 0; int GLAD_GL_ARB_transpose_matrix = 0; int GLAD_GL_ARB_uniform_buffer_object = 0; int GLAD_GL_ARB_vertex_array_bgra = 0; int GLAD_GL_ARB_vertex_array_object = 0; int GLAD_GL_ARB_vertex_attrib_64bit = 0; int GLAD_GL_ARB_vertex_attrib_binding = 0; int GLAD_GL_ARB_vertex_blend = 0; int GLAD_GL_ARB_vertex_buffer_object = 0; int GLAD_GL_ARB_vertex_program = 0; int GLAD_GL_ARB_vertex_shader = 0; int GLAD_GL_ARB_vertex_type_10f_11f_11f_rev = 0; int GLAD_GL_ARB_vertex_type_2_10_10_10_rev = 0; int GLAD_GL_ARB_viewport_array = 0; int GLAD_GL_ARB_window_pos = 0; int GLAD_GL_KHR_blend_equation_advanced = 0; int GLAD_GL_KHR_blend_equation_advanced_coherent = 0; int GLAD_GL_KHR_context_flush_control = 0; int GLAD_GL_KHR_debug = 0; int GLAD_GL_KHR_no_error = 0; int GLAD_GL_KHR_parallel_shader_compile = 0; int GLAD_GL_KHR_robust_buffer_access_behavior = 0; int GLAD_GL_KHR_robustness = 0; int GLAD_GL_KHR_shader_subgroup = 0; int GLAD_GL_KHR_texture_compression_astc_hdr = 0; int GLAD_GL_KHR_texture_compression_astc_ldr = 0; int GLAD_GL_KHR_texture_compression_astc_sliced_3d = 0; PFNGLACCUMPROC glad_glAccum = NULL; PFNGLACTIVESHADERPROGRAMPROC glad_glActiveShaderProgram = NULL; PFNGLACTIVETEXTUREPROC glad_glActiveTexture = NULL; PFNGLACTIVETEXTUREARBPROC glad_glActiveTextureARB = NULL; PFNGLALPHAFUNCPROC glad_glAlphaFunc = NULL; PFNGLARETEXTURESRESIDENTPROC glad_glAreTexturesResident = NULL; PFNGLARRAYELEMENTPROC glad_glArrayElement = NULL; PFNGLATTACHOBJECTARBPROC glad_glAttachObjectARB = NULL; PFNGLATTACHSHADERPROC glad_glAttachShader = NULL; PFNGLBEGINPROC glad_glBegin = NULL; PFNGLBEGINCONDITIONALRENDERPROC glad_glBeginConditionalRender = NULL; PFNGLBEGINQUERYPROC glad_glBeginQuery = NULL; PFNGLBEGINQUERYARBPROC glad_glBeginQueryARB = NULL; PFNGLBEGINQUERYINDEXEDPROC glad_glBeginQueryIndexed = NULL; PFNGLBEGINTRANSFORMFEEDBACKPROC glad_glBeginTransformFeedback = NULL; PFNGLBINDATTRIBLOCATIONPROC glad_glBindAttribLocation = NULL; PFNGLBINDATTRIBLOCATIONARBPROC glad_glBindAttribLocationARB = NULL; PFNGLBINDBUFFERPROC glad_glBindBuffer = NULL; PFNGLBINDBUFFERARBPROC glad_glBindBufferARB = NULL; PFNGLBINDBUFFERBASEPROC glad_glBindBufferBase = NULL; PFNGLBINDBUFFERRANGEPROC glad_glBindBufferRange = NULL; PFNGLBINDBUFFERSBASEPROC glad_glBindBuffersBase = NULL; PFNGLBINDBUFFERSRANGEPROC glad_glBindBuffersRange = NULL; PFNGLBINDFRAGDATALOCATIONPROC glad_glBindFragDataLocation = NULL; PFNGLBINDFRAGDATALOCATIONINDEXEDPROC glad_glBindFragDataLocationIndexed = NULL; PFNGLBINDFRAMEBUFFERPROC glad_glBindFramebuffer = NULL; PFNGLBINDIMAGETEXTUREPROC glad_glBindImageTexture = NULL; PFNGLBINDIMAGETEXTURESPROC glad_glBindImageTextures = NULL; PFNGLBINDPROGRAMARBPROC glad_glBindProgramARB = NULL; PFNGLBINDPROGRAMPIPELINEPROC glad_glBindProgramPipeline = NULL; PFNGLBINDRENDERBUFFERPROC glad_glBindRenderbuffer = NULL; PFNGLBINDSAMPLERPROC glad_glBindSampler = NULL; PFNGLBINDSAMPLERSPROC glad_glBindSamplers = NULL; PFNGLBINDTEXTUREPROC glad_glBindTexture = NULL; PFNGLBINDTEXTUREUNITPROC glad_glBindTextureUnit = NULL; PFNGLBINDTEXTURESPROC glad_glBindTextures = NULL; PFNGLBINDTRANSFORMFEEDBACKPROC glad_glBindTransformFeedback = NULL; PFNGLBINDVERTEXARRAYPROC glad_glBindVertexArray = NULL; PFNGLBINDVERTEXBUFFERPROC glad_glBindVertexBuffer = NULL; PFNGLBINDVERTEXBUFFERSPROC glad_glBindVertexBuffers = NULL; PFNGLBITMAPPROC glad_glBitmap = NULL; PFNGLBLENDBARRIERPROC glad_glBlendBarrier = NULL; PFNGLBLENDBARRIERKHRPROC glad_glBlendBarrierKHR = NULL; PFNGLBLENDCOLORPROC glad_glBlendColor = NULL; PFNGLBLENDEQUATIONPROC glad_glBlendEquation = NULL; PFNGLBLENDEQUATIONSEPARATEPROC glad_glBlendEquationSeparate = NULL; PFNGLBLENDEQUATIONSEPARATEIPROC glad_glBlendEquationSeparatei = NULL; PFNGLBLENDEQUATIONSEPARATEIARBPROC glad_glBlendEquationSeparateiARB = NULL; PFNGLBLENDEQUATIONIPROC glad_glBlendEquationi = NULL; PFNGLBLENDEQUATIONIARBPROC glad_glBlendEquationiARB = NULL; PFNGLBLENDFUNCPROC glad_glBlendFunc = NULL; PFNGLBLENDFUNCSEPARATEPROC glad_glBlendFuncSeparate = NULL; PFNGLBLENDFUNCSEPARATEIPROC glad_glBlendFuncSeparatei = NULL; PFNGLBLENDFUNCSEPARATEIARBPROC glad_glBlendFuncSeparateiARB = NULL; PFNGLBLENDFUNCIPROC glad_glBlendFunci = NULL; PFNGLBLENDFUNCIARBPROC glad_glBlendFunciARB = NULL; PFNGLBLITFRAMEBUFFERPROC glad_glBlitFramebuffer = NULL; PFNGLBLITNAMEDFRAMEBUFFERPROC glad_glBlitNamedFramebuffer = NULL; PFNGLBUFFERDATAPROC glad_glBufferData = NULL; PFNGLBUFFERDATAARBPROC glad_glBufferDataARB = NULL; PFNGLBUFFERPAGECOMMITMENTARBPROC glad_glBufferPageCommitmentARB = NULL; PFNGLBUFFERSTORAGEPROC glad_glBufferStorage = NULL; PFNGLBUFFERSUBDATAPROC glad_glBufferSubData = NULL; PFNGLBUFFERSUBDATAARBPROC glad_glBufferSubDataARB = NULL; PFNGLCALLLISTPROC glad_glCallList = NULL; PFNGLCALLLISTSPROC glad_glCallLists = NULL; PFNGLCHECKFRAMEBUFFERSTATUSPROC glad_glCheckFramebufferStatus = NULL; PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC glad_glCheckNamedFramebufferStatus = NULL; PFNGLCLAMPCOLORPROC glad_glClampColor = NULL; PFNGLCLAMPCOLORARBPROC glad_glClampColorARB = NULL; PFNGLCLEARPROC glad_glClear = NULL; PFNGLCLEARACCUMPROC glad_glClearAccum = NULL; PFNGLCLEARBUFFERDATAPROC glad_glClearBufferData = NULL; PFNGLCLEARBUFFERSUBDATAPROC glad_glClearBufferSubData = NULL; PFNGLCLEARBUFFERFIPROC glad_glClearBufferfi = NULL; PFNGLCLEARBUFFERFVPROC glad_glClearBufferfv = NULL; PFNGLCLEARBUFFERIVPROC glad_glClearBufferiv = NULL; PFNGLCLEARBUFFERUIVPROC glad_glClearBufferuiv = NULL; PFNGLCLEARCOLORPROC glad_glClearColor = NULL; PFNGLCLEARDEPTHPROC glad_glClearDepth = NULL; PFNGLCLEARDEPTHFPROC glad_glClearDepthf = NULL; PFNGLCLEARINDEXPROC glad_glClearIndex = NULL; PFNGLCLEARNAMEDBUFFERDATAPROC glad_glClearNamedBufferData = NULL; PFNGLCLEARNAMEDBUFFERSUBDATAPROC glad_glClearNamedBufferSubData = NULL; PFNGLCLEARNAMEDFRAMEBUFFERFIPROC glad_glClearNamedFramebufferfi = NULL; PFNGLCLEARNAMEDFRAMEBUFFERFVPROC glad_glClearNamedFramebufferfv = NULL; PFNGLCLEARNAMEDFRAMEBUFFERIVPROC glad_glClearNamedFramebufferiv = NULL; PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC glad_glClearNamedFramebufferuiv = NULL; PFNGLCLEARSTENCILPROC glad_glClearStencil = NULL; PFNGLCLEARTEXIMAGEPROC glad_glClearTexImage = NULL; PFNGLCLEARTEXSUBIMAGEPROC glad_glClearTexSubImage = NULL; PFNGLCLIENTACTIVETEXTUREPROC glad_glClientActiveTexture = NULL; PFNGLCLIENTACTIVETEXTUREARBPROC glad_glClientActiveTextureARB = NULL; PFNGLCLIENTWAITSYNCPROC glad_glClientWaitSync = NULL; PFNGLCLIPCONTROLPROC glad_glClipControl = NULL; PFNGLCLIPPLANEPROC glad_glClipPlane = NULL; PFNGLCOLOR3BPROC glad_glColor3b = NULL; PFNGLCOLOR3BVPROC glad_glColor3bv = NULL; PFNGLCOLOR3DPROC glad_glColor3d = NULL; PFNGLCOLOR3DVPROC glad_glColor3dv = NULL; PFNGLCOLOR3FPROC glad_glColor3f = NULL; PFNGLCOLOR3FVPROC glad_glColor3fv = NULL; PFNGLCOLOR3IPROC glad_glColor3i = NULL; PFNGLCOLOR3IVPROC glad_glColor3iv = NULL; PFNGLCOLOR3SPROC glad_glColor3s = NULL; PFNGLCOLOR3SVPROC glad_glColor3sv = NULL; PFNGLCOLOR3UBPROC glad_glColor3ub = NULL; PFNGLCOLOR3UBVPROC glad_glColor3ubv = NULL; PFNGLCOLOR3UIPROC glad_glColor3ui = NULL; PFNGLCOLOR3UIVPROC glad_glColor3uiv = NULL; PFNGLCOLOR3USPROC glad_glColor3us = NULL; PFNGLCOLOR3USVPROC glad_glColor3usv = NULL; PFNGLCOLOR4BPROC glad_glColor4b = NULL; PFNGLCOLOR4BVPROC glad_glColor4bv = NULL; PFNGLCOLOR4DPROC glad_glColor4d = NULL; PFNGLCOLOR4DVPROC glad_glColor4dv = NULL; PFNGLCOLOR4FPROC glad_glColor4f = NULL; PFNGLCOLOR4FVPROC glad_glColor4fv = NULL; PFNGLCOLOR4IPROC glad_glColor4i = NULL; PFNGLCOLOR4IVPROC glad_glColor4iv = NULL; PFNGLCOLOR4SPROC glad_glColor4s = NULL; PFNGLCOLOR4SVPROC glad_glColor4sv = NULL; PFNGLCOLOR4UBPROC glad_glColor4ub = NULL; PFNGLCOLOR4UBVPROC glad_glColor4ubv = NULL; PFNGLCOLOR4UIPROC glad_glColor4ui = NULL; PFNGLCOLOR4UIVPROC glad_glColor4uiv = NULL; PFNGLCOLOR4USPROC glad_glColor4us = NULL; PFNGLCOLOR4USVPROC glad_glColor4usv = NULL; PFNGLCOLORMASKPROC glad_glColorMask = NULL; PFNGLCOLORMASKIPROC glad_glColorMaski = NULL; PFNGLCOLORMATERIALPROC glad_glColorMaterial = NULL; PFNGLCOLORP3UIPROC glad_glColorP3ui = NULL; PFNGLCOLORP3UIVPROC glad_glColorP3uiv = NULL; PFNGLCOLORP4UIPROC glad_glColorP4ui = NULL; PFNGLCOLORP4UIVPROC glad_glColorP4uiv = NULL; PFNGLCOLORPOINTERPROC glad_glColorPointer = NULL; PFNGLCOLORSUBTABLEPROC glad_glColorSubTable = NULL; PFNGLCOLORTABLEPROC glad_glColorTable = NULL; PFNGLCOLORTABLEPARAMETERFVPROC glad_glColorTableParameterfv = NULL; PFNGLCOLORTABLEPARAMETERIVPROC glad_glColorTableParameteriv = NULL; PFNGLCOMPILESHADERPROC glad_glCompileShader = NULL; PFNGLCOMPILESHADERARBPROC glad_glCompileShaderARB = NULL; PFNGLCOMPILESHADERINCLUDEARBPROC glad_glCompileShaderIncludeARB = NULL; PFNGLCOMPRESSEDTEXIMAGE1DPROC glad_glCompressedTexImage1D = NULL; PFNGLCOMPRESSEDTEXIMAGE1DARBPROC glad_glCompressedTexImage1DARB = NULL; PFNGLCOMPRESSEDTEXIMAGE2DPROC glad_glCompressedTexImage2D = NULL; PFNGLCOMPRESSEDTEXIMAGE2DARBPROC glad_glCompressedTexImage2DARB = NULL; PFNGLCOMPRESSEDTEXIMAGE3DPROC glad_glCompressedTexImage3D = NULL; PFNGLCOMPRESSEDTEXIMAGE3DARBPROC glad_glCompressedTexImage3DARB = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC glad_glCompressedTexSubImage1D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC glad_glCompressedTexSubImage1DARB = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC glad_glCompressedTexSubImage2D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC glad_glCompressedTexSubImage2DARB = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC glad_glCompressedTexSubImage3D = NULL; PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC glad_glCompressedTexSubImage3DARB = NULL; PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC glad_glCompressedTextureSubImage1D = NULL; PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC glad_glCompressedTextureSubImage2D = NULL; PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC glad_glCompressedTextureSubImage3D = NULL; PFNGLCONVOLUTIONFILTER1DPROC glad_glConvolutionFilter1D = NULL; PFNGLCONVOLUTIONFILTER2DPROC glad_glConvolutionFilter2D = NULL; PFNGLCONVOLUTIONPARAMETERFPROC glad_glConvolutionParameterf = NULL; PFNGLCONVOLUTIONPARAMETERFVPROC glad_glConvolutionParameterfv = NULL; PFNGLCONVOLUTIONPARAMETERIPROC glad_glConvolutionParameteri = NULL; PFNGLCONVOLUTIONPARAMETERIVPROC glad_glConvolutionParameteriv = NULL; PFNGLCOPYBUFFERSUBDATAPROC glad_glCopyBufferSubData = NULL; PFNGLCOPYCOLORSUBTABLEPROC glad_glCopyColorSubTable = NULL; PFNGLCOPYCOLORTABLEPROC glad_glCopyColorTable = NULL; PFNGLCOPYCONVOLUTIONFILTER1DPROC glad_glCopyConvolutionFilter1D = NULL; PFNGLCOPYCONVOLUTIONFILTER2DPROC glad_glCopyConvolutionFilter2D = NULL; PFNGLCOPYIMAGESUBDATAPROC glad_glCopyImageSubData = NULL; PFNGLCOPYNAMEDBUFFERSUBDATAPROC glad_glCopyNamedBufferSubData = NULL; PFNGLCOPYPIXELSPROC glad_glCopyPixels = NULL; PFNGLCOPYTEXIMAGE1DPROC glad_glCopyTexImage1D = NULL; PFNGLCOPYTEXIMAGE2DPROC glad_glCopyTexImage2D = NULL; PFNGLCOPYTEXSUBIMAGE1DPROC glad_glCopyTexSubImage1D = NULL; PFNGLCOPYTEXSUBIMAGE2DPROC glad_glCopyTexSubImage2D = NULL; PFNGLCOPYTEXSUBIMAGE3DPROC glad_glCopyTexSubImage3D = NULL; PFNGLCOPYTEXTURESUBIMAGE1DPROC glad_glCopyTextureSubImage1D = NULL; PFNGLCOPYTEXTURESUBIMAGE2DPROC glad_glCopyTextureSubImage2D = NULL; PFNGLCOPYTEXTURESUBIMAGE3DPROC glad_glCopyTextureSubImage3D = NULL; PFNGLCREATEBUFFERSPROC glad_glCreateBuffers = NULL; PFNGLCREATEFRAMEBUFFERSPROC glad_glCreateFramebuffers = NULL; PFNGLCREATEPROGRAMPROC glad_glCreateProgram = NULL; PFNGLCREATEPROGRAMOBJECTARBPROC glad_glCreateProgramObjectARB = NULL; PFNGLCREATEPROGRAMPIPELINESPROC glad_glCreateProgramPipelines = NULL; PFNGLCREATEQUERIESPROC glad_glCreateQueries = NULL; PFNGLCREATERENDERBUFFERSPROC glad_glCreateRenderbuffers = NULL; PFNGLCREATESAMPLERSPROC glad_glCreateSamplers = NULL; PFNGLCREATESHADERPROC glad_glCreateShader = NULL; PFNGLCREATESHADEROBJECTARBPROC glad_glCreateShaderObjectARB = NULL; PFNGLCREATESHADERPROGRAMVPROC glad_glCreateShaderProgramv = NULL; PFNGLCREATESYNCFROMCLEVENTARBPROC glad_glCreateSyncFromCLeventARB = NULL; PFNGLCREATETEXTURESPROC glad_glCreateTextures = NULL; PFNGLCREATETRANSFORMFEEDBACKSPROC glad_glCreateTransformFeedbacks = NULL; PFNGLCREATEVERTEXARRAYSPROC glad_glCreateVertexArrays = NULL; PFNGLCULLFACEPROC glad_glCullFace = NULL; PFNGLCURRENTPALETTEMATRIXARBPROC glad_glCurrentPaletteMatrixARB = NULL; PFNGLDEBUGMESSAGECALLBACKPROC glad_glDebugMessageCallback = NULL; PFNGLDEBUGMESSAGECALLBACKARBPROC glad_glDebugMessageCallbackARB = NULL; PFNGLDEBUGMESSAGECONTROLPROC glad_glDebugMessageControl = NULL; PFNGLDEBUGMESSAGECONTROLARBPROC glad_glDebugMessageControlARB = NULL; PFNGLDEBUGMESSAGEINSERTPROC glad_glDebugMessageInsert = NULL; PFNGLDEBUGMESSAGEINSERTARBPROC glad_glDebugMessageInsertARB = NULL; PFNGLDELETEBUFFERSPROC glad_glDeleteBuffers = NULL; PFNGLDELETEBUFFERSARBPROC glad_glDeleteBuffersARB = NULL; PFNGLDELETEFRAMEBUFFERSPROC glad_glDeleteFramebuffers = NULL; PFNGLDELETELISTSPROC glad_glDeleteLists = NULL; PFNGLDELETENAMEDSTRINGARBPROC glad_glDeleteNamedStringARB = NULL; PFNGLDELETEOBJECTARBPROC glad_glDeleteObjectARB = NULL; PFNGLDELETEPROGRAMPROC glad_glDeleteProgram = NULL; PFNGLDELETEPROGRAMPIPELINESPROC glad_glDeleteProgramPipelines = NULL; PFNGLDELETEPROGRAMSARBPROC glad_glDeleteProgramsARB = NULL; PFNGLDELETEQUERIESPROC glad_glDeleteQueries = NULL; PFNGLDELETEQUERIESARBPROC glad_glDeleteQueriesARB = NULL; PFNGLDELETERENDERBUFFERSPROC glad_glDeleteRenderbuffers = NULL; PFNGLDELETESAMPLERSPROC glad_glDeleteSamplers = NULL; PFNGLDELETESHADERPROC glad_glDeleteShader = NULL; PFNGLDELETESYNCPROC glad_glDeleteSync = NULL; PFNGLDELETETEXTURESPROC glad_glDeleteTextures = NULL; PFNGLDELETETRANSFORMFEEDBACKSPROC glad_glDeleteTransformFeedbacks = NULL; PFNGLDELETEVERTEXARRAYSPROC glad_glDeleteVertexArrays = NULL; PFNGLDEPTHFUNCPROC glad_glDepthFunc = NULL; PFNGLDEPTHMASKPROC glad_glDepthMask = NULL; PFNGLDEPTHRANGEPROC glad_glDepthRange = NULL; PFNGLDEPTHRANGEARRAYDVNVPROC glad_glDepthRangeArraydvNV = NULL; PFNGLDEPTHRANGEARRAYVPROC glad_glDepthRangeArrayv = NULL; PFNGLDEPTHRANGEINDEXEDPROC glad_glDepthRangeIndexed = NULL; PFNGLDEPTHRANGEINDEXEDDNVPROC glad_glDepthRangeIndexeddNV = NULL; PFNGLDEPTHRANGEFPROC glad_glDepthRangef = NULL; PFNGLDETACHOBJECTARBPROC glad_glDetachObjectARB = NULL; PFNGLDETACHSHADERPROC glad_glDetachShader = NULL; PFNGLDISABLEPROC glad_glDisable = NULL; PFNGLDISABLECLIENTSTATEPROC glad_glDisableClientState = NULL; PFNGLDISABLEVERTEXARRAYATTRIBPROC glad_glDisableVertexArrayAttrib = NULL; PFNGLDISABLEVERTEXATTRIBARRAYPROC glad_glDisableVertexAttribArray = NULL; PFNGLDISABLEVERTEXATTRIBARRAYARBPROC glad_glDisableVertexAttribArrayARB = NULL; PFNGLDISABLEIPROC glad_glDisablei = NULL; PFNGLDISPATCHCOMPUTEPROC glad_glDispatchCompute = NULL; PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC glad_glDispatchComputeGroupSizeARB = NULL; PFNGLDISPATCHCOMPUTEINDIRECTPROC glad_glDispatchComputeIndirect = NULL; PFNGLDRAWARRAYSPROC glad_glDrawArrays = NULL; PFNGLDRAWARRAYSINDIRECTPROC glad_glDrawArraysIndirect = NULL; PFNGLDRAWARRAYSINSTANCEDPROC glad_glDrawArraysInstanced = NULL; PFNGLDRAWARRAYSINSTANCEDARBPROC glad_glDrawArraysInstancedARB = NULL; PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC glad_glDrawArraysInstancedBaseInstance = NULL; PFNGLDRAWBUFFERPROC glad_glDrawBuffer = NULL; PFNGLDRAWBUFFERSPROC glad_glDrawBuffers = NULL; PFNGLDRAWBUFFERSARBPROC glad_glDrawBuffersARB = NULL; PFNGLDRAWELEMENTSPROC glad_glDrawElements = NULL; PFNGLDRAWELEMENTSBASEVERTEXPROC glad_glDrawElementsBaseVertex = NULL; PFNGLDRAWELEMENTSINDIRECTPROC glad_glDrawElementsIndirect = NULL; PFNGLDRAWELEMENTSINSTANCEDPROC glad_glDrawElementsInstanced = NULL; PFNGLDRAWELEMENTSINSTANCEDARBPROC glad_glDrawElementsInstancedARB = NULL; PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC glad_glDrawElementsInstancedBaseInstance = NULL; PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC glad_glDrawElementsInstancedBaseVertex = NULL; PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC glad_glDrawElementsInstancedBaseVertexBaseInstance = NULL; PFNGLDRAWPIXELSPROC glad_glDrawPixels = NULL; PFNGLDRAWRANGEELEMENTSPROC glad_glDrawRangeElements = NULL; PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC glad_glDrawRangeElementsBaseVertex = NULL; PFNGLDRAWTRANSFORMFEEDBACKPROC glad_glDrawTransformFeedback = NULL; PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC glad_glDrawTransformFeedbackInstanced = NULL; PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC glad_glDrawTransformFeedbackStream = NULL; PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC glad_glDrawTransformFeedbackStreamInstanced = NULL; PFNGLEDGEFLAGPROC glad_glEdgeFlag = NULL; PFNGLEDGEFLAGPOINTERPROC glad_glEdgeFlagPointer = NULL; PFNGLEDGEFLAGVPROC glad_glEdgeFlagv = NULL; PFNGLENABLEPROC glad_glEnable = NULL; PFNGLENABLECLIENTSTATEPROC glad_glEnableClientState = NULL; PFNGLENABLEVERTEXARRAYATTRIBPROC glad_glEnableVertexArrayAttrib = NULL; PFNGLENABLEVERTEXATTRIBARRAYPROC glad_glEnableVertexAttribArray = NULL; PFNGLENABLEVERTEXATTRIBARRAYARBPROC glad_glEnableVertexAttribArrayARB = NULL; PFNGLENABLEIPROC glad_glEnablei = NULL; PFNGLENDPROC glad_glEnd = NULL; PFNGLENDCONDITIONALRENDERPROC glad_glEndConditionalRender = NULL; PFNGLENDLISTPROC glad_glEndList = NULL; PFNGLENDQUERYPROC glad_glEndQuery = NULL; PFNGLENDQUERYARBPROC glad_glEndQueryARB = NULL; PFNGLENDQUERYINDEXEDPROC glad_glEndQueryIndexed = NULL; PFNGLENDTRANSFORMFEEDBACKPROC glad_glEndTransformFeedback = NULL; PFNGLEVALCOORD1DPROC glad_glEvalCoord1d = NULL; PFNGLEVALCOORD1DVPROC glad_glEvalCoord1dv = NULL; PFNGLEVALCOORD1FPROC glad_glEvalCoord1f = NULL; PFNGLEVALCOORD1FVPROC glad_glEvalCoord1fv = NULL; PFNGLEVALCOORD2DPROC glad_glEvalCoord2d = NULL; PFNGLEVALCOORD2DVPROC glad_glEvalCoord2dv = NULL; PFNGLEVALCOORD2FPROC glad_glEvalCoord2f = NULL; PFNGLEVALCOORD2FVPROC glad_glEvalCoord2fv = NULL; PFNGLEVALMESH1PROC glad_glEvalMesh1 = NULL; PFNGLEVALMESH2PROC glad_glEvalMesh2 = NULL; PFNGLEVALPOINT1PROC glad_glEvalPoint1 = NULL; PFNGLEVALPOINT2PROC glad_glEvalPoint2 = NULL; PFNGLEVALUATEDEPTHVALUESARBPROC glad_glEvaluateDepthValuesARB = NULL; PFNGLFEEDBACKBUFFERPROC glad_glFeedbackBuffer = NULL; PFNGLFENCESYNCPROC glad_glFenceSync = NULL; PFNGLFINISHPROC glad_glFinish = NULL; PFNGLFLUSHPROC glad_glFlush = NULL; PFNGLFLUSHMAPPEDBUFFERRANGEPROC glad_glFlushMappedBufferRange = NULL; PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC glad_glFlushMappedNamedBufferRange = NULL; PFNGLFOGCOORDPOINTERPROC glad_glFogCoordPointer = NULL; PFNGLFOGCOORDDPROC glad_glFogCoordd = NULL; PFNGLFOGCOORDDVPROC glad_glFogCoorddv = NULL; PFNGLFOGCOORDFPROC glad_glFogCoordf = NULL; PFNGLFOGCOORDFVPROC glad_glFogCoordfv = NULL; PFNGLFOGFPROC glad_glFogf = NULL; PFNGLFOGFVPROC glad_glFogfv = NULL; PFNGLFOGIPROC glad_glFogi = NULL; PFNGLFOGIVPROC glad_glFogiv = NULL; PFNGLFRAMEBUFFERPARAMETERIPROC glad_glFramebufferParameteri = NULL; PFNGLFRAMEBUFFERRENDERBUFFERPROC glad_glFramebufferRenderbuffer = NULL; PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glFramebufferSampleLocationsfvARB = NULL; PFNGLFRAMEBUFFERTEXTUREPROC glad_glFramebufferTexture = NULL; PFNGLFRAMEBUFFERTEXTURE1DPROC glad_glFramebufferTexture1D = NULL; PFNGLFRAMEBUFFERTEXTURE2DPROC glad_glFramebufferTexture2D = NULL; PFNGLFRAMEBUFFERTEXTURE3DPROC glad_glFramebufferTexture3D = NULL; PFNGLFRAMEBUFFERTEXTUREARBPROC glad_glFramebufferTextureARB = NULL; PFNGLFRAMEBUFFERTEXTUREFACEARBPROC glad_glFramebufferTextureFaceARB = NULL; PFNGLFRAMEBUFFERTEXTURELAYERPROC glad_glFramebufferTextureLayer = NULL; PFNGLFRAMEBUFFERTEXTURELAYERARBPROC glad_glFramebufferTextureLayerARB = NULL; PFNGLFRONTFACEPROC glad_glFrontFace = NULL; PFNGLFRUSTUMPROC glad_glFrustum = NULL; PFNGLGENBUFFERSPROC glad_glGenBuffers = NULL; PFNGLGENBUFFERSARBPROC glad_glGenBuffersARB = NULL; PFNGLGENFRAMEBUFFERSPROC glad_glGenFramebuffers = NULL; PFNGLGENLISTSPROC glad_glGenLists = NULL; PFNGLGENPROGRAMPIPELINESPROC glad_glGenProgramPipelines = NULL; PFNGLGENPROGRAMSARBPROC glad_glGenProgramsARB = NULL; PFNGLGENQUERIESPROC glad_glGenQueries = NULL; PFNGLGENQUERIESARBPROC glad_glGenQueriesARB = NULL; PFNGLGENRENDERBUFFERSPROC glad_glGenRenderbuffers = NULL; PFNGLGENSAMPLERSPROC glad_glGenSamplers = NULL; PFNGLGENTEXTURESPROC glad_glGenTextures = NULL; PFNGLGENTRANSFORMFEEDBACKSPROC glad_glGenTransformFeedbacks = NULL; PFNGLGENVERTEXARRAYSPROC glad_glGenVertexArrays = NULL; PFNGLGENERATEMIPMAPPROC glad_glGenerateMipmap = NULL; PFNGLGENERATETEXTUREMIPMAPPROC glad_glGenerateTextureMipmap = NULL; PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC glad_glGetActiveAtomicCounterBufferiv = NULL; PFNGLGETACTIVEATTRIBPROC glad_glGetActiveAttrib = NULL; PFNGLGETACTIVEATTRIBARBPROC glad_glGetActiveAttribARB = NULL; PFNGLGETACTIVESUBROUTINENAMEPROC glad_glGetActiveSubroutineName = NULL; PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC glad_glGetActiveSubroutineUniformName = NULL; PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC glad_glGetActiveSubroutineUniformiv = NULL; PFNGLGETACTIVEUNIFORMPROC glad_glGetActiveUniform = NULL; PFNGLGETACTIVEUNIFORMARBPROC glad_glGetActiveUniformARB = NULL; PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC glad_glGetActiveUniformBlockName = NULL; PFNGLGETACTIVEUNIFORMBLOCKIVPROC glad_glGetActiveUniformBlockiv = NULL; PFNGLGETACTIVEUNIFORMNAMEPROC glad_glGetActiveUniformName = NULL; PFNGLGETACTIVEUNIFORMSIVPROC glad_glGetActiveUniformsiv = NULL; PFNGLGETATTACHEDOBJECTSARBPROC glad_glGetAttachedObjectsARB = NULL; PFNGLGETATTACHEDSHADERSPROC glad_glGetAttachedShaders = NULL; PFNGLGETATTRIBLOCATIONPROC glad_glGetAttribLocation = NULL; PFNGLGETATTRIBLOCATIONARBPROC glad_glGetAttribLocationARB = NULL; PFNGLGETBOOLEANI_VPROC glad_glGetBooleani_v = NULL; PFNGLGETBOOLEANVPROC glad_glGetBooleanv = NULL; PFNGLGETBUFFERPARAMETERI64VPROC glad_glGetBufferParameteri64v = NULL; PFNGLGETBUFFERPARAMETERIVPROC glad_glGetBufferParameteriv = NULL; PFNGLGETBUFFERPARAMETERIVARBPROC glad_glGetBufferParameterivARB = NULL; PFNGLGETBUFFERPOINTERVPROC glad_glGetBufferPointerv = NULL; PFNGLGETBUFFERPOINTERVARBPROC glad_glGetBufferPointervARB = NULL; PFNGLGETBUFFERSUBDATAPROC glad_glGetBufferSubData = NULL; PFNGLGETBUFFERSUBDATAARBPROC glad_glGetBufferSubDataARB = NULL; PFNGLGETCLIPPLANEPROC glad_glGetClipPlane = NULL; PFNGLGETCOLORTABLEPROC glad_glGetColorTable = NULL; PFNGLGETCOLORTABLEPARAMETERFVPROC glad_glGetColorTableParameterfv = NULL; PFNGLGETCOLORTABLEPARAMETERIVPROC glad_glGetColorTableParameteriv = NULL; PFNGLGETCOMPRESSEDTEXIMAGEPROC glad_glGetCompressedTexImage = NULL; PFNGLGETCOMPRESSEDTEXIMAGEARBPROC glad_glGetCompressedTexImageARB = NULL; PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC glad_glGetCompressedTextureImage = NULL; PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC glad_glGetCompressedTextureSubImage = NULL; PFNGLGETCONVOLUTIONFILTERPROC glad_glGetConvolutionFilter = NULL; PFNGLGETCONVOLUTIONPARAMETERFVPROC glad_glGetConvolutionParameterfv = NULL; PFNGLGETCONVOLUTIONPARAMETERIVPROC glad_glGetConvolutionParameteriv = NULL; PFNGLGETDEBUGMESSAGELOGPROC glad_glGetDebugMessageLog = NULL; PFNGLGETDEBUGMESSAGELOGARBPROC glad_glGetDebugMessageLogARB = NULL; PFNGLGETDOUBLEI_VPROC glad_glGetDoublei_v = NULL; PFNGLGETDOUBLEVPROC glad_glGetDoublev = NULL; PFNGLGETERRORPROC glad_glGetError = NULL; PFNGLGETFLOATI_VPROC glad_glGetFloati_v = NULL; PFNGLGETFLOATVPROC glad_glGetFloatv = NULL; PFNGLGETFRAGDATAINDEXPROC glad_glGetFragDataIndex = NULL; PFNGLGETFRAGDATALOCATIONPROC glad_glGetFragDataLocation = NULL; PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetFramebufferAttachmentParameteriv = NULL; PFNGLGETFRAMEBUFFERPARAMETERIVPROC glad_glGetFramebufferParameteriv = NULL; PFNGLGETGRAPHICSRESETSTATUSPROC glad_glGetGraphicsResetStatus = NULL; PFNGLGETGRAPHICSRESETSTATUSARBPROC glad_glGetGraphicsResetStatusARB = NULL; PFNGLGETHANDLEARBPROC glad_glGetHandleARB = NULL; PFNGLGETHISTOGRAMPROC glad_glGetHistogram = NULL; PFNGLGETHISTOGRAMPARAMETERFVPROC glad_glGetHistogramParameterfv = NULL; PFNGLGETHISTOGRAMPARAMETERIVPROC glad_glGetHistogramParameteriv = NULL; PFNGLGETIMAGEHANDLEARBPROC glad_glGetImageHandleARB = NULL; PFNGLGETINFOLOGARBPROC glad_glGetInfoLogARB = NULL; PFNGLGETINTEGER64I_VPROC glad_glGetInteger64i_v = NULL; PFNGLGETINTEGER64VPROC glad_glGetInteger64v = NULL; PFNGLGETINTEGERI_VPROC glad_glGetIntegeri_v = NULL; PFNGLGETINTEGERVPROC glad_glGetIntegerv = NULL; PFNGLGETINTERNALFORMATI64VPROC glad_glGetInternalformati64v = NULL; PFNGLGETINTERNALFORMATIVPROC glad_glGetInternalformativ = NULL; PFNGLGETLIGHTFVPROC glad_glGetLightfv = NULL; PFNGLGETLIGHTIVPROC glad_glGetLightiv = NULL; PFNGLGETMAPDVPROC glad_glGetMapdv = NULL; PFNGLGETMAPFVPROC glad_glGetMapfv = NULL; PFNGLGETMAPIVPROC glad_glGetMapiv = NULL; PFNGLGETMATERIALFVPROC glad_glGetMaterialfv = NULL; PFNGLGETMATERIALIVPROC glad_glGetMaterialiv = NULL; PFNGLGETMINMAXPROC glad_glGetMinmax = NULL; PFNGLGETMINMAXPARAMETERFVPROC glad_glGetMinmaxParameterfv = NULL; PFNGLGETMINMAXPARAMETERIVPROC glad_glGetMinmaxParameteriv = NULL; PFNGLGETMULTISAMPLEFVPROC glad_glGetMultisamplefv = NULL; PFNGLGETNAMEDBUFFERPARAMETERI64VPROC glad_glGetNamedBufferParameteri64v = NULL; PFNGLGETNAMEDBUFFERPARAMETERIVPROC glad_glGetNamedBufferParameteriv = NULL; PFNGLGETNAMEDBUFFERPOINTERVPROC glad_glGetNamedBufferPointerv = NULL; PFNGLGETNAMEDBUFFERSUBDATAPROC glad_glGetNamedBufferSubData = NULL; PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC glad_glGetNamedFramebufferAttachmentParameteriv = NULL; PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC glad_glGetNamedFramebufferParameteriv = NULL; PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC glad_glGetNamedRenderbufferParameteriv = NULL; PFNGLGETNAMEDSTRINGARBPROC glad_glGetNamedStringARB = NULL; PFNGLGETNAMEDSTRINGIVARBPROC glad_glGetNamedStringivARB = NULL; PFNGLGETOBJECTLABELPROC glad_glGetObjectLabel = NULL; PFNGLGETOBJECTPARAMETERFVARBPROC glad_glGetObjectParameterfvARB = NULL; PFNGLGETOBJECTPARAMETERIVARBPROC glad_glGetObjectParameterivARB = NULL; PFNGLGETOBJECTPTRLABELPROC glad_glGetObjectPtrLabel = NULL; PFNGLGETPIXELMAPFVPROC glad_glGetPixelMapfv = NULL; PFNGLGETPIXELMAPUIVPROC glad_glGetPixelMapuiv = NULL; PFNGLGETPIXELMAPUSVPROC glad_glGetPixelMapusv = NULL; PFNGLGETPOINTERVPROC glad_glGetPointerv = NULL; PFNGLGETPOLYGONSTIPPLEPROC glad_glGetPolygonStipple = NULL; PFNGLGETPROGRAMBINARYPROC glad_glGetProgramBinary = NULL; PFNGLGETPROGRAMENVPARAMETERDVARBPROC glad_glGetProgramEnvParameterdvARB = NULL; PFNGLGETPROGRAMENVPARAMETERFVARBPROC glad_glGetProgramEnvParameterfvARB = NULL; PFNGLGETPROGRAMINFOLOGPROC glad_glGetProgramInfoLog = NULL; PFNGLGETPROGRAMINTERFACEIVPROC glad_glGetProgramInterfaceiv = NULL; PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC glad_glGetProgramLocalParameterdvARB = NULL; PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC glad_glGetProgramLocalParameterfvARB = NULL; PFNGLGETPROGRAMPIPELINEINFOLOGPROC glad_glGetProgramPipelineInfoLog = NULL; PFNGLGETPROGRAMPIPELINEIVPROC glad_glGetProgramPipelineiv = NULL; PFNGLGETPROGRAMRESOURCEINDEXPROC glad_glGetProgramResourceIndex = NULL; PFNGLGETPROGRAMRESOURCELOCATIONPROC glad_glGetProgramResourceLocation = NULL; PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC glad_glGetProgramResourceLocationIndex = NULL; PFNGLGETPROGRAMRESOURCENAMEPROC glad_glGetProgramResourceName = NULL; PFNGLGETPROGRAMRESOURCEIVPROC glad_glGetProgramResourceiv = NULL; PFNGLGETPROGRAMSTAGEIVPROC glad_glGetProgramStageiv = NULL; PFNGLGETPROGRAMSTRINGARBPROC glad_glGetProgramStringARB = NULL; PFNGLGETPROGRAMIVPROC glad_glGetProgramiv = NULL; PFNGLGETPROGRAMIVARBPROC glad_glGetProgramivARB = NULL; PFNGLGETQUERYBUFFEROBJECTI64VPROC glad_glGetQueryBufferObjecti64v = NULL; PFNGLGETQUERYBUFFEROBJECTIVPROC glad_glGetQueryBufferObjectiv = NULL; PFNGLGETQUERYBUFFEROBJECTUI64VPROC glad_glGetQueryBufferObjectui64v = NULL; PFNGLGETQUERYBUFFEROBJECTUIVPROC glad_glGetQueryBufferObjectuiv = NULL; PFNGLGETQUERYINDEXEDIVPROC glad_glGetQueryIndexediv = NULL; PFNGLGETQUERYOBJECTI64VPROC glad_glGetQueryObjecti64v = NULL; PFNGLGETQUERYOBJECTIVPROC glad_glGetQueryObjectiv = NULL; PFNGLGETQUERYOBJECTIVARBPROC glad_glGetQueryObjectivARB = NULL; PFNGLGETQUERYOBJECTUI64VPROC glad_glGetQueryObjectui64v = NULL; PFNGLGETQUERYOBJECTUIVPROC glad_glGetQueryObjectuiv = NULL; PFNGLGETQUERYOBJECTUIVARBPROC glad_glGetQueryObjectuivARB = NULL; PFNGLGETQUERYIVPROC glad_glGetQueryiv = NULL; PFNGLGETQUERYIVARBPROC glad_glGetQueryivARB = NULL; PFNGLGETRENDERBUFFERPARAMETERIVPROC glad_glGetRenderbufferParameteriv = NULL; PFNGLGETSAMPLERPARAMETERIIVPROC glad_glGetSamplerParameterIiv = NULL; PFNGLGETSAMPLERPARAMETERIUIVPROC glad_glGetSamplerParameterIuiv = NULL; PFNGLGETSAMPLERPARAMETERFVPROC glad_glGetSamplerParameterfv = NULL; PFNGLGETSAMPLERPARAMETERIVPROC glad_glGetSamplerParameteriv = NULL; PFNGLGETSEPARABLEFILTERPROC glad_glGetSeparableFilter = NULL; PFNGLGETSHADERINFOLOGPROC glad_glGetShaderInfoLog = NULL; PFNGLGETSHADERPRECISIONFORMATPROC glad_glGetShaderPrecisionFormat = NULL; PFNGLGETSHADERSOURCEPROC glad_glGetShaderSource = NULL; PFNGLGETSHADERSOURCEARBPROC glad_glGetShaderSourceARB = NULL; PFNGLGETSHADERIVPROC glad_glGetShaderiv = NULL; PFNGLGETSTRINGPROC glad_glGetString = NULL; PFNGLGETSTRINGIPROC glad_glGetStringi = NULL; PFNGLGETSUBROUTINEINDEXPROC glad_glGetSubroutineIndex = NULL; PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC glad_glGetSubroutineUniformLocation = NULL; PFNGLGETSYNCIVPROC glad_glGetSynciv = NULL; PFNGLGETTEXENVFVPROC glad_glGetTexEnvfv = NULL; PFNGLGETTEXENVIVPROC glad_glGetTexEnviv = NULL; PFNGLGETTEXGENDVPROC glad_glGetTexGendv = NULL; PFNGLGETTEXGENFVPROC glad_glGetTexGenfv = NULL; PFNGLGETTEXGENIVPROC glad_glGetTexGeniv = NULL; PFNGLGETTEXIMAGEPROC glad_glGetTexImage = NULL; PFNGLGETTEXLEVELPARAMETERFVPROC glad_glGetTexLevelParameterfv = NULL; PFNGLGETTEXLEVELPARAMETERIVPROC glad_glGetTexLevelParameteriv = NULL; PFNGLGETTEXPARAMETERIIVPROC glad_glGetTexParameterIiv = NULL; PFNGLGETTEXPARAMETERIUIVPROC glad_glGetTexParameterIuiv = NULL; PFNGLGETTEXPARAMETERFVPROC glad_glGetTexParameterfv = NULL; PFNGLGETTEXPARAMETERIVPROC glad_glGetTexParameteriv = NULL; PFNGLGETTEXTUREHANDLEARBPROC glad_glGetTextureHandleARB = NULL; PFNGLGETTEXTUREIMAGEPROC glad_glGetTextureImage = NULL; PFNGLGETTEXTURELEVELPARAMETERFVPROC glad_glGetTextureLevelParameterfv = NULL; PFNGLGETTEXTURELEVELPARAMETERIVPROC glad_glGetTextureLevelParameteriv = NULL; PFNGLGETTEXTUREPARAMETERIIVPROC glad_glGetTextureParameterIiv = NULL; PFNGLGETTEXTUREPARAMETERIUIVPROC glad_glGetTextureParameterIuiv = NULL; PFNGLGETTEXTUREPARAMETERFVPROC glad_glGetTextureParameterfv = NULL; PFNGLGETTEXTUREPARAMETERIVPROC glad_glGetTextureParameteriv = NULL; PFNGLGETTEXTURESAMPLERHANDLEARBPROC glad_glGetTextureSamplerHandleARB = NULL; PFNGLGETTEXTURESUBIMAGEPROC glad_glGetTextureSubImage = NULL; PFNGLGETTRANSFORMFEEDBACKVARYINGPROC glad_glGetTransformFeedbackVarying = NULL; PFNGLGETTRANSFORMFEEDBACKI64_VPROC glad_glGetTransformFeedbacki64_v = NULL; PFNGLGETTRANSFORMFEEDBACKI_VPROC glad_glGetTransformFeedbacki_v = NULL; PFNGLGETTRANSFORMFEEDBACKIVPROC glad_glGetTransformFeedbackiv = NULL; PFNGLGETUNIFORMBLOCKINDEXPROC glad_glGetUniformBlockIndex = NULL; PFNGLGETUNIFORMINDICESPROC glad_glGetUniformIndices = NULL; PFNGLGETUNIFORMLOCATIONPROC glad_glGetUniformLocation = NULL; PFNGLGETUNIFORMLOCATIONARBPROC glad_glGetUniformLocationARB = NULL; PFNGLGETUNIFORMSUBROUTINEUIVPROC glad_glGetUniformSubroutineuiv = NULL; PFNGLGETUNIFORMDVPROC glad_glGetUniformdv = NULL; PFNGLGETUNIFORMFVPROC glad_glGetUniformfv = NULL; PFNGLGETUNIFORMFVARBPROC glad_glGetUniformfvARB = NULL; PFNGLGETUNIFORMI64VARBPROC glad_glGetUniformi64vARB = NULL; PFNGLGETUNIFORMIVPROC glad_glGetUniformiv = NULL; PFNGLGETUNIFORMIVARBPROC glad_glGetUniformivARB = NULL; PFNGLGETUNIFORMUI64VARBPROC glad_glGetUniformui64vARB = NULL; PFNGLGETUNIFORMUIVPROC glad_glGetUniformuiv = NULL; PFNGLGETVERTEXARRAYINDEXED64IVPROC glad_glGetVertexArrayIndexed64iv = NULL; PFNGLGETVERTEXARRAYINDEXEDIVPROC glad_glGetVertexArrayIndexediv = NULL; PFNGLGETVERTEXARRAYIVPROC glad_glGetVertexArrayiv = NULL; PFNGLGETVERTEXATTRIBIIVPROC glad_glGetVertexAttribIiv = NULL; PFNGLGETVERTEXATTRIBIUIVPROC glad_glGetVertexAttribIuiv = NULL; PFNGLGETVERTEXATTRIBLDVPROC glad_glGetVertexAttribLdv = NULL; PFNGLGETVERTEXATTRIBLUI64VARBPROC glad_glGetVertexAttribLui64vARB = NULL; PFNGLGETVERTEXATTRIBPOINTERVPROC glad_glGetVertexAttribPointerv = NULL; PFNGLGETVERTEXATTRIBPOINTERVARBPROC glad_glGetVertexAttribPointervARB = NULL; PFNGLGETVERTEXATTRIBDVPROC glad_glGetVertexAttribdv = NULL; PFNGLGETVERTEXATTRIBDVARBPROC glad_glGetVertexAttribdvARB = NULL; PFNGLGETVERTEXATTRIBFVPROC glad_glGetVertexAttribfv = NULL; PFNGLGETVERTEXATTRIBFVARBPROC glad_glGetVertexAttribfvARB = NULL; PFNGLGETVERTEXATTRIBIVPROC glad_glGetVertexAttribiv = NULL; PFNGLGETVERTEXATTRIBIVARBPROC glad_glGetVertexAttribivARB = NULL; PFNGLGETNCOLORTABLEARBPROC glad_glGetnColorTableARB = NULL; PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC glad_glGetnCompressedTexImageARB = NULL; PFNGLGETNCONVOLUTIONFILTERARBPROC glad_glGetnConvolutionFilterARB = NULL; PFNGLGETNHISTOGRAMARBPROC glad_glGetnHistogramARB = NULL; PFNGLGETNMAPDVARBPROC glad_glGetnMapdvARB = NULL; PFNGLGETNMAPFVARBPROC glad_glGetnMapfvARB = NULL; PFNGLGETNMAPIVARBPROC glad_glGetnMapivARB = NULL; PFNGLGETNMINMAXARBPROC glad_glGetnMinmaxARB = NULL; PFNGLGETNPIXELMAPFVARBPROC glad_glGetnPixelMapfvARB = NULL; PFNGLGETNPIXELMAPUIVARBPROC glad_glGetnPixelMapuivARB = NULL; PFNGLGETNPIXELMAPUSVARBPROC glad_glGetnPixelMapusvARB = NULL; PFNGLGETNPOLYGONSTIPPLEARBPROC glad_glGetnPolygonStippleARB = NULL; PFNGLGETNSEPARABLEFILTERARBPROC glad_glGetnSeparableFilterARB = NULL; PFNGLGETNTEXIMAGEARBPROC glad_glGetnTexImageARB = NULL; PFNGLGETNUNIFORMDVARBPROC glad_glGetnUniformdvARB = NULL; PFNGLGETNUNIFORMFVPROC glad_glGetnUniformfv = NULL; PFNGLGETNUNIFORMFVARBPROC glad_glGetnUniformfvARB = NULL; PFNGLGETNUNIFORMI64VARBPROC glad_glGetnUniformi64vARB = NULL; PFNGLGETNUNIFORMIVPROC glad_glGetnUniformiv = NULL; PFNGLGETNUNIFORMIVARBPROC glad_glGetnUniformivARB = NULL; PFNGLGETNUNIFORMUI64VARBPROC glad_glGetnUniformui64vARB = NULL; PFNGLGETNUNIFORMUIVPROC glad_glGetnUniformuiv = NULL; PFNGLGETNUNIFORMUIVARBPROC glad_glGetnUniformuivARB = NULL; PFNGLHINTPROC glad_glHint = NULL; PFNGLHISTOGRAMPROC glad_glHistogram = NULL; PFNGLINDEXMASKPROC glad_glIndexMask = NULL; PFNGLINDEXPOINTERPROC glad_glIndexPointer = NULL; PFNGLINDEXDPROC glad_glIndexd = NULL; PFNGLINDEXDVPROC glad_glIndexdv = NULL; PFNGLINDEXFPROC glad_glIndexf = NULL; PFNGLINDEXFVPROC glad_glIndexfv = NULL; PFNGLINDEXIPROC glad_glIndexi = NULL; PFNGLINDEXIVPROC glad_glIndexiv = NULL; PFNGLINDEXSPROC glad_glIndexs = NULL; PFNGLINDEXSVPROC glad_glIndexsv = NULL; PFNGLINDEXUBPROC glad_glIndexub = NULL; PFNGLINDEXUBVPROC glad_glIndexubv = NULL; PFNGLINITNAMESPROC glad_glInitNames = NULL; PFNGLINTERLEAVEDARRAYSPROC glad_glInterleavedArrays = NULL; PFNGLINVALIDATEBUFFERDATAPROC glad_glInvalidateBufferData = NULL; PFNGLINVALIDATEBUFFERSUBDATAPROC glad_glInvalidateBufferSubData = NULL; PFNGLINVALIDATEFRAMEBUFFERPROC glad_glInvalidateFramebuffer = NULL; PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC glad_glInvalidateNamedFramebufferData = NULL; PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC glad_glInvalidateNamedFramebufferSubData = NULL; PFNGLINVALIDATESUBFRAMEBUFFERPROC glad_glInvalidateSubFramebuffer = NULL; PFNGLINVALIDATETEXIMAGEPROC glad_glInvalidateTexImage = NULL; PFNGLINVALIDATETEXSUBIMAGEPROC glad_glInvalidateTexSubImage = NULL; PFNGLISBUFFERPROC glad_glIsBuffer = NULL; PFNGLISBUFFERARBPROC glad_glIsBufferARB = NULL; PFNGLISENABLEDPROC glad_glIsEnabled = NULL; PFNGLISENABLEDIPROC glad_glIsEnabledi = NULL; PFNGLISFRAMEBUFFERPROC glad_glIsFramebuffer = NULL; PFNGLISIMAGEHANDLERESIDENTARBPROC glad_glIsImageHandleResidentARB = NULL; PFNGLISLISTPROC glad_glIsList = NULL; PFNGLISNAMEDSTRINGARBPROC glad_glIsNamedStringARB = NULL; PFNGLISPROGRAMPROC glad_glIsProgram = NULL; PFNGLISPROGRAMARBPROC glad_glIsProgramARB = NULL; PFNGLISPROGRAMPIPELINEPROC glad_glIsProgramPipeline = NULL; PFNGLISQUERYPROC glad_glIsQuery = NULL; PFNGLISQUERYARBPROC glad_glIsQueryARB = NULL; PFNGLISRENDERBUFFERPROC glad_glIsRenderbuffer = NULL; PFNGLISSAMPLERPROC glad_glIsSampler = NULL; PFNGLISSHADERPROC glad_glIsShader = NULL; PFNGLISSYNCPROC glad_glIsSync = NULL; PFNGLISTEXTUREPROC glad_glIsTexture = NULL; PFNGLISTEXTUREHANDLERESIDENTARBPROC glad_glIsTextureHandleResidentARB = NULL; PFNGLISTRANSFORMFEEDBACKPROC glad_glIsTransformFeedback = NULL; PFNGLISVERTEXARRAYPROC glad_glIsVertexArray = NULL; PFNGLLIGHTMODELFPROC glad_glLightModelf = NULL; PFNGLLIGHTMODELFVPROC glad_glLightModelfv = NULL; PFNGLLIGHTMODELIPROC glad_glLightModeli = NULL; PFNGLLIGHTMODELIVPROC glad_glLightModeliv = NULL; PFNGLLIGHTFPROC glad_glLightf = NULL; PFNGLLIGHTFVPROC glad_glLightfv = NULL; PFNGLLIGHTIPROC glad_glLighti = NULL; PFNGLLIGHTIVPROC glad_glLightiv = NULL; PFNGLLINESTIPPLEPROC glad_glLineStipple = NULL; PFNGLLINEWIDTHPROC glad_glLineWidth = NULL; PFNGLLINKPROGRAMPROC glad_glLinkProgram = NULL; PFNGLLINKPROGRAMARBPROC glad_glLinkProgramARB = NULL; PFNGLLISTBASEPROC glad_glListBase = NULL; PFNGLLOADIDENTITYPROC glad_glLoadIdentity = NULL; PFNGLLOADMATRIXDPROC glad_glLoadMatrixd = NULL; PFNGLLOADMATRIXFPROC glad_glLoadMatrixf = NULL; PFNGLLOADNAMEPROC glad_glLoadName = NULL; PFNGLLOADTRANSPOSEMATRIXDPROC glad_glLoadTransposeMatrixd = NULL; PFNGLLOADTRANSPOSEMATRIXDARBPROC glad_glLoadTransposeMatrixdARB = NULL; PFNGLLOADTRANSPOSEMATRIXFPROC glad_glLoadTransposeMatrixf = NULL; PFNGLLOADTRANSPOSEMATRIXFARBPROC glad_glLoadTransposeMatrixfARB = NULL; PFNGLLOGICOPPROC glad_glLogicOp = NULL; PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC glad_glMakeImageHandleNonResidentARB = NULL; PFNGLMAKEIMAGEHANDLERESIDENTARBPROC glad_glMakeImageHandleResidentARB = NULL; PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC glad_glMakeTextureHandleNonResidentARB = NULL; PFNGLMAKETEXTUREHANDLERESIDENTARBPROC glad_glMakeTextureHandleResidentARB = NULL; PFNGLMAP1DPROC glad_glMap1d = NULL; PFNGLMAP1FPROC glad_glMap1f = NULL; PFNGLMAP2DPROC glad_glMap2d = NULL; PFNGLMAP2FPROC glad_glMap2f = NULL; PFNGLMAPBUFFERPROC glad_glMapBuffer = NULL; PFNGLMAPBUFFERARBPROC glad_glMapBufferARB = NULL; PFNGLMAPBUFFERRANGEPROC glad_glMapBufferRange = NULL; PFNGLMAPGRID1DPROC glad_glMapGrid1d = NULL; PFNGLMAPGRID1FPROC glad_glMapGrid1f = NULL; PFNGLMAPGRID2DPROC glad_glMapGrid2d = NULL; PFNGLMAPGRID2FPROC glad_glMapGrid2f = NULL; PFNGLMAPNAMEDBUFFERPROC glad_glMapNamedBuffer = NULL; PFNGLMAPNAMEDBUFFERRANGEPROC glad_glMapNamedBufferRange = NULL; PFNGLMATERIALFPROC glad_glMaterialf = NULL; PFNGLMATERIALFVPROC glad_glMaterialfv = NULL; PFNGLMATERIALIPROC glad_glMateriali = NULL; PFNGLMATERIALIVPROC glad_glMaterialiv = NULL; PFNGLMATRIXINDEXPOINTERARBPROC glad_glMatrixIndexPointerARB = NULL; PFNGLMATRIXINDEXUBVARBPROC glad_glMatrixIndexubvARB = NULL; PFNGLMATRIXINDEXUIVARBPROC glad_glMatrixIndexuivARB = NULL; PFNGLMATRIXINDEXUSVARBPROC glad_glMatrixIndexusvARB = NULL; PFNGLMATRIXMODEPROC glad_glMatrixMode = NULL; PFNGLMAXSHADERCOMPILERTHREADSARBPROC glad_glMaxShaderCompilerThreadsARB = NULL; PFNGLMAXSHADERCOMPILERTHREADSKHRPROC glad_glMaxShaderCompilerThreadsKHR = NULL; PFNGLMEMORYBARRIERPROC glad_glMemoryBarrier = NULL; PFNGLMEMORYBARRIERBYREGIONPROC glad_glMemoryBarrierByRegion = NULL; PFNGLMINSAMPLESHADINGPROC glad_glMinSampleShading = NULL; PFNGLMINSAMPLESHADINGARBPROC glad_glMinSampleShadingARB = NULL; PFNGLMINMAXPROC glad_glMinmax = NULL; PFNGLMULTMATRIXDPROC glad_glMultMatrixd = NULL; PFNGLMULTMATRIXFPROC glad_glMultMatrixf = NULL; PFNGLMULTTRANSPOSEMATRIXDPROC glad_glMultTransposeMatrixd = NULL; PFNGLMULTTRANSPOSEMATRIXDARBPROC glad_glMultTransposeMatrixdARB = NULL; PFNGLMULTTRANSPOSEMATRIXFPROC glad_glMultTransposeMatrixf = NULL; PFNGLMULTTRANSPOSEMATRIXFARBPROC glad_glMultTransposeMatrixfARB = NULL; PFNGLMULTIDRAWARRAYSPROC glad_glMultiDrawArrays = NULL; PFNGLMULTIDRAWARRAYSINDIRECTPROC glad_glMultiDrawArraysIndirect = NULL; PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC glad_glMultiDrawArraysIndirectCount = NULL; PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC glad_glMultiDrawArraysIndirectCountARB = NULL; PFNGLMULTIDRAWELEMENTSPROC glad_glMultiDrawElements = NULL; PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC glad_glMultiDrawElementsBaseVertex = NULL; PFNGLMULTIDRAWELEMENTSINDIRECTPROC glad_glMultiDrawElementsIndirect = NULL; PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC glad_glMultiDrawElementsIndirectCount = NULL; PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC glad_glMultiDrawElementsIndirectCountARB = NULL; PFNGLMULTITEXCOORD1DPROC glad_glMultiTexCoord1d = NULL; PFNGLMULTITEXCOORD1DARBPROC glad_glMultiTexCoord1dARB = NULL; PFNGLMULTITEXCOORD1DVPROC glad_glMultiTexCoord1dv = NULL; PFNGLMULTITEXCOORD1DVARBPROC glad_glMultiTexCoord1dvARB = NULL; PFNGLMULTITEXCOORD1FPROC glad_glMultiTexCoord1f = NULL; PFNGLMULTITEXCOORD1FARBPROC glad_glMultiTexCoord1fARB = NULL; PFNGLMULTITEXCOORD1FVPROC glad_glMultiTexCoord1fv = NULL; PFNGLMULTITEXCOORD1FVARBPROC glad_glMultiTexCoord1fvARB = NULL; PFNGLMULTITEXCOORD1IPROC glad_glMultiTexCoord1i = NULL; PFNGLMULTITEXCOORD1IARBPROC glad_glMultiTexCoord1iARB = NULL; PFNGLMULTITEXCOORD1IVPROC glad_glMultiTexCoord1iv = NULL; PFNGLMULTITEXCOORD1IVARBPROC glad_glMultiTexCoord1ivARB = NULL; PFNGLMULTITEXCOORD1SPROC glad_glMultiTexCoord1s = NULL; PFNGLMULTITEXCOORD1SARBPROC glad_glMultiTexCoord1sARB = NULL; PFNGLMULTITEXCOORD1SVPROC glad_glMultiTexCoord1sv = NULL; PFNGLMULTITEXCOORD1SVARBPROC glad_glMultiTexCoord1svARB = NULL; PFNGLMULTITEXCOORD2DPROC glad_glMultiTexCoord2d = NULL; PFNGLMULTITEXCOORD2DARBPROC glad_glMultiTexCoord2dARB = NULL; PFNGLMULTITEXCOORD2DVPROC glad_glMultiTexCoord2dv = NULL; PFNGLMULTITEXCOORD2DVARBPROC glad_glMultiTexCoord2dvARB = NULL; PFNGLMULTITEXCOORD2FPROC glad_glMultiTexCoord2f = NULL; PFNGLMULTITEXCOORD2FARBPROC glad_glMultiTexCoord2fARB = NULL; PFNGLMULTITEXCOORD2FVPROC glad_glMultiTexCoord2fv = NULL; PFNGLMULTITEXCOORD2FVARBPROC glad_glMultiTexCoord2fvARB = NULL; PFNGLMULTITEXCOORD2IPROC glad_glMultiTexCoord2i = NULL; PFNGLMULTITEXCOORD2IARBPROC glad_glMultiTexCoord2iARB = NULL; PFNGLMULTITEXCOORD2IVPROC glad_glMultiTexCoord2iv = NULL; PFNGLMULTITEXCOORD2IVARBPROC glad_glMultiTexCoord2ivARB = NULL; PFNGLMULTITEXCOORD2SPROC glad_glMultiTexCoord2s = NULL; PFNGLMULTITEXCOORD2SARBPROC glad_glMultiTexCoord2sARB = NULL; PFNGLMULTITEXCOORD2SVPROC glad_glMultiTexCoord2sv = NULL; PFNGLMULTITEXCOORD2SVARBPROC glad_glMultiTexCoord2svARB = NULL; PFNGLMULTITEXCOORD3DPROC glad_glMultiTexCoord3d = NULL; PFNGLMULTITEXCOORD3DARBPROC glad_glMultiTexCoord3dARB = NULL; PFNGLMULTITEXCOORD3DVPROC glad_glMultiTexCoord3dv = NULL; PFNGLMULTITEXCOORD3DVARBPROC glad_glMultiTexCoord3dvARB = NULL; PFNGLMULTITEXCOORD3FPROC glad_glMultiTexCoord3f = NULL; PFNGLMULTITEXCOORD3FARBPROC glad_glMultiTexCoord3fARB = NULL; PFNGLMULTITEXCOORD3FVPROC glad_glMultiTexCoord3fv = NULL; PFNGLMULTITEXCOORD3FVARBPROC glad_glMultiTexCoord3fvARB = NULL; PFNGLMULTITEXCOORD3IPROC glad_glMultiTexCoord3i = NULL; PFNGLMULTITEXCOORD3IARBPROC glad_glMultiTexCoord3iARB = NULL; PFNGLMULTITEXCOORD3IVPROC glad_glMultiTexCoord3iv = NULL; PFNGLMULTITEXCOORD3IVARBPROC glad_glMultiTexCoord3ivARB = NULL; PFNGLMULTITEXCOORD3SPROC glad_glMultiTexCoord3s = NULL; PFNGLMULTITEXCOORD3SARBPROC glad_glMultiTexCoord3sARB = NULL; PFNGLMULTITEXCOORD3SVPROC glad_glMultiTexCoord3sv = NULL; PFNGLMULTITEXCOORD3SVARBPROC glad_glMultiTexCoord3svARB = NULL; PFNGLMULTITEXCOORD4DPROC glad_glMultiTexCoord4d = NULL; PFNGLMULTITEXCOORD4DARBPROC glad_glMultiTexCoord4dARB = NULL; PFNGLMULTITEXCOORD4DVPROC glad_glMultiTexCoord4dv = NULL; PFNGLMULTITEXCOORD4DVARBPROC glad_glMultiTexCoord4dvARB = NULL; PFNGLMULTITEXCOORD4FPROC glad_glMultiTexCoord4f = NULL; PFNGLMULTITEXCOORD4FARBPROC glad_glMultiTexCoord4fARB = NULL; PFNGLMULTITEXCOORD4FVPROC glad_glMultiTexCoord4fv = NULL; PFNGLMULTITEXCOORD4FVARBPROC glad_glMultiTexCoord4fvARB = NULL; PFNGLMULTITEXCOORD4IPROC glad_glMultiTexCoord4i = NULL; PFNGLMULTITEXCOORD4IARBPROC glad_glMultiTexCoord4iARB = NULL; PFNGLMULTITEXCOORD4IVPROC glad_glMultiTexCoord4iv = NULL; PFNGLMULTITEXCOORD4IVARBPROC glad_glMultiTexCoord4ivARB = NULL; PFNGLMULTITEXCOORD4SPROC glad_glMultiTexCoord4s = NULL; PFNGLMULTITEXCOORD4SARBPROC glad_glMultiTexCoord4sARB = NULL; PFNGLMULTITEXCOORD4SVPROC glad_glMultiTexCoord4sv = NULL; PFNGLMULTITEXCOORD4SVARBPROC glad_glMultiTexCoord4svARB = NULL; PFNGLMULTITEXCOORDP1UIPROC glad_glMultiTexCoordP1ui = NULL; PFNGLMULTITEXCOORDP1UIVPROC glad_glMultiTexCoordP1uiv = NULL; PFNGLMULTITEXCOORDP2UIPROC glad_glMultiTexCoordP2ui = NULL; PFNGLMULTITEXCOORDP2UIVPROC glad_glMultiTexCoordP2uiv = NULL; PFNGLMULTITEXCOORDP3UIPROC glad_glMultiTexCoordP3ui = NULL; PFNGLMULTITEXCOORDP3UIVPROC glad_glMultiTexCoordP3uiv = NULL; PFNGLMULTITEXCOORDP4UIPROC glad_glMultiTexCoordP4ui = NULL; PFNGLMULTITEXCOORDP4UIVPROC glad_glMultiTexCoordP4uiv = NULL; PFNGLNAMEDBUFFERDATAPROC glad_glNamedBufferData = NULL; PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC glad_glNamedBufferPageCommitmentARB = NULL; PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC glad_glNamedBufferPageCommitmentEXT = NULL; PFNGLNAMEDBUFFERSTORAGEPROC glad_glNamedBufferStorage = NULL; PFNGLNAMEDBUFFERSUBDATAPROC glad_glNamedBufferSubData = NULL; PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC glad_glNamedFramebufferDrawBuffer = NULL; PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC glad_glNamedFramebufferDrawBuffers = NULL; PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC glad_glNamedFramebufferParameteri = NULL; PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC glad_glNamedFramebufferReadBuffer = NULL; PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC glad_glNamedFramebufferRenderbuffer = NULL; PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC glad_glNamedFramebufferSampleLocationsfvARB = NULL; PFNGLNAMEDFRAMEBUFFERTEXTUREPROC glad_glNamedFramebufferTexture = NULL; PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC glad_glNamedFramebufferTextureLayer = NULL; PFNGLNAMEDRENDERBUFFERSTORAGEPROC glad_glNamedRenderbufferStorage = NULL; PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glNamedRenderbufferStorageMultisample = NULL; PFNGLNAMEDSTRINGARBPROC glad_glNamedStringARB = NULL; PFNGLNEWLISTPROC glad_glNewList = NULL; PFNGLNORMAL3BPROC glad_glNormal3b = NULL; PFNGLNORMAL3BVPROC glad_glNormal3bv = NULL; PFNGLNORMAL3DPROC glad_glNormal3d = NULL; PFNGLNORMAL3DVPROC glad_glNormal3dv = NULL; PFNGLNORMAL3FPROC glad_glNormal3f = NULL; PFNGLNORMAL3FVPROC glad_glNormal3fv = NULL; PFNGLNORMAL3IPROC glad_glNormal3i = NULL; PFNGLNORMAL3IVPROC glad_glNormal3iv = NULL; PFNGLNORMAL3SPROC glad_glNormal3s = NULL; PFNGLNORMAL3SVPROC glad_glNormal3sv = NULL; PFNGLNORMALP3UIPROC glad_glNormalP3ui = NULL; PFNGLNORMALP3UIVPROC glad_glNormalP3uiv = NULL; PFNGLNORMALPOINTERPROC glad_glNormalPointer = NULL; PFNGLOBJECTLABELPROC glad_glObjectLabel = NULL; PFNGLOBJECTPTRLABELPROC glad_glObjectPtrLabel = NULL; PFNGLORTHOPROC glad_glOrtho = NULL; PFNGLPASSTHROUGHPROC glad_glPassThrough = NULL; PFNGLPATCHPARAMETERFVPROC glad_glPatchParameterfv = NULL; PFNGLPATCHPARAMETERIPROC glad_glPatchParameteri = NULL; PFNGLPAUSETRANSFORMFEEDBACKPROC glad_glPauseTransformFeedback = NULL; PFNGLPIXELMAPFVPROC glad_glPixelMapfv = NULL; PFNGLPIXELMAPUIVPROC glad_glPixelMapuiv = NULL; PFNGLPIXELMAPUSVPROC glad_glPixelMapusv = NULL; PFNGLPIXELSTOREFPROC glad_glPixelStoref = NULL; PFNGLPIXELSTOREIPROC glad_glPixelStorei = NULL; PFNGLPIXELTRANSFERFPROC glad_glPixelTransferf = NULL; PFNGLPIXELTRANSFERIPROC glad_glPixelTransferi = NULL; PFNGLPIXELZOOMPROC glad_glPixelZoom = NULL; PFNGLPOINTPARAMETERFPROC glad_glPointParameterf = NULL; PFNGLPOINTPARAMETERFARBPROC glad_glPointParameterfARB = NULL; PFNGLPOINTPARAMETERFVPROC glad_glPointParameterfv = NULL; PFNGLPOINTPARAMETERFVARBPROC glad_glPointParameterfvARB = NULL; PFNGLPOINTPARAMETERIPROC glad_glPointParameteri = NULL; PFNGLPOINTPARAMETERIVPROC glad_glPointParameteriv = NULL; PFNGLPOINTSIZEPROC glad_glPointSize = NULL; PFNGLPOLYGONMODEPROC glad_glPolygonMode = NULL; PFNGLPOLYGONOFFSETPROC glad_glPolygonOffset = NULL; PFNGLPOLYGONOFFSETCLAMPPROC glad_glPolygonOffsetClamp = NULL; PFNGLPOLYGONSTIPPLEPROC glad_glPolygonStipple = NULL; PFNGLPOPATTRIBPROC glad_glPopAttrib = NULL; PFNGLPOPCLIENTATTRIBPROC glad_glPopClientAttrib = NULL; PFNGLPOPDEBUGGROUPPROC glad_glPopDebugGroup = NULL; PFNGLPOPMATRIXPROC glad_glPopMatrix = NULL; PFNGLPOPNAMEPROC glad_glPopName = NULL; PFNGLPRIMITIVEBOUNDINGBOXPROC glad_glPrimitiveBoundingBox = NULL; PFNGLPRIMITIVEBOUNDINGBOXARBPROC glad_glPrimitiveBoundingBoxARB = NULL; PFNGLPRIMITIVERESTARTINDEXPROC glad_glPrimitiveRestartIndex = NULL; PFNGLPRIORITIZETEXTURESPROC glad_glPrioritizeTextures = NULL; PFNGLPROGRAMBINARYPROC glad_glProgramBinary = NULL; PFNGLPROGRAMENVPARAMETER4DARBPROC glad_glProgramEnvParameter4dARB = NULL; PFNGLPROGRAMENVPARAMETER4DVARBPROC glad_glProgramEnvParameter4dvARB = NULL; PFNGLPROGRAMENVPARAMETER4FARBPROC glad_glProgramEnvParameter4fARB = NULL; PFNGLPROGRAMENVPARAMETER4FVARBPROC glad_glProgramEnvParameter4fvARB = NULL; PFNGLPROGRAMLOCALPARAMETER4DARBPROC glad_glProgramLocalParameter4dARB = NULL; PFNGLPROGRAMLOCALPARAMETER4DVARBPROC glad_glProgramLocalParameter4dvARB = NULL; PFNGLPROGRAMLOCALPARAMETER4FARBPROC glad_glProgramLocalParameter4fARB = NULL; PFNGLPROGRAMLOCALPARAMETER4FVARBPROC glad_glProgramLocalParameter4fvARB = NULL; PFNGLPROGRAMPARAMETERIPROC glad_glProgramParameteri = NULL; PFNGLPROGRAMPARAMETERIARBPROC glad_glProgramParameteriARB = NULL; PFNGLPROGRAMSTRINGARBPROC glad_glProgramStringARB = NULL; PFNGLPROGRAMUNIFORM1DPROC glad_glProgramUniform1d = NULL; PFNGLPROGRAMUNIFORM1DVPROC glad_glProgramUniform1dv = NULL; PFNGLPROGRAMUNIFORM1FPROC glad_glProgramUniform1f = NULL; PFNGLPROGRAMUNIFORM1FVPROC glad_glProgramUniform1fv = NULL; PFNGLPROGRAMUNIFORM1IPROC glad_glProgramUniform1i = NULL; PFNGLPROGRAMUNIFORM1I64ARBPROC glad_glProgramUniform1i64ARB = NULL; PFNGLPROGRAMUNIFORM1I64VARBPROC glad_glProgramUniform1i64vARB = NULL; PFNGLPROGRAMUNIFORM1IVPROC glad_glProgramUniform1iv = NULL; PFNGLPROGRAMUNIFORM1UIPROC glad_glProgramUniform1ui = NULL; PFNGLPROGRAMUNIFORM1UI64ARBPROC glad_glProgramUniform1ui64ARB = NULL; PFNGLPROGRAMUNIFORM1UI64VARBPROC glad_glProgramUniform1ui64vARB = NULL; PFNGLPROGRAMUNIFORM1UIVPROC glad_glProgramUniform1uiv = NULL; PFNGLPROGRAMUNIFORM2DPROC glad_glProgramUniform2d = NULL; PFNGLPROGRAMUNIFORM2DVPROC glad_glProgramUniform2dv = NULL; PFNGLPROGRAMUNIFORM2FPROC glad_glProgramUniform2f = NULL; PFNGLPROGRAMUNIFORM2FVPROC glad_glProgramUniform2fv = NULL; PFNGLPROGRAMUNIFORM2IPROC glad_glProgramUniform2i = NULL; PFNGLPROGRAMUNIFORM2I64ARBPROC glad_glProgramUniform2i64ARB = NULL; PFNGLPROGRAMUNIFORM2I64VARBPROC glad_glProgramUniform2i64vARB = NULL; PFNGLPROGRAMUNIFORM2IVPROC glad_glProgramUniform2iv = NULL; PFNGLPROGRAMUNIFORM2UIPROC glad_glProgramUniform2ui = NULL; PFNGLPROGRAMUNIFORM2UI64ARBPROC glad_glProgramUniform2ui64ARB = NULL; PFNGLPROGRAMUNIFORM2UI64VARBPROC glad_glProgramUniform2ui64vARB = NULL; PFNGLPROGRAMUNIFORM2UIVPROC glad_glProgramUniform2uiv = NULL; PFNGLPROGRAMUNIFORM3DPROC glad_glProgramUniform3d = NULL; PFNGLPROGRAMUNIFORM3DVPROC glad_glProgramUniform3dv = NULL; PFNGLPROGRAMUNIFORM3FPROC glad_glProgramUniform3f = NULL; PFNGLPROGRAMUNIFORM3FVPROC glad_glProgramUniform3fv = NULL; PFNGLPROGRAMUNIFORM3IPROC glad_glProgramUniform3i = NULL; PFNGLPROGRAMUNIFORM3I64ARBPROC glad_glProgramUniform3i64ARB = NULL; PFNGLPROGRAMUNIFORM3I64VARBPROC glad_glProgramUniform3i64vARB = NULL; PFNGLPROGRAMUNIFORM3IVPROC glad_glProgramUniform3iv = NULL; PFNGLPROGRAMUNIFORM3UIPROC glad_glProgramUniform3ui = NULL; PFNGLPROGRAMUNIFORM3UI64ARBPROC glad_glProgramUniform3ui64ARB = NULL; PFNGLPROGRAMUNIFORM3UI64VARBPROC glad_glProgramUniform3ui64vARB = NULL; PFNGLPROGRAMUNIFORM3UIVPROC glad_glProgramUniform3uiv = NULL; PFNGLPROGRAMUNIFORM4DPROC glad_glProgramUniform4d = NULL; PFNGLPROGRAMUNIFORM4DVPROC glad_glProgramUniform4dv = NULL; PFNGLPROGRAMUNIFORM4FPROC glad_glProgramUniform4f = NULL; PFNGLPROGRAMUNIFORM4FVPROC glad_glProgramUniform4fv = NULL; PFNGLPROGRAMUNIFORM4IPROC glad_glProgramUniform4i = NULL; PFNGLPROGRAMUNIFORM4I64ARBPROC glad_glProgramUniform4i64ARB = NULL; PFNGLPROGRAMUNIFORM4I64VARBPROC glad_glProgramUniform4i64vARB = NULL; PFNGLPROGRAMUNIFORM4IVPROC glad_glProgramUniform4iv = NULL; PFNGLPROGRAMUNIFORM4UIPROC glad_glProgramUniform4ui = NULL; PFNGLPROGRAMUNIFORM4UI64ARBPROC glad_glProgramUniform4ui64ARB = NULL; PFNGLPROGRAMUNIFORM4UI64VARBPROC glad_glProgramUniform4ui64vARB = NULL; PFNGLPROGRAMUNIFORM4UIVPROC glad_glProgramUniform4uiv = NULL; PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC glad_glProgramUniformHandleui64ARB = NULL; PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC glad_glProgramUniformHandleui64vARB = NULL; PFNGLPROGRAMUNIFORMMATRIX2DVPROC glad_glProgramUniformMatrix2dv = NULL; PFNGLPROGRAMUNIFORMMATRIX2FVPROC glad_glProgramUniformMatrix2fv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC glad_glProgramUniformMatrix2x3dv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC glad_glProgramUniformMatrix2x3fv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC glad_glProgramUniformMatrix2x4dv = NULL; PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC glad_glProgramUniformMatrix2x4fv = NULL; PFNGLPROGRAMUNIFORMMATRIX3DVPROC glad_glProgramUniformMatrix3dv = NULL; PFNGLPROGRAMUNIFORMMATRIX3FVPROC glad_glProgramUniformMatrix3fv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC glad_glProgramUniformMatrix3x2dv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC glad_glProgramUniformMatrix3x2fv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC glad_glProgramUniformMatrix3x4dv = NULL; PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC glad_glProgramUniformMatrix3x4fv = NULL; PFNGLPROGRAMUNIFORMMATRIX4DVPROC glad_glProgramUniformMatrix4dv = NULL; PFNGLPROGRAMUNIFORMMATRIX4FVPROC glad_glProgramUniformMatrix4fv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC glad_glProgramUniformMatrix4x2dv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC glad_glProgramUniformMatrix4x2fv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC glad_glProgramUniformMatrix4x3dv = NULL; PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC glad_glProgramUniformMatrix4x3fv = NULL; PFNGLPROVOKINGVERTEXPROC glad_glProvokingVertex = NULL; PFNGLPUSHATTRIBPROC glad_glPushAttrib = NULL; PFNGLPUSHCLIENTATTRIBPROC glad_glPushClientAttrib = NULL; PFNGLPUSHDEBUGGROUPPROC glad_glPushDebugGroup = NULL; PFNGLPUSHMATRIXPROC glad_glPushMatrix = NULL; PFNGLPUSHNAMEPROC glad_glPushName = NULL; PFNGLQUERYCOUNTERPROC glad_glQueryCounter = NULL; PFNGLRASTERPOS2DPROC glad_glRasterPos2d = NULL; PFNGLRASTERPOS2DVPROC glad_glRasterPos2dv = NULL; PFNGLRASTERPOS2FPROC glad_glRasterPos2f = NULL; PFNGLRASTERPOS2FVPROC glad_glRasterPos2fv = NULL; PFNGLRASTERPOS2IPROC glad_glRasterPos2i = NULL; PFNGLRASTERPOS2IVPROC glad_glRasterPos2iv = NULL; PFNGLRASTERPOS2SPROC glad_glRasterPos2s = NULL; PFNGLRASTERPOS2SVPROC glad_glRasterPos2sv = NULL; PFNGLRASTERPOS3DPROC glad_glRasterPos3d = NULL; PFNGLRASTERPOS3DVPROC glad_glRasterPos3dv = NULL; PFNGLRASTERPOS3FPROC glad_glRasterPos3f = NULL; PFNGLRASTERPOS3FVPROC glad_glRasterPos3fv = NULL; PFNGLRASTERPOS3IPROC glad_glRasterPos3i = NULL; PFNGLRASTERPOS3IVPROC glad_glRasterPos3iv = NULL; PFNGLRASTERPOS3SPROC glad_glRasterPos3s = NULL; PFNGLRASTERPOS3SVPROC glad_glRasterPos3sv = NULL; PFNGLRASTERPOS4DPROC glad_glRasterPos4d = NULL; PFNGLRASTERPOS4DVPROC glad_glRasterPos4dv = NULL; PFNGLRASTERPOS4FPROC glad_glRasterPos4f = NULL; PFNGLRASTERPOS4FVPROC glad_glRasterPos4fv = NULL; PFNGLRASTERPOS4IPROC glad_glRasterPos4i = NULL; PFNGLRASTERPOS4IVPROC glad_glRasterPos4iv = NULL; PFNGLRASTERPOS4SPROC glad_glRasterPos4s = NULL; PFNGLRASTERPOS4SVPROC glad_glRasterPos4sv = NULL; PFNGLREADBUFFERPROC glad_glReadBuffer = NULL; PFNGLREADPIXELSPROC glad_glReadPixels = NULL; PFNGLREADNPIXELSPROC glad_glReadnPixels = NULL; PFNGLREADNPIXELSARBPROC glad_glReadnPixelsARB = NULL; PFNGLRECTDPROC glad_glRectd = NULL; PFNGLRECTDVPROC glad_glRectdv = NULL; PFNGLRECTFPROC glad_glRectf = NULL; PFNGLRECTFVPROC glad_glRectfv = NULL; PFNGLRECTIPROC glad_glRecti = NULL; PFNGLRECTIVPROC glad_glRectiv = NULL; PFNGLRECTSPROC glad_glRects = NULL; PFNGLRECTSVPROC glad_glRectsv = NULL; PFNGLRELEASESHADERCOMPILERPROC glad_glReleaseShaderCompiler = NULL; PFNGLRENDERMODEPROC glad_glRenderMode = NULL; PFNGLRENDERBUFFERSTORAGEPROC glad_glRenderbufferStorage = NULL; PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC glad_glRenderbufferStorageMultisample = NULL; PFNGLRESETHISTOGRAMPROC glad_glResetHistogram = NULL; PFNGLRESETMINMAXPROC glad_glResetMinmax = NULL; PFNGLRESUMETRANSFORMFEEDBACKPROC glad_glResumeTransformFeedback = NULL; PFNGLROTATEDPROC glad_glRotated = NULL; PFNGLROTATEFPROC glad_glRotatef = NULL; PFNGLSAMPLECOVERAGEPROC glad_glSampleCoverage = NULL; PFNGLSAMPLECOVERAGEARBPROC glad_glSampleCoverageARB = NULL; PFNGLSAMPLEMASKIPROC glad_glSampleMaski = NULL; PFNGLSAMPLERPARAMETERIIVPROC glad_glSamplerParameterIiv = NULL; PFNGLSAMPLERPARAMETERIUIVPROC glad_glSamplerParameterIuiv = NULL; PFNGLSAMPLERPARAMETERFPROC glad_glSamplerParameterf = NULL; PFNGLSAMPLERPARAMETERFVPROC glad_glSamplerParameterfv = NULL; PFNGLSAMPLERPARAMETERIPROC glad_glSamplerParameteri = NULL; PFNGLSAMPLERPARAMETERIVPROC glad_glSamplerParameteriv = NULL; PFNGLSCALEDPROC glad_glScaled = NULL; PFNGLSCALEFPROC glad_glScalef = NULL; PFNGLSCISSORPROC glad_glScissor = NULL; PFNGLSCISSORARRAYVPROC glad_glScissorArrayv = NULL; PFNGLSCISSORINDEXEDPROC glad_glScissorIndexed = NULL; PFNGLSCISSORINDEXEDVPROC glad_glScissorIndexedv = NULL; PFNGLSECONDARYCOLOR3BPROC glad_glSecondaryColor3b = NULL; PFNGLSECONDARYCOLOR3BVPROC glad_glSecondaryColor3bv = NULL; PFNGLSECONDARYCOLOR3DPROC glad_glSecondaryColor3d = NULL; PFNGLSECONDARYCOLOR3DVPROC glad_glSecondaryColor3dv = NULL; PFNGLSECONDARYCOLOR3FPROC glad_glSecondaryColor3f = NULL; PFNGLSECONDARYCOLOR3FVPROC glad_glSecondaryColor3fv = NULL; PFNGLSECONDARYCOLOR3IPROC glad_glSecondaryColor3i = NULL; PFNGLSECONDARYCOLOR3IVPROC glad_glSecondaryColor3iv = NULL; PFNGLSECONDARYCOLOR3SPROC glad_glSecondaryColor3s = NULL; PFNGLSECONDARYCOLOR3SVPROC glad_glSecondaryColor3sv = NULL; PFNGLSECONDARYCOLOR3UBPROC glad_glSecondaryColor3ub = NULL; PFNGLSECONDARYCOLOR3UBVPROC glad_glSecondaryColor3ubv = NULL; PFNGLSECONDARYCOLOR3UIPROC glad_glSecondaryColor3ui = NULL; PFNGLSECONDARYCOLOR3UIVPROC glad_glSecondaryColor3uiv = NULL; PFNGLSECONDARYCOLOR3USPROC glad_glSecondaryColor3us = NULL; PFNGLSECONDARYCOLOR3USVPROC glad_glSecondaryColor3usv = NULL; PFNGLSECONDARYCOLORP3UIPROC glad_glSecondaryColorP3ui = NULL; PFNGLSECONDARYCOLORP3UIVPROC glad_glSecondaryColorP3uiv = NULL; PFNGLSECONDARYCOLORPOINTERPROC glad_glSecondaryColorPointer = NULL; PFNGLSELECTBUFFERPROC glad_glSelectBuffer = NULL; PFNGLSEPARABLEFILTER2DPROC glad_glSeparableFilter2D = NULL; PFNGLSHADEMODELPROC glad_glShadeModel = NULL; PFNGLSHADERBINARYPROC glad_glShaderBinary = NULL; PFNGLSHADERSOURCEPROC glad_glShaderSource = NULL; PFNGLSHADERSOURCEARBPROC glad_glShaderSourceARB = NULL; PFNGLSHADERSTORAGEBLOCKBINDINGPROC glad_glShaderStorageBlockBinding = NULL; PFNGLSPECIALIZESHADERPROC glad_glSpecializeShader = NULL; PFNGLSPECIALIZESHADERARBPROC glad_glSpecializeShaderARB = NULL; PFNGLSTENCILFUNCPROC glad_glStencilFunc = NULL; PFNGLSTENCILFUNCSEPARATEPROC glad_glStencilFuncSeparate = NULL; PFNGLSTENCILMASKPROC glad_glStencilMask = NULL; PFNGLSTENCILMASKSEPARATEPROC glad_glStencilMaskSeparate = NULL; PFNGLSTENCILOPPROC glad_glStencilOp = NULL; PFNGLSTENCILOPSEPARATEPROC glad_glStencilOpSeparate = NULL; PFNGLTEXBUFFERPROC glad_glTexBuffer = NULL; PFNGLTEXBUFFERARBPROC glad_glTexBufferARB = NULL; PFNGLTEXBUFFERRANGEPROC glad_glTexBufferRange = NULL; PFNGLTEXCOORD1DPROC glad_glTexCoord1d = NULL; PFNGLTEXCOORD1DVPROC glad_glTexCoord1dv = NULL; PFNGLTEXCOORD1FPROC glad_glTexCoord1f = NULL; PFNGLTEXCOORD1FVPROC glad_glTexCoord1fv = NULL; PFNGLTEXCOORD1IPROC glad_glTexCoord1i = NULL; PFNGLTEXCOORD1IVPROC glad_glTexCoord1iv = NULL; PFNGLTEXCOORD1SPROC glad_glTexCoord1s = NULL; PFNGLTEXCOORD1SVPROC glad_glTexCoord1sv = NULL; PFNGLTEXCOORD2DPROC glad_glTexCoord2d = NULL; PFNGLTEXCOORD2DVPROC glad_glTexCoord2dv = NULL; PFNGLTEXCOORD2FPROC glad_glTexCoord2f = NULL; PFNGLTEXCOORD2FVPROC glad_glTexCoord2fv = NULL; PFNGLTEXCOORD2IPROC glad_glTexCoord2i = NULL; PFNGLTEXCOORD2IVPROC glad_glTexCoord2iv = NULL; PFNGLTEXCOORD2SPROC glad_glTexCoord2s = NULL; PFNGLTEXCOORD2SVPROC glad_glTexCoord2sv = NULL; PFNGLTEXCOORD3DPROC glad_glTexCoord3d = NULL; PFNGLTEXCOORD3DVPROC glad_glTexCoord3dv = NULL; PFNGLTEXCOORD3FPROC glad_glTexCoord3f = NULL; PFNGLTEXCOORD3FVPROC glad_glTexCoord3fv = NULL; PFNGLTEXCOORD3IPROC glad_glTexCoord3i = NULL; PFNGLTEXCOORD3IVPROC glad_glTexCoord3iv = NULL; PFNGLTEXCOORD3SPROC glad_glTexCoord3s = NULL; PFNGLTEXCOORD3SVPROC glad_glTexCoord3sv = NULL; PFNGLTEXCOORD4DPROC glad_glTexCoord4d = NULL; PFNGLTEXCOORD4DVPROC glad_glTexCoord4dv = NULL; PFNGLTEXCOORD4FPROC glad_glTexCoord4f = NULL; PFNGLTEXCOORD4FVPROC glad_glTexCoord4fv = NULL; PFNGLTEXCOORD4IPROC glad_glTexCoord4i = NULL; PFNGLTEXCOORD4IVPROC glad_glTexCoord4iv = NULL; PFNGLTEXCOORD4SPROC glad_glTexCoord4s = NULL; PFNGLTEXCOORD4SVPROC glad_glTexCoord4sv = NULL; PFNGLTEXCOORDP1UIPROC glad_glTexCoordP1ui = NULL; PFNGLTEXCOORDP1UIVPROC glad_glTexCoordP1uiv = NULL; PFNGLTEXCOORDP2UIPROC glad_glTexCoordP2ui = NULL; PFNGLTEXCOORDP2UIVPROC glad_glTexCoordP2uiv = NULL; PFNGLTEXCOORDP3UIPROC glad_glTexCoordP3ui = NULL; PFNGLTEXCOORDP3UIVPROC glad_glTexCoordP3uiv = NULL; PFNGLTEXCOORDP4UIPROC glad_glTexCoordP4ui = NULL; PFNGLTEXCOORDP4UIVPROC glad_glTexCoordP4uiv = NULL; PFNGLTEXCOORDPOINTERPROC glad_glTexCoordPointer = NULL; PFNGLTEXENVFPROC glad_glTexEnvf = NULL; PFNGLTEXENVFVPROC glad_glTexEnvfv = NULL; PFNGLTEXENVIPROC glad_glTexEnvi = NULL; PFNGLTEXENVIVPROC glad_glTexEnviv = NULL; PFNGLTEXGENDPROC glad_glTexGend = NULL; PFNGLTEXGENDVPROC glad_glTexGendv = NULL; PFNGLTEXGENFPROC glad_glTexGenf = NULL; PFNGLTEXGENFVPROC glad_glTexGenfv = NULL; PFNGLTEXGENIPROC glad_glTexGeni = NULL; PFNGLTEXGENIVPROC glad_glTexGeniv = NULL; PFNGLTEXIMAGE1DPROC glad_glTexImage1D = NULL; PFNGLTEXIMAGE2DPROC glad_glTexImage2D = NULL; PFNGLTEXIMAGE2DMULTISAMPLEPROC glad_glTexImage2DMultisample = NULL; PFNGLTEXIMAGE3DPROC glad_glTexImage3D = NULL; PFNGLTEXIMAGE3DMULTISAMPLEPROC glad_glTexImage3DMultisample = NULL; PFNGLTEXPAGECOMMITMENTARBPROC glad_glTexPageCommitmentARB = NULL; PFNGLTEXPARAMETERIIVPROC glad_glTexParameterIiv = NULL; PFNGLTEXPARAMETERIUIVPROC glad_glTexParameterIuiv = NULL; PFNGLTEXPARAMETERFPROC glad_glTexParameterf = NULL; PFNGLTEXPARAMETERFVPROC glad_glTexParameterfv = NULL; PFNGLTEXPARAMETERIPROC glad_glTexParameteri = NULL; PFNGLTEXPARAMETERIVPROC glad_glTexParameteriv = NULL; PFNGLTEXSTORAGE1DPROC glad_glTexStorage1D = NULL; PFNGLTEXSTORAGE2DPROC glad_glTexStorage2D = NULL; PFNGLTEXSTORAGE2DMULTISAMPLEPROC glad_glTexStorage2DMultisample = NULL; PFNGLTEXSTORAGE3DPROC glad_glTexStorage3D = NULL; PFNGLTEXSTORAGE3DMULTISAMPLEPROC glad_glTexStorage3DMultisample = NULL; PFNGLTEXSUBIMAGE1DPROC glad_glTexSubImage1D = NULL; PFNGLTEXSUBIMAGE2DPROC glad_glTexSubImage2D = NULL; PFNGLTEXSUBIMAGE3DPROC glad_glTexSubImage3D = NULL; PFNGLTEXTUREBARRIERPROC glad_glTextureBarrier = NULL; PFNGLTEXTUREBUFFERPROC glad_glTextureBuffer = NULL; PFNGLTEXTUREBUFFERRANGEPROC glad_glTextureBufferRange = NULL; PFNGLTEXTUREPARAMETERIIVPROC glad_glTextureParameterIiv = NULL; PFNGLTEXTUREPARAMETERIUIVPROC glad_glTextureParameterIuiv = NULL; PFNGLTEXTUREPARAMETERFPROC glad_glTextureParameterf = NULL; PFNGLTEXTUREPARAMETERFVPROC glad_glTextureParameterfv = NULL; PFNGLTEXTUREPARAMETERIPROC glad_glTextureParameteri = NULL; PFNGLTEXTUREPARAMETERIVPROC glad_glTextureParameteriv = NULL; PFNGLTEXTURESTORAGE1DPROC glad_glTextureStorage1D = NULL; PFNGLTEXTURESTORAGE2DPROC glad_glTextureStorage2D = NULL; PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC glad_glTextureStorage2DMultisample = NULL; PFNGLTEXTURESTORAGE3DPROC glad_glTextureStorage3D = NULL; PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC glad_glTextureStorage3DMultisample = NULL; PFNGLTEXTURESUBIMAGE1DPROC glad_glTextureSubImage1D = NULL; PFNGLTEXTURESUBIMAGE2DPROC glad_glTextureSubImage2D = NULL; PFNGLTEXTURESUBIMAGE3DPROC glad_glTextureSubImage3D = NULL; PFNGLTEXTUREVIEWPROC glad_glTextureView = NULL; PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC glad_glTransformFeedbackBufferBase = NULL; PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC glad_glTransformFeedbackBufferRange = NULL; PFNGLTRANSFORMFEEDBACKVARYINGSPROC glad_glTransformFeedbackVaryings = NULL; PFNGLTRANSLATEDPROC glad_glTranslated = NULL; PFNGLTRANSLATEFPROC glad_glTranslatef = NULL; PFNGLUNIFORM1DPROC glad_glUniform1d = NULL; PFNGLUNIFORM1DVPROC glad_glUniform1dv = NULL; PFNGLUNIFORM1FPROC glad_glUniform1f = NULL; PFNGLUNIFORM1FARBPROC glad_glUniform1fARB = NULL; PFNGLUNIFORM1FVPROC glad_glUniform1fv = NULL; PFNGLUNIFORM1FVARBPROC glad_glUniform1fvARB = NULL; PFNGLUNIFORM1IPROC glad_glUniform1i = NULL; PFNGLUNIFORM1I64ARBPROC glad_glUniform1i64ARB = NULL; PFNGLUNIFORM1I64VARBPROC glad_glUniform1i64vARB = NULL; PFNGLUNIFORM1IARBPROC glad_glUniform1iARB = NULL; PFNGLUNIFORM1IVPROC glad_glUniform1iv = NULL; PFNGLUNIFORM1IVARBPROC glad_glUniform1ivARB = NULL; PFNGLUNIFORM1UIPROC glad_glUniform1ui = NULL; PFNGLUNIFORM1UI64ARBPROC glad_glUniform1ui64ARB = NULL; PFNGLUNIFORM1UI64VARBPROC glad_glUniform1ui64vARB = NULL; PFNGLUNIFORM1UIVPROC glad_glUniform1uiv = NULL; PFNGLUNIFORM2DPROC glad_glUniform2d = NULL; PFNGLUNIFORM2DVPROC glad_glUniform2dv = NULL; PFNGLUNIFORM2FPROC glad_glUniform2f = NULL; PFNGLUNIFORM2FARBPROC glad_glUniform2fARB = NULL; PFNGLUNIFORM2FVPROC glad_glUniform2fv = NULL; PFNGLUNIFORM2FVARBPROC glad_glUniform2fvARB = NULL; PFNGLUNIFORM2IPROC glad_glUniform2i = NULL; PFNGLUNIFORM2I64ARBPROC glad_glUniform2i64ARB = NULL; PFNGLUNIFORM2I64VARBPROC glad_glUniform2i64vARB = NULL; PFNGLUNIFORM2IARBPROC glad_glUniform2iARB = NULL; PFNGLUNIFORM2IVPROC glad_glUniform2iv = NULL; PFNGLUNIFORM2IVARBPROC glad_glUniform2ivARB = NULL; PFNGLUNIFORM2UIPROC glad_glUniform2ui = NULL; PFNGLUNIFORM2UI64ARBPROC glad_glUniform2ui64ARB = NULL; PFNGLUNIFORM2UI64VARBPROC glad_glUniform2ui64vARB = NULL; PFNGLUNIFORM2UIVPROC glad_glUniform2uiv = NULL; PFNGLUNIFORM3DPROC glad_glUniform3d = NULL; PFNGLUNIFORM3DVPROC glad_glUniform3dv = NULL; PFNGLUNIFORM3FPROC glad_glUniform3f = NULL; PFNGLUNIFORM3FARBPROC glad_glUniform3fARB = NULL; PFNGLUNIFORM3FVPROC glad_glUniform3fv = NULL; PFNGLUNIFORM3FVARBPROC glad_glUniform3fvARB = NULL; PFNGLUNIFORM3IPROC glad_glUniform3i = NULL; PFNGLUNIFORM3I64ARBPROC glad_glUniform3i64ARB = NULL; PFNGLUNIFORM3I64VARBPROC glad_glUniform3i64vARB = NULL; PFNGLUNIFORM3IARBPROC glad_glUniform3iARB = NULL; PFNGLUNIFORM3IVPROC glad_glUniform3iv = NULL; PFNGLUNIFORM3IVARBPROC glad_glUniform3ivARB = NULL; PFNGLUNIFORM3UIPROC glad_glUniform3ui = NULL; PFNGLUNIFORM3UI64ARBPROC glad_glUniform3ui64ARB = NULL; PFNGLUNIFORM3UI64VARBPROC glad_glUniform3ui64vARB = NULL; PFNGLUNIFORM3UIVPROC glad_glUniform3uiv = NULL; PFNGLUNIFORM4DPROC glad_glUniform4d = NULL; PFNGLUNIFORM4DVPROC glad_glUniform4dv = NULL; PFNGLUNIFORM4FPROC glad_glUniform4f = NULL; PFNGLUNIFORM4FARBPROC glad_glUniform4fARB = NULL; PFNGLUNIFORM4FVPROC glad_glUniform4fv = NULL; PFNGLUNIFORM4FVARBPROC glad_glUniform4fvARB = NULL; PFNGLUNIFORM4IPROC glad_glUniform4i = NULL; PFNGLUNIFORM4I64ARBPROC glad_glUniform4i64ARB = NULL; PFNGLUNIFORM4I64VARBPROC glad_glUniform4i64vARB = NULL; PFNGLUNIFORM4IARBPROC glad_glUniform4iARB = NULL; PFNGLUNIFORM4IVPROC glad_glUniform4iv = NULL; PFNGLUNIFORM4IVARBPROC glad_glUniform4ivARB = NULL; PFNGLUNIFORM4UIPROC glad_glUniform4ui = NULL; PFNGLUNIFORM4UI64ARBPROC glad_glUniform4ui64ARB = NULL; PFNGLUNIFORM4UI64VARBPROC glad_glUniform4ui64vARB = NULL; PFNGLUNIFORM4UIVPROC glad_glUniform4uiv = NULL; PFNGLUNIFORMBLOCKBINDINGPROC glad_glUniformBlockBinding = NULL; PFNGLUNIFORMHANDLEUI64ARBPROC glad_glUniformHandleui64ARB = NULL; PFNGLUNIFORMHANDLEUI64VARBPROC glad_glUniformHandleui64vARB = NULL; PFNGLUNIFORMMATRIX2DVPROC glad_glUniformMatrix2dv = NULL; PFNGLUNIFORMMATRIX2FVPROC glad_glUniformMatrix2fv = NULL; PFNGLUNIFORMMATRIX2FVARBPROC glad_glUniformMatrix2fvARB = NULL; PFNGLUNIFORMMATRIX2X3DVPROC glad_glUniformMatrix2x3dv = NULL; PFNGLUNIFORMMATRIX2X3FVPROC glad_glUniformMatrix2x3fv = NULL; PFNGLUNIFORMMATRIX2X4DVPROC glad_glUniformMatrix2x4dv = NULL; PFNGLUNIFORMMATRIX2X4FVPROC glad_glUniformMatrix2x4fv = NULL; PFNGLUNIFORMMATRIX3DVPROC glad_glUniformMatrix3dv = NULL; PFNGLUNIFORMMATRIX3FVPROC glad_glUniformMatrix3fv = NULL; PFNGLUNIFORMMATRIX3FVARBPROC glad_glUniformMatrix3fvARB = NULL; PFNGLUNIFORMMATRIX3X2DVPROC glad_glUniformMatrix3x2dv = NULL; PFNGLUNIFORMMATRIX3X2FVPROC glad_glUniformMatrix3x2fv = NULL; PFNGLUNIFORMMATRIX3X4DVPROC glad_glUniformMatrix3x4dv = NULL; PFNGLUNIFORMMATRIX3X4FVPROC glad_glUniformMatrix3x4fv = NULL; PFNGLUNIFORMMATRIX4DVPROC glad_glUniformMatrix4dv = NULL; PFNGLUNIFORMMATRIX4FVPROC glad_glUniformMatrix4fv = NULL; PFNGLUNIFORMMATRIX4FVARBPROC glad_glUniformMatrix4fvARB = NULL; PFNGLUNIFORMMATRIX4X2DVPROC glad_glUniformMatrix4x2dv = NULL; PFNGLUNIFORMMATRIX4X2FVPROC glad_glUniformMatrix4x2fv = NULL; PFNGLUNIFORMMATRIX4X3DVPROC glad_glUniformMatrix4x3dv = NULL; PFNGLUNIFORMMATRIX4X3FVPROC glad_glUniformMatrix4x3fv = NULL; PFNGLUNIFORMSUBROUTINESUIVPROC glad_glUniformSubroutinesuiv = NULL; PFNGLUNMAPBUFFERPROC glad_glUnmapBuffer = NULL; PFNGLUNMAPBUFFERARBPROC glad_glUnmapBufferARB = NULL; PFNGLUNMAPNAMEDBUFFERPROC glad_glUnmapNamedBuffer = NULL; PFNGLUSEPROGRAMPROC glad_glUseProgram = NULL; PFNGLUSEPROGRAMOBJECTARBPROC glad_glUseProgramObjectARB = NULL; PFNGLUSEPROGRAMSTAGESPROC glad_glUseProgramStages = NULL; PFNGLVALIDATEPROGRAMPROC glad_glValidateProgram = NULL; PFNGLVALIDATEPROGRAMARBPROC glad_glValidateProgramARB = NULL; PFNGLVALIDATEPROGRAMPIPELINEPROC glad_glValidateProgramPipeline = NULL; PFNGLVERTEX2DPROC glad_glVertex2d = NULL; PFNGLVERTEX2DVPROC glad_glVertex2dv = NULL; PFNGLVERTEX2FPROC glad_glVertex2f = NULL; PFNGLVERTEX2FVPROC glad_glVertex2fv = NULL; PFNGLVERTEX2IPROC glad_glVertex2i = NULL; PFNGLVERTEX2IVPROC glad_glVertex2iv = NULL; PFNGLVERTEX2SPROC glad_glVertex2s = NULL; PFNGLVERTEX2SVPROC glad_glVertex2sv = NULL; PFNGLVERTEX3DPROC glad_glVertex3d = NULL; PFNGLVERTEX3DVPROC glad_glVertex3dv = NULL; PFNGLVERTEX3FPROC glad_glVertex3f = NULL; PFNGLVERTEX3FVPROC glad_glVertex3fv = NULL; PFNGLVERTEX3IPROC glad_glVertex3i = NULL; PFNGLVERTEX3IVPROC glad_glVertex3iv = NULL; PFNGLVERTEX3SPROC glad_glVertex3s = NULL; PFNGLVERTEX3SVPROC glad_glVertex3sv = NULL; PFNGLVERTEX4DPROC glad_glVertex4d = NULL; PFNGLVERTEX4DVPROC glad_glVertex4dv = NULL; PFNGLVERTEX4FPROC glad_glVertex4f = NULL; PFNGLVERTEX4FVPROC glad_glVertex4fv = NULL; PFNGLVERTEX4IPROC glad_glVertex4i = NULL; PFNGLVERTEX4IVPROC glad_glVertex4iv = NULL; PFNGLVERTEX4SPROC glad_glVertex4s = NULL; PFNGLVERTEX4SVPROC glad_glVertex4sv = NULL; PFNGLVERTEXARRAYATTRIBBINDINGPROC glad_glVertexArrayAttribBinding = NULL; PFNGLVERTEXARRAYATTRIBFORMATPROC glad_glVertexArrayAttribFormat = NULL; PFNGLVERTEXARRAYATTRIBIFORMATPROC glad_glVertexArrayAttribIFormat = NULL; PFNGLVERTEXARRAYATTRIBLFORMATPROC glad_glVertexArrayAttribLFormat = NULL; PFNGLVERTEXARRAYBINDINGDIVISORPROC glad_glVertexArrayBindingDivisor = NULL; PFNGLVERTEXARRAYELEMENTBUFFERPROC glad_glVertexArrayElementBuffer = NULL; PFNGLVERTEXARRAYVERTEXBUFFERPROC glad_glVertexArrayVertexBuffer = NULL; PFNGLVERTEXARRAYVERTEXBUFFERSPROC glad_glVertexArrayVertexBuffers = NULL; PFNGLVERTEXATTRIB1DPROC glad_glVertexAttrib1d = NULL; PFNGLVERTEXATTRIB1DARBPROC glad_glVertexAttrib1dARB = NULL; PFNGLVERTEXATTRIB1DVPROC glad_glVertexAttrib1dv = NULL; PFNGLVERTEXATTRIB1DVARBPROC glad_glVertexAttrib1dvARB = NULL; PFNGLVERTEXATTRIB1FPROC glad_glVertexAttrib1f = NULL; PFNGLVERTEXATTRIB1FARBPROC glad_glVertexAttrib1fARB = NULL; PFNGLVERTEXATTRIB1FVPROC glad_glVertexAttrib1fv = NULL; PFNGLVERTEXATTRIB1FVARBPROC glad_glVertexAttrib1fvARB = NULL; PFNGLVERTEXATTRIB1SPROC glad_glVertexAttrib1s = NULL; PFNGLVERTEXATTRIB1SARBPROC glad_glVertexAttrib1sARB = NULL; PFNGLVERTEXATTRIB1SVPROC glad_glVertexAttrib1sv = NULL; PFNGLVERTEXATTRIB1SVARBPROC glad_glVertexAttrib1svARB = NULL; PFNGLVERTEXATTRIB2DPROC glad_glVertexAttrib2d = NULL; PFNGLVERTEXATTRIB2DARBPROC glad_glVertexAttrib2dARB = NULL; PFNGLVERTEXATTRIB2DVPROC glad_glVertexAttrib2dv = NULL; PFNGLVERTEXATTRIB2DVARBPROC glad_glVertexAttrib2dvARB = NULL; PFNGLVERTEXATTRIB2FPROC glad_glVertexAttrib2f = NULL; PFNGLVERTEXATTRIB2FARBPROC glad_glVertexAttrib2fARB = NULL; PFNGLVERTEXATTRIB2FVPROC glad_glVertexAttrib2fv = NULL; PFNGLVERTEXATTRIB2FVARBPROC glad_glVertexAttrib2fvARB = NULL; PFNGLVERTEXATTRIB2SPROC glad_glVertexAttrib2s = NULL; PFNGLVERTEXATTRIB2SARBPROC glad_glVertexAttrib2sARB = NULL; PFNGLVERTEXATTRIB2SVPROC glad_glVertexAttrib2sv = NULL; PFNGLVERTEXATTRIB2SVARBPROC glad_glVertexAttrib2svARB = NULL; PFNGLVERTEXATTRIB3DPROC glad_glVertexAttrib3d = NULL; PFNGLVERTEXATTRIB3DARBPROC glad_glVertexAttrib3dARB = NULL; PFNGLVERTEXATTRIB3DVPROC glad_glVertexAttrib3dv = NULL; PFNGLVERTEXATTRIB3DVARBPROC glad_glVertexAttrib3dvARB = NULL; PFNGLVERTEXATTRIB3FPROC glad_glVertexAttrib3f = NULL; PFNGLVERTEXATTRIB3FARBPROC glad_glVertexAttrib3fARB = NULL; PFNGLVERTEXATTRIB3FVPROC glad_glVertexAttrib3fv = NULL; PFNGLVERTEXATTRIB3FVARBPROC glad_glVertexAttrib3fvARB = NULL; PFNGLVERTEXATTRIB3SPROC glad_glVertexAttrib3s = NULL; PFNGLVERTEXATTRIB3SARBPROC glad_glVertexAttrib3sARB = NULL; PFNGLVERTEXATTRIB3SVPROC glad_glVertexAttrib3sv = NULL; PFNGLVERTEXATTRIB3SVARBPROC glad_glVertexAttrib3svARB = NULL; PFNGLVERTEXATTRIB4NBVPROC glad_glVertexAttrib4Nbv = NULL; PFNGLVERTEXATTRIB4NBVARBPROC glad_glVertexAttrib4NbvARB = NULL; PFNGLVERTEXATTRIB4NIVPROC glad_glVertexAttrib4Niv = NULL; PFNGLVERTEXATTRIB4NIVARBPROC glad_glVertexAttrib4NivARB = NULL; PFNGLVERTEXATTRIB4NSVPROC glad_glVertexAttrib4Nsv = NULL; PFNGLVERTEXATTRIB4NSVARBPROC glad_glVertexAttrib4NsvARB = NULL; PFNGLVERTEXATTRIB4NUBPROC glad_glVertexAttrib4Nub = NULL; PFNGLVERTEXATTRIB4NUBARBPROC glad_glVertexAttrib4NubARB = NULL; PFNGLVERTEXATTRIB4NUBVPROC glad_glVertexAttrib4Nubv = NULL; PFNGLVERTEXATTRIB4NUBVARBPROC glad_glVertexAttrib4NubvARB = NULL; PFNGLVERTEXATTRIB4NUIVPROC glad_glVertexAttrib4Nuiv = NULL; PFNGLVERTEXATTRIB4NUIVARBPROC glad_glVertexAttrib4NuivARB = NULL; PFNGLVERTEXATTRIB4NUSVPROC glad_glVertexAttrib4Nusv = NULL; PFNGLVERTEXATTRIB4NUSVARBPROC glad_glVertexAttrib4NusvARB = NULL; PFNGLVERTEXATTRIB4BVPROC glad_glVertexAttrib4bv = NULL; PFNGLVERTEXATTRIB4BVARBPROC glad_glVertexAttrib4bvARB = NULL; PFNGLVERTEXATTRIB4DPROC glad_glVertexAttrib4d = NULL; PFNGLVERTEXATTRIB4DARBPROC glad_glVertexAttrib4dARB = NULL; PFNGLVERTEXATTRIB4DVPROC glad_glVertexAttrib4dv = NULL; PFNGLVERTEXATTRIB4DVARBPROC glad_glVertexAttrib4dvARB = NULL; PFNGLVERTEXATTRIB4FPROC glad_glVertexAttrib4f = NULL; PFNGLVERTEXATTRIB4FARBPROC glad_glVertexAttrib4fARB = NULL; PFNGLVERTEXATTRIB4FVPROC glad_glVertexAttrib4fv = NULL; PFNGLVERTEXATTRIB4FVARBPROC glad_glVertexAttrib4fvARB = NULL; PFNGLVERTEXATTRIB4IVPROC glad_glVertexAttrib4iv = NULL; PFNGLVERTEXATTRIB4IVARBPROC glad_glVertexAttrib4ivARB = NULL; PFNGLVERTEXATTRIB4SPROC glad_glVertexAttrib4s = NULL; PFNGLVERTEXATTRIB4SARBPROC glad_glVertexAttrib4sARB = NULL; PFNGLVERTEXATTRIB4SVPROC glad_glVertexAttrib4sv = NULL; PFNGLVERTEXATTRIB4SVARBPROC glad_glVertexAttrib4svARB = NULL; PFNGLVERTEXATTRIB4UBVPROC glad_glVertexAttrib4ubv = NULL; PFNGLVERTEXATTRIB4UBVARBPROC glad_glVertexAttrib4ubvARB = NULL; PFNGLVERTEXATTRIB4UIVPROC glad_glVertexAttrib4uiv = NULL; PFNGLVERTEXATTRIB4UIVARBPROC glad_glVertexAttrib4uivARB = NULL; PFNGLVERTEXATTRIB4USVPROC glad_glVertexAttrib4usv = NULL; PFNGLVERTEXATTRIB4USVARBPROC glad_glVertexAttrib4usvARB = NULL; PFNGLVERTEXATTRIBBINDINGPROC glad_glVertexAttribBinding = NULL; PFNGLVERTEXATTRIBDIVISORPROC glad_glVertexAttribDivisor = NULL; PFNGLVERTEXATTRIBDIVISORARBPROC glad_glVertexAttribDivisorARB = NULL; PFNGLVERTEXATTRIBFORMATPROC glad_glVertexAttribFormat = NULL; PFNGLVERTEXATTRIBI1IPROC glad_glVertexAttribI1i = NULL; PFNGLVERTEXATTRIBI1IVPROC glad_glVertexAttribI1iv = NULL; PFNGLVERTEXATTRIBI1UIPROC glad_glVertexAttribI1ui = NULL; PFNGLVERTEXATTRIBI1UIVPROC glad_glVertexAttribI1uiv = NULL; PFNGLVERTEXATTRIBI2IPROC glad_glVertexAttribI2i = NULL; PFNGLVERTEXATTRIBI2IVPROC glad_glVertexAttribI2iv = NULL; PFNGLVERTEXATTRIBI2UIPROC glad_glVertexAttribI2ui = NULL; PFNGLVERTEXATTRIBI2UIVPROC glad_glVertexAttribI2uiv = NULL; PFNGLVERTEXATTRIBI3IPROC glad_glVertexAttribI3i = NULL; PFNGLVERTEXATTRIBI3IVPROC glad_glVertexAttribI3iv = NULL; PFNGLVERTEXATTRIBI3UIPROC glad_glVertexAttribI3ui = NULL; PFNGLVERTEXATTRIBI3UIVPROC glad_glVertexAttribI3uiv = NULL; PFNGLVERTEXATTRIBI4BVPROC glad_glVertexAttribI4bv = NULL; PFNGLVERTEXATTRIBI4IPROC glad_glVertexAttribI4i = NULL; PFNGLVERTEXATTRIBI4IVPROC glad_glVertexAttribI4iv = NULL; PFNGLVERTEXATTRIBI4SVPROC glad_glVertexAttribI4sv = NULL; PFNGLVERTEXATTRIBI4UBVPROC glad_glVertexAttribI4ubv = NULL; PFNGLVERTEXATTRIBI4UIPROC glad_glVertexAttribI4ui = NULL; PFNGLVERTEXATTRIBI4UIVPROC glad_glVertexAttribI4uiv = NULL; PFNGLVERTEXATTRIBI4USVPROC glad_glVertexAttribI4usv = NULL; PFNGLVERTEXATTRIBIFORMATPROC glad_glVertexAttribIFormat = NULL; PFNGLVERTEXATTRIBIPOINTERPROC glad_glVertexAttribIPointer = NULL; PFNGLVERTEXATTRIBL1DPROC glad_glVertexAttribL1d = NULL; PFNGLVERTEXATTRIBL1DVPROC glad_glVertexAttribL1dv = NULL; PFNGLVERTEXATTRIBL1UI64ARBPROC glad_glVertexAttribL1ui64ARB = NULL; PFNGLVERTEXATTRIBL1UI64VARBPROC glad_glVertexAttribL1ui64vARB = NULL; PFNGLVERTEXATTRIBL2DPROC glad_glVertexAttribL2d = NULL; PFNGLVERTEXATTRIBL2DVPROC glad_glVertexAttribL2dv = NULL; PFNGLVERTEXATTRIBL3DPROC glad_glVertexAttribL3d = NULL; PFNGLVERTEXATTRIBL3DVPROC glad_glVertexAttribL3dv = NULL; PFNGLVERTEXATTRIBL4DPROC glad_glVertexAttribL4d = NULL; PFNGLVERTEXATTRIBL4DVPROC glad_glVertexAttribL4dv = NULL; PFNGLVERTEXATTRIBLFORMATPROC glad_glVertexAttribLFormat = NULL; PFNGLVERTEXATTRIBLPOINTERPROC glad_glVertexAttribLPointer = NULL; PFNGLVERTEXATTRIBP1UIPROC glad_glVertexAttribP1ui = NULL; PFNGLVERTEXATTRIBP1UIVPROC glad_glVertexAttribP1uiv = NULL; PFNGLVERTEXATTRIBP2UIPROC glad_glVertexAttribP2ui = NULL; PFNGLVERTEXATTRIBP2UIVPROC glad_glVertexAttribP2uiv = NULL; PFNGLVERTEXATTRIBP3UIPROC glad_glVertexAttribP3ui = NULL; PFNGLVERTEXATTRIBP3UIVPROC glad_glVertexAttribP3uiv = NULL; PFNGLVERTEXATTRIBP4UIPROC glad_glVertexAttribP4ui = NULL; PFNGLVERTEXATTRIBP4UIVPROC glad_glVertexAttribP4uiv = NULL; PFNGLVERTEXATTRIBPOINTERPROC glad_glVertexAttribPointer = NULL; PFNGLVERTEXATTRIBPOINTERARBPROC glad_glVertexAttribPointerARB = NULL; PFNGLVERTEXBINDINGDIVISORPROC glad_glVertexBindingDivisor = NULL; PFNGLVERTEXBLENDARBPROC glad_glVertexBlendARB = NULL; PFNGLVERTEXP2UIPROC glad_glVertexP2ui = NULL; PFNGLVERTEXP2UIVPROC glad_glVertexP2uiv = NULL; PFNGLVERTEXP3UIPROC glad_glVertexP3ui = NULL; PFNGLVERTEXP3UIVPROC glad_glVertexP3uiv = NULL; PFNGLVERTEXP4UIPROC glad_glVertexP4ui = NULL; PFNGLVERTEXP4UIVPROC glad_glVertexP4uiv = NULL; PFNGLVERTEXPOINTERPROC glad_glVertexPointer = NULL; PFNGLVIEWPORTPROC glad_glViewport = NULL; PFNGLVIEWPORTARRAYVPROC glad_glViewportArrayv = NULL; PFNGLVIEWPORTINDEXEDFPROC glad_glViewportIndexedf = NULL; PFNGLVIEWPORTINDEXEDFVPROC glad_glViewportIndexedfv = NULL; PFNGLWAITSYNCPROC glad_glWaitSync = NULL; PFNGLWEIGHTPOINTERARBPROC glad_glWeightPointerARB = NULL; PFNGLWEIGHTBVARBPROC glad_glWeightbvARB = NULL; PFNGLWEIGHTDVARBPROC glad_glWeightdvARB = NULL; PFNGLWEIGHTFVARBPROC glad_glWeightfvARB = NULL; PFNGLWEIGHTIVARBPROC glad_glWeightivARB = NULL; PFNGLWEIGHTSVARBPROC glad_glWeightsvARB = NULL; PFNGLWEIGHTUBVARBPROC glad_glWeightubvARB = NULL; PFNGLWEIGHTUIVARBPROC glad_glWeightuivARB = NULL; PFNGLWEIGHTUSVARBPROC glad_glWeightusvARB = NULL; PFNGLWINDOWPOS2DPROC glad_glWindowPos2d = NULL; PFNGLWINDOWPOS2DARBPROC glad_glWindowPos2dARB = NULL; PFNGLWINDOWPOS2DVPROC glad_glWindowPos2dv = NULL; PFNGLWINDOWPOS2DVARBPROC glad_glWindowPos2dvARB = NULL; PFNGLWINDOWPOS2FPROC glad_glWindowPos2f = NULL; PFNGLWINDOWPOS2FARBPROC glad_glWindowPos2fARB = NULL; PFNGLWINDOWPOS2FVPROC glad_glWindowPos2fv = NULL; PFNGLWINDOWPOS2FVARBPROC glad_glWindowPos2fvARB = NULL; PFNGLWINDOWPOS2IPROC glad_glWindowPos2i = NULL; PFNGLWINDOWPOS2IARBPROC glad_glWindowPos2iARB = NULL; PFNGLWINDOWPOS2IVPROC glad_glWindowPos2iv = NULL; PFNGLWINDOWPOS2IVARBPROC glad_glWindowPos2ivARB = NULL; PFNGLWINDOWPOS2SPROC glad_glWindowPos2s = NULL; PFNGLWINDOWPOS2SARBPROC glad_glWindowPos2sARB = NULL; PFNGLWINDOWPOS2SVPROC glad_glWindowPos2sv = NULL; PFNGLWINDOWPOS2SVARBPROC glad_glWindowPos2svARB = NULL; PFNGLWINDOWPOS3DPROC glad_glWindowPos3d = NULL; PFNGLWINDOWPOS3DARBPROC glad_glWindowPos3dARB = NULL; PFNGLWINDOWPOS3DVPROC glad_glWindowPos3dv = NULL; PFNGLWINDOWPOS3DVARBPROC glad_glWindowPos3dvARB = NULL; PFNGLWINDOWPOS3FPROC glad_glWindowPos3f = NULL; PFNGLWINDOWPOS3FARBPROC glad_glWindowPos3fARB = NULL; PFNGLWINDOWPOS3FVPROC glad_glWindowPos3fv = NULL; PFNGLWINDOWPOS3FVARBPROC glad_glWindowPos3fvARB = NULL; PFNGLWINDOWPOS3IPROC glad_glWindowPos3i = NULL; PFNGLWINDOWPOS3IARBPROC glad_glWindowPos3iARB = NULL; PFNGLWINDOWPOS3IVPROC glad_glWindowPos3iv = NULL; PFNGLWINDOWPOS3IVARBPROC glad_glWindowPos3ivARB = NULL; PFNGLWINDOWPOS3SPROC glad_glWindowPos3s = NULL; PFNGLWINDOWPOS3SARBPROC glad_glWindowPos3sARB = NULL; PFNGLWINDOWPOS3SVPROC glad_glWindowPos3sv = NULL; PFNGLWINDOWPOS3SVARBPROC glad_glWindowPos3svARB = NULL; static void glad_gl_load_GL_VERSION_1_0( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_0) return; glad_glAccum = (PFNGLACCUMPROC) load(userptr, "glAccum"); glad_glAlphaFunc = (PFNGLALPHAFUNCPROC) load(userptr, "glAlphaFunc"); glad_glBegin = (PFNGLBEGINPROC) load(userptr, "glBegin"); glad_glBitmap = (PFNGLBITMAPPROC) load(userptr, "glBitmap"); glad_glBlendFunc = (PFNGLBLENDFUNCPROC) load(userptr, "glBlendFunc"); glad_glCallList = (PFNGLCALLLISTPROC) load(userptr, "glCallList"); glad_glCallLists = (PFNGLCALLLISTSPROC) load(userptr, "glCallLists"); glad_glClear = (PFNGLCLEARPROC) load(userptr, "glClear"); glad_glClearAccum = (PFNGLCLEARACCUMPROC) load(userptr, "glClearAccum"); glad_glClearColor = (PFNGLCLEARCOLORPROC) load(userptr, "glClearColor"); glad_glClearDepth = (PFNGLCLEARDEPTHPROC) load(userptr, "glClearDepth"); glad_glClearIndex = (PFNGLCLEARINDEXPROC) load(userptr, "glClearIndex"); glad_glClearStencil = (PFNGLCLEARSTENCILPROC) load(userptr, "glClearStencil"); glad_glClipPlane = (PFNGLCLIPPLANEPROC) load(userptr, "glClipPlane"); glad_glColor3b = (PFNGLCOLOR3BPROC) load(userptr, "glColor3b"); glad_glColor3bv = (PFNGLCOLOR3BVPROC) load(userptr, "glColor3bv"); glad_glColor3d = (PFNGLCOLOR3DPROC) load(userptr, "glColor3d"); glad_glColor3dv = (PFNGLCOLOR3DVPROC) load(userptr, "glColor3dv"); glad_glColor3f = (PFNGLCOLOR3FPROC) load(userptr, "glColor3f"); glad_glColor3fv = (PFNGLCOLOR3FVPROC) load(userptr, "glColor3fv"); glad_glColor3i = (PFNGLCOLOR3IPROC) load(userptr, "glColor3i"); glad_glColor3iv = (PFNGLCOLOR3IVPROC) load(userptr, "glColor3iv"); glad_glColor3s = (PFNGLCOLOR3SPROC) load(userptr, "glColor3s"); glad_glColor3sv = (PFNGLCOLOR3SVPROC) load(userptr, "glColor3sv"); glad_glColor3ub = (PFNGLCOLOR3UBPROC) load(userptr, "glColor3ub"); glad_glColor3ubv = (PFNGLCOLOR3UBVPROC) load(userptr, "glColor3ubv"); glad_glColor3ui = (PFNGLCOLOR3UIPROC) load(userptr, "glColor3ui"); glad_glColor3uiv = (PFNGLCOLOR3UIVPROC) load(userptr, "glColor3uiv"); glad_glColor3us = (PFNGLCOLOR3USPROC) load(userptr, "glColor3us"); glad_glColor3usv = (PFNGLCOLOR3USVPROC) load(userptr, "glColor3usv"); glad_glColor4b = (PFNGLCOLOR4BPROC) load(userptr, "glColor4b"); glad_glColor4bv = (PFNGLCOLOR4BVPROC) load(userptr, "glColor4bv"); glad_glColor4d = (PFNGLCOLOR4DPROC) load(userptr, "glColor4d"); glad_glColor4dv = (PFNGLCOLOR4DVPROC) load(userptr, "glColor4dv"); glad_glColor4f = (PFNGLCOLOR4FPROC) load(userptr, "glColor4f"); glad_glColor4fv = (PFNGLCOLOR4FVPROC) load(userptr, "glColor4fv"); glad_glColor4i = (PFNGLCOLOR4IPROC) load(userptr, "glColor4i"); glad_glColor4iv = (PFNGLCOLOR4IVPROC) load(userptr, "glColor4iv"); glad_glColor4s = (PFNGLCOLOR4SPROC) load(userptr, "glColor4s"); glad_glColor4sv = (PFNGLCOLOR4SVPROC) load(userptr, "glColor4sv"); glad_glColor4ub = (PFNGLCOLOR4UBPROC) load(userptr, "glColor4ub"); glad_glColor4ubv = (PFNGLCOLOR4UBVPROC) load(userptr, "glColor4ubv"); glad_glColor4ui = (PFNGLCOLOR4UIPROC) load(userptr, "glColor4ui"); glad_glColor4uiv = (PFNGLCOLOR4UIVPROC) load(userptr, "glColor4uiv"); glad_glColor4us = (PFNGLCOLOR4USPROC) load(userptr, "glColor4us"); glad_glColor4usv = (PFNGLCOLOR4USVPROC) load(userptr, "glColor4usv"); glad_glColorMask = (PFNGLCOLORMASKPROC) load(userptr, "glColorMask"); glad_glColorMaterial = (PFNGLCOLORMATERIALPROC) load(userptr, "glColorMaterial"); glad_glCopyPixels = (PFNGLCOPYPIXELSPROC) load(userptr, "glCopyPixels"); glad_glCullFace = (PFNGLCULLFACEPROC) load(userptr, "glCullFace"); glad_glDeleteLists = (PFNGLDELETELISTSPROC) load(userptr, "glDeleteLists"); glad_glDepthFunc = (PFNGLDEPTHFUNCPROC) load(userptr, "glDepthFunc"); glad_glDepthMask = (PFNGLDEPTHMASKPROC) load(userptr, "glDepthMask"); glad_glDepthRange = (PFNGLDEPTHRANGEPROC) load(userptr, "glDepthRange"); glad_glDisable = (PFNGLDISABLEPROC) load(userptr, "glDisable"); glad_glDrawBuffer = (PFNGLDRAWBUFFERPROC) load(userptr, "glDrawBuffer"); glad_glDrawPixels = (PFNGLDRAWPIXELSPROC) load(userptr, "glDrawPixels"); glad_glEdgeFlag = (PFNGLEDGEFLAGPROC) load(userptr, "glEdgeFlag"); glad_glEdgeFlagv = (PFNGLEDGEFLAGVPROC) load(userptr, "glEdgeFlagv"); glad_glEnable = (PFNGLENABLEPROC) load(userptr, "glEnable"); glad_glEnd = (PFNGLENDPROC) load(userptr, "glEnd"); glad_glEndList = (PFNGLENDLISTPROC) load(userptr, "glEndList"); glad_glEvalCoord1d = (PFNGLEVALCOORD1DPROC) load(userptr, "glEvalCoord1d"); glad_glEvalCoord1dv = (PFNGLEVALCOORD1DVPROC) load(userptr, "glEvalCoord1dv"); glad_glEvalCoord1f = (PFNGLEVALCOORD1FPROC) load(userptr, "glEvalCoord1f"); glad_glEvalCoord1fv = (PFNGLEVALCOORD1FVPROC) load(userptr, "glEvalCoord1fv"); glad_glEvalCoord2d = (PFNGLEVALCOORD2DPROC) load(userptr, "glEvalCoord2d"); glad_glEvalCoord2dv = (PFNGLEVALCOORD2DVPROC) load(userptr, "glEvalCoord2dv"); glad_glEvalCoord2f = (PFNGLEVALCOORD2FPROC) load(userptr, "glEvalCoord2f"); glad_glEvalCoord2fv = (PFNGLEVALCOORD2FVPROC) load(userptr, "glEvalCoord2fv"); glad_glEvalMesh1 = (PFNGLEVALMESH1PROC) load(userptr, "glEvalMesh1"); glad_glEvalMesh2 = (PFNGLEVALMESH2PROC) load(userptr, "glEvalMesh2"); glad_glEvalPoint1 = (PFNGLEVALPOINT1PROC) load(userptr, "glEvalPoint1"); glad_glEvalPoint2 = (PFNGLEVALPOINT2PROC) load(userptr, "glEvalPoint2"); glad_glFeedbackBuffer = (PFNGLFEEDBACKBUFFERPROC) load(userptr, "glFeedbackBuffer"); glad_glFinish = (PFNGLFINISHPROC) load(userptr, "glFinish"); glad_glFlush = (PFNGLFLUSHPROC) load(userptr, "glFlush"); glad_glFogf = (PFNGLFOGFPROC) load(userptr, "glFogf"); glad_glFogfv = (PFNGLFOGFVPROC) load(userptr, "glFogfv"); glad_glFogi = (PFNGLFOGIPROC) load(userptr, "glFogi"); glad_glFogiv = (PFNGLFOGIVPROC) load(userptr, "glFogiv"); glad_glFrontFace = (PFNGLFRONTFACEPROC) load(userptr, "glFrontFace"); glad_glFrustum = (PFNGLFRUSTUMPROC) load(userptr, "glFrustum"); glad_glGenLists = (PFNGLGENLISTSPROC) load(userptr, "glGenLists"); glad_glGetBooleanv = (PFNGLGETBOOLEANVPROC) load(userptr, "glGetBooleanv"); glad_glGetClipPlane = (PFNGLGETCLIPPLANEPROC) load(userptr, "glGetClipPlane"); glad_glGetDoublev = (PFNGLGETDOUBLEVPROC) load(userptr, "glGetDoublev"); glad_glGetError = (PFNGLGETERRORPROC) load(userptr, "glGetError"); glad_glGetFloatv = (PFNGLGETFLOATVPROC) load(userptr, "glGetFloatv"); glad_glGetIntegerv = (PFNGLGETINTEGERVPROC) load(userptr, "glGetIntegerv"); glad_glGetLightfv = (PFNGLGETLIGHTFVPROC) load(userptr, "glGetLightfv"); glad_glGetLightiv = (PFNGLGETLIGHTIVPROC) load(userptr, "glGetLightiv"); glad_glGetMapdv = (PFNGLGETMAPDVPROC) load(userptr, "glGetMapdv"); glad_glGetMapfv = (PFNGLGETMAPFVPROC) load(userptr, "glGetMapfv"); glad_glGetMapiv = (PFNGLGETMAPIVPROC) load(userptr, "glGetMapiv"); glad_glGetMaterialfv = (PFNGLGETMATERIALFVPROC) load(userptr, "glGetMaterialfv"); glad_glGetMaterialiv = (PFNGLGETMATERIALIVPROC) load(userptr, "glGetMaterialiv"); glad_glGetPixelMapfv = (PFNGLGETPIXELMAPFVPROC) load(userptr, "glGetPixelMapfv"); glad_glGetPixelMapuiv = (PFNGLGETPIXELMAPUIVPROC) load(userptr, "glGetPixelMapuiv"); glad_glGetPixelMapusv = (PFNGLGETPIXELMAPUSVPROC) load(userptr, "glGetPixelMapusv"); glad_glGetPolygonStipple = (PFNGLGETPOLYGONSTIPPLEPROC) load(userptr, "glGetPolygonStipple"); glad_glGetString = (PFNGLGETSTRINGPROC) load(userptr, "glGetString"); glad_glGetTexEnvfv = (PFNGLGETTEXENVFVPROC) load(userptr, "glGetTexEnvfv"); glad_glGetTexEnviv = (PFNGLGETTEXENVIVPROC) load(userptr, "glGetTexEnviv"); glad_glGetTexGendv = (PFNGLGETTEXGENDVPROC) load(userptr, "glGetTexGendv"); glad_glGetTexGenfv = (PFNGLGETTEXGENFVPROC) load(userptr, "glGetTexGenfv"); glad_glGetTexGeniv = (PFNGLGETTEXGENIVPROC) load(userptr, "glGetTexGeniv"); glad_glGetTexImage = (PFNGLGETTEXIMAGEPROC) load(userptr, "glGetTexImage"); glad_glGetTexLevelParameterfv = (PFNGLGETTEXLEVELPARAMETERFVPROC) load(userptr, "glGetTexLevelParameterfv"); glad_glGetTexLevelParameteriv = (PFNGLGETTEXLEVELPARAMETERIVPROC) load(userptr, "glGetTexLevelParameteriv"); glad_glGetTexParameterfv = (PFNGLGETTEXPARAMETERFVPROC) load(userptr, "glGetTexParameterfv"); glad_glGetTexParameteriv = (PFNGLGETTEXPARAMETERIVPROC) load(userptr, "glGetTexParameteriv"); glad_glHint = (PFNGLHINTPROC) load(userptr, "glHint"); glad_glIndexMask = (PFNGLINDEXMASKPROC) load(userptr, "glIndexMask"); glad_glIndexd = (PFNGLINDEXDPROC) load(userptr, "glIndexd"); glad_glIndexdv = (PFNGLINDEXDVPROC) load(userptr, "glIndexdv"); glad_glIndexf = (PFNGLINDEXFPROC) load(userptr, "glIndexf"); glad_glIndexfv = (PFNGLINDEXFVPROC) load(userptr, "glIndexfv"); glad_glIndexi = (PFNGLINDEXIPROC) load(userptr, "glIndexi"); glad_glIndexiv = (PFNGLINDEXIVPROC) load(userptr, "glIndexiv"); glad_glIndexs = (PFNGLINDEXSPROC) load(userptr, "glIndexs"); glad_glIndexsv = (PFNGLINDEXSVPROC) load(userptr, "glIndexsv"); glad_glInitNames = (PFNGLINITNAMESPROC) load(userptr, "glInitNames"); glad_glIsEnabled = (PFNGLISENABLEDPROC) load(userptr, "glIsEnabled"); glad_glIsList = (PFNGLISLISTPROC) load(userptr, "glIsList"); glad_glLightModelf = (PFNGLLIGHTMODELFPROC) load(userptr, "glLightModelf"); glad_glLightModelfv = (PFNGLLIGHTMODELFVPROC) load(userptr, "glLightModelfv"); glad_glLightModeli = (PFNGLLIGHTMODELIPROC) load(userptr, "glLightModeli"); glad_glLightModeliv = (PFNGLLIGHTMODELIVPROC) load(userptr, "glLightModeliv"); glad_glLightf = (PFNGLLIGHTFPROC) load(userptr, "glLightf"); glad_glLightfv = (PFNGLLIGHTFVPROC) load(userptr, "glLightfv"); glad_glLighti = (PFNGLLIGHTIPROC) load(userptr, "glLighti"); glad_glLightiv = (PFNGLLIGHTIVPROC) load(userptr, "glLightiv"); glad_glLineStipple = (PFNGLLINESTIPPLEPROC) load(userptr, "glLineStipple"); glad_glLineWidth = (PFNGLLINEWIDTHPROC) load(userptr, "glLineWidth"); glad_glListBase = (PFNGLLISTBASEPROC) load(userptr, "glListBase"); glad_glLoadIdentity = (PFNGLLOADIDENTITYPROC) load(userptr, "glLoadIdentity"); glad_glLoadMatrixd = (PFNGLLOADMATRIXDPROC) load(userptr, "glLoadMatrixd"); glad_glLoadMatrixf = (PFNGLLOADMATRIXFPROC) load(userptr, "glLoadMatrixf"); glad_glLoadName = (PFNGLLOADNAMEPROC) load(userptr, "glLoadName"); glad_glLogicOp = (PFNGLLOGICOPPROC) load(userptr, "glLogicOp"); glad_glMap1d = (PFNGLMAP1DPROC) load(userptr, "glMap1d"); glad_glMap1f = (PFNGLMAP1FPROC) load(userptr, "glMap1f"); glad_glMap2d = (PFNGLMAP2DPROC) load(userptr, "glMap2d"); glad_glMap2f = (PFNGLMAP2FPROC) load(userptr, "glMap2f"); glad_glMapGrid1d = (PFNGLMAPGRID1DPROC) load(userptr, "glMapGrid1d"); glad_glMapGrid1f = (PFNGLMAPGRID1FPROC) load(userptr, "glMapGrid1f"); glad_glMapGrid2d = (PFNGLMAPGRID2DPROC) load(userptr, "glMapGrid2d"); glad_glMapGrid2f = (PFNGLMAPGRID2FPROC) load(userptr, "glMapGrid2f"); glad_glMaterialf = (PFNGLMATERIALFPROC) load(userptr, "glMaterialf"); glad_glMaterialfv = (PFNGLMATERIALFVPROC) load(userptr, "glMaterialfv"); glad_glMateriali = (PFNGLMATERIALIPROC) load(userptr, "glMateriali"); glad_glMaterialiv = (PFNGLMATERIALIVPROC) load(userptr, "glMaterialiv"); glad_glMatrixMode = (PFNGLMATRIXMODEPROC) load(userptr, "glMatrixMode"); glad_glMultMatrixd = (PFNGLMULTMATRIXDPROC) load(userptr, "glMultMatrixd"); glad_glMultMatrixf = (PFNGLMULTMATRIXFPROC) load(userptr, "glMultMatrixf"); glad_glNewList = (PFNGLNEWLISTPROC) load(userptr, "glNewList"); glad_glNormal3b = (PFNGLNORMAL3BPROC) load(userptr, "glNormal3b"); glad_glNormal3bv = (PFNGLNORMAL3BVPROC) load(userptr, "glNormal3bv"); glad_glNormal3d = (PFNGLNORMAL3DPROC) load(userptr, "glNormal3d"); glad_glNormal3dv = (PFNGLNORMAL3DVPROC) load(userptr, "glNormal3dv"); glad_glNormal3f = (PFNGLNORMAL3FPROC) load(userptr, "glNormal3f"); glad_glNormal3fv = (PFNGLNORMAL3FVPROC) load(userptr, "glNormal3fv"); glad_glNormal3i = (PFNGLNORMAL3IPROC) load(userptr, "glNormal3i"); glad_glNormal3iv = (PFNGLNORMAL3IVPROC) load(userptr, "glNormal3iv"); glad_glNormal3s = (PFNGLNORMAL3SPROC) load(userptr, "glNormal3s"); glad_glNormal3sv = (PFNGLNORMAL3SVPROC) load(userptr, "glNormal3sv"); glad_glOrtho = (PFNGLORTHOPROC) load(userptr, "glOrtho"); glad_glPassThrough = (PFNGLPASSTHROUGHPROC) load(userptr, "glPassThrough"); glad_glPixelMapfv = (PFNGLPIXELMAPFVPROC) load(userptr, "glPixelMapfv"); glad_glPixelMapuiv = (PFNGLPIXELMAPUIVPROC) load(userptr, "glPixelMapuiv"); glad_glPixelMapusv = (PFNGLPIXELMAPUSVPROC) load(userptr, "glPixelMapusv"); glad_glPixelStoref = (PFNGLPIXELSTOREFPROC) load(userptr, "glPixelStoref"); glad_glPixelStorei = (PFNGLPIXELSTOREIPROC) load(userptr, "glPixelStorei"); glad_glPixelTransferf = (PFNGLPIXELTRANSFERFPROC) load(userptr, "glPixelTransferf"); glad_glPixelTransferi = (PFNGLPIXELTRANSFERIPROC) load(userptr, "glPixelTransferi"); glad_glPixelZoom = (PFNGLPIXELZOOMPROC) load(userptr, "glPixelZoom"); glad_glPointSize = (PFNGLPOINTSIZEPROC) load(userptr, "glPointSize"); glad_glPolygonMode = (PFNGLPOLYGONMODEPROC) load(userptr, "glPolygonMode"); glad_glPolygonStipple = (PFNGLPOLYGONSTIPPLEPROC) load(userptr, "glPolygonStipple"); glad_glPopAttrib = (PFNGLPOPATTRIBPROC) load(userptr, "glPopAttrib"); glad_glPopMatrix = (PFNGLPOPMATRIXPROC) load(userptr, "glPopMatrix"); glad_glPopName = (PFNGLPOPNAMEPROC) load(userptr, "glPopName"); glad_glPushAttrib = (PFNGLPUSHATTRIBPROC) load(userptr, "glPushAttrib"); glad_glPushMatrix = (PFNGLPUSHMATRIXPROC) load(userptr, "glPushMatrix"); glad_glPushName = (PFNGLPUSHNAMEPROC) load(userptr, "glPushName"); glad_glRasterPos2d = (PFNGLRASTERPOS2DPROC) load(userptr, "glRasterPos2d"); glad_glRasterPos2dv = (PFNGLRASTERPOS2DVPROC) load(userptr, "glRasterPos2dv"); glad_glRasterPos2f = (PFNGLRASTERPOS2FPROC) load(userptr, "glRasterPos2f"); glad_glRasterPos2fv = (PFNGLRASTERPOS2FVPROC) load(userptr, "glRasterPos2fv"); glad_glRasterPos2i = (PFNGLRASTERPOS2IPROC) load(userptr, "glRasterPos2i"); glad_glRasterPos2iv = (PFNGLRASTERPOS2IVPROC) load(userptr, "glRasterPos2iv"); glad_glRasterPos2s = (PFNGLRASTERPOS2SPROC) load(userptr, "glRasterPos2s"); glad_glRasterPos2sv = (PFNGLRASTERPOS2SVPROC) load(userptr, "glRasterPos2sv"); glad_glRasterPos3d = (PFNGLRASTERPOS3DPROC) load(userptr, "glRasterPos3d"); glad_glRasterPos3dv = (PFNGLRASTERPOS3DVPROC) load(userptr, "glRasterPos3dv"); glad_glRasterPos3f = (PFNGLRASTERPOS3FPROC) load(userptr, "glRasterPos3f"); glad_glRasterPos3fv = (PFNGLRASTERPOS3FVPROC) load(userptr, "glRasterPos3fv"); glad_glRasterPos3i = (PFNGLRASTERPOS3IPROC) load(userptr, "glRasterPos3i"); glad_glRasterPos3iv = (PFNGLRASTERPOS3IVPROC) load(userptr, "glRasterPos3iv"); glad_glRasterPos3s = (PFNGLRASTERPOS3SPROC) load(userptr, "glRasterPos3s"); glad_glRasterPos3sv = (PFNGLRASTERPOS3SVPROC) load(userptr, "glRasterPos3sv"); glad_glRasterPos4d = (PFNGLRASTERPOS4DPROC) load(userptr, "glRasterPos4d"); glad_glRasterPos4dv = (PFNGLRASTERPOS4DVPROC) load(userptr, "glRasterPos4dv"); glad_glRasterPos4f = (PFNGLRASTERPOS4FPROC) load(userptr, "glRasterPos4f"); glad_glRasterPos4fv = (PFNGLRASTERPOS4FVPROC) load(userptr, "glRasterPos4fv"); glad_glRasterPos4i = (PFNGLRASTERPOS4IPROC) load(userptr, "glRasterPos4i"); glad_glRasterPos4iv = (PFNGLRASTERPOS4IVPROC) load(userptr, "glRasterPos4iv"); glad_glRasterPos4s = (PFNGLRASTERPOS4SPROC) load(userptr, "glRasterPos4s"); glad_glRasterPos4sv = (PFNGLRASTERPOS4SVPROC) load(userptr, "glRasterPos4sv"); glad_glReadBuffer = (PFNGLREADBUFFERPROC) load(userptr, "glReadBuffer"); glad_glReadPixels = (PFNGLREADPIXELSPROC) load(userptr, "glReadPixels"); glad_glRectd = (PFNGLRECTDPROC) load(userptr, "glRectd"); glad_glRectdv = (PFNGLRECTDVPROC) load(userptr, "glRectdv"); glad_glRectf = (PFNGLRECTFPROC) load(userptr, "glRectf"); glad_glRectfv = (PFNGLRECTFVPROC) load(userptr, "glRectfv"); glad_glRecti = (PFNGLRECTIPROC) load(userptr, "glRecti"); glad_glRectiv = (PFNGLRECTIVPROC) load(userptr, "glRectiv"); glad_glRects = (PFNGLRECTSPROC) load(userptr, "glRects"); glad_glRectsv = (PFNGLRECTSVPROC) load(userptr, "glRectsv"); glad_glRenderMode = (PFNGLRENDERMODEPROC) load(userptr, "glRenderMode"); glad_glRotated = (PFNGLROTATEDPROC) load(userptr, "glRotated"); glad_glRotatef = (PFNGLROTATEFPROC) load(userptr, "glRotatef"); glad_glScaled = (PFNGLSCALEDPROC) load(userptr, "glScaled"); glad_glScalef = (PFNGLSCALEFPROC) load(userptr, "glScalef"); glad_glScissor = (PFNGLSCISSORPROC) load(userptr, "glScissor"); glad_glSelectBuffer = (PFNGLSELECTBUFFERPROC) load(userptr, "glSelectBuffer"); glad_glShadeModel = (PFNGLSHADEMODELPROC) load(userptr, "glShadeModel"); glad_glStencilFunc = (PFNGLSTENCILFUNCPROC) load(userptr, "glStencilFunc"); glad_glStencilMask = (PFNGLSTENCILMASKPROC) load(userptr, "glStencilMask"); glad_glStencilOp = (PFNGLSTENCILOPPROC) load(userptr, "glStencilOp"); glad_glTexCoord1d = (PFNGLTEXCOORD1DPROC) load(userptr, "glTexCoord1d"); glad_glTexCoord1dv = (PFNGLTEXCOORD1DVPROC) load(userptr, "glTexCoord1dv"); glad_glTexCoord1f = (PFNGLTEXCOORD1FPROC) load(userptr, "glTexCoord1f"); glad_glTexCoord1fv = (PFNGLTEXCOORD1FVPROC) load(userptr, "glTexCoord1fv"); glad_glTexCoord1i = (PFNGLTEXCOORD1IPROC) load(userptr, "glTexCoord1i"); glad_glTexCoord1iv = (PFNGLTEXCOORD1IVPROC) load(userptr, "glTexCoord1iv"); glad_glTexCoord1s = (PFNGLTEXCOORD1SPROC) load(userptr, "glTexCoord1s"); glad_glTexCoord1sv = (PFNGLTEXCOORD1SVPROC) load(userptr, "glTexCoord1sv"); glad_glTexCoord2d = (PFNGLTEXCOORD2DPROC) load(userptr, "glTexCoord2d"); glad_glTexCoord2dv = (PFNGLTEXCOORD2DVPROC) load(userptr, "glTexCoord2dv"); glad_glTexCoord2f = (PFNGLTEXCOORD2FPROC) load(userptr, "glTexCoord2f"); glad_glTexCoord2fv = (PFNGLTEXCOORD2FVPROC) load(userptr, "glTexCoord2fv"); glad_glTexCoord2i = (PFNGLTEXCOORD2IPROC) load(userptr, "glTexCoord2i"); glad_glTexCoord2iv = (PFNGLTEXCOORD2IVPROC) load(userptr, "glTexCoord2iv"); glad_glTexCoord2s = (PFNGLTEXCOORD2SPROC) load(userptr, "glTexCoord2s"); glad_glTexCoord2sv = (PFNGLTEXCOORD2SVPROC) load(userptr, "glTexCoord2sv"); glad_glTexCoord3d = (PFNGLTEXCOORD3DPROC) load(userptr, "glTexCoord3d"); glad_glTexCoord3dv = (PFNGLTEXCOORD3DVPROC) load(userptr, "glTexCoord3dv"); glad_glTexCoord3f = (PFNGLTEXCOORD3FPROC) load(userptr, "glTexCoord3f"); glad_glTexCoord3fv = (PFNGLTEXCOORD3FVPROC) load(userptr, "glTexCoord3fv"); glad_glTexCoord3i = (PFNGLTEXCOORD3IPROC) load(userptr, "glTexCoord3i"); glad_glTexCoord3iv = (PFNGLTEXCOORD3IVPROC) load(userptr, "glTexCoord3iv"); glad_glTexCoord3s = (PFNGLTEXCOORD3SPROC) load(userptr, "glTexCoord3s"); glad_glTexCoord3sv = (PFNGLTEXCOORD3SVPROC) load(userptr, "glTexCoord3sv"); glad_glTexCoord4d = (PFNGLTEXCOORD4DPROC) load(userptr, "glTexCoord4d"); glad_glTexCoord4dv = (PFNGLTEXCOORD4DVPROC) load(userptr, "glTexCoord4dv"); glad_glTexCoord4f = (PFNGLTEXCOORD4FPROC) load(userptr, "glTexCoord4f"); glad_glTexCoord4fv = (PFNGLTEXCOORD4FVPROC) load(userptr, "glTexCoord4fv"); glad_glTexCoord4i = (PFNGLTEXCOORD4IPROC) load(userptr, "glTexCoord4i"); glad_glTexCoord4iv = (PFNGLTEXCOORD4IVPROC) load(userptr, "glTexCoord4iv"); glad_glTexCoord4s = (PFNGLTEXCOORD4SPROC) load(userptr, "glTexCoord4s"); glad_glTexCoord4sv = (PFNGLTEXCOORD4SVPROC) load(userptr, "glTexCoord4sv"); glad_glTexEnvf = (PFNGLTEXENVFPROC) load(userptr, "glTexEnvf"); glad_glTexEnvfv = (PFNGLTEXENVFVPROC) load(userptr, "glTexEnvfv"); glad_glTexEnvi = (PFNGLTEXENVIPROC) load(userptr, "glTexEnvi"); glad_glTexEnviv = (PFNGLTEXENVIVPROC) load(userptr, "glTexEnviv"); glad_glTexGend = (PFNGLTEXGENDPROC) load(userptr, "glTexGend"); glad_glTexGendv = (PFNGLTEXGENDVPROC) load(userptr, "glTexGendv"); glad_glTexGenf = (PFNGLTEXGENFPROC) load(userptr, "glTexGenf"); glad_glTexGenfv = (PFNGLTEXGENFVPROC) load(userptr, "glTexGenfv"); glad_glTexGeni = (PFNGLTEXGENIPROC) load(userptr, "glTexGeni"); glad_glTexGeniv = (PFNGLTEXGENIVPROC) load(userptr, "glTexGeniv"); glad_glTexImage1D = (PFNGLTEXIMAGE1DPROC) load(userptr, "glTexImage1D"); glad_glTexImage2D = (PFNGLTEXIMAGE2DPROC) load(userptr, "glTexImage2D"); glad_glTexParameterf = (PFNGLTEXPARAMETERFPROC) load(userptr, "glTexParameterf"); glad_glTexParameterfv = (PFNGLTEXPARAMETERFVPROC) load(userptr, "glTexParameterfv"); glad_glTexParameteri = (PFNGLTEXPARAMETERIPROC) load(userptr, "glTexParameteri"); glad_glTexParameteriv = (PFNGLTEXPARAMETERIVPROC) load(userptr, "glTexParameteriv"); glad_glTranslated = (PFNGLTRANSLATEDPROC) load(userptr, "glTranslated"); glad_glTranslatef = (PFNGLTRANSLATEFPROC) load(userptr, "glTranslatef"); glad_glVertex2d = (PFNGLVERTEX2DPROC) load(userptr, "glVertex2d"); glad_glVertex2dv = (PFNGLVERTEX2DVPROC) load(userptr, "glVertex2dv"); glad_glVertex2f = (PFNGLVERTEX2FPROC) load(userptr, "glVertex2f"); glad_glVertex2fv = (PFNGLVERTEX2FVPROC) load(userptr, "glVertex2fv"); glad_glVertex2i = (PFNGLVERTEX2IPROC) load(userptr, "glVertex2i"); glad_glVertex2iv = (PFNGLVERTEX2IVPROC) load(userptr, "glVertex2iv"); glad_glVertex2s = (PFNGLVERTEX2SPROC) load(userptr, "glVertex2s"); glad_glVertex2sv = (PFNGLVERTEX2SVPROC) load(userptr, "glVertex2sv"); glad_glVertex3d = (PFNGLVERTEX3DPROC) load(userptr, "glVertex3d"); glad_glVertex3dv = (PFNGLVERTEX3DVPROC) load(userptr, "glVertex3dv"); glad_glVertex3f = (PFNGLVERTEX3FPROC) load(userptr, "glVertex3f"); glad_glVertex3fv = (PFNGLVERTEX3FVPROC) load(userptr, "glVertex3fv"); glad_glVertex3i = (PFNGLVERTEX3IPROC) load(userptr, "glVertex3i"); glad_glVertex3iv = (PFNGLVERTEX3IVPROC) load(userptr, "glVertex3iv"); glad_glVertex3s = (PFNGLVERTEX3SPROC) load(userptr, "glVertex3s"); glad_glVertex3sv = (PFNGLVERTEX3SVPROC) load(userptr, "glVertex3sv"); glad_glVertex4d = (PFNGLVERTEX4DPROC) load(userptr, "glVertex4d"); glad_glVertex4dv = (PFNGLVERTEX4DVPROC) load(userptr, "glVertex4dv"); glad_glVertex4f = (PFNGLVERTEX4FPROC) load(userptr, "glVertex4f"); glad_glVertex4fv = (PFNGLVERTEX4FVPROC) load(userptr, "glVertex4fv"); glad_glVertex4i = (PFNGLVERTEX4IPROC) load(userptr, "glVertex4i"); glad_glVertex4iv = (PFNGLVERTEX4IVPROC) load(userptr, "glVertex4iv"); glad_glVertex4s = (PFNGLVERTEX4SPROC) load(userptr, "glVertex4s"); glad_glVertex4sv = (PFNGLVERTEX4SVPROC) load(userptr, "glVertex4sv"); glad_glViewport = (PFNGLVIEWPORTPROC) load(userptr, "glViewport"); } static void glad_gl_load_GL_VERSION_1_1( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_1) return; glad_glAreTexturesResident = (PFNGLARETEXTURESRESIDENTPROC) load(userptr, "glAreTexturesResident"); glad_glArrayElement = (PFNGLARRAYELEMENTPROC) load(userptr, "glArrayElement"); glad_glBindTexture = (PFNGLBINDTEXTUREPROC) load(userptr, "glBindTexture"); glad_glColorPointer = (PFNGLCOLORPOINTERPROC) load(userptr, "glColorPointer"); glad_glCopyTexImage1D = (PFNGLCOPYTEXIMAGE1DPROC) load(userptr, "glCopyTexImage1D"); glad_glCopyTexImage2D = (PFNGLCOPYTEXIMAGE2DPROC) load(userptr, "glCopyTexImage2D"); glad_glCopyTexSubImage1D = (PFNGLCOPYTEXSUBIMAGE1DPROC) load(userptr, "glCopyTexSubImage1D"); glad_glCopyTexSubImage2D = (PFNGLCOPYTEXSUBIMAGE2DPROC) load(userptr, "glCopyTexSubImage2D"); glad_glDeleteTextures = (PFNGLDELETETEXTURESPROC) load(userptr, "glDeleteTextures"); glad_glDisableClientState = (PFNGLDISABLECLIENTSTATEPROC) load(userptr, "glDisableClientState"); glad_glDrawArrays = (PFNGLDRAWARRAYSPROC) load(userptr, "glDrawArrays"); glad_glDrawElements = (PFNGLDRAWELEMENTSPROC) load(userptr, "glDrawElements"); glad_glEdgeFlagPointer = (PFNGLEDGEFLAGPOINTERPROC) load(userptr, "glEdgeFlagPointer"); glad_glEnableClientState = (PFNGLENABLECLIENTSTATEPROC) load(userptr, "glEnableClientState"); glad_glGenTextures = (PFNGLGENTEXTURESPROC) load(userptr, "glGenTextures"); glad_glGetPointerv = (PFNGLGETPOINTERVPROC) load(userptr, "glGetPointerv"); glad_glIndexPointer = (PFNGLINDEXPOINTERPROC) load(userptr, "glIndexPointer"); glad_glIndexub = (PFNGLINDEXUBPROC) load(userptr, "glIndexub"); glad_glIndexubv = (PFNGLINDEXUBVPROC) load(userptr, "glIndexubv"); glad_glInterleavedArrays = (PFNGLINTERLEAVEDARRAYSPROC) load(userptr, "glInterleavedArrays"); glad_glIsTexture = (PFNGLISTEXTUREPROC) load(userptr, "glIsTexture"); glad_glNormalPointer = (PFNGLNORMALPOINTERPROC) load(userptr, "glNormalPointer"); glad_glPolygonOffset = (PFNGLPOLYGONOFFSETPROC) load(userptr, "glPolygonOffset"); glad_glPopClientAttrib = (PFNGLPOPCLIENTATTRIBPROC) load(userptr, "glPopClientAttrib"); glad_glPrioritizeTextures = (PFNGLPRIORITIZETEXTURESPROC) load(userptr, "glPrioritizeTextures"); glad_glPushClientAttrib = (PFNGLPUSHCLIENTATTRIBPROC) load(userptr, "glPushClientAttrib"); glad_glTexCoordPointer = (PFNGLTEXCOORDPOINTERPROC) load(userptr, "glTexCoordPointer"); glad_glTexSubImage1D = (PFNGLTEXSUBIMAGE1DPROC) load(userptr, "glTexSubImage1D"); glad_glTexSubImage2D = (PFNGLTEXSUBIMAGE2DPROC) load(userptr, "glTexSubImage2D"); glad_glVertexPointer = (PFNGLVERTEXPOINTERPROC) load(userptr, "glVertexPointer"); } static void glad_gl_load_GL_VERSION_1_2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_2) return; glad_glCopyTexSubImage3D = (PFNGLCOPYTEXSUBIMAGE3DPROC) load(userptr, "glCopyTexSubImage3D"); glad_glDrawRangeElements = (PFNGLDRAWRANGEELEMENTSPROC) load(userptr, "glDrawRangeElements"); glad_glTexImage3D = (PFNGLTEXIMAGE3DPROC) load(userptr, "glTexImage3D"); glad_glTexSubImage3D = (PFNGLTEXSUBIMAGE3DPROC) load(userptr, "glTexSubImage3D"); } static void glad_gl_load_GL_VERSION_1_3( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_3) return; glad_glActiveTexture = (PFNGLACTIVETEXTUREPROC) load(userptr, "glActiveTexture"); glad_glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREPROC) load(userptr, "glClientActiveTexture"); glad_glCompressedTexImage1D = (PFNGLCOMPRESSEDTEXIMAGE1DPROC) load(userptr, "glCompressedTexImage1D"); glad_glCompressedTexImage2D = (PFNGLCOMPRESSEDTEXIMAGE2DPROC) load(userptr, "glCompressedTexImage2D"); glad_glCompressedTexImage3D = (PFNGLCOMPRESSEDTEXIMAGE3DPROC) load(userptr, "glCompressedTexImage3D"); glad_glCompressedTexSubImage1D = (PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC) load(userptr, "glCompressedTexSubImage1D"); glad_glCompressedTexSubImage2D = (PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC) load(userptr, "glCompressedTexSubImage2D"); glad_glCompressedTexSubImage3D = (PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC) load(userptr, "glCompressedTexSubImage3D"); glad_glGetCompressedTexImage = (PFNGLGETCOMPRESSEDTEXIMAGEPROC) load(userptr, "glGetCompressedTexImage"); glad_glLoadTransposeMatrixd = (PFNGLLOADTRANSPOSEMATRIXDPROC) load(userptr, "glLoadTransposeMatrixd"); glad_glLoadTransposeMatrixf = (PFNGLLOADTRANSPOSEMATRIXFPROC) load(userptr, "glLoadTransposeMatrixf"); glad_glMultTransposeMatrixd = (PFNGLMULTTRANSPOSEMATRIXDPROC) load(userptr, "glMultTransposeMatrixd"); glad_glMultTransposeMatrixf = (PFNGLMULTTRANSPOSEMATRIXFPROC) load(userptr, "glMultTransposeMatrixf"); glad_glMultiTexCoord1d = (PFNGLMULTITEXCOORD1DPROC) load(userptr, "glMultiTexCoord1d"); glad_glMultiTexCoord1dv = (PFNGLMULTITEXCOORD1DVPROC) load(userptr, "glMultiTexCoord1dv"); glad_glMultiTexCoord1f = (PFNGLMULTITEXCOORD1FPROC) load(userptr, "glMultiTexCoord1f"); glad_glMultiTexCoord1fv = (PFNGLMULTITEXCOORD1FVPROC) load(userptr, "glMultiTexCoord1fv"); glad_glMultiTexCoord1i = (PFNGLMULTITEXCOORD1IPROC) load(userptr, "glMultiTexCoord1i"); glad_glMultiTexCoord1iv = (PFNGLMULTITEXCOORD1IVPROC) load(userptr, "glMultiTexCoord1iv"); glad_glMultiTexCoord1s = (PFNGLMULTITEXCOORD1SPROC) load(userptr, "glMultiTexCoord1s"); glad_glMultiTexCoord1sv = (PFNGLMULTITEXCOORD1SVPROC) load(userptr, "glMultiTexCoord1sv"); glad_glMultiTexCoord2d = (PFNGLMULTITEXCOORD2DPROC) load(userptr, "glMultiTexCoord2d"); glad_glMultiTexCoord2dv = (PFNGLMULTITEXCOORD2DVPROC) load(userptr, "glMultiTexCoord2dv"); glad_glMultiTexCoord2f = (PFNGLMULTITEXCOORD2FPROC) load(userptr, "glMultiTexCoord2f"); glad_glMultiTexCoord2fv = (PFNGLMULTITEXCOORD2FVPROC) load(userptr, "glMultiTexCoord2fv"); glad_glMultiTexCoord2i = (PFNGLMULTITEXCOORD2IPROC) load(userptr, "glMultiTexCoord2i"); glad_glMultiTexCoord2iv = (PFNGLMULTITEXCOORD2IVPROC) load(userptr, "glMultiTexCoord2iv"); glad_glMultiTexCoord2s = (PFNGLMULTITEXCOORD2SPROC) load(userptr, "glMultiTexCoord2s"); glad_glMultiTexCoord2sv = (PFNGLMULTITEXCOORD2SVPROC) load(userptr, "glMultiTexCoord2sv"); glad_glMultiTexCoord3d = (PFNGLMULTITEXCOORD3DPROC) load(userptr, "glMultiTexCoord3d"); glad_glMultiTexCoord3dv = (PFNGLMULTITEXCOORD3DVPROC) load(userptr, "glMultiTexCoord3dv"); glad_glMultiTexCoord3f = (PFNGLMULTITEXCOORD3FPROC) load(userptr, "glMultiTexCoord3f"); glad_glMultiTexCoord3fv = (PFNGLMULTITEXCOORD3FVPROC) load(userptr, "glMultiTexCoord3fv"); glad_glMultiTexCoord3i = (PFNGLMULTITEXCOORD3IPROC) load(userptr, "glMultiTexCoord3i"); glad_glMultiTexCoord3iv = (PFNGLMULTITEXCOORD3IVPROC) load(userptr, "glMultiTexCoord3iv"); glad_glMultiTexCoord3s = (PFNGLMULTITEXCOORD3SPROC) load(userptr, "glMultiTexCoord3s"); glad_glMultiTexCoord3sv = (PFNGLMULTITEXCOORD3SVPROC) load(userptr, "glMultiTexCoord3sv"); glad_glMultiTexCoord4d = (PFNGLMULTITEXCOORD4DPROC) load(userptr, "glMultiTexCoord4d"); glad_glMultiTexCoord4dv = (PFNGLMULTITEXCOORD4DVPROC) load(userptr, "glMultiTexCoord4dv"); glad_glMultiTexCoord4f = (PFNGLMULTITEXCOORD4FPROC) load(userptr, "glMultiTexCoord4f"); glad_glMultiTexCoord4fv = (PFNGLMULTITEXCOORD4FVPROC) load(userptr, "glMultiTexCoord4fv"); glad_glMultiTexCoord4i = (PFNGLMULTITEXCOORD4IPROC) load(userptr, "glMultiTexCoord4i"); glad_glMultiTexCoord4iv = (PFNGLMULTITEXCOORD4IVPROC) load(userptr, "glMultiTexCoord4iv"); glad_glMultiTexCoord4s = (PFNGLMULTITEXCOORD4SPROC) load(userptr, "glMultiTexCoord4s"); glad_glMultiTexCoord4sv = (PFNGLMULTITEXCOORD4SVPROC) load(userptr, "glMultiTexCoord4sv"); glad_glSampleCoverage = (PFNGLSAMPLECOVERAGEPROC) load(userptr, "glSampleCoverage"); } static void glad_gl_load_GL_VERSION_1_4( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_4) return; glad_glBlendColor = (PFNGLBLENDCOLORPROC) load(userptr, "glBlendColor"); glad_glBlendEquation = (PFNGLBLENDEQUATIONPROC) load(userptr, "glBlendEquation"); glad_glBlendFuncSeparate = (PFNGLBLENDFUNCSEPARATEPROC) load(userptr, "glBlendFuncSeparate"); glad_glFogCoordPointer = (PFNGLFOGCOORDPOINTERPROC) load(userptr, "glFogCoordPointer"); glad_glFogCoordd = (PFNGLFOGCOORDDPROC) load(userptr, "glFogCoordd"); glad_glFogCoorddv = (PFNGLFOGCOORDDVPROC) load(userptr, "glFogCoorddv"); glad_glFogCoordf = (PFNGLFOGCOORDFPROC) load(userptr, "glFogCoordf"); glad_glFogCoordfv = (PFNGLFOGCOORDFVPROC) load(userptr, "glFogCoordfv"); glad_glMultiDrawArrays = (PFNGLMULTIDRAWARRAYSPROC) load(userptr, "glMultiDrawArrays"); glad_glMultiDrawElements = (PFNGLMULTIDRAWELEMENTSPROC) load(userptr, "glMultiDrawElements"); glad_glPointParameterf = (PFNGLPOINTPARAMETERFPROC) load(userptr, "glPointParameterf"); glad_glPointParameterfv = (PFNGLPOINTPARAMETERFVPROC) load(userptr, "glPointParameterfv"); glad_glPointParameteri = (PFNGLPOINTPARAMETERIPROC) load(userptr, "glPointParameteri"); glad_glPointParameteriv = (PFNGLPOINTPARAMETERIVPROC) load(userptr, "glPointParameteriv"); glad_glSecondaryColor3b = (PFNGLSECONDARYCOLOR3BPROC) load(userptr, "glSecondaryColor3b"); glad_glSecondaryColor3bv = (PFNGLSECONDARYCOLOR3BVPROC) load(userptr, "glSecondaryColor3bv"); glad_glSecondaryColor3d = (PFNGLSECONDARYCOLOR3DPROC) load(userptr, "glSecondaryColor3d"); glad_glSecondaryColor3dv = (PFNGLSECONDARYCOLOR3DVPROC) load(userptr, "glSecondaryColor3dv"); glad_glSecondaryColor3f = (PFNGLSECONDARYCOLOR3FPROC) load(userptr, "glSecondaryColor3f"); glad_glSecondaryColor3fv = (PFNGLSECONDARYCOLOR3FVPROC) load(userptr, "glSecondaryColor3fv"); glad_glSecondaryColor3i = (PFNGLSECONDARYCOLOR3IPROC) load(userptr, "glSecondaryColor3i"); glad_glSecondaryColor3iv = (PFNGLSECONDARYCOLOR3IVPROC) load(userptr, "glSecondaryColor3iv"); glad_glSecondaryColor3s = (PFNGLSECONDARYCOLOR3SPROC) load(userptr, "glSecondaryColor3s"); glad_glSecondaryColor3sv = (PFNGLSECONDARYCOLOR3SVPROC) load(userptr, "glSecondaryColor3sv"); glad_glSecondaryColor3ub = (PFNGLSECONDARYCOLOR3UBPROC) load(userptr, "glSecondaryColor3ub"); glad_glSecondaryColor3ubv = (PFNGLSECONDARYCOLOR3UBVPROC) load(userptr, "glSecondaryColor3ubv"); glad_glSecondaryColor3ui = (PFNGLSECONDARYCOLOR3UIPROC) load(userptr, "glSecondaryColor3ui"); glad_glSecondaryColor3uiv = (PFNGLSECONDARYCOLOR3UIVPROC) load(userptr, "glSecondaryColor3uiv"); glad_glSecondaryColor3us = (PFNGLSECONDARYCOLOR3USPROC) load(userptr, "glSecondaryColor3us"); glad_glSecondaryColor3usv = (PFNGLSECONDARYCOLOR3USVPROC) load(userptr, "glSecondaryColor3usv"); glad_glSecondaryColorPointer = (PFNGLSECONDARYCOLORPOINTERPROC) load(userptr, "glSecondaryColorPointer"); glad_glWindowPos2d = (PFNGLWINDOWPOS2DPROC) load(userptr, "glWindowPos2d"); glad_glWindowPos2dv = (PFNGLWINDOWPOS2DVPROC) load(userptr, "glWindowPos2dv"); glad_glWindowPos2f = (PFNGLWINDOWPOS2FPROC) load(userptr, "glWindowPos2f"); glad_glWindowPos2fv = (PFNGLWINDOWPOS2FVPROC) load(userptr, "glWindowPos2fv"); glad_glWindowPos2i = (PFNGLWINDOWPOS2IPROC) load(userptr, "glWindowPos2i"); glad_glWindowPos2iv = (PFNGLWINDOWPOS2IVPROC) load(userptr, "glWindowPos2iv"); glad_glWindowPos2s = (PFNGLWINDOWPOS2SPROC) load(userptr, "glWindowPos2s"); glad_glWindowPos2sv = (PFNGLWINDOWPOS2SVPROC) load(userptr, "glWindowPos2sv"); glad_glWindowPos3d = (PFNGLWINDOWPOS3DPROC) load(userptr, "glWindowPos3d"); glad_glWindowPos3dv = (PFNGLWINDOWPOS3DVPROC) load(userptr, "glWindowPos3dv"); glad_glWindowPos3f = (PFNGLWINDOWPOS3FPROC) load(userptr, "glWindowPos3f"); glad_glWindowPos3fv = (PFNGLWINDOWPOS3FVPROC) load(userptr, "glWindowPos3fv"); glad_glWindowPos3i = (PFNGLWINDOWPOS3IPROC) load(userptr, "glWindowPos3i"); glad_glWindowPos3iv = (PFNGLWINDOWPOS3IVPROC) load(userptr, "glWindowPos3iv"); glad_glWindowPos3s = (PFNGLWINDOWPOS3SPROC) load(userptr, "glWindowPos3s"); glad_glWindowPos3sv = (PFNGLWINDOWPOS3SVPROC) load(userptr, "glWindowPos3sv"); } static void glad_gl_load_GL_VERSION_1_5( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_1_5) return; glad_glBeginQuery = (PFNGLBEGINQUERYPROC) load(userptr, "glBeginQuery"); glad_glBindBuffer = (PFNGLBINDBUFFERPROC) load(userptr, "glBindBuffer"); glad_glBufferData = (PFNGLBUFFERDATAPROC) load(userptr, "glBufferData"); glad_glBufferSubData = (PFNGLBUFFERSUBDATAPROC) load(userptr, "glBufferSubData"); glad_glDeleteBuffers = (PFNGLDELETEBUFFERSPROC) load(userptr, "glDeleteBuffers"); glad_glDeleteQueries = (PFNGLDELETEQUERIESPROC) load(userptr, "glDeleteQueries"); glad_glEndQuery = (PFNGLENDQUERYPROC) load(userptr, "glEndQuery"); glad_glGenBuffers = (PFNGLGENBUFFERSPROC) load(userptr, "glGenBuffers"); glad_glGenQueries = (PFNGLGENQUERIESPROC) load(userptr, "glGenQueries"); glad_glGetBufferParameteriv = (PFNGLGETBUFFERPARAMETERIVPROC) load(userptr, "glGetBufferParameteriv"); glad_glGetBufferPointerv = (PFNGLGETBUFFERPOINTERVPROC) load(userptr, "glGetBufferPointerv"); glad_glGetBufferSubData = (PFNGLGETBUFFERSUBDATAPROC) load(userptr, "glGetBufferSubData"); glad_glGetQueryObjectiv = (PFNGLGETQUERYOBJECTIVPROC) load(userptr, "glGetQueryObjectiv"); glad_glGetQueryObjectuiv = (PFNGLGETQUERYOBJECTUIVPROC) load(userptr, "glGetQueryObjectuiv"); glad_glGetQueryiv = (PFNGLGETQUERYIVPROC) load(userptr, "glGetQueryiv"); glad_glIsBuffer = (PFNGLISBUFFERPROC) load(userptr, "glIsBuffer"); glad_glIsQuery = (PFNGLISQUERYPROC) load(userptr, "glIsQuery"); glad_glMapBuffer = (PFNGLMAPBUFFERPROC) load(userptr, "glMapBuffer"); glad_glUnmapBuffer = (PFNGLUNMAPBUFFERPROC) load(userptr, "glUnmapBuffer"); } static void glad_gl_load_GL_VERSION_2_0( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_2_0) return; glad_glAttachShader = (PFNGLATTACHSHADERPROC) load(userptr, "glAttachShader"); glad_glBindAttribLocation = (PFNGLBINDATTRIBLOCATIONPROC) load(userptr, "glBindAttribLocation"); glad_glBlendEquationSeparate = (PFNGLBLENDEQUATIONSEPARATEPROC) load(userptr, "glBlendEquationSeparate"); glad_glCompileShader = (PFNGLCOMPILESHADERPROC) load(userptr, "glCompileShader"); glad_glCreateProgram = (PFNGLCREATEPROGRAMPROC) load(userptr, "glCreateProgram"); glad_glCreateShader = (PFNGLCREATESHADERPROC) load(userptr, "glCreateShader"); glad_glDeleteProgram = (PFNGLDELETEPROGRAMPROC) load(userptr, "glDeleteProgram"); glad_glDeleteShader = (PFNGLDELETESHADERPROC) load(userptr, "glDeleteShader"); glad_glDetachShader = (PFNGLDETACHSHADERPROC) load(userptr, "glDetachShader"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC) load(userptr, "glDisableVertexAttribArray"); glad_glDrawBuffers = (PFNGLDRAWBUFFERSPROC) load(userptr, "glDrawBuffers"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC) load(userptr, "glEnableVertexAttribArray"); glad_glGetActiveAttrib = (PFNGLGETACTIVEATTRIBPROC) load(userptr, "glGetActiveAttrib"); glad_glGetActiveUniform = (PFNGLGETACTIVEUNIFORMPROC) load(userptr, "glGetActiveUniform"); glad_glGetAttachedShaders = (PFNGLGETATTACHEDSHADERSPROC) load(userptr, "glGetAttachedShaders"); glad_glGetAttribLocation = (PFNGLGETATTRIBLOCATIONPROC) load(userptr, "glGetAttribLocation"); glad_glGetProgramInfoLog = (PFNGLGETPROGRAMINFOLOGPROC) load(userptr, "glGetProgramInfoLog"); glad_glGetProgramiv = (PFNGLGETPROGRAMIVPROC) load(userptr, "glGetProgramiv"); glad_glGetShaderInfoLog = (PFNGLGETSHADERINFOLOGPROC) load(userptr, "glGetShaderInfoLog"); glad_glGetShaderSource = (PFNGLGETSHADERSOURCEPROC) load(userptr, "glGetShaderSource"); glad_glGetShaderiv = (PFNGLGETSHADERIVPROC) load(userptr, "glGetShaderiv"); glad_glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC) load(userptr, "glGetUniformLocation"); glad_glGetUniformfv = (PFNGLGETUNIFORMFVPROC) load(userptr, "glGetUniformfv"); glad_glGetUniformiv = (PFNGLGETUNIFORMIVPROC) load(userptr, "glGetUniformiv"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC) load(userptr, "glGetVertexAttribPointerv"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC) load(userptr, "glGetVertexAttribdv"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC) load(userptr, "glGetVertexAttribfv"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC) load(userptr, "glGetVertexAttribiv"); glad_glIsProgram = (PFNGLISPROGRAMPROC) load(userptr, "glIsProgram"); glad_glIsShader = (PFNGLISSHADERPROC) load(userptr, "glIsShader"); glad_glLinkProgram = (PFNGLLINKPROGRAMPROC) load(userptr, "glLinkProgram"); glad_glShaderSource = (PFNGLSHADERSOURCEPROC) load(userptr, "glShaderSource"); glad_glStencilFuncSeparate = (PFNGLSTENCILFUNCSEPARATEPROC) load(userptr, "glStencilFuncSeparate"); glad_glStencilMaskSeparate = (PFNGLSTENCILMASKSEPARATEPROC) load(userptr, "glStencilMaskSeparate"); glad_glStencilOpSeparate = (PFNGLSTENCILOPSEPARATEPROC) load(userptr, "glStencilOpSeparate"); glad_glUniform1f = (PFNGLUNIFORM1FPROC) load(userptr, "glUniform1f"); glad_glUniform1fv = (PFNGLUNIFORM1FVPROC) load(userptr, "glUniform1fv"); glad_glUniform1i = (PFNGLUNIFORM1IPROC) load(userptr, "glUniform1i"); glad_glUniform1iv = (PFNGLUNIFORM1IVPROC) load(userptr, "glUniform1iv"); glad_glUniform2f = (PFNGLUNIFORM2FPROC) load(userptr, "glUniform2f"); glad_glUniform2fv = (PFNGLUNIFORM2FVPROC) load(userptr, "glUniform2fv"); glad_glUniform2i = (PFNGLUNIFORM2IPROC) load(userptr, "glUniform2i"); glad_glUniform2iv = (PFNGLUNIFORM2IVPROC) load(userptr, "glUniform2iv"); glad_glUniform3f = (PFNGLUNIFORM3FPROC) load(userptr, "glUniform3f"); glad_glUniform3fv = (PFNGLUNIFORM3FVPROC) load(userptr, "glUniform3fv"); glad_glUniform3i = (PFNGLUNIFORM3IPROC) load(userptr, "glUniform3i"); glad_glUniform3iv = (PFNGLUNIFORM3IVPROC) load(userptr, "glUniform3iv"); glad_glUniform4f = (PFNGLUNIFORM4FPROC) load(userptr, "glUniform4f"); glad_glUniform4fv = (PFNGLUNIFORM4FVPROC) load(userptr, "glUniform4fv"); glad_glUniform4i = (PFNGLUNIFORM4IPROC) load(userptr, "glUniform4i"); glad_glUniform4iv = (PFNGLUNIFORM4IVPROC) load(userptr, "glUniform4iv"); glad_glUniformMatrix2fv = (PFNGLUNIFORMMATRIX2FVPROC) load(userptr, "glUniformMatrix2fv"); glad_glUniformMatrix3fv = (PFNGLUNIFORMMATRIX3FVPROC) load(userptr, "glUniformMatrix3fv"); glad_glUniformMatrix4fv = (PFNGLUNIFORMMATRIX4FVPROC) load(userptr, "glUniformMatrix4fv"); glad_glUseProgram = (PFNGLUSEPROGRAMPROC) load(userptr, "glUseProgram"); glad_glValidateProgram = (PFNGLVALIDATEPROGRAMPROC) load(userptr, "glValidateProgram"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC) load(userptr, "glVertexAttrib1d"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC) load(userptr, "glVertexAttrib1dv"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC) load(userptr, "glVertexAttrib1f"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC) load(userptr, "glVertexAttrib1fv"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC) load(userptr, "glVertexAttrib1s"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC) load(userptr, "glVertexAttrib1sv"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC) load(userptr, "glVertexAttrib2d"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC) load(userptr, "glVertexAttrib2dv"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC) load(userptr, "glVertexAttrib2f"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC) load(userptr, "glVertexAttrib2fv"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC) load(userptr, "glVertexAttrib2s"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC) load(userptr, "glVertexAttrib2sv"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC) load(userptr, "glVertexAttrib3d"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC) load(userptr, "glVertexAttrib3dv"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC) load(userptr, "glVertexAttrib3f"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC) load(userptr, "glVertexAttrib3fv"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC) load(userptr, "glVertexAttrib3s"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC) load(userptr, "glVertexAttrib3sv"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC) load(userptr, "glVertexAttrib4Nbv"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC) load(userptr, "glVertexAttrib4Niv"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC) load(userptr, "glVertexAttrib4Nsv"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC) load(userptr, "glVertexAttrib4Nub"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC) load(userptr, "glVertexAttrib4Nubv"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC) load(userptr, "glVertexAttrib4Nuiv"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC) load(userptr, "glVertexAttrib4Nusv"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC) load(userptr, "glVertexAttrib4bv"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC) load(userptr, "glVertexAttrib4d"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC) load(userptr, "glVertexAttrib4dv"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC) load(userptr, "glVertexAttrib4f"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC) load(userptr, "glVertexAttrib4fv"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC) load(userptr, "glVertexAttrib4iv"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC) load(userptr, "glVertexAttrib4s"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC) load(userptr, "glVertexAttrib4sv"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC) load(userptr, "glVertexAttrib4ubv"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC) load(userptr, "glVertexAttrib4uiv"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC) load(userptr, "glVertexAttrib4usv"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC) load(userptr, "glVertexAttribPointer"); } static void glad_gl_load_GL_VERSION_2_1( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_2_1) return; glad_glUniformMatrix2x3fv = (PFNGLUNIFORMMATRIX2X3FVPROC) load(userptr, "glUniformMatrix2x3fv"); glad_glUniformMatrix2x4fv = (PFNGLUNIFORMMATRIX2X4FVPROC) load(userptr, "glUniformMatrix2x4fv"); glad_glUniformMatrix3x2fv = (PFNGLUNIFORMMATRIX3X2FVPROC) load(userptr, "glUniformMatrix3x2fv"); glad_glUniformMatrix3x4fv = (PFNGLUNIFORMMATRIX3X4FVPROC) load(userptr, "glUniformMatrix3x4fv"); glad_glUniformMatrix4x2fv = (PFNGLUNIFORMMATRIX4X2FVPROC) load(userptr, "glUniformMatrix4x2fv"); glad_glUniformMatrix4x3fv = (PFNGLUNIFORMMATRIX4X3FVPROC) load(userptr, "glUniformMatrix4x3fv"); } static void glad_gl_load_GL_VERSION_3_0( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_0) return; glad_glBeginConditionalRender = (PFNGLBEGINCONDITIONALRENDERPROC) load(userptr, "glBeginConditionalRender"); glad_glBeginTransformFeedback = (PFNGLBEGINTRANSFORMFEEDBACKPROC) load(userptr, "glBeginTransformFeedback"); glad_glBindBufferBase = (PFNGLBINDBUFFERBASEPROC) load(userptr, "glBindBufferBase"); glad_glBindBufferRange = (PFNGLBINDBUFFERRANGEPROC) load(userptr, "glBindBufferRange"); glad_glBindFragDataLocation = (PFNGLBINDFRAGDATALOCATIONPROC) load(userptr, "glBindFragDataLocation"); glad_glBindFramebuffer = (PFNGLBINDFRAMEBUFFERPROC) load(userptr, "glBindFramebuffer"); glad_glBindRenderbuffer = (PFNGLBINDRENDERBUFFERPROC) load(userptr, "glBindRenderbuffer"); glad_glBindVertexArray = (PFNGLBINDVERTEXARRAYPROC) load(userptr, "glBindVertexArray"); glad_glBlitFramebuffer = (PFNGLBLITFRAMEBUFFERPROC) load(userptr, "glBlitFramebuffer"); glad_glCheckFramebufferStatus = (PFNGLCHECKFRAMEBUFFERSTATUSPROC) load(userptr, "glCheckFramebufferStatus"); glad_glClampColor = (PFNGLCLAMPCOLORPROC) load(userptr, "glClampColor"); glad_glClearBufferfi = (PFNGLCLEARBUFFERFIPROC) load(userptr, "glClearBufferfi"); glad_glClearBufferfv = (PFNGLCLEARBUFFERFVPROC) load(userptr, "glClearBufferfv"); glad_glClearBufferiv = (PFNGLCLEARBUFFERIVPROC) load(userptr, "glClearBufferiv"); glad_glClearBufferuiv = (PFNGLCLEARBUFFERUIVPROC) load(userptr, "glClearBufferuiv"); glad_glColorMaski = (PFNGLCOLORMASKIPROC) load(userptr, "glColorMaski"); glad_glDeleteFramebuffers = (PFNGLDELETEFRAMEBUFFERSPROC) load(userptr, "glDeleteFramebuffers"); glad_glDeleteRenderbuffers = (PFNGLDELETERENDERBUFFERSPROC) load(userptr, "glDeleteRenderbuffers"); glad_glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSPROC) load(userptr, "glDeleteVertexArrays"); glad_glDisablei = (PFNGLDISABLEIPROC) load(userptr, "glDisablei"); glad_glEnablei = (PFNGLENABLEIPROC) load(userptr, "glEnablei"); glad_glEndConditionalRender = (PFNGLENDCONDITIONALRENDERPROC) load(userptr, "glEndConditionalRender"); glad_glEndTransformFeedback = (PFNGLENDTRANSFORMFEEDBACKPROC) load(userptr, "glEndTransformFeedback"); glad_glFlushMappedBufferRange = (PFNGLFLUSHMAPPEDBUFFERRANGEPROC) load(userptr, "glFlushMappedBufferRange"); glad_glFramebufferRenderbuffer = (PFNGLFRAMEBUFFERRENDERBUFFERPROC) load(userptr, "glFramebufferRenderbuffer"); glad_glFramebufferTexture1D = (PFNGLFRAMEBUFFERTEXTURE1DPROC) load(userptr, "glFramebufferTexture1D"); glad_glFramebufferTexture2D = (PFNGLFRAMEBUFFERTEXTURE2DPROC) load(userptr, "glFramebufferTexture2D"); glad_glFramebufferTexture3D = (PFNGLFRAMEBUFFERTEXTURE3DPROC) load(userptr, "glFramebufferTexture3D"); glad_glFramebufferTextureLayer = (PFNGLFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glFramebufferTextureLayer"); glad_glGenFramebuffers = (PFNGLGENFRAMEBUFFERSPROC) load(userptr, "glGenFramebuffers"); glad_glGenRenderbuffers = (PFNGLGENRENDERBUFFERSPROC) load(userptr, "glGenRenderbuffers"); glad_glGenVertexArrays = (PFNGLGENVERTEXARRAYSPROC) load(userptr, "glGenVertexArrays"); glad_glGenerateMipmap = (PFNGLGENERATEMIPMAPPROC) load(userptr, "glGenerateMipmap"); glad_glGetBooleani_v = (PFNGLGETBOOLEANI_VPROC) load(userptr, "glGetBooleani_v"); glad_glGetFragDataLocation = (PFNGLGETFRAGDATALOCATIONPROC) load(userptr, "glGetFragDataLocation"); glad_glGetFramebufferAttachmentParameteriv = (PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC) load(userptr, "glGetFramebufferAttachmentParameteriv"); glad_glGetIntegeri_v = (PFNGLGETINTEGERI_VPROC) load(userptr, "glGetIntegeri_v"); glad_glGetRenderbufferParameteriv = (PFNGLGETRENDERBUFFERPARAMETERIVPROC) load(userptr, "glGetRenderbufferParameteriv"); glad_glGetStringi = (PFNGLGETSTRINGIPROC) load(userptr, "glGetStringi"); glad_glGetTexParameterIiv = (PFNGLGETTEXPARAMETERIIVPROC) load(userptr, "glGetTexParameterIiv"); glad_glGetTexParameterIuiv = (PFNGLGETTEXPARAMETERIUIVPROC) load(userptr, "glGetTexParameterIuiv"); glad_glGetTransformFeedbackVarying = (PFNGLGETTRANSFORMFEEDBACKVARYINGPROC) load(userptr, "glGetTransformFeedbackVarying"); glad_glGetUniformuiv = (PFNGLGETUNIFORMUIVPROC) load(userptr, "glGetUniformuiv"); glad_glGetVertexAttribIiv = (PFNGLGETVERTEXATTRIBIIVPROC) load(userptr, "glGetVertexAttribIiv"); glad_glGetVertexAttribIuiv = (PFNGLGETVERTEXATTRIBIUIVPROC) load(userptr, "glGetVertexAttribIuiv"); glad_glIsEnabledi = (PFNGLISENABLEDIPROC) load(userptr, "glIsEnabledi"); glad_glIsFramebuffer = (PFNGLISFRAMEBUFFERPROC) load(userptr, "glIsFramebuffer"); glad_glIsRenderbuffer = (PFNGLISRENDERBUFFERPROC) load(userptr, "glIsRenderbuffer"); glad_glIsVertexArray = (PFNGLISVERTEXARRAYPROC) load(userptr, "glIsVertexArray"); glad_glMapBufferRange = (PFNGLMAPBUFFERRANGEPROC) load(userptr, "glMapBufferRange"); glad_glRenderbufferStorage = (PFNGLRENDERBUFFERSTORAGEPROC) load(userptr, "glRenderbufferStorage"); glad_glRenderbufferStorageMultisample = (PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC) load(userptr, "glRenderbufferStorageMultisample"); glad_glTexParameterIiv = (PFNGLTEXPARAMETERIIVPROC) load(userptr, "glTexParameterIiv"); glad_glTexParameterIuiv = (PFNGLTEXPARAMETERIUIVPROC) load(userptr, "glTexParameterIuiv"); glad_glTransformFeedbackVaryings = (PFNGLTRANSFORMFEEDBACKVARYINGSPROC) load(userptr, "glTransformFeedbackVaryings"); glad_glUniform1ui = (PFNGLUNIFORM1UIPROC) load(userptr, "glUniform1ui"); glad_glUniform1uiv = (PFNGLUNIFORM1UIVPROC) load(userptr, "glUniform1uiv"); glad_glUniform2ui = (PFNGLUNIFORM2UIPROC) load(userptr, "glUniform2ui"); glad_glUniform2uiv = (PFNGLUNIFORM2UIVPROC) load(userptr, "glUniform2uiv"); glad_glUniform3ui = (PFNGLUNIFORM3UIPROC) load(userptr, "glUniform3ui"); glad_glUniform3uiv = (PFNGLUNIFORM3UIVPROC) load(userptr, "glUniform3uiv"); glad_glUniform4ui = (PFNGLUNIFORM4UIPROC) load(userptr, "glUniform4ui"); glad_glUniform4uiv = (PFNGLUNIFORM4UIVPROC) load(userptr, "glUniform4uiv"); glad_glVertexAttribI1i = (PFNGLVERTEXATTRIBI1IPROC) load(userptr, "glVertexAttribI1i"); glad_glVertexAttribI1iv = (PFNGLVERTEXATTRIBI1IVPROC) load(userptr, "glVertexAttribI1iv"); glad_glVertexAttribI1ui = (PFNGLVERTEXATTRIBI1UIPROC) load(userptr, "glVertexAttribI1ui"); glad_glVertexAttribI1uiv = (PFNGLVERTEXATTRIBI1UIVPROC) load(userptr, "glVertexAttribI1uiv"); glad_glVertexAttribI2i = (PFNGLVERTEXATTRIBI2IPROC) load(userptr, "glVertexAttribI2i"); glad_glVertexAttribI2iv = (PFNGLVERTEXATTRIBI2IVPROC) load(userptr, "glVertexAttribI2iv"); glad_glVertexAttribI2ui = (PFNGLVERTEXATTRIBI2UIPROC) load(userptr, "glVertexAttribI2ui"); glad_glVertexAttribI2uiv = (PFNGLVERTEXATTRIBI2UIVPROC) load(userptr, "glVertexAttribI2uiv"); glad_glVertexAttribI3i = (PFNGLVERTEXATTRIBI3IPROC) load(userptr, "glVertexAttribI3i"); glad_glVertexAttribI3iv = (PFNGLVERTEXATTRIBI3IVPROC) load(userptr, "glVertexAttribI3iv"); glad_glVertexAttribI3ui = (PFNGLVERTEXATTRIBI3UIPROC) load(userptr, "glVertexAttribI3ui"); glad_glVertexAttribI3uiv = (PFNGLVERTEXATTRIBI3UIVPROC) load(userptr, "glVertexAttribI3uiv"); glad_glVertexAttribI4bv = (PFNGLVERTEXATTRIBI4BVPROC) load(userptr, "glVertexAttribI4bv"); glad_glVertexAttribI4i = (PFNGLVERTEXATTRIBI4IPROC) load(userptr, "glVertexAttribI4i"); glad_glVertexAttribI4iv = (PFNGLVERTEXATTRIBI4IVPROC) load(userptr, "glVertexAttribI4iv"); glad_glVertexAttribI4sv = (PFNGLVERTEXATTRIBI4SVPROC) load(userptr, "glVertexAttribI4sv"); glad_glVertexAttribI4ubv = (PFNGLVERTEXATTRIBI4UBVPROC) load(userptr, "glVertexAttribI4ubv"); glad_glVertexAttribI4ui = (PFNGLVERTEXATTRIBI4UIPROC) load(userptr, "glVertexAttribI4ui"); glad_glVertexAttribI4uiv = (PFNGLVERTEXATTRIBI4UIVPROC) load(userptr, "glVertexAttribI4uiv"); glad_glVertexAttribI4usv = (PFNGLVERTEXATTRIBI4USVPROC) load(userptr, "glVertexAttribI4usv"); glad_glVertexAttribIPointer = (PFNGLVERTEXATTRIBIPOINTERPROC) load(userptr, "glVertexAttribIPointer"); } static void glad_gl_load_GL_VERSION_3_1( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_1) return; glad_glBindBufferBase = (PFNGLBINDBUFFERBASEPROC) load(userptr, "glBindBufferBase"); glad_glBindBufferRange = (PFNGLBINDBUFFERRANGEPROC) load(userptr, "glBindBufferRange"); glad_glCopyBufferSubData = (PFNGLCOPYBUFFERSUBDATAPROC) load(userptr, "glCopyBufferSubData"); glad_glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDPROC) load(userptr, "glDrawArraysInstanced"); glad_glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDPROC) load(userptr, "glDrawElementsInstanced"); glad_glGetActiveUniformBlockName = (PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC) load(userptr, "glGetActiveUniformBlockName"); glad_glGetActiveUniformBlockiv = (PFNGLGETACTIVEUNIFORMBLOCKIVPROC) load(userptr, "glGetActiveUniformBlockiv"); glad_glGetActiveUniformName = (PFNGLGETACTIVEUNIFORMNAMEPROC) load(userptr, "glGetActiveUniformName"); glad_glGetActiveUniformsiv = (PFNGLGETACTIVEUNIFORMSIVPROC) load(userptr, "glGetActiveUniformsiv"); glad_glGetIntegeri_v = (PFNGLGETINTEGERI_VPROC) load(userptr, "glGetIntegeri_v"); glad_glGetUniformBlockIndex = (PFNGLGETUNIFORMBLOCKINDEXPROC) load(userptr, "glGetUniformBlockIndex"); glad_glGetUniformIndices = (PFNGLGETUNIFORMINDICESPROC) load(userptr, "glGetUniformIndices"); glad_glPrimitiveRestartIndex = (PFNGLPRIMITIVERESTARTINDEXPROC) load(userptr, "glPrimitiveRestartIndex"); glad_glTexBuffer = (PFNGLTEXBUFFERPROC) load(userptr, "glTexBuffer"); glad_glUniformBlockBinding = (PFNGLUNIFORMBLOCKBINDINGPROC) load(userptr, "glUniformBlockBinding"); } static void glad_gl_load_GL_VERSION_3_2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_2) return; glad_glClientWaitSync = (PFNGLCLIENTWAITSYNCPROC) load(userptr, "glClientWaitSync"); glad_glDeleteSync = (PFNGLDELETESYNCPROC) load(userptr, "glDeleteSync"); glad_glDrawElementsBaseVertex = (PFNGLDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glDrawElementsBaseVertex"); glad_glDrawElementsInstancedBaseVertex = (PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC) load(userptr, "glDrawElementsInstancedBaseVertex"); glad_glDrawRangeElementsBaseVertex = (PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC) load(userptr, "glDrawRangeElementsBaseVertex"); glad_glFenceSync = (PFNGLFENCESYNCPROC) load(userptr, "glFenceSync"); glad_glFramebufferTexture = (PFNGLFRAMEBUFFERTEXTUREPROC) load(userptr, "glFramebufferTexture"); glad_glGetBufferParameteri64v = (PFNGLGETBUFFERPARAMETERI64VPROC) load(userptr, "glGetBufferParameteri64v"); glad_glGetInteger64i_v = (PFNGLGETINTEGER64I_VPROC) load(userptr, "glGetInteger64i_v"); glad_glGetInteger64v = (PFNGLGETINTEGER64VPROC) load(userptr, "glGetInteger64v"); glad_glGetMultisamplefv = (PFNGLGETMULTISAMPLEFVPROC) load(userptr, "glGetMultisamplefv"); glad_glGetSynciv = (PFNGLGETSYNCIVPROC) load(userptr, "glGetSynciv"); glad_glIsSync = (PFNGLISSYNCPROC) load(userptr, "glIsSync"); glad_glMultiDrawElementsBaseVertex = (PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glMultiDrawElementsBaseVertex"); glad_glProvokingVertex = (PFNGLPROVOKINGVERTEXPROC) load(userptr, "glProvokingVertex"); glad_glSampleMaski = (PFNGLSAMPLEMASKIPROC) load(userptr, "glSampleMaski"); glad_glTexImage2DMultisample = (PFNGLTEXIMAGE2DMULTISAMPLEPROC) load(userptr, "glTexImage2DMultisample"); glad_glTexImage3DMultisample = (PFNGLTEXIMAGE3DMULTISAMPLEPROC) load(userptr, "glTexImage3DMultisample"); glad_glWaitSync = (PFNGLWAITSYNCPROC) load(userptr, "glWaitSync"); } static void glad_gl_load_GL_VERSION_3_3( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_VERSION_3_3) return; glad_glBindFragDataLocationIndexed = (PFNGLBINDFRAGDATALOCATIONINDEXEDPROC) load(userptr, "glBindFragDataLocationIndexed"); glad_glBindSampler = (PFNGLBINDSAMPLERPROC) load(userptr, "glBindSampler"); glad_glColorP3ui = (PFNGLCOLORP3UIPROC) load(userptr, "glColorP3ui"); glad_glColorP3uiv = (PFNGLCOLORP3UIVPROC) load(userptr, "glColorP3uiv"); glad_glColorP4ui = (PFNGLCOLORP4UIPROC) load(userptr, "glColorP4ui"); glad_glColorP4uiv = (PFNGLCOLORP4UIVPROC) load(userptr, "glColorP4uiv"); glad_glDeleteSamplers = (PFNGLDELETESAMPLERSPROC) load(userptr, "glDeleteSamplers"); glad_glGenSamplers = (PFNGLGENSAMPLERSPROC) load(userptr, "glGenSamplers"); glad_glGetFragDataIndex = (PFNGLGETFRAGDATAINDEXPROC) load(userptr, "glGetFragDataIndex"); glad_glGetQueryObjecti64v = (PFNGLGETQUERYOBJECTI64VPROC) load(userptr, "glGetQueryObjecti64v"); glad_glGetQueryObjectui64v = (PFNGLGETQUERYOBJECTUI64VPROC) load(userptr, "glGetQueryObjectui64v"); glad_glGetSamplerParameterIiv = (PFNGLGETSAMPLERPARAMETERIIVPROC) load(userptr, "glGetSamplerParameterIiv"); glad_glGetSamplerParameterIuiv = (PFNGLGETSAMPLERPARAMETERIUIVPROC) load(userptr, "glGetSamplerParameterIuiv"); glad_glGetSamplerParameterfv = (PFNGLGETSAMPLERPARAMETERFVPROC) load(userptr, "glGetSamplerParameterfv"); glad_glGetSamplerParameteriv = (PFNGLGETSAMPLERPARAMETERIVPROC) load(userptr, "glGetSamplerParameteriv"); glad_glIsSampler = (PFNGLISSAMPLERPROC) load(userptr, "glIsSampler"); glad_glMultiTexCoordP1ui = (PFNGLMULTITEXCOORDP1UIPROC) load(userptr, "glMultiTexCoordP1ui"); glad_glMultiTexCoordP1uiv = (PFNGLMULTITEXCOORDP1UIVPROC) load(userptr, "glMultiTexCoordP1uiv"); glad_glMultiTexCoordP2ui = (PFNGLMULTITEXCOORDP2UIPROC) load(userptr, "glMultiTexCoordP2ui"); glad_glMultiTexCoordP2uiv = (PFNGLMULTITEXCOORDP2UIVPROC) load(userptr, "glMultiTexCoordP2uiv"); glad_glMultiTexCoordP3ui = (PFNGLMULTITEXCOORDP3UIPROC) load(userptr, "glMultiTexCoordP3ui"); glad_glMultiTexCoordP3uiv = (PFNGLMULTITEXCOORDP3UIVPROC) load(userptr, "glMultiTexCoordP3uiv"); glad_glMultiTexCoordP4ui = (PFNGLMULTITEXCOORDP4UIPROC) load(userptr, "glMultiTexCoordP4ui"); glad_glMultiTexCoordP4uiv = (PFNGLMULTITEXCOORDP4UIVPROC) load(userptr, "glMultiTexCoordP4uiv"); glad_glNormalP3ui = (PFNGLNORMALP3UIPROC) load(userptr, "glNormalP3ui"); glad_glNormalP3uiv = (PFNGLNORMALP3UIVPROC) load(userptr, "glNormalP3uiv"); glad_glQueryCounter = (PFNGLQUERYCOUNTERPROC) load(userptr, "glQueryCounter"); glad_glSamplerParameterIiv = (PFNGLSAMPLERPARAMETERIIVPROC) load(userptr, "glSamplerParameterIiv"); glad_glSamplerParameterIuiv = (PFNGLSAMPLERPARAMETERIUIVPROC) load(userptr, "glSamplerParameterIuiv"); glad_glSamplerParameterf = (PFNGLSAMPLERPARAMETERFPROC) load(userptr, "glSamplerParameterf"); glad_glSamplerParameterfv = (PFNGLSAMPLERPARAMETERFVPROC) load(userptr, "glSamplerParameterfv"); glad_glSamplerParameteri = (PFNGLSAMPLERPARAMETERIPROC) load(userptr, "glSamplerParameteri"); glad_glSamplerParameteriv = (PFNGLSAMPLERPARAMETERIVPROC) load(userptr, "glSamplerParameteriv"); glad_glSecondaryColorP3ui = (PFNGLSECONDARYCOLORP3UIPROC) load(userptr, "glSecondaryColorP3ui"); glad_glSecondaryColorP3uiv = (PFNGLSECONDARYCOLORP3UIVPROC) load(userptr, "glSecondaryColorP3uiv"); glad_glTexCoordP1ui = (PFNGLTEXCOORDP1UIPROC) load(userptr, "glTexCoordP1ui"); glad_glTexCoordP1uiv = (PFNGLTEXCOORDP1UIVPROC) load(userptr, "glTexCoordP1uiv"); glad_glTexCoordP2ui = (PFNGLTEXCOORDP2UIPROC) load(userptr, "glTexCoordP2ui"); glad_glTexCoordP2uiv = (PFNGLTEXCOORDP2UIVPROC) load(userptr, "glTexCoordP2uiv"); glad_glTexCoordP3ui = (PFNGLTEXCOORDP3UIPROC) load(userptr, "glTexCoordP3ui"); glad_glTexCoordP3uiv = (PFNGLTEXCOORDP3UIVPROC) load(userptr, "glTexCoordP3uiv"); glad_glTexCoordP4ui = (PFNGLTEXCOORDP4UIPROC) load(userptr, "glTexCoordP4ui"); glad_glTexCoordP4uiv = (PFNGLTEXCOORDP4UIVPROC) load(userptr, "glTexCoordP4uiv"); glad_glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISORPROC) load(userptr, "glVertexAttribDivisor"); glad_glVertexAttribP1ui = (PFNGLVERTEXATTRIBP1UIPROC) load(userptr, "glVertexAttribP1ui"); glad_glVertexAttribP1uiv = (PFNGLVERTEXATTRIBP1UIVPROC) load(userptr, "glVertexAttribP1uiv"); glad_glVertexAttribP2ui = (PFNGLVERTEXATTRIBP2UIPROC) load(userptr, "glVertexAttribP2ui"); glad_glVertexAttribP2uiv = (PFNGLVERTEXATTRIBP2UIVPROC) load(userptr, "glVertexAttribP2uiv"); glad_glVertexAttribP3ui = (PFNGLVERTEXATTRIBP3UIPROC) load(userptr, "glVertexAttribP3ui"); glad_glVertexAttribP3uiv = (PFNGLVERTEXATTRIBP3UIVPROC) load(userptr, "glVertexAttribP3uiv"); glad_glVertexAttribP4ui = (PFNGLVERTEXATTRIBP4UIPROC) load(userptr, "glVertexAttribP4ui"); glad_glVertexAttribP4uiv = (PFNGLVERTEXATTRIBP4UIVPROC) load(userptr, "glVertexAttribP4uiv"); glad_glVertexP2ui = (PFNGLVERTEXP2UIPROC) load(userptr, "glVertexP2ui"); glad_glVertexP2uiv = (PFNGLVERTEXP2UIVPROC) load(userptr, "glVertexP2uiv"); glad_glVertexP3ui = (PFNGLVERTEXP3UIPROC) load(userptr, "glVertexP3ui"); glad_glVertexP3uiv = (PFNGLVERTEXP3UIVPROC) load(userptr, "glVertexP3uiv"); glad_glVertexP4ui = (PFNGLVERTEXP4UIPROC) load(userptr, "glVertexP4ui"); glad_glVertexP4uiv = (PFNGLVERTEXP4UIVPROC) load(userptr, "glVertexP4uiv"); } static void glad_gl_load_GL_ARB_ES2_compatibility( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_ES2_compatibility) return; glad_glClearDepthf = (PFNGLCLEARDEPTHFPROC) load(userptr, "glClearDepthf"); glad_glDepthRangef = (PFNGLDEPTHRANGEFPROC) load(userptr, "glDepthRangef"); glad_glGetShaderPrecisionFormat = (PFNGLGETSHADERPRECISIONFORMATPROC) load(userptr, "glGetShaderPrecisionFormat"); glad_glReleaseShaderCompiler = (PFNGLRELEASESHADERCOMPILERPROC) load(userptr, "glReleaseShaderCompiler"); glad_glShaderBinary = (PFNGLSHADERBINARYPROC) load(userptr, "glShaderBinary"); } static void glad_gl_load_GL_ARB_ES3_1_compatibility( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_ES3_1_compatibility) return; glad_glMemoryBarrierByRegion = (PFNGLMEMORYBARRIERBYREGIONPROC) load(userptr, "glMemoryBarrierByRegion"); } static void glad_gl_load_GL_ARB_ES3_2_compatibility( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_ES3_2_compatibility) return; glad_glPrimitiveBoundingBox = (PFNGLPRIMITIVEBOUNDINGBOXPROC) load(userptr, "glPrimitiveBoundingBox"); glad_glPrimitiveBoundingBoxARB = (PFNGLPRIMITIVEBOUNDINGBOXARBPROC) load(userptr, "glPrimitiveBoundingBoxARB"); } static void glad_gl_load_GL_ARB_base_instance( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_base_instance) return; glad_glDrawArraysInstancedBaseInstance = (PFNGLDRAWARRAYSINSTANCEDBASEINSTANCEPROC) load(userptr, "glDrawArraysInstancedBaseInstance"); glad_glDrawElementsInstancedBaseInstance = (PFNGLDRAWELEMENTSINSTANCEDBASEINSTANCEPROC) load(userptr, "glDrawElementsInstancedBaseInstance"); glad_glDrawElementsInstancedBaseVertexBaseInstance = (PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXBASEINSTANCEPROC) load(userptr, "glDrawElementsInstancedBaseVertexBaseInstance"); } static void glad_gl_load_GL_ARB_bindless_texture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_bindless_texture) return; glad_glGetImageHandleARB = (PFNGLGETIMAGEHANDLEARBPROC) load(userptr, "glGetImageHandleARB"); glad_glGetTextureHandleARB = (PFNGLGETTEXTUREHANDLEARBPROC) load(userptr, "glGetTextureHandleARB"); glad_glGetTextureSamplerHandleARB = (PFNGLGETTEXTURESAMPLERHANDLEARBPROC) load(userptr, "glGetTextureSamplerHandleARB"); glad_glGetVertexAttribLui64vARB = (PFNGLGETVERTEXATTRIBLUI64VARBPROC) load(userptr, "glGetVertexAttribLui64vARB"); glad_glIsImageHandleResidentARB = (PFNGLISIMAGEHANDLERESIDENTARBPROC) load(userptr, "glIsImageHandleResidentARB"); glad_glIsTextureHandleResidentARB = (PFNGLISTEXTUREHANDLERESIDENTARBPROC) load(userptr, "glIsTextureHandleResidentARB"); glad_glMakeImageHandleNonResidentARB = (PFNGLMAKEIMAGEHANDLENONRESIDENTARBPROC) load(userptr, "glMakeImageHandleNonResidentARB"); glad_glMakeImageHandleResidentARB = (PFNGLMAKEIMAGEHANDLERESIDENTARBPROC) load(userptr, "glMakeImageHandleResidentARB"); glad_glMakeTextureHandleNonResidentARB = (PFNGLMAKETEXTUREHANDLENONRESIDENTARBPROC) load(userptr, "glMakeTextureHandleNonResidentARB"); glad_glMakeTextureHandleResidentARB = (PFNGLMAKETEXTUREHANDLERESIDENTARBPROC) load(userptr, "glMakeTextureHandleResidentARB"); glad_glProgramUniformHandleui64ARB = (PFNGLPROGRAMUNIFORMHANDLEUI64ARBPROC) load(userptr, "glProgramUniformHandleui64ARB"); glad_glProgramUniformHandleui64vARB = (PFNGLPROGRAMUNIFORMHANDLEUI64VARBPROC) load(userptr, "glProgramUniformHandleui64vARB"); glad_glUniformHandleui64ARB = (PFNGLUNIFORMHANDLEUI64ARBPROC) load(userptr, "glUniformHandleui64ARB"); glad_glUniformHandleui64vARB = (PFNGLUNIFORMHANDLEUI64VARBPROC) load(userptr, "glUniformHandleui64vARB"); glad_glVertexAttribL1ui64ARB = (PFNGLVERTEXATTRIBL1UI64ARBPROC) load(userptr, "glVertexAttribL1ui64ARB"); glad_glVertexAttribL1ui64vARB = (PFNGLVERTEXATTRIBL1UI64VARBPROC) load(userptr, "glVertexAttribL1ui64vARB"); } static void glad_gl_load_GL_ARB_blend_func_extended( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_blend_func_extended) return; glad_glBindFragDataLocationIndexed = (PFNGLBINDFRAGDATALOCATIONINDEXEDPROC) load(userptr, "glBindFragDataLocationIndexed"); glad_glGetFragDataIndex = (PFNGLGETFRAGDATAINDEXPROC) load(userptr, "glGetFragDataIndex"); } static void glad_gl_load_GL_ARB_buffer_storage( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_buffer_storage) return; glad_glBufferStorage = (PFNGLBUFFERSTORAGEPROC) load(userptr, "glBufferStorage"); } static void glad_gl_load_GL_ARB_cl_event( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_cl_event) return; glad_glCreateSyncFromCLeventARB = (PFNGLCREATESYNCFROMCLEVENTARBPROC) load(userptr, "glCreateSyncFromCLeventARB"); } static void glad_gl_load_GL_ARB_clear_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_clear_buffer_object) return; glad_glClearBufferData = (PFNGLCLEARBUFFERDATAPROC) load(userptr, "glClearBufferData"); glad_glClearBufferSubData = (PFNGLCLEARBUFFERSUBDATAPROC) load(userptr, "glClearBufferSubData"); } static void glad_gl_load_GL_ARB_clear_texture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_clear_texture) return; glad_glClearTexImage = (PFNGLCLEARTEXIMAGEPROC) load(userptr, "glClearTexImage"); glad_glClearTexSubImage = (PFNGLCLEARTEXSUBIMAGEPROC) load(userptr, "glClearTexSubImage"); } static void glad_gl_load_GL_ARB_clip_control( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_clip_control) return; glad_glClipControl = (PFNGLCLIPCONTROLPROC) load(userptr, "glClipControl"); } static void glad_gl_load_GL_ARB_color_buffer_float( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_color_buffer_float) return; glad_glClampColor = (PFNGLCLAMPCOLORPROC) load(userptr, "glClampColor"); glad_glClampColorARB = (PFNGLCLAMPCOLORARBPROC) load(userptr, "glClampColorARB"); } static void glad_gl_load_GL_ARB_compute_shader( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_compute_shader) return; glad_glDispatchCompute = (PFNGLDISPATCHCOMPUTEPROC) load(userptr, "glDispatchCompute"); glad_glDispatchComputeIndirect = (PFNGLDISPATCHCOMPUTEINDIRECTPROC) load(userptr, "glDispatchComputeIndirect"); } static void glad_gl_load_GL_ARB_compute_variable_group_size( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_compute_variable_group_size) return; glad_glDispatchComputeGroupSizeARB = (PFNGLDISPATCHCOMPUTEGROUPSIZEARBPROC) load(userptr, "glDispatchComputeGroupSizeARB"); } static void glad_gl_load_GL_ARB_copy_buffer( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_copy_buffer) return; glad_glCopyBufferSubData = (PFNGLCOPYBUFFERSUBDATAPROC) load(userptr, "glCopyBufferSubData"); } static void glad_gl_load_GL_ARB_copy_image( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_copy_image) return; glad_glCopyImageSubData = (PFNGLCOPYIMAGESUBDATAPROC) load(userptr, "glCopyImageSubData"); } static void glad_gl_load_GL_ARB_debug_output( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_debug_output) return; glad_glDebugMessageCallback = (PFNGLDEBUGMESSAGECALLBACKPROC) load(userptr, "glDebugMessageCallback"); glad_glDebugMessageCallbackARB = (PFNGLDEBUGMESSAGECALLBACKARBPROC) load(userptr, "glDebugMessageCallbackARB"); glad_glDebugMessageControl = (PFNGLDEBUGMESSAGECONTROLPROC) load(userptr, "glDebugMessageControl"); glad_glDebugMessageControlARB = (PFNGLDEBUGMESSAGECONTROLARBPROC) load(userptr, "glDebugMessageControlARB"); glad_glDebugMessageInsert = (PFNGLDEBUGMESSAGEINSERTPROC) load(userptr, "glDebugMessageInsert"); glad_glDebugMessageInsertARB = (PFNGLDEBUGMESSAGEINSERTARBPROC) load(userptr, "glDebugMessageInsertARB"); glad_glGetDebugMessageLog = (PFNGLGETDEBUGMESSAGELOGPROC) load(userptr, "glGetDebugMessageLog"); glad_glGetDebugMessageLogARB = (PFNGLGETDEBUGMESSAGELOGARBPROC) load(userptr, "glGetDebugMessageLogARB"); } static void glad_gl_load_GL_ARB_direct_state_access( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_direct_state_access) return; glad_glBindTextureUnit = (PFNGLBINDTEXTUREUNITPROC) load(userptr, "glBindTextureUnit"); glad_glBlitNamedFramebuffer = (PFNGLBLITNAMEDFRAMEBUFFERPROC) load(userptr, "glBlitNamedFramebuffer"); glad_glCheckNamedFramebufferStatus = (PFNGLCHECKNAMEDFRAMEBUFFERSTATUSPROC) load(userptr, "glCheckNamedFramebufferStatus"); glad_glClearNamedBufferData = (PFNGLCLEARNAMEDBUFFERDATAPROC) load(userptr, "glClearNamedBufferData"); glad_glClearNamedBufferSubData = (PFNGLCLEARNAMEDBUFFERSUBDATAPROC) load(userptr, "glClearNamedBufferSubData"); glad_glClearNamedFramebufferfi = (PFNGLCLEARNAMEDFRAMEBUFFERFIPROC) load(userptr, "glClearNamedFramebufferfi"); glad_glClearNamedFramebufferfv = (PFNGLCLEARNAMEDFRAMEBUFFERFVPROC) load(userptr, "glClearNamedFramebufferfv"); glad_glClearNamedFramebufferiv = (PFNGLCLEARNAMEDFRAMEBUFFERIVPROC) load(userptr, "glClearNamedFramebufferiv"); glad_glClearNamedFramebufferuiv = (PFNGLCLEARNAMEDFRAMEBUFFERUIVPROC) load(userptr, "glClearNamedFramebufferuiv"); glad_glCompressedTextureSubImage1D = (PFNGLCOMPRESSEDTEXTURESUBIMAGE1DPROC) load(userptr, "glCompressedTextureSubImage1D"); glad_glCompressedTextureSubImage2D = (PFNGLCOMPRESSEDTEXTURESUBIMAGE2DPROC) load(userptr, "glCompressedTextureSubImage2D"); glad_glCompressedTextureSubImage3D = (PFNGLCOMPRESSEDTEXTURESUBIMAGE3DPROC) load(userptr, "glCompressedTextureSubImage3D"); glad_glCopyNamedBufferSubData = (PFNGLCOPYNAMEDBUFFERSUBDATAPROC) load(userptr, "glCopyNamedBufferSubData"); glad_glCopyTextureSubImage1D = (PFNGLCOPYTEXTURESUBIMAGE1DPROC) load(userptr, "glCopyTextureSubImage1D"); glad_glCopyTextureSubImage2D = (PFNGLCOPYTEXTURESUBIMAGE2DPROC) load(userptr, "glCopyTextureSubImage2D"); glad_glCopyTextureSubImage3D = (PFNGLCOPYTEXTURESUBIMAGE3DPROC) load(userptr, "glCopyTextureSubImage3D"); glad_glCreateBuffers = (PFNGLCREATEBUFFERSPROC) load(userptr, "glCreateBuffers"); glad_glCreateFramebuffers = (PFNGLCREATEFRAMEBUFFERSPROC) load(userptr, "glCreateFramebuffers"); glad_glCreateProgramPipelines = (PFNGLCREATEPROGRAMPIPELINESPROC) load(userptr, "glCreateProgramPipelines"); glad_glCreateQueries = (PFNGLCREATEQUERIESPROC) load(userptr, "glCreateQueries"); glad_glCreateRenderbuffers = (PFNGLCREATERENDERBUFFERSPROC) load(userptr, "glCreateRenderbuffers"); glad_glCreateSamplers = (PFNGLCREATESAMPLERSPROC) load(userptr, "glCreateSamplers"); glad_glCreateTextures = (PFNGLCREATETEXTURESPROC) load(userptr, "glCreateTextures"); glad_glCreateTransformFeedbacks = (PFNGLCREATETRANSFORMFEEDBACKSPROC) load(userptr, "glCreateTransformFeedbacks"); glad_glCreateVertexArrays = (PFNGLCREATEVERTEXARRAYSPROC) load(userptr, "glCreateVertexArrays"); glad_glDisableVertexArrayAttrib = (PFNGLDISABLEVERTEXARRAYATTRIBPROC) load(userptr, "glDisableVertexArrayAttrib"); glad_glEnableVertexArrayAttrib = (PFNGLENABLEVERTEXARRAYATTRIBPROC) load(userptr, "glEnableVertexArrayAttrib"); glad_glFlushMappedNamedBufferRange = (PFNGLFLUSHMAPPEDNAMEDBUFFERRANGEPROC) load(userptr, "glFlushMappedNamedBufferRange"); glad_glGenerateTextureMipmap = (PFNGLGENERATETEXTUREMIPMAPPROC) load(userptr, "glGenerateTextureMipmap"); glad_glGetCompressedTextureImage = (PFNGLGETCOMPRESSEDTEXTUREIMAGEPROC) load(userptr, "glGetCompressedTextureImage"); glad_glGetNamedBufferParameteri64v = (PFNGLGETNAMEDBUFFERPARAMETERI64VPROC) load(userptr, "glGetNamedBufferParameteri64v"); glad_glGetNamedBufferParameteriv = (PFNGLGETNAMEDBUFFERPARAMETERIVPROC) load(userptr, "glGetNamedBufferParameteriv"); glad_glGetNamedBufferPointerv = (PFNGLGETNAMEDBUFFERPOINTERVPROC) load(userptr, "glGetNamedBufferPointerv"); glad_glGetNamedBufferSubData = (PFNGLGETNAMEDBUFFERSUBDATAPROC) load(userptr, "glGetNamedBufferSubData"); glad_glGetNamedFramebufferAttachmentParameteriv = (PFNGLGETNAMEDFRAMEBUFFERATTACHMENTPARAMETERIVPROC) load(userptr, "glGetNamedFramebufferAttachmentParameteriv"); glad_glGetNamedFramebufferParameteriv = (PFNGLGETNAMEDFRAMEBUFFERPARAMETERIVPROC) load(userptr, "glGetNamedFramebufferParameteriv"); glad_glGetNamedRenderbufferParameteriv = (PFNGLGETNAMEDRENDERBUFFERPARAMETERIVPROC) load(userptr, "glGetNamedRenderbufferParameteriv"); glad_glGetQueryBufferObjecti64v = (PFNGLGETQUERYBUFFEROBJECTI64VPROC) load(userptr, "glGetQueryBufferObjecti64v"); glad_glGetQueryBufferObjectiv = (PFNGLGETQUERYBUFFEROBJECTIVPROC) load(userptr, "glGetQueryBufferObjectiv"); glad_glGetQueryBufferObjectui64v = (PFNGLGETQUERYBUFFEROBJECTUI64VPROC) load(userptr, "glGetQueryBufferObjectui64v"); glad_glGetQueryBufferObjectuiv = (PFNGLGETQUERYBUFFEROBJECTUIVPROC) load(userptr, "glGetQueryBufferObjectuiv"); glad_glGetTextureImage = (PFNGLGETTEXTUREIMAGEPROC) load(userptr, "glGetTextureImage"); glad_glGetTextureLevelParameterfv = (PFNGLGETTEXTURELEVELPARAMETERFVPROC) load(userptr, "glGetTextureLevelParameterfv"); glad_glGetTextureLevelParameteriv = (PFNGLGETTEXTURELEVELPARAMETERIVPROC) load(userptr, "glGetTextureLevelParameteriv"); glad_glGetTextureParameterIiv = (PFNGLGETTEXTUREPARAMETERIIVPROC) load(userptr, "glGetTextureParameterIiv"); glad_glGetTextureParameterIuiv = (PFNGLGETTEXTUREPARAMETERIUIVPROC) load(userptr, "glGetTextureParameterIuiv"); glad_glGetTextureParameterfv = (PFNGLGETTEXTUREPARAMETERFVPROC) load(userptr, "glGetTextureParameterfv"); glad_glGetTextureParameteriv = (PFNGLGETTEXTUREPARAMETERIVPROC) load(userptr, "glGetTextureParameteriv"); glad_glGetTransformFeedbacki64_v = (PFNGLGETTRANSFORMFEEDBACKI64_VPROC) load(userptr, "glGetTransformFeedbacki64_v"); glad_glGetTransformFeedbacki_v = (PFNGLGETTRANSFORMFEEDBACKI_VPROC) load(userptr, "glGetTransformFeedbacki_v"); glad_glGetTransformFeedbackiv = (PFNGLGETTRANSFORMFEEDBACKIVPROC) load(userptr, "glGetTransformFeedbackiv"); glad_glGetVertexArrayIndexed64iv = (PFNGLGETVERTEXARRAYINDEXED64IVPROC) load(userptr, "glGetVertexArrayIndexed64iv"); glad_glGetVertexArrayIndexediv = (PFNGLGETVERTEXARRAYINDEXEDIVPROC) load(userptr, "glGetVertexArrayIndexediv"); glad_glGetVertexArrayiv = (PFNGLGETVERTEXARRAYIVPROC) load(userptr, "glGetVertexArrayiv"); glad_glInvalidateNamedFramebufferData = (PFNGLINVALIDATENAMEDFRAMEBUFFERDATAPROC) load(userptr, "glInvalidateNamedFramebufferData"); glad_glInvalidateNamedFramebufferSubData = (PFNGLINVALIDATENAMEDFRAMEBUFFERSUBDATAPROC) load(userptr, "glInvalidateNamedFramebufferSubData"); glad_glMapNamedBuffer = (PFNGLMAPNAMEDBUFFERPROC) load(userptr, "glMapNamedBuffer"); glad_glMapNamedBufferRange = (PFNGLMAPNAMEDBUFFERRANGEPROC) load(userptr, "glMapNamedBufferRange"); glad_glNamedBufferData = (PFNGLNAMEDBUFFERDATAPROC) load(userptr, "glNamedBufferData"); glad_glNamedBufferStorage = (PFNGLNAMEDBUFFERSTORAGEPROC) load(userptr, "glNamedBufferStorage"); glad_glNamedBufferSubData = (PFNGLNAMEDBUFFERSUBDATAPROC) load(userptr, "glNamedBufferSubData"); glad_glNamedFramebufferDrawBuffer = (PFNGLNAMEDFRAMEBUFFERDRAWBUFFERPROC) load(userptr, "glNamedFramebufferDrawBuffer"); glad_glNamedFramebufferDrawBuffers = (PFNGLNAMEDFRAMEBUFFERDRAWBUFFERSPROC) load(userptr, "glNamedFramebufferDrawBuffers"); glad_glNamedFramebufferParameteri = (PFNGLNAMEDFRAMEBUFFERPARAMETERIPROC) load(userptr, "glNamedFramebufferParameteri"); glad_glNamedFramebufferReadBuffer = (PFNGLNAMEDFRAMEBUFFERREADBUFFERPROC) load(userptr, "glNamedFramebufferReadBuffer"); glad_glNamedFramebufferRenderbuffer = (PFNGLNAMEDFRAMEBUFFERRENDERBUFFERPROC) load(userptr, "glNamedFramebufferRenderbuffer"); glad_glNamedFramebufferTexture = (PFNGLNAMEDFRAMEBUFFERTEXTUREPROC) load(userptr, "glNamedFramebufferTexture"); glad_glNamedFramebufferTextureLayer = (PFNGLNAMEDFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glNamedFramebufferTextureLayer"); glad_glNamedRenderbufferStorage = (PFNGLNAMEDRENDERBUFFERSTORAGEPROC) load(userptr, "glNamedRenderbufferStorage"); glad_glNamedRenderbufferStorageMultisample = (PFNGLNAMEDRENDERBUFFERSTORAGEMULTISAMPLEPROC) load(userptr, "glNamedRenderbufferStorageMultisample"); glad_glTextureBuffer = (PFNGLTEXTUREBUFFERPROC) load(userptr, "glTextureBuffer"); glad_glTextureBufferRange = (PFNGLTEXTUREBUFFERRANGEPROC) load(userptr, "glTextureBufferRange"); glad_glTextureParameterIiv = (PFNGLTEXTUREPARAMETERIIVPROC) load(userptr, "glTextureParameterIiv"); glad_glTextureParameterIuiv = (PFNGLTEXTUREPARAMETERIUIVPROC) load(userptr, "glTextureParameterIuiv"); glad_glTextureParameterf = (PFNGLTEXTUREPARAMETERFPROC) load(userptr, "glTextureParameterf"); glad_glTextureParameterfv = (PFNGLTEXTUREPARAMETERFVPROC) load(userptr, "glTextureParameterfv"); glad_glTextureParameteri = (PFNGLTEXTUREPARAMETERIPROC) load(userptr, "glTextureParameteri"); glad_glTextureParameteriv = (PFNGLTEXTUREPARAMETERIVPROC) load(userptr, "glTextureParameteriv"); glad_glTextureStorage1D = (PFNGLTEXTURESTORAGE1DPROC) load(userptr, "glTextureStorage1D"); glad_glTextureStorage2D = (PFNGLTEXTURESTORAGE2DPROC) load(userptr, "glTextureStorage2D"); glad_glTextureStorage2DMultisample = (PFNGLTEXTURESTORAGE2DMULTISAMPLEPROC) load(userptr, "glTextureStorage2DMultisample"); glad_glTextureStorage3D = (PFNGLTEXTURESTORAGE3DPROC) load(userptr, "glTextureStorage3D"); glad_glTextureStorage3DMultisample = (PFNGLTEXTURESTORAGE3DMULTISAMPLEPROC) load(userptr, "glTextureStorage3DMultisample"); glad_glTextureSubImage1D = (PFNGLTEXTURESUBIMAGE1DPROC) load(userptr, "glTextureSubImage1D"); glad_glTextureSubImage2D = (PFNGLTEXTURESUBIMAGE2DPROC) load(userptr, "glTextureSubImage2D"); glad_glTextureSubImage3D = (PFNGLTEXTURESUBIMAGE3DPROC) load(userptr, "glTextureSubImage3D"); glad_glTransformFeedbackBufferBase = (PFNGLTRANSFORMFEEDBACKBUFFERBASEPROC) load(userptr, "glTransformFeedbackBufferBase"); glad_glTransformFeedbackBufferRange = (PFNGLTRANSFORMFEEDBACKBUFFERRANGEPROC) load(userptr, "glTransformFeedbackBufferRange"); glad_glUnmapNamedBuffer = (PFNGLUNMAPNAMEDBUFFERPROC) load(userptr, "glUnmapNamedBuffer"); glad_glVertexArrayAttribBinding = (PFNGLVERTEXARRAYATTRIBBINDINGPROC) load(userptr, "glVertexArrayAttribBinding"); glad_glVertexArrayAttribFormat = (PFNGLVERTEXARRAYATTRIBFORMATPROC) load(userptr, "glVertexArrayAttribFormat"); glad_glVertexArrayAttribIFormat = (PFNGLVERTEXARRAYATTRIBIFORMATPROC) load(userptr, "glVertexArrayAttribIFormat"); glad_glVertexArrayAttribLFormat = (PFNGLVERTEXARRAYATTRIBLFORMATPROC) load(userptr, "glVertexArrayAttribLFormat"); glad_glVertexArrayBindingDivisor = (PFNGLVERTEXARRAYBINDINGDIVISORPROC) load(userptr, "glVertexArrayBindingDivisor"); glad_glVertexArrayElementBuffer = (PFNGLVERTEXARRAYELEMENTBUFFERPROC) load(userptr, "glVertexArrayElementBuffer"); glad_glVertexArrayVertexBuffer = (PFNGLVERTEXARRAYVERTEXBUFFERPROC) load(userptr, "glVertexArrayVertexBuffer"); glad_glVertexArrayVertexBuffers = (PFNGLVERTEXARRAYVERTEXBUFFERSPROC) load(userptr, "glVertexArrayVertexBuffers"); } static void glad_gl_load_GL_ARB_draw_buffers( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_buffers) return; glad_glDrawBuffers = (PFNGLDRAWBUFFERSPROC) load(userptr, "glDrawBuffers"); glad_glDrawBuffersARB = (PFNGLDRAWBUFFERSARBPROC) load(userptr, "glDrawBuffersARB"); } static void glad_gl_load_GL_ARB_draw_buffers_blend( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_buffers_blend) return; glad_glBlendEquationSeparatei = (PFNGLBLENDEQUATIONSEPARATEIPROC) load(userptr, "glBlendEquationSeparatei"); glad_glBlendEquationSeparateiARB = (PFNGLBLENDEQUATIONSEPARATEIARBPROC) load(userptr, "glBlendEquationSeparateiARB"); glad_glBlendEquationi = (PFNGLBLENDEQUATIONIPROC) load(userptr, "glBlendEquationi"); glad_glBlendEquationiARB = (PFNGLBLENDEQUATIONIARBPROC) load(userptr, "glBlendEquationiARB"); glad_glBlendFuncSeparatei = (PFNGLBLENDFUNCSEPARATEIPROC) load(userptr, "glBlendFuncSeparatei"); glad_glBlendFuncSeparateiARB = (PFNGLBLENDFUNCSEPARATEIARBPROC) load(userptr, "glBlendFuncSeparateiARB"); glad_glBlendFunci = (PFNGLBLENDFUNCIPROC) load(userptr, "glBlendFunci"); glad_glBlendFunciARB = (PFNGLBLENDFUNCIARBPROC) load(userptr, "glBlendFunciARB"); } static void glad_gl_load_GL_ARB_draw_elements_base_vertex( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_elements_base_vertex) return; glad_glDrawElementsBaseVertex = (PFNGLDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glDrawElementsBaseVertex"); glad_glDrawElementsInstancedBaseVertex = (PFNGLDRAWELEMENTSINSTANCEDBASEVERTEXPROC) load(userptr, "glDrawElementsInstancedBaseVertex"); glad_glDrawRangeElementsBaseVertex = (PFNGLDRAWRANGEELEMENTSBASEVERTEXPROC) load(userptr, "glDrawRangeElementsBaseVertex"); glad_glMultiDrawElementsBaseVertex = (PFNGLMULTIDRAWELEMENTSBASEVERTEXPROC) load(userptr, "glMultiDrawElementsBaseVertex"); } static void glad_gl_load_GL_ARB_draw_indirect( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_indirect) return; glad_glDrawArraysIndirect = (PFNGLDRAWARRAYSINDIRECTPROC) load(userptr, "glDrawArraysIndirect"); glad_glDrawElementsIndirect = (PFNGLDRAWELEMENTSINDIRECTPROC) load(userptr, "glDrawElementsIndirect"); } static void glad_gl_load_GL_ARB_draw_instanced( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_draw_instanced) return; glad_glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDPROC) load(userptr, "glDrawArraysInstanced"); glad_glDrawArraysInstancedARB = (PFNGLDRAWARRAYSINSTANCEDARBPROC) load(userptr, "glDrawArraysInstancedARB"); glad_glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDPROC) load(userptr, "glDrawElementsInstanced"); glad_glDrawElementsInstancedARB = (PFNGLDRAWELEMENTSINSTANCEDARBPROC) load(userptr, "glDrawElementsInstancedARB"); } static void glad_gl_load_GL_ARB_fragment_program( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_fragment_program) return; glad_glBindProgramARB = (PFNGLBINDPROGRAMARBPROC) load(userptr, "glBindProgramARB"); glad_glDeleteProgramsARB = (PFNGLDELETEPROGRAMSARBPROC) load(userptr, "glDeleteProgramsARB"); glad_glGenProgramsARB = (PFNGLGENPROGRAMSARBPROC) load(userptr, "glGenProgramsARB"); glad_glGetProgramEnvParameterdvARB = (PFNGLGETPROGRAMENVPARAMETERDVARBPROC) load(userptr, "glGetProgramEnvParameterdvARB"); glad_glGetProgramEnvParameterfvARB = (PFNGLGETPROGRAMENVPARAMETERFVARBPROC) load(userptr, "glGetProgramEnvParameterfvARB"); glad_glGetProgramLocalParameterdvARB = (PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC) load(userptr, "glGetProgramLocalParameterdvARB"); glad_glGetProgramLocalParameterfvARB = (PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC) load(userptr, "glGetProgramLocalParameterfvARB"); glad_glGetProgramStringARB = (PFNGLGETPROGRAMSTRINGARBPROC) load(userptr, "glGetProgramStringARB"); glad_glGetProgramivARB = (PFNGLGETPROGRAMIVARBPROC) load(userptr, "glGetProgramivARB"); glad_glIsProgramARB = (PFNGLISPROGRAMARBPROC) load(userptr, "glIsProgramARB"); glad_glProgramEnvParameter4dARB = (PFNGLPROGRAMENVPARAMETER4DARBPROC) load(userptr, "glProgramEnvParameter4dARB"); glad_glProgramEnvParameter4dvARB = (PFNGLPROGRAMENVPARAMETER4DVARBPROC) load(userptr, "glProgramEnvParameter4dvARB"); glad_glProgramEnvParameter4fARB = (PFNGLPROGRAMENVPARAMETER4FARBPROC) load(userptr, "glProgramEnvParameter4fARB"); glad_glProgramEnvParameter4fvARB = (PFNGLPROGRAMENVPARAMETER4FVARBPROC) load(userptr, "glProgramEnvParameter4fvARB"); glad_glProgramLocalParameter4dARB = (PFNGLPROGRAMLOCALPARAMETER4DARBPROC) load(userptr, "glProgramLocalParameter4dARB"); glad_glProgramLocalParameter4dvARB = (PFNGLPROGRAMLOCALPARAMETER4DVARBPROC) load(userptr, "glProgramLocalParameter4dvARB"); glad_glProgramLocalParameter4fARB = (PFNGLPROGRAMLOCALPARAMETER4FARBPROC) load(userptr, "glProgramLocalParameter4fARB"); glad_glProgramLocalParameter4fvARB = (PFNGLPROGRAMLOCALPARAMETER4FVARBPROC) load(userptr, "glProgramLocalParameter4fvARB"); glad_glProgramStringARB = (PFNGLPROGRAMSTRINGARBPROC) load(userptr, "glProgramStringARB"); } static void glad_gl_load_GL_ARB_framebuffer_no_attachments( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_framebuffer_no_attachments) return; glad_glFramebufferParameteri = (PFNGLFRAMEBUFFERPARAMETERIPROC) load(userptr, "glFramebufferParameteri"); glad_glGetFramebufferParameteriv = (PFNGLGETFRAMEBUFFERPARAMETERIVPROC) load(userptr, "glGetFramebufferParameteriv"); } static void glad_gl_load_GL_ARB_framebuffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_framebuffer_object) return; glad_glBindFramebuffer = (PFNGLBINDFRAMEBUFFERPROC) load(userptr, "glBindFramebuffer"); glad_glBindRenderbuffer = (PFNGLBINDRENDERBUFFERPROC) load(userptr, "glBindRenderbuffer"); glad_glBlitFramebuffer = (PFNGLBLITFRAMEBUFFERPROC) load(userptr, "glBlitFramebuffer"); glad_glCheckFramebufferStatus = (PFNGLCHECKFRAMEBUFFERSTATUSPROC) load(userptr, "glCheckFramebufferStatus"); glad_glDeleteFramebuffers = (PFNGLDELETEFRAMEBUFFERSPROC) load(userptr, "glDeleteFramebuffers"); glad_glDeleteRenderbuffers = (PFNGLDELETERENDERBUFFERSPROC) load(userptr, "glDeleteRenderbuffers"); glad_glFramebufferRenderbuffer = (PFNGLFRAMEBUFFERRENDERBUFFERPROC) load(userptr, "glFramebufferRenderbuffer"); glad_glFramebufferTexture1D = (PFNGLFRAMEBUFFERTEXTURE1DPROC) load(userptr, "glFramebufferTexture1D"); glad_glFramebufferTexture2D = (PFNGLFRAMEBUFFERTEXTURE2DPROC) load(userptr, "glFramebufferTexture2D"); glad_glFramebufferTexture3D = (PFNGLFRAMEBUFFERTEXTURE3DPROC) load(userptr, "glFramebufferTexture3D"); glad_glFramebufferTextureLayer = (PFNGLFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glFramebufferTextureLayer"); glad_glGenFramebuffers = (PFNGLGENFRAMEBUFFERSPROC) load(userptr, "glGenFramebuffers"); glad_glGenRenderbuffers = (PFNGLGENRENDERBUFFERSPROC) load(userptr, "glGenRenderbuffers"); glad_glGenerateMipmap = (PFNGLGENERATEMIPMAPPROC) load(userptr, "glGenerateMipmap"); glad_glGetFramebufferAttachmentParameteriv = (PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVPROC) load(userptr, "glGetFramebufferAttachmentParameteriv"); glad_glGetRenderbufferParameteriv = (PFNGLGETRENDERBUFFERPARAMETERIVPROC) load(userptr, "glGetRenderbufferParameteriv"); glad_glIsFramebuffer = (PFNGLISFRAMEBUFFERPROC) load(userptr, "glIsFramebuffer"); glad_glIsRenderbuffer = (PFNGLISRENDERBUFFERPROC) load(userptr, "glIsRenderbuffer"); glad_glRenderbufferStorage = (PFNGLRENDERBUFFERSTORAGEPROC) load(userptr, "glRenderbufferStorage"); glad_glRenderbufferStorageMultisample = (PFNGLRENDERBUFFERSTORAGEMULTISAMPLEPROC) load(userptr, "glRenderbufferStorageMultisample"); } static void glad_gl_load_GL_ARB_geometry_shader4( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_geometry_shader4) return; glad_glFramebufferTexture = (PFNGLFRAMEBUFFERTEXTUREPROC) load(userptr, "glFramebufferTexture"); glad_glFramebufferTextureARB = (PFNGLFRAMEBUFFERTEXTUREARBPROC) load(userptr, "glFramebufferTextureARB"); glad_glFramebufferTextureFaceARB = (PFNGLFRAMEBUFFERTEXTUREFACEARBPROC) load(userptr, "glFramebufferTextureFaceARB"); glad_glFramebufferTextureLayer = (PFNGLFRAMEBUFFERTEXTURELAYERPROC) load(userptr, "glFramebufferTextureLayer"); glad_glFramebufferTextureLayerARB = (PFNGLFRAMEBUFFERTEXTURELAYERARBPROC) load(userptr, "glFramebufferTextureLayerARB"); glad_glProgramParameteri = (PFNGLPROGRAMPARAMETERIPROC) load(userptr, "glProgramParameteri"); glad_glProgramParameteriARB = (PFNGLPROGRAMPARAMETERIARBPROC) load(userptr, "glProgramParameteriARB"); } static void glad_gl_load_GL_ARB_get_program_binary( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_get_program_binary) return; glad_glGetProgramBinary = (PFNGLGETPROGRAMBINARYPROC) load(userptr, "glGetProgramBinary"); glad_glProgramBinary = (PFNGLPROGRAMBINARYPROC) load(userptr, "glProgramBinary"); glad_glProgramParameteri = (PFNGLPROGRAMPARAMETERIPROC) load(userptr, "glProgramParameteri"); } static void glad_gl_load_GL_ARB_get_texture_sub_image( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_get_texture_sub_image) return; glad_glGetCompressedTextureSubImage = (PFNGLGETCOMPRESSEDTEXTURESUBIMAGEPROC) load(userptr, "glGetCompressedTextureSubImage"); glad_glGetTextureSubImage = (PFNGLGETTEXTURESUBIMAGEPROC) load(userptr, "glGetTextureSubImage"); } static void glad_gl_load_GL_ARB_gl_spirv( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_gl_spirv) return; glad_glSpecializeShader = (PFNGLSPECIALIZESHADERPROC) load(userptr, "glSpecializeShader"); glad_glSpecializeShaderARB = (PFNGLSPECIALIZESHADERARBPROC) load(userptr, "glSpecializeShaderARB"); } static void glad_gl_load_GL_ARB_gpu_shader_fp64( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_gpu_shader_fp64) return; glad_glGetUniformdv = (PFNGLGETUNIFORMDVPROC) load(userptr, "glGetUniformdv"); glad_glUniform1d = (PFNGLUNIFORM1DPROC) load(userptr, "glUniform1d"); glad_glUniform1dv = (PFNGLUNIFORM1DVPROC) load(userptr, "glUniform1dv"); glad_glUniform2d = (PFNGLUNIFORM2DPROC) load(userptr, "glUniform2d"); glad_glUniform2dv = (PFNGLUNIFORM2DVPROC) load(userptr, "glUniform2dv"); glad_glUniform3d = (PFNGLUNIFORM3DPROC) load(userptr, "glUniform3d"); glad_glUniform3dv = (PFNGLUNIFORM3DVPROC) load(userptr, "glUniform3dv"); glad_glUniform4d = (PFNGLUNIFORM4DPROC) load(userptr, "glUniform4d"); glad_glUniform4dv = (PFNGLUNIFORM4DVPROC) load(userptr, "glUniform4dv"); glad_glUniformMatrix2dv = (PFNGLUNIFORMMATRIX2DVPROC) load(userptr, "glUniformMatrix2dv"); glad_glUniformMatrix2x3dv = (PFNGLUNIFORMMATRIX2X3DVPROC) load(userptr, "glUniformMatrix2x3dv"); glad_glUniformMatrix2x4dv = (PFNGLUNIFORMMATRIX2X4DVPROC) load(userptr, "glUniformMatrix2x4dv"); glad_glUniformMatrix3dv = (PFNGLUNIFORMMATRIX3DVPROC) load(userptr, "glUniformMatrix3dv"); glad_glUniformMatrix3x2dv = (PFNGLUNIFORMMATRIX3X2DVPROC) load(userptr, "glUniformMatrix3x2dv"); glad_glUniformMatrix3x4dv = (PFNGLUNIFORMMATRIX3X4DVPROC) load(userptr, "glUniformMatrix3x4dv"); glad_glUniformMatrix4dv = (PFNGLUNIFORMMATRIX4DVPROC) load(userptr, "glUniformMatrix4dv"); glad_glUniformMatrix4x2dv = (PFNGLUNIFORMMATRIX4X2DVPROC) load(userptr, "glUniformMatrix4x2dv"); glad_glUniformMatrix4x3dv = (PFNGLUNIFORMMATRIX4X3DVPROC) load(userptr, "glUniformMatrix4x3dv"); } static void glad_gl_load_GL_ARB_gpu_shader_int64( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_gpu_shader_int64) return; glad_glGetUniformi64vARB = (PFNGLGETUNIFORMI64VARBPROC) load(userptr, "glGetUniformi64vARB"); glad_glGetUniformui64vARB = (PFNGLGETUNIFORMUI64VARBPROC) load(userptr, "glGetUniformui64vARB"); glad_glGetnUniformi64vARB = (PFNGLGETNUNIFORMI64VARBPROC) load(userptr, "glGetnUniformi64vARB"); glad_glGetnUniformui64vARB = (PFNGLGETNUNIFORMUI64VARBPROC) load(userptr, "glGetnUniformui64vARB"); glad_glProgramUniform1i64ARB = (PFNGLPROGRAMUNIFORM1I64ARBPROC) load(userptr, "glProgramUniform1i64ARB"); glad_glProgramUniform1i64vARB = (PFNGLPROGRAMUNIFORM1I64VARBPROC) load(userptr, "glProgramUniform1i64vARB"); glad_glProgramUniform1ui64ARB = (PFNGLPROGRAMUNIFORM1UI64ARBPROC) load(userptr, "glProgramUniform1ui64ARB"); glad_glProgramUniform1ui64vARB = (PFNGLPROGRAMUNIFORM1UI64VARBPROC) load(userptr, "glProgramUniform1ui64vARB"); glad_glProgramUniform2i64ARB = (PFNGLPROGRAMUNIFORM2I64ARBPROC) load(userptr, "glProgramUniform2i64ARB"); glad_glProgramUniform2i64vARB = (PFNGLPROGRAMUNIFORM2I64VARBPROC) load(userptr, "glProgramUniform2i64vARB"); glad_glProgramUniform2ui64ARB = (PFNGLPROGRAMUNIFORM2UI64ARBPROC) load(userptr, "glProgramUniform2ui64ARB"); glad_glProgramUniform2ui64vARB = (PFNGLPROGRAMUNIFORM2UI64VARBPROC) load(userptr, "glProgramUniform2ui64vARB"); glad_glProgramUniform3i64ARB = (PFNGLPROGRAMUNIFORM3I64ARBPROC) load(userptr, "glProgramUniform3i64ARB"); glad_glProgramUniform3i64vARB = (PFNGLPROGRAMUNIFORM3I64VARBPROC) load(userptr, "glProgramUniform3i64vARB"); glad_glProgramUniform3ui64ARB = (PFNGLPROGRAMUNIFORM3UI64ARBPROC) load(userptr, "glProgramUniform3ui64ARB"); glad_glProgramUniform3ui64vARB = (PFNGLPROGRAMUNIFORM3UI64VARBPROC) load(userptr, "glProgramUniform3ui64vARB"); glad_glProgramUniform4i64ARB = (PFNGLPROGRAMUNIFORM4I64ARBPROC) load(userptr, "glProgramUniform4i64ARB"); glad_glProgramUniform4i64vARB = (PFNGLPROGRAMUNIFORM4I64VARBPROC) load(userptr, "glProgramUniform4i64vARB"); glad_glProgramUniform4ui64ARB = (PFNGLPROGRAMUNIFORM4UI64ARBPROC) load(userptr, "glProgramUniform4ui64ARB"); glad_glProgramUniform4ui64vARB = (PFNGLPROGRAMUNIFORM4UI64VARBPROC) load(userptr, "glProgramUniform4ui64vARB"); glad_glUniform1i64ARB = (PFNGLUNIFORM1I64ARBPROC) load(userptr, "glUniform1i64ARB"); glad_glUniform1i64vARB = (PFNGLUNIFORM1I64VARBPROC) load(userptr, "glUniform1i64vARB"); glad_glUniform1ui64ARB = (PFNGLUNIFORM1UI64ARBPROC) load(userptr, "glUniform1ui64ARB"); glad_glUniform1ui64vARB = (PFNGLUNIFORM1UI64VARBPROC) load(userptr, "glUniform1ui64vARB"); glad_glUniform2i64ARB = (PFNGLUNIFORM2I64ARBPROC) load(userptr, "glUniform2i64ARB"); glad_glUniform2i64vARB = (PFNGLUNIFORM2I64VARBPROC) load(userptr, "glUniform2i64vARB"); glad_glUniform2ui64ARB = (PFNGLUNIFORM2UI64ARBPROC) load(userptr, "glUniform2ui64ARB"); glad_glUniform2ui64vARB = (PFNGLUNIFORM2UI64VARBPROC) load(userptr, "glUniform2ui64vARB"); glad_glUniform3i64ARB = (PFNGLUNIFORM3I64ARBPROC) load(userptr, "glUniform3i64ARB"); glad_glUniform3i64vARB = (PFNGLUNIFORM3I64VARBPROC) load(userptr, "glUniform3i64vARB"); glad_glUniform3ui64ARB = (PFNGLUNIFORM3UI64ARBPROC) load(userptr, "glUniform3ui64ARB"); glad_glUniform3ui64vARB = (PFNGLUNIFORM3UI64VARBPROC) load(userptr, "glUniform3ui64vARB"); glad_glUniform4i64ARB = (PFNGLUNIFORM4I64ARBPROC) load(userptr, "glUniform4i64ARB"); glad_glUniform4i64vARB = (PFNGLUNIFORM4I64VARBPROC) load(userptr, "glUniform4i64vARB"); glad_glUniform4ui64ARB = (PFNGLUNIFORM4UI64ARBPROC) load(userptr, "glUniform4ui64ARB"); glad_glUniform4ui64vARB = (PFNGLUNIFORM4UI64VARBPROC) load(userptr, "glUniform4ui64vARB"); } static void glad_gl_load_GL_ARB_imaging( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_imaging) return; glad_glBlendColor = (PFNGLBLENDCOLORPROC) load(userptr, "glBlendColor"); glad_glBlendEquation = (PFNGLBLENDEQUATIONPROC) load(userptr, "glBlendEquation"); glad_glColorSubTable = (PFNGLCOLORSUBTABLEPROC) load(userptr, "glColorSubTable"); glad_glColorTable = (PFNGLCOLORTABLEPROC) load(userptr, "glColorTable"); glad_glColorTableParameterfv = (PFNGLCOLORTABLEPARAMETERFVPROC) load(userptr, "glColorTableParameterfv"); glad_glColorTableParameteriv = (PFNGLCOLORTABLEPARAMETERIVPROC) load(userptr, "glColorTableParameteriv"); glad_glConvolutionFilter1D = (PFNGLCONVOLUTIONFILTER1DPROC) load(userptr, "glConvolutionFilter1D"); glad_glConvolutionFilter2D = (PFNGLCONVOLUTIONFILTER2DPROC) load(userptr, "glConvolutionFilter2D"); glad_glConvolutionParameterf = (PFNGLCONVOLUTIONPARAMETERFPROC) load(userptr, "glConvolutionParameterf"); glad_glConvolutionParameterfv = (PFNGLCONVOLUTIONPARAMETERFVPROC) load(userptr, "glConvolutionParameterfv"); glad_glConvolutionParameteri = (PFNGLCONVOLUTIONPARAMETERIPROC) load(userptr, "glConvolutionParameteri"); glad_glConvolutionParameteriv = (PFNGLCONVOLUTIONPARAMETERIVPROC) load(userptr, "glConvolutionParameteriv"); glad_glCopyColorSubTable = (PFNGLCOPYCOLORSUBTABLEPROC) load(userptr, "glCopyColorSubTable"); glad_glCopyColorTable = (PFNGLCOPYCOLORTABLEPROC) load(userptr, "glCopyColorTable"); glad_glCopyConvolutionFilter1D = (PFNGLCOPYCONVOLUTIONFILTER1DPROC) load(userptr, "glCopyConvolutionFilter1D"); glad_glCopyConvolutionFilter2D = (PFNGLCOPYCONVOLUTIONFILTER2DPROC) load(userptr, "glCopyConvolutionFilter2D"); glad_glGetColorTable = (PFNGLGETCOLORTABLEPROC) load(userptr, "glGetColorTable"); glad_glGetColorTableParameterfv = (PFNGLGETCOLORTABLEPARAMETERFVPROC) load(userptr, "glGetColorTableParameterfv"); glad_glGetColorTableParameteriv = (PFNGLGETCOLORTABLEPARAMETERIVPROC) load(userptr, "glGetColorTableParameteriv"); glad_glGetConvolutionFilter = (PFNGLGETCONVOLUTIONFILTERPROC) load(userptr, "glGetConvolutionFilter"); glad_glGetConvolutionParameterfv = (PFNGLGETCONVOLUTIONPARAMETERFVPROC) load(userptr, "glGetConvolutionParameterfv"); glad_glGetConvolutionParameteriv = (PFNGLGETCONVOLUTIONPARAMETERIVPROC) load(userptr, "glGetConvolutionParameteriv"); glad_glGetHistogram = (PFNGLGETHISTOGRAMPROC) load(userptr, "glGetHistogram"); glad_glGetHistogramParameterfv = (PFNGLGETHISTOGRAMPARAMETERFVPROC) load(userptr, "glGetHistogramParameterfv"); glad_glGetHistogramParameteriv = (PFNGLGETHISTOGRAMPARAMETERIVPROC) load(userptr, "glGetHistogramParameteriv"); glad_glGetMinmax = (PFNGLGETMINMAXPROC) load(userptr, "glGetMinmax"); glad_glGetMinmaxParameterfv = (PFNGLGETMINMAXPARAMETERFVPROC) load(userptr, "glGetMinmaxParameterfv"); glad_glGetMinmaxParameteriv = (PFNGLGETMINMAXPARAMETERIVPROC) load(userptr, "glGetMinmaxParameteriv"); glad_glGetSeparableFilter = (PFNGLGETSEPARABLEFILTERPROC) load(userptr, "glGetSeparableFilter"); glad_glHistogram = (PFNGLHISTOGRAMPROC) load(userptr, "glHistogram"); glad_glMinmax = (PFNGLMINMAXPROC) load(userptr, "glMinmax"); glad_glResetHistogram = (PFNGLRESETHISTOGRAMPROC) load(userptr, "glResetHistogram"); glad_glResetMinmax = (PFNGLRESETMINMAXPROC) load(userptr, "glResetMinmax"); glad_glSeparableFilter2D = (PFNGLSEPARABLEFILTER2DPROC) load(userptr, "glSeparableFilter2D"); } static void glad_gl_load_GL_ARB_indirect_parameters( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_indirect_parameters) return; glad_glMultiDrawArraysIndirectCount = (PFNGLMULTIDRAWARRAYSINDIRECTCOUNTPROC) load(userptr, "glMultiDrawArraysIndirectCount"); glad_glMultiDrawArraysIndirectCountARB = (PFNGLMULTIDRAWARRAYSINDIRECTCOUNTARBPROC) load(userptr, "glMultiDrawArraysIndirectCountARB"); glad_glMultiDrawElementsIndirectCount = (PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTPROC) load(userptr, "glMultiDrawElementsIndirectCount"); glad_glMultiDrawElementsIndirectCountARB = (PFNGLMULTIDRAWELEMENTSINDIRECTCOUNTARBPROC) load(userptr, "glMultiDrawElementsIndirectCountARB"); } static void glad_gl_load_GL_ARB_instanced_arrays( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_instanced_arrays) return; glad_glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISORPROC) load(userptr, "glVertexAttribDivisor"); glad_glVertexAttribDivisorARB = (PFNGLVERTEXATTRIBDIVISORARBPROC) load(userptr, "glVertexAttribDivisorARB"); } static void glad_gl_load_GL_ARB_internalformat_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_internalformat_query) return; glad_glGetInternalformativ = (PFNGLGETINTERNALFORMATIVPROC) load(userptr, "glGetInternalformativ"); } static void glad_gl_load_GL_ARB_internalformat_query2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_internalformat_query2) return; glad_glGetInternalformati64v = (PFNGLGETINTERNALFORMATI64VPROC) load(userptr, "glGetInternalformati64v"); } static void glad_gl_load_GL_ARB_invalidate_subdata( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_invalidate_subdata) return; glad_glInvalidateBufferData = (PFNGLINVALIDATEBUFFERDATAPROC) load(userptr, "glInvalidateBufferData"); glad_glInvalidateBufferSubData = (PFNGLINVALIDATEBUFFERSUBDATAPROC) load(userptr, "glInvalidateBufferSubData"); glad_glInvalidateFramebuffer = (PFNGLINVALIDATEFRAMEBUFFERPROC) load(userptr, "glInvalidateFramebuffer"); glad_glInvalidateSubFramebuffer = (PFNGLINVALIDATESUBFRAMEBUFFERPROC) load(userptr, "glInvalidateSubFramebuffer"); glad_glInvalidateTexImage = (PFNGLINVALIDATETEXIMAGEPROC) load(userptr, "glInvalidateTexImage"); glad_glInvalidateTexSubImage = (PFNGLINVALIDATETEXSUBIMAGEPROC) load(userptr, "glInvalidateTexSubImage"); } static void glad_gl_load_GL_ARB_map_buffer_range( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_map_buffer_range) return; glad_glFlushMappedBufferRange = (PFNGLFLUSHMAPPEDBUFFERRANGEPROC) load(userptr, "glFlushMappedBufferRange"); glad_glMapBufferRange = (PFNGLMAPBUFFERRANGEPROC) load(userptr, "glMapBufferRange"); } static void glad_gl_load_GL_ARB_matrix_palette( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_matrix_palette) return; glad_glCurrentPaletteMatrixARB = (PFNGLCURRENTPALETTEMATRIXARBPROC) load(userptr, "glCurrentPaletteMatrixARB"); glad_glMatrixIndexPointerARB = (PFNGLMATRIXINDEXPOINTERARBPROC) load(userptr, "glMatrixIndexPointerARB"); glad_glMatrixIndexubvARB = (PFNGLMATRIXINDEXUBVARBPROC) load(userptr, "glMatrixIndexubvARB"); glad_glMatrixIndexuivARB = (PFNGLMATRIXINDEXUIVARBPROC) load(userptr, "glMatrixIndexuivARB"); glad_glMatrixIndexusvARB = (PFNGLMATRIXINDEXUSVARBPROC) load(userptr, "glMatrixIndexusvARB"); } static void glad_gl_load_GL_ARB_multi_bind( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multi_bind) return; glad_glBindBuffersBase = (PFNGLBINDBUFFERSBASEPROC) load(userptr, "glBindBuffersBase"); glad_glBindBuffersRange = (PFNGLBINDBUFFERSRANGEPROC) load(userptr, "glBindBuffersRange"); glad_glBindImageTextures = (PFNGLBINDIMAGETEXTURESPROC) load(userptr, "glBindImageTextures"); glad_glBindSamplers = (PFNGLBINDSAMPLERSPROC) load(userptr, "glBindSamplers"); glad_glBindTextures = (PFNGLBINDTEXTURESPROC) load(userptr, "glBindTextures"); glad_glBindVertexBuffers = (PFNGLBINDVERTEXBUFFERSPROC) load(userptr, "glBindVertexBuffers"); } static void glad_gl_load_GL_ARB_multi_draw_indirect( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multi_draw_indirect) return; glad_glMultiDrawArraysIndirect = (PFNGLMULTIDRAWARRAYSINDIRECTPROC) load(userptr, "glMultiDrawArraysIndirect"); glad_glMultiDrawElementsIndirect = (PFNGLMULTIDRAWELEMENTSINDIRECTPROC) load(userptr, "glMultiDrawElementsIndirect"); } static void glad_gl_load_GL_ARB_multisample( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multisample) return; glad_glSampleCoverage = (PFNGLSAMPLECOVERAGEPROC) load(userptr, "glSampleCoverage"); glad_glSampleCoverageARB = (PFNGLSAMPLECOVERAGEARBPROC) load(userptr, "glSampleCoverageARB"); } static void glad_gl_load_GL_ARB_multitexture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_multitexture) return; glad_glActiveTexture = (PFNGLACTIVETEXTUREPROC) load(userptr, "glActiveTexture"); glad_glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC) load(userptr, "glActiveTextureARB"); glad_glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREPROC) load(userptr, "glClientActiveTexture"); glad_glClientActiveTextureARB = (PFNGLCLIENTACTIVETEXTUREARBPROC) load(userptr, "glClientActiveTextureARB"); glad_glMultiTexCoord1d = (PFNGLMULTITEXCOORD1DPROC) load(userptr, "glMultiTexCoord1d"); glad_glMultiTexCoord1dARB = (PFNGLMULTITEXCOORD1DARBPROC) load(userptr, "glMultiTexCoord1dARB"); glad_glMultiTexCoord1dv = (PFNGLMULTITEXCOORD1DVPROC) load(userptr, "glMultiTexCoord1dv"); glad_glMultiTexCoord1dvARB = (PFNGLMULTITEXCOORD1DVARBPROC) load(userptr, "glMultiTexCoord1dvARB"); glad_glMultiTexCoord1f = (PFNGLMULTITEXCOORD1FPROC) load(userptr, "glMultiTexCoord1f"); glad_glMultiTexCoord1fARB = (PFNGLMULTITEXCOORD1FARBPROC) load(userptr, "glMultiTexCoord1fARB"); glad_glMultiTexCoord1fv = (PFNGLMULTITEXCOORD1FVPROC) load(userptr, "glMultiTexCoord1fv"); glad_glMultiTexCoord1fvARB = (PFNGLMULTITEXCOORD1FVARBPROC) load(userptr, "glMultiTexCoord1fvARB"); glad_glMultiTexCoord1i = (PFNGLMULTITEXCOORD1IPROC) load(userptr, "glMultiTexCoord1i"); glad_glMultiTexCoord1iARB = (PFNGLMULTITEXCOORD1IARBPROC) load(userptr, "glMultiTexCoord1iARB"); glad_glMultiTexCoord1iv = (PFNGLMULTITEXCOORD1IVPROC) load(userptr, "glMultiTexCoord1iv"); glad_glMultiTexCoord1ivARB = (PFNGLMULTITEXCOORD1IVARBPROC) load(userptr, "glMultiTexCoord1ivARB"); glad_glMultiTexCoord1s = (PFNGLMULTITEXCOORD1SPROC) load(userptr, "glMultiTexCoord1s"); glad_glMultiTexCoord1sARB = (PFNGLMULTITEXCOORD1SARBPROC) load(userptr, "glMultiTexCoord1sARB"); glad_glMultiTexCoord1sv = (PFNGLMULTITEXCOORD1SVPROC) load(userptr, "glMultiTexCoord1sv"); glad_glMultiTexCoord1svARB = (PFNGLMULTITEXCOORD1SVARBPROC) load(userptr, "glMultiTexCoord1svARB"); glad_glMultiTexCoord2d = (PFNGLMULTITEXCOORD2DPROC) load(userptr, "glMultiTexCoord2d"); glad_glMultiTexCoord2dARB = (PFNGLMULTITEXCOORD2DARBPROC) load(userptr, "glMultiTexCoord2dARB"); glad_glMultiTexCoord2dv = (PFNGLMULTITEXCOORD2DVPROC) load(userptr, "glMultiTexCoord2dv"); glad_glMultiTexCoord2dvARB = (PFNGLMULTITEXCOORD2DVARBPROC) load(userptr, "glMultiTexCoord2dvARB"); glad_glMultiTexCoord2f = (PFNGLMULTITEXCOORD2FPROC) load(userptr, "glMultiTexCoord2f"); glad_glMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC) load(userptr, "glMultiTexCoord2fARB"); glad_glMultiTexCoord2fv = (PFNGLMULTITEXCOORD2FVPROC) load(userptr, "glMultiTexCoord2fv"); glad_glMultiTexCoord2fvARB = (PFNGLMULTITEXCOORD2FVARBPROC) load(userptr, "glMultiTexCoord2fvARB"); glad_glMultiTexCoord2i = (PFNGLMULTITEXCOORD2IPROC) load(userptr, "glMultiTexCoord2i"); glad_glMultiTexCoord2iARB = (PFNGLMULTITEXCOORD2IARBPROC) load(userptr, "glMultiTexCoord2iARB"); glad_glMultiTexCoord2iv = (PFNGLMULTITEXCOORD2IVPROC) load(userptr, "glMultiTexCoord2iv"); glad_glMultiTexCoord2ivARB = (PFNGLMULTITEXCOORD2IVARBPROC) load(userptr, "glMultiTexCoord2ivARB"); glad_glMultiTexCoord2s = (PFNGLMULTITEXCOORD2SPROC) load(userptr, "glMultiTexCoord2s"); glad_glMultiTexCoord2sARB = (PFNGLMULTITEXCOORD2SARBPROC) load(userptr, "glMultiTexCoord2sARB"); glad_glMultiTexCoord2sv = (PFNGLMULTITEXCOORD2SVPROC) load(userptr, "glMultiTexCoord2sv"); glad_glMultiTexCoord2svARB = (PFNGLMULTITEXCOORD2SVARBPROC) load(userptr, "glMultiTexCoord2svARB"); glad_glMultiTexCoord3d = (PFNGLMULTITEXCOORD3DPROC) load(userptr, "glMultiTexCoord3d"); glad_glMultiTexCoord3dARB = (PFNGLMULTITEXCOORD3DARBPROC) load(userptr, "glMultiTexCoord3dARB"); glad_glMultiTexCoord3dv = (PFNGLMULTITEXCOORD3DVPROC) load(userptr, "glMultiTexCoord3dv"); glad_glMultiTexCoord3dvARB = (PFNGLMULTITEXCOORD3DVARBPROC) load(userptr, "glMultiTexCoord3dvARB"); glad_glMultiTexCoord3f = (PFNGLMULTITEXCOORD3FPROC) load(userptr, "glMultiTexCoord3f"); glad_glMultiTexCoord3fARB = (PFNGLMULTITEXCOORD3FARBPROC) load(userptr, "glMultiTexCoord3fARB"); glad_glMultiTexCoord3fv = (PFNGLMULTITEXCOORD3FVPROC) load(userptr, "glMultiTexCoord3fv"); glad_glMultiTexCoord3fvARB = (PFNGLMULTITEXCOORD3FVARBPROC) load(userptr, "glMultiTexCoord3fvARB"); glad_glMultiTexCoord3i = (PFNGLMULTITEXCOORD3IPROC) load(userptr, "glMultiTexCoord3i"); glad_glMultiTexCoord3iARB = (PFNGLMULTITEXCOORD3IARBPROC) load(userptr, "glMultiTexCoord3iARB"); glad_glMultiTexCoord3iv = (PFNGLMULTITEXCOORD3IVPROC) load(userptr, "glMultiTexCoord3iv"); glad_glMultiTexCoord3ivARB = (PFNGLMULTITEXCOORD3IVARBPROC) load(userptr, "glMultiTexCoord3ivARB"); glad_glMultiTexCoord3s = (PFNGLMULTITEXCOORD3SPROC) load(userptr, "glMultiTexCoord3s"); glad_glMultiTexCoord3sARB = (PFNGLMULTITEXCOORD3SARBPROC) load(userptr, "glMultiTexCoord3sARB"); glad_glMultiTexCoord3sv = (PFNGLMULTITEXCOORD3SVPROC) load(userptr, "glMultiTexCoord3sv"); glad_glMultiTexCoord3svARB = (PFNGLMULTITEXCOORD3SVARBPROC) load(userptr, "glMultiTexCoord3svARB"); glad_glMultiTexCoord4d = (PFNGLMULTITEXCOORD4DPROC) load(userptr, "glMultiTexCoord4d"); glad_glMultiTexCoord4dARB = (PFNGLMULTITEXCOORD4DARBPROC) load(userptr, "glMultiTexCoord4dARB"); glad_glMultiTexCoord4dv = (PFNGLMULTITEXCOORD4DVPROC) load(userptr, "glMultiTexCoord4dv"); glad_glMultiTexCoord4dvARB = (PFNGLMULTITEXCOORD4DVARBPROC) load(userptr, "glMultiTexCoord4dvARB"); glad_glMultiTexCoord4f = (PFNGLMULTITEXCOORD4FPROC) load(userptr, "glMultiTexCoord4f"); glad_glMultiTexCoord4fARB = (PFNGLMULTITEXCOORD4FARBPROC) load(userptr, "glMultiTexCoord4fARB"); glad_glMultiTexCoord4fv = (PFNGLMULTITEXCOORD4FVPROC) load(userptr, "glMultiTexCoord4fv"); glad_glMultiTexCoord4fvARB = (PFNGLMULTITEXCOORD4FVARBPROC) load(userptr, "glMultiTexCoord4fvARB"); glad_glMultiTexCoord4i = (PFNGLMULTITEXCOORD4IPROC) load(userptr, "glMultiTexCoord4i"); glad_glMultiTexCoord4iARB = (PFNGLMULTITEXCOORD4IARBPROC) load(userptr, "glMultiTexCoord4iARB"); glad_glMultiTexCoord4iv = (PFNGLMULTITEXCOORD4IVPROC) load(userptr, "glMultiTexCoord4iv"); glad_glMultiTexCoord4ivARB = (PFNGLMULTITEXCOORD4IVARBPROC) load(userptr, "glMultiTexCoord4ivARB"); glad_glMultiTexCoord4s = (PFNGLMULTITEXCOORD4SPROC) load(userptr, "glMultiTexCoord4s"); glad_glMultiTexCoord4sARB = (PFNGLMULTITEXCOORD4SARBPROC) load(userptr, "glMultiTexCoord4sARB"); glad_glMultiTexCoord4sv = (PFNGLMULTITEXCOORD4SVPROC) load(userptr, "glMultiTexCoord4sv"); glad_glMultiTexCoord4svARB = (PFNGLMULTITEXCOORD4SVARBPROC) load(userptr, "glMultiTexCoord4svARB"); } static void glad_gl_load_GL_ARB_occlusion_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_occlusion_query) return; glad_glBeginQuery = (PFNGLBEGINQUERYPROC) load(userptr, "glBeginQuery"); glad_glBeginQueryARB = (PFNGLBEGINQUERYARBPROC) load(userptr, "glBeginQueryARB"); glad_glDeleteQueries = (PFNGLDELETEQUERIESPROC) load(userptr, "glDeleteQueries"); glad_glDeleteQueriesARB = (PFNGLDELETEQUERIESARBPROC) load(userptr, "glDeleteQueriesARB"); glad_glEndQuery = (PFNGLENDQUERYPROC) load(userptr, "glEndQuery"); glad_glEndQueryARB = (PFNGLENDQUERYARBPROC) load(userptr, "glEndQueryARB"); glad_glGenQueries = (PFNGLGENQUERIESPROC) load(userptr, "glGenQueries"); glad_glGenQueriesARB = (PFNGLGENQUERIESARBPROC) load(userptr, "glGenQueriesARB"); glad_glGetQueryObjectiv = (PFNGLGETQUERYOBJECTIVPROC) load(userptr, "glGetQueryObjectiv"); glad_glGetQueryObjectivARB = (PFNGLGETQUERYOBJECTIVARBPROC) load(userptr, "glGetQueryObjectivARB"); glad_glGetQueryObjectuiv = (PFNGLGETQUERYOBJECTUIVPROC) load(userptr, "glGetQueryObjectuiv"); glad_glGetQueryObjectuivARB = (PFNGLGETQUERYOBJECTUIVARBPROC) load(userptr, "glGetQueryObjectuivARB"); glad_glGetQueryiv = (PFNGLGETQUERYIVPROC) load(userptr, "glGetQueryiv"); glad_glGetQueryivARB = (PFNGLGETQUERYIVARBPROC) load(userptr, "glGetQueryivARB"); glad_glIsQuery = (PFNGLISQUERYPROC) load(userptr, "glIsQuery"); glad_glIsQueryARB = (PFNGLISQUERYARBPROC) load(userptr, "glIsQueryARB"); } static void glad_gl_load_GL_ARB_parallel_shader_compile( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_parallel_shader_compile) return; glad_glMaxShaderCompilerThreadsARB = (PFNGLMAXSHADERCOMPILERTHREADSARBPROC) load(userptr, "glMaxShaderCompilerThreadsARB"); glad_glMaxShaderCompilerThreadsKHR = (PFNGLMAXSHADERCOMPILERTHREADSKHRPROC) load(userptr, "glMaxShaderCompilerThreadsKHR"); } static void glad_gl_load_GL_ARB_point_parameters( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_point_parameters) return; glad_glPointParameterf = (PFNGLPOINTPARAMETERFPROC) load(userptr, "glPointParameterf"); glad_glPointParameterfARB = (PFNGLPOINTPARAMETERFARBPROC) load(userptr, "glPointParameterfARB"); glad_glPointParameterfv = (PFNGLPOINTPARAMETERFVPROC) load(userptr, "glPointParameterfv"); glad_glPointParameterfvARB = (PFNGLPOINTPARAMETERFVARBPROC) load(userptr, "glPointParameterfvARB"); } static void glad_gl_load_GL_ARB_polygon_offset_clamp( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_polygon_offset_clamp) return; glad_glPolygonOffsetClamp = (PFNGLPOLYGONOFFSETCLAMPPROC) load(userptr, "glPolygonOffsetClamp"); } static void glad_gl_load_GL_ARB_program_interface_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_program_interface_query) return; glad_glGetProgramInterfaceiv = (PFNGLGETPROGRAMINTERFACEIVPROC) load(userptr, "glGetProgramInterfaceiv"); glad_glGetProgramResourceIndex = (PFNGLGETPROGRAMRESOURCEINDEXPROC) load(userptr, "glGetProgramResourceIndex"); glad_glGetProgramResourceLocation = (PFNGLGETPROGRAMRESOURCELOCATIONPROC) load(userptr, "glGetProgramResourceLocation"); glad_glGetProgramResourceLocationIndex = (PFNGLGETPROGRAMRESOURCELOCATIONINDEXPROC) load(userptr, "glGetProgramResourceLocationIndex"); glad_glGetProgramResourceName = (PFNGLGETPROGRAMRESOURCENAMEPROC) load(userptr, "glGetProgramResourceName"); glad_glGetProgramResourceiv = (PFNGLGETPROGRAMRESOURCEIVPROC) load(userptr, "glGetProgramResourceiv"); } static void glad_gl_load_GL_ARB_provoking_vertex( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_provoking_vertex) return; glad_glProvokingVertex = (PFNGLPROVOKINGVERTEXPROC) load(userptr, "glProvokingVertex"); } static void glad_gl_load_GL_ARB_robustness( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_robustness) return; glad_glGetGraphicsResetStatusARB = (PFNGLGETGRAPHICSRESETSTATUSARBPROC) load(userptr, "glGetGraphicsResetStatusARB"); glad_glGetnColorTableARB = (PFNGLGETNCOLORTABLEARBPROC) load(userptr, "glGetnColorTableARB"); glad_glGetnCompressedTexImageARB = (PFNGLGETNCOMPRESSEDTEXIMAGEARBPROC) load(userptr, "glGetnCompressedTexImageARB"); glad_glGetnConvolutionFilterARB = (PFNGLGETNCONVOLUTIONFILTERARBPROC) load(userptr, "glGetnConvolutionFilterARB"); glad_glGetnHistogramARB = (PFNGLGETNHISTOGRAMARBPROC) load(userptr, "glGetnHistogramARB"); glad_glGetnMapdvARB = (PFNGLGETNMAPDVARBPROC) load(userptr, "glGetnMapdvARB"); glad_glGetnMapfvARB = (PFNGLGETNMAPFVARBPROC) load(userptr, "glGetnMapfvARB"); glad_glGetnMapivARB = (PFNGLGETNMAPIVARBPROC) load(userptr, "glGetnMapivARB"); glad_glGetnMinmaxARB = (PFNGLGETNMINMAXARBPROC) load(userptr, "glGetnMinmaxARB"); glad_glGetnPixelMapfvARB = (PFNGLGETNPIXELMAPFVARBPROC) load(userptr, "glGetnPixelMapfvARB"); glad_glGetnPixelMapuivARB = (PFNGLGETNPIXELMAPUIVARBPROC) load(userptr, "glGetnPixelMapuivARB"); glad_glGetnPixelMapusvARB = (PFNGLGETNPIXELMAPUSVARBPROC) load(userptr, "glGetnPixelMapusvARB"); glad_glGetnPolygonStippleARB = (PFNGLGETNPOLYGONSTIPPLEARBPROC) load(userptr, "glGetnPolygonStippleARB"); glad_glGetnSeparableFilterARB = (PFNGLGETNSEPARABLEFILTERARBPROC) load(userptr, "glGetnSeparableFilterARB"); glad_glGetnTexImageARB = (PFNGLGETNTEXIMAGEARBPROC) load(userptr, "glGetnTexImageARB"); glad_glGetnUniformdvARB = (PFNGLGETNUNIFORMDVARBPROC) load(userptr, "glGetnUniformdvARB"); glad_glGetnUniformfvARB = (PFNGLGETNUNIFORMFVARBPROC) load(userptr, "glGetnUniformfvARB"); glad_glGetnUniformivARB = (PFNGLGETNUNIFORMIVARBPROC) load(userptr, "glGetnUniformivARB"); glad_glGetnUniformuivARB = (PFNGLGETNUNIFORMUIVARBPROC) load(userptr, "glGetnUniformuivARB"); glad_glReadnPixels = (PFNGLREADNPIXELSPROC) load(userptr, "glReadnPixels"); glad_glReadnPixelsARB = (PFNGLREADNPIXELSARBPROC) load(userptr, "glReadnPixelsARB"); } static void glad_gl_load_GL_ARB_sample_locations( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sample_locations) return; glad_glEvaluateDepthValuesARB = (PFNGLEVALUATEDEPTHVALUESARBPROC) load(userptr, "glEvaluateDepthValuesARB"); glad_glFramebufferSampleLocationsfvARB = (PFNGLFRAMEBUFFERSAMPLELOCATIONSFVARBPROC) load(userptr, "glFramebufferSampleLocationsfvARB"); glad_glNamedFramebufferSampleLocationsfvARB = (PFNGLNAMEDFRAMEBUFFERSAMPLELOCATIONSFVARBPROC) load(userptr, "glNamedFramebufferSampleLocationsfvARB"); } static void glad_gl_load_GL_ARB_sample_shading( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sample_shading) return; glad_glMinSampleShading = (PFNGLMINSAMPLESHADINGPROC) load(userptr, "glMinSampleShading"); glad_glMinSampleShadingARB = (PFNGLMINSAMPLESHADINGARBPROC) load(userptr, "glMinSampleShadingARB"); } static void glad_gl_load_GL_ARB_sampler_objects( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sampler_objects) return; glad_glBindSampler = (PFNGLBINDSAMPLERPROC) load(userptr, "glBindSampler"); glad_glDeleteSamplers = (PFNGLDELETESAMPLERSPROC) load(userptr, "glDeleteSamplers"); glad_glGenSamplers = (PFNGLGENSAMPLERSPROC) load(userptr, "glGenSamplers"); glad_glGetSamplerParameterIiv = (PFNGLGETSAMPLERPARAMETERIIVPROC) load(userptr, "glGetSamplerParameterIiv"); glad_glGetSamplerParameterIuiv = (PFNGLGETSAMPLERPARAMETERIUIVPROC) load(userptr, "glGetSamplerParameterIuiv"); glad_glGetSamplerParameterfv = (PFNGLGETSAMPLERPARAMETERFVPROC) load(userptr, "glGetSamplerParameterfv"); glad_glGetSamplerParameteriv = (PFNGLGETSAMPLERPARAMETERIVPROC) load(userptr, "glGetSamplerParameteriv"); glad_glIsSampler = (PFNGLISSAMPLERPROC) load(userptr, "glIsSampler"); glad_glSamplerParameterIiv = (PFNGLSAMPLERPARAMETERIIVPROC) load(userptr, "glSamplerParameterIiv"); glad_glSamplerParameterIuiv = (PFNGLSAMPLERPARAMETERIUIVPROC) load(userptr, "glSamplerParameterIuiv"); glad_glSamplerParameterf = (PFNGLSAMPLERPARAMETERFPROC) load(userptr, "glSamplerParameterf"); glad_glSamplerParameterfv = (PFNGLSAMPLERPARAMETERFVPROC) load(userptr, "glSamplerParameterfv"); glad_glSamplerParameteri = (PFNGLSAMPLERPARAMETERIPROC) load(userptr, "glSamplerParameteri"); glad_glSamplerParameteriv = (PFNGLSAMPLERPARAMETERIVPROC) load(userptr, "glSamplerParameteriv"); } static void glad_gl_load_GL_ARB_separate_shader_objects( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_separate_shader_objects) return; glad_glActiveShaderProgram = (PFNGLACTIVESHADERPROGRAMPROC) load(userptr, "glActiveShaderProgram"); glad_glBindProgramPipeline = (PFNGLBINDPROGRAMPIPELINEPROC) load(userptr, "glBindProgramPipeline"); glad_glCreateShaderProgramv = (PFNGLCREATESHADERPROGRAMVPROC) load(userptr, "glCreateShaderProgramv"); glad_glDeleteProgramPipelines = (PFNGLDELETEPROGRAMPIPELINESPROC) load(userptr, "glDeleteProgramPipelines"); glad_glGenProgramPipelines = (PFNGLGENPROGRAMPIPELINESPROC) load(userptr, "glGenProgramPipelines"); glad_glGetProgramPipelineInfoLog = (PFNGLGETPROGRAMPIPELINEINFOLOGPROC) load(userptr, "glGetProgramPipelineInfoLog"); glad_glGetProgramPipelineiv = (PFNGLGETPROGRAMPIPELINEIVPROC) load(userptr, "glGetProgramPipelineiv"); glad_glIsProgramPipeline = (PFNGLISPROGRAMPIPELINEPROC) load(userptr, "glIsProgramPipeline"); glad_glProgramParameteri = (PFNGLPROGRAMPARAMETERIPROC) load(userptr, "glProgramParameteri"); glad_glProgramUniform1d = (PFNGLPROGRAMUNIFORM1DPROC) load(userptr, "glProgramUniform1d"); glad_glProgramUniform1dv = (PFNGLPROGRAMUNIFORM1DVPROC) load(userptr, "glProgramUniform1dv"); glad_glProgramUniform1f = (PFNGLPROGRAMUNIFORM1FPROC) load(userptr, "glProgramUniform1f"); glad_glProgramUniform1fv = (PFNGLPROGRAMUNIFORM1FVPROC) load(userptr, "glProgramUniform1fv"); glad_glProgramUniform1i = (PFNGLPROGRAMUNIFORM1IPROC) load(userptr, "glProgramUniform1i"); glad_glProgramUniform1iv = (PFNGLPROGRAMUNIFORM1IVPROC) load(userptr, "glProgramUniform1iv"); glad_glProgramUniform1ui = (PFNGLPROGRAMUNIFORM1UIPROC) load(userptr, "glProgramUniform1ui"); glad_glProgramUniform1uiv = (PFNGLPROGRAMUNIFORM1UIVPROC) load(userptr, "glProgramUniform1uiv"); glad_glProgramUniform2d = (PFNGLPROGRAMUNIFORM2DPROC) load(userptr, "glProgramUniform2d"); glad_glProgramUniform2dv = (PFNGLPROGRAMUNIFORM2DVPROC) load(userptr, "glProgramUniform2dv"); glad_glProgramUniform2f = (PFNGLPROGRAMUNIFORM2FPROC) load(userptr, "glProgramUniform2f"); glad_glProgramUniform2fv = (PFNGLPROGRAMUNIFORM2FVPROC) load(userptr, "glProgramUniform2fv"); glad_glProgramUniform2i = (PFNGLPROGRAMUNIFORM2IPROC) load(userptr, "glProgramUniform2i"); glad_glProgramUniform2iv = (PFNGLPROGRAMUNIFORM2IVPROC) load(userptr, "glProgramUniform2iv"); glad_glProgramUniform2ui = (PFNGLPROGRAMUNIFORM2UIPROC) load(userptr, "glProgramUniform2ui"); glad_glProgramUniform2uiv = (PFNGLPROGRAMUNIFORM2UIVPROC) load(userptr, "glProgramUniform2uiv"); glad_glProgramUniform3d = (PFNGLPROGRAMUNIFORM3DPROC) load(userptr, "glProgramUniform3d"); glad_glProgramUniform3dv = (PFNGLPROGRAMUNIFORM3DVPROC) load(userptr, "glProgramUniform3dv"); glad_glProgramUniform3f = (PFNGLPROGRAMUNIFORM3FPROC) load(userptr, "glProgramUniform3f"); glad_glProgramUniform3fv = (PFNGLPROGRAMUNIFORM3FVPROC) load(userptr, "glProgramUniform3fv"); glad_glProgramUniform3i = (PFNGLPROGRAMUNIFORM3IPROC) load(userptr, "glProgramUniform3i"); glad_glProgramUniform3iv = (PFNGLPROGRAMUNIFORM3IVPROC) load(userptr, "glProgramUniform3iv"); glad_glProgramUniform3ui = (PFNGLPROGRAMUNIFORM3UIPROC) load(userptr, "glProgramUniform3ui"); glad_glProgramUniform3uiv = (PFNGLPROGRAMUNIFORM3UIVPROC) load(userptr, "glProgramUniform3uiv"); glad_glProgramUniform4d = (PFNGLPROGRAMUNIFORM4DPROC) load(userptr, "glProgramUniform4d"); glad_glProgramUniform4dv = (PFNGLPROGRAMUNIFORM4DVPROC) load(userptr, "glProgramUniform4dv"); glad_glProgramUniform4f = (PFNGLPROGRAMUNIFORM4FPROC) load(userptr, "glProgramUniform4f"); glad_glProgramUniform4fv = (PFNGLPROGRAMUNIFORM4FVPROC) load(userptr, "glProgramUniform4fv"); glad_glProgramUniform4i = (PFNGLPROGRAMUNIFORM4IPROC) load(userptr, "glProgramUniform4i"); glad_glProgramUniform4iv = (PFNGLPROGRAMUNIFORM4IVPROC) load(userptr, "glProgramUniform4iv"); glad_glProgramUniform4ui = (PFNGLPROGRAMUNIFORM4UIPROC) load(userptr, "glProgramUniform4ui"); glad_glProgramUniform4uiv = (PFNGLPROGRAMUNIFORM4UIVPROC) load(userptr, "glProgramUniform4uiv"); glad_glProgramUniformMatrix2dv = (PFNGLPROGRAMUNIFORMMATRIX2DVPROC) load(userptr, "glProgramUniformMatrix2dv"); glad_glProgramUniformMatrix2fv = (PFNGLPROGRAMUNIFORMMATRIX2FVPROC) load(userptr, "glProgramUniformMatrix2fv"); glad_glProgramUniformMatrix2x3dv = (PFNGLPROGRAMUNIFORMMATRIX2X3DVPROC) load(userptr, "glProgramUniformMatrix2x3dv"); glad_glProgramUniformMatrix2x3fv = (PFNGLPROGRAMUNIFORMMATRIX2X3FVPROC) load(userptr, "glProgramUniformMatrix2x3fv"); glad_glProgramUniformMatrix2x4dv = (PFNGLPROGRAMUNIFORMMATRIX2X4DVPROC) load(userptr, "glProgramUniformMatrix2x4dv"); glad_glProgramUniformMatrix2x4fv = (PFNGLPROGRAMUNIFORMMATRIX2X4FVPROC) load(userptr, "glProgramUniformMatrix2x4fv"); glad_glProgramUniformMatrix3dv = (PFNGLPROGRAMUNIFORMMATRIX3DVPROC) load(userptr, "glProgramUniformMatrix3dv"); glad_glProgramUniformMatrix3fv = (PFNGLPROGRAMUNIFORMMATRIX3FVPROC) load(userptr, "glProgramUniformMatrix3fv"); glad_glProgramUniformMatrix3x2dv = (PFNGLPROGRAMUNIFORMMATRIX3X2DVPROC) load(userptr, "glProgramUniformMatrix3x2dv"); glad_glProgramUniformMatrix3x2fv = (PFNGLPROGRAMUNIFORMMATRIX3X2FVPROC) load(userptr, "glProgramUniformMatrix3x2fv"); glad_glProgramUniformMatrix3x4dv = (PFNGLPROGRAMUNIFORMMATRIX3X4DVPROC) load(userptr, "glProgramUniformMatrix3x4dv"); glad_glProgramUniformMatrix3x4fv = (PFNGLPROGRAMUNIFORMMATRIX3X4FVPROC) load(userptr, "glProgramUniformMatrix3x4fv"); glad_glProgramUniformMatrix4dv = (PFNGLPROGRAMUNIFORMMATRIX4DVPROC) load(userptr, "glProgramUniformMatrix4dv"); glad_glProgramUniformMatrix4fv = (PFNGLPROGRAMUNIFORMMATRIX4FVPROC) load(userptr, "glProgramUniformMatrix4fv"); glad_glProgramUniformMatrix4x2dv = (PFNGLPROGRAMUNIFORMMATRIX4X2DVPROC) load(userptr, "glProgramUniformMatrix4x2dv"); glad_glProgramUniformMatrix4x2fv = (PFNGLPROGRAMUNIFORMMATRIX4X2FVPROC) load(userptr, "glProgramUniformMatrix4x2fv"); glad_glProgramUniformMatrix4x3dv = (PFNGLPROGRAMUNIFORMMATRIX4X3DVPROC) load(userptr, "glProgramUniformMatrix4x3dv"); glad_glProgramUniformMatrix4x3fv = (PFNGLPROGRAMUNIFORMMATRIX4X3FVPROC) load(userptr, "glProgramUniformMatrix4x3fv"); glad_glUseProgramStages = (PFNGLUSEPROGRAMSTAGESPROC) load(userptr, "glUseProgramStages"); glad_glValidateProgramPipeline = (PFNGLVALIDATEPROGRAMPIPELINEPROC) load(userptr, "glValidateProgramPipeline"); } static void glad_gl_load_GL_ARB_shader_atomic_counters( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_atomic_counters) return; glad_glGetActiveAtomicCounterBufferiv = (PFNGLGETACTIVEATOMICCOUNTERBUFFERIVPROC) load(userptr, "glGetActiveAtomicCounterBufferiv"); } static void glad_gl_load_GL_ARB_shader_image_load_store( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_image_load_store) return; glad_glBindImageTexture = (PFNGLBINDIMAGETEXTUREPROC) load(userptr, "glBindImageTexture"); glad_glMemoryBarrier = (PFNGLMEMORYBARRIERPROC) load(userptr, "glMemoryBarrier"); } static void glad_gl_load_GL_ARB_shader_objects( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_objects) return; glad_glAttachObjectARB = (PFNGLATTACHOBJECTARBPROC) load(userptr, "glAttachObjectARB"); glad_glAttachShader = (PFNGLATTACHSHADERPROC) load(userptr, "glAttachShader"); glad_glCompileShader = (PFNGLCOMPILESHADERPROC) load(userptr, "glCompileShader"); glad_glCompileShaderARB = (PFNGLCOMPILESHADERARBPROC) load(userptr, "glCompileShaderARB"); glad_glCreateProgram = (PFNGLCREATEPROGRAMPROC) load(userptr, "glCreateProgram"); glad_glCreateProgramObjectARB = (PFNGLCREATEPROGRAMOBJECTARBPROC) load(userptr, "glCreateProgramObjectARB"); glad_glCreateShader = (PFNGLCREATESHADERPROC) load(userptr, "glCreateShader"); glad_glCreateShaderObjectARB = (PFNGLCREATESHADEROBJECTARBPROC) load(userptr, "glCreateShaderObjectARB"); glad_glDeleteObjectARB = (PFNGLDELETEOBJECTARBPROC) load(userptr, "glDeleteObjectARB"); glad_glDetachObjectARB = (PFNGLDETACHOBJECTARBPROC) load(userptr, "glDetachObjectARB"); glad_glDetachShader = (PFNGLDETACHSHADERPROC) load(userptr, "glDetachShader"); glad_glGetActiveUniform = (PFNGLGETACTIVEUNIFORMPROC) load(userptr, "glGetActiveUniform"); glad_glGetActiveUniformARB = (PFNGLGETACTIVEUNIFORMARBPROC) load(userptr, "glGetActiveUniformARB"); glad_glGetAttachedObjectsARB = (PFNGLGETATTACHEDOBJECTSARBPROC) load(userptr, "glGetAttachedObjectsARB"); glad_glGetHandleARB = (PFNGLGETHANDLEARBPROC) load(userptr, "glGetHandleARB"); glad_glGetInfoLogARB = (PFNGLGETINFOLOGARBPROC) load(userptr, "glGetInfoLogARB"); glad_glGetObjectParameterfvARB = (PFNGLGETOBJECTPARAMETERFVARBPROC) load(userptr, "glGetObjectParameterfvARB"); glad_glGetObjectParameterivARB = (PFNGLGETOBJECTPARAMETERIVARBPROC) load(userptr, "glGetObjectParameterivARB"); glad_glGetShaderSource = (PFNGLGETSHADERSOURCEPROC) load(userptr, "glGetShaderSource"); glad_glGetShaderSourceARB = (PFNGLGETSHADERSOURCEARBPROC) load(userptr, "glGetShaderSourceARB"); glad_glGetUniformLocation = (PFNGLGETUNIFORMLOCATIONPROC) load(userptr, "glGetUniformLocation"); glad_glGetUniformLocationARB = (PFNGLGETUNIFORMLOCATIONARBPROC) load(userptr, "glGetUniformLocationARB"); glad_glGetUniformfv = (PFNGLGETUNIFORMFVPROC) load(userptr, "glGetUniformfv"); glad_glGetUniformfvARB = (PFNGLGETUNIFORMFVARBPROC) load(userptr, "glGetUniformfvARB"); glad_glGetUniformiv = (PFNGLGETUNIFORMIVPROC) load(userptr, "glGetUniformiv"); glad_glGetUniformivARB = (PFNGLGETUNIFORMIVARBPROC) load(userptr, "glGetUniformivARB"); glad_glLinkProgram = (PFNGLLINKPROGRAMPROC) load(userptr, "glLinkProgram"); glad_glLinkProgramARB = (PFNGLLINKPROGRAMARBPROC) load(userptr, "glLinkProgramARB"); glad_glShaderSource = (PFNGLSHADERSOURCEPROC) load(userptr, "glShaderSource"); glad_glShaderSourceARB = (PFNGLSHADERSOURCEARBPROC) load(userptr, "glShaderSourceARB"); glad_glUniform1f = (PFNGLUNIFORM1FPROC) load(userptr, "glUniform1f"); glad_glUniform1fARB = (PFNGLUNIFORM1FARBPROC) load(userptr, "glUniform1fARB"); glad_glUniform1fv = (PFNGLUNIFORM1FVPROC) load(userptr, "glUniform1fv"); glad_glUniform1fvARB = (PFNGLUNIFORM1FVARBPROC) load(userptr, "glUniform1fvARB"); glad_glUniform1i = (PFNGLUNIFORM1IPROC) load(userptr, "glUniform1i"); glad_glUniform1iARB = (PFNGLUNIFORM1IARBPROC) load(userptr, "glUniform1iARB"); glad_glUniform1iv = (PFNGLUNIFORM1IVPROC) load(userptr, "glUniform1iv"); glad_glUniform1ivARB = (PFNGLUNIFORM1IVARBPROC) load(userptr, "glUniform1ivARB"); glad_glUniform2f = (PFNGLUNIFORM2FPROC) load(userptr, "glUniform2f"); glad_glUniform2fARB = (PFNGLUNIFORM2FARBPROC) load(userptr, "glUniform2fARB"); glad_glUniform2fv = (PFNGLUNIFORM2FVPROC) load(userptr, "glUniform2fv"); glad_glUniform2fvARB = (PFNGLUNIFORM2FVARBPROC) load(userptr, "glUniform2fvARB"); glad_glUniform2i = (PFNGLUNIFORM2IPROC) load(userptr, "glUniform2i"); glad_glUniform2iARB = (PFNGLUNIFORM2IARBPROC) load(userptr, "glUniform2iARB"); glad_glUniform2iv = (PFNGLUNIFORM2IVPROC) load(userptr, "glUniform2iv"); glad_glUniform2ivARB = (PFNGLUNIFORM2IVARBPROC) load(userptr, "glUniform2ivARB"); glad_glUniform3f = (PFNGLUNIFORM3FPROC) load(userptr, "glUniform3f"); glad_glUniform3fARB = (PFNGLUNIFORM3FARBPROC) load(userptr, "glUniform3fARB"); glad_glUniform3fv = (PFNGLUNIFORM3FVPROC) load(userptr, "glUniform3fv"); glad_glUniform3fvARB = (PFNGLUNIFORM3FVARBPROC) load(userptr, "glUniform3fvARB"); glad_glUniform3i = (PFNGLUNIFORM3IPROC) load(userptr, "glUniform3i"); glad_glUniform3iARB = (PFNGLUNIFORM3IARBPROC) load(userptr, "glUniform3iARB"); glad_glUniform3iv = (PFNGLUNIFORM3IVPROC) load(userptr, "glUniform3iv"); glad_glUniform3ivARB = (PFNGLUNIFORM3IVARBPROC) load(userptr, "glUniform3ivARB"); glad_glUniform4f = (PFNGLUNIFORM4FPROC) load(userptr, "glUniform4f"); glad_glUniform4fARB = (PFNGLUNIFORM4FARBPROC) load(userptr, "glUniform4fARB"); glad_glUniform4fv = (PFNGLUNIFORM4FVPROC) load(userptr, "glUniform4fv"); glad_glUniform4fvARB = (PFNGLUNIFORM4FVARBPROC) load(userptr, "glUniform4fvARB"); glad_glUniform4i = (PFNGLUNIFORM4IPROC) load(userptr, "glUniform4i"); glad_glUniform4iARB = (PFNGLUNIFORM4IARBPROC) load(userptr, "glUniform4iARB"); glad_glUniform4iv = (PFNGLUNIFORM4IVPROC) load(userptr, "glUniform4iv"); glad_glUniform4ivARB = (PFNGLUNIFORM4IVARBPROC) load(userptr, "glUniform4ivARB"); glad_glUniformMatrix2fv = (PFNGLUNIFORMMATRIX2FVPROC) load(userptr, "glUniformMatrix2fv"); glad_glUniformMatrix2fvARB = (PFNGLUNIFORMMATRIX2FVARBPROC) load(userptr, "glUniformMatrix2fvARB"); glad_glUniformMatrix3fv = (PFNGLUNIFORMMATRIX3FVPROC) load(userptr, "glUniformMatrix3fv"); glad_glUniformMatrix3fvARB = (PFNGLUNIFORMMATRIX3FVARBPROC) load(userptr, "glUniformMatrix3fvARB"); glad_glUniformMatrix4fv = (PFNGLUNIFORMMATRIX4FVPROC) load(userptr, "glUniformMatrix4fv"); glad_glUniformMatrix4fvARB = (PFNGLUNIFORMMATRIX4FVARBPROC) load(userptr, "glUniformMatrix4fvARB"); glad_glUseProgram = (PFNGLUSEPROGRAMPROC) load(userptr, "glUseProgram"); glad_glUseProgramObjectARB = (PFNGLUSEPROGRAMOBJECTARBPROC) load(userptr, "glUseProgramObjectARB"); glad_glValidateProgram = (PFNGLVALIDATEPROGRAMPROC) load(userptr, "glValidateProgram"); glad_glValidateProgramARB = (PFNGLVALIDATEPROGRAMARBPROC) load(userptr, "glValidateProgramARB"); } static void glad_gl_load_GL_ARB_shader_storage_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_storage_buffer_object) return; glad_glShaderStorageBlockBinding = (PFNGLSHADERSTORAGEBLOCKBINDINGPROC) load(userptr, "glShaderStorageBlockBinding"); } static void glad_gl_load_GL_ARB_shader_subroutine( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shader_subroutine) return; glad_glGetActiveSubroutineName = (PFNGLGETACTIVESUBROUTINENAMEPROC) load(userptr, "glGetActiveSubroutineName"); glad_glGetActiveSubroutineUniformName = (PFNGLGETACTIVESUBROUTINEUNIFORMNAMEPROC) load(userptr, "glGetActiveSubroutineUniformName"); glad_glGetActiveSubroutineUniformiv = (PFNGLGETACTIVESUBROUTINEUNIFORMIVPROC) load(userptr, "glGetActiveSubroutineUniformiv"); glad_glGetProgramStageiv = (PFNGLGETPROGRAMSTAGEIVPROC) load(userptr, "glGetProgramStageiv"); glad_glGetSubroutineIndex = (PFNGLGETSUBROUTINEINDEXPROC) load(userptr, "glGetSubroutineIndex"); glad_glGetSubroutineUniformLocation = (PFNGLGETSUBROUTINEUNIFORMLOCATIONPROC) load(userptr, "glGetSubroutineUniformLocation"); glad_glGetUniformSubroutineuiv = (PFNGLGETUNIFORMSUBROUTINEUIVPROC) load(userptr, "glGetUniformSubroutineuiv"); glad_glUniformSubroutinesuiv = (PFNGLUNIFORMSUBROUTINESUIVPROC) load(userptr, "glUniformSubroutinesuiv"); } static void glad_gl_load_GL_ARB_shading_language_include( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_shading_language_include) return; glad_glCompileShaderIncludeARB = (PFNGLCOMPILESHADERINCLUDEARBPROC) load(userptr, "glCompileShaderIncludeARB"); glad_glDeleteNamedStringARB = (PFNGLDELETENAMEDSTRINGARBPROC) load(userptr, "glDeleteNamedStringARB"); glad_glGetNamedStringARB = (PFNGLGETNAMEDSTRINGARBPROC) load(userptr, "glGetNamedStringARB"); glad_glGetNamedStringivARB = (PFNGLGETNAMEDSTRINGIVARBPROC) load(userptr, "glGetNamedStringivARB"); glad_glIsNamedStringARB = (PFNGLISNAMEDSTRINGARBPROC) load(userptr, "glIsNamedStringARB"); glad_glNamedStringARB = (PFNGLNAMEDSTRINGARBPROC) load(userptr, "glNamedStringARB"); } static void glad_gl_load_GL_ARB_sparse_buffer( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sparse_buffer) return; glad_glBufferPageCommitmentARB = (PFNGLBUFFERPAGECOMMITMENTARBPROC) load(userptr, "glBufferPageCommitmentARB"); glad_glNamedBufferPageCommitmentARB = (PFNGLNAMEDBUFFERPAGECOMMITMENTARBPROC) load(userptr, "glNamedBufferPageCommitmentARB"); glad_glNamedBufferPageCommitmentEXT = (PFNGLNAMEDBUFFERPAGECOMMITMENTEXTPROC) load(userptr, "glNamedBufferPageCommitmentEXT"); } static void glad_gl_load_GL_ARB_sparse_texture( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sparse_texture) return; glad_glTexPageCommitmentARB = (PFNGLTEXPAGECOMMITMENTARBPROC) load(userptr, "glTexPageCommitmentARB"); } static void glad_gl_load_GL_ARB_sync( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_sync) return; glad_glClientWaitSync = (PFNGLCLIENTWAITSYNCPROC) load(userptr, "glClientWaitSync"); glad_glDeleteSync = (PFNGLDELETESYNCPROC) load(userptr, "glDeleteSync"); glad_glFenceSync = (PFNGLFENCESYNCPROC) load(userptr, "glFenceSync"); glad_glGetInteger64v = (PFNGLGETINTEGER64VPROC) load(userptr, "glGetInteger64v"); glad_glGetSynciv = (PFNGLGETSYNCIVPROC) load(userptr, "glGetSynciv"); glad_glIsSync = (PFNGLISSYNCPROC) load(userptr, "glIsSync"); glad_glWaitSync = (PFNGLWAITSYNCPROC) load(userptr, "glWaitSync"); } static void glad_gl_load_GL_ARB_tessellation_shader( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_tessellation_shader) return; glad_glPatchParameterfv = (PFNGLPATCHPARAMETERFVPROC) load(userptr, "glPatchParameterfv"); glad_glPatchParameteri = (PFNGLPATCHPARAMETERIPROC) load(userptr, "glPatchParameteri"); } static void glad_gl_load_GL_ARB_texture_barrier( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_barrier) return; glad_glTextureBarrier = (PFNGLTEXTUREBARRIERPROC) load(userptr, "glTextureBarrier"); } static void glad_gl_load_GL_ARB_texture_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_buffer_object) return; glad_glTexBuffer = (PFNGLTEXBUFFERPROC) load(userptr, "glTexBuffer"); glad_glTexBufferARB = (PFNGLTEXBUFFERARBPROC) load(userptr, "glTexBufferARB"); } static void glad_gl_load_GL_ARB_texture_buffer_range( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_buffer_range) return; glad_glTexBufferRange = (PFNGLTEXBUFFERRANGEPROC) load(userptr, "glTexBufferRange"); } static void glad_gl_load_GL_ARB_texture_compression( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_compression) return; glad_glCompressedTexImage1D = (PFNGLCOMPRESSEDTEXIMAGE1DPROC) load(userptr, "glCompressedTexImage1D"); glad_glCompressedTexImage1DARB = (PFNGLCOMPRESSEDTEXIMAGE1DARBPROC) load(userptr, "glCompressedTexImage1DARB"); glad_glCompressedTexImage2D = (PFNGLCOMPRESSEDTEXIMAGE2DPROC) load(userptr, "glCompressedTexImage2D"); glad_glCompressedTexImage2DARB = (PFNGLCOMPRESSEDTEXIMAGE2DARBPROC) load(userptr, "glCompressedTexImage2DARB"); glad_glCompressedTexImage3D = (PFNGLCOMPRESSEDTEXIMAGE3DPROC) load(userptr, "glCompressedTexImage3D"); glad_glCompressedTexImage3DARB = (PFNGLCOMPRESSEDTEXIMAGE3DARBPROC) load(userptr, "glCompressedTexImage3DARB"); glad_glCompressedTexSubImage1D = (PFNGLCOMPRESSEDTEXSUBIMAGE1DPROC) load(userptr, "glCompressedTexSubImage1D"); glad_glCompressedTexSubImage1DARB = (PFNGLCOMPRESSEDTEXSUBIMAGE1DARBPROC) load(userptr, "glCompressedTexSubImage1DARB"); glad_glCompressedTexSubImage2D = (PFNGLCOMPRESSEDTEXSUBIMAGE2DPROC) load(userptr, "glCompressedTexSubImage2D"); glad_glCompressedTexSubImage2DARB = (PFNGLCOMPRESSEDTEXSUBIMAGE2DARBPROC) load(userptr, "glCompressedTexSubImage2DARB"); glad_glCompressedTexSubImage3D = (PFNGLCOMPRESSEDTEXSUBIMAGE3DPROC) load(userptr, "glCompressedTexSubImage3D"); glad_glCompressedTexSubImage3DARB = (PFNGLCOMPRESSEDTEXSUBIMAGE3DARBPROC) load(userptr, "glCompressedTexSubImage3DARB"); glad_glGetCompressedTexImage = (PFNGLGETCOMPRESSEDTEXIMAGEPROC) load(userptr, "glGetCompressedTexImage"); glad_glGetCompressedTexImageARB = (PFNGLGETCOMPRESSEDTEXIMAGEARBPROC) load(userptr, "glGetCompressedTexImageARB"); } static void glad_gl_load_GL_ARB_texture_multisample( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_multisample) return; glad_glGetMultisamplefv = (PFNGLGETMULTISAMPLEFVPROC) load(userptr, "glGetMultisamplefv"); glad_glSampleMaski = (PFNGLSAMPLEMASKIPROC) load(userptr, "glSampleMaski"); glad_glTexImage2DMultisample = (PFNGLTEXIMAGE2DMULTISAMPLEPROC) load(userptr, "glTexImage2DMultisample"); glad_glTexImage3DMultisample = (PFNGLTEXIMAGE3DMULTISAMPLEPROC) load(userptr, "glTexImage3DMultisample"); } static void glad_gl_load_GL_ARB_texture_storage( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_storage) return; glad_glTexStorage1D = (PFNGLTEXSTORAGE1DPROC) load(userptr, "glTexStorage1D"); glad_glTexStorage2D = (PFNGLTEXSTORAGE2DPROC) load(userptr, "glTexStorage2D"); glad_glTexStorage3D = (PFNGLTEXSTORAGE3DPROC) load(userptr, "glTexStorage3D"); } static void glad_gl_load_GL_ARB_texture_storage_multisample( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_storage_multisample) return; glad_glTexStorage2DMultisample = (PFNGLTEXSTORAGE2DMULTISAMPLEPROC) load(userptr, "glTexStorage2DMultisample"); glad_glTexStorage3DMultisample = (PFNGLTEXSTORAGE3DMULTISAMPLEPROC) load(userptr, "glTexStorage3DMultisample"); } static void glad_gl_load_GL_ARB_texture_view( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_texture_view) return; glad_glTextureView = (PFNGLTEXTUREVIEWPROC) load(userptr, "glTextureView"); } static void glad_gl_load_GL_ARB_timer_query( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_timer_query) return; glad_glGetQueryObjecti64v = (PFNGLGETQUERYOBJECTI64VPROC) load(userptr, "glGetQueryObjecti64v"); glad_glGetQueryObjectui64v = (PFNGLGETQUERYOBJECTUI64VPROC) load(userptr, "glGetQueryObjectui64v"); glad_glQueryCounter = (PFNGLQUERYCOUNTERPROC) load(userptr, "glQueryCounter"); } static void glad_gl_load_GL_ARB_transform_feedback2( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transform_feedback2) return; glad_glBindTransformFeedback = (PFNGLBINDTRANSFORMFEEDBACKPROC) load(userptr, "glBindTransformFeedback"); glad_glDeleteTransformFeedbacks = (PFNGLDELETETRANSFORMFEEDBACKSPROC) load(userptr, "glDeleteTransformFeedbacks"); glad_glDrawTransformFeedback = (PFNGLDRAWTRANSFORMFEEDBACKPROC) load(userptr, "glDrawTransformFeedback"); glad_glGenTransformFeedbacks = (PFNGLGENTRANSFORMFEEDBACKSPROC) load(userptr, "glGenTransformFeedbacks"); glad_glIsTransformFeedback = (PFNGLISTRANSFORMFEEDBACKPROC) load(userptr, "glIsTransformFeedback"); glad_glPauseTransformFeedback = (PFNGLPAUSETRANSFORMFEEDBACKPROC) load(userptr, "glPauseTransformFeedback"); glad_glResumeTransformFeedback = (PFNGLRESUMETRANSFORMFEEDBACKPROC) load(userptr, "glResumeTransformFeedback"); } static void glad_gl_load_GL_ARB_transform_feedback3( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transform_feedback3) return; glad_glBeginQueryIndexed = (PFNGLBEGINQUERYINDEXEDPROC) load(userptr, "glBeginQueryIndexed"); glad_glDrawTransformFeedbackStream = (PFNGLDRAWTRANSFORMFEEDBACKSTREAMPROC) load(userptr, "glDrawTransformFeedbackStream"); glad_glEndQueryIndexed = (PFNGLENDQUERYINDEXEDPROC) load(userptr, "glEndQueryIndexed"); glad_glGetQueryIndexediv = (PFNGLGETQUERYINDEXEDIVPROC) load(userptr, "glGetQueryIndexediv"); } static void glad_gl_load_GL_ARB_transform_feedback_instanced( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transform_feedback_instanced) return; glad_glDrawTransformFeedbackInstanced = (PFNGLDRAWTRANSFORMFEEDBACKINSTANCEDPROC) load(userptr, "glDrawTransformFeedbackInstanced"); glad_glDrawTransformFeedbackStreamInstanced = (PFNGLDRAWTRANSFORMFEEDBACKSTREAMINSTANCEDPROC) load(userptr, "glDrawTransformFeedbackStreamInstanced"); } static void glad_gl_load_GL_ARB_transpose_matrix( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_transpose_matrix) return; glad_glLoadTransposeMatrixd = (PFNGLLOADTRANSPOSEMATRIXDPROC) load(userptr, "glLoadTransposeMatrixd"); glad_glLoadTransposeMatrixdARB = (PFNGLLOADTRANSPOSEMATRIXDARBPROC) load(userptr, "glLoadTransposeMatrixdARB"); glad_glLoadTransposeMatrixf = (PFNGLLOADTRANSPOSEMATRIXFPROC) load(userptr, "glLoadTransposeMatrixf"); glad_glLoadTransposeMatrixfARB = (PFNGLLOADTRANSPOSEMATRIXFARBPROC) load(userptr, "glLoadTransposeMatrixfARB"); glad_glMultTransposeMatrixd = (PFNGLMULTTRANSPOSEMATRIXDPROC) load(userptr, "glMultTransposeMatrixd"); glad_glMultTransposeMatrixdARB = (PFNGLMULTTRANSPOSEMATRIXDARBPROC) load(userptr, "glMultTransposeMatrixdARB"); glad_glMultTransposeMatrixf = (PFNGLMULTTRANSPOSEMATRIXFPROC) load(userptr, "glMultTransposeMatrixf"); glad_glMultTransposeMatrixfARB = (PFNGLMULTTRANSPOSEMATRIXFARBPROC) load(userptr, "glMultTransposeMatrixfARB"); } static void glad_gl_load_GL_ARB_uniform_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_uniform_buffer_object) return; glad_glBindBufferBase = (PFNGLBINDBUFFERBASEPROC) load(userptr, "glBindBufferBase"); glad_glBindBufferRange = (PFNGLBINDBUFFERRANGEPROC) load(userptr, "glBindBufferRange"); glad_glGetActiveUniformBlockName = (PFNGLGETACTIVEUNIFORMBLOCKNAMEPROC) load(userptr, "glGetActiveUniformBlockName"); glad_glGetActiveUniformBlockiv = (PFNGLGETACTIVEUNIFORMBLOCKIVPROC) load(userptr, "glGetActiveUniformBlockiv"); glad_glGetActiveUniformName = (PFNGLGETACTIVEUNIFORMNAMEPROC) load(userptr, "glGetActiveUniformName"); glad_glGetActiveUniformsiv = (PFNGLGETACTIVEUNIFORMSIVPROC) load(userptr, "glGetActiveUniformsiv"); glad_glGetIntegeri_v = (PFNGLGETINTEGERI_VPROC) load(userptr, "glGetIntegeri_v"); glad_glGetUniformBlockIndex = (PFNGLGETUNIFORMBLOCKINDEXPROC) load(userptr, "glGetUniformBlockIndex"); glad_glGetUniformIndices = (PFNGLGETUNIFORMINDICESPROC) load(userptr, "glGetUniformIndices"); glad_glUniformBlockBinding = (PFNGLUNIFORMBLOCKBINDINGPROC) load(userptr, "glUniformBlockBinding"); } static void glad_gl_load_GL_ARB_vertex_array_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_array_object) return; glad_glBindVertexArray = (PFNGLBINDVERTEXARRAYPROC) load(userptr, "glBindVertexArray"); glad_glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSPROC) load(userptr, "glDeleteVertexArrays"); glad_glGenVertexArrays = (PFNGLGENVERTEXARRAYSPROC) load(userptr, "glGenVertexArrays"); glad_glIsVertexArray = (PFNGLISVERTEXARRAYPROC) load(userptr, "glIsVertexArray"); } static void glad_gl_load_GL_ARB_vertex_attrib_64bit( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_attrib_64bit) return; glad_glGetVertexAttribLdv = (PFNGLGETVERTEXATTRIBLDVPROC) load(userptr, "glGetVertexAttribLdv"); glad_glVertexAttribL1d = (PFNGLVERTEXATTRIBL1DPROC) load(userptr, "glVertexAttribL1d"); glad_glVertexAttribL1dv = (PFNGLVERTEXATTRIBL1DVPROC) load(userptr, "glVertexAttribL1dv"); glad_glVertexAttribL2d = (PFNGLVERTEXATTRIBL2DPROC) load(userptr, "glVertexAttribL2d"); glad_glVertexAttribL2dv = (PFNGLVERTEXATTRIBL2DVPROC) load(userptr, "glVertexAttribL2dv"); glad_glVertexAttribL3d = (PFNGLVERTEXATTRIBL3DPROC) load(userptr, "glVertexAttribL3d"); glad_glVertexAttribL3dv = (PFNGLVERTEXATTRIBL3DVPROC) load(userptr, "glVertexAttribL3dv"); glad_glVertexAttribL4d = (PFNGLVERTEXATTRIBL4DPROC) load(userptr, "glVertexAttribL4d"); glad_glVertexAttribL4dv = (PFNGLVERTEXATTRIBL4DVPROC) load(userptr, "glVertexAttribL4dv"); glad_glVertexAttribLPointer = (PFNGLVERTEXATTRIBLPOINTERPROC) load(userptr, "glVertexAttribLPointer"); } static void glad_gl_load_GL_ARB_vertex_attrib_binding( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_attrib_binding) return; glad_glBindVertexBuffer = (PFNGLBINDVERTEXBUFFERPROC) load(userptr, "glBindVertexBuffer"); glad_glVertexAttribBinding = (PFNGLVERTEXATTRIBBINDINGPROC) load(userptr, "glVertexAttribBinding"); glad_glVertexAttribFormat = (PFNGLVERTEXATTRIBFORMATPROC) load(userptr, "glVertexAttribFormat"); glad_glVertexAttribIFormat = (PFNGLVERTEXATTRIBIFORMATPROC) load(userptr, "glVertexAttribIFormat"); glad_glVertexAttribLFormat = (PFNGLVERTEXATTRIBLFORMATPROC) load(userptr, "glVertexAttribLFormat"); glad_glVertexBindingDivisor = (PFNGLVERTEXBINDINGDIVISORPROC) load(userptr, "glVertexBindingDivisor"); } static void glad_gl_load_GL_ARB_vertex_blend( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_blend) return; glad_glVertexBlendARB = (PFNGLVERTEXBLENDARBPROC) load(userptr, "glVertexBlendARB"); glad_glWeightPointerARB = (PFNGLWEIGHTPOINTERARBPROC) load(userptr, "glWeightPointerARB"); glad_glWeightbvARB = (PFNGLWEIGHTBVARBPROC) load(userptr, "glWeightbvARB"); glad_glWeightdvARB = (PFNGLWEIGHTDVARBPROC) load(userptr, "glWeightdvARB"); glad_glWeightfvARB = (PFNGLWEIGHTFVARBPROC) load(userptr, "glWeightfvARB"); glad_glWeightivARB = (PFNGLWEIGHTIVARBPROC) load(userptr, "glWeightivARB"); glad_glWeightsvARB = (PFNGLWEIGHTSVARBPROC) load(userptr, "glWeightsvARB"); glad_glWeightubvARB = (PFNGLWEIGHTUBVARBPROC) load(userptr, "glWeightubvARB"); glad_glWeightuivARB = (PFNGLWEIGHTUIVARBPROC) load(userptr, "glWeightuivARB"); glad_glWeightusvARB = (PFNGLWEIGHTUSVARBPROC) load(userptr, "glWeightusvARB"); } static void glad_gl_load_GL_ARB_vertex_buffer_object( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_buffer_object) return; glad_glBindBuffer = (PFNGLBINDBUFFERPROC) load(userptr, "glBindBuffer"); glad_glBindBufferARB = (PFNGLBINDBUFFERARBPROC) load(userptr, "glBindBufferARB"); glad_glBufferData = (PFNGLBUFFERDATAPROC) load(userptr, "glBufferData"); glad_glBufferDataARB = (PFNGLBUFFERDATAARBPROC) load(userptr, "glBufferDataARB"); glad_glBufferSubData = (PFNGLBUFFERSUBDATAPROC) load(userptr, "glBufferSubData"); glad_glBufferSubDataARB = (PFNGLBUFFERSUBDATAARBPROC) load(userptr, "glBufferSubDataARB"); glad_glDeleteBuffers = (PFNGLDELETEBUFFERSPROC) load(userptr, "glDeleteBuffers"); glad_glDeleteBuffersARB = (PFNGLDELETEBUFFERSARBPROC) load(userptr, "glDeleteBuffersARB"); glad_glGenBuffers = (PFNGLGENBUFFERSPROC) load(userptr, "glGenBuffers"); glad_glGenBuffersARB = (PFNGLGENBUFFERSARBPROC) load(userptr, "glGenBuffersARB"); glad_glGetBufferParameteriv = (PFNGLGETBUFFERPARAMETERIVPROC) load(userptr, "glGetBufferParameteriv"); glad_glGetBufferParameterivARB = (PFNGLGETBUFFERPARAMETERIVARBPROC) load(userptr, "glGetBufferParameterivARB"); glad_glGetBufferPointerv = (PFNGLGETBUFFERPOINTERVPROC) load(userptr, "glGetBufferPointerv"); glad_glGetBufferPointervARB = (PFNGLGETBUFFERPOINTERVARBPROC) load(userptr, "glGetBufferPointervARB"); glad_glGetBufferSubData = (PFNGLGETBUFFERSUBDATAPROC) load(userptr, "glGetBufferSubData"); glad_glGetBufferSubDataARB = (PFNGLGETBUFFERSUBDATAARBPROC) load(userptr, "glGetBufferSubDataARB"); glad_glIsBuffer = (PFNGLISBUFFERPROC) load(userptr, "glIsBuffer"); glad_glIsBufferARB = (PFNGLISBUFFERARBPROC) load(userptr, "glIsBufferARB"); glad_glMapBuffer = (PFNGLMAPBUFFERPROC) load(userptr, "glMapBuffer"); glad_glMapBufferARB = (PFNGLMAPBUFFERARBPROC) load(userptr, "glMapBufferARB"); glad_glUnmapBuffer = (PFNGLUNMAPBUFFERPROC) load(userptr, "glUnmapBuffer"); glad_glUnmapBufferARB = (PFNGLUNMAPBUFFERARBPROC) load(userptr, "glUnmapBufferARB"); } static void glad_gl_load_GL_ARB_vertex_program( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_program) return; glad_glBindProgramARB = (PFNGLBINDPROGRAMARBPROC) load(userptr, "glBindProgramARB"); glad_glDeleteProgramsARB = (PFNGLDELETEPROGRAMSARBPROC) load(userptr, "glDeleteProgramsARB"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC) load(userptr, "glDisableVertexAttribArray"); glad_glDisableVertexAttribArrayARB = (PFNGLDISABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glDisableVertexAttribArrayARB"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC) load(userptr, "glEnableVertexAttribArray"); glad_glEnableVertexAttribArrayARB = (PFNGLENABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glEnableVertexAttribArrayARB"); glad_glGenProgramsARB = (PFNGLGENPROGRAMSARBPROC) load(userptr, "glGenProgramsARB"); glad_glGetProgramEnvParameterdvARB = (PFNGLGETPROGRAMENVPARAMETERDVARBPROC) load(userptr, "glGetProgramEnvParameterdvARB"); glad_glGetProgramEnvParameterfvARB = (PFNGLGETPROGRAMENVPARAMETERFVARBPROC) load(userptr, "glGetProgramEnvParameterfvARB"); glad_glGetProgramLocalParameterdvARB = (PFNGLGETPROGRAMLOCALPARAMETERDVARBPROC) load(userptr, "glGetProgramLocalParameterdvARB"); glad_glGetProgramLocalParameterfvARB = (PFNGLGETPROGRAMLOCALPARAMETERFVARBPROC) load(userptr, "glGetProgramLocalParameterfvARB"); glad_glGetProgramStringARB = (PFNGLGETPROGRAMSTRINGARBPROC) load(userptr, "glGetProgramStringARB"); glad_glGetProgramivARB = (PFNGLGETPROGRAMIVARBPROC) load(userptr, "glGetProgramivARB"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC) load(userptr, "glGetVertexAttribPointerv"); glad_glGetVertexAttribPointervARB = (PFNGLGETVERTEXATTRIBPOINTERVARBPROC) load(userptr, "glGetVertexAttribPointervARB"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC) load(userptr, "glGetVertexAttribdv"); glad_glGetVertexAttribdvARB = (PFNGLGETVERTEXATTRIBDVARBPROC) load(userptr, "glGetVertexAttribdvARB"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC) load(userptr, "glGetVertexAttribfv"); glad_glGetVertexAttribfvARB = (PFNGLGETVERTEXATTRIBFVARBPROC) load(userptr, "glGetVertexAttribfvARB"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC) load(userptr, "glGetVertexAttribiv"); glad_glGetVertexAttribivARB = (PFNGLGETVERTEXATTRIBIVARBPROC) load(userptr, "glGetVertexAttribivARB"); glad_glIsProgramARB = (PFNGLISPROGRAMARBPROC) load(userptr, "glIsProgramARB"); glad_glProgramEnvParameter4dARB = (PFNGLPROGRAMENVPARAMETER4DARBPROC) load(userptr, "glProgramEnvParameter4dARB"); glad_glProgramEnvParameter4dvARB = (PFNGLPROGRAMENVPARAMETER4DVARBPROC) load(userptr, "glProgramEnvParameter4dvARB"); glad_glProgramEnvParameter4fARB = (PFNGLPROGRAMENVPARAMETER4FARBPROC) load(userptr, "glProgramEnvParameter4fARB"); glad_glProgramEnvParameter4fvARB = (PFNGLPROGRAMENVPARAMETER4FVARBPROC) load(userptr, "glProgramEnvParameter4fvARB"); glad_glProgramLocalParameter4dARB = (PFNGLPROGRAMLOCALPARAMETER4DARBPROC) load(userptr, "glProgramLocalParameter4dARB"); glad_glProgramLocalParameter4dvARB = (PFNGLPROGRAMLOCALPARAMETER4DVARBPROC) load(userptr, "glProgramLocalParameter4dvARB"); glad_glProgramLocalParameter4fARB = (PFNGLPROGRAMLOCALPARAMETER4FARBPROC) load(userptr, "glProgramLocalParameter4fARB"); glad_glProgramLocalParameter4fvARB = (PFNGLPROGRAMLOCALPARAMETER4FVARBPROC) load(userptr, "glProgramLocalParameter4fvARB"); glad_glProgramStringARB = (PFNGLPROGRAMSTRINGARBPROC) load(userptr, "glProgramStringARB"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC) load(userptr, "glVertexAttrib1d"); glad_glVertexAttrib1dARB = (PFNGLVERTEXATTRIB1DARBPROC) load(userptr, "glVertexAttrib1dARB"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC) load(userptr, "glVertexAttrib1dv"); glad_glVertexAttrib1dvARB = (PFNGLVERTEXATTRIB1DVARBPROC) load(userptr, "glVertexAttrib1dvARB"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC) load(userptr, "glVertexAttrib1f"); glad_glVertexAttrib1fARB = (PFNGLVERTEXATTRIB1FARBPROC) load(userptr, "glVertexAttrib1fARB"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC) load(userptr, "glVertexAttrib1fv"); glad_glVertexAttrib1fvARB = (PFNGLVERTEXATTRIB1FVARBPROC) load(userptr, "glVertexAttrib1fvARB"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC) load(userptr, "glVertexAttrib1s"); glad_glVertexAttrib1sARB = (PFNGLVERTEXATTRIB1SARBPROC) load(userptr, "glVertexAttrib1sARB"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC) load(userptr, "glVertexAttrib1sv"); glad_glVertexAttrib1svARB = (PFNGLVERTEXATTRIB1SVARBPROC) load(userptr, "glVertexAttrib1svARB"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC) load(userptr, "glVertexAttrib2d"); glad_glVertexAttrib2dARB = (PFNGLVERTEXATTRIB2DARBPROC) load(userptr, "glVertexAttrib2dARB"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC) load(userptr, "glVertexAttrib2dv"); glad_glVertexAttrib2dvARB = (PFNGLVERTEXATTRIB2DVARBPROC) load(userptr, "glVertexAttrib2dvARB"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC) load(userptr, "glVertexAttrib2f"); glad_glVertexAttrib2fARB = (PFNGLVERTEXATTRIB2FARBPROC) load(userptr, "glVertexAttrib2fARB"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC) load(userptr, "glVertexAttrib2fv"); glad_glVertexAttrib2fvARB = (PFNGLVERTEXATTRIB2FVARBPROC) load(userptr, "glVertexAttrib2fvARB"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC) load(userptr, "glVertexAttrib2s"); glad_glVertexAttrib2sARB = (PFNGLVERTEXATTRIB2SARBPROC) load(userptr, "glVertexAttrib2sARB"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC) load(userptr, "glVertexAttrib2sv"); glad_glVertexAttrib2svARB = (PFNGLVERTEXATTRIB2SVARBPROC) load(userptr, "glVertexAttrib2svARB"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC) load(userptr, "glVertexAttrib3d"); glad_glVertexAttrib3dARB = (PFNGLVERTEXATTRIB3DARBPROC) load(userptr, "glVertexAttrib3dARB"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC) load(userptr, "glVertexAttrib3dv"); glad_glVertexAttrib3dvARB = (PFNGLVERTEXATTRIB3DVARBPROC) load(userptr, "glVertexAttrib3dvARB"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC) load(userptr, "glVertexAttrib3f"); glad_glVertexAttrib3fARB = (PFNGLVERTEXATTRIB3FARBPROC) load(userptr, "glVertexAttrib3fARB"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC) load(userptr, "glVertexAttrib3fv"); glad_glVertexAttrib3fvARB = (PFNGLVERTEXATTRIB3FVARBPROC) load(userptr, "glVertexAttrib3fvARB"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC) load(userptr, "glVertexAttrib3s"); glad_glVertexAttrib3sARB = (PFNGLVERTEXATTRIB3SARBPROC) load(userptr, "glVertexAttrib3sARB"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC) load(userptr, "glVertexAttrib3sv"); glad_glVertexAttrib3svARB = (PFNGLVERTEXATTRIB3SVARBPROC) load(userptr, "glVertexAttrib3svARB"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC) load(userptr, "glVertexAttrib4Nbv"); glad_glVertexAttrib4NbvARB = (PFNGLVERTEXATTRIB4NBVARBPROC) load(userptr, "glVertexAttrib4NbvARB"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC) load(userptr, "glVertexAttrib4Niv"); glad_glVertexAttrib4NivARB = (PFNGLVERTEXATTRIB4NIVARBPROC) load(userptr, "glVertexAttrib4NivARB"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC) load(userptr, "glVertexAttrib4Nsv"); glad_glVertexAttrib4NsvARB = (PFNGLVERTEXATTRIB4NSVARBPROC) load(userptr, "glVertexAttrib4NsvARB"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC) load(userptr, "glVertexAttrib4Nub"); glad_glVertexAttrib4NubARB = (PFNGLVERTEXATTRIB4NUBARBPROC) load(userptr, "glVertexAttrib4NubARB"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC) load(userptr, "glVertexAttrib4Nubv"); glad_glVertexAttrib4NubvARB = (PFNGLVERTEXATTRIB4NUBVARBPROC) load(userptr, "glVertexAttrib4NubvARB"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC) load(userptr, "glVertexAttrib4Nuiv"); glad_glVertexAttrib4NuivARB = (PFNGLVERTEXATTRIB4NUIVARBPROC) load(userptr, "glVertexAttrib4NuivARB"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC) load(userptr, "glVertexAttrib4Nusv"); glad_glVertexAttrib4NusvARB = (PFNGLVERTEXATTRIB4NUSVARBPROC) load(userptr, "glVertexAttrib4NusvARB"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC) load(userptr, "glVertexAttrib4bv"); glad_glVertexAttrib4bvARB = (PFNGLVERTEXATTRIB4BVARBPROC) load(userptr, "glVertexAttrib4bvARB"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC) load(userptr, "glVertexAttrib4d"); glad_glVertexAttrib4dARB = (PFNGLVERTEXATTRIB4DARBPROC) load(userptr, "glVertexAttrib4dARB"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC) load(userptr, "glVertexAttrib4dv"); glad_glVertexAttrib4dvARB = (PFNGLVERTEXATTRIB4DVARBPROC) load(userptr, "glVertexAttrib4dvARB"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC) load(userptr, "glVertexAttrib4f"); glad_glVertexAttrib4fARB = (PFNGLVERTEXATTRIB4FARBPROC) load(userptr, "glVertexAttrib4fARB"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC) load(userptr, "glVertexAttrib4fv"); glad_glVertexAttrib4fvARB = (PFNGLVERTEXATTRIB4FVARBPROC) load(userptr, "glVertexAttrib4fvARB"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC) load(userptr, "glVertexAttrib4iv"); glad_glVertexAttrib4ivARB = (PFNGLVERTEXATTRIB4IVARBPROC) load(userptr, "glVertexAttrib4ivARB"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC) load(userptr, "glVertexAttrib4s"); glad_glVertexAttrib4sARB = (PFNGLVERTEXATTRIB4SARBPROC) load(userptr, "glVertexAttrib4sARB"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC) load(userptr, "glVertexAttrib4sv"); glad_glVertexAttrib4svARB = (PFNGLVERTEXATTRIB4SVARBPROC) load(userptr, "glVertexAttrib4svARB"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC) load(userptr, "glVertexAttrib4ubv"); glad_glVertexAttrib4ubvARB = (PFNGLVERTEXATTRIB4UBVARBPROC) load(userptr, "glVertexAttrib4ubvARB"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC) load(userptr, "glVertexAttrib4uiv"); glad_glVertexAttrib4uivARB = (PFNGLVERTEXATTRIB4UIVARBPROC) load(userptr, "glVertexAttrib4uivARB"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC) load(userptr, "glVertexAttrib4usv"); glad_glVertexAttrib4usvARB = (PFNGLVERTEXATTRIB4USVARBPROC) load(userptr, "glVertexAttrib4usvARB"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC) load(userptr, "glVertexAttribPointer"); glad_glVertexAttribPointerARB = (PFNGLVERTEXATTRIBPOINTERARBPROC) load(userptr, "glVertexAttribPointerARB"); } static void glad_gl_load_GL_ARB_vertex_shader( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_shader) return; glad_glBindAttribLocation = (PFNGLBINDATTRIBLOCATIONPROC) load(userptr, "glBindAttribLocation"); glad_glBindAttribLocationARB = (PFNGLBINDATTRIBLOCATIONARBPROC) load(userptr, "glBindAttribLocationARB"); glad_glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYPROC) load(userptr, "glDisableVertexAttribArray"); glad_glDisableVertexAttribArrayARB = (PFNGLDISABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glDisableVertexAttribArrayARB"); glad_glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYPROC) load(userptr, "glEnableVertexAttribArray"); glad_glEnableVertexAttribArrayARB = (PFNGLENABLEVERTEXATTRIBARRAYARBPROC) load(userptr, "glEnableVertexAttribArrayARB"); glad_glGetActiveAttrib = (PFNGLGETACTIVEATTRIBPROC) load(userptr, "glGetActiveAttrib"); glad_glGetActiveAttribARB = (PFNGLGETACTIVEATTRIBARBPROC) load(userptr, "glGetActiveAttribARB"); glad_glGetAttribLocation = (PFNGLGETATTRIBLOCATIONPROC) load(userptr, "glGetAttribLocation"); glad_glGetAttribLocationARB = (PFNGLGETATTRIBLOCATIONARBPROC) load(userptr, "glGetAttribLocationARB"); glad_glGetVertexAttribPointerv = (PFNGLGETVERTEXATTRIBPOINTERVPROC) load(userptr, "glGetVertexAttribPointerv"); glad_glGetVertexAttribPointervARB = (PFNGLGETVERTEXATTRIBPOINTERVARBPROC) load(userptr, "glGetVertexAttribPointervARB"); glad_glGetVertexAttribdv = (PFNGLGETVERTEXATTRIBDVPROC) load(userptr, "glGetVertexAttribdv"); glad_glGetVertexAttribdvARB = (PFNGLGETVERTEXATTRIBDVARBPROC) load(userptr, "glGetVertexAttribdvARB"); glad_glGetVertexAttribfv = (PFNGLGETVERTEXATTRIBFVPROC) load(userptr, "glGetVertexAttribfv"); glad_glGetVertexAttribfvARB = (PFNGLGETVERTEXATTRIBFVARBPROC) load(userptr, "glGetVertexAttribfvARB"); glad_glGetVertexAttribiv = (PFNGLGETVERTEXATTRIBIVPROC) load(userptr, "glGetVertexAttribiv"); glad_glGetVertexAttribivARB = (PFNGLGETVERTEXATTRIBIVARBPROC) load(userptr, "glGetVertexAttribivARB"); glad_glVertexAttrib1d = (PFNGLVERTEXATTRIB1DPROC) load(userptr, "glVertexAttrib1d"); glad_glVertexAttrib1dARB = (PFNGLVERTEXATTRIB1DARBPROC) load(userptr, "glVertexAttrib1dARB"); glad_glVertexAttrib1dv = (PFNGLVERTEXATTRIB1DVPROC) load(userptr, "glVertexAttrib1dv"); glad_glVertexAttrib1dvARB = (PFNGLVERTEXATTRIB1DVARBPROC) load(userptr, "glVertexAttrib1dvARB"); glad_glVertexAttrib1f = (PFNGLVERTEXATTRIB1FPROC) load(userptr, "glVertexAttrib1f"); glad_glVertexAttrib1fARB = (PFNGLVERTEXATTRIB1FARBPROC) load(userptr, "glVertexAttrib1fARB"); glad_glVertexAttrib1fv = (PFNGLVERTEXATTRIB1FVPROC) load(userptr, "glVertexAttrib1fv"); glad_glVertexAttrib1fvARB = (PFNGLVERTEXATTRIB1FVARBPROC) load(userptr, "glVertexAttrib1fvARB"); glad_glVertexAttrib1s = (PFNGLVERTEXATTRIB1SPROC) load(userptr, "glVertexAttrib1s"); glad_glVertexAttrib1sARB = (PFNGLVERTEXATTRIB1SARBPROC) load(userptr, "glVertexAttrib1sARB"); glad_glVertexAttrib1sv = (PFNGLVERTEXATTRIB1SVPROC) load(userptr, "glVertexAttrib1sv"); glad_glVertexAttrib1svARB = (PFNGLVERTEXATTRIB1SVARBPROC) load(userptr, "glVertexAttrib1svARB"); glad_glVertexAttrib2d = (PFNGLVERTEXATTRIB2DPROC) load(userptr, "glVertexAttrib2d"); glad_glVertexAttrib2dARB = (PFNGLVERTEXATTRIB2DARBPROC) load(userptr, "glVertexAttrib2dARB"); glad_glVertexAttrib2dv = (PFNGLVERTEXATTRIB2DVPROC) load(userptr, "glVertexAttrib2dv"); glad_glVertexAttrib2dvARB = (PFNGLVERTEXATTRIB2DVARBPROC) load(userptr, "glVertexAttrib2dvARB"); glad_glVertexAttrib2f = (PFNGLVERTEXATTRIB2FPROC) load(userptr, "glVertexAttrib2f"); glad_glVertexAttrib2fARB = (PFNGLVERTEXATTRIB2FARBPROC) load(userptr, "glVertexAttrib2fARB"); glad_glVertexAttrib2fv = (PFNGLVERTEXATTRIB2FVPROC) load(userptr, "glVertexAttrib2fv"); glad_glVertexAttrib2fvARB = (PFNGLVERTEXATTRIB2FVARBPROC) load(userptr, "glVertexAttrib2fvARB"); glad_glVertexAttrib2s = (PFNGLVERTEXATTRIB2SPROC) load(userptr, "glVertexAttrib2s"); glad_glVertexAttrib2sARB = (PFNGLVERTEXATTRIB2SARBPROC) load(userptr, "glVertexAttrib2sARB"); glad_glVertexAttrib2sv = (PFNGLVERTEXATTRIB2SVPROC) load(userptr, "glVertexAttrib2sv"); glad_glVertexAttrib2svARB = (PFNGLVERTEXATTRIB2SVARBPROC) load(userptr, "glVertexAttrib2svARB"); glad_glVertexAttrib3d = (PFNGLVERTEXATTRIB3DPROC) load(userptr, "glVertexAttrib3d"); glad_glVertexAttrib3dARB = (PFNGLVERTEXATTRIB3DARBPROC) load(userptr, "glVertexAttrib3dARB"); glad_glVertexAttrib3dv = (PFNGLVERTEXATTRIB3DVPROC) load(userptr, "glVertexAttrib3dv"); glad_glVertexAttrib3dvARB = (PFNGLVERTEXATTRIB3DVARBPROC) load(userptr, "glVertexAttrib3dvARB"); glad_glVertexAttrib3f = (PFNGLVERTEXATTRIB3FPROC) load(userptr, "glVertexAttrib3f"); glad_glVertexAttrib3fARB = (PFNGLVERTEXATTRIB3FARBPROC) load(userptr, "glVertexAttrib3fARB"); glad_glVertexAttrib3fv = (PFNGLVERTEXATTRIB3FVPROC) load(userptr, "glVertexAttrib3fv"); glad_glVertexAttrib3fvARB = (PFNGLVERTEXATTRIB3FVARBPROC) load(userptr, "glVertexAttrib3fvARB"); glad_glVertexAttrib3s = (PFNGLVERTEXATTRIB3SPROC) load(userptr, "glVertexAttrib3s"); glad_glVertexAttrib3sARB = (PFNGLVERTEXATTRIB3SARBPROC) load(userptr, "glVertexAttrib3sARB"); glad_glVertexAttrib3sv = (PFNGLVERTEXATTRIB3SVPROC) load(userptr, "glVertexAttrib3sv"); glad_glVertexAttrib3svARB = (PFNGLVERTEXATTRIB3SVARBPROC) load(userptr, "glVertexAttrib3svARB"); glad_glVertexAttrib4Nbv = (PFNGLVERTEXATTRIB4NBVPROC) load(userptr, "glVertexAttrib4Nbv"); glad_glVertexAttrib4NbvARB = (PFNGLVERTEXATTRIB4NBVARBPROC) load(userptr, "glVertexAttrib4NbvARB"); glad_glVertexAttrib4Niv = (PFNGLVERTEXATTRIB4NIVPROC) load(userptr, "glVertexAttrib4Niv"); glad_glVertexAttrib4NivARB = (PFNGLVERTEXATTRIB4NIVARBPROC) load(userptr, "glVertexAttrib4NivARB"); glad_glVertexAttrib4Nsv = (PFNGLVERTEXATTRIB4NSVPROC) load(userptr, "glVertexAttrib4Nsv"); glad_glVertexAttrib4NsvARB = (PFNGLVERTEXATTRIB4NSVARBPROC) load(userptr, "glVertexAttrib4NsvARB"); glad_glVertexAttrib4Nub = (PFNGLVERTEXATTRIB4NUBPROC) load(userptr, "glVertexAttrib4Nub"); glad_glVertexAttrib4NubARB = (PFNGLVERTEXATTRIB4NUBARBPROC) load(userptr, "glVertexAttrib4NubARB"); glad_glVertexAttrib4Nubv = (PFNGLVERTEXATTRIB4NUBVPROC) load(userptr, "glVertexAttrib4Nubv"); glad_glVertexAttrib4NubvARB = (PFNGLVERTEXATTRIB4NUBVARBPROC) load(userptr, "glVertexAttrib4NubvARB"); glad_glVertexAttrib4Nuiv = (PFNGLVERTEXATTRIB4NUIVPROC) load(userptr, "glVertexAttrib4Nuiv"); glad_glVertexAttrib4NuivARB = (PFNGLVERTEXATTRIB4NUIVARBPROC) load(userptr, "glVertexAttrib4NuivARB"); glad_glVertexAttrib4Nusv = (PFNGLVERTEXATTRIB4NUSVPROC) load(userptr, "glVertexAttrib4Nusv"); glad_glVertexAttrib4NusvARB = (PFNGLVERTEXATTRIB4NUSVARBPROC) load(userptr, "glVertexAttrib4NusvARB"); glad_glVertexAttrib4bv = (PFNGLVERTEXATTRIB4BVPROC) load(userptr, "glVertexAttrib4bv"); glad_glVertexAttrib4bvARB = (PFNGLVERTEXATTRIB4BVARBPROC) load(userptr, "glVertexAttrib4bvARB"); glad_glVertexAttrib4d = (PFNGLVERTEXATTRIB4DPROC) load(userptr, "glVertexAttrib4d"); glad_glVertexAttrib4dARB = (PFNGLVERTEXATTRIB4DARBPROC) load(userptr, "glVertexAttrib4dARB"); glad_glVertexAttrib4dv = (PFNGLVERTEXATTRIB4DVPROC) load(userptr, "glVertexAttrib4dv"); glad_glVertexAttrib4dvARB = (PFNGLVERTEXATTRIB4DVARBPROC) load(userptr, "glVertexAttrib4dvARB"); glad_glVertexAttrib4f = (PFNGLVERTEXATTRIB4FPROC) load(userptr, "glVertexAttrib4f"); glad_glVertexAttrib4fARB = (PFNGLVERTEXATTRIB4FARBPROC) load(userptr, "glVertexAttrib4fARB"); glad_glVertexAttrib4fv = (PFNGLVERTEXATTRIB4FVPROC) load(userptr, "glVertexAttrib4fv"); glad_glVertexAttrib4fvARB = (PFNGLVERTEXATTRIB4FVARBPROC) load(userptr, "glVertexAttrib4fvARB"); glad_glVertexAttrib4iv = (PFNGLVERTEXATTRIB4IVPROC) load(userptr, "glVertexAttrib4iv"); glad_glVertexAttrib4ivARB = (PFNGLVERTEXATTRIB4IVARBPROC) load(userptr, "glVertexAttrib4ivARB"); glad_glVertexAttrib4s = (PFNGLVERTEXATTRIB4SPROC) load(userptr, "glVertexAttrib4s"); glad_glVertexAttrib4sARB = (PFNGLVERTEXATTRIB4SARBPROC) load(userptr, "glVertexAttrib4sARB"); glad_glVertexAttrib4sv = (PFNGLVERTEXATTRIB4SVPROC) load(userptr, "glVertexAttrib4sv"); glad_glVertexAttrib4svARB = (PFNGLVERTEXATTRIB4SVARBPROC) load(userptr, "glVertexAttrib4svARB"); glad_glVertexAttrib4ubv = (PFNGLVERTEXATTRIB4UBVPROC) load(userptr, "glVertexAttrib4ubv"); glad_glVertexAttrib4ubvARB = (PFNGLVERTEXATTRIB4UBVARBPROC) load(userptr, "glVertexAttrib4ubvARB"); glad_glVertexAttrib4uiv = (PFNGLVERTEXATTRIB4UIVPROC) load(userptr, "glVertexAttrib4uiv"); glad_glVertexAttrib4uivARB = (PFNGLVERTEXATTRIB4UIVARBPROC) load(userptr, "glVertexAttrib4uivARB"); glad_glVertexAttrib4usv = (PFNGLVERTEXATTRIB4USVPROC) load(userptr, "glVertexAttrib4usv"); glad_glVertexAttrib4usvARB = (PFNGLVERTEXATTRIB4USVARBPROC) load(userptr, "glVertexAttrib4usvARB"); glad_glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERPROC) load(userptr, "glVertexAttribPointer"); glad_glVertexAttribPointerARB = (PFNGLVERTEXATTRIBPOINTERARBPROC) load(userptr, "glVertexAttribPointerARB"); } static void glad_gl_load_GL_ARB_vertex_type_2_10_10_10_rev( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_vertex_type_2_10_10_10_rev) return; glad_glColorP3ui = (PFNGLCOLORP3UIPROC) load(userptr, "glColorP3ui"); glad_glColorP3uiv = (PFNGLCOLORP3UIVPROC) load(userptr, "glColorP3uiv"); glad_glColorP4ui = (PFNGLCOLORP4UIPROC) load(userptr, "glColorP4ui"); glad_glColorP4uiv = (PFNGLCOLORP4UIVPROC) load(userptr, "glColorP4uiv"); glad_glMultiTexCoordP1ui = (PFNGLMULTITEXCOORDP1UIPROC) load(userptr, "glMultiTexCoordP1ui"); glad_glMultiTexCoordP1uiv = (PFNGLMULTITEXCOORDP1UIVPROC) load(userptr, "glMultiTexCoordP1uiv"); glad_glMultiTexCoordP2ui = (PFNGLMULTITEXCOORDP2UIPROC) load(userptr, "glMultiTexCoordP2ui"); glad_glMultiTexCoordP2uiv = (PFNGLMULTITEXCOORDP2UIVPROC) load(userptr, "glMultiTexCoordP2uiv"); glad_glMultiTexCoordP3ui = (PFNGLMULTITEXCOORDP3UIPROC) load(userptr, "glMultiTexCoordP3ui"); glad_glMultiTexCoordP3uiv = (PFNGLMULTITEXCOORDP3UIVPROC) load(userptr, "glMultiTexCoordP3uiv"); glad_glMultiTexCoordP4ui = (PFNGLMULTITEXCOORDP4UIPROC) load(userptr, "glMultiTexCoordP4ui"); glad_glMultiTexCoordP4uiv = (PFNGLMULTITEXCOORDP4UIVPROC) load(userptr, "glMultiTexCoordP4uiv"); glad_glNormalP3ui = (PFNGLNORMALP3UIPROC) load(userptr, "glNormalP3ui"); glad_glNormalP3uiv = (PFNGLNORMALP3UIVPROC) load(userptr, "glNormalP3uiv"); glad_glSecondaryColorP3ui = (PFNGLSECONDARYCOLORP3UIPROC) load(userptr, "glSecondaryColorP3ui"); glad_glSecondaryColorP3uiv = (PFNGLSECONDARYCOLORP3UIVPROC) load(userptr, "glSecondaryColorP3uiv"); glad_glTexCoordP1ui = (PFNGLTEXCOORDP1UIPROC) load(userptr, "glTexCoordP1ui"); glad_glTexCoordP1uiv = (PFNGLTEXCOORDP1UIVPROC) load(userptr, "glTexCoordP1uiv"); glad_glTexCoordP2ui = (PFNGLTEXCOORDP2UIPROC) load(userptr, "glTexCoordP2ui"); glad_glTexCoordP2uiv = (PFNGLTEXCOORDP2UIVPROC) load(userptr, "glTexCoordP2uiv"); glad_glTexCoordP3ui = (PFNGLTEXCOORDP3UIPROC) load(userptr, "glTexCoordP3ui"); glad_glTexCoordP3uiv = (PFNGLTEXCOORDP3UIVPROC) load(userptr, "glTexCoordP3uiv"); glad_glTexCoordP4ui = (PFNGLTEXCOORDP4UIPROC) load(userptr, "glTexCoordP4ui"); glad_glTexCoordP4uiv = (PFNGLTEXCOORDP4UIVPROC) load(userptr, "glTexCoordP4uiv"); glad_glVertexAttribP1ui = (PFNGLVERTEXATTRIBP1UIPROC) load(userptr, "glVertexAttribP1ui"); glad_glVertexAttribP1uiv = (PFNGLVERTEXATTRIBP1UIVPROC) load(userptr, "glVertexAttribP1uiv"); glad_glVertexAttribP2ui = (PFNGLVERTEXATTRIBP2UIPROC) load(userptr, "glVertexAttribP2ui"); glad_glVertexAttribP2uiv = (PFNGLVERTEXATTRIBP2UIVPROC) load(userptr, "glVertexAttribP2uiv"); glad_glVertexAttribP3ui = (PFNGLVERTEXATTRIBP3UIPROC) load(userptr, "glVertexAttribP3ui"); glad_glVertexAttribP3uiv = (PFNGLVERTEXATTRIBP3UIVPROC) load(userptr, "glVertexAttribP3uiv"); glad_glVertexAttribP4ui = (PFNGLVERTEXATTRIBP4UIPROC) load(userptr, "glVertexAttribP4ui"); glad_glVertexAttribP4uiv = (PFNGLVERTEXATTRIBP4UIVPROC) load(userptr, "glVertexAttribP4uiv"); glad_glVertexP2ui = (PFNGLVERTEXP2UIPROC) load(userptr, "glVertexP2ui"); glad_glVertexP2uiv = (PFNGLVERTEXP2UIVPROC) load(userptr, "glVertexP2uiv"); glad_glVertexP3ui = (PFNGLVERTEXP3UIPROC) load(userptr, "glVertexP3ui"); glad_glVertexP3uiv = (PFNGLVERTEXP3UIVPROC) load(userptr, "glVertexP3uiv"); glad_glVertexP4ui = (PFNGLVERTEXP4UIPROC) load(userptr, "glVertexP4ui"); glad_glVertexP4uiv = (PFNGLVERTEXP4UIVPROC) load(userptr, "glVertexP4uiv"); } static void glad_gl_load_GL_ARB_viewport_array( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_viewport_array) return; glad_glDepthRangeArraydvNV = (PFNGLDEPTHRANGEARRAYDVNVPROC) load(userptr, "glDepthRangeArraydvNV"); glad_glDepthRangeArrayv = (PFNGLDEPTHRANGEARRAYVPROC) load(userptr, "glDepthRangeArrayv"); glad_glDepthRangeIndexed = (PFNGLDEPTHRANGEINDEXEDPROC) load(userptr, "glDepthRangeIndexed"); glad_glDepthRangeIndexeddNV = (PFNGLDEPTHRANGEINDEXEDDNVPROC) load(userptr, "glDepthRangeIndexeddNV"); glad_glGetDoublei_v = (PFNGLGETDOUBLEI_VPROC) load(userptr, "glGetDoublei_v"); glad_glGetFloati_v = (PFNGLGETFLOATI_VPROC) load(userptr, "glGetFloati_v"); glad_glScissorArrayv = (PFNGLSCISSORARRAYVPROC) load(userptr, "glScissorArrayv"); glad_glScissorIndexed = (PFNGLSCISSORINDEXEDPROC) load(userptr, "glScissorIndexed"); glad_glScissorIndexedv = (PFNGLSCISSORINDEXEDVPROC) load(userptr, "glScissorIndexedv"); glad_glViewportArrayv = (PFNGLVIEWPORTARRAYVPROC) load(userptr, "glViewportArrayv"); glad_glViewportIndexedf = (PFNGLVIEWPORTINDEXEDFPROC) load(userptr, "glViewportIndexedf"); glad_glViewportIndexedfv = (PFNGLVIEWPORTINDEXEDFVPROC) load(userptr, "glViewportIndexedfv"); } static void glad_gl_load_GL_ARB_window_pos( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_ARB_window_pos) return; glad_glWindowPos2d = (PFNGLWINDOWPOS2DPROC) load(userptr, "glWindowPos2d"); glad_glWindowPos2dARB = (PFNGLWINDOWPOS2DARBPROC) load(userptr, "glWindowPos2dARB"); glad_glWindowPos2dv = (PFNGLWINDOWPOS2DVPROC) load(userptr, "glWindowPos2dv"); glad_glWindowPos2dvARB = (PFNGLWINDOWPOS2DVARBPROC) load(userptr, "glWindowPos2dvARB"); glad_glWindowPos2f = (PFNGLWINDOWPOS2FPROC) load(userptr, "glWindowPos2f"); glad_glWindowPos2fARB = (PFNGLWINDOWPOS2FARBPROC) load(userptr, "glWindowPos2fARB"); glad_glWindowPos2fv = (PFNGLWINDOWPOS2FVPROC) load(userptr, "glWindowPos2fv"); glad_glWindowPos2fvARB = (PFNGLWINDOWPOS2FVARBPROC) load(userptr, "glWindowPos2fvARB"); glad_glWindowPos2i = (PFNGLWINDOWPOS2IPROC) load(userptr, "glWindowPos2i"); glad_glWindowPos2iARB = (PFNGLWINDOWPOS2IARBPROC) load(userptr, "glWindowPos2iARB"); glad_glWindowPos2iv = (PFNGLWINDOWPOS2IVPROC) load(userptr, "glWindowPos2iv"); glad_glWindowPos2ivARB = (PFNGLWINDOWPOS2IVARBPROC) load(userptr, "glWindowPos2ivARB"); glad_glWindowPos2s = (PFNGLWINDOWPOS2SPROC) load(userptr, "glWindowPos2s"); glad_glWindowPos2sARB = (PFNGLWINDOWPOS2SARBPROC) load(userptr, "glWindowPos2sARB"); glad_glWindowPos2sv = (PFNGLWINDOWPOS2SVPROC) load(userptr, "glWindowPos2sv"); glad_glWindowPos2svARB = (PFNGLWINDOWPOS2SVARBPROC) load(userptr, "glWindowPos2svARB"); glad_glWindowPos3d = (PFNGLWINDOWPOS3DPROC) load(userptr, "glWindowPos3d"); glad_glWindowPos3dARB = (PFNGLWINDOWPOS3DARBPROC) load(userptr, "glWindowPos3dARB"); glad_glWindowPos3dv = (PFNGLWINDOWPOS3DVPROC) load(userptr, "glWindowPos3dv"); glad_glWindowPos3dvARB = (PFNGLWINDOWPOS3DVARBPROC) load(userptr, "glWindowPos3dvARB"); glad_glWindowPos3f = (PFNGLWINDOWPOS3FPROC) load(userptr, "glWindowPos3f"); glad_glWindowPos3fARB = (PFNGLWINDOWPOS3FARBPROC) load(userptr, "glWindowPos3fARB"); glad_glWindowPos3fv = (PFNGLWINDOWPOS3FVPROC) load(userptr, "glWindowPos3fv"); glad_glWindowPos3fvARB = (PFNGLWINDOWPOS3FVARBPROC) load(userptr, "glWindowPos3fvARB"); glad_glWindowPos3i = (PFNGLWINDOWPOS3IPROC) load(userptr, "glWindowPos3i"); glad_glWindowPos3iARB = (PFNGLWINDOWPOS3IARBPROC) load(userptr, "glWindowPos3iARB"); glad_glWindowPos3iv = (PFNGLWINDOWPOS3IVPROC) load(userptr, "glWindowPos3iv"); glad_glWindowPos3ivARB = (PFNGLWINDOWPOS3IVARBPROC) load(userptr, "glWindowPos3ivARB"); glad_glWindowPos3s = (PFNGLWINDOWPOS3SPROC) load(userptr, "glWindowPos3s"); glad_glWindowPos3sARB = (PFNGLWINDOWPOS3SARBPROC) load(userptr, "glWindowPos3sARB"); glad_glWindowPos3sv = (PFNGLWINDOWPOS3SVPROC) load(userptr, "glWindowPos3sv"); glad_glWindowPos3svARB = (PFNGLWINDOWPOS3SVARBPROC) load(userptr, "glWindowPos3svARB"); } static void glad_gl_load_GL_KHR_blend_equation_advanced( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_blend_equation_advanced) return; glad_glBlendBarrier = (PFNGLBLENDBARRIERPROC) load(userptr, "glBlendBarrier"); glad_glBlendBarrierKHR = (PFNGLBLENDBARRIERKHRPROC) load(userptr, "glBlendBarrierKHR"); } static void glad_gl_load_GL_KHR_debug( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_debug) return; glad_glDebugMessageCallback = (PFNGLDEBUGMESSAGECALLBACKPROC) load(userptr, "glDebugMessageCallback"); glad_glDebugMessageControl = (PFNGLDEBUGMESSAGECONTROLPROC) load(userptr, "glDebugMessageControl"); glad_glDebugMessageInsert = (PFNGLDEBUGMESSAGEINSERTPROC) load(userptr, "glDebugMessageInsert"); glad_glGetDebugMessageLog = (PFNGLGETDEBUGMESSAGELOGPROC) load(userptr, "glGetDebugMessageLog"); glad_glGetObjectLabel = (PFNGLGETOBJECTLABELPROC) load(userptr, "glGetObjectLabel"); glad_glGetObjectPtrLabel = (PFNGLGETOBJECTPTRLABELPROC) load(userptr, "glGetObjectPtrLabel"); glad_glGetPointerv = (PFNGLGETPOINTERVPROC) load(userptr, "glGetPointerv"); glad_glObjectLabel = (PFNGLOBJECTLABELPROC) load(userptr, "glObjectLabel"); glad_glObjectPtrLabel = (PFNGLOBJECTPTRLABELPROC) load(userptr, "glObjectPtrLabel"); glad_glPopDebugGroup = (PFNGLPOPDEBUGGROUPPROC) load(userptr, "glPopDebugGroup"); glad_glPushDebugGroup = (PFNGLPUSHDEBUGGROUPPROC) load(userptr, "glPushDebugGroup"); } static void glad_gl_load_GL_KHR_parallel_shader_compile( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_parallel_shader_compile) return; glad_glMaxShaderCompilerThreadsKHR = (PFNGLMAXSHADERCOMPILERTHREADSKHRPROC) load(userptr, "glMaxShaderCompilerThreadsKHR"); } static void glad_gl_load_GL_KHR_robustness( GLADuserptrloadfunc load, void* userptr) { if(!GLAD_GL_KHR_robustness) return; glad_glGetGraphicsResetStatus = (PFNGLGETGRAPHICSRESETSTATUSPROC) load(userptr, "glGetGraphicsResetStatus"); glad_glGetnUniformfv = (PFNGLGETNUNIFORMFVPROC) load(userptr, "glGetnUniformfv"); glad_glGetnUniformiv = (PFNGLGETNUNIFORMIVPROC) load(userptr, "glGetnUniformiv"); glad_glGetnUniformuiv = (PFNGLGETNUNIFORMUIVPROC) load(userptr, "glGetnUniformuiv"); glad_glReadnPixels = (PFNGLREADNPIXELSPROC) load(userptr, "glReadnPixels"); } #if defined(GL_ES_VERSION_3_0) || defined(GL_VERSION_3_0) #define GLAD_GL_IS_SOME_NEW_VERSION 1 #else #define GLAD_GL_IS_SOME_NEW_VERSION 0 #endif static int glad_gl_get_extensions( int version, const char **out_exts, unsigned int *out_num_exts_i, char ***out_exts_i) { #if GLAD_GL_IS_SOME_NEW_VERSION if(GLAD_VERSION_MAJOR(version) < 3) { #else (void) version; (void) out_num_exts_i; (void) out_exts_i; #endif if (glad_glGetString == NULL) { return 0; } *out_exts = (const char *)glad_glGetString(GL_EXTENSIONS); #if GLAD_GL_IS_SOME_NEW_VERSION } else { unsigned int index = 0; unsigned int num_exts_i = 0; char **exts_i = NULL; if (glad_glGetStringi == NULL || glad_glGetIntegerv == NULL) { return 0; } glad_glGetIntegerv(GL_NUM_EXTENSIONS, (int*) &num_exts_i); if (num_exts_i > 0) { exts_i = (char **) malloc(num_exts_i * (sizeof *exts_i)); } if (exts_i == NULL) { return 0; } for(index = 0; index < num_exts_i; index++) { const char *gl_str_tmp = (const char*) glad_glGetStringi(GL_EXTENSIONS, index); size_t len = strlen(gl_str_tmp) + 1; char *local_str = (char*) malloc(len * sizeof(char)); if(local_str != NULL) { memcpy(local_str, gl_str_tmp, len * sizeof(char)); } exts_i[index] = local_str; } *out_num_exts_i = num_exts_i; *out_exts_i = exts_i; } #endif return 1; } static void glad_gl_free_extensions(char **exts_i, unsigned int num_exts_i) { if (exts_i != NULL) { unsigned int index; for(index = 0; index < num_exts_i; index++) { free((void *) (exts_i[index])); } free((void *)exts_i); exts_i = NULL; } } static int glad_gl_has_extension(int version, const char *exts, unsigned int num_exts_i, char **exts_i, const char *ext) { if(GLAD_VERSION_MAJOR(version) < 3 || !GLAD_GL_IS_SOME_NEW_VERSION) { const char *extensions; const char *loc; const char *terminator; extensions = exts; if(extensions == NULL || ext == NULL) { return 0; } while(1) { loc = strstr(extensions, ext); if(loc == NULL) { return 0; } terminator = loc + strlen(ext); if((loc == extensions || *(loc - 1) == ' ') && (*terminator == ' ' || *terminator == '\0')) { return 1; } extensions = terminator; } } else { unsigned int index; for(index = 0; index < num_exts_i; index++) { const char *e = exts_i[index]; if(strcmp(e, ext) == 0) { return 1; } } } return 0; } static GLADapiproc glad_gl_get_proc_from_userptr(void *userptr, const char* name) { return (GLAD_GNUC_EXTENSION (GLADapiproc (*)(const char *name)) userptr)(name); } static int glad_gl_find_extensions_gl( int version) { const char *exts = NULL; unsigned int num_exts_i = 0; char **exts_i = NULL; if (!glad_gl_get_extensions(version, &exts, &num_exts_i, &exts_i)) return 0; GLAD_GL_ARB_ES2_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES2_compatibility"); GLAD_GL_ARB_ES3_1_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES3_1_compatibility"); GLAD_GL_ARB_ES3_2_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES3_2_compatibility"); GLAD_GL_ARB_ES3_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_ES3_compatibility"); GLAD_GL_ARB_arrays_of_arrays = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_arrays_of_arrays"); GLAD_GL_ARB_base_instance = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_base_instance"); GLAD_GL_ARB_bindless_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_bindless_texture"); GLAD_GL_ARB_blend_func_extended = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_blend_func_extended"); GLAD_GL_ARB_buffer_storage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_buffer_storage"); GLAD_GL_ARB_cl_event = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_cl_event"); GLAD_GL_ARB_clear_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_clear_buffer_object"); GLAD_GL_ARB_clear_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_clear_texture"); GLAD_GL_ARB_clip_control = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_clip_control"); GLAD_GL_ARB_color_buffer_float = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_color_buffer_float"); GLAD_GL_ARB_compatibility = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compatibility"); GLAD_GL_ARB_compressed_texture_pixel_storage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compressed_texture_pixel_storage"); GLAD_GL_ARB_compute_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compute_shader"); GLAD_GL_ARB_compute_variable_group_size = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_compute_variable_group_size"); GLAD_GL_ARB_conditional_render_inverted = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_conditional_render_inverted"); GLAD_GL_ARB_conservative_depth = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_conservative_depth"); GLAD_GL_ARB_copy_buffer = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_copy_buffer"); GLAD_GL_ARB_copy_image = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_copy_image"); GLAD_GL_ARB_cull_distance = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_cull_distance"); GLAD_GL_ARB_debug_output = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_debug_output"); GLAD_GL_ARB_depth_buffer_float = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_depth_buffer_float"); GLAD_GL_ARB_depth_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_depth_clamp"); GLAD_GL_ARB_depth_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_depth_texture"); GLAD_GL_ARB_derivative_control = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_derivative_control"); GLAD_GL_ARB_direct_state_access = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_direct_state_access"); GLAD_GL_ARB_draw_buffers = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_buffers"); GLAD_GL_ARB_draw_buffers_blend = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_buffers_blend"); GLAD_GL_ARB_draw_elements_base_vertex = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_elements_base_vertex"); GLAD_GL_ARB_draw_indirect = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_indirect"); GLAD_GL_ARB_draw_instanced = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_draw_instanced"); GLAD_GL_ARB_enhanced_layouts = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_enhanced_layouts"); GLAD_GL_ARB_explicit_attrib_location = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_explicit_attrib_location"); GLAD_GL_ARB_explicit_uniform_location = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_explicit_uniform_location"); GLAD_GL_ARB_fragment_coord_conventions = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_coord_conventions"); GLAD_GL_ARB_fragment_layer_viewport = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_layer_viewport"); GLAD_GL_ARB_fragment_program = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_program"); GLAD_GL_ARB_fragment_program_shadow = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_program_shadow"); GLAD_GL_ARB_fragment_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_shader"); GLAD_GL_ARB_fragment_shader_interlock = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_fragment_shader_interlock"); GLAD_GL_ARB_framebuffer_no_attachments = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_framebuffer_no_attachments"); GLAD_GL_ARB_framebuffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_framebuffer_object"); GLAD_GL_ARB_framebuffer_sRGB = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_framebuffer_sRGB"); GLAD_GL_ARB_geometry_shader4 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_geometry_shader4"); GLAD_GL_ARB_get_program_binary = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_get_program_binary"); GLAD_GL_ARB_get_texture_sub_image = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_get_texture_sub_image"); GLAD_GL_ARB_gl_spirv = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gl_spirv"); GLAD_GL_ARB_gpu_shader5 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gpu_shader5"); GLAD_GL_ARB_gpu_shader_fp64 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gpu_shader_fp64"); GLAD_GL_ARB_gpu_shader_int64 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_gpu_shader_int64"); GLAD_GL_ARB_half_float_pixel = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_half_float_pixel"); GLAD_GL_ARB_half_float_vertex = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_half_float_vertex"); GLAD_GL_ARB_imaging = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_imaging"); GLAD_GL_ARB_indirect_parameters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_indirect_parameters"); GLAD_GL_ARB_instanced_arrays = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_instanced_arrays"); GLAD_GL_ARB_internalformat_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_internalformat_query"); GLAD_GL_ARB_internalformat_query2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_internalformat_query2"); GLAD_GL_ARB_invalidate_subdata = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_invalidate_subdata"); GLAD_GL_ARB_map_buffer_alignment = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_map_buffer_alignment"); GLAD_GL_ARB_map_buffer_range = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_map_buffer_range"); GLAD_GL_ARB_matrix_palette = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_matrix_palette"); GLAD_GL_ARB_multi_bind = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multi_bind"); GLAD_GL_ARB_multi_draw_indirect = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multi_draw_indirect"); GLAD_GL_ARB_multisample = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multisample"); GLAD_GL_ARB_multitexture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_multitexture"); GLAD_GL_ARB_occlusion_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_occlusion_query"); GLAD_GL_ARB_occlusion_query2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_occlusion_query2"); GLAD_GL_ARB_parallel_shader_compile = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_parallel_shader_compile"); GLAD_GL_ARB_pipeline_statistics_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_pipeline_statistics_query"); GLAD_GL_ARB_pixel_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_pixel_buffer_object"); GLAD_GL_ARB_point_parameters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_point_parameters"); GLAD_GL_ARB_point_sprite = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_point_sprite"); GLAD_GL_ARB_polygon_offset_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_polygon_offset_clamp"); GLAD_GL_ARB_post_depth_coverage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_post_depth_coverage"); GLAD_GL_ARB_program_interface_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_program_interface_query"); GLAD_GL_ARB_provoking_vertex = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_provoking_vertex"); GLAD_GL_ARB_query_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_query_buffer_object"); GLAD_GL_ARB_robust_buffer_access_behavior = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_robust_buffer_access_behavior"); GLAD_GL_ARB_robustness = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_robustness"); GLAD_GL_ARB_robustness_isolation = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_robustness_isolation"); GLAD_GL_ARB_sample_locations = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sample_locations"); GLAD_GL_ARB_sample_shading = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sample_shading"); GLAD_GL_ARB_sampler_objects = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sampler_objects"); GLAD_GL_ARB_seamless_cube_map = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_seamless_cube_map"); GLAD_GL_ARB_seamless_cubemap_per_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_seamless_cubemap_per_texture"); GLAD_GL_ARB_separate_shader_objects = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_separate_shader_objects"); GLAD_GL_ARB_shader_atomic_counter_ops = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_atomic_counter_ops"); GLAD_GL_ARB_shader_atomic_counters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_atomic_counters"); GLAD_GL_ARB_shader_ballot = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_ballot"); GLAD_GL_ARB_shader_bit_encoding = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_bit_encoding"); GLAD_GL_ARB_shader_clock = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_clock"); GLAD_GL_ARB_shader_draw_parameters = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_draw_parameters"); GLAD_GL_ARB_shader_group_vote = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_group_vote"); GLAD_GL_ARB_shader_image_load_store = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_image_load_store"); GLAD_GL_ARB_shader_image_size = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_image_size"); GLAD_GL_ARB_shader_objects = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_objects"); GLAD_GL_ARB_shader_precision = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_precision"); GLAD_GL_ARB_shader_stencil_export = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_stencil_export"); GLAD_GL_ARB_shader_storage_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_storage_buffer_object"); GLAD_GL_ARB_shader_subroutine = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_subroutine"); GLAD_GL_ARB_shader_texture_image_samples = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_texture_image_samples"); GLAD_GL_ARB_shader_texture_lod = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_texture_lod"); GLAD_GL_ARB_shader_viewport_layer_array = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shader_viewport_layer_array"); GLAD_GL_ARB_shading_language_100 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_100"); GLAD_GL_ARB_shading_language_420pack = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_420pack"); GLAD_GL_ARB_shading_language_include = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_include"); GLAD_GL_ARB_shading_language_packing = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shading_language_packing"); GLAD_GL_ARB_shadow = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shadow"); GLAD_GL_ARB_shadow_ambient = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_shadow_ambient"); GLAD_GL_ARB_sparse_buffer = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_buffer"); GLAD_GL_ARB_sparse_texture = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_texture"); GLAD_GL_ARB_sparse_texture2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_texture2"); GLAD_GL_ARB_sparse_texture_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sparse_texture_clamp"); GLAD_GL_ARB_spirv_extensions = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_spirv_extensions"); GLAD_GL_ARB_stencil_texturing = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_stencil_texturing"); GLAD_GL_ARB_sync = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_sync"); GLAD_GL_ARB_tessellation_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_tessellation_shader"); GLAD_GL_ARB_texture_barrier = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_barrier"); GLAD_GL_ARB_texture_border_clamp = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_border_clamp"); GLAD_GL_ARB_texture_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_buffer_object"); GLAD_GL_ARB_texture_buffer_object_rgb32 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_buffer_object_rgb32"); GLAD_GL_ARB_texture_buffer_range = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_buffer_range"); GLAD_GL_ARB_texture_compression = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_compression"); GLAD_GL_ARB_texture_compression_bptc = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_compression_bptc"); GLAD_GL_ARB_texture_compression_rgtc = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_compression_rgtc"); GLAD_GL_ARB_texture_cube_map = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_cube_map"); GLAD_GL_ARB_texture_cube_map_array = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_cube_map_array"); GLAD_GL_ARB_texture_env_add = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_add"); GLAD_GL_ARB_texture_env_combine = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_combine"); GLAD_GL_ARB_texture_env_crossbar = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_crossbar"); GLAD_GL_ARB_texture_env_dot3 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_env_dot3"); GLAD_GL_ARB_texture_filter_anisotropic = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_filter_anisotropic"); GLAD_GL_ARB_texture_filter_minmax = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_filter_minmax"); GLAD_GL_ARB_texture_float = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_float"); GLAD_GL_ARB_texture_gather = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_gather"); GLAD_GL_ARB_texture_mirror_clamp_to_edge = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_mirror_clamp_to_edge"); GLAD_GL_ARB_texture_mirrored_repeat = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_mirrored_repeat"); GLAD_GL_ARB_texture_multisample = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_multisample"); GLAD_GL_ARB_texture_non_power_of_two = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_non_power_of_two"); GLAD_GL_ARB_texture_query_levels = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_query_levels"); GLAD_GL_ARB_texture_query_lod = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_query_lod"); GLAD_GL_ARB_texture_rectangle = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_rectangle"); GLAD_GL_ARB_texture_rg = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_rg"); GLAD_GL_ARB_texture_rgb10_a2ui = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_rgb10_a2ui"); GLAD_GL_ARB_texture_stencil8 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_stencil8"); GLAD_GL_ARB_texture_storage = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_storage"); GLAD_GL_ARB_texture_storage_multisample = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_storage_multisample"); GLAD_GL_ARB_texture_swizzle = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_swizzle"); GLAD_GL_ARB_texture_view = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_texture_view"); GLAD_GL_ARB_timer_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_timer_query"); GLAD_GL_ARB_transform_feedback2 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback2"); GLAD_GL_ARB_transform_feedback3 = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback3"); GLAD_GL_ARB_transform_feedback_instanced = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback_instanced"); GLAD_GL_ARB_transform_feedback_overflow_query = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transform_feedback_overflow_query"); GLAD_GL_ARB_transpose_matrix = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_transpose_matrix"); GLAD_GL_ARB_uniform_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_uniform_buffer_object"); GLAD_GL_ARB_vertex_array_bgra = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_array_bgra"); GLAD_GL_ARB_vertex_array_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_array_object"); GLAD_GL_ARB_vertex_attrib_64bit = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_attrib_64bit"); GLAD_GL_ARB_vertex_attrib_binding = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_attrib_binding"); GLAD_GL_ARB_vertex_blend = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_blend"); GLAD_GL_ARB_vertex_buffer_object = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_buffer_object"); GLAD_GL_ARB_vertex_program = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_program"); GLAD_GL_ARB_vertex_shader = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_shader"); GLAD_GL_ARB_vertex_type_10f_11f_11f_rev = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_type_10f_11f_11f_rev"); GLAD_GL_ARB_vertex_type_2_10_10_10_rev = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_vertex_type_2_10_10_10_rev"); GLAD_GL_ARB_viewport_array = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_viewport_array"); GLAD_GL_ARB_window_pos = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_ARB_window_pos"); GLAD_GL_KHR_blend_equation_advanced = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_blend_equation_advanced"); GLAD_GL_KHR_blend_equation_advanced_coherent = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_blend_equation_advanced_coherent"); GLAD_GL_KHR_context_flush_control = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_context_flush_control"); GLAD_GL_KHR_debug = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_debug"); GLAD_GL_KHR_no_error = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_no_error"); GLAD_GL_KHR_parallel_shader_compile = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_parallel_shader_compile"); GLAD_GL_KHR_robust_buffer_access_behavior = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_robust_buffer_access_behavior"); GLAD_GL_KHR_robustness = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_robustness"); GLAD_GL_KHR_shader_subgroup = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_shader_subgroup"); GLAD_GL_KHR_texture_compression_astc_hdr = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_texture_compression_astc_hdr"); GLAD_GL_KHR_texture_compression_astc_ldr = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_texture_compression_astc_ldr"); GLAD_GL_KHR_texture_compression_astc_sliced_3d = glad_gl_has_extension(version, exts, num_exts_i, exts_i, "GL_KHR_texture_compression_astc_sliced_3d"); glad_gl_free_extensions(exts_i, num_exts_i); return 1; } static int glad_gl_find_core_gl(void) { int i, major, minor; const char* version; const char* prefixes[] = { "OpenGL ES-CM ", "OpenGL ES-CL ", "OpenGL ES ", NULL }; version = (const char*) glad_glGetString(GL_VERSION); if (!version) return 0; for (i = 0; prefixes[i]; i++) { const size_t length = strlen(prefixes[i]); if (strncmp(version, prefixes[i], length) == 0) { version += length; break; } } GLAD_IMPL_UTIL_SSCANF(version, "%d.%d", &major, &minor); GLAD_GL_VERSION_1_0 = (major == 1 && minor >= 0) || major > 1; GLAD_GL_VERSION_1_1 = (major == 1 && minor >= 1) || major > 1; GLAD_GL_VERSION_1_2 = (major == 1 && minor >= 2) || major > 1; GLAD_GL_VERSION_1_3 = (major == 1 && minor >= 3) || major > 1; GLAD_GL_VERSION_1_4 = (major == 1 && minor >= 4) || major > 1; GLAD_GL_VERSION_1_5 = (major == 1 && minor >= 5) || major > 1; GLAD_GL_VERSION_2_0 = (major == 2 && minor >= 0) || major > 2; GLAD_GL_VERSION_2_1 = (major == 2 && minor >= 1) || major > 2; GLAD_GL_VERSION_3_0 = (major == 3 && minor >= 0) || major > 3; GLAD_GL_VERSION_3_1 = (major == 3 && minor >= 1) || major > 3; GLAD_GL_VERSION_3_2 = (major == 3 && minor >= 2) || major > 3; GLAD_GL_VERSION_3_3 = (major == 3 && minor >= 3) || major > 3; return GLAD_MAKE_VERSION(major, minor); } int gladLoadGLUserPtr( GLADuserptrloadfunc load, void *userptr) { int version; glad_glGetString = (PFNGLGETSTRINGPROC) load(userptr, "glGetString"); if(glad_glGetString == NULL) return 0; if(glad_glGetString(GL_VERSION) == NULL) return 0; version = glad_gl_find_core_gl(); glad_gl_load_GL_VERSION_1_0(load, userptr); glad_gl_load_GL_VERSION_1_1(load, userptr); glad_gl_load_GL_VERSION_1_2(load, userptr); glad_gl_load_GL_VERSION_1_3(load, userptr); glad_gl_load_GL_VERSION_1_4(load, userptr); glad_gl_load_GL_VERSION_1_5(load, userptr); glad_gl_load_GL_VERSION_2_0(load, userptr); glad_gl_load_GL_VERSION_2_1(load, userptr); glad_gl_load_GL_VERSION_3_0(load, userptr); glad_gl_load_GL_VERSION_3_1(load, userptr); glad_gl_load_GL_VERSION_3_2(load, userptr); glad_gl_load_GL_VERSION_3_3(load, userptr); if (!glad_gl_find_extensions_gl(version)) return 0; glad_gl_load_GL_ARB_ES2_compatibility(load, userptr); glad_gl_load_GL_ARB_ES3_1_compatibility(load, userptr); glad_gl_load_GL_ARB_ES3_2_compatibility(load, userptr); glad_gl_load_GL_ARB_base_instance(load, userptr); glad_gl_load_GL_ARB_bindless_texture(load, userptr); glad_gl_load_GL_ARB_blend_func_extended(load, userptr); glad_gl_load_GL_ARB_buffer_storage(load, userptr); glad_gl_load_GL_ARB_cl_event(load, userptr); glad_gl_load_GL_ARB_clear_buffer_object(load, userptr); glad_gl_load_GL_ARB_clear_texture(load, userptr); glad_gl_load_GL_ARB_clip_control(load, userptr); glad_gl_load_GL_ARB_color_buffer_float(load, userptr); glad_gl_load_GL_ARB_compute_shader(load, userptr); glad_gl_load_GL_ARB_compute_variable_group_size(load, userptr); glad_gl_load_GL_ARB_copy_buffer(load, userptr); glad_gl_load_GL_ARB_copy_image(load, userptr); glad_gl_load_GL_ARB_debug_output(load, userptr); glad_gl_load_GL_ARB_direct_state_access(load, userptr); glad_gl_load_GL_ARB_draw_buffers(load, userptr); glad_gl_load_GL_ARB_draw_buffers_blend(load, userptr); glad_gl_load_GL_ARB_draw_elements_base_vertex(load, userptr); glad_gl_load_GL_ARB_draw_indirect(load, userptr); glad_gl_load_GL_ARB_draw_instanced(load, userptr); glad_gl_load_GL_ARB_fragment_program(load, userptr); glad_gl_load_GL_ARB_framebuffer_no_attachments(load, userptr); glad_gl_load_GL_ARB_framebuffer_object(load, userptr); glad_gl_load_GL_ARB_geometry_shader4(load, userptr); glad_gl_load_GL_ARB_get_program_binary(load, userptr); glad_gl_load_GL_ARB_get_texture_sub_image(load, userptr); glad_gl_load_GL_ARB_gl_spirv(load, userptr); glad_gl_load_GL_ARB_gpu_shader_fp64(load, userptr); glad_gl_load_GL_ARB_gpu_shader_int64(load, userptr); glad_gl_load_GL_ARB_imaging(load, userptr); glad_gl_load_GL_ARB_indirect_parameters(load, userptr); glad_gl_load_GL_ARB_instanced_arrays(load, userptr); glad_gl_load_GL_ARB_internalformat_query(load, userptr); glad_gl_load_GL_ARB_internalformat_query2(load, userptr); glad_gl_load_GL_ARB_invalidate_subdata(load, userptr); glad_gl_load_GL_ARB_map_buffer_range(load, userptr); glad_gl_load_GL_ARB_matrix_palette(load, userptr); glad_gl_load_GL_ARB_multi_bind(load, userptr); glad_gl_load_GL_ARB_multi_draw_indirect(load, userptr); glad_gl_load_GL_ARB_multisample(load, userptr); glad_gl_load_GL_ARB_multitexture(load, userptr); glad_gl_load_GL_ARB_occlusion_query(load, userptr); glad_gl_load_GL_ARB_parallel_shader_compile(load, userptr); glad_gl_load_GL_ARB_point_parameters(load, userptr); glad_gl_load_GL_ARB_polygon_offset_clamp(load, userptr); glad_gl_load_GL_ARB_program_interface_query(load, userptr); glad_gl_load_GL_ARB_provoking_vertex(load, userptr); glad_gl_load_GL_ARB_robustness(load, userptr); glad_gl_load_GL_ARB_sample_locations(load, userptr); glad_gl_load_GL_ARB_sample_shading(load, userptr); glad_gl_load_GL_ARB_sampler_objects(load, userptr); glad_gl_load_GL_ARB_separate_shader_objects(load, userptr); glad_gl_load_GL_ARB_shader_atomic_counters(load, userptr); glad_gl_load_GL_ARB_shader_image_load_store(load, userptr); glad_gl_load_GL_ARB_shader_objects(load, userptr); glad_gl_load_GL_ARB_shader_storage_buffer_object(load, userptr); glad_gl_load_GL_ARB_shader_subroutine(load, userptr); glad_gl_load_GL_ARB_shading_language_include(load, userptr); glad_gl_load_GL_ARB_sparse_buffer(load, userptr); glad_gl_load_GL_ARB_sparse_texture(load, userptr); glad_gl_load_GL_ARB_sync(load, userptr); glad_gl_load_GL_ARB_tessellation_shader(load, userptr); glad_gl_load_GL_ARB_texture_barrier(load, userptr); glad_gl_load_GL_ARB_texture_buffer_object(load, userptr); glad_gl_load_GL_ARB_texture_buffer_range(load, userptr); glad_gl_load_GL_ARB_texture_compression(load, userptr); glad_gl_load_GL_ARB_texture_multisample(load, userptr); glad_gl_load_GL_ARB_texture_storage(load, userptr); glad_gl_load_GL_ARB_texture_storage_multisample(load, userptr); glad_gl_load_GL_ARB_texture_view(load, userptr); glad_gl_load_GL_ARB_timer_query(load, userptr); glad_gl_load_GL_ARB_transform_feedback2(load, userptr); glad_gl_load_GL_ARB_transform_feedback3(load, userptr); glad_gl_load_GL_ARB_transform_feedback_instanced(load, userptr); glad_gl_load_GL_ARB_transpose_matrix(load, userptr); glad_gl_load_GL_ARB_uniform_buffer_object(load, userptr); glad_gl_load_GL_ARB_vertex_array_object(load, userptr); glad_gl_load_GL_ARB_vertex_attrib_64bit(load, userptr); glad_gl_load_GL_ARB_vertex_attrib_binding(load, userptr); glad_gl_load_GL_ARB_vertex_blend(load, userptr); glad_gl_load_GL_ARB_vertex_buffer_object(load, userptr); glad_gl_load_GL_ARB_vertex_program(load, userptr); glad_gl_load_GL_ARB_vertex_shader(load, userptr); glad_gl_load_GL_ARB_vertex_type_2_10_10_10_rev(load, userptr); glad_gl_load_GL_ARB_viewport_array(load, userptr); glad_gl_load_GL_ARB_window_pos(load, userptr); glad_gl_load_GL_KHR_blend_equation_advanced(load, userptr); glad_gl_load_GL_KHR_debug(load, userptr); glad_gl_load_GL_KHR_parallel_shader_compile(load, userptr); glad_gl_load_GL_KHR_robustness(load, userptr); return version; } int gladLoadGL( GLADloadfunc load) { return gladLoadGLUserPtr( glad_gl_get_proc_from_userptr, GLAD_GNUC_EXTENSION (void*) load); } #endif /* GLAD_GL_IMPLEMENTATION */ #endif /* __EMSCRIPTEN__ */ #line 0 #line 1 "3rd_icon_md.h" // Generated by https://github.com/juliettef/IconFontCppHeaders script GenerateIconFontCppHeaders.py for languages C and C++ // from https://github.com/google/material-design-icons/raw/master/font/MaterialIcons-Regular.codepoints // for use with https://github.com/google/material-design-icons/blob/master/font/MaterialIcons-Regular.ttf #ifndef ICON_MD_H #define ICON_MD_H #define FONT_ICON_FILE_NAME_MD "MaterialIcons-Regular.ttf" #define ICON_MIN_MD 0xe000 #define ICON_MAX_16_MD 0xf8ff #define ICON_MAX_MD 0x10fffd #define ICON_MD_10K "\xee\xa5\x91" // U+e951 #define ICON_MD_10MP "\xee\xa5\x92" // U+e952 #define ICON_MD_11MP "\xee\xa5\x93" // U+e953 #define ICON_MD_123 "\xee\xae\x8d" // U+eb8d #define ICON_MD_12MP "\xee\xa5\x94" // U+e954 #define ICON_MD_13MP "\xee\xa5\x95" // U+e955 #define ICON_MD_14MP "\xee\xa5\x96" // U+e956 #define ICON_MD_15MP "\xee\xa5\x97" // U+e957 #define ICON_MD_16MP "\xee\xa5\x98" // U+e958 #define ICON_MD_17MP "\xee\xa5\x99" // U+e959 #define ICON_MD_18_UP_RATING "\xef\xa3\xbd" // U+f8fd #define ICON_MD_18MP "\xee\xa5\x9a" // U+e95a #define ICON_MD_19MP "\xee\xa5\x9b" // U+e95b #define ICON_MD_1K "\xee\xa5\x9c" // U+e95c #define ICON_MD_1K_PLUS "\xee\xa5\x9d" // U+e95d #define ICON_MD_1X_MOBILEDATA "\xee\xbf\x8d" // U+efcd #define ICON_MD_20MP "\xee\xa5\x9e" // U+e95e #define ICON_MD_21MP "\xee\xa5\x9f" // U+e95f #define ICON_MD_22MP "\xee\xa5\xa0" // U+e960 #define ICON_MD_23MP "\xee\xa5\xa1" // U+e961 #define ICON_MD_24MP "\xee\xa5\xa2" // U+e962 #define ICON_MD_2K "\xee\xa5\xa3" // U+e963 #define ICON_MD_2K_PLUS "\xee\xa5\xa4" // U+e964 #define ICON_MD_2MP "\xee\xa5\xa5" // U+e965 #define ICON_MD_30FPS "\xee\xbf\x8e" // U+efce #define ICON_MD_30FPS_SELECT "\xee\xbf\x8f" // U+efcf #define ICON_MD_360 "\xee\x95\xb7" // U+e577 #define ICON_MD_3D_ROTATION "\xee\xa1\x8d" // U+e84d #define ICON_MD_3G_MOBILEDATA "\xee\xbf\x90" // U+efd0 #define ICON_MD_3K "\xee\xa5\xa6" // U+e966 #define ICON_MD_3K_PLUS "\xee\xa5\xa7" // U+e967 #define ICON_MD_3MP "\xee\xa5\xa8" // U+e968 #define ICON_MD_3P "\xee\xbf\x91" // U+efd1 #define ICON_MD_4G_MOBILEDATA "\xee\xbf\x92" // U+efd2 #define ICON_MD_4G_PLUS_MOBILEDATA "\xee\xbf\x93" // U+efd3 #define ICON_MD_4K "\xee\x81\xb2" // U+e072 #define ICON_MD_4K_PLUS "\xee\xa5\xa9" // U+e969 #define ICON_MD_4MP "\xee\xa5\xaa" // U+e96a #define ICON_MD_5G "\xee\xbc\xb8" // U+ef38 #define ICON_MD_5K "\xee\xa5\xab" // U+e96b #define ICON_MD_5K_PLUS "\xee\xa5\xac" // U+e96c #define ICON_MD_5MP "\xee\xa5\xad" // U+e96d #define ICON_MD_60FPS "\xee\xbf\x94" // U+efd4 #define ICON_MD_60FPS_SELECT "\xee\xbf\x95" // U+efd5 #define ICON_MD_6_FT_APART "\xef\x88\x9e" // U+f21e #define ICON_MD_6K "\xee\xa5\xae" // U+e96e #define ICON_MD_6K_PLUS "\xee\xa5\xaf" // U+e96f #define ICON_MD_6MP "\xee\xa5\xb0" // U+e970 #define ICON_MD_7K "\xee\xa5\xb1" // U+e971 #define ICON_MD_7K_PLUS "\xee\xa5\xb2" // U+e972 #define ICON_MD_7MP "\xee\xa5\xb3" // U+e973 #define ICON_MD_8K "\xee\xa5\xb4" // U+e974 #define ICON_MD_8K_PLUS "\xee\xa5\xb5" // U+e975 #define ICON_MD_8MP "\xee\xa5\xb6" // U+e976 #define ICON_MD_9K "\xee\xa5\xb7" // U+e977 #define ICON_MD_9K_PLUS "\xee\xa5\xb8" // U+e978 #define ICON_MD_9MP "\xee\xa5\xb9" // U+e979 #define ICON_MD_ABC "\xee\xae\x94" // U+eb94 #define ICON_MD_AC_UNIT "\xee\xac\xbb" // U+eb3b #define ICON_MD_ACCESS_ALARM "\xee\x86\x90" // U+e190 #define ICON_MD_ACCESS_ALARMS "\xee\x86\x91" // U+e191 #define ICON_MD_ACCESS_TIME "\xee\x86\x92" // U+e192 #define ICON_MD_ACCESS_TIME_FILLED "\xee\xbf\x96" // U+efd6 #define ICON_MD_ACCESSIBILITY "\xee\xa1\x8e" // U+e84e #define ICON_MD_ACCESSIBILITY_NEW "\xee\xa4\xac" // U+e92c #define ICON_MD_ACCESSIBLE "\xee\xa4\x94" // U+e914 #define ICON_MD_ACCESSIBLE_FORWARD "\xee\xa4\xb4" // U+e934 #define ICON_MD_ACCOUNT_BALANCE "\xee\xa1\x8f" // U+e84f #define ICON_MD_ACCOUNT_BALANCE_WALLET "\xee\xa1\x90" // U+e850 #define ICON_MD_ACCOUNT_BOX "\xee\xa1\x91" // U+e851 #define ICON_MD_ACCOUNT_CIRCLE "\xee\xa1\x93" // U+e853 #define ICON_MD_ACCOUNT_TREE "\xee\xa5\xba" // U+e97a #define ICON_MD_AD_UNITS "\xee\xbc\xb9" // U+ef39 #define ICON_MD_ADB "\xee\x98\x8e" // U+e60e #define ICON_MD_ADD "\xee\x85\x85" // U+e145 #define ICON_MD_ADD_A_PHOTO "\xee\x90\xb9" // U+e439 #define ICON_MD_ADD_ALARM "\xee\x86\x93" // U+e193 #define ICON_MD_ADD_ALERT "\xee\x80\x83" // U+e003 #define ICON_MD_ADD_BOX "\xee\x85\x86" // U+e146 #define ICON_MD_ADD_BUSINESS "\xee\x9c\xa9" // U+e729 #define ICON_MD_ADD_CALL "\xee\x83\xa8" // U+e0e8 #define ICON_MD_ADD_CARD "\xee\xae\x86" // U+eb86 #define ICON_MD_ADD_CHART "\xee\xa5\xbb" // U+e97b #define ICON_MD_ADD_CIRCLE "\xee\x85\x87" // U+e147 #define ICON_MD_ADD_CIRCLE_OUTLINE "\xee\x85\x88" // U+e148 #define ICON_MD_ADD_COMMENT "\xee\x89\xa6" // U+e266 #define ICON_MD_ADD_HOME "\xef\xa3\xab" // U+f8eb #define ICON_MD_ADD_HOME_WORK "\xef\xa3\xad" // U+f8ed #define ICON_MD_ADD_IC_CALL "\xee\xa5\xbc" // U+e97c #define ICON_MD_ADD_LINK "\xee\x85\xb8" // U+e178 #define ICON_MD_ADD_LOCATION "\xee\x95\xa7" // U+e567 #define ICON_MD_ADD_LOCATION_ALT "\xee\xbc\xba" // U+ef3a #define ICON_MD_ADD_MODERATOR "\xee\xa5\xbd" // U+e97d #define ICON_MD_ADD_PHOTO_ALTERNATE "\xee\x90\xbe" // U+e43e #define ICON_MD_ADD_REACTION "\xee\x87\x93" // U+e1d3 #define ICON_MD_ADD_ROAD "\xee\xbc\xbb" // U+ef3b #define ICON_MD_ADD_SHOPPING_CART "\xee\xa1\x94" // U+e854 #define ICON_MD_ADD_TASK "\xef\x88\xba" // U+f23a #define ICON_MD_ADD_TO_DRIVE "\xee\x99\x9c" // U+e65c #define ICON_MD_ADD_TO_HOME_SCREEN "\xee\x87\xbe" // U+e1fe #define ICON_MD_ADD_TO_PHOTOS "\xee\x8e\x9d" // U+e39d #define ICON_MD_ADD_TO_QUEUE "\xee\x81\x9c" // U+e05c #define ICON_MD_ADDCHART "\xee\xbc\xbc" // U+ef3c #define ICON_MD_ADF_SCANNER "\xee\xab\x9a" // U+eada #define ICON_MD_ADJUST "\xee\x8e\x9e" // U+e39e #define ICON_MD_ADMIN_PANEL_SETTINGS "\xee\xbc\xbd" // U+ef3d #define ICON_MD_ADOBE "\xee\xaa\x96" // U+ea96 #define ICON_MD_ADS_CLICK "\xee\x9d\xa2" // U+e762 #define ICON_MD_AGRICULTURE "\xee\xa9\xb9" // U+ea79 #define ICON_MD_AIR "\xee\xbf\x98" // U+efd8 #define ICON_MD_AIRLINE_SEAT_FLAT "\xee\x98\xb0" // U+e630 #define ICON_MD_AIRLINE_SEAT_FLAT_ANGLED "\xee\x98\xb1" // U+e631 #define ICON_MD_AIRLINE_SEAT_INDIVIDUAL_SUITE "\xee\x98\xb2" // U+e632 #define ICON_MD_AIRLINE_SEAT_LEGROOM_EXTRA "\xee\x98\xb3" // U+e633 #define ICON_MD_AIRLINE_SEAT_LEGROOM_NORMAL "\xee\x98\xb4" // U+e634 #define ICON_MD_AIRLINE_SEAT_LEGROOM_REDUCED "\xee\x98\xb5" // U+e635 #define ICON_MD_AIRLINE_SEAT_RECLINE_EXTRA "\xee\x98\xb6" // U+e636 #define ICON_MD_AIRLINE_SEAT_RECLINE_NORMAL "\xee\x98\xb7" // U+e637 #define ICON_MD_AIRLINE_STOPS "\xee\x9f\x90" // U+e7d0 #define ICON_MD_AIRLINES "\xee\x9f\x8a" // U+e7ca #define ICON_MD_AIRPLANE_TICKET "\xee\xbf\x99" // U+efd9 #define ICON_MD_AIRPLANEMODE_ACTIVE "\xee\x86\x95" // U+e195 #define ICON_MD_AIRPLANEMODE_INACTIVE "\xee\x86\x94" // U+e194 #define ICON_MD_AIRPLANEMODE_OFF "\xee\x86\x94" // U+e194 #define ICON_MD_AIRPLANEMODE_ON "\xee\x86\x95" // U+e195 #define ICON_MD_AIRPLAY "\xee\x81\x95" // U+e055 #define ICON_MD_AIRPORT_SHUTTLE "\xee\xac\xbc" // U+eb3c #define ICON_MD_ALARM "\xee\xa1\x95" // U+e855 #define ICON_MD_ALARM_ADD "\xee\xa1\x96" // U+e856 #define ICON_MD_ALARM_OFF "\xee\xa1\x97" // U+e857 #define ICON_MD_ALARM_ON "\xee\xa1\x98" // U+e858 #define ICON_MD_ALBUM "\xee\x80\x99" // U+e019 #define ICON_MD_ALIGN_HORIZONTAL_CENTER "\xee\x80\x8f" // U+e00f #define ICON_MD_ALIGN_HORIZONTAL_LEFT "\xee\x80\x8d" // U+e00d #define ICON_MD_ALIGN_HORIZONTAL_RIGHT "\xee\x80\x90" // U+e010 #define ICON_MD_ALIGN_VERTICAL_BOTTOM "\xee\x80\x95" // U+e015 #define ICON_MD_ALIGN_VERTICAL_CENTER "\xee\x80\x91" // U+e011 #define ICON_MD_ALIGN_VERTICAL_TOP "\xee\x80\x8c" // U+e00c #define ICON_MD_ALL_INBOX "\xee\xa5\xbf" // U+e97f #define ICON_MD_ALL_INCLUSIVE "\xee\xac\xbd" // U+eb3d #define ICON_MD_ALL_OUT "\xee\xa4\x8b" // U+e90b #define ICON_MD_ALT_ROUTE "\xef\x86\x84" // U+f184 #define ICON_MD_ALTERNATE_EMAIL "\xee\x83\xa6" // U+e0e6 #define ICON_MD_AMP_STORIES "\xee\xa8\x93" // U+ea13 #define ICON_MD_ANALYTICS "\xee\xbc\xbe" // U+ef3e #define ICON_MD_ANCHOR "\xef\x87\x8d" // U+f1cd #define ICON_MD_ANDROID "\xee\xa1\x99" // U+e859 #define ICON_MD_ANIMATION "\xee\x9c\x9c" // U+e71c #define ICON_MD_ANNOUNCEMENT "\xee\xa1\x9a" // U+e85a #define ICON_MD_AOD "\xee\xbf\x9a" // U+efda #define ICON_MD_APARTMENT "\xee\xa9\x80" // U+ea40 #define ICON_MD_API "\xef\x86\xb7" // U+f1b7 #define ICON_MD_APP_BLOCKING "\xee\xbc\xbf" // U+ef3f #define ICON_MD_APP_REGISTRATION "\xee\xbd\x80" // U+ef40 #define ICON_MD_APP_SETTINGS_ALT "\xee\xbd\x81" // U+ef41 #define ICON_MD_APP_SHORTCUT "\xee\xab\xa4" // U+eae4 #define ICON_MD_APPLE "\xee\xaa\x80" // U+ea80 #define ICON_MD_APPROVAL "\xee\xa6\x82" // U+e982 #define ICON_MD_APPS "\xee\x97\x83" // U+e5c3 #define ICON_MD_APPS_OUTAGE "\xee\x9f\x8c" // U+e7cc #define ICON_MD_ARCHITECTURE "\xee\xa8\xbb" // U+ea3b #define ICON_MD_ARCHIVE "\xee\x85\x89" // U+e149 #define ICON_MD_AREA_CHART "\xee\x9d\xb0" // U+e770 #define ICON_MD_ARROW_BACK "\xee\x97\x84" // U+e5c4 #define ICON_MD_ARROW_BACK_IOS "\xee\x97\xa0" // U+e5e0 #define ICON_MD_ARROW_BACK_IOS_NEW "\xee\x8b\xaa" // U+e2ea #define ICON_MD_ARROW_CIRCLE_DOWN "\xef\x86\x81" // U+f181 #define ICON_MD_ARROW_CIRCLE_LEFT "\xee\xaa\xa7" // U+eaa7 #define ICON_MD_ARROW_CIRCLE_RIGHT "\xee\xaa\xaa" // U+eaaa #define ICON_MD_ARROW_CIRCLE_UP "\xef\x86\x82" // U+f182 #define ICON_MD_ARROW_DOWNWARD "\xee\x97\x9b" // U+e5db #define ICON_MD_ARROW_DROP_DOWN "\xee\x97\x85" // U+e5c5 #define ICON_MD_ARROW_DROP_DOWN_CIRCLE "\xee\x97\x86" // U+e5c6 #define ICON_MD_ARROW_DROP_UP "\xee\x97\x87" // U+e5c7 #define ICON_MD_ARROW_FORWARD "\xee\x97\x88" // U+e5c8 #define ICON_MD_ARROW_FORWARD_IOS "\xee\x97\xa1" // U+e5e1 #define ICON_MD_ARROW_LEFT "\xee\x97\x9e" // U+e5de #define ICON_MD_ARROW_OUTWARD "\xef\xa3\x8e" // U+f8ce #define ICON_MD_ARROW_RIGHT "\xee\x97\x9f" // U+e5df #define ICON_MD_ARROW_RIGHT_ALT "\xee\xa5\x81" // U+e941 #define ICON_MD_ARROW_UPWARD "\xee\x97\x98" // U+e5d8 #define ICON_MD_ART_TRACK "\xee\x81\xa0" // U+e060 #define ICON_MD_ARTICLE "\xee\xbd\x82" // U+ef42 #define ICON_MD_ASPECT_RATIO "\xee\xa1\x9b" // U+e85b #define ICON_MD_ASSESSMENT "\xee\xa1\x9c" // U+e85c #define ICON_MD_ASSIGNMENT "\xee\xa1\x9d" // U+e85d #define ICON_MD_ASSIGNMENT_ADD "\xef\xa1\x88" // U+f848 #define ICON_MD_ASSIGNMENT_IND "\xee\xa1\x9e" // U+e85e #define ICON_MD_ASSIGNMENT_LATE "\xee\xa1\x9f" // U+e85f #define ICON_MD_ASSIGNMENT_RETURN "\xee\xa1\xa0" // U+e860 #define ICON_MD_ASSIGNMENT_RETURNED "\xee\xa1\xa1" // U+e861 #define ICON_MD_ASSIGNMENT_TURNED_IN "\xee\xa1\xa2" // U+e862 #define ICON_MD_ASSIST_WALKER "\xef\xa3\x95" // U+f8d5 #define ICON_MD_ASSISTANT "\xee\x8e\x9f" // U+e39f #define ICON_MD_ASSISTANT_DIRECTION "\xee\xa6\x88" // U+e988 #define ICON_MD_ASSISTANT_NAVIGATION "\xee\xa6\x89" // U+e989 #define ICON_MD_ASSISTANT_PHOTO "\xee\x8e\xa0" // U+e3a0 #define ICON_MD_ASSURED_WORKLOAD "\xee\xad\xaf" // U+eb6f #define ICON_MD_ATM "\xee\x95\xb3" // U+e573 #define ICON_MD_ATTACH_EMAIL "\xee\xa9\x9e" // U+ea5e #define ICON_MD_ATTACH_FILE "\xee\x88\xa6" // U+e226 #define ICON_MD_ATTACH_MONEY "\xee\x88\xa7" // U+e227 #define ICON_MD_ATTACHMENT "\xee\x8a\xbc" // U+e2bc #define ICON_MD_ATTRACTIONS "\xee\xa9\x92" // U+ea52 #define ICON_MD_ATTRIBUTION "\xee\xbf\x9b" // U+efdb #define ICON_MD_AUDIO_FILE "\xee\xae\x82" // U+eb82 #define ICON_MD_AUDIOTRACK "\xee\x8e\xa1" // U+e3a1 #define ICON_MD_AUTO_AWESOME "\xee\x99\x9f" // U+e65f #define ICON_MD_AUTO_AWESOME_MOSAIC "\xee\x99\xa0" // U+e660 #define ICON_MD_AUTO_AWESOME_MOTION "\xee\x99\xa1" // U+e661 #define ICON_MD_AUTO_DELETE "\xee\xa9\x8c" // U+ea4c #define ICON_MD_AUTO_FIX_HIGH "\xee\x99\xa3" // U+e663 #define ICON_MD_AUTO_FIX_NORMAL "\xee\x99\xa4" // U+e664 #define ICON_MD_AUTO_FIX_OFF "\xee\x99\xa5" // U+e665 #define ICON_MD_AUTO_GRAPH "\xee\x93\xbb" // U+e4fb #define ICON_MD_AUTO_MODE "\xee\xb0\xa0" // U+ec20 #define ICON_MD_AUTO_STORIES "\xee\x99\xa6" // U+e666 #define ICON_MD_AUTOFPS_SELECT "\xee\xbf\x9c" // U+efdc #define ICON_MD_AUTORENEW "\xee\xa1\xa3" // U+e863 #define ICON_MD_AV_TIMER "\xee\x80\x9b" // U+e01b #define ICON_MD_BABY_CHANGING_STATION "\xef\x86\x9b" // U+f19b #define ICON_MD_BACK_HAND "\xee\x9d\xa4" // U+e764 #define ICON_MD_BACKPACK "\xef\x86\x9c" // U+f19c #define ICON_MD_BACKSPACE "\xee\x85\x8a" // U+e14a #define ICON_MD_BACKUP "\xee\xa1\xa4" // U+e864 #define ICON_MD_BACKUP_TABLE "\xee\xbd\x83" // U+ef43 #define ICON_MD_BADGE "\xee\xa9\xa7" // U+ea67 #define ICON_MD_BAKERY_DINING "\xee\xa9\x93" // U+ea53 #define ICON_MD_BALANCE "\xee\xab\xb6" // U+eaf6 #define ICON_MD_BALCONY "\xee\x96\x8f" // U+e58f #define ICON_MD_BALLOT "\xee\x85\xb2" // U+e172 #define ICON_MD_BAR_CHART "\xee\x89\xab" // U+e26b #define ICON_MD_BARCODE_READER "\xef\xa1\x9c" // U+f85c #define ICON_MD_BATCH_PREDICTION "\xef\x83\xb5" // U+f0f5 #define ICON_MD_BATHROOM "\xee\xbf\x9d" // U+efdd #define ICON_MD_BATHTUB "\xee\xa9\x81" // U+ea41 #define ICON_MD_BATTERY_0_BAR "\xee\xaf\x9c" // U+ebdc #define ICON_MD_BATTERY_1_BAR "\xee\xaf\x99" // U+ebd9 #define ICON_MD_BATTERY_2_BAR "\xee\xaf\xa0" // U+ebe0 #define ICON_MD_BATTERY_3_BAR "\xee\xaf\x9d" // U+ebdd #define ICON_MD_BATTERY_4_BAR "\xee\xaf\xa2" // U+ebe2 #define ICON_MD_BATTERY_5_BAR "\xee\xaf\x94" // U+ebd4 #define ICON_MD_BATTERY_6_BAR "\xee\xaf\x92" // U+ebd2 #define ICON_MD_BATTERY_ALERT "\xee\x86\x9c" // U+e19c #define ICON_MD_BATTERY_CHARGING_FULL "\xee\x86\xa3" // U+e1a3 #define ICON_MD_BATTERY_FULL "\xee\x86\xa4" // U+e1a4 #define ICON_MD_BATTERY_SAVER "\xee\xbf\x9e" // U+efde #define ICON_MD_BATTERY_STD "\xee\x86\xa5" // U+e1a5 #define ICON_MD_BATTERY_UNKNOWN "\xee\x86\xa6" // U+e1a6 #define ICON_MD_BEACH_ACCESS "\xee\xac\xbe" // U+eb3e #define ICON_MD_BED "\xee\xbf\x9f" // U+efdf #define ICON_MD_BEDROOM_BABY "\xee\xbf\xa0" // U+efe0 #define ICON_MD_BEDROOM_CHILD "\xee\xbf\xa1" // U+efe1 #define ICON_MD_BEDROOM_PARENT "\xee\xbf\xa2" // U+efe2 #define ICON_MD_BEDTIME "\xee\xbd\x84" // U+ef44 #define ICON_MD_BEDTIME_OFF "\xee\xad\xb6" // U+eb76 #define ICON_MD_BEENHERE "\xee\x94\xad" // U+e52d #define ICON_MD_BENTO "\xef\x87\xb4" // U+f1f4 #define ICON_MD_BIKE_SCOOTER "\xee\xbd\x85" // U+ef45 #define ICON_MD_BIOTECH "\xee\xa8\xba" // U+ea3a #define ICON_MD_BLENDER "\xee\xbf\xa3" // U+efe3 #define ICON_MD_BLIND "\xef\xa3\x96" // U+f8d6 #define ICON_MD_BLINDS "\xee\x8a\x86" // U+e286 #define ICON_MD_BLINDS_CLOSED "\xee\xb0\x9f" // U+ec1f #define ICON_MD_BLOCK "\xee\x85\x8b" // U+e14b #define ICON_MD_BLOCK_FLIPPED "\xee\xbd\x86" // U+ef46 #define ICON_MD_BLOODTYPE "\xee\xbf\xa4" // U+efe4 #define ICON_MD_BLUETOOTH "\xee\x86\xa7" // U+e1a7 #define ICON_MD_BLUETOOTH_AUDIO "\xee\x98\x8f" // U+e60f #define ICON_MD_BLUETOOTH_CONNECTED "\xee\x86\xa8" // U+e1a8 #define ICON_MD_BLUETOOTH_DISABLED "\xee\x86\xa9" // U+e1a9 #define ICON_MD_BLUETOOTH_DRIVE "\xee\xbf\xa5" // U+efe5 #define ICON_MD_BLUETOOTH_SEARCHING "\xee\x86\xaa" // U+e1aa #define ICON_MD_BLUR_CIRCULAR "\xee\x8e\xa2" // U+e3a2 #define ICON_MD_BLUR_LINEAR "\xee\x8e\xa3" // U+e3a3 #define ICON_MD_BLUR_OFF "\xee\x8e\xa4" // U+e3a4 #define ICON_MD_BLUR_ON "\xee\x8e\xa5" // U+e3a5 #define ICON_MD_BOLT "\xee\xa8\x8b" // U+ea0b #define ICON_MD_BOOK "\xee\xa1\xa5" // U+e865 #define ICON_MD_BOOK_ONLINE "\xef\x88\x97" // U+f217 #define ICON_MD_BOOKMARK "\xee\xa1\xa6" // U+e866 #define ICON_MD_BOOKMARK_ADD "\xee\x96\x98" // U+e598 #define ICON_MD_BOOKMARK_ADDED "\xee\x96\x99" // U+e599 #define ICON_MD_BOOKMARK_BORDER "\xee\xa1\xa7" // U+e867 #define ICON_MD_BOOKMARK_OUTLINE "\xee\xa1\xa7" // U+e867 #define ICON_MD_BOOKMARK_REMOVE "\xee\x96\x9a" // U+e59a #define ICON_MD_BOOKMARKS "\xee\xa6\x8b" // U+e98b #define ICON_MD_BORDER_ALL "\xee\x88\xa8" // U+e228 #define ICON_MD_BORDER_BOTTOM "\xee\x88\xa9" // U+e229 #define ICON_MD_BORDER_CLEAR "\xee\x88\xaa" // U+e22a #define ICON_MD_BORDER_COLOR "\xee\x88\xab" // U+e22b #define ICON_MD_BORDER_HORIZONTAL "\xee\x88\xac" // U+e22c #define ICON_MD_BORDER_INNER "\xee\x88\xad" // U+e22d #define ICON_MD_BORDER_LEFT "\xee\x88\xae" // U+e22e #define ICON_MD_BORDER_OUTER "\xee\x88\xaf" // U+e22f #define ICON_MD_BORDER_RIGHT "\xee\x88\xb0" // U+e230 #define ICON_MD_BORDER_STYLE "\xee\x88\xb1" // U+e231 #define ICON_MD_BORDER_TOP "\xee\x88\xb2" // U+e232 #define ICON_MD_BORDER_VERTICAL "\xee\x88\xb3" // U+e233 #define ICON_MD_BOY "\xee\xad\xa7" // U+eb67 #define ICON_MD_BRANDING_WATERMARK "\xee\x81\xab" // U+e06b #define ICON_MD_BREAKFAST_DINING "\xee\xa9\x94" // U+ea54 #define ICON_MD_BRIGHTNESS_1 "\xee\x8e\xa6" // U+e3a6 #define ICON_MD_BRIGHTNESS_2 "\xee\x8e\xa7" // U+e3a7 #define ICON_MD_BRIGHTNESS_3 "\xee\x8e\xa8" // U+e3a8 #define ICON_MD_BRIGHTNESS_4 "\xee\x8e\xa9" // U+e3a9 #define ICON_MD_BRIGHTNESS_5 "\xee\x8e\xaa" // U+e3aa #define ICON_MD_BRIGHTNESS_6 "\xee\x8e\xab" // U+e3ab #define ICON_MD_BRIGHTNESS_7 "\xee\x8e\xac" // U+e3ac #define ICON_MD_BRIGHTNESS_AUTO "\xee\x86\xab" // U+e1ab #define ICON_MD_BRIGHTNESS_HIGH "\xee\x86\xac" // U+e1ac #define ICON_MD_BRIGHTNESS_LOW "\xee\x86\xad" // U+e1ad #define ICON_MD_BRIGHTNESS_MEDIUM "\xee\x86\xae" // U+e1ae #define ICON_MD_BROADCAST_ON_HOME "\xef\xa3\xb8" // U+f8f8 #define ICON_MD_BROADCAST_ON_PERSONAL "\xef\xa3\xb9" // U+f8f9 #define ICON_MD_BROKEN_IMAGE "\xee\x8e\xad" // U+e3ad #define ICON_MD_BROWSE_GALLERY "\xee\xaf\x91" // U+ebd1 #define ICON_MD_BROWSER_NOT_SUPPORTED "\xee\xbd\x87" // U+ef47 #define ICON_MD_BROWSER_UPDATED "\xee\x9f\x8f" // U+e7cf #define ICON_MD_BRUNCH_DINING "\xee\xa9\xb3" // U+ea73 #define ICON_MD_BRUSH "\xee\x8e\xae" // U+e3ae #define ICON_MD_BUBBLE_CHART "\xee\x9b\x9d" // U+e6dd #define ICON_MD_BUG_REPORT "\xee\xa1\xa8" // U+e868 #define ICON_MD_BUILD "\xee\xa1\xa9" // U+e869 #define ICON_MD_BUILD_CIRCLE "\xee\xbd\x88" // U+ef48 #define ICON_MD_BUNGALOW "\xee\x96\x91" // U+e591 #define ICON_MD_BURST_MODE "\xee\x90\xbc" // U+e43c #define ICON_MD_BUS_ALERT "\xee\xa6\x8f" // U+e98f #define ICON_MD_BUSINESS "\xee\x82\xaf" // U+e0af #define ICON_MD_BUSINESS_CENTER "\xee\xac\xbf" // U+eb3f #define ICON_MD_CABIN "\xee\x96\x89" // U+e589 #define ICON_MD_CABLE "\xee\xbf\xa6" // U+efe6 #define ICON_MD_CACHED "\xee\xa1\xaa" // U+e86a #define ICON_MD_CAKE "\xee\x9f\xa9" // U+e7e9 #define ICON_MD_CALCULATE "\xee\xa9\x9f" // U+ea5f #define ICON_MD_CALENDAR_MONTH "\xee\xaf\x8c" // U+ebcc #define ICON_MD_CALENDAR_TODAY "\xee\xa4\xb5" // U+e935 #define ICON_MD_CALENDAR_VIEW_DAY "\xee\xa4\xb6" // U+e936 #define ICON_MD_CALENDAR_VIEW_MONTH "\xee\xbf\xa7" // U+efe7 #define ICON_MD_CALENDAR_VIEW_WEEK "\xee\xbf\xa8" // U+efe8 #define ICON_MD_CALL "\xee\x82\xb0" // U+e0b0 #define ICON_MD_CALL_END "\xee\x82\xb1" // U+e0b1 #define ICON_MD_CALL_MADE "\xee\x82\xb2" // U+e0b2 #define ICON_MD_CALL_MERGE "\xee\x82\xb3" // U+e0b3 #define ICON_MD_CALL_MISSED "\xee\x82\xb4" // U+e0b4 #define ICON_MD_CALL_MISSED_OUTGOING "\xee\x83\xa4" // U+e0e4 #define ICON_MD_CALL_RECEIVED "\xee\x82\xb5" // U+e0b5 #define ICON_MD_CALL_SPLIT "\xee\x82\xb6" // U+e0b6 #define ICON_MD_CALL_TO_ACTION "\xee\x81\xac" // U+e06c #define ICON_MD_CAMERA "\xee\x8e\xaf" // U+e3af #define ICON_MD_CAMERA_ALT "\xee\x8e\xb0" // U+e3b0 #define ICON_MD_CAMERA_ENHANCE "\xee\xa3\xbc" // U+e8fc #define ICON_MD_CAMERA_FRONT "\xee\x8e\xb1" // U+e3b1 #define ICON_MD_CAMERA_INDOOR "\xee\xbf\xa9" // U+efe9 #define ICON_MD_CAMERA_OUTDOOR "\xee\xbf\xaa" // U+efea #define ICON_MD_CAMERA_REAR "\xee\x8e\xb2" // U+e3b2 #define ICON_MD_CAMERA_ROLL "\xee\x8e\xb3" // U+e3b3 #define ICON_MD_CAMERASWITCH "\xee\xbf\xab" // U+efeb #define ICON_MD_CAMPAIGN "\xee\xbd\x89" // U+ef49 #define ICON_MD_CANCEL "\xee\x97\x89" // U+e5c9 #define ICON_MD_CANCEL_PRESENTATION "\xee\x83\xa9" // U+e0e9 #define ICON_MD_CANCEL_SCHEDULE_SEND "\xee\xa8\xb9" // U+ea39 #define ICON_MD_CANDLESTICK_CHART "\xee\xab\x94" // U+ead4 #define ICON_MD_CAR_CRASH "\xee\xaf\xb2" // U+ebf2 #define ICON_MD_CAR_RENTAL "\xee\xa9\x95" // U+ea55 #define ICON_MD_CAR_REPAIR "\xee\xa9\x96" // U+ea56 #define ICON_MD_CARD_GIFTCARD "\xee\xa3\xb6" // U+e8f6 #define ICON_MD_CARD_MEMBERSHIP "\xee\xa3\xb7" // U+e8f7 #define ICON_MD_CARD_TRAVEL "\xee\xa3\xb8" // U+e8f8 #define ICON_MD_CARPENTER "\xef\x87\xb8" // U+f1f8 #define ICON_MD_CASES "\xee\xa6\x92" // U+e992 #define ICON_MD_CASINO "\xee\xad\x80" // U+eb40 #define ICON_MD_CAST "\xee\x8c\x87" // U+e307 #define ICON_MD_CAST_CONNECTED "\xee\x8c\x88" // U+e308 #define ICON_MD_CAST_FOR_EDUCATION "\xee\xbf\xac" // U+efec #define ICON_MD_CASTLE "\xee\xaa\xb1" // U+eab1 #define ICON_MD_CATCHING_POKEMON "\xee\x94\x88" // U+e508 #define ICON_MD_CATEGORY "\xee\x95\xb4" // U+e574 #define ICON_MD_CELEBRATION "\xee\xa9\xa5" // U+ea65 #define ICON_MD_CELL_TOWER "\xee\xae\xba" // U+ebba #define ICON_MD_CELL_WIFI "\xee\x83\xac" // U+e0ec #define ICON_MD_CENTER_FOCUS_STRONG "\xee\x8e\xb4" // U+e3b4 #define ICON_MD_CENTER_FOCUS_WEAK "\xee\x8e\xb5" // U+e3b5 #define ICON_MD_CHAIR "\xee\xbf\xad" // U+efed #define ICON_MD_CHAIR_ALT "\xee\xbf\xae" // U+efee #define ICON_MD_CHALET "\xee\x96\x85" // U+e585 #define ICON_MD_CHANGE_CIRCLE "\xee\x8b\xa7" // U+e2e7 #define ICON_MD_CHANGE_HISTORY "\xee\xa1\xab" // U+e86b #define ICON_MD_CHARGING_STATION "\xef\x86\x9d" // U+f19d #define ICON_MD_CHAT "\xee\x82\xb7" // U+e0b7 #define ICON_MD_CHAT_BUBBLE "\xee\x83\x8a" // U+e0ca #define ICON_MD_CHAT_BUBBLE_OUTLINE "\xee\x83\x8b" // U+e0cb #define ICON_MD_CHECK "\xee\x97\x8a" // U+e5ca #define ICON_MD_CHECK_BOX "\xee\xa0\xb4" // U+e834 #define ICON_MD_CHECK_BOX_OUTLINE_BLANK "\xee\xa0\xb5" // U+e835 #define ICON_MD_CHECK_CIRCLE "\xee\xa1\xac" // U+e86c #define ICON_MD_CHECK_CIRCLE_OUTLINE "\xee\xa4\xad" // U+e92d #define ICON_MD_CHECKLIST "\xee\x9a\xb1" // U+e6b1 #define ICON_MD_CHECKLIST_RTL "\xee\x9a\xb3" // U+e6b3 #define ICON_MD_CHECKROOM "\xef\x86\x9e" // U+f19e #define ICON_MD_CHEVRON_LEFT "\xee\x97\x8b" // U+e5cb #define ICON_MD_CHEVRON_RIGHT "\xee\x97\x8c" // U+e5cc #define ICON_MD_CHILD_CARE "\xee\xad\x81" // U+eb41 #define ICON_MD_CHILD_FRIENDLY "\xee\xad\x82" // U+eb42 #define ICON_MD_CHROME_READER_MODE "\xee\xa1\xad" // U+e86d #define ICON_MD_CHURCH "\xee\xaa\xae" // U+eaae #define ICON_MD_CIRCLE "\xee\xbd\x8a" // U+ef4a #define ICON_MD_CIRCLE_NOTIFICATIONS "\xee\xa6\x94" // U+e994 #define ICON_MD_CLASS "\xee\xa1\xae" // U+e86e #define ICON_MD_CLEAN_HANDS "\xef\x88\x9f" // U+f21f #define ICON_MD_CLEANING_SERVICES "\xef\x83\xbf" // U+f0ff #define ICON_MD_CLEAR "\xee\x85\x8c" // U+e14c #define ICON_MD_CLEAR_ALL "\xee\x82\xb8" // U+e0b8 #define ICON_MD_CLOSE "\xee\x97\x8d" // U+e5cd #define ICON_MD_CLOSE_FULLSCREEN "\xef\x87\x8f" // U+f1cf #define ICON_MD_CLOSED_CAPTION "\xee\x80\x9c" // U+e01c #define ICON_MD_CLOSED_CAPTION_DISABLED "\xef\x87\x9c" // U+f1dc #define ICON_MD_CLOSED_CAPTION_OFF "\xee\xa6\x96" // U+e996 #define ICON_MD_CLOUD "\xee\x8a\xbd" // U+e2bd #define ICON_MD_CLOUD_CIRCLE "\xee\x8a\xbe" // U+e2be #define ICON_MD_CLOUD_DONE "\xee\x8a\xbf" // U+e2bf #define ICON_MD_CLOUD_DOWNLOAD "\xee\x8b\x80" // U+e2c0 #define ICON_MD_CLOUD_OFF "\xee\x8b\x81" // U+e2c1 #define ICON_MD_CLOUD_QUEUE "\xee\x8b\x82" // U+e2c2 #define ICON_MD_CLOUD_SYNC "\xee\xad\x9a" // U+eb5a #define ICON_MD_CLOUD_UPLOAD "\xee\x8b\x83" // U+e2c3 #define ICON_MD_CLOUDY_SNOWING "\xee\xa0\x90" // U+e810 #define ICON_MD_CO2 "\xee\x9e\xb0" // U+e7b0 #define ICON_MD_CO_PRESENT "\xee\xab\xb0" // U+eaf0 #define ICON_MD_CODE "\xee\xa1\xaf" // U+e86f #define ICON_MD_CODE_OFF "\xee\x93\xb3" // U+e4f3 #define ICON_MD_COFFEE "\xee\xbf\xaf" // U+efef #define ICON_MD_COFFEE_MAKER "\xee\xbf\xb0" // U+eff0 #define ICON_MD_COLLECTIONS "\xee\x8e\xb6" // U+e3b6 #define ICON_MD_COLLECTIONS_BOOKMARK "\xee\x90\xb1" // U+e431 #define ICON_MD_COLOR_LENS "\xee\x8e\xb7" // U+e3b7 #define ICON_MD_COLORIZE "\xee\x8e\xb8" // U+e3b8 #define ICON_MD_COMMENT "\xee\x82\xb9" // U+e0b9 #define ICON_MD_COMMENT_BANK "\xee\xa9\x8e" // U+ea4e #define ICON_MD_COMMENTS_DISABLED "\xee\x9e\xa2" // U+e7a2 #define ICON_MD_COMMIT "\xee\xab\xb5" // U+eaf5 #define ICON_MD_COMMUTE "\xee\xa5\x80" // U+e940 #define ICON_MD_COMPARE "\xee\x8e\xb9" // U+e3b9 #define ICON_MD_COMPARE_ARROWS "\xee\xa4\x95" // U+e915 #define ICON_MD_COMPASS_CALIBRATION "\xee\x95\xbc" // U+e57c #define ICON_MD_COMPOST "\xee\x9d\xa1" // U+e761 #define ICON_MD_COMPRESS "\xee\xa5\x8d" // U+e94d #define ICON_MD_COMPUTER "\xee\x8c\x8a" // U+e30a #define ICON_MD_CONFIRMATION_NUM "\xee\x98\xb8" // U+e638 #define ICON_MD_CONFIRMATION_NUMBER "\xee\x98\xb8" // U+e638 #define ICON_MD_CONNECT_WITHOUT_CONTACT "\xef\x88\xa3" // U+f223 #define ICON_MD_CONNECTED_TV "\xee\xa6\x98" // U+e998 #define ICON_MD_CONNECTING_AIRPORTS "\xee\x9f\x89" // U+e7c9 #define ICON_MD_CONSTRUCTION "\xee\xa8\xbc" // U+ea3c #define ICON_MD_CONTACT_EMERGENCY "\xef\xa3\x91" // U+f8d1 #define ICON_MD_CONTACT_MAIL "\xee\x83\x90" // U+e0d0 #define ICON_MD_CONTACT_PAGE "\xef\x88\xae" // U+f22e #define ICON_MD_CONTACT_PHONE "\xee\x83\x8f" // U+e0cf #define ICON_MD_CONTACT_SUPPORT "\xee\xa5\x8c" // U+e94c #define ICON_MD_CONTACTLESS "\xee\xa9\xb1" // U+ea71 #define ICON_MD_CONTACTS "\xee\x82\xba" // U+e0ba #define ICON_MD_CONTENT_COPY "\xee\x85\x8d" // U+e14d #define ICON_MD_CONTENT_CUT "\xee\x85\x8e" // U+e14e #define ICON_MD_CONTENT_PASTE "\xee\x85\x8f" // U+e14f #define ICON_MD_CONTENT_PASTE_GO "\xee\xaa\x8e" // U+ea8e #define ICON_MD_CONTENT_PASTE_OFF "\xee\x93\xb8" // U+e4f8 #define ICON_MD_CONTENT_PASTE_SEARCH "\xee\xaa\x9b" // U+ea9b #define ICON_MD_CONTRAST "\xee\xac\xb7" // U+eb37 #define ICON_MD_CONTROL_CAMERA "\xee\x81\xb4" // U+e074 #define ICON_MD_CONTROL_POINT "\xee\x8e\xba" // U+e3ba #define ICON_MD_CONTROL_POINT_DUPLICATE "\xee\x8e\xbb" // U+e3bb #define ICON_MD_CONVEYOR_BELT "\xef\xa1\xa7" // U+f867 #define ICON_MD_COOKIE "\xee\xaa\xac" // U+eaac #define ICON_MD_COPY_ALL "\xee\x8b\xac" // U+e2ec #define ICON_MD_COPYRIGHT "\xee\xa4\x8c" // U+e90c #define ICON_MD_CORONAVIRUS "\xef\x88\xa1" // U+f221 #define ICON_MD_CORPORATE_FARE "\xef\x87\x90" // U+f1d0 #define ICON_MD_COTTAGE "\xee\x96\x87" // U+e587 #define ICON_MD_COUNTERTOPS "\xef\x87\xb7" // U+f1f7 #define ICON_MD_CREATE "\xee\x85\x90" // U+e150 #define ICON_MD_CREATE_NEW_FOLDER "\xee\x8b\x8c" // U+e2cc #define ICON_MD_CREDIT_CARD "\xee\xa1\xb0" // U+e870 #define ICON_MD_CREDIT_CARD_OFF "\xee\x93\xb4" // U+e4f4 #define ICON_MD_CREDIT_SCORE "\xee\xbf\xb1" // U+eff1 #define ICON_MD_CRIB "\xee\x96\x88" // U+e588 #define ICON_MD_CRISIS_ALERT "\xee\xaf\xa9" // U+ebe9 #define ICON_MD_CROP "\xee\x8e\xbe" // U+e3be #define ICON_MD_CROP_16_9 "\xee\x8e\xbc" // U+e3bc #define ICON_MD_CROP_3_2 "\xee\x8e\xbd" // U+e3bd #define ICON_MD_CROP_5_4 "\xee\x8e\xbf" // U+e3bf #define ICON_MD_CROP_7_5 "\xee\x8f\x80" // U+e3c0 #define ICON_MD_CROP_DIN "\xee\x8f\x81" // U+e3c1 #define ICON_MD_CROP_FREE "\xee\x8f\x82" // U+e3c2 #define ICON_MD_CROP_LANDSCAPE "\xee\x8f\x83" // U+e3c3 #define ICON_MD_CROP_ORIGINAL "\xee\x8f\x84" // U+e3c4 #define ICON_MD_CROP_PORTRAIT "\xee\x8f\x85" // U+e3c5 #define ICON_MD_CROP_ROTATE "\xee\x90\xb7" // U+e437 #define ICON_MD_CROP_SQUARE "\xee\x8f\x86" // U+e3c6 #define ICON_MD_CRUELTY_FREE "\xee\x9e\x99" // U+e799 #define ICON_MD_CSS "\xee\xae\x93" // U+eb93 #define ICON_MD_CURRENCY_BITCOIN "\xee\xaf\x85" // U+ebc5 #define ICON_MD_CURRENCY_EXCHANGE "\xee\xad\xb0" // U+eb70 #define ICON_MD_CURRENCY_FRANC "\xee\xab\xba" // U+eafa #define ICON_MD_CURRENCY_LIRA "\xee\xab\xaf" // U+eaef #define ICON_MD_CURRENCY_POUND "\xee\xab\xb1" // U+eaf1 #define ICON_MD_CURRENCY_RUBLE "\xee\xab\xac" // U+eaec #define ICON_MD_CURRENCY_RUPEE "\xee\xab\xb7" // U+eaf7 #define ICON_MD_CURRENCY_YEN "\xee\xab\xbb" // U+eafb #define ICON_MD_CURRENCY_YUAN "\xee\xab\xb9" // U+eaf9 #define ICON_MD_CURTAINS "\xee\xb0\x9e" // U+ec1e #define ICON_MD_CURTAINS_CLOSED "\xee\xb0\x9d" // U+ec1d #define ICON_MD_CYCLONE "\xee\xaf\x95" // U+ebd5 #define ICON_MD_DANGEROUS "\xee\xa6\x9a" // U+e99a #define ICON_MD_DARK_MODE "\xee\x94\x9c" // U+e51c #define ICON_MD_DASHBOARD "\xee\xa1\xb1" // U+e871 #define ICON_MD_DASHBOARD_CUSTOMIZE "\xee\xa6\x9b" // U+e99b #define ICON_MD_DATA_ARRAY "\xee\xab\x91" // U+ead1 #define ICON_MD_DATA_EXPLORATION "\xee\x9d\xaf" // U+e76f #define ICON_MD_DATA_OBJECT "\xee\xab\x93" // U+ead3 #define ICON_MD_DATA_SAVER_OFF "\xee\xbf\xb2" // U+eff2 #define ICON_MD_DATA_SAVER_ON "\xee\xbf\xb3" // U+eff3 #define ICON_MD_DATA_THRESHOLDING "\xee\xae\x9f" // U+eb9f #define ICON_MD_DATA_USAGE "\xee\x86\xaf" // U+e1af #define ICON_MD_DATASET "\xef\xa3\xae" // U+f8ee #define ICON_MD_DATASET_LINKED "\xef\xa3\xaf" // U+f8ef #define ICON_MD_DATE_RANGE "\xee\xa4\x96" // U+e916 #define ICON_MD_DEBLUR "\xee\xad\xb7" // U+eb77 #define ICON_MD_DECK "\xee\xa9\x82" // U+ea42 #define ICON_MD_DEHAZE "\xee\x8f\x87" // U+e3c7 #define ICON_MD_DELETE "\xee\xa1\xb2" // U+e872 #define ICON_MD_DELETE_FOREVER "\xee\xa4\xab" // U+e92b #define ICON_MD_DELETE_OUTLINE "\xee\xa4\xae" // U+e92e #define ICON_MD_DELETE_SWEEP "\xee\x85\xac" // U+e16c #define ICON_MD_DELIVERY_DINING "\xee\xa9\xb2" // U+ea72 #define ICON_MD_DENSITY_LARGE "\xee\xae\xa9" // U+eba9 #define ICON_MD_DENSITY_MEDIUM "\xee\xae\x9e" // U+eb9e #define ICON_MD_DENSITY_SMALL "\xee\xae\xa8" // U+eba8 #define ICON_MD_DEPARTURE_BOARD "\xee\x95\xb6" // U+e576 #define ICON_MD_DESCRIPTION "\xee\xa1\xb3" // U+e873 #define ICON_MD_DESELECT "\xee\xae\xb6" // U+ebb6 #define ICON_MD_DESIGN_SERVICES "\xef\x84\x8a" // U+f10a #define ICON_MD_DESK "\xef\xa3\xb4" // U+f8f4 #define ICON_MD_DESKTOP_ACCESS_DISABLED "\xee\xa6\x9d" // U+e99d #define ICON_MD_DESKTOP_MAC "\xee\x8c\x8b" // U+e30b #define ICON_MD_DESKTOP_WINDOWS "\xee\x8c\x8c" // U+e30c #define ICON_MD_DETAILS "\xee\x8f\x88" // U+e3c8 #define ICON_MD_DEVELOPER_BOARD "\xee\x8c\x8d" // U+e30d #define ICON_MD_DEVELOPER_BOARD_OFF "\xee\x93\xbf" // U+e4ff #define ICON_MD_DEVELOPER_MODE "\xee\x86\xb0" // U+e1b0 #define ICON_MD_DEVICE_HUB "\xee\x8c\xb5" // U+e335 #define ICON_MD_DEVICE_THERMOSTAT "\xee\x87\xbf" // U+e1ff #define ICON_MD_DEVICE_UNKNOWN "\xee\x8c\xb9" // U+e339 #define ICON_MD_DEVICES "\xee\x86\xb1" // U+e1b1 #define ICON_MD_DEVICES_FOLD "\xee\xaf\x9e" // U+ebde #define ICON_MD_DEVICES_OTHER "\xee\x8c\xb7" // U+e337 #define ICON_MD_DEW_POINT "\xef\xa1\xb9" // U+f879 #define ICON_MD_DIALER_SIP "\xee\x82\xbb" // U+e0bb #define ICON_MD_DIALPAD "\xee\x82\xbc" // U+e0bc #define ICON_MD_DIAMOND "\xee\xab\x95" // U+ead5 #define ICON_MD_DIFFERENCE "\xee\xad\xbd" // U+eb7d #define ICON_MD_DINING "\xee\xbf\xb4" // U+eff4 #define ICON_MD_DINNER_DINING "\xee\xa9\x97" // U+ea57 #define ICON_MD_DIRECTIONS "\xee\x94\xae" // U+e52e #define ICON_MD_DIRECTIONS_BIKE "\xee\x94\xaf" // U+e52f #define ICON_MD_DIRECTIONS_BOAT "\xee\x94\xb2" // U+e532 #define ICON_MD_DIRECTIONS_BOAT_FILLED "\xee\xbf\xb5" // U+eff5 #define ICON_MD_DIRECTIONS_BUS "\xee\x94\xb0" // U+e530 #define ICON_MD_DIRECTIONS_BUS_FILLED "\xee\xbf\xb6" // U+eff6 #define ICON_MD_DIRECTIONS_CAR "\xee\x94\xb1" // U+e531 #define ICON_MD_DIRECTIONS_CAR_FILLED "\xee\xbf\xb7" // U+eff7 #define ICON_MD_DIRECTIONS_FERRY "\xee\x94\xb2" // U+e532 #define ICON_MD_DIRECTIONS_OFF "\xef\x84\x8f" // U+f10f #define ICON_MD_DIRECTIONS_RAILWAY "\xee\x94\xb4" // U+e534 #define ICON_MD_DIRECTIONS_RAILWAY_FILLED "\xee\xbf\xb8" // U+eff8 #define ICON_MD_DIRECTIONS_RUN "\xee\x95\xa6" // U+e566 #define ICON_MD_DIRECTIONS_SUBWAY "\xee\x94\xb3" // U+e533 #define ICON_MD_DIRECTIONS_SUBWAY_FILLED "\xee\xbf\xb9" // U+eff9 #define ICON_MD_DIRECTIONS_TRAIN "\xee\x94\xb4" // U+e534 #define ICON_MD_DIRECTIONS_TRANSIT "\xee\x94\xb5" // U+e535 #define ICON_MD_DIRECTIONS_TRANSIT_FILLED "\xee\xbf\xba" // U+effa #define ICON_MD_DIRECTIONS_WALK "\xee\x94\xb6" // U+e536 #define ICON_MD_DIRTY_LENS "\xee\xbd\x8b" // U+ef4b #define ICON_MD_DISABLED_BY_DEFAULT "\xef\x88\xb0" // U+f230 #define ICON_MD_DISABLED_VISIBLE "\xee\x9d\xae" // U+e76e #define ICON_MD_DISC_FULL "\xee\x98\x90" // U+e610 #define ICON_MD_DISCORD "\xee\xa9\xac" // U+ea6c #define ICON_MD_DISCOUNT "\xee\xaf\x89" // U+ebc9 #define ICON_MD_DISPLAY_SETTINGS "\xee\xae\x97" // U+eb97 #define ICON_MD_DIVERSITY_1 "\xef\xa3\x97" // U+f8d7 #define ICON_MD_DIVERSITY_2 "\xef\xa3\x98" // U+f8d8 #define ICON_MD_DIVERSITY_3 "\xef\xa3\x99" // U+f8d9 #define ICON_MD_DND_FORWARDSLASH "\xee\x98\x91" // U+e611 #define ICON_MD_DNS "\xee\xa1\xb5" // U+e875 #define ICON_MD_DO_DISTURB "\xef\x82\x8c" // U+f08c #define ICON_MD_DO_DISTURB_ALT "\xef\x82\x8d" // U+f08d #define ICON_MD_DO_DISTURB_OFF "\xef\x82\x8e" // U+f08e #define ICON_MD_DO_DISTURB_ON "\xef\x82\x8f" // U+f08f #define ICON_MD_DO_NOT_DISTURB "\xee\x98\x92" // U+e612 #define ICON_MD_DO_NOT_DISTURB_ALT "\xee\x98\x91" // U+e611 #define ICON_MD_DO_NOT_DISTURB_OFF "\xee\x99\x83" // U+e643 #define ICON_MD_DO_NOT_DISTURB_ON "\xee\x99\x84" // U+e644 #define ICON_MD_DO_NOT_DISTURB_ON_TOTAL_SILENCE "\xee\xbf\xbb" // U+effb #define ICON_MD_DO_NOT_STEP "\xef\x86\x9f" // U+f19f #define ICON_MD_DO_NOT_TOUCH "\xef\x86\xb0" // U+f1b0 #define ICON_MD_DOCK "\xee\x8c\x8e" // U+e30e #define ICON_MD_DOCUMENT_SCANNER "\xee\x97\xba" // U+e5fa #define ICON_MD_DOMAIN "\xee\x9f\xae" // U+e7ee #define ICON_MD_DOMAIN_ADD "\xee\xad\xa2" // U+eb62 #define ICON_MD_DOMAIN_DISABLED "\xee\x83\xaf" // U+e0ef #define ICON_MD_DOMAIN_VERIFICATION "\xee\xbd\x8c" // U+ef4c #define ICON_MD_DONE "\xee\xa1\xb6" // U+e876 #define ICON_MD_DONE_ALL "\xee\xa1\xb7" // U+e877 #define ICON_MD_DONE_OUTLINE "\xee\xa4\xaf" // U+e92f #define ICON_MD_DONUT_LARGE "\xee\xa4\x97" // U+e917 #define ICON_MD_DONUT_SMALL "\xee\xa4\x98" // U+e918 #define ICON_MD_DOOR_BACK "\xee\xbf\xbc" // U+effc #define ICON_MD_DOOR_FRONT "\xee\xbf\xbd" // U+effd #define ICON_MD_DOOR_SLIDING "\xee\xbf\xbe" // U+effe #define ICON_MD_DOORBELL "\xee\xbf\xbf" // U+efff #define ICON_MD_DOUBLE_ARROW "\xee\xa9\x90" // U+ea50 #define ICON_MD_DOWNHILL_SKIING "\xee\x94\x89" // U+e509 #define ICON_MD_DOWNLOAD "\xef\x82\x90" // U+f090 #define ICON_MD_DOWNLOAD_DONE "\xef\x82\x91" // U+f091 #define ICON_MD_DOWNLOAD_FOR_OFFLINE "\xef\x80\x80" // U+f000 #define ICON_MD_DOWNLOADING "\xef\x80\x81" // U+f001 #define ICON_MD_DRAFTS "\xee\x85\x91" // U+e151 #define ICON_MD_DRAG_HANDLE "\xee\x89\x9d" // U+e25d #define ICON_MD_DRAG_INDICATOR "\xee\xa5\x85" // U+e945 #define ICON_MD_DRAW "\xee\x9d\x86" // U+e746 #define ICON_MD_DRIVE_ETA "\xee\x98\x93" // U+e613 #define ICON_MD_DRIVE_FILE_MOVE "\xee\x99\xb5" // U+e675 #define ICON_MD_DRIVE_FILE_MOVE_OUTLINE "\xee\xa6\xa1" // U+e9a1 #define ICON_MD_DRIVE_FILE_MOVE_RTL "\xee\x9d\xad" // U+e76d #define ICON_MD_DRIVE_FILE_RENAME_OUTLINE "\xee\xa6\xa2" // U+e9a2 #define ICON_MD_DRIVE_FOLDER_UPLOAD "\xee\xa6\xa3" // U+e9a3 #define ICON_MD_DRY "\xef\x86\xb3" // U+f1b3 #define ICON_MD_DRY_CLEANING "\xee\xa9\x98" // U+ea58 #define ICON_MD_DUO "\xee\xa6\xa5" // U+e9a5 #define ICON_MD_DVR "\xee\x86\xb2" // U+e1b2 #define ICON_MD_DYNAMIC_FEED "\xee\xa8\x94" // U+ea14 #define ICON_MD_DYNAMIC_FORM "\xef\x86\xbf" // U+f1bf #define ICON_MD_E_MOBILEDATA "\xef\x80\x82" // U+f002 #define ICON_MD_EARBUDS "\xef\x80\x83" // U+f003 #define ICON_MD_EARBUDS_BATTERY "\xef\x80\x84" // U+f004 #define ICON_MD_EAST "\xef\x87\x9f" // U+f1df #define ICON_MD_ECO "\xee\xa8\xb5" // U+ea35 #define ICON_MD_EDGESENSOR_HIGH "\xef\x80\x85" // U+f005 #define ICON_MD_EDGESENSOR_LOW "\xef\x80\x86" // U+f006 #define ICON_MD_EDIT "\xee\x8f\x89" // U+e3c9 #define ICON_MD_EDIT_ATTRIBUTES "\xee\x95\xb8" // U+e578 #define ICON_MD_EDIT_CALENDAR "\xee\x9d\x82" // U+e742 #define ICON_MD_EDIT_DOCUMENT "\xef\xa2\x8c" // U+f88c #define ICON_MD_EDIT_LOCATION "\xee\x95\xa8" // U+e568 #define ICON_MD_EDIT_LOCATION_ALT "\xee\x87\x85" // U+e1c5 #define ICON_MD_EDIT_NOTE "\xee\x9d\x85" // U+e745 #define ICON_MD_EDIT_NOTIFICATIONS "\xee\x94\xa5" // U+e525 #define ICON_MD_EDIT_OFF "\xee\xa5\x90" // U+e950 #define ICON_MD_EDIT_ROAD "\xee\xbd\x8d" // U+ef4d #define ICON_MD_EDIT_SQUARE "\xef\xa2\x8d" // U+f88d #define ICON_MD_EGG "\xee\xab\x8c" // U+eacc #define ICON_MD_EGG_ALT "\xee\xab\x88" // U+eac8 #define ICON_MD_EJECT "\xee\xa3\xbb" // U+e8fb #define ICON_MD_ELDERLY "\xef\x88\x9a" // U+f21a #define ICON_MD_ELDERLY_WOMAN "\xee\xad\xa9" // U+eb69 #define ICON_MD_ELECTRIC_BIKE "\xee\xac\x9b" // U+eb1b #define ICON_MD_ELECTRIC_BOLT "\xee\xb0\x9c" // U+ec1c #define ICON_MD_ELECTRIC_CAR "\xee\xac\x9c" // U+eb1c #define ICON_MD_ELECTRIC_METER "\xee\xb0\x9b" // U+ec1b #define ICON_MD_ELECTRIC_MOPED "\xee\xac\x9d" // U+eb1d #define ICON_MD_ELECTRIC_RICKSHAW "\xee\xac\x9e" // U+eb1e #define ICON_MD_ELECTRIC_SCOOTER "\xee\xac\x9f" // U+eb1f #define ICON_MD_ELECTRICAL_SERVICES "\xef\x84\x82" // U+f102 #define ICON_MD_ELEVATOR "\xef\x86\xa0" // U+f1a0 #define ICON_MD_EMAIL "\xee\x82\xbe" // U+e0be #define ICON_MD_EMERGENCY "\xee\x87\xab" // U+e1eb #define ICON_MD_EMERGENCY_RECORDING "\xee\xaf\xb4" // U+ebf4 #define ICON_MD_EMERGENCY_SHARE "\xee\xaf\xb6" // U+ebf6 #define ICON_MD_EMOJI_EMOTIONS "\xee\xa8\xa2" // U+ea22 #define ICON_MD_EMOJI_EVENTS "\xee\xa8\xa3" // U+ea23 #define ICON_MD_EMOJI_FLAGS "\xee\xa8\x9a" // U+ea1a #define ICON_MD_EMOJI_FOOD_BEVERAGE "\xee\xa8\x9b" // U+ea1b #define ICON_MD_EMOJI_NATURE "\xee\xa8\x9c" // U+ea1c #define ICON_MD_EMOJI_OBJECTS "\xee\xa8\xa4" // U+ea24 #define ICON_MD_EMOJI_PEOPLE "\xee\xa8\x9d" // U+ea1d #define ICON_MD_EMOJI_SYMBOLS "\xee\xa8\x9e" // U+ea1e #define ICON_MD_EMOJI_TRANSPORTATION "\xee\xa8\x9f" // U+ea1f #define ICON_MD_ENERGY_SAVINGS_LEAF "\xee\xb0\x9a" // U+ec1a #define ICON_MD_ENGINEERING "\xee\xa8\xbd" // U+ea3d #define ICON_MD_ENHANCE_PHOTO_TRANSLATE "\xee\xa3\xbc" // U+e8fc #define ICON_MD_ENHANCED_ENCRYPTION "\xee\x98\xbf" // U+e63f #define ICON_MD_EQUALIZER "\xee\x80\x9d" // U+e01d #define ICON_MD_ERROR "\xee\x80\x80" // U+e000 #define ICON_MD_ERROR_OUTLINE "\xee\x80\x81" // U+e001 #define ICON_MD_ESCALATOR "\xef\x86\xa1" // U+f1a1 #define ICON_MD_ESCALATOR_WARNING "\xef\x86\xac" // U+f1ac #define ICON_MD_EURO "\xee\xa8\x95" // U+ea15 #define ICON_MD_EURO_SYMBOL "\xee\xa4\xa6" // U+e926 #define ICON_MD_EV_STATION "\xee\x95\xad" // U+e56d #define ICON_MD_EVENT "\xee\xa1\xb8" // U+e878 #define ICON_MD_EVENT_AVAILABLE "\xee\x98\x94" // U+e614 #define ICON_MD_EVENT_BUSY "\xee\x98\x95" // U+e615 #define ICON_MD_EVENT_NOTE "\xee\x98\x96" // U+e616 #define ICON_MD_EVENT_REPEAT "\xee\xad\xbb" // U+eb7b #define ICON_MD_EVENT_SEAT "\xee\xa4\x83" // U+e903 #define ICON_MD_EXIT_TO_APP "\xee\xa1\xb9" // U+e879 #define ICON_MD_EXPAND "\xee\xa5\x8f" // U+e94f #define ICON_MD_EXPAND_CIRCLE_DOWN "\xee\x9f\x8d" // U+e7cd #define ICON_MD_EXPAND_LESS "\xee\x97\x8e" // U+e5ce #define ICON_MD_EXPAND_MORE "\xee\x97\x8f" // U+e5cf #define ICON_MD_EXPLICIT "\xee\x80\x9e" // U+e01e #define ICON_MD_EXPLORE "\xee\xa1\xba" // U+e87a #define ICON_MD_EXPLORE_OFF "\xee\xa6\xa8" // U+e9a8 #define ICON_MD_EXPOSURE "\xee\x8f\x8a" // U+e3ca #define ICON_MD_EXPOSURE_MINUS_1 "\xee\x8f\x8b" // U+e3cb #define ICON_MD_EXPOSURE_MINUS_2 "\xee\x8f\x8c" // U+e3cc #define ICON_MD_EXPOSURE_NEG_1 "\xee\x8f\x8b" // U+e3cb #define ICON_MD_EXPOSURE_NEG_2 "\xee\x8f\x8c" // U+e3cc #define ICON_MD_EXPOSURE_PLUS_1 "\xee\x8f\x8d" // U+e3cd #define ICON_MD_EXPOSURE_PLUS_2 "\xee\x8f\x8e" // U+e3ce #define ICON_MD_EXPOSURE_ZERO "\xee\x8f\x8f" // U+e3cf #define ICON_MD_EXTENSION "\xee\xa1\xbb" // U+e87b #define ICON_MD_EXTENSION_OFF "\xee\x93\xb5" // U+e4f5 #define ICON_MD_FACE "\xee\xa1\xbc" // U+e87c #define ICON_MD_FACE_2 "\xef\xa3\x9a" // U+f8da #define ICON_MD_FACE_3 "\xef\xa3\x9b" // U+f8db #define ICON_MD_FACE_4 "\xef\xa3\x9c" // U+f8dc #define ICON_MD_FACE_5 "\xef\xa3\x9d" // U+f8dd #define ICON_MD_FACE_6 "\xef\xa3\x9e" // U+f8de #define ICON_MD_FACE_RETOUCHING_NATURAL "\xee\xbd\x8e" // U+ef4e #define ICON_MD_FACE_RETOUCHING_OFF "\xef\x80\x87" // U+f007 #define ICON_MD_FACEBOOK "\xef\x88\xb4" // U+f234 #define ICON_MD_FACT_CHECK "\xef\x83\x85" // U+f0c5 #define ICON_MD_FACTORY "\xee\xae\xbc" // U+ebbc #define ICON_MD_FAMILY_RESTROOM "\xef\x86\xa2" // U+f1a2 #define ICON_MD_FAST_FORWARD "\xee\x80\x9f" // U+e01f #define ICON_MD_FAST_REWIND "\xee\x80\xa0" // U+e020 #define ICON_MD_FASTFOOD "\xee\x95\xba" // U+e57a #define ICON_MD_FAVORITE "\xee\xa1\xbd" // U+e87d #define ICON_MD_FAVORITE_BORDER "\xee\xa1\xbe" // U+e87e #define ICON_MD_FAVORITE_OUTLINE "\xee\xa1\xbe" // U+e87e #define ICON_MD_FAX "\xee\xab\x98" // U+ead8 #define ICON_MD_FEATURED_PLAY_LIST "\xee\x81\xad" // U+e06d #define ICON_MD_FEATURED_VIDEO "\xee\x81\xae" // U+e06e #define ICON_MD_FEED "\xef\x80\x89" // U+f009 #define ICON_MD_FEEDBACK "\xee\xa1\xbf" // U+e87f #define ICON_MD_FEMALE "\xee\x96\x90" // U+e590 #define ICON_MD_FENCE "\xef\x87\xb6" // U+f1f6 #define ICON_MD_FESTIVAL "\xee\xa9\xa8" // U+ea68 #define ICON_MD_FIBER_DVR "\xee\x81\x9d" // U+e05d #define ICON_MD_FIBER_MANUAL_RECORD "\xee\x81\xa1" // U+e061 #define ICON_MD_FIBER_NEW "\xee\x81\x9e" // U+e05e #define ICON_MD_FIBER_PIN "\xee\x81\xaa" // U+e06a #define ICON_MD_FIBER_SMART_RECORD "\xee\x81\xa2" // U+e062 #define ICON_MD_FILE_COPY "\xee\x85\xb3" // U+e173 #define ICON_MD_FILE_DOWNLOAD "\xee\x8b\x84" // U+e2c4 #define ICON_MD_FILE_DOWNLOAD_DONE "\xee\xa6\xaa" // U+e9aa #define ICON_MD_FILE_DOWNLOAD_OFF "\xee\x93\xbe" // U+e4fe #define ICON_MD_FILE_OPEN "\xee\xab\xb3" // U+eaf3 #define ICON_MD_FILE_PRESENT "\xee\xa8\x8e" // U+ea0e #define ICON_MD_FILE_UPLOAD "\xee\x8b\x86" // U+e2c6 #define ICON_MD_FILE_UPLOAD_OFF "\xef\xa2\x86" // U+f886 #define ICON_MD_FILTER "\xee\x8f\x93" // U+e3d3 #define ICON_MD_FILTER_1 "\xee\x8f\x90" // U+e3d0 #define ICON_MD_FILTER_2 "\xee\x8f\x91" // U+e3d1 #define ICON_MD_FILTER_3 "\xee\x8f\x92" // U+e3d2 #define ICON_MD_FILTER_4 "\xee\x8f\x94" // U+e3d4 #define ICON_MD_FILTER_5 "\xee\x8f\x95" // U+e3d5 #define ICON_MD_FILTER_6 "\xee\x8f\x96" // U+e3d6 #define ICON_MD_FILTER_7 "\xee\x8f\x97" // U+e3d7 #define ICON_MD_FILTER_8 "\xee\x8f\x98" // U+e3d8 #define ICON_MD_FILTER_9 "\xee\x8f\x99" // U+e3d9 #define ICON_MD_FILTER_9_PLUS "\xee\x8f\x9a" // U+e3da #define ICON_MD_FILTER_ALT "\xee\xbd\x8f" // U+ef4f #define ICON_MD_FILTER_ALT_OFF "\xee\xac\xb2" // U+eb32 #define ICON_MD_FILTER_B_AND_W "\xee\x8f\x9b" // U+e3db #define ICON_MD_FILTER_CENTER_FOCUS "\xee\x8f\x9c" // U+e3dc #define ICON_MD_FILTER_DRAMA "\xee\x8f\x9d" // U+e3dd #define ICON_MD_FILTER_FRAMES "\xee\x8f\x9e" // U+e3de #define ICON_MD_FILTER_HDR "\xee\x8f\x9f" // U+e3df #define ICON_MD_FILTER_LIST "\xee\x85\x92" // U+e152 #define ICON_MD_FILTER_LIST_ALT "\xee\xa5\x8e" // U+e94e #define ICON_MD_FILTER_LIST_OFF "\xee\xad\x97" // U+eb57 #define ICON_MD_FILTER_NONE "\xee\x8f\xa0" // U+e3e0 #define ICON_MD_FILTER_TILT_SHIFT "\xee\x8f\xa2" // U+e3e2 #define ICON_MD_FILTER_VINTAGE "\xee\x8f\xa3" // U+e3e3 #define ICON_MD_FIND_IN_PAGE "\xee\xa2\x80" // U+e880 #define ICON_MD_FIND_REPLACE "\xee\xa2\x81" // U+e881 #define ICON_MD_FINGERPRINT "\xee\xa4\x8d" // U+e90d #define ICON_MD_FIRE_EXTINGUISHER "\xef\x87\x98" // U+f1d8 #define ICON_MD_FIRE_HYDRANT "\xef\x86\xa3" // U+f1a3 #define ICON_MD_FIRE_HYDRANT_ALT "\xef\xa3\xb1" // U+f8f1 #define ICON_MD_FIRE_TRUCK "\xef\xa3\xb2" // U+f8f2 #define ICON_MD_FIREPLACE "\xee\xa9\x83" // U+ea43 #define ICON_MD_FIRST_PAGE "\xee\x97\x9c" // U+e5dc #define ICON_MD_FIT_SCREEN "\xee\xa8\x90" // U+ea10 #define ICON_MD_FITBIT "\xee\xa0\xab" // U+e82b #define ICON_MD_FITNESS_CENTER "\xee\xad\x83" // U+eb43 #define ICON_MD_FLAG "\xee\x85\x93" // U+e153 #define ICON_MD_FLAG_CIRCLE "\xee\xab\xb8" // U+eaf8 #define ICON_MD_FLAKY "\xee\xbd\x90" // U+ef50 #define ICON_MD_FLARE "\xee\x8f\xa4" // U+e3e4 #define ICON_MD_FLASH_AUTO "\xee\x8f\xa5" // U+e3e5 #define ICON_MD_FLASH_OFF "\xee\x8f\xa6" // U+e3e6 #define ICON_MD_FLASH_ON "\xee\x8f\xa7" // U+e3e7 #define ICON_MD_FLASHLIGHT_OFF "\xef\x80\x8a" // U+f00a #define ICON_MD_FLASHLIGHT_ON "\xef\x80\x8b" // U+f00b #define ICON_MD_FLATWARE "\xef\x80\x8c" // U+f00c #define ICON_MD_FLIGHT "\xee\x94\xb9" // U+e539 #define ICON_MD_FLIGHT_CLASS "\xee\x9f\x8b" // U+e7cb #define ICON_MD_FLIGHT_LAND "\xee\xa4\x84" // U+e904 #define ICON_MD_FLIGHT_TAKEOFF "\xee\xa4\x85" // U+e905 #define ICON_MD_FLIP "\xee\x8f\xa8" // U+e3e8 #define ICON_MD_FLIP_CAMERA_ANDROID "\xee\xa8\xb7" // U+ea37 #define ICON_MD_FLIP_CAMERA_IOS "\xee\xa8\xb8" // U+ea38 #define ICON_MD_FLIP_TO_BACK "\xee\xa2\x82" // U+e882 #define ICON_MD_FLIP_TO_FRONT "\xee\xa2\x83" // U+e883 #define ICON_MD_FLOOD "\xee\xaf\xa6" // U+ebe6 #define ICON_MD_FLOURESCENT "\xef\x80\x8d" // U+f00d #define ICON_MD_FLUORESCENT "\xee\xb0\xb1" // U+ec31 #define ICON_MD_FLUTTER_DASH "\xee\x80\x8b" // U+e00b #define ICON_MD_FMD_BAD "\xef\x80\x8e" // U+f00e #define ICON_MD_FMD_GOOD "\xef\x80\x8f" // U+f00f #define ICON_MD_FOGGY "\xee\xa0\x98" // U+e818 #define ICON_MD_FOLDER "\xee\x8b\x87" // U+e2c7 #define ICON_MD_FOLDER_COPY "\xee\xae\xbd" // U+ebbd #define ICON_MD_FOLDER_DELETE "\xee\xac\xb4" // U+eb34 #define ICON_MD_FOLDER_OFF "\xee\xae\x83" // U+eb83 #define ICON_MD_FOLDER_OPEN "\xee\x8b\x88" // U+e2c8 #define ICON_MD_FOLDER_SHARED "\xee\x8b\x89" // U+e2c9 #define ICON_MD_FOLDER_SPECIAL "\xee\x98\x97" // U+e617 #define ICON_MD_FOLDER_ZIP "\xee\xac\xac" // U+eb2c #define ICON_MD_FOLLOW_THE_SIGNS "\xef\x88\xa2" // U+f222 #define ICON_MD_FONT_DOWNLOAD "\xee\x85\xa7" // U+e167 #define ICON_MD_FONT_DOWNLOAD_OFF "\xee\x93\xb9" // U+e4f9 #define ICON_MD_FOOD_BANK "\xef\x87\xb2" // U+f1f2 #define ICON_MD_FOREST "\xee\xaa\x99" // U+ea99 #define ICON_MD_FORK_LEFT "\xee\xae\xa0" // U+eba0 #define ICON_MD_FORK_RIGHT "\xee\xae\xac" // U+ebac #define ICON_MD_FORKLIFT "\xef\xa1\xa8" // U+f868 #define ICON_MD_FORMAT_ALIGN_CENTER "\xee\x88\xb4" // U+e234 #define ICON_MD_FORMAT_ALIGN_JUSTIFY "\xee\x88\xb5" // U+e235 #define ICON_MD_FORMAT_ALIGN_LEFT "\xee\x88\xb6" // U+e236 #define ICON_MD_FORMAT_ALIGN_RIGHT "\xee\x88\xb7" // U+e237 #define ICON_MD_FORMAT_BOLD "\xee\x88\xb8" // U+e238 #define ICON_MD_FORMAT_CLEAR "\xee\x88\xb9" // U+e239 #define ICON_MD_FORMAT_COLOR_FILL "\xee\x88\xba" // U+e23a #define ICON_MD_FORMAT_COLOR_RESET "\xee\x88\xbb" // U+e23b #define ICON_MD_FORMAT_COLOR_TEXT "\xee\x88\xbc" // U+e23c #define ICON_MD_FORMAT_INDENT_DECREASE "\xee\x88\xbd" // U+e23d #define ICON_MD_FORMAT_INDENT_INCREASE "\xee\x88\xbe" // U+e23e #define ICON_MD_FORMAT_ITALIC "\xee\x88\xbf" // U+e23f #define ICON_MD_FORMAT_LINE_SPACING "\xee\x89\x80" // U+e240 #define ICON_MD_FORMAT_LIST_BULLETED "\xee\x89\x81" // U+e241 #define ICON_MD_FORMAT_LIST_BULLETED_ADD "\xef\xa1\x89" // U+f849 #define ICON_MD_FORMAT_LIST_NUMBERED "\xee\x89\x82" // U+e242 #define ICON_MD_FORMAT_LIST_NUMBERED_RTL "\xee\x89\xa7" // U+e267 #define ICON_MD_FORMAT_OVERLINE "\xee\xad\xa5" // U+eb65 #define ICON_MD_FORMAT_PAINT "\xee\x89\x83" // U+e243 #define ICON_MD_FORMAT_QUOTE "\xee\x89\x84" // U+e244 #define ICON_MD_FORMAT_SHAPES "\xee\x89\x9e" // U+e25e #define ICON_MD_FORMAT_SIZE "\xee\x89\x85" // U+e245 #define ICON_MD_FORMAT_STRIKETHROUGH "\xee\x89\x86" // U+e246 #define ICON_MD_FORMAT_TEXTDIRECTION_L_TO_R "\xee\x89\x87" // U+e247 #define ICON_MD_FORMAT_TEXTDIRECTION_R_TO_L "\xee\x89\x88" // U+e248 #define ICON_MD_FORMAT_UNDERLINE "\xee\x89\x89" // U+e249 #define ICON_MD_FORMAT_UNDERLINED "\xee\x89\x89" // U+e249 #define ICON_MD_FORT "\xee\xaa\xad" // U+eaad #define ICON_MD_FORUM "\xee\x82\xbf" // U+e0bf #define ICON_MD_FORWARD "\xee\x85\x94" // U+e154 #define ICON_MD_FORWARD_10 "\xee\x81\x96" // U+e056 #define ICON_MD_FORWARD_30 "\xee\x81\x97" // U+e057 #define ICON_MD_FORWARD_5 "\xee\x81\x98" // U+e058 #define ICON_MD_FORWARD_TO_INBOX "\xef\x86\x87" // U+f187 #define ICON_MD_FOUNDATION "\xef\x88\x80" // U+f200 #define ICON_MD_FREE_BREAKFAST "\xee\xad\x84" // U+eb44 #define ICON_MD_FREE_CANCELLATION "\xee\x9d\x88" // U+e748 #define ICON_MD_FRONT_HAND "\xee\x9d\xa9" // U+e769 #define ICON_MD_FRONT_LOADER "\xef\xa1\xa9" // U+f869 #define ICON_MD_FULLSCREEN "\xee\x97\x90" // U+e5d0 #define ICON_MD_FULLSCREEN_EXIT "\xee\x97\x91" // U+e5d1 #define ICON_MD_FUNCTIONS "\xee\x89\x8a" // U+e24a #define ICON_MD_G_MOBILEDATA "\xef\x80\x90" // U+f010 #define ICON_MD_G_TRANSLATE "\xee\xa4\xa7" // U+e927 #define ICON_MD_GAMEPAD "\xee\x8c\x8f" // U+e30f #define ICON_MD_GAMES "\xee\x80\xa1" // U+e021 #define ICON_MD_GARAGE "\xef\x80\x91" // U+f011 #define ICON_MD_GAS_METER "\xee\xb0\x99" // U+ec19 #define ICON_MD_GAVEL "\xee\xa4\x8e" // U+e90e #define ICON_MD_GENERATING_TOKENS "\xee\x9d\x89" // U+e749 #define ICON_MD_GESTURE "\xee\x85\x95" // U+e155 #define ICON_MD_GET_APP "\xee\xa2\x84" // U+e884 #define ICON_MD_GIF "\xee\xa4\x88" // U+e908 #define ICON_MD_GIF_BOX "\xee\x9e\xa3" // U+e7a3 #define ICON_MD_GIRL "\xee\xad\xa8" // U+eb68 #define ICON_MD_GITE "\xee\x96\x8b" // U+e58b #define ICON_MD_GOAT "\xf4\x8f\xbf\xbd" // U+10fffd #define ICON_MD_GOLF_COURSE "\xee\xad\x85" // U+eb45 #define ICON_MD_GPP_BAD "\xef\x80\x92" // U+f012 #define ICON_MD_GPP_GOOD "\xef\x80\x93" // U+f013 #define ICON_MD_GPP_MAYBE "\xef\x80\x94" // U+f014 #define ICON_MD_GPS_FIXED "\xee\x86\xb3" // U+e1b3 #define ICON_MD_GPS_NOT_FIXED "\xee\x86\xb4" // U+e1b4 #define ICON_MD_GPS_OFF "\xee\x86\xb5" // U+e1b5 #define ICON_MD_GRADE "\xee\xa2\x85" // U+e885 #define ICON_MD_GRADIENT "\xee\x8f\xa9" // U+e3e9 #define ICON_MD_GRADING "\xee\xa9\x8f" // U+ea4f #define ICON_MD_GRAIN "\xee\x8f\xaa" // U+e3ea #define ICON_MD_GRAPHIC_EQ "\xee\x86\xb8" // U+e1b8 #define ICON_MD_GRASS "\xef\x88\x85" // U+f205 #define ICON_MD_GRID_3X3 "\xef\x80\x95" // U+f015 #define ICON_MD_GRID_4X4 "\xef\x80\x96" // U+f016 #define ICON_MD_GRID_GOLDENRATIO "\xef\x80\x97" // U+f017 #define ICON_MD_GRID_OFF "\xee\x8f\xab" // U+e3eb #define ICON_MD_GRID_ON "\xee\x8f\xac" // U+e3ec #define ICON_MD_GRID_VIEW "\xee\xa6\xb0" // U+e9b0 #define ICON_MD_GROUP "\xee\x9f\xaf" // U+e7ef #define ICON_MD_GROUP_ADD "\xee\x9f\xb0" // U+e7f0 #define ICON_MD_GROUP_OFF "\xee\x9d\x87" // U+e747 #define ICON_MD_GROUP_REMOVE "\xee\x9e\xad" // U+e7ad #define ICON_MD_GROUP_WORK "\xee\xa2\x86" // U+e886 #define ICON_MD_GROUPS "\xef\x88\xb3" // U+f233 #define ICON_MD_GROUPS_2 "\xef\xa3\x9f" // U+f8df #define ICON_MD_GROUPS_3 "\xef\xa3\xa0" // U+f8e0 #define ICON_MD_H_MOBILEDATA "\xef\x80\x98" // U+f018 #define ICON_MD_H_PLUS_MOBILEDATA "\xef\x80\x99" // U+f019 #define ICON_MD_HAIL "\xee\xa6\xb1" // U+e9b1 #define ICON_MD_HANDSHAKE "\xee\xaf\x8b" // U+ebcb #define ICON_MD_HANDYMAN "\xef\x84\x8b" // U+f10b #define ICON_MD_HARDWARE "\xee\xa9\x99" // U+ea59 #define ICON_MD_HD "\xee\x81\x92" // U+e052 #define ICON_MD_HDR_AUTO "\xef\x80\x9a" // U+f01a #define ICON_MD_HDR_AUTO_SELECT "\xef\x80\x9b" // U+f01b #define ICON_MD_HDR_ENHANCED_SELECT "\xee\xbd\x91" // U+ef51 #define ICON_MD_HDR_OFF "\xee\x8f\xad" // U+e3ed #define ICON_MD_HDR_OFF_SELECT "\xef\x80\x9c" // U+f01c #define ICON_MD_HDR_ON "\xee\x8f\xae" // U+e3ee #define ICON_MD_HDR_ON_SELECT "\xef\x80\x9d" // U+f01d #define ICON_MD_HDR_PLUS "\xef\x80\x9e" // U+f01e #define ICON_MD_HDR_STRONG "\xee\x8f\xb1" // U+e3f1 #define ICON_MD_HDR_WEAK "\xee\x8f\xb2" // U+e3f2 #define ICON_MD_HEADPHONES "\xef\x80\x9f" // U+f01f #define ICON_MD_HEADPHONES_BATTERY "\xef\x80\xa0" // U+f020 #define ICON_MD_HEADSET "\xee\x8c\x90" // U+e310 #define ICON_MD_HEADSET_MIC "\xee\x8c\x91" // U+e311 #define ICON_MD_HEADSET_OFF "\xee\x8c\xba" // U+e33a #define ICON_MD_HEALING "\xee\x8f\xb3" // U+e3f3 #define ICON_MD_HEALTH_AND_SAFETY "\xee\x87\x95" // U+e1d5 #define ICON_MD_HEARING "\xee\x80\xa3" // U+e023 #define ICON_MD_HEARING_DISABLED "\xef\x84\x84" // U+f104 #define ICON_MD_HEART_BROKEN "\xee\xab\x82" // U+eac2 #define ICON_MD_HEAT_PUMP "\xee\xb0\x98" // U+ec18 #define ICON_MD_HEIGHT "\xee\xa8\x96" // U+ea16 #define ICON_MD_HELP "\xee\xa2\x87" // U+e887 #define ICON_MD_HELP_CENTER "\xef\x87\x80" // U+f1c0 #define ICON_MD_HELP_OUTLINE "\xee\xa3\xbd" // U+e8fd #define ICON_MD_HEVC "\xef\x80\xa1" // U+f021 #define ICON_MD_HEXAGON "\xee\xac\xb9" // U+eb39 #define ICON_MD_HIDE_IMAGE "\xef\x80\xa2" // U+f022 #define ICON_MD_HIDE_SOURCE "\xef\x80\xa3" // U+f023 #define ICON_MD_HIGH_QUALITY "\xee\x80\xa4" // U+e024 #define ICON_MD_HIGHLIGHT "\xee\x89\x9f" // U+e25f #define ICON_MD_HIGHLIGHT_ALT "\xee\xbd\x92" // U+ef52 #define ICON_MD_HIGHLIGHT_OFF "\xee\xa2\x88" // U+e888 #define ICON_MD_HIGHLIGHT_REMOVE "\xee\xa2\x88" // U+e888 #define ICON_MD_HIKING "\xee\x94\x8a" // U+e50a #define ICON_MD_HISTORY "\xee\xa2\x89" // U+e889 #define ICON_MD_HISTORY_EDU "\xee\xa8\xbe" // U+ea3e #define ICON_MD_HISTORY_TOGGLE_OFF "\xef\x85\xbd" // U+f17d #define ICON_MD_HIVE "\xee\xaa\xa6" // U+eaa6 #define ICON_MD_HLS "\xee\xae\x8a" // U+eb8a #define ICON_MD_HLS_OFF "\xee\xae\x8c" // U+eb8c #define ICON_MD_HOLIDAY_VILLAGE "\xee\x96\x8a" // U+e58a #define ICON_MD_HOME "\xee\xa2\x8a" // U+e88a #define ICON_MD_HOME_FILLED "\xee\xa6\xb2" // U+e9b2 #define ICON_MD_HOME_MAX "\xef\x80\xa4" // U+f024 #define ICON_MD_HOME_MINI "\xef\x80\xa5" // U+f025 #define ICON_MD_HOME_REPAIR_SERVICE "\xef\x84\x80" // U+f100 #define ICON_MD_HOME_WORK "\xee\xa8\x89" // U+ea09 #define ICON_MD_HORIZONTAL_DISTRIBUTE "\xee\x80\x94" // U+e014 #define ICON_MD_HORIZONTAL_RULE "\xef\x84\x88" // U+f108 #define ICON_MD_HORIZONTAL_SPLIT "\xee\xa5\x87" // U+e947 #define ICON_MD_HOT_TUB "\xee\xad\x86" // U+eb46 #define ICON_MD_HOTEL "\xee\x94\xba" // U+e53a #define ICON_MD_HOTEL_CLASS "\xee\x9d\x83" // U+e743 #define ICON_MD_HOURGLASS_BOTTOM "\xee\xa9\x9c" // U+ea5c #define ICON_MD_HOURGLASS_DISABLED "\xee\xbd\x93" // U+ef53 #define ICON_MD_HOURGLASS_EMPTY "\xee\xa2\x8b" // U+e88b #define ICON_MD_HOURGLASS_FULL "\xee\xa2\x8c" // U+e88c #define ICON_MD_HOURGLASS_TOP "\xee\xa9\x9b" // U+ea5b #define ICON_MD_HOUSE "\xee\xa9\x84" // U+ea44 #define ICON_MD_HOUSE_SIDING "\xef\x88\x82" // U+f202 #define ICON_MD_HOUSEBOAT "\xee\x96\x84" // U+e584 #define ICON_MD_HOW_TO_REG "\xee\x85\xb4" // U+e174 #define ICON_MD_HOW_TO_VOTE "\xee\x85\xb5" // U+e175 #define ICON_MD_HTML "\xee\xad\xbe" // U+eb7e #define ICON_MD_HTTP "\xee\xa4\x82" // U+e902 #define ICON_MD_HTTPS "\xee\xa2\x8d" // U+e88d #define ICON_MD_HUB "\xee\xa7\xb4" // U+e9f4 #define ICON_MD_HVAC "\xef\x84\x8e" // U+f10e #define ICON_MD_ICE_SKATING "\xee\x94\x8b" // U+e50b #define ICON_MD_ICECREAM "\xee\xa9\xa9" // U+ea69 #define ICON_MD_IMAGE "\xee\x8f\xb4" // U+e3f4 #define ICON_MD_IMAGE_ASPECT_RATIO "\xee\x8f\xb5" // U+e3f5 #define ICON_MD_IMAGE_NOT_SUPPORTED "\xef\x84\x96" // U+f116 #define ICON_MD_IMAGE_SEARCH "\xee\x90\xbf" // U+e43f #define ICON_MD_IMAGESEARCH_ROLLER "\xee\xa6\xb4" // U+e9b4 #define ICON_MD_IMPORT_CONTACTS "\xee\x83\xa0" // U+e0e0 #define ICON_MD_IMPORT_EXPORT "\xee\x83\x83" // U+e0c3 #define ICON_MD_IMPORTANT_DEVICES "\xee\xa4\x92" // U+e912 #define ICON_MD_INBOX "\xee\x85\x96" // U+e156 #define ICON_MD_INCOMPLETE_CIRCLE "\xee\x9e\x9b" // U+e79b #define ICON_MD_INDETERMINATE_CHECK_BOX "\xee\xa4\x89" // U+e909 #define ICON_MD_INFO "\xee\xa2\x8e" // U+e88e #define ICON_MD_INFO_OUTLINE "\xee\xa2\x8f" // U+e88f #define ICON_MD_INPUT "\xee\xa2\x90" // U+e890 #define ICON_MD_INSERT_CHART "\xee\x89\x8b" // U+e24b #define ICON_MD_INSERT_CHART_OUTLINED "\xee\x89\xaa" // U+e26a #define ICON_MD_INSERT_COMMENT "\xee\x89\x8c" // U+e24c #define ICON_MD_INSERT_DRIVE_FILE "\xee\x89\x8d" // U+e24d #define ICON_MD_INSERT_EMOTICON "\xee\x89\x8e" // U+e24e #define ICON_MD_INSERT_INVITATION "\xee\x89\x8f" // U+e24f #define ICON_MD_INSERT_LINK "\xee\x89\x90" // U+e250 #define ICON_MD_INSERT_PAGE_BREAK "\xee\xab\x8a" // U+eaca #define ICON_MD_INSERT_PHOTO "\xee\x89\x91" // U+e251 #define ICON_MD_INSIGHTS "\xef\x82\x92" // U+f092 #define ICON_MD_INSTALL_DESKTOP "\xee\xad\xb1" // U+eb71 #define ICON_MD_INSTALL_MOBILE "\xee\xad\xb2" // U+eb72 #define ICON_MD_INTEGRATION_INSTRUCTIONS "\xee\xbd\x94" // U+ef54 #define ICON_MD_INTERESTS "\xee\x9f\x88" // U+e7c8 #define ICON_MD_INTERPRETER_MODE "\xee\xa0\xbb" // U+e83b #define ICON_MD_INVENTORY "\xee\x85\xb9" // U+e179 #define ICON_MD_INVENTORY_2 "\xee\x86\xa1" // U+e1a1 #define ICON_MD_INVERT_COLORS "\xee\xa2\x91" // U+e891 #define ICON_MD_INVERT_COLORS_OFF "\xee\x83\x84" // U+e0c4 #define ICON_MD_INVERT_COLORS_ON "\xee\xa2\x91" // U+e891 #define ICON_MD_IOS_SHARE "\xee\x9a\xb8" // U+e6b8 #define ICON_MD_IRON "\xee\x96\x83" // U+e583 #define ICON_MD_ISO "\xee\x8f\xb6" // U+e3f6 #define ICON_MD_JAVASCRIPT "\xee\xad\xbc" // U+eb7c #define ICON_MD_JOIN_FULL "\xee\xab\xab" // U+eaeb #define ICON_MD_JOIN_INNER "\xee\xab\xb4" // U+eaf4 #define ICON_MD_JOIN_LEFT "\xee\xab\xb2" // U+eaf2 #define ICON_MD_JOIN_RIGHT "\xee\xab\xaa" // U+eaea #define ICON_MD_KAYAKING "\xee\x94\x8c" // U+e50c #define ICON_MD_KEBAB_DINING "\xee\xa1\x82" // U+e842 #define ICON_MD_KEY "\xee\x9c\xbc" // U+e73c #define ICON_MD_KEY_OFF "\xee\xae\x84" // U+eb84 #define ICON_MD_KEYBOARD "\xee\x8c\x92" // U+e312 #define ICON_MD_KEYBOARD_ALT "\xef\x80\xa8" // U+f028 #define ICON_MD_KEYBOARD_ARROW_DOWN "\xee\x8c\x93" // U+e313 #define ICON_MD_KEYBOARD_ARROW_LEFT "\xee\x8c\x94" // U+e314 #define ICON_MD_KEYBOARD_ARROW_RIGHT "\xee\x8c\x95" // U+e315 #define ICON_MD_KEYBOARD_ARROW_UP "\xee\x8c\x96" // U+e316 #define ICON_MD_KEYBOARD_BACKSPACE "\xee\x8c\x97" // U+e317 #define ICON_MD_KEYBOARD_CAPSLOCK "\xee\x8c\x98" // U+e318 #define ICON_MD_KEYBOARD_COMMAND "\xee\xab\xa0" // U+eae0 #define ICON_MD_KEYBOARD_COMMAND_KEY "\xee\xab\xa7" // U+eae7 #define ICON_MD_KEYBOARD_CONTROL "\xee\x97\x93" // U+e5d3 #define ICON_MD_KEYBOARD_CONTROL_KEY "\xee\xab\xa6" // U+eae6 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_DOWN "\xee\xab\x90" // U+ead0 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_LEFT "\xee\xab\x83" // U+eac3 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_RIGHT "\xee\xab\x89" // U+eac9 #define ICON_MD_KEYBOARD_DOUBLE_ARROW_UP "\xee\xab\x8f" // U+eacf #define ICON_MD_KEYBOARD_HIDE "\xee\x8c\x9a" // U+e31a #define ICON_MD_KEYBOARD_OPTION "\xee\xab\x9f" // U+eadf #define ICON_MD_KEYBOARD_OPTION_KEY "\xee\xab\xa8" // U+eae8 #define ICON_MD_KEYBOARD_RETURN "\xee\x8c\x9b" // U+e31b #define ICON_MD_KEYBOARD_TAB "\xee\x8c\x9c" // U+e31c #define ICON_MD_KEYBOARD_VOICE "\xee\x8c\x9d" // U+e31d #define ICON_MD_KING_BED "\xee\xa9\x85" // U+ea45 #define ICON_MD_KITCHEN "\xee\xad\x87" // U+eb47 #define ICON_MD_KITESURFING "\xee\x94\x8d" // U+e50d #define ICON_MD_LABEL "\xee\xa2\x92" // U+e892 #define ICON_MD_LABEL_IMPORTANT "\xee\xa4\xb7" // U+e937 #define ICON_MD_LABEL_IMPORTANT_OUTLINE "\xee\xa5\x88" // U+e948 #define ICON_MD_LABEL_OFF "\xee\xa6\xb6" // U+e9b6 #define ICON_MD_LABEL_OUTLINE "\xee\xa2\x93" // U+e893 #define ICON_MD_LAN "\xee\xac\xaf" // U+eb2f #define ICON_MD_LANDSCAPE "\xee\x8f\xb7" // U+e3f7 #define ICON_MD_LANDSLIDE "\xee\xaf\x97" // U+ebd7 #define ICON_MD_LANGUAGE "\xee\xa2\x94" // U+e894 #define ICON_MD_LAPTOP "\xee\x8c\x9e" // U+e31e #define ICON_MD_LAPTOP_CHROMEBOOK "\xee\x8c\x9f" // U+e31f #define ICON_MD_LAPTOP_MAC "\xee\x8c\xa0" // U+e320 #define ICON_MD_LAPTOP_WINDOWS "\xee\x8c\xa1" // U+e321 #define ICON_MD_LAST_PAGE "\xee\x97\x9d" // U+e5dd #define ICON_MD_LAUNCH "\xee\xa2\x95" // U+e895 #define ICON_MD_LAYERS "\xee\x94\xbb" // U+e53b #define ICON_MD_LAYERS_CLEAR "\xee\x94\xbc" // U+e53c #define ICON_MD_LEADERBOARD "\xef\x88\x8c" // U+f20c #define ICON_MD_LEAK_ADD "\xee\x8f\xb8" // U+e3f8 #define ICON_MD_LEAK_REMOVE "\xee\x8f\xb9" // U+e3f9 #define ICON_MD_LEAVE_BAGS_AT_HOME "\xef\x88\x9b" // U+f21b #define ICON_MD_LEGEND_TOGGLE "\xef\x84\x9b" // U+f11b #define ICON_MD_LENS "\xee\x8f\xba" // U+e3fa #define ICON_MD_LENS_BLUR "\xef\x80\xa9" // U+f029 #define ICON_MD_LIBRARY_ADD "\xee\x80\xae" // U+e02e #define ICON_MD_LIBRARY_ADD_CHECK "\xee\xa6\xb7" // U+e9b7 #define ICON_MD_LIBRARY_BOOKS "\xee\x80\xaf" // U+e02f #define ICON_MD_LIBRARY_MUSIC "\xee\x80\xb0" // U+e030 #define ICON_MD_LIGHT "\xef\x80\xaa" // U+f02a #define ICON_MD_LIGHT_MODE "\xee\x94\x98" // U+e518 #define ICON_MD_LIGHTBULB "\xee\x83\xb0" // U+e0f0 #define ICON_MD_LIGHTBULB_CIRCLE "\xee\xaf\xbe" // U+ebfe #define ICON_MD_LIGHTBULB_OUTLINE "\xee\xa4\x8f" // U+e90f #define ICON_MD_LINE_AXIS "\xee\xaa\x9a" // U+ea9a #define ICON_MD_LINE_STYLE "\xee\xa4\x99" // U+e919 #define ICON_MD_LINE_WEIGHT "\xee\xa4\x9a" // U+e91a #define ICON_MD_LINEAR_SCALE "\xee\x89\xa0" // U+e260 #define ICON_MD_LINK "\xee\x85\x97" // U+e157 #define ICON_MD_LINK_OFF "\xee\x85\xaf" // U+e16f #define ICON_MD_LINKED_CAMERA "\xee\x90\xb8" // U+e438 #define ICON_MD_LIQUOR "\xee\xa9\xa0" // U+ea60 #define ICON_MD_LIST "\xee\xa2\x96" // U+e896 #define ICON_MD_LIST_ALT "\xee\x83\xae" // U+e0ee #define ICON_MD_LIVE_HELP "\xee\x83\x86" // U+e0c6 #define ICON_MD_LIVE_TV "\xee\x98\xb9" // U+e639 #define ICON_MD_LIVING "\xef\x80\xab" // U+f02b #define ICON_MD_LOCAL_ACTIVITY "\xee\x94\xbf" // U+e53f #define ICON_MD_LOCAL_AIRPORT "\xee\x94\xbd" // U+e53d #define ICON_MD_LOCAL_ATM "\xee\x94\xbe" // U+e53e #define ICON_MD_LOCAL_ATTRACTION "\xee\x94\xbf" // U+e53f #define ICON_MD_LOCAL_BAR "\xee\x95\x80" // U+e540 #define ICON_MD_LOCAL_CAFE "\xee\x95\x81" // U+e541 #define ICON_MD_LOCAL_CAR_WASH "\xee\x95\x82" // U+e542 #define ICON_MD_LOCAL_CONVENIENCE_STORE "\xee\x95\x83" // U+e543 #define ICON_MD_LOCAL_DINING "\xee\x95\x96" // U+e556 #define ICON_MD_LOCAL_DRINK "\xee\x95\x84" // U+e544 #define ICON_MD_LOCAL_FIRE_DEPARTMENT "\xee\xbd\x95" // U+ef55 #define ICON_MD_LOCAL_FLORIST "\xee\x95\x85" // U+e545 #define ICON_MD_LOCAL_GAS_STATION "\xee\x95\x86" // U+e546 #define ICON_MD_LOCAL_GROCERY_STORE "\xee\x95\x87" // U+e547 #define ICON_MD_LOCAL_HOSPITAL "\xee\x95\x88" // U+e548 #define ICON_MD_LOCAL_HOTEL "\xee\x95\x89" // U+e549 #define ICON_MD_LOCAL_LAUNDRY_SERVICE "\xee\x95\x8a" // U+e54a #define ICON_MD_LOCAL_LIBRARY "\xee\x95\x8b" // U+e54b #define ICON_MD_LOCAL_MALL "\xee\x95\x8c" // U+e54c #define ICON_MD_LOCAL_MOVIES "\xee\x95\x8d" // U+e54d #define ICON_MD_LOCAL_OFFER "\xee\x95\x8e" // U+e54e #define ICON_MD_LOCAL_PARKING "\xee\x95\x8f" // U+e54f #define ICON_MD_LOCAL_PHARMACY "\xee\x95\x90" // U+e550 #define ICON_MD_LOCAL_PHONE "\xee\x95\x91" // U+e551 #define ICON_MD_LOCAL_PIZZA "\xee\x95\x92" // U+e552 #define ICON_MD_LOCAL_PLAY "\xee\x95\x93" // U+e553 #define ICON_MD_LOCAL_POLICE "\xee\xbd\x96" // U+ef56 #define ICON_MD_LOCAL_POST_OFFICE "\xee\x95\x94" // U+e554 #define ICON_MD_LOCAL_PRINT_SHOP "\xee\x95\x95" // U+e555 #define ICON_MD_LOCAL_PRINTSHOP "\xee\x95\x95" // U+e555 #define ICON_MD_LOCAL_RESTAURANT "\xee\x95\x96" // U+e556 #define ICON_MD_LOCAL_SEE "\xee\x95\x97" // U+e557 #define ICON_MD_LOCAL_SHIPPING "\xee\x95\x98" // U+e558 #define ICON_MD_LOCAL_TAXI "\xee\x95\x99" // U+e559 #define ICON_MD_LOCATION_CITY "\xee\x9f\xb1" // U+e7f1 #define ICON_MD_LOCATION_DISABLED "\xee\x86\xb6" // U+e1b6 #define ICON_MD_LOCATION_HISTORY "\xee\x95\x9a" // U+e55a #define ICON_MD_LOCATION_OFF "\xee\x83\x87" // U+e0c7 #define ICON_MD_LOCATION_ON "\xee\x83\x88" // U+e0c8 #define ICON_MD_LOCATION_PIN "\xef\x87\x9b" // U+f1db #define ICON_MD_LOCATION_SEARCHING "\xee\x86\xb7" // U+e1b7 #define ICON_MD_LOCK "\xee\xa2\x97" // U+e897 #define ICON_MD_LOCK_CLOCK "\xee\xbd\x97" // U+ef57 #define ICON_MD_LOCK_OPEN "\xee\xa2\x98" // U+e898 #define ICON_MD_LOCK_OUTLINE "\xee\xa2\x99" // U+e899 #define ICON_MD_LOCK_PERSON "\xef\xa3\xb3" // U+f8f3 #define ICON_MD_LOCK_RESET "\xee\xab\x9e" // U+eade #define ICON_MD_LOGIN "\xee\xa9\xb7" // U+ea77 #define ICON_MD_LOGO_DEV "\xee\xab\x96" // U+ead6 #define ICON_MD_LOGOUT "\xee\xa6\xba" // U+e9ba #define ICON_MD_LOOKS "\xee\x8f\xbc" // U+e3fc #define ICON_MD_LOOKS_3 "\xee\x8f\xbb" // U+e3fb #define ICON_MD_LOOKS_4 "\xee\x8f\xbd" // U+e3fd #define ICON_MD_LOOKS_5 "\xee\x8f\xbe" // U+e3fe #define ICON_MD_LOOKS_6 "\xee\x8f\xbf" // U+e3ff #define ICON_MD_LOOKS_ONE "\xee\x90\x80" // U+e400 #define ICON_MD_LOOKS_TWO "\xee\x90\x81" // U+e401 #define ICON_MD_LOOP "\xee\x80\xa8" // U+e028 #define ICON_MD_LOUPE "\xee\x90\x82" // U+e402 #define ICON_MD_LOW_PRIORITY "\xee\x85\xad" // U+e16d #define ICON_MD_LOYALTY "\xee\xa2\x9a" // U+e89a #define ICON_MD_LTE_MOBILEDATA "\xef\x80\xac" // U+f02c #define ICON_MD_LTE_PLUS_MOBILEDATA "\xef\x80\xad" // U+f02d #define ICON_MD_LUGGAGE "\xef\x88\xb5" // U+f235 #define ICON_MD_LUNCH_DINING "\xee\xa9\xa1" // U+ea61 #define ICON_MD_LYRICS "\xee\xb0\x8b" // U+ec0b #define ICON_MD_MACRO_OFF "\xef\xa3\x92" // U+f8d2 #define ICON_MD_MAIL "\xee\x85\x98" // U+e158 #define ICON_MD_MAIL_LOCK "\xee\xb0\x8a" // U+ec0a #define ICON_MD_MAIL_OUTLINE "\xee\x83\xa1" // U+e0e1 #define ICON_MD_MALE "\xee\x96\x8e" // U+e58e #define ICON_MD_MAN "\xee\x93\xab" // U+e4eb #define ICON_MD_MAN_2 "\xef\xa3\xa1" // U+f8e1 #define ICON_MD_MAN_3 "\xef\xa3\xa2" // U+f8e2 #define ICON_MD_MAN_4 "\xef\xa3\xa3" // U+f8e3 #define ICON_MD_MANAGE_ACCOUNTS "\xef\x80\xae" // U+f02e #define ICON_MD_MANAGE_HISTORY "\xee\xaf\xa7" // U+ebe7 #define ICON_MD_MANAGE_SEARCH "\xef\x80\xaf" // U+f02f #define ICON_MD_MAP "\xee\x95\x9b" // U+e55b #define ICON_MD_MAPS_HOME_WORK "\xef\x80\xb0" // U+f030 #define ICON_MD_MAPS_UGC "\xee\xbd\x98" // U+ef58 #define ICON_MD_MARGIN "\xee\xa6\xbb" // U+e9bb #define ICON_MD_MARK_AS_UNREAD "\xee\xa6\xbc" // U+e9bc #define ICON_MD_MARK_CHAT_READ "\xef\x86\x8b" // U+f18b #define ICON_MD_MARK_CHAT_UNREAD "\xef\x86\x89" // U+f189 #define ICON_MD_MARK_EMAIL_READ "\xef\x86\x8c" // U+f18c #define ICON_MD_MARK_EMAIL_UNREAD "\xef\x86\x8a" // U+f18a #define ICON_MD_MARK_UNREAD_CHAT_ALT "\xee\xae\x9d" // U+eb9d #define ICON_MD_MARKUNREAD "\xee\x85\x99" // U+e159 #define ICON_MD_MARKUNREAD_MAILBOX "\xee\xa2\x9b" // U+e89b #define ICON_MD_MASKS "\xef\x88\x98" // U+f218 #define ICON_MD_MAXIMIZE "\xee\xa4\xb0" // U+e930 #define ICON_MD_MEDIA_BLUETOOTH_OFF "\xef\x80\xb1" // U+f031 #define ICON_MD_MEDIA_BLUETOOTH_ON "\xef\x80\xb2" // U+f032 #define ICON_MD_MEDIATION "\xee\xbe\xa7" // U+efa7 #define ICON_MD_MEDICAL_INFORMATION "\xee\xaf\xad" // U+ebed #define ICON_MD_MEDICAL_SERVICES "\xef\x84\x89" // U+f109 #define ICON_MD_MEDICATION "\xef\x80\xb3" // U+f033 #define ICON_MD_MEDICATION_LIQUID "\xee\xaa\x87" // U+ea87 #define ICON_MD_MEETING_ROOM "\xee\xad\x8f" // U+eb4f #define ICON_MD_MEMORY "\xee\x8c\xa2" // U+e322 #define ICON_MD_MENU "\xee\x97\x92" // U+e5d2 #define ICON_MD_MENU_BOOK "\xee\xa8\x99" // U+ea19 #define ICON_MD_MENU_OPEN "\xee\xa6\xbd" // U+e9bd #define ICON_MD_MERGE "\xee\xae\x98" // U+eb98 #define ICON_MD_MERGE_TYPE "\xee\x89\x92" // U+e252 #define ICON_MD_MESSAGE "\xee\x83\x89" // U+e0c9 #define ICON_MD_MESSENGER "\xee\x83\x8a" // U+e0ca #define ICON_MD_MESSENGER_OUTLINE "\xee\x83\x8b" // U+e0cb #define ICON_MD_MIC "\xee\x80\xa9" // U+e029 #define ICON_MD_MIC_EXTERNAL_OFF "\xee\xbd\x99" // U+ef59 #define ICON_MD_MIC_EXTERNAL_ON "\xee\xbd\x9a" // U+ef5a #define ICON_MD_MIC_NONE "\xee\x80\xaa" // U+e02a #define ICON_MD_MIC_OFF "\xee\x80\xab" // U+e02b #define ICON_MD_MICROWAVE "\xef\x88\x84" // U+f204 #define ICON_MD_MILITARY_TECH "\xee\xa8\xbf" // U+ea3f #define ICON_MD_MINIMIZE "\xee\xa4\xb1" // U+e931 #define ICON_MD_MINOR_CRASH "\xee\xaf\xb1" // U+ebf1 #define ICON_MD_MISCELLANEOUS_SERVICES "\xef\x84\x8c" // U+f10c #define ICON_MD_MISSED_VIDEO_CALL "\xee\x81\xb3" // U+e073 #define ICON_MD_MMS "\xee\x98\x98" // U+e618 #define ICON_MD_MOBILE_FRIENDLY "\xee\x88\x80" // U+e200 #define ICON_MD_MOBILE_OFF "\xee\x88\x81" // U+e201 #define ICON_MD_MOBILE_SCREEN_SHARE "\xee\x83\xa7" // U+e0e7 #define ICON_MD_MOBILEDATA_OFF "\xef\x80\xb4" // U+f034 #define ICON_MD_MODE "\xef\x82\x97" // U+f097 #define ICON_MD_MODE_COMMENT "\xee\x89\x93" // U+e253 #define ICON_MD_MODE_EDIT "\xee\x89\x94" // U+e254 #define ICON_MD_MODE_EDIT_OUTLINE "\xef\x80\xb5" // U+f035 #define ICON_MD_MODE_FAN_OFF "\xee\xb0\x97" // U+ec17 #define ICON_MD_MODE_NIGHT "\xef\x80\xb6" // U+f036 #define ICON_MD_MODE_OF_TRAVEL "\xee\x9f\x8e" // U+e7ce #define ICON_MD_MODE_STANDBY "\xef\x80\xb7" // U+f037 #define ICON_MD_MODEL_TRAINING "\xef\x83\x8f" // U+f0cf #define ICON_MD_MONETIZATION_ON "\xee\x89\xa3" // U+e263 #define ICON_MD_MONEY "\xee\x95\xbd" // U+e57d #define ICON_MD_MONEY_OFF "\xee\x89\x9c" // U+e25c #define ICON_MD_MONEY_OFF_CSRED "\xef\x80\xb8" // U+f038 #define ICON_MD_MONITOR "\xee\xbd\x9b" // U+ef5b #define ICON_MD_MONITOR_HEART "\xee\xaa\xa2" // U+eaa2 #define ICON_MD_MONITOR_WEIGHT "\xef\x80\xb9" // U+f039 #define ICON_MD_MONOCHROME_PHOTOS "\xee\x90\x83" // U+e403 #define ICON_MD_MOOD "\xee\x9f\xb2" // U+e7f2 #define ICON_MD_MOOD_BAD "\xee\x9f\xb3" // U+e7f3 #define ICON_MD_MOPED "\xee\xac\xa8" // U+eb28 #define ICON_MD_MORE "\xee\x98\x99" // U+e619 #define ICON_MD_MORE_HORIZ "\xee\x97\x93" // U+e5d3 #define ICON_MD_MORE_TIME "\xee\xa9\x9d" // U+ea5d #define ICON_MD_MORE_VERT "\xee\x97\x94" // U+e5d4 #define ICON_MD_MOSQUE "\xee\xaa\xb2" // U+eab2 #define ICON_MD_MOTION_PHOTOS_AUTO "\xef\x80\xba" // U+f03a #define ICON_MD_MOTION_PHOTOS_OFF "\xee\xa7\x80" // U+e9c0 #define ICON_MD_MOTION_PHOTOS_ON "\xee\xa7\x81" // U+e9c1 #define ICON_MD_MOTION_PHOTOS_PAUSE "\xef\x88\xa7" // U+f227 #define ICON_MD_MOTION_PHOTOS_PAUSED "\xee\xa7\x82" // U+e9c2 #define ICON_MD_MOTORCYCLE "\xee\xa4\x9b" // U+e91b #define ICON_MD_MOUSE "\xee\x8c\xa3" // U+e323 #define ICON_MD_MOVE_DOWN "\xee\xad\xa1" // U+eb61 #define ICON_MD_MOVE_TO_INBOX "\xee\x85\xa8" // U+e168 #define ICON_MD_MOVE_UP "\xee\xad\xa4" // U+eb64 #define ICON_MD_MOVIE "\xee\x80\xac" // U+e02c #define ICON_MD_MOVIE_CREATION "\xee\x90\x84" // U+e404 #define ICON_MD_MOVIE_EDIT "\xef\xa1\x80" // U+f840 #define ICON_MD_MOVIE_FILTER "\xee\x90\xba" // U+e43a #define ICON_MD_MOVING "\xee\x94\x81" // U+e501 #define ICON_MD_MP "\xee\xa7\x83" // U+e9c3 #define ICON_MD_MULTILINE_CHART "\xee\x9b\x9f" // U+e6df #define ICON_MD_MULTIPLE_STOP "\xef\x86\xb9" // U+f1b9 #define ICON_MD_MULTITRACK_AUDIO "\xee\x86\xb8" // U+e1b8 #define ICON_MD_MUSEUM "\xee\xa8\xb6" // U+ea36 #define ICON_MD_MUSIC_NOTE "\xee\x90\x85" // U+e405 #define ICON_MD_MUSIC_OFF "\xee\x91\x80" // U+e440 #define ICON_MD_MUSIC_VIDEO "\xee\x81\xa3" // U+e063 #define ICON_MD_MY_LIBRARY_ADD "\xee\x80\xae" // U+e02e #define ICON_MD_MY_LIBRARY_BOOKS "\xee\x80\xaf" // U+e02f #define ICON_MD_MY_LIBRARY_MUSIC "\xee\x80\xb0" // U+e030 #define ICON_MD_MY_LOCATION "\xee\x95\x9c" // U+e55c #define ICON_MD_NAT "\xee\xbd\x9c" // U+ef5c #define ICON_MD_NATURE "\xee\x90\x86" // U+e406 #define ICON_MD_NATURE_PEOPLE "\xee\x90\x87" // U+e407 #define ICON_MD_NAVIGATE_BEFORE "\xee\x90\x88" // U+e408 #define ICON_MD_NAVIGATE_NEXT "\xee\x90\x89" // U+e409 #define ICON_MD_NAVIGATION "\xee\x95\x9d" // U+e55d #define ICON_MD_NEAR_ME "\xee\x95\xa9" // U+e569 #define ICON_MD_NEAR_ME_DISABLED "\xef\x87\xaf" // U+f1ef #define ICON_MD_NEARBY_ERROR "\xef\x80\xbb" // U+f03b #define ICON_MD_NEARBY_OFF "\xef\x80\xbc" // U+f03c #define ICON_MD_NEST_CAM_WIRED_STAND "\xee\xb0\x96" // U+ec16 #define ICON_MD_NETWORK_CELL "\xee\x86\xb9" // U+e1b9 #define ICON_MD_NETWORK_CHECK "\xee\x99\x80" // U+e640 #define ICON_MD_NETWORK_LOCKED "\xee\x98\x9a" // U+e61a #define ICON_MD_NETWORK_PING "\xee\xaf\x8a" // U+ebca #define ICON_MD_NETWORK_WIFI "\xee\x86\xba" // U+e1ba #define ICON_MD_NETWORK_WIFI_1_BAR "\xee\xaf\xa4" // U+ebe4 #define ICON_MD_NETWORK_WIFI_2_BAR "\xee\xaf\x96" // U+ebd6 #define ICON_MD_NETWORK_WIFI_3_BAR "\xee\xaf\xa1" // U+ebe1 #define ICON_MD_NEW_LABEL "\xee\x98\x89" // U+e609 #define ICON_MD_NEW_RELEASES "\xee\x80\xb1" // U+e031 #define ICON_MD_NEWSPAPER "\xee\xae\x81" // U+eb81 #define ICON_MD_NEXT_PLAN "\xee\xbd\x9d" // U+ef5d #define ICON_MD_NEXT_WEEK "\xee\x85\xaa" // U+e16a #define ICON_MD_NFC "\xee\x86\xbb" // U+e1bb #define ICON_MD_NIGHT_SHELTER "\xef\x87\xb1" // U+f1f1 #define ICON_MD_NIGHTLIFE "\xee\xa9\xa2" // U+ea62 #define ICON_MD_NIGHTLIGHT "\xef\x80\xbd" // U+f03d #define ICON_MD_NIGHTLIGHT_ROUND "\xee\xbd\x9e" // U+ef5e #define ICON_MD_NIGHTS_STAY "\xee\xa9\x86" // U+ea46 #define ICON_MD_NO_ACCOUNTS "\xef\x80\xbe" // U+f03e #define ICON_MD_NO_ADULT_CONTENT "\xef\xa3\xbe" // U+f8fe #define ICON_MD_NO_BACKPACK "\xef\x88\xb7" // U+f237 #define ICON_MD_NO_CELL "\xef\x86\xa4" // U+f1a4 #define ICON_MD_NO_CRASH "\xee\xaf\xb0" // U+ebf0 #define ICON_MD_NO_DRINKS "\xef\x86\xa5" // U+f1a5 #define ICON_MD_NO_ENCRYPTION "\xee\x99\x81" // U+e641 #define ICON_MD_NO_ENCRYPTION_GMAILERRORRED "\xef\x80\xbf" // U+f03f #define ICON_MD_NO_FLASH "\xef\x86\xa6" // U+f1a6 #define ICON_MD_NO_FOOD "\xef\x86\xa7" // U+f1a7 #define ICON_MD_NO_LUGGAGE "\xef\x88\xbb" // U+f23b #define ICON_MD_NO_MEALS "\xef\x87\x96" // U+f1d6 #define ICON_MD_NO_MEALS_OULINE "\xef\x88\xa9" // U+f229 #define ICON_MD_NO_MEETING_ROOM "\xee\xad\x8e" // U+eb4e #define ICON_MD_NO_PHOTOGRAPHY "\xef\x86\xa8" // U+f1a8 #define ICON_MD_NO_SIM "\xee\x83\x8c" // U+e0cc #define ICON_MD_NO_STROLLER "\xef\x86\xaf" // U+f1af #define ICON_MD_NO_TRANSFER "\xef\x87\x95" // U+f1d5 #define ICON_MD_NOISE_AWARE "\xee\xaf\xac" // U+ebec #define ICON_MD_NOISE_CONTROL_OFF "\xee\xaf\xb3" // U+ebf3 #define ICON_MD_NORDIC_WALKING "\xee\x94\x8e" // U+e50e #define ICON_MD_NORTH "\xef\x87\xa0" // U+f1e0 #define ICON_MD_NORTH_EAST "\xef\x87\xa1" // U+f1e1 #define ICON_MD_NORTH_WEST "\xef\x87\xa2" // U+f1e2 #define ICON_MD_NOT_ACCESSIBLE "\xef\x83\xbe" // U+f0fe #define ICON_MD_NOT_INTERESTED "\xee\x80\xb3" // U+e033 #define ICON_MD_NOT_LISTED_LOCATION "\xee\x95\xb5" // U+e575 #define ICON_MD_NOT_STARTED "\xef\x83\x91" // U+f0d1 #define ICON_MD_NOTE "\xee\x81\xaf" // U+e06f #define ICON_MD_NOTE_ADD "\xee\xa2\x9c" // U+e89c #define ICON_MD_NOTE_ALT "\xef\x81\x80" // U+f040 #define ICON_MD_NOTES "\xee\x89\xac" // U+e26c #define ICON_MD_NOTIFICATION_ADD "\xee\x8e\x99" // U+e399 #define ICON_MD_NOTIFICATION_IMPORTANT "\xee\x80\x84" // U+e004 #define ICON_MD_NOTIFICATIONS "\xee\x9f\xb4" // U+e7f4 #define ICON_MD_NOTIFICATIONS_ACTIVE "\xee\x9f\xb7" // U+e7f7 #define ICON_MD_NOTIFICATIONS_NONE "\xee\x9f\xb5" // U+e7f5 #define ICON_MD_NOTIFICATIONS_OFF "\xee\x9f\xb6" // U+e7f6 #define ICON_MD_NOTIFICATIONS_ON "\xee\x9f\xb7" // U+e7f7 #define ICON_MD_NOTIFICATIONS_PAUSED "\xee\x9f\xb8" // U+e7f8 #define ICON_MD_NOW_WALLPAPER "\xee\x86\xbc" // U+e1bc #define ICON_MD_NOW_WIDGETS "\xee\x86\xbd" // U+e1bd #define ICON_MD_NUMBERS "\xee\xab\x87" // U+eac7 #define ICON_MD_OFFLINE_BOLT "\xee\xa4\xb2" // U+e932 #define ICON_MD_OFFLINE_PIN "\xee\xa4\x8a" // U+e90a #define ICON_MD_OFFLINE_SHARE "\xee\xa7\x85" // U+e9c5 #define ICON_MD_OIL_BARREL "\xee\xb0\x95" // U+ec15 #define ICON_MD_ON_DEVICE_TRAINING "\xee\xaf\xbd" // U+ebfd #define ICON_MD_ONDEMAND_VIDEO "\xee\x98\xba" // U+e63a #define ICON_MD_ONLINE_PREDICTION "\xef\x83\xab" // U+f0eb #define ICON_MD_OPACITY "\xee\xa4\x9c" // U+e91c #define ICON_MD_OPEN_IN_BROWSER "\xee\xa2\x9d" // U+e89d #define ICON_MD_OPEN_IN_FULL "\xef\x87\x8e" // U+f1ce #define ICON_MD_OPEN_IN_NEW "\xee\xa2\x9e" // U+e89e #define ICON_MD_OPEN_IN_NEW_OFF "\xee\x93\xb6" // U+e4f6 #define ICON_MD_OPEN_WITH "\xee\xa2\x9f" // U+e89f #define ICON_MD_OTHER_HOUSES "\xee\x96\x8c" // U+e58c #define ICON_MD_OUTBOND "\xef\x88\xa8" // U+f228 #define ICON_MD_OUTBOUND "\xee\x87\x8a" // U+e1ca #define ICON_MD_OUTBOX "\xee\xbd\x9f" // U+ef5f #define ICON_MD_OUTDOOR_GRILL "\xee\xa9\x87" // U+ea47 #define ICON_MD_OUTGOING_MAIL "\xef\x83\x92" // U+f0d2 #define ICON_MD_OUTLET "\xef\x87\x94" // U+f1d4 #define ICON_MD_OUTLINED_FLAG "\xee\x85\xae" // U+e16e #define ICON_MD_OUTPUT "\xee\xae\xbe" // U+ebbe #define ICON_MD_PADDING "\xee\xa7\x88" // U+e9c8 #define ICON_MD_PAGES "\xee\x9f\xb9" // U+e7f9 #define ICON_MD_PAGEVIEW "\xee\xa2\xa0" // U+e8a0 #define ICON_MD_PAID "\xef\x81\x81" // U+f041 #define ICON_MD_PALETTE "\xee\x90\x8a" // U+e40a #define ICON_MD_PALLET "\xef\xa1\xaa" // U+f86a #define ICON_MD_PAN_TOOL "\xee\xa4\xa5" // U+e925 #define ICON_MD_PAN_TOOL_ALT "\xee\xae\xb9" // U+ebb9 #define ICON_MD_PANORAMA "\xee\x90\x8b" // U+e40b #define ICON_MD_PANORAMA_FISH_EYE "\xee\x90\x8c" // U+e40c #define ICON_MD_PANORAMA_FISHEYE "\xee\x90\x8c" // U+e40c #define ICON_MD_PANORAMA_HORIZONTAL "\xee\x90\x8d" // U+e40d #define ICON_MD_PANORAMA_HORIZONTAL_SELECT "\xee\xbd\xa0" // U+ef60 #define ICON_MD_PANORAMA_PHOTOSPHERE "\xee\xa7\x89" // U+e9c9 #define ICON_MD_PANORAMA_PHOTOSPHERE_SELECT "\xee\xa7\x8a" // U+e9ca #define ICON_MD_PANORAMA_VERTICAL "\xee\x90\x8e" // U+e40e #define ICON_MD_PANORAMA_VERTICAL_SELECT "\xee\xbd\xa1" // U+ef61 #define ICON_MD_PANORAMA_WIDE_ANGLE "\xee\x90\x8f" // U+e40f #define ICON_MD_PANORAMA_WIDE_ANGLE_SELECT "\xee\xbd\xa2" // U+ef62 #define ICON_MD_PARAGLIDING "\xee\x94\x8f" // U+e50f #define ICON_MD_PARK "\xee\xa9\xa3" // U+ea63 #define ICON_MD_PARTY_MODE "\xee\x9f\xba" // U+e7fa #define ICON_MD_PASSWORD "\xef\x81\x82" // U+f042 #define ICON_MD_PATTERN "\xef\x81\x83" // U+f043 #define ICON_MD_PAUSE "\xee\x80\xb4" // U+e034 #define ICON_MD_PAUSE_CIRCLE "\xee\x86\xa2" // U+e1a2 #define ICON_MD_PAUSE_CIRCLE_FILLED "\xee\x80\xb5" // U+e035 #define ICON_MD_PAUSE_CIRCLE_OUTLINE "\xee\x80\xb6" // U+e036 #define ICON_MD_PAUSE_PRESENTATION "\xee\x83\xaa" // U+e0ea #define ICON_MD_PAYMENT "\xee\xa2\xa1" // U+e8a1 #define ICON_MD_PAYMENTS "\xee\xbd\xa3" // U+ef63 #define ICON_MD_PAYPAL "\xee\xaa\x8d" // U+ea8d #define ICON_MD_PEDAL_BIKE "\xee\xac\xa9" // U+eb29 #define ICON_MD_PENDING "\xee\xbd\xa4" // U+ef64 #define ICON_MD_PENDING_ACTIONS "\xef\x86\xbb" // U+f1bb #define ICON_MD_PENTAGON "\xee\xad\x90" // U+eb50 #define ICON_MD_PEOPLE "\xee\x9f\xbb" // U+e7fb #define ICON_MD_PEOPLE_ALT "\xee\xa8\xa1" // U+ea21 #define ICON_MD_PEOPLE_OUTLINE "\xee\x9f\xbc" // U+e7fc #define ICON_MD_PERCENT "\xee\xad\x98" // U+eb58 #define ICON_MD_PERM_CAMERA_MIC "\xee\xa2\xa2" // U+e8a2 #define ICON_MD_PERM_CONTACT_CAL "\xee\xa2\xa3" // U+e8a3 #define ICON_MD_PERM_CONTACT_CALENDAR "\xee\xa2\xa3" // U+e8a3 #define ICON_MD_PERM_DATA_SETTING "\xee\xa2\xa4" // U+e8a4 #define ICON_MD_PERM_DEVICE_INFO "\xee\xa2\xa5" // U+e8a5 #define ICON_MD_PERM_DEVICE_INFORMATION "\xee\xa2\xa5" // U+e8a5 #define ICON_MD_PERM_IDENTITY "\xee\xa2\xa6" // U+e8a6 #define ICON_MD_PERM_MEDIA "\xee\xa2\xa7" // U+e8a7 #define ICON_MD_PERM_PHONE_MSG "\xee\xa2\xa8" // U+e8a8 #define ICON_MD_PERM_SCAN_WIFI "\xee\xa2\xa9" // U+e8a9 #define ICON_MD_PERSON "\xee\x9f\xbd" // U+e7fd #define ICON_MD_PERSON_2 "\xef\xa3\xa4" // U+f8e4 #define ICON_MD_PERSON_3 "\xef\xa3\xa5" // U+f8e5 #define ICON_MD_PERSON_4 "\xef\xa3\xa6" // U+f8e6 #define ICON_MD_PERSON_ADD "\xee\x9f\xbe" // U+e7fe #define ICON_MD_PERSON_ADD_ALT "\xee\xa9\x8d" // U+ea4d #define ICON_MD_PERSON_ADD_ALT_1 "\xee\xbd\xa5" // U+ef65 #define ICON_MD_PERSON_ADD_DISABLED "\xee\xa7\x8b" // U+e9cb #define ICON_MD_PERSON_OFF "\xee\x94\x90" // U+e510 #define ICON_MD_PERSON_OUTLINE "\xee\x9f\xbf" // U+e7ff #define ICON_MD_PERSON_PIN "\xee\x95\x9a" // U+e55a #define ICON_MD_PERSON_PIN_CIRCLE "\xee\x95\xaa" // U+e56a #define ICON_MD_PERSON_REMOVE "\xee\xbd\xa6" // U+ef66 #define ICON_MD_PERSON_REMOVE_ALT_1 "\xee\xbd\xa7" // U+ef67 #define ICON_MD_PERSON_SEARCH "\xef\x84\x86" // U+f106 #define ICON_MD_PERSONAL_INJURY "\xee\x9b\x9a" // U+e6da #define ICON_MD_PERSONAL_VIDEO "\xee\x98\xbb" // U+e63b #define ICON_MD_PEST_CONTROL "\xef\x83\xba" // U+f0fa #define ICON_MD_PEST_CONTROL_RODENT "\xef\x83\xbd" // U+f0fd #define ICON_MD_PETS "\xee\xa4\x9d" // U+e91d #define ICON_MD_PHISHING "\xee\xab\x97" // U+ead7 #define ICON_MD_PHONE "\xee\x83\x8d" // U+e0cd #define ICON_MD_PHONE_ANDROID "\xee\x8c\xa4" // U+e324 #define ICON_MD_PHONE_BLUETOOTH_SPEAKER "\xee\x98\x9b" // U+e61b #define ICON_MD_PHONE_CALLBACK "\xee\x99\x89" // U+e649 #define ICON_MD_PHONE_DISABLED "\xee\xa7\x8c" // U+e9cc #define ICON_MD_PHONE_ENABLED "\xee\xa7\x8d" // U+e9cd #define ICON_MD_PHONE_FORWARDED "\xee\x98\x9c" // U+e61c #define ICON_MD_PHONE_IN_TALK "\xee\x98\x9d" // U+e61d #define ICON_MD_PHONE_IPHONE "\xee\x8c\xa5" // U+e325 #define ICON_MD_PHONE_LOCKED "\xee\x98\x9e" // U+e61e #define ICON_MD_PHONE_MISSED "\xee\x98\x9f" // U+e61f #define ICON_MD_PHONE_PAUSED "\xee\x98\xa0" // U+e620 #define ICON_MD_PHONELINK "\xee\x8c\xa6" // U+e326 #define ICON_MD_PHONELINK_ERASE "\xee\x83\x9b" // U+e0db #define ICON_MD_PHONELINK_LOCK "\xee\x83\x9c" // U+e0dc #define ICON_MD_PHONELINK_OFF "\xee\x8c\xa7" // U+e327 #define ICON_MD_PHONELINK_RING "\xee\x83\x9d" // U+e0dd #define ICON_MD_PHONELINK_SETUP "\xee\x83\x9e" // U+e0de #define ICON_MD_PHOTO "\xee\x90\x90" // U+e410 #define ICON_MD_PHOTO_ALBUM "\xee\x90\x91" // U+e411 #define ICON_MD_PHOTO_CAMERA "\xee\x90\x92" // U+e412 #define ICON_MD_PHOTO_CAMERA_BACK "\xee\xbd\xa8" // U+ef68 #define ICON_MD_PHOTO_CAMERA_FRONT "\xee\xbd\xa9" // U+ef69 #define ICON_MD_PHOTO_FILTER "\xee\x90\xbb" // U+e43b #define ICON_MD_PHOTO_LIBRARY "\xee\x90\x93" // U+e413 #define ICON_MD_PHOTO_SIZE_SELECT_ACTUAL "\xee\x90\xb2" // U+e432 #define ICON_MD_PHOTO_SIZE_SELECT_LARGE "\xee\x90\xb3" // U+e433 #define ICON_MD_PHOTO_SIZE_SELECT_SMALL "\xee\x90\xb4" // U+e434 #define ICON_MD_PHP "\xee\xae\x8f" // U+eb8f #define ICON_MD_PIANO "\xee\x94\xa1" // U+e521 #define ICON_MD_PIANO_OFF "\xee\x94\xa0" // U+e520 #define ICON_MD_PICTURE_AS_PDF "\xee\x90\x95" // U+e415 #define ICON_MD_PICTURE_IN_PICTURE "\xee\xa2\xaa" // U+e8aa #define ICON_MD_PICTURE_IN_PICTURE_ALT "\xee\xa4\x91" // U+e911 #define ICON_MD_PIE_CHART "\xee\x9b\x84" // U+e6c4 #define ICON_MD_PIE_CHART_OUTLINE "\xef\x81\x84" // U+f044 #define ICON_MD_PIE_CHART_OUTLINED "\xee\x9b\x85" // U+e6c5 #define ICON_MD_PIN "\xef\x81\x85" // U+f045 #define ICON_MD_PIN_DROP "\xee\x95\x9e" // U+e55e #define ICON_MD_PIN_END "\xee\x9d\xa7" // U+e767 #define ICON_MD_PIN_INVOKE "\xee\x9d\xa3" // U+e763 #define ICON_MD_PINCH "\xee\xac\xb8" // U+eb38 #define ICON_MD_PIVOT_TABLE_CHART "\xee\xa7\x8e" // U+e9ce #define ICON_MD_PIX "\xee\xaa\xa3" // U+eaa3 #define ICON_MD_PLACE "\xee\x95\x9f" // U+e55f #define ICON_MD_PLAGIARISM "\xee\xa9\x9a" // U+ea5a #define ICON_MD_PLAY_ARROW "\xee\x80\xb7" // U+e037 #define ICON_MD_PLAY_CIRCLE "\xee\x87\x84" // U+e1c4 #define ICON_MD_PLAY_CIRCLE_FILL "\xee\x80\xb8" // U+e038 #define ICON_MD_PLAY_CIRCLE_FILLED "\xee\x80\xb8" // U+e038 #define ICON_MD_PLAY_CIRCLE_OUTLINE "\xee\x80\xb9" // U+e039 #define ICON_MD_PLAY_DISABLED "\xee\xbd\xaa" // U+ef6a #define ICON_MD_PLAY_FOR_WORK "\xee\xa4\x86" // U+e906 #define ICON_MD_PLAY_LESSON "\xef\x81\x87" // U+f047 #define ICON_MD_PLAYLIST_ADD "\xee\x80\xbb" // U+e03b #define ICON_MD_PLAYLIST_ADD_CHECK "\xee\x81\xa5" // U+e065 #define ICON_MD_PLAYLIST_ADD_CHECK_CIRCLE "\xee\x9f\xa6" // U+e7e6 #define ICON_MD_PLAYLIST_ADD_CIRCLE "\xee\x9f\xa5" // U+e7e5 #define ICON_MD_PLAYLIST_PLAY "\xee\x81\x9f" // U+e05f #define ICON_MD_PLAYLIST_REMOVE "\xee\xae\x80" // U+eb80 #define ICON_MD_PLUMBING "\xef\x84\x87" // U+f107 #define ICON_MD_PLUS_ONE "\xee\xa0\x80" // U+e800 #define ICON_MD_PODCASTS "\xef\x81\x88" // U+f048 #define ICON_MD_POINT_OF_SALE "\xef\x85\xbe" // U+f17e #define ICON_MD_POLICY "\xee\xa8\x97" // U+ea17 #define ICON_MD_POLL "\xee\xa0\x81" // U+e801 #define ICON_MD_POLYLINE "\xee\xae\xbb" // U+ebbb #define ICON_MD_POLYMER "\xee\xa2\xab" // U+e8ab #define ICON_MD_POOL "\xee\xad\x88" // U+eb48 #define ICON_MD_PORTABLE_WIFI_OFF "\xee\x83\x8e" // U+e0ce #define ICON_MD_PORTRAIT "\xee\x90\x96" // U+e416 #define ICON_MD_POST_ADD "\xee\xa8\xa0" // U+ea20 #define ICON_MD_POWER "\xee\x98\xbc" // U+e63c #define ICON_MD_POWER_INPUT "\xee\x8c\xb6" // U+e336 #define ICON_MD_POWER_OFF "\xee\x99\x86" // U+e646 #define ICON_MD_POWER_SETTINGS_NEW "\xee\xa2\xac" // U+e8ac #define ICON_MD_PRECISION_MANUFACTURING "\xef\x81\x89" // U+f049 #define ICON_MD_PREGNANT_WOMAN "\xee\xa4\x9e" // U+e91e #define ICON_MD_PRESENT_TO_ALL "\xee\x83\x9f" // U+e0df #define ICON_MD_PREVIEW "\xef\x87\x85" // U+f1c5 #define ICON_MD_PRICE_CHANGE "\xef\x81\x8a" // U+f04a #define ICON_MD_PRICE_CHECK "\xef\x81\x8b" // U+f04b #define ICON_MD_PRINT "\xee\xa2\xad" // U+e8ad #define ICON_MD_PRINT_DISABLED "\xee\xa7\x8f" // U+e9cf #define ICON_MD_PRIORITY_HIGH "\xee\x99\x85" // U+e645 #define ICON_MD_PRIVACY_TIP "\xef\x83\x9c" // U+f0dc #define ICON_MD_PRIVATE_CONNECTIVITY "\xee\x9d\x84" // U+e744 #define ICON_MD_PRODUCTION_QUANTITY_LIMITS "\xee\x87\x91" // U+e1d1 #define ICON_MD_PROPANE "\xee\xb0\x94" // U+ec14 #define ICON_MD_PROPANE_TANK "\xee\xb0\x93" // U+ec13 #define ICON_MD_PSYCHOLOGY "\xee\xa9\x8a" // U+ea4a #define ICON_MD_PSYCHOLOGY_ALT "\xef\xa3\xaa" // U+f8ea #define ICON_MD_PUBLIC "\xee\xa0\x8b" // U+e80b #define ICON_MD_PUBLIC_OFF "\xef\x87\x8a" // U+f1ca #define ICON_MD_PUBLISH "\xee\x89\x95" // U+e255 #define ICON_MD_PUBLISHED_WITH_CHANGES "\xef\x88\xb2" // U+f232 #define ICON_MD_PUNCH_CLOCK "\xee\xaa\xa8" // U+eaa8 #define ICON_MD_PUSH_PIN "\xef\x84\x8d" // U+f10d #define ICON_MD_QR_CODE "\xee\xbd\xab" // U+ef6b #define ICON_MD_QR_CODE_2 "\xee\x80\x8a" // U+e00a #define ICON_MD_QR_CODE_SCANNER "\xef\x88\x86" // U+f206 #define ICON_MD_QUERY_BUILDER "\xee\xa2\xae" // U+e8ae #define ICON_MD_QUERY_STATS "\xee\x93\xbc" // U+e4fc #define ICON_MD_QUESTION_ANSWER "\xee\xa2\xaf" // U+e8af #define ICON_MD_QUESTION_MARK "\xee\xae\x8b" // U+eb8b #define ICON_MD_QUEUE "\xee\x80\xbc" // U+e03c #define ICON_MD_QUEUE_MUSIC "\xee\x80\xbd" // U+e03d #define ICON_MD_QUEUE_PLAY_NEXT "\xee\x81\xa6" // U+e066 #define ICON_MD_QUICK_CONTACTS_DIALER "\xee\x83\x8f" // U+e0cf #define ICON_MD_QUICK_CONTACTS_MAIL "\xee\x83\x90" // U+e0d0 #define ICON_MD_QUICKREPLY "\xee\xbd\xac" // U+ef6c #define ICON_MD_QUIZ "\xef\x81\x8c" // U+f04c #define ICON_MD_QUORA "\xee\xaa\x98" // U+ea98 #define ICON_MD_R_MOBILEDATA "\xef\x81\x8d" // U+f04d #define ICON_MD_RADAR "\xef\x81\x8e" // U+f04e #define ICON_MD_RADIO "\xee\x80\xbe" // U+e03e #define ICON_MD_RADIO_BUTTON_CHECKED "\xee\xa0\xb7" // U+e837 #define ICON_MD_RADIO_BUTTON_OFF "\xee\xa0\xb6" // U+e836 #define ICON_MD_RADIO_BUTTON_ON "\xee\xa0\xb7" // U+e837 #define ICON_MD_RADIO_BUTTON_UNCHECKED "\xee\xa0\xb6" // U+e836 #define ICON_MD_RAILWAY_ALERT "\xee\xa7\x91" // U+e9d1 #define ICON_MD_RAMEN_DINING "\xee\xa9\xa4" // U+ea64 #define ICON_MD_RAMP_LEFT "\xee\xae\x9c" // U+eb9c #define ICON_MD_RAMP_RIGHT "\xee\xae\x96" // U+eb96 #define ICON_MD_RATE_REVIEW "\xee\x95\xa0" // U+e560 #define ICON_MD_RAW_OFF "\xef\x81\x8f" // U+f04f #define ICON_MD_RAW_ON "\xef\x81\x90" // U+f050 #define ICON_MD_READ_MORE "\xee\xbd\xad" // U+ef6d #define ICON_MD_REAL_ESTATE_AGENT "\xee\x9c\xba" // U+e73a #define ICON_MD_REBASE_EDIT "\xef\xa1\x86" // U+f846 #define ICON_MD_RECEIPT "\xee\xa2\xb0" // U+e8b0 #define ICON_MD_RECEIPT_LONG "\xee\xbd\xae" // U+ef6e #define ICON_MD_RECENT_ACTORS "\xee\x80\xbf" // U+e03f #define ICON_MD_RECOMMEND "\xee\xa7\x92" // U+e9d2 #define ICON_MD_RECORD_VOICE_OVER "\xee\xa4\x9f" // U+e91f #define ICON_MD_RECTANGLE "\xee\xad\x94" // U+eb54 #define ICON_MD_RECYCLING "\xee\x9d\xa0" // U+e760 #define ICON_MD_REDDIT "\xee\xaa\xa0" // U+eaa0 #define ICON_MD_REDEEM "\xee\xa2\xb1" // U+e8b1 #define ICON_MD_REDO "\xee\x85\x9a" // U+e15a #define ICON_MD_REDUCE_CAPACITY "\xef\x88\x9c" // U+f21c #define ICON_MD_REFRESH "\xee\x97\x95" // U+e5d5 #define ICON_MD_REMEMBER_ME "\xef\x81\x91" // U+f051 #define ICON_MD_REMOVE "\xee\x85\x9b" // U+e15b #define ICON_MD_REMOVE_CIRCLE "\xee\x85\x9c" // U+e15c #define ICON_MD_REMOVE_CIRCLE_OUTLINE "\xee\x85\x9d" // U+e15d #define ICON_MD_REMOVE_DONE "\xee\xa7\x93" // U+e9d3 #define ICON_MD_REMOVE_FROM_QUEUE "\xee\x81\xa7" // U+e067 #define ICON_MD_REMOVE_MODERATOR "\xee\xa7\x94" // U+e9d4 #define ICON_MD_REMOVE_RED_EYE "\xee\x90\x97" // U+e417 #define ICON_MD_REMOVE_ROAD "\xee\xaf\xbc" // U+ebfc #define ICON_MD_REMOVE_SHOPPING_CART "\xee\xa4\xa8" // U+e928 #define ICON_MD_REORDER "\xee\xa3\xbe" // U+e8fe #define ICON_MD_REPARTITION "\xef\xa3\xa8" // U+f8e8 #define ICON_MD_REPEAT "\xee\x81\x80" // U+e040 #define ICON_MD_REPEAT_ON "\xee\xa7\x96" // U+e9d6 #define ICON_MD_REPEAT_ONE "\xee\x81\x81" // U+e041 #define ICON_MD_REPEAT_ONE_ON "\xee\xa7\x97" // U+e9d7 #define ICON_MD_REPLAY "\xee\x81\x82" // U+e042 #define ICON_MD_REPLAY_10 "\xee\x81\x99" // U+e059 #define ICON_MD_REPLAY_30 "\xee\x81\x9a" // U+e05a #define ICON_MD_REPLAY_5 "\xee\x81\x9b" // U+e05b #define ICON_MD_REPLAY_CIRCLE_FILLED "\xee\xa7\x98" // U+e9d8 #define ICON_MD_REPLY "\xee\x85\x9e" // U+e15e #define ICON_MD_REPLY_ALL "\xee\x85\x9f" // U+e15f #define ICON_MD_REPORT "\xee\x85\xa0" // U+e160 #define ICON_MD_REPORT_GMAILERRORRED "\xef\x81\x92" // U+f052 #define ICON_MD_REPORT_OFF "\xee\x85\xb0" // U+e170 #define ICON_MD_REPORT_PROBLEM "\xee\xa2\xb2" // U+e8b2 #define ICON_MD_REQUEST_PAGE "\xef\x88\xac" // U+f22c #define ICON_MD_REQUEST_QUOTE "\xef\x86\xb6" // U+f1b6 #define ICON_MD_RESET_TV "\xee\xa7\x99" // U+e9d9 #define ICON_MD_RESTART_ALT "\xef\x81\x93" // U+f053 #define ICON_MD_RESTAURANT "\xee\x95\xac" // U+e56c #define ICON_MD_RESTAURANT_MENU "\xee\x95\xa1" // U+e561 #define ICON_MD_RESTORE "\xee\xa2\xb3" // U+e8b3 #define ICON_MD_RESTORE_FROM_TRASH "\xee\xa4\xb8" // U+e938 #define ICON_MD_RESTORE_PAGE "\xee\xa4\xa9" // U+e929 #define ICON_MD_REVIEWS "\xef\x81\x94" // U+f054 #define ICON_MD_RICE_BOWL "\xef\x87\xb5" // U+f1f5 #define ICON_MD_RING_VOLUME "\xee\x83\x91" // U+e0d1 #define ICON_MD_ROCKET "\xee\xae\xa5" // U+eba5 #define ICON_MD_ROCKET_LAUNCH "\xee\xae\x9b" // U+eb9b #define ICON_MD_ROLLER_SHADES "\xee\xb0\x92" // U+ec12 #define ICON_MD_ROLLER_SHADES_CLOSED "\xee\xb0\x91" // U+ec11 #define ICON_MD_ROLLER_SKATING "\xee\xaf\x8d" // U+ebcd #define ICON_MD_ROOFING "\xef\x88\x81" // U+f201 #define ICON_MD_ROOM "\xee\xa2\xb4" // U+e8b4 #define ICON_MD_ROOM_PREFERENCES "\xef\x86\xb8" // U+f1b8 #define ICON_MD_ROOM_SERVICE "\xee\xad\x89" // U+eb49 #define ICON_MD_ROTATE_90_DEGREES_CCW "\xee\x90\x98" // U+e418 #define ICON_MD_ROTATE_90_DEGREES_CW "\xee\xaa\xab" // U+eaab #define ICON_MD_ROTATE_LEFT "\xee\x90\x99" // U+e419 #define ICON_MD_ROTATE_RIGHT "\xee\x90\x9a" // U+e41a #define ICON_MD_ROUNDABOUT_LEFT "\xee\xae\x99" // U+eb99 #define ICON_MD_ROUNDABOUT_RIGHT "\xee\xae\xa3" // U+eba3 #define ICON_MD_ROUNDED_CORNER "\xee\xa4\xa0" // U+e920 #define ICON_MD_ROUTE "\xee\xab\x8d" // U+eacd #define ICON_MD_ROUTER "\xee\x8c\xa8" // U+e328 #define ICON_MD_ROWING "\xee\xa4\xa1" // U+e921 #define ICON_MD_RSS_FEED "\xee\x83\xa5" // U+e0e5 #define ICON_MD_RSVP "\xef\x81\x95" // U+f055 #define ICON_MD_RTT "\xee\xa6\xad" // U+e9ad #define ICON_MD_RULE "\xef\x87\x82" // U+f1c2 #define ICON_MD_RULE_FOLDER "\xef\x87\x89" // U+f1c9 #define ICON_MD_RUN_CIRCLE "\xee\xbd\xaf" // U+ef6f #define ICON_MD_RUNNING_WITH_ERRORS "\xee\x94\x9d" // U+e51d #define ICON_MD_RV_HOOKUP "\xee\x99\x82" // U+e642 #define ICON_MD_SAFETY_CHECK "\xee\xaf\xaf" // U+ebef #define ICON_MD_SAFETY_DIVIDER "\xee\x87\x8c" // U+e1cc #define ICON_MD_SAILING "\xee\x94\x82" // U+e502 #define ICON_MD_SANITIZER "\xef\x88\x9d" // U+f21d #define ICON_MD_SATELLITE "\xee\x95\xa2" // U+e562 #define ICON_MD_SATELLITE_ALT "\xee\xac\xba" // U+eb3a #define ICON_MD_SAVE "\xee\x85\xa1" // U+e161 #define ICON_MD_SAVE_ALT "\xee\x85\xb1" // U+e171 #define ICON_MD_SAVE_AS "\xee\xad\xa0" // U+eb60 #define ICON_MD_SAVED_SEARCH "\xee\xa8\x91" // U+ea11 #define ICON_MD_SAVINGS "\xee\x8b\xab" // U+e2eb #define ICON_MD_SCALE "\xee\xad\x9f" // U+eb5f #define ICON_MD_SCANNER "\xee\x8c\xa9" // U+e329 #define ICON_MD_SCATTER_PLOT "\xee\x89\xa8" // U+e268 #define ICON_MD_SCHEDULE "\xee\xa2\xb5" // U+e8b5 #define ICON_MD_SCHEDULE_SEND "\xee\xa8\x8a" // U+ea0a #define ICON_MD_SCHEMA "\xee\x93\xbd" // U+e4fd #define ICON_MD_SCHOOL "\xee\xa0\x8c" // U+e80c #define ICON_MD_SCIENCE "\xee\xa9\x8b" // U+ea4b #define ICON_MD_SCORE "\xee\x89\xa9" // U+e269 #define ICON_MD_SCOREBOARD "\xee\xaf\x90" // U+ebd0 #define ICON_MD_SCREEN_LOCK_LANDSCAPE "\xee\x86\xbe" // U+e1be #define ICON_MD_SCREEN_LOCK_PORTRAIT "\xee\x86\xbf" // U+e1bf #define ICON_MD_SCREEN_LOCK_ROTATION "\xee\x87\x80" // U+e1c0 #define ICON_MD_SCREEN_ROTATION "\xee\x87\x81" // U+e1c1 #define ICON_MD_SCREEN_ROTATION_ALT "\xee\xaf\xae" // U+ebee #define ICON_MD_SCREEN_SEARCH_DESKTOP "\xee\xbd\xb0" // U+ef70 #define ICON_MD_SCREEN_SHARE "\xee\x83\xa2" // U+e0e2 #define ICON_MD_SCREENSHOT "\xef\x81\x96" // U+f056 #define ICON_MD_SCREENSHOT_MONITOR "\xee\xb0\x88" // U+ec08 #define ICON_MD_SCUBA_DIVING "\xee\xaf\x8e" // U+ebce #define ICON_MD_SD "\xee\xa7\x9d" // U+e9dd #define ICON_MD_SD_CARD "\xee\x98\xa3" // U+e623 #define ICON_MD_SD_CARD_ALERT "\xef\x81\x97" // U+f057 #define ICON_MD_SD_STORAGE "\xee\x87\x82" // U+e1c2 #define ICON_MD_SEARCH "\xee\xa2\xb6" // U+e8b6 #define ICON_MD_SEARCH_OFF "\xee\xa9\xb6" // U+ea76 #define ICON_MD_SECURITY "\xee\x8c\xaa" // U+e32a #define ICON_MD_SECURITY_UPDATE "\xef\x81\x98" // U+f058 #define ICON_MD_SECURITY_UPDATE_GOOD "\xef\x81\x99" // U+f059 #define ICON_MD_SECURITY_UPDATE_WARNING "\xef\x81\x9a" // U+f05a #define ICON_MD_SEGMENT "\xee\xa5\x8b" // U+e94b #define ICON_MD_SELECT_ALL "\xee\x85\xa2" // U+e162 #define ICON_MD_SELF_IMPROVEMENT "\xee\xa9\xb8" // U+ea78 #define ICON_MD_SELL "\xef\x81\x9b" // U+f05b #define ICON_MD_SEND "\xee\x85\xa3" // U+e163 #define ICON_MD_SEND_AND_ARCHIVE "\xee\xa8\x8c" // U+ea0c #define ICON_MD_SEND_TIME_EXTENSION "\xee\xab\x9b" // U+eadb #define ICON_MD_SEND_TO_MOBILE "\xef\x81\x9c" // U+f05c #define ICON_MD_SENSOR_DOOR "\xef\x86\xb5" // U+f1b5 #define ICON_MD_SENSOR_OCCUPIED "\xee\xb0\x90" // U+ec10 #define ICON_MD_SENSOR_WINDOW "\xef\x86\xb4" // U+f1b4 #define ICON_MD_SENSORS "\xee\x94\x9e" // U+e51e #define ICON_MD_SENSORS_OFF "\xee\x94\x9f" // U+e51f #define ICON_MD_SENTIMENT_DISSATISFIED "\xee\xa0\x91" // U+e811 #define ICON_MD_SENTIMENT_NEUTRAL "\xee\xa0\x92" // U+e812 #define ICON_MD_SENTIMENT_SATISFIED "\xee\xa0\x93" // U+e813 #define ICON_MD_SENTIMENT_SATISFIED_ALT "\xee\x83\xad" // U+e0ed #define ICON_MD_SENTIMENT_VERY_DISSATISFIED "\xee\xa0\x94" // U+e814 #define ICON_MD_SENTIMENT_VERY_SATISFIED "\xee\xa0\x95" // U+e815 #define ICON_MD_SET_MEAL "\xef\x87\xaa" // U+f1ea #define ICON_MD_SETTINGS "\xee\xa2\xb8" // U+e8b8 #define ICON_MD_SETTINGS_ACCESSIBILITY "\xef\x81\x9d" // U+f05d #define ICON_MD_SETTINGS_APPLICATIONS "\xee\xa2\xb9" // U+e8b9 #define ICON_MD_SETTINGS_BACKUP_RESTORE "\xee\xa2\xba" // U+e8ba #define ICON_MD_SETTINGS_BLUETOOTH "\xee\xa2\xbb" // U+e8bb #define ICON_MD_SETTINGS_BRIGHTNESS "\xee\xa2\xbd" // U+e8bd #define ICON_MD_SETTINGS_CELL "\xee\xa2\xbc" // U+e8bc #define ICON_MD_SETTINGS_DISPLAY "\xee\xa2\xbd" // U+e8bd #define ICON_MD_SETTINGS_ETHERNET "\xee\xa2\xbe" // U+e8be #define ICON_MD_SETTINGS_INPUT_ANTENNA "\xee\xa2\xbf" // U+e8bf #define ICON_MD_SETTINGS_INPUT_COMPONENT "\xee\xa3\x80" // U+e8c0 #define ICON_MD_SETTINGS_INPUT_COMPOSITE "\xee\xa3\x81" // U+e8c1 #define ICON_MD_SETTINGS_INPUT_HDMI "\xee\xa3\x82" // U+e8c2 #define ICON_MD_SETTINGS_INPUT_SVIDEO "\xee\xa3\x83" // U+e8c3 #define ICON_MD_SETTINGS_OVERSCAN "\xee\xa3\x84" // U+e8c4 #define ICON_MD_SETTINGS_PHONE "\xee\xa3\x85" // U+e8c5 #define ICON_MD_SETTINGS_POWER "\xee\xa3\x86" // U+e8c6 #define ICON_MD_SETTINGS_REMOTE "\xee\xa3\x87" // U+e8c7 #define ICON_MD_SETTINGS_SUGGEST "\xef\x81\x9e" // U+f05e #define ICON_MD_SETTINGS_SYSTEM_DAYDREAM "\xee\x87\x83" // U+e1c3 #define ICON_MD_SETTINGS_VOICE "\xee\xa3\x88" // U+e8c8 #define ICON_MD_SEVERE_COLD "\xee\xaf\x93" // U+ebd3 #define ICON_MD_SHAPE_LINE "\xef\xa3\x93" // U+f8d3 #define ICON_MD_SHARE "\xee\xa0\x8d" // U+e80d #define ICON_MD_SHARE_ARRIVAL_TIME "\xee\x94\xa4" // U+e524 #define ICON_MD_SHARE_LOCATION "\xef\x81\x9f" // U+f05f #define ICON_MD_SHELVES "\xef\xa1\xae" // U+f86e #define ICON_MD_SHIELD "\xee\xa7\xa0" // U+e9e0 #define ICON_MD_SHIELD_MOON "\xee\xaa\xa9" // U+eaa9 #define ICON_MD_SHOP "\xee\xa3\x89" // U+e8c9 #define ICON_MD_SHOP_2 "\xee\x86\x9e" // U+e19e #define ICON_MD_SHOP_TWO "\xee\xa3\x8a" // U+e8ca #define ICON_MD_SHOPIFY "\xee\xaa\x9d" // U+ea9d #define ICON_MD_SHOPPING_BAG "\xef\x87\x8c" // U+f1cc #define ICON_MD_SHOPPING_BASKET "\xee\xa3\x8b" // U+e8cb #define ICON_MD_SHOPPING_CART "\xee\xa3\x8c" // U+e8cc #define ICON_MD_SHOPPING_CART_CHECKOUT "\xee\xae\x88" // U+eb88 #define ICON_MD_SHORT_TEXT "\xee\x89\xa1" // U+e261 #define ICON_MD_SHORTCUT "\xef\x81\xa0" // U+f060 #define ICON_MD_SHOW_CHART "\xee\x9b\xa1" // U+e6e1 #define ICON_MD_SHOWER "\xef\x81\xa1" // U+f061 #define ICON_MD_SHUFFLE "\xee\x81\x83" // U+e043 #define ICON_MD_SHUFFLE_ON "\xee\xa7\xa1" // U+e9e1 #define ICON_MD_SHUTTER_SPEED "\xee\x90\xbd" // U+e43d #define ICON_MD_SICK "\xef\x88\xa0" // U+f220 #define ICON_MD_SIGN_LANGUAGE "\xee\xaf\xa5" // U+ebe5 #define ICON_MD_SIGNAL_CELLULAR_0_BAR "\xef\x82\xa8" // U+f0a8 #define ICON_MD_SIGNAL_CELLULAR_4_BAR "\xee\x87\x88" // U+e1c8 #define ICON_MD_SIGNAL_CELLULAR_ALT "\xee\x88\x82" // U+e202 #define ICON_MD_SIGNAL_CELLULAR_ALT_1_BAR "\xee\xaf\x9f" // U+ebdf #define ICON_MD_SIGNAL_CELLULAR_ALT_2_BAR "\xee\xaf\xa3" // U+ebe3 #define ICON_MD_SIGNAL_CELLULAR_CONNECTED_NO_INTERNET_0_BAR "\xef\x82\xac" // U+f0ac #define ICON_MD_SIGNAL_CELLULAR_CONNECTED_NO_INTERNET_4_BAR "\xee\x87\x8d" // U+e1cd #define ICON_MD_SIGNAL_CELLULAR_NO_SIM "\xee\x87\x8e" // U+e1ce #define ICON_MD_SIGNAL_CELLULAR_NODATA "\xef\x81\xa2" // U+f062 #define ICON_MD_SIGNAL_CELLULAR_NULL "\xee\x87\x8f" // U+e1cf #define ICON_MD_SIGNAL_CELLULAR_OFF "\xee\x87\x90" // U+e1d0 #define ICON_MD_SIGNAL_WIFI_0_BAR "\xef\x82\xb0" // U+f0b0 #define ICON_MD_SIGNAL_WIFI_4_BAR "\xee\x87\x98" // U+e1d8 #define ICON_MD_SIGNAL_WIFI_4_BAR_LOCK "\xee\x87\x99" // U+e1d9 #define ICON_MD_SIGNAL_WIFI_BAD "\xef\x81\xa3" // U+f063 #define ICON_MD_SIGNAL_WIFI_CONNECTED_NO_INTERNET_4 "\xef\x81\xa4" // U+f064 #define ICON_MD_SIGNAL_WIFI_OFF "\xee\x87\x9a" // U+e1da #define ICON_MD_SIGNAL_WIFI_STATUSBAR_4_BAR "\xef\x81\xa5" // U+f065 #define ICON_MD_SIGNAL_WIFI_STATUSBAR_CONNECTED_NO_INTERNET_4 "\xef\x81\xa6" // U+f066 #define ICON_MD_SIGNAL_WIFI_STATUSBAR_NULL "\xef\x81\xa7" // U+f067 #define ICON_MD_SIGNPOST "\xee\xae\x91" // U+eb91 #define ICON_MD_SIM_CARD "\xee\x8c\xab" // U+e32b #define ICON_MD_SIM_CARD_ALERT "\xee\x98\xa4" // U+e624 #define ICON_MD_SIM_CARD_DOWNLOAD "\xef\x81\xa8" // U+f068 #define ICON_MD_SINGLE_BED "\xee\xa9\x88" // U+ea48 #define ICON_MD_SIP "\xef\x81\xa9" // U+f069 #define ICON_MD_SKATEBOARDING "\xee\x94\x91" // U+e511 #define ICON_MD_SKIP_NEXT "\xee\x81\x84" // U+e044 #define ICON_MD_SKIP_PREVIOUS "\xee\x81\x85" // U+e045 #define ICON_MD_SLEDDING "\xee\x94\x92" // U+e512 #define ICON_MD_SLIDESHOW "\xee\x90\x9b" // U+e41b #define ICON_MD_SLOW_MOTION_VIDEO "\xee\x81\xa8" // U+e068 #define ICON_MD_SMART_BUTTON "\xef\x87\x81" // U+f1c1 #define ICON_MD_SMART_DISPLAY "\xef\x81\xaa" // U+f06a #define ICON_MD_SMART_SCREEN "\xef\x81\xab" // U+f06b #define ICON_MD_SMART_TOY "\xef\x81\xac" // U+f06c #define ICON_MD_SMARTPHONE "\xee\x8c\xac" // U+e32c #define ICON_MD_SMOKE_FREE "\xee\xad\x8a" // U+eb4a #define ICON_MD_SMOKING_ROOMS "\xee\xad\x8b" // U+eb4b #define ICON_MD_SMS "\xee\x98\xa5" // U+e625 #define ICON_MD_SMS_FAILED "\xee\x98\xa6" // U+e626 #define ICON_MD_SNAPCHAT "\xee\xa9\xae" // U+ea6e #define ICON_MD_SNIPPET_FOLDER "\xef\x87\x87" // U+f1c7 #define ICON_MD_SNOOZE "\xee\x81\x86" // U+e046 #define ICON_MD_SNOWBOARDING "\xee\x94\x93" // U+e513 #define ICON_MD_SNOWING "\xee\xa0\x8f" // U+e80f #define ICON_MD_SNOWMOBILE "\xee\x94\x83" // U+e503 #define ICON_MD_SNOWSHOEING "\xee\x94\x94" // U+e514 #define ICON_MD_SOAP "\xef\x86\xb2" // U+f1b2 #define ICON_MD_SOCIAL_DISTANCE "\xee\x87\x8b" // U+e1cb #define ICON_MD_SOLAR_POWER "\xee\xb0\x8f" // U+ec0f #define ICON_MD_SORT "\xee\x85\xa4" // U+e164 #define ICON_MD_SORT_BY_ALPHA "\xee\x81\x93" // U+e053 #define ICON_MD_SOS "\xee\xaf\xb7" // U+ebf7 #define ICON_MD_SOUP_KITCHEN "\xee\x9f\x93" // U+e7d3 #define ICON_MD_SOURCE "\xef\x87\x84" // U+f1c4 #define ICON_MD_SOUTH "\xef\x87\xa3" // U+f1e3 #define ICON_MD_SOUTH_AMERICA "\xee\x9f\xa4" // U+e7e4 #define ICON_MD_SOUTH_EAST "\xef\x87\xa4" // U+f1e4 #define ICON_MD_SOUTH_WEST "\xef\x87\xa5" // U+f1e5 #define ICON_MD_SPA "\xee\xad\x8c" // U+eb4c #define ICON_MD_SPACE_BAR "\xee\x89\x96" // U+e256 #define ICON_MD_SPACE_DASHBOARD "\xee\x99\xab" // U+e66b #define ICON_MD_SPATIAL_AUDIO "\xee\xaf\xab" // U+ebeb #define ICON_MD_SPATIAL_AUDIO_OFF "\xee\xaf\xa8" // U+ebe8 #define ICON_MD_SPATIAL_TRACKING "\xee\xaf\xaa" // U+ebea #define ICON_MD_SPEAKER "\xee\x8c\xad" // U+e32d #define ICON_MD_SPEAKER_GROUP "\xee\x8c\xae" // U+e32e #define ICON_MD_SPEAKER_NOTES "\xee\xa3\x8d" // U+e8cd #define ICON_MD_SPEAKER_NOTES_OFF "\xee\xa4\xaa" // U+e92a #define ICON_MD_SPEAKER_PHONE "\xee\x83\x92" // U+e0d2 #define ICON_MD_SPEED "\xee\xa7\xa4" // U+e9e4 #define ICON_MD_SPELLCHECK "\xee\xa3\x8e" // U+e8ce #define ICON_MD_SPLITSCREEN "\xef\x81\xad" // U+f06d #define ICON_MD_SPOKE "\xee\xa6\xa7" // U+e9a7 #define ICON_MD_SPORTS "\xee\xa8\xb0" // U+ea30 #define ICON_MD_SPORTS_BAR "\xef\x87\xb3" // U+f1f3 #define ICON_MD_SPORTS_BASEBALL "\xee\xa9\x91" // U+ea51 #define ICON_MD_SPORTS_BASKETBALL "\xee\xa8\xa6" // U+ea26 #define ICON_MD_SPORTS_CRICKET "\xee\xa8\xa7" // U+ea27 #define ICON_MD_SPORTS_ESPORTS "\xee\xa8\xa8" // U+ea28 #define ICON_MD_SPORTS_FOOTBALL "\xee\xa8\xa9" // U+ea29 #define ICON_MD_SPORTS_GOLF "\xee\xa8\xaa" // U+ea2a #define ICON_MD_SPORTS_GYMNASTICS "\xee\xaf\x84" // U+ebc4 #define ICON_MD_SPORTS_HANDBALL "\xee\xa8\xb3" // U+ea33 #define ICON_MD_SPORTS_HOCKEY "\xee\xa8\xab" // U+ea2b #define ICON_MD_SPORTS_KABADDI "\xee\xa8\xb4" // U+ea34 #define ICON_MD_SPORTS_MARTIAL_ARTS "\xee\xab\xa9" // U+eae9 #define ICON_MD_SPORTS_MMA "\xee\xa8\xac" // U+ea2c #define ICON_MD_SPORTS_MOTORSPORTS "\xee\xa8\xad" // U+ea2d #define ICON_MD_SPORTS_RUGBY "\xee\xa8\xae" // U+ea2e #define ICON_MD_SPORTS_SCORE "\xef\x81\xae" // U+f06e #define ICON_MD_SPORTS_SOCCER "\xee\xa8\xaf" // U+ea2f #define ICON_MD_SPORTS_TENNIS "\xee\xa8\xb2" // U+ea32 #define ICON_MD_SPORTS_VOLLEYBALL "\xee\xa8\xb1" // U+ea31 #define ICON_MD_SQUARE "\xee\xac\xb6" // U+eb36 #define ICON_MD_SQUARE_FOOT "\xee\xa9\x89" // U+ea49 #define ICON_MD_SSID_CHART "\xee\xad\xa6" // U+eb66 #define ICON_MD_STACKED_BAR_CHART "\xee\xa7\xa6" // U+e9e6 #define ICON_MD_STACKED_LINE_CHART "\xef\x88\xab" // U+f22b #define ICON_MD_STADIUM "\xee\xae\x90" // U+eb90 #define ICON_MD_STAIRS "\xef\x86\xa9" // U+f1a9 #define ICON_MD_STAR "\xee\xa0\xb8" // U+e838 #define ICON_MD_STAR_BORDER "\xee\xa0\xba" // U+e83a #define ICON_MD_STAR_BORDER_PURPLE500 "\xef\x82\x99" // U+f099 #define ICON_MD_STAR_HALF "\xee\xa0\xb9" // U+e839 #define ICON_MD_STAR_OUTLINE "\xef\x81\xaf" // U+f06f #define ICON_MD_STAR_PURPLE500 "\xef\x82\x9a" // U+f09a #define ICON_MD_STAR_RATE "\xef\x83\xac" // U+f0ec #define ICON_MD_STARS "\xee\xa3\x90" // U+e8d0 #define ICON_MD_START "\xee\x82\x89" // U+e089 #define ICON_MD_STAY_CURRENT_LANDSCAPE "\xee\x83\x93" // U+e0d3 #define ICON_MD_STAY_CURRENT_PORTRAIT "\xee\x83\x94" // U+e0d4 #define ICON_MD_STAY_PRIMARY_LANDSCAPE "\xee\x83\x95" // U+e0d5 #define ICON_MD_STAY_PRIMARY_PORTRAIT "\xee\x83\x96" // U+e0d6 #define ICON_MD_STICKY_NOTE_2 "\xef\x87\xbc" // U+f1fc #define ICON_MD_STOP "\xee\x81\x87" // U+e047 #define ICON_MD_STOP_CIRCLE "\xee\xbd\xb1" // U+ef71 #define ICON_MD_STOP_SCREEN_SHARE "\xee\x83\xa3" // U+e0e3 #define ICON_MD_STORAGE "\xee\x87\x9b" // U+e1db #define ICON_MD_STORE "\xee\xa3\x91" // U+e8d1 #define ICON_MD_STORE_MALL_DIRECTORY "\xee\x95\xa3" // U+e563 #define ICON_MD_STOREFRONT "\xee\xa8\x92" // U+ea12 #define ICON_MD_STORM "\xef\x81\xb0" // U+f070 #define ICON_MD_STRAIGHT "\xee\xae\x95" // U+eb95 #define ICON_MD_STRAIGHTEN "\xee\x90\x9c" // U+e41c #define ICON_MD_STREAM "\xee\xa7\xa9" // U+e9e9 #define ICON_MD_STREETVIEW "\xee\x95\xae" // U+e56e #define ICON_MD_STRIKETHROUGH_S "\xee\x89\x97" // U+e257 #define ICON_MD_STROLLER "\xef\x86\xae" // U+f1ae #define ICON_MD_STYLE "\xee\x90\x9d" // U+e41d #define ICON_MD_SUBDIRECTORY_ARROW_LEFT "\xee\x97\x99" // U+e5d9 #define ICON_MD_SUBDIRECTORY_ARROW_RIGHT "\xee\x97\x9a" // U+e5da #define ICON_MD_SUBJECT "\xee\xa3\x92" // U+e8d2 #define ICON_MD_SUBSCRIPT "\xef\x84\x91" // U+f111 #define ICON_MD_SUBSCRIPTIONS "\xee\x81\xa4" // U+e064 #define ICON_MD_SUBTITLES "\xee\x81\x88" // U+e048 #define ICON_MD_SUBTITLES_OFF "\xee\xbd\xb2" // U+ef72 #define ICON_MD_SUBWAY "\xee\x95\xaf" // U+e56f #define ICON_MD_SUMMARIZE "\xef\x81\xb1" // U+f071 #define ICON_MD_SUNNY "\xee\xa0\x9a" // U+e81a #define ICON_MD_SUNNY_SNOWING "\xee\xa0\x99" // U+e819 #define ICON_MD_SUPERSCRIPT "\xef\x84\x92" // U+f112 #define ICON_MD_SUPERVISED_USER_CIRCLE "\xee\xa4\xb9" // U+e939 #define ICON_MD_SUPERVISOR_ACCOUNT "\xee\xa3\x93" // U+e8d3 #define ICON_MD_SUPPORT "\xee\xbd\xb3" // U+ef73 #define ICON_MD_SUPPORT_AGENT "\xef\x83\xa2" // U+f0e2 #define ICON_MD_SURFING "\xee\x94\x95" // U+e515 #define ICON_MD_SURROUND_SOUND "\xee\x81\x89" // U+e049 #define ICON_MD_SWAP_CALLS "\xee\x83\x97" // U+e0d7 #define ICON_MD_SWAP_HORIZ "\xee\xa3\x94" // U+e8d4 #define ICON_MD_SWAP_HORIZONTAL_CIRCLE "\xee\xa4\xb3" // U+e933 #define ICON_MD_SWAP_VERT "\xee\xa3\x95" // U+e8d5 #define ICON_MD_SWAP_VERT_CIRCLE "\xee\xa3\x96" // U+e8d6 #define ICON_MD_SWAP_VERTICAL_CIRCLE "\xee\xa3\x96" // U+e8d6 #define ICON_MD_SWIPE "\xee\xa7\xac" // U+e9ec #define ICON_MD_SWIPE_DOWN "\xee\xad\x93" // U+eb53 #define ICON_MD_SWIPE_DOWN_ALT "\xee\xac\xb0" // U+eb30 #define ICON_MD_SWIPE_LEFT "\xee\xad\x99" // U+eb59 #define ICON_MD_SWIPE_LEFT_ALT "\xee\xac\xb3" // U+eb33 #define ICON_MD_SWIPE_RIGHT "\xee\xad\x92" // U+eb52 #define ICON_MD_SWIPE_RIGHT_ALT "\xee\xad\x96" // U+eb56 #define ICON_MD_SWIPE_UP "\xee\xac\xae" // U+eb2e #define ICON_MD_SWIPE_UP_ALT "\xee\xac\xb5" // U+eb35 #define ICON_MD_SWIPE_VERTICAL "\xee\xad\x91" // U+eb51 #define ICON_MD_SWITCH_ACCESS_SHORTCUT "\xee\x9f\xa1" // U+e7e1 #define ICON_MD_SWITCH_ACCESS_SHORTCUT_ADD "\xee\x9f\xa2" // U+e7e2 #define ICON_MD_SWITCH_ACCOUNT "\xee\xa7\xad" // U+e9ed #define ICON_MD_SWITCH_CAMERA "\xee\x90\x9e" // U+e41e #define ICON_MD_SWITCH_LEFT "\xef\x87\x91" // U+f1d1 #define ICON_MD_SWITCH_RIGHT "\xef\x87\x92" // U+f1d2 #define ICON_MD_SWITCH_VIDEO "\xee\x90\x9f" // U+e41f #define ICON_MD_SYNAGOGUE "\xee\xaa\xb0" // U+eab0 #define ICON_MD_SYNC "\xee\x98\xa7" // U+e627 #define ICON_MD_SYNC_ALT "\xee\xa8\x98" // U+ea18 #define ICON_MD_SYNC_DISABLED "\xee\x98\xa8" // U+e628 #define ICON_MD_SYNC_LOCK "\xee\xab\xae" // U+eaee #define ICON_MD_SYNC_PROBLEM "\xee\x98\xa9" // U+e629 #define ICON_MD_SYSTEM_SECURITY_UPDATE "\xef\x81\xb2" // U+f072 #define ICON_MD_SYSTEM_SECURITY_UPDATE_GOOD "\xef\x81\xb3" // U+f073 #define ICON_MD_SYSTEM_SECURITY_UPDATE_WARNING "\xef\x81\xb4" // U+f074 #define ICON_MD_SYSTEM_UPDATE "\xee\x98\xaa" // U+e62a #define ICON_MD_SYSTEM_UPDATE_ALT "\xee\xa3\x97" // U+e8d7 #define ICON_MD_SYSTEM_UPDATE_TV "\xee\xa3\x97" // U+e8d7 #define ICON_MD_TAB "\xee\xa3\x98" // U+e8d8 #define ICON_MD_TAB_UNSELECTED "\xee\xa3\x99" // U+e8d9 #define ICON_MD_TABLE_BAR "\xee\xab\x92" // U+ead2 #define ICON_MD_TABLE_CHART "\xee\x89\xa5" // U+e265 #define ICON_MD_TABLE_RESTAURANT "\xee\xab\x86" // U+eac6 #define ICON_MD_TABLE_ROWS "\xef\x84\x81" // U+f101 #define ICON_MD_TABLE_VIEW "\xef\x86\xbe" // U+f1be #define ICON_MD_TABLET "\xee\x8c\xaf" // U+e32f #define ICON_MD_TABLET_ANDROID "\xee\x8c\xb0" // U+e330 #define ICON_MD_TABLET_MAC "\xee\x8c\xb1" // U+e331 #define ICON_MD_TAG "\xee\xa7\xaf" // U+e9ef #define ICON_MD_TAG_FACES "\xee\x90\xa0" // U+e420 #define ICON_MD_TAKEOUT_DINING "\xee\xa9\xb4" // U+ea74 #define ICON_MD_TAP_AND_PLAY "\xee\x98\xab" // U+e62b #define ICON_MD_TAPAS "\xef\x87\xa9" // U+f1e9 #define ICON_MD_TASK "\xef\x81\xb5" // U+f075 #define ICON_MD_TASK_ALT "\xee\x8b\xa6" // U+e2e6 #define ICON_MD_TAXI_ALERT "\xee\xbd\xb4" // U+ef74 #define ICON_MD_TELEGRAM "\xee\xa9\xab" // U+ea6b #define ICON_MD_TEMPLE_BUDDHIST "\xee\xaa\xb3" // U+eab3 #define ICON_MD_TEMPLE_HINDU "\xee\xaa\xaf" // U+eaaf #define ICON_MD_TERMINAL "\xee\xae\x8e" // U+eb8e #define ICON_MD_TERRAIN "\xee\x95\xa4" // U+e564 #define ICON_MD_TEXT_DECREASE "\xee\xab\x9d" // U+eadd #define ICON_MD_TEXT_FIELDS "\xee\x89\xa2" // U+e262 #define ICON_MD_TEXT_FORMAT "\xee\x85\xa5" // U+e165 #define ICON_MD_TEXT_INCREASE "\xee\xab\xa2" // U+eae2 #define ICON_MD_TEXT_ROTATE_UP "\xee\xa4\xba" // U+e93a #define ICON_MD_TEXT_ROTATE_VERTICAL "\xee\xa4\xbb" // U+e93b #define ICON_MD_TEXT_ROTATION_ANGLEDOWN "\xee\xa4\xbc" // U+e93c #define ICON_MD_TEXT_ROTATION_ANGLEUP "\xee\xa4\xbd" // U+e93d #define ICON_MD_TEXT_ROTATION_DOWN "\xee\xa4\xbe" // U+e93e #define ICON_MD_TEXT_ROTATION_NONE "\xee\xa4\xbf" // U+e93f #define ICON_MD_TEXT_SNIPPET "\xef\x87\x86" // U+f1c6 #define ICON_MD_TEXTSMS "\xee\x83\x98" // U+e0d8 #define ICON_MD_TEXTURE "\xee\x90\xa1" // U+e421 #define ICON_MD_THEATER_COMEDY "\xee\xa9\xa6" // U+ea66 #define ICON_MD_THEATERS "\xee\xa3\x9a" // U+e8da #define ICON_MD_THERMOSTAT "\xef\x81\xb6" // U+f076 #define ICON_MD_THERMOSTAT_AUTO "\xef\x81\xb7" // U+f077 #define ICON_MD_THUMB_DOWN "\xee\xa3\x9b" // U+e8db #define ICON_MD_THUMB_DOWN_ALT "\xee\xa0\x96" // U+e816 #define ICON_MD_THUMB_DOWN_OFF_ALT "\xee\xa7\xb2" // U+e9f2 #define ICON_MD_THUMB_UP "\xee\xa3\x9c" // U+e8dc #define ICON_MD_THUMB_UP_ALT "\xee\xa0\x97" // U+e817 #define ICON_MD_THUMB_UP_OFF_ALT "\xee\xa7\xb3" // U+e9f3 #define ICON_MD_THUMBS_UP_DOWN "\xee\xa3\x9d" // U+e8dd #define ICON_MD_THUNDERSTORM "\xee\xaf\x9b" // U+ebdb #define ICON_MD_TIKTOK "\xee\xa9\xbe" // U+ea7e #define ICON_MD_TIME_TO_LEAVE "\xee\x98\xac" // U+e62c #define ICON_MD_TIMELAPSE "\xee\x90\xa2" // U+e422 #define ICON_MD_TIMELINE "\xee\xa4\xa2" // U+e922 #define ICON_MD_TIMER "\xee\x90\xa5" // U+e425 #define ICON_MD_TIMER_10 "\xee\x90\xa3" // U+e423 #define ICON_MD_TIMER_10_SELECT "\xef\x81\xba" // U+f07a #define ICON_MD_TIMER_3 "\xee\x90\xa4" // U+e424 #define ICON_MD_TIMER_3_SELECT "\xef\x81\xbb" // U+f07b #define ICON_MD_TIMER_OFF "\xee\x90\xa6" // U+e426 #define ICON_MD_TIPS_AND_UPDATES "\xee\x9e\x9a" // U+e79a #define ICON_MD_TIRE_REPAIR "\xee\xaf\x88" // U+ebc8 #define ICON_MD_TITLE "\xee\x89\xa4" // U+e264 #define ICON_MD_TOC "\xee\xa3\x9e" // U+e8de #define ICON_MD_TODAY "\xee\xa3\x9f" // U+e8df #define ICON_MD_TOGGLE_OFF "\xee\xa7\xb5" // U+e9f5 #define ICON_MD_TOGGLE_ON "\xee\xa7\xb6" // U+e9f6 #define ICON_MD_TOKEN "\xee\xa8\xa5" // U+ea25 #define ICON_MD_TOLL "\xee\xa3\xa0" // U+e8e0 #define ICON_MD_TONALITY "\xee\x90\xa7" // U+e427 #define ICON_MD_TOPIC "\xef\x87\x88" // U+f1c8 #define ICON_MD_TORNADO "\xee\x86\x99" // U+e199 #define ICON_MD_TOUCH_APP "\xee\xa4\x93" // U+e913 #define ICON_MD_TOUR "\xee\xbd\xb5" // U+ef75 #define ICON_MD_TOYS "\xee\x8c\xb2" // U+e332 #define ICON_MD_TRACK_CHANGES "\xee\xa3\xa1" // U+e8e1 #define ICON_MD_TRAFFIC "\xee\x95\xa5" // U+e565 #define ICON_MD_TRAIN "\xee\x95\xb0" // U+e570 #define ICON_MD_TRAM "\xee\x95\xb1" // U+e571 #define ICON_MD_TRANSCRIBE "\xef\xa3\xac" // U+f8ec #define ICON_MD_TRANSFER_WITHIN_A_STATION "\xee\x95\xb2" // U+e572 #define ICON_MD_TRANSFORM "\xee\x90\xa8" // U+e428 #define ICON_MD_TRANSGENDER "\xee\x96\x8d" // U+e58d #define ICON_MD_TRANSIT_ENTEREXIT "\xee\x95\xb9" // U+e579 #define ICON_MD_TRANSLATE "\xee\xa3\xa2" // U+e8e2 #define ICON_MD_TRAVEL_EXPLORE "\xee\x8b\x9b" // U+e2db #define ICON_MD_TRENDING_DOWN "\xee\xa3\xa3" // U+e8e3 #define ICON_MD_TRENDING_FLAT "\xee\xa3\xa4" // U+e8e4 #define ICON_MD_TRENDING_NEUTRAL "\xee\xa3\xa4" // U+e8e4 #define ICON_MD_TRENDING_UP "\xee\xa3\xa5" // U+e8e5 #define ICON_MD_TRIP_ORIGIN "\xee\x95\xbb" // U+e57b #define ICON_MD_TROLLEY "\xef\xa1\xab" // U+f86b #define ICON_MD_TROUBLESHOOT "\xee\x87\x92" // U+e1d2 #define ICON_MD_TRY "\xef\x81\xbc" // U+f07c #define ICON_MD_TSUNAMI "\xee\xaf\x98" // U+ebd8 #define ICON_MD_TTY "\xef\x86\xaa" // U+f1aa #define ICON_MD_TUNE "\xee\x90\xa9" // U+e429 #define ICON_MD_TUNGSTEN "\xef\x81\xbd" // U+f07d #define ICON_MD_TURN_LEFT "\xee\xae\xa6" // U+eba6 #define ICON_MD_TURN_RIGHT "\xee\xae\xab" // U+ebab #define ICON_MD_TURN_SHARP_LEFT "\xee\xae\xa7" // U+eba7 #define ICON_MD_TURN_SHARP_RIGHT "\xee\xae\xaa" // U+ebaa #define ICON_MD_TURN_SLIGHT_LEFT "\xee\xae\xa4" // U+eba4 #define ICON_MD_TURN_SLIGHT_RIGHT "\xee\xae\x9a" // U+eb9a #define ICON_MD_TURNED_IN "\xee\xa3\xa6" // U+e8e6 #define ICON_MD_TURNED_IN_NOT "\xee\xa3\xa7" // U+e8e7 #define ICON_MD_TV "\xee\x8c\xb3" // U+e333 #define ICON_MD_TV_OFF "\xee\x99\x87" // U+e647 #define ICON_MD_TWO_WHEELER "\xee\xa7\xb9" // U+e9f9 #define ICON_MD_TYPE_SPECIMEN "\xef\xa3\xb0" // U+f8f0 #define ICON_MD_U_TURN_LEFT "\xee\xae\xa1" // U+eba1 #define ICON_MD_U_TURN_RIGHT "\xee\xae\xa2" // U+eba2 #define ICON_MD_UMBRELLA "\xef\x86\xad" // U+f1ad #define ICON_MD_UNARCHIVE "\xee\x85\xa9" // U+e169 #define ICON_MD_UNDO "\xee\x85\xa6" // U+e166 #define ICON_MD_UNFOLD_LESS "\xee\x97\x96" // U+e5d6 #define ICON_MD_UNFOLD_LESS_DOUBLE "\xef\xa3\x8f" // U+f8cf #define ICON_MD_UNFOLD_MORE "\xee\x97\x97" // U+e5d7 #define ICON_MD_UNFOLD_MORE_DOUBLE "\xef\xa3\x90" // U+f8d0 #define ICON_MD_UNPUBLISHED "\xef\x88\xb6" // U+f236 #define ICON_MD_UNSUBSCRIBE "\xee\x83\xab" // U+e0eb #define ICON_MD_UPCOMING "\xef\x81\xbe" // U+f07e #define ICON_MD_UPDATE "\xee\xa4\xa3" // U+e923 #define ICON_MD_UPDATE_DISABLED "\xee\x81\xb5" // U+e075 #define ICON_MD_UPGRADE "\xef\x83\xbb" // U+f0fb #define ICON_MD_UPLOAD "\xef\x82\x9b" // U+f09b #define ICON_MD_UPLOAD_FILE "\xee\xa7\xbc" // U+e9fc #define ICON_MD_USB "\xee\x87\xa0" // U+e1e0 #define ICON_MD_USB_OFF "\xee\x93\xba" // U+e4fa #define ICON_MD_VACCINES "\xee\x84\xb8" // U+e138 #define ICON_MD_VAPE_FREE "\xee\xaf\x86" // U+ebc6 #define ICON_MD_VAPING_ROOMS "\xee\xaf\x8f" // U+ebcf #define ICON_MD_VERIFIED "\xee\xbd\xb6" // U+ef76 #define ICON_MD_VERIFIED_USER "\xee\xa3\xa8" // U+e8e8 #define ICON_MD_VERTICAL_ALIGN_BOTTOM "\xee\x89\x98" // U+e258 #define ICON_MD_VERTICAL_ALIGN_CENTER "\xee\x89\x99" // U+e259 #define ICON_MD_VERTICAL_ALIGN_TOP "\xee\x89\x9a" // U+e25a #define ICON_MD_VERTICAL_DISTRIBUTE "\xee\x81\xb6" // U+e076 #define ICON_MD_VERTICAL_SHADES "\xee\xb0\x8e" // U+ec0e #define ICON_MD_VERTICAL_SHADES_CLOSED "\xee\xb0\x8d" // U+ec0d #define ICON_MD_VERTICAL_SPLIT "\xee\xa5\x89" // U+e949 #define ICON_MD_VIBRATION "\xee\x98\xad" // U+e62d #define ICON_MD_VIDEO_CALL "\xee\x81\xb0" // U+e070 #define ICON_MD_VIDEO_CAMERA_BACK "\xef\x81\xbf" // U+f07f #define ICON_MD_VIDEO_CAMERA_FRONT "\xef\x82\x80" // U+f080 #define ICON_MD_VIDEO_CHAT "\xef\xa2\xa0" // U+f8a0 #define ICON_MD_VIDEO_COLLECTION "\xee\x81\x8a" // U+e04a #define ICON_MD_VIDEO_FILE "\xee\xae\x87" // U+eb87 #define ICON_MD_VIDEO_LABEL "\xee\x81\xb1" // U+e071 #define ICON_MD_VIDEO_LIBRARY "\xee\x81\x8a" // U+e04a #define ICON_MD_VIDEO_SETTINGS "\xee\xa9\xb5" // U+ea75 #define ICON_MD_VIDEO_STABLE "\xef\x82\x81" // U+f081 #define ICON_MD_VIDEOCAM "\xee\x81\x8b" // U+e04b #define ICON_MD_VIDEOCAM_OFF "\xee\x81\x8c" // U+e04c #define ICON_MD_VIDEOGAME_ASSET "\xee\x8c\xb8" // U+e338 #define ICON_MD_VIDEOGAME_ASSET_OFF "\xee\x94\x80" // U+e500 #define ICON_MD_VIEW_AGENDA "\xee\xa3\xa9" // U+e8e9 #define ICON_MD_VIEW_ARRAY "\xee\xa3\xaa" // U+e8ea #define ICON_MD_VIEW_CAROUSEL "\xee\xa3\xab" // U+e8eb #define ICON_MD_VIEW_COLUMN "\xee\xa3\xac" // U+e8ec #define ICON_MD_VIEW_COMFORTABLE "\xee\x90\xaa" // U+e42a #define ICON_MD_VIEW_COMFY "\xee\x90\xaa" // U+e42a #define ICON_MD_VIEW_COMFY_ALT "\xee\xad\xb3" // U+eb73 #define ICON_MD_VIEW_COMPACT "\xee\x90\xab" // U+e42b #define ICON_MD_VIEW_COMPACT_ALT "\xee\xad\xb4" // U+eb74 #define ICON_MD_VIEW_COZY "\xee\xad\xb5" // U+eb75 #define ICON_MD_VIEW_DAY "\xee\xa3\xad" // U+e8ed #define ICON_MD_VIEW_HEADLINE "\xee\xa3\xae" // U+e8ee #define ICON_MD_VIEW_IN_AR "\xee\xa7\xbe" // U+e9fe #define ICON_MD_VIEW_KANBAN "\xee\xad\xbf" // U+eb7f #define ICON_MD_VIEW_LIST "\xee\xa3\xaf" // U+e8ef #define ICON_MD_VIEW_MODULE "\xee\xa3\xb0" // U+e8f0 #define ICON_MD_VIEW_QUILT "\xee\xa3\xb1" // U+e8f1 #define ICON_MD_VIEW_SIDEBAR "\xef\x84\x94" // U+f114 #define ICON_MD_VIEW_STREAM "\xee\xa3\xb2" // U+e8f2 #define ICON_MD_VIEW_TIMELINE "\xee\xae\x85" // U+eb85 #define ICON_MD_VIEW_WEEK "\xee\xa3\xb3" // U+e8f3 #define ICON_MD_VIGNETTE "\xee\x90\xb5" // U+e435 #define ICON_MD_VILLA "\xee\x96\x86" // U+e586 #define ICON_MD_VISIBILITY "\xee\xa3\xb4" // U+e8f4 #define ICON_MD_VISIBILITY_OFF "\xee\xa3\xb5" // U+e8f5 #define ICON_MD_VOICE_CHAT "\xee\x98\xae" // U+e62e #define ICON_MD_VOICE_OVER_OFF "\xee\xa5\x8a" // U+e94a #define ICON_MD_VOICEMAIL "\xee\x83\x99" // U+e0d9 #define ICON_MD_VOLCANO "\xee\xaf\x9a" // U+ebda #define ICON_MD_VOLUME_DOWN "\xee\x81\x8d" // U+e04d #define ICON_MD_VOLUME_DOWN_ALT "\xee\x9e\x9c" // U+e79c #define ICON_MD_VOLUME_MUTE "\xee\x81\x8e" // U+e04e #define ICON_MD_VOLUME_OFF "\xee\x81\x8f" // U+e04f #define ICON_MD_VOLUME_UP "\xee\x81\x90" // U+e050 #define ICON_MD_VOLUNTEER_ACTIVISM "\xee\xa9\xb0" // U+ea70 #define ICON_MD_VPN_KEY "\xee\x83\x9a" // U+e0da #define ICON_MD_VPN_KEY_OFF "\xee\xad\xba" // U+eb7a #define ICON_MD_VPN_LOCK "\xee\x98\xaf" // U+e62f #define ICON_MD_VRPANO "\xef\x82\x82" // U+f082 #define ICON_MD_WALLET "\xef\xa3\xbf" // U+f8ff #define ICON_MD_WALLET_GIFTCARD "\xee\xa3\xb6" // U+e8f6 #define ICON_MD_WALLET_MEMBERSHIP "\xee\xa3\xb7" // U+e8f7 #define ICON_MD_WALLET_TRAVEL "\xee\xa3\xb8" // U+e8f8 #define ICON_MD_WALLPAPER "\xee\x86\xbc" // U+e1bc #define ICON_MD_WAREHOUSE "\xee\xae\xb8" // U+ebb8 #define ICON_MD_WARNING "\xee\x80\x82" // U+e002 #define ICON_MD_WARNING_AMBER "\xef\x82\x83" // U+f083 #define ICON_MD_WASH "\xef\x86\xb1" // U+f1b1 #define ICON_MD_WATCH "\xee\x8c\xb4" // U+e334 #define ICON_MD_WATCH_LATER "\xee\xa4\xa4" // U+e924 #define ICON_MD_WATCH_OFF "\xee\xab\xa3" // U+eae3 #define ICON_MD_WATER "\xef\x82\x84" // U+f084 #define ICON_MD_WATER_DAMAGE "\xef\x88\x83" // U+f203 #define ICON_MD_WATER_DROP "\xee\x9e\x98" // U+e798 #define ICON_MD_WATERFALL_CHART "\xee\xa8\x80" // U+ea00 #define ICON_MD_WAVES "\xee\x85\xb6" // U+e176 #define ICON_MD_WAVING_HAND "\xee\x9d\xa6" // U+e766 #define ICON_MD_WB_AUTO "\xee\x90\xac" // U+e42c #define ICON_MD_WB_CLOUDY "\xee\x90\xad" // U+e42d #define ICON_MD_WB_INCANDESCENT "\xee\x90\xae" // U+e42e #define ICON_MD_WB_IRIDESCENT "\xee\x90\xb6" // U+e436 #define ICON_MD_WB_SHADE "\xee\xa8\x81" // U+ea01 #define ICON_MD_WB_SUNNY "\xee\x90\xb0" // U+e430 #define ICON_MD_WB_TWIGHLIGHT "\xee\xa8\x82" // U+ea02 #define ICON_MD_WB_TWILIGHT "\xee\x87\x86" // U+e1c6 #define ICON_MD_WC "\xee\x98\xbd" // U+e63d #define ICON_MD_WEB "\xee\x81\x91" // U+e051 #define ICON_MD_WEB_ASSET "\xee\x81\xa9" // U+e069 #define ICON_MD_WEB_ASSET_OFF "\xee\x93\xb7" // U+e4f7 #define ICON_MD_WEB_STORIES "\xee\x96\x95" // U+e595 #define ICON_MD_WEBHOOK "\xee\xae\x92" // U+eb92 #define ICON_MD_WECHAT "\xee\xaa\x81" // U+ea81 #define ICON_MD_WEEKEND "\xee\x85\xab" // U+e16b #define ICON_MD_WEST "\xef\x87\xa6" // U+f1e6 #define ICON_MD_WHATSHOT "\xee\xa0\x8e" // U+e80e #define ICON_MD_WHEELCHAIR_PICKUP "\xef\x86\xab" // U+f1ab #define ICON_MD_WHERE_TO_VOTE "\xee\x85\xb7" // U+e177 #define ICON_MD_WIDGETS "\xee\x86\xbd" // U+e1bd #define ICON_MD_WIDTH_FULL "\xef\xa3\xb5" // U+f8f5 #define ICON_MD_WIDTH_NORMAL "\xef\xa3\xb6" // U+f8f6 #define ICON_MD_WIDTH_WIDE "\xef\xa3\xb7" // U+f8f7 #define ICON_MD_WIFI "\xee\x98\xbe" // U+e63e #define ICON_MD_WIFI_1_BAR "\xee\x93\x8a" // U+e4ca #define ICON_MD_WIFI_2_BAR "\xee\x93\x99" // U+e4d9 #define ICON_MD_WIFI_CALLING "\xee\xbd\xb7" // U+ef77 #define ICON_MD_WIFI_CALLING_3 "\xef\x82\x85" // U+f085 #define ICON_MD_WIFI_CHANNEL "\xee\xad\xaa" // U+eb6a #define ICON_MD_WIFI_FIND "\xee\xac\xb1" // U+eb31 #define ICON_MD_WIFI_LOCK "\xee\x87\xa1" // U+e1e1 #define ICON_MD_WIFI_OFF "\xee\x99\x88" // U+e648 #define ICON_MD_WIFI_PASSWORD "\xee\xad\xab" // U+eb6b #define ICON_MD_WIFI_PROTECTED_SETUP "\xef\x83\xbc" // U+f0fc #define ICON_MD_WIFI_TETHERING "\xee\x87\xa2" // U+e1e2 #define ICON_MD_WIFI_TETHERING_ERROR "\xee\xab\x99" // U+ead9 #define ICON_MD_WIFI_TETHERING_ERROR_ROUNDED "\xef\x82\x86" // U+f086 #define ICON_MD_WIFI_TETHERING_OFF "\xef\x82\x87" // U+f087 #define ICON_MD_WIND_POWER "\xee\xb0\x8c" // U+ec0c #define ICON_MD_WINDOW "\xef\x82\x88" // U+f088 #define ICON_MD_WINE_BAR "\xef\x87\xa8" // U+f1e8 #define ICON_MD_WOMAN "\xee\x84\xbe" // U+e13e #define ICON_MD_WOMAN_2 "\xef\xa3\xa7" // U+f8e7 #define ICON_MD_WOO_COMMERCE "\xee\xa9\xad" // U+ea6d #define ICON_MD_WORDPRESS "\xee\xaa\x9f" // U+ea9f #define ICON_MD_WORK "\xee\xa3\xb9" // U+e8f9 #define ICON_MD_WORK_HISTORY "\xee\xb0\x89" // U+ec09 #define ICON_MD_WORK_OFF "\xee\xa5\x82" // U+e942 #define ICON_MD_WORK_OUTLINE "\xee\xa5\x83" // U+e943 #define ICON_MD_WORKSPACE_PREMIUM "\xee\x9e\xaf" // U+e7af #define ICON_MD_WORKSPACES "\xee\x86\xa0" // U+e1a0 #define ICON_MD_WORKSPACES_FILLED "\xee\xa8\x8d" // U+ea0d #define ICON_MD_WORKSPACES_OUTLINE "\xee\xa8\x8f" // U+ea0f #define ICON_MD_WRAP_TEXT "\xee\x89\x9b" // U+e25b #define ICON_MD_WRONG_LOCATION "\xee\xbd\xb8" // U+ef78 #define ICON_MD_WYSIWYG "\xef\x87\x83" // U+f1c3 #define ICON_MD_YARD "\xef\x82\x89" // U+f089 #define ICON_MD_YOUTUBE_SEARCHED_FOR "\xee\xa3\xba" // U+e8fa #define ICON_MD_ZOOM_IN "\xee\xa3\xbf" // U+e8ff #define ICON_MD_ZOOM_IN_MAP "\xee\xac\xad" // U+eb2d #define ICON_MD_ZOOM_OUT "\xee\xa4\x80" // U+e900 #define ICON_MD_ZOOM_OUT_MAP "\xee\x95\xab" // U+e56b #endif // ICON_MD_H #line 0 #ifdef V4K_3RD //----------------------------------------------------------------------------- // 3rd party libs #define ARCHIVE_C // archive.c #define COMPRESS_C // compress.c #define ENET_IMPLEMENTATION // enet #define GJK_C // gjk #define _GLFW_IMPLEMENTATION // glfw337 #define GLFW_INCLUDE_NONE // glfw337 #define HTTPS_IMPLEMENTATION // https #define JO_MPEG_COMPONENTS 3 // jo_mpeg #define JSON5_C // json5 #define LUA_IMPL // lua544 #define MINIAUDIO_IMPLEMENTATION // miniaudio #define MA_NO_FLAC // miniaudio #define NK_GLFW_GL3_IMPLEMENTATION // nuklear #define NK_IMPLEMENTATION // nuklear #define NK_INCLUDE_DEFAULT_ALLOCATOR // nuklear #define NK_INCLUDE_DEFAULT_FONT // nuklear #define NK_INCLUDE_FIXED_TYPES // nuklear #define NK_INCLUDE_FONT_BAKING // nuklear #define NK_INCLUDE_STANDARD_IO // nuklear #define NK_INCLUDE_STANDARD_VARARGS // nuklear #define NK_INCLUDE_VERTEX_BUFFER_OUTPUT // nuklear #define NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS 64 // nuklear #define NK_KEYSTATE_BASED_INPUT // nuklear #define PL_MPEG_IMPLEMENTATION // pl_mpeg #define STB_IMAGE_IMPLEMENTATION // stbi #define STB_IMAGE_WRITE_IMPLEMENTATION // stbi_write #define STB_SPRINTF_IMPLEMENTATION // stb_sprintf #define STB_SPRINTF_NOUNALIGNED // stb_sprintf #define STS_MIXER_IMPLEMENTATION // sts_mixer #define SIMPLEX_C // simplex #define SWRAP_IMPLEMENTATION // swrap #define SWRAP_STATIC // swrap #define THREAD_IMPLEMENTATION // thread #define TFD_IMPLEMENTATION // tinyfiledialogs #define BQ_PLATFORM_IMPLEMENTATION // websocket #define BQ_WEBSOCKET_IMPLEMENTATION // websocket #define XML_C // xml #ifdef __APPLE__ #define _GLFW_COCOA // glfw osx #elif defined _WIN32 #define _GLFW_WIN32 // glfw win32 #else #define _GLFW_X11 // glfw linux, also _GLFW_OSMESA or _GLFW_WAYLAND #endif #if defined __TINYC__ && defined _WIN32 #define MAPVK_VSC_TO_VK 1 #define MAPVK_VK_TO_VSC 0 #define IPV6_V6ONLY 27 #define _WIN32_WINNT_VISTA 0 #define _WIN32_WINNT_WINXP 0 #define _WIN32_WINNT_WIN7 0 #endif #ifdef __TINYC__ #define STBI_NO_SIMD // no uint128_t (3rd_https.h) char* strtok_s( char* str, const char* delimiters, char** context ); #endif #if defined __clang__ && defined _WIN32 int execv(const char *path, char *const argv[]); #elif (is(tcc) /*|| defined __clang__*/) && defined _WIN32 int execv(const char *path, char *const argv[]); errno_t strerror_s( char *buffer, size_t sizeInBytes, int errnum ); typedef int socklen_t; #if is(tcc) #define restrict const char *inet_ntop(int af, const void *restrict src, char *restrict dst, socklen_t size); int inet_pton(int af, const char *restrict src, void *restrict dst); #endif errno_t fopen_s( FILE** pFile, const char *filename, const char *mode ); #endif //--- #line 1 "3rd_glfw3.h" #ifndef __EMSCRIPTEN__ // forked from https://github.com/SasLuca/glfw-single-header (CC0-1.0 licensed) // Define _GLFW_IMPLEMENTATION to unroll the implementation into a single compilation unit. // Also, before including do define one of these: // _GLFW_COCOA // _GLFW_WIN32 // _GLFW_X11 // _GLFW_WAYLAND // _GLFW_OSMESA #ifdef _MSC_VER #pragma comment(lib, "gdi32") //< @r-lyeh #pragma comment(lib, "user32") //< @r-lyeh #pragma comment(lib, "shell32") //< @r-lyeh #endif /************************************************************************* * GLFW 3.3.7 - www.glfw.org * A library for OpenGL, window and input *------------------------------------------------------------------------ * Copyright (c) 2002-2006 Marcus Geelnard * Copyright (c) 2006-2019 Camilla Löwy * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would * be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * 3. This notice may not be removed or altered from any source * distribution. * *************************************************************************/ #ifndef _glfw3_h_ #define _glfw3_h_ #ifdef __cplusplus extern "C" { #endif /************************************************************************* * Doxygen documentation *************************************************************************/ /*! @file glfw3.h * @brief The header of the GLFW 3 API. * * This is the header file of the GLFW 3 API. It defines all its types and * declares all its functions. * * For more information about how to use this file, see @ref build_include. */ /*! @defgroup context Context reference * @brief Functions and types related to OpenGL and OpenGL ES contexts. * * This is the reference documentation for OpenGL and OpenGL ES context related * functions. For more task-oriented information, see the @ref context_guide. */ /*! @defgroup vulkan Vulkan support reference * @brief Functions and types related to Vulkan. * * This is the reference documentation for Vulkan related functions and types. * For more task-oriented information, see the @ref vulkan_guide. */ /*! @defgroup init Initialization, version and error reference * @brief Functions and types related to initialization and error handling. * * This is the reference documentation for initialization and termination of * the library, version management and error handling. For more task-oriented * information, see the @ref intro_guide. */ /*! @defgroup input Input reference * @brief Functions and types related to input handling. * * This is the reference documentation for input related functions and types. * For more task-oriented information, see the @ref input_guide. */ /*! @defgroup monitor Monitor reference * @brief Functions and types related to monitors. * * This is the reference documentation for monitor related functions and types. * For more task-oriented information, see the @ref monitor_guide. */ /*! @defgroup window Window reference * @brief Functions and types related to windows. * * This is the reference documentation for window related functions and types, * including creation, deletion and event polling. For more task-oriented * information, see the @ref window_guide. */ /************************************************************************* * Compiler- and platform-specific preprocessor work *************************************************************************/ /* If we are we on Windows, we want a single define for it. */ #if !defined(_WIN32) && (defined(__WIN32__) || defined(WIN32) || defined(__MINGW32__)) #define _WIN32 #endif /* _WIN32 */ /* Include because most Windows GLU headers need wchar_t and * the macOS OpenGL header blocks the definition of ptrdiff_t by glext.h. * Include it unconditionally to avoid surprising side-effects. */ #include /* Include because it is needed by Vulkan and related functions. * Include it unconditionally to avoid surprising side-effects. */ #include #if defined(GLFW_INCLUDE_VULKAN) #include #endif /* Vulkan header */ /* The Vulkan header may have indirectly included windows.h (because of * VK_USE_PLATFORM_WIN32_KHR) so we offer our replacement symbols after it. */ /* It is customary to use APIENTRY for OpenGL function pointer declarations on * all platforms. Additionally, the Windows OpenGL header needs APIENTRY. */ #if !defined(APIENTRY) #if defined(_WIN32) #define APIENTRY __stdcall #else #define APIENTRY #endif #define GLFW_APIENTRY_DEFINED #endif /* APIENTRY */ /* Some Windows OpenGL headers need this. */ #if !defined(WINGDIAPI) && defined(_WIN32) #define WINGDIAPI __declspec(dllimport) #define GLFW_WINGDIAPI_DEFINED #endif /* WINGDIAPI */ /* Some Windows GLU headers need this. */ #if !defined(CALLBACK) && defined(_WIN32) #define CALLBACK __stdcall #define GLFW_CALLBACK_DEFINED #endif /* CALLBACK */ /* Include the chosen OpenGL or OpenGL ES headers. */ #if defined(GLFW_INCLUDE_ES1) #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #elif defined(GLFW_INCLUDE_ES2) #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #elif defined(GLFW_INCLUDE_ES3) #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #elif defined(GLFW_INCLUDE_ES31) #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #elif defined(GLFW_INCLUDE_ES32) #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #elif defined(GLFW_INCLUDE_GLCOREARB) #if defined(__APPLE__) #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif /*GLFW_INCLUDE_GLEXT*/ #else /*__APPLE__*/ #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #endif /*__APPLE__*/ #elif defined(GLFW_INCLUDE_GLU) #if defined(__APPLE__) #if defined(GLFW_INCLUDE_GLU) #include #endif #else /*__APPLE__*/ #if defined(GLFW_INCLUDE_GLU) #include #endif #endif /*__APPLE__*/ #elif !defined(GLFW_INCLUDE_NONE) && \ !defined(__gl_h_) && \ !defined(__gles1_gl_h_) && \ !defined(__gles2_gl2_h_) && \ !defined(__gles2_gl3_h_) && \ !defined(__gles2_gl31_h_) && \ !defined(__gles2_gl32_h_) && \ !defined(__gl_glcorearb_h_) && \ !defined(__gl2_h_) /*legacy*/ && \ !defined(__gl3_h_) /*legacy*/ && \ !defined(__gl31_h_) /*legacy*/ && \ !defined(__gl32_h_) /*legacy*/ && \ !defined(__glcorearb_h_) /*legacy*/ && \ !defined(__GL_H__) /*non-standard*/ && \ !defined(__gltypes_h_) /*non-standard*/ && \ !defined(__glee_h_) /*non-standard*/ #if defined(__APPLE__) #if !defined(GLFW_INCLUDE_GLEXT) #define GL_GLEXT_LEGACY #endif #include #else /*__APPLE__*/ #include #if defined(GLFW_INCLUDE_GLEXT) #include #endif #endif /*__APPLE__*/ #endif /* OpenGL and OpenGL ES headers */ #if defined(GLFW_DLL) && defined(_GLFW_BUILD_DLL) /* GLFW_DLL must be defined by applications that are linking against the DLL * version of the GLFW library. _GLFW_BUILD_DLL is defined by the GLFW * configuration header when compiling the DLL version of the library. */ #error "You must not have both GLFW_DLL and _GLFW_BUILD_DLL defined" #endif /* GLFWAPI is used to declare public API functions for export * from the DLL / shared library / dynamic library. */ #if defined(_WIN32) && defined(_GLFW_BUILD_DLL) /* We are building GLFW as a Win32 DLL */ #define GLFWAPI __declspec(dllexport) #elif defined(_WIN32) && defined(GLFW_DLL) /* We are calling GLFW as a Win32 DLL */ #define GLFWAPI __declspec(dllimport) #elif defined(__GNUC__) && defined(_GLFW_BUILD_DLL) /* We are building GLFW as a shared / dynamic library */ #define GLFWAPI __attribute__((visibility("default"))) #else /* We are building or calling GLFW as a static library */ #define GLFWAPI #endif /************************************************************************* * GLFW API tokens *************************************************************************/ /*! @name GLFW version macros * @{ */ /*! @brief The major version number of the GLFW header. * * The major version number of the GLFW header. This is incremented when the * API is changed in non-compatible ways. * @ingroup init */ #define GLFW_VERSION_MAJOR 3 /*! @brief The minor version number of the GLFW header. * * The minor version number of the GLFW header. This is incremented when * features are added to the API but it remains backward-compatible. * @ingroup init */ #define GLFW_VERSION_MINOR 3 /*! @brief The revision number of the GLFW header. * * The revision number of the GLFW header. This is incremented when a bug fix * release is made that does not contain any API changes. * @ingroup init */ #define GLFW_VERSION_REVISION 7 /*! @} */ /*! @brief One. * * This is only semantic sugar for the number 1. You can instead use `1` or * `true` or `_True` or `GL_TRUE` or `VK_TRUE` or anything else that is equal * to one. * * @ingroup init */ #define GLFW_TRUE 1 /*! @brief Zero. * * This is only semantic sugar for the number 0. You can instead use `0` or * `false` or `_False` or `GL_FALSE` or `VK_FALSE` or anything else that is * equal to zero. * * @ingroup init */ #define GLFW_FALSE 0 /*! @name Key and button actions * @{ */ /*! @brief The key or mouse button was released. * * The key or mouse button was released. * * @ingroup input */ #define GLFW_RELEASE 0 /*! @brief The key or mouse button was pressed. * * The key or mouse button was pressed. * * @ingroup input */ #define GLFW_PRESS 1 /*! @brief The key was held down until it repeated. * * The key was held down until it repeated. * * @ingroup input */ #define GLFW_REPEAT 2 /*! @} */ /*! @defgroup hat_state Joystick hat states * @brief Joystick hat states. * * See [joystick hat input](@ref joystick_hat) for how these are used. * * @ingroup input * @{ */ #define GLFW_HAT_CENTERED 0 #define GLFW_HAT_UP 1 #define GLFW_HAT_RIGHT 2 #define GLFW_HAT_DOWN 4 #define GLFW_HAT_LEFT 8 #define GLFW_HAT_RIGHT_UP (GLFW_HAT_RIGHT | GLFW_HAT_UP) #define GLFW_HAT_RIGHT_DOWN (GLFW_HAT_RIGHT | GLFW_HAT_DOWN) #define GLFW_HAT_LEFT_UP (GLFW_HAT_LEFT | GLFW_HAT_UP) #define GLFW_HAT_LEFT_DOWN (GLFW_HAT_LEFT | GLFW_HAT_DOWN) /*! @} */ /*! @defgroup keys Keyboard keys * @brief Keyboard key IDs. * * See [key input](@ref input_key) for how these are used. * * These key codes are inspired by the _USB HID Usage Tables v1.12_ (p. 53-60), * but re-arranged to map to 7-bit ASCII for printable keys (function keys are * put in the 256+ range). * * The naming of the key codes follow these rules: * - The US keyboard layout is used * - Names of printable alpha-numeric characters are used (e.g. "A", "R", * "3", etc.) * - For non-alphanumeric characters, Unicode:ish names are used (e.g. * "COMMA", "LEFT_SQUARE_BRACKET", etc.). Note that some names do not * correspond to the Unicode standard (usually for brevity) * - Keys that lack a clear US mapping are named "WORLD_x" * - For non-printable keys, custom names are used (e.g. "F4", * "BACKSPACE", etc.) * * @ingroup input * @{ */ /* The unknown key */ #define GLFW_KEY_UNKNOWN -1 /* Printable keys */ #define GLFW_KEY_SPACE 32 #define GLFW_KEY_APOSTROPHE 39 /* ' */ #define GLFW_KEY_COMMA 44 /* , */ #define GLFW_KEY_MINUS 45 /* - */ #define GLFW_KEY_PERIOD 46 /* . */ #define GLFW_KEY_SLASH 47 /* / */ #define GLFW_KEY_0 48 #define GLFW_KEY_1 49 #define GLFW_KEY_2 50 #define GLFW_KEY_3 51 #define GLFW_KEY_4 52 #define GLFW_KEY_5 53 #define GLFW_KEY_6 54 #define GLFW_KEY_7 55 #define GLFW_KEY_8 56 #define GLFW_KEY_9 57 #define GLFW_KEY_SEMICOLON 59 /* ; */ #define GLFW_KEY_EQUAL 61 /* = */ #define GLFW_KEY_A 65 #define GLFW_KEY_B 66 #define GLFW_KEY_C 67 #define GLFW_KEY_D 68 #define GLFW_KEY_E 69 #define GLFW_KEY_F 70 #define GLFW_KEY_G 71 #define GLFW_KEY_H 72 #define GLFW_KEY_I 73 #define GLFW_KEY_J 74 #define GLFW_KEY_K 75 #define GLFW_KEY_L 76 #define GLFW_KEY_M 77 #define GLFW_KEY_N 78 #define GLFW_KEY_O 79 #define GLFW_KEY_P 80 #define GLFW_KEY_Q 81 #define GLFW_KEY_R 82 #define GLFW_KEY_S 83 #define GLFW_KEY_T 84 #define GLFW_KEY_U 85 #define GLFW_KEY_V 86 #define GLFW_KEY_W 87 #define GLFW_KEY_X 88 #define GLFW_KEY_Y 89 #define GLFW_KEY_Z 90 #define GLFW_KEY_LEFT_BRACKET 91 /* [ */ #define GLFW_KEY_BACKSLASH 92 /* \ */ #define GLFW_KEY_RIGHT_BRACKET 93 /* ] */ #define GLFW_KEY_GRAVE_ACCENT 96 /* ` */ #define GLFW_KEY_WORLD_1 161 /* non-US #1 */ #define GLFW_KEY_WORLD_2 162 /* non-US #2 */ /* Function keys */ #define GLFW_KEY_ESCAPE 256 #define GLFW_KEY_ENTER 257 #define GLFW_KEY_TAB 258 #define GLFW_KEY_BACKSPACE 259 #define GLFW_KEY_INSERT 260 #define GLFW_KEY_DELETE 261 #define GLFW_KEY_RIGHT 262 #define GLFW_KEY_LEFT 263 #define GLFW_KEY_DOWN 264 #define GLFW_KEY_UP 265 #define GLFW_KEY_PAGE_UP 266 #define GLFW_KEY_PAGE_DOWN 267 #define GLFW_KEY_HOME 268 #define GLFW_KEY_END 269 #define GLFW_KEY_CAPS_LOCK 280 #define GLFW_KEY_SCROLL_LOCK 281 #define GLFW_KEY_NUM_LOCK 282 #define GLFW_KEY_PRINT_SCREEN 283 #define GLFW_KEY_PAUSE 284 #define GLFW_KEY_F1 290 #define GLFW_KEY_F2 291 #define GLFW_KEY_F3 292 #define GLFW_KEY_F4 293 #define GLFW_KEY_F5 294 #define GLFW_KEY_F6 295 #define GLFW_KEY_F7 296 #define GLFW_KEY_F8 297 #define GLFW_KEY_F9 298 #define GLFW_KEY_F10 299 #define GLFW_KEY_F11 300 #define GLFW_KEY_F12 301 #define GLFW_KEY_F13 302 #define GLFW_KEY_F14 303 #define GLFW_KEY_F15 304 #define GLFW_KEY_F16 305 #define GLFW_KEY_F17 306 #define GLFW_KEY_F18 307 #define GLFW_KEY_F19 308 #define GLFW_KEY_F20 309 #define GLFW_KEY_F21 310 #define GLFW_KEY_F22 311 #define GLFW_KEY_F23 312 #define GLFW_KEY_F24 313 #define GLFW_KEY_F25 314 #define GLFW_KEY_KP_0 320 #define GLFW_KEY_KP_1 321 #define GLFW_KEY_KP_2 322 #define GLFW_KEY_KP_3 323 #define GLFW_KEY_KP_4 324 #define GLFW_KEY_KP_5 325 #define GLFW_KEY_KP_6 326 #define GLFW_KEY_KP_7 327 #define GLFW_KEY_KP_8 328 #define GLFW_KEY_KP_9 329 #define GLFW_KEY_KP_DECIMAL 330 #define GLFW_KEY_KP_DIVIDE 331 #define GLFW_KEY_KP_MULTIPLY 332 #define GLFW_KEY_KP_SUBTRACT 333 #define GLFW_KEY_KP_ADD 334 #define GLFW_KEY_KP_ENTER 335 #define GLFW_KEY_KP_EQUAL 336 #define GLFW_KEY_LEFT_SHIFT 340 #define GLFW_KEY_LEFT_CONTROL 341 #define GLFW_KEY_LEFT_ALT 342 #define GLFW_KEY_LEFT_SUPER 343 #define GLFW_KEY_RIGHT_SHIFT 344 #define GLFW_KEY_RIGHT_CONTROL 345 #define GLFW_KEY_RIGHT_ALT 346 #define GLFW_KEY_RIGHT_SUPER 347 #define GLFW_KEY_MENU 348 #define GLFW_KEY_LAST GLFW_KEY_MENU /*! @} */ /*! @defgroup mods Modifier key flags * @brief Modifier key flags. * * See [key input](@ref input_key) for how these are used. * * @ingroup input * @{ */ /*! @brief If this bit is set one or more Shift keys were held down. * * If this bit is set one or more Shift keys were held down. */ #define GLFW_MOD_SHIFT 0x0001 /*! @brief If this bit is set one or more Control keys were held down. * * If this bit is set one or more Control keys were held down. */ #define GLFW_MOD_CONTROL 0x0002 /*! @brief If this bit is set one or more Alt keys were held down. * * If this bit is set one or more Alt keys were held down. */ #define GLFW_MOD_ALT 0x0004 /*! @brief If this bit is set one or more Super keys were held down. * * If this bit is set one or more Super keys were held down. */ #define GLFW_MOD_SUPER 0x0008 /*! @brief If this bit is set the Caps Lock key is enabled. * * If this bit is set the Caps Lock key is enabled and the @ref * GLFW_LOCK_KEY_MODS input mode is set. */ #define GLFW_MOD_CAPS_LOCK 0x0010 /*! @brief If this bit is set the Num Lock key is enabled. * * If this bit is set the Num Lock key is enabled and the @ref * GLFW_LOCK_KEY_MODS input mode is set. */ #define GLFW_MOD_NUM_LOCK 0x0020 /*! @} */ /*! @defgroup buttons Mouse buttons * @brief Mouse button IDs. * * See [mouse button input](@ref input_mouse_button) for how these are used. * * @ingroup input * @{ */ #define GLFW_MOUSE_BUTTON_1 0 #define GLFW_MOUSE_BUTTON_2 1 #define GLFW_MOUSE_BUTTON_3 2 #define GLFW_MOUSE_BUTTON_4 3 #define GLFW_MOUSE_BUTTON_5 4 #define GLFW_MOUSE_BUTTON_6 5 #define GLFW_MOUSE_BUTTON_7 6 #define GLFW_MOUSE_BUTTON_8 7 #define GLFW_MOUSE_BUTTON_LAST GLFW_MOUSE_BUTTON_8 #define GLFW_MOUSE_BUTTON_LEFT GLFW_MOUSE_BUTTON_1 #define GLFW_MOUSE_BUTTON_RIGHT GLFW_MOUSE_BUTTON_2 #define GLFW_MOUSE_BUTTON_MIDDLE GLFW_MOUSE_BUTTON_3 /*! @} */ /*! @defgroup joysticks Joysticks * @brief Joystick IDs. * * See [joystick input](@ref joystick) for how these are used. * * @ingroup input * @{ */ #define GLFW_JOYSTICK_1 0 #define GLFW_JOYSTICK_2 1 #define GLFW_JOYSTICK_3 2 #define GLFW_JOYSTICK_4 3 #define GLFW_JOYSTICK_5 4 #define GLFW_JOYSTICK_6 5 #define GLFW_JOYSTICK_7 6 #define GLFW_JOYSTICK_8 7 #define GLFW_JOYSTICK_9 8 #define GLFW_JOYSTICK_10 9 #define GLFW_JOYSTICK_11 10 #define GLFW_JOYSTICK_12 11 #define GLFW_JOYSTICK_13 12 #define GLFW_JOYSTICK_14 13 #define GLFW_JOYSTICK_15 14 #define GLFW_JOYSTICK_16 15 #define GLFW_JOYSTICK_LAST GLFW_JOYSTICK_16 /*! @} */ /*! @defgroup gamepad_buttons Gamepad buttons * @brief Gamepad buttons. * * See @ref gamepad for how these are used. * * @ingroup input * @{ */ #define GLFW_GAMEPAD_BUTTON_A 0 #define GLFW_GAMEPAD_BUTTON_B 1 #define GLFW_GAMEPAD_BUTTON_X 2 #define GLFW_GAMEPAD_BUTTON_Y 3 #define GLFW_GAMEPAD_BUTTON_LEFT_BUMPER 4 #define GLFW_GAMEPAD_BUTTON_RIGHT_BUMPER 5 #define GLFW_GAMEPAD_BUTTON_BACK 6 #define GLFW_GAMEPAD_BUTTON_START 7 #define GLFW_GAMEPAD_BUTTON_GUIDE 8 #define GLFW_GAMEPAD_BUTTON_LEFT_THUMB 9 #define GLFW_GAMEPAD_BUTTON_RIGHT_THUMB 10 #define GLFW_GAMEPAD_BUTTON_DPAD_UP 11 #define GLFW_GAMEPAD_BUTTON_DPAD_RIGHT 12 #define GLFW_GAMEPAD_BUTTON_DPAD_DOWN 13 #define GLFW_GAMEPAD_BUTTON_DPAD_LEFT 14 #define GLFW_GAMEPAD_BUTTON_LAST GLFW_GAMEPAD_BUTTON_DPAD_LEFT #define GLFW_GAMEPAD_BUTTON_CROSS GLFW_GAMEPAD_BUTTON_A #define GLFW_GAMEPAD_BUTTON_CIRCLE GLFW_GAMEPAD_BUTTON_B #define GLFW_GAMEPAD_BUTTON_SQUARE GLFW_GAMEPAD_BUTTON_X #define GLFW_GAMEPAD_BUTTON_TRIANGLE GLFW_GAMEPAD_BUTTON_Y /*! @} */ /*! @defgroup gamepad_axes Gamepad axes * @brief Gamepad axes. * * See @ref gamepad for how these are used. * * @ingroup input * @{ */ #define GLFW_GAMEPAD_AXIS_LEFT_X 0 #define GLFW_GAMEPAD_AXIS_LEFT_Y 1 #define GLFW_GAMEPAD_AXIS_RIGHT_X 2 #define GLFW_GAMEPAD_AXIS_RIGHT_Y 3 #define GLFW_GAMEPAD_AXIS_LEFT_TRIGGER 4 #define GLFW_GAMEPAD_AXIS_RIGHT_TRIGGER 5 #define GLFW_GAMEPAD_AXIS_LAST GLFW_GAMEPAD_AXIS_RIGHT_TRIGGER /*! @} */ /*! @defgroup errors Error codes * @brief Error codes. * * See [error handling](@ref error_handling) for how these are used. * * @ingroup init * @{ */ /*! @brief No error has occurred. * * No error has occurred. * * @analysis Yay. */ #define GLFW_NO_ERROR 0 /*! @brief GLFW has not been initialized. * * This occurs if a GLFW function was called that must not be called unless the * library is [initialized](@ref intro_init). * * @analysis Application programmer error. Initialize GLFW before calling any * function that requires initialization. */ #define GLFW_NOT_INITIALIZED 0x00010001 /*! @brief No context is current for this thread. * * This occurs if a GLFW function was called that needs and operates on the * current OpenGL or OpenGL ES context but no context is current on the calling * thread. One such function is @ref glfwSwapInterval. * * @analysis Application programmer error. Ensure a context is current before * calling functions that require a current context. */ #define GLFW_NO_CURRENT_CONTEXT 0x00010002 /*! @brief One of the arguments to the function was an invalid enum value. * * One of the arguments to the function was an invalid enum value, for example * requesting @ref GLFW_RED_BITS with @ref glfwGetWindowAttrib. * * @analysis Application programmer error. Fix the offending call. */ #define GLFW_INVALID_ENUM 0x00010003 /*! @brief One of the arguments to the function was an invalid value. * * One of the arguments to the function was an invalid value, for example * requesting a non-existent OpenGL or OpenGL ES version like 2.7. * * Requesting a valid but unavailable OpenGL or OpenGL ES version will instead * result in a @ref GLFW_VERSION_UNAVAILABLE error. * * @analysis Application programmer error. Fix the offending call. */ #define GLFW_INVALID_VALUE 0x00010004 /*! @brief A memory allocation failed. * * A memory allocation failed. * * @analysis A bug in GLFW or the underlying operating system. Report the bug * to our [issue tracker](https://github.com/glfw/glfw/issues). */ #define GLFW_OUT_OF_MEMORY 0x00010005 /*! @brief GLFW could not find support for the requested API on the system. * * GLFW could not find support for the requested API on the system. * * @analysis The installed graphics driver does not support the requested * API, or does not support it via the chosen context creation backend. * Below are a few examples. * * @par * Some pre-installed Windows graphics drivers do not support OpenGL. AMD only * supports OpenGL ES via EGL, while Nvidia and Intel only support it via * a WGL or GLX extension. macOS does not provide OpenGL ES at all. The Mesa * EGL, OpenGL and OpenGL ES libraries do not interface with the Nvidia binary * driver. Older graphics drivers do not support Vulkan. */ #define GLFW_API_UNAVAILABLE 0x00010006 /*! @brief The requested OpenGL or OpenGL ES version is not available. * * The requested OpenGL or OpenGL ES version (including any requested context * or framebuffer hints) is not available on this machine. * * @analysis The machine does not support your requirements. If your * application is sufficiently flexible, downgrade your requirements and try * again. Otherwise, inform the user that their machine does not match your * requirements. * * @par * Future invalid OpenGL and OpenGL ES versions, for example OpenGL 4.8 if 5.0 * comes out before the 4.x series gets that far, also fail with this error and * not @ref GLFW_INVALID_VALUE, because GLFW cannot know what future versions * will exist. */ #define GLFW_VERSION_UNAVAILABLE 0x00010007 /*! @brief A platform-specific error occurred that does not match any of the * more specific categories. * * A platform-specific error occurred that does not match any of the more * specific categories. * * @analysis A bug or configuration error in GLFW, the underlying operating * system or its drivers, or a lack of required resources. Report the issue to * our [issue tracker](https://github.com/glfw/glfw/issues). */ #define GLFW_PLATFORM_ERROR 0x00010008 /*! @brief The requested format is not supported or available. * * If emitted during window creation, the requested pixel format is not * supported. * * If emitted when querying the clipboard, the contents of the clipboard could * not be converted to the requested format. * * @analysis If emitted during window creation, one or more * [hard constraints](@ref window_hints_hard) did not match any of the * available pixel formats. If your application is sufficiently flexible, * downgrade your requirements and try again. Otherwise, inform the user that * their machine does not match your requirements. * * @par * If emitted when querying the clipboard, ignore the error or report it to * the user, as appropriate. */ #define GLFW_FORMAT_UNAVAILABLE 0x00010009 /*! @brief The specified window does not have an OpenGL or OpenGL ES context. * * A window that does not have an OpenGL or OpenGL ES context was passed to * a function that requires it to have one. * * @analysis Application programmer error. Fix the offending call. */ #define GLFW_NO_WINDOW_CONTEXT 0x0001000A /*! @} */ /*! @addtogroup window * @{ */ /*! @brief Input focus window hint and attribute * * Input focus [window hint](@ref GLFW_FOCUSED_hint) or * [window attribute](@ref GLFW_FOCUSED_attrib). */ #define GLFW_FOCUSED 0x00020001 /*! @brief Window iconification window attribute * * Window iconification [window attribute](@ref GLFW_ICONIFIED_attrib). */ #define GLFW_ICONIFIED 0x00020002 /*! @brief Window resize-ability window hint and attribute * * Window resize-ability [window hint](@ref GLFW_RESIZABLE_hint) and * [window attribute](@ref GLFW_RESIZABLE_attrib). */ #define GLFW_RESIZABLE 0x00020003 /*! @brief Window visibility window hint and attribute * * Window visibility [window hint](@ref GLFW_VISIBLE_hint) and * [window attribute](@ref GLFW_VISIBLE_attrib). */ #define GLFW_VISIBLE 0x00020004 /*! @brief Window decoration window hint and attribute * * Window decoration [window hint](@ref GLFW_DECORATED_hint) and * [window attribute](@ref GLFW_DECORATED_attrib). */ #define GLFW_DECORATED 0x00020005 /*! @brief Window auto-iconification window hint and attribute * * Window auto-iconification [window hint](@ref GLFW_AUTO_ICONIFY_hint) and * [window attribute](@ref GLFW_AUTO_ICONIFY_attrib). */ #define GLFW_AUTO_ICONIFY 0x00020006 /*! @brief Window decoration window hint and attribute * * Window decoration [window hint](@ref GLFW_FLOATING_hint) and * [window attribute](@ref GLFW_FLOATING_attrib). */ #define GLFW_FLOATING 0x00020007 /*! @brief Window maximization window hint and attribute * * Window maximization [window hint](@ref GLFW_MAXIMIZED_hint) and * [window attribute](@ref GLFW_MAXIMIZED_attrib). */ #define GLFW_MAXIMIZED 0x00020008 /*! @brief Cursor centering window hint * * Cursor centering [window hint](@ref GLFW_CENTER_CURSOR_hint). */ #define GLFW_CENTER_CURSOR 0x00020009 /*! @brief Window framebuffer transparency hint and attribute * * Window framebuffer transparency * [window hint](@ref GLFW_TRANSPARENT_FRAMEBUFFER_hint) and * [window attribute](@ref GLFW_TRANSPARENT_FRAMEBUFFER_attrib). */ #define GLFW_TRANSPARENT_FRAMEBUFFER 0x0002000A /*! @brief Mouse cursor hover window attribute. * * Mouse cursor hover [window attribute](@ref GLFW_HOVERED_attrib). */ #define GLFW_HOVERED 0x0002000B /*! @brief Input focus on calling show window hint and attribute * * Input focus [window hint](@ref GLFW_FOCUS_ON_SHOW_hint) or * [window attribute](@ref GLFW_FOCUS_ON_SHOW_attrib). */ #define GLFW_FOCUS_ON_SHOW 0x0002000C /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_RED_BITS). */ #define GLFW_RED_BITS 0x00021001 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_GREEN_BITS). */ #define GLFW_GREEN_BITS 0x00021002 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_BLUE_BITS). */ #define GLFW_BLUE_BITS 0x00021003 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_ALPHA_BITS). */ #define GLFW_ALPHA_BITS 0x00021004 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_DEPTH_BITS). */ #define GLFW_DEPTH_BITS 0x00021005 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_STENCIL_BITS). */ #define GLFW_STENCIL_BITS 0x00021006 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_ACCUM_RED_BITS). */ #define GLFW_ACCUM_RED_BITS 0x00021007 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_ACCUM_GREEN_BITS). */ #define GLFW_ACCUM_GREEN_BITS 0x00021008 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_ACCUM_BLUE_BITS). */ #define GLFW_ACCUM_BLUE_BITS 0x00021009 /*! @brief Framebuffer bit depth hint. * * Framebuffer bit depth [hint](@ref GLFW_ACCUM_ALPHA_BITS). */ #define GLFW_ACCUM_ALPHA_BITS 0x0002100A /*! @brief Framebuffer auxiliary buffer hint. * * Framebuffer auxiliary buffer [hint](@ref GLFW_AUX_BUFFERS). */ #define GLFW_AUX_BUFFERS 0x0002100B /*! @brief OpenGL stereoscopic rendering hint. * * OpenGL stereoscopic rendering [hint](@ref GLFW_STEREO). */ #define GLFW_STEREO 0x0002100C /*! @brief Framebuffer MSAA samples hint. * * Framebuffer MSAA samples [hint](@ref GLFW_SAMPLES). */ #define GLFW_SAMPLES 0x0002100D /*! @brief Framebuffer sRGB hint. * * Framebuffer sRGB [hint](@ref GLFW_SRGB_CAPABLE). */ #define GLFW_SRGB_CAPABLE 0x0002100E /*! @brief Monitor refresh rate hint. * * Monitor refresh rate [hint](@ref GLFW_REFRESH_RATE). */ #define GLFW_REFRESH_RATE 0x0002100F /*! @brief Framebuffer double buffering hint. * * Framebuffer double buffering [hint](@ref GLFW_DOUBLEBUFFER). */ #define GLFW_DOUBLEBUFFER 0x00021010 /*! @brief Context client API hint and attribute. * * Context client API [hint](@ref GLFW_CLIENT_API_hint) and * [attribute](@ref GLFW_CLIENT_API_attrib). */ #define GLFW_CLIENT_API 0x00022001 /*! @brief Context client API major version hint and attribute. * * Context client API major version [hint](@ref GLFW_CONTEXT_VERSION_MAJOR_hint) * and [attribute](@ref GLFW_CONTEXT_VERSION_MAJOR_attrib). */ #define GLFW_CONTEXT_VERSION_MAJOR 0x00022002 /*! @brief Context client API minor version hint and attribute. * * Context client API minor version [hint](@ref GLFW_CONTEXT_VERSION_MINOR_hint) * and [attribute](@ref GLFW_CONTEXT_VERSION_MINOR_attrib). */ #define GLFW_CONTEXT_VERSION_MINOR 0x00022003 /*! @brief Context client API revision number attribute. * * Context client API revision number * [attribute](@ref GLFW_CONTEXT_REVISION_attrib). */ #define GLFW_CONTEXT_REVISION 0x00022004 /*! @brief Context robustness hint and attribute. * * Context client API revision number [hint](@ref GLFW_CONTEXT_ROBUSTNESS_hint) * and [attribute](@ref GLFW_CONTEXT_ROBUSTNESS_attrib). */ #define GLFW_CONTEXT_ROBUSTNESS 0x00022005 /*! @brief OpenGL forward-compatibility hint and attribute. * * OpenGL forward-compatibility [hint](@ref GLFW_OPENGL_FORWARD_COMPAT_hint) * and [attribute](@ref GLFW_OPENGL_FORWARD_COMPAT_attrib). */ #define GLFW_OPENGL_FORWARD_COMPAT 0x00022006 /*! @brief Debug mode context hint and attribute. * * Debug mode context [hint](@ref GLFW_OPENGL_DEBUG_CONTEXT_hint) and * [attribute](@ref GLFW_OPENGL_DEBUG_CONTEXT_attrib). */ #define GLFW_OPENGL_DEBUG_CONTEXT 0x00022007 /*! @brief OpenGL profile hint and attribute. * * OpenGL profile [hint](@ref GLFW_OPENGL_PROFILE_hint) and * [attribute](@ref GLFW_OPENGL_PROFILE_attrib). */ #define GLFW_OPENGL_PROFILE 0x00022008 /*! @brief Context flush-on-release hint and attribute. * * Context flush-on-release [hint](@ref GLFW_CONTEXT_RELEASE_BEHAVIOR_hint) and * [attribute](@ref GLFW_CONTEXT_RELEASE_BEHAVIOR_attrib). */ #define GLFW_CONTEXT_RELEASE_BEHAVIOR 0x00022009 /*! @brief Context error suppression hint and attribute. * * Context error suppression [hint](@ref GLFW_CONTEXT_NO_ERROR_hint) and * [attribute](@ref GLFW_CONTEXT_NO_ERROR_attrib). */ #define GLFW_CONTEXT_NO_ERROR 0x0002200A /*! @brief Context creation API hint and attribute. * * Context creation API [hint](@ref GLFW_CONTEXT_CREATION_API_hint) and * [attribute](@ref GLFW_CONTEXT_CREATION_API_attrib). */ #define GLFW_CONTEXT_CREATION_API 0x0002200B /*! @brief Window content area scaling window * [window hint](@ref GLFW_SCALE_TO_MONITOR). */ #define GLFW_SCALE_TO_MONITOR 0x0002200C /*! @brief macOS specific * [window hint](@ref GLFW_COCOA_RETINA_FRAMEBUFFER_hint). */ #define GLFW_COCOA_RETINA_FRAMEBUFFER 0x00023001 /*! @brief macOS specific * [window hint](@ref GLFW_COCOA_FRAME_NAME_hint). */ #define GLFW_COCOA_FRAME_NAME 0x00023002 /*! @brief macOS specific * [window hint](@ref GLFW_COCOA_GRAPHICS_SWITCHING_hint). */ #define GLFW_COCOA_GRAPHICS_SWITCHING 0x00023003 /*! @brief X11 specific * [window hint](@ref GLFW_X11_CLASS_NAME_hint). */ #define GLFW_X11_CLASS_NAME 0x00024001 /*! @brief X11 specific * [window hint](@ref GLFW_X11_CLASS_NAME_hint). */ #define GLFW_X11_INSTANCE_NAME 0x00024002 /*! @} */ #define GLFW_NO_API 0 #define GLFW_OPENGL_API 0x00030001 #define GLFW_OPENGL_ES_API 0x00030002 #define GLFW_NO_ROBUSTNESS 0 #define GLFW_NO_RESET_NOTIFICATION 0x00031001 #define GLFW_LOSE_CONTEXT_ON_RESET 0x00031002 #define GLFW_OPENGL_ANY_PROFILE 0 #define GLFW_OPENGL_CORE_PROFILE 0x00032001 #define GLFW_OPENGL_COMPAT_PROFILE 0x00032002 #define GLFW_CURSOR 0x00033001 #define GLFW_STICKY_KEYS 0x00033002 #define GLFW_STICKY_MOUSE_BUTTONS 0x00033003 #define GLFW_LOCK_KEY_MODS 0x00033004 #define GLFW_RAW_MOUSE_MOTION 0x00033005 #define GLFW_CURSOR_NORMAL 0x00034001 #define GLFW_CURSOR_HIDDEN 0x00034002 #define GLFW_CURSOR_DISABLED 0x00034003 #define GLFW_ANY_RELEASE_BEHAVIOR 0 #define GLFW_RELEASE_BEHAVIOR_FLUSH 0x00035001 #define GLFW_RELEASE_BEHAVIOR_NONE 0x00035002 #define GLFW_NATIVE_CONTEXT_API 0x00036001 #define GLFW_EGL_CONTEXT_API 0x00036002 #define GLFW_OSMESA_CONTEXT_API 0x00036003 /*! @defgroup shapes Standard cursor shapes * @brief Standard system cursor shapes. * * See [standard cursor creation](@ref cursor_standard) for how these are used. * * @ingroup input * @{ */ /*! @brief The regular arrow cursor shape. * * The regular arrow cursor. */ #define GLFW_ARROW_CURSOR 0x00036001 /*! @brief The text input I-beam cursor shape. * * The text input I-beam cursor shape. */ #define GLFW_IBEAM_CURSOR 0x00036002 /*! @brief The crosshair shape. * * The crosshair shape. */ #define GLFW_CROSSHAIR_CURSOR 0x00036003 /*! @brief The hand shape. * * The hand shape. */ #define GLFW_HAND_CURSOR 0x00036004 /*! @brief The horizontal resize arrow shape. * * The horizontal resize arrow shape. */ #define GLFW_HRESIZE_CURSOR 0x00036005 /*! @brief The vertical resize arrow shape. * * The vertical resize arrow shape. */ #define GLFW_VRESIZE_CURSOR 0x00036006 /*! @} */ #define GLFW_CONNECTED 0x00040001 #define GLFW_DISCONNECTED 0x00040002 /*! @addtogroup init * @{ */ /*! @brief Joystick hat buttons init hint. * * Joystick hat buttons [init hint](@ref GLFW_JOYSTICK_HAT_BUTTONS). */ #define GLFW_JOYSTICK_HAT_BUTTONS 0x00050001 /*! @brief macOS specific init hint. * * macOS specific [init hint](@ref GLFW_COCOA_CHDIR_RESOURCES_hint). */ #define GLFW_COCOA_CHDIR_RESOURCES 0x00051001 /*! @brief macOS specific init hint. * * macOS specific [init hint](@ref GLFW_COCOA_MENUBAR_hint). */ #define GLFW_COCOA_MENUBAR 0x00051002 /*! @} */ #define GLFW_DONT_CARE -1 /************************************************************************* * GLFW API types *************************************************************************/ /*! @brief Client API function pointer type. * * Generic function pointer used for returning client API function pointers * without forcing a cast from a regular pointer. * * @sa @ref context_glext * @sa @ref glfwGetProcAddress * * @since Added in version 3.0. * * @ingroup context */ typedef void (*GLFWglproc)(void); /*! @brief Vulkan API function pointer type. * * Generic function pointer used for returning Vulkan API function pointers * without forcing a cast from a regular pointer. * * @sa @ref vulkan_proc * @sa @ref glfwGetInstanceProcAddress * * @since Added in version 3.2. * * @ingroup vulkan */ typedef void (*GLFWvkproc)(void); /*! @brief Opaque monitor object. * * Opaque monitor object. * * @see @ref monitor_object * * @since Added in version 3.0. * * @ingroup monitor */ typedef struct GLFWmonitor GLFWmonitor; /*! @brief Opaque window object. * * Opaque window object. * * @see @ref window_object * * @since Added in version 3.0. * * @ingroup window */ typedef struct GLFWwindow GLFWwindow; /*! @brief Opaque cursor object. * * Opaque cursor object. * * @see @ref cursor_object * * @since Added in version 3.1. * * @ingroup input */ typedef struct GLFWcursor GLFWcursor; /*! @brief The function pointer type for error callbacks. * * This is the function pointer type for error callbacks. An error callback * function has the following signature: * @code * void callback_name(int error_code, const char* description) * @endcode * * @param[in] error_code An [error code](@ref errors). Future releases may add * more error codes. * @param[in] description A UTF-8 encoded string describing the error. * * @pointer_lifetime The error description string is valid until the callback * function returns. * * @sa @ref error_handling * @sa @ref glfwSetErrorCallback * * @since Added in version 3.0. * * @ingroup init */ typedef void (* GLFWerrorfun)(int error_code, const char* description); /*! @brief The function pointer type for window position callbacks. * * This is the function pointer type for window position callbacks. A window * position callback function has the following signature: * @code * void callback_name(GLFWwindow* window, int xpos, int ypos) * @endcode * * @param[in] window The window that was moved. * @param[in] xpos The new x-coordinate, in screen coordinates, of the * upper-left corner of the content area of the window. * @param[in] ypos The new y-coordinate, in screen coordinates, of the * upper-left corner of the content area of the window. * * @sa @ref window_pos * @sa @ref glfwSetWindowPosCallback * * @since Added in version 3.0. * * @ingroup window */ typedef void (* GLFWwindowposfun)(GLFWwindow* window, int xpos, int ypos); /*! @brief The function pointer type for window size callbacks. * * This is the function pointer type for window size callbacks. A window size * callback function has the following signature: * @code * void callback_name(GLFWwindow* window, int width, int height) * @endcode * * @param[in] window The window that was resized. * @param[in] width The new width, in screen coordinates, of the window. * @param[in] height The new height, in screen coordinates, of the window. * * @sa @ref window_size * @sa @ref glfwSetWindowSizeCallback * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup window */ typedef void (* GLFWwindowsizefun)(GLFWwindow* window, int width, int height); /*! @brief The function pointer type for window close callbacks. * * This is the function pointer type for window close callbacks. A window * close callback function has the following signature: * @code * void function_name(GLFWwindow* window) * @endcode * * @param[in] window The window that the user attempted to close. * * @sa @ref window_close * @sa @ref glfwSetWindowCloseCallback * * @since Added in version 2.5. * @glfw3 Added window handle parameter. * * @ingroup window */ typedef void (* GLFWwindowclosefun)(GLFWwindow* window); /*! @brief The function pointer type for window content refresh callbacks. * * This is the function pointer type for window content refresh callbacks. * A window content refresh callback function has the following signature: * @code * void function_name(GLFWwindow* window); * @endcode * * @param[in] window The window whose content needs to be refreshed. * * @sa @ref window_refresh * @sa @ref glfwSetWindowRefreshCallback * * @since Added in version 2.5. * @glfw3 Added window handle parameter. * * @ingroup window */ typedef void (* GLFWwindowrefreshfun)(GLFWwindow* window); /*! @brief The function pointer type for window focus callbacks. * * This is the function pointer type for window focus callbacks. A window * focus callback function has the following signature: * @code * void function_name(GLFWwindow* window, int focused) * @endcode * * @param[in] window The window that gained or lost input focus. * @param[in] focused `GLFW_TRUE` if the window was given input focus, or * `GLFW_FALSE` if it lost it. * * @sa @ref window_focus * @sa @ref glfwSetWindowFocusCallback * * @since Added in version 3.0. * * @ingroup window */ typedef void (* GLFWwindowfocusfun)(GLFWwindow* window, int focused); /*! @brief The function pointer type for window iconify callbacks. * * This is the function pointer type for window iconify callbacks. A window * iconify callback function has the following signature: * @code * void function_name(GLFWwindow* window, int iconified) * @endcode * * @param[in] window The window that was iconified or restored. * @param[in] iconified `GLFW_TRUE` if the window was iconified, or * `GLFW_FALSE` if it was restored. * * @sa @ref window_iconify * @sa @ref glfwSetWindowIconifyCallback * * @since Added in version 3.0. * * @ingroup window */ typedef void (* GLFWwindowiconifyfun)(GLFWwindow* window, int iconified); /*! @brief The function pointer type for window maximize callbacks. * * This is the function pointer type for window maximize callbacks. A window * maximize callback function has the following signature: * @code * void function_name(GLFWwindow* window, int maximized) * @endcode * * @param[in] window The window that was maximized or restored. * @param[in] maximized `GLFW_TRUE` if the window was maximized, or * `GLFW_FALSE` if it was restored. * * @sa @ref window_maximize * @sa glfwSetWindowMaximizeCallback * * @since Added in version 3.3. * * @ingroup window */ typedef void (* GLFWwindowmaximizefun)(GLFWwindow* window, int maximized); /*! @brief The function pointer type for framebuffer size callbacks. * * This is the function pointer type for framebuffer size callbacks. * A framebuffer size callback function has the following signature: * @code * void function_name(GLFWwindow* window, int width, int height) * @endcode * * @param[in] window The window whose framebuffer was resized. * @param[in] width The new width, in pixels, of the framebuffer. * @param[in] height The new height, in pixels, of the framebuffer. * * @sa @ref window_fbsize * @sa @ref glfwSetFramebufferSizeCallback * * @since Added in version 3.0. * * @ingroup window */ typedef void (* GLFWframebuffersizefun)(GLFWwindow* window, int width, int height); /*! @brief The function pointer type for window content scale callbacks. * * This is the function pointer type for window content scale callbacks. * A window content scale callback function has the following signature: * @code * void function_name(GLFWwindow* window, float xscale, float yscale) * @endcode * * @param[in] window The window whose content scale changed. * @param[in] xscale The new x-axis content scale of the window. * @param[in] yscale The new y-axis content scale of the window. * * @sa @ref window_scale * @sa @ref glfwSetWindowContentScaleCallback * * @since Added in version 3.3. * * @ingroup window */ typedef void (* GLFWwindowcontentscalefun)(GLFWwindow* window, float xscale, float yscale); /*! @brief The function pointer type for mouse button callbacks. * * This is the function pointer type for mouse button callback functions. * A mouse button callback function has the following signature: * @code * void function_name(GLFWwindow* window, int button, int action, int mods) * @endcode * * @param[in] window The window that received the event. * @param[in] button The [mouse button](@ref buttons) that was pressed or * released. * @param[in] action One of `GLFW_PRESS` or `GLFW_RELEASE`. Future releases * may add more actions. * @param[in] mods Bit field describing which [modifier keys](@ref mods) were * held down. * * @sa @ref input_mouse_button * @sa @ref glfwSetMouseButtonCallback * * @since Added in version 1.0. * @glfw3 Added window handle and modifier mask parameters. * * @ingroup input */ typedef void (* GLFWmousebuttonfun)(GLFWwindow* window, int button, int action, int mods); /*! @brief The function pointer type for cursor position callbacks. * * This is the function pointer type for cursor position callbacks. A cursor * position callback function has the following signature: * @code * void function_name(GLFWwindow* window, double xpos, double ypos); * @endcode * * @param[in] window The window that received the event. * @param[in] xpos The new cursor x-coordinate, relative to the left edge of * the content area. * @param[in] ypos The new cursor y-coordinate, relative to the top edge of the * content area. * * @sa @ref cursor_pos * @sa @ref glfwSetCursorPosCallback * * @since Added in version 3.0. Replaces `GLFWmouseposfun`. * * @ingroup input */ typedef void (* GLFWcursorposfun)(GLFWwindow* window, double xpos, double ypos); /*! @brief The function pointer type for cursor enter/leave callbacks. * * This is the function pointer type for cursor enter/leave callbacks. * A cursor enter/leave callback function has the following signature: * @code * void function_name(GLFWwindow* window, int entered) * @endcode * * @param[in] window The window that received the event. * @param[in] entered `GLFW_TRUE` if the cursor entered the window's content * area, or `GLFW_FALSE` if it left it. * * @sa @ref cursor_enter * @sa @ref glfwSetCursorEnterCallback * * @since Added in version 3.0. * * @ingroup input */ typedef void (* GLFWcursorenterfun)(GLFWwindow* window, int entered); /*! @brief The function pointer type for scroll callbacks. * * This is the function pointer type for scroll callbacks. A scroll callback * function has the following signature: * @code * void function_name(GLFWwindow* window, double xoffset, double yoffset) * @endcode * * @param[in] window The window that received the event. * @param[in] xoffset The scroll offset along the x-axis. * @param[in] yoffset The scroll offset along the y-axis. * * @sa @ref scrolling * @sa @ref glfwSetScrollCallback * * @since Added in version 3.0. Replaces `GLFWmousewheelfun`. * * @ingroup input */ typedef void (* GLFWscrollfun)(GLFWwindow* window, double xoffset, double yoffset); /*! @brief The function pointer type for keyboard key callbacks. * * This is the function pointer type for keyboard key callbacks. A keyboard * key callback function has the following signature: * @code * void function_name(GLFWwindow* window, int key, int scancode, int action, int mods) * @endcode * * @param[in] window The window that received the event. * @param[in] key The [keyboard key](@ref keys) that was pressed or released. * @param[in] scancode The system-specific scancode of the key. * @param[in] action `GLFW_PRESS`, `GLFW_RELEASE` or `GLFW_REPEAT`. Future * releases may add more actions. * @param[in] mods Bit field describing which [modifier keys](@ref mods) were * held down. * * @sa @ref input_key * @sa @ref glfwSetKeyCallback * * @since Added in version 1.0. * @glfw3 Added window handle, scancode and modifier mask parameters. * * @ingroup input */ typedef void (* GLFWkeyfun)(GLFWwindow* window, int key, int scancode, int action, int mods); /*! @brief The function pointer type for Unicode character callbacks. * * This is the function pointer type for Unicode character callbacks. * A Unicode character callback function has the following signature: * @code * void function_name(GLFWwindow* window, unsigned int codepoint) * @endcode * * @param[in] window The window that received the event. * @param[in] codepoint The Unicode code point of the character. * * @sa @ref input_char * @sa @ref glfwSetCharCallback * * @since Added in version 2.4. * @glfw3 Added window handle parameter. * * @ingroup input */ typedef void (* GLFWcharfun)(GLFWwindow* window, unsigned int codepoint); /*! @brief The function pointer type for Unicode character with modifiers * callbacks. * * This is the function pointer type for Unicode character with modifiers * callbacks. It is called for each input character, regardless of what * modifier keys are held down. A Unicode character with modifiers callback * function has the following signature: * @code * void function_name(GLFWwindow* window, unsigned int codepoint, int mods) * @endcode * * @param[in] window The window that received the event. * @param[in] codepoint The Unicode code point of the character. * @param[in] mods Bit field describing which [modifier keys](@ref mods) were * held down. * * @sa @ref input_char * @sa @ref glfwSetCharModsCallback * * @deprecated Scheduled for removal in version 4.0. * * @since Added in version 3.1. * * @ingroup input */ typedef void (* GLFWcharmodsfun)(GLFWwindow* window, unsigned int codepoint, int mods); /*! @brief The function pointer type for path drop callbacks. * * This is the function pointer type for path drop callbacks. A path drop * callback function has the following signature: * @code * void function_name(GLFWwindow* window, int path_count, const char* paths[]) * @endcode * * @param[in] window The window that received the event. * @param[in] path_count The number of dropped paths. * @param[in] paths The UTF-8 encoded file and/or directory path names. * * @pointer_lifetime The path array and its strings are valid until the * callback function returns. * * @sa @ref path_drop * @sa @ref glfwSetDropCallback * * @since Added in version 3.1. * * @ingroup input */ typedef void (* GLFWdropfun)(GLFWwindow* window, int path_count, const char* paths[]); /*! @brief The function pointer type for monitor configuration callbacks. * * This is the function pointer type for monitor configuration callbacks. * A monitor callback function has the following signature: * @code * void function_name(GLFWmonitor* monitor, int event) * @endcode * * @param[in] monitor The monitor that was connected or disconnected. * @param[in] event One of `GLFW_CONNECTED` or `GLFW_DISCONNECTED`. Future * releases may add more events. * * @sa @ref monitor_event * @sa @ref glfwSetMonitorCallback * * @since Added in version 3.0. * * @ingroup monitor */ typedef void (* GLFWmonitorfun)(GLFWmonitor* monitor, int event); /*! @brief The function pointer type for joystick configuration callbacks. * * This is the function pointer type for joystick configuration callbacks. * A joystick configuration callback function has the following signature: * @code * void function_name(int jid, int event) * @endcode * * @param[in] jid The joystick that was connected or disconnected. * @param[in] event One of `GLFW_CONNECTED` or `GLFW_DISCONNECTED`. Future * releases may add more events. * * @sa @ref joystick_event * @sa @ref glfwSetJoystickCallback * * @since Added in version 3.2. * * @ingroup input */ typedef void (* GLFWjoystickfun)(int jid, int event); /*! @brief Video mode type. * * This describes a single video mode. * * @sa @ref monitor_modes * @sa @ref glfwGetVideoMode * @sa @ref glfwGetVideoModes * * @since Added in version 1.0. * @glfw3 Added refresh rate member. * * @ingroup monitor */ typedef struct GLFWvidmode { /*! The width, in screen coordinates, of the video mode. */ int width; /*! The height, in screen coordinates, of the video mode. */ int height; /*! The bit depth of the red channel of the video mode. */ int redBits; /*! The bit depth of the green channel of the video mode. */ int greenBits; /*! The bit depth of the blue channel of the video mode. */ int blueBits; /*! The refresh rate, in Hz, of the video mode. */ int refreshRate; } GLFWvidmode; /*! @brief Gamma ramp. * * This describes the gamma ramp for a monitor. * * @sa @ref monitor_gamma * @sa @ref glfwGetGammaRamp * @sa @ref glfwSetGammaRamp * * @since Added in version 3.0. * * @ingroup monitor */ typedef struct GLFWgammaramp { /*! An array of value describing the response of the red channel. */ unsigned short* red; /*! An array of value describing the response of the green channel. */ unsigned short* green; /*! An array of value describing the response of the blue channel. */ unsigned short* blue; /*! The number of elements in each array. */ unsigned int size; } GLFWgammaramp; /*! @brief Image data. * * This describes a single 2D image. See the documentation for each related * function what the expected pixel format is. * * @sa @ref cursor_custom * @sa @ref window_icon * * @since Added in version 2.1. * @glfw3 Removed format and bytes-per-pixel members. * * @ingroup window */ typedef struct GLFWimage { /*! The width, in pixels, of this image. */ int width; /*! The height, in pixels, of this image. */ int height; /*! The pixel data of this image, arranged left-to-right, top-to-bottom. */ unsigned char* pixels; } GLFWimage; /*! @brief Gamepad input state * * This describes the input state of a gamepad. * * @sa @ref gamepad * @sa @ref glfwGetGamepadState * * @since Added in version 3.3. * * @ingroup input */ typedef struct GLFWgamepadstate { /*! The states of each [gamepad button](@ref gamepad_buttons), `GLFW_PRESS` * or `GLFW_RELEASE`. */ unsigned char buttons[15]; /*! The states of each [gamepad axis](@ref gamepad_axes), in the range -1.0 * to 1.0 inclusive. */ float axes[6]; } GLFWgamepadstate; /************************************************************************* * GLFW API functions *************************************************************************/ /*! @brief Initializes the GLFW library. * * This function initializes the GLFW library. Before most GLFW functions can * be used, GLFW must be initialized, and before an application terminates GLFW * should be terminated in order to free any resources allocated during or * after initialization. * * If this function fails, it calls @ref glfwTerminate before returning. If it * succeeds, you should call @ref glfwTerminate before the application exits. * * Additional calls to this function after successful initialization but before * termination will return `GLFW_TRUE` immediately. * * @return `GLFW_TRUE` if successful, or `GLFW_FALSE` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_PLATFORM_ERROR. * * @remark @macos This function will change the current directory of the * application to the `Contents/Resources` subdirectory of the application's * bundle, if present. This can be disabled with the @ref * GLFW_COCOA_CHDIR_RESOURCES init hint. * * @remark @x11 This function will set the `LC_CTYPE` category of the * application locale according to the current environment if that category is * still "C". This is because the "C" locale breaks Unicode text input. * * @thread_safety This function must only be called from the main thread. * * @sa @ref intro_init * @sa @ref glfwTerminate * * @since Added in version 1.0. * * @ingroup init */ GLFWAPI int glfwInit(void); /*! @brief Terminates the GLFW library. * * This function destroys all remaining windows and cursors, restores any * modified gamma ramps and frees any other allocated resources. Once this * function is called, you must again call @ref glfwInit successfully before * you will be able to use most GLFW functions. * * If GLFW has been successfully initialized, this function should be called * before the application exits. If initialization fails, there is no need to * call this function, as it is called by @ref glfwInit before it returns * failure. * * This function has no effect if GLFW is not initialized. * * @errors Possible errors include @ref GLFW_PLATFORM_ERROR. * * @remark This function may be called before @ref glfwInit. * * @warning The contexts of any remaining windows must not be current on any * other thread when this function is called. * * @reentrancy This function must not be called from a callback. * * @thread_safety This function must only be called from the main thread. * * @sa @ref intro_init * @sa @ref glfwInit * * @since Added in version 1.0. * * @ingroup init */ GLFWAPI void glfwTerminate(void); /*! @brief Sets the specified init hint to the desired value. * * This function sets hints for the next initialization of GLFW. * * The values you set hints to are never reset by GLFW, but they only take * effect during initialization. Once GLFW has been initialized, any values * you set will be ignored until the library is terminated and initialized * again. * * Some hints are platform specific. These may be set on any platform but they * will only affect their specific platform. Other platforms will ignore them. * Setting these hints requires no platform specific headers or functions. * * @param[in] hint The [init hint](@ref init_hints) to set. * @param[in] value The new value of the init hint. * * @errors Possible errors include @ref GLFW_INVALID_ENUM and @ref * GLFW_INVALID_VALUE. * * @remarks This function may be called before @ref glfwInit. * * @thread_safety This function must only be called from the main thread. * * @sa init_hints * @sa glfwInit * * @since Added in version 3.3. * * @ingroup init */ GLFWAPI void glfwInitHint(int hint, int value); /*! @brief Retrieves the version of the GLFW library. * * This function retrieves the major, minor and revision numbers of the GLFW * library. It is intended for when you are using GLFW as a shared library and * want to ensure that you are using the minimum required version. * * Any or all of the version arguments may be `NULL`. * * @param[out] major Where to store the major version number, or `NULL`. * @param[out] minor Where to store the minor version number, or `NULL`. * @param[out] rev Where to store the revision number, or `NULL`. * * @errors None. * * @remark This function may be called before @ref glfwInit. * * @thread_safety This function may be called from any thread. * * @sa @ref intro_version * @sa @ref glfwGetVersionString * * @since Added in version 1.0. * * @ingroup init */ GLFWAPI void glfwGetVersion(int* major, int* minor, int* rev); /*! @brief Returns a string describing the compile-time configuration. * * This function returns the compile-time generated * [version string](@ref intro_version_string) of the GLFW library binary. It * describes the version, platform, compiler and any platform-specific * compile-time options. It should not be confused with the OpenGL or OpenGL * ES version string, queried with `glGetString`. * * __Do not use the version string__ to parse the GLFW library version. The * @ref glfwGetVersion function provides the version of the running library * binary in numerical format. * * @return The ASCII encoded GLFW version string. * * @errors None. * * @remark This function may be called before @ref glfwInit. * * @pointer_lifetime The returned string is static and compile-time generated. * * @thread_safety This function may be called from any thread. * * @sa @ref intro_version * @sa @ref glfwGetVersion * * @since Added in version 3.0. * * @ingroup init */ GLFWAPI const char* glfwGetVersionString(void); /*! @brief Returns and clears the last error for the calling thread. * * This function returns and clears the [error code](@ref errors) of the last * error that occurred on the calling thread, and optionally a UTF-8 encoded * human-readable description of it. If no error has occurred since the last * call, it returns @ref GLFW_NO_ERROR (zero) and the description pointer is * set to `NULL`. * * @param[in] description Where to store the error description pointer, or `NULL`. * @return The last error code for the calling thread, or @ref GLFW_NO_ERROR * (zero). * * @errors None. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is guaranteed to be valid only until the * next error occurs or the library is terminated. * * @remark This function may be called before @ref glfwInit. * * @thread_safety This function may be called from any thread. * * @sa @ref error_handling * @sa @ref glfwSetErrorCallback * * @since Added in version 3.3. * * @ingroup init */ GLFWAPI int glfwGetError(const char** description); /*! @brief Sets the error callback. * * This function sets the error callback, which is called with an error code * and a human-readable description each time a GLFW error occurs. * * The error code is set before the callback is called. Calling @ref * glfwGetError from the error callback will return the same value as the error * code argument. * * The error callback is called on the thread where the error occurred. If you * are using GLFW from multiple threads, your error callback needs to be * written accordingly. * * Because the description string may have been generated specifically for that * error, it is not guaranteed to be valid after the callback has returned. If * you wish to use it after the callback returns, you need to make a copy. * * Once set, the error callback remains set even after the library has been * terminated. * * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set. * * @callback_signature * @code * void callback_name(int error_code, const char* description) * @endcode * For more information about the callback parameters, see the * [callback pointer type](@ref GLFWerrorfun). * * @errors None. * * @remark This function may be called before @ref glfwInit. * * @thread_safety This function must only be called from the main thread. * * @sa @ref error_handling * @sa @ref glfwGetError * * @since Added in version 3.0. * * @ingroup init */ GLFWAPI GLFWerrorfun glfwSetErrorCallback(GLFWerrorfun callback); /*! @brief Returns the currently connected monitors. * * This function returns an array of handles for all currently connected * monitors. The primary monitor is always first in the returned array. If no * monitors were found, this function returns `NULL`. * * @param[out] count Where to store the number of monitors in the returned * array. This is set to zero if an error occurred. * @return An array of monitor handles, or `NULL` if no monitors were found or * if an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is guaranteed to be valid only until the * monitor configuration changes or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_monitors * @sa @ref monitor_event * @sa @ref glfwGetPrimaryMonitor * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI GLFWmonitor** glfwGetMonitors(int* count); /*! @brief Returns the primary monitor. * * This function returns the primary monitor. This is usually the monitor * where elements like the task bar or global menu bar are located. * * @return The primary monitor, or `NULL` if no monitors were found or if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @remark The primary monitor is always first in the array returned by @ref * glfwGetMonitors. * * @sa @ref monitor_monitors * @sa @ref glfwGetMonitors * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI GLFWmonitor* glfwGetPrimaryMonitor(void); /*! @brief Returns the position of the monitor's viewport on the virtual screen. * * This function returns the position, in screen coordinates, of the upper-left * corner of the specified monitor. * * Any or all of the position arguments may be `NULL`. If an error occurs, all * non-`NULL` position arguments will be set to zero. * * @param[in] monitor The monitor to query. * @param[out] xpos Where to store the monitor x-coordinate, or `NULL`. * @param[out] ypos Where to store the monitor y-coordinate, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_properties * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI void glfwGetMonitorPos(GLFWmonitor* monitor, int* xpos, int* ypos); /*! @brief Retrieves the work area of the monitor. * * This function returns the position, in screen coordinates, of the upper-left * corner of the work area of the specified monitor along with the work area * size in screen coordinates. The work area is defined as the area of the * monitor not occluded by the operating system task bar where present. If no * task bar exists then the work area is the monitor resolution in screen * coordinates. * * Any or all of the position and size arguments may be `NULL`. If an error * occurs, all non-`NULL` position and size arguments will be set to zero. * * @param[in] monitor The monitor to query. * @param[out] xpos Where to store the monitor x-coordinate, or `NULL`. * @param[out] ypos Where to store the monitor y-coordinate, or `NULL`. * @param[out] width Where to store the monitor width, or `NULL`. * @param[out] height Where to store the monitor height, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_workarea * * @since Added in version 3.3. * * @ingroup monitor */ GLFWAPI void glfwGetMonitorWorkarea(GLFWmonitor* monitor, int* xpos, int* ypos, int* width, int* height); /*! @brief Returns the physical size of the monitor. * * This function returns the size, in millimetres, of the display area of the * specified monitor. * * Some systems do not provide accurate monitor size information, either * because the monitor * [EDID](https://en.wikipedia.org/wiki/Extended_display_identification_data) * data is incorrect or because the driver does not report it accurately. * * Any or all of the size arguments may be `NULL`. If an error occurs, all * non-`NULL` size arguments will be set to zero. * * @param[in] monitor The monitor to query. * @param[out] widthMM Where to store the width, in millimetres, of the * monitor's display area, or `NULL`. * @param[out] heightMM Where to store the height, in millimetres, of the * monitor's display area, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @remark @win32 On Windows 8 and earlier the physical size is calculated from * the current resolution and system DPI instead of querying the monitor EDID data. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_properties * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI void glfwGetMonitorPhysicalSize(GLFWmonitor* monitor, int* widthMM, int* heightMM); /*! @brief Retrieves the content scale for the specified monitor. * * This function retrieves the content scale for the specified monitor. The * content scale is the ratio between the current DPI and the platform's * default DPI. This is especially important for text and any UI elements. If * the pixel dimensions of your UI scaled by this look appropriate on your * machine then it should appear at a reasonable size on other machines * regardless of their DPI and scaling settings. This relies on the system DPI * and scaling settings being somewhat correct. * * The content scale may depend on both the monitor resolution and pixel * density and on user settings. It may be very different from the raw DPI * calculated from the physical size and current resolution. * * @param[in] monitor The monitor to query. * @param[out] xscale Where to store the x-axis content scale, or `NULL`. * @param[out] yscale Where to store the y-axis content scale, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_scale * @sa @ref glfwGetWindowContentScale * * @since Added in version 3.3. * * @ingroup monitor */ GLFWAPI void glfwGetMonitorContentScale(GLFWmonitor* monitor, float* xscale, float* yscale); /*! @brief Returns the name of the specified monitor. * * This function returns a human-readable name, encoded as UTF-8, of the * specified monitor. The name typically reflects the make and model of the * monitor and is not guaranteed to be unique among the connected monitors. * * @param[in] monitor The monitor to query. * @return The UTF-8 encoded name of the monitor, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified monitor is * disconnected or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_properties * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI const char* glfwGetMonitorName(GLFWmonitor* monitor); /*! @brief Sets the user pointer of the specified monitor. * * This function sets the user-defined pointer of the specified monitor. The * current value is retained until the monitor is disconnected. The initial * value is `NULL`. * * This function may be called from the monitor callback, even for a monitor * that is being disconnected. * * @param[in] monitor The monitor whose pointer to set. * @param[in] pointer The new value. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref monitor_userptr * @sa @ref glfwGetMonitorUserPointer * * @since Added in version 3.3. * * @ingroup monitor */ GLFWAPI void glfwSetMonitorUserPointer(GLFWmonitor* monitor, void* pointer); /*! @brief Returns the user pointer of the specified monitor. * * This function returns the current value of the user-defined pointer of the * specified monitor. The initial value is `NULL`. * * This function may be called from the monitor callback, even for a monitor * that is being disconnected. * * @param[in] monitor The monitor whose pointer to return. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref monitor_userptr * @sa @ref glfwSetMonitorUserPointer * * @since Added in version 3.3. * * @ingroup monitor */ GLFWAPI void* glfwGetMonitorUserPointer(GLFWmonitor* monitor); /*! @brief Sets the monitor configuration callback. * * This function sets the monitor configuration callback, or removes the * currently set callback. This is called when a monitor is connected to or * disconnected from the system. * * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWmonitor* monitor, int event) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWmonitorfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_event * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI GLFWmonitorfun glfwSetMonitorCallback(GLFWmonitorfun callback); /*! @brief Returns the available video modes for the specified monitor. * * This function returns an array of all video modes supported by the specified * monitor. The returned array is sorted in ascending order, first by color * bit depth (the sum of all channel depths), then by resolution area (the * product of width and height), then resolution width and finally by refresh * rate. * * @param[in] monitor The monitor to query. * @param[out] count Where to store the number of video modes in the returned * array. This is set to zero if an error occurred. * @return An array of video modes, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified monitor is * disconnected, this function is called again for that monitor or the library * is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_modes * @sa @ref glfwGetVideoMode * * @since Added in version 1.0. * @glfw3 Changed to return an array of modes for a specific monitor. * * @ingroup monitor */ GLFWAPI const GLFWvidmode* glfwGetVideoModes(GLFWmonitor* monitor, int* count); /*! @brief Returns the current mode of the specified monitor. * * This function returns the current video mode of the specified monitor. If * you have created a full screen window for that monitor, the return value * will depend on whether that window is iconified. * * @param[in] monitor The monitor to query. * @return The current mode of the monitor, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified monitor is * disconnected or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_modes * @sa @ref glfwGetVideoModes * * @since Added in version 3.0. Replaces `glfwGetDesktopMode`. * * @ingroup monitor */ GLFWAPI const GLFWvidmode* glfwGetVideoMode(GLFWmonitor* monitor); /*! @brief Generates a gamma ramp and sets it for the specified monitor. * * This function generates an appropriately sized gamma ramp from the specified * exponent and then calls @ref glfwSetGammaRamp with it. The value must be * a finite number greater than zero. * * The software controlled gamma ramp is applied _in addition_ to the hardware * gamma correction, which today is usually an approximation of sRGB gamma. * This means that setting a perfectly linear ramp, or gamma 1.0, will produce * the default (usually sRGB-like) behavior. * * For gamma correct rendering with OpenGL or OpenGL ES, see the @ref * GLFW_SRGB_CAPABLE hint. * * @param[in] monitor The monitor whose gamma ramp to set. * @param[in] gamma The desired exponent. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_VALUE and @ref GLFW_PLATFORM_ERROR. * * @remark @wayland Gamma handling is a privileged protocol, this function * will thus never be implemented and emits @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_gamma * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI void glfwSetGamma(GLFWmonitor* monitor, float gamma); /*! @brief Returns the current gamma ramp for the specified monitor. * * This function returns the current gamma ramp of the specified monitor. * * @param[in] monitor The monitor to query. * @return The current gamma ramp, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland Gamma handling is a privileged protocol, this function * will thus never be implemented and emits @ref GLFW_PLATFORM_ERROR while * returning `NULL`. * * @pointer_lifetime The returned structure and its arrays are allocated and * freed by GLFW. You should not free them yourself. They are valid until the * specified monitor is disconnected, this function is called again for that * monitor or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_gamma * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI const GLFWgammaramp* glfwGetGammaRamp(GLFWmonitor* monitor); /*! @brief Sets the current gamma ramp for the specified monitor. * * This function sets the current gamma ramp for the specified monitor. The * original gamma ramp for that monitor is saved by GLFW the first time this * function is called and is restored by @ref glfwTerminate. * * The software controlled gamma ramp is applied _in addition_ to the hardware * gamma correction, which today is usually an approximation of sRGB gamma. * This means that setting a perfectly linear ramp, or gamma 1.0, will produce * the default (usually sRGB-like) behavior. * * For gamma correct rendering with OpenGL or OpenGL ES, see the @ref * GLFW_SRGB_CAPABLE hint. * * @param[in] monitor The monitor whose gamma ramp to set. * @param[in] ramp The gamma ramp to use. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark The size of the specified gamma ramp should match the size of the * current ramp for that monitor. * * @remark @win32 The gamma ramp size must be 256. * * @remark @wayland Gamma handling is a privileged protocol, this function * will thus never be implemented and emits @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The specified gamma ramp is copied before this function * returns. * * @thread_safety This function must only be called from the main thread. * * @sa @ref monitor_gamma * * @since Added in version 3.0. * * @ingroup monitor */ GLFWAPI void glfwSetGammaRamp(GLFWmonitor* monitor, const GLFWgammaramp* ramp); /*! @brief Resets all window hints to their default values. * * This function resets all window hints to their * [default values](@ref window_hints_values). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_hints * @sa @ref glfwWindowHint * @sa @ref glfwWindowHintString * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwDefaultWindowHints(void); /*! @brief Sets the specified window hint to the desired value. * * This function sets hints for the next call to @ref glfwCreateWindow. The * hints, once set, retain their values until changed by a call to this * function or @ref glfwDefaultWindowHints, or until the library is terminated. * * Only integer value hints can be set with this function. String value hints * are set with @ref glfwWindowHintString. * * This function does not check whether the specified hint values are valid. * If you set hints to invalid values this will instead be reported by the next * call to @ref glfwCreateWindow. * * Some hints are platform specific. These may be set on any platform but they * will only affect their specific platform. Other platforms will ignore them. * Setting these hints requires no platform specific headers or functions. * * @param[in] hint The [window hint](@ref window_hints) to set. * @param[in] value The new value of the window hint. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_hints * @sa @ref glfwWindowHintString * @sa @ref glfwDefaultWindowHints * * @since Added in version 3.0. Replaces `glfwOpenWindowHint`. * * @ingroup window */ GLFWAPI void glfwWindowHint(int hint, int value); /*! @brief Sets the specified window hint to the desired value. * * This function sets hints for the next call to @ref glfwCreateWindow. The * hints, once set, retain their values until changed by a call to this * function or @ref glfwDefaultWindowHints, or until the library is terminated. * * Only string type hints can be set with this function. Integer value hints * are set with @ref glfwWindowHint. * * This function does not check whether the specified hint values are valid. * If you set hints to invalid values this will instead be reported by the next * call to @ref glfwCreateWindow. * * Some hints are platform specific. These may be set on any platform but they * will only affect their specific platform. Other platforms will ignore them. * Setting these hints requires no platform specific headers or functions. * * @param[in] hint The [window hint](@ref window_hints) to set. * @param[in] value The new value of the window hint. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @pointer_lifetime The specified string is copied before this function * returns. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_hints * @sa @ref glfwWindowHint * @sa @ref glfwDefaultWindowHints * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI void glfwWindowHintString(int hint, const char* value); /*! @brief Creates a window and its associated context. * * This function creates a window and its associated OpenGL or OpenGL ES * context. Most of the options controlling how the window and its context * should be created are specified with [window hints](@ref window_hints). * * Successful creation does not change which context is current. Before you * can use the newly created context, you need to * [make it current](@ref context_current). For information about the `share` * parameter, see @ref context_sharing. * * The created window, framebuffer and context may differ from what you * requested, as not all parameters and hints are * [hard constraints](@ref window_hints_hard). This includes the size of the * window, especially for full screen windows. To query the actual attributes * of the created window, framebuffer and context, see @ref * glfwGetWindowAttrib, @ref glfwGetWindowSize and @ref glfwGetFramebufferSize. * * To create a full screen window, you need to specify the monitor the window * will cover. If no monitor is specified, the window will be windowed mode. * Unless you have a way for the user to choose a specific monitor, it is * recommended that you pick the primary monitor. For more information on how * to query connected monitors, see @ref monitor_monitors. * * For full screen windows, the specified size becomes the resolution of the * window's _desired video mode_. As long as a full screen window is not * iconified, the supported video mode most closely matching the desired video * mode is set for the specified monitor. For more information about full * screen windows, including the creation of so called _windowed full screen_ * or _borderless full screen_ windows, see @ref window_windowed_full_screen. * * Once you have created the window, you can switch it between windowed and * full screen mode with @ref glfwSetWindowMonitor. This will not affect its * OpenGL or OpenGL ES context. * * By default, newly created windows use the placement recommended by the * window system. To create the window at a specific position, make it * initially invisible using the [GLFW_VISIBLE](@ref GLFW_VISIBLE_hint) window * hint, set its [position](@ref window_pos) and then [show](@ref window_hide) * it. * * As long as at least one full screen window is not iconified, the screensaver * is prohibited from starting. * * Window systems put limits on window sizes. Very large or very small window * dimensions may be overridden by the window system on creation. Check the * actual [size](@ref window_size) after creation. * * The [swap interval](@ref buffer_swap) is not set during window creation and * the initial value may vary depending on driver settings and defaults. * * @param[in] width The desired width, in screen coordinates, of the window. * This must be greater than zero. * @param[in] height The desired height, in screen coordinates, of the window. * This must be greater than zero. * @param[in] title The initial, UTF-8 encoded window title. * @param[in] monitor The monitor to use for full screen mode, or `NULL` for * windowed mode. * @param[in] share The window whose context to share resources with, or `NULL` * to not share resources. * @return The handle of the created window, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM, @ref GLFW_INVALID_VALUE, @ref GLFW_API_UNAVAILABLE, @ref * GLFW_VERSION_UNAVAILABLE, @ref GLFW_FORMAT_UNAVAILABLE and @ref * GLFW_PLATFORM_ERROR. * * @remark @win32 Window creation will fail if the Microsoft GDI software * OpenGL implementation is the only one available. * * @remark @win32 If the executable has an icon resource named `GLFW_ICON,` it * will be set as the initial icon for the window. If no such icon is present, * the `IDI_APPLICATION` icon will be used instead. To set a different icon, * see @ref glfwSetWindowIcon. * * @remark @win32 The context to share resources with must not be current on * any other thread. * * @remark @macos The OS only supports forward-compatible core profile contexts * for OpenGL versions 3.2 and later. Before creating an OpenGL context of * version 3.2 or later you must set the * [GLFW_OPENGL_FORWARD_COMPAT](@ref GLFW_OPENGL_FORWARD_COMPAT_hint) and * [GLFW_OPENGL_PROFILE](@ref GLFW_OPENGL_PROFILE_hint) hints accordingly. * OpenGL 3.0 and 3.1 contexts are not supported at all on macOS. * * @remark @macos The GLFW window has no icon, as it is not a document * window, but the dock icon will be the same as the application bundle's icon. * For more information on bundles, see the * [Bundle Programming Guide](https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/) * in the Mac Developer Library. * * @remark @macos The first time a window is created the menu bar is created. * If GLFW finds a `MainMenu.nib` it is loaded and assumed to contain a menu * bar. Otherwise a minimal menu bar is created manually with common commands * like Hide, Quit and About. The About entry opens a minimal about dialog * with information from the application's bundle. Menu bar creation can be * disabled entirely with the @ref GLFW_COCOA_MENUBAR init hint. * * @remark @macos On OS X 10.10 and later the window frame will not be rendered * at full resolution on Retina displays unless the * [GLFW_COCOA_RETINA_FRAMEBUFFER](@ref GLFW_COCOA_RETINA_FRAMEBUFFER_hint) * hint is `GLFW_TRUE` and the `NSHighResolutionCapable` key is enabled in the * application bundle's `Info.plist`. For more information, see * [High Resolution Guidelines for OS X](https://developer.apple.com/library/mac/documentation/GraphicsAnimation/Conceptual/HighResolutionOSX/Explained/Explained.html) * in the Mac Developer Library. The GLFW test and example programs use * a custom `Info.plist` template for this, which can be found as * `CMake/MacOSXBundleInfo.plist.in` in the source tree. * * @remark @macos When activating frame autosaving with * [GLFW_COCOA_FRAME_NAME](@ref GLFW_COCOA_FRAME_NAME_hint), the specified * window size and position may be overridden by previously saved values. * * @remark @x11 Some window managers will not respect the placement of * initially hidden windows. * * @remark @x11 Due to the asynchronous nature of X11, it may take a moment for * a window to reach its requested state. This means you may not be able to * query the final size, position or other attributes directly after window * creation. * * @remark @x11 The class part of the `WM_CLASS` window property will by * default be set to the window title passed to this function. The instance * part will use the contents of the `RESOURCE_NAME` environment variable, if * present and not empty, or fall back to the window title. Set the * [GLFW_X11_CLASS_NAME](@ref GLFW_X11_CLASS_NAME_hint) and * [GLFW_X11_INSTANCE_NAME](@ref GLFW_X11_INSTANCE_NAME_hint) window hints to * override this. * * @remark @wayland Compositors should implement the xdg-decoration protocol * for GLFW to decorate the window properly. If this protocol isn't * supported, or if the compositor prefers client-side decorations, a very * simple fallback frame will be drawn using the wp_viewporter protocol. A * compositor can still emit close, maximize or fullscreen events, using for * instance a keybind mechanism. If neither of these protocols is supported, * the window won't be decorated. * * @remark @wayland A full screen window will not attempt to change the mode, * no matter what the requested size or refresh rate. * * @remark @wayland Screensaver inhibition requires the idle-inhibit protocol * to be implemented in the user's compositor. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_creation * @sa @ref glfwDestroyWindow * * @since Added in version 3.0. Replaces `glfwOpenWindow`. * * @ingroup window */ GLFWAPI GLFWwindow* glfwCreateWindow(int width, int height, const char* title, GLFWmonitor* monitor, GLFWwindow* share); /*! @brief Destroys the specified window and its context. * * This function destroys the specified window and its context. On calling * this function, no further callbacks will be called for that window. * * If the context of the specified window is current on the main thread, it is * detached before being destroyed. * * @param[in] window The window to destroy. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @note The context of the specified window must not be current on any other * thread when this function is called. * * @reentrancy This function must not be called from a callback. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_creation * @sa @ref glfwCreateWindow * * @since Added in version 3.0. Replaces `glfwCloseWindow`. * * @ingroup window */ GLFWAPI void glfwDestroyWindow(GLFWwindow* window); /*! @brief Checks the close flag of the specified window. * * This function returns the value of the close flag of the specified window. * * @param[in] window The window to query. * @return The value of the close flag. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref window_close * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI int glfwWindowShouldClose(GLFWwindow* window); /*! @brief Sets the close flag of the specified window. * * This function sets the value of the close flag of the specified window. * This can be used to override the user's attempt to close the window, or * to signal that it should be closed. * * @param[in] window The window whose flag to change. * @param[in] value The new value. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref window_close * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwSetWindowShouldClose(GLFWwindow* window, int value); /*! @brief Sets the title of the specified window. * * This function sets the window title, encoded as UTF-8, of the specified * window. * * @param[in] window The window whose title to change. * @param[in] title The UTF-8 encoded window title. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @macos The window title will not be updated until the next time you * process events. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_title * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwSetWindowTitle(GLFWwindow* window, const char* title); /*! @brief Sets the icon for the specified window. * * This function sets the icon of the specified window. If passed an array of * candidate images, those of or closest to the sizes desired by the system are * selected. If no images are specified, the window reverts to its default * icon. * * The pixels are 32-bit, little-endian, non-premultiplied RGBA, i.e. eight * bits per channel with the red channel first. They are arranged canonically * as packed sequential rows, starting from the top-left corner. * * The desired image sizes varies depending on platform and system settings. * The selected images will be rescaled as needed. Good sizes include 16x16, * 32x32 and 48x48. * * @param[in] window The window whose icon to set. * @param[in] count The number of images in the specified array, or zero to * revert to the default window icon. * @param[in] images The images to create the icon from. This is ignored if * count is zero. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The specified image data is copied before this function * returns. * * @remark @macos The GLFW window has no icon, as it is not a document * window, so this function does nothing. The dock icon will be the same as * the application bundle's icon. For more information on bundles, see the * [Bundle Programming Guide](https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/) * in the Mac Developer Library. * * @remark @wayland There is no existing protocol to change an icon, the * window will thus inherit the one defined in the application's desktop file. * This function always emits @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_icon * * @since Added in version 3.2. * * @ingroup window */ GLFWAPI void glfwSetWindowIcon(GLFWwindow* window, int count, const GLFWimage* images); /*! @brief Retrieves the position of the content area of the specified window. * * This function retrieves the position, in screen coordinates, of the * upper-left corner of the content area of the specified window. * * Any or all of the position arguments may be `NULL`. If an error occurs, all * non-`NULL` position arguments will be set to zero. * * @param[in] window The window to query. * @param[out] xpos Where to store the x-coordinate of the upper-left corner of * the content area, or `NULL`. * @param[out] ypos Where to store the y-coordinate of the upper-left corner of * the content area, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland There is no way for an application to retrieve the global * position of its windows, this function will always emit @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_pos * @sa @ref glfwSetWindowPos * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwGetWindowPos(GLFWwindow* window, int* xpos, int* ypos); /*! @brief Sets the position of the content area of the specified window. * * This function sets the position, in screen coordinates, of the upper-left * corner of the content area of the specified windowed mode window. If the * window is a full screen window, this function does nothing. * * __Do not use this function__ to move an already visible window unless you * have very good reasons for doing so, as it will confuse and annoy the user. * * The window manager may put limits on what positions are allowed. GLFW * cannot and should not override these limits. * * @param[in] window The window to query. * @param[in] xpos The x-coordinate of the upper-left corner of the content area. * @param[in] ypos The y-coordinate of the upper-left corner of the content area. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland There is no way for an application to set the global * position of its windows, this function will always emit @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_pos * @sa @ref glfwGetWindowPos * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwSetWindowPos(GLFWwindow* window, int xpos, int ypos); /*! @brief Retrieves the size of the content area of the specified window. * * This function retrieves the size, in screen coordinates, of the content area * of the specified window. If you wish to retrieve the size of the * framebuffer of the window in pixels, see @ref glfwGetFramebufferSize. * * Any or all of the size arguments may be `NULL`. If an error occurs, all * non-`NULL` size arguments will be set to zero. * * @param[in] window The window whose size to retrieve. * @param[out] width Where to store the width, in screen coordinates, of the * content area, or `NULL`. * @param[out] height Where to store the height, in screen coordinates, of the * content area, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_size * @sa @ref glfwSetWindowSize * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwGetWindowSize(GLFWwindow* window, int* width, int* height); /*! @brief Sets the size limits of the specified window. * * This function sets the size limits of the content area of the specified * window. If the window is full screen, the size limits only take effect * once it is made windowed. If the window is not resizable, this function * does nothing. * * The size limits are applied immediately to a windowed mode window and may * cause it to be resized. * * The maximum dimensions must be greater than or equal to the minimum * dimensions and all must be greater than or equal to zero. * * @param[in] window The window to set limits for. * @param[in] minwidth The minimum width, in screen coordinates, of the content * area, or `GLFW_DONT_CARE`. * @param[in] minheight The minimum height, in screen coordinates, of the * content area, or `GLFW_DONT_CARE`. * @param[in] maxwidth The maximum width, in screen coordinates, of the content * area, or `GLFW_DONT_CARE`. * @param[in] maxheight The maximum height, in screen coordinates, of the * content area, or `GLFW_DONT_CARE`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_VALUE and @ref GLFW_PLATFORM_ERROR. * * @remark If you set size limits and an aspect ratio that conflict, the * results are undefined. * * @remark @wayland The size limits will not be applied until the window is * actually resized, either by the user or by the compositor. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_sizelimits * @sa @ref glfwSetWindowAspectRatio * * @since Added in version 3.2. * * @ingroup window */ GLFWAPI void glfwSetWindowSizeLimits(GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight); /*! @brief Sets the aspect ratio of the specified window. * * This function sets the required aspect ratio of the content area of the * specified window. If the window is full screen, the aspect ratio only takes * effect once it is made windowed. If the window is not resizable, this * function does nothing. * * The aspect ratio is specified as a numerator and a denominator and both * values must be greater than zero. For example, the common 16:9 aspect ratio * is specified as 16 and 9, respectively. * * If the numerator and denominator is set to `GLFW_DONT_CARE` then the aspect * ratio limit is disabled. * * The aspect ratio is applied immediately to a windowed mode window and may * cause it to be resized. * * @param[in] window The window to set limits for. * @param[in] numer The numerator of the desired aspect ratio, or * `GLFW_DONT_CARE`. * @param[in] denom The denominator of the desired aspect ratio, or * `GLFW_DONT_CARE`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_VALUE and @ref GLFW_PLATFORM_ERROR. * * @remark If you set size limits and an aspect ratio that conflict, the * results are undefined. * * @remark @wayland The aspect ratio will not be applied until the window is * actually resized, either by the user or by the compositor. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_sizelimits * @sa @ref glfwSetWindowSizeLimits * * @since Added in version 3.2. * * @ingroup window */ GLFWAPI void glfwSetWindowAspectRatio(GLFWwindow* window, int numer, int denom); /*! @brief Sets the size of the content area of the specified window. * * This function sets the size, in screen coordinates, of the content area of * the specified window. * * For full screen windows, this function updates the resolution of its desired * video mode and switches to the video mode closest to it, without affecting * the window's context. As the context is unaffected, the bit depths of the * framebuffer remain unchanged. * * If you wish to update the refresh rate of the desired video mode in addition * to its resolution, see @ref glfwSetWindowMonitor. * * The window manager may put limits on what sizes are allowed. GLFW cannot * and should not override these limits. * * @param[in] window The window to resize. * @param[in] width The desired width, in screen coordinates, of the window * content area. * @param[in] height The desired height, in screen coordinates, of the window * content area. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland A full screen window will not attempt to change the mode, * no matter what the requested size. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_size * @sa @ref glfwGetWindowSize * @sa @ref glfwSetWindowMonitor * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwSetWindowSize(GLFWwindow* window, int width, int height); /*! @brief Retrieves the size of the framebuffer of the specified window. * * This function retrieves the size, in pixels, of the framebuffer of the * specified window. If you wish to retrieve the size of the window in screen * coordinates, see @ref glfwGetWindowSize. * * Any or all of the size arguments may be `NULL`. If an error occurs, all * non-`NULL` size arguments will be set to zero. * * @param[in] window The window whose framebuffer to query. * @param[out] width Where to store the width, in pixels, of the framebuffer, * or `NULL`. * @param[out] height Where to store the height, in pixels, of the framebuffer, * or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_fbsize * @sa @ref glfwSetFramebufferSizeCallback * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwGetFramebufferSize(GLFWwindow* window, int* width, int* height); /*! @brief Retrieves the size of the frame of the window. * * This function retrieves the size, in screen coordinates, of each edge of the * frame of the specified window. This size includes the title bar, if the * window has one. The size of the frame may vary depending on the * [window-related hints](@ref window_hints_wnd) used to create it. * * Because this function retrieves the size of each window frame edge and not * the offset along a particular coordinate axis, the retrieved values will * always be zero or positive. * * Any or all of the size arguments may be `NULL`. If an error occurs, all * non-`NULL` size arguments will be set to zero. * * @param[in] window The window whose frame size to query. * @param[out] left Where to store the size, in screen coordinates, of the left * edge of the window frame, or `NULL`. * @param[out] top Where to store the size, in screen coordinates, of the top * edge of the window frame, or `NULL`. * @param[out] right Where to store the size, in screen coordinates, of the * right edge of the window frame, or `NULL`. * @param[out] bottom Where to store the size, in screen coordinates, of the * bottom edge of the window frame, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_size * * @since Added in version 3.1. * * @ingroup window */ GLFWAPI void glfwGetWindowFrameSize(GLFWwindow* window, int* left, int* top, int* right, int* bottom); /*! @brief Retrieves the content scale for the specified window. * * This function retrieves the content scale for the specified window. The * content scale is the ratio between the current DPI and the platform's * default DPI. This is especially important for text and any UI elements. If * the pixel dimensions of your UI scaled by this look appropriate on your * machine then it should appear at a reasonable size on other machines * regardless of their DPI and scaling settings. This relies on the system DPI * and scaling settings being somewhat correct. * * On systems where each monitors can have its own content scale, the window * content scale will depend on which monitor the system considers the window * to be on. * * @param[in] window The window to query. * @param[out] xscale Where to store the x-axis content scale, or `NULL`. * @param[out] yscale Where to store the y-axis content scale, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_scale * @sa @ref glfwSetWindowContentScaleCallback * @sa @ref glfwGetMonitorContentScale * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI void glfwGetWindowContentScale(GLFWwindow* window, float* xscale, float* yscale); /*! @brief Returns the opacity of the whole window. * * This function returns the opacity of the window, including any decorations. * * The opacity (or alpha) value is a positive finite number between zero and * one, where zero is fully transparent and one is fully opaque. If the system * does not support whole window transparency, this function always returns one. * * The initial opacity value for newly created windows is one. * * @param[in] window The window to query. * @return The opacity value of the specified window. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_transparency * @sa @ref glfwSetWindowOpacity * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI float glfwGetWindowOpacity(GLFWwindow* window); /*! @brief Sets the opacity of the whole window. * * This function sets the opacity of the window, including any decorations. * * The opacity (or alpha) value is a positive finite number between zero and * one, where zero is fully transparent and one is fully opaque. * * The initial opacity value for newly created windows is one. * * A window created with framebuffer transparency may not use whole window * transparency. The results of doing this are undefined. * * @param[in] window The window to set the opacity for. * @param[in] opacity The desired opacity of the specified window. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_transparency * @sa @ref glfwGetWindowOpacity * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI void glfwSetWindowOpacity(GLFWwindow* window, float opacity); /*! @brief Iconifies the specified window. * * This function iconifies (minimizes) the specified window if it was * previously restored. If the window is already iconified, this function does * nothing. * * If the specified window is a full screen window, the original monitor * resolution is restored until the window is restored. * * @param[in] window The window to iconify. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland There is no concept of iconification in wl_shell, this * function will emit @ref GLFW_PLATFORM_ERROR when using this deprecated * protocol. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_iconify * @sa @ref glfwRestoreWindow * @sa @ref glfwMaximizeWindow * * @since Added in version 2.1. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwIconifyWindow(GLFWwindow* window); /*! @brief Restores the specified window. * * This function restores the specified window if it was previously iconified * (minimized) or maximized. If the window is already restored, this function * does nothing. * * If the specified window is a full screen window, the resolution chosen for * the window is restored on the selected monitor. * * @param[in] window The window to restore. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_iconify * @sa @ref glfwIconifyWindow * @sa @ref glfwMaximizeWindow * * @since Added in version 2.1. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwRestoreWindow(GLFWwindow* window); /*! @brief Maximizes the specified window. * * This function maximizes the specified window if it was previously not * maximized. If the window is already maximized, this function does nothing. * * If the specified window is a full screen window, this function does nothing. * * @param[in] window The window to maximize. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @par Thread Safety * This function may only be called from the main thread. * * @sa @ref window_iconify * @sa @ref glfwIconifyWindow * @sa @ref glfwRestoreWindow * * @since Added in GLFW 3.2. * * @ingroup window */ GLFWAPI void glfwMaximizeWindow(GLFWwindow* window); /*! @brief Makes the specified window visible. * * This function makes the specified window visible if it was previously * hidden. If the window is already visible or is in full screen mode, this * function does nothing. * * By default, windowed mode windows are focused when shown * Set the [GLFW_FOCUS_ON_SHOW](@ref GLFW_FOCUS_ON_SHOW_hint) window hint * to change this behavior for all newly created windows, or change the * behavior for an existing window with @ref glfwSetWindowAttrib. * * @param[in] window The window to make visible. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland Because Wayland wants every frame of the desktop to be * complete, this function does not immediately make the window visible. * Instead it will become visible the next time the window framebuffer is * updated after this call. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_hide * @sa @ref glfwHideWindow * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwShowWindow(GLFWwindow* window); /*! @brief Hides the specified window. * * This function hides the specified window if it was previously visible. If * the window is already hidden or is in full screen mode, this function does * nothing. * * @param[in] window The window to hide. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_hide * @sa @ref glfwShowWindow * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwHideWindow(GLFWwindow* window); /*! @brief Brings the specified window to front and sets input focus. * * This function brings the specified window to front and sets input focus. * The window should already be visible and not iconified. * * By default, both windowed and full screen mode windows are focused when * initially created. Set the [GLFW_FOCUSED](@ref GLFW_FOCUSED_hint) to * disable this behavior. * * Also by default, windowed mode windows are focused when shown * with @ref glfwShowWindow. Set the * [GLFW_FOCUS_ON_SHOW](@ref GLFW_FOCUS_ON_SHOW_hint) to disable this behavior. * * __Do not use this function__ to steal focus from other applications unless * you are certain that is what the user wants. Focus stealing can be * extremely disruptive. * * For a less disruptive way of getting the user's attention, see * [attention requests](@ref window_attention). * * @param[in] window The window to give input focus. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland It is not possible for an application to bring its windows * to front, this function will always emit @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_focus * @sa @ref window_attention * * @since Added in version 3.2. * * @ingroup window */ GLFWAPI void glfwFocusWindow(GLFWwindow* window); /*! @brief Requests user attention to the specified window. * * This function requests user attention to the specified window. On * platforms where this is not supported, attention is requested to the * application as a whole. * * Once the user has given attention, usually by focusing the window or * application, the system will end the request automatically. * * @param[in] window The window to request attention to. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @macos Attention is requested to the application as a whole, not the * specific window. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_attention * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI void glfwRequestWindowAttention(GLFWwindow* window); /*! @brief Returns the monitor that the window uses for full screen mode. * * This function returns the handle of the monitor that the specified window is * in full screen on. * * @param[in] window The window to query. * @return The monitor, or `NULL` if the window is in windowed mode or an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_monitor * @sa @ref glfwSetWindowMonitor * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI GLFWmonitor* glfwGetWindowMonitor(GLFWwindow* window); /*! @brief Sets the mode, monitor, video mode and placement of a window. * * This function sets the monitor that the window uses for full screen mode or, * if the monitor is `NULL`, makes it windowed mode. * * When setting a monitor, this function updates the width, height and refresh * rate of the desired video mode and switches to the video mode closest to it. * The window position is ignored when setting a monitor. * * When the monitor is `NULL`, the position, width and height are used to * place the window content area. The refresh rate is ignored when no monitor * is specified. * * If you only wish to update the resolution of a full screen window or the * size of a windowed mode window, see @ref glfwSetWindowSize. * * When a window transitions from full screen to windowed mode, this function * restores any previous window settings such as whether it is decorated, * floating, resizable, has size or aspect ratio limits, etc. * * @param[in] window The window whose monitor, size or video mode to set. * @param[in] monitor The desired monitor, or `NULL` to set windowed mode. * @param[in] xpos The desired x-coordinate of the upper-left corner of the * content area. * @param[in] ypos The desired y-coordinate of the upper-left corner of the * content area. * @param[in] width The desired with, in screen coordinates, of the content * area or video mode. * @param[in] height The desired height, in screen coordinates, of the content * area or video mode. * @param[in] refreshRate The desired refresh rate, in Hz, of the video mode, * or `GLFW_DONT_CARE`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark The OpenGL or OpenGL ES context will not be destroyed or otherwise * affected by any resizing or mode switching, although you may need to update * your viewport if the framebuffer size has changed. * * @remark @wayland The desired window position is ignored, as there is no way * for an application to set this property. * * @remark @wayland Setting the window to full screen will not attempt to * change the mode, no matter what the requested size or refresh rate. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_monitor * @sa @ref window_full_screen * @sa @ref glfwGetWindowMonitor * @sa @ref glfwSetWindowSize * * @since Added in version 3.2. * * @ingroup window */ GLFWAPI void glfwSetWindowMonitor(GLFWwindow* window, GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate); /*! @brief Returns an attribute of the specified window. * * This function returns the value of an attribute of the specified window or * its OpenGL or OpenGL ES context. * * @param[in] window The window to query. * @param[in] attrib The [window attribute](@ref window_attribs) whose value to * return. * @return The value of the attribute, or zero if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @remark Framebuffer related hints are not window attributes. See @ref * window_attribs_fb for more information. * * @remark Zero is a valid value for many window and context related * attributes so you cannot use a return value of zero as an indication of * errors. However, this function should not fail as long as it is passed * valid arguments and the library has been [initialized](@ref intro_init). * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_attribs * @sa @ref glfwSetWindowAttrib * * @since Added in version 3.0. Replaces `glfwGetWindowParam` and * `glfwGetGLVersion`. * * @ingroup window */ GLFWAPI int glfwGetWindowAttrib(GLFWwindow* window, int attrib); /*! @brief Sets an attribute of the specified window. * * This function sets the value of an attribute of the specified window. * * The supported attributes are [GLFW_DECORATED](@ref GLFW_DECORATED_attrib), * [GLFW_RESIZABLE](@ref GLFW_RESIZABLE_attrib), * [GLFW_FLOATING](@ref GLFW_FLOATING_attrib), * [GLFW_AUTO_ICONIFY](@ref GLFW_AUTO_ICONIFY_attrib) and * [GLFW_FOCUS_ON_SHOW](@ref GLFW_FOCUS_ON_SHOW_attrib). * * Some of these attributes are ignored for full screen windows. The new * value will take effect if the window is later made windowed. * * Some of these attributes are ignored for windowed mode windows. The new * value will take effect if the window is later made full screen. * * @param[in] window The window to set the attribute for. * @param[in] attrib A supported window attribute. * @param[in] value `GLFW_TRUE` or `GLFW_FALSE`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM, @ref GLFW_INVALID_VALUE and @ref GLFW_PLATFORM_ERROR. * * @remark Calling @ref glfwGetWindowAttrib will always return the latest * value, even if that value is ignored by the current mode of the window. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_attribs * @sa @ref glfwGetWindowAttrib * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI void glfwSetWindowAttrib(GLFWwindow* window, int attrib, int value); /*! @brief Sets the user pointer of the specified window. * * This function sets the user-defined pointer of the specified window. The * current value is retained until the window is destroyed. The initial value * is `NULL`. * * @param[in] window The window whose pointer to set. * @param[in] pointer The new value. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref window_userptr * @sa @ref glfwGetWindowUserPointer * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void glfwSetWindowUserPointer(GLFWwindow* window, void* pointer); /*! @brief Returns the user pointer of the specified window. * * This function returns the current value of the user-defined pointer of the * specified window. The initial value is `NULL`. * * @param[in] window The window whose pointer to return. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref window_userptr * @sa @ref glfwSetWindowUserPointer * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI void* glfwGetWindowUserPointer(GLFWwindow* window); /*! @brief Sets the position callback for the specified window. * * This function sets the position callback of the specified window, which is * called when the window is moved. The callback is provided with the * position, in screen coordinates, of the upper-left corner of the content * area of the window. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int xpos, int ypos) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowposfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @remark @wayland This callback will never be called, as there is no way for * an application to know its global position. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_pos * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI GLFWwindowposfun glfwSetWindowPosCallback(GLFWwindow* window, GLFWwindowposfun callback); /*! @brief Sets the size callback for the specified window. * * This function sets the size callback of the specified window, which is * called when the window is resized. The callback is provided with the size, * in screen coordinates, of the content area of the window. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int width, int height) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowsizefun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_size * * @since Added in version 1.0. * @glfw3 Added window handle parameter and return value. * * @ingroup window */ GLFWAPI GLFWwindowsizefun glfwSetWindowSizeCallback(GLFWwindow* window, GLFWwindowsizefun callback); /*! @brief Sets the close callback for the specified window. * * This function sets the close callback of the specified window, which is * called when the user attempts to close the window, for example by clicking * the close widget in the title bar. * * The close flag is set before this callback is called, but you can modify it * at any time with @ref glfwSetWindowShouldClose. * * The close callback is not triggered by @ref glfwDestroyWindow. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowclosefun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @remark @macos Selecting Quit from the application menu will trigger the * close callback for all windows. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_close * * @since Added in version 2.5. * @glfw3 Added window handle parameter and return value. * * @ingroup window */ GLFWAPI GLFWwindowclosefun glfwSetWindowCloseCallback(GLFWwindow* window, GLFWwindowclosefun callback); /*! @brief Sets the refresh callback for the specified window. * * This function sets the refresh callback of the specified window, which is * called when the content area of the window needs to be redrawn, for example * if the window has been exposed after having been covered by another window. * * On compositing window systems such as Aero, Compiz, Aqua or Wayland, where * the window contents are saved off-screen, this callback may be called only * very infrequently or never at all. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window); * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowrefreshfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_refresh * * @since Added in version 2.5. * @glfw3 Added window handle parameter and return value. * * @ingroup window */ GLFWAPI GLFWwindowrefreshfun glfwSetWindowRefreshCallback(GLFWwindow* window, GLFWwindowrefreshfun callback); /*! @brief Sets the focus callback for the specified window. * * This function sets the focus callback of the specified window, which is * called when the window gains or loses input focus. * * After the focus callback is called for a window that lost input focus, * synthetic key and mouse button release events will be generated for all such * that had been pressed. For more information, see @ref glfwSetKeyCallback * and @ref glfwSetMouseButtonCallback. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int focused) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowfocusfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_focus * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI GLFWwindowfocusfun glfwSetWindowFocusCallback(GLFWwindow* window, GLFWwindowfocusfun callback); /*! @brief Sets the iconify callback for the specified window. * * This function sets the iconification callback of the specified window, which * is called when the window is iconified or restored. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int iconified) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowiconifyfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @remark @wayland The wl_shell protocol has no concept of iconification, * this callback will never be called when using this deprecated protocol. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_iconify * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI GLFWwindowiconifyfun glfwSetWindowIconifyCallback(GLFWwindow* window, GLFWwindowiconifyfun callback); /*! @brief Sets the maximize callback for the specified window. * * This function sets the maximization callback of the specified window, which * is called when the window is maximized or restored. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int maximized) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowmaximizefun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_maximize * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI GLFWwindowmaximizefun glfwSetWindowMaximizeCallback(GLFWwindow* window, GLFWwindowmaximizefun callback); /*! @brief Sets the framebuffer resize callback for the specified window. * * This function sets the framebuffer resize callback of the specified window, * which is called when the framebuffer of the specified window is resized. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int width, int height) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWframebuffersizefun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_fbsize * * @since Added in version 3.0. * * @ingroup window */ GLFWAPI GLFWframebuffersizefun glfwSetFramebufferSizeCallback(GLFWwindow* window, GLFWframebuffersizefun callback); /*! @brief Sets the window content scale callback for the specified window. * * This function sets the window content scale callback of the specified window, * which is called when the content scale of the specified window changes. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, float xscale, float yscale) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWwindowcontentscalefun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref window_scale * @sa @ref glfwGetWindowContentScale * * @since Added in version 3.3. * * @ingroup window */ GLFWAPI GLFWwindowcontentscalefun glfwSetWindowContentScaleCallback(GLFWwindow* window, GLFWwindowcontentscalefun callback); /*! @brief Processes all pending events. * * This function processes only those events that are already in the event * queue and then returns immediately. Processing events will cause the window * and input callbacks associated with those events to be called. * * On some platforms, a window move, resize or menu operation will cause event * processing to block. This is due to how event processing is designed on * those platforms. You can use the * [window refresh callback](@ref window_refresh) to redraw the contents of * your window when necessary during such operations. * * Do not assume that callbacks you set will _only_ be called in response to * event processing functions like this one. While it is necessary to poll for * events, window systems that require GLFW to register callbacks of its own * can pass events to GLFW in response to many window system function calls. * GLFW will pass those events on to the application callbacks before * returning. * * Event processing is not required for joystick input to work. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @reentrancy This function must not be called from a callback. * * @thread_safety This function must only be called from the main thread. * * @sa @ref events * @sa @ref glfwWaitEvents * @sa @ref glfwWaitEventsTimeout * * @since Added in version 1.0. * * @ingroup window */ GLFWAPI void glfwPollEvents(void); /*! @brief Waits until events are queued and processes them. * * This function puts the calling thread to sleep until at least one event is * available in the event queue. Once one or more events are available, * it behaves exactly like @ref glfwPollEvents, i.e. the events in the queue * are processed and the function then returns immediately. Processing events * will cause the window and input callbacks associated with those events to be * called. * * Since not all events are associated with callbacks, this function may return * without a callback having been called even if you are monitoring all * callbacks. * * On some platforms, a window move, resize or menu operation will cause event * processing to block. This is due to how event processing is designed on * those platforms. You can use the * [window refresh callback](@ref window_refresh) to redraw the contents of * your window when necessary during such operations. * * Do not assume that callbacks you set will _only_ be called in response to * event processing functions like this one. While it is necessary to poll for * events, window systems that require GLFW to register callbacks of its own * can pass events to GLFW in response to many window system function calls. * GLFW will pass those events on to the application callbacks before * returning. * * Event processing is not required for joystick input to work. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @reentrancy This function must not be called from a callback. * * @thread_safety This function must only be called from the main thread. * * @sa @ref events * @sa @ref glfwPollEvents * @sa @ref glfwWaitEventsTimeout * * @since Added in version 2.5. * * @ingroup window */ GLFWAPI void glfwWaitEvents(void); /*! @brief Waits with timeout until events are queued and processes them. * * This function puts the calling thread to sleep until at least one event is * available in the event queue, or until the specified timeout is reached. If * one or more events are available, it behaves exactly like @ref * glfwPollEvents, i.e. the events in the queue are processed and the function * then returns immediately. Processing events will cause the window and input * callbacks associated with those events to be called. * * The timeout value must be a positive finite number. * * Since not all events are associated with callbacks, this function may return * without a callback having been called even if you are monitoring all * callbacks. * * On some platforms, a window move, resize or menu operation will cause event * processing to block. This is due to how event processing is designed on * those platforms. You can use the * [window refresh callback](@ref window_refresh) to redraw the contents of * your window when necessary during such operations. * * Do not assume that callbacks you set will _only_ be called in response to * event processing functions like this one. While it is necessary to poll for * events, window systems that require GLFW to register callbacks of its own * can pass events to GLFW in response to many window system function calls. * GLFW will pass those events on to the application callbacks before * returning. * * Event processing is not required for joystick input to work. * * @param[in] timeout The maximum amount of time, in seconds, to wait. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_VALUE and @ref GLFW_PLATFORM_ERROR. * * @reentrancy This function must not be called from a callback. * * @thread_safety This function must only be called from the main thread. * * @sa @ref events * @sa @ref glfwPollEvents * @sa @ref glfwWaitEvents * * @since Added in version 3.2. * * @ingroup window */ GLFWAPI void glfwWaitEventsTimeout(double timeout); /*! @brief Posts an empty event to the event queue. * * This function posts an empty event from the current thread to the event * queue, causing @ref glfwWaitEvents or @ref glfwWaitEventsTimeout to return. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function may be called from any thread. * * @sa @ref events * @sa @ref glfwWaitEvents * @sa @ref glfwWaitEventsTimeout * * @since Added in version 3.1. * * @ingroup window */ GLFWAPI void glfwPostEmptyEvent(void); /*! @brief Returns the value of an input option for the specified window. * * This function returns the value of an input option for the specified window. * The mode must be one of @ref GLFW_CURSOR, @ref GLFW_STICKY_KEYS, * @ref GLFW_STICKY_MOUSE_BUTTONS, @ref GLFW_LOCK_KEY_MODS or * @ref GLFW_RAW_MOUSE_MOTION. * * @param[in] window The window to query. * @param[in] mode One of `GLFW_CURSOR`, `GLFW_STICKY_KEYS`, * `GLFW_STICKY_MOUSE_BUTTONS`, `GLFW_LOCK_KEY_MODS` or * `GLFW_RAW_MOUSE_MOTION`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @thread_safety This function must only be called from the main thread. * * @sa @ref glfwSetInputMode * * @since Added in version 3.0. * * @ingroup input */ GLFWAPI int glfwGetInputMode(GLFWwindow* window, int mode); /*! @brief Sets an input option for the specified window. * * This function sets an input mode option for the specified window. The mode * must be one of @ref GLFW_CURSOR, @ref GLFW_STICKY_KEYS, * @ref GLFW_STICKY_MOUSE_BUTTONS, @ref GLFW_LOCK_KEY_MODS or * @ref GLFW_RAW_MOUSE_MOTION. * * If the mode is `GLFW_CURSOR`, the value must be one of the following cursor * modes: * - `GLFW_CURSOR_NORMAL` makes the cursor visible and behaving normally. * - `GLFW_CURSOR_HIDDEN` makes the cursor invisible when it is over the * content area of the window but does not restrict the cursor from leaving. * - `GLFW_CURSOR_DISABLED` hides and grabs the cursor, providing virtual * and unlimited cursor movement. This is useful for implementing for * example 3D camera controls. * * If the mode is `GLFW_STICKY_KEYS`, the value must be either `GLFW_TRUE` to * enable sticky keys, or `GLFW_FALSE` to disable it. If sticky keys are * enabled, a key press will ensure that @ref glfwGetKey returns `GLFW_PRESS` * the next time it is called even if the key had been released before the * call. This is useful when you are only interested in whether keys have been * pressed but not when or in which order. * * If the mode is `GLFW_STICKY_MOUSE_BUTTONS`, the value must be either * `GLFW_TRUE` to enable sticky mouse buttons, or `GLFW_FALSE` to disable it. * If sticky mouse buttons are enabled, a mouse button press will ensure that * @ref glfwGetMouseButton returns `GLFW_PRESS` the next time it is called even * if the mouse button had been released before the call. This is useful when * you are only interested in whether mouse buttons have been pressed but not * when or in which order. * * If the mode is `GLFW_LOCK_KEY_MODS`, the value must be either `GLFW_TRUE` to * enable lock key modifier bits, or `GLFW_FALSE` to disable them. If enabled, * callbacks that receive modifier bits will also have the @ref * GLFW_MOD_CAPS_LOCK bit set when the event was generated with Caps Lock on, * and the @ref GLFW_MOD_NUM_LOCK bit when Num Lock was on. * * If the mode is `GLFW_RAW_MOUSE_MOTION`, the value must be either `GLFW_TRUE` * to enable raw (unscaled and unaccelerated) mouse motion when the cursor is * disabled, or `GLFW_FALSE` to disable it. If raw motion is not supported, * attempting to set this will emit @ref GLFW_PLATFORM_ERROR. Call @ref * glfwRawMouseMotionSupported to check for support. * * @param[in] window The window whose input mode to set. * @param[in] mode One of `GLFW_CURSOR`, `GLFW_STICKY_KEYS`, * `GLFW_STICKY_MOUSE_BUTTONS`, `GLFW_LOCK_KEY_MODS` or * `GLFW_RAW_MOUSE_MOTION`. * @param[in] value The new value of the specified input mode. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref glfwGetInputMode * * @since Added in version 3.0. Replaces `glfwEnable` and `glfwDisable`. * * @ingroup input */ GLFWAPI void glfwSetInputMode(GLFWwindow* window, int mode, int value); /*! @brief Returns whether raw mouse motion is supported. * * This function returns whether raw mouse motion is supported on the current * system. This status does not change after GLFW has been initialized so you * only need to check this once. If you attempt to enable raw motion on * a system that does not support it, @ref GLFW_PLATFORM_ERROR will be emitted. * * Raw mouse motion is closer to the actual motion of the mouse across * a surface. It is not affected by the scaling and acceleration applied to * the motion of the desktop cursor. That processing is suitable for a cursor * while raw motion is better for controlling for example a 3D camera. Because * of this, raw mouse motion is only provided when the cursor is disabled. * * @return `GLFW_TRUE` if raw mouse motion is supported on the current machine, * or `GLFW_FALSE` otherwise. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref raw_mouse_motion * @sa @ref glfwSetInputMode * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI int glfwRawMouseMotionSupported(void); /*! @brief Returns the layout-specific name of the specified printable key. * * This function returns the name of the specified printable key, encoded as * UTF-8. This is typically the character that key would produce without any * modifier keys, intended for displaying key bindings to the user. For dead * keys, it is typically the diacritic it would add to a character. * * __Do not use this function__ for [text input](@ref input_char). You will * break text input for many languages even if it happens to work for yours. * * If the key is `GLFW_KEY_UNKNOWN`, the scancode is used to identify the key, * otherwise the scancode is ignored. If you specify a non-printable key, or * `GLFW_KEY_UNKNOWN` and a scancode that maps to a non-printable key, this * function returns `NULL` but does not emit an error. * * This behavior allows you to always pass in the arguments in the * [key callback](@ref input_key) without modification. * * The printable keys are: * - `GLFW_KEY_APOSTROPHE` * - `GLFW_KEY_COMMA` * - `GLFW_KEY_MINUS` * - `GLFW_KEY_PERIOD` * - `GLFW_KEY_SLASH` * - `GLFW_KEY_SEMICOLON` * - `GLFW_KEY_EQUAL` * - `GLFW_KEY_LEFT_BRACKET` * - `GLFW_KEY_RIGHT_BRACKET` * - `GLFW_KEY_BACKSLASH` * - `GLFW_KEY_WORLD_1` * - `GLFW_KEY_WORLD_2` * - `GLFW_KEY_0` to `GLFW_KEY_9` * - `GLFW_KEY_A` to `GLFW_KEY_Z` * - `GLFW_KEY_KP_0` to `GLFW_KEY_KP_9` * - `GLFW_KEY_KP_DECIMAL` * - `GLFW_KEY_KP_DIVIDE` * - `GLFW_KEY_KP_MULTIPLY` * - `GLFW_KEY_KP_SUBTRACT` * - `GLFW_KEY_KP_ADD` * - `GLFW_KEY_KP_EQUAL` * * Names for printable keys depend on keyboard layout, while names for * non-printable keys are the same across layouts but depend on the application * language and should be localized along with other user interface text. * * @param[in] key The key to query, or `GLFW_KEY_UNKNOWN`. * @param[in] scancode The scancode of the key to query. * @return The UTF-8 encoded, layout-specific name of the key, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark The contents of the returned string may change when a keyboard * layout change event is received. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_key_name * * @since Added in version 3.2. * * @ingroup input */ GLFWAPI const char* glfwGetKeyName(int key, int scancode); GLFWAPI const char* glfwGetKeys(GLFWwindow* handle); //<< @r-lyeh added /*! @brief Returns the platform-specific scancode of the specified key. * * This function returns the platform-specific scancode of the specified key. * * If the key is `GLFW_KEY_UNKNOWN` or does not exist on the keyboard this * method will return `-1`. * * @param[in] key Any [named key](@ref keys). * @return The platform-specific scancode for the key, or `-1` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function may be called from any thread. * * @sa @ref input_key * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI int glfwGetKeyScancode(int key); /*! @brief Returns the last reported state of a keyboard key for the specified * window. * * This function returns the last state reported for the specified key to the * specified window. The returned state is one of `GLFW_PRESS` or * `GLFW_RELEASE`. The higher-level action `GLFW_REPEAT` is only reported to * the key callback. * * If the @ref GLFW_STICKY_KEYS input mode is enabled, this function returns * `GLFW_PRESS` the first time you call it for a key that was pressed, even if * that key has already been released. * * The key functions deal with physical keys, with [key tokens](@ref keys) * named after their use on the standard US keyboard layout. If you want to * input text, use the Unicode character callback instead. * * The [modifier key bit masks](@ref mods) are not key tokens and cannot be * used with this function. * * __Do not use this function__ to implement [text input](@ref input_char). * * @param[in] window The desired window. * @param[in] key The desired [keyboard key](@ref keys). `GLFW_KEY_UNKNOWN` is * not a valid key for this function. * @return One of `GLFW_PRESS` or `GLFW_RELEASE`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_key * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup input */ GLFWAPI int glfwGetKey(GLFWwindow* window, int key); /*! @brief Returns the last reported state of a mouse button for the specified * window. * * This function returns the last state reported for the specified mouse button * to the specified window. The returned state is one of `GLFW_PRESS` or * `GLFW_RELEASE`. * * If the @ref GLFW_STICKY_MOUSE_BUTTONS input mode is enabled, this function * returns `GLFW_PRESS` the first time you call it for a mouse button that was * pressed, even if that mouse button has already been released. * * @param[in] window The desired window. * @param[in] button The desired [mouse button](@ref buttons). * @return One of `GLFW_PRESS` or `GLFW_RELEASE`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_mouse_button * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup input */ GLFWAPI int glfwGetMouseButton(GLFWwindow* window, int button); /*! @brief Retrieves the position of the cursor relative to the content area of * the window. * * This function returns the position of the cursor, in screen coordinates, * relative to the upper-left corner of the content area of the specified * window. * * If the cursor is disabled (with `GLFW_CURSOR_DISABLED`) then the cursor * position is unbounded and limited only by the minimum and maximum values of * a `double`. * * The coordinate can be converted to their integer equivalents with the * `floor` function. Casting directly to an integer type works for positive * coordinates, but fails for negative ones. * * Any or all of the position arguments may be `NULL`. If an error occurs, all * non-`NULL` position arguments will be set to zero. * * @param[in] window The desired window. * @param[out] xpos Where to store the cursor x-coordinate, relative to the * left edge of the content area, or `NULL`. * @param[out] ypos Where to store the cursor y-coordinate, relative to the to * top edge of the content area, or `NULL`. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_pos * @sa @ref glfwSetCursorPos * * @since Added in version 3.0. Replaces `glfwGetMousePos`. * * @ingroup input */ GLFWAPI void glfwGetCursorPos(GLFWwindow* window, double* xpos, double* ypos); /*! @brief Sets the position of the cursor, relative to the content area of the * window. * * This function sets the position, in screen coordinates, of the cursor * relative to the upper-left corner of the content area of the specified * window. The window must have input focus. If the window does not have * input focus when this function is called, it fails silently. * * __Do not use this function__ to implement things like camera controls. GLFW * already provides the `GLFW_CURSOR_DISABLED` cursor mode that hides the * cursor, transparently re-centers it and provides unconstrained cursor * motion. See @ref glfwSetInputMode for more information. * * If the cursor mode is `GLFW_CURSOR_DISABLED` then the cursor position is * unconstrained and limited only by the minimum and maximum values of * a `double`. * * @param[in] window The desired window. * @param[in] xpos The desired x-coordinate, relative to the left edge of the * content area. * @param[in] ypos The desired y-coordinate, relative to the top edge of the * content area. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @remark @wayland This function will only work when the cursor mode is * `GLFW_CURSOR_DISABLED`, otherwise it will do nothing. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_pos * @sa @ref glfwGetCursorPos * * @since Added in version 3.0. Replaces `glfwSetMousePos`. * * @ingroup input */ GLFWAPI void glfwSetCursorPos(GLFWwindow* window, double xpos, double ypos); /*! @brief Creates a custom cursor. * * Creates a new custom cursor image that can be set for a window with @ref * glfwSetCursor. The cursor can be destroyed with @ref glfwDestroyCursor. * Any remaining cursors are destroyed by @ref glfwTerminate. * * The pixels are 32-bit, little-endian, non-premultiplied RGBA, i.e. eight * bits per channel with the red channel first. They are arranged canonically * as packed sequential rows, starting from the top-left corner. * * The cursor hotspot is specified in pixels, relative to the upper-left corner * of the cursor image. Like all other coordinate systems in GLFW, the X-axis * points to the right and the Y-axis points down. * * @param[in] image The desired cursor image. * @param[in] xhot The desired x-coordinate, in pixels, of the cursor hotspot. * @param[in] yhot The desired y-coordinate, in pixels, of the cursor hotspot. * @return The handle of the created cursor, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The specified image data is copied before this function * returns. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_object * @sa @ref glfwDestroyCursor * @sa @ref glfwCreateStandardCursor * * @since Added in version 3.1. * * @ingroup input */ GLFWAPI GLFWcursor* glfwCreateCursor(const GLFWimage* image, int xhot, int yhot); /*! @brief Creates a cursor with a standard shape. * * Returns a cursor with a [standard shape](@ref shapes), that can be set for * a window with @ref glfwSetCursor. * * @param[in] shape One of the [standard shapes](@ref shapes). * @return A new cursor ready to use or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_object * @sa @ref glfwCreateCursor * * @since Added in version 3.1. * * @ingroup input */ GLFWAPI GLFWcursor* glfwCreateStandardCursor(int shape); /*! @brief Destroys a cursor. * * This function destroys a cursor previously created with @ref * glfwCreateCursor. Any remaining cursors will be destroyed by @ref * glfwTerminate. * * If the specified cursor is current for any window, that window will be * reverted to the default cursor. This does not affect the cursor mode. * * @param[in] cursor The cursor object to destroy. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @reentrancy This function must not be called from a callback. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_object * @sa @ref glfwCreateCursor * * @since Added in version 3.1. * * @ingroup input */ GLFWAPI void glfwDestroyCursor(GLFWcursor* cursor); /*! @brief Sets the cursor for the window. * * This function sets the cursor image to be used when the cursor is over the * content area of the specified window. The set cursor will only be visible * when the [cursor mode](@ref cursor_mode) of the window is * `GLFW_CURSOR_NORMAL`. * * On some platforms, the set cursor may not be visible unless the window also * has input focus. * * @param[in] window The window to set the cursor for. * @param[in] cursor The cursor to set, or `NULL` to switch back to the default * arrow cursor. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_object * * @since Added in version 3.1. * * @ingroup input */ GLFWAPI void glfwSetCursor(GLFWwindow* window, GLFWcursor* cursor); /*! @brief Sets the key callback. * * This function sets the key callback of the specified window, which is called * when a key is pressed, repeated or released. * * The key functions deal with physical keys, with layout independent * [key tokens](@ref keys) named after their values in the standard US keyboard * layout. If you want to input text, use the * [character callback](@ref glfwSetCharCallback) instead. * * When a window loses input focus, it will generate synthetic key release * events for all pressed keys. You can tell these events from user-generated * events by the fact that the synthetic ones are generated after the focus * loss event has been processed, i.e. after the * [window focus callback](@ref glfwSetWindowFocusCallback) has been called. * * The scancode of a key is specific to that platform or sometimes even to that * machine. Scancodes are intended to allow users to bind keys that don't have * a GLFW key token. Such keys have `key` set to `GLFW_KEY_UNKNOWN`, their * state is not saved and so it cannot be queried with @ref glfwGetKey. * * Sometimes GLFW needs to generate synthetic key events, in which case the * scancode may be zero. * * @param[in] window The window whose callback to set. * @param[in] callback The new key callback, or `NULL` to remove the currently * set callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int key, int scancode, int action, int mods) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWkeyfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_key * * @since Added in version 1.0. * @glfw3 Added window handle parameter and return value. * * @ingroup input */ GLFWAPI GLFWkeyfun glfwSetKeyCallback(GLFWwindow* window, GLFWkeyfun callback); /*! @brief Sets the Unicode character callback. * * This function sets the character callback of the specified window, which is * called when a Unicode character is input. * * The character callback is intended for Unicode text input. As it deals with * characters, it is keyboard layout dependent, whereas the * [key callback](@ref glfwSetKeyCallback) is not. Characters do not map 1:1 * to physical keys, as a key may produce zero, one or more characters. If you * want to know whether a specific physical key was pressed or released, see * the key callback instead. * * The character callback behaves as system text input normally does and will * not be called if modifier keys are held down that would prevent normal text * input on that platform, for example a Super (Command) key on macOS or Alt key * on Windows. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, unsigned int codepoint) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWcharfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_char * * @since Added in version 2.4. * @glfw3 Added window handle parameter and return value. * * @ingroup input */ GLFWAPI GLFWcharfun glfwSetCharCallback(GLFWwindow* window, GLFWcharfun callback); /*! @brief Sets the Unicode character with modifiers callback. * * This function sets the character with modifiers callback of the specified * window, which is called when a Unicode character is input regardless of what * modifier keys are used. * * The character with modifiers callback is intended for implementing custom * Unicode character input. For regular Unicode text input, see the * [character callback](@ref glfwSetCharCallback). Like the character * callback, the character with modifiers callback deals with characters and is * keyboard layout dependent. Characters do not map 1:1 to physical keys, as * a key may produce zero, one or more characters. If you want to know whether * a specific physical key was pressed or released, see the * [key callback](@ref glfwSetKeyCallback) instead. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or an * [error](@ref error_handling) occurred. * * @callback_signature * @code * void function_name(GLFWwindow* window, unsigned int codepoint, int mods) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWcharmodsfun). * * @deprecated Scheduled for removal in version 4.0. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_char * * @since Added in version 3.1. * * @ingroup input */ GLFWAPI GLFWcharmodsfun glfwSetCharModsCallback(GLFWwindow* window, GLFWcharmodsfun callback); /*! @brief Sets the mouse button callback. * * This function sets the mouse button callback of the specified window, which * is called when a mouse button is pressed or released. * * When a window loses input focus, it will generate synthetic mouse button * release events for all pressed mouse buttons. You can tell these events * from user-generated events by the fact that the synthetic ones are generated * after the focus loss event has been processed, i.e. after the * [window focus callback](@ref glfwSetWindowFocusCallback) has been called. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int button, int action, int mods) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWmousebuttonfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref input_mouse_button * * @since Added in version 1.0. * @glfw3 Added window handle parameter and return value. * * @ingroup input */ GLFWAPI GLFWmousebuttonfun glfwSetMouseButtonCallback(GLFWwindow* window, GLFWmousebuttonfun callback); /*! @brief Sets the cursor position callback. * * This function sets the cursor position callback of the specified window, * which is called when the cursor is moved. The callback is provided with the * position, in screen coordinates, relative to the upper-left corner of the * content area of the window. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, double xpos, double ypos); * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWcursorposfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_pos * * @since Added in version 3.0. Replaces `glfwSetMousePosCallback`. * * @ingroup input */ GLFWAPI GLFWcursorposfun glfwSetCursorPosCallback(GLFWwindow* window, GLFWcursorposfun callback); /*! @brief Sets the cursor enter/leave callback. * * This function sets the cursor boundary crossing callback of the specified * window, which is called when the cursor enters or leaves the content area of * the window. * * @param[in] window The window whose callback to set. * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int entered) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWcursorenterfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref cursor_enter * * @since Added in version 3.0. * * @ingroup input */ GLFWAPI GLFWcursorenterfun glfwSetCursorEnterCallback(GLFWwindow* window, GLFWcursorenterfun callback); /*! @brief Sets the scroll callback. * * This function sets the scroll callback of the specified window, which is * called when a scrolling device is used, such as a mouse wheel or scrolling * area of a touchpad. * * The scroll callback receives all scrolling input, like that from a mouse * wheel or a touchpad scrolling area. * * @param[in] window The window whose callback to set. * @param[in] callback The new scroll callback, or `NULL` to remove the * currently set callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, double xoffset, double yoffset) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWscrollfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref scrolling * * @since Added in version 3.0. Replaces `glfwSetMouseWheelCallback`. * * @ingroup input */ GLFWAPI GLFWscrollfun glfwSetScrollCallback(GLFWwindow* window, GLFWscrollfun callback); /*! @brief Sets the path drop callback. * * This function sets the path drop callback of the specified window, which is * called when one or more dragged paths are dropped on the window. * * Because the path array and its strings may have been generated specifically * for that event, they are not guaranteed to be valid after the callback has * returned. If you wish to use them after the callback returns, you need to * make a deep copy. * * @param[in] window The window whose callback to set. * @param[in] callback The new file drop callback, or `NULL` to remove the * currently set callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(GLFWwindow* window, int path_count, const char* paths[]) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWdropfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @remark @wayland File drop is currently unimplemented. * * @thread_safety This function must only be called from the main thread. * * @sa @ref path_drop * * @since Added in version 3.1. * * @ingroup input */ GLFWAPI GLFWdropfun glfwSetDropCallback(GLFWwindow* window, GLFWdropfun callback); /*! @brief Returns whether the specified joystick is present. * * This function returns whether the specified joystick is present. * * There is no need to call this function before other functions that accept * a joystick ID, as they all check for presence before performing any other * work. * * @param[in] jid The [joystick](@ref joysticks) to query. * @return `GLFW_TRUE` if the joystick is present, or `GLFW_FALSE` otherwise. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function must only be called from the main thread. * * @sa @ref joystick * * @since Added in version 3.0. Replaces `glfwGetJoystickParam`. * * @ingroup input */ GLFWAPI int glfwJoystickPresent(int jid); /*! @brief Returns the values of all axes of the specified joystick. * * This function returns the values of all axes of the specified joystick. * Each element in the array is a value between -1.0 and 1.0. * * If the specified joystick is not present this function will return `NULL` * but will not generate an error. This can be used instead of first calling * @ref glfwJoystickPresent. * * @param[in] jid The [joystick](@ref joysticks) to query. * @param[out] count Where to store the number of axis values in the returned * array. This is set to zero if the joystick is not present or an error * occurred. * @return An array of axis values, or `NULL` if the joystick is not present or * an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified joystick is * disconnected or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref joystick_axis * * @since Added in version 3.0. Replaces `glfwGetJoystickPos`. * * @ingroup input */ GLFWAPI const float* glfwGetJoystickAxes(int jid, int* count); /*! @brief Returns the state of all buttons of the specified joystick. * * This function returns the state of all buttons of the specified joystick. * Each element in the array is either `GLFW_PRESS` or `GLFW_RELEASE`. * * For backward compatibility with earlier versions that did not have @ref * glfwGetJoystickHats, the button array also includes all hats, each * represented as four buttons. The hats are in the same order as returned by * __glfwGetJoystickHats__ and are in the order _up_, _right_, _down_ and * _left_. To disable these extra buttons, set the @ref * GLFW_JOYSTICK_HAT_BUTTONS init hint before initialization. * * If the specified joystick is not present this function will return `NULL` * but will not generate an error. This can be used instead of first calling * @ref glfwJoystickPresent. * * @param[in] jid The [joystick](@ref joysticks) to query. * @param[out] count Where to store the number of button states in the returned * array. This is set to zero if the joystick is not present or an error * occurred. * @return An array of button states, or `NULL` if the joystick is not present * or an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified joystick is * disconnected or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref joystick_button * * @since Added in version 2.2. * @glfw3 Changed to return a dynamic array. * * @ingroup input */ GLFWAPI const unsigned char* glfwGetJoystickButtons(int jid, int* count); /*! @brief Returns the state of all hats of the specified joystick. * * This function returns the state of all hats of the specified joystick. * Each element in the array is one of the following values: * * Name | Value * ---- | ----- * `GLFW_HAT_CENTERED` | 0 * `GLFW_HAT_UP` | 1 * `GLFW_HAT_RIGHT` | 2 * `GLFW_HAT_DOWN` | 4 * `GLFW_HAT_LEFT` | 8 * `GLFW_HAT_RIGHT_UP` | `GLFW_HAT_RIGHT` \| `GLFW_HAT_UP` * `GLFW_HAT_RIGHT_DOWN` | `GLFW_HAT_RIGHT` \| `GLFW_HAT_DOWN` * `GLFW_HAT_LEFT_UP` | `GLFW_HAT_LEFT` \| `GLFW_HAT_UP` * `GLFW_HAT_LEFT_DOWN` | `GLFW_HAT_LEFT` \| `GLFW_HAT_DOWN` * * The diagonal directions are bitwise combinations of the primary (up, right, * down and left) directions and you can test for these individually by ANDing * it with the corresponding direction. * * @code * if (hats[2] & GLFW_HAT_RIGHT) * { * // State of hat 2 could be right-up, right or right-down * } * @endcode * * If the specified joystick is not present this function will return `NULL` * but will not generate an error. This can be used instead of first calling * @ref glfwJoystickPresent. * * @param[in] jid The [joystick](@ref joysticks) to query. * @param[out] count Where to store the number of hat states in the returned * array. This is set to zero if the joystick is not present or an error * occurred. * @return An array of hat states, or `NULL` if the joystick is not present * or an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified joystick is * disconnected, this function is called again for that joystick or the library * is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref joystick_hat * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI const unsigned char* glfwGetJoystickHats(int jid, int* count); /*! @brief Returns the name of the specified joystick. * * This function returns the name, encoded as UTF-8, of the specified joystick. * The returned string is allocated and freed by GLFW. You should not free it * yourself. * * If the specified joystick is not present this function will return `NULL` * but will not generate an error. This can be used instead of first calling * @ref glfwJoystickPresent. * * @param[in] jid The [joystick](@ref joysticks) to query. * @return The UTF-8 encoded name of the joystick, or `NULL` if the joystick * is not present or an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified joystick is * disconnected or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref joystick_name * * @since Added in version 3.0. * * @ingroup input */ GLFWAPI const char* glfwGetJoystickName(int jid); /*! @brief Returns the SDL compatible GUID of the specified joystick. * * This function returns the SDL compatible GUID, as a UTF-8 encoded * hexadecimal string, of the specified joystick. The returned string is * allocated and freed by GLFW. You should not free it yourself. * * The GUID is what connects a joystick to a gamepad mapping. A connected * joystick will always have a GUID even if there is no gamepad mapping * assigned to it. * * If the specified joystick is not present this function will return `NULL` * but will not generate an error. This can be used instead of first calling * @ref glfwJoystickPresent. * * The GUID uses the format introduced in SDL 2.0.5. This GUID tries to * uniquely identify the make and model of a joystick but does not identify * a specific unit, e.g. all wired Xbox 360 controllers will have the same * GUID on that platform. The GUID for a unit may vary between platforms * depending on what hardware information the platform specific APIs provide. * * @param[in] jid The [joystick](@ref joysticks) to query. * @return The UTF-8 encoded GUID of the joystick, or `NULL` if the joystick * is not present or an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_INVALID_ENUM and @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified joystick is * disconnected or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref gamepad * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI const char* glfwGetJoystickGUID(int jid); /*! @brief Sets the user pointer of the specified joystick. * * This function sets the user-defined pointer of the specified joystick. The * current value is retained until the joystick is disconnected. The initial * value is `NULL`. * * This function may be called from the joystick callback, even for a joystick * that is being disconnected. * * @param[in] jid The joystick whose pointer to set. * @param[in] pointer The new value. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref joystick_userptr * @sa @ref glfwGetJoystickUserPointer * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI void glfwSetJoystickUserPointer(int jid, void* pointer); /*! @brief Returns the user pointer of the specified joystick. * * This function returns the current value of the user-defined pointer of the * specified joystick. The initial value is `NULL`. * * This function may be called from the joystick callback, even for a joystick * that is being disconnected. * * @param[in] jid The joystick whose pointer to return. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @sa @ref joystick_userptr * @sa @ref glfwSetJoystickUserPointer * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI void* glfwGetJoystickUserPointer(int jid); /*! @brief Returns whether the specified joystick has a gamepad mapping. * * This function returns whether the specified joystick is both present and has * a gamepad mapping. * * If the specified joystick is present but does not have a gamepad mapping * this function will return `GLFW_FALSE` but will not generate an error. Call * @ref glfwJoystickPresent to check if a joystick is present regardless of * whether it has a mapping. * * @param[in] jid The [joystick](@ref joysticks) to query. * @return `GLFW_TRUE` if a joystick is both present and has a gamepad mapping, * or `GLFW_FALSE` otherwise. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @thread_safety This function must only be called from the main thread. * * @sa @ref gamepad * @sa @ref glfwGetGamepadState * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI int glfwJoystickIsGamepad(int jid); /*! @brief Sets the joystick configuration callback. * * This function sets the joystick configuration callback, or removes the * currently set callback. This is called when a joystick is connected to or * disconnected from the system. * * For joystick connection and disconnection events to be delivered on all * platforms, you need to call one of the [event processing](@ref events) * functions. Joystick disconnection may also be detected and the callback * called by joystick functions. The function will then return whatever it * returns if the joystick is not present. * * @param[in] callback The new callback, or `NULL` to remove the currently set * callback. * @return The previously set callback, or `NULL` if no callback was set or the * library had not been [initialized](@ref intro_init). * * @callback_signature * @code * void function_name(int jid, int event) * @endcode * For more information about the callback parameters, see the * [function pointer type](@ref GLFWjoystickfun). * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function must only be called from the main thread. * * @sa @ref joystick_event * * @since Added in version 3.2. * * @ingroup input */ GLFWAPI GLFWjoystickfun glfwSetJoystickCallback(GLFWjoystickfun callback); /*! @brief Adds the specified SDL_GameControllerDB gamepad mappings. * * This function parses the specified ASCII encoded string and updates the * internal list with any gamepad mappings it finds. This string may * contain either a single gamepad mapping or many mappings separated by * newlines. The parser supports the full format of the `gamecontrollerdb.txt` * source file including empty lines and comments. * * See @ref gamepad_mapping for a description of the format. * * If there is already a gamepad mapping for a given GUID in the internal list, * it will be replaced by the one passed to this function. If the library is * terminated and re-initialized the internal list will revert to the built-in * default. * * @param[in] string The string containing the gamepad mappings. * @return `GLFW_TRUE` if successful, or `GLFW_FALSE` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_VALUE. * * @thread_safety This function must only be called from the main thread. * * @sa @ref gamepad * @sa @ref glfwJoystickIsGamepad * @sa @ref glfwGetGamepadName * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI int glfwUpdateGamepadMappings(const char* string); /*! @brief Returns the human-readable gamepad name for the specified joystick. * * This function returns the human-readable name of the gamepad from the * gamepad mapping assigned to the specified joystick. * * If the specified joystick is not present or does not have a gamepad mapping * this function will return `NULL` but will not generate an error. Call * @ref glfwJoystickPresent to check whether it is present regardless of * whether it has a mapping. * * @param[in] jid The [joystick](@ref joysticks) to query. * @return The UTF-8 encoded name of the gamepad, or `NULL` if the * joystick is not present, does not have a mapping or an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref GLFW_INVALID_ENUM. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the specified joystick is * disconnected, the gamepad mappings are updated or the library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref gamepad * @sa @ref glfwJoystickIsGamepad * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI const char* glfwGetGamepadName(int jid); /*! @brief Retrieves the state of the specified joystick remapped as a gamepad. * * This function retrieves the state of the specified joystick remapped to * an Xbox-like gamepad. * * If the specified joystick is not present or does not have a gamepad mapping * this function will return `GLFW_FALSE` but will not generate an error. Call * @ref glfwJoystickPresent to check whether it is present regardless of * whether it has a mapping. * * The Guide button may not be available for input as it is often hooked by the * system or the Steam client. * * Not all devices have all the buttons or axes provided by @ref * GLFWgamepadstate. Unavailable buttons and axes will always report * `GLFW_RELEASE` and 0.0 respectively. * * @param[in] jid The [joystick](@ref joysticks) to query. * @param[out] state The gamepad input state of the joystick. * @return `GLFW_TRUE` if successful, or `GLFW_FALSE` if no joystick is * connected, it has no gamepad mapping or an [error](@ref error_handling) * occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_ENUM. * * @thread_safety This function must only be called from the main thread. * * @sa @ref gamepad * @sa @ref glfwUpdateGamepadMappings * @sa @ref glfwJoystickIsGamepad * * @since Added in version 3.3. * * @ingroup input */ GLFWAPI int glfwGetGamepadState(int jid, GLFWgamepadstate* state); /*! @brief Sets the clipboard to the specified string. * * This function sets the system clipboard to the specified, UTF-8 encoded * string. * * @param[in] window Deprecated. Any valid window or `NULL`. * @param[in] string A UTF-8 encoded string. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The specified string is copied before this function * returns. * * @thread_safety This function must only be called from the main thread. * * @sa @ref clipboard * @sa @ref glfwGetClipboardString * * @since Added in version 3.0. * * @ingroup input */ GLFWAPI void glfwSetClipboardString(GLFWwindow* window, const char* string); /*! @brief Returns the contents of the clipboard as a string. * * This function returns the contents of the system clipboard, if it contains * or is convertible to a UTF-8 encoded string. If the clipboard is empty or * if its contents cannot be converted, `NULL` is returned and a @ref * GLFW_FORMAT_UNAVAILABLE error is generated. * * @param[in] window Deprecated. Any valid window or `NULL`. * @return The contents of the clipboard as a UTF-8 encoded string, or `NULL` * if an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_FORMAT_UNAVAILABLE and @ref GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the next call to @ref * glfwGetClipboardString or @ref glfwSetClipboardString, or until the library * is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref clipboard * @sa @ref glfwSetClipboardString * * @since Added in version 3.0. * * @ingroup input */ GLFWAPI const char* glfwGetClipboardString(GLFWwindow* window); /*! @brief Returns the GLFW time. * * This function returns the current GLFW time, in seconds. Unless the time * has been set using @ref glfwSetTime it measures time elapsed since GLFW was * initialized. * * This function and @ref glfwSetTime are helper functions on top of @ref * glfwGetTimerFrequency and @ref glfwGetTimerValue. * * The resolution of the timer is system dependent, but is usually on the order * of a few micro- or nanoseconds. It uses the highest-resolution monotonic * time source on each supported platform. * * @return The current time, in seconds, or zero if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Reading and * writing of the internal base time is not atomic, so it needs to be * externally synchronized with calls to @ref glfwSetTime. * * @sa @ref time * * @since Added in version 1.0. * * @ingroup input */ GLFWAPI double glfwGetTime(void); /*! @brief Sets the GLFW time. * * This function sets the current GLFW time, in seconds. The value must be * a positive finite number less than or equal to 18446744073.0, which is * approximately 584.5 years. * * This function and @ref glfwGetTime are helper functions on top of @ref * glfwGetTimerFrequency and @ref glfwGetTimerValue. * * @param[in] time The new value, in seconds. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_INVALID_VALUE. * * @remark The upper limit of GLFW time is calculated as * floor((264 - 1) / 109) and is due to implementations * storing nanoseconds in 64 bits. The limit may be increased in the future. * * @thread_safety This function may be called from any thread. Reading and * writing of the internal base time is not atomic, so it needs to be * externally synchronized with calls to @ref glfwGetTime. * * @sa @ref time * * @since Added in version 2.2. * * @ingroup input */ GLFWAPI void glfwSetTime(double time); /*! @brief Returns the current value of the raw timer. * * This function returns the current value of the raw timer, measured in * 1 / frequency seconds. To get the frequency, call @ref * glfwGetTimerFrequency. * * @return The value of the timer, or zero if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. * * @sa @ref time * @sa @ref glfwGetTimerFrequency * * @since Added in version 3.2. * * @ingroup input */ GLFWAPI uint64_t glfwGetTimerValue(void); /*! @brief Returns the frequency, in Hz, of the raw timer. * * This function returns the frequency, in Hz, of the raw timer. * * @return The frequency of the timer, in Hz, or zero if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. * * @sa @ref time * @sa @ref glfwGetTimerValue * * @since Added in version 3.2. * * @ingroup input */ GLFWAPI uint64_t glfwGetTimerFrequency(void); /*! @brief Makes the context of the specified window current for the calling * thread. * * This function makes the OpenGL or OpenGL ES context of the specified window * current on the calling thread. A context must only be made current on * a single thread at a time and each thread can have only a single current * context at a time. * * When moving a context between threads, you must make it non-current on the * old thread before making it current on the new one. * * By default, making a context non-current implicitly forces a pipeline flush. * On machines that support `GL_KHR_context_flush_control`, you can control * whether a context performs this flush by setting the * [GLFW_CONTEXT_RELEASE_BEHAVIOR](@ref GLFW_CONTEXT_RELEASE_BEHAVIOR_hint) * hint. * * The specified window must have an OpenGL or OpenGL ES context. Specifying * a window without a context will generate a @ref GLFW_NO_WINDOW_CONTEXT * error. * * @param[in] window The window whose context to make current, or `NULL` to * detach the current context. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_NO_WINDOW_CONTEXT and @ref GLFW_PLATFORM_ERROR. * * @thread_safety This function may be called from any thread. * * @sa @ref context_current * @sa @ref glfwGetCurrentContext * * @since Added in version 3.0. * * @ingroup context */ GLFWAPI void glfwMakeContextCurrent(GLFWwindow* window); /*! @brief Returns the window whose context is current on the calling thread. * * This function returns the window whose OpenGL or OpenGL ES context is * current on the calling thread. * * @return The window whose context is current, or `NULL` if no window's * context is current. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. * * @sa @ref context_current * @sa @ref glfwMakeContextCurrent * * @since Added in version 3.0. * * @ingroup context */ GLFWAPI GLFWwindow* glfwGetCurrentContext(void); /*! @brief Swaps the front and back buffers of the specified window. * * This function swaps the front and back buffers of the specified window when * rendering with OpenGL or OpenGL ES. If the swap interval is greater than * zero, the GPU driver waits the specified number of screen updates before * swapping the buffers. * * The specified window must have an OpenGL or OpenGL ES context. Specifying * a window without a context will generate a @ref GLFW_NO_WINDOW_CONTEXT * error. * * This function does not apply to Vulkan. If you are rendering with Vulkan, * see `vkQueuePresentKHR` instead. * * @param[in] window The window whose buffers to swap. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_NO_WINDOW_CONTEXT and @ref GLFW_PLATFORM_ERROR. * * @remark __EGL:__ The context of the specified window must be current on the * calling thread. * * @thread_safety This function may be called from any thread. * * @sa @ref buffer_swap * @sa @ref glfwSwapInterval * * @since Added in version 1.0. * @glfw3 Added window handle parameter. * * @ingroup window */ GLFWAPI void glfwSwapBuffers(GLFWwindow* window); /*! @brief Sets the swap interval for the current context. * * This function sets the swap interval for the current OpenGL or OpenGL ES * context, i.e. the number of screen updates to wait from the time @ref * glfwSwapBuffers was called before swapping the buffers and returning. This * is sometimes called _vertical synchronization_, _vertical retrace * synchronization_ or just _vsync_. * * A context that supports either of the `WGL_EXT_swap_control_tear` and * `GLX_EXT_swap_control_tear` extensions also accepts _negative_ swap * intervals, which allows the driver to swap immediately even if a frame * arrives a little bit late. You can check for these extensions with @ref * glfwExtensionSupported. * * A context must be current on the calling thread. Calling this function * without a current context will cause a @ref GLFW_NO_CURRENT_CONTEXT error. * * This function does not apply to Vulkan. If you are rendering with Vulkan, * see the present mode of your swapchain instead. * * @param[in] interval The minimum number of screen updates to wait for * until the buffers are swapped by @ref glfwSwapBuffers. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_NO_CURRENT_CONTEXT and @ref GLFW_PLATFORM_ERROR. * * @remark This function is not called during context creation, leaving the * swap interval set to whatever is the default on that platform. This is done * because some swap interval extensions used by GLFW do not allow the swap * interval to be reset to zero once it has been set to a non-zero value. * * @remark Some GPU drivers do not honor the requested swap interval, either * because of a user setting that overrides the application's request or due to * bugs in the driver. * * @thread_safety This function may be called from any thread. * * @sa @ref buffer_swap * @sa @ref glfwSwapBuffers * * @since Added in version 1.0. * * @ingroup context */ GLFWAPI void glfwSwapInterval(int interval); /*! @brief Returns whether the specified extension is available. * * This function returns whether the specified * [API extension](@ref context_glext) is supported by the current OpenGL or * OpenGL ES context. It searches both for client API extension and context * creation API extensions. * * A context must be current on the calling thread. Calling this function * without a current context will cause a @ref GLFW_NO_CURRENT_CONTEXT error. * * As this functions retrieves and searches one or more extension strings each * call, it is recommended that you cache its results if it is going to be used * frequently. The extension strings will not change during the lifetime of * a context, so there is no danger in doing this. * * This function does not apply to Vulkan. If you are using Vulkan, see @ref * glfwGetRequiredInstanceExtensions, `vkEnumerateInstanceExtensionProperties` * and `vkEnumerateDeviceExtensionProperties` instead. * * @param[in] extension The ASCII encoded name of the extension. * @return `GLFW_TRUE` if the extension is available, or `GLFW_FALSE` * otherwise. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_NO_CURRENT_CONTEXT, @ref GLFW_INVALID_VALUE and @ref * GLFW_PLATFORM_ERROR. * * @thread_safety This function may be called from any thread. * * @sa @ref context_glext * @sa @ref glfwGetProcAddress * * @since Added in version 1.0. * * @ingroup context */ GLFWAPI int glfwExtensionSupported(const char* extension); /*! @brief Returns the address of the specified function for the current * context. * * This function returns the address of the specified OpenGL or OpenGL ES * [core or extension function](@ref context_glext), if it is supported * by the current context. * * A context must be current on the calling thread. Calling this function * without a current context will cause a @ref GLFW_NO_CURRENT_CONTEXT error. * * This function does not apply to Vulkan. If you are rendering with Vulkan, * see @ref glfwGetInstanceProcAddress, `vkGetInstanceProcAddr` and * `vkGetDeviceProcAddr` instead. * * @param[in] procname The ASCII encoded name of the function. * @return The address of the function, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_NO_CURRENT_CONTEXT and @ref GLFW_PLATFORM_ERROR. * * @remark The address of a given function is not guaranteed to be the same * between contexts. * * @remark This function may return a non-`NULL` address despite the * associated version or extension not being available. Always check the * context version or extension string first. * * @pointer_lifetime The returned function pointer is valid until the context * is destroyed or the library is terminated. * * @thread_safety This function may be called from any thread. * * @sa @ref context_glext * @sa @ref glfwExtensionSupported * * @since Added in version 1.0. * * @ingroup context */ GLFWAPI GLFWglproc glfwGetProcAddress(const char* procname); /*! @brief Returns whether the Vulkan loader and an ICD have been found. * * This function returns whether the Vulkan loader and any minimally functional * ICD have been found. * * The availability of a Vulkan loader and even an ICD does not by itself guarantee that * surface creation or even instance creation is possible. Call @ref * glfwGetRequiredInstanceExtensions to check whether the extensions necessary for Vulkan * surface creation are available and @ref glfwGetPhysicalDevicePresentationSupport to * check whether a queue family of a physical device supports image presentation. * * @return `GLFW_TRUE` if Vulkan is minimally available, or `GLFW_FALSE` * otherwise. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. * * @sa @ref vulkan_support * * @since Added in version 3.2. * * @ingroup vulkan */ GLFWAPI int glfwVulkanSupported(void); /*! @brief Returns the Vulkan instance extensions required by GLFW. * * This function returns an array of names of Vulkan instance extensions required * by GLFW for creating Vulkan surfaces for GLFW windows. If successful, the * list will always contain `VK_KHR_surface`, so if you don't require any * additional extensions you can pass this list directly to the * `VkInstanceCreateInfo` struct. * * If Vulkan is not available on the machine, this function returns `NULL` and * generates a @ref GLFW_API_UNAVAILABLE error. Call @ref glfwVulkanSupported * to check whether Vulkan is at least minimally available. * * If Vulkan is available but no set of extensions allowing window surface * creation was found, this function returns `NULL`. You may still use Vulkan * for off-screen rendering and compute work. * * @param[out] count Where to store the number of extensions in the returned * array. This is set to zero if an error occurred. * @return An array of ASCII encoded extension names, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_API_UNAVAILABLE. * * @remark Additional extensions may be required by future versions of GLFW. * You should check if any extensions you wish to enable are already in the * returned array, as it is an error to specify an extension more than once in * the `VkInstanceCreateInfo` struct. * * @pointer_lifetime The returned array is allocated and freed by GLFW. You * should not free it yourself. It is guaranteed to be valid only until the * library is terminated. * * @thread_safety This function may be called from any thread. * * @sa @ref vulkan_ext * @sa @ref glfwCreateWindowSurface * * @since Added in version 3.2. * * @ingroup vulkan */ GLFWAPI const char** glfwGetRequiredInstanceExtensions(uint32_t* count); #if defined(VK_VERSION_1_0) /*! @brief Returns the address of the specified Vulkan instance function. * * This function returns the address of the specified Vulkan core or extension * function for the specified instance. If instance is set to `NULL` it can * return any function exported from the Vulkan loader, including at least the * following functions: * * - `vkEnumerateInstanceExtensionProperties` * - `vkEnumerateInstanceLayerProperties` * - `vkCreateInstance` * - `vkGetInstanceProcAddr` * * If Vulkan is not available on the machine, this function returns `NULL` and * generates a @ref GLFW_API_UNAVAILABLE error. Call @ref glfwVulkanSupported * to check whether Vulkan is at least minimally available. * * This function is equivalent to calling `vkGetInstanceProcAddr` with * a platform-specific query of the Vulkan loader as a fallback. * * @param[in] instance The Vulkan instance to query, or `NULL` to retrieve * functions related to instance creation. * @param[in] procname The ASCII encoded name of the function. * @return The address of the function, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_API_UNAVAILABLE. * * @pointer_lifetime The returned function pointer is valid until the library * is terminated. * * @thread_safety This function may be called from any thread. * * @sa @ref vulkan_proc * * @since Added in version 3.2. * * @ingroup vulkan */ GLFWAPI GLFWvkproc glfwGetInstanceProcAddress(VkInstance instance, const char* procname); /*! @brief Returns whether the specified queue family can present images. * * This function returns whether the specified queue family of the specified * physical device supports presentation to the platform GLFW was built for. * * If Vulkan or the required window surface creation instance extensions are * not available on the machine, or if the specified instance was not created * with the required extensions, this function returns `GLFW_FALSE` and * generates a @ref GLFW_API_UNAVAILABLE error. Call @ref glfwVulkanSupported * to check whether Vulkan is at least minimally available and @ref * glfwGetRequiredInstanceExtensions to check what instance extensions are * required. * * @param[in] instance The instance that the physical device belongs to. * @param[in] device The physical device that the queue family belongs to. * @param[in] queuefamily The index of the queue family to query. * @return `GLFW_TRUE` if the queue family supports presentation, or * `GLFW_FALSE` otherwise. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_API_UNAVAILABLE and @ref GLFW_PLATFORM_ERROR. * * @remark @macos This function currently always returns `GLFW_TRUE`, as the * `VK_MVK_macos_surface` and `VK_EXT_metal_surface` extensions do not provide * a `vkGetPhysicalDevice*PresentationSupport` type function. * * @thread_safety This function may be called from any thread. For * synchronization details of Vulkan objects, see the Vulkan specification. * * @sa @ref vulkan_present * * @since Added in version 3.2. * * @ingroup vulkan */ GLFWAPI int glfwGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily); /*! @brief Creates a Vulkan surface for the specified window. * * This function creates a Vulkan surface for the specified window. * * If the Vulkan loader or at least one minimally functional ICD were not found, * this function returns `VK_ERROR_INITIALIZATION_FAILED` and generates a @ref * GLFW_API_UNAVAILABLE error. Call @ref glfwVulkanSupported to check whether * Vulkan is at least minimally available. * * If the required window surface creation instance extensions are not * available or if the specified instance was not created with these extensions * enabled, this function returns `VK_ERROR_EXTENSION_NOT_PRESENT` and * generates a @ref GLFW_API_UNAVAILABLE error. Call @ref * glfwGetRequiredInstanceExtensions to check what instance extensions are * required. * * The window surface cannot be shared with another API so the window must * have been created with the [client api hint](@ref GLFW_CLIENT_API_attrib) * set to `GLFW_NO_API` otherwise it generates a @ref GLFW_INVALID_VALUE error * and returns `VK_ERROR_NATIVE_WINDOW_IN_USE_KHR`. * * The window surface must be destroyed before the specified Vulkan instance. * It is the responsibility of the caller to destroy the window surface. GLFW * does not destroy it for you. Call `vkDestroySurfaceKHR` to destroy the * surface. * * @param[in] instance The Vulkan instance to create the surface in. * @param[in] window The window to create the surface for. * @param[in] allocator The allocator to use, or `NULL` to use the default * allocator. * @param[out] surface Where to store the handle of the surface. This is set * to `VK_NULL_HANDLE` if an error occurred. * @return `VK_SUCCESS` if successful, or a Vulkan error code if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED, @ref * GLFW_API_UNAVAILABLE, @ref GLFW_PLATFORM_ERROR and @ref GLFW_INVALID_VALUE * * @remark If an error occurs before the creation call is made, GLFW returns * the Vulkan error code most appropriate for the error. Appropriate use of * @ref glfwVulkanSupported and @ref glfwGetRequiredInstanceExtensions should * eliminate almost all occurrences of these errors. * * @remark @macos GLFW prefers the `VK_EXT_metal_surface` extension, with the * `VK_MVK_macos_surface` extension as a fallback. The name of the selected * extension, if any, is included in the array returned by @ref * glfwGetRequiredInstanceExtensions. * * @remark @macos This function creates and sets a `CAMetalLayer` instance for * the window content view, which is required for MoltenVK to function. * * @thread_safety This function may be called from any thread. For * synchronization details of Vulkan objects, see the Vulkan specification. * * @sa @ref vulkan_surface * @sa @ref glfwGetRequiredInstanceExtensions * * @since Added in version 3.2. * * @ingroup vulkan */ GLFWAPI VkResult glfwCreateWindowSurface(VkInstance instance, GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface); #endif /*VK_VERSION_1_0*/ /************************************************************************* * Global definition cleanup *************************************************************************/ /* ------------------- BEGIN SYSTEM/COMPILER SPECIFIC -------------------- */ #ifdef GLFW_WINGDIAPI_DEFINED #undef WINGDIAPI #undef GLFW_WINGDIAPI_DEFINED #endif #ifdef GLFW_CALLBACK_DEFINED #undef CALLBACK #undef GLFW_CALLBACK_DEFINED #endif /* Some OpenGL related headers need GLAPIENTRY, but it is unconditionally * defined by some gl.h variants (OpenBSD) so define it after if needed. */ #ifndef GLAPIENTRY #define GLAPIENTRY APIENTRY #endif /* -------------------- END SYSTEM/COMPILER SPECIFIC --------------------- */ #ifdef __cplusplus } #endif #endif /* _glfw3_h_ */ /************************************************************************* * GLFW 3.3.7 - www.glfw.org * A library for OpenGL, window and input *------------------------------------------------------------------------ * Copyright (c) 2002-2006 Marcus Geelnard * Copyright (c) 2006-2018 Camilla Löwy * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would * be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * 3. This notice may not be removed or altered from any source * distribution. * *************************************************************************/ #ifndef _glfw3_native_h_ #define _glfw3_native_h_ #ifdef __cplusplus extern "C" { #endif /************************************************************************* * Doxygen documentation *************************************************************************/ /*! @file glfw3native.h * @brief The header of the native access functions. * * This is the header file of the native access functions. See @ref native for * more information. */ /*! @defgroup native Native access * @brief Functions related to accessing native handles. * * **By using the native access functions you assert that you know what you're * doing and how to fix problems caused by using them. If you don't, you * shouldn't be using them.** * * Before the inclusion of @ref glfw3native.h, you may define zero or more * window system API macro and zero or more context creation API macros. * * The chosen backends must match those the library was compiled for. Failure * to do this will cause a link-time error. * * The available window API macros are: * * `GLFW_EXPOSE_NATIVE_WIN32` * * `GLFW_EXPOSE_NATIVE_COCOA` * * `GLFW_EXPOSE_NATIVE_X11` * * `GLFW_EXPOSE_NATIVE_WAYLAND` * * The available context API macros are: * * `GLFW_EXPOSE_NATIVE_WGL` * * `GLFW_EXPOSE_NATIVE_NSGL` * * `GLFW_EXPOSE_NATIVE_GLX` * * `GLFW_EXPOSE_NATIVE_EGL` * * `GLFW_EXPOSE_NATIVE_OSMESA` * * These macros select which of the native access functions that are declared * and which platform-specific headers to include. It is then up your (by * definition platform-specific) code to handle which of these should be * defined. */ /************************************************************************* * System headers and types *************************************************************************/ #if defined(GLFW_EXPOSE_NATIVE_WIN32) || defined(GLFW_EXPOSE_NATIVE_WGL) // This is a workaround for the fact that glfw3.h needs to export APIENTRY (for // example to allow applications to correctly declare a GL_KHR_debug callback) // but windows.h assumes no one will define APIENTRY before it does #if defined(GLFW_APIENTRY_DEFINED) #undef APIENTRY #undef GLFW_APIENTRY_DEFINED #endif #include #elif defined(GLFW_EXPOSE_NATIVE_COCOA) || defined(GLFW_EXPOSE_NATIVE_NSGL) #if defined(__OBJC__) #import #else #include typedef void* id; #endif #elif defined(GLFW_EXPOSE_NATIVE_X11) || defined(GLFW_EXPOSE_NATIVE_GLX) #include #include #elif defined(GLFW_EXPOSE_NATIVE_WAYLAND) #include #endif #if defined(GLFW_EXPOSE_NATIVE_WGL) /* WGL is declared by windows.h */ #endif #if defined(GLFW_EXPOSE_NATIVE_NSGL) /* NSGL is declared by Cocoa.h */ #endif #if defined(GLFW_EXPOSE_NATIVE_GLX) #include #endif #if defined(GLFW_EXPOSE_NATIVE_EGL) #include #endif #if defined(GLFW_EXPOSE_NATIVE_OSMESA) #include #endif /************************************************************************* * Functions *************************************************************************/ #if defined(GLFW_EXPOSE_NATIVE_WIN32) /*! @brief Returns the adapter device name of the specified monitor. * * @return The UTF-8 encoded adapter device name (for example `\\.\DISPLAY1`) * of the specified monitor, or `NULL` if an [error](@ref error_handling) * occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.1. * * @ingroup native */ GLFWAPI const char* glfwGetWin32Adapter(GLFWmonitor* monitor); /*! @brief Returns the display device name of the specified monitor. * * @return The UTF-8 encoded display device name (for example * `\\.\DISPLAY1\Monitor0`) of the specified monitor, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.1. * * @ingroup native */ GLFWAPI const char* glfwGetWin32Monitor(GLFWmonitor* monitor); /*! @brief Returns the `HWND` of the specified window. * * @return The `HWND` of the specified window, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @remark The `HDC` associated with the window can be queried with the * [GetDC](https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getdc) * function. * @code * HDC dc = GetDC(glfwGetWin32Window(window)); * @endcode * This DC is private and does not need to be released. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI HWND glfwGetWin32Window(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_WGL) /*! @brief Returns the `HGLRC` of the specified window. * * @return The `HGLRC` of the specified window, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @remark The `HDC` associated with the window can be queried with the * [GetDC](https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getdc) * function. * @code * HDC dc = GetDC(glfwGetWin32Window(window)); * @endcode * This DC is private and does not need to be released. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI HGLRC glfwGetWGLContext(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_COCOA) /*! @brief Returns the `CGDirectDisplayID` of the specified monitor. * * @return The `CGDirectDisplayID` of the specified monitor, or * `kCGNullDirectDisplay` if an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.1. * * @ingroup native */ GLFWAPI CGDirectDisplayID glfwGetCocoaMonitor(GLFWmonitor* monitor); /*! @brief Returns the `NSWindow` of the specified window. * * @return The `NSWindow` of the specified window, or `nil` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI id glfwGetCocoaWindow(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_NSGL) /*! @brief Returns the `NSOpenGLContext` of the specified window. * * @return The `NSOpenGLContext` of the specified window, or `nil` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI id glfwGetNSGLContext(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_X11) /*! @brief Returns the `Display` used by GLFW. * * @return The `Display` used by GLFW, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI Display* glfwGetX11Display(void); /*! @brief Returns the `RRCrtc` of the specified monitor. * * @return The `RRCrtc` of the specified monitor, or `None` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.1. * * @ingroup native */ GLFWAPI RRCrtc glfwGetX11Adapter(GLFWmonitor* monitor); /*! @brief Returns the `RROutput` of the specified monitor. * * @return The `RROutput` of the specified monitor, or `None` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.1. * * @ingroup native */ GLFWAPI RROutput glfwGetX11Monitor(GLFWmonitor* monitor); /*! @brief Returns the `Window` of the specified window. * * @return The `Window` of the specified window, or `None` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI Window glfwGetX11Window(GLFWwindow* window); /*! @brief Sets the current primary selection to the specified string. * * @param[in] string A UTF-8 encoded string. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The specified string is copied before this function * returns. * * @thread_safety This function must only be called from the main thread. * * @sa @ref clipboard * @sa glfwGetX11SelectionString * @sa glfwSetClipboardString * * @since Added in version 3.3. * * @ingroup native */ GLFWAPI void glfwSetX11SelectionString(const char* string); /*! @brief Returns the contents of the current primary selection as a string. * * If the selection is empty or if its contents cannot be converted, `NULL` * is returned and a @ref GLFW_FORMAT_UNAVAILABLE error is generated. * * @return The contents of the selection as a UTF-8 encoded string, or `NULL` * if an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED and @ref * GLFW_PLATFORM_ERROR. * * @pointer_lifetime The returned string is allocated and freed by GLFW. You * should not free it yourself. It is valid until the next call to @ref * glfwGetX11SelectionString or @ref glfwSetX11SelectionString, or until the * library is terminated. * * @thread_safety This function must only be called from the main thread. * * @sa @ref clipboard * @sa glfwSetX11SelectionString * @sa glfwGetClipboardString * * @since Added in version 3.3. * * @ingroup native */ GLFWAPI const char* glfwGetX11SelectionString(void); #endif #if defined(GLFW_EXPOSE_NATIVE_GLX) /*! @brief Returns the `GLXContext` of the specified window. * * @return The `GLXContext` of the specified window, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI GLXContext glfwGetGLXContext(GLFWwindow* window); /*! @brief Returns the `GLXWindow` of the specified window. * * @return The `GLXWindow` of the specified window, or `None` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.2. * * @ingroup native */ GLFWAPI GLXWindow glfwGetGLXWindow(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_WAYLAND) /*! @brief Returns the `struct wl_display*` used by GLFW. * * @return The `struct wl_display*` used by GLFW, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.2. * * @ingroup native */ GLFWAPI struct wl_display* glfwGetWaylandDisplay(void); /*! @brief Returns the `struct wl_output*` of the specified monitor. * * @return The `struct wl_output*` of the specified monitor, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.2. * * @ingroup native */ GLFWAPI struct wl_output* glfwGetWaylandMonitor(GLFWmonitor* monitor); /*! @brief Returns the main `struct wl_surface*` of the specified window. * * @return The main `struct wl_surface*` of the specified window, or `NULL` if * an [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.2. * * @ingroup native */ GLFWAPI struct wl_surface* glfwGetWaylandWindow(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_EGL) /*! @brief Returns the `EGLDisplay` used by GLFW. * * @return The `EGLDisplay` used by GLFW, or `EGL_NO_DISPLAY` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI EGLDisplay glfwGetEGLDisplay(void); /*! @brief Returns the `EGLContext` of the specified window. * * @return The `EGLContext` of the specified window, or `EGL_NO_CONTEXT` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI EGLContext glfwGetEGLContext(GLFWwindow* window); /*! @brief Returns the `EGLSurface` of the specified window. * * @return The `EGLSurface` of the specified window, or `EGL_NO_SURFACE` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.0. * * @ingroup native */ GLFWAPI EGLSurface glfwGetEGLSurface(GLFWwindow* window); #endif #if defined(GLFW_EXPOSE_NATIVE_OSMESA) /*! @brief Retrieves the color buffer associated with the specified window. * * @param[in] window The window whose color buffer to retrieve. * @param[out] width Where to store the width of the color buffer, or `NULL`. * @param[out] height Where to store the height of the color buffer, or `NULL`. * @param[out] format Where to store the OSMesa pixel format of the color * buffer, or `NULL`. * @param[out] buffer Where to store the address of the color buffer, or * `NULL`. * @return `GLFW_TRUE` if successful, or `GLFW_FALSE` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.3. * * @ingroup native */ GLFWAPI int glfwGetOSMesaColorBuffer(GLFWwindow* window, int* width, int* height, int* format, void** buffer); /*! @brief Retrieves the depth buffer associated with the specified window. * * @param[in] window The window whose depth buffer to retrieve. * @param[out] width Where to store the width of the depth buffer, or `NULL`. * @param[out] height Where to store the height of the depth buffer, or `NULL`. * @param[out] bytesPerValue Where to store the number of bytes per depth * buffer element, or `NULL`. * @param[out] buffer Where to store the address of the depth buffer, or * `NULL`. * @return `GLFW_TRUE` if successful, or `GLFW_FALSE` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.3. * * @ingroup native */ GLFWAPI int glfwGetOSMesaDepthBuffer(GLFWwindow* window, int* width, int* height, int* bytesPerValue, void** buffer); /*! @brief Returns the `OSMesaContext` of the specified window. * * @return The `OSMesaContext` of the specified window, or `NULL` if an * [error](@ref error_handling) occurred. * * @errors Possible errors include @ref GLFW_NO_WINDOW_CONTEXT and @ref * GLFW_NOT_INITIALIZED. * * @thread_safety This function may be called from any thread. Access is not * synchronized. * * @since Added in version 3.3. * * @ingroup native */ GLFWAPI OSMesaContext glfwGetOSMesaContext(GLFWwindow* window); #endif #ifdef __cplusplus } #endif #endif /* _glfw3_native_h_ */ #ifdef _GLFW_IMPLEMENTATION #ifndef HEADER_GUARD_INTERNAL_H #define HEADER_GUARD_INTERNAL_H //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #pragma once #if defined(_GLFW_USE_CONFIG_H) #include "glfw_config.h" #endif #if defined(GLFW_INCLUDE_GLCOREARB) || \ defined(GLFW_INCLUDE_ES1) || \ defined(GLFW_INCLUDE_ES2) || \ defined(GLFW_INCLUDE_ES3) || \ defined(GLFW_INCLUDE_ES31) || \ defined(GLFW_INCLUDE_ES32) || \ defined(GLFW_INCLUDE_NONE) || \ defined(GLFW_INCLUDE_GLEXT) || \ defined(GLFW_INCLUDE_GLU) || \ defined(GLFW_INCLUDE_VULKAN) || \ defined(GLFW_DLL) //#error "You must not define any header option macros when compiling GLFW" #endif #define GLFW_INCLUDE_NONE //#include "../include/GLFW/glfw3.h" #define _GLFW_INSERT_FIRST 0 #define _GLFW_INSERT_LAST 1 #define _GLFW_POLL_PRESENCE 0 #define _GLFW_POLL_AXES 1 #define _GLFW_POLL_BUTTONS 2 #define _GLFW_POLL_ALL (_GLFW_POLL_AXES | _GLFW_POLL_BUTTONS) #define _GLFW_MESSAGE_SIZE 1024 typedef int GLFWbool; typedef struct _GLFWerror _GLFWerror; typedef struct _GLFWinitconfig _GLFWinitconfig; typedef struct _GLFWwndconfig _GLFWwndconfig; typedef struct _GLFWctxconfig _GLFWctxconfig; typedef struct _GLFWfbconfig _GLFWfbconfig; typedef struct _GLFWcontext _GLFWcontext; typedef struct _GLFWwindow _GLFWwindow; typedef struct _GLFWlibrary _GLFWlibrary; typedef struct _GLFWmonitor _GLFWmonitor; typedef struct _GLFWcursor _GLFWcursor; typedef struct _GLFWmapelement _GLFWmapelement; typedef struct _GLFWmapping _GLFWmapping; typedef struct _GLFWjoystick _GLFWjoystick; typedef struct _GLFWtls _GLFWtls; typedef struct _GLFWmutex _GLFWmutex; typedef void (* _GLFWmakecontextcurrentfun)(_GLFWwindow*); typedef void (* _GLFWswapbuffersfun)(_GLFWwindow*); typedef void (* _GLFWswapintervalfun)(int); typedef int (* _GLFWextensionsupportedfun)(const char*); typedef GLFWglproc (* _GLFWgetprocaddressfun)(const char*); typedef void (* _GLFWdestroycontextfun)(_GLFWwindow*); //#define GL_VERSION 0x1f02 #define GL_NONE 0 #define GL_COLOR_BUFFER_BIT 0x00004000 #define GL_UNSIGNED_BYTE 0x1401 //#define GL_EXTENSIONS 0x1f03 //#define GL_NUM_EXTENSIONS 0x821d //#define GL_CONTEXT_FLAGS 0x821e #define GL_CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT 0x00000001 #define GL_CONTEXT_FLAG_DEBUG_BIT 0x00000002 #define GL_CONTEXT_PROFILE_MASK 0x9126 #define GL_CONTEXT_COMPATIBILITY_PROFILE_BIT 0x00000002 #define GL_CONTEXT_CORE_PROFILE_BIT 0x00000001 #define GL_RESET_NOTIFICATION_STRATEGY_ARB 0x8256 #define GL_LOSE_CONTEXT_ON_RESET_ARB 0x8252 #define GL_NO_RESET_NOTIFICATION_ARB 0x8261 //#define GL_CONTEXT_RELEASE_BEHAVIOR 0x82fb ////#define GL_CONTEXT_RELEASE_BEHAVIOR_FLUSH 0x82fc #define GL_CONTEXT_FLAG_NO_ERROR_BIT_KHR 0x00000008 typedef int GLint; typedef unsigned int GLuint; typedef unsigned int GLenum; typedef unsigned int GLbitfield; typedef unsigned char GLubyte; typedef void (APIENTRY * PFNGLCLEARPROC)(GLbitfield); typedef const GLubyte* (APIENTRY * PFNGLGETSTRINGPROC)(GLenum); typedef void (APIENTRY * PFNGLGETINTEGERVPROC)(GLenum,GLint*); typedef const GLubyte* (APIENTRY * PFNGLGETSTRINGIPROC)(GLenum,GLuint); #define VK_NULL_HANDLE 0 typedef void* VkInstance; typedef void* VkPhysicalDevice; typedef uint64_t VkSurfaceKHR; typedef uint32_t VkFlags; typedef uint32_t VkBool32; typedef enum VkStructureType { VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR = 1000004000, VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR = 1000005000, VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR = 1000006000, VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR = 1000009000, VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK = 1000123000, VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT = 1000217000, VK_STRUCTURE_TYPE_MAX_ENUM = 0x7FFFFFFF } VkStructureType; typedef enum VkResult { VK_SUCCESS = 0, VK_NOT_READY = 1, VK_TIMEOUT = 2, VK_EVENT_SET = 3, VK_EVENT_RESET = 4, VK_INCOMPLETE = 5, VK_ERROR_OUT_OF_HOST_MEMORY = -1, VK_ERROR_OUT_OF_DEVICE_MEMORY = -2, VK_ERROR_INITIALIZATION_FAILED = -3, VK_ERROR_DEVICE_LOST = -4, VK_ERROR_MEMORY_MAP_FAILED = -5, VK_ERROR_LAYER_NOT_PRESENT = -6, VK_ERROR_EXTENSION_NOT_PRESENT = -7, VK_ERROR_FEATURE_NOT_PRESENT = -8, VK_ERROR_INCOMPATIBLE_DRIVER = -9, VK_ERROR_TOO_MANY_OBJECTS = -10, VK_ERROR_FORMAT_NOT_SUPPORTED = -11, VK_ERROR_SURFACE_LOST_KHR = -1000000000, VK_SUBOPTIMAL_KHR = 1000001003, VK_ERROR_OUT_OF_DATE_KHR = -1000001004, VK_ERROR_INCOMPATIBLE_DISPLAY_KHR = -1000003001, VK_ERROR_NATIVE_WINDOW_IN_USE_KHR = -1000000001, VK_ERROR_VALIDATION_FAILED_EXT = -1000011001, VK_RESULT_MAX_ENUM = 0x7FFFFFFF } VkResult; typedef struct VkAllocationCallbacks VkAllocationCallbacks; typedef struct VkExtensionProperties { char extensionName[256]; uint32_t specVersion; } VkExtensionProperties; typedef void (APIENTRY * PFN_vkVoidFunction)(void); #if defined(_GLFW_VULKAN_STATIC) PFN_vkVoidFunction vkGetInstanceProcAddr(VkInstance,const char*); VkResult vkEnumerateInstanceExtensionProperties(const char*,uint32_t*,VkExtensionProperties*); #else typedef PFN_vkVoidFunction (APIENTRY * PFN_vkGetInstanceProcAddr)(VkInstance,const char*); typedef VkResult (APIENTRY * PFN_vkEnumerateInstanceExtensionProperties)(const char*,uint32_t*,VkExtensionProperties*); #define vkEnumerateInstanceExtensionProperties _glfw.vk.EnumerateInstanceExtensionProperties #define vkGetInstanceProcAddr _glfw.vk.GetInstanceProcAddr #endif #if defined(_GLFW_COCOA) #ifndef HEADER_GUARD_COCOA_PLATFORM_H #define HEADER_GUARD_COCOA_PLATFORM_H //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #include #include // NOTE: All of NSGL was deprecated in the 10.14 SDK // This disables the pointless warnings for every symbol we use #ifndef GL_SILENCE_DEPRECATION #define GL_SILENCE_DEPRECATION #endif #if defined(__OBJC__) #import #else typedef void* id; #endif // NOTE: Many Cocoa enum values have been renamed and we need to build across // SDK versions where one is unavailable or deprecated. // We use the newer names in code and replace them with the older names if // the base SDK does not provide the newer names. #if MAC_OS_X_VERSION_MAX_ALLOWED < 101200 #define NSBitmapFormatAlphaNonpremultiplied NSAlphaNonpremultipliedBitmapFormat #define NSEventMaskAny NSAnyEventMask #define NSEventMaskKeyUp NSKeyUpMask #define NSEventModifierFlagCapsLock NSAlphaShiftKeyMask #define NSEventModifierFlagCommand NSCommandKeyMask #define NSEventModifierFlagControl NSControlKeyMask #define NSEventModifierFlagDeviceIndependentFlagsMask NSDeviceIndependentModifierFlagsMask #define NSEventModifierFlagOption NSAlternateKeyMask #define NSEventModifierFlagShift NSShiftKeyMask #define NSEventTypeApplicationDefined NSApplicationDefined #define NSWindowStyleMaskBorderless NSBorderlessWindowMask #define NSWindowStyleMaskClosable NSClosableWindowMask #define NSWindowStyleMaskMiniaturizable NSMiniaturizableWindowMask #define NSWindowStyleMaskResizable NSResizableWindowMask #define NSWindowStyleMaskTitled NSTitledWindowMask #endif // NOTE: Many Cocoa dynamically linked constants have been renamed and we need // to build across SDK versions where one is unavailable or deprecated. // We use the newer names in code and replace them with the older names if // the deployment target is older than the newer names. #if MAC_OS_X_VERSION_MIN_REQUIRED < 101300 #define NSPasteboardTypeURL NSURLPboardType #endif typedef VkFlags VkMacOSSurfaceCreateFlagsMVK; typedef VkFlags VkMetalSurfaceCreateFlagsEXT; typedef struct VkMacOSSurfaceCreateInfoMVK { VkStructureType sType; const void* pNext; VkMacOSSurfaceCreateFlagsMVK flags; const void* pView; } VkMacOSSurfaceCreateInfoMVK; typedef struct VkMetalSurfaceCreateInfoEXT { VkStructureType sType; const void* pNext; VkMetalSurfaceCreateFlagsEXT flags; const void* pLayer; } VkMetalSurfaceCreateInfoEXT; typedef VkResult (APIENTRY *PFN_vkCreateMacOSSurfaceMVK)(VkInstance,const VkMacOSSurfaceCreateInfoMVK*,const VkAllocationCallbacks*,VkSurfaceKHR*); typedef VkResult (APIENTRY *PFN_vkCreateMetalSurfaceEXT)(VkInstance,const VkMetalSurfaceCreateInfoEXT*,const VkAllocationCallbacks*,VkSurfaceKHR*); #ifndef HEADER_GUARD_POSIX_THREAD_H #define HEADER_GUARD_POSIX_THREAD_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #define _GLFW_PLATFORM_TLS_STATE _GLFWtlsPOSIX posix #define _GLFW_PLATFORM_MUTEX_STATE _GLFWmutexPOSIX posix // POSIX-specific thread local storage data // typedef struct _GLFWtlsPOSIX { GLFWbool allocated; pthread_key_t key; } _GLFWtlsPOSIX; // POSIX-specific mutex data // typedef struct _GLFWmutexPOSIX { GLFWbool allocated; pthread_mutex_t handle; } _GLFWmutexPOSIX; #endif #ifndef HEADER_GUARD_COCOA_JOYSTICK_H #define HEADER_GUARD_COCOA_JOYSTICK_H //======================================================================== // GLFW 3.3.7 Cocoa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #include #include #include #define _GLFW_PLATFORM_JOYSTICK_STATE _GLFWjoystickNS ns #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE struct { int dummyJoystick; } #define _GLFW_PLATFORM_MAPPING_NAME "Mac OS X" #define GLFW_BUILD_COCOA_MAPPINGS // Cocoa-specific per-joystick data // typedef struct _GLFWjoystickNS { IOHIDDeviceRef device; CFMutableArrayRef axes; CFMutableArrayRef buttons; CFMutableArrayRef hats; } _GLFWjoystickNS; void _glfwInitJoysticksNS(void); void _glfwTerminateJoysticksNS(void); #endif #ifndef HEADER_GUARD_NSGL_CONTEXT_H #define HEADER_GUARD_NSGL_CONTEXT_H //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // NOTE: Many Cocoa enum values have been renamed and we need to build across // SDK versions where one is unavailable or deprecated. // We use the newer names in code and replace them with the older names if // the base SDK does not provide the newer names. #if MAC_OS_X_VERSION_MAX_ALLOWED < 101400 #define NSOpenGLContextParameterSwapInterval NSOpenGLCPSwapInterval #define NSOpenGLContextParameterSurfaceOpacity NSOpenGLCPSurfaceOpacity #endif #define _GLFW_PLATFORM_CONTEXT_STATE _GLFWcontextNSGL nsgl #define _GLFW_PLATFORM_LIBRARY_CONTEXT_STATE _GLFWlibraryNSGL nsgl #include // NSGL-specific per-context data // typedef struct _GLFWcontextNSGL { id pixelFormat; id object; } _GLFWcontextNSGL; // NSGL-specific global data // typedef struct _GLFWlibraryNSGL { // dlopen handle for OpenGL.framework (for glfwGetProcAddress) CFBundleRef framework; } _GLFWlibraryNSGL; GLFWbool _glfwInitNSGL(void); void _glfwTerminateNSGL(void); GLFWbool _glfwCreateContextNSGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); void _glfwDestroyContextNSGL(_GLFWwindow* window); #endif #ifndef HEADER_GUARD_EGL_CONTEXT_H #define HEADER_GUARD_EGL_CONTEXT_H //======================================================================== // GLFW 3.3.7 EGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #if defined(_GLFW_USE_EGLPLATFORM_H) #include #elif defined(_GLFW_WIN32) #define EGLAPIENTRY __stdcall typedef HDC EGLNativeDisplayType; typedef HWND EGLNativeWindowType; #elif defined(_GLFW_COCOA) #define EGLAPIENTRY typedef void* EGLNativeDisplayType; typedef id EGLNativeWindowType; #elif defined(_GLFW_X11) #define EGLAPIENTRY typedef Display* EGLNativeDisplayType; typedef Window EGLNativeWindowType; #elif defined(_GLFW_WAYLAND) #define EGLAPIENTRY typedef struct wl_display* EGLNativeDisplayType; typedef struct wl_egl_window* EGLNativeWindowType; #else #error "No supported EGL platform selected" #endif #define EGL_SUCCESS 0x3000 #define EGL_NOT_INITIALIZED 0x3001 #define EGL_BAD_ACCESS 0x3002 #define EGL_BAD_ALLOC 0x3003 #define EGL_BAD_ATTRIBUTE 0x3004 #define EGL_BAD_CONFIG 0x3005 #define EGL_BAD_CONTEXT 0x3006 #define EGL_BAD_CURRENT_SURFACE 0x3007 #define EGL_BAD_DISPLAY 0x3008 #define EGL_BAD_MATCH 0x3009 #define EGL_BAD_NATIVE_PIXMAP 0x300a #define EGL_BAD_NATIVE_WINDOW 0x300b #define EGL_BAD_PARAMETER 0x300c #define EGL_BAD_SURFACE 0x300d #define EGL_CONTEXT_LOST 0x300e #define EGL_COLOR_BUFFER_TYPE 0x303f #define EGL_RGB_BUFFER 0x308e #define EGL_SURFACE_TYPE 0x3033 #define EGL_WINDOW_BIT 0x0004 #define EGL_RENDERABLE_TYPE 0x3040 #define EGL_OPENGL_ES_BIT 0x0001 #define EGL_OPENGL_ES2_BIT 0x0004 #define EGL_OPENGL_BIT 0x0008 #define EGL_ALPHA_SIZE 0x3021 #define EGL_BLUE_SIZE 0x3022 #define EGL_GREEN_SIZE 0x3023 #define EGL_RED_SIZE 0x3024 #define EGL_DEPTH_SIZE 0x3025 #define EGL_STENCIL_SIZE 0x3026 #define EGL_SAMPLES 0x3031 #define EGL_OPENGL_ES_API 0x30a0 #define EGL_OPENGL_API 0x30a2 #define EGL_NONE 0x3038 #define EGL_RENDER_BUFFER 0x3086 #define EGL_SINGLE_BUFFER 0x3085 #define EGL_EXTENSIONS 0x3055 #define EGL_CONTEXT_CLIENT_VERSION 0x3098 #define EGL_NATIVE_VISUAL_ID 0x302e #define EGL_NO_SURFACE ((EGLSurface) 0) #define EGL_NO_DISPLAY ((EGLDisplay) 0) #define EGL_NO_CONTEXT ((EGLContext) 0) #define EGL_DEFAULT_DISPLAY ((EGLNativeDisplayType) 0) #define EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR 0x31bd #define EGL_NO_RESET_NOTIFICATION_KHR 0x31be #define EGL_LOSE_CONTEXT_ON_RESET_KHR 0x31bf #define EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR 0x00000004 #define EGL_CONTEXT_MAJOR_VERSION_KHR 0x3098 #define EGL_CONTEXT_MINOR_VERSION_KHR 0x30fb #define EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR 0x30fd #define EGL_CONTEXT_FLAGS_KHR 0x30fc #define EGL_CONTEXT_OPENGL_NO_ERROR_KHR 0x31b3 #define EGL_GL_COLORSPACE_KHR 0x309d #define EGL_GL_COLORSPACE_SRGB_KHR 0x3089 #define EGL_CONTEXT_RELEASE_BEHAVIOR_KHR 0x2097 #define EGL_CONTEXT_RELEASE_BEHAVIOR_NONE_KHR 0 #define EGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_KHR 0x2098 #define EGL_PRESENT_OPAQUE_EXT 0x31df typedef int EGLint; typedef unsigned int EGLBoolean; typedef unsigned int EGLenum; typedef void* EGLConfig; typedef void* EGLContext; typedef void* EGLDisplay; typedef void* EGLSurface; // EGL function pointer typedefs typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigAttrib)(EGLDisplay,EGLConfig,EGLint,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigs)(EGLDisplay,EGLConfig*,EGLint,EGLint*); typedef EGLDisplay (EGLAPIENTRY * PFN_eglGetDisplay)(EGLNativeDisplayType); typedef EGLint (EGLAPIENTRY * PFN_eglGetError)(void); typedef EGLBoolean (EGLAPIENTRY * PFN_eglInitialize)(EGLDisplay,EGLint*,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglTerminate)(EGLDisplay); typedef EGLBoolean (EGLAPIENTRY * PFN_eglBindAPI)(EGLenum); typedef EGLContext (EGLAPIENTRY * PFN_eglCreateContext)(EGLDisplay,EGLConfig,EGLContext,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroySurface)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroyContext)(EGLDisplay,EGLContext); typedef EGLSurface (EGLAPIENTRY * PFN_eglCreateWindowSurface)(EGLDisplay,EGLConfig,EGLNativeWindowType,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglMakeCurrent)(EGLDisplay,EGLSurface,EGLSurface,EGLContext); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapBuffers)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapInterval)(EGLDisplay,EGLint); typedef const char* (EGLAPIENTRY * PFN_eglQueryString)(EGLDisplay,EGLint); typedef GLFWglproc (EGLAPIENTRY * PFN_eglGetProcAddress)(const char*); #define eglGetConfigAttrib _glfw.egl.GetConfigAttrib #define eglGetConfigs _glfw.egl.GetConfigs #define eglGetDisplay _glfw.egl.GetDisplay #define eglGetError _glfw.egl.GetError #define eglInitialize _glfw.egl.Initialize #define eglTerminate _glfw.egl.Terminate #define eglBindAPI _glfw.egl.BindAPI #define eglCreateContext _glfw.egl.CreateContext #define eglDestroySurface _glfw.egl.DestroySurface #define eglDestroyContext _glfw.egl.DestroyContext #define eglCreateWindowSurface _glfw.egl.CreateWindowSurface #define eglMakeCurrent _glfw.egl.MakeCurrent #define eglSwapBuffers _glfw.egl.SwapBuffers #define eglSwapInterval _glfw.egl.SwapInterval #define eglQueryString _glfw.egl.QueryString #define eglGetProcAddress _glfw.egl.GetProcAddress #define _GLFW_EGL_CONTEXT_STATE _GLFWcontextEGL egl #define _GLFW_EGL_LIBRARY_CONTEXT_STATE _GLFWlibraryEGL egl // EGL-specific per-context data // typedef struct _GLFWcontextEGL { EGLConfig config; EGLContext handle; EGLSurface surface; void* client; } _GLFWcontextEGL; // EGL-specific global data // typedef struct _GLFWlibraryEGL { EGLDisplay display; EGLint major, minor; GLFWbool prefix; GLFWbool KHR_create_context; GLFWbool KHR_create_context_no_error; GLFWbool KHR_gl_colorspace; GLFWbool KHR_get_all_proc_addresses; GLFWbool KHR_context_flush_control; GLFWbool EXT_present_opaque; void* handle; PFN_eglGetConfigAttrib GetConfigAttrib; PFN_eglGetConfigs GetConfigs; PFN_eglGetDisplay GetDisplay; PFN_eglGetError GetError; PFN_eglInitialize Initialize; PFN_eglTerminate Terminate; PFN_eglBindAPI BindAPI; PFN_eglCreateContext CreateContext; PFN_eglDestroySurface DestroySurface; PFN_eglDestroyContext DestroyContext; PFN_eglCreateWindowSurface CreateWindowSurface; PFN_eglMakeCurrent MakeCurrent; PFN_eglSwapBuffers SwapBuffers; PFN_eglSwapInterval SwapInterval; PFN_eglQueryString QueryString; PFN_eglGetProcAddress GetProcAddress; } _GLFWlibraryEGL; GLFWbool _glfwInitEGL(void); void _glfwTerminateEGL(void); GLFWbool _glfwCreateContextEGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #if defined(_GLFW_X11) GLFWbool _glfwChooseVisualEGL(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth); #endif /*_GLFW_X11*/ #endif #ifndef HEADER_GUARD_OSMESA_CONTEXT_H #define HEADER_GUARD_OSMESA_CONTEXT_H //======================================================================== // GLFW 3.3.7 OSMesa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define OSMESA_RGBA 0x1908 #define OSMESA_FORMAT 0x22 #define OSMESA_DEPTH_BITS 0x30 #define OSMESA_STENCIL_BITS 0x31 #define OSMESA_ACCUM_BITS 0x32 #define OSMESA_PROFILE 0x33 #define OSMESA_CORE_PROFILE 0x34 #define OSMESA_COMPAT_PROFILE 0x35 #define OSMESA_CONTEXT_MAJOR_VERSION 0x36 #define OSMESA_CONTEXT_MINOR_VERSION 0x37 typedef void* OSMesaContext; typedef void (*OSMESAproc)(void); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextExt)(GLenum,GLint,GLint,GLint,OSMesaContext); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextAttribs)(const int*,OSMesaContext); typedef void (GLAPIENTRY * PFN_OSMesaDestroyContext)(OSMesaContext); typedef int (GLAPIENTRY * PFN_OSMesaMakeCurrent)(OSMesaContext,void*,int,int,int); typedef int (GLAPIENTRY * PFN_OSMesaGetColorBuffer)(OSMesaContext,int*,int*,int*,void**); typedef int (GLAPIENTRY * PFN_OSMesaGetDepthBuffer)(OSMesaContext,int*,int*,int*,void**); typedef GLFWglproc (GLAPIENTRY * PFN_OSMesaGetProcAddress)(const char*); #define OSMesaCreateContextExt _glfw.osmesa.CreateContextExt #define OSMesaCreateContextAttribs _glfw.osmesa.CreateContextAttribs #define OSMesaDestroyContext _glfw.osmesa.DestroyContext #define OSMesaMakeCurrent _glfw.osmesa.MakeCurrent #define OSMesaGetColorBuffer _glfw.osmesa.GetColorBuffer #define OSMesaGetDepthBuffer _glfw.osmesa.GetDepthBuffer #define OSMesaGetProcAddress _glfw.osmesa.GetProcAddress #define _GLFW_OSMESA_CONTEXT_STATE _GLFWcontextOSMesa osmesa #define _GLFW_OSMESA_LIBRARY_CONTEXT_STATE _GLFWlibraryOSMesa osmesa // OSMesa-specific per-context data // typedef struct _GLFWcontextOSMesa { OSMesaContext handle; int width; int height; void* buffer; } _GLFWcontextOSMesa; // OSMesa-specific global data // typedef struct _GLFWlibraryOSMesa { void* handle; PFN_OSMesaCreateContextExt CreateContextExt; PFN_OSMesaCreateContextAttribs CreateContextAttribs; PFN_OSMesaDestroyContext DestroyContext; PFN_OSMesaMakeCurrent MakeCurrent; PFN_OSMesaGetColorBuffer GetColorBuffer; PFN_OSMesaGetDepthBuffer GetDepthBuffer; PFN_OSMesaGetProcAddress GetProcAddress; } _GLFWlibraryOSMesa; GLFWbool _glfwInitOSMesa(void); void _glfwTerminateOSMesa(void); GLFWbool _glfwCreateContextOSMesa(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #endif #define _glfw_dlopen(name) dlopen(name, RTLD_LAZY | RTLD_LOCAL) #define _glfw_dlclose(handle) dlclose(handle) #define _glfw_dlsym(handle, name) dlsym(handle, name) #define _GLFW_EGL_NATIVE_WINDOW ((EGLNativeWindowType) window->ns.layer) #define _GLFW_EGL_NATIVE_DISPLAY EGL_DEFAULT_DISPLAY #define _GLFW_PLATFORM_WINDOW_STATE _GLFWwindowNS ns #define _GLFW_PLATFORM_LIBRARY_WINDOW_STATE _GLFWlibraryNS ns #define _GLFW_PLATFORM_LIBRARY_TIMER_STATE _GLFWtimerNS ns #define _GLFW_PLATFORM_MONITOR_STATE _GLFWmonitorNS ns #define _GLFW_PLATFORM_CURSOR_STATE _GLFWcursorNS ns // HIToolbox.framework pointer typedefs #define kTISPropertyUnicodeKeyLayoutData _glfw.ns.tis.kPropertyUnicodeKeyLayoutData typedef TISInputSourceRef (*PFN_TISCopyCurrentKeyboardLayoutInputSource)(void); #define TISCopyCurrentKeyboardLayoutInputSource _glfw.ns.tis.CopyCurrentKeyboardLayoutInputSource typedef void* (*PFN_TISGetInputSourceProperty)(TISInputSourceRef,CFStringRef); #define TISGetInputSourceProperty _glfw.ns.tis.GetInputSourceProperty typedef UInt8 (*PFN_LMGetKbdType)(void); #define LMGetKbdType _glfw.ns.tis.GetKbdType // Cocoa-specific per-window data // typedef struct _GLFWwindowNS { id object; id delegate; id view; id layer; GLFWbool maximized; GLFWbool occluded; GLFWbool retina; // Cached window properties to filter out duplicate events int width, height; int fbWidth, fbHeight; float xscale, yscale; // The total sum of the distances the cursor has been warped // since the last cursor motion event was processed // This is kept to counteract Cocoa doing the same internally double cursorWarpDeltaX, cursorWarpDeltaY; } _GLFWwindowNS; // Cocoa-specific global data // typedef struct _GLFWlibraryNS { CGEventSourceRef eventSource; id delegate; GLFWbool finishedLaunching; GLFWbool cursorHidden; TISInputSourceRef inputSource; IOHIDManagerRef hidManager; id unicodeData; id helper; id keyUpMonitor; id nibObjects; char keynames[GLFW_KEY_LAST + 1][17]; short int keycodes[256]; short int scancodes[GLFW_KEY_LAST + 1]; char* clipboardString; CGPoint cascadePoint; // Where to place the cursor when re-enabled double restoreCursorPosX, restoreCursorPosY; // The window whose disabled cursor mode is active _GLFWwindow* disabledCursorWindow; struct { CFBundleRef bundle; PFN_TISCopyCurrentKeyboardLayoutInputSource CopyCurrentKeyboardLayoutInputSource; PFN_TISGetInputSourceProperty GetInputSourceProperty; PFN_LMGetKbdType GetKbdType; CFStringRef kPropertyUnicodeKeyLayoutData; } tis; } _GLFWlibraryNS; // Cocoa-specific per-monitor data // typedef struct _GLFWmonitorNS { CGDirectDisplayID displayID; CGDisplayModeRef previousMode; uint32_t unitNumber; id screen; double fallbackRefreshRate; } _GLFWmonitorNS; // Cocoa-specific per-cursor data // typedef struct _GLFWcursorNS { id object; } _GLFWcursorNS; // Cocoa-specific global timer data // typedef struct _GLFWtimerNS { uint64_t frequency; } _GLFWtimerNS; void _glfwInitTimerNS(void); void _glfwPollMonitorsNS(void); void _glfwSetVideoModeNS(_GLFWmonitor* monitor, const GLFWvidmode* desired); void _glfwRestoreVideoModeNS(_GLFWmonitor* monitor); float _glfwTransformYNS(float y); void* _glfwLoadLocalVulkanLoaderNS(void); #endif #elif defined(_GLFW_WIN32) #ifndef HEADER_GUARD_WIN32_PLATFORM_H #define HEADER_GUARD_WIN32_PLATFORM_H //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // We don't need all the fancy stuff #ifndef NOMINMAX #define NOMINMAX #endif #ifndef VC_EXTRALEAN #define VC_EXTRALEAN #endif #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif // This is a workaround for the fact that glfw3.h needs to export APIENTRY (for // example to allow applications to correctly declare a GL_KHR_debug callback) // but windows.h assumes no one will define APIENTRY before it does #undef APIENTRY // GLFW on Windows is Unicode only and does not work in MBCS mode #ifndef UNICODE #define UNICODE #endif // GLFW requires Windows XP or later #if WINVER < 0x0501 #undef WINVER #define WINVER 0x0501 #endif #if _WIN32_WINNT < 0x0501 #undef _WIN32_WINNT #define _WIN32_WINNT 0x0501 #endif // GLFW uses DirectInput8 interfaces #define DIRECTINPUT_VERSION 0x0800 // GLFW uses OEM cursor resources #define OEMRESOURCE #include #include #include #include #include // HACK: Define macros that some windows.h variants don't #ifndef WM_MOUSEHWHEEL #define WM_MOUSEHWHEEL 0x020E #endif #ifndef WM_DWMCOMPOSITIONCHANGED #define WM_DWMCOMPOSITIONCHANGED 0x031E #endif #ifndef WM_DWMCOLORIZATIONCOLORCHANGED #define WM_DWMCOLORIZATIONCOLORCHANGED 0x0320 #endif #ifndef WM_COPYGLOBALDATA #define WM_COPYGLOBALDATA 0x0049 #endif #ifndef WM_UNICHAR #define WM_UNICHAR 0x0109 #endif #ifndef UNICODE_NOCHAR #define UNICODE_NOCHAR 0xFFFF #endif #ifndef WM_DPICHANGED #define WM_DPICHANGED 0x02E0 #endif #ifndef GET_XBUTTON_WPARAM #define GET_XBUTTON_WPARAM(w) (HIWORD(w)) #endif #ifndef EDS_ROTATEDMODE #define EDS_ROTATEDMODE 0x00000004 #endif #ifndef DISPLAY_DEVICE_ACTIVE #define DISPLAY_DEVICE_ACTIVE 0x00000001 #endif #ifndef _WIN32_WINNT_WINBLUE #define _WIN32_WINNT_WINBLUE 0x0603 #endif #ifndef _WIN32_WINNT_WIN8 #define _WIN32_WINNT_WIN8 0x0602 #endif #ifndef WM_GETDPISCALEDSIZE #define WM_GETDPISCALEDSIZE 0x02e4 #endif #ifndef USER_DEFAULT_SCREEN_DPI #define USER_DEFAULT_SCREEN_DPI 96 #endif #ifndef OCR_HAND #define OCR_HAND 32649 #endif #if WINVER < 0x0601 typedef struct { DWORD cbSize; DWORD ExtStatus; } CHANGEFILTERSTRUCT; #ifndef MSGFLT_ALLOW #define MSGFLT_ALLOW 1 #endif #endif /*Windows 7*/ #if WINVER < 0x0600 #define DWM_BB_ENABLE 0x00000001 #define DWM_BB_BLURREGION 0x00000002 typedef struct { DWORD dwFlags; BOOL fEnable; HRGN hRgnBlur; BOOL fTransitionOnMaximized; } DWM_BLURBEHIND; #else #include #endif /*Windows Vista*/ #ifndef DPI_ENUMS_DECLARED typedef enum { PROCESS_DPI_UNAWARE = 0, PROCESS_SYSTEM_DPI_AWARE = 1, PROCESS_PER_MONITOR_DPI_AWARE = 2 } PROCESS_DPI_AWARENESS; typedef enum { MDT_EFFECTIVE_DPI = 0, MDT_ANGULAR_DPI = 1, MDT_RAW_DPI = 2, MDT_DEFAULT = MDT_EFFECTIVE_DPI } MONITOR_DPI_TYPE; #endif /*DPI_ENUMS_DECLARED*/ #ifndef DPI_AWARENESS_CONTEXT_PER_MONITOR_AWARE_V2 #define DPI_AWARENESS_CONTEXT_PER_MONITOR_AWARE_V2 ((HANDLE) -4) #endif /*DPI_AWARENESS_CONTEXT_PER_MONITOR_AWARE_V2*/ // Replacement for versionhelpers.h macros, as we cannot rely on the // application having a correct embedded manifest // #define IsWindowsXPOrGreater() \ _glfwIsWindowsVersionOrGreaterWin32(HIBYTE(_WIN32_WINNT_WINXP), \ LOBYTE(_WIN32_WINNT_WINXP), 0) #define IsWindowsVistaOrGreater() \ _glfwIsWindowsVersionOrGreaterWin32(HIBYTE(_WIN32_WINNT_VISTA), \ LOBYTE(_WIN32_WINNT_VISTA), 0) #define IsWindows7OrGreater() \ _glfwIsWindowsVersionOrGreaterWin32(HIBYTE(_WIN32_WINNT_WIN7), \ LOBYTE(_WIN32_WINNT_WIN7), 0) #define IsWindows8OrGreater() \ _glfwIsWindowsVersionOrGreaterWin32(HIBYTE(_WIN32_WINNT_WIN8), \ LOBYTE(_WIN32_WINNT_WIN8), 0) #define IsWindows8Point1OrGreater() \ _glfwIsWindowsVersionOrGreaterWin32(HIBYTE(_WIN32_WINNT_WINBLUE), \ LOBYTE(_WIN32_WINNT_WINBLUE), 0) #define _glfwIsWindows10AnniversaryUpdateOrGreaterWin32() \ _glfwIsWindows10BuildOrGreaterWin32(14393) #define _glfwIsWindows10CreatorsUpdateOrGreaterWin32() \ _glfwIsWindows10BuildOrGreaterWin32(15063) // HACK: Define macros that some xinput.h variants don't #ifndef XINPUT_CAPS_WIRELESS #define XINPUT_CAPS_WIRELESS 0x0002 #endif #ifndef XINPUT_DEVSUBTYPE_WHEEL #define XINPUT_DEVSUBTYPE_WHEEL 0x02 #endif #ifndef XINPUT_DEVSUBTYPE_ARCADE_STICK #define XINPUT_DEVSUBTYPE_ARCADE_STICK 0x03 #endif #ifndef XINPUT_DEVSUBTYPE_FLIGHT_STICK #define XINPUT_DEVSUBTYPE_FLIGHT_STICK 0x04 #endif #ifndef XINPUT_DEVSUBTYPE_DANCE_PAD #define XINPUT_DEVSUBTYPE_DANCE_PAD 0x05 #endif #ifndef XINPUT_DEVSUBTYPE_GUITAR #define XINPUT_DEVSUBTYPE_GUITAR 0x06 #endif #ifndef XINPUT_DEVSUBTYPE_DRUM_KIT #define XINPUT_DEVSUBTYPE_DRUM_KIT 0x08 #endif #ifndef XINPUT_DEVSUBTYPE_ARCADE_PAD #define XINPUT_DEVSUBTYPE_ARCADE_PAD 0x13 #endif #ifndef XUSER_MAX_COUNT #define XUSER_MAX_COUNT 4 #endif // HACK: Define macros that some dinput.h variants don't #ifndef DIDFT_OPTIONAL #define DIDFT_OPTIONAL 0x80000000 #endif // xinput.dll function pointer typedefs typedef DWORD (WINAPI * PFN_XInputGetCapabilities)(DWORD,DWORD,XINPUT_CAPABILITIES*); typedef DWORD (WINAPI * PFN_XInputGetState)(DWORD,XINPUT_STATE*); #define XInputGetCapabilities _glfw.win32.xinput.GetCapabilities #define XInputGetState _glfw.win32.xinput.GetState // dinput8.dll function pointer typedefs typedef HRESULT (WINAPI * PFN_DirectInput8Create)(HINSTANCE,DWORD,REFIID,LPVOID*,LPUNKNOWN); #define DirectInput8Create _glfw.win32.dinput8.Create // user32.dll function pointer typedefs typedef BOOL (WINAPI * PFN_SetProcessDPIAware)(void); typedef BOOL (WINAPI * PFN_ChangeWindowMessageFilterEx)(HWND,UINT,DWORD,CHANGEFILTERSTRUCT*); typedef BOOL (WINAPI * PFN_EnableNonClientDpiScaling)(HWND); typedef BOOL (WINAPI * PFN_SetProcessDpiAwarenessContext)(HANDLE); typedef UINT (WINAPI * PFN_GetDpiForWindow)(HWND); typedef BOOL (WINAPI * PFN_AdjustWindowRectExForDpi)(LPRECT,DWORD,BOOL,DWORD,UINT); typedef int (WINAPI * PFN_GetSystemMetricsForDpi)(int,UINT); #define SetProcessDPIAware _glfw.win32.user32.SetProcessDPIAware_ #define ChangeWindowMessageFilterEx _glfw.win32.user32.ChangeWindowMessageFilterEx_ #define EnableNonClientDpiScaling _glfw.win32.user32.EnableNonClientDpiScaling_ #define SetProcessDpiAwarenessContext _glfw.win32.user32.SetProcessDpiAwarenessContext_ #define GetDpiForWindow _glfw.win32.user32.GetDpiForWindow_ #define AdjustWindowRectExForDpi _glfw.win32.user32.AdjustWindowRectExForDpi_ #define GetSystemMetricsForDpi _glfw.win32.user32.GetSystemMetricsForDpi_ // dwmapi.dll function pointer typedefs typedef HRESULT (WINAPI * PFN_DwmIsCompositionEnabled)(BOOL*); typedef HRESULT (WINAPI * PFN_DwmFlush)(VOID); typedef HRESULT(WINAPI * PFN_DwmEnableBlurBehindWindow)(HWND,const DWM_BLURBEHIND*); typedef HRESULT (WINAPI * PFN_DwmGetColorizationColor)(DWORD*,BOOL*); #define DwmIsCompositionEnabled _glfw.win32.dwmapi.IsCompositionEnabled #define DwmFlush _glfw.win32.dwmapi.Flush #define DwmEnableBlurBehindWindow _glfw.win32.dwmapi.EnableBlurBehindWindow #define DwmGetColorizationColor _glfw.win32.dwmapi.GetColorizationColor // shcore.dll function pointer typedefs typedef HRESULT (WINAPI * PFN_SetProcessDpiAwareness)(PROCESS_DPI_AWARENESS); typedef HRESULT (WINAPI * PFN_GetDpiForMonitor)(HMONITOR,MONITOR_DPI_TYPE,UINT*,UINT*); #define SetProcessDpiAwareness _glfw.win32.shcore.SetProcessDpiAwareness_ #define GetDpiForMonitor _glfw.win32.shcore.GetDpiForMonitor_ // ntdll.dll function pointer typedefs typedef LONG (WINAPI * PFN_RtlVerifyVersionInfo)(OSVERSIONINFOEXW*,ULONG,ULONGLONG); #define RtlVerifyVersionInfo _glfw.win32.ntdll.RtlVerifyVersionInfo_ typedef VkFlags VkWin32SurfaceCreateFlagsKHR; typedef struct VkWin32SurfaceCreateInfoKHR { VkStructureType sType; const void* pNext; VkWin32SurfaceCreateFlagsKHR flags; HINSTANCE hinstance; HWND hwnd; } VkWin32SurfaceCreateInfoKHR; typedef VkResult (APIENTRY *PFN_vkCreateWin32SurfaceKHR)(VkInstance,const VkWin32SurfaceCreateInfoKHR*,const VkAllocationCallbacks*,VkSurfaceKHR*); typedef VkBool32 (APIENTRY *PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR)(VkPhysicalDevice,uint32_t); #ifndef HEADER_GUARD_WIN32_JOYSTICK_H #define HEADER_GUARD_WIN32_JOYSTICK_H //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_JOYSTICK_STATE _GLFWjoystickWin32 win32 #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE struct { int dummyLibraryJoystick; } #define _GLFW_PLATFORM_MAPPING_NAME "Windows" #define GLFW_BUILD_WIN32_MAPPINGS // Joystick element (axis, button or slider) // typedef struct _GLFWjoyobjectWin32 { int offset; int type; } _GLFWjoyobjectWin32; // Win32-specific per-joystick data // typedef struct _GLFWjoystickWin32 { _GLFWjoyobjectWin32* objects; int objectCount; IDirectInputDevice8W* device; DWORD index; GUID guid; } _GLFWjoystickWin32; void _glfwInitJoysticksWin32(void); void _glfwTerminateJoysticksWin32(void); void _glfwDetectJoystickConnectionWin32(void); void _glfwDetectJoystickDisconnectionWin32(void); #endif #ifndef HEADER_GUARD_WGL_CONTEXT_H #define HEADER_GUARD_WGL_CONTEXT_H //======================================================================== // GLFW 3.3.7 WGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2018 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define WGL_NUMBER_PIXEL_FORMATS_ARB 0x2000 #define WGL_SUPPORT_OPENGL_ARB 0x2010 #define WGL_DRAW_TO_WINDOW_ARB 0x2001 #define WGL_PIXEL_TYPE_ARB 0x2013 #define WGL_TYPE_RGBA_ARB 0x202b #define WGL_ACCELERATION_ARB 0x2003 #define WGL_NO_ACCELERATION_ARB 0x2025 #define WGL_RED_BITS_ARB 0x2015 #define WGL_RED_SHIFT_ARB 0x2016 #define WGL_GREEN_BITS_ARB 0x2017 #define WGL_GREEN_SHIFT_ARB 0x2018 #define WGL_BLUE_BITS_ARB 0x2019 #define WGL_BLUE_SHIFT_ARB 0x201a #define WGL_ALPHA_BITS_ARB 0x201b #define WGL_ALPHA_SHIFT_ARB 0x201c #define WGL_ACCUM_BITS_ARB 0x201d #define WGL_ACCUM_RED_BITS_ARB 0x201e #define WGL_ACCUM_GREEN_BITS_ARB 0x201f #define WGL_ACCUM_BLUE_BITS_ARB 0x2020 #define WGL_ACCUM_ALPHA_BITS_ARB 0x2021 #define WGL_DEPTH_BITS_ARB 0x2022 #define WGL_STENCIL_BITS_ARB 0x2023 #define WGL_AUX_BUFFERS_ARB 0x2024 #define WGL_STEREO_ARB 0x2012 #define WGL_DOUBLE_BUFFER_ARB 0x2011 #define WGL_SAMPLES_ARB 0x2042 #define WGL_FRAMEBUFFER_SRGB_CAPABLE_ARB 0x20a9 #define WGL_CONTEXT_DEBUG_BIT_ARB 0x00000001 #define WGL_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB 0x00000002 #define WGL_CONTEXT_PROFILE_MASK_ARB 0x9126 #define WGL_CONTEXT_CORE_PROFILE_BIT_ARB 0x00000001 #define WGL_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB 0x00000002 #define WGL_CONTEXT_MAJOR_VERSION_ARB 0x2091 #define WGL_CONTEXT_MINOR_VERSION_ARB 0x2092 #define WGL_CONTEXT_FLAGS_ARB 0x2094 #define WGL_CONTEXT_ES2_PROFILE_BIT_EXT 0x00000004 #define WGL_CONTEXT_ROBUST_ACCESS_BIT_ARB 0x00000004 #define WGL_LOSE_CONTEXT_ON_RESET_ARB 0x8252 #define WGL_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB 0x8256 #define WGL_NO_RESET_NOTIFICATION_ARB 0x8261 #define WGL_CONTEXT_RELEASE_BEHAVIOR_ARB 0x2097 #define WGL_CONTEXT_RELEASE_BEHAVIOR_NONE_ARB 0 #define WGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_ARB 0x2098 #define WGL_CONTEXT_OPENGL_NO_ERROR_ARB 0x31b3 #define WGL_COLORSPACE_EXT 0x309d #define WGL_COLORSPACE_SRGB_EXT 0x3089 #define ERROR_INVALID_VERSION_ARB 0x2095 #define ERROR_INVALID_PROFILE_ARB 0x2096 #define ERROR_INCOMPATIBLE_DEVICE_CONTEXTS_ARB 0x2054 // WGL extension pointer typedefs typedef BOOL (WINAPI * PFNWGLSWAPINTERVALEXTPROC)(int); typedef BOOL (WINAPI * PFNWGLGETPIXELFORMATATTRIBIVARBPROC)(HDC,int,int,UINT,const int*,int*); typedef const char* (WINAPI * PFNWGLGETEXTENSIONSSTRINGEXTPROC)(void); typedef const char* (WINAPI * PFNWGLGETEXTENSIONSSTRINGARBPROC)(HDC); typedef HGLRC (WINAPI * PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC,HGLRC,const int*); #define wglSwapIntervalEXT _glfw.wgl.SwapIntervalEXT #define wglGetPixelFormatAttribivARB _glfw.wgl.GetPixelFormatAttribivARB #define wglGetExtensionsStringEXT _glfw.wgl.GetExtensionsStringEXT #define wglGetExtensionsStringARB _glfw.wgl.GetExtensionsStringARB #define wglCreateContextAttribsARB _glfw.wgl.CreateContextAttribsARB // opengl32.dll function pointer typedefs typedef HGLRC (WINAPI * PFN_wglCreateContext)(HDC); typedef BOOL (WINAPI * PFN_wglDeleteContext)(HGLRC); typedef PROC (WINAPI * PFN_wglGetProcAddress)(LPCSTR); typedef HDC (WINAPI * PFN_wglGetCurrentDC)(void); typedef HGLRC (WINAPI * PFN_wglGetCurrentContext)(void); typedef BOOL (WINAPI * PFN_wglMakeCurrent)(HDC,HGLRC); typedef BOOL (WINAPI * PFN_wglShareLists)(HGLRC,HGLRC); #define wglCreateContext _glfw.wgl.CreateContext #define wglDeleteContext _glfw.wgl.DeleteContext #define wglGetProcAddress _glfw.wgl.GetProcAddress #define wglGetCurrentDC _glfw.wgl.GetCurrentDC #define wglGetCurrentContext _glfw.wgl.GetCurrentContext #define wglMakeCurrent _glfw.wgl.MakeCurrent #define wglShareLists _glfw.wgl.ShareLists #define _GLFW_PLATFORM_CONTEXT_STATE _GLFWcontextWGL wgl #define _GLFW_PLATFORM_LIBRARY_CONTEXT_STATE _GLFWlibraryWGL wgl // WGL-specific per-context data // typedef struct _GLFWcontextWGL { HDC dc; HGLRC handle; int interval; } _GLFWcontextWGL; // WGL-specific global data // typedef struct _GLFWlibraryWGL { HINSTANCE instance; PFN_wglCreateContext CreateContext; PFN_wglDeleteContext DeleteContext; PFN_wglGetProcAddress GetProcAddress; PFN_wglGetCurrentDC GetCurrentDC; PFN_wglGetCurrentContext GetCurrentContext; PFN_wglMakeCurrent MakeCurrent; PFN_wglShareLists ShareLists; PFNWGLSWAPINTERVALEXTPROC SwapIntervalEXT; PFNWGLGETPIXELFORMATATTRIBIVARBPROC GetPixelFormatAttribivARB; PFNWGLGETEXTENSIONSSTRINGEXTPROC GetExtensionsStringEXT; PFNWGLGETEXTENSIONSSTRINGARBPROC GetExtensionsStringARB; PFNWGLCREATECONTEXTATTRIBSARBPROC CreateContextAttribsARB; GLFWbool EXT_swap_control; GLFWbool EXT_colorspace; GLFWbool ARB_multisample; GLFWbool ARB_framebuffer_sRGB; GLFWbool EXT_framebuffer_sRGB; GLFWbool ARB_pixel_format; GLFWbool ARB_create_context; GLFWbool ARB_create_context_profile; GLFWbool EXT_create_context_es2_profile; GLFWbool ARB_create_context_robustness; GLFWbool ARB_create_context_no_error; GLFWbool ARB_context_flush_control; } _GLFWlibraryWGL; GLFWbool _glfwInitWGL(void); void _glfwTerminateWGL(void); GLFWbool _glfwCreateContextWGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #endif #ifndef HEADER_GUARD_EGL_CONTEXT_H #define HEADER_GUARD_EGL_CONTEXT_H //======================================================================== // GLFW 3.3.7 EGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #if defined(_GLFW_USE_EGLPLATFORM_H) #include #elif defined(_GLFW_WIN32) #define EGLAPIENTRY __stdcall typedef HDC EGLNativeDisplayType; typedef HWND EGLNativeWindowType; #elif defined(_GLFW_COCOA) #define EGLAPIENTRY typedef void* EGLNativeDisplayType; typedef id EGLNativeWindowType; #elif defined(_GLFW_X11) #define EGLAPIENTRY typedef Display* EGLNativeDisplayType; typedef Window EGLNativeWindowType; #elif defined(_GLFW_WAYLAND) #define EGLAPIENTRY typedef struct wl_display* EGLNativeDisplayType; typedef struct wl_egl_window* EGLNativeWindowType; #else #error "No supported EGL platform selected" #endif #define EGL_SUCCESS 0x3000 #define EGL_NOT_INITIALIZED 0x3001 #define EGL_BAD_ACCESS 0x3002 #define EGL_BAD_ALLOC 0x3003 #define EGL_BAD_ATTRIBUTE 0x3004 #define EGL_BAD_CONFIG 0x3005 #define EGL_BAD_CONTEXT 0x3006 #define EGL_BAD_CURRENT_SURFACE 0x3007 #define EGL_BAD_DISPLAY 0x3008 #define EGL_BAD_MATCH 0x3009 #define EGL_BAD_NATIVE_PIXMAP 0x300a #define EGL_BAD_NATIVE_WINDOW 0x300b #define EGL_BAD_PARAMETER 0x300c #define EGL_BAD_SURFACE 0x300d #define EGL_CONTEXT_LOST 0x300e #define EGL_COLOR_BUFFER_TYPE 0x303f #define EGL_RGB_BUFFER 0x308e #define EGL_SURFACE_TYPE 0x3033 #define EGL_WINDOW_BIT 0x0004 #define EGL_RENDERABLE_TYPE 0x3040 #define EGL_OPENGL_ES_BIT 0x0001 #define EGL_OPENGL_ES2_BIT 0x0004 #define EGL_OPENGL_BIT 0x0008 #define EGL_ALPHA_SIZE 0x3021 #define EGL_BLUE_SIZE 0x3022 #define EGL_GREEN_SIZE 0x3023 #define EGL_RED_SIZE 0x3024 #define EGL_DEPTH_SIZE 0x3025 #define EGL_STENCIL_SIZE 0x3026 #define EGL_SAMPLES 0x3031 #define EGL_OPENGL_ES_API 0x30a0 #define EGL_OPENGL_API 0x30a2 #define EGL_NONE 0x3038 #define EGL_RENDER_BUFFER 0x3086 #define EGL_SINGLE_BUFFER 0x3085 #define EGL_EXTENSIONS 0x3055 #define EGL_CONTEXT_CLIENT_VERSION 0x3098 #define EGL_NATIVE_VISUAL_ID 0x302e #define EGL_NO_SURFACE ((EGLSurface) 0) #define EGL_NO_DISPLAY ((EGLDisplay) 0) #define EGL_NO_CONTEXT ((EGLContext) 0) #define EGL_DEFAULT_DISPLAY ((EGLNativeDisplayType) 0) #define EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR 0x31bd #define EGL_NO_RESET_NOTIFICATION_KHR 0x31be #define EGL_LOSE_CONTEXT_ON_RESET_KHR 0x31bf #define EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR 0x00000004 #define EGL_CONTEXT_MAJOR_VERSION_KHR 0x3098 #define EGL_CONTEXT_MINOR_VERSION_KHR 0x30fb #define EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR 0x30fd #define EGL_CONTEXT_FLAGS_KHR 0x30fc #define EGL_CONTEXT_OPENGL_NO_ERROR_KHR 0x31b3 #define EGL_GL_COLORSPACE_KHR 0x309d #define EGL_GL_COLORSPACE_SRGB_KHR 0x3089 #define EGL_CONTEXT_RELEASE_BEHAVIOR_KHR 0x2097 #define EGL_CONTEXT_RELEASE_BEHAVIOR_NONE_KHR 0 #define EGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_KHR 0x2098 #define EGL_PRESENT_OPAQUE_EXT 0x31df typedef int EGLint; typedef unsigned int EGLBoolean; typedef unsigned int EGLenum; typedef void* EGLConfig; typedef void* EGLContext; typedef void* EGLDisplay; typedef void* EGLSurface; // EGL function pointer typedefs typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigAttrib)(EGLDisplay,EGLConfig,EGLint,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigs)(EGLDisplay,EGLConfig*,EGLint,EGLint*); typedef EGLDisplay (EGLAPIENTRY * PFN_eglGetDisplay)(EGLNativeDisplayType); typedef EGLint (EGLAPIENTRY * PFN_eglGetError)(void); typedef EGLBoolean (EGLAPIENTRY * PFN_eglInitialize)(EGLDisplay,EGLint*,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglTerminate)(EGLDisplay); typedef EGLBoolean (EGLAPIENTRY * PFN_eglBindAPI)(EGLenum); typedef EGLContext (EGLAPIENTRY * PFN_eglCreateContext)(EGLDisplay,EGLConfig,EGLContext,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroySurface)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroyContext)(EGLDisplay,EGLContext); typedef EGLSurface (EGLAPIENTRY * PFN_eglCreateWindowSurface)(EGLDisplay,EGLConfig,EGLNativeWindowType,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglMakeCurrent)(EGLDisplay,EGLSurface,EGLSurface,EGLContext); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapBuffers)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapInterval)(EGLDisplay,EGLint); typedef const char* (EGLAPIENTRY * PFN_eglQueryString)(EGLDisplay,EGLint); typedef GLFWglproc (EGLAPIENTRY * PFN_eglGetProcAddress)(const char*); #define eglGetConfigAttrib _glfw.egl.GetConfigAttrib #define eglGetConfigs _glfw.egl.GetConfigs #define eglGetDisplay _glfw.egl.GetDisplay #define eglGetError _glfw.egl.GetError #define eglInitialize _glfw.egl.Initialize #define eglTerminate _glfw.egl.Terminate #define eglBindAPI _glfw.egl.BindAPI #define eglCreateContext _glfw.egl.CreateContext #define eglDestroySurface _glfw.egl.DestroySurface #define eglDestroyContext _glfw.egl.DestroyContext #define eglCreateWindowSurface _glfw.egl.CreateWindowSurface #define eglMakeCurrent _glfw.egl.MakeCurrent #define eglSwapBuffers _glfw.egl.SwapBuffers #define eglSwapInterval _glfw.egl.SwapInterval #define eglQueryString _glfw.egl.QueryString #define eglGetProcAddress _glfw.egl.GetProcAddress #define _GLFW_EGL_CONTEXT_STATE _GLFWcontextEGL egl #define _GLFW_EGL_LIBRARY_CONTEXT_STATE _GLFWlibraryEGL egl // EGL-specific per-context data // typedef struct _GLFWcontextEGL { EGLConfig config; EGLContext handle; EGLSurface surface; void* client; } _GLFWcontextEGL; // EGL-specific global data // typedef struct _GLFWlibraryEGL { EGLDisplay display; EGLint major, minor; GLFWbool prefix; GLFWbool KHR_create_context; GLFWbool KHR_create_context_no_error; GLFWbool KHR_gl_colorspace; GLFWbool KHR_get_all_proc_addresses; GLFWbool KHR_context_flush_control; GLFWbool EXT_present_opaque; void* handle; PFN_eglGetConfigAttrib GetConfigAttrib; PFN_eglGetConfigs GetConfigs; PFN_eglGetDisplay GetDisplay; PFN_eglGetError GetError; PFN_eglInitialize Initialize; PFN_eglTerminate Terminate; PFN_eglBindAPI BindAPI; PFN_eglCreateContext CreateContext; PFN_eglDestroySurface DestroySurface; PFN_eglDestroyContext DestroyContext; PFN_eglCreateWindowSurface CreateWindowSurface; PFN_eglMakeCurrent MakeCurrent; PFN_eglSwapBuffers SwapBuffers; PFN_eglSwapInterval SwapInterval; PFN_eglQueryString QueryString; PFN_eglGetProcAddress GetProcAddress; } _GLFWlibraryEGL; GLFWbool _glfwInitEGL(void); void _glfwTerminateEGL(void); GLFWbool _glfwCreateContextEGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #if defined(_GLFW_X11) GLFWbool _glfwChooseVisualEGL(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth); #endif /*_GLFW_X11*/ #endif #ifndef HEADER_GUARD_OSMESA_CONTEXT_H #define HEADER_GUARD_OSMESA_CONTEXT_H //======================================================================== // GLFW 3.3.7 OSMesa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define OSMESA_RGBA 0x1908 #define OSMESA_FORMAT 0x22 #define OSMESA_DEPTH_BITS 0x30 #define OSMESA_STENCIL_BITS 0x31 #define OSMESA_ACCUM_BITS 0x32 #define OSMESA_PROFILE 0x33 #define OSMESA_CORE_PROFILE 0x34 #define OSMESA_COMPAT_PROFILE 0x35 #define OSMESA_CONTEXT_MAJOR_VERSION 0x36 #define OSMESA_CONTEXT_MINOR_VERSION 0x37 typedef void* OSMesaContext; typedef void (*OSMESAproc)(void); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextExt)(GLenum,GLint,GLint,GLint,OSMesaContext); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextAttribs)(const int*,OSMesaContext); typedef void (GLAPIENTRY * PFN_OSMesaDestroyContext)(OSMesaContext); typedef int (GLAPIENTRY * PFN_OSMesaMakeCurrent)(OSMesaContext,void*,int,int,int); typedef int (GLAPIENTRY * PFN_OSMesaGetColorBuffer)(OSMesaContext,int*,int*,int*,void**); typedef int (GLAPIENTRY * PFN_OSMesaGetDepthBuffer)(OSMesaContext,int*,int*,int*,void**); typedef GLFWglproc (GLAPIENTRY * PFN_OSMesaGetProcAddress)(const char*); #define OSMesaCreateContextExt _glfw.osmesa.CreateContextExt #define OSMesaCreateContextAttribs _glfw.osmesa.CreateContextAttribs #define OSMesaDestroyContext _glfw.osmesa.DestroyContext #define OSMesaMakeCurrent _glfw.osmesa.MakeCurrent #define OSMesaGetColorBuffer _glfw.osmesa.GetColorBuffer #define OSMesaGetDepthBuffer _glfw.osmesa.GetDepthBuffer #define OSMesaGetProcAddress _glfw.osmesa.GetProcAddress #define _GLFW_OSMESA_CONTEXT_STATE _GLFWcontextOSMesa osmesa #define _GLFW_OSMESA_LIBRARY_CONTEXT_STATE _GLFWlibraryOSMesa osmesa // OSMesa-specific per-context data // typedef struct _GLFWcontextOSMesa { OSMesaContext handle; int width; int height; void* buffer; } _GLFWcontextOSMesa; // OSMesa-specific global data // typedef struct _GLFWlibraryOSMesa { void* handle; PFN_OSMesaCreateContextExt CreateContextExt; PFN_OSMesaCreateContextAttribs CreateContextAttribs; PFN_OSMesaDestroyContext DestroyContext; PFN_OSMesaMakeCurrent MakeCurrent; PFN_OSMesaGetColorBuffer GetColorBuffer; PFN_OSMesaGetDepthBuffer GetDepthBuffer; PFN_OSMesaGetProcAddress GetProcAddress; } _GLFWlibraryOSMesa; GLFWbool _glfwInitOSMesa(void); void _glfwTerminateOSMesa(void); GLFWbool _glfwCreateContextOSMesa(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #endif #if !defined(_GLFW_WNDCLASSNAME) #define _GLFW_WNDCLASSNAME L"GLFW30" #endif #define _glfw_dlopen(name) LoadLibraryA(name) #define _glfw_dlclose(handle) FreeLibrary((HMODULE) handle) #define _glfw_dlsym(handle, name) GetProcAddress((HMODULE) handle, name) #define _GLFW_EGL_NATIVE_WINDOW ((EGLNativeWindowType) window->win32.handle) #define _GLFW_EGL_NATIVE_DISPLAY EGL_DEFAULT_DISPLAY #define _GLFW_PLATFORM_WINDOW_STATE _GLFWwindowWin32 win32 #define _GLFW_PLATFORM_LIBRARY_WINDOW_STATE _GLFWlibraryWin32 win32 #define _GLFW_PLATFORM_LIBRARY_TIMER_STATE _GLFWtimerWin32 win32 #define _GLFW_PLATFORM_MONITOR_STATE _GLFWmonitorWin32 win32 #define _GLFW_PLATFORM_CURSOR_STATE _GLFWcursorWin32 win32 #define _GLFW_PLATFORM_TLS_STATE _GLFWtlsWin32 win32 #define _GLFW_PLATFORM_MUTEX_STATE _GLFWmutexWin32 win32 // Win32-specific per-window data // typedef struct _GLFWwindowWin32 { HWND handle; HICON bigIcon; HICON smallIcon; GLFWbool cursorTracked; GLFWbool frameAction; GLFWbool iconified; GLFWbool maximized; // Whether to enable framebuffer transparency on DWM GLFWbool transparent; GLFWbool scaleToMonitor; // Cached size used to filter out duplicate events int width, height; // The last received cursor position, regardless of source int lastCursorPosX, lastCursorPosY; // The last recevied high surrogate when decoding pairs of UTF-16 messages WCHAR highSurrogate; } _GLFWwindowWin32; // Win32-specific global data // typedef struct _GLFWlibraryWin32 { HWND helperWindowHandle; HDEVNOTIFY deviceNotificationHandle; DWORD foregroundLockTimeout; int acquiredMonitorCount; char* clipboardString; short int keycodes[512]; short int scancodes[GLFW_KEY_LAST + 1]; char keynames[GLFW_KEY_LAST + 1][5]; // Where to place the cursor when re-enabled double restoreCursorPosX, restoreCursorPosY; // The window whose disabled cursor mode is active _GLFWwindow* disabledCursorWindow; RAWINPUT* rawInput; int rawInputSize; UINT mouseTrailSize; struct { HINSTANCE instance; PFN_DirectInput8Create Create; IDirectInput8W* api; } dinput8; struct { HINSTANCE instance; PFN_XInputGetCapabilities GetCapabilities; PFN_XInputGetState GetState; } xinput; struct { HINSTANCE instance; PFN_SetProcessDPIAware SetProcessDPIAware_; PFN_ChangeWindowMessageFilterEx ChangeWindowMessageFilterEx_; PFN_EnableNonClientDpiScaling EnableNonClientDpiScaling_; PFN_SetProcessDpiAwarenessContext SetProcessDpiAwarenessContext_; PFN_GetDpiForWindow GetDpiForWindow_; PFN_AdjustWindowRectExForDpi AdjustWindowRectExForDpi_; PFN_GetSystemMetricsForDpi GetSystemMetricsForDpi_; } user32; struct { HINSTANCE instance; PFN_DwmIsCompositionEnabled IsCompositionEnabled; PFN_DwmFlush Flush; PFN_DwmEnableBlurBehindWindow EnableBlurBehindWindow; PFN_DwmGetColorizationColor GetColorizationColor; } dwmapi; struct { HINSTANCE instance; PFN_SetProcessDpiAwareness SetProcessDpiAwareness_; PFN_GetDpiForMonitor GetDpiForMonitor_; } shcore; struct { HINSTANCE instance; PFN_RtlVerifyVersionInfo RtlVerifyVersionInfo_; } ntdll; } _GLFWlibraryWin32; // Win32-specific per-monitor data // typedef struct _GLFWmonitorWin32 { HMONITOR handle; // This size matches the static size of DISPLAY_DEVICE.DeviceName WCHAR adapterName[32]; WCHAR displayName[32]; char publicAdapterName[32]; char publicDisplayName[32]; GLFWbool modesPruned; GLFWbool modeChanged; } _GLFWmonitorWin32; // Win32-specific per-cursor data // typedef struct _GLFWcursorWin32 { HCURSOR handle; } _GLFWcursorWin32; // Win32-specific global timer data // typedef struct _GLFWtimerWin32 { uint64_t frequency; } _GLFWtimerWin32; // Win32-specific thread local storage data // typedef struct _GLFWtlsWin32 { GLFWbool allocated; DWORD index; } _GLFWtlsWin32; // Win32-specific mutex data // typedef struct _GLFWmutexWin32 { GLFWbool allocated; CRITICAL_SECTION section; } _GLFWmutexWin32; GLFWbool _glfwRegisterWindowClassWin32(void); void _glfwUnregisterWindowClassWin32(void); WCHAR* _glfwCreateWideStringFromUTF8Win32(const char* source); char* _glfwCreateUTF8FromWideStringWin32(const WCHAR* source); BOOL _glfwIsWindowsVersionOrGreaterWin32(WORD major, WORD minor, WORD sp); BOOL _glfwIsWindows10BuildOrGreaterWin32(WORD build); void _glfwInputErrorWin32(int error, const char* description); void _glfwUpdateKeyNamesWin32(void); void _glfwInitTimerWin32(void); void _glfwPollMonitorsWin32(void); void _glfwSetVideoModeWin32(_GLFWmonitor* monitor, const GLFWvidmode* desired); void _glfwRestoreVideoModeWin32(_GLFWmonitor* monitor); void _glfwGetMonitorContentScaleWin32(HMONITOR handle, float* xscale, float* yscale); #endif #elif defined(_GLFW_X11) #ifndef HEADER_GUARD_X11_PLATFORM_H #define HEADER_GUARD_X11_PLATFORM_H //======================================================================== // GLFW 3.3.7 X11 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #include #include #include #include #include #include #include // The XRandR extension provides mode setting and gamma control #include // The Xkb extension provides improved keyboard support #include // The Xinerama extension provides legacy monitor indices #include // The XInput extension provides raw mouse motion input #include typedef XRRCrtcGamma* (* PFN_XRRAllocGamma)(int); typedef void (* PFN_XRRFreeCrtcInfo)(XRRCrtcInfo*); typedef void (* PFN_XRRFreeGamma)(XRRCrtcGamma*); typedef void (* PFN_XRRFreeOutputInfo)(XRROutputInfo*); typedef void (* PFN_XRRFreeScreenResources)(XRRScreenResources*); typedef XRRCrtcGamma* (* PFN_XRRGetCrtcGamma)(Display*,RRCrtc); typedef int (* PFN_XRRGetCrtcGammaSize)(Display*,RRCrtc); typedef XRRCrtcInfo* (* PFN_XRRGetCrtcInfo) (Display*,XRRScreenResources*,RRCrtc); typedef XRROutputInfo* (* PFN_XRRGetOutputInfo)(Display*,XRRScreenResources*,RROutput); typedef RROutput (* PFN_XRRGetOutputPrimary)(Display*,Window); typedef XRRScreenResources* (* PFN_XRRGetScreenResourcesCurrent)(Display*,Window); typedef Bool (* PFN_XRRQueryExtension)(Display*,int*,int*); typedef Status (* PFN_XRRQueryVersion)(Display*,int*,int*); typedef void (* PFN_XRRSelectInput)(Display*,Window,int); typedef Status (* PFN_XRRSetCrtcConfig)(Display*,XRRScreenResources*,RRCrtc,Time,int,int,RRMode,Rotation,RROutput*,int); typedef void (* PFN_XRRSetCrtcGamma)(Display*,RRCrtc,XRRCrtcGamma*); typedef int (* PFN_XRRUpdateConfiguration)(XEvent*); #define XRRAllocGamma _glfw.x11.randr.AllocGamma #define XRRFreeCrtcInfo _glfw.x11.randr.FreeCrtcInfo #define XRRFreeGamma _glfw.x11.randr.FreeGamma #define XRRFreeOutputInfo _glfw.x11.randr.FreeOutputInfo #define XRRFreeScreenResources _glfw.x11.randr.FreeScreenResources #define XRRGetCrtcGamma _glfw.x11.randr.GetCrtcGamma #define XRRGetCrtcGammaSize _glfw.x11.randr.GetCrtcGammaSize #define XRRGetCrtcInfo _glfw.x11.randr.GetCrtcInfo #define XRRGetOutputInfo _glfw.x11.randr.GetOutputInfo #define XRRGetOutputPrimary _glfw.x11.randr.GetOutputPrimary #define XRRGetScreenResourcesCurrent _glfw.x11.randr.GetScreenResourcesCurrent #define XRRQueryExtension _glfw.x11.randr.QueryExtension #define XRRQueryVersion _glfw.x11.randr.QueryVersion #define XRRSelectInput _glfw.x11.randr.SelectInput #define XRRSetCrtcConfig _glfw.x11.randr.SetCrtcConfig #define XRRSetCrtcGamma _glfw.x11.randr.SetCrtcGamma #define XRRUpdateConfiguration _glfw.x11.randr.UpdateConfiguration typedef XcursorImage* (* PFN_XcursorImageCreate)(int,int); typedef void (* PFN_XcursorImageDestroy)(XcursorImage*); typedef Cursor (* PFN_XcursorImageLoadCursor)(Display*,const XcursorImage*); #define XcursorImageCreate _glfw.x11.xcursor.ImageCreate #define XcursorImageDestroy _glfw.x11.xcursor.ImageDestroy #define XcursorImageLoadCursor _glfw.x11.xcursor.ImageLoadCursor typedef Bool (* PFN_XineramaIsActive)(Display*); typedef Bool (* PFN_XineramaQueryExtension)(Display*,int*,int*); typedef XineramaScreenInfo* (* PFN_XineramaQueryScreens)(Display*,int*); #define XineramaIsActive _glfw.x11.xinerama.IsActive #define XineramaQueryExtension _glfw.x11.xinerama.QueryExtension #define XineramaQueryScreens _glfw.x11.xinerama.QueryScreens typedef XID xcb_window_t; typedef XID xcb_visualid_t; typedef struct xcb_connection_t xcb_connection_t; typedef xcb_connection_t* (* PFN_XGetXCBConnection)(Display*); #define XGetXCBConnection _glfw.x11.x11xcb.GetXCBConnection typedef Bool (* PFN_XF86VidModeQueryExtension)(Display*,int*,int*); typedef Bool (* PFN_XF86VidModeGetGammaRamp)(Display*,int,int,unsigned short*,unsigned short*,unsigned short*); typedef Bool (* PFN_XF86VidModeSetGammaRamp)(Display*,int,int,unsigned short*,unsigned short*,unsigned short*); typedef Bool (* PFN_XF86VidModeGetGammaRampSize)(Display*,int,int*); #define XF86VidModeQueryExtension _glfw.x11.vidmode.QueryExtension #define XF86VidModeGetGammaRamp _glfw.x11.vidmode.GetGammaRamp #define XF86VidModeSetGammaRamp _glfw.x11.vidmode.SetGammaRamp #define XF86VidModeGetGammaRampSize _glfw.x11.vidmode.GetGammaRampSize typedef Status (* PFN_XIQueryVersion)(Display*,int*,int*); typedef int (* PFN_XISelectEvents)(Display*,Window,XIEventMask*,int); #define XIQueryVersion _glfw.x11.xi.QueryVersion #define XISelectEvents _glfw.x11.xi.SelectEvents typedef Bool (* PFN_XRenderQueryExtension)(Display*,int*,int*); typedef Status (* PFN_XRenderQueryVersion)(Display*dpy,int*,int*); typedef XRenderPictFormat* (* PFN_XRenderFindVisualFormat)(Display*,Visual const*); #define XRenderQueryExtension _glfw.x11.xrender.QueryExtension #define XRenderQueryVersion _glfw.x11.xrender.QueryVersion #define XRenderFindVisualFormat _glfw.x11.xrender.FindVisualFormat typedef VkFlags VkXlibSurfaceCreateFlagsKHR; typedef VkFlags VkXcbSurfaceCreateFlagsKHR; typedef struct VkXlibSurfaceCreateInfoKHR { VkStructureType sType; const void* pNext; VkXlibSurfaceCreateFlagsKHR flags; Display* dpy; Window window; } VkXlibSurfaceCreateInfoKHR; typedef struct VkXcbSurfaceCreateInfoKHR { VkStructureType sType; const void* pNext; VkXcbSurfaceCreateFlagsKHR flags; xcb_connection_t* connection; xcb_window_t window; } VkXcbSurfaceCreateInfoKHR; typedef VkResult (APIENTRY *PFN_vkCreateXlibSurfaceKHR)(VkInstance,const VkXlibSurfaceCreateInfoKHR*,const VkAllocationCallbacks*,VkSurfaceKHR*); typedef VkBool32 (APIENTRY *PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR)(VkPhysicalDevice,uint32_t,Display*,VisualID); typedef VkResult (APIENTRY *PFN_vkCreateXcbSurfaceKHR)(VkInstance,const VkXcbSurfaceCreateInfoKHR*,const VkAllocationCallbacks*,VkSurfaceKHR*); typedef VkBool32 (APIENTRY *PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR)(VkPhysicalDevice,uint32_t,xcb_connection_t*,xcb_visualid_t); #ifndef HEADER_GUARD_POSIX_THREAD_H #define HEADER_GUARD_POSIX_THREAD_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #define _GLFW_PLATFORM_TLS_STATE _GLFWtlsPOSIX posix #define _GLFW_PLATFORM_MUTEX_STATE _GLFWmutexPOSIX posix // POSIX-specific thread local storage data // typedef struct _GLFWtlsPOSIX { GLFWbool allocated; pthread_key_t key; } _GLFWtlsPOSIX; // POSIX-specific mutex data // typedef struct _GLFWmutexPOSIX { GLFWbool allocated; pthread_mutex_t handle; } _GLFWmutexPOSIX; #endif #ifndef HEADER_GUARD_POSIX_TIME_H #define HEADER_GUARD_POSIX_TIME_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_LIBRARY_TIMER_STATE _GLFWtimerPOSIX posix #include // POSIX-specific global timer data // typedef struct _GLFWtimerPOSIX { GLFWbool monotonic; uint64_t frequency; } _GLFWtimerPOSIX; void _glfwInitTimerPOSIX(void); #endif #ifndef HEADER_GUARD_XKB_UNICODE_H #define HEADER_GUARD_XKB_UNICODE_H //======================================================================== // GLFW 3.3.7 Linux - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define GLFW_INVALID_CODEPOINT 0xffffffffu uint32_t _glfwKeySym2Unicode(unsigned int keysym); #endif #ifndef HEADER_GUARD_GLX_CONTEXT_H #define HEADER_GUARD_GLX_CONTEXT_H //======================================================================== // GLFW 3.3.7 GLX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define GLX_VENDOR 1 #define GLX_RGBA_BIT 0x00000001 #define GLX_WINDOW_BIT 0x00000001 #define GLX_DRAWABLE_TYPE 0x8010 #define GLX_RENDER_TYPE 0x8011 #define GLX_RGBA_TYPE 0x8014 #define GLX_DOUBLEBUFFER 5 #define GLX_STEREO 6 #define GLX_AUX_BUFFERS 7 #define GLX_RED_SIZE 8 #define GLX_GREEN_SIZE 9 #define GLX_BLUE_SIZE 10 #define GLX_ALPHA_SIZE 11 #define GLX_DEPTH_SIZE 12 #define GLX_STENCIL_SIZE 13 #define GLX_ACCUM_RED_SIZE 14 #define GLX_ACCUM_GREEN_SIZE 15 #define GLX_ACCUM_BLUE_SIZE 16 #define GLX_ACCUM_ALPHA_SIZE 17 #define GLX_SAMPLES 0x186a1 #define GLX_VISUAL_ID 0x800b #define GLX_FRAMEBUFFER_SRGB_CAPABLE_ARB 0x20b2 #define GLX_CONTEXT_DEBUG_BIT_ARB 0x00000001 #define GLX_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB 0x00000002 #define GLX_CONTEXT_CORE_PROFILE_BIT_ARB 0x00000001 #define GLX_CONTEXT_PROFILE_MASK_ARB 0x9126 #define GLX_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB 0x00000002 #define GLX_CONTEXT_MAJOR_VERSION_ARB 0x2091 #define GLX_CONTEXT_MINOR_VERSION_ARB 0x2092 #define GLX_CONTEXT_FLAGS_ARB 0x2094 #define GLX_CONTEXT_ES2_PROFILE_BIT_EXT 0x00000004 #define GLX_CONTEXT_ROBUST_ACCESS_BIT_ARB 0x00000004 #define GLX_LOSE_CONTEXT_ON_RESET_ARB 0x8252 #define GLX_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB 0x8256 #define GLX_NO_RESET_NOTIFICATION_ARB 0x8261 #define GLX_CONTEXT_RELEASE_BEHAVIOR_ARB 0x2097 #define GLX_CONTEXT_RELEASE_BEHAVIOR_NONE_ARB 0 #define GLX_CONTEXT_RELEASE_BEHAVIOR_FLUSH_ARB 0x2098 #define GLX_CONTEXT_OPENGL_NO_ERROR_ARB 0x31b3 typedef XID GLXWindow; typedef XID GLXDrawable; typedef struct __GLXFBConfig* GLXFBConfig; typedef struct __GLXcontext* GLXContext; typedef void (*__GLXextproc)(void); typedef int (*PFNGLXGETFBCONFIGATTRIBPROC)(Display*,GLXFBConfig,int,int*); typedef const char* (*PFNGLXGETCLIENTSTRINGPROC)(Display*,int); typedef Bool (*PFNGLXQUERYEXTENSIONPROC)(Display*,int*,int*); typedef Bool (*PFNGLXQUERYVERSIONPROC)(Display*,int*,int*); typedef void (*PFNGLXDESTROYCONTEXTPROC)(Display*,GLXContext); typedef Bool (*PFNGLXMAKECURRENTPROC)(Display*,GLXDrawable,GLXContext); typedef void (*PFNGLXSWAPBUFFERSPROC)(Display*,GLXDrawable); typedef const char* (*PFNGLXQUERYEXTENSIONSSTRINGPROC)(Display*,int); typedef GLXFBConfig* (*PFNGLXGETFBCONFIGSPROC)(Display*,int,int*); typedef GLXContext (*PFNGLXCREATENEWCONTEXTPROC)(Display*,GLXFBConfig,int,GLXContext,Bool); typedef __GLXextproc (* PFNGLXGETPROCADDRESSPROC)(const GLubyte *procName); typedef void (*PFNGLXSWAPINTERVALEXTPROC)(Display*,GLXDrawable,int); typedef XVisualInfo* (*PFNGLXGETVISUALFROMFBCONFIGPROC)(Display*,GLXFBConfig); typedef GLXWindow (*PFNGLXCREATEWINDOWPROC)(Display*,GLXFBConfig,Window,const int*); typedef void (*PFNGLXDESTROYWINDOWPROC)(Display*,GLXWindow); typedef int (*PFNGLXSWAPINTERVALMESAPROC)(int); typedef int (*PFNGLXSWAPINTERVALSGIPROC)(int); typedef GLXContext (*PFNGLXCREATECONTEXTATTRIBSARBPROC)(Display*,GLXFBConfig,GLXContext,Bool,const int*); // libGL.so function pointer typedefs #define glXGetFBConfigs _glfw.glx.GetFBConfigs #define glXGetFBConfigAttrib _glfw.glx.GetFBConfigAttrib #define glXGetClientString _glfw.glx.GetClientString #define glXQueryExtension _glfw.glx.QueryExtension #define glXQueryVersion _glfw.glx.QueryVersion #define glXDestroyContext _glfw.glx.DestroyContext #define glXMakeCurrent _glfw.glx.MakeCurrent #define glXSwapBuffers _glfw.glx.SwapBuffers #define glXQueryExtensionsString _glfw.glx.QueryExtensionsString #define glXCreateNewContext _glfw.glx.CreateNewContext #define glXGetVisualFromFBConfig _glfw.glx.GetVisualFromFBConfig #define glXCreateWindow _glfw.glx.CreateWindow #define glXDestroyWindow _glfw.glx.DestroyWindow #define _GLFW_PLATFORM_CONTEXT_STATE _GLFWcontextGLX glx #define _GLFW_PLATFORM_LIBRARY_CONTEXT_STATE _GLFWlibraryGLX glx // GLX-specific per-context data // typedef struct _GLFWcontextGLX { GLXContext handle; GLXWindow window; } _GLFWcontextGLX; // GLX-specific global data // typedef struct _GLFWlibraryGLX { int major, minor; int eventBase; int errorBase; // dlopen handle for libGL.so.1 void* handle; // GLX 1.3 functions PFNGLXGETFBCONFIGSPROC GetFBConfigs; PFNGLXGETFBCONFIGATTRIBPROC GetFBConfigAttrib; PFNGLXGETCLIENTSTRINGPROC GetClientString; PFNGLXQUERYEXTENSIONPROC QueryExtension; PFNGLXQUERYVERSIONPROC QueryVersion; PFNGLXDESTROYCONTEXTPROC DestroyContext; PFNGLXMAKECURRENTPROC MakeCurrent; PFNGLXSWAPBUFFERSPROC SwapBuffers; PFNGLXQUERYEXTENSIONSSTRINGPROC QueryExtensionsString; PFNGLXCREATENEWCONTEXTPROC CreateNewContext; PFNGLXGETVISUALFROMFBCONFIGPROC GetVisualFromFBConfig; PFNGLXCREATEWINDOWPROC CreateWindow; PFNGLXDESTROYWINDOWPROC DestroyWindow; // GLX 1.4 and extension functions PFNGLXGETPROCADDRESSPROC GetProcAddress; PFNGLXGETPROCADDRESSPROC GetProcAddressARB; PFNGLXSWAPINTERVALSGIPROC SwapIntervalSGI; PFNGLXSWAPINTERVALEXTPROC SwapIntervalEXT; PFNGLXSWAPINTERVALMESAPROC SwapIntervalMESA; PFNGLXCREATECONTEXTATTRIBSARBPROC CreateContextAttribsARB; GLFWbool SGI_swap_control; GLFWbool EXT_swap_control; GLFWbool MESA_swap_control; GLFWbool ARB_multisample; GLFWbool ARB_framebuffer_sRGB; GLFWbool EXT_framebuffer_sRGB; GLFWbool ARB_create_context; GLFWbool ARB_create_context_profile; GLFWbool ARB_create_context_robustness; GLFWbool EXT_create_context_es2_profile; GLFWbool ARB_create_context_no_error; GLFWbool ARB_context_flush_control; } _GLFWlibraryGLX; GLFWbool _glfwInitGLX(void); void _glfwTerminateGLX(void); GLFWbool _glfwCreateContextGLX(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); void _glfwDestroyContextGLX(_GLFWwindow* window); GLFWbool _glfwChooseVisualGLX(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth); #endif #ifndef HEADER_GUARD_EGL_CONTEXT_H #define HEADER_GUARD_EGL_CONTEXT_H //======================================================================== // GLFW 3.3.7 EGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #if defined(_GLFW_USE_EGLPLATFORM_H) #include #elif defined(_GLFW_WIN32) #define EGLAPIENTRY __stdcall typedef HDC EGLNativeDisplayType; typedef HWND EGLNativeWindowType; #elif defined(_GLFW_COCOA) #define EGLAPIENTRY typedef void* EGLNativeDisplayType; typedef id EGLNativeWindowType; #elif defined(_GLFW_X11) #define EGLAPIENTRY typedef Display* EGLNativeDisplayType; typedef Window EGLNativeWindowType; #elif defined(_GLFW_WAYLAND) #define EGLAPIENTRY typedef struct wl_display* EGLNativeDisplayType; typedef struct wl_egl_window* EGLNativeWindowType; #else #error "No supported EGL platform selected" #endif #define EGL_SUCCESS 0x3000 #define EGL_NOT_INITIALIZED 0x3001 #define EGL_BAD_ACCESS 0x3002 #define EGL_BAD_ALLOC 0x3003 #define EGL_BAD_ATTRIBUTE 0x3004 #define EGL_BAD_CONFIG 0x3005 #define EGL_BAD_CONTEXT 0x3006 #define EGL_BAD_CURRENT_SURFACE 0x3007 #define EGL_BAD_DISPLAY 0x3008 #define EGL_BAD_MATCH 0x3009 #define EGL_BAD_NATIVE_PIXMAP 0x300a #define EGL_BAD_NATIVE_WINDOW 0x300b #define EGL_BAD_PARAMETER 0x300c #define EGL_BAD_SURFACE 0x300d #define EGL_CONTEXT_LOST 0x300e #define EGL_COLOR_BUFFER_TYPE 0x303f #define EGL_RGB_BUFFER 0x308e #define EGL_SURFACE_TYPE 0x3033 #define EGL_WINDOW_BIT 0x0004 #define EGL_RENDERABLE_TYPE 0x3040 #define EGL_OPENGL_ES_BIT 0x0001 #define EGL_OPENGL_ES2_BIT 0x0004 #define EGL_OPENGL_BIT 0x0008 #define EGL_ALPHA_SIZE 0x3021 #define EGL_BLUE_SIZE 0x3022 #define EGL_GREEN_SIZE 0x3023 #define EGL_RED_SIZE 0x3024 #define EGL_DEPTH_SIZE 0x3025 #define EGL_STENCIL_SIZE 0x3026 #define EGL_SAMPLES 0x3031 #define EGL_OPENGL_ES_API 0x30a0 #define EGL_OPENGL_API 0x30a2 #define EGL_NONE 0x3038 #define EGL_RENDER_BUFFER 0x3086 #define EGL_SINGLE_BUFFER 0x3085 #define EGL_EXTENSIONS 0x3055 #define EGL_CONTEXT_CLIENT_VERSION 0x3098 #define EGL_NATIVE_VISUAL_ID 0x302e #define EGL_NO_SURFACE ((EGLSurface) 0) #define EGL_NO_DISPLAY ((EGLDisplay) 0) #define EGL_NO_CONTEXT ((EGLContext) 0) #define EGL_DEFAULT_DISPLAY ((EGLNativeDisplayType) 0) #define EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR 0x31bd #define EGL_NO_RESET_NOTIFICATION_KHR 0x31be #define EGL_LOSE_CONTEXT_ON_RESET_KHR 0x31bf #define EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR 0x00000004 #define EGL_CONTEXT_MAJOR_VERSION_KHR 0x3098 #define EGL_CONTEXT_MINOR_VERSION_KHR 0x30fb #define EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR 0x30fd #define EGL_CONTEXT_FLAGS_KHR 0x30fc #define EGL_CONTEXT_OPENGL_NO_ERROR_KHR 0x31b3 #define EGL_GL_COLORSPACE_KHR 0x309d #define EGL_GL_COLORSPACE_SRGB_KHR 0x3089 #define EGL_CONTEXT_RELEASE_BEHAVIOR_KHR 0x2097 #define EGL_CONTEXT_RELEASE_BEHAVIOR_NONE_KHR 0 #define EGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_KHR 0x2098 #define EGL_PRESENT_OPAQUE_EXT 0x31df typedef int EGLint; typedef unsigned int EGLBoolean; typedef unsigned int EGLenum; typedef void* EGLConfig; typedef void* EGLContext; typedef void* EGLDisplay; typedef void* EGLSurface; // EGL function pointer typedefs typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigAttrib)(EGLDisplay,EGLConfig,EGLint,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigs)(EGLDisplay,EGLConfig*,EGLint,EGLint*); typedef EGLDisplay (EGLAPIENTRY * PFN_eglGetDisplay)(EGLNativeDisplayType); typedef EGLint (EGLAPIENTRY * PFN_eglGetError)(void); typedef EGLBoolean (EGLAPIENTRY * PFN_eglInitialize)(EGLDisplay,EGLint*,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglTerminate)(EGLDisplay); typedef EGLBoolean (EGLAPIENTRY * PFN_eglBindAPI)(EGLenum); typedef EGLContext (EGLAPIENTRY * PFN_eglCreateContext)(EGLDisplay,EGLConfig,EGLContext,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroySurface)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroyContext)(EGLDisplay,EGLContext); typedef EGLSurface (EGLAPIENTRY * PFN_eglCreateWindowSurface)(EGLDisplay,EGLConfig,EGLNativeWindowType,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglMakeCurrent)(EGLDisplay,EGLSurface,EGLSurface,EGLContext); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapBuffers)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapInterval)(EGLDisplay,EGLint); typedef const char* (EGLAPIENTRY * PFN_eglQueryString)(EGLDisplay,EGLint); typedef GLFWglproc (EGLAPIENTRY * PFN_eglGetProcAddress)(const char*); #define eglGetConfigAttrib _glfw.egl.GetConfigAttrib #define eglGetConfigs _glfw.egl.GetConfigs #define eglGetDisplay _glfw.egl.GetDisplay #define eglGetError _glfw.egl.GetError #define eglInitialize _glfw.egl.Initialize #define eglTerminate _glfw.egl.Terminate #define eglBindAPI _glfw.egl.BindAPI #define eglCreateContext _glfw.egl.CreateContext #define eglDestroySurface _glfw.egl.DestroySurface #define eglDestroyContext _glfw.egl.DestroyContext #define eglCreateWindowSurface _glfw.egl.CreateWindowSurface #define eglMakeCurrent _glfw.egl.MakeCurrent #define eglSwapBuffers _glfw.egl.SwapBuffers #define eglSwapInterval _glfw.egl.SwapInterval #define eglQueryString _glfw.egl.QueryString #define eglGetProcAddress _glfw.egl.GetProcAddress #define _GLFW_EGL_CONTEXT_STATE _GLFWcontextEGL egl #define _GLFW_EGL_LIBRARY_CONTEXT_STATE _GLFWlibraryEGL egl // EGL-specific per-context data // typedef struct _GLFWcontextEGL { EGLConfig config; EGLContext handle; EGLSurface surface; void* client; } _GLFWcontextEGL; // EGL-specific global data // typedef struct _GLFWlibraryEGL { EGLDisplay display; EGLint major, minor; GLFWbool prefix; GLFWbool KHR_create_context; GLFWbool KHR_create_context_no_error; GLFWbool KHR_gl_colorspace; GLFWbool KHR_get_all_proc_addresses; GLFWbool KHR_context_flush_control; GLFWbool EXT_present_opaque; void* handle; PFN_eglGetConfigAttrib GetConfigAttrib; PFN_eglGetConfigs GetConfigs; PFN_eglGetDisplay GetDisplay; PFN_eglGetError GetError; PFN_eglInitialize Initialize; PFN_eglTerminate Terminate; PFN_eglBindAPI BindAPI; PFN_eglCreateContext CreateContext; PFN_eglDestroySurface DestroySurface; PFN_eglDestroyContext DestroyContext; PFN_eglCreateWindowSurface CreateWindowSurface; PFN_eglMakeCurrent MakeCurrent; PFN_eglSwapBuffers SwapBuffers; PFN_eglSwapInterval SwapInterval; PFN_eglQueryString QueryString; PFN_eglGetProcAddress GetProcAddress; } _GLFWlibraryEGL; GLFWbool _glfwInitEGL(void); void _glfwTerminateEGL(void); GLFWbool _glfwCreateContextEGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #if defined(_GLFW_X11) GLFWbool _glfwChooseVisualEGL(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth); #endif /*_GLFW_X11*/ #endif #ifndef HEADER_GUARD_OSMESA_CONTEXT_H #define HEADER_GUARD_OSMESA_CONTEXT_H //======================================================================== // GLFW 3.3.7 OSMesa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define OSMESA_RGBA 0x1908 #define OSMESA_FORMAT 0x22 #define OSMESA_DEPTH_BITS 0x30 #define OSMESA_STENCIL_BITS 0x31 #define OSMESA_ACCUM_BITS 0x32 #define OSMESA_PROFILE 0x33 #define OSMESA_CORE_PROFILE 0x34 #define OSMESA_COMPAT_PROFILE 0x35 #define OSMESA_CONTEXT_MAJOR_VERSION 0x36 #define OSMESA_CONTEXT_MINOR_VERSION 0x37 typedef void* OSMesaContext; typedef void (*OSMESAproc)(void); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextExt)(GLenum,GLint,GLint,GLint,OSMesaContext); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextAttribs)(const int*,OSMesaContext); typedef void (GLAPIENTRY * PFN_OSMesaDestroyContext)(OSMesaContext); typedef int (GLAPIENTRY * PFN_OSMesaMakeCurrent)(OSMesaContext,void*,int,int,int); typedef int (GLAPIENTRY * PFN_OSMesaGetColorBuffer)(OSMesaContext,int*,int*,int*,void**); typedef int (GLAPIENTRY * PFN_OSMesaGetDepthBuffer)(OSMesaContext,int*,int*,int*,void**); typedef GLFWglproc (GLAPIENTRY * PFN_OSMesaGetProcAddress)(const char*); #define OSMesaCreateContextExt _glfw.osmesa.CreateContextExt #define OSMesaCreateContextAttribs _glfw.osmesa.CreateContextAttribs #define OSMesaDestroyContext _glfw.osmesa.DestroyContext #define OSMesaMakeCurrent _glfw.osmesa.MakeCurrent #define OSMesaGetColorBuffer _glfw.osmesa.GetColorBuffer #define OSMesaGetDepthBuffer _glfw.osmesa.GetDepthBuffer #define OSMesaGetProcAddress _glfw.osmesa.GetProcAddress #define _GLFW_OSMESA_CONTEXT_STATE _GLFWcontextOSMesa osmesa #define _GLFW_OSMESA_LIBRARY_CONTEXT_STATE _GLFWlibraryOSMesa osmesa // OSMesa-specific per-context data // typedef struct _GLFWcontextOSMesa { OSMesaContext handle; int width; int height; void* buffer; } _GLFWcontextOSMesa; // OSMesa-specific global data // typedef struct _GLFWlibraryOSMesa { void* handle; PFN_OSMesaCreateContextExt CreateContextExt; PFN_OSMesaCreateContextAttribs CreateContextAttribs; PFN_OSMesaDestroyContext DestroyContext; PFN_OSMesaMakeCurrent MakeCurrent; PFN_OSMesaGetColorBuffer GetColorBuffer; PFN_OSMesaGetDepthBuffer GetDepthBuffer; PFN_OSMesaGetProcAddress GetProcAddress; } _GLFWlibraryOSMesa; GLFWbool _glfwInitOSMesa(void); void _glfwTerminateOSMesa(void); GLFWbool _glfwCreateContextOSMesa(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #endif #if defined(__linux__) #ifndef HEADER_GUARD_LINUX_JOYSTICK_H #define HEADER_GUARD_LINUX_JOYSTICK_H //======================================================================== // GLFW 3.3.7 Linux - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #include #include #define _GLFW_PLATFORM_JOYSTICK_STATE _GLFWjoystickLinux linjs #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE _GLFWlibraryLinux linjs #define _GLFW_PLATFORM_MAPPING_NAME "Linux" #define GLFW_BUILD_LINUX_MAPPINGS // Linux-specific joystick data // typedef struct _GLFWjoystickLinux { int fd; char path[PATH_MAX]; int keyMap[KEY_CNT - BTN_MISC]; int absMap[ABS_CNT]; struct input_absinfo absInfo[ABS_CNT]; int hats[4][2]; } _GLFWjoystickLinux; // Linux-specific joystick API data // typedef struct _GLFWlibraryLinux { int inotify; int watch; regex_t regex; GLFWbool dropped; } _GLFWlibraryLinux; GLFWbool _glfwInitJoysticksLinux(void); void _glfwTerminateJoysticksLinux(void); void _glfwDetectJoystickConnectionLinux(void); #endif #else #ifndef HEADER_GUARD_NULL_JOYSTICK_H #define HEADER_GUARD_NULL_JOYSTICK_H //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_JOYSTICK_STATE struct { int dummyJoystick; } #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE struct { int dummyLibraryJoystick; } #define _GLFW_PLATFORM_MAPPING_NAME "" #endif #endif #define _glfw_dlopen(name) dlopen(name, RTLD_LAZY | RTLD_LOCAL) #define _glfw_dlclose(handle) dlclose(handle) #define _glfw_dlsym(handle, name) dlsym(handle, name) #define _GLFW_EGL_NATIVE_WINDOW ((EGLNativeWindowType) window->x11.handle) #define _GLFW_EGL_NATIVE_DISPLAY ((EGLNativeDisplayType) _glfw.x11.display) #define _GLFW_PLATFORM_WINDOW_STATE _GLFWwindowX11 x11 #define _GLFW_PLATFORM_LIBRARY_WINDOW_STATE _GLFWlibraryX11 x11 #define _GLFW_PLATFORM_MONITOR_STATE _GLFWmonitorX11 x11 #define _GLFW_PLATFORM_CURSOR_STATE _GLFWcursorX11 x11 // X11-specific per-window data // typedef struct _GLFWwindowX11 { Colormap colormap; Window handle; Window parent; XIC ic; GLFWbool overrideRedirect; GLFWbool iconified; GLFWbool maximized; // Whether the visual supports framebuffer transparency GLFWbool transparent; // Cached position and size used to filter out duplicate events int width, height; int xpos, ypos; // The last received cursor position, regardless of source int lastCursorPosX, lastCursorPosY; // The last position the cursor was warped to by GLFW int warpCursorPosX, warpCursorPosY; // The time of the last KeyPress event per keycode, for discarding // duplicate key events generated for some keys by ibus Time keyPressTimes[256]; } _GLFWwindowX11; // X11-specific global data // typedef struct _GLFWlibraryX11 { Display* display; int screen; Window root; // System content scale float contentScaleX, contentScaleY; // Helper window for IPC Window helperWindowHandle; // Invisible cursor for hidden cursor mode Cursor hiddenCursorHandle; // Context for mapping window XIDs to _GLFWwindow pointers XContext context; // XIM input method XIM im; // Most recent error code received by X error handler int errorCode; // Primary selection string (while the primary selection is owned) char* primarySelectionString; // Clipboard string (while the selection is owned) char* clipboardString; // Key name string char keynames[GLFW_KEY_LAST + 1][5]; // X11 keycode to GLFW key LUT short int keycodes[256]; // GLFW key to X11 keycode LUT short int scancodes[GLFW_KEY_LAST + 1]; // Where to place the cursor when re-enabled double restoreCursorPosX, restoreCursorPosY; // The window whose disabled cursor mode is active _GLFWwindow* disabledCursorWindow; int emptyEventPipe[2]; // Window manager atoms Atom NET_SUPPORTED; Atom NET_SUPPORTING_WM_CHECK; Atom WM_PROTOCOLS; Atom WM_STATE; Atom WM_DELETE_WINDOW; Atom NET_WM_NAME; Atom NET_WM_ICON_NAME; Atom NET_WM_ICON; Atom NET_WM_PID; Atom NET_WM_PING; Atom NET_WM_WINDOW_TYPE; Atom NET_WM_WINDOW_TYPE_NORMAL; Atom NET_WM_STATE; Atom NET_WM_STATE_ABOVE; Atom NET_WM_STATE_FULLSCREEN; Atom NET_WM_STATE_MAXIMIZED_VERT; Atom NET_WM_STATE_MAXIMIZED_HORZ; Atom NET_WM_STATE_DEMANDS_ATTENTION; Atom NET_WM_BYPASS_COMPOSITOR; Atom NET_WM_FULLSCREEN_MONITORS; Atom NET_WM_WINDOW_OPACITY; Atom NET_WM_CM_Sx; Atom NET_WORKAREA; Atom NET_CURRENT_DESKTOP; Atom NET_ACTIVE_WINDOW; Atom NET_FRAME_EXTENTS; Atom NET_REQUEST_FRAME_EXTENTS; Atom MOTIF_WM_HINTS; // Xdnd (drag and drop) atoms Atom XdndAware; Atom XdndEnter; Atom XdndPosition; Atom XdndStatus; Atom XdndActionCopy; Atom XdndDrop; Atom XdndFinished; Atom XdndSelection; Atom XdndTypeList; Atom text_uri_list; // Selection (clipboard) atoms Atom TARGETS; Atom MULTIPLE; Atom INCR; Atom CLIPBOARD; Atom PRIMARY; Atom CLIPBOARD_MANAGER; Atom SAVE_TARGETS; Atom NULL_; Atom UTF8_STRING; Atom COMPOUND_STRING; Atom ATOM_PAIR; Atom GLFW_SELECTION; struct { GLFWbool available; void* handle; int eventBase; int errorBase; int major; int minor; GLFWbool gammaBroken; GLFWbool monitorBroken; PFN_XRRAllocGamma AllocGamma; PFN_XRRFreeCrtcInfo FreeCrtcInfo; PFN_XRRFreeGamma FreeGamma; PFN_XRRFreeOutputInfo FreeOutputInfo; PFN_XRRFreeScreenResources FreeScreenResources; PFN_XRRGetCrtcGamma GetCrtcGamma; PFN_XRRGetCrtcGammaSize GetCrtcGammaSize; PFN_XRRGetCrtcInfo GetCrtcInfo; PFN_XRRGetOutputInfo GetOutputInfo; PFN_XRRGetOutputPrimary GetOutputPrimary; PFN_XRRGetScreenResourcesCurrent GetScreenResourcesCurrent; PFN_XRRQueryExtension QueryExtension; PFN_XRRQueryVersion QueryVersion; PFN_XRRSelectInput SelectInput; PFN_XRRSetCrtcConfig SetCrtcConfig; PFN_XRRSetCrtcGamma SetCrtcGamma; PFN_XRRUpdateConfiguration UpdateConfiguration; } randr; struct { GLFWbool available; GLFWbool detectable; int majorOpcode; int eventBase; int errorBase; int major; int minor; unsigned int group; } xkb; struct { int count; int timeout; int interval; int blanking; int exposure; } saver; struct { int version; Window source; Atom format; } xdnd; struct { void* handle; PFN_XcursorImageCreate ImageCreate; PFN_XcursorImageDestroy ImageDestroy; PFN_XcursorImageLoadCursor ImageLoadCursor; } xcursor; struct { GLFWbool available; void* handle; int major; int minor; PFN_XineramaIsActive IsActive; PFN_XineramaQueryExtension QueryExtension; PFN_XineramaQueryScreens QueryScreens; } xinerama; struct { void* handle; PFN_XGetXCBConnection GetXCBConnection; } x11xcb; struct { GLFWbool available; void* handle; int eventBase; int errorBase; PFN_XF86VidModeQueryExtension QueryExtension; PFN_XF86VidModeGetGammaRamp GetGammaRamp; PFN_XF86VidModeSetGammaRamp SetGammaRamp; PFN_XF86VidModeGetGammaRampSize GetGammaRampSize; } vidmode; struct { GLFWbool available; void* handle; int majorOpcode; int eventBase; int errorBase; int major; int minor; PFN_XIQueryVersion QueryVersion; PFN_XISelectEvents SelectEvents; } xi; struct { GLFWbool available; void* handle; int major; int minor; int eventBase; int errorBase; PFN_XRenderQueryExtension QueryExtension; PFN_XRenderQueryVersion QueryVersion; PFN_XRenderFindVisualFormat FindVisualFormat; } xrender; } _GLFWlibraryX11; // X11-specific per-monitor data // typedef struct _GLFWmonitorX11 { RROutput output; RRCrtc crtc; RRMode oldMode; // Index of corresponding Xinerama screen, // for EWMH full screen window placement int index; } _GLFWmonitorX11; // X11-specific per-cursor data // typedef struct _GLFWcursorX11 { Cursor handle; } _GLFWcursorX11; void _glfwPollMonitorsX11(void); void _glfwSetVideoModeX11(_GLFWmonitor* monitor, const GLFWvidmode* desired); void _glfwRestoreVideoModeX11(_GLFWmonitor* monitor); Cursor _glfwCreateCursorX11(const GLFWimage* image, int xhot, int yhot); unsigned long _glfwGetWindowPropertyX11(Window window, Atom property, Atom type, unsigned char** value); GLFWbool _glfwIsVisualTransparentX11(Visual* visual); void _glfwGrabErrorHandlerX11(void); void _glfwReleaseErrorHandlerX11(void); void _glfwInputErrorX11(int error, const char* message); void _glfwPushSelectionToManagerX11(void); #endif #elif defined(_GLFW_WAYLAND) #ifndef HEADER_GUARD_WL_PLATFORM_H #define HEADER_GUARD_WL_PLATFORM_H //======================================================================== // GLFW 3.3.7 Wayland - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #include #include #include typedef VkFlags VkWaylandSurfaceCreateFlagsKHR; typedef struct VkWaylandSurfaceCreateInfoKHR { VkStructureType sType; const void* pNext; VkWaylandSurfaceCreateFlagsKHR flags; struct wl_display* display; struct wl_surface* surface; } VkWaylandSurfaceCreateInfoKHR; typedef VkResult (APIENTRY *PFN_vkCreateWaylandSurfaceKHR)(VkInstance,const VkWaylandSurfaceCreateInfoKHR*,const VkAllocationCallbacks*,VkSurfaceKHR*); typedef VkBool32 (APIENTRY *PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR)(VkPhysicalDevice,uint32_t,struct wl_display*); #ifndef HEADER_GUARD_POSIX_THREAD_H #define HEADER_GUARD_POSIX_THREAD_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #define _GLFW_PLATFORM_TLS_STATE _GLFWtlsPOSIX posix #define _GLFW_PLATFORM_MUTEX_STATE _GLFWmutexPOSIX posix // POSIX-specific thread local storage data // typedef struct _GLFWtlsPOSIX { GLFWbool allocated; pthread_key_t key; } _GLFWtlsPOSIX; // POSIX-specific mutex data // typedef struct _GLFWmutexPOSIX { GLFWbool allocated; pthread_mutex_t handle; } _GLFWmutexPOSIX; #endif #ifndef HEADER_GUARD_POSIX_TIME_H #define HEADER_GUARD_POSIX_TIME_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_LIBRARY_TIMER_STATE _GLFWtimerPOSIX posix #include // POSIX-specific global timer data // typedef struct _GLFWtimerPOSIX { GLFWbool monotonic; uint64_t frequency; } _GLFWtimerPOSIX; void _glfwInitTimerPOSIX(void); #endif #ifdef __linux__ #ifndef HEADER_GUARD_LINUX_JOYSTICK_H #define HEADER_GUARD_LINUX_JOYSTICK_H //======================================================================== // GLFW 3.3.7 Linux - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #include #include #define _GLFW_PLATFORM_JOYSTICK_STATE _GLFWjoystickLinux linjs #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE _GLFWlibraryLinux linjs #define _GLFW_PLATFORM_MAPPING_NAME "Linux" #define GLFW_BUILD_LINUX_MAPPINGS // Linux-specific joystick data // typedef struct _GLFWjoystickLinux { int fd; char path[PATH_MAX]; int keyMap[KEY_CNT - BTN_MISC]; int absMap[ABS_CNT]; struct input_absinfo absInfo[ABS_CNT]; int hats[4][2]; } _GLFWjoystickLinux; // Linux-specific joystick API data // typedef struct _GLFWlibraryLinux { int inotify; int watch; regex_t regex; GLFWbool dropped; } _GLFWlibraryLinux; GLFWbool _glfwInitJoysticksLinux(void); void _glfwTerminateJoysticksLinux(void); void _glfwDetectJoystickConnectionLinux(void); #endif #else #ifndef HEADER_GUARD_NULL_JOYSTICK_H #define HEADER_GUARD_NULL_JOYSTICK_H //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_JOYSTICK_STATE struct { int dummyJoystick; } #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE struct { int dummyLibraryJoystick; } #define _GLFW_PLATFORM_MAPPING_NAME "" #endif #endif #ifndef HEADER_GUARD_XKB_UNICODE_H #define HEADER_GUARD_XKB_UNICODE_H //======================================================================== // GLFW 3.3.7 Linux - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define GLFW_INVALID_CODEPOINT 0xffffffffu uint32_t _glfwKeySym2Unicode(unsigned int keysym); #endif #ifndef HEADER_GUARD_EGL_CONTEXT_H #define HEADER_GUARD_EGL_CONTEXT_H //======================================================================== // GLFW 3.3.7 EGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #if defined(_GLFW_USE_EGLPLATFORM_H) #include #elif defined(_GLFW_WIN32) #define EGLAPIENTRY __stdcall typedef HDC EGLNativeDisplayType; typedef HWND EGLNativeWindowType; #elif defined(_GLFW_COCOA) #define EGLAPIENTRY typedef void* EGLNativeDisplayType; typedef id EGLNativeWindowType; #elif defined(_GLFW_X11) #define EGLAPIENTRY typedef Display* EGLNativeDisplayType; typedef Window EGLNativeWindowType; #elif defined(_GLFW_WAYLAND) #define EGLAPIENTRY typedef struct wl_display* EGLNativeDisplayType; typedef struct wl_egl_window* EGLNativeWindowType; #else #error "No supported EGL platform selected" #endif #define EGL_SUCCESS 0x3000 #define EGL_NOT_INITIALIZED 0x3001 #define EGL_BAD_ACCESS 0x3002 #define EGL_BAD_ALLOC 0x3003 #define EGL_BAD_ATTRIBUTE 0x3004 #define EGL_BAD_CONFIG 0x3005 #define EGL_BAD_CONTEXT 0x3006 #define EGL_BAD_CURRENT_SURFACE 0x3007 #define EGL_BAD_DISPLAY 0x3008 #define EGL_BAD_MATCH 0x3009 #define EGL_BAD_NATIVE_PIXMAP 0x300a #define EGL_BAD_NATIVE_WINDOW 0x300b #define EGL_BAD_PARAMETER 0x300c #define EGL_BAD_SURFACE 0x300d #define EGL_CONTEXT_LOST 0x300e #define EGL_COLOR_BUFFER_TYPE 0x303f #define EGL_RGB_BUFFER 0x308e #define EGL_SURFACE_TYPE 0x3033 #define EGL_WINDOW_BIT 0x0004 #define EGL_RENDERABLE_TYPE 0x3040 #define EGL_OPENGL_ES_BIT 0x0001 #define EGL_OPENGL_ES2_BIT 0x0004 #define EGL_OPENGL_BIT 0x0008 #define EGL_ALPHA_SIZE 0x3021 #define EGL_BLUE_SIZE 0x3022 #define EGL_GREEN_SIZE 0x3023 #define EGL_RED_SIZE 0x3024 #define EGL_DEPTH_SIZE 0x3025 #define EGL_STENCIL_SIZE 0x3026 #define EGL_SAMPLES 0x3031 #define EGL_OPENGL_ES_API 0x30a0 #define EGL_OPENGL_API 0x30a2 #define EGL_NONE 0x3038 #define EGL_RENDER_BUFFER 0x3086 #define EGL_SINGLE_BUFFER 0x3085 #define EGL_EXTENSIONS 0x3055 #define EGL_CONTEXT_CLIENT_VERSION 0x3098 #define EGL_NATIVE_VISUAL_ID 0x302e #define EGL_NO_SURFACE ((EGLSurface) 0) #define EGL_NO_DISPLAY ((EGLDisplay) 0) #define EGL_NO_CONTEXT ((EGLContext) 0) #define EGL_DEFAULT_DISPLAY ((EGLNativeDisplayType) 0) #define EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT_KHR 0x00000002 #define EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR 0x00000001 #define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR 0x31bd #define EGL_NO_RESET_NOTIFICATION_KHR 0x31be #define EGL_LOSE_CONTEXT_ON_RESET_KHR 0x31bf #define EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR 0x00000004 #define EGL_CONTEXT_MAJOR_VERSION_KHR 0x3098 #define EGL_CONTEXT_MINOR_VERSION_KHR 0x30fb #define EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR 0x30fd #define EGL_CONTEXT_FLAGS_KHR 0x30fc #define EGL_CONTEXT_OPENGL_NO_ERROR_KHR 0x31b3 #define EGL_GL_COLORSPACE_KHR 0x309d #define EGL_GL_COLORSPACE_SRGB_KHR 0x3089 #define EGL_CONTEXT_RELEASE_BEHAVIOR_KHR 0x2097 #define EGL_CONTEXT_RELEASE_BEHAVIOR_NONE_KHR 0 #define EGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_KHR 0x2098 #define EGL_PRESENT_OPAQUE_EXT 0x31df typedef int EGLint; typedef unsigned int EGLBoolean; typedef unsigned int EGLenum; typedef void* EGLConfig; typedef void* EGLContext; typedef void* EGLDisplay; typedef void* EGLSurface; // EGL function pointer typedefs typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigAttrib)(EGLDisplay,EGLConfig,EGLint,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglGetConfigs)(EGLDisplay,EGLConfig*,EGLint,EGLint*); typedef EGLDisplay (EGLAPIENTRY * PFN_eglGetDisplay)(EGLNativeDisplayType); typedef EGLint (EGLAPIENTRY * PFN_eglGetError)(void); typedef EGLBoolean (EGLAPIENTRY * PFN_eglInitialize)(EGLDisplay,EGLint*,EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglTerminate)(EGLDisplay); typedef EGLBoolean (EGLAPIENTRY * PFN_eglBindAPI)(EGLenum); typedef EGLContext (EGLAPIENTRY * PFN_eglCreateContext)(EGLDisplay,EGLConfig,EGLContext,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroySurface)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglDestroyContext)(EGLDisplay,EGLContext); typedef EGLSurface (EGLAPIENTRY * PFN_eglCreateWindowSurface)(EGLDisplay,EGLConfig,EGLNativeWindowType,const EGLint*); typedef EGLBoolean (EGLAPIENTRY * PFN_eglMakeCurrent)(EGLDisplay,EGLSurface,EGLSurface,EGLContext); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapBuffers)(EGLDisplay,EGLSurface); typedef EGLBoolean (EGLAPIENTRY * PFN_eglSwapInterval)(EGLDisplay,EGLint); typedef const char* (EGLAPIENTRY * PFN_eglQueryString)(EGLDisplay,EGLint); typedef GLFWglproc (EGLAPIENTRY * PFN_eglGetProcAddress)(const char*); #define eglGetConfigAttrib _glfw.egl.GetConfigAttrib #define eglGetConfigs _glfw.egl.GetConfigs #define eglGetDisplay _glfw.egl.GetDisplay #define eglGetError _glfw.egl.GetError #define eglInitialize _glfw.egl.Initialize #define eglTerminate _glfw.egl.Terminate #define eglBindAPI _glfw.egl.BindAPI #define eglCreateContext _glfw.egl.CreateContext #define eglDestroySurface _glfw.egl.DestroySurface #define eglDestroyContext _glfw.egl.DestroyContext #define eglCreateWindowSurface _glfw.egl.CreateWindowSurface #define eglMakeCurrent _glfw.egl.MakeCurrent #define eglSwapBuffers _glfw.egl.SwapBuffers #define eglSwapInterval _glfw.egl.SwapInterval #define eglQueryString _glfw.egl.QueryString #define eglGetProcAddress _glfw.egl.GetProcAddress #define _GLFW_EGL_CONTEXT_STATE _GLFWcontextEGL egl #define _GLFW_EGL_LIBRARY_CONTEXT_STATE _GLFWlibraryEGL egl // EGL-specific per-context data // typedef struct _GLFWcontextEGL { EGLConfig config; EGLContext handle; EGLSurface surface; void* client; } _GLFWcontextEGL; // EGL-specific global data // typedef struct _GLFWlibraryEGL { EGLDisplay display; EGLint major, minor; GLFWbool prefix; GLFWbool KHR_create_context; GLFWbool KHR_create_context_no_error; GLFWbool KHR_gl_colorspace; GLFWbool KHR_get_all_proc_addresses; GLFWbool KHR_context_flush_control; GLFWbool EXT_present_opaque; void* handle; PFN_eglGetConfigAttrib GetConfigAttrib; PFN_eglGetConfigs GetConfigs; PFN_eglGetDisplay GetDisplay; PFN_eglGetError GetError; PFN_eglInitialize Initialize; PFN_eglTerminate Terminate; PFN_eglBindAPI BindAPI; PFN_eglCreateContext CreateContext; PFN_eglDestroySurface DestroySurface; PFN_eglDestroyContext DestroyContext; PFN_eglCreateWindowSurface CreateWindowSurface; PFN_eglMakeCurrent MakeCurrent; PFN_eglSwapBuffers SwapBuffers; PFN_eglSwapInterval SwapInterval; PFN_eglQueryString QueryString; PFN_eglGetProcAddress GetProcAddress; } _GLFWlibraryEGL; GLFWbool _glfwInitEGL(void); void _glfwTerminateEGL(void); GLFWbool _glfwCreateContextEGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #if defined(_GLFW_X11) GLFWbool _glfwChooseVisualEGL(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth); #endif /*_GLFW_X11*/ #endif #ifndef HEADER_GUARD_OSMESA_CONTEXT_H #define HEADER_GUARD_OSMESA_CONTEXT_H //======================================================================== // GLFW 3.3.7 OSMesa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define OSMESA_RGBA 0x1908 #define OSMESA_FORMAT 0x22 #define OSMESA_DEPTH_BITS 0x30 #define OSMESA_STENCIL_BITS 0x31 #define OSMESA_ACCUM_BITS 0x32 #define OSMESA_PROFILE 0x33 #define OSMESA_CORE_PROFILE 0x34 #define OSMESA_COMPAT_PROFILE 0x35 #define OSMESA_CONTEXT_MAJOR_VERSION 0x36 #define OSMESA_CONTEXT_MINOR_VERSION 0x37 typedef void* OSMesaContext; typedef void (*OSMESAproc)(void); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextExt)(GLenum,GLint,GLint,GLint,OSMesaContext); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextAttribs)(const int*,OSMesaContext); typedef void (GLAPIENTRY * PFN_OSMesaDestroyContext)(OSMesaContext); typedef int (GLAPIENTRY * PFN_OSMesaMakeCurrent)(OSMesaContext,void*,int,int,int); typedef int (GLAPIENTRY * PFN_OSMesaGetColorBuffer)(OSMesaContext,int*,int*,int*,void**); typedef int (GLAPIENTRY * PFN_OSMesaGetDepthBuffer)(OSMesaContext,int*,int*,int*,void**); typedef GLFWglproc (GLAPIENTRY * PFN_OSMesaGetProcAddress)(const char*); #define OSMesaCreateContextExt _glfw.osmesa.CreateContextExt #define OSMesaCreateContextAttribs _glfw.osmesa.CreateContextAttribs #define OSMesaDestroyContext _glfw.osmesa.DestroyContext #define OSMesaMakeCurrent _glfw.osmesa.MakeCurrent #define OSMesaGetColorBuffer _glfw.osmesa.GetColorBuffer #define OSMesaGetDepthBuffer _glfw.osmesa.GetDepthBuffer #define OSMesaGetProcAddress _glfw.osmesa.GetProcAddress #define _GLFW_OSMESA_CONTEXT_STATE _GLFWcontextOSMesa osmesa #define _GLFW_OSMESA_LIBRARY_CONTEXT_STATE _GLFWlibraryOSMesa osmesa // OSMesa-specific per-context data // typedef struct _GLFWcontextOSMesa { OSMesaContext handle; int width; int height; void* buffer; } _GLFWcontextOSMesa; // OSMesa-specific global data // typedef struct _GLFWlibraryOSMesa { void* handle; PFN_OSMesaCreateContextExt CreateContextExt; PFN_OSMesaCreateContextAttribs CreateContextAttribs; PFN_OSMesaDestroyContext DestroyContext; PFN_OSMesaMakeCurrent MakeCurrent; PFN_OSMesaGetColorBuffer GetColorBuffer; PFN_OSMesaGetDepthBuffer GetDepthBuffer; PFN_OSMesaGetProcAddress GetProcAddress; } _GLFWlibraryOSMesa; GLFWbool _glfwInitOSMesa(void); void _glfwTerminateOSMesa(void); GLFWbool _glfwCreateContextOSMesa(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #endif #include "wayland-xdg-shell-client-protocol.h" #include "wayland-xdg-decoration-client-protocol.h" #include "wayland-viewporter-client-protocol.h" #include "wayland-relative-pointer-unstable-v1-client-protocol.h" #include "wayland-pointer-constraints-unstable-v1-client-protocol.h" #include "wayland-idle-inhibit-unstable-v1-client-protocol.h" #define _glfw_dlopen(name) dlopen(name, RTLD_LAZY | RTLD_LOCAL) #define _glfw_dlclose(handle) dlclose(handle) #define _glfw_dlsym(handle, name) dlsym(handle, name) #define _GLFW_EGL_NATIVE_WINDOW ((EGLNativeWindowType) window->wl.native) #define _GLFW_EGL_NATIVE_DISPLAY ((EGLNativeDisplayType) _glfw.wl.display) #define _GLFW_PLATFORM_WINDOW_STATE _GLFWwindowWayland wl #define _GLFW_PLATFORM_LIBRARY_WINDOW_STATE _GLFWlibraryWayland wl #define _GLFW_PLATFORM_MONITOR_STATE _GLFWmonitorWayland wl #define _GLFW_PLATFORM_CURSOR_STATE _GLFWcursorWayland wl #define _GLFW_PLATFORM_CONTEXT_STATE struct { int dummyContext; } #define _GLFW_PLATFORM_LIBRARY_CONTEXT_STATE struct { int dummyLibraryContext; } struct wl_cursor_image { uint32_t width; uint32_t height; uint32_t hotspot_x; uint32_t hotspot_y; uint32_t delay; }; struct wl_cursor { unsigned int image_count; struct wl_cursor_image** images; char* name; }; typedef struct wl_cursor_theme* (* PFN_wl_cursor_theme_load)(const char*, int, struct wl_shm*); typedef void (* PFN_wl_cursor_theme_destroy)(struct wl_cursor_theme*); typedef struct wl_cursor* (* PFN_wl_cursor_theme_get_cursor)(struct wl_cursor_theme*, const char*); typedef struct wl_buffer* (* PFN_wl_cursor_image_get_buffer)(struct wl_cursor_image*); #define wl_cursor_theme_load _glfw.wl.cursor.theme_load #define wl_cursor_theme_destroy _glfw.wl.cursor.theme_destroy #define wl_cursor_theme_get_cursor _glfw.wl.cursor.theme_get_cursor #define wl_cursor_image_get_buffer _glfw.wl.cursor.image_get_buffer typedef struct wl_egl_window* (* PFN_wl_egl_window_create)(struct wl_surface*, int, int); typedef void (* PFN_wl_egl_window_destroy)(struct wl_egl_window*); typedef void (* PFN_wl_egl_window_resize)(struct wl_egl_window*, int, int, int, int); #define wl_egl_window_create _glfw.wl.egl.window_create #define wl_egl_window_destroy _glfw.wl.egl.window_destroy #define wl_egl_window_resize _glfw.wl.egl.window_resize typedef struct xkb_context* (* PFN_xkb_context_new)(enum xkb_context_flags); typedef void (* PFN_xkb_context_unref)(struct xkb_context*); typedef struct xkb_keymap* (* PFN_xkb_keymap_new_from_string)(struct xkb_context*, const char*, enum xkb_keymap_format, enum xkb_keymap_compile_flags); typedef void (* PFN_xkb_keymap_unref)(struct xkb_keymap*); typedef xkb_mod_index_t (* PFN_xkb_keymap_mod_get_index)(struct xkb_keymap*, const char*); typedef int (* PFN_xkb_keymap_key_repeats)(struct xkb_keymap*, xkb_keycode_t); typedef int (* PFN_xkb_keymap_key_get_syms_by_level)(struct xkb_keymap*,xkb_keycode_t,xkb_layout_index_t,xkb_level_index_t,const xkb_keysym_t**); typedef struct xkb_state* (* PFN_xkb_state_new)(struct xkb_keymap*); typedef void (* PFN_xkb_state_unref)(struct xkb_state*); typedef int (* PFN_xkb_state_key_get_syms)(struct xkb_state*, xkb_keycode_t, const xkb_keysym_t**); typedef enum xkb_state_component (* PFN_xkb_state_update_mask)(struct xkb_state*, xkb_mod_mask_t, xkb_mod_mask_t, xkb_mod_mask_t, xkb_layout_index_t, xkb_layout_index_t, xkb_layout_index_t); typedef xkb_mod_mask_t (* PFN_xkb_state_serialize_mods)(struct xkb_state*, enum xkb_state_component); typedef xkb_layout_index_t (* PFN_xkb_state_key_get_layout)(struct xkb_state*,xkb_keycode_t); #define xkb_context_new _glfw.wl.xkb.context_new #define xkb_context_unref _glfw.wl.xkb.context_unref #define xkb_keymap_new_from_string _glfw.wl.xkb.keymap_new_from_string #define xkb_keymap_unref _glfw.wl.xkb.keymap_unref #define xkb_keymap_mod_get_index _glfw.wl.xkb.keymap_mod_get_index #define xkb_keymap_key_repeats _glfw.wl.xkb.keymap_key_repeats #define xkb_keymap_key_get_syms_by_level _glfw.wl.xkb.keymap_key_get_syms_by_level #define xkb_state_new _glfw.wl.xkb.state_new #define xkb_state_unref _glfw.wl.xkb.state_unref #define xkb_state_key_get_syms _glfw.wl.xkb.state_key_get_syms #define xkb_state_update_mask _glfw.wl.xkb.state_update_mask #define xkb_state_serialize_mods _glfw.wl.xkb.state_serialize_mods #define xkb_state_key_get_layout _glfw.wl.xkb.state_key_get_layout typedef struct xkb_compose_table* (* PFN_xkb_compose_table_new_from_locale)(struct xkb_context*, const char*, enum xkb_compose_compile_flags); typedef void (* PFN_xkb_compose_table_unref)(struct xkb_compose_table*); typedef struct xkb_compose_state* (* PFN_xkb_compose_state_new)(struct xkb_compose_table*, enum xkb_compose_state_flags); typedef void (* PFN_xkb_compose_state_unref)(struct xkb_compose_state*); typedef enum xkb_compose_feed_result (* PFN_xkb_compose_state_feed)(struct xkb_compose_state*, xkb_keysym_t); typedef enum xkb_compose_status (* PFN_xkb_compose_state_get_status)(struct xkb_compose_state*); typedef xkb_keysym_t (* PFN_xkb_compose_state_get_one_sym)(struct xkb_compose_state*); #define xkb_compose_table_new_from_locale _glfw.wl.xkb.compose_table_new_from_locale #define xkb_compose_table_unref _glfw.wl.xkb.compose_table_unref #define xkb_compose_state_new _glfw.wl.xkb.compose_state_new #define xkb_compose_state_unref _glfw.wl.xkb.compose_state_unref #define xkb_compose_state_feed _glfw.wl.xkb.compose_state_feed #define xkb_compose_state_get_status _glfw.wl.xkb.compose_state_get_status #define xkb_compose_state_get_one_sym _glfw.wl.xkb.compose_state_get_one_sym #define _GLFW_DECORATION_WIDTH 4 #define _GLFW_DECORATION_TOP 24 #define _GLFW_DECORATION_VERTICAL (_GLFW_DECORATION_TOP + _GLFW_DECORATION_WIDTH) #define _GLFW_DECORATION_HORIZONTAL (2 * _GLFW_DECORATION_WIDTH) typedef enum _GLFWdecorationSideWayland { mainWindow, topDecoration, leftDecoration, rightDecoration, bottomDecoration, } _GLFWdecorationSideWayland; typedef struct _GLFWdecorationWayland { struct wl_surface* surface; struct wl_subsurface* subsurface; struct wp_viewport* viewport; } _GLFWdecorationWayland; // Wayland-specific per-window data // typedef struct _GLFWwindowWayland { int width, height; GLFWbool visible; GLFWbool maximized; GLFWbool hovered; GLFWbool transparent; struct wl_surface* surface; struct wl_egl_window* native; struct wl_shell_surface* shellSurface; struct wl_callback* callback; struct { struct xdg_surface* surface; struct xdg_toplevel* toplevel; struct zxdg_toplevel_decoration_v1* decoration; } xdg; _GLFWcursor* currentCursor; double cursorPosX, cursorPosY; char* title; // We need to track the monitors the window spans on to calculate the // optimal scaling factor. int scale; _GLFWmonitor** monitors; int monitorsCount; int monitorsSize; struct { struct zwp_relative_pointer_v1* relativePointer; struct zwp_locked_pointer_v1* lockedPointer; } pointerLock; struct zwp_idle_inhibitor_v1* idleInhibitor; GLFWbool wasFullscreen; struct { GLFWbool serverSide; struct wl_buffer* buffer; _GLFWdecorationWayland top, left, right, bottom; int focus; } decorations; } _GLFWwindowWayland; // Wayland-specific global data // typedef struct _GLFWlibraryWayland { struct wl_display* display; struct wl_registry* registry; struct wl_compositor* compositor; struct wl_subcompositor* subcompositor; struct wl_shell* shell; struct wl_shm* shm; struct wl_seat* seat; struct wl_pointer* pointer; struct wl_keyboard* keyboard; struct wl_data_device_manager* dataDeviceManager; struct wl_data_device* dataDevice; struct wl_data_offer* dataOffer; struct wl_data_source* dataSource; struct xdg_wm_base* wmBase; struct zxdg_decoration_manager_v1* decorationManager; struct wp_viewporter* viewporter; struct zwp_relative_pointer_manager_v1* relativePointerManager; struct zwp_pointer_constraints_v1* pointerConstraints; struct zwp_idle_inhibit_manager_v1* idleInhibitManager; int compositorVersion; int seatVersion; struct wl_cursor_theme* cursorTheme; struct wl_cursor_theme* cursorThemeHiDPI; struct wl_surface* cursorSurface; const char* cursorPreviousName; int cursorTimerfd; uint32_t serial; uint32_t pointerEnterSerial; int32_t keyboardRepeatRate; int32_t keyboardRepeatDelay; int keyboardLastKey; int keyboardLastScancode; char* clipboardString; size_t clipboardSize; char* clipboardSendString; size_t clipboardSendSize; int timerfd; short int keycodes[256]; short int scancodes[GLFW_KEY_LAST + 1]; char keynames[GLFW_KEY_LAST + 1][5]; struct { void* handle; struct xkb_context* context; struct xkb_keymap* keymap; struct xkb_state* state; struct xkb_compose_state* composeState; xkb_mod_mask_t controlMask; xkb_mod_mask_t altMask; xkb_mod_mask_t shiftMask; xkb_mod_mask_t superMask; xkb_mod_mask_t capsLockMask; xkb_mod_mask_t numLockMask; unsigned int modifiers; PFN_xkb_context_new context_new; PFN_xkb_context_unref context_unref; PFN_xkb_keymap_new_from_string keymap_new_from_string; PFN_xkb_keymap_unref keymap_unref; PFN_xkb_keymap_mod_get_index keymap_mod_get_index; PFN_xkb_keymap_key_repeats keymap_key_repeats; PFN_xkb_keymap_key_get_syms_by_level keymap_key_get_syms_by_level; PFN_xkb_state_new state_new; PFN_xkb_state_unref state_unref; PFN_xkb_state_key_get_syms state_key_get_syms; PFN_xkb_state_update_mask state_update_mask; PFN_xkb_state_serialize_mods state_serialize_mods; PFN_xkb_state_key_get_layout state_key_get_layout; PFN_xkb_compose_table_new_from_locale compose_table_new_from_locale; PFN_xkb_compose_table_unref compose_table_unref; PFN_xkb_compose_state_new compose_state_new; PFN_xkb_compose_state_unref compose_state_unref; PFN_xkb_compose_state_feed compose_state_feed; PFN_xkb_compose_state_get_status compose_state_get_status; PFN_xkb_compose_state_get_one_sym compose_state_get_one_sym; } xkb; _GLFWwindow* pointerFocus; _GLFWwindow* keyboardFocus; struct { void* handle; PFN_wl_cursor_theme_load theme_load; PFN_wl_cursor_theme_destroy theme_destroy; PFN_wl_cursor_theme_get_cursor theme_get_cursor; PFN_wl_cursor_image_get_buffer image_get_buffer; } cursor; struct { void* handle; PFN_wl_egl_window_create window_create; PFN_wl_egl_window_destroy window_destroy; PFN_wl_egl_window_resize window_resize; } egl; } _GLFWlibraryWayland; // Wayland-specific per-monitor data // typedef struct _GLFWmonitorWayland { struct wl_output* output; uint32_t name; int currentMode; int x; int y; int scale; } _GLFWmonitorWayland; // Wayland-specific per-cursor data // typedef struct _GLFWcursorWayland { struct wl_cursor* cursor; struct wl_cursor* cursorHiDPI; struct wl_buffer* buffer; int width, height; int xhot, yhot; int currentImage; } _GLFWcursorWayland; void _glfwAddOutputWayland(uint32_t name, uint32_t version); GLFWbool _glfwInputTextWayland(_GLFWwindow* window, uint32_t scancode); #endif #elif defined(_GLFW_OSMESA) #ifndef HEADER_GUARD_NULL_PLATFORM_H #define HEADER_GUARD_NULL_PLATFORM_H //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #define _GLFW_PLATFORM_WINDOW_STATE _GLFWwindowNull null #define _GLFW_PLATFORM_CONTEXT_STATE struct { int dummyContext; } #define _GLFW_PLATFORM_MONITOR_STATE struct { int dummyMonitor; } #define _GLFW_PLATFORM_CURSOR_STATE struct { int dummyCursor; } #define _GLFW_PLATFORM_LIBRARY_WINDOW_STATE struct { int dummyLibraryWindow; } #define _GLFW_PLATFORM_LIBRARY_CONTEXT_STATE struct { int dummyLibraryContext; } #define _GLFW_EGL_CONTEXT_STATE struct { int dummyEGLContext; } #define _GLFW_EGL_LIBRARY_CONTEXT_STATE struct { int dummyEGLLibraryContext; } #ifndef HEADER_GUARD_OSMESA_CONTEXT_H #define HEADER_GUARD_OSMESA_CONTEXT_H //======================================================================== // GLFW 3.3.7 OSMesa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define OSMESA_RGBA 0x1908 #define OSMESA_FORMAT 0x22 #define OSMESA_DEPTH_BITS 0x30 #define OSMESA_STENCIL_BITS 0x31 #define OSMESA_ACCUM_BITS 0x32 #define OSMESA_PROFILE 0x33 #define OSMESA_CORE_PROFILE 0x34 #define OSMESA_COMPAT_PROFILE 0x35 #define OSMESA_CONTEXT_MAJOR_VERSION 0x36 #define OSMESA_CONTEXT_MINOR_VERSION 0x37 typedef void* OSMesaContext; typedef void (*OSMESAproc)(void); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextExt)(GLenum,GLint,GLint,GLint,OSMesaContext); typedef OSMesaContext (GLAPIENTRY * PFN_OSMesaCreateContextAttribs)(const int*,OSMesaContext); typedef void (GLAPIENTRY * PFN_OSMesaDestroyContext)(OSMesaContext); typedef int (GLAPIENTRY * PFN_OSMesaMakeCurrent)(OSMesaContext,void*,int,int,int); typedef int (GLAPIENTRY * PFN_OSMesaGetColorBuffer)(OSMesaContext,int*,int*,int*,void**); typedef int (GLAPIENTRY * PFN_OSMesaGetDepthBuffer)(OSMesaContext,int*,int*,int*,void**); typedef GLFWglproc (GLAPIENTRY * PFN_OSMesaGetProcAddress)(const char*); #define OSMesaCreateContextExt _glfw.osmesa.CreateContextExt #define OSMesaCreateContextAttribs _glfw.osmesa.CreateContextAttribs #define OSMesaDestroyContext _glfw.osmesa.DestroyContext #define OSMesaMakeCurrent _glfw.osmesa.MakeCurrent #define OSMesaGetColorBuffer _glfw.osmesa.GetColorBuffer #define OSMesaGetDepthBuffer _glfw.osmesa.GetDepthBuffer #define OSMesaGetProcAddress _glfw.osmesa.GetProcAddress #define _GLFW_OSMESA_CONTEXT_STATE _GLFWcontextOSMesa osmesa #define _GLFW_OSMESA_LIBRARY_CONTEXT_STATE _GLFWlibraryOSMesa osmesa // OSMesa-specific per-context data // typedef struct _GLFWcontextOSMesa { OSMesaContext handle; int width; int height; void* buffer; } _GLFWcontextOSMesa; // OSMesa-specific global data // typedef struct _GLFWlibraryOSMesa { void* handle; PFN_OSMesaCreateContextExt CreateContextExt; PFN_OSMesaCreateContextAttribs CreateContextAttribs; PFN_OSMesaDestroyContext DestroyContext; PFN_OSMesaMakeCurrent MakeCurrent; PFN_OSMesaGetColorBuffer GetColorBuffer; PFN_OSMesaGetDepthBuffer GetDepthBuffer; PFN_OSMesaGetProcAddress GetProcAddress; } _GLFWlibraryOSMesa; GLFWbool _glfwInitOSMesa(void); void _glfwTerminateOSMesa(void); GLFWbool _glfwCreateContextOSMesa(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); #endif #ifndef HEADER_GUARD_POSIX_TIME_H #define HEADER_GUARD_POSIX_TIME_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_LIBRARY_TIMER_STATE _GLFWtimerPOSIX posix #include // POSIX-specific global timer data // typedef struct _GLFWtimerPOSIX { GLFWbool monotonic; uint64_t frequency; } _GLFWtimerPOSIX; void _glfwInitTimerPOSIX(void); #endif #ifndef HEADER_GUARD_POSIX_THREAD_H #define HEADER_GUARD_POSIX_THREAD_H //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include #define _GLFW_PLATFORM_TLS_STATE _GLFWtlsPOSIX posix #define _GLFW_PLATFORM_MUTEX_STATE _GLFWmutexPOSIX posix // POSIX-specific thread local storage data // typedef struct _GLFWtlsPOSIX { GLFWbool allocated; pthread_key_t key; } _GLFWtlsPOSIX; // POSIX-specific mutex data // typedef struct _GLFWmutexPOSIX { GLFWbool allocated; pthread_mutex_t handle; } _GLFWmutexPOSIX; #endif #ifndef HEADER_GUARD_NULL_JOYSTICK_H #define HEADER_GUARD_NULL_JOYSTICK_H //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #define _GLFW_PLATFORM_JOYSTICK_STATE struct { int dummyJoystick; } #define _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE struct { int dummyLibraryJoystick; } #define _GLFW_PLATFORM_MAPPING_NAME "" #endif #if defined(_GLFW_WIN32) #define _glfw_dlopen(name) LoadLibraryA(name) #define _glfw_dlclose(handle) FreeLibrary((HMODULE) handle) #define _glfw_dlsym(handle, name) GetProcAddress((HMODULE) handle, name) #else #define _glfw_dlopen(name) dlopen(name, RTLD_LAZY | RTLD_LOCAL) #define _glfw_dlclose(handle) dlclose(handle) #define _glfw_dlsym(handle, name) dlsym(handle, name) #endif // Null-specific per-window data // typedef struct _GLFWwindowNull { int width; int height; } _GLFWwindowNull; #endif #else #error "No supported window creation API selected" #endif // Constructs a version number string from the public header macros #define _GLFW_CONCAT_VERSION(m, n, r) #m "." #n "." #r #define _GLFW_MAKE_VERSION(m, n, r) _GLFW_CONCAT_VERSION(m, n, r) #define _GLFW_VERSION_NUMBER _GLFW_MAKE_VERSION(GLFW_VERSION_MAJOR, \ GLFW_VERSION_MINOR, \ GLFW_VERSION_REVISION) // Checks for whether the library has been initialized #define _GLFW_REQUIRE_INIT() \ if (!_glfw.initialized) \ { \ _glfwInputError(GLFW_NOT_INITIALIZED, NULL); \ return; \ } #define _GLFW_REQUIRE_INIT_OR_RETURN(x) \ if (!_glfw.initialized) \ { \ _glfwInputError(GLFW_NOT_INITIALIZED, NULL); \ return x; \ } // Swaps the provided pointers #define _GLFW_SWAP_POINTERS(x, y) \ { \ void* t; \ t = x; \ x = y; \ y = t; \ } // Per-thread error structure // struct _GLFWerror { _GLFWerror* next; int code; char description[_GLFW_MESSAGE_SIZE]; }; // Initialization configuration // // Parameters relating to the initialization of the library // struct _GLFWinitconfig { GLFWbool hatButtons; struct { GLFWbool menubar; GLFWbool chdir; } ns; }; // Window configuration // // Parameters relating to the creation of the window but not directly related // to the framebuffer. This is used to pass window creation parameters from // shared code to the platform API. // struct _GLFWwndconfig { int width; int height; const char* title; GLFWbool resizable; GLFWbool visible; GLFWbool decorated; GLFWbool focused; GLFWbool autoIconify; GLFWbool floating; GLFWbool maximized; GLFWbool centerCursor; GLFWbool focusOnShow; GLFWbool scaleToMonitor; struct { GLFWbool retina; char frameName[256]; } ns; struct { char className[256]; char instanceName[256]; } x11; }; // Context configuration // // Parameters relating to the creation of the context but not directly related // to the framebuffer. This is used to pass context creation parameters from // shared code to the platform API. // struct _GLFWctxconfig { int client; int source; int major; int minor; GLFWbool forward; GLFWbool debug; GLFWbool noerror; int profile; int robustness; int release; _GLFWwindow* share; struct { GLFWbool offline; } nsgl; }; // Framebuffer configuration // // This describes buffers and their sizes. It also contains // a platform-specific ID used to map back to the backend API object. // // It is used to pass framebuffer parameters from shared code to the platform // API and also to enumerate and select available framebuffer configs. // struct _GLFWfbconfig { int redBits; int greenBits; int blueBits; int alphaBits; int depthBits; int stencilBits; int accumRedBits; int accumGreenBits; int accumBlueBits; int accumAlphaBits; int auxBuffers; GLFWbool stereo; int samples; GLFWbool sRGB; GLFWbool doublebuffer; GLFWbool transparent; uintptr_t handle; }; // Context structure // struct _GLFWcontext { int client; int source; int major, minor, revision; GLFWbool forward, debug, noerror; int profile; int robustness; int release; PFNGLGETSTRINGIPROC GetStringi; PFNGLGETINTEGERVPROC GetIntegerv; PFNGLGETSTRINGPROC GetString; _GLFWmakecontextcurrentfun makeCurrent; _GLFWswapbuffersfun swapBuffers; _GLFWswapintervalfun swapInterval; _GLFWextensionsupportedfun extensionSupported; _GLFWgetprocaddressfun getProcAddress; _GLFWdestroycontextfun destroy; // This is defined in the context API's context.h _GLFW_PLATFORM_CONTEXT_STATE; // This is defined in egl_context.h _GLFW_EGL_CONTEXT_STATE; // This is defined in osmesa_context.h _GLFW_OSMESA_CONTEXT_STATE; }; // Window and context structure // struct _GLFWwindow { struct _GLFWwindow* next; // Window settings and state GLFWbool resizable; GLFWbool decorated; GLFWbool autoIconify; GLFWbool floating; GLFWbool focusOnShow; GLFWbool shouldClose; void* userPointer; GLFWbool doublebuffer; GLFWvidmode videoMode; _GLFWmonitor* monitor; _GLFWcursor* cursor; int minwidth, minheight; int maxwidth, maxheight; int numer, denom; GLFWbool stickyKeys; GLFWbool stickyMouseButtons; GLFWbool lockKeyMods; int cursorMode; char mouseButtons[GLFW_MOUSE_BUTTON_LAST + 1]; char keys[GLFW_KEY_LAST + 1]; // Virtual cursor position when cursor is disabled double virtualCursorPosX, virtualCursorPosY; GLFWbool rawMouseMotion; _GLFWcontext context; struct { GLFWwindowposfun pos; GLFWwindowsizefun size; GLFWwindowclosefun close; GLFWwindowrefreshfun refresh; GLFWwindowfocusfun focus; GLFWwindowiconifyfun iconify; GLFWwindowmaximizefun maximize; GLFWframebuffersizefun fbsize; GLFWwindowcontentscalefun scale; GLFWmousebuttonfun mouseButton; GLFWcursorposfun cursorPos; GLFWcursorenterfun cursorEnter; GLFWscrollfun scroll; GLFWkeyfun key; GLFWcharfun character; GLFWcharmodsfun charmods; GLFWdropfun drop; } callbacks; // This is defined in the window API's platform.h _GLFW_PLATFORM_WINDOW_STATE; }; // Monitor structure // struct _GLFWmonitor { char name[128]; void* userPointer; // Physical dimensions in millimeters. int widthMM, heightMM; // The window whose video mode is current on this monitor _GLFWwindow* window; GLFWvidmode* modes; int modeCount; GLFWvidmode currentMode; GLFWgammaramp originalRamp; GLFWgammaramp currentRamp; // This is defined in the window API's platform.h _GLFW_PLATFORM_MONITOR_STATE; }; // Cursor structure // struct _GLFWcursor { _GLFWcursor* next; // This is defined in the window API's platform.h _GLFW_PLATFORM_CURSOR_STATE; }; // Gamepad mapping element structure // struct _GLFWmapelement { uint8_t type; uint8_t index; int8_t axisScale; int8_t axisOffset; }; // Gamepad mapping structure // struct _GLFWmapping { char name[128]; char guid[33]; _GLFWmapelement buttons[15]; _GLFWmapelement axes[6]; }; // Joystick structure // struct _GLFWjoystick { GLFWbool present; float* axes; int axisCount; unsigned char* buttons; int buttonCount; unsigned char* hats; int hatCount; char name[128]; void* userPointer; char guid[33]; _GLFWmapping* mapping; // This is defined in the joystick API's joystick.h _GLFW_PLATFORM_JOYSTICK_STATE; }; // Thread local storage structure // struct _GLFWtls { // This is defined in the platform's thread.h _GLFW_PLATFORM_TLS_STATE; }; // Mutex structure // struct _GLFWmutex { // This is defined in the platform's thread.h _GLFW_PLATFORM_MUTEX_STATE; }; // Library global data // struct _GLFWlibrary { GLFWbool initialized; struct { _GLFWinitconfig init; _GLFWfbconfig framebuffer; _GLFWwndconfig window; _GLFWctxconfig context; int refreshRate; } hints; _GLFWerror* errorListHead; _GLFWcursor* cursorListHead; _GLFWwindow* windowListHead; _GLFWmonitor** monitors; int monitorCount; _GLFWjoystick joysticks[GLFW_JOYSTICK_LAST + 1]; _GLFWmapping* mappings; int mappingCount; _GLFWtls errorSlot; _GLFWtls contextSlot; _GLFWmutex errorLock; struct { uint64_t offset; // This is defined in the platform's time.h _GLFW_PLATFORM_LIBRARY_TIMER_STATE; } timer; struct { GLFWbool available; void* handle; char* extensions[2]; #if !defined(_GLFW_VULKAN_STATIC) PFN_vkEnumerateInstanceExtensionProperties EnumerateInstanceExtensionProperties; PFN_vkGetInstanceProcAddr GetInstanceProcAddr; #endif GLFWbool KHR_surface; #if defined(_GLFW_WIN32) GLFWbool KHR_win32_surface; #elif defined(_GLFW_COCOA) GLFWbool MVK_macos_surface; GLFWbool EXT_metal_surface; #elif defined(_GLFW_X11) GLFWbool KHR_xlib_surface; GLFWbool KHR_xcb_surface; #elif defined(_GLFW_WAYLAND) GLFWbool KHR_wayland_surface; #endif } vk; struct { GLFWmonitorfun monitor; GLFWjoystickfun joystick; } callbacks; // This is defined in the window API's platform.h _GLFW_PLATFORM_LIBRARY_WINDOW_STATE; // This is defined in the context API's context.h _GLFW_PLATFORM_LIBRARY_CONTEXT_STATE; // This is defined in the platform's joystick.h _GLFW_PLATFORM_LIBRARY_JOYSTICK_STATE; // This is defined in egl_context.h _GLFW_EGL_LIBRARY_CONTEXT_STATE; // This is defined in osmesa_context.h _GLFW_OSMESA_LIBRARY_CONTEXT_STATE; }; // Global state shared between compilation units of GLFW // extern _GLFWlibrary _glfw; ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void); void _glfwPlatformTerminate(void); const char* _glfwPlatformGetVersionString(void); void _glfwPlatformGetCursorPos(_GLFWwindow* window, double* xpos, double* ypos); void _glfwPlatformSetCursorPos(_GLFWwindow* window, double xpos, double ypos); void _glfwPlatformSetCursorMode(_GLFWwindow* window, int mode); void _glfwPlatformSetRawMouseMotion(_GLFWwindow *window, GLFWbool enabled); GLFWbool _glfwPlatformRawMouseMotionSupported(void); int _glfwPlatformCreateCursor(_GLFWcursor* cursor, const GLFWimage* image, int xhot, int yhot); int _glfwPlatformCreateStandardCursor(_GLFWcursor* cursor, int shape); void _glfwPlatformDestroyCursor(_GLFWcursor* cursor); void _glfwPlatformSetCursor(_GLFWwindow* window, _GLFWcursor* cursor); const char* _glfwPlatformGetScancodeName(int scancode); int _glfwPlatformGetKeyScancode(int key); void _glfwPlatformFreeMonitor(_GLFWmonitor* monitor); void _glfwPlatformGetMonitorPos(_GLFWmonitor* monitor, int* xpos, int* ypos); void _glfwPlatformGetMonitorContentScale(_GLFWmonitor* monitor, float* xscale, float* yscale); void _glfwPlatformGetMonitorWorkarea(_GLFWmonitor* monitor, int* xpos, int* ypos, int *width, int *height); GLFWvidmode* _glfwPlatformGetVideoModes(_GLFWmonitor* monitor, int* count); void _glfwPlatformGetVideoMode(_GLFWmonitor* monitor, GLFWvidmode* mode); GLFWbool _glfwPlatformGetGammaRamp(_GLFWmonitor* monitor, GLFWgammaramp* ramp); void _glfwPlatformSetGammaRamp(_GLFWmonitor* monitor, const GLFWgammaramp* ramp); void _glfwPlatformSetClipboardString(const char* string); const char* _glfwPlatformGetClipboardString(void); int _glfwPlatformPollJoystick(_GLFWjoystick* js, int mode); void _glfwPlatformUpdateGamepadGUID(char* guid); uint64_t _glfwPlatformGetTimerValue(void); uint64_t _glfwPlatformGetTimerFrequency(void); int _glfwPlatformCreateWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig); void _glfwPlatformDestroyWindow(_GLFWwindow* window); void _glfwPlatformSetWindowTitle(_GLFWwindow* window, const char* title); void _glfwPlatformSetWindowIcon(_GLFWwindow* window, int count, const GLFWimage* images); void _glfwPlatformGetWindowPos(_GLFWwindow* window, int* xpos, int* ypos); void _glfwPlatformSetWindowPos(_GLFWwindow* window, int xpos, int ypos); void _glfwPlatformGetWindowSize(_GLFWwindow* window, int* width, int* height); void _glfwPlatformSetWindowSize(_GLFWwindow* window, int width, int height); void _glfwPlatformSetWindowSizeLimits(_GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight); void _glfwPlatformSetWindowAspectRatio(_GLFWwindow* window, int numer, int denom); void _glfwPlatformGetFramebufferSize(_GLFWwindow* window, int* width, int* height); void _glfwPlatformGetWindowFrameSize(_GLFWwindow* window, int* left, int* top, int* right, int* bottom); void _glfwPlatformGetWindowContentScale(_GLFWwindow* window, float* xscale, float* yscale); void _glfwPlatformIconifyWindow(_GLFWwindow* window); void _glfwPlatformRestoreWindow(_GLFWwindow* window); void _glfwPlatformMaximizeWindow(_GLFWwindow* window); void _glfwPlatformShowWindow(_GLFWwindow* window); void _glfwPlatformHideWindow(_GLFWwindow* window); void _glfwPlatformRequestWindowAttention(_GLFWwindow* window); void _glfwPlatformFocusWindow(_GLFWwindow* window); void _glfwPlatformSetWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate); int _glfwPlatformWindowFocused(_GLFWwindow* window); int _glfwPlatformWindowIconified(_GLFWwindow* window); int _glfwPlatformWindowVisible(_GLFWwindow* window); int _glfwPlatformWindowMaximized(_GLFWwindow* window); int _glfwPlatformWindowHovered(_GLFWwindow* window); int _glfwPlatformFramebufferTransparent(_GLFWwindow* window); float _glfwPlatformGetWindowOpacity(_GLFWwindow* window); void _glfwPlatformSetWindowResizable(_GLFWwindow* window, GLFWbool enabled); void _glfwPlatformSetWindowDecorated(_GLFWwindow* window, GLFWbool enabled); void _glfwPlatformSetWindowFloating(_GLFWwindow* window, GLFWbool enabled); void _glfwPlatformSetWindowOpacity(_GLFWwindow* window, float opacity); void _glfwPlatformPollEvents(void); void _glfwPlatformWaitEvents(void); void _glfwPlatformWaitEventsTimeout(double timeout); void _glfwPlatformPostEmptyEvent(void); void _glfwPlatformGetRequiredInstanceExtensions(char** extensions); int _glfwPlatformGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily); VkResult _glfwPlatformCreateWindowSurface(VkInstance instance, _GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface); GLFWbool _glfwPlatformCreateTls(_GLFWtls* tls); void _glfwPlatformDestroyTls(_GLFWtls* tls); void* _glfwPlatformGetTls(_GLFWtls* tls); void _glfwPlatformSetTls(_GLFWtls* tls, void* value); GLFWbool _glfwPlatformCreateMutex(_GLFWmutex* mutex); void _glfwPlatformDestroyMutex(_GLFWmutex* mutex); void _glfwPlatformLockMutex(_GLFWmutex* mutex); void _glfwPlatformUnlockMutex(_GLFWmutex* mutex); ////////////////////////////////////////////////////////////////////////// ////// GLFW event API ////// ////////////////////////////////////////////////////////////////////////// void _glfwInputWindowFocus(_GLFWwindow* window, GLFWbool focused); void _glfwInputWindowPos(_GLFWwindow* window, int xpos, int ypos); void _glfwInputWindowSize(_GLFWwindow* window, int width, int height); void _glfwInputFramebufferSize(_GLFWwindow* window, int width, int height); void _glfwInputWindowContentScale(_GLFWwindow* window, float xscale, float yscale); void _glfwInputWindowIconify(_GLFWwindow* window, GLFWbool iconified); void _glfwInputWindowMaximize(_GLFWwindow* window, GLFWbool maximized); void _glfwInputWindowDamage(_GLFWwindow* window); void _glfwInputWindowCloseRequest(_GLFWwindow* window); void _glfwInputWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor); void _glfwInputKey(_GLFWwindow* window, int key, int scancode, int action, int mods); void _glfwInputChar(_GLFWwindow* window, uint32_t codepoint, int mods, GLFWbool plain); void _glfwInputScroll(_GLFWwindow* window, double xoffset, double yoffset); void _glfwInputMouseClick(_GLFWwindow* window, int button, int action, int mods); void _glfwInputCursorPos(_GLFWwindow* window, double xpos, double ypos); void _glfwInputCursorEnter(_GLFWwindow* window, GLFWbool entered); void _glfwInputDrop(_GLFWwindow* window, int count, const char** names); void _glfwInputJoystick(_GLFWjoystick* js, int event); void _glfwInputJoystickAxis(_GLFWjoystick* js, int axis, float value); void _glfwInputJoystickButton(_GLFWjoystick* js, int button, char value); void _glfwInputJoystickHat(_GLFWjoystick* js, int hat, char value); void _glfwInputMonitor(_GLFWmonitor* monitor, int action, int placement); void _glfwInputMonitorWindow(_GLFWmonitor* monitor, _GLFWwindow* window); #if defined(__GNUC__) void _glfwInputError(int code, const char* format, ...) __attribute__((format(printf, 2, 3))); #else void _glfwInputError(int code, const char* format, ...); #endif ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// GLFWbool _glfwStringInExtensionString(const char* string, const char* extensions); const _GLFWfbconfig* _glfwChooseFBConfig(const _GLFWfbconfig* desired, const _GLFWfbconfig* alternatives, unsigned int count); GLFWbool _glfwRefreshContextAttribs(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig); GLFWbool _glfwIsValidContextConfig(const _GLFWctxconfig* ctxconfig); const GLFWvidmode* _glfwChooseVideoMode(_GLFWmonitor* monitor, const GLFWvidmode* desired); int _glfwCompareVideoModes(const GLFWvidmode* first, const GLFWvidmode* second); _GLFWmonitor* _glfwAllocMonitor(const char* name, int widthMM, int heightMM); void _glfwFreeMonitor(_GLFWmonitor* monitor); void _glfwAllocGammaArrays(GLFWgammaramp* ramp, unsigned int size); void _glfwFreeGammaArrays(GLFWgammaramp* ramp); void _glfwSplitBPP(int bpp, int* red, int* green, int* blue); void _glfwInitGamepadMappings(void); _GLFWjoystick* _glfwAllocJoystick(const char* name, const char* guid, int axisCount, int buttonCount, int hatCount); void _glfwFreeJoystick(_GLFWjoystick* js); void _glfwCenterCursorInContentArea(_GLFWwindow* window); GLFWbool _glfwInitVulkan(int mode); void _glfwTerminateVulkan(void); const char* _glfwGetVulkanResultString(VkResult result); size_t _glfwEncodeUTF8(char* s, uint32_t codepoint); char* _glfw_strdup(const char* source); float _glfw_fminf(float a, float b); float _glfw_fmaxf(float a, float b); #endif #ifndef HEADER_GUARD_OSMESA_CONTEXT_C #define HEADER_GUARD_OSMESA_CONTEXT_C //======================================================================== // GLFW 3.3.7 OSMesa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include static void makeContextCurrentOSMesa(_GLFWwindow* window) { if (window) { int width, height; _glfwPlatformGetFramebufferSize(window, &width, &height); // Check to see if we need to allocate a new buffer if ((window->context.osmesa.buffer == NULL) || (width != window->context.osmesa.width) || (height != window->context.osmesa.height)) { free(window->context.osmesa.buffer); // Allocate the new buffer (width * height * 8-bit RGBA) window->context.osmesa.buffer = calloc(4, (size_t) width * height); window->context.osmesa.width = width; window->context.osmesa.height = height; } if (!OSMesaMakeCurrent(window->context.osmesa.handle, window->context.osmesa.buffer, GL_UNSIGNED_BYTE, width, height)) { _glfwInputError(GLFW_PLATFORM_ERROR, "OSMesa: Failed to make context current"); return; } } _glfwPlatformSetTls(&_glfw.contextSlot, window); } static GLFWglproc getProcAddressOSMesa(const char* procname) { return (GLFWglproc) OSMesaGetProcAddress(procname); } static void destroyContextOSMesa(_GLFWwindow* window) { if (window->context.osmesa.handle) { OSMesaDestroyContext(window->context.osmesa.handle); window->context.osmesa.handle = NULL; } if (window->context.osmesa.buffer) { free(window->context.osmesa.buffer); window->context.osmesa.width = 0; window->context.osmesa.height = 0; } } static void swapBuffersOSMesa(_GLFWwindow* window) { // No double buffering on OSMesa } static void swapIntervalOSMesa(int interval) { // No swap interval on OSMesa } static int extensionSupportedOSMesa(const char* extension) { // OSMesa does not have extensions return GLFW_FALSE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// GLFWbool _glfwInitOSMesa(void) { int i; const char* sonames[] = { #if defined(_GLFW_OSMESA_LIBRARY) _GLFW_OSMESA_LIBRARY, #elif defined(_WIN32) "libOSMesa.dll", "OSMesa.dll", #elif defined(__APPLE__) "libOSMesa.8.dylib", #elif defined(__CYGWIN__) "libOSMesa-8.so", #elif defined(__OpenBSD__) || defined(__NetBSD__) "libOSMesa.so", #else "libOSMesa.so.8", "libOSMesa.so.6", #endif NULL }; if (_glfw.osmesa.handle) return GLFW_TRUE; for (i = 0; sonames[i]; i++) { _glfw.osmesa.handle = _glfw_dlopen(sonames[i]); if (_glfw.osmesa.handle) break; } if (!_glfw.osmesa.handle) { _glfwInputError(GLFW_API_UNAVAILABLE, "OSMesa: Library not found"); return GLFW_FALSE; } _glfw.osmesa.CreateContextExt = (PFN_OSMesaCreateContextExt) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaCreateContextExt"); _glfw.osmesa.CreateContextAttribs = (PFN_OSMesaCreateContextAttribs) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaCreateContextAttribs"); _glfw.osmesa.DestroyContext = (PFN_OSMesaDestroyContext) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaDestroyContext"); _glfw.osmesa.MakeCurrent = (PFN_OSMesaMakeCurrent) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaMakeCurrent"); _glfw.osmesa.GetColorBuffer = (PFN_OSMesaGetColorBuffer) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaGetColorBuffer"); _glfw.osmesa.GetDepthBuffer = (PFN_OSMesaGetDepthBuffer) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaGetDepthBuffer"); _glfw.osmesa.GetProcAddress = (PFN_OSMesaGetProcAddress) _glfw_dlsym(_glfw.osmesa.handle, "OSMesaGetProcAddress"); if (!_glfw.osmesa.CreateContextExt || !_glfw.osmesa.DestroyContext || !_glfw.osmesa.MakeCurrent || !_glfw.osmesa.GetColorBuffer || !_glfw.osmesa.GetDepthBuffer || !_glfw.osmesa.GetProcAddress) { _glfwInputError(GLFW_PLATFORM_ERROR, "OSMesa: Failed to load required entry points"); _glfwTerminateOSMesa(); return GLFW_FALSE; } return GLFW_TRUE; } void _glfwTerminateOSMesa(void) { if (_glfw.osmesa.handle) { _glfw_dlclose(_glfw.osmesa.handle); _glfw.osmesa.handle = NULL; } } #define setAttrib(a, v) \ { \ assert(((size_t) index + 1) < sizeof(attribs) / sizeof(attribs[0])); \ attribs[index++] = a; \ attribs[index++] = v; \ } GLFWbool _glfwCreateContextOSMesa(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { OSMesaContext share = NULL; const int accumBits = fbconfig->accumRedBits + fbconfig->accumGreenBits + fbconfig->accumBlueBits + fbconfig->accumAlphaBits; if (ctxconfig->client == GLFW_OPENGL_ES_API) { _glfwInputError(GLFW_API_UNAVAILABLE, "OSMesa: OpenGL ES is not available on OSMesa"); return GLFW_FALSE; } if (ctxconfig->share) share = ctxconfig->share->context.osmesa.handle; if (OSMesaCreateContextAttribs) { int index = 0, attribs[40]; setAttrib(OSMESA_FORMAT, OSMESA_RGBA); setAttrib(OSMESA_DEPTH_BITS, fbconfig->depthBits); setAttrib(OSMESA_STENCIL_BITS, fbconfig->stencilBits); setAttrib(OSMESA_ACCUM_BITS, accumBits); if (ctxconfig->profile == GLFW_OPENGL_CORE_PROFILE) { setAttrib(OSMESA_PROFILE, OSMESA_CORE_PROFILE); } else if (ctxconfig->profile == GLFW_OPENGL_COMPAT_PROFILE) { setAttrib(OSMESA_PROFILE, OSMESA_COMPAT_PROFILE); } if (ctxconfig->major != 1 || ctxconfig->minor != 0) { setAttrib(OSMESA_CONTEXT_MAJOR_VERSION, ctxconfig->major); setAttrib(OSMESA_CONTEXT_MINOR_VERSION, ctxconfig->minor); } if (ctxconfig->forward) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "OSMesa: Forward-compatible contexts not supported"); return GLFW_FALSE; } setAttrib(0, 0); window->context.osmesa.handle = OSMesaCreateContextAttribs(attribs, share); } else { if (ctxconfig->profile) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "OSMesa: OpenGL profiles unavailable"); return GLFW_FALSE; } window->context.osmesa.handle = OSMesaCreateContextExt(OSMESA_RGBA, fbconfig->depthBits, fbconfig->stencilBits, accumBits, share); } if (window->context.osmesa.handle == NULL) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "OSMesa: Failed to create context"); return GLFW_FALSE; } window->context.makeCurrent = makeContextCurrentOSMesa; window->context.swapBuffers = swapBuffersOSMesa; window->context.swapInterval = swapIntervalOSMesa; window->context.extensionSupported = extensionSupportedOSMesa; window->context.getProcAddress = getProcAddressOSMesa; window->context.destroy = destroyContextOSMesa; return GLFW_TRUE; } #undef setAttrib ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI int glfwGetOSMesaColorBuffer(GLFWwindow* handle, int* width, int* height, int* format, void** buffer) { void* mesaBuffer; GLint mesaWidth, mesaHeight, mesaFormat; _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); if (window->context.source != GLFW_OSMESA_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return GLFW_FALSE; } if (!OSMesaGetColorBuffer(window->context.osmesa.handle, &mesaWidth, &mesaHeight, &mesaFormat, &mesaBuffer)) { _glfwInputError(GLFW_PLATFORM_ERROR, "OSMesa: Failed to retrieve color buffer"); return GLFW_FALSE; } if (width) *width = mesaWidth; if (height) *height = mesaHeight; if (format) *format = mesaFormat; if (buffer) *buffer = mesaBuffer; return GLFW_TRUE; } GLFWAPI int glfwGetOSMesaDepthBuffer(GLFWwindow* handle, int* width, int* height, int* bytesPerValue, void** buffer) { void* mesaBuffer; GLint mesaWidth, mesaHeight, mesaBytes; _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); if (window->context.source != GLFW_OSMESA_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return GLFW_FALSE; } if (!OSMesaGetDepthBuffer(window->context.osmesa.handle, &mesaWidth, &mesaHeight, &mesaBytes, &mesaBuffer)) { _glfwInputError(GLFW_PLATFORM_ERROR, "OSMesa: Failed to retrieve depth buffer"); return GLFW_FALSE; } if (width) *width = mesaWidth; if (height) *height = mesaHeight; if (bytesPerValue) *bytesPerValue = mesaBytes; if (buffer) *buffer = mesaBuffer; return GLFW_TRUE; } GLFWAPI OSMesaContext glfwGetOSMesaContext(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (window->context.source != GLFW_OSMESA_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return NULL; } return window->context.osmesa.handle; } #endif #ifndef HEADER_GUARD_EGL_CONTEXT_C #define HEADER_GUARD_EGL_CONTEXT_C //======================================================================== // GLFW 3.3.7 EGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include // Return a description of the specified EGL error // static const char* getEGLErrorString(EGLint error) { switch (error) { case EGL_SUCCESS: return "Success"; case EGL_NOT_INITIALIZED: return "EGL is not or could not be initialized"; case EGL_BAD_ACCESS: return "EGL cannot access a requested resource"; case EGL_BAD_ALLOC: return "EGL failed to allocate resources for the requested operation"; case EGL_BAD_ATTRIBUTE: return "An unrecognized attribute or attribute value was passed in the attribute list"; case EGL_BAD_CONTEXT: return "An EGLContext argument does not name a valid EGL rendering context"; case EGL_BAD_CONFIG: return "An EGLConfig argument does not name a valid EGL frame buffer configuration"; case EGL_BAD_CURRENT_SURFACE: return "The current surface of the calling thread is a window, pixel buffer or pixmap that is no longer valid"; case EGL_BAD_DISPLAY: return "An EGLDisplay argument does not name a valid EGL display connection"; case EGL_BAD_SURFACE: return "An EGLSurface argument does not name a valid surface configured for GL rendering"; case EGL_BAD_MATCH: return "Arguments are inconsistent"; case EGL_BAD_PARAMETER: return "One or more argument values are invalid"; case EGL_BAD_NATIVE_PIXMAP: return "A NativePixmapType argument does not refer to a valid native pixmap"; case EGL_BAD_NATIVE_WINDOW: return "A NativeWindowType argument does not refer to a valid native window"; case EGL_CONTEXT_LOST: return "The application must destroy all contexts and reinitialise"; default: return "ERROR: UNKNOWN EGL ERROR"; } } // Returns the specified attribute of the specified EGLConfig // static int getEGLConfigAttrib(EGLConfig config, int attrib) { int value; eglGetConfigAttrib(_glfw.egl.display, config, attrib, &value); return value; } // Return the EGLConfig most closely matching the specified hints // static GLFWbool chooseEGLConfig(const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* desired, EGLConfig* result) { EGLConfig* nativeConfigs; _GLFWfbconfig* usableConfigs; const _GLFWfbconfig* closest; int i, nativeCount, usableCount; eglGetConfigs(_glfw.egl.display, NULL, 0, &nativeCount); if (!nativeCount) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: No EGLConfigs returned"); return GLFW_FALSE; } nativeConfigs = calloc(nativeCount, sizeof(EGLConfig)); eglGetConfigs(_glfw.egl.display, nativeConfigs, nativeCount, &nativeCount); usableConfigs = calloc(nativeCount, sizeof(_GLFWfbconfig)); usableCount = 0; for (i = 0; i < nativeCount; i++) { const EGLConfig n = nativeConfigs[i]; _GLFWfbconfig* u = usableConfigs + usableCount; // Only consider RGB(A) EGLConfigs if (getEGLConfigAttrib(n, EGL_COLOR_BUFFER_TYPE) != EGL_RGB_BUFFER) continue; // Only consider window EGLConfigs if (!(getEGLConfigAttrib(n, EGL_SURFACE_TYPE) & EGL_WINDOW_BIT)) continue; #if defined(_GLFW_X11) { XVisualInfo vi = {0}; // Only consider EGLConfigs with associated Visuals vi.visualid = getEGLConfigAttrib(n, EGL_NATIVE_VISUAL_ID); if (!vi.visualid) continue; if (desired->transparent) { int count; XVisualInfo* vis = XGetVisualInfo(_glfw.x11.display, VisualIDMask, &vi, &count); if (vis) { u->transparent = _glfwIsVisualTransparentX11(vis[0].visual); XFree(vis); } } } #endif // _GLFW_X11 if (ctxconfig->client == GLFW_OPENGL_ES_API) { if (ctxconfig->major == 1) { if (!(getEGLConfigAttrib(n, EGL_RENDERABLE_TYPE) & EGL_OPENGL_ES_BIT)) continue; } else { if (!(getEGLConfigAttrib(n, EGL_RENDERABLE_TYPE) & EGL_OPENGL_ES2_BIT)) continue; } } else if (ctxconfig->client == GLFW_OPENGL_API) { if (!(getEGLConfigAttrib(n, EGL_RENDERABLE_TYPE) & EGL_OPENGL_BIT)) continue; } u->redBits = getEGLConfigAttrib(n, EGL_RED_SIZE); u->greenBits = getEGLConfigAttrib(n, EGL_GREEN_SIZE); u->blueBits = getEGLConfigAttrib(n, EGL_BLUE_SIZE); u->alphaBits = getEGLConfigAttrib(n, EGL_ALPHA_SIZE); u->depthBits = getEGLConfigAttrib(n, EGL_DEPTH_SIZE); u->stencilBits = getEGLConfigAttrib(n, EGL_STENCIL_SIZE); u->samples = getEGLConfigAttrib(n, EGL_SAMPLES); u->doublebuffer = desired->doublebuffer; u->handle = (uintptr_t) n; usableCount++; } closest = _glfwChooseFBConfig(desired, usableConfigs, usableCount); if (closest) *result = (EGLConfig) closest->handle; free(nativeConfigs); free(usableConfigs); return closest != NULL; } static void makeContextCurrentEGL(_GLFWwindow* window) { if (window) { if (!eglMakeCurrent(_glfw.egl.display, window->context.egl.surface, window->context.egl.surface, window->context.egl.handle)) { _glfwInputError(GLFW_PLATFORM_ERROR, "EGL: Failed to make context current: %s", getEGLErrorString(eglGetError())); return; } } else { if (!eglMakeCurrent(_glfw.egl.display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT)) { _glfwInputError(GLFW_PLATFORM_ERROR, "EGL: Failed to clear current context: %s", getEGLErrorString(eglGetError())); return; } } _glfwPlatformSetTls(&_glfw.contextSlot, window); } static void swapBuffersEGL(_GLFWwindow* window) { if (window != _glfwPlatformGetTls(&_glfw.contextSlot)) { _glfwInputError(GLFW_PLATFORM_ERROR, "EGL: The context must be current on the calling thread when swapping buffers"); return; } #if defined(_GLFW_WAYLAND) // NOTE: Swapping buffers on a hidden window on Wayland makes it visible if (!window->wl.visible) return; #endif eglSwapBuffers(_glfw.egl.display, window->context.egl.surface); } static void swapIntervalEGL(int interval) { eglSwapInterval(_glfw.egl.display, interval); } static int extensionSupportedEGL(const char* extension) { const char* extensions = eglQueryString(_glfw.egl.display, EGL_EXTENSIONS); if (extensions) { if (_glfwStringInExtensionString(extension, extensions)) return GLFW_TRUE; } return GLFW_FALSE; } static GLFWglproc getProcAddressEGL(const char* procname) { _GLFWwindow* window = _glfwPlatformGetTls(&_glfw.contextSlot); if (window->context.egl.client) { GLFWglproc proc = (GLFWglproc) _glfw_dlsym(window->context.egl.client, procname); if (proc) return proc; } return eglGetProcAddress(procname); } static void destroyContextEGL(_GLFWwindow* window) { #if defined(_GLFW_X11) // NOTE: Do not unload libGL.so.1 while the X11 display is still open, // as it will make XCloseDisplay segfault if (window->context.client != GLFW_OPENGL_API) #endif // _GLFW_X11 { if (window->context.egl.client) { _glfw_dlclose(window->context.egl.client); window->context.egl.client = NULL; } } if (window->context.egl.surface) { eglDestroySurface(_glfw.egl.display, window->context.egl.surface); window->context.egl.surface = EGL_NO_SURFACE; } if (window->context.egl.handle) { eglDestroyContext(_glfw.egl.display, window->context.egl.handle); window->context.egl.handle = EGL_NO_CONTEXT; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize EGL // GLFWbool _glfwInitEGL(void) { int i; const char* sonames[] = { #if defined(_GLFW_EGL_LIBRARY) _GLFW_EGL_LIBRARY, #elif defined(_GLFW_WIN32) "libEGL.dll", "EGL.dll", #elif defined(_GLFW_COCOA) "libEGL.dylib", #elif defined(__CYGWIN__) "libEGL-1.so", #elif defined(__OpenBSD__) || defined(__NetBSD__) "libEGL.so", #else "libEGL.so.1", #endif NULL }; if (_glfw.egl.handle) return GLFW_TRUE; for (i = 0; sonames[i]; i++) { _glfw.egl.handle = _glfw_dlopen(sonames[i]); if (_glfw.egl.handle) break; } if (!_glfw.egl.handle) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: Library not found"); return GLFW_FALSE; } _glfw.egl.prefix = (strncmp(sonames[i], "lib", 3) == 0); _glfw.egl.GetConfigAttrib = (PFN_eglGetConfigAttrib) _glfw_dlsym(_glfw.egl.handle, "eglGetConfigAttrib"); _glfw.egl.GetConfigs = (PFN_eglGetConfigs) _glfw_dlsym(_glfw.egl.handle, "eglGetConfigs"); _glfw.egl.GetDisplay = (PFN_eglGetDisplay) _glfw_dlsym(_glfw.egl.handle, "eglGetDisplay"); _glfw.egl.GetError = (PFN_eglGetError) _glfw_dlsym(_glfw.egl.handle, "eglGetError"); _glfw.egl.Initialize = (PFN_eglInitialize) _glfw_dlsym(_glfw.egl.handle, "eglInitialize"); _glfw.egl.Terminate = (PFN_eglTerminate) _glfw_dlsym(_glfw.egl.handle, "eglTerminate"); _glfw.egl.BindAPI = (PFN_eglBindAPI) _glfw_dlsym(_glfw.egl.handle, "eglBindAPI"); _glfw.egl.CreateContext = (PFN_eglCreateContext) _glfw_dlsym(_glfw.egl.handle, "eglCreateContext"); _glfw.egl.DestroySurface = (PFN_eglDestroySurface) _glfw_dlsym(_glfw.egl.handle, "eglDestroySurface"); _glfw.egl.DestroyContext = (PFN_eglDestroyContext) _glfw_dlsym(_glfw.egl.handle, "eglDestroyContext"); _glfw.egl.CreateWindowSurface = (PFN_eglCreateWindowSurface) _glfw_dlsym(_glfw.egl.handle, "eglCreateWindowSurface"); _glfw.egl.MakeCurrent = (PFN_eglMakeCurrent) _glfw_dlsym(_glfw.egl.handle, "eglMakeCurrent"); _glfw.egl.SwapBuffers = (PFN_eglSwapBuffers) _glfw_dlsym(_glfw.egl.handle, "eglSwapBuffers"); _glfw.egl.SwapInterval = (PFN_eglSwapInterval) _glfw_dlsym(_glfw.egl.handle, "eglSwapInterval"); _glfw.egl.QueryString = (PFN_eglQueryString) _glfw_dlsym(_glfw.egl.handle, "eglQueryString"); _glfw.egl.GetProcAddress = (PFN_eglGetProcAddress) _glfw_dlsym(_glfw.egl.handle, "eglGetProcAddress"); if (!_glfw.egl.GetConfigAttrib || !_glfw.egl.GetConfigs || !_glfw.egl.GetDisplay || !_glfw.egl.GetError || !_glfw.egl.Initialize || !_glfw.egl.Terminate || !_glfw.egl.BindAPI || !_glfw.egl.CreateContext || !_glfw.egl.DestroySurface || !_glfw.egl.DestroyContext || !_glfw.egl.CreateWindowSurface || !_glfw.egl.MakeCurrent || !_glfw.egl.SwapBuffers || !_glfw.egl.SwapInterval || !_glfw.egl.QueryString || !_glfw.egl.GetProcAddress) { _glfwInputError(GLFW_PLATFORM_ERROR, "EGL: Failed to load required entry points"); _glfwTerminateEGL(); return GLFW_FALSE; } _glfw.egl.display = eglGetDisplay(_GLFW_EGL_NATIVE_DISPLAY); if (_glfw.egl.display == EGL_NO_DISPLAY) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: Failed to get EGL display: %s", getEGLErrorString(eglGetError())); _glfwTerminateEGL(); return GLFW_FALSE; } if (!eglInitialize(_glfw.egl.display, &_glfw.egl.major, &_glfw.egl.minor)) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: Failed to initialize EGL: %s", getEGLErrorString(eglGetError())); _glfwTerminateEGL(); return GLFW_FALSE; } _glfw.egl.KHR_create_context = extensionSupportedEGL("EGL_KHR_create_context"); _glfw.egl.KHR_create_context_no_error = extensionSupportedEGL("EGL_KHR_create_context_no_error"); _glfw.egl.KHR_gl_colorspace = extensionSupportedEGL("EGL_KHR_gl_colorspace"); _glfw.egl.KHR_get_all_proc_addresses = extensionSupportedEGL("EGL_KHR_get_all_proc_addresses"); _glfw.egl.KHR_context_flush_control = extensionSupportedEGL("EGL_KHR_context_flush_control"); _glfw.egl.EXT_present_opaque = extensionSupportedEGL("EGL_EXT_present_opaque"); return GLFW_TRUE; } // Terminate EGL // void _glfwTerminateEGL(void) { if (_glfw.egl.display) { eglTerminate(_glfw.egl.display); _glfw.egl.display = EGL_NO_DISPLAY; } if (_glfw.egl.handle) { _glfw_dlclose(_glfw.egl.handle); _glfw.egl.handle = NULL; } } #define setAttrib(a, v) \ { \ assert(((size_t) index + 1) < sizeof(attribs) / sizeof(attribs[0])); \ attribs[index++] = a; \ attribs[index++] = v; \ } // Create the OpenGL or OpenGL ES context // GLFWbool _glfwCreateContextEGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { EGLint attribs[40]; EGLConfig config; EGLContext share = NULL; int index = 0; if (!_glfw.egl.display) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: API not available"); return GLFW_FALSE; } if (ctxconfig->share) share = ctxconfig->share->context.egl.handle; if (!chooseEGLConfig(ctxconfig, fbconfig, &config)) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "EGL: Failed to find a suitable EGLConfig"); return GLFW_FALSE; } if (ctxconfig->client == GLFW_OPENGL_ES_API) { if (!eglBindAPI(EGL_OPENGL_ES_API)) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: Failed to bind OpenGL ES: %s", getEGLErrorString(eglGetError())); return GLFW_FALSE; } } else { if (!eglBindAPI(EGL_OPENGL_API)) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: Failed to bind OpenGL: %s", getEGLErrorString(eglGetError())); return GLFW_FALSE; } } if (_glfw.egl.KHR_create_context) { int mask = 0, flags = 0; if (ctxconfig->client == GLFW_OPENGL_API) { if (ctxconfig->forward) flags |= EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR; if (ctxconfig->profile == GLFW_OPENGL_CORE_PROFILE) mask |= EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR; else if (ctxconfig->profile == GLFW_OPENGL_COMPAT_PROFILE) mask |= EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT_KHR; } if (ctxconfig->debug) flags |= EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR; if (ctxconfig->robustness) { if (ctxconfig->robustness == GLFW_NO_RESET_NOTIFICATION) { setAttrib(EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR, EGL_NO_RESET_NOTIFICATION_KHR); } else if (ctxconfig->robustness == GLFW_LOSE_CONTEXT_ON_RESET) { setAttrib(EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR, EGL_LOSE_CONTEXT_ON_RESET_KHR); } flags |= EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR; } if (ctxconfig->noerror) { if (_glfw.egl.KHR_create_context_no_error) setAttrib(EGL_CONTEXT_OPENGL_NO_ERROR_KHR, GLFW_TRUE); } if (ctxconfig->major != 1 || ctxconfig->minor != 0) { setAttrib(EGL_CONTEXT_MAJOR_VERSION_KHR, ctxconfig->major); setAttrib(EGL_CONTEXT_MINOR_VERSION_KHR, ctxconfig->minor); } if (mask) setAttrib(EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR, mask); if (flags) setAttrib(EGL_CONTEXT_FLAGS_KHR, flags); } else { if (ctxconfig->client == GLFW_OPENGL_ES_API) setAttrib(EGL_CONTEXT_CLIENT_VERSION, ctxconfig->major); } if (_glfw.egl.KHR_context_flush_control) { if (ctxconfig->release == GLFW_RELEASE_BEHAVIOR_NONE) { setAttrib(EGL_CONTEXT_RELEASE_BEHAVIOR_KHR, EGL_CONTEXT_RELEASE_BEHAVIOR_NONE_KHR); } else if (ctxconfig->release == GLFW_RELEASE_BEHAVIOR_FLUSH) { setAttrib(EGL_CONTEXT_RELEASE_BEHAVIOR_KHR, EGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_KHR); } } setAttrib(EGL_NONE, EGL_NONE); window->context.egl.handle = eglCreateContext(_glfw.egl.display, config, share, attribs); if (window->context.egl.handle == EGL_NO_CONTEXT) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "EGL: Failed to create context: %s", getEGLErrorString(eglGetError())); return GLFW_FALSE; } // Set up attributes for surface creation index = 0; if (fbconfig->sRGB) { if (_glfw.egl.KHR_gl_colorspace) setAttrib(EGL_GL_COLORSPACE_KHR, EGL_GL_COLORSPACE_SRGB_KHR); } if (!fbconfig->doublebuffer) setAttrib(EGL_RENDER_BUFFER, EGL_SINGLE_BUFFER); if (_glfw.egl.EXT_present_opaque) setAttrib(EGL_PRESENT_OPAQUE_EXT, !fbconfig->transparent); setAttrib(EGL_NONE, EGL_NONE); window->context.egl.surface = eglCreateWindowSurface(_glfw.egl.display, config, _GLFW_EGL_NATIVE_WINDOW, attribs); if (window->context.egl.surface == EGL_NO_SURFACE) { _glfwInputError(GLFW_PLATFORM_ERROR, "EGL: Failed to create window surface: %s", getEGLErrorString(eglGetError())); return GLFW_FALSE; } window->context.egl.config = config; // Load the appropriate client library if (!_glfw.egl.KHR_get_all_proc_addresses) { int i; const char** sonames; const char* es1sonames[] = { #if defined(_GLFW_GLESV1_LIBRARY) _GLFW_GLESV1_LIBRARY, #elif defined(_GLFW_WIN32) "GLESv1_CM.dll", "libGLES_CM.dll", #elif defined(_GLFW_COCOA) "libGLESv1_CM.dylib", #elif defined(__OpenBSD__) || defined(__NetBSD__) "libGLESv1_CM.so", #else "libGLESv1_CM.so.1", "libGLES_CM.so.1", #endif NULL }; const char* es2sonames[] = { #if defined(_GLFW_GLESV2_LIBRARY) _GLFW_GLESV2_LIBRARY, #elif defined(_GLFW_WIN32) "GLESv2.dll", "libGLESv2.dll", #elif defined(_GLFW_COCOA) "libGLESv2.dylib", #elif defined(__CYGWIN__) "libGLESv2-2.so", #elif defined(__OpenBSD__) || defined(__NetBSD__) "libGLESv2.so", #else "libGLESv2.so.2", #endif NULL }; const char* glsonames[] = { #if defined(_GLFW_OPENGL_LIBRARY) _GLFW_OPENGL_LIBRARY, #elif defined(_GLFW_WIN32) #elif defined(_GLFW_COCOA) #elif defined(__OpenBSD__) || defined(__NetBSD__) "libGL.so", #else "libGL.so.1", #endif NULL }; if (ctxconfig->client == GLFW_OPENGL_ES_API) { if (ctxconfig->major == 1) sonames = es1sonames; else sonames = es2sonames; } else sonames = glsonames; for (i = 0; sonames[i]; i++) { // HACK: Match presence of lib prefix to increase chance of finding // a matching pair in the jungle that is Win32 EGL/GLES if (_glfw.egl.prefix != (strncmp(sonames[i], "lib", 3) == 0)) continue; window->context.egl.client = _glfw_dlopen(sonames[i]); if (window->context.egl.client) break; } if (!window->context.egl.client) { _glfwInputError(GLFW_API_UNAVAILABLE, "EGL: Failed to load client library"); return GLFW_FALSE; } } window->context.makeCurrent = makeContextCurrentEGL; window->context.swapBuffers = swapBuffersEGL; window->context.swapInterval = swapIntervalEGL; window->context.extensionSupported = extensionSupportedEGL; window->context.getProcAddress = getProcAddressEGL; window->context.destroy = destroyContextEGL; return GLFW_TRUE; } #undef setAttrib // Returns the Visual and depth of the chosen EGLConfig // #if defined(_GLFW_X11) GLFWbool _glfwChooseVisualEGL(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth) { XVisualInfo* result; XVisualInfo desired; EGLConfig native; EGLint visualID = 0, count = 0; const long vimask = VisualScreenMask | VisualIDMask; if (!chooseEGLConfig(ctxconfig, fbconfig, &native)) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "EGL: Failed to find a suitable EGLConfig"); return GLFW_FALSE; } eglGetConfigAttrib(_glfw.egl.display, native, EGL_NATIVE_VISUAL_ID, &visualID); desired.screen = _glfw.x11.screen; desired.visualid = visualID; result = XGetVisualInfo(_glfw.x11.display, vimask, &desired, &count); if (!result) { _glfwInputError(GLFW_PLATFORM_ERROR, "EGL: Failed to retrieve Visual for EGLConfig"); return GLFW_FALSE; } *visual = result->visual; *depth = result->depth; XFree(result); return GLFW_TRUE; } #endif // _GLFW_X11 ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI EGLDisplay glfwGetEGLDisplay(void) { _GLFW_REQUIRE_INIT_OR_RETURN(EGL_NO_DISPLAY); return _glfw.egl.display; } GLFWAPI EGLContext glfwGetEGLContext(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(EGL_NO_CONTEXT); if (window->context.source != GLFW_EGL_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return EGL_NO_CONTEXT; } return window->context.egl.handle; } GLFWAPI EGLSurface glfwGetEGLSurface(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(EGL_NO_SURFACE); if (window->context.source != GLFW_EGL_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return EGL_NO_SURFACE; } return window->context.egl.surface; } #endif #ifndef HEADER_GUARD_CONTEXT_C #define HEADER_GUARD_CONTEXT_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2016 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include #include ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Checks whether the desired context attributes are valid // // This function checks things like whether the specified client API version // exists and whether all relevant options have supported and non-conflicting // values // GLFWbool _glfwIsValidContextConfig(const _GLFWctxconfig* ctxconfig) { if (ctxconfig->share) { if (ctxconfig->client == GLFW_NO_API || ctxconfig->share->context.client == GLFW_NO_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return GLFW_FALSE; } } if (ctxconfig->source != GLFW_NATIVE_CONTEXT_API && ctxconfig->source != GLFW_EGL_CONTEXT_API && ctxconfig->source != GLFW_OSMESA_CONTEXT_API) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid context creation API 0x%08X", ctxconfig->source); return GLFW_FALSE; } if (ctxconfig->client != GLFW_NO_API && ctxconfig->client != GLFW_OPENGL_API && ctxconfig->client != GLFW_OPENGL_ES_API) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid client API 0x%08X", ctxconfig->client); return GLFW_FALSE; } if (ctxconfig->client == GLFW_OPENGL_API) { if ((ctxconfig->major < 1 || ctxconfig->minor < 0) || (ctxconfig->major == 1 && ctxconfig->minor > 5) || (ctxconfig->major == 2 && ctxconfig->minor > 1) || (ctxconfig->major == 3 && ctxconfig->minor > 3)) { // OpenGL 1.0 is the smallest valid version // OpenGL 1.x series ended with version 1.5 // OpenGL 2.x series ended with version 2.1 // OpenGL 3.x series ended with version 3.3 // For now, let everything else through _glfwInputError(GLFW_INVALID_VALUE, "Invalid OpenGL version %i.%i", ctxconfig->major, ctxconfig->minor); return GLFW_FALSE; } if (ctxconfig->profile) { if (ctxconfig->profile != GLFW_OPENGL_CORE_PROFILE && ctxconfig->profile != GLFW_OPENGL_COMPAT_PROFILE) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid OpenGL profile 0x%08X", ctxconfig->profile); return GLFW_FALSE; } if (ctxconfig->major <= 2 || (ctxconfig->major == 3 && ctxconfig->minor < 2)) { // Desktop OpenGL context profiles are only defined for version 3.2 // and above _glfwInputError(GLFW_INVALID_VALUE, "Context profiles are only defined for OpenGL version 3.2 and above"); return GLFW_FALSE; } } if (ctxconfig->forward && ctxconfig->major <= 2) { // Forward-compatible contexts are only defined for OpenGL version 3.0 and above _glfwInputError(GLFW_INVALID_VALUE, "Forward-compatibility is only defined for OpenGL version 3.0 and above"); return GLFW_FALSE; } } else if (ctxconfig->client == GLFW_OPENGL_ES_API) { if (ctxconfig->major < 1 || ctxconfig->minor < 0 || (ctxconfig->major == 1 && ctxconfig->minor > 1) || (ctxconfig->major == 2 && ctxconfig->minor > 0)) { // OpenGL ES 1.0 is the smallest valid version // OpenGL ES 1.x series ended with version 1.1 // OpenGL ES 2.x series ended with version 2.0 // For now, let everything else through _glfwInputError(GLFW_INVALID_VALUE, "Invalid OpenGL ES version %i.%i", ctxconfig->major, ctxconfig->minor); return GLFW_FALSE; } } if (ctxconfig->robustness) { if (ctxconfig->robustness != GLFW_NO_RESET_NOTIFICATION && ctxconfig->robustness != GLFW_LOSE_CONTEXT_ON_RESET) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid context robustness mode 0x%08X", ctxconfig->robustness); return GLFW_FALSE; } } if (ctxconfig->release) { if (ctxconfig->release != GLFW_RELEASE_BEHAVIOR_NONE && ctxconfig->release != GLFW_RELEASE_BEHAVIOR_FLUSH) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid context release behavior 0x%08X", ctxconfig->release); return GLFW_FALSE; } } return GLFW_TRUE; } // Chooses the framebuffer config that best matches the desired one // const _GLFWfbconfig* _glfwChooseFBConfig(const _GLFWfbconfig* desired, const _GLFWfbconfig* alternatives, unsigned int count) { unsigned int i; unsigned int missing, leastMissing = UINT_MAX; unsigned int colorDiff, leastColorDiff = UINT_MAX; unsigned int extraDiff, leastExtraDiff = UINT_MAX; const _GLFWfbconfig* current; const _GLFWfbconfig* closest = NULL; for (i = 0; i < count; i++) { current = alternatives + i; if (desired->stereo > 0 && current->stereo == 0) { // Stereo is a hard constraint continue; } // Count number of missing buffers { missing = 0; if (desired->alphaBits > 0 && current->alphaBits == 0) missing++; if (desired->depthBits > 0 && current->depthBits == 0) missing++; if (desired->stencilBits > 0 && current->stencilBits == 0) missing++; if (desired->auxBuffers > 0 && current->auxBuffers < desired->auxBuffers) { missing += desired->auxBuffers - current->auxBuffers; } if (desired->samples > 0 && current->samples == 0) { // Technically, several multisampling buffers could be // involved, but that's a lower level implementation detail and // not important to us here, so we count them as one missing++; } if (desired->transparent != current->transparent) missing++; } // These polynomials make many small channel size differences matter // less than one large channel size difference // Calculate color channel size difference value { colorDiff = 0; if (desired->redBits != GLFW_DONT_CARE) { colorDiff += (desired->redBits - current->redBits) * (desired->redBits - current->redBits); } if (desired->greenBits != GLFW_DONT_CARE) { colorDiff += (desired->greenBits - current->greenBits) * (desired->greenBits - current->greenBits); } if (desired->blueBits != GLFW_DONT_CARE) { colorDiff += (desired->blueBits - current->blueBits) * (desired->blueBits - current->blueBits); } } // Calculate non-color channel size difference value { extraDiff = 0; if (desired->alphaBits != GLFW_DONT_CARE) { extraDiff += (desired->alphaBits - current->alphaBits) * (desired->alphaBits - current->alphaBits); } if (desired->depthBits != GLFW_DONT_CARE) { extraDiff += (desired->depthBits - current->depthBits) * (desired->depthBits - current->depthBits); } if (desired->stencilBits != GLFW_DONT_CARE) { extraDiff += (desired->stencilBits - current->stencilBits) * (desired->stencilBits - current->stencilBits); } if (desired->accumRedBits != GLFW_DONT_CARE) { extraDiff += (desired->accumRedBits - current->accumRedBits) * (desired->accumRedBits - current->accumRedBits); } if (desired->accumGreenBits != GLFW_DONT_CARE) { extraDiff += (desired->accumGreenBits - current->accumGreenBits) * (desired->accumGreenBits - current->accumGreenBits); } if (desired->accumBlueBits != GLFW_DONT_CARE) { extraDiff += (desired->accumBlueBits - current->accumBlueBits) * (desired->accumBlueBits - current->accumBlueBits); } if (desired->accumAlphaBits != GLFW_DONT_CARE) { extraDiff += (desired->accumAlphaBits - current->accumAlphaBits) * (desired->accumAlphaBits - current->accumAlphaBits); } if (desired->samples != GLFW_DONT_CARE) { extraDiff += (desired->samples - current->samples) * (desired->samples - current->samples); } if (desired->sRGB && !current->sRGB) extraDiff++; } // Figure out if the current one is better than the best one found so far // Least number of missing buffers is the most important heuristic, // then color buffer size match and lastly size match for other buffers if (missing < leastMissing) closest = current; else if (missing == leastMissing) { if ((colorDiff < leastColorDiff) || (colorDiff == leastColorDiff && extraDiff < leastExtraDiff)) { closest = current; } } if (current == closest) { leastMissing = missing; leastColorDiff = colorDiff; leastExtraDiff = extraDiff; } } return closest; } // Retrieves the attributes of the current context // GLFWbool _glfwRefreshContextAttribs(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig) { int i; _GLFWwindow* previous; const char* version; const char* prefixes[] = { "OpenGL ES-CM ", "OpenGL ES-CL ", "OpenGL ES ", NULL }; window->context.source = ctxconfig->source; window->context.client = GLFW_OPENGL_API; previous = _glfwPlatformGetTls(&_glfw.contextSlot); glfwMakeContextCurrent((GLFWwindow*) window); window->context.GetIntegerv = (PFNGLGETINTEGERVPROC) window->context.getProcAddress("glGetIntegerv"); window->context.GetString = (PFNGLGETSTRINGPROC) window->context.getProcAddress("glGetString"); if (!window->context.GetIntegerv || !window->context.GetString) { _glfwInputError(GLFW_PLATFORM_ERROR, "Entry point retrieval is broken"); glfwMakeContextCurrent((GLFWwindow*) previous); return GLFW_FALSE; } version = (const char*) window->context.GetString(GL_VERSION); if (!version) { if (ctxconfig->client == GLFW_OPENGL_API) { _glfwInputError(GLFW_PLATFORM_ERROR, "OpenGL version string retrieval is broken"); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "OpenGL ES version string retrieval is broken"); } glfwMakeContextCurrent((GLFWwindow*) previous); return GLFW_FALSE; } for (i = 0; prefixes[i]; i++) { const size_t length = strlen(prefixes[i]); if (strncmp(version, prefixes[i], length) == 0) { version += length; window->context.client = GLFW_OPENGL_ES_API; break; } } if (!sscanf(version, "%d.%d.%d", &window->context.major, &window->context.minor, &window->context.revision)) { if (window->context.client == GLFW_OPENGL_API) { _glfwInputError(GLFW_PLATFORM_ERROR, "No version found in OpenGL version string"); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "No version found in OpenGL ES version string"); } glfwMakeContextCurrent((GLFWwindow*) previous); return GLFW_FALSE; } if (window->context.major < ctxconfig->major || (window->context.major == ctxconfig->major && window->context.minor < ctxconfig->minor)) { // The desired OpenGL version is greater than the actual version // This only happens if the machine lacks {GLX|WGL}_ARB_create_context // /and/ the user has requested an OpenGL version greater than 1.0 // For API consistency, we emulate the behavior of the // {GLX|WGL}_ARB_create_context extension and fail here if (window->context.client == GLFW_OPENGL_API) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "Requested OpenGL version %i.%i, got version %i.%i", ctxconfig->major, ctxconfig->minor, window->context.major, window->context.minor); } else { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "Requested OpenGL ES version %i.%i, got version %i.%i", ctxconfig->major, ctxconfig->minor, window->context.major, window->context.minor); } glfwMakeContextCurrent((GLFWwindow*) previous); return GLFW_FALSE; } if (window->context.major >= 3) { // OpenGL 3.0+ uses a different function for extension string retrieval // We cache it here instead of in glfwExtensionSupported mostly to alert // users as early as possible that their build may be broken window->context.GetStringi = (PFNGLGETSTRINGIPROC) window->context.getProcAddress("glGetStringi"); if (!window->context.GetStringi) { _glfwInputError(GLFW_PLATFORM_ERROR, "Entry point retrieval is broken"); glfwMakeContextCurrent((GLFWwindow*) previous); return GLFW_FALSE; } } if (window->context.client == GLFW_OPENGL_API) { // Read back context flags (OpenGL 3.0 and above) if (window->context.major >= 3) { GLint flags; window->context.GetIntegerv(GL_CONTEXT_FLAGS, &flags); if (flags & GL_CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT) window->context.forward = GLFW_TRUE; if (flags & GL_CONTEXT_FLAG_DEBUG_BIT) window->context.debug = GLFW_TRUE; else if (glfwExtensionSupported("GL_ARB_debug_output") && ctxconfig->debug) { // HACK: This is a workaround for older drivers (pre KHR_debug) // not setting the debug bit in the context flags for // debug contexts window->context.debug = GLFW_TRUE; } if (flags & GL_CONTEXT_FLAG_NO_ERROR_BIT_KHR) window->context.noerror = GLFW_TRUE; } // Read back OpenGL context profile (OpenGL 3.2 and above) if (window->context.major >= 4 || (window->context.major == 3 && window->context.minor >= 2)) { GLint mask; window->context.GetIntegerv(GL_CONTEXT_PROFILE_MASK, &mask); if (mask & GL_CONTEXT_COMPATIBILITY_PROFILE_BIT) window->context.profile = GLFW_OPENGL_COMPAT_PROFILE; else if (mask & GL_CONTEXT_CORE_PROFILE_BIT) window->context.profile = GLFW_OPENGL_CORE_PROFILE; else if (glfwExtensionSupported("GL_ARB_compatibility")) { // HACK: This is a workaround for the compatibility profile bit // not being set in the context flags if an OpenGL 3.2+ // context was created without having requested a specific // version window->context.profile = GLFW_OPENGL_COMPAT_PROFILE; } } // Read back robustness strategy if (glfwExtensionSupported("GL_ARB_robustness")) { // NOTE: We avoid using the context flags for detection, as they are // only present from 3.0 while the extension applies from 1.1 GLint strategy; window->context.GetIntegerv(GL_RESET_NOTIFICATION_STRATEGY_ARB, &strategy); if (strategy == GL_LOSE_CONTEXT_ON_RESET_ARB) window->context.robustness = GLFW_LOSE_CONTEXT_ON_RESET; else if (strategy == GL_NO_RESET_NOTIFICATION_ARB) window->context.robustness = GLFW_NO_RESET_NOTIFICATION; } } else { // Read back robustness strategy if (glfwExtensionSupported("GL_EXT_robustness")) { // NOTE: The values of these constants match those of the OpenGL ARB // one, so we can reuse them here GLint strategy; window->context.GetIntegerv(GL_RESET_NOTIFICATION_STRATEGY_ARB, &strategy); if (strategy == GL_LOSE_CONTEXT_ON_RESET_ARB) window->context.robustness = GLFW_LOSE_CONTEXT_ON_RESET; else if (strategy == GL_NO_RESET_NOTIFICATION_ARB) window->context.robustness = GLFW_NO_RESET_NOTIFICATION; } } if (glfwExtensionSupported("GL_KHR_context_flush_control")) { GLint behavior; window->context.GetIntegerv(GL_CONTEXT_RELEASE_BEHAVIOR, &behavior); if (behavior == GL_NONE) window->context.release = GLFW_RELEASE_BEHAVIOR_NONE; else if (behavior == GL_CONTEXT_RELEASE_BEHAVIOR_FLUSH) window->context.release = GLFW_RELEASE_BEHAVIOR_FLUSH; } // Clearing the front buffer to black to avoid garbage pixels left over from // previous uses of our bit of VRAM { PFNGLCLEARPROC glClear = (PFNGLCLEARPROC) window->context.getProcAddress("glClear"); glClear(GL_COLOR_BUFFER_BIT); if (window->doublebuffer) window->context.swapBuffers(window); } glfwMakeContextCurrent((GLFWwindow*) previous); return GLFW_TRUE; } // Searches an extension string for the specified extension // GLFWbool _glfwStringInExtensionString(const char* string, const char* extensions) { const char* start = extensions; for (;;) { const char* where; const char* terminator; where = strstr(start, string); if (!where) return GLFW_FALSE; terminator = where + strlen(string); if (where == start || *(where - 1) == ' ') { if (*terminator == ' ' || *terminator == '\0') break; } start = terminator; } return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW public API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI void glfwMakeContextCurrent(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFWwindow* previous = _glfwPlatformGetTls(&_glfw.contextSlot); _GLFW_REQUIRE_INIT(); if (window && window->context.client == GLFW_NO_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, "Cannot make current with a window that has no OpenGL or OpenGL ES context"); return; } if (previous) { if (!window || window->context.source != previous->context.source) previous->context.makeCurrent(NULL); } if (window) window->context.makeCurrent(window); } GLFWAPI GLFWwindow* glfwGetCurrentContext(void) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return _glfwPlatformGetTls(&_glfw.contextSlot); } GLFWAPI void glfwSwapBuffers(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (window->context.client == GLFW_NO_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, "Cannot swap buffers of a window that has no OpenGL or OpenGL ES context"); return; } window->context.swapBuffers(window); } GLFWAPI void glfwSwapInterval(int interval) { _GLFWwindow* window; _GLFW_REQUIRE_INIT(); window = _glfwPlatformGetTls(&_glfw.contextSlot); if (!window) { _glfwInputError(GLFW_NO_CURRENT_CONTEXT, "Cannot set swap interval without a current OpenGL or OpenGL ES context"); return; } window->context.swapInterval(interval); } GLFWAPI int glfwExtensionSupported(const char* extension) { _GLFWwindow* window; assert(extension != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); window = _glfwPlatformGetTls(&_glfw.contextSlot); if (!window) { _glfwInputError(GLFW_NO_CURRENT_CONTEXT, "Cannot query extension without a current OpenGL or OpenGL ES context"); return GLFW_FALSE; } if (*extension == '\0') { _glfwInputError(GLFW_INVALID_VALUE, "Extension name cannot be an empty string"); return GLFW_FALSE; } if (window->context.major >= 3) { int i; GLint count; // Check if extension is in the modern OpenGL extensions string list window->context.GetIntegerv(GL_NUM_EXTENSIONS, &count); for (i = 0; i < count; i++) { const char* en = (const char*) window->context.GetStringi(GL_EXTENSIONS, i); if (!en) { _glfwInputError(GLFW_PLATFORM_ERROR, "Extension string retrieval is broken"); return GLFW_FALSE; } if (strcmp(en, extension) == 0) return GLFW_TRUE; } } else { // Check if extension is in the old style OpenGL extensions string const char* extensions = (const char*) window->context.GetString(GL_EXTENSIONS); if (!extensions) { _glfwInputError(GLFW_PLATFORM_ERROR, "Extension string retrieval is broken"); return GLFW_FALSE; } if (_glfwStringInExtensionString(extension, extensions)) return GLFW_TRUE; } // Check if extension is in the platform-specific string return window->context.extensionSupported(extension); } GLFWAPI GLFWglproc glfwGetProcAddress(const char* procname) { _GLFWwindow* window; assert(procname != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); window = _glfwPlatformGetTls(&_glfw.contextSlot); if (!window) { _glfwInputError(GLFW_NO_CURRENT_CONTEXT, "Cannot query entry point without a current OpenGL or OpenGL ES context"); return NULL; } return window->context.getProcAddress(procname); } #endif #ifndef HEADER_GUARD_INIT_C #define HEADER_GUARD_INIT_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2018 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include #include // NOTE: The global variables below comprise all mutable global data in GLFW // Any other mutable global variable is a bug // This contains all mutable state shared between compilation units of GLFW // _GLFWlibrary _glfw = { GLFW_FALSE }; // These are outside of _glfw so they can be used before initialization and // after termination without special handling when _glfw is cleared to zero // static _GLFWerror _glfwMainThreadError; static GLFWerrorfun _glfwErrorCallback; static _GLFWinitconfig _glfwInitHints = { GLFW_TRUE, // hat buttons { GLFW_TRUE, // macOS menu bar GLFW_TRUE // macOS bundle chdir } }; // Terminate the library // static void terminate(void) { int i; memset(&_glfw.callbacks, 0, sizeof(_glfw.callbacks)); while (_glfw.windowListHead) glfwDestroyWindow((GLFWwindow*) _glfw.windowListHead); while (_glfw.cursorListHead) glfwDestroyCursor((GLFWcursor*) _glfw.cursorListHead); for (i = 0; i < _glfw.monitorCount; i++) { _GLFWmonitor* monitor = _glfw.monitors[i]; if (monitor->originalRamp.size) _glfwPlatformSetGammaRamp(monitor, &monitor->originalRamp); _glfwFreeMonitor(monitor); } free(_glfw.monitors); _glfw.monitors = NULL; _glfw.monitorCount = 0; free(_glfw.mappings); _glfw.mappings = NULL; _glfw.mappingCount = 0; _glfwTerminateVulkan(); _glfwPlatformTerminate(); _glfw.initialized = GLFW_FALSE; while (_glfw.errorListHead) { _GLFWerror* error = _glfw.errorListHead; _glfw.errorListHead = error->next; free(error); } _glfwPlatformDestroyTls(&_glfw.contextSlot); _glfwPlatformDestroyTls(&_glfw.errorSlot); _glfwPlatformDestroyMutex(&_glfw.errorLock); memset(&_glfw, 0, sizeof(_glfw)); } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Encode a Unicode code point to a UTF-8 stream // Based on cutef8 by Jeff Bezanson (Public Domain) // size_t _glfwEncodeUTF8(char* s, uint32_t codepoint) { size_t count = 0; if (codepoint < 0x80) s[count++] = (char) codepoint; else if (codepoint < 0x800) { s[count++] = (codepoint >> 6) | 0xc0; s[count++] = (codepoint & 0x3f) | 0x80; } else if (codepoint < 0x10000) { s[count++] = (codepoint >> 12) | 0xe0; s[count++] = ((codepoint >> 6) & 0x3f) | 0x80; s[count++] = (codepoint & 0x3f) | 0x80; } else if (codepoint < 0x110000) { s[count++] = (codepoint >> 18) | 0xf0; s[count++] = ((codepoint >> 12) & 0x3f) | 0x80; s[count++] = ((codepoint >> 6) & 0x3f) | 0x80; s[count++] = (codepoint & 0x3f) | 0x80; } return count; } char* _glfw_strdup(const char* source) { const size_t length = strlen(source); char* result = calloc(length + 1, 1); strcpy(result, source); return result; } float _glfw_fminf(float a, float b) { if (a != a) return b; else if (b != b) return a; else if (a < b) return a; else return b; } float _glfw_fmaxf(float a, float b) { if (a != a) return b; else if (b != b) return a; else if (a > b) return a; else return b; } ////////////////////////////////////////////////////////////////////////// ////// GLFW event API ////// ////////////////////////////////////////////////////////////////////////// // Notifies shared code of an error // void _glfwInputError(int code, const char* format, ...) { _GLFWerror* error; char description[_GLFW_MESSAGE_SIZE]; if (format) { va_list vl; va_start(vl, format); vsnprintf(description, sizeof(description), format, vl); va_end(vl); description[sizeof(description) - 1] = '\0'; } else { if (code == GLFW_NOT_INITIALIZED) strcpy(description, "The GLFW library is not initialized"); else if (code == GLFW_NO_CURRENT_CONTEXT) strcpy(description, "There is no current context"); else if (code == GLFW_INVALID_ENUM) strcpy(description, "Invalid argument for enum parameter"); else if (code == GLFW_INVALID_VALUE) strcpy(description, "Invalid value for parameter"); else if (code == GLFW_OUT_OF_MEMORY) strcpy(description, "Out of memory"); else if (code == GLFW_API_UNAVAILABLE) strcpy(description, "The requested API is unavailable"); else if (code == GLFW_VERSION_UNAVAILABLE) strcpy(description, "The requested API version is unavailable"); else if (code == GLFW_PLATFORM_ERROR) strcpy(description, "A platform-specific error occurred"); else if (code == GLFW_FORMAT_UNAVAILABLE) strcpy(description, "The requested format is unavailable"); else if (code == GLFW_NO_WINDOW_CONTEXT) strcpy(description, "The specified window has no context"); else strcpy(description, "ERROR: UNKNOWN GLFW ERROR"); } if (_glfw.initialized) { error = _glfwPlatformGetTls(&_glfw.errorSlot); if (!error) { error = calloc(1, sizeof(_GLFWerror)); _glfwPlatformSetTls(&_glfw.errorSlot, error); _glfwPlatformLockMutex(&_glfw.errorLock); error->next = _glfw.errorListHead; _glfw.errorListHead = error; _glfwPlatformUnlockMutex(&_glfw.errorLock); } } else error = &_glfwMainThreadError; error->code = code; strcpy(error->description, description); if (_glfwErrorCallback) _glfwErrorCallback(code, description); } ////////////////////////////////////////////////////////////////////////// ////// GLFW public API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI int glfwInit(void) { if (_glfw.initialized) return GLFW_TRUE; memset(&_glfw, 0, sizeof(_glfw)); _glfw.hints.init = _glfwInitHints; if (!_glfwPlatformInit()) { terminate(); return GLFW_FALSE; } if (!_glfwPlatformCreateMutex(&_glfw.errorLock) || !_glfwPlatformCreateTls(&_glfw.errorSlot) || !_glfwPlatformCreateTls(&_glfw.contextSlot)) { terminate(); return GLFW_FALSE; } _glfwPlatformSetTls(&_glfw.errorSlot, &_glfwMainThreadError); _glfwInitGamepadMappings(); _glfw.initialized = GLFW_TRUE; _glfw.timer.offset = _glfwPlatformGetTimerValue(); glfwDefaultWindowHints(); return GLFW_TRUE; } GLFWAPI void glfwTerminate(void) { if (!_glfw.initialized) return; terminate(); } GLFWAPI void glfwInitHint(int hint, int value) { switch (hint) { case GLFW_JOYSTICK_HAT_BUTTONS: _glfwInitHints.hatButtons = value; return; case GLFW_COCOA_CHDIR_RESOURCES: _glfwInitHints.ns.chdir = value; return; case GLFW_COCOA_MENUBAR: _glfwInitHints.ns.menubar = value; return; } _glfwInputError(GLFW_INVALID_ENUM, "Invalid init hint 0x%08X", hint); } GLFWAPI void glfwGetVersion(int* major, int* minor, int* rev) { if (major != NULL) *major = GLFW_VERSION_MAJOR; if (minor != NULL) *minor = GLFW_VERSION_MINOR; if (rev != NULL) *rev = GLFW_VERSION_REVISION; } GLFWAPI const char* glfwGetVersionString(void) { return _glfwPlatformGetVersionString(); } GLFWAPI int glfwGetError(const char** description) { _GLFWerror* error; int code = GLFW_NO_ERROR; if (description) *description = NULL; if (_glfw.initialized) error = _glfwPlatformGetTls(&_glfw.errorSlot); else error = &_glfwMainThreadError; if (error) { code = error->code; error->code = GLFW_NO_ERROR; if (description && code) *description = error->description; } return code; } GLFWAPI GLFWerrorfun glfwSetErrorCallback(GLFWerrorfun cbfun) { _GLFW_SWAP_POINTERS(_glfwErrorCallback, cbfun); return cbfun; } #endif #ifndef HEADER_GUARD_INPUT_C #define HEADER_GUARD_INPUT_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #ifndef HEADER_GUARD_MAPPINGS_H #define HEADER_GUARD_MAPPINGS_H //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2006-2018 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // As mappings.h.in, this file is used by CMake to produce the mappings.h // header file. If you are adding a GLFW specific gamepad mapping, this is // where to put it. //======================================================================== // As mappings.h, this provides all pre-defined gamepad mappings, including // all available in SDL_GameControllerDB. Do not edit this file. Any gamepad // mappings not specific to GLFW should be submitted to SDL_GameControllerDB. // This file can be re-generated from mappings.h.in and the upstream // gamecontrollerdb.txt with the 'update_mappings' CMake target. //======================================================================== // All gamepad mappings not labeled GLFW are copied from the // SDL_GameControllerDB project under the following license: // // Simple DirectMedia Layer // Copyright (C) 1997-2013 Sam Lantinga // // This software is provided 'as-is', without any express or implied warranty. // In no event will the authors be held liable for any damages arising from the // use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source distribution. const char* _glfwDefaultMappings[] = { #if defined(GLFW_BUILD_WIN32_MAPPINGS) "03000000fa2d00000100000000000000,3DRUDDER,leftx:a0,lefty:a1,rightx:a5,righty:a2,platform:Windows,", "03000000c82d00002038000000000000,8bitdo,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000951000000000000,8BitDo Dogbone Modkit,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,start:b11,platform:Windows,", "03000000c82d000011ab000000000000,8BitDo F30,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00001038000000000000,8BitDo F30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000090000000000000,8BitDo FC30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000650000000000000,8BitDo M30,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:a4,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:b7,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00005106000000000000,8BitDo M30 Gamepad,a:b1,b:b0,back:b10,guide:b2,leftshoulder:b6,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b9,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000151000000000000,8BitDo M30 ModKit,a:b0,b:b1,back:b10,dpdown:+a2,dpleft:-a0,dpright:+a0,dpup:-a2,rightshoulder:b6,righttrigger:b7,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00000310000000000000,8BitDo N30,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00002028000000000000,8BitDo N30,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00008010000000000000,8BitDo N30,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00000451000000000000,8BitDo N30 Modkit,a:b1,b:b0,back:b10,dpdown:+a2,dpleft:-a0,dpright:+a0,dpup:-a2,start:b11,platform:Windows,", "03000000c82d00000190000000000000,8BitDo N30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00001590000000000000,8BitDo N30 Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00006528000000000000,8BitDo N30 Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000022000000090000000000000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000203800000900000000000000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000360000000000000,8BitDo Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00002867000000000000,8BitDo S30 Modkit,a:b0,b:b1,dpdown:+a2,dpleft:-a0,dpright:+a0,dpup:-a2,leftshoulder:b8,lefttrigger:b9,rightshoulder:b6,righttrigger:b7,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00000130000000000000,8BitDo SF30,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000060000000000000,8Bitdo SF30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000061000000000000,8Bitdo SF30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d000021ab000000000000,8BitDo SFC30,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000102800000900000000000000,8Bitdo SFC30 GamePad,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00003028000000000000,8Bitdo SFC30 GamePad,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000030000000000000,8BitDo SN30,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00001290000000000000,8BitDo SN30,a:b1,b:b0,back:b10,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d000020ab000000000000,8BitDo SN30,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00004028000000000000,8BitDo SN30,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00006228000000000000,8BitDo SN30,a:b1,b:b0,back:b10,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000351000000000000,8BitDo SN30 Modkit,a:b1,b:b0,back:b10,dpdown:+a2,dpleft:-a0,dpright:+a0,dpup:-a2,leftshoulder:b6,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000160000000000000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000161000000000000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000121000000000000,8BitDo SN30 Pro for Android,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00000260000000000000,8BitDo SN30 Pro+,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000261000000000000,8BitDo SN30 Pro+,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00000031000000000000,8BitDo Wireless Adapter,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000c82d00001890000000000000,8BitDo Zero 2,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Windows,", "03000000c82d00003032000000000000,8BitDo Zero 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Windows,", "03000000a00500003232000000000000,8Bitdo Zero GamePad,a:b0,b:b1,back:b10,dpdown:+a2,dpleft:-a0,dpright:+a0,dpup:-a2,leftshoulder:b6,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Windows,", "03000000a30c00002700000000000000,Astro City Mini,a:b2,b:b1,back:b8,leftx:a3,lefty:a4,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Windows,", "03000000a30c00002800000000000000,Astro City Mini,a:b2,b:b1,back:b8,leftx:a3,lefty:a4,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Windows,", "030000008f0e00001200000000000000,Acme GA-02,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b2,y:b3,platform:Windows,", "03000000c01100000355000011010000,ACRUX USB GAME PAD,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000fa190000f0ff000000000000,Acteck AGJ-3200,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "030000006f0e00001413000000000000,Afterglow,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000341a00003608000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00000263000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00001101000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00001401000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00001402000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00001901000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00001a01000000000000,Afterglow PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000d62000001d57000000000000,Airflo PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000491900001904000000000000,Amazon Luna Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b9,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b7,x:b2,y:b3,platform:Windows,", "03000000710100001904000000000000,Amazon Luna Controller,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b11,leftshoulder:b5,leftstick:b8,leftx:a0,lefty:a1,misc1:b9,rightshoulder:b4,rightstick:b7,rightx:a3,righty:a4,start:b6,x:b3,y:b2,platform:Windows,", "03000000ef0500000300000000000000,AxisPad,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,start:b11,x:b0,y:b1,platform:Windows,", "03000000d6200000e557000000000000,Batarang,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000c01100001352000000000000,Battalife Joystick,a:b6,b:b7,back:b2,leftshoulder:b0,leftx:a0,lefty:a1,rightshoulder:b1,start:b3,x:b4,y:b5,platform:Windows,", "030000006f0e00003201000000000000,Battlefield 4 PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000d62000002a79000000000000,BDA PS4 Fightpad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000bc2000006012000000000000,Betop 2126F,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000bc2000000055000000000000,Betop BFM Gamepad,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000bc2000006312000000000000,Betop Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000bc2000006321000000000000,BETOP CONTROLLER,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000bc2000006412000000000000,Betop Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000c01100000555000000000000,Betop Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000c01100000655000000000000,Betop Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000790000000700000000000000,Betop Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b3,y:b0,platform:Windows,", "03000000808300000300000000000000,Betop Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b3,y:b0,platform:Windows,", "030000006b1400000055000000000000,Bigben PS3 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000006b1400000103000000000000,Bigben PS3 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Windows,", "03000000120c0000210e000000000000,Brook Mars,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "0300000066f700000500000000000000,BrutalLegendTest,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b3,platform:Windows,", "03000000d81d00000b00000000000000,BUFFALO BSGP1601 Series ,a:b5,b:b3,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b8,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b9,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b13,x:b4,y:b2,platform:Windows,", "03000000e82000006058000000000000,Cideko AK08b,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000457500000401000000000000,Cobra,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000005e0400008e02000000000000,Controller (XBOX 360 For Windows),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:+a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:-a2,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "030000005e040000a102000000000000,Controller (Xbox 360 Wireless Receiver for Windows),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:+a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:-a2,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "030000005e040000ff02000000000000,Controller (Xbox One For Windows) - Wired,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:+a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:-a2,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "030000005e040000ea02000000000000,Controller (Xbox One For Windows) - Wireless,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:+a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:-a2,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "03000000260900008888000000000000,Cyber Gadget GameCube Controller,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:a4,rightx:a2,righty:a3~,start:b7,x:b2,y:b3,platform:Windows,", "03000000a306000022f6000000000000,Cyborg V.3 Rumble Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:+a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:-a3,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000451300000830000000000000,Defender Game Racer X7,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000007d0400000840000000000000,Destroyer Tiltpad,+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b1,b:b2,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,x:b0,y:b3,platform:Windows,", "03000000791d00000103000000000000,Dual Box WII,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000bd12000002e0000000000000,Dual USB Vibration Joystick,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b9,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b10,righttrigger:b5,rightx:a3,righty:a2,start:b11,x:b3,y:b0,platform:Windows,", "030000008f0e00000910000000000000,DualShock 2,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b9,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b10,righttrigger:b5,rightx:a3,righty:a2,start:b11,x:b3,y:b0,platform:Windows,", "030000006f0e00003001000000000000,EA SPORTS PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000b80500000410000000000000,Elecom Gamepad,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b1,platform:Windows,", "03000000b80500000610000000000000,Elecom Gamepad,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b1,platform:Windows,", "03000000120c0000f61c000000000000,Elite,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000008f0e00000f31000000000000,EXEQ,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Windows,", "03000000341a00000108000000000000,EXEQ RF USB Gamepad 8206,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000006f0e00008401000000000000,Faceoff Deluxe+ Audio Wired Controller for Nintendo Switch,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00008001000000000000,Faceoff Wired Pro Controller for Nintendo Switch,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000852100000201000000000000,FF-GP1,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00008500000000000000,Fighting Commander 2016 PS3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00008400000000000000,Fighting Commander 5,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00008700000000000000,Fighting Stick mini 4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00008800000000000000,Fighting Stick mini 4,a:b1,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b8,x:b0,y:b3,platform:Windows,", "030000000d0f00002700000000000000,FIGHTING STICK V3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "78696e70757403000000000000000000,Fightstick TES,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,lefttrigger:a2,rightshoulder:b5,righttrigger:a5,start:b7,x:b2,y:b3,platform:Windows,", "03000000790000002201000000000000,Game Controller for PC,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "0300000066f700000100000000000000,Game VIB Joystick,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,start:b11,x:b0,y:b1,platform:Windows,", "03000000260900002625000000000000,Gamecube Controller,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b6,lefttrigger:a4,leftx:a0,lefty:a1,righttrigger:a5,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Windows,", "03000000790000004618000000000000,GameCube Controller Adapter,a:b1,b:b2,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,rightx:a5,righty:a2,start:b9,x:b0,y:b3,platform:Windows,", "030000008f0e00000d31000000000000,GAMEPAD 3 TURBO,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000280400000140000000000000,GamePad Pro USB,a:b1,b:b2,back:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "03000000ac0500003d03000000000000,GameSir,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000ac0500004d04000000000000,GameSir,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000ffff00000000000000000000,GameStop Gamepad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000c01100000140000000000000,GameStop PS4 Fun Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000009b2800003200000000000000,GC/N64 to USB v3.4,a:b0,b:b7,dpdown:b11,dpleft:b12,dpright:b13,dpup:b10,lefttrigger:+a5,leftx:a0,lefty:a1,rightshoulder:b2,righttrigger:+a2,rightx:a3,righty:a4,start:b3,x:b1,y:b8,platform:Windows,", "030000009b2800006000000000000000,GC/N64 to USB v3.6,a:b0,b:b7,dpdown:b11,dpleft:b12,dpright:b13,dpup:b10,lefttrigger:+a5,leftx:a0,lefty:a1,rightshoulder:b2,righttrigger:+a2,rightx:a3,righty:a4,start:b3,x:b1,y:b8,platform:Windows,", "030000008305000009a0000000000000,Genius,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000008305000031b0000000000000,Genius Maxfire Blaze 3,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000451300000010000000000000,Genius Maxfire Grandias 12,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000005c1a00003330000000000000,Genius MaxFire Grandias 12V,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b4,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b2,y:b3,platform:Windows,", "03000000300f00000b01000000000000,GGE909 Recoil Pad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "03000000f0250000c283000000000000,Gioteck,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000f025000021c1000000000000,Gioteck PS3 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000f0250000c383000000000000,Gioteck VX2 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000f0250000c483000000000000,Gioteck VX2 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "030000007d0400000540000000000000,Gravis Eliminator GamePad Pro,a:b1,b:b2,back:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "03000000341a00000302000000000000,Hama Scorpad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00004900000000000000,Hatsune Miku Sho Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000001008000001e1000000000000,Havit HV-G60,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b3,y:b0,platform:Windows,", "03000000d81400000862000000000000,HitBox Edition Cthulhu+,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b5,lefttrigger:b4,rightshoulder:b7,righttrigger:b6,start:b9,x:b0,y:b3,platform:Windows,", "03000000632500002605000000000000,HJD-X,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "030000000d0f00002d00000000000000,Hori Fighting Commander 3 Pro,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00005f00000000000000,Hori Fighting Commander 4 (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00005e00000000000000,Hori Fighting Commander 4 (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00004000000000000000,Hori Fighting Stick Mini 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b5,lefttrigger:b4,rightshoulder:b7,righttrigger:b6,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00005400000000000000,Hori Pad 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00000900000000000000,Hori Pad 3 Turbo,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00004d00000000000000,Hori Pad A,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00009200000000000000,Hori Pokken Tournament DX Pro Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00001600000000007803,HORI Real Arcade Pro EX-SE (Xbox 360),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,lefttrigger:a2,rightshoulder:b5,righttrigger:a5,start:b7,x:b2,y:b3,platform:Windows,", "030000000d0f00009c00000000000000,Hori TAC Pro,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f0000c100000000000000,Horipad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00006e00000000000000,HORIPAD 4 (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00006600000000000000,HORIPAD 4 (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00005500000000000000,Horipad 4 FPS,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f0000ee00000000000000,HORIPAD mini4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000250900000017000000000000,HRAP2 on PS/SS/N64 Joypad to USB BOX,a:b2,b:b1,back:b9,leftshoulder:b5,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b6,start:b8,x:b3,y:b0,platform:Windows,", "030000008f0e00001330000000000000,HuiJia SNES Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b9,x:b3,y:b0,platform:Windows,", "03000000d81d00000f00000000000000,iBUFFALO BSGP1204 Series,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000d81d00001000000000000000,iBUFFALO BSGP1204P Series,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000830500006020000000000000,iBuffalo SNES Controller,a:b1,b:b0,back:b6,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b7,x:b3,y:b2,platform:Windows,", "03000000b50700001403000000000000,Impact Black,a:b2,b:b3,back:b8,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Windows,", "030000006f0e00002401000000000000,INJUSTICE FightStick PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "03000000ac0500002c02000000000000,IPEGA,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b8,leftstick:b13,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b9,rightstick:b14,righttrigger:b7,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000491900000204000000000000,Ipega PG-9023,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000491900000304000000000000,Ipega PG-9087 - Bluetooth Gamepad,+righty:+a5,-righty:-a4,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,start:b11,x:b3,y:b4,platform:Windows,", "030000006e0500000a20000000000000,JC-DUX60 ELECOM MMO Gamepad,a:b2,b:b3,back:b17,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b8,leftstick:b14,lefttrigger:b12,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b15,righttrigger:b13,rightx:a3,righty:a4,start:b20,x:b0,y:b1,platform:Windows,", "030000006e0500000520000000000000,JC-P301U,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a2,righty:a3,start:b11,x:b0,y:b1,platform:Windows,", "030000006e0500000320000000000000,JC-U3613M (DInput),a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a2,righty:a3,start:b11,x:b0,y:b1,platform:Windows,", "030000006e0500000720000000000000,JC-W01U,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b1,platform:Windows,", "030000007e0500000620000000000000,Joy-Con (L),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b13,leftshoulder:b4,leftstick:b10,rightshoulder:b5,start:b8,x:b2,y:b3,platform:Windows,", "030000007e0500000620000001000000,Joy-Con (L),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b13,leftshoulder:b4,leftstick:b10,rightshoulder:b5,start:b8,x:b2,y:b3,platform:Windows,", "030000007e0500000720000000000000,Joy-Con (R),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b12,leftshoulder:b4,leftstick:b11,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Windows,", "030000007e0500000720000001000000,Joy-Con (R),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b12,leftshoulder:b4,leftstick:b11,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Windows,", "03000000bd12000003c0000010010000,Joypad Alpha Shock,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000bd12000003c0000000000000,JY-P70UR,a:b1,b:b0,back:b5,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b8,rightstick:b11,righttrigger:b9,rightx:a3,righty:a2,start:b4,x:b3,y:b2,platform:Windows,", "03000000242f00002d00000000000000,JYS Wireless Adapter,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000242f00008a00000000000000,JYS Wireless Adapter,a:b1,b:b4,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b0,y:b3,platform:Windows,", "03000000790000000200000000000000,King PS3 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b3,y:b0,platform:Windows,", "030000006d040000d1ca000000000000,Logitech ChillStream,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006d040000d2ca000000000000,Logitech Cordless Precision,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006d04000011c2000000000000,Logitech Cordless Wingman,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b9,leftstick:b5,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b10,rightstick:b2,righttrigger:b7,rightx:a3,righty:a4,x:b4,platform:Windows,", "030000006d04000016c2000000000000,Logitech Dual Action,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006d04000018c2000000000000,Logitech F510 Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006d04000019c2000000000000,Logitech F710 Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006d0400001ac2000000000000,Logitech Precision Gamepad,a:b1,b:b2,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000006d0400000ac2000000000000,Logitech WingMan RumblePad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b2,rightx:a3,righty:a4,x:b3,y:b4,platform:Windows,", "03000000380700006652000000000000,Mad Catz C.T.R.L.R,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700005032000000000000,Mad Catz FightPad PRO (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700005082000000000000,Mad Catz FightPad PRO (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008433000000000000,Mad Catz FightStick TE S+ (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008483000000000000,Mad Catz FightStick TE S+ (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008134000000000000,Mad Catz FightStick TE2+ PS3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b7,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b4,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008184000000000000,Mad Catz FightStick TE2+ PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b5,leftstick:b10,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b4,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700006252000000000000,Mad Catz Micro C.T.R.L.R,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008034000000000000,Mad Catz TE2 PS3 Fightstick,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008084000000000000,Mad Catz TE2 PS4 Fightstick,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700008532000000000000,Madcatz Arcade Fightstick TE S PS3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700003888000000000000,Madcatz Arcade Fightstick TE S+ PS3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000380700001888000000000000,MadCatz SFIV FightStick PS3,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b5,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b4,righttrigger:b6,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000380700008081000000000000,MADCATZ SFV Arcade FightStick Alpha PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000002a0600001024000000000000,Matricom,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b2,y:b3,platform:Windows,", "030000009f000000adbb000000000000,MaxJoypad Virtual Controller,a:b1,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Windows,", "03000000250900000128000000000000,Mayflash Arcade Stick,a:b1,b:b2,back:b8,leftshoulder:b0,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b3,righttrigger:b7,start:b9,x:b5,y:b6,platform:Windows,", "03000000790000004418000000000000,Mayflash GameCube Controller,a:b1,b:b2,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b0,y:b3,platform:Windows,", "03000000790000004318000000000000,Mayflash GameCube Controller Adapter,a:b1,b:b2,back:b0,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b0,leftshoulder:b4,leftstick:b0,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b0,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b0,y:b3,platform:Windows,", "03000000242f00007300000000000000,Mayflash Magic NS,a:b1,b:b4,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b0,y:b3,platform:Windows,", "0300000079000000d218000000000000,Mayflash Magic NS,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000d620000010a7000000000000,Mayflash Magic NS,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000008f0e00001030000000000000,Mayflash USB Adapter for original Sega Saturn controller,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,lefttrigger:b5,rightshoulder:b2,righttrigger:b7,start:b9,x:b3,y:b4,platform:Windows,", "0300000025090000e803000000000000,Mayflash Wii Classic Controller,a:b1,b:b0,back:b8,dpdown:b13,dpleft:b12,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Windows,", "03000000790000000018000000000000,Mayflash WiiU Pro Game Controller Adapter (DInput),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000790000002418000000000000,Mega Drive,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,rightshoulder:b2,start:b9,x:b3,y:b4,platform:Windows,", "03000000380700006382000000000000,MLG GamePad PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000c62400002a89000000000000,MOGA XP5-A Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b15,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000c62400002b89000000000000,MOGA XP5-A Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000c62400001a89000000000000,MOGA XP5-X Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000c62400001b89000000000000,MOGA XP5-X Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000efbe0000edfe000000000000,Monect Virtual Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b0,platform:Windows,", "03000000250900006688000000000000,MP-8866 Super Dual Box,a:b2,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Windows,", "030000006b140000010c000000000000,NACON GC-400ES,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000921200004b46000000000000,NES 2-port Adapter,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,start:b11,platform:Windows,", "03000000790000004518000000000000,NEXILUX GAMECUBE Controller Adapter,platform:Windows,a:b1,b:b0,x:b2,y:b3,start:b9,rightshoulder:b7,dpup:h0.1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,leftx:a0,lefty:a1,rightx:a5,righty:a2,lefttrigger:a3,righttrigger:a4,", "030000001008000001e5000000000000,NEXT SNES Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,righttrigger:b6,start:b9,x:b3,y:b0,platform:Windows,", "03000000152000000182000000000000,NGDS,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b3,y:b0,platform:Windows,", "03000000bd12000015d0000000000000,Nintendo Retrolink USB Super SNES Classic Controller,a:b2,b:b1,back:b8,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Windows,", "030000007e0500000920000000000000,Nintendo Switch Pro Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000000d0500000308000000000000,Nostromo N45,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b9,leftshoulder:b4,leftstick:b12,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b10,x:b2,y:b3,platform:Windows,", "03000000550900001472000000000000,NVIDIA Controller v01.04,a:b11,b:b10,back:b13,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b7,leftstick:b5,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b4,righttrigger:a5,rightx:a3,righty:a6,start:b3,x:b9,y:b8,platform:Windows,", "030000004b120000014d000000000000,NYKO AIRFLO,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:a3,leftstick:a0,lefttrigger:b6,rightshoulder:b5,rightstick:a2,righttrigger:b7,start:b9,x:b2,y:b3,platform:Windows,", "03000000d620000013a7000000000000,NSW wired controller,platform:Windows,a:b1,b:b2,x:b0,y:b3,back:b8,guide:b12,start:b9,leftstick:b10,rightstick:b11,leftshoulder:b4,rightshoulder:b5,dpup:h0.1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:b6,righttrigger:b7,", "03000000782300000a10000000000000,Onlive Wireless Controller,a:b15,b:b14,back:b7,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b5,leftshoulder:b11,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b10,rightstick:b8,righttrigger:a5,rightx:a3,righty:a4,start:b6,x:b13,y:b12,platform:Windows,", "03000000d62000006d57000000000000,OPP PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006b14000001a1000000000000,Orange Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b2,y:b3,platform:Windows,", "03000000362800000100000000000000,OUYA Game Controller,a:b0,b:b3,dpdown:b9,dpleft:b10,dpright:b11,dpup:b8,guide:b14,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:b13,rightx:a3,righty:a4,x:b1,y:b2,platform:Windows,", "03000000120c0000f60e000000000000,P4 Wired Gamepad,a:b1,b:b2,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b5,lefttrigger:b7,rightshoulder:b4,righttrigger:b6,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00000901000000000000,PDP Versus Fighting Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000008f0e00000300000000000000,Piranha xtreme,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "030000004c050000da0c000000000000,PlayStation Classic Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,lefttrigger:b4,rightshoulder:b7,righttrigger:b5,start:b9,x:b3,y:b0,platform:Windows,", "030000004c0500003713000000000000,PlayStation Vita,a:b1,b:b2,back:b8,dpdown:b13,dpleft:b15,dpright:b14,dpup:b12,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000d62000006dca000000000000,PowerA Pro Ex,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000d62000009557000000000000,Pro Elite PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000d62000009f31000000000000,Pro Ex mini PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000d6200000c757000000000000,Pro Ex mini PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000632500002306000000000000,PS Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Windows,", "03000000e30500009605000000000000,PS to USB convert cable,a:b2,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Windows,", "03000000100800000100000000000000,PS1 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "030000008f0e00007530000000000000,PS1 Controller,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b1,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000100800000300000000000000,PS2 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a4,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "03000000250900008888000000000000,PS2 Controller,a:b2,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Windows,", "03000000666600006706000000000000,PS2 Controller,a:b2,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,leftshoulder:b6,leftstick:b9,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b10,righttrigger:b5,rightx:a2,righty:a3,start:b11,x:b3,y:b0,platform:Windows,", "030000006b1400000303000000000000,PS2 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000009d0d00001330000000000000,PS2 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000250900000500000000000000,PS3 Controller,a:b2,b:b1,back:b9,dpdown:h0.8,dpleft:h0.4,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b0,y:b3,platform:Windows,", "030000004c0500006802000000000000,PS3 Controller,a:b2,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b10,lefttrigger:a3~,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:a4~,rightx:a2,righty:a5,start:b8,x:b3,y:b0,platform:Windows,", "03000000632500007505000000000000,PS3 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000888800000803000000000000,PS3 Controller,a:b2,b:b1,back:b8,dpdown:h0.8,dpleft:h0.4,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b9,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:b7,rightx:a3,righty:a4,start:b11,x:b0,y:b3,platform:Windows,", "030000008f0e00001431000000000000,PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000003807000056a8000000000000,PS3 RF pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000100000008200000000000000,PS360+ v1.66,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:h0.4,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000004c050000a00b000000000000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000004c050000c405000000000000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000004c050000cc09000000000000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000004c050000e60c000000000000,PS5 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b13,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000ff000000cb01000000000000,PSP,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,start:b7,x:b2,y:b3,platform:Windows,", "03000000300f00000011000000000000,QanBa Arcade JoyStick 1008,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b10,x:b0,y:b3,platform:Windows,", "03000000300f00001611000000000000,QanBa Arcade JoyStick 4018,a:b1,b:b2,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b9,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b8,x:b0,y:b3,platform:Windows,", "03000000222c00000020000000000000,QANBA DRONE ARCADE JOYSTICK,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:a3,rightshoulder:b5,righttrigger:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000300f00001210000000000000,QanBa Joystick Plus,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Windows,", "03000000341a00000104000000000000,QanBa Joystick Q4RAF,a:b5,b:b6,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b0,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b3,righttrigger:b7,start:b9,x:b1,y:b2,platform:Windows,", "03000000222c00000223000000000000,Qanba Obsidian Arcade Joystick PS3 Mode,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000222c00000023000000000000,Qanba Obsidian Arcade Joystick PS4 Mode,a:b1,b:b2,back:b13,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000321500000003000000000000,Razer Hydra,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a2,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "03000000321500000204000000000000,Razer Panthera (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000321500000104000000000000,Razer Panthera (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000321500000507000000000000,Razer Raiju Mobile,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000321500000707000000000000,Razer Raiju Mobile,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000321500000011000000000000,Razer Raion Fightpad for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000321500000009000000000000,Razer Serval,+lefty:+a2,-lefty:-a1,a:b0,b:b1,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b8,leftx:a0,rightshoulder:b5,rightstick:b9,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "030000000d0f00001100000000000000,REAL ARCADE PRO.3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,rightshoulder:b5,rightstick:b11,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00006a00000000000000,Real Arcade Pro.4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00006b00000000000000,Real Arcade Pro.4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00008a00000000000000,Real Arcade Pro.4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00008b00000000000000,Real Arcade Pro.4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00007000000000000000,REAL ARCADE PRO.4 VLX,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,rightshoulder:b5,rightstick:b11,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00002200000000000000,REAL ARCADE Pro.V3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00005b00000000000000,Real Arcade Pro.V4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000000d0f00005c00000000000000,Real Arcade Pro.V4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000790000001100000000000000,Retrolink SNES Controller,a:b2,b:b1,back:b8,dpdown:+a4,dpleft:-a3,dpright:+a3,dpup:-a4,leftshoulder:b4,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Windows,", "03000000bd12000013d0000000000000,Retrolink USB SEGA Saturn Classic,a:b0,b:b1,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b5,lefttrigger:b6,rightshoulder:b2,righttrigger:b7,start:b8,x:b3,y:b4,platform:Windows,", "0300000000f000000300000000000000,RetroUSB.com RetroPad,a:b1,b:b5,back:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b3,x:b0,y:b4,platform:Windows,", "0300000000f00000f100000000000000,RetroUSB.com Super RetroPort,a:b1,b:b5,back:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b3,x:b0,y:b4,platform:Windows,", "030000006b140000010d000000000000,Revolution Pro Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000006b140000020d000000000000,Revolution Pro Controller 2(1/2),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000006b140000130d000000000000,Revolution Pro Controller 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00001e01000000000000,Rock Candy PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00002801000000000000,Rock Candy PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00002f01000000000000,Rock Candy PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000004f04000003d0000000000000,run'n'drive,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b7,leftshoulder:a3,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:a4,rightstick:b11,righttrigger:b5,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "03000000a30600001af5000000000000,Saitek Cyborg,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000a306000023f6000000000000,Saitek Cyborg V.1 Game pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000300f00001201000000000000,Saitek Dual Analog Pad,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Windows,", "03000000a30600000701000000000000,Saitek P220,a:b2,b:b3,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,lefttrigger:b7,rightshoulder:b4,righttrigger:b5,x:b0,y:b1,platform:Windows,", "03000000a30600000cff000000000000,Saitek P2500 Force Rumble Pad,a:b2,b:b3,back:b11,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a2,righty:a3,start:b10,x:b0,y:b1,platform:Windows,", "03000000a30600000c04000000000000,Saitek P2900,a:b1,b:b2,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b3,platform:Windows,", "03000000300f00001001000000000000,Saitek P480 Rumble Pad,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Windows,", "03000000a30600000b04000000000000,Saitek P990,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b3,platform:Windows,", "03000000a30600000b04000000010000,Saitek P990 Dual Analog Pad,a:b1,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b8,x:b0,y:b3,platform:Windows,", "03000000a30600002106000000000000,Saitek PS1000,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000a306000020f6000000000000,Saitek PS2700,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Windows,", "03000000300f00001101000000000000,Saitek Rumble Pad,a:b2,b:b3,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Windows,", "03000000730700000401000000000000,Sanwa PlayOnline Mobile,a:b0,b:b1,back:b2,leftx:a0,lefty:a1,start:b3,platform:Windows,", "0300000000050000289b000000000000,Saturn_Adapter_2.0,a:b1,b:b2,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,start:b9,x:b0,y:b3,platform:Windows,", "030000009b2800000500000000000000,Saturn_Adapter_2.0,a:b1,b:b2,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,start:b9,x:b0,y:b3,platform:Windows,", "03000000a30c00002500000000000000,Sega Genesis Mini 3B controller,a:b2,b:b1,dpdown:+a4,dpleft:-a3,dpright:+a3,dpup:-a4,righttrigger:b5,start:b9,platform:Windows,", "03000000a30c00002400000000000000,Sega Mega Drive Mini 6B controller,a:b2,b:b1,dpdown:+a4,dpleft:-a3,dpright:+a3,dpup:-a4,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Windows,", "03000000341a00000208000000000000,SL-6555-SBK,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:-a4,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a4,rightx:a3,righty:a2,start:b7,x:b2,y:b3,platform:Windows,", "03000000341a00000908000000000000,SL-6566,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000008f0e00000800000000000000,SpeedLink Strike FX,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000c01100000591000000000000,Speedlink Torid,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000d11800000094000000000000,Stadia Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:b12,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:b11,rightx:a3,righty:a4,start:b9,x:b2,y:b3,platform:Windows,", "03000000110100001914000000000000,SteelSeries,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftstick:b13,lefttrigger:b6,leftx:a0,lefty:a1,rightstick:b14,righttrigger:b7,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000381000001214000000000000,SteelSeries Free,a:b0,b:b1,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Windows,", "03000000110100003114000000000000,SteelSeries Stratus Duo,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000381000001814000000000000,SteelSeries Stratus XL,a:b0,b:b1,back:b18,dpdown:b13,dpleft:b14,dpright:b15,dpup:b12,guide:b19,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b2,y:b3,platform:Windows,", "03000000790000001c18000000000000,STK-7024X,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000ff1100003133000000000000,SVEN X-PAD,a:b2,b:b3,back:b4,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b9,rightx:a2,righty:a4,start:b5,x:b0,y:b1,platform:Windows,", "03000000d620000011a7000000000000,Switch,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000457500002211000000000000,SZMY-POWER PC Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000004f04000007d0000000000000,T Mini Wireless,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000004f0400000ab1000000000000,T.16000M,a:b0,b:b1,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b11,leftshoulder:b4,lefttrigger:b9,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:b7,start:b10,x:b2,y:b3,platform:Windows,", "03000000fa1900000706000000000000,Team 5,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000b50700001203000000000000,Techmobility X6-38V,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Windows,", "030000004f04000015b3000000000000,Thrustmaster Dual Analog 4,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Windows,", "030000004f04000023b3000000000000,Thrustmaster Dual Trigger 3-in-1,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000004f0400000ed0000000000000,ThrustMaster eSwap PRO Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "030000004f04000000b3000000000000,Thrustmaster Firestorm Dual Power,a:b0,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b11,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b12,righttrigger:b7,rightx:a2,righty:a3,start:b10,x:b1,y:b3,platform:Windows,", "030000004f04000004b3000000000000,Thrustmaster Firestorm Dual Power 3,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Windows,", "03000000666600000488000000000000,TigerGame PS/PS2 Game Controller Adapter,a:b2,b:b1,back:b9,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Windows,", "03000000d62000006000000000000000,Tournament PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "030000005f140000c501000000000000,Trust Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000b80500000210000000000000,Trust Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "030000004f04000087b6000000000000,TWCS Throttle,dpdown:b8,dpleft:b9,dpright:b7,dpup:b6,leftstick:b5,lefttrigger:-a5,leftx:a0,lefty:a1,righttrigger:+a5,platform:Windows,", "03000000d90400000200000000000000,TwinShock PS2,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "030000006e0500001320000000000000,U4113,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000101c0000171c000000000000,uRage Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000300f00000701000000000000,USB 4-Axis 12-Button Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "03000000341a00002308000000000000,USB gamepad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "030000005509000000b4000000000000,USB gamepad,a:b10,b:b11,back:b5,dpdown:b1,dpleft:b2,dpright:b3,dpup:b0,guide:b14,leftshoulder:b8,leftstick:b6,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b9,rightstick:b7,righttrigger:a5,rightx:a2,righty:a3,start:b4,x:b12,y:b13,platform:Windows,", "030000006b1400000203000000000000,USB gamepad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000790000000a00000000000000,USB gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b3,y:b0,platform:Windows,", "03000000f0250000c183000000000000,USB gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000ff1100004133000000000000,USB gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a4,righty:a2,start:b9,x:b3,y:b0,platform:Windows,", "03000000632500002305000000000000,USB Vibration Joystick (BM),a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000790000001a18000000000000,Venom,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Windows,", "03000000790000001b18000000000000,Venom Arcade Joystick,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00000302000000000000,Victrix Pro Fight Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "030000006f0e00000702000000000000,Victrix Pro Fight Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Windows,", "0300000034120000adbe000000000000,vJoy Device,a:b0,b:b1,back:b15,dpdown:b6,dpleft:b7,dpright:b8,dpup:b5,guide:b16,leftshoulder:b9,leftstick:b13,lefttrigger:b11,leftx:a0,lefty:a1,rightshoulder:b10,rightstick:b14,righttrigger:b12,rightx:a3,righty:a4,start:b4,x:b2,y:b3,platform:Windows,", "030000005e0400000a0b000000000000,Xbox Adaptive Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:+a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:-a2,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "030000005e040000130b000000000000,Xbox Series Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "03000000341a00000608000000000000,Xeox,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000450c00002043000000000000,XEOX Gamepad SL-6556-BK,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Windows,", "03000000ac0500005b05000000000000,Xiaoji Gamesir-G3w,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Windows,", "03000000172700004431000000000000,XiaoMi Game Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b20,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a7,rightx:a2,righty:a5,start:b11,x:b3,y:b4,platform:Windows,", "03000000786901006e70000000000000,XInput Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Windows,", "03000000790000004f18000000000000,ZD-T Android,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b3,y:b4,platform:Windows,", "03000000120c0000101e000000000000,ZEROPLUS P4 Wired Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Windows,", "78696e70757401000000000000000000,XInput Gamepad (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", "78696e70757402000000000000000000,XInput Wheel (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", "78696e70757403000000000000000000,XInput Arcade Stick (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", "78696e70757404000000000000000000,XInput Flight Stick (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", "78696e70757405000000000000000000,XInput Dance Pad (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", "78696e70757406000000000000000000,XInput Guitar (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", "78696e70757408000000000000000000,XInput Drum Kit (GLFW),platform:Windows,a:b0,b:b1,x:b2,y:b3,leftshoulder:b4,rightshoulder:b5,back:b6,start:b7,leftstick:b8,rightstick:b9,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:a4,righttrigger:a5,dpup:h0.1,dpright:h0.2,dpdown:h0.4,dpleft:h0.8,", #endif // GLFW_BUILD_WIN32_MAPPINGS #if defined(GLFW_BUILD_COCOA_MAPPINGS) "030000008f0e00000300000009010000,2In1 USB Joystick,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000c82d00000090000001000000,8BitDo FC30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00001038000000010000,8BitDo FC30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00000650000001000000,8BitDo M30,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b8,lefttrigger:b9,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:b7,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000c82d00005106000000010000,8BitDo M30 Gamepad,a:b1,b:b0,back:b10,guide:b2,leftshoulder:b6,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:a4,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00001590000001000000,8BitDo N30 Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00006528000000010000,8BitDo N30 Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "030000003512000012ab000001000000,8BitDo NES30 Gamepad,a:b1,b:b0,back:b10,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000022000000090000001000000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000203800000900000000010000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00000190000001000000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000102800000900000000000000,8Bitdo SFC30 GamePad Joystick,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00001290000001000000,8BitDo SN30 Gamepad,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00004028000000010000,8Bitdo SN30 GamePad,a:b1,b:b0,x:b4,y:b3,back:b10,start:b11,leftshoulder:b6,rightshoulder:b7,dpup:-a1,dpdown:+a1,dpleft:-a0,dpright:+a0,platform:Mac OS X,", "03000000c82d00000160000001000000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00000161000000010000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a5,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00000260000001000000,8BitDo SN30 Pro+,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00000261000000010000,8BitDo SN30 Pro+,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00000031000001000000,8BitDo Wireless Adapter,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000c82d00001890000001000000,8BitDo Zero 2,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000c82d00003032000000010000,8BitDo Zero 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,rightx:a2,righty:a31,start:b11,x:b4,y:b3,platform:Mac OS X,", "03000000a00500003232000008010000,8Bitdo Zero GamePad,a:b0,b:b1,back:b10,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000a00500003232000009010000,8Bitdo Zero GamePad,a:b0,b:b1,back:b10,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000a30c00002700000003030000,Astro City Mini,a:b2,b:b1,back:b8,leftx:a3,lefty:a4,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000a30c00002800000003030000,Astro City Mini,a:b2,b:b1,back:b8,leftx:a3,lefty:a4,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000050b00000045000031000000,ASUS Gamepad,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Mac OS X,", "03000000ef0500000300000000020000,AxisPad,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,start:b11,x:b0,y:b1,platform:Mac OS X,", "03000000491900001904000001010000,Amazon Luna Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b9,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b7,x:b2,y:b3,platform:Mac OS X,", "03000000710100001904000000010000,Amazon Luna Controller,a:b0,b:b1,back:b11,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,misc1:b9,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Mac OS X,", "03000000c62400001a89000000010000,BDA MOGA XP5-X Plus,a:b0,b:b1,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b14,leftshoulder:b6,leftstick:b15,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b16,righttrigger:a4,rightx:a2,righty:a3,start:b13,x:b3,y:b4,platform:Mac OS X,", "03000000c62400001b89000000010000,BDA MOGA XP5-X Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000d62000002a79000000010000,BDA PS4 Fightpad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000120c0000200e000000010000,Brook Mars,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000120c0000210e000000010000,Brook Mars,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000008305000031b0000000000000,Cideko AK08b,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000260900008888000088020000,Cyber Gadget GameCube Controller,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:a5,rightx:a2,righty:a3~,start:b7,x:b2,y:b3,platform:Mac OS X,", "03000000a306000022f6000001030000,Cyborg V.3 Rumble Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:+a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:-a3,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000790000004618000000010000,GameCube Controller Adapter,a:b4,b:b0,dpdown:b56,dpleft:b60,dpright:b52,dpup:b48,lefttrigger:a12,leftx:a0,lefty:a4,rightshoulder:b28,righttrigger:a16,rightx:a20,righty:a8,start:b36,x:b8,y:b12,platform:Mac OS X,", "03000000ad1b000001f9000000000000,Gamestop BB-070 X360 Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "0500000047532047616d657061640000,GameStop Gamepad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Mac OS X,", "03000000c01100000140000000010000,GameStop PS4 Fun Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006f0e00000102000000000000,GameStop Xbox 360 Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000007d0400000540000001010000,Gravis Eliminator GamePad Pro,a:b1,b:b2,back:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000280400000140000000020000,Gravis Gamepad Pro,a:b1,b:b2,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000008f0e00000300000007010000,GreenAsia Inc. USB Joystick,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Mac OS X,", "030000000d0f00002d00000000100000,Hori Fighting Commander 3 Pro,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00005f00000000010000,Hori Fighting Commander 4 (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00005e00000000010000,Hori Fighting Commander 4 (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00005f00000000000000,HORI Fighting Commander 4 PS3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00005e00000000000000,HORI Fighting Commander 4 PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00004d00000000000000,HORI Gem Pad 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00009200000000010000,Hori Pokken Tournament DX Pro Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00006e00000000010000,HORIPAD 4 (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00006600000000010000,HORIPAD 4 (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f00006600000000000000,HORIPAD FPS PLUS 4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000000d0f0000ee00000000010000,HORIPAD mini4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000008f0e00001330000011010000,HuiJia SNES Controller,a:b4,b:b2,back:b16,dpdown:+a2,dpleft:-a0,dpright:+a0,dpup:-a2,leftshoulder:b12,rightshoulder:b14,start:b18,x:b6,y:b0,platform:Mac OS X,", "03000000830500006020000000010000,iBuffalo SNES Controller,a:b1,b:b0,back:b6,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b7,x:b3,y:b2,platform:Mac OS X,", "03000000830500006020000000000000,iBuffalo USB 2-axis 8-button Gamepad,a:b1,b:b0,back:b6,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,start:b7,x:b3,y:b2,platform:Mac OS X,", "030000007e0500000620000001000000,Joy-Con (L),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b13,leftshoulder:b4,leftstick:b10,rightshoulder:b5,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000007e0500000720000001000000,Joy-Con (R),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b12,leftshoulder:b4,leftstick:b11,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Mac OS X,", "03000000242f00002d00000007010000,JYS Wireless Adapter,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Mac OS X,", "030000006d04000016c2000000020000,Logitech Dual Action,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d04000016c2000000030000,Logitech Dual Action,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d04000016c2000014040000,Logitech Dual Action,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d04000016c2000000000000,Logitech F310 Gamepad (DInput),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d04000018c2000000000000,Logitech F510 Gamepad (DInput),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d04000019c2000005030000,Logitech F710,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d0400001fc2000000000000,Logitech F710 Gamepad (XInput),a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000006d04000018c2000000010000,Logitech RumblePad 2 USB,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1~,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3~,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006d04000019c2000000000000,Logitech Wireless Gamepad (DInput),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000380700005032000000010000,Mad Catz FightPad PRO (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000380700005082000000010000,Mad Catz FightPad PRO (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000380700008433000000010000,Mad Catz FightStick TE S+ (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000380700008483000000010000,Mad Catz FightStick TE S+ (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000790000000600000007010000,Marvo GT-004,a:b2,b:b1,x:b3,y:b0,back:b8,start:b9,leftstick:b10,rightstick:b11,leftshoulder:b4,rightshoulder:b5,dpup:h0.1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,leftx:a0,lefty:a1,rightx:a2,righty:a3,lefttrigger:b6,righttrigger:b7,platform:Mac OS X,", "03000000790000004418000000010000,Mayflash GameCube Controller,a:b1,b:b2,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000242f00007300000000020000,Mayflash Magic NS,a:b1,b:b4,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b0,y:b3,platform:Mac OS X,", "0300000079000000d218000026010000,Mayflash Magic NS,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000d620000010a7000003010000,Mayflash Magic NS,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "0300000025090000e803000000000000,Mayflash Wii Classic Controller,a:b1,b:b0,back:b8,dpdown:b13,dpleft:b12,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Mac OS X,", "03000000790000000018000000010000,Mayflash Wii U Pro Controller Adapter,a:b4,b:b8,back:b32,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b16,leftstick:b40,lefttrigger:b24,leftx:a0,lefty:a4,rightshoulder:b20,rightstick:b44,righttrigger:b28,rightx:a8,righty:a12,start:b36,x:b0,y:b12,platform:Mac OS X,", "03000000790000000018000000000000,Mayflash WiiU Pro Game Controller Adapter (DInput),a:b4,b:b8,back:b32,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b16,leftstick:b40,lefttrigger:b24,leftx:a0,lefty:a4,rightshoulder:b20,rightstick:b44,righttrigger:b28,rightx:a8,righty:a12,start:b36,x:b0,y:b12,platform:Mac OS X,", "03000000d8140000cecf000000000000,MC Cthulhu,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000005e0400002700000001010000,Microsoft SideWinder Plug & Play Game Pad,a:b0,b:b1,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,lefttrigger:b4,leftx:a0,lefty:a1,righttrigger:b5,x:b2,y:b3,platform:Mac OS X,", "03000000d62000007162000001000000,Moga Pro 2 HID,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Mac OS X,", "03000000c62400002a89000000010000,MOGA XP5-A Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b21,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000c62400002b89000000010000,MOGA XP5-A Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000632500007505000000020000,NEOGEO mini PAD Controller,a:b1,b:b0,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,start:b9,x:b2,y:b3,platform:Mac OS X,", "03000000921200004b46000003020000,NES 2-port Adapter,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,start:b11,platform:Mac OS X,", "030000001008000001e5000006010000,NEXT SNES Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,righttrigger:b6,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000d620000011a7000000020000,Nintendo Switch Core (Plus) Wired Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000d620000011a7000010050000,Nintendo Switch PowerA Wired Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000007e0500000920000000000000,Nintendo Switch Pro Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Mac OS X,", "030000007e0500000920000001000000,Nintendo Switch Pro Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Mac OS X,", "03000000550900001472000025050000,NVIDIA Controller v01.04,a:b0,b:b1,back:b17,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b15,leftshoulder:b4,leftstick:b7,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a5,start:b6,x:b2,y:b3,platform:Mac OS X,", "030000006f0e00000901000002010000,PDP Versus Fighting Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000008f0e00000300000000000000,Piranha xtreme,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Mac OS X,", "030000004c050000da0c000000010000,Playstation Classic Controller,a:b2,b:b1,back:b8,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "030000004c0500003713000000010000,PlayStation Vita,a:b1,b:b2,back:b8,dpdown:b13,dpleft:b15,dpright:b14,dpup:b12,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000d62000006dca000000010000,PowerA Pro Ex,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000100800000300000006010000,PS2 Adapter,a:b2,b:b1,back:b8,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a4,righty:a3,start:b9,x:b3,y:b0,platform:Mac OS X,", "030000004c0500006802000000000000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Mac OS X,", "030000004c0500006802000000010000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Mac OS X,", "030000004c050000a00b000000010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004c050000c405000000000000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004c050000c405000000010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004c050000cc09000000010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "050000004c050000e60c000000010000,PS5 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b13,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000008916000000fd000000000000,Razer Onza TE,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "03000000321500000204000000010000,Razer Panthera (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000321500000104000000010000,Razer Panthera (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000321500000010000000010000,Razer RAIJU,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000321500000507000001010000,Razer Raiju Mobile,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b21,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000321500000011000000010000,Razer Raion Fightpad for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000321500000009000000020000,Razer Serval,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Mac OS X,", "030000003215000000090000163a0000,Razer Serval,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Mac OS X,", "0300000032150000030a000000000000,Razer Wildcat,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "03000000790000001100000000000000,Retrolink Classic Controller,a:b2,b:b1,back:b8,leftshoulder:b4,leftx:a3,lefty:a4,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000790000001100000006010000,Retrolink SNES Controller,a:b2,b:b1,back:b8,dpdown:+a4,dpleft:-a3,dpright:+a3,dpup:-a4,leftshoulder:b4,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "030000006b140000010d000000010000,Revolution Pro Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006b140000130d000000010000,Revolution Pro Controller 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000c6240000fefa000000000000,Rock Candy Gamepad for PS3,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "03000000730700000401000000010000,Sanwa PlayOnline Mobile,a:b0,b:b1,back:b2,leftx:a0,lefty:a1,start:b3,platform:Mac OS X,", "03000000811700007e05000000000000,Sega Saturn,a:b2,b:b4,dpdown:b16,dpleft:b15,dpright:b14,dpup:b17,leftshoulder:b8,lefttrigger:a5,leftx:a0,lefty:a2,rightshoulder:b9,righttrigger:a4,start:b13,x:b0,y:b6,platform:Mac OS X,", "03000000b40400000a01000000000000,Sega Saturn USB Gamepad,a:b0,b:b1,back:b5,guide:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b8,x:b3,y:b4,platform:Mac OS X,", "030000003512000021ab000000000000,SFC30 Joystick,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Mac OS X,", "0300000000f00000f100000000000000,SNES RetroPort,a:b2,b:b3,back:b4,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b5,rightshoulder:b7,start:b6,x:b0,y:b1,platform:Mac OS X,", "030000004c050000e60c000000010000,Sony DualSense,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004c050000cc09000000000000,Sony DualShock 4 V2,a:b1,b:b2,back:b13,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004c050000a00b000000000000,Sony DualShock 4 Wireless Adaptor,a:b1,b:b2,back:b13,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000d11800000094000000010000,Stadia Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Mac OS X,", "030000005e0400008e02000001000000,Steam Virtual Gamepad,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "03000000110100002014000000000000,SteelSeries Nimbus,a:b0,b:b1,dpdown:b9,dpleft:b11,dpright:b10,dpup:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b12,x:b2,y:b3,platform:Mac OS X,", "03000000110100002014000001000000,SteelSeries Nimbus,a:b0,b:b1,dpdown:b9,dpleft:b11,dpright:b10,dpup:b8,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1~,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3~,x:b2,y:b3,platform:Mac OS X,", "03000000381000002014000001000000,SteelSeries Nimbus,a:b0,b:b1,dpdown:b9,dpleft:b11,dpright:b10,dpup:b8,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1~,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3~,x:b2,y:b3,platform:Mac OS X,", "050000004e696d6275732b0000000000,SteelSeries Nimbus Plus,a:b0,b:b1,back:b15,dpdown:b11,dpleft:b13,dpright:b12,dpup:b10,guide:b16,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1~,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a2,righty:a3~,start:b14,x:b2,y:b3,platform:Mac OS X,", "03000000110100001714000000000000,SteelSeries Stratus XL,a:b0,b:b1,dpdown:b9,dpleft:b11,dpright:b10,dpup:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1~,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3~,start:b12,x:b2,y:b3,platform:Mac OS X,", "03000000110100001714000020010000,SteelSeries Stratus XL,a:b0,b:b1,dpdown:b9,dpleft:b11,dpright:b10,dpup:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1~,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3~,start:b12,x:b2,y:b3,platform:Mac OS X,", "03000000457500002211000000010000,SZMY-POWER PC Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004f04000015b3000000000000,Thrustmaster Dual Analog 3.2,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Mac OS X,", "030000004f0400000ed0000000020000,ThrustMaster eSwap PRO Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000004f04000000b3000000000000,Thrustmaster Firestorm Dual Power,a:b0,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b11,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:b7,rightx:a2,righty:a3,start:b10,x:b1,y:b3,platform:Mac OS X,", "03000000bd12000015d0000000000000,Tomee SNES USB Controller,a:b2,b:b1,back:b8,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000bd12000015d0000000010000,Tomee SNES USB Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Mac OS X,", "03000000100800000100000000000000,Twin USB Joystick,a:b4,b:b2,back:b16,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b12,leftstick:b20,lefttrigger:b8,leftx:a0,lefty:a2,rightshoulder:b14,rightstick:b22,righttrigger:b10,rightx:a6,righty:a4,start:b18,x:b6,y:b0,platform:Mac OS X,", "030000006f0e00000302000025040000,Victrix Pro Fight Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "030000006f0e00000702000003060000,Victrix Pro Fight Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000791d00000103000009010000,Wii Classic Controller,a:b2,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b10,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Mac OS X,", "050000005769696d6f74652028303000,Wii Remote,a:b4,b:b5,back:b7,dpdown:b3,dpleft:b0,dpright:b1,dpup:b2,guide:b8,leftshoulder:b11,lefttrigger:b12,leftx:a0,lefty:a1,start:b6,x:b10,y:b9,platform:Mac OS X,", "050000005769696d6f74652028313800,Wii U Pro Controller,a:b16,b:b15,back:b7,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b8,leftshoulder:b19,leftstick:b23,lefttrigger:b21,leftx:a0,lefty:a1,rightshoulder:b20,rightstick:b24,righttrigger:b22,rightx:a2,righty:a3,start:b6,x:b18,y:b17,platform:Mac OS X,", "030000005e0400008e02000000000000,X360 Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000006f0e00000104000000000000,Xbox 360 Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "03000000c6240000045d000000000000,Xbox 360 Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e0400000a0b000000000000,Xbox Adaptive Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e040000050b000003090000,Xbox Elite Wireless Controller Series 2,a:b0,b:b1,back:b31,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b53,leftshoulder:b6,leftstick:b13,lefttrigger:a6,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000c62400003a54000000000000,Xbox One PowerA Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e040000d102000000000000,Xbox One Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e040000dd02000000000000,Xbox One Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e040000e302000000000000,Xbox One Wired Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e040000130b000001050000,Xbox Series Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "030000005e040000130b000005050000,Xbox Series Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "030000005e040000e002000000000000,Xbox Wireless Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Mac OS X,", "030000005e040000e002000003090000,Xbox Wireless Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Mac OS X,", "030000005e040000ea02000000000000,Xbox Wireless Controller,a:b0,b:b1,back:b9,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b10,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,start:b8,x:b2,y:b3,platform:Mac OS X,", "030000005e040000fd02000003090000,Xbox Wireless Controller,a:b0,b:b1,back:b16,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b15,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000172700004431000029010000,XiaoMi Game Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b15,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a6,rightx:a2,righty:a5,start:b11,x:b3,y:b4,platform:Mac OS X,", "03000000120c0000100e000000010000,ZEROPLUS P4 Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", "03000000120c0000101e000000010000,ZEROPLUS P4 Wired Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Mac OS X,", #endif // GLFW_BUILD_COCOA_MAPPINGS #if defined(GLFW_BUILD_LINUX_MAPPINGS) "03000000c82d00000090000011010000,8BitDo FC30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00001038000000010000,8Bitdo FC30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00005106000000010000,8BitDo M30,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b8,lefttrigger:b9,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:b7,start:b11,x:b3,y:b4,platform:Linux,", "03000000c82d00001590000011010000,8BitDo N30 Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00006528000000010000,8BitDo N30 Pro 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000310000011010000,8BitDo NES30,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b7,lefttrigger:b6,rightshoulder:b9,righttrigger:b8,start:b11,x:b3,y:b4,platform:Linux,", "05000000c82d00008010000000010000,8BitDo NES30,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b7,lefttrigger:b6,rightshoulder:b9,righttrigger:b8,start:b11,x:b3,y:b4,platform:Linux,", "03000000022000000090000011010000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000203800000900000000010000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00002038000000010000,8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000190000011010000,8Bitdo NES30 Pro 8Bitdo NES30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00000060000000010000,8BitDo SF30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00000061000000010000,8Bitdo SF30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d000021ab000010010000,8BitDo SFC30,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Linux,", "030000003512000012ab000010010000,8Bitdo SFC30 GamePad,a:b2,b:b1,back:b6,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b7,x:b3,y:b0,platform:Linux,", "05000000102800000900000000010000,8Bitdo SFC30 GamePad,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00003028000000010000,8Bitdo SFC30 GamePad,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000160000000000000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000160000011010000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000161000000000000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00001290000011010000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a3,righty:a4,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00000161000000010000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00006228000000010000,8BitDo SN30 Pro,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000260000011010000,8BitDo SN30 Pro+,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00000261000000010000,8BitDo SN30 Pro+,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "05000000202800000900000000010000,8BitDo SNES30 Gamepad,a:b1,b:b0,back:b10,dpdown:b122,dpleft:b119,dpright:b120,dpup:b117,leftshoulder:b6,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Linux,", "03000000c82d00000031000011010000,8BitDo Wireless Adapter (DInput),a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b2,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005e0400008e02000020010000,8BitDo Wireless Adapter (XInput),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c82d00001890000011010000,8BitDo Zero 2,a:b1,b:b0,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b4,y:b3,platform:Linux,", "05000000c82d00003032000000010000,8BitDo Zero 2,a:b1,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,rightx:a2,righty:a3,start:b11,x:b4,y:b3,platform:Linux,", "050000005e040000e002000030110000,8BitDo Zero 2 (XInput),a:b0,b:b1,back:b6,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b7,x:b2,y:b3,platform:Linux,", "05000000a00500003232000001000000,8Bitdo Zero GamePad,a:b0,b:b1,back:b10,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Linux,", "05000000a00500003232000008010000,8Bitdo Zero GamePad,a:b0,b:b1,back:b10,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b11,x:b3,y:b4,platform:Linux,", "03000000c01100000355000011010000,ACRUX USB GAME PAD,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006f0e00001302000000010000,Afterglow,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00003901000020060000,Afterglow Controller for Xbox One,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00003901000000430000,Afterglow Prismatic Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00003901000013020000,Afterglow Prismatic Wired Controller 048-007-NA,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000100000008200000011010000,Akishop Customs PS360+ v1.66,a:b1,b:b2,back:b12,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000007c1800000006000010010000,Alienware Dual Compatible Game Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b3,platform:Linux,", "05000000491900000204000021000000,Amazon Fire Game Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b17,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,misc1:b12,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000491900001904000011010000,Amazon Luna Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b9,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b7,x:b2,y:b3,platform:Linux,", "05000000710100001904000000010000,Amazon Luna Controller,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,misc1:b11,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Linux,", "03000000790000003018000011010000,Arcade Fightstick F300,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "03000000a30c00002700000011010000,Astro City Mini,a:b2,b:b1,back:b8,leftx:a0,lefty:a1,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Linux,", "03000000a30c00002800000011010000,Astro City Mini,a:b2,b:b1,back:b8,leftx:a0,lefty:a1,rightshoulder:b4,righttrigger:b5,start:b9,x:b3,y:b0,platform:Linux,", "05000000050b00000045000031000000,ASUS Gamepad,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b6,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b10,x:b2,y:b3,platform:Linux,", "05000000050b00000045000040000000,ASUS Gamepad,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b6,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b10,x:b2,y:b3,platform:Linux,", "03000000503200000110000000000000,Atari Classic Controller,a:b0,back:b2,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b4,start:b3,x:b1,platform:Linux,", "05000000503200000110000000000000,Atari Classic Controller,a:b0,back:b2,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b4,start:b3,x:b1,platform:Linux,", "03000000503200000210000000000000,Atari Game Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b3,y:b2,platform:Linux,", "05000000503200000210000000000000,Atari Game Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b3,y:b2,platform:Linux,", "03000000120c00000500000010010000,AxisPad,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,start:b11,x:b0,y:b1,platform:Linux,", "03000000ef0500000300000000010000,AxisPad,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,start:b11,x:b0,y:b1,platform:Linux,", "03000000c62400001b89000011010000,BDA MOGA XP5-X Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000d62000002a79000011010000,BDA PS4 Fightpad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000c21100000791000011010000,Be1 GC101 Controller 1.03 mode,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000c31100000791000011010000,Be1 GC101 GAMEPAD 1.03 mode,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005e0400008e02000003030000,Be1 GC101 Xbox 360 Controller mode,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "05000000bc2000000055000001000000,BETOP AX1 BFM,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000666600006706000000010000,boom PSX to PC Converter,a:b2,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,leftshoulder:b6,leftstick:b9,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b10,righttrigger:b5,rightx:a2,righty:a3,start:b11,x:b3,y:b0,platform:Linux,", "03000000120c0000200e000011010000,Brook Mars,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000120c0000210e000011010000,Brook Mars,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000120c0000f70e000011010000,Brook Universal Fighting Board,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,rightshoulder:b5,rightstick:b11,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "03000000ffff0000ffff000000010000,Chinese-made Xbox Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b5,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b2,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b3,y:b4,platform:Linux,", "03000000e82000006058000001010000,Cideko AK08b,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000000b0400003365000000010000,Competition Pro,a:b0,b:b1,back:b2,leftx:a0,lefty:a1,start:b3,platform:Linux,", "03000000260900008888000000010000,Cyber Gadget GameCube Controller,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b6,righttrigger:a5,rightx:a2,righty:a3~,start:b7,x:b2,y:b3,platform:Linux,", "03000000a306000022f6000011010000,Cyborg V.3 Rumble Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:+a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:-a3,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Linux,", "03000000b40400000a01000000010000,CYPRESS USB Gamepad,a:b0,b:b1,back:b5,guide:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b8,x:b3,y:b4,platform:Linux,", "03000000790000000600000010010000,DragonRise Inc. Generic USB Joystick,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b3,y:b0,platform:Linux,", "030000004f04000004b3000010010000,Dual Power 2,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Linux,", "030000006f0e00003001000001010000,EA Sports PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000341a000005f7000010010000,GameCube {HuiJia USB box},a:b1,b:b2,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b0,y:b3,platform:Linux,", "03000000bc2000000055000011010000,GameSir G3w,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "0500000047532047616d657061640000,GameStop Gamepad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000006f0e00000104000000010000,Gamestop Logic3 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000008f0e00000800000010010000,Gasia Co. Ltd PS(R) Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000006f0e00001304000000010000,Generic X-Box pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000451300000010000010010000,Genius Maxfire Grandias 12,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "03000000f0250000c183000010010000,Goodbetterbest Ltd USB Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "0300000079000000d418000000010000,GPD Win 2 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000007d0400000540000000010000,Gravis Eliminator GamePad Pro,a:b1,b:b2,back:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "03000000280400000140000000010000,Gravis GamePad Pro USB ,a:b1,b:b2,back:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000008f0e00000610000000010000,GreenAsia Electronics 4Axes 12Keys GamePad ,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b9,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b10,righttrigger:b5,rightx:a3,righty:a2,start:b11,x:b3,y:b0,platform:Linux,", "030000008f0e00001200000010010000,GreenAsia Inc. USB Joystick,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b2,y:b3,platform:Linux,", "0500000047532067616d657061640000,GS gamepad,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "03000000f0250000c383000010010000,GT VX2,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "06000000adde0000efbe000002010000,Hidromancer Game Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000d81400000862000011010000,HitBox (PS3/PC) Analog Mode,a:b1,b:b2,back:b8,guide:b9,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b12,x:b0,y:b3,platform:Linux,", "03000000c9110000f055000011010000,HJC Game GAMEPAD,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "03000000632500002605000010010000,HJD-X,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000000d0f00000d00000000010000,hori,a:b0,b:b6,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b3,leftx:b4,lefty:b5,rightshoulder:b7,start:b9,x:b1,y:b2,platform:Linux,", "030000000d0f00001000000011010000,HORI CO. LTD. FIGHTING STICK 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f0000c100000011010000,HORI CO. LTD. HORIPAD S,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b13,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00006a00000011010000,HORI CO. LTD. Real Arcade Pro.4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00006b00000011010000,HORI CO. LTD. Real Arcade Pro.4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00002200000011010000,HORI CO. LTD. REAL ARCADE Pro.V3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00008500000010010000,HORI Fighting Commander,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00008600000002010000,Hori Fighting Commander,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000000d0f00005f00000011010000,Hori Fighting Commander 4 (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00005e00000011010000,Hori Fighting Commander 4 (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000ad1b000001f5000033050000,Hori Pad EX Turbo 2,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000000d0f00009200000011010000,Hori Pokken Tournament DX Pro Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f0000aa00000011010000,HORI Real Arcade Pro,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000000d0f0000d800000072056800,HORI Real Arcade Pro S,a:b0,b:b1,back:b4,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b5,leftshoulder:b9,leftstick:b7,lefttrigger:a4,leftx:a0,lefty:a1,rightshoulder:b10,rightstick:b8,righttrigger:a5,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Linux,", "030000000d0f00001600000000010000,Hori Real Arcade Pro.EX-SE (Xbox 360),a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b2,y:b3,platform:Linux,", "030000000d0f00006e00000011010000,HORIPAD 4 (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00006600000011010000,HORIPAD 4 (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f0000ee00000011010000,HORIPAD mini4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000000d0f00006700000001010000,HORIPAD ONE,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000008f0e00001330000010010000,HuiJia SNES Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,rightshoulder:b7,start:b9,x:b3,y:b0,platform:Linux,", "03000000242e00008816000001010000,Hyperkin X91,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000830500006020000010010000,iBuffalo SNES Controller,a:b1,b:b0,back:b6,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b7,x:b3,y:b2,platform:Linux,", "050000006964726f69643a636f6e0000,idroid:con,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000b50700001503000010010000,impact,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Linux,", "03000000d80400008200000003000000,IMS PCU#0 Gamepad Interface,a:b1,b:b0,back:b4,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,start:b5,x:b3,y:b2,platform:Linux,", "03000000fd0500000030000000010000,InterAct GoPad I-73000 (Fighting Game Layout),a:b3,b:b4,back:b6,leftx:a0,lefty:a1,rightshoulder:b2,righttrigger:b5,start:b7,x:b0,y:b1,platform:Linux,", "0500000049190000020400001b010000,Ipega PG-9069 - Bluetooth Gamepad,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b161,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000632500007505000011010000,Ipega PG-9099 - Bluetooth Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000006e0500000320000010010000,JC-U3613M - DirectInput Mode,a:b2,b:b3,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a2,righty:a3,start:b11,x:b0,y:b1,platform:Linux,", "03000000300f00001001000010010000,Jess Tech Dual Analog Rumble Pad,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Linux,", "03000000300f00000b01000010010000,Jess Tech GGE909 PC Recoil Pad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Linux,", "03000000ba2200002010000001010000,Jess Technology USB Game Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Linux,", "030000007e0500000620000001000000,Joy-Con (L),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b13,leftshoulder:b4,leftstick:b10,rightshoulder:b5,start:b8,x:b2,y:b3,platform:Linux,", "050000007e0500000620000001000000,Joy-Con (L),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b13,leftshoulder:b4,leftstick:b10,rightshoulder:b5,start:b8,x:b2,y:b3,platform:Linux,", "030000007e0500000720000001000000,Joy-Con (R),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b12,leftshoulder:b4,leftstick:b11,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Linux,", "050000007e0500000720000001000000,Joy-Con (R),+leftx:h0.2,+lefty:h0.4,-leftx:h0.8,-lefty:h0.1,a:b0,b:b1,back:b12,leftshoulder:b4,leftstick:b11,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Linux,", "03000000bd12000003c0000010010000,Joypad Alpha Shock,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000242f00002d00000011010000,JYS Wireless Adapter,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000242f00008a00000011010000,JYS Wireless Adapter,a:b1,b:b4,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b0,y:b3,platform:Linux,", "030000006f0e00000103000000020000,Logic3 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006d040000d1ca000000000000,Logitech ChillStream,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006d04000019c2000010010000,Logitech Cordless RumblePad 2,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006d04000016c2000010010000,Logitech Dual Action,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006d04000016c2000011010000,Logitech Dual Action,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006d0400001dc2000014400000,Logitech F310 Gamepad (XInput),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006d0400001ec2000019200000,Logitech F510 Gamepad (XInput),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006d0400001ec2000020200000,Logitech F510 Gamepad (XInput),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006d04000019c2000011010000,Logitech F710 Gamepad (DInput),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006d0400001fc2000005030000,Logitech F710 Gamepad (XInput),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006d0400000ac2000010010000,Logitech Inc. WingMan RumblePad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b2,rightx:a3,righty:a4,x:b3,y:b4,platform:Linux,", "030000006d04000018c2000010010000,Logitech RumblePad 2,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006d04000011c2000010010000,Logitech WingMan Cordless RumblePad,a:b0,b:b1,back:b2,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b5,leftshoulder:b6,lefttrigger:b9,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b10,rightx:a3,righty:a4,start:b8,x:b3,y:b4,platform:Linux,", "050000004d4f435554452d3035305800,M54-PC,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "05000000380700006652000025010000,Mad Catz C.T.R.L.R ,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700005032000011010000,Mad Catz FightPad PRO (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700005082000011010000,Mad Catz FightPad PRO (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000ad1b00002ef0000090040000,Mad Catz Fightpad SFxT,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,lefttrigger:a2,rightshoulder:b5,righttrigger:a5,start:b7,x:b2,y:b3,platform:Linux,", "03000000380700008034000011010000,Mad Catz fightstick (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700008084000011010000,Mad Catz fightstick (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700008433000011010000,Mad Catz FightStick TE S+ (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700008483000011010000,Mad Catz FightStick TE S+ (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700001647000010040000,Mad Catz Wired Xbox 360 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000380700003847000090040000,Mad Catz Wired Xbox 360 Controller (SFIV),a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "03000000ad1b000016f0000090040000,Mad Catz Xbox 360 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000380700001888000010010000,MadCatz PC USB Wired Stick 8818,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000380700003888000010010000,MadCatz PC USB Wired Stick 8838,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:a0,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000242f0000f700000001010000,Magic-S Pro,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000120c00000500000000010000,Manta Dualshock 2,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b2,y:b3,platform:Linux,", "03000000790000004418000010010000,Mayflash GameCube Controller,a:b1,b:b0,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b2,y:b3,platform:Linux,", "03000000790000004318000010010000,Mayflash GameCube Controller Adapter,a:b1,b:b2,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:a4,rightx:a5,righty:a2,start:b9,x:b0,y:b3,platform:Linux,", "03000000242f00007300000011010000,Mayflash Magic NS,a:b1,b:b4,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b0,y:b3,platform:Linux,", "0300000079000000d218000011010000,Mayflash Magic NS,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000d620000010a7000011010000,Mayflash Magic NS,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "0300000025090000e803000001010000,Mayflash Wii Classic Controller,a:b1,b:b0,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:a4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:a5,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Linux,", "03000000780000000600000010010000,Microntek USB Joystick,a:b2,b:b1,back:b8,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,start:b9,x:b3,y:b0,platform:Linux,", "030000005e0400000e00000000010000,Microsoft SideWinder,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,rightshoulder:b7,start:b8,x:b3,y:b4,platform:Linux,", "030000005e0400008e02000004010000,Microsoft X-Box 360 pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400008e02000062230000,Microsoft X-Box 360 pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "050000005e040000050b000003090000,Microsoft X-Box One Elite 2 pad,a:b0,b:b1,back:b17,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a6,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005e040000e302000003020000,Microsoft X-Box One Elite pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000d102000001010000,Microsoft X-Box One pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000dd02000003020000,Microsoft X-Box One pad (Firmware 2015),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000d102000003020000,Microsoft X-Box One pad v2,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400008502000000010000,Microsoft X-Box pad (Japan),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b5,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b2,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b3,y:b4,platform:Linux,", "030000005e0400008902000021010000,Microsoft X-Box pad v2 (US),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b5,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b2,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b3,y:b4,platform:Linux,", "030000005e040000000b000008040000,Microsoft Xbox One Elite 2 pad - Wired,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000ea02000008040000,Microsoft Xbox One S pad - Wired,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c62400001a53000000010000,Mini PE,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000030000000300000002000000,Miroof,a:b1,b:b0,back:b6,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,start:b7,x:b3,y:b2,platform:Linux,", "05000000d6200000e589000001000000,Moga 2 HID,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Linux,", "05000000d6200000ad0d000001000000,Moga Pro,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Linux,", "05000000d62000007162000001000000,Moga Pro 2 HID,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b7,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a3,start:b6,x:b2,y:b3,platform:Linux,", "03000000c62400002b89000011010000,MOGA XP5-A Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "05000000c62400002a89000000010000,MOGA XP5-A Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b22,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "05000000c62400001a89000000010000,MOGA XP5-X Plus,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000250900006688000000010000,MP-8866 Super Dual Box,a:b2,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Linux,", "030000006b140000010c000010010000,NACON GC-400ES,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000000d0f00000900000010010000,Natec Genesis P44,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000790000004518000010010000,NEXILUX GAMECUBE Controller Adapter,a:b1,b:b0,x:b2,y:b3,start:b9,rightshoulder:b7,dpup:h0.1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,leftx:a0,lefty:a1,rightx:a5,righty:a2,lefttrigger:a3,righttrigger:a4,platform:Linux,", "030000001008000001e5000010010000,NEXT SNES Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,righttrigger:b6,start:b9,x:b3,y:b0,platform:Linux,", "060000007e0500003713000000000000,Nintendo 3DS,a:b0,b:b1,back:b8,dpdown:b11,dpleft:b12,dpright:b13,dpup:b10,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Linux,", "060000007e0500000820000000000000,Nintendo Combined Joy-Cons (joycond),a:b0,b:b1,back:b9,dpdown:b15,dpleft:b16,dpright:b17,dpup:b14,guide:b11,leftshoulder:b5,leftstick:b12,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b13,righttrigger:b8,rightx:a2,righty:a3,start:b10,x:b3,y:b2,platform:Linux,", "030000007e0500003703000000016800,Nintendo GameCube Controller,a:b0,b:b2,dpdown:b6,dpleft:b4,dpright:b5,dpup:b7,lefttrigger:a4,leftx:a0,lefty:a1~,rightshoulder:b9,righttrigger:a5,rightx:a2,righty:a3~,start:b8,x:b1,y:b3,platform:Linux,", "03000000790000004618000010010000,Nintendo GameCube Controller Adapter,a:b1,b:b0,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,rightx:a5~,righty:a2~,start:b9,x:b2,y:b3,platform:Linux,", "050000007e0500000620000001800000,Nintendo Switch Left Joy-Con,a:b9,b:b8,back:b5,leftshoulder:b2,leftstick:b6,leftx:a1,lefty:a0~,rightshoulder:b4,start:b0,x:b7,y:b10,platform:Linux,", "030000007e0500000920000011810000,Nintendo Switch Pro Controller,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b11,leftshoulder:b5,leftstick:b12,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b13,righttrigger:b8,rightx:a2,righty:a3,start:b10,x:b3,y:b2,platform:Linux,", "050000007e0500000920000001000000,Nintendo Switch Pro Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "050000007e0500000920000001800000,Nintendo Switch Pro Controller,a:b0,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b11,leftshoulder:b5,leftstick:b12,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b13,righttrigger:b8,rightx:a2,righty:a3,start:b10,x:b3,y:b2,platform:Linux,", "050000007e0500000720000001800000,Nintendo Switch Right Joy-Con,a:b1,b:b2,back:b9,leftshoulder:b4,leftstick:b10,leftx:a1~,lefty:a0~,rightshoulder:b6,start:b8,x:b0,y:b3,platform:Linux,", "050000007e0500001720000001000000,Nintendo Switch SNES Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,rightshoulder:b5,start:b9,x:b2,y:b3,platform:Linux,", "050000007e0500003003000001000000,Nintendo Wii Remote Pro Controller,a:b0,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b16,dpup:b13,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b2,platform:Linux,", "05000000010000000100000003000000,Nintendo Wiimote,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000000d0500000308000010010000,Nostromo n45 Dual Analog Gamepad,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b9,leftshoulder:b4,leftstick:b12,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b10,x:b2,y:b3,platform:Linux,", "03000000550900001072000011010000,NVIDIA Controller,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b13,leftshoulder:b4,leftstick:b8,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Linux,", "03000000550900001472000011010000,NVIDIA Controller v01.04,a:b0,b:b1,back:b14,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b16,leftshoulder:b4,leftstick:b7,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a5,start:b6,x:b2,y:b3,platform:Linux,", "05000000550900001472000001000000,NVIDIA Controller v01.04,a:b0,b:b1,back:b14,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b16,leftshoulder:b4,leftstick:b7,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b8,righttrigger:a4,rightx:a2,righty:a5,start:b6,x:b2,y:b3,platform:Linux,", "03000000451300000830000010010000,NYKO CORE,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "19000000010000000100000001010000,odroidgo2_joypad,a:b1,b:b0,dpdown:b7,dpleft:b8,dpright:b9,dpup:b6,guide:b10,leftshoulder:b4,leftstick:b12,lefttrigger:b11,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b13,righttrigger:b14,start:b15,x:b2,y:b3,platform:Linux,", "19000000010000000200000011000000,odroidgo2_joypad_v11,a:b1,b:b0,dpdown:b9,dpleft:b10,dpright:b11,dpup:b8,guide:b12,leftshoulder:b4,leftstick:b14,lefttrigger:b13,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b15,righttrigger:b16,start:b17,x:b2,y:b3,platform:Linux,", "030000005e0400000202000000010000,Old Xbox pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b5,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b2,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b3,y:b4,platform:Linux,", "03000000c0160000dc27000001010000,OnyxSoft Dual JoyDivision,a:b0,b:b1,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b6,x:b2,y:b3,platform:Linux,", "05000000362800000100000002010000,OUYA Game Controller,a:b0,b:b3,dpdown:b9,dpleft:b10,dpright:b11,dpup:b8,guide:b14,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,x:b1,y:b2,platform:Linux,", "05000000362800000100000003010000,OUYA Game Controller,a:b0,b:b3,dpdown:b9,dpleft:b10,dpright:b11,dpup:b8,guide:b14,leftshoulder:b4,leftstick:b6,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b7,righttrigger:a5,rightx:a3,righty:a4,x:b1,y:b2,platform:Linux,", "03000000830500005020000010010000,Padix Co. Ltd. Rockfire PSX/USB Bridge,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a2,righty:a3,start:b11,x:b2,y:b3,platform:Linux,", "03000000790000001c18000011010000,PC Game Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000ff1100003133000010010000,PC Game Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000006f0e0000b802000001010000,PDP AFTERGLOW Wired Xbox One Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e0000b802000013020000,PDP AFTERGLOW Wired Xbox One Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00006401000001010000,PDP Battlefield One,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00008001000011010000,PDP CO. LTD. Faceoff Wired Pro Controller for Nintendo Switch,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006f0e00003101000000010000,PDP EA Sports Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e0000c802000012010000,PDP Kingdom Hearts Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00008701000011010000,PDP Rock Candy Wired Controller for Nintendo Switch,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b13,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000006f0e00000901000011010000,PDP Versus Fighting Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000006f0e0000a802000023020000,PDP Wired Controller for Xbox One,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000006f0e00008501000011010000,PDP Wired Fight Pad Pro for Nintendo Switch,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "0500000049190000030400001b010000,PG-9099,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "05000000491900000204000000000000,PG-9118,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000004c050000da0c000011010000,Playstation Controller,a:b2,b:b1,back:b8,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,start:b9,x:b3,y:b0,platform:Linux,", "030000004c0500003713000011010000,PlayStation Vita,a:b1,b:b2,back:b8,dpdown:b13,dpleft:b15,dpright:b14,dpup:b12,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Linux,", "03000000c62400000053000000010000,PowerA,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c62400003a54000001010000,PowerA 1428124-01,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000d62000006dca000011010000,PowerA Pro Ex,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000d62000000228000001010000,PowerA Wired Controller for Xbox One,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c62400001a58000001010000,PowerA Xbox One Cabled,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c62400001a54000001010000,PowerA Xbox One Mini Wired Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006d040000d2ca000011010000,Precision Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000ff1100004133000010010000,PS2 Controller,a:b2,b:b1,back:b8,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,start:b9,x:b3,y:b0,platform:Linux,", "03000000341a00003608000011010000,PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000004c0500006802000010010000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Linux,", "030000004c0500006802000010810000,PS3 Controller,a:b0,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b16,dpup:b13,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "030000004c0500006802000011010000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Linux,", "030000004c0500006802000011810000,PS3 Controller,a:b0,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b16,dpup:b13,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "030000006f0e00001402000011010000,PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000008f0e00000300000010010000,PS3 Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "050000004c0500006802000000000000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Linux,", "050000004c0500006802000000010000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:a12,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:a13,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Linux,", "050000004c0500006802000000800000,PS3 Controller,a:b0,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b16,dpup:b13,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "050000004c0500006802000000810000,PS3 Controller,a:b0,b:b1,back:b8,dpdown:b14,dpleft:b15,dpright:b16,dpup:b13,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "05000000504c415953544154494f4e00,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Linux,", "060000004c0500006802000000010000,PS3 Controller,a:b14,b:b13,back:b0,dpdown:b6,dpleft:b7,dpright:b5,dpup:b4,guide:b16,leftshoulder:b10,leftstick:b1,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b11,rightstick:b2,righttrigger:b9,rightx:a2,righty:a3,start:b3,x:b15,y:b12,platform:Linux,", "030000004c050000a00b000011010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000004c050000a00b000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "030000004c050000c405000011010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000004c050000c405000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "030000004c050000cc09000000010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000004c050000cc09000011010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000004c050000cc09000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "03000000c01100000140000011010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "050000004c050000c405000000010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "050000004c050000c405000000810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "050000004c050000c405000001800000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "050000004c050000cc09000000010000,PS4 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "050000004c050000cc09000000810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "050000004c050000cc09000001800000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "030000004c050000e60c000011010000,PS5 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b13,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "050000004c050000e60c000000010000,PS5 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,misc1:b13,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000ff000000cb01000010010000,PSP,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftx:a0,lefty:a1,rightshoulder:b5,start:b7,x:b2,y:b3,platform:Linux,", "03000000300f00001211000011010000,QanBa Arcade JoyStick,a:b2,b:b0,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b5,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b6,start:b9,x:b1,y:b3,platform:Linux,", "030000009b2800004200000001010000,Raphnet Technologies Dual NES to USB v2.0,a:b0,b:b1,back:b2,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,start:b3,platform:Linux,", "030000009b2800003200000001010000,Raphnet Technologies GC/N64 to USB v3.4,a:b0,b:b7,dpdown:b11,dpleft:b12,dpright:b13,dpup:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b2,righttrigger:b5,rightx:a3,righty:a4,start:b3,x:b1,y:b8,platform:Linux,", "030000009b2800006000000001010000,Raphnet Technologies GC/N64 to USB v3.6,a:b0,b:b7,dpdown:b11,dpleft:b12,dpright:b13,dpup:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b2,righttrigger:b5,rightx:a3,righty:a4,start:b3,x:b1,y:b8,platform:Linux,", "030000009b2800000300000001010000,raphnet.net 4nes4snes v1.5,a:b0,b:b4,back:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b3,x:b1,y:b5,platform:Linux,", "030000008916000001fd000024010000,Razer Onza Classic Edition,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b11,dpright:b12,dpup:b13,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000008916000000fd000024010000,Razer Onza Tournament Edition,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000321500000204000011010000,Razer Panthera (PS3),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "03000000321500000104000011010000,Razer Panthera (PS4),a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000321500000810000011010000,Razer Panthera Evo Arcade Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b13,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000321500000010000011010000,Razer RAIJU,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000321500000507000000010000,Razer Raiju Mobile,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b21,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000321500000011000011010000,Razer Raion Fightpad for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000008916000000fe000024010000,Razer Sabertooth,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c6240000045d000024010000,Razer Sabertooth,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c6240000045d000025010000,Razer Sabertooth,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000321500000009000011010000,Razer Serval,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Linux,", "050000003215000000090000163a0000,Razer Serval,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Linux,", "0300000032150000030a000001010000,Razer Wildcat,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000790000001100000010010000,Retrolink SNES Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Linux,", "0300000081170000990a000001010000,Retronic Adapter,a:b0,leftx:a0,lefty:a1,platform:Linux,", "0300000000f000000300000000010000,RetroPad,a:b1,b:b5,back:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b3,x:b0,y:b4,platform:Linux,", "030000006b140000010d000011010000,Revolution Pro Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000006b140000130d000011010000,Revolution Pro Controller 3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000006f0e00001f01000000010000,Rock Candy,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000006f0e00001e01000011010000,Rock Candy PS3 Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000006f0e00004601000001010000,Rock Candy Xbox One Controller,a:b0,b:b1,back:b6,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000a306000023f6000011010000,Saitek Cyborg V.1 Game Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Linux,", "03000000a30600001005000000010000,Saitek P150,a:b0,b:b1,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b7,lefttrigger:b6,rightshoulder:b2,righttrigger:b5,x:b3,y:b4,platform:Linux,", "03000000a30600000701000000010000,Saitek P220,a:b2,b:b3,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b6,lefttrigger:b7,rightshoulder:b4,righttrigger:b5,x:b0,y:b1,platform:Linux,", "03000000a30600000cff000010010000,Saitek P2500 Force Rumble Pad,a:b2,b:b3,back:b11,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,start:b10,x:b0,y:b1,platform:Linux,", "03000000a30600000c04000011010000,Saitek P2900 Wireless Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b9,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b12,x:b0,y:b3,platform:Linux,", "03000000300f00001201000010010000,Saitek P380,a:b2,b:b3,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b9,x:b0,y:b1,platform:Linux,", "03000000a30600000901000000010000,Saitek P880,a:b2,b:b3,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b8,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:b7,rightx:a3,righty:a2,x:b0,y:b1,platform:Linux,", "03000000a30600000b04000000010000,Saitek P990 Dual Analog Pad,a:b1,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a2,start:b8,x:b0,y:b3,platform:Linux,", "03000000a306000018f5000010010000,Saitek PLC Saitek P3200 Rumble Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b0,y:b3,platform:Linux,", "03000000a306000020f6000011010000,Saitek PS2700 Rumble Pad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a4,start:b9,x:b0,y:b3,platform:Linux,", "03000000d81d00000e00000010010000,Savior,a:b0,b:b1,back:b8,leftshoulder:b6,leftstick:b10,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b2,rightstick:b11,righttrigger:b3,start:b9,x:b4,y:b5,platform:Linux,", "03000000f025000021c1000010010000,ShanWan Gioteck PS3 Wired Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000632500007505000010010000,SHANWAN PS3/PC Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000bc2000000055000010010000,ShanWan PS3/PC Wired GamePad,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005f140000c501000010010000,SHANWAN Trust Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000632500002305000010010000,ShanWan USB Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000341a00000908000010010000,SL-6566,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000004c050000e60c000011810000,Sony DualSense,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "050000004c050000e60c000000810000,Sony DualSense ,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,", "03000000250900000500000000010000,Sony PS2 pad with SmartJoy adapter,a:b2,b:b1,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Linux,", "030000005e0400008e02000073050000,Speedlink TORID Wireless Gamepad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400008e02000020200000,SpeedLink XEOX Pro Analog Gamepad pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000d11800000094000011010000,Stadia Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Linux,", "03000000de2800000112000001000000,Steam Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,paddle1:b11,paddle2:b10,rightshoulder:b5,righttrigger:a3,start:b7,x:b2,y:b3,platform:Linux,", "03000000de2800000211000001000000,Steam Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,paddle1:b11,paddle2:b10,rightshoulder:b5,righttrigger:a3,start:b7,x:b2,y:b3,platform:Linux,", "03000000de2800000211000011010000,Steam Controller,a:b2,b:b3,back:b10,dpdown:b18,dpleft:b19,dpright:b20,dpup:b17,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,paddle1:b15,paddle2:b16,rightshoulder:b7,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b5,platform:Linux,", "03000000de2800004211000001000000,Steam Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,paddle1:b11,paddle2:b10,rightshoulder:b5,righttrigger:a3,start:b7,x:b2,y:b3,platform:Linux,", "03000000de2800004211000011010000,Steam Controller,a:b2,b:b3,back:b10,dpdown:b18,dpleft:b19,dpright:b20,dpup:b17,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:b8,leftx:a0,lefty:a1,paddle1:b15,paddle2:b16,rightshoulder:b7,righttrigger:b9,rightx:a2,righty:a3,start:b11,x:b4,y:b5,platform:Linux,", "03000000de280000fc11000001000000,Steam Controller,a:b0,b:b1,back:b6,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "05000000de2800000212000001000000,Steam Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,paddle1:b11,paddle2:b10,rightshoulder:b5,righttrigger:a3,start:b7,x:b2,y:b3,platform:Linux,", "05000000de2800000511000001000000,Steam Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,paddle1:b11,paddle2:b10,rightshoulder:b5,righttrigger:a3,start:b7,x:b2,y:b3,platform:Linux,", "05000000de2800000611000001000000,Steam Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,paddle1:b11,paddle2:b10,rightshoulder:b5,righttrigger:a3,start:b7,x:b2,y:b3,platform:Linux,", "03000000de280000ff11000001000000,Steam Virtual Gamepad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000381000003014000075010000,SteelSeries Stratus Duo,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000381000003114000075010000,SteelSeries Stratus Duo,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "0500000011010000311400001b010000,SteelSeries Stratus Duo,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b32,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "05000000110100001914000009010000,SteelSeries Stratus XL,a:b0,b:b1,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "03000000ad1b000038f0000090040000,Street Fighter IV FightStick TE,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000003b07000004a1000000010000,Suncom SFX Plus for USB,a:b0,b:b2,back:b7,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b9,righttrigger:b5,start:b8,x:b1,y:b3,platform:Linux,", "03000000666600000488000000010000,Super Joy Box 5 Pro,a:b2,b:b1,back:b9,dpdown:b14,dpleft:b15,dpright:b13,dpup:b12,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a2,righty:a3,start:b8,x:b3,y:b0,platform:Linux,", "0300000000f00000f100000000010000,Super RetroPort,a:b1,b:b5,back:b2,leftshoulder:b6,leftx:a0,lefty:a1,rightshoulder:b7,start:b3,x:b0,y:b4,platform:Linux,", "03000000457500002211000010010000,SZMY-POWER CO. LTD. GAMEPAD,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "030000008f0e00000d31000010010000,SZMY-POWER CO. LTD. GAMEPAD 3 TURBO,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000008f0e00001431000010010000,SZMY-POWER CO. LTD. PS3 gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000004f04000020b3000010010000,Thrustmaster 2 in 1 DT,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Linux,", "030000004f04000015b3000010010000,Thrustmaster Dual Analog 4,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Linux,", "030000004f04000023b3000000010000,Thrustmaster Dual Trigger 3-in-1,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000004f0400000ed0000011010000,ThrustMaster eSwap PRO Controller,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000b50700000399000000010000,Thrustmaster Firestorm Digital 2,a:b2,b:b4,back:b11,leftshoulder:b6,leftstick:b10,lefttrigger:b7,leftx:a0,lefty:a1,rightshoulder:b8,rightstick:b0,righttrigger:b9,start:b1,x:b3,y:b5,platform:Linux,", "030000004f04000003b3000010010000,Thrustmaster Firestorm Dual Analog 2,a:b0,b:b2,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b8,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b9,rightx:a2,righty:a3,x:b1,y:b3,platform:Linux,", "030000004f04000000b3000010010000,Thrustmaster Firestorm Dual Power,a:b0,b:b2,back:b9,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b11,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b12,righttrigger:b7,rightx:a2,righty:a3,start:b10,x:b1,y:b3,platform:Linux,", "030000004f04000026b3000002040000,Thrustmaster Gamepad GP XID,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c6240000025b000002020000,Thrustmaster GPX Gamepad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000004f04000008d0000000010000,Thrustmaster Run N Drive Wireless,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "030000004f04000009d0000000010000,Thrustmaster Run N Drive Wireless PS3,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000004f04000007d0000000010000,Thrustmaster T Mini Wireless,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b0,y:b3,platform:Linux,", "030000004f04000012b3000010010000,Thrustmaster vibrating gamepad,a:b0,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b5,leftx:a0,lefty:a1,rightshoulder:b6,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b1,y:b3,platform:Linux,", "03000000bd12000015d0000010010000,Tomee SNES USB Controller,a:b2,b:b1,back:b8,dpdown:+a1,dpleft:-a0,dpright:+a0,dpup:-a1,leftshoulder:b4,rightshoulder:b5,start:b9,x:b3,y:b0,platform:Linux,", "03000000d814000007cd000011010000,Toodles 2008 Chimp PC/PS3,a:b0,b:b1,back:b8,leftshoulder:b4,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,righttrigger:b7,start:b9,x:b3,y:b2,platform:Linux,", "030000005e0400008e02000070050000,Torid,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000c01100000591000011010000,Torid,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "03000000100800000100000010010000,Twin USB PS2 Adapter,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Linux,", "03000000100800000300000010010000,USB Gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b3,y:b0,platform:Linux,", "03000000790000000600000007010000,USB gamepad,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a3,righty:a4,start:b9,x:b3,y:b0,platform:Linux,", "03000000790000001100000000010000,USB Gamepad1,a:b2,b:b1,back:b8,dpdown:a0,dpleft:a1,dpright:a2,dpup:a4,start:b9,platform:Linux,", "030000006f0e00000302000011010000,Victrix Pro Fight Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "030000006f0e00000702000011010000,Victrix Pro Fight Stick for PS4,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,rightshoulder:b5,righttrigger:b7,start:b9,x:b0,y:b3,platform:Linux,", "05000000ac0500003232000001000000,VR-BOX,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b10,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b11,righttrigger:b5,rightx:a3,righty:a2,start:b9,x:b2,y:b3,platform:Linux,", "03000000791d00000103000010010000,Wii Classic Controller,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b6,lefttrigger:b4,leftx:a0,lefty:a1,rightshoulder:b7,righttrigger:b5,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "050000000d0f0000f600000001000000,Wireless HORIPAD Switch Pro Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "030000005e0400008e02000010010000,X360 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400008e02000014010000,X360 Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400001907000000010000,X360 Wireless Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b11,dpright:b12,dpup:b13,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400009102000007010000,X360 Wireless Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b11,dpright:b12,dpup:b13,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000a102000000010000,X360 Wireless Controller,a:b0,b:b1,back:b6,dpdown:b14,dpleft:b11,dpright:b12,dpup:b13,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000a102000007010000,X360 Wireless Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "0000000058626f782033363020576900,Xbox 360 Wireless Controller,a:b0,b:b1,back:b14,dpdown:b11,dpleft:b12,dpright:b13,dpup:b10,guide:b7,leftshoulder:b4,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b6,x:b2,y:b3,platform:Linux,", "030000005e040000a102000014010000,Xbox 360 Wireless Receiver (XBOX),a:b0,b:b1,back:b6,dpdown:b14,dpleft:b11,dpright:b12,dpup:b13,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "0000000058626f782047616d65706100,Xbox Gamepad (userspace driver),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a4,rightx:a2,righty:a3,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000d102000002010000,Xbox One Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "050000005e040000fd02000030110000,Xbox One Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "050000005e040000050b000002090000,Xbox One Elite Series 2,a:b0,b:b1,back:b136,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b6,leftstick:b13,lefttrigger:a6,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a5,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005e040000ea02000000000000,Xbox One Wireless Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "050000005e040000e002000003090000,Xbox One Wireless Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b8,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b9,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "050000005e040000fd02000003090000,Xbox One Wireless Controller,a:b0,b:b1,back:b15,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b16,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005e040000ea02000001030000,Xbox One Wireless Controller (Model 1708),a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000120b000001050000,Xbox Series Controller,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e040000130b000005050000,Xbox Series Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "050000005e040000130b000001050000,Xbox Series Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "050000005e040000130b000005050000,Xbox Series Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b6,leftstick:b13,lefttrigger:a5,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a4,rightx:a2,righty:a3,start:b11,x:b3,y:b4,platform:Linux,", "030000005e040000120b000005050000,XBox Series pad,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "030000005e0400008e02000000010000,xbox360 Wireless EasySMX,a:b0,b:b1,back:b6,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b8,leftshoulder:b4,leftstick:b9,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b10,righttrigger:a5,rightx:a3,righty:a4,start:b7,x:b2,y:b3,platform:Linux,", "03000000450c00002043000010010000,XEOX Gamepad SL-6556-BK,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b2,y:b3,platform:Linux,", "03000000ac0500005b05000010010000,Xiaoji Gamesir-G3w,a:b2,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:b6,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:b7,rightx:a2,righty:a3,start:b9,x:b3,y:b0,platform:Linux,", "05000000172700004431000029010000,XiaoMi Game Controller,a:b0,b:b1,back:b10,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b20,leftshoulder:b6,leftstick:b13,lefttrigger:a7,leftx:a0,lefty:a1,rightshoulder:b7,rightstick:b14,righttrigger:a6,rightx:a2,righty:a5,start:b11,x:b3,y:b4,platform:Linux,", "03000000c0160000e105000001010000,Xin-Mo Xin-Mo Dual Arcade,a:b4,b:b3,back:b6,dpdown:b12,dpleft:b13,dpright:b14,dpup:b11,guide:b9,leftshoulder:b2,leftx:a0,lefty:a1,rightshoulder:b5,start:b7,x:b1,y:b0,platform:Linux,", "03000000120c0000100e000011010000,ZEROPLUS P4 Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", "03000000120c0000101e000011010000,ZEROPLUS P4 Wired Gamepad,a:b1,b:b2,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b12,leftshoulder:b4,leftstick:b10,lefttrigger:a3,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b11,righttrigger:a4,rightx:a2,righty:a5,start:b9,x:b0,y:b3,platform:Linux,", #endif // GLFW_BUILD_LINUX_MAPPINGS }; #endif #include #include #include #include #include // Internal key state used for sticky keys #define _GLFW_STICK 3 // Internal constants for gamepad mapping source types #define _GLFW_JOYSTICK_AXIS 1 #define _GLFW_JOYSTICK_BUTTON 2 #define _GLFW_JOYSTICK_HATBIT 3 // Finds a mapping based on joystick GUID // static _GLFWmapping* findMapping(const char* guid) { int i; for (i = 0; i < _glfw.mappingCount; i++) { if (strcmp(_glfw.mappings[i].guid, guid) == 0) return _glfw.mappings + i; } return NULL; } // Checks whether a gamepad mapping element is present in the hardware // static GLFWbool isValidElementForJoystick(const _GLFWmapelement* e, const _GLFWjoystick* js) { if (e->type == _GLFW_JOYSTICK_HATBIT && (e->index >> 4) >= js->hatCount) return GLFW_FALSE; else if (e->type == _GLFW_JOYSTICK_BUTTON && e->index >= js->buttonCount) return GLFW_FALSE; else if (e->type == _GLFW_JOYSTICK_AXIS && e->index >= js->axisCount) return GLFW_FALSE; return GLFW_TRUE; } // Finds a mapping based on joystick GUID and verifies element indices // static _GLFWmapping* findValidMapping(const _GLFWjoystick* js) { _GLFWmapping* mapping = findMapping(js->guid); if (mapping) { int i; for (i = 0; i <= GLFW_GAMEPAD_BUTTON_LAST; i++) { if (!isValidElementForJoystick(mapping->buttons + i, js)) return NULL; } for (i = 0; i <= GLFW_GAMEPAD_AXIS_LAST; i++) { if (!isValidElementForJoystick(mapping->axes + i, js)) return NULL; } } return mapping; } // Parses an SDL_GameControllerDB line and adds it to the mapping list // static GLFWbool parseMapping(_GLFWmapping* mapping, const char* string) { const char* c = string; size_t i, length; struct { const char* name; _GLFWmapelement* element; } fields[] = { { "platform", NULL }, { "a", mapping->buttons + GLFW_GAMEPAD_BUTTON_A }, { "b", mapping->buttons + GLFW_GAMEPAD_BUTTON_B }, { "x", mapping->buttons + GLFW_GAMEPAD_BUTTON_X }, { "y", mapping->buttons + GLFW_GAMEPAD_BUTTON_Y }, { "back", mapping->buttons + GLFW_GAMEPAD_BUTTON_BACK }, { "start", mapping->buttons + GLFW_GAMEPAD_BUTTON_START }, { "guide", mapping->buttons + GLFW_GAMEPAD_BUTTON_GUIDE }, { "leftshoulder", mapping->buttons + GLFW_GAMEPAD_BUTTON_LEFT_BUMPER }, { "rightshoulder", mapping->buttons + GLFW_GAMEPAD_BUTTON_RIGHT_BUMPER }, { "leftstick", mapping->buttons + GLFW_GAMEPAD_BUTTON_LEFT_THUMB }, { "rightstick", mapping->buttons + GLFW_GAMEPAD_BUTTON_RIGHT_THUMB }, { "dpup", mapping->buttons + GLFW_GAMEPAD_BUTTON_DPAD_UP }, { "dpright", mapping->buttons + GLFW_GAMEPAD_BUTTON_DPAD_RIGHT }, { "dpdown", mapping->buttons + GLFW_GAMEPAD_BUTTON_DPAD_DOWN }, { "dpleft", mapping->buttons + GLFW_GAMEPAD_BUTTON_DPAD_LEFT }, { "lefttrigger", mapping->axes + GLFW_GAMEPAD_AXIS_LEFT_TRIGGER }, { "righttrigger", mapping->axes + GLFW_GAMEPAD_AXIS_RIGHT_TRIGGER }, { "leftx", mapping->axes + GLFW_GAMEPAD_AXIS_LEFT_X }, { "lefty", mapping->axes + GLFW_GAMEPAD_AXIS_LEFT_Y }, { "rightx", mapping->axes + GLFW_GAMEPAD_AXIS_RIGHT_X }, { "righty", mapping->axes + GLFW_GAMEPAD_AXIS_RIGHT_Y } }; length = strcspn(c, ","); if (length != 32 || c[length] != ',') { _glfwInputError(GLFW_INVALID_VALUE, NULL); return GLFW_FALSE; } memcpy(mapping->guid, c, length); c += length + 1; length = strcspn(c, ","); if (length >= sizeof(mapping->name) || c[length] != ',') { _glfwInputError(GLFW_INVALID_VALUE, NULL); return GLFW_FALSE; } memcpy(mapping->name, c, length); c += length + 1; while (*c) { // TODO: Implement output modifiers if (*c == '+' || *c == '-') return GLFW_FALSE; for (i = 0; i < sizeof(fields) / sizeof(fields[0]); i++) { length = strlen(fields[i].name); if (strncmp(c, fields[i].name, length) != 0 || c[length] != ':') continue; c += length + 1; if (fields[i].element) { _GLFWmapelement* e = fields[i].element; int8_t minimum = -1; int8_t maximum = 1; if (*c == '+') { minimum = 0; c += 1; } else if (*c == '-') { maximum = 0; c += 1; } if (*c == 'a') e->type = _GLFW_JOYSTICK_AXIS; else if (*c == 'b') e->type = _GLFW_JOYSTICK_BUTTON; else if (*c == 'h') e->type = _GLFW_JOYSTICK_HATBIT; else break; if (e->type == _GLFW_JOYSTICK_HATBIT) { const unsigned long hat = strtoul(c + 1, (char**) &c, 10); const unsigned long bit = strtoul(c + 1, (char**) &c, 10); e->index = (uint8_t) ((hat << 4) | bit); } else e->index = (uint8_t) strtoul(c + 1, (char**) &c, 10); if (e->type == _GLFW_JOYSTICK_AXIS) { e->axisScale = 2 / (maximum - minimum); e->axisOffset = -(maximum + minimum); if (*c == '~') { e->axisScale = -e->axisScale; e->axisOffset = -e->axisOffset; } } } else { length = strlen(_GLFW_PLATFORM_MAPPING_NAME); if (strncmp(c, _GLFW_PLATFORM_MAPPING_NAME, length) != 0) return GLFW_FALSE; } break; } c += strcspn(c, ","); c += strspn(c, ","); } for (i = 0; i < 32; i++) { if (mapping->guid[i] >= 'A' && mapping->guid[i] <= 'F') mapping->guid[i] += 'a' - 'A'; } _glfwPlatformUpdateGamepadGUID(mapping->guid); return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW event API ////// ////////////////////////////////////////////////////////////////////////// // Notifies shared code of a physical key event // void _glfwInputKey(_GLFWwindow* window, int key, int scancode, int action, int mods) { if (key >= 0 && key <= GLFW_KEY_LAST) { GLFWbool repeated = GLFW_FALSE; if (action == GLFW_RELEASE && window->keys[key] == GLFW_RELEASE) return; if (action == GLFW_PRESS && window->keys[key] == GLFW_PRESS) repeated = GLFW_TRUE; if (action == GLFW_RELEASE && window->stickyKeys) window->keys[key] = _GLFW_STICK; else window->keys[key] = (char) action; if (repeated) action = GLFW_REPEAT; } if (!window->lockKeyMods) mods &= ~(GLFW_MOD_CAPS_LOCK | GLFW_MOD_NUM_LOCK); if (window->callbacks.key) window->callbacks.key((GLFWwindow*) window, key, scancode, action, mods); } // Notifies shared code of a Unicode codepoint input event // The 'plain' parameter determines whether to emit a regular character event // void _glfwInputChar(_GLFWwindow* window, uint32_t codepoint, int mods, GLFWbool plain) { if (codepoint < 32 || (codepoint > 126 && codepoint < 160)) return; if (!window->lockKeyMods) mods &= ~(GLFW_MOD_CAPS_LOCK | GLFW_MOD_NUM_LOCK); if (window->callbacks.charmods) window->callbacks.charmods((GLFWwindow*) window, codepoint, mods); if (plain) { if (window->callbacks.character) window->callbacks.character((GLFWwindow*) window, codepoint); } } // Notifies shared code of a scroll event // void _glfwInputScroll(_GLFWwindow* window, double xoffset, double yoffset) { if (window->callbacks.scroll) window->callbacks.scroll((GLFWwindow*) window, xoffset, yoffset); } // Notifies shared code of a mouse button click event // void _glfwInputMouseClick(_GLFWwindow* window, int button, int action, int mods) { if (button < 0 || button > GLFW_MOUSE_BUTTON_LAST) return; if (!window->lockKeyMods) mods &= ~(GLFW_MOD_CAPS_LOCK | GLFW_MOD_NUM_LOCK); if (action == GLFW_RELEASE && window->stickyMouseButtons) window->mouseButtons[button] = _GLFW_STICK; else window->mouseButtons[button] = (char) action; if (window->callbacks.mouseButton) window->callbacks.mouseButton((GLFWwindow*) window, button, action, mods); } // Notifies shared code of a cursor motion event // The position is specified in content area relative screen coordinates // void _glfwInputCursorPos(_GLFWwindow* window, double xpos, double ypos) { if (window->virtualCursorPosX == xpos && window->virtualCursorPosY == ypos) return; window->virtualCursorPosX = xpos; window->virtualCursorPosY = ypos; if (window->callbacks.cursorPos) window->callbacks.cursorPos((GLFWwindow*) window, xpos, ypos); } // Notifies shared code of a cursor enter/leave event // void _glfwInputCursorEnter(_GLFWwindow* window, GLFWbool entered) { if (window->callbacks.cursorEnter) window->callbacks.cursorEnter((GLFWwindow*) window, entered); } // Notifies shared code of files or directories dropped on a window // void _glfwInputDrop(_GLFWwindow* window, int count, const char** paths) { if (window->callbacks.drop) window->callbacks.drop((GLFWwindow*) window, count, paths); } // Notifies shared code of a joystick connection or disconnection // void _glfwInputJoystick(_GLFWjoystick* js, int event) { const int jid = (int) (js - _glfw.joysticks); if (_glfw.callbacks.joystick) _glfw.callbacks.joystick(jid, event); } // Notifies shared code of the new value of a joystick axis // void _glfwInputJoystickAxis(_GLFWjoystick* js, int axis, float value) { js->axes[axis] = value; } // Notifies shared code of the new value of a joystick button // void _glfwInputJoystickButton(_GLFWjoystick* js, int button, char value) { js->buttons[button] = value; } // Notifies shared code of the new value of a joystick hat // void _glfwInputJoystickHat(_GLFWjoystick* js, int hat, char value) { const int base = js->buttonCount + hat * 4; js->buttons[base + 0] = (value & 0x01) ? GLFW_PRESS : GLFW_RELEASE; js->buttons[base + 1] = (value & 0x02) ? GLFW_PRESS : GLFW_RELEASE; js->buttons[base + 2] = (value & 0x04) ? GLFW_PRESS : GLFW_RELEASE; js->buttons[base + 3] = (value & 0x08) ? GLFW_PRESS : GLFW_RELEASE; js->hats[hat] = value; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Adds the built-in set of gamepad mappings // void _glfwInitGamepadMappings(void) { int jid; size_t i; const size_t count = sizeof(_glfwDefaultMappings) / sizeof(char*); _glfw.mappings = calloc(count, sizeof(_GLFWmapping)); for (i = 0; i < count; i++) { if (parseMapping(&_glfw.mappings[_glfw.mappingCount], _glfwDefaultMappings[i])) _glfw.mappingCount++; } for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { _GLFWjoystick* js = _glfw.joysticks + jid; if (js->present) js->mapping = findValidMapping(js); } } // Returns an available joystick object with arrays and name allocated // _GLFWjoystick* _glfwAllocJoystick(const char* name, const char* guid, int axisCount, int buttonCount, int hatCount) { int jid; _GLFWjoystick* js; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { if (!_glfw.joysticks[jid].present) break; } if (jid > GLFW_JOYSTICK_LAST) return NULL; js = _glfw.joysticks + jid; js->present = GLFW_TRUE; js->axes = calloc(axisCount, sizeof(float)); js->buttons = calloc(buttonCount + (size_t) hatCount * 4, 1); js->hats = calloc(hatCount, 1); js->axisCount = axisCount; js->buttonCount = buttonCount; js->hatCount = hatCount; strncpy(js->name, name, sizeof(js->name) - 1); strncpy(js->guid, guid, sizeof(js->guid) - 1); js->mapping = findValidMapping(js); return js; } // Frees arrays and name and flags the joystick object as unused // void _glfwFreeJoystick(_GLFWjoystick* js) { free(js->axes); free(js->buttons); free(js->hats); memset(js, 0, sizeof(_GLFWjoystick)); } // Center the cursor in the content area of the specified window // void _glfwCenterCursorInContentArea(_GLFWwindow* window) { int width, height; _glfwPlatformGetWindowSize(window, &width, &height); _glfwPlatformSetCursorPos(window, width / 2.0, height / 2.0); } ////////////////////////////////////////////////////////////////////////// ////// GLFW public API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI int glfwGetInputMode(GLFWwindow* handle, int mode) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(0); switch (mode) { case GLFW_CURSOR: return window->cursorMode; case GLFW_STICKY_KEYS: return window->stickyKeys; case GLFW_STICKY_MOUSE_BUTTONS: return window->stickyMouseButtons; case GLFW_LOCK_KEY_MODS: return window->lockKeyMods; case GLFW_RAW_MOUSE_MOTION: return window->rawMouseMotion; } _glfwInputError(GLFW_INVALID_ENUM, "Invalid input mode 0x%08X", mode); return 0; } GLFWAPI void glfwSetInputMode(GLFWwindow* handle, int mode, int value) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (mode == GLFW_CURSOR) { if (value != GLFW_CURSOR_NORMAL && value != GLFW_CURSOR_HIDDEN && value != GLFW_CURSOR_DISABLED) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid cursor mode 0x%08X", value); return; } if (window->cursorMode == value) return; window->cursorMode = value; _glfwPlatformGetCursorPos(window, &window->virtualCursorPosX, &window->virtualCursorPosY); _glfwPlatformSetCursorMode(window, value); } else if (mode == GLFW_STICKY_KEYS) { value = value ? GLFW_TRUE : GLFW_FALSE; if (window->stickyKeys == value) return; if (!value) { int i; // Release all sticky keys for (i = 0; i <= GLFW_KEY_LAST; i++) { if (window->keys[i] == _GLFW_STICK) window->keys[i] = GLFW_RELEASE; } } window->stickyKeys = value; } else if (mode == GLFW_STICKY_MOUSE_BUTTONS) { value = value ? GLFW_TRUE : GLFW_FALSE; if (window->stickyMouseButtons == value) return; if (!value) { int i; // Release all sticky mouse buttons for (i = 0; i <= GLFW_MOUSE_BUTTON_LAST; i++) { if (window->mouseButtons[i] == _GLFW_STICK) window->mouseButtons[i] = GLFW_RELEASE; } } window->stickyMouseButtons = value; } else if (mode == GLFW_LOCK_KEY_MODS) { window->lockKeyMods = value ? GLFW_TRUE : GLFW_FALSE; } else if (mode == GLFW_RAW_MOUSE_MOTION) { if (!_glfwPlatformRawMouseMotionSupported()) { _glfwInputError(GLFW_PLATFORM_ERROR, "Raw mouse motion is not supported on this system"); return; } value = value ? GLFW_TRUE : GLFW_FALSE; if (window->rawMouseMotion == value) return; window->rawMouseMotion = value; _glfwPlatformSetRawMouseMotion(window, value); } else _glfwInputError(GLFW_INVALID_ENUM, "Invalid input mode 0x%08X", mode); } GLFWAPI int glfwRawMouseMotionSupported(void) { _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); return _glfwPlatformRawMouseMotionSupported(); } GLFWAPI const char * glfwGetKeys(GLFWwindow* handle) //< @r-lyeh { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return window->keys; } GLFWAPI const char* glfwGetKeyName(int key, int scancode) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (key != GLFW_KEY_UNKNOWN) { if (key != GLFW_KEY_KP_EQUAL && (key < GLFW_KEY_KP_0 || key > GLFW_KEY_KP_ADD) && (key < GLFW_KEY_APOSTROPHE || key > GLFW_KEY_WORLD_2)) { return NULL; } scancode = _glfwPlatformGetKeyScancode(key); } return _glfwPlatformGetScancodeName(scancode); } GLFWAPI int glfwGetKeyScancode(int key) { _GLFW_REQUIRE_INIT_OR_RETURN(-1); if (key < GLFW_KEY_SPACE || key > GLFW_KEY_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid key %i", key); return GLFW_RELEASE; } return _glfwPlatformGetKeyScancode(key); } GLFWAPI int glfwGetKey(GLFWwindow* handle, int key) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_RELEASE); if (key < GLFW_KEY_SPACE || key > GLFW_KEY_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid key %i", key); return GLFW_RELEASE; } if (window->keys[key] == _GLFW_STICK) { // Sticky mode: release key now window->keys[key] = GLFW_RELEASE; return GLFW_PRESS; } return (int) window->keys[key]; } GLFWAPI int glfwGetMouseButton(GLFWwindow* handle, int button) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_RELEASE); if (button < GLFW_MOUSE_BUTTON_1 || button > GLFW_MOUSE_BUTTON_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid mouse button %i", button); return GLFW_RELEASE; } if (window->mouseButtons[button] == _GLFW_STICK) { // Sticky mode: release mouse button now window->mouseButtons[button] = GLFW_RELEASE; return GLFW_PRESS; } return (int) window->mouseButtons[button]; } GLFWAPI void glfwGetCursorPos(GLFWwindow* handle, double* xpos, double* ypos) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); if (xpos) *xpos = 0; if (ypos) *ypos = 0; _GLFW_REQUIRE_INIT(); if (window->cursorMode == GLFW_CURSOR_DISABLED) { if (xpos) *xpos = window->virtualCursorPosX; if (ypos) *ypos = window->virtualCursorPosY; } else _glfwPlatformGetCursorPos(window, xpos, ypos); } GLFWAPI void glfwSetCursorPos(GLFWwindow* handle, double xpos, double ypos) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (xpos != xpos || xpos < -DBL_MAX || xpos > DBL_MAX || ypos != ypos || ypos < -DBL_MAX || ypos > DBL_MAX) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid cursor position %f %f", xpos, ypos); return; } if (!_glfwPlatformWindowFocused(window)) return; if (window->cursorMode == GLFW_CURSOR_DISABLED) { // Only update the accumulated position if the cursor is disabled window->virtualCursorPosX = xpos; window->virtualCursorPosY = ypos; } else { // Update system cursor position _glfwPlatformSetCursorPos(window, xpos, ypos); } } GLFWAPI GLFWcursor* glfwCreateCursor(const GLFWimage* image, int xhot, int yhot) { _GLFWcursor* cursor; assert(image != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); cursor = calloc(1, sizeof(_GLFWcursor)); cursor->next = _glfw.cursorListHead; _glfw.cursorListHead = cursor; if (!_glfwPlatformCreateCursor(cursor, image, xhot, yhot)) { glfwDestroyCursor((GLFWcursor*) cursor); return NULL; } return (GLFWcursor*) cursor; } GLFWAPI GLFWcursor* glfwCreateStandardCursor(int shape) { _GLFWcursor* cursor; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (shape != GLFW_ARROW_CURSOR && shape != GLFW_IBEAM_CURSOR && shape != GLFW_CROSSHAIR_CURSOR && shape != GLFW_HAND_CURSOR && shape != GLFW_HRESIZE_CURSOR && shape != GLFW_VRESIZE_CURSOR) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid standard cursor 0x%08X", shape); return NULL; } cursor = calloc(1, sizeof(_GLFWcursor)); cursor->next = _glfw.cursorListHead; _glfw.cursorListHead = cursor; if (!_glfwPlatformCreateStandardCursor(cursor, shape)) { glfwDestroyCursor((GLFWcursor*) cursor); return NULL; } return (GLFWcursor*) cursor; } GLFWAPI void glfwDestroyCursor(GLFWcursor* handle) { _GLFWcursor* cursor = (_GLFWcursor*) handle; _GLFW_REQUIRE_INIT(); if (cursor == NULL) return; // Make sure the cursor is not being used by any window { _GLFWwindow* window; for (window = _glfw.windowListHead; window; window = window->next) { if (window->cursor == cursor) glfwSetCursor((GLFWwindow*) window, NULL); } } _glfwPlatformDestroyCursor(cursor); // Unlink cursor from global linked list { _GLFWcursor** prev = &_glfw.cursorListHead; while (*prev != cursor) prev = &((*prev)->next); *prev = cursor->next; } free(cursor); } GLFWAPI void glfwSetCursor(GLFWwindow* windowHandle, GLFWcursor* cursorHandle) { _GLFWwindow* window = (_GLFWwindow*) windowHandle; _GLFWcursor* cursor = (_GLFWcursor*) cursorHandle; assert(window != NULL); _GLFW_REQUIRE_INIT(); window->cursor = cursor; _glfwPlatformSetCursor(window, cursor); } GLFWAPI GLFWkeyfun glfwSetKeyCallback(GLFWwindow* handle, GLFWkeyfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.key, cbfun); return cbfun; } GLFWAPI GLFWcharfun glfwSetCharCallback(GLFWwindow* handle, GLFWcharfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.character, cbfun); return cbfun; } GLFWAPI GLFWcharmodsfun glfwSetCharModsCallback(GLFWwindow* handle, GLFWcharmodsfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.charmods, cbfun); return cbfun; } GLFWAPI GLFWmousebuttonfun glfwSetMouseButtonCallback(GLFWwindow* handle, GLFWmousebuttonfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.mouseButton, cbfun); return cbfun; } GLFWAPI GLFWcursorposfun glfwSetCursorPosCallback(GLFWwindow* handle, GLFWcursorposfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.cursorPos, cbfun); return cbfun; } GLFWAPI GLFWcursorenterfun glfwSetCursorEnterCallback(GLFWwindow* handle, GLFWcursorenterfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.cursorEnter, cbfun); return cbfun; } GLFWAPI GLFWscrollfun glfwSetScrollCallback(GLFWwindow* handle, GLFWscrollfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.scroll, cbfun); return cbfun; } GLFWAPI GLFWdropfun glfwSetDropCallback(GLFWwindow* handle, GLFWdropfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.drop, cbfun); return cbfun; } GLFWAPI int glfwJoystickPresent(int jid) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return GLFW_FALSE; } js = _glfw.joysticks + jid; if (!js->present) return GLFW_FALSE; return _glfwPlatformPollJoystick(js, _GLFW_POLL_PRESENCE); } GLFWAPI const float* glfwGetJoystickAxes(int jid, int* count) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); assert(count != NULL); *count = 0; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return NULL; } js = _glfw.joysticks + jid; if (!js->present) return NULL; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_AXES)) return NULL; *count = js->axisCount; return js->axes; } GLFWAPI const unsigned char* glfwGetJoystickButtons(int jid, int* count) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); assert(count != NULL); *count = 0; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return NULL; } js = _glfw.joysticks + jid; if (!js->present) return NULL; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_BUTTONS)) return NULL; if (_glfw.hints.init.hatButtons) *count = js->buttonCount + js->hatCount * 4; else *count = js->buttonCount; return js->buttons; } GLFWAPI const unsigned char* glfwGetJoystickHats(int jid, int* count) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); assert(count != NULL); *count = 0; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return NULL; } js = _glfw.joysticks + jid; if (!js->present) return NULL; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_BUTTONS)) return NULL; *count = js->hatCount; return js->hats; } GLFWAPI const char* glfwGetJoystickName(int jid) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return NULL; } js = _glfw.joysticks + jid; if (!js->present) return NULL; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_PRESENCE)) return NULL; return js->name; } GLFWAPI const char* glfwGetJoystickGUID(int jid) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return NULL; } js = _glfw.joysticks + jid; if (!js->present) return NULL; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_PRESENCE)) return NULL; return js->guid; } GLFWAPI void glfwSetJoystickUserPointer(int jid, void* pointer) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT(); js = _glfw.joysticks + jid; if (!js->present) return; js->userPointer = pointer; } GLFWAPI void* glfwGetJoystickUserPointer(int jid) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); js = _glfw.joysticks + jid; if (!js->present) return NULL; return js->userPointer; } GLFWAPI GLFWjoystickfun glfwSetJoystickCallback(GLFWjoystickfun cbfun) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(_glfw.callbacks.joystick, cbfun); return cbfun; } GLFWAPI int glfwUpdateGamepadMappings(const char* string) { int jid; const char* c = string; assert(string != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); while (*c) { if ((*c >= '0' && *c <= '9') || (*c >= 'a' && *c <= 'f') || (*c >= 'A' && *c <= 'F')) { char line[1024]; const size_t length = strcspn(c, "\r\n"); if (length < sizeof(line)) { _GLFWmapping mapping = {{0}}; memcpy(line, c, length); line[length] = '\0'; if (parseMapping(&mapping, line)) { _GLFWmapping* previous = findMapping(mapping.guid); if (previous) *previous = mapping; else { _glfw.mappingCount++; _glfw.mappings = realloc(_glfw.mappings, sizeof(_GLFWmapping) * _glfw.mappingCount); _glfw.mappings[_glfw.mappingCount - 1] = mapping; } } } c += length; } else { c += strcspn(c, "\r\n"); c += strspn(c, "\r\n"); } } for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { _GLFWjoystick* js = _glfw.joysticks + jid; if (js->present) js->mapping = findValidMapping(js); } return GLFW_TRUE; } GLFWAPI int glfwJoystickIsGamepad(int jid) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return GLFW_FALSE; } js = _glfw.joysticks + jid; if (!js->present) return GLFW_FALSE; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_PRESENCE)) return GLFW_FALSE; return js->mapping != NULL; } GLFWAPI const char* glfwGetGamepadName(int jid) { _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return NULL; } js = _glfw.joysticks + jid; if (!js->present) return NULL; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_PRESENCE)) return NULL; if (!js->mapping) return NULL; return js->mapping->name; } GLFWAPI int glfwGetGamepadState(int jid, GLFWgamepadstate* state) { int i; _GLFWjoystick* js; assert(jid >= GLFW_JOYSTICK_1); assert(jid <= GLFW_JOYSTICK_LAST); assert(state != NULL); memset(state, 0, sizeof(GLFWgamepadstate)); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); if (jid < 0 || jid > GLFW_JOYSTICK_LAST) { _glfwInputError(GLFW_INVALID_ENUM, "Invalid joystick ID %i", jid); return GLFW_FALSE; } js = _glfw.joysticks + jid; if (!js->present) return GLFW_FALSE; if (!_glfwPlatformPollJoystick(js, _GLFW_POLL_ALL)) return GLFW_FALSE; if (!js->mapping) return GLFW_FALSE; for (i = 0; i <= GLFW_GAMEPAD_BUTTON_LAST; i++) { const _GLFWmapelement* e = js->mapping->buttons + i; if (e->type == _GLFW_JOYSTICK_AXIS) { const float value = js->axes[e->index] * e->axisScale + e->axisOffset; // HACK: This should be baked into the value transform // TODO: Bake into transform when implementing output modifiers if (e->axisOffset < 0 || (e->axisOffset == 0 && e->axisScale > 0)) { if (value >= 0.f) state->buttons[i] = GLFW_PRESS; } else { if (value <= 0.f) state->buttons[i] = GLFW_PRESS; } } else if (e->type == _GLFW_JOYSTICK_HATBIT) { const unsigned int hat = e->index >> 4; const unsigned int bit = e->index & 0xf; if (js->hats[hat] & bit) state->buttons[i] = GLFW_PRESS; } else if (e->type == _GLFW_JOYSTICK_BUTTON) state->buttons[i] = js->buttons[e->index]; } for (i = 0; i <= GLFW_GAMEPAD_AXIS_LAST; i++) { const _GLFWmapelement* e = js->mapping->axes + i; if (e->type == _GLFW_JOYSTICK_AXIS) { const float value = js->axes[e->index] * e->axisScale + e->axisOffset; state->axes[i] = _glfw_fminf(_glfw_fmaxf(value, -1.f), 1.f); } else if (e->type == _GLFW_JOYSTICK_HATBIT) { const unsigned int hat = e->index >> 4; const unsigned int bit = e->index & 0xf; if (js->hats[hat] & bit) state->axes[i] = 1.f; else state->axes[i] = -1.f; } else if (e->type == _GLFW_JOYSTICK_BUTTON) state->axes[i] = js->buttons[e->index] * 2.f - 1.f; } return GLFW_TRUE; } GLFWAPI void glfwSetClipboardString(GLFWwindow* handle, const char* string) { assert(string != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformSetClipboardString(string); } GLFWAPI const char* glfwGetClipboardString(GLFWwindow* handle) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return _glfwPlatformGetClipboardString(); } GLFWAPI double glfwGetTime(void) { _GLFW_REQUIRE_INIT_OR_RETURN(0.0); return (double) (_glfwPlatformGetTimerValue() - _glfw.timer.offset) / _glfwPlatformGetTimerFrequency(); } GLFWAPI void glfwSetTime(double time) { _GLFW_REQUIRE_INIT(); if (time != time || time < 0.0 || time > 18446744073.0) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid time %f", time); return; } _glfw.timer.offset = _glfwPlatformGetTimerValue() - (uint64_t) (time * _glfwPlatformGetTimerFrequency()); } GLFWAPI uint64_t glfwGetTimerValue(void) { _GLFW_REQUIRE_INIT_OR_RETURN(0); return _glfwPlatformGetTimerValue(); } GLFWAPI uint64_t glfwGetTimerFrequency(void) { _GLFW_REQUIRE_INIT_OR_RETURN(0); return _glfwPlatformGetTimerFrequency(); } #endif #ifndef HEADER_GUARD_MONITOR_C #define HEADER_GUARD_MONITOR_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include #include #include // Lexically compare video modes, used by qsort // static int compareVideoModes(const void* fp, const void* sp) { const GLFWvidmode* fm = fp; const GLFWvidmode* sm = sp; const int fbpp = fm->redBits + fm->greenBits + fm->blueBits; const int sbpp = sm->redBits + sm->greenBits + sm->blueBits; const int farea = fm->width * fm->height; const int sarea = sm->width * sm->height; // First sort on color bits per pixel if (fbpp != sbpp) return fbpp - sbpp; // Then sort on screen area if (farea != sarea) return farea - sarea; // Then sort on width if (fm->width != sm->width) return fm->width - sm->width; // Lastly sort on refresh rate return fm->refreshRate - sm->refreshRate; } // Retrieves the available modes for the specified monitor // static GLFWbool refreshVideoModes(_GLFWmonitor* monitor) { int modeCount; GLFWvidmode* modes; if (monitor->modes) return GLFW_TRUE; modes = _glfwPlatformGetVideoModes(monitor, &modeCount); if (!modes) return GLFW_FALSE; qsort(modes, modeCount, sizeof(GLFWvidmode), compareVideoModes); free(monitor->modes); monitor->modes = modes; monitor->modeCount = modeCount; return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW event API ////// ////////////////////////////////////////////////////////////////////////// // Notifies shared code of a monitor connection or disconnection // void _glfwInputMonitor(_GLFWmonitor* monitor, int action, int placement) { if (action == GLFW_CONNECTED) { _glfw.monitorCount++; _glfw.monitors = realloc(_glfw.monitors, sizeof(_GLFWmonitor*) * _glfw.monitorCount); if (placement == _GLFW_INSERT_FIRST) { memmove(_glfw.monitors + 1, _glfw.monitors, ((size_t) _glfw.monitorCount - 1) * sizeof(_GLFWmonitor*)); _glfw.monitors[0] = monitor; } else _glfw.monitors[_glfw.monitorCount - 1] = monitor; } else if (action == GLFW_DISCONNECTED) { int i; _GLFWwindow* window; for (window = _glfw.windowListHead; window; window = window->next) { if (window->monitor == monitor) { int width, height, xoff, yoff; _glfwPlatformGetWindowSize(window, &width, &height); _glfwPlatformSetWindowMonitor(window, NULL, 0, 0, width, height, 0); _glfwPlatformGetWindowFrameSize(window, &xoff, &yoff, NULL, NULL); _glfwPlatformSetWindowPos(window, xoff, yoff); } } for (i = 0; i < _glfw.monitorCount; i++) { if (_glfw.monitors[i] == monitor) { _glfw.monitorCount--; memmove(_glfw.monitors + i, _glfw.monitors + i + 1, ((size_t) _glfw.monitorCount - i) * sizeof(_GLFWmonitor*)); break; } } } if (_glfw.callbacks.monitor) _glfw.callbacks.monitor((GLFWmonitor*) monitor, action); if (action == GLFW_DISCONNECTED) _glfwFreeMonitor(monitor); } // Notifies shared code that a full screen window has acquired or released // a monitor // void _glfwInputMonitorWindow(_GLFWmonitor* monitor, _GLFWwindow* window) { monitor->window = window; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Allocates and returns a monitor object with the specified name and dimensions // _GLFWmonitor* _glfwAllocMonitor(const char* name, int widthMM, int heightMM) { _GLFWmonitor* monitor = calloc(1, sizeof(_GLFWmonitor)); monitor->widthMM = widthMM; monitor->heightMM = heightMM; strncpy(monitor->name, name, sizeof(monitor->name) - 1); return monitor; } // Frees a monitor object and any data associated with it // void _glfwFreeMonitor(_GLFWmonitor* monitor) { if (monitor == NULL) return; _glfwPlatformFreeMonitor(monitor); _glfwFreeGammaArrays(&monitor->originalRamp); _glfwFreeGammaArrays(&monitor->currentRamp); free(monitor->modes); free(monitor); } // Allocates red, green and blue value arrays of the specified size // void _glfwAllocGammaArrays(GLFWgammaramp* ramp, unsigned int size) { ramp->red = calloc(size, sizeof(unsigned short)); ramp->green = calloc(size, sizeof(unsigned short)); ramp->blue = calloc(size, sizeof(unsigned short)); ramp->size = size; } // Frees the red, green and blue value arrays and clears the struct // void _glfwFreeGammaArrays(GLFWgammaramp* ramp) { free(ramp->red); free(ramp->green); free(ramp->blue); memset(ramp, 0, sizeof(GLFWgammaramp)); } // Chooses the video mode most closely matching the desired one // const GLFWvidmode* _glfwChooseVideoMode(_GLFWmonitor* monitor, const GLFWvidmode* desired) { int i; unsigned int sizeDiff, leastSizeDiff = UINT_MAX; unsigned int rateDiff, leastRateDiff = UINT_MAX; unsigned int colorDiff, leastColorDiff = UINT_MAX; const GLFWvidmode* current; const GLFWvidmode* closest = NULL; if (!refreshVideoModes(monitor)) return NULL; for (i = 0; i < monitor->modeCount; i++) { current = monitor->modes + i; colorDiff = 0; if (desired->redBits != GLFW_DONT_CARE) colorDiff += abs(current->redBits - desired->redBits); if (desired->greenBits != GLFW_DONT_CARE) colorDiff += abs(current->greenBits - desired->greenBits); if (desired->blueBits != GLFW_DONT_CARE) colorDiff += abs(current->blueBits - desired->blueBits); sizeDiff = abs((current->width - desired->width) * (current->width - desired->width) + (current->height - desired->height) * (current->height - desired->height)); if (desired->refreshRate != GLFW_DONT_CARE) rateDiff = abs(current->refreshRate - desired->refreshRate); else rateDiff = UINT_MAX - current->refreshRate; if ((colorDiff < leastColorDiff) || (colorDiff == leastColorDiff && sizeDiff < leastSizeDiff) || (colorDiff == leastColorDiff && sizeDiff == leastSizeDiff && rateDiff < leastRateDiff)) { closest = current; leastSizeDiff = sizeDiff; leastRateDiff = rateDiff; leastColorDiff = colorDiff; } } return closest; } // Performs lexical comparison between two @ref GLFWvidmode structures // int _glfwCompareVideoModes(const GLFWvidmode* fm, const GLFWvidmode* sm) { return compareVideoModes(fm, sm); } // Splits a color depth into red, green and blue bit depths // void _glfwSplitBPP(int bpp, int* red, int* green, int* blue) { int delta; // We assume that by 32 the user really meant 24 if (bpp == 32) bpp = 24; // Convert "bits per pixel" to red, green & blue sizes *red = *green = *blue = bpp / 3; delta = bpp - (*red * 3); if (delta >= 1) *green = *green + 1; if (delta == 2) *red = *red + 1; } ////////////////////////////////////////////////////////////////////////// ////// GLFW public API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI GLFWmonitor** glfwGetMonitors(int* count) { assert(count != NULL); *count = 0; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); *count = _glfw.monitorCount; return (GLFWmonitor**) _glfw.monitors; } GLFWAPI GLFWmonitor* glfwGetPrimaryMonitor(void) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (!_glfw.monitorCount) return NULL; return (GLFWmonitor*) _glfw.monitors[0]; } GLFWAPI void glfwGetMonitorPos(GLFWmonitor* handle, int* xpos, int* ypos) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); if (xpos) *xpos = 0; if (ypos) *ypos = 0; _GLFW_REQUIRE_INIT(); _glfwPlatformGetMonitorPos(monitor, xpos, ypos); } GLFWAPI void glfwGetMonitorWorkarea(GLFWmonitor* handle, int* xpos, int* ypos, int* width, int* height) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); if (xpos) *xpos = 0; if (ypos) *ypos = 0; if (width) *width = 0; if (height) *height = 0; _GLFW_REQUIRE_INIT(); _glfwPlatformGetMonitorWorkarea(monitor, xpos, ypos, width, height); } GLFWAPI void glfwGetMonitorPhysicalSize(GLFWmonitor* handle, int* widthMM, int* heightMM) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); if (widthMM) *widthMM = 0; if (heightMM) *heightMM = 0; _GLFW_REQUIRE_INIT(); if (widthMM) *widthMM = monitor->widthMM; if (heightMM) *heightMM = monitor->heightMM; } GLFWAPI void glfwGetMonitorContentScale(GLFWmonitor* handle, float* xscale, float* yscale) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); if (xscale) *xscale = 0.f; if (yscale) *yscale = 0.f; _GLFW_REQUIRE_INIT(); _glfwPlatformGetMonitorContentScale(monitor, xscale, yscale); } GLFWAPI const char* glfwGetMonitorName(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return monitor->name; } GLFWAPI void glfwSetMonitorUserPointer(GLFWmonitor* handle, void* pointer) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); _GLFW_REQUIRE_INIT(); monitor->userPointer = pointer; } GLFWAPI void* glfwGetMonitorUserPointer(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return monitor->userPointer; } GLFWAPI GLFWmonitorfun glfwSetMonitorCallback(GLFWmonitorfun cbfun) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(_glfw.callbacks.monitor, cbfun); return cbfun; } GLFWAPI const GLFWvidmode* glfwGetVideoModes(GLFWmonitor* handle, int* count) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); assert(count != NULL); *count = 0; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (!refreshVideoModes(monitor)) return NULL; *count = monitor->modeCount; return monitor->modes; } GLFWAPI const GLFWvidmode* glfwGetVideoMode(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _glfwPlatformGetVideoMode(monitor, &monitor->currentMode); return &monitor->currentMode; } GLFWAPI void glfwSetGamma(GLFWmonitor* handle, float gamma) { unsigned int i; unsigned short* values; GLFWgammaramp ramp; const GLFWgammaramp* original; assert(handle != NULL); assert(gamma > 0.f); assert(gamma <= FLT_MAX); _GLFW_REQUIRE_INIT(); if (gamma != gamma || gamma <= 0.f || gamma > FLT_MAX) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid gamma value %f", gamma); return; } original = glfwGetGammaRamp(handle); if (!original) return; values = calloc(original->size, sizeof(unsigned short)); for (i = 0; i < original->size; i++) { float value; // Calculate intensity value = i / (float) (original->size - 1); // Apply gamma curve value = powf(value, 1.f / gamma) * 65535.f + 0.5f; // Clamp to value range value = _glfw_fminf(value, 65535.f); values[i] = (unsigned short) value; } ramp.red = values; ramp.green = values; ramp.blue = values; ramp.size = original->size; glfwSetGammaRamp(handle, &ramp); free(values); } GLFWAPI const GLFWgammaramp* glfwGetGammaRamp(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _glfwFreeGammaArrays(&monitor->currentRamp); if (!_glfwPlatformGetGammaRamp(monitor, &monitor->currentRamp)) return NULL; return &monitor->currentRamp; } GLFWAPI void glfwSetGammaRamp(GLFWmonitor* handle, const GLFWgammaramp* ramp) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; assert(monitor != NULL); assert(ramp != NULL); assert(ramp->size > 0); assert(ramp->red != NULL); assert(ramp->green != NULL); assert(ramp->blue != NULL); if (ramp->size <= 0) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid gamma ramp size %i", ramp->size); return; } _GLFW_REQUIRE_INIT(); if (!monitor->originalRamp.size) { if (!_glfwPlatformGetGammaRamp(monitor, &monitor->originalRamp)) return; } _glfwPlatformSetGammaRamp(monitor, ramp); } #endif #ifndef HEADER_GUARD_VULKAN_C #define HEADER_GUARD_VULKAN_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2018 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #define _GLFW_FIND_LOADER 1 #define _GLFW_REQUIRE_LOADER 2 ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// GLFWbool _glfwInitVulkan(int mode) { VkResult err; VkExtensionProperties* ep; uint32_t i, count; if (_glfw.vk.available) return GLFW_TRUE; #if !defined(_GLFW_VULKAN_STATIC) #if defined(_GLFW_VULKAN_LIBRARY) _glfw.vk.handle = _glfw_dlopen(_GLFW_VULKAN_LIBRARY); #elif defined(_GLFW_WIN32) _glfw.vk.handle = _glfw_dlopen("vulkan-1.dll"); #elif defined(_GLFW_COCOA) _glfw.vk.handle = _glfw_dlopen("libvulkan.1.dylib"); if (!_glfw.vk.handle) _glfw.vk.handle = _glfwLoadLocalVulkanLoaderNS(); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.vk.handle = _glfw_dlopen("libvulkan.so"); #else _glfw.vk.handle = _glfw_dlopen("libvulkan.so.1"); #endif if (!_glfw.vk.handle) { if (mode == _GLFW_REQUIRE_LOADER) _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Loader not found"); return GLFW_FALSE; } _glfw.vk.GetInstanceProcAddr = (PFN_vkGetInstanceProcAddr) _glfw_dlsym(_glfw.vk.handle, "vkGetInstanceProcAddr"); if (!_glfw.vk.GetInstanceProcAddr) { _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Loader does not export vkGetInstanceProcAddr"); _glfwTerminateVulkan(); return GLFW_FALSE; } _glfw.vk.EnumerateInstanceExtensionProperties = (PFN_vkEnumerateInstanceExtensionProperties) vkGetInstanceProcAddr(NULL, "vkEnumerateInstanceExtensionProperties"); if (!_glfw.vk.EnumerateInstanceExtensionProperties) { _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Failed to retrieve vkEnumerateInstanceExtensionProperties"); _glfwTerminateVulkan(); return GLFW_FALSE; } #endif // _GLFW_VULKAN_STATIC err = vkEnumerateInstanceExtensionProperties(NULL, &count, NULL); if (err) { // NOTE: This happens on systems with a loader but without any Vulkan ICD if (mode == _GLFW_REQUIRE_LOADER) { _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Failed to query instance extension count: %s", _glfwGetVulkanResultString(err)); } _glfwTerminateVulkan(); return GLFW_FALSE; } ep = calloc(count, sizeof(VkExtensionProperties)); err = vkEnumerateInstanceExtensionProperties(NULL, &count, ep); if (err) { _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Failed to query instance extensions: %s", _glfwGetVulkanResultString(err)); free(ep); _glfwTerminateVulkan(); return GLFW_FALSE; } for (i = 0; i < count; i++) { if (strcmp(ep[i].extensionName, "VK_KHR_surface") == 0) _glfw.vk.KHR_surface = GLFW_TRUE; #if defined(_GLFW_WIN32) else if (strcmp(ep[i].extensionName, "VK_KHR_win32_surface") == 0) _glfw.vk.KHR_win32_surface = GLFW_TRUE; #elif defined(_GLFW_COCOA) else if (strcmp(ep[i].extensionName, "VK_MVK_macos_surface") == 0) _glfw.vk.MVK_macos_surface = GLFW_TRUE; else if (strcmp(ep[i].extensionName, "VK_EXT_metal_surface") == 0) _glfw.vk.EXT_metal_surface = GLFW_TRUE; #elif defined(_GLFW_X11) else if (strcmp(ep[i].extensionName, "VK_KHR_xlib_surface") == 0) _glfw.vk.KHR_xlib_surface = GLFW_TRUE; else if (strcmp(ep[i].extensionName, "VK_KHR_xcb_surface") == 0) _glfw.vk.KHR_xcb_surface = GLFW_TRUE; #elif defined(_GLFW_WAYLAND) else if (strcmp(ep[i].extensionName, "VK_KHR_wayland_surface") == 0) _glfw.vk.KHR_wayland_surface = GLFW_TRUE; #endif } free(ep); _glfw.vk.available = GLFW_TRUE; _glfwPlatformGetRequiredInstanceExtensions(_glfw.vk.extensions); return GLFW_TRUE; } void _glfwTerminateVulkan(void) { #if !defined(_GLFW_VULKAN_STATIC) if (_glfw.vk.handle) _glfw_dlclose(_glfw.vk.handle); #endif } const char* _glfwGetVulkanResultString(VkResult result) { switch (result) { case VK_SUCCESS: return "Success"; case VK_NOT_READY: return "A fence or query has not yet completed"; case VK_TIMEOUT: return "A wait operation has not completed in the specified time"; case VK_EVENT_SET: return "An event is signaled"; case VK_EVENT_RESET: return "An event is unsignaled"; case VK_INCOMPLETE: return "A return array was too small for the result"; case VK_ERROR_OUT_OF_HOST_MEMORY: return "A host memory allocation has failed"; case VK_ERROR_OUT_OF_DEVICE_MEMORY: return "A device memory allocation has failed"; case VK_ERROR_INITIALIZATION_FAILED: return "Initialization of an object could not be completed for implementation-specific reasons"; case VK_ERROR_DEVICE_LOST: return "The logical or physical device has been lost"; case VK_ERROR_MEMORY_MAP_FAILED: return "Mapping of a memory object has failed"; case VK_ERROR_LAYER_NOT_PRESENT: return "A requested layer is not present or could not be loaded"; case VK_ERROR_EXTENSION_NOT_PRESENT: return "A requested extension is not supported"; case VK_ERROR_FEATURE_NOT_PRESENT: return "A requested feature is not supported"; case VK_ERROR_INCOMPATIBLE_DRIVER: return "The requested version of Vulkan is not supported by the driver or is otherwise incompatible"; case VK_ERROR_TOO_MANY_OBJECTS: return "Too many objects of the type have already been created"; case VK_ERROR_FORMAT_NOT_SUPPORTED: return "A requested format is not supported on this device"; case VK_ERROR_SURFACE_LOST_KHR: return "A surface is no longer available"; case VK_SUBOPTIMAL_KHR: return "A swapchain no longer matches the surface properties exactly, but can still be used"; case VK_ERROR_OUT_OF_DATE_KHR: return "A surface has changed in such a way that it is no longer compatible with the swapchain"; case VK_ERROR_INCOMPATIBLE_DISPLAY_KHR: return "The display used by a swapchain does not use the same presentable image layout"; case VK_ERROR_NATIVE_WINDOW_IN_USE_KHR: return "The requested window is already connected to a VkSurfaceKHR, or to some other non-Vulkan API"; case VK_ERROR_VALIDATION_FAILED_EXT: return "A validation layer found an error"; default: return "ERROR: UNKNOWN VULKAN ERROR"; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW public API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI int glfwVulkanSupported(void) { _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); return _glfwInitVulkan(_GLFW_FIND_LOADER); } GLFWAPI const char** glfwGetRequiredInstanceExtensions(uint32_t* count) { assert(count != NULL); *count = 0; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (!_glfwInitVulkan(_GLFW_REQUIRE_LOADER)) return NULL; if (!_glfw.vk.extensions[0]) return NULL; *count = 2; return (const char**) _glfw.vk.extensions; } GLFWAPI GLFWvkproc glfwGetInstanceProcAddress(VkInstance instance, const char* procname) { GLFWvkproc proc; assert(procname != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (!_glfwInitVulkan(_GLFW_REQUIRE_LOADER)) return NULL; proc = (GLFWvkproc) vkGetInstanceProcAddr(instance, procname); #if defined(_GLFW_VULKAN_STATIC) if (!proc) { if (strcmp(procname, "vkGetInstanceProcAddr") == 0) return (GLFWvkproc) vkGetInstanceProcAddr; } #else if (!proc) proc = (GLFWvkproc) _glfw_dlsym(_glfw.vk.handle, procname); #endif return proc; } GLFWAPI int glfwGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily) { assert(instance != VK_NULL_HANDLE); assert(device != VK_NULL_HANDLE); _GLFW_REQUIRE_INIT_OR_RETURN(GLFW_FALSE); if (!_glfwInitVulkan(_GLFW_REQUIRE_LOADER)) return GLFW_FALSE; if (!_glfw.vk.extensions[0]) { _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Window surface creation extensions not found"); return GLFW_FALSE; } return _glfwPlatformGetPhysicalDevicePresentationSupport(instance, device, queuefamily); } GLFWAPI VkResult glfwCreateWindowSurface(VkInstance instance, GLFWwindow* handle, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(instance != VK_NULL_HANDLE); assert(window != NULL); assert(surface != NULL); *surface = VK_NULL_HANDLE; _GLFW_REQUIRE_INIT_OR_RETURN(VK_ERROR_INITIALIZATION_FAILED); if (!_glfwInitVulkan(_GLFW_REQUIRE_LOADER)) return VK_ERROR_INITIALIZATION_FAILED; if (!_glfw.vk.extensions[0]) { _glfwInputError(GLFW_API_UNAVAILABLE, "Vulkan: Window surface creation extensions not found"); return VK_ERROR_EXTENSION_NOT_PRESENT; } if (window->context.client != GLFW_NO_API) { _glfwInputError(GLFW_INVALID_VALUE, "Vulkan: Window surface creation requires the window to have the client API set to GLFW_NO_API"); return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; } return _glfwPlatformCreateWindowSurface(instance, window, allocator, surface); } #endif #ifndef HEADER_GUARD_WINDOW_C #define HEADER_GUARD_WINDOW_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // Copyright (c) 2012 Torsten Walluhn // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include ////////////////////////////////////////////////////////////////////////// ////// GLFW event API ////// ////////////////////////////////////////////////////////////////////////// // Notifies shared code that a window has lost or received input focus // void _glfwInputWindowFocus(_GLFWwindow* window, GLFWbool focused) { if (window->callbacks.focus) window->callbacks.focus((GLFWwindow*) window, focused); if (!focused) { int key, button; for (key = 0; key <= GLFW_KEY_LAST; key++) { if (window->keys[key] == GLFW_PRESS) { const int scancode = _glfwPlatformGetKeyScancode(key); _glfwInputKey(window, key, scancode, GLFW_RELEASE, 0); } } for (button = 0; button <= GLFW_MOUSE_BUTTON_LAST; button++) { if (window->mouseButtons[button] == GLFW_PRESS) _glfwInputMouseClick(window, button, GLFW_RELEASE, 0); } } } // Notifies shared code that a window has moved // The position is specified in content area relative screen coordinates // void _glfwInputWindowPos(_GLFWwindow* window, int x, int y) { if (window->callbacks.pos) window->callbacks.pos((GLFWwindow*) window, x, y); } // Notifies shared code that a window has been resized // The size is specified in screen coordinates // void _glfwInputWindowSize(_GLFWwindow* window, int width, int height) { if (window->callbacks.size) window->callbacks.size((GLFWwindow*) window, width, height); } // Notifies shared code that a window has been iconified or restored // void _glfwInputWindowIconify(_GLFWwindow* window, GLFWbool iconified) { if (window->callbacks.iconify) window->callbacks.iconify((GLFWwindow*) window, iconified); } // Notifies shared code that a window has been maximized or restored // void _glfwInputWindowMaximize(_GLFWwindow* window, GLFWbool maximized) { if (window->callbacks.maximize) window->callbacks.maximize((GLFWwindow*) window, maximized); } // Notifies shared code that a window framebuffer has been resized // The size is specified in pixels // void _glfwInputFramebufferSize(_GLFWwindow* window, int width, int height) { if (window->callbacks.fbsize) window->callbacks.fbsize((GLFWwindow*) window, width, height); } // Notifies shared code that a window content scale has changed // The scale is specified as the ratio between the current and default DPI // void _glfwInputWindowContentScale(_GLFWwindow* window, float xscale, float yscale) { if (window->callbacks.scale) window->callbacks.scale((GLFWwindow*) window, xscale, yscale); } // Notifies shared code that the window contents needs updating // void _glfwInputWindowDamage(_GLFWwindow* window) { if (window->callbacks.refresh) window->callbacks.refresh((GLFWwindow*) window); } // Notifies shared code that the user wishes to close a window // void _glfwInputWindowCloseRequest(_GLFWwindow* window) { window->shouldClose = GLFW_TRUE; if (window->callbacks.close) window->callbacks.close((GLFWwindow*) window); } // Notifies shared code that a window has changed its desired monitor // void _glfwInputWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor) { window->monitor = monitor; } ////////////////////////////////////////////////////////////////////////// ////// GLFW public API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI GLFWwindow* glfwCreateWindow(int width, int height, const char* title, GLFWmonitor* monitor, GLFWwindow* share) { _GLFWfbconfig fbconfig; _GLFWctxconfig ctxconfig; _GLFWwndconfig wndconfig; _GLFWwindow* window; assert(title != NULL); assert(width >= 0); assert(height >= 0); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (width <= 0 || height <= 0) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid window size %ix%i", width, height); return NULL; } fbconfig = _glfw.hints.framebuffer; ctxconfig = _glfw.hints.context; wndconfig = _glfw.hints.window; wndconfig.width = width; wndconfig.height = height; wndconfig.title = title; ctxconfig.share = (_GLFWwindow*) share; if (!_glfwIsValidContextConfig(&ctxconfig)) return NULL; window = calloc(1, sizeof(_GLFWwindow)); window->next = _glfw.windowListHead; _glfw.windowListHead = window; window->videoMode.width = width; window->videoMode.height = height; window->videoMode.redBits = fbconfig.redBits; window->videoMode.greenBits = fbconfig.greenBits; window->videoMode.blueBits = fbconfig.blueBits; window->videoMode.refreshRate = _glfw.hints.refreshRate; window->monitor = (_GLFWmonitor*) monitor; window->resizable = wndconfig.resizable; window->decorated = wndconfig.decorated; window->autoIconify = wndconfig.autoIconify; window->floating = wndconfig.floating; window->focusOnShow = wndconfig.focusOnShow; window->cursorMode = GLFW_CURSOR_NORMAL; window->doublebuffer = fbconfig.doublebuffer; window->minwidth = GLFW_DONT_CARE; window->minheight = GLFW_DONT_CARE; window->maxwidth = GLFW_DONT_CARE; window->maxheight = GLFW_DONT_CARE; window->numer = GLFW_DONT_CARE; window->denom = GLFW_DONT_CARE; // Open the actual window and create its context if (!_glfwPlatformCreateWindow(window, &wndconfig, &ctxconfig, &fbconfig)) { glfwDestroyWindow((GLFWwindow*) window); return NULL; } if (ctxconfig.client != GLFW_NO_API) { if (!_glfwRefreshContextAttribs(window, &ctxconfig)) { glfwDestroyWindow((GLFWwindow*) window); return NULL; } } if (window->monitor) { if (wndconfig.centerCursor) _glfwCenterCursorInContentArea(window); } else { if (wndconfig.visible) { _glfwPlatformShowWindow(window); if (wndconfig.focused) _glfwPlatformFocusWindow(window); } } return (GLFWwindow*) window; } void glfwDefaultWindowHints(void) { _GLFW_REQUIRE_INIT(); // The default is OpenGL with minimum version 1.0 memset(&_glfw.hints.context, 0, sizeof(_glfw.hints.context)); _glfw.hints.context.client = GLFW_OPENGL_API; _glfw.hints.context.source = GLFW_NATIVE_CONTEXT_API; _glfw.hints.context.major = 1; _glfw.hints.context.minor = 0; // The default is a focused, visible, resizable window with decorations memset(&_glfw.hints.window, 0, sizeof(_glfw.hints.window)); _glfw.hints.window.resizable = GLFW_TRUE; _glfw.hints.window.visible = GLFW_TRUE; _glfw.hints.window.decorated = GLFW_TRUE; _glfw.hints.window.focused = GLFW_TRUE; _glfw.hints.window.autoIconify = GLFW_TRUE; _glfw.hints.window.centerCursor = GLFW_TRUE; _glfw.hints.window.focusOnShow = GLFW_TRUE; // The default is 24 bits of color, 24 bits of depth and 8 bits of stencil, // double buffered memset(&_glfw.hints.framebuffer, 0, sizeof(_glfw.hints.framebuffer)); _glfw.hints.framebuffer.redBits = 8; _glfw.hints.framebuffer.greenBits = 8; _glfw.hints.framebuffer.blueBits = 8; _glfw.hints.framebuffer.alphaBits = 8; _glfw.hints.framebuffer.depthBits = 24; _glfw.hints.framebuffer.stencilBits = 8; _glfw.hints.framebuffer.doublebuffer = GLFW_TRUE; // The default is to select the highest available refresh rate _glfw.hints.refreshRate = GLFW_DONT_CARE; // The default is to use full Retina resolution framebuffers _glfw.hints.window.ns.retina = GLFW_TRUE; } GLFWAPI void glfwWindowHint(int hint, int value) { _GLFW_REQUIRE_INIT(); switch (hint) { case GLFW_RED_BITS: _glfw.hints.framebuffer.redBits = value; return; case GLFW_GREEN_BITS: _glfw.hints.framebuffer.greenBits = value; return; case GLFW_BLUE_BITS: _glfw.hints.framebuffer.blueBits = value; return; case GLFW_ALPHA_BITS: _glfw.hints.framebuffer.alphaBits = value; return; case GLFW_DEPTH_BITS: _glfw.hints.framebuffer.depthBits = value; return; case GLFW_STENCIL_BITS: _glfw.hints.framebuffer.stencilBits = value; return; case GLFW_ACCUM_RED_BITS: _glfw.hints.framebuffer.accumRedBits = value; return; case GLFW_ACCUM_GREEN_BITS: _glfw.hints.framebuffer.accumGreenBits = value; return; case GLFW_ACCUM_BLUE_BITS: _glfw.hints.framebuffer.accumBlueBits = value; return; case GLFW_ACCUM_ALPHA_BITS: _glfw.hints.framebuffer.accumAlphaBits = value; return; case GLFW_AUX_BUFFERS: _glfw.hints.framebuffer.auxBuffers = value; return; case GLFW_STEREO: _glfw.hints.framebuffer.stereo = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_DOUBLEBUFFER: _glfw.hints.framebuffer.doublebuffer = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_TRANSPARENT_FRAMEBUFFER: _glfw.hints.framebuffer.transparent = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_SAMPLES: _glfw.hints.framebuffer.samples = value; return; case GLFW_SRGB_CAPABLE: _glfw.hints.framebuffer.sRGB = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_RESIZABLE: _glfw.hints.window.resizable = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_DECORATED: _glfw.hints.window.decorated = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_FOCUSED: _glfw.hints.window.focused = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_AUTO_ICONIFY: _glfw.hints.window.autoIconify = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_FLOATING: _glfw.hints.window.floating = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_MAXIMIZED: _glfw.hints.window.maximized = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_VISIBLE: _glfw.hints.window.visible = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_COCOA_RETINA_FRAMEBUFFER: _glfw.hints.window.ns.retina = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_COCOA_GRAPHICS_SWITCHING: _glfw.hints.context.nsgl.offline = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_SCALE_TO_MONITOR: _glfw.hints.window.scaleToMonitor = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_CENTER_CURSOR: _glfw.hints.window.centerCursor = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_FOCUS_ON_SHOW: _glfw.hints.window.focusOnShow = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_CLIENT_API: _glfw.hints.context.client = value; return; case GLFW_CONTEXT_CREATION_API: _glfw.hints.context.source = value; return; case GLFW_CONTEXT_VERSION_MAJOR: _glfw.hints.context.major = value; return; case GLFW_CONTEXT_VERSION_MINOR: _glfw.hints.context.minor = value; return; case GLFW_CONTEXT_ROBUSTNESS: _glfw.hints.context.robustness = value; return; case GLFW_OPENGL_FORWARD_COMPAT: _glfw.hints.context.forward = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_OPENGL_DEBUG_CONTEXT: _glfw.hints.context.debug = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_CONTEXT_NO_ERROR: _glfw.hints.context.noerror = value ? GLFW_TRUE : GLFW_FALSE; return; case GLFW_OPENGL_PROFILE: _glfw.hints.context.profile = value; return; case GLFW_CONTEXT_RELEASE_BEHAVIOR: _glfw.hints.context.release = value; return; case GLFW_REFRESH_RATE: _glfw.hints.refreshRate = value; return; } _glfwInputError(GLFW_INVALID_ENUM, "Invalid window hint 0x%08X", hint); } GLFWAPI void glfwWindowHintString(int hint, const char* value) { assert(value != NULL); _GLFW_REQUIRE_INIT(); switch (hint) { case GLFW_COCOA_FRAME_NAME: strncpy(_glfw.hints.window.ns.frameName, value, sizeof(_glfw.hints.window.ns.frameName) - 1); return; case GLFW_X11_CLASS_NAME: strncpy(_glfw.hints.window.x11.className, value, sizeof(_glfw.hints.window.x11.className) - 1); return; case GLFW_X11_INSTANCE_NAME: strncpy(_glfw.hints.window.x11.instanceName, value, sizeof(_glfw.hints.window.x11.instanceName) - 1); return; } _glfwInputError(GLFW_INVALID_ENUM, "Invalid window hint string 0x%08X", hint); } GLFWAPI void glfwDestroyWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT(); // Allow closing of NULL (to match the behavior of free) if (window == NULL) return; // Clear all callbacks to avoid exposing a half torn-down window object memset(&window->callbacks, 0, sizeof(window->callbacks)); // The window's context must not be current on another thread when the // window is destroyed if (window == _glfwPlatformGetTls(&_glfw.contextSlot)) glfwMakeContextCurrent(NULL); _glfwPlatformDestroyWindow(window); // Unlink window from global linked list { _GLFWwindow** prev = &_glfw.windowListHead; while (*prev != window) prev = &((*prev)->next); *prev = window->next; } free(window); } GLFWAPI int glfwWindowShouldClose(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(0); return window->shouldClose; } GLFWAPI void glfwSetWindowShouldClose(GLFWwindow* handle, int value) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); window->shouldClose = value; } GLFWAPI void glfwSetWindowTitle(GLFWwindow* handle, const char* title) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); assert(title != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformSetWindowTitle(window, title); } GLFWAPI void glfwSetWindowIcon(GLFWwindow* handle, int count, const GLFWimage* images) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); assert(count >= 0); assert(count == 0 || images != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformSetWindowIcon(window, count, images); } GLFWAPI void glfwGetWindowPos(GLFWwindow* handle, int* xpos, int* ypos) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); if (xpos) *xpos = 0; if (ypos) *ypos = 0; _GLFW_REQUIRE_INIT(); _glfwPlatformGetWindowPos(window, xpos, ypos); } GLFWAPI void glfwSetWindowPos(GLFWwindow* handle, int xpos, int ypos) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (window->monitor) return; _glfwPlatformSetWindowPos(window, xpos, ypos); } GLFWAPI void glfwGetWindowSize(GLFWwindow* handle, int* width, int* height) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); if (width) *width = 0; if (height) *height = 0; _GLFW_REQUIRE_INIT(); _glfwPlatformGetWindowSize(window, width, height); } GLFWAPI void glfwSetWindowSize(GLFWwindow* handle, int width, int height) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); assert(width >= 0); assert(height >= 0); _GLFW_REQUIRE_INIT(); window->videoMode.width = width; window->videoMode.height = height; _glfwPlatformSetWindowSize(window, width, height); } GLFWAPI void glfwSetWindowSizeLimits(GLFWwindow* handle, int minwidth, int minheight, int maxwidth, int maxheight) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (minwidth != GLFW_DONT_CARE && minheight != GLFW_DONT_CARE) { if (minwidth < 0 || minheight < 0) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid window minimum size %ix%i", minwidth, minheight); return; } } if (maxwidth != GLFW_DONT_CARE && maxheight != GLFW_DONT_CARE) { if (maxwidth < 0 || maxheight < 0 || maxwidth < minwidth || maxheight < minheight) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid window maximum size %ix%i", maxwidth, maxheight); return; } } window->minwidth = minwidth; window->minheight = minheight; window->maxwidth = maxwidth; window->maxheight = maxheight; if (window->monitor || !window->resizable) return; _glfwPlatformSetWindowSizeLimits(window, minwidth, minheight, maxwidth, maxheight); } GLFWAPI void glfwSetWindowAspectRatio(GLFWwindow* handle, int numer, int denom) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); assert(numer != 0); assert(denom != 0); _GLFW_REQUIRE_INIT(); if (numer != GLFW_DONT_CARE && denom != GLFW_DONT_CARE) { if (numer <= 0 || denom <= 0) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid window aspect ratio %i:%i", numer, denom); return; } } window->numer = numer; window->denom = denom; if (window->monitor || !window->resizable) return; _glfwPlatformSetWindowAspectRatio(window, numer, denom); } GLFWAPI void glfwGetFramebufferSize(GLFWwindow* handle, int* width, int* height) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); if (width) *width = 0; if (height) *height = 0; _GLFW_REQUIRE_INIT(); _glfwPlatformGetFramebufferSize(window, width, height); } GLFWAPI void glfwGetWindowFrameSize(GLFWwindow* handle, int* left, int* top, int* right, int* bottom) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); if (left) *left = 0; if (top) *top = 0; if (right) *right = 0; if (bottom) *bottom = 0; _GLFW_REQUIRE_INIT(); _glfwPlatformGetWindowFrameSize(window, left, top, right, bottom); } GLFWAPI void glfwGetWindowContentScale(GLFWwindow* handle, float* xscale, float* yscale) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); if (xscale) *xscale = 0.f; if (yscale) *yscale = 0.f; _GLFW_REQUIRE_INIT(); _glfwPlatformGetWindowContentScale(window, xscale, yscale); } GLFWAPI float glfwGetWindowOpacity(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(1.f); return _glfwPlatformGetWindowOpacity(window); } GLFWAPI void glfwSetWindowOpacity(GLFWwindow* handle, float opacity) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); assert(opacity == opacity); assert(opacity >= 0.f); assert(opacity <= 1.f); _GLFW_REQUIRE_INIT(); if (opacity != opacity || opacity < 0.f || opacity > 1.f) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid window opacity %f", opacity); return; } _glfwPlatformSetWindowOpacity(window, opacity); } GLFWAPI void glfwIconifyWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformIconifyWindow(window); } GLFWAPI void glfwRestoreWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformRestoreWindow(window); } GLFWAPI void glfwMaximizeWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (window->monitor) return; _glfwPlatformMaximizeWindow(window); } GLFWAPI void glfwShowWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (window->monitor) return; _glfwPlatformShowWindow(window); if (window->focusOnShow) _glfwPlatformFocusWindow(window); } GLFWAPI void glfwRequestWindowAttention(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformRequestWindowAttention(window); } GLFWAPI void glfwHideWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); if (window->monitor) return; _glfwPlatformHideWindow(window); } GLFWAPI void glfwFocusWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); _glfwPlatformFocusWindow(window); } GLFWAPI int glfwGetWindowAttrib(GLFWwindow* handle, int attrib) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(0); switch (attrib) { case GLFW_FOCUSED: return _glfwPlatformWindowFocused(window); case GLFW_ICONIFIED: return _glfwPlatformWindowIconified(window); case GLFW_VISIBLE: return _glfwPlatformWindowVisible(window); case GLFW_MAXIMIZED: return _glfwPlatformWindowMaximized(window); case GLFW_HOVERED: return _glfwPlatformWindowHovered(window); case GLFW_FOCUS_ON_SHOW: return window->focusOnShow; case GLFW_TRANSPARENT_FRAMEBUFFER: return _glfwPlatformFramebufferTransparent(window); case GLFW_RESIZABLE: return window->resizable; case GLFW_DECORATED: return window->decorated; case GLFW_FLOATING: return window->floating; case GLFW_AUTO_ICONIFY: return window->autoIconify; case GLFW_CLIENT_API: return window->context.client; case GLFW_CONTEXT_CREATION_API: return window->context.source; case GLFW_CONTEXT_VERSION_MAJOR: return window->context.major; case GLFW_CONTEXT_VERSION_MINOR: return window->context.minor; case GLFW_CONTEXT_REVISION: return window->context.revision; case GLFW_CONTEXT_ROBUSTNESS: return window->context.robustness; case GLFW_OPENGL_FORWARD_COMPAT: return window->context.forward; case GLFW_OPENGL_DEBUG_CONTEXT: return window->context.debug; case GLFW_OPENGL_PROFILE: return window->context.profile; case GLFW_CONTEXT_RELEASE_BEHAVIOR: return window->context.release; case GLFW_CONTEXT_NO_ERROR: return window->context.noerror; } _glfwInputError(GLFW_INVALID_ENUM, "Invalid window attribute 0x%08X", attrib); return 0; } GLFWAPI void glfwSetWindowAttrib(GLFWwindow* handle, int attrib, int value) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); value = value ? GLFW_TRUE : GLFW_FALSE; if (attrib == GLFW_AUTO_ICONIFY) window->autoIconify = value; else if (attrib == GLFW_RESIZABLE) { if (window->resizable == value) return; window->resizable = value; if (!window->monitor) _glfwPlatformSetWindowResizable(window, value); } else if (attrib == GLFW_DECORATED) { if (window->decorated == value) return; window->decorated = value; if (!window->monitor) _glfwPlatformSetWindowDecorated(window, value); } else if (attrib == GLFW_FLOATING) { if (window->floating == value) return; window->floating = value; if (!window->monitor) _glfwPlatformSetWindowFloating(window, value); } else if (attrib == GLFW_FOCUS_ON_SHOW) window->focusOnShow = value; else _glfwInputError(GLFW_INVALID_ENUM, "Invalid window attribute 0x%08X", attrib); } GLFWAPI GLFWmonitor* glfwGetWindowMonitor(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return (GLFWmonitor*) window->monitor; } GLFWAPI void glfwSetWindowMonitor(GLFWwindow* wh, GLFWmonitor* mh, int xpos, int ypos, int width, int height, int refreshRate) { _GLFWwindow* window = (_GLFWwindow*) wh; _GLFWmonitor* monitor = (_GLFWmonitor*) mh; assert(window != NULL); assert(width >= 0); assert(height >= 0); _GLFW_REQUIRE_INIT(); if (width <= 0 || height <= 0) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid window size %ix%i", width, height); return; } if (refreshRate < 0 && refreshRate != GLFW_DONT_CARE) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid refresh rate %i", refreshRate); return; } window->videoMode.width = width; window->videoMode.height = height; window->videoMode.refreshRate = refreshRate; _glfwPlatformSetWindowMonitor(window, monitor, xpos, ypos, width, height, refreshRate); } GLFWAPI void glfwSetWindowUserPointer(GLFWwindow* handle, void* pointer) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT(); window->userPointer = pointer; } GLFWAPI void* glfwGetWindowUserPointer(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return window->userPointer; } GLFWAPI GLFWwindowposfun glfwSetWindowPosCallback(GLFWwindow* handle, GLFWwindowposfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.pos, cbfun); return cbfun; } GLFWAPI GLFWwindowsizefun glfwSetWindowSizeCallback(GLFWwindow* handle, GLFWwindowsizefun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.size, cbfun); return cbfun; } GLFWAPI GLFWwindowclosefun glfwSetWindowCloseCallback(GLFWwindow* handle, GLFWwindowclosefun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.close, cbfun); return cbfun; } GLFWAPI GLFWwindowrefreshfun glfwSetWindowRefreshCallback(GLFWwindow* handle, GLFWwindowrefreshfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.refresh, cbfun); return cbfun; } GLFWAPI GLFWwindowfocusfun glfwSetWindowFocusCallback(GLFWwindow* handle, GLFWwindowfocusfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.focus, cbfun); return cbfun; } GLFWAPI GLFWwindowiconifyfun glfwSetWindowIconifyCallback(GLFWwindow* handle, GLFWwindowiconifyfun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.iconify, cbfun); return cbfun; } GLFWAPI GLFWwindowmaximizefun glfwSetWindowMaximizeCallback(GLFWwindow* handle, GLFWwindowmaximizefun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.maximize, cbfun); return cbfun; } GLFWAPI GLFWframebuffersizefun glfwSetFramebufferSizeCallback(GLFWwindow* handle, GLFWframebuffersizefun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.fbsize, cbfun); return cbfun; } GLFWAPI GLFWwindowcontentscalefun glfwSetWindowContentScaleCallback(GLFWwindow* handle, GLFWwindowcontentscalefun cbfun) { _GLFWwindow* window = (_GLFWwindow*) handle; assert(window != NULL); _GLFW_REQUIRE_INIT_OR_RETURN(NULL); _GLFW_SWAP_POINTERS(window->callbacks.scale, cbfun); return cbfun; } GLFWAPI void glfwPollEvents(void) { _GLFW_REQUIRE_INIT(); _glfwPlatformPollEvents(); } GLFWAPI void glfwWaitEvents(void) { _GLFW_REQUIRE_INIT(); _glfwPlatformWaitEvents(); } GLFWAPI void glfwWaitEventsTimeout(double timeout) { _GLFW_REQUIRE_INIT(); assert(timeout == timeout); assert(timeout >= 0.0); assert(timeout <= DBL_MAX); if (timeout != timeout || timeout < 0.0 || timeout > DBL_MAX) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid time %f", timeout); return; } _glfwPlatformWaitEventsTimeout(timeout); } GLFWAPI void glfwPostEmptyEvent(void) { _GLFW_REQUIRE_INIT(); _glfwPlatformPostEmptyEvent(); } #endif #ifdef _GLFW_WIN32 #ifdef _MSC_VER #define _CRT_SECURE_NO_WARNINGS #endif #ifndef _GLFW_USE_HYBRID_HPG #define _GLFW_USE_HYBRID_HPG 1 #endif #ifndef _UNICODE //< @r-lyeh: add guard #define _UNICODE #endif #ifdef MINGW #define UNICODE #define WINVER 0x0501 #endif #ifndef HEADER_GUARD_WIN32_INIT_C #define HEADER_GUARD_WIN32_INIT_C //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include static const GUID _glfw_GUID_DEVINTERFACE_HID = {0x4d1e55b2,0xf16f,0x11cf,{0x88,0xcb,0x00,0x11,0x11,0x00,0x00,0x30}}; #define GUID_DEVINTERFACE_HID _glfw_GUID_DEVINTERFACE_HID #if defined(_GLFW_USE_HYBRID_HPG) || defined(_GLFW_USE_OPTIMUS_HPG) #if defined(_GLFW_BUILD_DLL) #pragma message("These symbols must be exported by the executable and have no effect in a DLL") #endif // Executables (but not DLLs) exporting this symbol with this value will be // automatically directed to the high-performance GPU on Nvidia Optimus systems // with up-to-date drivers // __declspec(dllexport) DWORD NvOptimusEnablement = 1; // Executables (but not DLLs) exporting this symbol with this value will be // automatically directed to the high-performance GPU on AMD PowerXpress systems // with up-to-date drivers // __declspec(dllexport) int AmdPowerXpressRequestHighPerformance = 1; #endif // _GLFW_USE_HYBRID_HPG #if defined(_GLFW_BUILD_DLL) // GLFW DLL entry point // BOOL WINAPI DllMain(HINSTANCE instance, DWORD reason, LPVOID reserved) { return TRUE; } #endif // _GLFW_BUILD_DLL // Load necessary libraries (DLLs) // static GLFWbool loadLibraries(void) { _glfw.win32.user32.instance = LoadLibraryA("user32.dll"); if (!_glfw.win32.user32.instance) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to load user32.dll"); return GLFW_FALSE; } _glfw.win32.user32.SetProcessDPIAware_ = (PFN_SetProcessDPIAware) GetProcAddress(_glfw.win32.user32.instance, "SetProcessDPIAware"); _glfw.win32.user32.ChangeWindowMessageFilterEx_ = (PFN_ChangeWindowMessageFilterEx) GetProcAddress(_glfw.win32.user32.instance, "ChangeWindowMessageFilterEx"); _glfw.win32.user32.EnableNonClientDpiScaling_ = (PFN_EnableNonClientDpiScaling) GetProcAddress(_glfw.win32.user32.instance, "EnableNonClientDpiScaling"); _glfw.win32.user32.SetProcessDpiAwarenessContext_ = (PFN_SetProcessDpiAwarenessContext) GetProcAddress(_glfw.win32.user32.instance, "SetProcessDpiAwarenessContext"); _glfw.win32.user32.GetDpiForWindow_ = (PFN_GetDpiForWindow) GetProcAddress(_glfw.win32.user32.instance, "GetDpiForWindow"); _glfw.win32.user32.AdjustWindowRectExForDpi_ = (PFN_AdjustWindowRectExForDpi) GetProcAddress(_glfw.win32.user32.instance, "AdjustWindowRectExForDpi"); _glfw.win32.user32.GetSystemMetricsForDpi_ = (PFN_GetSystemMetricsForDpi) GetProcAddress(_glfw.win32.user32.instance, "GetSystemMetricsForDpi"); _glfw.win32.dinput8.instance = LoadLibraryA("dinput8.dll"); if (_glfw.win32.dinput8.instance) { _glfw.win32.dinput8.Create = (PFN_DirectInput8Create) GetProcAddress(_glfw.win32.dinput8.instance, "DirectInput8Create"); } { int i; const char* names[] = { "xinput1_4.dll", "xinput1_3.dll", "xinput9_1_0.dll", "xinput1_2.dll", "xinput1_1.dll", NULL }; for (i = 0; names[i]; i++) { _glfw.win32.xinput.instance = LoadLibraryA(names[i]); if (_glfw.win32.xinput.instance) { _glfw.win32.xinput.GetCapabilities = (PFN_XInputGetCapabilities) GetProcAddress(_glfw.win32.xinput.instance, "XInputGetCapabilities"); _glfw.win32.xinput.GetState = (PFN_XInputGetState) GetProcAddress(_glfw.win32.xinput.instance, "XInputGetState"); break; } } } _glfw.win32.dwmapi.instance = LoadLibraryA("dwmapi.dll"); if (_glfw.win32.dwmapi.instance) { _glfw.win32.dwmapi.IsCompositionEnabled = (PFN_DwmIsCompositionEnabled) GetProcAddress(_glfw.win32.dwmapi.instance, "DwmIsCompositionEnabled"); _glfw.win32.dwmapi.Flush = (PFN_DwmFlush) GetProcAddress(_glfw.win32.dwmapi.instance, "DwmFlush"); _glfw.win32.dwmapi.EnableBlurBehindWindow = (PFN_DwmEnableBlurBehindWindow) GetProcAddress(_glfw.win32.dwmapi.instance, "DwmEnableBlurBehindWindow"); _glfw.win32.dwmapi.GetColorizationColor = (PFN_DwmGetColorizationColor) GetProcAddress(_glfw.win32.dwmapi.instance, "DwmGetColorizationColor"); } _glfw.win32.shcore.instance = LoadLibraryA("shcore.dll"); if (_glfw.win32.shcore.instance) { _glfw.win32.shcore.SetProcessDpiAwareness_ = (PFN_SetProcessDpiAwareness) GetProcAddress(_glfw.win32.shcore.instance, "SetProcessDpiAwareness"); _glfw.win32.shcore.GetDpiForMonitor_ = (PFN_GetDpiForMonitor) GetProcAddress(_glfw.win32.shcore.instance, "GetDpiForMonitor"); } _glfw.win32.ntdll.instance = LoadLibraryA("ntdll.dll"); if (_glfw.win32.ntdll.instance) { _glfw.win32.ntdll.RtlVerifyVersionInfo_ = (PFN_RtlVerifyVersionInfo) GetProcAddress(_glfw.win32.ntdll.instance, "RtlVerifyVersionInfo"); } return GLFW_TRUE; } // Unload used libraries (DLLs) // static void freeLibraries(void) { if (_glfw.win32.xinput.instance) FreeLibrary(_glfw.win32.xinput.instance); if (_glfw.win32.dinput8.instance) FreeLibrary(_glfw.win32.dinput8.instance); if (_glfw.win32.user32.instance) FreeLibrary(_glfw.win32.user32.instance); if (_glfw.win32.dwmapi.instance) FreeLibrary(_glfw.win32.dwmapi.instance); if (_glfw.win32.shcore.instance) FreeLibrary(_glfw.win32.shcore.instance); if (_glfw.win32.ntdll.instance) FreeLibrary(_glfw.win32.ntdll.instance); } // Create key code translation tables // static void createKeyTables(void) { int scancode; memset(_glfw.win32.keycodes, -1, sizeof(_glfw.win32.keycodes)); memset(_glfw.win32.scancodes, -1, sizeof(_glfw.win32.scancodes)); _glfw.win32.keycodes[0x00B] = GLFW_KEY_0; _glfw.win32.keycodes[0x002] = GLFW_KEY_1; _glfw.win32.keycodes[0x003] = GLFW_KEY_2; _glfw.win32.keycodes[0x004] = GLFW_KEY_3; _glfw.win32.keycodes[0x005] = GLFW_KEY_4; _glfw.win32.keycodes[0x006] = GLFW_KEY_5; _glfw.win32.keycodes[0x007] = GLFW_KEY_6; _glfw.win32.keycodes[0x008] = GLFW_KEY_7; _glfw.win32.keycodes[0x009] = GLFW_KEY_8; _glfw.win32.keycodes[0x00A] = GLFW_KEY_9; _glfw.win32.keycodes[0x01E] = GLFW_KEY_A; _glfw.win32.keycodes[0x030] = GLFW_KEY_B; _glfw.win32.keycodes[0x02E] = GLFW_KEY_C; _glfw.win32.keycodes[0x020] = GLFW_KEY_D; _glfw.win32.keycodes[0x012] = GLFW_KEY_E; _glfw.win32.keycodes[0x021] = GLFW_KEY_F; _glfw.win32.keycodes[0x022] = GLFW_KEY_G; _glfw.win32.keycodes[0x023] = GLFW_KEY_H; _glfw.win32.keycodes[0x017] = GLFW_KEY_I; _glfw.win32.keycodes[0x024] = GLFW_KEY_J; _glfw.win32.keycodes[0x025] = GLFW_KEY_K; _glfw.win32.keycodes[0x026] = GLFW_KEY_L; _glfw.win32.keycodes[0x032] = GLFW_KEY_M; _glfw.win32.keycodes[0x031] = GLFW_KEY_N; _glfw.win32.keycodes[0x018] = GLFW_KEY_O; _glfw.win32.keycodes[0x019] = GLFW_KEY_P; _glfw.win32.keycodes[0x010] = GLFW_KEY_Q; _glfw.win32.keycodes[0x013] = GLFW_KEY_R; _glfw.win32.keycodes[0x01F] = GLFW_KEY_S; _glfw.win32.keycodes[0x014] = GLFW_KEY_T; _glfw.win32.keycodes[0x016] = GLFW_KEY_U; _glfw.win32.keycodes[0x02F] = GLFW_KEY_V; _glfw.win32.keycodes[0x011] = GLFW_KEY_W; _glfw.win32.keycodes[0x02D] = GLFW_KEY_X; _glfw.win32.keycodes[0x015] = GLFW_KEY_Y; _glfw.win32.keycodes[0x02C] = GLFW_KEY_Z; _glfw.win32.keycodes[0x028] = GLFW_KEY_APOSTROPHE; _glfw.win32.keycodes[0x02B] = GLFW_KEY_BACKSLASH; _glfw.win32.keycodes[0x033] = GLFW_KEY_COMMA; _glfw.win32.keycodes[0x00D] = GLFW_KEY_EQUAL; _glfw.win32.keycodes[0x029] = GLFW_KEY_GRAVE_ACCENT; _glfw.win32.keycodes[0x01A] = GLFW_KEY_LEFT_BRACKET; _glfw.win32.keycodes[0x00C] = GLFW_KEY_MINUS; _glfw.win32.keycodes[0x034] = GLFW_KEY_PERIOD; _glfw.win32.keycodes[0x01B] = GLFW_KEY_RIGHT_BRACKET; _glfw.win32.keycodes[0x027] = GLFW_KEY_SEMICOLON; _glfw.win32.keycodes[0x035] = GLFW_KEY_SLASH; _glfw.win32.keycodes[0x056] = GLFW_KEY_WORLD_2; _glfw.win32.keycodes[0x00E] = GLFW_KEY_BACKSPACE; _glfw.win32.keycodes[0x153] = GLFW_KEY_DELETE; _glfw.win32.keycodes[0x14F] = GLFW_KEY_END; _glfw.win32.keycodes[0x01C] = GLFW_KEY_ENTER; _glfw.win32.keycodes[0x001] = GLFW_KEY_ESCAPE; _glfw.win32.keycodes[0x147] = GLFW_KEY_HOME; _glfw.win32.keycodes[0x152] = GLFW_KEY_INSERT; _glfw.win32.keycodes[0x15D] = GLFW_KEY_MENU; _glfw.win32.keycodes[0x151] = GLFW_KEY_PAGE_DOWN; _glfw.win32.keycodes[0x149] = GLFW_KEY_PAGE_UP; _glfw.win32.keycodes[0x045] = GLFW_KEY_PAUSE; _glfw.win32.keycodes[0x146] = GLFW_KEY_PAUSE; _glfw.win32.keycodes[0x039] = GLFW_KEY_SPACE; _glfw.win32.keycodes[0x00F] = GLFW_KEY_TAB; _glfw.win32.keycodes[0x03A] = GLFW_KEY_CAPS_LOCK; _glfw.win32.keycodes[0x145] = GLFW_KEY_NUM_LOCK; _glfw.win32.keycodes[0x046] = GLFW_KEY_SCROLL_LOCK; _glfw.win32.keycodes[0x03B] = GLFW_KEY_F1; _glfw.win32.keycodes[0x03C] = GLFW_KEY_F2; _glfw.win32.keycodes[0x03D] = GLFW_KEY_F3; _glfw.win32.keycodes[0x03E] = GLFW_KEY_F4; _glfw.win32.keycodes[0x03F] = GLFW_KEY_F5; _glfw.win32.keycodes[0x040] = GLFW_KEY_F6; _glfw.win32.keycodes[0x041] = GLFW_KEY_F7; _glfw.win32.keycodes[0x042] = GLFW_KEY_F8; _glfw.win32.keycodes[0x043] = GLFW_KEY_F9; _glfw.win32.keycodes[0x044] = GLFW_KEY_F10; _glfw.win32.keycodes[0x057] = GLFW_KEY_F11; _glfw.win32.keycodes[0x058] = GLFW_KEY_F12; _glfw.win32.keycodes[0x064] = GLFW_KEY_F13; _glfw.win32.keycodes[0x065] = GLFW_KEY_F14; _glfw.win32.keycodes[0x066] = GLFW_KEY_F15; _glfw.win32.keycodes[0x067] = GLFW_KEY_F16; _glfw.win32.keycodes[0x068] = GLFW_KEY_F17; _glfw.win32.keycodes[0x069] = GLFW_KEY_F18; _glfw.win32.keycodes[0x06A] = GLFW_KEY_F19; _glfw.win32.keycodes[0x06B] = GLFW_KEY_F20; _glfw.win32.keycodes[0x06C] = GLFW_KEY_F21; _glfw.win32.keycodes[0x06D] = GLFW_KEY_F22; _glfw.win32.keycodes[0x06E] = GLFW_KEY_F23; _glfw.win32.keycodes[0x076] = GLFW_KEY_F24; _glfw.win32.keycodes[0x038] = GLFW_KEY_LEFT_ALT; _glfw.win32.keycodes[0x01D] = GLFW_KEY_LEFT_CONTROL; _glfw.win32.keycodes[0x02A] = GLFW_KEY_LEFT_SHIFT; _glfw.win32.keycodes[0x15B] = GLFW_KEY_LEFT_SUPER; _glfw.win32.keycodes[0x137] = GLFW_KEY_PRINT_SCREEN; _glfw.win32.keycodes[0x138] = GLFW_KEY_RIGHT_ALT; _glfw.win32.keycodes[0x11D] = GLFW_KEY_RIGHT_CONTROL; _glfw.win32.keycodes[0x036] = GLFW_KEY_RIGHT_SHIFT; _glfw.win32.keycodes[0x15C] = GLFW_KEY_RIGHT_SUPER; _glfw.win32.keycodes[0x150] = GLFW_KEY_DOWN; _glfw.win32.keycodes[0x14B] = GLFW_KEY_LEFT; _glfw.win32.keycodes[0x14D] = GLFW_KEY_RIGHT; _glfw.win32.keycodes[0x148] = GLFW_KEY_UP; _glfw.win32.keycodes[0x052] = GLFW_KEY_KP_0; _glfw.win32.keycodes[0x04F] = GLFW_KEY_KP_1; _glfw.win32.keycodes[0x050] = GLFW_KEY_KP_2; _glfw.win32.keycodes[0x051] = GLFW_KEY_KP_3; _glfw.win32.keycodes[0x04B] = GLFW_KEY_KP_4; _glfw.win32.keycodes[0x04C] = GLFW_KEY_KP_5; _glfw.win32.keycodes[0x04D] = GLFW_KEY_KP_6; _glfw.win32.keycodes[0x047] = GLFW_KEY_KP_7; _glfw.win32.keycodes[0x048] = GLFW_KEY_KP_8; _glfw.win32.keycodes[0x049] = GLFW_KEY_KP_9; _glfw.win32.keycodes[0x04E] = GLFW_KEY_KP_ADD; _glfw.win32.keycodes[0x053] = GLFW_KEY_KP_DECIMAL; _glfw.win32.keycodes[0x135] = GLFW_KEY_KP_DIVIDE; _glfw.win32.keycodes[0x11C] = GLFW_KEY_KP_ENTER; _glfw.win32.keycodes[0x059] = GLFW_KEY_KP_EQUAL; _glfw.win32.keycodes[0x037] = GLFW_KEY_KP_MULTIPLY; _glfw.win32.keycodes[0x04A] = GLFW_KEY_KP_SUBTRACT; for (scancode = 0; scancode < 512; scancode++) { if (_glfw.win32.keycodes[scancode] > 0) _glfw.win32.scancodes[_glfw.win32.keycodes[scancode]] = scancode; } } // Creates a dummy window for behind-the-scenes work // static GLFWbool createHelperWindow(void) { MSG msg; _glfw.win32.helperWindowHandle = CreateWindowExW(WS_EX_OVERLAPPEDWINDOW, _GLFW_WNDCLASSNAME, L"GLFW message window", WS_CLIPSIBLINGS | WS_CLIPCHILDREN, 0, 0, 1, 1, NULL, NULL, GetModuleHandleW(NULL), NULL); if (!_glfw.win32.helperWindowHandle) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create helper window"); return GLFW_FALSE; } // HACK: The command to the first ShowWindow call is ignored if the parent // process passed along a STARTUPINFO, so clear that with a no-op call ShowWindow(_glfw.win32.helperWindowHandle, SW_HIDE); // Register for HID device notifications { DEV_BROADCAST_DEVICEINTERFACE_W dbi; ZeroMemory(&dbi, sizeof(dbi)); dbi.dbcc_size = sizeof(dbi); dbi.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE; dbi.dbcc_classguid = GUID_DEVINTERFACE_HID; _glfw.win32.deviceNotificationHandle = RegisterDeviceNotificationW(_glfw.win32.helperWindowHandle, (DEV_BROADCAST_HDR*) &dbi, DEVICE_NOTIFY_WINDOW_HANDLE); } while (PeekMessageW(&msg, _glfw.win32.helperWindowHandle, 0, 0, PM_REMOVE)) { TranslateMessage(&msg); DispatchMessageW(&msg); } return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Returns a wide string version of the specified UTF-8 string // WCHAR* _glfwCreateWideStringFromUTF8Win32(const char* source) { WCHAR* target; int count; count = MultiByteToWideChar(CP_UTF8, 0, source, -1, NULL, 0); if (!count) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to convert string from UTF-8"); return NULL; } target = calloc(count, sizeof(WCHAR)); if (!MultiByteToWideChar(CP_UTF8, 0, source, -1, target, count)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to convert string from UTF-8"); free(target); return NULL; } return target; } // Returns a UTF-8 string version of the specified wide string // char* _glfwCreateUTF8FromWideStringWin32(const WCHAR* source) { char* target; int size; size = WideCharToMultiByte(CP_UTF8, 0, source, -1, NULL, 0, NULL, NULL); if (!size) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to convert string to UTF-8"); return NULL; } target = calloc(size, 1); if (!WideCharToMultiByte(CP_UTF8, 0, source, -1, target, size, NULL, NULL)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to convert string to UTF-8"); free(target); return NULL; } return target; } // Reports the specified error, appending information about the last Win32 error // void _glfwInputErrorWin32(int error, const char* description) { WCHAR buffer[_GLFW_MESSAGE_SIZE] = L""; char message[_GLFW_MESSAGE_SIZE] = ""; FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK, NULL, GetLastError() & 0xffff, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), buffer, sizeof(buffer) / sizeof(WCHAR), NULL); WideCharToMultiByte(CP_UTF8, 0, buffer, -1, message, sizeof(message), NULL, NULL); _glfwInputError(error, "%s: %s", description, message); } // Updates key names according to the current keyboard layout // void _glfwUpdateKeyNamesWin32(void) { int key; BYTE state[256] = {0}; memset(_glfw.win32.keynames, 0, sizeof(_glfw.win32.keynames)); for (key = GLFW_KEY_SPACE; key <= GLFW_KEY_LAST; key++) { UINT vk; int scancode, length; WCHAR chars[16]; scancode = _glfw.win32.scancodes[key]; if (scancode == -1) continue; if (key >= GLFW_KEY_KP_0 && key <= GLFW_KEY_KP_ADD) { const UINT vks[] = { VK_NUMPAD0, VK_NUMPAD1, VK_NUMPAD2, VK_NUMPAD3, VK_NUMPAD4, VK_NUMPAD5, VK_NUMPAD6, VK_NUMPAD7, VK_NUMPAD8, VK_NUMPAD9, VK_DECIMAL, VK_DIVIDE, VK_MULTIPLY, VK_SUBTRACT, VK_ADD }; vk = vks[key - GLFW_KEY_KP_0]; } else vk = MapVirtualKeyW(scancode, MAPVK_VSC_TO_VK); length = ToUnicode(vk, scancode, state, chars, sizeof(chars) / sizeof(WCHAR), 0); if (length == -1) { length = ToUnicode(vk, scancode, state, chars, sizeof(chars) / sizeof(WCHAR), 0); } if (length < 1) continue; WideCharToMultiByte(CP_UTF8, 0, chars, 1, _glfw.win32.keynames[key], sizeof(_glfw.win32.keynames[key]), NULL, NULL); } } // Replacement for IsWindowsVersionOrGreater, as we cannot rely on the // application having a correct embedded manifest // BOOL _glfwIsWindowsVersionOrGreaterWin32(WORD major, WORD minor, WORD sp) { OSVERSIONINFOEXW osvi = { sizeof(osvi), major, minor, 0, 0, {0}, sp }; DWORD mask = VER_MAJORVERSION | VER_MINORVERSION | VER_SERVICEPACKMAJOR; ULONGLONG cond = VerSetConditionMask(0, VER_MAJORVERSION, VER_GREATER_EQUAL); cond = VerSetConditionMask(cond, VER_MINORVERSION, VER_GREATER_EQUAL); cond = VerSetConditionMask(cond, VER_SERVICEPACKMAJOR, VER_GREATER_EQUAL); // HACK: Use RtlVerifyVersionInfo instead of VerifyVersionInfoW as the // latter lies unless the user knew to embed a non-default manifest // announcing support for Windows 10 via supportedOS GUID return RtlVerifyVersionInfo(&osvi, mask, cond) == 0; } // Checks whether we are on at least the specified build of Windows 10 // BOOL _glfwIsWindows10BuildOrGreaterWin32(WORD build) { OSVERSIONINFOEXW osvi = { sizeof(osvi), 10, 0, build }; DWORD mask = VER_MAJORVERSION | VER_MINORVERSION | VER_BUILDNUMBER; ULONGLONG cond = VerSetConditionMask(0, VER_MAJORVERSION, VER_GREATER_EQUAL); cond = VerSetConditionMask(cond, VER_MINORVERSION, VER_GREATER_EQUAL); cond = VerSetConditionMask(cond, VER_BUILDNUMBER, VER_GREATER_EQUAL); // HACK: Use RtlVerifyVersionInfo instead of VerifyVersionInfoW as the // latter lies unless the user knew to embed a non-default manifest // announcing support for Windows 10 via supportedOS GUID return RtlVerifyVersionInfo(&osvi, mask, cond) == 0; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void) { // To make SetForegroundWindow work as we want, we need to fiddle // with the FOREGROUNDLOCKTIMEOUT system setting (we do this as early // as possible in the hope of still being the foreground process) SystemParametersInfoW(SPI_GETFOREGROUNDLOCKTIMEOUT, 0, &_glfw.win32.foregroundLockTimeout, 0); SystemParametersInfoW(SPI_SETFOREGROUNDLOCKTIMEOUT, 0, UIntToPtr(0), SPIF_SENDCHANGE); if (!loadLibraries()) return GLFW_FALSE; createKeyTables(); _glfwUpdateKeyNamesWin32(); if (_glfwIsWindows10CreatorsUpdateOrGreaterWin32()) SetProcessDpiAwarenessContext(DPI_AWARENESS_CONTEXT_PER_MONITOR_AWARE_V2); else if (IsWindows8Point1OrGreater()) SetProcessDpiAwareness(PROCESS_PER_MONITOR_DPI_AWARE); else if (IsWindowsVistaOrGreater()) SetProcessDPIAware(); if (!_glfwRegisterWindowClassWin32()) return GLFW_FALSE; if (!createHelperWindow()) return GLFW_FALSE; _glfwInitTimerWin32(); _glfwInitJoysticksWin32(); _glfwPollMonitorsWin32(); return GLFW_TRUE; } void _glfwPlatformTerminate(void) { if (_glfw.win32.deviceNotificationHandle) UnregisterDeviceNotification(_glfw.win32.deviceNotificationHandle); if (_glfw.win32.helperWindowHandle) DestroyWindow(_glfw.win32.helperWindowHandle); _glfwUnregisterWindowClassWin32(); // Restore previous foreground lock timeout system setting SystemParametersInfoW(SPI_SETFOREGROUNDLOCKTIMEOUT, 0, UIntToPtr(_glfw.win32.foregroundLockTimeout), SPIF_SENDCHANGE); free(_glfw.win32.clipboardString); free(_glfw.win32.rawInput); _glfwTerminateWGL(); _glfwTerminateEGL(); _glfwTerminateJoysticksWin32(); freeLibraries(); } const char* _glfwPlatformGetVersionString(void) { return _GLFW_VERSION_NUMBER " Win32 WGL EGL OSMesa" #if defined(__MINGW32__) " MinGW" #elif defined(_MSC_VER) " VisualC" #endif #if defined(_GLFW_USE_HYBRID_HPG) || defined(_GLFW_USE_OPTIMUS_HPG) " hybrid-GPU" #endif #if defined(_GLFW_BUILD_DLL) " DLL" #endif ; } #endif #ifndef HEADER_GUARD_WIN32_JOYSTICK_C #define HEADER_GUARD_WIN32_JOYSTICK_C //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #define _GLFW_TYPE_AXIS 0 #define _GLFW_TYPE_SLIDER 1 #define _GLFW_TYPE_BUTTON 2 #define _GLFW_TYPE_POV 3 // Data produced with DirectInput device object enumeration // typedef struct _GLFWobjenumWin32 { IDirectInputDevice8W* device; _GLFWjoyobjectWin32* objects; int objectCount; int axisCount; int sliderCount; int buttonCount; int povCount; } _GLFWobjenumWin32; // Define local copies of the necessary GUIDs // static const GUID _glfw_IID_IDirectInput8W = {0xbf798031,0x483a,0x4da2,{0xaa,0x99,0x5d,0x64,0xed,0x36,0x97,0x00}}; static const GUID _glfw_GUID_XAxis = {0xa36d02e0,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_YAxis = {0xa36d02e1,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_ZAxis = {0xa36d02e2,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_RxAxis = {0xa36d02f4,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_RyAxis = {0xa36d02f5,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_RzAxis = {0xa36d02e3,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_Slider = {0xa36d02e4,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; static const GUID _glfw_GUID_POV = {0xa36d02f2,0xc9f3,0x11cf,{0xbf,0xc7,0x44,0x45,0x53,0x54,0x00,0x00}}; #define IID_IDirectInput8W _glfw_IID_IDirectInput8W #define GUID_XAxis _glfw_GUID_XAxis #define GUID_YAxis _glfw_GUID_YAxis #define GUID_ZAxis _glfw_GUID_ZAxis #define GUID_RxAxis _glfw_GUID_RxAxis #define GUID_RyAxis _glfw_GUID_RyAxis #define GUID_RzAxis _glfw_GUID_RzAxis #define GUID_Slider _glfw_GUID_Slider #define GUID_POV _glfw_GUID_POV // Object data array for our clone of c_dfDIJoystick // Generated with https://github.com/elmindreda/c_dfDIJoystick2 // static DIOBJECTDATAFORMAT _glfwObjectDataFormats[] = { { &GUID_XAxis,DIJOFS_X,DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_YAxis,DIJOFS_Y,DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_ZAxis,DIJOFS_Z,DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_RxAxis,DIJOFS_RX,DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_RyAxis,DIJOFS_RY,DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_RzAxis,DIJOFS_RZ,DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_Slider,DIJOFS_SLIDER(0),DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_Slider,DIJOFS_SLIDER(1),DIDFT_AXIS|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,DIDOI_ASPECTPOSITION }, { &GUID_POV,DIJOFS_POV(0),DIDFT_POV|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { &GUID_POV,DIJOFS_POV(1),DIDFT_POV|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { &GUID_POV,DIJOFS_POV(2),DIDFT_POV|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { &GUID_POV,DIJOFS_POV(3),DIDFT_POV|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(0),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(1),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(2),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(3),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(4),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(5),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(6),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(7),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(8),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(9),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(10),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(11),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(12),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(13),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(14),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(15),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(16),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(17),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(18),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(19),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(20),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(21),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(22),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(23),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(24),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(25),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(26),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(27),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(28),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(29),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(30),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, { NULL,DIJOFS_BUTTON(31),DIDFT_BUTTON|DIDFT_OPTIONAL|DIDFT_ANYINSTANCE,0 }, }; // Our clone of c_dfDIJoystick // static const DIDATAFORMAT _glfwDataFormat = { sizeof(DIDATAFORMAT), sizeof(DIOBJECTDATAFORMAT), DIDFT_ABSAXIS, sizeof(DIJOYSTATE), sizeof(_glfwObjectDataFormats) / sizeof(DIOBJECTDATAFORMAT), _glfwObjectDataFormats }; // Returns a description fitting the specified XInput capabilities // static const char* getDeviceDescription(const XINPUT_CAPABILITIES* xic) { switch (xic->SubType) { case XINPUT_DEVSUBTYPE_WHEEL: return "XInput Wheel"; case XINPUT_DEVSUBTYPE_ARCADE_STICK: return "XInput Arcade Stick"; case XINPUT_DEVSUBTYPE_FLIGHT_STICK: return "XInput Flight Stick"; case XINPUT_DEVSUBTYPE_DANCE_PAD: return "XInput Dance Pad"; case XINPUT_DEVSUBTYPE_GUITAR: return "XInput Guitar"; case XINPUT_DEVSUBTYPE_DRUM_KIT: return "XInput Drum Kit"; case XINPUT_DEVSUBTYPE_GAMEPAD: { if (xic->Flags & XINPUT_CAPS_WIRELESS) return "Wireless Xbox Controller"; else return "Xbox Controller"; } } return "Unknown XInput Device"; } // Lexically compare device objects // static int compareJoystickObjects(const void* first, const void* second) { const _GLFWjoyobjectWin32* fo = first; const _GLFWjoyobjectWin32* so = second; if (fo->type != so->type) return fo->type - so->type; return fo->offset - so->offset; } // Checks whether the specified device supports XInput // Technique from FDInputJoystickManager::IsXInputDeviceFast in ZDoom // static GLFWbool supportsXInput(const GUID* guid) { UINT i, count = 0; RAWINPUTDEVICELIST* ridl; GLFWbool result = GLFW_FALSE; if (GetRawInputDeviceList(NULL, &count, sizeof(RAWINPUTDEVICELIST)) != 0) return GLFW_FALSE; ridl = calloc(count, sizeof(RAWINPUTDEVICELIST)); if (GetRawInputDeviceList(ridl, &count, sizeof(RAWINPUTDEVICELIST)) == (UINT) -1) { free(ridl); return GLFW_FALSE; } for (i = 0; i < count; i++) { RID_DEVICE_INFO rdi; char name[256]; UINT size; if (ridl[i].dwType != RIM_TYPEHID) continue; ZeroMemory(&rdi, sizeof(rdi)); rdi.cbSize = sizeof(rdi); size = sizeof(rdi); if ((INT) GetRawInputDeviceInfoA(ridl[i].hDevice, RIDI_DEVICEINFO, &rdi, &size) == -1) { continue; } if (MAKELONG(rdi.hid.dwVendorId, rdi.hid.dwProductId) != (LONG) guid->Data1) continue; memset(name, 0, sizeof(name)); size = sizeof(name); if ((INT) GetRawInputDeviceInfoA(ridl[i].hDevice, RIDI_DEVICENAME, name, &size) == -1) { break; } name[sizeof(name) - 1] = '\0'; if (strstr(name, "IG_")) { result = GLFW_TRUE; break; } } free(ridl); return result; } // Frees all resources associated with the specified joystick // static void closeJoystick(_GLFWjoystick* js) { if (js->win32.device) { IDirectInputDevice8_Unacquire(js->win32.device); IDirectInputDevice8_Release(js->win32.device); } free(js->win32.objects); _glfwFreeJoystick(js); _glfwInputJoystick(js, GLFW_DISCONNECTED); } // DirectInput device object enumeration callback // Insights gleaned from SDL // static BOOL CALLBACK deviceObjectCallback(const DIDEVICEOBJECTINSTANCEW* doi, void* user) { _GLFWobjenumWin32* data = user; _GLFWjoyobjectWin32* object = data->objects + data->objectCount; if (DIDFT_GETTYPE(doi->dwType) & DIDFT_AXIS) { DIPROPRANGE dipr; if (memcmp(&doi->guidType, &GUID_Slider, sizeof(GUID)) == 0) object->offset = DIJOFS_SLIDER(data->sliderCount); else if (memcmp(&doi->guidType, &GUID_XAxis, sizeof(GUID)) == 0) object->offset = DIJOFS_X; else if (memcmp(&doi->guidType, &GUID_YAxis, sizeof(GUID)) == 0) object->offset = DIJOFS_Y; else if (memcmp(&doi->guidType, &GUID_ZAxis, sizeof(GUID)) == 0) object->offset = DIJOFS_Z; else if (memcmp(&doi->guidType, &GUID_RxAxis, sizeof(GUID)) == 0) object->offset = DIJOFS_RX; else if (memcmp(&doi->guidType, &GUID_RyAxis, sizeof(GUID)) == 0) object->offset = DIJOFS_RY; else if (memcmp(&doi->guidType, &GUID_RzAxis, sizeof(GUID)) == 0) object->offset = DIJOFS_RZ; else return DIENUM_CONTINUE; ZeroMemory(&dipr, sizeof(dipr)); dipr.diph.dwSize = sizeof(dipr); dipr.diph.dwHeaderSize = sizeof(dipr.diph); dipr.diph.dwObj = doi->dwType; dipr.diph.dwHow = DIPH_BYID; dipr.lMin = -32768; dipr.lMax = 32767; if (FAILED(IDirectInputDevice8_SetProperty(data->device, DIPROP_RANGE, &dipr.diph))) { return DIENUM_CONTINUE; } if (memcmp(&doi->guidType, &GUID_Slider, sizeof(GUID)) == 0) { object->type = _GLFW_TYPE_SLIDER; data->sliderCount++; } else { object->type = _GLFW_TYPE_AXIS; data->axisCount++; } } else if (DIDFT_GETTYPE(doi->dwType) & DIDFT_BUTTON) { object->offset = DIJOFS_BUTTON(data->buttonCount); object->type = _GLFW_TYPE_BUTTON; data->buttonCount++; } else if (DIDFT_GETTYPE(doi->dwType) & DIDFT_POV) { object->offset = DIJOFS_POV(data->povCount); object->type = _GLFW_TYPE_POV; data->povCount++; } data->objectCount++; return DIENUM_CONTINUE; } // DirectInput device enumeration callback // static BOOL CALLBACK deviceCallback(const DIDEVICEINSTANCE* di, void* user) { int jid = 0; DIDEVCAPS dc; DIPROPDWORD dipd; IDirectInputDevice8W* device; //< @r-lyeh +W (tcc) _GLFWobjenumWin32 data; _GLFWjoystick* js; char guid[33]; char name[256]; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { js = _glfw.joysticks + jid; if (js->present) { if (memcmp(&js->win32.guid, &di->guidInstance, sizeof(GUID)) == 0) return DIENUM_CONTINUE; } } if (supportsXInput(&di->guidProduct)) return DIENUM_CONTINUE; if (FAILED(IDirectInput8_CreateDevice(_glfw.win32.dinput8.api, &di->guidInstance, &device, NULL))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to create device"); return DIENUM_CONTINUE; } if (FAILED(IDirectInputDevice8_SetDataFormat(device, &_glfwDataFormat))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to set device data format"); IDirectInputDevice8_Release(device); return DIENUM_CONTINUE; } ZeroMemory(&dc, sizeof(dc)); dc.dwSize = sizeof(dc); if (FAILED(IDirectInputDevice8_GetCapabilities(device, &dc))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to query device capabilities"); IDirectInputDevice8_Release(device); return DIENUM_CONTINUE; } ZeroMemory(&dipd, sizeof(dipd)); dipd.diph.dwSize = sizeof(dipd); dipd.diph.dwHeaderSize = sizeof(dipd.diph); dipd.diph.dwHow = DIPH_DEVICE; dipd.dwData = DIPROPAXISMODE_ABS; if (FAILED(IDirectInputDevice8_SetProperty(device, DIPROP_AXISMODE, &dipd.diph))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to set device axis mode"); IDirectInputDevice8_Release(device); return DIENUM_CONTINUE; } memset(&data, 0, sizeof(data)); data.device = device; data.objects = calloc(dc.dwAxes + (size_t) dc.dwButtons + dc.dwPOVs, sizeof(_GLFWjoyobjectWin32)); if (FAILED(IDirectInputDevice8_EnumObjects(device, deviceObjectCallback, &data, DIDFT_AXIS | DIDFT_BUTTON | DIDFT_POV))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to enumerate device objects"); IDirectInputDevice8_Release(device); free(data.objects); return DIENUM_CONTINUE; } qsort(data.objects, data.objectCount, sizeof(_GLFWjoyobjectWin32), compareJoystickObjects); if (!WideCharToMultiByte(CP_UTF8, 0, di->tszInstanceName, -1, name, sizeof(name), NULL, NULL)) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to convert joystick name to UTF-8"); IDirectInputDevice8_Release(device); free(data.objects); return DIENUM_STOP; } // Generate a joystick GUID that matches the SDL 2.0.5+ one if (memcmp(&di->guidProduct.Data4[2], "PIDVID", 6) == 0) { sprintf(guid, "03000000%02x%02x0000%02x%02x000000000000", (uint8_t) di->guidProduct.Data1, (uint8_t) (di->guidProduct.Data1 >> 8), (uint8_t) (di->guidProduct.Data1 >> 16), (uint8_t) (di->guidProduct.Data1 >> 24)); } else { sprintf(guid, "05000000%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x00", name[0], name[1], name[2], name[3], name[4], name[5], name[6], name[7], name[8], name[9], name[10]); } js = _glfwAllocJoystick(name, guid, data.axisCount + data.sliderCount, data.buttonCount, data.povCount); if (!js) { IDirectInputDevice8_Release(device); free(data.objects); return DIENUM_STOP; } js->win32.device = device; js->win32.guid = di->guidInstance; js->win32.objects = data.objects; js->win32.objectCount = data.objectCount; _glfwInputJoystick(js, GLFW_CONNECTED); return DIENUM_CONTINUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize joystick interface // void _glfwInitJoysticksWin32(void) { if (_glfw.win32.dinput8.instance) { if (FAILED(DirectInput8Create(GetModuleHandleW(NULL), DIRECTINPUT_VERSION, &IID_IDirectInput8W, (void**) &_glfw.win32.dinput8.api, NULL))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to create interface"); } } _glfwDetectJoystickConnectionWin32(); } // Close all opened joystick handles // void _glfwTerminateJoysticksWin32(void) { int jid; for (jid = GLFW_JOYSTICK_1; jid <= GLFW_JOYSTICK_LAST; jid++) closeJoystick(_glfw.joysticks + jid); if (_glfw.win32.dinput8.api) IDirectInput8_Release(_glfw.win32.dinput8.api); } // Checks for new joysticks after DBT_DEVICEARRIVAL // void _glfwDetectJoystickConnectionWin32(void) { if (_glfw.win32.xinput.instance) { DWORD index; for (index = 0; index < XUSER_MAX_COUNT; index++) { int jid; char guid[33]; XINPUT_CAPABILITIES xic; _GLFWjoystick* js; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { if (_glfw.joysticks[jid].present && _glfw.joysticks[jid].win32.device == NULL && _glfw.joysticks[jid].win32.index == index) { break; } } if (jid <= GLFW_JOYSTICK_LAST) continue; if (XInputGetCapabilities(index, 0, &xic) != ERROR_SUCCESS) continue; // Generate a joystick GUID that matches the SDL 2.0.5+ one sprintf(guid, "78696e707574%02x000000000000000000", xic.SubType & 0xff); js = _glfwAllocJoystick(getDeviceDescription(&xic), guid, 6, 10, 1); if (!js) continue; js->win32.index = index; _glfwInputJoystick(js, GLFW_CONNECTED); } } if (_glfw.win32.dinput8.api) { if (FAILED(IDirectInput8_EnumDevices(_glfw.win32.dinput8.api, DI8DEVCLASS_GAMECTRL, deviceCallback, NULL, DIEDFL_ALLDEVICES))) { _glfwInputError(GLFW_PLATFORM_ERROR, "Failed to enumerate DirectInput8 devices"); return; } } } // Checks for joystick disconnection after DBT_DEVICEREMOVECOMPLETE // void _glfwDetectJoystickDisconnectionWin32(void) { int jid; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { _GLFWjoystick* js = _glfw.joysticks + jid; if (js->present) _glfwPlatformPollJoystick(js, _GLFW_POLL_PRESENCE); } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformPollJoystick(_GLFWjoystick* js, int mode) { if (js->win32.device) { int i, ai = 0, bi = 0, pi = 0; HRESULT result; DIJOYSTATE state; IDirectInputDevice8_Poll(js->win32.device); result = IDirectInputDevice8_GetDeviceState(js->win32.device, sizeof(state), &state); if (result == DIERR_NOTACQUIRED || result == DIERR_INPUTLOST) { IDirectInputDevice8_Acquire(js->win32.device); IDirectInputDevice8_Poll(js->win32.device); result = IDirectInputDevice8_GetDeviceState(js->win32.device, sizeof(state), &state); } if (FAILED(result)) { closeJoystick(js); return GLFW_FALSE; } if (mode == _GLFW_POLL_PRESENCE) return GLFW_TRUE; for (i = 0; i < js->win32.objectCount; i++) { const void* data = (char*) &state + js->win32.objects[i].offset; switch (js->win32.objects[i].type) { case _GLFW_TYPE_AXIS: case _GLFW_TYPE_SLIDER: { const float value = (*((LONG*) data) + 0.5f) / 32767.5f; _glfwInputJoystickAxis(js, ai, value); ai++; break; } case _GLFW_TYPE_BUTTON: { const char value = (*((BYTE*) data) & 0x80) != 0; _glfwInputJoystickButton(js, bi, value); bi++; break; } case _GLFW_TYPE_POV: { const int states[9] = { GLFW_HAT_UP, GLFW_HAT_RIGHT_UP, GLFW_HAT_RIGHT, GLFW_HAT_RIGHT_DOWN, GLFW_HAT_DOWN, GLFW_HAT_LEFT_DOWN, GLFW_HAT_LEFT, GLFW_HAT_LEFT_UP, GLFW_HAT_CENTERED }; // Screams of horror are appropriate at this point int stateIndex = LOWORD(*(DWORD*) data) / (45 * DI_DEGREES); if (stateIndex < 0 || stateIndex > 8) stateIndex = 8; _glfwInputJoystickHat(js, pi, states[stateIndex]); pi++; break; } } } } else { int i, dpad = 0; DWORD result; XINPUT_STATE xis; const WORD buttons[10] = { XINPUT_GAMEPAD_A, XINPUT_GAMEPAD_B, XINPUT_GAMEPAD_X, XINPUT_GAMEPAD_Y, XINPUT_GAMEPAD_LEFT_SHOULDER, XINPUT_GAMEPAD_RIGHT_SHOULDER, XINPUT_GAMEPAD_BACK, XINPUT_GAMEPAD_START, XINPUT_GAMEPAD_LEFT_THUMB, XINPUT_GAMEPAD_RIGHT_THUMB }; result = XInputGetState(js->win32.index, &xis); if (result != ERROR_SUCCESS) { if (result == ERROR_DEVICE_NOT_CONNECTED) closeJoystick(js); return GLFW_FALSE; } if (mode == _GLFW_POLL_PRESENCE) return GLFW_TRUE; _glfwInputJoystickAxis(js, 0, (xis.Gamepad.sThumbLX + 0.5f) / 32767.5f); _glfwInputJoystickAxis(js, 1, -(xis.Gamepad.sThumbLY + 0.5f) / 32767.5f); _glfwInputJoystickAxis(js, 2, (xis.Gamepad.sThumbRX + 0.5f) / 32767.5f); _glfwInputJoystickAxis(js, 3, -(xis.Gamepad.sThumbRY + 0.5f) / 32767.5f); _glfwInputJoystickAxis(js, 4, xis.Gamepad.bLeftTrigger / 127.5f - 1.f); _glfwInputJoystickAxis(js, 5, xis.Gamepad.bRightTrigger / 127.5f - 1.f); for (i = 0; i < 10; i++) { const char value = (xis.Gamepad.wButtons & buttons[i]) ? 1 : 0; _glfwInputJoystickButton(js, i, value); } if (xis.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_UP) dpad |= GLFW_HAT_UP; if (xis.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_RIGHT) dpad |= GLFW_HAT_RIGHT; if (xis.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_DOWN) dpad |= GLFW_HAT_DOWN; if (xis.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_LEFT) dpad |= GLFW_HAT_LEFT; _glfwInputJoystickHat(js, 0, dpad); } return GLFW_TRUE; } void _glfwPlatformUpdateGamepadGUID(char* guid) { if (strcmp(guid + 20, "504944564944") == 0) { char original[33]; strncpy(original, guid, sizeof(original) - 1); sprintf(guid, "03000000%.4s0000%.4s000000000000", original, original + 4); } } #endif #ifndef HEADER_GUARD_WIN32_MONITOR_C #define HEADER_GUARD_WIN32_MONITOR_C //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include #include // Callback for EnumDisplayMonitors in createMonitor // static BOOL CALLBACK monitorCallback(HMONITOR handle, HDC dc, RECT* rect, LPARAM data) { #ifdef __TINYC__ //< @r-lyeh MONITORINFOEXW mi = { sizeof(MONITORINFOEXW) }; //< @r-lyeh #else //< @r-lyeh MONITORINFOEXW mi; ZeroMemory(&mi, sizeof(mi)); mi.cbSize = sizeof(mi); #endif //< @r-lyeh if (GetMonitorInfoW(handle, (MONITORINFO*) &mi)) { _GLFWmonitor* monitor = (_GLFWmonitor*) data; if (wcscmp(mi.szDevice, monitor->win32.adapterName) == 0) monitor->win32.handle = handle; } return TRUE; } // Create monitor from an adapter and (optionally) a display // static _GLFWmonitor* createMonitor(DISPLAY_DEVICEW* adapter, DISPLAY_DEVICEW* display) { _GLFWmonitor* monitor; int widthMM, heightMM; char* name; HDC dc; DEVMODEW dm; RECT rect; if (display) name = _glfwCreateUTF8FromWideStringWin32(display->DeviceString); else name = _glfwCreateUTF8FromWideStringWin32(adapter->DeviceString); if (!name) return NULL; ZeroMemory(&dm, sizeof(dm)); dm.dmSize = sizeof(dm); EnumDisplaySettingsW(adapter->DeviceName, ENUM_CURRENT_SETTINGS, &dm); dc = CreateDCW(L"DISPLAY", adapter->DeviceName, NULL, NULL); if (IsWindows8Point1OrGreater()) { widthMM = GetDeviceCaps(dc, HORZSIZE); heightMM = GetDeviceCaps(dc, VERTSIZE); } else { widthMM = (int) (dm.dmPelsWidth * 25.4f / GetDeviceCaps(dc, LOGPIXELSX)); heightMM = (int) (dm.dmPelsHeight * 25.4f / GetDeviceCaps(dc, LOGPIXELSY)); } DeleteDC(dc); monitor = _glfwAllocMonitor(name, widthMM, heightMM); free(name); if (adapter->StateFlags & DISPLAY_DEVICE_MODESPRUNED) monitor->win32.modesPruned = GLFW_TRUE; wcscpy(monitor->win32.adapterName, adapter->DeviceName); WideCharToMultiByte(CP_UTF8, 0, adapter->DeviceName, -1, monitor->win32.publicAdapterName, sizeof(monitor->win32.publicAdapterName), NULL, NULL); if (display) { wcscpy(monitor->win32.displayName, display->DeviceName); WideCharToMultiByte(CP_UTF8, 0, display->DeviceName, -1, monitor->win32.publicDisplayName, sizeof(monitor->win32.publicDisplayName), NULL, NULL); } rect.left = dm.dmPosition.x; rect.top = dm.dmPosition.y; rect.right = dm.dmPosition.x + dm.dmPelsWidth; rect.bottom = dm.dmPosition.y + dm.dmPelsHeight; EnumDisplayMonitors(NULL, &rect, monitorCallback, (LPARAM) monitor); return monitor; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Poll for changes in the set of connected monitors // void _glfwPollMonitorsWin32(void) { int i, disconnectedCount; _GLFWmonitor** disconnected = NULL; DWORD adapterIndex, displayIndex; DISPLAY_DEVICEW adapter, display; _GLFWmonitor* monitor; disconnectedCount = _glfw.monitorCount; if (disconnectedCount) { disconnected = calloc(_glfw.monitorCount, sizeof(_GLFWmonitor*)); memcpy(disconnected, _glfw.monitors, _glfw.monitorCount * sizeof(_GLFWmonitor*)); } for (adapterIndex = 0; ; adapterIndex++) { int type = _GLFW_INSERT_LAST; ZeroMemory(&adapter, sizeof(adapter)); adapter.cb = sizeof(adapter); if (!EnumDisplayDevicesW(NULL, adapterIndex, &adapter, 0)) break; if (!(adapter.StateFlags & DISPLAY_DEVICE_ACTIVE)) continue; if (adapter.StateFlags & DISPLAY_DEVICE_PRIMARY_DEVICE) type = _GLFW_INSERT_FIRST; for (displayIndex = 0; ; displayIndex++) { ZeroMemory(&display, sizeof(display)); display.cb = sizeof(display); if (!EnumDisplayDevicesW(adapter.DeviceName, displayIndex, &display, 0)) break; if (!(display.StateFlags & DISPLAY_DEVICE_ACTIVE)) continue; for (i = 0; i < disconnectedCount; i++) { if (disconnected[i] && wcscmp(disconnected[i]->win32.displayName, display.DeviceName) == 0) { disconnected[i] = NULL; // handle may have changed, update EnumDisplayMonitors(NULL, NULL, monitorCallback, (LPARAM) _glfw.monitors[i]); break; } } if (i < disconnectedCount) continue; monitor = createMonitor(&adapter, &display); if (!monitor) { free(disconnected); return; } _glfwInputMonitor(monitor, GLFW_CONNECTED, type); type = _GLFW_INSERT_LAST; } // HACK: If an active adapter does not have any display devices // (as sometimes happens), add it directly as a monitor if (displayIndex == 0) { for (i = 0; i < disconnectedCount; i++) { if (disconnected[i] && wcscmp(disconnected[i]->win32.adapterName, adapter.DeviceName) == 0) { disconnected[i] = NULL; break; } } if (i < disconnectedCount) continue; monitor = createMonitor(&adapter, NULL); if (!monitor) { free(disconnected); return; } _glfwInputMonitor(monitor, GLFW_CONNECTED, type); } } for (i = 0; i < disconnectedCount; i++) { if (disconnected[i]) _glfwInputMonitor(disconnected[i], GLFW_DISCONNECTED, 0); } free(disconnected); } // Change the current video mode // void _glfwSetVideoModeWin32(_GLFWmonitor* monitor, const GLFWvidmode* desired) { GLFWvidmode current; const GLFWvidmode* best; DEVMODEW dm; LONG result; best = _glfwChooseVideoMode(monitor, desired); _glfwPlatformGetVideoMode(monitor, ¤t); if (_glfwCompareVideoModes(¤t, best) == 0) return; ZeroMemory(&dm, sizeof(dm)); dm.dmSize = sizeof(dm); dm.dmFields = DM_PELSWIDTH | DM_PELSHEIGHT | DM_BITSPERPEL | DM_DISPLAYFREQUENCY; dm.dmPelsWidth = best->width; dm.dmPelsHeight = best->height; dm.dmBitsPerPel = best->redBits + best->greenBits + best->blueBits; dm.dmDisplayFrequency = best->refreshRate; if (dm.dmBitsPerPel < 15 || dm.dmBitsPerPel >= 24) dm.dmBitsPerPel = 32; result = ChangeDisplaySettingsExW(monitor->win32.adapterName, &dm, NULL, CDS_FULLSCREEN, NULL); if (result == DISP_CHANGE_SUCCESSFUL) monitor->win32.modeChanged = GLFW_TRUE; else { const char* description = "Unknown error"; if (result == DISP_CHANGE_BADDUALVIEW) description = "The system uses DualView"; else if (result == DISP_CHANGE_BADFLAGS) description = "Invalid flags"; else if (result == DISP_CHANGE_BADMODE) description = "Graphics mode not supported"; else if (result == DISP_CHANGE_BADPARAM) description = "Invalid parameter"; else if (result == DISP_CHANGE_FAILED) description = "Graphics mode failed"; else if (result == DISP_CHANGE_NOTUPDATED) description = "Failed to write to registry"; else if (result == DISP_CHANGE_RESTART) description = "Computer restart required"; _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to set video mode: %s", description); } } // Restore the previously saved (original) video mode // void _glfwRestoreVideoModeWin32(_GLFWmonitor* monitor) { if (monitor->win32.modeChanged) { ChangeDisplaySettingsExW(monitor->win32.adapterName, NULL, NULL, CDS_FULLSCREEN, NULL); monitor->win32.modeChanged = GLFW_FALSE; } } void _glfwGetMonitorContentScaleWin32(HMONITOR handle, float* xscale, float* yscale) { UINT xdpi, ydpi; if (xscale) *xscale = 0.f; if (yscale) *yscale = 0.f; if (IsWindows8Point1OrGreater()) { if (GetDpiForMonitor(handle, MDT_EFFECTIVE_DPI, &xdpi, &ydpi) != S_OK) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to query monitor DPI"); return; } } else { const HDC dc = GetDC(NULL); xdpi = GetDeviceCaps(dc, LOGPIXELSX); ydpi = GetDeviceCaps(dc, LOGPIXELSY); ReleaseDC(NULL, dc); } if (xscale) *xscale = xdpi / (float) USER_DEFAULT_SCREEN_DPI; if (yscale) *yscale = ydpi / (float) USER_DEFAULT_SCREEN_DPI; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// void _glfwPlatformFreeMonitor(_GLFWmonitor* monitor) { } void _glfwPlatformGetMonitorPos(_GLFWmonitor* monitor, int* xpos, int* ypos) { DEVMODEW dm; ZeroMemory(&dm, sizeof(dm)); dm.dmSize = sizeof(dm); EnumDisplaySettingsExW(monitor->win32.adapterName, ENUM_CURRENT_SETTINGS, &dm, EDS_ROTATEDMODE); if (xpos) *xpos = dm.dmPosition.x; if (ypos) *ypos = dm.dmPosition.y; } void _glfwPlatformGetMonitorContentScale(_GLFWmonitor* monitor, float* xscale, float* yscale) { _glfwGetMonitorContentScaleWin32(monitor->win32.handle, xscale, yscale); } void _glfwPlatformGetMonitorWorkarea(_GLFWmonitor* monitor, int* xpos, int* ypos, int* width, int* height) { MONITORINFO mi = { sizeof(mi) }; GetMonitorInfoW(monitor->win32.handle, &mi); if (xpos) *xpos = mi.rcWork.left; if (ypos) *ypos = mi.rcWork.top; if (width) *width = mi.rcWork.right - mi.rcWork.left; if (height) *height = mi.rcWork.bottom - mi.rcWork.top; } GLFWvidmode* _glfwPlatformGetVideoModes(_GLFWmonitor* monitor, int* count) { int modeIndex = 0, size = 0; GLFWvidmode* result = NULL; *count = 0; for (;;) { int i; GLFWvidmode mode; DEVMODEW dm; ZeroMemory(&dm, sizeof(dm)); dm.dmSize = sizeof(dm); if (!EnumDisplaySettingsW(monitor->win32.adapterName, modeIndex, &dm)) break; modeIndex++; // Skip modes with less than 15 BPP if (dm.dmBitsPerPel < 15) continue; mode.width = dm.dmPelsWidth; mode.height = dm.dmPelsHeight; mode.refreshRate = dm.dmDisplayFrequency; _glfwSplitBPP(dm.dmBitsPerPel, &mode.redBits, &mode.greenBits, &mode.blueBits); for (i = 0; i < *count; i++) { if (_glfwCompareVideoModes(result + i, &mode) == 0) break; } // Skip duplicate modes if (i < *count) continue; if (monitor->win32.modesPruned) { // Skip modes not supported by the connected displays if (ChangeDisplaySettingsExW(monitor->win32.adapterName, &dm, NULL, CDS_TEST, NULL) != DISP_CHANGE_SUCCESSFUL) { continue; } } if (*count == size) { size += 128; result = (GLFWvidmode*) realloc(result, size * sizeof(GLFWvidmode)); } (*count)++; result[*count - 1] = mode; } if (!*count) { // HACK: Report the current mode if no valid modes were found result = calloc(1, sizeof(GLFWvidmode)); _glfwPlatformGetVideoMode(monitor, result); *count = 1; } return result; } void _glfwPlatformGetVideoMode(_GLFWmonitor* monitor, GLFWvidmode* mode) { DEVMODEW dm; ZeroMemory(&dm, sizeof(dm)); dm.dmSize = sizeof(dm); EnumDisplaySettingsW(monitor->win32.adapterName, ENUM_CURRENT_SETTINGS, &dm); mode->width = dm.dmPelsWidth; mode->height = dm.dmPelsHeight; mode->refreshRate = dm.dmDisplayFrequency; _glfwSplitBPP(dm.dmBitsPerPel, &mode->redBits, &mode->greenBits, &mode->blueBits); } GLFWbool _glfwPlatformGetGammaRamp(_GLFWmonitor* monitor, GLFWgammaramp* ramp) { HDC dc; WORD values[3][256]; dc = CreateDCW(L"DISPLAY", monitor->win32.adapterName, NULL, NULL); GetDeviceGammaRamp(dc, values); DeleteDC(dc); _glfwAllocGammaArrays(ramp, 256); memcpy(ramp->red, values[0], sizeof(values[0])); memcpy(ramp->green, values[1], sizeof(values[1])); memcpy(ramp->blue, values[2], sizeof(values[2])); return GLFW_TRUE; } void _glfwPlatformSetGammaRamp(_GLFWmonitor* monitor, const GLFWgammaramp* ramp) { HDC dc; WORD values[3][256]; if (ramp->size != 256) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Gamma ramp size must be 256"); return; } memcpy(values[0], ramp->red, sizeof(values[0])); memcpy(values[1], ramp->green, sizeof(values[1])); memcpy(values[2], ramp->blue, sizeof(values[2])); dc = CreateDCW(L"DISPLAY", monitor->win32.adapterName, NULL, NULL); SetDeviceGammaRamp(dc, values); DeleteDC(dc); } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI const char* glfwGetWin32Adapter(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return monitor->win32.publicAdapterName; } GLFWAPI const char* glfwGetWin32Monitor(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return monitor->win32.publicDisplayName; } #endif #ifndef HEADER_GUARD_WIN32_TIME_C #define HEADER_GUARD_WIN32_TIME_C //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialise timer // void _glfwInitTimerWin32(void) { QueryPerformanceFrequency((LARGE_INTEGER*) &_glfw.timer.win32.frequency); } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// uint64_t _glfwPlatformGetTimerValue(void) { uint64_t value; QueryPerformanceCounter((LARGE_INTEGER*) &value); return value; } uint64_t _glfwPlatformGetTimerFrequency(void) { return _glfw.timer.win32.frequency; } #endif #ifndef HEADER_GUARD_WIN32_THREAD_C #define HEADER_GUARD_WIN32_THREAD_C //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// GLFWbool _glfwPlatformCreateTls(_GLFWtls* tls) { assert(tls->win32.allocated == GLFW_FALSE); tls->win32.index = TlsAlloc(); if (tls->win32.index == TLS_OUT_OF_INDEXES) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to allocate TLS index"); return GLFW_FALSE; } tls->win32.allocated = GLFW_TRUE; return GLFW_TRUE; } void _glfwPlatformDestroyTls(_GLFWtls* tls) { if (tls->win32.allocated) TlsFree(tls->win32.index); memset(tls, 0, sizeof(_GLFWtls)); } void* _glfwPlatformGetTls(_GLFWtls* tls) { assert(tls->win32.allocated == GLFW_TRUE); return TlsGetValue(tls->win32.index); } void _glfwPlatformSetTls(_GLFWtls* tls, void* value) { assert(tls->win32.allocated == GLFW_TRUE); TlsSetValue(tls->win32.index, value); } GLFWbool _glfwPlatformCreateMutex(_GLFWmutex* mutex) { assert(mutex->win32.allocated == GLFW_FALSE); InitializeCriticalSection(&mutex->win32.section); return mutex->win32.allocated = GLFW_TRUE; } void _glfwPlatformDestroyMutex(_GLFWmutex* mutex) { if (mutex->win32.allocated) DeleteCriticalSection(&mutex->win32.section); memset(mutex, 0, sizeof(_GLFWmutex)); } void _glfwPlatformLockMutex(_GLFWmutex* mutex) { assert(mutex->win32.allocated == GLFW_TRUE); EnterCriticalSection(&mutex->win32.section); } void _glfwPlatformUnlockMutex(_GLFWmutex* mutex) { assert(mutex->win32.allocated == GLFW_TRUE); LeaveCriticalSection(&mutex->win32.section); } #endif #ifndef HEADER_GUARD_WIN32_WINDOW_C #define HEADER_GUARD_WIN32_WINDOW_C //======================================================================== // GLFW 3.3.7 Win32 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include #include #include #include // Returns the window style for the specified window // static DWORD getWindowStyle(const _GLFWwindow* window) { DWORD style = WS_CLIPSIBLINGS | WS_CLIPCHILDREN; if (window->monitor) style |= WS_POPUP; else { style |= WS_SYSMENU | WS_MINIMIZEBOX; if (window->decorated) { style |= WS_CAPTION; if (window->resizable) style |= WS_MAXIMIZEBOX | WS_THICKFRAME; } else style |= WS_POPUP; } return style; } // Returns the extended window style for the specified window // static DWORD getWindowExStyle(const _GLFWwindow* window) { DWORD style = WS_EX_APPWINDOW; if (window->monitor || window->floating) style |= WS_EX_TOPMOST; return style; } // Returns the image whose area most closely matches the desired one // static const GLFWimage* chooseImage(int count, const GLFWimage* images, int width, int height) { int i, leastDiff = INT_MAX; const GLFWimage* closest = NULL; for (i = 0; i < count; i++) { const int currDiff = abs(images[i].width * images[i].height - width * height); if (currDiff < leastDiff) { closest = images + i; leastDiff = currDiff; } } return closest; } // Creates an RGBA icon or cursor // static HICON createIcon(const GLFWimage* image, int xhot, int yhot, GLFWbool icon) { int i; HDC dc; HICON handle; HBITMAP color, mask; BITMAPV5HEADER bi; ICONINFO ii; unsigned char* target = NULL; unsigned char* source = image->pixels; ZeroMemory(&bi, sizeof(bi)); bi.bV5Size = sizeof(bi); bi.bV5Width = image->width; bi.bV5Height = -image->height; bi.bV5Planes = 1; bi.bV5BitCount = 32; bi.bV5Compression = BI_BITFIELDS; bi.bV5RedMask = 0x00ff0000; bi.bV5GreenMask = 0x0000ff00; bi.bV5BlueMask = 0x000000ff; bi.bV5AlphaMask = 0xff000000; dc = GetDC(NULL); color = CreateDIBSection(dc, (BITMAPINFO*) &bi, DIB_RGB_COLORS, (void**) &target, NULL, (DWORD) 0); ReleaseDC(NULL, dc); if (!color) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create RGBA bitmap"); return NULL; } mask = CreateBitmap(image->width, image->height, 1, 1, NULL); if (!mask) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create mask bitmap"); DeleteObject(color); return NULL; } for (i = 0; i < image->width * image->height; i++) { target[0] = source[2]; target[1] = source[1]; target[2] = source[0]; target[3] = source[3]; target += 4; source += 4; } ZeroMemory(&ii, sizeof(ii)); ii.fIcon = icon; ii.xHotspot = xhot; ii.yHotspot = yhot; ii.hbmMask = mask; ii.hbmColor = color; handle = CreateIconIndirect(&ii); DeleteObject(color); DeleteObject(mask); if (!handle) { if (icon) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create icon"); } else { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create cursor"); } } return handle; } // Translate content area size to full window size according to styles and DPI // static void getFullWindowSize(DWORD style, DWORD exStyle, int contentWidth, int contentHeight, int* fullWidth, int* fullHeight, UINT dpi) { RECT rect = { 0, 0, contentWidth, contentHeight }; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) AdjustWindowRectExForDpi(&rect, style, FALSE, exStyle, dpi); else AdjustWindowRectEx(&rect, style, FALSE, exStyle); *fullWidth = rect.right - rect.left; *fullHeight = rect.bottom - rect.top; } // Enforce the content area aspect ratio based on which edge is being dragged // static void applyAspectRatio(_GLFWwindow* window, int edge, RECT* area) { int xoff, yoff; UINT dpi = USER_DEFAULT_SCREEN_DPI; const float ratio = (float) window->numer / (float) window->denom; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) dpi = GetDpiForWindow(window->win32.handle); getFullWindowSize(getWindowStyle(window), getWindowExStyle(window), 0, 0, &xoff, &yoff, dpi); if (edge == WMSZ_LEFT || edge == WMSZ_BOTTOMLEFT || edge == WMSZ_RIGHT || edge == WMSZ_BOTTOMRIGHT) { area->bottom = area->top + yoff + (int) ((area->right - area->left - xoff) / ratio); } else if (edge == WMSZ_TOPLEFT || edge == WMSZ_TOPRIGHT) { area->top = area->bottom - yoff - (int) ((area->right - area->left - xoff) / ratio); } else if (edge == WMSZ_TOP || edge == WMSZ_BOTTOM) { area->right = area->left + xoff + (int) ((area->bottom - area->top - yoff) * ratio); } } // Updates the cursor image according to its cursor mode // static void updateCursorImage(_GLFWwindow* window) { if (window->cursorMode == GLFW_CURSOR_NORMAL) { if (window->cursor) SetCursor(window->cursor->win32.handle); else SetCursor(LoadCursorW(NULL, IDC_ARROW)); } else SetCursor(NULL); } // Updates the cursor clip rect // static void updateClipRect(_GLFWwindow* window) { if (window) { RECT clipRect; GetClientRect(window->win32.handle, &clipRect); ClientToScreen(window->win32.handle, (POINT*) &clipRect.left); ClientToScreen(window->win32.handle, (POINT*) &clipRect.right); ClipCursor(&clipRect); } else ClipCursor(NULL); } // Enables WM_INPUT messages for the mouse for the specified window // static void enableRawMouseMotion(_GLFWwindow* window) { const RAWINPUTDEVICE rid = { 0x01, 0x02, 0, window->win32.handle }; if (!RegisterRawInputDevices(&rid, 1, sizeof(rid))) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to register raw input device"); } } // Disables WM_INPUT messages for the mouse // static void disableRawMouseMotion(_GLFWwindow* window) { const RAWINPUTDEVICE rid = { 0x01, 0x02, RIDEV_REMOVE, NULL }; if (!RegisterRawInputDevices(&rid, 1, sizeof(rid))) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to remove raw input device"); } } // Apply disabled cursor mode to a focused window // static void disableCursor(_GLFWwindow* window) { _glfw.win32.disabledCursorWindow = window; _glfwPlatformGetCursorPos(window, &_glfw.win32.restoreCursorPosX, &_glfw.win32.restoreCursorPosY); updateCursorImage(window); _glfwCenterCursorInContentArea(window); updateClipRect(window); if (window->rawMouseMotion) enableRawMouseMotion(window); } // Exit disabled cursor mode for the specified window // static void enableCursor(_GLFWwindow* window) { if (window->rawMouseMotion) disableRawMouseMotion(window); _glfw.win32.disabledCursorWindow = NULL; updateClipRect(NULL); _glfwPlatformSetCursorPos(window, _glfw.win32.restoreCursorPosX, _glfw.win32.restoreCursorPosY); updateCursorImage(window); } // Returns whether the cursor is in the content area of the specified window // static GLFWbool cursorInContentArea(_GLFWwindow* window) { RECT area; POINT pos; if (!GetCursorPos(&pos)) return GLFW_FALSE; if (WindowFromPoint(pos) != window->win32.handle) return GLFW_FALSE; GetClientRect(window->win32.handle, &area); ClientToScreen(window->win32.handle, (POINT*) &area.left); ClientToScreen(window->win32.handle, (POINT*) &area.right); return PtInRect(&area, pos); } // Update native window styles to match attributes // static void updateWindowStyles(const _GLFWwindow* window) { RECT rect; DWORD style = GetWindowLongW(window->win32.handle, GWL_STYLE); style &= ~(WS_OVERLAPPEDWINDOW | WS_POPUP); style |= getWindowStyle(window); GetClientRect(window->win32.handle, &rect); if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, style, FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); } else AdjustWindowRectEx(&rect, style, FALSE, getWindowExStyle(window)); ClientToScreen(window->win32.handle, (POINT*) &rect.left); ClientToScreen(window->win32.handle, (POINT*) &rect.right); SetWindowLongW(window->win32.handle, GWL_STYLE, style); SetWindowPos(window->win32.handle, HWND_TOP, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, SWP_FRAMECHANGED | SWP_NOACTIVATE | SWP_NOZORDER); } // Update window framebuffer transparency // static void updateFramebufferTransparency(const _GLFWwindow* window) { BOOL composition, opaque; DWORD color; if (!IsWindowsVistaOrGreater()) return; if (FAILED(DwmIsCompositionEnabled(&composition)) || !composition) return; if (IsWindows8OrGreater() || (SUCCEEDED(DwmGetColorizationColor(&color, &opaque)) && !opaque)) { HRGN region = CreateRectRgn(0, 0, -1, -1); DWM_BLURBEHIND bb = {0}; bb.dwFlags = DWM_BB_ENABLE | DWM_BB_BLURREGION; bb.hRgnBlur = region; bb.fEnable = TRUE; DwmEnableBlurBehindWindow(window->win32.handle, &bb); DeleteObject(region); } else { // HACK: Disable framebuffer transparency on Windows 7 when the // colorization color is opaque, because otherwise the window // contents is blended additively with the previous frame instead // of replacing it DWM_BLURBEHIND bb = {0}; bb.dwFlags = DWM_BB_ENABLE; DwmEnableBlurBehindWindow(window->win32.handle, &bb); } } // Retrieves and translates modifier keys // static int getKeyMods(void) { int mods = 0; if (GetKeyState(VK_SHIFT) & 0x8000) mods |= GLFW_MOD_SHIFT; if (GetKeyState(VK_CONTROL) & 0x8000) mods |= GLFW_MOD_CONTROL; if (GetKeyState(VK_MENU) & 0x8000) mods |= GLFW_MOD_ALT; if ((GetKeyState(VK_LWIN) | GetKeyState(VK_RWIN)) & 0x8000) mods |= GLFW_MOD_SUPER; if (GetKeyState(VK_CAPITAL) & 1) mods |= GLFW_MOD_CAPS_LOCK; if (GetKeyState(VK_NUMLOCK) & 1) mods |= GLFW_MOD_NUM_LOCK; return mods; } static void fitToMonitor(_GLFWwindow* window) { MONITORINFO mi = { sizeof(mi) }; GetMonitorInfoW(window->monitor->win32.handle, &mi); SetWindowPos(window->win32.handle, HWND_TOPMOST, mi.rcMonitor.left, mi.rcMonitor.top, mi.rcMonitor.right - mi.rcMonitor.left, mi.rcMonitor.bottom - mi.rcMonitor.top, SWP_NOZORDER | SWP_NOACTIVATE | SWP_NOCOPYBITS); } // Make the specified window and its video mode active on its monitor // static void acquireMonitor(_GLFWwindow* window) { if (!_glfw.win32.acquiredMonitorCount) { SetThreadExecutionState(ES_CONTINUOUS | ES_DISPLAY_REQUIRED); // HACK: When mouse trails are enabled the cursor becomes invisible when // the OpenGL ICD switches to page flipping if (IsWindowsXPOrGreater()) { SystemParametersInfoW(SPI_GETMOUSETRAILS, 0, &_glfw.win32.mouseTrailSize, 0); SystemParametersInfoW(SPI_SETMOUSETRAILS, 0, 0, 0); } } if (!window->monitor->window) _glfw.win32.acquiredMonitorCount++; _glfwSetVideoModeWin32(window->monitor, &window->videoMode); _glfwInputMonitorWindow(window->monitor, window); } // Remove the window and restore the original video mode // static void releaseMonitor(_GLFWwindow* window) { if (window->monitor->window != window) return; _glfw.win32.acquiredMonitorCount--; if (!_glfw.win32.acquiredMonitorCount) { SetThreadExecutionState(ES_CONTINUOUS); // HACK: Restore mouse trail length saved in acquireMonitor if (IsWindowsXPOrGreater()) SystemParametersInfoW(SPI_SETMOUSETRAILS, _glfw.win32.mouseTrailSize, 0, 0); } _glfwInputMonitorWindow(window->monitor, NULL); _glfwRestoreVideoModeWin32(window->monitor); } // Manually maximize the window, for when SW_MAXIMIZE cannot be used // static void maximizeWindowManually(_GLFWwindow* window) { RECT rect; DWORD style; MONITORINFO mi = { sizeof(mi) }; GetMonitorInfoW(MonitorFromWindow(window->win32.handle, MONITOR_DEFAULTTONEAREST), &mi); rect = mi.rcWork; if (window->maxwidth != GLFW_DONT_CARE && window->maxheight != GLFW_DONT_CARE) { if (rect.right - rect.left > window->maxwidth) rect.right = rect.left + window->maxwidth; if (rect.bottom - rect.top > window->maxheight) rect.bottom = rect.top + window->maxheight; } style = GetWindowLongW(window->win32.handle, GWL_STYLE); style |= WS_MAXIMIZE; SetWindowLongW(window->win32.handle, GWL_STYLE, style); if (window->decorated) { const DWORD exStyle = GetWindowLongW(window->win32.handle, GWL_EXSTYLE); if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { const UINT dpi = GetDpiForWindow(window->win32.handle); AdjustWindowRectExForDpi(&rect, style, FALSE, exStyle, dpi); OffsetRect(&rect, 0, GetSystemMetricsForDpi(SM_CYCAPTION, dpi)); } else { AdjustWindowRectEx(&rect, style, FALSE, exStyle); OffsetRect(&rect, 0, GetSystemMetrics(SM_CYCAPTION)); } if (rect.bottom > mi.rcWork.bottom) rect.bottom = mi.rcWork.bottom; } SetWindowPos(window->win32.handle, HWND_TOP, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, SWP_NOACTIVATE | SWP_NOZORDER | SWP_FRAMECHANGED); } // Window callback function (handles window messages) // static LRESULT CALLBACK windowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { _GLFWwindow* window = GetPropW(hWnd, L"GLFW"); if (!window) { // This is the message handling for the hidden helper window // and for a regular window during its initial creation switch (uMsg) { case WM_NCCREATE: { if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { const CREATESTRUCTW* cs = (const CREATESTRUCTW*) lParam; const _GLFWwndconfig* wndconfig = cs->lpCreateParams; // On per-monitor DPI aware V1 systems, only enable // non-client scaling for windows that scale the client area // We need WM_GETDPISCALEDSIZE from V2 to keep the client // area static when the non-client area is scaled if (wndconfig && wndconfig->scaleToMonitor) EnableNonClientDpiScaling(hWnd); } break; } case WM_DISPLAYCHANGE: _glfwPollMonitorsWin32(); break; case WM_DEVICECHANGE: { if (wParam == DBT_DEVICEARRIVAL) { DEV_BROADCAST_HDR* dbh = (DEV_BROADCAST_HDR*) lParam; if (dbh && dbh->dbch_devicetype == DBT_DEVTYP_DEVICEINTERFACE) _glfwDetectJoystickConnectionWin32(); } else if (wParam == DBT_DEVICEREMOVECOMPLETE) { DEV_BROADCAST_HDR* dbh = (DEV_BROADCAST_HDR*) lParam; if (dbh && dbh->dbch_devicetype == DBT_DEVTYP_DEVICEINTERFACE) _glfwDetectJoystickDisconnectionWin32(); } break; } } return DefWindowProcW(hWnd, uMsg, wParam, lParam); } switch (uMsg) { case WM_MOUSEACTIVATE: { // HACK: Postpone cursor disabling when the window was activated by // clicking a caption button if (HIWORD(lParam) == WM_LBUTTONDOWN) { if (LOWORD(lParam) != HTCLIENT) window->win32.frameAction = GLFW_TRUE; } break; } case WM_CAPTURECHANGED: { // HACK: Disable the cursor once the caption button action has been // completed or cancelled if (lParam == 0 && window->win32.frameAction) { if (window->cursorMode == GLFW_CURSOR_DISABLED) disableCursor(window); window->win32.frameAction = GLFW_FALSE; } break; } case WM_SETFOCUS: { _glfwInputWindowFocus(window, GLFW_TRUE); // HACK: Do not disable cursor while the user is interacting with // a caption button if (window->win32.frameAction) break; if (window->cursorMode == GLFW_CURSOR_DISABLED) disableCursor(window); return 0; } case WM_KILLFOCUS: { if (window->cursorMode == GLFW_CURSOR_DISABLED) enableCursor(window); if (window->monitor && window->autoIconify) _glfwPlatformIconifyWindow(window); _glfwInputWindowFocus(window, GLFW_FALSE); return 0; } case WM_SYSCOMMAND: { switch (wParam & 0xfff0) { case SC_SCREENSAVE: case SC_MONITORPOWER: { if (window->monitor) { // We are running in full screen mode, so disallow // screen saver and screen blanking return 0; } else break; } // User trying to access application menu using ALT? case SC_KEYMENU: return 0; } break; } case WM_CLOSE: { _glfwInputWindowCloseRequest(window); return 0; } case WM_INPUTLANGCHANGE: { _glfwUpdateKeyNamesWin32(); break; } case WM_CHAR: case WM_SYSCHAR: { if (wParam >= 0xd800 && wParam <= 0xdbff) window->win32.highSurrogate = (WCHAR) wParam; else { uint32_t codepoint = 0; if (wParam >= 0xdc00 && wParam <= 0xdfff) { if (window->win32.highSurrogate) { codepoint += (window->win32.highSurrogate - 0xd800) << 10; codepoint += (WCHAR) wParam - 0xdc00; codepoint += 0x10000; } } else codepoint = (WCHAR) wParam; window->win32.highSurrogate = 0; _glfwInputChar(window, codepoint, getKeyMods(), uMsg != WM_SYSCHAR); } return 0; } case WM_UNICHAR: { if (wParam == UNICODE_NOCHAR) { // WM_UNICHAR is not sent by Windows, but is sent by some // third-party input method engine // Returning TRUE here announces support for this message return TRUE; } _glfwInputChar(window, (uint32_t) wParam, getKeyMods(), GLFW_TRUE); return 0; } case WM_KEYDOWN: case WM_SYSKEYDOWN: case WM_KEYUP: case WM_SYSKEYUP: { int key, scancode; const int action = (HIWORD(lParam) & KF_UP) ? GLFW_RELEASE : GLFW_PRESS; const int mods = getKeyMods(); scancode = (HIWORD(lParam) & (KF_EXTENDED | 0xff)); if (!scancode) { // NOTE: Some synthetic key messages have a scancode of zero // HACK: Map the virtual key back to a usable scancode scancode = MapVirtualKeyW((UINT) wParam, MAPVK_VK_TO_VSC); } key = _glfw.win32.keycodes[scancode]; // The Ctrl keys require special handling if (wParam == VK_CONTROL) { if (HIWORD(lParam) & KF_EXTENDED) { // Right side keys have the extended key bit set key = GLFW_KEY_RIGHT_CONTROL; } else { // NOTE: Alt Gr sends Left Ctrl followed by Right Alt // HACK: We only want one event for Alt Gr, so if we detect // this sequence we discard this Left Ctrl message now // and later report Right Alt normally MSG next; const DWORD time = GetMessageTime(); if (PeekMessageW(&next, NULL, 0, 0, PM_NOREMOVE)) { if (next.message == WM_KEYDOWN || next.message == WM_SYSKEYDOWN || next.message == WM_KEYUP || next.message == WM_SYSKEYUP) { if (next.wParam == VK_MENU && (HIWORD(next.lParam) & KF_EXTENDED) && next.time == time) { // Next message is Right Alt down so discard this break; } } } // This is a regular Left Ctrl message key = GLFW_KEY_LEFT_CONTROL; } } else if (wParam == VK_PROCESSKEY) { // IME notifies that keys have been filtered by setting the // virtual key-code to VK_PROCESSKEY break; } if (action == GLFW_RELEASE && wParam == VK_SHIFT) { // HACK: Release both Shift keys on Shift up event, as when both // are pressed the first release does not emit any event // NOTE: The other half of this is in _glfwPlatformPollEvents _glfwInputKey(window, GLFW_KEY_LEFT_SHIFT, scancode, action, mods); _glfwInputKey(window, GLFW_KEY_RIGHT_SHIFT, scancode, action, mods); } else if (wParam == VK_SNAPSHOT) { // HACK: Key down is not reported for the Print Screen key _glfwInputKey(window, key, scancode, GLFW_PRESS, mods); _glfwInputKey(window, key, scancode, GLFW_RELEASE, mods); } else _glfwInputKey(window, key, scancode, action, mods); break; } case WM_LBUTTONDOWN: case WM_RBUTTONDOWN: case WM_MBUTTONDOWN: case WM_XBUTTONDOWN: case WM_LBUTTONUP: case WM_RBUTTONUP: case WM_MBUTTONUP: case WM_XBUTTONUP: { int i, button, action; if (uMsg == WM_LBUTTONDOWN || uMsg == WM_LBUTTONUP) button = GLFW_MOUSE_BUTTON_LEFT; else if (uMsg == WM_RBUTTONDOWN || uMsg == WM_RBUTTONUP) button = GLFW_MOUSE_BUTTON_RIGHT; else if (uMsg == WM_MBUTTONDOWN || uMsg == WM_MBUTTONUP) button = GLFW_MOUSE_BUTTON_MIDDLE; else if (GET_XBUTTON_WPARAM(wParam) == XBUTTON1) button = GLFW_MOUSE_BUTTON_4; else button = GLFW_MOUSE_BUTTON_5; if (uMsg == WM_LBUTTONDOWN || uMsg == WM_RBUTTONDOWN || uMsg == WM_MBUTTONDOWN || uMsg == WM_XBUTTONDOWN) { action = GLFW_PRESS; } else action = GLFW_RELEASE; for (i = 0; i <= GLFW_MOUSE_BUTTON_LAST; i++) { if (window->mouseButtons[i] == GLFW_PRESS) break; } if (i > GLFW_MOUSE_BUTTON_LAST) SetCapture(hWnd); _glfwInputMouseClick(window, button, action, getKeyMods()); for (i = 0; i <= GLFW_MOUSE_BUTTON_LAST; i++) { if (window->mouseButtons[i] == GLFW_PRESS) break; } if (i > GLFW_MOUSE_BUTTON_LAST) ReleaseCapture(); if (uMsg == WM_XBUTTONDOWN || uMsg == WM_XBUTTONUP) return TRUE; return 0; } case WM_MOUSEMOVE: { const int x = GET_X_LPARAM(lParam); const int y = GET_Y_LPARAM(lParam); if (!window->win32.cursorTracked) { TRACKMOUSEEVENT tme; ZeroMemory(&tme, sizeof(tme)); tme.cbSize = sizeof(tme); tme.dwFlags = TME_LEAVE; tme.hwndTrack = window->win32.handle; TrackMouseEvent(&tme); window->win32.cursorTracked = GLFW_TRUE; _glfwInputCursorEnter(window, GLFW_TRUE); } if (window->cursorMode == GLFW_CURSOR_DISABLED) { const int dx = x - window->win32.lastCursorPosX; const int dy = y - window->win32.lastCursorPosY; if (_glfw.win32.disabledCursorWindow != window) break; if (window->rawMouseMotion) break; _glfwInputCursorPos(window, window->virtualCursorPosX + dx, window->virtualCursorPosY + dy); } else _glfwInputCursorPos(window, x, y); window->win32.lastCursorPosX = x; window->win32.lastCursorPosY = y; return 0; } case WM_INPUT: { UINT size = 0; HRAWINPUT ri = (HRAWINPUT) lParam; RAWINPUT* data = NULL; int dx, dy; if (_glfw.win32.disabledCursorWindow != window) break; if (!window->rawMouseMotion) break; GetRawInputData(ri, RID_INPUT, NULL, &size, sizeof(RAWINPUTHEADER)); if (size > (UINT) _glfw.win32.rawInputSize) { free(_glfw.win32.rawInput); _glfw.win32.rawInput = calloc(size, 1); _glfw.win32.rawInputSize = size; } size = _glfw.win32.rawInputSize; if (GetRawInputData(ri, RID_INPUT, _glfw.win32.rawInput, &size, sizeof(RAWINPUTHEADER)) == (UINT) -1) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to retrieve raw input data"); break; } data = _glfw.win32.rawInput; if (data->data.mouse.usFlags & MOUSE_MOVE_ABSOLUTE) { dx = data->data.mouse.lLastX - window->win32.lastCursorPosX; dy = data->data.mouse.lLastY - window->win32.lastCursorPosY; } else { dx = data->data.mouse.lLastX; dy = data->data.mouse.lLastY; } _glfwInputCursorPos(window, window->virtualCursorPosX + dx, window->virtualCursorPosY + dy); window->win32.lastCursorPosX += dx; window->win32.lastCursorPosY += dy; break; } case WM_MOUSELEAVE: { window->win32.cursorTracked = GLFW_FALSE; _glfwInputCursorEnter(window, GLFW_FALSE); return 0; } case WM_MOUSEWHEEL: { _glfwInputScroll(window, 0.0, (SHORT) HIWORD(wParam) / (double) WHEEL_DELTA); return 0; } case WM_MOUSEHWHEEL: { // This message is only sent on Windows Vista and later // NOTE: The X-axis is inverted for consistency with macOS and X11 _glfwInputScroll(window, -((SHORT) HIWORD(wParam) / (double) WHEEL_DELTA), 0.0); return 0; } case WM_ENTERSIZEMOVE: case WM_ENTERMENULOOP: { if (window->win32.frameAction) break; // HACK: Enable the cursor while the user is moving or // resizing the window or using the window menu if (window->cursorMode == GLFW_CURSOR_DISABLED) enableCursor(window); break; } case WM_EXITSIZEMOVE: case WM_EXITMENULOOP: { if (window->win32.frameAction) break; // HACK: Disable the cursor once the user is done moving or // resizing the window or using the menu if (window->cursorMode == GLFW_CURSOR_DISABLED) disableCursor(window); break; } case WM_SIZE: { const int width = LOWORD(lParam); const int height = HIWORD(lParam); const GLFWbool iconified = wParam == SIZE_MINIMIZED; const GLFWbool maximized = wParam == SIZE_MAXIMIZED || (window->win32.maximized && wParam != SIZE_RESTORED); if (_glfw.win32.disabledCursorWindow == window) updateClipRect(window); if (window->win32.iconified != iconified) _glfwInputWindowIconify(window, iconified); if (window->win32.maximized != maximized) _glfwInputWindowMaximize(window, maximized); if (width != window->win32.width || height != window->win32.height) { window->win32.width = width; window->win32.height = height; _glfwInputFramebufferSize(window, width, height); _glfwInputWindowSize(window, width, height); } if (window->monitor && window->win32.iconified != iconified) { if (iconified) releaseMonitor(window); else { acquireMonitor(window); fitToMonitor(window); } } window->win32.iconified = iconified; window->win32.maximized = maximized; return 0; } case WM_MOVE: { if (_glfw.win32.disabledCursorWindow == window) updateClipRect(window); // NOTE: This cannot use LOWORD/HIWORD recommended by MSDN, as // those macros do not handle negative window positions correctly _glfwInputWindowPos(window, GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam)); return 0; } case WM_SIZING: { if (window->numer == GLFW_DONT_CARE || window->denom == GLFW_DONT_CARE) { break; } applyAspectRatio(window, (int) wParam, (RECT*) lParam); return TRUE; } case WM_GETMINMAXINFO: { int xoff, yoff; UINT dpi = USER_DEFAULT_SCREEN_DPI; MINMAXINFO* mmi = (MINMAXINFO*) lParam; if (window->monitor) break; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) dpi = GetDpiForWindow(window->win32.handle); getFullWindowSize(getWindowStyle(window), getWindowExStyle(window), 0, 0, &xoff, &yoff, dpi); if (window->minwidth != GLFW_DONT_CARE && window->minheight != GLFW_DONT_CARE) { mmi->ptMinTrackSize.x = window->minwidth + xoff; mmi->ptMinTrackSize.y = window->minheight + yoff; } if (window->maxwidth != GLFW_DONT_CARE && window->maxheight != GLFW_DONT_CARE) { mmi->ptMaxTrackSize.x = window->maxwidth + xoff; mmi->ptMaxTrackSize.y = window->maxheight + yoff; } if (!window->decorated) { MONITORINFO mi; const HMONITOR mh = MonitorFromWindow(window->win32.handle, MONITOR_DEFAULTTONEAREST); ZeroMemory(&mi, sizeof(mi)); mi.cbSize = sizeof(mi); GetMonitorInfoW(mh, &mi); mmi->ptMaxPosition.x = mi.rcWork.left - mi.rcMonitor.left; mmi->ptMaxPosition.y = mi.rcWork.top - mi.rcMonitor.top; mmi->ptMaxSize.x = mi.rcWork.right - mi.rcWork.left; mmi->ptMaxSize.y = mi.rcWork.bottom - mi.rcWork.top; } return 0; } case WM_PAINT: { _glfwInputWindowDamage(window); break; } case WM_ERASEBKGND: { return TRUE; } case WM_NCACTIVATE: case WM_NCPAINT: { // Prevent title bar from being drawn after restoring a minimized // undecorated window if (!window->decorated) return TRUE; break; } case WM_DWMCOMPOSITIONCHANGED: case WM_DWMCOLORIZATIONCOLORCHANGED: { if (window->win32.transparent) updateFramebufferTransparency(window); return 0; } case WM_GETDPISCALEDSIZE: { if (window->win32.scaleToMonitor) break; // Adjust the window size to keep the content area size constant if (_glfwIsWindows10CreatorsUpdateOrGreaterWin32()) { RECT source = {0}, target = {0}; SIZE* size = (SIZE*) lParam; AdjustWindowRectExForDpi(&source, getWindowStyle(window), FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); AdjustWindowRectExForDpi(&target, getWindowStyle(window), FALSE, getWindowExStyle(window), LOWORD(wParam)); size->cx += (target.right - target.left) - (source.right - source.left); size->cy += (target.bottom - target.top) - (source.bottom - source.top); return TRUE; } break; } case WM_DPICHANGED: { const float xscale = HIWORD(wParam) / (float) USER_DEFAULT_SCREEN_DPI; const float yscale = LOWORD(wParam) / (float) USER_DEFAULT_SCREEN_DPI; // Resize windowed mode windows that either permit rescaling or that // need it to compensate for non-client area scaling if (!window->monitor && (window->win32.scaleToMonitor || _glfwIsWindows10CreatorsUpdateOrGreaterWin32())) { RECT* suggested = (RECT*) lParam; SetWindowPos(window->win32.handle, HWND_TOP, suggested->left, suggested->top, suggested->right - suggested->left, suggested->bottom - suggested->top, SWP_NOACTIVATE | SWP_NOZORDER); } _glfwInputWindowContentScale(window, xscale, yscale); break; } case WM_SETCURSOR: { if (LOWORD(lParam) == HTCLIENT) { updateCursorImage(window); return TRUE; } break; } case WM_DROPFILES: { HDROP drop = (HDROP) wParam; POINT pt; int i; const int count = DragQueryFileW(drop, 0xffffffff, NULL, 0); char** paths = calloc(count, sizeof(char*)); // Move the mouse to the position of the drop DragQueryPoint(drop, &pt); _glfwInputCursorPos(window, pt.x, pt.y); for (i = 0; i < count; i++) { const UINT length = DragQueryFileW(drop, i, NULL, 0); WCHAR* buffer = calloc((size_t) length + 1, sizeof(WCHAR)); DragQueryFileW(drop, i, buffer, length + 1); paths[i] = _glfwCreateUTF8FromWideStringWin32(buffer); free(buffer); } _glfwInputDrop(window, count, (const char**) paths); for (i = 0; i < count; i++) free(paths[i]); free(paths); DragFinish(drop); return 0; } } return DefWindowProcW(hWnd, uMsg, wParam, lParam); } // Creates the GLFW window // static int createNativeWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWfbconfig* fbconfig) { int xpos, ypos, fullWidth, fullHeight; WCHAR* wideTitle; DWORD style = getWindowStyle(window); DWORD exStyle = getWindowExStyle(window); if (window->monitor) { GLFWvidmode mode; // NOTE: This window placement is temporary and approximate, as the // correct position and size cannot be known until the monitor // video mode has been picked in _glfwSetVideoModeWin32 _glfwPlatformGetMonitorPos(window->monitor, &xpos, &ypos); _glfwPlatformGetVideoMode(window->monitor, &mode); fullWidth = mode.width; fullHeight = mode.height; } else { xpos = CW_USEDEFAULT; ypos = CW_USEDEFAULT; window->win32.maximized = wndconfig->maximized; if (wndconfig->maximized) style |= WS_MAXIMIZE; getFullWindowSize(style, exStyle, wndconfig->width, wndconfig->height, &fullWidth, &fullHeight, USER_DEFAULT_SCREEN_DPI); } wideTitle = _glfwCreateWideStringFromUTF8Win32(wndconfig->title); if (!wideTitle) return GLFW_FALSE; window->win32.handle = CreateWindowExW(exStyle, _GLFW_WNDCLASSNAME, wideTitle, style, xpos, ypos, fullWidth, fullHeight, NULL, // No parent window NULL, // No window menu GetModuleHandleW(NULL), (LPVOID) wndconfig); free(wideTitle); if (!window->win32.handle) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create window"); return GLFW_FALSE; } SetPropW(window->win32.handle, L"GLFW", window); if (IsWindows7OrGreater()) { ChangeWindowMessageFilterEx(window->win32.handle, WM_DROPFILES, MSGFLT_ALLOW, NULL); ChangeWindowMessageFilterEx(window->win32.handle, WM_COPYDATA, MSGFLT_ALLOW, NULL); ChangeWindowMessageFilterEx(window->win32.handle, WM_COPYGLOBALDATA, MSGFLT_ALLOW, NULL); } window->win32.scaleToMonitor = wndconfig->scaleToMonitor; if (!window->monitor) { RECT rect = { 0, 0, wndconfig->width, wndconfig->height }; WINDOWPLACEMENT wp = { sizeof(wp) }; const HMONITOR mh = MonitorFromWindow(window->win32.handle, MONITOR_DEFAULTTONEAREST); // Adjust window rect to account for DPI scaling of the window frame and // (if enabled) DPI scaling of the content area // This cannot be done until we know what monitor the window was placed on // Only update the restored window rect as the window may be maximized if (wndconfig->scaleToMonitor) { float xscale, yscale; _glfwGetMonitorContentScaleWin32(mh, &xscale, &yscale); if (xscale > 0.f && yscale > 0.f) { rect.right = (int) (rect.right * xscale); rect.bottom = (int) (rect.bottom * yscale); } } if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, style, FALSE, exStyle, GetDpiForWindow(window->win32.handle)); } else AdjustWindowRectEx(&rect, style, FALSE, exStyle); GetWindowPlacement(window->win32.handle, &wp); OffsetRect(&rect, wp.rcNormalPosition.left - rect.left, wp.rcNormalPosition.top - rect.top); wp.rcNormalPosition = rect; wp.showCmd = SW_HIDE; SetWindowPlacement(window->win32.handle, &wp); // Adjust rect of maximized undecorated window, because by default Windows will // make such a window cover the whole monitor instead of its workarea if (wndconfig->maximized && !wndconfig->decorated) { MONITORINFO mi = { sizeof(mi) }; GetMonitorInfoW(mh, &mi); SetWindowPos(window->win32.handle, HWND_TOP, mi.rcWork.left, mi.rcWork.top, mi.rcWork.right - mi.rcWork.left, mi.rcWork.bottom - mi.rcWork.top, SWP_NOACTIVATE | SWP_NOZORDER); } } DragAcceptFiles(window->win32.handle, TRUE); if (fbconfig->transparent) { updateFramebufferTransparency(window); window->win32.transparent = GLFW_TRUE; } _glfwPlatformGetWindowSize(window, &window->win32.width, &window->win32.height); return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Registers the GLFW window class // GLFWbool _glfwRegisterWindowClassWin32(void) { WNDCLASSEXW wc; ZeroMemory(&wc, sizeof(wc)); wc.cbSize = sizeof(wc); wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; wc.lpfnWndProc = (WNDPROC) windowProc; wc.hInstance = GetModuleHandleW(NULL); wc.hCursor = LoadCursorW(NULL, IDC_ARROW); wc.lpszClassName = _GLFW_WNDCLASSNAME; // Load user-provided icon if available wc.hIcon = LoadImageW(GetModuleHandleW(NULL), L"GLFW_ICON", IMAGE_ICON, 0, 0, LR_DEFAULTSIZE | LR_SHARED); if (!wc.hIcon) { // No user-provided icon found, load default icon wc.hIcon = LoadImageW(NULL, IDI_APPLICATION, IMAGE_ICON, 0, 0, LR_DEFAULTSIZE | LR_SHARED); } if (!RegisterClassExW(&wc)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to register window class"); return GLFW_FALSE; } return GLFW_TRUE; } // Unregisters the GLFW window class // void _glfwUnregisterWindowClassWin32(void) { UnregisterClassW(_GLFW_WNDCLASSNAME, GetModuleHandleW(NULL)); } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformCreateWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { if (!createNativeWindow(window, wndconfig, fbconfig)) return GLFW_FALSE; if (ctxconfig->client != GLFW_NO_API) { if (ctxconfig->source == GLFW_NATIVE_CONTEXT_API) { if (!_glfwInitWGL()) return GLFW_FALSE; if (!_glfwCreateContextWGL(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_EGL_CONTEXT_API) { if (!_glfwInitEGL()) return GLFW_FALSE; if (!_glfwCreateContextEGL(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_OSMESA_CONTEXT_API) { if (!_glfwInitOSMesa()) return GLFW_FALSE; if (!_glfwCreateContextOSMesa(window, ctxconfig, fbconfig)) return GLFW_FALSE; } } if (window->monitor) { _glfwPlatformShowWindow(window); _glfwPlatformFocusWindow(window); acquireMonitor(window); fitToMonitor(window); } return GLFW_TRUE; } void _glfwPlatformDestroyWindow(_GLFWwindow* window) { if (window->monitor) releaseMonitor(window); if (window->context.destroy) window->context.destroy(window); if (_glfw.win32.disabledCursorWindow == window) _glfw.win32.disabledCursorWindow = NULL; if (window->win32.handle) { RemovePropW(window->win32.handle, L"GLFW"); DestroyWindow(window->win32.handle); window->win32.handle = NULL; } if (window->win32.bigIcon) DestroyIcon(window->win32.bigIcon); if (window->win32.smallIcon) DestroyIcon(window->win32.smallIcon); } void _glfwPlatformSetWindowTitle(_GLFWwindow* window, const char* title) { WCHAR* wideTitle = _glfwCreateWideStringFromUTF8Win32(title); if (!wideTitle) return; SetWindowTextW(window->win32.handle, wideTitle); free(wideTitle); } void _glfwPlatformSetWindowIcon(_GLFWwindow* window, int count, const GLFWimage* images) { HICON bigIcon = NULL, smallIcon = NULL; if (count) { const GLFWimage* bigImage = chooseImage(count, images, GetSystemMetrics(SM_CXICON), GetSystemMetrics(SM_CYICON)); const GLFWimage* smallImage = chooseImage(count, images, GetSystemMetrics(SM_CXSMICON), GetSystemMetrics(SM_CYSMICON)); bigIcon = createIcon(bigImage, 0, 0, GLFW_TRUE); smallIcon = createIcon(smallImage, 0, 0, GLFW_TRUE); } else { bigIcon = (HICON) GetClassLongPtrW(window->win32.handle, GCLP_HICON); smallIcon = (HICON) GetClassLongPtrW(window->win32.handle, GCLP_HICONSM); } SendMessageW(window->win32.handle, WM_SETICON, ICON_BIG, (LPARAM) bigIcon); SendMessageW(window->win32.handle, WM_SETICON, ICON_SMALL, (LPARAM) smallIcon); if (window->win32.bigIcon) DestroyIcon(window->win32.bigIcon); if (window->win32.smallIcon) DestroyIcon(window->win32.smallIcon); if (count) { window->win32.bigIcon = bigIcon; window->win32.smallIcon = smallIcon; } } void _glfwPlatformGetWindowPos(_GLFWwindow* window, int* xpos, int* ypos) { POINT pos = { 0, 0 }; ClientToScreen(window->win32.handle, &pos); if (xpos) *xpos = pos.x; if (ypos) *ypos = pos.y; } void _glfwPlatformSetWindowPos(_GLFWwindow* window, int xpos, int ypos) { RECT rect = { xpos, ypos, xpos, ypos }; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); } else { AdjustWindowRectEx(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window)); } SetWindowPos(window->win32.handle, NULL, rect.left, rect.top, 0, 0, SWP_NOACTIVATE | SWP_NOZORDER | SWP_NOSIZE); } void _glfwPlatformGetWindowSize(_GLFWwindow* window, int* width, int* height) { RECT area; GetClientRect(window->win32.handle, &area); if (width) *width = area.right; if (height) *height = area.bottom; } void _glfwPlatformSetWindowSize(_GLFWwindow* window, int width, int height) { if (window->monitor) { if (window->monitor->window == window) { acquireMonitor(window); fitToMonitor(window); } } else { RECT rect = { 0, 0, width, height }; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); } else { AdjustWindowRectEx(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window)); } SetWindowPos(window->win32.handle, HWND_TOP, 0, 0, rect.right - rect.left, rect.bottom - rect.top, SWP_NOACTIVATE | SWP_NOOWNERZORDER | SWP_NOMOVE | SWP_NOZORDER); } } void _glfwPlatformSetWindowSizeLimits(_GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight) { RECT area; if ((minwidth == GLFW_DONT_CARE || minheight == GLFW_DONT_CARE) && (maxwidth == GLFW_DONT_CARE || maxheight == GLFW_DONT_CARE)) { return; } GetWindowRect(window->win32.handle, &area); MoveWindow(window->win32.handle, area.left, area.top, area.right - area.left, area.bottom - area.top, TRUE); } void _glfwPlatformSetWindowAspectRatio(_GLFWwindow* window, int numer, int denom) { RECT area; if (numer == GLFW_DONT_CARE || denom == GLFW_DONT_CARE) return; GetWindowRect(window->win32.handle, &area); applyAspectRatio(window, WMSZ_BOTTOMRIGHT, &area); MoveWindow(window->win32.handle, area.left, area.top, area.right - area.left, area.bottom - area.top, TRUE); } void _glfwPlatformGetFramebufferSize(_GLFWwindow* window, int* width, int* height) { _glfwPlatformGetWindowSize(window, width, height); } void _glfwPlatformGetWindowFrameSize(_GLFWwindow* window, int* left, int* top, int* right, int* bottom) { RECT rect; int width, height; _glfwPlatformGetWindowSize(window, &width, &height); SetRect(&rect, 0, 0, width, height); if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); } else { AdjustWindowRectEx(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window)); } if (left) *left = -rect.left; if (top) *top = -rect.top; if (right) *right = rect.right - width; if (bottom) *bottom = rect.bottom - height; } void _glfwPlatformGetWindowContentScale(_GLFWwindow* window, float* xscale, float* yscale) { const HANDLE handle = MonitorFromWindow(window->win32.handle, MONITOR_DEFAULTTONEAREST); _glfwGetMonitorContentScaleWin32(handle, xscale, yscale); } void _glfwPlatformIconifyWindow(_GLFWwindow* window) { ShowWindow(window->win32.handle, SW_MINIMIZE); } void _glfwPlatformRestoreWindow(_GLFWwindow* window) { ShowWindow(window->win32.handle, SW_RESTORE); } void _glfwPlatformMaximizeWindow(_GLFWwindow* window) { if (IsWindowVisible(window->win32.handle)) ShowWindow(window->win32.handle, SW_MAXIMIZE); else maximizeWindowManually(window); } void _glfwPlatformShowWindow(_GLFWwindow* window) { ShowWindow(window->win32.handle, SW_SHOWNA); } void _glfwPlatformHideWindow(_GLFWwindow* window) { ShowWindow(window->win32.handle, SW_HIDE); } void _glfwPlatformRequestWindowAttention(_GLFWwindow* window) { FlashWindow(window->win32.handle, TRUE); } void _glfwPlatformFocusWindow(_GLFWwindow* window) { BringWindowToTop(window->win32.handle); SetForegroundWindow(window->win32.handle); SetFocus(window->win32.handle); } void _glfwPlatformSetWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate) { if (window->monitor == monitor) { if (monitor) { if (monitor->window == window) { acquireMonitor(window); fitToMonitor(window); } } else { RECT rect = { xpos, ypos, xpos + width, ypos + height }; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); } else { AdjustWindowRectEx(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window)); } SetWindowPos(window->win32.handle, HWND_TOP, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, SWP_NOCOPYBITS | SWP_NOACTIVATE | SWP_NOZORDER); } return; } if (window->monitor) releaseMonitor(window); _glfwInputWindowMonitor(window, monitor); if (window->monitor) { MONITORINFO mi = { sizeof(mi) }; UINT flags = SWP_SHOWWINDOW | SWP_NOACTIVATE | SWP_NOCOPYBITS; if (window->decorated) { DWORD style = GetWindowLongW(window->win32.handle, GWL_STYLE); style &= ~WS_OVERLAPPEDWINDOW; style |= getWindowStyle(window); SetWindowLongW(window->win32.handle, GWL_STYLE, style); flags |= SWP_FRAMECHANGED; } acquireMonitor(window); GetMonitorInfoW(window->monitor->win32.handle, &mi); SetWindowPos(window->win32.handle, HWND_TOPMOST, mi.rcMonitor.left, mi.rcMonitor.top, mi.rcMonitor.right - mi.rcMonitor.left, mi.rcMonitor.bottom - mi.rcMonitor.top, flags); } else { HWND after; RECT rect = { xpos, ypos, xpos + width, ypos + height }; DWORD style = GetWindowLongW(window->win32.handle, GWL_STYLE); UINT flags = SWP_NOACTIVATE | SWP_NOCOPYBITS; if (window->decorated) { style &= ~WS_POPUP; style |= getWindowStyle(window); SetWindowLongW(window->win32.handle, GWL_STYLE, style); flags |= SWP_FRAMECHANGED; } if (window->floating) after = HWND_TOPMOST; else after = HWND_NOTOPMOST; if (_glfwIsWindows10AnniversaryUpdateOrGreaterWin32()) { AdjustWindowRectExForDpi(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window), GetDpiForWindow(window->win32.handle)); } else { AdjustWindowRectEx(&rect, getWindowStyle(window), FALSE, getWindowExStyle(window)); } SetWindowPos(window->win32.handle, after, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, flags); } } int _glfwPlatformWindowFocused(_GLFWwindow* window) { return window->win32.handle == GetActiveWindow(); } int _glfwPlatformWindowIconified(_GLFWwindow* window) { return IsIconic(window->win32.handle); } int _glfwPlatformWindowVisible(_GLFWwindow* window) { return IsWindowVisible(window->win32.handle); } int _glfwPlatformWindowMaximized(_GLFWwindow* window) { return IsZoomed(window->win32.handle); } int _glfwPlatformWindowHovered(_GLFWwindow* window) { return cursorInContentArea(window); } int _glfwPlatformFramebufferTransparent(_GLFWwindow* window) { BOOL composition, opaque; DWORD color; if (!window->win32.transparent) return GLFW_FALSE; if (!IsWindowsVistaOrGreater()) return GLFW_FALSE; if (FAILED(DwmIsCompositionEnabled(&composition)) || !composition) return GLFW_FALSE; if (!IsWindows8OrGreater()) { // HACK: Disable framebuffer transparency on Windows 7 when the // colorization color is opaque, because otherwise the window // contents is blended additively with the previous frame instead // of replacing it if (FAILED(DwmGetColorizationColor(&color, &opaque)) || opaque) return GLFW_FALSE; } return GLFW_TRUE; } void _glfwPlatformSetWindowResizable(_GLFWwindow* window, GLFWbool enabled) { updateWindowStyles(window); } void _glfwPlatformSetWindowDecorated(_GLFWwindow* window, GLFWbool enabled) { updateWindowStyles(window); } void _glfwPlatformSetWindowFloating(_GLFWwindow* window, GLFWbool enabled) { const HWND after = enabled ? HWND_TOPMOST : HWND_NOTOPMOST; SetWindowPos(window->win32.handle, after, 0, 0, 0, 0, SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOSIZE); } float _glfwPlatformGetWindowOpacity(_GLFWwindow* window) { BYTE alpha; DWORD flags; if ((GetWindowLongW(window->win32.handle, GWL_EXSTYLE) & WS_EX_LAYERED) && GetLayeredWindowAttributes(window->win32.handle, NULL, &alpha, &flags)) { if (flags & LWA_ALPHA) return alpha / 255.f; } return 1.f; } void _glfwPlatformSetWindowOpacity(_GLFWwindow* window, float opacity) { if (opacity < 1.f) { const BYTE alpha = (BYTE) (255 * opacity); DWORD style = GetWindowLongW(window->win32.handle, GWL_EXSTYLE); style |= WS_EX_LAYERED; SetWindowLongW(window->win32.handle, GWL_EXSTYLE, style); SetLayeredWindowAttributes(window->win32.handle, 0, alpha, LWA_ALPHA); } else { DWORD style = GetWindowLongW(window->win32.handle, GWL_EXSTYLE); style &= ~WS_EX_LAYERED; SetWindowLongW(window->win32.handle, GWL_EXSTYLE, style); } } void _glfwPlatformSetRawMouseMotion(_GLFWwindow *window, GLFWbool enabled) { if (_glfw.win32.disabledCursorWindow != window) return; if (enabled) enableRawMouseMotion(window); else disableRawMouseMotion(window); } GLFWbool _glfwPlatformRawMouseMotionSupported(void) { return GLFW_TRUE; } void _glfwPlatformPollEvents(void) { MSG msg; HWND handle; _GLFWwindow* window; while (PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE)) { if (msg.message == WM_QUIT) { // NOTE: While GLFW does not itself post WM_QUIT, other processes // may post it to this one, for example Task Manager // HACK: Treat WM_QUIT as a close on all windows window = _glfw.windowListHead; while (window) { _glfwInputWindowCloseRequest(window); window = window->next; } } else { TranslateMessage(&msg); DispatchMessageW(&msg); } } // HACK: Release modifier keys that the system did not emit KEYUP for // NOTE: Shift keys on Windows tend to "stick" when both are pressed as // no key up message is generated by the first key release // NOTE: Windows key is not reported as released by the Win+V hotkey // Other Win hotkeys are handled implicitly by _glfwInputWindowFocus // because they change the input focus // NOTE: The other half of this is in the WM_*KEY* handler in windowProc handle = GetActiveWindow(); if (handle) { window = GetPropW(handle, L"GLFW"); if (window) { int i; const int keys[4][2] = { { VK_LSHIFT, GLFW_KEY_LEFT_SHIFT }, { VK_RSHIFT, GLFW_KEY_RIGHT_SHIFT }, { VK_LWIN, GLFW_KEY_LEFT_SUPER }, { VK_RWIN, GLFW_KEY_RIGHT_SUPER } }; for (i = 0; i < 4; i++) { const int vk = keys[i][0]; const int key = keys[i][1]; const int scancode = _glfw.win32.scancodes[key]; if ((GetKeyState(vk) & 0x8000)) continue; if (window->keys[key] != GLFW_PRESS) continue; _glfwInputKey(window, key, scancode, GLFW_RELEASE, getKeyMods()); } } } window = _glfw.win32.disabledCursorWindow; if (window) { int width, height; _glfwPlatformGetWindowSize(window, &width, &height); // NOTE: Re-center the cursor only if it has moved since the last call, // to avoid breaking glfwWaitEvents with WM_MOUSEMOVE if (window->win32.lastCursorPosX != width / 2 || window->win32.lastCursorPosY != height / 2) { _glfwPlatformSetCursorPos(window, width / 2, height / 2); } } } void _glfwPlatformWaitEvents(void) { WaitMessage(); _glfwPlatformPollEvents(); } void _glfwPlatformWaitEventsTimeout(double timeout) { MsgWaitForMultipleObjects(0, NULL, FALSE, (DWORD) (timeout * 1e3), QS_ALLEVENTS); _glfwPlatformPollEvents(); } void _glfwPlatformPostEmptyEvent(void) { PostMessageW(_glfw.win32.helperWindowHandle, WM_NULL, 0, 0); } void _glfwPlatformGetCursorPos(_GLFWwindow* window, double* xpos, double* ypos) { POINT pos; if (GetCursorPos(&pos)) { ScreenToClient(window->win32.handle, &pos); if (xpos) *xpos = pos.x; if (ypos) *ypos = pos.y; } } void _glfwPlatformSetCursorPos(_GLFWwindow* window, double xpos, double ypos) { POINT pos = { (int) xpos, (int) ypos }; // Store the new position so it can be recognized later window->win32.lastCursorPosX = pos.x; window->win32.lastCursorPosY = pos.y; ClientToScreen(window->win32.handle, &pos); SetCursorPos(pos.x, pos.y); } void _glfwPlatformSetCursorMode(_GLFWwindow* window, int mode) { if (mode == GLFW_CURSOR_DISABLED) { if (_glfwPlatformWindowFocused(window)) disableCursor(window); } else if (_glfw.win32.disabledCursorWindow == window) enableCursor(window); else if (cursorInContentArea(window)) updateCursorImage(window); } const char* _glfwPlatformGetScancodeName(int scancode) { if (scancode < 0 || scancode > (KF_EXTENDED | 0xff) || _glfw.win32.keycodes[scancode] == GLFW_KEY_UNKNOWN) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid scancode %i", scancode); return NULL; } return _glfw.win32.keynames[_glfw.win32.keycodes[scancode]]; } int _glfwPlatformGetKeyScancode(int key) { return _glfw.win32.scancodes[key]; } int _glfwPlatformCreateCursor(_GLFWcursor* cursor, const GLFWimage* image, int xhot, int yhot) { cursor->win32.handle = (HCURSOR) createIcon(image, xhot, yhot, GLFW_FALSE); if (!cursor->win32.handle) return GLFW_FALSE; return GLFW_TRUE; } int _glfwPlatformCreateStandardCursor(_GLFWcursor* cursor, int shape) { int id = 0; if (shape == GLFW_ARROW_CURSOR) id = OCR_NORMAL; else if (shape == GLFW_IBEAM_CURSOR) id = OCR_IBEAM; else if (shape == GLFW_CROSSHAIR_CURSOR) id = OCR_CROSS; else if (shape == GLFW_HAND_CURSOR) id = OCR_HAND; else if (shape == GLFW_HRESIZE_CURSOR) id = OCR_SIZEWE; else if (shape == GLFW_VRESIZE_CURSOR) id = OCR_SIZENS; else return GLFW_FALSE; cursor->win32.handle = LoadImageW(NULL, MAKEINTRESOURCEW(id), IMAGE_CURSOR, 0, 0, LR_DEFAULTSIZE | LR_SHARED); if (!cursor->win32.handle) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to create standard cursor"); return GLFW_FALSE; } return GLFW_TRUE; } void _glfwPlatformDestroyCursor(_GLFWcursor* cursor) { if (cursor->win32.handle) DestroyIcon((HICON) cursor->win32.handle); } void _glfwPlatformSetCursor(_GLFWwindow* window, _GLFWcursor* cursor) { if (cursorInContentArea(window)) updateCursorImage(window); } void _glfwPlatformSetClipboardString(const char* string) { int characterCount; HANDLE object; WCHAR* buffer; characterCount = MultiByteToWideChar(CP_UTF8, 0, string, -1, NULL, 0); if (!characterCount) return; object = GlobalAlloc(GMEM_MOVEABLE, characterCount * sizeof(WCHAR)); if (!object) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to allocate global handle for clipboard"); return; } buffer = GlobalLock(object); if (!buffer) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to lock global handle"); GlobalFree(object); return; } MultiByteToWideChar(CP_UTF8, 0, string, -1, buffer, characterCount); GlobalUnlock(object); if (!OpenClipboard(_glfw.win32.helperWindowHandle)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to open clipboard"); GlobalFree(object); return; } EmptyClipboard(); SetClipboardData(CF_UNICODETEXT, object); CloseClipboard(); } const char* _glfwPlatformGetClipboardString(void) { HANDLE object; WCHAR* buffer; if (!OpenClipboard(_glfw.win32.helperWindowHandle)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to open clipboard"); return NULL; } object = GetClipboardData(CF_UNICODETEXT); if (!object) { _glfwInputErrorWin32(GLFW_FORMAT_UNAVAILABLE, "Win32: Failed to convert clipboard to string"); CloseClipboard(); return NULL; } buffer = GlobalLock(object); if (!buffer) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "Win32: Failed to lock global handle"); CloseClipboard(); return NULL; } free(_glfw.win32.clipboardString); _glfw.win32.clipboardString = _glfwCreateUTF8FromWideStringWin32(buffer); GlobalUnlock(object); CloseClipboard(); return _glfw.win32.clipboardString; } void _glfwPlatformGetRequiredInstanceExtensions(char** extensions) { if (!_glfw.vk.KHR_surface || !_glfw.vk.KHR_win32_surface) return; extensions[0] = "VK_KHR_surface"; extensions[1] = "VK_KHR_win32_surface"; } int _glfwPlatformGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily) { PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR vkGetPhysicalDeviceWin32PresentationSupportKHR = (PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR) vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceWin32PresentationSupportKHR"); if (!vkGetPhysicalDeviceWin32PresentationSupportKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "Win32: Vulkan instance missing VK_KHR_win32_surface extension"); return GLFW_FALSE; } return vkGetPhysicalDeviceWin32PresentationSupportKHR(device, queuefamily); } VkResult _glfwPlatformCreateWindowSurface(VkInstance instance, _GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface) { VkResult err; VkWin32SurfaceCreateInfoKHR sci; PFN_vkCreateWin32SurfaceKHR vkCreateWin32SurfaceKHR; vkCreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR) vkGetInstanceProcAddr(instance, "vkCreateWin32SurfaceKHR"); if (!vkCreateWin32SurfaceKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "Win32: Vulkan instance missing VK_KHR_win32_surface extension"); return VK_ERROR_EXTENSION_NOT_PRESENT; } memset(&sci, 0, sizeof(sci)); sci.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR; sci.hinstance = GetModuleHandleW(NULL); sci.hwnd = window->win32.handle; err = vkCreateWin32SurfaceKHR(instance, &sci, allocator, surface); if (err) { _glfwInputError(GLFW_PLATFORM_ERROR, "Win32: Failed to create Vulkan surface: %s", _glfwGetVulkanResultString(err)); } return err; } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI HWND glfwGetWin32Window(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return window->win32.handle; } #endif #ifndef HEADER_GUARD_WGL_CONTEXT_C #define HEADER_GUARD_WGL_CONTEXT_C //======================================================================== // GLFW 3.3.7 WGL - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // Please use C89 style variable declarations in this file because VS 2010 //======================================================================== #include #include #include // Return the value corresponding to the specified attribute // static int findPixelFormatAttribValue(const int* attribs, int attribCount, const int* values, int attrib) { int i; for (i = 0; i < attribCount; i++) { if (attribs[i] == attrib) return values[i]; } _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Unknown pixel format attribute requested"); return 0; } #define addAttrib(a) \ { \ assert((size_t) attribCount < sizeof(attribs) / sizeof(attribs[0])); \ attribs[attribCount++] = a; \ } #define findAttribValue(a) \ findPixelFormatAttribValue(attribs, attribCount, values, a) // Return a list of available and usable framebuffer configs // static int choosePixelFormat(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { _GLFWfbconfig* usableConfigs; const _GLFWfbconfig* closest; int i, pixelFormat, nativeCount, usableCount = 0, attribCount = 0; int attribs[40]; int values[sizeof(attribs) / sizeof(attribs[0])]; if (_glfw.wgl.ARB_pixel_format) { const int attrib = WGL_NUMBER_PIXEL_FORMATS_ARB; if (!wglGetPixelFormatAttribivARB(window->context.wgl.dc, 1, 0, 1, &attrib, &nativeCount)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to retrieve pixel format attribute"); return 0; } addAttrib(WGL_SUPPORT_OPENGL_ARB); addAttrib(WGL_DRAW_TO_WINDOW_ARB); addAttrib(WGL_PIXEL_TYPE_ARB); addAttrib(WGL_ACCELERATION_ARB); addAttrib(WGL_RED_BITS_ARB); addAttrib(WGL_RED_SHIFT_ARB); addAttrib(WGL_GREEN_BITS_ARB); addAttrib(WGL_GREEN_SHIFT_ARB); addAttrib(WGL_BLUE_BITS_ARB); addAttrib(WGL_BLUE_SHIFT_ARB); addAttrib(WGL_ALPHA_BITS_ARB); addAttrib(WGL_ALPHA_SHIFT_ARB); addAttrib(WGL_DEPTH_BITS_ARB); addAttrib(WGL_STENCIL_BITS_ARB); addAttrib(WGL_ACCUM_BITS_ARB); addAttrib(WGL_ACCUM_RED_BITS_ARB); addAttrib(WGL_ACCUM_GREEN_BITS_ARB); addAttrib(WGL_ACCUM_BLUE_BITS_ARB); addAttrib(WGL_ACCUM_ALPHA_BITS_ARB); addAttrib(WGL_AUX_BUFFERS_ARB); addAttrib(WGL_STEREO_ARB); addAttrib(WGL_DOUBLE_BUFFER_ARB); if (_glfw.wgl.ARB_multisample) addAttrib(WGL_SAMPLES_ARB); if (ctxconfig->client == GLFW_OPENGL_API) { if (_glfw.wgl.ARB_framebuffer_sRGB || _glfw.wgl.EXT_framebuffer_sRGB) addAttrib(WGL_FRAMEBUFFER_SRGB_CAPABLE_ARB); } else { if (_glfw.wgl.EXT_colorspace) addAttrib(WGL_COLORSPACE_EXT); } } else { nativeCount = DescribePixelFormat(window->context.wgl.dc, 1, sizeof(PIXELFORMATDESCRIPTOR), NULL); } usableConfigs = calloc(nativeCount, sizeof(_GLFWfbconfig)); for (i = 0; i < nativeCount; i++) { _GLFWfbconfig* u = usableConfigs + usableCount; pixelFormat = i + 1; if (_glfw.wgl.ARB_pixel_format) { // Get pixel format attributes through "modern" extension if (!wglGetPixelFormatAttribivARB(window->context.wgl.dc, pixelFormat, 0, attribCount, attribs, values)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to retrieve pixel format attributes"); free(usableConfigs); return 0; } if (!findAttribValue(WGL_SUPPORT_OPENGL_ARB) || !findAttribValue(WGL_DRAW_TO_WINDOW_ARB)) { continue; } if (findAttribValue(WGL_PIXEL_TYPE_ARB) != WGL_TYPE_RGBA_ARB) continue; if (findAttribValue(WGL_ACCELERATION_ARB) == WGL_NO_ACCELERATION_ARB) continue; if (findAttribValue(WGL_DOUBLE_BUFFER_ARB) != fbconfig->doublebuffer) continue; u->redBits = findAttribValue(WGL_RED_BITS_ARB); u->greenBits = findAttribValue(WGL_GREEN_BITS_ARB); u->blueBits = findAttribValue(WGL_BLUE_BITS_ARB); u->alphaBits = findAttribValue(WGL_ALPHA_BITS_ARB); u->depthBits = findAttribValue(WGL_DEPTH_BITS_ARB); u->stencilBits = findAttribValue(WGL_STENCIL_BITS_ARB); u->accumRedBits = findAttribValue(WGL_ACCUM_RED_BITS_ARB); u->accumGreenBits = findAttribValue(WGL_ACCUM_GREEN_BITS_ARB); u->accumBlueBits = findAttribValue(WGL_ACCUM_BLUE_BITS_ARB); u->accumAlphaBits = findAttribValue(WGL_ACCUM_ALPHA_BITS_ARB); u->auxBuffers = findAttribValue(WGL_AUX_BUFFERS_ARB); if (findAttribValue(WGL_STEREO_ARB)) u->stereo = GLFW_TRUE; if (_glfw.wgl.ARB_multisample) u->samples = findAttribValue(WGL_SAMPLES_ARB); if (ctxconfig->client == GLFW_OPENGL_API) { if (_glfw.wgl.ARB_framebuffer_sRGB || _glfw.wgl.EXT_framebuffer_sRGB) { if (findAttribValue(WGL_FRAMEBUFFER_SRGB_CAPABLE_ARB)) u->sRGB = GLFW_TRUE; } } else { if (_glfw.wgl.EXT_colorspace) { if (findAttribValue(WGL_COLORSPACE_EXT) == WGL_COLORSPACE_SRGB_EXT) u->sRGB = GLFW_TRUE; } } } else { // Get pixel format attributes through legacy PFDs PIXELFORMATDESCRIPTOR pfd; if (!DescribePixelFormat(window->context.wgl.dc, pixelFormat, sizeof(PIXELFORMATDESCRIPTOR), &pfd)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to describe pixel format"); free(usableConfigs); return 0; } if (!(pfd.dwFlags & PFD_DRAW_TO_WINDOW) || !(pfd.dwFlags & PFD_SUPPORT_OPENGL)) { continue; } if (!(pfd.dwFlags & PFD_GENERIC_ACCELERATED) && (pfd.dwFlags & PFD_GENERIC_FORMAT)) { continue; } if (pfd.iPixelType != PFD_TYPE_RGBA) continue; if (!!(pfd.dwFlags & PFD_DOUBLEBUFFER) != fbconfig->doublebuffer) continue; u->redBits = pfd.cRedBits; u->greenBits = pfd.cGreenBits; u->blueBits = pfd.cBlueBits; u->alphaBits = pfd.cAlphaBits; u->depthBits = pfd.cDepthBits; u->stencilBits = pfd.cStencilBits; u->accumRedBits = pfd.cAccumRedBits; u->accumGreenBits = pfd.cAccumGreenBits; u->accumBlueBits = pfd.cAccumBlueBits; u->accumAlphaBits = pfd.cAccumAlphaBits; u->auxBuffers = pfd.cAuxBuffers; if (pfd.dwFlags & PFD_STEREO) u->stereo = GLFW_TRUE; } u->handle = pixelFormat; usableCount++; } if (!usableCount) { _glfwInputError(GLFW_API_UNAVAILABLE, "WGL: The driver does not appear to support OpenGL"); free(usableConfigs); return 0; } closest = _glfwChooseFBConfig(fbconfig, usableConfigs, usableCount); if (!closest) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "WGL: Failed to find a suitable pixel format"); free(usableConfigs); return 0; } pixelFormat = (int) closest->handle; free(usableConfigs); return pixelFormat; } #undef addAttrib #undef findAttribValue static void makeContextCurrentWGL(_GLFWwindow* window) { if (window) { if (wglMakeCurrent(window->context.wgl.dc, window->context.wgl.handle)) _glfwPlatformSetTls(&_glfw.contextSlot, window); else { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to make context current"); _glfwPlatformSetTls(&_glfw.contextSlot, NULL); } } else { if (!wglMakeCurrent(NULL, NULL)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to clear current context"); } _glfwPlatformSetTls(&_glfw.contextSlot, NULL); } } static void swapBuffersWGL(_GLFWwindow* window) { if (!window->monitor) { if (IsWindowsVistaOrGreater()) { // DWM Composition is always enabled on Win8+ BOOL enabled = IsWindows8OrGreater(); // HACK: Use DwmFlush when desktop composition is enabled if (enabled || (SUCCEEDED(DwmIsCompositionEnabled(&enabled)) && enabled)) { int count = abs(window->context.wgl.interval); while (count--) DwmFlush(); } } } SwapBuffers(window->context.wgl.dc); } static void swapIntervalWGL(int interval) { _GLFWwindow* window = _glfwPlatformGetTls(&_glfw.contextSlot); window->context.wgl.interval = interval; if (!window->monitor) { if (IsWindowsVistaOrGreater()) { // DWM Composition is always enabled on Win8+ BOOL enabled = IsWindows8OrGreater(); // HACK: Disable WGL swap interval when desktop composition is enabled to // avoid interfering with DWM vsync if (enabled || (SUCCEEDED(DwmIsCompositionEnabled(&enabled)) && enabled)) interval = 0; } } if (_glfw.wgl.EXT_swap_control) wglSwapIntervalEXT(interval); } static int extensionSupportedWGL(const char* extension) { const char* extensions = NULL; if (_glfw.wgl.GetExtensionsStringARB) extensions = wglGetExtensionsStringARB(wglGetCurrentDC()); else if (_glfw.wgl.GetExtensionsStringEXT) extensions = wglGetExtensionsStringEXT(); if (!extensions) return GLFW_FALSE; return _glfwStringInExtensionString(extension, extensions); } static GLFWglproc getProcAddressWGL(const char* procname) { const GLFWglproc proc = (GLFWglproc) wglGetProcAddress(procname); if (proc) return proc; return (GLFWglproc) GetProcAddress(_glfw.wgl.instance, procname); } static void destroyContextWGL(_GLFWwindow* window) { if (window->context.wgl.handle) { wglDeleteContext(window->context.wgl.handle); window->context.wgl.handle = NULL; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize WGL // GLFWbool _glfwInitWGL(void) { PIXELFORMATDESCRIPTOR pfd; HGLRC prc, rc; HDC pdc, dc; if (_glfw.wgl.instance) return GLFW_TRUE; _glfw.wgl.instance = LoadLibraryA("opengl32.dll"); if (!_glfw.wgl.instance) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to load opengl32.dll"); return GLFW_FALSE; } _glfw.wgl.CreateContext = (PFN_wglCreateContext) GetProcAddress(_glfw.wgl.instance, "wglCreateContext"); _glfw.wgl.DeleteContext = (PFN_wglDeleteContext) GetProcAddress(_glfw.wgl.instance, "wglDeleteContext"); _glfw.wgl.GetProcAddress = (PFN_wglGetProcAddress) GetProcAddress(_glfw.wgl.instance, "wglGetProcAddress"); _glfw.wgl.GetCurrentDC = (PFN_wglGetCurrentDC) GetProcAddress(_glfw.wgl.instance, "wglGetCurrentDC"); _glfw.wgl.GetCurrentContext = (PFN_wglGetCurrentContext) GetProcAddress(_glfw.wgl.instance, "wglGetCurrentContext"); _glfw.wgl.MakeCurrent = (PFN_wglMakeCurrent) GetProcAddress(_glfw.wgl.instance, "wglMakeCurrent"); _glfw.wgl.ShareLists = (PFN_wglShareLists) GetProcAddress(_glfw.wgl.instance, "wglShareLists"); // NOTE: A dummy context has to be created for opengl32.dll to load the // OpenGL ICD, from which we can then query WGL extensions // NOTE: This code will accept the Microsoft GDI ICD; accelerated context // creation failure occurs during manual pixel format enumeration dc = GetDC(_glfw.win32.helperWindowHandle); ZeroMemory(&pfd, sizeof(pfd)); pfd.nSize = sizeof(pfd); pfd.nVersion = 1; pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER; pfd.iPixelType = PFD_TYPE_RGBA; pfd.cColorBits = 24; if (!SetPixelFormat(dc, ChoosePixelFormat(dc, &pfd), &pfd)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to set pixel format for dummy context"); return GLFW_FALSE; } rc = wglCreateContext(dc); if (!rc) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to create dummy context"); return GLFW_FALSE; } pdc = wglGetCurrentDC(); prc = wglGetCurrentContext(); if (!wglMakeCurrent(dc, rc)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to make dummy context current"); wglMakeCurrent(pdc, prc); wglDeleteContext(rc); return GLFW_FALSE; } // NOTE: Functions must be loaded first as they're needed to retrieve the // extension string that tells us whether the functions are supported _glfw.wgl.GetExtensionsStringEXT = (PFNWGLGETEXTENSIONSSTRINGEXTPROC) wglGetProcAddress("wglGetExtensionsStringEXT"); _glfw.wgl.GetExtensionsStringARB = (PFNWGLGETEXTENSIONSSTRINGARBPROC) wglGetProcAddress("wglGetExtensionsStringARB"); _glfw.wgl.CreateContextAttribsARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC) wglGetProcAddress("wglCreateContextAttribsARB"); _glfw.wgl.SwapIntervalEXT = (PFNWGLSWAPINTERVALEXTPROC) wglGetProcAddress("wglSwapIntervalEXT"); _glfw.wgl.GetPixelFormatAttribivARB = (PFNWGLGETPIXELFORMATATTRIBIVARBPROC) wglGetProcAddress("wglGetPixelFormatAttribivARB"); // NOTE: WGL_ARB_extensions_string and WGL_EXT_extensions_string are not // checked below as we are already using them _glfw.wgl.ARB_multisample = extensionSupportedWGL("WGL_ARB_multisample"); _glfw.wgl.ARB_framebuffer_sRGB = extensionSupportedWGL("WGL_ARB_framebuffer_sRGB"); _glfw.wgl.EXT_framebuffer_sRGB = extensionSupportedWGL("WGL_EXT_framebuffer_sRGB"); _glfw.wgl.ARB_create_context = extensionSupportedWGL("WGL_ARB_create_context"); _glfw.wgl.ARB_create_context_profile = extensionSupportedWGL("WGL_ARB_create_context_profile"); _glfw.wgl.EXT_create_context_es2_profile = extensionSupportedWGL("WGL_EXT_create_context_es2_profile"); _glfw.wgl.ARB_create_context_robustness = extensionSupportedWGL("WGL_ARB_create_context_robustness"); _glfw.wgl.ARB_create_context_no_error = extensionSupportedWGL("WGL_ARB_create_context_no_error"); _glfw.wgl.EXT_swap_control = extensionSupportedWGL("WGL_EXT_swap_control"); _glfw.wgl.EXT_colorspace = extensionSupportedWGL("WGL_EXT_colorspace"); _glfw.wgl.ARB_pixel_format = extensionSupportedWGL("WGL_ARB_pixel_format"); _glfw.wgl.ARB_context_flush_control = extensionSupportedWGL("WGL_ARB_context_flush_control"); wglMakeCurrent(pdc, prc); wglDeleteContext(rc); return GLFW_TRUE; } // Terminate WGL // void _glfwTerminateWGL(void) { if (_glfw.wgl.instance) FreeLibrary(_glfw.wgl.instance); } #define setAttrib(a, v) \ { \ assert(((size_t) index + 1) < sizeof(attribs) / sizeof(attribs[0])); \ attribs[index++] = a; \ attribs[index++] = v; \ } // Create the OpenGL or OpenGL ES context // GLFWbool _glfwCreateContextWGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { int attribs[40]; int pixelFormat; PIXELFORMATDESCRIPTOR pfd; HGLRC share = NULL; if (ctxconfig->share) share = ctxconfig->share->context.wgl.handle; window->context.wgl.dc = GetDC(window->win32.handle); if (!window->context.wgl.dc) { _glfwInputError(GLFW_PLATFORM_ERROR, "WGL: Failed to retrieve DC for window"); return GLFW_FALSE; } pixelFormat = choosePixelFormat(window, ctxconfig, fbconfig); if (!pixelFormat) return GLFW_FALSE; if (!DescribePixelFormat(window->context.wgl.dc, pixelFormat, sizeof(pfd), &pfd)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to retrieve PFD for selected pixel format"); return GLFW_FALSE; } if (!SetPixelFormat(window->context.wgl.dc, pixelFormat, &pfd)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to set selected pixel format"); return GLFW_FALSE; } if (ctxconfig->client == GLFW_OPENGL_API) { if (ctxconfig->forward) { if (!_glfw.wgl.ARB_create_context) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: A forward compatible OpenGL context requested but WGL_ARB_create_context is unavailable"); return GLFW_FALSE; } } if (ctxconfig->profile) { if (!_glfw.wgl.ARB_create_context_profile) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: OpenGL profile requested but WGL_ARB_create_context_profile is unavailable"); return GLFW_FALSE; } } } else { if (!_glfw.wgl.ARB_create_context || !_glfw.wgl.ARB_create_context_profile || !_glfw.wgl.EXT_create_context_es2_profile) { _glfwInputError(GLFW_API_UNAVAILABLE, "WGL: OpenGL ES requested but WGL_ARB_create_context_es2_profile is unavailable"); return GLFW_FALSE; } } if (_glfw.wgl.ARB_create_context) { int index = 0, mask = 0, flags = 0; if (ctxconfig->client == GLFW_OPENGL_API) { if (ctxconfig->forward) flags |= WGL_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB; if (ctxconfig->profile == GLFW_OPENGL_CORE_PROFILE) mask |= WGL_CONTEXT_CORE_PROFILE_BIT_ARB; else if (ctxconfig->profile == GLFW_OPENGL_COMPAT_PROFILE) mask |= WGL_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB; } else mask |= WGL_CONTEXT_ES2_PROFILE_BIT_EXT; if (ctxconfig->debug) flags |= WGL_CONTEXT_DEBUG_BIT_ARB; if (ctxconfig->robustness) { if (_glfw.wgl.ARB_create_context_robustness) { if (ctxconfig->robustness == GLFW_NO_RESET_NOTIFICATION) { setAttrib(WGL_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB, WGL_NO_RESET_NOTIFICATION_ARB); } else if (ctxconfig->robustness == GLFW_LOSE_CONTEXT_ON_RESET) { setAttrib(WGL_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB, WGL_LOSE_CONTEXT_ON_RESET_ARB); } flags |= WGL_CONTEXT_ROBUST_ACCESS_BIT_ARB; } } if (ctxconfig->release) { if (_glfw.wgl.ARB_context_flush_control) { if (ctxconfig->release == GLFW_RELEASE_BEHAVIOR_NONE) { setAttrib(WGL_CONTEXT_RELEASE_BEHAVIOR_ARB, WGL_CONTEXT_RELEASE_BEHAVIOR_NONE_ARB); } else if (ctxconfig->release == GLFW_RELEASE_BEHAVIOR_FLUSH) { setAttrib(WGL_CONTEXT_RELEASE_BEHAVIOR_ARB, WGL_CONTEXT_RELEASE_BEHAVIOR_FLUSH_ARB); } } } if (ctxconfig->noerror) { if (_glfw.wgl.ARB_create_context_no_error) setAttrib(WGL_CONTEXT_OPENGL_NO_ERROR_ARB, GLFW_TRUE); } // NOTE: Only request an explicitly versioned context when necessary, as // explicitly requesting version 1.0 does not always return the // highest version supported by the driver if (ctxconfig->major != 1 || ctxconfig->minor != 0) { setAttrib(WGL_CONTEXT_MAJOR_VERSION_ARB, ctxconfig->major); setAttrib(WGL_CONTEXT_MINOR_VERSION_ARB, ctxconfig->minor); } if (flags) setAttrib(WGL_CONTEXT_FLAGS_ARB, flags); if (mask) setAttrib(WGL_CONTEXT_PROFILE_MASK_ARB, mask); setAttrib(0, 0); window->context.wgl.handle = wglCreateContextAttribsARB(window->context.wgl.dc, share, attribs); if (!window->context.wgl.handle) { const DWORD error = GetLastError(); if (error == (0xc0070000 | ERROR_INVALID_VERSION_ARB)) { if (ctxconfig->client == GLFW_OPENGL_API) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: Driver does not support OpenGL version %i.%i", ctxconfig->major, ctxconfig->minor); } else { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: Driver does not support OpenGL ES version %i.%i", ctxconfig->major, ctxconfig->minor); } } else if (error == (0xc0070000 | ERROR_INVALID_PROFILE_ARB)) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: Driver does not support the requested OpenGL profile"); } else if (error == (0xc0070000 | ERROR_INCOMPATIBLE_DEVICE_CONTEXTS_ARB)) { _glfwInputError(GLFW_INVALID_VALUE, "WGL: The share context is not compatible with the requested context"); } else { if (ctxconfig->client == GLFW_OPENGL_API) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: Failed to create OpenGL context"); } else { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "WGL: Failed to create OpenGL ES context"); } } return GLFW_FALSE; } } else { window->context.wgl.handle = wglCreateContext(window->context.wgl.dc); if (!window->context.wgl.handle) { _glfwInputErrorWin32(GLFW_VERSION_UNAVAILABLE, "WGL: Failed to create OpenGL context"); return GLFW_FALSE; } if (share) { if (!wglShareLists(share, window->context.wgl.handle)) { _glfwInputErrorWin32(GLFW_PLATFORM_ERROR, "WGL: Failed to enable sharing with specified OpenGL context"); return GLFW_FALSE; } } } window->context.makeCurrent = makeContextCurrentWGL; window->context.swapBuffers = swapBuffersWGL; window->context.swapInterval = swapIntervalWGL; window->context.extensionSupported = extensionSupportedWGL; window->context.getProcAddress = getProcAddressWGL; window->context.destroy = destroyContextWGL; return GLFW_TRUE; } #undef setAttrib ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI HGLRC glfwGetWGLContext(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (window->context.source != GLFW_NATIVE_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return NULL; } return window->context.wgl.handle; } #endif #endif #ifdef _GLFW_OSMESA #ifndef HEADER_GUARD_NULL_INIT_C #define HEADER_GUARD_NULL_INIT_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void) { _glfwInitTimerPOSIX(); return GLFW_TRUE; } void _glfwPlatformTerminate(void) { _glfwTerminateOSMesa(); } const char* _glfwPlatformGetVersionString(void) { return _GLFW_VERSION_NUMBER " null OSMesa"; } #endif #ifndef HEADER_GUARD_NULL_MONITOR_C #define HEADER_GUARD_NULL_MONITOR_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// void _glfwPlatformFreeMonitor(_GLFWmonitor* monitor) { } void _glfwPlatformGetMonitorPos(_GLFWmonitor* monitor, int* xpos, int* ypos) { } void _glfwPlatformGetMonitorContentScale(_GLFWmonitor* monitor, float* xscale, float* yscale) { if (xscale) *xscale = 1.f; if (yscale) *yscale = 1.f; } void _glfwPlatformGetMonitorWorkarea(_GLFWmonitor* monitor, int* xpos, int* ypos, int* width, int* height) { } GLFWvidmode* _glfwPlatformGetVideoModes(_GLFWmonitor* monitor, int* found) { return NULL; } void _glfwPlatformGetVideoMode(_GLFWmonitor* monitor, GLFWvidmode* mode) { } GLFWbool _glfwPlatformGetGammaRamp(_GLFWmonitor* monitor, GLFWgammaramp* ramp) { return GLFW_FALSE; } void _glfwPlatformSetGammaRamp(_GLFWmonitor* monitor, const GLFWgammaramp* ramp) { } #endif #ifndef HEADER_GUARD_NULL_WINDOW_C #define HEADER_GUARD_NULL_WINDOW_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016 Google Inc. // Copyright (c) 2016-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== static int createNativeWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig) { window->null.width = wndconfig->width; window->null.height = wndconfig->height; return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformCreateWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { if (!createNativeWindow(window, wndconfig)) return GLFW_FALSE; if (ctxconfig->client != GLFW_NO_API) { if (ctxconfig->source == GLFW_NATIVE_CONTEXT_API || ctxconfig->source == GLFW_OSMESA_CONTEXT_API) { if (!_glfwInitOSMesa()) return GLFW_FALSE; if (!_glfwCreateContextOSMesa(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else { _glfwInputError(GLFW_API_UNAVAILABLE, "Null: EGL not available"); return GLFW_FALSE; } } return GLFW_TRUE; } void _glfwPlatformDestroyWindow(_GLFWwindow* window) { if (window->context.destroy) window->context.destroy(window); } void _glfwPlatformSetWindowTitle(_GLFWwindow* window, const char* title) { } void _glfwPlatformSetWindowIcon(_GLFWwindow* window, int count, const GLFWimage* images) { } void _glfwPlatformSetWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate) { } void _glfwPlatformGetWindowPos(_GLFWwindow* window, int* xpos, int* ypos) { } void _glfwPlatformSetWindowPos(_GLFWwindow* window, int xpos, int ypos) { } void _glfwPlatformGetWindowSize(_GLFWwindow* window, int* width, int* height) { if (width) *width = window->null.width; if (height) *height = window->null.height; } void _glfwPlatformSetWindowSize(_GLFWwindow* window, int width, int height) { window->null.width = width; window->null.height = height; } void _glfwPlatformSetWindowSizeLimits(_GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight) { } void _glfwPlatformSetWindowAspectRatio(_GLFWwindow* window, int n, int d) { } void _glfwPlatformGetFramebufferSize(_GLFWwindow* window, int* width, int* height) { if (width) *width = window->null.width; if (height) *height = window->null.height; } void _glfwPlatformGetWindowFrameSize(_GLFWwindow* window, int* left, int* top, int* right, int* bottom) { } void _glfwPlatformGetWindowContentScale(_GLFWwindow* window, float* xscale, float* yscale) { if (xscale) *xscale = 1.f; if (yscale) *yscale = 1.f; } void _glfwPlatformIconifyWindow(_GLFWwindow* window) { } void _glfwPlatformRestoreWindow(_GLFWwindow* window) { } void _glfwPlatformMaximizeWindow(_GLFWwindow* window) { } int _glfwPlatformWindowMaximized(_GLFWwindow* window) { return GLFW_FALSE; } int _glfwPlatformWindowHovered(_GLFWwindow* window) { return GLFW_FALSE; } int _glfwPlatformFramebufferTransparent(_GLFWwindow* window) { return GLFW_FALSE; } void _glfwPlatformSetWindowResizable(_GLFWwindow* window, GLFWbool enabled) { } void _glfwPlatformSetWindowDecorated(_GLFWwindow* window, GLFWbool enabled) { } void _glfwPlatformSetWindowFloating(_GLFWwindow* window, GLFWbool enabled) { } float _glfwPlatformGetWindowOpacity(_GLFWwindow* window) { return 1.f; } void _glfwPlatformSetWindowOpacity(_GLFWwindow* window, float opacity) { } void _glfwPlatformSetRawMouseMotion(_GLFWwindow *window, GLFWbool enabled) { } GLFWbool _glfwPlatformRawMouseMotionSupported(void) { return GLFW_FALSE; } void _glfwPlatformShowWindow(_GLFWwindow* window) { } void _glfwPlatformRequestWindowAttention(_GLFWwindow* window) { } void _glfwPlatformUnhideWindow(_GLFWwindow* window) { } void _glfwPlatformHideWindow(_GLFWwindow* window) { } void _glfwPlatformFocusWindow(_GLFWwindow* window) { } int _glfwPlatformWindowFocused(_GLFWwindow* window) { return GLFW_FALSE; } int _glfwPlatformWindowIconified(_GLFWwindow* window) { return GLFW_FALSE; } int _glfwPlatformWindowVisible(_GLFWwindow* window) { return GLFW_FALSE; } void _glfwPlatformPollEvents(void) { } void _glfwPlatformWaitEvents(void) { } void _glfwPlatformWaitEventsTimeout(double timeout) { } void _glfwPlatformPostEmptyEvent(void) { } void _glfwPlatformGetCursorPos(_GLFWwindow* window, double* xpos, double* ypos) { } void _glfwPlatformSetCursorPos(_GLFWwindow* window, double x, double y) { } void _glfwPlatformSetCursorMode(_GLFWwindow* window, int mode) { } int _glfwPlatformCreateCursor(_GLFWcursor* cursor, const GLFWimage* image, int xhot, int yhot) { return GLFW_TRUE; } int _glfwPlatformCreateStandardCursor(_GLFWcursor* cursor, int shape) { return GLFW_TRUE; } void _glfwPlatformDestroyCursor(_GLFWcursor* cursor) { } void _glfwPlatformSetCursor(_GLFWwindow* window, _GLFWcursor* cursor) { } void _glfwPlatformSetClipboardString(const char* string) { } const char* _glfwPlatformGetClipboardString(void) { return NULL; } const char* _glfwPlatformGetScancodeName(int scancode) { return ""; } int _glfwPlatformGetKeyScancode(int key) { return -1; } void _glfwPlatformGetRequiredInstanceExtensions(char** extensions) { } int _glfwPlatformGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily) { return GLFW_FALSE; } VkResult _glfwPlatformCreateWindowSurface(VkInstance instance, _GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface) { // This seems like the most appropriate error to return here return VK_ERROR_INITIALIZATION_FAILED; } #endif #ifndef HEADER_GUARD_NULL_JOYSTICK_C #define HEADER_GUARD_NULL_JOYSTICK_C //======================================================================== // GLFW 3.3.7 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2016-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformPollJoystick(_GLFWjoystick* js, int mode) { return GLFW_FALSE; } void _glfwPlatformUpdateGamepadGUID(char* guid) { } #endif #endif #ifdef _GLFW_X11 #ifndef HEADER_GUARD_X11_INIT_C #define HEADER_GUARD_X11_INIT_C //======================================================================== // GLFW 3.3.7 X11 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #include #include #include #include #include #include // Translate the X11 KeySyms for a key to a GLFW key code // NOTE: This is only used as a fallback, in case the XKB method fails // It is layout-dependent and will fail partially on most non-US layouts // static int translateKeySyms(const KeySym* keysyms, int width) { if (width > 1) { switch (keysyms[1]) { case XK_KP_0: return GLFW_KEY_KP_0; case XK_KP_1: return GLFW_KEY_KP_1; case XK_KP_2: return GLFW_KEY_KP_2; case XK_KP_3: return GLFW_KEY_KP_3; case XK_KP_4: return GLFW_KEY_KP_4; case XK_KP_5: return GLFW_KEY_KP_5; case XK_KP_6: return GLFW_KEY_KP_6; case XK_KP_7: return GLFW_KEY_KP_7; case XK_KP_8: return GLFW_KEY_KP_8; case XK_KP_9: return GLFW_KEY_KP_9; case XK_KP_Separator: case XK_KP_Decimal: return GLFW_KEY_KP_DECIMAL; case XK_KP_Equal: return GLFW_KEY_KP_EQUAL; case XK_KP_Enter: return GLFW_KEY_KP_ENTER; default: break; } } switch (keysyms[0]) { case XK_Escape: return GLFW_KEY_ESCAPE; case XK_Tab: return GLFW_KEY_TAB; case XK_Shift_L: return GLFW_KEY_LEFT_SHIFT; case XK_Shift_R: return GLFW_KEY_RIGHT_SHIFT; case XK_Control_L: return GLFW_KEY_LEFT_CONTROL; case XK_Control_R: return GLFW_KEY_RIGHT_CONTROL; case XK_Meta_L: case XK_Alt_L: return GLFW_KEY_LEFT_ALT; case XK_Mode_switch: // Mapped to Alt_R on many keyboards case XK_ISO_Level3_Shift: // AltGr on at least some machines case XK_Meta_R: case XK_Alt_R: return GLFW_KEY_RIGHT_ALT; case XK_Super_L: return GLFW_KEY_LEFT_SUPER; case XK_Super_R: return GLFW_KEY_RIGHT_SUPER; case XK_Menu: return GLFW_KEY_MENU; case XK_Num_Lock: return GLFW_KEY_NUM_LOCK; case XK_Caps_Lock: return GLFW_KEY_CAPS_LOCK; case XK_Print: return GLFW_KEY_PRINT_SCREEN; case XK_Scroll_Lock: return GLFW_KEY_SCROLL_LOCK; case XK_Pause: return GLFW_KEY_PAUSE; case XK_Delete: return GLFW_KEY_DELETE; case XK_BackSpace: return GLFW_KEY_BACKSPACE; case XK_Return: return GLFW_KEY_ENTER; case XK_Home: return GLFW_KEY_HOME; case XK_End: return GLFW_KEY_END; case XK_Page_Up: return GLFW_KEY_PAGE_UP; case XK_Page_Down: return GLFW_KEY_PAGE_DOWN; case XK_Insert: return GLFW_KEY_INSERT; case XK_Left: return GLFW_KEY_LEFT; case XK_Right: return GLFW_KEY_RIGHT; case XK_Down: return GLFW_KEY_DOWN; case XK_Up: return GLFW_KEY_UP; case XK_F1: return GLFW_KEY_F1; case XK_F2: return GLFW_KEY_F2; case XK_F3: return GLFW_KEY_F3; case XK_F4: return GLFW_KEY_F4; case XK_F5: return GLFW_KEY_F5; case XK_F6: return GLFW_KEY_F6; case XK_F7: return GLFW_KEY_F7; case XK_F8: return GLFW_KEY_F8; case XK_F9: return GLFW_KEY_F9; case XK_F10: return GLFW_KEY_F10; case XK_F11: return GLFW_KEY_F11; case XK_F12: return GLFW_KEY_F12; case XK_F13: return GLFW_KEY_F13; case XK_F14: return GLFW_KEY_F14; case XK_F15: return GLFW_KEY_F15; case XK_F16: return GLFW_KEY_F16; case XK_F17: return GLFW_KEY_F17; case XK_F18: return GLFW_KEY_F18; case XK_F19: return GLFW_KEY_F19; case XK_F20: return GLFW_KEY_F20; case XK_F21: return GLFW_KEY_F21; case XK_F22: return GLFW_KEY_F22; case XK_F23: return GLFW_KEY_F23; case XK_F24: return GLFW_KEY_F24; case XK_F25: return GLFW_KEY_F25; // Numeric keypad case XK_KP_Divide: return GLFW_KEY_KP_DIVIDE; case XK_KP_Multiply: return GLFW_KEY_KP_MULTIPLY; case XK_KP_Subtract: return GLFW_KEY_KP_SUBTRACT; case XK_KP_Add: return GLFW_KEY_KP_ADD; // These should have been detected in secondary keysym test above! case XK_KP_Insert: return GLFW_KEY_KP_0; case XK_KP_End: return GLFW_KEY_KP_1; case XK_KP_Down: return GLFW_KEY_KP_2; case XK_KP_Page_Down: return GLFW_KEY_KP_3; case XK_KP_Left: return GLFW_KEY_KP_4; case XK_KP_Right: return GLFW_KEY_KP_6; case XK_KP_Home: return GLFW_KEY_KP_7; case XK_KP_Up: return GLFW_KEY_KP_8; case XK_KP_Page_Up: return GLFW_KEY_KP_9; case XK_KP_Delete: return GLFW_KEY_KP_DECIMAL; case XK_KP_Equal: return GLFW_KEY_KP_EQUAL; case XK_KP_Enter: return GLFW_KEY_KP_ENTER; // Last resort: Check for printable keys (should not happen if the XKB // extension is available). This will give a layout dependent mapping // (which is wrong, and we may miss some keys, especially on non-US // keyboards), but it's better than nothing... case XK_a: return GLFW_KEY_A; case XK_b: return GLFW_KEY_B; case XK_c: return GLFW_KEY_C; case XK_d: return GLFW_KEY_D; case XK_e: return GLFW_KEY_E; case XK_f: return GLFW_KEY_F; case XK_g: return GLFW_KEY_G; case XK_h: return GLFW_KEY_H; case XK_i: return GLFW_KEY_I; case XK_j: return GLFW_KEY_J; case XK_k: return GLFW_KEY_K; case XK_l: return GLFW_KEY_L; case XK_m: return GLFW_KEY_M; case XK_n: return GLFW_KEY_N; case XK_o: return GLFW_KEY_O; case XK_p: return GLFW_KEY_P; case XK_q: return GLFW_KEY_Q; case XK_r: return GLFW_KEY_R; case XK_s: return GLFW_KEY_S; case XK_t: return GLFW_KEY_T; case XK_u: return GLFW_KEY_U; case XK_v: return GLFW_KEY_V; case XK_w: return GLFW_KEY_W; case XK_x: return GLFW_KEY_X; case XK_y: return GLFW_KEY_Y; case XK_z: return GLFW_KEY_Z; case XK_1: return GLFW_KEY_1; case XK_2: return GLFW_KEY_2; case XK_3: return GLFW_KEY_3; case XK_4: return GLFW_KEY_4; case XK_5: return GLFW_KEY_5; case XK_6: return GLFW_KEY_6; case XK_7: return GLFW_KEY_7; case XK_8: return GLFW_KEY_8; case XK_9: return GLFW_KEY_9; case XK_0: return GLFW_KEY_0; case XK_space: return GLFW_KEY_SPACE; case XK_minus: return GLFW_KEY_MINUS; case XK_equal: return GLFW_KEY_EQUAL; case XK_bracketleft: return GLFW_KEY_LEFT_BRACKET; case XK_bracketright: return GLFW_KEY_RIGHT_BRACKET; case XK_backslash: return GLFW_KEY_BACKSLASH; case XK_semicolon: return GLFW_KEY_SEMICOLON; case XK_apostrophe: return GLFW_KEY_APOSTROPHE; case XK_grave: return GLFW_KEY_GRAVE_ACCENT; case XK_comma: return GLFW_KEY_COMMA; case XK_period: return GLFW_KEY_PERIOD; case XK_slash: return GLFW_KEY_SLASH; case XK_less: return GLFW_KEY_WORLD_1; // At least in some layouts... default: break; } // No matching translation was found return GLFW_KEY_UNKNOWN; } // Create key code translation tables // static void createKeyTables(void) { int scancode, scancodeMin, scancodeMax; memset(_glfw.x11.keycodes, -1, sizeof(_glfw.x11.keycodes)); memset(_glfw.x11.scancodes, -1, sizeof(_glfw.x11.scancodes)); if (_glfw.x11.xkb.available) { // Use XKB to determine physical key locations independently of the // current keyboard layout XkbDescPtr desc = XkbGetMap(_glfw.x11.display, 0, XkbUseCoreKbd); XkbGetNames(_glfw.x11.display, XkbKeyNamesMask | XkbKeyAliasesMask, desc); scancodeMin = desc->min_key_code; scancodeMax = desc->max_key_code; const struct { int key; char* name; } keymap[] = { { GLFW_KEY_GRAVE_ACCENT, "TLDE" }, { GLFW_KEY_1, "AE01" }, { GLFW_KEY_2, "AE02" }, { GLFW_KEY_3, "AE03" }, { GLFW_KEY_4, "AE04" }, { GLFW_KEY_5, "AE05" }, { GLFW_KEY_6, "AE06" }, { GLFW_KEY_7, "AE07" }, { GLFW_KEY_8, "AE08" }, { GLFW_KEY_9, "AE09" }, { GLFW_KEY_0, "AE10" }, { GLFW_KEY_MINUS, "AE11" }, { GLFW_KEY_EQUAL, "AE12" }, { GLFW_KEY_Q, "AD01" }, { GLFW_KEY_W, "AD02" }, { GLFW_KEY_E, "AD03" }, { GLFW_KEY_R, "AD04" }, { GLFW_KEY_T, "AD05" }, { GLFW_KEY_Y, "AD06" }, { GLFW_KEY_U, "AD07" }, { GLFW_KEY_I, "AD08" }, { GLFW_KEY_O, "AD09" }, { GLFW_KEY_P, "AD10" }, { GLFW_KEY_LEFT_BRACKET, "AD11" }, { GLFW_KEY_RIGHT_BRACKET, "AD12" }, { GLFW_KEY_A, "AC01" }, { GLFW_KEY_S, "AC02" }, { GLFW_KEY_D, "AC03" }, { GLFW_KEY_F, "AC04" }, { GLFW_KEY_G, "AC05" }, { GLFW_KEY_H, "AC06" }, { GLFW_KEY_J, "AC07" }, { GLFW_KEY_K, "AC08" }, { GLFW_KEY_L, "AC09" }, { GLFW_KEY_SEMICOLON, "AC10" }, { GLFW_KEY_APOSTROPHE, "AC11" }, { GLFW_KEY_Z, "AB01" }, { GLFW_KEY_X, "AB02" }, { GLFW_KEY_C, "AB03" }, { GLFW_KEY_V, "AB04" }, { GLFW_KEY_B, "AB05" }, { GLFW_KEY_N, "AB06" }, { GLFW_KEY_M, "AB07" }, { GLFW_KEY_COMMA, "AB08" }, { GLFW_KEY_PERIOD, "AB09" }, { GLFW_KEY_SLASH, "AB10" }, { GLFW_KEY_BACKSLASH, "BKSL" }, { GLFW_KEY_WORLD_1, "LSGT" }, { GLFW_KEY_SPACE, "SPCE" }, { GLFW_KEY_ESCAPE, "ESC" }, { GLFW_KEY_ENTER, "RTRN" }, { GLFW_KEY_TAB, "TAB" }, { GLFW_KEY_BACKSPACE, "BKSP" }, { GLFW_KEY_INSERT, "INS" }, { GLFW_KEY_DELETE, "DELE" }, { GLFW_KEY_RIGHT, "RGHT" }, { GLFW_KEY_LEFT, "LEFT" }, { GLFW_KEY_DOWN, "DOWN" }, { GLFW_KEY_UP, "UP" }, { GLFW_KEY_PAGE_UP, "PGUP" }, { GLFW_KEY_PAGE_DOWN, "PGDN" }, { GLFW_KEY_HOME, "HOME" }, { GLFW_KEY_END, "END" }, { GLFW_KEY_CAPS_LOCK, "CAPS" }, { GLFW_KEY_SCROLL_LOCK, "SCLK" }, { GLFW_KEY_NUM_LOCK, "NMLK" }, { GLFW_KEY_PRINT_SCREEN, "PRSC" }, { GLFW_KEY_PAUSE, "PAUS" }, { GLFW_KEY_F1, "FK01" }, { GLFW_KEY_F2, "FK02" }, { GLFW_KEY_F3, "FK03" }, { GLFW_KEY_F4, "FK04" }, { GLFW_KEY_F5, "FK05" }, { GLFW_KEY_F6, "FK06" }, { GLFW_KEY_F7, "FK07" }, { GLFW_KEY_F8, "FK08" }, { GLFW_KEY_F9, "FK09" }, { GLFW_KEY_F10, "FK10" }, { GLFW_KEY_F11, "FK11" }, { GLFW_KEY_F12, "FK12" }, { GLFW_KEY_F13, "FK13" }, { GLFW_KEY_F14, "FK14" }, { GLFW_KEY_F15, "FK15" }, { GLFW_KEY_F16, "FK16" }, { GLFW_KEY_F17, "FK17" }, { GLFW_KEY_F18, "FK18" }, { GLFW_KEY_F19, "FK19" }, { GLFW_KEY_F20, "FK20" }, { GLFW_KEY_F21, "FK21" }, { GLFW_KEY_F22, "FK22" }, { GLFW_KEY_F23, "FK23" }, { GLFW_KEY_F24, "FK24" }, { GLFW_KEY_F25, "FK25" }, { GLFW_KEY_KP_0, "KP0" }, { GLFW_KEY_KP_1, "KP1" }, { GLFW_KEY_KP_2, "KP2" }, { GLFW_KEY_KP_3, "KP3" }, { GLFW_KEY_KP_4, "KP4" }, { GLFW_KEY_KP_5, "KP5" }, { GLFW_KEY_KP_6, "KP6" }, { GLFW_KEY_KP_7, "KP7" }, { GLFW_KEY_KP_8, "KP8" }, { GLFW_KEY_KP_9, "KP9" }, { GLFW_KEY_KP_DECIMAL, "KPDL" }, { GLFW_KEY_KP_DIVIDE, "KPDV" }, { GLFW_KEY_KP_MULTIPLY, "KPMU" }, { GLFW_KEY_KP_SUBTRACT, "KPSU" }, { GLFW_KEY_KP_ADD, "KPAD" }, { GLFW_KEY_KP_ENTER, "KPEN" }, { GLFW_KEY_KP_EQUAL, "KPEQ" }, { GLFW_KEY_LEFT_SHIFT, "LFSH" }, { GLFW_KEY_LEFT_CONTROL, "LCTL" }, { GLFW_KEY_LEFT_ALT, "LALT" }, { GLFW_KEY_LEFT_SUPER, "LWIN" }, { GLFW_KEY_RIGHT_SHIFT, "RTSH" }, { GLFW_KEY_RIGHT_CONTROL, "RCTL" }, { GLFW_KEY_RIGHT_ALT, "RALT" }, { GLFW_KEY_RIGHT_ALT, "LVL3" }, { GLFW_KEY_RIGHT_ALT, "MDSW" }, { GLFW_KEY_RIGHT_SUPER, "RWIN" }, { GLFW_KEY_MENU, "MENU" } }; // Find the X11 key code -> GLFW key code mapping for (scancode = scancodeMin; scancode <= scancodeMax; scancode++) { int key = GLFW_KEY_UNKNOWN; // Map the key name to a GLFW key code. Note: We use the US // keyboard layout. Because function keys aren't mapped correctly // when using traditional KeySym translations, they are mapped // here instead. for (int i = 0; i < sizeof(keymap) / sizeof(keymap[0]); i++) { if (strncmp(desc->names->keys[scancode].name, keymap[i].name, XkbKeyNameLength) == 0) { key = keymap[i].key; break; } } // Fall back to key aliases in case the key name did not match for (int i = 0; i < desc->names->num_key_aliases; i++) { if (key != GLFW_KEY_UNKNOWN) break; if (strncmp(desc->names->key_aliases[i].real, desc->names->keys[scancode].name, XkbKeyNameLength) != 0) { continue; } for (int j = 0; j < sizeof(keymap) / sizeof(keymap[0]); j++) { if (strncmp(desc->names->key_aliases[i].alias, keymap[j].name, XkbKeyNameLength) == 0) { key = keymap[j].key; break; } } } _glfw.x11.keycodes[scancode] = key; } XkbFreeNames(desc, XkbKeyNamesMask, True); XkbFreeKeyboard(desc, 0, True); } else XDisplayKeycodes(_glfw.x11.display, &scancodeMin, &scancodeMax); int width; KeySym* keysyms = XGetKeyboardMapping(_glfw.x11.display, scancodeMin, scancodeMax - scancodeMin + 1, &width); for (scancode = scancodeMin; scancode <= scancodeMax; scancode++) { // Translate the un-translated key codes using traditional X11 KeySym // lookups if (_glfw.x11.keycodes[scancode] < 0) { const size_t base = (scancode - scancodeMin) * width; _glfw.x11.keycodes[scancode] = translateKeySyms(&keysyms[base], width); } // Store the reverse translation for faster key name lookup if (_glfw.x11.keycodes[scancode] > 0) _glfw.x11.scancodes[_glfw.x11.keycodes[scancode]] = scancode; } XFree(keysyms); } // Check whether the IM has a usable style // static GLFWbool hasUsableInputMethodStyle(void) { GLFWbool found = GLFW_FALSE; XIMStyles* styles = NULL; if (XGetIMValues(_glfw.x11.im, XNQueryInputStyle, &styles, NULL) != NULL) return GLFW_FALSE; for (unsigned int i = 0; i < styles->count_styles; i++) { if (styles->supported_styles[i] == (XIMPreeditNothing | XIMStatusNothing)) { found = GLFW_TRUE; break; } } XFree(styles); return found; } // Check whether the specified atom is supported // static Atom getAtomIfSupported(Atom* supportedAtoms, unsigned long atomCount, const char* atomName) { const Atom atom = XInternAtom(_glfw.x11.display, atomName, False); for (unsigned long i = 0; i < atomCount; i++) { if (supportedAtoms[i] == atom) return atom; } return None; } // Check whether the running window manager is EWMH-compliant // static void detectEWMH(void) { // First we read the _NET_SUPPORTING_WM_CHECK property on the root window Window* windowFromRoot = NULL; if (!_glfwGetWindowPropertyX11(_glfw.x11.root, _glfw.x11.NET_SUPPORTING_WM_CHECK, XA_WINDOW, (unsigned char**) &windowFromRoot)) { return; } _glfwGrabErrorHandlerX11(); // If it exists, it should be the XID of a top-level window // Then we look for the same property on that window Window* windowFromChild = NULL; if (!_glfwGetWindowPropertyX11(*windowFromRoot, _glfw.x11.NET_SUPPORTING_WM_CHECK, XA_WINDOW, (unsigned char**) &windowFromChild)) { XFree(windowFromRoot); return; } _glfwReleaseErrorHandlerX11(); // If the property exists, it should contain the XID of the window if (*windowFromRoot != *windowFromChild) { XFree(windowFromRoot); XFree(windowFromChild); return; } XFree(windowFromRoot); XFree(windowFromChild); // We are now fairly sure that an EWMH-compliant WM is currently running // We can now start querying the WM about what features it supports by // looking in the _NET_SUPPORTED property on the root window // It should contain a list of supported EWMH protocol and state atoms Atom* supportedAtoms = NULL; const unsigned long atomCount = _glfwGetWindowPropertyX11(_glfw.x11.root, _glfw.x11.NET_SUPPORTED, XA_ATOM, (unsigned char**) &supportedAtoms); // See which of the atoms we support that are supported by the WM _glfw.x11.NET_WM_STATE = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_STATE"); _glfw.x11.NET_WM_STATE_ABOVE = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_STATE_ABOVE"); _glfw.x11.NET_WM_STATE_FULLSCREEN = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_STATE_FULLSCREEN"); _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_STATE_MAXIMIZED_VERT"); _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_STATE_MAXIMIZED_HORZ"); _glfw.x11.NET_WM_STATE_DEMANDS_ATTENTION = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_STATE_DEMANDS_ATTENTION"); _glfw.x11.NET_WM_FULLSCREEN_MONITORS = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_FULLSCREEN_MONITORS"); _glfw.x11.NET_WM_WINDOW_TYPE = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_WINDOW_TYPE"); _glfw.x11.NET_WM_WINDOW_TYPE_NORMAL = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WM_WINDOW_TYPE_NORMAL"); _glfw.x11.NET_WORKAREA = getAtomIfSupported(supportedAtoms, atomCount, "_NET_WORKAREA"); _glfw.x11.NET_CURRENT_DESKTOP = getAtomIfSupported(supportedAtoms, atomCount, "_NET_CURRENT_DESKTOP"); _glfw.x11.NET_ACTIVE_WINDOW = getAtomIfSupported(supportedAtoms, atomCount, "_NET_ACTIVE_WINDOW"); _glfw.x11.NET_FRAME_EXTENTS = getAtomIfSupported(supportedAtoms, atomCount, "_NET_FRAME_EXTENTS"); _glfw.x11.NET_REQUEST_FRAME_EXTENTS = getAtomIfSupported(supportedAtoms, atomCount, "_NET_REQUEST_FRAME_EXTENTS"); if (supportedAtoms) XFree(supportedAtoms); } // Look for and initialize supported X11 extensions // static GLFWbool initExtensions(void) { #if defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.vidmode.handle = _glfw_dlopen("libXxf86vm.so"); #else _glfw.x11.vidmode.handle = _glfw_dlopen("libXxf86vm.so.1"); #endif if (_glfw.x11.vidmode.handle) { _glfw.x11.vidmode.QueryExtension = (PFN_XF86VidModeQueryExtension) _glfw_dlsym(_glfw.x11.vidmode.handle, "XF86VidModeQueryExtension"); _glfw.x11.vidmode.GetGammaRamp = (PFN_XF86VidModeGetGammaRamp) _glfw_dlsym(_glfw.x11.vidmode.handle, "XF86VidModeGetGammaRamp"); _glfw.x11.vidmode.SetGammaRamp = (PFN_XF86VidModeSetGammaRamp) _glfw_dlsym(_glfw.x11.vidmode.handle, "XF86VidModeSetGammaRamp"); _glfw.x11.vidmode.GetGammaRampSize = (PFN_XF86VidModeGetGammaRampSize) _glfw_dlsym(_glfw.x11.vidmode.handle, "XF86VidModeGetGammaRampSize"); _glfw.x11.vidmode.available = XF86VidModeQueryExtension(_glfw.x11.display, &_glfw.x11.vidmode.eventBase, &_glfw.x11.vidmode.errorBase); } #if defined(__CYGWIN__) _glfw.x11.xi.handle = _glfw_dlopen("libXi-6.so"); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.xi.handle = _glfw_dlopen("libXi.so"); #else _glfw.x11.xi.handle = _glfw_dlopen("libXi.so.6"); #endif if (_glfw.x11.xi.handle) { _glfw.x11.xi.QueryVersion = (PFN_XIQueryVersion) _glfw_dlsym(_glfw.x11.xi.handle, "XIQueryVersion"); _glfw.x11.xi.SelectEvents = (PFN_XISelectEvents) _glfw_dlsym(_glfw.x11.xi.handle, "XISelectEvents"); if (XQueryExtension(_glfw.x11.display, "XInputExtension", &_glfw.x11.xi.majorOpcode, &_glfw.x11.xi.eventBase, &_glfw.x11.xi.errorBase)) { _glfw.x11.xi.major = 2; _glfw.x11.xi.minor = 0; if (XIQueryVersion(_glfw.x11.display, &_glfw.x11.xi.major, &_glfw.x11.xi.minor) == Success) { _glfw.x11.xi.available = GLFW_TRUE; } } } #if defined(__CYGWIN__) _glfw.x11.randr.handle = _glfw_dlopen("libXrandr-2.so"); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.randr.handle = _glfw_dlopen("libXrandr.so"); #else _glfw.x11.randr.handle = _glfw_dlopen("libXrandr.so.2"); #endif if (_glfw.x11.randr.handle) { _glfw.x11.randr.AllocGamma = (PFN_XRRAllocGamma) _glfw_dlsym(_glfw.x11.randr.handle, "XRRAllocGamma"); _glfw.x11.randr.FreeGamma = (PFN_XRRFreeGamma) _glfw_dlsym(_glfw.x11.randr.handle, "XRRFreeGamma"); _glfw.x11.randr.FreeCrtcInfo = (PFN_XRRFreeCrtcInfo) _glfw_dlsym(_glfw.x11.randr.handle, "XRRFreeCrtcInfo"); _glfw.x11.randr.FreeGamma = (PFN_XRRFreeGamma) _glfw_dlsym(_glfw.x11.randr.handle, "XRRFreeGamma"); _glfw.x11.randr.FreeOutputInfo = (PFN_XRRFreeOutputInfo) _glfw_dlsym(_glfw.x11.randr.handle, "XRRFreeOutputInfo"); _glfw.x11.randr.FreeScreenResources = (PFN_XRRFreeScreenResources) _glfw_dlsym(_glfw.x11.randr.handle, "XRRFreeScreenResources"); _glfw.x11.randr.GetCrtcGamma = (PFN_XRRGetCrtcGamma) _glfw_dlsym(_glfw.x11.randr.handle, "XRRGetCrtcGamma"); _glfw.x11.randr.GetCrtcGammaSize = (PFN_XRRGetCrtcGammaSize) _glfw_dlsym(_glfw.x11.randr.handle, "XRRGetCrtcGammaSize"); _glfw.x11.randr.GetCrtcInfo = (PFN_XRRGetCrtcInfo) _glfw_dlsym(_glfw.x11.randr.handle, "XRRGetCrtcInfo"); _glfw.x11.randr.GetOutputInfo = (PFN_XRRGetOutputInfo) _glfw_dlsym(_glfw.x11.randr.handle, "XRRGetOutputInfo"); _glfw.x11.randr.GetOutputPrimary = (PFN_XRRGetOutputPrimary) _glfw_dlsym(_glfw.x11.randr.handle, "XRRGetOutputPrimary"); _glfw.x11.randr.GetScreenResourcesCurrent = (PFN_XRRGetScreenResourcesCurrent) _glfw_dlsym(_glfw.x11.randr.handle, "XRRGetScreenResourcesCurrent"); _glfw.x11.randr.QueryExtension = (PFN_XRRQueryExtension) _glfw_dlsym(_glfw.x11.randr.handle, "XRRQueryExtension"); _glfw.x11.randr.QueryVersion = (PFN_XRRQueryVersion) _glfw_dlsym(_glfw.x11.randr.handle, "XRRQueryVersion"); _glfw.x11.randr.SelectInput = (PFN_XRRSelectInput) _glfw_dlsym(_glfw.x11.randr.handle, "XRRSelectInput"); _glfw.x11.randr.SetCrtcConfig = (PFN_XRRSetCrtcConfig) _glfw_dlsym(_glfw.x11.randr.handle, "XRRSetCrtcConfig"); _glfw.x11.randr.SetCrtcGamma = (PFN_XRRSetCrtcGamma) _glfw_dlsym(_glfw.x11.randr.handle, "XRRSetCrtcGamma"); _glfw.x11.randr.UpdateConfiguration = (PFN_XRRUpdateConfiguration) _glfw_dlsym(_glfw.x11.randr.handle, "XRRUpdateConfiguration"); if (XRRQueryExtension(_glfw.x11.display, &_glfw.x11.randr.eventBase, &_glfw.x11.randr.errorBase)) { if (XRRQueryVersion(_glfw.x11.display, &_glfw.x11.randr.major, &_glfw.x11.randr.minor)) { // The GLFW RandR path requires at least version 1.3 if (_glfw.x11.randr.major > 1 || _glfw.x11.randr.minor >= 3) _glfw.x11.randr.available = GLFW_TRUE; } else { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to query RandR version"); } } } if (_glfw.x11.randr.available) { XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); if (!sr->ncrtc || !XRRGetCrtcGammaSize(_glfw.x11.display, sr->crtcs[0])) { // This is likely an older Nvidia driver with broken gamma support // Flag it as useless and fall back to xf86vm gamma, if available _glfw.x11.randr.gammaBroken = GLFW_TRUE; } if (!sr->ncrtc) { // A system without CRTCs is likely a system with broken RandR // Disable the RandR monitor path and fall back to core functions _glfw.x11.randr.monitorBroken = GLFW_TRUE; } XRRFreeScreenResources(sr); } if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { XRRSelectInput(_glfw.x11.display, _glfw.x11.root, RROutputChangeNotifyMask); } #if defined(__CYGWIN__) _glfw.x11.xcursor.handle = _glfw_dlopen("libXcursor-1.so"); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.xcursor.handle = _glfw_dlopen("libXcursor.so"); #else _glfw.x11.xcursor.handle = _glfw_dlopen("libXcursor.so.1"); #endif if (_glfw.x11.xcursor.handle) { _glfw.x11.xcursor.ImageCreate = (PFN_XcursorImageCreate) _glfw_dlsym(_glfw.x11.xcursor.handle, "XcursorImageCreate"); _glfw.x11.xcursor.ImageDestroy = (PFN_XcursorImageDestroy) _glfw_dlsym(_glfw.x11.xcursor.handle, "XcursorImageDestroy"); _glfw.x11.xcursor.ImageLoadCursor = (PFN_XcursorImageLoadCursor) _glfw_dlsym(_glfw.x11.xcursor.handle, "XcursorImageLoadCursor"); } #if defined(__CYGWIN__) _glfw.x11.xinerama.handle = _glfw_dlopen("libXinerama-1.so"); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.xinerama.handle = _glfw_dlopen("libXinerama.so"); #else _glfw.x11.xinerama.handle = _glfw_dlopen("libXinerama.so.1"); #endif if (_glfw.x11.xinerama.handle) { _glfw.x11.xinerama.IsActive = (PFN_XineramaIsActive) _glfw_dlsym(_glfw.x11.xinerama.handle, "XineramaIsActive"); _glfw.x11.xinerama.QueryExtension = (PFN_XineramaQueryExtension) _glfw_dlsym(_glfw.x11.xinerama.handle, "XineramaQueryExtension"); _glfw.x11.xinerama.QueryScreens = (PFN_XineramaQueryScreens) _glfw_dlsym(_glfw.x11.xinerama.handle, "XineramaQueryScreens"); if (XineramaQueryExtension(_glfw.x11.display, &_glfw.x11.xinerama.major, &_glfw.x11.xinerama.minor)) { if (XineramaIsActive(_glfw.x11.display)) _glfw.x11.xinerama.available = GLFW_TRUE; } } _glfw.x11.xkb.major = 1; _glfw.x11.xkb.minor = 0; _glfw.x11.xkb.available = XkbQueryExtension(_glfw.x11.display, &_glfw.x11.xkb.majorOpcode, &_glfw.x11.xkb.eventBase, &_glfw.x11.xkb.errorBase, &_glfw.x11.xkb.major, &_glfw.x11.xkb.minor); if (_glfw.x11.xkb.available) { Bool supported; if (XkbSetDetectableAutoRepeat(_glfw.x11.display, True, &supported)) { if (supported) _glfw.x11.xkb.detectable = GLFW_TRUE; } XkbStateRec state; if (XkbGetState(_glfw.x11.display, XkbUseCoreKbd, &state) == Success) _glfw.x11.xkb.group = (unsigned int)state.group; XkbSelectEventDetails(_glfw.x11.display, XkbUseCoreKbd, XkbStateNotify, XkbGroupStateMask, XkbGroupStateMask); } #if defined(__CYGWIN__) _glfw.x11.x11xcb.handle = _glfw_dlopen("libX11-xcb-1.so"); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.x11xcb.handle = _glfw_dlopen("libX11-xcb.so"); #else _glfw.x11.x11xcb.handle = _glfw_dlopen("libX11-xcb.so.1"); #endif if (_glfw.x11.x11xcb.handle) { _glfw.x11.x11xcb.GetXCBConnection = (PFN_XGetXCBConnection) _glfw_dlsym(_glfw.x11.x11xcb.handle, "XGetXCBConnection"); } #if defined(__CYGWIN__) _glfw.x11.xrender.handle = _glfw_dlopen("libXrender-1.so"); #elif defined(__OpenBSD__) || defined(__NetBSD__) _glfw.x11.xrender.handle = _glfw_dlopen("libXrender.so"); #else _glfw.x11.xrender.handle = _glfw_dlopen("libXrender.so.1"); #endif if (_glfw.x11.xrender.handle) { _glfw.x11.xrender.QueryExtension = (PFN_XRenderQueryExtension) _glfw_dlsym(_glfw.x11.xrender.handle, "XRenderQueryExtension"); _glfw.x11.xrender.QueryVersion = (PFN_XRenderQueryVersion) _glfw_dlsym(_glfw.x11.xrender.handle, "XRenderQueryVersion"); _glfw.x11.xrender.FindVisualFormat = (PFN_XRenderFindVisualFormat) _glfw_dlsym(_glfw.x11.xrender.handle, "XRenderFindVisualFormat"); if (XRenderQueryExtension(_glfw.x11.display, &_glfw.x11.xrender.errorBase, &_glfw.x11.xrender.eventBase)) { if (XRenderQueryVersion(_glfw.x11.display, &_glfw.x11.xrender.major, &_glfw.x11.xrender.minor)) { _glfw.x11.xrender.available = GLFW_TRUE; } } } // Update the key code LUT // FIXME: We should listen to XkbMapNotify events to track changes to // the keyboard mapping. createKeyTables(); // String format atoms _glfw.x11.NULL_ = XInternAtom(_glfw.x11.display, "NULL", False); _glfw.x11.UTF8_STRING = XInternAtom(_glfw.x11.display, "UTF8_STRING", False); _glfw.x11.ATOM_PAIR = XInternAtom(_glfw.x11.display, "ATOM_PAIR", False); // Custom selection property atom _glfw.x11.GLFW_SELECTION = XInternAtom(_glfw.x11.display, "GLFW_SELECTION", False); // ICCCM standard clipboard atoms _glfw.x11.TARGETS = XInternAtom(_glfw.x11.display, "TARGETS", False); _glfw.x11.MULTIPLE = XInternAtom(_glfw.x11.display, "MULTIPLE", False); _glfw.x11.PRIMARY = XInternAtom(_glfw.x11.display, "PRIMARY", False); _glfw.x11.INCR = XInternAtom(_glfw.x11.display, "INCR", False); _glfw.x11.CLIPBOARD = XInternAtom(_glfw.x11.display, "CLIPBOARD", False); // Clipboard manager atoms _glfw.x11.CLIPBOARD_MANAGER = XInternAtom(_glfw.x11.display, "CLIPBOARD_MANAGER", False); _glfw.x11.SAVE_TARGETS = XInternAtom(_glfw.x11.display, "SAVE_TARGETS", False); // Xdnd (drag and drop) atoms _glfw.x11.XdndAware = XInternAtom(_glfw.x11.display, "XdndAware", False); _glfw.x11.XdndEnter = XInternAtom(_glfw.x11.display, "XdndEnter", False); _glfw.x11.XdndPosition = XInternAtom(_glfw.x11.display, "XdndPosition", False); _glfw.x11.XdndStatus = XInternAtom(_glfw.x11.display, "XdndStatus", False); _glfw.x11.XdndActionCopy = XInternAtom(_glfw.x11.display, "XdndActionCopy", False); _glfw.x11.XdndDrop = XInternAtom(_glfw.x11.display, "XdndDrop", False); _glfw.x11.XdndFinished = XInternAtom(_glfw.x11.display, "XdndFinished", False); _glfw.x11.XdndSelection = XInternAtom(_glfw.x11.display, "XdndSelection", False); _glfw.x11.XdndTypeList = XInternAtom(_glfw.x11.display, "XdndTypeList", False); _glfw.x11.text_uri_list = XInternAtom(_glfw.x11.display, "text/uri-list", False); // ICCCM, EWMH and Motif window property atoms // These can be set safely even without WM support // The EWMH atoms that require WM support are handled in detectEWMH _glfw.x11.WM_PROTOCOLS = XInternAtom(_glfw.x11.display, "WM_PROTOCOLS", False); _glfw.x11.WM_STATE = XInternAtom(_glfw.x11.display, "WM_STATE", False); _glfw.x11.WM_DELETE_WINDOW = XInternAtom(_glfw.x11.display, "WM_DELETE_WINDOW", False); _glfw.x11.NET_SUPPORTED = XInternAtom(_glfw.x11.display, "_NET_SUPPORTED", False); _glfw.x11.NET_SUPPORTING_WM_CHECK = XInternAtom(_glfw.x11.display, "_NET_SUPPORTING_WM_CHECK", False); _glfw.x11.NET_WM_ICON = XInternAtom(_glfw.x11.display, "_NET_WM_ICON", False); _glfw.x11.NET_WM_PING = XInternAtom(_glfw.x11.display, "_NET_WM_PING", False); _glfw.x11.NET_WM_PID = XInternAtom(_glfw.x11.display, "_NET_WM_PID", False); _glfw.x11.NET_WM_NAME = XInternAtom(_glfw.x11.display, "_NET_WM_NAME", False); _glfw.x11.NET_WM_ICON_NAME = XInternAtom(_glfw.x11.display, "_NET_WM_ICON_NAME", False); _glfw.x11.NET_WM_BYPASS_COMPOSITOR = XInternAtom(_glfw.x11.display, "_NET_WM_BYPASS_COMPOSITOR", False); _glfw.x11.NET_WM_WINDOW_OPACITY = XInternAtom(_glfw.x11.display, "_NET_WM_WINDOW_OPACITY", False); _glfw.x11.MOTIF_WM_HINTS = XInternAtom(_glfw.x11.display, "_MOTIF_WM_HINTS", False); // The compositing manager selection name contains the screen number { char name[32]; snprintf(name, sizeof(name), "_NET_WM_CM_S%u", _glfw.x11.screen); _glfw.x11.NET_WM_CM_Sx = XInternAtom(_glfw.x11.display, name, False); } // Detect whether an EWMH-conformant window manager is running detectEWMH(); return GLFW_TRUE; } // Retrieve system content scale via folklore heuristics // static void getSystemContentScale(float* xscale, float* yscale) { // Start by assuming the default X11 DPI // NOTE: Some desktop environments (KDE) may remove the Xft.dpi field when it // would be set to 96, so assume that is the case if we cannot find it float xdpi = 96.f, ydpi = 96.f; // NOTE: Basing the scale on Xft.dpi where available should provide the most // consistent user experience (matches Qt, Gtk, etc), although not // always the most accurate one char* rms = XResourceManagerString(_glfw.x11.display); if (rms) { XrmDatabase db = XrmGetStringDatabase(rms); if (db) { XrmValue value; char* type = NULL; if (XrmGetResource(db, "Xft.dpi", "Xft.Dpi", &type, &value)) { if (type && strcmp(type, "String") == 0) xdpi = ydpi = atof(value.addr); } XrmDestroyDatabase(db); } } *xscale = xdpi / 96.f; *yscale = ydpi / 96.f; } // Create a blank cursor for hidden and disabled cursor modes // static Cursor createHiddenCursor(void) { unsigned char pixels[16 * 16 * 4] = { 0 }; GLFWimage image = { 16, 16, pixels }; return _glfwCreateCursorX11(&image, 0, 0); } // Create a helper window for IPC // static Window createHelperWindow(void) { XSetWindowAttributes wa; wa.event_mask = PropertyChangeMask; return XCreateWindow(_glfw.x11.display, _glfw.x11.root, 0, 0, 1, 1, 0, 0, InputOnly, DefaultVisual(_glfw.x11.display, _glfw.x11.screen), CWEventMask, &wa); } // Create the pipe for empty events without assumuing the OS has pipe2(2) // static GLFWbool createEmptyEventPipe(void) { if (pipe(_glfw.x11.emptyEventPipe) != 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to create empty event pipe: %s", strerror(errno)); return GLFW_FALSE; } for (int i = 0; i < 2; i++) { const int sf = fcntl(_glfw.x11.emptyEventPipe[i], F_GETFL, 0); const int df = fcntl(_glfw.x11.emptyEventPipe[i], F_GETFD, 0); if (sf == -1 || df == -1 || fcntl(_glfw.x11.emptyEventPipe[i], F_SETFL, sf | O_NONBLOCK) == -1 || fcntl(_glfw.x11.emptyEventPipe[i], F_SETFD, df | FD_CLOEXEC) == -1) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to set flags for empty event pipe: %s", strerror(errno)); return GLFW_FALSE; } } return GLFW_TRUE; } // X error handler // static int errorHandler(Display *display, XErrorEvent* event) { if (_glfw.x11.display != display) return 0; _glfw.x11.errorCode = event->error_code; return 0; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Sets the X error handler callback // void _glfwGrabErrorHandlerX11(void) { _glfw.x11.errorCode = Success; XSetErrorHandler(errorHandler); } // Clears the X error handler callback // void _glfwReleaseErrorHandlerX11(void) { // Synchronize to make sure all commands are processed XSync(_glfw.x11.display, False); XSetErrorHandler(NULL); } // Reports the specified error, appending information about the last X error // void _glfwInputErrorX11(int error, const char* message) { char buffer[_GLFW_MESSAGE_SIZE]; XGetErrorText(_glfw.x11.display, _glfw.x11.errorCode, buffer, sizeof(buffer)); _glfwInputError(error, "%s: %s", message, buffer); } // Creates a native cursor object from the specified image and hotspot // Cursor _glfwCreateCursorX11(const GLFWimage* image, int xhot, int yhot) { int i; Cursor cursor; if (!_glfw.x11.xcursor.handle) return None; XcursorImage* native = XcursorImageCreate(image->width, image->height); if (native == NULL) return None; native->xhot = xhot; native->yhot = yhot; unsigned char* source = (unsigned char*) image->pixels; XcursorPixel* target = native->pixels; for (i = 0; i < image->width * image->height; i++, target++, source += 4) { unsigned int alpha = source[3]; *target = (alpha << 24) | ((unsigned char) ((source[0] * alpha) / 255) << 16) | ((unsigned char) ((source[1] * alpha) / 255) << 8) | ((unsigned char) ((source[2] * alpha) / 255) << 0); } cursor = XcursorImageLoadCursor(_glfw.x11.display, native); XcursorImageDestroy(native); return cursor; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void) { // HACK: If the application has left the locale as "C" then both wide // character text input and explicit UTF-8 input via XIM will break // This sets the CTYPE part of the current locale from the environment // in the hope that it is set to something more sane than "C" if (strcmp(setlocale(LC_CTYPE, NULL), "C") == 0) setlocale(LC_CTYPE, ""); XInitThreads(); XrmInitialize(); _glfw.x11.display = XOpenDisplay(NULL); if (!_glfw.x11.display) { const char* display = getenv("DISPLAY"); if (display) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to open display %s", display); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: The DISPLAY environment variable is missing"); } return GLFW_FALSE; } _glfw.x11.screen = DefaultScreen(_glfw.x11.display); _glfw.x11.root = RootWindow(_glfw.x11.display, _glfw.x11.screen); _glfw.x11.context = XUniqueContext(); getSystemContentScale(&_glfw.x11.contentScaleX, &_glfw.x11.contentScaleY); if (!createEmptyEventPipe()) return GLFW_FALSE; if (!initExtensions()) return GLFW_FALSE; _glfw.x11.helperWindowHandle = createHelperWindow(); _glfw.x11.hiddenCursorHandle = createHiddenCursor(); if (XSupportsLocale()) { XSetLocaleModifiers(""); _glfw.x11.im = XOpenIM(_glfw.x11.display, 0, NULL, NULL); if (_glfw.x11.im) { if (!hasUsableInputMethodStyle()) { XCloseIM(_glfw.x11.im); _glfw.x11.im = NULL; } } } #if defined(__linux__) if (!_glfwInitJoysticksLinux()) return GLFW_FALSE; #endif _glfwInitTimerPOSIX(); _glfwPollMonitorsX11(); return GLFW_TRUE; } void _glfwPlatformTerminate(void) { if (_glfw.x11.helperWindowHandle) { if (XGetSelectionOwner(_glfw.x11.display, _glfw.x11.CLIPBOARD) == _glfw.x11.helperWindowHandle) { _glfwPushSelectionToManagerX11(); } XDestroyWindow(_glfw.x11.display, _glfw.x11.helperWindowHandle); _glfw.x11.helperWindowHandle = None; } if (_glfw.x11.hiddenCursorHandle) { XFreeCursor(_glfw.x11.display, _glfw.x11.hiddenCursorHandle); _glfw.x11.hiddenCursorHandle = (Cursor) 0; } free(_glfw.x11.primarySelectionString); free(_glfw.x11.clipboardString); if (_glfw.x11.im) { XCloseIM(_glfw.x11.im); _glfw.x11.im = NULL; } if (_glfw.x11.display) { XCloseDisplay(_glfw.x11.display); _glfw.x11.display = NULL; } if (_glfw.x11.x11xcb.handle) { _glfw_dlclose(_glfw.x11.x11xcb.handle); _glfw.x11.x11xcb.handle = NULL; } if (_glfw.x11.xcursor.handle) { _glfw_dlclose(_glfw.x11.xcursor.handle); _glfw.x11.xcursor.handle = NULL; } if (_glfw.x11.randr.handle) { _glfw_dlclose(_glfw.x11.randr.handle); _glfw.x11.randr.handle = NULL; } if (_glfw.x11.xinerama.handle) { _glfw_dlclose(_glfw.x11.xinerama.handle); _glfw.x11.xinerama.handle = NULL; } if (_glfw.x11.xrender.handle) { _glfw_dlclose(_glfw.x11.xrender.handle); _glfw.x11.xrender.handle = NULL; } if (_glfw.x11.vidmode.handle) { _glfw_dlclose(_glfw.x11.vidmode.handle); _glfw.x11.vidmode.handle = NULL; } if (_glfw.x11.xi.handle) { _glfw_dlclose(_glfw.x11.xi.handle); _glfw.x11.xi.handle = NULL; } // NOTE: These need to be unloaded after XCloseDisplay, as they register // cleanup callbacks that get called by that function _glfwTerminateEGL(); _glfwTerminateGLX(); #if defined(__linux__) _glfwTerminateJoysticksLinux(); #endif if (_glfw.x11.emptyEventPipe[0] || _glfw.x11.emptyEventPipe[1]) { close(_glfw.x11.emptyEventPipe[0]); close(_glfw.x11.emptyEventPipe[1]); } } const char* _glfwPlatformGetVersionString(void) { return _GLFW_VERSION_NUMBER " X11 GLX EGL OSMesa" #if defined(_POSIX_TIMERS) && defined(_POSIX_MONOTONIC_CLOCK) " clock_gettime" #else " gettimeofday" #endif #if defined(__linux__) " evdev" #endif #if defined(_GLFW_BUILD_DLL) " shared" #endif ; } #endif #ifndef HEADER_GUARD_X11_MONITOR_C #define HEADER_GUARD_X11_MONITOR_C //======================================================================== // GLFW 3.3.7 X11 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #include // Check whether the display mode should be included in enumeration // static GLFWbool modeIsGood(const XRRModeInfo* mi) { return (mi->modeFlags & RR_Interlace) == 0; } // Calculates the refresh rate, in Hz, from the specified RandR mode info // static int calculateRefreshRate(const XRRModeInfo* mi) { if (mi->hTotal && mi->vTotal) return (int) round((double) mi->dotClock / ((double) mi->hTotal * (double) mi->vTotal)); else return 0; } // Returns the mode info for a RandR mode XID // static const XRRModeInfo* getModeInfo(const XRRScreenResources* sr, RRMode id) { for (int i = 0; i < sr->nmode; i++) { if (sr->modes[i].id == id) return sr->modes + i; } return NULL; } // Convert RandR mode info to GLFW video mode // static GLFWvidmode vidmodeFromModeInfo(const XRRModeInfo* mi, const XRRCrtcInfo* ci) { GLFWvidmode mode; if (ci->rotation == RR_Rotate_90 || ci->rotation == RR_Rotate_270) { mode.width = mi->height; mode.height = mi->width; } else { mode.width = mi->width; mode.height = mi->height; } mode.refreshRate = calculateRefreshRate(mi); _glfwSplitBPP(DefaultDepth(_glfw.x11.display, _glfw.x11.screen), &mode.redBits, &mode.greenBits, &mode.blueBits); return mode; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Poll for changes in the set of connected monitors // void _glfwPollMonitorsX11(void) { if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { int disconnectedCount, screenCount = 0; _GLFWmonitor** disconnected = NULL; XineramaScreenInfo* screens = NULL; XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); RROutput primary = XRRGetOutputPrimary(_glfw.x11.display, _glfw.x11.root); if (_glfw.x11.xinerama.available) screens = XineramaQueryScreens(_glfw.x11.display, &screenCount); disconnectedCount = _glfw.monitorCount; if (disconnectedCount) { disconnected = calloc(_glfw.monitorCount, sizeof(_GLFWmonitor*)); memcpy(disconnected, _glfw.monitors, _glfw.monitorCount * sizeof(_GLFWmonitor*)); } for (int i = 0; i < sr->noutput; i++) { int j, type, widthMM, heightMM; XRROutputInfo* oi = XRRGetOutputInfo(_glfw.x11.display, sr, sr->outputs[i]); if (oi->connection != RR_Connected || oi->crtc == None) { XRRFreeOutputInfo(oi); continue; } for (j = 0; j < disconnectedCount; j++) { if (disconnected[j] && disconnected[j]->x11.output == sr->outputs[i]) { disconnected[j] = NULL; break; } } if (j < disconnectedCount) { XRRFreeOutputInfo(oi); continue; } XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, oi->crtc); if (ci->rotation == RR_Rotate_90 || ci->rotation == RR_Rotate_270) { widthMM = oi->mm_height; heightMM = oi->mm_width; } else { widthMM = oi->mm_width; heightMM = oi->mm_height; } if (widthMM <= 0 || heightMM <= 0) { // HACK: If RandR does not provide a physical size, assume the // X11 default 96 DPI and calculate from the CRTC viewport // NOTE: These members are affected by rotation, unlike the mode // info and output info members widthMM = (int) (ci->width * 25.4f / 96.f); heightMM = (int) (ci->height * 25.4f / 96.f); } _GLFWmonitor* monitor = _glfwAllocMonitor(oi->name, widthMM, heightMM); monitor->x11.output = sr->outputs[i]; monitor->x11.crtc = oi->crtc; for (j = 0; j < screenCount; j++) { if (screens[j].x_org == ci->x && screens[j].y_org == ci->y && screens[j].width == ci->width && screens[j].height == ci->height) { monitor->x11.index = j; break; } } if (monitor->x11.output == primary) type = _GLFW_INSERT_FIRST; else type = _GLFW_INSERT_LAST; _glfwInputMonitor(monitor, GLFW_CONNECTED, type); XRRFreeOutputInfo(oi); XRRFreeCrtcInfo(ci); } XRRFreeScreenResources(sr); if (screens) XFree(screens); for (int i = 0; i < disconnectedCount; i++) { if (disconnected[i]) _glfwInputMonitor(disconnected[i], GLFW_DISCONNECTED, 0); } free(disconnected); } else { const int widthMM = DisplayWidthMM(_glfw.x11.display, _glfw.x11.screen); const int heightMM = DisplayHeightMM(_glfw.x11.display, _glfw.x11.screen); _glfwInputMonitor(_glfwAllocMonitor("Display", widthMM, heightMM), GLFW_CONNECTED, _GLFW_INSERT_FIRST); } } // Set the current video mode for the specified monitor // void _glfwSetVideoModeX11(_GLFWmonitor* monitor, const GLFWvidmode* desired) { if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { GLFWvidmode current; RRMode native = None; const GLFWvidmode* best = _glfwChooseVideoMode(monitor, desired); _glfwPlatformGetVideoMode(monitor, ¤t); if (_glfwCompareVideoModes(¤t, best) == 0) return; XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, monitor->x11.crtc); XRROutputInfo* oi = XRRGetOutputInfo(_glfw.x11.display, sr, monitor->x11.output); for (int i = 0; i < oi->nmode; i++) { const XRRModeInfo* mi = getModeInfo(sr, oi->modes[i]); if (!modeIsGood(mi)) continue; const GLFWvidmode mode = vidmodeFromModeInfo(mi, ci); if (_glfwCompareVideoModes(best, &mode) == 0) { native = mi->id; break; } } if (native) { if (monitor->x11.oldMode == None) monitor->x11.oldMode = ci->mode; XRRSetCrtcConfig(_glfw.x11.display, sr, monitor->x11.crtc, CurrentTime, ci->x, ci->y, native, ci->rotation, ci->outputs, ci->noutput); } XRRFreeOutputInfo(oi); XRRFreeCrtcInfo(ci); XRRFreeScreenResources(sr); } } // Restore the saved (original) video mode for the specified monitor // void _glfwRestoreVideoModeX11(_GLFWmonitor* monitor) { if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { if (monitor->x11.oldMode == None) return; XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, monitor->x11.crtc); XRRSetCrtcConfig(_glfw.x11.display, sr, monitor->x11.crtc, CurrentTime, ci->x, ci->y, monitor->x11.oldMode, ci->rotation, ci->outputs, ci->noutput); XRRFreeCrtcInfo(ci); XRRFreeScreenResources(sr); monitor->x11.oldMode = None; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// void _glfwPlatformFreeMonitor(_GLFWmonitor* monitor) { } void _glfwPlatformGetMonitorPos(_GLFWmonitor* monitor, int* xpos, int* ypos) { if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, monitor->x11.crtc); if (ci) { if (xpos) *xpos = ci->x; if (ypos) *ypos = ci->y; XRRFreeCrtcInfo(ci); } XRRFreeScreenResources(sr); } } void _glfwPlatformGetMonitorContentScale(_GLFWmonitor* monitor, float* xscale, float* yscale) { if (xscale) *xscale = _glfw.x11.contentScaleX; if (yscale) *yscale = _glfw.x11.contentScaleY; } void _glfwPlatformGetMonitorWorkarea(_GLFWmonitor* monitor, int* xpos, int* ypos, int* width, int* height) { int areaX = 0, areaY = 0, areaWidth = 0, areaHeight = 0; if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, monitor->x11.crtc); areaX = ci->x; areaY = ci->y; const XRRModeInfo* mi = getModeInfo(sr, ci->mode); if (ci->rotation == RR_Rotate_90 || ci->rotation == RR_Rotate_270) { areaWidth = mi->height; areaHeight = mi->width; } else { areaWidth = mi->width; areaHeight = mi->height; } XRRFreeCrtcInfo(ci); XRRFreeScreenResources(sr); } else { areaWidth = DisplayWidth(_glfw.x11.display, _glfw.x11.screen); areaHeight = DisplayHeight(_glfw.x11.display, _glfw.x11.screen); } if (_glfw.x11.NET_WORKAREA && _glfw.x11.NET_CURRENT_DESKTOP) { Atom* extents = NULL; Atom* desktop = NULL; const unsigned long extentCount = _glfwGetWindowPropertyX11(_glfw.x11.root, _glfw.x11.NET_WORKAREA, XA_CARDINAL, (unsigned char**) &extents); if (_glfwGetWindowPropertyX11(_glfw.x11.root, _glfw.x11.NET_CURRENT_DESKTOP, XA_CARDINAL, (unsigned char**) &desktop) > 0) { if (extentCount >= 4 && *desktop < extentCount / 4) { const int globalX = extents[*desktop * 4 + 0]; const int globalY = extents[*desktop * 4 + 1]; const int globalWidth = extents[*desktop * 4 + 2]; const int globalHeight = extents[*desktop * 4 + 3]; if (areaX < globalX) { areaWidth -= globalX - areaX; areaX = globalX; } if (areaY < globalY) { areaHeight -= globalY - areaY; areaY = globalY; } if (areaX + areaWidth > globalX + globalWidth) areaWidth = globalX - areaX + globalWidth; if (areaY + areaHeight > globalY + globalHeight) areaHeight = globalY - areaY + globalHeight; } } if (extents) XFree(extents); if (desktop) XFree(desktop); } if (xpos) *xpos = areaX; if (ypos) *ypos = areaY; if (width) *width = areaWidth; if (height) *height = areaHeight; } GLFWvidmode* _glfwPlatformGetVideoModes(_GLFWmonitor* monitor, int* count) { GLFWvidmode* result; *count = 0; if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, monitor->x11.crtc); XRROutputInfo* oi = XRRGetOutputInfo(_glfw.x11.display, sr, monitor->x11.output); result = calloc(oi->nmode, sizeof(GLFWvidmode)); for (int i = 0; i < oi->nmode; i++) { const XRRModeInfo* mi = getModeInfo(sr, oi->modes[i]); if (!modeIsGood(mi)) continue; const GLFWvidmode mode = vidmodeFromModeInfo(mi, ci); int j; for (j = 0; j < *count; j++) { if (_glfwCompareVideoModes(result + j, &mode) == 0) break; } // Skip duplicate modes if (j < *count) continue; (*count)++; result[*count - 1] = mode; } XRRFreeOutputInfo(oi); XRRFreeCrtcInfo(ci); XRRFreeScreenResources(sr); } else { *count = 1; result = calloc(1, sizeof(GLFWvidmode)); _glfwPlatformGetVideoMode(monitor, result); } return result; } void _glfwPlatformGetVideoMode(_GLFWmonitor* monitor, GLFWvidmode* mode) { if (_glfw.x11.randr.available && !_glfw.x11.randr.monitorBroken) { XRRScreenResources* sr = XRRGetScreenResourcesCurrent(_glfw.x11.display, _glfw.x11.root); XRRCrtcInfo* ci = XRRGetCrtcInfo(_glfw.x11.display, sr, monitor->x11.crtc); if (ci) { const XRRModeInfo* mi = getModeInfo(sr, ci->mode); if (mi) // mi can be NULL if the monitor has been disconnected *mode = vidmodeFromModeInfo(mi, ci); XRRFreeCrtcInfo(ci); } XRRFreeScreenResources(sr); } else { mode->width = DisplayWidth(_glfw.x11.display, _glfw.x11.screen); mode->height = DisplayHeight(_glfw.x11.display, _glfw.x11.screen); mode->refreshRate = 0; _glfwSplitBPP(DefaultDepth(_glfw.x11.display, _glfw.x11.screen), &mode->redBits, &mode->greenBits, &mode->blueBits); } } GLFWbool _glfwPlatformGetGammaRamp(_GLFWmonitor* monitor, GLFWgammaramp* ramp) { if (_glfw.x11.randr.available && !_glfw.x11.randr.gammaBroken) { const size_t size = XRRGetCrtcGammaSize(_glfw.x11.display, monitor->x11.crtc); XRRCrtcGamma* gamma = XRRGetCrtcGamma(_glfw.x11.display, monitor->x11.crtc); _glfwAllocGammaArrays(ramp, size); memcpy(ramp->red, gamma->red, size * sizeof(unsigned short)); memcpy(ramp->green, gamma->green, size * sizeof(unsigned short)); memcpy(ramp->blue, gamma->blue, size * sizeof(unsigned short)); XRRFreeGamma(gamma); return GLFW_TRUE; } else if (_glfw.x11.vidmode.available) { int size; XF86VidModeGetGammaRampSize(_glfw.x11.display, _glfw.x11.screen, &size); _glfwAllocGammaArrays(ramp, size); XF86VidModeGetGammaRamp(_glfw.x11.display, _glfw.x11.screen, ramp->size, ramp->red, ramp->green, ramp->blue); return GLFW_TRUE; } else { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Gamma ramp access not supported by server"); return GLFW_FALSE; } } void _glfwPlatformSetGammaRamp(_GLFWmonitor* monitor, const GLFWgammaramp* ramp) { if (_glfw.x11.randr.available && !_glfw.x11.randr.gammaBroken) { if (XRRGetCrtcGammaSize(_glfw.x11.display, monitor->x11.crtc) != ramp->size) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Gamma ramp size must match current ramp size"); return; } XRRCrtcGamma* gamma = XRRAllocGamma(ramp->size); memcpy(gamma->red, ramp->red, ramp->size * sizeof(unsigned short)); memcpy(gamma->green, ramp->green, ramp->size * sizeof(unsigned short)); memcpy(gamma->blue, ramp->blue, ramp->size * sizeof(unsigned short)); XRRSetCrtcGamma(_glfw.x11.display, monitor->x11.crtc, gamma); XRRFreeGamma(gamma); } else if (_glfw.x11.vidmode.available) { XF86VidModeSetGammaRamp(_glfw.x11.display, _glfw.x11.screen, ramp->size, (unsigned short*) ramp->red, (unsigned short*) ramp->green, (unsigned short*) ramp->blue); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Gamma ramp access not supported by server"); } } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI RRCrtc glfwGetX11Adapter(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(None); return monitor->x11.crtc; } GLFWAPI RROutput glfwGetX11Monitor(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(None); return monitor->x11.output; } #endif #ifndef HEADER_GUARD_X11_WINDOW_C #define HEADER_GUARD_X11_WINDOW_C //======================================================================== // GLFW 3.3.7 X11 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include // Action for EWMH client messages #define _NET_WM_STATE_REMOVE 0 #define _NET_WM_STATE_ADD 1 #define _NET_WM_STATE_TOGGLE 2 // Additional mouse button names for XButtonEvent #define Button6 6 #define Button7 7 // Motif WM hints flags #define MWM_HINTS_DECORATIONS 2 #define MWM_DECOR_ALL 1 #define _GLFW_XDND_VERSION 5 // Wait for data to arrive on any of the specified file descriptors // static GLFWbool waitForData(struct pollfd* fds, nfds_t count, double* timeout) { for (;;) { if (timeout) { const uint64_t base = _glfwPlatformGetTimerValue(); #if defined(__linux__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__CYGWIN__) const time_t seconds = (time_t) *timeout; const long nanoseconds = (long) ((*timeout - seconds) * 1e9); const struct timespec ts = { seconds, nanoseconds }; const int result = ppoll(fds, count, &ts, NULL); #elif defined(__NetBSD__) const time_t seconds = (time_t) *timeout; const long nanoseconds = (long) ((*timeout - seconds) * 1e9); const struct timespec ts = { seconds, nanoseconds }; const int result = pollts(fds, count, &ts, NULL); #else const int milliseconds = (int) (*timeout * 1e3); const int result = poll(fds, count, milliseconds); #endif const int error = errno; // clock_gettime may overwrite our error *timeout -= (_glfwPlatformGetTimerValue() - base) / (double) _glfwPlatformGetTimerFrequency(); if (result > 0) return GLFW_TRUE; else if (result == -1 && error != EINTR && error != EAGAIN) return GLFW_FALSE; else if (*timeout <= 0.0) return GLFW_FALSE; } else { const int result = poll(fds, count, -1); if (result > 0) return GLFW_TRUE; else if (result == -1 && errno != EINTR && errno != EAGAIN) return GLFW_FALSE; } } } // Wait for event data to arrive on the X11 display socket // This avoids blocking other threads via the per-display Xlib lock that also // covers GLX functions // static GLFWbool waitForX11Event(double* timeout) { struct pollfd fd = { ConnectionNumber(_glfw.x11.display), POLLIN }; while (!XPending(_glfw.x11.display)) { if (!waitForData(&fd, 1, timeout)) return GLFW_FALSE; } return GLFW_TRUE; } // Wait for event data to arrive on any event file descriptor // This avoids blocking other threads via the per-display Xlib lock that also // covers GLX functions // static GLFWbool waitForAnyEvent(double* timeout) { nfds_t count = 2; struct pollfd fds[3] = { { ConnectionNumber(_glfw.x11.display), POLLIN }, { _glfw.x11.emptyEventPipe[0], POLLIN } }; #if defined(__linux__) if (_glfw.linjs.inotify > 0) fds[count++] = (struct pollfd) { _glfw.linjs.inotify, POLLIN }; #endif while (!XPending(_glfw.x11.display)) { if (!waitForData(fds, count, timeout)) return GLFW_FALSE; for (int i = 1; i < count; i++) { if (fds[i].revents & POLLIN) return GLFW_TRUE; } } return GLFW_TRUE; } // Writes a byte to the empty event pipe // static void writeEmptyEvent(void) { for (;;) { const char byte = 0; const int result = write(_glfw.x11.emptyEventPipe[1], &byte, 1); if (result == 1 || (result == -1 && errno != EINTR)) break; } } // Drains available data from the empty event pipe // static void drainEmptyEvents(void) { for (;;) { char dummy[64]; const int result = read(_glfw.x11.emptyEventPipe[0], dummy, sizeof(dummy)); if (result == -1 && errno != EINTR) break; } } // Waits until a VisibilityNotify event arrives for the specified window or the // timeout period elapses (ICCCM section 4.2.2) // static GLFWbool waitForVisibilityNotify(_GLFWwindow* window) { XEvent dummy; double timeout = 0.1; while (!XCheckTypedWindowEvent(_glfw.x11.display, window->x11.handle, VisibilityNotify, &dummy)) { if (!waitForX11Event(&timeout)) return GLFW_FALSE; } return GLFW_TRUE; } // Returns whether the window is iconified // static int getWindowState(_GLFWwindow* window) { int result = WithdrawnState; struct { CARD32 state; Window icon; } *state = NULL; if (_glfwGetWindowPropertyX11(window->x11.handle, _glfw.x11.WM_STATE, _glfw.x11.WM_STATE, (unsigned char**) &state) >= 2) { result = state->state; } if (state) XFree(state); return result; } // Returns whether the event is a selection event // static Bool isSelectionEvent(Display* display, XEvent* event, XPointer pointer) { if (event->xany.window != _glfw.x11.helperWindowHandle) return False; return event->type == SelectionRequest || event->type == SelectionNotify || event->type == SelectionClear; } // Returns whether it is a _NET_FRAME_EXTENTS event for the specified window // static Bool isFrameExtentsEvent(Display* display, XEvent* event, XPointer pointer) { _GLFWwindow* window = (_GLFWwindow*) pointer; return event->type == PropertyNotify && event->xproperty.state == PropertyNewValue && event->xproperty.window == window->x11.handle && event->xproperty.atom == _glfw.x11.NET_FRAME_EXTENTS; } // Returns whether it is a property event for the specified selection transfer // static Bool isSelPropNewValueNotify(Display* display, XEvent* event, XPointer pointer) { XEvent* notification = (XEvent*) pointer; return event->type == PropertyNotify && event->xproperty.state == PropertyNewValue && event->xproperty.window == notification->xselection.requestor && event->xproperty.atom == notification->xselection.property; } // Translates an X event modifier state mask // static int translateState(int state) { int mods = 0; if (state & ShiftMask) mods |= GLFW_MOD_SHIFT; if (state & ControlMask) mods |= GLFW_MOD_CONTROL; if (state & Mod1Mask) mods |= GLFW_MOD_ALT; if (state & Mod4Mask) mods |= GLFW_MOD_SUPER; if (state & LockMask) mods |= GLFW_MOD_CAPS_LOCK; if (state & Mod2Mask) mods |= GLFW_MOD_NUM_LOCK; return mods; } // Translates an X11 key code to a GLFW key token // static int translateKey(int scancode) { // Use the pre-filled LUT (see createKeyTables() in x11_init.c) if (scancode < 0 || scancode > 255) return GLFW_KEY_UNKNOWN; return _glfw.x11.keycodes[scancode]; } // Sends an EWMH or ICCCM event to the window manager // static void sendEventToWM(_GLFWwindow* window, Atom type, long a, long b, long c, long d, long e) { XEvent event = { ClientMessage }; event.xclient.window = window->x11.handle; event.xclient.format = 32; // Data is 32-bit longs event.xclient.message_type = type; event.xclient.data.l[0] = a; event.xclient.data.l[1] = b; event.xclient.data.l[2] = c; event.xclient.data.l[3] = d; event.xclient.data.l[4] = e; XSendEvent(_glfw.x11.display, _glfw.x11.root, False, SubstructureNotifyMask | SubstructureRedirectMask, &event); } // Updates the normal hints according to the window settings // static void updateNormalHints(_GLFWwindow* window, int width, int height) { XSizeHints* hints = XAllocSizeHints(); if (!window->monitor) { if (window->resizable) { if (window->minwidth != GLFW_DONT_CARE && window->minheight != GLFW_DONT_CARE) { hints->flags |= PMinSize; hints->min_width = window->minwidth; hints->min_height = window->minheight; } if (window->maxwidth != GLFW_DONT_CARE && window->maxheight != GLFW_DONT_CARE) { hints->flags |= PMaxSize; hints->max_width = window->maxwidth; hints->max_height = window->maxheight; } if (window->numer != GLFW_DONT_CARE && window->denom != GLFW_DONT_CARE) { hints->flags |= PAspect; hints->min_aspect.x = hints->max_aspect.x = window->numer; hints->min_aspect.y = hints->max_aspect.y = window->denom; } } else { hints->flags |= (PMinSize | PMaxSize); hints->min_width = hints->max_width = width; hints->min_height = hints->max_height = height; } } hints->flags |= PWinGravity; hints->win_gravity = StaticGravity; XSetWMNormalHints(_glfw.x11.display, window->x11.handle, hints); XFree(hints); } // Updates the full screen status of the window // static void updateWindowMode(_GLFWwindow* window) { if (window->monitor) { if (_glfw.x11.xinerama.available && _glfw.x11.NET_WM_FULLSCREEN_MONITORS) { sendEventToWM(window, _glfw.x11.NET_WM_FULLSCREEN_MONITORS, window->monitor->x11.index, window->monitor->x11.index, window->monitor->x11.index, window->monitor->x11.index, 0); } if (_glfw.x11.NET_WM_STATE && _glfw.x11.NET_WM_STATE_FULLSCREEN) { sendEventToWM(window, _glfw.x11.NET_WM_STATE, _NET_WM_STATE_ADD, _glfw.x11.NET_WM_STATE_FULLSCREEN, 0, 1, 0); } else { // This is the butcher's way of removing window decorations // Setting the override-redirect attribute on a window makes the // window manager ignore the window completely (ICCCM, section 4) // The good thing is that this makes undecorated full screen windows // easy to do; the bad thing is that we have to do everything // manually and some things (like iconify/restore) won't work at // all, as those are tasks usually performed by the window manager XSetWindowAttributes attributes; attributes.override_redirect = True; XChangeWindowAttributes(_glfw.x11.display, window->x11.handle, CWOverrideRedirect, &attributes); window->x11.overrideRedirect = GLFW_TRUE; } // Enable compositor bypass if (!window->x11.transparent) { const unsigned long value = 1; XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_BYPASS_COMPOSITOR, XA_CARDINAL, 32, PropModeReplace, (unsigned char*) &value, 1); } } else { if (_glfw.x11.xinerama.available && _glfw.x11.NET_WM_FULLSCREEN_MONITORS) { XDeleteProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_FULLSCREEN_MONITORS); } if (_glfw.x11.NET_WM_STATE && _glfw.x11.NET_WM_STATE_FULLSCREEN) { sendEventToWM(window, _glfw.x11.NET_WM_STATE, _NET_WM_STATE_REMOVE, _glfw.x11.NET_WM_STATE_FULLSCREEN, 0, 1, 0); } else { XSetWindowAttributes attributes; attributes.override_redirect = False; XChangeWindowAttributes(_glfw.x11.display, window->x11.handle, CWOverrideRedirect, &attributes); window->x11.overrideRedirect = GLFW_FALSE; } // Disable compositor bypass if (!window->x11.transparent) { XDeleteProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_BYPASS_COMPOSITOR); } } } // Splits and translates a text/uri-list into separate file paths // NOTE: This function destroys the provided string // static char** parseUriList(char* text, int* count) { const char* prefix = "file://"; char** paths = NULL; char* line; *count = 0; while ((line = strtok(text, "\r\n"))) { text = NULL; if (line[0] == '#') continue; if (strncmp(line, prefix, strlen(prefix)) == 0) { line += strlen(prefix); // TODO: Validate hostname while (*line != '/') line++; } (*count)++; char* path = calloc(strlen(line) + 1, 1); paths = realloc(paths, *count * sizeof(char*)); paths[*count - 1] = path; while (*line) { if (line[0] == '%' && line[1] && line[2]) { const char digits[3] = { line[1], line[2], '\0' }; *path = strtol(digits, NULL, 16); line += 2; } else *path = *line; path++; line++; } } return paths; } // Decode a Unicode code point from a UTF-8 stream // Based on cutef8 by Jeff Bezanson (Public Domain) // #if defined(X_HAVE_UTF8_STRING) static uint32_t decodeUTF8(const char** s) { uint32_t codepoint = 0, count = 0; static const uint32_t offsets[] = { 0x00000000u, 0x00003080u, 0x000e2080u, 0x03c82080u, 0xfa082080u, 0x82082080u }; do { codepoint = (codepoint << 6) + (unsigned char) **s; (*s)++; count++; } while ((**s & 0xc0) == 0x80); assert(count <= 6); return codepoint - offsets[count - 1]; } #endif /*X_HAVE_UTF8_STRING*/ // Convert the specified Latin-1 string to UTF-8 // static char* convertLatin1toUTF8(const char* source) { size_t size = 1; const char* sp; for (sp = source; *sp; sp++) size += (*sp & 0x80) ? 2 : 1; char* target = calloc(size, 1); char* tp = target; for (sp = source; *sp; sp++) tp += _glfwEncodeUTF8(tp, *sp); return target; } // Updates the cursor image according to its cursor mode // static void updateCursorImage(_GLFWwindow* window) { if (window->cursorMode == GLFW_CURSOR_NORMAL) { if (window->cursor) { XDefineCursor(_glfw.x11.display, window->x11.handle, window->cursor->x11.handle); } else XUndefineCursor(_glfw.x11.display, window->x11.handle); } else { XDefineCursor(_glfw.x11.display, window->x11.handle, _glfw.x11.hiddenCursorHandle); } } // Enable XI2 raw mouse motion events // static void enableRawMouseMotion(_GLFWwindow* window) { XIEventMask em; unsigned char mask[XIMaskLen(XI_RawMotion)] = { 0 }; em.deviceid = XIAllMasterDevices; em.mask_len = sizeof(mask); em.mask = mask; XISetMask(mask, XI_RawMotion); XISelectEvents(_glfw.x11.display, _glfw.x11.root, &em, 1); } // Disable XI2 raw mouse motion events // static void disableRawMouseMotion(_GLFWwindow* window) { XIEventMask em; unsigned char mask[] = { 0 }; em.deviceid = XIAllMasterDevices; em.mask_len = sizeof(mask); em.mask = mask; XISelectEvents(_glfw.x11.display, _glfw.x11.root, &em, 1); } // Apply disabled cursor mode to a focused window // static void disableCursor(_GLFWwindow* window) { if (window->rawMouseMotion) enableRawMouseMotion(window); _glfw.x11.disabledCursorWindow = window; _glfwPlatformGetCursorPos(window, &_glfw.x11.restoreCursorPosX, &_glfw.x11.restoreCursorPosY); updateCursorImage(window); _glfwCenterCursorInContentArea(window); XGrabPointer(_glfw.x11.display, window->x11.handle, True, ButtonPressMask | ButtonReleaseMask | PointerMotionMask, GrabModeAsync, GrabModeAsync, window->x11.handle, _glfw.x11.hiddenCursorHandle, CurrentTime); } // Exit disabled cursor mode for the specified window // static void enableCursor(_GLFWwindow* window) { if (window->rawMouseMotion) disableRawMouseMotion(window); _glfw.x11.disabledCursorWindow = NULL; XUngrabPointer(_glfw.x11.display, CurrentTime); _glfwPlatformSetCursorPos(window, _glfw.x11.restoreCursorPosX, _glfw.x11.restoreCursorPosY); updateCursorImage(window); } // Create the X11 window (and its colormap) // static GLFWbool createNativeWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, Visual* visual, int depth) { int width = wndconfig->width; int height = wndconfig->height; if (wndconfig->scaleToMonitor) { width *= _glfw.x11.contentScaleX; height *= _glfw.x11.contentScaleY; } // Create a colormap based on the visual used by the current context window->x11.colormap = XCreateColormap(_glfw.x11.display, _glfw.x11.root, visual, AllocNone); window->x11.transparent = _glfwIsVisualTransparentX11(visual); XSetWindowAttributes wa = { 0 }; wa.colormap = window->x11.colormap; wa.event_mask = StructureNotifyMask | KeyPressMask | KeyReleaseMask | PointerMotionMask | ButtonPressMask | ButtonReleaseMask | ExposureMask | FocusChangeMask | VisibilityChangeMask | EnterWindowMask | LeaveWindowMask | PropertyChangeMask; _glfwGrabErrorHandlerX11(); window->x11.parent = _glfw.x11.root; window->x11.handle = XCreateWindow(_glfw.x11.display, _glfw.x11.root, 0, 0, // Position width, height, 0, // Border width depth, // Color depth InputOutput, visual, CWBorderPixel | CWColormap | CWEventMask, &wa); _glfwReleaseErrorHandlerX11(); if (!window->x11.handle) { _glfwInputErrorX11(GLFW_PLATFORM_ERROR, "X11: Failed to create window"); return GLFW_FALSE; } XSaveContext(_glfw.x11.display, window->x11.handle, _glfw.x11.context, (XPointer) window); if (!wndconfig->decorated) _glfwPlatformSetWindowDecorated(window, GLFW_FALSE); if (_glfw.x11.NET_WM_STATE && !window->monitor) { Atom states[3]; int count = 0; if (wndconfig->floating) { if (_glfw.x11.NET_WM_STATE_ABOVE) states[count++] = _glfw.x11.NET_WM_STATE_ABOVE; } if (wndconfig->maximized) { if (_glfw.x11.NET_WM_STATE_MAXIMIZED_VERT && _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ) { states[count++] = _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT; states[count++] = _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ; window->x11.maximized = GLFW_TRUE; } } if (count) { XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, 32, PropModeReplace, (unsigned char*) states, count); } } // Declare the WM protocols supported by GLFW { Atom protocols[] = { _glfw.x11.WM_DELETE_WINDOW, _glfw.x11.NET_WM_PING }; XSetWMProtocols(_glfw.x11.display, window->x11.handle, protocols, sizeof(protocols) / sizeof(Atom)); } // Declare our PID { const long pid = getpid(); XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_PID, XA_CARDINAL, 32, PropModeReplace, (unsigned char*) &pid, 1); } if (_glfw.x11.NET_WM_WINDOW_TYPE && _glfw.x11.NET_WM_WINDOW_TYPE_NORMAL) { Atom type = _glfw.x11.NET_WM_WINDOW_TYPE_NORMAL; XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_WINDOW_TYPE, XA_ATOM, 32, PropModeReplace, (unsigned char*) &type, 1); } // Set ICCCM WM_HINTS property { XWMHints* hints = XAllocWMHints(); if (!hints) { _glfwInputError(GLFW_OUT_OF_MEMORY, "X11: Failed to allocate WM hints"); return GLFW_FALSE; } hints->flags = StateHint; hints->initial_state = NormalState; XSetWMHints(_glfw.x11.display, window->x11.handle, hints); XFree(hints); } updateNormalHints(window, width, height); // Set ICCCM WM_CLASS property { XClassHint* hint = XAllocClassHint(); if (strlen(wndconfig->x11.instanceName) && strlen(wndconfig->x11.className)) { hint->res_name = (char*) wndconfig->x11.instanceName; hint->res_class = (char*) wndconfig->x11.className; } else { const char* resourceName = getenv("RESOURCE_NAME"); if (resourceName && strlen(resourceName)) hint->res_name = (char*) resourceName; else if (strlen(wndconfig->title)) hint->res_name = (char*) wndconfig->title; else hint->res_name = (char*) "glfw-application"; if (strlen(wndconfig->title)) hint->res_class = (char*) wndconfig->title; else hint->res_class = (char*) "GLFW-Application"; } XSetClassHint(_glfw.x11.display, window->x11.handle, hint); XFree(hint); } // Announce support for Xdnd (drag and drop) { const Atom version = _GLFW_XDND_VERSION; XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.XdndAware, XA_ATOM, 32, PropModeReplace, (unsigned char*) &version, 1); } _glfwPlatformSetWindowTitle(window, wndconfig->title); if (_glfw.x11.im) { window->x11.ic = XCreateIC(_glfw.x11.im, XNInputStyle, XIMPreeditNothing | XIMStatusNothing, XNClientWindow, window->x11.handle, XNFocusWindow, window->x11.handle, NULL); } if (window->x11.ic) { unsigned long filter = 0; if (XGetICValues(window->x11.ic, XNFilterEvents, &filter, NULL) == NULL) XSelectInput(_glfw.x11.display, window->x11.handle, wa.event_mask | filter); } _glfwPlatformGetWindowPos(window, &window->x11.xpos, &window->x11.ypos); _glfwPlatformGetWindowSize(window, &window->x11.width, &window->x11.height); return GLFW_TRUE; } // Set the specified property to the selection converted to the requested target // static Atom writeTargetToProperty(const XSelectionRequestEvent* request) { int i; char* selectionString = NULL; const Atom formats[] = { _glfw.x11.UTF8_STRING, XA_STRING }; const int formatCount = sizeof(formats) / sizeof(formats[0]); if (request->selection == _glfw.x11.PRIMARY) selectionString = _glfw.x11.primarySelectionString; else selectionString = _glfw.x11.clipboardString; if (request->property == None) { // The requester is a legacy client (ICCCM section 2.2) // We don't support legacy clients, so fail here return None; } if (request->target == _glfw.x11.TARGETS) { // The list of supported targets was requested const Atom targets[] = { _glfw.x11.TARGETS, _glfw.x11.MULTIPLE, _glfw.x11.UTF8_STRING, XA_STRING }; XChangeProperty(_glfw.x11.display, request->requestor, request->property, XA_ATOM, 32, PropModeReplace, (unsigned char*) targets, sizeof(targets) / sizeof(targets[0])); return request->property; } if (request->target == _glfw.x11.MULTIPLE) { // Multiple conversions were requested Atom* targets; unsigned long i, count; count = _glfwGetWindowPropertyX11(request->requestor, request->property, _glfw.x11.ATOM_PAIR, (unsigned char**) &targets); for (i = 0; i < count; i += 2) { int j; for (j = 0; j < formatCount; j++) { if (targets[i] == formats[j]) break; } if (j < formatCount) { XChangeProperty(_glfw.x11.display, request->requestor, targets[i + 1], targets[i], 8, PropModeReplace, (unsigned char *) selectionString, strlen(selectionString)); } else targets[i + 1] = None; } XChangeProperty(_glfw.x11.display, request->requestor, request->property, _glfw.x11.ATOM_PAIR, 32, PropModeReplace, (unsigned char*) targets, count); XFree(targets); return request->property; } if (request->target == _glfw.x11.SAVE_TARGETS) { // The request is a check whether we support SAVE_TARGETS // It should be handled as a no-op side effect target XChangeProperty(_glfw.x11.display, request->requestor, request->property, _glfw.x11.NULL_, 32, PropModeReplace, NULL, 0); return request->property; } // Conversion to a data target was requested for (i = 0; i < formatCount; i++) { if (request->target == formats[i]) { // The requested target is one we support XChangeProperty(_glfw.x11.display, request->requestor, request->property, request->target, 8, PropModeReplace, (unsigned char *) selectionString, strlen(selectionString)); return request->property; } } // The requested target is not supported return None; } static void handleSelectionClear(XEvent* event) { if (event->xselectionclear.selection == _glfw.x11.PRIMARY) { free(_glfw.x11.primarySelectionString); _glfw.x11.primarySelectionString = NULL; } else { free(_glfw.x11.clipboardString); _glfw.x11.clipboardString = NULL; } } static void handleSelectionRequest(XEvent* event) { const XSelectionRequestEvent* request = &event->xselectionrequest; XEvent reply = { SelectionNotify }; reply.xselection.property = writeTargetToProperty(request); reply.xselection.display = request->display; reply.xselection.requestor = request->requestor; reply.xselection.selection = request->selection; reply.xselection.target = request->target; reply.xselection.time = request->time; XSendEvent(_glfw.x11.display, request->requestor, False, 0, &reply); } static const char* getSelectionString(Atom selection) { char** selectionString = NULL; const Atom targets[] = { _glfw.x11.UTF8_STRING, XA_STRING }; const size_t targetCount = sizeof(targets) / sizeof(targets[0]); if (selection == _glfw.x11.PRIMARY) selectionString = &_glfw.x11.primarySelectionString; else selectionString = &_glfw.x11.clipboardString; if (XGetSelectionOwner(_glfw.x11.display, selection) == _glfw.x11.helperWindowHandle) { // Instead of doing a large number of X round-trips just to put this // string into a window property and then read it back, just return it return *selectionString; } free(*selectionString); *selectionString = NULL; for (size_t i = 0; i < targetCount; i++) { char* data; Atom actualType; int actualFormat; unsigned long itemCount, bytesAfter; XEvent notification, dummy; XConvertSelection(_glfw.x11.display, selection, targets[i], _glfw.x11.GLFW_SELECTION, _glfw.x11.helperWindowHandle, CurrentTime); while (!XCheckTypedWindowEvent(_glfw.x11.display, _glfw.x11.helperWindowHandle, SelectionNotify, ¬ification)) { waitForX11Event(NULL); } if (notification.xselection.property == None) continue; XCheckIfEvent(_glfw.x11.display, &dummy, isSelPropNewValueNotify, (XPointer) ¬ification); XGetWindowProperty(_glfw.x11.display, notification.xselection.requestor, notification.xselection.property, 0, LONG_MAX, True, AnyPropertyType, &actualType, &actualFormat, &itemCount, &bytesAfter, (unsigned char**) &data); if (actualType == _glfw.x11.INCR) { size_t size = 1; char* string = NULL; for (;;) { while (!XCheckIfEvent(_glfw.x11.display, &dummy, isSelPropNewValueNotify, (XPointer) ¬ification)) { waitForX11Event(NULL); } XFree(data); XGetWindowProperty(_glfw.x11.display, notification.xselection.requestor, notification.xselection.property, 0, LONG_MAX, True, AnyPropertyType, &actualType, &actualFormat, &itemCount, &bytesAfter, (unsigned char**) &data); if (itemCount) { size += itemCount; string = realloc(string, size); string[size - itemCount - 1] = '\0'; strcat(string, data); } if (!itemCount) { if (targets[i] == XA_STRING) { *selectionString = convertLatin1toUTF8(string); free(string); } else *selectionString = string; break; } } } else if (actualType == targets[i]) { if (targets[i] == XA_STRING) *selectionString = convertLatin1toUTF8(data); else *selectionString = _glfw_strdup(data); } XFree(data); if (*selectionString) break; } if (!*selectionString) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "X11: Failed to convert selection to string"); } return *selectionString; } // Make the specified window and its video mode active on its monitor // static void acquireMonitor(_GLFWwindow* window) { if (_glfw.x11.saver.count == 0) { // Remember old screen saver settings XGetScreenSaver(_glfw.x11.display, &_glfw.x11.saver.timeout, &_glfw.x11.saver.interval, &_glfw.x11.saver.blanking, &_glfw.x11.saver.exposure); // Disable screen saver XSetScreenSaver(_glfw.x11.display, 0, 0, DontPreferBlanking, DefaultExposures); } if (!window->monitor->window) _glfw.x11.saver.count++; _glfwSetVideoModeX11(window->monitor, &window->videoMode); if (window->x11.overrideRedirect) { int xpos, ypos; GLFWvidmode mode; // Manually position the window over its monitor _glfwPlatformGetMonitorPos(window->monitor, &xpos, &ypos); _glfwPlatformGetVideoMode(window->monitor, &mode); XMoveResizeWindow(_glfw.x11.display, window->x11.handle, xpos, ypos, mode.width, mode.height); } _glfwInputMonitorWindow(window->monitor, window); } // Remove the window and restore the original video mode // static void releaseMonitor(_GLFWwindow* window) { if (window->monitor->window != window) return; _glfwInputMonitorWindow(window->monitor, NULL); _glfwRestoreVideoModeX11(window->monitor); _glfw.x11.saver.count--; if (_glfw.x11.saver.count == 0) { // Restore old screen saver settings XSetScreenSaver(_glfw.x11.display, _glfw.x11.saver.timeout, _glfw.x11.saver.interval, _glfw.x11.saver.blanking, _glfw.x11.saver.exposure); } } // Process the specified X event // static void processEvent(XEvent *event) { int keycode = 0; Bool filtered = False; // HACK: Save scancode as some IMs clear the field in XFilterEvent if (event->type == KeyPress || event->type == KeyRelease) keycode = event->xkey.keycode; if (_glfw.x11.im) filtered = XFilterEvent(event, None); if (_glfw.x11.randr.available) { if (event->type == _glfw.x11.randr.eventBase + RRNotify) { XRRUpdateConfiguration(event); _glfwPollMonitorsX11(); return; } } if (_glfw.x11.xkb.available) { if (event->type == _glfw.x11.xkb.eventBase + XkbEventCode) { if (((XkbEvent*) event)->any.xkb_type == XkbStateNotify && (((XkbEvent*) event)->state.changed & XkbGroupStateMask)) { _glfw.x11.xkb.group = ((XkbEvent*) event)->state.group; } return; } } if (event->type == GenericEvent) { if (_glfw.x11.xi.available) { _GLFWwindow* window = _glfw.x11.disabledCursorWindow; if (window && window->rawMouseMotion && event->xcookie.extension == _glfw.x11.xi.majorOpcode && XGetEventData(_glfw.x11.display, &event->xcookie) && event->xcookie.evtype == XI_RawMotion) { XIRawEvent* re = event->xcookie.data; if (re->valuators.mask_len) { const double* values = re->raw_values; double xpos = window->virtualCursorPosX; double ypos = window->virtualCursorPosY; if (XIMaskIsSet(re->valuators.mask, 0)) { xpos += *values; values++; } if (XIMaskIsSet(re->valuators.mask, 1)) ypos += *values; _glfwInputCursorPos(window, xpos, ypos); } } XFreeEventData(_glfw.x11.display, &event->xcookie); } return; } if (event->type == SelectionClear) { handleSelectionClear(event); return; } else if (event->type == SelectionRequest) { handleSelectionRequest(event); return; } _GLFWwindow* window = NULL; if (XFindContext(_glfw.x11.display, event->xany.window, _glfw.x11.context, (XPointer*) &window) != 0) { // This is an event for a window that has already been destroyed return; } switch (event->type) { case ReparentNotify: { window->x11.parent = event->xreparent.parent; return; } case KeyPress: { const int key = translateKey(keycode); const int mods = translateState(event->xkey.state); const int plain = !(mods & (GLFW_MOD_CONTROL | GLFW_MOD_ALT)); if (window->x11.ic) { // HACK: Do not report the key press events duplicated by XIM // Duplicate key releases are filtered out implicitly by // the GLFW key repeat logic in _glfwInputKey // A timestamp per key is used to handle simultaneous keys // NOTE: Always allow the first event for each key through // (the server never sends a timestamp of zero) // NOTE: Timestamp difference is compared to handle wrap-around Time diff = event->xkey.time - window->x11.keyPressTimes[keycode]; if (diff == event->xkey.time || (diff > 0 && diff < ((Time)1 << 31))) { if (keycode) _glfwInputKey(window, key, keycode, GLFW_PRESS, mods); window->x11.keyPressTimes[keycode] = event->xkey.time; } if (!filtered) { int count; Status status; #if defined(X_HAVE_UTF8_STRING) char buffer[100]; char* chars = buffer; count = Xutf8LookupString(window->x11.ic, &event->xkey, buffer, sizeof(buffer) - 1, NULL, &status); if (status == XBufferOverflow) { chars = calloc(count + 1, 1); count = Xutf8LookupString(window->x11.ic, &event->xkey, chars, count, NULL, &status); } if (status == XLookupChars || status == XLookupBoth) { const char* c = chars; chars[count] = '\0'; while (c - chars < count) _glfwInputChar(window, decodeUTF8(&c), mods, plain); } #else /*X_HAVE_UTF8_STRING*/ wchar_t buffer[16]; wchar_t* chars = buffer; count = XwcLookupString(window->x11.ic, &event->xkey, buffer, sizeof(buffer) / sizeof(wchar_t), NULL, &status); if (status == XBufferOverflow) { chars = calloc(count, sizeof(wchar_t)); count = XwcLookupString(window->x11.ic, &event->xkey, chars, count, NULL, &status); } if (status == XLookupChars || status == XLookupBoth) { int i; for (i = 0; i < count; i++) _glfwInputChar(window, chars[i], mods, plain); } #endif /*X_HAVE_UTF8_STRING*/ if (chars != buffer) free(chars); } } else { KeySym keysym; XLookupString(&event->xkey, NULL, 0, &keysym, NULL); _glfwInputKey(window, key, keycode, GLFW_PRESS, mods); const uint32_t codepoint = _glfwKeySym2Unicode(keysym); if (codepoint != GLFW_INVALID_CODEPOINT) _glfwInputChar(window, codepoint, mods, plain); } return; } case KeyRelease: { const int key = translateKey(keycode); const int mods = translateState(event->xkey.state); if (!_glfw.x11.xkb.detectable) { // HACK: Key repeat events will arrive as KeyRelease/KeyPress // pairs with similar or identical time stamps // The key repeat logic in _glfwInputKey expects only key // presses to repeat, so detect and discard release events if (XEventsQueued(_glfw.x11.display, QueuedAfterReading)) { XEvent next; XPeekEvent(_glfw.x11.display, &next); if (next.type == KeyPress && next.xkey.window == event->xkey.window && next.xkey.keycode == keycode) { // HACK: The time of repeat events sometimes doesn't // match that of the press event, so add an // epsilon // Toshiyuki Takahashi can press a button // 16 times per second so it's fairly safe to // assume that no human is pressing the key 50 // times per second (value is ms) if ((next.xkey.time - event->xkey.time) < 20) { // This is very likely a server-generated key repeat // event, so ignore it return; } } } } _glfwInputKey(window, key, keycode, GLFW_RELEASE, mods); return; } case ButtonPress: { const int mods = translateState(event->xbutton.state); if (event->xbutton.button == Button1) _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_LEFT, GLFW_PRESS, mods); else if (event->xbutton.button == Button2) _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_MIDDLE, GLFW_PRESS, mods); else if (event->xbutton.button == Button3) _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_RIGHT, GLFW_PRESS, mods); // Modern X provides scroll events as mouse button presses else if (event->xbutton.button == Button4) _glfwInputScroll(window, 0.0, 1.0); else if (event->xbutton.button == Button5) _glfwInputScroll(window, 0.0, -1.0); else if (event->xbutton.button == Button6) _glfwInputScroll(window, 1.0, 0.0); else if (event->xbutton.button == Button7) _glfwInputScroll(window, -1.0, 0.0); else { // Additional buttons after 7 are treated as regular buttons // We subtract 4 to fill the gap left by scroll input above _glfwInputMouseClick(window, event->xbutton.button - Button1 - 4, GLFW_PRESS, mods); } return; } case ButtonRelease: { const int mods = translateState(event->xbutton.state); if (event->xbutton.button == Button1) { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_LEFT, GLFW_RELEASE, mods); } else if (event->xbutton.button == Button2) { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_MIDDLE, GLFW_RELEASE, mods); } else if (event->xbutton.button == Button3) { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_RIGHT, GLFW_RELEASE, mods); } else if (event->xbutton.button > Button7) { // Additional buttons after 7 are treated as regular buttons // We subtract 4 to fill the gap left by scroll input above _glfwInputMouseClick(window, event->xbutton.button - Button1 - 4, GLFW_RELEASE, mods); } return; } case EnterNotify: { // XEnterWindowEvent is XCrossingEvent const int x = event->xcrossing.x; const int y = event->xcrossing.y; // HACK: This is a workaround for WMs (KWM, Fluxbox) that otherwise // ignore the defined cursor for hidden cursor mode if (window->cursorMode == GLFW_CURSOR_HIDDEN) updateCursorImage(window); _glfwInputCursorEnter(window, GLFW_TRUE); _glfwInputCursorPos(window, x, y); window->x11.lastCursorPosX = x; window->x11.lastCursorPosY = y; return; } case LeaveNotify: { _glfwInputCursorEnter(window, GLFW_FALSE); return; } case MotionNotify: { const int x = event->xmotion.x; const int y = event->xmotion.y; if (x != window->x11.warpCursorPosX || y != window->x11.warpCursorPosY) { // The cursor was moved by something other than GLFW if (window->cursorMode == GLFW_CURSOR_DISABLED) { if (_glfw.x11.disabledCursorWindow != window) return; if (window->rawMouseMotion) return; const int dx = x - window->x11.lastCursorPosX; const int dy = y - window->x11.lastCursorPosY; _glfwInputCursorPos(window, window->virtualCursorPosX + dx, window->virtualCursorPosY + dy); } else _glfwInputCursorPos(window, x, y); } window->x11.lastCursorPosX = x; window->x11.lastCursorPosY = y; return; } case ConfigureNotify: { if (event->xconfigure.width != window->x11.width || event->xconfigure.height != window->x11.height) { _glfwInputFramebufferSize(window, event->xconfigure.width, event->xconfigure.height); _glfwInputWindowSize(window, event->xconfigure.width, event->xconfigure.height); window->x11.width = event->xconfigure.width; window->x11.height = event->xconfigure.height; } int xpos = event->xconfigure.x; int ypos = event->xconfigure.y; // NOTE: ConfigureNotify events from the server are in local // coordinates, so if we are reparented we need to translate // the position into root (screen) coordinates if (!event->xany.send_event && window->x11.parent != _glfw.x11.root) { _glfwGrabErrorHandlerX11(); Window dummy; XTranslateCoordinates(_glfw.x11.display, window->x11.parent, _glfw.x11.root, xpos, ypos, &xpos, &ypos, &dummy); _glfwReleaseErrorHandlerX11(); if (_glfw.x11.errorCode == BadWindow) return; } if (xpos != window->x11.xpos || ypos != window->x11.ypos) { _glfwInputWindowPos(window, xpos, ypos); window->x11.xpos = xpos; window->x11.ypos = ypos; } return; } case ClientMessage: { // Custom client message, probably from the window manager if (filtered) return; if (event->xclient.message_type == None) return; if (event->xclient.message_type == _glfw.x11.WM_PROTOCOLS) { const Atom protocol = event->xclient.data.l[0]; if (protocol == None) return; if (protocol == _glfw.x11.WM_DELETE_WINDOW) { // The window manager was asked to close the window, for // example by the user pressing a 'close' window decoration // button _glfwInputWindowCloseRequest(window); } else if (protocol == _glfw.x11.NET_WM_PING) { // The window manager is pinging the application to ensure // it's still responding to events XEvent reply = *event; reply.xclient.window = _glfw.x11.root; XSendEvent(_glfw.x11.display, _glfw.x11.root, False, SubstructureNotifyMask | SubstructureRedirectMask, &reply); } } else if (event->xclient.message_type == _glfw.x11.XdndEnter) { // A drag operation has entered the window unsigned long i, count; Atom* formats = NULL; const GLFWbool list = event->xclient.data.l[1] & 1; _glfw.x11.xdnd.source = event->xclient.data.l[0]; _glfw.x11.xdnd.version = event->xclient.data.l[1] >> 24; _glfw.x11.xdnd.format = None; if (_glfw.x11.xdnd.version > _GLFW_XDND_VERSION) return; if (list) { count = _glfwGetWindowPropertyX11(_glfw.x11.xdnd.source, _glfw.x11.XdndTypeList, XA_ATOM, (unsigned char**) &formats); } else { count = 3; formats = (Atom*) event->xclient.data.l + 2; } for (i = 0; i < count; i++) { if (formats[i] == _glfw.x11.text_uri_list) { _glfw.x11.xdnd.format = _glfw.x11.text_uri_list; break; } } if (list && formats) XFree(formats); } else if (event->xclient.message_type == _glfw.x11.XdndDrop) { // The drag operation has finished by dropping on the window Time time = CurrentTime; if (_glfw.x11.xdnd.version > _GLFW_XDND_VERSION) return; if (_glfw.x11.xdnd.format) { if (_glfw.x11.xdnd.version >= 1) time = event->xclient.data.l[2]; // Request the chosen format from the source window XConvertSelection(_glfw.x11.display, _glfw.x11.XdndSelection, _glfw.x11.xdnd.format, _glfw.x11.XdndSelection, window->x11.handle, time); } else if (_glfw.x11.xdnd.version >= 2) { XEvent reply = { ClientMessage }; reply.xclient.window = _glfw.x11.xdnd.source; reply.xclient.message_type = _glfw.x11.XdndFinished; reply.xclient.format = 32; reply.xclient.data.l[0] = window->x11.handle; reply.xclient.data.l[1] = 0; // The drag was rejected reply.xclient.data.l[2] = None; XSendEvent(_glfw.x11.display, _glfw.x11.xdnd.source, False, NoEventMask, &reply); XFlush(_glfw.x11.display); } } else if (event->xclient.message_type == _glfw.x11.XdndPosition) { // The drag operation has moved over the window const int xabs = (event->xclient.data.l[2] >> 16) & 0xffff; const int yabs = (event->xclient.data.l[2]) & 0xffff; Window dummy; int xpos, ypos; if (_glfw.x11.xdnd.version > _GLFW_XDND_VERSION) return; XTranslateCoordinates(_glfw.x11.display, _glfw.x11.root, window->x11.handle, xabs, yabs, &xpos, &ypos, &dummy); _glfwInputCursorPos(window, xpos, ypos); XEvent reply = { ClientMessage }; reply.xclient.window = _glfw.x11.xdnd.source; reply.xclient.message_type = _glfw.x11.XdndStatus; reply.xclient.format = 32; reply.xclient.data.l[0] = window->x11.handle; reply.xclient.data.l[2] = 0; // Specify an empty rectangle reply.xclient.data.l[3] = 0; if (_glfw.x11.xdnd.format) { // Reply that we are ready to copy the dragged data reply.xclient.data.l[1] = 1; // Accept with no rectangle if (_glfw.x11.xdnd.version >= 2) reply.xclient.data.l[4] = _glfw.x11.XdndActionCopy; } XSendEvent(_glfw.x11.display, _glfw.x11.xdnd.source, False, NoEventMask, &reply); XFlush(_glfw.x11.display); } return; } case SelectionNotify: { if (event->xselection.property == _glfw.x11.XdndSelection) { // The converted data from the drag operation has arrived char* data; const unsigned long result = _glfwGetWindowPropertyX11(event->xselection.requestor, event->xselection.property, event->xselection.target, (unsigned char**) &data); if (result) { int i, count; char** paths = parseUriList(data, &count); _glfwInputDrop(window, count, (const char**) paths); for (i = 0; i < count; i++) free(paths[i]); free(paths); } if (data) XFree(data); if (_glfw.x11.xdnd.version >= 2) { XEvent reply = { ClientMessage }; reply.xclient.window = _glfw.x11.xdnd.source; reply.xclient.message_type = _glfw.x11.XdndFinished; reply.xclient.format = 32; reply.xclient.data.l[0] = window->x11.handle; reply.xclient.data.l[1] = result; reply.xclient.data.l[2] = _glfw.x11.XdndActionCopy; XSendEvent(_glfw.x11.display, _glfw.x11.xdnd.source, False, NoEventMask, &reply); XFlush(_glfw.x11.display); } } return; } case FocusIn: { if (event->xfocus.mode == NotifyGrab || event->xfocus.mode == NotifyUngrab) { // Ignore focus events from popup indicator windows, window menu // key chords and window dragging return; } if (window->cursorMode == GLFW_CURSOR_DISABLED) disableCursor(window); if (window->x11.ic) XSetICFocus(window->x11.ic); _glfwInputWindowFocus(window, GLFW_TRUE); return; } case FocusOut: { if (event->xfocus.mode == NotifyGrab || event->xfocus.mode == NotifyUngrab) { // Ignore focus events from popup indicator windows, window menu // key chords and window dragging return; } if (window->cursorMode == GLFW_CURSOR_DISABLED) enableCursor(window); if (window->x11.ic) XUnsetICFocus(window->x11.ic); if (window->monitor && window->autoIconify) _glfwPlatformIconifyWindow(window); _glfwInputWindowFocus(window, GLFW_FALSE); return; } case Expose: { _glfwInputWindowDamage(window); return; } case PropertyNotify: { if (event->xproperty.state != PropertyNewValue) return; if (event->xproperty.atom == _glfw.x11.WM_STATE) { const int state = getWindowState(window); if (state != IconicState && state != NormalState) return; const GLFWbool iconified = (state == IconicState); if (window->x11.iconified != iconified) { if (window->monitor) { if (iconified) releaseMonitor(window); else acquireMonitor(window); } window->x11.iconified = iconified; _glfwInputWindowIconify(window, iconified); } } else if (event->xproperty.atom == _glfw.x11.NET_WM_STATE) { const GLFWbool maximized = _glfwPlatformWindowMaximized(window); if (window->x11.maximized != maximized) { window->x11.maximized = maximized; _glfwInputWindowMaximize(window, maximized); } } return; } case DestroyNotify: return; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Retrieve a single window property of the specified type // Inspired by fghGetWindowProperty from freeglut // unsigned long _glfwGetWindowPropertyX11(Window window, Atom property, Atom type, unsigned char** value) { Atom actualType; int actualFormat; unsigned long itemCount, bytesAfter; XGetWindowProperty(_glfw.x11.display, window, property, 0, LONG_MAX, False, type, &actualType, &actualFormat, &itemCount, &bytesAfter, value); return itemCount; } GLFWbool _glfwIsVisualTransparentX11(Visual* visual) { if (!_glfw.x11.xrender.available) return GLFW_FALSE; XRenderPictFormat* pf = XRenderFindVisualFormat(_glfw.x11.display, visual); return pf && pf->direct.alphaMask; } // Push contents of our selection to clipboard manager // void _glfwPushSelectionToManagerX11(void) { XConvertSelection(_glfw.x11.display, _glfw.x11.CLIPBOARD_MANAGER, _glfw.x11.SAVE_TARGETS, None, _glfw.x11.helperWindowHandle, CurrentTime); for (;;) { XEvent event; while (XCheckIfEvent(_glfw.x11.display, &event, isSelectionEvent, NULL)) { switch (event.type) { case SelectionRequest: handleSelectionRequest(&event); break; case SelectionClear: handleSelectionClear(&event); break; case SelectionNotify: { if (event.xselection.target == _glfw.x11.SAVE_TARGETS) { // This means one of two things; either the selection // was not owned, which means there is no clipboard // manager, or the transfer to the clipboard manager has // completed // In either case, it means we are done here return; } break; } } } waitForX11Event(NULL); } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformCreateWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { Visual* visual = NULL; int depth; if (ctxconfig->client != GLFW_NO_API) { if (ctxconfig->source == GLFW_NATIVE_CONTEXT_API) { if (!_glfwInitGLX()) return GLFW_FALSE; if (!_glfwChooseVisualGLX(wndconfig, ctxconfig, fbconfig, &visual, &depth)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_EGL_CONTEXT_API) { if (!_glfwInitEGL()) return GLFW_FALSE; if (!_glfwChooseVisualEGL(wndconfig, ctxconfig, fbconfig, &visual, &depth)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_OSMESA_CONTEXT_API) { if (!_glfwInitOSMesa()) return GLFW_FALSE; } } if (!visual) { visual = DefaultVisual(_glfw.x11.display, _glfw.x11.screen); depth = DefaultDepth(_glfw.x11.display, _glfw.x11.screen); } if (!createNativeWindow(window, wndconfig, visual, depth)) return GLFW_FALSE; if (ctxconfig->client != GLFW_NO_API) { if (ctxconfig->source == GLFW_NATIVE_CONTEXT_API) { if (!_glfwCreateContextGLX(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_EGL_CONTEXT_API) { if (!_glfwCreateContextEGL(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_OSMESA_CONTEXT_API) { if (!_glfwCreateContextOSMesa(window, ctxconfig, fbconfig)) return GLFW_FALSE; } } if (window->monitor) { _glfwPlatformShowWindow(window); updateWindowMode(window); acquireMonitor(window); } XFlush(_glfw.x11.display); return GLFW_TRUE; } void _glfwPlatformDestroyWindow(_GLFWwindow* window) { if (_glfw.x11.disabledCursorWindow == window) _glfw.x11.disabledCursorWindow = NULL; if (window->monitor) releaseMonitor(window); if (window->x11.ic) { XDestroyIC(window->x11.ic); window->x11.ic = NULL; } if (window->context.destroy) window->context.destroy(window); if (window->x11.handle) { XDeleteContext(_glfw.x11.display, window->x11.handle, _glfw.x11.context); XUnmapWindow(_glfw.x11.display, window->x11.handle); XDestroyWindow(_glfw.x11.display, window->x11.handle); window->x11.handle = (Window) 0; } if (window->x11.colormap) { XFreeColormap(_glfw.x11.display, window->x11.colormap); window->x11.colormap = (Colormap) 0; } XFlush(_glfw.x11.display); } void _glfwPlatformSetWindowTitle(_GLFWwindow* window, const char* title) { #if defined(X_HAVE_UTF8_STRING) Xutf8SetWMProperties(_glfw.x11.display, window->x11.handle, title, title, NULL, 0, NULL, NULL, NULL); #else // This may be a slightly better fallback than using XStoreName and // XSetIconName, which always store their arguments using STRING XmbSetWMProperties(_glfw.x11.display, window->x11.handle, title, title, NULL, 0, NULL, NULL, NULL); #endif XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_NAME, _glfw.x11.UTF8_STRING, 8, PropModeReplace, (unsigned char*) title, strlen(title)); XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_ICON_NAME, _glfw.x11.UTF8_STRING, 8, PropModeReplace, (unsigned char*) title, strlen(title)); XFlush(_glfw.x11.display); } void _glfwPlatformSetWindowIcon(_GLFWwindow* window, int count, const GLFWimage* images) { if (count) { int i, j, longCount = 0; for (i = 0; i < count; i++) longCount += 2 + images[i].width * images[i].height; unsigned long* icon = calloc(longCount, sizeof(unsigned long)); unsigned long* target = icon; for (i = 0; i < count; i++) { *target++ = images[i].width; *target++ = images[i].height; for (j = 0; j < images[i].width * images[i].height; j++) { *target++ = (((unsigned long) images[i].pixels[j * 4 + 0]) << 16) | (((unsigned long) images[i].pixels[j * 4 + 1]) << 8) | (((unsigned long) images[i].pixels[j * 4 + 2]) << 0) | (((unsigned long) images[i].pixels[j * 4 + 3]) << 24); } } // NOTE: XChangeProperty expects 32-bit values like the image data above to be // placed in the 32 least significant bits of individual longs. This is // true even if long is 64-bit and a WM protocol calls for "packed" data. // This is because of a historical mistake that then became part of the Xlib // ABI. Xlib will pack these values into a regular array of 32-bit values // before sending it over the wire. XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_ICON, XA_CARDINAL, 32, PropModeReplace, (unsigned char*) icon, longCount); free(icon); } else { XDeleteProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_ICON); } XFlush(_glfw.x11.display); } void _glfwPlatformGetWindowPos(_GLFWwindow* window, int* xpos, int* ypos) { Window dummy; int x, y; XTranslateCoordinates(_glfw.x11.display, window->x11.handle, _glfw.x11.root, 0, 0, &x, &y, &dummy); if (xpos) *xpos = x; if (ypos) *ypos = y; } void _glfwPlatformSetWindowPos(_GLFWwindow* window, int xpos, int ypos) { // HACK: Explicitly setting PPosition to any value causes some WMs, notably // Compiz and Metacity, to honor the position of unmapped windows if (!_glfwPlatformWindowVisible(window)) { long supplied; XSizeHints* hints = XAllocSizeHints(); if (XGetWMNormalHints(_glfw.x11.display, window->x11.handle, hints, &supplied)) { hints->flags |= PPosition; hints->x = hints->y = 0; XSetWMNormalHints(_glfw.x11.display, window->x11.handle, hints); } XFree(hints); } XMoveWindow(_glfw.x11.display, window->x11.handle, xpos, ypos); XFlush(_glfw.x11.display); } void _glfwPlatformGetWindowSize(_GLFWwindow* window, int* width, int* height) { XWindowAttributes attribs; XGetWindowAttributes(_glfw.x11.display, window->x11.handle, &attribs); if (width) *width = attribs.width; if (height) *height = attribs.height; } void _glfwPlatformSetWindowSize(_GLFWwindow* window, int width, int height) { if (window->monitor) { if (window->monitor->window == window) acquireMonitor(window); } else { if (!window->resizable) updateNormalHints(window, width, height); XResizeWindow(_glfw.x11.display, window->x11.handle, width, height); } XFlush(_glfw.x11.display); } void _glfwPlatformSetWindowSizeLimits(_GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight) { int width, height; _glfwPlatformGetWindowSize(window, &width, &height); updateNormalHints(window, width, height); XFlush(_glfw.x11.display); } void _glfwPlatformSetWindowAspectRatio(_GLFWwindow* window, int numer, int denom) { int width, height; _glfwPlatformGetWindowSize(window, &width, &height); updateNormalHints(window, width, height); XFlush(_glfw.x11.display); } void _glfwPlatformGetFramebufferSize(_GLFWwindow* window, int* width, int* height) { _glfwPlatformGetWindowSize(window, width, height); } void _glfwPlatformGetWindowFrameSize(_GLFWwindow* window, int* left, int* top, int* right, int* bottom) { long* extents = NULL; if (window->monitor || !window->decorated) return; if (_glfw.x11.NET_FRAME_EXTENTS == None) return; if (!_glfwPlatformWindowVisible(window) && _glfw.x11.NET_REQUEST_FRAME_EXTENTS) { XEvent event; double timeout = 0.5; // Ensure _NET_FRAME_EXTENTS is set, allowing glfwGetWindowFrameSize to // function before the window is mapped sendEventToWM(window, _glfw.x11.NET_REQUEST_FRAME_EXTENTS, 0, 0, 0, 0, 0); // HACK: Use a timeout because earlier versions of some window managers // (at least Unity, Fluxbox and Xfwm) failed to send the reply // They have been fixed but broken versions are still in the wild // If you are affected by this and your window manager is NOT // listed above, PLEASE report it to their and our issue trackers while (!XCheckIfEvent(_glfw.x11.display, &event, isFrameExtentsEvent, (XPointer) window)) { if (!waitForX11Event(&timeout)) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: The window manager has a broken _NET_REQUEST_FRAME_EXTENTS implementation; please report this issue"); return; } } } if (_glfwGetWindowPropertyX11(window->x11.handle, _glfw.x11.NET_FRAME_EXTENTS, XA_CARDINAL, (unsigned char**) &extents) == 4) { if (left) *left = extents[0]; if (top) *top = extents[2]; if (right) *right = extents[1]; if (bottom) *bottom = extents[3]; } if (extents) XFree(extents); } void _glfwPlatformGetWindowContentScale(_GLFWwindow* window, float* xscale, float* yscale) { if (xscale) *xscale = _glfw.x11.contentScaleX; if (yscale) *yscale = _glfw.x11.contentScaleY; } void _glfwPlatformIconifyWindow(_GLFWwindow* window) { if (window->x11.overrideRedirect) { // Override-redirect windows cannot be iconified or restored, as those // tasks are performed by the window manager _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Iconification of full screen windows requires a WM that supports EWMH full screen"); return; } XIconifyWindow(_glfw.x11.display, window->x11.handle, _glfw.x11.screen); XFlush(_glfw.x11.display); } void _glfwPlatformRestoreWindow(_GLFWwindow* window) { if (window->x11.overrideRedirect) { // Override-redirect windows cannot be iconified or restored, as those // tasks are performed by the window manager _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Iconification of full screen windows requires a WM that supports EWMH full screen"); return; } if (_glfwPlatformWindowIconified(window)) { XMapWindow(_glfw.x11.display, window->x11.handle); waitForVisibilityNotify(window); } else if (_glfwPlatformWindowVisible(window)) { if (_glfw.x11.NET_WM_STATE && _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT && _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ) { sendEventToWM(window, _glfw.x11.NET_WM_STATE, _NET_WM_STATE_REMOVE, _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT, _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ, 1, 0); } } XFlush(_glfw.x11.display); } void _glfwPlatformMaximizeWindow(_GLFWwindow* window) { if (!_glfw.x11.NET_WM_STATE || !_glfw.x11.NET_WM_STATE_MAXIMIZED_VERT || !_glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ) { return; } if (_glfwPlatformWindowVisible(window)) { sendEventToWM(window, _glfw.x11.NET_WM_STATE, _NET_WM_STATE_ADD, _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT, _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ, 1, 0); } else { Atom* states = NULL; unsigned long count = _glfwGetWindowPropertyX11(window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, (unsigned char**) &states); // NOTE: We don't check for failure as this property may not exist yet // and that's fine (and we'll create it implicitly with append) Atom missing[2] = { _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT, _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ }; unsigned long missingCount = 2; for (unsigned long i = 0; i < count; i++) { for (unsigned long j = 0; j < missingCount; j++) { if (states[i] == missing[j]) { missing[j] = missing[missingCount - 1]; missingCount--; } } } if (states) XFree(states); if (!missingCount) return; XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, 32, PropModeAppend, (unsigned char*) missing, missingCount); } XFlush(_glfw.x11.display); } void _glfwPlatformShowWindow(_GLFWwindow* window) { if (_glfwPlatformWindowVisible(window)) return; XMapWindow(_glfw.x11.display, window->x11.handle); waitForVisibilityNotify(window); } void _glfwPlatformHideWindow(_GLFWwindow* window) { XUnmapWindow(_glfw.x11.display, window->x11.handle); XFlush(_glfw.x11.display); } void _glfwPlatformRequestWindowAttention(_GLFWwindow* window) { if (!_glfw.x11.NET_WM_STATE || !_glfw.x11.NET_WM_STATE_DEMANDS_ATTENTION) return; sendEventToWM(window, _glfw.x11.NET_WM_STATE, _NET_WM_STATE_ADD, _glfw.x11.NET_WM_STATE_DEMANDS_ATTENTION, 0, 1, 0); } void _glfwPlatformFocusWindow(_GLFWwindow* window) { if (_glfw.x11.NET_ACTIVE_WINDOW) sendEventToWM(window, _glfw.x11.NET_ACTIVE_WINDOW, 1, 0, 0, 0, 0); else if (_glfwPlatformWindowVisible(window)) { XRaiseWindow(_glfw.x11.display, window->x11.handle); XSetInputFocus(_glfw.x11.display, window->x11.handle, RevertToParent, CurrentTime); } XFlush(_glfw.x11.display); } void _glfwPlatformSetWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate) { if (window->monitor == monitor) { if (monitor) { if (monitor->window == window) acquireMonitor(window); } else { if (!window->resizable) updateNormalHints(window, width, height); XMoveResizeWindow(_glfw.x11.display, window->x11.handle, xpos, ypos, width, height); } XFlush(_glfw.x11.display); return; } if (window->monitor) { _glfwPlatformSetWindowDecorated(window, window->decorated); _glfwPlatformSetWindowFloating(window, window->floating); releaseMonitor(window); } _glfwInputWindowMonitor(window, monitor); updateNormalHints(window, width, height); if (window->monitor) { if (!_glfwPlatformWindowVisible(window)) { XMapRaised(_glfw.x11.display, window->x11.handle); waitForVisibilityNotify(window); } updateWindowMode(window); acquireMonitor(window); } else { updateWindowMode(window); XMoveResizeWindow(_glfw.x11.display, window->x11.handle, xpos, ypos, width, height); } XFlush(_glfw.x11.display); } int _glfwPlatformWindowFocused(_GLFWwindow* window) { Window focused; int state; XGetInputFocus(_glfw.x11.display, &focused, &state); return window->x11.handle == focused; } int _glfwPlatformWindowIconified(_GLFWwindow* window) { return getWindowState(window) == IconicState; } int _glfwPlatformWindowVisible(_GLFWwindow* window) { XWindowAttributes wa; XGetWindowAttributes(_glfw.x11.display, window->x11.handle, &wa); return wa.map_state == IsViewable; } int _glfwPlatformWindowMaximized(_GLFWwindow* window) { Atom* states; unsigned long i; GLFWbool maximized = GLFW_FALSE; if (!_glfw.x11.NET_WM_STATE || !_glfw.x11.NET_WM_STATE_MAXIMIZED_VERT || !_glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ) { return maximized; } const unsigned long count = _glfwGetWindowPropertyX11(window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, (unsigned char**) &states); for (i = 0; i < count; i++) { if (states[i] == _glfw.x11.NET_WM_STATE_MAXIMIZED_VERT || states[i] == _glfw.x11.NET_WM_STATE_MAXIMIZED_HORZ) { maximized = GLFW_TRUE; break; } } if (states) XFree(states); return maximized; } int _glfwPlatformWindowHovered(_GLFWwindow* window) { Window w = _glfw.x11.root; while (w) { Window root; int rootX, rootY, childX, childY; unsigned int mask; _glfwGrabErrorHandlerX11(); const Bool result = XQueryPointer(_glfw.x11.display, w, &root, &w, &rootX, &rootY, &childX, &childY, &mask); _glfwReleaseErrorHandlerX11(); if (_glfw.x11.errorCode == BadWindow) w = _glfw.x11.root; else if (!result) return GLFW_FALSE; else if (w == window->x11.handle) return GLFW_TRUE; } return GLFW_FALSE; } int _glfwPlatformFramebufferTransparent(_GLFWwindow* window) { if (!window->x11.transparent) return GLFW_FALSE; return XGetSelectionOwner(_glfw.x11.display, _glfw.x11.NET_WM_CM_Sx) != None; } void _glfwPlatformSetWindowResizable(_GLFWwindow* window, GLFWbool enabled) { int width, height; _glfwPlatformGetWindowSize(window, &width, &height); updateNormalHints(window, width, height); } void _glfwPlatformSetWindowDecorated(_GLFWwindow* window, GLFWbool enabled) { struct { unsigned long flags; unsigned long functions; unsigned long decorations; long input_mode; unsigned long status; } hints = {0}; hints.flags = MWM_HINTS_DECORATIONS; hints.decorations = enabled ? MWM_DECOR_ALL : 0; XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.MOTIF_WM_HINTS, _glfw.x11.MOTIF_WM_HINTS, 32, PropModeReplace, (unsigned char*) &hints, sizeof(hints) / sizeof(long)); } void _glfwPlatformSetWindowFloating(_GLFWwindow* window, GLFWbool enabled) { if (!_glfw.x11.NET_WM_STATE || !_glfw.x11.NET_WM_STATE_ABOVE) return; if (_glfwPlatformWindowVisible(window)) { const long action = enabled ? _NET_WM_STATE_ADD : _NET_WM_STATE_REMOVE; sendEventToWM(window, _glfw.x11.NET_WM_STATE, action, _glfw.x11.NET_WM_STATE_ABOVE, 0, 1, 0); } else { Atom* states = NULL; unsigned long i, count; count = _glfwGetWindowPropertyX11(window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, (unsigned char**) &states); // NOTE: We don't check for failure as this property may not exist yet // and that's fine (and we'll create it implicitly with append) if (enabled) { for (i = 0; i < count; i++) { if (states[i] == _glfw.x11.NET_WM_STATE_ABOVE) break; } if (i == count) { XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, 32, PropModeAppend, (unsigned char*) &_glfw.x11.NET_WM_STATE_ABOVE, 1); } } else if (states) { for (i = 0; i < count; i++) { if (states[i] == _glfw.x11.NET_WM_STATE_ABOVE) break; } if (i < count) { states[i] = states[count - 1]; count--; XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_STATE, XA_ATOM, 32, PropModeReplace, (unsigned char*) states, count); } } if (states) XFree(states); } XFlush(_glfw.x11.display); } float _glfwPlatformGetWindowOpacity(_GLFWwindow* window) { float opacity = 1.f; if (XGetSelectionOwner(_glfw.x11.display, _glfw.x11.NET_WM_CM_Sx)) { CARD32* value = NULL; if (_glfwGetWindowPropertyX11(window->x11.handle, _glfw.x11.NET_WM_WINDOW_OPACITY, XA_CARDINAL, (unsigned char**) &value)) { opacity = (float) (*value / (double) 0xffffffffu); } if (value) XFree(value); } return opacity; } void _glfwPlatformSetWindowOpacity(_GLFWwindow* window, float opacity) { const CARD32 value = (CARD32) (0xffffffffu * (double) opacity); XChangeProperty(_glfw.x11.display, window->x11.handle, _glfw.x11.NET_WM_WINDOW_OPACITY, XA_CARDINAL, 32, PropModeReplace, (unsigned char*) &value, 1); } void _glfwPlatformSetRawMouseMotion(_GLFWwindow *window, GLFWbool enabled) { if (!_glfw.x11.xi.available) return; if (_glfw.x11.disabledCursorWindow != window) return; if (enabled) enableRawMouseMotion(window); else disableRawMouseMotion(window); } GLFWbool _glfwPlatformRawMouseMotionSupported(void) { return _glfw.x11.xi.available; } void _glfwPlatformPollEvents(void) { drainEmptyEvents(); #if defined(__linux__) _glfwDetectJoystickConnectionLinux(); #endif XPending(_glfw.x11.display); while (XQLength(_glfw.x11.display)) { XEvent event; XNextEvent(_glfw.x11.display, &event); processEvent(&event); } _GLFWwindow* window = _glfw.x11.disabledCursorWindow; if (window) { int width, height; _glfwPlatformGetWindowSize(window, &width, &height); // NOTE: Re-center the cursor only if it has moved since the last call, // to avoid breaking glfwWaitEvents with MotionNotify if (window->x11.lastCursorPosX != width / 2 || window->x11.lastCursorPosY != height / 2) { _glfwPlatformSetCursorPos(window, width / 2, height / 2); } } XFlush(_glfw.x11.display); } void _glfwPlatformWaitEvents(void) { waitForAnyEvent(NULL); _glfwPlatformPollEvents(); } void _glfwPlatformWaitEventsTimeout(double timeout) { waitForAnyEvent(&timeout); _glfwPlatformPollEvents(); } void _glfwPlatformPostEmptyEvent(void) { writeEmptyEvent(); } void _glfwPlatformGetCursorPos(_GLFWwindow* window, double* xpos, double* ypos) { Window root, child; int rootX, rootY, childX, childY; unsigned int mask; XQueryPointer(_glfw.x11.display, window->x11.handle, &root, &child, &rootX, &rootY, &childX, &childY, &mask); if (xpos) *xpos = childX; if (ypos) *ypos = childY; } void _glfwPlatformSetCursorPos(_GLFWwindow* window, double x, double y) { // Store the new position so it can be recognized later window->x11.warpCursorPosX = (int) x; window->x11.warpCursorPosY = (int) y; XWarpPointer(_glfw.x11.display, None, window->x11.handle, 0,0,0,0, (int) x, (int) y); XFlush(_glfw.x11.display); } void _glfwPlatformSetCursorMode(_GLFWwindow* window, int mode) { if (mode == GLFW_CURSOR_DISABLED) { if (_glfwPlatformWindowFocused(window)) disableCursor(window); } else if (_glfw.x11.disabledCursorWindow == window) enableCursor(window); else updateCursorImage(window); XFlush(_glfw.x11.display); } const char* _glfwPlatformGetScancodeName(int scancode) { if (!_glfw.x11.xkb.available) return NULL; if (scancode < 0 || scancode > 0xff || _glfw.x11.keycodes[scancode] == GLFW_KEY_UNKNOWN) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid scancode %i", scancode); return NULL; } const int key = _glfw.x11.keycodes[scancode]; const KeySym keysym = XkbKeycodeToKeysym(_glfw.x11.display, scancode, _glfw.x11.xkb.group, 0); if (keysym == NoSymbol) return NULL; const uint32_t codepoint = _glfwKeySym2Unicode(keysym); if (codepoint == GLFW_INVALID_CODEPOINT) return NULL; const size_t count = _glfwEncodeUTF8(_glfw.x11.keynames[key], codepoint); if (count == 0) return NULL; _glfw.x11.keynames[key][count] = '\0'; return _glfw.x11.keynames[key]; } int _glfwPlatformGetKeyScancode(int key) { return _glfw.x11.scancodes[key]; } int _glfwPlatformCreateCursor(_GLFWcursor* cursor, const GLFWimage* image, int xhot, int yhot) { cursor->x11.handle = _glfwCreateCursorX11(image, xhot, yhot); if (!cursor->x11.handle) return GLFW_FALSE; return GLFW_TRUE; } int _glfwPlatformCreateStandardCursor(_GLFWcursor* cursor, int shape) { int native = 0; if (shape == GLFW_ARROW_CURSOR) native = XC_left_ptr; else if (shape == GLFW_IBEAM_CURSOR) native = XC_xterm; else if (shape == GLFW_CROSSHAIR_CURSOR) native = XC_crosshair; else if (shape == GLFW_HAND_CURSOR) native = XC_hand2; else if (shape == GLFW_HRESIZE_CURSOR) native = XC_sb_h_double_arrow; else if (shape == GLFW_VRESIZE_CURSOR) native = XC_sb_v_double_arrow; else return GLFW_FALSE; cursor->x11.handle = XCreateFontCursor(_glfw.x11.display, native); if (!cursor->x11.handle) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to create standard cursor"); return GLFW_FALSE; } return GLFW_TRUE; } void _glfwPlatformDestroyCursor(_GLFWcursor* cursor) { if (cursor->x11.handle) XFreeCursor(_glfw.x11.display, cursor->x11.handle); } void _glfwPlatformSetCursor(_GLFWwindow* window, _GLFWcursor* cursor) { if (window->cursorMode == GLFW_CURSOR_NORMAL) { updateCursorImage(window); XFlush(_glfw.x11.display); } } void _glfwPlatformSetClipboardString(const char* string) { char* copy = _glfw_strdup(string); free(_glfw.x11.clipboardString); _glfw.x11.clipboardString = copy; XSetSelectionOwner(_glfw.x11.display, _glfw.x11.CLIPBOARD, _glfw.x11.helperWindowHandle, CurrentTime); if (XGetSelectionOwner(_glfw.x11.display, _glfw.x11.CLIPBOARD) != _glfw.x11.helperWindowHandle) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to become owner of clipboard selection"); } } const char* _glfwPlatformGetClipboardString(void) { return getSelectionString(_glfw.x11.CLIPBOARD); } void _glfwPlatformGetRequiredInstanceExtensions(char** extensions) { if (!_glfw.vk.KHR_surface) return; if (!_glfw.vk.KHR_xcb_surface || !_glfw.x11.x11xcb.handle) { if (!_glfw.vk.KHR_xlib_surface) return; } extensions[0] = "VK_KHR_surface"; // NOTE: VK_KHR_xcb_surface is preferred due to some early ICDs exposing but // not correctly implementing VK_KHR_xlib_surface if (_glfw.vk.KHR_xcb_surface && _glfw.x11.x11xcb.handle) extensions[1] = "VK_KHR_xcb_surface"; else extensions[1] = "VK_KHR_xlib_surface"; } int _glfwPlatformGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily) { VisualID visualID = XVisualIDFromVisual(DefaultVisual(_glfw.x11.display, _glfw.x11.screen)); if (_glfw.vk.KHR_xcb_surface && _glfw.x11.x11xcb.handle) { PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR vkGetPhysicalDeviceXcbPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR) vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceXcbPresentationSupportKHR"); if (!vkGetPhysicalDeviceXcbPresentationSupportKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "X11: Vulkan instance missing VK_KHR_xcb_surface extension"); return GLFW_FALSE; } xcb_connection_t* connection = XGetXCBConnection(_glfw.x11.display); if (!connection) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to retrieve XCB connection"); return GLFW_FALSE; } return vkGetPhysicalDeviceXcbPresentationSupportKHR(device, queuefamily, connection, visualID); } else { PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR vkGetPhysicalDeviceXlibPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR) vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceXlibPresentationSupportKHR"); if (!vkGetPhysicalDeviceXlibPresentationSupportKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "X11: Vulkan instance missing VK_KHR_xlib_surface extension"); return GLFW_FALSE; } return vkGetPhysicalDeviceXlibPresentationSupportKHR(device, queuefamily, _glfw.x11.display, visualID); } } VkResult _glfwPlatformCreateWindowSurface(VkInstance instance, _GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface) { if (_glfw.vk.KHR_xcb_surface && _glfw.x11.x11xcb.handle) { VkResult err; VkXcbSurfaceCreateInfoKHR sci; PFN_vkCreateXcbSurfaceKHR vkCreateXcbSurfaceKHR; xcb_connection_t* connection = XGetXCBConnection(_glfw.x11.display); if (!connection) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to retrieve XCB connection"); return VK_ERROR_EXTENSION_NOT_PRESENT; } vkCreateXcbSurfaceKHR = (PFN_vkCreateXcbSurfaceKHR) vkGetInstanceProcAddr(instance, "vkCreateXcbSurfaceKHR"); if (!vkCreateXcbSurfaceKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "X11: Vulkan instance missing VK_KHR_xcb_surface extension"); return VK_ERROR_EXTENSION_NOT_PRESENT; } memset(&sci, 0, sizeof(sci)); sci.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR; sci.connection = connection; sci.window = window->x11.handle; err = vkCreateXcbSurfaceKHR(instance, &sci, allocator, surface); if (err) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to create Vulkan XCB surface: %s", _glfwGetVulkanResultString(err)); } return err; } else { VkResult err; VkXlibSurfaceCreateInfoKHR sci; PFN_vkCreateXlibSurfaceKHR vkCreateXlibSurfaceKHR; vkCreateXlibSurfaceKHR = (PFN_vkCreateXlibSurfaceKHR) vkGetInstanceProcAddr(instance, "vkCreateXlibSurfaceKHR"); if (!vkCreateXlibSurfaceKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "X11: Vulkan instance missing VK_KHR_xlib_surface extension"); return VK_ERROR_EXTENSION_NOT_PRESENT; } memset(&sci, 0, sizeof(sci)); sci.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR; sci.dpy = _glfw.x11.display; sci.window = window->x11.handle; err = vkCreateXlibSurfaceKHR(instance, &sci, allocator, surface); if (err) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to create Vulkan X11 surface: %s", _glfwGetVulkanResultString(err)); } return err; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI Display* glfwGetX11Display(void) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return _glfw.x11.display; } GLFWAPI Window glfwGetX11Window(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(None); return window->x11.handle; } GLFWAPI void glfwSetX11SelectionString(const char* string) { _GLFW_REQUIRE_INIT(); free(_glfw.x11.primarySelectionString); _glfw.x11.primarySelectionString = _glfw_strdup(string); XSetSelectionOwner(_glfw.x11.display, _glfw.x11.PRIMARY, _glfw.x11.helperWindowHandle, CurrentTime); if (XGetSelectionOwner(_glfw.x11.display, _glfw.x11.PRIMARY) != _glfw.x11.helperWindowHandle) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to become owner of primary selection"); } } GLFWAPI const char* glfwGetX11SelectionString(void) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return getSelectionString(_glfw.x11.PRIMARY); } #endif #ifndef HEADER_GUARD_GLX_CONTEXT_C #define HEADER_GUARD_GLX_CONTEXT_C //======================================================================== // GLFW 3.3.7 GLX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #ifndef GLXBadProfileARB #define GLXBadProfileARB 13 #endif // Returns the specified attribute of the specified GLXFBConfig // static int getGLXFBConfigAttrib(GLXFBConfig fbconfig, int attrib) { int value; glXGetFBConfigAttrib(_glfw.x11.display, fbconfig, attrib, &value); return value; } // Return the GLXFBConfig most closely matching the specified hints // static GLFWbool chooseGLXFBConfig(const _GLFWfbconfig* desired, GLXFBConfig* result) { GLXFBConfig* nativeConfigs; _GLFWfbconfig* usableConfigs; const _GLFWfbconfig* closest; int i, nativeCount, usableCount; const char* vendor; GLFWbool trustWindowBit = GLFW_TRUE; // HACK: This is a (hopefully temporary) workaround for Chromium // (VirtualBox GL) not setting the window bit on any GLXFBConfigs vendor = glXGetClientString(_glfw.x11.display, GLX_VENDOR); if (vendor && strcmp(vendor, "Chromium") == 0) trustWindowBit = GLFW_FALSE; nativeConfigs = glXGetFBConfigs(_glfw.x11.display, _glfw.x11.screen, &nativeCount); if (!nativeConfigs || !nativeCount) { _glfwInputError(GLFW_API_UNAVAILABLE, "GLX: No GLXFBConfigs returned"); return GLFW_FALSE; } usableConfigs = calloc(nativeCount, sizeof(_GLFWfbconfig)); usableCount = 0; for (i = 0; i < nativeCount; i++) { const GLXFBConfig n = nativeConfigs[i]; _GLFWfbconfig* u = usableConfigs + usableCount; // Only consider RGBA GLXFBConfigs if (!(getGLXFBConfigAttrib(n, GLX_RENDER_TYPE) & GLX_RGBA_BIT)) continue; // Only consider window GLXFBConfigs if (!(getGLXFBConfigAttrib(n, GLX_DRAWABLE_TYPE) & GLX_WINDOW_BIT)) { if (trustWindowBit) continue; } if (getGLXFBConfigAttrib(n, GLX_DOUBLEBUFFER) != desired->doublebuffer) continue; if (desired->transparent) { XVisualInfo* vi = glXGetVisualFromFBConfig(_glfw.x11.display, n); if (vi) { u->transparent = _glfwIsVisualTransparentX11(vi->visual); XFree(vi); } } u->redBits = getGLXFBConfigAttrib(n, GLX_RED_SIZE); u->greenBits = getGLXFBConfigAttrib(n, GLX_GREEN_SIZE); u->blueBits = getGLXFBConfigAttrib(n, GLX_BLUE_SIZE); u->alphaBits = getGLXFBConfigAttrib(n, GLX_ALPHA_SIZE); u->depthBits = getGLXFBConfigAttrib(n, GLX_DEPTH_SIZE); u->stencilBits = getGLXFBConfigAttrib(n, GLX_STENCIL_SIZE); u->accumRedBits = getGLXFBConfigAttrib(n, GLX_ACCUM_RED_SIZE); u->accumGreenBits = getGLXFBConfigAttrib(n, GLX_ACCUM_GREEN_SIZE); u->accumBlueBits = getGLXFBConfigAttrib(n, GLX_ACCUM_BLUE_SIZE); u->accumAlphaBits = getGLXFBConfigAttrib(n, GLX_ACCUM_ALPHA_SIZE); u->auxBuffers = getGLXFBConfigAttrib(n, GLX_AUX_BUFFERS); if (getGLXFBConfigAttrib(n, GLX_STEREO)) u->stereo = GLFW_TRUE; if (_glfw.glx.ARB_multisample) u->samples = getGLXFBConfigAttrib(n, GLX_SAMPLES); if (_glfw.glx.ARB_framebuffer_sRGB || _glfw.glx.EXT_framebuffer_sRGB) u->sRGB = getGLXFBConfigAttrib(n, GLX_FRAMEBUFFER_SRGB_CAPABLE_ARB); u->handle = (uintptr_t) n; usableCount++; } closest = _glfwChooseFBConfig(desired, usableConfigs, usableCount); if (closest) *result = (GLXFBConfig) closest->handle; XFree(nativeConfigs); free(usableConfigs); return closest != NULL; } // Create the OpenGL context using legacy API // static GLXContext createLegacyContextGLX(_GLFWwindow* window, GLXFBConfig fbconfig, GLXContext share) { return glXCreateNewContext(_glfw.x11.display, fbconfig, GLX_RGBA_TYPE, share, True); } static void makeContextCurrentGLX(_GLFWwindow* window) { if (window) { if (!glXMakeCurrent(_glfw.x11.display, window->context.glx.window, window->context.glx.handle)) { _glfwInputError(GLFW_PLATFORM_ERROR, "GLX: Failed to make context current"); return; } } else { if (!glXMakeCurrent(_glfw.x11.display, None, NULL)) { _glfwInputError(GLFW_PLATFORM_ERROR, "GLX: Failed to clear current context"); return; } } _glfwPlatformSetTls(&_glfw.contextSlot, window); } static void swapBuffersGLX(_GLFWwindow* window) { glXSwapBuffers(_glfw.x11.display, window->context.glx.window); } static void swapIntervalGLX(int interval) { _GLFWwindow* window = _glfwPlatformGetTls(&_glfw.contextSlot); if (_glfw.glx.EXT_swap_control) { _glfw.glx.SwapIntervalEXT(_glfw.x11.display, window->context.glx.window, interval); } else if (_glfw.glx.MESA_swap_control) _glfw.glx.SwapIntervalMESA(interval); else if (_glfw.glx.SGI_swap_control) { if (interval > 0) _glfw.glx.SwapIntervalSGI(interval); } } static int extensionSupportedGLX(const char* extension) { const char* extensions = glXQueryExtensionsString(_glfw.x11.display, _glfw.x11.screen); if (extensions) { if (_glfwStringInExtensionString(extension, extensions)) return GLFW_TRUE; } return GLFW_FALSE; } static GLFWglproc getProcAddressGLX(const char* procname) { if (_glfw.glx.GetProcAddress) return _glfw.glx.GetProcAddress((const GLubyte*) procname); else if (_glfw.glx.GetProcAddressARB) return _glfw.glx.GetProcAddressARB((const GLubyte*) procname); else return _glfw_dlsym(_glfw.glx.handle, procname); } static void destroyContextGLX(_GLFWwindow* window) { if (window->context.glx.window) { glXDestroyWindow(_glfw.x11.display, window->context.glx.window); window->context.glx.window = None; } if (window->context.glx.handle) { glXDestroyContext(_glfw.x11.display, window->context.glx.handle); window->context.glx.handle = NULL; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize GLX // GLFWbool _glfwInitGLX(void) { int i; const char* sonames[] = { #if defined(_GLFW_GLX_LIBRARY) _GLFW_GLX_LIBRARY, #elif defined(__CYGWIN__) "libGL-1.so", #elif defined(__OpenBSD__) || defined(__NetBSD__) "libGL.so", #else "libGL.so.1", "libGL.so", #endif NULL }; if (_glfw.glx.handle) return GLFW_TRUE; for (i = 0; sonames[i]; i++) { _glfw.glx.handle = _glfw_dlopen(sonames[i]); if (_glfw.glx.handle) break; } if (!_glfw.glx.handle) { _glfwInputError(GLFW_API_UNAVAILABLE, "GLX: Failed to load GLX"); return GLFW_FALSE; } _glfw.glx.GetFBConfigs = _glfw_dlsym(_glfw.glx.handle, "glXGetFBConfigs"); _glfw.glx.GetFBConfigAttrib = _glfw_dlsym(_glfw.glx.handle, "glXGetFBConfigAttrib"); _glfw.glx.GetClientString = _glfw_dlsym(_glfw.glx.handle, "glXGetClientString"); _glfw.glx.QueryExtension = _glfw_dlsym(_glfw.glx.handle, "glXQueryExtension"); _glfw.glx.QueryVersion = _glfw_dlsym(_glfw.glx.handle, "glXQueryVersion"); _glfw.glx.DestroyContext = _glfw_dlsym(_glfw.glx.handle, "glXDestroyContext"); _glfw.glx.MakeCurrent = _glfw_dlsym(_glfw.glx.handle, "glXMakeCurrent"); _glfw.glx.SwapBuffers = _glfw_dlsym(_glfw.glx.handle, "glXSwapBuffers"); _glfw.glx.QueryExtensionsString = _glfw_dlsym(_glfw.glx.handle, "glXQueryExtensionsString"); _glfw.glx.CreateNewContext = _glfw_dlsym(_glfw.glx.handle, "glXCreateNewContext"); _glfw.glx.CreateWindow = _glfw_dlsym(_glfw.glx.handle, "glXCreateWindow"); _glfw.glx.DestroyWindow = _glfw_dlsym(_glfw.glx.handle, "glXDestroyWindow"); _glfw.glx.GetVisualFromFBConfig = _glfw_dlsym(_glfw.glx.handle, "glXGetVisualFromFBConfig"); if (!_glfw.glx.GetFBConfigs || !_glfw.glx.GetFBConfigAttrib || !_glfw.glx.GetClientString || !_glfw.glx.QueryExtension || !_glfw.glx.QueryVersion || !_glfw.glx.DestroyContext || !_glfw.glx.MakeCurrent || !_glfw.glx.SwapBuffers || !_glfw.glx.QueryExtensionsString || !_glfw.glx.CreateNewContext || !_glfw.glx.CreateWindow || !_glfw.glx.DestroyWindow || !_glfw.glx.GetVisualFromFBConfig) { _glfwInputError(GLFW_PLATFORM_ERROR, "GLX: Failed to load required entry points"); return GLFW_FALSE; } // NOTE: Unlike GLX 1.3 entry points these are not required to be present _glfw.glx.GetProcAddress = (PFNGLXGETPROCADDRESSPROC) _glfw_dlsym(_glfw.glx.handle, "glXGetProcAddress"); _glfw.glx.GetProcAddressARB = (PFNGLXGETPROCADDRESSPROC) _glfw_dlsym(_glfw.glx.handle, "glXGetProcAddressARB"); if (!glXQueryExtension(_glfw.x11.display, &_glfw.glx.errorBase, &_glfw.glx.eventBase)) { _glfwInputError(GLFW_API_UNAVAILABLE, "GLX: GLX extension not found"); return GLFW_FALSE; } if (!glXQueryVersion(_glfw.x11.display, &_glfw.glx.major, &_glfw.glx.minor)) { _glfwInputError(GLFW_API_UNAVAILABLE, "GLX: Failed to query GLX version"); return GLFW_FALSE; } if (_glfw.glx.major == 1 && _glfw.glx.minor < 3) { _glfwInputError(GLFW_API_UNAVAILABLE, "GLX: GLX version 1.3 is required"); return GLFW_FALSE; } if (extensionSupportedGLX("GLX_EXT_swap_control")) { _glfw.glx.SwapIntervalEXT = (PFNGLXSWAPINTERVALEXTPROC) getProcAddressGLX("glXSwapIntervalEXT"); if (_glfw.glx.SwapIntervalEXT) _glfw.glx.EXT_swap_control = GLFW_TRUE; } if (extensionSupportedGLX("GLX_SGI_swap_control")) { _glfw.glx.SwapIntervalSGI = (PFNGLXSWAPINTERVALSGIPROC) getProcAddressGLX("glXSwapIntervalSGI"); if (_glfw.glx.SwapIntervalSGI) _glfw.glx.SGI_swap_control = GLFW_TRUE; } if (extensionSupportedGLX("GLX_MESA_swap_control")) { _glfw.glx.SwapIntervalMESA = (PFNGLXSWAPINTERVALMESAPROC) getProcAddressGLX("glXSwapIntervalMESA"); if (_glfw.glx.SwapIntervalMESA) _glfw.glx.MESA_swap_control = GLFW_TRUE; } if (extensionSupportedGLX("GLX_ARB_multisample")) _glfw.glx.ARB_multisample = GLFW_TRUE; if (extensionSupportedGLX("GLX_ARB_framebuffer_sRGB")) _glfw.glx.ARB_framebuffer_sRGB = GLFW_TRUE; if (extensionSupportedGLX("GLX_EXT_framebuffer_sRGB")) _glfw.glx.EXT_framebuffer_sRGB = GLFW_TRUE; if (extensionSupportedGLX("GLX_ARB_create_context")) { _glfw.glx.CreateContextAttribsARB = (PFNGLXCREATECONTEXTATTRIBSARBPROC) getProcAddressGLX("glXCreateContextAttribsARB"); if (_glfw.glx.CreateContextAttribsARB) _glfw.glx.ARB_create_context = GLFW_TRUE; } if (extensionSupportedGLX("GLX_ARB_create_context_robustness")) _glfw.glx.ARB_create_context_robustness = GLFW_TRUE; if (extensionSupportedGLX("GLX_ARB_create_context_profile")) _glfw.glx.ARB_create_context_profile = GLFW_TRUE; if (extensionSupportedGLX("GLX_EXT_create_context_es2_profile")) _glfw.glx.EXT_create_context_es2_profile = GLFW_TRUE; if (extensionSupportedGLX("GLX_ARB_create_context_no_error")) _glfw.glx.ARB_create_context_no_error = GLFW_TRUE; if (extensionSupportedGLX("GLX_ARB_context_flush_control")) _glfw.glx.ARB_context_flush_control = GLFW_TRUE; return GLFW_TRUE; } // Terminate GLX // void _glfwTerminateGLX(void) { // NOTE: This function must not call any X11 functions, as it is called // after XCloseDisplay (see _glfwPlatformTerminate for details) if (_glfw.glx.handle) { _glfw_dlclose(_glfw.glx.handle); _glfw.glx.handle = NULL; } } #define setAttrib(a, v) \ { \ assert(((size_t) index + 1) < sizeof(attribs) / sizeof(attribs[0])); \ attribs[index++] = a; \ attribs[index++] = v; \ } // Create the OpenGL or OpenGL ES context // GLFWbool _glfwCreateContextGLX(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { int attribs[40]; GLXFBConfig native = NULL; GLXContext share = NULL; if (ctxconfig->share) share = ctxconfig->share->context.glx.handle; if (!chooseGLXFBConfig(fbconfig, &native)) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "GLX: Failed to find a suitable GLXFBConfig"); return GLFW_FALSE; } if (ctxconfig->client == GLFW_OPENGL_ES_API) { if (!_glfw.glx.ARB_create_context || !_glfw.glx.ARB_create_context_profile || !_glfw.glx.EXT_create_context_es2_profile) { _glfwInputError(GLFW_API_UNAVAILABLE, "GLX: OpenGL ES requested but GLX_EXT_create_context_es2_profile is unavailable"); return GLFW_FALSE; } } if (ctxconfig->forward) { if (!_glfw.glx.ARB_create_context) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "GLX: Forward compatibility requested but GLX_ARB_create_context_profile is unavailable"); return GLFW_FALSE; } } if (ctxconfig->profile) { if (!_glfw.glx.ARB_create_context || !_glfw.glx.ARB_create_context_profile) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "GLX: An OpenGL profile requested but GLX_ARB_create_context_profile is unavailable"); return GLFW_FALSE; } } _glfwGrabErrorHandlerX11(); if (_glfw.glx.ARB_create_context) { int index = 0, mask = 0, flags = 0; if (ctxconfig->client == GLFW_OPENGL_API) { if (ctxconfig->forward) flags |= GLX_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB; if (ctxconfig->profile == GLFW_OPENGL_CORE_PROFILE) mask |= GLX_CONTEXT_CORE_PROFILE_BIT_ARB; else if (ctxconfig->profile == GLFW_OPENGL_COMPAT_PROFILE) mask |= GLX_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB; } else mask |= GLX_CONTEXT_ES2_PROFILE_BIT_EXT; if (ctxconfig->debug) flags |= GLX_CONTEXT_DEBUG_BIT_ARB; if (ctxconfig->robustness) { if (_glfw.glx.ARB_create_context_robustness) { if (ctxconfig->robustness == GLFW_NO_RESET_NOTIFICATION) { setAttrib(GLX_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB, GLX_NO_RESET_NOTIFICATION_ARB); } else if (ctxconfig->robustness == GLFW_LOSE_CONTEXT_ON_RESET) { setAttrib(GLX_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB, GLX_LOSE_CONTEXT_ON_RESET_ARB); } flags |= GLX_CONTEXT_ROBUST_ACCESS_BIT_ARB; } } if (ctxconfig->release) { if (_glfw.glx.ARB_context_flush_control) { if (ctxconfig->release == GLFW_RELEASE_BEHAVIOR_NONE) { setAttrib(GLX_CONTEXT_RELEASE_BEHAVIOR_ARB, GLX_CONTEXT_RELEASE_BEHAVIOR_NONE_ARB); } else if (ctxconfig->release == GLFW_RELEASE_BEHAVIOR_FLUSH) { setAttrib(GLX_CONTEXT_RELEASE_BEHAVIOR_ARB, GLX_CONTEXT_RELEASE_BEHAVIOR_FLUSH_ARB); } } } if (ctxconfig->noerror) { if (_glfw.glx.ARB_create_context_no_error) setAttrib(GLX_CONTEXT_OPENGL_NO_ERROR_ARB, GLFW_TRUE); } // NOTE: Only request an explicitly versioned context when necessary, as // explicitly requesting version 1.0 does not always return the // highest version supported by the driver if (ctxconfig->major != 1 || ctxconfig->minor != 0) { setAttrib(GLX_CONTEXT_MAJOR_VERSION_ARB, ctxconfig->major); setAttrib(GLX_CONTEXT_MINOR_VERSION_ARB, ctxconfig->minor); } if (mask) setAttrib(GLX_CONTEXT_PROFILE_MASK_ARB, mask); if (flags) setAttrib(GLX_CONTEXT_FLAGS_ARB, flags); setAttrib(None, None); window->context.glx.handle = _glfw.glx.CreateContextAttribsARB(_glfw.x11.display, native, share, True, attribs); // HACK: This is a fallback for broken versions of the Mesa // implementation of GLX_ARB_create_context_profile that fail // default 1.0 context creation with a GLXBadProfileARB error in // violation of the extension spec if (!window->context.glx.handle) { if (_glfw.x11.errorCode == _glfw.glx.errorBase + GLXBadProfileARB && ctxconfig->client == GLFW_OPENGL_API && ctxconfig->profile == GLFW_OPENGL_ANY_PROFILE && ctxconfig->forward == GLFW_FALSE) { window->context.glx.handle = createLegacyContextGLX(window, native, share); } } } else { window->context.glx.handle = createLegacyContextGLX(window, native, share); } _glfwReleaseErrorHandlerX11(); if (!window->context.glx.handle) { _glfwInputErrorX11(GLFW_VERSION_UNAVAILABLE, "GLX: Failed to create context"); return GLFW_FALSE; } window->context.glx.window = glXCreateWindow(_glfw.x11.display, native, window->x11.handle, NULL); if (!window->context.glx.window) { _glfwInputError(GLFW_PLATFORM_ERROR, "GLX: Failed to create window"); return GLFW_FALSE; } window->context.makeCurrent = makeContextCurrentGLX; window->context.swapBuffers = swapBuffersGLX; window->context.swapInterval = swapIntervalGLX; window->context.extensionSupported = extensionSupportedGLX; window->context.getProcAddress = getProcAddressGLX; window->context.destroy = destroyContextGLX; return GLFW_TRUE; } #undef setAttrib // Returns the Visual and depth of the chosen GLXFBConfig // GLFWbool _glfwChooseVisualGLX(const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig, Visual** visual, int* depth) { GLXFBConfig native; XVisualInfo* result; if (!chooseGLXFBConfig(fbconfig, &native)) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "GLX: Failed to find a suitable GLXFBConfig"); return GLFW_FALSE; } result = glXGetVisualFromFBConfig(_glfw.x11.display, native); if (!result) { _glfwInputError(GLFW_PLATFORM_ERROR, "GLX: Failed to retrieve Visual for GLXFBConfig"); return GLFW_FALSE; } *visual = result->visual; *depth = result->depth; XFree(result); return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI GLXContext glfwGetGLXContext(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); if (window->context.source != GLFW_NATIVE_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return NULL; } return window->context.glx.handle; } GLFWAPI GLXWindow glfwGetGLXWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(None); if (window->context.source != GLFW_NATIVE_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return None; } return window->context.glx.window; } #endif #endif #ifdef _GLFW_WAYLAND #ifndef HEADER_GUARD_WL_INIT_C #define HEADER_GUARD_WL_INIT_C //======================================================================== // GLFW 3.3.7 Wayland - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #ifndef _POSIX_C_SOURCE //< @r-lyeh: add guard #define _POSIX_C_SOURCE 200809L #endif #include #include #include #include #include #include #include #include #include #include #include static inline int min(int n1, int n2) { return n1 < n2 ? n1 : n2; } static _GLFWwindow* findWindowFromDecorationSurface(struct wl_surface* surface, int* which) { int focus; _GLFWwindow* window = _glfw.windowListHead; if (!which) which = &focus; while (window) { if (surface == window->wl.decorations.top.surface) { *which = topDecoration; break; } if (surface == window->wl.decorations.left.surface) { *which = leftDecoration; break; } if (surface == window->wl.decorations.right.surface) { *which = rightDecoration; break; } if (surface == window->wl.decorations.bottom.surface) { *which = bottomDecoration; break; } window = window->next; } return window; } static void pointerHandleEnter(void* data, struct wl_pointer* pointer, uint32_t serial, struct wl_surface* surface, wl_fixed_t sx, wl_fixed_t sy) { // Happens in the case we just destroyed the surface. if (!surface) return; int focus = 0; _GLFWwindow* window = wl_surface_get_user_data(surface); if (!window) { window = findWindowFromDecorationSurface(surface, &focus); if (!window) return; } window->wl.decorations.focus = focus; _glfw.wl.serial = serial; _glfw.wl.pointerEnterSerial = serial; _glfw.wl.pointerFocus = window; window->wl.hovered = GLFW_TRUE; _glfwPlatformSetCursor(window, window->wl.currentCursor); _glfwInputCursorEnter(window, GLFW_TRUE); } static void pointerHandleLeave(void* data, struct wl_pointer* pointer, uint32_t serial, struct wl_surface* surface) { _GLFWwindow* window = _glfw.wl.pointerFocus; if (!window) return; window->wl.hovered = GLFW_FALSE; _glfw.wl.serial = serial; _glfw.wl.pointerFocus = NULL; _glfwInputCursorEnter(window, GLFW_FALSE); _glfw.wl.cursorPreviousName = NULL; } static void setCursor(_GLFWwindow* window, const char* name) { struct wl_buffer* buffer; struct wl_cursor* cursor; struct wl_cursor_image* image; struct wl_surface* surface = _glfw.wl.cursorSurface; struct wl_cursor_theme* theme = _glfw.wl.cursorTheme; int scale = 1; if (window->wl.scale > 1 && _glfw.wl.cursorThemeHiDPI) { // We only support up to scale=2 for now, since libwayland-cursor // requires us to load a different theme for each size. scale = 2; theme = _glfw.wl.cursorThemeHiDPI; } cursor = wl_cursor_theme_get_cursor(theme, name); if (!cursor) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Standard cursor not found"); return; } // TODO: handle animated cursors too. image = cursor->images[0]; if (!image) return; buffer = wl_cursor_image_get_buffer(image); if (!buffer) return; wl_pointer_set_cursor(_glfw.wl.pointer, _glfw.wl.pointerEnterSerial, surface, image->hotspot_x / scale, image->hotspot_y / scale); wl_surface_set_buffer_scale(surface, scale); wl_surface_attach(surface, buffer, 0, 0); wl_surface_damage(surface, 0, 0, image->width, image->height); wl_surface_commit(surface); _glfw.wl.cursorPreviousName = name; } static void pointerHandleMotion(void* data, struct wl_pointer* pointer, uint32_t time, wl_fixed_t sx, wl_fixed_t sy) { _GLFWwindow* window = _glfw.wl.pointerFocus; const char* cursorName = NULL; double x, y; if (!window) return; if (window->cursorMode == GLFW_CURSOR_DISABLED) return; x = wl_fixed_to_double(sx); y = wl_fixed_to_double(sy); window->wl.cursorPosX = x; window->wl.cursorPosY = y; switch (window->wl.decorations.focus) { case mainWindow: _glfwInputCursorPos(window, x, y); _glfw.wl.cursorPreviousName = NULL; return; case topDecoration: if (y < _GLFW_DECORATION_WIDTH) cursorName = "n-resize"; else cursorName = "left_ptr"; break; case leftDecoration: if (y < _GLFW_DECORATION_WIDTH) cursorName = "nw-resize"; else cursorName = "w-resize"; break; case rightDecoration: if (y < _GLFW_DECORATION_WIDTH) cursorName = "ne-resize"; else cursorName = "e-resize"; break; case bottomDecoration: if (x < _GLFW_DECORATION_WIDTH) cursorName = "sw-resize"; else if (x > window->wl.width + _GLFW_DECORATION_WIDTH) cursorName = "se-resize"; else cursorName = "s-resize"; break; default: assert(0); } if (_glfw.wl.cursorPreviousName != cursorName) setCursor(window, cursorName); } static void pointerHandleButton(void* data, struct wl_pointer* pointer, uint32_t serial, uint32_t time, uint32_t button, uint32_t state) { _GLFWwindow* window = _glfw.wl.pointerFocus; int glfwButton; // Both xdg-shell and wl_shell use the same values. uint32_t edges = WL_SHELL_SURFACE_RESIZE_NONE; if (!window) return; if (button == BTN_LEFT) { switch (window->wl.decorations.focus) { case mainWindow: break; case topDecoration: if (window->wl.cursorPosY < _GLFW_DECORATION_WIDTH) edges = WL_SHELL_SURFACE_RESIZE_TOP; else { if (window->wl.xdg.toplevel) xdg_toplevel_move(window->wl.xdg.toplevel, _glfw.wl.seat, serial); else wl_shell_surface_move(window->wl.shellSurface, _glfw.wl.seat, serial); } break; case leftDecoration: if (window->wl.cursorPosY < _GLFW_DECORATION_WIDTH) edges = WL_SHELL_SURFACE_RESIZE_TOP_LEFT; else edges = WL_SHELL_SURFACE_RESIZE_LEFT; break; case rightDecoration: if (window->wl.cursorPosY < _GLFW_DECORATION_WIDTH) edges = WL_SHELL_SURFACE_RESIZE_TOP_RIGHT; else edges = WL_SHELL_SURFACE_RESIZE_RIGHT; break; case bottomDecoration: if (window->wl.cursorPosX < _GLFW_DECORATION_WIDTH) edges = WL_SHELL_SURFACE_RESIZE_BOTTOM_LEFT; else if (window->wl.cursorPosX > window->wl.width + _GLFW_DECORATION_WIDTH) edges = WL_SHELL_SURFACE_RESIZE_BOTTOM_RIGHT; else edges = WL_SHELL_SURFACE_RESIZE_BOTTOM; break; default: assert(0); } if (edges != WL_SHELL_SURFACE_RESIZE_NONE) { if (window->wl.xdg.toplevel) xdg_toplevel_resize(window->wl.xdg.toplevel, _glfw.wl.seat, serial, edges); else wl_shell_surface_resize(window->wl.shellSurface, _glfw.wl.seat, serial, edges); return; } } else if (button == BTN_RIGHT) { if (window->wl.decorations.focus != mainWindow && window->wl.xdg.toplevel) { xdg_toplevel_show_window_menu(window->wl.xdg.toplevel, _glfw.wl.seat, serial, window->wl.cursorPosX, window->wl.cursorPosY); return; } } // Don’t pass the button to the user if it was related to a decoration. if (window->wl.decorations.focus != mainWindow) return; _glfw.wl.serial = serial; /* Makes left, right and middle 0, 1 and 2. Overall order follows evdev * codes. */ glfwButton = button - BTN_LEFT; _glfwInputMouseClick(window, glfwButton, state == WL_POINTER_BUTTON_STATE_PRESSED ? GLFW_PRESS : GLFW_RELEASE, _glfw.wl.xkb.modifiers); } static void pointerHandleAxis(void* data, struct wl_pointer* pointer, uint32_t time, uint32_t axis, wl_fixed_t value) { _GLFWwindow* window = _glfw.wl.pointerFocus; double x = 0.0, y = 0.0; // Wayland scroll events are in pointer motion coordinate space (think two // finger scroll). The factor 10 is commonly used to convert to "scroll // step means 1.0. const double scrollFactor = 1.0 / 10.0; if (!window) return; assert(axis == WL_POINTER_AXIS_HORIZONTAL_SCROLL || axis == WL_POINTER_AXIS_VERTICAL_SCROLL); if (axis == WL_POINTER_AXIS_HORIZONTAL_SCROLL) x = -wl_fixed_to_double(value) * scrollFactor; else if (axis == WL_POINTER_AXIS_VERTICAL_SCROLL) y = -wl_fixed_to_double(value) * scrollFactor; _glfwInputScroll(window, x, y); } static const struct wl_pointer_listener pointerListener = { pointerHandleEnter, pointerHandleLeave, pointerHandleMotion, pointerHandleButton, pointerHandleAxis, }; static void keyboardHandleKeymap(void* data, struct wl_keyboard* keyboard, uint32_t format, int fd, uint32_t size) { struct xkb_keymap* keymap; struct xkb_state* state; struct xkb_compose_table* composeTable; struct xkb_compose_state* composeState; char* mapStr; const char* locale; if (format != WL_KEYBOARD_KEYMAP_FORMAT_XKB_V1) { close(fd); return; } mapStr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); if (mapStr == MAP_FAILED) { close(fd); return; } keymap = xkb_keymap_new_from_string(_glfw.wl.xkb.context, mapStr, XKB_KEYMAP_FORMAT_TEXT_V1, 0); munmap(mapStr, size); close(fd); if (!keymap) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to compile keymap"); return; } state = xkb_state_new(keymap); if (!state) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to create XKB state"); xkb_keymap_unref(keymap); return; } // Look up the preferred locale, falling back to "C" as default. locale = getenv("LC_ALL"); if (!locale) locale = getenv("LC_CTYPE"); if (!locale) locale = getenv("LANG"); if (!locale) locale = "C"; composeTable = xkb_compose_table_new_from_locale(_glfw.wl.xkb.context, locale, XKB_COMPOSE_COMPILE_NO_FLAGS); if (composeTable) { composeState = xkb_compose_state_new(composeTable, XKB_COMPOSE_STATE_NO_FLAGS); xkb_compose_table_unref(composeTable); if (composeState) _glfw.wl.xkb.composeState = composeState; else _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to create XKB compose state"); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to create XKB compose table"); } xkb_keymap_unref(_glfw.wl.xkb.keymap); xkb_state_unref(_glfw.wl.xkb.state); _glfw.wl.xkb.keymap = keymap; _glfw.wl.xkb.state = state; _glfw.wl.xkb.controlMask = 1 << xkb_keymap_mod_get_index(_glfw.wl.xkb.keymap, "Control"); _glfw.wl.xkb.altMask = 1 << xkb_keymap_mod_get_index(_glfw.wl.xkb.keymap, "Mod1"); _glfw.wl.xkb.shiftMask = 1 << xkb_keymap_mod_get_index(_glfw.wl.xkb.keymap, "Shift"); _glfw.wl.xkb.superMask = 1 << xkb_keymap_mod_get_index(_glfw.wl.xkb.keymap, "Mod4"); _glfw.wl.xkb.capsLockMask = 1 << xkb_keymap_mod_get_index(_glfw.wl.xkb.keymap, "Lock"); _glfw.wl.xkb.numLockMask = 1 << xkb_keymap_mod_get_index(_glfw.wl.xkb.keymap, "Mod2"); } static void keyboardHandleEnter(void* data, struct wl_keyboard* keyboard, uint32_t serial, struct wl_surface* surface, struct wl_array* keys) { // Happens in the case we just destroyed the surface. if (!surface) return; _GLFWwindow* window = wl_surface_get_user_data(surface); if (!window) { window = findWindowFromDecorationSurface(surface, NULL); if (!window) return; } _glfw.wl.serial = serial; _glfw.wl.keyboardFocus = window; _glfwInputWindowFocus(window, GLFW_TRUE); } static void keyboardHandleLeave(void* data, struct wl_keyboard* keyboard, uint32_t serial, struct wl_surface* surface) { _GLFWwindow* window = _glfw.wl.keyboardFocus; if (!window) return; struct itimerspec timer = {}; timerfd_settime(_glfw.wl.timerfd, 0, &timer, NULL); _glfw.wl.serial = serial; _glfw.wl.keyboardFocus = NULL; _glfwInputWindowFocus(window, GLFW_FALSE); } static int translateKey(uint32_t scancode) { if (scancode < sizeof(_glfw.wl.keycodes) / sizeof(_glfw.wl.keycodes[0])) return _glfw.wl.keycodes[scancode]; return GLFW_KEY_UNKNOWN; } static xkb_keysym_t composeSymbol(xkb_keysym_t sym) { if (sym == XKB_KEY_NoSymbol || !_glfw.wl.xkb.composeState) return sym; if (xkb_compose_state_feed(_glfw.wl.xkb.composeState, sym) != XKB_COMPOSE_FEED_ACCEPTED) return sym; switch (xkb_compose_state_get_status(_glfw.wl.xkb.composeState)) { case XKB_COMPOSE_COMPOSED: return xkb_compose_state_get_one_sym(_glfw.wl.xkb.composeState); case XKB_COMPOSE_COMPOSING: case XKB_COMPOSE_CANCELLED: return XKB_KEY_NoSymbol; case XKB_COMPOSE_NOTHING: default: return sym; } } GLFWbool _glfwInputTextWayland(_GLFWwindow* window, uint32_t scancode) { const xkb_keysym_t* keysyms; const xkb_keycode_t keycode = scancode + 8; if (xkb_state_key_get_syms(_glfw.wl.xkb.state, keycode, &keysyms) == 1) { const xkb_keysym_t keysym = composeSymbol(keysyms[0]); const uint32_t codepoint = _glfwKeySym2Unicode(keysym); if (codepoint != GLFW_INVALID_CODEPOINT) { const int mods = _glfw.wl.xkb.modifiers; const int plain = !(mods & (GLFW_MOD_CONTROL | GLFW_MOD_ALT)); _glfwInputChar(window, codepoint, mods, plain); } } return xkb_keymap_key_repeats(_glfw.wl.xkb.keymap, keycode); } static void keyboardHandleKey(void* data, struct wl_keyboard* keyboard, uint32_t serial, uint32_t time, uint32_t scancode, uint32_t state) { _GLFWwindow* window = _glfw.wl.keyboardFocus; if (!window) return; const int key = translateKey(scancode); const int action = state == WL_KEYBOARD_KEY_STATE_PRESSED ? GLFW_PRESS : GLFW_RELEASE; _glfw.wl.serial = serial; _glfwInputKey(window, key, scancode, action, _glfw.wl.xkb.modifiers); struct itimerspec timer = {}; if (action == GLFW_PRESS) { const GLFWbool shouldRepeat = _glfwInputTextWayland(window, scancode); if (shouldRepeat && _glfw.wl.keyboardRepeatRate > 0) { _glfw.wl.keyboardLastKey = key; _glfw.wl.keyboardLastScancode = scancode; if (_glfw.wl.keyboardRepeatRate > 1) timer.it_interval.tv_nsec = 1000000000 / _glfw.wl.keyboardRepeatRate; else timer.it_interval.tv_sec = 1; timer.it_value.tv_sec = _glfw.wl.keyboardRepeatDelay / 1000; timer.it_value.tv_nsec = (_glfw.wl.keyboardRepeatDelay % 1000) * 1000000; } } timerfd_settime(_glfw.wl.timerfd, 0, &timer, NULL); } static void keyboardHandleModifiers(void* data, struct wl_keyboard* keyboard, uint32_t serial, uint32_t modsDepressed, uint32_t modsLatched, uint32_t modsLocked, uint32_t group) { _glfw.wl.serial = serial; if (!_glfw.wl.xkb.keymap) return; xkb_state_update_mask(_glfw.wl.xkb.state, modsDepressed, modsLatched, modsLocked, 0, 0, group); const xkb_mod_mask_t mask = xkb_state_serialize_mods(_glfw.wl.xkb.state, XKB_STATE_MODS_DEPRESSED | XKB_STATE_LAYOUT_DEPRESSED | XKB_STATE_MODS_LATCHED | XKB_STATE_LAYOUT_LATCHED); unsigned int mods = 0; if (mask & _glfw.wl.xkb.controlMask) mods |= GLFW_MOD_CONTROL; if (mask & _glfw.wl.xkb.altMask) mods |= GLFW_MOD_ALT; if (mask & _glfw.wl.xkb.shiftMask) mods |= GLFW_MOD_SHIFT; if (mask & _glfw.wl.xkb.superMask) mods |= GLFW_MOD_SUPER; if (mask & _glfw.wl.xkb.capsLockMask) mods |= GLFW_MOD_CAPS_LOCK; if (mask & _glfw.wl.xkb.numLockMask) mods |= GLFW_MOD_NUM_LOCK; _glfw.wl.xkb.modifiers = mods; } #ifdef WL_KEYBOARD_REPEAT_INFO_SINCE_VERSION static void keyboardHandleRepeatInfo(void* data, struct wl_keyboard* keyboard, int32_t rate, int32_t delay) { if (keyboard != _glfw.wl.keyboard) return; _glfw.wl.keyboardRepeatRate = rate; _glfw.wl.keyboardRepeatDelay = delay; } #endif static const struct wl_keyboard_listener keyboardListener = { keyboardHandleKeymap, keyboardHandleEnter, keyboardHandleLeave, keyboardHandleKey, keyboardHandleModifiers, #ifdef WL_KEYBOARD_REPEAT_INFO_SINCE_VERSION keyboardHandleRepeatInfo, #endif }; static void seatHandleCapabilities(void* data, struct wl_seat* seat, enum wl_seat_capability caps) { if ((caps & WL_SEAT_CAPABILITY_POINTER) && !_glfw.wl.pointer) { _glfw.wl.pointer = wl_seat_get_pointer(seat); wl_pointer_add_listener(_glfw.wl.pointer, &pointerListener, NULL); } else if (!(caps & WL_SEAT_CAPABILITY_POINTER) && _glfw.wl.pointer) { wl_pointer_destroy(_glfw.wl.pointer); _glfw.wl.pointer = NULL; } if ((caps & WL_SEAT_CAPABILITY_KEYBOARD) && !_glfw.wl.keyboard) { _glfw.wl.keyboard = wl_seat_get_keyboard(seat); wl_keyboard_add_listener(_glfw.wl.keyboard, &keyboardListener, NULL); } else if (!(caps & WL_SEAT_CAPABILITY_KEYBOARD) && _glfw.wl.keyboard) { wl_keyboard_destroy(_glfw.wl.keyboard); _glfw.wl.keyboard = NULL; } } static void seatHandleName(void* data, struct wl_seat* seat, const char* name) { } static const struct wl_seat_listener seatListener = { seatHandleCapabilities, seatHandleName, }; static void dataOfferHandleOffer(void* data, struct wl_data_offer* dataOffer, const char* mimeType) { } static const struct wl_data_offer_listener dataOfferListener = { dataOfferHandleOffer, }; static void dataDeviceHandleDataOffer(void* data, struct wl_data_device* dataDevice, struct wl_data_offer* id) { if (_glfw.wl.dataOffer) wl_data_offer_destroy(_glfw.wl.dataOffer); _glfw.wl.dataOffer = id; wl_data_offer_add_listener(_glfw.wl.dataOffer, &dataOfferListener, NULL); } static void dataDeviceHandleEnter(void* data, struct wl_data_device* dataDevice, uint32_t serial, struct wl_surface *surface, wl_fixed_t x, wl_fixed_t y, struct wl_data_offer *id) { } static void dataDeviceHandleLeave(void* data, struct wl_data_device* dataDevice) { } static void dataDeviceHandleMotion(void* data, struct wl_data_device* dataDevice, uint32_t time, wl_fixed_t x, wl_fixed_t y) { } static void dataDeviceHandleDrop(void* data, struct wl_data_device* dataDevice) { } static void dataDeviceHandleSelection(void* data, struct wl_data_device* dataDevice, struct wl_data_offer* id) { } static const struct wl_data_device_listener dataDeviceListener = { dataDeviceHandleDataOffer, dataDeviceHandleEnter, dataDeviceHandleLeave, dataDeviceHandleMotion, dataDeviceHandleDrop, dataDeviceHandleSelection, }; static void wmBaseHandlePing(void* data, struct xdg_wm_base* wmBase, uint32_t serial) { xdg_wm_base_pong(wmBase, serial); } static const struct xdg_wm_base_listener wmBaseListener = { wmBaseHandlePing }; static void registryHandleGlobal(void* data, struct wl_registry* registry, uint32_t name, const char* interface, uint32_t version) { if (strcmp(interface, "wl_compositor") == 0) { _glfw.wl.compositorVersion = min(3, version); _glfw.wl.compositor = wl_registry_bind(registry, name, &wl_compositor_interface, _glfw.wl.compositorVersion); } else if (strcmp(interface, "wl_subcompositor") == 0) { _glfw.wl.subcompositor = wl_registry_bind(registry, name, &wl_subcompositor_interface, 1); } else if (strcmp(interface, "wl_shm") == 0) { _glfw.wl.shm = wl_registry_bind(registry, name, &wl_shm_interface, 1); } else if (strcmp(interface, "wl_shell") == 0) { _glfw.wl.shell = wl_registry_bind(registry, name, &wl_shell_interface, 1); } else if (strcmp(interface, "wl_output") == 0) { _glfwAddOutputWayland(name, version); } else if (strcmp(interface, "wl_seat") == 0) { if (!_glfw.wl.seat) { _glfw.wl.seatVersion = min(4, version); _glfw.wl.seat = wl_registry_bind(registry, name, &wl_seat_interface, _glfw.wl.seatVersion); wl_seat_add_listener(_glfw.wl.seat, &seatListener, NULL); } } else if (strcmp(interface, "wl_data_device_manager") == 0) { if (!_glfw.wl.dataDeviceManager) { _glfw.wl.dataDeviceManager = wl_registry_bind(registry, name, &wl_data_device_manager_interface, 1); } } else if (strcmp(interface, "xdg_wm_base") == 0) { _glfw.wl.wmBase = wl_registry_bind(registry, name, &xdg_wm_base_interface, 1); xdg_wm_base_add_listener(_glfw.wl.wmBase, &wmBaseListener, NULL); } else if (strcmp(interface, "zxdg_decoration_manager_v1") == 0) { _glfw.wl.decorationManager = wl_registry_bind(registry, name, &zxdg_decoration_manager_v1_interface, 1); } else if (strcmp(interface, "wp_viewporter") == 0) { _glfw.wl.viewporter = wl_registry_bind(registry, name, &wp_viewporter_interface, 1); } else if (strcmp(interface, "zwp_relative_pointer_manager_v1") == 0) { _glfw.wl.relativePointerManager = wl_registry_bind(registry, name, &zwp_relative_pointer_manager_v1_interface, 1); } else if (strcmp(interface, "zwp_pointer_constraints_v1") == 0) { _glfw.wl.pointerConstraints = wl_registry_bind(registry, name, &zwp_pointer_constraints_v1_interface, 1); } else if (strcmp(interface, "zwp_idle_inhibit_manager_v1") == 0) { _glfw.wl.idleInhibitManager = wl_registry_bind(registry, name, &zwp_idle_inhibit_manager_v1_interface, 1); } } static void registryHandleGlobalRemove(void *data, struct wl_registry *registry, uint32_t name) { int i; _GLFWmonitor* monitor; for (i = 0; i < _glfw.monitorCount; ++i) { monitor = _glfw.monitors[i]; if (monitor->wl.name == name) { _glfwInputMonitor(monitor, GLFW_DISCONNECTED, 0); return; } } } static const struct wl_registry_listener registryListener = { registryHandleGlobal, registryHandleGlobalRemove }; // Create key code translation tables // static void createKeyTables(void) { int scancode; memset(_glfw.wl.keycodes, -1, sizeof(_glfw.wl.keycodes)); memset(_glfw.wl.scancodes, -1, sizeof(_glfw.wl.scancodes)); _glfw.wl.keycodes[KEY_GRAVE] = GLFW_KEY_GRAVE_ACCENT; _glfw.wl.keycodes[KEY_1] = GLFW_KEY_1; _glfw.wl.keycodes[KEY_2] = GLFW_KEY_2; _glfw.wl.keycodes[KEY_3] = GLFW_KEY_3; _glfw.wl.keycodes[KEY_4] = GLFW_KEY_4; _glfw.wl.keycodes[KEY_5] = GLFW_KEY_5; _glfw.wl.keycodes[KEY_6] = GLFW_KEY_6; _glfw.wl.keycodes[KEY_7] = GLFW_KEY_7; _glfw.wl.keycodes[KEY_8] = GLFW_KEY_8; _glfw.wl.keycodes[KEY_9] = GLFW_KEY_9; _glfw.wl.keycodes[KEY_0] = GLFW_KEY_0; _glfw.wl.keycodes[KEY_SPACE] = GLFW_KEY_SPACE; _glfw.wl.keycodes[KEY_MINUS] = GLFW_KEY_MINUS; _glfw.wl.keycodes[KEY_EQUAL] = GLFW_KEY_EQUAL; _glfw.wl.keycodes[KEY_Q] = GLFW_KEY_Q; _glfw.wl.keycodes[KEY_W] = GLFW_KEY_W; _glfw.wl.keycodes[KEY_E] = GLFW_KEY_E; _glfw.wl.keycodes[KEY_R] = GLFW_KEY_R; _glfw.wl.keycodes[KEY_T] = GLFW_KEY_T; _glfw.wl.keycodes[KEY_Y] = GLFW_KEY_Y; _glfw.wl.keycodes[KEY_U] = GLFW_KEY_U; _glfw.wl.keycodes[KEY_I] = GLFW_KEY_I; _glfw.wl.keycodes[KEY_O] = GLFW_KEY_O; _glfw.wl.keycodes[KEY_P] = GLFW_KEY_P; _glfw.wl.keycodes[KEY_LEFTBRACE] = GLFW_KEY_LEFT_BRACKET; _glfw.wl.keycodes[KEY_RIGHTBRACE] = GLFW_KEY_RIGHT_BRACKET; _glfw.wl.keycodes[KEY_A] = GLFW_KEY_A; _glfw.wl.keycodes[KEY_S] = GLFW_KEY_S; _glfw.wl.keycodes[KEY_D] = GLFW_KEY_D; _glfw.wl.keycodes[KEY_F] = GLFW_KEY_F; _glfw.wl.keycodes[KEY_G] = GLFW_KEY_G; _glfw.wl.keycodes[KEY_H] = GLFW_KEY_H; _glfw.wl.keycodes[KEY_J] = GLFW_KEY_J; _glfw.wl.keycodes[KEY_K] = GLFW_KEY_K; _glfw.wl.keycodes[KEY_L] = GLFW_KEY_L; _glfw.wl.keycodes[KEY_SEMICOLON] = GLFW_KEY_SEMICOLON; _glfw.wl.keycodes[KEY_APOSTROPHE] = GLFW_KEY_APOSTROPHE; _glfw.wl.keycodes[KEY_Z] = GLFW_KEY_Z; _glfw.wl.keycodes[KEY_X] = GLFW_KEY_X; _glfw.wl.keycodes[KEY_C] = GLFW_KEY_C; _glfw.wl.keycodes[KEY_V] = GLFW_KEY_V; _glfw.wl.keycodes[KEY_B] = GLFW_KEY_B; _glfw.wl.keycodes[KEY_N] = GLFW_KEY_N; _glfw.wl.keycodes[KEY_M] = GLFW_KEY_M; _glfw.wl.keycodes[KEY_COMMA] = GLFW_KEY_COMMA; _glfw.wl.keycodes[KEY_DOT] = GLFW_KEY_PERIOD; _glfw.wl.keycodes[KEY_SLASH] = GLFW_KEY_SLASH; _glfw.wl.keycodes[KEY_BACKSLASH] = GLFW_KEY_BACKSLASH; _glfw.wl.keycodes[KEY_ESC] = GLFW_KEY_ESCAPE; _glfw.wl.keycodes[KEY_TAB] = GLFW_KEY_TAB; _glfw.wl.keycodes[KEY_LEFTSHIFT] = GLFW_KEY_LEFT_SHIFT; _glfw.wl.keycodes[KEY_RIGHTSHIFT] = GLFW_KEY_RIGHT_SHIFT; _glfw.wl.keycodes[KEY_LEFTCTRL] = GLFW_KEY_LEFT_CONTROL; _glfw.wl.keycodes[KEY_RIGHTCTRL] = GLFW_KEY_RIGHT_CONTROL; _glfw.wl.keycodes[KEY_LEFTALT] = GLFW_KEY_LEFT_ALT; _glfw.wl.keycodes[KEY_RIGHTALT] = GLFW_KEY_RIGHT_ALT; _glfw.wl.keycodes[KEY_LEFTMETA] = GLFW_KEY_LEFT_SUPER; _glfw.wl.keycodes[KEY_RIGHTMETA] = GLFW_KEY_RIGHT_SUPER; _glfw.wl.keycodes[KEY_COMPOSE] = GLFW_KEY_MENU; _glfw.wl.keycodes[KEY_NUMLOCK] = GLFW_KEY_NUM_LOCK; _glfw.wl.keycodes[KEY_CAPSLOCK] = GLFW_KEY_CAPS_LOCK; _glfw.wl.keycodes[KEY_PRINT] = GLFW_KEY_PRINT_SCREEN; _glfw.wl.keycodes[KEY_SCROLLLOCK] = GLFW_KEY_SCROLL_LOCK; _glfw.wl.keycodes[KEY_PAUSE] = GLFW_KEY_PAUSE; _glfw.wl.keycodes[KEY_DELETE] = GLFW_KEY_DELETE; _glfw.wl.keycodes[KEY_BACKSPACE] = GLFW_KEY_BACKSPACE; _glfw.wl.keycodes[KEY_ENTER] = GLFW_KEY_ENTER; _glfw.wl.keycodes[KEY_HOME] = GLFW_KEY_HOME; _glfw.wl.keycodes[KEY_END] = GLFW_KEY_END; _glfw.wl.keycodes[KEY_PAGEUP] = GLFW_KEY_PAGE_UP; _glfw.wl.keycodes[KEY_PAGEDOWN] = GLFW_KEY_PAGE_DOWN; _glfw.wl.keycodes[KEY_INSERT] = GLFW_KEY_INSERT; _glfw.wl.keycodes[KEY_LEFT] = GLFW_KEY_LEFT; _glfw.wl.keycodes[KEY_RIGHT] = GLFW_KEY_RIGHT; _glfw.wl.keycodes[KEY_DOWN] = GLFW_KEY_DOWN; _glfw.wl.keycodes[KEY_UP] = GLFW_KEY_UP; _glfw.wl.keycodes[KEY_F1] = GLFW_KEY_F1; _glfw.wl.keycodes[KEY_F2] = GLFW_KEY_F2; _glfw.wl.keycodes[KEY_F3] = GLFW_KEY_F3; _glfw.wl.keycodes[KEY_F4] = GLFW_KEY_F4; _glfw.wl.keycodes[KEY_F5] = GLFW_KEY_F5; _glfw.wl.keycodes[KEY_F6] = GLFW_KEY_F6; _glfw.wl.keycodes[KEY_F7] = GLFW_KEY_F7; _glfw.wl.keycodes[KEY_F8] = GLFW_KEY_F8; _glfw.wl.keycodes[KEY_F9] = GLFW_KEY_F9; _glfw.wl.keycodes[KEY_F10] = GLFW_KEY_F10; _glfw.wl.keycodes[KEY_F11] = GLFW_KEY_F11; _glfw.wl.keycodes[KEY_F12] = GLFW_KEY_F12; _glfw.wl.keycodes[KEY_F13] = GLFW_KEY_F13; _glfw.wl.keycodes[KEY_F14] = GLFW_KEY_F14; _glfw.wl.keycodes[KEY_F15] = GLFW_KEY_F15; _glfw.wl.keycodes[KEY_F16] = GLFW_KEY_F16; _glfw.wl.keycodes[KEY_F17] = GLFW_KEY_F17; _glfw.wl.keycodes[KEY_F18] = GLFW_KEY_F18; _glfw.wl.keycodes[KEY_F19] = GLFW_KEY_F19; _glfw.wl.keycodes[KEY_F20] = GLFW_KEY_F20; _glfw.wl.keycodes[KEY_F21] = GLFW_KEY_F21; _glfw.wl.keycodes[KEY_F22] = GLFW_KEY_F22; _glfw.wl.keycodes[KEY_F23] = GLFW_KEY_F23; _glfw.wl.keycodes[KEY_F24] = GLFW_KEY_F24; _glfw.wl.keycodes[KEY_KPSLASH] = GLFW_KEY_KP_DIVIDE; _glfw.wl.keycodes[KEY_KPASTERISK] = GLFW_KEY_KP_MULTIPLY; _glfw.wl.keycodes[KEY_KPMINUS] = GLFW_KEY_KP_SUBTRACT; _glfw.wl.keycodes[KEY_KPPLUS] = GLFW_KEY_KP_ADD; _glfw.wl.keycodes[KEY_KP0] = GLFW_KEY_KP_0; _glfw.wl.keycodes[KEY_KP1] = GLFW_KEY_KP_1; _glfw.wl.keycodes[KEY_KP2] = GLFW_KEY_KP_2; _glfw.wl.keycodes[KEY_KP3] = GLFW_KEY_KP_3; _glfw.wl.keycodes[KEY_KP4] = GLFW_KEY_KP_4; _glfw.wl.keycodes[KEY_KP5] = GLFW_KEY_KP_5; _glfw.wl.keycodes[KEY_KP6] = GLFW_KEY_KP_6; _glfw.wl.keycodes[KEY_KP7] = GLFW_KEY_KP_7; _glfw.wl.keycodes[KEY_KP8] = GLFW_KEY_KP_8; _glfw.wl.keycodes[KEY_KP9] = GLFW_KEY_KP_9; _glfw.wl.keycodes[KEY_KPDOT] = GLFW_KEY_KP_DECIMAL; _glfw.wl.keycodes[KEY_KPEQUAL] = GLFW_KEY_KP_EQUAL; _glfw.wl.keycodes[KEY_KPENTER] = GLFW_KEY_KP_ENTER; _glfw.wl.keycodes[KEY_102ND] = GLFW_KEY_WORLD_2; for (scancode = 0; scancode < 256; scancode++) { if (_glfw.wl.keycodes[scancode] > 0) _glfw.wl.scancodes[_glfw.wl.keycodes[scancode]] = scancode; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void) { const char *cursorTheme; const char *cursorSizeStr; char *cursorSizeEnd; long cursorSizeLong; int cursorSize; _glfw.wl.cursor.handle = _glfw_dlopen("libwayland-cursor.so.0"); if (!_glfw.wl.cursor.handle) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to open libwayland-cursor"); return GLFW_FALSE; } _glfw.wl.cursor.theme_load = (PFN_wl_cursor_theme_load) _glfw_dlsym(_glfw.wl.cursor.handle, "wl_cursor_theme_load"); _glfw.wl.cursor.theme_destroy = (PFN_wl_cursor_theme_destroy) _glfw_dlsym(_glfw.wl.cursor.handle, "wl_cursor_theme_destroy"); _glfw.wl.cursor.theme_get_cursor = (PFN_wl_cursor_theme_get_cursor) _glfw_dlsym(_glfw.wl.cursor.handle, "wl_cursor_theme_get_cursor"); _glfw.wl.cursor.image_get_buffer = (PFN_wl_cursor_image_get_buffer) _glfw_dlsym(_glfw.wl.cursor.handle, "wl_cursor_image_get_buffer"); _glfw.wl.egl.handle = _glfw_dlopen("libwayland-egl.so.1"); if (!_glfw.wl.egl.handle) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to open libwayland-egl"); return GLFW_FALSE; } _glfw.wl.egl.window_create = (PFN_wl_egl_window_create) _glfw_dlsym(_glfw.wl.egl.handle, "wl_egl_window_create"); _glfw.wl.egl.window_destroy = (PFN_wl_egl_window_destroy) _glfw_dlsym(_glfw.wl.egl.handle, "wl_egl_window_destroy"); _glfw.wl.egl.window_resize = (PFN_wl_egl_window_resize) _glfw_dlsym(_glfw.wl.egl.handle, "wl_egl_window_resize"); _glfw.wl.xkb.handle = _glfw_dlopen("libxkbcommon.so.0"); if (!_glfw.wl.xkb.handle) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to open libxkbcommon"); return GLFW_FALSE; } _glfw.wl.xkb.context_new = (PFN_xkb_context_new) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_context_new"); _glfw.wl.xkb.context_unref = (PFN_xkb_context_unref) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_context_unref"); _glfw.wl.xkb.keymap_new_from_string = (PFN_xkb_keymap_new_from_string) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_keymap_new_from_string"); _glfw.wl.xkb.keymap_unref = (PFN_xkb_keymap_unref) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_keymap_unref"); _glfw.wl.xkb.keymap_mod_get_index = (PFN_xkb_keymap_mod_get_index) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_keymap_mod_get_index"); _glfw.wl.xkb.keymap_key_repeats = (PFN_xkb_keymap_key_repeats) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_keymap_key_repeats"); _glfw.wl.xkb.keymap_key_get_syms_by_level = (PFN_xkb_keymap_key_get_syms_by_level) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_keymap_key_get_syms_by_level"); _glfw.wl.xkb.state_new = (PFN_xkb_state_new) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_state_new"); _glfw.wl.xkb.state_unref = (PFN_xkb_state_unref) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_state_unref"); _glfw.wl.xkb.state_key_get_syms = (PFN_xkb_state_key_get_syms) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_state_key_get_syms"); _glfw.wl.xkb.state_update_mask = (PFN_xkb_state_update_mask) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_state_update_mask"); _glfw.wl.xkb.state_serialize_mods = (PFN_xkb_state_serialize_mods) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_state_serialize_mods"); _glfw.wl.xkb.state_key_get_layout = (PFN_xkb_state_key_get_layout) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_state_key_get_layout"); _glfw.wl.xkb.compose_table_new_from_locale = (PFN_xkb_compose_table_new_from_locale) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_table_new_from_locale"); _glfw.wl.xkb.compose_table_unref = (PFN_xkb_compose_table_unref) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_table_unref"); _glfw.wl.xkb.compose_state_new = (PFN_xkb_compose_state_new) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_state_new"); _glfw.wl.xkb.compose_state_unref = (PFN_xkb_compose_state_unref) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_state_unref"); _glfw.wl.xkb.compose_state_feed = (PFN_xkb_compose_state_feed) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_state_feed"); _glfw.wl.xkb.compose_state_get_status = (PFN_xkb_compose_state_get_status) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_state_get_status"); _glfw.wl.xkb.compose_state_get_one_sym = (PFN_xkb_compose_state_get_one_sym) _glfw_dlsym(_glfw.wl.xkb.handle, "xkb_compose_state_get_one_sym"); _glfw.wl.display = wl_display_connect(NULL); if (!_glfw.wl.display) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to connect to display"); return GLFW_FALSE; } _glfw.wl.registry = wl_display_get_registry(_glfw.wl.display); wl_registry_add_listener(_glfw.wl.registry, ®istryListener, NULL); createKeyTables(); _glfw.wl.xkb.context = xkb_context_new(0); if (!_glfw.wl.xkb.context) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to initialize xkb context"); return GLFW_FALSE; } // Sync so we got all registry objects wl_display_roundtrip(_glfw.wl.display); // Sync so we got all initial output events wl_display_roundtrip(_glfw.wl.display); #ifdef __linux__ if (!_glfwInitJoysticksLinux()) return GLFW_FALSE; #endif _glfwInitTimerPOSIX(); _glfw.wl.timerfd = -1; if (_glfw.wl.seatVersion >= 4) _glfw.wl.timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK); if (_glfw.wl.pointer && _glfw.wl.shm) { cursorTheme = getenv("XCURSOR_THEME"); cursorSizeStr = getenv("XCURSOR_SIZE"); cursorSize = 32; if (cursorSizeStr) { errno = 0; cursorSizeLong = strtol(cursorSizeStr, &cursorSizeEnd, 10); if (!*cursorSizeEnd && !errno && cursorSizeLong > 0 && cursorSizeLong <= INT_MAX) cursorSize = (int)cursorSizeLong; } _glfw.wl.cursorTheme = wl_cursor_theme_load(cursorTheme, cursorSize, _glfw.wl.shm); if (!_glfw.wl.cursorTheme) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Unable to load default cursor theme"); return GLFW_FALSE; } // If this happens to be NULL, we just fallback to the scale=1 version. _glfw.wl.cursorThemeHiDPI = wl_cursor_theme_load(cursorTheme, 2 * cursorSize, _glfw.wl.shm); _glfw.wl.cursorSurface = wl_compositor_create_surface(_glfw.wl.compositor); _glfw.wl.cursorTimerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK); } if (_glfw.wl.seat && _glfw.wl.dataDeviceManager) { _glfw.wl.dataDevice = wl_data_device_manager_get_data_device(_glfw.wl.dataDeviceManager, _glfw.wl.seat); wl_data_device_add_listener(_glfw.wl.dataDevice, &dataDeviceListener, NULL); _glfw.wl.clipboardSize = 4096; _glfw.wl.clipboardString = calloc(_glfw.wl.clipboardSize, 1); if (!_glfw.wl.clipboardString) { _glfwInputError(GLFW_OUT_OF_MEMORY, "Wayland: Unable to allocate clipboard memory"); return GLFW_FALSE; } } return GLFW_TRUE; } void _glfwPlatformTerminate(void) { #ifdef __linux__ _glfwTerminateJoysticksLinux(); #endif _glfwTerminateEGL(); if (_glfw.wl.egl.handle) { _glfw_dlclose(_glfw.wl.egl.handle); _glfw.wl.egl.handle = NULL; } if (_glfw.wl.xkb.composeState) xkb_compose_state_unref(_glfw.wl.xkb.composeState); if (_glfw.wl.xkb.keymap) xkb_keymap_unref(_glfw.wl.xkb.keymap); if (_glfw.wl.xkb.state) xkb_state_unref(_glfw.wl.xkb.state); if (_glfw.wl.xkb.context) xkb_context_unref(_glfw.wl.xkb.context); if (_glfw.wl.xkb.handle) { _glfw_dlclose(_glfw.wl.xkb.handle); _glfw.wl.xkb.handle = NULL; } if (_glfw.wl.cursorTheme) wl_cursor_theme_destroy(_glfw.wl.cursorTheme); if (_glfw.wl.cursorThemeHiDPI) wl_cursor_theme_destroy(_glfw.wl.cursorThemeHiDPI); if (_glfw.wl.cursor.handle) { _glfw_dlclose(_glfw.wl.cursor.handle); _glfw.wl.cursor.handle = NULL; } if (_glfw.wl.cursorSurface) wl_surface_destroy(_glfw.wl.cursorSurface); if (_glfw.wl.subcompositor) wl_subcompositor_destroy(_glfw.wl.subcompositor); if (_glfw.wl.compositor) wl_compositor_destroy(_glfw.wl.compositor); if (_glfw.wl.shm) wl_shm_destroy(_glfw.wl.shm); if (_glfw.wl.shell) wl_shell_destroy(_glfw.wl.shell); if (_glfw.wl.viewporter) wp_viewporter_destroy(_glfw.wl.viewporter); if (_glfw.wl.decorationManager) zxdg_decoration_manager_v1_destroy(_glfw.wl.decorationManager); if (_glfw.wl.wmBase) xdg_wm_base_destroy(_glfw.wl.wmBase); if (_glfw.wl.dataSource) wl_data_source_destroy(_glfw.wl.dataSource); if (_glfw.wl.dataDevice) wl_data_device_destroy(_glfw.wl.dataDevice); if (_glfw.wl.dataOffer) wl_data_offer_destroy(_glfw.wl.dataOffer); if (_glfw.wl.dataDeviceManager) wl_data_device_manager_destroy(_glfw.wl.dataDeviceManager); if (_glfw.wl.pointer) wl_pointer_destroy(_glfw.wl.pointer); if (_glfw.wl.keyboard) wl_keyboard_destroy(_glfw.wl.keyboard); if (_glfw.wl.seat) wl_seat_destroy(_glfw.wl.seat); if (_glfw.wl.relativePointerManager) zwp_relative_pointer_manager_v1_destroy(_glfw.wl.relativePointerManager); if (_glfw.wl.pointerConstraints) zwp_pointer_constraints_v1_destroy(_glfw.wl.pointerConstraints); if (_glfw.wl.idleInhibitManager) zwp_idle_inhibit_manager_v1_destroy(_glfw.wl.idleInhibitManager); if (_glfw.wl.registry) wl_registry_destroy(_glfw.wl.registry); if (_glfw.wl.display) { wl_display_flush(_glfw.wl.display); wl_display_disconnect(_glfw.wl.display); } if (_glfw.wl.timerfd >= 0) close(_glfw.wl.timerfd); if (_glfw.wl.cursorTimerfd >= 0) close(_glfw.wl.cursorTimerfd); free(_glfw.wl.clipboardString); free(_glfw.wl.clipboardSendString); } const char* _glfwPlatformGetVersionString(void) { return _GLFW_VERSION_NUMBER " Wayland EGL OSMesa" #if defined(_POSIX_TIMERS) && defined(_POSIX_MONOTONIC_CLOCK) " clock_gettime" #else " gettimeofday" #endif " evdev" #if defined(_GLFW_BUILD_DLL) " shared" #endif ; } #endif #ifndef HEADER_GUARD_WL_MONITOR_C #define HEADER_GUARD_WL_MONITOR_C //======================================================================== // GLFW 3.3.7 Wayland - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #include #include static void outputHandleGeometry(void* data, struct wl_output* output, int32_t x, int32_t y, int32_t physicalWidth, int32_t physicalHeight, int32_t subpixel, const char* make, const char* model, int32_t transform) { struct _GLFWmonitor *monitor = data; monitor->wl.x = x; monitor->wl.y = y; monitor->widthMM = physicalWidth; monitor->heightMM = physicalHeight; snprintf(monitor->name, sizeof(monitor->name), "%s %s", make, model); } static void outputHandleMode(void* data, struct wl_output* output, uint32_t flags, int32_t width, int32_t height, int32_t refresh) { struct _GLFWmonitor *monitor = data; GLFWvidmode mode; mode.width = width; mode.height = height; mode.redBits = 8; mode.greenBits = 8; mode.blueBits = 8; mode.refreshRate = (int) round(refresh / 1000.0); monitor->modeCount++; monitor->modes = realloc(monitor->modes, monitor->modeCount * sizeof(GLFWvidmode)); monitor->modes[monitor->modeCount - 1] = mode; if (flags & WL_OUTPUT_MODE_CURRENT) monitor->wl.currentMode = monitor->modeCount - 1; } static void outputHandleDone(void* data, struct wl_output* output) { struct _GLFWmonitor *monitor = data; if (monitor->widthMM <= 0 || monitor->heightMM <= 0) { // If Wayland does not provide a physical size, assume the default 96 DPI const GLFWvidmode* mode = &monitor->modes[monitor->wl.currentMode]; monitor->widthMM = (int) (mode->width * 25.4f / 96.f); monitor->heightMM = (int) (mode->height * 25.4f / 96.f); } _glfwInputMonitor(monitor, GLFW_CONNECTED, _GLFW_INSERT_LAST); } static void outputHandleScale(void* data, struct wl_output* output, int32_t factor) { struct _GLFWmonitor *monitor = data; monitor->wl.scale = factor; } static const struct wl_output_listener outputListener = { outputHandleGeometry, outputHandleMode, outputHandleDone, outputHandleScale, }; ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// void _glfwAddOutputWayland(uint32_t name, uint32_t version) { _GLFWmonitor *monitor; struct wl_output *output; if (version < 2) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Unsupported output interface version"); return; } // The actual name of this output will be set in the geometry handler. monitor = _glfwAllocMonitor("", 0, 0); output = wl_registry_bind(_glfw.wl.registry, name, &wl_output_interface, 2); if (!output) { _glfwFreeMonitor(monitor); return; } monitor->wl.scale = 1; monitor->wl.output = output; monitor->wl.name = name; wl_output_add_listener(output, &outputListener, monitor); } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// void _glfwPlatformFreeMonitor(_GLFWmonitor* monitor) { if (monitor->wl.output) wl_output_destroy(monitor->wl.output); } void _glfwPlatformGetMonitorPos(_GLFWmonitor* monitor, int* xpos, int* ypos) { if (xpos) *xpos = monitor->wl.x; if (ypos) *ypos = monitor->wl.y; } void _glfwPlatformGetMonitorContentScale(_GLFWmonitor* monitor, float* xscale, float* yscale) { if (xscale) *xscale = (float) monitor->wl.scale; if (yscale) *yscale = (float) monitor->wl.scale; } void _glfwPlatformGetMonitorWorkarea(_GLFWmonitor* monitor, int* xpos, int* ypos, int* width, int* height) { if (xpos) *xpos = monitor->wl.x; if (ypos) *ypos = monitor->wl.y; if (width) *width = monitor->modes[monitor->wl.currentMode].width; if (height) *height = monitor->modes[monitor->wl.currentMode].height; } GLFWvidmode* _glfwPlatformGetVideoModes(_GLFWmonitor* monitor, int* found) { *found = monitor->modeCount; return monitor->modes; } void _glfwPlatformGetVideoMode(_GLFWmonitor* monitor, GLFWvidmode* mode) { *mode = monitor->modes[monitor->wl.currentMode]; } GLFWbool _glfwPlatformGetGammaRamp(_GLFWmonitor* monitor, GLFWgammaramp* ramp) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Gamma ramp access is not available"); return GLFW_FALSE; } void _glfwPlatformSetGammaRamp(_GLFWmonitor* monitor, const GLFWgammaramp* ramp) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Gamma ramp access is not available"); } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI struct wl_output* glfwGetWaylandMonitor(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return monitor->wl.output; } #endif #ifndef HEADER_GUARD_WL_WINDOW_C #define HEADER_GUARD_WL_WINDOW_C //======================================================================== // GLFW 3.3.7 Wayland - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2014 Jonas Ã…dahl // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include static void shellSurfaceHandlePing(void* data, struct wl_shell_surface* shellSurface, uint32_t serial) { wl_shell_surface_pong(shellSurface, serial); } static void shellSurfaceHandleConfigure(void* data, struct wl_shell_surface* shellSurface, uint32_t edges, int32_t width, int32_t height) { _GLFWwindow* window = data; float aspectRatio; float targetRatio; if (!window->monitor) { if (_glfw.wl.viewporter && window->decorated) { width -= _GLFW_DECORATION_HORIZONTAL; height -= _GLFW_DECORATION_VERTICAL; } if (width < 1) width = 1; if (height < 1) height = 1; if (window->numer != GLFW_DONT_CARE && window->denom != GLFW_DONT_CARE) { aspectRatio = (float)width / (float)height; targetRatio = (float)window->numer / (float)window->denom; if (aspectRatio < targetRatio) height = width / targetRatio; else if (aspectRatio > targetRatio) width = height * targetRatio; } if (window->minwidth != GLFW_DONT_CARE && width < window->minwidth) width = window->minwidth; else if (window->maxwidth != GLFW_DONT_CARE && width > window->maxwidth) width = window->maxwidth; if (window->minheight != GLFW_DONT_CARE && height < window->minheight) height = window->minheight; else if (window->maxheight != GLFW_DONT_CARE && height > window->maxheight) height = window->maxheight; } _glfwInputWindowSize(window, width, height); _glfwPlatformSetWindowSize(window, width, height); _glfwInputWindowDamage(window); } static void shellSurfaceHandlePopupDone(void* data, struct wl_shell_surface* shellSurface) { } static const struct wl_shell_surface_listener shellSurfaceListener = { shellSurfaceHandlePing, shellSurfaceHandleConfigure, shellSurfaceHandlePopupDone }; static int createTmpfileCloexec(char* tmpname) { int fd; fd = mkostemp(tmpname, O_CLOEXEC); if (fd >= 0) unlink(tmpname); return fd; } /* * Create a new, unique, anonymous file of the given size, and * return the file descriptor for it. The file descriptor is set * CLOEXEC. The file is immediately suitable for mmap()'ing * the given size at offset zero. * * The file should not have a permanent backing store like a disk, * but may have if XDG_RUNTIME_DIR is not properly implemented in OS. * * The file name is deleted from the file system. * * The file is suitable for buffer sharing between processes by * transmitting the file descriptor over Unix sockets using the * SCM_RIGHTS methods. * * posix_fallocate() is used to guarantee that disk space is available * for the file at the given size. If disk space is insufficient, errno * is set to ENOSPC. If posix_fallocate() is not supported, program may * receive SIGBUS on accessing mmap()'ed file contents instead. */ static int createAnonymousFile(off_t size) { static const char template[] = "/glfw-shared-XXXXXX"; const char* path; char* name; int fd; int ret; #ifdef HAVE_MEMFD_CREATE fd = memfd_create("glfw-shared", MFD_CLOEXEC | MFD_ALLOW_SEALING); if (fd >= 0) { // We can add this seal before calling posix_fallocate(), as the file // is currently zero-sized anyway. // // There is also no need to check for the return value, we couldn’t do // anything with it anyway. fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_SEAL); } else #elif defined(SHM_ANON) fd = shm_open(SHM_ANON, O_RDWR | O_CLOEXEC, 0600); if (fd < 0) #endif { path = getenv("XDG_RUNTIME_DIR"); if (!path) { errno = ENOENT; return -1; } name = calloc(strlen(path) + sizeof(template), 1); strcpy(name, path); strcat(name, template); fd = createTmpfileCloexec(name); free(name); if (fd < 0) return -1; } #if defined(SHM_ANON) // posix_fallocate does not work on SHM descriptors ret = ftruncate(fd, size); #else ret = posix_fallocate(fd, 0, size); #endif if (ret != 0) { close(fd); errno = ret; return -1; } return fd; } static struct wl_buffer* createShmBuffer(const GLFWimage* image) { struct wl_shm_pool* pool; struct wl_buffer* buffer; int stride = image->width * 4; int length = image->width * image->height * 4; void* data; int fd, i; fd = createAnonymousFile(length); if (fd < 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Creating a buffer file for %d B failed: %s", length, strerror(errno)); return NULL; } data = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (data == MAP_FAILED) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: mmap failed: %s", strerror(errno)); close(fd); return NULL; } pool = wl_shm_create_pool(_glfw.wl.shm, fd, length); close(fd); unsigned char* source = (unsigned char*) image->pixels; unsigned char* target = data; for (i = 0; i < image->width * image->height; i++, source += 4) { unsigned int alpha = source[3]; *target++ = (unsigned char) ((source[2] * alpha) / 255); *target++ = (unsigned char) ((source[1] * alpha) / 255); *target++ = (unsigned char) ((source[0] * alpha) / 255); *target++ = (unsigned char) alpha; } buffer = wl_shm_pool_create_buffer(pool, 0, image->width, image->height, stride, WL_SHM_FORMAT_ARGB8888); munmap(data, length); wl_shm_pool_destroy(pool); return buffer; } // Wait for data to arrive on any of the specified file descriptors // static GLFWbool waitForData(struct pollfd* fds, nfds_t count, double* timeout) { for (;;) { if (timeout) { const uint64_t base = _glfwPlatformGetTimerValue(); #if defined(__linux__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__CYGWIN__) const time_t seconds = (time_t) *timeout; const long nanoseconds = (long) ((*timeout - seconds) * 1e9); const struct timespec ts = { seconds, nanoseconds }; const int result = ppoll(fds, count, &ts, NULL); #elif defined(__NetBSD__) const time_t seconds = (time_t) *timeout; const long nanoseconds = (long) ((*timeout - seconds) * 1e9); const struct timespec ts = { seconds, nanoseconds }; const int result = pollts(fds, count, &ts, NULL); #else const int milliseconds = (int) (*timeout * 1e3); const int result = poll(fds, count, milliseconds); #endif const int error = errno; // clock_gettime may overwrite our error *timeout -= (_glfwPlatformGetTimerValue() - base) / (double) _glfwPlatformGetTimerFrequency(); if (result > 0) return GLFW_TRUE; else if (result == -1 && error != EINTR && error != EAGAIN) return GLFW_FALSE; else if (*timeout <= 0.0) return GLFW_FALSE; } else { const int result = poll(fds, count, -1); if (result > 0) return GLFW_TRUE; else if (result == -1 && errno != EINTR && errno != EAGAIN) return GLFW_FALSE; } } } static void createDecoration(_GLFWdecorationWayland* decoration, struct wl_surface* parent, struct wl_buffer* buffer, GLFWbool opaque, int x, int y, int width, int height) { struct wl_region* region; decoration->surface = wl_compositor_create_surface(_glfw.wl.compositor); decoration->subsurface = wl_subcompositor_get_subsurface(_glfw.wl.subcompositor, decoration->surface, parent); wl_subsurface_set_position(decoration->subsurface, x, y); decoration->viewport = wp_viewporter_get_viewport(_glfw.wl.viewporter, decoration->surface); wp_viewport_set_destination(decoration->viewport, width, height); wl_surface_attach(decoration->surface, buffer, 0, 0); if (opaque) { region = wl_compositor_create_region(_glfw.wl.compositor); wl_region_add(region, 0, 0, width, height); wl_surface_set_opaque_region(decoration->surface, region); wl_surface_commit(decoration->surface); wl_region_destroy(region); } else wl_surface_commit(decoration->surface); } static void createDecorations(_GLFWwindow* window) { unsigned char data[] = { 224, 224, 224, 255 }; const GLFWimage image = { 1, 1, data }; GLFWbool opaque = (data[3] == 255); if (!_glfw.wl.viewporter || !window->decorated || window->wl.decorations.serverSide) return; if (!window->wl.decorations.buffer) window->wl.decorations.buffer = createShmBuffer(&image); if (!window->wl.decorations.buffer) return; createDecoration(&window->wl.decorations.top, window->wl.surface, window->wl.decorations.buffer, opaque, 0, -_GLFW_DECORATION_TOP, window->wl.width, _GLFW_DECORATION_TOP); createDecoration(&window->wl.decorations.left, window->wl.surface, window->wl.decorations.buffer, opaque, -_GLFW_DECORATION_WIDTH, -_GLFW_DECORATION_TOP, _GLFW_DECORATION_WIDTH, window->wl.height + _GLFW_DECORATION_TOP); createDecoration(&window->wl.decorations.right, window->wl.surface, window->wl.decorations.buffer, opaque, window->wl.width, -_GLFW_DECORATION_TOP, _GLFW_DECORATION_WIDTH, window->wl.height + _GLFW_DECORATION_TOP); createDecoration(&window->wl.decorations.bottom, window->wl.surface, window->wl.decorations.buffer, opaque, -_GLFW_DECORATION_WIDTH, window->wl.height, window->wl.width + _GLFW_DECORATION_HORIZONTAL, _GLFW_DECORATION_WIDTH); } static void destroyDecoration(_GLFWdecorationWayland* decoration) { if (decoration->subsurface) wl_subsurface_destroy(decoration->subsurface); if (decoration->surface) wl_surface_destroy(decoration->surface); if (decoration->viewport) wp_viewport_destroy(decoration->viewport); decoration->surface = NULL; decoration->subsurface = NULL; decoration->viewport = NULL; } static void destroyDecorations(_GLFWwindow* window) { destroyDecoration(&window->wl.decorations.top); destroyDecoration(&window->wl.decorations.left); destroyDecoration(&window->wl.decorations.right); destroyDecoration(&window->wl.decorations.bottom); } static void xdgDecorationHandleConfigure(void* data, struct zxdg_toplevel_decoration_v1* decoration, uint32_t mode) { _GLFWwindow* window = data; window->wl.decorations.serverSide = (mode == ZXDG_TOPLEVEL_DECORATION_V1_MODE_SERVER_SIDE); if (!window->wl.decorations.serverSide) createDecorations(window); } static const struct zxdg_toplevel_decoration_v1_listener xdgDecorationListener = { xdgDecorationHandleConfigure, }; // Makes the surface considered as XRGB instead of ARGB. static void setOpaqueRegion(_GLFWwindow* window) { struct wl_region* region; region = wl_compositor_create_region(_glfw.wl.compositor); if (!region) return; wl_region_add(region, 0, 0, window->wl.width, window->wl.height); wl_surface_set_opaque_region(window->wl.surface, region); wl_surface_commit(window->wl.surface); wl_region_destroy(region); } static void resizeWindow(_GLFWwindow* window) { int scale = window->wl.scale; int scaledWidth = window->wl.width * scale; int scaledHeight = window->wl.height * scale; wl_egl_window_resize(window->wl.native, scaledWidth, scaledHeight, 0, 0); if (!window->wl.transparent) setOpaqueRegion(window); _glfwInputFramebufferSize(window, scaledWidth, scaledHeight); _glfwInputWindowContentScale(window, scale, scale); if (!window->wl.decorations.top.surface) return; // Top decoration. wp_viewport_set_destination(window->wl.decorations.top.viewport, window->wl.width, _GLFW_DECORATION_TOP); wl_surface_commit(window->wl.decorations.top.surface); // Left decoration. wp_viewport_set_destination(window->wl.decorations.left.viewport, _GLFW_DECORATION_WIDTH, window->wl.height + _GLFW_DECORATION_TOP); wl_surface_commit(window->wl.decorations.left.surface); // Right decoration. wl_subsurface_set_position(window->wl.decorations.right.subsurface, window->wl.width, -_GLFW_DECORATION_TOP); wp_viewport_set_destination(window->wl.decorations.right.viewport, _GLFW_DECORATION_WIDTH, window->wl.height + _GLFW_DECORATION_TOP); wl_surface_commit(window->wl.decorations.right.surface); // Bottom decoration. wl_subsurface_set_position(window->wl.decorations.bottom.subsurface, -_GLFW_DECORATION_WIDTH, window->wl.height); wp_viewport_set_destination(window->wl.decorations.bottom.viewport, window->wl.width + _GLFW_DECORATION_HORIZONTAL, _GLFW_DECORATION_WIDTH); wl_surface_commit(window->wl.decorations.bottom.surface); } static void checkScaleChange(_GLFWwindow* window) { // Check if we will be able to set the buffer scale or not. if (_glfw.wl.compositorVersion < 3) return; // Get the scale factor from the highest scale monitor. int maxScale = 1; for (int i = 0; i < window->wl.monitorsCount; i++) { const int scale = window->wl.monitors[i]->wl.scale; if (maxScale < scale) maxScale = scale; } // Only change the framebuffer size if the scale changed. if (window->wl.scale != maxScale) { window->wl.scale = maxScale; wl_surface_set_buffer_scale(window->wl.surface, maxScale); resizeWindow(window); } } static void surfaceHandleEnter(void *data, struct wl_surface *surface, struct wl_output *output) { _GLFWwindow* window = data; _GLFWmonitor* monitor = wl_output_get_user_data(output); if (window->wl.monitorsCount + 1 > window->wl.monitorsSize) { ++window->wl.monitorsSize; window->wl.monitors = realloc(window->wl.monitors, window->wl.monitorsSize * sizeof(_GLFWmonitor*)); } window->wl.monitors[window->wl.monitorsCount++] = monitor; checkScaleChange(window); } static void surfaceHandleLeave(void *data, struct wl_surface *surface, struct wl_output *output) { _GLFWwindow* window = data; _GLFWmonitor* monitor = wl_output_get_user_data(output); GLFWbool found; int i; for (i = 0, found = GLFW_FALSE; i < window->wl.monitorsCount - 1; ++i) { if (monitor == window->wl.monitors[i]) found = GLFW_TRUE; if (found) window->wl.monitors[i] = window->wl.monitors[i + 1]; } window->wl.monitors[--window->wl.monitorsCount] = NULL; checkScaleChange(window); } static const struct wl_surface_listener surfaceListener = { surfaceHandleEnter, surfaceHandleLeave }; static void setIdleInhibitor(_GLFWwindow* window, GLFWbool enable) { if (enable && !window->wl.idleInhibitor && _glfw.wl.idleInhibitManager) { window->wl.idleInhibitor = zwp_idle_inhibit_manager_v1_create_inhibitor( _glfw.wl.idleInhibitManager, window->wl.surface); if (!window->wl.idleInhibitor) _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Idle inhibitor creation failed"); } else if (!enable && window->wl.idleInhibitor) { zwp_idle_inhibitor_v1_destroy(window->wl.idleInhibitor); window->wl.idleInhibitor = NULL; } } static void setFullscreen(_GLFWwindow* window, _GLFWmonitor* monitor, int refreshRate) { if (window->wl.xdg.toplevel) { xdg_toplevel_set_fullscreen( window->wl.xdg.toplevel, monitor->wl.output); } else if (window->wl.shellSurface) { wl_shell_surface_set_fullscreen( window->wl.shellSurface, WL_SHELL_SURFACE_FULLSCREEN_METHOD_DEFAULT, refreshRate * 1000, // Convert Hz to mHz. monitor->wl.output); } setIdleInhibitor(window, GLFW_TRUE); if (!window->wl.decorations.serverSide) destroyDecorations(window); } static GLFWbool createShellSurface(_GLFWwindow* window) { if (!_glfw.wl.shell) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: wl_shell protocol not available"); return GLFW_FALSE; } window->wl.shellSurface = wl_shell_get_shell_surface(_glfw.wl.shell, window->wl.surface); if (!window->wl.shellSurface) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Shell surface creation failed"); return GLFW_FALSE; } wl_shell_surface_add_listener(window->wl.shellSurface, &shellSurfaceListener, window); if (window->wl.title) wl_shell_surface_set_title(window->wl.shellSurface, window->wl.title); if (window->monitor) { setFullscreen(window, window->monitor, 0); } else if (window->wl.maximized) { wl_shell_surface_set_maximized(window->wl.shellSurface, NULL); setIdleInhibitor(window, GLFW_FALSE); createDecorations(window); } else { wl_shell_surface_set_toplevel(window->wl.shellSurface); setIdleInhibitor(window, GLFW_FALSE); createDecorations(window); } wl_surface_commit(window->wl.surface); return GLFW_TRUE; } static void xdgToplevelHandleConfigure(void* data, struct xdg_toplevel* toplevel, int32_t width, int32_t height, struct wl_array* states) { _GLFWwindow* window = data; float aspectRatio; float targetRatio; uint32_t* state; GLFWbool maximized = GLFW_FALSE; GLFWbool fullscreen = GLFW_FALSE; GLFWbool activated = GLFW_FALSE; wl_array_for_each(state, states) { switch (*state) { case XDG_TOPLEVEL_STATE_MAXIMIZED: maximized = GLFW_TRUE; break; case XDG_TOPLEVEL_STATE_FULLSCREEN: fullscreen = GLFW_TRUE; break; case XDG_TOPLEVEL_STATE_RESIZING: break; case XDG_TOPLEVEL_STATE_ACTIVATED: activated = GLFW_TRUE; break; } } if (width != 0 && height != 0) { if (!maximized && !fullscreen) { if (window->numer != GLFW_DONT_CARE && window->denom != GLFW_DONT_CARE) { aspectRatio = (float)width / (float)height; targetRatio = (float)window->numer / (float)window->denom; if (aspectRatio < targetRatio) height = width / targetRatio; else if (aspectRatio > targetRatio) width = height * targetRatio; } } _glfwInputWindowSize(window, width, height); _glfwPlatformSetWindowSize(window, width, height); _glfwInputWindowDamage(window); } if (window->wl.wasFullscreen && window->autoIconify) { if (!activated || !fullscreen) { _glfwPlatformIconifyWindow(window); window->wl.wasFullscreen = GLFW_FALSE; } } if (fullscreen && activated) window->wl.wasFullscreen = GLFW_TRUE; } static void xdgToplevelHandleClose(void* data, struct xdg_toplevel* toplevel) { _GLFWwindow* window = data; _glfwInputWindowCloseRequest(window); } static const struct xdg_toplevel_listener xdgToplevelListener = { xdgToplevelHandleConfigure, xdgToplevelHandleClose }; static void xdgSurfaceHandleConfigure(void* data, struct xdg_surface* surface, uint32_t serial) { xdg_surface_ack_configure(surface, serial); } static const struct xdg_surface_listener xdgSurfaceListener = { xdgSurfaceHandleConfigure }; static void setXdgDecorations(_GLFWwindow* window) { if (_glfw.wl.decorationManager) { window->wl.xdg.decoration = zxdg_decoration_manager_v1_get_toplevel_decoration( _glfw.wl.decorationManager, window->wl.xdg.toplevel); zxdg_toplevel_decoration_v1_add_listener(window->wl.xdg.decoration, &xdgDecorationListener, window); zxdg_toplevel_decoration_v1_set_mode( window->wl.xdg.decoration, ZXDG_TOPLEVEL_DECORATION_V1_MODE_SERVER_SIDE); } else { window->wl.decorations.serverSide = GLFW_FALSE; createDecorations(window); } } static GLFWbool createXdgSurface(_GLFWwindow* window) { window->wl.xdg.surface = xdg_wm_base_get_xdg_surface(_glfw.wl.wmBase, window->wl.surface); if (!window->wl.xdg.surface) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: xdg-surface creation failed"); return GLFW_FALSE; } xdg_surface_add_listener(window->wl.xdg.surface, &xdgSurfaceListener, window); window->wl.xdg.toplevel = xdg_surface_get_toplevel(window->wl.xdg.surface); if (!window->wl.xdg.toplevel) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: xdg-toplevel creation failed"); return GLFW_FALSE; } xdg_toplevel_add_listener(window->wl.xdg.toplevel, &xdgToplevelListener, window); if (window->wl.title) xdg_toplevel_set_title(window->wl.xdg.toplevel, window->wl.title); if (window->minwidth != GLFW_DONT_CARE && window->minheight != GLFW_DONT_CARE) xdg_toplevel_set_min_size(window->wl.xdg.toplevel, window->minwidth, window->minheight); if (window->maxwidth != GLFW_DONT_CARE && window->maxheight != GLFW_DONT_CARE) xdg_toplevel_set_max_size(window->wl.xdg.toplevel, window->maxwidth, window->maxheight); if (window->monitor) { xdg_toplevel_set_fullscreen(window->wl.xdg.toplevel, window->monitor->wl.output); setIdleInhibitor(window, GLFW_TRUE); } else if (window->wl.maximized) { xdg_toplevel_set_maximized(window->wl.xdg.toplevel); setIdleInhibitor(window, GLFW_FALSE); setXdgDecorations(window); } else { setIdleInhibitor(window, GLFW_FALSE); setXdgDecorations(window); } wl_surface_commit(window->wl.surface); wl_display_roundtrip(_glfw.wl.display); return GLFW_TRUE; } static GLFWbool createSurface(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWfbconfig* fbconfig) { window->wl.surface = wl_compositor_create_surface(_glfw.wl.compositor); if (!window->wl.surface) return GLFW_FALSE; wl_surface_add_listener(window->wl.surface, &surfaceListener, window); wl_surface_set_user_data(window->wl.surface, window); window->wl.native = wl_egl_window_create(window->wl.surface, wndconfig->width, wndconfig->height); if (!window->wl.native) return GLFW_FALSE; window->wl.width = wndconfig->width; window->wl.height = wndconfig->height; window->wl.scale = 1; window->wl.title = _glfw_strdup(wndconfig->title); window->wl.transparent = fbconfig->transparent; if (!window->wl.transparent) setOpaqueRegion(window); if (window->monitor || wndconfig->visible) { if (!createXdgSurface(window)) return GLFW_FALSE; window->wl.visible = GLFW_TRUE; } return GLFW_TRUE; } static void setCursorImage(_GLFWwindow* window, _GLFWcursorWayland* cursorWayland) { struct itimerspec timer = {}; struct wl_cursor* wlCursor = cursorWayland->cursor; struct wl_cursor_image* image; struct wl_buffer* buffer; struct wl_surface* surface = _glfw.wl.cursorSurface; int scale = 1; if (!wlCursor) buffer = cursorWayland->buffer; else { if (window->wl.scale > 1 && cursorWayland->cursorHiDPI) { wlCursor = cursorWayland->cursorHiDPI; scale = 2; } image = wlCursor->images[cursorWayland->currentImage]; buffer = wl_cursor_image_get_buffer(image); if (!buffer) return; timer.it_value.tv_sec = image->delay / 1000; timer.it_value.tv_nsec = (image->delay % 1000) * 1000000; timerfd_settime(_glfw.wl.cursorTimerfd, 0, &timer, NULL); cursorWayland->width = image->width; cursorWayland->height = image->height; cursorWayland->xhot = image->hotspot_x; cursorWayland->yhot = image->hotspot_y; } wl_pointer_set_cursor(_glfw.wl.pointer, _glfw.wl.pointerEnterSerial, surface, cursorWayland->xhot / scale, cursorWayland->yhot / scale); wl_surface_set_buffer_scale(surface, scale); wl_surface_attach(surface, buffer, 0, 0); wl_surface_damage(surface, 0, 0, cursorWayland->width, cursorWayland->height); wl_surface_commit(surface); } static void incrementCursorImage(_GLFWwindow* window) { _GLFWcursor* cursor; if (!window || window->wl.decorations.focus != mainWindow) return; cursor = window->wl.currentCursor; if (cursor && cursor->wl.cursor) { cursor->wl.currentImage += 1; cursor->wl.currentImage %= cursor->wl.cursor->image_count; setCursorImage(window, &cursor->wl); } } static GLFWbool flushDisplay(void) { while (wl_display_flush(_glfw.wl.display) == -1) { if (errno != EAGAIN) return GLFW_FALSE; struct pollfd fd = { wl_display_get_fd(_glfw.wl.display), POLLOUT }; while (poll(&fd, 1, -1) == -1) { if (errno != EINTR && errno != EAGAIN) return GLFW_FALSE; } } return GLFW_TRUE; } static void handleEvents(double* timeout) { GLFWbool event = GLFW_FALSE; struct pollfd fds[] = { { wl_display_get_fd(_glfw.wl.display), POLLIN }, { _glfw.wl.timerfd, POLLIN }, { _glfw.wl.cursorTimerfd, POLLIN }, }; while (!event) { while (wl_display_prepare_read(_glfw.wl.display) != 0) wl_display_dispatch_pending(_glfw.wl.display); // If an error other than EAGAIN happens, we have likely been disconnected // from the Wayland session; try to handle that the best we can. if (!flushDisplay()) { wl_display_cancel_read(_glfw.wl.display); _GLFWwindow* window = _glfw.windowListHead; while (window) { _glfwInputWindowCloseRequest(window); window = window->next; } return; } if (!waitForData(fds, 3, timeout)) { wl_display_cancel_read(_glfw.wl.display); return; } if (fds[0].revents & POLLIN) { wl_display_read_events(_glfw.wl.display); if (wl_display_dispatch_pending(_glfw.wl.display) > 0) event = GLFW_TRUE; } else wl_display_cancel_read(_glfw.wl.display); if (fds[1].revents & POLLIN) { uint64_t repeats; if (read(_glfw.wl.timerfd, &repeats, sizeof(repeats)) == 8) { for (uint64_t i = 0; i < repeats; i++) { _glfwInputKey(_glfw.wl.keyboardFocus, _glfw.wl.keyboardLastKey, _glfw.wl.keyboardLastScancode, GLFW_PRESS, _glfw.wl.xkb.modifiers); _glfwInputTextWayland(_glfw.wl.keyboardFocus, _glfw.wl.keyboardLastScancode); } event = GLFW_TRUE; } } if (fds[2].revents & POLLIN) { uint64_t repeats; if (read(_glfw.wl.cursorTimerfd, &repeats, sizeof(repeats)) == 8) { incrementCursorImage(_glfw.wl.pointerFocus); event = GLFW_TRUE; } } } } // Translates a GLFW standard cursor to a theme cursor name // static char *translateCursorShape(int shape) { switch (shape) { case GLFW_ARROW_CURSOR: return "left_ptr"; case GLFW_IBEAM_CURSOR: return "xterm"; case GLFW_CROSSHAIR_CURSOR: return "crosshair"; case GLFW_HAND_CURSOR: return "hand2"; case GLFW_HRESIZE_CURSOR: return "sb_h_double_arrow"; case GLFW_VRESIZE_CURSOR: return "sb_v_double_arrow"; } return NULL; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformCreateWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { if (!createSurface(window, wndconfig, fbconfig)) return GLFW_FALSE; if (ctxconfig->client != GLFW_NO_API) { if (ctxconfig->source == GLFW_EGL_CONTEXT_API || ctxconfig->source == GLFW_NATIVE_CONTEXT_API) { if (!_glfwInitEGL()) return GLFW_FALSE; if (!_glfwCreateContextEGL(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_OSMESA_CONTEXT_API) { if (!_glfwInitOSMesa()) return GLFW_FALSE; if (!_glfwCreateContextOSMesa(window, ctxconfig, fbconfig)) return GLFW_FALSE; } } return GLFW_TRUE; } void _glfwPlatformDestroyWindow(_GLFWwindow* window) { if (window == _glfw.wl.pointerFocus) { _glfw.wl.pointerFocus = NULL; _glfwInputCursorEnter(window, GLFW_FALSE); } if (window == _glfw.wl.keyboardFocus) { _glfw.wl.keyboardFocus = NULL; _glfwInputWindowFocus(window, GLFW_FALSE); } if (window->wl.idleInhibitor) zwp_idle_inhibitor_v1_destroy(window->wl.idleInhibitor); if (window->context.destroy) window->context.destroy(window); destroyDecorations(window); if (window->wl.xdg.decoration) zxdg_toplevel_decoration_v1_destroy(window->wl.xdg.decoration); if (window->wl.decorations.buffer) wl_buffer_destroy(window->wl.decorations.buffer); if (window->wl.native) wl_egl_window_destroy(window->wl.native); if (window->wl.shellSurface) wl_shell_surface_destroy(window->wl.shellSurface); if (window->wl.xdg.toplevel) xdg_toplevel_destroy(window->wl.xdg.toplevel); if (window->wl.xdg.surface) xdg_surface_destroy(window->wl.xdg.surface); if (window->wl.surface) wl_surface_destroy(window->wl.surface); free(window->wl.title); free(window->wl.monitors); } void _glfwPlatformSetWindowTitle(_GLFWwindow* window, const char* title) { if (window->wl.title) free(window->wl.title); window->wl.title = _glfw_strdup(title); if (window->wl.xdg.toplevel) xdg_toplevel_set_title(window->wl.xdg.toplevel, title); else if (window->wl.shellSurface) wl_shell_surface_set_title(window->wl.shellSurface, title); } void _glfwPlatformSetWindowIcon(_GLFWwindow* window, int count, const GLFWimage* images) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Setting window icon not supported"); } void _glfwPlatformGetWindowPos(_GLFWwindow* window, int* xpos, int* ypos) { // A Wayland client is not aware of its position, so just warn and leave it // as (0, 0) _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Window position retrieval not supported"); } void _glfwPlatformSetWindowPos(_GLFWwindow* window, int xpos, int ypos) { // A Wayland client can not set its position, so just warn _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Window position setting not supported"); } void _glfwPlatformGetWindowSize(_GLFWwindow* window, int* width, int* height) { if (width) *width = window->wl.width; if (height) *height = window->wl.height; } void _glfwPlatformSetWindowSize(_GLFWwindow* window, int width, int height) { window->wl.width = width; window->wl.height = height; resizeWindow(window); } void _glfwPlatformSetWindowSizeLimits(_GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight) { if (_glfw.wl.wmBase) { if (window->wl.xdg.toplevel) { if (minwidth == GLFW_DONT_CARE || minheight == GLFW_DONT_CARE) minwidth = minheight = 0; if (maxwidth == GLFW_DONT_CARE || maxheight == GLFW_DONT_CARE) maxwidth = maxheight = 0; xdg_toplevel_set_min_size(window->wl.xdg.toplevel, minwidth, minheight); xdg_toplevel_set_max_size(window->wl.xdg.toplevel, maxwidth, maxheight); wl_surface_commit(window->wl.surface); } } else { // TODO: find out how to trigger a resize. // The actual limits are checked in the wl_shell_surface::configure handler. } } void _glfwPlatformSetWindowAspectRatio(_GLFWwindow* window, int numer, int denom) { // TODO: find out how to trigger a resize. // The actual limits are checked in the wl_shell_surface::configure handler. } void _glfwPlatformGetFramebufferSize(_GLFWwindow* window, int* width, int* height) { _glfwPlatformGetWindowSize(window, width, height); if (width) *width *= window->wl.scale; if (height) *height *= window->wl.scale; } void _glfwPlatformGetWindowFrameSize(_GLFWwindow* window, int* left, int* top, int* right, int* bottom) { if (window->decorated && !window->monitor && !window->wl.decorations.serverSide) { if (top) *top = _GLFW_DECORATION_TOP; if (left) *left = _GLFW_DECORATION_WIDTH; if (right) *right = _GLFW_DECORATION_WIDTH; if (bottom) *bottom = _GLFW_DECORATION_WIDTH; } } void _glfwPlatformGetWindowContentScale(_GLFWwindow* window, float* xscale, float* yscale) { if (xscale) *xscale = (float) window->wl.scale; if (yscale) *yscale = (float) window->wl.scale; } void _glfwPlatformIconifyWindow(_GLFWwindow* window) { if (_glfw.wl.wmBase) { if (window->wl.xdg.toplevel) xdg_toplevel_set_minimized(window->wl.xdg.toplevel); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Iconify window not supported on wl_shell"); } } void _glfwPlatformRestoreWindow(_GLFWwindow* window) { if (window->wl.xdg.toplevel) { if (window->monitor) xdg_toplevel_unset_fullscreen(window->wl.xdg.toplevel); if (window->wl.maximized) xdg_toplevel_unset_maximized(window->wl.xdg.toplevel); // There is no way to unset minimized, or even to know if we are // minimized, so there is nothing to do here. } else if (window->wl.shellSurface) { if (window->monitor || window->wl.maximized) wl_shell_surface_set_toplevel(window->wl.shellSurface); } _glfwInputWindowMonitor(window, NULL); window->wl.maximized = GLFW_FALSE; } void _glfwPlatformMaximizeWindow(_GLFWwindow* window) { if (window->wl.xdg.toplevel) { xdg_toplevel_set_maximized(window->wl.xdg.toplevel); } else if (window->wl.shellSurface) { // Let the compositor select the best output. wl_shell_surface_set_maximized(window->wl.shellSurface, NULL); } window->wl.maximized = GLFW_TRUE; } void _glfwPlatformShowWindow(_GLFWwindow* window) { if (!window->wl.visible) { // NOTE: The XDG/shell surface is created here so command-line applications // with off-screen windows do not appear in for example the Unity dock if (_glfw.wl.wmBase) { if (!window->wl.xdg.toplevel) createXdgSurface(window); } else if (!window->wl.shellSurface) createShellSurface(window); window->wl.visible = GLFW_TRUE; _glfwInputWindowDamage(window); } } void _glfwPlatformHideWindow(_GLFWwindow* window) { if (window->wl.visible) { window->wl.visible = GLFW_FALSE; wl_surface_attach(window->wl.surface, NULL, 0, 0); wl_surface_commit(window->wl.surface); } } void _glfwPlatformRequestWindowAttention(_GLFWwindow* window) { // TODO _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Window attention request not implemented yet"); } void _glfwPlatformFocusWindow(_GLFWwindow* window) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Focusing a window requires user interaction"); } void _glfwPlatformSetWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate) { if (monitor) { setFullscreen(window, monitor, refreshRate); } else { if (window->wl.xdg.toplevel) xdg_toplevel_unset_fullscreen(window->wl.xdg.toplevel); else if (window->wl.shellSurface) wl_shell_surface_set_toplevel(window->wl.shellSurface); setIdleInhibitor(window, GLFW_FALSE); if (!_glfw.wl.decorationManager) createDecorations(window); } _glfwInputWindowMonitor(window, monitor); } int _glfwPlatformWindowFocused(_GLFWwindow* window) { return _glfw.wl.keyboardFocus == window; } int _glfwPlatformWindowIconified(_GLFWwindow* window) { // wl_shell doesn't have any iconified concept, and xdg-shell doesn’t give // any way to request whether a surface is iconified. return GLFW_FALSE; } int _glfwPlatformWindowVisible(_GLFWwindow* window) { return window->wl.visible; } int _glfwPlatformWindowMaximized(_GLFWwindow* window) { return window->wl.maximized; } int _glfwPlatformWindowHovered(_GLFWwindow* window) { return window->wl.hovered; } int _glfwPlatformFramebufferTransparent(_GLFWwindow* window) { return window->wl.transparent; } void _glfwPlatformSetWindowResizable(_GLFWwindow* window, GLFWbool enabled) { // TODO _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Window attribute setting not implemented yet"); } void _glfwPlatformSetWindowDecorated(_GLFWwindow* window, GLFWbool enabled) { if (!window->monitor) { if (enabled) createDecorations(window); else destroyDecorations(window); } } void _glfwPlatformSetWindowFloating(_GLFWwindow* window, GLFWbool enabled) { // TODO _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Window attribute setting not implemented yet"); } float _glfwPlatformGetWindowOpacity(_GLFWwindow* window) { return 1.f; } void _glfwPlatformSetWindowOpacity(_GLFWwindow* window, float opacity) { } void _glfwPlatformSetRawMouseMotion(_GLFWwindow *window, GLFWbool enabled) { // This is handled in relativePointerHandleRelativeMotion } GLFWbool _glfwPlatformRawMouseMotionSupported(void) { return GLFW_TRUE; } void _glfwPlatformPollEvents(void) { double timeout = 0.0; handleEvents(&timeout); } void _glfwPlatformWaitEvents(void) { handleEvents(NULL); } void _glfwPlatformWaitEventsTimeout(double timeout) { handleEvents(&timeout); } void _glfwPlatformPostEmptyEvent(void) { wl_display_sync(_glfw.wl.display); flushDisplay(); } void _glfwPlatformGetCursorPos(_GLFWwindow* window, double* xpos, double* ypos) { if (xpos) *xpos = window->wl.cursorPosX; if (ypos) *ypos = window->wl.cursorPosY; } static GLFWbool isPointerLocked(_GLFWwindow* window); void _glfwPlatformSetCursorPos(_GLFWwindow* window, double x, double y) { if (isPointerLocked(window)) { zwp_locked_pointer_v1_set_cursor_position_hint( window->wl.pointerLock.lockedPointer, wl_fixed_from_double(x), wl_fixed_from_double(y)); wl_surface_commit(window->wl.surface); } } void _glfwPlatformSetCursorMode(_GLFWwindow* window, int mode) { _glfwPlatformSetCursor(window, window->wl.currentCursor); } const char* _glfwPlatformGetScancodeName(int scancode) { if (scancode < 0 || scancode > 255 || _glfw.wl.keycodes[scancode] == GLFW_KEY_UNKNOWN) { _glfwInputError(GLFW_INVALID_VALUE, "Wayland: Invalid scancode %i", scancode); return NULL; } const int key = _glfw.wl.keycodes[scancode]; const xkb_keycode_t keycode = scancode + 8; const xkb_layout_index_t layout = xkb_state_key_get_layout(_glfw.wl.xkb.state, keycode); if (layout == XKB_LAYOUT_INVALID) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to retrieve layout for key name"); return NULL; } const xkb_keysym_t* keysyms = NULL; xkb_keymap_key_get_syms_by_level(_glfw.wl.xkb.keymap, keycode, layout, 0, &keysyms); if (keysyms == NULL) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to retrieve keysym for key name"); return NULL; } const uint32_t codepoint = _glfwKeySym2Unicode(keysyms[0]); if (codepoint == GLFW_INVALID_CODEPOINT) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to retrieve codepoint for key name"); return NULL; } const size_t count = _glfwEncodeUTF8(_glfw.wl.keynames[key], codepoint); if (count == 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to encode codepoint for key name"); return NULL; } _glfw.wl.keynames[key][count] = '\0'; return _glfw.wl.keynames[key]; } int _glfwPlatformGetKeyScancode(int key) { return _glfw.wl.scancodes[key]; } int _glfwPlatformCreateCursor(_GLFWcursor* cursor, const GLFWimage* image, int xhot, int yhot) { cursor->wl.buffer = createShmBuffer(image); if (!cursor->wl.buffer) return GLFW_FALSE; cursor->wl.width = image->width; cursor->wl.height = image->height; cursor->wl.xhot = xhot; cursor->wl.yhot = yhot; return GLFW_TRUE; } int _glfwPlatformCreateStandardCursor(_GLFWcursor* cursor, int shape) { struct wl_cursor* standardCursor; standardCursor = wl_cursor_theme_get_cursor(_glfw.wl.cursorTheme, translateCursorShape(shape)); if (!standardCursor) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Standard cursor \"%s\" not found", translateCursorShape(shape)); return GLFW_FALSE; } cursor->wl.cursor = standardCursor; cursor->wl.currentImage = 0; if (_glfw.wl.cursorThemeHiDPI) { standardCursor = wl_cursor_theme_get_cursor(_glfw.wl.cursorThemeHiDPI, translateCursorShape(shape)); cursor->wl.cursorHiDPI = standardCursor; } return GLFW_TRUE; } void _glfwPlatformDestroyCursor(_GLFWcursor* cursor) { // If it's a standard cursor we don't need to do anything here if (cursor->wl.cursor) return; if (cursor->wl.buffer) wl_buffer_destroy(cursor->wl.buffer); } static void relativePointerHandleRelativeMotion(void* data, struct zwp_relative_pointer_v1* pointer, uint32_t timeHi, uint32_t timeLo, wl_fixed_t dx, wl_fixed_t dy, wl_fixed_t dxUnaccel, wl_fixed_t dyUnaccel) { _GLFWwindow* window = data; double xpos = window->virtualCursorPosX; double ypos = window->virtualCursorPosY; if (window->cursorMode != GLFW_CURSOR_DISABLED) return; if (window->rawMouseMotion) { xpos += wl_fixed_to_double(dxUnaccel); ypos += wl_fixed_to_double(dyUnaccel); } else { xpos += wl_fixed_to_double(dx); ypos += wl_fixed_to_double(dy); } _glfwInputCursorPos(window, xpos, ypos); } static const struct zwp_relative_pointer_v1_listener relativePointerListener = { relativePointerHandleRelativeMotion }; static void lockedPointerHandleLocked(void* data, struct zwp_locked_pointer_v1* lockedPointer) { } static void unlockPointer(_GLFWwindow* window) { struct zwp_relative_pointer_v1* relativePointer = window->wl.pointerLock.relativePointer; struct zwp_locked_pointer_v1* lockedPointer = window->wl.pointerLock.lockedPointer; zwp_relative_pointer_v1_destroy(relativePointer); zwp_locked_pointer_v1_destroy(lockedPointer); window->wl.pointerLock.relativePointer = NULL; window->wl.pointerLock.lockedPointer = NULL; } static void lockPointer(_GLFWwindow* window); static void lockedPointerHandleUnlocked(void* data, struct zwp_locked_pointer_v1* lockedPointer) { } static const struct zwp_locked_pointer_v1_listener lockedPointerListener = { lockedPointerHandleLocked, lockedPointerHandleUnlocked }; static void lockPointer(_GLFWwindow* window) { struct zwp_relative_pointer_v1* relativePointer; struct zwp_locked_pointer_v1* lockedPointer; if (!_glfw.wl.relativePointerManager) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: no relative pointer manager"); return; } relativePointer = zwp_relative_pointer_manager_v1_get_relative_pointer( _glfw.wl.relativePointerManager, _glfw.wl.pointer); zwp_relative_pointer_v1_add_listener(relativePointer, &relativePointerListener, window); lockedPointer = zwp_pointer_constraints_v1_lock_pointer( _glfw.wl.pointerConstraints, window->wl.surface, _glfw.wl.pointer, NULL, ZWP_POINTER_CONSTRAINTS_V1_LIFETIME_PERSISTENT); zwp_locked_pointer_v1_add_listener(lockedPointer, &lockedPointerListener, window); window->wl.pointerLock.relativePointer = relativePointer; window->wl.pointerLock.lockedPointer = lockedPointer; wl_pointer_set_cursor(_glfw.wl.pointer, _glfw.wl.pointerEnterSerial, NULL, 0, 0); } static GLFWbool isPointerLocked(_GLFWwindow* window) { return window->wl.pointerLock.lockedPointer != NULL; } void _glfwPlatformSetCursor(_GLFWwindow* window, _GLFWcursor* cursor) { struct wl_cursor* defaultCursor; struct wl_cursor* defaultCursorHiDPI = NULL; if (!_glfw.wl.pointer) return; window->wl.currentCursor = cursor; // If we're not in the correct window just save the cursor // the next time the pointer enters the window the cursor will change if (window != _glfw.wl.pointerFocus || window->wl.decorations.focus != mainWindow) return; // Unlock possible pointer lock if no longer disabled. if (window->cursorMode != GLFW_CURSOR_DISABLED && isPointerLocked(window)) unlockPointer(window); if (window->cursorMode == GLFW_CURSOR_NORMAL) { if (cursor) setCursorImage(window, &cursor->wl); else { defaultCursor = wl_cursor_theme_get_cursor(_glfw.wl.cursorTheme, "left_ptr"); if (!defaultCursor) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Standard cursor not found"); return; } if (_glfw.wl.cursorThemeHiDPI) defaultCursorHiDPI = wl_cursor_theme_get_cursor(_glfw.wl.cursorThemeHiDPI, "left_ptr"); _GLFWcursorWayland cursorWayland = { defaultCursor, defaultCursorHiDPI, NULL, 0, 0, 0, 0, 0 }; setCursorImage(window, &cursorWayland); } } else if (window->cursorMode == GLFW_CURSOR_DISABLED) { if (!isPointerLocked(window)) lockPointer(window); } else if (window->cursorMode == GLFW_CURSOR_HIDDEN) { wl_pointer_set_cursor(_glfw.wl.pointer, _glfw.wl.pointerEnterSerial, NULL, 0, 0); } } static void dataSourceHandleTarget(void* data, struct wl_data_source* dataSource, const char* mimeType) { if (_glfw.wl.dataSource != dataSource) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Unknown clipboard data source"); return; } } static void dataSourceHandleSend(void* data, struct wl_data_source* dataSource, const char* mimeType, int fd) { const char* string = _glfw.wl.clipboardSendString; size_t len = _glfw.wl.clipboardSendSize; int ret; if (_glfw.wl.dataSource != dataSource) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Unknown clipboard data source"); return; } if (!string) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Copy requested from an invalid string"); return; } if (strcmp(mimeType, "text/plain;charset=utf-8") != 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Wrong MIME type asked from clipboard"); close(fd); return; } while (len > 0) { ret = write(fd, string, len); if (ret == -1 && errno == EINTR) continue; if (ret == -1) { // TODO: also report errno maybe. _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Error while writing the clipboard"); close(fd); return; } len -= ret; } close(fd); } static void dataSourceHandleCancelled(void* data, struct wl_data_source* dataSource) { wl_data_source_destroy(dataSource); if (_glfw.wl.dataSource != dataSource) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Unknown clipboard data source"); return; } _glfw.wl.dataSource = NULL; } static const struct wl_data_source_listener dataSourceListener = { dataSourceHandleTarget, dataSourceHandleSend, dataSourceHandleCancelled, }; void _glfwPlatformSetClipboardString(const char* string) { if (_glfw.wl.dataSource) { wl_data_source_destroy(_glfw.wl.dataSource); _glfw.wl.dataSource = NULL; } if (_glfw.wl.clipboardSendString) { free(_glfw.wl.clipboardSendString); _glfw.wl.clipboardSendString = NULL; } _glfw.wl.clipboardSendString = strdup(string); if (!_glfw.wl.clipboardSendString) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Impossible to allocate clipboard string"); return; } _glfw.wl.clipboardSendSize = strlen(string); _glfw.wl.dataSource = wl_data_device_manager_create_data_source(_glfw.wl.dataDeviceManager); if (!_glfw.wl.dataSource) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Impossible to create clipboard source"); free(_glfw.wl.clipboardSendString); return; } wl_data_source_add_listener(_glfw.wl.dataSource, &dataSourceListener, NULL); wl_data_source_offer(_glfw.wl.dataSource, "text/plain;charset=utf-8"); wl_data_device_set_selection(_glfw.wl.dataDevice, _glfw.wl.dataSource, _glfw.wl.serial); } static GLFWbool growClipboardString(void) { char* clipboard = _glfw.wl.clipboardString; clipboard = realloc(clipboard, _glfw.wl.clipboardSize * 2); if (!clipboard) { _glfwInputError(GLFW_OUT_OF_MEMORY, "Wayland: Impossible to grow clipboard string"); return GLFW_FALSE; } _glfw.wl.clipboardString = clipboard; _glfw.wl.clipboardSize = _glfw.wl.clipboardSize * 2; return GLFW_TRUE; } const char* _glfwPlatformGetClipboardString(void) { int fds[2]; int ret; size_t len = 0; if (!_glfw.wl.dataOffer) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "No clipboard data has been sent yet"); return NULL; } ret = pipe2(fds, O_CLOEXEC); if (ret < 0) { // TODO: also report errno maybe? _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Impossible to create clipboard pipe fds"); return NULL; } wl_data_offer_receive(_glfw.wl.dataOffer, "text/plain;charset=utf-8", fds[1]); close(fds[1]); // XXX: this is a huge hack, this function shouldn’t be synchronous! handleEvents(NULL); for (;;) { // Grow the clipboard if we need to paste something bigger, there is no // shrink operation yet. if (len + 4096 > _glfw.wl.clipboardSize) { if (!growClipboardString()) { close(fds[0]); return NULL; } } // Then read from the fd to the clipboard, handling all known errors. ret = read(fds[0], _glfw.wl.clipboardString + len, 4096); if (ret == 0) break; if (ret == -1 && errno == EINTR) continue; if (ret == -1) { // TODO: also report errno maybe. _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Impossible to read from clipboard fd"); close(fds[0]); return NULL; } len += ret; } close(fds[0]); if (len + 1 > _glfw.wl.clipboardSize) { if (!growClipboardString()) return NULL; } _glfw.wl.clipboardString[len] = '\0'; return _glfw.wl.clipboardString; } void _glfwPlatformGetRequiredInstanceExtensions(char** extensions) { if (!_glfw.vk.KHR_surface || !_glfw.vk.KHR_wayland_surface) return; extensions[0] = "VK_KHR_surface"; extensions[1] = "VK_KHR_wayland_surface"; } int _glfwPlatformGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily) { PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR vkGetPhysicalDeviceWaylandPresentationSupportKHR = (PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR) vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceWaylandPresentationSupportKHR"); if (!vkGetPhysicalDeviceWaylandPresentationSupportKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "Wayland: Vulkan instance missing VK_KHR_wayland_surface extension"); return VK_NULL_HANDLE; } return vkGetPhysicalDeviceWaylandPresentationSupportKHR(device, queuefamily, _glfw.wl.display); } VkResult _glfwPlatformCreateWindowSurface(VkInstance instance, _GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface) { VkResult err; VkWaylandSurfaceCreateInfoKHR sci; PFN_vkCreateWaylandSurfaceKHR vkCreateWaylandSurfaceKHR; vkCreateWaylandSurfaceKHR = (PFN_vkCreateWaylandSurfaceKHR) vkGetInstanceProcAddr(instance, "vkCreateWaylandSurfaceKHR"); if (!vkCreateWaylandSurfaceKHR) { _glfwInputError(GLFW_API_UNAVAILABLE, "Wayland: Vulkan instance missing VK_KHR_wayland_surface extension"); return VK_ERROR_EXTENSION_NOT_PRESENT; } memset(&sci, 0, sizeof(sci)); sci.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR; sci.display = _glfw.wl.display; sci.surface = window->wl.surface; err = vkCreateWaylandSurfaceKHR(instance, &sci, allocator, surface); if (err) { _glfwInputError(GLFW_PLATFORM_ERROR, "Wayland: Failed to create Vulkan surface: %s", _glfwGetVulkanResultString(err)); } return err; } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI struct wl_display* glfwGetWaylandDisplay(void) { _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return _glfw.wl.display; } GLFWAPI struct wl_surface* glfwGetWaylandWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(NULL); return window->wl.surface; } #endif #endif #ifdef _GLFW_COCOA #ifndef HEADER_GUARD_COCOA_INIT_M #define HEADER_GUARD_COCOA_INIT_M //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include // For MAXPATHLEN // Needed for _NSGetProgname #include // Change to our application bundle's resources directory, if present // static void changeToResourcesDirectory(void) { char resourcesPath[MAXPATHLEN]; CFBundleRef bundle = CFBundleGetMainBundle(); if (!bundle) return; CFURLRef resourcesURL = CFBundleCopyResourcesDirectoryURL(bundle); CFStringRef last = CFURLCopyLastPathComponent(resourcesURL); if (CFStringCompare(CFSTR("Resources"), last, 0) != kCFCompareEqualTo) { CFRelease(last); CFRelease(resourcesURL); return; } CFRelease(last); if (!CFURLGetFileSystemRepresentation(resourcesURL, true, (UInt8*) resourcesPath, MAXPATHLEN)) { CFRelease(resourcesURL); return; } CFRelease(resourcesURL); chdir(resourcesPath); } // Set up the menu bar (manually) // This is nasty, nasty stuff -- calls to undocumented semi-private APIs that // could go away at any moment, lots of stuff that really should be // localize(d|able), etc. Add a nib to save us this horror. // static void createMenuBar(void) { size_t i; NSString* appName = nil; NSDictionary* bundleInfo = [[NSBundle mainBundle] infoDictionary]; NSString* nameKeys[] = { @"CFBundleDisplayName", @"CFBundleName", @"CFBundleExecutable", }; // Try to figure out what the calling application is called for (i = 0; i < sizeof(nameKeys) / sizeof(nameKeys[0]); i++) { id name = bundleInfo[nameKeys[i]]; if (name && [name isKindOfClass:[NSString class]] && ![name isEqualToString:@""]) { appName = name; break; } } if (!appName) { char** progname = _NSGetProgname(); if (progname && *progname) appName = @(*progname); else appName = @"GLFW Application"; } NSMenu* bar = [[NSMenu alloc] init]; [NSApp setMainMenu:bar]; NSMenuItem* appMenuItem = [bar addItemWithTitle:@"" action:NULL keyEquivalent:@""]; NSMenu* appMenu = [[NSMenu alloc] init]; [appMenuItem setSubmenu:appMenu]; [appMenu addItemWithTitle:[NSString stringWithFormat:@"About %@", appName] action:@selector(orderFrontStandardAboutPanel:) keyEquivalent:@""]; [appMenu addItem:[NSMenuItem separatorItem]]; NSMenu* servicesMenu = [[NSMenu alloc] init]; [NSApp setServicesMenu:servicesMenu]; [[appMenu addItemWithTitle:@"Services" action:NULL keyEquivalent:@""] setSubmenu:servicesMenu]; [servicesMenu release]; [appMenu addItem:[NSMenuItem separatorItem]]; [appMenu addItemWithTitle:[NSString stringWithFormat:@"Hide %@", appName] action:@selector(hide:) keyEquivalent:@"h"]; [[appMenu addItemWithTitle:@"Hide Others" action:@selector(hideOtherApplications:) keyEquivalent:@"h"] setKeyEquivalentModifierMask:NSEventModifierFlagOption | NSEventModifierFlagCommand]; [appMenu addItemWithTitle:@"Show All" action:@selector(unhideAllApplications:) keyEquivalent:@""]; [appMenu addItem:[NSMenuItem separatorItem]]; [appMenu addItemWithTitle:[NSString stringWithFormat:@"Quit %@", appName] action:@selector(terminate:) keyEquivalent:@"q"]; NSMenuItem* windowMenuItem = [bar addItemWithTitle:@"" action:NULL keyEquivalent:@""]; [bar release]; NSMenu* windowMenu = [[NSMenu alloc] initWithTitle:@"Window"]; [NSApp setWindowsMenu:windowMenu]; [windowMenuItem setSubmenu:windowMenu]; [windowMenu addItemWithTitle:@"Minimize" action:@selector(performMiniaturize:) keyEquivalent:@"m"]; [windowMenu addItemWithTitle:@"Zoom" action:@selector(performZoom:) keyEquivalent:@""]; [windowMenu addItem:[NSMenuItem separatorItem]]; [windowMenu addItemWithTitle:@"Bring All to Front" action:@selector(arrangeInFront:) keyEquivalent:@""]; // TODO: Make this appear at the bottom of the menu (for consistency) [windowMenu addItem:[NSMenuItem separatorItem]]; [[windowMenu addItemWithTitle:@"Enter Full Screen" action:@selector(toggleFullScreen:) keyEquivalent:@"f"] setKeyEquivalentModifierMask:NSEventModifierFlagControl | NSEventModifierFlagCommand]; // Prior to Snow Leopard, we need to use this oddly-named semi-private API // to get the application menu working properly. SEL setAppleMenuSelector = NSSelectorFromString(@"setAppleMenu:"); [NSApp performSelector:setAppleMenuSelector withObject:appMenu]; } // Create key code translation tables // static void createKeyTables(void) { int scancode; memset(_glfw.ns.keycodes, -1, sizeof(_glfw.ns.keycodes)); memset(_glfw.ns.scancodes, -1, sizeof(_glfw.ns.scancodes)); _glfw.ns.keycodes[0x1D] = GLFW_KEY_0; _glfw.ns.keycodes[0x12] = GLFW_KEY_1; _glfw.ns.keycodes[0x13] = GLFW_KEY_2; _glfw.ns.keycodes[0x14] = GLFW_KEY_3; _glfw.ns.keycodes[0x15] = GLFW_KEY_4; _glfw.ns.keycodes[0x17] = GLFW_KEY_5; _glfw.ns.keycodes[0x16] = GLFW_KEY_6; _glfw.ns.keycodes[0x1A] = GLFW_KEY_7; _glfw.ns.keycodes[0x1C] = GLFW_KEY_8; _glfw.ns.keycodes[0x19] = GLFW_KEY_9; _glfw.ns.keycodes[0x00] = GLFW_KEY_A; _glfw.ns.keycodes[0x0B] = GLFW_KEY_B; _glfw.ns.keycodes[0x08] = GLFW_KEY_C; _glfw.ns.keycodes[0x02] = GLFW_KEY_D; _glfw.ns.keycodes[0x0E] = GLFW_KEY_E; _glfw.ns.keycodes[0x03] = GLFW_KEY_F; _glfw.ns.keycodes[0x05] = GLFW_KEY_G; _glfw.ns.keycodes[0x04] = GLFW_KEY_H; _glfw.ns.keycodes[0x22] = GLFW_KEY_I; _glfw.ns.keycodes[0x26] = GLFW_KEY_J; _glfw.ns.keycodes[0x28] = GLFW_KEY_K; _glfw.ns.keycodes[0x25] = GLFW_KEY_L; _glfw.ns.keycodes[0x2E] = GLFW_KEY_M; _glfw.ns.keycodes[0x2D] = GLFW_KEY_N; _glfw.ns.keycodes[0x1F] = GLFW_KEY_O; _glfw.ns.keycodes[0x23] = GLFW_KEY_P; _glfw.ns.keycodes[0x0C] = GLFW_KEY_Q; _glfw.ns.keycodes[0x0F] = GLFW_KEY_R; _glfw.ns.keycodes[0x01] = GLFW_KEY_S; _glfw.ns.keycodes[0x11] = GLFW_KEY_T; _glfw.ns.keycodes[0x20] = GLFW_KEY_U; _glfw.ns.keycodes[0x09] = GLFW_KEY_V; _glfw.ns.keycodes[0x0D] = GLFW_KEY_W; _glfw.ns.keycodes[0x07] = GLFW_KEY_X; _glfw.ns.keycodes[0x10] = GLFW_KEY_Y; _glfw.ns.keycodes[0x06] = GLFW_KEY_Z; _glfw.ns.keycodes[0x27] = GLFW_KEY_APOSTROPHE; _glfw.ns.keycodes[0x2A] = GLFW_KEY_BACKSLASH; _glfw.ns.keycodes[0x2B] = GLFW_KEY_COMMA; _glfw.ns.keycodes[0x18] = GLFW_KEY_EQUAL; _glfw.ns.keycodes[0x32] = GLFW_KEY_GRAVE_ACCENT; _glfw.ns.keycodes[0x21] = GLFW_KEY_LEFT_BRACKET; _glfw.ns.keycodes[0x1B] = GLFW_KEY_MINUS; _glfw.ns.keycodes[0x2F] = GLFW_KEY_PERIOD; _glfw.ns.keycodes[0x1E] = GLFW_KEY_RIGHT_BRACKET; _glfw.ns.keycodes[0x29] = GLFW_KEY_SEMICOLON; _glfw.ns.keycodes[0x2C] = GLFW_KEY_SLASH; _glfw.ns.keycodes[0x0A] = GLFW_KEY_WORLD_1; _glfw.ns.keycodes[0x33] = GLFW_KEY_BACKSPACE; _glfw.ns.keycodes[0x39] = GLFW_KEY_CAPS_LOCK; _glfw.ns.keycodes[0x75] = GLFW_KEY_DELETE; _glfw.ns.keycodes[0x7D] = GLFW_KEY_DOWN; _glfw.ns.keycodes[0x77] = GLFW_KEY_END; _glfw.ns.keycodes[0x24] = GLFW_KEY_ENTER; _glfw.ns.keycodes[0x35] = GLFW_KEY_ESCAPE; _glfw.ns.keycodes[0x7A] = GLFW_KEY_F1; _glfw.ns.keycodes[0x78] = GLFW_KEY_F2; _glfw.ns.keycodes[0x63] = GLFW_KEY_F3; _glfw.ns.keycodes[0x76] = GLFW_KEY_F4; _glfw.ns.keycodes[0x60] = GLFW_KEY_F5; _glfw.ns.keycodes[0x61] = GLFW_KEY_F6; _glfw.ns.keycodes[0x62] = GLFW_KEY_F7; _glfw.ns.keycodes[0x64] = GLFW_KEY_F8; _glfw.ns.keycodes[0x65] = GLFW_KEY_F9; _glfw.ns.keycodes[0x6D] = GLFW_KEY_F10; _glfw.ns.keycodes[0x67] = GLFW_KEY_F11; _glfw.ns.keycodes[0x6F] = GLFW_KEY_F12; _glfw.ns.keycodes[0x69] = GLFW_KEY_F13; _glfw.ns.keycodes[0x6B] = GLFW_KEY_F14; _glfw.ns.keycodes[0x71] = GLFW_KEY_F15; _glfw.ns.keycodes[0x6A] = GLFW_KEY_F16; _glfw.ns.keycodes[0x40] = GLFW_KEY_F17; _glfw.ns.keycodes[0x4F] = GLFW_KEY_F18; _glfw.ns.keycodes[0x50] = GLFW_KEY_F19; _glfw.ns.keycodes[0x5A] = GLFW_KEY_F20; _glfw.ns.keycodes[0x73] = GLFW_KEY_HOME; _glfw.ns.keycodes[0x72] = GLFW_KEY_INSERT; _glfw.ns.keycodes[0x7B] = GLFW_KEY_LEFT; _glfw.ns.keycodes[0x3A] = GLFW_KEY_LEFT_ALT; _glfw.ns.keycodes[0x3B] = GLFW_KEY_LEFT_CONTROL; _glfw.ns.keycodes[0x38] = GLFW_KEY_LEFT_SHIFT; _glfw.ns.keycodes[0x37] = GLFW_KEY_LEFT_SUPER; _glfw.ns.keycodes[0x6E] = GLFW_KEY_MENU; _glfw.ns.keycodes[0x47] = GLFW_KEY_NUM_LOCK; _glfw.ns.keycodes[0x79] = GLFW_KEY_PAGE_DOWN; _glfw.ns.keycodes[0x74] = GLFW_KEY_PAGE_UP; _glfw.ns.keycodes[0x7C] = GLFW_KEY_RIGHT; _glfw.ns.keycodes[0x3D] = GLFW_KEY_RIGHT_ALT; _glfw.ns.keycodes[0x3E] = GLFW_KEY_RIGHT_CONTROL; _glfw.ns.keycodes[0x3C] = GLFW_KEY_RIGHT_SHIFT; _glfw.ns.keycodes[0x36] = GLFW_KEY_RIGHT_SUPER; _glfw.ns.keycodes[0x31] = GLFW_KEY_SPACE; _glfw.ns.keycodes[0x30] = GLFW_KEY_TAB; _glfw.ns.keycodes[0x7E] = GLFW_KEY_UP; _glfw.ns.keycodes[0x52] = GLFW_KEY_KP_0; _glfw.ns.keycodes[0x53] = GLFW_KEY_KP_1; _glfw.ns.keycodes[0x54] = GLFW_KEY_KP_2; _glfw.ns.keycodes[0x55] = GLFW_KEY_KP_3; _glfw.ns.keycodes[0x56] = GLFW_KEY_KP_4; _glfw.ns.keycodes[0x57] = GLFW_KEY_KP_5; _glfw.ns.keycodes[0x58] = GLFW_KEY_KP_6; _glfw.ns.keycodes[0x59] = GLFW_KEY_KP_7; _glfw.ns.keycodes[0x5B] = GLFW_KEY_KP_8; _glfw.ns.keycodes[0x5C] = GLFW_KEY_KP_9; _glfw.ns.keycodes[0x45] = GLFW_KEY_KP_ADD; _glfw.ns.keycodes[0x41] = GLFW_KEY_KP_DECIMAL; _glfw.ns.keycodes[0x4B] = GLFW_KEY_KP_DIVIDE; _glfw.ns.keycodes[0x4C] = GLFW_KEY_KP_ENTER; _glfw.ns.keycodes[0x51] = GLFW_KEY_KP_EQUAL; _glfw.ns.keycodes[0x43] = GLFW_KEY_KP_MULTIPLY; _glfw.ns.keycodes[0x4E] = GLFW_KEY_KP_SUBTRACT; for (scancode = 0; scancode < 256; scancode++) { // Store the reverse translation for faster key name lookup if (_glfw.ns.keycodes[scancode] >= 0) _glfw.ns.scancodes[_glfw.ns.keycodes[scancode]] = scancode; } } // Retrieve Unicode data for the current keyboard layout // static GLFWbool updateUnicodeDataNS(void) { if (_glfw.ns.inputSource) { CFRelease(_glfw.ns.inputSource); _glfw.ns.inputSource = NULL; _glfw.ns.unicodeData = nil; } _glfw.ns.inputSource = TISCopyCurrentKeyboardLayoutInputSource(); if (!_glfw.ns.inputSource) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to retrieve keyboard layout input source"); return GLFW_FALSE; } _glfw.ns.unicodeData = TISGetInputSourceProperty(_glfw.ns.inputSource, kTISPropertyUnicodeKeyLayoutData); if (!_glfw.ns.unicodeData) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to retrieve keyboard layout Unicode data"); return GLFW_FALSE; } return GLFW_TRUE; } // Load HIToolbox.framework and the TIS symbols we need from it // static GLFWbool initializeTIS(void) { // This works only because Cocoa has already loaded it properly _glfw.ns.tis.bundle = CFBundleGetBundleWithIdentifier(CFSTR("com.apple.HIToolbox")); if (!_glfw.ns.tis.bundle) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to load HIToolbox.framework"); return GLFW_FALSE; } CFStringRef* kPropertyUnicodeKeyLayoutData = CFBundleGetDataPointerForName(_glfw.ns.tis.bundle, CFSTR("kTISPropertyUnicodeKeyLayoutData")); _glfw.ns.tis.CopyCurrentKeyboardLayoutInputSource = CFBundleGetFunctionPointerForName(_glfw.ns.tis.bundle, CFSTR("TISCopyCurrentKeyboardLayoutInputSource")); _glfw.ns.tis.GetInputSourceProperty = CFBundleGetFunctionPointerForName(_glfw.ns.tis.bundle, CFSTR("TISGetInputSourceProperty")); _glfw.ns.tis.GetKbdType = CFBundleGetFunctionPointerForName(_glfw.ns.tis.bundle, CFSTR("LMGetKbdType")); if (!kPropertyUnicodeKeyLayoutData || !TISCopyCurrentKeyboardLayoutInputSource || !TISGetInputSourceProperty || !LMGetKbdType) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to load TIS API symbols"); return GLFW_FALSE; } _glfw.ns.tis.kPropertyUnicodeKeyLayoutData = *kPropertyUnicodeKeyLayoutData; return updateUnicodeDataNS(); } @interface GLFWHelper : NSObject @end @implementation GLFWHelper - (void)selectedKeyboardInputSourceChanged:(NSObject* )object { updateUnicodeDataNS(); } - (void)doNothing:(id)object { } @end // GLFWHelper @interface GLFWApplicationDelegate : NSObject @end @implementation GLFWApplicationDelegate - (NSApplicationTerminateReply)applicationShouldTerminate:(NSApplication *)sender { _GLFWwindow* window; for (window = _glfw.windowListHead; window; window = window->next) _glfwInputWindowCloseRequest(window); return NSTerminateCancel; } - (void)applicationDidChangeScreenParameters:(NSNotification *) notification { _GLFWwindow* window; for (window = _glfw.windowListHead; window; window = window->next) { if (window->context.client != GLFW_NO_API) [window->context.nsgl.object update]; } _glfwPollMonitorsNS(); } - (void)applicationWillFinishLaunching:(NSNotification *)notification { if (_glfw.hints.init.ns.menubar) { // Menu bar setup must go between sharedApplication and finishLaunching // in order to properly emulate the behavior of NSApplicationMain if ([[NSBundle mainBundle] pathForResource:@"MainMenu" ofType:@"nib"]) { [[NSBundle mainBundle] loadNibNamed:@"MainMenu" owner:NSApp topLevelObjects:&_glfw.ns.nibObjects]; } else createMenuBar(); } } - (void)applicationDidFinishLaunching:(NSNotification *)notification { _glfw.ns.finishedLaunching = GLFW_TRUE; _glfwPlatformPostEmptyEvent(); // In case we are unbundled, make us a proper UI application if (_glfw.hints.init.ns.menubar) [NSApp setActivationPolicy:NSApplicationActivationPolicyRegular]; [NSApp stop:nil]; } - (void)applicationDidHide:(NSNotification *)notification { int i; for (i = 0; i < _glfw.monitorCount; i++) _glfwRestoreVideoModeNS(_glfw.monitors[i]); } @end // GLFWApplicationDelegate ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// void* _glfwLoadLocalVulkanLoaderNS(void) { CFBundleRef bundle = CFBundleGetMainBundle(); if (!bundle) return NULL; CFURLRef url = CFBundleCopyAuxiliaryExecutableURL(bundle, CFSTR("libvulkan.1.dylib")); if (!url) return NULL; char path[PATH_MAX]; void* handle = NULL; if (CFURLGetFileSystemRepresentation(url, true, (UInt8*) path, sizeof(path) - 1)) handle = _glfw_dlopen(path); CFRelease(url); return handle; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void) { @autoreleasepool { _glfw.ns.helper = [[GLFWHelper alloc] init]; [NSThread detachNewThreadSelector:@selector(doNothing:) toTarget:_glfw.ns.helper withObject:nil]; if (NSApp) _glfw.ns.finishedLaunching = GLFW_TRUE; [NSApplication sharedApplication]; _glfw.ns.delegate = [[GLFWApplicationDelegate alloc] init]; if (_glfw.ns.delegate == nil) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to create application delegate"); return GLFW_FALSE; } [NSApp setDelegate:_glfw.ns.delegate]; NSEvent* (^block)(NSEvent*) = ^ NSEvent* (NSEvent* event) { if ([event modifierFlags] & NSEventModifierFlagCommand) [[NSApp keyWindow] sendEvent:event]; return event; }; _glfw.ns.keyUpMonitor = [NSEvent addLocalMonitorForEventsMatchingMask:NSEventMaskKeyUp handler:block]; if (_glfw.hints.init.ns.chdir) changeToResourcesDirectory(); // Press and Hold prevents some keys from emitting repeated characters NSDictionary* defaults = @{@"ApplePressAndHoldEnabled":@NO}; [[NSUserDefaults standardUserDefaults] registerDefaults:defaults]; [[NSNotificationCenter defaultCenter] addObserver:_glfw.ns.helper selector:@selector(selectedKeyboardInputSourceChanged:) name:NSTextInputContextKeyboardSelectionDidChangeNotification object:nil]; createKeyTables(); _glfw.ns.eventSource = CGEventSourceCreate(kCGEventSourceStateHIDSystemState); if (!_glfw.ns.eventSource) return GLFW_FALSE; CGEventSourceSetLocalEventsSuppressionInterval(_glfw.ns.eventSource, 0.0); if (!initializeTIS()) return GLFW_FALSE; _glfwInitTimerNS(); _glfwInitJoysticksNS(); _glfwPollMonitorsNS(); return GLFW_TRUE; } // autoreleasepool } void _glfwPlatformTerminate(void) { @autoreleasepool { if (_glfw.ns.inputSource) { CFRelease(_glfw.ns.inputSource); _glfw.ns.inputSource = NULL; _glfw.ns.unicodeData = nil; } if (_glfw.ns.eventSource) { CFRelease(_glfw.ns.eventSource); _glfw.ns.eventSource = NULL; } if (_glfw.ns.delegate) { [NSApp setDelegate:nil]; [_glfw.ns.delegate release]; _glfw.ns.delegate = nil; } if (_glfw.ns.helper) { [[NSNotificationCenter defaultCenter] removeObserver:_glfw.ns.helper name:NSTextInputContextKeyboardSelectionDidChangeNotification object:nil]; [[NSNotificationCenter defaultCenter] removeObserver:_glfw.ns.helper]; [_glfw.ns.helper release]; _glfw.ns.helper = nil; } if (_glfw.ns.keyUpMonitor) [NSEvent removeMonitor:_glfw.ns.keyUpMonitor]; free(_glfw.ns.clipboardString); _glfwTerminateNSGL(); _glfwTerminateJoysticksNS(); } // autoreleasepool } const char* _glfwPlatformGetVersionString(void) { return _GLFW_VERSION_NUMBER " Cocoa NSGL EGL OSMesa" #if defined(_GLFW_BUILD_DLL) " dynamic" #endif ; } #endif #ifndef HEADER_GUARD_NSGL_CONTEXT_M #define HEADER_GUARD_NSGL_CONTEXT_M //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include static void makeContextCurrentNSGL(_GLFWwindow* window) { @autoreleasepool { if (window) [window->context.nsgl.object makeCurrentContext]; else [NSOpenGLContext clearCurrentContext]; _glfwPlatformSetTls(&_glfw.contextSlot, window); } // autoreleasepool } static void swapBuffersNSGL(_GLFWwindow* window) { @autoreleasepool { // HACK: Simulate vsync with usleep as NSGL swap interval does not apply to // windows with a non-visible occlusion state if (window->ns.occluded) { int interval = 0; [window->context.nsgl.object getValues:&interval forParameter:NSOpenGLContextParameterSwapInterval]; if (interval > 0) { const double framerate = 60.0; const uint64_t frequency = _glfwPlatformGetTimerFrequency(); const uint64_t value = _glfwPlatformGetTimerValue(); const double elapsed = value / (double) frequency; const double period = 1.0 / framerate; const double delay = period - fmod(elapsed, period); usleep(floorl(delay * 1e6)); } } [window->context.nsgl.object flushBuffer]; } // autoreleasepool } static void swapIntervalNSGL(int interval) { @autoreleasepool { _GLFWwindow* window = _glfwPlatformGetTls(&_glfw.contextSlot); if (window) { [window->context.nsgl.object setValues:&interval forParameter:NSOpenGLContextParameterSwapInterval]; } } // autoreleasepool } static int extensionSupportedNSGL(const char* extension) { // There are no NSGL extensions return GLFW_FALSE; } static GLFWglproc getProcAddressNSGL(const char* procname) { CFStringRef symbolName = CFStringCreateWithCString(kCFAllocatorDefault, procname, kCFStringEncodingASCII); GLFWglproc symbol = CFBundleGetFunctionPointerForName(_glfw.nsgl.framework, symbolName); CFRelease(symbolName); return symbol; } static void destroyContextNSGL(_GLFWwindow* window) { @autoreleasepool { [window->context.nsgl.pixelFormat release]; window->context.nsgl.pixelFormat = nil; [window->context.nsgl.object release]; window->context.nsgl.object = nil; } // autoreleasepool } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize OpenGL support // GLFWbool _glfwInitNSGL(void) { if (_glfw.nsgl.framework) return GLFW_TRUE; _glfw.nsgl.framework = CFBundleGetBundleWithIdentifier(CFSTR("com.apple.opengl")); if (_glfw.nsgl.framework == NULL) { _glfwInputError(GLFW_API_UNAVAILABLE, "NSGL: Failed to locate OpenGL framework"); return GLFW_FALSE; } return GLFW_TRUE; } // Terminate OpenGL support // void _glfwTerminateNSGL(void) { } // Create the OpenGL context // GLFWbool _glfwCreateContextNSGL(_GLFWwindow* window, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { if (ctxconfig->client == GLFW_OPENGL_ES_API) { _glfwInputError(GLFW_API_UNAVAILABLE, "NSGL: OpenGL ES is not available on macOS"); return GLFW_FALSE; } if (ctxconfig->major > 2) { if (ctxconfig->major == 3 && ctxconfig->minor < 2) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "NSGL: The targeted version of macOS does not support OpenGL 3.0 or 3.1 but may support 3.2 and above"); return GLFW_FALSE; } if (!ctxconfig->forward || ctxconfig->profile != GLFW_OPENGL_CORE_PROFILE) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "NSGL: The targeted version of macOS only supports forward-compatible core profile contexts for OpenGL 3.2 and above"); return GLFW_FALSE; } } // Context robustness modes (GL_KHR_robustness) are not yet supported by // macOS but are not a hard constraint, so ignore and continue // Context release behaviors (GL_KHR_context_flush_control) are not yet // supported by macOS but are not a hard constraint, so ignore and continue // Debug contexts (GL_KHR_debug) are not yet supported by macOS but are not // a hard constraint, so ignore and continue // No-error contexts (GL_KHR_no_error) are not yet supported by macOS but // are not a hard constraint, so ignore and continue #define addAttrib(a) \ { \ assert((size_t) index < sizeof(attribs) / sizeof(attribs[0])); \ attribs[index++] = a; \ } #define setAttrib(a, v) { addAttrib(a); addAttrib(v); } NSOpenGLPixelFormatAttribute attribs[40]; int index = 0; addAttrib(NSOpenGLPFAAccelerated); addAttrib(NSOpenGLPFAClosestPolicy); if (ctxconfig->nsgl.offline) { addAttrib(NSOpenGLPFAAllowOfflineRenderers); // NOTE: This replaces the NSSupportsAutomaticGraphicsSwitching key in // Info.plist for unbundled applications // HACK: This assumes that NSOpenGLPixelFormat will remain // a straightforward wrapper of its CGL counterpart addAttrib(kCGLPFASupportsAutomaticGraphicsSwitching); } #if MAC_OS_X_VERSION_MAX_ALLOWED >= 101000 if (ctxconfig->major >= 4) { setAttrib(NSOpenGLPFAOpenGLProfile, NSOpenGLProfileVersion4_1Core); } else #endif /*MAC_OS_X_VERSION_MAX_ALLOWED*/ if (ctxconfig->major >= 3) { setAttrib(NSOpenGLPFAOpenGLProfile, NSOpenGLProfileVersion3_2Core); } if (ctxconfig->major <= 2) { if (fbconfig->auxBuffers != GLFW_DONT_CARE) setAttrib(NSOpenGLPFAAuxBuffers, fbconfig->auxBuffers); if (fbconfig->accumRedBits != GLFW_DONT_CARE && fbconfig->accumGreenBits != GLFW_DONT_CARE && fbconfig->accumBlueBits != GLFW_DONT_CARE && fbconfig->accumAlphaBits != GLFW_DONT_CARE) { const int accumBits = fbconfig->accumRedBits + fbconfig->accumGreenBits + fbconfig->accumBlueBits + fbconfig->accumAlphaBits; setAttrib(NSOpenGLPFAAccumSize, accumBits); } } if (fbconfig->redBits != GLFW_DONT_CARE && fbconfig->greenBits != GLFW_DONT_CARE && fbconfig->blueBits != GLFW_DONT_CARE) { int colorBits = fbconfig->redBits + fbconfig->greenBits + fbconfig->blueBits; // macOS needs non-zero color size, so set reasonable values if (colorBits == 0) colorBits = 24; else if (colorBits < 15) colorBits = 15; setAttrib(NSOpenGLPFAColorSize, colorBits); } if (fbconfig->alphaBits != GLFW_DONT_CARE) setAttrib(NSOpenGLPFAAlphaSize, fbconfig->alphaBits); if (fbconfig->depthBits != GLFW_DONT_CARE) setAttrib(NSOpenGLPFADepthSize, fbconfig->depthBits); if (fbconfig->stencilBits != GLFW_DONT_CARE) setAttrib(NSOpenGLPFAStencilSize, fbconfig->stencilBits); if (fbconfig->stereo) { #if MAC_OS_X_VERSION_MAX_ALLOWED >= 101200 _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "NSGL: Stereo rendering is deprecated"); return GLFW_FALSE; #else addAttrib(NSOpenGLPFAStereo); #endif } if (fbconfig->doublebuffer) addAttrib(NSOpenGLPFADoubleBuffer); if (fbconfig->samples != GLFW_DONT_CARE) { if (fbconfig->samples == 0) { setAttrib(NSOpenGLPFASampleBuffers, 0); } else { setAttrib(NSOpenGLPFASampleBuffers, 1); setAttrib(NSOpenGLPFASamples, fbconfig->samples); } } // NOTE: All NSOpenGLPixelFormats on the relevant cards support sRGB // framebuffer, so there's no need (and no way) to request it addAttrib(0); #undef addAttrib #undef setAttrib window->context.nsgl.pixelFormat = [[NSOpenGLPixelFormat alloc] initWithAttributes:attribs]; if (window->context.nsgl.pixelFormat == nil) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "NSGL: Failed to find a suitable pixel format"); return GLFW_FALSE; } NSOpenGLContext* share = nil; if (ctxconfig->share) share = ctxconfig->share->context.nsgl.object; window->context.nsgl.object = [[NSOpenGLContext alloc] initWithFormat:window->context.nsgl.pixelFormat shareContext:share]; if (window->context.nsgl.object == nil) { _glfwInputError(GLFW_VERSION_UNAVAILABLE, "NSGL: Failed to create OpenGL context"); return GLFW_FALSE; } if (fbconfig->transparent) { GLint opaque = 0; [window->context.nsgl.object setValues:&opaque forParameter:NSOpenGLContextParameterSurfaceOpacity]; } [window->ns.view setWantsBestResolutionOpenGLSurface:window->ns.retina]; [window->context.nsgl.object setView:window->ns.view]; window->context.makeCurrent = makeContextCurrentNSGL; window->context.swapBuffers = swapBuffersNSGL; window->context.swapInterval = swapIntervalNSGL; window->context.extensionSupported = extensionSupportedNSGL; window->context.getProcAddress = getProcAddressNSGL; window->context.destroy = destroyContextNSGL; return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI id glfwGetNSGLContext(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(nil); if (window->context.source != GLFW_NATIVE_CONTEXT_API) { _glfwInputError(GLFW_NO_WINDOW_CONTEXT, NULL); return nil; } return window->context.nsgl.object; } #endif #ifndef HEADER_GUARD_COCOA_JOYSTICK_M #define HEADER_GUARD_COCOA_JOYSTICK_M //======================================================================== // GLFW 3.3.7 Cocoa - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2019 Camilla Löwy // Copyright (c) 2012 Torsten Walluhn // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #include #include #include #include // Joystick element information // typedef struct _GLFWjoyelementNS { IOHIDElementRef native; uint32_t usage; int index; long minimum; long maximum; } _GLFWjoyelementNS; // Returns the value of the specified element of the specified joystick // static long getElementValue(_GLFWjoystick* js, _GLFWjoyelementNS* element) { IOHIDValueRef valueRef; long value = 0; if (js->ns.device) { if (IOHIDDeviceGetValue(js->ns.device, element->native, &valueRef) == kIOReturnSuccess) { value = IOHIDValueGetIntegerValue(valueRef); } } return value; } // Comparison function for matching the SDL element order // static CFComparisonResult compareElements(const void* fp, const void* sp, void* user) { const _GLFWjoyelementNS* fe = fp; const _GLFWjoyelementNS* se = sp; if (fe->usage < se->usage) return kCFCompareLessThan; if (fe->usage > se->usage) return kCFCompareGreaterThan; if (fe->index < se->index) return kCFCompareLessThan; if (fe->index > se->index) return kCFCompareGreaterThan; return kCFCompareEqualTo; } // Removes the specified joystick // static void closeJoystick(_GLFWjoystick* js) { int i; if (!js->present) return; for (i = 0; i < CFArrayGetCount(js->ns.axes); i++) free((void*) CFArrayGetValueAtIndex(js->ns.axes, i)); CFRelease(js->ns.axes); for (i = 0; i < CFArrayGetCount(js->ns.buttons); i++) free((void*) CFArrayGetValueAtIndex(js->ns.buttons, i)); CFRelease(js->ns.buttons); for (i = 0; i < CFArrayGetCount(js->ns.hats); i++) free((void*) CFArrayGetValueAtIndex(js->ns.hats, i)); CFRelease(js->ns.hats); _glfwFreeJoystick(js); _glfwInputJoystick(js, GLFW_DISCONNECTED); } // Callback for user-initiated joystick addition // static void matchCallback(void* context, IOReturn result, void* sender, IOHIDDeviceRef device) { int jid; char name[256]; char guid[33]; CFIndex i; CFTypeRef property; uint32_t vendor = 0, product = 0, version = 0; _GLFWjoystick* js; CFMutableArrayRef axes, buttons, hats; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { if (_glfw.joysticks[jid].ns.device == device) return; } axes = CFArrayCreateMutable(NULL, 0, NULL); buttons = CFArrayCreateMutable(NULL, 0, NULL); hats = CFArrayCreateMutable(NULL, 0, NULL); property = IOHIDDeviceGetProperty(device, CFSTR(kIOHIDProductKey)); if (property) { CFStringGetCString(property, name, sizeof(name), kCFStringEncodingUTF8); } else strncpy(name, "Unknown", sizeof(name)); property = IOHIDDeviceGetProperty(device, CFSTR(kIOHIDVendorIDKey)); if (property) CFNumberGetValue(property, kCFNumberSInt32Type, &vendor); property = IOHIDDeviceGetProperty(device, CFSTR(kIOHIDProductIDKey)); if (property) CFNumberGetValue(property, kCFNumberSInt32Type, &product); property = IOHIDDeviceGetProperty(device, CFSTR(kIOHIDVersionNumberKey)); if (property) CFNumberGetValue(property, kCFNumberSInt32Type, &version); // Generate a joystick GUID that matches the SDL 2.0.5+ one if (vendor && product) { sprintf(guid, "03000000%02x%02x0000%02x%02x0000%02x%02x0000", (uint8_t) vendor, (uint8_t) (vendor >> 8), (uint8_t) product, (uint8_t) (product >> 8), (uint8_t) version, (uint8_t) (version >> 8)); } else { sprintf(guid, "05000000%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x00", name[0], name[1], name[2], name[3], name[4], name[5], name[6], name[7], name[8], name[9], name[10]); } CFArrayRef elements = IOHIDDeviceCopyMatchingElements(device, NULL, kIOHIDOptionsTypeNone); for (i = 0; i < CFArrayGetCount(elements); i++) { IOHIDElementRef native = (IOHIDElementRef) CFArrayGetValueAtIndex(elements, i); if (CFGetTypeID(native) != IOHIDElementGetTypeID()) continue; const IOHIDElementType type = IOHIDElementGetType(native); if ((type != kIOHIDElementTypeInput_Axis) && (type != kIOHIDElementTypeInput_Button) && (type != kIOHIDElementTypeInput_Misc)) { continue; } CFMutableArrayRef target = NULL; const uint32_t usage = IOHIDElementGetUsage(native); const uint32_t page = IOHIDElementGetUsagePage(native); if (page == kHIDPage_GenericDesktop) { switch (usage) { case kHIDUsage_GD_X: case kHIDUsage_GD_Y: case kHIDUsage_GD_Z: case kHIDUsage_GD_Rx: case kHIDUsage_GD_Ry: case kHIDUsage_GD_Rz: case kHIDUsage_GD_Slider: case kHIDUsage_GD_Dial: case kHIDUsage_GD_Wheel: target = axes; break; case kHIDUsage_GD_Hatswitch: target = hats; break; case kHIDUsage_GD_DPadUp: case kHIDUsage_GD_DPadRight: case kHIDUsage_GD_DPadDown: case kHIDUsage_GD_DPadLeft: case kHIDUsage_GD_SystemMainMenu: case kHIDUsage_GD_Select: case kHIDUsage_GD_Start: target = buttons; break; } } else if (page == kHIDPage_Simulation) { switch (usage) { case kHIDUsage_Sim_Accelerator: case kHIDUsage_Sim_Brake: case kHIDUsage_Sim_Throttle: case kHIDUsage_Sim_Rudder: case kHIDUsage_Sim_Steering: target = axes; break; } } else if (page == kHIDPage_Button || page == kHIDPage_Consumer) target = buttons; if (target) { _GLFWjoyelementNS* element = calloc(1, sizeof(_GLFWjoyelementNS)); element->native = native; element->usage = usage; element->index = (int) CFArrayGetCount(target); element->minimum = IOHIDElementGetLogicalMin(native); element->maximum = IOHIDElementGetLogicalMax(native); CFArrayAppendValue(target, element); } } CFRelease(elements); CFArraySortValues(axes, CFRangeMake(0, CFArrayGetCount(axes)), compareElements, NULL); CFArraySortValues(buttons, CFRangeMake(0, CFArrayGetCount(buttons)), compareElements, NULL); CFArraySortValues(hats, CFRangeMake(0, CFArrayGetCount(hats)), compareElements, NULL); js = _glfwAllocJoystick(name, guid, (int) CFArrayGetCount(axes), (int) CFArrayGetCount(buttons), (int) CFArrayGetCount(hats)); js->ns.device = device; js->ns.axes = axes; js->ns.buttons = buttons; js->ns.hats = hats; _glfwInputJoystick(js, GLFW_CONNECTED); } // Callback for user-initiated joystick removal // static void removeCallback(void* context, IOReturn result, void* sender, IOHIDDeviceRef device) { int jid; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { if (_glfw.joysticks[jid].ns.device == device) { closeJoystick(_glfw.joysticks + jid); break; } } } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize joystick interface // void _glfwInitJoysticksNS(void) { CFMutableArrayRef matching; const long usages[] = { kHIDUsage_GD_Joystick, kHIDUsage_GD_GamePad, kHIDUsage_GD_MultiAxisController }; _glfw.ns.hidManager = IOHIDManagerCreate(kCFAllocatorDefault, kIOHIDOptionsTypeNone); matching = CFArrayCreateMutable(kCFAllocatorDefault, 0, &kCFTypeArrayCallBacks); if (!matching) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to create array"); return; } for (size_t i = 0; i < sizeof(usages) / sizeof(long); i++) { const long page = kHIDPage_GenericDesktop; CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorDefault, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); if (!dict) continue; CFNumberRef pageRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberLongType, &page); CFNumberRef usageRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberLongType, &usages[i]); if (pageRef && usageRef) { CFDictionarySetValue(dict, CFSTR(kIOHIDDeviceUsagePageKey), pageRef); CFDictionarySetValue(dict, CFSTR(kIOHIDDeviceUsageKey), usageRef); CFArrayAppendValue(matching, dict); } if (pageRef) CFRelease(pageRef); if (usageRef) CFRelease(usageRef); CFRelease(dict); } IOHIDManagerSetDeviceMatchingMultiple(_glfw.ns.hidManager, matching); CFRelease(matching); IOHIDManagerRegisterDeviceMatchingCallback(_glfw.ns.hidManager, &matchCallback, NULL); IOHIDManagerRegisterDeviceRemovalCallback(_glfw.ns.hidManager, &removeCallback, NULL); IOHIDManagerScheduleWithRunLoop(_glfw.ns.hidManager, CFRunLoopGetMain(), kCFRunLoopDefaultMode); IOHIDManagerOpen(_glfw.ns.hidManager, kIOHIDOptionsTypeNone); // Execute the run loop once in order to register any initially-attached // joysticks CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0, false); } // Close all opened joystick handles // void _glfwTerminateJoysticksNS(void) { int jid; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) closeJoystick(_glfw.joysticks + jid); CFRelease(_glfw.ns.hidManager); _glfw.ns.hidManager = NULL; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformPollJoystick(_GLFWjoystick* js, int mode) { if (mode & _GLFW_POLL_AXES) { CFIndex i; for (i = 0; i < CFArrayGetCount(js->ns.axes); i++) { _GLFWjoyelementNS* axis = (_GLFWjoyelementNS*) CFArrayGetValueAtIndex(js->ns.axes, i); const long raw = getElementValue(js, axis); // Perform auto calibration if (raw < axis->minimum) axis->minimum = raw; if (raw > axis->maximum) axis->maximum = raw; const long size = axis->maximum - axis->minimum; if (size == 0) _glfwInputJoystickAxis(js, (int) i, 0.f); else { const float value = (2.f * (raw - axis->minimum) / size) - 1.f; _glfwInputJoystickAxis(js, (int) i, value); } } } if (mode & _GLFW_POLL_BUTTONS) { CFIndex i; for (i = 0; i < CFArrayGetCount(js->ns.buttons); i++) { _GLFWjoyelementNS* button = (_GLFWjoyelementNS*) CFArrayGetValueAtIndex(js->ns.buttons, i); const char value = getElementValue(js, button) - button->minimum; const int state = (value > 0) ? GLFW_PRESS : GLFW_RELEASE; _glfwInputJoystickButton(js, (int) i, state); } for (i = 0; i < CFArrayGetCount(js->ns.hats); i++) { const int states[9] = { GLFW_HAT_UP, GLFW_HAT_RIGHT_UP, GLFW_HAT_RIGHT, GLFW_HAT_RIGHT_DOWN, GLFW_HAT_DOWN, GLFW_HAT_LEFT_DOWN, GLFW_HAT_LEFT, GLFW_HAT_LEFT_UP, GLFW_HAT_CENTERED }; _GLFWjoyelementNS* hat = (_GLFWjoyelementNS*) CFArrayGetValueAtIndex(js->ns.hats, i); long state = getElementValue(js, hat) - hat->minimum; if (state < 0 || state > 8) state = 8; _glfwInputJoystickHat(js, (int) i, states[state]); } } return js->present; } void _glfwPlatformUpdateGamepadGUID(char* guid) { if ((strncmp(guid + 4, "000000000000", 12) == 0) && (strncmp(guid + 20, "000000000000", 12) == 0)) { char original[33]; strncpy(original, guid, sizeof(original) - 1); sprintf(guid, "03000000%.4s0000%.4s000000000000", original, original + 16); } } #endif #ifndef HEADER_GUARD_COCOA_MONITOR_M #define HEADER_GUARD_COCOA_MONITOR_M //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #include #include // Get the name of the specified display, or NULL // static char* getMonitorName(CGDirectDisplayID displayID, NSScreen* screen) { // IOKit doesn't work on Apple Silicon anymore // Luckily, 10.15 introduced -[NSScreen localizedName]. // Use it if available, and fall back to IOKit otherwise. if (screen) { if ([screen respondsToSelector:@selector(localizedName)]) { NSString* name = [screen valueForKey:@"localizedName"]; if (name) return _glfw_strdup([name UTF8String]); } } io_iterator_t it; io_service_t service; CFDictionaryRef info; if (IOServiceGetMatchingServices(MACH_PORT_NULL, IOServiceMatching("IODisplayConnect"), &it) != 0) { // This may happen if a desktop Mac is running headless return _glfw_strdup("Display"); } while ((service = IOIteratorNext(it)) != 0) { info = IODisplayCreateInfoDictionary(service, kIODisplayOnlyPreferredName); CFNumberRef vendorIDRef = CFDictionaryGetValue(info, CFSTR(kDisplayVendorID)); CFNumberRef productIDRef = CFDictionaryGetValue(info, CFSTR(kDisplayProductID)); if (!vendorIDRef || !productIDRef) { CFRelease(info); continue; } unsigned int vendorID, productID; CFNumberGetValue(vendorIDRef, kCFNumberIntType, &vendorID); CFNumberGetValue(productIDRef, kCFNumberIntType, &productID); if (CGDisplayVendorNumber(displayID) == vendorID && CGDisplayModelNumber(displayID) == productID) { // Info dictionary is used and freed below break; } CFRelease(info); } IOObjectRelease(it); if (!service) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to find service port for display"); return _glfw_strdup("Display"); } CFDictionaryRef names = CFDictionaryGetValue(info, CFSTR(kDisplayProductName)); CFStringRef nameRef; if (!names || !CFDictionaryGetValueIfPresent(names, CFSTR("en_US"), (const void**) &nameRef)) { // This may happen if a desktop Mac is running headless CFRelease(info); return _glfw_strdup("Display"); } const CFIndex size = CFStringGetMaximumSizeForEncoding(CFStringGetLength(nameRef), kCFStringEncodingUTF8); char* name = calloc(size + 1, 1); CFStringGetCString(nameRef, name, size, kCFStringEncodingUTF8); CFRelease(info); return name; } // Check whether the display mode should be included in enumeration // static GLFWbool modeIsGood(CGDisplayModeRef mode) { uint32_t flags = CGDisplayModeGetIOFlags(mode); if (!(flags & kDisplayModeValidFlag) || !(flags & kDisplayModeSafeFlag)) return GLFW_FALSE; if (flags & kDisplayModeInterlacedFlag) return GLFW_FALSE; if (flags & kDisplayModeStretchedFlag) return GLFW_FALSE; #if MAC_OS_X_VERSION_MAX_ALLOWED <= 101100 CFStringRef format = CGDisplayModeCopyPixelEncoding(mode); if (CFStringCompare(format, CFSTR(IO16BitDirectPixels), 0) && CFStringCompare(format, CFSTR(IO32BitDirectPixels), 0)) { CFRelease(format); return GLFW_FALSE; } CFRelease(format); #endif /* MAC_OS_X_VERSION_MAX_ALLOWED */ return GLFW_TRUE; } // Convert Core Graphics display mode to GLFW video mode // static GLFWvidmode vidmodeFromCGDisplayMode(CGDisplayModeRef mode, double fallbackRefreshRate) { GLFWvidmode result; result.width = (int) CGDisplayModeGetWidth(mode); result.height = (int) CGDisplayModeGetHeight(mode); result.refreshRate = (int) round(CGDisplayModeGetRefreshRate(mode)); if (result.refreshRate == 0) result.refreshRate = (int) round(fallbackRefreshRate); #if MAC_OS_X_VERSION_MAX_ALLOWED <= 101100 CFStringRef format = CGDisplayModeCopyPixelEncoding(mode); if (CFStringCompare(format, CFSTR(IO16BitDirectPixels), 0) == 0) { result.redBits = 5; result.greenBits = 5; result.blueBits = 5; } else #endif /* MAC_OS_X_VERSION_MAX_ALLOWED */ { result.redBits = 8; result.greenBits = 8; result.blueBits = 8; } #if MAC_OS_X_VERSION_MAX_ALLOWED <= 101100 CFRelease(format); #endif /* MAC_OS_X_VERSION_MAX_ALLOWED */ return result; } // Starts reservation for display fading // static CGDisplayFadeReservationToken beginFadeReservation(void) { CGDisplayFadeReservationToken token = kCGDisplayFadeReservationInvalidToken; if (CGAcquireDisplayFadeReservation(5, &token) == kCGErrorSuccess) { CGDisplayFade(token, 0.3, kCGDisplayBlendNormal, kCGDisplayBlendSolidColor, 0.0, 0.0, 0.0, TRUE); } return token; } // Ends reservation for display fading // static void endFadeReservation(CGDisplayFadeReservationToken token) { if (token != kCGDisplayFadeReservationInvalidToken) { CGDisplayFade(token, 0.5, kCGDisplayBlendSolidColor, kCGDisplayBlendNormal, 0.0, 0.0, 0.0, FALSE); CGReleaseDisplayFadeReservation(token); } } // Returns the display refresh rate queried from the I/O registry // static double getFallbackRefreshRate(CGDirectDisplayID displayID) { double refreshRate = 60.0; io_iterator_t it; io_service_t service; if (IOServiceGetMatchingServices(MACH_PORT_NULL, IOServiceMatching("IOFramebuffer"), &it) != 0) { return refreshRate; } while ((service = IOIteratorNext(it)) != 0) { const CFNumberRef indexRef = IORegistryEntryCreateCFProperty(service, CFSTR("IOFramebufferOpenGLIndex"), kCFAllocatorDefault, kNilOptions); if (!indexRef) continue; uint32_t index = 0; CFNumberGetValue(indexRef, kCFNumberIntType, &index); CFRelease(indexRef); if (CGOpenGLDisplayMaskToDisplayID(1 << index) != displayID) continue; const CFNumberRef clockRef = IORegistryEntryCreateCFProperty(service, CFSTR("IOFBCurrentPixelClock"), kCFAllocatorDefault, kNilOptions); const CFNumberRef countRef = IORegistryEntryCreateCFProperty(service, CFSTR("IOFBCurrentPixelCount"), kCFAllocatorDefault, kNilOptions); uint32_t clock = 0, count = 0; if (clockRef) { CFNumberGetValue(clockRef, kCFNumberIntType, &clock); CFRelease(clockRef); } if (countRef) { CFNumberGetValue(countRef, kCFNumberIntType, &count); CFRelease(countRef); } if (clock > 0 && count > 0) refreshRate = clock / (double) count; break; } IOObjectRelease(it); return refreshRate; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Poll for changes in the set of connected monitors // void _glfwPollMonitorsNS(void) { uint32_t displayCount; CGGetOnlineDisplayList(0, NULL, &displayCount); CGDirectDisplayID* displays = calloc(displayCount, sizeof(CGDirectDisplayID)); CGGetOnlineDisplayList(displayCount, displays, &displayCount); for (int i = 0; i < _glfw.monitorCount; i++) _glfw.monitors[i]->ns.screen = nil; _GLFWmonitor** disconnected = NULL; uint32_t disconnectedCount = _glfw.monitorCount; if (disconnectedCount) { disconnected = calloc(_glfw.monitorCount, sizeof(_GLFWmonitor*)); memcpy(disconnected, _glfw.monitors, _glfw.monitorCount * sizeof(_GLFWmonitor*)); } for (uint32_t i = 0; i < displayCount; i++) { if (CGDisplayIsAsleep(displays[i])) continue; const uint32_t unitNumber = CGDisplayUnitNumber(displays[i]); NSScreen* screen = nil; for (screen in [NSScreen screens]) { NSNumber* screenNumber = [screen deviceDescription][@"NSScreenNumber"]; // HACK: Compare unit numbers instead of display IDs to work around // display replacement on machines with automatic graphics // switching if (CGDisplayUnitNumber([screenNumber unsignedIntValue]) == unitNumber) break; } // HACK: Compare unit numbers instead of display IDs to work around // display replacement on machines with automatic graphics // switching uint32_t j; for (j = 0; j < disconnectedCount; j++) { if (disconnected[j] && disconnected[j]->ns.unitNumber == unitNumber) { disconnected[j]->ns.screen = screen; disconnected[j] = NULL; break; } } if (j < disconnectedCount) continue; const CGSize size = CGDisplayScreenSize(displays[i]); char* name = getMonitorName(displays[i], screen); if (!name) continue; _GLFWmonitor* monitor = _glfwAllocMonitor(name, size.width, size.height); monitor->ns.displayID = displays[i]; monitor->ns.unitNumber = unitNumber; monitor->ns.screen = screen; free(name); CGDisplayModeRef mode = CGDisplayCopyDisplayMode(displays[i]); if (CGDisplayModeGetRefreshRate(mode) == 0.0) monitor->ns.fallbackRefreshRate = getFallbackRefreshRate(displays[i]); CGDisplayModeRelease(mode); _glfwInputMonitor(monitor, GLFW_CONNECTED, _GLFW_INSERT_LAST); } for (uint32_t i = 0; i < disconnectedCount; i++) { if (disconnected[i]) _glfwInputMonitor(disconnected[i], GLFW_DISCONNECTED, 0); } free(disconnected); free(displays); } // Change the current video mode // void _glfwSetVideoModeNS(_GLFWmonitor* monitor, const GLFWvidmode* desired) { GLFWvidmode current; _glfwPlatformGetVideoMode(monitor, ¤t); const GLFWvidmode* best = _glfwChooseVideoMode(monitor, desired); if (_glfwCompareVideoModes(¤t, best) == 0) return; CFArrayRef modes = CGDisplayCopyAllDisplayModes(monitor->ns.displayID, NULL); const CFIndex count = CFArrayGetCount(modes); CGDisplayModeRef native = NULL; for (CFIndex i = 0; i < count; i++) { CGDisplayModeRef dm = (CGDisplayModeRef) CFArrayGetValueAtIndex(modes, i); if (!modeIsGood(dm)) continue; const GLFWvidmode mode = vidmodeFromCGDisplayMode(dm, monitor->ns.fallbackRefreshRate); if (_glfwCompareVideoModes(best, &mode) == 0) { native = dm; break; } } if (native) { if (monitor->ns.previousMode == NULL) monitor->ns.previousMode = CGDisplayCopyDisplayMode(monitor->ns.displayID); CGDisplayFadeReservationToken token = beginFadeReservation(); CGDisplaySetDisplayMode(monitor->ns.displayID, native, NULL); endFadeReservation(token); } CFRelease(modes); } // Restore the previously saved (original) video mode // void _glfwRestoreVideoModeNS(_GLFWmonitor* monitor) { if (monitor->ns.previousMode) { CGDisplayFadeReservationToken token = beginFadeReservation(); CGDisplaySetDisplayMode(monitor->ns.displayID, monitor->ns.previousMode, NULL); endFadeReservation(token); CGDisplayModeRelease(monitor->ns.previousMode); monitor->ns.previousMode = NULL; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// void _glfwPlatformFreeMonitor(_GLFWmonitor* monitor) { } void _glfwPlatformGetMonitorPos(_GLFWmonitor* monitor, int* xpos, int* ypos) { @autoreleasepool { const CGRect bounds = CGDisplayBounds(monitor->ns.displayID); if (xpos) *xpos = (int) bounds.origin.x; if (ypos) *ypos = (int) bounds.origin.y; } // autoreleasepool } void _glfwPlatformGetMonitorContentScale(_GLFWmonitor* monitor, float* xscale, float* yscale) { @autoreleasepool { if (!monitor->ns.screen) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Cannot query content scale without screen"); } const NSRect points = [monitor->ns.screen frame]; const NSRect pixels = [monitor->ns.screen convertRectToBacking:points]; if (xscale) *xscale = (float) (pixels.size.width / points.size.width); if (yscale) *yscale = (float) (pixels.size.height / points.size.height); } // autoreleasepool } void _glfwPlatformGetMonitorWorkarea(_GLFWmonitor* monitor, int* xpos, int* ypos, int* width, int* height) { @autoreleasepool { if (!monitor->ns.screen) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Cannot query workarea without screen"); } const NSRect frameRect = [monitor->ns.screen visibleFrame]; if (xpos) *xpos = frameRect.origin.x; if (ypos) *ypos = _glfwTransformYNS(frameRect.origin.y + frameRect.size.height - 1); if (width) *width = frameRect.size.width; if (height) *height = frameRect.size.height; } // autoreleasepool } GLFWvidmode* _glfwPlatformGetVideoModes(_GLFWmonitor* monitor, int* count) { @autoreleasepool { *count = 0; CFArrayRef modes = CGDisplayCopyAllDisplayModes(monitor->ns.displayID, NULL); const CFIndex found = CFArrayGetCount(modes); GLFWvidmode* result = calloc(found, sizeof(GLFWvidmode)); for (CFIndex i = 0; i < found; i++) { CGDisplayModeRef dm = (CGDisplayModeRef) CFArrayGetValueAtIndex(modes, i); if (!modeIsGood(dm)) continue; const GLFWvidmode mode = vidmodeFromCGDisplayMode(dm, monitor->ns.fallbackRefreshRate); CFIndex j; for (j = 0; j < *count; j++) { if (_glfwCompareVideoModes(result + j, &mode) == 0) break; } // Skip duplicate modes if (j < *count) continue; (*count)++; result[*count - 1] = mode; } CFRelease(modes); return result; } // autoreleasepool } void _glfwPlatformGetVideoMode(_GLFWmonitor* monitor, GLFWvidmode *mode) { @autoreleasepool { CGDisplayModeRef native = CGDisplayCopyDisplayMode(monitor->ns.displayID); *mode = vidmodeFromCGDisplayMode(native, monitor->ns.fallbackRefreshRate); CGDisplayModeRelease(native); } // autoreleasepool } GLFWbool _glfwPlatformGetGammaRamp(_GLFWmonitor* monitor, GLFWgammaramp* ramp) { @autoreleasepool { uint32_t size = CGDisplayGammaTableCapacity(monitor->ns.displayID); CGGammaValue* values = calloc(size * 3, sizeof(CGGammaValue)); CGGetDisplayTransferByTable(monitor->ns.displayID, size, values, values + size, values + size * 2, &size); _glfwAllocGammaArrays(ramp, size); for (uint32_t i = 0; i < size; i++) { ramp->red[i] = (unsigned short) (values[i] * 65535); ramp->green[i] = (unsigned short) (values[i + size] * 65535); ramp->blue[i] = (unsigned short) (values[i + size * 2] * 65535); } free(values); return GLFW_TRUE; } // autoreleasepool } void _glfwPlatformSetGammaRamp(_GLFWmonitor* monitor, const GLFWgammaramp* ramp) { @autoreleasepool { CGGammaValue* values = calloc(ramp->size * 3, sizeof(CGGammaValue)); for (unsigned int i = 0; i < ramp->size; i++) { values[i] = ramp->red[i] / 65535.f; values[i + ramp->size] = ramp->green[i] / 65535.f; values[i + ramp->size * 2] = ramp->blue[i] / 65535.f; } CGSetDisplayTransferByTable(monitor->ns.displayID, ramp->size, values, values + ramp->size, values + ramp->size * 2); free(values); } // autoreleasepool } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI CGDirectDisplayID glfwGetCocoaMonitor(GLFWmonitor* handle) { _GLFWmonitor* monitor = (_GLFWmonitor*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(kCGNullDirectDisplay); return monitor->ns.displayID; } #endif #ifndef HEADER_GUARD_COCOA_WINDOW_M #define HEADER_GUARD_COCOA_WINDOW_M //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2019 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include // Returns the style mask corresponding to the window settings // static NSUInteger getStyleMask(_GLFWwindow* window) { NSUInteger styleMask = NSWindowStyleMaskMiniaturizable; if (window->monitor || !window->decorated) styleMask |= NSWindowStyleMaskBorderless; else { styleMask |= NSWindowStyleMaskTitled | NSWindowStyleMaskClosable; if (window->resizable) styleMask |= NSWindowStyleMaskResizable; } return styleMask; } // Returns whether the cursor is in the content area of the specified window // static GLFWbool cursorInContentArea(_GLFWwindow* window) { const NSPoint pos = [window->ns.object mouseLocationOutsideOfEventStream]; return [window->ns.view mouse:pos inRect:[window->ns.view frame]]; } // Hides the cursor if not already hidden // static void hideCursor(_GLFWwindow* window) { if (!_glfw.ns.cursorHidden) { [NSCursor hide]; _glfw.ns.cursorHidden = GLFW_TRUE; } } // Shows the cursor if not already shown // static void showCursor(_GLFWwindow* window) { if (_glfw.ns.cursorHidden) { [NSCursor unhide]; _glfw.ns.cursorHidden = GLFW_FALSE; } } // Updates the cursor image according to its cursor mode // static void updateCursorImage(_GLFWwindow* window) { if (window->cursorMode == GLFW_CURSOR_NORMAL) { showCursor(window); if (window->cursor) [(NSCursor*) window->cursor->ns.object set]; else [[NSCursor arrowCursor] set]; } else hideCursor(window); } // Apply chosen cursor mode to a focused window // static void updateCursorMode(_GLFWwindow* window) { if (window->cursorMode == GLFW_CURSOR_DISABLED) { _glfw.ns.disabledCursorWindow = window; _glfwPlatformGetCursorPos(window, &_glfw.ns.restoreCursorPosX, &_glfw.ns.restoreCursorPosY); _glfwCenterCursorInContentArea(window); CGAssociateMouseAndMouseCursorPosition(false); } else if (_glfw.ns.disabledCursorWindow == window) { _glfw.ns.disabledCursorWindow = NULL; _glfwPlatformSetCursorPos(window, _glfw.ns.restoreCursorPosX, _glfw.ns.restoreCursorPosY); // NOTE: The matching CGAssociateMouseAndMouseCursorPosition call is // made in _glfwPlatformSetCursorPos as part of a workaround } if (cursorInContentArea(window)) updateCursorImage(window); } // Make the specified window and its video mode active on its monitor // static void acquireMonitor(_GLFWwindow* window) { _glfwSetVideoModeNS(window->monitor, &window->videoMode); const CGRect bounds = CGDisplayBounds(window->monitor->ns.displayID); const NSRect frame = NSMakeRect(bounds.origin.x, _glfwTransformYNS(bounds.origin.y + bounds.size.height - 1), bounds.size.width, bounds.size.height); [window->ns.object setFrame:frame display:YES]; _glfwInputMonitorWindow(window->monitor, window); } // Remove the window and restore the original video mode // static void releaseMonitor(_GLFWwindow* window) { if (window->monitor->window != window) return; _glfwInputMonitorWindow(window->monitor, NULL); _glfwRestoreVideoModeNS(window->monitor); } // Translates macOS key modifiers into GLFW ones // static int translateFlags(NSUInteger flags) { int mods = 0; if (flags & NSEventModifierFlagShift) mods |= GLFW_MOD_SHIFT; if (flags & NSEventModifierFlagControl) mods |= GLFW_MOD_CONTROL; if (flags & NSEventModifierFlagOption) mods |= GLFW_MOD_ALT; if (flags & NSEventModifierFlagCommand) mods |= GLFW_MOD_SUPER; if (flags & NSEventModifierFlagCapsLock) mods |= GLFW_MOD_CAPS_LOCK; return mods; } // Translates a macOS keycode to a GLFW keycode // static int translateKey(unsigned int key) { if (key >= sizeof(_glfw.ns.keycodes) / sizeof(_glfw.ns.keycodes[0])) return GLFW_KEY_UNKNOWN; return _glfw.ns.keycodes[key]; } // Translate a GLFW keycode to a Cocoa modifier flag // static NSUInteger translateKeyToModifierFlag(int key) { switch (key) { case GLFW_KEY_LEFT_SHIFT: case GLFW_KEY_RIGHT_SHIFT: return NSEventModifierFlagShift; case GLFW_KEY_LEFT_CONTROL: case GLFW_KEY_RIGHT_CONTROL: return NSEventModifierFlagControl; case GLFW_KEY_LEFT_ALT: case GLFW_KEY_RIGHT_ALT: return NSEventModifierFlagOption; case GLFW_KEY_LEFT_SUPER: case GLFW_KEY_RIGHT_SUPER: return NSEventModifierFlagCommand; case GLFW_KEY_CAPS_LOCK: return NSEventModifierFlagCapsLock; } return 0; } // Defines a constant for empty ranges in NSTextInputClient // static const NSRange kEmptyRange = { NSNotFound, 0 }; //------------------------------------------------------------------------ // Delegate for window related notifications //------------------------------------------------------------------------ @interface GLFWWindowDelegate : NSObject { _GLFWwindow* window; } - (instancetype)initWithGlfwWindow:(_GLFWwindow *)initWindow; @end @implementation GLFWWindowDelegate - (instancetype)initWithGlfwWindow:(_GLFWwindow *)initWindow { self = [super init]; if (self != nil) window = initWindow; return self; } - (BOOL)windowShouldClose:(id)sender { _glfwInputWindowCloseRequest(window); return NO; } - (void)windowDidResize:(NSNotification *)notification { if (window->context.source == GLFW_NATIVE_CONTEXT_API) [window->context.nsgl.object update]; if (_glfw.ns.disabledCursorWindow == window) _glfwCenterCursorInContentArea(window); const int maximized = [window->ns.object isZoomed]; if (window->ns.maximized != maximized) { window->ns.maximized = maximized; _glfwInputWindowMaximize(window, maximized); } const NSRect contentRect = [window->ns.view frame]; const NSRect fbRect = [window->ns.view convertRectToBacking:contentRect]; if (fbRect.size.width != window->ns.fbWidth || fbRect.size.height != window->ns.fbHeight) { window->ns.fbWidth = fbRect.size.width; window->ns.fbHeight = fbRect.size.height; _glfwInputFramebufferSize(window, fbRect.size.width, fbRect.size.height); } if (contentRect.size.width != window->ns.width || contentRect.size.height != window->ns.height) { window->ns.width = contentRect.size.width; window->ns.height = contentRect.size.height; _glfwInputWindowSize(window, contentRect.size.width, contentRect.size.height); } } - (void)windowDidMove:(NSNotification *)notification { if (window->context.source == GLFW_NATIVE_CONTEXT_API) [window->context.nsgl.object update]; if (_glfw.ns.disabledCursorWindow == window) _glfwCenterCursorInContentArea(window); int x, y; _glfwPlatformGetWindowPos(window, &x, &y); _glfwInputWindowPos(window, x, y); } - (void)windowDidMiniaturize:(NSNotification *)notification { if (window->monitor) releaseMonitor(window); _glfwInputWindowIconify(window, GLFW_TRUE); } - (void)windowDidDeminiaturize:(NSNotification *)notification { if (window->monitor) acquireMonitor(window); _glfwInputWindowIconify(window, GLFW_FALSE); } - (void)windowDidBecomeKey:(NSNotification *)notification { if (_glfw.ns.disabledCursorWindow == window) _glfwCenterCursorInContentArea(window); _glfwInputWindowFocus(window, GLFW_TRUE); updateCursorMode(window); } - (void)windowDidResignKey:(NSNotification *)notification { if (window->monitor && window->autoIconify) _glfwPlatformIconifyWindow(window); _glfwInputWindowFocus(window, GLFW_FALSE); } - (void)windowDidChangeOcclusionState:(NSNotification* )notification { if ([window->ns.object occlusionState] & NSWindowOcclusionStateVisible) window->ns.occluded = GLFW_FALSE; else window->ns.occluded = GLFW_TRUE; } @end //------------------------------------------------------------------------ // Content view class for the GLFW window //------------------------------------------------------------------------ @interface GLFWContentView : NSView { _GLFWwindow* window; NSTrackingArea* trackingArea; NSMutableAttributedString* markedText; } - (instancetype)initWithGlfwWindow:(_GLFWwindow *)initWindow; @end @implementation GLFWContentView - (instancetype)initWithGlfwWindow:(_GLFWwindow *)initWindow { self = [super init]; if (self != nil) { window = initWindow; trackingArea = nil; markedText = [[NSMutableAttributedString alloc] init]; [self updateTrackingAreas]; [self registerForDraggedTypes:@[NSPasteboardTypeURL]]; } return self; } - (void)dealloc { [trackingArea release]; [markedText release]; [super dealloc]; } - (BOOL)isOpaque { return [window->ns.object isOpaque]; } - (BOOL)canBecomeKeyView { return YES; } - (BOOL)acceptsFirstResponder { return YES; } - (BOOL)wantsUpdateLayer { return YES; } - (void)updateLayer { if (window->context.source == GLFW_NATIVE_CONTEXT_API) [window->context.nsgl.object update]; _glfwInputWindowDamage(window); } - (void)cursorUpdate:(NSEvent *)event { updateCursorImage(window); } - (BOOL)acceptsFirstMouse:(NSEvent *)event { return YES; } - (void)mouseDown:(NSEvent *)event { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_LEFT, GLFW_PRESS, translateFlags([event modifierFlags])); } - (void)mouseDragged:(NSEvent *)event { [self mouseMoved:event]; } - (void)mouseUp:(NSEvent *)event { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_LEFT, GLFW_RELEASE, translateFlags([event modifierFlags])); } - (void)mouseMoved:(NSEvent *)event { if (window->cursorMode == GLFW_CURSOR_DISABLED) { const double dx = [event deltaX] - window->ns.cursorWarpDeltaX; const double dy = [event deltaY] - window->ns.cursorWarpDeltaY; _glfwInputCursorPos(window, window->virtualCursorPosX + dx, window->virtualCursorPosY + dy); } else { const NSRect contentRect = [window->ns.view frame]; // NOTE: The returned location uses base 0,1 not 0,0 const NSPoint pos = [event locationInWindow]; _glfwInputCursorPos(window, pos.x, contentRect.size.height - pos.y); } window->ns.cursorWarpDeltaX = 0; window->ns.cursorWarpDeltaY = 0; } - (void)rightMouseDown:(NSEvent *)event { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_RIGHT, GLFW_PRESS, translateFlags([event modifierFlags])); } - (void)rightMouseDragged:(NSEvent *)event { [self mouseMoved:event]; } - (void)rightMouseUp:(NSEvent *)event { _glfwInputMouseClick(window, GLFW_MOUSE_BUTTON_RIGHT, GLFW_RELEASE, translateFlags([event modifierFlags])); } - (void)otherMouseDown:(NSEvent *)event { _glfwInputMouseClick(window, (int) [event buttonNumber], GLFW_PRESS, translateFlags([event modifierFlags])); } - (void)otherMouseDragged:(NSEvent *)event { [self mouseMoved:event]; } - (void)otherMouseUp:(NSEvent *)event { _glfwInputMouseClick(window, (int) [event buttonNumber], GLFW_RELEASE, translateFlags([event modifierFlags])); } - (void)mouseExited:(NSEvent *)event { if (window->cursorMode == GLFW_CURSOR_HIDDEN) showCursor(window); _glfwInputCursorEnter(window, GLFW_FALSE); } - (void)mouseEntered:(NSEvent *)event { if (window->cursorMode == GLFW_CURSOR_HIDDEN) hideCursor(window); _glfwInputCursorEnter(window, GLFW_TRUE); } - (void)viewDidChangeBackingProperties { const NSRect contentRect = [window->ns.view frame]; const NSRect fbRect = [window->ns.view convertRectToBacking:contentRect]; const float xscale = fbRect.size.width / contentRect.size.width; const float yscale = fbRect.size.height / contentRect.size.height; if (xscale != window->ns.xscale || yscale != window->ns.yscale) { if (window->ns.retina && window->ns.layer) [window->ns.layer setContentsScale:[window->ns.object backingScaleFactor]]; window->ns.xscale = xscale; window->ns.yscale = yscale; _glfwInputWindowContentScale(window, xscale, yscale); } if (fbRect.size.width != window->ns.fbWidth || fbRect.size.height != window->ns.fbHeight) { window->ns.fbWidth = fbRect.size.width; window->ns.fbHeight = fbRect.size.height; _glfwInputFramebufferSize(window, fbRect.size.width, fbRect.size.height); } } - (void)drawRect:(NSRect)rect { _glfwInputWindowDamage(window); } - (void)updateTrackingAreas { if (trackingArea != nil) { [self removeTrackingArea:trackingArea]; [trackingArea release]; } const NSTrackingAreaOptions options = NSTrackingMouseEnteredAndExited | NSTrackingActiveInKeyWindow | NSTrackingEnabledDuringMouseDrag | NSTrackingCursorUpdate | NSTrackingInVisibleRect | NSTrackingAssumeInside; trackingArea = [[NSTrackingArea alloc] initWithRect:[self bounds] options:options owner:self userInfo:nil]; [self addTrackingArea:trackingArea]; [super updateTrackingAreas]; } - (void)keyDown:(NSEvent *)event { const int key = translateKey([event keyCode]); const int mods = translateFlags([event modifierFlags]); _glfwInputKey(window, key, [event keyCode], GLFW_PRESS, mods); [self interpretKeyEvents:@[event]]; } - (void)flagsChanged:(NSEvent *)event { int action; const unsigned int modifierFlags = [event modifierFlags] & NSEventModifierFlagDeviceIndependentFlagsMask; const int key = translateKey([event keyCode]); const int mods = translateFlags(modifierFlags); const NSUInteger keyFlag = translateKeyToModifierFlag(key); if (keyFlag & modifierFlags) { if (window->keys[key] == GLFW_PRESS) action = GLFW_RELEASE; else action = GLFW_PRESS; } else action = GLFW_RELEASE; _glfwInputKey(window, key, [event keyCode], action, mods); } - (void)keyUp:(NSEvent *)event { const int key = translateKey([event keyCode]); const int mods = translateFlags([event modifierFlags]); _glfwInputKey(window, key, [event keyCode], GLFW_RELEASE, mods); } - (void)scrollWheel:(NSEvent *)event { double deltaX = [event scrollingDeltaX]; double deltaY = [event scrollingDeltaY]; if ([event hasPreciseScrollingDeltas]) { deltaX *= 0.1; deltaY *= 0.1; } if (fabs(deltaX) > 0.0 || fabs(deltaY) > 0.0) _glfwInputScroll(window, deltaX, deltaY); } - (NSDragOperation)draggingEntered:(id )sender { // HACK: We don't know what to say here because we don't know what the // application wants to do with the paths return NSDragOperationGeneric; } - (BOOL)performDragOperation:(id )sender { const NSRect contentRect = [window->ns.view frame]; // NOTE: The returned location uses base 0,1 not 0,0 const NSPoint pos = [sender draggingLocation]; _glfwInputCursorPos(window, pos.x, contentRect.size.height - pos.y); NSPasteboard* pasteboard = [sender draggingPasteboard]; NSDictionary* options = @{NSPasteboardURLReadingFileURLsOnlyKey:@YES}; NSArray* urls = [pasteboard readObjectsForClasses:@[[NSURL class]] options:options]; const NSUInteger count = [urls count]; if (count) { char** paths = calloc(count, sizeof(char*)); for (NSUInteger i = 0; i < count; i++) paths[i] = _glfw_strdup([urls[i] fileSystemRepresentation]); _glfwInputDrop(window, (int) count, (const char**) paths); for (NSUInteger i = 0; i < count; i++) free(paths[i]); free(paths); } return YES; } - (BOOL)hasMarkedText { return [markedText length] > 0; } - (NSRange)markedRange { if ([markedText length] > 0) return NSMakeRange(0, [markedText length] - 1); else return kEmptyRange; } - (NSRange)selectedRange { return kEmptyRange; } - (void)setMarkedText:(id)string selectedRange:(NSRange)selectedRange replacementRange:(NSRange)replacementRange { [markedText release]; if ([string isKindOfClass:[NSAttributedString class]]) markedText = [[NSMutableAttributedString alloc] initWithAttributedString:string]; else markedText = [[NSMutableAttributedString alloc] initWithString:string]; } - (void)unmarkText { [[markedText mutableString] setString:@""]; } - (NSArray*)validAttributesForMarkedText { return [NSArray array]; } - (NSAttributedString*)attributedSubstringForProposedRange:(NSRange)range actualRange:(NSRangePointer)actualRange { return nil; } - (NSUInteger)characterIndexForPoint:(NSPoint)point { return 0; } - (NSRect)firstRectForCharacterRange:(NSRange)range actualRange:(NSRangePointer)actualRange { const NSRect frame = [window->ns.view frame]; return NSMakeRect(frame.origin.x, frame.origin.y, 0.0, 0.0); } - (void)insertText:(id)string replacementRange:(NSRange)replacementRange { NSString* characters; NSEvent* event = [NSApp currentEvent]; const int mods = translateFlags([event modifierFlags]); const int plain = !(mods & GLFW_MOD_SUPER); if ([string isKindOfClass:[NSAttributedString class]]) characters = [string string]; else characters = (NSString*) string; NSRange range = NSMakeRange(0, [characters length]); while (range.length) { uint32_t codepoint = 0; if ([characters getBytes:&codepoint maxLength:sizeof(codepoint) usedLength:NULL encoding:NSUTF32StringEncoding options:0 range:range remainingRange:&range]) { if (codepoint >= 0xf700 && codepoint <= 0xf7ff) continue; _glfwInputChar(window, codepoint, mods, plain); } } } - (void)doCommandBySelector:(SEL)selector { } @end //------------------------------------------------------------------------ // GLFW window class //------------------------------------------------------------------------ @interface GLFWWindow : NSWindow {} @end @implementation GLFWWindow - (BOOL)canBecomeKeyWindow { // Required for NSWindowStyleMaskBorderless windows return YES; } - (BOOL)canBecomeMainWindow { return YES; } @end // Create the Cocoa window // static GLFWbool createNativeWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWfbconfig* fbconfig) { window->ns.delegate = [[GLFWWindowDelegate alloc] initWithGlfwWindow:window]; if (window->ns.delegate == nil) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to create window delegate"); return GLFW_FALSE; } NSRect contentRect; if (window->monitor) { GLFWvidmode mode; int xpos, ypos; _glfwPlatformGetVideoMode(window->monitor, &mode); _glfwPlatformGetMonitorPos(window->monitor, &xpos, &ypos); contentRect = NSMakeRect(xpos, ypos, mode.width, mode.height); } else contentRect = NSMakeRect(0, 0, wndconfig->width, wndconfig->height); window->ns.object = [[GLFWWindow alloc] initWithContentRect:contentRect styleMask:getStyleMask(window) backing:NSBackingStoreBuffered defer:NO]; if (window->ns.object == nil) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to create window"); return GLFW_FALSE; } if (window->monitor) [window->ns.object setLevel:NSMainMenuWindowLevel + 1]; else { [(NSWindow*) window->ns.object center]; _glfw.ns.cascadePoint = NSPointToCGPoint([window->ns.object cascadeTopLeftFromPoint: NSPointFromCGPoint(_glfw.ns.cascadePoint)]); if (wndconfig->resizable) { const NSWindowCollectionBehavior behavior = NSWindowCollectionBehaviorFullScreenPrimary | NSWindowCollectionBehaviorManaged; [window->ns.object setCollectionBehavior:behavior]; } if (wndconfig->floating) [window->ns.object setLevel:NSFloatingWindowLevel]; if (wndconfig->maximized) [window->ns.object zoom:nil]; } if (strlen(wndconfig->ns.frameName)) [window->ns.object setFrameAutosaveName:@(wndconfig->ns.frameName)]; window->ns.view = [[GLFWContentView alloc] initWithGlfwWindow:window]; window->ns.retina = wndconfig->ns.retina; if (fbconfig->transparent) { [window->ns.object setOpaque:NO]; [window->ns.object setHasShadow:NO]; [window->ns.object setBackgroundColor:[NSColor clearColor]]; } [window->ns.object setContentView:window->ns.view]; [window->ns.object makeFirstResponder:window->ns.view]; [window->ns.object setTitle:@(wndconfig->title)]; [window->ns.object setDelegate:window->ns.delegate]; [window->ns.object setAcceptsMouseMovedEvents:YES]; [window->ns.object setRestorable:NO]; #if MAC_OS_X_VERSION_MAX_ALLOWED >= 101200 if ([window->ns.object respondsToSelector:@selector(setTabbingMode:)]) [window->ns.object setTabbingMode:NSWindowTabbingModeDisallowed]; #endif _glfwPlatformGetWindowSize(window, &window->ns.width, &window->ns.height); _glfwPlatformGetFramebufferSize(window, &window->ns.fbWidth, &window->ns.fbHeight); return GLFW_TRUE; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Transforms a y-coordinate between the CG display and NS screen spaces // float _glfwTransformYNS(float y) { return CGDisplayBounds(CGMainDisplayID()).size.height - y - 1; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformCreateWindow(_GLFWwindow* window, const _GLFWwndconfig* wndconfig, const _GLFWctxconfig* ctxconfig, const _GLFWfbconfig* fbconfig) { @autoreleasepool { if (!_glfw.ns.finishedLaunching) [NSApp run]; if (!createNativeWindow(window, wndconfig, fbconfig)) return GLFW_FALSE; if (ctxconfig->client != GLFW_NO_API) { if (ctxconfig->source == GLFW_NATIVE_CONTEXT_API) { if (!_glfwInitNSGL()) return GLFW_FALSE; if (!_glfwCreateContextNSGL(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_EGL_CONTEXT_API) { // EGL implementation on macOS use CALayer* EGLNativeWindowType so we // need to get the layer for EGL window surface creation. [window->ns.view setWantsLayer:YES]; window->ns.layer = [window->ns.view layer]; if (!_glfwInitEGL()) return GLFW_FALSE; if (!_glfwCreateContextEGL(window, ctxconfig, fbconfig)) return GLFW_FALSE; } else if (ctxconfig->source == GLFW_OSMESA_CONTEXT_API) { if (!_glfwInitOSMesa()) return GLFW_FALSE; if (!_glfwCreateContextOSMesa(window, ctxconfig, fbconfig)) return GLFW_FALSE; } } if (window->monitor) { _glfwPlatformShowWindow(window); _glfwPlatformFocusWindow(window); acquireMonitor(window); } return GLFW_TRUE; } // autoreleasepool } void _glfwPlatformDestroyWindow(_GLFWwindow* window) { @autoreleasepool { if (_glfw.ns.disabledCursorWindow == window) _glfw.ns.disabledCursorWindow = NULL; [window->ns.object orderOut:nil]; if (window->monitor) releaseMonitor(window); if (window->context.destroy) window->context.destroy(window); [window->ns.object setDelegate:nil]; [window->ns.delegate release]; window->ns.delegate = nil; [window->ns.view release]; window->ns.view = nil; [window->ns.object close]; window->ns.object = nil; // HACK: Allow Cocoa to catch up before returning _glfwPlatformPollEvents(); } // autoreleasepool } void _glfwPlatformSetWindowTitle(_GLFWwindow* window, const char* title) { @autoreleasepool { NSString* string = @(title); [window->ns.object setTitle:string]; // HACK: Set the miniwindow title explicitly as setTitle: doesn't update it // if the window lacks NSWindowStyleMaskTitled [window->ns.object setMiniwindowTitle:string]; } // autoreleasepool } void _glfwPlatformSetWindowIcon(_GLFWwindow* window, int count, const GLFWimage* images) { // Regular windows do not have icons } void _glfwPlatformGetWindowPos(_GLFWwindow* window, int* xpos, int* ypos) { @autoreleasepool { const NSRect contentRect = [window->ns.object contentRectForFrameRect:[window->ns.object frame]]; if (xpos) *xpos = contentRect.origin.x; if (ypos) *ypos = _glfwTransformYNS(contentRect.origin.y + contentRect.size.height - 1); } // autoreleasepool } void _glfwPlatformSetWindowPos(_GLFWwindow* window, int x, int y) { @autoreleasepool { const NSRect contentRect = [window->ns.view frame]; const NSRect dummyRect = NSMakeRect(x, _glfwTransformYNS(y + contentRect.size.height - 1), 0, 0); const NSRect frameRect = [window->ns.object frameRectForContentRect:dummyRect]; [window->ns.object setFrameOrigin:frameRect.origin]; } // autoreleasepool } void _glfwPlatformGetWindowSize(_GLFWwindow* window, int* width, int* height) { @autoreleasepool { const NSRect contentRect = [window->ns.view frame]; if (width) *width = contentRect.size.width; if (height) *height = contentRect.size.height; } // autoreleasepool } void _glfwPlatformSetWindowSize(_GLFWwindow* window, int width, int height) { @autoreleasepool { if (window->monitor) { if (window->monitor->window == window) acquireMonitor(window); } else { NSRect contentRect = [window->ns.object contentRectForFrameRect:[window->ns.object frame]]; contentRect.origin.y += contentRect.size.height - height; contentRect.size = NSMakeSize(width, height); [window->ns.object setFrame:[window->ns.object frameRectForContentRect:contentRect] display:YES]; } } // autoreleasepool } void _glfwPlatformSetWindowSizeLimits(_GLFWwindow* window, int minwidth, int minheight, int maxwidth, int maxheight) { @autoreleasepool { if (minwidth == GLFW_DONT_CARE || minheight == GLFW_DONT_CARE) [window->ns.object setContentMinSize:NSMakeSize(0, 0)]; else [window->ns.object setContentMinSize:NSMakeSize(minwidth, minheight)]; if (maxwidth == GLFW_DONT_CARE || maxheight == GLFW_DONT_CARE) [window->ns.object setContentMaxSize:NSMakeSize(DBL_MAX, DBL_MAX)]; else [window->ns.object setContentMaxSize:NSMakeSize(maxwidth, maxheight)]; } // autoreleasepool } void _glfwPlatformSetWindowAspectRatio(_GLFWwindow* window, int numer, int denom) { @autoreleasepool { if (numer == GLFW_DONT_CARE || denom == GLFW_DONT_CARE) [window->ns.object setResizeIncrements:NSMakeSize(1.0, 1.0)]; else [window->ns.object setContentAspectRatio:NSMakeSize(numer, denom)]; } // autoreleasepool } void _glfwPlatformGetFramebufferSize(_GLFWwindow* window, int* width, int* height) { @autoreleasepool { const NSRect contentRect = [window->ns.view frame]; const NSRect fbRect = [window->ns.view convertRectToBacking:contentRect]; if (width) *width = (int) fbRect.size.width; if (height) *height = (int) fbRect.size.height; } // autoreleasepool } void _glfwPlatformGetWindowFrameSize(_GLFWwindow* window, int* left, int* top, int* right, int* bottom) { @autoreleasepool { const NSRect contentRect = [window->ns.view frame]; const NSRect frameRect = [window->ns.object frameRectForContentRect:contentRect]; if (left) *left = contentRect.origin.x - frameRect.origin.x; if (top) *top = frameRect.origin.y + frameRect.size.height - contentRect.origin.y - contentRect.size.height; if (right) *right = frameRect.origin.x + frameRect.size.width - contentRect.origin.x - contentRect.size.width; if (bottom) *bottom = contentRect.origin.y - frameRect.origin.y; } // autoreleasepool } void _glfwPlatformGetWindowContentScale(_GLFWwindow* window, float* xscale, float* yscale) { @autoreleasepool { const NSRect points = [window->ns.view frame]; const NSRect pixels = [window->ns.view convertRectToBacking:points]; if (xscale) *xscale = (float) (pixels.size.width / points.size.width); if (yscale) *yscale = (float) (pixels.size.height / points.size.height); } // autoreleasepool } void _glfwPlatformIconifyWindow(_GLFWwindow* window) { @autoreleasepool { [window->ns.object miniaturize:nil]; } // autoreleasepool } void _glfwPlatformRestoreWindow(_GLFWwindow* window) { @autoreleasepool { if ([window->ns.object isMiniaturized]) [window->ns.object deminiaturize:nil]; else if ([window->ns.object isZoomed]) [window->ns.object zoom:nil]; } // autoreleasepool } void _glfwPlatformMaximizeWindow(_GLFWwindow* window) { @autoreleasepool { if (![window->ns.object isZoomed]) [window->ns.object zoom:nil]; } // autoreleasepool } void _glfwPlatformShowWindow(_GLFWwindow* window) { @autoreleasepool { [window->ns.object orderFront:nil]; } // autoreleasepool } void _glfwPlatformHideWindow(_GLFWwindow* window) { @autoreleasepool { [window->ns.object orderOut:nil]; } // autoreleasepool } void _glfwPlatformRequestWindowAttention(_GLFWwindow* window) { @autoreleasepool { [NSApp requestUserAttention:NSInformationalRequest]; } // autoreleasepool } void _glfwPlatformFocusWindow(_GLFWwindow* window) { @autoreleasepool { // Make us the active application // HACK: This is here to prevent applications using only hidden windows from // being activated, but should probably not be done every time any // window is shown [NSApp activateIgnoringOtherApps:YES]; [window->ns.object makeKeyAndOrderFront:nil]; } // autoreleasepool } void _glfwPlatformSetWindowMonitor(_GLFWwindow* window, _GLFWmonitor* monitor, int xpos, int ypos, int width, int height, int refreshRate) { @autoreleasepool { if (window->monitor == monitor) { if (monitor) { if (monitor->window == window) acquireMonitor(window); } else { const NSRect contentRect = NSMakeRect(xpos, _glfwTransformYNS(ypos + height - 1), width, height); const NSRect frameRect = [window->ns.object frameRectForContentRect:contentRect styleMask:getStyleMask(window)]; [window->ns.object setFrame:frameRect display:YES]; } return; } if (window->monitor) releaseMonitor(window); _glfwInputWindowMonitor(window, monitor); // HACK: Allow the state cached in Cocoa to catch up to reality // TODO: Solve this in a less terrible way _glfwPlatformPollEvents(); const NSUInteger styleMask = getStyleMask(window); [window->ns.object setStyleMask:styleMask]; // HACK: Changing the style mask can cause the first responder to be cleared [window->ns.object makeFirstResponder:window->ns.view]; if (window->monitor) { [window->ns.object setLevel:NSMainMenuWindowLevel + 1]; [window->ns.object setHasShadow:NO]; acquireMonitor(window); } else { NSRect contentRect = NSMakeRect(xpos, _glfwTransformYNS(ypos + height - 1), width, height); NSRect frameRect = [window->ns.object frameRectForContentRect:contentRect styleMask:styleMask]; [window->ns.object setFrame:frameRect display:YES]; if (window->numer != GLFW_DONT_CARE && window->denom != GLFW_DONT_CARE) { [window->ns.object setContentAspectRatio:NSMakeSize(window->numer, window->denom)]; } if (window->minwidth != GLFW_DONT_CARE && window->minheight != GLFW_DONT_CARE) { [window->ns.object setContentMinSize:NSMakeSize(window->minwidth, window->minheight)]; } if (window->maxwidth != GLFW_DONT_CARE && window->maxheight != GLFW_DONT_CARE) { [window->ns.object setContentMaxSize:NSMakeSize(window->maxwidth, window->maxheight)]; } if (window->floating) [window->ns.object setLevel:NSFloatingWindowLevel]; else [window->ns.object setLevel:NSNormalWindowLevel]; [window->ns.object setHasShadow:YES]; // HACK: Clearing NSWindowStyleMaskTitled resets and disables the window // title property but the miniwindow title property is unaffected [window->ns.object setTitle:[window->ns.object miniwindowTitle]]; } } // autoreleasepool } int _glfwPlatformWindowFocused(_GLFWwindow* window) { @autoreleasepool { return [window->ns.object isKeyWindow]; } // autoreleasepool } int _glfwPlatformWindowIconified(_GLFWwindow* window) { @autoreleasepool { return [window->ns.object isMiniaturized]; } // autoreleasepool } int _glfwPlatformWindowVisible(_GLFWwindow* window) { @autoreleasepool { return [window->ns.object isVisible]; } // autoreleasepool } int _glfwPlatformWindowMaximized(_GLFWwindow* window) { @autoreleasepool { return [window->ns.object isZoomed]; } // autoreleasepool } int _glfwPlatformWindowHovered(_GLFWwindow* window) { @autoreleasepool { const NSPoint point = [NSEvent mouseLocation]; if ([NSWindow windowNumberAtPoint:point belowWindowWithWindowNumber:0] != [window->ns.object windowNumber]) { return GLFW_FALSE; } return NSMouseInRect(point, [window->ns.object convertRectToScreen:[window->ns.view frame]], NO); } // autoreleasepool } int _glfwPlatformFramebufferTransparent(_GLFWwindow* window) { @autoreleasepool { return ![window->ns.object isOpaque] && ![window->ns.view isOpaque]; } // autoreleasepool } void _glfwPlatformSetWindowResizable(_GLFWwindow* window, GLFWbool enabled) { @autoreleasepool { [window->ns.object setStyleMask:getStyleMask(window)]; } // autoreleasepool } void _glfwPlatformSetWindowDecorated(_GLFWwindow* window, GLFWbool enabled) { @autoreleasepool { [window->ns.object setStyleMask:getStyleMask(window)]; [window->ns.object makeFirstResponder:window->ns.view]; } // autoreleasepool } void _glfwPlatformSetWindowFloating(_GLFWwindow* window, GLFWbool enabled) { @autoreleasepool { if (enabled) [window->ns.object setLevel:NSFloatingWindowLevel]; else [window->ns.object setLevel:NSNormalWindowLevel]; } // autoreleasepool } float _glfwPlatformGetWindowOpacity(_GLFWwindow* window) { @autoreleasepool { return (float) [window->ns.object alphaValue]; } // autoreleasepool } void _glfwPlatformSetWindowOpacity(_GLFWwindow* window, float opacity) { @autoreleasepool { [window->ns.object setAlphaValue:opacity]; } // autoreleasepool } void _glfwPlatformSetRawMouseMotion(_GLFWwindow *window, GLFWbool enabled) { } GLFWbool _glfwPlatformRawMouseMotionSupported(void) { return GLFW_FALSE; } void _glfwPlatformPollEvents(void) { @autoreleasepool { if (!_glfw.ns.finishedLaunching) [NSApp run]; for (;;) { NSEvent* event = [NSApp nextEventMatchingMask:NSEventMaskAny untilDate:[NSDate distantPast] inMode:NSDefaultRunLoopMode dequeue:YES]; if (event == nil) break; [NSApp sendEvent:event]; } } // autoreleasepool } void _glfwPlatformWaitEvents(void) { @autoreleasepool { if (!_glfw.ns.finishedLaunching) [NSApp run]; // I wanted to pass NO to dequeue:, and rely on PollEvents to // dequeue and send. For reasons not at all clear to me, passing // NO to dequeue: causes this method never to return. NSEvent *event = [NSApp nextEventMatchingMask:NSEventMaskAny untilDate:[NSDate distantFuture] inMode:NSDefaultRunLoopMode dequeue:YES]; [NSApp sendEvent:event]; _glfwPlatformPollEvents(); } // autoreleasepool } void _glfwPlatformWaitEventsTimeout(double timeout) { @autoreleasepool { if (!_glfw.ns.finishedLaunching) [NSApp run]; NSDate* date = [NSDate dateWithTimeIntervalSinceNow:timeout]; NSEvent* event = [NSApp nextEventMatchingMask:NSEventMaskAny untilDate:date inMode:NSDefaultRunLoopMode dequeue:YES]; if (event) [NSApp sendEvent:event]; _glfwPlatformPollEvents(); } // autoreleasepool } void _glfwPlatformPostEmptyEvent(void) { @autoreleasepool { if (!_glfw.ns.finishedLaunching) [NSApp run]; NSEvent* event = [NSEvent otherEventWithType:NSEventTypeApplicationDefined location:NSMakePoint(0, 0) modifierFlags:0 timestamp:0 windowNumber:0 context:nil subtype:0 data1:0 data2:0]; [NSApp postEvent:event atStart:YES]; } // autoreleasepool } void _glfwPlatformGetCursorPos(_GLFWwindow* window, double* xpos, double* ypos) { @autoreleasepool { const NSRect contentRect = [window->ns.view frame]; // NOTE: The returned location uses base 0,1 not 0,0 const NSPoint pos = [window->ns.object mouseLocationOutsideOfEventStream]; if (xpos) *xpos = pos.x; if (ypos) *ypos = contentRect.size.height - pos.y; } // autoreleasepool } void _glfwPlatformSetCursorPos(_GLFWwindow* window, double x, double y) { @autoreleasepool { updateCursorImage(window); const NSRect contentRect = [window->ns.view frame]; // NOTE: The returned location uses base 0,1 not 0,0 const NSPoint pos = [window->ns.object mouseLocationOutsideOfEventStream]; window->ns.cursorWarpDeltaX += x - pos.x; window->ns.cursorWarpDeltaY += y - contentRect.size.height + pos.y; if (window->monitor) { CGDisplayMoveCursorToPoint(window->monitor->ns.displayID, CGPointMake(x, y)); } else { const NSRect localRect = NSMakeRect(x, contentRect.size.height - y - 1, 0, 0); const NSRect globalRect = [window->ns.object convertRectToScreen:localRect]; const NSPoint globalPoint = globalRect.origin; CGWarpMouseCursorPosition(CGPointMake(globalPoint.x, _glfwTransformYNS(globalPoint.y))); } // HACK: Calling this right after setting the cursor position prevents macOS // from freezing the cursor for a fraction of a second afterwards if (window->cursorMode != GLFW_CURSOR_DISABLED) CGAssociateMouseAndMouseCursorPosition(true); } // autoreleasepool } void _glfwPlatformSetCursorMode(_GLFWwindow* window, int mode) { @autoreleasepool { if (_glfwPlatformWindowFocused(window)) updateCursorMode(window); } // autoreleasepool } const char* _glfwPlatformGetScancodeName(int scancode) { @autoreleasepool { if (scancode < 0 || scancode > 0xff || _glfw.ns.keycodes[scancode] == GLFW_KEY_UNKNOWN) { _glfwInputError(GLFW_INVALID_VALUE, "Invalid scancode %i", scancode); return NULL; } const int key = _glfw.ns.keycodes[scancode]; UInt32 deadKeyState = 0; UniChar characters[4]; UniCharCount characterCount = 0; if (UCKeyTranslate([(NSData*) _glfw.ns.unicodeData bytes], scancode, kUCKeyActionDisplay, 0, LMGetKbdType(), kUCKeyTranslateNoDeadKeysBit, &deadKeyState, sizeof(characters) / sizeof(characters[0]), &characterCount, characters) != noErr) { return NULL; } if (!characterCount) return NULL; CFStringRef string = CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault, characters, characterCount, kCFAllocatorNull); CFStringGetCString(string, _glfw.ns.keynames[key], sizeof(_glfw.ns.keynames[key]), kCFStringEncodingUTF8); CFRelease(string); return _glfw.ns.keynames[key]; } // autoreleasepool } int _glfwPlatformGetKeyScancode(int key) { return _glfw.ns.scancodes[key]; } int _glfwPlatformCreateCursor(_GLFWcursor* cursor, const GLFWimage* image, int xhot, int yhot) { @autoreleasepool { NSImage* native; NSBitmapImageRep* rep; rep = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes:NULL pixelsWide:image->width pixelsHigh:image->height bitsPerSample:8 samplesPerPixel:4 hasAlpha:YES isPlanar:NO colorSpaceName:NSCalibratedRGBColorSpace bitmapFormat:NSBitmapFormatAlphaNonpremultiplied bytesPerRow:image->width * 4 bitsPerPixel:32]; if (rep == nil) return GLFW_FALSE; memcpy([rep bitmapData], image->pixels, image->width * image->height * 4); native = [[NSImage alloc] initWithSize:NSMakeSize(image->width, image->height)]; [native addRepresentation:rep]; cursor->ns.object = [[NSCursor alloc] initWithImage:native hotSpot:NSMakePoint(xhot, yhot)]; [native release]; [rep release]; if (cursor->ns.object == nil) return GLFW_FALSE; return GLFW_TRUE; } // autoreleasepool } int _glfwPlatformCreateStandardCursor(_GLFWcursor* cursor, int shape) { @autoreleasepool { if (shape == GLFW_ARROW_CURSOR) cursor->ns.object = [NSCursor arrowCursor]; else if (shape == GLFW_IBEAM_CURSOR) cursor->ns.object = [NSCursor IBeamCursor]; else if (shape == GLFW_CROSSHAIR_CURSOR) cursor->ns.object = [NSCursor crosshairCursor]; else if (shape == GLFW_HAND_CURSOR) cursor->ns.object = [NSCursor pointingHandCursor]; else if (shape == GLFW_HRESIZE_CURSOR) cursor->ns.object = [NSCursor resizeLeftRightCursor]; else if (shape == GLFW_VRESIZE_CURSOR) cursor->ns.object = [NSCursor resizeUpDownCursor]; if (!cursor->ns.object) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to retrieve standard cursor"); return GLFW_FALSE; } [cursor->ns.object retain]; return GLFW_TRUE; } // autoreleasepool } void _glfwPlatformDestroyCursor(_GLFWcursor* cursor) { @autoreleasepool { if (cursor->ns.object) [(NSCursor*) cursor->ns.object release]; } // autoreleasepool } void _glfwPlatformSetCursor(_GLFWwindow* window, _GLFWcursor* cursor) { @autoreleasepool { if (cursorInContentArea(window)) updateCursorImage(window); } // autoreleasepool } void _glfwPlatformSetClipboardString(const char* string) { @autoreleasepool { NSPasteboard* pasteboard = [NSPasteboard generalPasteboard]; [pasteboard declareTypes:@[NSPasteboardTypeString] owner:nil]; [pasteboard setString:@(string) forType:NSPasteboardTypeString]; } // autoreleasepool } const char* _glfwPlatformGetClipboardString(void) { @autoreleasepool { NSPasteboard* pasteboard = [NSPasteboard generalPasteboard]; if (![[pasteboard types] containsObject:NSPasteboardTypeString]) { _glfwInputError(GLFW_FORMAT_UNAVAILABLE, "Cocoa: Failed to retrieve string from pasteboard"); return NULL; } NSString* object = [pasteboard stringForType:NSPasteboardTypeString]; if (!object) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to retrieve object from pasteboard"); return NULL; } free(_glfw.ns.clipboardString); _glfw.ns.clipboardString = _glfw_strdup([object UTF8String]); return _glfw.ns.clipboardString; } // autoreleasepool } void _glfwPlatformGetRequiredInstanceExtensions(char** extensions) { if (_glfw.vk.KHR_surface && _glfw.vk.EXT_metal_surface) { extensions[0] = "VK_KHR_surface"; extensions[1] = "VK_EXT_metal_surface"; } else if (_glfw.vk.KHR_surface && _glfw.vk.MVK_macos_surface) { extensions[0] = "VK_KHR_surface"; extensions[1] = "VK_MVK_macos_surface"; } } int _glfwPlatformGetPhysicalDevicePresentationSupport(VkInstance instance, VkPhysicalDevice device, uint32_t queuefamily) { return GLFW_TRUE; } VkResult _glfwPlatformCreateWindowSurface(VkInstance instance, _GLFWwindow* window, const VkAllocationCallbacks* allocator, VkSurfaceKHR* surface) { @autoreleasepool { #if MAC_OS_X_VERSION_MAX_ALLOWED >= 101100 // HACK: Dynamically load Core Animation to avoid adding an extra // dependency for the majority who don't use MoltenVK NSBundle* bundle = [NSBundle bundleWithPath:@"/System/Library/Frameworks/QuartzCore.framework"]; if (!bundle) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to find QuartzCore.framework"); return VK_ERROR_EXTENSION_NOT_PRESENT; } // NOTE: Create the layer here as makeBackingLayer should not return nil window->ns.layer = [[bundle classNamed:@"CAMetalLayer"] layer]; if (!window->ns.layer) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to create layer for view"); return VK_ERROR_EXTENSION_NOT_PRESENT; } if (window->ns.retina) [window->ns.layer setContentsScale:[window->ns.object backingScaleFactor]]; [window->ns.view setLayer:window->ns.layer]; [window->ns.view setWantsLayer:YES]; VkResult err; if (_glfw.vk.EXT_metal_surface) { VkMetalSurfaceCreateInfoEXT sci; PFN_vkCreateMetalSurfaceEXT vkCreateMetalSurfaceEXT; vkCreateMetalSurfaceEXT = (PFN_vkCreateMetalSurfaceEXT) vkGetInstanceProcAddr(instance, "vkCreateMetalSurfaceEXT"); if (!vkCreateMetalSurfaceEXT) { _glfwInputError(GLFW_API_UNAVAILABLE, "Cocoa: Vulkan instance missing VK_EXT_metal_surface extension"); return VK_ERROR_EXTENSION_NOT_PRESENT; } memset(&sci, 0, sizeof(sci)); sci.sType = VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT; sci.pLayer = window->ns.layer; err = vkCreateMetalSurfaceEXT(instance, &sci, allocator, surface); } else { VkMacOSSurfaceCreateInfoMVK sci; PFN_vkCreateMacOSSurfaceMVK vkCreateMacOSSurfaceMVK; vkCreateMacOSSurfaceMVK = (PFN_vkCreateMacOSSurfaceMVK) vkGetInstanceProcAddr(instance, "vkCreateMacOSSurfaceMVK"); if (!vkCreateMacOSSurfaceMVK) { _glfwInputError(GLFW_API_UNAVAILABLE, "Cocoa: Vulkan instance missing VK_MVK_macos_surface extension"); return VK_ERROR_EXTENSION_NOT_PRESENT; } memset(&sci, 0, sizeof(sci)); sci.sType = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK; sci.pView = window->ns.view; err = vkCreateMacOSSurfaceMVK(instance, &sci, allocator, surface); } if (err) { _glfwInputError(GLFW_PLATFORM_ERROR, "Cocoa: Failed to create Vulkan surface: %s", _glfwGetVulkanResultString(err)); } return err; #else return VK_ERROR_EXTENSION_NOT_PRESENT; #endif } // autoreleasepool } ////////////////////////////////////////////////////////////////////////// ////// GLFW native API ////// ////////////////////////////////////////////////////////////////////////// GLFWAPI id glfwGetCocoaWindow(GLFWwindow* handle) { _GLFWwindow* window = (_GLFWwindow*) handle; _GLFW_REQUIRE_INIT_OR_RETURN(nil); return window->ns.object; } #endif #ifndef HEADER_GUARD_COCOA_TIME_C #define HEADER_GUARD_COCOA_TIME_C //======================================================================== // GLFW 3.3.7 macOS - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2009-2016 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialise timer // void _glfwInitTimerNS(void) { mach_timebase_info_data_t info; mach_timebase_info(&info); _glfw.timer.ns.frequency = (info.denom * 1e9) / info.numer; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// uint64_t _glfwPlatformGetTimerValue(void) { return mach_absolute_time(); } uint64_t _glfwPlatformGetTimerFrequency(void) { return _glfw.timer.ns.frequency; } #endif #endif #if !defined _GLFW_COCOA && !defined _GLFW_WIN32 #ifndef HEADER_GUARD_POSIX_TIME_C #define HEADER_GUARD_POSIX_TIME_C //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialise timer // void _glfwInitTimerPOSIX(void) { #if defined(CLOCK_MONOTONIC) struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { _glfw.timer.posix.monotonic = GLFW_TRUE; _glfw.timer.posix.frequency = 1000000000; } else #endif { _glfw.timer.posix.monotonic = GLFW_FALSE; _glfw.timer.posix.frequency = 1000000; } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// uint64_t _glfwPlatformGetTimerValue(void) { #if defined(CLOCK_MONOTONIC) if (_glfw.timer.posix.monotonic) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return (uint64_t) ts.tv_sec * (uint64_t) 1000000000 + (uint64_t) ts.tv_nsec; } else #endif { struct timeval tv; gettimeofday(&tv, NULL); return (uint64_t) tv.tv_sec * (uint64_t) 1000000 + (uint64_t) tv.tv_usec; } } uint64_t _glfwPlatformGetTimerFrequency(void) { return _glfw.timer.posix.frequency; } #endif #endif #if !defined _GLFW_WIN32 #ifndef HEADER_GUARD_POSIX_THREAD_C #define HEADER_GUARD_POSIX_THREAD_C //======================================================================== // GLFW 3.3.7 POSIX - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// GLFWbool _glfwPlatformCreateTls(_GLFWtls* tls) { assert(tls->posix.allocated == GLFW_FALSE); if (pthread_key_create(&tls->posix.key, NULL) != 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "POSIX: Failed to create context TLS"); return GLFW_FALSE; } tls->posix.allocated = GLFW_TRUE; return GLFW_TRUE; } void _glfwPlatformDestroyTls(_GLFWtls* tls) { if (tls->posix.allocated) pthread_key_delete(tls->posix.key); memset(tls, 0, sizeof(_GLFWtls)); } void* _glfwPlatformGetTls(_GLFWtls* tls) { assert(tls->posix.allocated == GLFW_TRUE); return pthread_getspecific(tls->posix.key); } void _glfwPlatformSetTls(_GLFWtls* tls, void* value) { assert(tls->posix.allocated == GLFW_TRUE); pthread_setspecific(tls->posix.key, value); } GLFWbool _glfwPlatformCreateMutex(_GLFWmutex* mutex) { assert(mutex->posix.allocated == GLFW_FALSE); if (pthread_mutex_init(&mutex->posix.handle, NULL) != 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "POSIX: Failed to create mutex"); return GLFW_FALSE; } return mutex->posix.allocated = GLFW_TRUE; } void _glfwPlatformDestroyMutex(_GLFWmutex* mutex) { if (mutex->posix.allocated) pthread_mutex_destroy(&mutex->posix.handle); memset(mutex, 0, sizeof(_GLFWmutex)); } void _glfwPlatformLockMutex(_GLFWmutex* mutex) { assert(mutex->posix.allocated == GLFW_TRUE); pthread_mutex_lock(&mutex->posix.handle); } void _glfwPlatformUnlockMutex(_GLFWmutex* mutex) { assert(mutex->posix.allocated == GLFW_TRUE); pthread_mutex_unlock(&mutex->posix.handle); } #endif #endif #if !defined _GLFW_COCOA && !defined _GLFW_WIN32 && !defined _GLFW_OSMESA #ifndef HEADER_GUARD_LINUX_JOYSTICK_C #define HEADER_GUARD_LINUX_JOYSTICK_C //======================================================================== // GLFW 3.3.7 Linux - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== #include #include #include #include #include #include #include #include #include #include #ifndef SYN_DROPPED // < v2.6.39 kernel headers // Workaround for CentOS-6, which is supported till 2020-11-30, but still on v2.6.32 #define SYN_DROPPED 3 #endif // Apply an EV_KEY event to the specified joystick // static void handleKeyEvent(_GLFWjoystick* js, int code, int value) { _glfwInputJoystickButton(js, js->linjs.keyMap[code - BTN_MISC], value ? GLFW_PRESS : GLFW_RELEASE); } // Apply an EV_ABS event to the specified joystick // static void handleAbsEvent(_GLFWjoystick* js, int code, int value) { const int index = js->linjs.absMap[code]; if (code >= ABS_HAT0X && code <= ABS_HAT3Y) { static const char stateMap[3][3] = { { GLFW_HAT_CENTERED, GLFW_HAT_UP, GLFW_HAT_DOWN }, { GLFW_HAT_LEFT, GLFW_HAT_LEFT_UP, GLFW_HAT_LEFT_DOWN }, { GLFW_HAT_RIGHT, GLFW_HAT_RIGHT_UP, GLFW_HAT_RIGHT_DOWN }, }; const int hat = (code - ABS_HAT0X) / 2; const int axis = (code - ABS_HAT0X) % 2; int* state = js->linjs.hats[hat]; // NOTE: Looking at several input drivers, it seems all hat events use // -1 for left / up, 0 for centered and 1 for right / down if (value == 0) state[axis] = 0; else if (value < 0) state[axis] = 1; else if (value > 0) state[axis] = 2; _glfwInputJoystickHat(js, index, stateMap[state[0]][state[1]]); } else { const struct input_absinfo* info = &js->linjs.absInfo[code]; float normalized = value; const int range = info->maximum - info->minimum; if (range) { // Normalize to 0.0 -> 1.0 normalized = (normalized - info->minimum) / range; // Normalize to -1.0 -> 1.0 normalized = normalized * 2.0f - 1.0f; } _glfwInputJoystickAxis(js, index, normalized); } } // Poll state of absolute axes // static void pollAbsState(_GLFWjoystick* js) { for (int code = 0; code < ABS_CNT; code++) { if (js->linjs.absMap[code] < 0) continue; struct input_absinfo* info = &js->linjs.absInfo[code]; if (ioctl(js->linjs.fd, EVIOCGABS(code), info) < 0) continue; handleAbsEvent(js, code, info->value); } } #define isBitSet(bit, arr) (arr[(bit) / 8] & (1 << ((bit) % 8))) // Attempt to open the specified joystick device // static GLFWbool openJoystickDevice(const char* path) { for (int jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { if (!_glfw.joysticks[jid].present) continue; if (strcmp(_glfw.joysticks[jid].linjs.path, path) == 0) return GLFW_FALSE; } _GLFWjoystickLinux linjs = {0}; linjs.fd = open(path, O_RDONLY | O_NONBLOCK); if (linjs.fd == -1) return GLFW_FALSE; char evBits[(EV_CNT + 7) / 8] = {0}; char keyBits[(KEY_CNT + 7) / 8] = {0}; char absBits[(ABS_CNT + 7) / 8] = {0}; struct input_id id; if (ioctl(linjs.fd, EVIOCGBIT(0, sizeof(evBits)), evBits) < 0 || ioctl(linjs.fd, EVIOCGBIT(EV_KEY, sizeof(keyBits)), keyBits) < 0 || ioctl(linjs.fd, EVIOCGBIT(EV_ABS, sizeof(absBits)), absBits) < 0 || ioctl(linjs.fd, EVIOCGID, &id) < 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "Linux: Failed to query input device: %s", strerror(errno)); close(linjs.fd); return GLFW_FALSE; } // Ensure this device supports the events expected of a joystick if (!isBitSet(EV_KEY, evBits) || !isBitSet(EV_ABS, evBits)) { close(linjs.fd); return GLFW_FALSE; } char name[256] = ""; if (ioctl(linjs.fd, EVIOCGNAME(sizeof(name)), name) < 0) strncpy(name, "Unknown", sizeof(name)); char guid[33] = ""; // Generate a joystick GUID that matches the SDL 2.0.5+ one if (id.vendor && id.product && id.version) { sprintf(guid, "%02x%02x0000%02x%02x0000%02x%02x0000%02x%02x0000", id.bustype & 0xff, id.bustype >> 8, id.vendor & 0xff, id.vendor >> 8, id.product & 0xff, id.product >> 8, id.version & 0xff, id.version >> 8); } else { sprintf(guid, "%02x%02x0000%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x00", id.bustype & 0xff, id.bustype >> 8, name[0], name[1], name[2], name[3], name[4], name[5], name[6], name[7], name[8], name[9], name[10]); } int axisCount = 0, buttonCount = 0, hatCount = 0; for (int code = BTN_MISC; code < KEY_CNT; code++) { if (!isBitSet(code, keyBits)) continue; linjs.keyMap[code - BTN_MISC] = buttonCount; buttonCount++; } for (int code = 0; code < ABS_CNT; code++) { linjs.absMap[code] = -1; if (!isBitSet(code, absBits)) continue; if (code >= ABS_HAT0X && code <= ABS_HAT3Y) { linjs.absMap[code] = hatCount; hatCount++; // Skip the Y axis code++; } else { if (ioctl(linjs.fd, EVIOCGABS(code), &linjs.absInfo[code]) < 0) continue; linjs.absMap[code] = axisCount; axisCount++; } } _GLFWjoystick* js = _glfwAllocJoystick(name, guid, axisCount, buttonCount, hatCount); if (!js) { close(linjs.fd); return GLFW_FALSE; } strncpy(linjs.path, path, sizeof(linjs.path) - 1); memcpy(&js->linjs, &linjs, sizeof(linjs)); pollAbsState(js); _glfwInputJoystick(js, GLFW_CONNECTED); return GLFW_TRUE; } #undef isBitSet // Frees all resources associated with the specified joystick // static void closeJoystick(_GLFWjoystick* js) { close(js->linjs.fd); _glfwFreeJoystick(js); _glfwInputJoystick(js, GLFW_DISCONNECTED); } // Lexically compare joysticks by name; used by qsort // static int compareJoysticks(const void* fp, const void* sp) { const _GLFWjoystick* fj = fp; const _GLFWjoystick* sj = sp; return strcmp(fj->linjs.path, sj->linjs.path); } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Initialize joystick interface // GLFWbool _glfwInitJoysticksLinux(void) { const char* dirname = "/dev/input"; _glfw.linjs.inotify = inotify_init1(IN_NONBLOCK | IN_CLOEXEC); if (_glfw.linjs.inotify > 0) { // HACK: Register for IN_ATTRIB to get notified when udev is done // This works well in practice but the true way is libudev _glfw.linjs.watch = inotify_add_watch(_glfw.linjs.inotify, dirname, IN_CREATE | IN_ATTRIB | IN_DELETE); } // Continue without device connection notifications if inotify fails if (regcomp(&_glfw.linjs.regex, "^event[0-9]\\+$", 0) != 0) { _glfwInputError(GLFW_PLATFORM_ERROR, "Linux: Failed to compile regex"); return GLFW_FALSE; } int count = 0; DIR* dir = opendir(dirname); if (dir) { struct dirent* entry; while ((entry = readdir(dir))) { regmatch_t match; if (regexec(&_glfw.linjs.regex, entry->d_name, 1, &match, 0) != 0) continue; char path[PATH_MAX]; snprintf(path, sizeof(path), "%s/%s", dirname, entry->d_name); if (openJoystickDevice(path)) count++; } closedir(dir); } // Continue with no joysticks if enumeration fails qsort(_glfw.joysticks, count, sizeof(_GLFWjoystick), compareJoysticks); return GLFW_TRUE; } // Close all opened joystick handles // void _glfwTerminateJoysticksLinux(void) { int jid; for (jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { _GLFWjoystick* js = _glfw.joysticks + jid; if (js->present) closeJoystick(js); } regfree(&_glfw.linjs.regex); if (_glfw.linjs.inotify > 0) { if (_glfw.linjs.watch > 0) inotify_rm_watch(_glfw.linjs.inotify, _glfw.linjs.watch); close(_glfw.linjs.inotify); } } void _glfwDetectJoystickConnectionLinux(void) { if (_glfw.linjs.inotify <= 0) return; ssize_t offset = 0; char buffer[16384]; const ssize_t size = read(_glfw.linjs.inotify, buffer, sizeof(buffer)); while (size > offset) { regmatch_t match; const struct inotify_event* e = (struct inotify_event*) (buffer + offset); offset += sizeof(struct inotify_event) + e->len; if (regexec(&_glfw.linjs.regex, e->name, 1, &match, 0) != 0) continue; char path[PATH_MAX]; snprintf(path, sizeof(path), "/dev/input/%s", e->name); if (e->mask & (IN_CREATE | IN_ATTRIB)) openJoystickDevice(path); else if (e->mask & IN_DELETE) { for (int jid = 0; jid <= GLFW_JOYSTICK_LAST; jid++) { if (strcmp(_glfw.joysticks[jid].linjs.path, path) == 0) { closeJoystick(_glfw.joysticks + jid); break; } } } } } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformPollJoystick(_GLFWjoystick* js, int mode) { // Read all queued events (non-blocking) for (;;) { struct input_event e; errno = 0; if (read(js->linjs.fd, &e, sizeof(e)) < 0) { // Reset the joystick slot if the device was disconnected if (errno == ENODEV) closeJoystick(js); break; } if (e.type == EV_SYN) { if (e.code == SYN_DROPPED) _glfw.linjs.dropped = GLFW_TRUE; else if (e.code == SYN_REPORT) { _glfw.linjs.dropped = GLFW_FALSE; pollAbsState(js); } } if (_glfw.linjs.dropped) continue; if (e.type == EV_KEY) handleKeyEvent(js, e.code, e.value); else if (e.type == EV_ABS) handleAbsEvent(js, e.code, e.value); } return js->present; } void _glfwPlatformUpdateGamepadGUID(char* guid) { } #endif #ifndef HEADER_GUARD_XKB_UNICODE_C #define HEADER_GUARD_XKB_UNICODE_C //======================================================================== // GLFW 3.3.7 X11 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2017 Camilla Löwy // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== // It is fine to use C99 in this file because it will not be built with VS //======================================================================== /* * Marcus: This code was originally written by Markus G. Kuhn. * I have made some slight changes (trimmed it down a bit from >60 KB to * 20 KB), but the functionality is the same. */ /* * This module converts keysym values into the corresponding ISO 10646 * (UCS, Unicode) values. * * The array keysymtab[] contains pairs of X11 keysym values for graphical * characters and the corresponding Unicode value. The function * _glfwKeySym2Unicode() maps a keysym onto a Unicode value using a binary * search, therefore keysymtab[] must remain SORTED by keysym value. * * We allow to represent any UCS character in the range U-00000000 to * U-00FFFFFF by a keysym value in the range 0x01000000 to 0x01ffffff. * This admittedly does not cover the entire 31-bit space of UCS, but * it does cover all of the characters up to U-10FFFF, which can be * represented by UTF-16, and more, and it is very unlikely that higher * UCS codes will ever be assigned by ISO. So to get Unicode character * U+ABCD you can directly use keysym 0x0100abcd. * * Original author: Markus G. Kuhn , University of * Cambridge, April 2001 * * Special thanks to Richard Verhoeven for preparing * an initial draft of the mapping table. * */ //************************************************************************ //**** KeySym to Unicode mapping table **** //************************************************************************ static const struct codepair { unsigned short keysym; unsigned short ucs; } keysymtab[] = { { 0x01a1, 0x0104 }, { 0x01a2, 0x02d8 }, { 0x01a3, 0x0141 }, { 0x01a5, 0x013d }, { 0x01a6, 0x015a }, { 0x01a9, 0x0160 }, { 0x01aa, 0x015e }, { 0x01ab, 0x0164 }, { 0x01ac, 0x0179 }, { 0x01ae, 0x017d }, { 0x01af, 0x017b }, { 0x01b1, 0x0105 }, { 0x01b2, 0x02db }, { 0x01b3, 0x0142 }, { 0x01b5, 0x013e }, { 0x01b6, 0x015b }, { 0x01b7, 0x02c7 }, { 0x01b9, 0x0161 }, { 0x01ba, 0x015f }, { 0x01bb, 0x0165 }, { 0x01bc, 0x017a }, { 0x01bd, 0x02dd }, { 0x01be, 0x017e }, { 0x01bf, 0x017c }, { 0x01c0, 0x0154 }, { 0x01c3, 0x0102 }, { 0x01c5, 0x0139 }, { 0x01c6, 0x0106 }, { 0x01c8, 0x010c }, { 0x01ca, 0x0118 }, { 0x01cc, 0x011a }, { 0x01cf, 0x010e }, { 0x01d0, 0x0110 }, { 0x01d1, 0x0143 }, { 0x01d2, 0x0147 }, { 0x01d5, 0x0150 }, { 0x01d8, 0x0158 }, { 0x01d9, 0x016e }, { 0x01db, 0x0170 }, { 0x01de, 0x0162 }, { 0x01e0, 0x0155 }, { 0x01e3, 0x0103 }, { 0x01e5, 0x013a }, { 0x01e6, 0x0107 }, { 0x01e8, 0x010d }, { 0x01ea, 0x0119 }, { 0x01ec, 0x011b }, { 0x01ef, 0x010f }, { 0x01f0, 0x0111 }, { 0x01f1, 0x0144 }, { 0x01f2, 0x0148 }, { 0x01f5, 0x0151 }, { 0x01f8, 0x0159 }, { 0x01f9, 0x016f }, { 0x01fb, 0x0171 }, { 0x01fe, 0x0163 }, { 0x01ff, 0x02d9 }, { 0x02a1, 0x0126 }, { 0x02a6, 0x0124 }, { 0x02a9, 0x0130 }, { 0x02ab, 0x011e }, { 0x02ac, 0x0134 }, { 0x02b1, 0x0127 }, { 0x02b6, 0x0125 }, { 0x02b9, 0x0131 }, { 0x02bb, 0x011f }, { 0x02bc, 0x0135 }, { 0x02c5, 0x010a }, { 0x02c6, 0x0108 }, { 0x02d5, 0x0120 }, { 0x02d8, 0x011c }, { 0x02dd, 0x016c }, { 0x02de, 0x015c }, { 0x02e5, 0x010b }, { 0x02e6, 0x0109 }, { 0x02f5, 0x0121 }, { 0x02f8, 0x011d }, { 0x02fd, 0x016d }, { 0x02fe, 0x015d }, { 0x03a2, 0x0138 }, { 0x03a3, 0x0156 }, { 0x03a5, 0x0128 }, { 0x03a6, 0x013b }, { 0x03aa, 0x0112 }, { 0x03ab, 0x0122 }, { 0x03ac, 0x0166 }, { 0x03b3, 0x0157 }, { 0x03b5, 0x0129 }, { 0x03b6, 0x013c }, { 0x03ba, 0x0113 }, { 0x03bb, 0x0123 }, { 0x03bc, 0x0167 }, { 0x03bd, 0x014a }, { 0x03bf, 0x014b }, { 0x03c0, 0x0100 }, { 0x03c7, 0x012e }, { 0x03cc, 0x0116 }, { 0x03cf, 0x012a }, { 0x03d1, 0x0145 }, { 0x03d2, 0x014c }, { 0x03d3, 0x0136 }, { 0x03d9, 0x0172 }, { 0x03dd, 0x0168 }, { 0x03de, 0x016a }, { 0x03e0, 0x0101 }, { 0x03e7, 0x012f }, { 0x03ec, 0x0117 }, { 0x03ef, 0x012b }, { 0x03f1, 0x0146 }, { 0x03f2, 0x014d }, { 0x03f3, 0x0137 }, { 0x03f9, 0x0173 }, { 0x03fd, 0x0169 }, { 0x03fe, 0x016b }, { 0x047e, 0x203e }, { 0x04a1, 0x3002 }, { 0x04a2, 0x300c }, { 0x04a3, 0x300d }, { 0x04a4, 0x3001 }, { 0x04a5, 0x30fb }, { 0x04a6, 0x30f2 }, { 0x04a7, 0x30a1 }, { 0x04a8, 0x30a3 }, { 0x04a9, 0x30a5 }, { 0x04aa, 0x30a7 }, { 0x04ab, 0x30a9 }, { 0x04ac, 0x30e3 }, { 0x04ad, 0x30e5 }, { 0x04ae, 0x30e7 }, { 0x04af, 0x30c3 }, { 0x04b0, 0x30fc }, { 0x04b1, 0x30a2 }, { 0x04b2, 0x30a4 }, { 0x04b3, 0x30a6 }, { 0x04b4, 0x30a8 }, { 0x04b5, 0x30aa }, { 0x04b6, 0x30ab }, { 0x04b7, 0x30ad }, { 0x04b8, 0x30af }, { 0x04b9, 0x30b1 }, { 0x04ba, 0x30b3 }, { 0x04bb, 0x30b5 }, { 0x04bc, 0x30b7 }, { 0x04bd, 0x30b9 }, { 0x04be, 0x30bb }, { 0x04bf, 0x30bd }, { 0x04c0, 0x30bf }, { 0x04c1, 0x30c1 }, { 0x04c2, 0x30c4 }, { 0x04c3, 0x30c6 }, { 0x04c4, 0x30c8 }, { 0x04c5, 0x30ca }, { 0x04c6, 0x30cb }, { 0x04c7, 0x30cc }, { 0x04c8, 0x30cd }, { 0x04c9, 0x30ce }, { 0x04ca, 0x30cf }, { 0x04cb, 0x30d2 }, { 0x04cc, 0x30d5 }, { 0x04cd, 0x30d8 }, { 0x04ce, 0x30db }, { 0x04cf, 0x30de }, { 0x04d0, 0x30df }, { 0x04d1, 0x30e0 }, { 0x04d2, 0x30e1 }, { 0x04d3, 0x30e2 }, { 0x04d4, 0x30e4 }, { 0x04d5, 0x30e6 }, { 0x04d6, 0x30e8 }, { 0x04d7, 0x30e9 }, { 0x04d8, 0x30ea }, { 0x04d9, 0x30eb }, { 0x04da, 0x30ec }, { 0x04db, 0x30ed }, { 0x04dc, 0x30ef }, { 0x04dd, 0x30f3 }, { 0x04de, 0x309b }, { 0x04df, 0x309c }, { 0x05ac, 0x060c }, { 0x05bb, 0x061b }, { 0x05bf, 0x061f }, { 0x05c1, 0x0621 }, { 0x05c2, 0x0622 }, { 0x05c3, 0x0623 }, { 0x05c4, 0x0624 }, { 0x05c5, 0x0625 }, { 0x05c6, 0x0626 }, { 0x05c7, 0x0627 }, { 0x05c8, 0x0628 }, { 0x05c9, 0x0629 }, { 0x05ca, 0x062a }, { 0x05cb, 0x062b }, { 0x05cc, 0x062c }, { 0x05cd, 0x062d }, { 0x05ce, 0x062e }, { 0x05cf, 0x062f }, { 0x05d0, 0x0630 }, { 0x05d1, 0x0631 }, { 0x05d2, 0x0632 }, { 0x05d3, 0x0633 }, { 0x05d4, 0x0634 }, { 0x05d5, 0x0635 }, { 0x05d6, 0x0636 }, { 0x05d7, 0x0637 }, { 0x05d8, 0x0638 }, { 0x05d9, 0x0639 }, { 0x05da, 0x063a }, { 0x05e0, 0x0640 }, { 0x05e1, 0x0641 }, { 0x05e2, 0x0642 }, { 0x05e3, 0x0643 }, { 0x05e4, 0x0644 }, { 0x05e5, 0x0645 }, { 0x05e6, 0x0646 }, { 0x05e7, 0x0647 }, { 0x05e8, 0x0648 }, { 0x05e9, 0x0649 }, { 0x05ea, 0x064a }, { 0x05eb, 0x064b }, { 0x05ec, 0x064c }, { 0x05ed, 0x064d }, { 0x05ee, 0x064e }, { 0x05ef, 0x064f }, { 0x05f0, 0x0650 }, { 0x05f1, 0x0651 }, { 0x05f2, 0x0652 }, { 0x06a1, 0x0452 }, { 0x06a2, 0x0453 }, { 0x06a3, 0x0451 }, { 0x06a4, 0x0454 }, { 0x06a5, 0x0455 }, { 0x06a6, 0x0456 }, { 0x06a7, 0x0457 }, { 0x06a8, 0x0458 }, { 0x06a9, 0x0459 }, { 0x06aa, 0x045a }, { 0x06ab, 0x045b }, { 0x06ac, 0x045c }, { 0x06ae, 0x045e }, { 0x06af, 0x045f }, { 0x06b0, 0x2116 }, { 0x06b1, 0x0402 }, { 0x06b2, 0x0403 }, { 0x06b3, 0x0401 }, { 0x06b4, 0x0404 }, { 0x06b5, 0x0405 }, { 0x06b6, 0x0406 }, { 0x06b7, 0x0407 }, { 0x06b8, 0x0408 }, { 0x06b9, 0x0409 }, { 0x06ba, 0x040a }, { 0x06bb, 0x040b }, { 0x06bc, 0x040c }, { 0x06be, 0x040e }, { 0x06bf, 0x040f }, { 0x06c0, 0x044e }, { 0x06c1, 0x0430 }, { 0x06c2, 0x0431 }, { 0x06c3, 0x0446 }, { 0x06c4, 0x0434 }, { 0x06c5, 0x0435 }, { 0x06c6, 0x0444 }, { 0x06c7, 0x0433 }, { 0x06c8, 0x0445 }, { 0x06c9, 0x0438 }, { 0x06ca, 0x0439 }, { 0x06cb, 0x043a }, { 0x06cc, 0x043b }, { 0x06cd, 0x043c }, { 0x06ce, 0x043d }, { 0x06cf, 0x043e }, { 0x06d0, 0x043f }, { 0x06d1, 0x044f }, { 0x06d2, 0x0440 }, { 0x06d3, 0x0441 }, { 0x06d4, 0x0442 }, { 0x06d5, 0x0443 }, { 0x06d6, 0x0436 }, { 0x06d7, 0x0432 }, { 0x06d8, 0x044c }, { 0x06d9, 0x044b }, { 0x06da, 0x0437 }, { 0x06db, 0x0448 }, { 0x06dc, 0x044d }, { 0x06dd, 0x0449 }, { 0x06de, 0x0447 }, { 0x06df, 0x044a }, { 0x06e0, 0x042e }, { 0x06e1, 0x0410 }, { 0x06e2, 0x0411 }, { 0x06e3, 0x0426 }, { 0x06e4, 0x0414 }, { 0x06e5, 0x0415 }, { 0x06e6, 0x0424 }, { 0x06e7, 0x0413 }, { 0x06e8, 0x0425 }, { 0x06e9, 0x0418 }, { 0x06ea, 0x0419 }, { 0x06eb, 0x041a }, { 0x06ec, 0x041b }, { 0x06ed, 0x041c }, { 0x06ee, 0x041d }, { 0x06ef, 0x041e }, { 0x06f0, 0x041f }, { 0x06f1, 0x042f }, { 0x06f2, 0x0420 }, { 0x06f3, 0x0421 }, { 0x06f4, 0x0422 }, { 0x06f5, 0x0423 }, { 0x06f6, 0x0416 }, { 0x06f7, 0x0412 }, { 0x06f8, 0x042c }, { 0x06f9, 0x042b }, { 0x06fa, 0x0417 }, { 0x06fb, 0x0428 }, { 0x06fc, 0x042d }, { 0x06fd, 0x0429 }, { 0x06fe, 0x0427 }, { 0x06ff, 0x042a }, { 0x07a1, 0x0386 }, { 0x07a2, 0x0388 }, { 0x07a3, 0x0389 }, { 0x07a4, 0x038a }, { 0x07a5, 0x03aa }, { 0x07a7, 0x038c }, { 0x07a8, 0x038e }, { 0x07a9, 0x03ab }, { 0x07ab, 0x038f }, { 0x07ae, 0x0385 }, { 0x07af, 0x2015 }, { 0x07b1, 0x03ac }, { 0x07b2, 0x03ad }, { 0x07b3, 0x03ae }, { 0x07b4, 0x03af }, { 0x07b5, 0x03ca }, { 0x07b6, 0x0390 }, { 0x07b7, 0x03cc }, { 0x07b8, 0x03cd }, { 0x07b9, 0x03cb }, { 0x07ba, 0x03b0 }, { 0x07bb, 0x03ce }, { 0x07c1, 0x0391 }, { 0x07c2, 0x0392 }, { 0x07c3, 0x0393 }, { 0x07c4, 0x0394 }, { 0x07c5, 0x0395 }, { 0x07c6, 0x0396 }, { 0x07c7, 0x0397 }, { 0x07c8, 0x0398 }, { 0x07c9, 0x0399 }, { 0x07ca, 0x039a }, { 0x07cb, 0x039b }, { 0x07cc, 0x039c }, { 0x07cd, 0x039d }, { 0x07ce, 0x039e }, { 0x07cf, 0x039f }, { 0x07d0, 0x03a0 }, { 0x07d1, 0x03a1 }, { 0x07d2, 0x03a3 }, { 0x07d4, 0x03a4 }, { 0x07d5, 0x03a5 }, { 0x07d6, 0x03a6 }, { 0x07d7, 0x03a7 }, { 0x07d8, 0x03a8 }, { 0x07d9, 0x03a9 }, { 0x07e1, 0x03b1 }, { 0x07e2, 0x03b2 }, { 0x07e3, 0x03b3 }, { 0x07e4, 0x03b4 }, { 0x07e5, 0x03b5 }, { 0x07e6, 0x03b6 }, { 0x07e7, 0x03b7 }, { 0x07e8, 0x03b8 }, { 0x07e9, 0x03b9 }, { 0x07ea, 0x03ba }, { 0x07eb, 0x03bb }, { 0x07ec, 0x03bc }, { 0x07ed, 0x03bd }, { 0x07ee, 0x03be }, { 0x07ef, 0x03bf }, { 0x07f0, 0x03c0 }, { 0x07f1, 0x03c1 }, { 0x07f2, 0x03c3 }, { 0x07f3, 0x03c2 }, { 0x07f4, 0x03c4 }, { 0x07f5, 0x03c5 }, { 0x07f6, 0x03c6 }, { 0x07f7, 0x03c7 }, { 0x07f8, 0x03c8 }, { 0x07f9, 0x03c9 }, { 0x08a1, 0x23b7 }, { 0x08a2, 0x250c }, { 0x08a3, 0x2500 }, { 0x08a4, 0x2320 }, { 0x08a5, 0x2321 }, { 0x08a6, 0x2502 }, { 0x08a7, 0x23a1 }, { 0x08a8, 0x23a3 }, { 0x08a9, 0x23a4 }, { 0x08aa, 0x23a6 }, { 0x08ab, 0x239b }, { 0x08ac, 0x239d }, { 0x08ad, 0x239e }, { 0x08ae, 0x23a0 }, { 0x08af, 0x23a8 }, { 0x08b0, 0x23ac }, { 0x08bc, 0x2264 }, { 0x08bd, 0x2260 }, { 0x08be, 0x2265 }, { 0x08bf, 0x222b }, { 0x08c0, 0x2234 }, { 0x08c1, 0x221d }, { 0x08c2, 0x221e }, { 0x08c5, 0x2207 }, { 0x08c8, 0x223c }, { 0x08c9, 0x2243 }, { 0x08cd, 0x21d4 }, { 0x08ce, 0x21d2 }, { 0x08cf, 0x2261 }, { 0x08d6, 0x221a }, { 0x08da, 0x2282 }, { 0x08db, 0x2283 }, { 0x08dc, 0x2229 }, { 0x08dd, 0x222a }, { 0x08de, 0x2227 }, { 0x08df, 0x2228 }, { 0x08ef, 0x2202 }, { 0x08f6, 0x0192 }, { 0x08fb, 0x2190 }, { 0x08fc, 0x2191 }, { 0x08fd, 0x2192 }, { 0x08fe, 0x2193 }, { 0x09e0, 0x25c6 }, { 0x09e1, 0x2592 }, { 0x09e2, 0x2409 }, { 0x09e3, 0x240c }, { 0x09e4, 0x240d }, { 0x09e5, 0x240a }, { 0x09e8, 0x2424 }, { 0x09e9, 0x240b }, { 0x09ea, 0x2518 }, { 0x09eb, 0x2510 }, { 0x09ec, 0x250c }, { 0x09ed, 0x2514 }, { 0x09ee, 0x253c }, { 0x09ef, 0x23ba }, { 0x09f0, 0x23bb }, { 0x09f1, 0x2500 }, { 0x09f2, 0x23bc }, { 0x09f3, 0x23bd }, { 0x09f4, 0x251c }, { 0x09f5, 0x2524 }, { 0x09f6, 0x2534 }, { 0x09f7, 0x252c }, { 0x09f8, 0x2502 }, { 0x0aa1, 0x2003 }, { 0x0aa2, 0x2002 }, { 0x0aa3, 0x2004 }, { 0x0aa4, 0x2005 }, { 0x0aa5, 0x2007 }, { 0x0aa6, 0x2008 }, { 0x0aa7, 0x2009 }, { 0x0aa8, 0x200a }, { 0x0aa9, 0x2014 }, { 0x0aaa, 0x2013 }, { 0x0aae, 0x2026 }, { 0x0aaf, 0x2025 }, { 0x0ab0, 0x2153 }, { 0x0ab1, 0x2154 }, { 0x0ab2, 0x2155 }, { 0x0ab3, 0x2156 }, { 0x0ab4, 0x2157 }, { 0x0ab5, 0x2158 }, { 0x0ab6, 0x2159 }, { 0x0ab7, 0x215a }, { 0x0ab8, 0x2105 }, { 0x0abb, 0x2012 }, { 0x0abc, 0x2329 }, { 0x0abe, 0x232a }, { 0x0ac3, 0x215b }, { 0x0ac4, 0x215c }, { 0x0ac5, 0x215d }, { 0x0ac6, 0x215e }, { 0x0ac9, 0x2122 }, { 0x0aca, 0x2613 }, { 0x0acc, 0x25c1 }, { 0x0acd, 0x25b7 }, { 0x0ace, 0x25cb }, { 0x0acf, 0x25af }, { 0x0ad0, 0x2018 }, { 0x0ad1, 0x2019 }, { 0x0ad2, 0x201c }, { 0x0ad3, 0x201d }, { 0x0ad4, 0x211e }, { 0x0ad6, 0x2032 }, { 0x0ad7, 0x2033 }, { 0x0ad9, 0x271d }, { 0x0adb, 0x25ac }, { 0x0adc, 0x25c0 }, { 0x0add, 0x25b6 }, { 0x0ade, 0x25cf }, { 0x0adf, 0x25ae }, { 0x0ae0, 0x25e6 }, { 0x0ae1, 0x25ab }, { 0x0ae2, 0x25ad }, { 0x0ae3, 0x25b3 }, { 0x0ae4, 0x25bd }, { 0x0ae5, 0x2606 }, { 0x0ae6, 0x2022 }, { 0x0ae7, 0x25aa }, { 0x0ae8, 0x25b2 }, { 0x0ae9, 0x25bc }, { 0x0aea, 0x261c }, { 0x0aeb, 0x261e }, { 0x0aec, 0x2663 }, { 0x0aed, 0x2666 }, { 0x0aee, 0x2665 }, { 0x0af0, 0x2720 }, { 0x0af1, 0x2020 }, { 0x0af2, 0x2021 }, { 0x0af3, 0x2713 }, { 0x0af4, 0x2717 }, { 0x0af5, 0x266f }, { 0x0af6, 0x266d }, { 0x0af7, 0x2642 }, { 0x0af8, 0x2640 }, { 0x0af9, 0x260e }, { 0x0afa, 0x2315 }, { 0x0afb, 0x2117 }, { 0x0afc, 0x2038 }, { 0x0afd, 0x201a }, { 0x0afe, 0x201e }, { 0x0ba3, 0x003c }, { 0x0ba6, 0x003e }, { 0x0ba8, 0x2228 }, { 0x0ba9, 0x2227 }, { 0x0bc0, 0x00af }, { 0x0bc2, 0x22a5 }, { 0x0bc3, 0x2229 }, { 0x0bc4, 0x230a }, { 0x0bc6, 0x005f }, { 0x0bca, 0x2218 }, { 0x0bcc, 0x2395 }, { 0x0bce, 0x22a4 }, { 0x0bcf, 0x25cb }, { 0x0bd3, 0x2308 }, { 0x0bd6, 0x222a }, { 0x0bd8, 0x2283 }, { 0x0bda, 0x2282 }, { 0x0bdc, 0x22a2 }, { 0x0bfc, 0x22a3 }, { 0x0cdf, 0x2017 }, { 0x0ce0, 0x05d0 }, { 0x0ce1, 0x05d1 }, { 0x0ce2, 0x05d2 }, { 0x0ce3, 0x05d3 }, { 0x0ce4, 0x05d4 }, { 0x0ce5, 0x05d5 }, { 0x0ce6, 0x05d6 }, { 0x0ce7, 0x05d7 }, { 0x0ce8, 0x05d8 }, { 0x0ce9, 0x05d9 }, { 0x0cea, 0x05da }, { 0x0ceb, 0x05db }, { 0x0cec, 0x05dc }, { 0x0ced, 0x05dd }, { 0x0cee, 0x05de }, { 0x0cef, 0x05df }, { 0x0cf0, 0x05e0 }, { 0x0cf1, 0x05e1 }, { 0x0cf2, 0x05e2 }, { 0x0cf3, 0x05e3 }, { 0x0cf4, 0x05e4 }, { 0x0cf5, 0x05e5 }, { 0x0cf6, 0x05e6 }, { 0x0cf7, 0x05e7 }, { 0x0cf8, 0x05e8 }, { 0x0cf9, 0x05e9 }, { 0x0cfa, 0x05ea }, { 0x0da1, 0x0e01 }, { 0x0da2, 0x0e02 }, { 0x0da3, 0x0e03 }, { 0x0da4, 0x0e04 }, { 0x0da5, 0x0e05 }, { 0x0da6, 0x0e06 }, { 0x0da7, 0x0e07 }, { 0x0da8, 0x0e08 }, { 0x0da9, 0x0e09 }, { 0x0daa, 0x0e0a }, { 0x0dab, 0x0e0b }, { 0x0dac, 0x0e0c }, { 0x0dad, 0x0e0d }, { 0x0dae, 0x0e0e }, { 0x0daf, 0x0e0f }, { 0x0db0, 0x0e10 }, { 0x0db1, 0x0e11 }, { 0x0db2, 0x0e12 }, { 0x0db3, 0x0e13 }, { 0x0db4, 0x0e14 }, { 0x0db5, 0x0e15 }, { 0x0db6, 0x0e16 }, { 0x0db7, 0x0e17 }, { 0x0db8, 0x0e18 }, { 0x0db9, 0x0e19 }, { 0x0dba, 0x0e1a }, { 0x0dbb, 0x0e1b }, { 0x0dbc, 0x0e1c }, { 0x0dbd, 0x0e1d }, { 0x0dbe, 0x0e1e }, { 0x0dbf, 0x0e1f }, { 0x0dc0, 0x0e20 }, { 0x0dc1, 0x0e21 }, { 0x0dc2, 0x0e22 }, { 0x0dc3, 0x0e23 }, { 0x0dc4, 0x0e24 }, { 0x0dc5, 0x0e25 }, { 0x0dc6, 0x0e26 }, { 0x0dc7, 0x0e27 }, { 0x0dc8, 0x0e28 }, { 0x0dc9, 0x0e29 }, { 0x0dca, 0x0e2a }, { 0x0dcb, 0x0e2b }, { 0x0dcc, 0x0e2c }, { 0x0dcd, 0x0e2d }, { 0x0dce, 0x0e2e }, { 0x0dcf, 0x0e2f }, { 0x0dd0, 0x0e30 }, { 0x0dd1, 0x0e31 }, { 0x0dd2, 0x0e32 }, { 0x0dd3, 0x0e33 }, { 0x0dd4, 0x0e34 }, { 0x0dd5, 0x0e35 }, { 0x0dd6, 0x0e36 }, { 0x0dd7, 0x0e37 }, { 0x0dd8, 0x0e38 }, { 0x0dd9, 0x0e39 }, { 0x0dda, 0x0e3a }, { 0x0ddf, 0x0e3f }, { 0x0de0, 0x0e40 }, { 0x0de1, 0x0e41 }, { 0x0de2, 0x0e42 }, { 0x0de3, 0x0e43 }, { 0x0de4, 0x0e44 }, { 0x0de5, 0x0e45 }, { 0x0de6, 0x0e46 }, { 0x0de7, 0x0e47 }, { 0x0de8, 0x0e48 }, { 0x0de9, 0x0e49 }, { 0x0dea, 0x0e4a }, { 0x0deb, 0x0e4b }, { 0x0dec, 0x0e4c }, { 0x0ded, 0x0e4d }, { 0x0df0, 0x0e50 }, { 0x0df1, 0x0e51 }, { 0x0df2, 0x0e52 }, { 0x0df3, 0x0e53 }, { 0x0df4, 0x0e54 }, { 0x0df5, 0x0e55 }, { 0x0df6, 0x0e56 }, { 0x0df7, 0x0e57 }, { 0x0df8, 0x0e58 }, { 0x0df9, 0x0e59 }, { 0x0ea1, 0x3131 }, { 0x0ea2, 0x3132 }, { 0x0ea3, 0x3133 }, { 0x0ea4, 0x3134 }, { 0x0ea5, 0x3135 }, { 0x0ea6, 0x3136 }, { 0x0ea7, 0x3137 }, { 0x0ea8, 0x3138 }, { 0x0ea9, 0x3139 }, { 0x0eaa, 0x313a }, { 0x0eab, 0x313b }, { 0x0eac, 0x313c }, { 0x0ead, 0x313d }, { 0x0eae, 0x313e }, { 0x0eaf, 0x313f }, { 0x0eb0, 0x3140 }, { 0x0eb1, 0x3141 }, { 0x0eb2, 0x3142 }, { 0x0eb3, 0x3143 }, { 0x0eb4, 0x3144 }, { 0x0eb5, 0x3145 }, { 0x0eb6, 0x3146 }, { 0x0eb7, 0x3147 }, { 0x0eb8, 0x3148 }, { 0x0eb9, 0x3149 }, { 0x0eba, 0x314a }, { 0x0ebb, 0x314b }, { 0x0ebc, 0x314c }, { 0x0ebd, 0x314d }, { 0x0ebe, 0x314e }, { 0x0ebf, 0x314f }, { 0x0ec0, 0x3150 }, { 0x0ec1, 0x3151 }, { 0x0ec2, 0x3152 }, { 0x0ec3, 0x3153 }, { 0x0ec4, 0x3154 }, { 0x0ec5, 0x3155 }, { 0x0ec6, 0x3156 }, { 0x0ec7, 0x3157 }, { 0x0ec8, 0x3158 }, { 0x0ec9, 0x3159 }, { 0x0eca, 0x315a }, { 0x0ecb, 0x315b }, { 0x0ecc, 0x315c }, { 0x0ecd, 0x315d }, { 0x0ece, 0x315e }, { 0x0ecf, 0x315f }, { 0x0ed0, 0x3160 }, { 0x0ed1, 0x3161 }, { 0x0ed2, 0x3162 }, { 0x0ed3, 0x3163 }, { 0x0ed4, 0x11a8 }, { 0x0ed5, 0x11a9 }, { 0x0ed6, 0x11aa }, { 0x0ed7, 0x11ab }, { 0x0ed8, 0x11ac }, { 0x0ed9, 0x11ad }, { 0x0eda, 0x11ae }, { 0x0edb, 0x11af }, { 0x0edc, 0x11b0 }, { 0x0edd, 0x11b1 }, { 0x0ede, 0x11b2 }, { 0x0edf, 0x11b3 }, { 0x0ee0, 0x11b4 }, { 0x0ee1, 0x11b5 }, { 0x0ee2, 0x11b6 }, { 0x0ee3, 0x11b7 }, { 0x0ee4, 0x11b8 }, { 0x0ee5, 0x11b9 }, { 0x0ee6, 0x11ba }, { 0x0ee7, 0x11bb }, { 0x0ee8, 0x11bc }, { 0x0ee9, 0x11bd }, { 0x0eea, 0x11be }, { 0x0eeb, 0x11bf }, { 0x0eec, 0x11c0 }, { 0x0eed, 0x11c1 }, { 0x0eee, 0x11c2 }, { 0x0eef, 0x316d }, { 0x0ef0, 0x3171 }, { 0x0ef1, 0x3178 }, { 0x0ef2, 0x317f }, { 0x0ef3, 0x3181 }, { 0x0ef4, 0x3184 }, { 0x0ef5, 0x3186 }, { 0x0ef6, 0x318d }, { 0x0ef7, 0x318e }, { 0x0ef8, 0x11eb }, { 0x0ef9, 0x11f0 }, { 0x0efa, 0x11f9 }, { 0x0eff, 0x20a9 }, { 0x13a4, 0x20ac }, { 0x13bc, 0x0152 }, { 0x13bd, 0x0153 }, { 0x13be, 0x0178 }, { 0x20ac, 0x20ac }, { 0xfe50, '`' }, { 0xfe51, 0x00b4 }, { 0xfe52, '^' }, { 0xfe53, '~' }, { 0xfe54, 0x00af }, { 0xfe55, 0x02d8 }, { 0xfe56, 0x02d9 }, { 0xfe57, 0x00a8 }, { 0xfe58, 0x02da }, { 0xfe59, 0x02dd }, { 0xfe5a, 0x02c7 }, { 0xfe5b, 0x00b8 }, { 0xfe5c, 0x02db }, { 0xfe5d, 0x037a }, { 0xfe5e, 0x309b }, { 0xfe5f, 0x309c }, { 0xfe63, '/' }, { 0xfe64, 0x02bc }, { 0xfe65, 0x02bd }, { 0xfe66, 0x02f5 }, { 0xfe67, 0x02f3 }, { 0xfe68, 0x02cd }, { 0xfe69, 0xa788 }, { 0xfe6a, 0x02f7 }, { 0xfe6e, ',' }, { 0xfe6f, 0x00a4 }, { 0xfe80, 'a' }, // XK_dead_a { 0xfe81, 'A' }, // XK_dead_A { 0xfe82, 'e' }, // XK_dead_e { 0xfe83, 'E' }, // XK_dead_E { 0xfe84, 'i' }, // XK_dead_i { 0xfe85, 'I' }, // XK_dead_I { 0xfe86, 'o' }, // XK_dead_o { 0xfe87, 'O' }, // XK_dead_O { 0xfe88, 'u' }, // XK_dead_u { 0xfe89, 'U' }, // XK_dead_U { 0xfe8a, 0x0259 }, { 0xfe8b, 0x018f }, { 0xfe8c, 0x00b5 }, { 0xfe90, '_' }, { 0xfe91, 0x02c8 }, { 0xfe92, 0x02cc }, { 0xff80 /*XKB_KEY_KP_Space*/, ' ' }, { 0xff95 /*XKB_KEY_KP_7*/, 0x0037 }, { 0xff96 /*XKB_KEY_KP_4*/, 0x0034 }, { 0xff97 /*XKB_KEY_KP_8*/, 0x0038 }, { 0xff98 /*XKB_KEY_KP_6*/, 0x0036 }, { 0xff99 /*XKB_KEY_KP_2*/, 0x0032 }, { 0xff9a /*XKB_KEY_KP_9*/, 0x0039 }, { 0xff9b /*XKB_KEY_KP_3*/, 0x0033 }, { 0xff9c /*XKB_KEY_KP_1*/, 0x0031 }, { 0xff9d /*XKB_KEY_KP_5*/, 0x0035 }, { 0xff9e /*XKB_KEY_KP_0*/, 0x0030 }, { 0xffaa /*XKB_KEY_KP_Multiply*/, '*' }, { 0xffab /*XKB_KEY_KP_Add*/, '+' }, { 0xffac /*XKB_KEY_KP_Separator*/, ',' }, { 0xffad /*XKB_KEY_KP_Subtract*/, '-' }, { 0xffae /*XKB_KEY_KP_Decimal*/, '.' }, { 0xffaf /*XKB_KEY_KP_Divide*/, '/' }, { 0xffb0 /*XKB_KEY_KP_0*/, 0x0030 }, { 0xffb1 /*XKB_KEY_KP_1*/, 0x0031 }, { 0xffb2 /*XKB_KEY_KP_2*/, 0x0032 }, { 0xffb3 /*XKB_KEY_KP_3*/, 0x0033 }, { 0xffb4 /*XKB_KEY_KP_4*/, 0x0034 }, { 0xffb5 /*XKB_KEY_KP_5*/, 0x0035 }, { 0xffb6 /*XKB_KEY_KP_6*/, 0x0036 }, { 0xffb7 /*XKB_KEY_KP_7*/, 0x0037 }, { 0xffb8 /*XKB_KEY_KP_8*/, 0x0038 }, { 0xffb9 /*XKB_KEY_KP_9*/, 0x0039 }, { 0xffbd /*XKB_KEY_KP_Equal*/, '=' } }; ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Convert XKB KeySym to Unicode // uint32_t _glfwKeySym2Unicode(unsigned int keysym) { int min = 0; int max = sizeof(keysymtab) / sizeof(struct codepair) - 1; int mid; // First check for Latin-1 characters (1:1 mapping) if ((keysym >= 0x0020 && keysym <= 0x007e) || (keysym >= 0x00a0 && keysym <= 0x00ff)) { return keysym; } // Also check for directly encoded 24-bit UCS characters if ((keysym & 0xff000000) == 0x01000000) return keysym & 0x00ffffff; // Binary search in table while (max >= min) { mid = (min + max) / 2; if (keysymtab[mid].keysym < keysym) min = mid + 1; else if (keysymtab[mid].keysym > keysym) max = mid - 1; else return keysymtab[mid].ucs; } // No matching Unicode value found return GLFW_INVALID_CODEPOINT; } #endif #endif #endif #endif /* __EMSCRIPTEN__ */ #line 0 #undef timeGetTime //--- #line 1 "3rd_swrap.h" // https://github.com/BareRose/swrap/blob/master/swrap.h /* swrap - Portable, protocol-agnostic TCP and UDP socket wrapper, primarily designed for client-server models in applications such as games To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty. You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see . */ /* swrap supports the following three configurations: #define SWRAP_EXTERN Default, should be used when using swrap in multiple compilation units within the same project. #define SWRAP_IMPLEMENTATION Must be defined in exactly one source file within a project for swrap to be found by the linker. #define SWRAP_STATIC Defines all swrap functions as static, useful if swrap is only used in a single compilation unit. */ //include only once #ifndef SWRAP_H #define SWRAP_H //process configuration #ifdef SWRAP_STATIC #define SWRAP_IMPLEMENTATION #define SWDEF static #else //SWRAP_EXTERN #define SWDEF extern #endif //constants #define SWRAP_TCP 0 #define SWRAP_UDP 1 #define SWRAP_BIND 0 #define SWRAP_CONNECT 1 #define SWRAP_DEFAULT 0x00 #define SWRAP_NOBLOCK 0x01 #define SWRAP_NODELAY 0x02 //structs struct swrap_addr { char data[128]; //enough space to hold any kind of address }; //function declarations SWDEF int swrapInit(); SWDEF int swrapSocket(int, int, char, const char*, const char*); SWDEF void swrapClose(int); SWDEF void swrapTerminate(); SWDEF int swrapListen(int, int); SWDEF int swrapAccept(int, struct swrap_addr*); SWDEF int swrapAddress(int, struct swrap_addr*); SWDEF int swrapAddressInfo(struct swrap_addr*, char*, size_t, char*, size_t); SWDEF int swrapSend(int, const char*, size_t); SWDEF int swrapReceive(int, char*, size_t); SWDEF int swrapSendTo(int, struct swrap_addr*, const char*, size_t); SWDEF int swrapReceiveFrom(int, struct swrap_addr*, char*, size_t); SWDEF int swrapSelect(int, double); SWDEF int swrapMultiSelect(int*, size_t, double); //implementation section #ifdef SWRAP_IMPLEMENTATION //includes #ifdef _WIN32 //windows #include #else //unix #include #include #include #include #include #endif #include //NULL #include //INT_MAX on emscripten //< @r-lyeh: added //general functions SWDEF int swrapInit () { //initializes socket functionality, returns 0 on success #ifdef _WIN32 WSADATA WsaData; return (WSAStartup(MAKEWORD(2,2), &WsaData) != NO_ERROR); #else return 0; #endif } SWDEF int swrapSocket (int prot, int mode, char flags, const char* host, const char* serv) { //protocol-agnostically creates a new socket configured according to the given parameters //sockets have to be created and bound/connected all at once to allow for protocol-agnosticity //int: Protocol of the socket, either SWRAP_TCP or SWRAP_UDP for TCP or UDP respectively // SWRAP_TCP: TCP protocol connection-oriented reliable delivery, see swrapListen/Accept // SWRAP_UDP: UDP protocol connectionless unreliable, SWRAP_CONNECT just assigns correspondent //int: Mode of the socket // SWRAP_BIND: Bind to given address (or all interfaces if NULL) and port, e.g. for a server // SWRAP_CONNECT: Connect to given address (localhost if NULL) and port, e.g. for a client //char: Configuration flags, either SWRAP_DEFAULT or a bitwise combination of flags // SWRAP_NOBLOCK: Sets the socket to be non-blocking, default is blocking // SWRAP_NODELAY: Disables Nagle's for TCP sockets, default is enabled //char*: Host/address as a string, can be IPv4, IPv6, etc... //char*: Service/port as a string, e.g. "1728" or "http" //returns socket handle, or -1 on failure struct addrinfo* result, hint = { (mode == SWRAP_BIND) ? AI_PASSIVE : 0, //ai_flags AF_UNSPEC, //ai_family (prot == SWRAP_TCP) ? SOCK_STREAM : SOCK_DGRAM, //ai_socktype 0, 0, NULL, NULL, NULL}; //get address info if (getaddrinfo(host, serv, &hint, &result)) return -1; //create socket #ifdef _WIN32 SOCKET wsck = socket(result->ai_family, result->ai_socktype, result->ai_protocol); if (wsck == INVALID_SOCKET) return -1; //reject socket handle outside int range if (wsck > INT_MAX) { closesocket(wsck); return -1; } //convert to int int sock = wsck; #else int sock = socket(result->ai_family, result->ai_socktype, result->ai_protocol); if (sock == -1) return -1; #endif //make sure IPV6_ONLY is disabled if (result->ai_family == AF_INET6) { int no = 0; setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&no, sizeof(no)); } //set TCP_NODELAY if applicable if (prot == SWRAP_TCP) { int nodelay = (flags&SWRAP_NODELAY); setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (void*)&nodelay, sizeof(nodelay)); } //bind if applicable if ((mode == SWRAP_BIND)&&(bind(sock, result->ai_addr, result->ai_addrlen))) { swrapClose(sock); return -1; } //set non-blocking if needed if (flags&SWRAP_NOBLOCK) { #ifdef _WIN32 DWORD no_block = 1; if (ioctlsocket(sock, FIONBIO, &no_block)) { swrapClose(sock); return -1; } #else if (fcntl(sock, F_SETFL, O_NONBLOCK, 1) == -1) { swrapClose(sock); return -1; } #endif } //connect if applicable (return only relevant if blocking) if ((mode == SWRAP_CONNECT)&&(connect(sock, result->ai_addr, result->ai_addrlen))&&(!(flags&SWRAP_NOBLOCK))) { swrapClose(sock); return -1; } //free address info freeaddrinfo(result); //return socket handle return sock; } SWDEF void swrapClose (int sock) { //closes the given socket #ifdef _WIN32 closesocket(sock); #else close(sock); #endif } SWDEF void swrapTerminate () { //terminates socket functionality #ifdef _WIN32 WSACleanup(); #endif } //connection functions SWDEF int swrapListen (int sock, int blog) { //configures the given socket (must be SWRAP_TCP + SWRAP_BIND) to listen for new connections with given maximum backlog //returns 0 on success, non-zero on failure return listen(sock, blog); } SWDEF int swrapAccept (int sock, struct swrap_addr* addr) { //uses the given socket (must be swrapListen) to accept a new incoming connection, optionally returning its address //returns a socket handle for the new connection, or -1 on failure (e.g. if there are no new connections) #ifdef _WIN32 int addr_size = sizeof(struct swrap_addr); SOCKET wsck = accept(sock, (struct sockaddr*)addr, (addr) ? &addr_size : NULL); if (wsck == INVALID_SOCKET) return -1; //reject socket handle outside int range if (wsck > INT_MAX) { closesocket(wsck); return -1; } //return new socket return wsck; #else socklen_t addr_size = sizeof(struct swrap_addr); return accept(sock, (struct sockaddr*)addr, (addr) ? &addr_size : NULL); #endif } //address functions SWDEF int swrapAddress (int sock, struct swrap_addr* addr) { //writes the address the given socket is bound to into given address pointer, useful when automatically assigning port //returns 0 on success, non-zero on failure #ifdef _WIN32 int addr_size = sizeof(struct swrap_addr); #else socklen_t addr_size = sizeof(struct swrap_addr); #endif return getsockname(sock, (struct sockaddr*)addr, &addr_size); } SWDEF int swrapAddressInfo (struct swrap_addr* addr, char* host, size_t host_size, char* serv, size_t serv_size) { //writes the host/address and service/port of given address into given buffers (pointer + size), either buffer may be NULL //returns 0 on success, non-zero on failure return getnameinfo((struct sockaddr*)addr, sizeof(struct swrap_addr), host, host_size, serv, serv_size, 0); } //send/receive functions SWDEF int swrapSend (int sock, const char* data, size_t data_size) { //uses the given socket (either SWRAP_CONNECT or returned by swrapAccept) to send given data (pointer + size) //at most INT_MAX bytes of data will be sent, data sizes greater than that are clamped to INT_MAX //returns how much data was actually sent (may be less than data size), or -1 on failure return send(sock, data, (data_size > INT_MAX) ? INT_MAX : data_size, 0); } SWDEF int swrapReceive (int sock, char* data, size_t data_size) { //receives data using given socket (either SWRAP_CONNECT or returned by swrapAccept) into given buffer (pointer + size) //at most INT_MAX bytes of data will be received, buffer sizes greater than INT_MAX have no additional benefit //returns the number of bytes received, 0 on orderly shutdown, or -1 on failure (e.g. no data to receive) return recv(sock, data, (data_size > INT_MAX) ? INT_MAX : data_size, 0); } SWDEF int swrapSendTo (int sock, struct swrap_addr* addr, const char* data, size_t data_size) { //uses the given socket to send given data (pointer + size) to the given swrap_addr (e.g. from swrapReceiveFrom) //at most INT_MAX bytes of data will be sent, data sizes greater than that are clamped to INT_MAX //returns how much data was actually sent (may be less than data size), or -1 on failure return sendto(sock, data, (data_size > INT_MAX) ? INT_MAX : data_size, 0, (struct sockaddr*)addr, sizeof(struct swrap_addr)); } SWDEF int swrapReceiveFrom (int sock, struct swrap_addr* addr, char* data, size_t data_size) { //receives data using given socket into given buffer (pointer + size), optionally returning sender's address //at most INT_MAX bytes of data will be received, buffer sizes greater than INT_MAX have no additional benefit //returns the number of bytes received, 0 on orderly shutdown, or -1 on failure (e.g. no data to receive) #ifdef _WIN32 int addr_size = sizeof(struct swrap_addr); #else socklen_t addr_size = sizeof(struct swrap_addr); #endif return recvfrom(sock, data, (data_size > INT_MAX) ? INT_MAX : data_size, 0, (struct sockaddr*)addr, &addr_size); } //select functions SWDEF int swrapSelect (int sock, double timeout) { //waits either until given socket has new data to receive or given time (in seconds) has passed //if given socket is -1 an empty select will be performed, which is just a sub-second sleep //returns 1 if new data is available, 0 if timeout was reached, and -1 on error fd_set set; struct timeval time; //fd set FD_ZERO(&set); if (sock > -1) FD_SET(sock, &set); //timeout time.tv_sec = timeout; time.tv_usec = (timeout - time.tv_sec)*1000000.0; //return return select(sock+1, &set, NULL, NULL, &time); } SWDEF int swrapMultiSelect (int* socks, size_t socks_size, double timeout) { //waits either until a socket in given list has new data to receive or given time (in seconds) has passed //if the given list length is 0 an empty select will be performed, which is just a sub-second sleep //returns 1 or more if new data is available, 0 if timeout was reached, and -1 on error fd_set set; struct timeval time; int sock_max = -1; //fd set FD_ZERO(&set); for (size_t i = 0; i < socks_size; i++) { if (socks[i] > sock_max) sock_max = socks[i]; if (socks[i] > -1) FD_SET(socks[i], &set); } //timeout time.tv_sec = timeout; time.tv_usec = (timeout - time.tv_sec)*1000000.0; //return return select(sock_max+1, &set, NULL, NULL, &time); } #endif //SWRAP_IMPLEMENTATION #endif //SWRAP_H #line 0 //--- #line 1 "3rd_jo_mp1.h" /* public domain Simple, Minimalistic MPEG Layer 1 decoder - http://jonolick.com * * Revision History: * 1.00 (2014-26-1) Initial release. * * Basic usage: * int hz, channels, outputSize; * short *output; * jo_read_mp1(input, inputSize, output, outputSize, hz, channels); * // Do something with the data here * free(output); * * */ #ifndef JO_INCLUDE_MP1_H #define JO_INCLUDE_MP1_H #include extern bool jo_read_mp1(const void *input, int inputSize, short **output, int *outputSize, int *hz, int *channels); #endif // JO_INCLUDE_MP1_H #ifndef JO_MP1_HEADER_FILE_ONLY #if defined(_MSC_VER) && _MSC_VER >= 0x1400 #define _CRT_SECURE_NO_WARNINGS // suppress warnings about fopen() #endif #include #include #include static const double s_jo_multTbl[64] = { 2.000000,1.587401,1.259921,1.000000,0.793701,0.629961,0.500000,0.396850,0.314980,0.250000,0.198425,0.157490,0.125000,0.099213,0.078745,0.062500, 0.049606,0.039373,0.031250,0.024803,0.019686,0.015625,0.012402,0.009843,0.007812,0.006201,0.004922,0.003906,0.003100,0.002461,0.001953,0.001550, 0.001230,0.000977,0.000775,0.000615,0.000488,0.000388,0.000308,0.000244,0.000194,0.000154,0.000122,0.000097,0.000077,0.000061,0.000048,0.000038, 0.000031,0.000024,0.000019,0.000015,0.000012,0.000010,0.000008,0.000006,0.000005,0.000004,0.000003,0.000002,0.000002,0.000002,0.000001,1e-20 }; // l = i - 256; // s = (i & 0x40) ? 1 : -1; // windowTbl[(i/16)|((i%16)<<5)] = s * 20 * exp(-(l/112)*-(l/112)) * sin(l * M_PI*2 / 112) / l; static const double s_jo_windowTbl[512] = { -0.000000,-0.000443,0.003250,-0.007004,0.031082,-0.078629,0.100311,-0.572037,1.144989,0.572037,0.100311,0.078629,0.031082,0.007004,0.003250,0.000443, -0.000015,-0.000473,0.003326,-0.007919,0.030518,-0.084183,0.090927,-0.600220,1.144287,0.543823,0.108856,0.073059,0.031479,0.006119,0.003174,0.000397, -0.000015,-0.000534,0.003387,-0.008865,0.029785,-0.089706,0.080688,-0.628296,1.142212,0.515610,0.116577,0.067520,0.031738,0.005295,0.003082,0.000366, -0.000015,-0.000580,0.003433,-0.009842,0.028885,-0.095169,0.069595,-0.656219,1.138763,0.487473,0.123474,0.061996,0.031845,0.004486,0.002991,0.000320, -0.000015,-0.000626,0.003464,-0.010849,0.027802,-0.100540,0.057617,-0.683914,1.133926,0.459473,0.129578,0.056534,0.031815,0.003723,0.002899,0.000290, -0.000015,-0.000687,0.003479,-0.011887,0.026535,-0.105820,0.044785,-0.711319,1.127747,0.431656,0.134888,0.051132,0.031662,0.003006,0.002792,0.000259, -0.000015,-0.000748,0.003479,-0.012939,0.025085,-0.110947,0.031082,-0.738373,1.120224,0.404083,0.139450,0.045837,0.031387,0.002335,0.002686,0.000244, -0.000031,-0.000809,0.003464,-0.014023,0.023422,-0.115921,0.016510,-0.765030,1.111374,0.376801,0.143265,0.040634,0.031006,0.001694,0.002579,0.000214, -0.000031,-0.000885,0.003418,-0.015121,0.021576,-0.120697,0.001068,-0.791214,1.101212,0.349869,0.146362,0.035553,0.030533,0.001099,0.002457,0.000198, -0.000031,-0.000961,0.003372,-0.016235,0.019531,-0.125259,-0.015228,-0.816864,1.089783,0.323318,0.148773,0.030609,0.029938,0.000549,0.002350,0.000168, -0.000031,-0.001038,0.003281,-0.017349,0.017258,-0.129562,-0.032379,-0.841949,1.077118,0.297211,0.150497,0.025818,0.029282,0.000031,0.002243,0.000153, -0.000046,-0.001114,0.003174,-0.018463,0.014801,-0.133591,-0.050354,-0.866364,1.063217,0.271591,0.151596,0.021179,0.028534,-0.000443,0.002121,0.000137, -0.000046,-0.001205,0.003052,-0.019577,0.012115,-0.137299,-0.069168,-0.890091,1.048157,0.246506,0.152069,0.016708,0.027725,-0.000870,0.002014,0.000122, -0.000061,-0.001297,0.002884,-0.020691,0.009232,-0.140671,-0.088776,-0.913055,1.031937,0.221985,0.151962,0.012421,0.026840,-0.001266,0.001907,0.000107, -0.000061,-0.001389,0.002701,-0.021790,0.006134,-0.143677,-0.109161,-0.935196,1.014618,0.198059,0.151306,0.008316,0.025909,-0.001617,0.001785,0.000107, -0.000076,-0.001480,0.002487,-0.022858,0.002823,-0.146255,-0.130310,-0.956482,0.996246,0.174789,0.150116,0.004395,0.024933,-0.001938,0.001694,0.000092, -0.000076,-0.001587,0.002228,-0.023911,-0.000687,-0.148422,-0.152206,-0.976852,0.976852,0.152206,0.148422,0.000687,0.023911,-0.002228,0.001587,0.000076, -0.000092,-0.001694,0.001938,-0.024933,-0.004395,-0.150116,-0.174789,-0.996246,0.956482,0.130310,0.146255,-0.002823,0.022858,-0.002487,0.001480,0.000076, -0.000107,-0.001785,0.001617,-0.025909,-0.008316,-0.151306,-0.198059,-1.014618,0.935196,0.109161,0.143677,-0.006134,0.021790,-0.002701,0.001389,0.000061, -0.000107,-0.001907,0.001266,-0.026840,-0.012421,-0.151962,-0.221985,-1.031937,0.913055,0.088776,0.140671,-0.009232,0.020691,-0.002884,0.001297,0.000061, -0.000122,-0.002014,0.000870,-0.027725,-0.016708,-0.152069,-0.246506,-1.048157,0.890091,0.069168,0.137299,-0.012115,0.019577,-0.003052,0.001205,0.000046, -0.000137,-0.002121,0.000443,-0.028534,-0.021179,-0.151596,-0.271591,-1.063217,0.866364,0.050354,0.133591,-0.014801,0.018463,-0.003174,0.001114,0.000046, -0.000153,-0.002243,-0.000031,-0.029282,-0.025818,-0.150497,-0.297211,-1.077118,0.841949,0.032379,0.129562,-0.017258,0.017349,-0.003281,0.001038,0.000031, -0.000168,-0.002350,-0.000549,-0.029938,-0.030609,-0.148773,-0.323318,-1.089783,0.816864,0.015228,0.125259,-0.019531,0.016235,-0.003372,0.000961,0.000031, -0.000198,-0.002457,-0.001099,-0.030533,-0.035553,-0.146362,-0.349869,-1.101212,0.791214,-0.001068,0.120697,-0.021576,0.015121,-0.003418,0.000885,0.000031, -0.000214,-0.002579,-0.001694,-0.031006,-0.040634,-0.143265,-0.376801,-1.111374,0.765030,-0.016510,0.115921,-0.023422,0.014023,-0.003464,0.000809,0.000031, -0.000244,-0.002686,-0.002335,-0.031387,-0.045837,-0.139450,-0.404083,-1.120224,0.738373,-0.031082,0.110947,-0.025085,0.012939,-0.003479,0.000748,0.000015, -0.000259,-0.002792,-0.003006,-0.031662,-0.051132,-0.134888,-0.431656,-1.127747,0.711319,-0.044785,0.105820,-0.026535,0.011887,-0.003479,0.000687,0.000015, -0.000290,-0.002899,-0.003723,-0.031815,-0.056534,-0.129578,-0.459473,-1.133926,0.683914,-0.057617,0.100540,-0.027802,0.010849,-0.003464,0.000626,0.000015, -0.000320,-0.002991,-0.004486,-0.031845,-0.061996,-0.123474,-0.487473,-1.138763,0.656219,-0.069595,0.095169,-0.028885,0.009842,-0.003433,0.000580,0.000015, -0.000366,-0.003082,-0.005295,-0.031738,-0.067520,-0.116577,-0.515610,-1.142212,0.628296,-0.080688,0.089706,-0.029785,0.008865,-0.003387,0.000534,0.000015, -0.000397,-0.003174,-0.006119,-0.031479,-0.073059,-0.108856,-0.543823,-1.144287,0.600220,-0.090927,0.084183,-0.030518,0.007919,-0.003326,0.000473,0.000015, }; // filterTbl[i][j] = cos(((M_PI/64*i+M_PI/4)*(2*j+1))); static const double s_jo_filterTbl[64][32] = { {0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107, 0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107}, {0.671559,-0.803208,-0.514103,0.903989,0.336890,-0.970031,-0.146730,0.998795,-0.049068,-0.989177,0.242980,0.941544,-0.427555,-0.857729,0.595699,0.740951, -0.740951,-0.595699,0.857729,0.427555,-0.941544,-0.242980,0.989177,0.049068,-0.998795,0.146730,0.970031,-0.336890,-0.903989,0.514103,0.803208,-0.671559}, {0.634393,-0.881921,-0.290285,0.995185,-0.098017,-0.956940,0.471397,0.773010,-0.773010,-0.471397,0.956940,0.098017,-0.995185,0.290285,0.881921,-0.634393, -0.634393,0.881921,0.290285,-0.995185,0.098017,0.956940,-0.471397,-0.773010,0.773010,0.471397,-0.956940,-0.098017,0.995185,-0.290285,-0.881921,0.634393}, {0.595699,-0.941544,-0.049068,0.970031,-0.514103,-0.671559,0.903989,0.146730,-0.989177,0.427555,0.740951,-0.857729,-0.242980,0.998795,-0.336890,-0.803208, 0.803208,0.336890,-0.998795,0.242980,0.857729,-0.740951,-0.427555,0.989177,-0.146730,-0.903989,0.671559,0.514103,-0.970031,0.049068,0.941544,-0.595699}, {0.555570,-0.980785,0.195090,0.831470,-0.831470,-0.195090,0.980785,-0.555570,-0.555570,0.980785,-0.195090,-0.831470,0.831470,0.195090,-0.980785,0.555570, 0.555570,-0.980785,0.195090,0.831470,-0.831470,-0.195090,0.980785,-0.555570,-0.555570,0.980785,-0.195090,-0.831470,0.831470,0.195090,-0.980785,0.555570}, {0.514103,-0.998795,0.427555,0.595699,-0.989177,0.336890,0.671559,-0.970031,0.242980,0.740951,-0.941544,0.146730,0.803208,-0.903989,0.049068,0.857729, -0.857729,-0.049068,0.903989,-0.803208,-0.146730,0.941544,-0.740951,-0.242980,0.970031,-0.671559,-0.336890,0.989177,-0.595699,-0.427555,0.998795,-0.514103}, {0.471397,-0.995185,0.634393,0.290285,-0.956940,0.773010,0.098017,-0.881921,0.881921,-0.098017,-0.773010,0.956940,-0.290285,-0.634393,0.995185,-0.471397, -0.471397,0.995185,-0.634393,-0.290285,0.956940,-0.773010,-0.098017,0.881921,-0.881921,0.098017,0.773010,-0.956940,0.290285,0.634393,-0.995185,0.471397}, {0.427555,-0.970031,0.803208,-0.049068,-0.740951,0.989177,-0.514103,-0.336890,0.941544,-0.857729,0.146730,0.671559,-0.998795,0.595699,0.242980,-0.903989, 0.903989,-0.242980,-0.595699,0.998795,-0.671559,-0.146730,0.857729,-0.941544,0.336890,0.514103,-0.989177,0.740951,0.049068,-0.803208,0.970031,-0.427555}, {0.382683,-0.923880,0.923880,-0.382683,-0.382683,0.923880,-0.923880,0.382683,0.382683,-0.923880,0.923880,-0.382683,-0.382683,0.923880,-0.923880,0.382683, 0.382683,-0.923880,0.923880,-0.382683,-0.382683,0.923880,-0.923880,0.382683,0.382683,-0.923880,0.923880,-0.382683,-0.382683,0.923880,-0.923880,0.382683}, {0.336890,-0.857729,0.989177,-0.671559,0.049068,0.595699,-0.970031,0.903989,-0.427555,-0.242980,0.803208,-0.998795,0.740951,-0.146730,-0.514103,0.941544, -0.941544,0.514103,0.146730,-0.740951,0.998795,-0.803208,0.242980,0.427555,-0.903989,0.970031,-0.595699,-0.049068,0.671559,-0.989177,0.857729,-0.336890}, {0.290285,-0.773010,0.995185,-0.881921,0.471397,0.098017,-0.634393,0.956940,-0.956940,0.634393,-0.098017,-0.471397,0.881921,-0.995185,0.773010,-0.290285, -0.290285,0.773010,-0.995185,0.881921,-0.471397,-0.098017,0.634393,-0.956940,0.956940,-0.634393,0.098017,0.471397,-0.881921,0.995185,-0.773010,0.290285}, {0.242980,-0.671559,0.941544,-0.989177,0.803208,-0.427555,-0.049068,0.514103,-0.857729,0.998795,-0.903989,0.595699,-0.146730,-0.336890,0.740951,-0.970031, 0.970031,-0.740951,0.336890,0.146730,-0.595699,0.903989,-0.998795,0.857729,-0.514103,0.049068,0.427555,-0.803208,0.989177,-0.941544,0.671559,-0.242980}, {0.195090,-0.555570,0.831470,-0.980785,0.980785,-0.831470,0.555570,-0.195090,-0.195090,0.555570,-0.831470,0.980785,-0.980785,0.831470,-0.555570,0.195090, 0.195090,-0.555570,0.831470,-0.980785,0.980785,-0.831470,0.555570,-0.195090,-0.195090,0.555570,-0.831470,0.980785,-0.980785,0.831470,-0.555570,0.195090}, {0.146730,-0.427555,0.671559,-0.857729,0.970031,-0.998795,0.941544,-0.803208,0.595699,-0.336890,0.049068,0.242980,-0.514103,0.740951,-0.903989,0.989177, -0.989177,0.903989,-0.740951,0.514103,-0.242980,-0.049068,0.336890,-0.595699,0.803208,-0.941544,0.998795,-0.970031,0.857729,-0.671559,0.427555,-0.146730}, {0.098017,-0.290285,0.471397,-0.634393,0.773010,-0.881921,0.956940,-0.995185,0.995185,-0.956940,0.881921,-0.773010,0.634393,-0.471397,0.290285,-0.098017, -0.098017,0.290285,-0.471397,0.634393,-0.773010,0.881921,-0.956940,0.995185,-0.995185,0.956940,-0.881921,0.773010,-0.634393,0.471397,-0.290285,0.098017}, {0.049068,-0.146730,0.242980,-0.336890,0.427555,-0.514103,0.595699,-0.671559,0.740951,-0.803208,0.857729,-0.903989,0.941544,-0.970031,0.989177,-0.998795, 0.998795,-0.989177,0.970031,-0.941544,0.903989,-0.857729,0.803208,-0.740951,0.671559,-0.595699,0.514103,-0.427555,0.336890,-0.242980,0.146730,-0.049068}, {0.000000,-0.000000,0.000000,-0.000000,0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000,-0.000000, 0.000000,-0.000000,0.000000,-0.000000,0.000000,-0.000000,0.000000,0.000000,0.000000,-0.000000,0.000000,0.000000,0.000000,-0.000000,0.000000,0.000000}, {-0.049068,0.146730,-0.242980,0.336890,-0.427555,0.514103,-0.595699,0.671559,-0.740951,0.803208,-0.857729,0.903989,-0.941544,0.970031,-0.989177,0.998795, -0.998795,0.989177,-0.970031,0.941544,-0.903989,0.857729,-0.803208,0.740951,-0.671559,0.595699,-0.514103,0.427555,-0.336890,0.242980,-0.146730,0.049068}, {-0.098017,0.290285,-0.471397,0.634393,-0.773010,0.881921,-0.956940,0.995185,-0.995185,0.956940,-0.881921,0.773010,-0.634393,0.471397,-0.290285,0.098017, 0.098017,-0.290285,0.471397,-0.634393,0.773010,-0.881921,0.956940,-0.995185,0.995185,-0.956940,0.881921,-0.773010,0.634393,-0.471397,0.290285,-0.098017}, {-0.146730,0.427555,-0.671559,0.857729,-0.970031,0.998795,-0.941544,0.803208,-0.595699,0.336890,-0.049068,-0.242980,0.514103,-0.740951,0.903989,-0.989177, 0.989177,-0.903989,0.740951,-0.514103,0.242980,0.049068,-0.336890,0.595699,-0.803208,0.941544,-0.998795,0.970031,-0.857729,0.671559,-0.427555,0.146730}, {-0.195090,0.555570,-0.831470,0.980785,-0.980785,0.831470,-0.555570,0.195090,0.195090,-0.555570,0.831470,-0.980785,0.980785,-0.831470,0.555570,-0.195090, -0.195090,0.555570,-0.831470,0.980785,-0.980785,0.831470,-0.555570,0.195090,0.195090,-0.555570,0.831470,-0.980785,0.980785,-0.831470,0.555570,-0.195090}, {-0.242980,0.671559,-0.941544,0.989177,-0.803208,0.427555,0.049068,-0.514103,0.857729,-0.998795,0.903989,-0.595699,0.146730,0.336890,-0.740951,0.970031, -0.970031,0.740951,-0.336890,-0.146730,0.595699,-0.903989,0.998795,-0.857729,0.514103,-0.049068,-0.427555,0.803208,-0.989177,0.941544,-0.671559,0.242980}, {-0.290285,0.773010,-0.995185,0.881921,-0.471397,-0.098017,0.634393,-0.956940,0.956940,-0.634393,0.098017,0.471397,-0.881921,0.995185,-0.773010,0.290285, 0.290285,-0.773010,0.995185,-0.881921,0.471397,0.098017,-0.634393,0.956940,-0.956940,0.634393,-0.098017,-0.471397,0.881921,-0.995185,0.773010,-0.290285}, {-0.336890,0.857729,-0.989177,0.671559,-0.049068,-0.595699,0.970031,-0.903989,0.427555,0.242980,-0.803208,0.998795,-0.740951,0.146730,0.514103,-0.941544, 0.941544,-0.514103,-0.146730,0.740951,-0.998795,0.803208,-0.242980,-0.427555,0.903989,-0.970031,0.595699,0.049068,-0.671559,0.989177,-0.857729,0.336890}, {-0.382683,0.923880,-0.923880,0.382683,0.382683,-0.923880,0.923880,-0.382683,-0.382683,0.923880,-0.923880,0.382683,0.382683,-0.923880,0.923880,-0.382683, -0.382683,0.923880,-0.923880,0.382683,0.382683,-0.923880,0.923880,-0.382683,-0.382683,0.923880,-0.923880,0.382683,0.382683,-0.923880,0.923880,-0.382683}, {-0.427555,0.970031,-0.803208,0.049068,0.740951,-0.989177,0.514103,0.336890,-0.941544,0.857729,-0.146730,-0.671559,0.998795,-0.595699,-0.242980,0.903989, -0.903989,0.242980,0.595699,-0.998795,0.671559,0.146730,-0.857729,0.941544,-0.336890,-0.514103,0.989177,-0.740951,-0.049068,0.803208,-0.970031,0.427555}, {-0.471397,0.995185,-0.634393,-0.290285,0.956940,-0.773010,-0.098017,0.881921,-0.881921,0.098017,0.773010,-0.956940,0.290285,0.634393,-0.995185,0.471397, 0.471397,-0.995185,0.634393,0.290285,-0.956940,0.773010,0.098017,-0.881921,0.881921,-0.098017,-0.773010,0.956940,-0.290285,-0.634393,0.995185,-0.471397}, {-0.514103,0.998795,-0.427555,-0.595699,0.989177,-0.336890,-0.671559,0.970031,-0.242980,-0.740951,0.941544,-0.146730,-0.803208,0.903989,-0.049068,-0.857729, 0.857729,0.049068,-0.903989,0.803208,0.146730,-0.941544,0.740951,0.242980,-0.970031,0.671559,0.336890,-0.989177,0.595699,0.427555,-0.998795,0.514103}, {-0.555570,0.980785,-0.195090,-0.831470,0.831470,0.195090,-0.980785,0.555570,0.555570,-0.980785,0.195090,0.831470,-0.831470,-0.195090,0.980785,-0.555570, -0.555570,0.980785,-0.195090,-0.831470,0.831470,0.195090,-0.980785,0.555570,0.555570,-0.980785,0.195090,0.831470,-0.831470,-0.195090,0.980785,-0.555570}, {-0.595699,0.941544,0.049068,-0.970031,0.514103,0.671559,-0.903989,-0.146730,0.989177,-0.427555,-0.740951,0.857729,0.242980,-0.998795,0.336890,0.803208, -0.803208,-0.336890,0.998795,-0.242980,-0.857729,0.740951,0.427555,-0.989177,0.146730,0.903989,-0.671559,-0.514103,0.970031,-0.049068,-0.941544,0.595699}, {-0.634393,0.881921,0.290285,-0.995185,0.098017,0.956940,-0.471397,-0.773010,0.773010,0.471397,-0.956940,-0.098017,0.995185,-0.290285,-0.881921,0.634393, 0.634393,-0.881921,-0.290285,0.995185,-0.098017,-0.956940,0.471397,0.773010,-0.773010,-0.471397,0.956940,0.098017,-0.995185,0.290285,0.881921,-0.634393}, {-0.671559,0.803208,0.514103,-0.903989,-0.336890,0.970031,0.146730,-0.998795,0.049068,0.989177,-0.242980,-0.941544,0.427555,0.857729,-0.595699,-0.740951, 0.740951,0.595699,-0.857729,-0.427555,0.941544,0.242980,-0.989177,-0.049068,0.998795,-0.146730,-0.970031,0.336890,0.903989,-0.514103,-0.803208,0.671559}, {-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107, -0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107,-0.707107,0.707107,0.707107,-0.707107}, {-0.740951,0.595699,0.857729,-0.427555,-0.941544,0.242980,0.989177,-0.049068,-0.998795,-0.146730,0.970031,0.336890,-0.903989,-0.514103,0.803208,0.671559, -0.671559,-0.803208,0.514103,0.903989,-0.336890,-0.970031,0.146730,0.998795,0.049068,-0.989177,-0.242980,0.941544,0.427555,-0.857729,-0.595699,0.740951}, {-0.773010,0.471397,0.956940,-0.098017,-0.995185,-0.290285,0.881921,0.634393,-0.634393,-0.881921,0.290285,0.995185,0.098017,-0.956940,-0.471397,0.773010, 0.773010,-0.471397,-0.956940,0.098017,0.995185,0.290285,-0.881921,-0.634393,0.634393,0.881921,-0.290285,-0.995185,-0.098017,0.956940,0.471397,-0.773010}, {-0.803208,0.336890,0.998795,0.242980,-0.857729,-0.740951,0.427555,0.989177,0.146730,-0.903989,-0.671559,0.514103,0.970031,0.049068,-0.941544,-0.595699, 0.595699,0.941544,-0.049068,-0.970031,-0.514103,0.671559,0.903989,-0.146730,-0.989177,-0.427555,0.740951,0.857729,-0.242980,-0.998795,-0.336890,0.803208}, {-0.831470,0.195090,0.980785,0.555570,-0.555570,-0.980785,-0.195090,0.831470,0.831470,-0.195090,-0.980785,-0.555570,0.555570,0.980785,0.195090,-0.831470, -0.831470,0.195090,0.980785,0.555570,-0.555570,-0.980785,-0.195090,0.831470,0.831470,-0.195090,-0.980785,-0.555570,0.555570,0.980785,0.195090,-0.831470}, {-0.857729,0.049068,0.903989,0.803208,-0.146730,-0.941544,-0.740951,0.242980,0.970031,0.671559,-0.336890,-0.989177,-0.595699,0.427555,0.998795,0.514103, -0.514103,-0.998795,-0.427555,0.595699,0.989177,0.336890,-0.671559,-0.970031,-0.242980,0.740951,0.941544,0.146730,-0.803208,-0.903989,-0.049068,0.857729}, {-0.881921,-0.098017,0.773010,0.956940,0.290285,-0.634393,-0.995185,-0.471397,0.471397,0.995185,0.634393,-0.290285,-0.956940,-0.773010,0.098017,0.881921, 0.881921,0.098017,-0.773010,-0.956940,-0.290285,0.634393,0.995185,0.471397,-0.471397,-0.995185,-0.634393,0.290285,0.956940,0.773010,-0.098017,-0.881921}, {-0.903989,-0.242980,0.595699,0.998795,0.671559,-0.146730,-0.857729,-0.941544,-0.336890,0.514103,0.989177,0.740951,-0.049068,-0.803208,-0.970031,-0.427555, 0.427555,0.970031,0.803208,0.049068,-0.740951,-0.989177,-0.514103,0.336890,0.941544,0.857729,0.146730,-0.671559,-0.998795,-0.595699,0.242980,0.903989}, {-0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880,-0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880, -0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880,-0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880}, {-0.941544,-0.514103,0.146730,0.740951,0.998795,0.803208,0.242980,-0.427555,-0.903989,-0.970031,-0.595699,0.049068,0.671559,0.989177,0.857729,0.336890, -0.336890,-0.857729,-0.989177,-0.671559,-0.049068,0.595699,0.970031,0.903989,0.427555,-0.242980,-0.803208,-0.998795,-0.740951,-0.146730,0.514103,0.941544}, {-0.956940,-0.634393,-0.098017,0.471397,0.881921,0.995185,0.773010,0.290285,-0.290285,-0.773010,-0.995185,-0.881921,-0.471397,0.098017,0.634393,0.956940, 0.956940,0.634393,0.098017,-0.471397,-0.881921,-0.995185,-0.773010,-0.290285,0.290285,0.773010,0.995185,0.881921,0.471397,-0.098017,-0.634393,-0.956940}, {-0.970031,-0.740951,-0.336890,0.146730,0.595699,0.903989,0.998795,0.857729,0.514103,0.049068,-0.427555,-0.803208,-0.989177,-0.941544,-0.671559,-0.242980, 0.242980,0.671559,0.941544,0.989177,0.803208,0.427555,-0.049068,-0.514103,-0.857729,-0.998795,-0.903989,-0.595699,-0.146730,0.336890,0.740951,0.970031}, {-0.980785,-0.831470,-0.555570,-0.195090,0.195090,0.555570,0.831470,0.980785,0.980785,0.831470,0.555570,0.195090,-0.195090,-0.555570,-0.831470,-0.980785, -0.980785,-0.831470,-0.555570,-0.195090,0.195090,0.555570,0.831470,0.980785,0.980785,0.831470,0.555570,0.195090,-0.195090,-0.555570,-0.831470,-0.980785}, {-0.989177,-0.903989,-0.740951,-0.514103,-0.242980,0.049068,0.336890,0.595699,0.803208,0.941544,0.998795,0.970031,0.857729,0.671559,0.427555,0.146730, -0.146730,-0.427555,-0.671559,-0.857729,-0.970031,-0.998795,-0.941544,-0.803208,-0.595699,-0.336890,-0.049068,0.242980,0.514103,0.740951,0.903989,0.989177}, {-0.995185,-0.956940,-0.881921,-0.773010,-0.634393,-0.471397,-0.290285,-0.098017,0.098017,0.290285,0.471397,0.634393,0.773010,0.881921,0.956940,0.995185, 0.995185,0.956940,0.881921,0.773010,0.634393,0.471397,0.290285,0.098017,-0.098017,-0.290285,-0.471397,-0.634393,-0.773010,-0.881921,-0.956940,-0.995185}, {-0.998795,-0.989177,-0.970031,-0.941544,-0.903989,-0.857729,-0.803208,-0.740951,-0.671559,-0.595699,-0.514103,-0.427555,-0.336890,-0.242980,-0.146730,-0.049068, 0.049068,0.146730,0.242980,0.336890,0.427555,0.514103,0.595699,0.671559,0.740951,0.803208,0.857729,0.903989,0.941544,0.970031,0.989177,0.998795}, {-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000, -1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000,-1.000000}, {-0.998795,-0.989177,-0.970031,-0.941544,-0.903989,-0.857729,-0.803208,-0.740951,-0.671559,-0.595699,-0.514103,-0.427555,-0.336890,-0.242980,-0.146730,-0.049068, 0.049068,0.146730,0.242980,0.336890,0.427555,0.514103,0.595699,0.671559,0.740951,0.803208,0.857729,0.903989,0.941544,0.970031,0.989177,0.998795}, {-0.995185,-0.956940,-0.881921,-0.773010,-0.634393,-0.471397,-0.290285,-0.098017,0.098017,0.290285,0.471397,0.634393,0.773010,0.881921,0.956940,0.995185, 0.995185,0.956940,0.881921,0.773010,0.634393,0.471397,0.290285,0.098017,-0.098017,-0.290285,-0.471397,-0.634393,-0.773010,-0.881921,-0.956940,-0.995185}, {-0.989177,-0.903989,-0.740951,-0.514103,-0.242980,0.049068,0.336890,0.595699,0.803208,0.941544,0.998795,0.970031,0.857729,0.671559,0.427555,0.146730, -0.146730,-0.427555,-0.671559,-0.857729,-0.970031,-0.998795,-0.941544,-0.803208,-0.595699,-0.336890,-0.049068,0.242980,0.514103,0.740951,0.903989,0.989177}, {-0.980785,-0.831470,-0.555570,-0.195090,0.195090,0.555570,0.831470,0.980785,0.980785,0.831470,0.555570,0.195090,-0.195090,-0.555570,-0.831470,-0.980785, -0.980785,-0.831470,-0.555570,-0.195090,0.195090,0.555570,0.831470,0.980785,0.980785,0.831470,0.555570,0.195090,-0.195090,-0.555570,-0.831470,-0.980785}, {-0.970031,-0.740951,-0.336890,0.146730,0.595699,0.903989,0.998795,0.857729,0.514103,0.049068,-0.427555,-0.803208,-0.989177,-0.941544,-0.671559,-0.242980, 0.242980,0.671559,0.941544,0.989177,0.803208,0.427555,-0.049068,-0.514103,-0.857729,-0.998795,-0.903989,-0.595699,-0.146730,0.336890,0.740951,0.970031}, {-0.956940,-0.634393,-0.098017,0.471397,0.881921,0.995185,0.773010,0.290285,-0.290285,-0.773010,-0.995185,-0.881921,-0.471397,0.098017,0.634393,0.956940, 0.956940,0.634393,0.098017,-0.471397,-0.881921,-0.995185,-0.773010,-0.290285,0.290285,0.773010,0.995185,0.881921,0.471397,-0.098017,-0.634393,-0.956940}, {-0.941544,-0.514103,0.146730,0.740951,0.998795,0.803208,0.242980,-0.427555,-0.903989,-0.970031,-0.595699,0.049068,0.671559,0.989177,0.857729,0.336890, -0.336890,-0.857729,-0.989177,-0.671559,-0.049068,0.595699,0.970031,0.903989,0.427555,-0.242980,-0.803208,-0.998795,-0.740951,-0.146730,0.514103,0.941544}, {-0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880,-0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880, -0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880,-0.923880,-0.382683,0.382683,0.923880,0.923880,0.382683,-0.382683,-0.923880}, {-0.903989,-0.242980,0.595699,0.998795,0.671559,-0.146730,-0.857729,-0.941544,-0.336890,0.514103,0.989177,0.740951,-0.049068,-0.803208,-0.970031,-0.427555, 0.427555,0.970031,0.803208,0.049068,-0.740951,-0.989177,-0.514103,0.336890,0.941544,0.857729,0.146730,-0.671559,-0.998795,-0.595699,0.242980,0.903989}, {-0.881921,-0.098017,0.773010,0.956940,0.290285,-0.634393,-0.995185,-0.471397,0.471397,0.995185,0.634393,-0.290285,-0.956940,-0.773010,0.098017,0.881921, 0.881921,0.098017,-0.773010,-0.956940,-0.290285,0.634393,0.995185,0.471397,-0.471397,-0.995185,-0.634393,0.290285,0.956940,0.773010,-0.098017,-0.881921}, {-0.857729,0.049068,0.903989,0.803208,-0.146730,-0.941544,-0.740951,0.242980,0.970031,0.671559,-0.336890,-0.989177,-0.595699,0.427555,0.998795,0.514103, -0.514103,-0.998795,-0.427555,0.595699,0.989177,0.336890,-0.671559,-0.970031,-0.242980,0.740951,0.941544,0.146730,-0.803208,-0.903989,-0.049068,0.857729}, {-0.831470,0.195090,0.980785,0.555570,-0.555570,-0.980785,-0.195090,0.831470,0.831470,-0.195090,-0.980785,-0.555570,0.555570,0.980785,0.195090,-0.831470, -0.831470,0.195090,0.980785,0.555570,-0.555570,-0.980785,-0.195090,0.831470,0.831470,-0.195090,-0.980785,-0.555570,0.555570,0.980785,0.195090,-0.831470}, {-0.803208,0.336890,0.998795,0.242980,-0.857729,-0.740951,0.427555,0.989177,0.146730,-0.903989,-0.671559,0.514103,0.970031,0.049068,-0.941544,-0.595699, 0.595699,0.941544,-0.049068,-0.970031,-0.514103,0.671559,0.903989,-0.146730,-0.989177,-0.427555,0.740951,0.857729,-0.242980,-0.998795,-0.336890,0.803208}, {-0.773010,0.471397,0.956940,-0.098017,-0.995185,-0.290285,0.881921,0.634393,-0.634393,-0.881921,0.290285,0.995185,0.098017,-0.956940,-0.471397,0.773010, 0.773010,-0.471397,-0.956940,0.098017,0.995185,0.290285,-0.881921,-0.634393,0.634393,0.881921,-0.290285,-0.995185,-0.098017,0.956940,0.471397,-0.773010}, {-0.740951,0.595699,0.857729,-0.427555,-0.941544,0.242980,0.989177,-0.049068,-0.998795,-0.146730,0.970031,0.336890,-0.903989,-0.514103,0.803208,0.671559, -0.671559,-0.803208,0.514103,0.903989,-0.336890,-0.970031,0.146730,0.998795,0.049068,-0.989177,-0.242980,0.941544,0.427555,-0.857729,-0.595699,0.740951} }; // up to 32-bits static unsigned jo_readBits(const unsigned char *data, int *at, int num) { unsigned r = 0; // read partial starting bits int sc = (8 - (*at & 7)) & 7; sc = sc > num ? num : sc; if(sc) { r = (data[*at/8] >> (8 - (*at&7) - sc)) & ((1<=8) { r <<= 8; r |= data[*at/8]; *at += 8; num -= 8; } // read partial ending bits if(num) { r <<= num; r |= (data[*at/8] >> (8 - num)) & ((1<= inputSize * 8 - 32) { break; } unsigned header = jo_readBits(data, &at, 32); //printf("header: %x.%x/%x: %08x\n", (at-32)/8, (at-32)&7, inputSize, header); // sync = 0xFFF // ID = 1 // layer = 3 (layer 1) if ((header & 0xFFFE0000) != 0xFFFE0000) { return false; } static const int bitrateTbl[16] = { 0,32,40,48,56,64,80,96,112,128,160,192,224,256,320,-1 }; int kbps = bitrateTbl[(header >> 12) & 15]; if (kbps < 0) { return false; } static const int hzTbl[4] = { 44100, 48000, 32000, 0 }; hz = hzTbl[(header >> 10) & 3]; if (!hz) { return false; } // mode 0 = stereo // mode 1 = joint stereo // mode 2 = dual channel (no idea what this does TODO) // mode 3 = mono int mode = (header >> 6) & 3; int modeExt = (header >> 4) & 3; channels = mode == 3 ? 1 : 2; const int bound = mode == 1 ? (modeExt + 1) * 4 : 32; bool errorProtection = ((header >> 16) & 1) ^ 1; //< @r-lyeh extra parens if (errorProtection) { at += 16; // skip the CRC. } // Read bit allocations int bitAlloc[32][2] = { 0 }; for (int i = 0; i < bound; ++i) { for (int ch = 0; ch < channels; ++ch) { bitAlloc[i][ch] = jo_readBits(data, &at, 4); } } for (int i = bound; i < 32; ++i) { bitAlloc[i][1] = bitAlloc[i][0] = jo_readBits(data, &at, 4); } // Read scale indexes int scaleIdx[32][2]; for (int i = 0; i < 32; ++i) { for (int ch = 0; ch < channels; ++ch) { scaleIdx[i][ch] = bitAlloc[i][ch] ? jo_readBits(data, &at, 6) : 63; } } // Read & compute output samples short pcm[12][2][32]; for (int s = 0; s < 12; ++s) { // Read normalized, quantized band samples int samples[32][2] = { 0 }; for (int i = 0; i < bound; ++i) { for (int ch = 0; ch < channels; ++ch) { if (bitAlloc[i][ch]) { samples[i][ch] = jo_readBits(data, &at, bitAlloc[i][ch] + 1); } } } for (int i = bound; i < 32; ++i) { if (bitAlloc[i][0]) { samples[i][1] = samples[i][0] = jo_readBits(data, &at, bitAlloc[i][0] + 1); } } // Compute bands: Dequantize & Denormalize double bandTbl[2][32] = { 0 }; for (int i = 0; i < 32; ++i) { for (int ch = 0; ch < channels; ++ch) { int b = bitAlloc[i][ch]; if (b++) { int samp = samples[i][ch]; double f = ((samp >> (b - 1)) & 1) ? 0 : -1; f += (samp & ((1 << (b - 1)) - 1)) / (double)(1 << (b - 1)); f = (f + 1.0 / (1 << (b - 1))) * (1 << b) / ((1 << b) - 1.0); f *= s_jo_multTbl[scaleIdx[i][ch]]; bandTbl[ch][i] = f; } } } // Convert subbands to PCM for (int ch = 0; ch < channels; ++ch) { bufOffset[ch] = (bufOffset[ch] + 0x3C0) & 0x3ff; double *bufOffsetPtr = buf[ch] + bufOffset[ch]; const double *f = s_jo_filterTbl[0]; for (int i = 0; i < 64; ++i) { double sum = 0; for (int j = 0; j < 32; ++j) { sum += *f++ * bandTbl[ch][j]; } bufOffsetPtr[i] = sum; } const double *w = s_jo_windowTbl; for (int i = 0; i < 32; ++i) { double sum = 0; for (int j = 0; j < 16; ++j) { int k = i | (j + (j + 1 & -2)) << 5; sum += *w++ * buf[ch][(k + bufOffset[ch]) & 0x3ff]; } int ss = (int)(sum * 0x8000); ss = ss > SHRT_MAX ? SHRT_MAX : ss < SHRT_MIN ? SHRT_MIN : ss; pcm[s][ch][i] = ss; } } } if (at > inputSize * 8) { printf("file corruption?\n"); return false; } if (outputMax == 0) { // estimate total number of samples (may be totally wrong, but its better than nothing) at = (at + 7)&-8; outputMax = inputSize / (at / 8) * 384 * channels * sizeof(*output); output = (short*)REALLOC(output, outputMax); } if (outputSize * sizeof(*output) + 384 * channels * sizeof(*output) > outputMax) { outputMax += 384 * channels * sizeof(*output); output = (short*)REALLOC(output, outputMax); } for (int i = 0; i < 12; ++i) { for (int j = 0; j < 32; ++j) { for (int k = 0; k < channels; ++k) { output[outputSize++] = pcm[i][k][j]; } } } } *outputSize_ = outputSize; *hz_ = hz; *channels_ = channels; *output_ = output; return outputSize && hz && channels && output; } #endif // JO_MP1_HEADER_FILE_ONLY #line 0 #define get_bits stb_vorbis_get_bits #define error stb_vorbis_error #line 1 "3rd_stb_vorbis.h" // Ogg Vorbis audio decoder - v1.19 - public domain // http://nothings.org/stb_vorbis/ // // Original version written by Sean Barrett in 2007. // // Originally sponsored by RAD Game Tools. Seeking implementation // sponsored by Phillip Bennefall, Marc Andersen, Aaron Baker, // Elias Software, Aras Pranckevicius, and Sean Barrett. // // LICENSE // // See end of file for license information. // // Limitations: // // - floor 0 not supported (used in old ogg vorbis files pre-2004) // - lossless sample-truncation at beginning ignored // - cannot concatenate multiple vorbis streams // - sample positions are 32-bit, limiting seekable 192Khz // files to around 6 hours (Ogg supports 64-bit) // // Feature contributors: // Dougall Johnson (sample-exact seeking) // // Bugfix/warning contributors: // Terje Mathisen Niklas Frykholm Andy Hill // Casey Muratori John Bolton Gargaj // Laurent Gomila Marc LeBlanc Ronny Chevalier // Bernhard Wodo Evan Balster github:alxprd // Tom Beaumont Ingo Leitgeb Nicolas Guillemot // Phillip Bennefall Rohit Thiago Goulart // github:manxorist saga musix github:infatum // Timur Gagiev Maxwell Koo Peter Waller // github:audinowho Dougall Johnson // // Partial history: // 1.19 - 2020-02-05 - warnings // 1.18 - 2020-02-02 - fix seek bugs; parse header comments; misc warnings etc. // 1.17 - 2019-07-08 - fix CVE-2019-13217..CVE-2019-13223 (by ForAllSecure) // 1.16 - 2019-03-04 - fix warnings // 1.15 - 2019-02-07 - explicit failure if Ogg Skeleton data is found // 1.14 - 2018-02-11 - delete bogus dealloca usage // 1.13 - 2018-01-29 - fix truncation of last frame (hopefully) // 1.12 - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files // 1.11 - 2017-07-23 - fix MinGW compilation // 1.10 - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory // 1.09 - 2016-04-04 - back out 'truncation of last frame' fix from previous version // 1.08 - 2016-04-02 - warnings; setup memory leaks; truncation of last frame // 1.07 - 2015-01-16 - fixes for crashes on invalid files; warning fixes; const // 1.06 - 2015-08-31 - full, correct support for seeking API (Dougall Johnson) // some crash fixes when out of memory or with corrupt files // fix some inappropriately signed shifts // 1.05 - 2015-04-19 - don't define __forceinline if it's redundant // 1.04 - 2014-08-27 - fix missing const-correct case in API // 1.03 - 2014-08-07 - warning fixes // 1.02 - 2014-07-09 - declare qsort comparison as explicitly _cdecl in Windows // 1.01 - 2014-06-18 - fix stb_vorbis_get_samples_float (interleaved was correct) // 1.0 - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in >2-channel; // (API change) report sample rate for decode-full-file funcs // // See end of file for full version history. ////////////////////////////////////////////////////////////////////////////// // // HEADER BEGINS HERE // #ifndef STB_VORBIS_INCLUDE_STB_VORBIS_H #define STB_VORBIS_INCLUDE_STB_VORBIS_H #if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO) #define STB_VORBIS_NO_STDIO 1 #endif #ifndef STB_VORBIS_NO_STDIO #include #endif #ifdef __cplusplus extern "C" { #endif /////////// THREAD SAFETY // Individual stb_vorbis* handles are not thread-safe; you cannot decode from // them from multiple threads at the same time. However, you can have multiple // stb_vorbis* handles and decode from them independently in multiple thrads. /////////// MEMORY ALLOCATION // normally stb_vorbis uses malloc() to allocate memory at startup, // and alloca() to allocate temporary memory during a frame on the // stack. (Memory consumption will depend on the amount of setup // data in the file and how you set the compile flags for speed // vs. size. In my test files the maximal-size usage is ~150KB.) // // You can modify the wrapper functions in the source (setup_malloc, // setup_temp_malloc, temp_malloc) to change this behavior, or you // can use a simpler allocation model: you pass in a buffer from // which stb_vorbis will allocate _all_ its memory (including the // temp memory). "open" may fail with a VORBIS_outofmem if you // do not pass in enough data; there is no way to determine how // much you do need except to succeed (at which point you can // query get_info to find the exact amount required. yes I know // this is lame). // // If you pass in a non-NULL buffer of the type below, allocation // will occur from it as described above. Otherwise just pass NULL // to use malloc()/alloca() typedef struct { char *alloc_buffer; int alloc_buffer_length_in_bytes; } stb_vorbis_alloc; /////////// FUNCTIONS USEABLE WITH ALL INPUT MODES typedef struct stb_vorbis stb_vorbis; typedef struct { unsigned int sample_rate; int channels; unsigned int setup_memory_required; unsigned int setup_temp_memory_required; unsigned int temp_memory_required; int max_frame_size; } stb_vorbis_info; typedef struct { char *vendor; int comment_list_length; char **comment_list; } stb_vorbis_comment; // get general information about the file extern stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f); // get ogg comments extern stb_vorbis_comment stb_vorbis_get_comment(stb_vorbis *f); // get the last error detected (clears it, too) extern int stb_vorbis_get_error(stb_vorbis *f); // close an ogg vorbis file and free all memory in use extern void stb_vorbis_close(stb_vorbis *f); // this function returns the offset (in samples) from the beginning of the // file that will be returned by the next decode, if it is known, or -1 // otherwise. after a flush_pushdata() call, this may take a while before // it becomes valid again. // NOT WORKING YET after a seek with PULLDATA API extern int stb_vorbis_get_sample_offset(stb_vorbis *f); // returns the current seek point within the file, or offset from the beginning // of the memory buffer. In pushdata mode it returns 0. extern unsigned int stb_vorbis_get_file_offset(stb_vorbis *f); /////////// PUSHDATA API #ifndef STB_VORBIS_NO_PUSHDATA_API // this API allows you to get blocks of data from any source and hand // them to stb_vorbis. you have to buffer them; stb_vorbis will tell // you how much it used, and you have to give it the rest next time; // and stb_vorbis may not have enough data to work with and you will // need to give it the same data again PLUS more. Note that the Vorbis // specification does not bound the size of an individual frame. extern stb_vorbis *stb_vorbis_open_pushdata( const unsigned char * datablock, int datablock_length_in_bytes, int *datablock_memory_consumed_in_bytes, int *error, const stb_vorbis_alloc *alloc_buffer); // create a vorbis decoder by passing in the initial data block containing // the ogg&vorbis headers (you don't need to do parse them, just provide // the first N bytes of the file--you're told if it's not enough, see below) // on success, returns an stb_vorbis *, does not set error, returns the amount of // data parsed/consumed on this call in *datablock_memory_consumed_in_bytes; // on failure, returns NULL on error and sets *error, does not change *datablock_memory_consumed // if returns NULL and *error is VORBIS_need_more_data, then the input block was // incomplete and you need to pass in a larger block from the start of the file extern int stb_vorbis_decode_frame_pushdata( stb_vorbis *f, const unsigned char *datablock, int datablock_length_in_bytes, int *channels, // place to write number of float * buffers float ***output, // place to write float ** array of float * buffers int *samples // place to write number of output samples ); // decode a frame of audio sample data if possible from the passed-in data block // // return value: number of bytes we used from datablock // // possible cases: // 0 bytes used, 0 samples output (need more data) // N bytes used, 0 samples output (resynching the stream, keep going) // N bytes used, M samples output (one frame of data) // note that after opening a file, you will ALWAYS get one N-bytes,0-sample // frame, because Vorbis always "discards" the first frame. // // Note that on resynch, stb_vorbis will rarely consume all of the buffer, // instead only datablock_length_in_bytes-3 or less. This is because it wants // to avoid missing parts of a page header if they cross a datablock boundary, // without writing state-machiney code to record a partial detection. // // The number of channels returned are stored in *channels (which can be // NULL--it is always the same as the number of channels reported by // get_info). *output will contain an array of float* buffers, one per // channel. In other words, (*output)[0][0] contains the first sample from // the first channel, and (*output)[1][0] contains the first sample from // the second channel. extern void stb_vorbis_flush_pushdata(stb_vorbis *f); // inform stb_vorbis that your next datablock will not be contiguous with // previous ones (e.g. you've seeked in the data); future attempts to decode // frames will cause stb_vorbis to resynchronize (as noted above), and // once it sees a valid Ogg page (typically 4-8KB, as large as 64KB), it // will begin decoding the _next_ frame. // // if you want to seek using pushdata, you need to seek in your file, then // call stb_vorbis_flush_pushdata(), then start calling decoding, then once // decoding is returning you data, call stb_vorbis_get_sample_offset, and // if you don't like the result, seek your file again and repeat. #endif ////////// PULLING INPUT API #ifndef STB_VORBIS_NO_PULLDATA_API // This API assumes stb_vorbis is allowed to pull data from a source-- // either a block of memory containing the _entire_ vorbis stream, or a // FILE * that you or it create, or possibly some other reading mechanism // if you go modify the source to replace the FILE * case with some kind // of callback to your code. (But if you don't support seeking, you may // just want to go ahead and use pushdata.) #if !defined(STB_VORBIS_NO_STDIO) && !defined(STB_VORBIS_NO_INTEGER_CONVERSION) extern int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output); #endif #if !defined(STB_VORBIS_NO_INTEGER_CONVERSION) extern int stb_vorbis_decode_memory(const unsigned char *mem, int len, int *channels, int *sample_rate, short **output); #endif // decode an entire file and output the data interleaved into a malloc()ed // buffer stored in *output. The return value is the number of samples // decoded, or -1 if the file could not be opened or was not an ogg vorbis file. // When you're done with it, just free() the pointer returned in *output. extern stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, const stb_vorbis_alloc *alloc_buffer); // create an ogg vorbis decoder from an ogg vorbis stream in memory (note // this must be the entire stream!). on failure, returns NULL and sets *error #ifndef STB_VORBIS_NO_STDIO extern stb_vorbis * stb_vorbis_open_filename(const char *filename, int *error, const stb_vorbis_alloc *alloc_buffer); // create an ogg vorbis decoder from a filename via fopen(). on failure, // returns NULL and sets *error (possibly to VORBIS_file_open_failure). extern stb_vorbis * stb_vorbis_open_file(FILE *f, int close_handle_on_close, int *error, const stb_vorbis_alloc *alloc_buffer); // create an ogg vorbis decoder from an open FILE *, looking for a stream at // the _current_ seek point (ftell). on failure, returns NULL and sets *error. // note that stb_vorbis must "own" this stream; if you seek it in between // calls to stb_vorbis, it will become confused. Moreover, if you attempt to // perform stb_vorbis_seek_*() operations on this file, it will assume it // owns the _entire_ rest of the file after the start point. Use the next // function, stb_vorbis_open_file_section(), to limit it. extern stb_vorbis * stb_vorbis_open_file_section(FILE *f, int close_handle_on_close, int *error, const stb_vorbis_alloc *alloc_buffer, unsigned int len); // create an ogg vorbis decoder from an open FILE *, looking for a stream at // the _current_ seek point (ftell); the stream will be of length 'len' bytes. // on failure, returns NULL and sets *error. note that stb_vorbis must "own" // this stream; if you seek it in between calls to stb_vorbis, it will become // confused. #endif extern int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number); extern int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number); // these functions seek in the Vorbis file to (approximately) 'sample_number'. // after calling seek_frame(), the next call to get_frame_*() will include // the specified sample. after calling stb_vorbis_seek(), the next call to // stb_vorbis_get_samples_* will start with the specified sample. If you // do not need to seek to EXACTLY the target sample when using get_samples_*, // you can also use seek_frame(). extern int stb_vorbis_seek_start(stb_vorbis *f); // this function is equivalent to stb_vorbis_seek(f,0) extern unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f); extern float stb_vorbis_stream_length_in_seconds(stb_vorbis *f); // these functions return the total length of the vorbis stream extern int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output); // decode the next frame and return the number of samples. the number of // channels returned are stored in *channels (which can be NULL--it is always // the same as the number of channels reported by get_info). *output will // contain an array of float* buffers, one per channel. These outputs will // be overwritten on the next call to stb_vorbis_get_frame_*. // // You generally should not intermix calls to stb_vorbis_get_frame_*() // and stb_vorbis_get_samples_*(), since the latter calls the former. #ifndef STB_VORBIS_NO_INTEGER_CONVERSION extern int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts); extern int stb_vorbis_get_frame_short (stb_vorbis *f, int num_c, short **buffer, int num_samples); #endif // decode the next frame and return the number of *samples* per channel. // Note that for interleaved data, you pass in the number of shorts (the // size of your array), but the return value is the number of samples per // channel, not the total number of samples. // // The data is coerced to the number of channels you request according to the // channel coercion rules (see below). You must pass in the size of your // buffer(s) so that stb_vorbis will not overwrite the end of the buffer. // The maximum buffer size needed can be gotten from get_info(); however, // the Vorbis I specification implies an absolute maximum of 4096 samples // per channel. // Channel coercion rules: // Let M be the number of channels requested, and N the number of channels present, // and Cn be the nth channel; let stereo L be the sum of all L and center channels, // and stereo R be the sum of all R and center channels (channel assignment from the // vorbis spec). // M N output // 1 k sum(Ck) for all k // 2 * stereo L, stereo R // k l k > l, the first l channels, then 0s // k l k <= l, the first k channels // Note that this is not _good_ surround etc. mixing at all! It's just so // you get something useful. extern int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats); extern int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples); // gets num_samples samples, not necessarily on a frame boundary--this requires // buffering so you have to supply the buffers. DOES NOT APPLY THE COERCION RULES. // Returns the number of samples stored per channel; it may be less than requested // at the end of the file. If there are no more samples in the file, returns 0. #ifndef STB_VORBIS_NO_INTEGER_CONVERSION extern int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts); extern int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int num_samples); #endif // gets num_samples samples, not necessarily on a frame boundary--this requires // buffering so you have to supply the buffers. Applies the coercion rules above // to produce 'channels' channels. Returns the number of samples stored per channel; // it may be less than requested at the end of the file. If there are no more // samples in the file, returns 0. #endif //////// ERROR CODES enum STBVorbisError { VORBIS__no_error, VORBIS_need_more_data=1, // not a real error VORBIS_invalid_api_mixing, // can't mix API modes VORBIS_outofmem, // not enough memory VORBIS_feature_not_supported, // uses floor 0 VORBIS_too_many_channels, // STB_VORBIS_MAX_CHANNELS is too small VORBIS_file_open_failure, // fopen() failed VORBIS_seek_without_length, // can't seek in unknown-length file VORBIS_unexpected_eof=10, // file is truncated? VORBIS_seek_invalid, // seek past EOF // decoding errors (corrupt/invalid stream) -- you probably // don't care about the exact details of these // vorbis errors: VORBIS_invalid_setup=20, VORBIS_invalid_stream, // ogg errors: VORBIS_missing_capture_pattern=30, VORBIS_invalid_stream_structure_version, VORBIS_continued_packet_flag_invalid, VORBIS_incorrect_stream_serial_number, VORBIS_invalid_first_page, VORBIS_bad_packet_type, VORBIS_cant_find_last_page, VORBIS_seek_failed, VORBIS_ogg_skeleton_not_supported }; #ifdef __cplusplus } #endif #endif // STB_VORBIS_INCLUDE_STB_VORBIS_H // // HEADER ENDS HERE // ////////////////////////////////////////////////////////////////////////////// #ifndef STB_VORBIS_HEADER_ONLY // global configuration settings (e.g. set these in the project/makefile), // or just set them in this file at the top (although ideally the first few // should be visible when the header file is compiled too, although it's not // crucial) // STB_VORBIS_NO_PUSHDATA_API // does not compile the code for the various stb_vorbis_*_pushdata() // functions // #define STB_VORBIS_NO_PUSHDATA_API // STB_VORBIS_NO_PULLDATA_API // does not compile the code for the non-pushdata APIs // #define STB_VORBIS_NO_PULLDATA_API // STB_VORBIS_NO_STDIO // does not compile the code for the APIs that use FILE *s internally // or externally (implied by STB_VORBIS_NO_PULLDATA_API) // #define STB_VORBIS_NO_STDIO // STB_VORBIS_NO_INTEGER_CONVERSION // does not compile the code for converting audio sample data from // float to integer (implied by STB_VORBIS_NO_PULLDATA_API) // #define STB_VORBIS_NO_INTEGER_CONVERSION // STB_VORBIS_NO_FAST_SCALED_FLOAT // does not use a fast float-to-int trick to accelerate float-to-int on // most platforms which requires endianness be defined correctly. //#define STB_VORBIS_NO_FAST_SCALED_FLOAT // STB_VORBIS_MAX_CHANNELS [number] // globally define this to the maximum number of channels you need. // The spec does not put a restriction on channels except that // the count is stored in a byte, so 255 is the hard limit. // Reducing this saves about 16 bytes per value, so using 16 saves // (255-16)*16 or around 4KB. Plus anything other memory usage // I forgot to account for. Can probably go as low as 8 (7.1 audio), // 6 (5.1 audio), or 2 (stereo only). #ifndef STB_VORBIS_MAX_CHANNELS #define STB_VORBIS_MAX_CHANNELS 16 // enough for anyone? #endif // STB_VORBIS_PUSHDATA_CRC_COUNT [number] // after a flush_pushdata(), stb_vorbis begins scanning for the // next valid page, without backtracking. when it finds something // that looks like a page, it streams through it and verifies its // CRC32. Should that validation fail, it keeps scanning. But it's // possible that _while_ streaming through to check the CRC32 of // one candidate page, it sees another candidate page. This #define // determines how many "overlapping" candidate pages it can search // at once. Note that "real" pages are typically ~4KB to ~8KB, whereas // garbage pages could be as big as 64KB, but probably average ~16KB. // So don't hose ourselves by scanning an apparent 64KB page and // missing a ton of real ones in the interim; so minimum of 2 #ifndef STB_VORBIS_PUSHDATA_CRC_COUNT #define STB_VORBIS_PUSHDATA_CRC_COUNT 4 #endif // STB_VORBIS_FAST_HUFFMAN_LENGTH [number] // sets the log size of the huffman-acceleration table. Maximum // supported value is 24. with larger numbers, more decodings are O(1), // but the table size is larger so worse cache missing, so you'll have // to probe (and try multiple ogg vorbis files) to find the sweet spot. #ifndef STB_VORBIS_FAST_HUFFMAN_LENGTH #define STB_VORBIS_FAST_HUFFMAN_LENGTH 10 #endif // STB_VORBIS_FAST_BINARY_LENGTH [number] // sets the log size of the binary-search acceleration table. this // is used in similar fashion to the fast-huffman size to set initial // parameters for the binary search // STB_VORBIS_FAST_HUFFMAN_INT // The fast huffman tables are much more efficient if they can be // stored as 16-bit results instead of 32-bit results. This restricts // the codebooks to having only 65535 possible outcomes, though. // (At least, accelerated by the huffman table.) #ifndef STB_VORBIS_FAST_HUFFMAN_INT #define STB_VORBIS_FAST_HUFFMAN_SHORT #endif // STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH // If the 'fast huffman' search doesn't succeed, then stb_vorbis falls // back on binary searching for the correct one. This requires storing // extra tables with the huffman codes in sorted order. Defining this // symbol trades off space for speed by forcing a linear search in the // non-fast case, except for "sparse" codebooks. // #define STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH // STB_VORBIS_DIVIDES_IN_RESIDUE // stb_vorbis precomputes the result of the scalar residue decoding // that would otherwise require a divide per chunk. you can trade off // space for time by defining this symbol. // #define STB_VORBIS_DIVIDES_IN_RESIDUE // STB_VORBIS_DIVIDES_IN_CODEBOOK // vorbis VQ codebooks can be encoded two ways: with every case explicitly // stored, or with all elements being chosen from a small range of values, // and all values possible in all elements. By default, stb_vorbis expands // this latter kind out to look like the former kind for ease of decoding, // because otherwise an integer divide-per-vector-element is required to // unpack the index. If you define STB_VORBIS_DIVIDES_IN_CODEBOOK, you can // trade off storage for speed. //#define STB_VORBIS_DIVIDES_IN_CODEBOOK #ifdef STB_VORBIS_CODEBOOK_SHORTS #error "STB_VORBIS_CODEBOOK_SHORTS is no longer supported as it produced incorrect results for some input formats" #endif // STB_VORBIS_DIVIDE_TABLE // this replaces small integer divides in the floor decode loop with // table lookups. made less than 1% difference, so disabled by default. // STB_VORBIS_NO_INLINE_DECODE // disables the inlining of the scalar codebook fast-huffman decode. // might save a little codespace; useful for debugging // #define STB_VORBIS_NO_INLINE_DECODE // STB_VORBIS_NO_DEFER_FLOOR // Normally we only decode the floor without synthesizing the actual // full curve. We can instead synthesize the curve immediately. This // requires more memory and is very likely slower, so I don't think // you'd ever want to do it except for debugging. // #define STB_VORBIS_NO_DEFER_FLOOR ////////////////////////////////////////////////////////////////////////////// #ifdef STB_VORBIS_NO_PULLDATA_API #define STB_VORBIS_NO_INTEGER_CONVERSION #define STB_VORBIS_NO_STDIO #endif #if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO) #define STB_VORBIS_NO_STDIO 1 #endif #ifndef STB_VORBIS_NO_INTEGER_CONVERSION #ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT // only need endianness for fast-float-to-int, which we don't // use for pushdata #ifndef STB_VORBIS_BIG_ENDIAN #define STB_VORBIS_ENDIAN 0 #else #define STB_VORBIS_ENDIAN 1 #endif #endif #endif #ifndef STB_VORBIS_NO_STDIO #include #endif #ifndef STB_VORBIS_NO_CRT #include #include #include #include // find definition of alloca if it's not in stdlib.h: #if defined(_MSC_VER) || defined(__MINGW32__) #include #endif #if defined(__linux__) || defined(__linux) || defined(__EMSCRIPTEN__) #include #endif #else // STB_VORBIS_NO_CRT #define NULL 0 #define malloc(s) 0 #define free(s) ((void) 0) #define realloc(s) 0 #endif // STB_VORBIS_NO_CRT #include #ifdef __MINGW32__ // eff you mingw: // "fixed": // http://sourceforge.net/p/mingw-w64/mailman/message/32882927/ // "no that broke the build, reverted, who cares about C": // http://sourceforge.net/p/mingw-w64/mailman/message/32890381/ #ifdef __forceinline #undef __forceinline #endif #define __forceinline #ifndef alloca #define alloca __builtin_alloca #endif #elif !defined(_MSC_VER) #if __GNUC__ #define __forceinline inline #else #define __forceinline #endif #endif #if STB_VORBIS_MAX_CHANNELS > 256 #error "Value of STB_VORBIS_MAX_CHANNELS outside of allowed range" #endif #if STB_VORBIS_FAST_HUFFMAN_LENGTH > 24 #error "Value of STB_VORBIS_FAST_HUFFMAN_LENGTH outside of allowed range" #endif #if 0 #include #define CHECK(f) _CrtIsValidHeapPointer(f->channel_buffers[1]) #else #define CHECK(f) ((void) 0) #endif #define MAX_BLOCKSIZE_LOG 13 // from specification #define MAX_BLOCKSIZE (1 << MAX_BLOCKSIZE_LOG) typedef unsigned char uint8; typedef signed char int8; typedef unsigned short uint16; typedef signed short int16; typedef unsigned int uint32; typedef signed int int32; #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif typedef float codetype; // @NOTE // // Some arrays below are tagged "//varies", which means it's actually // a variable-sized piece of data, but rather than malloc I assume it's // small enough it's better to just allocate it all together with the // main thing // // Most of the variables are specified with the smallest size I could pack // them into. It might give better performance to make them all full-sized // integers. It should be safe to freely rearrange the structures or change // the sizes larger--nothing relies on silently truncating etc., nor the // order of variables. #define FAST_HUFFMAN_TABLE_SIZE (1 << STB_VORBIS_FAST_HUFFMAN_LENGTH) #define FAST_HUFFMAN_TABLE_MASK (FAST_HUFFMAN_TABLE_SIZE - 1) typedef struct { int dimensions, entries; uint8 *codeword_lengths; float minimum_value; float delta_value; uint8 value_bits; uint8 lookup_type; uint8 sequence_p; uint8 sparse; uint32 lookup_values; codetype *multiplicands; uint32 *codewords; #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT int16 fast_huffman[FAST_HUFFMAN_TABLE_SIZE]; #else int32 fast_huffman[FAST_HUFFMAN_TABLE_SIZE]; #endif uint32 *sorted_codewords; int *sorted_values; int sorted_entries; } Codebook; typedef struct { uint8 order; uint16 rate; uint16 bark_map_size; uint8 amplitude_bits; uint8 amplitude_offset; uint8 number_of_books; uint8 book_list[16]; // varies } Floor0; typedef struct { uint8 partitions; uint8 partition_class_list[32]; // varies uint8 class_dimensions[16]; // varies uint8 class_subclasses[16]; // varies uint8 class_masterbooks[16]; // varies int16 subclass_books[16][8]; // varies uint16 Xlist[31*8+2]; // varies uint8 sorted_order[31*8+2]; uint8 neighbors[31*8+2][2]; uint8 floor1_multiplier; uint8 rangebits; int values; } Floor1; typedef union { Floor0 floor0; Floor1 floor1; } Floor; typedef struct { uint32 begin, end; uint32 part_size; uint8 classifications; uint8 classbook; uint8 **classdata; int16 (*residue_books)[8]; } Residue; typedef struct { uint8 magnitude; uint8 angle; uint8 mux; } MappingChannel; typedef struct { uint16 coupling_steps; MappingChannel *chan; uint8 submaps; uint8 submap_floor[15]; // varies uint8 submap_residue[15]; // varies } Mapping; typedef struct { uint8 blockflag; uint8 mapping; uint16 windowtype; uint16 transformtype; } Mode; typedef struct { uint32 goal_crc; // expected crc if match int bytes_left; // bytes left in packet uint32 crc_so_far; // running crc int bytes_done; // bytes processed in _current_ chunk uint32 sample_loc; // granule pos encoded in page } CRCscan; typedef struct { uint32 page_start, page_end; uint32 last_decoded_sample; } ProbedPage; struct stb_vorbis { // user-accessible info unsigned int sample_rate; int channels; unsigned int setup_memory_required; unsigned int temp_memory_required; unsigned int setup_temp_memory_required; char *vendor; int comment_list_length; char **comment_list; // input config #ifndef STB_VORBIS_NO_STDIO FILE *f; uint32 f_start; int close_on_free; #endif uint8 *stream; uint8 *stream_start; uint8 *stream_end; uint32 stream_len; uint8 push_mode; // the page to seek to when seeking to start, may be zero uint32 first_audio_page_offset; // p_first is the page on which the first audio packet ends // (but not necessarily the page on which it starts) ProbedPage p_first, p_last; // memory management stb_vorbis_alloc alloc; int setup_offset; int temp_offset; // run-time results int eof; enum STBVorbisError error; // user-useful data // header info int blocksize[2]; int blocksize_0, blocksize_1; int codebook_count; Codebook *codebooks; int floor_count; uint16 floor_types[64]; // varies Floor *floor_config; int residue_count; uint16 residue_types[64]; // varies Residue *residue_config; int mapping_count; Mapping *mapping; int mode_count; Mode mode_config[64]; // varies uint32 total_samples; // decode buffer float *channel_buffers[STB_VORBIS_MAX_CHANNELS]; float *outputs [STB_VORBIS_MAX_CHANNELS]; float *previous_window[STB_VORBIS_MAX_CHANNELS]; int previous_length; #ifndef STB_VORBIS_NO_DEFER_FLOOR int16 *finalY[STB_VORBIS_MAX_CHANNELS]; #else float *floor_buffers[STB_VORBIS_MAX_CHANNELS]; #endif uint32 current_loc; // sample location of next frame to decode int current_loc_valid; // per-blocksize precomputed data // twiddle factors float *A[2],*B[2],*C[2]; float *window[2]; uint16 *bit_reverse[2]; // current page/packet/segment streaming info uint32 serial; // stream serial number for verification int last_page; int segment_count; uint8 segments[255]; uint8 page_flag; uint8 bytes_in_seg; uint8 first_decode; int next_seg; int last_seg; // flag that we're on the last segment int last_seg_which; // what was the segment number of the last seg? uint32 acc; int valid_bits; int packet_bytes; int end_seg_with_known_loc; uint32 known_loc_for_packet; int discard_samples_deferred; uint32 samples_output; // push mode scanning int page_crc_tests; // only in push_mode: number of tests active; -1 if not searching #ifndef STB_VORBIS_NO_PUSHDATA_API CRCscan scan[STB_VORBIS_PUSHDATA_CRC_COUNT]; #endif // sample-access int channel_buffer_start; int channel_buffer_end; }; #if defined(STB_VORBIS_NO_PUSHDATA_API) #define IS_PUSH_MODE(f) FALSE #elif defined(STB_VORBIS_NO_PULLDATA_API) #define IS_PUSH_MODE(f) TRUE #else #define IS_PUSH_MODE(f) ((f)->push_mode) #endif typedef struct stb_vorbis vorb; static int error(vorb *f, enum STBVorbisError e) { f->error = e; if (!f->eof && e != VORBIS_need_more_data) { f->error=e; // breakpoint for debugging } return 0; } // these functions are used for allocating temporary memory // while decoding. if you can afford the stack space, use // alloca(); otherwise, provide a temp buffer and it will // allocate out of those. #define array_size_required(count,size) (count*(sizeof(void *)+(size))) #define temp_alloc(f,size) (f->alloc.alloc_buffer ? setup_temp_malloc(f,size) : alloca(size)) #define temp_free(f,p) (void)0 #define temp_alloc_save(f) ((f)->temp_offset) #define temp_alloc_restore(f,p) ((f)->temp_offset = (p)) #define temp_block_array(f,count,size) make_block_array(temp_alloc(f,array_size_required(count,size)), count, size) // given a sufficiently large block of memory, make an array of pointers to subblocks of it static void *make_block_array(void *mem, int count, int size) { int i; void ** p = (void **) mem; char *q = (char *) (p + count); for (i=0; i < count; ++i) { p[i] = q; q += size; } return p; } static void *setup_malloc(vorb *f, int sz) { sz = (sz+7) & ~7; // round up to nearest 8 for alignment of future allocs. f->setup_memory_required += sz; if (f->alloc.alloc_buffer) { void *p = (char *) f->alloc.alloc_buffer + f->setup_offset; if (f->setup_offset + sz > f->temp_offset) return NULL; f->setup_offset += sz; return p; } return sz ? malloc(sz) : NULL; } static void setup_free(vorb *f, void *p) { if (f->alloc.alloc_buffer) return; // do nothing; setup mem is a stack free(p); } static void *setup_temp_malloc(vorb *f, int sz) { sz = (sz+7) & ~7; // round up to nearest 8 for alignment of future allocs. if (f->alloc.alloc_buffer) { if (f->temp_offset - sz < f->setup_offset) return NULL; f->temp_offset -= sz; return (char *) f->alloc.alloc_buffer + f->temp_offset; } return malloc(sz); } static void setup_temp_free(vorb *f, void *p, int sz) { if (f->alloc.alloc_buffer) { f->temp_offset += (sz+3)&~3; return; } free(p); } #define CRC32_POLY 0x04c11db7 // from spec static uint32 crc_table[256]; static void crc32_init(void) { int i,j; uint32 s; for(i=0; i < 256; i++) { for (s=(uint32) i << 24, j=0; j < 8; ++j) s = (s << 1) ^ (s >= (1U<<31) ? CRC32_POLY : 0); crc_table[i] = s; } } static __forceinline uint32 crc32_update(uint32 crc, uint8 byte) { return (crc << 8) ^ crc_table[byte ^ (crc >> 24)]; } // used in setup, and for huffman that doesn't go fast path static unsigned int bit_reverse(unsigned int n) { n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1); n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2); n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4); n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8); return (n >> 16) | (n << 16); } static float square(float x) { return x*x; } // this is a weird definition of log2() for which log2(1) = 1, log2(2) = 2, log2(4) = 3 // as required by the specification. fast(?) implementation from stb.h // @OPTIMIZE: called multiple times per-packet with "constants"; move to setup static int ilog(int32 n) { static signed char log2_4[16] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 }; if (n < 0) return 0; // signed n returns 0 // 2 compares if n < 16, 3 compares otherwise (4 if signed or n > 1<<29) if (n < (1 << 14)) if (n < (1 << 4)) return 0 + log2_4[n ]; else if (n < (1 << 9)) return 5 + log2_4[n >> 5]; else return 10 + log2_4[n >> 10]; else if (n < (1 << 24)) if (n < (1 << 19)) return 15 + log2_4[n >> 15]; else return 20 + log2_4[n >> 20]; else if (n < (1 << 29)) return 25 + log2_4[n >> 25]; else return 30 + log2_4[n >> 30]; } #ifndef M_PI #define M_PI 3.14159265358979323846264f // from CRC #endif // code length assigned to a value with no huffman encoding #define NO_CODE 255 /////////////////////// LEAF SETUP FUNCTIONS ////////////////////////// // // these functions are only called at setup, and only a few times // per file static float float32_unpack(uint32 x) { // from the specification uint32 mantissa = x & 0x1fffff; uint32 sign = x & 0x80000000; uint32 exp = (x & 0x7fe00000) >> 21; double res = sign ? -(double)mantissa : (double)mantissa; return (float) ldexp((float)res, exp-788); } // zlib & jpeg huffman tables assume that the output symbols // can either be arbitrarily arranged, or have monotonically // increasing frequencies--they rely on the lengths being sorted; // this makes for a very simple generation algorithm. // vorbis allows a huffman table with non-sorted lengths. This // requires a more sophisticated construction, since symbols in // order do not map to huffman codes "in order". static void add_entry(Codebook *c, uint32 huff_code, int symbol, int count, int len, uint32 *values) { if (!c->sparse) { c->codewords [symbol] = huff_code; } else { c->codewords [count] = huff_code; c->codeword_lengths[count] = len; values [count] = symbol; } } static int compute_codewords(Codebook *c, uint8 *len, int n, uint32 *values) { int i,k,m=0; uint32 available[32]; memset(available, 0, sizeof(available)); // find the first entry for (k=0; k < n; ++k) if (len[k] < NO_CODE) break; if (k == n) { assert(c->sorted_entries == 0); return TRUE; } // add to the list add_entry(c, 0, k, m++, len[k], values); // add all available leaves for (i=1; i <= len[k]; ++i) available[i] = 1U << (32-i); // note that the above code treats the first case specially, // but it's really the same as the following code, so they // could probably be combined (except the initial code is 0, // and I use 0 in available[] to mean 'empty') for (i=k+1; i < n; ++i) { uint32 res; int z = len[i], y; if (z == NO_CODE) continue; // find lowest available leaf (should always be earliest, // which is what the specification calls for) // note that this property, and the fact we can never have // more than one free leaf at a given level, isn't totally // trivial to prove, but it seems true and the assert never // fires, so! while (z > 0 && !available[z]) --z; if (z == 0) { return FALSE; } res = available[z]; assert(z >= 0 && z < 32); available[z] = 0; add_entry(c, bit_reverse(res), i, m++, len[i], values); // propagate availability up the tree if (z != len[i]) { assert(len[i] >= 0 && len[i] < 32); for (y=len[i]; y > z; --y) { assert(available[y] == 0); available[y] = res + (1 << (32-y)); } } } return TRUE; } // accelerated huffman table allows fast O(1) match of all symbols // of length <= STB_VORBIS_FAST_HUFFMAN_LENGTH static void compute_accelerated_huffman(Codebook *c) { int i, len; for (i=0; i < FAST_HUFFMAN_TABLE_SIZE; ++i) c->fast_huffman[i] = -1; len = c->sparse ? c->sorted_entries : c->entries; #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT if (len > 32767) len = 32767; // largest possible value we can encode! #endif for (i=0; i < len; ++i) { if (c->codeword_lengths[i] <= STB_VORBIS_FAST_HUFFMAN_LENGTH) { uint32 z = c->sparse ? bit_reverse(c->sorted_codewords[i]) : c->codewords[i]; // set table entries for all bit combinations in the higher bits while (z < FAST_HUFFMAN_TABLE_SIZE) { c->fast_huffman[z] = i; z += 1 << c->codeword_lengths[i]; } } } } #ifdef _MSC_VER #define STBV_CDECL __cdecl #else #define STBV_CDECL #endif static int STBV_CDECL uint32_compare(const void *p, const void *q) { uint32 x = * (uint32 *) p; uint32 y = * (uint32 *) q; return x < y ? -1 : x > y; } static int include_in_sort(Codebook *c, uint8 len) { if (c->sparse) { assert(len != NO_CODE); return TRUE; } if (len == NO_CODE) return FALSE; if (len > STB_VORBIS_FAST_HUFFMAN_LENGTH) return TRUE; return FALSE; } // if the fast table above doesn't work, we want to binary // search them... need to reverse the bits static void compute_sorted_huffman(Codebook *c, uint8 *lengths, uint32 *values) { int i, len; // build a list of all the entries // OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN. // this is kind of a frivolous optimization--I don't see any performance improvement, // but it's like 4 extra lines of code, so. if (!c->sparse) { int k = 0; for (i=0; i < c->entries; ++i) if (include_in_sort(c, lengths[i])) c->sorted_codewords[k++] = bit_reverse(c->codewords[i]); assert(k == c->sorted_entries); } else { for (i=0; i < c->sorted_entries; ++i) c->sorted_codewords[i] = bit_reverse(c->codewords[i]); } qsort(c->sorted_codewords, c->sorted_entries, sizeof(c->sorted_codewords[0]), uint32_compare); c->sorted_codewords[c->sorted_entries] = 0xffffffff; len = c->sparse ? c->sorted_entries : c->entries; // now we need to indicate how they correspond; we could either // #1: sort a different data structure that says who they correspond to // #2: for each sorted entry, search the original list to find who corresponds // #3: for each original entry, find the sorted entry // #1 requires extra storage, #2 is slow, #3 can use binary search! for (i=0; i < len; ++i) { int huff_len = c->sparse ? lengths[values[i]] : lengths[i]; if (include_in_sort(c,huff_len)) { uint32 code = bit_reverse(c->codewords[i]); int x=0, n=c->sorted_entries; while (n > 1) { // invariant: sc[x] <= code < sc[x+n] int m = x + (n >> 1); if (c->sorted_codewords[m] <= code) { x = m; n -= (n>>1); } else { n >>= 1; } } assert(c->sorted_codewords[x] == code); if (c->sparse) { c->sorted_values[x] = values[i]; c->codeword_lengths[x] = huff_len; } else { c->sorted_values[x] = i; } } } } // only run while parsing the header (3 times) static int vorbis_validate(uint8 *data) { static uint8 vorbis[6] = { 'v', 'o', 'r', 'b', 'i', 's' }; return memcmp(data, vorbis, 6) == 0; } // called from setup only, once per code book // (formula implied by specification) static int lookup1_values(int entries, int dim) { int r = (int) floor(exp((float) log((float) entries) / dim)); if ((int) floor(pow((float) r+1, dim)) <= entries) // (int) cast for MinGW warning; ++r; // floor() to avoid _ftol() when non-CRT if (pow((float) r+1, dim) <= entries) return -1; if ((int) floor(pow((float) r, dim)) > entries) return -1; return r; } // called twice per file static void compute_twiddle_factors(int n, float *A, float *B, float *C) { int n4 = n >> 2, n8 = n >> 3; int k,k2; for (k=k2=0; k < n4; ++k,k2+=2) { A[k2 ] = (float) cos(4*k*M_PI/n); A[k2+1] = (float) -sin(4*k*M_PI/n); B[k2 ] = (float) cos((k2+1)*M_PI/n/2) * 0.5f; B[k2+1] = (float) sin((k2+1)*M_PI/n/2) * 0.5f; } for (k=k2=0; k < n8; ++k,k2+=2) { C[k2 ] = (float) cos(2*(k2+1)*M_PI/n); C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n); } } static void compute_window(int n, float *window) { int n2 = n >> 1, i; for (i=0; i < n2; ++i) window[i] = (float) sin(0.5 * M_PI * square((float) sin((i - 0 + 0.5) / n2 * 0.5 * M_PI))); } static void compute_bitreverse(int n, uint16 *rev) { int ld = ilog(n) - 1; // ilog is off-by-one from normal definitions int i, n8 = n >> 3; for (i=0; i < n8; ++i) rev[i] = (bit_reverse(i) >> (32-ld+3)) << 2; } static int init_blocksize(vorb *f, int b, int n) { int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3; f->A[b] = (float *) setup_malloc(f, sizeof(float) * n2); f->B[b] = (float *) setup_malloc(f, sizeof(float) * n2); f->C[b] = (float *) setup_malloc(f, sizeof(float) * n4); if (!f->A[b] || !f->B[b] || !f->C[b]) return error(f, VORBIS_outofmem); compute_twiddle_factors(n, f->A[b], f->B[b], f->C[b]); f->window[b] = (float *) setup_malloc(f, sizeof(float) * n2); if (!f->window[b]) return error(f, VORBIS_outofmem); compute_window(n, f->window[b]); f->bit_reverse[b] = (uint16 *) setup_malloc(f, sizeof(uint16) * n8); if (!f->bit_reverse[b]) return error(f, VORBIS_outofmem); compute_bitreverse(n, f->bit_reverse[b]); return TRUE; } static void neighbors(uint16 *x, int n, int *plow, int *phigh) { int low = -1; int high = 65536; int i; for (i=0; i < n; ++i) { if (x[i] > low && x[i] < x[n]) { *plow = i; low = x[i]; } if (x[i] < high && x[i] > x[n]) { *phigh = i; high = x[i]; } } } // this has been repurposed so y is now the original index instead of y typedef struct { uint16 x,id; } stbv__floor_ordering; static int STBV_CDECL point_compare(const void *p, const void *q) { stbv__floor_ordering *a = (stbv__floor_ordering *) p; stbv__floor_ordering *b = (stbv__floor_ordering *) q; return a->x < b->x ? -1 : a->x > b->x; } // /////////////////////// END LEAF SETUP FUNCTIONS ////////////////////////// #if defined(STB_VORBIS_NO_STDIO) #define USE_MEMORY(z) TRUE #else #define USE_MEMORY(z) ((z)->stream) #endif static uint8 get8(vorb *z) { if (USE_MEMORY(z)) { if (z->stream >= z->stream_end) { z->eof = TRUE; return 0; } return *z->stream++; } #ifndef STB_VORBIS_NO_STDIO { int c = fgetc(z->f); if (c == EOF) { z->eof = TRUE; return 0; } return c; } #endif } static uint32 get32(vorb *f) { uint32 x; x = get8(f); x += get8(f) << 8; x += get8(f) << 16; x += (uint32) get8(f) << 24; return x; } static int getn(vorb *z, uint8 *data, int n) { if (USE_MEMORY(z)) { if (z->stream+n > z->stream_end) { z->eof = 1; return 0; } memcpy(data, z->stream, n); z->stream += n; return 1; } #ifndef STB_VORBIS_NO_STDIO if (fread(data, n, 1, z->f) == 1) return 1; else { z->eof = 1; return 0; } #endif } static void skip(vorb *z, int n) { if (USE_MEMORY(z)) { z->stream += n; if (z->stream >= z->stream_end) z->eof = 1; return; } #ifndef STB_VORBIS_NO_STDIO { long x = ftell(z->f); fseek(z->f, x+n, SEEK_SET); } #endif } static int set_file_offset(stb_vorbis *f, unsigned int loc) { #ifndef STB_VORBIS_NO_PUSHDATA_API if (f->push_mode) return 0; #endif f->eof = 0; if (USE_MEMORY(f)) { if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) { f->stream = f->stream_end; f->eof = 1; return 0; } else { f->stream = f->stream_start + loc; return 1; } } #ifndef STB_VORBIS_NO_STDIO if (loc + f->f_start < loc || loc >= 0x80000000) { loc = 0x7fffffff; f->eof = 1; } else { loc += f->f_start; } if (!fseek(f->f, loc, SEEK_SET)) return 1; f->eof = 1; fseek(f->f, f->f_start, SEEK_END); return 0; #endif } static uint8 ogg_page_header[4] = { 0x4f, 0x67, 0x67, 0x53 }; static int capture_pattern(vorb *f) { if (0x4f != get8(f)) return FALSE; if (0x67 != get8(f)) return FALSE; if (0x67 != get8(f)) return FALSE; if (0x53 != get8(f)) return FALSE; return TRUE; } #define PAGEFLAG_continued_packet 1 #define PAGEFLAG_first_page 2 #define PAGEFLAG_last_page 4 static int start_page_no_capturepattern(vorb *f) { uint32 loc0,loc1,n; if (f->first_decode && !IS_PUSH_MODE(f)) { f->p_first.page_start = stb_vorbis_get_file_offset(f) - 4; } // stream structure version if (0 != get8(f)) return error(f, VORBIS_invalid_stream_structure_version); // header flag f->page_flag = get8(f); // absolute granule position loc0 = get32(f); loc1 = get32(f); // @TODO: validate loc0,loc1 as valid positions? // stream serial number -- vorbis doesn't interleave, so discard get32(f); //if (f->serial != get32(f)) return error(f, VORBIS_incorrect_stream_serial_number); // page sequence number n = get32(f); f->last_page = n; // CRC32 get32(f); // page_segments f->segment_count = get8(f); if (!getn(f, f->segments, f->segment_count)) return error(f, VORBIS_unexpected_eof); // assume we _don't_ know any the sample position of any segments f->end_seg_with_known_loc = -2; if (loc0 != ~0U || loc1 != ~0U) { int i; // determine which packet is the last one that will complete for (i=f->segment_count-1; i >= 0; --i) if (f->segments[i] < 255) break; // 'i' is now the index of the _last_ segment of a packet that ends if (i >= 0) { f->end_seg_with_known_loc = i; f->known_loc_for_packet = loc0; } } if (f->first_decode) { int i,len; len = 0; for (i=0; i < f->segment_count; ++i) len += f->segments[i]; len += 27 + f->segment_count; f->p_first.page_end = f->p_first.page_start + len; f->p_first.last_decoded_sample = loc0; } f->next_seg = 0; return TRUE; } static int start_page(vorb *f) { if (!capture_pattern(f)) return error(f, VORBIS_missing_capture_pattern); return start_page_no_capturepattern(f); } static int start_packet(vorb *f) { while (f->next_seg == -1) { if (!start_page(f)) return FALSE; if (f->page_flag & PAGEFLAG_continued_packet) return error(f, VORBIS_continued_packet_flag_invalid); } f->last_seg = FALSE; f->valid_bits = 0; f->packet_bytes = 0; f->bytes_in_seg = 0; // f->next_seg is now valid return TRUE; } static int maybe_start_packet(vorb *f) { if (f->next_seg == -1) { int x = get8(f); if (f->eof) return FALSE; // EOF at page boundary is not an error! if (0x4f != x ) return error(f, VORBIS_missing_capture_pattern); if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern); if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern); if (0x53 != get8(f)) return error(f, VORBIS_missing_capture_pattern); if (!start_page_no_capturepattern(f)) return FALSE; if (f->page_flag & PAGEFLAG_continued_packet) { // set up enough state that we can read this packet if we want, // e.g. during recovery f->last_seg = FALSE; f->bytes_in_seg = 0; return error(f, VORBIS_continued_packet_flag_invalid); } } return start_packet(f); } static int next_segment(vorb *f) { int len; if (f->last_seg) return 0; if (f->next_seg == -1) { f->last_seg_which = f->segment_count-1; // in case start_page fails if (!start_page(f)) { f->last_seg = 1; return 0; } if (!(f->page_flag & PAGEFLAG_continued_packet)) return error(f, VORBIS_continued_packet_flag_invalid); } len = f->segments[f->next_seg++]; if (len < 255) { f->last_seg = TRUE; f->last_seg_which = f->next_seg-1; } if (f->next_seg >= f->segment_count) f->next_seg = -1; assert(f->bytes_in_seg == 0); f->bytes_in_seg = len; return len; } #define EOP (-1) #define INVALID_BITS (-1) static int get8_packet_raw(vorb *f) { if (!f->bytes_in_seg) { // CLANG! if (f->last_seg) return EOP; else if (!next_segment(f)) return EOP; } assert(f->bytes_in_seg > 0); --f->bytes_in_seg; ++f->packet_bytes; return get8(f); } static int get8_packet(vorb *f) { int x = get8_packet_raw(f); f->valid_bits = 0; return x; } static int get32_packet(vorb *f) { uint32 x; x = get8_packet(f); x += get8_packet(f) << 8; x += get8_packet(f) << 16; x += (uint32) get8_packet(f) << 24; return x; } static void flush_packet(vorb *f) { while (get8_packet_raw(f) != EOP); } // @OPTIMIZE: this is the secondary bit decoder, so it's probably not as important // as the huffman decoder? static uint32 get_bits(vorb *f, int n) { uint32 z; if (f->valid_bits < 0) return 0; if (f->valid_bits < n) { if (n > 24) { // the accumulator technique below would not work correctly in this case z = get_bits(f, 24); z += get_bits(f, n-24) << 24; return z; } if (f->valid_bits == 0) f->acc = 0; while (f->valid_bits < n) { int z = get8_packet_raw(f); if (z == EOP) { f->valid_bits = INVALID_BITS; return 0; } f->acc += z << f->valid_bits; f->valid_bits += 8; } } if (f->valid_bits < 0) return 0; z = f->acc & ((1 << n)-1); f->acc >>= n; f->valid_bits -= n; return z; } // @OPTIMIZE: primary accumulator for huffman // expand the buffer to as many bits as possible without reading off end of packet // it might be nice to allow f->valid_bits and f->acc to be stored in registers, // e.g. cache them locally and decode locally static __forceinline void prep_huffman(vorb *f) { if (f->valid_bits <= 24) { if (f->valid_bits == 0) f->acc = 0; do { int z; if (f->last_seg && !f->bytes_in_seg) return; z = get8_packet_raw(f); if (z == EOP) return; f->acc += (unsigned) z << f->valid_bits; f->valid_bits += 8; } while (f->valid_bits <= 24); } } enum { VORBIS_packet_id = 1, VORBIS_packet_comment = 3, VORBIS_packet_setup = 5 }; static int codebook_decode_scalar_raw(vorb *f, Codebook *c) { int i; prep_huffman(f); if (c->codewords == NULL && c->sorted_codewords == NULL) return -1; // cases to use binary search: sorted_codewords && !c->codewords // sorted_codewords && c->entries > 8 if (c->entries > 8 ? c->sorted_codewords!=NULL : !c->codewords) { // binary search uint32 code = bit_reverse(f->acc); int x=0, n=c->sorted_entries, len; while (n > 1) { // invariant: sc[x] <= code < sc[x+n] int m = x + (n >> 1); if (c->sorted_codewords[m] <= code) { x = m; n -= (n>>1); } else { n >>= 1; } } // x is now the sorted index if (!c->sparse) x = c->sorted_values[x]; // x is now sorted index if sparse, or symbol otherwise len = c->codeword_lengths[x]; if (f->valid_bits >= len) { f->acc >>= len; f->valid_bits -= len; return x; } f->valid_bits = 0; return -1; } // if small, linear search assert(!c->sparse); for (i=0; i < c->entries; ++i) { if (c->codeword_lengths[i] == NO_CODE) continue; if (c->codewords[i] == (f->acc & ((1 << c->codeword_lengths[i])-1))) { if (f->valid_bits >= c->codeword_lengths[i]) { f->acc >>= c->codeword_lengths[i]; f->valid_bits -= c->codeword_lengths[i]; return i; } f->valid_bits = 0; return -1; } } error(f, VORBIS_invalid_stream); f->valid_bits = 0; return -1; } #ifndef STB_VORBIS_NO_INLINE_DECODE #define DECODE_RAW(var, f,c) \ if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH) \ prep_huffman(f); \ var = f->acc & FAST_HUFFMAN_TABLE_MASK; \ var = c->fast_huffman[var]; \ if (var >= 0) { \ int n = c->codeword_lengths[var]; \ f->acc >>= n; \ f->valid_bits -= n; \ if (f->valid_bits < 0) { f->valid_bits = 0; var = -1; } \ } else { \ var = codebook_decode_scalar_raw(f,c); \ } #else static int codebook_decode_scalar(vorb *f, Codebook *c) { int i; if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH) prep_huffman(f); // fast huffman table lookup i = f->acc & FAST_HUFFMAN_TABLE_MASK; i = c->fast_huffman[i]; if (i >= 0) { f->acc >>= c->codeword_lengths[i]; f->valid_bits -= c->codeword_lengths[i]; if (f->valid_bits < 0) { f->valid_bits = 0; return -1; } return i; } return codebook_decode_scalar_raw(f,c); } #define DECODE_RAW(var,f,c) var = codebook_decode_scalar(f,c); #endif #define DECODE(var,f,c) \ DECODE_RAW(var,f,c) \ if (c->sparse) var = c->sorted_values[var]; #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK #define DECODE_VQ(var,f,c) DECODE_RAW(var,f,c) #else #define DECODE_VQ(var,f,c) DECODE(var,f,c) #endif // CODEBOOK_ELEMENT_FAST is an optimization for the CODEBOOK_FLOATS case // where we avoid one addition #define CODEBOOK_ELEMENT(c,off) (c->multiplicands[off]) #define CODEBOOK_ELEMENT_FAST(c,off) (c->multiplicands[off]) #define CODEBOOK_ELEMENT_BASE(c) (0) static int codebook_decode_start(vorb *f, Codebook *c) { int z = -1; // type 0 is only legal in a scalar context if (c->lookup_type == 0) error(f, VORBIS_invalid_stream); else { DECODE_VQ(z,f,c); if (c->sparse) assert(z < c->sorted_entries); if (z < 0) { // check for EOP if (!f->bytes_in_seg) if (f->last_seg) return z; error(f, VORBIS_invalid_stream); } } return z; } static int codebook_decode(vorb *f, Codebook *c, float *output, int len) { int i,z = codebook_decode_start(f,c); if (z < 0) return FALSE; if (len > c->dimensions) len = c->dimensions; #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK if (c->lookup_type == 1) { float last = CODEBOOK_ELEMENT_BASE(c); int div = 1; for (i=0; i < len; ++i) { int off = (z / div) % c->lookup_values; float val = CODEBOOK_ELEMENT_FAST(c,off) + last; output[i] += val; if (c->sequence_p) last = val + c->minimum_value; div *= c->lookup_values; } return TRUE; } #endif z *= c->dimensions; if (c->sequence_p) { float last = CODEBOOK_ELEMENT_BASE(c); for (i=0; i < len; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; output[i] += val; last = val + c->minimum_value; } } else { float last = CODEBOOK_ELEMENT_BASE(c); for (i=0; i < len; ++i) { output[i] += CODEBOOK_ELEMENT_FAST(c,z+i) + last; } } return TRUE; } static int codebook_decode_step(vorb *f, Codebook *c, float *output, int len, int step) { int i,z = codebook_decode_start(f,c); float last = CODEBOOK_ELEMENT_BASE(c); if (z < 0) return FALSE; if (len > c->dimensions) len = c->dimensions; #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK if (c->lookup_type == 1) { int div = 1; for (i=0; i < len; ++i) { int off = (z / div) % c->lookup_values; float val = CODEBOOK_ELEMENT_FAST(c,off) + last; output[i*step] += val; if (c->sequence_p) last = val; div *= c->lookup_values; } return TRUE; } #endif z *= c->dimensions; for (i=0; i < len; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; output[i*step] += val; if (c->sequence_p) last = val; } return TRUE; } static int codebook_decode_deinterleave_repeat(vorb *f, Codebook *c, float **outputs, int ch, int *c_inter_p, int *p_inter_p, int len, int total_decode) { int c_inter = *c_inter_p; int p_inter = *p_inter_p; int i,z, effective = c->dimensions; // type 0 is only legal in a scalar context if (c->lookup_type == 0) return error(f, VORBIS_invalid_stream); while (total_decode > 0) { float last = CODEBOOK_ELEMENT_BASE(c); DECODE_VQ(z,f,c); #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK assert(!c->sparse || z < c->sorted_entries); #endif if (z < 0) { if (!f->bytes_in_seg) if (f->last_seg) return FALSE; return error(f, VORBIS_invalid_stream); } // if this will take us off the end of the buffers, stop short! // we check by computing the length of the virtual interleaved // buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter), // and the length we'll be using (effective) if (c_inter + p_inter*ch + effective > len * ch) { effective = len*ch - (p_inter*ch - c_inter); } #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK if (c->lookup_type == 1) { int div = 1; for (i=0; i < effective; ++i) { int off = (z / div) % c->lookup_values; float val = CODEBOOK_ELEMENT_FAST(c,off) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == ch) { c_inter = 0; ++p_inter; } if (c->sequence_p) last = val; div *= c->lookup_values; } } else #endif { z *= c->dimensions; if (c->sequence_p) { for (i=0; i < effective; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == ch) { c_inter = 0; ++p_inter; } last = val; } } else { for (i=0; i < effective; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == ch) { c_inter = 0; ++p_inter; } } } } total_decode -= effective; } *c_inter_p = c_inter; *p_inter_p = p_inter; return TRUE; } static int predict_point(int x, int x0, int x1, int y0, int y1) { int dy = y1 - y0; int adx = x1 - x0; // @OPTIMIZE: force int division to round in the right direction... is this necessary on x86? int err = abs(dy) * (x - x0); int off = err / adx; return dy < 0 ? y0 - off : y0 + off; } // the following table is block-copied from the specification static float inverse_db_table[256] = { 1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f, 1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f, 1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f, 2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f, 2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f, 3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f, 4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f, 6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f, 7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f, 1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f, 1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f, 1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f, 2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f, 2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f, 3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f, 4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f, 5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f, 7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f, 9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f, 1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f, 1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f, 2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f, 2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f, 3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f, 4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f, 5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f, 7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f, 9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f, 0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f, 0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f, 0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f, 0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f, 0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f, 0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f, 0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f, 0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f, 0.00092223983f, 0.00098217216f, 0.0010459992f, 0.0011139742f, 0.0011863665f, 0.0012634633f, 0.0013455702f, 0.0014330129f, 0.0015261382f, 0.0016253153f, 0.0017309374f, 0.0018434235f, 0.0019632195f, 0.0020908006f, 0.0022266726f, 0.0023713743f, 0.0025254795f, 0.0026895994f, 0.0028643847f, 0.0030505286f, 0.0032487691f, 0.0034598925f, 0.0036847358f, 0.0039241906f, 0.0041792066f, 0.0044507950f, 0.0047400328f, 0.0050480668f, 0.0053761186f, 0.0057254891f, 0.0060975636f, 0.0064938176f, 0.0069158225f, 0.0073652516f, 0.0078438871f, 0.0083536271f, 0.0088964928f, 0.009474637f, 0.010090352f, 0.010746080f, 0.011444421f, 0.012188144f, 0.012980198f, 0.013823725f, 0.014722068f, 0.015678791f, 0.016697687f, 0.017782797f, 0.018938423f, 0.020169149f, 0.021479854f, 0.022875735f, 0.024362330f, 0.025945531f, 0.027631618f, 0.029427276f, 0.031339626f, 0.033376252f, 0.035545228f, 0.037855157f, 0.040315199f, 0.042935108f, 0.045725273f, 0.048696758f, 0.051861348f, 0.055231591f, 0.058820850f, 0.062643361f, 0.066714279f, 0.071049749f, 0.075666962f, 0.080584227f, 0.085821044f, 0.091398179f, 0.097337747f, 0.10366330f, 0.11039993f, 0.11757434f, 0.12521498f, 0.13335215f, 0.14201813f, 0.15124727f, 0.16107617f, 0.17154380f, 0.18269168f, 0.19456402f, 0.20720788f, 0.22067342f, 0.23501402f, 0.25028656f, 0.26655159f, 0.28387361f, 0.30232132f, 0.32196786f, 0.34289114f, 0.36517414f, 0.38890521f, 0.41417847f, 0.44109412f, 0.46975890f, 0.50028648f, 0.53279791f, 0.56742212f, 0.60429640f, 0.64356699f, 0.68538959f, 0.72993007f, 0.77736504f, 0.82788260f, 0.88168307f, 0.9389798f, 1.0f }; // @OPTIMIZE: if you want to replace this bresenham line-drawing routine, // note that you must produce bit-identical output to decode correctly; // this specific sequence of operations is specified in the spec (it's // drawing integer-quantized frequency-space lines that the encoder // expects to be exactly the same) // ... also, isn't the whole point of Bresenham's algorithm to NOT // have to divide in the setup? sigh. #ifndef STB_VORBIS_NO_DEFER_FLOOR #define LINE_OP(a,b) a *= b #else #define LINE_OP(a,b) a = b #endif #ifdef STB_VORBIS_DIVIDE_TABLE #define DIVTAB_NUMER 32 #define DIVTAB_DENOM 64 int8 integer_divide_table[DIVTAB_NUMER][DIVTAB_DENOM]; // 2KB #endif static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n) { int dy = y1 - y0; int adx = x1 - x0; int ady = abs(dy); int base; int x=x0,y=y0; int err = 0; int sy; #ifdef STB_VORBIS_DIVIDE_TABLE if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) { if (dy < 0) { base = -integer_divide_table[ady][adx]; sy = base-1; } else { base = integer_divide_table[ady][adx]; sy = base+1; } } else { base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; } #else base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; #endif ady -= abs(base) * adx; if (x1 > n) x1 = n; if (x < x1) { LINE_OP(output[x], inverse_db_table[y&255]); for (++x; x < x1; ++x) { err += ady; if (err >= adx) { err -= adx; y += sy; } else y += base; LINE_OP(output[x], inverse_db_table[y&255]); } } } static int residue_decode(vorb *f, Codebook *book, float *target, int offset, int n, int rtype) { int k; if (rtype == 0) { int step = n / book->dimensions; for (k=0; k < step; ++k) if (!codebook_decode_step(f, book, target+offset+k, n-offset-k, step)) return FALSE; } else { for (k=0; k < n; ) { if (!codebook_decode(f, book, target+offset, n-k)) return FALSE; k += book->dimensions; offset += book->dimensions; } } return TRUE; } // n is 1/2 of the blocksize -- // specification: "Correct per-vector decode length is [n]/2" static void decode_residue(vorb *f, float *residue_buffers[], int ch, int n, int rn, uint8 *do_not_decode) { int i,j,pass; Residue *r = f->residue_config + rn; int rtype = f->residue_types[rn]; int c = r->classbook; int classwords = f->codebooks[c].dimensions; unsigned int actual_size = rtype == 2 ? n*2 : n; unsigned int limit_r_begin = (r->begin < actual_size ? r->begin : actual_size); unsigned int limit_r_end = (r->end < actual_size ? r->end : actual_size); int n_read = limit_r_end - limit_r_begin; int part_read = n_read / r->part_size; int temp_alloc_point = temp_alloc_save(f); #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE uint8 ***part_classdata = (uint8 ***) temp_block_array(f,f->channels, part_read * sizeof(**part_classdata)); #else int **classifications = (int **) temp_block_array(f,f->channels, part_read * sizeof(**classifications)); #endif CHECK(f); for (i=0; i < ch; ++i) if (!do_not_decode[i]) memset(residue_buffers[i], 0, sizeof(float) * n); if (rtype == 2 && ch != 1) { for (j=0; j < ch; ++j) if (!do_not_decode[j]) break; if (j == ch) goto done; for (pass=0; pass < 8; ++pass) { int pcount = 0, class_set = 0; if (ch == 2) { while (pcount < part_read) { int z = r->begin + pcount*r->part_size; int c_inter = (z & 1), p_inter = z>>1; if (pass == 0) { Codebook *c = f->codebooks+r->classbook; int q; DECODE(q,f,c); if (q == EOP) goto done; #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE part_classdata[0][class_set] = r->classdata[q]; #else for (i=classwords-1; i >= 0; --i) { classifications[0][i+pcount] = q % r->classifications; q /= r->classifications; } #endif } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { int z = r->begin + pcount*r->part_size; #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE int c = part_classdata[0][class_set][i]; #else int c = classifications[0][pcount]; #endif int b = r->residue_books[c][pass]; if (b >= 0) { Codebook *book = f->codebooks + b; #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) goto done; #else // saves 1% if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) goto done; #endif } else { z += r->part_size; c_inter = z & 1; p_inter = z >> 1; } } #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE ++class_set; #endif } } else if (ch > 2) { while (pcount < part_read) { int z = r->begin + pcount*r->part_size; int c_inter = z % ch, p_inter = z/ch; if (pass == 0) { Codebook *c = f->codebooks+r->classbook; int q; DECODE(q,f,c); if (q == EOP) goto done; #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE part_classdata[0][class_set] = r->classdata[q]; #else for (i=classwords-1; i >= 0; --i) { classifications[0][i+pcount] = q % r->classifications; q /= r->classifications; } #endif } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { int z = r->begin + pcount*r->part_size; #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE int c = part_classdata[0][class_set][i]; #else int c = classifications[0][pcount]; #endif int b = r->residue_books[c][pass]; if (b >= 0) { Codebook *book = f->codebooks + b; if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) goto done; } else { z += r->part_size; c_inter = z % ch; p_inter = z / ch; } } #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE ++class_set; #endif } } } goto done; } CHECK(f); for (pass=0; pass < 8; ++pass) { int pcount = 0, class_set=0; while (pcount < part_read) { if (pass == 0) { for (j=0; j < ch; ++j) { if (!do_not_decode[j]) { Codebook *c = f->codebooks+r->classbook; int temp; DECODE(temp,f,c); if (temp == EOP) goto done; #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE part_classdata[j][class_set] = r->classdata[temp]; #else for (i=classwords-1; i >= 0; --i) { classifications[j][i+pcount] = temp % r->classifications; temp /= r->classifications; } #endif } } } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { for (j=0; j < ch; ++j) { if (!do_not_decode[j]) { #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE int c = part_classdata[j][class_set][i]; #else int c = classifications[j][pcount]; #endif int b = r->residue_books[c][pass]; if (b >= 0) { float *target = residue_buffers[j]; int offset = r->begin + pcount * r->part_size; int n = r->part_size; Codebook *book = f->codebooks + b; if (!residue_decode(f, book, target, offset, n, rtype)) goto done; } } } } #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE ++class_set; #endif } } done: CHECK(f); #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE temp_free(f,part_classdata); #else temp_free(f,classifications); #endif temp_alloc_restore(f,temp_alloc_point); } #if 0 // slow way for debugging void inverse_mdct_slow(float *buffer, int n) { int i,j; int n2 = n >> 1; float *x = (float *) malloc(sizeof(*x) * n2); memcpy(x, buffer, sizeof(*x) * n2); for (i=0; i < n; ++i) { float acc = 0; for (j=0; j < n2; ++j) // formula from paper: //acc += n/4.0f * x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1)); // formula from wikipedia //acc += 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5)); // these are equivalent, except the formula from the paper inverts the multiplier! // however, what actually works is NO MULTIPLIER!?! //acc += 64 * 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5)); acc += x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1)); buffer[i] = acc; } free(x); } #elif 0 // same as above, but just barely able to run in real time on modern machines void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype) { float mcos[16384]; int i,j; int n2 = n >> 1, nmask = (n << 2) -1; float *x = (float *) malloc(sizeof(*x) * n2); memcpy(x, buffer, sizeof(*x) * n2); for (i=0; i < 4*n; ++i) mcos[i] = (float) cos(M_PI / 2 * i / n); for (i=0; i < n; ++i) { float acc = 0; for (j=0; j < n2; ++j) acc += x[j] * mcos[(2 * i + 1 + n2)*(2*j+1) & nmask]; buffer[i] = acc; } free(x); } #elif 0 // transform to use a slow dct-iv; this is STILL basically trivial, // but only requires half as many ops void dct_iv_slow(float *buffer, int n) { float mcos[16384]; float x[2048]; int i,j; int n2 = n >> 1, nmask = (n << 3) - 1; memcpy(x, buffer, sizeof(*x) * n); for (i=0; i < 8*n; ++i) mcos[i] = (float) cos(M_PI / 4 * i / n); for (i=0; i < n; ++i) { float acc = 0; for (j=0; j < n; ++j) acc += x[j] * mcos[((2 * i + 1)*(2*j+1)) & nmask]; buffer[i] = acc; } } void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype) { int i, n4 = n >> 2, n2 = n >> 1, n3_4 = n - n4; float temp[4096]; memcpy(temp, buffer, n2 * sizeof(float)); dct_iv_slow(temp, n2); // returns -c'-d, a-b' for (i=0; i < n4 ; ++i) buffer[i] = temp[i+n4]; // a-b' for ( ; i < n3_4; ++i) buffer[i] = -temp[n3_4 - i - 1]; // b-a', c+d' for ( ; i < n ; ++i) buffer[i] = -temp[i - n3_4]; // c'+d } #endif #ifndef LIBVORBIS_MDCT #define LIBVORBIS_MDCT 0 #endif #if LIBVORBIS_MDCT // directly call the vorbis MDCT using an interface documented // by Jeff Roberts... useful for performance comparison typedef struct { int n; int log2n; float *trig; int *bitrev; float scale; } mdct_lookup; extern void mdct_init(mdct_lookup *lookup, int n); extern void mdct_clear(mdct_lookup *l); extern void mdct_backward(mdct_lookup *init, float *in, float *out); mdct_lookup M1,M2; void inverse_mdct(float *buffer, int n, vorb *f, int blocktype) { mdct_lookup *M; if (M1.n == n) M = &M1; else if (M2.n == n) M = &M2; else if (M1.n == 0) { mdct_init(&M1, n); M = &M1; } else { if (M2.n) __asm int 3; mdct_init(&M2, n); M = &M2; } mdct_backward(M, buffer, buffer); } #endif // the following were split out into separate functions while optimizing; // they could be pushed back up but eh. __forceinline showed no change; // they're probably already being inlined. static void imdct_step3_iter0_loop(int n, float *e, int i_off, int k_off, float *A) { float *ee0 = e + i_off; float *ee2 = ee0 + k_off; int i; assert((n & 3) == 0); for (i=(n>>2); i > 0; --i) { float k00_20, k01_21; k00_20 = ee0[ 0] - ee2[ 0]; k01_21 = ee0[-1] - ee2[-1]; ee0[ 0] += ee2[ 0];//ee0[ 0] = ee0[ 0] + ee2[ 0]; ee0[-1] += ee2[-1];//ee0[-1] = ee0[-1] + ee2[-1]; ee2[ 0] = k00_20 * A[0] - k01_21 * A[1]; ee2[-1] = k01_21 * A[0] + k00_20 * A[1]; A += 8; k00_20 = ee0[-2] - ee2[-2]; k01_21 = ee0[-3] - ee2[-3]; ee0[-2] += ee2[-2];//ee0[-2] = ee0[-2] + ee2[-2]; ee0[-3] += ee2[-3];//ee0[-3] = ee0[-3] + ee2[-3]; ee2[-2] = k00_20 * A[0] - k01_21 * A[1]; ee2[-3] = k01_21 * A[0] + k00_20 * A[1]; A += 8; k00_20 = ee0[-4] - ee2[-4]; k01_21 = ee0[-5] - ee2[-5]; ee0[-4] += ee2[-4];//ee0[-4] = ee0[-4] + ee2[-4]; ee0[-5] += ee2[-5];//ee0[-5] = ee0[-5] + ee2[-5]; ee2[-4] = k00_20 * A[0] - k01_21 * A[1]; ee2[-5] = k01_21 * A[0] + k00_20 * A[1]; A += 8; k00_20 = ee0[-6] - ee2[-6]; k01_21 = ee0[-7] - ee2[-7]; ee0[-6] += ee2[-6];//ee0[-6] = ee0[-6] + ee2[-6]; ee0[-7] += ee2[-7];//ee0[-7] = ee0[-7] + ee2[-7]; ee2[-6] = k00_20 * A[0] - k01_21 * A[1]; ee2[-7] = k01_21 * A[0] + k00_20 * A[1]; A += 8; ee0 -= 8; ee2 -= 8; } } static void imdct_step3_inner_r_loop(int lim, float *e, int d0, int k_off, float *A, int k1) { int i; float k00_20, k01_21; float *e0 = e + d0; float *e2 = e0 + k_off; for (i=lim >> 2; i > 0; --i) { k00_20 = e0[-0] - e2[-0]; k01_21 = e0[-1] - e2[-1]; e0[-0] += e2[-0];//e0[-0] = e0[-0] + e2[-0]; e0[-1] += e2[-1];//e0[-1] = e0[-1] + e2[-1]; e2[-0] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-1] = (k01_21)*A[0] + (k00_20) * A[1]; A += k1; k00_20 = e0[-2] - e2[-2]; k01_21 = e0[-3] - e2[-3]; e0[-2] += e2[-2];//e0[-2] = e0[-2] + e2[-2]; e0[-3] += e2[-3];//e0[-3] = e0[-3] + e2[-3]; e2[-2] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-3] = (k01_21)*A[0] + (k00_20) * A[1]; A += k1; k00_20 = e0[-4] - e2[-4]; k01_21 = e0[-5] - e2[-5]; e0[-4] += e2[-4];//e0[-4] = e0[-4] + e2[-4]; e0[-5] += e2[-5];//e0[-5] = e0[-5] + e2[-5]; e2[-4] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-5] = (k01_21)*A[0] + (k00_20) * A[1]; A += k1; k00_20 = e0[-6] - e2[-6]; k01_21 = e0[-7] - e2[-7]; e0[-6] += e2[-6];//e0[-6] = e0[-6] + e2[-6]; e0[-7] += e2[-7];//e0[-7] = e0[-7] + e2[-7]; e2[-6] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-7] = (k01_21)*A[0] + (k00_20) * A[1]; e0 -= 8; e2 -= 8; A += k1; } } static void imdct_step3_inner_s_loop(int n, float *e, int i_off, int k_off, float *A, int a_off, int k0) { int i; float A0 = A[0]; float A1 = A[0+1]; float A2 = A[0+a_off]; float A3 = A[0+a_off+1]; float A4 = A[0+a_off*2+0]; float A5 = A[0+a_off*2+1]; float A6 = A[0+a_off*3+0]; float A7 = A[0+a_off*3+1]; float k00,k11; float *ee0 = e +i_off; float *ee2 = ee0+k_off; for (i=n; i > 0; --i) { k00 = ee0[ 0] - ee2[ 0]; k11 = ee0[-1] - ee2[-1]; ee0[ 0] = ee0[ 0] + ee2[ 0]; ee0[-1] = ee0[-1] + ee2[-1]; ee2[ 0] = (k00) * A0 - (k11) * A1; ee2[-1] = (k11) * A0 + (k00) * A1; k00 = ee0[-2] - ee2[-2]; k11 = ee0[-3] - ee2[-3]; ee0[-2] = ee0[-2] + ee2[-2]; ee0[-3] = ee0[-3] + ee2[-3]; ee2[-2] = (k00) * A2 - (k11) * A3; ee2[-3] = (k11) * A2 + (k00) * A3; k00 = ee0[-4] - ee2[-4]; k11 = ee0[-5] - ee2[-5]; ee0[-4] = ee0[-4] + ee2[-4]; ee0[-5] = ee0[-5] + ee2[-5]; ee2[-4] = (k00) * A4 - (k11) * A5; ee2[-5] = (k11) * A4 + (k00) * A5; k00 = ee0[-6] - ee2[-6]; k11 = ee0[-7] - ee2[-7]; ee0[-6] = ee0[-6] + ee2[-6]; ee0[-7] = ee0[-7] + ee2[-7]; ee2[-6] = (k00) * A6 - (k11) * A7; ee2[-7] = (k11) * A6 + (k00) * A7; ee0 -= k0; ee2 -= k0; } } static __forceinline void iter_54(float *z) { float k00,k11,k22,k33; float y0,y1,y2,y3; k00 = z[ 0] - z[-4]; y0 = z[ 0] + z[-4]; y2 = z[-2] + z[-6]; k22 = z[-2] - z[-6]; z[-0] = y0 + y2; // z0 + z4 + z2 + z6 z[-2] = y0 - y2; // z0 + z4 - z2 - z6 // done with y0,y2 k33 = z[-3] - z[-7]; z[-4] = k00 + k33; // z0 - z4 + z3 - z7 z[-6] = k00 - k33; // z0 - z4 - z3 + z7 // done with k33 k11 = z[-1] - z[-5]; y1 = z[-1] + z[-5]; y3 = z[-3] + z[-7]; z[-1] = y1 + y3; // z1 + z5 + z3 + z7 z[-3] = y1 - y3; // z1 + z5 - z3 - z7 z[-5] = k11 - k22; // z1 - z5 + z2 - z6 z[-7] = k11 + k22; // z1 - z5 - z2 + z6 } static void imdct_step3_inner_s_loop_ld654(int n, float *e, int i_off, float *A, int base_n) { int a_off = base_n >> 3; float A2 = A[0+a_off]; float *z = e + i_off; float *base = z - 16 * n; while (z > base) { float k00,k11; k00 = z[-0] - z[-8]; k11 = z[-1] - z[-9]; z[-0] = z[-0] + z[-8]; z[-1] = z[-1] + z[-9]; z[-8] = k00; z[-9] = k11 ; k00 = z[ -2] - z[-10]; k11 = z[ -3] - z[-11]; z[ -2] = z[ -2] + z[-10]; z[ -3] = z[ -3] + z[-11]; z[-10] = (k00+k11) * A2; z[-11] = (k11-k00) * A2; k00 = z[-12] - z[ -4]; // reverse to avoid a unary negation k11 = z[ -5] - z[-13]; z[ -4] = z[ -4] + z[-12]; z[ -5] = z[ -5] + z[-13]; z[-12] = k11; z[-13] = k00; k00 = z[-14] - z[ -6]; // reverse to avoid a unary negation k11 = z[ -7] - z[-15]; z[ -6] = z[ -6] + z[-14]; z[ -7] = z[ -7] + z[-15]; z[-14] = (k00+k11) * A2; z[-15] = (k00-k11) * A2; iter_54(z); iter_54(z-8); z -= 16; } } static void inverse_mdct(float *buffer, int n, vorb *f, int blocktype) { int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l; int ld; // @OPTIMIZE: reduce register pressure by using fewer variables? int save_point = temp_alloc_save(f); float *buf2 = (float *) temp_alloc(f, n2 * sizeof(*buf2)); float *u=NULL,*v=NULL; // twiddle factors float *A = f->A[blocktype]; // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio" // See notes about bugs in that paper in less-optimal implementation 'inverse_mdct_old' after this function. // kernel from paper // merged: // copy and reflect spectral data // step 0 // note that it turns out that the items added together during // this step are, in fact, being added to themselves (as reflected // by step 0). inexplicable inefficiency! this became obvious // once I combined the passes. // so there's a missing 'times 2' here (for adding X to itself). // this propagates through linearly to the end, where the numbers // are 1/2 too small, and need to be compensated for. { float *d,*e, *AA, *e_stop; d = &buf2[n2-2]; AA = A; e = &buffer[0]; e_stop = &buffer[n2]; while (e != e_stop) { d[1] = (e[0] * AA[0] - e[2]*AA[1]); d[0] = (e[0] * AA[1] + e[2]*AA[0]); d -= 2; AA += 2; e += 4; } e = &buffer[n2-3]; while (d >= buf2) { d[1] = (-e[2] * AA[0] - -e[0]*AA[1]); d[0] = (-e[2] * AA[1] + -e[0]*AA[0]); d -= 2; AA += 2; e -= 4; } } // now we use symbolic names for these, so that we can // possibly swap their meaning as we change which operations // are in place u = buffer; v = buf2; // step 2 (paper output is w, now u) // this could be in place, but the data ends up in the wrong // place... _somebody_'s got to swap it, so this is nominated { float *AA = &A[n2-8]; float *d0,*d1, *e0, *e1; e0 = &v[n4]; e1 = &v[0]; d0 = &u[n4]; d1 = &u[0]; while (AA >= A) { float v40_20, v41_21; v41_21 = e0[1] - e1[1]; v40_20 = e0[0] - e1[0]; d0[1] = e0[1] + e1[1]; d0[0] = e0[0] + e1[0]; d1[1] = v41_21*AA[4] - v40_20*AA[5]; d1[0] = v40_20*AA[4] + v41_21*AA[5]; v41_21 = e0[3] - e1[3]; v40_20 = e0[2] - e1[2]; d0[3] = e0[3] + e1[3]; d0[2] = e0[2] + e1[2]; d1[3] = v41_21*AA[0] - v40_20*AA[1]; d1[2] = v40_20*AA[0] + v41_21*AA[1]; AA -= 8; d0 += 4; d1 += 4; e0 += 4; e1 += 4; } } // step 3 ld = ilog(n) - 1; // ilog is off-by-one from normal definitions // optimized step 3: // the original step3 loop can be nested r inside s or s inside r; // it's written originally as s inside r, but this is dumb when r // iterates many times, and s few. So I have two copies of it and // switch between them halfway. // this is iteration 0 of step 3 imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*0, -(n >> 3), A); imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*1, -(n >> 3), A); // this is iteration 1 of step 3 imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*0, -(n >> 4), A, 16); imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*1, -(n >> 4), A, 16); imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*2, -(n >> 4), A, 16); imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*3, -(n >> 4), A, 16); l=2; for (; l < (ld-3)>>1; ++l) { int k0 = n >> (l+2), k0_2 = k0>>1; int lim = 1 << (l+1); int i; for (i=0; i < lim; ++i) imdct_step3_inner_r_loop(n >> (l+4), u, n2-1 - k0*i, -k0_2, A, 1 << (l+3)); } for (; l < ld-6; ++l) { int k0 = n >> (l+2), k1 = 1 << (l+3), k0_2 = k0>>1; int rlim = n >> (l+6), r; int lim = 1 << (l+1); int i_off; float *A0 = A; i_off = n2-1; for (r=rlim; r > 0; --r) { imdct_step3_inner_s_loop(lim, u, i_off, -k0_2, A0, k1, k0); A0 += k1*4; i_off -= 8; } } // iterations with count: // ld-6,-5,-4 all interleaved together // the big win comes from getting rid of needless flops // due to the constants on pass 5 & 4 being all 1 and 0; // combining them to be simultaneous to improve cache made little difference imdct_step3_inner_s_loop_ld654(n >> 5, u, n2-1, A, n); // output is u // step 4, 5, and 6 // cannot be in-place because of step 5 { uint16 *bitrev = f->bit_reverse[blocktype]; // weirdly, I'd have thought reading sequentially and writing // erratically would have been better than vice-versa, but in // fact that's not what my testing showed. (That is, with // j = bitreverse(i), do you read i and write j, or read j and write i.) float *d0 = &v[n4-4]; float *d1 = &v[n2-4]; while (d0 >= v) { int k4; k4 = bitrev[0]; d1[3] = u[k4+0]; d1[2] = u[k4+1]; d0[3] = u[k4+2]; d0[2] = u[k4+3]; k4 = bitrev[1]; d1[1] = u[k4+0]; d1[0] = u[k4+1]; d0[1] = u[k4+2]; d0[0] = u[k4+3]; d0 -= 4; d1 -= 4; bitrev += 2; } } // (paper output is u, now v) // data must be in buf2 assert(v == buf2); // step 7 (paper output is v, now v) // this is now in place { float *C = f->C[blocktype]; float *d, *e; d = v; e = v + n2 - 4; while (d < e) { float a02,a11,b0,b1,b2,b3; a02 = d[0] - e[2]; a11 = d[1] + e[3]; b0 = C[1]*a02 + C[0]*a11; b1 = C[1]*a11 - C[0]*a02; b2 = d[0] + e[ 2]; b3 = d[1] - e[ 3]; d[0] = b2 + b0; d[1] = b3 + b1; e[2] = b2 - b0; e[3] = b1 - b3; a02 = d[2] - e[0]; a11 = d[3] + e[1]; b0 = C[3]*a02 + C[2]*a11; b1 = C[3]*a11 - C[2]*a02; b2 = d[2] + e[ 0]; b3 = d[3] - e[ 1]; d[2] = b2 + b0; d[3] = b3 + b1; e[0] = b2 - b0; e[1] = b1 - b3; C += 4; d += 4; e -= 4; } } // data must be in buf2 // step 8+decode (paper output is X, now buffer) // this generates pairs of data a la 8 and pushes them directly through // the decode kernel (pushing rather than pulling) to avoid having // to make another pass later // this cannot POSSIBLY be in place, so we refer to the buffers directly { float *d0,*d1,*d2,*d3; float *B = f->B[blocktype] + n2 - 8; float *e = buf2 + n2 - 8; d0 = &buffer[0]; d1 = &buffer[n2-4]; d2 = &buffer[n2]; d3 = &buffer[n-4]; while (e >= v) { float p0,p1,p2,p3; p3 = e[6]*B[7] - e[7]*B[6]; p2 = -e[6]*B[6] - e[7]*B[7]; d0[0] = p3; d1[3] = - p3; d2[0] = p2; d3[3] = p2; p1 = e[4]*B[5] - e[5]*B[4]; p0 = -e[4]*B[4] - e[5]*B[5]; d0[1] = p1; d1[2] = - p1; d2[1] = p0; d3[2] = p0; p3 = e[2]*B[3] - e[3]*B[2]; p2 = -e[2]*B[2] - e[3]*B[3]; d0[2] = p3; d1[1] = - p3; d2[2] = p2; d3[1] = p2; p1 = e[0]*B[1] - e[1]*B[0]; p0 = -e[0]*B[0] - e[1]*B[1]; d0[3] = p1; d1[0] = - p1; d2[3] = p0; d3[0] = p0; B -= 8; e -= 8; d0 += 4; d2 += 4; d1 -= 4; d3 -= 4; } } temp_free(f,buf2); temp_alloc_restore(f,save_point); } #if 0 // this is the original version of the above code, if you want to optimize it from scratch void inverse_mdct_naive(float *buffer, int n) { float s; float A[1 << 12], B[1 << 12], C[1 << 11]; int i,k,k2,k4, n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l; int n3_4 = n - n4, ld; // how can they claim this only uses N words?! // oh, because they're only used sparsely, whoops float u[1 << 13], X[1 << 13], v[1 << 13], w[1 << 13]; // set up twiddle factors for (k=k2=0; k < n4; ++k,k2+=2) { A[k2 ] = (float) cos(4*k*M_PI/n); A[k2+1] = (float) -sin(4*k*M_PI/n); B[k2 ] = (float) cos((k2+1)*M_PI/n/2); B[k2+1] = (float) sin((k2+1)*M_PI/n/2); } for (k=k2=0; k < n8; ++k,k2+=2) { C[k2 ] = (float) cos(2*(k2+1)*M_PI/n); C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n); } // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio" // Note there are bugs in that pseudocode, presumably due to them attempting // to rename the arrays nicely rather than representing the way their actual // implementation bounces buffers back and forth. As a result, even in the // "some formulars corrected" version, a direct implementation fails. These // are noted below as "paper bug". // copy and reflect spectral data for (k=0; k < n2; ++k) u[k] = buffer[k]; for ( ; k < n ; ++k) u[k] = -buffer[n - k - 1]; // kernel from paper // step 1 for (k=k2=k4=0; k < n4; k+=1, k2+=2, k4+=4) { v[n-k4-1] = (u[k4] - u[n-k4-1]) * A[k2] - (u[k4+2] - u[n-k4-3])*A[k2+1]; v[n-k4-3] = (u[k4] - u[n-k4-1]) * A[k2+1] + (u[k4+2] - u[n-k4-3])*A[k2]; } // step 2 for (k=k4=0; k < n8; k+=1, k4+=4) { w[n2+3+k4] = v[n2+3+k4] + v[k4+3]; w[n2+1+k4] = v[n2+1+k4] + v[k4+1]; w[k4+3] = (v[n2+3+k4] - v[k4+3])*A[n2-4-k4] - (v[n2+1+k4]-v[k4+1])*A[n2-3-k4]; w[k4+1] = (v[n2+1+k4] - v[k4+1])*A[n2-4-k4] + (v[n2+3+k4]-v[k4+3])*A[n2-3-k4]; } // step 3 ld = ilog(n) - 1; // ilog is off-by-one from normal definitions for (l=0; l < ld-3; ++l) { int k0 = n >> (l+2), k1 = 1 << (l+3); int rlim = n >> (l+4), r4, r; int s2lim = 1 << (l+2), s2; for (r=r4=0; r < rlim; r4+=4,++r) { for (s2=0; s2 < s2lim; s2+=2) { u[n-1-k0*s2-r4] = w[n-1-k0*s2-r4] + w[n-1-k0*(s2+1)-r4]; u[n-3-k0*s2-r4] = w[n-3-k0*s2-r4] + w[n-3-k0*(s2+1)-r4]; u[n-1-k0*(s2+1)-r4] = (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1] - (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1+1]; u[n-3-k0*(s2+1)-r4] = (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1] + (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1+1]; } } if (l+1 < ld-3) { // paper bug: ping-ponging of u&w here is omitted memcpy(w, u, sizeof(u)); } } // step 4 for (i=0; i < n8; ++i) { int j = bit_reverse(i) >> (32-ld+3); assert(j < n8); if (i == j) { // paper bug: original code probably swapped in place; if copying, // need to directly copy in this case int i8 = i << 3; v[i8+1] = u[i8+1]; v[i8+3] = u[i8+3]; v[i8+5] = u[i8+5]; v[i8+7] = u[i8+7]; } else if (i < j) { int i8 = i << 3, j8 = j << 3; v[j8+1] = u[i8+1], v[i8+1] = u[j8 + 1]; v[j8+3] = u[i8+3], v[i8+3] = u[j8 + 3]; v[j8+5] = u[i8+5], v[i8+5] = u[j8 + 5]; v[j8+7] = u[i8+7], v[i8+7] = u[j8 + 7]; } } // step 5 for (k=0; k < n2; ++k) { w[k] = v[k*2+1]; } // step 6 for (k=k2=k4=0; k < n8; ++k, k2 += 2, k4 += 4) { u[n-1-k2] = w[k4]; u[n-2-k2] = w[k4+1]; u[n3_4 - 1 - k2] = w[k4+2]; u[n3_4 - 2 - k2] = w[k4+3]; } // step 7 for (k=k2=0; k < n8; ++k, k2 += 2) { v[n2 + k2 ] = ( u[n2 + k2] + u[n-2-k2] + C[k2+1]*(u[n2+k2]-u[n-2-k2]) + C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2; v[n-2 - k2] = ( u[n2 + k2] + u[n-2-k2] - C[k2+1]*(u[n2+k2]-u[n-2-k2]) - C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2; v[n2+1+ k2] = ( u[n2+1+k2] - u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2; v[n-1 - k2] = (-u[n2+1+k2] + u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2; } // step 8 for (k=k2=0; k < n4; ++k,k2 += 2) { X[k] = v[k2+n2]*B[k2 ] + v[k2+1+n2]*B[k2+1]; X[n2-1-k] = v[k2+n2]*B[k2+1] - v[k2+1+n2]*B[k2 ]; } // decode kernel to output // determined the following value experimentally // (by first figuring out what made inverse_mdct_slow work); then matching that here // (probably vorbis encoder premultiplies by n or n/2, to save it on the decoder?) s = 0.5; // theoretically would be n4 // [[[ note! the s value of 0.5 is compensated for by the B[] in the current code, // so it needs to use the "old" B values to behave correctly, or else // set s to 1.0 ]]] for (i=0; i < n4 ; ++i) buffer[i] = s * X[i+n4]; for ( ; i < n3_4; ++i) buffer[i] = -s * X[n3_4 - i - 1]; for ( ; i < n ; ++i) buffer[i] = -s * X[i - n3_4]; } #endif static float *get_window(vorb *f, int len) { len <<= 1; if (len == f->blocksize_0) return f->window[0]; if (len == f->blocksize_1) return f->window[1]; return NULL; } #ifndef STB_VORBIS_NO_DEFER_FLOOR typedef int16 YTYPE; #else typedef int YTYPE; #endif static int do_floor(vorb *f, Mapping *map, int i, int n, float *target, YTYPE *finalY, uint8 *step2_flag) { int n2 = n >> 1; int s = map->chan[i].mux, floor; floor = map->submap_floor[s]; if (f->floor_types[floor] == 0) { return error(f, VORBIS_invalid_stream); } else { Floor1 *g = &f->floor_config[floor].floor1; int j,q; int lx = 0, ly = finalY[0] * g->floor1_multiplier; for (q=1; q < g->values; ++q) { j = g->sorted_order[q]; #ifndef STB_VORBIS_NO_DEFER_FLOOR if (finalY[j] >= 0) #else if (step2_flag[j]) #endif { int hy = finalY[j] * g->floor1_multiplier; int hx = g->Xlist[j]; if (lx != hx) draw_line(target, lx,ly, hx,hy, n2); CHECK(f); lx = hx, ly = hy; } } if (lx < n2) { // optimization of: draw_line(target, lx,ly, n,ly, n2); for (j=lx; j < n2; ++j) LINE_OP(target[j], inverse_db_table[ly]); CHECK(f); } } return TRUE; } // The meaning of "left" and "right" // // For a given frame: // we compute samples from 0..n // window_center is n/2 // we'll window and mix the samples from left_start to left_end with data from the previous frame // all of the samples from left_end to right_start can be output without mixing; however, // this interval is 0-length except when transitioning between short and long frames // all of the samples from right_start to right_end need to be mixed with the next frame, // which we don't have, so those get saved in a buffer // frame N's right_end-right_start, the number of samples to mix with the next frame, // has to be the same as frame N+1's left_end-left_start (which they are by // construction) static int vorbis_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode) { Mode *m; int i, n, prev, next, window_center; f->channel_buffer_start = f->channel_buffer_end = 0; retry: if (f->eof) return FALSE; if (!maybe_start_packet(f)) return FALSE; // check packet type if (get_bits(f,1) != 0) { if (IS_PUSH_MODE(f)) return error(f,VORBIS_bad_packet_type); while (EOP != get8_packet(f)); goto retry; } if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); i = get_bits(f, ilog(f->mode_count-1)); if (i == EOP) return FALSE; if (i >= f->mode_count) return FALSE; *mode = i; m = f->mode_config + i; if (m->blockflag) { n = f->blocksize_1; prev = get_bits(f,1); next = get_bits(f,1); } else { prev = next = 0; n = f->blocksize_0; } // WINDOWING window_center = n >> 1; if (m->blockflag && !prev) { *p_left_start = (n - f->blocksize_0) >> 2; *p_left_end = (n + f->blocksize_0) >> 2; } else { *p_left_start = 0; *p_left_end = window_center; } if (m->blockflag && !next) { *p_right_start = (n*3 - f->blocksize_0) >> 2; *p_right_end = (n*3 + f->blocksize_0) >> 2; } else { *p_right_start = window_center; *p_right_end = n; } return TRUE; } static int vorbis_decode_packet_rest(vorb *f, int *len, Mode *m, int left_start, int left_end, int right_start, int right_end, int *p_left) { Mapping *map; int i,j,k,n,n2; int zero_channel[256]; int really_zero_channel[256]; // WINDOWING n = f->blocksize[m->blockflag]; map = &f->mapping[m->mapping]; // FLOORS n2 = n >> 1; CHECK(f); for (i=0; i < f->channels; ++i) { int s = map->chan[i].mux, floor; zero_channel[i] = FALSE; floor = map->submap_floor[s]; if (f->floor_types[floor] == 0) { return error(f, VORBIS_invalid_stream); } else { Floor1 *g = &f->floor_config[floor].floor1; if (get_bits(f, 1)) { short *finalY; uint8 step2_flag[256]; static int range_list[4] = { 256, 128, 86, 64 }; int range = range_list[g->floor1_multiplier-1]; int offset = 2; finalY = f->finalY[i]; finalY[0] = get_bits(f, ilog(range)-1); finalY[1] = get_bits(f, ilog(range)-1); for (j=0; j < g->partitions; ++j) { int pclass = g->partition_class_list[j]; int cdim = g->class_dimensions[pclass]; int cbits = g->class_subclasses[pclass]; int csub = (1 << cbits)-1; int cval = 0; if (cbits) { Codebook *c = f->codebooks + g->class_masterbooks[pclass]; DECODE(cval,f,c); } for (k=0; k < cdim; ++k) { int book = g->subclass_books[pclass][cval & csub]; cval = cval >> cbits; if (book >= 0) { int temp; Codebook *c = f->codebooks + book; DECODE(temp,f,c); finalY[offset++] = temp; } else finalY[offset++] = 0; } } if (f->valid_bits == INVALID_BITS) goto error; // behavior according to spec step2_flag[0] = step2_flag[1] = 1; for (j=2; j < g->values; ++j) { int low, high, pred, highroom, lowroom, room, val; low = g->neighbors[j][0]; high = g->neighbors[j][1]; //neighbors(g->Xlist, j, &low, &high); pred = predict_point(g->Xlist[j], g->Xlist[low], g->Xlist[high], finalY[low], finalY[high]); val = finalY[j]; highroom = range - pred; lowroom = pred; if (highroom < lowroom) room = highroom * 2; else room = lowroom * 2; if (val) { step2_flag[low] = step2_flag[high] = 1; step2_flag[j] = 1; if (val >= room) if (highroom > lowroom) finalY[j] = val - lowroom + pred; else finalY[j] = pred - val + highroom - 1; else if (val & 1) finalY[j] = pred - ((val+1)>>1); else finalY[j] = pred + (val>>1); } else { step2_flag[j] = 0; finalY[j] = pred; } } #ifdef STB_VORBIS_NO_DEFER_FLOOR do_floor(f, map, i, n, f->floor_buffers[i], finalY, step2_flag); #else // defer final floor computation until _after_ residue for (j=0; j < g->values; ++j) { if (!step2_flag[j]) finalY[j] = -1; } #endif } else { error: zero_channel[i] = TRUE; } // So we just defer everything else to later // at this point we've decoded the floor into buffer } } CHECK(f); // at this point we've decoded all floors if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); // re-enable coupled channels if necessary memcpy(really_zero_channel, zero_channel, sizeof(really_zero_channel[0]) * f->channels); for (i=0; i < map->coupling_steps; ++i) if (!zero_channel[map->chan[i].magnitude] || !zero_channel[map->chan[i].angle]) { zero_channel[map->chan[i].magnitude] = zero_channel[map->chan[i].angle] = FALSE; } CHECK(f); // RESIDUE DECODE for (i=0; i < map->submaps; ++i) { float *residue_buffers[STB_VORBIS_MAX_CHANNELS]; int r; uint8 do_not_decode[256]; int ch = 0; for (j=0; j < f->channels; ++j) { if (map->chan[j].mux == i) { if (zero_channel[j]) { do_not_decode[ch] = TRUE; residue_buffers[ch] = NULL; } else { do_not_decode[ch] = FALSE; residue_buffers[ch] = f->channel_buffers[j]; } ++ch; } } r = map->submap_residue[i]; decode_residue(f, residue_buffers, ch, n2, r, do_not_decode); } if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); CHECK(f); // INVERSE COUPLING for (i = map->coupling_steps-1; i >= 0; --i) { int n2 = n >> 1; float *m = f->channel_buffers[map->chan[i].magnitude]; float *a = f->channel_buffers[map->chan[i].angle ]; for (j=0; j < n2; ++j) { float a2,m2; if (m[j] > 0) if (a[j] > 0) m2 = m[j], a2 = m[j] - a[j]; else a2 = m[j], m2 = m[j] + a[j]; else if (a[j] > 0) m2 = m[j], a2 = m[j] + a[j]; else a2 = m[j], m2 = m[j] - a[j]; m[j] = m2; a[j] = a2; } } CHECK(f); // finish decoding the floors #ifndef STB_VORBIS_NO_DEFER_FLOOR for (i=0; i < f->channels; ++i) { if (really_zero_channel[i]) { memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2); } else { do_floor(f, map, i, n, f->channel_buffers[i], f->finalY[i], NULL); } } #else for (i=0; i < f->channels; ++i) { if (really_zero_channel[i]) { memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2); } else { for (j=0; j < n2; ++j) f->channel_buffers[i][j] *= f->floor_buffers[i][j]; } } #endif // INVERSE MDCT CHECK(f); for (i=0; i < f->channels; ++i) inverse_mdct(f->channel_buffers[i], n, f, m->blockflag); CHECK(f); // this shouldn't be necessary, unless we exited on an error // and want to flush to get to the next packet flush_packet(f); if (f->first_decode) { // assume we start so first non-discarded sample is sample 0 // this isn't to spec, but spec would require us to read ahead // and decode the size of all current frames--could be done, // but presumably it's not a commonly used feature f->current_loc = -n2; // start of first frame is positioned for discard // we might have to discard samples "from" the next frame too, // if we're lapping a large block then a small at the start? f->discard_samples_deferred = n - right_end; f->current_loc_valid = TRUE; f->first_decode = FALSE; } else if (f->discard_samples_deferred) { if (f->discard_samples_deferred >= right_start - left_start) { f->discard_samples_deferred -= (right_start - left_start); left_start = right_start; *p_left = left_start; } else { left_start += f->discard_samples_deferred; *p_left = left_start; f->discard_samples_deferred = 0; } } else if (f->previous_length == 0 && f->current_loc_valid) { // we're recovering from a seek... that means we're going to discard // the samples from this packet even though we know our position from // the last page header, so we need to update the position based on // the discarded samples here // but wait, the code below is going to add this in itself even // on a discard, so we don't need to do it here... } // check if we have ogg information about the sample # for this packet if (f->last_seg_which == f->end_seg_with_known_loc) { // if we have a valid current loc, and this is final: if (f->current_loc_valid && (f->page_flag & PAGEFLAG_last_page)) { uint32 current_end = f->known_loc_for_packet; // then let's infer the size of the (probably) short final frame if (current_end < f->current_loc + (right_end-left_start)) { if (current_end < f->current_loc) { // negative truncation, that's impossible! *len = 0; } else { *len = current_end - f->current_loc; } *len += left_start; // this doesn't seem right, but has no ill effect on my test files if (*len > right_end) *len = right_end; // this should never happen f->current_loc += *len; return TRUE; } } // otherwise, just set our sample loc // guess that the ogg granule pos refers to the _middle_ of the // last frame? // set f->current_loc to the position of left_start f->current_loc = f->known_loc_for_packet - (n2-left_start); f->current_loc_valid = TRUE; } if (f->current_loc_valid) f->current_loc += (right_start - left_start); if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); *len = right_end; // ignore samples after the window goes to 0 CHECK(f); return TRUE; } static int vorbis_decode_packet(vorb *f, int *len, int *p_left, int *p_right) { int mode, left_end, right_end; if (!vorbis_decode_initial(f, p_left, &left_end, p_right, &right_end, &mode)) return 0; return vorbis_decode_packet_rest(f, len, f->mode_config + mode, *p_left, left_end, *p_right, right_end, p_left); } static int vorbis_finish_frame(stb_vorbis *f, int len, int left, int right) { int prev,i,j; // we use right&left (the start of the right- and left-window sin()-regions) // to determine how much to return, rather than inferring from the rules // (same result, clearer code); 'left' indicates where our sin() window // starts, therefore where the previous window's right edge starts, and // therefore where to start mixing from the previous buffer. 'right' // indicates where our sin() ending-window starts, therefore that's where // we start saving, and where our returned-data ends. // mixin from previous window if (f->previous_length) { int i,j, n = f->previous_length; float *w = get_window(f, n); if (w == NULL) return 0; for (i=0; i < f->channels; ++i) { for (j=0; j < n; ++j) f->channel_buffers[i][left+j] = f->channel_buffers[i][left+j]*w[ j] + f->previous_window[i][ j]*w[n-1-j]; } } prev = f->previous_length; // last half of this data becomes previous window f->previous_length = len - right; // @OPTIMIZE: could avoid this copy by double-buffering the // output (flipping previous_window with channel_buffers), but // then previous_window would have to be 2x as large, and // channel_buffers couldn't be temp mem (although they're NOT // currently temp mem, they could be (unless we want to level // performance by spreading out the computation)) for (i=0; i < f->channels; ++i) for (j=0; right+j < len; ++j) f->previous_window[i][j] = f->channel_buffers[i][right+j]; if (!prev) // there was no previous packet, so this data isn't valid... // this isn't entirely true, only the would-have-overlapped data // isn't valid, but this seems to be what the spec requires return 0; // truncate a short frame if (len < right) right = len; f->samples_output += right-left; return right - left; } static int vorbis_pump_first_frame(stb_vorbis *f) { int len, right, left, res; res = vorbis_decode_packet(f, &len, &left, &right); if (res) vorbis_finish_frame(f, len, left, right); return res; } #ifndef STB_VORBIS_NO_PUSHDATA_API static int is_whole_packet_present(stb_vorbis *f) { // make sure that we have the packet available before continuing... // this requires a full ogg parse, but we know we can fetch from f->stream // instead of coding this out explicitly, we could save the current read state, // read the next packet with get8() until end-of-packet, check f->eof, then // reset the state? but that would be slower, esp. since we'd have over 256 bytes // of state to restore (primarily the page segment table) int s = f->next_seg, first = TRUE; uint8 *p = f->stream; if (s != -1) { // if we're not starting the packet with a 'continue on next page' flag for (; s < f->segment_count; ++s) { p += f->segments[s]; if (f->segments[s] < 255) // stop at first short segment break; } // either this continues, or it ends it... if (s == f->segment_count) s = -1; // set 'crosses page' flag if (p > f->stream_end) return error(f, VORBIS_need_more_data); first = FALSE; } for (; s == -1;) { uint8 *q; int n; // check that we have the page header ready if (p + 26 >= f->stream_end) return error(f, VORBIS_need_more_data); // validate the page if (memcmp(p, ogg_page_header, 4)) return error(f, VORBIS_invalid_stream); if (p[4] != 0) return error(f, VORBIS_invalid_stream); if (first) { // the first segment must NOT have 'continued_packet', later ones MUST if (f->previous_length) if ((p[5] & PAGEFLAG_continued_packet)) return error(f, VORBIS_invalid_stream); // if no previous length, we're resynching, so we can come in on a continued-packet, // which we'll just drop } else { if (!(p[5] & PAGEFLAG_continued_packet)) return error(f, VORBIS_invalid_stream); } n = p[26]; // segment counts q = p+27; // q points to segment table p = q + n; // advance past header // make sure we've read the segment table if (p > f->stream_end) return error(f, VORBIS_need_more_data); for (s=0; s < n; ++s) { p += q[s]; if (q[s] < 255) break; } if (s == n) s = -1; // set 'crosses page' flag if (p > f->stream_end) return error(f, VORBIS_need_more_data); first = FALSE; } return TRUE; } #endif // !STB_VORBIS_NO_PUSHDATA_API static int start_decoder(vorb *f) { uint8 header[6], x,y; int len,i,j,k, max_submaps = 0; int longest_floorlist=0; // first page, first packet f->first_decode = TRUE; if (!start_page(f)) return FALSE; // validate page flag if (!(f->page_flag & PAGEFLAG_first_page)) return error(f, VORBIS_invalid_first_page); if (f->page_flag & PAGEFLAG_last_page) return error(f, VORBIS_invalid_first_page); if (f->page_flag & PAGEFLAG_continued_packet) return error(f, VORBIS_invalid_first_page); // check for expected packet length if (f->segment_count != 1) return error(f, VORBIS_invalid_first_page); if (f->segments[0] != 30) { // check for the Ogg skeleton fishead identifying header to refine our error if (f->segments[0] == 64 && getn(f, header, 6) && header[0] == 'f' && header[1] == 'i' && header[2] == 's' && header[3] == 'h' && header[4] == 'e' && header[5] == 'a' && get8(f) == 'd' && get8(f) == '\0') return error(f, VORBIS_ogg_skeleton_not_supported); else return error(f, VORBIS_invalid_first_page); } // read packet // check packet header if (get8(f) != VORBIS_packet_id) return error(f, VORBIS_invalid_first_page); if (!getn(f, header, 6)) return error(f, VORBIS_unexpected_eof); if (!vorbis_validate(header)) return error(f, VORBIS_invalid_first_page); // vorbis_version if (get32(f) != 0) return error(f, VORBIS_invalid_first_page); f->channels = get8(f); if (!f->channels) return error(f, VORBIS_invalid_first_page); if (f->channels > STB_VORBIS_MAX_CHANNELS) return error(f, VORBIS_too_many_channels); f->sample_rate = get32(f); if (!f->sample_rate) return error(f, VORBIS_invalid_first_page); get32(f); // bitrate_maximum get32(f); // bitrate_nominal get32(f); // bitrate_minimum x = get8(f); { int log0,log1; log0 = x & 15; log1 = x >> 4; f->blocksize_0 = 1 << log0; f->blocksize_1 = 1 << log1; if (log0 < 6 || log0 > 13) return error(f, VORBIS_invalid_setup); if (log1 < 6 || log1 > 13) return error(f, VORBIS_invalid_setup); if (log0 > log1) return error(f, VORBIS_invalid_setup); } // framing_flag x = get8(f); if (!(x & 1)) return error(f, VORBIS_invalid_first_page); // second packet! if (!start_page(f)) return FALSE; if (!start_packet(f)) return FALSE; if (!next_segment(f)) return FALSE; if (get8_packet(f) != VORBIS_packet_comment) return error(f, VORBIS_invalid_setup); for (i=0; i < 6; ++i) header[i] = get8_packet(f); if (!vorbis_validate(header)) return error(f, VORBIS_invalid_setup); //file vendor len = get32_packet(f); f->vendor = (char*)setup_malloc(f, sizeof(char) * (len+1)); for(i=0; i < len; ++i) { f->vendor[i] = get8_packet(f); } f->vendor[len] = (char)'\0'; //user comments f->comment_list_length = get32_packet(f); f->comment_list = (char**)setup_malloc(f, sizeof(char*) * (f->comment_list_length)); for(i=0; i < f->comment_list_length; ++i) { len = get32_packet(f); f->comment_list[i] = (char*)setup_malloc(f, sizeof(char) * (len+1)); for(j=0; j < len; ++j) { f->comment_list[i][j] = get8_packet(f); } f->comment_list[i][len] = (char)'\0'; } // framing_flag x = get8_packet(f); if (!(x & 1)) return error(f, VORBIS_invalid_setup); skip(f, f->bytes_in_seg); f->bytes_in_seg = 0; do { len = next_segment(f); skip(f, len); f->bytes_in_seg = 0; } while (len); // third packet! if (!start_packet(f)) return FALSE; #ifndef STB_VORBIS_NO_PUSHDATA_API if (IS_PUSH_MODE(f)) { if (!is_whole_packet_present(f)) { // convert error in ogg header to write type if (f->error == VORBIS_invalid_stream) f->error = VORBIS_invalid_setup; return FALSE; } } #endif crc32_init(); // always init it, to avoid multithread race conditions if (get8_packet(f) != VORBIS_packet_setup) return error(f, VORBIS_invalid_setup); for (i=0; i < 6; ++i) header[i] = get8_packet(f); if (!vorbis_validate(header)) return error(f, VORBIS_invalid_setup); // codebooks f->codebook_count = get_bits(f,8) + 1; f->codebooks = (Codebook *) setup_malloc(f, sizeof(*f->codebooks) * f->codebook_count); if (f->codebooks == NULL) return error(f, VORBIS_outofmem); memset(f->codebooks, 0, sizeof(*f->codebooks) * f->codebook_count); for (i=0; i < f->codebook_count; ++i) { uint32 *values; int ordered, sorted_count; int total=0; uint8 *lengths; Codebook *c = f->codebooks+i; CHECK(f); x = get_bits(f, 8); if (x != 0x42) return error(f, VORBIS_invalid_setup); x = get_bits(f, 8); if (x != 0x43) return error(f, VORBIS_invalid_setup); x = get_bits(f, 8); if (x != 0x56) return error(f, VORBIS_invalid_setup); x = get_bits(f, 8); c->dimensions = (get_bits(f, 8)<<8) + x; x = get_bits(f, 8); y = get_bits(f, 8); c->entries = (get_bits(f, 8)<<16) + (y<<8) + x; ordered = get_bits(f,1); c->sparse = ordered ? 0 : get_bits(f,1); if (c->dimensions == 0 && c->entries != 0) return error(f, VORBIS_invalid_setup); if (c->sparse) lengths = (uint8 *) setup_temp_malloc(f, c->entries); else lengths = c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries); if (!lengths) return error(f, VORBIS_outofmem); if (ordered) { int current_entry = 0; int current_length = get_bits(f,5) + 1; while (current_entry < c->entries) { int limit = c->entries - current_entry; int n = get_bits(f, ilog(limit)); if (current_length >= 32) return error(f, VORBIS_invalid_setup); if (current_entry + n > (int) c->entries) { return error(f, VORBIS_invalid_setup); } memset(lengths + current_entry, current_length, n); current_entry += n; ++current_length; } } else { for (j=0; j < c->entries; ++j) { int present = c->sparse ? get_bits(f,1) : 1; if (present) { lengths[j] = get_bits(f, 5) + 1; ++total; if (lengths[j] == 32) return error(f, VORBIS_invalid_setup); } else { lengths[j] = NO_CODE; } } } if (c->sparse && total >= c->entries >> 2) { // convert sparse items to non-sparse! if (c->entries > (int) f->setup_temp_memory_required) f->setup_temp_memory_required = c->entries; c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries); if (c->codeword_lengths == NULL) return error(f, VORBIS_outofmem); memcpy(c->codeword_lengths, lengths, c->entries); setup_temp_free(f, lengths, c->entries); // note this is only safe if there have been no intervening temp mallocs! lengths = c->codeword_lengths; c->sparse = 0; } // compute the size of the sorted tables if (c->sparse) { sorted_count = total; } else { sorted_count = 0; #ifndef STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH for (j=0; j < c->entries; ++j) if (lengths[j] > STB_VORBIS_FAST_HUFFMAN_LENGTH && lengths[j] != NO_CODE) ++sorted_count; #endif } c->sorted_entries = sorted_count; values = NULL; CHECK(f); if (!c->sparse) { c->codewords = (uint32 *) setup_malloc(f, sizeof(c->codewords[0]) * c->entries); if (!c->codewords) return error(f, VORBIS_outofmem); } else { unsigned int size; if (c->sorted_entries) { c->codeword_lengths = (uint8 *) setup_malloc(f, c->sorted_entries); if (!c->codeword_lengths) return error(f, VORBIS_outofmem); c->codewords = (uint32 *) setup_temp_malloc(f, sizeof(*c->codewords) * c->sorted_entries); if (!c->codewords) return error(f, VORBIS_outofmem); values = (uint32 *) setup_temp_malloc(f, sizeof(*values) * c->sorted_entries); if (!values) return error(f, VORBIS_outofmem); } size = c->entries + (sizeof(*c->codewords) + sizeof(*values)) * c->sorted_entries; if (size > f->setup_temp_memory_required) f->setup_temp_memory_required = size; } if (!compute_codewords(c, lengths, c->entries, values)) { if (c->sparse) setup_temp_free(f, values, 0); return error(f, VORBIS_invalid_setup); } if (c->sorted_entries) { // allocate an extra slot for sentinels c->sorted_codewords = (uint32 *) setup_malloc(f, sizeof(*c->sorted_codewords) * (c->sorted_entries+1)); if (c->sorted_codewords == NULL) return error(f, VORBIS_outofmem); // allocate an extra slot at the front so that c->sorted_values[-1] is defined // so that we can catch that case without an extra if c->sorted_values = ( int *) setup_malloc(f, sizeof(*c->sorted_values ) * (c->sorted_entries+1)); if (c->sorted_values == NULL) return error(f, VORBIS_outofmem); ++c->sorted_values; c->sorted_values[-1] = -1; compute_sorted_huffman(c, lengths, values); } if (c->sparse) { setup_temp_free(f, values, sizeof(*values)*c->sorted_entries); setup_temp_free(f, c->codewords, sizeof(*c->codewords)*c->sorted_entries); setup_temp_free(f, lengths, c->entries); c->codewords = NULL; } compute_accelerated_huffman(c); CHECK(f); c->lookup_type = get_bits(f, 4); if (c->lookup_type > 2) return error(f, VORBIS_invalid_setup); if (c->lookup_type > 0) { uint16 *mults; c->minimum_value = float32_unpack(get_bits(f, 32)); c->delta_value = float32_unpack(get_bits(f, 32)); c->value_bits = get_bits(f, 4)+1; c->sequence_p = get_bits(f,1); if (c->lookup_type == 1) { int values = lookup1_values(c->entries, c->dimensions); if (values < 0) return error(f, VORBIS_invalid_setup); c->lookup_values = (uint32) values; } else { c->lookup_values = c->entries * c->dimensions; } if (c->lookup_values == 0) return error(f, VORBIS_invalid_setup); mults = (uint16 *) setup_temp_malloc(f, sizeof(mults[0]) * c->lookup_values); if (mults == NULL) return error(f, VORBIS_outofmem); for (j=0; j < (int) c->lookup_values; ++j) { int q = get_bits(f, c->value_bits); if (q == EOP) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_invalid_setup); } mults[j] = q; } #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK if (c->lookup_type == 1) { int len, sparse = c->sparse; float last=0; // pre-expand the lookup1-style multiplicands, to avoid a divide in the inner loop if (sparse) { if (c->sorted_entries == 0) goto skip; c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->sorted_entries * c->dimensions); } else c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->entries * c->dimensions); if (c->multiplicands == NULL) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); } len = sparse ? c->sorted_entries : c->entries; for (j=0; j < len; ++j) { unsigned int z = sparse ? c->sorted_values[j] : j; unsigned int div=1; for (k=0; k < c->dimensions; ++k) { int off = (z / div) % c->lookup_values; float val = mults[off]; val = mults[off]*c->delta_value + c->minimum_value + last; c->multiplicands[j*c->dimensions + k] = val; if (c->sequence_p) last = val; if (k+1 < c->dimensions) { if (div > UINT_MAX / (unsigned int) c->lookup_values) { setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_invalid_setup); } div *= c->lookup_values; } } } c->lookup_type = 2; } else #endif { float last=0; CHECK(f); c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->lookup_values); if (c->multiplicands == NULL) { setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); } for (j=0; j < (int) c->lookup_values; ++j) { float val = mults[j] * c->delta_value + c->minimum_value + last; c->multiplicands[j] = val; if (c->sequence_p) last = val; } } #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK skip:; #endif setup_temp_free(f, mults, sizeof(mults[0])*c->lookup_values); CHECK(f); } CHECK(f); } // time domain transfers (notused) x = get_bits(f, 6) + 1; for (i=0; i < x; ++i) { uint32 z = get_bits(f, 16); if (z != 0) return error(f, VORBIS_invalid_setup); } // Floors f->floor_count = get_bits(f, 6)+1; f->floor_config = (Floor *) setup_malloc(f, f->floor_count * sizeof(*f->floor_config)); if (f->floor_config == NULL) return error(f, VORBIS_outofmem); for (i=0; i < f->floor_count; ++i) { f->floor_types[i] = get_bits(f, 16); if (f->floor_types[i] > 1) return error(f, VORBIS_invalid_setup); if (f->floor_types[i] == 0) { Floor0 *g = &f->floor_config[i].floor0; g->order = get_bits(f,8); g->rate = get_bits(f,16); g->bark_map_size = get_bits(f,16); g->amplitude_bits = get_bits(f,6); g->amplitude_offset = get_bits(f,8); g->number_of_books = get_bits(f,4) + 1; for (j=0; j < g->number_of_books; ++j) g->book_list[j] = get_bits(f,8); return error(f, VORBIS_feature_not_supported); } else { stbv__floor_ordering p[31*8+2]; Floor1 *g = &f->floor_config[i].floor1; int max_class = -1; g->partitions = get_bits(f, 5); for (j=0; j < g->partitions; ++j) { g->partition_class_list[j] = get_bits(f, 4); if (g->partition_class_list[j] > max_class) max_class = g->partition_class_list[j]; } for (j=0; j <= max_class; ++j) { g->class_dimensions[j] = get_bits(f, 3)+1; g->class_subclasses[j] = get_bits(f, 2); if (g->class_subclasses[j]) { g->class_masterbooks[j] = get_bits(f, 8); if (g->class_masterbooks[j] >= f->codebook_count) return error(f, VORBIS_invalid_setup); } for (k=0; k < 1 << g->class_subclasses[j]; ++k) { g->subclass_books[j][k] = get_bits(f,8)-1; if (g->subclass_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup); } } g->floor1_multiplier = get_bits(f,2)+1; g->rangebits = get_bits(f,4); g->Xlist[0] = 0; g->Xlist[1] = 1 << g->rangebits; g->values = 2; for (j=0; j < g->partitions; ++j) { int c = g->partition_class_list[j]; for (k=0; k < g->class_dimensions[c]; ++k) { g->Xlist[g->values] = get_bits(f, g->rangebits); ++g->values; } } // precompute the sorting for (j=0; j < g->values; ++j) { p[j].x = g->Xlist[j]; p[j].id = j; } qsort(p, g->values, sizeof(p[0]), point_compare); for (j=0; j < g->values-1; ++j) if (p[j].x == p[j+1].x) return error(f, VORBIS_invalid_setup); for (j=0; j < g->values; ++j) g->sorted_order[j] = (uint8) p[j].id; // precompute the neighbors for (j=2; j < g->values; ++j) { int low = 0,hi = 0; neighbors(g->Xlist, j, &low,&hi); g->neighbors[j][0] = low; g->neighbors[j][1] = hi; } if (g->values > longest_floorlist) longest_floorlist = g->values; } } // Residue f->residue_count = get_bits(f, 6)+1; f->residue_config = (Residue *) setup_malloc(f, f->residue_count * sizeof(f->residue_config[0])); if (f->residue_config == NULL) return error(f, VORBIS_outofmem); memset(f->residue_config, 0, f->residue_count * sizeof(f->residue_config[0])); for (i=0; i < f->residue_count; ++i) { uint8 residue_cascade[64]; Residue *r = f->residue_config+i; f->residue_types[i] = get_bits(f, 16); if (f->residue_types[i] > 2) return error(f, VORBIS_invalid_setup); r->begin = get_bits(f, 24); r->end = get_bits(f, 24); if (r->end < r->begin) return error(f, VORBIS_invalid_setup); r->part_size = get_bits(f,24)+1; r->classifications = get_bits(f,6)+1; r->classbook = get_bits(f,8); if (r->classbook >= f->codebook_count) return error(f, VORBIS_invalid_setup); for (j=0; j < r->classifications; ++j) { uint8 high_bits=0; uint8 low_bits=get_bits(f,3); if (get_bits(f,1)) high_bits = get_bits(f,5); residue_cascade[j] = high_bits*8 + low_bits; } r->residue_books = (short (*)[8]) setup_malloc(f, sizeof(r->residue_books[0]) * r->classifications); if (r->residue_books == NULL) return error(f, VORBIS_outofmem); for (j=0; j < r->classifications; ++j) { for (k=0; k < 8; ++k) { if (residue_cascade[j] & (1 << k)) { r->residue_books[j][k] = get_bits(f, 8); if (r->residue_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup); } else { r->residue_books[j][k] = -1; } } } // precompute the classifications[] array to avoid inner-loop mod/divide // call it 'classdata' since we already have r->classifications r->classdata = (uint8 **) setup_malloc(f, sizeof(*r->classdata) * f->codebooks[r->classbook].entries); if (!r->classdata) return error(f, VORBIS_outofmem); memset(r->classdata, 0, sizeof(*r->classdata) * f->codebooks[r->classbook].entries); for (j=0; j < f->codebooks[r->classbook].entries; ++j) { int classwords = f->codebooks[r->classbook].dimensions; int temp = j; r->classdata[j] = (uint8 *) setup_malloc(f, sizeof(r->classdata[j][0]) * classwords); if (r->classdata[j] == NULL) return error(f, VORBIS_outofmem); for (k=classwords-1; k >= 0; --k) { r->classdata[j][k] = temp % r->classifications; temp /= r->classifications; } } } f->mapping_count = get_bits(f,6)+1; f->mapping = (Mapping *) setup_malloc(f, f->mapping_count * sizeof(*f->mapping)); if (f->mapping == NULL) return error(f, VORBIS_outofmem); memset(f->mapping, 0, f->mapping_count * sizeof(*f->mapping)); for (i=0; i < f->mapping_count; ++i) { Mapping *m = f->mapping + i; int mapping_type = get_bits(f,16); if (mapping_type != 0) return error(f, VORBIS_invalid_setup); m->chan = (MappingChannel *) setup_malloc(f, f->channels * sizeof(*m->chan)); if (m->chan == NULL) return error(f, VORBIS_outofmem); if (get_bits(f,1)) m->submaps = get_bits(f,4)+1; else m->submaps = 1; if (m->submaps > max_submaps) max_submaps = m->submaps; if (get_bits(f,1)) { m->coupling_steps = get_bits(f,8)+1; if (m->coupling_steps > f->channels) return error(f, VORBIS_invalid_setup); for (k=0; k < m->coupling_steps; ++k) { m->chan[k].magnitude = get_bits(f, ilog(f->channels-1)); m->chan[k].angle = get_bits(f, ilog(f->channels-1)); if (m->chan[k].magnitude >= f->channels) return error(f, VORBIS_invalid_setup); if (m->chan[k].angle >= f->channels) return error(f, VORBIS_invalid_setup); if (m->chan[k].magnitude == m->chan[k].angle) return error(f, VORBIS_invalid_setup); } } else m->coupling_steps = 0; // reserved field if (get_bits(f,2)) return error(f, VORBIS_invalid_setup); if (m->submaps > 1) { for (j=0; j < f->channels; ++j) { m->chan[j].mux = get_bits(f, 4); if (m->chan[j].mux >= m->submaps) return error(f, VORBIS_invalid_setup); } } else // @SPECIFICATION: this case is missing from the spec for (j=0; j < f->channels; ++j) m->chan[j].mux = 0; for (j=0; j < m->submaps; ++j) { get_bits(f,8); // discard m->submap_floor[j] = get_bits(f,8); m->submap_residue[j] = get_bits(f,8); if (m->submap_floor[j] >= f->floor_count) return error(f, VORBIS_invalid_setup); if (m->submap_residue[j] >= f->residue_count) return error(f, VORBIS_invalid_setup); } } // Modes f->mode_count = get_bits(f, 6)+1; for (i=0; i < f->mode_count; ++i) { Mode *m = f->mode_config+i; m->blockflag = get_bits(f,1); m->windowtype = get_bits(f,16); m->transformtype = get_bits(f,16); m->mapping = get_bits(f,8); if (m->windowtype != 0) return error(f, VORBIS_invalid_setup); if (m->transformtype != 0) return error(f, VORBIS_invalid_setup); if (m->mapping >= f->mapping_count) return error(f, VORBIS_invalid_setup); } flush_packet(f); f->previous_length = 0; for (i=0; i < f->channels; ++i) { f->channel_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1); f->previous_window[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2); f->finalY[i] = (int16 *) setup_malloc(f, sizeof(int16) * longest_floorlist); if (f->channel_buffers[i] == NULL || f->previous_window[i] == NULL || f->finalY[i] == NULL) return error(f, VORBIS_outofmem); memset(f->channel_buffers[i], 0, sizeof(float) * f->blocksize_1); #ifdef STB_VORBIS_NO_DEFER_FLOOR f->floor_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2); if (f->floor_buffers[i] == NULL) return error(f, VORBIS_outofmem); #endif } if (!init_blocksize(f, 0, f->blocksize_0)) return FALSE; if (!init_blocksize(f, 1, f->blocksize_1)) return FALSE; f->blocksize[0] = f->blocksize_0; f->blocksize[1] = f->blocksize_1; #ifdef STB_VORBIS_DIVIDE_TABLE if (integer_divide_table[1][1]==0) for (i=0; i < DIVTAB_NUMER; ++i) for (j=1; j < DIVTAB_DENOM; ++j) integer_divide_table[i][j] = i / j; #endif // compute how much temporary memory is needed // 1. { uint32 imdct_mem = (f->blocksize_1 * sizeof(float) >> 1); uint32 classify_mem; int i,max_part_read=0; for (i=0; i < f->residue_count; ++i) { Residue *r = f->residue_config + i; unsigned int actual_size = f->blocksize_1 / 2; unsigned int limit_r_begin = r->begin < actual_size ? r->begin : actual_size; unsigned int limit_r_end = r->end < actual_size ? r->end : actual_size; int n_read = limit_r_end - limit_r_begin; int part_read = n_read / r->part_size; if (part_read > max_part_read) max_part_read = part_read; } #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(uint8 *)); #else classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(int *)); #endif // maximum reasonable partition size is f->blocksize_1 f->temp_memory_required = classify_mem; if (imdct_mem > f->temp_memory_required) f->temp_memory_required = imdct_mem; } if (f->alloc.alloc_buffer) { assert(f->temp_offset == f->alloc.alloc_buffer_length_in_bytes); // check if there's enough temp memory so we don't error later if (f->setup_offset + sizeof(*f) + f->temp_memory_required > (unsigned) f->temp_offset) return error(f, VORBIS_outofmem); } // @TODO: stb_vorbis_seek_start expects first_audio_page_offset to point to a page // without PAGEFLAG_continued_packet, so this either points to the first page, or // the page after the end of the headers. It might be cleaner to point to a page // in the middle of the headers, when that's the page where the first audio packet // starts, but we'd have to also correctly skip the end of any continued packet in // stb_vorbis_seek_start. if (f->next_seg == -1) { f->first_audio_page_offset = stb_vorbis_get_file_offset(f); } else { f->first_audio_page_offset = 0; } return TRUE; } static void vorbis_deinit(stb_vorbis *p) { int i,j; setup_free(p, p->vendor); for (i=0; i < p->comment_list_length; ++i) { setup_free(p, p->comment_list[i]); } setup_free(p, p->comment_list); if (p->residue_config) { for (i=0; i < p->residue_count; ++i) { Residue *r = p->residue_config+i; if (r->classdata) { for (j=0; j < p->codebooks[r->classbook].entries; ++j) setup_free(p, r->classdata[j]); setup_free(p, r->classdata); } setup_free(p, r->residue_books); } } if (p->codebooks) { CHECK(p); for (i=0; i < p->codebook_count; ++i) { Codebook *c = p->codebooks + i; setup_free(p, c->codeword_lengths); setup_free(p, c->multiplicands); setup_free(p, c->codewords); setup_free(p, c->sorted_codewords); // c->sorted_values[-1] is the first entry in the array setup_free(p, c->sorted_values ? c->sorted_values-1 : NULL); } setup_free(p, p->codebooks); } setup_free(p, p->floor_config); setup_free(p, p->residue_config); if (p->mapping) { for (i=0; i < p->mapping_count; ++i) setup_free(p, p->mapping[i].chan); setup_free(p, p->mapping); } CHECK(p); for (i=0; i < p->channels && i < STB_VORBIS_MAX_CHANNELS; ++i) { setup_free(p, p->channel_buffers[i]); setup_free(p, p->previous_window[i]); #ifdef STB_VORBIS_NO_DEFER_FLOOR setup_free(p, p->floor_buffers[i]); #endif setup_free(p, p->finalY[i]); } for (i=0; i < 2; ++i) { setup_free(p, p->A[i]); setup_free(p, p->B[i]); setup_free(p, p->C[i]); setup_free(p, p->window[i]); setup_free(p, p->bit_reverse[i]); } #ifndef STB_VORBIS_NO_STDIO if (p->close_on_free) fclose(p->f); #endif } void stb_vorbis_close(stb_vorbis *p) { if (p == NULL) return; vorbis_deinit(p); setup_free(p,p); } static void vorbis_init(stb_vorbis *p, const stb_vorbis_alloc *z) { memset(p, 0, sizeof(*p)); // NULL out all malloc'd pointers to start if (z) { p->alloc = *z; p->alloc.alloc_buffer_length_in_bytes = (p->alloc.alloc_buffer_length_in_bytes+3) & ~3; p->temp_offset = p->alloc.alloc_buffer_length_in_bytes; } p->eof = 0; p->error = VORBIS__no_error; p->stream = NULL; p->codebooks = NULL; p->page_crc_tests = -1; #ifndef STB_VORBIS_NO_STDIO p->close_on_free = FALSE; p->f = NULL; #endif } int stb_vorbis_get_sample_offset(stb_vorbis *f) { if (f->current_loc_valid) return f->current_loc; else return -1; } stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f) { stb_vorbis_info d; d.channels = f->channels; d.sample_rate = f->sample_rate; d.setup_memory_required = f->setup_memory_required; d.setup_temp_memory_required = f->setup_temp_memory_required; d.temp_memory_required = f->temp_memory_required; d.max_frame_size = f->blocksize_1 >> 1; return d; } stb_vorbis_comment stb_vorbis_get_comment(stb_vorbis *f) { stb_vorbis_comment d; d.vendor = f->vendor; d.comment_list_length = f->comment_list_length; d.comment_list = f->comment_list; return d; } int stb_vorbis_get_error(stb_vorbis *f) { int e = f->error; f->error = VORBIS__no_error; return e; } static stb_vorbis * vorbis_alloc(stb_vorbis *f) { stb_vorbis *p = (stb_vorbis *) setup_malloc(f, sizeof(*p)); return p; } #ifndef STB_VORBIS_NO_PUSHDATA_API void stb_vorbis_flush_pushdata(stb_vorbis *f) { f->previous_length = 0; f->page_crc_tests = 0; f->discard_samples_deferred = 0; f->current_loc_valid = FALSE; f->first_decode = FALSE; f->samples_output = 0; f->channel_buffer_start = 0; f->channel_buffer_end = 0; } static int vorbis_search_for_page_pushdata(vorb *f, uint8 *data, int data_len) { int i,n; for (i=0; i < f->page_crc_tests; ++i) f->scan[i].bytes_done = 0; // if we have room for more scans, search for them first, because // they may cause us to stop early if their header is incomplete if (f->page_crc_tests < STB_VORBIS_PUSHDATA_CRC_COUNT) { if (data_len < 4) return 0; data_len -= 3; // need to look for 4-byte sequence, so don't miss // one that straddles a boundary for (i=0; i < data_len; ++i) { if (data[i] == 0x4f) { if (0==memcmp(data+i, ogg_page_header, 4)) { int j,len; uint32 crc; // make sure we have the whole page header if (i+26 >= data_len || i+27+data[i+26] >= data_len) { // only read up to this page start, so hopefully we'll // have the whole page header start next time data_len = i; break; } // ok, we have it all; compute the length of the page len = 27 + data[i+26]; for (j=0; j < data[i+26]; ++j) len += data[i+27+j]; // scan everything up to the embedded crc (which we must 0) crc = 0; for (j=0; j < 22; ++j) crc = crc32_update(crc, data[i+j]); // now process 4 0-bytes for ( ; j < 26; ++j) crc = crc32_update(crc, 0); // len is the total number of bytes we need to scan n = f->page_crc_tests++; f->scan[n].bytes_left = len-j; f->scan[n].crc_so_far = crc; f->scan[n].goal_crc = data[i+22] + (data[i+23] << 8) + (data[i+24]<<16) + (data[i+25]<<24); // if the last frame on a page is continued to the next, then // we can't recover the sample_loc immediately if (data[i+27+data[i+26]-1] == 255) f->scan[n].sample_loc = ~0; else f->scan[n].sample_loc = data[i+6] + (data[i+7] << 8) + (data[i+ 8]<<16) + (data[i+ 9]<<24); f->scan[n].bytes_done = i+j; if (f->page_crc_tests == STB_VORBIS_PUSHDATA_CRC_COUNT) break; // keep going if we still have room for more } } } } for (i=0; i < f->page_crc_tests;) { uint32 crc; int j; int n = f->scan[i].bytes_done; int m = f->scan[i].bytes_left; if (m > data_len - n) m = data_len - n; // m is the bytes to scan in the current chunk crc = f->scan[i].crc_so_far; for (j=0; j < m; ++j) crc = crc32_update(crc, data[n+j]); f->scan[i].bytes_left -= m; f->scan[i].crc_so_far = crc; if (f->scan[i].bytes_left == 0) { // does it match? if (f->scan[i].crc_so_far == f->scan[i].goal_crc) { // Houston, we have page data_len = n+m; // consumption amount is wherever that scan ended f->page_crc_tests = -1; // drop out of page scan mode f->previous_length = 0; // decode-but-don't-output one frame f->next_seg = -1; // start a new page f->current_loc = f->scan[i].sample_loc; // set the current sample location // to the amount we'd have decoded had we decoded this page f->current_loc_valid = f->current_loc != ~0U; return data_len; } // delete entry f->scan[i] = f->scan[--f->page_crc_tests]; } else { ++i; } } return data_len; } // return value: number of bytes we used int stb_vorbis_decode_frame_pushdata( stb_vorbis *f, // the file we're decoding const uint8 *data, int data_len, // the memory available for decoding int *channels, // place to write number of float * buffers float ***output, // place to write float ** array of float * buffers int *samples // place to write number of output samples ) { int i; int len,right,left; if (!IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); if (f->page_crc_tests >= 0) { *samples = 0; return vorbis_search_for_page_pushdata(f, (uint8 *) data, data_len); } f->stream = (uint8 *) data; f->stream_end = (uint8 *) data + data_len; f->error = VORBIS__no_error; // check that we have the entire packet in memory if (!is_whole_packet_present(f)) { *samples = 0; return 0; } if (!vorbis_decode_packet(f, &len, &left, &right)) { // save the actual error we encountered enum STBVorbisError error = f->error; if (error == VORBIS_bad_packet_type) { // flush and resynch f->error = VORBIS__no_error; while (get8_packet(f) != EOP) if (f->eof) break; *samples = 0; return (int) (f->stream - data); } if (error == VORBIS_continued_packet_flag_invalid) { if (f->previous_length == 0) { // we may be resynching, in which case it's ok to hit one // of these; just discard the packet f->error = VORBIS__no_error; while (get8_packet(f) != EOP) if (f->eof) break; *samples = 0; return (int) (f->stream - data); } } // if we get an error while parsing, what to do? // well, it DEFINITELY won't work to continue from where we are! stb_vorbis_flush_pushdata(f); // restore the error that actually made us bail f->error = error; *samples = 0; return 1; } // success! len = vorbis_finish_frame(f, len, left, right); for (i=0; i < f->channels; ++i) f->outputs[i] = f->channel_buffers[i] + left; if (channels) *channels = f->channels; *samples = len; *output = f->outputs; return (int) (f->stream - data); } stb_vorbis *stb_vorbis_open_pushdata( const unsigned char *data, int data_len, // the memory available for decoding int *data_used, // only defined if result is not NULL int *error, const stb_vorbis_alloc *alloc) { stb_vorbis *f, p; vorbis_init(&p, alloc); p.stream = (uint8 *) data; p.stream_end = (uint8 *) data + data_len; p.push_mode = TRUE; if (!start_decoder(&p)) { if (p.eof) *error = VORBIS_need_more_data; else *error = p.error; return NULL; } f = vorbis_alloc(&p); if (f) { *f = p; *data_used = (int) (f->stream - data); *error = 0; return f; } else { vorbis_deinit(&p); return NULL; } } #endif // STB_VORBIS_NO_PUSHDATA_API unsigned int stb_vorbis_get_file_offset(stb_vorbis *f) { #ifndef STB_VORBIS_NO_PUSHDATA_API if (f->push_mode) return 0; #endif if (USE_MEMORY(f)) return (unsigned int) (f->stream - f->stream_start); #ifndef STB_VORBIS_NO_STDIO return (unsigned int) (ftell(f->f) - f->f_start); #endif } #ifndef STB_VORBIS_NO_PULLDATA_API // // DATA-PULLING API // static uint32 vorbis_find_page(stb_vorbis *f, uint32 *end, uint32 *last) { for(;;) { int n; if (f->eof) return 0; n = get8(f); if (n == 0x4f) { // page header candidate unsigned int retry_loc = stb_vorbis_get_file_offset(f); int i; // check if we're off the end of a file_section stream if (retry_loc - 25 > f->stream_len) return 0; // check the rest of the header for (i=1; i < 4; ++i) if (get8(f) != ogg_page_header[i]) break; if (f->eof) return 0; if (i == 4) { uint8 header[27]; uint32 i, crc, goal, len; for (i=0; i < 4; ++i) header[i] = ogg_page_header[i]; for (; i < 27; ++i) header[i] = get8(f); if (f->eof) return 0; if (header[4] != 0) goto invalid; goal = header[22] + (header[23] << 8) + (header[24]<<16) + (header[25]<<24); for (i=22; i < 26; ++i) header[i] = 0; crc = 0; for (i=0; i < 27; ++i) crc = crc32_update(crc, header[i]); len = 0; for (i=0; i < header[26]; ++i) { int s = get8(f); crc = crc32_update(crc, s); len += s; } if (len && f->eof) return 0; for (i=0; i < len; ++i) crc = crc32_update(crc, get8(f)); // finished parsing probable page if (crc == goal) { // we could now check that it's either got the last // page flag set, OR it's followed by the capture // pattern, but I guess TECHNICALLY you could have // a file with garbage between each ogg page and recover // from it automatically? So even though that paranoia // might decrease the chance of an invalid decode by // another 2^32, not worth it since it would hose those // invalid-but-useful files? if (end) *end = stb_vorbis_get_file_offset(f); if (last) { if (header[5] & 0x04) *last = 1; else *last = 0; } set_file_offset(f, retry_loc-1); return 1; } } invalid: // not a valid page, so rewind and look for next one set_file_offset(f, retry_loc); } } } #define SAMPLE_unknown 0xffffffff // seeking is implemented with a binary search, which narrows down the range to // 64K, before using a linear search (because finding the synchronization // pattern can be expensive, and the chance we'd find the end page again is // relatively high for small ranges) // // two initial interpolation-style probes are used at the start of the search // to try to bound either side of the binary search sensibly, while still // working in O(log n) time if they fail. static int get_seek_page_info(stb_vorbis *f, ProbedPage *z) { uint8 header[27], lacing[255]; int i,len; // record where the page starts z->page_start = stb_vorbis_get_file_offset(f); // parse the header getn(f, header, 27); if (header[0] != 'O' || header[1] != 'g' || header[2] != 'g' || header[3] != 'S') return 0; getn(f, lacing, header[26]); // determine the length of the payload len = 0; for (i=0; i < header[26]; ++i) len += lacing[i]; // this implies where the page ends z->page_end = z->page_start + 27 + header[26] + len; // read the last-decoded sample out of the data z->last_decoded_sample = header[6] + (header[7] << 8) + (header[8] << 16) + (header[9] << 24); // restore file state to where we were set_file_offset(f, z->page_start); return 1; } // rarely used function to seek back to the preceding page while finding the // start of a packet static int go_to_page_before(stb_vorbis *f, unsigned int limit_offset) { unsigned int previous_safe, end; // now we want to seek back 64K from the limit if (limit_offset >= 65536 && limit_offset-65536 >= f->first_audio_page_offset) previous_safe = limit_offset - 65536; else previous_safe = f->first_audio_page_offset; set_file_offset(f, previous_safe); while (vorbis_find_page(f, &end, NULL)) { if (end >= limit_offset && stb_vorbis_get_file_offset(f) < limit_offset) return 1; set_file_offset(f, end); } return 0; } // implements the search logic for finding a page and starting decoding. if // the function succeeds, current_loc_valid will be true and current_loc will // be less than or equal to the provided sample number (the closer the // better). static int seek_to_sample_coarse(stb_vorbis *f, uint32 sample_number) { ProbedPage left, right, mid; int i, start_seg_with_known_loc, end_pos, page_start; uint32 delta, stream_length, padding, last_sample_limit; double offset = 0.0, bytes_per_sample = 0.0; int probe = 0; // find the last page and validate the target sample stream_length = stb_vorbis_stream_length_in_samples(f); if (stream_length == 0) return error(f, VORBIS_seek_without_length); if (sample_number > stream_length) return error(f, VORBIS_seek_invalid); // this is the maximum difference between the window-center (which is the // actual granule position value), and the right-start (which the spec // indicates should be the granule position (give or take one)). padding = ((f->blocksize_1 - f->blocksize_0) >> 2); if (sample_number < padding) last_sample_limit = 0; else last_sample_limit = sample_number - padding; left = f->p_first; while (left.last_decoded_sample == ~0U) { // (untested) the first page does not have a 'last_decoded_sample' set_file_offset(f, left.page_end); if (!get_seek_page_info(f, &left)) goto error; } right = f->p_last; assert(right.last_decoded_sample != ~0U); // starting from the start is handled differently if (last_sample_limit <= left.last_decoded_sample) { if (stb_vorbis_seek_start(f)) { if (f->current_loc > sample_number) return error(f, VORBIS_seek_failed); return 1; } return 0; } while (left.page_end != right.page_start) { assert(left.page_end < right.page_start); // search range in bytes delta = right.page_start - left.page_end; if (delta <= 65536) { // there's only 64K left to search - handle it linearly set_file_offset(f, left.page_end); } else { if (probe < 2) { if (probe == 0) { // first probe (interpolate) double data_bytes = right.page_end - left.page_start; bytes_per_sample = data_bytes / right.last_decoded_sample; offset = left.page_start + bytes_per_sample * (last_sample_limit - left.last_decoded_sample); } else { // second probe (try to bound the other side) double error = ((double) last_sample_limit - mid.last_decoded_sample) * bytes_per_sample; if (error >= 0 && error < 8000) error = 8000; if (error < 0 && error > -8000) error = -8000; offset += error * 2; } // ensure the offset is valid if (offset < left.page_end) offset = left.page_end; if (offset > right.page_start - 65536) offset = right.page_start - 65536; set_file_offset(f, (unsigned int) offset); } else { // binary search for large ranges (offset by 32K to ensure // we don't hit the right page) set_file_offset(f, left.page_end + (delta / 2) - 32768); } if (!vorbis_find_page(f, NULL, NULL)) goto error; } for (;;) { if (!get_seek_page_info(f, &mid)) goto error; if (mid.last_decoded_sample != ~0U) break; // (untested) no frames end on this page set_file_offset(f, mid.page_end); assert(mid.page_start < right.page_start); } // if we've just found the last page again then we're in a tricky file, // and we're close enough (if it wasn't an interpolation probe). if (mid.page_start == right.page_start) { if (probe >= 2 || delta <= 65536) break; } else { if (last_sample_limit < mid.last_decoded_sample) right = mid; else left = mid; } ++probe; } // seek back to start of the last packet page_start = left.page_start; set_file_offset(f, page_start); if (!start_page(f)) return error(f, VORBIS_seek_failed); end_pos = f->end_seg_with_known_loc; assert(end_pos >= 0); for (;;) { for (i = end_pos; i > 0; --i) if (f->segments[i-1] != 255) break; start_seg_with_known_loc = i; if (start_seg_with_known_loc > 0 || !(f->page_flag & PAGEFLAG_continued_packet)) break; // (untested) the final packet begins on an earlier page if (!go_to_page_before(f, page_start)) goto error; page_start = stb_vorbis_get_file_offset(f); if (!start_page(f)) goto error; end_pos = f->segment_count - 1; } // prepare to start decoding f->current_loc_valid = FALSE; f->last_seg = FALSE; f->valid_bits = 0; f->packet_bytes = 0; f->bytes_in_seg = 0; f->previous_length = 0; f->next_seg = start_seg_with_known_loc; for (i = 0; i < start_seg_with_known_loc; i++) skip(f, f->segments[i]); // start decoding (optimizable - this frame is generally discarded) if (!vorbis_pump_first_frame(f)) return 0; if (f->current_loc > sample_number) return error(f, VORBIS_seek_failed); return 1; error: // try to restore the file to a valid state stb_vorbis_seek_start(f); return error(f, VORBIS_seek_failed); } // the same as vorbis_decode_initial, but without advancing static int peek_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode) { int bits_read, bytes_read; if (!vorbis_decode_initial(f, p_left_start, p_left_end, p_right_start, p_right_end, mode)) return 0; // either 1 or 2 bytes were read, figure out which so we can rewind bits_read = 1 + ilog(f->mode_count-1); if (f->mode_config[*mode].blockflag) bits_read += 2; bytes_read = (bits_read + 7) / 8; f->bytes_in_seg += bytes_read; f->packet_bytes -= bytes_read; skip(f, -bytes_read); if (f->next_seg == -1) f->next_seg = f->segment_count - 1; else f->next_seg--; f->valid_bits = 0; return 1; } int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number) { uint32 max_frame_samples; if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); // fast page-level search if (!seek_to_sample_coarse(f, sample_number)) return 0; assert(f->current_loc_valid); assert(f->current_loc <= sample_number); // linear search for the relevant packet max_frame_samples = (f->blocksize_1*3 - f->blocksize_0) >> 2; while (f->current_loc < sample_number) { int left_start, left_end, right_start, right_end, mode, frame_samples; if (!peek_decode_initial(f, &left_start, &left_end, &right_start, &right_end, &mode)) return error(f, VORBIS_seek_failed); // calculate the number of samples returned by the next frame frame_samples = right_start - left_start; if (f->current_loc + frame_samples > sample_number) { return 1; // the next frame will contain the sample } else if (f->current_loc + frame_samples + max_frame_samples > sample_number) { // there's a chance the frame after this could contain the sample vorbis_pump_first_frame(f); } else { // this frame is too early to be relevant f->current_loc += frame_samples; f->previous_length = 0; maybe_start_packet(f); flush_packet(f); } } // the next frame should start with the sample if (f->current_loc != sample_number) return error(f, VORBIS_seek_failed); return 1; } int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number) { if (!stb_vorbis_seek_frame(f, sample_number)) return 0; if (sample_number != f->current_loc) { int n; uint32 frame_start = f->current_loc; stb_vorbis_get_frame_float(f, &n, NULL); assert(sample_number > frame_start); assert(f->channel_buffer_start + (int) (sample_number-frame_start) <= f->channel_buffer_end); f->channel_buffer_start += (sample_number - frame_start); } return 1; } int stb_vorbis_seek_start(stb_vorbis *f) { if (IS_PUSH_MODE(f)) { return error(f, VORBIS_invalid_api_mixing); } set_file_offset(f, f->first_audio_page_offset); f->previous_length = 0; f->first_decode = TRUE; f->next_seg = -1; return vorbis_pump_first_frame(f); } unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f) { unsigned int restore_offset, previous_safe; unsigned int end, last_page_loc; if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); if (!f->total_samples) { unsigned int last; uint32 lo,hi; char header[6]; // first, store the current decode position so we can restore it restore_offset = stb_vorbis_get_file_offset(f); // now we want to seek back 64K from the end (the last page must // be at most a little less than 64K, but let's allow a little slop) if (f->stream_len >= 65536 && f->stream_len-65536 >= f->first_audio_page_offset) previous_safe = f->stream_len - 65536; else previous_safe = f->first_audio_page_offset; set_file_offset(f, previous_safe); // previous_safe is now our candidate 'earliest known place that seeking // to will lead to the final page' if (!vorbis_find_page(f, &end, &last)) { // if we can't find a page, we're hosed! f->error = VORBIS_cant_find_last_page; f->total_samples = 0xffffffff; goto done; } // check if there are more pages last_page_loc = stb_vorbis_get_file_offset(f); // stop when the last_page flag is set, not when we reach eof; // this allows us to stop short of a 'file_section' end without // explicitly checking the length of the section while (!last) { set_file_offset(f, end); if (!vorbis_find_page(f, &end, &last)) { // the last page we found didn't have the 'last page' flag // set. whoops! break; } previous_safe = last_page_loc+1; last_page_loc = stb_vorbis_get_file_offset(f); } set_file_offset(f, last_page_loc); // parse the header getn(f, (unsigned char *)header, 6); // extract the absolute granule position lo = get32(f); hi = get32(f); if (lo == 0xffffffff && hi == 0xffffffff) { f->error = VORBIS_cant_find_last_page; f->total_samples = SAMPLE_unknown; goto done; } if (hi) lo = 0xfffffffe; // saturate f->total_samples = lo; f->p_last.page_start = last_page_loc; f->p_last.page_end = end; f->p_last.last_decoded_sample = lo; done: set_file_offset(f, restore_offset); } return f->total_samples == SAMPLE_unknown ? 0 : f->total_samples; } float stb_vorbis_stream_length_in_seconds(stb_vorbis *f) { return stb_vorbis_stream_length_in_samples(f) / (float) f->sample_rate; } int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output) { int len, right,left,i; if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); if (!vorbis_decode_packet(f, &len, &left, &right)) { f->channel_buffer_start = f->channel_buffer_end = 0; return 0; } len = vorbis_finish_frame(f, len, left, right); for (i=0; i < f->channels; ++i) f->outputs[i] = f->channel_buffers[i] + left; f->channel_buffer_start = left; f->channel_buffer_end = left+len; if (channels) *channels = f->channels; if (output) *output = f->outputs; return len; } #ifndef STB_VORBIS_NO_STDIO stb_vorbis * stb_vorbis_open_file_section(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc, unsigned int length) { stb_vorbis *f, p; vorbis_init(&p, alloc); p.f = file; p.f_start = (uint32) ftell(file); p.stream_len = length; p.close_on_free = close_on_free; if (start_decoder(&p)) { f = vorbis_alloc(&p); if (f) { *f = p; vorbis_pump_first_frame(f); return f; } } if (error) *error = p.error; vorbis_deinit(&p); return NULL; } stb_vorbis * stb_vorbis_open_file(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc) { unsigned int len, start; start = (unsigned int) ftell(file); fseek(file, 0, SEEK_END); len = (unsigned int) (ftell(file) - start); fseek(file, start, SEEK_SET); return stb_vorbis_open_file_section(file, close_on_free, error, alloc, len); } stb_vorbis * stb_vorbis_open_filename(const char *filename, int *error, const stb_vorbis_alloc *alloc) { FILE *f; #if defined(_WIN32) && defined(__STDC_WANT_SECURE_LIB__) if (0 != fopen_s(&f, filename, "rb")) f = NULL; #else f = fopen(filename, "rb"); #endif if (f) return stb_vorbis_open_file(f, TRUE, error, alloc); if (error) *error = VORBIS_file_open_failure; return NULL; } #endif // STB_VORBIS_NO_STDIO stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, const stb_vorbis_alloc *alloc) { stb_vorbis *f, p; if (data == NULL) return NULL; vorbis_init(&p, alloc); p.stream = (uint8 *) data; p.stream_end = (uint8 *) data + len; p.stream_start = (uint8 *) p.stream; p.stream_len = len; p.push_mode = FALSE; if (start_decoder(&p)) { f = vorbis_alloc(&p); if (f) { *f = p; vorbis_pump_first_frame(f); if (error) *error = VORBIS__no_error; return f; } } if (error) *error = p.error; vorbis_deinit(&p); return NULL; } #ifndef STB_VORBIS_NO_INTEGER_CONVERSION #define PLAYBACK_MONO 1 #define PLAYBACK_LEFT 2 #define PLAYBACK_RIGHT 4 #define L (PLAYBACK_LEFT | PLAYBACK_MONO) #define C (PLAYBACK_LEFT | PLAYBACK_RIGHT | PLAYBACK_MONO) #define R (PLAYBACK_RIGHT | PLAYBACK_MONO) static int8 channel_position[7][6] = { { 0 }, { C }, { L, R }, { L, C, R }, { L, R, L, R }, { L, C, R, L, R }, { L, C, R, L, R, C }, }; #ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT typedef union { float f; int i; } float_conv; typedef char stb_vorbis_float_size_test[sizeof(float)==4 && sizeof(int) == 4]; #define FASTDEF(x) float_conv x // add (1<<23) to convert to int, then divide by 2^SHIFT, then add 0.5/2^SHIFT to round #define MAGIC(SHIFT) (1.5f * (1 << (23-SHIFT)) + 0.5f/(1 << SHIFT)) #define ADDEND(SHIFT) (((150-SHIFT) << 23) + (1 << 22)) #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) (temp.f = (x) + MAGIC(s), temp.i - ADDEND(s)) #define check_endianness() #else #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) ((int) ((x) * (1 << (s)))) #define check_endianness() #define FASTDEF(x) #endif static void copy_samples(short *dest, float *src, int len) { int i; check_endianness(); for (i=0; i < len; ++i) { FASTDEF(temp); int v = FAST_SCALED_FLOAT_TO_INT(temp, src[i],15); if ((unsigned int) (v + 32768) > 65535) v = v < 0 ? -32768 : 32767; dest[i] = v; } } static void compute_samples(int mask, short *output, int num_c, float **data, int d_offset, int len) { #define BUFFER_SIZE 32 float buffer[BUFFER_SIZE]; int i,j,o,n = BUFFER_SIZE; check_endianness(); for (o = 0; o < len; o += BUFFER_SIZE) { memset(buffer, 0, sizeof(buffer)); if (o + n > len) n = len - o; for (j=0; j < num_c; ++j) { if (channel_position[num_c][j] & mask) { for (i=0; i < n; ++i) buffer[i] += data[j][d_offset+o+i]; } } for (i=0; i < n; ++i) { FASTDEF(temp); int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15); if ((unsigned int) (v + 32768) > 65535) v = v < 0 ? -32768 : 32767; output[o+i] = v; } } } static void compute_stereo_samples(short *output, int num_c, float **data, int d_offset, int len) { #define BUFFER_SIZE 32 float buffer[BUFFER_SIZE]; int i,j,o,n = BUFFER_SIZE >> 1; // o is the offset in the source data check_endianness(); for (o = 0; o < len; o += BUFFER_SIZE >> 1) { // o2 is the offset in the output data int o2 = o << 1; memset(buffer, 0, sizeof(buffer)); if (o + n > len) n = len - o; for (j=0; j < num_c; ++j) { int m = channel_position[num_c][j] & (PLAYBACK_LEFT | PLAYBACK_RIGHT); if (m == (PLAYBACK_LEFT | PLAYBACK_RIGHT)) { for (i=0; i < n; ++i) { buffer[i*2+0] += data[j][d_offset+o+i]; buffer[i*2+1] += data[j][d_offset+o+i]; } } else if (m == PLAYBACK_LEFT) { for (i=0; i < n; ++i) { buffer[i*2+0] += data[j][d_offset+o+i]; } } else if (m == PLAYBACK_RIGHT) { for (i=0; i < n; ++i) { buffer[i*2+1] += data[j][d_offset+o+i]; } } } for (i=0; i < (n<<1); ++i) { FASTDEF(temp); int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15); if ((unsigned int) (v + 32768) > 65535) v = v < 0 ? -32768 : 32767; output[o2+i] = v; } } } static void convert_samples_short(int buf_c, short **buffer, int b_offset, int data_c, float **data, int d_offset, int samples) { int i; if (buf_c != data_c && buf_c <= 2 && data_c <= 6) { static int channel_selector[3][2] = { {0}, {PLAYBACK_MONO}, {PLAYBACK_LEFT, PLAYBACK_RIGHT} }; for (i=0; i < buf_c; ++i) compute_samples(channel_selector[buf_c][i], buffer[i]+b_offset, data_c, data, d_offset, samples); } else { int limit = buf_c < data_c ? buf_c : data_c; for (i=0; i < limit; ++i) copy_samples(buffer[i]+b_offset, data[i]+d_offset, samples); for ( ; i < buf_c; ++i) memset(buffer[i]+b_offset, 0, sizeof(short) * samples); } } int stb_vorbis_get_frame_short(stb_vorbis *f, int num_c, short **buffer, int num_samples) { float **output = NULL; int len = stb_vorbis_get_frame_float(f, NULL, &output); if (len > num_samples) len = num_samples; if (len) convert_samples_short(num_c, buffer, 0, f->channels, output, 0, len); return len; } static void convert_channels_short_interleaved(int buf_c, short *buffer, int data_c, float **data, int d_offset, int len) { int i; check_endianness(); if (buf_c != data_c && buf_c <= 2 && data_c <= 6) { assert(buf_c == 2); for (i=0; i < buf_c; ++i) compute_stereo_samples(buffer, data_c, data, d_offset, len); } else { int limit = buf_c < data_c ? buf_c : data_c; int j; for (j=0; j < len; ++j) { for (i=0; i < limit; ++i) { FASTDEF(temp); float f = data[i][d_offset+j]; int v = FAST_SCALED_FLOAT_TO_INT(temp, f,15);//data[i][d_offset+j],15); if ((unsigned int) (v + 32768) > 65535) v = v < 0 ? -32768 : 32767; *buffer++ = v; } for ( ; i < buf_c; ++i) *buffer++ = 0; } } } int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts) { float **output; int len; if (num_c == 1) return stb_vorbis_get_frame_short(f,num_c,&buffer, num_shorts); len = stb_vorbis_get_frame_float(f, NULL, &output); if (len) { if (len*num_c > num_shorts) len = num_shorts / num_c; convert_channels_short_interleaved(num_c, buffer, f->channels, output, 0, len); } return len; } int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts) { float **outputs; int len = num_shorts / channels; int n=0; int z = f->channels; if (z > channels) z = channels; while (n < len) { int k = f->channel_buffer_end - f->channel_buffer_start; if (n+k >= len) k = len - n; if (k) convert_channels_short_interleaved(channels, buffer, f->channels, f->channel_buffers, f->channel_buffer_start, k); buffer += k*channels; n += k; f->channel_buffer_start += k; if (n == len) break; if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; } return n; } int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int len) { float **outputs; int n=0; int z = f->channels; if (z > channels) z = channels; while (n < len) { int k = f->channel_buffer_end - f->channel_buffer_start; if (n+k >= len) k = len - n; if (k) convert_samples_short(channels, buffer, n, f->channels, f->channel_buffers, f->channel_buffer_start, k); n += k; f->channel_buffer_start += k; if (n == len) break; if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; } return n; } #ifndef STB_VORBIS_NO_STDIO int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output) { int data_len, offset, total, limit, error; short *data; stb_vorbis *v = stb_vorbis_open_filename(filename, &error, NULL); if (v == NULL) return -1; limit = v->channels * 4096; *channels = v->channels; if (sample_rate) *sample_rate = v->sample_rate; offset = data_len = 0; total = limit; data = (short *) malloc(total * sizeof(*data)); if (data == NULL) { stb_vorbis_close(v); return -2; } for (;;) { int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset); if (n == 0) break; data_len += n; offset += n * v->channels; if (offset + limit > total) { short *data2; total *= 2; data2 = (short *) realloc(data, total * sizeof(*data)); if (data2 == NULL) { free(data); stb_vorbis_close(v); return -2; } data = data2; } } *output = data; stb_vorbis_close(v); return data_len; } #endif // NO_STDIO int stb_vorbis_decode_memory(const uint8 *mem, int len, int *channels, int *sample_rate, short **output) { int data_len, offset, total, limit, error; short *data; stb_vorbis *v = stb_vorbis_open_memory(mem, len, &error, NULL); if (v == NULL) return -1; limit = v->channels * 4096; *channels = v->channels; if (sample_rate) *sample_rate = v->sample_rate; offset = data_len = 0; total = limit; data = (short *) malloc(total * sizeof(*data)); if (data == NULL) { stb_vorbis_close(v); return -2; } for (;;) { int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset); if (n == 0) break; data_len += n; offset += n * v->channels; if (offset + limit > total) { short *data2; total *= 2; data2 = (short *) realloc(data, total * sizeof(*data)); if (data2 == NULL) { free(data); stb_vorbis_close(v); return -2; } data = data2; } } *output = data; stb_vorbis_close(v); return data_len; } #endif // STB_VORBIS_NO_INTEGER_CONVERSION int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats) { float **outputs; int len = num_floats / channels; int n=0; int z = f->channels; if (z > channels) z = channels; while (n < len) { int i,j; int k = f->channel_buffer_end - f->channel_buffer_start; if (n+k >= len) k = len - n; for (j=0; j < k; ++j) { for (i=0; i < z; ++i) *buffer++ = f->channel_buffers[i][f->channel_buffer_start+j]; for ( ; i < channels; ++i) *buffer++ = 0; } n += k; f->channel_buffer_start += k; if (n == len) break; if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; } return n; } int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples) { float **outputs; int n=0; int z = f->channels; if (z > channels) z = channels; while (n < num_samples) { int i; int k = f->channel_buffer_end - f->channel_buffer_start; if (n+k >= num_samples) k = num_samples - n; if (k) { for (i=0; i < z; ++i) memcpy(buffer[i]+n, f->channel_buffers[i]+f->channel_buffer_start, sizeof(float)*k); for ( ; i < channels; ++i) memset(buffer[i]+n, 0, sizeof(float) * k); } n += k; f->channel_buffer_start += k; if (n == num_samples) break; if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; } return n; } #endif // STB_VORBIS_NO_PULLDATA_API /* Version history 1.17 - 2019-07-08 - fix CVE-2019-13217, -13218, -13219, -13220, -13221, -13222, -13223 found with Mayhem by ForAllSecure 1.16 - 2019-03-04 - fix warnings 1.15 - 2019-02-07 - explicit failure if Ogg Skeleton data is found 1.14 - 2018-02-11 - delete bogus dealloca usage 1.13 - 2018-01-29 - fix truncation of last frame (hopefully) 1.12 - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files 1.11 - 2017-07-23 - fix MinGW compilation 1.10 - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory 1.09 - 2016-04-04 - back out 'avoid discarding last frame' fix from previous version 1.08 - 2016-04-02 - fixed multiple warnings; fix setup memory leaks; avoid discarding last frame of audio data 1.07 - 2015-01-16 - fixed some warnings, fix mingw, const-correct API some more crash fixes when out of memory or with corrupt files 1.06 - 2015-08-31 - full, correct support for seeking API (Dougall Johnson) some crash fixes when out of memory or with corrupt files 1.05 - 2015-04-19 - don't define __forceinline if it's redundant 1.04 - 2014-08-27 - fix missing const-correct case in API 1.03 - 2014-08-07 - Warning fixes 1.02 - 2014-07-09 - Declare qsort compare function _cdecl on windows 1.01 - 2014-06-18 - fix stb_vorbis_get_samples_float 1.0 - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in multichannel (API change) report sample rate for decode-full-file funcs 0.99996 - bracket #include for macintosh compilation by Laurent Gomila 0.99995 - use union instead of pointer-cast for fast-float-to-int to avoid alias-optimization problem 0.99994 - change fast-float-to-int to work in single-precision FPU mode, remove endian-dependence 0.99993 - remove assert that fired on legal files with empty tables 0.99992 - rewind-to-start 0.99991 - bugfix to stb_vorbis_get_samples_short by Bernhard Wodo 0.9999 - (should have been 0.99990) fix no-CRT support, compiling as C++ 0.9998 - add a full-decode function with a memory source 0.9997 - fix a bug in the read-from-FILE case in 0.9996 addition 0.9996 - query length of vorbis stream in samples/seconds 0.9995 - bugfix to another optimization that only happened in certain files 0.9994 - bugfix to one of the optimizations that caused significant (but inaudible?) errors 0.9993 - performance improvements; runs in 99% to 104% of time of reference implementation 0.9992 - performance improvement of IMDCT; now performs close to reference implementation 0.9991 - performance improvement of IMDCT 0.999 - (should have been 0.9990) performance improvement of IMDCT 0.998 - no-CRT support from Casey Muratori 0.997 - bugfixes for bugs found by Terje Mathisen 0.996 - bugfix: fast-huffman decode initialized incorrectly for sparse codebooks; fixing gives 10% speedup - found by Terje Mathisen 0.995 - bugfix: fix to 'effective' overrun detection - found by Terje Mathisen 0.994 - bugfix: garbage decode on final VQ symbol of a non-multiple - found by Terje Mathisen 0.993 - bugfix: pushdata API required 1 extra byte for empty page (failed to consume final page if empty) - found by Terje Mathisen 0.992 - fixes for MinGW warning 0.991 - turn fast-float-conversion on by default 0.990 - fix push-mode seek recovery if you seek into the headers 0.98b - fix to bad release of 0.98 0.98 - fix push-mode seek recovery; robustify float-to-int and support non-fast mode 0.97 - builds under c++ (typecasting, don't use 'class' keyword) 0.96 - somehow MY 0.95 was right, but the web one was wrong, so here's my 0.95 rereleased as 0.96, fixes a typo in the clamping code 0.95 - clamping code for 16-bit functions 0.94 - not publically released 0.93 - fixed all-zero-floor case (was decoding garbage) 0.92 - fixed a memory leak 0.91 - conditional compiles to omit parts of the API and the infrastructure to support them: STB_VORBIS_NO_PULLDATA_API, STB_VORBIS_NO_PUSHDATA_API, STB_VORBIS_NO_STDIO, STB_VORBIS_NO_INTEGER_CONVERSION 0.90 - first public release */ #endif // STB_VORBIS_HEADER_ONLY /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #line 0 #undef error #undef DEBUG #line 1 "3rd_sts_mixer.h" /////////////////////////////////////////////////////////////////////////////// // sts_mixer.h - v0.02 // written 2016 by Sebastian Steinhauer // // LICENSE // Public domain. See "unlicense" statement at the end of this file. // // ABOUT // A simple stereo audio mixer which is capable of mixing samples and audio streams. // Samples can be played with different gain, pitch and panning. // Streams can be played with different gain. // This library has no malloc/free. All structs have to be "prepared" by the user. So you can enroll your own memory management. // You have to implement/provide a real audio-backend to hear something from the speakers. // A good starting point would be SDL2 where you can use an audio callback to feed the audio device. // // USAGE // Please note that most audio systems will run in a separate thread. So you have to take care about locking before modifying the sts_mixer_t state. // See the example at the end of the file. // // VERSION HISTORY // 0.02 (2022-05-10) allow voice queueing in same channel. ie, chain another sample on same voice channel after current sample playback is done (@r-lyeh) // 0.01 (2016-05-01) initial version // #ifndef __INCLUDED__STS_MIXER_H__ #define __INCLUDED__STS_MIXER_H__ // The number of concurrent voices (channels) which are used to mix the audio. // If you need more, use a higher number by setting #define STS_MIXER_VOICE n before including this header. #ifndef STS_MIXER_VOICES #define STS_MIXER_VOICES 32 #endif // STS_MIXER_VOICES // Defines the various audio formats. Note that they are all on system endianess. enum { STS_MIXER_SAMPLE_FORMAT_NONE, // no format STS_MIXER_SAMPLE_FORMAT_8, // signed 8-bit STS_MIXER_SAMPLE_FORMAT_16, // signed 16-bit STS_MIXER_SAMPLE_FORMAT_32, // signed 32-bit STS_MIXER_SAMPLE_FORMAT_FLOAT // floats }; //////////////////////////////////////////////////////////////////////////////// // // SAMPLES // // A sample is a *MONO* piece of audio which is loaded fully to memory. // It can be played with various gains, pitches and pannings. // typedef struct { unsigned int length; // length in samples (so 1024 samples of STS_MIXER_SAMPLE_FORMAT_16 would be 2048 bytes) unsigned int frequency; // frequency of this sample (e.g. 44100, 22000 ...) int audio_format; // one of STS_MIXER_SAMPLE_FORMAT_* void* data; // pointer to the sample data, sts_mixer makes no copy, so you have to keep them in memory void* next; // next sample in chain (if any) //< @r-lyeh } sts_mixer_sample_t; //////////////////////////////////////////////////////////////////////////////// // // STREAMS // // A stream is *STEREO* audio which will be decoded/loaded as needed. // It can be played with various gains. No panning or pitching. // // The callback which will be called when the stream needs more data. typedef void (*sts_mixer_stream_callback)(sts_mixer_sample_t* sample, void* userdata); typedef struct { void* userdata; // a userdata pointer which will passed to the callback sts_mixer_stream_callback callback; // this callback will be called when the stream needs more data sts_mixer_sample_t sample; // the current stream "sample" which holds the current piece of audio } sts_mixer_stream_t; //////////////////////////////////////////////////////////////////////////////// // // VOICES // // A voice is an audio source which will be used during mixing. // It can play nothing, a sample or a stream. // Most of those fields are considered "private" and you should not play around with those. // typedef struct { int state; sts_mixer_sample_t* sample; sts_mixer_stream_t* stream; float position; float gain; float pitch; float pan; } sts_mixer_voice_t; //////////////////////////////////////////////////////////////////////////////// // // MIXER // // The mixer state. // typedef struct { float gain; // the global gain (you can change it if you want to change to overall volume) unsigned int frequency; // the frequency for the output of mixed audio data int audio_format; // the audio format for the output of mixed audio data sts_mixer_voice_t voices[STS_MIXER_VOICES]; // holding all audio voices for this state } sts_mixer_t; //////////////////////////////////////////////////////////////////////////////// // // API // // "Initializes" a new sts_mixer state. void sts_mixer_init(sts_mixer_t* mixer, unsigned int frequency, int audio_format); // "Shutdown" the mixer state. It will simply reset all fields. void sts_mixer_shutdown(sts_mixer_t* mixer); // Return the number of active voices. Active voices are voices that play either a stream or a sample. int sts_mixer_get_active_voices(sts_mixer_t* mixer); // Play the given sample with the gain, pitch and panning. // Panning can be something between -1.0f (fully left) ... +1.0f (fully right) // Please note that pitch will be clamped so it cannot reach 0.0f (would be useless). // Returns the number of the voice where this sample will be played or -1 if no voice was free. int sts_mixer_play_sample(sts_mixer_t* mixer, sts_mixer_sample_t* sample, float gain, float pitch, float pan); // Plays the given stream with the gain. // Returns the number of the voice where this stream will be played or -1 if no voice was free. int sts_mixer_play_stream(sts_mixer_t* mixer, sts_mixer_stream_t* stream, float gain); // Stops voice with the given voice no. You can pass the returned number of sts_mixer_play_sample / sts_mixer_play_stream here. void sts_mixer_stop_voice(sts_mixer_t* mixer, int voice); // Stops all voices playing the given sample. Useful when you want to delete the sample and make sure it is not used anymore. void sts_mixer_stop_sample(sts_mixer_t* mixer, sts_mixer_sample_t* sample); // Stops all voices playing the given stream. Useful when you want to delete the stream and make sure it is not used anymore. void sts_mixer_stop_stream(sts_mixer_t* mixer, sts_mixer_stream_t* stream); // The mixing function. You should call the function if you need to pass more audio data to the audio device. // Typically this function is called in a separate thread or something like that. // It will write audio data in the specified format and frequency of the mixer state. void sts_mixer_mix_audio(sts_mixer_t* mixer, void* output, unsigned int samples); #endif // __INCLUDED__STS_MIXER_H__ /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// //// //// IMPLEMENTATION //// //// #ifdef STS_MIXER_IMPLEMENTATION enum { STS_MIXER_VOICE_STOPPED, STS_MIXER_VOICE_PLAYING, STS_MIXER_VOICE_STREAMING }; static float sts_mixer__clamp(const float value, const float min, const float max) { if (value < min) return min; else if (value > max) return max; else return value; } static float sts_mixer__clamp_sample(const float sample) { if (sample < -1.0f) return -1.0f; else if (sample > 1.0f) return 1.0f; else return sample; } static float sts_mixer__get_sample(sts_mixer_sample_t* sample, unsigned int position) { switch (sample->audio_format) { case STS_MIXER_SAMPLE_FORMAT_8: return (float)((char*)sample->data)[position] / 127.0f; case STS_MIXER_SAMPLE_FORMAT_16: return (float)((short*)sample->data)[position] / 32767.0f; case STS_MIXER_SAMPLE_FORMAT_32: return (float)((int*)sample->data)[position] / 2147483647.0f; case STS_MIXER_SAMPLE_FORMAT_FLOAT: return ((float*)sample->data)[position]; default: return 0.0f; } } static void sts_mixer__reset_voice(sts_mixer_t* mixer, const int i) { sts_mixer_voice_t* voice = &mixer->voices[i]; voice->state = STS_MIXER_VOICE_STOPPED; voice->sample = 0; voice->stream = 0; voice->position = voice->gain = voice->pitch = voice->pan = 0.0f; } static int sts_mixer__find_free_voice(sts_mixer_t* mixer) { int i; for (i = 0; i < STS_MIXER_VOICES; ++i) { if (mixer->voices[i].state == STS_MIXER_VOICE_STOPPED) return i; } return -1; } void sts_mixer_init(sts_mixer_t* mixer, unsigned int frequency, int audio_format) { int i; for (i = 0; i < STS_MIXER_VOICES; ++i) sts_mixer__reset_voice(mixer, i); mixer->frequency = frequency; mixer->gain = 1.0f; mixer->audio_format = audio_format; } void sts_mixer_shutdown(sts_mixer_t* mixer) { sts_mixer_init(mixer, 0, 0); } int sts_mixer_get_active_voices(sts_mixer_t* mixer) { int i, active; for (i = 0, active = 0; i < STS_MIXER_VOICES; ++i) { if (mixer->voices[i].state != STS_MIXER_VOICE_STOPPED) ++active; } return active; } int sts_mixer_play_sample(sts_mixer_t* mixer, sts_mixer_sample_t* sample, float gain, float pitch, float pan) { int i; sts_mixer_voice_t* voice; i = sts_mixer__find_free_voice(mixer); if (i >= 0) { voice = &mixer->voices[i]; voice->gain = gain; voice->pitch = sts_mixer__clamp(pitch, 0.1f, 10.0f); voice->pan = sts_mixer__clamp(pan * 0.5f, -0.5f, 0.5f); voice->position = 0.0f; voice->sample = sample; voice->stream = 0; voice->state = STS_MIXER_VOICE_PLAYING; } return i; } int sts_mixer_play_stream(sts_mixer_t* mixer, sts_mixer_stream_t* stream, float gain) { int i; sts_mixer_voice_t* voice; i = sts_mixer__find_free_voice(mixer); if (i >= 0) { voice = &mixer->voices[i]; voice->gain = gain; voice->position = 0.0f; voice->sample = 0; voice->stream = stream; voice->state = STS_MIXER_VOICE_STREAMING; } return i; } void sts_mixer_stop_voice(sts_mixer_t* mixer, int voice) { if (voice >= 0 && voice < STS_MIXER_VOICES) sts_mixer__reset_voice(mixer, voice); } void sts_mixer_stop_sample(sts_mixer_t* mixer, sts_mixer_sample_t* sample) { int i; for (i = 0; i < STS_MIXER_VOICES; ++i) { if (mixer->voices[i].sample == sample) sts_mixer__reset_voice(mixer, i); } } void sts_mixer_stop_stream(sts_mixer_t* mixer, sts_mixer_stream_t* stream) { int i; for (i = 0; i < STS_MIXER_VOICES; ++i) { if (mixer->voices[i].stream == stream) sts_mixer__reset_voice(mixer, i); } } void sts_mixer_mix_audio(sts_mixer_t* mixer, void* output, unsigned int samples) { sts_mixer_voice_t* voice; unsigned int i, position; float left, right, advance, sample; char* out_8 = (char*)output; short* out_16 = (short*)output; int* out_32 = (int*)output; float* out_float = (float*)output; // mix all voices advance = 1.0f / (float)mixer->frequency; for (; samples > 0; --samples) { left = right = 0.0f; for (i = 0; i < STS_MIXER_VOICES; ++i) { voice = &mixer->voices[i]; if (voice->state == STS_MIXER_VOICE_PLAYING) { position = (int)voice->position; if (position < voice->sample->length) { sample = sts_mixer__clamp_sample(sts_mixer__get_sample(voice->sample, position) * voice->gain); left += sts_mixer__clamp_sample(sample * (0.5f - voice->pan)); right += sts_mixer__clamp_sample(sample * (0.5f + voice->pan)); voice->position += (float)voice->sample->frequency * advance * voice->pitch; } else if( voice->sample->next ) { //< @r-lyeh *voice->sample = *(sts_mixer_sample_t*)voice->sample->next; //< @r-lyeh voice->position = 0; //< @r-lyeh } else sts_mixer__reset_voice(mixer, i); } else if (voice->state == STS_MIXER_VOICE_STREAMING) { position = ((int)voice->position) * 2; if (position >= voice->stream->sample.length) { // buffer empty...refill voice->stream->callback(&voice->stream->sample, voice->stream->userdata); voice->position = 0.0f; position = 0; } left += sts_mixer__clamp_sample(sts_mixer__get_sample(&voice->stream->sample, position) * voice->gain); right += sts_mixer__clamp_sample(sts_mixer__get_sample(&voice->stream->sample, position + 1) * voice->gain); voice->position += (float)voice->stream->sample.frequency * advance; } } // write to buffer. float _g = mixer->gain; //< @r-lyeh: added master gain float _127 = 127.0f * _g; //< @r-lyeh: added master gain float _32767 = 32767.0f * _g; //< @r-lyeh: added master gain float _2147483647 = 2147483647.0f * _g; //< @r-lyeh: added master gain left = sts_mixer__clamp_sample(left); right = sts_mixer__clamp_sample(right); switch (mixer->audio_format) { case STS_MIXER_SAMPLE_FORMAT_8: *out_8++ = (char)(left * _127); //< @r-lyeh: added master gain *out_8++ = (char)(right * _127); //< @r-lyeh: added master gain break; case STS_MIXER_SAMPLE_FORMAT_16: *out_16++ = (short)(left * _32767); //< @r-lyeh: added master gain *out_16++ = (short)(right * _32767); //< @r-lyeh: added master gain break; case STS_MIXER_SAMPLE_FORMAT_32: *out_32++ = (int)(left * _2147483647); //< @r-lyeh: added master gain *out_32++ = (int)(right * _2147483647); //< @r-lyeh: added master gain break; case STS_MIXER_SAMPLE_FORMAT_FLOAT: *out_float++ = left * _g; //< @r-lyeh: added master gain *out_float++ = right * _g; //< @r-lyeh: added master gain break; } } } #endif // STS_MIXER_IMPLEMENTATION //////////////////////////////////////////////////////////////////////////////// // EXAMPLE // This is a very simple example loading a stream and a sample using // dr_flac.h (https://github.com/mackron/dr_libs) and SDL2. You can of course also use stb_vorbis or something similar :) // Please note how the audio thread of SDL2 will be locked when the mixer state get's modified. This is important! // Also there's no error checking in the entire example code, so beware. // #if 0 #include "SDL.h" #define DR_FLAC_IMPLEMENTATION #include "dr_flac.h" #define STS_MIXER_IMPLEMENTATION #include "sts_mixer.h" SDL_AudioDeviceID audio_device = 0; sts_mixer_t mixer; // encapsulate drflac and some buffer with the sts_mixer_stream_t typedef struct { drflac* flac; // FLAC decoder state sts_mixer_stream_t stream; // mixer stream int32_t data[4096*2]; // static sample buffer } mystream_t; // SDL2 audio callback static void audio_callback(void* userdata, Uint8* stream, int len) { (void)(userdata); sts_mixer_mix_audio(&mixer, stream, len / (sizeof(int) * 2)); } // load a sample static void load_sample(sts_mixer_sample_t* sample, const char *filename) { drflac* flac = drflac_open_file(filename); sample->frequency = flac->sampleRate; sample->audio_format = STS_MIXER_SAMPLE_FORMAT_32; sample->length = flac->totalSampleCount; sample->data = malloc(sample->length * sizeof(int32_t)); drflac_read_s32(flac, sample->length, (int32_t*)sample->data); drflac_close(flac); } // the callback to refill the stream data static void refill_stream(sts_mixer_sample_t* sample, void* userdata) { mystream_t* stream = (mystream_t*)userdata; if (drflac_read_s32(stream->flac, sample->length, stream->data) < sample->length) drflac_seek_to_sample(stream->flac, 0); } // load a stream static void load_stream(mystream_t* stream, const char *filename) { stream->flac = drflac_open_file(filename); stream->stream.userdata = stream; stream->stream.callback = refill_stream; stream->stream.sample.frequency = stream->flac->sampleRate; stream->stream.sample.audio_format = STS_MIXER_SAMPLE_FORMAT_32; stream->stream.sample.length = 4096*2; stream->stream.sample.data = stream->data; refill_stream(&stream->stream.sample, stream); } // helper to get random [0.0f..1.0f values static float randf() { return (float)(rand()) / (float)RAND_MAX; } int main(int argc, char *argv[]) { SDL_AudioSpec want, have; sts_mixer_sample_t sample; mystream_t stream; (void)(argc); (void)(argv); // init SDL2 + audio want.format = AUDIO_S32SYS; want.freq = 44100; want.channels = 2; want.userdata = NULL; want.samples = 4096; want.callback = audio_callback; SDL_Init(SDL_INIT_AUDIO); audio_device = SDL_OpenAudioDevice(NULL, 0, &want, &have, 0); // init sts_mixer and load things sts_mixer_init(&mixer, 44100, STS_MIXER_SAMPLE_FORMAT_32); load_sample(&sample, "effect.flac"); load_stream(&stream, "music.flac"); // play the stream sts_mixer_play_stream(&mixer, &stream.stream, 0.7f); // start audio processing and do a loop for audio effects SDL_PauseAudioDevice(audio_device, 0); for (;;) { // !!!IMPORTANT!!! lock the audio thread before modifying data in the sts_mixer !!! SDL_LockAudioDevice(audio_device); // play a sample with random gain, pitch and panning sts_mixer_play_sample(&mixer, &sample, randf(), 0.5f + randf(), -1.0f + randf() * 2.0f); // unlock audio thread again SDL_UnlockAudioDevice(audio_device); // wait ... SDL_Delay(76); } SDL_PauseAudioDevice(audio_device, 1); SDL_CloseAudioDevice(audio_device); SDL_Quit(); return 0; } #endif // 0 /* This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to */ #line 0 #line 1 "3rd_miniaudio.h" /* Audio playback and capture library. Choice of public domain or MIT-0. See license statements at the end of this file. miniaudio - v0.11.11 - 2022-11-04 David Reid - mackron@gmail.com Website: https://miniaud.io Documentation: https://miniaud.io/docs GitHub: https://github.com/mackron/miniaudio */ /* 1. Introduction =============== miniaudio is a single file library for audio playback and capture. To use it, do the following in one .c file: ```c #define MINIAUDIO_IMPLEMENTATION #include "miniaudio.h" ``` You can do `#include "miniaudio.h"` in other parts of the program just like any other header. miniaudio includes both low level and high level APIs. The low level API is good for those who want to do all of their mixing themselves and only require a light weight interface to the underlying audio device. The high level API is good for those who have complex mixing and effect requirements. In miniaudio, objects are transparent structures. Unlike many other libraries, there are no handles to opaque objects which means you need to allocate memory for objects yourself. In the examples presented in this documentation you will often see objects declared on the stack. You need to be careful when translating these examples to your own code so that you don't accidentally declare your objects on the stack and then cause them to become invalid once the function returns. In addition, you must ensure the memory address of your objects remain the same throughout their lifetime. You therefore cannot be making copies of your objects. A config/init pattern is used throughout the entire library. The idea is that you set up a config object and pass that into the initialization routine. The advantage to this system is that the config object can be initialized with logical defaults and new properties added to it without breaking the API. The config object can be allocated on the stack and does not need to be maintained after initialization of the corresponding object. 1.1. Low Level API ------------------ The low level API gives you access to the raw audio data of an audio device. It supports playback, capture, full-duplex and loopback (WASAPI only). You can enumerate over devices to determine which physical device(s) you want to connect to. The low level API uses the concept of a "device" as the abstraction for physical devices. The idea is that you choose a physical device to emit or capture audio from, and then move data to/from the device when miniaudio tells you to. Data is delivered to and from devices asynchronously via a callback which you specify when initializing the device. When initializing the device you first need to configure it. The device configuration allows you to specify things like the format of the data delivered via the callback, the size of the internal buffer and the ID of the device you want to emit or capture audio from. Once you have the device configuration set up you can initialize the device. When initializing a device you need to allocate memory for the device object beforehand. This gives the application complete control over how the memory is allocated. In the example below we initialize a playback device on the stack, but you could allocate it on the heap if that suits your situation better. ```c void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount) { // In playback mode copy data to pOutput. In capture mode read data from pInput. In full-duplex mode, both // pOutput and pInput will be valid and you can move data from pInput into pOutput. Never process more than // frameCount frames. } int main() { ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.format = ma_format_f32; // Set to ma_format_unknown to use the device's native format. config.playback.channels = 2; // Set to 0 to use the device's native channel count. config.sampleRate = 48000; // Set to 0 to use the device's native sample rate. config.dataCallback = data_callback; // This function will be called when miniaudio needs more data. config.pUserData = pMyCustomData; // Can be accessed from the device object (device.pUserData). ma_device device; if (ma_device_init(NULL, &config, &device) != MA_SUCCESS) { return -1; // Failed to initialize the device. } ma_device_start(&device); // The device is sleeping by default so you'll need to start it manually. // Do something here. Probably your program's main loop. ma_device_uninit(&device); // This will stop the device so no need to do that manually. return 0; } ``` In the example above, `data_callback()` is where audio data is written and read from the device. The idea is in playback mode you cause sound to be emitted from the speakers by writing audio data to the output buffer (`pOutput` in the example). In capture mode you read data from the input buffer (`pInput`) to extract sound captured by the microphone. The `frameCount` parameter tells you how many frames can be written to the output buffer and read from the input buffer. A "frame" is one sample for each channel. For example, in a stereo stream (2 channels), one frame is 2 samples: one for the left, one for the right. The channel count is defined by the device config. The size in bytes of an individual sample is defined by the sample format which is also specified in the device config. Multi-channel audio data is always interleaved, which means the samples for each frame are stored next to each other in memory. For example, in a stereo stream the first pair of samples will be the left and right samples for the first frame, the second pair of samples will be the left and right samples for the second frame, etc. The configuration of the device is defined by the `ma_device_config` structure. The config object is always initialized with `ma_device_config_init()`. It's important to always initialize the config with this function as it initializes it with logical defaults and ensures your program doesn't break when new members are added to the `ma_device_config` structure. The example above uses a fairly simple and standard device configuration. The call to `ma_device_config_init()` takes a single parameter, which is whether or not the device is a playback, capture, duplex or loopback device (loopback devices are not supported on all backends). The `config.playback.format` member sets the sample format which can be one of the following (all formats are native-endian): +---------------+----------------------------------------+---------------------------+ | Symbol | Description | Range | +---------------+----------------------------------------+---------------------------+ | ma_format_f32 | 32-bit floating point | [-1, 1] | | ma_format_s16 | 16-bit signed integer | [-32768, 32767] | | ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] | | ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] | | ma_format_u8 | 8-bit unsigned integer | [0, 255] | +---------------+----------------------------------------+---------------------------+ The `config.playback.channels` member sets the number of channels to use with the device. The channel count cannot exceed MA_MAX_CHANNELS. The `config.sampleRate` member sets the sample rate (which must be the same for both playback and capture in full-duplex configurations). This is usually set to 44100 or 48000, but can be set to anything. It's recommended to keep this between 8000 and 384000, however. Note that leaving the format, channel count and/or sample rate at their default values will result in the internal device's native configuration being used which is useful if you want to avoid the overhead of miniaudio's automatic data conversion. In addition to the sample format, channel count and sample rate, the data callback and user data pointer are also set via the config. The user data pointer is not passed into the callback as a parameter, but is instead set to the `pUserData` member of `ma_device` which you can access directly since all miniaudio structures are transparent. Initializing the device is done with `ma_device_init()`. This will return a result code telling you what went wrong, if anything. On success it will return `MA_SUCCESS`. After initialization is complete the device will be in a stopped state. To start it, use `ma_device_start()`. Uninitializing the device will stop it, which is what the example above does, but you can also stop the device with `ma_device_stop()`. To resume the device simply call `ma_device_start()` again. Note that it's important to never stop or start the device from inside the callback. This will result in a deadlock. Instead you set a variable or signal an event indicating that the device needs to stop and handle it in a different thread. The following APIs must never be called inside the callback: ```c ma_device_init() ma_device_init_ex() ma_device_uninit() ma_device_start() ma_device_stop() ``` You must never try uninitializing and reinitializing a device inside the callback. You must also never try to stop and start it from inside the callback. There are a few other things you shouldn't do in the callback depending on your requirements, however this isn't so much a thread-safety thing, but rather a real-time processing thing which is beyond the scope of this introduction. The example above demonstrates the initialization of a playback device, but it works exactly the same for capture. All you need to do is change the device type from `ma_device_type_playback` to `ma_device_type_capture` when setting up the config, like so: ```c ma_device_config config = ma_device_config_init(ma_device_type_capture); config.capture.format = MY_FORMAT; config.capture.channels = MY_CHANNEL_COUNT; ``` In the data callback you just read from the input buffer (`pInput` in the example above) and leave the output buffer alone (it will be set to NULL when the device type is set to `ma_device_type_capture`). These are the available device types and how you should handle the buffers in the callback: +-------------------------+--------------------------------------------------------+ | Device Type | Callback Behavior | +-------------------------+--------------------------------------------------------+ | ma_device_type_playback | Write to output buffer, leave input buffer untouched. | | ma_device_type_capture | Read from input buffer, leave output buffer untouched. | | ma_device_type_duplex | Read from input buffer, write to output buffer. | | ma_device_type_loopback | Read from input buffer, leave output buffer untouched. | +-------------------------+--------------------------------------------------------+ You will notice in the example above that the sample format and channel count is specified separately for playback and capture. This is to support different data formats between the playback and capture devices in a full-duplex system. An example may be that you want to capture audio data as a monaural stream (one channel), but output sound to a stereo speaker system. Note that if you use different formats between playback and capture in a full-duplex configuration you will need to convert the data yourself. There are functions available to help you do this which will be explained later. The example above did not specify a physical device to connect to which means it will use the operating system's default device. If you have multiple physical devices connected and you want to use a specific one you will need to specify the device ID in the configuration, like so: ```c config.playback.pDeviceID = pMyPlaybackDeviceID; // Only if requesting a playback or duplex device. config.capture.pDeviceID = pMyCaptureDeviceID; // Only if requesting a capture, duplex or loopback device. ``` To retrieve the device ID you will need to perform device enumeration, however this requires the use of a new concept called the "context". Conceptually speaking the context sits above the device. There is one context to many devices. The purpose of the context is to represent the backend at a more global level and to perform operations outside the scope of an individual device. Mainly it is used for performing run-time linking against backend libraries, initializing backends and enumerating devices. The example below shows how to enumerate devices. ```c ma_context context; if (ma_context_init(NULL, 0, NULL, &context) != MA_SUCCESS) { // Error. } ma_device_info* pPlaybackInfos; ma_uint32 playbackCount; ma_device_info* pCaptureInfos; ma_uint32 captureCount; if (ma_context_get_devices(&context, &pPlaybackInfos, &playbackCount, &pCaptureInfos, &captureCount) != MA_SUCCESS) { // Error. } // Loop over each device info and do something with it. Here we just print the name with their index. You may want // to give the user the opportunity to choose which device they'd prefer. for (ma_uint32 iDevice = 0; iDevice < playbackCount; iDevice += 1) { printf("%d - %s\n", iDevice, pPlaybackInfos[iDevice].name); } ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.pDeviceID = &pPlaybackInfos[chosenPlaybackDeviceIndex].id; config.playback.format = MY_FORMAT; config.playback.channels = MY_CHANNEL_COUNT; config.sampleRate = MY_SAMPLE_RATE; config.dataCallback = data_callback; config.pUserData = pMyCustomData; ma_device device; if (ma_device_init(&context, &config, &device) != MA_SUCCESS) { // Error } ... ma_device_uninit(&device); ma_context_uninit(&context); ``` The first thing we do in this example is initialize a `ma_context` object with `ma_context_init()`. The first parameter is a pointer to a list of `ma_backend` values which are used to override the default backend priorities. When this is NULL, as in this example, miniaudio's default priorities are used. The second parameter is the number of backends listed in the array pointed to by the first parameter. The third parameter is a pointer to a `ma_context_config` object which can be NULL, in which case defaults are used. The context configuration is used for setting the logging callback, custom memory allocation callbacks, user-defined data and some backend-specific configurations. Once the context has been initialized you can enumerate devices. In the example above we use the simpler `ma_context_get_devices()`, however you can also use a callback for handling devices by using `ma_context_enumerate_devices()`. When using `ma_context_get_devices()` you provide a pointer to a pointer that will, upon output, be set to a pointer to a buffer containing a list of `ma_device_info` structures. You also provide a pointer to an unsigned integer that will receive the number of items in the returned buffer. Do not free the returned buffers as their memory is managed internally by miniaudio. The `ma_device_info` structure contains an `id` member which is the ID you pass to the device config. It also contains the name of the device which is useful for presenting a list of devices to the user via the UI. When creating your own context you will want to pass it to `ma_device_init()` when initializing the device. Passing in NULL, like we do in the first example, will result in miniaudio creating the context for you, which you don't want to do since you've already created a context. Note that internally the context is only tracked by it's pointer which means you must not change the location of the `ma_context` object. If this is an issue, consider using `malloc()` to allocate memory for the context. 1.2. High Level API ------------------- The high level API consists of three main parts: * Resource management for loading and streaming sounds. * A node graph for advanced mixing and effect processing. * A high level "engine" that wraps around the resource manager and node graph. The resource manager (`ma_resource_manager`) is used for loading sounds. It supports loading sounds fully into memory and also streaming. It will also deal with reference counting for you which avoids the same sound being loaded multiple times. The node graph is used for mixing and effect processing. The idea is that you connect a number of nodes into the graph by connecting each node's outputs to another node's inputs. Each node can implement it's own effect. By chaining nodes together, advanced mixing and effect processing can be achieved. The engine encapsulates both the resource manager and the node graph to create a simple, easy to use high level API. The resource manager and node graph APIs are covered in more later sections of this manual. The code below shows how you can initialize an engine using it's default configuration. ```c ma_result result; ma_engine engine; result = ma_engine_init(NULL, &engine); if (result != MA_SUCCESS) { return result; // Failed to initialize the engine. } ``` This creates an engine instance which will initialize a device internally which you can access with `ma_engine_get_device()`. It will also initialize a resource manager for you which can be accessed with `ma_engine_get_resource_manager()`. The engine itself is a node graph (`ma_node_graph`) which means you can pass a pointer to the engine object into any of the `ma_node_graph` APIs (with a cast). Alternatively, you can use `ma_engine_get_node_graph()` instead of a cast. Note that all objects in miniaudio, including the `ma_engine` object in the example above, are transparent structures. There are no handles to opaque structures in miniaudio which means you need to be mindful of how you declare them. In the example above we are declaring it on the stack, but this will result in the struct being invalidated once the function encapsulating it returns. If allocating the engine on the heap is more appropriate, you can easily do so with a standard call to `malloc()` or whatever heap allocation routine you like: ```c ma_engine* pEngine = malloc(sizeof(*pEngine)); ``` The `ma_engine` API uses the same config/init pattern used all throughout miniaudio. To configure an engine, you can fill out a `ma_engine_config` object and pass it into the first parameter of `ma_engine_init()`: ```c ma_result result; ma_engine engine; ma_engine_config engineConfig; engineConfig = ma_engine_config_init(); engineConfig.pResourceManager = &myCustomResourceManager; // <-- Initialized as some earlier stage. result = ma_engine_init(&engineConfig, &engine); if (result != MA_SUCCESS) { return result; } ``` This creates an engine instance using a custom config. In this particular example it's showing how you can specify a custom resource manager rather than having the engine initialize one internally. This is particularly useful if you want to have multiple engine's share the same resource manager. The engine must be uninitialized with `ma_engine_uninit()` when it's no longer needed. By default the engine will be started, but nothing will be playing because no sounds have been initialized. The easiest but least flexible way of playing a sound is like so: ```c ma_engine_play_sound(&engine, "my_sound.wav", NULL); ``` This plays what miniaudio calls an "inline" sound. It plays the sound once, and then puts the internal sound up for recycling. The last parameter is used to specify which sound group the sound should be associated with which will be explained later. This particular way of playing a sound is simple, but lacks flexibility and features. A more flexible way of playing a sound is to first initialize a sound: ```c ma_result result; ma_sound sound; result = ma_sound_init_from_file(&engine, "my_sound.wav", 0, NULL, NULL, &sound); if (result != MA_SUCCESS) { return result; } ma_sound_start(&sound); ``` This returns a `ma_sound` object which represents a single instance of the specified sound file. If you want to play the same file multiple times simultaneously, you need to create one sound for each instance. Sounds should be uninitialized with `ma_sound_uninit()`. Sounds are not started by default. Start a sound with `ma_sound_start()` and stop it with `ma_sound_stop()`. When a sound is stopped, it is not rewound to the start. Use `ma_sound_seek_to_pcm_frame(&sound, 0)` to seek back to the start of a sound. By default, starting and stopping sounds happens immediately, but sometimes it might be convenient to schedule the sound the be started and/or stopped at a specific time. This can be done with the following functions: ```c ma_sound_set_start_time_in_pcm_frames() ma_sound_set_start_time_in_milliseconds() ma_sound_set_stop_time_in_pcm_frames() ma_sound_set_stop_time_in_milliseconds() ``` The start/stop time needs to be specified based on the absolute timer which is controlled by the engine. The current global time time in PCM frames can be retrieved with `ma_engine_get_time()`. The engine's global time can be changed with `ma_engine_set_time()` for synchronization purposes if required. Note that scheduling a start time still requires an explicit call to `ma_sound_start()` before anything will play: ```c ma_sound_set_start_time_in_pcm_frames(&sound, ma_engine_get_time(&engine) + (ma_engine_get_sample_rate(&engine) * 2); ma_sound_start(&sound); ``` The third parameter of `ma_sound_init_from_file()` is a set of flags that control how the sound be loaded and a few options on which features should be enabled for that sound. By default, the sound is synchronously loaded fully into memory straight from the file system without any kind of decoding. If you want to decode the sound before storing it in memory, you need to specify the `MA_SOUND_FLAG_DECODE` flag. This is useful if you want to incur the cost of decoding at an earlier stage, such as a loading stage. Without this option, decoding will happen dynamically at mixing time which might be too expensive on the audio thread. If you want to load the sound asynchronously, you can specify the `MA_SOUND_FLAG_ASYNC` flag. This will result in `ma_sound_init_from_file()` returning quickly, but the sound will not start playing until the sound has had some audio decoded. The fourth parameter is a pointer to sound group. A sound group is used as a mechanism to organise sounds into groups which have their own effect processing and volume control. An example is a game which might have separate groups for sfx, voice and music. Each of these groups have their own independent volume control. Use `ma_sound_group_init()` or `ma_sound_group_init_ex()` to initialize a sound group. Sounds and sound groups are nodes in the engine's node graph and can be plugged into any `ma_node` API. This makes it possible to connect sounds and sound groups to effect nodes to produce complex effect chains. A sound can have it's volume changed with `ma_sound_set_volume()`. If you prefer decibel volume control you can use `ma_volume_db_to_linear()` to convert from decibel representation to linear. Panning and pitching is supported with `ma_sound_set_pan()` and `ma_sound_set_pitch()`. If you know a sound will never have it's pitch changed with `ma_sound_set_pitch()` or via the doppler effect, you can specify the `MA_SOUND_FLAG_NO_PITCH` flag when initializing the sound for an optimization. By default, sounds and sound groups have spatialization enabled. If you don't ever want to spatialize your sounds, initialize the sound with the `MA_SOUND_FLAG_NO_SPATIALIZATION` flag. The spatialization model is fairly simple and is roughly on feature parity with OpenAL. HRTF and environmental occlusion are not currently supported, but planned for the future. The supported features include: * Sound and listener positioning and orientation with cones * Attenuation models: none, inverse, linear and exponential * Doppler effect Sounds can be faded in and out with `ma_sound_set_fade_in_pcm_frames()`. To check if a sound is currently playing, you can use `ma_sound_is_playing()`. To check if a sound is at the end, use `ma_sound_at_end()`. Looping of a sound can be controlled with `ma_sound_set_looping()`. Use `ma_sound_is_looping()` to check whether or not the sound is looping. 2. Building =========== miniaudio should work cleanly out of the box without the need to download or install any dependencies. See below for platform-specific details. 2.1. Windows ------------ The Windows build should compile cleanly on all popular compilers without the need to configure any include paths nor link to any libraries. The UWP build may require linking to mmdevapi.lib if you get errors about an unresolved external symbol for `ActivateAudioInterfaceAsync()`. 2.2. macOS and iOS ------------------ The macOS build should compile cleanly without the need to download any dependencies nor link to any libraries or frameworks. The iOS build needs to be compiled as Objective-C and will need to link the relevant frameworks but should compile cleanly out of the box with Xcode. Compiling through the command line requires linking to `-lpthread` and `-lm`. Due to the way miniaudio links to frameworks at runtime, your application may not pass Apple's notarization process. To fix this there are two options. The first is to use the `MA_NO_RUNTIME_LINKING` option, like so: ```c #ifdef __APPLE__ #define MA_NO_RUNTIME_LINKING #endif #define MINIAUDIO_IMPLEMENTATION #include "miniaudio.h" ``` This will require linking with `-framework CoreFoundation -framework CoreAudio -framework AudioUnit`. Alternatively, if you would rather keep using runtime linking you can add the following to your entitlements.xcent file: ``` com.apple.security.cs.allow-dyld-environment-variables com.apple.security.cs.allow-unsigned-executable-memory ``` See this discussion for more info: https://github.com/mackron/miniaudio/issues/203. 2.3. Linux ---------- The Linux build only requires linking to `-ldl`, `-lpthread` and `-lm`. You do not need any development packages. You may need to link with `-latomic` if you're compiling for 32-bit ARM. 2.4. BSD -------- The BSD build only requires linking to `-lpthread` and `-lm`. NetBSD uses audio(4), OpenBSD uses sndio and FreeBSD uses OSS. You may need to link with `-latomic` if you're compiling for 32-bit ARM. 2.5. Android ------------ AAudio is the highest priority backend on Android. This should work out of the box without needing any kind of compiler configuration. Support for AAudio starts with Android 8 which means older versions will fall back to OpenSL|ES which requires API level 16+. There have been reports that the OpenSL|ES backend fails to initialize on some Android based devices due to `dlopen()` failing to open "libOpenSLES.so". If this happens on your platform you'll need to disable run-time linking with `MA_NO_RUNTIME_LINKING` and link with -lOpenSLES. 2.6. Emscripten --------------- The Emscripten build emits Web Audio JavaScript directly and should compile cleanly out of the box. You cannot use `-std=c*` compiler flags, nor `-ansi`. 2.7. Build Options ------------------ `#define` these options before including miniaudio.h. +----------------------------------+--------------------------------------------------------------------+ | Option | Description | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_WASAPI | Disables the WASAPI backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_DSOUND | Disables the DirectSound backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_WINMM | Disables the WinMM backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_ALSA | Disables the ALSA backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_PULSEAUDIO | Disables the PulseAudio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_JACK | Disables the JACK backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_COREAUDIO | Disables the Core Audio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_SNDIO | Disables the sndio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_AUDIO4 | Disables the audio(4) backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_OSS | Disables the OSS backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_AAUDIO | Disables the AAudio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_OPENSL | Disables the OpenSL|ES backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_WEBAUDIO | Disables the Web Audio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_NULL | Disables the null backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_ONLY_SPECIFIC_BACKENDS | Disables all backends by default and requires `MA_ENABLE_*` to | | | enable specific backends. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_WASAPI | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the WASAPI backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_DSOUND | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the DirectSound backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_WINMM | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the WinMM backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_ALSA | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the ALSA backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_PULSEAUDIO | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the PulseAudio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_JACK | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the JACK backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_COREAUDIO | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the Core Audio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_SNDIO | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the sndio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_AUDIO4 | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the audio(4) backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_OSS | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the OSS backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_AAUDIO | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the AAudio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_OPENSL | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the OpenSL|ES backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_WEBAUDIO | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the Web Audio backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_ENABLE_NULL | Used in conjunction with MA_ENABLE_ONLY_SPECIFIC_BACKENDS to | | | enable the null backend. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_DECODING | Disables decoding APIs. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_ENCODING | Disables encoding APIs. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_WAV | Disables the built-in WAV decoder and encoder. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_FLAC | Disables the built-in FLAC decoder. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_MP3 | Disables the built-in MP3 decoder. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_DEVICE_IO | Disables playback and recording. This will disable `ma_context` | | | and `ma_device` APIs. This is useful if you only want to use | | | miniaudio's data conversion and/or decoding APIs. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_RESOURCE_MANAGER | Disables the resource manager. When using the engine this will | | | also disable the following functions: | | | | | | ``` | | | ma_sound_init_from_file() | | | ma_sound_init_from_file_w() | | | ma_sound_init_copy() | | | ma_engine_play_sound_ex() | | | ma_engine_play_sound() | | | ``` | | | | | | The only way to initialize a `ma_sound` object is to initialize it | | | from a data source. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_NODE_GRAPH | Disables the node graph API. This will also disable the engine API | | | because it depends on the node graph. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_ENGINE | Disables the engine API. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_THREADING | Disables the `ma_thread`, `ma_mutex`, `ma_semaphore` and | | | `ma_event` APIs. This option is useful if you only need to use | | | miniaudio for data conversion, decoding and/or encoding. Some | | | families of APIs require threading which means the following | | | options must also be set: | | | | | | ``` | | | MA_NO_DEVICE_IO | | | ``` | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_GENERATION | Disables generation APIs such a `ma_waveform` and `ma_noise`. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_SSE2 | Disables SSE2 optimizations. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_AVX2 | Disables AVX2 optimizations. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_NEON | Disables NEON optimizations. | +----------------------------------+--------------------------------------------------------------------+ | MA_NO_RUNTIME_LINKING | Disables runtime linking. This is useful for passing Apple's | | | notarization process. When enabling this, you may need to avoid | | | using `-std=c89` or `-std=c99` on Linux builds or else you may end | | | up with compilation errors due to conflicts with `timespec` and | | | `timeval` data types. | | | | | | You may need to enable this if your target platform does not allow | | | runtime linking via `dlopen()`. | +----------------------------------+--------------------------------------------------------------------+ | MA_DEBUG_OUTPUT | Enable `printf()` output of debug logs (`MA_LOG_LEVEL_DEBUG`). | +----------------------------------+--------------------------------------------------------------------+ | MA_COINIT_VALUE | Windows only. The value to pass to internal calls to | | | `CoInitializeEx()`. Defaults to `COINIT_MULTITHREADED`. | +----------------------------------+--------------------------------------------------------------------+ | MA_API | Controls how public APIs should be decorated. Default is `extern`. | +----------------------------------+--------------------------------------------------------------------+ 3. Definitions ============== This section defines common terms used throughout miniaudio. Unfortunately there is often ambiguity in the use of terms throughout the audio space, so this section is intended to clarify how miniaudio uses each term. 3.1. Sample ----------- A sample is a single unit of audio data. If the sample format is f32, then one sample is one 32-bit floating point number. 3.2. Frame / PCM Frame ---------------------- A frame is a group of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame is 1 sample, a 5.1 surround sound frame is 6 samples, etc. The terms "frame" and "PCM frame" are the same thing in miniaudio. Note that this is different to a compressed frame. If ever miniaudio needs to refer to a compressed frame, such as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame". 3.3. Channel ------------ A stream of monaural audio that is emitted from an individual speaker in a speaker system, or received from an individual microphone in a microphone system. A stereo stream has two channels (a left channel, and a right channel), a 5.1 surround sound system has 6 channels, etc. Some audio systems refer to a channel as a complex audio stream that's mixed with other channels to produce the final mix - this is completely different to miniaudio's use of the term "channel" and should not be confused. 3.4. Sample Rate ---------------- The sample rate in miniaudio is always expressed in Hz, such as 44100, 48000, etc. It's the number of PCM frames that are processed per second. 3.5. Formats ------------ Throughout miniaudio you will see references to different sample formats: +---------------+----------------------------------------+---------------------------+ | Symbol | Description | Range | +---------------+----------------------------------------+---------------------------+ | ma_format_f32 | 32-bit floating point | [-1, 1] | | ma_format_s16 | 16-bit signed integer | [-32768, 32767] | | ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] | | ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] | | ma_format_u8 | 8-bit unsigned integer | [0, 255] | +---------------+----------------------------------------+---------------------------+ All formats are native-endian. 4. Data Sources =============== The data source abstraction in miniaudio is used for retrieving audio data from some source. A few examples include `ma_decoder`, `ma_noise` and `ma_waveform`. You will need to be familiar with data sources in order to make sense of some of the higher level concepts in miniaudio. The `ma_data_source` API is a generic interface for reading from a data source. Any object that implements the data source interface can be plugged into any `ma_data_source` function. To read data from a data source: ```c ma_result result; ma_uint64 framesRead; result = ma_data_source_read_pcm_frames(pDataSource, pFramesOut, frameCount, &framesRead, loop); if (result != MA_SUCCESS) { return result; // Failed to read data from the data source. } ``` If you don't need the number of frames that were successfully read you can pass in `NULL` to the `pFramesRead` parameter. If this returns a value less than the number of frames requested it means the end of the file has been reached. `MA_AT_END` will be returned only when the number of frames read is 0. When calling any data source function, with the exception of `ma_data_source_init()` and `ma_data_source_uninit()`, you can pass in any object that implements a data source. For example, you could plug in a decoder like so: ```c ma_result result; ma_uint64 framesRead; ma_decoder decoder; // <-- This would be initialized with `ma_decoder_init_*()`. result = ma_data_source_read_pcm_frames(&decoder, pFramesOut, frameCount, &framesRead, loop); if (result != MA_SUCCESS) { return result; // Failed to read data from the decoder. } ``` If you want to seek forward you can pass in `NULL` to the `pFramesOut` parameter. Alternatively you can use `ma_data_source_seek_pcm_frames()`. To seek to a specific PCM frame: ```c result = ma_data_source_seek_to_pcm_frame(pDataSource, frameIndex); if (result != MA_SUCCESS) { return result; // Failed to seek to PCM frame. } ``` You can retrieve the total length of a data source in PCM frames, but note that some data sources may not have the notion of a length, such as noise and waveforms, and others may just not have a way of determining the length such as some decoders. To retrieve the length: ```c ma_uint64 length; result = ma_data_source_get_length_in_pcm_frames(pDataSource, &length); if (result != MA_SUCCESS) { return result; // Failed to retrieve the length. } ``` Care should be taken when retrieving the length of a data source where the underlying decoder is pulling data from a data stream with an undefined length, such as internet radio or some kind of broadcast. If you do this, `ma_data_source_get_length_in_pcm_frames()` may never return. The current position of the cursor in PCM frames can also be retrieved: ```c ma_uint64 cursor; result = ma_data_source_get_cursor_in_pcm_frames(pDataSource, &cursor); if (result != MA_SUCCESS) { return result; // Failed to retrieve the cursor. } ``` You will often need to know the data format that will be returned after reading. This can be retrieved like so: ```c ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_channel channelMap[MA_MAX_CHANNELS]; result = ma_data_source_get_data_format(pDataSource, &format, &channels, &sampleRate, channelMap, MA_MAX_CHANNELS); if (result != MA_SUCCESS) { return result; // Failed to retrieve data format. } ``` If you do not need a specific data format property, just pass in NULL to the respective parameter. There may be cases where you want to implement something like a sound bank where you only want to read data within a certain range of the underlying data. To do this you can use a range: ```c result = ma_data_source_set_range_in_pcm_frames(pDataSource, rangeBegInFrames, rangeEndInFrames); if (result != MA_SUCCESS) { return result; // Failed to set the range. } ``` This is useful if you have a sound bank where many sounds are stored in the same file and you want the data source to only play one of those sub-sounds. Custom loop points can also be used with data sources. By default, data sources will loop after they reach the end of the data source, but if you need to loop at a specific location, you can do the following: ```c result = ma_data_set_loop_point_in_pcm_frames(pDataSource, loopBegInFrames, loopEndInFrames); if (result != MA_SUCCESS) { return result; // Failed to set the loop point. } ``` The loop point is relative to the current range. It's sometimes useful to chain data sources together so that a seamless transition can be achieved. To do this, you can use chaining: ```c ma_decoder decoder1; ma_decoder decoder2; // ... initialize decoders with ma_decoder_init_*() ... result = ma_data_source_set_next(&decoder1, &decoder2); if (result != MA_SUCCESS) { return result; // Failed to set the next data source. } result = ma_data_source_read_pcm_frames(&decoder1, pFramesOut, frameCount, pFramesRead, MA_FALSE); if (result != MA_SUCCESS) { return result; // Failed to read from the decoder. } ``` In the example above we're using decoders. When reading from a chain, you always want to read from the top level data source in the chain. In the example above, `decoder1` is the top level data source in the chain. When `decoder1` reaches the end, `decoder2` will start seamlessly without any gaps. Note that the `loop` parameter is set to false in the example above. When this is set to true, only the current data source will be looped. You can loop the entire chain by linking in a loop like so: ```c ma_data_source_set_next(&decoder1, &decoder2); // decoder1 -> decoder2 ma_data_source_set_next(&decoder2, &decoder1); // decoder2 -> decoder1 (loop back to the start). ``` Note that setting up chaining is not thread safe, so care needs to be taken if you're dynamically changing links while the audio thread is in the middle of reading. Do not use `ma_decoder_seek_to_pcm_frame()` as a means to reuse a data source to play multiple instances of the same sound simultaneously. Instead, initialize multiple data sources for each instance. This can be extremely inefficient depending on the data source and can result in glitching due to subtle changes to the state of internal filters. 4.1. Custom Data Sources ------------------------ You can implement a custom data source by implementing the functions in `ma_data_source_vtable`. Your custom object must have `ma_data_source_base` as it's first member: ```c struct my_data_source { ma_data_source_base base; ... }; ``` In your initialization routine, you need to call `ma_data_source_init()` in order to set up the base object (`ma_data_source_base`): ```c static ma_result my_data_source_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { // Read data here. Output in the same format returned by my_data_source_get_data_format(). } static ma_result my_data_source_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { // Seek to a specific PCM frame here. Return MA_NOT_IMPLEMENTED if seeking is not supported. } static ma_result my_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { // Return the format of the data here. } static ma_result my_data_source_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { // Retrieve the current position of the cursor here. Return MA_NOT_IMPLEMENTED and set *pCursor to 0 if there is no notion of a cursor. } static ma_result my_data_source_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { // Retrieve the length in PCM frames here. Return MA_NOT_IMPLEMENTED and set *pLength to 0 if there is no notion of a length or if the length is unknown. } static g_my_data_source_vtable = { my_data_source_read, my_data_source_seek, my_data_source_get_data_format, my_data_source_get_cursor, my_data_source_get_length }; ma_result my_data_source_init(my_data_source* pMyDataSource) { ma_result result; ma_data_source_config baseConfig; baseConfig = ma_data_source_config_init(); baseConfig.vtable = &g_my_data_source_vtable; result = ma_data_source_init(&baseConfig, &pMyDataSource->base); if (result != MA_SUCCESS) { return result; } // ... do the initialization of your custom data source here ... return MA_SUCCESS; } void my_data_source_uninit(my_data_source* pMyDataSource) { // ... do the uninitialization of your custom data source here ... // You must uninitialize the base data source. ma_data_source_uninit(&pMyDataSource->base); } ``` Note that `ma_data_source_init()` and `ma_data_source_uninit()` are never called directly outside of the custom data source. It's up to the custom data source itself to call these within their own init/uninit functions. 5. Engine ========= The `ma_engine` API is a high level API for managing and mixing sounds and effect processing. The `ma_engine` object encapsulates a resource manager and a node graph, both of which will be explained in more detail later. Sounds are called `ma_sound` and are created from an engine. Sounds can be associated with a mixing group called `ma_sound_group` which are also created from the engine. Both `ma_sound` and `ma_sound_group` objects are nodes within the engine's node graph. When the engine is initialized, it will normally create a device internally. If you would rather manage the device yourself, you can do so and just pass a pointer to it via the engine config when you initialize the engine. You can also just use the engine without a device, which again can be configured via the engine config. The most basic way to initialize the engine is with a default config, like so: ```c ma_result result; ma_engine engine; result = ma_engine_init(NULL, &engine); if (result != MA_SUCCESS) { return result; // Failed to initialize the engine. } ``` This will result in the engine initializing a playback device using the operating system's default device. This will be sufficient for many use cases, but if you need more flexibility you'll want to configure the engine with an engine config: ```c ma_result result; ma_engine engine; ma_engine_config engineConfig; engineConfig = ma_engine_config_init(); engineConfig.pPlaybackDevice = &myDevice; result = ma_engine_init(&engineConfig, &engine); if (result != MA_SUCCESS) { return result; // Failed to initialize the engine. } ``` In the example above we're passing in a pre-initialized device. Since the caller is the one in control of the device's data callback, it's their responsibility to manually call `ma_engine_read_pcm_frames()` from inside their data callback: ```c void playback_data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount) { ma_engine_read_pcm_frames(&g_Engine, pOutput, frameCount, NULL); } ``` You can also use the engine independent of a device entirely: ```c ma_result result; ma_engine engine; ma_engine_config engineConfig; engineConfig = ma_engine_config_init(); engineConfig.noDevice = MA_TRUE; engineConfig.channels = 2; // Must be set when not using a device. engineConfig.sampleRate = 48000; // Must be set when not using a device. result = ma_engine_init(&engineConfig, &engine); if (result != MA_SUCCESS) { return result; // Failed to initialize the engine. } ``` Note that when you're not using a device, you must set the channel count and sample rate in the config or else miniaudio won't know what to use (miniaudio will use the device to determine this normally). When not using a device, you need to use `ma_engine_read_pcm_frames()` to process audio data from the engine. This kind of setup is useful if you want to do something like offline processing. When a sound is loaded it goes through a resource manager. By default the engine will initialize a resource manager internally, but you can also specify a pre-initialized resource manager: ```c ma_result result; ma_engine engine1; ma_engine engine2; ma_engine_config engineConfig; engineConfig = ma_engine_config_init(); engineConfig.pResourceManager = &myResourceManager; ma_engine_init(&engineConfig, &engine1); ma_engine_init(&engineConfig, &engine2); ``` In this example we are initializing two engines, both of which are sharing the same resource manager. This is especially useful for saving memory when loading the same file across multiple engines. If you were not to use a shared resource manager, each engine instance would use their own which would result in any sounds that are used between both engine's being loaded twice. By using a shared resource manager, it would only be loaded once. Using multiple engine's is useful when you need to output to multiple playback devices, such as in a local multiplayer game where each player is using their own set of headphones. By default an engine will be in a started state. To make it so the engine is not automatically started you can configure it as such: ```c engineConfig.noAutoStart = MA_TRUE; // The engine will need to be started manually. ma_engine_start(&engine); // Later on the engine can be stopped with ma_engine_stop(). ma_engine_stop(&engine); ``` The concept of starting or stopping an engine is only relevant when using the engine with a device. Attempting to start or stop an engine that is not associated with a device will result in `MA_INVALID_OPERATION`. The master volume of the engine can be controlled with `ma_engine_set_volume()` which takes a linear scale, with 0 resulting in silence and anything above 1 resulting in amplification. If you prefer decibel based volume control, use `ma_volume_db_to_linear()` to convert from dB to linear. When a sound is spatialized, it is done so relative to a listener. An engine can be configured to have multiple listeners which can be configured via the config: ```c engineConfig.listenerCount = 2; ``` The maximum number of listeners is restricted to `MA_ENGINE_MAX_LISTENERS`. By default, when a sound is spatialized, it will be done so relative to the closest listener. You can also pin a sound to a specific listener which will be explained later. Listener's have a position, direction, cone, and velocity (for doppler effect). A listener is referenced by an index, the meaning of which is up to the caller (the index is 0 based and cannot go beyond the listener count, minus 1). The position, direction and velocity are all specified in absolute terms: ```c ma_engine_listener_set_position(&engine, listenerIndex, worldPosX, worldPosY, worldPosZ); ``` The direction of the listener represents it's forward vector. The listener's up vector can also be specified and defaults to +1 on the Y axis. ```c ma_engine_listener_set_direction(&engine, listenerIndex, forwardX, forwardY, forwardZ); ma_engine_listener_set_world_up(&engine, listenerIndex, 0, 1, 0); ``` The engine supports directional attenuation. The listener can have a cone the controls how sound is attenuated based on the listener's direction. When a sound is between the inner and outer cones, it will be attenuated between 1 and the cone's outer gain: ```c ma_engine_listener_set_cone(&engine, listenerIndex, innerAngleInRadians, outerAngleInRadians, outerGain); ``` When a sound is inside the inner code, no directional attenuation is applied. When the sound is outside of the outer cone, the attenuation will be set to `outerGain` in the example above. When the sound is in between the inner and outer cones, the attenuation will be interpolated between 1 and the outer gain. The engine's coordinate system follows the OpenGL coordinate system where positive X points right, positive Y points up and negative Z points forward. The simplest and least flexible way to play a sound is like so: ```c ma_engine_play_sound(&engine, "my_sound.wav", pGroup); ``` This is a "fire and forget" style of function. The engine will manage the `ma_sound` object internally. When the sound finishes playing, it'll be put up for recycling. For more flexibility you'll want to initialize a sound object: ```c ma_sound sound; result = ma_sound_init_from_file(&engine, "my_sound.wav", flags, pGroup, NULL, &sound); if (result != MA_SUCCESS) { return result; // Failed to load sound. } ``` Sounds need to be uninitialized with `ma_sound_uninit()`. The example above loads a sound from a file. If the resource manager has been disabled you will not be able to use this function and instead you'll need to initialize a sound directly from a data source: ```c ma_sound sound; result = ma_sound_init_from_data_source(&engine, &dataSource, flags, pGroup, &sound); if (result != MA_SUCCESS) { return result; } ``` Each `ma_sound` object represents a single instance of the sound. If you want to play the same sound multiple times at the same time, you need to initialize a separate `ma_sound` object. For the most flexibility when initializing sounds, use `ma_sound_init_ex()`. This uses miniaudio's standard config/init pattern: ```c ma_sound sound; ma_sound_config soundConfig; soundConfig = ma_sound_config_init(); soundConfig.pFilePath = NULL; // Set this to load from a file path. soundConfig.pDataSource = NULL; // Set this to initialize from an existing data source. soundConfig.pInitialAttachment = &someNodeInTheNodeGraph; soundConfig.initialAttachmentInputBusIndex = 0; soundConfig.channelsIn = 1; soundConfig.channelsOut = 0; // Set to 0 to use the engine's native channel count. result = ma_sound_init_ex(&soundConfig, &sound); if (result != MA_SUCCESS) { return result; } ``` In the example above, the sound is being initialized without a file nor a data source. This is valid, in which case the sound acts as a node in the middle of the node graph. This means you can connect other sounds to this sound and allow it to act like a sound group. Indeed, this is exactly what a `ma_sound_group` is. When loading a sound, you specify a set of flags that control how the sound is loaded and what features are enabled for that sound. When no flags are set, the sound will be fully loaded into memory in exactly the same format as how it's stored on the file system. The resource manager will allocate a block of memory and then load the file directly into it. When reading audio data, it will be decoded dynamically on the fly. In order to save processing time on the audio thread, it might be beneficial to pre-decode the sound. You can do this with the `MA_SOUND_FLAG_DECODE` flag: ```c ma_sound_init_from_file(&engine, "my_sound.wav", MA_SOUND_FLAG_DECODE, pGroup, NULL, &sound); ``` By default, sounds will be loaded synchronously, meaning `ma_sound_init_*()` will not return until the sound has been fully loaded. If this is prohibitive you can instead load sounds asynchronously by specificying the `MA_SOUND_FLAG_ASYNC` flag: ```c ma_sound_init_from_file(&engine, "my_sound.wav", MA_SOUND_FLAG_DECODE | MA_SOUND_FLAG_ASYNC, pGroup, NULL, &sound); ``` This will result in `ma_sound_init_*()` returning quickly, but the sound won't yet have been fully loaded. When you start the sound, it won't output anything until some sound is available. The sound will start outputting audio before the sound has been fully decoded when the `MA_SOUND_FLAG_DECODE` is specified. If you need to wait for an asynchronously loaded sound to be fully loaded, you can use a fence. A fence in miniaudio is a simple synchronization mechanism which simply blocks until it's internal counter hit's zero. You can specify a fence like so: ```c ma_result result; ma_fence fence; ma_sound sounds[4]; result = ma_fence_init(&fence); if (result != MA_SUCCES) { return result; } // Load some sounds asynchronously. for (int iSound = 0; iSound < 4; iSound += 1) { ma_sound_init_from_file(&engine, mySoundFilesPaths[iSound], MA_SOUND_FLAG_DECODE | MA_SOUND_FLAG_ASYNC, pGroup, &fence, &sounds[iSound]); } // ... do some other stuff here in the mean time ... // Wait for all sounds to finish loading. ma_fence_wait(&fence); ``` If loading the entire sound into memory is prohibitive, you can also configure the engine to stream the audio data: ```c ma_sound_init_from_file(&engine, "my_sound.wav", MA_SOUND_FLAG_STREAM, pGroup, NULL, &sound); ``` When streaming sounds, 2 seconds worth of audio data is stored in memory. Although it should work fine, it's inefficient to use streaming for short sounds. Streaming is useful for things like music tracks in games. When loading a sound from a file path, the engine will reference count the file to prevent it from being loaded if it's already in memory. When you uninitialize a sound, the reference count will be decremented, and if it hits zero, the sound will be unloaded from memory. This reference counting system is not used for streams. The engine will use a 64-bit hash of the file name when comparing file paths which means there's a small chance you might encounter a name collision. If this is an issue, you'll need to use a different name for one of the colliding file paths, or just not load from files and instead load from a data source. When you initialize a sound, if you specify a sound group the sound will be attached to that group automatically. If you set it to NULL, it will be automatically attached to the engine's endpoint. If you would instead rather leave the sound unattached by default, you can can specify the `MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT` flag. This is useful if you want to set up a complex node graph. Sounds are not started by default. To start a sound, use `ma_sound_start()`. Stop a sound with `ma_sound_stop()`. Sounds can have their volume controlled with `ma_sound_set_volume()` in the same way as the engine's master volume. Sounds support stereo panning and pitching. Set the pan with `ma_sound_set_pan()`. Setting the pan to 0 will result in an unpanned sound. Setting it to -1 will shift everything to the left, whereas +1 will shift it to the right. The pitch can be controlled with `ma_sound_set_pitch()`. A larger value will result in a higher pitch. The pitch must be greater than 0. The engine supports 3D spatialization of sounds. By default sounds will have spatialization enabled, but if a sound does not need to be spatialized it's best to disable it. There are two ways to disable spatialization of a sound: ```c // Disable spatialization at initialization time via a flag: ma_sound_init_from_file(&engine, "my_sound.wav", MA_SOUND_FLAG_NO_SPATIALIZATION, NULL, NULL, &sound); // Dynamically disable or enable spatialization post-initialization: ma_sound_set_spatialization_enabled(&sound, isSpatializationEnabled); ``` By default sounds will be spatialized based on the closest listener. If a sound should always be spatialized relative to a specific listener it can be pinned to one: ```c ma_sound_set_pinned_listener_index(&sound, listenerIndex); ``` Like listeners, sounds have a position. By default, the position of a sound is in absolute space, but it can be changed to be relative to a listener: ```c ma_sound_set_positioning(&sound, ma_positioning_relative); ``` Note that relative positioning of a sound only makes sense if there is either only one listener, or the sound is pinned to a specific listener. To set the position of a sound: ```c ma_sound_set_position(&sound, posX, posY, posZ); ``` The direction works the same way as a listener and represents the sound's forward direction: ```c ma_sound_set_direction(&sound, forwardX, forwardY, forwardZ); ``` Sound's also have a cone for controlling directional attenuation. This works exactly the same as listeners: ```c ma_sound_set_cone(&sound, innerAngleInRadians, outerAngleInRadians, outerGain); ``` The velocity of a sound is used for doppler effect and can be set as such: ```c ma_sound_set_velocity(&sound, velocityX, velocityY, velocityZ); ``` The engine supports different attenuation models which can be configured on a per-sound basis. By default the attenuation model is set to `ma_attenuation_model_inverse` which is the equivalent to OpenAL's `AL_INVERSE_DISTANCE_CLAMPED`. Configure the attenuation model like so: ```c ma_sound_set_attenuation_model(&sound, ma_attenuation_model_inverse); ``` The supported attenuation models include the following: +----------------------------------+----------------------------------------------+ | ma_attenuation_model_none | No distance attenuation. | +----------------------------------+----------------------------------------------+ | ma_attenuation_model_inverse | Equivalent to `AL_INVERSE_DISTANCE_CLAMPED`. | +----------------------------------+----------------------------------------------+ | ma_attenuation_model_linear | Linear attenuation. | +----------------------------------+----------------------------------------------+ | ma_attenuation_model_exponential | Exponential attenuation. | +----------------------------------+----------------------------------------------+ To control how quickly a sound rolls off as it moves away from the listener, you need to configure the rolloff: ```c ma_sound_set_rolloff(&sound, rolloff); ``` You can control the minimum and maximum gain to apply from spatialization: ```c ma_sound_set_min_gain(&sound, minGain); ma_sound_set_max_gain(&sound, maxGain); ``` Likewise, in the calculation of attenuation, you can control the minimum and maximum distances for the attenuation calculation. This is useful if you want to ensure sounds don't drop below a certain volume after the listener moves further away and to have sounds play a maximum volume when the listener is within a certain distance: ```c ma_sound_set_min_distance(&sound, minDistance); ma_sound_set_max_distance(&sound, maxDistance); ``` The engine's spatialization system supports doppler effect. The doppler factor can be configure on a per-sound basis like so: ```c ma_sound_set_doppler_factor(&sound, dopplerFactor); ``` You can fade sounds in and out with `ma_sound_set_fade_in_pcm_frames()` and `ma_sound_set_fade_in_milliseconds()`. Set the volume to -1 to use the current volume as the starting volume: ```c // Fade in over 1 second. ma_sound_set_fade_in_milliseconds(&sound, 0, 1, 1000); // ... sometime later ... // Fade out over 1 second, starting from the current volume. ma_sound_set_fade_in_milliseconds(&sound, -1, 0, 1000); ``` By default sounds will start immediately, but sometimes for timing and synchronization purposes it can be useful to schedule a sound to start or stop: ```c // Start the sound in 1 second from now. ma_sound_set_start_time_in_pcm_frames(&sound, ma_engine_get_time(&engine) + (ma_engine_get_sample_rate(&engine) * 1)); // Stop the sound in 2 seconds from now. ma_sound_set_stop_time_in_pcm_frames(&sound, ma_engine_get_time(&engine) + (ma_engine_get_sample_rate(&engine) * 2)); ``` Note that scheduling a start time still requires an explicit call to `ma_sound_start()` before anything will play. The time is specified in global time which is controlled by the engine. You can get the engine's current time with `ma_engine_get_time()`. The engine's global time is incremented automatically as audio data is read, but it can be reset with `ma_engine_set_time()` in case it needs to be resynchronized for some reason. To determine whether or not a sound is currently playing, use `ma_sound_is_playing()`. This will take the scheduled start and stop times into account. Whether or not a sound should loop can be controlled with `ma_sound_set_looping()`. Sounds will not be looping by default. Use `ma_sound_is_looping()` to determine whether or not a sound is looping. Use `ma_sound_at_end()` to determine whether or not a sound is currently at the end. For a looping sound this should never return true. Internally a sound wraps around a data source. Some APIs exist to control the underlying data source, mainly for convenience: ```c ma_sound_seek_to_pcm_frame(&sound, frameIndex); ma_sound_get_data_format(&sound, &format, &channels, &sampleRate, pChannelMap, channelMapCapacity); ma_sound_get_cursor_in_pcm_frames(&sound, &cursor); ma_sound_get_length_in_pcm_frames(&sound, &length); ``` Sound groups have the same API as sounds, only they are called `ma_sound_group`, and since they do not have any notion of a data source, anything relating to a data source is unavailable. Internally, sound data is loaded via the `ma_decoder` API which means by default it only supports file formats that have built-in support in miniaudio. You can extend this to support any kind of file format through the use of custom decoders. To do this you'll need to use a self-managed resource manager and configure it appropriately. See the "Resource Management" section below for details on how to set this up. 6. Resource Management ====================== Many programs will want to manage sound resources for things such as reference counting and streaming. This is supported by miniaudio via the `ma_resource_manager` API. The resource manager is mainly responsible for the following: * Loading of sound files into memory with reference counting. * Streaming of sound data. When loading a sound file, the resource manager will give you back a `ma_data_source` compatible object called `ma_resource_manager_data_source`. This object can be passed into any `ma_data_source` API which is how you can read and seek audio data. When loading a sound file, you specify whether or not you want the sound to be fully loaded into memory (and optionally pre-decoded) or streamed. When loading into memory, you can also specify whether or not you want the data to be loaded asynchronously. The example below is how you can initialize a resource manager using it's default configuration: ```c ma_resource_manager_config config; ma_resource_manager resourceManager; config = ma_resource_manager_config_init(); result = ma_resource_manager_init(&config, &resourceManager); if (result != MA_SUCCESS) { ma_device_uninit(&device); printf("Failed to initialize the resource manager."); return -1; } ``` You can configure the format, channels and sample rate of the decoded audio data. By default it will use the file's native data format, but you can configure it to use a consistent format. This is useful for offloading the cost of data conversion to load time rather than dynamically converting at mixing time. To do this, you configure the decoded format, channels and sample rate like the code below: ```c config = ma_resource_manager_config_init(); config.decodedFormat = device.playback.format; config.decodedChannels = device.playback.channels; config.decodedSampleRate = device.sampleRate; ``` In the code above, the resource manager will be configured so that any decoded audio data will be pre-converted at load time to the device's native data format. If instead you used defaults and the data format of the file did not match the device's data format, you would need to convert the data at mixing time which may be prohibitive in high-performance and large scale scenarios like games. Internally the resource manager uses the `ma_decoder` API to load sounds. This means by default it only supports decoders that are built into miniaudio. It's possible to support additional encoding formats through the use of custom decoders. To do so, pass in your `ma_decoding_backend_vtable` vtables into the resource manager config: ```c ma_decoding_backend_vtable* pCustomBackendVTables[] = { &g_ma_decoding_backend_vtable_libvorbis, &g_ma_decoding_backend_vtable_libopus }; ... resourceManagerConfig.ppCustomDecodingBackendVTables = pCustomBackendVTables; resourceManagerConfig.customDecodingBackendCount = sizeof(pCustomBackendVTables) / sizeof(pCustomBackendVTables[0]); resourceManagerConfig.pCustomDecodingBackendUserData = NULL; ``` This system can allow you to support any kind of file format. See the "Decoding" section for details on how to implement custom decoders. The miniaudio repository includes examples for Opus via libopus and libopusfile and Vorbis via libvorbis and libvorbisfile. Asynchronicity is achieved via a job system. When an operation needs to be performed, such as the decoding of a page, a job will be posted to a queue which will then be processed by a job thread. By default there will be only one job thread running, but this can be configured, like so: ```c config = ma_resource_manager_config_init(); config.jobThreadCount = MY_JOB_THREAD_COUNT; ``` By default job threads are managed internally by the resource manager, however you can also self manage your job threads if, for example, you want to integrate the job processing into your existing job infrastructure, or if you simply don't like the way the resource manager does it. To do this, just set the job thread count to 0 and process jobs manually. To process jobs, you first need to retrieve a job using `ma_resource_manager_next_job()` and then process it using `ma_job_process()`: ```c config = ma_resource_manager_config_init(); config.jobThreadCount = 0; // Don't manage any job threads internally. config.flags = MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING; // Optional. Makes `ma_resource_manager_next_job()` non-blocking. // ... Initialize your custom job threads ... void my_custom_job_thread(...) { for (;;) { ma_job job; ma_result result = ma_resource_manager_next_job(pMyResourceManager, &job); if (result != MA_SUCCESS) { if (result == MA_NO_DATA_AVAILABLE) { // No jobs are available. Keep going. Will only get this if the resource manager was initialized // with MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING. continue; } else if (result == MA_CANCELLED) { // MA_JOB_TYPE_QUIT was posted. Exit. break; } else { // Some other error occurred. break; } } ma_job_process(&job); } } ``` In the example above, the `MA_JOB_TYPE_QUIT` event is the used as the termination indicator, but you can use whatever you would like to terminate the thread. The call to `ma_resource_manager_next_job()` is blocking by default, but can be configured to be non-blocking by initializing the resource manager with the `MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING` configuration flag. Note that the `MA_JOB_TYPE_QUIT` will never be removed from the job queue. This is to give every thread the opportunity to catch the event and terminate naturally. When loading a file, it's sometimes convenient to be able to customize how files are opened and read instead of using standard `fopen()`, `fclose()`, etc. which is what miniaudio will use by default. This can be done by setting `pVFS` member of the resource manager's config: ```c // Initialize your custom VFS object. See documentation for VFS for information on how to do this. my_custom_vfs vfs = my_custom_vfs_init(); config = ma_resource_manager_config_init(); config.pVFS = &vfs; ``` This is particularly useful in programs like games where you want to read straight from an archive rather than the normal file system. If you do not specify a custom VFS, the resource manager will use the operating system's normal file operations. To load a sound file and create a data source, call `ma_resource_manager_data_source_init()`. When loading a sound you need to specify the file path and options for how the sounds should be loaded. By default a sound will be loaded synchronously. The returned data source is owned by the caller which means the caller is responsible for the allocation and freeing of the data source. Below is an example for initializing a data source: ```c ma_resource_manager_data_source dataSource; ma_result result = ma_resource_manager_data_source_init(pResourceManager, pFilePath, flags, &dataSource); if (result != MA_SUCCESS) { // Error. } // ... // A ma_resource_manager_data_source object is compatible with the `ma_data_source` API. To read data, just call // the `ma_data_source_read_pcm_frames()` like you would with any normal data source. result = ma_data_source_read_pcm_frames(&dataSource, pDecodedData, frameCount, &framesRead); if (result != MA_SUCCESS) { // Failed to read PCM frames. } // ... ma_resource_manager_data_source_uninit(pResourceManager, &dataSource); ``` The `flags` parameter specifies how you want to perform loading of the sound file. It can be a combination of the following flags: ``` MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT ``` When no flags are specified (set to 0), the sound will be fully loaded into memory, but not decoded, meaning the raw file data will be stored in memory, and then dynamically decoded when `ma_data_source_read_pcm_frames()` is called. To instead decode the audio data before storing it in memory, use the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE` flag. By default, the sound file will be loaded synchronously, meaning `ma_resource_manager_data_source_init()` will only return after the entire file has been loaded. This is good for simplicity, but can be prohibitively slow. You can instead load the sound asynchronously using the `MA_RESOURCE_MANAGER_DATA_SOURCE_ASYNC` flag. This will result in `ma_resource_manager_data_source_init()` returning quickly, but no data will be returned by `ma_data_source_read_pcm_frames()` until some data is available. When no data is available because the asynchronous decoding hasn't caught up, `MA_BUSY` will be returned by `ma_data_source_read_pcm_frames()`. For large sounds, it's often prohibitive to store the entire file in memory. To mitigate this, you can instead stream audio data which you can do by specifying the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM` flag. When streaming, data will be decoded in 1 second pages. When a new page needs to be decoded, a job will be posted to the job queue and then subsequently processed in a job thread. For in-memory sounds, reference counting is used to ensure the data is loaded only once. This means multiple calls to `ma_resource_manager_data_source_init()` with the same file path will result in the file data only being loaded once. Each call to `ma_resource_manager_data_source_init()` must be matched up with a call to `ma_resource_manager_data_source_uninit()`. Sometimes it can be useful for a program to register self-managed raw audio data and associate it with a file path. Use the `ma_resource_manager_register_*()` and `ma_resource_manager_unregister_*()` APIs to do this. `ma_resource_manager_register_decoded_data()` is used to associate a pointer to raw, self-managed decoded audio data in the specified data format with the specified name. Likewise, `ma_resource_manager_register_encoded_data()` is used to associate a pointer to raw self-managed encoded audio data (the raw file data) with the specified name. Note that these names need not be actual file paths. When `ma_resource_manager_data_source_init()` is called (without the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM` flag), the resource manager will look for these explicitly registered data buffers and, if found, will use it as the backing data for the data source. Note that the resource manager does *not* make a copy of this data so it is up to the caller to ensure the pointer stays valid for it's lifetime. Use `ma_resource_manager_unregister_data()` to unregister the self-managed data. You can also use `ma_resource_manager_register_file()` and `ma_resource_manager_unregister_file()` to register and unregister a file. It does not make sense to use the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM` flag with a self-managed data pointer. 6.1. Asynchronous Loading and Synchronization --------------------------------------------- When loading asynchronously, it can be useful to poll whether or not loading has finished. Use `ma_resource_manager_data_source_result()` to determine this. For in-memory sounds, this will return `MA_SUCCESS` when the file has been *entirely* decoded. If the sound is still being decoded, `MA_BUSY` will be returned. Otherwise, some other error code will be returned if the sound failed to load. For streaming data sources, `MA_SUCCESS` will be returned when the first page has been decoded and the sound is ready to be played. If the first page is still being decoded, `MA_BUSY` will be returned. Otherwise, some other error code will be returned if the sound failed to load. In addition to polling, you can also use a simple synchronization object called a "fence" to wait for asynchronously loaded sounds to finish. This is called `ma_fence`. The advantage to using a fence is that it can be used to wait for a group of sounds to finish loading rather than waiting for sounds on an individual basis. There are two stages to loading a sound: * Initialization of the internal decoder; and * Completion of decoding of the file (the file is fully decoded) You can specify separate fences for each of the different stages. Waiting for the initialization of the internal decoder is important for when you need to know the sample format, channels and sample rate of the file. The example below shows how you could use a fence when loading a number of sounds: ```c // This fence will be released when all sounds are finished loading entirely. ma_fence fence; ma_fence_init(&fence); // This will be passed into the initialization routine for each sound. ma_resource_manager_pipeline_notifications notifications = ma_resource_manager_pipeline_notifications_init(); notifications.done.pFence = &fence; // Now load a bunch of sounds: for (iSound = 0; iSound < soundCount; iSound += 1) { ma_resource_manager_data_source_init(pResourceManager, pSoundFilePaths[iSound], flags, ¬ifications, &pSoundSources[iSound]); } // ... DO SOMETHING ELSE WHILE SOUNDS ARE LOADING ... // Wait for loading of sounds to finish. ma_fence_wait(&fence); ``` In the example above we used a fence for waiting until the entire file has been fully decoded. If you only need to wait for the initialization of the internal decoder to complete, you can use the `init` member of the `ma_resource_manager_pipeline_notifications` object: ```c notifications.init.pFence = &fence; ``` If a fence is not appropriate for your situation, you can instead use a callback that is fired on an individual sound basis. This is done in a very similar way to fences: ```c typedef struct { ma_async_notification_callbacks cb; void* pMyData; } my_notification; void my_notification_callback(ma_async_notification* pNotification) { my_notification* pMyNotification = (my_notification*)pNotification; // Do something in response to the sound finishing loading. } ... my_notification myCallback; myCallback.cb.onSignal = my_notification_callback; myCallback.pMyData = pMyData; ma_resource_manager_pipeline_notifications notifications = ma_resource_manager_pipeline_notifications_init(); notifications.done.pNotification = &myCallback; ma_resource_manager_data_source_init(pResourceManager, "my_sound.wav", flags, ¬ifications, &mySound); ``` In the example above we just extend the `ma_async_notification_callbacks` object and pass an instantiation into the `ma_resource_manager_pipeline_notifications` in the same way as we did with the fence, only we set `pNotification` instead of `pFence`. You can set both of these at the same time and they should both work as expected. If using the `pNotification` system, you need to ensure your `ma_async_notification_callbacks` object stays valid. 6.2. Resource Manager Implementation Details -------------------------------------------- Resources are managed in two main ways: * By storing the entire sound inside an in-memory buffer (referred to as a data buffer) * By streaming audio data on the fly (referred to as a data stream) A resource managed data source (`ma_resource_manager_data_source`) encapsulates a data buffer or data stream, depending on whether or not the data source was initialized with the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM` flag. If so, it will make use of a `ma_resource_manager_data_stream` object. Otherwise it will use a `ma_resource_manager_data_buffer` object. Both of these objects are data sources which means they can be used with any `ma_data_source_*()` API. Another major feature of the resource manager is the ability to asynchronously decode audio files. This relieves the audio thread of time-consuming decoding which can negatively affect scalability due to the audio thread needing to complete it's work extremely quickly to avoid glitching. Asynchronous decoding is achieved through a job system. There is a central multi-producer, multi-consumer, fixed-capacity job queue. When some asynchronous work needs to be done, a job is posted to the queue which is then read by a job thread. The number of job threads can be configured for improved scalability, and job threads can all run in parallel without needing to worry about the order of execution (how this is achieved is explained below). When a sound is being loaded asynchronously, playback can begin before the sound has been fully decoded. This enables the application to start playback of the sound quickly, while at the same time allowing to resource manager to keep loading in the background. Since there may be less threads than the number of sounds being loaded at a given time, a simple scheduling system is used to keep decoding time balanced and fair. The resource manager solves this by splitting decoding into chunks called pages. By default, each page is 1 second long. When a page has been decoded, a new job will be posted to start decoding the next page. By dividing up decoding into pages, an individual sound shouldn't ever delay every other sound from having their first page decoded. Of course, when loading many sounds at the same time, there will always be an amount of time required to process jobs in the queue so in heavy load situations there will still be some delay. To determine if a data source is ready to have some frames read, use `ma_resource_manager_data_source_get_available_frames()`. This will return the number of frames available starting from the current position. 6.2.1. Job Queue ---------------- The resource manager uses a job queue which is multi-producer, multi-consumer, and fixed-capacity. This job queue is not currently lock-free, and instead uses a spinlock to achieve thread-safety. Only a fixed number of jobs can be allocated and inserted into the queue which is done through a lock-free data structure for allocating an index into a fixed sized array, with reference counting for mitigation of the ABA problem. The reference count is 32-bit. For many types of jobs it's important that they execute in a specific order. In these cases, jobs are executed serially. For the resource manager, serial execution of jobs is only required on a per-object basis (per data buffer or per data stream). Each of these objects stores an execution counter. When a job is posted it is associated with an execution counter. When the job is processed, it checks if the execution counter of the job equals the execution counter of the owning object and if so, processes the job. If the counters are not equal, the job will be posted back onto the job queue for later processing. When the job finishes processing the execution order of the main object is incremented. This system means the no matter how many job threads are executing, decoding of an individual sound will always get processed serially. The advantage to having multiple threads comes into play when loading multiple sounds at the same time. The resource manager's job queue is not 100% lock-free and will use a spinlock to achieve thread-safety for a very small section of code. This is only relevant when the resource manager uses more than one job thread. If only using a single job thread, which is the default, the lock should never actually wait in practice. The amount of time spent locking should be quite short, but it's something to be aware of for those who have pedantic lock-free requirements and need to use more than one job thread. There are plans to remove this lock in a future version. In addition, posting a job will release a semaphore, which on Win32 is implemented with `ReleaseSemaphore` and on POSIX platforms via a condition variable: ```c pthread_mutex_lock(&pSemaphore->lock); { pSemaphore->value += 1; pthread_cond_signal(&pSemaphore->cond); } pthread_mutex_unlock(&pSemaphore->lock); ``` Again, this is relevant for those with strict lock-free requirements in the audio thread. To avoid this, you can use non-blocking mode (via the `MA_JOB_QUEUE_FLAG_NON_BLOCKING` flag) and implement your own job processing routine (see the "Resource Manager" section above for details on how to do this). 6.2.2. Data Buffers ------------------- When the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM` flag is excluded at initialization time, the resource manager will try to load the data into an in-memory data buffer. Before doing so, however, it will first check if the specified file is already loaded. If so, it will increment a reference counter and just use the already loaded data. This saves both time and memory. When the data buffer is uninitialized, the reference counter will be decremented. If the counter hits zero, the file will be unloaded. This is a detail to keep in mind because it could result in excessive loading and unloading of a sound. For example, the following sequence will result in a file be loaded twice, once after the other: ```c ma_resource_manager_data_source_init(pResourceManager, "my_file", ..., &myDataBuffer0); // Refcount = 1. Initial load. ma_resource_manager_data_source_uninit(pResourceManager, &myDataBuffer0); // Refcount = 0. Unloaded. ma_resource_manager_data_source_init(pResourceManager, "my_file", ..., &myDataBuffer1); // Refcount = 1. Reloaded because previous uninit() unloaded it. ma_resource_manager_data_source_uninit(pResourceManager, &myDataBuffer1); // Refcount = 0. Unloaded. ``` A binary search tree (BST) is used for storing data buffers as it has good balance between efficiency and simplicity. The key of the BST is a 64-bit hash of the file path that was passed into `ma_resource_manager_data_source_init()`. The advantage of using a hash is that it saves memory over storing the entire path, has faster comparisons, and results in a mostly balanced BST due to the random nature of the hash. The disadvantages are that file names are case-sensitive and there's a small chance of name collisions. If case-sensitivity is an issue, you should normalize your file names to upper- or lower-case before initializing your data sources. If name collisions become an issue, you'll need to change the name of one of the colliding names or just not use the resource manager. When a sound file has not already been loaded and the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC` flag is excluded, the file will be decoded synchronously by the calling thread. There are two options for controlling how the audio is stored in the data buffer - encoded or decoded. When the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE` option is excluded, the raw file data will be stored in memory. Otherwise the sound will be decoded before storing it in memory. Synchronous loading is a very simple and standard process of simply adding an item to the BST, allocating a block of memory and then decoding (if `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE` is specified). When the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC` flag is specified, loading of the data buffer is done asynchronously. In this case, a job is posted to the queue to start loading and then the function immediately returns, setting an internal result code to `MA_BUSY`. This result code is returned when the program calls `ma_resource_manager_data_source_result()`. When decoding has fully completed `MA_SUCCESS` will be returned. This can be used to know if loading has fully completed. When loading asynchronously, a single job is posted to the queue of the type `MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER_NODE`. This involves making a copy of the file path and associating it with job. When the job is processed by the job thread, it will first load the file using the VFS associated with the resource manager. When using a custom VFS, it's important that it be completely thread-safe because it will be used from one or more job threads at the same time. Individual files should only ever be accessed by one thread at a time, however. After opening the file via the VFS, the job will determine whether or not the file is being decoded. If not, it simply allocates a block of memory and loads the raw file contents into it and returns. On the other hand, when the file is being decoded, it will first allocate a decoder on the heap and initialize it. Then it will check if the length of the file is known. If so it will allocate a block of memory to store the decoded output and initialize it to silence. If the size is unknown, it will allocate room for one page. After memory has been allocated, the first page will be decoded. If the sound is shorter than a page, the result code will be set to `MA_SUCCESS` and the completion event will be signalled and loading is now complete. If, however, there is more to decode, a job with the code `MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE` is posted. This job will decode the next page and perform the same process if it reaches the end. If there is more to decode, the job will post another `MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE` job which will keep on happening until the sound has been fully decoded. For sounds of an unknown length, each page will be linked together as a linked list. Internally this is implemented via the `ma_paged_audio_buffer` object. 6.2.3. Data Streams ------------------- Data streams only ever store two pages worth of data for each instance. They are most useful for large sounds like music tracks in games that would consume too much memory if fully decoded in memory. After every frame from a page has been read, a job will be posted to load the next page which is done from the VFS. For data streams, the `MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC` flag will determine whether or not initialization of the data source waits until the two pages have been decoded. When unset, `ma_resource_manager_data_source_init()` will wait until the two pages have been loaded, otherwise it will return immediately. When frames are read from a data stream using `ma_resource_manager_data_source_read_pcm_frames()`, `MA_BUSY` will be returned if there are no frames available. If there are some frames available, but less than the number requested, `MA_SUCCESS` will be returned, but the actual number of frames read will be less than the number requested. Due to the asynchronous nature of data streams, seeking is also asynchronous. If the data stream is in the middle of a seek, `MA_BUSY` will be returned when trying to read frames. When `ma_resource_manager_data_source_read_pcm_frames()` results in a page getting fully consumed a job is posted to load the next page. This will be posted from the same thread that called `ma_resource_manager_data_source_read_pcm_frames()`. Data streams are uninitialized by posting a job to the queue, but the function won't return until that job has been processed. The reason for this is that the caller owns the data stream object and therefore miniaudio needs to ensure everything completes before handing back control to the caller. Also, if the data stream is uninitialized while pages are in the middle of decoding, they must complete before destroying any underlying object and the job system handles this cleanly. Note that when a new page needs to be loaded, a job will be posted to the resource manager's job thread from the audio thread. You must keep in mind the details mentioned in the "Job Queue" section above regarding locking when posting an event if you require a strictly lock-free audio thread. 7. Node Graph ============= miniaudio's routing infrastructure follows a node graph paradigm. The idea is that you create a node whose outputs are attached to inputs of another node, thereby creating a graph. There are different types of nodes, with each node in the graph processing input data to produce output, which is then fed through the chain. Each node in the graph can apply their own custom effects. At the start of the graph will usually be one or more data source nodes which have no inputs and instead pull their data from a data source. At the end of the graph is an endpoint which represents the end of the chain and is where the final output is ultimately extracted from. Each node has a number of input buses and a number of output buses. An output bus from a node is attached to an input bus of another. Multiple nodes can connect their output buses to another node's input bus, in which case their outputs will be mixed before processing by the node. Below is a diagram that illustrates a hypothetical node graph setup: ``` >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Data flows left to right >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> +---------------+ +-----------------+ | Data Source 1 =----+ +----------+ +----= Low Pass Filter =----+ +---------------+ | | =----+ +-----------------+ | +----------+ +----= Splitter | +----= ENDPOINT | +---------------+ | | =----+ +-----------------+ | +----------+ | Data Source 2 =----+ +----------+ +----= Echo / Delay =----+ +---------------+ +-----------------+ ``` In the above graph, it starts with two data sources whose outputs are attached to the input of a splitter node. It's at this point that the two data sources are mixed. After mixing, the splitter performs it's processing routine and produces two outputs which is simply a duplication of the input stream. One output is attached to a low pass filter, whereas the other output is attached to a echo/delay. The outputs of the the low pass filter and the echo are attached to the endpoint, and since they're both connected to the same input bus, they'll be mixed. Each input bus must be configured to accept the same number of channels, but the number of channels used by input buses can be different to the number of channels for output buses in which case miniaudio will automatically convert the input data to the output channel count before processing. The number of channels of an output bus of one node must match the channel count of the input bus it's attached to. The channel counts cannot be changed after the node has been initialized. If you attempt to attach an output bus to an input bus with a different channel count, attachment will fail. To use a node graph, you first need to initialize a `ma_node_graph` object. This is essentially a container around the entire graph. The `ma_node_graph` object is required for some thread-safety issues which will be explained later. A `ma_node_graph` object is initialized using miniaudio's standard config/init system: ```c ma_node_graph_config nodeGraphConfig = ma_node_graph_config_init(myChannelCount); result = ma_node_graph_init(&nodeGraphConfig, NULL, &nodeGraph); // Second parameter is a pointer to allocation callbacks. if (result != MA_SUCCESS) { // Failed to initialize node graph. } ``` When you initialize the node graph, you're specifying the channel count of the endpoint. The endpoint is a special node which has one input bus and one output bus, both of which have the same channel count, which is specified in the config. Any nodes that connect directly to the endpoint must be configured such that their output buses have the same channel count. When you read audio data from the node graph, it'll have the channel count you specified in the config. To read data from the graph: ```c ma_uint32 framesRead; result = ma_node_graph_read_pcm_frames(&nodeGraph, pFramesOut, frameCount, &framesRead); if (result != MA_SUCCESS) { // Failed to read data from the node graph. } ``` When you read audio data, miniaudio starts at the node graph's endpoint node which then pulls in data from it's input attachments, which in turn recusively pull in data from their inputs, and so on. At the start of the graph there will be some kind of data source node which will have zero inputs and will instead read directly from a data source. The base nodes don't literally need to read from a `ma_data_source` object, but they will always have some kind of underlying object that sources some kind of audio. The `ma_data_source_node` node can be used to read from a `ma_data_source`. Data is always in floating-point format and in the number of channels you specified when the graph was initialized. The sample rate is defined by the underlying data sources. It's up to you to ensure they use a consistent and appropraite sample rate. The `ma_node` API is designed to allow custom nodes to be implemented with relative ease, but miniaudio includes a few stock nodes for common functionality. This is how you would initialize a node which reads directly from a data source (`ma_data_source_node`) which is an example of one of the stock nodes that comes with miniaudio: ```c ma_data_source_node_config config = ma_data_source_node_config_init(pMyDataSource); ma_data_source_node dataSourceNode; result = ma_data_source_node_init(&nodeGraph, &config, NULL, &dataSourceNode); if (result != MA_SUCCESS) { // Failed to create data source node. } ``` The data source node will use the output channel count to determine the channel count of the output bus. There will be 1 output bus and 0 input buses (data will be drawn directly from the data source). The data source must output to floating-point (`ma_format_f32`) or else an error will be returned from `ma_data_source_node_init()`. By default the node will not be attached to the graph. To do so, use `ma_node_attach_output_bus()`: ```c result = ma_node_attach_output_bus(&dataSourceNode, 0, ma_node_graph_get_endpoint(&nodeGraph), 0); if (result != MA_SUCCESS) { // Failed to attach node. } ``` The code above connects the data source node directly to the endpoint. Since the data source node has only a single output bus, the index will always be 0. Likewise, the endpoint only has a single input bus which means the input bus index will also always be 0. To detach a specific output bus, use `ma_node_detach_output_bus()`. To detach all output buses, use `ma_node_detach_all_output_buses()`. If you want to just move the output bus from one attachment to another, you do not need to detach first. You can just call `ma_node_attach_output_bus()` and it'll deal with it for you. Less frequently you may want to create a specialized node. This will be a node where you implement your own processing callback to apply a custom effect of some kind. This is similar to initalizing one of the stock node types, only this time you need to specify a pointer to a vtable containing a pointer to the processing function and the number of input and output buses. Example: ```c static void my_custom_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { // Do some processing of ppFramesIn (one stream of audio data per input bus) const float* pFramesIn_0 = ppFramesIn[0]; // Input bus @ index 0. const float* pFramesIn_1 = ppFramesIn[1]; // Input bus @ index 1. float* pFramesOut_0 = ppFramesOut[0]; // Output bus @ index 0. // Do some processing. On input, `pFrameCountIn` will be the number of input frames in each // buffer in `ppFramesIn` and `pFrameCountOut` will be the capacity of each of the buffers // in `ppFramesOut`. On output, `pFrameCountIn` should be set to the number of input frames // your node consumed and `pFrameCountOut` should be set the number of output frames that // were produced. // // You should process as many frames as you can. If your effect consumes input frames at the // same rate as output frames (always the case, unless you're doing resampling), you need // only look at `ppFramesOut` and process that exact number of frames. If you're doing // resampling, you'll need to be sure to set both `pFrameCountIn` and `pFrameCountOut` // properly. } static ma_node_vtable my_custom_node_vtable = { my_custom_node_process_pcm_frames, // The function that will be called to process your custom node. This is where you'd implement your effect processing. NULL, // Optional. A callback for calculating the number of input frames that are required to process a specified number of output frames. 2, // 2 input buses. 1, // 1 output bus. 0 // Default flags. }; ... // Each bus needs to have a channel count specified. To do this you need to specify the channel // counts in an array and then pass that into the node config. ma_uint32 inputChannels[2]; // Equal in size to the number of input channels specified in the vtable. ma_uint32 outputChannels[1]; // Equal in size to the number of output channels specicied in the vtable. inputChannels[0] = channelsIn; inputChannels[1] = channelsIn; outputChannels[0] = channelsOut; ma_node_config nodeConfig = ma_node_config_init(); nodeConfig.vtable = &my_custom_node_vtable; nodeConfig.pInputChannels = inputChannels; nodeConfig.pOutputChannels = outputChannels; ma_node_base node; result = ma_node_init(&nodeGraph, &nodeConfig, NULL, &node); if (result != MA_SUCCESS) { // Failed to initialize node. } ``` When initializing a custom node, as in the code above, you'll normally just place your vtable in static space. The number of input and output buses are specified as part of the vtable. If you need a variable number of buses on a per-node bases, the vtable should have the relevant bus count set to `MA_NODE_BUS_COUNT_UNKNOWN`. In this case, the bus count should be set in the node config: ```c static ma_node_vtable my_custom_node_vtable = { my_custom_node_process_pcm_frames, // The function that will be called process your custom node. This is where you'd implement your effect processing. NULL, // Optional. A callback for calculating the number of input frames that are required to process a specified number of output frames. MA_NODE_BUS_COUNT_UNKNOWN, // The number of input buses is determined on a per-node basis. 1, // 1 output bus. 0 // Default flags. }; ... ma_node_config nodeConfig = ma_node_config_init(); nodeConfig.vtable = &my_custom_node_vtable; nodeConfig.inputBusCount = myBusCount; // <-- Since the vtable specifies MA_NODE_BUS_COUNT_UNKNOWN, the input bus count should be set here. nodeConfig.pInputChannels = inputChannels; // <-- Make sure there are nodeConfig.inputBusCount elements in this array. nodeConfig.pOutputChannels = outputChannels; // <-- The vtable specifies 1 output bus, so there must be 1 element in this array. ``` In the above example it's important to never set the `inputBusCount` and `outputBusCount` members to anything other than their defaults if the vtable specifies an explicit count. They can only be set if the vtable specifies MA_NODE_BUS_COUNT_UNKNOWN in the relevant bus count. Most often you'll want to create a structure to encapsulate your node with some extra data. You need to make sure the `ma_node_base` object is your first member of the structure: ```c typedef struct { ma_node_base base; // <-- Make sure this is always the first member. float someCustomData; } my_custom_node; ``` By doing this, your object will be compatible with all `ma_node` APIs and you can attach it to the graph just like any other node. In the custom processing callback (`my_custom_node_process_pcm_frames()` in the example above), the number of channels for each bus is what was specified by the config when the node was initialized with `ma_node_init()`. In addition, all attachments to each of the input buses will have been pre-mixed by miniaudio. The config allows you to specify different channel counts for each individual input and output bus. It's up to the effect to handle it appropriate, and if it can't, return an error in it's initialization routine. Custom nodes can be assigned some flags to describe their behaviour. These are set via the vtable and include the following: +-----------------------------------------+---------------------------------------------------+ | Flag Name | Description | +-----------------------------------------+---------------------------------------------------+ | MA_NODE_FLAG_PASSTHROUGH | Useful for nodes that do not do any kind of audio | | | processing, but are instead used for tracking | | | time, handling events, etc. Also used by the | | | internal endpoint node. It reads directly from | | | the input bus to the output bus. Nodes with this | | | flag must have exactly 1 input bus and 1 output | | | bus, and both buses must have the same channel | | | counts. | +-----------------------------------------+---------------------------------------------------+ | MA_NODE_FLAG_CONTINUOUS_PROCESSING | Causes the processing callback to be called even | | | when no data is available to be read from input | | | attachments. This is useful for effects like | | | echos where there will be a tail of audio data | | | that still needs to be processed even when the | | | original data sources have reached their ends. | +-----------------------------------------+---------------------------------------------------+ | MA_NODE_FLAG_ALLOW_NULL_INPUT | Used in conjunction with | | | `MA_NODE_FLAG_CONTINUOUS_PROCESSING`. When this | | | is set, the `ppFramesIn` parameter of the | | | processing callback will be set to NULL when | | | there are no input frames are available. When | | | this is unset, silence will be posted to the | | | processing callback. | +-----------------------------------------+---------------------------------------------------+ | MA_NODE_FLAG_DIFFERENT_PROCESSING_RATES | Used to tell miniaudio that input and output | | | frames are processed at different rates. You | | | should set this for any nodes that perform | | | resampling. | +-----------------------------------------+---------------------------------------------------+ | MA_NODE_FLAG_SILENT_OUTPUT | Used to tell miniaudio that a node produces only | | | silent output. This is useful for nodes where you | | | don't want the output to contribute to the final | | | mix. An example might be if you want split your | | | stream and have one branch be output to a file. | | | When using this flag, you should avoid writing to | | | the output buffer of the node's processing | | | callback because miniaudio will ignore it anyway. | +-----------------------------------------+---------------------------------------------------+ If you need to make a copy of an audio stream for effect processing you can use a splitter node called `ma_splitter_node`. This takes has 1 input bus and splits the stream into 2 output buses. You can use it like this: ```c ma_splitter_node_config splitterNodeConfig = ma_splitter_node_config_init(channels); ma_splitter_node splitterNode; result = ma_splitter_node_init(&nodeGraph, &splitterNodeConfig, NULL, &splitterNode); if (result != MA_SUCCESS) { // Failed to create node. } // Attach your output buses to two different input buses (can be on two different nodes). ma_node_attach_output_bus(&splitterNode, 0, ma_node_graph_get_endpoint(&nodeGraph), 0); // Attach directly to the endpoint. ma_node_attach_output_bus(&splitterNode, 1, &myEffectNode, 0); // Attach to input bus 0 of some effect node. ``` The volume of an output bus can be configured on a per-bus basis: ```c ma_node_set_output_bus_volume(&splitterNode, 0, 0.5f); ma_node_set_output_bus_volume(&splitterNode, 1, 0.5f); ``` In the code above we're using the splitter node from before and changing the volume of each of the copied streams. You can start and stop a node with the following: ```c ma_node_set_state(&splitterNode, ma_node_state_started); // The default state. ma_node_set_state(&splitterNode, ma_node_state_stopped); ``` By default the node is in a started state, but since it won't be connected to anything won't actually be invoked by the node graph until it's connected. When you stop a node, data will not be read from any of it's input connections. You can use this property to stop a group of sounds atomically. You can configure the initial state of a node in it's config: ```c nodeConfig.initialState = ma_node_state_stopped; ``` Note that for the stock specialized nodes, all of their configs will have a `nodeConfig` member which is the config to use with the base node. This is where the initial state can be configured for specialized nodes: ```c dataSourceNodeConfig.nodeConfig.initialState = ma_node_state_stopped; ``` When using a specialized node like `ma_data_source_node` or `ma_splitter_node`, be sure to not modify the `vtable` member of the `nodeConfig` object. 7.1. Timing ----------- The node graph supports starting and stopping nodes at scheduled times. This is especially useful for data source nodes where you want to get the node set up, but only start playback at a specific time. There are two clocks: local and global. A local clock is per-node, whereas the global clock is per graph. Scheduling starts and stops can only be done based on the global clock because the local clock will not be running while the node is stopped. The global clocks advances whenever `ma_node_graph_read_pcm_frames()` is called. On the other hand, the local clock only advances when the node's processing callback is fired, and is advanced based on the output frame count. To retrieve the global time, use `ma_node_graph_get_time()`. The global time can be set with `ma_node_graph_set_time()` which might be useful if you want to do seeking on a global timeline. Getting and setting the local time is similar. Use `ma_node_get_time()` to retrieve the local time, and `ma_node_set_time()` to set the local time. The global and local times will be advanced by the audio thread, so care should be taken to avoid data races. Ideally you should avoid calling these outside of the node processing callbacks which are always run on the audio thread. There is basic support for scheduling the starting and stopping of nodes. You can only schedule one start and one stop at a time. This is mainly intended for putting nodes into a started or stopped state in a frame-exact manner. Without this mechanism, starting and stopping of a node is limited to the resolution of a call to `ma_node_graph_read_pcm_frames()` which would typically be in blocks of several milliseconds. The following APIs can be used for scheduling node states: ```c ma_node_set_state_time() ma_node_get_state_time() ``` The time is absolute and must be based on the global clock. An example is below: ```c ma_node_set_state_time(&myNode, ma_node_state_started, sampleRate*1); // Delay starting to 1 second. ma_node_set_state_time(&myNode, ma_node_state_stopped, sampleRate*5); // Delay stopping to 5 seconds. ``` An example for changing the state using a relative time. ```c ma_node_set_state_time(&myNode, ma_node_state_started, sampleRate*1 + ma_node_graph_get_time(&myNodeGraph)); ma_node_set_state_time(&myNode, ma_node_state_stopped, sampleRate*5 + ma_node_graph_get_time(&myNodeGraph)); ``` Note that due to the nature of multi-threading the times may not be 100% exact. If this is an issue, consider scheduling state changes from within a processing callback. An idea might be to have some kind of passthrough trigger node that is used specifically for tracking time and handling events. 7.2. Thread Safety and Locking ------------------------------ When processing audio, it's ideal not to have any kind of locking in the audio thread. Since it's expected that `ma_node_graph_read_pcm_frames()` would be run on the audio thread, it does so without the use of any locks. This section discusses the implementation used by miniaudio and goes over some of the compromises employed by miniaudio to achieve this goal. Note that the current implementation may not be ideal - feedback and critiques are most welcome. The node graph API is not *entirely* lock-free. Only `ma_node_graph_read_pcm_frames()` is expected to be lock-free. Attachment, detachment and uninitialization of nodes use locks to simplify the implementation, but are crafted in a way such that such locking is not required when reading audio data from the graph. Locking in these areas are achieved by means of spinlocks. The main complication with keeping `ma_node_graph_read_pcm_frames()` lock-free stems from the fact that a node can be uninitialized, and it's memory potentially freed, while in the middle of being processed on the audio thread. There are times when the audio thread will be referencing a node, which means the uninitialization process of a node needs to make sure it delays returning until the audio thread is finished so that control is not handed back to the caller thereby giving them a chance to free the node's memory. When the audio thread is processing a node, it does so by reading from each of the output buses of the node. In order for a node to process data for one of it's output buses, it needs to read from each of it's input buses, and so on an so forth. It follows that once all output buses of a node are detached, the node as a whole will be disconnected and no further processing will occur unless it's output buses are reattached, which won't be happening when the node is being uninitialized. By having `ma_node_detach_output_bus()` wait until the audio thread is finished with it, we can simplify a few things, at the expense of making `ma_node_detach_output_bus()` a bit slower. By doing this, the implementation of `ma_node_uninit()` becomes trivial - just detach all output nodes, followed by each of the attachments to each of it's input nodes, and then do any final clean up. With the above design, the worst-case scenario is `ma_node_detach_output_bus()` taking as long as it takes to process the output bus being detached. This will happen if it's called at just the wrong moment where the audio thread has just iterated it and has just started processing. The caller of `ma_node_detach_output_bus()` will stall until the audio thread is finished, which includes the cost of recursively processing it's inputs. This is the biggest compromise made with the approach taken by miniaudio for it's lock-free processing system. The cost of detaching nodes earlier in the pipeline (data sources, for example) will be cheaper than the cost of detaching higher level nodes, such as some kind of final post-processing endpoint. If you need to do mass detachments, detach starting from the lowest level nodes and work your way towards the final endpoint node (but don't try detaching the node graph's endpoint). If the audio thread is not running, detachment will be fast and detachment in any order will be the same. The reason nodes need to wait for their input attachments to complete is due to the potential for desyncs between data sources. If the node was to terminate processing mid way through processing it's inputs, there's a chance that some of the underlying data sources will have been read, but then others not. That will then result in a potential desynchronization when detaching and reattaching higher-level nodes. A possible solution to this is to have an option when detaching to terminate processing before processing all input attachments which should be fairly simple. Another compromise, albeit less significant, is locking when attaching and detaching nodes. This locking is achieved by means of a spinlock in order to reduce memory overhead. A lock is present for each input bus and output bus. When an output bus is connected to an input bus, both the output bus and input bus is locked. This locking is specifically for attaching and detaching across different threads and does not affect `ma_node_graph_read_pcm_frames()` in any way. The locking and unlocking is mostly self-explanatory, but a slightly less intuitive aspect comes into it when considering that iterating over attachments must not break as a result of attaching or detaching a node while iteration is occuring. Attaching and detaching are both quite simple. When an output bus of a node is attached to an input bus of another node, it's added to a linked list. Basically, an input bus is a linked list, where each item in the list is and output bus. We have some intentional (and convenient) restrictions on what can done with the linked list in order to simplify the implementation. First of all, whenever something needs to iterate over the list, it must do so in a forward direction. Backwards iteration is not supported. Also, items can only be added to the start of the list. The linked list is a doubly-linked list where each item in the list (an output bus) holds a pointer to the next item in the list, and another to the previous item. A pointer to the previous item is only required for fast detachment of the node - it is never used in iteration. This is an important property because it means from the perspective of iteration, attaching and detaching of an item can be done with a single atomic assignment. This is exploited by both the attachment and detachment process. When attaching the node, the first thing that is done is the setting of the local "next" and "previous" pointers of the node. After that, the item is "attached" to the list by simply performing an atomic exchange with the head pointer. After that, the node is "attached" to the list from the perspective of iteration. Even though the "previous" pointer of the next item hasn't yet been set, from the perspective of iteration it's been attached because iteration will only be happening in a forward direction which means the "previous" pointer won't actually ever get used. The same general process applies to detachment. See `ma_node_attach_output_bus()` and `ma_node_detach_output_bus()` for the implementation of this mechanism. 8. Decoding =========== The `ma_decoder` API is used for reading audio files. Decoders are completely decoupled from devices and can be used independently. The following formats are supported: +---------+------------------+----------+ | Format | Decoding Backend | Built-In | +---------+------------------+----------+ | WAV | dr_wav | Yes | | MP3 | dr_mp3 | Yes | | FLAC | dr_flac | Yes | | Vorbis | stb_vorbis | No | +---------+------------------+----------+ Vorbis is supported via stb_vorbis which can be enabled by including the header section before the implementation of miniaudio, like the following: ```c #define STB_VORBIS_HEADER_ONLY #include "extras/stb_vorbis.c" // Enables Vorbis decoding. #define MINIAUDIO_IMPLEMENTATION #include "miniaudio.h" // The stb_vorbis implementation must come after the implementation of miniaudio. #undef STB_VORBIS_HEADER_ONLY #include "extras/stb_vorbis.c" ``` A copy of stb_vorbis is included in the "extras" folder in the miniaudio repository (https://github.com/mackron/miniaudio). Built-in decoders are amalgamated into the implementation section of miniaudio. You can disable the built-in decoders by specifying one or more of the following options before the miniaudio implementation: ```c #define MA_NO_WAV #define MA_NO_MP3 #define MA_NO_FLAC ``` Disabling built-in decoding libraries is useful if you use these libraries independantly of the `ma_decoder` API. A decoder can be initialized from a file with `ma_decoder_init_file()`, a block of memory with `ma_decoder_init_memory()`, or from data delivered via callbacks with `ma_decoder_init()`. Here is an example for loading a decoder from a file: ```c ma_decoder decoder; ma_result result = ma_decoder_init_file("MySong.mp3", NULL, &decoder); if (result != MA_SUCCESS) { return false; // An error occurred. } ... ma_decoder_uninit(&decoder); ``` When initializing a decoder, you can optionally pass in a pointer to a `ma_decoder_config` object (the `NULL` argument in the example above) which allows you to configure the output format, channel count, sample rate and channel map: ```c ma_decoder_config config = ma_decoder_config_init(ma_format_f32, 2, 48000); ``` When passing in `NULL` for decoder config in `ma_decoder_init*()`, the output format will be the same as that defined by the decoding backend. Data is read from the decoder as PCM frames. This will output the number of PCM frames actually read. If this is less than the requested number of PCM frames it means you've reached the end. The return value will be `MA_AT_END` if no samples have been read and the end has been reached. ```c ma_result result = ma_decoder_read_pcm_frames(pDecoder, pFrames, framesToRead, &framesRead); if (framesRead < framesToRead) { // Reached the end. } ``` You can also seek to a specific frame like so: ```c ma_result result = ma_decoder_seek_to_pcm_frame(pDecoder, targetFrame); if (result != MA_SUCCESS) { return false; // An error occurred. } ``` If you want to loop back to the start, you can simply seek back to the first PCM frame: ```c ma_decoder_seek_to_pcm_frame(pDecoder, 0); ``` When loading a decoder, miniaudio uses a trial and error technique to find the appropriate decoding backend. This can be unnecessarily inefficient if the type is already known. In this case you can use `encodingFormat` variable in the device config to specify a specific encoding format you want to decode: ```c decoderConfig.encodingFormat = ma_encoding_format_wav; ``` See the `ma_encoding_format` enum for possible encoding formats. The `ma_decoder_init_file()` API will try using the file extension to determine which decoding backend to prefer. 8.1. Custom Decoders -------------------- It's possible to implement a custom decoder and plug it into miniaudio. This is extremely useful when you want to use the `ma_decoder` API, but need to support an encoding format that's not one of the stock formats supported by miniaudio. This can be put to particularly good use when using the `ma_engine` and/or `ma_resource_manager` APIs because they use `ma_decoder` internally. If, for example, you wanted to support Opus, you can do so with a custom decoder (there if a reference Opus decoder in the "extras" folder of the miniaudio repository which uses libopus + libopusfile). A custom decoder must implement a data source. A vtable called `ma_decoding_backend_vtable` needs to be implemented which is then passed into the decoder config: ```c ma_decoding_backend_vtable* pCustomBackendVTables[] = { &g_ma_decoding_backend_vtable_libvorbis, &g_ma_decoding_backend_vtable_libopus }; ... decoderConfig = ma_decoder_config_init_default(); decoderConfig.pCustomBackendUserData = NULL; decoderConfig.ppCustomBackendVTables = pCustomBackendVTables; decoderConfig.customBackendCount = sizeof(pCustomBackendVTables) / sizeof(pCustomBackendVTables[0]); ``` The `ma_decoding_backend_vtable` vtable has the following functions: ``` onInit onInitFile onInitFileW onInitMemory onUninit ``` There are only two functions that must be implemented - `onInit` and `onUninit`. The other functions can be implemented for a small optimization for loading from a file path or memory. If these are not specified, miniaudio will deal with it for you via a generic implementation. When you initialize a custom data source (by implementing the `onInit` function in the vtable) you will need to output a pointer to a `ma_data_source` which implements your custom decoder. See the section about data sources for details on how to implemen this. Alternatively, see the "custom_decoders" example in the miniaudio repository. The `onInit` function takes a pointer to some callbacks for the purpose of reading raw audio data from some abitrary source. You'll use these functions to read from the raw data and perform the decoding. When you call them, you will pass in the `pReadSeekTellUserData` pointer to the relevant parameter. The `pConfig` parameter in `onInit` can be used to configure the backend if appropriate. It's only used as a hint and can be ignored. However, if any of the properties are relevant to your decoder, an optimal implementation will handle the relevant properties appropriately. If memory allocation is required, it should be done so via the specified allocation callbacks if possible (the `pAllocationCallbacks` parameter). If an error occurs when initializing the decoder, you should leave `ppBackend` unset, or set to NULL, and make sure everything is cleaned up appropriately and an appropriate result code returned. When multiple custom backends are specified, miniaudio will cycle through the vtables in the order they're listed in the array that's passed into the decoder config so it's important that your initialization routine is clean. When a decoder is uninitialized, the `onUninit` callback will be fired which will give you an opportunity to clean up and internal data. 9. Encoding =========== The `ma_encoding` API is used for writing audio files. The only supported output format is WAV which is achieved via dr_wav which is amalgamated into the implementation section of miniaudio. This can be disabled by specifying the following option before the implementation of miniaudio: ```c #define MA_NO_WAV ``` An encoder can be initialized to write to a file with `ma_encoder_init_file()` or from data delivered via callbacks with `ma_encoder_init()`. Below is an example for initializing an encoder to output to a file. ```c ma_encoder_config config = ma_encoder_config_init(ma_encoding_format_wav, FORMAT, CHANNELS, SAMPLE_RATE); ma_encoder encoder; ma_result result = ma_encoder_init_file("my_file.wav", &config, &encoder); if (result != MA_SUCCESS) { // Error } ... ma_encoder_uninit(&encoder); ``` When initializing an encoder you must specify a config which is initialized with `ma_encoder_config_init()`. Here you must specify the file type, the output sample format, output channel count and output sample rate. The following file types are supported: +------------------------+-------------+ | Enum | Description | +------------------------+-------------+ | ma_encoding_format_wav | WAV | +------------------------+-------------+ If the format, channel count or sample rate is not supported by the output file type an error will be returned. The encoder will not perform data conversion so you will need to convert it before outputting any audio data. To output audio data, use `ma_encoder_write_pcm_frames()`, like in the example below: ```c framesWritten = ma_encoder_write_pcm_frames(&encoder, pPCMFramesToWrite, framesToWrite); ``` Encoders must be uninitialized with `ma_encoder_uninit()`. 10. Data Conversion =================== A data conversion API is included with miniaudio which supports the majority of data conversion requirements. This supports conversion between sample formats, channel counts (with channel mapping) and sample rates. 10.1. Sample Format Conversion ------------------------------ Conversion between sample formats is achieved with the `ma_pcm_*_to_*()`, `ma_pcm_convert()` and `ma_convert_pcm_frames_format()` APIs. Use `ma_pcm_*_to_*()` to convert between two specific formats. Use `ma_pcm_convert()` to convert based on a `ma_format` variable. Use `ma_convert_pcm_frames_format()` to convert PCM frames where you want to specify the frame count and channel count as a variable instead of the total sample count. 10.1.1. Dithering ----------------- Dithering can be set using the ditherMode parameter. The different dithering modes include the following, in order of efficiency: +-----------+--------------------------+ | Type | Enum Token | +-----------+--------------------------+ | None | ma_dither_mode_none | | Rectangle | ma_dither_mode_rectangle | | Triangle | ma_dither_mode_triangle | +-----------+--------------------------+ Note that even if the dither mode is set to something other than `ma_dither_mode_none`, it will be ignored for conversions where dithering is not needed. Dithering is available for the following conversions: ``` s16 -> u8 s24 -> u8 s32 -> u8 f32 -> u8 s24 -> s16 s32 -> s16 f32 -> s16 ``` Note that it is not an error to pass something other than ma_dither_mode_none for conversions where dither is not used. It will just be ignored. 10.2. Channel Conversion ------------------------ Channel conversion is used for channel rearrangement and conversion from one channel count to another. The `ma_channel_converter` API is used for channel conversion. Below is an example of initializing a simple channel converter which converts from mono to stereo. ```c ma_channel_converter_config config = ma_channel_converter_config_init( ma_format, // Sample format 1, // Input channels NULL, // Input channel map 2, // Output channels NULL, // Output channel map ma_channel_mix_mode_default); // The mixing algorithm to use when combining channels. result = ma_channel_converter_init(&config, NULL, &converter); if (result != MA_SUCCESS) { // Error. } ``` To perform the conversion simply call `ma_channel_converter_process_pcm_frames()` like so: ```c ma_result result = ma_channel_converter_process_pcm_frames(&converter, pFramesOut, pFramesIn, frameCount); if (result != MA_SUCCESS) { // Error. } ``` It is up to the caller to ensure the output buffer is large enough to accomodate the new PCM frames. Input and output PCM frames are always interleaved. Deinterleaved layouts are not supported. 10.2.1. Channel Mapping ----------------------- In addition to converting from one channel count to another, like the example above, the channel converter can also be used to rearrange channels. When initializing the channel converter, you can optionally pass in channel maps for both the input and output frames. If the channel counts are the same, and each channel map contains the same channel positions with the exception that they're in a different order, a simple shuffling of the channels will be performed. If, however, there is not a 1:1 mapping of channel positions, or the channel counts differ, the input channels will be mixed based on a mixing mode which is specified when initializing the `ma_channel_converter_config` object. When converting from mono to multi-channel, the mono channel is simply copied to each output channel. When going the other way around, the audio of each output channel is simply averaged and copied to the mono channel. In more complicated cases blending is used. The `ma_channel_mix_mode_simple` mode will drop excess channels and silence extra channels. For example, converting from 4 to 2 channels, the 3rd and 4th channels will be dropped, whereas converting from 2 to 4 channels will put silence into the 3rd and 4th channels. The `ma_channel_mix_mode_rectangle` mode uses spacial locality based on a rectangle to compute a simple distribution between input and output. Imagine sitting in the middle of a room, with speakers on the walls representing channel positions. The `MA_CHANNEL_FRONT_LEFT` position can be thought of as being in the corner of the front and left walls. Finally, the `ma_channel_mix_mode_custom_weights` mode can be used to use custom user-defined weights. Custom weights can be passed in as the last parameter of `ma_channel_converter_config_init()`. Predefined channel maps can be retrieved with `ma_channel_map_init_standard()`. This takes a `ma_standard_channel_map` enum as it's first parameter, which can be one of the following: +-----------------------------------+-----------------------------------------------------------+ | Name | Description | +-----------------------------------+-----------------------------------------------------------+ | ma_standard_channel_map_default | Default channel map used by miniaudio. See below. | | ma_standard_channel_map_microsoft | Channel map used by Microsoft's bitfield channel maps. | | ma_standard_channel_map_alsa | Default ALSA channel map. | | ma_standard_channel_map_rfc3551 | RFC 3551. Based on AIFF. | | ma_standard_channel_map_flac | FLAC channel map. | | ma_standard_channel_map_vorbis | Vorbis channel map. | | ma_standard_channel_map_sound4 | FreeBSD's sound(4). | | ma_standard_channel_map_sndio | sndio channel map. http://www.sndio.org/tips.html. | | ma_standard_channel_map_webaudio | https://webaudio.github.io/web-audio-api/#ChannelOrdering | +-----------------------------------+-----------------------------------------------------------+ Below are the channel maps used by default in miniaudio (`ma_standard_channel_map_default`): +---------------+---------------------------------+ | Channel Count | Mapping | +---------------+---------------------------------+ | 1 (Mono) | 0: MA_CHANNEL_MONO | +---------------+---------------------------------+ | 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT | +---------------+---------------------------------+ | 3 | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT
| | | 2: MA_CHANNEL_FRONT_CENTER | +---------------+---------------------------------+ | 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT
| | | 2: MA_CHANNEL_FRONT_CENTER
| | | 3: MA_CHANNEL_BACK_CENTER | +---------------+---------------------------------+ | 5 | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT
| | | 2: MA_CHANNEL_FRONT_CENTER
| | | 3: MA_CHANNEL_BACK_LEFT
| | | 4: MA_CHANNEL_BACK_RIGHT | +---------------+---------------------------------+ | 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT
| | | 2: MA_CHANNEL_FRONT_CENTER
| | | 3: MA_CHANNEL_LFE
| | | 4: MA_CHANNEL_SIDE_LEFT
| | | 5: MA_CHANNEL_SIDE_RIGHT | +---------------+---------------------------------+ | 7 | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT
| | | 2: MA_CHANNEL_FRONT_CENTER
| | | 3: MA_CHANNEL_LFE
| | | 4: MA_CHANNEL_BACK_CENTER
| | | 4: MA_CHANNEL_SIDE_LEFT
| | | 5: MA_CHANNEL_SIDE_RIGHT | +---------------+---------------------------------+ | 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT
| | | 1: MA_CHANNEL_FRONT_RIGHT
| | | 2: MA_CHANNEL_FRONT_CENTER
| | | 3: MA_CHANNEL_LFE
| | | 4: MA_CHANNEL_BACK_LEFT
| | | 5: MA_CHANNEL_BACK_RIGHT
| | | 6: MA_CHANNEL_SIDE_LEFT
| | | 7: MA_CHANNEL_SIDE_RIGHT | +---------------+---------------------------------+ | Other | All channels set to 0. This | | | is equivalent to the same | | | mapping as the device. | +---------------+---------------------------------+ 10.3. Resampling ---------------- Resampling is achieved with the `ma_resampler` object. To create a resampler object, do something like the following: ```c ma_resampler_config config = ma_resampler_config_init( ma_format_s16, channels, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear); ma_resampler resampler; ma_result result = ma_resampler_init(&config, &resampler); if (result != MA_SUCCESS) { // An error occurred... } ``` Do the following to uninitialize the resampler: ```c ma_resampler_uninit(&resampler); ``` The following example shows how data can be processed ```c ma_uint64 frameCountIn = 1000; ma_uint64 frameCountOut = 2000; ma_result result = ma_resampler_process_pcm_frames(&resampler, pFramesIn, &frameCountIn, pFramesOut, &frameCountOut); if (result != MA_SUCCESS) { // An error occurred... } // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the // number of output frames written. ``` To initialize the resampler you first need to set up a config (`ma_resampler_config`) with `ma_resampler_config_init()`. You need to specify the sample format you want to use, the number of channels, the input and output sample rate, and the algorithm. The sample format can be either `ma_format_s16` or `ma_format_f32`. If you need a different format you will need to perform pre- and post-conversions yourself where necessary. Note that the format is the same for both input and output. The format cannot be changed after initialization. The resampler supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization. The sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the only configuration property that can be changed after initialization. The miniaudio resampler has built-in support for the following algorithms: +-----------+------------------------------+ | Algorithm | Enum Token | +-----------+------------------------------+ | Linear | ma_resample_algorithm_linear | | Custom | ma_resample_algorithm_custom | +-----------+------------------------------+ The algorithm cannot be changed after initialization. Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process frames, use `ma_resampler_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number of input frames contained in the input buffer. On output these variables contain the number of output frames that were written to the output buffer and the number of input frames that were consumed in the process. You can pass in NULL for the input buffer in which case it will be treated as an infinitely large buffer of zeros. The output buffer can also be NULL, in which case the processing will be treated as seek. The sample rate can be changed dynamically on the fly. You can change this with explicit sample rates with `ma_resampler_set_rate()` and also with a decimal ratio with `ma_resampler_set_rate_ratio()`. The ratio is in/out. Sometimes it's useful to know exactly how many input frames will be required to output a specific number of frames. You can calculate this with `ma_resampler_get_required_input_frame_count()`. Likewise, it's sometimes useful to know exactly how many frames would be output given a certain number of input frames. You can do this with `ma_resampler_get_expected_output_frame_count()`. Due to the nature of how resampling works, the resampler introduces some latency. This can be retrieved in terms of both the input rate and the output rate with `ma_resampler_get_input_latency()` and `ma_resampler_get_output_latency()`. 10.3.1. Resampling Algorithms ----------------------------- The choice of resampling algorithm depends on your situation and requirements. 10.3.1.1. Linear Resampling --------------------------- The linear resampler is the fastest, but comes at the expense of poorer quality. There is, however, some control over the quality of the linear resampler which may make it a suitable option depending on your requirements. The linear resampler performs low-pass filtering before or after downsampling or upsampling, depending on the sample rates you're converting between. When decreasing the sample rate, the low-pass filter will be applied before downsampling. When increasing the rate it will be performed after upsampling. By default a fourth order low-pass filter will be applied. This can be configured via the `lpfOrder` configuration variable. Setting this to 0 will disable filtering. The low-pass filter has a cutoff frequency which defaults to half the sample rate of the lowest of the input and output sample rates (Nyquist Frequency). The API for the linear resampler is the same as the main resampler API, only it's called `ma_linear_resampler`. 10.3.2. Custom Resamplers ------------------------- You can implement a custom resampler by using the `ma_resample_algorithm_custom` resampling algorithm and setting a vtable in the resampler config: ```c ma_resampler_config config = ma_resampler_config_init(..., ma_resample_algorithm_custom); config.pBackendVTable = &g_customResamplerVTable; ``` Custom resamplers are useful if the stock algorithms are not appropriate for your use case. You need to implement the required functions in `ma_resampling_backend_vtable`. Note that not all functions in the vtable need to be implemented, but if it's possible to implement, they should be. You can use the `ma_linear_resampler` object for an example on how to implement the vtable. The `onGetHeapSize` callback is used to calculate the size of any internal heap allocation the custom resampler will need to make given the supplied config. When you initialize the resampler via the `onInit` callback, you'll be given a pointer to a heap allocation which is where you should store the heap allocated data. You should not free this data in `onUninit` because miniaudio will manage it for you. The `onProcess` callback is where the actual resampling takes place. On input, `pFrameCountIn` points to a variable containing the number of frames in the `pFramesIn` buffer and `pFrameCountOut` points to a variable containing the capacity in frames of the `pFramesOut` buffer. On output, `pFrameCountIn` should be set to the number of input frames that were fully consumed, whereas `pFrameCountOut` should be set to the number of frames that were written to `pFramesOut`. The `onSetRate` callback is optional and is used for dynamically changing the sample rate. If dynamic rate changes are not supported, you can set this callback to NULL. The `onGetInputLatency` and `onGetOutputLatency` functions are used for retrieving the latency in input and output rates respectively. These can be NULL in which case latency calculations will be assumed to be NULL. The `onGetRequiredInputFrameCount` callback is used to give miniaudio a hint as to how many input frames are required to be available to produce the given number of output frames. Likewise, the `onGetExpectedOutputFrameCount` callback is used to determine how many output frames will be produced given the specified number of input frames. miniaudio will use these as a hint, but they are optional and can be set to NULL if you're unable to implement them. 10.4. General Data Conversion ----------------------------- The `ma_data_converter` API can be used to wrap sample format conversion, channel conversion and resampling into one operation. This is what miniaudio uses internally to convert between the format requested when the device was initialized and the format of the backend's native device. The API for general data conversion is very similar to the resampling API. Create a `ma_data_converter` object like this: ```c ma_data_converter_config config = ma_data_converter_config_init( inputFormat, outputFormat, inputChannels, outputChannels, inputSampleRate, outputSampleRate ); ma_data_converter converter; ma_result result = ma_data_converter_init(&config, NULL, &converter); if (result != MA_SUCCESS) { // An error occurred... } ``` In the example above we use `ma_data_converter_config_init()` to initialize the config, however there's many more properties that can be configured, such as channel maps and resampling quality. Something like the following may be more suitable depending on your requirements: ```c ma_data_converter_config config = ma_data_converter_config_init_default(); config.formatIn = inputFormat; config.formatOut = outputFormat; config.channelsIn = inputChannels; config.channelsOut = outputChannels; config.sampleRateIn = inputSampleRate; config.sampleRateOut = outputSampleRate; ma_channel_map_init_standard(ma_standard_channel_map_flac, config.channelMapIn, sizeof(config.channelMapIn)/sizeof(config.channelMapIn[0]), config.channelCountIn); config.resampling.linear.lpfOrder = MA_MAX_FILTER_ORDER; ``` Do the following to uninitialize the data converter: ```c ma_data_converter_uninit(&converter, NULL); ``` The following example shows how data can be processed ```c ma_uint64 frameCountIn = 1000; ma_uint64 frameCountOut = 2000; ma_result result = ma_data_converter_process_pcm_frames(&converter, pFramesIn, &frameCountIn, pFramesOut, &frameCountOut); if (result != MA_SUCCESS) { // An error occurred... } // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number // of output frames written. ``` The data converter supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization. Sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the only configuration property that can be changed after initialization, but only if the `resampling.allowDynamicSampleRate` member of `ma_data_converter_config` is set to `MA_TRUE`. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The resampling algorithm cannot be changed after initialization. Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process frames, use `ma_data_converter_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number of input frames contained in the input buffer. On output these variables contain the number of output frames that were written to the output buffer and the number of input frames that were consumed in the process. You can pass in NULL for the input buffer in which case it will be treated as an infinitely large buffer of zeros. The output buffer can also be NULL, in which case the processing will be treated as seek. Sometimes it's useful to know exactly how many input frames will be required to output a specific number of frames. You can calculate this with `ma_data_converter_get_required_input_frame_count()`. Likewise, it's sometimes useful to know exactly how many frames would be output given a certain number of input frames. You can do this with `ma_data_converter_get_expected_output_frame_count()`. Due to the nature of how resampling works, the data converter introduces some latency if resampling is required. This can be retrieved in terms of both the input rate and the output rate with `ma_data_converter_get_input_latency()` and `ma_data_converter_get_output_latency()`. 11. Filtering ============= 11.1. Biquad Filtering ---------------------- Biquad filtering is achieved with the `ma_biquad` API. Example: ```c ma_biquad_config config = ma_biquad_config_init(ma_format_f32, channels, b0, b1, b2, a0, a1, a2); ma_result result = ma_biquad_init(&config, &biquad); if (result != MA_SUCCESS) { // Error. } ... ma_biquad_process_pcm_frames(&biquad, pFramesOut, pFramesIn, frameCount); ``` Biquad filtering is implemented using transposed direct form 2. The numerator coefficients are b0, b1 and b2, and the denominator coefficients are a0, a1 and a2. The a0 coefficient is required and coefficients must not be pre-normalized. Supported formats are `ma_format_s16` and `ma_format_f32`. If you need to use a different format you need to convert it yourself beforehand. When using `ma_format_s16` the biquad filter will use fixed point arithmetic. When using `ma_format_f32`, floating point arithmetic will be used. Input and output frames are always interleaved. Filtering can be applied in-place by passing in the same pointer for both the input and output buffers, like so: ```c ma_biquad_process_pcm_frames(&biquad, pMyData, pMyData, frameCount); ``` If you need to change the values of the coefficients, but maintain the values in the registers you can do so with `ma_biquad_reinit()`. This is useful if you need to change the properties of the filter while keeping the values of registers valid to avoid glitching. Do not use `ma_biquad_init()` for this as it will do a full initialization which involves clearing the registers to 0. Note that changing the format or channel count after initialization is invalid and will result in an error. 11.2. Low-Pass Filtering ------------------------ Low-pass filtering is achieved with the following APIs: +---------+------------------------------------------+ | API | Description | +---------+------------------------------------------+ | ma_lpf1 | First order low-pass filter | | ma_lpf2 | Second order low-pass filter | | ma_lpf | High order low-pass filter (Butterworth) | +---------+------------------------------------------+ Low-pass filter example: ```c ma_lpf_config config = ma_lpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency, order); ma_result result = ma_lpf_init(&config, &lpf); if (result != MA_SUCCESS) { // Error. } ... ma_lpf_process_pcm_frames(&lpf, pFramesOut, pFramesIn, frameCount); ``` Supported formats are `ma_format_s16` and` ma_format_f32`. If you need to use a different format you need to convert it yourself beforehand. Input and output frames are always interleaved. Filtering can be applied in-place by passing in the same pointer for both the input and output buffers, like so: ```c ma_lpf_process_pcm_frames(&lpf, pMyData, pMyData, frameCount); ``` The maximum filter order is limited to `MA_MAX_FILTER_ORDER` which is set to 8. If you need more, you can chain first and second order filters together. ```c for (iFilter = 0; iFilter < filterCount; iFilter += 1) { ma_lpf2_process_pcm_frames(&lpf2[iFilter], pMyData, pMyData, frameCount); } ``` If you need to change the configuration of the filter, but need to maintain the state of internal registers you can do so with `ma_lpf_reinit()`. This may be useful if you need to change the sample rate and/or cutoff frequency dynamically while maintaing smooth transitions. Note that changing the format or channel count after initialization is invalid and will result in an error. The `ma_lpf` object supports a configurable order, but if you only need a first order filter you may want to consider using `ma_lpf1`. Likewise, if you only need a second order filter you can use `ma_lpf2`. The advantage of this is that they're lighter weight and a bit more efficient. If an even filter order is specified, a series of second order filters will be processed in a chain. If an odd filter order is specified, a first order filter will be applied, followed by a series of second order filters in a chain. 11.3. High-Pass Filtering ------------------------- High-pass filtering is achieved with the following APIs: +---------+-------------------------------------------+ | API | Description | +---------+-------------------------------------------+ | ma_hpf1 | First order high-pass filter | | ma_hpf2 | Second order high-pass filter | | ma_hpf | High order high-pass filter (Butterworth) | +---------+-------------------------------------------+ High-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_hpf1`, `ma_hpf2` and `ma_hpf`. See example code for low-pass filters for example usage. 11.4. Band-Pass Filtering ------------------------- Band-pass filtering is achieved with the following APIs: +---------+-------------------------------+ | API | Description | +---------+-------------------------------+ | ma_bpf2 | Second order band-pass filter | | ma_bpf | High order band-pass filter | +---------+-------------------------------+ Band-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_bpf2` and `ma_hpf`. See example code for low-pass filters for example usage. Note that the order for band-pass filters must be an even number which means there is no first order band-pass filter, unlike low-pass and high-pass filters. 11.5. Notch Filtering --------------------- Notch filtering is achieved with the following APIs: +-----------+------------------------------------------+ | API | Description | +-----------+------------------------------------------+ | ma_notch2 | Second order notching filter | +-----------+------------------------------------------+ 11.6. Peaking EQ Filtering ------------------------- Peaking filtering is achieved with the following APIs: +----------+------------------------------------------+ | API | Description | +----------+------------------------------------------+ | ma_peak2 | Second order peaking filter | +----------+------------------------------------------+ 11.7. Low Shelf Filtering ------------------------- Low shelf filtering is achieved with the following APIs: +-------------+------------------------------------------+ | API | Description | +-------------+------------------------------------------+ | ma_loshelf2 | Second order low shelf filter | +-------------+------------------------------------------+ Where a high-pass filter is used to eliminate lower frequencies, a low shelf filter can be used to just turn them down rather than eliminate them entirely. 11.8. High Shelf Filtering -------------------------- High shelf filtering is achieved with the following APIs: +-------------+------------------------------------------+ | API | Description | +-------------+------------------------------------------+ | ma_hishelf2 | Second order high shelf filter | +-------------+------------------------------------------+ The high shelf filter has the same API as the low shelf filter, only you would use `ma_hishelf` instead of `ma_loshelf`. Where a low shelf filter is used to adjust the volume of low frequencies, the high shelf filter does the same thing for high frequencies. 12. Waveform and Noise Generation ================================= 12.1. Waveforms --------------- miniaudio supports generation of sine, square, triangle and sawtooth waveforms. This is achieved with the `ma_waveform` API. Example: ```c ma_waveform_config config = ma_waveform_config_init( FORMAT, CHANNELS, SAMPLE_RATE, ma_waveform_type_sine, amplitude, frequency); ma_waveform waveform; ma_result result = ma_waveform_init(&config, &waveform); if (result != MA_SUCCESS) { // Error. } ... ma_waveform_read_pcm_frames(&waveform, pOutput, frameCount); ``` The amplitude, frequency, type, and sample rate can be changed dynamically with `ma_waveform_set_amplitude()`, `ma_waveform_set_frequency()`, `ma_waveform_set_type()`, and `ma_waveform_set_sample_rate()` respectively. You can invert the waveform by setting the amplitude to a negative value. You can use this to control whether or not a sawtooth has a positive or negative ramp, for example. Below are the supported waveform types: +---------------------------+ | Enum Name | +---------------------------+ | ma_waveform_type_sine | | ma_waveform_type_square | | ma_waveform_type_triangle | | ma_waveform_type_sawtooth | +---------------------------+ 12.2. Noise ----------- miniaudio supports generation of white, pink and Brownian noise via the `ma_noise` API. Example: ```c ma_noise_config config = ma_noise_config_init( FORMAT, CHANNELS, ma_noise_type_white, SEED, amplitude); ma_noise noise; ma_result result = ma_noise_init(&config, &noise); if (result != MA_SUCCESS) { // Error. } ... ma_noise_read_pcm_frames(&noise, pOutput, frameCount); ``` The noise API uses simple LCG random number generation. It supports a custom seed which is useful for things like automated testing requiring reproducibility. Setting the seed to zero will default to `MA_DEFAULT_LCG_SEED`. The amplitude, seed, and type can be changed dynamically with `ma_noise_set_amplitude()`, `ma_noise_set_seed()`, and `ma_noise_set_type()` respectively. By default, the noise API will use different values for different channels. So, for example, the left side in a stereo stream will be different to the right side. To instead have each channel use the same random value, set the `duplicateChannels` member of the noise config to true, like so: ```c config.duplicateChannels = MA_TRUE; ``` Below are the supported noise types. +------------------------+ | Enum Name | +------------------------+ | ma_noise_type_white | | ma_noise_type_pink | | ma_noise_type_brownian | +------------------------+ 13. Audio Buffers ================= miniaudio supports reading from a buffer of raw audio data via the `ma_audio_buffer` API. This can read from memory that's managed by the application, but can also handle the memory management for you internally. Memory management is flexible and should support most use cases. Audio buffers are initialised using the standard configuration system used everywhere in miniaudio: ```c ma_audio_buffer_config config = ma_audio_buffer_config_init( format, channels, sizeInFrames, pExistingData, &allocationCallbacks); ma_audio_buffer buffer; result = ma_audio_buffer_init(&config, &buffer); if (result != MA_SUCCESS) { // Error. } ... ma_audio_buffer_uninit(&buffer); ``` In the example above, the memory pointed to by `pExistingData` will *not* be copied and is how an application can do self-managed memory allocation. If you would rather make a copy of the data, use `ma_audio_buffer_init_copy()`. To uninitialize the buffer, use `ma_audio_buffer_uninit()`. Sometimes it can be convenient to allocate the memory for the `ma_audio_buffer` structure and the raw audio data in a contiguous block of memory. That is, the raw audio data will be located immediately after the `ma_audio_buffer` structure. To do this, use `ma_audio_buffer_alloc_and_init()`: ```c ma_audio_buffer_config config = ma_audio_buffer_config_init( format, channels, sizeInFrames, pExistingData, &allocationCallbacks); ma_audio_buffer* pBuffer result = ma_audio_buffer_alloc_and_init(&config, &pBuffer); if (result != MA_SUCCESS) { // Error } ... ma_audio_buffer_uninit_and_free(&buffer); ``` If you initialize the buffer with `ma_audio_buffer_alloc_and_init()` you should uninitialize it with `ma_audio_buffer_uninit_and_free()`. In the example above, the memory pointed to by `pExistingData` will be copied into the buffer, which is contrary to the behavior of `ma_audio_buffer_init()`. An audio buffer has a playback cursor just like a decoder. As you read frames from the buffer, the cursor moves forward. The last parameter (`loop`) can be used to determine if the buffer should loop. The return value is the number of frames actually read. If this is less than the number of frames requested it means the end has been reached. This should never happen if the `loop` parameter is set to true. If you want to manually loop back to the start, you can do so with with `ma_audio_buffer_seek_to_pcm_frame(pAudioBuffer, 0)`. Below is an example for reading data from an audio buffer. ```c ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames(pAudioBuffer, pFramesOut, desiredFrameCount, isLooping); if (framesRead < desiredFrameCount) { // If not looping, this means the end has been reached. This should never happen in looping mode with valid input. } ``` Sometimes you may want to avoid the cost of data movement between the internal buffer and the output buffer. Instead you can use memory mapping to retrieve a pointer to a segment of data: ```c void* pMappedFrames; ma_uint64 frameCount = frameCountToTryMapping; ma_result result = ma_audio_buffer_map(pAudioBuffer, &pMappedFrames, &frameCount); if (result == MA_SUCCESS) { // Map was successful. The value in frameCount will be how many frames were _actually_ mapped, which may be // less due to the end of the buffer being reached. ma_copy_pcm_frames(pFramesOut, pMappedFrames, frameCount, pAudioBuffer->format, pAudioBuffer->channels); // You must unmap the buffer. ma_audio_buffer_unmap(pAudioBuffer, frameCount); } ``` When you use memory mapping, the read cursor is increment by the frame count passed in to `ma_audio_buffer_unmap()`. If you decide not to process every frame you can pass in a value smaller than the value returned by `ma_audio_buffer_map()`. The disadvantage to using memory mapping is that it does not handle looping for you. You can determine if the buffer is at the end for the purpose of looping with `ma_audio_buffer_at_end()` or by inspecting the return value of `ma_audio_buffer_unmap()` and checking if it equals `MA_AT_END`. You should not treat `MA_AT_END` as an error when returned by `ma_audio_buffer_unmap()`. 14. Ring Buffers ================ miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed via the `ma_rb` and `ma_pcm_rb` APIs. The `ma_rb` API operates on bytes, whereas the `ma_pcm_rb` operates on PCM frames. They are otherwise identical as `ma_pcm_rb` is just a wrapper around `ma_rb`. Unlike most other APIs in miniaudio, ring buffers support both interleaved and deinterleaved streams. The caller can also allocate their own backing memory for the ring buffer to use internally for added flexibility. Otherwise the ring buffer will manage it's internal memory for you. The examples below use the PCM frame variant of the ring buffer since that's most likely the one you will want to use. To initialize a ring buffer, do something like the following: ```c ma_pcm_rb rb; ma_result result = ma_pcm_rb_init(FORMAT, CHANNELS, BUFFER_SIZE_IN_FRAMES, NULL, NULL, &rb); if (result != MA_SUCCESS) { // Error } ``` The `ma_pcm_rb_init()` function takes the sample format and channel count as parameters because it's the PCM varient of the ring buffer API. For the regular ring buffer that operates on bytes you would call `ma_rb_init()` which leaves these out and just takes the size of the buffer in bytes instead of frames. The fourth parameter is an optional pre-allocated buffer and the fifth parameter is a pointer to a `ma_allocation_callbacks` structure for custom memory allocation routines. Passing in `NULL` for this results in `MA_MALLOC()` and `MA_FREE()` being used. Use `ma_pcm_rb_init_ex()` if you need a deinterleaved buffer. The data for each sub-buffer is offset from each other based on the stride. To manage your sub-buffers you can use `ma_pcm_rb_get_subbuffer_stride()`, `ma_pcm_rb_get_subbuffer_offset()` and `ma_pcm_rb_get_subbuffer_ptr()`. Use `ma_pcm_rb_acquire_read()` and `ma_pcm_rb_acquire_write()` to retrieve a pointer to a section of the ring buffer. You specify the number of frames you need, and on output it will set to what was actually acquired. If the read or write pointer is positioned such that the number of frames requested will require a loop, it will be clamped to the end of the buffer. Therefore, the number of frames you're given may be less than the number you requested. After calling `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()`, you do your work on the buffer and then "commit" it with `ma_pcm_rb_commit_read()` or `ma_pcm_rb_commit_write()`. This is where the read/write pointers are updated. When you commit you need to pass in the buffer that was returned by the earlier call to `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()` and is only used for validation. The number of frames passed to `ma_pcm_rb_commit_read()` and `ma_pcm_rb_commit_write()` is what's used to increment the pointers, and can be less that what was originally requested. If you want to correct for drift between the write pointer and the read pointer you can use a combination of `ma_pcm_rb_pointer_distance()`, `ma_pcm_rb_seek_read()` and `ma_pcm_rb_seek_write()`. Note that you can only move the pointers forward, and you should only move the read pointer forward via the consumer thread, and the write pointer forward by the producer thread. If there is too much space between the pointers, move the read pointer forward. If there is too little space between the pointers, move the write pointer forward. You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the same, only you will use the `ma_rb` functions instead of `ma_pcm_rb` and instead of frame counts you will pass around byte counts. The maximum size of the buffer in bytes is `0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1)` due to the most significant bit being used to encode a loop flag and the internally managed buffers always being aligned to `MA_SIMD_ALIGNMENT`. Note that the ring buffer is only thread safe when used by a single consumer thread and single producer thread. 15. Backends ============ The following backends are supported by miniaudio. These are listed in order of default priority. When no backend is specified when initializing a context or device, miniaudio will attempt to use each of these backends in the order listed in the table below. Note that backends that are not usable by the build target will not be included in the build. For example, ALSA, which is specific to Linux, will not be included in the Windows build. +-------------+-----------------------+--------------------------------------------------------+ | Name | Enum Name | Supported Operating Systems | +-------------+-----------------------+--------------------------------------------------------+ | WASAPI | ma_backend_wasapi | Windows Vista+ | | DirectSound | ma_backend_dsound | Windows XP+ | | WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) | | Core Audio | ma_backend_coreaudio | macOS, iOS | | sndio | ma_backend_sndio | OpenBSD | | audio(4) | ma_backend_audio4 | NetBSD, OpenBSD | | OSS | ma_backend_oss | FreeBSD | | PulseAudio | ma_backend_pulseaudio | Cross Platform (disabled on Windows, BSD and Android) | | ALSA | ma_backend_alsa | Linux | | JACK | ma_backend_jack | Cross Platform (disabled on BSD and Android) | | AAudio | ma_backend_aaudio | Android 8+ | | OpenSL ES | ma_backend_opensl | Android (API level 16+) | | Web Audio | ma_backend_webaudio | Web (via Emscripten) | | Custom | ma_backend_custom | Cross Platform | | Null | ma_backend_null | Cross Platform (not used on Web) | +-------------+-----------------------+--------------------------------------------------------+ Some backends have some nuance details you may want to be aware of. 15.1. WASAPI ------------ - Low-latency shared mode will be disabled when using an application-defined sample rate which is different to the device's native sample rate. To work around this, set `wasapi.noAutoConvertSRC` to true in the device config. This is due to IAudioClient3_InitializeSharedAudioStream() failing when the `AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM` flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's internal resampler being used instead which will in turn enable the use of low-latency shared mode. 15.2. PulseAudio ---------------- - If you experience bad glitching/noise on Arch Linux, consider this fix from the Arch wiki: https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling. Alternatively, consider using a different backend such as ALSA. 15.3. Android ------------- - To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest: `` - With OpenSL|ES, only a single ma_context can be active at any given time. This is due to a limitation with OpenSL|ES. - With AAudio, only default devices are enumerated. This is due to AAudio not having an enumeration API (devices are enumerated through Java). You can however perform your own device enumeration through Java and then set the ID in the ma_device_id structure (ma_device_id.aaudio) and pass it to ma_device_init(). - The backend API will perform resampling where possible. The reason for this as opposed to using miniaudio's built-in resampler is to take advantage of any potential device-specific optimizations the driver may implement. 15.4. UWP --------- - UWP only supports default playback and capture devices. - UWP requires the Microphone capability to be enabled in the application's manifest (Package.appxmanifest): ``` ... ``` 15.5. Web Audio / Emscripten ---------------------------- - You cannot use `-std=c*` compiler flags, nor `-ansi`. This only applies to the Emscripten build. - The first time a context is initialized it will create a global object called "miniaudio" whose primary purpose is to act as a factory for device objects. - Currently the Web Audio backend uses ScriptProcessorNode's, but this may need to change later as they've been deprecated. - Google has implemented a policy in their browsers that prevent automatic media output without first receiving some kind of user input. The following web page has additional details: https://developers.google.com/web/updates/2017/09/autoplay-policy-changes. Starting the device may fail if you try to start playback without first handling some kind of user input. 16. Optimization Tips ===================== 16.1. High Level API -------------------- - If a sound does not require doppler or pitch shifting, consider disabling pitching by initializing the sound with the `MA_SOUND_FLAG_NO_PITCH` flag. - If a sound does not require spatialization, disable it by initialzing the sound with the `MA_SOUND_FLAG_NO_SPATIALIZATION` flag. It can be renabled again post-initialization with `ma_sound_set_spatialization_enabled()`. 17. Miscellaneous Notes ======================= - Automatic stream routing is enabled on a per-backend basis. Support is explicitly enabled for WASAPI and Core Audio, however other backends such as PulseAudio may naturally support it, though not all have been tested. - The contents of the output buffer passed into the data callback will always be pre-initialized to silence unless the `noPreSilencedOutputBuffer` config variable in `ma_device_config` is set to true, in which case it'll be undefined which will require you to write something to the entire buffer. - By default miniaudio will automatically clip samples. This only applies when the playback sample format is configured as `ma_format_f32`. If you are doing clipping yourself, you can disable this overhead by setting `noClip` to true in the device config. - Note that GCC and Clang requires `-msse2`, `-mavx2`, etc. for SIMD optimizations. - The sndio backend is currently only enabled on OpenBSD builds. - The audio(4) backend is supported on OpenBSD, but you may need to disable sndiod before you can use it. - When compiling with VC6 and earlier, decoding is restricted to files less than 2GB in size. This is due to 64-bit file APIs not being available. */ #ifndef miniaudio_h #define miniaudio_h #ifdef __cplusplus extern "C" { #endif #define MA_STRINGIFY(x) #x #define MA_XSTRINGIFY(x) MA_STRINGIFY(x) #define MA_VERSION_MAJOR 0 #define MA_VERSION_MINOR 11 #define MA_VERSION_REVISION 11 #define MA_VERSION_STRING MA_XSTRINGIFY(MA_VERSION_MAJOR) "." MA_XSTRINGIFY(MA_VERSION_MINOR) "." MA_XSTRINGIFY(MA_VERSION_REVISION) #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(push) #pragma warning(disable:4201) /* nonstandard extension used: nameless struct/union */ #pragma warning(disable:4214) /* nonstandard extension used: bit field types other than int */ #pragma warning(disable:4324) /* structure was padded due to alignment specifier */ #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */ #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc11-extensions" /* anonymous unions are a C11 extension */ #endif #endif #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined(_M_IA64) || defined(__aarch64__) || defined(_M_ARM64) || defined(__powerpc64__) #define MA_SIZEOF_PTR 8 #else #define MA_SIZEOF_PTR 4 #endif #include /* For size_t. */ /* Sized types. */ #if defined(MA_USE_STDINT) #include typedef int8_t ma_int8; typedef uint8_t ma_uint8; typedef int16_t ma_int16; typedef uint16_t ma_uint16; typedef int32_t ma_int32; typedef uint32_t ma_uint32; typedef int64_t ma_int64; typedef uint64_t ma_uint64; #else typedef signed char ma_int8; typedef unsigned char ma_uint8; typedef signed short ma_int16; typedef unsigned short ma_uint16; typedef signed int ma_int32; typedef unsigned int ma_uint32; #if defined(_MSC_VER) && !defined(__clang__) typedef signed __int64 ma_int64; typedef unsigned __int64 ma_uint64; #else #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wlong-long" #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc++11-long-long" #endif #endif typedef signed long long ma_int64; typedef unsigned long long ma_uint64; #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif #endif #endif /* MA_USE_STDINT */ #if MA_SIZEOF_PTR == 8 typedef ma_uint64 ma_uintptr; #else typedef ma_uint32 ma_uintptr; #endif typedef ma_uint8 ma_bool8; typedef ma_uint32 ma_bool32; #define MA_TRUE 1 #define MA_FALSE 0 typedef void* ma_handle; typedef void* ma_ptr; typedef void (* ma_proc)(void); #if defined(_MSC_VER) && !defined(_WCHAR_T_DEFINED) typedef ma_uint16 wchar_t; #endif /* Define NULL for some compilers. */ #ifndef NULL #define NULL 0 #endif #if defined(SIZE_MAX) #define MA_SIZE_MAX SIZE_MAX #else #define MA_SIZE_MAX 0xFFFFFFFF /* When SIZE_MAX is not defined by the standard library just default to the maximum 32-bit unsigned integer. */ #endif /* Platform/backend detection. */ #ifdef _WIN32 #define MA_WIN32 #if defined(MA_FORCE_UWP) || (defined(WINAPI_FAMILY) && ((defined(WINAPI_FAMILY_PC_APP) && WINAPI_FAMILY == WINAPI_FAMILY_PC_APP) || (defined(WINAPI_FAMILY_PHONE_APP) && WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP))) #define MA_WIN32_UWP #elif defined(WINAPI_FAMILY) && (defined(WINAPI_FAMILY_GAMES) && WINAPI_FAMILY == WINAPI_FAMILY_GAMES) #define MA_WIN32_GDK #else #define MA_WIN32_DESKTOP #endif #else #define MA_POSIX /* Use the MA_NO_PTHREAD_IN_HEADER option at your own risk. This is intentionally undocumented. You can use this to avoid including pthread.h in the header section. The downside is that it results in some fixed sized structures being declared for the various types that are used in miniaudio. The risk here is that these types might be too small for a given platform. This risk is yours to take and no support will be offered if you enable this option. */ #ifndef MA_NO_PTHREAD_IN_HEADER #include /* Unfortunate #include, but needed for pthread_t, pthread_mutex_t and pthread_cond_t types. */ typedef pthread_t ma_pthread_t; typedef pthread_mutex_t ma_pthread_mutex_t; typedef pthread_cond_t ma_pthread_cond_t; #else typedef ma_uintptr ma_pthread_t; typedef union ma_pthread_mutex_t { char __data[40]; ma_uint64 __alignment; } ma_pthread_mutex_t; typedef union ma_pthread_cond_t { char __data[48]; ma_uint64 __alignment; } ma_pthread_cond_t; #endif #ifdef __unix__ #define MA_UNIX #if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) #define MA_BSD #endif #endif #ifdef __linux__ #define MA_LINUX #endif #ifdef __APPLE__ #define MA_APPLE #endif #ifdef __ANDROID__ #define MA_ANDROID #endif #ifdef __EMSCRIPTEN__ #define MA_EMSCRIPTEN #endif #endif #ifdef _MSC_VER #define MA_INLINE __forceinline #elif defined(__GNUC__) /* I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue I am using "__inline__" only when we're compiling in strict ANSI mode. */ #if defined(__STRICT_ANSI__) #define MA_GNUC_INLINE_HINT __inline__ #else #define MA_GNUC_INLINE_HINT inline #endif #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 2)) || defined(__clang__) #define MA_INLINE MA_GNUC_INLINE_HINT __attribute__((always_inline)) #else #define MA_INLINE MA_GNUC_INLINE_HINT #endif #elif defined(__WATCOMC__) #define MA_INLINE __inline #else #define MA_INLINE #endif #if !defined(MA_API) #if defined(MA_DLL) #if defined(_WIN32) #define MA_DLL_IMPORT __declspec(dllimport) #define MA_DLL_EXPORT __declspec(dllexport) #define MA_DLL_PRIVATE static #else #if defined(__GNUC__) && __GNUC__ >= 4 #define MA_DLL_IMPORT __attribute__((visibility("default"))) #define MA_DLL_EXPORT __attribute__((visibility("default"))) #define MA_DLL_PRIVATE __attribute__((visibility("hidden"))) #else #define MA_DLL_IMPORT #define MA_DLL_EXPORT #define MA_DLL_PRIVATE static #endif #endif #if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION) #define MA_API MA_DLL_EXPORT #else #define MA_API MA_DLL_IMPORT #endif #define MA_PRIVATE MA_DLL_PRIVATE #else #define MA_API extern #define MA_PRIVATE static #endif #endif /* SIMD alignment in bytes. Currently set to 32 bytes in preparation for future AVX optimizations. */ #define MA_SIMD_ALIGNMENT 32 /* Logging Levels ============== Log levels are only used to give logging callbacks some context as to the severity of a log message so they can do filtering. All log levels will be posted to registered logging callbacks. If you don't want to output a certain log level you can discriminate against the log level in the callback. MA_LOG_LEVEL_DEBUG Used for debugging. Useful for debug and test builds, but should be disabled in release builds. MA_LOG_LEVEL_INFO Informational logging. Useful for debugging. This will never be called from within the data callback. MA_LOG_LEVEL_WARNING Warnings. You should enable this in you development builds and action them when encounted. These logs usually indicate a potential problem or misconfiguration, but still allow you to keep running. This will never be called from within the data callback. MA_LOG_LEVEL_ERROR Error logging. This will be fired when an operation fails and is subsequently aborted. This can be fired from within the data callback, in which case the device will be stopped. You should always have this log level enabled. */ typedef enum { MA_LOG_LEVEL_DEBUG = 4, MA_LOG_LEVEL_INFO = 3, MA_LOG_LEVEL_WARNING = 2, MA_LOG_LEVEL_ERROR = 1 } ma_log_level; /* Variables needing to be accessed atomically should be declared with this macro for two reasons: 1) It allows people who read the code to identify a variable as such; and 2) It forces alignment on platforms where it's required or optimal. Note that for x86/64, alignment is not strictly necessary, but does have some performance implications. Where supported by the compiler, alignment will be used, but otherwise if the CPU architecture does not require it, it will simply leave it unaligned. This is the case with old versions of Visual Studio, which I've confirmed with at least VC6. */ #if !defined(_MSC_VER) && defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) #include #define MA_ATOMIC(alignment, type) alignas(alignment) type #else #if defined(__GNUC__) /* GCC-style compilers. */ #define MA_ATOMIC(alignment, type) type __attribute__((aligned(alignment))) #elif defined(_MSC_VER) && _MSC_VER > 1200 /* 1200 = VC6. Alignment not supported, but not necessary because x86 is the only supported target. */ /* MSVC. */ #define MA_ATOMIC(alignment, type) __declspec(align(alignment)) type #else /* Other compilers. */ #define MA_ATOMIC(alignment, type) type #endif #endif typedef struct ma_context ma_context; typedef struct ma_device ma_device; typedef ma_uint8 ma_channel; typedef enum { MA_CHANNEL_NONE = 0, MA_CHANNEL_MONO = 1, MA_CHANNEL_FRONT_LEFT = 2, MA_CHANNEL_FRONT_RIGHT = 3, MA_CHANNEL_FRONT_CENTER = 4, MA_CHANNEL_LFE = 5, MA_CHANNEL_BACK_LEFT = 6, MA_CHANNEL_BACK_RIGHT = 7, MA_CHANNEL_FRONT_LEFT_CENTER = 8, MA_CHANNEL_FRONT_RIGHT_CENTER = 9, MA_CHANNEL_BACK_CENTER = 10, MA_CHANNEL_SIDE_LEFT = 11, MA_CHANNEL_SIDE_RIGHT = 12, MA_CHANNEL_TOP_CENTER = 13, MA_CHANNEL_TOP_FRONT_LEFT = 14, MA_CHANNEL_TOP_FRONT_CENTER = 15, MA_CHANNEL_TOP_FRONT_RIGHT = 16, MA_CHANNEL_TOP_BACK_LEFT = 17, MA_CHANNEL_TOP_BACK_CENTER = 18, MA_CHANNEL_TOP_BACK_RIGHT = 19, MA_CHANNEL_AUX_0 = 20, MA_CHANNEL_AUX_1 = 21, MA_CHANNEL_AUX_2 = 22, MA_CHANNEL_AUX_3 = 23, MA_CHANNEL_AUX_4 = 24, MA_CHANNEL_AUX_5 = 25, MA_CHANNEL_AUX_6 = 26, MA_CHANNEL_AUX_7 = 27, MA_CHANNEL_AUX_8 = 28, MA_CHANNEL_AUX_9 = 29, MA_CHANNEL_AUX_10 = 30, MA_CHANNEL_AUX_11 = 31, MA_CHANNEL_AUX_12 = 32, MA_CHANNEL_AUX_13 = 33, MA_CHANNEL_AUX_14 = 34, MA_CHANNEL_AUX_15 = 35, MA_CHANNEL_AUX_16 = 36, MA_CHANNEL_AUX_17 = 37, MA_CHANNEL_AUX_18 = 38, MA_CHANNEL_AUX_19 = 39, MA_CHANNEL_AUX_20 = 40, MA_CHANNEL_AUX_21 = 41, MA_CHANNEL_AUX_22 = 42, MA_CHANNEL_AUX_23 = 43, MA_CHANNEL_AUX_24 = 44, MA_CHANNEL_AUX_25 = 45, MA_CHANNEL_AUX_26 = 46, MA_CHANNEL_AUX_27 = 47, MA_CHANNEL_AUX_28 = 48, MA_CHANNEL_AUX_29 = 49, MA_CHANNEL_AUX_30 = 50, MA_CHANNEL_AUX_31 = 51, MA_CHANNEL_LEFT = MA_CHANNEL_FRONT_LEFT, MA_CHANNEL_RIGHT = MA_CHANNEL_FRONT_RIGHT, MA_CHANNEL_POSITION_COUNT = (MA_CHANNEL_AUX_31 + 1) } _ma_channel_position; /* Do not use `_ma_channel_position` directly. Use `ma_channel` instead. */ typedef enum { MA_SUCCESS = 0, MA_ERROR = -1, /* A generic error. */ MA_INVALID_ARGS = -2, MA_INVALID_OPERATION = -3, MA_OUT_OF_MEMORY = -4, MA_OUT_OF_RANGE = -5, MA_ACCESS_DENIED = -6, MA_DOES_NOT_EXIST = -7, MA_ALREADY_EXISTS = -8, MA_TOO_MANY_OPEN_FILES = -9, MA_INVALID_FILE = -10, MA_TOO_BIG = -11, MA_PATH_TOO_LONG = -12, MA_NAME_TOO_LONG = -13, MA_NOT_DIRECTORY = -14, MA_IS_DIRECTORY = -15, MA_DIRECTORY_NOT_EMPTY = -16, MA_AT_END = -17, MA_NO_SPACE = -18, MA_BUSY = -19, MA_IO_ERROR = -20, MA_INTERRUPT = -21, MA_UNAVAILABLE = -22, MA_ALREADY_IN_USE = -23, MA_BAD_ADDRESS = -24, MA_BAD_SEEK = -25, MA_BAD_PIPE = -26, MA_DEADLOCK = -27, MA_TOO_MANY_LINKS = -28, MA_NOT_IMPLEMENTED = -29, MA_NO_MESSAGE = -30, MA_BAD_MESSAGE = -31, MA_NO_DATA_AVAILABLE = -32, MA_INVALID_DATA = -33, MA_TIMEOUT = -34, MA_NO_NETWORK = -35, MA_NOT_UNIQUE = -36, MA_NOT_SOCKET = -37, MA_NO_ADDRESS = -38, MA_BAD_PROTOCOL = -39, MA_PROTOCOL_UNAVAILABLE = -40, MA_PROTOCOL_NOT_SUPPORTED = -41, MA_PROTOCOL_FAMILY_NOT_SUPPORTED = -42, MA_ADDRESS_FAMILY_NOT_SUPPORTED = -43, MA_SOCKET_NOT_SUPPORTED = -44, MA_CONNECTION_RESET = -45, MA_ALREADY_CONNECTED = -46, MA_NOT_CONNECTED = -47, MA_CONNECTION_REFUSED = -48, MA_NO_HOST = -49, MA_IN_PROGRESS = -50, MA_CANCELLED = -51, MA_MEMORY_ALREADY_MAPPED = -52, /* General miniaudio-specific errors. */ MA_FORMAT_NOT_SUPPORTED = -100, MA_DEVICE_TYPE_NOT_SUPPORTED = -101, MA_SHARE_MODE_NOT_SUPPORTED = -102, MA_NO_BACKEND = -103, MA_NO_DEVICE = -104, MA_API_NOT_FOUND = -105, MA_INVALID_DEVICE_CONFIG = -106, MA_LOOP = -107, /* State errors. */ MA_DEVICE_NOT_INITIALIZED = -200, MA_DEVICE_ALREADY_INITIALIZED = -201, MA_DEVICE_NOT_STARTED = -202, MA_DEVICE_NOT_STOPPED = -203, /* Operation errors. */ MA_FAILED_TO_INIT_BACKEND = -300, MA_FAILED_TO_OPEN_BACKEND_DEVICE = -301, MA_FAILED_TO_START_BACKEND_DEVICE = -302, MA_FAILED_TO_STOP_BACKEND_DEVICE = -303 } ma_result; #define MA_MIN_CHANNELS 1 #ifndef MA_MAX_CHANNELS #define MA_MAX_CHANNELS 254 #endif #ifndef MA_MAX_FILTER_ORDER #define MA_MAX_FILTER_ORDER 8 #endif typedef enum { ma_stream_format_pcm = 0 } ma_stream_format; typedef enum { ma_stream_layout_interleaved = 0, ma_stream_layout_deinterleaved } ma_stream_layout; typedef enum { ma_dither_mode_none = 0, ma_dither_mode_rectangle, ma_dither_mode_triangle } ma_dither_mode; typedef enum { /* I like to keep these explicitly defined because they're used as a key into a lookup table. When items are added to this, make sure there are no gaps and that they're added to the lookup table in ma_get_bytes_per_sample(). */ ma_format_unknown = 0, /* Mainly used for indicating an error, but also used as the default for the output format for decoders. */ ma_format_u8 = 1, ma_format_s16 = 2, /* Seems to be the most widely supported format. */ ma_format_s24 = 3, /* Tightly packed. 3 bytes per sample. */ ma_format_s32 = 4, ma_format_f32 = 5, ma_format_count } ma_format; typedef enum { /* Standard rates need to be in priority order. */ ma_standard_sample_rate_48000 = 48000, /* Most common */ ma_standard_sample_rate_44100 = 44100, ma_standard_sample_rate_32000 = 32000, /* Lows */ ma_standard_sample_rate_24000 = 24000, ma_standard_sample_rate_22050 = 22050, ma_standard_sample_rate_88200 = 88200, /* Highs */ ma_standard_sample_rate_96000 = 96000, ma_standard_sample_rate_176400 = 176400, ma_standard_sample_rate_192000 = 192000, ma_standard_sample_rate_16000 = 16000, /* Extreme lows */ ma_standard_sample_rate_11025 = 11250, ma_standard_sample_rate_8000 = 8000, ma_standard_sample_rate_352800 = 352800, /* Extreme highs */ ma_standard_sample_rate_384000 = 384000, ma_standard_sample_rate_min = ma_standard_sample_rate_8000, ma_standard_sample_rate_max = ma_standard_sample_rate_384000, ma_standard_sample_rate_count = 14 /* Need to maintain the count manually. Make sure this is updated if items are added to enum. */ } ma_standard_sample_rate; typedef enum { ma_channel_mix_mode_rectangular = 0, /* Simple averaging based on the plane(s) the channel is sitting on. */ ma_channel_mix_mode_simple, /* Drop excess channels; zeroed out extra channels. */ ma_channel_mix_mode_custom_weights, /* Use custom weights specified in ma_channel_converter_config. */ ma_channel_mix_mode_default = ma_channel_mix_mode_rectangular } ma_channel_mix_mode; typedef enum { ma_standard_channel_map_microsoft, ma_standard_channel_map_alsa, ma_standard_channel_map_rfc3551, /* Based off AIFF. */ ma_standard_channel_map_flac, ma_standard_channel_map_vorbis, ma_standard_channel_map_sound4, /* FreeBSD's sound(4). */ ma_standard_channel_map_sndio, /* www.sndio.org/tips.html */ ma_standard_channel_map_webaudio = ma_standard_channel_map_flac, /* https://webaudio.github.io/web-audio-api/#ChannelOrdering. Only 1, 2, 4 and 6 channels are defined, but can fill in the gaps with logical assumptions. */ ma_standard_channel_map_default = ma_standard_channel_map_microsoft } ma_standard_channel_map; typedef enum { ma_performance_profile_low_latency = 0, ma_performance_profile_conservative } ma_performance_profile; typedef struct { void* pUserData; void* (* onMalloc)(size_t sz, void* pUserData); void* (* onRealloc)(void* p, size_t sz, void* pUserData); void (* onFree)(void* p, void* pUserData); } ma_allocation_callbacks; typedef struct { ma_int32 state; } ma_lcg; /* Spinlocks are 32-bit for compatibility reasons. */ typedef ma_uint32 ma_spinlock; #ifndef MA_NO_THREADING /* Thread priorities should be ordered such that the default priority of the worker thread is 0. */ typedef enum { ma_thread_priority_idle = -5, ma_thread_priority_lowest = -4, ma_thread_priority_low = -3, ma_thread_priority_normal = -2, ma_thread_priority_high = -1, ma_thread_priority_highest = 0, ma_thread_priority_realtime = 1, ma_thread_priority_default = 0 } ma_thread_priority; #if defined(MA_WIN32) typedef ma_handle ma_thread; #endif #if defined(MA_POSIX) typedef ma_pthread_t ma_thread; #endif #if defined(MA_WIN32) typedef ma_handle ma_mutex; #endif #if defined(MA_POSIX) typedef ma_pthread_mutex_t ma_mutex; #endif #if defined(MA_WIN32) typedef ma_handle ma_event; #endif #if defined(MA_POSIX) typedef struct { ma_uint32 value; ma_pthread_mutex_t lock; ma_pthread_cond_t cond; } ma_event; #endif /* MA_POSIX */ #if defined(MA_WIN32) typedef ma_handle ma_semaphore; #endif #if defined(MA_POSIX) typedef struct { int value; ma_pthread_mutex_t lock; ma_pthread_cond_t cond; } ma_semaphore; #endif /* MA_POSIX */ #else /* MA_NO_THREADING is set which means threading is disabled. Threading is required by some API families. If any of these are enabled we need to throw an error. */ #ifndef MA_NO_DEVICE_IO #error "MA_NO_THREADING cannot be used without MA_NO_DEVICE_IO"; #endif #endif /* MA_NO_THREADING */ /* Retrieves the version of miniaudio as separated integers. Each component can be NULL if it's not required. */ MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision); /* Retrieves the version of miniaudio as a string which can be useful for logging purposes. */ MA_API const char* ma_version_string(void); /************************************************************************************************************************************************************** Logging **************************************************************************************************************************************************************/ #include /* For va_list. */ #if defined(__has_attribute) #if __has_attribute(format) #define MA_ATTRIBUTE_FORMAT(fmt, va) __attribute__((format(printf, fmt, va))) #endif #endif #ifndef MA_ATTRIBUTE_FORMAT #define MA_ATTRIBUTE_FORMAT(fmt,va) #endif #ifndef MA_MAX_LOG_CALLBACKS #define MA_MAX_LOG_CALLBACKS 4 #endif /* The callback for handling log messages. Parameters ---------- pUserData (in) The user data pointer that was passed into ma_log_register_callback(). logLevel (in) The log level. This can be one of the following: +----------------------+ | Log Level | +----------------------+ | MA_LOG_LEVEL_DEBUG | | MA_LOG_LEVEL_INFO | | MA_LOG_LEVEL_WARNING | | MA_LOG_LEVEL_ERROR | +----------------------+ pMessage (in) The log message. Remarks ------- Do not modify the state of the device from inside the callback. */ typedef void (* ma_log_callback_proc)(void* pUserData, ma_uint32 level, const char* pMessage); typedef struct { ma_log_callback_proc onLog; void* pUserData; } ma_log_callback; MA_API ma_log_callback ma_log_callback_init(ma_log_callback_proc onLog, void* pUserData); typedef struct { ma_log_callback callbacks[MA_MAX_LOG_CALLBACKS]; ma_uint32 callbackCount; ma_allocation_callbacks allocationCallbacks; /* Need to store these persistently because ma_log_postv() might need to allocate a buffer on the heap. */ #ifndef MA_NO_THREADING ma_mutex lock; /* For thread safety just to make it easier and safer for the logging implementation. */ #endif } ma_log; MA_API ma_result ma_log_init(const ma_allocation_callbacks* pAllocationCallbacks, ma_log* pLog); MA_API void ma_log_uninit(ma_log* pLog); MA_API ma_result ma_log_register_callback(ma_log* pLog, ma_log_callback callback); MA_API ma_result ma_log_unregister_callback(ma_log* pLog, ma_log_callback callback); MA_API ma_result ma_log_post(ma_log* pLog, ma_uint32 level, const char* pMessage); MA_API ma_result ma_log_postv(ma_log* pLog, ma_uint32 level, const char* pFormat, va_list args); MA_API ma_result ma_log_postf(ma_log* pLog, ma_uint32 level, const char* pFormat, ...) MA_ATTRIBUTE_FORMAT(3, 4); /************************************************************************************************************************************************************** Biquad Filtering **************************************************************************************************************************************************************/ typedef union { float f32; ma_int32 s32; } ma_biquad_coefficient; typedef struct { ma_format format; ma_uint32 channels; double b0; double b1; double b2; double a0; double a1; double a2; } ma_biquad_config; MA_API ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2); typedef struct { ma_format format; ma_uint32 channels; ma_biquad_coefficient b0; ma_biquad_coefficient b1; ma_biquad_coefficient b2; ma_biquad_coefficient a1; ma_biquad_coefficient a2; ma_biquad_coefficient* pR1; ma_biquad_coefficient* pR2; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_biquad; MA_API ma_result ma_biquad_get_heap_size(const ma_biquad_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_biquad_init_preallocated(const ma_biquad_config* pConfig, void* pHeap, ma_biquad* pBQ); MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_biquad* pBQ); MA_API void ma_biquad_uninit(ma_biquad* pBQ, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ); MA_API ma_result ma_biquad_clear_cache(ma_biquad* pBQ); MA_API ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_biquad_get_latency(const ma_biquad* pBQ); /************************************************************************************************************************************************************** Low-Pass Filtering **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double cutoffFrequency; double q; } ma_lpf1_config, ma_lpf2_config; MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency); MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q); typedef struct { ma_format format; ma_uint32 channels; ma_biquad_coefficient a; ma_biquad_coefficient* pR1; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_lpf1; MA_API ma_result ma_lpf1_get_heap_size(const ma_lpf1_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_lpf1_init_preallocated(const ma_lpf1_config* pConfig, void* pHeap, ma_lpf1* pLPF); MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf1* pLPF); MA_API void ma_lpf1_uninit(ma_lpf1* pLPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF); MA_API ma_result ma_lpf1_clear_cache(ma_lpf1* pLPF); MA_API ma_result ma_lpf1_process_pcm_frames(ma_lpf1* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_lpf1_get_latency(const ma_lpf1* pLPF); typedef struct { ma_biquad bq; /* The second order low-pass filter is implemented as a biquad filter. */ } ma_lpf2; MA_API ma_result ma_lpf2_get_heap_size(const ma_lpf2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_lpf2_init_preallocated(const ma_lpf2_config* pConfig, void* pHeap, ma_lpf2* pHPF); MA_API ma_result ma_lpf2_init(const ma_lpf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf2* pLPF); MA_API void ma_lpf2_uninit(ma_lpf2* pLPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_lpf2_reinit(const ma_lpf2_config* pConfig, ma_lpf2* pLPF); MA_API ma_result ma_lpf2_clear_cache(ma_lpf2* pLPF); MA_API ma_result ma_lpf2_process_pcm_frames(ma_lpf2* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_lpf2_get_latency(const ma_lpf2* pLPF); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double cutoffFrequency; ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */ } ma_lpf_config; MA_API ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_uint32 lpf1Count; ma_uint32 lpf2Count; ma_lpf1* pLPF1; ma_lpf2* pLPF2; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_lpf; MA_API ma_result ma_lpf_get_heap_size(const ma_lpf_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_lpf_init_preallocated(const ma_lpf_config* pConfig, void* pHeap, ma_lpf* pLPF); MA_API ma_result ma_lpf_init(const ma_lpf_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf* pLPF); MA_API void ma_lpf_uninit(ma_lpf* pLPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF); MA_API ma_result ma_lpf_clear_cache(ma_lpf* pLPF); MA_API ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_lpf_get_latency(const ma_lpf* pLPF); /************************************************************************************************************************************************************** High-Pass Filtering **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double cutoffFrequency; double q; } ma_hpf1_config, ma_hpf2_config; MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency); MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q); typedef struct { ma_format format; ma_uint32 channels; ma_biquad_coefficient a; ma_biquad_coefficient* pR1; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_hpf1; MA_API ma_result ma_hpf1_get_heap_size(const ma_hpf1_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_hpf1_init_preallocated(const ma_hpf1_config* pConfig, void* pHeap, ma_hpf1* pLPF); MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf1* pHPF); MA_API void ma_hpf1_uninit(ma_hpf1* pHPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF); MA_API ma_result ma_hpf1_process_pcm_frames(ma_hpf1* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_hpf1_get_latency(const ma_hpf1* pHPF); typedef struct { ma_biquad bq; /* The second order high-pass filter is implemented as a biquad filter. */ } ma_hpf2; MA_API ma_result ma_hpf2_get_heap_size(const ma_hpf2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_hpf2_init_preallocated(const ma_hpf2_config* pConfig, void* pHeap, ma_hpf2* pHPF); MA_API ma_result ma_hpf2_init(const ma_hpf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf2* pHPF); MA_API void ma_hpf2_uninit(ma_hpf2* pHPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF); MA_API ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_hpf2_get_latency(const ma_hpf2* pHPF); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double cutoffFrequency; ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */ } ma_hpf_config; MA_API ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_uint32 hpf1Count; ma_uint32 hpf2Count; ma_hpf1* pHPF1; ma_hpf2* pHPF2; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_hpf; MA_API ma_result ma_hpf_get_heap_size(const ma_hpf_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_hpf_init_preallocated(const ma_hpf_config* pConfig, void* pHeap, ma_hpf* pLPF); MA_API ma_result ma_hpf_init(const ma_hpf_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf* pHPF); MA_API void ma_hpf_uninit(ma_hpf* pHPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF); MA_API ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_hpf_get_latency(const ma_hpf* pHPF); /************************************************************************************************************************************************************** Band-Pass Filtering **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double cutoffFrequency; double q; } ma_bpf2_config; MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q); typedef struct { ma_biquad bq; /* The second order band-pass filter is implemented as a biquad filter. */ } ma_bpf2; MA_API ma_result ma_bpf2_get_heap_size(const ma_bpf2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_bpf2_init_preallocated(const ma_bpf2_config* pConfig, void* pHeap, ma_bpf2* pBPF); MA_API ma_result ma_bpf2_init(const ma_bpf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_bpf2* pBPF); MA_API void ma_bpf2_uninit(ma_bpf2* pBPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_bpf2_reinit(const ma_bpf2_config* pConfig, ma_bpf2* pBPF); MA_API ma_result ma_bpf2_process_pcm_frames(ma_bpf2* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_bpf2_get_latency(const ma_bpf2* pBPF); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double cutoffFrequency; ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */ } ma_bpf_config; MA_API ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 bpf2Count; ma_bpf2* pBPF2; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_bpf; MA_API ma_result ma_bpf_get_heap_size(const ma_bpf_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_bpf_init_preallocated(const ma_bpf_config* pConfig, void* pHeap, ma_bpf* pBPF); MA_API ma_result ma_bpf_init(const ma_bpf_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_bpf* pBPF); MA_API void ma_bpf_uninit(ma_bpf* pBPF, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF); MA_API ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_bpf_get_latency(const ma_bpf* pBPF); /************************************************************************************************************************************************************** Notching Filter **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double q; double frequency; } ma_notch2_config, ma_notch_config; MA_API ma_notch2_config ma_notch2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency); typedef struct { ma_biquad bq; } ma_notch2; MA_API ma_result ma_notch2_get_heap_size(const ma_notch2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_notch2_init_preallocated(const ma_notch2_config* pConfig, void* pHeap, ma_notch2* pFilter); MA_API ma_result ma_notch2_init(const ma_notch2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_notch2* pFilter); MA_API void ma_notch2_uninit(ma_notch2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_notch2_reinit(const ma_notch2_config* pConfig, ma_notch2* pFilter); MA_API ma_result ma_notch2_process_pcm_frames(ma_notch2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_notch2_get_latency(const ma_notch2* pFilter); /************************************************************************************************************************************************************** Peaking EQ Filter **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double gainDB; double q; double frequency; } ma_peak2_config, ma_peak_config; MA_API ma_peak2_config ma_peak2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency); typedef struct { ma_biquad bq; } ma_peak2; MA_API ma_result ma_peak2_get_heap_size(const ma_peak2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_peak2_init_preallocated(const ma_peak2_config* pConfig, void* pHeap, ma_peak2* pFilter); MA_API ma_result ma_peak2_init(const ma_peak2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_peak2* pFilter); MA_API void ma_peak2_uninit(ma_peak2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_peak2_reinit(const ma_peak2_config* pConfig, ma_peak2* pFilter); MA_API ma_result ma_peak2_process_pcm_frames(ma_peak2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_peak2_get_latency(const ma_peak2* pFilter); /************************************************************************************************************************************************************** Low Shelf Filter **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double gainDB; double shelfSlope; double frequency; } ma_loshelf2_config, ma_loshelf_config; MA_API ma_loshelf2_config ma_loshelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency); typedef struct { ma_biquad bq; } ma_loshelf2; MA_API ma_result ma_loshelf2_get_heap_size(const ma_loshelf2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_loshelf2_init_preallocated(const ma_loshelf2_config* pConfig, void* pHeap, ma_loshelf2* pFilter); MA_API ma_result ma_loshelf2_init(const ma_loshelf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_loshelf2* pFilter); MA_API void ma_loshelf2_uninit(ma_loshelf2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_loshelf2_reinit(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter); MA_API ma_result ma_loshelf2_process_pcm_frames(ma_loshelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_loshelf2_get_latency(const ma_loshelf2* pFilter); /************************************************************************************************************************************************************** High Shelf Filter **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; double gainDB; double shelfSlope; double frequency; } ma_hishelf2_config, ma_hishelf_config; MA_API ma_hishelf2_config ma_hishelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency); typedef struct { ma_biquad bq; } ma_hishelf2; MA_API ma_result ma_hishelf2_get_heap_size(const ma_hishelf2_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_hishelf2_init_preallocated(const ma_hishelf2_config* pConfig, void* pHeap, ma_hishelf2* pFilter); MA_API ma_result ma_hishelf2_init(const ma_hishelf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hishelf2* pFilter); MA_API void ma_hishelf2_uninit(ma_hishelf2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_hishelf2_reinit(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter); MA_API ma_result ma_hishelf2_process_pcm_frames(ma_hishelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_hishelf2_get_latency(const ma_hishelf2* pFilter); /* Delay */ typedef struct { ma_uint32 channels; ma_uint32 sampleRate; ma_uint32 delayInFrames; ma_bool32 delayStart; /* Set to true to delay the start of the output; false otherwise. */ float wet; /* 0..1. Default = 1. */ float dry; /* 0..1. Default = 1. */ float decay; /* 0..1. Default = 0 (no feedback). Feedback decay. Use this for echo. */ } ma_delay_config; MA_API ma_delay_config ma_delay_config_init(ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 delayInFrames, float decay); typedef struct { ma_delay_config config; ma_uint32 cursor; /* Feedback is written to this cursor. Always equal or in front of the read cursor. */ ma_uint32 bufferSizeInFrames; float* pBuffer; } ma_delay; MA_API ma_result ma_delay_init(const ma_delay_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_delay* pDelay); MA_API void ma_delay_uninit(ma_delay* pDelay, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_delay_process_pcm_frames(ma_delay* pDelay, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount); MA_API void ma_delay_set_wet(ma_delay* pDelay, float value); MA_API float ma_delay_get_wet(const ma_delay* pDelay); MA_API void ma_delay_set_dry(ma_delay* pDelay, float value); MA_API float ma_delay_get_dry(const ma_delay* pDelay); MA_API void ma_delay_set_decay(ma_delay* pDelay, float value); MA_API float ma_delay_get_decay(const ma_delay* pDelay); /* Gainer for smooth volume changes. */ typedef struct { ma_uint32 channels; ma_uint32 smoothTimeInFrames; } ma_gainer_config; MA_API ma_gainer_config ma_gainer_config_init(ma_uint32 channels, ma_uint32 smoothTimeInFrames); typedef struct { ma_gainer_config config; ma_uint32 t; float* pOldGains; float* pNewGains; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_gainer; MA_API ma_result ma_gainer_get_heap_size(const ma_gainer_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_gainer_init_preallocated(const ma_gainer_config* pConfig, void* pHeap, ma_gainer* pGainer); MA_API ma_result ma_gainer_init(const ma_gainer_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_gainer* pGainer); MA_API void ma_gainer_uninit(ma_gainer* pGainer, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_gainer_process_pcm_frames(ma_gainer* pGainer, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_result ma_gainer_set_gain(ma_gainer* pGainer, float newGain); MA_API ma_result ma_gainer_set_gains(ma_gainer* pGainer, float* pNewGains); /* Stereo panner. */ typedef enum { ma_pan_mode_balance = 0, /* Does not blend one side with the other. Technically just a balance. Compatible with other popular audio engines and therefore the default. */ ma_pan_mode_pan /* A true pan. The sound from one side will "move" to the other side and blend with it. */ } ma_pan_mode; typedef struct { ma_format format; ma_uint32 channels; ma_pan_mode mode; float pan; } ma_panner_config; MA_API ma_panner_config ma_panner_config_init(ma_format format, ma_uint32 channels); typedef struct { ma_format format; ma_uint32 channels; ma_pan_mode mode; float pan; /* -1..1 where 0 is no pan, -1 is left side, +1 is right side. Defaults to 0. */ } ma_panner; MA_API ma_result ma_panner_init(const ma_panner_config* pConfig, ma_panner* pPanner); MA_API ma_result ma_panner_process_pcm_frames(ma_panner* pPanner, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API void ma_panner_set_mode(ma_panner* pPanner, ma_pan_mode mode); MA_API ma_pan_mode ma_panner_get_mode(const ma_panner* pPanner); MA_API void ma_panner_set_pan(ma_panner* pPanner, float pan); MA_API float ma_panner_get_pan(const ma_panner* pPanner); /* Fader. */ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; } ma_fader_config; MA_API ma_fader_config ma_fader_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate); typedef struct { ma_fader_config config; float volumeBeg; /* If volumeBeg and volumeEnd is equal to 1, no fading happens (ma_fader_process_pcm_frames() will run as a passthrough). */ float volumeEnd; ma_uint64 lengthInFrames; /* The total length of the fade. */ ma_uint64 cursorInFrames; /* The current time in frames. Incremented by ma_fader_process_pcm_frames(). */ } ma_fader; MA_API ma_result ma_fader_init(const ma_fader_config* pConfig, ma_fader* pFader); MA_API ma_result ma_fader_process_pcm_frames(ma_fader* pFader, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API void ma_fader_get_data_format(const ma_fader* pFader, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate); MA_API void ma_fader_set_fade(ma_fader* pFader, float volumeBeg, float volumeEnd, ma_uint64 lengthInFrames); MA_API float ma_fader_get_current_volume(ma_fader* pFader); /* Spatializer. */ typedef struct { float x; float y; float z; } ma_vec3f; typedef enum { ma_attenuation_model_none, /* No distance attenuation and no spatialization. */ ma_attenuation_model_inverse, /* Equivalent to OpenAL's AL_INVERSE_DISTANCE_CLAMPED. */ ma_attenuation_model_linear, /* Linear attenuation. Equivalent to OpenAL's AL_LINEAR_DISTANCE_CLAMPED. */ ma_attenuation_model_exponential /* Exponential attenuation. Equivalent to OpenAL's AL_EXPONENT_DISTANCE_CLAMPED. */ } ma_attenuation_model; typedef enum { ma_positioning_absolute, ma_positioning_relative } ma_positioning; typedef enum { ma_handedness_right, ma_handedness_left } ma_handedness; typedef struct { ma_uint32 channelsOut; ma_channel* pChannelMapOut; ma_handedness handedness; /* Defaults to right. Forward is -1 on the Z axis. In a left handed system, forward is +1 on the Z axis. */ float coneInnerAngleInRadians; float coneOuterAngleInRadians; float coneOuterGain; float speedOfSound; ma_vec3f worldUp; } ma_spatializer_listener_config; MA_API ma_spatializer_listener_config ma_spatializer_listener_config_init(ma_uint32 channelsOut); typedef struct { ma_spatializer_listener_config config; ma_vec3f position; /* The absolute position of the listener. */ ma_vec3f direction; /* The direction the listener is facing. The world up vector is config.worldUp. */ ma_vec3f velocity; ma_bool32 isEnabled; /* Memory management. */ ma_bool32 _ownsHeap; void* _pHeap; } ma_spatializer_listener; MA_API ma_result ma_spatializer_listener_get_heap_size(const ma_spatializer_listener_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_spatializer_listener_init_preallocated(const ma_spatializer_listener_config* pConfig, void* pHeap, ma_spatializer_listener* pListener); MA_API ma_result ma_spatializer_listener_init(const ma_spatializer_listener_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_uninit(ma_spatializer_listener* pListener, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_channel* ma_spatializer_listener_get_channel_map(ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_set_cone(ma_spatializer_listener* pListener, float innerAngleInRadians, float outerAngleInRadians, float outerGain); MA_API void ma_spatializer_listener_get_cone(const ma_spatializer_listener* pListener, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain); MA_API void ma_spatializer_listener_set_position(ma_spatializer_listener* pListener, float x, float y, float z); MA_API ma_vec3f ma_spatializer_listener_get_position(const ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_set_direction(ma_spatializer_listener* pListener, float x, float y, float z); MA_API ma_vec3f ma_spatializer_listener_get_direction(const ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_set_velocity(ma_spatializer_listener* pListener, float x, float y, float z); MA_API ma_vec3f ma_spatializer_listener_get_velocity(const ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_set_speed_of_sound(ma_spatializer_listener* pListener, float speedOfSound); MA_API float ma_spatializer_listener_get_speed_of_sound(const ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_set_world_up(ma_spatializer_listener* pListener, float x, float y, float z); MA_API ma_vec3f ma_spatializer_listener_get_world_up(const ma_spatializer_listener* pListener); MA_API void ma_spatializer_listener_set_enabled(ma_spatializer_listener* pListener, ma_bool32 isEnabled); MA_API ma_bool32 ma_spatializer_listener_is_enabled(const ma_spatializer_listener* pListener); typedef struct { ma_uint32 channelsIn; ma_uint32 channelsOut; ma_channel* pChannelMapIn; ma_attenuation_model attenuationModel; ma_positioning positioning; ma_handedness handedness; /* Defaults to right. Forward is -1 on the Z axis. In a left handed system, forward is +1 on the Z axis. */ float minGain; float maxGain; float minDistance; float maxDistance; float rolloff; float coneInnerAngleInRadians; float coneOuterAngleInRadians; float coneOuterGain; float dopplerFactor; /* Set to 0 to disable doppler effect. */ float directionalAttenuationFactor; /* Set to 0 to disable directional attenuation. */ ma_uint32 gainSmoothTimeInFrames; /* When the gain of a channel changes during spatialization, the transition will be linearly interpolated over this number of frames. */ } ma_spatializer_config; MA_API ma_spatializer_config ma_spatializer_config_init(ma_uint32 channelsIn, ma_uint32 channelsOut); typedef struct { ma_uint32 channelsIn; ma_uint32 channelsOut; ma_channel* pChannelMapIn; ma_attenuation_model attenuationModel; ma_positioning positioning; ma_handedness handedness; /* Defaults to right. Forward is -1 on the Z axis. In a left handed system, forward is +1 on the Z axis. */ float minGain; float maxGain; float minDistance; float maxDistance; float rolloff; float coneInnerAngleInRadians; float coneOuterAngleInRadians; float coneOuterGain; float dopplerFactor; /* Set to 0 to disable doppler effect. */ float directionalAttenuationFactor; /* Set to 0 to disable directional attenuation. */ ma_uint32 gainSmoothTimeInFrames; /* When the gain of a channel changes during spatialization, the transition will be linearly interpolated over this number of frames. */ ma_vec3f position; ma_vec3f direction; ma_vec3f velocity; /* For doppler effect. */ float dopplerPitch; /* Will be updated by ma_spatializer_process_pcm_frames() and can be used by higher level functions to apply a pitch shift for doppler effect. */ ma_gainer gainer; /* For smooth gain transitions. */ float* pNewChannelGainsOut; /* An offset of _pHeap. Used by ma_spatializer_process_pcm_frames() to store new channel gains. The number of elements in this array is equal to config.channelsOut. */ /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_spatializer; MA_API ma_result ma_spatializer_get_heap_size(const ma_spatializer_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_spatializer_init_preallocated(const ma_spatializer_config* pConfig, void* pHeap, ma_spatializer* pSpatializer); MA_API ma_result ma_spatializer_init(const ma_spatializer_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_spatializer* pSpatializer); MA_API void ma_spatializer_uninit(ma_spatializer* pSpatializer, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_spatializer_process_pcm_frames(ma_spatializer* pSpatializer, ma_spatializer_listener* pListener, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_uint32 ma_spatializer_get_input_channels(const ma_spatializer* pSpatializer); MA_API ma_uint32 ma_spatializer_get_output_channels(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_attenuation_model(ma_spatializer* pSpatializer, ma_attenuation_model attenuationModel); MA_API ma_attenuation_model ma_spatializer_get_attenuation_model(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_positioning(ma_spatializer* pSpatializer, ma_positioning positioning); MA_API ma_positioning ma_spatializer_get_positioning(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_rolloff(ma_spatializer* pSpatializer, float rolloff); MA_API float ma_spatializer_get_rolloff(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_min_gain(ma_spatializer* pSpatializer, float minGain); MA_API float ma_spatializer_get_min_gain(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_max_gain(ma_spatializer* pSpatializer, float maxGain); MA_API float ma_spatializer_get_max_gain(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_min_distance(ma_spatializer* pSpatializer, float minDistance); MA_API float ma_spatializer_get_min_distance(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_max_distance(ma_spatializer* pSpatializer, float maxDistance); MA_API float ma_spatializer_get_max_distance(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_cone(ma_spatializer* pSpatializer, float innerAngleInRadians, float outerAngleInRadians, float outerGain); MA_API void ma_spatializer_get_cone(const ma_spatializer* pSpatializer, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain); MA_API void ma_spatializer_set_doppler_factor(ma_spatializer* pSpatializer, float dopplerFactor); MA_API float ma_spatializer_get_doppler_factor(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_directional_attenuation_factor(ma_spatializer* pSpatializer, float directionalAttenuationFactor); MA_API float ma_spatializer_get_directional_attenuation_factor(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_position(ma_spatializer* pSpatializer, float x, float y, float z); MA_API ma_vec3f ma_spatializer_get_position(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_direction(ma_spatializer* pSpatializer, float x, float y, float z); MA_API ma_vec3f ma_spatializer_get_direction(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_set_velocity(ma_spatializer* pSpatializer, float x, float y, float z); MA_API ma_vec3f ma_spatializer_get_velocity(const ma_spatializer* pSpatializer); MA_API void ma_spatializer_get_relative_position_and_direction(const ma_spatializer* pSpatializer, const ma_spatializer_listener* pListener, ma_vec3f* pRelativePos, ma_vec3f* pRelativeDir); /************************************************************************************************************************************************************ ************************************************************************************************************************************************************* DATA CONVERSION =============== This section contains the APIs for data conversion. You will find everything here for channel mapping, sample format conversion, resampling, etc. ************************************************************************************************************************************************************* ************************************************************************************************************************************************************/ /************************************************************************************************************************************************************** Resampling **************************************************************************************************************************************************************/ typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRateIn; ma_uint32 sampleRateOut; ma_uint32 lpfOrder; /* The low-pass filter order. Setting this to 0 will disable low-pass filtering. */ double lpfNyquistFactor; /* 0..1. Defaults to 1. 1 = Half the sampling frequency (Nyquist Frequency), 0.5 = Quarter the sampling frequency (half Nyquest Frequency), etc. */ } ma_linear_resampler_config; MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut); typedef struct { ma_linear_resampler_config config; ma_uint32 inAdvanceInt; ma_uint32 inAdvanceFrac; ma_uint32 inTimeInt; ma_uint32 inTimeFrac; union { float* f32; ma_int16* s16; } x0; /* The previous input frame. */ union { float* f32; ma_int16* s16; } x1; /* The next input frame. */ ma_lpf lpf; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_linear_resampler; MA_API ma_result ma_linear_resampler_get_heap_size(const ma_linear_resampler_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_linear_resampler_init_preallocated(const ma_linear_resampler_config* pConfig, void* pHeap, ma_linear_resampler* pResampler); MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_linear_resampler* pResampler); MA_API void ma_linear_resampler_uninit(ma_linear_resampler* pResampler, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut); MA_API ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut); MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut); MA_API ma_uint64 ma_linear_resampler_get_input_latency(const ma_linear_resampler* pResampler); MA_API ma_uint64 ma_linear_resampler_get_output_latency(const ma_linear_resampler* pResampler); MA_API ma_result ma_linear_resampler_get_required_input_frame_count(const ma_linear_resampler* pResampler, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount); MA_API ma_result ma_linear_resampler_get_expected_output_frame_count(const ma_linear_resampler* pResampler, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount); MA_API ma_result ma_linear_resampler_reset(ma_linear_resampler* pResampler); typedef struct ma_resampler_config ma_resampler_config; typedef void ma_resampling_backend; typedef struct { ma_result (* onGetHeapSize )(void* pUserData, const ma_resampler_config* pConfig, size_t* pHeapSizeInBytes); ma_result (* onInit )(void* pUserData, const ma_resampler_config* pConfig, void* pHeap, ma_resampling_backend** ppBackend); void (* onUninit )(void* pUserData, ma_resampling_backend* pBackend, const ma_allocation_callbacks* pAllocationCallbacks); ma_result (* onProcess )(void* pUserData, ma_resampling_backend* pBackend, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut); ma_result (* onSetRate )(void* pUserData, ma_resampling_backend* pBackend, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut); /* Optional. Rate changes will be disabled. */ ma_uint64 (* onGetInputLatency )(void* pUserData, const ma_resampling_backend* pBackend); /* Optional. Latency will be reported as 0. */ ma_uint64 (* onGetOutputLatency )(void* pUserData, const ma_resampling_backend* pBackend); /* Optional. Latency will be reported as 0. */ ma_result (* onGetRequiredInputFrameCount )(void* pUserData, const ma_resampling_backend* pBackend, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount); /* Optional. Latency mitigation will be disabled. */ ma_result (* onGetExpectedOutputFrameCount)(void* pUserData, const ma_resampling_backend* pBackend, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount); /* Optional. Latency mitigation will be disabled. */ ma_result (* onReset )(void* pUserData, ma_resampling_backend* pBackend); } ma_resampling_backend_vtable; typedef enum { ma_resample_algorithm_linear = 0, /* Fastest, lowest quality. Optional low-pass filtering. Default. */ ma_resample_algorithm_custom, } ma_resample_algorithm; struct ma_resampler_config { ma_format format; /* Must be either ma_format_f32 or ma_format_s16. */ ma_uint32 channels; ma_uint32 sampleRateIn; ma_uint32 sampleRateOut; ma_resample_algorithm algorithm; /* When set to ma_resample_algorithm_custom, pBackendVTable will be used. */ ma_resampling_backend_vtable* pBackendVTable; void* pBackendUserData; struct { ma_uint32 lpfOrder; } linear; }; MA_API ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm); typedef struct { ma_resampling_backend* pBackend; ma_resampling_backend_vtable* pBackendVTable; void* pBackendUserData; ma_format format; ma_uint32 channels; ma_uint32 sampleRateIn; ma_uint32 sampleRateOut; union { ma_linear_resampler linear; } state; /* State for stock resamplers so we can avoid a malloc. For stock resamplers, pBackend will point here. */ /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_resampler; MA_API ma_result ma_resampler_get_heap_size(const ma_resampler_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_resampler_init_preallocated(const ma_resampler_config* pConfig, void* pHeap, ma_resampler* pResampler); /* Initializes a new resampler object from a config. */ MA_API ma_result ma_resampler_init(const ma_resampler_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_resampler* pResampler); /* Uninitializes a resampler. */ MA_API void ma_resampler_uninit(ma_resampler* pResampler, const ma_allocation_callbacks* pAllocationCallbacks); /* Converts the given input data. Both the input and output frames must be in the format specified in the config when the resampler was initilized. On input, [pFrameCountOut] contains the number of output frames to process. On output it contains the number of output frames that were actually processed, which may be less than the requested amount which will happen if there's not enough input data. You can use ma_resampler_get_expected_output_frame_count() to know how many output frames will be processed for a given number of input frames. On input, [pFrameCountIn] contains the number of input frames contained in [pFramesIn]. On output it contains the number of whole input frames that were actually processed. You can use ma_resampler_get_required_input_frame_count() to know how many input frames you should provide for a given number of output frames. [pFramesIn] can be NULL, in which case zeroes will be used instead. If [pFramesOut] is NULL, a seek is performed. In this case, if [pFrameCountOut] is not NULL it will seek by the specified number of output frames. Otherwise, if [pFramesCountOut] is NULL and [pFrameCountIn] is not NULL, it will seek by the specified number of input frames. When seeking, [pFramesIn] is allowed to NULL, in which case the internal timing state will be updated, but no input will be processed. In this case, any internal filter state will be updated as if zeroes were passed in. It is an error for [pFramesOut] to be non-NULL and [pFrameCountOut] to be NULL. It is an error for both [pFrameCountOut] and [pFrameCountIn] to be NULL. */ MA_API ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut); /* Sets the input and output sample sample rate. */ MA_API ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut); /* Sets the input and output sample rate as a ratio. The ration is in/out. */ MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio); /* Retrieves the latency introduced by the resampler in input frames. */ MA_API ma_uint64 ma_resampler_get_input_latency(const ma_resampler* pResampler); /* Retrieves the latency introduced by the resampler in output frames. */ MA_API ma_uint64 ma_resampler_get_output_latency(const ma_resampler* pResampler); /* Calculates the number of whole input frames that would need to be read from the client in order to output the specified number of output frames. The returned value does not include cached input frames. It only returns the number of extra frames that would need to be read from the input buffer in order to output the specified number of output frames. */ MA_API ma_result ma_resampler_get_required_input_frame_count(const ma_resampler* pResampler, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount); /* Calculates the number of whole output frames that would be output after fully reading and consuming the specified number of input frames. */ MA_API ma_result ma_resampler_get_expected_output_frame_count(const ma_resampler* pResampler, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount); /* Resets the resampler's timer and clears it's internal cache. */ MA_API ma_result ma_resampler_reset(ma_resampler* pResampler); /************************************************************************************************************************************************************** Channel Conversion **************************************************************************************************************************************************************/ typedef enum { ma_channel_conversion_path_unknown, ma_channel_conversion_path_passthrough, ma_channel_conversion_path_mono_out, /* Converting to mono. */ ma_channel_conversion_path_mono_in, /* Converting from mono. */ ma_channel_conversion_path_shuffle, /* Simple shuffle. Will use this when all channels are present in both input and output channel maps, but just in a different order. */ ma_channel_conversion_path_weights /* Blended based on weights. */ } ma_channel_conversion_path; typedef enum { ma_mono_expansion_mode_duplicate = 0, /* The default. */ ma_mono_expansion_mode_average, /* Average the mono channel across all channels. */ ma_mono_expansion_mode_stereo_only, /* Duplicate to the left and right channels only and ignore the others. */ ma_mono_expansion_mode_default = ma_mono_expansion_mode_duplicate } ma_mono_expansion_mode; typedef struct { ma_format format; ma_uint32 channelsIn; ma_uint32 channelsOut; const ma_channel* pChannelMapIn; const ma_channel* pChannelMapOut; ma_channel_mix_mode mixingMode; ma_bool32 calculateLFEFromSpatialChannels; /* When an output LFE channel is present, but no input LFE, set to true to set the output LFE to the average of all spatial channels (LR, FR, etc.). Ignored when an input LFE is present. */ float** ppWeights; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */ } ma_channel_converter_config; MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel* pChannelMapIn, ma_uint32 channelsOut, const ma_channel* pChannelMapOut, ma_channel_mix_mode mixingMode); typedef struct { ma_format format; ma_uint32 channelsIn; ma_uint32 channelsOut; ma_channel_mix_mode mixingMode; ma_channel_conversion_path conversionPath; ma_channel* pChannelMapIn; ma_channel* pChannelMapOut; ma_uint8* pShuffleTable; /* Indexed by output channel index. */ union { float** f32; ma_int32** s16; } weights; /* [in][out] */ /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_channel_converter; MA_API ma_result ma_channel_converter_get_heap_size(const ma_channel_converter_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_channel_converter_init_preallocated(const ma_channel_converter_config* pConfig, void* pHeap, ma_channel_converter* pConverter); MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_channel_converter* pConverter); MA_API void ma_channel_converter_uninit(ma_channel_converter* pConverter, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount); MA_API ma_result ma_channel_converter_get_input_channel_map(const ma_channel_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_channel_converter_get_output_channel_map(const ma_channel_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap); /************************************************************************************************************************************************************** Data Conversion **************************************************************************************************************************************************************/ typedef struct { ma_format formatIn; ma_format formatOut; ma_uint32 channelsIn; ma_uint32 channelsOut; ma_uint32 sampleRateIn; ma_uint32 sampleRateOut; ma_channel* pChannelMapIn; ma_channel* pChannelMapOut; ma_dither_mode ditherMode; ma_channel_mix_mode channelMixMode; ma_bool32 calculateLFEFromSpatialChannels; /* When an output LFE channel is present, but no input LFE, set to true to set the output LFE to the average of all spatial channels (LR, FR, etc.). Ignored when an input LFE is present. */ float** ppChannelWeights; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */ ma_bool32 allowDynamicSampleRate; ma_resampler_config resampling; } ma_data_converter_config; MA_API ma_data_converter_config ma_data_converter_config_init_default(void); MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut); typedef enum { ma_data_converter_execution_path_passthrough, /* No conversion. */ ma_data_converter_execution_path_format_only, /* Only format conversion. */ ma_data_converter_execution_path_channels_only, /* Only channel conversion. */ ma_data_converter_execution_path_resample_only, /* Only resampling. */ ma_data_converter_execution_path_resample_first, /* All conversions, but resample as the first step. */ ma_data_converter_execution_path_channels_first /* All conversions, but channels as the first step. */ } ma_data_converter_execution_path; typedef struct { ma_format formatIn; ma_format formatOut; ma_uint32 channelsIn; ma_uint32 channelsOut; ma_uint32 sampleRateIn; ma_uint32 sampleRateOut; ma_dither_mode ditherMode; ma_data_converter_execution_path executionPath; /* The execution path the data converter will follow when processing. */ ma_channel_converter channelConverter; ma_resampler resampler; ma_bool8 hasPreFormatConversion; ma_bool8 hasPostFormatConversion; ma_bool8 hasChannelConverter; ma_bool8 hasResampler; ma_bool8 isPassthrough; /* Memory management. */ ma_bool8 _ownsHeap; void* _pHeap; } ma_data_converter; MA_API ma_result ma_data_converter_get_heap_size(const ma_data_converter_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_data_converter_init_preallocated(const ma_data_converter_config* pConfig, void* pHeap, ma_data_converter* pConverter); MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_converter* pConverter); MA_API void ma_data_converter_uninit(ma_data_converter* pConverter, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut); MA_API ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut); MA_API ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut); MA_API ma_uint64 ma_data_converter_get_input_latency(const ma_data_converter* pConverter); MA_API ma_uint64 ma_data_converter_get_output_latency(const ma_data_converter* pConverter); MA_API ma_result ma_data_converter_get_required_input_frame_count(const ma_data_converter* pConverter, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount); MA_API ma_result ma_data_converter_get_expected_output_frame_count(const ma_data_converter* pConverter, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount); MA_API ma_result ma_data_converter_get_input_channel_map(const ma_data_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_data_converter_get_output_channel_map(const ma_data_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_data_converter_reset(ma_data_converter* pConverter); /************************************************************************************************************************************************************ Format Conversion ************************************************************************************************************************************************************/ MA_API void ma_pcm_u8_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_u8_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_u8_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_u8_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s16_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s16_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s16_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s16_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s24_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s24_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s24_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s24_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_s32_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_f32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_f32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_f32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_f32_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode); MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode); MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode); /* Deinterleaves an interleaved buffer. */ MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames); /* Interleaves a group of deinterleaved buffers. */ MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames); /************************************************************************************************************************************************************ Channel Maps ************************************************************************************************************************************************************/ /* This is used in the shuffle table to indicate that the channel index is undefined and should be ignored. */ #define MA_CHANNEL_INDEX_NULL 255 /* Retrieves the channel position of the specified channel in the given channel map. The pChannelMap parameter can be null, in which case miniaudio's default channel map will be assumed. */ MA_API ma_channel ma_channel_map_get_channel(const ma_channel* pChannelMap, ma_uint32 channelCount, ma_uint32 channelIndex); /* Initializes a blank channel map. When a blank channel map is specified anywhere it indicates that the native channel map should be used. */ MA_API void ma_channel_map_init_blank(ma_channel* pChannelMap, ma_uint32 channels); /* Helper for retrieving a standard channel map. The output channel map buffer must have a capacity of at least `channelMapCap`. */ MA_API void ma_channel_map_init_standard(ma_standard_channel_map standardChannelMap, ma_channel* pChannelMap, size_t channelMapCap, ma_uint32 channels); /* Copies a channel map. Both input and output channel map buffers must have a capacity of at at least `channels`. */ MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels); /* Copies a channel map if one is specified, otherwise copies the default channel map. The output buffer must have a capacity of at least `channels`. If not NULL, the input channel map must also have a capacity of at least `channels`. */ MA_API void ma_channel_map_copy_or_default(ma_channel* pOut, size_t channelMapCapOut, const ma_channel* pIn, ma_uint32 channels); /* Determines whether or not a channel map is valid. A blank channel map is valid (all channels set to MA_CHANNEL_NONE). The way a blank channel map is handled is context specific, but is usually treated as a passthrough. Invalid channel maps: - A channel map with no channels - A channel map with more than one channel and a mono channel The channel map buffer must have a capacity of at least `channels`. */ MA_API ma_bool32 ma_channel_map_is_valid(const ma_channel* pChannelMap, ma_uint32 channels); /* Helper for comparing two channel maps for equality. This assumes the channel count is the same between the two. Both channels map buffers must have a capacity of at least `channels`. */ MA_API ma_bool32 ma_channel_map_is_equal(const ma_channel* pChannelMapA, const ma_channel* pChannelMapB, ma_uint32 channels); /* Helper for determining if a channel map is blank (all channels set to MA_CHANNEL_NONE). The channel map buffer must have a capacity of at least `channels`. */ MA_API ma_bool32 ma_channel_map_is_blank(const ma_channel* pChannelMap, ma_uint32 channels); /* Helper for determining whether or not a channel is present in the given channel map. The channel map buffer must have a capacity of at least `channels`. */ MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel* pChannelMap, ma_channel channelPosition); /* Find a channel position in the given channel map. Returns MA_TRUE if the channel is found; MA_FALSE otherwise. The index of the channel is output to `pChannelIndex`. The channel map buffer must have a capacity of at least `channels`. */ MA_API ma_bool32 ma_channel_map_find_channel_position(ma_uint32 channels, const ma_channel* pChannelMap, ma_channel channelPosition, ma_uint32* pChannelIndex); /* Generates a string representing the given channel map. This is for printing and debugging purposes, not serialization/deserialization. Returns the length of the string, not including the null terminator. */ MA_API size_t ma_channel_map_to_string(const ma_channel* pChannelMap, ma_uint32 channels, char* pBufferOut, size_t bufferCap); /* Retrieves a human readable version of a channel position. */ MA_API const char* ma_channel_position_to_string(ma_channel channel); /************************************************************************************************************************************************************ Conversion Helpers ************************************************************************************************************************************************************/ /* High-level helper for doing a full format conversion in one go. Returns the number of output frames. Call this with pOut set to NULL to determine the required size of the output buffer. frameCountOut should be set to the capacity of pOut. If pOut is NULL, frameCountOut is ignored. A return value of 0 indicates an error. This function is useful for one-off bulk conversions, but if you're streaming data you should use the ma_data_converter APIs instead. */ MA_API ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn); MA_API ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig); /************************************************************************************************************************************************************ Ring Buffer ************************************************************************************************************************************************************/ typedef struct { void* pBuffer; ma_uint32 subbufferSizeInBytes; ma_uint32 subbufferCount; ma_uint32 subbufferStrideInBytes; MA_ATOMIC(4, ma_uint32) encodedReadOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. Must be used atomically. */ MA_ATOMIC(4, ma_uint32) encodedWriteOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. Must be used atomically. */ ma_bool8 ownsBuffer; /* Used to know whether or not miniaudio is responsible for free()-ing the buffer. */ ma_bool8 clearOnWriteAcquire; /* When set, clears the acquired write buffer before returning from ma_rb_acquire_write(). */ ma_allocation_callbacks allocationCallbacks; } ma_rb; MA_API ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB); MA_API ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB); MA_API void ma_rb_uninit(ma_rb* pRB); MA_API void ma_rb_reset(ma_rb* pRB); MA_API ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut); MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes); MA_API ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut); MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes); MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes); MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes); MA_API ma_int32 ma_rb_pointer_distance(ma_rb* pRB); /* Returns the distance between the write pointer and the read pointer. Should never be negative for a correct program. Will return the number of bytes that can be read before the read pointer hits the write pointer. */ MA_API ma_uint32 ma_rb_available_read(ma_rb* pRB); MA_API ma_uint32 ma_rb_available_write(ma_rb* pRB); MA_API size_t ma_rb_get_subbuffer_size(ma_rb* pRB); MA_API size_t ma_rb_get_subbuffer_stride(ma_rb* pRB); MA_API size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex); MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer); typedef struct { ma_rb rb; ma_format format; ma_uint32 channels; } ma_pcm_rb; MA_API ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB); MA_API ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB); MA_API void ma_pcm_rb_uninit(ma_pcm_rb* pRB); MA_API void ma_pcm_rb_reset(ma_pcm_rb* pRB); MA_API ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut); MA_API ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames); MA_API ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut); MA_API ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames); MA_API ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames); MA_API ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames); MA_API ma_int32 ma_pcm_rb_pointer_distance(ma_pcm_rb* pRB); /* Return value is in frames. */ MA_API ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB); MA_API ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB); MA_API ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB); MA_API ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB); MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex); MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer); /* The idea of the duplex ring buffer is to act as the intermediary buffer when running two asynchronous devices in a duplex set up. The capture device writes to it, and then a playback device reads from it. At the moment this is just a simple naive implementation, but in the future I want to implement some dynamic resampling to seamlessly handle desyncs. Note that the API is work in progress and may change at any time in any version. The size of the buffer is based on the capture side since that's what'll be written to the buffer. It is based on the capture period size in frames. The internal sample rate of the capture device is also needed in order to calculate the size. */ typedef struct { ma_pcm_rb rb; } ma_duplex_rb; MA_API ma_result ma_duplex_rb_init(ma_format captureFormat, ma_uint32 captureChannels, ma_uint32 sampleRate, ma_uint32 captureInternalSampleRate, ma_uint32 captureInternalPeriodSizeInFrames, const ma_allocation_callbacks* pAllocationCallbacks, ma_duplex_rb* pRB); MA_API ma_result ma_duplex_rb_uninit(ma_duplex_rb* pRB); /************************************************************************************************************************************************************ Miscellaneous Helpers ************************************************************************************************************************************************************/ /* Retrieves a human readable description of the given result code. */ MA_API const char* ma_result_description(ma_result result); /* malloc() */ MA_API void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks); /* calloc() */ MA_API void* ma_calloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks); /* realloc() */ MA_API void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks); /* free() */ MA_API void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks); /* Performs an aligned malloc, with the assumption that the alignment is a power of 2. */ MA_API void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks); /* Free's an aligned malloc'd buffer. */ MA_API void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks); /* Retrieves a friendly name for a format. */ MA_API const char* ma_get_format_name(ma_format format); /* Blends two frames in floating point format. */ MA_API void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels); /* Retrieves the size of a sample in bytes for the given format. This API is efficient and is implemented using a lookup table. Thread Safety: SAFE This API is pure. */ MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format); static MA_INLINE ma_uint32 ma_get_bytes_per_frame(ma_format format, ma_uint32 channels) { return ma_get_bytes_per_sample(format) * channels; } /* Converts a log level to a string. */ MA_API const char* ma_log_level_to_string(ma_uint32 logLevel); /************************************************************************************************************************************************************ Synchronization ************************************************************************************************************************************************************/ /* Locks a spinlock. */ MA_API ma_result ma_spinlock_lock(volatile ma_spinlock* pSpinlock); /* Locks a spinlock, but does not yield() when looping. */ MA_API ma_result ma_spinlock_lock_noyield(volatile ma_spinlock* pSpinlock); /* Unlocks a spinlock. */ MA_API ma_result ma_spinlock_unlock(volatile ma_spinlock* pSpinlock); #ifndef MA_NO_THREADING /* Creates a mutex. A mutex must be created from a valid context. A mutex is initially unlocked. */ MA_API ma_result ma_mutex_init(ma_mutex* pMutex); /* Deletes a mutex. */ MA_API void ma_mutex_uninit(ma_mutex* pMutex); /* Locks a mutex with an infinite timeout. */ MA_API void ma_mutex_lock(ma_mutex* pMutex); /* Unlocks a mutex. */ MA_API void ma_mutex_unlock(ma_mutex* pMutex); /* Initializes an auto-reset event. */ MA_API ma_result ma_event_init(ma_event* pEvent); /* Uninitializes an auto-reset event. */ MA_API void ma_event_uninit(ma_event* pEvent); /* Waits for the specified auto-reset event to become signalled. */ MA_API ma_result ma_event_wait(ma_event* pEvent); /* Signals the specified auto-reset event. */ MA_API ma_result ma_event_signal(ma_event* pEvent); #endif /* MA_NO_THREADING */ /* Fence ===== This locks while the counter is larger than 0. Counter can be incremented and decremented by any thread, but care needs to be taken when waiting. It is possible for one thread to acquire the fence just as another thread returns from ma_fence_wait(). The idea behind a fence is to allow you to wait for a group of operations to complete. When an operation starts, the counter is incremented which locks the fence. When the operation completes, the fence will be released which decrements the counter. ma_fence_wait() will block until the counter hits zero. If threading is disabled, ma_fence_wait() will spin on the counter. */ typedef struct { #ifndef MA_NO_THREADING ma_event e; #endif ma_uint32 counter; } ma_fence; MA_API ma_result ma_fence_init(ma_fence* pFence); MA_API void ma_fence_uninit(ma_fence* pFence); MA_API ma_result ma_fence_acquire(ma_fence* pFence); /* Increment counter. */ MA_API ma_result ma_fence_release(ma_fence* pFence); /* Decrement counter. */ MA_API ma_result ma_fence_wait(ma_fence* pFence); /* Wait for counter to reach 0. */ /* Notification callback for asynchronous operations. */ typedef void ma_async_notification; typedef struct { void (* onSignal)(ma_async_notification* pNotification); } ma_async_notification_callbacks; MA_API ma_result ma_async_notification_signal(ma_async_notification* pNotification); /* Simple polling notification. This just sets a variable when the notification has been signalled which is then polled with ma_async_notification_poll_is_signalled() */ typedef struct { ma_async_notification_callbacks cb; ma_bool32 signalled; } ma_async_notification_poll; MA_API ma_result ma_async_notification_poll_init(ma_async_notification_poll* pNotificationPoll); MA_API ma_bool32 ma_async_notification_poll_is_signalled(const ma_async_notification_poll* pNotificationPoll); /* Event Notification This uses an ma_event. If threading is disabled (MA_NO_THREADING), initialization will fail. */ typedef struct { ma_async_notification_callbacks cb; #ifndef MA_NO_THREADING ma_event e; #endif } ma_async_notification_event; MA_API ma_result ma_async_notification_event_init(ma_async_notification_event* pNotificationEvent); MA_API ma_result ma_async_notification_event_uninit(ma_async_notification_event* pNotificationEvent); MA_API ma_result ma_async_notification_event_wait(ma_async_notification_event* pNotificationEvent); MA_API ma_result ma_async_notification_event_signal(ma_async_notification_event* pNotificationEvent); /************************************************************************************************************************************************************ Job Queue ************************************************************************************************************************************************************/ /* Slot Allocator -------------- The idea of the slot allocator is for it to be used in conjunction with a fixed sized buffer. You use the slot allocator to allocator an index that can be used as the insertion point for an object. Slots are reference counted to help mitigate the ABA problem in the lock-free queue we use for tracking jobs. The slot index is stored in the low 32 bits. The reference counter is stored in the high 32 bits: +-----------------+-----------------+ | 32 Bits | 32 Bits | +-----------------+-----------------+ | Reference Count | Slot Index | +-----------------+-----------------+ */ typedef struct { ma_uint32 capacity; /* The number of slots to make available. */ } ma_slot_allocator_config; MA_API ma_slot_allocator_config ma_slot_allocator_config_init(ma_uint32 capacity); typedef struct { MA_ATOMIC(4, ma_uint32) bitfield; /* Must be used atomically because the allocation and freeing routines need to make copies of this which must never be optimized away by the compiler. */ } ma_slot_allocator_group; typedef struct { ma_slot_allocator_group* pGroups; /* Slots are grouped in chunks of 32. */ ma_uint32* pSlots; /* 32 bits for reference counting for ABA mitigation. */ ma_uint32 count; /* Allocation count. */ ma_uint32 capacity; /* Memory management. */ ma_bool32 _ownsHeap; void* _pHeap; } ma_slot_allocator; MA_API ma_result ma_slot_allocator_get_heap_size(const ma_slot_allocator_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_slot_allocator_init_preallocated(const ma_slot_allocator_config* pConfig, void* pHeap, ma_slot_allocator* pAllocator); MA_API ma_result ma_slot_allocator_init(const ma_slot_allocator_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_slot_allocator* pAllocator); MA_API void ma_slot_allocator_uninit(ma_slot_allocator* pAllocator, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_slot_allocator_alloc(ma_slot_allocator* pAllocator, ma_uint64* pSlot); MA_API ma_result ma_slot_allocator_free(ma_slot_allocator* pAllocator, ma_uint64 slot); typedef struct ma_job ma_job; /* Callback for processing a job. Each job type will have their own processing callback which will be called by ma_job_process(). */ typedef ma_result (* ma_job_proc)(ma_job* pJob); /* When a job type is added here an callback needs to be added go "g_jobVTable" in the implementation section. */ typedef enum { /* Miscellaneous. */ MA_JOB_TYPE_QUIT = 0, MA_JOB_TYPE_CUSTOM, /* Resource Manager. */ MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER_NODE, MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER_NODE, MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE, MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER, MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER, MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_STREAM, MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_STREAM, MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_STREAM, MA_JOB_TYPE_RESOURCE_MANAGER_SEEK_DATA_STREAM, /* Device. */ MA_JOB_TYPE_DEVICE_AAUDIO_REROUTE, /* Count. Must always be last. */ MA_JOB_TYPE_COUNT } ma_job_type; struct ma_job { union { struct { ma_uint16 code; /* Job type. */ ma_uint16 slot; /* Index into a ma_slot_allocator. */ ma_uint32 refcount; } breakup; ma_uint64 allocation; } toc; /* 8 bytes. We encode the job code into the slot allocation data to save space. */ MA_ATOMIC(8, ma_uint64) next; /* refcount + slot for the next item. Does not include the job code. */ ma_uint32 order; /* Execution order. Used to create a data dependency and ensure a job is executed in order. Usage is contextual depending on the job type. */ union { /* Miscellaneous. */ struct { ma_job_proc proc; ma_uintptr data0; ma_uintptr data1; } custom; /* Resource Manager */ union { struct { /*ma_resource_manager**/ void* pResourceManager; /*ma_resource_manager_data_buffer_node**/ void* pDataBufferNode; char* pFilePath; wchar_t* pFilePathW; ma_uint32 flags; /* Resource manager data source flags that were used when initializing the data buffer. */ ma_async_notification* pInitNotification; /* Signalled when the data buffer has been initialized and the format/channels/rate can be retrieved. */ ma_async_notification* pDoneNotification; /* Signalled when the data buffer has been fully decoded. Will be passed through to MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE when decoding. */ ma_fence* pInitFence; /* Released when initialization of the decoder is complete. */ ma_fence* pDoneFence; /* Released if initialization of the decoder fails. Passed through to PAGE_DATA_BUFFER_NODE untouched if init is successful. */ } loadDataBufferNode; struct { /*ma_resource_manager**/ void* pResourceManager; /*ma_resource_manager_data_buffer_node**/ void* pDataBufferNode; ma_async_notification* pDoneNotification; ma_fence* pDoneFence; } freeDataBufferNode; struct { /*ma_resource_manager**/ void* pResourceManager; /*ma_resource_manager_data_buffer_node**/ void* pDataBufferNode; /*ma_decoder**/ void* pDecoder; ma_async_notification* pDoneNotification; /* Signalled when the data buffer has been fully decoded. */ ma_fence* pDoneFence; /* Passed through from LOAD_DATA_BUFFER_NODE and released when the data buffer completes decoding or an error occurs. */ } pageDataBufferNode; struct { /*ma_resource_manager_data_buffer**/ void* pDataBuffer; ma_async_notification* pInitNotification; /* Signalled when the data buffer has been initialized and the format/channels/rate can be retrieved. */ ma_async_notification* pDoneNotification; /* Signalled when the data buffer has been fully decoded. */ ma_fence* pInitFence; /* Released when the data buffer has been initialized and the format/channels/rate can be retrieved. */ ma_fence* pDoneFence; /* Released when the data buffer has been fully decoded. */ ma_uint64 rangeBegInPCMFrames; ma_uint64 rangeEndInPCMFrames; ma_uint64 loopPointBegInPCMFrames; ma_uint64 loopPointEndInPCMFrames; ma_uint32 isLooping; } loadDataBuffer; struct { /*ma_resource_manager_data_buffer**/ void* pDataBuffer; ma_async_notification* pDoneNotification; ma_fence* pDoneFence; } freeDataBuffer; struct { /*ma_resource_manager_data_stream**/ void* pDataStream; char* pFilePath; /* Allocated when the job is posted, freed by the job thread after loading. */ wchar_t* pFilePathW; /* ^ As above ^. Only used if pFilePath is NULL. */ ma_uint64 initialSeekPoint; ma_async_notification* pInitNotification; /* Signalled after the first two pages have been decoded and frames can be read from the stream. */ ma_fence* pInitFence; } loadDataStream; struct { /*ma_resource_manager_data_stream**/ void* pDataStream; ma_async_notification* pDoneNotification; ma_fence* pDoneFence; } freeDataStream; struct { /*ma_resource_manager_data_stream**/ void* pDataStream; ma_uint32 pageIndex; /* The index of the page to decode into. */ } pageDataStream; struct { /*ma_resource_manager_data_stream**/ void* pDataStream; ma_uint64 frameIndex; } seekDataStream; } resourceManager; /* Device. */ union { union { struct { /*ma_device**/ void* pDevice; /*ma_device_type*/ ma_uint32 deviceType; } reroute; } aaudio; } device; } data; }; MA_API ma_job ma_job_init(ma_uint16 code); MA_API ma_result ma_job_process(ma_job* pJob); /* When set, ma_job_queue_next() will not wait and no semaphore will be signaled in ma_job_queue_post(). ma_job_queue_next() will return MA_NO_DATA_AVAILABLE if nothing is available. This flag should always be used for platforms that do not support multithreading. */ typedef enum { MA_JOB_QUEUE_FLAG_NON_BLOCKING = 0x00000001 } ma_job_queue_flags; typedef struct { ma_uint32 flags; ma_uint32 capacity; /* The maximum number of jobs that can fit in the queue at a time. */ } ma_job_queue_config; MA_API ma_job_queue_config ma_job_queue_config_init(ma_uint32 flags, ma_uint32 capacity); typedef struct { ma_uint32 flags; /* Flags passed in at initialization time. */ ma_uint32 capacity; /* The maximum number of jobs that can fit in the queue at a time. Set by the config. */ MA_ATOMIC(8, ma_uint64) head; /* The first item in the list. Required for removing from the top of the list. */ MA_ATOMIC(8, ma_uint64) tail; /* The last item in the list. Required for appending to the end of the list. */ #ifndef MA_NO_THREADING ma_semaphore sem; /* Only used when MA_JOB_QUEUE_FLAG_NON_BLOCKING is unset. */ #endif ma_slot_allocator allocator; ma_job* pJobs; #ifndef MA_USE_EXPERIMENTAL_LOCK_FREE_JOB_QUEUE ma_spinlock lock; #endif /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_job_queue; MA_API ma_result ma_job_queue_get_heap_size(const ma_job_queue_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_job_queue_init_preallocated(const ma_job_queue_config* pConfig, void* pHeap, ma_job_queue* pQueue); MA_API ma_result ma_job_queue_init(const ma_job_queue_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_job_queue* pQueue); MA_API void ma_job_queue_uninit(ma_job_queue* pQueue, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_job_queue_post(ma_job_queue* pQueue, const ma_job* pJob); MA_API ma_result ma_job_queue_next(ma_job_queue* pQueue, ma_job* pJob); /* Returns MA_CANCELLED if the next job is a quit job. */ /************************************************************************************************************************************************************ ************************************************************************************************************************************************************* DEVICE I/O ========== This section contains the APIs for device playback and capture. Here is where you'll find ma_device_init(), etc. ************************************************************************************************************************************************************* ************************************************************************************************************************************************************/ #ifndef MA_NO_DEVICE_IO /* Some backends are only supported on certain platforms. */ #if defined(MA_WIN32) #define MA_SUPPORT_WASAPI #if defined(MA_WIN32_DESKTOP) /* DirectSound and WinMM backends are only supported on desktops. */ #define MA_SUPPORT_DSOUND #define MA_SUPPORT_WINMM #define MA_SUPPORT_JACK /* JACK is technically supported on Windows, but I don't know how many people use it in practice... */ #endif #endif #if defined(MA_UNIX) #if defined(MA_LINUX) #if !defined(MA_ANDROID) /* ALSA is not supported on Android. */ #define MA_SUPPORT_ALSA #endif #endif #if !defined(MA_BSD) && !defined(MA_ANDROID) && !defined(MA_EMSCRIPTEN) #define MA_SUPPORT_PULSEAUDIO #define MA_SUPPORT_JACK #endif #if defined(__OpenBSD__) /* <-- Change this to "#if defined(MA_BSD)" to enable sndio on all BSD flavors. */ #define MA_SUPPORT_SNDIO /* sndio is only supported on OpenBSD for now. May be expanded later if there's demand. */ #endif #if defined(__NetBSD__) || defined(__OpenBSD__) #define MA_SUPPORT_AUDIO4 /* Only support audio(4) on platforms with known support. */ #endif #if defined(__FreeBSD__) || defined(__DragonFly__) #define MA_SUPPORT_OSS /* Only support OSS on specific platforms with known support. */ #endif #endif #if defined(MA_ANDROID) #define MA_SUPPORT_AAUDIO #define MA_SUPPORT_OPENSL #endif #if defined(MA_APPLE) #define MA_SUPPORT_COREAUDIO #endif #if defined(MA_EMSCRIPTEN) #define MA_SUPPORT_WEBAUDIO #endif /* All platforms should support custom backends. */ #define MA_SUPPORT_CUSTOM /* Explicitly disable the Null backend for Emscripten because it uses a background thread which is not properly supported right now. */ #if !defined(MA_EMSCRIPTEN) #define MA_SUPPORT_NULL #endif #if defined(MA_SUPPORT_WASAPI) && !defined(MA_NO_WASAPI) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_WASAPI)) #define MA_HAS_WASAPI #endif #if defined(MA_SUPPORT_DSOUND) && !defined(MA_NO_DSOUND) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_DSOUND)) #define MA_HAS_DSOUND #endif #if defined(MA_SUPPORT_WINMM) && !defined(MA_NO_WINMM) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_WINMM)) #define MA_HAS_WINMM #endif #if defined(MA_SUPPORT_ALSA) && !defined(MA_NO_ALSA) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_ALSA)) #define MA_HAS_ALSA #endif #if defined(MA_SUPPORT_PULSEAUDIO) && !defined(MA_NO_PULSEAUDIO) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_PULSEAUDIO)) #define MA_HAS_PULSEAUDIO #endif #if defined(MA_SUPPORT_JACK) && !defined(MA_NO_JACK) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_JACK)) #define MA_HAS_JACK #endif #if defined(MA_SUPPORT_COREAUDIO) && !defined(MA_NO_COREAUDIO) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_COREAUDIO)) #define MA_HAS_COREAUDIO #endif #if defined(MA_SUPPORT_SNDIO) && !defined(MA_NO_SNDIO) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_SNDIO)) #define MA_HAS_SNDIO #endif #if defined(MA_SUPPORT_AUDIO4) && !defined(MA_NO_AUDIO4) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_AUDIO4)) #define MA_HAS_AUDIO4 #endif #if defined(MA_SUPPORT_OSS) && !defined(MA_NO_OSS) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_OSS)) #define MA_HAS_OSS #endif #if defined(MA_SUPPORT_AAUDIO) && !defined(MA_NO_AAUDIO) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_AAUDIO)) #define MA_HAS_AAUDIO #endif #if defined(MA_SUPPORT_OPENSL) && !defined(MA_NO_OPENSL) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_OPENSL)) #define MA_HAS_OPENSL #endif #if defined(MA_SUPPORT_WEBAUDIO) && !defined(MA_NO_WEBAUDIO) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_WEBAUDIO)) #define MA_HAS_WEBAUDIO #endif #if defined(MA_SUPPORT_CUSTOM) && !defined(MA_NO_CUSTOM) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_CUSTOM)) #define MA_HAS_CUSTOM #endif #if defined(MA_SUPPORT_NULL) && !defined(MA_NO_NULL) && (!defined(MA_ENABLE_ONLY_SPECIFIC_BACKENDS) || defined(MA_ENABLE_NULL)) #define MA_HAS_NULL #endif typedef enum { ma_device_state_uninitialized = 0, ma_device_state_stopped = 1, /* The device's default state after initialization. */ ma_device_state_started = 2, /* The device is started and is requesting and/or delivering audio data. */ ma_device_state_starting = 3, /* Transitioning from a stopped state to started. */ ma_device_state_stopping = 4 /* Transitioning from a started state to stopped. */ } ma_device_state; #ifdef MA_SUPPORT_WASAPI /* We need a IMMNotificationClient object for WASAPI. */ typedef struct { void* lpVtbl; ma_uint32 counter; ma_device* pDevice; } ma_IMMNotificationClient; #endif /* Backend enums must be in priority order. */ typedef enum { ma_backend_wasapi, ma_backend_dsound, ma_backend_winmm, ma_backend_coreaudio, ma_backend_sndio, ma_backend_audio4, ma_backend_oss, ma_backend_pulseaudio, ma_backend_alsa, ma_backend_jack, ma_backend_aaudio, ma_backend_opensl, ma_backend_webaudio, ma_backend_custom, /* <-- Custom backend, with callbacks defined by the context config. */ ma_backend_null /* <-- Must always be the last item. Lowest priority, and used as the terminator for backend enumeration. */ } ma_backend; #define MA_BACKEND_COUNT (ma_backend_null+1) /* Device job thread. This is used by backends that require asynchronous processing of certain operations. It is not used by all backends. The device job thread is made up of a thread and a job queue. You can post a job to the thread with ma_device_job_thread_post(). The thread will do the processing of the job. */ typedef struct { ma_bool32 noThread; /* Set this to true if you want to process jobs yourself. */ ma_uint32 jobQueueCapacity; ma_uint32 jobQueueFlags; } ma_device_job_thread_config; MA_API ma_device_job_thread_config ma_device_job_thread_config_init(void); typedef struct { ma_thread thread; ma_job_queue jobQueue; ma_bool32 _hasThread; } ma_device_job_thread; MA_API ma_result ma_device_job_thread_init(const ma_device_job_thread_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_device_job_thread* pJobThread); MA_API void ma_device_job_thread_uninit(ma_device_job_thread* pJobThread, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_device_job_thread_post(ma_device_job_thread* pJobThread, const ma_job* pJob); MA_API ma_result ma_device_job_thread_next(ma_device_job_thread* pJobThread, ma_job* pJob); /* Device notification types. */ typedef enum { ma_device_notification_type_started, ma_device_notification_type_stopped, ma_device_notification_type_rerouted, ma_device_notification_type_interruption_began, ma_device_notification_type_interruption_ended } ma_device_notification_type; typedef struct { ma_device* pDevice; ma_device_notification_type type; union { struct { int _unused; } started; struct { int _unused; } stopped; struct { int _unused; } rerouted; struct { int _unused; } interruption; } data; } ma_device_notification; /* The notification callback for when the application should be notified of a change to the device. This callback is used for notifying the application of changes such as when the device has started, stopped, rerouted or an interruption has occurred. Note that not all backends will post all notification types. For example, some backends will perform automatic stream routing without any kind of notification to the host program which means miniaudio will never know about it and will never be able to fire the rerouted notification. You should keep this in mind when designing your program. The stopped notification will *not* get fired when a device is rerouted. Parameters ---------- pNotification (in) A pointer to a structure containing information about the event. Use the `pDevice` member of this object to retrieve the relevant device. The `type` member can be used to discriminate against each of the notification types. Remarks ------- Do not restart or uninitialize the device from the callback. Not all notifications will be triggered by all backends, however the started and stopped events should be reliable for all backends. Some backends do not have a good way to detect device stoppages due to unplugging the device which may result in the stopped callback not getting fired. This has been observed with at least one BSD variant. The rerouted notification is fired *after* the reroute has occurred. The stopped notification will *not* get fired when a device is rerouted. The following backends are known to do automatic stream rerouting, but do not have a way to be notified of the change: * DirectSound The interruption notifications are used on mobile platforms for detecting when audio is interrupted due to things like an incoming phone call. Currently this is only implemented on iOS. None of the Android backends will report this notification. */ typedef void (* ma_device_notification_proc)(const ma_device_notification* pNotification); /* The callback for processing audio data from the device. The data callback is fired by miniaudio whenever the device needs to have more data delivered to a playback device, or when a capture device has some data available. This is called as soon as the backend asks for more data which means it may be called with inconsistent frame counts. You cannot assume the callback will be fired with a consistent frame count. Parameters ---------- pDevice (in) A pointer to the relevant device. pOutput (out) A pointer to the output buffer that will receive audio data that will later be played back through the speakers. This will be non-null for a playback or full-duplex device and null for a capture and loopback device. pInput (in) A pointer to the buffer containing input data from a recording device. This will be non-null for a capture, full-duplex or loopback device and null for a playback device. frameCount (in) The number of PCM frames to process. Note that this will not necessarily be equal to what you requested when you initialized the device. The `periodSizeInFrames` and `periodSizeInMilliseconds` members of the device config are just hints, and are not necessarily exactly what you'll get. You must not assume this will always be the same value each time the callback is fired. Remarks ------- You cannot stop and start the device from inside the callback or else you'll get a deadlock. You must also not uninitialize the device from inside the callback. The following APIs cannot be called from inside the callback: ma_device_init() ma_device_init_ex() ma_device_uninit() ma_device_start() ma_device_stop() The proper way to stop the device is to call `ma_device_stop()` from a different thread, normally the main application thread. */ typedef void (* ma_device_data_proc)(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount); /* DEPRECATED. Use ma_device_notification_proc instead. The callback for when the device has been stopped. This will be called when the device is stopped explicitly with `ma_device_stop()` and also called implicitly when the device is stopped through external forces such as being unplugged or an internal error occuring. Parameters ---------- pDevice (in) A pointer to the device that has just stopped. Remarks ------- Do not restart or uninitialize the device from the callback. */ typedef void (* ma_stop_proc)(ma_device* pDevice); /* DEPRECATED. Use ma_device_notification_proc instead. */ typedef enum { ma_device_type_playback = 1, ma_device_type_capture = 2, ma_device_type_duplex = ma_device_type_playback | ma_device_type_capture, /* 3 */ ma_device_type_loopback = 4 } ma_device_type; typedef enum { ma_share_mode_shared = 0, ma_share_mode_exclusive } ma_share_mode; /* iOS/tvOS/watchOS session categories. */ typedef enum { ma_ios_session_category_default = 0, /* AVAudioSessionCategoryPlayAndRecord. */ ma_ios_session_category_none, /* Leave the session category unchanged. */ ma_ios_session_category_ambient, /* AVAudioSessionCategoryAmbient */ ma_ios_session_category_solo_ambient, /* AVAudioSessionCategorySoloAmbient */ ma_ios_session_category_playback, /* AVAudioSessionCategoryPlayback */ ma_ios_session_category_record, /* AVAudioSessionCategoryRecord */ ma_ios_session_category_play_and_record, /* AVAudioSessionCategoryPlayAndRecord */ ma_ios_session_category_multi_route /* AVAudioSessionCategoryMultiRoute */ } ma_ios_session_category; /* iOS/tvOS/watchOS session category options */ typedef enum { ma_ios_session_category_option_mix_with_others = 0x01, /* AVAudioSessionCategoryOptionMixWithOthers */ ma_ios_session_category_option_duck_others = 0x02, /* AVAudioSessionCategoryOptionDuckOthers */ ma_ios_session_category_option_allow_bluetooth = 0x04, /* AVAudioSessionCategoryOptionAllowBluetooth */ ma_ios_session_category_option_default_to_speaker = 0x08, /* AVAudioSessionCategoryOptionDefaultToSpeaker */ ma_ios_session_category_option_interrupt_spoken_audio_and_mix_with_others = 0x11, /* AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers */ ma_ios_session_category_option_allow_bluetooth_a2dp = 0x20, /* AVAudioSessionCategoryOptionAllowBluetoothA2DP */ ma_ios_session_category_option_allow_air_play = 0x40, /* AVAudioSessionCategoryOptionAllowAirPlay */ } ma_ios_session_category_option; /* OpenSL stream types. */ typedef enum { ma_opensl_stream_type_default = 0, /* Leaves the stream type unset. */ ma_opensl_stream_type_voice, /* SL_ANDROID_STREAM_VOICE */ ma_opensl_stream_type_system, /* SL_ANDROID_STREAM_SYSTEM */ ma_opensl_stream_type_ring, /* SL_ANDROID_STREAM_RING */ ma_opensl_stream_type_media, /* SL_ANDROID_STREAM_MEDIA */ ma_opensl_stream_type_alarm, /* SL_ANDROID_STREAM_ALARM */ ma_opensl_stream_type_notification /* SL_ANDROID_STREAM_NOTIFICATION */ } ma_opensl_stream_type; /* OpenSL recording presets. */ typedef enum { ma_opensl_recording_preset_default = 0, /* Leaves the input preset unset. */ ma_opensl_recording_preset_generic, /* SL_ANDROID_RECORDING_PRESET_GENERIC */ ma_opensl_recording_preset_camcorder, /* SL_ANDROID_RECORDING_PRESET_CAMCORDER */ ma_opensl_recording_preset_voice_recognition, /* SL_ANDROID_RECORDING_PRESET_VOICE_RECOGNITION */ ma_opensl_recording_preset_voice_communication, /* SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION */ ma_opensl_recording_preset_voice_unprocessed /* SL_ANDROID_RECORDING_PRESET_UNPROCESSED */ } ma_opensl_recording_preset; /* WASAPI audio thread priority characteristics. */ typedef enum { ma_wasapi_usage_default = 0, ma_wasapi_usage_games, ma_wasapi_usage_pro_audio, } ma_wasapi_usage; /* AAudio usage types. */ typedef enum { ma_aaudio_usage_default = 0, /* Leaves the usage type unset. */ ma_aaudio_usage_media, /* AAUDIO_USAGE_MEDIA */ ma_aaudio_usage_voice_communication, /* AAUDIO_USAGE_VOICE_COMMUNICATION */ ma_aaudio_usage_voice_communication_signalling, /* AAUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING */ ma_aaudio_usage_alarm, /* AAUDIO_USAGE_ALARM */ ma_aaudio_usage_notification, /* AAUDIO_USAGE_NOTIFICATION */ ma_aaudio_usage_notification_ringtone, /* AAUDIO_USAGE_NOTIFICATION_RINGTONE */ ma_aaudio_usage_notification_event, /* AAUDIO_USAGE_NOTIFICATION_EVENT */ ma_aaudio_usage_assistance_accessibility, /* AAUDIO_USAGE_ASSISTANCE_ACCESSIBILITY */ ma_aaudio_usage_assistance_navigation_guidance, /* AAUDIO_USAGE_ASSISTANCE_NAVIGATION_GUIDANCE */ ma_aaudio_usage_assistance_sonification, /* AAUDIO_USAGE_ASSISTANCE_SONIFICATION */ ma_aaudio_usage_game, /* AAUDIO_USAGE_GAME */ ma_aaudio_usage_assitant, /* AAUDIO_USAGE_ASSISTANT */ ma_aaudio_usage_emergency, /* AAUDIO_SYSTEM_USAGE_EMERGENCY */ ma_aaudio_usage_safety, /* AAUDIO_SYSTEM_USAGE_SAFETY */ ma_aaudio_usage_vehicle_status, /* AAUDIO_SYSTEM_USAGE_VEHICLE_STATUS */ ma_aaudio_usage_announcement /* AAUDIO_SYSTEM_USAGE_ANNOUNCEMENT */ } ma_aaudio_usage; /* AAudio content types. */ typedef enum { ma_aaudio_content_type_default = 0, /* Leaves the content type unset. */ ma_aaudio_content_type_speech, /* AAUDIO_CONTENT_TYPE_SPEECH */ ma_aaudio_content_type_music, /* AAUDIO_CONTENT_TYPE_MUSIC */ ma_aaudio_content_type_movie, /* AAUDIO_CONTENT_TYPE_MOVIE */ ma_aaudio_content_type_sonification /* AAUDIO_CONTENT_TYPE_SONIFICATION */ } ma_aaudio_content_type; /* AAudio input presets. */ typedef enum { ma_aaudio_input_preset_default = 0, /* Leaves the input preset unset. */ ma_aaudio_input_preset_generic, /* AAUDIO_INPUT_PRESET_GENERIC */ ma_aaudio_input_preset_camcorder, /* AAUDIO_INPUT_PRESET_CAMCORDER */ ma_aaudio_input_preset_voice_recognition, /* AAUDIO_INPUT_PRESET_VOICE_RECOGNITION */ ma_aaudio_input_preset_voice_communication, /* AAUDIO_INPUT_PRESET_VOICE_COMMUNICATION */ ma_aaudio_input_preset_unprocessed, /* AAUDIO_INPUT_PRESET_UNPROCESSED */ ma_aaudio_input_preset_voice_performance /* AAUDIO_INPUT_PRESET_VOICE_PERFORMANCE */ } ma_aaudio_input_preset; typedef union { ma_int64 counter; double counterD; } ma_timer; typedef union { wchar_t wasapi[64]; /* WASAPI uses a wchar_t string for identification. */ ma_uint8 dsound[16]; /* DirectSound uses a GUID for identification. */ /*UINT_PTR*/ ma_uint32 winmm; /* When creating a device, WinMM expects a Win32 UINT_PTR for device identification. In practice it's actually just a UINT. */ char alsa[256]; /* ALSA uses a name string for identification. */ char pulse[256]; /* PulseAudio uses a name string for identification. */ int jack; /* JACK always uses default devices. */ char coreaudio[256]; /* Core Audio uses a string for identification. */ char sndio[256]; /* "snd/0", etc. */ char audio4[256]; /* "/dev/audio", etc. */ char oss[64]; /* "dev/dsp0", etc. "dev/dsp" for the default device. */ ma_int32 aaudio; /* AAudio uses a 32-bit integer for identification. */ ma_uint32 opensl; /* OpenSL|ES uses a 32-bit unsigned integer for identification. */ char webaudio[32]; /* Web Audio always uses default devices for now, but if this changes it'll be a GUID. */ union { int i; char s[256]; void* p; } custom; /* The custom backend could be anything. Give them a few options. */ int nullbackend; /* The null backend uses an integer for device IDs. */ } ma_device_id; typedef struct ma_context_config ma_context_config; typedef struct ma_device_config ma_device_config; typedef struct ma_backend_callbacks ma_backend_callbacks; #define MA_DATA_FORMAT_FLAG_EXCLUSIVE_MODE (1U << 1) /* If set, this is supported in exclusive mode. Otherwise not natively supported by exclusive mode. */ #ifndef MA_MAX_DEVICE_NAME_LENGTH #define MA_MAX_DEVICE_NAME_LENGTH 255 #endif typedef struct { /* Basic info. This is the only information guaranteed to be filled in during device enumeration. */ ma_device_id id; char name[MA_MAX_DEVICE_NAME_LENGTH + 1]; /* +1 for null terminator. */ ma_bool32 isDefault; ma_uint32 nativeDataFormatCount; struct { ma_format format; /* Sample format. If set to ma_format_unknown, all sample formats are supported. */ ma_uint32 channels; /* If set to 0, all channels are supported. */ ma_uint32 sampleRate; /* If set to 0, all sample rates are supported. */ ma_uint32 flags; /* A combination of MA_DATA_FORMAT_FLAG_* flags. */ } nativeDataFormats[/*ma_format_count * ma_standard_sample_rate_count * MA_MAX_CHANNELS*/ 64]; /* Not sure how big to make this. There can be *many* permutations for virtual devices which can support anything. */ } ma_device_info; struct ma_device_config { ma_device_type deviceType; ma_uint32 sampleRate; ma_uint32 periodSizeInFrames; ma_uint32 periodSizeInMilliseconds; ma_uint32 periods; ma_performance_profile performanceProfile; ma_bool8 noPreSilencedOutputBuffer; /* When set to true, the contents of the output buffer passed into the data callback will be left undefined rather than initialized to silence. */ ma_bool8 noClip; /* When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. Only applies when the playback sample format is f32. */ ma_bool8 noDisableDenormals; /* Do not disable denormals when firing the data callback. */ ma_bool8 noFixedSizedCallback; /* Disables strict fixed-sized data callbacks. Setting this to true will result in the period size being treated only as a hint to the backend. This is an optimization for those who don't need fixed sized callbacks. */ ma_device_data_proc dataCallback; ma_device_notification_proc notificationCallback; ma_stop_proc stopCallback; void* pUserData; ma_resampler_config resampling; struct { const ma_device_id* pDeviceID; ma_format format; ma_uint32 channels; ma_channel* pChannelMap; ma_channel_mix_mode channelMixMode; ma_bool32 calculateLFEFromSpatialChannels; /* When an output LFE channel is present, but no input LFE, set to true to set the output LFE to the average of all spatial channels (LR, FR, etc.). Ignored when an input LFE is present. */ ma_share_mode shareMode; } playback; struct { const ma_device_id* pDeviceID; ma_format format; ma_uint32 channels; ma_channel* pChannelMap; ma_channel_mix_mode channelMixMode; ma_bool32 calculateLFEFromSpatialChannels; /* When an output LFE channel is present, but no input LFE, set to true to set the output LFE to the average of all spatial channels (LR, FR, etc.). Ignored when an input LFE is present. */ ma_share_mode shareMode; } capture; struct { ma_wasapi_usage usage; /* When configured, uses Avrt APIs to set the thread characteristics. */ ma_bool8 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ ma_bool8 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */ ma_bool8 noAutoStreamRouting; /* Disables automatic stream routing. */ ma_bool8 noHardwareOffloading; /* Disables WASAPI's hardware offloading feature. */ ma_uint32 loopbackProcessID; /* The process ID to include or exclude for loopback mode. Set to 0 to capture audio from all processes. Ignored when an explicit device ID is specified. */ ma_bool8 loopbackProcessExclude; /* When set to true, excludes the process specified by loopbackProcessID. By default, the process will be included. */ } wasapi; struct { ma_bool32 noMMap; /* Disables MMap mode. */ ma_bool32 noAutoFormat; /* Opens the ALSA device with SND_PCM_NO_AUTO_FORMAT. */ ma_bool32 noAutoChannels; /* Opens the ALSA device with SND_PCM_NO_AUTO_CHANNELS. */ ma_bool32 noAutoResample; /* Opens the ALSA device with SND_PCM_NO_AUTO_RESAMPLE. */ } alsa; struct { const char* pStreamNamePlayback; const char* pStreamNameCapture; } pulse; struct { ma_bool32 allowNominalSampleRateChange; /* Desktop only. When enabled, allows changing of the sample rate at the operating system level. */ } coreaudio; struct { ma_opensl_stream_type streamType; ma_opensl_recording_preset recordingPreset; } opensl; struct { ma_aaudio_usage usage; ma_aaudio_content_type contentType; ma_aaudio_input_preset inputPreset; ma_bool32 noAutoStartAfterReroute; } aaudio; }; /* The callback for handling device enumeration. This is fired from `ma_context_enumerated_devices()`. Parameters ---------- pContext (in) A pointer to the context performing the enumeration. deviceType (in) The type of the device being enumerated. This will always be either `ma_device_type_playback` or `ma_device_type_capture`. pInfo (in) A pointer to a `ma_device_info` containing the ID and name of the enumerated device. Note that this will not include detailed information about the device, only basic information (ID and name). The reason for this is that it would otherwise require opening the backend device to probe for the information which is too inefficient. pUserData (in) The user data pointer passed into `ma_context_enumerate_devices()`. */ typedef ma_bool32 (* ma_enum_devices_callback_proc)(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData); /* Describes some basic details about a playback or capture device. */ typedef struct { const ma_device_id* pDeviceID; ma_share_mode shareMode; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_channel channelMap[MA_MAX_CHANNELS]; ma_uint32 periodSizeInFrames; ma_uint32 periodSizeInMilliseconds; ma_uint32 periodCount; } ma_device_descriptor; /* These are the callbacks required to be implemented for a backend. These callbacks are grouped into two parts: context and device. There is one context to many devices. A device is created from a context. The general flow goes like this: 1) A context is created with `onContextInit()` 1a) Available devices can be enumerated with `onContextEnumerateDevices()` if required. 1b) Detailed information about a device can be queried with `onContextGetDeviceInfo()` if required. 2) A device is created from the context that was created in the first step using `onDeviceInit()`, and optionally a device ID that was selected from device enumeration via `onContextEnumerateDevices()`. 3) A device is started or stopped with `onDeviceStart()` / `onDeviceStop()` 4) Data is delivered to and from the device by the backend. This is always done based on the native format returned by the prior call to `onDeviceInit()`. Conversion between the device's native format and the format requested by the application will be handled by miniaudio internally. Initialization of the context is quite simple. You need to do any necessary initialization of internal objects and then output the callbacks defined in this structure. Once the context has been initialized you can initialize a device. Before doing so, however, the application may want to know which physical devices are available. This is where `onContextEnumerateDevices()` comes in. This is fairly simple. For each device, fire the given callback with, at a minimum, the basic information filled out in `ma_device_info`. When the callback returns `MA_FALSE`, enumeration needs to stop and the `onContextEnumerateDevices()` function returns with a success code. Detailed device information can be retrieved from a device ID using `onContextGetDeviceInfo()`. This takes as input the device type and ID, and on output returns detailed information about the device in `ma_device_info`. The `onContextGetDeviceInfo()` callback must handle the case when the device ID is NULL, in which case information about the default device needs to be retrieved. Once the context has been created and the device ID retrieved (if using anything other than the default device), the device can be created. This is a little bit more complicated than initialization of the context due to it's more complicated configuration. When initializing a device, a duplex device may be requested. This means a separate data format needs to be specified for both playback and capture. On input, the data format is set to what the application wants. On output it's set to the native format which should match as closely as possible to the requested format. The conversion between the format requested by the application and the device's native format will be handled internally by miniaudio. On input, if the sample format is set to `ma_format_unknown`, the backend is free to use whatever sample format it desires, so long as it's supported by miniaudio. When the channel count is set to 0, the backend should use the device's native channel count. The same applies for sample rate. For the channel map, the default should be used when `ma_channel_map_is_blank()` returns true (all channels set to `MA_CHANNEL_NONE`). On input, the `periodSizeInFrames` or `periodSizeInMilliseconds` option should always be set. The backend should inspect both of these variables. If `periodSizeInFrames` is set, it should take priority, otherwise it needs to be derived from the period size in milliseconds (`periodSizeInMilliseconds`) and the sample rate, keeping in mind that the sample rate may be 0, in which case the sample rate will need to be determined before calculating the period size in frames. On output, all members of the `ma_device_descriptor` object should be set to a valid value, except for `periodSizeInMilliseconds` which is optional (`periodSizeInFrames` *must* be set). Starting and stopping of the device is done with `onDeviceStart()` and `onDeviceStop()` and should be self-explanatory. If the backend uses asynchronous reading and writing, `onDeviceStart()` and `onDeviceStop()` should always be implemented. The handling of data delivery between the application and the device is the most complicated part of the process. To make this a bit easier, some helper callbacks are available. If the backend uses a blocking read/write style of API, the `onDeviceRead()` and `onDeviceWrite()` callbacks can optionally be implemented. These are blocking and work just like reading and writing from a file. If the backend uses a callback for data delivery, that callback must call `ma_device_handle_backend_data_callback()` from within it's callback. This allows miniaudio to then process any necessary data conversion and then pass it to the miniaudio data callback. If the backend requires absolute flexibility with it's data delivery, it can optionally implement the `onDeviceDataLoop()` callback which will allow it to implement the logic that will run on the audio thread. This is much more advanced and is completely optional. The audio thread should run data delivery logic in a loop while `ma_device_get_state() == ma_device_state_started` and no errors have been encounted. Do not start or stop the device here. That will be handled from outside the `onDeviceDataLoop()` callback. The invocation of the `onDeviceDataLoop()` callback will be handled by miniaudio. When you start the device, miniaudio will fire this callback. When the device is stopped, the `ma_device_get_state() == ma_device_state_started` condition will fail and the loop will be terminated which will then fall through to the part that stops the device. For an example on how to implement the `onDeviceDataLoop()` callback, look at `ma_device_audio_thread__default_read_write()`. Implement the `onDeviceDataLoopWakeup()` callback if you need a mechanism to wake up the audio thread. If the backend supports an optimized retrieval of device information from an initialized `ma_device` object, it should implement the `onDeviceGetInfo()` callback. This is optional, in which case it will fall back to `onContextGetDeviceInfo()` which is less efficient. */ struct ma_backend_callbacks { ma_result (* onContextInit)(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks); ma_result (* onContextUninit)(ma_context* pContext); ma_result (* onContextEnumerateDevices)(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData); ma_result (* onContextGetDeviceInfo)(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo); ma_result (* onDeviceInit)(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture); ma_result (* onDeviceUninit)(ma_device* pDevice); ma_result (* onDeviceStart)(ma_device* pDevice); ma_result (* onDeviceStop)(ma_device* pDevice); ma_result (* onDeviceRead)(ma_device* pDevice, void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesRead); ma_result (* onDeviceWrite)(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten); ma_result (* onDeviceDataLoop)(ma_device* pDevice); ma_result (* onDeviceDataLoopWakeup)(ma_device* pDevice); ma_result (* onDeviceGetInfo)(ma_device* pDevice, ma_device_type type, ma_device_info* pDeviceInfo); }; struct ma_context_config { ma_log* pLog; ma_thread_priority threadPriority; size_t threadStackSize; void* pUserData; ma_allocation_callbacks allocationCallbacks; struct { ma_bool32 useVerboseDeviceEnumeration; } alsa; struct { const char* pApplicationName; const char* pServerName; ma_bool32 tryAutoSpawn; /* Enables autospawning of the PulseAudio daemon if necessary. */ } pulse; struct { ma_ios_session_category sessionCategory; ma_uint32 sessionCategoryOptions; ma_bool32 noAudioSessionActivate; /* iOS only. When set to true, does not perform an explicit [[AVAudioSession sharedInstace] setActive:true] on initialization. */ ma_bool32 noAudioSessionDeactivate; /* iOS only. When set to true, does not perform an explicit [[AVAudioSession sharedInstace] setActive:false] on uninitialization. */ } coreaudio; struct { const char* pClientName; ma_bool32 tryStartServer; } jack; ma_backend_callbacks custom; }; /* WASAPI specific structure for some commands which must run on a common thread due to bugs in WASAPI. */ typedef struct { int code; ma_event* pEvent; /* This will be signalled when the event is complete. */ union { struct { int _unused; } quit; struct { ma_device_type deviceType; void* pAudioClient; void** ppAudioClientService; ma_result* pResult; /* The result from creating the audio client service. */ } createAudioClient; struct { ma_device* pDevice; ma_device_type deviceType; } releaseAudioClient; } data; } ma_context_command__wasapi; struct ma_context { ma_backend_callbacks callbacks; ma_backend backend; /* DirectSound, ALSA, etc. */ ma_log* pLog; ma_log log; /* Only used if the log is owned by the context. The pLog member will be set to &log in this case. */ ma_thread_priority threadPriority; size_t threadStackSize; void* pUserData; ma_allocation_callbacks allocationCallbacks; ma_mutex deviceEnumLock; /* Used to make ma_context_get_devices() thread safe. */ ma_mutex deviceInfoLock; /* Used to make ma_context_get_device_info() thread safe. */ ma_uint32 deviceInfoCapacity; /* Total capacity of pDeviceInfos. */ ma_uint32 playbackDeviceInfoCount; ma_uint32 captureDeviceInfoCount; ma_device_info* pDeviceInfos; /* Playback devices first, then capture. */ union { #ifdef MA_SUPPORT_WASAPI struct { ma_thread commandThread; ma_mutex commandLock; ma_semaphore commandSem; ma_uint32 commandIndex; ma_uint32 commandCount; ma_context_command__wasapi commands[4]; ma_handle hAvrt; ma_proc AvSetMmThreadCharacteristicsW; ma_proc AvRevertMmThreadcharacteristics; ma_handle hMMDevapi; ma_proc ActivateAudioInterfaceAsync; } wasapi; #endif #ifdef MA_SUPPORT_DSOUND struct { ma_handle hDSoundDLL; ma_proc DirectSoundCreate; ma_proc DirectSoundEnumerateA; ma_proc DirectSoundCaptureCreate; ma_proc DirectSoundCaptureEnumerateA; } dsound; #endif #ifdef MA_SUPPORT_WINMM struct { ma_handle hWinMM; ma_proc waveOutGetNumDevs; ma_proc waveOutGetDevCapsA; ma_proc waveOutOpen; ma_proc waveOutClose; ma_proc waveOutPrepareHeader; ma_proc waveOutUnprepareHeader; ma_proc waveOutWrite; ma_proc waveOutReset; ma_proc waveInGetNumDevs; ma_proc waveInGetDevCapsA; ma_proc waveInOpen; ma_proc waveInClose; ma_proc waveInPrepareHeader; ma_proc waveInUnprepareHeader; ma_proc waveInAddBuffer; ma_proc waveInStart; ma_proc waveInReset; } winmm; #endif #ifdef MA_SUPPORT_ALSA struct { ma_handle asoundSO; ma_proc snd_pcm_open; ma_proc snd_pcm_close; ma_proc snd_pcm_hw_params_sizeof; ma_proc snd_pcm_hw_params_any; ma_proc snd_pcm_hw_params_set_format; ma_proc snd_pcm_hw_params_set_format_first; ma_proc snd_pcm_hw_params_get_format_mask; ma_proc snd_pcm_hw_params_set_channels; ma_proc snd_pcm_hw_params_set_channels_near; ma_proc snd_pcm_hw_params_set_channels_minmax; ma_proc snd_pcm_hw_params_set_rate_resample; ma_proc snd_pcm_hw_params_set_rate; ma_proc snd_pcm_hw_params_set_rate_near; ma_proc snd_pcm_hw_params_set_buffer_size_near; ma_proc snd_pcm_hw_params_set_periods_near; ma_proc snd_pcm_hw_params_set_access; ma_proc snd_pcm_hw_params_get_format; ma_proc snd_pcm_hw_params_get_channels; ma_proc snd_pcm_hw_params_get_channels_min; ma_proc snd_pcm_hw_params_get_channels_max; ma_proc snd_pcm_hw_params_get_rate; ma_proc snd_pcm_hw_params_get_rate_min; ma_proc snd_pcm_hw_params_get_rate_max; ma_proc snd_pcm_hw_params_get_buffer_size; ma_proc snd_pcm_hw_params_get_periods; ma_proc snd_pcm_hw_params_get_access; ma_proc snd_pcm_hw_params_test_format; ma_proc snd_pcm_hw_params_test_channels; ma_proc snd_pcm_hw_params_test_rate; ma_proc snd_pcm_hw_params; ma_proc snd_pcm_sw_params_sizeof; ma_proc snd_pcm_sw_params_current; ma_proc snd_pcm_sw_params_get_boundary; ma_proc snd_pcm_sw_params_set_avail_min; ma_proc snd_pcm_sw_params_set_start_threshold; ma_proc snd_pcm_sw_params_set_stop_threshold; ma_proc snd_pcm_sw_params; ma_proc snd_pcm_format_mask_sizeof; ma_proc snd_pcm_format_mask_test; ma_proc snd_pcm_get_chmap; ma_proc snd_pcm_state; ma_proc snd_pcm_prepare; ma_proc snd_pcm_start; ma_proc snd_pcm_drop; ma_proc snd_pcm_drain; ma_proc snd_pcm_reset; ma_proc snd_device_name_hint; ma_proc snd_device_name_get_hint; ma_proc snd_card_get_index; ma_proc snd_device_name_free_hint; ma_proc snd_pcm_mmap_begin; ma_proc snd_pcm_mmap_commit; ma_proc snd_pcm_recover; ma_proc snd_pcm_readi; ma_proc snd_pcm_writei; ma_proc snd_pcm_avail; ma_proc snd_pcm_avail_update; ma_proc snd_pcm_wait; ma_proc snd_pcm_nonblock; ma_proc snd_pcm_info; ma_proc snd_pcm_info_sizeof; ma_proc snd_pcm_info_get_name; ma_proc snd_pcm_poll_descriptors; ma_proc snd_pcm_poll_descriptors_count; ma_proc snd_pcm_poll_descriptors_revents; ma_proc snd_config_update_free_global; ma_mutex internalDeviceEnumLock; ma_bool32 useVerboseDeviceEnumeration; } alsa; #endif #ifdef MA_SUPPORT_PULSEAUDIO struct { ma_handle pulseSO; ma_proc pa_mainloop_new; ma_proc pa_mainloop_free; ma_proc pa_mainloop_quit; ma_proc pa_mainloop_get_api; ma_proc pa_mainloop_iterate; ma_proc pa_mainloop_wakeup; ma_proc pa_threaded_mainloop_new; ma_proc pa_threaded_mainloop_free; ma_proc pa_threaded_mainloop_start; ma_proc pa_threaded_mainloop_stop; ma_proc pa_threaded_mainloop_lock; ma_proc pa_threaded_mainloop_unlock; ma_proc pa_threaded_mainloop_wait; ma_proc pa_threaded_mainloop_signal; ma_proc pa_threaded_mainloop_accept; ma_proc pa_threaded_mainloop_get_retval; ma_proc pa_threaded_mainloop_get_api; ma_proc pa_threaded_mainloop_in_thread; ma_proc pa_threaded_mainloop_set_name; ma_proc pa_context_new; ma_proc pa_context_unref; ma_proc pa_context_connect; ma_proc pa_context_disconnect; ma_proc pa_context_set_state_callback; ma_proc pa_context_get_state; ma_proc pa_context_get_sink_info_list; ma_proc pa_context_get_source_info_list; ma_proc pa_context_get_sink_info_by_name; ma_proc pa_context_get_source_info_by_name; ma_proc pa_operation_unref; ma_proc pa_operation_get_state; ma_proc pa_channel_map_init_extend; ma_proc pa_channel_map_valid; ma_proc pa_channel_map_compatible; ma_proc pa_stream_new; ma_proc pa_stream_unref; ma_proc pa_stream_connect_playback; ma_proc pa_stream_connect_record; ma_proc pa_stream_disconnect; ma_proc pa_stream_get_state; ma_proc pa_stream_get_sample_spec; ma_proc pa_stream_get_channel_map; ma_proc pa_stream_get_buffer_attr; ma_proc pa_stream_set_buffer_attr; ma_proc pa_stream_get_device_name; ma_proc pa_stream_set_write_callback; ma_proc pa_stream_set_read_callback; ma_proc pa_stream_set_suspended_callback; ma_proc pa_stream_set_moved_callback; ma_proc pa_stream_is_suspended; ma_proc pa_stream_flush; ma_proc pa_stream_drain; ma_proc pa_stream_is_corked; ma_proc pa_stream_cork; ma_proc pa_stream_trigger; ma_proc pa_stream_begin_write; ma_proc pa_stream_write; ma_proc pa_stream_peek; ma_proc pa_stream_drop; ma_proc pa_stream_writable_size; ma_proc pa_stream_readable_size; /*pa_mainloop**/ ma_ptr pMainLoop; /*pa_context**/ ma_ptr pPulseContext; char* pApplicationName; /* Set when the context is initialized. Used by devices for their local pa_context objects. */ char* pServerName; /* Set when the context is initialized. Used by devices for their local pa_context objects. */ } pulse; #endif #ifdef MA_SUPPORT_JACK struct { ma_handle jackSO; ma_proc jack_client_open; ma_proc jack_client_close; ma_proc jack_client_name_size; ma_proc jack_set_process_callback; ma_proc jack_set_buffer_size_callback; ma_proc jack_on_shutdown; ma_proc jack_get_sample_rate; ma_proc jack_get_buffer_size; ma_proc jack_get_ports; ma_proc jack_activate; ma_proc jack_deactivate; ma_proc jack_connect; ma_proc jack_port_register; ma_proc jack_port_name; ma_proc jack_port_get_buffer; ma_proc jack_free; char* pClientName; ma_bool32 tryStartServer; } jack; #endif #ifdef MA_SUPPORT_COREAUDIO struct { ma_handle hCoreFoundation; ma_proc CFStringGetCString; ma_proc CFRelease; ma_handle hCoreAudio; ma_proc AudioObjectGetPropertyData; ma_proc AudioObjectGetPropertyDataSize; ma_proc AudioObjectSetPropertyData; ma_proc AudioObjectAddPropertyListener; ma_proc AudioObjectRemovePropertyListener; ma_handle hAudioUnit; /* Could possibly be set to AudioToolbox on later versions of macOS. */ ma_proc AudioComponentFindNext; ma_proc AudioComponentInstanceDispose; ma_proc AudioComponentInstanceNew; ma_proc AudioOutputUnitStart; ma_proc AudioOutputUnitStop; ma_proc AudioUnitAddPropertyListener; ma_proc AudioUnitGetPropertyInfo; ma_proc AudioUnitGetProperty; ma_proc AudioUnitSetProperty; ma_proc AudioUnitInitialize; ma_proc AudioUnitRender; /*AudioComponent*/ ma_ptr component; ma_bool32 noAudioSessionDeactivate; /* For tracking whether or not the iOS audio session should be explicitly deactivated. Set from the config in ma_context_init__coreaudio(). */ } coreaudio; #endif #ifdef MA_SUPPORT_SNDIO struct { ma_handle sndioSO; ma_proc sio_open; ma_proc sio_close; ma_proc sio_setpar; ma_proc sio_getpar; ma_proc sio_getcap; ma_proc sio_start; ma_proc sio_stop; ma_proc sio_read; ma_proc sio_write; ma_proc sio_onmove; ma_proc sio_nfds; ma_proc sio_pollfd; ma_proc sio_revents; ma_proc sio_eof; ma_proc sio_setvol; ma_proc sio_onvol; ma_proc sio_initpar; } sndio; #endif #ifdef MA_SUPPORT_AUDIO4 struct { int _unused; } audio4; #endif #ifdef MA_SUPPORT_OSS struct { int versionMajor; int versionMinor; } oss; #endif #ifdef MA_SUPPORT_AAUDIO struct { ma_handle hAAudio; /* libaaudio.so */ ma_proc AAudio_createStreamBuilder; ma_proc AAudioStreamBuilder_delete; ma_proc AAudioStreamBuilder_setDeviceId; ma_proc AAudioStreamBuilder_setDirection; ma_proc AAudioStreamBuilder_setSharingMode; ma_proc AAudioStreamBuilder_setFormat; ma_proc AAudioStreamBuilder_setChannelCount; ma_proc AAudioStreamBuilder_setSampleRate; ma_proc AAudioStreamBuilder_setBufferCapacityInFrames; ma_proc AAudioStreamBuilder_setFramesPerDataCallback; ma_proc AAudioStreamBuilder_setDataCallback; ma_proc AAudioStreamBuilder_setErrorCallback; ma_proc AAudioStreamBuilder_setPerformanceMode; ma_proc AAudioStreamBuilder_setUsage; ma_proc AAudioStreamBuilder_setContentType; ma_proc AAudioStreamBuilder_setInputPreset; ma_proc AAudioStreamBuilder_openStream; ma_proc AAudioStream_close; ma_proc AAudioStream_getState; ma_proc AAudioStream_waitForStateChange; ma_proc AAudioStream_getFormat; ma_proc AAudioStream_getChannelCount; ma_proc AAudioStream_getSampleRate; ma_proc AAudioStream_getBufferCapacityInFrames; ma_proc AAudioStream_getFramesPerDataCallback; ma_proc AAudioStream_getFramesPerBurst; ma_proc AAudioStream_requestStart; ma_proc AAudioStream_requestStop; ma_device_job_thread jobThread; /* For processing operations outside of the error callback, specifically device disconnections and rerouting. */ } aaudio; #endif #ifdef MA_SUPPORT_OPENSL struct { ma_handle libOpenSLES; ma_handle SL_IID_ENGINE; ma_handle SL_IID_AUDIOIODEVICECAPABILITIES; ma_handle SL_IID_ANDROIDSIMPLEBUFFERQUEUE; ma_handle SL_IID_RECORD; ma_handle SL_IID_PLAY; ma_handle SL_IID_OUTPUTMIX; ma_handle SL_IID_ANDROIDCONFIGURATION; ma_proc slCreateEngine; } opensl; #endif #ifdef MA_SUPPORT_WEBAUDIO struct { int _unused; } webaudio; #endif #ifdef MA_SUPPORT_NULL struct { int _unused; } null_backend; #endif }; union { #ifdef MA_WIN32 struct { /*HMODULE*/ ma_handle hOle32DLL; ma_proc CoInitializeEx; ma_proc CoUninitialize; ma_proc CoCreateInstance; ma_proc CoTaskMemFree; ma_proc PropVariantClear; ma_proc StringFromGUID2; /*HMODULE*/ ma_handle hUser32DLL; ma_proc GetForegroundWindow; ma_proc GetDesktopWindow; /*HMODULE*/ ma_handle hAdvapi32DLL; ma_proc RegOpenKeyExA; ma_proc RegCloseKey; ma_proc RegQueryValueExA; } win32; #endif #ifdef MA_POSIX struct { ma_handle pthreadSO; ma_proc pthread_create; ma_proc pthread_join; ma_proc pthread_mutex_init; ma_proc pthread_mutex_destroy; ma_proc pthread_mutex_lock; ma_proc pthread_mutex_unlock; ma_proc pthread_cond_init; ma_proc pthread_cond_destroy; ma_proc pthread_cond_wait; ma_proc pthread_cond_signal; ma_proc pthread_attr_init; ma_proc pthread_attr_destroy; ma_proc pthread_attr_setschedpolicy; ma_proc pthread_attr_getschedparam; ma_proc pthread_attr_setschedparam; } posix; #endif int _unused; }; }; struct ma_device { ma_context* pContext; ma_device_type type; ma_uint32 sampleRate; MA_ATOMIC(4, ma_device_state) state; /* The state of the device is variable and can change at any time on any thread. Must be used atomically. */ ma_device_data_proc onData; /* Set once at initialization time and should not be changed after. */ ma_device_notification_proc onNotification; /* Set once at initialization time and should not be changed after. */ ma_stop_proc onStop; /* DEPRECATED. Use the notification callback instead. Set once at initialization time and should not be changed after. */ void* pUserData; /* Application defined data. */ ma_mutex startStopLock; ma_event wakeupEvent; ma_event startEvent; ma_event stopEvent; ma_thread thread; ma_result workResult; /* This is set by the worker thread after it's finished doing a job. */ ma_bool8 isOwnerOfContext; /* When set to true, uninitializing the device will also uninitialize the context. Set to true when NULL is passed into ma_device_init(). */ ma_bool8 noPreSilencedOutputBuffer; ma_bool8 noClip; ma_bool8 noDisableDenormals; ma_bool8 noFixedSizedCallback; MA_ATOMIC(4, float) masterVolumeFactor; /* Linear 0..1. Can be read and written simultaneously by different threads. Must be used atomically. */ ma_duplex_rb duplexRB; /* Intermediary buffer for duplex device on asynchronous backends. */ struct { ma_resample_algorithm algorithm; ma_resampling_backend_vtable* pBackendVTable; void* pBackendUserData; struct { ma_uint32 lpfOrder; } linear; } resampling; struct { ma_device_id* pID; /* Set to NULL if using default ID, otherwise set to the address of "id". */ ma_device_id id; /* If using an explicit device, will be set to a copy of the ID used for initialization. Otherwise cleared to 0. */ char name[MA_MAX_DEVICE_NAME_LENGTH + 1]; /* Maybe temporary. Likely to be replaced with a query API. */ ma_share_mode shareMode; /* Set to whatever was passed in when the device was initialized. */ ma_format format; ma_uint32 channels; ma_channel channelMap[MA_MAX_CHANNELS]; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; ma_channel internalChannelMap[MA_MAX_CHANNELS]; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; ma_channel_mix_mode channelMixMode; ma_bool32 calculateLFEFromSpatialChannels; ma_data_converter converter; void* pIntermediaryBuffer; /* For implementing fixed sized buffer callbacks. Will be null if using variable sized callbacks. */ ma_uint32 intermediaryBufferCap; ma_uint32 intermediaryBufferLen; /* How many valid frames are sitting in the intermediary buffer. */ void* pInputCache; /* In external format. Can be null. */ ma_uint64 inputCacheCap; ma_uint64 inputCacheConsumed; ma_uint64 inputCacheRemaining; } playback; struct { ma_device_id* pID; /* Set to NULL if using default ID, otherwise set to the address of "id". */ ma_device_id id; /* If using an explicit device, will be set to a copy of the ID used for initialization. Otherwise cleared to 0. */ char name[MA_MAX_DEVICE_NAME_LENGTH + 1]; /* Maybe temporary. Likely to be replaced with a query API. */ ma_share_mode shareMode; /* Set to whatever was passed in when the device was initialized. */ ma_format format; ma_uint32 channels; ma_channel channelMap[MA_MAX_CHANNELS]; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; ma_channel internalChannelMap[MA_MAX_CHANNELS]; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; ma_channel_mix_mode channelMixMode; ma_bool32 calculateLFEFromSpatialChannels; ma_data_converter converter; void* pIntermediaryBuffer; /* For implementing fixed sized buffer callbacks. Will be null if using variable sized callbacks. */ ma_uint32 intermediaryBufferCap; ma_uint32 intermediaryBufferLen; /* How many valid frames are sitting in the intermediary buffer. */ } capture; union { #ifdef MA_SUPPORT_WASAPI struct { /*IAudioClient**/ ma_ptr pAudioClientPlayback; /*IAudioClient**/ ma_ptr pAudioClientCapture; /*IAudioRenderClient**/ ma_ptr pRenderClient; /*IAudioCaptureClient**/ ma_ptr pCaptureClient; /*IMMDeviceEnumerator**/ ma_ptr pDeviceEnumerator; /* Used for IMMNotificationClient notifications. Required for detecting default device changes. */ ma_IMMNotificationClient notificationClient; /*HANDLE*/ ma_handle hEventPlayback; /* Auto reset. Initialized to signaled. */ /*HANDLE*/ ma_handle hEventCapture; /* Auto reset. Initialized to unsignaled. */ ma_uint32 actualBufferSizeInFramesPlayback; /* Value from GetBufferSize(). internalPeriodSizeInFrames is not set to the _actual_ buffer size when low-latency shared mode is being used due to the way the IAudioClient3 API works. */ ma_uint32 actualBufferSizeInFramesCapture; ma_uint32 originalPeriodSizeInFrames; ma_uint32 originalPeriodSizeInMilliseconds; ma_uint32 originalPeriods; ma_performance_profile originalPerformanceProfile; ma_uint32 periodSizeInFramesPlayback; ma_uint32 periodSizeInFramesCapture; void* pMappedBufferCapture; ma_uint32 mappedBufferCaptureCap; ma_uint32 mappedBufferCaptureLen; void* pMappedBufferPlayback; ma_uint32 mappedBufferPlaybackCap; ma_uint32 mappedBufferPlaybackLen; MA_ATOMIC(4, ma_bool32) isStartedCapture; /* Can be read and written simultaneously across different threads. Must be used atomically, and must be 32-bit. */ MA_ATOMIC(4, ma_bool32) isStartedPlayback; /* Can be read and written simultaneously across different threads. Must be used atomically, and must be 32-bit. */ ma_uint32 loopbackProcessID; ma_bool8 loopbackProcessExclude; ma_bool8 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ ma_bool8 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */ ma_bool8 noHardwareOffloading; ma_bool8 allowCaptureAutoStreamRouting; ma_bool8 allowPlaybackAutoStreamRouting; ma_bool8 isDetachedPlayback; ma_bool8 isDetachedCapture; ma_wasapi_usage usage; void *hAvrtHandle; } wasapi; #endif #ifdef MA_SUPPORT_DSOUND struct { /*LPDIRECTSOUND*/ ma_ptr pPlayback; /*LPDIRECTSOUNDBUFFER*/ ma_ptr pPlaybackPrimaryBuffer; /*LPDIRECTSOUNDBUFFER*/ ma_ptr pPlaybackBuffer; /*LPDIRECTSOUNDCAPTURE*/ ma_ptr pCapture; /*LPDIRECTSOUNDCAPTUREBUFFER*/ ma_ptr pCaptureBuffer; } dsound; #endif #ifdef MA_SUPPORT_WINMM struct { /*HWAVEOUT*/ ma_handle hDevicePlayback; /*HWAVEIN*/ ma_handle hDeviceCapture; /*HANDLE*/ ma_handle hEventPlayback; /*HANDLE*/ ma_handle hEventCapture; ma_uint32 fragmentSizeInFrames; ma_uint32 iNextHeaderPlayback; /* [0,periods). Used as an index into pWAVEHDRPlayback. */ ma_uint32 iNextHeaderCapture; /* [0,periods). Used as an index into pWAVEHDRCapture. */ ma_uint32 headerFramesConsumedPlayback; /* The number of PCM frames consumed in the buffer in pWAVEHEADER[iNextHeader]. */ ma_uint32 headerFramesConsumedCapture; /* ^^^ */ /*WAVEHDR**/ ma_uint8* pWAVEHDRPlayback; /* One instantiation for each period. */ /*WAVEHDR**/ ma_uint8* pWAVEHDRCapture; /* One instantiation for each period. */ ma_uint8* pIntermediaryBufferPlayback; ma_uint8* pIntermediaryBufferCapture; ma_uint8* _pHeapData; /* Used internally and is used for the heap allocated data for the intermediary buffer and the WAVEHDR structures. */ } winmm; #endif #ifdef MA_SUPPORT_ALSA struct { /*snd_pcm_t**/ ma_ptr pPCMPlayback; /*snd_pcm_t**/ ma_ptr pPCMCapture; /*struct pollfd**/ void* pPollDescriptorsPlayback; /*struct pollfd**/ void* pPollDescriptorsCapture; int pollDescriptorCountPlayback; int pollDescriptorCountCapture; int wakeupfdPlayback; /* eventfd for waking up from poll() when the playback device is stopped. */ int wakeupfdCapture; /* eventfd for waking up from poll() when the capture device is stopped. */ ma_bool8 isUsingMMapPlayback; ma_bool8 isUsingMMapCapture; } alsa; #endif #ifdef MA_SUPPORT_PULSEAUDIO struct { /*pa_mainloop**/ ma_ptr pMainLoop; /*pa_context**/ ma_ptr pPulseContext; /*pa_stream**/ ma_ptr pStreamPlayback; /*pa_stream**/ ma_ptr pStreamCapture; } pulse; #endif #ifdef MA_SUPPORT_JACK struct { /*jack_client_t**/ ma_ptr pClient; /*jack_port_t**/ ma_ptr* ppPortsPlayback; /*jack_port_t**/ ma_ptr* ppPortsCapture; float* pIntermediaryBufferPlayback; /* Typed as a float because JACK is always floating point. */ float* pIntermediaryBufferCapture; } jack; #endif #ifdef MA_SUPPORT_COREAUDIO struct { ma_uint32 deviceObjectIDPlayback; ma_uint32 deviceObjectIDCapture; /*AudioUnit*/ ma_ptr audioUnitPlayback; /*AudioUnit*/ ma_ptr audioUnitCapture; /*AudioBufferList**/ ma_ptr pAudioBufferList; /* Only used for input devices. */ ma_uint32 audioBufferCapInFrames; /* Only used for input devices. The capacity in frames of each buffer in pAudioBufferList. */ ma_event stopEvent; ma_uint32 originalPeriodSizeInFrames; ma_uint32 originalPeriodSizeInMilliseconds; ma_uint32 originalPeriods; ma_performance_profile originalPerformanceProfile; ma_bool32 isDefaultPlaybackDevice; ma_bool32 isDefaultCaptureDevice; ma_bool32 isSwitchingPlaybackDevice; /* <-- Set to true when the default device has changed and miniaudio is in the process of switching. */ ma_bool32 isSwitchingCaptureDevice; /* <-- Set to true when the default device has changed and miniaudio is in the process of switching. */ void* pNotificationHandler; /* Only used on mobile platforms. Obj-C object for handling route changes. */ } coreaudio; #endif #ifdef MA_SUPPORT_SNDIO struct { ma_ptr handlePlayback; ma_ptr handleCapture; ma_bool32 isStartedPlayback; ma_bool32 isStartedCapture; } sndio; #endif #ifdef MA_SUPPORT_AUDIO4 struct { int fdPlayback; int fdCapture; } audio4; #endif #ifdef MA_SUPPORT_OSS struct { int fdPlayback; int fdCapture; } oss; #endif #ifdef MA_SUPPORT_AAUDIO struct { /*AAudioStream**/ ma_ptr pStreamPlayback; /*AAudioStream**/ ma_ptr pStreamCapture; ma_aaudio_usage usage; ma_aaudio_content_type contentType; ma_aaudio_input_preset inputPreset; ma_bool32 noAutoStartAfterReroute; } aaudio; #endif #ifdef MA_SUPPORT_OPENSL struct { /*SLObjectItf*/ ma_ptr pOutputMixObj; /*SLOutputMixItf*/ ma_ptr pOutputMix; /*SLObjectItf*/ ma_ptr pAudioPlayerObj; /*SLPlayItf*/ ma_ptr pAudioPlayer; /*SLObjectItf*/ ma_ptr pAudioRecorderObj; /*SLRecordItf*/ ma_ptr pAudioRecorder; /*SLAndroidSimpleBufferQueueItf*/ ma_ptr pBufferQueuePlayback; /*SLAndroidSimpleBufferQueueItf*/ ma_ptr pBufferQueueCapture; ma_bool32 isDrainingCapture; ma_bool32 isDrainingPlayback; ma_uint32 currentBufferIndexPlayback; ma_uint32 currentBufferIndexCapture; ma_uint8* pBufferPlayback; /* This is malloc()'d and is used for storing audio data. Typed as ma_uint8 for easy offsetting. */ ma_uint8* pBufferCapture; } opensl; #endif #ifdef MA_SUPPORT_WEBAUDIO struct { int indexPlayback; /* We use a factory on the JavaScript side to manage devices and use an index for JS/C interop. */ int indexCapture; } webaudio; #endif #ifdef MA_SUPPORT_NULL struct { ma_thread deviceThread; ma_event operationEvent; ma_event operationCompletionEvent; ma_semaphore operationSemaphore; ma_uint32 operation; ma_result operationResult; ma_timer timer; double priorRunTime; ma_uint32 currentPeriodFramesRemainingPlayback; ma_uint32 currentPeriodFramesRemainingCapture; ma_uint64 lastProcessedFramePlayback; ma_uint64 lastProcessedFrameCapture; MA_ATOMIC(4, ma_bool32) isStarted; /* Read and written by multiple threads. Must be used atomically, and must be 32-bit for compiler compatibility. */ } null_device; #endif }; }; #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(pop) #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) #pragma GCC diagnostic pop /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */ #endif /* Initializes a `ma_context_config` object. Return Value ------------ A `ma_context_config` initialized to defaults. Remarks ------- You must always use this to initialize the default state of the `ma_context_config` object. Not using this will result in your program breaking when miniaudio is updated and new members are added to `ma_context_config`. It also sets logical defaults. You can override members of the returned object by changing it's members directly. See Also -------- ma_context_init() */ MA_API ma_context_config ma_context_config_init(void); /* Initializes a context. The context is used for selecting and initializing an appropriate backend and to represent the backend at a more global level than that of an individual device. There is one context to many devices, and a device is created from a context. A context is required to enumerate devices. Parameters ---------- backends (in, optional) A list of backends to try initializing, in priority order. Can be NULL, in which case it uses default priority order. backendCount (in, optional) The number of items in `backend`. Ignored if `backend` is NULL. pConfig (in, optional) The context configuration. pContext (in) A pointer to the context object being initialized. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. Do not call this function across multiple threads as some backends read and write to global state. Remarks ------- When `backends` is NULL, the default priority order will be used. Below is a list of backends in priority order: |-------------|-----------------------|--------------------------------------------------------| | Name | Enum Name | Supported Operating Systems | |-------------|-----------------------|--------------------------------------------------------| | WASAPI | ma_backend_wasapi | Windows Vista+ | | DirectSound | ma_backend_dsound | Windows XP+ | | WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) | | Core Audio | ma_backend_coreaudio | macOS, iOS | | ALSA | ma_backend_alsa | Linux | | PulseAudio | ma_backend_pulseaudio | Cross Platform (disabled on Windows, BSD and Android) | | JACK | ma_backend_jack | Cross Platform (disabled on BSD and Android) | | sndio | ma_backend_sndio | OpenBSD | | audio(4) | ma_backend_audio4 | NetBSD, OpenBSD | | OSS | ma_backend_oss | FreeBSD | | AAudio | ma_backend_aaudio | Android 8+ | | OpenSL|ES | ma_backend_opensl | Android (API level 16+) | | Web Audio | ma_backend_webaudio | Web (via Emscripten) | | Null | ma_backend_null | Cross Platform (not used on Web) | |-------------|-----------------------|--------------------------------------------------------| The context can be configured via the `pConfig` argument. The config object is initialized with `ma_context_config_init()`. Individual configuration settings can then be set directly on the structure. Below are the members of the `ma_context_config` object. pLog A pointer to the `ma_log` to post log messages to. Can be NULL if the application does not require logging. See the `ma_log` API for details on how to use the logging system. threadPriority The desired priority to use for the audio thread. Allowable values include the following: |--------------------------------------| | Thread Priority | |--------------------------------------| | ma_thread_priority_idle | | ma_thread_priority_lowest | | ma_thread_priority_low | | ma_thread_priority_normal | | ma_thread_priority_high | | ma_thread_priority_highest (default) | | ma_thread_priority_realtime | | ma_thread_priority_default | |--------------------------------------| threadStackSize The desired size of the stack for the audio thread. Defaults to the operating system's default. pUserData A pointer to application-defined data. This can be accessed from the context object directly such as `context.pUserData`. allocationCallbacks Structure containing custom allocation callbacks. Leaving this at defaults will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. These allocation callbacks will be used for anything tied to the context, including devices. alsa.useVerboseDeviceEnumeration ALSA will typically enumerate many different devices which can be intrusive and not user-friendly. To combat this, miniaudio will enumerate only unique card/device pairs by default. The problem with this is that you lose a bit of flexibility and control. Setting alsa.useVerboseDeviceEnumeration makes it so the ALSA backend includes all devices. Defaults to false. pulse.pApplicationName PulseAudio only. The application name to use when initializing the PulseAudio context with `pa_context_new()`. pulse.pServerName PulseAudio only. The name of the server to connect to with `pa_context_connect()`. pulse.tryAutoSpawn PulseAudio only. Whether or not to try automatically starting the PulseAudio daemon. Defaults to false. If you set this to true, keep in mind that miniaudio uses a trial and error method to find the most appropriate backend, and this will result in the PulseAudio daemon starting which may be intrusive for the end user. coreaudio.sessionCategory iOS only. The session category to use for the shared AudioSession instance. Below is a list of allowable values and their Core Audio equivalents. |-----------------------------------------|-------------------------------------| | miniaudio Token | Core Audio Token | |-----------------------------------------|-------------------------------------| | ma_ios_session_category_ambient | AVAudioSessionCategoryAmbient | | ma_ios_session_category_solo_ambient | AVAudioSessionCategorySoloAmbient | | ma_ios_session_category_playback | AVAudioSessionCategoryPlayback | | ma_ios_session_category_record | AVAudioSessionCategoryRecord | | ma_ios_session_category_play_and_record | AVAudioSessionCategoryPlayAndRecord | | ma_ios_session_category_multi_route | AVAudioSessionCategoryMultiRoute | | ma_ios_session_category_none | AVAudioSessionCategoryAmbient | | ma_ios_session_category_default | AVAudioSessionCategoryAmbient | |-----------------------------------------|-------------------------------------| coreaudio.sessionCategoryOptions iOS only. Session category options to use with the shared AudioSession instance. Below is a list of allowable values and their Core Audio equivalents. |---------------------------------------------------------------------------|------------------------------------------------------------------| | miniaudio Token | Core Audio Token | |---------------------------------------------------------------------------|------------------------------------------------------------------| | ma_ios_session_category_option_mix_with_others | AVAudioSessionCategoryOptionMixWithOthers | | ma_ios_session_category_option_duck_others | AVAudioSessionCategoryOptionDuckOthers | | ma_ios_session_category_option_allow_bluetooth | AVAudioSessionCategoryOptionAllowBluetooth | | ma_ios_session_category_option_default_to_speaker | AVAudioSessionCategoryOptionDefaultToSpeaker | | ma_ios_session_category_option_interrupt_spoken_audio_and_mix_with_others | AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers | | ma_ios_session_category_option_allow_bluetooth_a2dp | AVAudioSessionCategoryOptionAllowBluetoothA2DP | | ma_ios_session_category_option_allow_air_play | AVAudioSessionCategoryOptionAllowAirPlay | |---------------------------------------------------------------------------|------------------------------------------------------------------| coreaudio.noAudioSessionActivate iOS only. When set to true, does not perform an explicit [[AVAudioSession sharedInstace] setActive:true] on initialization. coreaudio.noAudioSessionDeactivate iOS only. When set to true, does not perform an explicit [[AVAudioSession sharedInstace] setActive:false] on uninitialization. jack.pClientName The name of the client to pass to `jack_client_open()`. jack.tryStartServer Whether or not to try auto-starting the JACK server. Defaults to false. It is recommended that only a single context is active at any given time because it's a bulky data structure which performs run-time linking for the relevant backends every time it's initialized. The location of the context cannot change throughout it's lifetime. Consider allocating the `ma_context` object with `malloc()` if this is an issue. The reason for this is that a pointer to the context is stored in the `ma_device` structure. Example 1 - Default Initialization ---------------------------------- The example below shows how to initialize the context using the default configuration. ```c ma_context context; ma_result result = ma_context_init(NULL, 0, NULL, &context); if (result != MA_SUCCESS) { // Error. } ``` Example 2 - Custom Configuration -------------------------------- The example below shows how to initialize the context using custom backend priorities and a custom configuration. In this hypothetical example, the program wants to prioritize ALSA over PulseAudio on Linux. They also want to avoid using the WinMM backend on Windows because it's latency is too high. They also want an error to be returned if no valid backend is available which they achieve by excluding the Null backend. For the configuration, the program wants to capture any log messages so they can, for example, route it to a log file and user interface. ```c ma_backend backends[] = { ma_backend_alsa, ma_backend_pulseaudio, ma_backend_wasapi, ma_backend_dsound }; ma_log log; ma_log_init(&log); ma_log_register_callback(&log, ma_log_callback_init(my_log_callbac, pMyLogUserData)); ma_context_config config = ma_context_config_init(); config.pLog = &log; // Specify a custom log object in the config so any logs that are posted from ma_context_init() are captured. ma_context context; ma_result result = ma_context_init(backends, sizeof(backends)/sizeof(backends[0]), &config, &context); if (result != MA_SUCCESS) { // Error. if (result == MA_NO_BACKEND) { // Couldn't find an appropriate backend. } } // You could also attach a log callback post-initialization: ma_log_register_callback(ma_context_get_log(&context), ma_log_callback_init(my_log_callback, pMyLogUserData)); ``` See Also -------- ma_context_config_init() ma_context_uninit() */ MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext); /* Uninitializes a context. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. Do not call this function across multiple threads as some backends read and write to global state. Remarks ------- Results are undefined if you call this while any device created by this context is still active. See Also -------- ma_context_init() */ MA_API ma_result ma_context_uninit(ma_context* pContext); /* Retrieves the size of the ma_context object. This is mainly for the purpose of bindings to know how much memory to allocate. */ MA_API size_t ma_context_sizeof(void); /* Retrieves a pointer to the log object associated with this context. Remarks ------- Pass the returned pointer to `ma_log_post()`, `ma_log_postv()` or `ma_log_postf()` to post a log message. You can attach your own logging callback to the log with `ma_log_register_callback()` Return Value ------------ A pointer to the `ma_log` object that the context uses to post log messages. If some error occurs, NULL will be returned. */ MA_API ma_log* ma_context_get_log(ma_context* pContext); /* Enumerates over every device (both playback and capture). This is a lower-level enumeration function to the easier to use `ma_context_get_devices()`. Use `ma_context_enumerate_devices()` if you would rather not incur an internal heap allocation, or it simply suits your code better. Note that this only retrieves the ID and name/description of the device. The reason for only retrieving basic information is that it would otherwise require opening the backend device in order to probe it for more detailed information which can be inefficient. Consider using `ma_context_get_device_info()` for this, but don't call it from within the enumeration callback. Returning false from the callback will stop enumeration. Returning true will continue enumeration. Parameters ---------- pContext (in) A pointer to the context performing the enumeration. callback (in) The callback to fire for each enumerated device. pUserData (in) A pointer to application-defined data passed to the callback. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Safe. This is guarded using a simple mutex lock. Remarks ------- Do _not_ assume the first enumerated device of a given type is the default device. Some backends and platforms may only support default playback and capture devices. In general, you should not do anything complicated from within the callback. In particular, do not try initializing a device from within the callback. Also, do not try to call `ma_context_get_device_info()` from within the callback. Consider using `ma_context_get_devices()` for a simpler and safer API, albeit at the expense of an internal heap allocation. Example 1 - Simple Enumeration ------------------------------ ma_bool32 ma_device_enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData) { printf("Device Name: %s\n", pInfo->name); return MA_TRUE; } ma_result result = ma_context_enumerate_devices(&context, my_device_enum_callback, pMyUserData); if (result != MA_SUCCESS) { // Error. } See Also -------- ma_context_get_devices() */ MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData); /* Retrieves basic information about every active playback and/or capture device. This function will allocate memory internally for the device lists and return a pointer to them through the `ppPlaybackDeviceInfos` and `ppCaptureDeviceInfos` parameters. If you do not want to incur the overhead of these allocations consider using `ma_context_enumerate_devices()` which will instead use a callback. Parameters ---------- pContext (in) A pointer to the context performing the enumeration. ppPlaybackDeviceInfos (out) A pointer to a pointer that will receive the address of a buffer containing the list of `ma_device_info` structures for playback devices. pPlaybackDeviceCount (out) A pointer to an unsigned integer that will receive the number of playback devices. ppCaptureDeviceInfos (out) A pointer to a pointer that will receive the address of a buffer containing the list of `ma_device_info` structures for capture devices. pCaptureDeviceCount (out) A pointer to an unsigned integer that will receive the number of capture devices. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. Since each call to this function invalidates the pointers from the previous call, you should not be calling this simultaneously across multiple threads. Instead, you need to make a copy of the returned data with your own higher level synchronization. Remarks ------- It is _not_ safe to assume the first device in the list is the default device. You can pass in NULL for the playback or capture lists in which case they'll be ignored. The returned pointers will become invalid upon the next call this this function, or when the context is uninitialized. Do not free the returned pointers. See Also -------- ma_context_get_devices() */ MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount); /* Retrieves information about a device of the given type, with the specified ID and share mode. Parameters ---------- pContext (in) A pointer to the context performing the query. deviceType (in) The type of the device being queried. Must be either `ma_device_type_playback` or `ma_device_type_capture`. pDeviceID (in) The ID of the device being queried. pDeviceInfo (out) A pointer to the `ma_device_info` structure that will receive the device information. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Safe. This is guarded using a simple mutex lock. Remarks ------- Do _not_ call this from within the `ma_context_enumerate_devices()` callback. It's possible for a device to have different information and capabilities depending on whether or not it's opened in shared or exclusive mode. For example, in shared mode, WASAPI always uses floating point samples for mixing, but in exclusive mode it can be anything. Therefore, this function allows you to specify which share mode you want information for. Note that not all backends and devices support shared or exclusive mode, in which case this function will fail if the requested share mode is unsupported. This leaves pDeviceInfo unmodified in the result of an error. */ MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo); /* Determines if the given context supports loopback mode. Parameters ---------- pContext (in) A pointer to the context getting queried. Return Value ------------ MA_TRUE if the context supports loopback mode; MA_FALSE otherwise. */ MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext); /* Initializes a device config with default settings. Parameters ---------- deviceType (in) The type of the device this config is being initialized for. This must set to one of the following: |-------------------------| | Device Type | |-------------------------| | ma_device_type_playback | | ma_device_type_capture | | ma_device_type_duplex | | ma_device_type_loopback | |-------------------------| Return Value ------------ A new device config object with default settings. You will typically want to adjust the config after this function returns. See remarks. Thread Safety ------------- Safe. Callback Safety --------------- Safe, but don't try initializing a device in a callback. Remarks ------- The returned config will be initialized to defaults. You will normally want to customize a few variables before initializing the device. See Example 1 for a typical configuration which sets the sample format, channel count, sample rate, data callback and user data. These are usually things you will want to change before initializing the device. See `ma_device_init()` for details on specific configuration options. Example 1 - Simple Configuration -------------------------------- The example below is what a program will typically want to configure for each device at a minimum. Notice how `ma_device_config_init()` is called first, and then the returned object is modified directly. This is important because it ensures that your program continues to work as new configuration options are added to the `ma_device_config` structure. ```c ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.format = ma_format_f32; config.playback.channels = 2; config.sampleRate = 48000; config.dataCallback = ma_data_callback; config.pUserData = pMyUserData; ``` See Also -------- ma_device_init() ma_device_init_ex() */ MA_API ma_device_config ma_device_config_init(ma_device_type deviceType); /* Initializes a device. A device represents a physical audio device. The idea is you send or receive audio data from the device to either play it back through a speaker, or capture it from a microphone. Whether or not you should send or receive data from the device (or both) depends on the type of device you are initializing which can be playback, capture, full-duplex or loopback. (Note that loopback mode is only supported on select backends.) Sending and receiving audio data to and from the device is done via a callback which is fired by miniaudio at periodic time intervals. The frequency at which data is delivered to and from a device depends on the size of it's period. The size of the period can be defined in terms of PCM frames or milliseconds, whichever is more convenient. Generally speaking, the smaller the period, the lower the latency at the expense of higher CPU usage and increased risk of glitching due to the more frequent and granular data deliver intervals. The size of a period will depend on your requirements, but miniaudio's defaults should work fine for most scenarios. If you're building a game you should leave this fairly small, whereas if you're building a simple media player you can make it larger. Note that the period size you request is actually just a hint - miniaudio will tell the backend what you want, but the backend is ultimately responsible for what it gives you. You cannot assume you will get exactly what you ask for. When delivering data to and from a device you need to make sure it's in the correct format which you can set through the device configuration. You just set the format that you want to use and miniaudio will perform all of the necessary conversion for you internally. When delivering data to and from the callback you can assume the format is the same as what you requested when you initialized the device. See Remarks for more details on miniaudio's data conversion pipeline. Parameters ---------- pContext (in, optional) A pointer to the context that owns the device. This can be null, in which case it creates a default context internally. pConfig (in) A pointer to the device configuration. Cannot be null. See remarks for details. pDevice (out) A pointer to the device object being initialized. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. It is not safe to call this function simultaneously for different devices because some backends depend on and mutate global state. The same applies to calling this at the same time as `ma_device_uninit()`. Callback Safety --------------- Unsafe. It is not safe to call this inside any callback. Remarks ------- Setting `pContext` to NULL will result in miniaudio creating a default context internally and is equivalent to passing in a context initialized like so: ```c ma_context_init(NULL, 0, NULL, &context); ``` Do not set `pContext` to NULL if you are needing to open multiple devices. You can, however, use NULL when initializing the first device, and then use device.pContext for the initialization of other devices. The device can be configured via the `pConfig` argument. The config object is initialized with `ma_device_config_init()`. Individual configuration settings can then be set directly on the structure. Below are the members of the `ma_device_config` object. deviceType Must be `ma_device_type_playback`, `ma_device_type_capture`, `ma_device_type_duplex` of `ma_device_type_loopback`. sampleRate The sample rate, in hertz. The most common sample rates are 48000 and 44100. Setting this to 0 will use the device's native sample rate. periodSizeInFrames The desired size of a period in PCM frames. If this is 0, `periodSizeInMilliseconds` will be used instead. If both are 0 the default buffer size will be used depending on the selected performance profile. This value affects latency. See below for details. periodSizeInMilliseconds The desired size of a period in milliseconds. If this is 0, `periodSizeInFrames` will be used instead. If both are 0 the default buffer size will be used depending on the selected performance profile. The value affects latency. See below for details. periods The number of periods making up the device's entire buffer. The total buffer size is `periodSizeInFrames` or `periodSizeInMilliseconds` multiplied by this value. This is just a hint as backends will be the ones who ultimately decide how your periods will be configured. performanceProfile A hint to miniaudio as to the performance requirements of your program. Can be either `ma_performance_profile_low_latency` (default) or `ma_performance_profile_conservative`. This mainly affects the size of default buffers and can usually be left at it's default value. noPreSilencedOutputBuffer When set to true, the contents of the output buffer passed into the data callback will be left undefined. When set to false (default), the contents of the output buffer will be cleared the zero. You can use this to avoid the overhead of zeroing out the buffer if you can guarantee that your data callback will write to every sample in the output buffer, or if you are doing your own clearing. noClip When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. When set to false (default), the contents of the output buffer are left alone after returning and it will be left up to the backend itself to decide whether or not the clip. This only applies when the playback sample format is f32. noDisableDenormals By default, miniaudio will disable denormals when the data callback is called. Setting this to true will prevent the disabling of denormals. noFixedSizedCallback Allows miniaudio to fire the data callback with any frame count. When this is set to false (the default), the data callback will be fired with a consistent frame count as specified by `periodSizeInFrames` or `periodSizeInMilliseconds`. When set to true, miniaudio will fire the callback with whatever the backend requests, which could be anything. dataCallback The callback to fire whenever data is ready to be delivered to or from the device. notificationCallback The callback to fire when something has changed with the device, such as whether or not it has been started or stopped. pUserData The user data pointer to use with the device. You can access this directly from the device object like `device.pUserData`. resampling.algorithm The resampling algorithm to use when miniaudio needs to perform resampling between the rate specified by `sampleRate` and the device's native rate. The default value is `ma_resample_algorithm_linear`, and the quality can be configured with `resampling.linear.lpfOrder`. resampling.pBackendVTable A pointer to an optional vtable that can be used for plugging in a custom resampler. resampling.pBackendUserData A pointer that will passed to callbacks in pBackendVTable. resampling.linear.lpfOrder The linear resampler applies a low-pass filter as part of it's procesing for anti-aliasing. This setting controls the order of the filter. The higher the value, the better the quality, in general. Setting this to 0 will disable low-pass filtering altogether. The maximum value is `MA_MAX_FILTER_ORDER`. The default value is `min(4, MA_MAX_FILTER_ORDER)`. playback.pDeviceID A pointer to a `ma_device_id` structure containing the ID of the playback device to initialize. Setting this NULL (default) will use the system's default playback device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration. playback.format The sample format to use for playback. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after initialization from the device object directly with `device.playback.format`. playback.channels The number of channels to use for playback. When set to 0 the device's native channel count will be used. This can be retrieved after initialization from the device object directly with `device.playback.channels`. playback.pChannelMap The channel map to use for playback. When left empty, the device's native channel map will be used. This can be retrieved after initialization from the device object direct with `device.playback.pChannelMap`. When set, the buffer should contain `channels` items. playback.shareMode The preferred share mode to use for playback. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired by changing this to ma_share_mode_shared and reinitializing. capture.pDeviceID A pointer to a `ma_device_id` structure containing the ID of the capture device to initialize. Setting this NULL (default) will use the system's default capture device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration. capture.format The sample format to use for capture. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after initialization from the device object directly with `device.capture.format`. capture.channels The number of channels to use for capture. When set to 0 the device's native channel count will be used. This can be retrieved after initialization from the device object directly with `device.capture.channels`. capture.pChannelMap The channel map to use for capture. When left empty, the device's native channel map will be used. This can be retrieved after initialization from the device object direct with `device.capture.pChannelMap`. When set, the buffer should contain `channels` items. capture.shareMode The preferred share mode to use for capture. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired by changing this to ma_share_mode_shared and reinitializing. wasapi.noAutoConvertSRC WASAPI only. When set to true, disables WASAPI's automatic resampling and forces the use of miniaudio's resampler. Defaults to false. wasapi.noDefaultQualitySRC WASAPI only. Only used when `wasapi.noAutoConvertSRC` is set to false. When set to true, disables the use of `AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY`. You should usually leave this set to false, which is the default. wasapi.noAutoStreamRouting WASAPI only. When set to true, disables automatic stream routing on the WASAPI backend. Defaults to false. wasapi.noHardwareOffloading WASAPI only. When set to true, disables the use of WASAPI's hardware offloading feature. Defaults to false. alsa.noMMap ALSA only. When set to true, disables MMap mode. Defaults to false. alsa.noAutoFormat ALSA only. When set to true, disables ALSA's automatic format conversion by including the SND_PCM_NO_AUTO_FORMAT flag. Defaults to false. alsa.noAutoChannels ALSA only. When set to true, disables ALSA's automatic channel conversion by including the SND_PCM_NO_AUTO_CHANNELS flag. Defaults to false. alsa.noAutoResample ALSA only. When set to true, disables ALSA's automatic resampling by including the SND_PCM_NO_AUTO_RESAMPLE flag. Defaults to false. pulse.pStreamNamePlayback PulseAudio only. Sets the stream name for playback. pulse.pStreamNameCapture PulseAudio only. Sets the stream name for capture. coreaudio.allowNominalSampleRateChange Core Audio only. Desktop only. When enabled, allows the sample rate of the device to be changed at the operating system level. This is disabled by default in order to prevent intrusive changes to the user's system. This is useful if you want to use a sample rate that is known to be natively supported by the hardware thereby avoiding the cost of resampling. When set to true, miniaudio will find the closest match between the sample rate requested in the device config and the sample rates natively supported by the hardware. When set to false, the sample rate currently set by the operating system will always be used. opensl.streamType OpenSL only. Explicitly sets the stream type. If left unset (`ma_opensl_stream_type_default`), the stream type will be left unset. Think of this as the type of audio you're playing. opensl.recordingPreset OpenSL only. Explicitly sets the type of recording your program will be doing. When left unset, the recording preset will be left unchanged. aaudio.usage AAudio only. Explicitly sets the nature of the audio the program will be consuming. When left unset, the usage will be left unchanged. aaudio.contentType AAudio only. Sets the content type. When left unset, the content type will be left unchanged. aaudio.inputPreset AAudio only. Explicitly sets the type of recording your program will be doing. When left unset, the input preset will be left unchanged. aaudio.noAutoStartAfterReroute AAudio only. Controls whether or not the device should be automatically restarted after a stream reroute. When set to false (default) the device will be restarted automatically; otherwise the device will be stopped. Once initialized, the device's config is immutable. If you need to change the config you will need to initialize a new device. After initializing the device it will be in a stopped state. To start it, use `ma_device_start()`. If both `periodSizeInFrames` and `periodSizeInMilliseconds` are set to zero, it will default to `MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY` or `MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE`, depending on whether or not `performanceProfile` is set to `ma_performance_profile_low_latency` or `ma_performance_profile_conservative`. If you request exclusive mode and the backend does not support it an error will be returned. For robustness, you may want to first try initializing the device in exclusive mode, and then fall back to shared mode if required. Alternatively you can just request shared mode (the default if you leave it unset in the config) which is the most reliable option. Some backends do not have a practical way of choosing whether or not the device should be exclusive or not (ALSA, for example) in which case it just acts as a hint. Unless you have special requirements you should try avoiding exclusive mode as it's intrusive to the user. Starting with Windows 10, miniaudio will use low-latency shared mode where possible which may make exclusive mode unnecessary. When sending or receiving data to/from a device, miniaudio will internally perform a format conversion to convert between the format specified by the config and the format used internally by the backend. If you pass in 0 for the sample format, channel count, sample rate _and_ channel map, data transmission will run on an optimized pass-through fast path. You can retrieve the format, channel count and sample rate by inspecting the `playback/capture.format`, `playback/capture.channels` and `sampleRate` members of the device object. When compiling for UWP you must ensure you call this function on the main UI thread because the operating system may need to present the user with a message asking for permissions. Please refer to the official documentation for ActivateAudioInterfaceAsync() for more information. ALSA Specific: When initializing the default device, requesting shared mode will try using the "dmix" device for playback and the "dsnoop" device for capture. If these fail it will try falling back to the "hw" device. Example 1 - Simple Initialization --------------------------------- This example shows how to initialize a simple playback device using a standard configuration. If you are just needing to do simple playback from the default playback device this is usually all you need. ```c ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.format = ma_format_f32; config.playback.channels = 2; config.sampleRate = 48000; config.dataCallback = ma_data_callback; config.pMyUserData = pMyUserData; ma_device device; ma_result result = ma_device_init(NULL, &config, &device); if (result != MA_SUCCESS) { // Error } ``` Example 2 - Advanced Initialization ----------------------------------- This example shows how you might do some more advanced initialization. In this hypothetical example we want to control the latency by setting the buffer size and period count. We also want to allow the user to be able to choose which device to output from which means we need a context so we can perform device enumeration. ```c ma_context context; ma_result result = ma_context_init(NULL, 0, NULL, &context); if (result != MA_SUCCESS) { // Error } ma_device_info* pPlaybackDeviceInfos; ma_uint32 playbackDeviceCount; result = ma_context_get_devices(&context, &pPlaybackDeviceInfos, &playbackDeviceCount, NULL, NULL); if (result != MA_SUCCESS) { // Error } // ... choose a device from pPlaybackDeviceInfos ... ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.pDeviceID = pMyChosenDeviceID; // <-- Get this from the `id` member of one of the `ma_device_info` objects returned by ma_context_get_devices(). config.playback.format = ma_format_f32; config.playback.channels = 2; config.sampleRate = 48000; config.dataCallback = ma_data_callback; config.pUserData = pMyUserData; config.periodSizeInMilliseconds = 10; config.periods = 3; ma_device device; result = ma_device_init(&context, &config, &device); if (result != MA_SUCCESS) { // Error } ``` See Also -------- ma_device_config_init() ma_device_uninit() ma_device_start() ma_context_init() ma_context_get_devices() ma_context_enumerate_devices() */ MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice); /* Initializes a device without a context, with extra parameters for controlling the configuration of the internal self-managed context. This is the same as `ma_device_init()`, only instead of a context being passed in, the parameters from `ma_context_init()` are passed in instead. This function allows you to configure the internally created context. Parameters ---------- backends (in, optional) A list of backends to try initializing, in priority order. Can be NULL, in which case it uses default priority order. backendCount (in, optional) The number of items in `backend`. Ignored if `backend` is NULL. pContextConfig (in, optional) The context configuration. pConfig (in) A pointer to the device configuration. Cannot be null. See remarks for details. pDevice (out) A pointer to the device object being initialized. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. It is not safe to call this function simultaneously for different devices because some backends depend on and mutate global state. The same applies to calling this at the same time as `ma_device_uninit()`. Callback Safety --------------- Unsafe. It is not safe to call this inside any callback. Remarks ------- You only need to use this function if you want to configure the context differently to it's defaults. You should never use this function if you want to manage your own context. See the documentation for `ma_context_init()` for information on the different context configuration options. See Also -------- ma_device_init() ma_device_uninit() ma_device_config_init() ma_context_init() */ MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice); /* Uninitializes a device. This will explicitly stop the device. You do not need to call `ma_device_stop()` beforehand, but it's harmless if you do. Parameters ---------- pDevice (in) A pointer to the device to stop. Return Value ------------ Nothing Thread Safety ------------- Unsafe. As soon as this API is called the device should be considered undefined. Callback Safety --------------- Unsafe. It is not safe to call this inside any callback. Doing this will result in a deadlock. See Also -------- ma_device_init() ma_device_stop() */ MA_API void ma_device_uninit(ma_device* pDevice); /* Retrieves a pointer to the context that owns the given device. */ MA_API ma_context* ma_device_get_context(ma_device* pDevice); /* Helper function for retrieving the log object associated with the context that owns this device. */ MA_API ma_log* ma_device_get_log(ma_device* pDevice); /* Retrieves information about the device. Parameters ---------- pDevice (in) A pointer to the device whose information is being retrieved. type (in) The device type. This parameter is required for duplex devices. When retrieving device information, you are doing so for an individual playback or capture device. pDeviceInfo (out) A pointer to the `ma_device_info` that will receive the device information. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. This should be considered unsafe because it may be calling into the backend which may or may not be safe. Callback Safety --------------- Unsafe. You should avoid calling this in the data callback because it may call into the backend which may or may not be safe. */ MA_API ma_result ma_device_get_info(ma_device* pDevice, ma_device_type type, ma_device_info* pDeviceInfo); /* Retrieves the name of the device. Parameters ---------- pDevice (in) A pointer to the device whose information is being retrieved. type (in) The device type. This parameter is required for duplex devices. When retrieving device information, you are doing so for an individual playback or capture device. pName (out) A pointer to the buffer that will receive the name. nameCap (in) The capacity of the output buffer, including space for the null terminator. pLengthNotIncludingNullTerminator (out, optional) A pointer to the variable that will receive the length of the name, not including the null terminator. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Unsafe. This should be considered unsafe because it may be calling into the backend which may or may not be safe. Callback Safety --------------- Unsafe. You should avoid calling this in the data callback because it may call into the backend which may or may not be safe. Remarks ------- If the name does not fully fit into the output buffer, it'll be truncated. You can pass in NULL to `pName` if you want to first get the length of the name for the purpose of memory allocation of the output buffer. Allocating a buffer of size `MA_MAX_DEVICE_NAME_LENGTH + 1` should be enough for most cases and will avoid the need for the inefficiency of calling this function twice. This is implemented in terms of `ma_device_get_info()`. */ MA_API ma_result ma_device_get_name(ma_device* pDevice, ma_device_type type, char* pName, size_t nameCap, size_t* pLengthNotIncludingNullTerminator); /* Starts the device. For playback devices this begins playback. For capture devices it begins recording. Use `ma_device_stop()` to stop the device. Parameters ---------- pDevice (in) A pointer to the device to start. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Safe. It's safe to call this from any thread with the exception of the callback thread. Callback Safety --------------- Unsafe. It is not safe to call this inside any callback. Remarks ------- For a playback device, this will retrieve an initial chunk of audio data from the client before returning. The reason for this is to ensure there is valid audio data in the buffer, which needs to be done before the device begins playback. This API waits until the backend device has been started for real by the worker thread. It also waits on a mutex for thread-safety. Do not call this in any callback. See Also -------- ma_device_stop() */ MA_API ma_result ma_device_start(ma_device* pDevice); /* Stops the device. For playback devices this stops playback. For capture devices it stops recording. Use `ma_device_start()` to start the device again. Parameters ---------- pDevice (in) A pointer to the device to stop. Return Value ------------ MA_SUCCESS if successful; any other error code otherwise. Thread Safety ------------- Safe. It's safe to call this from any thread with the exception of the callback thread. Callback Safety --------------- Unsafe. It is not safe to call this inside any callback. Doing this will result in a deadlock. Remarks ------- This API needs to wait on the worker thread to stop the backend device properly before returning. It also waits on a mutex for thread-safety. In addition, some backends need to wait for the device to finish playback/recording of the current fragment which can take some time (usually proportionate to the buffer size that was specified at initialization time). Backends are required to either pause the stream in-place or drain the buffer if pausing is not possible. The reason for this is that stopping the device and the resuming it with ma_device_start() (which you might do when your program loses focus) may result in a situation where those samples are never output to the speakers or received from the microphone which can in turn result in de-syncs. Do not call this in any callback. This will be called implicitly by `ma_device_uninit()`. See Also -------- ma_device_start() */ MA_API ma_result ma_device_stop(ma_device* pDevice); /* Determines whether or not the device is started. Parameters ---------- pDevice (in) A pointer to the device whose start state is being retrieved. Return Value ------------ True if the device is started, false otherwise. Thread Safety ------------- Safe. If another thread calls `ma_device_start()` or `ma_device_stop()` at this same time as this function is called, there's a very small chance the return value will be out of sync. Callback Safety --------------- Safe. This is implemented as a simple accessor. See Also -------- ma_device_start() ma_device_stop() */ MA_API ma_bool32 ma_device_is_started(const ma_device* pDevice); /* Retrieves the state of the device. Parameters ---------- pDevice (in) A pointer to the device whose state is being retrieved. Return Value ------------ The current state of the device. The return value will be one of the following: +-------------------------------+------------------------------------------------------------------------------+ | ma_device_state_uninitialized | Will only be returned if the device is in the middle of initialization. | +-------------------------------+------------------------------------------------------------------------------+ | ma_device_state_stopped | The device is stopped. The initial state of the device after initialization. | +-------------------------------+------------------------------------------------------------------------------+ | ma_device_state_started | The device started and requesting and/or delivering audio data. | +-------------------------------+------------------------------------------------------------------------------+ | ma_device_state_starting | The device is in the process of starting. | +-------------------------------+------------------------------------------------------------------------------+ | ma_device_state_stopping | The device is in the process of stopping. | +-------------------------------+------------------------------------------------------------------------------+ Thread Safety ------------- Safe. This is implemented as a simple accessor. Note that if the device is started or stopped at the same time as this function is called, there's a possibility the return value could be out of sync. See remarks. Callback Safety --------------- Safe. This is implemented as a simple accessor. Remarks ------- The general flow of a devices state goes like this: ``` ma_device_init() -> ma_device_state_uninitialized -> ma_device_state_stopped ma_device_start() -> ma_device_state_starting -> ma_device_state_started ma_device_stop() -> ma_device_state_stopping -> ma_device_state_stopped ``` When the state of the device is changed with `ma_device_start()` or `ma_device_stop()` at this same time as this function is called, the value returned by this function could potentially be out of sync. If this is significant to your program you need to implement your own synchronization. */ MA_API ma_device_state ma_device_get_state(const ma_device* pDevice); /* Performs post backend initialization routines for setting up internal data conversion. This should be called whenever the backend is initialized. The only time this should be called from outside of miniaudio is if you're implementing a custom backend, and you would only do it if you are reinitializing the backend due to rerouting or reinitializing for some reason. Parameters ---------- pDevice [in] A pointer to the device. deviceType [in] The type of the device that was just reinitialized. pPlaybackDescriptor [in] The descriptor of the playback device containing the internal data format and buffer sizes. pPlaybackDescriptor [in] The descriptor of the capture device containing the internal data format and buffer sizes. Return Value ------------ MA_SUCCESS if successful; any other error otherwise. Thread Safety ------------- Unsafe. This will be reinitializing internal data converters which may be in use by another thread. Callback Safety --------------- Unsafe. This will be reinitializing internal data converters which may be in use by the callback. Remarks ------- For a duplex device, you can call this for only one side of the system. This is why the deviceType is specified as a parameter rather than deriving it from the device. You do not need to call this manually unless you are doing a custom backend, in which case you need only do it if you're manually performing rerouting or reinitialization. */ MA_API ma_result ma_device_post_init(ma_device* pDevice, ma_device_type deviceType, const ma_device_descriptor* pPlaybackDescriptor, const ma_device_descriptor* pCaptureDescriptor); /* Sets the master volume factor for the device. The volume factor must be between 0 (silence) and 1 (full volume). Use `ma_device_set_master_volume_db()` to use decibel notation, where 0 is full volume and values less than 0 decreases the volume. Parameters ---------- pDevice (in) A pointer to the device whose volume is being set. volume (in) The new volume factor. Must be >= 0. Return Value ------------ MA_SUCCESS if the volume was set successfully. MA_INVALID_ARGS if pDevice is NULL. MA_INVALID_ARGS if volume is negative. Thread Safety ------------- Safe. This just sets a local member of the device object. Callback Safety --------------- Safe. If you set the volume in the data callback, that data written to the output buffer will have the new volume applied. Remarks ------- This applies the volume factor across all channels. This does not change the operating system's volume. It only affects the volume for the given `ma_device` object's audio stream. See Also -------- ma_device_get_master_volume() ma_device_set_master_volume_db() ma_device_get_master_volume_db() */ MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume); /* Retrieves the master volume factor for the device. Parameters ---------- pDevice (in) A pointer to the device whose volume factor is being retrieved. pVolume (in) A pointer to the variable that will receive the volume factor. The returned value will be in the range of [0, 1]. Return Value ------------ MA_SUCCESS if successful. MA_INVALID_ARGS if pDevice is NULL. MA_INVALID_ARGS if pVolume is NULL. Thread Safety ------------- Safe. This just a simple member retrieval. Callback Safety --------------- Safe. Remarks ------- If an error occurs, `*pVolume` will be set to 0. See Also -------- ma_device_set_master_volume() ma_device_set_master_volume_gain_db() ma_device_get_master_volume_gain_db() */ MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume); /* Sets the master volume for the device as gain in decibels. A gain of 0 is full volume, whereas a gain of < 0 will decrease the volume. Parameters ---------- pDevice (in) A pointer to the device whose gain is being set. gainDB (in) The new volume as gain in decibels. Must be less than or equal to 0, where 0 is full volume and anything less than 0 decreases the volume. Return Value ------------ MA_SUCCESS if the volume was set successfully. MA_INVALID_ARGS if pDevice is NULL. MA_INVALID_ARGS if the gain is > 0. Thread Safety ------------- Safe. This just sets a local member of the device object. Callback Safety --------------- Safe. If you set the volume in the data callback, that data written to the output buffer will have the new volume applied. Remarks ------- This applies the gain across all channels. This does not change the operating system's volume. It only affects the volume for the given `ma_device` object's audio stream. See Also -------- ma_device_get_master_volume_gain_db() ma_device_set_master_volume() ma_device_get_master_volume() */ MA_API ma_result ma_device_set_master_volume_db(ma_device* pDevice, float gainDB); /* Retrieves the master gain in decibels. Parameters ---------- pDevice (in) A pointer to the device whose gain is being retrieved. pGainDB (in) A pointer to the variable that will receive the gain in decibels. The returned value will be <= 0. Return Value ------------ MA_SUCCESS if successful. MA_INVALID_ARGS if pDevice is NULL. MA_INVALID_ARGS if pGainDB is NULL. Thread Safety ------------- Safe. This just a simple member retrieval. Callback Safety --------------- Safe. Remarks ------- If an error occurs, `*pGainDB` will be set to 0. See Also -------- ma_device_set_master_volume_db() ma_device_set_master_volume() ma_device_get_master_volume() */ MA_API ma_result ma_device_get_master_volume_db(ma_device* pDevice, float* pGainDB); /* Called from the data callback of asynchronous backends to allow miniaudio to process the data and fire the miniaudio data callback. Parameters ---------- pDevice (in) A pointer to device whose processing the data callback. pOutput (out) A pointer to the buffer that will receive the output PCM frame data. On a playback device this must not be NULL. On a duplex device this can be NULL, in which case pInput must not be NULL. pInput (in) A pointer to the buffer containing input PCM frame data. On a capture device this must not be NULL. On a duplex device this can be NULL, in which case `pOutput` must not be NULL. frameCount (in) The number of frames being processed. Return Value ------------ MA_SUCCESS if successful; any other result code otherwise. Thread Safety ------------- This function should only ever be called from the internal data callback of the backend. It is safe to call this simultaneously between a playback and capture device in duplex setups. Callback Safety --------------- Do not call this from the miniaudio data callback. It should only ever be called from the internal data callback of the backend. Remarks ------- If both `pOutput` and `pInput` are NULL, and error will be returned. In duplex scenarios, both `pOutput` and `pInput` can be non-NULL, in which case `pInput` will be processed first, followed by `pOutput`. If you are implementing a custom backend, and that backend uses a callback for data delivery, you'll need to call this from inside that callback. */ MA_API ma_result ma_device_handle_backend_data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount); /* Calculates an appropriate buffer size from a descriptor, native sample rate and performance profile. This function is used by backends for helping determine an appropriately sized buffer to use with the device depending on the values of `periodSizeInFrames` and `periodSizeInMilliseconds` in the `pDescriptor` object. Since buffer size calculations based on time depends on the sample rate, a best guess at the device's native sample rate is also required which is where `nativeSampleRate` comes in. In addition, the performance profile is also needed for cases where both the period size in frames and milliseconds are both zero. Parameters ---------- pDescriptor (in) A pointer to device descriptor whose `periodSizeInFrames` and `periodSizeInMilliseconds` members will be used for the calculation of the buffer size. nativeSampleRate (in) The device's native sample rate. This is only ever used when the `periodSizeInFrames` member of `pDescriptor` is zero. In this case, `periodSizeInMilliseconds` will be used instead, in which case a sample rate is required to convert to a size in frames. performanceProfile (in) When both the `periodSizeInFrames` and `periodSizeInMilliseconds` members of `pDescriptor` are zero, miniaudio will fall back to a buffer size based on the performance profile. The profile to use for this calculation is determine by this parameter. Return Value ------------ The calculated buffer size in frames. Thread Safety ------------- This is safe so long as nothing modifies `pDescriptor` at the same time. However, this function should only ever be called from within the backend's device initialization routine and therefore shouldn't have any multithreading concerns. Callback Safety --------------- This is safe to call within the data callback, but there is no reason to ever do this. Remarks ------- If `nativeSampleRate` is zero, this function will fall back to `pDescriptor->sampleRate`. If that is also zero, `MA_DEFAULT_SAMPLE_RATE` will be used instead. */ MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_descriptor(const ma_device_descriptor* pDescriptor, ma_uint32 nativeSampleRate, ma_performance_profile performanceProfile); /* Retrieves a friendly name for a backend. */ MA_API const char* ma_get_backend_name(ma_backend backend); /* Determines whether or not the given backend is available by the compilation environment. */ MA_API ma_bool32 ma_is_backend_enabled(ma_backend backend); /* Retrieves compile-time enabled backends. Parameters ---------- pBackends (out, optional) A pointer to the buffer that will receive the enabled backends. Set to NULL to retrieve the backend count. Setting the capacity of the buffer to `MA_BUFFER_COUNT` will guarantee it's large enough for all backends. backendCap (in) The capacity of the `pBackends` buffer. pBackendCount (out) A pointer to the variable that will receive the enabled backend count. Return Value ------------ MA_SUCCESS if successful. MA_INVALID_ARGS if `pBackendCount` is NULL. MA_NO_SPACE if the capacity of `pBackends` is not large enough. If `MA_NO_SPACE` is returned, the `pBackends` buffer will be filled with `*pBackendCount` values. Thread Safety ------------- Safe. Callback Safety --------------- Safe. Remarks ------- If you want to retrieve the number of backends so you can determine the capacity of `pBackends` buffer, you can call this function with `pBackends` set to NULL. This will also enumerate the null backend. If you don't want to include this you need to check for `ma_backend_null` when you enumerate over the returned backends and handle it appropriately. Alternatively, you can disable it at compile time with `MA_NO_NULL`. The returned backends are determined based on compile time settings, not the platform it's currently running on. For example, PulseAudio will be returned if it was enabled at compile time, even when the user doesn't actually have PulseAudio installed. Example 1 --------- The example below retrieves the enabled backend count using a fixed sized buffer allocated on the stack. The buffer is given a capacity of `MA_BACKEND_COUNT` which will guarantee it'll be large enough to store all available backends. Since `MA_BACKEND_COUNT` is always a relatively small value, this should be suitable for most scenarios. ``` ma_backend enabledBackends[MA_BACKEND_COUNT]; size_t enabledBackendCount; result = ma_get_enabled_backends(enabledBackends, MA_BACKEND_COUNT, &enabledBackendCount); if (result != MA_SUCCESS) { // Failed to retrieve enabled backends. Should never happen in this example since all inputs are valid. } ``` See Also -------- ma_is_backend_enabled() */ MA_API ma_result ma_get_enabled_backends(ma_backend* pBackends, size_t backendCap, size_t* pBackendCount); /* Determines whether or not loopback mode is support by a backend. */ MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend); #endif /* MA_NO_DEVICE_IO */ /************************************************************************************************************************************************************ Utiltities ************************************************************************************************************************************************************/ /* Calculates a buffer size in milliseconds from the specified number of frames and sample rate. */ MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate); /* Calculates a buffer size in frames from the specified number of milliseconds and sample rate. */ MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate); /* Copies PCM frames from one buffer to another. */ MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels); /* Copies silent frames into the given buffer. Remarks ------- For all formats except `ma_format_u8`, the output buffer will be filled with 0. For `ma_format_u8` it will be filled with 128. The reason for this is that it makes more sense for the purpose of mixing to initialize it to the center point. */ MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels); /* Offsets a pointer by the specified number of PCM frames. */ MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels); MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels); static MA_INLINE float* ma_offset_pcm_frames_ptr_f32(float* p, ma_uint64 offsetInFrames, ma_uint32 channels) { return (float*)ma_offset_pcm_frames_ptr((void*)p, offsetInFrames, ma_format_f32, channels); } static MA_INLINE const float* ma_offset_pcm_frames_const_ptr_f32(const float* p, ma_uint64 offsetInFrames, ma_uint32 channels) { return (const float*)ma_offset_pcm_frames_const_ptr((const void*)p, offsetInFrames, ma_format_f32, channels); } /* Clips samples. */ MA_API void ma_clip_samples_u8(ma_uint8* pDst, const ma_int16* pSrc, ma_uint64 count); MA_API void ma_clip_samples_s16(ma_int16* pDst, const ma_int32* pSrc, ma_uint64 count); MA_API void ma_clip_samples_s24(ma_uint8* pDst, const ma_int64* pSrc, ma_uint64 count); MA_API void ma_clip_samples_s32(ma_int32* pDst, const ma_int64* pSrc, ma_uint64 count); MA_API void ma_clip_samples_f32(float* pDst, const float* pSrc, ma_uint64 count); MA_API void ma_clip_pcm_frames(void* pDst, const void* pSrc, ma_uint64 frameCount, ma_format format, ma_uint32 channels); /* Helper for applying a volume factor to samples. Note that the source and destination buffers can be the same, in which case it'll perform the operation in-place. */ MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint64 sampleCount, float factor); MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint64 sampleCount, float factor); MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint64 sampleCount, float factor); MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint64 sampleCount, float factor); MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint64 sampleCount, float factor); MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint64 sampleCount, float factor); MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint64 sampleCount, float factor); MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint64 sampleCount, float factor); MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint64 sampleCount, float factor); MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint64 sampleCount, float factor); MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pFramesOut, const ma_uint8* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pFramesOut, const ma_int16* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pFramesOut, const ma_int32* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pFramesOut, const float* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor); MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor); MA_API void ma_apply_volume_factor_pcm_frames(void* pFrames, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor); MA_API void ma_copy_and_apply_volume_factor_per_channel_f32(float* pFramesOut, const float* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float* pChannelGains); MA_API void ma_copy_and_apply_volume_and_clip_samples_u8(ma_uint8* pDst, const ma_int16* pSrc, ma_uint64 count, float volume); MA_API void ma_copy_and_apply_volume_and_clip_samples_s16(ma_int16* pDst, const ma_int32* pSrc, ma_uint64 count, float volume); MA_API void ma_copy_and_apply_volume_and_clip_samples_s24(ma_uint8* pDst, const ma_int64* pSrc, ma_uint64 count, float volume); MA_API void ma_copy_and_apply_volume_and_clip_samples_s32(ma_int32* pDst, const ma_int64* pSrc, ma_uint64 count, float volume); MA_API void ma_copy_and_apply_volume_and_clip_samples_f32(float* pDst, const float* pSrc, ma_uint64 count, float volume); MA_API void ma_copy_and_apply_volume_and_clip_pcm_frames(void* pDst, const void* pSrc, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float volume); /* Helper for converting a linear factor to gain in decibels. */ MA_API float ma_volume_linear_to_db(float factor); /* Helper for converting gain in decibels to a linear factor. */ MA_API float ma_volume_db_to_linear(float gain); /************************************************************************************************** Data Source **************************************************************************************************/ typedef void ma_data_source; #define MA_DATA_SOURCE_SELF_MANAGED_RANGE_AND_LOOP_POINT 0x00000001 typedef struct { ma_result (* onRead)(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); ma_result (* onSeek)(ma_data_source* pDataSource, ma_uint64 frameIndex); ma_result (* onGetDataFormat)(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); ma_result (* onGetCursor)(ma_data_source* pDataSource, ma_uint64* pCursor); ma_result (* onGetLength)(ma_data_source* pDataSource, ma_uint64* pLength); ma_result (* onSetLooping)(ma_data_source* pDataSource, ma_bool32 isLooping); ma_uint32 flags; } ma_data_source_vtable; typedef ma_data_source* (* ma_data_source_get_next_proc)(ma_data_source* pDataSource); typedef struct { const ma_data_source_vtable* vtable; } ma_data_source_config; MA_API ma_data_source_config ma_data_source_config_init(void); typedef struct { const ma_data_source_vtable* vtable; ma_uint64 rangeBegInFrames; ma_uint64 rangeEndInFrames; /* Set to -1 for unranged (default). */ ma_uint64 loopBegInFrames; /* Relative to rangeBegInFrames. */ ma_uint64 loopEndInFrames; /* Relative to rangeBegInFrames. Set to -1 for the end of the range. */ ma_data_source* pCurrent; /* When non-NULL, the data source being initialized will act as a proxy and will route all operations to pCurrent. Used in conjunction with pNext/onGetNext for seamless chaining. */ ma_data_source* pNext; /* When set to NULL, onGetNext will be used. */ ma_data_source_get_next_proc onGetNext; /* Will be used when pNext is NULL. If both are NULL, no next will be used. */ MA_ATOMIC(4, ma_bool32) isLooping; } ma_data_source_base; MA_API ma_result ma_data_source_init(const ma_data_source_config* pConfig, ma_data_source* pDataSource); MA_API void ma_data_source_uninit(ma_data_source* pDataSource); MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); /* Must support pFramesOut = NULL in which case a forward seek should be performed. */ MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked); /* Can only seek forward. Equivalent to ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount, &framesRead); */ MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex); MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_data_source_get_cursor_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pCursor); MA_API ma_result ma_data_source_get_length_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pLength); /* Returns MA_NOT_IMPLEMENTED if the length is unknown or cannot be determined. Decoders can return this. */ MA_API ma_result ma_data_source_get_cursor_in_seconds(ma_data_source* pDataSource, float* pCursor); MA_API ma_result ma_data_source_get_length_in_seconds(ma_data_source* pDataSource, float* pLength); MA_API ma_result ma_data_source_set_looping(ma_data_source* pDataSource, ma_bool32 isLooping); MA_API ma_bool32 ma_data_source_is_looping(const ma_data_source* pDataSource); MA_API ma_result ma_data_source_set_range_in_pcm_frames(ma_data_source* pDataSource, ma_uint64 rangeBegInFrames, ma_uint64 rangeEndInFrames); MA_API void ma_data_source_get_range_in_pcm_frames(const ma_data_source* pDataSource, ma_uint64* pRangeBegInFrames, ma_uint64* pRangeEndInFrames); MA_API ma_result ma_data_source_set_loop_point_in_pcm_frames(ma_data_source* pDataSource, ma_uint64 loopBegInFrames, ma_uint64 loopEndInFrames); MA_API void ma_data_source_get_loop_point_in_pcm_frames(const ma_data_source* pDataSource, ma_uint64* pLoopBegInFrames, ma_uint64* pLoopEndInFrames); MA_API ma_result ma_data_source_set_current(ma_data_source* pDataSource, ma_data_source* pCurrentDataSource); MA_API ma_data_source* ma_data_source_get_current(const ma_data_source* pDataSource); MA_API ma_result ma_data_source_set_next(ma_data_source* pDataSource, ma_data_source* pNextDataSource); MA_API ma_data_source* ma_data_source_get_next(const ma_data_source* pDataSource); MA_API ma_result ma_data_source_set_next_callback(ma_data_source* pDataSource, ma_data_source_get_next_proc onGetNext); MA_API ma_data_source_get_next_proc ma_data_source_get_next_callback(const ma_data_source* pDataSource); typedef struct { ma_data_source_base ds; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_uint64 cursor; ma_uint64 sizeInFrames; const void* pData; } ma_audio_buffer_ref; MA_API ma_result ma_audio_buffer_ref_init(ma_format format, ma_uint32 channels, const void* pData, ma_uint64 sizeInFrames, ma_audio_buffer_ref* pAudioBufferRef); MA_API void ma_audio_buffer_ref_uninit(ma_audio_buffer_ref* pAudioBufferRef); MA_API ma_result ma_audio_buffer_ref_set_data(ma_audio_buffer_ref* pAudioBufferRef, const void* pData, ma_uint64 sizeInFrames); MA_API ma_uint64 ma_audio_buffer_ref_read_pcm_frames(ma_audio_buffer_ref* pAudioBufferRef, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop); MA_API ma_result ma_audio_buffer_ref_seek_to_pcm_frame(ma_audio_buffer_ref* pAudioBufferRef, ma_uint64 frameIndex); MA_API ma_result ma_audio_buffer_ref_map(ma_audio_buffer_ref* pAudioBufferRef, void** ppFramesOut, ma_uint64* pFrameCount); MA_API ma_result ma_audio_buffer_ref_unmap(ma_audio_buffer_ref* pAudioBufferRef, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */ MA_API ma_bool32 ma_audio_buffer_ref_at_end(const ma_audio_buffer_ref* pAudioBufferRef); MA_API ma_result ma_audio_buffer_ref_get_cursor_in_pcm_frames(const ma_audio_buffer_ref* pAudioBufferRef, ma_uint64* pCursor); MA_API ma_result ma_audio_buffer_ref_get_length_in_pcm_frames(const ma_audio_buffer_ref* pAudioBufferRef, ma_uint64* pLength); MA_API ma_result ma_audio_buffer_ref_get_available_frames(const ma_audio_buffer_ref* pAudioBufferRef, ma_uint64* pAvailableFrames); typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_uint64 sizeInFrames; const void* pData; /* If set to NULL, will allocate a block of memory for you. */ ma_allocation_callbacks allocationCallbacks; } ma_audio_buffer_config; MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks); typedef struct { ma_audio_buffer_ref ref; ma_allocation_callbacks allocationCallbacks; ma_bool32 ownsData; /* Used to control whether or not miniaudio owns the data buffer. If set to true, pData will be freed in ma_audio_buffer_uninit(). */ ma_uint8 _pExtraData[1]; /* For allocating a buffer with the memory located directly after the other memory of the structure. */ } ma_audio_buffer; MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer); MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer); MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer); /* Always copies the data. Doesn't make sense to use this otherwise. Use ma_audio_buffer_uninit_and_free() to uninit. */ MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer); MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer); MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop); MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex); MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount); MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */ MA_API ma_bool32 ma_audio_buffer_at_end(const ma_audio_buffer* pAudioBuffer); MA_API ma_result ma_audio_buffer_get_cursor_in_pcm_frames(const ma_audio_buffer* pAudioBuffer, ma_uint64* pCursor); MA_API ma_result ma_audio_buffer_get_length_in_pcm_frames(const ma_audio_buffer* pAudioBuffer, ma_uint64* pLength); MA_API ma_result ma_audio_buffer_get_available_frames(const ma_audio_buffer* pAudioBuffer, ma_uint64* pAvailableFrames); /* Paged Audio Buffer ================== A paged audio buffer is made up of a linked list of pages. It's expandable, but not shrinkable. It can be used for cases where audio data is streamed in asynchronously while allowing data to be read at the same time. This is lock-free, but not 100% thread safe. You can append a page and read from the buffer across simultaneously across different threads, however only one thread at a time can append, and only one thread at a time can read and seek. */ typedef struct ma_paged_audio_buffer_page ma_paged_audio_buffer_page; struct ma_paged_audio_buffer_page { MA_ATOMIC(MA_SIZEOF_PTR, ma_paged_audio_buffer_page*) pNext; ma_uint64 sizeInFrames; ma_uint8 pAudioData[1]; }; typedef struct { ma_format format; ma_uint32 channels; ma_paged_audio_buffer_page head; /* Dummy head for the lock-free algorithm. Always has a size of 0. */ MA_ATOMIC(MA_SIZEOF_PTR, ma_paged_audio_buffer_page*) pTail; /* Never null. Initially set to &head. */ } ma_paged_audio_buffer_data; MA_API ma_result ma_paged_audio_buffer_data_init(ma_format format, ma_uint32 channels, ma_paged_audio_buffer_data* pData); MA_API void ma_paged_audio_buffer_data_uninit(ma_paged_audio_buffer_data* pData, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_paged_audio_buffer_page* ma_paged_audio_buffer_data_get_head(ma_paged_audio_buffer_data* pData); MA_API ma_paged_audio_buffer_page* ma_paged_audio_buffer_data_get_tail(ma_paged_audio_buffer_data* pData); MA_API ma_result ma_paged_audio_buffer_data_get_length_in_pcm_frames(ma_paged_audio_buffer_data* pData, ma_uint64* pLength); MA_API ma_result ma_paged_audio_buffer_data_allocate_page(ma_paged_audio_buffer_data* pData, ma_uint64 pageSizeInFrames, const void* pInitialData, const ma_allocation_callbacks* pAllocationCallbacks, ma_paged_audio_buffer_page** ppPage); MA_API ma_result ma_paged_audio_buffer_data_free_page(ma_paged_audio_buffer_data* pData, ma_paged_audio_buffer_page* pPage, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_paged_audio_buffer_data_append_page(ma_paged_audio_buffer_data* pData, ma_paged_audio_buffer_page* pPage); MA_API ma_result ma_paged_audio_buffer_data_allocate_and_append_page(ma_paged_audio_buffer_data* pData, ma_uint32 pageSizeInFrames, const void* pInitialData, const ma_allocation_callbacks* pAllocationCallbacks); typedef struct { ma_paged_audio_buffer_data* pData; /* Must not be null. */ } ma_paged_audio_buffer_config; MA_API ma_paged_audio_buffer_config ma_paged_audio_buffer_config_init(ma_paged_audio_buffer_data* pData); typedef struct { ma_data_source_base ds; ma_paged_audio_buffer_data* pData; /* Audio data is read from here. Cannot be null. */ ma_paged_audio_buffer_page* pCurrent; ma_uint64 relativeCursor; /* Relative to the current page. */ ma_uint64 absoluteCursor; } ma_paged_audio_buffer; MA_API ma_result ma_paged_audio_buffer_init(const ma_paged_audio_buffer_config* pConfig, ma_paged_audio_buffer* pPagedAudioBuffer); MA_API void ma_paged_audio_buffer_uninit(ma_paged_audio_buffer* pPagedAudioBuffer); MA_API ma_result ma_paged_audio_buffer_read_pcm_frames(ma_paged_audio_buffer* pPagedAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); /* Returns MA_AT_END if no more pages available. */ MA_API ma_result ma_paged_audio_buffer_seek_to_pcm_frame(ma_paged_audio_buffer* pPagedAudioBuffer, ma_uint64 frameIndex); MA_API ma_result ma_paged_audio_buffer_get_cursor_in_pcm_frames(ma_paged_audio_buffer* pPagedAudioBuffer, ma_uint64* pCursor); MA_API ma_result ma_paged_audio_buffer_get_length_in_pcm_frames(ma_paged_audio_buffer* pPagedAudioBuffer, ma_uint64* pLength); /************************************************************************************************************************************************************ VFS === The VFS object (virtual file system) is what's used to customize file access. This is useful in cases where stdio FILE* based APIs may not be entirely appropriate for a given situation. ************************************************************************************************************************************************************/ typedef void ma_vfs; typedef ma_handle ma_vfs_file; typedef enum { MA_OPEN_MODE_READ = 0x00000001, MA_OPEN_MODE_WRITE = 0x00000002 } ma_open_mode_flags; typedef enum { ma_seek_origin_start, ma_seek_origin_current, ma_seek_origin_end /* Not used by decoders. */ } ma_seek_origin; typedef struct { ma_uint64 sizeInBytes; } ma_file_info; typedef struct { ma_result (* onOpen) (ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); ma_result (* onOpenW)(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); ma_result (* onClose)(ma_vfs* pVFS, ma_vfs_file file); ma_result (* onRead) (ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead); ma_result (* onWrite)(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten); ma_result (* onSeek) (ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin); ma_result (* onTell) (ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor); ma_result (* onInfo) (ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo); } ma_vfs_callbacks; MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile); MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file); MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead); MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten); MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin); MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor); MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo); MA_API ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks); typedef struct { ma_vfs_callbacks cb; ma_allocation_callbacks allocationCallbacks; /* Only used for the wchar_t version of open() on non-Windows platforms. */ } ma_default_vfs; MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks); typedef ma_result (* ma_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead, size_t* pBytesRead); typedef ma_result (* ma_seek_proc)(void* pUserData, ma_int64 offset, ma_seek_origin origin); typedef ma_result (* ma_tell_proc)(void* pUserData, ma_int64* pCursor); #if !defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING) typedef enum { ma_encoding_format_unknown = 0, ma_encoding_format_wav, ma_encoding_format_flac, ma_encoding_format_mp3, ma_encoding_format_vorbis } ma_encoding_format; #endif /************************************************************************************************************************************************************ Decoding ======== Decoders are independent of the main device API. Decoding APIs can be called freely inside the device's data callback, but they are not thread safe unless you do your own synchronization. ************************************************************************************************************************************************************/ #ifndef MA_NO_DECODING typedef struct ma_decoder ma_decoder; typedef struct { ma_format preferredFormat; ma_uint32 seekPointCount; /* Set to > 0 to generate a seektable if the decoding backend supports it. */ } ma_decoding_backend_config; MA_API ma_decoding_backend_config ma_decoding_backend_config_init(ma_format preferredFormat, ma_uint32 seekPointCount); typedef struct { ma_result (* onInit )(void* pUserData, ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend); ma_result (* onInitFile )(void* pUserData, const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend); /* Optional. */ ma_result (* onInitFileW )(void* pUserData, const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend); /* Optional. */ ma_result (* onInitMemory)(void* pUserData, const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend); /* Optional. */ void (* onUninit )(void* pUserData, ma_data_source* pBackend, const ma_allocation_callbacks* pAllocationCallbacks); } ma_decoding_backend_vtable; typedef ma_result (* ma_decoder_read_proc)(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead, size_t* pBytesRead); /* Returns the number of bytes read. */ typedef ma_result (* ma_decoder_seek_proc)(ma_decoder* pDecoder, ma_int64 byteOffset, ma_seek_origin origin); typedef ma_result (* ma_decoder_tell_proc)(ma_decoder* pDecoder, ma_int64* pCursor); typedef struct { ma_format format; /* Set to 0 or ma_format_unknown to use the stream's internal format. */ ma_uint32 channels; /* Set to 0 to use the stream's internal channels. */ ma_uint32 sampleRate; /* Set to 0 to use the stream's internal sample rate. */ ma_channel* pChannelMap; ma_channel_mix_mode channelMixMode; ma_dither_mode ditherMode; ma_resampler_config resampling; ma_allocation_callbacks allocationCallbacks; ma_encoding_format encodingFormat; ma_uint32 seekPointCount; /* When set to > 0, specifies the number of seek points to use for the generation of a seek table. Not all decoding backends support this. */ ma_decoding_backend_vtable** ppCustomBackendVTables; ma_uint32 customBackendCount; void* pCustomBackendUserData; } ma_decoder_config; struct ma_decoder { ma_data_source_base ds; ma_data_source* pBackend; /* The decoding backend we'll be pulling data from. */ const ma_decoding_backend_vtable* pBackendVTable; /* The vtable for the decoding backend. This needs to be stored so we can access the onUninit() callback. */ void* pBackendUserData; ma_decoder_read_proc onRead; ma_decoder_seek_proc onSeek; ma_decoder_tell_proc onTell; void* pUserData; ma_uint64 readPointerInPCMFrames; /* In output sample rate. Used for keeping track of how many frames are available for decoding. */ ma_format outputFormat; ma_uint32 outputChannels; ma_uint32 outputSampleRate; ma_data_converter converter; /* Data conversion is achieved by running frames through this. */ void* pInputCache; /* In input format. Can be null if it's not needed. */ ma_uint64 inputCacheCap; /* The capacity of the input cache. */ ma_uint64 inputCacheConsumed; /* The number of frames that have been consumed in the cache. Used for determining the next valid frame. */ ma_uint64 inputCacheRemaining; /* The number of valid frames remaining in the cahce. */ ma_allocation_callbacks allocationCallbacks; union { struct { ma_vfs* pVFS; ma_vfs_file file; } vfs; struct { const ma_uint8* pData; size_t dataSize; size_t currentReadPos; } memory; /* Only used for decoders that were opened against a block of memory. */ } data; }; MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate); MA_API ma_decoder_config ma_decoder_config_init_default(void); MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder); /* Uninitializes a decoder. */ MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder); /* Reads PCM frames from the given decoder. This is not thread safe without your own synchronization. */ MA_API ma_result ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); /* Seeks to a PCM frame based on it's absolute index. This is not thread safe without your own synchronization. */ MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex); /* Retrieves the decoder's output data format. */ MA_API ma_result ma_decoder_get_data_format(ma_decoder* pDecoder, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); /* Retrieves the current position of the read cursor in PCM frames. */ MA_API ma_result ma_decoder_get_cursor_in_pcm_frames(ma_decoder* pDecoder, ma_uint64* pCursor); /* Retrieves the length of the decoder in PCM frames. Do not call this on streams of an undefined length, such as internet radio. If the length is unknown or an error occurs, 0 will be returned. This will always return 0 for Vorbis decoders. This is due to a limitation with stb_vorbis in push mode which is what miniaudio uses internally. For MP3's, this will decode the entire file. Do not call this in time critical scenarios. This function is not thread safe without your own synchronization. */ MA_API ma_result ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder, ma_uint64* pLength); /* Retrieves the number of frames that can be read before reaching the end. This calls `ma_decoder_get_length_in_pcm_frames()` so you need to be aware of the rules for that function, in particular ensuring you do not call it on streams of an undefined length, such as internet radio. If the total length of the decoder cannot be retrieved, such as with Vorbis decoders, `MA_NOT_IMPLEMENTED` will be returned. */ MA_API ma_result ma_decoder_get_available_frames(ma_decoder* pDecoder, ma_uint64* pAvailableFrames); /* Helper for opening and decoding a file into a heap allocated block of memory. Free the returned pointer with ma_free(). On input, pConfig should be set to what you want. On output it will be set to what you got. */ MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut); MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut); MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut); #endif /* MA_NO_DECODING */ /************************************************************************************************************************************************************ Encoding ======== Encoders do not perform any format conversion for you. If your target format does not support the format, and error will be returned. ************************************************************************************************************************************************************/ #ifndef MA_NO_ENCODING typedef struct ma_encoder ma_encoder; typedef ma_result (* ma_encoder_write_proc) (ma_encoder* pEncoder, const void* pBufferIn, size_t bytesToWrite, size_t* pBytesWritten); typedef ma_result (* ma_encoder_seek_proc) (ma_encoder* pEncoder, ma_int64 offset, ma_seek_origin origin); typedef ma_result (* ma_encoder_init_proc) (ma_encoder* pEncoder); typedef void (* ma_encoder_uninit_proc) (ma_encoder* pEncoder); typedef ma_result (* ma_encoder_write_pcm_frames_proc)(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount, ma_uint64* pFramesWritten); typedef struct { ma_encoding_format encodingFormat; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_allocation_callbacks allocationCallbacks; } ma_encoder_config; MA_API ma_encoder_config ma_encoder_config_init(ma_encoding_format encodingFormat, ma_format format, ma_uint32 channels, ma_uint32 sampleRate); struct ma_encoder { ma_encoder_config config; ma_encoder_write_proc onWrite; ma_encoder_seek_proc onSeek; ma_encoder_init_proc onInit; ma_encoder_uninit_proc onUninit; ma_encoder_write_pcm_frames_proc onWritePCMFrames; void* pUserData; void* pInternalEncoder; /* <-- The drwav/drflac/stb_vorbis/etc. objects. */ union { struct { ma_vfs* pVFS; ma_vfs_file file; } vfs; } data; }; MA_API ma_result ma_encoder_init(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, const ma_encoder_config* pConfig, ma_encoder* pEncoder); MA_API ma_result ma_encoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder); MA_API ma_result ma_encoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder); MA_API ma_result ma_encoder_init_file(const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder); MA_API ma_result ma_encoder_init_file_w(const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder); MA_API void ma_encoder_uninit(ma_encoder* pEncoder); MA_API ma_result ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount, ma_uint64* pFramesWritten); #endif /* MA_NO_ENCODING */ /************************************************************************************************************************************************************ Generation ************************************************************************************************************************************************************/ #ifndef MA_NO_GENERATION typedef enum { ma_waveform_type_sine, ma_waveform_type_square, ma_waveform_type_triangle, ma_waveform_type_sawtooth } ma_waveform_type; typedef struct { ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_waveform_type type; double amplitude; double frequency; } ma_waveform_config; MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency); typedef struct { ma_data_source_base ds; ma_waveform_config config; double advance; double time; } ma_waveform; MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform); MA_API void ma_waveform_uninit(ma_waveform* pWaveform); MA_API ma_result ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex); MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude); MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency); MA_API ma_result ma_waveform_set_type(ma_waveform* pWaveform, ma_waveform_type type); MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate); typedef enum { ma_noise_type_white, ma_noise_type_pink, ma_noise_type_brownian } ma_noise_type; typedef struct { ma_format format; ma_uint32 channels; ma_noise_type type; ma_int32 seed; double amplitude; ma_bool32 duplicateChannels; } ma_noise_config; MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude); typedef struct { ma_data_source_vtable ds; ma_noise_config config; ma_lcg lcg; union { struct { double** bin; double* accumulation; ma_uint32* counter; } pink; struct { double* accumulation; } brownian; } state; /* Memory management. */ void* _pHeap; ma_bool32 _ownsHeap; } ma_noise; MA_API ma_result ma_noise_get_heap_size(const ma_noise_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_noise_init_preallocated(const ma_noise_config* pConfig, void* pHeap, ma_noise* pNoise); MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_noise* pNoise); MA_API void ma_noise_uninit(ma_noise* pNoise, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_noise_set_amplitude(ma_noise* pNoise, double amplitude); MA_API ma_result ma_noise_set_seed(ma_noise* pNoise, ma_int32 seed); MA_API ma_result ma_noise_set_type(ma_noise* pNoise, ma_noise_type type); #endif /* MA_NO_GENERATION */ /************************************************************************************************************************************************************ Resource Manager ************************************************************************************************************************************************************/ /* The resource manager cannot be enabled if there is no decoder. */ #if !defined(MA_NO_RESOURCE_MANAGER) && defined(MA_NO_DECODING) #define MA_NO_RESOURCE_MANAGER #endif #ifndef MA_NO_RESOURCE_MANAGER typedef struct ma_resource_manager ma_resource_manager; typedef struct ma_resource_manager_data_buffer_node ma_resource_manager_data_buffer_node; typedef struct ma_resource_manager_data_buffer ma_resource_manager_data_buffer; typedef struct ma_resource_manager_data_stream ma_resource_manager_data_stream; typedef struct ma_resource_manager_data_source ma_resource_manager_data_source; typedef enum { MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM = 0x00000001, /* When set, does not load the entire data source in memory. Disk I/O will happen on job threads. */ MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE = 0x00000002, /* Decode data before storing in memory. When set, decoding is done at the resource manager level rather than the mixing thread. Results in faster mixing, but higher memory usage. */ MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC = 0x00000004, /* When set, the resource manager will load the data source asynchronously. */ MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT = 0x00000008, /* When set, waits for initialization of the underlying data source before returning from ma_resource_manager_data_source_init(). */ MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_UNKNOWN_LENGTH = 0x00000010 /* Gives the resource manager a hint that the length of the data source is unknown and calling `ma_data_source_get_length_in_pcm_frames()` should be avoided. */ } ma_resource_manager_data_source_flags; /* Pipeline notifications used by the resource manager. Made up of both an async notification and a fence, both of which are optional. */ typedef struct { ma_async_notification* pNotification; ma_fence* pFence; } ma_resource_manager_pipeline_stage_notification; typedef struct { ma_resource_manager_pipeline_stage_notification init; /* Initialization of the decoder. */ ma_resource_manager_pipeline_stage_notification done; /* Decoding fully completed. */ } ma_resource_manager_pipeline_notifications; MA_API ma_resource_manager_pipeline_notifications ma_resource_manager_pipeline_notifications_init(void); /* BEGIN BACKWARDS COMPATIBILITY */ /* TODO: Remove this block in version 0.12. */ #if 1 #define ma_resource_manager_job ma_job #define ma_resource_manager_job_init ma_job_init #define MA_JOB_TYPE_RESOURCE_MANAGER_QUEUE_FLAG_NON_BLOCKING MA_JOB_QUEUE_FLAG_NON_BLOCKING #define ma_resource_manager_job_queue_config ma_job_queue_config #define ma_resource_manager_job_queue_config_init ma_job_queue_config_init #define ma_resource_manager_job_queue ma_job_queue #define ma_resource_manager_job_queue_get_heap_size ma_job_queue_get_heap_size #define ma_resource_manager_job_queue_init_preallocated ma_job_queue_init_preallocated #define ma_resource_manager_job_queue_init ma_job_queue_init #define ma_resource_manager_job_queue_uninit ma_job_queue_uninit #define ma_resource_manager_job_queue_post ma_job_queue_post #define ma_resource_manager_job_queue_next ma_job_queue_next #endif /* END BACKWARDS COMPATIBILITY */ /* Maximum job thread count will be restricted to this, but this may be removed later and replaced with a heap allocation thereby removing any limitation. */ #ifndef MA_RESOURCE_MANAGER_MAX_JOB_THREAD_COUNT #define MA_RESOURCE_MANAGER_MAX_JOB_THREAD_COUNT 64 #endif typedef enum { /* Indicates ma_resource_manager_next_job() should not block. Only valid when the job thread count is 0. */ MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING = 0x00000001, /* Disables any kind of multithreading. Implicitly enables MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING. */ MA_RESOURCE_MANAGER_FLAG_NO_THREADING = 0x00000002 } ma_resource_manager_flags; typedef struct { const char* pFilePath; const wchar_t* pFilePathW; const ma_resource_manager_pipeline_notifications* pNotifications; ma_uint64 initialSeekPointInPCMFrames; ma_uint64 rangeBegInPCMFrames; ma_uint64 rangeEndInPCMFrames; ma_uint64 loopPointBegInPCMFrames; ma_uint64 loopPointEndInPCMFrames; ma_bool32 isLooping; ma_uint32 flags; } ma_resource_manager_data_source_config; MA_API ma_resource_manager_data_source_config ma_resource_manager_data_source_config_init(void); typedef enum { ma_resource_manager_data_supply_type_unknown = 0, /* Used for determining whether or the data supply has been initialized. */ ma_resource_manager_data_supply_type_encoded, /* Data supply is an encoded buffer. Connector is ma_decoder. */ ma_resource_manager_data_supply_type_decoded, /* Data supply is a decoded buffer. Connector is ma_audio_buffer. */ ma_resource_manager_data_supply_type_decoded_paged /* Data supply is a linked list of decoded buffers. Connector is ma_paged_audio_buffer. */ } ma_resource_manager_data_supply_type; typedef struct { MA_ATOMIC(4, ma_resource_manager_data_supply_type) type; /* Read and written from different threads so needs to be accessed atomically. */ union { struct { const void* pData; size_t sizeInBytes; } encoded; struct { const void* pData; ma_uint64 totalFrameCount; ma_uint64 decodedFrameCount; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; } decoded; struct { ma_paged_audio_buffer_data data; ma_uint64 decodedFrameCount; ma_uint32 sampleRate; } decodedPaged; } backend; } ma_resource_manager_data_supply; struct ma_resource_manager_data_buffer_node { ma_uint32 hashedName32; /* The hashed name. This is the key. */ ma_uint32 refCount; MA_ATOMIC(4, ma_result) result; /* Result from asynchronous loading. When loading set to MA_BUSY. When fully loaded set to MA_SUCCESS. When deleting set to MA_UNAVAILABLE. */ MA_ATOMIC(4, ma_uint32) executionCounter; /* For allocating execution orders for jobs. */ MA_ATOMIC(4, ma_uint32) executionPointer; /* For managing the order of execution for asynchronous jobs relating to this object. Incremented as jobs complete processing. */ ma_bool32 isDataOwnedByResourceManager; /* Set to true when the underlying data buffer was allocated the resource manager. Set to false if it is owned by the application (via ma_resource_manager_register_*()). */ ma_resource_manager_data_supply data; ma_resource_manager_data_buffer_node* pParent; ma_resource_manager_data_buffer_node* pChildLo; ma_resource_manager_data_buffer_node* pChildHi; }; struct ma_resource_manager_data_buffer { ma_data_source_base ds; /* Base data source. A data buffer is a data source. */ ma_resource_manager* pResourceManager; /* A pointer to the resource manager that owns this buffer. */ ma_resource_manager_data_buffer_node* pNode; /* The data node. This is reference counted and is what supplies the data. */ ma_uint32 flags; /* The flags that were passed used to initialize the buffer. */ MA_ATOMIC(4, ma_uint32) executionCounter; /* For allocating execution orders for jobs. */ MA_ATOMIC(4, ma_uint32) executionPointer; /* For managing the order of execution for asynchronous jobs relating to this object. Incremented as jobs complete processing. */ ma_uint64 seekTargetInPCMFrames; /* Only updated by the public API. Never written nor read from the job thread. */ ma_bool32 seekToCursorOnNextRead; /* On the next read we need to seek to the frame cursor. */ MA_ATOMIC(4, ma_result) result; /* Keeps track of a result of decoding. Set to MA_BUSY while the buffer is still loading. Set to MA_SUCCESS when loading is finished successfully. Otherwise set to some other code. */ MA_ATOMIC(4, ma_bool32) isLooping; /* Can be read and written by different threads at the same time. Must be used atomically. */ ma_bool32 isConnectorInitialized; /* Used for asynchronous loading to ensure we don't try to initialize the connector multiple times while waiting for the node to fully load. */ union { ma_decoder decoder; /* Supply type is ma_resource_manager_data_supply_type_encoded */ ma_audio_buffer buffer; /* Supply type is ma_resource_manager_data_supply_type_decoded */ ma_paged_audio_buffer pagedBuffer; /* Supply type is ma_resource_manager_data_supply_type_decoded_paged */ } connector; /* Connects this object to the node's data supply. */ }; struct ma_resource_manager_data_stream { ma_data_source_base ds; /* Base data source. A data stream is a data source. */ ma_resource_manager* pResourceManager; /* A pointer to the resource manager that owns this data stream. */ ma_uint32 flags; /* The flags that were passed used to initialize the stream. */ ma_decoder decoder; /* Used for filling pages with data. This is only ever accessed by the job thread. The public API should never touch this. */ ma_bool32 isDecoderInitialized; /* Required for determining whether or not the decoder should be uninitialized in MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_STREAM. */ ma_uint64 totalLengthInPCMFrames; /* This is calculated when first loaded by the MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_STREAM. */ ma_uint32 relativeCursor; /* The playback cursor, relative to the current page. Only ever accessed by the public API. Never accessed by the job thread. */ MA_ATOMIC(8, ma_uint64) absoluteCursor; /* The playback cursor, in absolute position starting from the start of the file. */ ma_uint32 currentPageIndex; /* Toggles between 0 and 1. Index 0 is the first half of pPageData. Index 1 is the second half. Only ever accessed by the public API. Never accessed by the job thread. */ MA_ATOMIC(4, ma_uint32) executionCounter; /* For allocating execution orders for jobs. */ MA_ATOMIC(4, ma_uint32) executionPointer; /* For managing the order of execution for asynchronous jobs relating to this object. Incremented as jobs complete processing. */ /* Written by the public API, read by the job thread. */ MA_ATOMIC(4, ma_bool32) isLooping; /* Whether or not the stream is looping. It's important to set the looping flag at the data stream level for smooth loop transitions. */ /* Written by the job thread, read by the public API. */ void* pPageData; /* Buffer containing the decoded data of each page. Allocated once at initialization time. */ MA_ATOMIC(4, ma_uint32) pageFrameCount[2]; /* The number of valid PCM frames in each page. Used to determine the last valid frame. */ /* Written and read by both the public API and the job thread. These must be atomic. */ MA_ATOMIC(4, ma_result) result; /* Result from asynchronous loading. When loading set to MA_BUSY. When initialized set to MA_SUCCESS. When deleting set to MA_UNAVAILABLE. If an error occurs when loading, set to an error code. */ MA_ATOMIC(4, ma_bool32) isDecoderAtEnd; /* Whether or not the decoder has reached the end. */ MA_ATOMIC(4, ma_bool32) isPageValid[2]; /* Booleans to indicate whether or not a page is valid. Set to false by the public API, set to true by the job thread. Set to false as the pages are consumed, true when they are filled. */ MA_ATOMIC(4, ma_bool32) seekCounter; /* When 0, no seeking is being performed. When > 0, a seek is being performed and reading should be delayed with MA_BUSY. */ }; struct ma_resource_manager_data_source { union { ma_resource_manager_data_buffer buffer; ma_resource_manager_data_stream stream; } backend; /* Must be the first item because we need the first item to be the data source callbacks for the buffer or stream. */ ma_uint32 flags; /* The flags that were passed in to ma_resource_manager_data_source_init(). */ MA_ATOMIC(4, ma_uint32) executionCounter; /* For allocating execution orders for jobs. */ MA_ATOMIC(4, ma_uint32) executionPointer; /* For managing the order of execution for asynchronous jobs relating to this object. Incremented as jobs complete processing. */ }; typedef struct { ma_allocation_callbacks allocationCallbacks; ma_log* pLog; ma_format decodedFormat; /* The decoded format to use. Set to ma_format_unknown (default) to use the file's native format. */ ma_uint32 decodedChannels; /* The decoded channel count to use. Set to 0 (default) to use the file's native channel count. */ ma_uint32 decodedSampleRate; /* the decoded sample rate to use. Set to 0 (default) to use the file's native sample rate. */ ma_uint32 jobThreadCount; /* Set to 0 if you want to self-manage your job threads. Defaults to 1. */ ma_uint32 jobQueueCapacity; /* The maximum number of jobs that can fit in the queue at a time. Defaults to MA_JOB_TYPE_RESOURCE_MANAGER_QUEUE_CAPACITY. Cannot be zero. */ ma_uint32 flags; ma_vfs* pVFS; /* Can be NULL in which case defaults will be used. */ ma_decoding_backend_vtable** ppCustomDecodingBackendVTables; ma_uint32 customDecodingBackendCount; void* pCustomDecodingBackendUserData; } ma_resource_manager_config; MA_API ma_resource_manager_config ma_resource_manager_config_init(void); struct ma_resource_manager { ma_resource_manager_config config; ma_resource_manager_data_buffer_node* pRootDataBufferNode; /* The root buffer in the binary tree. */ #ifndef MA_NO_THREADING ma_mutex dataBufferBSTLock; /* For synchronizing access to the data buffer binary tree. */ ma_thread jobThreads[MA_RESOURCE_MANAGER_MAX_JOB_THREAD_COUNT]; /* The threads for executing jobs. */ #endif ma_job_queue jobQueue; /* Multi-consumer, multi-producer job queue for managing jobs for asynchronous decoding and streaming. */ ma_default_vfs defaultVFS; /* Only used if a custom VFS is not specified. */ ma_log log; /* Only used if no log was specified in the config. */ }; /* Init. */ MA_API ma_result ma_resource_manager_init(const ma_resource_manager_config* pConfig, ma_resource_manager* pResourceManager); MA_API void ma_resource_manager_uninit(ma_resource_manager* pResourceManager); MA_API ma_log* ma_resource_manager_get_log(ma_resource_manager* pResourceManager); /* Registration. */ MA_API ma_result ma_resource_manager_register_file(ma_resource_manager* pResourceManager, const char* pFilePath, ma_uint32 flags); MA_API ma_result ma_resource_manager_register_file_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath, ma_uint32 flags); MA_API ma_result ma_resource_manager_register_decoded_data(ma_resource_manager* pResourceManager, const char* pName, const void* pData, ma_uint64 frameCount, ma_format format, ma_uint32 channels, ma_uint32 sampleRate); /* Does not copy. Increments the reference count if already exists and returns MA_SUCCESS. */ MA_API ma_result ma_resource_manager_register_decoded_data_w(ma_resource_manager* pResourceManager, const wchar_t* pName, const void* pData, ma_uint64 frameCount, ma_format format, ma_uint32 channels, ma_uint32 sampleRate); MA_API ma_result ma_resource_manager_register_encoded_data(ma_resource_manager* pResourceManager, const char* pName, const void* pData, size_t sizeInBytes); /* Does not copy. Increments the reference count if already exists and returns MA_SUCCESS. */ MA_API ma_result ma_resource_manager_register_encoded_data_w(ma_resource_manager* pResourceManager, const wchar_t* pName, const void* pData, size_t sizeInBytes); MA_API ma_result ma_resource_manager_unregister_file(ma_resource_manager* pResourceManager, const char* pFilePath); MA_API ma_result ma_resource_manager_unregister_file_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath); MA_API ma_result ma_resource_manager_unregister_data(ma_resource_manager* pResourceManager, const char* pName); MA_API ma_result ma_resource_manager_unregister_data_w(ma_resource_manager* pResourceManager, const wchar_t* pName); /* Data Buffers. */ MA_API ma_result ma_resource_manager_data_buffer_init_ex(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_init(ma_resource_manager* pResourceManager, const char* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_init_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_init_copy(ma_resource_manager* pResourceManager, const ma_resource_manager_data_buffer* pExistingDataBuffer, ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_uninit(ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_read_pcm_frames(ma_resource_manager_data_buffer* pDataBuffer, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_resource_manager_data_buffer_seek_to_pcm_frame(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64 frameIndex); MA_API ma_result ma_resource_manager_data_buffer_get_data_format(ma_resource_manager_data_buffer* pDataBuffer, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_resource_manager_data_buffer_get_cursor_in_pcm_frames(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64* pCursor); MA_API ma_result ma_resource_manager_data_buffer_get_length_in_pcm_frames(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64* pLength); MA_API ma_result ma_resource_manager_data_buffer_result(const ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_set_looping(ma_resource_manager_data_buffer* pDataBuffer, ma_bool32 isLooping); MA_API ma_bool32 ma_resource_manager_data_buffer_is_looping(const ma_resource_manager_data_buffer* pDataBuffer); MA_API ma_result ma_resource_manager_data_buffer_get_available_frames(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64* pAvailableFrames); /* Data Streams. */ MA_API ma_result ma_resource_manager_data_stream_init_ex(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_stream* pDataStream); MA_API ma_result ma_resource_manager_data_stream_init(ma_resource_manager* pResourceManager, const char* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_stream* pDataStream); MA_API ma_result ma_resource_manager_data_stream_init_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_stream* pDataStream); MA_API ma_result ma_resource_manager_data_stream_uninit(ma_resource_manager_data_stream* pDataStream); MA_API ma_result ma_resource_manager_data_stream_read_pcm_frames(ma_resource_manager_data_stream* pDataStream, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_resource_manager_data_stream_seek_to_pcm_frame(ma_resource_manager_data_stream* pDataStream, ma_uint64 frameIndex); MA_API ma_result ma_resource_manager_data_stream_get_data_format(ma_resource_manager_data_stream* pDataStream, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_resource_manager_data_stream_get_cursor_in_pcm_frames(ma_resource_manager_data_stream* pDataStream, ma_uint64* pCursor); MA_API ma_result ma_resource_manager_data_stream_get_length_in_pcm_frames(ma_resource_manager_data_stream* pDataStream, ma_uint64* pLength); MA_API ma_result ma_resource_manager_data_stream_result(const ma_resource_manager_data_stream* pDataStream); MA_API ma_result ma_resource_manager_data_stream_set_looping(ma_resource_manager_data_stream* pDataStream, ma_bool32 isLooping); MA_API ma_bool32 ma_resource_manager_data_stream_is_looping(const ma_resource_manager_data_stream* pDataStream); MA_API ma_result ma_resource_manager_data_stream_get_available_frames(ma_resource_manager_data_stream* pDataStream, ma_uint64* pAvailableFrames); /* Data Sources. */ MA_API ma_result ma_resource_manager_data_source_init_ex(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_init(ma_resource_manager* pResourceManager, const char* pName, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_init_w(ma_resource_manager* pResourceManager, const wchar_t* pName, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_init_copy(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source* pExistingDataSource, ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_uninit(ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_read_pcm_frames(ma_resource_manager_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_resource_manager_data_source_seek_to_pcm_frame(ma_resource_manager_data_source* pDataSource, ma_uint64 frameIndex); MA_API ma_result ma_resource_manager_data_source_get_data_format(ma_resource_manager_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_resource_manager_data_source_get_cursor_in_pcm_frames(ma_resource_manager_data_source* pDataSource, ma_uint64* pCursor); MA_API ma_result ma_resource_manager_data_source_get_length_in_pcm_frames(ma_resource_manager_data_source* pDataSource, ma_uint64* pLength); MA_API ma_result ma_resource_manager_data_source_result(const ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_set_looping(ma_resource_manager_data_source* pDataSource, ma_bool32 isLooping); MA_API ma_bool32 ma_resource_manager_data_source_is_looping(const ma_resource_manager_data_source* pDataSource); MA_API ma_result ma_resource_manager_data_source_get_available_frames(ma_resource_manager_data_source* pDataSource, ma_uint64* pAvailableFrames); /* Job management. */ MA_API ma_result ma_resource_manager_post_job(ma_resource_manager* pResourceManager, const ma_job* pJob); MA_API ma_result ma_resource_manager_post_job_quit(ma_resource_manager* pResourceManager); /* Helper for posting a quit job. */ MA_API ma_result ma_resource_manager_next_job(ma_resource_manager* pResourceManager, ma_job* pJob); MA_API ma_result ma_resource_manager_process_job(ma_resource_manager* pResourceManager, ma_job* pJob); /* DEPRECATED. Use ma_job_process(). Will be removed in version 0.12. */ MA_API ma_result ma_resource_manager_process_next_job(ma_resource_manager* pResourceManager); /* Returns MA_CANCELLED if a MA_JOB_TYPE_QUIT job is found. In non-blocking mode, returns MA_NO_DATA_AVAILABLE if no jobs are available. */ #endif /* MA_NO_RESOURCE_MANAGER */ /************************************************************************************************************************************************************ Node Graph ************************************************************************************************************************************************************/ #ifndef MA_NO_NODE_GRAPH /* Must never exceed 254. */ #ifndef MA_MAX_NODE_BUS_COUNT #define MA_MAX_NODE_BUS_COUNT 254 #endif /* Used internally by miniaudio for memory management. Must never exceed MA_MAX_NODE_BUS_COUNT. */ #ifndef MA_MAX_NODE_LOCAL_BUS_COUNT #define MA_MAX_NODE_LOCAL_BUS_COUNT 2 #endif /* Use this when the bus count is determined by the node instance rather than the vtable. */ #define MA_NODE_BUS_COUNT_UNKNOWN 255 typedef struct ma_node_graph ma_node_graph; typedef void ma_node; /* Node flags. */ typedef enum { MA_NODE_FLAG_PASSTHROUGH = 0x00000001, MA_NODE_FLAG_CONTINUOUS_PROCESSING = 0x00000002, MA_NODE_FLAG_ALLOW_NULL_INPUT = 0x00000004, MA_NODE_FLAG_DIFFERENT_PROCESSING_RATES = 0x00000008, MA_NODE_FLAG_SILENT_OUTPUT = 0x00000010 } ma_node_flags; /* The playback state of a node. Either started or stopped. */ typedef enum { ma_node_state_started = 0, ma_node_state_stopped = 1 } ma_node_state; typedef struct { /* Extended processing callback. This callback is used for effects that process input and output at different rates (i.e. they perform resampling). This is similar to the simple version, only they take two seperate frame counts: one for input, and one for output. On input, `pFrameCountOut` is equal to the capacity of the output buffer for each bus, whereas `pFrameCountIn` will be equal to the number of PCM frames in each of the buffers in `ppFramesIn`. On output, set `pFrameCountOut` to the number of PCM frames that were actually output and set `pFrameCountIn` to the number of input frames that were consumed. */ void (* onProcess)(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut); /* A callback for retrieving the number of a input frames that are required to output the specified number of output frames. You would only want to implement this when the node performs resampling. This is optional, even for nodes that perform resampling, but it does offer a small reduction in latency as it allows miniaudio to calculate the exact number of input frames to read at a time instead of having to estimate. */ ma_result (* onGetRequiredInputFrameCount)(ma_node* pNode, ma_uint32 outputFrameCount, ma_uint32* pInputFrameCount); /* The number of input buses. This is how many sub-buffers will be contained in the `ppFramesIn` parameters of the callbacks above. */ ma_uint8 inputBusCount; /* The number of output buses. This is how many sub-buffers will be contained in the `ppFramesOut` parameters of the callbacks above. */ ma_uint8 outputBusCount; /* Flags describing characteristics of the node. This is currently just a placeholder for some ideas for later on. */ ma_uint32 flags; } ma_node_vtable; typedef struct { const ma_node_vtable* vtable; /* Should never be null. Initialization of the node will fail if so. */ ma_node_state initialState; /* Defaults to ma_node_state_started. */ ma_uint32 inputBusCount; /* Only used if the vtable specifies an input bus count of `MA_NODE_BUS_COUNT_UNKNOWN`, otherwise must be set to `MA_NODE_BUS_COUNT_UNKNOWN` (default). */ ma_uint32 outputBusCount; /* Only used if the vtable specifies an output bus count of `MA_NODE_BUS_COUNT_UNKNOWN`, otherwise be set to `MA_NODE_BUS_COUNT_UNKNOWN` (default). */ const ma_uint32* pInputChannels; /* The number of elements are determined by the input bus count as determined by the vtable, or `inputBusCount` if the vtable specifies `MA_NODE_BUS_COUNT_UNKNOWN`. */ const ma_uint32* pOutputChannels; /* The number of elements are determined by the output bus count as determined by the vtable, or `outputBusCount` if the vtable specifies `MA_NODE_BUS_COUNT_UNKNOWN`. */ } ma_node_config; MA_API ma_node_config ma_node_config_init(void); /* A node has multiple output buses. An output bus is attached to an input bus as an item in a linked list. Think of the input bus as a linked list, with the output bus being an item in that list. */ typedef struct ma_node_output_bus ma_node_output_bus; struct ma_node_output_bus { /* Immutable. */ ma_node* pNode; /* The node that owns this output bus. The input node. Will be null for dummy head and tail nodes. */ ma_uint8 outputBusIndex; /* The index of the output bus on pNode that this output bus represents. */ ma_uint8 channels; /* The number of channels in the audio stream for this bus. */ /* Mutable via multiple threads. Must be used atomically. The weird ordering here is for packing reasons. */ MA_ATOMIC(1, ma_uint8) inputNodeInputBusIndex; /* The index of the input bus on the input. Required for detaching. */ MA_ATOMIC(4, ma_uint32) flags; /* Some state flags for tracking the read state of the output buffer. A combination of MA_NODE_OUTPUT_BUS_FLAG_*. */ MA_ATOMIC(4, ma_uint32) refCount; /* Reference count for some thread-safety when detaching. */ MA_ATOMIC(4, ma_bool32) isAttached; /* This is used to prevent iteration of nodes that are in the middle of being detached. Used for thread safety. */ MA_ATOMIC(4, ma_spinlock) lock; /* Unfortunate lock, but significantly simplifies the implementation. Required for thread-safe attaching and detaching. */ MA_ATOMIC(4, float) volume; /* Linear. */ MA_ATOMIC(MA_SIZEOF_PTR, ma_node_output_bus*) pNext; /* If null, it's the tail node or detached. */ MA_ATOMIC(MA_SIZEOF_PTR, ma_node_output_bus*) pPrev; /* If null, it's the head node or detached. */ MA_ATOMIC(MA_SIZEOF_PTR, ma_node*) pInputNode; /* The node that this output bus is attached to. Required for detaching. */ }; /* A node has multiple input buses. The output buses of a node are connecting to the input busses of another. An input bus is essentially just a linked list of output buses. */ typedef struct ma_node_input_bus ma_node_input_bus; struct ma_node_input_bus { /* Mutable via multiple threads. */ ma_node_output_bus head; /* Dummy head node for simplifying some lock-free thread-safety stuff. */ MA_ATOMIC(4, ma_uint32) nextCounter; /* This is used to determine whether or not the input bus is finding the next node in the list. Used for thread safety when detaching output buses. */ MA_ATOMIC(4, ma_spinlock) lock; /* Unfortunate lock, but significantly simplifies the implementation. Required for thread-safe attaching and detaching. */ /* Set once at startup. */ ma_uint8 channels; /* The number of channels in the audio stream for this bus. */ }; typedef struct ma_node_base ma_node_base; struct ma_node_base { /* These variables are set once at startup. */ ma_node_graph* pNodeGraph; /* The graph this node belongs to. */ const ma_node_vtable* vtable; float* pCachedData; /* Allocated on the heap. Fixed size. Needs to be stored on the heap because reading from output buses is done in separate function calls. */ ma_uint16 cachedDataCapInFramesPerBus; /* The capacity of the input data cache in frames, per bus. */ /* These variables are read and written only from the audio thread. */ ma_uint16 cachedFrameCountOut; ma_uint16 cachedFrameCountIn; ma_uint16 consumedFrameCountIn; /* These variables are read and written between different threads. */ MA_ATOMIC(4, ma_node_state) state; /* When set to stopped, nothing will be read, regardless of the times in stateTimes. */ MA_ATOMIC(8, ma_uint64) stateTimes[2]; /* Indexed by ma_node_state. Specifies the time based on the global clock that a node should be considered to be in the relevant state. */ MA_ATOMIC(8, ma_uint64) localTime; /* The node's local clock. This is just a running sum of the number of output frames that have been processed. Can be modified by any thread with `ma_node_set_time()`. */ ma_uint32 inputBusCount; ma_uint32 outputBusCount; ma_node_input_bus* pInputBuses; ma_node_output_bus* pOutputBuses; /* Memory management. */ ma_node_input_bus _inputBuses[MA_MAX_NODE_LOCAL_BUS_COUNT]; ma_node_output_bus _outputBuses[MA_MAX_NODE_LOCAL_BUS_COUNT]; void* _pHeap; /* A heap allocation for internal use only. pInputBuses and/or pOutputBuses will point to this if the bus count exceeds MA_MAX_NODE_LOCAL_BUS_COUNT. */ ma_bool32 _ownsHeap; /* If set to true, the node owns the heap allocation and _pHeap will be freed in ma_node_uninit(). */ }; MA_API ma_result ma_node_get_heap_size(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_node_init_preallocated(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, void* pHeap, ma_node* pNode); MA_API ma_result ma_node_init(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_node* pNode); MA_API void ma_node_uninit(ma_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_node_graph* ma_node_get_node_graph(const ma_node* pNode); MA_API ma_uint32 ma_node_get_input_bus_count(const ma_node* pNode); MA_API ma_uint32 ma_node_get_output_bus_count(const ma_node* pNode); MA_API ma_uint32 ma_node_get_input_channels(const ma_node* pNode, ma_uint32 inputBusIndex); MA_API ma_uint32 ma_node_get_output_channels(const ma_node* pNode, ma_uint32 outputBusIndex); MA_API ma_result ma_node_attach_output_bus(ma_node* pNode, ma_uint32 outputBusIndex, ma_node* pOtherNode, ma_uint32 otherNodeInputBusIndex); MA_API ma_result ma_node_detach_output_bus(ma_node* pNode, ma_uint32 outputBusIndex); MA_API ma_result ma_node_detach_all_output_buses(ma_node* pNode); MA_API ma_result ma_node_set_output_bus_volume(ma_node* pNode, ma_uint32 outputBusIndex, float volume); MA_API float ma_node_get_output_bus_volume(const ma_node* pNode, ma_uint32 outputBusIndex); MA_API ma_result ma_node_set_state(ma_node* pNode, ma_node_state state); MA_API ma_node_state ma_node_get_state(const ma_node* pNode); MA_API ma_result ma_node_set_state_time(ma_node* pNode, ma_node_state state, ma_uint64 globalTime); MA_API ma_uint64 ma_node_get_state_time(const ma_node* pNode, ma_node_state state); MA_API ma_node_state ma_node_get_state_by_time(const ma_node* pNode, ma_uint64 globalTime); MA_API ma_node_state ma_node_get_state_by_time_range(const ma_node* pNode, ma_uint64 globalTimeBeg, ma_uint64 globalTimeEnd); MA_API ma_uint64 ma_node_get_time(const ma_node* pNode); MA_API ma_result ma_node_set_time(ma_node* pNode, ma_uint64 localTime); typedef struct { ma_uint32 channels; ma_uint16 nodeCacheCapInFrames; } ma_node_graph_config; MA_API ma_node_graph_config ma_node_graph_config_init(ma_uint32 channels); struct ma_node_graph { /* Immutable. */ ma_node_base base; /* The node graph itself is a node so it can be connected as an input to different node graph. This has zero inputs and calls ma_node_graph_read_pcm_frames() to generate it's output. */ ma_node_base endpoint; /* Special node that all nodes eventually connect to. Data is read from this node in ma_node_graph_read_pcm_frames(). */ ma_uint16 nodeCacheCapInFrames; /* Read and written by multiple threads. */ MA_ATOMIC(4, ma_bool32) isReading; }; MA_API ma_result ma_node_graph_init(const ma_node_graph_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_node_graph* pNodeGraph); MA_API void ma_node_graph_uninit(ma_node_graph* pNodeGraph, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_node* ma_node_graph_get_endpoint(ma_node_graph* pNodeGraph); MA_API ma_result ma_node_graph_read_pcm_frames(ma_node_graph* pNodeGraph, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_uint32 ma_node_graph_get_channels(const ma_node_graph* pNodeGraph); MA_API ma_uint64 ma_node_graph_get_time(const ma_node_graph* pNodeGraph); MA_API ma_result ma_node_graph_set_time(ma_node_graph* pNodeGraph, ma_uint64 globalTime); /* Data source node. 0 input buses, 1 output bus. Used for reading from a data source. */ typedef struct { ma_node_config nodeConfig; ma_data_source* pDataSource; } ma_data_source_node_config; MA_API ma_data_source_node_config ma_data_source_node_config_init(ma_data_source* pDataSource); typedef struct { ma_node_base base; ma_data_source* pDataSource; } ma_data_source_node; MA_API ma_result ma_data_source_node_init(ma_node_graph* pNodeGraph, const ma_data_source_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source_node* pDataSourceNode); MA_API void ma_data_source_node_uninit(ma_data_source_node* pDataSourceNode, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_data_source_node_set_looping(ma_data_source_node* pDataSourceNode, ma_bool32 isLooping); MA_API ma_bool32 ma_data_source_node_is_looping(ma_data_source_node* pDataSourceNode); /* Splitter Node. 1 input, 2 outputs. Used for splitting/copying a stream so it can be as input into two separate output nodes. */ typedef struct { ma_node_config nodeConfig; ma_uint32 channels; ma_uint32 outputBusCount; } ma_splitter_node_config; MA_API ma_splitter_node_config ma_splitter_node_config_init(ma_uint32 channels); typedef struct { ma_node_base base; } ma_splitter_node; MA_API ma_result ma_splitter_node_init(ma_node_graph* pNodeGraph, const ma_splitter_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_splitter_node* pSplitterNode); MA_API void ma_splitter_node_uninit(ma_splitter_node* pSplitterNode, const ma_allocation_callbacks* pAllocationCallbacks); /* Biquad Node */ typedef struct { ma_node_config nodeConfig; ma_biquad_config biquad; } ma_biquad_node_config; MA_API ma_biquad_node_config ma_biquad_node_config_init(ma_uint32 channels, float b0, float b1, float b2, float a0, float a1, float a2); typedef struct { ma_node_base baseNode; ma_biquad biquad; } ma_biquad_node; MA_API ma_result ma_biquad_node_init(ma_node_graph* pNodeGraph, const ma_biquad_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_biquad_node* pNode); MA_API ma_result ma_biquad_node_reinit(const ma_biquad_config* pConfig, ma_biquad_node* pNode); MA_API void ma_biquad_node_uninit(ma_biquad_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* Low Pass Filter Node */ typedef struct { ma_node_config nodeConfig; ma_lpf_config lpf; } ma_lpf_node_config; MA_API ma_lpf_node_config ma_lpf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order); typedef struct { ma_node_base baseNode; ma_lpf lpf; } ma_lpf_node; MA_API ma_result ma_lpf_node_init(ma_node_graph* pNodeGraph, const ma_lpf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf_node* pNode); MA_API ma_result ma_lpf_node_reinit(const ma_lpf_config* pConfig, ma_lpf_node* pNode); MA_API void ma_lpf_node_uninit(ma_lpf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* High Pass Filter Node */ typedef struct { ma_node_config nodeConfig; ma_hpf_config hpf; } ma_hpf_node_config; MA_API ma_hpf_node_config ma_hpf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order); typedef struct { ma_node_base baseNode; ma_hpf hpf; } ma_hpf_node; MA_API ma_result ma_hpf_node_init(ma_node_graph* pNodeGraph, const ma_hpf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf_node* pNode); MA_API ma_result ma_hpf_node_reinit(const ma_hpf_config* pConfig, ma_hpf_node* pNode); MA_API void ma_hpf_node_uninit(ma_hpf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* Band Pass Filter Node */ typedef struct { ma_node_config nodeConfig; ma_bpf_config bpf; } ma_bpf_node_config; MA_API ma_bpf_node_config ma_bpf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order); typedef struct { ma_node_base baseNode; ma_bpf bpf; } ma_bpf_node; MA_API ma_result ma_bpf_node_init(ma_node_graph* pNodeGraph, const ma_bpf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_bpf_node* pNode); MA_API ma_result ma_bpf_node_reinit(const ma_bpf_config* pConfig, ma_bpf_node* pNode); MA_API void ma_bpf_node_uninit(ma_bpf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* Notching Filter Node */ typedef struct { ma_node_config nodeConfig; ma_notch_config notch; } ma_notch_node_config; MA_API ma_notch_node_config ma_notch_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency); typedef struct { ma_node_base baseNode; ma_notch2 notch; } ma_notch_node; MA_API ma_result ma_notch_node_init(ma_node_graph* pNodeGraph, const ma_notch_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_notch_node* pNode); MA_API ma_result ma_notch_node_reinit(const ma_notch_config* pConfig, ma_notch_node* pNode); MA_API void ma_notch_node_uninit(ma_notch_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* Peaking Filter Node */ typedef struct { ma_node_config nodeConfig; ma_peak_config peak; } ma_peak_node_config; MA_API ma_peak_node_config ma_peak_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency); typedef struct { ma_node_base baseNode; ma_peak2 peak; } ma_peak_node; MA_API ma_result ma_peak_node_init(ma_node_graph* pNodeGraph, const ma_peak_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_peak_node* pNode); MA_API ma_result ma_peak_node_reinit(const ma_peak_config* pConfig, ma_peak_node* pNode); MA_API void ma_peak_node_uninit(ma_peak_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* Low Shelf Filter Node */ typedef struct { ma_node_config nodeConfig; ma_loshelf_config loshelf; } ma_loshelf_node_config; MA_API ma_loshelf_node_config ma_loshelf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency); typedef struct { ma_node_base baseNode; ma_loshelf2 loshelf; } ma_loshelf_node; MA_API ma_result ma_loshelf_node_init(ma_node_graph* pNodeGraph, const ma_loshelf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_loshelf_node* pNode); MA_API ma_result ma_loshelf_node_reinit(const ma_loshelf_config* pConfig, ma_loshelf_node* pNode); MA_API void ma_loshelf_node_uninit(ma_loshelf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); /* High Shelf Filter Node */ typedef struct { ma_node_config nodeConfig; ma_hishelf_config hishelf; } ma_hishelf_node_config; MA_API ma_hishelf_node_config ma_hishelf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency); typedef struct { ma_node_base baseNode; ma_hishelf2 hishelf; } ma_hishelf_node; MA_API ma_result ma_hishelf_node_init(ma_node_graph* pNodeGraph, const ma_hishelf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hishelf_node* pNode); MA_API ma_result ma_hishelf_node_reinit(const ma_hishelf_config* pConfig, ma_hishelf_node* pNode); MA_API void ma_hishelf_node_uninit(ma_hishelf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks); typedef struct { ma_node_config nodeConfig; ma_delay_config delay; } ma_delay_node_config; MA_API ma_delay_node_config ma_delay_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 delayInFrames, float decay); typedef struct { ma_node_base baseNode; ma_delay delay; } ma_delay_node; MA_API ma_result ma_delay_node_init(ma_node_graph* pNodeGraph, const ma_delay_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_delay_node* pDelayNode); MA_API void ma_delay_node_uninit(ma_delay_node* pDelayNode, const ma_allocation_callbacks* pAllocationCallbacks); MA_API void ma_delay_node_set_wet(ma_delay_node* pDelayNode, float value); MA_API float ma_delay_node_get_wet(const ma_delay_node* pDelayNode); MA_API void ma_delay_node_set_dry(ma_delay_node* pDelayNode, float value); MA_API float ma_delay_node_get_dry(const ma_delay_node* pDelayNode); MA_API void ma_delay_node_set_decay(ma_delay_node* pDelayNode, float value); MA_API float ma_delay_node_get_decay(const ma_delay_node* pDelayNode); #endif /* MA_NO_NODE_GRAPH */ /* SECTION: miniaudio_engine.h */ /************************************************************************************************************************************************************ Engine ************************************************************************************************************************************************************/ #if !defined(MA_NO_ENGINE) && !defined(MA_NO_NODE_GRAPH) typedef struct ma_engine ma_engine; typedef struct ma_sound ma_sound; /* Sound flags. */ typedef enum { MA_SOUND_FLAG_STREAM = 0x00000001, /* MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM */ MA_SOUND_FLAG_DECODE = 0x00000002, /* MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE */ MA_SOUND_FLAG_ASYNC = 0x00000004, /* MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC */ MA_SOUND_FLAG_WAIT_INIT = 0x00000008, /* MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT */ MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT = 0x00000010, /* Do not attach to the endpoint by default. Useful for when setting up nodes in a complex graph system. */ MA_SOUND_FLAG_NO_PITCH = 0x00000020, /* Disable pitch shifting with ma_sound_set_pitch() and ma_sound_group_set_pitch(). This is an optimization. */ MA_SOUND_FLAG_NO_SPATIALIZATION = 0x00000040 /* Disable spatialization. */ } ma_sound_flags; #ifndef MA_ENGINE_MAX_LISTENERS #define MA_ENGINE_MAX_LISTENERS 4 #endif #define MA_LISTENER_INDEX_CLOSEST ((ma_uint8)-1) typedef enum { ma_engine_node_type_sound, ma_engine_node_type_group } ma_engine_node_type; typedef struct { ma_engine* pEngine; ma_engine_node_type type; ma_uint32 channelsIn; ma_uint32 channelsOut; ma_uint32 sampleRate; /* Only used when the type is set to ma_engine_node_type_sound. */ ma_mono_expansion_mode monoExpansionMode; ma_bool8 isPitchDisabled; /* Pitching can be explicitly disable with MA_SOUND_FLAG_NO_PITCH to optimize processing. */ ma_bool8 isSpatializationDisabled; /* Spatialization can be explicitly disabled with MA_SOUND_FLAG_NO_SPATIALIZATION. */ ma_uint8 pinnedListenerIndex; /* The index of the listener this node should always use for spatialization. If set to MA_LISTENER_INDEX_CLOSEST the engine will use the closest listener. */ } ma_engine_node_config; MA_API ma_engine_node_config ma_engine_node_config_init(ma_engine* pEngine, ma_engine_node_type type, ma_uint32 flags); /* Base node object for both ma_sound and ma_sound_group. */ typedef struct { ma_node_base baseNode; /* Must be the first member for compatiblity with the ma_node API. */ ma_engine* pEngine; /* A pointer to the engine. Set based on the value from the config. */ ma_uint32 sampleRate; /* The sample rate of the input data. For sounds backed by a data source, this will be the data source's sample rate. Otherwise it'll be the engine's sample rate. */ ma_mono_expansion_mode monoExpansionMode; ma_fader fader; ma_linear_resampler resampler; /* For pitch shift. */ ma_spatializer spatializer; ma_panner panner; MA_ATOMIC(4, float) pitch; float oldPitch; /* For determining whether or not the resampler needs to be updated to reflect the new pitch. The resampler will be updated on the mixing thread. */ float oldDopplerPitch; /* For determining whether or not the resampler needs to be updated to take a new doppler pitch into account. */ MA_ATOMIC(4, ma_bool32) isPitchDisabled; /* When set to true, pitching will be disabled which will allow the resampler to be bypassed to save some computation. */ MA_ATOMIC(4, ma_bool32) isSpatializationDisabled; /* Set to false by default. When set to false, will not have spatialisation applied. */ MA_ATOMIC(4, ma_uint32) pinnedListenerIndex; /* The index of the listener this node should always use for spatialization. If set to MA_LISTENER_INDEX_CLOSEST the engine will use the closest listener. */ /* Memory management. */ ma_bool8 _ownsHeap; void* _pHeap; } ma_engine_node; MA_API ma_result ma_engine_node_get_heap_size(const ma_engine_node_config* pConfig, size_t* pHeapSizeInBytes); MA_API ma_result ma_engine_node_init_preallocated(const ma_engine_node_config* pConfig, void* pHeap, ma_engine_node* pEngineNode); MA_API ma_result ma_engine_node_init(const ma_engine_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_engine_node* pEngineNode); MA_API void ma_engine_node_uninit(ma_engine_node* pEngineNode, const ma_allocation_callbacks* pAllocationCallbacks); #define MA_SOUND_SOURCE_CHANNEL_COUNT 0xFFFFFFFF typedef struct { const char* pFilePath; /* Set this to load from the resource manager. */ const wchar_t* pFilePathW; /* Set this to load from the resource manager. */ ma_data_source* pDataSource; /* Set this to load from an existing data source. */ ma_node* pInitialAttachment; /* If set, the sound will be attached to an input of this node. This can be set to a ma_sound. If set to NULL, the sound will be attached directly to the endpoint unless MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT is set in `flags`. */ ma_uint32 initialAttachmentInputBusIndex; /* The index of the input bus of pInitialAttachment to attach the sound to. */ ma_uint32 channelsIn; /* Ignored if using a data source as input (the data source's channel count will be used always). Otherwise, setting to 0 will cause the engine's channel count to be used. */ ma_uint32 channelsOut; /* Set this to 0 (default) to use the engine's channel count. Set to MA_SOUND_SOURCE_CHANNEL_COUNT to use the data source's channel count (only used if using a data source as input). */ ma_mono_expansion_mode monoExpansionMode; /* Controls how the mono channel should be expanded to other channels when spatialization is disabled on a sound. */ ma_uint32 flags; /* A combination of MA_SOUND_FLAG_* flags. */ ma_uint64 initialSeekPointInPCMFrames; /* Initializes the sound such that it's seeked to this location by default. */ ma_uint64 rangeBegInPCMFrames; ma_uint64 rangeEndInPCMFrames; ma_uint64 loopPointBegInPCMFrames; ma_uint64 loopPointEndInPCMFrames; ma_bool32 isLooping; ma_fence* pDoneFence; /* Released when the resource manager has finished decoding the entire sound. Not used with streams. */ } ma_sound_config; MA_API ma_sound_config ma_sound_config_init(void); /* Deprecated. Will be removed in version 0.12. Use ma_sound_config_2() instead. */ MA_API ma_sound_config ma_sound_config_init_2(ma_engine* pEngine); /* Will be renamed to ma_sound_config_init() in version 0.12. */ struct ma_sound { ma_engine_node engineNode; /* Must be the first member for compatibility with the ma_node API. */ ma_data_source* pDataSource; MA_ATOMIC(8, ma_uint64) seekTarget; /* The PCM frame index to seek to in the mixing thread. Set to (~(ma_uint64)0) to not perform any seeking. */ MA_ATOMIC(4, ma_bool32) atEnd; ma_bool8 ownsDataSource; /* We're declaring a resource manager data source object here to save us a malloc when loading a sound via the resource manager, which I *think* will be the most common scenario. */ #ifndef MA_NO_RESOURCE_MANAGER ma_resource_manager_data_source* pResourceManagerDataSource; #endif }; /* Structure specifically for sounds played with ma_engine_play_sound(). Making this a separate structure to reduce overhead. */ typedef struct ma_sound_inlined ma_sound_inlined; struct ma_sound_inlined { ma_sound sound; ma_sound_inlined* pNext; ma_sound_inlined* pPrev; }; /* A sound group is just a sound. */ typedef ma_sound_config ma_sound_group_config; typedef ma_sound ma_sound_group; MA_API ma_sound_group_config ma_sound_group_config_init(void); /* Deprecated. Will be removed in version 0.12. Use ma_sound_config_2() instead. */ MA_API ma_sound_group_config ma_sound_group_config_init_2(ma_engine* pEngine); /* Will be renamed to ma_sound_config_init() in version 0.12. */ typedef struct { #if !defined(MA_NO_RESOURCE_MANAGER) ma_resource_manager* pResourceManager; /* Can be null in which case a resource manager will be created for you. */ #endif #if !defined(MA_NO_DEVICE_IO) ma_context* pContext; ma_device* pDevice; /* If set, the caller is responsible for calling ma_engine_data_callback() in the device's data callback. */ ma_device_id* pPlaybackDeviceID; /* The ID of the playback device to use with the default listener. */ ma_device_notification_proc notificationCallback; #endif ma_log* pLog; /* When set to NULL, will use the context's log. */ ma_uint32 listenerCount; /* Must be between 1 and MA_ENGINE_MAX_LISTENERS. */ ma_uint32 channels; /* The number of channels to use when mixing and spatializing. When set to 0, will use the native channel count of the device. */ ma_uint32 sampleRate; /* The sample rate. When set to 0 will use the native channel count of the device. */ ma_uint32 periodSizeInFrames; /* If set to something other than 0, updates will always be exactly this size. The underlying device may be a different size, but from the perspective of the mixer that won't matter.*/ ma_uint32 periodSizeInMilliseconds; /* Used if periodSizeInFrames is unset. */ ma_uint32 gainSmoothTimeInFrames; /* The number of frames to interpolate the gain of spatialized sounds across. If set to 0, will use gainSmoothTimeInMilliseconds. */ ma_uint32 gainSmoothTimeInMilliseconds; /* When set to 0, gainSmoothTimeInFrames will be used. If both are set to 0, a default value will be used. */ ma_allocation_callbacks allocationCallbacks; ma_bool32 noAutoStart; /* When set to true, requires an explicit call to ma_engine_start(). This is false by default, meaning the engine will be started automatically in ma_engine_init(). */ ma_bool32 noDevice; /* When set to true, don't create a default device. ma_engine_read_pcm_frames() can be called manually to read data. */ ma_mono_expansion_mode monoExpansionMode; /* Controls how the mono channel should be expanded to other channels when spatialization is disabled on a sound. */ ma_vfs* pResourceManagerVFS; /* A pointer to a pre-allocated VFS object to use with the resource manager. This is ignored if pResourceManager is not NULL. */ } ma_engine_config; MA_API ma_engine_config ma_engine_config_init(void); struct ma_engine { ma_node_graph nodeGraph; /* An engine is a node graph. It should be able to be plugged into any ma_node_graph API (with a cast) which means this must be the first member of this struct. */ #if !defined(MA_NO_RESOURCE_MANAGER) ma_resource_manager* pResourceManager; #endif #if !defined(MA_NO_DEVICE_IO) ma_device* pDevice; /* Optionally set via the config, otherwise allocated by the engine in ma_engine_init(). */ #endif ma_log* pLog; ma_uint32 sampleRate; ma_uint32 listenerCount; ma_spatializer_listener listeners[MA_ENGINE_MAX_LISTENERS]; ma_allocation_callbacks allocationCallbacks; ma_bool8 ownsResourceManager; ma_bool8 ownsDevice; ma_spinlock inlinedSoundLock; /* For synchronizing access so the inlined sound list. */ ma_sound_inlined* pInlinedSoundHead; /* The first inlined sound. Inlined sounds are tracked in a linked list. */ MA_ATOMIC(4, ma_uint32) inlinedSoundCount; /* The total number of allocated inlined sound objects. Used for debugging. */ ma_uint32 gainSmoothTimeInFrames; /* The number of frames to interpolate the gain of spatialized sounds across. */ ma_mono_expansion_mode monoExpansionMode; }; MA_API ma_result ma_engine_init(const ma_engine_config* pConfig, ma_engine* pEngine); MA_API void ma_engine_uninit(ma_engine* pEngine); MA_API ma_result ma_engine_read_pcm_frames(ma_engine* pEngine, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_node_graph* ma_engine_get_node_graph(ma_engine* pEngine); #if !defined(MA_NO_RESOURCE_MANAGER) MA_API ma_resource_manager* ma_engine_get_resource_manager(ma_engine* pEngine); #endif MA_API ma_device* ma_engine_get_device(ma_engine* pEngine); MA_API ma_log* ma_engine_get_log(ma_engine* pEngine); MA_API ma_node* ma_engine_get_endpoint(ma_engine* pEngine); MA_API ma_uint64 ma_engine_get_time(const ma_engine* pEngine); MA_API ma_result ma_engine_set_time(ma_engine* pEngine, ma_uint64 globalTime); MA_API ma_uint32 ma_engine_get_channels(const ma_engine* pEngine); MA_API ma_uint32 ma_engine_get_sample_rate(const ma_engine* pEngine); MA_API ma_result ma_engine_start(ma_engine* pEngine); MA_API ma_result ma_engine_stop(ma_engine* pEngine); MA_API ma_result ma_engine_set_volume(ma_engine* pEngine, float volume); MA_API ma_result ma_engine_set_gain_db(ma_engine* pEngine, float gainDB); MA_API ma_uint32 ma_engine_get_listener_count(const ma_engine* pEngine); MA_API ma_uint32 ma_engine_find_closest_listener(const ma_engine* pEngine, float absolutePosX, float absolutePosY, float absolutePosZ); MA_API void ma_engine_listener_set_position(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z); MA_API ma_vec3f ma_engine_listener_get_position(const ma_engine* pEngine, ma_uint32 listenerIndex); MA_API void ma_engine_listener_set_direction(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z); MA_API ma_vec3f ma_engine_listener_get_direction(const ma_engine* pEngine, ma_uint32 listenerIndex); MA_API void ma_engine_listener_set_velocity(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z); MA_API ma_vec3f ma_engine_listener_get_velocity(const ma_engine* pEngine, ma_uint32 listenerIndex); MA_API void ma_engine_listener_set_cone(ma_engine* pEngine, ma_uint32 listenerIndex, float innerAngleInRadians, float outerAngleInRadians, float outerGain); MA_API void ma_engine_listener_get_cone(const ma_engine* pEngine, ma_uint32 listenerIndex, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain); MA_API void ma_engine_listener_set_world_up(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z); MA_API ma_vec3f ma_engine_listener_get_world_up(const ma_engine* pEngine, ma_uint32 listenerIndex); MA_API void ma_engine_listener_set_enabled(ma_engine* pEngine, ma_uint32 listenerIndex, ma_bool32 isEnabled); MA_API ma_bool32 ma_engine_listener_is_enabled(const ma_engine* pEngine, ma_uint32 listenerIndex); #ifndef MA_NO_RESOURCE_MANAGER MA_API ma_result ma_engine_play_sound_ex(ma_engine* pEngine, const char* pFilePath, ma_node* pNode, ma_uint32 nodeInputBusIndex); MA_API ma_result ma_engine_play_sound(ma_engine* pEngine, const char* pFilePath, ma_sound_group* pGroup); /* Fire and forget. */ #endif #ifndef MA_NO_RESOURCE_MANAGER MA_API ma_result ma_sound_init_from_file(ma_engine* pEngine, const char* pFilePath, ma_uint32 flags, ma_sound_group* pGroup, ma_fence* pDoneFence, ma_sound* pSound); MA_API ma_result ma_sound_init_from_file_w(ma_engine* pEngine, const wchar_t* pFilePath, ma_uint32 flags, ma_sound_group* pGroup, ma_fence* pDoneFence, ma_sound* pSound); MA_API ma_result ma_sound_init_copy(ma_engine* pEngine, const ma_sound* pExistingSound, ma_uint32 flags, ma_sound_group* pGroup, ma_sound* pSound); #endif MA_API ma_result ma_sound_init_from_data_source(ma_engine* pEngine, ma_data_source* pDataSource, ma_uint32 flags, ma_sound_group* pGroup, ma_sound* pSound); MA_API ma_result ma_sound_init_ex(ma_engine* pEngine, const ma_sound_config* pConfig, ma_sound* pSound); MA_API void ma_sound_uninit(ma_sound* pSound); MA_API ma_engine* ma_sound_get_engine(const ma_sound* pSound); MA_API ma_data_source* ma_sound_get_data_source(const ma_sound* pSound); MA_API ma_result ma_sound_start(ma_sound* pSound); MA_API ma_result ma_sound_stop(ma_sound* pSound); MA_API void ma_sound_set_volume(ma_sound* pSound, float volume); MA_API float ma_sound_get_volume(const ma_sound* pSound); MA_API void ma_sound_set_pan(ma_sound* pSound, float pan); MA_API float ma_sound_get_pan(const ma_sound* pSound); MA_API void ma_sound_set_pan_mode(ma_sound* pSound, ma_pan_mode panMode); MA_API ma_pan_mode ma_sound_get_pan_mode(const ma_sound* pSound); MA_API void ma_sound_set_pitch(ma_sound* pSound, float pitch); MA_API float ma_sound_get_pitch(const ma_sound* pSound); MA_API void ma_sound_set_spatialization_enabled(ma_sound* pSound, ma_bool32 enabled); MA_API ma_bool32 ma_sound_is_spatialization_enabled(const ma_sound* pSound); MA_API void ma_sound_set_pinned_listener_index(ma_sound* pSound, ma_uint32 listenerIndex); MA_API ma_uint32 ma_sound_get_pinned_listener_index(const ma_sound* pSound); MA_API ma_uint32 ma_sound_get_listener_index(const ma_sound* pSound); MA_API ma_vec3f ma_sound_get_direction_to_listener(const ma_sound* pSound); MA_API void ma_sound_set_position(ma_sound* pSound, float x, float y, float z); MA_API ma_vec3f ma_sound_get_position(const ma_sound* pSound); MA_API void ma_sound_set_direction(ma_sound* pSound, float x, float y, float z); MA_API ma_vec3f ma_sound_get_direction(const ma_sound* pSound); MA_API void ma_sound_set_velocity(ma_sound* pSound, float x, float y, float z); MA_API ma_vec3f ma_sound_get_velocity(const ma_sound* pSound); MA_API void ma_sound_set_attenuation_model(ma_sound* pSound, ma_attenuation_model attenuationModel); MA_API ma_attenuation_model ma_sound_get_attenuation_model(const ma_sound* pSound); MA_API void ma_sound_set_positioning(ma_sound* pSound, ma_positioning positioning); MA_API ma_positioning ma_sound_get_positioning(const ma_sound* pSound); MA_API void ma_sound_set_rolloff(ma_sound* pSound, float rolloff); MA_API float ma_sound_get_rolloff(const ma_sound* pSound); MA_API void ma_sound_set_min_gain(ma_sound* pSound, float minGain); MA_API float ma_sound_get_min_gain(const ma_sound* pSound); MA_API void ma_sound_set_max_gain(ma_sound* pSound, float maxGain); MA_API float ma_sound_get_max_gain(const ma_sound* pSound); MA_API void ma_sound_set_min_distance(ma_sound* pSound, float minDistance); MA_API float ma_sound_get_min_distance(const ma_sound* pSound); MA_API void ma_sound_set_max_distance(ma_sound* pSound, float maxDistance); MA_API float ma_sound_get_max_distance(const ma_sound* pSound); MA_API void ma_sound_set_cone(ma_sound* pSound, float innerAngleInRadians, float outerAngleInRadians, float outerGain); MA_API void ma_sound_get_cone(const ma_sound* pSound, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain); MA_API void ma_sound_set_doppler_factor(ma_sound* pSound, float dopplerFactor); MA_API float ma_sound_get_doppler_factor(const ma_sound* pSound); MA_API void ma_sound_set_directional_attenuation_factor(ma_sound* pSound, float directionalAttenuationFactor); MA_API float ma_sound_get_directional_attenuation_factor(const ma_sound* pSound); MA_API void ma_sound_set_fade_in_pcm_frames(ma_sound* pSound, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInFrames); MA_API void ma_sound_set_fade_in_milliseconds(ma_sound* pSound, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInMilliseconds); MA_API float ma_sound_get_current_fade_volume(ma_sound* pSound); MA_API void ma_sound_set_start_time_in_pcm_frames(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInFrames); MA_API void ma_sound_set_start_time_in_milliseconds(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInMilliseconds); MA_API void ma_sound_set_stop_time_in_pcm_frames(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInFrames); MA_API void ma_sound_set_stop_time_in_milliseconds(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInMilliseconds); MA_API ma_bool32 ma_sound_is_playing(const ma_sound* pSound); MA_API ma_uint64 ma_sound_get_time_in_pcm_frames(const ma_sound* pSound); MA_API void ma_sound_set_looping(ma_sound* pSound, ma_bool32 isLooping); MA_API ma_bool32 ma_sound_is_looping(const ma_sound* pSound); MA_API ma_bool32 ma_sound_at_end(const ma_sound* pSound); MA_API ma_result ma_sound_seek_to_pcm_frame(ma_sound* pSound, ma_uint64 frameIndex); /* Just a wrapper around ma_data_source_seek_to_pcm_frame(). */ MA_API ma_result ma_sound_get_data_format(ma_sound* pSound, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_sound_get_cursor_in_pcm_frames(ma_sound* pSound, ma_uint64* pCursor); MA_API ma_result ma_sound_get_length_in_pcm_frames(ma_sound* pSound, ma_uint64* pLength); MA_API ma_result ma_sound_get_cursor_in_seconds(ma_sound* pSound, float* pCursor); MA_API ma_result ma_sound_get_length_in_seconds(ma_sound* pSound, float* pLength); MA_API ma_result ma_sound_group_init(ma_engine* pEngine, ma_uint32 flags, ma_sound_group* pParentGroup, ma_sound_group* pGroup); MA_API ma_result ma_sound_group_init_ex(ma_engine* pEngine, const ma_sound_group_config* pConfig, ma_sound_group* pGroup); MA_API void ma_sound_group_uninit(ma_sound_group* pGroup); MA_API ma_engine* ma_sound_group_get_engine(const ma_sound_group* pGroup); MA_API ma_result ma_sound_group_start(ma_sound_group* pGroup); MA_API ma_result ma_sound_group_stop(ma_sound_group* pGroup); MA_API void ma_sound_group_set_volume(ma_sound_group* pGroup, float volume); MA_API float ma_sound_group_get_volume(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_pan(ma_sound_group* pGroup, float pan); MA_API float ma_sound_group_get_pan(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_pan_mode(ma_sound_group* pGroup, ma_pan_mode panMode); MA_API ma_pan_mode ma_sound_group_get_pan_mode(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_pitch(ma_sound_group* pGroup, float pitch); MA_API float ma_sound_group_get_pitch(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_spatialization_enabled(ma_sound_group* pGroup, ma_bool32 enabled); MA_API ma_bool32 ma_sound_group_is_spatialization_enabled(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_pinned_listener_index(ma_sound_group* pGroup, ma_uint32 listenerIndex); MA_API ma_uint32 ma_sound_group_get_pinned_listener_index(const ma_sound_group* pGroup); MA_API ma_uint32 ma_sound_group_get_listener_index(const ma_sound_group* pGroup); MA_API ma_vec3f ma_sound_group_get_direction_to_listener(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_position(ma_sound_group* pGroup, float x, float y, float z); MA_API ma_vec3f ma_sound_group_get_position(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_direction(ma_sound_group* pGroup, float x, float y, float z); MA_API ma_vec3f ma_sound_group_get_direction(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_velocity(ma_sound_group* pGroup, float x, float y, float z); MA_API ma_vec3f ma_sound_group_get_velocity(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_attenuation_model(ma_sound_group* pGroup, ma_attenuation_model attenuationModel); MA_API ma_attenuation_model ma_sound_group_get_attenuation_model(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_positioning(ma_sound_group* pGroup, ma_positioning positioning); MA_API ma_positioning ma_sound_group_get_positioning(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_rolloff(ma_sound_group* pGroup, float rolloff); MA_API float ma_sound_group_get_rolloff(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_min_gain(ma_sound_group* pGroup, float minGain); MA_API float ma_sound_group_get_min_gain(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_max_gain(ma_sound_group* pGroup, float maxGain); MA_API float ma_sound_group_get_max_gain(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_min_distance(ma_sound_group* pGroup, float minDistance); MA_API float ma_sound_group_get_min_distance(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_max_distance(ma_sound_group* pGroup, float maxDistance); MA_API float ma_sound_group_get_max_distance(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_cone(ma_sound_group* pGroup, float innerAngleInRadians, float outerAngleInRadians, float outerGain); MA_API void ma_sound_group_get_cone(const ma_sound_group* pGroup, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain); MA_API void ma_sound_group_set_doppler_factor(ma_sound_group* pGroup, float dopplerFactor); MA_API float ma_sound_group_get_doppler_factor(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_directional_attenuation_factor(ma_sound_group* pGroup, float directionalAttenuationFactor); MA_API float ma_sound_group_get_directional_attenuation_factor(const ma_sound_group* pGroup); MA_API void ma_sound_group_set_fade_in_pcm_frames(ma_sound_group* pGroup, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInFrames); MA_API void ma_sound_group_set_fade_in_milliseconds(ma_sound_group* pGroup, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInMilliseconds); MA_API float ma_sound_group_get_current_fade_volume(ma_sound_group* pGroup); MA_API void ma_sound_group_set_start_time_in_pcm_frames(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInFrames); MA_API void ma_sound_group_set_start_time_in_milliseconds(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInMilliseconds); MA_API void ma_sound_group_set_stop_time_in_pcm_frames(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInFrames); MA_API void ma_sound_group_set_stop_time_in_milliseconds(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInMilliseconds); MA_API ma_bool32 ma_sound_group_is_playing(const ma_sound_group* pGroup); MA_API ma_uint64 ma_sound_group_get_time_in_pcm_frames(const ma_sound_group* pGroup); #endif /* MA_NO_ENGINE */ /* END SECTION: miniaudio_engine.h */ #ifdef __cplusplus } #endif #endif /* miniaudio_h */ /* This is for preventing greying out of the implementation section. */ #if defined(Q_CREATOR_RUN) || defined(__INTELLISENSE__) || defined(__CDT_PARSER__) #define MINIAUDIO_IMPLEMENTATION #endif /************************************************************************************************************************************************************ ************************************************************************************************************************************************************* IMPLEMENTATION ************************************************************************************************************************************************************* ************************************************************************************************************************************************************/ #if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION) #ifndef miniaudio_c #define miniaudio_c #include #include /* For INT_MAX */ #include /* sin(), etc. */ #include #include #if !defined(_MSC_VER) && !defined(__DMC__) #include /* For strcasecmp(). */ #include /* For wcslen(), wcsrtombs() */ #endif #ifdef _MSC_VER #include /* For _controlfp_s constants */ #endif #ifdef MA_WIN32 #include #else #include /* For malloc(), free(), wcstombs(). */ #include /* For memset() */ #include #include /* select() (used for ma_sleep()). */ #include #endif #include /* For fstat(), etc. */ #ifdef MA_EMSCRIPTEN #include #endif #if !defined(MA_64BIT) && !defined(MA_32BIT) #ifdef _WIN32 #ifdef _WIN64 #define MA_64BIT #else #define MA_32BIT #endif #endif #endif #if !defined(MA_64BIT) && !defined(MA_32BIT) #ifdef __GNUC__ #ifdef __LP64__ #define MA_64BIT #else #define MA_32BIT #endif #endif #endif #if !defined(MA_64BIT) && !defined(MA_32BIT) #include #if INTPTR_MAX == INT64_MAX #define MA_64BIT #else #define MA_32BIT #endif #endif /* Architecture Detection */ #if defined(__x86_64__) || defined(_M_X64) #define MA_X64 #elif defined(__i386) || defined(_M_IX86) #define MA_X86 #elif defined(__arm__) || defined(_M_ARM) || defined(__arm64) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) #define MA_ARM #endif /* Intrinsics Support */ #if defined(MA_X64) || defined(MA_X86) #if defined(_MSC_VER) && !defined(__clang__) /* MSVC. */ #if _MSC_VER >= 1400 && !defined(MA_NO_SSE2) /* 2005 */ #define MA_SUPPORT_SSE2 #endif /*#if _MSC_VER >= 1600 && !defined(MA_NO_AVX)*/ /* 2010 */ /* #define MA_SUPPORT_AVX*/ /*#endif*/ #if _MSC_VER >= 1700 && !defined(MA_NO_AVX2) /* 2012 */ #define MA_SUPPORT_AVX2 #endif #else /* Assume GNUC-style. */ #if defined(__SSE2__) && !defined(MA_NO_SSE2) #define MA_SUPPORT_SSE2 #endif /*#if defined(__AVX__) && !defined(MA_NO_AVX)*/ /* #define MA_SUPPORT_AVX*/ /*#endif*/ #if defined(__AVX2__) && !defined(MA_NO_AVX2) #define MA_SUPPORT_AVX2 #endif #endif /* If at this point we still haven't determined compiler support for the intrinsics just fall back to __has_include. */ #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) #if !defined(MA_SUPPORT_SSE2) && !defined(MA_NO_SSE2) && __has_include() #define MA_SUPPORT_SSE2 #endif /*#if !defined(MA_SUPPORT_AVX) && !defined(MA_NO_AVX) && __has_include()*/ /* #define MA_SUPPORT_AVX*/ /*#endif*/ #if !defined(MA_SUPPORT_AVX2) && !defined(MA_NO_AVX2) && __has_include() #define MA_SUPPORT_AVX2 #endif #endif #if defined(MA_SUPPORT_AVX2) || defined(MA_SUPPORT_AVX) #include #elif defined(MA_SUPPORT_SSE2) #include #endif #endif #if defined(MA_ARM) #if !defined(MA_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) #define MA_SUPPORT_NEON #include #endif #endif /* Begin globally disabled warnings. */ #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable:4752) /* found Intel(R) Advanced Vector Extensions; consider using /arch:AVX */ #pragma warning(disable:4049) /* compiler limit : terminating line number emission */ #endif #if defined(MA_X64) || defined(MA_X86) #if defined(_MSC_VER) && !defined(__clang__) #if _MSC_VER >= 1400 #include static MA_INLINE void ma_cpuid(int info[4], int fid) { __cpuid(info, fid); } #else #define MA_NO_CPUID #endif #if _MSC_VER >= 1600 && (defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 160040219) static MA_INLINE unsigned __int64 ma_xgetbv(int reg) { return _xgetbv(reg); } #else #define MA_NO_XGETBV #endif #elif (defined(__GNUC__) || defined(__clang__)) && !defined(MA_ANDROID) static MA_INLINE void ma_cpuid(int info[4], int fid) { /* It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for supporting different assembly dialects. What's basically happening is that we're saving and restoring the ebx register manually. */ #if defined(DRFLAC_X86) && defined(__PIC__) __asm__ __volatile__ ( "xchg{l} {%%}ebx, %k1;" "cpuid;" "xchg{l} {%%}ebx, %k1;" : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) ); #else __asm__ __volatile__ ( "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) ); #endif } static MA_INLINE ma_uint64 ma_xgetbv(int reg) { unsigned int hi; unsigned int lo; __asm__ __volatile__ ( "xgetbv" : "=a"(lo), "=d"(hi) : "c"(reg) ); return ((ma_uint64)hi << 32) | (ma_uint64)lo; } #else #define MA_NO_CPUID #define MA_NO_XGETBV #endif #else #define MA_NO_CPUID #define MA_NO_XGETBV #endif static MA_INLINE ma_bool32 ma_has_sse2(void) { #if defined(MA_SUPPORT_SSE2) #if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_SSE2) #if defined(MA_X64) return MA_TRUE; /* 64-bit targets always support SSE2. */ #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__) return MA_TRUE; /* If the compiler is allowed to freely generate SSE2 code we can assume support. */ #else #if defined(MA_NO_CPUID) return MA_FALSE; #else int info[4]; ma_cpuid(info, 1); return (info[3] & (1 << 26)) != 0; #endif #endif #else return MA_FALSE; /* SSE2 is only supported on x86 and x64 architectures. */ #endif #else return MA_FALSE; /* No compiler support. */ #endif } #if 0 static MA_INLINE ma_bool32 ma_has_avx() { #if defined(MA_SUPPORT_AVX) #if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX) #if defined(_AVX_) || defined(__AVX__) return MA_TRUE; /* If the compiler is allowed to freely generate AVX code we can assume support. */ #else /* AVX requires both CPU and OS support. */ #if defined(MA_NO_CPUID) || defined(MA_NO_XGETBV) return MA_FALSE; #else int info[4]; ma_cpuid(info, 1); if (((info[2] & (1 << 27)) != 0) && ((info[2] & (1 << 28)) != 0)) { ma_uint64 xrc = ma_xgetbv(0); if ((xrc & 0x06) == 0x06) { return MA_TRUE; } else { return MA_FALSE; } } else { return MA_FALSE; } #endif #endif #else return MA_FALSE; /* AVX is only supported on x86 and x64 architectures. */ #endif #else return MA_FALSE; /* No compiler support. */ #endif } #endif static MA_INLINE ma_bool32 ma_has_avx2(void) { #if defined(MA_SUPPORT_AVX2) #if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX2) #if defined(_AVX2_) || defined(__AVX2__) return MA_TRUE; /* If the compiler is allowed to freely generate AVX2 code we can assume support. */ #else /* AVX2 requires both CPU and OS support. */ #if defined(MA_NO_CPUID) || defined(MA_NO_XGETBV) return MA_FALSE; #else int info1[4]; int info7[4]; ma_cpuid(info1, 1); ma_cpuid(info7, 7); if (((info1[2] & (1 << 27)) != 0) && ((info7[1] & (1 << 5)) != 0)) { ma_uint64 xrc = ma_xgetbv(0); if ((xrc & 0x06) == 0x06) { return MA_TRUE; } else { return MA_FALSE; } } else { return MA_FALSE; } #endif #endif #else return MA_FALSE; /* AVX2 is only supported on x86 and x64 architectures. */ #endif #else return MA_FALSE; /* No compiler support. */ #endif } static MA_INLINE ma_bool32 ma_has_neon(void) { #if defined(MA_SUPPORT_NEON) #if defined(MA_ARM) && !defined(MA_NO_NEON) #if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) return MA_TRUE; /* If the compiler is allowed to freely generate NEON code we can assume support. */ #else /* TODO: Runtime check. */ return MA_FALSE; #endif #else return MA_FALSE; /* NEON is only supported on ARM architectures. */ #endif #else return MA_FALSE; /* No compiler support. */ #endif } #define MA_SIMD_NONE 0 #define MA_SIMD_SSE2 1 #define MA_SIMD_AVX2 2 #define MA_SIMD_NEON 3 #ifndef MA_PREFERRED_SIMD # if defined(MA_SUPPORT_SSE2) && defined(MA_PREFER_SSE2) #define MA_PREFERRED_SIMD MA_SIMD_SSE2 #elif defined(MA_SUPPORT_AVX2) && defined(MA_PREFER_AVX2) #define MA_PREFERRED_SIMD MA_SIMD_AVX2 #elif defined(MA_SUPPORT_NEON) && defined(MA_PREFER_NEON) #define MA_PREFERRED_SIMD MA_SIMD_NEON #else #define MA_PREFERRED_SIMD MA_SIMD_NONE #endif #endif #if defined(__has_builtin) #define MA_COMPILER_HAS_BUILTIN(x) __has_builtin(x) #else #define MA_COMPILER_HAS_BUILTIN(x) 0 #endif #ifndef MA_ASSUME #if MA_COMPILER_HAS_BUILTIN(__builtin_assume) #define MA_ASSUME(x) __builtin_assume(x) #elif MA_COMPILER_HAS_BUILTIN(__builtin_unreachable) #define MA_ASSUME(x) do { if (!(x)) __builtin_unreachable(); } while (0) #elif defined(_MSC_VER) #define MA_ASSUME(x) __assume(x) #else #define MA_ASSUME(x) (void)(x) #endif #endif #ifndef MA_RESTRICT #if defined(__clang__) || defined(__GNUC__) || defined(_MSC_VER) #define MA_RESTRICT __restrict #else #define MA_RESTRICT #endif #endif #if defined(_MSC_VER) && _MSC_VER >= 1400 #define MA_HAS_BYTESWAP16_INTRINSIC #define MA_HAS_BYTESWAP32_INTRINSIC #define MA_HAS_BYTESWAP64_INTRINSIC #elif defined(__clang__) #if MA_COMPILER_HAS_BUILTIN(__builtin_bswap16) #define MA_HAS_BYTESWAP16_INTRINSIC #endif #if MA_COMPILER_HAS_BUILTIN(__builtin_bswap32) #define MA_HAS_BYTESWAP32_INTRINSIC #endif #if MA_COMPILER_HAS_BUILTIN(__builtin_bswap64) #define MA_HAS_BYTESWAP64_INTRINSIC #endif #elif defined(__GNUC__) #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define MA_HAS_BYTESWAP32_INTRINSIC #define MA_HAS_BYTESWAP64_INTRINSIC #endif #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #define MA_HAS_BYTESWAP16_INTRINSIC #endif #endif static MA_INLINE ma_bool32 ma_is_little_endian(void) { #if defined(MA_X86) || defined(MA_X64) return MA_TRUE; #else int n = 1; return (*(char*)&n) == 1; #endif } static MA_INLINE ma_bool32 ma_is_big_endian(void) { return !ma_is_little_endian(); } static MA_INLINE ma_uint32 ma_swap_endian_uint32(ma_uint32 n) { #ifdef MA_HAS_BYTESWAP32_INTRINSIC #if defined(_MSC_VER) return _byteswap_ulong(n); #elif defined(__GNUC__) || defined(__clang__) #if defined(MA_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(MA_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */ /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */ ma_uint32 r; __asm__ __volatile__ ( #if defined(MA_64BIT) "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */ #else "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) #endif ); return r; #else return __builtin_bswap32(n); #endif #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & 0xFF000000) >> 24) | ((n & 0x00FF0000) >> 8) | ((n & 0x0000FF00) << 8) | ((n & 0x000000FF) << 24); #endif } #if !defined(MA_EMSCRIPTEN) #ifdef MA_WIN32 static void ma_sleep__win32(ma_uint32 milliseconds) { Sleep((DWORD)milliseconds); } #endif #ifdef MA_POSIX static void ma_sleep__posix(ma_uint32 milliseconds) { #ifdef MA_EMSCRIPTEN (void)milliseconds; MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */ #else #if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 199309L struct timespec ts; ts.tv_sec = milliseconds / 1000; ts.tv_nsec = milliseconds % 1000 * 1000000; nanosleep(&ts, NULL); #else struct timeval tv; tv.tv_sec = milliseconds / 1000; tv.tv_usec = milliseconds % 1000 * 1000; select(0, NULL, NULL, NULL, &tv); #endif #endif } #endif static MA_INLINE void ma_sleep(ma_uint32 milliseconds) { #ifdef MA_WIN32 ma_sleep__win32(milliseconds); #endif #ifdef MA_POSIX ma_sleep__posix(milliseconds); #endif } #endif static MA_INLINE void ma_yield() { #if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) /* x86/x64 */ #if (defined(_MSC_VER) || defined(__WATCOMC__) || defined(__DMC__)) && !defined(__clang__) #if _MSC_VER >= 1400 _mm_pause(); #else #if defined(__DMC__) /* Digital Mars does not recognize the PAUSE opcode. Fall back to NOP. */ __asm nop; #else __asm pause; #endif #endif #else __asm__ __volatile__ ("pause"); #endif #elif (defined(__arm__) && defined(__ARM_ARCH) && __ARM_ARCH >= 7) || defined(_M_ARM64) || (defined(_M_ARM) && _M_ARM >= 7) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6T2__) /* ARM */ #if defined(_MSC_VER) /* Apparently there is a __yield() intrinsic that's compatible with ARM, but I cannot find documentation for it nor can I find where it's declared. */ __yield(); #else __asm__ __volatile__ ("yield"); /* ARMv6K/ARMv6T2 and above. */ #endif #else /* Unknown or unsupported architecture. No-op. */ #endif } #define MA_MM_DENORMALS_ZERO_MASK 0x0040 #define MA_MM_FLUSH_ZERO_MASK 0x8000 static MA_INLINE unsigned int ma_disable_denormals() { unsigned int prevState; #if defined(_MSC_VER) { /* Older versions of Visual Studio don't support the "safe" versions of _controlfp_s(). I don't know which version of Visual Studio first added support for _controlfp_s(), but I do know that VC6 lacks support. _MSC_VER = 1200 is VC6, but if you get compilation errors on older versions of Visual Studio, let me know and I'll make the necessary adjustment. */ #if _MSC_VER <= 1200 { prevState = _statusfp(); _controlfp(prevState | _DN_FLUSH, _MCW_DN); } #else { unsigned int unused; _controlfp_s(&prevState, 0, 0); _controlfp_s(&unused, prevState | _DN_FLUSH, _MCW_DN); } #endif } #elif defined(MA_X86) || defined(MA_X64) { #if defined(__SSE2__) && !(defined(__TINYC__) || defined(__WATCOMC__)) /* <-- Add compilers that lack support for _mm_getcsr() and _mm_setcsr() to this list. */ { prevState = _mm_getcsr(); _mm_setcsr(prevState | MA_MM_DENORMALS_ZERO_MASK | MA_MM_FLUSH_ZERO_MASK); } #else { /* x88/64, but no support for _mm_getcsr()/_mm_setcsr(). May need to fall back to inlined assembly here. */ prevState = 0; } #endif } #else { /* Unknown or unsupported architecture. No-op. */ prevState = 0; } #endif return prevState; } static MA_INLINE void ma_restore_denormals(unsigned int prevState) { #if defined(_MSC_VER) { /* Older versions of Visual Studio do not support _controlfp_s(). See ma_disable_denormals(). */ #if _MSC_VER <= 1200 { _controlfp(prevState, _MCW_DN); } #else { unsigned int unused; _controlfp_s(&unused, prevState, _MCW_DN); } #endif } #elif defined(MA_X86) || defined(MA_X64) { #if defined(__SSE2__) && !(defined(__TINYC__) || defined(__WATCOMC__)) /* <-- Add compilers that lack support for _mm_getcsr() and _mm_setcsr() to this list. */ { _mm_setcsr(prevState); } #else { /* x88/64, but no support for _mm_getcsr()/_mm_setcsr(). May need to fall back to inlined assembly here. */ (void)prevState; } #endif } #else { /* Unknown or unsupported architecture. No-op. */ (void)prevState; } #endif } #ifndef MA_COINIT_VALUE #define MA_COINIT_VALUE 0 /* 0 = COINIT_MULTITHREADED */ #endif #ifndef MA_FLT_MAX #ifdef FLT_MAX #define MA_FLT_MAX FLT_MAX #else #define MA_FLT_MAX 3.402823466e+38F #endif #endif #ifndef MA_PI #define MA_PI 3.14159265358979323846264f #endif #ifndef MA_PI_D #define MA_PI_D 3.14159265358979323846264 #endif #ifndef MA_TAU #define MA_TAU 6.28318530717958647693f #endif #ifndef MA_TAU_D #define MA_TAU_D 6.28318530717958647693 #endif /* The default format when ma_format_unknown (0) is requested when initializing a device. */ #ifndef MA_DEFAULT_FORMAT #define MA_DEFAULT_FORMAT ma_format_f32 #endif /* The default channel count to use when 0 is used when initializing a device. */ #ifndef MA_DEFAULT_CHANNELS #define MA_DEFAULT_CHANNELS 2 #endif /* The default sample rate to use when 0 is used when initializing a device. */ #ifndef MA_DEFAULT_SAMPLE_RATE #define MA_DEFAULT_SAMPLE_RATE 48000 #endif /* Default periods when none is specified in ma_device_init(). More periods means more work on the CPU. */ #ifndef MA_DEFAULT_PERIODS #define MA_DEFAULT_PERIODS 3 #endif /* The default period size in milliseconds for low latency mode. */ #ifndef MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY #define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY 10 #endif /* The default buffer size in milliseconds for conservative mode. */ #ifndef MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE #define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE 100 #endif /* The default LPF filter order for linear resampling. Note that this is clamped to MA_MAX_FILTER_ORDER. */ #ifndef MA_DEFAULT_RESAMPLER_LPF_ORDER #if MA_MAX_FILTER_ORDER >= 4 #define MA_DEFAULT_RESAMPLER_LPF_ORDER 4 #else #define MA_DEFAULT_RESAMPLER_LPF_ORDER MA_MAX_FILTER_ORDER #endif #endif #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-variable" #endif /* Standard sample rates, in order of priority. */ static ma_uint32 g_maStandardSampleRatePriorities[] = { (ma_uint32)ma_standard_sample_rate_48000, (ma_uint32)ma_standard_sample_rate_44100, (ma_uint32)ma_standard_sample_rate_32000, (ma_uint32)ma_standard_sample_rate_24000, (ma_uint32)ma_standard_sample_rate_22050, (ma_uint32)ma_standard_sample_rate_88200, (ma_uint32)ma_standard_sample_rate_96000, (ma_uint32)ma_standard_sample_rate_176400, (ma_uint32)ma_standard_sample_rate_192000, (ma_uint32)ma_standard_sample_rate_16000, (ma_uint32)ma_standard_sample_rate_11025, (ma_uint32)ma_standard_sample_rate_8000, (ma_uint32)ma_standard_sample_rate_352800, (ma_uint32)ma_standard_sample_rate_384000 }; static MA_INLINE ma_bool32 ma_is_standard_sample_rate(ma_uint32 sampleRate) { ma_uint32 iSampleRate; for (iSampleRate = 0; iSampleRate < sizeof(g_maStandardSampleRatePriorities) / sizeof(g_maStandardSampleRatePriorities[0]); iSampleRate += 1) { if (g_maStandardSampleRatePriorities[iSampleRate] == sampleRate) { return MA_TRUE; } } /* Getting here means the sample rate is not supported. */ return MA_FALSE; } static ma_format g_maFormatPriorities[] = { ma_format_s16, /* Most common */ ma_format_f32, /*ma_format_s24_32,*/ /* Clean alignment */ ma_format_s32, ma_format_s24, /* Unclean alignment */ ma_format_u8 /* Low quality */ }; #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision) { if (pMajor) { *pMajor = MA_VERSION_MAJOR; } if (pMinor) { *pMinor = MA_VERSION_MINOR; } if (pRevision) { *pRevision = MA_VERSION_REVISION; } } MA_API const char* ma_version_string(void) { return MA_VERSION_STRING; } /****************************************************************************** Standard Library Stuff ******************************************************************************/ #ifndef MA_MALLOC #ifdef MA_WIN32 #define MA_MALLOC(sz) HeapAlloc(GetProcessHeap(), 0, (sz)) #else #define MA_MALLOC(sz) malloc((sz)) #endif #endif #ifndef MA_REALLOC #ifdef MA_WIN32 #define MA_REALLOC(p, sz) (((sz) > 0) ? ((p) ? HeapReAlloc(GetProcessHeap(), 0, (p), (sz)) : HeapAlloc(GetProcessHeap(), 0, (sz))) : ((VOID*)(size_t)(HeapFree(GetProcessHeap(), 0, (p)) & 0))) #else #define MA_REALLOC(p, sz) realloc((p), (sz)) #endif #endif #ifndef MA_FREE #ifdef MA_WIN32 #define MA_FREE(p) HeapFree(GetProcessHeap(), 0, (p)) #else #define MA_FREE(p) free((p)) #endif #endif static MA_INLINE void ma_zero_memory_default(void* p, size_t sz) { #ifdef MA_WIN32 ZeroMemory(p, sz); #else if (sz > 0) { memset(p, 0, sz); } #endif } #ifndef MA_ZERO_MEMORY #define MA_ZERO_MEMORY(p, sz) ma_zero_memory_default((p), (sz)) #endif #ifndef MA_COPY_MEMORY #ifdef MA_WIN32 #define MA_COPY_MEMORY(dst, src, sz) CopyMemory((dst), (src), (sz)) #else #define MA_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) #endif #endif #ifndef MA_MOVE_MEMORY #ifdef MA_WIN32 #define MA_MOVE_MEMORY(dst, src, sz) MoveMemory((dst), (src), (sz)) #else #define MA_MOVE_MEMORY(dst, src, sz) memmove((dst), (src), (sz)) #endif #endif #ifndef MA_ASSERT #ifdef MA_WIN32 #define MA_ASSERT(condition) assert(condition) #else #define MA_ASSERT(condition) assert(condition) #endif #endif #define MA_ZERO_OBJECT(p) MA_ZERO_MEMORY((p), sizeof(*(p))) #define ma_countof(x) (sizeof(x) / sizeof(x[0])) #define ma_max(x, y) (((x) > (y)) ? (x) : (y)) #define ma_min(x, y) (((x) < (y)) ? (x) : (y)) #define ma_abs(x) (((x) > 0) ? (x) : -(x)) #define ma_clamp(x, lo, hi) (ma_max(lo, ma_min(x, hi))) #define ma_offset_ptr(p, offset) (((ma_uint8*)(p)) + (offset)) #define ma_align(x, a) ((x + (a-1)) & ~(a-1)) #define ma_align_64(x) ma_align(x, 8) #define ma_buffer_frame_capacity(buffer, channels, format) (sizeof(buffer) / ma_get_bytes_per_sample(format) / (channels)) static MA_INLINE double ma_sind(double x) { /* TODO: Implement custom sin(x). */ return sin(x); } static MA_INLINE double ma_expd(double x) { /* TODO: Implement custom exp(x). */ return exp(x); } static MA_INLINE double ma_logd(double x) { /* TODO: Implement custom log(x). */ return log(x); } static MA_INLINE double ma_powd(double x, double y) { /* TODO: Implement custom pow(x, y). */ return pow(x, y); } static MA_INLINE double ma_sqrtd(double x) { /* TODO: Implement custom sqrt(x). */ return sqrt(x); } static MA_INLINE float ma_sinf(float x) { return (float)ma_sind((float)x); } static MA_INLINE double ma_cosd(double x) { return ma_sind((MA_PI_D*0.5) - x); } static MA_INLINE float ma_cosf(float x) { return (float)ma_cosd((float)x); } static MA_INLINE double ma_log10d(double x) { return ma_logd(x) * 0.43429448190325182765; } static MA_INLINE float ma_powf(float x, float y) { return (float)ma_powd((double)x, (double)y); } static MA_INLINE float ma_log10f(float x) { return (float)ma_log10d((double)x); } static MA_INLINE double ma_degrees_to_radians(double degrees) { return degrees * 0.01745329252; } static MA_INLINE double ma_radians_to_degrees(double radians) { return radians * 57.295779512896; } static MA_INLINE float ma_degrees_to_radians_f(float degrees) { return degrees * 0.01745329252f; } static MA_INLINE float ma_radians_to_degrees_f(float radians) { return radians * 57.295779512896f; } /* Return Values: 0: Success 22: EINVAL 34: ERANGE Not using symbolic constants for errors because I want to avoid #including errno.h */ MA_API int ma_strcpy_s(char* dst, size_t dstSizeInBytes, const char* src) { size_t i; if (dst == 0) { return 22; } if (dstSizeInBytes == 0) { return 34; } if (src == 0) { dst[0] = '\0'; return 22; } for (i = 0; i < dstSizeInBytes && src[i] != '\0'; ++i) { dst[i] = src[i]; } if (i < dstSizeInBytes) { dst[i] = '\0'; return 0; } dst[0] = '\0'; return 34; } MA_API int ma_wcscpy_s(wchar_t* dst, size_t dstCap, const wchar_t* src) { size_t i; if (dst == 0) { return 22; } if (dstCap == 0) { return 34; } if (src == 0) { dst[0] = '\0'; return 22; } for (i = 0; i < dstCap && src[i] != '\0'; ++i) { dst[i] = src[i]; } if (i < dstCap) { dst[i] = '\0'; return 0; } dst[0] = '\0'; return 34; } MA_API int ma_strncpy_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count) { size_t maxcount; size_t i; if (dst == 0) { return 22; } if (dstSizeInBytes == 0) { return 34; } if (src == 0) { dst[0] = '\0'; return 22; } maxcount = count; if (count == ((size_t)-1) || count >= dstSizeInBytes) { /* -1 = _TRUNCATE */ maxcount = dstSizeInBytes - 1; } for (i = 0; i < maxcount && src[i] != '\0'; ++i) { dst[i] = src[i]; } if (src[i] == '\0' || i == count || count == ((size_t)-1)) { dst[i] = '\0'; return 0; } dst[0] = '\0'; return 34; } MA_API int ma_strcat_s(char* dst, size_t dstSizeInBytes, const char* src) { char* dstorig; if (dst == 0) { return 22; } if (dstSizeInBytes == 0) { return 34; } if (src == 0) { dst[0] = '\0'; return 22; } dstorig = dst; while (dstSizeInBytes > 0 && dst[0] != '\0') { dst += 1; dstSizeInBytes -= 1; } if (dstSizeInBytes == 0) { return 22; /* Unterminated. */ } while (dstSizeInBytes > 0 && src[0] != '\0') { *dst++ = *src++; dstSizeInBytes -= 1; } if (dstSizeInBytes > 0) { dst[0] = '\0'; } else { dstorig[0] = '\0'; return 34; } return 0; } MA_API int ma_strncat_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count) { char* dstorig; if (dst == 0) { return 22; } if (dstSizeInBytes == 0) { return 34; } if (src == 0) { return 22; } dstorig = dst; while (dstSizeInBytes > 0 && dst[0] != '\0') { dst += 1; dstSizeInBytes -= 1; } if (dstSizeInBytes == 0) { return 22; /* Unterminated. */ } if (count == ((size_t)-1)) { /* _TRUNCATE */ count = dstSizeInBytes - 1; } while (dstSizeInBytes > 0 && src[0] != '\0' && count > 0) { *dst++ = *src++; dstSizeInBytes -= 1; count -= 1; } if (dstSizeInBytes > 0) { dst[0] = '\0'; } else { dstorig[0] = '\0'; return 34; } return 0; } MA_API int ma_itoa_s(int value, char* dst, size_t dstSizeInBytes, int radix) { int sign; unsigned int valueU; char* dstEnd; if (dst == NULL || dstSizeInBytes == 0) { return 22; } if (radix < 2 || radix > 36) { dst[0] = '\0'; return 22; } sign = (value < 0 && radix == 10) ? -1 : 1; /* The negative sign is only used when the base is 10. */ if (value < 0) { valueU = -value; } else { valueU = value; } dstEnd = dst; do { int remainder = valueU % radix; if (remainder > 9) { *dstEnd = (char)((remainder - 10) + 'a'); } else { *dstEnd = (char)(remainder + '0'); } dstEnd += 1; dstSizeInBytes -= 1; valueU /= radix; } while (dstSizeInBytes > 0 && valueU > 0); if (dstSizeInBytes == 0) { dst[0] = '\0'; return 22; /* Ran out of room in the output buffer. */ } if (sign < 0) { *dstEnd++ = '-'; dstSizeInBytes -= 1; } if (dstSizeInBytes == 0) { dst[0] = '\0'; return 22; /* Ran out of room in the output buffer. */ } *dstEnd = '\0'; /* At this point the string will be reversed. */ dstEnd -= 1; while (dst < dstEnd) { char temp = *dst; *dst = *dstEnd; *dstEnd = temp; dst += 1; dstEnd -= 1; } return 0; } MA_API int ma_strcmp(const char* str1, const char* str2) { if (str1 == str2) return 0; /* These checks differ from the standard implementation. It's not important, but I prefer it just for sanity. */ if (str1 == NULL) return -1; if (str2 == NULL) return 1; for (;;) { if (str1[0] == '\0') { break; } if (str1[0] != str2[0]) { break; } str1 += 1; str2 += 1; } return ((unsigned char*)str1)[0] - ((unsigned char*)str2)[0]; } MA_API int ma_strappend(char* dst, size_t dstSize, const char* srcA, const char* srcB) { int result; result = ma_strncpy_s(dst, dstSize, srcA, (size_t)-1); if (result != 0) { return result; } result = ma_strncat_s(dst, dstSize, srcB, (size_t)-1); if (result != 0) { return result; } return result; } MA_API char* ma_copy_string(const char* src, const ma_allocation_callbacks* pAllocationCallbacks) { size_t sz; char* dst; if (src == NULL) { return NULL; } sz = strlen(src)+1; dst = (char*)ma_malloc(sz, pAllocationCallbacks); if (dst == NULL) { return NULL; } ma_strcpy_s(dst, sz, src); return dst; } MA_API wchar_t* ma_copy_string_w(const wchar_t* src, const ma_allocation_callbacks* pAllocationCallbacks) { size_t sz = wcslen(src)+1; wchar_t* dst = (wchar_t*)ma_malloc(sz * sizeof(*dst), pAllocationCallbacks); if (dst == NULL) { return NULL; } ma_wcscpy_s(dst, sz, src); return dst; } #include static ma_result ma_result_from_errno(int e) { switch (e) { case 0: return MA_SUCCESS; #ifdef EPERM case EPERM: return MA_INVALID_OPERATION; #endif #ifdef ENOENT case ENOENT: return MA_DOES_NOT_EXIST; #endif #ifdef ESRCH case ESRCH: return MA_DOES_NOT_EXIST; #endif #ifdef EINTR case EINTR: return MA_INTERRUPT; #endif #ifdef EIO case EIO: return MA_IO_ERROR; #endif #ifdef ENXIO case ENXIO: return MA_DOES_NOT_EXIST; #endif #ifdef E2BIG case E2BIG: return MA_INVALID_ARGS; #endif #ifdef ENOEXEC case ENOEXEC: return MA_INVALID_FILE; #endif #ifdef EBADF case EBADF: return MA_INVALID_FILE; #endif #ifdef ECHILD case ECHILD: return MA_ERROR; #endif #ifdef EAGAIN case EAGAIN: return MA_UNAVAILABLE; #endif #ifdef ENOMEM case ENOMEM: return MA_OUT_OF_MEMORY; #endif #ifdef EACCES case EACCES: return MA_ACCESS_DENIED; #endif #ifdef EFAULT case EFAULT: return MA_BAD_ADDRESS; #endif #ifdef ENOTBLK case ENOTBLK: return MA_ERROR; #endif #ifdef EBUSY case EBUSY: return MA_BUSY; #endif #ifdef EEXIST case EEXIST: return MA_ALREADY_EXISTS; #endif #ifdef EXDEV case EXDEV: return MA_ERROR; #endif #ifdef ENODEV case ENODEV: return MA_DOES_NOT_EXIST; #endif #ifdef ENOTDIR case ENOTDIR: return MA_NOT_DIRECTORY; #endif #ifdef EISDIR case EISDIR: return MA_IS_DIRECTORY; #endif #ifdef EINVAL case EINVAL: return MA_INVALID_ARGS; #endif #ifdef ENFILE case ENFILE: return MA_TOO_MANY_OPEN_FILES; #endif #ifdef EMFILE case EMFILE: return MA_TOO_MANY_OPEN_FILES; #endif #ifdef ENOTTY case ENOTTY: return MA_INVALID_OPERATION; #endif #ifdef ETXTBSY case ETXTBSY: return MA_BUSY; #endif #ifdef EFBIG case EFBIG: return MA_TOO_BIG; #endif #ifdef ENOSPC case ENOSPC: return MA_NO_SPACE; #endif #ifdef ESPIPE case ESPIPE: return MA_BAD_SEEK; #endif #ifdef EROFS case EROFS: return MA_ACCESS_DENIED; #endif #ifdef EMLINK case EMLINK: return MA_TOO_MANY_LINKS; #endif #ifdef EPIPE case EPIPE: return MA_BAD_PIPE; #endif #ifdef EDOM case EDOM: return MA_OUT_OF_RANGE; #endif #ifdef ERANGE case ERANGE: return MA_OUT_OF_RANGE; #endif #ifdef EDEADLK case EDEADLK: return MA_DEADLOCK; #endif #ifdef ENAMETOOLONG case ENAMETOOLONG: return MA_PATH_TOO_LONG; #endif #ifdef ENOLCK case ENOLCK: return MA_ERROR; #endif #ifdef ENOSYS case ENOSYS: return MA_NOT_IMPLEMENTED; #endif #ifdef ENOTEMPTY case ENOTEMPTY: return MA_DIRECTORY_NOT_EMPTY; #endif #ifdef ELOOP case ELOOP: return MA_TOO_MANY_LINKS; #endif #ifdef ENOMSG case ENOMSG: return MA_NO_MESSAGE; #endif #ifdef EIDRM case EIDRM: return MA_ERROR; #endif #ifdef ECHRNG case ECHRNG: return MA_ERROR; #endif #ifdef EL2NSYNC case EL2NSYNC: return MA_ERROR; #endif #ifdef EL3HLT case EL3HLT: return MA_ERROR; #endif #ifdef EL3RST case EL3RST: return MA_ERROR; #endif #ifdef ELNRNG case ELNRNG: return MA_OUT_OF_RANGE; #endif #ifdef EUNATCH case EUNATCH: return MA_ERROR; #endif #ifdef ENOCSI case ENOCSI: return MA_ERROR; #endif #ifdef EL2HLT case EL2HLT: return MA_ERROR; #endif #ifdef EBADE case EBADE: return MA_ERROR; #endif #ifdef EBADR case EBADR: return MA_ERROR; #endif #ifdef EXFULL case EXFULL: return MA_ERROR; #endif #ifdef ENOANO case ENOANO: return MA_ERROR; #endif #ifdef EBADRQC case EBADRQC: return MA_ERROR; #endif #ifdef EBADSLT case EBADSLT: return MA_ERROR; #endif #ifdef EBFONT case EBFONT: return MA_INVALID_FILE; #endif #ifdef ENOSTR case ENOSTR: return MA_ERROR; #endif #ifdef ENODATA case ENODATA: return MA_NO_DATA_AVAILABLE; #endif #ifdef ETIME case ETIME: return MA_TIMEOUT; #endif #ifdef ENOSR case ENOSR: return MA_NO_DATA_AVAILABLE; #endif #ifdef ENONET case ENONET: return MA_NO_NETWORK; #endif #ifdef ENOPKG case ENOPKG: return MA_ERROR; #endif #ifdef EREMOTE case EREMOTE: return MA_ERROR; #endif #ifdef ENOLINK case ENOLINK: return MA_ERROR; #endif #ifdef EADV case EADV: return MA_ERROR; #endif #ifdef ESRMNT case ESRMNT: return MA_ERROR; #endif #ifdef ECOMM case ECOMM: return MA_ERROR; #endif #ifdef EPROTO case EPROTO: return MA_ERROR; #endif #ifdef EMULTIHOP case EMULTIHOP: return MA_ERROR; #endif #ifdef EDOTDOT case EDOTDOT: return MA_ERROR; #endif #ifdef EBADMSG case EBADMSG: return MA_BAD_MESSAGE; #endif #ifdef EOVERFLOW case EOVERFLOW: return MA_TOO_BIG; #endif #ifdef ENOTUNIQ case ENOTUNIQ: return MA_NOT_UNIQUE; #endif #ifdef EBADFD case EBADFD: return MA_ERROR; #endif #ifdef EREMCHG case EREMCHG: return MA_ERROR; #endif #ifdef ELIBACC case ELIBACC: return MA_ACCESS_DENIED; #endif #ifdef ELIBBAD case ELIBBAD: return MA_INVALID_FILE; #endif #ifdef ELIBSCN case ELIBSCN: return MA_INVALID_FILE; #endif #ifdef ELIBMAX case ELIBMAX: return MA_ERROR; #endif #ifdef ELIBEXEC case ELIBEXEC: return MA_ERROR; #endif #ifdef EILSEQ case EILSEQ: return MA_INVALID_DATA; #endif #ifdef ERESTART case ERESTART: return MA_ERROR; #endif #ifdef ESTRPIPE case ESTRPIPE: return MA_ERROR; #endif #ifdef EUSERS case EUSERS: return MA_ERROR; #endif #ifdef ENOTSOCK case ENOTSOCK: return MA_NOT_SOCKET; #endif #ifdef EDESTADDRREQ case EDESTADDRREQ: return MA_NO_ADDRESS; #endif #ifdef EMSGSIZE case EMSGSIZE: return MA_TOO_BIG; #endif #ifdef EPROTOTYPE case EPROTOTYPE: return MA_BAD_PROTOCOL; #endif #ifdef ENOPROTOOPT case ENOPROTOOPT: return MA_PROTOCOL_UNAVAILABLE; #endif #ifdef EPROTONOSUPPORT case EPROTONOSUPPORT: return MA_PROTOCOL_NOT_SUPPORTED; #endif #ifdef ESOCKTNOSUPPORT case ESOCKTNOSUPPORT: return MA_SOCKET_NOT_SUPPORTED; #endif #ifdef EOPNOTSUPP case EOPNOTSUPP: return MA_INVALID_OPERATION; #endif #ifdef EPFNOSUPPORT case EPFNOSUPPORT: return MA_PROTOCOL_FAMILY_NOT_SUPPORTED; #endif #ifdef EAFNOSUPPORT case EAFNOSUPPORT: return MA_ADDRESS_FAMILY_NOT_SUPPORTED; #endif #ifdef EADDRINUSE case EADDRINUSE: return MA_ALREADY_IN_USE; #endif #ifdef EADDRNOTAVAIL case EADDRNOTAVAIL: return MA_ERROR; #endif #ifdef ENETDOWN case ENETDOWN: return MA_NO_NETWORK; #endif #ifdef ENETUNREACH case ENETUNREACH: return MA_NO_NETWORK; #endif #ifdef ENETRESET case ENETRESET: return MA_NO_NETWORK; #endif #ifdef ECONNABORTED case ECONNABORTED: return MA_NO_NETWORK; #endif #ifdef ECONNRESET case ECONNRESET: return MA_CONNECTION_RESET; #endif #ifdef ENOBUFS case ENOBUFS: return MA_NO_SPACE; #endif #ifdef EISCONN case EISCONN: return MA_ALREADY_CONNECTED; #endif #ifdef ENOTCONN case ENOTCONN: return MA_NOT_CONNECTED; #endif #ifdef ESHUTDOWN case ESHUTDOWN: return MA_ERROR; #endif #ifdef ETOOMANYREFS case ETOOMANYREFS: return MA_ERROR; #endif #ifdef ETIMEDOUT case ETIMEDOUT: return MA_TIMEOUT; #endif #ifdef ECONNREFUSED case ECONNREFUSED: return MA_CONNECTION_REFUSED; #endif #ifdef EHOSTDOWN case EHOSTDOWN: return MA_NO_HOST; #endif #ifdef EHOSTUNREACH case EHOSTUNREACH: return MA_NO_HOST; #endif #ifdef EALREADY case EALREADY: return MA_IN_PROGRESS; #endif #ifdef EINPROGRESS case EINPROGRESS: return MA_IN_PROGRESS; #endif #ifdef ESTALE case ESTALE: return MA_INVALID_FILE; #endif #ifdef EUCLEAN case EUCLEAN: return MA_ERROR; #endif #ifdef ENOTNAM case ENOTNAM: return MA_ERROR; #endif #ifdef ENAVAIL case ENAVAIL: return MA_ERROR; #endif #ifdef EISNAM case EISNAM: return MA_ERROR; #endif #ifdef EREMOTEIO case EREMOTEIO: return MA_IO_ERROR; #endif #ifdef EDQUOT case EDQUOT: return MA_NO_SPACE; #endif #ifdef ENOMEDIUM case ENOMEDIUM: return MA_DOES_NOT_EXIST; #endif #ifdef EMEDIUMTYPE case EMEDIUMTYPE: return MA_ERROR; #endif #ifdef ECANCELED case ECANCELED: return MA_CANCELLED; #endif #ifdef ENOKEY case ENOKEY: return MA_ERROR; #endif #ifdef EKEYEXPIRED case EKEYEXPIRED: return MA_ERROR; #endif #ifdef EKEYREVOKED case EKEYREVOKED: return MA_ERROR; #endif #ifdef EKEYREJECTED case EKEYREJECTED: return MA_ERROR; #endif #ifdef EOWNERDEAD case EOWNERDEAD: return MA_ERROR; #endif #ifdef ENOTRECOVERABLE case ENOTRECOVERABLE: return MA_ERROR; #endif #ifdef ERFKILL case ERFKILL: return MA_ERROR; #endif #ifdef EHWPOISON case EHWPOISON: return MA_ERROR; #endif default: return MA_ERROR; } } MA_API ma_result ma_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err; #endif if (ppFile != NULL) { *ppFile = NULL; /* Safety. */ } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return MA_INVALID_ARGS; } #if defined(_MSC_VER) && _MSC_VER >= 1400 err = fopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return ma_result_from_errno(err); } #else #if defined(_WIN32) || defined(__APPLE__) *ppFile = fopen(pFilePath, pOpenMode); #else #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) *ppFile = fopen64(pFilePath, pOpenMode); #else *ppFile = fopen(pFilePath, pOpenMode); #endif #endif if (*ppFile == NULL) { ma_result result = ma_result_from_errno(errno); if (result == MA_SUCCESS) { result = MA_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */ } return result; } #endif return MA_SUCCESS; } /* _wfopen() isn't always available in all compilation environments. * Windows only. * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back). * MinGW-64 (both 32- and 64-bit) seems to support it. * MinGW wraps it in !defined(__STRICT_ANSI__). * OpenWatcom wraps it in !defined(_NO_EXT_KEYS). This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs() fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support. */ #if defined(_WIN32) #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) #define MA_HAS_WFOPEN #endif #endif MA_API ma_result ma_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const ma_allocation_callbacks* pAllocationCallbacks) { if (ppFile != NULL) { *ppFile = NULL; /* Safety. */ } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return MA_INVALID_ARGS; } #if defined(MA_HAS_WFOPEN) { /* Use _wfopen() on Windows. */ #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return ma_result_from_errno(err); } #else *ppFile = _wfopen(pFilePath, pOpenMode); if (*ppFile == NULL) { return ma_result_from_errno(errno); } #endif (void)pAllocationCallbacks; } #else /* Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility. */ { mbstate_t mbs; size_t lenMB; const wchar_t* pFilePathTemp = pFilePath; char* pFilePathMB = NULL; char pOpenModeMB[32] = {0}; /* Get the length first. */ MA_ZERO_OBJECT(&mbs); lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); if (lenMB == (size_t)-1) { return ma_result_from_errno(errno); } pFilePathMB = (char*)ma_malloc(lenMB + 1, pAllocationCallbacks); if (pFilePathMB == NULL) { return MA_OUT_OF_MEMORY; } pFilePathTemp = pFilePath; MA_ZERO_OBJECT(&mbs); wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); /* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */ { size_t i = 0; for (;;) { if (pOpenMode[i] == 0) { pOpenModeMB[i] = '\0'; break; } pOpenModeMB[i] = (char)pOpenMode[i]; i += 1; } } *ppFile = fopen(pFilePathMB, pOpenModeMB); ma_free(pFilePathMB, pAllocationCallbacks); } if (*ppFile == NULL) { return MA_ERROR; } #endif return MA_SUCCESS; } static MA_INLINE void ma_copy_memory_64(void* dst, const void* src, ma_uint64 sizeInBytes) { #if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX MA_COPY_MEMORY(dst, src, (size_t)sizeInBytes); #else while (sizeInBytes > 0) { ma_uint64 bytesToCopyNow = sizeInBytes; if (bytesToCopyNow > MA_SIZE_MAX) { bytesToCopyNow = MA_SIZE_MAX; } MA_COPY_MEMORY(dst, src, (size_t)bytesToCopyNow); /* Safe cast to size_t. */ sizeInBytes -= bytesToCopyNow; dst = ( void*)(( ma_uint8*)dst + bytesToCopyNow); src = (const void*)((const ma_uint8*)src + bytesToCopyNow); } #endif } static MA_INLINE void ma_zero_memory_64(void* dst, ma_uint64 sizeInBytes) { #if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX MA_ZERO_MEMORY(dst, (size_t)sizeInBytes); #else while (sizeInBytes > 0) { ma_uint64 bytesToZeroNow = sizeInBytes; if (bytesToZeroNow > MA_SIZE_MAX) { bytesToZeroNow = MA_SIZE_MAX; } MA_ZERO_MEMORY(dst, (size_t)bytesToZeroNow); /* Safe cast to size_t. */ sizeInBytes -= bytesToZeroNow; dst = (void*)((ma_uint8*)dst + bytesToZeroNow); } #endif } /* Thanks to good old Bit Twiddling Hacks for this one: http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 */ static MA_INLINE unsigned int ma_next_power_of_2(unsigned int x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } static MA_INLINE unsigned int ma_prev_power_of_2(unsigned int x) { return ma_next_power_of_2(x) >> 1; } static MA_INLINE unsigned int ma_round_to_power_of_2(unsigned int x) { unsigned int prev = ma_prev_power_of_2(x); unsigned int next = ma_next_power_of_2(x); if ((next - x) > (x - prev)) { return prev; } else { return next; } } static MA_INLINE unsigned int ma_count_set_bits(unsigned int x) { unsigned int count = 0; while (x != 0) { if (x & 1) { count += 1; } x = x >> 1; } return count; } /************************************************************************************************************************************************************** Allocation Callbacks **************************************************************************************************************************************************************/ static void* ma__malloc_default(size_t sz, void* pUserData) { (void)pUserData; return MA_MALLOC(sz); } static void* ma__realloc_default(void* p, size_t sz, void* pUserData) { (void)pUserData; return MA_REALLOC(p, sz); } static void ma__free_default(void* p, void* pUserData) { (void)pUserData; MA_FREE(p); } static ma_allocation_callbacks ma_allocation_callbacks_init_default(void) { ma_allocation_callbacks callbacks; callbacks.pUserData = NULL; callbacks.onMalloc = ma__malloc_default; callbacks.onRealloc = ma__realloc_default; callbacks.onFree = ma__free_default; return callbacks; } static ma_result ma_allocation_callbacks_init_copy(ma_allocation_callbacks* pDst, const ma_allocation_callbacks* pSrc) { if (pDst == NULL) { return MA_INVALID_ARGS; } if (pSrc == NULL) { *pDst = ma_allocation_callbacks_init_default(); } else { if (pSrc->pUserData == NULL && pSrc->onFree == NULL && pSrc->onMalloc == NULL && pSrc->onRealloc == NULL) { *pDst = ma_allocation_callbacks_init_default(); } else { if (pSrc->onFree == NULL || (pSrc->onMalloc == NULL && pSrc->onRealloc == NULL)) { return MA_INVALID_ARGS; /* Invalid allocation callbacks. */ } else { *pDst = *pSrc; } } } return MA_SUCCESS; } /************************************************************************************************************************************************************** Logging **************************************************************************************************************************************************************/ MA_API const char* ma_log_level_to_string(ma_uint32 logLevel) { switch (logLevel) { case MA_LOG_LEVEL_DEBUG: return "DEBUG"; case MA_LOG_LEVEL_INFO: return "INFO"; case MA_LOG_LEVEL_WARNING: return "WARNING"; case MA_LOG_LEVEL_ERROR: return "ERROR"; default: return "ERROR"; } } #if defined(MA_DEBUG_OUTPUT) /* Customize this to use a specific tag in __android_log_print() for debug output messages. */ #ifndef MA_ANDROID_LOG_TAG #define MA_ANDROID_LOG_TAG "miniaudio" #endif void ma_log_callback_debug(void* pUserData, ma_uint32 level, const char* pMessage) { (void)pUserData; /* Special handling for some platforms. */ #if defined(MA_ANDROID) { /* Android. */ __android_log_print(ANDROID_LOG_DEBUG, MA_ANDROID_LOG_TAG, "%s: %s", ma_log_level_to_string(level), pMessage); } #else { /* Everything else. */ printf("%s: %s", ma_log_level_to_string(level), pMessage); } #endif } #endif MA_API ma_log_callback ma_log_callback_init(ma_log_callback_proc onLog, void* pUserData) { ma_log_callback callback; MA_ZERO_OBJECT(&callback); callback.onLog = onLog; callback.pUserData = pUserData; return callback; } MA_API ma_result ma_log_init(const ma_allocation_callbacks* pAllocationCallbacks, ma_log* pLog) { if (pLog == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pLog); ma_allocation_callbacks_init_copy(&pLog->allocationCallbacks, pAllocationCallbacks); /* We need a mutex for thread safety. */ #ifndef MA_NO_THREADING { ma_result result = ma_mutex_init(&pLog->lock); if (result != MA_SUCCESS) { return result; } } #endif /* If we're using debug output, enable it. */ #if defined(MA_DEBUG_OUTPUT) { ma_log_register_callback(pLog, ma_log_callback_init(ma_log_callback_debug, NULL)); /* Doesn't really matter if this fails. */ } #endif return MA_SUCCESS; } MA_API void ma_log_uninit(ma_log* pLog) { if (pLog == NULL) { return; } #ifndef MA_NO_THREADING ma_mutex_uninit(&pLog->lock); #endif } static void ma_log_lock(ma_log* pLog) { #ifndef MA_NO_THREADING ma_mutex_lock(&pLog->lock); #else (void)pLog; #endif } static void ma_log_unlock(ma_log* pLog) { #ifndef MA_NO_THREADING ma_mutex_unlock(&pLog->lock); #else (void)pLog; #endif } MA_API ma_result ma_log_register_callback(ma_log* pLog, ma_log_callback callback) { ma_result result = MA_SUCCESS; if (pLog == NULL || callback.onLog == NULL) { return MA_INVALID_ARGS; } ma_log_lock(pLog); { if (pLog->callbackCount == ma_countof(pLog->callbacks)) { result = MA_OUT_OF_MEMORY; /* Reached the maximum allowed log callbacks. */ } else { pLog->callbacks[pLog->callbackCount] = callback; pLog->callbackCount += 1; } } ma_log_unlock(pLog); return result; } MA_API ma_result ma_log_unregister_callback(ma_log* pLog, ma_log_callback callback) { if (pLog == NULL) { return MA_INVALID_ARGS; } ma_log_lock(pLog); { ma_uint32 iLog; for (iLog = 0; iLog < pLog->callbackCount; ) { if (pLog->callbacks[iLog].onLog == callback.onLog) { /* Found. Move everything down a slot. */ ma_uint32 jLog; for (jLog = iLog; jLog < pLog->callbackCount-1; jLog += 1) { pLog->callbacks[jLog] = pLog->callbacks[jLog + 1]; } pLog->callbackCount -= 1; } else { /* Not found. */ iLog += 1; } } } ma_log_unlock(pLog); return MA_SUCCESS; } MA_API ma_result ma_log_post(ma_log* pLog, ma_uint32 level, const char* pMessage) { if (pLog == NULL || pMessage == NULL) { return MA_INVALID_ARGS; } ma_log_lock(pLog); { ma_uint32 iLog; for (iLog = 0; iLog < pLog->callbackCount; iLog += 1) { if (pLog->callbacks[iLog].onLog) { pLog->callbacks[iLog].onLog(pLog->callbacks[iLog].pUserData, level, pMessage); } } } ma_log_unlock(pLog); return MA_SUCCESS; } /* We need to emulate _vscprintf() for the VC6 build. This can be more efficient, but since it's only VC6, and it's just a logging function, I'm happy to keep this simple. In the VC6 build we can implement this in terms of _vsnprintf(). */ #if defined(_MSC_VER) && _MSC_VER < 1900 static int ma_vscprintf(const ma_allocation_callbacks* pAllocationCallbacks, const char* format, va_list args) { #if _MSC_VER > 1200 return _vscprintf(format, args); #else int result; char* pTempBuffer = NULL; size_t tempBufferCap = 1024; if (format == NULL) { errno = EINVAL; return -1; } for (;;) { char* pNewTempBuffer = (char*)ma_realloc(pTempBuffer, tempBufferCap, pAllocationCallbacks); if (pNewTempBuffer == NULL) { ma_free(pTempBuffer, pAllocationCallbacks); errno = ENOMEM; return -1; /* Out of memory. */ } pTempBuffer = pNewTempBuffer; result = _vsnprintf(pTempBuffer, tempBufferCap, format, args); ma_free(pTempBuffer, NULL); if (result != -1) { break; /* Got it. */ } /* Buffer wasn't big enough. Ideally it'd be nice to use an error code to know the reason for sure, but this is reliable enough. */ tempBufferCap *= 2; } return result; #endif } #endif MA_API ma_result ma_log_postv(ma_log* pLog, ma_uint32 level, const char* pFormat, va_list args) { if (pLog == NULL || pFormat == NULL) { return MA_INVALID_ARGS; } #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || ((!defined(_MSC_VER) || _MSC_VER >= 1900) && !defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) || (defined(__cplusplus) && __cplusplus >= 201103L) { ma_result result; int length; char pFormattedMessageStack[1024]; char* pFormattedMessageHeap = NULL; /* First try formatting into our fixed sized stack allocated buffer. If this is too small we'll fallback to a heap allocation. */ length = vsnprintf(pFormattedMessageStack, sizeof(pFormattedMessageStack), pFormat, args); if (length < 0) { return MA_INVALID_OPERATION; /* An error occured when trying to convert the buffer. */ } if ((size_t)length < sizeof(pFormattedMessageStack)) { /* The string was written to the stack. */ result = ma_log_post(pLog, level, pFormattedMessageStack); } else { /* The stack buffer was too small, try the heap. */ pFormattedMessageHeap = (char*)ma_malloc(length + 1, &pLog->allocationCallbacks); if (pFormattedMessageHeap == NULL) { return MA_OUT_OF_MEMORY; } length = vsnprintf(pFormattedMessageHeap, length + 1, pFormat, args); if (length < 0) { ma_free(pFormattedMessageHeap, &pLog->allocationCallbacks); return MA_INVALID_OPERATION; } result = ma_log_post(pLog, level, pFormattedMessageHeap); ma_free(pFormattedMessageHeap, &pLog->allocationCallbacks); } return result; } #else { /* Without snprintf() we need to first measure the string and then heap allocate it. I'm only aware of Visual Studio having support for this without snprintf(), so we'll need to restrict this branch to Visual Studio. For other compilers we need to just not support formatted logging because I don't want the security risk of overflowing a fixed sized stack allocated buffer. */ #if defined(_MSC_VER) && _MSC_VER >= 1200 /* 1200 = VC6 */ { ma_result result; int formattedLen; char* pFormattedMessage = NULL; va_list args2; #if _MSC_VER >= 1800 { va_copy(args2, args); } #else { args2 = args; } #endif formattedLen = ma_vscprintf(&pLog->allocationCallbacks, pFormat, args2); va_end(args2); if (formattedLen <= 0) { return MA_INVALID_OPERATION; } pFormattedMessage = (char*)ma_malloc(formattedLen + 1, &pLog->allocationCallbacks); if (pFormattedMessage == NULL) { return MA_OUT_OF_MEMORY; } /* We'll get errors on newer versions of Visual Studio if we try to use vsprintf(). */ #if _MSC_VER >= 1400 /* 1400 = Visual Studio 2005 */ { vsprintf_s(pFormattedMessage, formattedLen + 1, pFormat, args); } #else { vsprintf(pFormattedMessage, pFormat, args); } #endif result = ma_log_post(pLog, level, pFormattedMessage); ma_free(pFormattedMessage, &pLog->allocationCallbacks); return result; } #else { /* Can't do anything because we don't have a safe way of to emulate vsnprintf() without a manual solution. */ (void)level; (void)args; return MA_INVALID_OPERATION; } #endif } #endif } MA_API ma_result ma_log_postf(ma_log* pLog, ma_uint32 level, const char* pFormat, ...) { ma_result result; va_list args; if (pLog == NULL || pFormat == NULL) { return MA_INVALID_ARGS; } va_start(args, pFormat); { result = ma_log_postv(pLog, level, pFormat, args); } va_end(args); return result; } static MA_INLINE ma_uint8 ma_clip_u8(ma_int32 x) { return (ma_uint8)(ma_clamp(x, -128, 127) + 128); } static MA_INLINE ma_int16 ma_clip_s16(ma_int32 x) { return (ma_int16)ma_clamp(x, -32768, 32767); } static MA_INLINE ma_int64 ma_clip_s24(ma_int64 x) { return (ma_int64)ma_clamp(x, -8388608, 8388607); } static MA_INLINE ma_int32 ma_clip_s32(ma_int64 x) { /* This dance is to silence warnings with -std=c89. A good compiler should be able to optimize this away. */ ma_int64 clipMin; ma_int64 clipMax; clipMin = -((ma_int64)2147483647 + 1); clipMax = (ma_int64)2147483647; return (ma_int32)ma_clamp(x, clipMin, clipMax); } static MA_INLINE float ma_clip_f32(float x) { if (x < -1) return -1; if (x > +1) return +1; return x; } static MA_INLINE float ma_mix_f32(float x, float y, float a) { return x*(1-a) + y*a; } static MA_INLINE float ma_mix_f32_fast(float x, float y, float a) { float r0 = (y - x); float r1 = r0*a; return x + r1; /*return x + (y - x)*a;*/ } #if defined(MA_SUPPORT_SSE2) static MA_INLINE __m128 ma_mix_f32_fast__sse2(__m128 x, __m128 y, __m128 a) { return _mm_add_ps(x, _mm_mul_ps(_mm_sub_ps(y, x), a)); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE __m256 ma_mix_f32_fast__avx2(__m256 x, __m256 y, __m256 a) { return _mm256_add_ps(x, _mm256_mul_ps(_mm256_sub_ps(y, x), a)); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE float32x4_t ma_mix_f32_fast__neon(float32x4_t x, float32x4_t y, float32x4_t a) { return vaddq_f32(x, vmulq_f32(vsubq_f32(y, x), a)); } #endif static MA_INLINE double ma_mix_f64(double x, double y, double a) { return x*(1-a) + y*a; } static MA_INLINE double ma_mix_f64_fast(double x, double y, double a) { return x + (y - x)*a; } static MA_INLINE float ma_scale_to_range_f32(float x, float lo, float hi) { return lo + x*(hi-lo); } /* Greatest common factor using Euclid's algorithm iteratively. */ static MA_INLINE ma_uint32 ma_gcf_u32(ma_uint32 a, ma_uint32 b) { for (;;) { if (b == 0) { break; } else { ma_uint32 t = a; a = b; b = t % a; } } return a; } static ma_uint32 ma_ffs_32(ma_uint32 x) { ma_uint32 i; /* Just a naive implementation just to get things working for now. Will optimize this later. */ for (i = 0; i < 32; i += 1) { if ((x & (1 << i)) != 0) { return i; } } return i; } static MA_INLINE ma_int16 ma_float_to_fixed_16(float x) { return (ma_int16)(x * (1 << 8)); } /* Random Number Generation miniaudio uses the LCG random number generation algorithm. This is good enough for audio. Note that miniaudio's global LCG implementation uses global state which is _not_ thread-local. When this is called across multiple threads, results will be unpredictable. However, it won't crash and results will still be random enough for miniaudio's purposes. */ #ifndef MA_DEFAULT_LCG_SEED #define MA_DEFAULT_LCG_SEED 4321 #endif #define MA_LCG_M 2147483647 #define MA_LCG_A 48271 #define MA_LCG_C 0 static ma_lcg g_maLCG = {MA_DEFAULT_LCG_SEED}; /* Non-zero initial seed. Use ma_seed() to use an explicit seed. */ static MA_INLINE void ma_lcg_seed(ma_lcg* pLCG, ma_int32 seed) { MA_ASSERT(pLCG != NULL); pLCG->state = seed; } static MA_INLINE ma_int32 ma_lcg_rand_s32(ma_lcg* pLCG) { pLCG->state = (MA_LCG_A * pLCG->state + MA_LCG_C) % MA_LCG_M; return pLCG->state; } static MA_INLINE ma_uint32 ma_lcg_rand_u32(ma_lcg* pLCG) { return (ma_uint32)ma_lcg_rand_s32(pLCG); } static MA_INLINE ma_int16 ma_lcg_rand_s16(ma_lcg* pLCG) { return (ma_int16)(ma_lcg_rand_s32(pLCG) & 0xFFFF); } static MA_INLINE double ma_lcg_rand_f64(ma_lcg* pLCG) { return ma_lcg_rand_s32(pLCG) / (double)0x7FFFFFFF; } static MA_INLINE float ma_lcg_rand_f32(ma_lcg* pLCG) { return (float)ma_lcg_rand_f64(pLCG); } static MA_INLINE float ma_lcg_rand_range_f32(ma_lcg* pLCG, float lo, float hi) { return ma_scale_to_range_f32(ma_lcg_rand_f32(pLCG), lo, hi); } static MA_INLINE ma_int32 ma_lcg_rand_range_s32(ma_lcg* pLCG, ma_int32 lo, ma_int32 hi) { if (lo == hi) { return lo; } return lo + ma_lcg_rand_u32(pLCG) / (0xFFFFFFFF / (hi - lo + 1) + 1); } static MA_INLINE void ma_seed(ma_int32 seed) { ma_lcg_seed(&g_maLCG, seed); } static MA_INLINE ma_int32 ma_rand_s32(void) { return ma_lcg_rand_s32(&g_maLCG); } static MA_INLINE ma_uint32 ma_rand_u32(void) { return ma_lcg_rand_u32(&g_maLCG); } static MA_INLINE double ma_rand_f64(void) { return ma_lcg_rand_f64(&g_maLCG); } static MA_INLINE float ma_rand_f32(void) { return ma_lcg_rand_f32(&g_maLCG); } static MA_INLINE float ma_rand_range_f32(float lo, float hi) { return ma_lcg_rand_range_f32(&g_maLCG, lo, hi); } static MA_INLINE ma_int32 ma_rand_range_s32(ma_int32 lo, ma_int32 hi) { return ma_lcg_rand_range_s32(&g_maLCG, lo, hi); } static MA_INLINE float ma_dither_f32_rectangle(float ditherMin, float ditherMax) { return ma_rand_range_f32(ditherMin, ditherMax); } static MA_INLINE float ma_dither_f32_triangle(float ditherMin, float ditherMax) { float a = ma_rand_range_f32(ditherMin, 0); float b = ma_rand_range_f32(0, ditherMax); return a + b; } static MA_INLINE float ma_dither_f32(ma_dither_mode ditherMode, float ditherMin, float ditherMax) { if (ditherMode == ma_dither_mode_rectangle) { return ma_dither_f32_rectangle(ditherMin, ditherMax); } if (ditherMode == ma_dither_mode_triangle) { return ma_dither_f32_triangle(ditherMin, ditherMax); } return 0; } static MA_INLINE ma_int32 ma_dither_s32(ma_dither_mode ditherMode, ma_int32 ditherMin, ma_int32 ditherMax) { if (ditherMode == ma_dither_mode_rectangle) { ma_int32 a = ma_rand_range_s32(ditherMin, ditherMax); return a; } if (ditherMode == ma_dither_mode_triangle) { ma_int32 a = ma_rand_range_s32(ditherMin, 0); ma_int32 b = ma_rand_range_s32(0, ditherMax); return a + b; } return 0; } /************************************************************************************************************************************************************** Atomics **************************************************************************************************************************************************************/ /* c89atomic.h begin */ #ifndef c89atomic_h #define c89atomic_h #if defined(__cplusplus) extern "C" { #endif typedef signed char c89atomic_int8; typedef unsigned char c89atomic_uint8; typedef signed short c89atomic_int16; typedef unsigned short c89atomic_uint16; typedef signed int c89atomic_int32; typedef unsigned int c89atomic_uint32; #if defined(_MSC_VER) && !defined(__clang__) typedef signed __int64 c89atomic_int64; typedef unsigned __int64 c89atomic_uint64; #else #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wlong-long" #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc++11-long-long" #endif #endif typedef signed long long c89atomic_int64; typedef unsigned long long c89atomic_uint64; #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif #endif typedef int c89atomic_memory_order; typedef unsigned char c89atomic_bool; #if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT) #ifdef _WIN32 #ifdef _WIN64 #define C89ATOMIC_64BIT #else #define C89ATOMIC_32BIT #endif #endif #endif #if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT) #ifdef __GNUC__ #ifdef __LP64__ #define C89ATOMIC_64BIT #else #define C89ATOMIC_32BIT #endif #endif #endif #if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT) #include #if INTPTR_MAX == INT64_MAX #define C89ATOMIC_64BIT #else #define C89ATOMIC_32BIT #endif #endif #if defined(__x86_64__) || defined(_M_X64) #define C89ATOMIC_X64 #elif defined(__i386) || defined(_M_IX86) #define C89ATOMIC_X86 #elif defined(__arm__) || defined(_M_ARM) || defined(__arm64) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) #define C89ATOMIC_ARM #endif #if defined(_MSC_VER) #define C89ATOMIC_INLINE __forceinline #elif defined(__GNUC__) #if defined(__STRICT_ANSI__) #define C89ATOMIC_INLINE __inline__ __attribute__((always_inline)) #else #define C89ATOMIC_INLINE inline __attribute__((always_inline)) #endif #elif defined(__WATCOMC__) || defined(__DMC__) #define C89ATOMIC_INLINE __inline #else #define C89ATOMIC_INLINE #endif #define C89ATOMIC_HAS_8 #define C89ATOMIC_HAS_16 #define C89ATOMIC_HAS_32 #define C89ATOMIC_HAS_64 #if (defined(_MSC_VER) ) || defined(__WATCOMC__) || defined(__DMC__) #define c89atomic_memory_order_relaxed 0 #define c89atomic_memory_order_consume 1 #define c89atomic_memory_order_acquire 2 #define c89atomic_memory_order_release 3 #define c89atomic_memory_order_acq_rel 4 #define c89atomic_memory_order_seq_cst 5 #if _MSC_VER < 1600 && defined(C89ATOMIC_X86) #define C89ATOMIC_MSVC_USE_INLINED_ASSEMBLY #endif #if _MSC_VER < 1600 #undef C89ATOMIC_HAS_8 #undef C89ATOMIC_HAS_16 #endif #if !defined(C89ATOMIC_MSVC_USE_INLINED_ASSEMBLY) #include #endif #if defined(C89ATOMIC_MSVC_USE_INLINED_ASSEMBLY) #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_compare_and_swap_8(volatile c89atomic_uint8* dst, c89atomic_uint8 expected, c89atomic_uint8 desired) { c89atomic_uint8 result = 0; __asm { mov ecx, dst mov al, expected mov dl, desired lock cmpxchg [ecx], dl mov result, al } return result; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_compare_and_swap_16(volatile c89atomic_uint16* dst, c89atomic_uint16 expected, c89atomic_uint16 desired) { c89atomic_uint16 result = 0; __asm { mov ecx, dst mov ax, expected mov dx, desired lock cmpxchg [ecx], dx mov result, ax } return result; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_compare_and_swap_32(volatile c89atomic_uint32* dst, c89atomic_uint32 expected, c89atomic_uint32 desired) { c89atomic_uint32 result = 0; __asm { mov ecx, dst mov eax, expected mov edx, desired lock cmpxchg [ecx], edx mov result, eax } return result; } #endif #if defined(C89ATOMIC_HAS_64) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_compare_and_swap_64(volatile c89atomic_uint64* dst, c89atomic_uint64 expected, c89atomic_uint64 desired) { c89atomic_uint32 resultEAX = 0; c89atomic_uint32 resultEDX = 0; __asm { mov esi, dst mov eax, dword ptr expected mov edx, dword ptr expected + 4 mov ebx, dword ptr desired mov ecx, dword ptr desired + 4 lock cmpxchg8b qword ptr [esi] mov resultEAX, eax mov resultEDX, edx } return ((c89atomic_uint64)resultEDX << 32) | resultEAX; } #endif #else #if defined(C89ATOMIC_HAS_8) #define c89atomic_compare_and_swap_8( dst, expected, desired) (c89atomic_uint8 )_InterlockedCompareExchange8((volatile char*)dst, (char)desired, (char)expected) #endif #if defined(C89ATOMIC_HAS_16) #define c89atomic_compare_and_swap_16(dst, expected, desired) (c89atomic_uint16)_InterlockedCompareExchange16((volatile short*)dst, (short)desired, (short)expected) #endif #if defined(C89ATOMIC_HAS_32) #define c89atomic_compare_and_swap_32(dst, expected, desired) (c89atomic_uint32)_InterlockedCompareExchange((volatile long*)dst, (long)desired, (long)expected) #endif #if defined(C89ATOMIC_HAS_64) #define c89atomic_compare_and_swap_64(dst, expected, desired) (c89atomic_uint64)_InterlockedCompareExchange64((volatile c89atomic_int64*)dst, (c89atomic_int64)desired, (c89atomic_int64)expected) #endif #endif #if defined(C89ATOMIC_MSVC_USE_INLINED_ASSEMBLY) #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 result = 0; (void)order; __asm { mov ecx, dst mov al, src lock xchg [ecx], al mov result, al } return result; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 result = 0; (void)order; __asm { mov ecx, dst mov ax, src lock xchg [ecx], ax mov result, ax } return result; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 result = 0; (void)order; __asm { mov ecx, dst mov eax, src lock xchg [ecx], eax mov result, eax } return result; } #endif #else #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint8)_InterlockedExchange8((volatile char*)dst, (char)src); } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint16)_InterlockedExchange16((volatile short*)dst, (short)src); } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint32)_InterlockedExchange((volatile long*)dst, (long)src); } #endif #if defined(C89ATOMIC_HAS_64) && defined(C89ATOMIC_64BIT) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint64)_InterlockedExchange64((volatile long long*)dst, (long long)src); } #else #endif #endif #if defined(C89ATOMIC_HAS_64) && !defined(C89ATOMIC_64BIT) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; do { oldValue = *dst; } while (c89atomic_compare_and_swap_64(dst, oldValue, src) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_MSVC_USE_INLINED_ASSEMBLY) #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 result = 0; (void)order; __asm { mov ecx, dst mov al, src lock xadd [ecx], al mov result, al } return result; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 result = 0; (void)order; __asm { mov ecx, dst mov ax, src lock xadd [ecx], ax mov result, ax } return result; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 result = 0; (void)order; __asm { mov ecx, dst mov eax, src lock xadd [ecx], eax mov result, eax } return result; } #endif #else #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint8)_InterlockedExchangeAdd8((volatile char*)dst, (char)src); } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint16)_InterlockedExchangeAdd16((volatile short*)dst, (short)src); } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint32)_InterlockedExchangeAdd((volatile long*)dst, (long)src); } #endif #if defined(C89ATOMIC_HAS_64) && defined(C89ATOMIC_64BIT) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return (c89atomic_uint64)_InterlockedExchangeAdd64((volatile long long*)dst, (long long)src); } #else #endif #endif #if defined(C89ATOMIC_HAS_64) && !defined(C89ATOMIC_64BIT) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue + src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_MSVC_USE_INLINED_ASSEMBLY) static C89ATOMIC_INLINE void __stdcall c89atomic_thread_fence(c89atomic_memory_order order) { (void)order; __asm { lock add [esp], 0 } } #else #if defined(C89ATOMIC_X64) #define c89atomic_thread_fence(order) __faststorefence(), (void)order #else static C89ATOMIC_INLINE void c89atomic_thread_fence(c89atomic_memory_order order) { volatile c89atomic_uint32 barrier = 0; c89atomic_fetch_add_explicit_32(&barrier, 0, order); } #endif #endif #define c89atomic_compiler_fence() c89atomic_thread_fence(c89atomic_memory_order_seq_cst) #define c89atomic_signal_fence(order) c89atomic_thread_fence(order) #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile const c89atomic_uint8* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_8((volatile c89atomic_uint8*)ptr, 0, 0); } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile const c89atomic_uint16* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_16((volatile c89atomic_uint16*)ptr, 0, 0); } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile const c89atomic_uint32* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_32((volatile c89atomic_uint32*)ptr, 0, 0); } #endif #if defined(C89ATOMIC_HAS_64) static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile const c89atomic_uint64* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_64((volatile c89atomic_uint64*)ptr, 0, 0); } #endif #if defined(C89ATOMIC_HAS_8) #define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order) #endif #if defined(C89ATOMIC_HAS_16) #define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order) #endif #if defined(C89ATOMIC_HAS_32) #define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order) #endif #if defined(C89ATOMIC_HAS_64) #define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order) #endif #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue - src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue - src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue - src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_64) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue - src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue & src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue & src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue & src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_64) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue & src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue ^ src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue ^ src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue ^ src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_64) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue ^ src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_8) static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue | src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_16) static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue | src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_32) static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue | src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_64) static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue | src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #if defined(C89ATOMIC_HAS_8) #define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order) #endif #if defined(C89ATOMIC_HAS_16) #define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order) #endif #if defined(C89ATOMIC_HAS_32) #define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order) #endif #if defined(C89ATOMIC_HAS_64) #define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order) #endif #if defined(C89ATOMIC_HAS_8) #define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order) #endif #if defined(C89ATOMIC_HAS_16) #define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order) #endif #if defined(C89ATOMIC_HAS_32) #define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order) #endif #if defined(C89ATOMIC_HAS_64) #define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order) #endif #if defined(C89ATOMIC_HAS_8) typedef c89atomic_uint8 c89atomic_flag; #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_bool)c89atomic_test_and_set_explicit_8(ptr, order) #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order) #define c89atoimc_flag_load_explicit(ptr, order) c89atomic_load_explicit_8(ptr, order) #else typedef c89atomic_uint32 c89atomic_flag; #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_bool)c89atomic_test_and_set_explicit_32(ptr, order) #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_32(ptr, order) #define c89atoimc_flag_load_explicit(ptr, order) c89atomic_load_explicit_32(ptr, order) #endif #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) #define C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE #define C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE #define c89atomic_memory_order_relaxed __ATOMIC_RELAXED #define c89atomic_memory_order_consume __ATOMIC_CONSUME #define c89atomic_memory_order_acquire __ATOMIC_ACQUIRE #define c89atomic_memory_order_release __ATOMIC_RELEASE #define c89atomic_memory_order_acq_rel __ATOMIC_ACQ_REL #define c89atomic_memory_order_seq_cst __ATOMIC_SEQ_CST #define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory") #define c89atomic_thread_fence(order) __atomic_thread_fence(order) #define c89atomic_signal_fence(order) __atomic_signal_fence(order) #define c89atomic_is_lock_free_8(ptr) __atomic_is_lock_free(1, ptr) #define c89atomic_is_lock_free_16(ptr) __atomic_is_lock_free(2, ptr) #define c89atomic_is_lock_free_32(ptr) __atomic_is_lock_free(4, ptr) #define c89atomic_is_lock_free_64(ptr) __atomic_is_lock_free(8, ptr) #define c89atomic_test_and_set_explicit_8( dst, order) __atomic_exchange_n(dst, 1, order) #define c89atomic_test_and_set_explicit_16(dst, order) __atomic_exchange_n(dst, 1, order) #define c89atomic_test_and_set_explicit_32(dst, order) __atomic_exchange_n(dst, 1, order) #define c89atomic_test_and_set_explicit_64(dst, order) __atomic_exchange_n(dst, 1, order) #define c89atomic_clear_explicit_8( dst, order) __atomic_store_n(dst, 0, order) #define c89atomic_clear_explicit_16(dst, order) __atomic_store_n(dst, 0, order) #define c89atomic_clear_explicit_32(dst, order) __atomic_store_n(dst, 0, order) #define c89atomic_clear_explicit_64(dst, order) __atomic_store_n(dst, 0, order) #define c89atomic_store_explicit_8( dst, src, order) __atomic_store_n(dst, src, order) #define c89atomic_store_explicit_16(dst, src, order) __atomic_store_n(dst, src, order) #define c89atomic_store_explicit_32(dst, src, order) __atomic_store_n(dst, src, order) #define c89atomic_store_explicit_64(dst, src, order) __atomic_store_n(dst, src, order) #define c89atomic_load_explicit_8( dst, order) __atomic_load_n(dst, order) #define c89atomic_load_explicit_16(dst, order) __atomic_load_n(dst, order) #define c89atomic_load_explicit_32(dst, order) __atomic_load_n(dst, order) #define c89atomic_load_explicit_64(dst, order) __atomic_load_n(dst, order) #define c89atomic_exchange_explicit_8( dst, src, order) __atomic_exchange_n(dst, src, order) #define c89atomic_exchange_explicit_16(dst, src, order) __atomic_exchange_n(dst, src, order) #define c89atomic_exchange_explicit_32(dst, src, order) __atomic_exchange_n(dst, src, order) #define c89atomic_exchange_explicit_64(dst, src, order) __atomic_exchange_n(dst, src, order) #define c89atomic_compare_exchange_strong_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) #define c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) #define c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) #define c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder) #define c89atomic_fetch_add_explicit_8( dst, src, order) __atomic_fetch_add(dst, src, order) #define c89atomic_fetch_add_explicit_16(dst, src, order) __atomic_fetch_add(dst, src, order) #define c89atomic_fetch_add_explicit_32(dst, src, order) __atomic_fetch_add(dst, src, order) #define c89atomic_fetch_add_explicit_64(dst, src, order) __atomic_fetch_add(dst, src, order) #define c89atomic_fetch_sub_explicit_8( dst, src, order) __atomic_fetch_sub(dst, src, order) #define c89atomic_fetch_sub_explicit_16(dst, src, order) __atomic_fetch_sub(dst, src, order) #define c89atomic_fetch_sub_explicit_32(dst, src, order) __atomic_fetch_sub(dst, src, order) #define c89atomic_fetch_sub_explicit_64(dst, src, order) __atomic_fetch_sub(dst, src, order) #define c89atomic_fetch_or_explicit_8( dst, src, order) __atomic_fetch_or(dst, src, order) #define c89atomic_fetch_or_explicit_16(dst, src, order) __atomic_fetch_or(dst, src, order) #define c89atomic_fetch_or_explicit_32(dst, src, order) __atomic_fetch_or(dst, src, order) #define c89atomic_fetch_or_explicit_64(dst, src, order) __atomic_fetch_or(dst, src, order) #define c89atomic_fetch_xor_explicit_8( dst, src, order) __atomic_fetch_xor(dst, src, order) #define c89atomic_fetch_xor_explicit_16(dst, src, order) __atomic_fetch_xor(dst, src, order) #define c89atomic_fetch_xor_explicit_32(dst, src, order) __atomic_fetch_xor(dst, src, order) #define c89atomic_fetch_xor_explicit_64(dst, src, order) __atomic_fetch_xor(dst, src, order) #define c89atomic_fetch_and_explicit_8( dst, src, order) __atomic_fetch_and(dst, src, order) #define c89atomic_fetch_and_explicit_16(dst, src, order) __atomic_fetch_and(dst, src, order) #define c89atomic_fetch_and_explicit_32(dst, src, order) __atomic_fetch_and(dst, src, order) #define c89atomic_fetch_and_explicit_64(dst, src, order) __atomic_fetch_and(dst, src, order) #define c89atomic_compare_and_swap_8 (dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) typedef c89atomic_uint8 c89atomic_flag; #define c89atomic_flag_test_and_set_explicit(dst, order) (c89atomic_bool)__atomic_test_and_set(dst, order) #define c89atomic_flag_clear_explicit(dst, order) __atomic_clear(dst, order) #define c89atoimc_flag_load_explicit(ptr, order) c89atomic_load_explicit_8(ptr, order) #else #define c89atomic_memory_order_relaxed 1 #define c89atomic_memory_order_consume 2 #define c89atomic_memory_order_acquire 3 #define c89atomic_memory_order_release 4 #define c89atomic_memory_order_acq_rel 5 #define c89atomic_memory_order_seq_cst 6 #define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory") #if defined(__GNUC__) #define c89atomic_thread_fence(order) __sync_synchronize(), (void)order static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { if (order > c89atomic_memory_order_acquire) { __sync_synchronize(); } return __sync_lock_test_and_set(dst, src); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; do { oldValue = *dst; } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; do { oldValue = *dst; } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; do { oldValue = *dst; } while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_add(dst, src); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_add(dst, src); } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_add(dst, src); } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_add(dst, src); } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_sub(dst, src); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_sub(dst, src); } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_sub(dst, src); } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_sub(dst, src); } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_or(dst, src); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_or(dst, src); } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_or(dst, src); } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_or(dst, src); } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_xor(dst, src); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_xor(dst, src); } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_xor(dst, src); } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_xor(dst, src); } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_and(dst, src); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_and(dst, src); } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_and(dst, src); } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { (void)order; return __sync_fetch_and_and(dst, src); } #define c89atomic_compare_and_swap_8( dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired) #else #if defined(C89ATOMIC_X86) #define c89atomic_thread_fence(order) __asm__ __volatile__("lock; addl $0, (%%esp)" ::: "memory", "cc") #elif defined(C89ATOMIC_X64) #define c89atomic_thread_fence(order) __asm__ __volatile__("lock; addq $0, (%%rsp)" ::: "memory", "cc") #else #error Unsupported architecture. Please submit a feature request. #endif static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_compare_and_swap_8(volatile c89atomic_uint8* dst, c89atomic_uint8 expected, c89atomic_uint8 desired) { c89atomic_uint8 result; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_compare_and_swap_16(volatile c89atomic_uint16* dst, c89atomic_uint16 expected, c89atomic_uint16 desired) { c89atomic_uint16 result; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_compare_and_swap_32(volatile c89atomic_uint32* dst, c89atomic_uint32 expected, c89atomic_uint32 desired) { c89atomic_uint32 result; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_compare_and_swap_64(volatile c89atomic_uint64* dst, c89atomic_uint64 expected, c89atomic_uint64 desired) { volatile c89atomic_uint64 result; #if defined(C89ATOMIC_X86) c89atomic_uint32 resultEAX; c89atomic_uint32 resultEDX; __asm__ __volatile__("push %%ebx; xchg %5, %%ebx; lock; cmpxchg8b %0; pop %%ebx" : "+m"(*dst), "=a"(resultEAX), "=d"(resultEDX) : "a"(expected & 0xFFFFFFFF), "d"(expected >> 32), "r"(desired & 0xFFFFFFFF), "c"(desired >> 32) : "cc"); result = ((c89atomic_uint64)resultEDX << 32) | resultEAX; #elif defined(C89ATOMIC_X64) __asm__ __volatile__("lock; cmpxchg %3, %0" : "+m"(*dst), "=a"(result) : "a"(expected), "d"(desired) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 result = 0; (void)order; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 result = 0; (void)order; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 result; (void)order; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 result; (void)order; #if defined(C89ATOMIC_X86) do { result = *dst; } while (c89atomic_compare_and_swap_64(dst, result, src) != result); #elif defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xchg %1, %0" : "+m"(*dst), "=a"(result) : "a"(src)); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 result; (void)order; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 result; (void)order; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 result; (void)order; #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); #else #error Unsupported architecture. Please submit a feature request. #endif return result; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { #if defined(C89ATOMIC_X86) c89atomic_uint64 oldValue; c89atomic_uint64 newValue; (void)order; do { oldValue = *dst; newValue = oldValue + src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); return oldValue; #elif defined(C89ATOMIC_X64) c89atomic_uint64 result; (void)order; __asm__ __volatile__("lock; xadd %1, %0" : "+m"(*dst), "=a"(result) : "a"(src) : "cc"); return result; #endif } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue - src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue - src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue - src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue - src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue & src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue & src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue & src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue & src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue ^ src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue ^ src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue ^ src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue ^ src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order) { c89atomic_uint8 oldValue; c89atomic_uint8 newValue; do { oldValue = *dst; newValue = (c89atomic_uint8)(oldValue | src); } while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order) { c89atomic_uint16 oldValue; c89atomic_uint16 newValue; do { oldValue = *dst; newValue = (c89atomic_uint16)(oldValue | src); } while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order) { c89atomic_uint32 oldValue; c89atomic_uint32 newValue; do { oldValue = *dst; newValue = oldValue | src; } while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order) { c89atomic_uint64 oldValue; c89atomic_uint64 newValue; do { oldValue = *dst; newValue = oldValue | src; } while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue); (void)order; return oldValue; } #endif #define c89atomic_signal_fence(order) c89atomic_thread_fence(order) static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_load_explicit_8(volatile const c89atomic_uint8* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_8((c89atomic_uint8*)ptr, 0, 0); } static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_load_explicit_16(volatile const c89atomic_uint16* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_16((c89atomic_uint16*)ptr, 0, 0); } static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_load_explicit_32(volatile const c89atomic_uint32* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_32((c89atomic_uint32*)ptr, 0, 0); } static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_load_explicit_64(volatile const c89atomic_uint64* ptr, c89atomic_memory_order order) { (void)order; return c89atomic_compare_and_swap_64((c89atomic_uint64*)ptr, 0, 0); } #define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order) #define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order) #define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order) #define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order) #define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order) #define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order) #define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order) #define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order) #define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order) #define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order) #define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order) #define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order) typedef c89atomic_uint8 c89atomic_flag; #define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_bool)c89atomic_test_and_set_explicit_8(ptr, order) #define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order) #define c89atoimc_flag_load_explicit(ptr, order) c89atomic_load_explicit_8(ptr, order) #endif #if !defined(C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE) #if defined(C89ATOMIC_HAS_8) c89atomic_bool c89atomic_compare_exchange_strong_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8* expected, c89atomic_uint8 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { c89atomic_uint8 expectedValue; c89atomic_uint8 result; (void)successOrder; (void)failureOrder; expectedValue = c89atomic_load_explicit_8(expected, c89atomic_memory_order_seq_cst); result = c89atomic_compare_and_swap_8(dst, expectedValue, desired); if (result == expectedValue) { return 1; } else { c89atomic_store_explicit_8(expected, result, failureOrder); return 0; } } #endif #if defined(C89ATOMIC_HAS_16) c89atomic_bool c89atomic_compare_exchange_strong_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16* expected, c89atomic_uint16 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { c89atomic_uint16 expectedValue; c89atomic_uint16 result; (void)successOrder; (void)failureOrder; expectedValue = c89atomic_load_explicit_16(expected, c89atomic_memory_order_seq_cst); result = c89atomic_compare_and_swap_16(dst, expectedValue, desired); if (result == expectedValue) { return 1; } else { c89atomic_store_explicit_16(expected, result, failureOrder); return 0; } } #endif #if defined(C89ATOMIC_HAS_32) c89atomic_bool c89atomic_compare_exchange_strong_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32* expected, c89atomic_uint32 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { c89atomic_uint32 expectedValue; c89atomic_uint32 result; (void)successOrder; (void)failureOrder; expectedValue = c89atomic_load_explicit_32(expected, c89atomic_memory_order_seq_cst); result = c89atomic_compare_and_swap_32(dst, expectedValue, desired); if (result == expectedValue) { return 1; } else { c89atomic_store_explicit_32(expected, result, failureOrder); return 0; } } #endif #if defined(C89ATOMIC_HAS_64) c89atomic_bool c89atomic_compare_exchange_strong_explicit_64(volatile c89atomic_uint64* dst, volatile c89atomic_uint64* expected, c89atomic_uint64 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { c89atomic_uint64 expectedValue; c89atomic_uint64 result; (void)successOrder; (void)failureOrder; expectedValue = c89atomic_load_explicit_64(expected, c89atomic_memory_order_seq_cst); result = c89atomic_compare_and_swap_64(dst, expectedValue, desired); if (result == expectedValue) { return 1; } else { c89atomic_store_explicit_64(expected, result, failureOrder); return 0; } } #endif #define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_8 (dst, expected, desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder) #endif #if !defined(C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE) static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_8(volatile void* ptr) { (void)ptr; return 1; } static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_16(volatile void* ptr) { (void)ptr; return 1; } static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_32(volatile void* ptr) { (void)ptr; return 1; } static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_64(volatile void* ptr) { (void)ptr; #if defined(C89ATOMIC_64BIT) return 1; #else #if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64) return 1; #else return 0; #endif #endif } #endif #if defined(C89ATOMIC_64BIT) static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_ptr(volatile void** ptr) { return c89atomic_is_lock_free_64((volatile c89atomic_uint64*)ptr); } static C89ATOMIC_INLINE void* c89atomic_load_explicit_ptr(volatile void** ptr, c89atomic_memory_order order) { return (void*)c89atomic_load_explicit_64((volatile c89atomic_uint64*)ptr, order); } static C89ATOMIC_INLINE void c89atomic_store_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) { c89atomic_store_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order); } static C89ATOMIC_INLINE void* c89atomic_exchange_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) { return (void*)c89atomic_exchange_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order); } static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_strong_explicit_ptr(volatile void** dst, void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { return c89atomic_compare_exchange_strong_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder); } static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_weak_explicit_ptr(volatile void** dst, void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { return c89atomic_compare_exchange_weak_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder); } static C89ATOMIC_INLINE void* c89atomic_compare_and_swap_ptr(volatile void** dst, void* expected, void* desired) { return (void*)c89atomic_compare_and_swap_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)expected, (c89atomic_uint64)desired); } #elif defined(C89ATOMIC_32BIT) static C89ATOMIC_INLINE c89atomic_bool c89atomic_is_lock_free_ptr(volatile void** ptr) { return c89atomic_is_lock_free_32((volatile c89atomic_uint32*)ptr); } static C89ATOMIC_INLINE void* c89atomic_load_explicit_ptr(volatile void** ptr, c89atomic_memory_order order) { return (void*)c89atomic_load_explicit_32((volatile c89atomic_uint32*)ptr, order); } static C89ATOMIC_INLINE void c89atomic_store_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) { c89atomic_store_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order); } static C89ATOMIC_INLINE void* c89atomic_exchange_explicit_ptr(volatile void** dst, void* src, c89atomic_memory_order order) { return (void*)c89atomic_exchange_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order); } static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_strong_explicit_ptr(volatile void** dst, void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { return c89atomic_compare_exchange_strong_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder); } static C89ATOMIC_INLINE c89atomic_bool c89atomic_compare_exchange_weak_explicit_ptr(volatile void** dst, void** expected, void* desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder) { return c89atomic_compare_exchange_weak_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder); } static C89ATOMIC_INLINE void* c89atomic_compare_and_swap_ptr(volatile void** dst, void* expected, void* desired) { return (void*)c89atomic_compare_and_swap_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)expected, (c89atomic_uint32)desired); } #else #error Unsupported architecture. #endif #define c89atomic_flag_test_and_set(ptr) c89atomic_flag_test_and_set_explicit(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_flag_clear(ptr) c89atomic_flag_clear_explicit(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_store_ptr(dst, src) c89atomic_store_explicit_ptr((volatile void**)dst, (void*)src, c89atomic_memory_order_seq_cst) #define c89atomic_load_ptr(ptr) c89atomic_load_explicit_ptr((volatile void**)ptr, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_ptr(dst, src) c89atomic_exchange_explicit_ptr((volatile void**)dst, (void*)src, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_ptr(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_ptr((volatile void**)dst, (void**)expected, (void*)desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_ptr(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_ptr((volatile void**)dst, (void**)expected, (void*)desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_8( ptr) c89atomic_test_and_set_explicit_8( ptr, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_16(ptr) c89atomic_test_and_set_explicit_16(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_32(ptr) c89atomic_test_and_set_explicit_32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_64(ptr) c89atomic_test_and_set_explicit_64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_8( ptr) c89atomic_clear_explicit_8( ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_16(ptr) c89atomic_clear_explicit_16(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_32(ptr) c89atomic_clear_explicit_32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_64(ptr) c89atomic_clear_explicit_64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_store_8( dst, src) c89atomic_store_explicit_8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_16(dst, src) c89atomic_store_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_32(dst, src) c89atomic_store_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_64(dst, src) c89atomic_store_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_load_8( ptr) c89atomic_load_explicit_8( ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_16(ptr) c89atomic_load_explicit_16(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_32(ptr) c89atomic_load_explicit_32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_64(ptr) c89atomic_load_explicit_64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_8( dst, src) c89atomic_exchange_explicit_8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_16(dst, src) c89atomic_exchange_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_32(dst, src) c89atomic_exchange_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_64(dst, src) c89atomic_exchange_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_8( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_16(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_32(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_64(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_8( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_16( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_32( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_64( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_8( dst, src) c89atomic_fetch_add_explicit_8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_16(dst, src) c89atomic_fetch_add_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_32(dst, src) c89atomic_fetch_add_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_64(dst, src) c89atomic_fetch_add_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_8( dst, src) c89atomic_fetch_sub_explicit_8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_16(dst, src) c89atomic_fetch_sub_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_32(dst, src) c89atomic_fetch_sub_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_64(dst, src) c89atomic_fetch_sub_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_8( dst, src) c89atomic_fetch_or_explicit_8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_16(dst, src) c89atomic_fetch_or_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_32(dst, src) c89atomic_fetch_or_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_64(dst, src) c89atomic_fetch_or_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_8( dst, src) c89atomic_fetch_xor_explicit_8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_16(dst, src) c89atomic_fetch_xor_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_32(dst, src) c89atomic_fetch_xor_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_64(dst, src) c89atomic_fetch_xor_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_8( dst, src) c89atomic_fetch_and_explicit_8 (dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_16(dst, src) c89atomic_fetch_and_explicit_16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_32(dst, src) c89atomic_fetch_and_explicit_32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_64(dst, src) c89atomic_fetch_and_explicit_64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_explicit_i8( ptr, order) (c89atomic_int8 )c89atomic_test_and_set_explicit_8( (c89atomic_uint8* )ptr, order) #define c89atomic_test_and_set_explicit_i16(ptr, order) (c89atomic_int16)c89atomic_test_and_set_explicit_16((c89atomic_uint16*)ptr, order) #define c89atomic_test_and_set_explicit_i32(ptr, order) (c89atomic_int32)c89atomic_test_and_set_explicit_32((c89atomic_uint32*)ptr, order) #define c89atomic_test_and_set_explicit_i64(ptr, order) (c89atomic_int64)c89atomic_test_and_set_explicit_64((c89atomic_uint64*)ptr, order) #define c89atomic_clear_explicit_i8( ptr, order) c89atomic_clear_explicit_8( (c89atomic_uint8* )ptr, order) #define c89atomic_clear_explicit_i16(ptr, order) c89atomic_clear_explicit_16((c89atomic_uint16*)ptr, order) #define c89atomic_clear_explicit_i32(ptr, order) c89atomic_clear_explicit_32((c89atomic_uint32*)ptr, order) #define c89atomic_clear_explicit_i64(ptr, order) c89atomic_clear_explicit_64((c89atomic_uint64*)ptr, order) #define c89atomic_store_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_store_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_store_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_store_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_store_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_store_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_store_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_store_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_load_explicit_i8( ptr, order) (c89atomic_int8 )c89atomic_load_explicit_8( (c89atomic_uint8* )ptr, order) #define c89atomic_load_explicit_i16(ptr, order) (c89atomic_int16)c89atomic_load_explicit_16((c89atomic_uint16*)ptr, order) #define c89atomic_load_explicit_i32(ptr, order) (c89atomic_int32)c89atomic_load_explicit_32((c89atomic_uint32*)ptr, order) #define c89atomic_load_explicit_i64(ptr, order) (c89atomic_int64)c89atomic_load_explicit_64((c89atomic_uint64*)ptr, order) #define c89atomic_exchange_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_exchange_explicit_8 ((c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_exchange_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_exchange_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_exchange_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_exchange_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_exchange_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_exchange_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_compare_exchange_strong_explicit_i8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8* )expected, (c89atomic_uint8 )desired, successOrder, failureOrder) #define c89atomic_compare_exchange_strong_explicit_i16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16*)expected, (c89atomic_uint16)desired, successOrder, failureOrder) #define c89atomic_compare_exchange_strong_explicit_i32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder) #define c89atomic_compare_exchange_strong_explicit_i64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_i8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8* )expected, (c89atomic_uint8 )desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_i16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16*)expected, (c89atomic_uint16)desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_i32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder) #define c89atomic_compare_exchange_weak_explicit_i64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder) #define c89atomic_fetch_add_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_fetch_add_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_fetch_add_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_fetch_add_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_fetch_add_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_fetch_add_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_fetch_add_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_fetch_add_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_fetch_sub_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_fetch_sub_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_fetch_sub_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_fetch_sub_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_fetch_sub_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_fetch_sub_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_fetch_sub_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_fetch_sub_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_fetch_or_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_fetch_or_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_fetch_or_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_fetch_or_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_fetch_or_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_fetch_or_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_fetch_or_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_fetch_or_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_fetch_xor_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_fetch_xor_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_fetch_xor_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_fetch_xor_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_fetch_xor_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_fetch_xor_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_fetch_xor_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_fetch_xor_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_fetch_and_explicit_i8( dst, src, order) (c89atomic_int8 )c89atomic_fetch_and_explicit_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )src, order) #define c89atomic_fetch_and_explicit_i16(dst, src, order) (c89atomic_int16)c89atomic_fetch_and_explicit_16((c89atomic_uint16*)dst, (c89atomic_uint16)src, order) #define c89atomic_fetch_and_explicit_i32(dst, src, order) (c89atomic_int32)c89atomic_fetch_and_explicit_32((c89atomic_uint32*)dst, (c89atomic_uint32)src, order) #define c89atomic_fetch_and_explicit_i64(dst, src, order) (c89atomic_int64)c89atomic_fetch_and_explicit_64((c89atomic_uint64*)dst, (c89atomic_uint64)src, order) #define c89atomic_test_and_set_i8( ptr) c89atomic_test_and_set_explicit_i8( ptr, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_i16(ptr) c89atomic_test_and_set_explicit_i16(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_i32(ptr) c89atomic_test_and_set_explicit_i32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_test_and_set_i64(ptr) c89atomic_test_and_set_explicit_i64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_i8( ptr) c89atomic_clear_explicit_i8( ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_i16(ptr) c89atomic_clear_explicit_i16(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_i32(ptr) c89atomic_clear_explicit_i32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_i64(ptr) c89atomic_clear_explicit_i64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_store_i8( dst, src) c89atomic_store_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_i16(dst, src) c89atomic_store_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_i32(dst, src) c89atomic_store_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_i64(dst, src) c89atomic_store_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_load_i8( ptr) c89atomic_load_explicit_i8( ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_i16(ptr) c89atomic_load_explicit_i16(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_i32(ptr) c89atomic_load_explicit_i32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_i64(ptr) c89atomic_load_explicit_i64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_i8( dst, src) c89atomic_exchange_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_i16(dst, src) c89atomic_exchange_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_i32(dst, src) c89atomic_exchange_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_i64(dst, src) c89atomic_exchange_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_i8( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_i16(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_i32(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_strong_i64(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_i64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_i8( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i8( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_i16(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i16(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_i32(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i32(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_compare_exchange_weak_i64(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_i64(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_i8( dst, src) c89atomic_fetch_add_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_i16(dst, src) c89atomic_fetch_add_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_i32(dst, src) c89atomic_fetch_add_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_add_i64(dst, src) c89atomic_fetch_add_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_i8( dst, src) c89atomic_fetch_sub_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_i16(dst, src) c89atomic_fetch_sub_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_i32(dst, src) c89atomic_fetch_sub_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_sub_i64(dst, src) c89atomic_fetch_sub_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_i8( dst, src) c89atomic_fetch_or_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_i16(dst, src) c89atomic_fetch_or_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_i32(dst, src) c89atomic_fetch_or_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_or_i64(dst, src) c89atomic_fetch_or_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_i8( dst, src) c89atomic_fetch_xor_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_i16(dst, src) c89atomic_fetch_xor_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_i32(dst, src) c89atomic_fetch_xor_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_xor_i64(dst, src) c89atomic_fetch_xor_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_i8( dst, src) c89atomic_fetch_and_explicit_i8( dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_i16(dst, src) c89atomic_fetch_and_explicit_i16(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_i32(dst, src) c89atomic_fetch_and_explicit_i32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_fetch_and_i64(dst, src) c89atomic_fetch_and_explicit_i64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_compare_and_swap_i8( dst, expected, dedsired) (c89atomic_int8 )c89atomic_compare_and_swap_8( (c89atomic_uint8* )dst, (c89atomic_uint8 )expected, (c89atomic_uint8 )dedsired) #define c89atomic_compare_and_swap_i16(dst, expected, dedsired) (c89atomic_int16)c89atomic_compare_and_swap_16((c89atomic_uint16*)dst, (c89atomic_uint16)expected, (c89atomic_uint16)dedsired) #define c89atomic_compare_and_swap_i32(dst, expected, dedsired) (c89atomic_int32)c89atomic_compare_and_swap_32((c89atomic_uint32*)dst, (c89atomic_uint32)expected, (c89atomic_uint32)dedsired) #define c89atomic_compare_and_swap_i64(dst, expected, dedsired) (c89atomic_int64)c89atomic_compare_and_swap_64((c89atomic_uint64*)dst, (c89atomic_uint64)expected, (c89atomic_uint64)dedsired) typedef union { c89atomic_uint32 i; float f; } c89atomic_if32; typedef union { c89atomic_uint64 i; double f; } c89atomic_if64; #define c89atomic_clear_explicit_f32(ptr, order) c89atomic_clear_explicit_32((c89atomic_uint32*)ptr, order) #define c89atomic_clear_explicit_f64(ptr, order) c89atomic_clear_explicit_64((c89atomic_uint64*)ptr, order) static C89ATOMIC_INLINE void c89atomic_store_explicit_f32(volatile float* dst, float src, c89atomic_memory_order order) { c89atomic_if32 x; x.f = src; c89atomic_store_explicit_32((volatile c89atomic_uint32*)dst, x.i, order); } static C89ATOMIC_INLINE void c89atomic_store_explicit_f64(volatile double* dst, double src, c89atomic_memory_order order) { c89atomic_if64 x; x.f = src; c89atomic_store_explicit_64((volatile c89atomic_uint64*)dst, x.i, order); } static C89ATOMIC_INLINE float c89atomic_load_explicit_f32(volatile const float* ptr, c89atomic_memory_order order) { c89atomic_if32 r; r.i = c89atomic_load_explicit_32((volatile const c89atomic_uint32*)ptr, order); return r.f; } static C89ATOMIC_INLINE double c89atomic_load_explicit_f64(volatile const double* ptr, c89atomic_memory_order order) { c89atomic_if64 r; r.i = c89atomic_load_explicit_64((volatile const c89atomic_uint64*)ptr, order); return r.f; } static C89ATOMIC_INLINE float c89atomic_exchange_explicit_f32(volatile float* dst, float src, c89atomic_memory_order order) { c89atomic_if32 r; c89atomic_if32 x; x.f = src; r.i = c89atomic_exchange_explicit_32((volatile c89atomic_uint32*)dst, x.i, order); return r.f; } static C89ATOMIC_INLINE double c89atomic_exchange_explicit_f64(volatile double* dst, double src, c89atomic_memory_order order) { c89atomic_if64 r; c89atomic_if64 x; x.f = src; r.i = c89atomic_exchange_explicit_64((volatile c89atomic_uint64*)dst, x.i, order); return r.f; } #define c89atomic_clear_f32(ptr) (float )c89atomic_clear_explicit_f32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_clear_f64(ptr) (double)c89atomic_clear_explicit_f64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_store_f32(dst, src) c89atomic_store_explicit_f32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_store_f64(dst, src) c89atomic_store_explicit_f64(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_load_f32(ptr) (float )c89atomic_load_explicit_f32(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_load_f64(ptr) (double)c89atomic_load_explicit_f64(ptr, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_f32(dst, src) (float )c89atomic_exchange_explicit_f32(dst, src, c89atomic_memory_order_seq_cst) #define c89atomic_exchange_f64(dst, src) (double)c89atomic_exchange_explicit_f64(dst, src, c89atomic_memory_order_seq_cst) typedef c89atomic_flag c89atomic_spinlock; static C89ATOMIC_INLINE void c89atomic_spinlock_lock(volatile c89atomic_spinlock* pSpinlock) { for (;;) { if (c89atomic_flag_test_and_set_explicit(pSpinlock, c89atomic_memory_order_acquire) == 0) { break; } while (c89atoimc_flag_load_explicit(pSpinlock, c89atomic_memory_order_relaxed) == 1) { } } } static C89ATOMIC_INLINE void c89atomic_spinlock_unlock(volatile c89atomic_spinlock* pSpinlock) { c89atomic_flag_clear_explicit(pSpinlock, c89atomic_memory_order_release); } #if defined(__cplusplus) } #endif #endif /* c89atomic.h end */ MA_API ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_uint32 sampleRateIn, ma_uint64 frameCountIn) { /* This is based on the calculation in ma_linear_resampler_get_expected_output_frame_count(). */ ma_uint64 outputFrameCount; ma_uint64 preliminaryInputFrameCountFromFrac; ma_uint64 preliminaryInputFrameCount; if (sampleRateIn == 0 || sampleRateOut == 0 || frameCountIn == 0) { return 0; } if (sampleRateOut == sampleRateIn) { return frameCountIn; } outputFrameCount = (frameCountIn * sampleRateOut) / sampleRateIn; preliminaryInputFrameCountFromFrac = (outputFrameCount * (sampleRateIn / sampleRateOut)) / sampleRateOut; preliminaryInputFrameCount = (outputFrameCount * (sampleRateIn % sampleRateOut)) + preliminaryInputFrameCountFromFrac; if (preliminaryInputFrameCount <= frameCountIn) { outputFrameCount += 1; } return outputFrameCount; } #ifndef MA_DATA_CONVERTER_STACK_BUFFER_SIZE #define MA_DATA_CONVERTER_STACK_BUFFER_SIZE 4096 #endif #if defined(MA_WIN32) static ma_result ma_result_from_GetLastError(DWORD error) { switch (error) { case ERROR_SUCCESS: return MA_SUCCESS; case ERROR_PATH_NOT_FOUND: return MA_DOES_NOT_EXIST; case ERROR_TOO_MANY_OPEN_FILES: return MA_TOO_MANY_OPEN_FILES; case ERROR_NOT_ENOUGH_MEMORY: return MA_OUT_OF_MEMORY; case ERROR_DISK_FULL: return MA_NO_SPACE; case ERROR_HANDLE_EOF: return MA_AT_END; case ERROR_NEGATIVE_SEEK: return MA_BAD_SEEK; case ERROR_INVALID_PARAMETER: return MA_INVALID_ARGS; case ERROR_ACCESS_DENIED: return MA_ACCESS_DENIED; case ERROR_SEM_TIMEOUT: return MA_TIMEOUT; case ERROR_FILE_NOT_FOUND: return MA_DOES_NOT_EXIST; default: break; } return MA_ERROR; } #endif /* MA_WIN32 */ /******************************************************************************* Threading *******************************************************************************/ static MA_INLINE ma_result ma_spinlock_lock_ex(volatile ma_spinlock* pSpinlock, ma_bool32 yield) { if (pSpinlock == NULL) { return MA_INVALID_ARGS; } for (;;) { if (c89atomic_exchange_explicit_32(pSpinlock, 1, c89atomic_memory_order_acquire) == 0) { break; } while (c89atomic_load_explicit_32(pSpinlock, c89atomic_memory_order_relaxed) == 1) { if (yield) { ma_yield(); } } } return MA_SUCCESS; } MA_API ma_result ma_spinlock_lock(volatile ma_spinlock* pSpinlock) { return ma_spinlock_lock_ex(pSpinlock, MA_TRUE); } MA_API ma_result ma_spinlock_lock_noyield(volatile ma_spinlock* pSpinlock) { return ma_spinlock_lock_ex(pSpinlock, MA_FALSE); } MA_API ma_result ma_spinlock_unlock(volatile ma_spinlock* pSpinlock) { if (pSpinlock == NULL) { return MA_INVALID_ARGS; } c89atomic_store_explicit_32(pSpinlock, 0, c89atomic_memory_order_release); return MA_SUCCESS; } #ifndef MA_NO_THREADING #ifdef MA_WIN32 #define MA_THREADCALL WINAPI typedef unsigned long ma_thread_result; #else #define MA_THREADCALL typedef void* ma_thread_result; #endif typedef ma_thread_result (MA_THREADCALL * ma_thread_entry_proc)(void* pData); #ifdef MA_WIN32 static int ma_thread_priority_to_win32(ma_thread_priority priority) { switch (priority) { case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE; case ma_thread_priority_lowest: return THREAD_PRIORITY_LOWEST; case ma_thread_priority_low: return THREAD_PRIORITY_BELOW_NORMAL; case ma_thread_priority_normal: return THREAD_PRIORITY_NORMAL; case ma_thread_priority_high: return THREAD_PRIORITY_ABOVE_NORMAL; case ma_thread_priority_highest: return THREAD_PRIORITY_HIGHEST; case ma_thread_priority_realtime: return THREAD_PRIORITY_TIME_CRITICAL; default: return THREAD_PRIORITY_NORMAL; } } static ma_result ma_thread_create__win32(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData) { *pThread = CreateThread(NULL, stackSize, entryProc, pData, 0, NULL); if (*pThread == NULL) { return ma_result_from_GetLastError(GetLastError()); } SetThreadPriority((HANDLE)*pThread, ma_thread_priority_to_win32(priority)); return MA_SUCCESS; } static void ma_thread_wait__win32(ma_thread* pThread) { WaitForSingleObject((HANDLE)*pThread, INFINITE); CloseHandle((HANDLE)*pThread); } static ma_result ma_mutex_init__win32(ma_mutex* pMutex) { *pMutex = CreateEventW(NULL, FALSE, TRUE, NULL); if (*pMutex == NULL) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static void ma_mutex_uninit__win32(ma_mutex* pMutex) { CloseHandle((HANDLE)*pMutex); } static void ma_mutex_lock__win32(ma_mutex* pMutex) { WaitForSingleObject((HANDLE)*pMutex, INFINITE); } static void ma_mutex_unlock__win32(ma_mutex* pMutex) { SetEvent((HANDLE)*pMutex); } static ma_result ma_event_init__win32(ma_event* pEvent) { *pEvent = CreateEventW(NULL, FALSE, FALSE, NULL); if (*pEvent == NULL) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static void ma_event_uninit__win32(ma_event* pEvent) { CloseHandle((HANDLE)*pEvent); } static ma_result ma_event_wait__win32(ma_event* pEvent) { DWORD result = WaitForSingleObject((HANDLE)*pEvent, INFINITE); if (result == WAIT_OBJECT_0) { return MA_SUCCESS; } if (result == WAIT_TIMEOUT) { return MA_TIMEOUT; } return ma_result_from_GetLastError(GetLastError()); } static ma_result ma_event_signal__win32(ma_event* pEvent) { BOOL result = SetEvent((HANDLE)*pEvent); if (result == 0) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static ma_result ma_semaphore_init__win32(int initialValue, ma_semaphore* pSemaphore) { *pSemaphore = CreateSemaphoreW(NULL, (LONG)initialValue, LONG_MAX, NULL); if (*pSemaphore == NULL) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore) { CloseHandle((HANDLE)*pSemaphore); } static ma_result ma_semaphore_wait__win32(ma_semaphore* pSemaphore) { DWORD result = WaitForSingleObject((HANDLE)*pSemaphore, INFINITE); if (result == WAIT_OBJECT_0) { return MA_SUCCESS; } if (result == WAIT_TIMEOUT) { return MA_TIMEOUT; } return ma_result_from_GetLastError(GetLastError()); } static ma_result ma_semaphore_release__win32(ma_semaphore* pSemaphore) { BOOL result = ReleaseSemaphore((HANDLE)*pSemaphore, 1, NULL); if (result == 0) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } #endif #ifdef MA_POSIX static ma_result ma_thread_create__posix(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData) { int result; pthread_attr_t* pAttr = NULL; #if !defined(__EMSCRIPTEN__) /* Try setting the thread priority. It's not critical if anything fails here. */ pthread_attr_t attr; if (pthread_attr_init(&attr) == 0) { int scheduler = -1; if (priority == ma_thread_priority_idle) { #ifdef SCHED_IDLE if (pthread_attr_setschedpolicy(&attr, SCHED_IDLE) == 0) { scheduler = SCHED_IDLE; } #endif } else if (priority == ma_thread_priority_realtime) { #ifdef SCHED_FIFO if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) == 0) { scheduler = SCHED_FIFO; } #endif #ifdef MA_LINUX } else { scheduler = sched_getscheduler(0); #endif } if (stackSize > 0) { pthread_attr_setstacksize(&attr, stackSize); } if (scheduler != -1) { int priorityMin = sched_get_priority_min(scheduler); int priorityMax = sched_get_priority_max(scheduler); int priorityStep = (priorityMax - priorityMin) / 7; /* 7 = number of priorities supported by miniaudio. */ struct sched_param sched; if (pthread_attr_getschedparam(&attr, &sched) == 0) { if (priority == ma_thread_priority_idle) { sched.sched_priority = priorityMin; } else if (priority == ma_thread_priority_realtime) { sched.sched_priority = priorityMax; } else { sched.sched_priority += ((int)priority + 5) * priorityStep; /* +5 because the lowest priority is -5. */ if (sched.sched_priority < priorityMin) { sched.sched_priority = priorityMin; } if (sched.sched_priority > priorityMax) { sched.sched_priority = priorityMax; } } if (pthread_attr_setschedparam(&attr, &sched) == 0) { pAttr = &attr; } } } } #else /* It's the emscripten build. We'll have a few unused parameters. */ (void)priority; (void)stackSize; #endif result = pthread_create((pthread_t*)pThread, pAttr, entryProc, pData); /* The thread attributes object is no longer required. */ if (pAttr != NULL) { pthread_attr_destroy(pAttr); } if (result != 0) { return ma_result_from_errno(result); } return MA_SUCCESS; } static void ma_thread_wait__posix(ma_thread* pThread) { pthread_join((pthread_t)*pThread, NULL); } static ma_result ma_mutex_init__posix(ma_mutex* pMutex) { int result = pthread_mutex_init((pthread_mutex_t*)pMutex, NULL); if (result != 0) { return ma_result_from_errno(result); } return MA_SUCCESS; } static void ma_mutex_uninit__posix(ma_mutex* pMutex) { pthread_mutex_destroy((pthread_mutex_t*)pMutex); } static void ma_mutex_lock__posix(ma_mutex* pMutex) { pthread_mutex_lock((pthread_mutex_t*)pMutex); } static void ma_mutex_unlock__posix(ma_mutex* pMutex) { pthread_mutex_unlock((pthread_mutex_t*)pMutex); } static ma_result ma_event_init__posix(ma_event* pEvent) { int result; result = pthread_mutex_init((pthread_mutex_t*)&pEvent->lock, NULL); if (result != 0) { return ma_result_from_errno(result); } result = pthread_cond_init((pthread_cond_t*)&pEvent->cond, NULL); if (result != 0) { pthread_mutex_destroy((pthread_mutex_t*)&pEvent->lock); return ma_result_from_errno(result); } pEvent->value = 0; return MA_SUCCESS; } static void ma_event_uninit__posix(ma_event* pEvent) { pthread_cond_destroy((pthread_cond_t*)&pEvent->cond); pthread_mutex_destroy((pthread_mutex_t*)&pEvent->lock); } static ma_result ma_event_wait__posix(ma_event* pEvent) { pthread_mutex_lock((pthread_mutex_t*)&pEvent->lock); { while (pEvent->value == 0) { pthread_cond_wait((pthread_cond_t*)&pEvent->cond, (pthread_mutex_t*)&pEvent->lock); } pEvent->value = 0; /* Auto-reset. */ } pthread_mutex_unlock((pthread_mutex_t*)&pEvent->lock); return MA_SUCCESS; } static ma_result ma_event_signal__posix(ma_event* pEvent) { pthread_mutex_lock((pthread_mutex_t*)&pEvent->lock); { pEvent->value = 1; pthread_cond_signal((pthread_cond_t*)&pEvent->cond); } pthread_mutex_unlock((pthread_mutex_t*)&pEvent->lock); return MA_SUCCESS; } static ma_result ma_semaphore_init__posix(int initialValue, ma_semaphore* pSemaphore) { int result; if (pSemaphore == NULL) { return MA_INVALID_ARGS; } pSemaphore->value = initialValue; result = pthread_mutex_init((pthread_mutex_t*)&pSemaphore->lock, NULL); if (result != 0) { return ma_result_from_errno(result); /* Failed to create mutex. */ } result = pthread_cond_init((pthread_cond_t*)&pSemaphore->cond, NULL); if (result != 0) { pthread_mutex_destroy((pthread_mutex_t*)&pSemaphore->lock); return ma_result_from_errno(result); /* Failed to create condition variable. */ } return MA_SUCCESS; } static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { return; } pthread_cond_destroy((pthread_cond_t*)&pSemaphore->cond); pthread_mutex_destroy((pthread_mutex_t*)&pSemaphore->lock); } static ma_result ma_semaphore_wait__posix(ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { return MA_INVALID_ARGS; } pthread_mutex_lock((pthread_mutex_t*)&pSemaphore->lock); { /* We need to wait on a condition variable before escaping. We can't return from this function until the semaphore has been signaled. */ while (pSemaphore->value == 0) { pthread_cond_wait((pthread_cond_t*)&pSemaphore->cond, (pthread_mutex_t*)&pSemaphore->lock); } pSemaphore->value -= 1; } pthread_mutex_unlock((pthread_mutex_t*)&pSemaphore->lock); return MA_SUCCESS; } static ma_result ma_semaphore_release__posix(ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { return MA_INVALID_ARGS; } pthread_mutex_lock((pthread_mutex_t*)&pSemaphore->lock); { pSemaphore->value += 1; pthread_cond_signal((pthread_cond_t*)&pSemaphore->cond); } pthread_mutex_unlock((pthread_mutex_t*)&pSemaphore->lock); return MA_SUCCESS; } #endif typedef struct { ma_thread_entry_proc entryProc; void* pData; ma_allocation_callbacks allocationCallbacks; } ma_thread_proxy_data; static ma_thread_result MA_THREADCALL ma_thread_entry_proxy(void* pData) { ma_thread_proxy_data* pProxyData = (ma_thread_proxy_data*)pData; ma_thread_entry_proc entryProc; void* pEntryProcData; ma_thread_result result; #if defined(MA_ON_THREAD_ENTRY) MA_ON_THREAD_ENTRY #endif entryProc = pProxyData->entryProc; pEntryProcData = pProxyData->pData; /* Free the proxy data before getting into the real thread entry proc. */ ma_free(pProxyData, &pProxyData->allocationCallbacks); result = entryProc(pEntryProcData); #if defined(MA_ON_THREAD_EXIT) MA_ON_THREAD_EXIT #endif return result; } static ma_result ma_thread_create(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData, const ma_allocation_callbacks* pAllocationCallbacks) { ma_result result; ma_thread_proxy_data* pProxyData; if (pThread == NULL || entryProc == NULL) { return MA_INVALID_ARGS; } pProxyData = (ma_thread_proxy_data*)ma_malloc(sizeof(*pProxyData), pAllocationCallbacks); /* Will be freed by the proxy entry proc. */ if (pProxyData == NULL) { return MA_OUT_OF_MEMORY; } pProxyData->entryProc = entryProc; pProxyData->pData = pData; ma_allocation_callbacks_init_copy(&pProxyData->allocationCallbacks, pAllocationCallbacks); #ifdef MA_WIN32 result = ma_thread_create__win32(pThread, priority, stackSize, ma_thread_entry_proxy, pProxyData); #endif #ifdef MA_POSIX result = ma_thread_create__posix(pThread, priority, stackSize, ma_thread_entry_proxy, pProxyData); #endif if (result != MA_SUCCESS) { ma_free(pProxyData, pAllocationCallbacks); return result; } return MA_SUCCESS; } static void ma_thread_wait(ma_thread* pThread) { if (pThread == NULL) { return; } #ifdef MA_WIN32 ma_thread_wait__win32(pThread); #endif #ifdef MA_POSIX ma_thread_wait__posix(pThread); #endif } MA_API ma_result ma_mutex_init(ma_mutex* pMutex) { if (pMutex == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_mutex_init__win32(pMutex); #endif #ifdef MA_POSIX return ma_mutex_init__posix(pMutex); #endif } MA_API void ma_mutex_uninit(ma_mutex* pMutex) { if (pMutex == NULL) { return; } #ifdef MA_WIN32 ma_mutex_uninit__win32(pMutex); #endif #ifdef MA_POSIX ma_mutex_uninit__posix(pMutex); #endif } MA_API void ma_mutex_lock(ma_mutex* pMutex) { if (pMutex == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return; } #ifdef MA_WIN32 ma_mutex_lock__win32(pMutex); #endif #ifdef MA_POSIX ma_mutex_lock__posix(pMutex); #endif } MA_API void ma_mutex_unlock(ma_mutex* pMutex) { if (pMutex == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return; } #ifdef MA_WIN32 ma_mutex_unlock__win32(pMutex); #endif #ifdef MA_POSIX ma_mutex_unlock__posix(pMutex); #endif } MA_API ma_result ma_event_init(ma_event* pEvent) { if (pEvent == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_event_init__win32(pEvent); #endif #ifdef MA_POSIX return ma_event_init__posix(pEvent); #endif } #if 0 static ma_result ma_event_alloc_and_init(ma_event** ppEvent, ma_allocation_callbacks* pAllocationCallbacks) { ma_result result; ma_event* pEvent; if (ppEvent == NULL) { return MA_INVALID_ARGS; } *ppEvent = NULL; pEvent = ma_malloc(sizeof(*pEvent), pAllocationCallbacks); if (pEvent == NULL) { return MA_OUT_OF_MEMORY; } result = ma_event_init(pEvent); if (result != MA_SUCCESS) { ma_free(pEvent, pAllocationCallbacks); return result; } *ppEvent = pEvent; return result; } #endif MA_API void ma_event_uninit(ma_event* pEvent) { if (pEvent == NULL) { return; } #ifdef MA_WIN32 ma_event_uninit__win32(pEvent); #endif #ifdef MA_POSIX ma_event_uninit__posix(pEvent); #endif } #if 0 static void ma_event_uninit_and_free(ma_event* pEvent, ma_allocation_callbacks* pAllocationCallbacks) { if (pEvent == NULL) { return; } ma_event_uninit(pEvent); ma_free(pEvent, pAllocationCallbacks); } #endif MA_API ma_result ma_event_wait(ma_event* pEvent) { if (pEvent == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_event_wait__win32(pEvent); #endif #ifdef MA_POSIX return ma_event_wait__posix(pEvent); #endif } MA_API ma_result ma_event_signal(ma_event* pEvent) { if (pEvent == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_event_signal__win32(pEvent); #endif #ifdef MA_POSIX return ma_event_signal__posix(pEvent); #endif } MA_API ma_result ma_semaphore_init(int initialValue, ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_semaphore_init__win32(initialValue, pSemaphore); #endif #ifdef MA_POSIX return ma_semaphore_init__posix(initialValue, pSemaphore); #endif } MA_API void ma_semaphore_uninit(ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return; } #ifdef MA_WIN32 ma_semaphore_uninit__win32(pSemaphore); #endif #ifdef MA_POSIX ma_semaphore_uninit__posix(pSemaphore); #endif } MA_API ma_result ma_semaphore_wait(ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_semaphore_wait__win32(pSemaphore); #endif #ifdef MA_POSIX return ma_semaphore_wait__posix(pSemaphore); #endif } MA_API ma_result ma_semaphore_release(ma_semaphore* pSemaphore) { if (pSemaphore == NULL) { MA_ASSERT(MA_FALSE); /* Fire an assert so the caller is aware of this bug. */ return MA_INVALID_ARGS; } #ifdef MA_WIN32 return ma_semaphore_release__win32(pSemaphore); #endif #ifdef MA_POSIX return ma_semaphore_release__posix(pSemaphore); #endif } #else /* MA_NO_THREADING is set which means threading is disabled. Threading is required by some API families. If any of these are enabled we need to throw an error. */ #ifndef MA_NO_DEVICE_IO #error "MA_NO_THREADING cannot be used without MA_NO_DEVICE_IO"; #endif #endif /* MA_NO_THREADING */ #define MA_FENCE_COUNTER_MAX 0x7FFFFFFF MA_API ma_result ma_fence_init(ma_fence* pFence) { if (pFence == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFence); pFence->counter = 0; #ifndef MA_NO_THREADING { ma_result result; result = ma_event_init(&pFence->e); if (result != MA_SUCCESS) { return result; } } #endif return MA_SUCCESS; } MA_API void ma_fence_uninit(ma_fence* pFence) { if (pFence == NULL) { return; } #ifndef MA_NO_THREADING { ma_event_uninit(&pFence->e); } #endif MA_ZERO_OBJECT(pFence); } MA_API ma_result ma_fence_acquire(ma_fence* pFence) { if (pFence == NULL) { return MA_INVALID_ARGS; } for (;;) { ma_uint32 oldCounter = c89atomic_load_32(&pFence->counter); ma_uint32 newCounter = oldCounter + 1; /* Make sure we're not about to exceed our maximum value. */ if (newCounter > MA_FENCE_COUNTER_MAX) { MA_ASSERT(MA_FALSE); return MA_OUT_OF_RANGE; } if (c89atomic_compare_exchange_weak_32(&pFence->counter, &oldCounter, newCounter)) { return MA_SUCCESS; } else { if (oldCounter == MA_FENCE_COUNTER_MAX) { MA_ASSERT(MA_FALSE); return MA_OUT_OF_RANGE; /* The other thread took the last available slot. Abort. */ } } } /* Should never get here. */ /*return MA_SUCCESS;*/ } MA_API ma_result ma_fence_release(ma_fence* pFence) { if (pFence == NULL) { return MA_INVALID_ARGS; } for (;;) { ma_uint32 oldCounter = c89atomic_load_32(&pFence->counter); ma_uint32 newCounter = oldCounter - 1; if (oldCounter == 0) { MA_ASSERT(MA_FALSE); return MA_INVALID_OPERATION; /* Acquire/release mismatch. */ } if (c89atomic_compare_exchange_weak_32(&pFence->counter, &oldCounter, newCounter)) { #ifndef MA_NO_THREADING { if (newCounter == 0) { ma_event_signal(&pFence->e); /* <-- ma_fence_wait() will be waiting on this. */ } } #endif return MA_SUCCESS; } else { if (oldCounter == 0) { MA_ASSERT(MA_FALSE); return MA_INVALID_OPERATION; /* Another thread has taken the 0 slot. Acquire/release mismatch. */ } } } /* Should never get here. */ /*return MA_SUCCESS;*/ } MA_API ma_result ma_fence_wait(ma_fence* pFence) { if (pFence == NULL) { return MA_INVALID_ARGS; } for (;;) { ma_uint32 counter; counter = c89atomic_load_32(&pFence->counter); if (counter == 0) { /* Counter has hit zero. By the time we get here some other thread may have acquired the fence again, but that is where the caller needs to take care with how they se the fence. */ return MA_SUCCESS; } /* Getting here means the counter is > 0. We'll need to wait for something to happen. */ #ifndef MA_NO_THREADING { ma_result result; result = ma_event_wait(&pFence->e); if (result != MA_SUCCESS) { return result; } } #endif } /* Should never get here. */ /*return MA_INVALID_OPERATION;*/ } MA_API ma_result ma_async_notification_signal(ma_async_notification* pNotification) { ma_async_notification_callbacks* pNotificationCallbacks = (ma_async_notification_callbacks*)pNotification; if (pNotification == NULL) { return MA_INVALID_ARGS; } if (pNotificationCallbacks->onSignal == NULL) { return MA_NOT_IMPLEMENTED; } pNotificationCallbacks->onSignal(pNotification); return MA_INVALID_ARGS; } static void ma_async_notification_poll__on_signal(ma_async_notification* pNotification) { ((ma_async_notification_poll*)pNotification)->signalled = MA_TRUE; } MA_API ma_result ma_async_notification_poll_init(ma_async_notification_poll* pNotificationPoll) { if (pNotificationPoll == NULL) { return MA_INVALID_ARGS; } pNotificationPoll->cb.onSignal = ma_async_notification_poll__on_signal; pNotificationPoll->signalled = MA_FALSE; return MA_SUCCESS; } MA_API ma_bool32 ma_async_notification_poll_is_signalled(const ma_async_notification_poll* pNotificationPoll) { if (pNotificationPoll == NULL) { return MA_FALSE; } return pNotificationPoll->signalled; } static void ma_async_notification_event__on_signal(ma_async_notification* pNotification) { ma_async_notification_event_signal((ma_async_notification_event*)pNotification); } MA_API ma_result ma_async_notification_event_init(ma_async_notification_event* pNotificationEvent) { if (pNotificationEvent == NULL) { return MA_INVALID_ARGS; } pNotificationEvent->cb.onSignal = ma_async_notification_event__on_signal; #ifndef MA_NO_THREADING { ma_result result; result = ma_event_init(&pNotificationEvent->e); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } #else { return MA_NOT_IMPLEMENTED; /* Threading is disabled. */ } #endif } MA_API ma_result ma_async_notification_event_uninit(ma_async_notification_event* pNotificationEvent) { if (pNotificationEvent == NULL) { return MA_INVALID_ARGS; } #ifndef MA_NO_THREADING { ma_event_uninit(&pNotificationEvent->e); return MA_SUCCESS; } #else { return MA_NOT_IMPLEMENTED; /* Threading is disabled. */ } #endif } MA_API ma_result ma_async_notification_event_wait(ma_async_notification_event* pNotificationEvent) { if (pNotificationEvent == NULL) { return MA_INVALID_ARGS; } #ifndef MA_NO_THREADING { return ma_event_wait(&pNotificationEvent->e); } #else { return MA_NOT_IMPLEMENTED; /* Threading is disabled. */ } #endif } MA_API ma_result ma_async_notification_event_signal(ma_async_notification_event* pNotificationEvent) { if (pNotificationEvent == NULL) { return MA_INVALID_ARGS; } #ifndef MA_NO_THREADING { return ma_event_signal(&pNotificationEvent->e); } #else { return MA_NOT_IMPLEMENTED; /* Threading is disabled. */ } #endif } /************************************************************************************************************************************************************ Job Queue ************************************************************************************************************************************************************/ MA_API ma_slot_allocator_config ma_slot_allocator_config_init(ma_uint32 capacity) { ma_slot_allocator_config config; MA_ZERO_OBJECT(&config); config.capacity = capacity; return config; } static MA_INLINE ma_uint32 ma_slot_allocator_calculate_group_capacity(ma_uint32 slotCapacity) { ma_uint32 cap = slotCapacity / 32; if ((slotCapacity % 32) != 0) { cap += 1; } return cap; } static MA_INLINE ma_uint32 ma_slot_allocator_group_capacity(const ma_slot_allocator* pAllocator) { return ma_slot_allocator_calculate_group_capacity(pAllocator->capacity); } typedef struct { size_t sizeInBytes; size_t groupsOffset; size_t slotsOffset; } ma_slot_allocator_heap_layout; static ma_result ma_slot_allocator_get_heap_layout(const ma_slot_allocator_config* pConfig, ma_slot_allocator_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->capacity == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Groups. */ pHeapLayout->groupsOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(ma_slot_allocator_calculate_group_capacity(pConfig->capacity) * sizeof(ma_slot_allocator_group)); /* Slots. */ pHeapLayout->slotsOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(pConfig->capacity * sizeof(ma_uint32)); return MA_SUCCESS; } MA_API ma_result ma_slot_allocator_get_heap_size(const ma_slot_allocator_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_slot_allocator_heap_layout layout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_slot_allocator_get_heap_layout(pConfig, &layout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = layout.sizeInBytes; return result; } MA_API ma_result ma_slot_allocator_init_preallocated(const ma_slot_allocator_config* pConfig, void* pHeap, ma_slot_allocator* pAllocator) { ma_result result; ma_slot_allocator_heap_layout heapLayout; if (pAllocator == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pAllocator); if (pHeap == NULL) { return MA_INVALID_ARGS; } result = ma_slot_allocator_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pAllocator->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pAllocator->pGroups = (ma_slot_allocator_group*)ma_offset_ptr(pHeap, heapLayout.groupsOffset); pAllocator->pSlots = (ma_uint32*)ma_offset_ptr(pHeap, heapLayout.slotsOffset); pAllocator->capacity = pConfig->capacity; return MA_SUCCESS; } MA_API ma_result ma_slot_allocator_init(const ma_slot_allocator_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_slot_allocator* pAllocator) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_slot_allocator_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the size of the heap allocation. */ } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_slot_allocator_init_preallocated(pConfig, pHeap, pAllocator); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pAllocator->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_slot_allocator_uninit(ma_slot_allocator* pAllocator, const ma_allocation_callbacks* pAllocationCallbacks) { if (pAllocator == NULL) { return; } if (pAllocator->_ownsHeap) { ma_free(pAllocator->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_slot_allocator_alloc(ma_slot_allocator* pAllocator, ma_uint64* pSlot) { ma_uint32 iAttempt; const ma_uint32 maxAttempts = 2; /* The number of iterations to perform until returning MA_OUT_OF_MEMORY if no slots can be found. */ if (pAllocator == NULL || pSlot == NULL) { return MA_INVALID_ARGS; } for (iAttempt = 0; iAttempt < maxAttempts; iAttempt += 1) { /* We need to acquire a suitable bitfield first. This is a bitfield that's got an available slot within it. */ ma_uint32 iGroup; for (iGroup = 0; iGroup < ma_slot_allocator_group_capacity(pAllocator); iGroup += 1) { /* CAS */ for (;;) { ma_uint32 oldBitfield; ma_uint32 newBitfield; ma_uint32 bitOffset; oldBitfield = c89atomic_load_32(&pAllocator->pGroups[iGroup].bitfield); /* <-- This copy must happen. The compiler must not optimize this away. */ /* Fast check to see if anything is available. */ if (oldBitfield == 0xFFFFFFFF) { break; /* No available bits in this bitfield. */ } bitOffset = ma_ffs_32(~oldBitfield); MA_ASSERT(bitOffset < 32); newBitfield = oldBitfield | (1 << bitOffset); if (c89atomic_compare_and_swap_32(&pAllocator->pGroups[iGroup].bitfield, oldBitfield, newBitfield) == oldBitfield) { ma_uint32 slotIndex; /* Increment the counter as soon as possible to have other threads report out-of-memory sooner than later. */ c89atomic_fetch_add_32(&pAllocator->count, 1); /* The slot index is required for constructing the output value. */ slotIndex = (iGroup << 5) + bitOffset; /* iGroup << 5 = iGroup * 32 */ if (slotIndex >= pAllocator->capacity) { return MA_OUT_OF_MEMORY; } /* Increment the reference count before constructing the output value. */ pAllocator->pSlots[slotIndex] += 1; /* Construct the output value. */ *pSlot = (((ma_uint64)pAllocator->pSlots[slotIndex] << 32) | slotIndex); return MA_SUCCESS; } } } /* We weren't able to find a slot. If it's because we've reached our capacity we need to return MA_OUT_OF_MEMORY. Otherwise we need to do another iteration and try again. */ if (pAllocator->count < pAllocator->capacity) { ma_yield(); } else { return MA_OUT_OF_MEMORY; } } /* We couldn't find a slot within the maximum number of attempts. */ return MA_OUT_OF_MEMORY; } MA_API ma_result ma_slot_allocator_free(ma_slot_allocator* pAllocator, ma_uint64 slot) { ma_uint32 iGroup; ma_uint32 iBit; if (pAllocator == NULL) { return MA_INVALID_ARGS; } iGroup = (ma_uint32)((slot & 0xFFFFFFFF) >> 5); /* slot / 32 */ iBit = (ma_uint32)((slot & 0xFFFFFFFF) & 31); /* slot % 32 */ if (iGroup >= ma_slot_allocator_group_capacity(pAllocator)) { return MA_INVALID_ARGS; } MA_ASSERT(iBit < 32); /* This must be true due to the logic we used to actually calculate it. */ while (c89atomic_load_32(&pAllocator->count) > 0) { /* CAS */ ma_uint32 oldBitfield; ma_uint32 newBitfield; oldBitfield = c89atomic_load_32(&pAllocator->pGroups[iGroup].bitfield); /* <-- This copy must happen. The compiler must not optimize this away. */ newBitfield = oldBitfield & ~(1 << iBit); /* Debugging for checking for double-frees. */ #if defined(MA_DEBUG_OUTPUT) { if ((oldBitfield & (1 << iBit)) == 0) { MA_ASSERT(MA_FALSE); /* Double free detected.*/ } } #endif if (c89atomic_compare_and_swap_32(&pAllocator->pGroups[iGroup].bitfield, oldBitfield, newBitfield) == oldBitfield) { c89atomic_fetch_sub_32(&pAllocator->count, 1); return MA_SUCCESS; } } /* Getting here means there are no allocations available for freeing. */ return MA_INVALID_OPERATION; } #define MA_JOB_ID_NONE ~((ma_uint64)0) #define MA_JOB_SLOT_NONE (ma_uint16)(~0) static MA_INLINE ma_uint32 ma_job_extract_refcount(ma_uint64 toc) { return (ma_uint32)(toc >> 32); } static MA_INLINE ma_uint16 ma_job_extract_slot(ma_uint64 toc) { return (ma_uint16)(toc & 0x0000FFFF); } static MA_INLINE ma_uint16 ma_job_extract_code(ma_uint64 toc) { return (ma_uint16)((toc & 0xFFFF0000) >> 16); } static MA_INLINE ma_uint64 ma_job_toc_to_allocation(ma_uint64 toc) { return ((ma_uint64)ma_job_extract_refcount(toc) << 32) | (ma_uint64)ma_job_extract_slot(toc); } static MA_INLINE ma_uint64 ma_job_set_refcount(ma_uint64 toc, ma_uint32 refcount) { /* Clear the reference count first. */ toc = toc & ~((ma_uint64)0xFFFFFFFF << 32); toc = toc | ((ma_uint64)refcount << 32); return toc; } MA_API ma_job ma_job_init(ma_uint16 code) { ma_job job; MA_ZERO_OBJECT(&job); job.toc.breakup.code = code; job.toc.breakup.slot = MA_JOB_SLOT_NONE; /* Temp value. Will be allocated when posted to a queue. */ job.next = MA_JOB_ID_NONE; return job; } static ma_result ma_job_process__noop(ma_job* pJob); static ma_result ma_job_process__quit(ma_job* pJob); static ma_result ma_job_process__custom(ma_job* pJob); static ma_result ma_job_process__resource_manager__load_data_buffer_node(ma_job* pJob); static ma_result ma_job_process__resource_manager__free_data_buffer_node(ma_job* pJob); static ma_result ma_job_process__resource_manager__page_data_buffer_node(ma_job* pJob); static ma_result ma_job_process__resource_manager__load_data_buffer(ma_job* pJob); static ma_result ma_job_process__resource_manager__free_data_buffer(ma_job* pJob); static ma_result ma_job_process__resource_manager__load_data_stream(ma_job* pJob); static ma_result ma_job_process__resource_manager__free_data_stream(ma_job* pJob); static ma_result ma_job_process__resource_manager__page_data_stream(ma_job* pJob); static ma_result ma_job_process__resource_manager__seek_data_stream(ma_job* pJob); #if !defined(MA_NO_DEVICE_IO) static ma_result ma_job_process__device__aaudio_reroute(ma_job* pJob); #endif static ma_job_proc g_jobVTable[MA_JOB_TYPE_COUNT] = { /* Miscellaneous. */ ma_job_process__quit, /* MA_JOB_TYPE_QUIT */ ma_job_process__custom, /* MA_JOB_TYPE_CUSTOM */ /* Resource Manager. */ ma_job_process__resource_manager__load_data_buffer_node, /* MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER_NODE */ ma_job_process__resource_manager__free_data_buffer_node, /* MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER_NODE */ ma_job_process__resource_manager__page_data_buffer_node, /* MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE */ ma_job_process__resource_manager__load_data_buffer, /* MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER */ ma_job_process__resource_manager__free_data_buffer, /* MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER */ ma_job_process__resource_manager__load_data_stream, /* MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_STREAM */ ma_job_process__resource_manager__free_data_stream, /* MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_STREAM */ ma_job_process__resource_manager__page_data_stream, /* MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_STREAM */ ma_job_process__resource_manager__seek_data_stream, /* MA_JOB_TYPE_RESOURCE_MANAGER_SEEK_DATA_STREAM */ /* Device. */ #if !defined(MA_NO_DEVICE_IO) ma_job_process__device__aaudio_reroute /*MA_JOB_TYPE_DEVICE_AAUDIO_REROUTE*/ #endif }; MA_API ma_result ma_job_process(ma_job* pJob) { if (pJob == NULL) { return MA_INVALID_ARGS; } if (pJob->toc.breakup.code > MA_JOB_TYPE_COUNT) { return MA_INVALID_OPERATION; } return g_jobVTable[pJob->toc.breakup.code](pJob); } static ma_result ma_job_process__noop(ma_job* pJob) { MA_ASSERT(pJob != NULL); /* No-op. */ (void)pJob; return MA_SUCCESS; } static ma_result ma_job_process__quit(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__custom(ma_job* pJob) { MA_ASSERT(pJob != NULL); /* No-op if there's no callback. */ if (pJob->data.custom.proc == NULL) { return MA_SUCCESS; } return pJob->data.custom.proc(pJob); } MA_API ma_job_queue_config ma_job_queue_config_init(ma_uint32 flags, ma_uint32 capacity) { ma_job_queue_config config; config.flags = flags; config.capacity = capacity; return config; } typedef struct { size_t sizeInBytes; size_t allocatorOffset; size_t jobsOffset; } ma_job_queue_heap_layout; static ma_result ma_job_queue_get_heap_layout(const ma_job_queue_config* pConfig, ma_job_queue_heap_layout* pHeapLayout) { ma_result result; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->capacity == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Allocator. */ { ma_slot_allocator_config allocatorConfig; size_t allocatorHeapSizeInBytes; allocatorConfig = ma_slot_allocator_config_init(pConfig->capacity); result = ma_slot_allocator_get_heap_size(&allocatorConfig, &allocatorHeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->allocatorOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += allocatorHeapSizeInBytes; } /* Jobs. */ pHeapLayout->jobsOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(pConfig->capacity * sizeof(ma_job)); return MA_SUCCESS; } MA_API ma_result ma_job_queue_get_heap_size(const ma_job_queue_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_job_queue_heap_layout layout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_job_queue_get_heap_layout(pConfig, &layout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = layout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_job_queue_init_preallocated(const ma_job_queue_config* pConfig, void* pHeap, ma_job_queue* pQueue) { ma_result result; ma_job_queue_heap_layout heapLayout; ma_slot_allocator_config allocatorConfig; if (pQueue == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pQueue); result = ma_job_queue_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pQueue->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pQueue->flags = pConfig->flags; pQueue->capacity = pConfig->capacity; pQueue->pJobs = (ma_job*)ma_offset_ptr(pHeap, heapLayout.jobsOffset); allocatorConfig = ma_slot_allocator_config_init(pConfig->capacity); result = ma_slot_allocator_init_preallocated(&allocatorConfig, ma_offset_ptr(pHeap, heapLayout.allocatorOffset), &pQueue->allocator); if (result != MA_SUCCESS) { return result; } /* We need a semaphore if we're running in non-blocking mode. If threading is disabled we need to return an error. */ if ((pQueue->flags & MA_JOB_QUEUE_FLAG_NON_BLOCKING) == 0) { #ifndef MA_NO_THREADING { ma_semaphore_init(0, &pQueue->sem); } #else { /* Threading is disabled and we've requested non-blocking mode. */ return MA_INVALID_OPERATION; } #endif } /* Our queue needs to be initialized with a free standing node. This should always be slot 0. Required for the lock free algorithm. The first job in the queue is just a dummy item for giving us the first item in the list which is stored in the "next" member. */ ma_slot_allocator_alloc(&pQueue->allocator, &pQueue->head); /* Will never fail. */ pQueue->pJobs[ma_job_extract_slot(pQueue->head)].next = MA_JOB_ID_NONE; pQueue->tail = pQueue->head; return MA_SUCCESS; } MA_API ma_result ma_job_queue_init(const ma_job_queue_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_job_queue* pQueue) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_job_queue_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_job_queue_init_preallocated(pConfig, pHeap, pQueue); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pQueue->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_job_queue_uninit(ma_job_queue* pQueue, const ma_allocation_callbacks* pAllocationCallbacks) { if (pQueue == NULL) { return; } /* All we need to do is uninitialize the semaphore. */ if ((pQueue->flags & MA_JOB_QUEUE_FLAG_NON_BLOCKING) == 0) { #ifndef MA_NO_THREADING { ma_semaphore_uninit(&pQueue->sem); } #else { MA_ASSERT(MA_FALSE); /* Should never get here. Should have been checked at initialization time. */ } #endif } ma_slot_allocator_uninit(&pQueue->allocator, pAllocationCallbacks); if (pQueue->_ownsHeap) { ma_free(pQueue->_pHeap, pAllocationCallbacks); } } static ma_bool32 ma_job_queue_cas(volatile ma_uint64* dst, ma_uint64 expected, ma_uint64 desired) { /* The new counter is taken from the expected value. */ return c89atomic_compare_and_swap_64(dst, expected, ma_job_set_refcount(desired, ma_job_extract_refcount(expected) + 1)) == expected; } MA_API ma_result ma_job_queue_post(ma_job_queue* pQueue, const ma_job* pJob) { /* Lock free queue implementation based on the paper by Michael and Scott: Nonblocking Algorithms and Preemption-Safe Locking on Multiprogrammed Shared Memory Multiprocessors */ ma_result result; ma_uint64 slot; ma_uint64 tail; ma_uint64 next; if (pQueue == NULL || pJob == NULL) { return MA_INVALID_ARGS; } /* We need a new slot. */ result = ma_slot_allocator_alloc(&pQueue->allocator, &slot); if (result != MA_SUCCESS) { return result; /* Probably ran out of slots. If so, MA_OUT_OF_MEMORY will be returned. */ } /* At this point we should have a slot to place the job. */ MA_ASSERT(ma_job_extract_slot(slot) < pQueue->capacity); /* We need to put the job into memory before we do anything. */ pQueue->pJobs[ma_job_extract_slot(slot)] = *pJob; pQueue->pJobs[ma_job_extract_slot(slot)].toc.allocation = slot; /* This will overwrite the job code. */ pQueue->pJobs[ma_job_extract_slot(slot)].toc.breakup.code = pJob->toc.breakup.code; /* The job code needs to be applied again because the line above overwrote it. */ pQueue->pJobs[ma_job_extract_slot(slot)].next = MA_JOB_ID_NONE; /* Reset for safety. */ #ifndef MA_USE_EXPERIMENTAL_LOCK_FREE_JOB_QUEUE ma_spinlock_lock(&pQueue->lock); #endif { /* The job is stored in memory so now we need to add it to our linked list. We only ever add items to the end of the list. */ for (;;) { tail = c89atomic_load_64(&pQueue->tail); next = c89atomic_load_64(&pQueue->pJobs[ma_job_extract_slot(tail)].next); if (ma_job_toc_to_allocation(tail) == ma_job_toc_to_allocation(c89atomic_load_64(&pQueue->tail))) { if (ma_job_extract_slot(next) == 0xFFFF) { if (ma_job_queue_cas(&pQueue->pJobs[ma_job_extract_slot(tail)].next, next, slot)) { break; } } else { ma_job_queue_cas(&pQueue->tail, tail, ma_job_extract_slot(next)); } } } ma_job_queue_cas(&pQueue->tail, tail, slot); } #ifndef MA_USE_EXPERIMENTAL_LOCK_FREE_JOB_QUEUE ma_spinlock_unlock(&pQueue->lock); #endif /* Signal the semaphore as the last step if we're using synchronous mode. */ if ((pQueue->flags & MA_JOB_QUEUE_FLAG_NON_BLOCKING) == 0) { #ifndef MA_NO_THREADING { ma_semaphore_release(&pQueue->sem); } #else { MA_ASSERT(MA_FALSE); /* Should never get here. Should have been checked at initialization time. */ } #endif } return MA_SUCCESS; } MA_API ma_result ma_job_queue_next(ma_job_queue* pQueue, ma_job* pJob) { ma_uint64 head; ma_uint64 tail; ma_uint64 next; if (pQueue == NULL || pJob == NULL) { return MA_INVALID_ARGS; } /* If we're running in synchronous mode we'll need to wait on a semaphore. */ if ((pQueue->flags & MA_JOB_QUEUE_FLAG_NON_BLOCKING) == 0) { #ifndef MA_NO_THREADING { ma_semaphore_wait(&pQueue->sem); } #else { MA_ASSERT(MA_FALSE); /* Should never get here. Should have been checked at initialization time. */ } #endif } #ifndef MA_USE_EXPERIMENTAL_LOCK_FREE_JOB_QUEUE ma_spinlock_lock(&pQueue->lock); #endif { /* BUG: In lock-free mode, multiple threads can be in this section of code. The "head" variable in the loop below is stored. One thread can fall through to the freeing of this item while another is still using "head" for the retrieval of the "next" variable. The slot allocator might need to make use of some reference counting to ensure it's only truely freed when there are no more references to the item. This must be fixed before removing these locks. */ /* Now we need to remove the root item from the list. */ for (;;) { head = c89atomic_load_64(&pQueue->head); tail = c89atomic_load_64(&pQueue->tail); next = c89atomic_load_64(&pQueue->pJobs[ma_job_extract_slot(head)].next); if (ma_job_toc_to_allocation(head) == ma_job_toc_to_allocation(c89atomic_load_64(&pQueue->head))) { if (ma_job_extract_slot(head) == ma_job_extract_slot(tail)) { if (ma_job_extract_slot(next) == 0xFFFF) { #ifndef MA_USE_EXPERIMENTAL_LOCK_FREE_JOB_QUEUE ma_spinlock_unlock(&pQueue->lock); #endif return MA_NO_DATA_AVAILABLE; } ma_job_queue_cas(&pQueue->tail, tail, ma_job_extract_slot(next)); } else { *pJob = pQueue->pJobs[ma_job_extract_slot(next)]; if (ma_job_queue_cas(&pQueue->head, head, ma_job_extract_slot(next))) { break; } } } } } #ifndef MA_USE_EXPERIMENTAL_LOCK_FREE_JOB_QUEUE ma_spinlock_unlock(&pQueue->lock); #endif ma_slot_allocator_free(&pQueue->allocator, head); /* If it's a quit job make sure it's put back on the queue to ensure other threads have an opportunity to detect it and terminate naturally. We could instead just leave it on the queue, but that would involve fiddling with the lock-free code above and I want to keep that as simple as possible. */ if (pJob->toc.breakup.code == MA_JOB_TYPE_QUIT) { ma_job_queue_post(pQueue, pJob); return MA_CANCELLED; /* Return a cancelled status just in case the thread is checking return codes and not properly checking for a quit job. */ } return MA_SUCCESS; } /************************************************************************************************************************************************************ ************************************************************************************************************************************************************* DEVICE I/O ========== ************************************************************************************************************************************************************* ************************************************************************************************************************************************************/ #ifndef MA_NO_DEVICE_IO #ifdef MA_WIN32 #include #include #include #endif #if defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200) #include /* For mach_absolute_time() */ #endif #ifdef MA_ANDROID #include #endif #ifdef MA_POSIX #include #include #include #endif /* Unfortunately using runtime linking for pthreads causes problems. This has occurred for me when testing on FreeBSD. When using runtime linking, deadlocks can occur (for me it happens when loading data from fread()). It turns out that doing compile-time linking fixes this. I'm not sure why this happens, but the safest way I can think of to fix this is to simply disable runtime linking by default. To enable runtime linking, #define this before the implementation of this file. I am not officially supporting this, but I'm leaving it here in case it's useful for somebody, somewhere. */ /*#define MA_USE_RUNTIME_LINKING_FOR_PTHREAD*/ /* Disable run-time linking on certain backends. */ #ifndef MA_NO_RUNTIME_LINKING #if defined(MA_EMSCRIPTEN) #define MA_NO_RUNTIME_LINKING #endif #endif MA_API void ma_device_info_add_native_data_format(ma_device_info* pDeviceInfo, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 flags) { if (pDeviceInfo == NULL) { return; } if (pDeviceInfo->nativeDataFormatCount < ma_countof(pDeviceInfo->nativeDataFormats)) { pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = format; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = sampleRate; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = flags; pDeviceInfo->nativeDataFormatCount += 1; } } MA_API const char* ma_get_backend_name(ma_backend backend) { switch (backend) { case ma_backend_wasapi: return "WASAPI"; case ma_backend_dsound: return "DirectSound"; case ma_backend_winmm: return "WinMM"; case ma_backend_coreaudio: return "Core Audio"; case ma_backend_sndio: return "sndio"; case ma_backend_audio4: return "audio(4)"; case ma_backend_oss: return "OSS"; case ma_backend_pulseaudio: return "PulseAudio"; case ma_backend_alsa: return "ALSA"; case ma_backend_jack: return "JACK"; case ma_backend_aaudio: return "AAudio"; case ma_backend_opensl: return "OpenSL|ES"; case ma_backend_webaudio: return "Web Audio"; case ma_backend_custom: return "Custom"; case ma_backend_null: return "Null"; default: return "Unknown"; } } MA_API ma_bool32 ma_is_backend_enabled(ma_backend backend) { /* This looks a little bit gross, but we want all backends to be included in the switch to avoid warnings on some compilers about some enums not being handled by the switch statement. */ switch (backend) { case ma_backend_wasapi: #if defined(MA_HAS_WASAPI) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_dsound: #if defined(MA_HAS_DSOUND) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_winmm: #if defined(MA_HAS_WINMM) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_coreaudio: #if defined(MA_HAS_COREAUDIO) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_sndio: #if defined(MA_HAS_SNDIO) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_audio4: #if defined(MA_HAS_AUDIO4) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_oss: #if defined(MA_HAS_OSS) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_pulseaudio: #if defined(MA_HAS_PULSEAUDIO) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_alsa: #if defined(MA_HAS_ALSA) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_jack: #if defined(MA_HAS_JACK) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_aaudio: #if defined(MA_HAS_AAUDIO) #if defined(MA_ANDROID) { char sdkVersion[PROP_VALUE_MAX + 1] = {0, }; if (__system_property_get("ro.build.version.sdk", sdkVersion)) { if (atoi(sdkVersion) >= 26) { return MA_TRUE; } else { return MA_FALSE; } } else { return MA_FALSE; } } #else return MA_FALSE; #endif #else return MA_FALSE; #endif case ma_backend_opensl: #if defined(MA_HAS_OPENSL) #if defined(MA_ANDROID) { char sdkVersion[PROP_VALUE_MAX + 1] = {0, }; if (__system_property_get("ro.build.version.sdk", sdkVersion)) { if (atoi(sdkVersion) >= 9) { return MA_TRUE; } else { return MA_FALSE; } } else { return MA_FALSE; } } #else return MA_TRUE; #endif #else return MA_FALSE; #endif case ma_backend_webaudio: #if defined(MA_HAS_WEBAUDIO) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_custom: #if defined(MA_HAS_CUSTOM) return MA_TRUE; #else return MA_FALSE; #endif case ma_backend_null: #if defined(MA_HAS_NULL) return MA_TRUE; #else return MA_FALSE; #endif default: return MA_FALSE; } } MA_API ma_result ma_get_enabled_backends(ma_backend* pBackends, size_t backendCap, size_t* pBackendCount) { size_t backendCount; size_t iBackend; ma_result result = MA_SUCCESS; if (pBackendCount == NULL) { return MA_INVALID_ARGS; } backendCount = 0; for (iBackend = 0; iBackend <= ma_backend_null; iBackend += 1) { ma_backend backend = (ma_backend)iBackend; if (ma_is_backend_enabled(backend)) { /* The backend is enabled. Try adding it to the list. If there's no room, MA_NO_SPACE needs to be returned. */ if (backendCount == backendCap) { result = MA_NO_SPACE; break; } else { pBackends[backendCount] = backend; backendCount += 1; } } } if (pBackendCount != NULL) { *pBackendCount = backendCount; } return result; } MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend) { switch (backend) { case ma_backend_wasapi: return MA_TRUE; case ma_backend_dsound: return MA_FALSE; case ma_backend_winmm: return MA_FALSE; case ma_backend_coreaudio: return MA_FALSE; case ma_backend_sndio: return MA_FALSE; case ma_backend_audio4: return MA_FALSE; case ma_backend_oss: return MA_FALSE; case ma_backend_pulseaudio: return MA_FALSE; case ma_backend_alsa: return MA_FALSE; case ma_backend_jack: return MA_FALSE; case ma_backend_aaudio: return MA_FALSE; case ma_backend_opensl: return MA_FALSE; case ma_backend_webaudio: return MA_FALSE; case ma_backend_custom: return MA_FALSE; /* <-- Will depend on the implementation of the backend. */ case ma_backend_null: return MA_FALSE; default: return MA_FALSE; } } #ifdef MA_WIN32 /* WASAPI error codes. */ #define MA_AUDCLNT_E_NOT_INITIALIZED ((HRESULT)0x88890001) #define MA_AUDCLNT_E_ALREADY_INITIALIZED ((HRESULT)0x88890002) #define MA_AUDCLNT_E_WRONG_ENDPOINT_TYPE ((HRESULT)0x88890003) #define MA_AUDCLNT_E_DEVICE_INVALIDATED ((HRESULT)0x88890004) #define MA_AUDCLNT_E_NOT_STOPPED ((HRESULT)0x88890005) #define MA_AUDCLNT_E_BUFFER_TOO_LARGE ((HRESULT)0x88890006) #define MA_AUDCLNT_E_OUT_OF_ORDER ((HRESULT)0x88890007) #define MA_AUDCLNT_E_UNSUPPORTED_FORMAT ((HRESULT)0x88890008) #define MA_AUDCLNT_E_INVALID_SIZE ((HRESULT)0x88890009) #define MA_AUDCLNT_E_DEVICE_IN_USE ((HRESULT)0x8889000A) #define MA_AUDCLNT_E_BUFFER_OPERATION_PENDING ((HRESULT)0x8889000B) #define MA_AUDCLNT_E_THREAD_NOT_REGISTERED ((HRESULT)0x8889000C) #define MA_AUDCLNT_E_NO_SINGLE_PROCESS ((HRESULT)0x8889000D) #define MA_AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED ((HRESULT)0x8889000E) #define MA_AUDCLNT_E_ENDPOINT_CREATE_FAILED ((HRESULT)0x8889000F) #define MA_AUDCLNT_E_SERVICE_NOT_RUNNING ((HRESULT)0x88890010) #define MA_AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED ((HRESULT)0x88890011) #define MA_AUDCLNT_E_EXCLUSIVE_MODE_ONLY ((HRESULT)0x88890012) #define MA_AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL ((HRESULT)0x88890013) #define MA_AUDCLNT_E_EVENTHANDLE_NOT_SET ((HRESULT)0x88890014) #define MA_AUDCLNT_E_INCORRECT_BUFFER_SIZE ((HRESULT)0x88890015) #define MA_AUDCLNT_E_BUFFER_SIZE_ERROR ((HRESULT)0x88890016) #define MA_AUDCLNT_E_CPUUSAGE_EXCEEDED ((HRESULT)0x88890017) #define MA_AUDCLNT_E_BUFFER_ERROR ((HRESULT)0x88890018) #define MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED ((HRESULT)0x88890019) #define MA_AUDCLNT_E_INVALID_DEVICE_PERIOD ((HRESULT)0x88890020) #define MA_AUDCLNT_E_INVALID_STREAM_FLAG ((HRESULT)0x88890021) #define MA_AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE ((HRESULT)0x88890022) #define MA_AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES ((HRESULT)0x88890023) #define MA_AUDCLNT_E_OFFLOAD_MODE_ONLY ((HRESULT)0x88890024) #define MA_AUDCLNT_E_NONOFFLOAD_MODE_ONLY ((HRESULT)0x88890025) #define MA_AUDCLNT_E_RESOURCES_INVALIDATED ((HRESULT)0x88890026) #define MA_AUDCLNT_E_RAW_MODE_UNSUPPORTED ((HRESULT)0x88890027) #define MA_AUDCLNT_E_ENGINE_PERIODICITY_LOCKED ((HRESULT)0x88890028) #define MA_AUDCLNT_E_ENGINE_FORMAT_LOCKED ((HRESULT)0x88890029) #define MA_AUDCLNT_E_HEADTRACKING_ENABLED ((HRESULT)0x88890030) #define MA_AUDCLNT_E_HEADTRACKING_UNSUPPORTED ((HRESULT)0x88890040) #define MA_AUDCLNT_S_BUFFER_EMPTY ((HRESULT)0x08890001) #define MA_AUDCLNT_S_THREAD_ALREADY_REGISTERED ((HRESULT)0x08890002) #define MA_AUDCLNT_S_POSITION_STALLED ((HRESULT)0x08890003) #define MA_DS_OK ((HRESULT)0) #define MA_DS_NO_VIRTUALIZATION ((HRESULT)0x0878000A) #define MA_DSERR_ALLOCATED ((HRESULT)0x8878000A) #define MA_DSERR_CONTROLUNAVAIL ((HRESULT)0x8878001E) #define MA_DSERR_INVALIDPARAM ((HRESULT)0x80070057) /*E_INVALIDARG*/ #define MA_DSERR_INVALIDCALL ((HRESULT)0x88780032) #define MA_DSERR_GENERIC ((HRESULT)0x80004005) /*E_FAIL*/ #define MA_DSERR_PRIOLEVELNEEDED ((HRESULT)0x88780046) #define MA_DSERR_OUTOFMEMORY ((HRESULT)0x8007000E) /*E_OUTOFMEMORY*/ #define MA_DSERR_BADFORMAT ((HRESULT)0x88780064) #define MA_DSERR_UNSUPPORTED ((HRESULT)0x80004001) /*E_NOTIMPL*/ #define MA_DSERR_NODRIVER ((HRESULT)0x88780078) #define MA_DSERR_ALREADYINITIALIZED ((HRESULT)0x88780082) #define MA_DSERR_NOAGGREGATION ((HRESULT)0x80040110) /*CLASS_E_NOAGGREGATION*/ #define MA_DSERR_BUFFERLOST ((HRESULT)0x88780096) #define MA_DSERR_OTHERAPPHASPRIO ((HRESULT)0x887800A0) #define MA_DSERR_UNINITIALIZED ((HRESULT)0x887800AA) #define MA_DSERR_NOINTERFACE ((HRESULT)0x80004002) /*E_NOINTERFACE*/ #define MA_DSERR_ACCESSDENIED ((HRESULT)0x80070005) /*E_ACCESSDENIED*/ #define MA_DSERR_BUFFERTOOSMALL ((HRESULT)0x887800B4) #define MA_DSERR_DS8_REQUIRED ((HRESULT)0x887800BE) #define MA_DSERR_SENDLOOP ((HRESULT)0x887800C8) #define MA_DSERR_BADSENDBUFFERGUID ((HRESULT)0x887800D2) #define MA_DSERR_OBJECTNOTFOUND ((HRESULT)0x88781161) #define MA_DSERR_FXUNAVAILABLE ((HRESULT)0x887800DC) static ma_result ma_result_from_HRESULT(HRESULT hr) { switch (hr) { case NOERROR: return MA_SUCCESS; /*case S_OK: return MA_SUCCESS;*/ case E_POINTER: return MA_INVALID_ARGS; case E_UNEXPECTED: return MA_ERROR; case E_NOTIMPL: return MA_NOT_IMPLEMENTED; case E_OUTOFMEMORY: return MA_OUT_OF_MEMORY; case E_INVALIDARG: return MA_INVALID_ARGS; case E_NOINTERFACE: return MA_API_NOT_FOUND; case E_HANDLE: return MA_INVALID_ARGS; case E_ABORT: return MA_ERROR; case E_FAIL: return MA_ERROR; case E_ACCESSDENIED: return MA_ACCESS_DENIED; /* WASAPI */ case MA_AUDCLNT_E_NOT_INITIALIZED: return MA_DEVICE_NOT_INITIALIZED; case MA_AUDCLNT_E_ALREADY_INITIALIZED: return MA_DEVICE_ALREADY_INITIALIZED; case MA_AUDCLNT_E_WRONG_ENDPOINT_TYPE: return MA_INVALID_ARGS; case MA_AUDCLNT_E_DEVICE_INVALIDATED: return MA_UNAVAILABLE; case MA_AUDCLNT_E_NOT_STOPPED: return MA_DEVICE_NOT_STOPPED; case MA_AUDCLNT_E_BUFFER_TOO_LARGE: return MA_TOO_BIG; case MA_AUDCLNT_E_OUT_OF_ORDER: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_UNSUPPORTED_FORMAT: return MA_FORMAT_NOT_SUPPORTED; case MA_AUDCLNT_E_INVALID_SIZE: return MA_INVALID_ARGS; case MA_AUDCLNT_E_DEVICE_IN_USE: return MA_BUSY; case MA_AUDCLNT_E_BUFFER_OPERATION_PENDING: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_THREAD_NOT_REGISTERED: return MA_DOES_NOT_EXIST; case MA_AUDCLNT_E_NO_SINGLE_PROCESS: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED: return MA_SHARE_MODE_NOT_SUPPORTED; case MA_AUDCLNT_E_ENDPOINT_CREATE_FAILED: return MA_FAILED_TO_OPEN_BACKEND_DEVICE; case MA_AUDCLNT_E_SERVICE_NOT_RUNNING: return MA_NOT_CONNECTED; case MA_AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED: return MA_INVALID_ARGS; case MA_AUDCLNT_E_EXCLUSIVE_MODE_ONLY: return MA_SHARE_MODE_NOT_SUPPORTED; case MA_AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL: return MA_INVALID_ARGS; case MA_AUDCLNT_E_EVENTHANDLE_NOT_SET: return MA_INVALID_ARGS; case MA_AUDCLNT_E_INCORRECT_BUFFER_SIZE: return MA_INVALID_ARGS; case MA_AUDCLNT_E_BUFFER_SIZE_ERROR: return MA_INVALID_ARGS; case MA_AUDCLNT_E_CPUUSAGE_EXCEEDED: return MA_ERROR; case MA_AUDCLNT_E_BUFFER_ERROR: return MA_ERROR; case MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED: return MA_INVALID_ARGS; case MA_AUDCLNT_E_INVALID_DEVICE_PERIOD: return MA_INVALID_ARGS; case MA_AUDCLNT_E_INVALID_STREAM_FLAG: return MA_INVALID_ARGS; case MA_AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES: return MA_OUT_OF_MEMORY; case MA_AUDCLNT_E_OFFLOAD_MODE_ONLY: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_NONOFFLOAD_MODE_ONLY: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_RESOURCES_INVALIDATED: return MA_INVALID_DATA; case MA_AUDCLNT_E_RAW_MODE_UNSUPPORTED: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_ENGINE_PERIODICITY_LOCKED: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_ENGINE_FORMAT_LOCKED: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_HEADTRACKING_ENABLED: return MA_INVALID_OPERATION; case MA_AUDCLNT_E_HEADTRACKING_UNSUPPORTED: return MA_INVALID_OPERATION; case MA_AUDCLNT_S_BUFFER_EMPTY: return MA_NO_SPACE; case MA_AUDCLNT_S_THREAD_ALREADY_REGISTERED: return MA_ALREADY_EXISTS; case MA_AUDCLNT_S_POSITION_STALLED: return MA_ERROR; /* DirectSound */ /*case MA_DS_OK: return MA_SUCCESS;*/ /* S_OK */ case MA_DS_NO_VIRTUALIZATION: return MA_SUCCESS; case MA_DSERR_ALLOCATED: return MA_ALREADY_IN_USE; case MA_DSERR_CONTROLUNAVAIL: return MA_INVALID_OPERATION; /*case MA_DSERR_INVALIDPARAM: return MA_INVALID_ARGS;*/ /* E_INVALIDARG */ case MA_DSERR_INVALIDCALL: return MA_INVALID_OPERATION; /*case MA_DSERR_GENERIC: return MA_ERROR;*/ /* E_FAIL */ case MA_DSERR_PRIOLEVELNEEDED: return MA_INVALID_OPERATION; /*case MA_DSERR_OUTOFMEMORY: return MA_OUT_OF_MEMORY;*/ /* E_OUTOFMEMORY */ case MA_DSERR_BADFORMAT: return MA_FORMAT_NOT_SUPPORTED; /*case MA_DSERR_UNSUPPORTED: return MA_NOT_IMPLEMENTED;*/ /* E_NOTIMPL */ case MA_DSERR_NODRIVER: return MA_FAILED_TO_INIT_BACKEND; case MA_DSERR_ALREADYINITIALIZED: return MA_DEVICE_ALREADY_INITIALIZED; case MA_DSERR_NOAGGREGATION: return MA_ERROR; case MA_DSERR_BUFFERLOST: return MA_UNAVAILABLE; case MA_DSERR_OTHERAPPHASPRIO: return MA_ACCESS_DENIED; case MA_DSERR_UNINITIALIZED: return MA_DEVICE_NOT_INITIALIZED; /*case MA_DSERR_NOINTERFACE: return MA_API_NOT_FOUND;*/ /* E_NOINTERFACE */ /*case MA_DSERR_ACCESSDENIED: return MA_ACCESS_DENIED;*/ /* E_ACCESSDENIED */ case MA_DSERR_BUFFERTOOSMALL: return MA_NO_SPACE; case MA_DSERR_DS8_REQUIRED: return MA_INVALID_OPERATION; case MA_DSERR_SENDLOOP: return MA_DEADLOCK; case MA_DSERR_BADSENDBUFFERGUID: return MA_INVALID_ARGS; case MA_DSERR_OBJECTNOTFOUND: return MA_NO_DEVICE; case MA_DSERR_FXUNAVAILABLE: return MA_UNAVAILABLE; default: return MA_ERROR; } } typedef HRESULT (WINAPI * MA_PFN_CoInitializeEx)(LPVOID pvReserved, DWORD dwCoInit); typedef void (WINAPI * MA_PFN_CoUninitialize)(void); typedef HRESULT (WINAPI * MA_PFN_CoCreateInstance)(REFCLSID rclsid, LPUNKNOWN pUnkOuter, DWORD dwClsContext, REFIID riid, LPVOID *ppv); typedef void (WINAPI * MA_PFN_CoTaskMemFree)(LPVOID pv); typedef HRESULT (WINAPI * MA_PFN_PropVariantClear)(PROPVARIANT *pvar); typedef int (WINAPI * MA_PFN_StringFromGUID2)(const GUID* const rguid, LPOLESTR lpsz, int cchMax); typedef HWND (WINAPI * MA_PFN_GetForegroundWindow)(void); typedef HWND (WINAPI * MA_PFN_GetDesktopWindow)(void); #if defined(MA_WIN32_DESKTOP) /* Microsoft documents these APIs as returning LSTATUS, but the Win32 API shipping with some compilers do not define it. It's just a LONG. */ typedef LONG (WINAPI * MA_PFN_RegOpenKeyExA)(HKEY hKey, LPCSTR lpSubKey, DWORD ulOptions, REGSAM samDesired, PHKEY phkResult); typedef LONG (WINAPI * MA_PFN_RegCloseKey)(HKEY hKey); typedef LONG (WINAPI * MA_PFN_RegQueryValueExA)(HKEY hKey, LPCSTR lpValueName, LPDWORD lpReserved, LPDWORD lpType, LPBYTE lpData, LPDWORD lpcbData); #endif /* MA_WIN32_DESKTOP */ #endif /* MA_WIN32 */ #define MA_DEFAULT_PLAYBACK_DEVICE_NAME "Default Playback Device" #define MA_DEFAULT_CAPTURE_DEVICE_NAME "Default Capture Device" /******************************************************************************* Timing *******************************************************************************/ #ifdef MA_WIN32 static LARGE_INTEGER g_ma_TimerFrequency; /* <-- Initialized to zero since it's static. */ void ma_timer_init(ma_timer* pTimer) { LARGE_INTEGER counter; if (g_ma_TimerFrequency.QuadPart == 0) { QueryPerformanceFrequency(&g_ma_TimerFrequency); } QueryPerformanceCounter(&counter); pTimer->counter = counter.QuadPart; } double ma_timer_get_time_in_seconds(ma_timer* pTimer) { LARGE_INTEGER counter; if (!QueryPerformanceCounter(&counter)) { return 0; } return (double)(counter.QuadPart - pTimer->counter) / g_ma_TimerFrequency.QuadPart; } #elif defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200) static ma_uint64 g_ma_TimerFrequency = 0; static void ma_timer_init(ma_timer* pTimer) { mach_timebase_info_data_t baseTime; mach_timebase_info(&baseTime); g_ma_TimerFrequency = (baseTime.denom * 1e9) / baseTime.numer; pTimer->counter = mach_absolute_time(); } static double ma_timer_get_time_in_seconds(ma_timer* pTimer) { ma_uint64 newTimeCounter = mach_absolute_time(); ma_uint64 oldTimeCounter = pTimer->counter; return (newTimeCounter - oldTimeCounter) / g_ma_TimerFrequency; } #elif defined(MA_EMSCRIPTEN) static MA_INLINE void ma_timer_init(ma_timer* pTimer) { pTimer->counterD = emscripten_get_now(); } static MA_INLINE double ma_timer_get_time_in_seconds(ma_timer* pTimer) { return (emscripten_get_now() - pTimer->counterD) / 1000; /* Emscripten is in milliseconds. */ } #else #if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 199309L #if defined(CLOCK_MONOTONIC) #define MA_CLOCK_ID CLOCK_MONOTONIC #else #define MA_CLOCK_ID CLOCK_REALTIME #endif static void ma_timer_init(ma_timer* pTimer) { struct timespec newTime; clock_gettime(MA_CLOCK_ID, &newTime); pTimer->counter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec; } static double ma_timer_get_time_in_seconds(ma_timer* pTimer) { ma_uint64 newTimeCounter; ma_uint64 oldTimeCounter; struct timespec newTime; clock_gettime(MA_CLOCK_ID, &newTime); newTimeCounter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec; oldTimeCounter = pTimer->counter; return (newTimeCounter - oldTimeCounter) / 1000000000.0; } #else static void ma_timer_init(ma_timer* pTimer) { struct timeval newTime; gettimeofday(&newTime, NULL); pTimer->counter = (newTime.tv_sec * 1000000) + newTime.tv_usec; } static double ma_timer_get_time_in_seconds(ma_timer* pTimer) { ma_uint64 newTimeCounter; ma_uint64 oldTimeCounter; struct timeval newTime; gettimeofday(&newTime, NULL); newTimeCounter = (newTime.tv_sec * 1000000) + newTime.tv_usec; oldTimeCounter = pTimer->counter; return (newTimeCounter - oldTimeCounter) / 1000000.0; } #endif #endif /******************************************************************************* Dynamic Linking *******************************************************************************/ MA_API ma_handle ma_dlopen(ma_context* pContext, const char* filename) { ma_handle handle; ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "Loading library: %s\n", filename); #ifdef _WIN32 /* From MSDN: Desktop applications cannot use LoadPackagedLibrary; if a desktop application calls this function it fails with APPMODEL_ERROR_NO_PACKAGE.*/ #if !defined(WINAPI_FAMILY) || (defined(WINAPI_FAMILY) && (defined(WINAPI_FAMILY_DESKTOP_APP) && WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP)) handle = (ma_handle)LoadLibraryA(filename); #else /* *sigh* It appears there is no ANSI version of LoadPackagedLibrary()... */ WCHAR filenameW[4096]; if (MultiByteToWideChar(CP_UTF8, 0, filename, -1, filenameW, sizeof(filenameW)) == 0) { handle = NULL; } else { handle = (ma_handle)LoadPackagedLibrary(filenameW, 0); } #endif #else handle = (ma_handle)dlopen(filename, RTLD_NOW); #endif /* I'm not considering failure to load a library an error nor a warning because seamlessly falling through to a lower-priority backend is a deliberate design choice. Instead I'm logging it as an informational message. */ if (handle == NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_INFO, "Failed to load library: %s\n", filename); } (void)pContext; /* It's possible for pContext to be unused. */ return handle; } MA_API void ma_dlclose(ma_context* pContext, ma_handle handle) { #ifdef _WIN32 FreeLibrary((HMODULE)handle); #else dlclose((void*)handle); #endif (void)pContext; } MA_API ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol) { ma_proc proc; ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "Loading symbol: %s\n", symbol); #ifdef _WIN32 proc = (ma_proc)GetProcAddress((HMODULE)handle, symbol); #else #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" #endif proc = (ma_proc)dlsym((void*)handle, symbol); #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #pragma GCC diagnostic pop #endif #endif if (proc == NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "Failed to load symbol: %s\n", symbol); } (void)pContext; /* It's possible for pContext to be unused. */ return proc; } #if 0 static ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn) { ma_uint32 closestRate = 0; ma_uint32 closestDiff = 0xFFFFFFFF; size_t iStandardRate; for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) { ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate]; ma_uint32 diff; if (sampleRateIn > standardRate) { diff = sampleRateIn - standardRate; } else { diff = standardRate - sampleRateIn; } if (diff == 0) { return standardRate; /* The input sample rate is a standard rate. */ } if (closestDiff > diff) { closestDiff = diff; closestRate = standardRate; } } return closestRate; } #endif static MA_INLINE unsigned int ma_device_disable_denormals(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (!pDevice->noDisableDenormals) { return ma_disable_denormals(); } else { return 0; } } static MA_INLINE void ma_device_restore_denormals(ma_device* pDevice, unsigned int prevState) { MA_ASSERT(pDevice != NULL); if (!pDevice->noDisableDenormals) { ma_restore_denormals(prevState); } else { /* Do nothing. */ (void)prevState; } } static ma_device_notification ma_device_notification_init(ma_device* pDevice, ma_device_notification_type type) { ma_device_notification notification; MA_ZERO_OBJECT(¬ification); notification.pDevice = pDevice; notification.type = type; return notification; } static void ma_device__on_notification(ma_device_notification notification) { MA_ASSERT(notification.pDevice != NULL); if (notification.pDevice->onNotification != NULL) { notification.pDevice->onNotification(¬ification); } /* TEMP FOR COMPATIBILITY: If it's a stopped notification, fire the onStop callback as well. This is only for backwards compatibility and will be removed. */ if (notification.pDevice->onStop != NULL && notification.type == ma_device_notification_type_stopped) { notification.pDevice->onStop(notification.pDevice); } } void ma_device__on_notification_started(ma_device* pDevice) { ma_device__on_notification(ma_device_notification_init(pDevice, ma_device_notification_type_started)); } void ma_device__on_notification_stopped(ma_device* pDevice) { ma_device__on_notification(ma_device_notification_init(pDevice, ma_device_notification_type_stopped)); } void ma_device__on_notification_rerouted(ma_device* pDevice) { ma_device__on_notification(ma_device_notification_init(pDevice, ma_device_notification_type_rerouted)); } void ma_device__on_notification_interruption_began(ma_device* pDevice) { ma_device__on_notification(ma_device_notification_init(pDevice, ma_device_notification_type_interruption_began)); } void ma_device__on_notification_interruption_ended(ma_device* pDevice) { ma_device__on_notification(ma_device_notification_init(pDevice, ma_device_notification_type_interruption_ended)); } static void ma_device__on_data_inner(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount) { MA_ASSERT(pDevice != NULL); MA_ASSERT(pDevice->onData != NULL); if (!pDevice->noPreSilencedOutputBuffer && pFramesOut != NULL) { ma_silence_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels); } pDevice->onData(pDevice, pFramesOut, pFramesIn, frameCount); } static void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount) { MA_ASSERT(pDevice != NULL); /* Don't read more data from the client if we're in the process of stopping. */ if (ma_device_get_state(pDevice) == ma_device_state_stopping) { return; } if (pDevice->noFixedSizedCallback) { /* Fast path. Not using a fixed sized callback. Process directly from the specified buffers. */ ma_device__on_data_inner(pDevice, pFramesOut, pFramesIn, frameCount); } else { /* Slow path. Using a fixed sized callback. Need to use the intermediary buffer. */ ma_uint32 totalFramesProcessed = 0; while (totalFramesProcessed < frameCount) { ma_uint32 totalFramesRemaining = frameCount - totalFramesProcessed; ma_uint32 framesToProcessThisIteration = 0; if (pFramesIn != NULL) { /* Capturing. Write to the intermediary buffer. If there's no room, fire the callback to empty it. */ if (pDevice->capture.intermediaryBufferLen < pDevice->capture.intermediaryBufferCap) { /* There's some room left in the intermediary buffer. Write to it without firing the callback. */ framesToProcessThisIteration = totalFramesRemaining; if (framesToProcessThisIteration > pDevice->capture.intermediaryBufferCap - pDevice->capture.intermediaryBufferLen) { framesToProcessThisIteration = pDevice->capture.intermediaryBufferCap - pDevice->capture.intermediaryBufferLen; } ma_copy_pcm_frames( ma_offset_pcm_frames_ptr(pDevice->capture.pIntermediaryBuffer, pDevice->capture.intermediaryBufferLen, pDevice->capture.format, pDevice->capture.channels), ma_offset_pcm_frames_const_ptr(pFramesIn, totalFramesProcessed, pDevice->capture.format, pDevice->capture.channels), framesToProcessThisIteration, pDevice->capture.format, pDevice->capture.channels); pDevice->capture.intermediaryBufferLen += framesToProcessThisIteration; } if (pDevice->capture.intermediaryBufferLen == pDevice->capture.intermediaryBufferCap) { /* No room left in the intermediary buffer. Fire the data callback. */ if (pDevice->type == ma_device_type_duplex) { /* We'll do the duplex data callback later after we've processed the playback data. */ } else { ma_device__on_data_inner(pDevice, NULL, pDevice->capture.pIntermediaryBuffer, pDevice->capture.intermediaryBufferCap); /* The intermediary buffer has just been drained. */ pDevice->capture.intermediaryBufferLen = 0; } } } if (pFramesOut != NULL) { /* Playing back. Read from the intermediary buffer. If there's nothing in it, fire the callback to fill it. */ if (pDevice->playback.intermediaryBufferLen > 0) { /* There's some content in the intermediary buffer. Read from that without firing the callback. */ if (pDevice->type == ma_device_type_duplex) { /* The frames processed this iteration for a duplex device will always be based on the capture side. Leave it unmodified. */ } else { framesToProcessThisIteration = totalFramesRemaining; if (framesToProcessThisIteration > pDevice->playback.intermediaryBufferLen) { framesToProcessThisIteration = pDevice->playback.intermediaryBufferLen; } } ma_copy_pcm_frames( ma_offset_pcm_frames_ptr(pFramesOut, totalFramesProcessed, pDevice->playback.format, pDevice->playback.channels), ma_offset_pcm_frames_ptr(pDevice->playback.pIntermediaryBuffer, pDevice->playback.intermediaryBufferCap - pDevice->playback.intermediaryBufferLen, pDevice->playback.format, pDevice->playback.channels), framesToProcessThisIteration, pDevice->playback.format, pDevice->playback.channels); pDevice->playback.intermediaryBufferLen -= framesToProcessThisIteration; } if (pDevice->playback.intermediaryBufferLen == 0) { /* There's nothing in the intermediary buffer. Fire the data callback to fill it. */ if (pDevice->type == ma_device_type_duplex) { /* In duplex mode, the data callback will be fired later. Nothing to do here. */ } else { ma_device__on_data_inner(pDevice, pDevice->playback.pIntermediaryBuffer, NULL, pDevice->playback.intermediaryBufferCap); /* The intermediary buffer has just been filled. */ pDevice->playback.intermediaryBufferLen = pDevice->playback.intermediaryBufferCap; } } } /* If we're in duplex mode we might need to do a refill of the data. */ if (pDevice->type == ma_device_type_duplex) { if (pDevice->capture.intermediaryBufferLen == pDevice->capture.intermediaryBufferCap) { ma_device__on_data_inner(pDevice, pDevice->playback.pIntermediaryBuffer, pDevice->capture.pIntermediaryBuffer, pDevice->capture.intermediaryBufferCap); pDevice->playback.intermediaryBufferLen = pDevice->playback.intermediaryBufferCap; /* The playback buffer will have just been filled. */ pDevice->capture.intermediaryBufferLen = 0; /* The intermediary buffer has just been drained. */ } } /* Make sure this is only incremented once in the duplex case. */ totalFramesProcessed += framesToProcessThisIteration; } } } static void ma_device__handle_data_callback(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount) { float masterVolumeFactor; ma_device_get_master_volume(pDevice, &masterVolumeFactor); /* Use ma_device_get_master_volume() to ensure the volume is loaded atomically. */ if (pDevice->onData) { unsigned int prevDenormalState = ma_device_disable_denormals(pDevice); { /* Volume control of input makes things a bit awkward because the input buffer is read-only. We'll need to use a temp buffer and loop in this case. */ if (pFramesIn != NULL && masterVolumeFactor < 1) { ma_uint8 tempFramesIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 bpfCapture = ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); ma_uint32 bpfPlayback = ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); ma_uint32 totalFramesProcessed = 0; while (totalFramesProcessed < frameCount) { ma_uint32 framesToProcessThisIteration = frameCount - totalFramesProcessed; if (framesToProcessThisIteration > sizeof(tempFramesIn)/bpfCapture) { framesToProcessThisIteration = sizeof(tempFramesIn)/bpfCapture; } ma_copy_and_apply_volume_factor_pcm_frames(tempFramesIn, ma_offset_ptr(pFramesIn, totalFramesProcessed*bpfCapture), framesToProcessThisIteration, pDevice->capture.format, pDevice->capture.channels, masterVolumeFactor); ma_device__on_data(pDevice, ma_offset_ptr(pFramesOut, totalFramesProcessed*bpfPlayback), tempFramesIn, framesToProcessThisIteration); totalFramesProcessed += framesToProcessThisIteration; } } else { ma_device__on_data(pDevice, pFramesOut, pFramesIn, frameCount); } /* Volume control and clipping for playback devices. */ if (pFramesOut != NULL) { if (masterVolumeFactor < 1) { if (pFramesIn == NULL) { /* <-- In full-duplex situations, the volume will have been applied to the input samples before the data callback. Applying it again post-callback will incorrectly compound it. */ ma_apply_volume_factor_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels, masterVolumeFactor); } } if (!pDevice->noClip && pDevice->playback.format == ma_format_f32) { ma_clip_samples_f32((float*)pFramesOut, (const float*)pFramesOut, frameCount * pDevice->playback.channels); /* Intentionally specifying the same pointer for both input and output for in-place processing. */ } } } ma_device_restore_denormals(pDevice, prevDenormalState); } } /* A helper function for reading sample data from the client. */ static void ma_device__read_frames_from_client(ma_device* pDevice, ma_uint32 frameCount, void* pFramesOut) { MA_ASSERT(pDevice != NULL); MA_ASSERT(frameCount > 0); MA_ASSERT(pFramesOut != NULL); if (pDevice->playback.converter.isPassthrough) { ma_device__handle_data_callback(pDevice, pFramesOut, NULL, frameCount); } else { ma_result result; ma_uint64 totalFramesReadOut; void* pRunningFramesOut; totalFramesReadOut = 0; pRunningFramesOut = pFramesOut; /* We run slightly different logic depending on whether or not we're using a heap-allocated buffer for caching input data. This will be the case if the data converter does not have the ability to retrieve the required input frame count for a given output frame count. */ if (pDevice->playback.pInputCache != NULL) { while (totalFramesReadOut < frameCount) { ma_uint64 framesToReadThisIterationIn; ma_uint64 framesToReadThisIterationOut; /* If there's any data available in the cache, that needs to get processed first. */ if (pDevice->playback.inputCacheRemaining > 0) { framesToReadThisIterationOut = (frameCount - totalFramesReadOut); framesToReadThisIterationIn = framesToReadThisIterationOut; if (framesToReadThisIterationIn > pDevice->playback.inputCacheRemaining) { framesToReadThisIterationIn = pDevice->playback.inputCacheRemaining; } result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, ma_offset_pcm_frames_ptr(pDevice->playback.pInputCache, pDevice->playback.inputCacheConsumed, pDevice->playback.format, pDevice->playback.channels), &framesToReadThisIterationIn, pRunningFramesOut, &framesToReadThisIterationOut); if (result != MA_SUCCESS) { break; } pDevice->playback.inputCacheConsumed += framesToReadThisIterationIn; pDevice->playback.inputCacheRemaining -= framesToReadThisIterationIn; totalFramesReadOut += framesToReadThisIterationOut; pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesToReadThisIterationOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); if (framesToReadThisIterationIn == 0 && framesToReadThisIterationOut == 0) { break; /* We're done. */ } } /* Getting here means there's no data in the cache and we need to fill it up with data from the client. */ if (pDevice->playback.inputCacheRemaining == 0) { ma_device__handle_data_callback(pDevice, pDevice->playback.pInputCache, NULL, (ma_uint32)pDevice->playback.inputCacheCap); pDevice->playback.inputCacheConsumed = 0; pDevice->playback.inputCacheRemaining = pDevice->playback.inputCacheCap; } } } else { while (totalFramesReadOut < frameCount) { ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In client format. */ ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); ma_uint64 framesToReadThisIterationIn; ma_uint64 framesReadThisIterationIn; ma_uint64 framesToReadThisIterationOut; ma_uint64 framesReadThisIterationOut; ma_uint64 requiredInputFrameCount; framesToReadThisIterationOut = (frameCount - totalFramesReadOut); framesToReadThisIterationIn = framesToReadThisIterationOut; if (framesToReadThisIterationIn > intermediaryBufferCap) { framesToReadThisIterationIn = intermediaryBufferCap; } ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, framesToReadThisIterationOut, &requiredInputFrameCount); if (framesToReadThisIterationIn > requiredInputFrameCount) { framesToReadThisIterationIn = requiredInputFrameCount; } if (framesToReadThisIterationIn > 0) { ma_device__handle_data_callback(pDevice, pIntermediaryBuffer, NULL, (ma_uint32)framesToReadThisIterationIn); } /* At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any input frames, we still want to try processing frames because there may some output frames generated from cached input data. */ framesReadThisIterationIn = framesToReadThisIterationIn; framesReadThisIterationOut = framesToReadThisIterationOut; result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut); if (result != MA_SUCCESS) { break; } totalFramesReadOut += framesReadThisIterationOut; pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) { break; /* We're done. */ } } } } } /* A helper for sending sample data to the client. */ static void ma_device__send_frames_to_client(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat) { MA_ASSERT(pDevice != NULL); MA_ASSERT(frameCountInDeviceFormat > 0); MA_ASSERT(pFramesInDeviceFormat != NULL); if (pDevice->capture.converter.isPassthrough) { ma_device__handle_data_callback(pDevice, NULL, pFramesInDeviceFormat, frameCountInDeviceFormat); } else { ma_result result; ma_uint8 pFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint64 framesInClientFormatCap = sizeof(pFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); ma_uint64 totalDeviceFramesProcessed = 0; ma_uint64 totalClientFramesProcessed = 0; const void* pRunningFramesInDeviceFormat = pFramesInDeviceFormat; /* We just keep going until we've exhaused all of our input frames and cannot generate any more output frames. */ for (;;) { ma_uint64 deviceFramesProcessedThisIteration; ma_uint64 clientFramesProcessedThisIteration; deviceFramesProcessedThisIteration = (frameCountInDeviceFormat - totalDeviceFramesProcessed); clientFramesProcessedThisIteration = framesInClientFormatCap; result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningFramesInDeviceFormat, &deviceFramesProcessedThisIteration, pFramesInClientFormat, &clientFramesProcessedThisIteration); if (result != MA_SUCCESS) { break; } if (clientFramesProcessedThisIteration > 0) { ma_device__handle_data_callback(pDevice, NULL, pFramesInClientFormat, (ma_uint32)clientFramesProcessedThisIteration); /* Safe cast. */ } pRunningFramesInDeviceFormat = ma_offset_ptr(pRunningFramesInDeviceFormat, deviceFramesProcessedThisIteration * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); totalDeviceFramesProcessed += deviceFramesProcessedThisIteration; totalClientFramesProcessed += clientFramesProcessedThisIteration; /* This is just to silence a warning. I might want to use this variable later so leaving in place for now. */ (void)totalClientFramesProcessed; if (deviceFramesProcessedThisIteration == 0 && clientFramesProcessedThisIteration == 0) { break; /* We're done. */ } } } } static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat, ma_pcm_rb* pRB) { ma_result result; ma_uint32 totalDeviceFramesProcessed = 0; const void* pRunningFramesInDeviceFormat = pFramesInDeviceFormat; MA_ASSERT(pDevice != NULL); MA_ASSERT(frameCountInDeviceFormat > 0); MA_ASSERT(pFramesInDeviceFormat != NULL); MA_ASSERT(pRB != NULL); /* Write to the ring buffer. The ring buffer is in the client format which means we need to convert. */ for (;;) { ma_uint32 framesToProcessInDeviceFormat = (frameCountInDeviceFormat - totalDeviceFramesProcessed); ma_uint32 framesToProcessInClientFormat = MA_DATA_CONVERTER_STACK_BUFFER_SIZE / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); ma_uint64 framesProcessedInDeviceFormat; ma_uint64 framesProcessedInClientFormat; void* pFramesInClientFormat; result = ma_pcm_rb_acquire_write(pRB, &framesToProcessInClientFormat, &pFramesInClientFormat); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "Failed to acquire capture PCM frames from ring buffer."); break; } if (framesToProcessInClientFormat == 0) { if (ma_pcm_rb_pointer_distance(pRB) == (ma_int32)ma_pcm_rb_get_subbuffer_size(pRB)) { break; /* Overrun. Not enough room in the ring buffer for input frame. Excess frames are dropped. */ } } /* Convert. */ framesProcessedInDeviceFormat = framesToProcessInDeviceFormat; framesProcessedInClientFormat = framesToProcessInClientFormat; result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningFramesInDeviceFormat, &framesProcessedInDeviceFormat, pFramesInClientFormat, &framesProcessedInClientFormat); if (result != MA_SUCCESS) { break; } result = ma_pcm_rb_commit_write(pRB, (ma_uint32)framesProcessedInClientFormat); /* Safe cast. */ if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "Failed to commit capture PCM frames to ring buffer."); break; } pRunningFramesInDeviceFormat = ma_offset_ptr(pRunningFramesInDeviceFormat, framesProcessedInDeviceFormat * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); totalDeviceFramesProcessed += (ma_uint32)framesProcessedInDeviceFormat; /* Safe cast. */ /* We're done when we're unable to process any client nor device frames. */ if (framesProcessedInClientFormat == 0 && framesProcessedInDeviceFormat == 0) { break; /* Done. */ } } return MA_SUCCESS; } static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, ma_uint32 frameCount, void* pFramesInInternalFormat, ma_pcm_rb* pRB) { ma_result result; ma_uint8 silentInputFrames[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 totalFramesReadOut = 0; MA_ASSERT(pDevice != NULL); MA_ASSERT(frameCount > 0); MA_ASSERT(pFramesInInternalFormat != NULL); MA_ASSERT(pRB != NULL); MA_ASSERT(pDevice->playback.pInputCache != NULL); /* Sitting in the ring buffer should be captured data from the capture callback in external format. If there's not enough data in there for the whole frameCount frames we just use silence instead for the input data. */ MA_ZERO_MEMORY(silentInputFrames, sizeof(silentInputFrames)); while (totalFramesReadOut < frameCount && ma_device_is_started(pDevice)) { /* We should have a buffer allocated on the heap. Any playback frames still sitting in there need to be sent to the internal device before we process any more data from the client. */ if (pDevice->playback.inputCacheRemaining > 0) { ma_uint64 framesConvertedIn = pDevice->playback.inputCacheRemaining; ma_uint64 framesConvertedOut = (frameCount - totalFramesReadOut); ma_data_converter_process_pcm_frames(&pDevice->playback.converter, ma_offset_pcm_frames_ptr(pDevice->playback.pInputCache, pDevice->playback.inputCacheConsumed, pDevice->playback.format, pDevice->playback.channels), &framesConvertedIn, pFramesInInternalFormat, &framesConvertedOut); pDevice->playback.inputCacheConsumed += framesConvertedIn; pDevice->playback.inputCacheRemaining -= framesConvertedIn; totalFramesReadOut += (ma_uint32)framesConvertedOut; /* Safe cast. */ pFramesInInternalFormat = ma_offset_ptr(pFramesInInternalFormat, framesConvertedOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); } /* If there's no more data in the cache we'll need to fill it with some. */ if (totalFramesReadOut < frameCount && pDevice->playback.inputCacheRemaining == 0) { ma_uint32 inputFrameCount; void* pInputFrames; inputFrameCount = (ma_uint32)pDevice->playback.inputCacheCap; result = ma_pcm_rb_acquire_read(pRB, &inputFrameCount, &pInputFrames); if (result == MA_SUCCESS) { if (inputFrameCount > 0) { ma_device__handle_data_callback(pDevice, pDevice->playback.pInputCache, pInputFrames, inputFrameCount); } else { if (ma_pcm_rb_pointer_distance(pRB) == 0) { break; /* Underrun. */ } } } else { /* No capture data available. Feed in silence. */ inputFrameCount = (ma_uint32)ma_min(pDevice->playback.inputCacheCap, sizeof(silentInputFrames) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels)); ma_device__handle_data_callback(pDevice, pDevice->playback.pInputCache, silentInputFrames, inputFrameCount); } pDevice->playback.inputCacheConsumed = 0; pDevice->playback.inputCacheRemaining = inputFrameCount; result = ma_pcm_rb_commit_read(pRB, inputFrameCount); if (result != MA_SUCCESS) { return result; /* Should never happen. */ } } } return MA_SUCCESS; } /* A helper for changing the state of the device. */ static MA_INLINE void ma_device__set_state(ma_device* pDevice, ma_device_state newState) { c89atomic_exchange_i32((ma_int32*)&pDevice->state, (ma_int32)newState); } #ifdef MA_WIN32 GUID MA_GUID_KSDATAFORMAT_SUBTYPE_PCM = {0x00000001, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}}; GUID MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT = {0x00000003, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}}; /*GUID MA_GUID_KSDATAFORMAT_SUBTYPE_ALAW = {0x00000006, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}};*/ /*GUID MA_GUID_KSDATAFORMAT_SUBTYPE_MULAW = {0x00000007, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}};*/ #endif MA_API ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = better. */ { ma_uint32 i; for (i = 0; i < ma_countof(g_maFormatPriorities); ++i) { if (g_maFormatPriorities[i] == format) { return i; } } /* Getting here means the format could not be found or is equal to ma_format_unknown. */ return (ma_uint32)-1; } static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType); static ma_bool32 ma_device_descriptor_is_valid(const ma_device_descriptor* pDeviceDescriptor) { if (pDeviceDescriptor == NULL) { return MA_FALSE; } if (pDeviceDescriptor->format == ma_format_unknown) { return MA_FALSE; } if (pDeviceDescriptor->channels == 0 || pDeviceDescriptor->channels > MA_MAX_CHANNELS) { return MA_FALSE; } if (pDeviceDescriptor->sampleRate == 0) { return MA_FALSE; } return MA_TRUE; } static ma_result ma_device_audio_thread__default_read_write(ma_device* pDevice) { ma_result result = MA_SUCCESS; ma_bool32 exitLoop = MA_FALSE; ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 capturedDeviceDataCapInFrames = 0; ma_uint32 playbackDeviceDataCapInFrames = 0; MA_ASSERT(pDevice != NULL); /* Just some quick validation on the device type and the available callbacks. */ if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { if (pDevice->pContext->callbacks.onDeviceRead == NULL) { return MA_NOT_IMPLEMENTED; } capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { if (pDevice->pContext->callbacks.onDeviceWrite == NULL) { return MA_NOT_IMPLEMENTED; } playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); } /* NOTE: The device was started outside of this function, in the worker thread. */ while (ma_device_get_state(pDevice) == ma_device_state_started && !exitLoop) { switch (pDevice->type) { case ma_device_type_duplex: { /* The process is: onDeviceRead() -> convert -> callback -> convert -> onDeviceWrite() */ ma_uint32 totalCapturedDeviceFramesProcessed = 0; ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames); while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) { ma_uint32 capturedDeviceFramesRemaining; ma_uint32 capturedDeviceFramesProcessed; ma_uint32 capturedDeviceFramesToProcess; ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed; if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) { capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames; } result = pDevice->pContext->callbacks.onDeviceRead(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess); if (result != MA_SUCCESS) { exitLoop = MA_TRUE; break; } capturedDeviceFramesRemaining = capturedDeviceFramesToProcess; capturedDeviceFramesProcessed = 0; /* At this point we have our captured data in device format and we now need to convert it to client format. */ for (;;) { ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames); ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining; ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); /* Convert capture data from device format to client format. */ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration); if (result != MA_SUCCESS) { break; } /* If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE. */ if (capturedClientFramesToProcessThisIteration == 0) { break; } ma_device__handle_data_callback(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */ for (;;) { ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration; ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames; result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount); if (result != MA_SUCCESS) { break; } result = pDevice->pContext->callbacks.onDeviceWrite(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */ if (result != MA_SUCCESS) { exitLoop = MA_TRUE; break; } capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */ if (capturedClientFramesToProcessThisIteration == 0) { break; } } /* In case an error happened from ma_device_write__null()... */ if (result != MA_SUCCESS) { exitLoop = MA_TRUE; break; } } /* Make sure we don't get stuck in the inner loop. */ if (capturedDeviceFramesProcessed == 0) { break; } totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed; } } break; case ma_device_type_capture: case ma_device_type_loopback: { ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames; ma_uint32 framesReadThisPeriod = 0; while (framesReadThisPeriod < periodSizeInFrames) { ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod; ma_uint32 framesProcessed; ma_uint32 framesToReadThisIteration = framesRemainingInPeriod; if (framesToReadThisIteration > capturedDeviceDataCapInFrames) { framesToReadThisIteration = capturedDeviceDataCapInFrames; } result = pDevice->pContext->callbacks.onDeviceRead(pDevice, capturedDeviceData, framesToReadThisIteration, &framesProcessed); if (result != MA_SUCCESS) { exitLoop = MA_TRUE; break; } /* Make sure we don't get stuck in the inner loop. */ if (framesProcessed == 0) { break; } ma_device__send_frames_to_client(pDevice, framesProcessed, capturedDeviceData); framesReadThisPeriod += framesProcessed; } } break; case ma_device_type_playback: { /* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames; ma_uint32 framesWrittenThisPeriod = 0; while (framesWrittenThisPeriod < periodSizeInFrames) { ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod; ma_uint32 framesProcessed; ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod; if (framesToWriteThisIteration > playbackDeviceDataCapInFrames) { framesToWriteThisIteration = playbackDeviceDataCapInFrames; } ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, playbackDeviceData); result = pDevice->pContext->callbacks.onDeviceWrite(pDevice, playbackDeviceData, framesToWriteThisIteration, &framesProcessed); if (result != MA_SUCCESS) { exitLoop = MA_TRUE; break; } /* Make sure we don't get stuck in the inner loop. */ if (framesProcessed == 0) { break; } framesWrittenThisPeriod += framesProcessed; } } break; /* Should never get here. */ default: break; } } return result; } /******************************************************************************* Null Backend *******************************************************************************/ #ifdef MA_HAS_NULL #define MA_DEVICE_OP_NONE__NULL 0 #define MA_DEVICE_OP_START__NULL 1 #define MA_DEVICE_OP_SUSPEND__NULL 2 #define MA_DEVICE_OP_KILL__NULL 3 static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData) { ma_device* pDevice = (ma_device*)pData; MA_ASSERT(pDevice != NULL); for (;;) { /* Keep the thread alive until the device is uninitialized. */ ma_uint32 operation; /* Wait for an operation to be requested. */ ma_event_wait(&pDevice->null_device.operationEvent); /* At this point an event should have been triggered. */ operation = pDevice->null_device.operation; /* Starting the device needs to put the thread into a loop. */ if (operation == MA_DEVICE_OP_START__NULL) { /* Reset the timer just in case. */ ma_timer_init(&pDevice->null_device.timer); /* Getting here means a suspend or kill operation has been requested. */ pDevice->null_device.operationResult = MA_SUCCESS; ma_event_signal(&pDevice->null_device.operationCompletionEvent); ma_semaphore_release(&pDevice->null_device.operationSemaphore); continue; } /* Suspending the device means we need to stop the timer and just continue the loop. */ if (operation == MA_DEVICE_OP_SUSPEND__NULL) { /* We need to add the current run time to the prior run time, then reset the timer. */ pDevice->null_device.priorRunTime += ma_timer_get_time_in_seconds(&pDevice->null_device.timer); ma_timer_init(&pDevice->null_device.timer); /* We're done. */ pDevice->null_device.operationResult = MA_SUCCESS; ma_event_signal(&pDevice->null_device.operationCompletionEvent); ma_semaphore_release(&pDevice->null_device.operationSemaphore); continue; } /* Killing the device means we need to get out of this loop so that this thread can terminate. */ if (operation == MA_DEVICE_OP_KILL__NULL) { pDevice->null_device.operationResult = MA_SUCCESS; ma_event_signal(&pDevice->null_device.operationCompletionEvent); ma_semaphore_release(&pDevice->null_device.operationSemaphore); break; } /* Getting a signal on a "none" operation probably means an error. Return invalid operation. */ if (operation == MA_DEVICE_OP_NONE__NULL) { MA_ASSERT(MA_FALSE); /* <-- Trigger this in debug mode to ensure developers are aware they're doing something wrong (or there's a bug in a miniaudio). */ pDevice->null_device.operationResult = MA_INVALID_OPERATION; ma_event_signal(&pDevice->null_device.operationCompletionEvent); ma_semaphore_release(&pDevice->null_device.operationSemaphore); continue; /* Continue the loop. Don't terminate. */ } } return (ma_thread_result)0; } static ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation) { ma_result result; /* TODO: Need to review this and consider just using mutual exclusion. I think the original motivation for this was to just post the event to a queue and return immediately, but that has since changed and now this function is synchronous. I think this can be simplified to just use a mutex. */ /* The first thing to do is wait for an operation slot to become available. We only have a single slot for this, but we could extend this later to support queing of operations. */ result = ma_semaphore_wait(&pDevice->null_device.operationSemaphore); if (result != MA_SUCCESS) { return result; /* Failed to wait for the event. */ } /* When we get here it means the background thread is not referencing the operation code and it can be changed. After changing this we need to signal an event to the worker thread to let it know that it can start work. */ pDevice->null_device.operation = operation; /* Once the operation code has been set, the worker thread can start work. */ if (ma_event_signal(&pDevice->null_device.operationEvent) != MA_SUCCESS) { return MA_ERROR; } /* We want everything to be synchronous so we're going to wait for the worker thread to complete it's operation. */ if (ma_event_wait(&pDevice->null_device.operationCompletionEvent) != MA_SUCCESS) { return MA_ERROR; } return pDevice->null_device.operationResult; } static ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice) { ma_uint32 internalSampleRate; if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { internalSampleRate = pDevice->capture.internalSampleRate; } else { internalSampleRate = pDevice->playback.internalSampleRate; } return (ma_uint64)((pDevice->null_device.priorRunTime + ma_timer_get_time_in_seconds(&pDevice->null_device.timer)) * internalSampleRate); } static ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Playback. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), "NULL Playback Device", (size_t)-1); deviceInfo.isDefault = MA_TRUE; /* Only one playback and capture device for the null backend, so might as well mark as default. */ cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } /* Capture. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), "NULL Capture Device", (size_t)-1); deviceInfo.isDefault = MA_TRUE; /* Only one playback and capture device for the null backend, so might as well mark as default. */ cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } (void)cbResult; /* Silence a static analysis warning. */ return MA_SUCCESS; } static ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { MA_ASSERT(pContext != NULL); if (pDeviceID != NULL && pDeviceID->nullbackend != 0) { return MA_NO_DEVICE; /* Don't know the device. */ } /* Name / Description */ if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), "NULL Playback Device", (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), "NULL Capture Device", (size_t)-1); } pDeviceInfo->isDefault = MA_TRUE; /* Only one playback and capture device for the null backend, so might as well mark as default. */ /* Support everything on the null backend. */ pDeviceInfo->nativeDataFormats[0].format = ma_format_unknown; pDeviceInfo->nativeDataFormats[0].channels = 0; pDeviceInfo->nativeDataFormats[0].sampleRate = 0; pDeviceInfo->nativeDataFormats[0].flags = 0; pDeviceInfo->nativeDataFormatCount = 1; (void)pContext; return MA_SUCCESS; } static ma_result ma_device_uninit__null(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* Keep it clean and wait for the device thread to finish before returning. */ ma_device_do_operation__null(pDevice, MA_DEVICE_OP_KILL__NULL); /* Wait for the thread to finish before continuing. */ ma_thread_wait(&pDevice->null_device.deviceThread); /* At this point the loop in the device thread is as good as terminated so we can uninitialize our events. */ ma_semaphore_uninit(&pDevice->null_device.operationSemaphore); ma_event_uninit(&pDevice->null_device.operationCompletionEvent); ma_event_uninit(&pDevice->null_device.operationEvent); return MA_SUCCESS; } static ma_result ma_device_init__null(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->null_device); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* The null backend supports everything exactly as we specify it. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { pDescriptorCapture->format = (pDescriptorCapture->format != ma_format_unknown) ? pDescriptorCapture->format : MA_DEFAULT_FORMAT; pDescriptorCapture->channels = (pDescriptorCapture->channels != 0) ? pDescriptorCapture->channels : MA_DEFAULT_CHANNELS; pDescriptorCapture->sampleRate = (pDescriptorCapture->sampleRate != 0) ? pDescriptorCapture->sampleRate : MA_DEFAULT_SAMPLE_RATE; if (pDescriptorCapture->channelMap[0] == MA_CHANNEL_NONE) { ma_channel_map_init_standard(ma_standard_channel_map_default, pDescriptorCapture->channelMap, ma_countof(pDescriptorCapture->channelMap), pDescriptorCapture->channels); } pDescriptorCapture->periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptorCapture, pDescriptorCapture->sampleRate, pConfig->performanceProfile); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { pDescriptorPlayback->format = (pDescriptorPlayback->format != ma_format_unknown) ? pDescriptorPlayback->format : MA_DEFAULT_FORMAT; pDescriptorPlayback->channels = (pDescriptorPlayback->channels != 0) ? pDescriptorPlayback->channels : MA_DEFAULT_CHANNELS; pDescriptorPlayback->sampleRate = (pDescriptorPlayback->sampleRate != 0) ? pDescriptorPlayback->sampleRate : MA_DEFAULT_SAMPLE_RATE; if (pDescriptorPlayback->channelMap[0] == MA_CHANNEL_NONE) { ma_channel_map_init_standard(ma_standard_channel_map_default, pDescriptorPlayback->channelMap, ma_countof(pDescriptorCapture->channelMap), pDescriptorPlayback->channels); } pDescriptorPlayback->periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptorPlayback, pDescriptorPlayback->sampleRate, pConfig->performanceProfile); } /* In order to get timing right, we need to create a thread that does nothing but keeps track of the timer. This timer is started when the first period is "written" to it, and then stopped in ma_device_stop__null(). */ result = ma_event_init(&pDevice->null_device.operationEvent); if (result != MA_SUCCESS) { return result; } result = ma_event_init(&pDevice->null_device.operationCompletionEvent); if (result != MA_SUCCESS) { return result; } result = ma_semaphore_init(1, &pDevice->null_device.operationSemaphore); /* <-- It's important that the initial value is set to 1. */ if (result != MA_SUCCESS) { return result; } result = ma_thread_create(&pDevice->null_device.deviceThread, pDevice->pContext->threadPriority, 0, ma_device_thread__null, pDevice, &pDevice->pContext->allocationCallbacks); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static ma_result ma_device_start__null(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); ma_device_do_operation__null(pDevice, MA_DEVICE_OP_START__NULL); c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_TRUE); return MA_SUCCESS; } static ma_result ma_device_stop__null(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); ma_device_do_operation__null(pDevice, MA_DEVICE_OP_SUSPEND__NULL); c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_FALSE); return MA_SUCCESS; } static ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { ma_result result = MA_SUCCESS; ma_uint32 totalPCMFramesProcessed; ma_bool32 wasStartedOnEntry; if (pFramesWritten != NULL) { *pFramesWritten = 0; } wasStartedOnEntry = c89atomic_load_32(&pDevice->null_device.isStarted); /* Keep going until everything has been read. */ totalPCMFramesProcessed = 0; while (totalPCMFramesProcessed < frameCount) { ma_uint64 targetFrame; /* If there are any frames remaining in the current period, consume those first. */ if (pDevice->null_device.currentPeriodFramesRemainingPlayback > 0) { ma_uint32 framesRemaining = (frameCount - totalPCMFramesProcessed); ma_uint32 framesToProcess = pDevice->null_device.currentPeriodFramesRemainingPlayback; if (framesToProcess > framesRemaining) { framesToProcess = framesRemaining; } /* We don't actually do anything with pPCMFrames, so just mark it as unused to prevent a warning. */ (void)pPCMFrames; pDevice->null_device.currentPeriodFramesRemainingPlayback -= framesToProcess; totalPCMFramesProcessed += framesToProcess; } /* If we've consumed the current period we'll need to mark it as such an ensure the device is started if it's not already. */ if (pDevice->null_device.currentPeriodFramesRemainingPlayback == 0) { pDevice->null_device.currentPeriodFramesRemainingPlayback = 0; if (!c89atomic_load_32(&pDevice->null_device.isStarted) && !wasStartedOnEntry) { result = ma_device_start__null(pDevice); if (result != MA_SUCCESS) { break; } } } /* If we've consumed the whole buffer we can return now. */ MA_ASSERT(totalPCMFramesProcessed <= frameCount); if (totalPCMFramesProcessed == frameCount) { break; } /* Getting here means we've still got more frames to consume, we but need to wait for it to become available. */ targetFrame = pDevice->null_device.lastProcessedFramePlayback; for (;;) { ma_uint64 currentFrame; /* Stop waiting if the device has been stopped. */ if (!c89atomic_load_32(&pDevice->null_device.isStarted)) { break; } currentFrame = ma_device_get_total_run_time_in_frames__null(pDevice); if (currentFrame >= targetFrame) { break; } /* Getting here means we haven't yet reached the target sample, so continue waiting. */ ma_sleep(10); } pDevice->null_device.lastProcessedFramePlayback += pDevice->playback.internalPeriodSizeInFrames; pDevice->null_device.currentPeriodFramesRemainingPlayback = pDevice->playback.internalPeriodSizeInFrames; } if (pFramesWritten != NULL) { *pFramesWritten = totalPCMFramesProcessed; } return result; } static ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint32 totalPCMFramesProcessed; if (pFramesRead != NULL) { *pFramesRead = 0; } /* Keep going until everything has been read. */ totalPCMFramesProcessed = 0; while (totalPCMFramesProcessed < frameCount) { ma_uint64 targetFrame; /* If there are any frames remaining in the current period, consume those first. */ if (pDevice->null_device.currentPeriodFramesRemainingCapture > 0) { ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); ma_uint32 framesRemaining = (frameCount - totalPCMFramesProcessed); ma_uint32 framesToProcess = pDevice->null_device.currentPeriodFramesRemainingCapture; if (framesToProcess > framesRemaining) { framesToProcess = framesRemaining; } /* We need to ensure the output buffer is zeroed. */ MA_ZERO_MEMORY(ma_offset_ptr(pPCMFrames, totalPCMFramesProcessed*bpf), framesToProcess*bpf); pDevice->null_device.currentPeriodFramesRemainingCapture -= framesToProcess; totalPCMFramesProcessed += framesToProcess; } /* If we've consumed the current period we'll need to mark it as such an ensure the device is started if it's not already. */ if (pDevice->null_device.currentPeriodFramesRemainingCapture == 0) { pDevice->null_device.currentPeriodFramesRemainingCapture = 0; } /* If we've consumed the whole buffer we can return now. */ MA_ASSERT(totalPCMFramesProcessed <= frameCount); if (totalPCMFramesProcessed == frameCount) { break; } /* Getting here means we've still got more frames to consume, we but need to wait for it to become available. */ targetFrame = pDevice->null_device.lastProcessedFrameCapture + pDevice->capture.internalPeriodSizeInFrames; for (;;) { ma_uint64 currentFrame; /* Stop waiting if the device has been stopped. */ if (!c89atomic_load_32(&pDevice->null_device.isStarted)) { break; } currentFrame = ma_device_get_total_run_time_in_frames__null(pDevice); if (currentFrame >= targetFrame) { break; } /* Getting here means we haven't yet reached the target sample, so continue waiting. */ ma_sleep(10); } pDevice->null_device.lastProcessedFrameCapture += pDevice->capture.internalPeriodSizeInFrames; pDevice->null_device.currentPeriodFramesRemainingCapture = pDevice->capture.internalPeriodSizeInFrames; } if (pFramesRead != NULL) { *pFramesRead = totalPCMFramesProcessed; } return result; } static ma_result ma_context_uninit__null(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_null); (void)pContext; return MA_SUCCESS; } static ma_result ma_context_init__null(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); (void)pConfig; (void)pContext; pCallbacks->onContextInit = ma_context_init__null; pCallbacks->onContextUninit = ma_context_uninit__null; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__null; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__null; pCallbacks->onDeviceInit = ma_device_init__null; pCallbacks->onDeviceUninit = ma_device_uninit__null; pCallbacks->onDeviceStart = ma_device_start__null; pCallbacks->onDeviceStop = ma_device_stop__null; pCallbacks->onDeviceRead = ma_device_read__null; pCallbacks->onDeviceWrite = ma_device_write__null; pCallbacks->onDeviceDataLoop = NULL; /* Our backend is asynchronous with a blocking read-write API which means we can get miniaudio to deal with the audio thread. */ /* The null backend always works. */ return MA_SUCCESS; } #endif /******************************************************************************* WIN32 COMMON *******************************************************************************/ #if defined(MA_WIN32) #if defined(MA_WIN32_DESKTOP) #define ma_CoInitializeEx(pContext, pvReserved, dwCoInit) ((MA_PFN_CoInitializeEx)pContext->win32.CoInitializeEx)(pvReserved, dwCoInit) #define ma_CoUninitialize(pContext) ((MA_PFN_CoUninitialize)pContext->win32.CoUninitialize)() #define ma_CoCreateInstance(pContext, rclsid, pUnkOuter, dwClsContext, riid, ppv) ((MA_PFN_CoCreateInstance)pContext->win32.CoCreateInstance)(rclsid, pUnkOuter, dwClsContext, riid, ppv) #define ma_CoTaskMemFree(pContext, pv) ((MA_PFN_CoTaskMemFree)pContext->win32.CoTaskMemFree)(pv) #define ma_PropVariantClear(pContext, pvar) ((MA_PFN_PropVariantClear)pContext->win32.PropVariantClear)(pvar) #else #define ma_CoInitializeEx(pContext, pvReserved, dwCoInit) CoInitializeEx(pvReserved, dwCoInit) #define ma_CoUninitialize(pContext) CoUninitialize() #define ma_CoCreateInstance(pContext, rclsid, pUnkOuter, dwClsContext, riid, ppv) CoCreateInstance(rclsid, pUnkOuter, dwClsContext, riid, ppv) #define ma_CoTaskMemFree(pContext, pv) CoTaskMemFree(pv) #define ma_PropVariantClear(pContext, pvar) PropVariantClear(pvar) #endif #if !defined(MAXULONG_PTR) && !defined(__WATCOMC__) typedef size_t DWORD_PTR; #endif #if !defined(WAVE_FORMAT_44M08) #define WAVE_FORMAT_44M08 0x00000100 #define WAVE_FORMAT_44S08 0x00000200 #define WAVE_FORMAT_44M16 0x00000400 #define WAVE_FORMAT_44S16 0x00000800 #define WAVE_FORMAT_48M08 0x00001000 #define WAVE_FORMAT_48S08 0x00002000 #define WAVE_FORMAT_48M16 0x00004000 #define WAVE_FORMAT_48S16 0x00008000 #define WAVE_FORMAT_96M08 0x00010000 #define WAVE_FORMAT_96S08 0x00020000 #define WAVE_FORMAT_96M16 0x00040000 #define WAVE_FORMAT_96S16 0x00080000 #endif #ifndef SPEAKER_FRONT_LEFT #define SPEAKER_FRONT_LEFT 0x1 #define SPEAKER_FRONT_RIGHT 0x2 #define SPEAKER_FRONT_CENTER 0x4 #define SPEAKER_LOW_FREQUENCY 0x8 #define SPEAKER_BACK_LEFT 0x10 #define SPEAKER_BACK_RIGHT 0x20 #define SPEAKER_FRONT_LEFT_OF_CENTER 0x40 #define SPEAKER_FRONT_RIGHT_OF_CENTER 0x80 #define SPEAKER_BACK_CENTER 0x100 #define SPEAKER_SIDE_LEFT 0x200 #define SPEAKER_SIDE_RIGHT 0x400 #define SPEAKER_TOP_CENTER 0x800 #define SPEAKER_TOP_FRONT_LEFT 0x1000 #define SPEAKER_TOP_FRONT_CENTER 0x2000 #define SPEAKER_TOP_FRONT_RIGHT 0x4000 #define SPEAKER_TOP_BACK_LEFT 0x8000 #define SPEAKER_TOP_BACK_CENTER 0x10000 #define SPEAKER_TOP_BACK_RIGHT 0x20000 #endif /* The SDK that comes with old versions of MSVC (VC6, for example) does not appear to define WAVEFORMATEXTENSIBLE. We define our own implementation in this case. */ #if (defined(_MSC_VER) && !defined(_WAVEFORMATEXTENSIBLE_)) || defined(__DMC__) typedef struct { WAVEFORMATEX Format; union { WORD wValidBitsPerSample; WORD wSamplesPerBlock; WORD wReserved; } Samples; DWORD dwChannelMask; GUID SubFormat; } WAVEFORMATEXTENSIBLE; #endif #ifndef WAVE_FORMAT_EXTENSIBLE #define WAVE_FORMAT_EXTENSIBLE 0xFFFE #endif #ifndef WAVE_FORMAT_IEEE_FLOAT #define WAVE_FORMAT_IEEE_FLOAT 0x0003 #endif /* Converts an individual Win32-style channel identifier (SPEAKER_FRONT_LEFT, etc.) to miniaudio. */ static ma_uint8 ma_channel_id_to_ma__win32(DWORD id) { switch (id) { case SPEAKER_FRONT_LEFT: return MA_CHANNEL_FRONT_LEFT; case SPEAKER_FRONT_RIGHT: return MA_CHANNEL_FRONT_RIGHT; case SPEAKER_FRONT_CENTER: return MA_CHANNEL_FRONT_CENTER; case SPEAKER_LOW_FREQUENCY: return MA_CHANNEL_LFE; case SPEAKER_BACK_LEFT: return MA_CHANNEL_BACK_LEFT; case SPEAKER_BACK_RIGHT: return MA_CHANNEL_BACK_RIGHT; case SPEAKER_FRONT_LEFT_OF_CENTER: return MA_CHANNEL_FRONT_LEFT_CENTER; case SPEAKER_FRONT_RIGHT_OF_CENTER: return MA_CHANNEL_FRONT_RIGHT_CENTER; case SPEAKER_BACK_CENTER: return MA_CHANNEL_BACK_CENTER; case SPEAKER_SIDE_LEFT: return MA_CHANNEL_SIDE_LEFT; case SPEAKER_SIDE_RIGHT: return MA_CHANNEL_SIDE_RIGHT; case SPEAKER_TOP_CENTER: return MA_CHANNEL_TOP_CENTER; case SPEAKER_TOP_FRONT_LEFT: return MA_CHANNEL_TOP_FRONT_LEFT; case SPEAKER_TOP_FRONT_CENTER: return MA_CHANNEL_TOP_FRONT_CENTER; case SPEAKER_TOP_FRONT_RIGHT: return MA_CHANNEL_TOP_FRONT_RIGHT; case SPEAKER_TOP_BACK_LEFT: return MA_CHANNEL_TOP_BACK_LEFT; case SPEAKER_TOP_BACK_CENTER: return MA_CHANNEL_TOP_BACK_CENTER; case SPEAKER_TOP_BACK_RIGHT: return MA_CHANNEL_TOP_BACK_RIGHT; default: return 0; } } /* Converts an individual miniaudio channel identifier (MA_CHANNEL_FRONT_LEFT, etc.) to Win32-style. */ static DWORD ma_channel_id_to_win32(DWORD id) { switch (id) { case MA_CHANNEL_MONO: return SPEAKER_FRONT_CENTER; case MA_CHANNEL_FRONT_LEFT: return SPEAKER_FRONT_LEFT; case MA_CHANNEL_FRONT_RIGHT: return SPEAKER_FRONT_RIGHT; case MA_CHANNEL_FRONT_CENTER: return SPEAKER_FRONT_CENTER; case MA_CHANNEL_LFE: return SPEAKER_LOW_FREQUENCY; case MA_CHANNEL_BACK_LEFT: return SPEAKER_BACK_LEFT; case MA_CHANNEL_BACK_RIGHT: return SPEAKER_BACK_RIGHT; case MA_CHANNEL_FRONT_LEFT_CENTER: return SPEAKER_FRONT_LEFT_OF_CENTER; case MA_CHANNEL_FRONT_RIGHT_CENTER: return SPEAKER_FRONT_RIGHT_OF_CENTER; case MA_CHANNEL_BACK_CENTER: return SPEAKER_BACK_CENTER; case MA_CHANNEL_SIDE_LEFT: return SPEAKER_SIDE_LEFT; case MA_CHANNEL_SIDE_RIGHT: return SPEAKER_SIDE_RIGHT; case MA_CHANNEL_TOP_CENTER: return SPEAKER_TOP_CENTER; case MA_CHANNEL_TOP_FRONT_LEFT: return SPEAKER_TOP_FRONT_LEFT; case MA_CHANNEL_TOP_FRONT_CENTER: return SPEAKER_TOP_FRONT_CENTER; case MA_CHANNEL_TOP_FRONT_RIGHT: return SPEAKER_TOP_FRONT_RIGHT; case MA_CHANNEL_TOP_BACK_LEFT: return SPEAKER_TOP_BACK_LEFT; case MA_CHANNEL_TOP_BACK_CENTER: return SPEAKER_TOP_BACK_CENTER; case MA_CHANNEL_TOP_BACK_RIGHT: return SPEAKER_TOP_BACK_RIGHT; default: return 0; } } /* Converts a channel mapping to a Win32-style channel mask. */ static DWORD ma_channel_map_to_channel_mask__win32(const ma_channel* pChannelMap, ma_uint32 channels) { DWORD dwChannelMask = 0; ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { dwChannelMask |= ma_channel_id_to_win32(pChannelMap[iChannel]); } return dwChannelMask; } /* Converts a Win32-style channel mask to a miniaudio channel map. */ static void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channels, ma_channel* pChannelMap) { /* If the channel mask is set to 0, just assume a default Win32 channel map. */ if (dwChannelMask == 0) { ma_channel_map_init_standard(ma_standard_channel_map_microsoft, pChannelMap, channels, channels); } else { if (channels == 1 && (dwChannelMask & SPEAKER_FRONT_CENTER) != 0) { pChannelMap[0] = MA_CHANNEL_MONO; } else { /* Just iterate over each bit. */ ma_uint32 iChannel = 0; ma_uint32 iBit; for (iBit = 0; iBit < 32 && iChannel < channels; ++iBit) { DWORD bitValue = (dwChannelMask & (1UL << iBit)); if (bitValue != 0) { /* The bit is set. */ pChannelMap[iChannel] = ma_channel_id_to_ma__win32(bitValue); iChannel += 1; } } } } } #ifdef __cplusplus static ma_bool32 ma_is_guid_equal(const void* a, const void* b) { return IsEqualGUID(*(const GUID*)a, *(const GUID*)b); } #else #define ma_is_guid_equal(a, b) IsEqualGUID((const GUID*)a, (const GUID*)b) #endif static MA_INLINE ma_bool32 ma_is_guid_null(const void* guid) { static GUID nullguid = {0x00000000, 0x0000, 0x0000, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; return ma_is_guid_equal(guid, &nullguid); } static ma_format ma_format_from_WAVEFORMATEX(const WAVEFORMATEX* pWF) { MA_ASSERT(pWF != NULL); if (pWF->wFormatTag == WAVE_FORMAT_EXTENSIBLE) { const WAVEFORMATEXTENSIBLE* pWFEX = (const WAVEFORMATEXTENSIBLE*)pWF; if (ma_is_guid_equal(&pWFEX->SubFormat, &MA_GUID_KSDATAFORMAT_SUBTYPE_PCM)) { if (pWFEX->Samples.wValidBitsPerSample == 32) { return ma_format_s32; } if (pWFEX->Samples.wValidBitsPerSample == 24) { if (pWFEX->Format.wBitsPerSample == 32) { return ma_format_s32; } if (pWFEX->Format.wBitsPerSample == 24) { return ma_format_s24; } } if (pWFEX->Samples.wValidBitsPerSample == 16) { return ma_format_s16; } if (pWFEX->Samples.wValidBitsPerSample == 8) { return ma_format_u8; } } if (ma_is_guid_equal(&pWFEX->SubFormat, &MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) { if (pWFEX->Samples.wValidBitsPerSample == 32) { return ma_format_f32; } /* if (pWFEX->Samples.wValidBitsPerSample == 64) { return ma_format_f64; } */ } } else { if (pWF->wFormatTag == WAVE_FORMAT_PCM) { if (pWF->wBitsPerSample == 32) { return ma_format_s32; } if (pWF->wBitsPerSample == 24) { return ma_format_s24; } if (pWF->wBitsPerSample == 16) { return ma_format_s16; } if (pWF->wBitsPerSample == 8) { return ma_format_u8; } } if (pWF->wFormatTag == WAVE_FORMAT_IEEE_FLOAT) { if (pWF->wBitsPerSample == 32) { return ma_format_f32; } if (pWF->wBitsPerSample == 64) { /*return ma_format_f64;*/ } } } return ma_format_unknown; } #endif /******************************************************************************* WASAPI Backend *******************************************************************************/ #ifdef MA_HAS_WASAPI #if 0 #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable:4091) /* 'typedef ': ignored on left of '' when no variable is declared */ #endif #include #include #if defined(_MSC_VER) #pragma warning(pop) #endif #endif /* 0 */ static ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type deviceType); /* Some compilers don't define VerifyVersionInfoW. Need to write this ourselves. */ #define MA_WIN32_WINNT_VISTA 0x0600 #define MA_VER_MINORVERSION 0x01 #define MA_VER_MAJORVERSION 0x02 #define MA_VER_SERVICEPACKMAJOR 0x20 #define MA_VER_GREATER_EQUAL 0x03 typedef struct { DWORD dwOSVersionInfoSize; DWORD dwMajorVersion; DWORD dwMinorVersion; DWORD dwBuildNumber; DWORD dwPlatformId; WCHAR szCSDVersion[128]; WORD wServicePackMajor; WORD wServicePackMinor; WORD wSuiteMask; BYTE wProductType; BYTE wReserved; } ma_OSVERSIONINFOEXW; typedef BOOL (WINAPI * ma_PFNVerifyVersionInfoW) (ma_OSVERSIONINFOEXW* lpVersionInfo, DWORD dwTypeMask, DWORDLONG dwlConditionMask); typedef ULONGLONG (WINAPI * ma_PFNVerSetConditionMask)(ULONGLONG dwlConditionMask, DWORD dwTypeBitMask, BYTE dwConditionMask); #ifndef PROPERTYKEY_DEFINED #define PROPERTYKEY_DEFINED #ifndef __WATCOMC__ typedef struct { GUID fmtid; DWORD pid; } PROPERTYKEY; #endif #endif /* Some compilers don't define PropVariantInit(). We just do this ourselves since it's just a memset(). */ static MA_INLINE void ma_PropVariantInit(PROPVARIANT* pProp) { MA_ZERO_OBJECT(pProp); } static const PROPERTYKEY MA_PKEY_Device_FriendlyName = {{0xA45C254E, 0xDF1C, 0x4EFD, {0x80, 0x20, 0x67, 0xD1, 0x46, 0xA8, 0x50, 0xE0}}, 14}; static const PROPERTYKEY MA_PKEY_AudioEngine_DeviceFormat = {{0xF19F064D, 0x82C, 0x4E27, {0xBC, 0x73, 0x68, 0x82, 0xA1, 0xBB, 0x8E, 0x4C}}, 0}; static const IID MA_IID_IUnknown = {0x00000000, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; /* 00000000-0000-0000-C000-000000000046 */ #if !defined(MA_WIN32_DESKTOP) && !defined(MA_WIN32_GDK) static const IID MA_IID_IAgileObject = {0x94EA2B94, 0xE9CC, 0x49E0, {0xC0, 0xFF, 0xEE, 0x64, 0xCA, 0x8F, 0x5B, 0x90}}; /* 94EA2B94-E9CC-49E0-C0FF-EE64CA8F5B90 */ #endif static const IID MA_IID_IAudioClient = {0x1CB9AD4C, 0xDBFA, 0x4C32, {0xB1, 0x78, 0xC2, 0xF5, 0x68, 0xA7, 0x03, 0xB2}}; /* 1CB9AD4C-DBFA-4C32-B178-C2F568A703B2 = __uuidof(IAudioClient) */ static const IID MA_IID_IAudioClient2 = {0x726778CD, 0xF60A, 0x4EDA, {0x82, 0xDE, 0xE4, 0x76, 0x10, 0xCD, 0x78, 0xAA}}; /* 726778CD-F60A-4EDA-82DE-E47610CD78AA = __uuidof(IAudioClient2) */ static const IID MA_IID_IAudioClient3 = {0x7ED4EE07, 0x8E67, 0x4CD4, {0x8C, 0x1A, 0x2B, 0x7A, 0x59, 0x87, 0xAD, 0x42}}; /* 7ED4EE07-8E67-4CD4-8C1A-2B7A5987AD42 = __uuidof(IAudioClient3) */ static const IID MA_IID_IAudioRenderClient = {0xF294ACFC, 0x3146, 0x4483, {0xA7, 0xBF, 0xAD, 0xDC, 0xA7, 0xC2, 0x60, 0xE2}}; /* F294ACFC-3146-4483-A7BF-ADDCA7C260E2 = __uuidof(IAudioRenderClient) */ static const IID MA_IID_IAudioCaptureClient = {0xC8ADBD64, 0xE71E, 0x48A0, {0xA4, 0xDE, 0x18, 0x5C, 0x39, 0x5C, 0xD3, 0x17}}; /* C8ADBD64-E71E-48A0-A4DE-185C395CD317 = __uuidof(IAudioCaptureClient) */ static const IID MA_IID_IMMNotificationClient = {0x7991EEC9, 0x7E89, 0x4D85, {0x83, 0x90, 0x6C, 0x70, 0x3C, 0xEC, 0x60, 0xC0}}; /* 7991EEC9-7E89-4D85-8390-6C703CEC60C0 = __uuidof(IMMNotificationClient) */ #if !defined(MA_WIN32_DESKTOP) && !defined(MA_WIN32_GDK) static const IID MA_IID_DEVINTERFACE_AUDIO_RENDER = {0xE6327CAD, 0xDCEC, 0x4949, {0xAE, 0x8A, 0x99, 0x1E, 0x97, 0x6A, 0x79, 0xD2}}; /* E6327CAD-DCEC-4949-AE8A-991E976A79D2 */ static const IID MA_IID_DEVINTERFACE_AUDIO_CAPTURE = {0x2EEF81BE, 0x33FA, 0x4800, {0x96, 0x70, 0x1C, 0xD4, 0x74, 0x97, 0x2C, 0x3F}}; /* 2EEF81BE-33FA-4800-9670-1CD474972C3F */ static const IID MA_IID_IActivateAudioInterfaceCompletionHandler = {0x41D949AB, 0x9862, 0x444A, {0x80, 0xF6, 0xC2, 0x61, 0x33, 0x4D, 0xA5, 0xEB}}; /* 41D949AB-9862-444A-80F6-C261334DA5EB */ #endif static const IID MA_CLSID_MMDeviceEnumerator_Instance = {0xBCDE0395, 0xE52F, 0x467C, {0x8E, 0x3D, 0xC4, 0x57, 0x92, 0x91, 0x69, 0x2E}}; /* BCDE0395-E52F-467C-8E3D-C4579291692E = __uuidof(MMDeviceEnumerator) */ static const IID MA_IID_IMMDeviceEnumerator_Instance = {0xA95664D2, 0x9614, 0x4F35, {0xA7, 0x46, 0xDE, 0x8D, 0xB6, 0x36, 0x17, 0xE6}}; /* A95664D2-9614-4F35-A746-DE8DB63617E6 = __uuidof(IMMDeviceEnumerator) */ #ifdef __cplusplus #define MA_CLSID_MMDeviceEnumerator MA_CLSID_MMDeviceEnumerator_Instance #define MA_IID_IMMDeviceEnumerator MA_IID_IMMDeviceEnumerator_Instance #else #define MA_CLSID_MMDeviceEnumerator &MA_CLSID_MMDeviceEnumerator_Instance #define MA_IID_IMMDeviceEnumerator &MA_IID_IMMDeviceEnumerator_Instance #endif typedef struct ma_IUnknown ma_IUnknown; #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) #define MA_MM_DEVICE_STATE_ACTIVE 1 #define MA_MM_DEVICE_STATE_DISABLED 2 #define MA_MM_DEVICE_STATE_NOTPRESENT 4 #define MA_MM_DEVICE_STATE_UNPLUGGED 8 typedef struct ma_IMMDeviceEnumerator ma_IMMDeviceEnumerator; typedef struct ma_IMMDeviceCollection ma_IMMDeviceCollection; typedef struct ma_IMMDevice ma_IMMDevice; #else typedef struct ma_IActivateAudioInterfaceCompletionHandler ma_IActivateAudioInterfaceCompletionHandler; typedef struct ma_IActivateAudioInterfaceAsyncOperation ma_IActivateAudioInterfaceAsyncOperation; #endif typedef struct ma_IPropertyStore ma_IPropertyStore; typedef struct ma_IAudioClient ma_IAudioClient; typedef struct ma_IAudioClient2 ma_IAudioClient2; typedef struct ma_IAudioClient3 ma_IAudioClient3; typedef struct ma_IAudioRenderClient ma_IAudioRenderClient; typedef struct ma_IAudioCaptureClient ma_IAudioCaptureClient; typedef ma_int64 MA_REFERENCE_TIME; #define MA_AUDCLNT_STREAMFLAGS_CROSSPROCESS 0x00010000 #define MA_AUDCLNT_STREAMFLAGS_LOOPBACK 0x00020000 #define MA_AUDCLNT_STREAMFLAGS_EVENTCALLBACK 0x00040000 #define MA_AUDCLNT_STREAMFLAGS_NOPERSIST 0x00080000 #define MA_AUDCLNT_STREAMFLAGS_RATEADJUST 0x00100000 #define MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY 0x08000000 #define MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM 0x80000000 #define MA_AUDCLNT_SESSIONFLAGS_EXPIREWHENUNOWNED 0x10000000 #define MA_AUDCLNT_SESSIONFLAGS_DISPLAY_HIDE 0x20000000 #define MA_AUDCLNT_SESSIONFLAGS_DISPLAY_HIDEWHENEXPIRED 0x40000000 /* Buffer flags. */ #define MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY 1 #define MA_AUDCLNT_BUFFERFLAGS_SILENT 2 #define MA_AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR 4 typedef enum { ma_eRender = 0, ma_eCapture = 1, ma_eAll = 2 } ma_EDataFlow; typedef enum { ma_eConsole = 0, ma_eMultimedia = 1, ma_eCommunications = 2 } ma_ERole; typedef enum { MA_AUDCLNT_SHAREMODE_SHARED, MA_AUDCLNT_SHAREMODE_EXCLUSIVE } MA_AUDCLNT_SHAREMODE; typedef enum { MA_AudioCategory_Other = 0 /* <-- miniaudio is only caring about Other. */ } MA_AUDIO_STREAM_CATEGORY; typedef struct { ma_uint32 cbSize; BOOL bIsOffload; MA_AUDIO_STREAM_CATEGORY eCategory; } ma_AudioClientProperties; /* IUnknown */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IUnknown* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IUnknown* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IUnknown* pThis); } ma_IUnknownVtbl; struct ma_IUnknown { ma_IUnknownVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IUnknown_QueryInterface(ma_IUnknown* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IUnknown_AddRef(ma_IUnknown* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IUnknown_Release(ma_IUnknown* pThis) { return pThis->lpVtbl->Release(pThis); } #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) /* IMMNotificationClient */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMNotificationClient* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMNotificationClient* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IMMNotificationClient* pThis); /* IMMNotificationClient */ HRESULT (STDMETHODCALLTYPE * OnDeviceStateChanged) (ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState); HRESULT (STDMETHODCALLTYPE * OnDeviceAdded) (ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID); HRESULT (STDMETHODCALLTYPE * OnDeviceRemoved) (ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID); HRESULT (STDMETHODCALLTYPE * OnDefaultDeviceChanged)(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID); HRESULT (STDMETHODCALLTYPE * OnPropertyValueChanged)(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key); } ma_IMMNotificationClientVtbl; /* IMMDeviceEnumerator */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMDeviceEnumerator* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMDeviceEnumerator* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IMMDeviceEnumerator* pThis); /* IMMDeviceEnumerator */ HRESULT (STDMETHODCALLTYPE * EnumAudioEndpoints) (ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, DWORD dwStateMask, ma_IMMDeviceCollection** ppDevices); HRESULT (STDMETHODCALLTYPE * GetDefaultAudioEndpoint) (ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, ma_ERole role, ma_IMMDevice** ppEndpoint); HRESULT (STDMETHODCALLTYPE * GetDevice) (ma_IMMDeviceEnumerator* pThis, LPCWSTR pID, ma_IMMDevice** ppDevice); HRESULT (STDMETHODCALLTYPE * RegisterEndpointNotificationCallback) (ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient); HRESULT (STDMETHODCALLTYPE * UnregisterEndpointNotificationCallback)(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient); } ma_IMMDeviceEnumeratorVtbl; struct ma_IMMDeviceEnumerator { ma_IMMDeviceEnumeratorVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IMMDeviceEnumerator_QueryInterface(ma_IMMDeviceEnumerator* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IMMDeviceEnumerator_AddRef(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IMMDeviceEnumerator_Release(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IMMDeviceEnumerator_EnumAudioEndpoints(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, DWORD dwStateMask, ma_IMMDeviceCollection** ppDevices) { return pThis->lpVtbl->EnumAudioEndpoints(pThis, dataFlow, dwStateMask, ppDevices); } static MA_INLINE HRESULT ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, ma_ERole role, ma_IMMDevice** ppEndpoint) { return pThis->lpVtbl->GetDefaultAudioEndpoint(pThis, dataFlow, role, ppEndpoint); } static MA_INLINE HRESULT ma_IMMDeviceEnumerator_GetDevice(ma_IMMDeviceEnumerator* pThis, LPCWSTR pID, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->GetDevice(pThis, pID, ppDevice); } static MA_INLINE HRESULT ma_IMMDeviceEnumerator_RegisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->RegisterEndpointNotificationCallback(pThis, pClient); } static MA_INLINE HRESULT ma_IMMDeviceEnumerator_UnregisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->UnregisterEndpointNotificationCallback(pThis, pClient); } /* IMMDeviceCollection */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMDeviceCollection* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMDeviceCollection* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IMMDeviceCollection* pThis); /* IMMDeviceCollection */ HRESULT (STDMETHODCALLTYPE * GetCount)(ma_IMMDeviceCollection* pThis, UINT* pDevices); HRESULT (STDMETHODCALLTYPE * Item) (ma_IMMDeviceCollection* pThis, UINT nDevice, ma_IMMDevice** ppDevice); } ma_IMMDeviceCollectionVtbl; struct ma_IMMDeviceCollection { ma_IMMDeviceCollectionVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IMMDeviceCollection_QueryInterface(ma_IMMDeviceCollection* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IMMDeviceCollection_AddRef(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IMMDeviceCollection_Release(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IMMDeviceCollection_GetCount(ma_IMMDeviceCollection* pThis, UINT* pDevices) { return pThis->lpVtbl->GetCount(pThis, pDevices); } static MA_INLINE HRESULT ma_IMMDeviceCollection_Item(ma_IMMDeviceCollection* pThis, UINT nDevice, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->Item(pThis, nDevice, ppDevice); } /* IMMDevice */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMDevice* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMDevice* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IMMDevice* pThis); /* IMMDevice */ HRESULT (STDMETHODCALLTYPE * Activate) (ma_IMMDevice* pThis, const IID* const iid, DWORD dwClsCtx, PROPVARIANT* pActivationParams, void** ppInterface); HRESULT (STDMETHODCALLTYPE * OpenPropertyStore)(ma_IMMDevice* pThis, DWORD stgmAccess, ma_IPropertyStore** ppProperties); HRESULT (STDMETHODCALLTYPE * GetId) (ma_IMMDevice* pThis, LPWSTR *pID); HRESULT (STDMETHODCALLTYPE * GetState) (ma_IMMDevice* pThis, DWORD *pState); } ma_IMMDeviceVtbl; struct ma_IMMDevice { ma_IMMDeviceVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IMMDevice_QueryInterface(ma_IMMDevice* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IMMDevice_AddRef(ma_IMMDevice* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IMMDevice_Release(ma_IMMDevice* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IMMDevice_Activate(ma_IMMDevice* pThis, const IID* const iid, DWORD dwClsCtx, PROPVARIANT* pActivationParams, void** ppInterface) { return pThis->lpVtbl->Activate(pThis, iid, dwClsCtx, pActivationParams, ppInterface); } static MA_INLINE HRESULT ma_IMMDevice_OpenPropertyStore(ma_IMMDevice* pThis, DWORD stgmAccess, ma_IPropertyStore** ppProperties) { return pThis->lpVtbl->OpenPropertyStore(pThis, stgmAccess, ppProperties); } static MA_INLINE HRESULT ma_IMMDevice_GetId(ma_IMMDevice* pThis, LPWSTR *pID) { return pThis->lpVtbl->GetId(pThis, pID); } static MA_INLINE HRESULT ma_IMMDevice_GetState(ma_IMMDevice* pThis, DWORD *pState) { return pThis->lpVtbl->GetState(pThis, pState); } #else /* IActivateAudioInterfaceAsyncOperation */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IActivateAudioInterfaceAsyncOperation* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IActivateAudioInterfaceAsyncOperation* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IActivateAudioInterfaceAsyncOperation* pThis); /* IActivateAudioInterfaceAsyncOperation */ HRESULT (STDMETHODCALLTYPE * GetActivateResult)(ma_IActivateAudioInterfaceAsyncOperation* pThis, HRESULT *pActivateResult, ma_IUnknown** ppActivatedInterface); } ma_IActivateAudioInterfaceAsyncOperationVtbl; struct ma_IActivateAudioInterfaceAsyncOperation { ma_IActivateAudioInterfaceAsyncOperationVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IActivateAudioInterfaceAsyncOperation_QueryInterface(ma_IActivateAudioInterfaceAsyncOperation* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IActivateAudioInterfaceAsyncOperation_AddRef(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IActivateAudioInterfaceAsyncOperation_Release(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IActivateAudioInterfaceAsyncOperation_GetActivateResult(ma_IActivateAudioInterfaceAsyncOperation* pThis, HRESULT *pActivateResult, ma_IUnknown** ppActivatedInterface) { return pThis->lpVtbl->GetActivateResult(pThis, pActivateResult, ppActivatedInterface); } #endif /* IPropertyStore */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IPropertyStore* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IPropertyStore* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IPropertyStore* pThis); /* IPropertyStore */ HRESULT (STDMETHODCALLTYPE * GetCount)(ma_IPropertyStore* pThis, DWORD* pPropCount); HRESULT (STDMETHODCALLTYPE * GetAt) (ma_IPropertyStore* pThis, DWORD propIndex, PROPERTYKEY* pPropKey); HRESULT (STDMETHODCALLTYPE * GetValue)(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, PROPVARIANT* pPropVar); HRESULT (STDMETHODCALLTYPE * SetValue)(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, const PROPVARIANT* const pPropVar); HRESULT (STDMETHODCALLTYPE * Commit) (ma_IPropertyStore* pThis); } ma_IPropertyStoreVtbl; struct ma_IPropertyStore { ma_IPropertyStoreVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IPropertyStore_QueryInterface(ma_IPropertyStore* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IPropertyStore_AddRef(ma_IPropertyStore* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IPropertyStore_Release(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IPropertyStore_GetCount(ma_IPropertyStore* pThis, DWORD* pPropCount) { return pThis->lpVtbl->GetCount(pThis, pPropCount); } static MA_INLINE HRESULT ma_IPropertyStore_GetAt(ma_IPropertyStore* pThis, DWORD propIndex, PROPERTYKEY* pPropKey) { return pThis->lpVtbl->GetAt(pThis, propIndex, pPropKey); } static MA_INLINE HRESULT ma_IPropertyStore_GetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, PROPVARIANT* pPropVar) { return pThis->lpVtbl->GetValue(pThis, pKey, pPropVar); } static MA_INLINE HRESULT ma_IPropertyStore_SetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, const PROPVARIANT* const pPropVar) { return pThis->lpVtbl->SetValue(pThis, pKey, pPropVar); } static MA_INLINE HRESULT ma_IPropertyStore_Commit(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Commit(pThis); } /* IAudioClient */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioClient* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioClient* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioClient* pThis); /* IAudioClient */ HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid); HRESULT (STDMETHODCALLTYPE * GetBufferSize) (ma_IAudioClient* pThis, ma_uint32* pNumBufferFrames); HRESULT (STDMETHODCALLTYPE * GetStreamLatency) (ma_IAudioClient* pThis, MA_REFERENCE_TIME* pLatency); HRESULT (STDMETHODCALLTYPE * GetCurrentPadding)(ma_IAudioClient* pThis, ma_uint32* pNumPaddingFrames); HRESULT (STDMETHODCALLTYPE * IsFormatSupported)(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch); HRESULT (STDMETHODCALLTYPE * GetMixFormat) (ma_IAudioClient* pThis, WAVEFORMATEX** ppDeviceFormat); HRESULT (STDMETHODCALLTYPE * GetDevicePeriod) (ma_IAudioClient* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod); HRESULT (STDMETHODCALLTYPE * Start) (ma_IAudioClient* pThis); HRESULT (STDMETHODCALLTYPE * Stop) (ma_IAudioClient* pThis); HRESULT (STDMETHODCALLTYPE * Reset) (ma_IAudioClient* pThis); HRESULT (STDMETHODCALLTYPE * SetEventHandle) (ma_IAudioClient* pThis, HANDLE eventHandle); HRESULT (STDMETHODCALLTYPE * GetService) (ma_IAudioClient* pThis, const IID* const riid, void** pp); } ma_IAudioClientVtbl; struct ma_IAudioClient { ma_IAudioClientVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IAudioClient_QueryInterface(ma_IAudioClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IAudioClient_AddRef(ma_IAudioClient* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IAudioClient_Release(ma_IAudioClient* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IAudioClient_Initialize(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); } static MA_INLINE HRESULT ma_IAudioClient_GetBufferSize(ma_IAudioClient* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); } static MA_INLINE HRESULT ma_IAudioClient_GetStreamLatency(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); } static MA_INLINE HRESULT ma_IAudioClient_GetCurrentPadding(ma_IAudioClient* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); } static MA_INLINE HRESULT ma_IAudioClient_IsFormatSupported(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); } static MA_INLINE HRESULT ma_IAudioClient_GetMixFormat(ma_IAudioClient* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); } static MA_INLINE HRESULT ma_IAudioClient_GetDevicePeriod(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); } static MA_INLINE HRESULT ma_IAudioClient_Start(ma_IAudioClient* pThis) { return pThis->lpVtbl->Start(pThis); } static MA_INLINE HRESULT ma_IAudioClient_Stop(ma_IAudioClient* pThis) { return pThis->lpVtbl->Stop(pThis); } static MA_INLINE HRESULT ma_IAudioClient_Reset(ma_IAudioClient* pThis) { return pThis->lpVtbl->Reset(pThis); } static MA_INLINE HRESULT ma_IAudioClient_SetEventHandle(ma_IAudioClient* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); } static MA_INLINE HRESULT ma_IAudioClient_GetService(ma_IAudioClient* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); } /* IAudioClient2 */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioClient2* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioClient2* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioClient2* pThis); /* IAudioClient */ HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid); HRESULT (STDMETHODCALLTYPE * GetBufferSize) (ma_IAudioClient2* pThis, ma_uint32* pNumBufferFrames); HRESULT (STDMETHODCALLTYPE * GetStreamLatency) (ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pLatency); HRESULT (STDMETHODCALLTYPE * GetCurrentPadding)(ma_IAudioClient2* pThis, ma_uint32* pNumPaddingFrames); HRESULT (STDMETHODCALLTYPE * IsFormatSupported)(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch); HRESULT (STDMETHODCALLTYPE * GetMixFormat) (ma_IAudioClient2* pThis, WAVEFORMATEX** ppDeviceFormat); HRESULT (STDMETHODCALLTYPE * GetDevicePeriod) (ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod); HRESULT (STDMETHODCALLTYPE * Start) (ma_IAudioClient2* pThis); HRESULT (STDMETHODCALLTYPE * Stop) (ma_IAudioClient2* pThis); HRESULT (STDMETHODCALLTYPE * Reset) (ma_IAudioClient2* pThis); HRESULT (STDMETHODCALLTYPE * SetEventHandle) (ma_IAudioClient2* pThis, HANDLE eventHandle); HRESULT (STDMETHODCALLTYPE * GetService) (ma_IAudioClient2* pThis, const IID* const riid, void** pp); /* IAudioClient2 */ HRESULT (STDMETHODCALLTYPE * IsOffloadCapable) (ma_IAudioClient2* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable); HRESULT (STDMETHODCALLTYPE * SetClientProperties)(ma_IAudioClient2* pThis, const ma_AudioClientProperties* pProperties); HRESULT (STDMETHODCALLTYPE * GetBufferSizeLimits)(ma_IAudioClient2* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration); } ma_IAudioClient2Vtbl; struct ma_IAudioClient2 { ma_IAudioClient2Vtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IAudioClient2_QueryInterface(ma_IAudioClient2* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IAudioClient2_AddRef(ma_IAudioClient2* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IAudioClient2_Release(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IAudioClient2_Initialize(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); } static MA_INLINE HRESULT ma_IAudioClient2_GetBufferSize(ma_IAudioClient2* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); } static MA_INLINE HRESULT ma_IAudioClient2_GetStreamLatency(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); } static MA_INLINE HRESULT ma_IAudioClient2_GetCurrentPadding(ma_IAudioClient2* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); } static MA_INLINE HRESULT ma_IAudioClient2_IsFormatSupported(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); } static MA_INLINE HRESULT ma_IAudioClient2_GetMixFormat(ma_IAudioClient2* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); } static MA_INLINE HRESULT ma_IAudioClient2_GetDevicePeriod(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); } static MA_INLINE HRESULT ma_IAudioClient2_Start(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Start(pThis); } static MA_INLINE HRESULT ma_IAudioClient2_Stop(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Stop(pThis); } static MA_INLINE HRESULT ma_IAudioClient2_Reset(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Reset(pThis); } static MA_INLINE HRESULT ma_IAudioClient2_SetEventHandle(ma_IAudioClient2* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); } static MA_INLINE HRESULT ma_IAudioClient2_GetService(ma_IAudioClient2* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); } static MA_INLINE HRESULT ma_IAudioClient2_IsOffloadCapable(ma_IAudioClient2* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); } static MA_INLINE HRESULT ma_IAudioClient2_SetClientProperties(ma_IAudioClient2* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); } static MA_INLINE HRESULT ma_IAudioClient2_GetBufferSizeLimits(ma_IAudioClient2* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); } /* IAudioClient3 */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioClient3* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioClient3* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioClient3* pThis); /* IAudioClient */ HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid); HRESULT (STDMETHODCALLTYPE * GetBufferSize) (ma_IAudioClient3* pThis, ma_uint32* pNumBufferFrames); HRESULT (STDMETHODCALLTYPE * GetStreamLatency) (ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pLatency); HRESULT (STDMETHODCALLTYPE * GetCurrentPadding)(ma_IAudioClient3* pThis, ma_uint32* pNumPaddingFrames); HRESULT (STDMETHODCALLTYPE * IsFormatSupported)(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch); HRESULT (STDMETHODCALLTYPE * GetMixFormat) (ma_IAudioClient3* pThis, WAVEFORMATEX** ppDeviceFormat); HRESULT (STDMETHODCALLTYPE * GetDevicePeriod) (ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod); HRESULT (STDMETHODCALLTYPE * Start) (ma_IAudioClient3* pThis); HRESULT (STDMETHODCALLTYPE * Stop) (ma_IAudioClient3* pThis); HRESULT (STDMETHODCALLTYPE * Reset) (ma_IAudioClient3* pThis); HRESULT (STDMETHODCALLTYPE * SetEventHandle) (ma_IAudioClient3* pThis, HANDLE eventHandle); HRESULT (STDMETHODCALLTYPE * GetService) (ma_IAudioClient3* pThis, const IID* const riid, void** pp); /* IAudioClient2 */ HRESULT (STDMETHODCALLTYPE * IsOffloadCapable) (ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable); HRESULT (STDMETHODCALLTYPE * SetClientProperties)(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties); HRESULT (STDMETHODCALLTYPE * GetBufferSizeLimits)(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration); /* IAudioClient3 */ HRESULT (STDMETHODCALLTYPE * GetSharedModeEnginePeriod) (ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, ma_uint32* pDefaultPeriodInFrames, ma_uint32* pFundamentalPeriodInFrames, ma_uint32* pMinPeriodInFrames, ma_uint32* pMaxPeriodInFrames); HRESULT (STDMETHODCALLTYPE * GetCurrentSharedModeEnginePeriod)(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, ma_uint32* pCurrentPeriodInFrames); HRESULT (STDMETHODCALLTYPE * InitializeSharedAudioStream) (ma_IAudioClient3* pThis, DWORD streamFlags, ma_uint32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid); } ma_IAudioClient3Vtbl; struct ma_IAudioClient3 { ma_IAudioClient3Vtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IAudioClient3_QueryInterface(ma_IAudioClient3* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IAudioClient3_AddRef(ma_IAudioClient3* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IAudioClient3_Release(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IAudioClient3_Initialize(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); } static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSize(ma_IAudioClient3* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); } static MA_INLINE HRESULT ma_IAudioClient3_GetStreamLatency(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); } static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentPadding(ma_IAudioClient3* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); } static MA_INLINE HRESULT ma_IAudioClient3_IsFormatSupported(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); } static MA_INLINE HRESULT ma_IAudioClient3_GetMixFormat(ma_IAudioClient3* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); } static MA_INLINE HRESULT ma_IAudioClient3_GetDevicePeriod(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); } static MA_INLINE HRESULT ma_IAudioClient3_Start(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Start(pThis); } static MA_INLINE HRESULT ma_IAudioClient3_Stop(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Stop(pThis); } static MA_INLINE HRESULT ma_IAudioClient3_Reset(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Reset(pThis); } static MA_INLINE HRESULT ma_IAudioClient3_SetEventHandle(ma_IAudioClient3* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); } static MA_INLINE HRESULT ma_IAudioClient3_GetService(ma_IAudioClient3* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); } static MA_INLINE HRESULT ma_IAudioClient3_IsOffloadCapable(ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); } static MA_INLINE HRESULT ma_IAudioClient3_SetClientProperties(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); } static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSizeLimits(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); } static MA_INLINE HRESULT ma_IAudioClient3_GetSharedModeEnginePeriod(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, ma_uint32* pDefaultPeriodInFrames, ma_uint32* pFundamentalPeriodInFrames, ma_uint32* pMinPeriodInFrames, ma_uint32* pMaxPeriodInFrames) { return pThis->lpVtbl->GetSharedModeEnginePeriod(pThis, pFormat, pDefaultPeriodInFrames, pFundamentalPeriodInFrames, pMinPeriodInFrames, pMaxPeriodInFrames); } static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentSharedModeEnginePeriod(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, ma_uint32* pCurrentPeriodInFrames) { return pThis->lpVtbl->GetCurrentSharedModeEnginePeriod(pThis, ppFormat, pCurrentPeriodInFrames); } static MA_INLINE HRESULT ma_IAudioClient3_InitializeSharedAudioStream(ma_IAudioClient3* pThis, DWORD streamFlags, ma_uint32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGUID) { return pThis->lpVtbl->InitializeSharedAudioStream(pThis, streamFlags, periodInFrames, pFormat, pAudioSessionGUID); } /* IAudioRenderClient */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioRenderClient* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioRenderClient* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioRenderClient* pThis); /* IAudioRenderClient */ HRESULT (STDMETHODCALLTYPE * GetBuffer) (ma_IAudioRenderClient* pThis, ma_uint32 numFramesRequested, BYTE** ppData); HRESULT (STDMETHODCALLTYPE * ReleaseBuffer)(ma_IAudioRenderClient* pThis, ma_uint32 numFramesWritten, DWORD dwFlags); } ma_IAudioRenderClientVtbl; struct ma_IAudioRenderClient { ma_IAudioRenderClientVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IAudioRenderClient_QueryInterface(ma_IAudioRenderClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IAudioRenderClient_AddRef(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IAudioRenderClient_Release(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IAudioRenderClient_GetBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesRequested, BYTE** ppData) { return pThis->lpVtbl->GetBuffer(pThis, numFramesRequested, ppData); } static MA_INLINE HRESULT ma_IAudioRenderClient_ReleaseBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesWritten, DWORD dwFlags) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesWritten, dwFlags); } /* IAudioCaptureClient */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioCaptureClient* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioCaptureClient* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioCaptureClient* pThis); /* IAudioRenderClient */ HRESULT (STDMETHODCALLTYPE * GetBuffer) (ma_IAudioCaptureClient* pThis, BYTE** ppData, ma_uint32* pNumFramesToRead, DWORD* pFlags, ma_uint64* pDevicePosition, ma_uint64* pQPCPosition); HRESULT (STDMETHODCALLTYPE * ReleaseBuffer) (ma_IAudioCaptureClient* pThis, ma_uint32 numFramesRead); HRESULT (STDMETHODCALLTYPE * GetNextPacketSize)(ma_IAudioCaptureClient* pThis, ma_uint32* pNumFramesInNextPacket); } ma_IAudioCaptureClientVtbl; struct ma_IAudioCaptureClient { ma_IAudioCaptureClientVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IAudioCaptureClient_QueryInterface(ma_IAudioCaptureClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IAudioCaptureClient_AddRef(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IAudioCaptureClient_Release(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IAudioCaptureClient_GetBuffer(ma_IAudioCaptureClient* pThis, BYTE** ppData, ma_uint32* pNumFramesToRead, DWORD* pFlags, ma_uint64* pDevicePosition, ma_uint64* pQPCPosition) { return pThis->lpVtbl->GetBuffer(pThis, ppData, pNumFramesToRead, pFlags, pDevicePosition, pQPCPosition); } static MA_INLINE HRESULT ma_IAudioCaptureClient_ReleaseBuffer(ma_IAudioCaptureClient* pThis, ma_uint32 numFramesRead) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesRead); } static MA_INLINE HRESULT ma_IAudioCaptureClient_GetNextPacketSize(ma_IAudioCaptureClient* pThis, ma_uint32* pNumFramesInNextPacket) { return pThis->lpVtbl->GetNextPacketSize(pThis, pNumFramesInNextPacket); } #if defined(MA_WIN32_UWP) /* mmdevapi Functions */ typedef HRESULT (WINAPI * MA_PFN_ActivateAudioInterfaceAsync)(LPCWSTR deviceInterfacePath, const IID* riid, PROPVARIANT *activationParams, ma_IActivateAudioInterfaceCompletionHandler *completionHandler, ma_IActivateAudioInterfaceAsyncOperation **activationOperation); #endif /* Avrt Functions */ typedef HANDLE (WINAPI * MA_PFN_AvSetMmThreadCharacteristicsW)(LPCWSTR TaskName, LPDWORD TaskIndex); typedef BOOL (WINAPI * MA_PFN_AvRevertMmThreadCharacteristics)(HANDLE AvrtHandle); #if !defined(MA_WIN32_DESKTOP) && !defined(MA_WIN32_GDK) typedef struct ma_completion_handler_uwp ma_completion_handler_uwp; typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_completion_handler_uwp* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_completion_handler_uwp* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_completion_handler_uwp* pThis); /* IActivateAudioInterfaceCompletionHandler */ HRESULT (STDMETHODCALLTYPE * ActivateCompleted)(ma_completion_handler_uwp* pThis, ma_IActivateAudioInterfaceAsyncOperation* pActivateOperation); } ma_completion_handler_uwp_vtbl; struct ma_completion_handler_uwp { ma_completion_handler_uwp_vtbl* lpVtbl; MA_ATOMIC(4, ma_uint32) counter; HANDLE hEvent; }; static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_completion_handler_uwp* pThis, const IID* const riid, void** ppObject) { /* We need to "implement" IAgileObject which is just an indicator that's used internally by WASAPI for some multithreading management. To "implement" this, we just make sure we return pThis when the IAgileObject is requested. */ if (!ma_is_guid_equal(riid, &MA_IID_IUnknown) && !ma_is_guid_equal(riid, &MA_IID_IActivateAudioInterfaceCompletionHandler) && !ma_is_guid_equal(riid, &MA_IID_IAgileObject)) { *ppObject = NULL; return E_NOINTERFACE; } /* Getting here means the IID is IUnknown or IMMNotificationClient. */ *ppObject = (void*)pThis; ((ma_completion_handler_uwp_vtbl*)pThis->lpVtbl)->AddRef(pThis); return S_OK; } static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_AddRef(ma_completion_handler_uwp* pThis) { return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1; } static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_uwp* pThis) { ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1; if (newRefCount == 0) { return 0; /* We don't free anything here because we never allocate the object on the heap. */ } return (ULONG)newRefCount; } static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_ActivateCompleted(ma_completion_handler_uwp* pThis, ma_IActivateAudioInterfaceAsyncOperation* pActivateOperation) { (void)pActivateOperation; SetEvent(pThis->hEvent); return S_OK; } static ma_completion_handler_uwp_vtbl g_maCompletionHandlerVtblInstance = { ma_completion_handler_uwp_QueryInterface, ma_completion_handler_uwp_AddRef, ma_completion_handler_uwp_Release, ma_completion_handler_uwp_ActivateCompleted }; static ma_result ma_completion_handler_uwp_init(ma_completion_handler_uwp* pHandler) { MA_ASSERT(pHandler != NULL); MA_ZERO_OBJECT(pHandler); pHandler->lpVtbl = &g_maCompletionHandlerVtblInstance; pHandler->counter = 1; pHandler->hEvent = CreateEventW(NULL, FALSE, FALSE, NULL); if (pHandler->hEvent == NULL) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static void ma_completion_handler_uwp_uninit(ma_completion_handler_uwp* pHandler) { if (pHandler->hEvent != NULL) { CloseHandle(pHandler->hEvent); } } static void ma_completion_handler_uwp_wait(ma_completion_handler_uwp* pHandler) { WaitForSingleObject(pHandler->hEvent, INFINITE); } #endif /* !MA_WIN32_DESKTOP */ /* We need a virtual table for our notification client object that's used for detecting changes to the default device. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMNotificationClient* pThis, const IID* const riid, void** ppObject) { /* We care about two interfaces - IUnknown and IMMNotificationClient. If the requested IID is something else we just return E_NOINTERFACE. Otherwise we need to increment the reference counter and return S_OK. */ if (!ma_is_guid_equal(riid, &MA_IID_IUnknown) && !ma_is_guid_equal(riid, &MA_IID_IMMNotificationClient)) { *ppObject = NULL; return E_NOINTERFACE; } /* Getting here means the IID is IUnknown or IMMNotificationClient. */ *ppObject = (void*)pThis; ((ma_IMMNotificationClientVtbl*)pThis->lpVtbl)->AddRef(pThis); return S_OK; } static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_AddRef(ma_IMMNotificationClient* pThis) { return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1; } static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClient* pThis) { ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1; if (newRefCount == 0) { return 0; /* We don't free anything here because we never allocate the object on the heap. */ } return (ULONG)newRefCount; } static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState) { ma_bool32 isThisDevice = MA_FALSE; ma_bool32 isCapture = MA_FALSE; ma_bool32 isPlayback = MA_FALSE; #ifdef MA_DEBUG_OUTPUT /*ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState);*/ #endif /* There have been reports of a hang when a playback device is disconnected. The idea with this code is to explicitly stop the device if we detect that the device is disabled or has been unplugged. */ if (pThis->pDevice->wasapi.allowCaptureAutoStreamRouting && (pThis->pDevice->type == ma_device_type_capture || pThis->pDevice->type == ma_device_type_duplex || pThis->pDevice->type == ma_device_type_loopback)) { isCapture = MA_TRUE; if (wcscmp(pThis->pDevice->capture.id.wasapi, pDeviceID) == 0) { isThisDevice = MA_TRUE; } } if (pThis->pDevice->wasapi.allowPlaybackAutoStreamRouting && (pThis->pDevice->type == ma_device_type_playback || pThis->pDevice->type == ma_device_type_duplex)) { isPlayback = MA_TRUE; if (wcscmp(pThis->pDevice->playback.id.wasapi, pDeviceID) == 0) { isThisDevice = MA_TRUE; } } /* If the device ID matches our device we need to mark our device as detached and stop it. When a device is added in OnDeviceAdded(), we'll restart it. We only mark it as detached if the device was started at the time of being removed. */ if (isThisDevice) { if ((dwNewState & MA_MM_DEVICE_STATE_ACTIVE) == 0) { /* Unplugged or otherwise unavailable. Mark as detached if we were in a playing state. We'll use this to determine whether or not we need to automatically start the device when it's plugged back in again. */ if (ma_device_get_state(pThis->pDevice) == ma_device_state_started) { if (isPlayback) { pThis->pDevice->wasapi.isDetachedPlayback = MA_TRUE; } if (isCapture) { pThis->pDevice->wasapi.isDetachedCapture = MA_TRUE; } ma_device_stop(pThis->pDevice); } } if ((dwNewState & MA_MM_DEVICE_STATE_ACTIVE) != 0) { /* The device was activated. If we were detached, we need to start it again. */ ma_bool8 tryRestartingDevice = MA_FALSE; if (isPlayback) { if (pThis->pDevice->wasapi.isDetachedPlayback) { pThis->pDevice->wasapi.isDetachedPlayback = MA_FALSE; ma_device_reroute__wasapi(pThis->pDevice, ma_device_type_playback); tryRestartingDevice = MA_TRUE; } } if (isCapture) { if (pThis->pDevice->wasapi.isDetachedCapture) { pThis->pDevice->wasapi.isDetachedCapture = MA_FALSE; ma_device_reroute__wasapi(pThis->pDevice, (pThis->pDevice->type == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture); tryRestartingDevice = MA_TRUE; } } if (tryRestartingDevice) { if (pThis->pDevice->wasapi.isDetachedPlayback == MA_FALSE && pThis->pDevice->wasapi.isDetachedCapture == MA_FALSE) { ma_device_start(pThis->pDevice); } } } } return S_OK; } static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID) { #ifdef MA_DEBUG_OUTPUT /*ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/ #endif /* We don't need to worry about this event for our purposes. */ (void)pThis; (void)pDeviceID; return S_OK; } static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID) { #ifdef MA_DEBUG_OUTPUT /*ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/ #endif /* We don't need to worry about this event for our purposes. */ (void)pThis; (void)pDeviceID; return S_OK; } static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID) { #ifdef MA_DEBUG_OUTPUT /*ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)");*/ #endif /* We only ever use the eConsole role in miniaudio. */ if (role != ma_eConsole) { ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Stream rerouting: role != eConsole\n"); return S_OK; } /* We only care about devices with the same data flow and role as the current device. */ if ((pThis->pDevice->type == ma_device_type_playback && dataFlow != ma_eRender) || (pThis->pDevice->type == ma_device_type_capture && dataFlow != ma_eCapture)) { ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Stream rerouting abandoned because dataFlow does match device type.\n"); return S_OK; } /* Don't do automatic stream routing if we're not allowed. */ if ((dataFlow == ma_eRender && pThis->pDevice->wasapi.allowPlaybackAutoStreamRouting == MA_FALSE) || (dataFlow == ma_eCapture && pThis->pDevice->wasapi.allowCaptureAutoStreamRouting == MA_FALSE)) { ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Stream rerouting abandoned because automatic stream routing has been disabled by the device config.\n"); return S_OK; } /* Not currently supporting automatic stream routing in exclusive mode. This is not working correctly on my machine due to AUDCLNT_E_DEVICE_IN_USE errors when reinitializing the device. If this is a bug in miniaudio, we can try re-enabling this once it's fixed. */ if ((dataFlow == ma_eRender && pThis->pDevice->playback.shareMode == ma_share_mode_exclusive) || (dataFlow == ma_eCapture && pThis->pDevice->capture.shareMode == ma_share_mode_exclusive)) { ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Stream rerouting abandoned because the device shared mode is exclusive.\n"); return S_OK; } /* Second attempt at device rerouting. We're going to retrieve the device's state at the time of the route change. We're then going to stop the device, reinitialize the device, and then start it again if the state before stopping was ma_device_state_started. */ { ma_uint32 previousState = ma_device_get_state(pThis->pDevice); ma_bool8 restartDevice = MA_FALSE; if (previousState == ma_device_state_started) { ma_device_stop(pThis->pDevice); restartDevice = MA_TRUE; } if (pDefaultDeviceID != NULL) { /* <-- The input device ID will be null if there's no other device available. */ if (dataFlow == ma_eRender) { ma_device_reroute__wasapi(pThis->pDevice, ma_device_type_playback); if (pThis->pDevice->wasapi.isDetachedPlayback) { pThis->pDevice->wasapi.isDetachedPlayback = MA_FALSE; if (pThis->pDevice->type == ma_device_type_duplex && pThis->pDevice->wasapi.isDetachedCapture) { restartDevice = MA_FALSE; /* It's a duplex device and the capture side is detached. We cannot be restarting the device just yet. */ } else { restartDevice = MA_TRUE; /* It's not a duplex device, or the capture side is also attached so we can go ahead and restart the device. */ } } } else { ma_device_reroute__wasapi(pThis->pDevice, (pThis->pDevice->type == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture); if (pThis->pDevice->wasapi.isDetachedCapture) { pThis->pDevice->wasapi.isDetachedCapture = MA_FALSE; if (pThis->pDevice->type == ma_device_type_duplex && pThis->pDevice->wasapi.isDetachedPlayback) { restartDevice = MA_FALSE; /* It's a duplex device and the playback side is detached. We cannot be restarting the device just yet. */ } else { restartDevice = MA_TRUE; /* It's not a duplex device, or the playback side is also attached so we can go ahead and restart the device. */ } } } if (restartDevice) { ma_device_start(pThis->pDevice); } } } return S_OK; } static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnPropertyValueChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key) { #ifdef MA_DEBUG_OUTPUT /*ma_log_postf(ma_device_get_log(pThis->pDevice), MA_LOG_LEVEL_DEBUG, "IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/ #endif (void)pThis; (void)pDeviceID; (void)key; return S_OK; } static ma_IMMNotificationClientVtbl g_maNotificationCientVtbl = { ma_IMMNotificationClient_QueryInterface, ma_IMMNotificationClient_AddRef, ma_IMMNotificationClient_Release, ma_IMMNotificationClient_OnDeviceStateChanged, ma_IMMNotificationClient_OnDeviceAdded, ma_IMMNotificationClient_OnDeviceRemoved, ma_IMMNotificationClient_OnDefaultDeviceChanged, ma_IMMNotificationClient_OnPropertyValueChanged }; #endif /* MA_WIN32_DESKTOP */ static LPCWSTR ma_to_usage_string__wasapi(ma_wasapi_usage usage) { switch (usage) { case ma_wasapi_usage_default: return NULL; case ma_wasapi_usage_games: return L"Games"; case ma_wasapi_usage_pro_audio: return L"Pro Audio"; default: break; } return NULL; } #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) typedef ma_IMMDevice ma_WASAPIDeviceInterface; #else typedef ma_IUnknown ma_WASAPIDeviceInterface; #endif #define MA_CONTEXT_COMMAND_QUIT__WASAPI 1 #define MA_CONTEXT_COMMAND_CREATE_IAUDIOCLIENT__WASAPI 2 #define MA_CONTEXT_COMMAND_RELEASE_IAUDIOCLIENT__WASAPI 3 static ma_context_command__wasapi ma_context_init_command__wasapi(int code) { ma_context_command__wasapi cmd; MA_ZERO_OBJECT(&cmd); cmd.code = code; return cmd; } static ma_result ma_context_post_command__wasapi(ma_context* pContext, const ma_context_command__wasapi* pCmd) { /* For now we are doing everything synchronously, but I might relax this later if the need arises. */ ma_result result; ma_bool32 isUsingLocalEvent = MA_FALSE; ma_event localEvent; MA_ASSERT(pContext != NULL); MA_ASSERT(pCmd != NULL); if (pCmd->pEvent == NULL) { isUsingLocalEvent = MA_TRUE; result = ma_event_init(&localEvent); if (result != MA_SUCCESS) { return result; /* Failed to create the event for this command. */ } } /* Here is where we add the command to the list. If there's not enough room we'll spin until there is. */ ma_mutex_lock(&pContext->wasapi.commandLock); { ma_uint32 index; /* Spin until we've got some space available. */ while (pContext->wasapi.commandCount == ma_countof(pContext->wasapi.commands)) { ma_yield(); } /* Space is now available. Can safely add to the list. */ index = (pContext->wasapi.commandIndex + pContext->wasapi.commandCount) % ma_countof(pContext->wasapi.commands); pContext->wasapi.commands[index] = *pCmd; pContext->wasapi.commands[index].pEvent = &localEvent; pContext->wasapi.commandCount += 1; /* Now that the command has been added, release the semaphore so ma_context_next_command__wasapi() can return. */ ma_semaphore_release(&pContext->wasapi.commandSem); } ma_mutex_unlock(&pContext->wasapi.commandLock); if (isUsingLocalEvent) { ma_event_wait(&localEvent); ma_event_uninit(&localEvent); } return MA_SUCCESS; } static ma_result ma_context_next_command__wasapi(ma_context* pContext, ma_context_command__wasapi* pCmd) { ma_result result = MA_SUCCESS; MA_ASSERT(pContext != NULL); MA_ASSERT(pCmd != NULL); result = ma_semaphore_wait(&pContext->wasapi.commandSem); if (result == MA_SUCCESS) { ma_mutex_lock(&pContext->wasapi.commandLock); { *pCmd = pContext->wasapi.commands[pContext->wasapi.commandIndex]; pContext->wasapi.commandIndex = (pContext->wasapi.commandIndex + 1) % ma_countof(pContext->wasapi.commands); pContext->wasapi.commandCount -= 1; } ma_mutex_unlock(&pContext->wasapi.commandLock); } return result; } static ma_thread_result MA_THREADCALL ma_context_command_thread__wasapi(void* pUserData) { ma_result result; ma_context* pContext = (ma_context*)pUserData; MA_ASSERT(pContext != NULL); for (;;) { ma_context_command__wasapi cmd; result = ma_context_next_command__wasapi(pContext, &cmd); if (result != MA_SUCCESS) { break; } switch (cmd.code) { case MA_CONTEXT_COMMAND_QUIT__WASAPI: { /* Do nothing. Handled after the switch. */ } break; case MA_CONTEXT_COMMAND_CREATE_IAUDIOCLIENT__WASAPI: { if (cmd.data.createAudioClient.deviceType == ma_device_type_playback) { *cmd.data.createAudioClient.pResult = ma_result_from_HRESULT(ma_IAudioClient_GetService((ma_IAudioClient*)cmd.data.createAudioClient.pAudioClient, &MA_IID_IAudioRenderClient, cmd.data.createAudioClient.ppAudioClientService)); } else { *cmd.data.createAudioClient.pResult = ma_result_from_HRESULT(ma_IAudioClient_GetService((ma_IAudioClient*)cmd.data.createAudioClient.pAudioClient, &MA_IID_IAudioCaptureClient, cmd.data.createAudioClient.ppAudioClientService)); } } break; case MA_CONTEXT_COMMAND_RELEASE_IAUDIOCLIENT__WASAPI: { if (cmd.data.releaseAudioClient.deviceType == ma_device_type_playback) { if (cmd.data.releaseAudioClient.pDevice->wasapi.pAudioClientPlayback != NULL) { ma_IAudioClient_Release((ma_IAudioClient*)cmd.data.releaseAudioClient.pDevice->wasapi.pAudioClientPlayback); cmd.data.releaseAudioClient.pDevice->wasapi.pAudioClientPlayback = NULL; } } if (cmd.data.releaseAudioClient.deviceType == ma_device_type_capture) { if (cmd.data.releaseAudioClient.pDevice->wasapi.pAudioClientCapture != NULL) { ma_IAudioClient_Release((ma_IAudioClient*)cmd.data.releaseAudioClient.pDevice->wasapi.pAudioClientCapture); cmd.data.releaseAudioClient.pDevice->wasapi.pAudioClientCapture = NULL; } } } break; default: { /* Unknown command. Ignore it, but trigger an assert in debug mode so we're aware of it. */ MA_ASSERT(MA_FALSE); } break; } if (cmd.pEvent != NULL) { ma_event_signal(cmd.pEvent); } if (cmd.code == MA_CONTEXT_COMMAND_QUIT__WASAPI) { break; /* Received a quit message. Get out of here. */ } } return (ma_thread_result)0; } static ma_result ma_device_create_IAudioClient_service__wasapi(ma_context* pContext, ma_device_type deviceType, ma_IAudioClient* pAudioClient, void** ppAudioClientService) { ma_result result; ma_result cmdResult; ma_context_command__wasapi cmd = ma_context_init_command__wasapi(MA_CONTEXT_COMMAND_CREATE_IAUDIOCLIENT__WASAPI); cmd.data.createAudioClient.deviceType = deviceType; cmd.data.createAudioClient.pAudioClient = (void*)pAudioClient; cmd.data.createAudioClient.ppAudioClientService = ppAudioClientService; cmd.data.createAudioClient.pResult = &cmdResult; /* Declared locally, but won't be dereferenced after this function returns since execution of the command will wait here. */ result = ma_context_post_command__wasapi(pContext, &cmd); /* This will not return until the command has actually been run. */ if (result != MA_SUCCESS) { return result; } return *cmd.data.createAudioClient.pResult; } #if 0 /* Not used at the moment, but leaving here for future use. */ static ma_result ma_device_release_IAudioClient_service__wasapi(ma_device* pDevice, ma_device_type deviceType) { ma_result result; ma_context_command__wasapi cmd = ma_context_init_command__wasapi(MA_CONTEXT_COMMAND_RELEASE_IAUDIOCLIENT__WASAPI); cmd.data.releaseAudioClient.pDevice = pDevice; cmd.data.releaseAudioClient.deviceType = deviceType; result = ma_context_post_command__wasapi(pDevice->pContext, &cmd); /* This will not return until the command has actually been run. */ if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } #endif static void ma_add_native_data_format_to_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_share_mode shareMode, ma_device_info* pInfo) { MA_ASSERT(pWF != NULL); MA_ASSERT(pInfo != NULL); if (pInfo->nativeDataFormatCount >= ma_countof(pInfo->nativeDataFormats)) { return; /* Too many data formats. Need to ignore this one. Don't think this should ever happen with WASAPI. */ } pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].format = ma_format_from_WAVEFORMATEX(pWF); pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].channels = pWF->nChannels; pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].sampleRate = pWF->nSamplesPerSec; pInfo->nativeDataFormats[pInfo->nativeDataFormatCount].flags = (shareMode == ma_share_mode_exclusive) ? MA_DATA_FORMAT_FLAG_EXCLUSIVE_MODE : 0; pInfo->nativeDataFormatCount += 1; } static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pContext, /*ma_IMMDevice**/void* pMMDevice, ma_IAudioClient* pAudioClient, ma_device_info* pInfo) { HRESULT hr; WAVEFORMATEX* pWF = NULL; MA_ASSERT(pAudioClient != NULL); MA_ASSERT(pInfo != NULL); /* Shared Mode. We use GetMixFormat() here. */ hr = ma_IAudioClient_GetMixFormat((ma_IAudioClient*)pAudioClient, (WAVEFORMATEX**)&pWF); if (SUCCEEDED(hr)) { ma_add_native_data_format_to_device_info_from_WAVEFORMATEX(pWF, ma_share_mode_shared, pInfo); } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve mix format for device info retrieval."); return ma_result_from_HRESULT(hr); } /* Exlcusive Mode. We repeatedly call IsFormatSupported() here. This is not currently supported on UWP. Failure to retrieve the exclusive mode format is not considered an error, so from here on out, MA_SUCCESS is guaranteed to be returned. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) { ma_IPropertyStore *pProperties; /* The first thing to do is get the format from PKEY_AudioEngine_DeviceFormat. This should give us a channel count we assume is correct which will simplify our searching. */ hr = ma_IMMDevice_OpenPropertyStore((ma_IMMDevice*)pMMDevice, STGM_READ, &pProperties); if (SUCCEEDED(hr)) { PROPVARIANT var; ma_PropVariantInit(&var); hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_AudioEngine_DeviceFormat, &var); if (SUCCEEDED(hr)) { pWF = (WAVEFORMATEX*)var.blob.pBlobData; /* In my testing, the format returned by PKEY_AudioEngine_DeviceFormat is suitable for exclusive mode so we check this format first. If this fails, fall back to a search. */ hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pWF, NULL); if (SUCCEEDED(hr)) { /* The format returned by PKEY_AudioEngine_DeviceFormat is supported. */ ma_add_native_data_format_to_device_info_from_WAVEFORMATEX(pWF, ma_share_mode_exclusive, pInfo); } else { /* The format returned by PKEY_AudioEngine_DeviceFormat is not supported, so fall back to a search. We assume the channel count returned by MA_PKEY_AudioEngine_DeviceFormat is valid and correct. For simplicity we're only returning one format. */ ma_uint32 channels = pWF->nChannels; ma_channel defaultChannelMap[MA_MAX_CHANNELS]; WAVEFORMATEXTENSIBLE wf; ma_bool32 found; ma_uint32 iFormat; /* Make sure we don't overflow the channel map. */ if (channels > MA_MAX_CHANNELS) { channels = MA_MAX_CHANNELS; } ma_channel_map_init_standard(ma_standard_channel_map_microsoft, defaultChannelMap, ma_countof(defaultChannelMap), channels); MA_ZERO_OBJECT(&wf); wf.Format.cbSize = sizeof(wf); wf.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; wf.Format.nChannels = (WORD)channels; wf.dwChannelMask = ma_channel_map_to_channel_mask__win32(defaultChannelMap, channels); found = MA_FALSE; for (iFormat = 0; iFormat < ma_countof(g_maFormatPriorities); ++iFormat) { ma_format format = g_maFormatPriorities[iFormat]; ma_uint32 iSampleRate; wf.Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8); wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8); wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; wf.Samples.wValidBitsPerSample = /*(format == ma_format_s24_32) ? 24 :*/ wf.Format.wBitsPerSample; if (format == ma_format_f32) { wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; } else { wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM; } for (iSampleRate = 0; iSampleRate < ma_countof(g_maStandardSampleRatePriorities); ++iSampleRate) { wf.Format.nSamplesPerSec = g_maStandardSampleRatePriorities[iSampleRate]; hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, (WAVEFORMATEX*)&wf, NULL); if (SUCCEEDED(hr)) { ma_add_native_data_format_to_device_info_from_WAVEFORMATEX((WAVEFORMATEX*)&wf, ma_share_mode_exclusive, pInfo); found = MA_TRUE; break; } } if (found) { break; } } ma_PropVariantClear(pContext, &var); if (!found) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "[WASAPI] Failed to find suitable device format for device info retrieval."); } } } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "[WASAPI] Failed to retrieve device format for device info retrieval."); } ma_IPropertyStore_Release(pProperties); } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "[WASAPI] Failed to open property store for device info retrieval."); } } #else { (void)pMMDevice; /* Unused. */ } #endif return MA_SUCCESS; } #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) static ma_EDataFlow ma_device_type_to_EDataFlow(ma_device_type deviceType) { if (deviceType == ma_device_type_playback) { return ma_eRender; } else if (deviceType == ma_device_type_capture) { return ma_eCapture; } else { MA_ASSERT(MA_FALSE); return ma_eRender; /* Should never hit this. */ } } static ma_result ma_context_create_IMMDeviceEnumerator__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator** ppDeviceEnumerator) { HRESULT hr; ma_IMMDeviceEnumerator* pDeviceEnumerator; MA_ASSERT(pContext != NULL); MA_ASSERT(ppDeviceEnumerator != NULL); *ppDeviceEnumerator = NULL; /* Safety. */ hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator."); return ma_result_from_HRESULT(hr); } *ppDeviceEnumerator = pDeviceEnumerator; return MA_SUCCESS; } static LPWSTR ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator* pDeviceEnumerator, ma_device_type deviceType) { HRESULT hr; ma_IMMDevice* pMMDefaultDevice = NULL; LPWSTR pDefaultDeviceID = NULL; ma_EDataFlow dataFlow; ma_ERole role; MA_ASSERT(pContext != NULL); MA_ASSERT(pDeviceEnumerator != NULL); (void)pContext; /* Grab the EDataFlow type from the device type. */ dataFlow = ma_device_type_to_EDataFlow(deviceType); /* The role is always eConsole, but we may make this configurable later. */ role = ma_eConsole; hr = ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(pDeviceEnumerator, dataFlow, role, &pMMDefaultDevice); if (FAILED(hr)) { return NULL; } hr = ma_IMMDevice_GetId(pMMDefaultDevice, &pDefaultDeviceID); ma_IMMDevice_Release(pMMDefaultDevice); pMMDefaultDevice = NULL; if (FAILED(hr)) { return NULL; } return pDefaultDeviceID; } static LPWSTR ma_context_get_default_device_id__wasapi(ma_context* pContext, ma_device_type deviceType) /* Free the returned pointer with ma_CoTaskMemFree() */ { ma_result result; ma_IMMDeviceEnumerator* pDeviceEnumerator; LPWSTR pDefaultDeviceID = NULL; MA_ASSERT(pContext != NULL); result = ma_context_create_IMMDeviceEnumerator__wasapi(pContext, &pDeviceEnumerator); if (result != MA_SUCCESS) { return NULL; } pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType); ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); return pDefaultDeviceID; } static ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IMMDevice** ppMMDevice) { ma_IMMDeviceEnumerator* pDeviceEnumerator; HRESULT hr; MA_ASSERT(pContext != NULL); MA_ASSERT(ppMMDevice != NULL); hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create IMMDeviceEnumerator.\n"); return ma_result_from_HRESULT(hr); } if (pDeviceID == NULL) { hr = ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(pDeviceEnumerator, (deviceType == ma_device_type_capture) ? ma_eCapture : ma_eRender, ma_eConsole, ppMMDevice); } else { hr = ma_IMMDeviceEnumerator_GetDevice(pDeviceEnumerator, pDeviceID->wasapi, ppMMDevice); } ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve IMMDevice.\n"); return ma_result_from_HRESULT(hr); } return MA_SUCCESS; } static ma_result ma_context_get_device_id_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, ma_device_id* pDeviceID) { LPWSTR pDeviceIDString; HRESULT hr; MA_ASSERT(pDeviceID != NULL); hr = ma_IMMDevice_GetId(pMMDevice, &pDeviceIDString); if (SUCCEEDED(hr)) { size_t idlen = wcslen(pDeviceIDString); if (idlen+1 > ma_countof(pDeviceID->wasapi)) { ma_CoTaskMemFree(pContext, pDeviceIDString); MA_ASSERT(MA_FALSE); /* NOTE: If this is triggered, please report it. It means the format of the ID must haved change and is too long to fit in our fixed sized buffer. */ return MA_ERROR; } MA_COPY_MEMORY(pDeviceID->wasapi, pDeviceIDString, idlen * sizeof(wchar_t)); pDeviceID->wasapi[idlen] = '\0'; ma_CoTaskMemFree(pContext, pDeviceIDString); return MA_SUCCESS; } return MA_ERROR; } static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, LPWSTR pDefaultDeviceID, ma_bool32 onlySimpleInfo, ma_device_info* pInfo) { ma_result result; HRESULT hr; MA_ASSERT(pContext != NULL); MA_ASSERT(pMMDevice != NULL); MA_ASSERT(pInfo != NULL); /* ID. */ result = ma_context_get_device_id_from_MMDevice__wasapi(pContext, pMMDevice, &pInfo->id); if (result == MA_SUCCESS) { if (pDefaultDeviceID != NULL) { if (wcscmp(pInfo->id.wasapi, pDefaultDeviceID) == 0) { pInfo->isDefault = MA_TRUE; } } } /* Description / Friendly Name */ { ma_IPropertyStore *pProperties; hr = ma_IMMDevice_OpenPropertyStore(pMMDevice, STGM_READ, &pProperties); if (SUCCEEDED(hr)) { PROPVARIANT var; ma_PropVariantInit(&var); hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_Device_FriendlyName, &var); if (SUCCEEDED(hr)) { WideCharToMultiByte(CP_UTF8, 0, var.pwszVal, -1, pInfo->name, sizeof(pInfo->name), 0, FALSE); ma_PropVariantClear(pContext, &var); } ma_IPropertyStore_Release(pProperties); } } /* Format */ if (!onlySimpleInfo) { ma_IAudioClient* pAudioClient; hr = ma_IMMDevice_Activate(pMMDevice, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)&pAudioClient); if (SUCCEEDED(hr)) { result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, pMMDevice, pAudioClient, pInfo); ma_IAudioClient_Release(pAudioClient); return result; } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate audio client for device info retrieval."); return ma_result_from_HRESULT(hr); } } return MA_SUCCESS; } static ma_result ma_context_enumerate_devices_by_type__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator* pDeviceEnumerator, ma_device_type deviceType, ma_enum_devices_callback_proc callback, void* pUserData) { ma_result result = MA_SUCCESS; UINT deviceCount; HRESULT hr; ma_uint32 iDevice; LPWSTR pDefaultDeviceID = NULL; ma_IMMDeviceCollection* pDeviceCollection = NULL; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Grab the default device. We use this to know whether or not flag the returned device info as being the default. */ pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType); /* We need to enumerate the devices which returns a device collection. */ hr = ma_IMMDeviceEnumerator_EnumAudioEndpoints(pDeviceEnumerator, ma_device_type_to_EDataFlow(deviceType), MA_MM_DEVICE_STATE_ACTIVE, &pDeviceCollection); if (SUCCEEDED(hr)) { hr = ma_IMMDeviceCollection_GetCount(pDeviceCollection, &deviceCount); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to get device count.\n"); result = ma_result_from_HRESULT(hr); goto done; } for (iDevice = 0; iDevice < deviceCount; ++iDevice) { ma_device_info deviceInfo; ma_IMMDevice* pMMDevice; MA_ZERO_OBJECT(&deviceInfo); hr = ma_IMMDeviceCollection_Item(pDeviceCollection, iDevice, &pMMDevice); if (SUCCEEDED(hr)) { result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, pDefaultDeviceID, MA_TRUE, &deviceInfo); /* MA_TRUE = onlySimpleInfo. */ ma_IMMDevice_Release(pMMDevice); if (result == MA_SUCCESS) { ma_bool32 cbResult = callback(pContext, deviceType, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { break; } } } } } done: if (pDefaultDeviceID != NULL) { ma_CoTaskMemFree(pContext, pDefaultDeviceID); pDefaultDeviceID = NULL; } if (pDeviceCollection != NULL) { ma_IMMDeviceCollection_Release(pDeviceCollection); pDeviceCollection = NULL; } return result; } static ma_result ma_context_get_IAudioClient_Desktop__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, PROPVARIANT* pActivationParams, ma_IAudioClient** ppAudioClient, ma_IMMDevice** ppMMDevice) { ma_result result; HRESULT hr; MA_ASSERT(pContext != NULL); MA_ASSERT(ppAudioClient != NULL); MA_ASSERT(ppMMDevice != NULL); result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, ppMMDevice); if (result != MA_SUCCESS) { return result; } hr = ma_IMMDevice_Activate(*ppMMDevice, &MA_IID_IAudioClient, CLSCTX_ALL, pActivationParams, (void**)ppAudioClient); if (FAILED(hr)) { return ma_result_from_HRESULT(hr); } return MA_SUCCESS; } #else static ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, PROPVARIANT* pActivationParams, ma_IAudioClient** ppAudioClient, ma_IUnknown** ppActivatedInterface) { ma_IActivateAudioInterfaceAsyncOperation *pAsyncOp = NULL; ma_completion_handler_uwp completionHandler; IID iid; LPOLESTR iidStr; HRESULT hr; ma_result result; HRESULT activateResult; ma_IUnknown* pActivatedInterface; MA_ASSERT(pContext != NULL); MA_ASSERT(ppAudioClient != NULL); if (pDeviceID != NULL) { iidStr = (LPOLESTR)pDeviceID->wasapi; } else { if (deviceType == ma_device_type_capture) { iid = MA_IID_DEVINTERFACE_AUDIO_CAPTURE; } else { iid = MA_IID_DEVINTERFACE_AUDIO_RENDER; } #if defined(__cplusplus) hr = StringFromIID(iid, &iidStr); #else hr = StringFromIID(&iid, &iidStr); #endif if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to convert device IID to string for ActivateAudioInterfaceAsync(). Out of memory.\n"); return ma_result_from_HRESULT(hr); } } result = ma_completion_handler_uwp_init(&completionHandler); if (result != MA_SUCCESS) { ma_CoTaskMemFree(pContext, iidStr); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for waiting for ActivateAudioInterfaceAsync().\n"); return result; } hr = ((MA_PFN_ActivateAudioInterfaceAsync)pContext->wasapi.ActivateAudioInterfaceAsync)(iidStr, &MA_IID_IAudioClient, pActivationParams, (ma_IActivateAudioInterfaceCompletionHandler*)&completionHandler, (ma_IActivateAudioInterfaceAsyncOperation**)&pAsyncOp); if (FAILED(hr)) { ma_completion_handler_uwp_uninit(&completionHandler); ma_CoTaskMemFree(pContext, iidStr); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] ActivateAudioInterfaceAsync() failed.\n"); return ma_result_from_HRESULT(hr); } if (pDeviceID == NULL) { ma_CoTaskMemFree(pContext, iidStr); } /* Wait for the async operation for finish. */ ma_completion_handler_uwp_wait(&completionHandler); ma_completion_handler_uwp_uninit(&completionHandler); hr = ma_IActivateAudioInterfaceAsyncOperation_GetActivateResult(pAsyncOp, &activateResult, &pActivatedInterface); ma_IActivateAudioInterfaceAsyncOperation_Release(pAsyncOp); if (FAILED(hr) || FAILED(activateResult)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate device.\n"); return FAILED(hr) ? ma_result_from_HRESULT(hr) : ma_result_from_HRESULT(activateResult); } /* Here is where we grab the IAudioClient interface. */ hr = ma_IUnknown_QueryInterface(pActivatedInterface, &MA_IID_IAudioClient, (void**)ppAudioClient); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to query IAudioClient interface.\n"); return ma_result_from_HRESULT(hr); } if (ppActivatedInterface) { *ppActivatedInterface = pActivatedInterface; } else { ma_IUnknown_Release(pActivatedInterface); } return MA_SUCCESS; } #endif /* https://docs.microsoft.com/en-us/windows/win32/api/audioclientactivationparams/ne-audioclientactivationparams-audioclient_activation_type */ typedef enum { MA_AUDIOCLIENT_ACTIVATION_TYPE_DEFAULT, MA_AUDIOCLIENT_ACTIVATION_TYPE_PROCESS_LOOPBACK } MA_AUDIOCLIENT_ACTIVATION_TYPE; /* https://docs.microsoft.com/en-us/windows/win32/api/audioclientactivationparams/ne-audioclientactivationparams-process_loopback_mode */ typedef enum { MA_PROCESS_LOOPBACK_MODE_INCLUDE_TARGET_PROCESS_TREE, MA_PROCESS_LOOPBACK_MODE_EXCLUDE_TARGET_PROCESS_TREE } MA_PROCESS_LOOPBACK_MODE; /* https://docs.microsoft.com/en-us/windows/win32/api/audioclientactivationparams/ns-audioclientactivationparams-audioclient_process_loopback_params */ typedef struct { DWORD TargetProcessId; MA_PROCESS_LOOPBACK_MODE ProcessLoopbackMode; } MA_AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS; #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(push) #pragma warning(disable:4201) /* nonstandard extension used: nameless struct/union */ #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */ #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc11-extensions" /* anonymous unions are a C11 extension */ #endif #endif /* https://docs.microsoft.com/en-us/windows/win32/api/audioclientactivationparams/ns-audioclientactivationparams-audioclient_activation_params */ typedef struct { MA_AUDIOCLIENT_ACTIVATION_TYPE ActivationType; union { MA_AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS ProcessLoopbackParams; }; } MA_AUDIOCLIENT_ACTIVATION_PARAMS; #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(pop) #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) #pragma GCC diagnostic pop #endif #define MA_VIRTUAL_AUDIO_DEVICE_PROCESS_LOOPBACK L"VAD\\Process_Loopback" static ma_result ma_context_get_IAudioClient__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_uint32 loopbackProcessID, ma_bool32 loopbackProcessExclude, ma_IAudioClient** ppAudioClient, ma_WASAPIDeviceInterface** ppDeviceInterface) { ma_result result; ma_bool32 usingProcessLoopback = MA_FALSE; MA_AUDIOCLIENT_ACTIVATION_PARAMS audioclientActivationParams; PROPVARIANT activationParams; PROPVARIANT* pActivationParams = NULL; ma_device_id virtualDeviceID; /* Activation parameters specific to loopback mode. Note that process-specific loopback will only work when a default device ID is specified. */ if (deviceType == ma_device_type_loopback && loopbackProcessID != 0 && pDeviceID == NULL) { usingProcessLoopback = MA_TRUE; } if (usingProcessLoopback) { MA_ZERO_OBJECT(&audioclientActivationParams); audioclientActivationParams.ActivationType = MA_AUDIOCLIENT_ACTIVATION_TYPE_PROCESS_LOOPBACK; audioclientActivationParams.ProcessLoopbackParams.ProcessLoopbackMode = (loopbackProcessExclude) ? MA_PROCESS_LOOPBACK_MODE_EXCLUDE_TARGET_PROCESS_TREE : MA_PROCESS_LOOPBACK_MODE_INCLUDE_TARGET_PROCESS_TREE; audioclientActivationParams.ProcessLoopbackParams.TargetProcessId = (DWORD)loopbackProcessID; ma_PropVariantInit(&activationParams); activationParams.vt = VT_BLOB; activationParams.blob.cbSize = sizeof(audioclientActivationParams); activationParams.blob.pBlobData = (BYTE*)&audioclientActivationParams; pActivationParams = &activationParams; /* When requesting a specific device ID we need to use a special device ID. */ // MA_COPY_MEMORY(virtualDeviceID.wasapi, MA_VIRTUAL_AUDIO_DEVICE_PROCESS_LOOPBACK, (wcslen(MA_VIRTUAL_AUDIO_DEVICE_PROCESS_LOOPBACK) + 1) * sizeof(wchar_t)); /* +1 for the null terminator. */ memcpy(virtualDeviceID.wasapi, L"VAD\\Process_Loopback", (wcslen(L"VAD\\Process_Loopback") + 1) * sizeof(wchar_t)); /* +1 for the null terminator. */ //< @r-lyeh rewrite so it fixes `error C2143: syntax error: missing ')' before 'string'` (vs2022) pDeviceID = &virtualDeviceID; } else { pActivationParams = NULL; /* No activation parameters required. */ } #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) result = ma_context_get_IAudioClient_Desktop__wasapi(pContext, deviceType, pDeviceID, pActivationParams, ppAudioClient, ppDeviceInterface); #else result = ma_context_get_IAudioClient_UWP__wasapi(pContext, deviceType, pDeviceID, pActivationParams, ppAudioClient, ppDeviceInterface); #endif /* If loopback mode was requested with a process ID and initialization failed, it could be because it's trying to run on an older version of Windows where it's not supported. We need to let the caller know about this with a log message. */ if (result != MA_SUCCESS) { if (usingProcessLoopback) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Loopback mode requested to %s process ID %u, but initialization failed. Support for this feature begins with Windows 10 Build 20348. Confirm your version of Windows or consider not using process-specific loopback.\n", (loopbackProcessExclude) ? "exclude" : "include", loopbackProcessID); } } return result; } static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { /* Different enumeration for desktop and UWP. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) /* Desktop */ HRESULT hr; ma_IMMDeviceEnumerator* pDeviceEnumerator; hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator."); return ma_result_from_HRESULT(hr); } ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_playback, callback, pUserData); ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_capture, callback, pUserData); ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); #else /* UWP The MMDevice API is only supported on desktop applications. For now, while I'm still figuring out how to properly enumerate over devices without using MMDevice, I'm restricting devices to defaults. Hint: DeviceInformation::FindAllAsync() with DeviceClass.AudioCapture/AudioRender. https://blogs.windows.com/buildingapps/2014/05/15/real-time-audio-in-windows-store-and-windows-phone-apps/ */ if (callback) { ma_bool32 cbResult = MA_TRUE; /* Playback. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); deviceInfo.isDefault = MA_TRUE; cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } /* Capture. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); deviceInfo.isDefault = MA_TRUE; cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } } #endif return MA_SUCCESS; } static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) ma_result result; ma_IMMDevice* pMMDevice = NULL; LPWSTR pDefaultDeviceID = NULL; result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, &pMMDevice); if (result != MA_SUCCESS) { return result; } /* We need the default device ID so we can set the isDefault flag in the device info. */ pDefaultDeviceID = ma_context_get_default_device_id__wasapi(pContext, deviceType); result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, pDefaultDeviceID, MA_FALSE, pDeviceInfo); /* MA_FALSE = !onlySimpleInfo. */ if (pDefaultDeviceID != NULL) { ma_CoTaskMemFree(pContext, pDefaultDeviceID); pDefaultDeviceID = NULL; } ma_IMMDevice_Release(pMMDevice); return result; #else ma_IAudioClient* pAudioClient; ma_result result; /* UWP currently only uses default devices. */ if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } result = ma_context_get_IAudioClient_UWP__wasapi(pContext, deviceType, pDeviceID, NULL, &pAudioClient, NULL); if (result != MA_SUCCESS) { return result; } result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, NULL, pAudioClient, pDeviceInfo); pDeviceInfo->isDefault = MA_TRUE; /* UWP only supports default devices. */ ma_IAudioClient_Release(pAudioClient); return result; #endif } static ma_result ma_device_uninit__wasapi(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) if (pDevice->wasapi.pDeviceEnumerator) { ((ma_IMMDeviceEnumerator*)pDevice->wasapi.pDeviceEnumerator)->lpVtbl->UnregisterEndpointNotificationCallback((ma_IMMDeviceEnumerator*)pDevice->wasapi.pDeviceEnumerator, &pDevice->wasapi.notificationClient); ma_IMMDeviceEnumerator_Release((ma_IMMDeviceEnumerator*)pDevice->wasapi.pDeviceEnumerator); } #endif if (pDevice->wasapi.pRenderClient) { if (pDevice->wasapi.pMappedBufferPlayback != NULL) { ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, pDevice->wasapi.mappedBufferPlaybackCap, 0); pDevice->wasapi.pMappedBufferPlayback = NULL; pDevice->wasapi.mappedBufferPlaybackCap = 0; pDevice->wasapi.mappedBufferPlaybackLen = 0; } ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient); } if (pDevice->wasapi.pCaptureClient) { if (pDevice->wasapi.pMappedBufferCapture != NULL) { ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, pDevice->wasapi.mappedBufferCaptureCap); pDevice->wasapi.pMappedBufferCapture = NULL; pDevice->wasapi.mappedBufferCaptureCap = 0; pDevice->wasapi.mappedBufferCaptureLen = 0; } ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient); } if (pDevice->wasapi.pAudioClientPlayback) { ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback); } if (pDevice->wasapi.pAudioClientCapture) { ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); } if (pDevice->wasapi.hEventPlayback) { CloseHandle(pDevice->wasapi.hEventPlayback); } if (pDevice->wasapi.hEventCapture) { CloseHandle(pDevice->wasapi.hEventCapture); } return MA_SUCCESS; } typedef struct { /* Input. */ ma_format formatIn; ma_uint32 channelsIn; ma_uint32 sampleRateIn; ma_channel channelMapIn[MA_MAX_CHANNELS]; ma_uint32 periodSizeInFramesIn; ma_uint32 periodSizeInMillisecondsIn; ma_uint32 periodsIn; ma_share_mode shareMode; ma_performance_profile performanceProfile; ma_bool32 noAutoConvertSRC; ma_bool32 noDefaultQualitySRC; ma_bool32 noHardwareOffloading; ma_uint32 loopbackProcessID; ma_bool32 loopbackProcessExclude; /* Output. */ ma_IAudioClient* pAudioClient; ma_IAudioRenderClient* pRenderClient; ma_IAudioCaptureClient* pCaptureClient; ma_format formatOut; ma_uint32 channelsOut; ma_uint32 sampleRateOut; ma_channel channelMapOut[MA_MAX_CHANNELS]; ma_uint32 periodSizeInFramesOut; ma_uint32 periodsOut; ma_bool32 usingAudioClient3; char deviceName[256]; ma_device_id id; } ma_device_init_internal_data__wasapi; static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__wasapi* pData) { HRESULT hr; ma_result result = MA_SUCCESS; const char* errorMsg = ""; MA_AUDCLNT_SHAREMODE shareMode = MA_AUDCLNT_SHAREMODE_SHARED; DWORD streamFlags = 0; MA_REFERENCE_TIME periodDurationInMicroseconds; ma_bool32 wasInitializedUsingIAudioClient3 = MA_FALSE; WAVEFORMATEXTENSIBLE wf; ma_WASAPIDeviceInterface* pDeviceInterface = NULL; ma_IAudioClient2* pAudioClient2; ma_uint32 nativeSampleRate; MA_ASSERT(pContext != NULL); MA_ASSERT(pData != NULL); /* This function is only used to initialize one device type: either playback, capture or loopback. Never full-duplex. */ if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } pData->pAudioClient = NULL; pData->pRenderClient = NULL; pData->pCaptureClient = NULL; streamFlags = MA_AUDCLNT_STREAMFLAGS_EVENTCALLBACK; if (!pData->noAutoConvertSRC && pData->sampleRateIn != 0 && pData->shareMode != ma_share_mode_exclusive) { /* <-- Exclusive streams must use the native sample rate. */ streamFlags |= MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM; } if (!pData->noDefaultQualitySRC && pData->sampleRateIn != 0 && (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) != 0) { streamFlags |= MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY; } if (deviceType == ma_device_type_loopback) { streamFlags |= MA_AUDCLNT_STREAMFLAGS_LOOPBACK; } result = ma_context_get_IAudioClient__wasapi(pContext, deviceType, pDeviceID, pData->loopbackProcessID, pData->loopbackProcessExclude, &pData->pAudioClient, &pDeviceInterface); if (result != MA_SUCCESS) { goto done; } MA_ZERO_OBJECT(&wf); /* Try enabling hardware offloading. */ if (!pData->noHardwareOffloading) { hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient2, (void**)&pAudioClient2); if (SUCCEEDED(hr)) { BOOL isHardwareOffloadingSupported = 0; hr = ma_IAudioClient2_IsOffloadCapable(pAudioClient2, MA_AudioCategory_Other, &isHardwareOffloadingSupported); if (SUCCEEDED(hr) && isHardwareOffloadingSupported) { ma_AudioClientProperties clientProperties; MA_ZERO_OBJECT(&clientProperties); clientProperties.cbSize = sizeof(clientProperties); clientProperties.bIsOffload = 1; clientProperties.eCategory = MA_AudioCategory_Other; ma_IAudioClient2_SetClientProperties(pAudioClient2, &clientProperties); } pAudioClient2->lpVtbl->Release(pAudioClient2); } } /* Here is where we try to determine the best format to use with the device. If the client if wanting exclusive mode, first try finding the best format for that. If this fails, fall back to shared mode. */ result = MA_FORMAT_NOT_SUPPORTED; if (pData->shareMode == ma_share_mode_exclusive) { #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) /* In exclusive mode on desktop we always use the backend's native format. */ ma_IPropertyStore* pStore = NULL; hr = ma_IMMDevice_OpenPropertyStore(pDeviceInterface, STGM_READ, &pStore); if (SUCCEEDED(hr)) { PROPVARIANT prop; ma_PropVariantInit(&prop); hr = ma_IPropertyStore_GetValue(pStore, &MA_PKEY_AudioEngine_DeviceFormat, &prop); if (SUCCEEDED(hr)) { WAVEFORMATEX* pActualFormat = (WAVEFORMATEX*)prop.blob.pBlobData; hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pData->pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pActualFormat, NULL); if (SUCCEEDED(hr)) { MA_COPY_MEMORY(&wf, pActualFormat, sizeof(WAVEFORMATEXTENSIBLE)); } ma_PropVariantClear(pContext, &prop); } ma_IPropertyStore_Release(pStore); } #else /* I do not know how to query the device's native format on UWP so for now I'm just disabling support for exclusive mode. The alternative is to enumerate over different formats and check IsFormatSupported() until you find one that works. TODO: Add support for exclusive mode to UWP. */ hr = S_FALSE; #endif if (hr == S_OK) { shareMode = MA_AUDCLNT_SHAREMODE_EXCLUSIVE; result = MA_SUCCESS; } else { result = MA_SHARE_MODE_NOT_SUPPORTED; } } else { /* In shared mode we are always using the format reported by the operating system. */ WAVEFORMATEXTENSIBLE* pNativeFormat = NULL; hr = ma_IAudioClient_GetMixFormat((ma_IAudioClient*)pData->pAudioClient, (WAVEFORMATEX**)&pNativeFormat); if (hr != S_OK) { result = MA_FORMAT_NOT_SUPPORTED; } else { MA_COPY_MEMORY(&wf, pNativeFormat, sizeof(wf)); result = MA_SUCCESS; } ma_CoTaskMemFree(pContext, pNativeFormat); shareMode = MA_AUDCLNT_SHAREMODE_SHARED; } /* Return an error if we still haven't found a format. */ if (result != MA_SUCCESS) { errorMsg = "[WASAPI] Failed to find best device mix format."; goto done; } /* Override the native sample rate with the one requested by the caller, but only if we're not using the default sample rate. We'll use WASAPI to perform the sample rate conversion. */ nativeSampleRate = wf.Format.nSamplesPerSec; if (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) { wf.Format.nSamplesPerSec = (pData->sampleRateIn != 0) ? pData->sampleRateIn : MA_DEFAULT_SAMPLE_RATE; wf.Format.nAvgBytesPerSec = wf.Format.nSamplesPerSec * wf.Format.nBlockAlign; } pData->formatOut = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)&wf); if (pData->formatOut == ma_format_unknown) { /* The format isn't supported. This is almost certainly because the exclusive mode format isn't supported by miniaudio. We need to return MA_SHARE_MODE_NOT_SUPPORTED in this case so that the caller can detect it and fall back to shared mode if desired. We should never get here if shared mode was requested, but just for completeness we'll check for it and return MA_FORMAT_NOT_SUPPORTED. */ if (shareMode == MA_AUDCLNT_SHAREMODE_EXCLUSIVE) { result = MA_SHARE_MODE_NOT_SUPPORTED; } else { result = MA_FORMAT_NOT_SUPPORTED; } errorMsg = "[WASAPI] Native format not supported."; goto done; } pData->channelsOut = wf.Format.nChannels; pData->sampleRateOut = wf.Format.nSamplesPerSec; /* Get the internal channel map based on the channel mask. */ ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pData->channelsOut, pData->channelMapOut); /* Period size. */ pData->periodsOut = (pData->periodsIn != 0) ? pData->periodsIn : MA_DEFAULT_PERIODS; pData->periodSizeInFramesOut = pData->periodSizeInFramesIn; if (pData->periodSizeInFramesOut == 0) { if (pData->periodSizeInMillisecondsIn == 0) { if (pData->performanceProfile == ma_performance_profile_low_latency) { pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY, wf.Format.nSamplesPerSec); } else { pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, wf.Format.nSamplesPerSec); } } else { pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, wf.Format.nSamplesPerSec); } } periodDurationInMicroseconds = ((ma_uint64)pData->periodSizeInFramesOut * 1000 * 1000) / wf.Format.nSamplesPerSec; /* Slightly different initialization for shared and exclusive modes. We try exclusive mode first, and if it fails, fall back to shared mode. */ if (shareMode == MA_AUDCLNT_SHAREMODE_EXCLUSIVE) { MA_REFERENCE_TIME bufferDuration = periodDurationInMicroseconds * pData->periodsOut * 10; /* If the periodicy is too small, Initialize() will fail with AUDCLNT_E_INVALID_DEVICE_PERIOD. In this case we should just keep increasing it and trying it again. */ hr = E_FAIL; for (;;) { hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, bufferDuration, (WAVEFORMATEX*)&wf, NULL); if (hr == MA_AUDCLNT_E_INVALID_DEVICE_PERIOD) { if (bufferDuration > 500*10000) { break; } else { if (bufferDuration == 0) { /* <-- Just a sanity check to prevent an infinit loop. Should never happen, but it makes me feel better. */ break; } bufferDuration = bufferDuration * 2; continue; } } else { break; } } if (hr == MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) { ma_uint32 bufferSizeInFrames; hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames); if (SUCCEEDED(hr)) { bufferDuration = (MA_REFERENCE_TIME)((10000.0 * 1000 / wf.Format.nSamplesPerSec * bufferSizeInFrames) + 0.5); /* Unfortunately we need to release and re-acquire the audio client according to MSDN. Seems silly - why not just call IAudioClient_Initialize() again?! */ ma_IAudioClient_Release((ma_IAudioClient*)pData->pAudioClient); #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) hr = ma_IMMDevice_Activate(pDeviceInterface, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)&pData->pAudioClient); #else hr = ma_IUnknown_QueryInterface(pDeviceInterface, &MA_IID_IAudioClient, (void**)&pData->pAudioClient); #endif if (SUCCEEDED(hr)) { hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, bufferDuration, (WAVEFORMATEX*)&wf, NULL); } } } if (FAILED(hr)) { /* Failed to initialize in exclusive mode. Don't fall back to shared mode - instead tell the client about it. They can reinitialize in shared mode if they want. */ if (hr == E_ACCESSDENIED) { errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Access denied.", result = MA_ACCESS_DENIED; } else if (hr == MA_AUDCLNT_E_DEVICE_IN_USE) { errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Device in use.", result = MA_BUSY; } else { errorMsg = "[WASAPI] Failed to initialize device in exclusive mode."; result = ma_result_from_HRESULT(hr); } goto done; } } if (shareMode == MA_AUDCLNT_SHAREMODE_SHARED) { /* Low latency shared mode via IAudioClient3. NOTE ==== Contrary to the documentation on MSDN (https://docs.microsoft.com/en-us/windows/win32/api/audioclient/nf-audioclient-iaudioclient3-initializesharedaudiostream), the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM and AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY with IAudioClient3_InitializeSharedAudioStream() absolutely does not work. Using any of these flags will result in HRESULT code 0x88890021. The other problem is that calling IAudioClient3_GetSharedModeEnginePeriod() with a sample rate different to that returned by IAudioClient_GetMixFormat() also results in an error. I'm therefore disabling low-latency shared mode with AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */ #ifndef MA_WASAPI_NO_LOW_LATENCY_SHARED_MODE { if ((streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) == 0 || nativeSampleRate == wf.Format.nSamplesPerSec) { ma_IAudioClient3* pAudioClient3 = NULL; hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient3, (void**)&pAudioClient3); if (SUCCEEDED(hr)) { ma_uint32 defaultPeriodInFrames; ma_uint32 fundamentalPeriodInFrames; ma_uint32 minPeriodInFrames; ma_uint32 maxPeriodInFrames; hr = ma_IAudioClient3_GetSharedModeEnginePeriod(pAudioClient3, (WAVEFORMATEX*)&wf, &defaultPeriodInFrames, &fundamentalPeriodInFrames, &minPeriodInFrames, &maxPeriodInFrames); if (SUCCEEDED(hr)) { ma_uint32 desiredPeriodInFrames = pData->periodSizeInFramesOut; ma_uint32 actualPeriodInFrames = desiredPeriodInFrames; /* Make sure the period size is a multiple of fundamentalPeriodInFrames. */ actualPeriodInFrames = actualPeriodInFrames / fundamentalPeriodInFrames; actualPeriodInFrames = actualPeriodInFrames * fundamentalPeriodInFrames; /* The period needs to be clamped between minPeriodInFrames and maxPeriodInFrames. */ actualPeriodInFrames = ma_clamp(actualPeriodInFrames, minPeriodInFrames, maxPeriodInFrames); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[WASAPI] Trying IAudioClient3_InitializeSharedAudioStream(actualPeriodInFrames=%d)\n", actualPeriodInFrames); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " defaultPeriodInFrames=%d\n", defaultPeriodInFrames); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " fundamentalPeriodInFrames=%d\n", fundamentalPeriodInFrames); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " minPeriodInFrames=%d\n", minPeriodInFrames); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " maxPeriodInFrames=%d\n", maxPeriodInFrames); /* If the client requested a largish buffer than we don't actually want to use low latency shared mode because it forces small buffers. */ if (actualPeriodInFrames >= desiredPeriodInFrames) { /* MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM | MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY must not be in the stream flags. If either of these are specified, IAudioClient3_InitializeSharedAudioStream() will fail. */ hr = ma_IAudioClient3_InitializeSharedAudioStream(pAudioClient3, streamFlags & ~(MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM | MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY), actualPeriodInFrames, (WAVEFORMATEX*)&wf, NULL); if (SUCCEEDED(hr)) { wasInitializedUsingIAudioClient3 = MA_TRUE; pData->periodSizeInFramesOut = actualPeriodInFrames; ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[WASAPI] Using IAudioClient3\n"); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " periodSizeInFramesOut=%d\n", pData->periodSizeInFramesOut); } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[WASAPI] IAudioClient3_InitializeSharedAudioStream failed. Falling back to IAudioClient.\n"); } } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[WASAPI] Not using IAudioClient3 because the desired period size is larger than the maximum supported by IAudioClient3.\n"); } } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[WASAPI] IAudioClient3_GetSharedModeEnginePeriod failed. Falling back to IAudioClient.\n"); } ma_IAudioClient3_Release(pAudioClient3); pAudioClient3 = NULL; } } } #else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[WASAPI] Not using IAudioClient3 because MA_WASAPI_NO_LOW_LATENCY_SHARED_MODE is enabled.\n"); } #endif /* If we don't have an IAudioClient3 then we need to use the normal initialization routine. */ if (!wasInitializedUsingIAudioClient3) { MA_REFERENCE_TIME bufferDuration = periodDurationInMicroseconds * pData->periodsOut * 10; /* <-- Multiply by 10 for microseconds to 100-nanoseconds. */ hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, 0, (WAVEFORMATEX*)&wf, NULL); if (FAILED(hr)) { if (hr == E_ACCESSDENIED) { errorMsg = "[WASAPI] Failed to initialize device. Access denied.", result = MA_ACCESS_DENIED; } else if (hr == MA_AUDCLNT_E_DEVICE_IN_USE) { errorMsg = "[WASAPI] Failed to initialize device. Device in use.", result = MA_BUSY; } else { errorMsg = "[WASAPI] Failed to initialize device.", result = ma_result_from_HRESULT(hr); } goto done; } } } if (!wasInitializedUsingIAudioClient3) { ma_uint32 bufferSizeInFrames; hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames); if (FAILED(hr)) { errorMsg = "[WASAPI] Failed to get audio client's actual buffer size.", result = ma_result_from_HRESULT(hr); goto done; } pData->periodSizeInFramesOut = bufferSizeInFrames / pData->periodsOut; } pData->usingAudioClient3 = wasInitializedUsingIAudioClient3; if (deviceType == ma_device_type_playback) { result = ma_device_create_IAudioClient_service__wasapi(pContext, deviceType, (ma_IAudioClient*)pData->pAudioClient, (void**)&pData->pRenderClient); } else { result = ma_device_create_IAudioClient_service__wasapi(pContext, deviceType, (ma_IAudioClient*)pData->pAudioClient, (void**)&pData->pCaptureClient); } /*if (FAILED(hr)) {*/ if (result != MA_SUCCESS) { errorMsg = "[WASAPI] Failed to get audio client service."; goto done; } /* Grab the name of the device. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) { ma_IPropertyStore *pProperties; hr = ma_IMMDevice_OpenPropertyStore(pDeviceInterface, STGM_READ, &pProperties); if (SUCCEEDED(hr)) { PROPVARIANT varName; ma_PropVariantInit(&varName); hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_Device_FriendlyName, &varName); if (SUCCEEDED(hr)) { WideCharToMultiByte(CP_UTF8, 0, varName.pwszVal, -1, pData->deviceName, sizeof(pData->deviceName), 0, FALSE); ma_PropVariantClear(pContext, &varName); } ma_IPropertyStore_Release(pProperties); } } #endif /* For the WASAPI backend we need to know the actual IDs of the device in order to do automatic stream routing so that IDs can be compared and we can determine which device has been detached and whether or not it matches with our ma_device. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) { /* Desktop */ ma_context_get_device_id_from_MMDevice__wasapi(pContext, pDeviceInterface, &pData->id); } #else { /* UWP */ /* TODO: Implement me. Need to figure out how to get the ID of the default device. */ } #endif done: /* Clean up. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) if (pDeviceInterface != NULL) { ma_IMMDevice_Release(pDeviceInterface); } #else if (pDeviceInterface != NULL) { ma_IUnknown_Release(pDeviceInterface); } #endif if (result != MA_SUCCESS) { if (pData->pRenderClient) { ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pData->pRenderClient); pData->pRenderClient = NULL; } if (pData->pCaptureClient) { ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pData->pCaptureClient); pData->pCaptureClient = NULL; } if (pData->pAudioClient) { ma_IAudioClient_Release((ma_IAudioClient*)pData->pAudioClient); pData->pAudioClient = NULL; } if (errorMsg != NULL && errorMsg[0] != '\0') { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "%s\n", errorMsg); } return result; } else { return MA_SUCCESS; } } static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType) { ma_device_init_internal_data__wasapi data; ma_result result; MA_ASSERT(pDevice != NULL); /* We only re-initialize the playback or capture device. Never a full-duplex device. */ if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } /* Before reinitializing the device we need to free the previous audio clients. There's a known memory leak here. We will be calling this from the routing change callback that is fired by WASAPI. If we attempt to release the IAudioClient we will deadlock. In my opinion this is a bug. I'm not sure what I need to do to handle this cleanly, but I think we'll probably need some system where we post an event, but delay the execution of it until the callback has returned. I'm not sure how to do this reliably, however. I have set up some infrastructure for a command thread which might be useful for this. */ if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) { if (pDevice->wasapi.pCaptureClient) { ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient); pDevice->wasapi.pCaptureClient = NULL; } if (pDevice->wasapi.pAudioClientCapture) { /*ma_device_release_IAudioClient_service__wasapi(pDevice, ma_device_type_capture);*/ pDevice->wasapi.pAudioClientCapture = NULL; } } if (deviceType == ma_device_type_playback) { if (pDevice->wasapi.pRenderClient) { ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient); pDevice->wasapi.pRenderClient = NULL; } if (pDevice->wasapi.pAudioClientPlayback) { /*ma_device_release_IAudioClient_service__wasapi(pDevice, ma_device_type_playback);*/ pDevice->wasapi.pAudioClientPlayback = NULL; } } if (deviceType == ma_device_type_playback) { data.formatIn = pDevice->playback.format; data.channelsIn = pDevice->playback.channels; MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap)); data.shareMode = pDevice->playback.shareMode; } else { data.formatIn = pDevice->capture.format; data.channelsIn = pDevice->capture.channels; MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap)); data.shareMode = pDevice->capture.shareMode; } data.sampleRateIn = pDevice->sampleRate; data.periodSizeInFramesIn = pDevice->wasapi.originalPeriodSizeInFrames; data.periodSizeInMillisecondsIn = pDevice->wasapi.originalPeriodSizeInMilliseconds; data.periodsIn = pDevice->wasapi.originalPeriods; data.performanceProfile = pDevice->wasapi.originalPerformanceProfile; data.noAutoConvertSRC = pDevice->wasapi.noAutoConvertSRC; data.noDefaultQualitySRC = pDevice->wasapi.noDefaultQualitySRC; data.noHardwareOffloading = pDevice->wasapi.noHardwareOffloading; data.loopbackProcessID = pDevice->wasapi.loopbackProcessID; data.loopbackProcessExclude = pDevice->wasapi.loopbackProcessExclude; result = ma_device_init_internal__wasapi(pDevice->pContext, deviceType, NULL, &data); if (result != MA_SUCCESS) { return result; } /* At this point we have some new objects ready to go. We need to uninitialize the previous ones and then set the new ones. */ if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) { pDevice->wasapi.pAudioClientCapture = data.pAudioClient; pDevice->wasapi.pCaptureClient = data.pCaptureClient; pDevice->capture.internalFormat = data.formatOut; pDevice->capture.internalChannels = data.channelsOut; pDevice->capture.internalSampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->capture.internalPeriods = data.periodsOut; ma_strcpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), data.deviceName); ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture); pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut; ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualBufferSizeInFramesCapture); /* We must always have a valid ID. */ ma_wcscpy_s(pDevice->capture.id.wasapi, sizeof(pDevice->capture.id.wasapi), data.id.wasapi); } if (deviceType == ma_device_type_playback) { pDevice->wasapi.pAudioClientPlayback = data.pAudioClient; pDevice->wasapi.pRenderClient = data.pRenderClient; pDevice->playback.internalFormat = data.formatOut; pDevice->playback.internalChannels = data.channelsOut; pDevice->playback.internalSampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->playback.internalPeriods = data.periodsOut; ma_strcpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), data.deviceName); ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback); pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut; ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualBufferSizeInFramesPlayback); /* We must always have a valid ID because rerouting will look at it. */ ma_wcscpy_s(pDevice->playback.id.wasapi, sizeof(pDevice->playback.id.wasapi), data.id.wasapi); } return MA_SUCCESS; } static ma_result ma_device_init__wasapi(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result = MA_SUCCESS; #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) HRESULT hr; ma_IMMDeviceEnumerator* pDeviceEnumerator; #endif MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->wasapi); pDevice->wasapi.usage = pConfig->wasapi.usage; pDevice->wasapi.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; pDevice->wasapi.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; pDevice->wasapi.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; pDevice->wasapi.loopbackProcessID = pConfig->wasapi.loopbackProcessID; pDevice->wasapi.loopbackProcessExclude = pConfig->wasapi.loopbackProcessExclude; /* Exclusive mode is not allowed with loopback. */ if (pConfig->deviceType == ma_device_type_loopback && pConfig->playback.shareMode == ma_share_mode_exclusive) { return MA_INVALID_DEVICE_CONFIG; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { ma_device_init_internal_data__wasapi data; data.formatIn = pDescriptorCapture->format; data.channelsIn = pDescriptorCapture->channels; data.sampleRateIn = pDescriptorCapture->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pDescriptorCapture->channelMap, sizeof(pDescriptorCapture->channelMap)); data.periodSizeInFramesIn = pDescriptorCapture->periodSizeInFrames; data.periodSizeInMillisecondsIn = pDescriptorCapture->periodSizeInMilliseconds; data.periodsIn = pDescriptorCapture->periodCount; data.shareMode = pDescriptorCapture->shareMode; data.performanceProfile = pConfig->performanceProfile; data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; data.loopbackProcessID = pConfig->wasapi.loopbackProcessID; data.loopbackProcessExclude = pConfig->wasapi.loopbackProcessExclude; result = ma_device_init_internal__wasapi(pDevice->pContext, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture, pDescriptorCapture->pDeviceID, &data); if (result != MA_SUCCESS) { return result; } pDevice->wasapi.pAudioClientCapture = data.pAudioClient; pDevice->wasapi.pCaptureClient = data.pCaptureClient; pDevice->wasapi.originalPeriodSizeInMilliseconds = pDescriptorCapture->periodSizeInMilliseconds; pDevice->wasapi.originalPeriodSizeInFrames = pDescriptorCapture->periodSizeInFrames; pDevice->wasapi.originalPeriods = pDescriptorCapture->periodCount; pDevice->wasapi.originalPerformanceProfile = pConfig->performanceProfile; /* The event for capture needs to be manual reset for the same reason as playback. We keep the initial state set to unsignaled, however, because we want to block until we actually have something for the first call to ma_device_read(). */ pDevice->wasapi.hEventCapture = CreateEventW(NULL, FALSE, FALSE, NULL); /* Auto reset, unsignaled by default. */ if (pDevice->wasapi.hEventCapture == NULL) { result = ma_result_from_GetLastError(GetLastError()); if (pDevice->wasapi.pCaptureClient != NULL) { ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient); pDevice->wasapi.pCaptureClient = NULL; } if (pDevice->wasapi.pAudioClientCapture != NULL) { ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); pDevice->wasapi.pAudioClientCapture = NULL; } ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for capture."); return result; } ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture); pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut; ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualBufferSizeInFramesCapture); /* We must always have a valid ID. */ ma_wcscpy_s(pDevice->capture.id.wasapi, sizeof(pDevice->capture.id.wasapi), data.id.wasapi); /* The descriptor needs to be updated with actual values. */ pDescriptorCapture->format = data.formatOut; pDescriptorCapture->channels = data.channelsOut; pDescriptorCapture->sampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDescriptorCapture->channelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDescriptorCapture->periodSizeInFrames = data.periodSizeInFramesOut; pDescriptorCapture->periodCount = data.periodsOut; } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_device_init_internal_data__wasapi data; data.formatIn = pDescriptorPlayback->format; data.channelsIn = pDescriptorPlayback->channels; data.sampleRateIn = pDescriptorPlayback->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pDescriptorPlayback->channelMap, sizeof(pDescriptorPlayback->channelMap)); data.periodSizeInFramesIn = pDescriptorPlayback->periodSizeInFrames; data.periodSizeInMillisecondsIn = pDescriptorPlayback->periodSizeInMilliseconds; data.periodsIn = pDescriptorPlayback->periodCount; data.shareMode = pDescriptorPlayback->shareMode; data.performanceProfile = pConfig->performanceProfile; data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC; data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC; data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading; data.loopbackProcessID = pConfig->wasapi.loopbackProcessID; data.loopbackProcessExclude = pConfig->wasapi.loopbackProcessExclude; result = ma_device_init_internal__wasapi(pDevice->pContext, ma_device_type_playback, pDescriptorPlayback->pDeviceID, &data); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { if (pDevice->wasapi.pCaptureClient != NULL) { ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient); pDevice->wasapi.pCaptureClient = NULL; } if (pDevice->wasapi.pAudioClientCapture != NULL) { ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); pDevice->wasapi.pAudioClientCapture = NULL; } CloseHandle(pDevice->wasapi.hEventCapture); pDevice->wasapi.hEventCapture = NULL; } return result; } pDevice->wasapi.pAudioClientPlayback = data.pAudioClient; pDevice->wasapi.pRenderClient = data.pRenderClient; pDevice->wasapi.originalPeriodSizeInMilliseconds = pDescriptorPlayback->periodSizeInMilliseconds; pDevice->wasapi.originalPeriodSizeInFrames = pDescriptorPlayback->periodSizeInFrames; pDevice->wasapi.originalPeriods = pDescriptorPlayback->periodCount; pDevice->wasapi.originalPerformanceProfile = pConfig->performanceProfile; /* The event for playback is needs to be manual reset because we want to explicitly control the fact that it becomes signalled only after the whole available space has been filled, never before. The playback event also needs to be initially set to a signaled state so that the first call to ma_device_write() is able to get passed WaitForMultipleObjects(). */ pDevice->wasapi.hEventPlayback = CreateEventW(NULL, FALSE, TRUE, NULL); /* Auto reset, signaled by default. */ if (pDevice->wasapi.hEventPlayback == NULL) { result = ma_result_from_GetLastError(GetLastError()); if (pConfig->deviceType == ma_device_type_duplex) { if (pDevice->wasapi.pCaptureClient != NULL) { ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient); pDevice->wasapi.pCaptureClient = NULL; } if (pDevice->wasapi.pAudioClientCapture != NULL) { ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); pDevice->wasapi.pAudioClientCapture = NULL; } CloseHandle(pDevice->wasapi.hEventCapture); pDevice->wasapi.hEventCapture = NULL; } if (pDevice->wasapi.pRenderClient != NULL) { ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient); pDevice->wasapi.pRenderClient = NULL; } if (pDevice->wasapi.pAudioClientPlayback != NULL) { ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback); pDevice->wasapi.pAudioClientPlayback = NULL; } ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for playback."); return result; } ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback); pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut; ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualBufferSizeInFramesPlayback); /* We must always have a valid ID because rerouting will look at it. */ ma_wcscpy_s(pDevice->playback.id.wasapi, sizeof(pDevice->playback.id.wasapi), data.id.wasapi); /* The descriptor needs to be updated with actual values. */ pDescriptorPlayback->format = data.formatOut; pDescriptorPlayback->channels = data.channelsOut; pDescriptorPlayback->sampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDescriptorPlayback->channelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDescriptorPlayback->periodSizeInFrames = data.periodSizeInFramesOut; pDescriptorPlayback->periodCount = data.periodsOut; } /* We need to register a notification client to detect when the device has been disabled, unplugged or re-routed (when the default device changes). When we are connecting to the default device we want to do automatic stream routing when the device is disabled or unplugged. Otherwise we want to just stop the device outright and let the application handle it. */ #if defined(MA_WIN32_DESKTOP) || defined(MA_WIN32_GDK) if (pConfig->wasapi.noAutoStreamRouting == MA_FALSE) { if ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.pDeviceID == NULL) { pDevice->wasapi.allowCaptureAutoStreamRouting = MA_TRUE; } if ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID == NULL) { pDevice->wasapi.allowPlaybackAutoStreamRouting = MA_TRUE; } } hr = ma_CoCreateInstance(pDevice->pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator); if (FAILED(hr)) { ma_device_uninit__wasapi(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator."); return ma_result_from_HRESULT(hr); } pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl; pDevice->wasapi.notificationClient.counter = 1; pDevice->wasapi.notificationClient.pDevice = pDevice; hr = pDeviceEnumerator->lpVtbl->RegisterEndpointNotificationCallback(pDeviceEnumerator, &pDevice->wasapi.notificationClient); if (SUCCEEDED(hr)) { pDevice->wasapi.pDeviceEnumerator = (ma_ptr)pDeviceEnumerator; } else { /* Not the end of the world if we fail to register the notification callback. We just won't support automatic stream routing. */ ma_IMMDeviceEnumerator_Release(pDeviceEnumerator); } #endif c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE); c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE); return MA_SUCCESS; } static ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_IAudioClient* pAudioClient, ma_uint32* pFrameCount) { ma_uint32 paddingFramesCount; HRESULT hr; ma_share_mode shareMode; MA_ASSERT(pDevice != NULL); MA_ASSERT(pFrameCount != NULL); *pFrameCount = 0; if ((ma_ptr)pAudioClient != pDevice->wasapi.pAudioClientPlayback && (ma_ptr)pAudioClient != pDevice->wasapi.pAudioClientCapture) { return MA_INVALID_OPERATION; } /* I've had a report that GetCurrentPadding() is returning a frame count of 0 which is preventing higher level function calls from doing anything because it thinks nothing is available. I have taken a look at the documentation and it looks like this is unnecessary in exclusive mode. From Microsoft's documentation: For an exclusive-mode rendering or capture stream that was initialized with the AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag, the client typically has no use for the padding value reported by GetCurrentPadding. Instead, the client accesses an entire buffer during each processing pass. Considering this, I'm going to skip GetCurrentPadding() for exclusive mode and just report the entire buffer. This depends on the caller making sure they wait on the event handler. */ shareMode = ((ma_ptr)pAudioClient == pDevice->wasapi.pAudioClientPlayback) ? pDevice->playback.shareMode : pDevice->capture.shareMode; if (shareMode == ma_share_mode_shared) { /* Shared mode. */ hr = ma_IAudioClient_GetCurrentPadding(pAudioClient, &paddingFramesCount); if (FAILED(hr)) { return ma_result_from_HRESULT(hr); } if ((ma_ptr)pAudioClient == pDevice->wasapi.pAudioClientPlayback) { *pFrameCount = pDevice->wasapi.actualBufferSizeInFramesPlayback - paddingFramesCount; } else { *pFrameCount = paddingFramesCount; } } else { /* Exclusive mode. */ if ((ma_ptr)pAudioClient == pDevice->wasapi.pAudioClientPlayback) { *pFrameCount = pDevice->wasapi.actualBufferSizeInFramesPlayback; } else { *pFrameCount = pDevice->wasapi.actualBufferSizeInFramesCapture; } } return MA_SUCCESS; } static ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type deviceType) { ma_result result; if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "=== CHANGING DEVICE ===\n"); result = ma_device_reinit__wasapi(pDevice, deviceType); if (result != MA_SUCCESS) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[WASAPI] Reinitializing device after route change failed.\n"); return result; } ma_device__post_init_setup(pDevice, deviceType); ma_device__on_notification_rerouted(pDevice); return MA_SUCCESS; } static ma_result ma_device_start__wasapi(ma_device* pDevice) { HRESULT hr; MA_ASSERT(pDevice != NULL); if (pDevice->pContext->wasapi.hAvrt) { LPCWSTR pTaskName = ma_to_usage_string__wasapi(pDevice->wasapi.usage); if (pTaskName) { DWORD idx = 0; pDevice->wasapi.hAvrtHandle = ((MA_PFN_AvSetMmThreadCharacteristicsW)pDevice->pContext->wasapi.AvSetMmThreadCharacteristicsW)(pTaskName, &idx); } } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device."); return ma_result_from_HRESULT(hr); } c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_TRUE); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device."); return ma_result_from_HRESULT(hr); } c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE); } return MA_SUCCESS; } static ma_result ma_device_stop__wasapi(ma_device* pDevice) { ma_result result; HRESULT hr; MA_ASSERT(pDevice != NULL); if (pDevice->wasapi.hAvrtHandle) { ((MA_PFN_AvRevertMmThreadCharacteristics)pDevice->pContext->wasapi.AvRevertMmThreadcharacteristics)((HANDLE)pDevice->wasapi.hAvrtHandle); pDevice->wasapi.hAvrtHandle = NULL; } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal capture device."); return ma_result_from_HRESULT(hr); } /* The audio client needs to be reset otherwise restarting will fail. */ hr = ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal capture device."); return ma_result_from_HRESULT(hr); } /* If we have a mapped buffer we need to release it. */ if (pDevice->wasapi.pMappedBufferCapture != NULL) { ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, pDevice->wasapi.mappedBufferCaptureCap); pDevice->wasapi.pMappedBufferCapture = NULL; pDevice->wasapi.mappedBufferCaptureCap = 0; pDevice->wasapi.mappedBufferCaptureLen = 0; } c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* The buffer needs to be drained before stopping the device. Not doing this will result in the last few frames not getting output to the speakers. This is a problem for very short sounds because it'll result in a significant portion of it not getting played. */ if (c89atomic_load_32(&pDevice->wasapi.isStartedPlayback)) { /* We need to make sure we put a timeout here or else we'll risk getting stuck in a deadlock in some cases. */ DWORD waitTime = pDevice->wasapi.actualBufferSizeInFramesPlayback / pDevice->playback.internalSampleRate; if (pDevice->playback.shareMode == ma_share_mode_exclusive) { WaitForSingleObject(pDevice->wasapi.hEventPlayback, waitTime); } else { ma_uint32 prevFramesAvaialablePlayback = (ma_uint32)-1; ma_uint32 framesAvailablePlayback; for (;;) { result = ma_device__get_available_frames__wasapi(pDevice, (ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &framesAvailablePlayback); if (result != MA_SUCCESS) { break; } if (framesAvailablePlayback >= pDevice->wasapi.actualBufferSizeInFramesPlayback) { break; } /* Just a safety check to avoid an infinite loop. If this iteration results in a situation where the number of available frames has not changed, get out of the loop. I don't think this should ever happen, but I think it's nice to have just in case. */ if (framesAvailablePlayback == prevFramesAvaialablePlayback) { break; } prevFramesAvaialablePlayback = framesAvailablePlayback; WaitForSingleObject(pDevice->wasapi.hEventPlayback, waitTime * 1000); ResetEvent(pDevice->wasapi.hEventPlayback); /* Manual reset. */ } } } hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal playback device."); return ma_result_from_HRESULT(hr); } /* The audio client needs to be reset otherwise restarting will fail. */ hr = ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal playback device."); return ma_result_from_HRESULT(hr); } if (pDevice->wasapi.pMappedBufferPlayback != NULL) { ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, pDevice->wasapi.mappedBufferPlaybackCap, 0); pDevice->wasapi.pMappedBufferPlayback = NULL; pDevice->wasapi.mappedBufferPlaybackCap = 0; pDevice->wasapi.mappedBufferPlaybackLen = 0; } c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE); } return MA_SUCCESS; } #ifndef MA_WASAPI_WAIT_TIMEOUT_MILLISECONDS #define MA_WASAPI_WAIT_TIMEOUT_MILLISECONDS 5000 #endif static ma_result ma_device_read__wasapi(ma_device* pDevice, void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint32 totalFramesProcessed = 0; /* When reading, we need to get a buffer and process all of it before releasing it. Because the frame count (frameCount) can be different to the size of the buffer, we'll need to cache the pointer to the buffer. */ /* Keep running until we've processed the requested number of frames. */ while (ma_device_get_state(pDevice) == ma_device_state_started && totalFramesProcessed < frameCount) { ma_uint32 framesRemaining = frameCount - totalFramesProcessed; /* If we have a mapped data buffer, consume that first. */ if (pDevice->wasapi.pMappedBufferCapture != NULL) { /* We have a cached data pointer so consume that before grabbing another one from WASAPI. */ ma_uint32 framesToProcessNow = framesRemaining; if (framesToProcessNow > pDevice->wasapi.mappedBufferCaptureLen) { framesToProcessNow = pDevice->wasapi.mappedBufferCaptureLen; } /* Now just copy the data over to the output buffer. */ ma_copy_pcm_frames( ma_offset_pcm_frames_ptr(pFrames, totalFramesProcessed, pDevice->capture.internalFormat, pDevice->capture.internalChannels), ma_offset_pcm_frames_const_ptr(pDevice->wasapi.pMappedBufferCapture, pDevice->wasapi.mappedBufferCaptureCap - pDevice->wasapi.mappedBufferCaptureLen, pDevice->capture.internalFormat, pDevice->capture.internalChannels), framesToProcessNow, pDevice->capture.internalFormat, pDevice->capture.internalChannels ); totalFramesProcessed += framesToProcessNow; pDevice->wasapi.mappedBufferCaptureLen -= framesToProcessNow; /* If the data buffer has been fully consumed we need to release it. */ if (pDevice->wasapi.mappedBufferCaptureLen == 0) { ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, pDevice->wasapi.mappedBufferCaptureCap); pDevice->wasapi.pMappedBufferCapture = NULL; pDevice->wasapi.mappedBufferCaptureCap = 0; } } else { /* We don't have any cached data pointer, so grab another one. */ HRESULT hr; DWORD flags = 0; /* First just ask WASAPI for a data buffer. If it's not available, we'll wait for more. */ hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pDevice->wasapi.pMappedBufferCapture, &pDevice->wasapi.mappedBufferCaptureCap, &flags, NULL, NULL); if (hr == S_OK) { /* We got a data buffer. Continue to the next loop iteration which will then read from the mapped pointer. */ pDevice->wasapi.mappedBufferCaptureLen = pDevice->wasapi.mappedBufferCaptureCap; /* There have been reports that indicate that at times the AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY is reported for every call to IAudioCaptureClient_GetBuffer() above which results in spamming of the debug messages below. To partially work around this, I'm only outputting these messages when MA_DEBUG_OUTPUT is explicitly defined. The better solution would be to figure out why the flag is always getting reported. */ #if defined(MA_DEBUG_OUTPUT) { if (flags != 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Capture Flags: %ld\n", flags); if ((flags & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Data discontinuity (possible overrun). Attempting recovery. mappedBufferCaptureCap=%d\n", pDevice->wasapi.mappedBufferCaptureCap); } } } #endif /* Overrun detection. */ if ((flags & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) { /* Glitched. Probably due to an overrun. */ /* If we got an overrun it probably means we're straddling the end of the buffer. In normal capture mode this is the fault of the client application because they're responsible for ensuring data is processed fast enough. In duplex mode, however, the processing of audio is tied to the playback device, so this can possibly be the result of a timing de-sync. In capture mode we're not going to do any kind of recovery because the real fix is for the client application to process faster. In duplex mode, we'll treat this as a desync and reset the buffers to prevent a never-ending sequence of glitches due to straddling the end of the buffer. */ if (pDevice->type == ma_device_type_duplex) { /* Experiment: If we empty out the *entire* buffer we may end up putting ourselves into an underrun position which isn't really any better than the overrun we're probably in right now. Instead we'll just empty out about half. */ ma_uint32 i; ma_uint32 periodCount = (pDevice->wasapi.actualBufferSizeInFramesCapture / pDevice->wasapi.periodSizeInFramesCapture); ma_uint32 iterationCount = periodCount / 2; if ((periodCount % 2) > 0) { iterationCount += 1; } for (i = 0; i < iterationCount; i += 1) { hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, pDevice->wasapi.mappedBufferCaptureCap); if (FAILED(hr)) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Data discontinuity recovery: IAudioCaptureClient_ReleaseBuffer() failed with %d.\n", (int)hr); //< @r-lyeh, silence clang-cl warning break; } flags = 0; hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pDevice->wasapi.pMappedBufferCapture, &pDevice->wasapi.mappedBufferCaptureCap, &flags, NULL, NULL); if (hr == MA_AUDCLNT_S_BUFFER_EMPTY || FAILED(hr)) { /* The buffer has been completely emptied or an error occurred. In this case we'll need to reset the state of the mapped buffer which will trigger the next iteration to get a fresh buffer from WASAPI. */ pDevice->wasapi.pMappedBufferCapture = NULL; pDevice->wasapi.mappedBufferCaptureCap = 0; pDevice->wasapi.mappedBufferCaptureLen = 0; if (hr == MA_AUDCLNT_S_BUFFER_EMPTY) { if ((flags & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Data discontinuity recovery: Buffer emptied, and data discontinuity still reported.\n"); } else { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Data discontinuity recovery: Buffer emptied.\n"); } } if (FAILED(hr)) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[WASAPI] Data discontinuity recovery: IAudioCaptureClient_GetBuffer() failed with %d.\n", (int)hr); //< @r-lyeh, silence clang-cl warning } break; } } /* If at this point we have a valid buffer mapped, make sure the buffer length is set appropriately. */ if (pDevice->wasapi.pMappedBufferCapture != NULL) { pDevice->wasapi.mappedBufferCaptureLen = pDevice->wasapi.mappedBufferCaptureCap; } } } continue; } else { if (hr == MA_AUDCLNT_S_BUFFER_EMPTY || hr == MA_AUDCLNT_E_BUFFER_ERROR) { /* No data is available. We need to wait for more. There's two situations to consider here. The first is normal capture mode. If this times out it probably means the microphone isn't delivering data for whatever reason. In this case we'll just abort the read and return whatever we were able to get. The other situations is loopback mode, in which case a timeout probably just means the nothing is playing through the speakers. */ /* Experiment: Use a shorter timeout for loopback mode. */ DWORD timeoutInMilliseconds = MA_WASAPI_WAIT_TIMEOUT_MILLISECONDS; if (pDevice->type == ma_device_type_loopback) { timeoutInMilliseconds = 10; } if (WaitForSingleObject(pDevice->wasapi.hEventCapture, timeoutInMilliseconds) != WAIT_OBJECT_0) { if (pDevice->type == ma_device_type_loopback) { continue; /* Keep waiting in loopback mode. */ } else { result = MA_ERROR; break; /* Wait failed. */ } } /* At this point we should be able to loop back to the start of the loop and try retrieving a data buffer again. */ } else { /* An error occured and we need to abort. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for reading from the device. HRESULT = %d. Stopping device.\n", (int)hr); result = ma_result_from_HRESULT(hr); break; } } } } /* If we were unable to process the entire requested frame count, but we still have a mapped buffer, there's a good chance either an error occurred or the device was stopped mid-read. In this case we'll need to make sure the buffer is released. */ if (totalFramesProcessed < frameCount && pDevice->wasapi.pMappedBufferCapture != NULL) { ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, pDevice->wasapi.mappedBufferCaptureCap); pDevice->wasapi.pMappedBufferCapture = NULL; pDevice->wasapi.mappedBufferCaptureCap = 0; pDevice->wasapi.mappedBufferCaptureLen = 0; } if (pFramesRead != NULL) { *pFramesRead = totalFramesProcessed; } return result; } static ma_result ma_device_write__wasapi(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { ma_result result = MA_SUCCESS; ma_uint32 totalFramesProcessed = 0; /* Keep writing to the device until it's stopped or we've consumed all of our input. */ while (ma_device_get_state(pDevice) == ma_device_state_started && totalFramesProcessed < frameCount) { ma_uint32 framesRemaining = frameCount - totalFramesProcessed; /* We're going to do this in a similar way to capture. We'll first check if the cached data pointer is valid, and if so, read from that. Otherwise We will call IAudioRenderClient_GetBuffer() with a requested buffer size equal to our actual period size. If it returns AUDCLNT_E_BUFFER_TOO_LARGE it means we need to wait for some data to become available. */ if (pDevice->wasapi.pMappedBufferPlayback != NULL) { /* We still have some space available in the mapped data buffer. Write to it. */ ma_uint32 framesToProcessNow = framesRemaining; if (framesToProcessNow > (pDevice->wasapi.mappedBufferPlaybackCap - pDevice->wasapi.mappedBufferPlaybackLen)) { framesToProcessNow = (pDevice->wasapi.mappedBufferPlaybackCap - pDevice->wasapi.mappedBufferPlaybackLen); } /* Now just copy the data over to the output buffer. */ ma_copy_pcm_frames( ma_offset_pcm_frames_ptr(pDevice->wasapi.pMappedBufferPlayback, pDevice->wasapi.mappedBufferPlaybackLen, pDevice->playback.internalFormat, pDevice->playback.internalChannels), ma_offset_pcm_frames_const_ptr(pFrames, totalFramesProcessed, pDevice->playback.internalFormat, pDevice->playback.internalChannels), framesToProcessNow, pDevice->playback.internalFormat, pDevice->playback.internalChannels ); totalFramesProcessed += framesToProcessNow; pDevice->wasapi.mappedBufferPlaybackLen += framesToProcessNow; /* If the data buffer has been fully consumed we need to release it. */ if (pDevice->wasapi.mappedBufferPlaybackLen == pDevice->wasapi.mappedBufferPlaybackCap) { ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, pDevice->wasapi.mappedBufferPlaybackCap, 0); pDevice->wasapi.pMappedBufferPlayback = NULL; pDevice->wasapi.mappedBufferPlaybackCap = 0; pDevice->wasapi.mappedBufferPlaybackLen = 0; /* In exclusive mode we need to wait here. Exclusive mode is weird because GetBuffer() never seems to return AUDCLNT_E_BUFFER_TOO_LARGE, which is what we normally use to determine whether or not we need to wait for more data. */ if (pDevice->playback.shareMode == ma_share_mode_exclusive) { if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, MA_WASAPI_WAIT_TIMEOUT_MILLISECONDS) != WAIT_OBJECT_0) { result = MA_ERROR; break; /* Wait failed. Probably timed out. */ } } } } else { /* We don't have a mapped data buffer so we'll need to get one. */ HRESULT hr; ma_uint32 bufferSizeInFrames; /* Special rules for exclusive mode. */ if (pDevice->playback.shareMode == ma_share_mode_exclusive) { bufferSizeInFrames = pDevice->wasapi.actualBufferSizeInFramesPlayback; } else { bufferSizeInFrames = pDevice->wasapi.periodSizeInFramesPlayback; } hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, bufferSizeInFrames, (BYTE**)&pDevice->wasapi.pMappedBufferPlayback); if (hr == S_OK) { /* We have data available. */ pDevice->wasapi.mappedBufferPlaybackCap = bufferSizeInFrames; pDevice->wasapi.mappedBufferPlaybackLen = 0; } else { if (hr == MA_AUDCLNT_E_BUFFER_TOO_LARGE || hr == MA_AUDCLNT_E_BUFFER_ERROR) { /* Not enough data available. We need to wait for more. */ if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, MA_WASAPI_WAIT_TIMEOUT_MILLISECONDS) != WAIT_OBJECT_0) { result = MA_ERROR; break; /* Wait failed. Probably timed out. */ } } else { /* Some error occurred. We'll need to abort. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device. HRESULT = %d. Stopping device.\n", (int)hr); result = ma_result_from_HRESULT(hr); break; } } } } if (pFramesWritten != NULL) { *pFramesWritten = totalFramesProcessed; } return result; } static ma_result ma_device_data_loop_wakeup__wasapi(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { SetEvent((HANDLE)pDevice->wasapi.hEventCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { SetEvent((HANDLE)pDevice->wasapi.hEventPlayback); } return MA_SUCCESS; } static ma_result ma_context_uninit__wasapi(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_wasapi); if (pContext->wasapi.commandThread != NULL) { ma_context_command__wasapi cmd = ma_context_init_command__wasapi(MA_CONTEXT_COMMAND_QUIT__WASAPI); ma_context_post_command__wasapi(pContext, &cmd); ma_thread_wait(&pContext->wasapi.commandThread); if (pContext->wasapi.hAvrt) { ma_dlclose(pContext, pContext->wasapi.hAvrt); pContext->wasapi.hAvrt = NULL; } #if defined(MA_WIN32_UWP) { if (pContext->wasapi.hMMDevapi) { ma_dlclose(pContext, pContext->wasapi.hMMDevapi); pContext->wasapi.hMMDevapi = NULL; } } #endif /* Only after the thread has been terminated can we uninitialize the sync objects for the command thread. */ ma_semaphore_uninit(&pContext->wasapi.commandSem); ma_mutex_uninit(&pContext->wasapi.commandLock); } return MA_SUCCESS; } static ma_result ma_context_init__wasapi(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { ma_result result = MA_SUCCESS; MA_ASSERT(pContext != NULL); (void)pConfig; #ifdef MA_WIN32_DESKTOP /* WASAPI is only supported in Vista SP1 and newer. The reason for SP1 and not the base version of Vista is that event-driven exclusive mode does not work until SP1. Unfortunately older compilers don't define these functions so we need to dynamically load them in order to avoid a link error. */ { ma_OSVERSIONINFOEXW osvi; ma_handle kernel32DLL; ma_PFNVerifyVersionInfoW _VerifyVersionInfoW; ma_PFNVerSetConditionMask _VerSetConditionMask; kernel32DLL = ma_dlopen(pContext, "kernel32.dll"); if (kernel32DLL == NULL) { return MA_NO_BACKEND; } _VerifyVersionInfoW = (ma_PFNVerifyVersionInfoW )ma_dlsym(pContext, kernel32DLL, "VerifyVersionInfoW"); _VerSetConditionMask = (ma_PFNVerSetConditionMask)ma_dlsym(pContext, kernel32DLL, "VerSetConditionMask"); if (_VerifyVersionInfoW == NULL || _VerSetConditionMask == NULL) { ma_dlclose(pContext, kernel32DLL); return MA_NO_BACKEND; } MA_ZERO_OBJECT(&osvi); osvi.dwOSVersionInfoSize = sizeof(osvi); osvi.dwMajorVersion = ((MA_WIN32_WINNT_VISTA >> 8) & 0xFF); osvi.dwMinorVersion = ((MA_WIN32_WINNT_VISTA >> 0) & 0xFF); osvi.wServicePackMajor = 1; if (_VerifyVersionInfoW(&osvi, MA_VER_MAJORVERSION | MA_VER_MINORVERSION | MA_VER_SERVICEPACKMAJOR, _VerSetConditionMask(_VerSetConditionMask(_VerSetConditionMask(0, MA_VER_MAJORVERSION, MA_VER_GREATER_EQUAL), MA_VER_MINORVERSION, MA_VER_GREATER_EQUAL), MA_VER_SERVICEPACKMAJOR, MA_VER_GREATER_EQUAL))) { result = MA_SUCCESS; } else { result = MA_NO_BACKEND; } ma_dlclose(pContext, kernel32DLL); } #endif if (result != MA_SUCCESS) { return result; } MA_ZERO_OBJECT(&pContext->wasapi); /* Annoyingly, WASAPI does not allow you to release an IAudioClient object from a different thread than the one that retrieved it with GetService(). This can result in a deadlock in two situations: 1) When calling ma_device_uninit() from a different thread to ma_device_init(); and 2) When uninitializing and reinitializing the internal IAudioClient object in response to automatic stream routing. We could define ma_device_uninit() such that it must be called on the same thread as ma_device_init(). We could also just not release the IAudioClient when performing automatic stream routing to avoid the deadlock. Neither of these are acceptable solutions in my view so we're going to have to work around this with a worker thread. This is not ideal, but I can't think of a better way to do this. More information about this can be found here: https://docs.microsoft.com/en-us/windows/win32/api/audioclient/nn-audioclient-iaudiorenderclient Note this section: When releasing an IAudioRenderClient interface instance, the client must call the interface's Release method from the same thread as the call to IAudioClient::GetService that created the object. */ { result = ma_mutex_init(&pContext->wasapi.commandLock); if (result != MA_SUCCESS) { return result; } result = ma_semaphore_init(0, &pContext->wasapi.commandSem); if (result != MA_SUCCESS) { ma_mutex_uninit(&pContext->wasapi.commandLock); return result; } result = ma_thread_create(&pContext->wasapi.commandThread, ma_thread_priority_normal, 0, ma_context_command_thread__wasapi, pContext, &pContext->allocationCallbacks); if (result != MA_SUCCESS) { ma_semaphore_uninit(&pContext->wasapi.commandSem); ma_mutex_uninit(&pContext->wasapi.commandLock); return result; } #if defined(MA_WIN32_UWP) { /* Link to mmdevapi so we can get access to ActivateAudioInterfaceAsync(). */ pContext->wasapi.hMMDevapi = ma_dlopen(pContext, "mmdevapi.dll"); if (pContext->wasapi.hMMDevapi) { pContext->wasapi.ActivateAudioInterfaceAsync = ma_dlsym(pContext, pContext->wasapi.hMMDevapi, "ActivateAudioInterfaceAsync"); if (pContext->wasapi.ActivateAudioInterfaceAsync == NULL) { ma_semaphore_uninit(&pContext->wasapi.commandSem); ma_mutex_uninit(&pContext->wasapi.commandLock); ma_dlclose(pContext, pContext->wasapi.hMMDevapi); return MA_NO_BACKEND; /* ActivateAudioInterfaceAsync() could not be loaded. */ } } else { ma_semaphore_uninit(&pContext->wasapi.commandSem); ma_mutex_uninit(&pContext->wasapi.commandLock); return MA_NO_BACKEND; /* Failed to load mmdevapi.dll which is required for ActivateAudioInterfaceAsync() */ } } #endif /* Optionally use the Avrt API to specify the audio thread's latency sensitivity requirements */ pContext->wasapi.hAvrt = ma_dlopen(pContext, "avrt.dll"); if (pContext->wasapi.hAvrt) { pContext->wasapi.AvSetMmThreadCharacteristicsW = ma_dlsym(pContext, pContext->wasapi.hAvrt, "AvSetMmThreadCharacteristicsW"); pContext->wasapi.AvRevertMmThreadcharacteristics = ma_dlsym(pContext, pContext->wasapi.hAvrt, "AvRevertMmThreadCharacteristics"); /* If either function could not be found, disable use of avrt entirely. */ if (!pContext->wasapi.AvSetMmThreadCharacteristicsW || !pContext->wasapi.AvRevertMmThreadcharacteristics) { pContext->wasapi.AvSetMmThreadCharacteristicsW = NULL; pContext->wasapi.AvRevertMmThreadcharacteristics = NULL; ma_dlclose(pContext, pContext->wasapi.hAvrt); pContext->wasapi.hAvrt = NULL; } } } pCallbacks->onContextInit = ma_context_init__wasapi; pCallbacks->onContextUninit = ma_context_uninit__wasapi; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__wasapi; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__wasapi; pCallbacks->onDeviceInit = ma_device_init__wasapi; pCallbacks->onDeviceUninit = ma_device_uninit__wasapi; pCallbacks->onDeviceStart = ma_device_start__wasapi; pCallbacks->onDeviceStop = ma_device_stop__wasapi; pCallbacks->onDeviceRead = ma_device_read__wasapi; pCallbacks->onDeviceWrite = ma_device_write__wasapi; pCallbacks->onDeviceDataLoop = NULL; pCallbacks->onDeviceDataLoopWakeup = ma_device_data_loop_wakeup__wasapi; return MA_SUCCESS; } #endif /****************************************************************************** DirectSound Backend ******************************************************************************/ #ifdef MA_HAS_DSOUND /*#include */ /*static const GUID MA_GUID_IID_DirectSoundNotify = {0xb0210783, 0x89cd, 0x11d0, {0xaf, 0x08, 0x00, 0xa0, 0xc9, 0x25, 0xcd, 0x16}};*/ /* miniaudio only uses priority or exclusive modes. */ #define MA_DSSCL_NORMAL 1 #define MA_DSSCL_PRIORITY 2 #define MA_DSSCL_EXCLUSIVE 3 #define MA_DSSCL_WRITEPRIMARY 4 #define MA_DSCAPS_PRIMARYMONO 0x00000001 #define MA_DSCAPS_PRIMARYSTEREO 0x00000002 #define MA_DSCAPS_PRIMARY8BIT 0x00000004 #define MA_DSCAPS_PRIMARY16BIT 0x00000008 #define MA_DSCAPS_CONTINUOUSRATE 0x00000010 #define MA_DSCAPS_EMULDRIVER 0x00000020 #define MA_DSCAPS_CERTIFIED 0x00000040 #define MA_DSCAPS_SECONDARYMONO 0x00000100 #define MA_DSCAPS_SECONDARYSTEREO 0x00000200 #define MA_DSCAPS_SECONDARY8BIT 0x00000400 #define MA_DSCAPS_SECONDARY16BIT 0x00000800 #define MA_DSBCAPS_PRIMARYBUFFER 0x00000001 #define MA_DSBCAPS_STATIC 0x00000002 #define MA_DSBCAPS_LOCHARDWARE 0x00000004 #define MA_DSBCAPS_LOCSOFTWARE 0x00000008 #define MA_DSBCAPS_CTRL3D 0x00000010 #define MA_DSBCAPS_CTRLFREQUENCY 0x00000020 #define MA_DSBCAPS_CTRLPAN 0x00000040 #define MA_DSBCAPS_CTRLVOLUME 0x00000080 #define MA_DSBCAPS_CTRLPOSITIONNOTIFY 0x00000100 #define MA_DSBCAPS_CTRLFX 0x00000200 #define MA_DSBCAPS_STICKYFOCUS 0x00004000 #define MA_DSBCAPS_GLOBALFOCUS 0x00008000 #define MA_DSBCAPS_GETCURRENTPOSITION2 0x00010000 #define MA_DSBCAPS_MUTE3DATMAXDISTANCE 0x00020000 #define MA_DSBCAPS_LOCDEFER 0x00040000 #define MA_DSBCAPS_TRUEPLAYPOSITION 0x00080000 #define MA_DSBPLAY_LOOPING 0x00000001 #define MA_DSBPLAY_LOCHARDWARE 0x00000002 #define MA_DSBPLAY_LOCSOFTWARE 0x00000004 #define MA_DSBPLAY_TERMINATEBY_TIME 0x00000008 #define MA_DSBPLAY_TERMINATEBY_DISTANCE 0x00000010 #define MA_DSBPLAY_TERMINATEBY_PRIORITY 0x00000020 #define MA_DSCBSTART_LOOPING 0x00000001 typedef struct { DWORD dwSize; DWORD dwFlags; DWORD dwBufferBytes; DWORD dwReserved; WAVEFORMATEX* lpwfxFormat; GUID guid3DAlgorithm; } MA_DSBUFFERDESC; typedef struct { DWORD dwSize; DWORD dwFlags; DWORD dwBufferBytes; DWORD dwReserved; WAVEFORMATEX* lpwfxFormat; DWORD dwFXCount; void* lpDSCFXDesc; /* <-- miniaudio doesn't use this, so set to void*. */ } MA_DSCBUFFERDESC; typedef struct { DWORD dwSize; DWORD dwFlags; DWORD dwMinSecondarySampleRate; DWORD dwMaxSecondarySampleRate; DWORD dwPrimaryBuffers; DWORD dwMaxHwMixingAllBuffers; DWORD dwMaxHwMixingStaticBuffers; DWORD dwMaxHwMixingStreamingBuffers; DWORD dwFreeHwMixingAllBuffers; DWORD dwFreeHwMixingStaticBuffers; DWORD dwFreeHwMixingStreamingBuffers; DWORD dwMaxHw3DAllBuffers; DWORD dwMaxHw3DStaticBuffers; DWORD dwMaxHw3DStreamingBuffers; DWORD dwFreeHw3DAllBuffers; DWORD dwFreeHw3DStaticBuffers; DWORD dwFreeHw3DStreamingBuffers; DWORD dwTotalHwMemBytes; DWORD dwFreeHwMemBytes; DWORD dwMaxContigFreeHwMemBytes; DWORD dwUnlockTransferRateHwBuffers; DWORD dwPlayCpuOverheadSwBuffers; DWORD dwReserved1; DWORD dwReserved2; } MA_DSCAPS; typedef struct { DWORD dwSize; DWORD dwFlags; DWORD dwBufferBytes; DWORD dwUnlockTransferRate; DWORD dwPlayCpuOverhead; } MA_DSBCAPS; typedef struct { DWORD dwSize; DWORD dwFlags; DWORD dwFormats; DWORD dwChannels; } MA_DSCCAPS; typedef struct { DWORD dwSize; DWORD dwFlags; DWORD dwBufferBytes; DWORD dwReserved; } MA_DSCBCAPS; typedef struct { DWORD dwOffset; HANDLE hEventNotify; } MA_DSBPOSITIONNOTIFY; typedef struct ma_IDirectSound ma_IDirectSound; typedef struct ma_IDirectSoundBuffer ma_IDirectSoundBuffer; typedef struct ma_IDirectSoundCapture ma_IDirectSoundCapture; typedef struct ma_IDirectSoundCaptureBuffer ma_IDirectSoundCaptureBuffer; typedef struct ma_IDirectSoundNotify ma_IDirectSoundNotify; /* COM objects. The way these work is that you have a vtable (a list of function pointers, kind of like how C++ works internally), and then you have a structure with a single member, which is a pointer to the vtable. The vtable is where the methods of the object are defined. Methods need to be in a specific order, and parent classes need to have their methods declared first. */ /* IDirectSound */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSound* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSound* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSound* pThis); /* IDirectSound */ HRESULT (STDMETHODCALLTYPE * CreateSoundBuffer) (ma_IDirectSound* pThis, const MA_DSBUFFERDESC* pDSBufferDesc, ma_IDirectSoundBuffer** ppDSBuffer, void* pUnkOuter); HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSound* pThis, MA_DSCAPS* pDSCaps); HRESULT (STDMETHODCALLTYPE * DuplicateSoundBuffer)(ma_IDirectSound* pThis, ma_IDirectSoundBuffer* pDSBufferOriginal, ma_IDirectSoundBuffer** ppDSBufferDuplicate); HRESULT (STDMETHODCALLTYPE * SetCooperativeLevel) (ma_IDirectSound* pThis, HWND hwnd, DWORD dwLevel); HRESULT (STDMETHODCALLTYPE * Compact) (ma_IDirectSound* pThis); HRESULT (STDMETHODCALLTYPE * GetSpeakerConfig) (ma_IDirectSound* pThis, DWORD* pSpeakerConfig); HRESULT (STDMETHODCALLTYPE * SetSpeakerConfig) (ma_IDirectSound* pThis, DWORD dwSpeakerConfig); HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSound* pThis, const GUID* pGuidDevice); } ma_IDirectSoundVtbl; struct ma_IDirectSound { ma_IDirectSoundVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IDirectSound_QueryInterface(ma_IDirectSound* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IDirectSound_AddRef(ma_IDirectSound* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IDirectSound_Release(ma_IDirectSound* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IDirectSound_CreateSoundBuffer(ma_IDirectSound* pThis, const MA_DSBUFFERDESC* pDSBufferDesc, ma_IDirectSoundBuffer** ppDSBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateSoundBuffer(pThis, pDSBufferDesc, ppDSBuffer, pUnkOuter); } static MA_INLINE HRESULT ma_IDirectSound_GetCaps(ma_IDirectSound* pThis, MA_DSCAPS* pDSCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCaps); } static MA_INLINE HRESULT ma_IDirectSound_DuplicateSoundBuffer(ma_IDirectSound* pThis, ma_IDirectSoundBuffer* pDSBufferOriginal, ma_IDirectSoundBuffer** ppDSBufferDuplicate) { return pThis->lpVtbl->DuplicateSoundBuffer(pThis, pDSBufferOriginal, ppDSBufferDuplicate); } static MA_INLINE HRESULT ma_IDirectSound_SetCooperativeLevel(ma_IDirectSound* pThis, HWND hwnd, DWORD dwLevel) { return pThis->lpVtbl->SetCooperativeLevel(pThis, hwnd, dwLevel); } static MA_INLINE HRESULT ma_IDirectSound_Compact(ma_IDirectSound* pThis) { return pThis->lpVtbl->Compact(pThis); } static MA_INLINE HRESULT ma_IDirectSound_GetSpeakerConfig(ma_IDirectSound* pThis, DWORD* pSpeakerConfig) { return pThis->lpVtbl->GetSpeakerConfig(pThis, pSpeakerConfig); } static MA_INLINE HRESULT ma_IDirectSound_SetSpeakerConfig(ma_IDirectSound* pThis, DWORD dwSpeakerConfig) { return pThis->lpVtbl->SetSpeakerConfig(pThis, dwSpeakerConfig); } static MA_INLINE HRESULT ma_IDirectSound_Initialize(ma_IDirectSound* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); } /* IDirectSoundBuffer */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundBuffer* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundBuffer* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundBuffer* pThis); /* IDirectSoundBuffer */ HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSoundBuffer* pThis, MA_DSBCAPS* pDSBufferCaps); HRESULT (STDMETHODCALLTYPE * GetCurrentPosition)(ma_IDirectSoundBuffer* pThis, DWORD* pCurrentPlayCursor, DWORD* pCurrentWriteCursor); HRESULT (STDMETHODCALLTYPE * GetFormat) (ma_IDirectSoundBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten); HRESULT (STDMETHODCALLTYPE * GetVolume) (ma_IDirectSoundBuffer* pThis, LONG* pVolume); HRESULT (STDMETHODCALLTYPE * GetPan) (ma_IDirectSoundBuffer* pThis, LONG* pPan); HRESULT (STDMETHODCALLTYPE * GetFrequency) (ma_IDirectSoundBuffer* pThis, DWORD* pFrequency); HRESULT (STDMETHODCALLTYPE * GetStatus) (ma_IDirectSoundBuffer* pThis, DWORD* pStatus); HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSoundBuffer* pThis, ma_IDirectSound* pDirectSound, const MA_DSBUFFERDESC* pDSBufferDesc); HRESULT (STDMETHODCALLTYPE * Lock) (ma_IDirectSoundBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags); HRESULT (STDMETHODCALLTYPE * Play) (ma_IDirectSoundBuffer* pThis, DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags); HRESULT (STDMETHODCALLTYPE * SetCurrentPosition)(ma_IDirectSoundBuffer* pThis, DWORD dwNewPosition); HRESULT (STDMETHODCALLTYPE * SetFormat) (ma_IDirectSoundBuffer* pThis, const WAVEFORMATEX* pFormat); HRESULT (STDMETHODCALLTYPE * SetVolume) (ma_IDirectSoundBuffer* pThis, LONG volume); HRESULT (STDMETHODCALLTYPE * SetPan) (ma_IDirectSoundBuffer* pThis, LONG pan); HRESULT (STDMETHODCALLTYPE * SetFrequency) (ma_IDirectSoundBuffer* pThis, DWORD dwFrequency); HRESULT (STDMETHODCALLTYPE * Stop) (ma_IDirectSoundBuffer* pThis); HRESULT (STDMETHODCALLTYPE * Unlock) (ma_IDirectSoundBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2); HRESULT (STDMETHODCALLTYPE * Restore) (ma_IDirectSoundBuffer* pThis); } ma_IDirectSoundBufferVtbl; struct ma_IDirectSoundBuffer { ma_IDirectSoundBufferVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IDirectSoundBuffer_QueryInterface(ma_IDirectSoundBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IDirectSoundBuffer_AddRef(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IDirectSoundBuffer_Release(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetCaps(ma_IDirectSoundBuffer* pThis, MA_DSBCAPS* pDSBufferCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSBufferCaps); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD* pCurrentPlayCursor, DWORD* pCurrentWriteCursor) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCurrentPlayCursor, pCurrentWriteCursor); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetFormat(ma_IDirectSoundBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetVolume(ma_IDirectSoundBuffer* pThis, LONG* pVolume) { return pThis->lpVtbl->GetVolume(pThis, pVolume); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetPan(ma_IDirectSoundBuffer* pThis, LONG* pPan) { return pThis->lpVtbl->GetPan(pThis, pPan); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetFrequency(ma_IDirectSoundBuffer* pThis, DWORD* pFrequency) { return pThis->lpVtbl->GetFrequency(pThis, pFrequency); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetStatus(ma_IDirectSoundBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_Initialize(ma_IDirectSoundBuffer* pThis, ma_IDirectSound* pDirectSound, const MA_DSBUFFERDESC* pDSBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSound, pDSBufferDesc); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_Lock(ma_IDirectSoundBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_Play(ma_IDirectSoundBuffer* pThis, DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags) { return pThis->lpVtbl->Play(pThis, dwReserved1, dwPriority, dwFlags); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD dwNewPosition) { return pThis->lpVtbl->SetCurrentPosition(pThis, dwNewPosition); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetFormat(ma_IDirectSoundBuffer* pThis, const WAVEFORMATEX* pFormat) { return pThis->lpVtbl->SetFormat(pThis, pFormat); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetVolume(ma_IDirectSoundBuffer* pThis, LONG volume) { return pThis->lpVtbl->SetVolume(pThis, volume); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetPan(ma_IDirectSoundBuffer* pThis, LONG pan) { return pThis->lpVtbl->SetPan(pThis, pan); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetFrequency(ma_IDirectSoundBuffer* pThis, DWORD dwFrequency) { return pThis->lpVtbl->SetFrequency(pThis, dwFrequency); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_Stop(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_Unlock(ma_IDirectSoundBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); } static MA_INLINE HRESULT ma_IDirectSoundBuffer_Restore(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Restore(pThis); } /* IDirectSoundCapture */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundCapture* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundCapture* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundCapture* pThis); /* IDirectSoundCapture */ HRESULT (STDMETHODCALLTYPE * CreateCaptureBuffer)(ma_IDirectSoundCapture* pThis, const MA_DSCBUFFERDESC* pDSCBufferDesc, ma_IDirectSoundCaptureBuffer** ppDSCBuffer, void* pUnkOuter); HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSoundCapture* pThis, MA_DSCCAPS* pDSCCaps); HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSoundCapture* pThis, const GUID* pGuidDevice); } ma_IDirectSoundCaptureVtbl; struct ma_IDirectSoundCapture { ma_IDirectSoundCaptureVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IDirectSoundCapture_QueryInterface (ma_IDirectSoundCapture* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IDirectSoundCapture_AddRef (ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IDirectSoundCapture_Release (ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IDirectSoundCapture_CreateCaptureBuffer(ma_IDirectSoundCapture* pThis, const MA_DSCBUFFERDESC* pDSCBufferDesc, ma_IDirectSoundCaptureBuffer** ppDSCBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateCaptureBuffer(pThis, pDSCBufferDesc, ppDSCBuffer, pUnkOuter); } static MA_INLINE HRESULT ma_IDirectSoundCapture_GetCaps (ma_IDirectSoundCapture* pThis, MA_DSCCAPS* pDSCCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCCaps); } static MA_INLINE HRESULT ma_IDirectSoundCapture_Initialize (ma_IDirectSoundCapture* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); } /* IDirectSoundCaptureBuffer */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundCaptureBuffer* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundCaptureBuffer* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundCaptureBuffer* pThis); /* IDirectSoundCaptureBuffer */ HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSoundCaptureBuffer* pThis, MA_DSCBCAPS* pDSCBCaps); HRESULT (STDMETHODCALLTYPE * GetCurrentPosition)(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pCapturePosition, DWORD* pReadPosition); HRESULT (STDMETHODCALLTYPE * GetFormat) (ma_IDirectSoundCaptureBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten); HRESULT (STDMETHODCALLTYPE * GetStatus) (ma_IDirectSoundCaptureBuffer* pThis, DWORD* pStatus); HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSoundCaptureBuffer* pThis, ma_IDirectSoundCapture* pDirectSoundCapture, const MA_DSCBUFFERDESC* pDSCBufferDesc); HRESULT (STDMETHODCALLTYPE * Lock) (ma_IDirectSoundCaptureBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags); HRESULT (STDMETHODCALLTYPE * Start) (ma_IDirectSoundCaptureBuffer* pThis, DWORD dwFlags); HRESULT (STDMETHODCALLTYPE * Stop) (ma_IDirectSoundCaptureBuffer* pThis); HRESULT (STDMETHODCALLTYPE * Unlock) (ma_IDirectSoundCaptureBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2); } ma_IDirectSoundCaptureBufferVtbl; struct ma_IDirectSoundCaptureBuffer { ma_IDirectSoundCaptureBufferVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_QueryInterface(ma_IDirectSoundCaptureBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IDirectSoundCaptureBuffer_AddRef(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IDirectSoundCaptureBuffer_Release(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetCaps(ma_IDirectSoundCaptureBuffer* pThis, MA_DSCBCAPS* pDSCBCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCBCaps); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetCurrentPosition(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pCapturePosition, DWORD* pReadPosition) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCapturePosition, pReadPosition); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetFormat(ma_IDirectSoundCaptureBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetStatus(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Initialize(ma_IDirectSoundCaptureBuffer* pThis, ma_IDirectSoundCapture* pDirectSoundCapture, const MA_DSCBUFFERDESC* pDSCBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSoundCapture, pDSCBufferDesc); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Lock(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Start(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwFlags) { return pThis->lpVtbl->Start(pThis, dwFlags); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Stop(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); } static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Unlock(ma_IDirectSoundCaptureBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); } /* IDirectSoundNotify */ typedef struct { /* IUnknown */ HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundNotify* pThis, const IID* const riid, void** ppObject); ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundNotify* pThis); ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundNotify* pThis); /* IDirectSoundNotify */ HRESULT (STDMETHODCALLTYPE * SetNotificationPositions)(ma_IDirectSoundNotify* pThis, DWORD dwPositionNotifies, const MA_DSBPOSITIONNOTIFY* pPositionNotifies); } ma_IDirectSoundNotifyVtbl; struct ma_IDirectSoundNotify { ma_IDirectSoundNotifyVtbl* lpVtbl; }; static MA_INLINE HRESULT ma_IDirectSoundNotify_QueryInterface(ma_IDirectSoundNotify* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); } static MA_INLINE ULONG ma_IDirectSoundNotify_AddRef(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->AddRef(pThis); } static MA_INLINE ULONG ma_IDirectSoundNotify_Release(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->Release(pThis); } static MA_INLINE HRESULT ma_IDirectSoundNotify_SetNotificationPositions(ma_IDirectSoundNotify* pThis, DWORD dwPositionNotifies, const MA_DSBPOSITIONNOTIFY* pPositionNotifies) { return pThis->lpVtbl->SetNotificationPositions(pThis, dwPositionNotifies, pPositionNotifies); } typedef BOOL (CALLBACK * ma_DSEnumCallbackAProc) (LPGUID pDeviceGUID, LPCSTR pDeviceDescription, LPCSTR pModule, LPVOID pContext); typedef HRESULT (WINAPI * ma_DirectSoundCreateProc) (const GUID* pcGuidDevice, ma_IDirectSound** ppDS8, LPUNKNOWN pUnkOuter); typedef HRESULT (WINAPI * ma_DirectSoundEnumerateAProc) (ma_DSEnumCallbackAProc pDSEnumCallback, LPVOID pContext); typedef HRESULT (WINAPI * ma_DirectSoundCaptureCreateProc) (const GUID* pcGuidDevice, ma_IDirectSoundCapture** ppDSC8, LPUNKNOWN pUnkOuter); typedef HRESULT (WINAPI * ma_DirectSoundCaptureEnumerateAProc)(ma_DSEnumCallbackAProc pDSEnumCallback, LPVOID pContext); static ma_uint32 ma_get_best_sample_rate_within_range(ma_uint32 sampleRateMin, ma_uint32 sampleRateMax) { /* Normalize the range in case we were given something stupid. */ if (sampleRateMin < (ma_uint32)ma_standard_sample_rate_min) { sampleRateMin = (ma_uint32)ma_standard_sample_rate_min; } if (sampleRateMax > (ma_uint32)ma_standard_sample_rate_max) { sampleRateMax = (ma_uint32)ma_standard_sample_rate_max; } if (sampleRateMin > sampleRateMax) { sampleRateMin = sampleRateMax; } if (sampleRateMin == sampleRateMax) { return sampleRateMax; } else { size_t iStandardRate; for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) { ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate]; if (standardRate >= sampleRateMin && standardRate <= sampleRateMax) { return standardRate; } } } /* Should never get here. */ MA_ASSERT(MA_FALSE); return 0; } /* Retrieves the channel count and channel map for the given speaker configuration. If the speaker configuration is unknown, the channel count and channel map will be left unmodified. */ static void ma_get_channels_from_speaker_config__dsound(DWORD speakerConfig, WORD* pChannelsOut, DWORD* pChannelMapOut) { WORD channels; DWORD channelMap; channels = 0; if (pChannelsOut != NULL) { channels = *pChannelsOut; } channelMap = 0; if (pChannelMapOut != NULL) { channelMap = *pChannelMapOut; } /* The speaker configuration is a combination of speaker config and speaker geometry. The lower 8 bits is what we care about. The upper 16 bits is for the geometry. */ switch ((BYTE)(speakerConfig)) { case 1 /*DSSPEAKER_HEADPHONE*/: channels = 2; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT; break; case 2 /*DSSPEAKER_MONO*/: channels = 1; channelMap = SPEAKER_FRONT_CENTER; break; case 3 /*DSSPEAKER_QUAD*/: channels = 4; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT; break; case 4 /*DSSPEAKER_STEREO*/: channels = 2; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT; break; case 5 /*DSSPEAKER_SURROUND*/: channels = 4; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_BACK_CENTER; break; case 6 /*DSSPEAKER_5POINT1_BACK*/ /*DSSPEAKER_5POINT1*/: channels = 6; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT; break; case 7 /*DSSPEAKER_7POINT1_WIDE*/ /*DSSPEAKER_7POINT1*/: channels = 8; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | SPEAKER_FRONT_LEFT_OF_CENTER | SPEAKER_FRONT_RIGHT_OF_CENTER; break; case 8 /*DSSPEAKER_7POINT1_SURROUND*/: channels = 8; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT; break; case 9 /*DSSPEAKER_5POINT1_SURROUND*/: channels = 6; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT; break; default: break; } if (pChannelsOut != NULL) { *pChannelsOut = channels; } if (pChannelMapOut != NULL) { *pChannelMapOut = channelMap; } } static ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSound** ppDirectSound) { ma_IDirectSound* pDirectSound; HWND hWnd; HRESULT hr; MA_ASSERT(pContext != NULL); MA_ASSERT(ppDirectSound != NULL); *ppDirectSound = NULL; pDirectSound = NULL; if (FAILED(((ma_DirectSoundCreateProc)pContext->dsound.DirectSoundCreate)((pDeviceID == NULL) ? NULL : (const GUID*)pDeviceID->dsound, &pDirectSound, NULL))) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[DirectSound] DirectSoundCreate() failed for playback device."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } /* The cooperative level must be set before doing anything else. */ hWnd = ((MA_PFN_GetForegroundWindow)pContext->win32.GetForegroundWindow)(); if (hWnd == NULL) { hWnd = ((MA_PFN_GetDesktopWindow)pContext->win32.GetDesktopWindow)(); } hr = ma_IDirectSound_SetCooperativeLevel(pDirectSound, hWnd, (shareMode == ma_share_mode_exclusive) ? MA_DSSCL_EXCLUSIVE : MA_DSSCL_PRIORITY); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_SetCooperateiveLevel() failed for playback device."); return ma_result_from_HRESULT(hr); } *ppDirectSound = pDirectSound; return MA_SUCCESS; } static ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSoundCapture** ppDirectSoundCapture) { ma_IDirectSoundCapture* pDirectSoundCapture; HRESULT hr; MA_ASSERT(pContext != NULL); MA_ASSERT(ppDirectSoundCapture != NULL); /* DirectSound does not support exclusive mode for capture. */ if (shareMode == ma_share_mode_exclusive) { return MA_SHARE_MODE_NOT_SUPPORTED; } *ppDirectSoundCapture = NULL; pDirectSoundCapture = NULL; hr = ((ma_DirectSoundCaptureCreateProc)pContext->dsound.DirectSoundCaptureCreate)((pDeviceID == NULL) ? NULL : (const GUID*)pDeviceID->dsound, &pDirectSoundCapture, NULL); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[DirectSound] DirectSoundCaptureCreate() failed for capture device."); return ma_result_from_HRESULT(hr); } *ppDirectSoundCapture = pDirectSoundCapture; return MA_SUCCESS; } static ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context* pContext, ma_IDirectSoundCapture* pDirectSoundCapture, WORD* pChannels, WORD* pBitsPerSample, DWORD* pSampleRate) { HRESULT hr; MA_DSCCAPS caps; WORD bitsPerSample; DWORD sampleRate; MA_ASSERT(pContext != NULL); MA_ASSERT(pDirectSoundCapture != NULL); if (pChannels) { *pChannels = 0; } if (pBitsPerSample) { *pBitsPerSample = 0; } if (pSampleRate) { *pSampleRate = 0; } MA_ZERO_OBJECT(&caps); caps.dwSize = sizeof(caps); hr = ma_IDirectSoundCapture_GetCaps(pDirectSoundCapture, &caps); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_GetCaps() failed for capture device."); return ma_result_from_HRESULT(hr); } if (pChannels) { *pChannels = (WORD)caps.dwChannels; } /* The device can support multiple formats. We just go through the different formats in order of priority and pick the first one. This the same type of system as the WinMM backend. */ bitsPerSample = 16; sampleRate = 48000; if (caps.dwChannels == 1) { if ((caps.dwFormats & WAVE_FORMAT_48M16) != 0) { sampleRate = 48000; } else if ((caps.dwFormats & WAVE_FORMAT_44M16) != 0) { sampleRate = 44100; } else if ((caps.dwFormats & WAVE_FORMAT_2M16) != 0) { sampleRate = 22050; } else if ((caps.dwFormats & WAVE_FORMAT_1M16) != 0) { sampleRate = 11025; } else if ((caps.dwFormats & WAVE_FORMAT_96M16) != 0) { sampleRate = 96000; } else { bitsPerSample = 8; if ((caps.dwFormats & WAVE_FORMAT_48M08) != 0) { sampleRate = 48000; } else if ((caps.dwFormats & WAVE_FORMAT_44M08) != 0) { sampleRate = 44100; } else if ((caps.dwFormats & WAVE_FORMAT_2M08) != 0) { sampleRate = 22050; } else if ((caps.dwFormats & WAVE_FORMAT_1M08) != 0) { sampleRate = 11025; } else if ((caps.dwFormats & WAVE_FORMAT_96M08) != 0) { sampleRate = 96000; } else { bitsPerSample = 16; /* Didn't find it. Just fall back to 16-bit. */ } } } else if (caps.dwChannels == 2) { if ((caps.dwFormats & WAVE_FORMAT_48S16) != 0) { sampleRate = 48000; } else if ((caps.dwFormats & WAVE_FORMAT_44S16) != 0) { sampleRate = 44100; } else if ((caps.dwFormats & WAVE_FORMAT_2S16) != 0) { sampleRate = 22050; } else if ((caps.dwFormats & WAVE_FORMAT_1S16) != 0) { sampleRate = 11025; } else if ((caps.dwFormats & WAVE_FORMAT_96S16) != 0) { sampleRate = 96000; } else { bitsPerSample = 8; if ((caps.dwFormats & WAVE_FORMAT_48S08) != 0) { sampleRate = 48000; } else if ((caps.dwFormats & WAVE_FORMAT_44S08) != 0) { sampleRate = 44100; } else if ((caps.dwFormats & WAVE_FORMAT_2S08) != 0) { sampleRate = 22050; } else if ((caps.dwFormats & WAVE_FORMAT_1S08) != 0) { sampleRate = 11025; } else if ((caps.dwFormats & WAVE_FORMAT_96S08) != 0) { sampleRate = 96000; } else { bitsPerSample = 16; /* Didn't find it. Just fall back to 16-bit. */ } } } if (pBitsPerSample) { *pBitsPerSample = bitsPerSample; } if (pSampleRate) { *pSampleRate = sampleRate; } return MA_SUCCESS; } typedef struct { ma_context* pContext; ma_device_type deviceType; ma_enum_devices_callback_proc callback; void* pUserData; ma_bool32 terminated; } ma_context_enumerate_devices_callback_data__dsound; static BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext) { ma_context_enumerate_devices_callback_data__dsound* pData = (ma_context_enumerate_devices_callback_data__dsound*)lpContext; ma_device_info deviceInfo; (void)lpcstrModule; MA_ZERO_OBJECT(&deviceInfo); /* ID. */ if (lpGuid != NULL) { MA_COPY_MEMORY(deviceInfo.id.dsound, lpGuid, 16); } else { MA_ZERO_MEMORY(deviceInfo.id.dsound, 16); deviceInfo.isDefault = MA_TRUE; } /* Name / Description */ ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), lpcstrDescription, (size_t)-1); /* Call the callback function, but make sure we stop enumerating if the callee requested so. */ MA_ASSERT(pData != NULL); pData->terminated = !pData->callback(pData->pContext, pData->deviceType, &deviceInfo, pData->pUserData); if (pData->terminated) { return FALSE; /* Stop enumeration. */ } else { return TRUE; /* Continue enumeration. */ } } static ma_result ma_context_enumerate_devices__dsound(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_context_enumerate_devices_callback_data__dsound data; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); data.pContext = pContext; data.callback = callback; data.pUserData = pUserData; data.terminated = MA_FALSE; /* Playback. */ if (!data.terminated) { data.deviceType = ma_device_type_playback; ((ma_DirectSoundEnumerateAProc)pContext->dsound.DirectSoundEnumerateA)(ma_context_enumerate_devices_callback__dsound, &data); } /* Capture. */ if (!data.terminated) { data.deviceType = ma_device_type_capture; ((ma_DirectSoundCaptureEnumerateAProc)pContext->dsound.DirectSoundCaptureEnumerateA)(ma_context_enumerate_devices_callback__dsound, &data); } return MA_SUCCESS; } typedef struct { const ma_device_id* pDeviceID; ma_device_info* pDeviceInfo; ma_bool32 found; } ma_context_get_device_info_callback_data__dsound; static BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext) { ma_context_get_device_info_callback_data__dsound* pData = (ma_context_get_device_info_callback_data__dsound*)lpContext; MA_ASSERT(pData != NULL); if ((pData->pDeviceID == NULL || ma_is_guid_null(pData->pDeviceID->dsound)) && (lpGuid == NULL || ma_is_guid_null(lpGuid))) { /* Default device. */ ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), lpcstrDescription, (size_t)-1); pData->pDeviceInfo->isDefault = MA_TRUE; pData->found = MA_TRUE; return FALSE; /* Stop enumeration. */ } else { /* Not the default device. */ if (lpGuid != NULL && pData->pDeviceID != NULL) { if (memcmp(pData->pDeviceID->dsound, lpGuid, sizeof(pData->pDeviceID->dsound)) == 0) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), lpcstrDescription, (size_t)-1); pData->found = MA_TRUE; return FALSE; /* Stop enumeration. */ } } } (void)lpcstrModule; return TRUE; } static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_result result; HRESULT hr; if (pDeviceID != NULL) { ma_context_get_device_info_callback_data__dsound data; /* ID. */ MA_COPY_MEMORY(pDeviceInfo->id.dsound, pDeviceID->dsound, 16); /* Name / Description. This is retrieved by enumerating over each device until we find that one that matches the input ID. */ data.pDeviceID = pDeviceID; data.pDeviceInfo = pDeviceInfo; data.found = MA_FALSE; if (deviceType == ma_device_type_playback) { ((ma_DirectSoundEnumerateAProc)pContext->dsound.DirectSoundEnumerateA)(ma_context_get_device_info_callback__dsound, &data); } else { ((ma_DirectSoundCaptureEnumerateAProc)pContext->dsound.DirectSoundCaptureEnumerateA)(ma_context_get_device_info_callback__dsound, &data); } if (!data.found) { return MA_NO_DEVICE; } } else { /* I don't think there's a way to get the name of the default device with DirectSound. In this case we just need to use defaults. */ /* ID */ MA_ZERO_MEMORY(pDeviceInfo->id.dsound, 16); /* Name / Description */ if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } pDeviceInfo->isDefault = MA_TRUE; } /* Retrieving detailed information is slightly different depending on the device type. */ if (deviceType == ma_device_type_playback) { /* Playback. */ ma_IDirectSound* pDirectSound; MA_DSCAPS caps; WORD channels; result = ma_context_create_IDirectSound__dsound(pContext, ma_share_mode_shared, pDeviceID, &pDirectSound); if (result != MA_SUCCESS) { return result; } MA_ZERO_OBJECT(&caps); caps.dwSize = sizeof(caps); hr = ma_IDirectSound_GetCaps(pDirectSound, &caps); if (FAILED(hr)) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device."); return ma_result_from_HRESULT(hr); } /* Channels. Only a single channel count is reported for DirectSound. */ if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) { /* It supports at least stereo, but could support more. */ DWORD speakerConfig; channels = 2; /* Look at the speaker configuration to get a better idea on the channel count. */ hr = ma_IDirectSound_GetSpeakerConfig(pDirectSound, &speakerConfig); if (SUCCEEDED(hr)) { ma_get_channels_from_speaker_config__dsound(speakerConfig, &channels, NULL); } } else { /* It does not support stereo, which means we are stuck with mono. */ channels = 1; } /* In DirectSound, our native formats are centered around sample rates. All formats are supported, and we're only reporting a single channel count. However, DirectSound can report a range of supported sample rates. We're only going to include standard rates known by miniaudio in order to keep the size of this within reason. */ if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) { /* Multiple sample rates are supported. We'll report in order of our preferred sample rates. */ size_t iStandardSampleRate; for (iStandardSampleRate = 0; iStandardSampleRate < ma_countof(g_maStandardSampleRatePriorities); iStandardSampleRate += 1) { ma_uint32 sampleRate = g_maStandardSampleRatePriorities[iStandardSampleRate]; if (sampleRate >= caps.dwMinSecondarySampleRate && sampleRate <= caps.dwMaxSecondarySampleRate) { pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = ma_format_unknown; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = sampleRate; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = 0; pDeviceInfo->nativeDataFormatCount += 1; } } } else { /* Only a single sample rate is supported. */ pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = ma_format_unknown; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = caps.dwMaxSecondarySampleRate; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = 0; pDeviceInfo->nativeDataFormatCount += 1; } ma_IDirectSound_Release(pDirectSound); } else { /* Capture. This is a little different to playback due to the say the supported formats are reported. Technically capture devices can support a number of different formats, but for simplicity and consistency with ma_device_init() I'm just reporting the best format. */ ma_IDirectSoundCapture* pDirectSoundCapture; WORD channels; WORD bitsPerSample; DWORD sampleRate; result = ma_context_create_IDirectSoundCapture__dsound(pContext, ma_share_mode_shared, pDeviceID, &pDirectSoundCapture); if (result != MA_SUCCESS) { return result; } result = ma_context_get_format_info_for_IDirectSoundCapture__dsound(pContext, pDirectSoundCapture, &channels, &bitsPerSample, &sampleRate); if (result != MA_SUCCESS) { ma_IDirectSoundCapture_Release(pDirectSoundCapture); return result; } ma_IDirectSoundCapture_Release(pDirectSoundCapture); /* The format is always an integer format and is based on the bits per sample. */ if (bitsPerSample == 8) { pDeviceInfo->nativeDataFormats[0].format = ma_format_u8; } else if (bitsPerSample == 16) { pDeviceInfo->nativeDataFormats[0].format = ma_format_s16; } else if (bitsPerSample == 24) { pDeviceInfo->nativeDataFormats[0].format = ma_format_s24; } else if (bitsPerSample == 32) { pDeviceInfo->nativeDataFormats[0].format = ma_format_s32; } else { return MA_FORMAT_NOT_SUPPORTED; } pDeviceInfo->nativeDataFormats[0].channels = channels; pDeviceInfo->nativeDataFormats[0].sampleRate = sampleRate; pDeviceInfo->nativeDataFormats[0].flags = 0; pDeviceInfo->nativeDataFormatCount = 1; } return MA_SUCCESS; } static ma_result ma_device_uninit__dsound(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->dsound.pCaptureBuffer != NULL) { ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer); } if (pDevice->dsound.pCapture != NULL) { ma_IDirectSoundCapture_Release((ma_IDirectSoundCapture*)pDevice->dsound.pCapture); } if (pDevice->dsound.pPlaybackBuffer != NULL) { ma_IDirectSoundBuffer_Release((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer); } if (pDevice->dsound.pPlaybackPrimaryBuffer != NULL) { ma_IDirectSoundBuffer_Release((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer); } if (pDevice->dsound.pPlayback != NULL) { ma_IDirectSound_Release((ma_IDirectSound*)pDevice->dsound.pPlayback); } return MA_SUCCESS; } static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* pChannelMap, WAVEFORMATEXTENSIBLE* pWF) { GUID subformat; if (format == ma_format_unknown) { format = MA_DEFAULT_FORMAT; } if (channels == 0) { channels = MA_DEFAULT_CHANNELS; } if (sampleRate == 0) { sampleRate = MA_DEFAULT_SAMPLE_RATE; } switch (format) { case ma_format_u8: case ma_format_s16: case ma_format_s24: /*case ma_format_s24_32:*/ case ma_format_s32: { subformat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM; } break; case ma_format_f32: { subformat = MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; } break; default: return MA_FORMAT_NOT_SUPPORTED; } MA_ZERO_OBJECT(pWF); pWF->Format.cbSize = sizeof(*pWF); pWF->Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; pWF->Format.nChannels = (WORD)channels; pWF->Format.nSamplesPerSec = (DWORD)sampleRate; pWF->Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8); pWF->Format.nBlockAlign = (WORD)(pWF->Format.nChannels * pWF->Format.wBitsPerSample / 8); pWF->Format.nAvgBytesPerSec = pWF->Format.nBlockAlign * pWF->Format.nSamplesPerSec; pWF->Samples.wValidBitsPerSample = pWF->Format.wBitsPerSample; pWF->dwChannelMask = ma_channel_map_to_channel_mask__win32(pChannelMap, channels); pWF->SubFormat = subformat; return MA_SUCCESS; } static ma_uint32 ma_calculate_period_size_in_frames_from_descriptor__dsound(const ma_device_descriptor* pDescriptor, ma_uint32 nativeSampleRate, ma_performance_profile performanceProfile) { /* DirectSound has a minimum period size of 20ms. In practice, this doesn't seem to be enough for reliable glitch-free processing so going to use 30ms instead. */ ma_uint32 minPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(30, nativeSampleRate); ma_uint32 periodSizeInFrames; periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, nativeSampleRate, performanceProfile); if (periodSizeInFrames < minPeriodSizeInFrames) { periodSizeInFrames = minPeriodSizeInFrames; } return periodSizeInFrames; } static ma_result ma_device_init__dsound(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; HRESULT hr; MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->dsound); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* Unfortunately DirectSound uses different APIs and data structures for playback and catpure devices. We need to initialize the capture device first because we'll want to match it's buffer size and period count on the playback side if we're using full-duplex mode. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { WAVEFORMATEXTENSIBLE wf; MA_DSCBUFFERDESC descDS; ma_uint32 periodSizeInFrames; ma_uint32 periodCount; char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */ WAVEFORMATEXTENSIBLE* pActualFormat; result = ma_config_to_WAVEFORMATEXTENSIBLE(pDescriptorCapture->format, pDescriptorCapture->channels, pDescriptorCapture->sampleRate, pDescriptorCapture->channelMap, &wf); if (result != MA_SUCCESS) { return result; } result = ma_context_create_IDirectSoundCapture__dsound(pDevice->pContext, pDescriptorCapture->shareMode, pDescriptorCapture->pDeviceID, (ma_IDirectSoundCapture**)&pDevice->dsound.pCapture); if (result != MA_SUCCESS) { ma_device_uninit__dsound(pDevice); return result; } result = ma_context_get_format_info_for_IDirectSoundCapture__dsound(pDevice->pContext, (ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &wf.Format.nChannels, &wf.Format.wBitsPerSample, &wf.Format.nSamplesPerSec); if (result != MA_SUCCESS) { ma_device_uninit__dsound(pDevice); return result; } wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8); wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; wf.Samples.wValidBitsPerSample = wf.Format.wBitsPerSample; wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM; /* The size of the buffer must be a clean multiple of the period count. */ periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__dsound(pDescriptorCapture, wf.Format.nSamplesPerSec, pConfig->performanceProfile); periodCount = (pDescriptorCapture->periodCount > 0) ? pDescriptorCapture->periodCount : MA_DEFAULT_PERIODS; MA_ZERO_OBJECT(&descDS); descDS.dwSize = sizeof(descDS); descDS.dwFlags = 0; descDS.dwBufferBytes = periodSizeInFrames * periodCount * wf.Format.nBlockAlign; descDS.lpwfxFormat = (WAVEFORMATEX*)&wf; hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_CreateCaptureBuffer() failed for capture device."); return ma_result_from_HRESULT(hr); } /* Get the _actual_ properties of the buffer. */ pActualFormat = (WAVEFORMATEXTENSIBLE*)rawdata; hr = ma_IDirectSoundCaptureBuffer_GetFormat((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the capture device's buffer."); return ma_result_from_HRESULT(hr); } /* We can now start setting the output data formats. */ pDescriptorCapture->format = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat); pDescriptorCapture->channels = pActualFormat->Format.nChannels; pDescriptorCapture->sampleRate = pActualFormat->Format.nSamplesPerSec; /* Get the native channel map based on the channel mask. */ if (pActualFormat->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE) { ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDescriptorCapture->channels, pDescriptorCapture->channelMap); } else { ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDescriptorCapture->channels, pDescriptorCapture->channelMap); } /* After getting the actual format the size of the buffer in frames may have actually changed. However, we want this to be as close to what the user has asked for as possible, so let's go ahead and release the old capture buffer and create a new one in this case. */ if (periodSizeInFrames != (descDS.dwBufferBytes / ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels) / periodCount)) { descDS.dwBufferBytes = periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels) * periodCount; ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer); hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Second attempt at IDirectSoundCapture_CreateCaptureBuffer() failed for capture device."); return ma_result_from_HRESULT(hr); } } /* DirectSound should give us a buffer exactly the size we asked for. */ pDescriptorCapture->periodSizeInFrames = periodSizeInFrames; pDescriptorCapture->periodCount = periodCount; } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { WAVEFORMATEXTENSIBLE wf; MA_DSBUFFERDESC descDSPrimary; MA_DSCAPS caps; char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */ WAVEFORMATEXTENSIBLE* pActualFormat; ma_uint32 periodSizeInFrames; ma_uint32 periodCount; MA_DSBUFFERDESC descDS; result = ma_config_to_WAVEFORMATEXTENSIBLE(pDescriptorPlayback->format, pDescriptorPlayback->channels, pDescriptorPlayback->sampleRate, pDescriptorPlayback->channelMap, &wf); if (result != MA_SUCCESS) { return result; } result = ma_context_create_IDirectSound__dsound(pDevice->pContext, pDescriptorPlayback->shareMode, pDescriptorPlayback->pDeviceID, (ma_IDirectSound**)&pDevice->dsound.pPlayback); if (result != MA_SUCCESS) { ma_device_uninit__dsound(pDevice); return result; } MA_ZERO_OBJECT(&descDSPrimary); descDSPrimary.dwSize = sizeof(MA_DSBUFFERDESC); descDSPrimary.dwFlags = MA_DSBCAPS_PRIMARYBUFFER | MA_DSBCAPS_CTRLVOLUME; hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDSPrimary, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackPrimaryBuffer, NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's primary buffer."); return ma_result_from_HRESULT(hr); } /* We may want to make some adjustments to the format if we are using defaults. */ MA_ZERO_OBJECT(&caps); caps.dwSize = sizeof(caps); hr = ma_IDirectSound_GetCaps((ma_IDirectSound*)pDevice->dsound.pPlayback, &caps); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device."); return ma_result_from_HRESULT(hr); } if (pDescriptorPlayback->channels == 0) { if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) { DWORD speakerConfig; /* It supports at least stereo, but could support more. */ wf.Format.nChannels = 2; /* Look at the speaker configuration to get a better idea on the channel count. */ if (SUCCEEDED(ma_IDirectSound_GetSpeakerConfig((ma_IDirectSound*)pDevice->dsound.pPlayback, &speakerConfig))) { ma_get_channels_from_speaker_config__dsound(speakerConfig, &wf.Format.nChannels, &wf.dwChannelMask); } } else { /* It does not support stereo, which means we are stuck with mono. */ wf.Format.nChannels = 1; } } if (pDescriptorPlayback->sampleRate == 0) { /* We base the sample rate on the values returned by GetCaps(). */ if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) { wf.Format.nSamplesPerSec = ma_get_best_sample_rate_within_range(caps.dwMinSecondarySampleRate, caps.dwMaxSecondarySampleRate); } else { wf.Format.nSamplesPerSec = caps.dwMaxSecondarySampleRate; } } wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8); wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec; /* From MSDN: The method succeeds even if the hardware does not support the requested format; DirectSound sets the buffer to the closest supported format. To determine whether this has happened, an application can call the GetFormat method for the primary buffer and compare the result with the format that was requested with the SetFormat method. */ hr = ma_IDirectSoundBuffer_SetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)&wf); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to set format of playback device's primary buffer."); return ma_result_from_HRESULT(hr); } /* Get the _actual_ properties of the buffer. */ pActualFormat = (WAVEFORMATEXTENSIBLE*)rawdata; hr = ma_IDirectSoundBuffer_GetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the playback device's primary buffer."); return ma_result_from_HRESULT(hr); } /* We now have enough information to start setting some output properties. */ pDescriptorPlayback->format = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat); pDescriptorPlayback->channels = pActualFormat->Format.nChannels; pDescriptorPlayback->sampleRate = pActualFormat->Format.nSamplesPerSec; /* Get the internal channel map based on the channel mask. */ if (pActualFormat->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE) { ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); } else { ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDescriptorPlayback->channels, pDescriptorPlayback->channelMap); } /* The size of the buffer must be a clean multiple of the period count. */ periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__dsound(pDescriptorPlayback, pDescriptorPlayback->sampleRate, pConfig->performanceProfile); periodCount = (pDescriptorPlayback->periodCount > 0) ? pDescriptorPlayback->periodCount : MA_DEFAULT_PERIODS; /* Meaning of dwFlags (from MSDN): DSBCAPS_CTRLPOSITIONNOTIFY The buffer has position notification capability. DSBCAPS_GLOBALFOCUS With this flag set, an application using DirectSound can continue to play its buffers if the user switches focus to another application, even if the new application uses DirectSound. DSBCAPS_GETCURRENTPOSITION2 In the first version of DirectSound, the play cursor was significantly ahead of the actual playing sound on emulated sound cards; it was directly behind the write cursor. Now, if the DSBCAPS_GETCURRENTPOSITION2 flag is specified, the application can get a more accurate play cursor. */ MA_ZERO_OBJECT(&descDS); descDS.dwSize = sizeof(descDS); descDS.dwFlags = MA_DSBCAPS_CTRLPOSITIONNOTIFY | MA_DSBCAPS_GLOBALFOCUS | MA_DSBCAPS_GETCURRENTPOSITION2; descDS.dwBufferBytes = periodSizeInFrames * periodCount * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels); descDS.lpwfxFormat = (WAVEFORMATEX*)&wf; hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDS, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackBuffer, NULL); if (FAILED(hr)) { ma_device_uninit__dsound(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's secondary buffer."); return ma_result_from_HRESULT(hr); } /* DirectSound should give us a buffer exactly the size we asked for. */ pDescriptorPlayback->periodSizeInFrames = periodSizeInFrames; pDescriptorPlayback->periodCount = periodCount; } return MA_SUCCESS; } static ma_result ma_device_data_loop__dsound(ma_device* pDevice) { ma_result result = MA_SUCCESS; ma_uint32 bpfDeviceCapture = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); ma_uint32 bpfDevicePlayback = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); HRESULT hr; DWORD lockOffsetInBytesCapture; DWORD lockSizeInBytesCapture; DWORD mappedSizeInBytesCapture; DWORD mappedDeviceFramesProcessedCapture; void* pMappedDeviceBufferCapture; DWORD lockOffsetInBytesPlayback; DWORD lockSizeInBytesPlayback; DWORD mappedSizeInBytesPlayback; void* pMappedDeviceBufferPlayback; DWORD prevReadCursorInBytesCapture = 0; DWORD prevPlayCursorInBytesPlayback = 0; ma_bool32 physicalPlayCursorLoopFlagPlayback = 0; DWORD virtualWriteCursorInBytesPlayback = 0; ma_bool32 virtualWriteCursorLoopFlagPlayback = 0; ma_bool32 isPlaybackDeviceStarted = MA_FALSE; ma_uint32 framesWrittenToPlaybackDevice = 0; /* For knowing whether or not the playback device needs to be started. */ ma_uint32 waitTimeInMilliseconds = 1; MA_ASSERT(pDevice != NULL); /* The first thing to do is start the capture device. The playback device is only started after the first period is written. */ if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { hr = ma_IDirectSoundCaptureBuffer_Start((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, MA_DSCBSTART_LOOPING); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Start() failed."); return ma_result_from_HRESULT(hr); } } while (ma_device_get_state(pDevice) == ma_device_state_started) { switch (pDevice->type) { case ma_device_type_duplex: { DWORD physicalCaptureCursorInBytes; DWORD physicalReadCursorInBytes; hr = ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes); if (FAILED(hr)) { return ma_result_from_HRESULT(hr); } /* If nothing is available we just sleep for a bit and return from this iteration. */ if (physicalReadCursorInBytes == prevReadCursorInBytesCapture) { ma_sleep(waitTimeInMilliseconds); continue; /* Nothing is available in the capture buffer. */ } /* The current position has moved. We need to map all of the captured samples and write them to the playback device, making sure we don't return until every frame has been copied over. */ if (prevReadCursorInBytesCapture < physicalReadCursorInBytes) { /* The capture position has not looped. This is the simple case. */ lockOffsetInBytesCapture = prevReadCursorInBytesCapture; lockSizeInBytesCapture = (physicalReadCursorInBytes - prevReadCursorInBytesCapture); } else { /* The capture position has looped. This is the more complex case. Map to the end of the buffer. If this does not return anything, do it again from the start. */ if (prevReadCursorInBytesCapture < pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) { /* Lock up to the end of the buffer. */ lockOffsetInBytesCapture = prevReadCursorInBytesCapture; lockSizeInBytesCapture = (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) - prevReadCursorInBytesCapture; } else { /* Lock starting from the start of the buffer. */ lockOffsetInBytesCapture = 0; lockSizeInBytesCapture = physicalReadCursorInBytes; } } if (lockSizeInBytesCapture == 0) { ma_sleep(waitTimeInMilliseconds); continue; /* Nothing is available in the capture buffer. */ } hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device."); return ma_result_from_HRESULT(hr); } /* At this point we have some input data that we need to output. We do not return until every mapped frame of the input data is written to the playback device. */ mappedDeviceFramesProcessedCapture = 0; for (;;) { /* Keep writing to the playback device. */ ma_uint8 inputFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 inputFramesInClientFormatCap = sizeof(inputFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); ma_uint8 outputFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 outputFramesInClientFormatCap = sizeof(outputFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); ma_uint32 outputFramesInClientFormatCount; ma_uint32 outputFramesInClientFormatConsumed = 0; ma_uint64 clientCapturedFramesToProcess = ma_min(inputFramesInClientFormatCap, outputFramesInClientFormatCap); ma_uint64 deviceCapturedFramesToProcess = (mappedSizeInBytesCapture / bpfDeviceCapture) - mappedDeviceFramesProcessedCapture; void* pRunningMappedDeviceBufferCapture = ma_offset_ptr(pMappedDeviceBufferCapture, mappedDeviceFramesProcessedCapture * bpfDeviceCapture); result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningMappedDeviceBufferCapture, &deviceCapturedFramesToProcess, inputFramesInClientFormat, &clientCapturedFramesToProcess); if (result != MA_SUCCESS) { break; } outputFramesInClientFormatCount = (ma_uint32)clientCapturedFramesToProcess; mappedDeviceFramesProcessedCapture += (ma_uint32)deviceCapturedFramesToProcess; ma_device__handle_data_callback(pDevice, outputFramesInClientFormat, inputFramesInClientFormat, (ma_uint32)clientCapturedFramesToProcess); /* At this point we have input and output data in client format. All we need to do now is convert it to the output device format. This may take a few passes. */ for (;;) { ma_uint32 framesWrittenThisIteration; DWORD physicalPlayCursorInBytes; DWORD physicalWriteCursorInBytes; DWORD availableBytesPlayback; DWORD silentPaddingInBytes = 0; /* <-- Must be initialized to 0. */ /* We need the physical play and write cursors. */ if (FAILED(ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes))) { break; } if (physicalPlayCursorInBytes < prevPlayCursorInBytesPlayback) { physicalPlayCursorLoopFlagPlayback = !physicalPlayCursorLoopFlagPlayback; } prevPlayCursorInBytesPlayback = physicalPlayCursorInBytes; /* If there's any bytes available for writing we can do that now. The space between the virtual cursor position and play cursor. */ if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) { /* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */ if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) { availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback; availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */ } else { /* This is an error. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[DirectSound] (Duplex/Playback): Play cursor has moved in front of the write cursor (same loop iteration). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); availableBytesPlayback = 0; } } else { /* Different loop iterations. The available bytes only goes from the virtual write cursor to the physical play cursor. */ if (physicalPlayCursorInBytes >= virtualWriteCursorInBytesPlayback) { availableBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback; } else { /* This is an error. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[DirectSound] (Duplex/Playback): Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); availableBytesPlayback = 0; } } /* If there's no room available for writing we need to wait for more. */ if (availableBytesPlayback == 0) { /* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */ if (!isPlaybackDeviceStarted) { hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING); if (FAILED(hr)) { ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed."); return ma_result_from_HRESULT(hr); } isPlaybackDeviceStarted = MA_TRUE; } else { ma_sleep(waitTimeInMilliseconds); continue; } } /* Getting here means there room available somewhere. We limit this to either the end of the buffer or the physical play cursor, whichever is closest. */ lockOffsetInBytesPlayback = virtualWriteCursorInBytesPlayback; if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) { /* Same loop iteration. Go up to the end of the buffer. */ lockSizeInBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback; } else { /* Different loop iterations. Go up to the physical play cursor. */ lockSizeInBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback; } hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device."); result = ma_result_from_HRESULT(hr); break; } /* Experiment: If the playback buffer is being starved, pad it with some silence to get it back in sync. This will cause a glitch, but it may prevent endless glitching due to it constantly running out of data. */ if (isPlaybackDeviceStarted) { DWORD bytesQueuedForPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - availableBytesPlayback; if (bytesQueuedForPlayback < (pDevice->playback.internalPeriodSizeInFrames*bpfDevicePlayback)) { silentPaddingInBytes = (pDevice->playback.internalPeriodSizeInFrames*2*bpfDevicePlayback) - bytesQueuedForPlayback; if (silentPaddingInBytes > lockSizeInBytesPlayback) { silentPaddingInBytes = lockSizeInBytesPlayback; } ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[DirectSound] (Duplex/Playback) Playback buffer starved. availableBytesPlayback=%ld, silentPaddingInBytes=%ld\n", availableBytesPlayback, silentPaddingInBytes); } } /* At this point we have a buffer for output. */ if (silentPaddingInBytes > 0) { MA_ZERO_MEMORY(pMappedDeviceBufferPlayback, silentPaddingInBytes); framesWrittenThisIteration = silentPaddingInBytes/bpfDevicePlayback; } else { ma_uint64 convertedFrameCountIn = (outputFramesInClientFormatCount - outputFramesInClientFormatConsumed); ma_uint64 convertedFrameCountOut = mappedSizeInBytesPlayback/bpfDevicePlayback; void* pConvertedFramesIn = ma_offset_ptr(outputFramesInClientFormat, outputFramesInClientFormatConsumed * bpfDevicePlayback); void* pConvertedFramesOut = pMappedDeviceBufferPlayback; result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pConvertedFramesIn, &convertedFrameCountIn, pConvertedFramesOut, &convertedFrameCountOut); if (result != MA_SUCCESS) { break; } outputFramesInClientFormatConsumed += (ma_uint32)convertedFrameCountOut; framesWrittenThisIteration = (ma_uint32)convertedFrameCountOut; } hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, framesWrittenThisIteration*bpfDevicePlayback, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device."); result = ma_result_from_HRESULT(hr); break; } virtualWriteCursorInBytesPlayback += framesWrittenThisIteration*bpfDevicePlayback; if ((virtualWriteCursorInBytesPlayback/bpfDevicePlayback) == pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods) { virtualWriteCursorInBytesPlayback = 0; virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback; } /* We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds a bit of a buffer to prevent the playback buffer from getting starved. */ framesWrittenToPlaybackDevice += framesWrittenThisIteration; if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= (pDevice->playback.internalPeriodSizeInFrames*2)) { hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING); if (FAILED(hr)) { ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed."); return ma_result_from_HRESULT(hr); } isPlaybackDeviceStarted = MA_TRUE; } if (framesWrittenThisIteration < mappedSizeInBytesPlayback/bpfDevicePlayback) { break; /* We're finished with the output data.*/ } } if (clientCapturedFramesToProcess == 0) { break; /* We just consumed every input sample. */ } } /* At this point we're done with the mapped portion of the capture buffer. */ hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device."); return ma_result_from_HRESULT(hr); } prevReadCursorInBytesCapture = (lockOffsetInBytesCapture + mappedSizeInBytesCapture); } break; case ma_device_type_capture: { DWORD physicalCaptureCursorInBytes; DWORD physicalReadCursorInBytes; hr = ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes); if (FAILED(hr)) { return MA_ERROR; } /* If the previous capture position is the same as the current position we need to wait a bit longer. */ if (prevReadCursorInBytesCapture == physicalReadCursorInBytes) { ma_sleep(waitTimeInMilliseconds); continue; } /* Getting here means we have capture data available. */ if (prevReadCursorInBytesCapture < physicalReadCursorInBytes) { /* The capture position has not looped. This is the simple case. */ lockOffsetInBytesCapture = prevReadCursorInBytesCapture; lockSizeInBytesCapture = (physicalReadCursorInBytes - prevReadCursorInBytesCapture); } else { /* The capture position has looped. This is the more complex case. Map to the end of the buffer. If this does not return anything, do it again from the start. */ if (prevReadCursorInBytesCapture < pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) { /* Lock up to the end of the buffer. */ lockOffsetInBytesCapture = prevReadCursorInBytesCapture; lockSizeInBytesCapture = (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) - prevReadCursorInBytesCapture; } else { /* Lock starting from the start of the buffer. */ lockOffsetInBytesCapture = 0; lockSizeInBytesCapture = physicalReadCursorInBytes; } } if (lockSizeInBytesCapture < pDevice->capture.internalPeriodSizeInFrames) { ma_sleep(waitTimeInMilliseconds); continue; /* Nothing is available in the capture buffer. */ } hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device."); result = ma_result_from_HRESULT(hr); } if (lockSizeInBytesCapture != mappedSizeInBytesCapture) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[DirectSound] (Capture) lockSizeInBytesCapture=%ld != mappedSizeInBytesCapture=%ld\n", lockSizeInBytesCapture, mappedSizeInBytesCapture); } ma_device__send_frames_to_client(pDevice, mappedSizeInBytesCapture/bpfDeviceCapture, pMappedDeviceBufferCapture); hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device."); return ma_result_from_HRESULT(hr); } prevReadCursorInBytesCapture = lockOffsetInBytesCapture + mappedSizeInBytesCapture; if (prevReadCursorInBytesCapture == (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture)) { prevReadCursorInBytesCapture = 0; } } break; case ma_device_type_playback: { DWORD availableBytesPlayback; DWORD physicalPlayCursorInBytes; DWORD physicalWriteCursorInBytes; hr = ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes); if (FAILED(hr)) { break; } if (physicalPlayCursorInBytes < prevPlayCursorInBytesPlayback) { physicalPlayCursorLoopFlagPlayback = !physicalPlayCursorLoopFlagPlayback; } prevPlayCursorInBytesPlayback = physicalPlayCursorInBytes; /* If there's any bytes available for writing we can do that now. The space between the virtual cursor position and play cursor. */ if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) { /* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */ if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) { availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback; availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */ } else { /* This is an error. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[DirectSound] (Playback): Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); availableBytesPlayback = 0; } } else { /* Different loop iterations. The available bytes only goes from the virtual write cursor to the physical play cursor. */ if (physicalPlayCursorInBytes >= virtualWriteCursorInBytesPlayback) { availableBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback; } else { /* This is an error. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[DirectSound] (Playback): Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback); availableBytesPlayback = 0; } } /* If there's no room available for writing we need to wait for more. */ if (availableBytesPlayback < pDevice->playback.internalPeriodSizeInFrames) { /* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */ if (availableBytesPlayback == 0 && !isPlaybackDeviceStarted) { hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed."); return ma_result_from_HRESULT(hr); } isPlaybackDeviceStarted = MA_TRUE; } else { ma_sleep(waitTimeInMilliseconds); continue; } } /* Getting here means there room available somewhere. We limit this to either the end of the buffer or the physical play cursor, whichever is closest. */ lockOffsetInBytesPlayback = virtualWriteCursorInBytesPlayback; if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) { /* Same loop iteration. Go up to the end of the buffer. */ lockSizeInBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback; } else { /* Different loop iterations. Go up to the physical play cursor. */ lockSizeInBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback; } hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device."); result = ma_result_from_HRESULT(hr); break; } /* At this point we have a buffer for output. */ ma_device__read_frames_from_client(pDevice, (mappedSizeInBytesPlayback/bpfDevicePlayback), pMappedDeviceBufferPlayback); hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, mappedSizeInBytesPlayback, NULL, 0); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device."); result = ma_result_from_HRESULT(hr); break; } virtualWriteCursorInBytesPlayback += mappedSizeInBytesPlayback; if (virtualWriteCursorInBytesPlayback == pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) { virtualWriteCursorInBytesPlayback = 0; virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback; } /* We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds a bit of a buffer to prevent the playback buffer from getting starved. */ framesWrittenToPlaybackDevice += mappedSizeInBytesPlayback/bpfDevicePlayback; if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames) { hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed."); return ma_result_from_HRESULT(hr); } isPlaybackDeviceStarted = MA_TRUE; } } break; default: return MA_INVALID_ARGS; /* Invalid device type. */ } if (result != MA_SUCCESS) { return result; } } /* Getting here means the device is being stopped. */ if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { hr = ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Stop() failed."); return ma_result_from_HRESULT(hr); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* The playback device should be drained before stopping. All we do is wait until the available bytes is equal to the size of the buffer. */ if (isPlaybackDeviceStarted) { for (;;) { DWORD availableBytesPlayback = 0; DWORD physicalPlayCursorInBytes; DWORD physicalWriteCursorInBytes; hr = ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes); if (FAILED(hr)) { break; } if (physicalPlayCursorInBytes < prevPlayCursorInBytesPlayback) { physicalPlayCursorLoopFlagPlayback = !physicalPlayCursorLoopFlagPlayback; } prevPlayCursorInBytesPlayback = physicalPlayCursorInBytes; if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) { /* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */ if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) { availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback; availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */ } else { break; } } else { /* Different loop iterations. The available bytes only goes from the virtual write cursor to the physical play cursor. */ if (physicalPlayCursorInBytes >= virtualWriteCursorInBytesPlayback) { availableBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback; } else { break; } } if (availableBytesPlayback >= (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback)) { break; } ma_sleep(waitTimeInMilliseconds); } } hr = ma_IDirectSoundBuffer_Stop((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer); if (FAILED(hr)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Stop() failed."); return ma_result_from_HRESULT(hr); } ma_IDirectSoundBuffer_SetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0); } return MA_SUCCESS; } static ma_result ma_context_uninit__dsound(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_dsound); ma_dlclose(pContext, pContext->dsound.hDSoundDLL); return MA_SUCCESS; } static ma_result ma_context_init__dsound(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); (void)pConfig; pContext->dsound.hDSoundDLL = ma_dlopen(pContext, "dsound.dll"); if (pContext->dsound.hDSoundDLL == NULL) { return MA_API_NOT_FOUND; } pContext->dsound.DirectSoundCreate = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCreate"); pContext->dsound.DirectSoundEnumerateA = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundEnumerateA"); pContext->dsound.DirectSoundCaptureCreate = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCaptureCreate"); pContext->dsound.DirectSoundCaptureEnumerateA = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCaptureEnumerateA"); pCallbacks->onContextInit = ma_context_init__dsound; pCallbacks->onContextUninit = ma_context_uninit__dsound; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__dsound; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__dsound; pCallbacks->onDeviceInit = ma_device_init__dsound; pCallbacks->onDeviceUninit = ma_device_uninit__dsound; pCallbacks->onDeviceStart = NULL; /* Not used. Started in onDeviceDataLoop. */ pCallbacks->onDeviceStop = NULL; /* Not used. Stopped in onDeviceDataLoop. */ pCallbacks->onDeviceRead = NULL; /* Not used. Data is read directly in onDeviceDataLoop. */ pCallbacks->onDeviceWrite = NULL; /* Not used. Data is written directly in onDeviceDataLoop. */ pCallbacks->onDeviceDataLoop = ma_device_data_loop__dsound; return MA_SUCCESS; } #endif /****************************************************************************** WinMM Backend ******************************************************************************/ #ifdef MA_HAS_WINMM /* Some older compilers don't have WAVEOUTCAPS2A and WAVEINCAPS2A, so we'll need to write this ourselves. These structures are exactly the same as the older ones but they have a few GUIDs for manufacturer/product/name identification. I'm keeping the names the same as the Win32 library for consistency, but namespaced to avoid naming conflicts with the Win32 version. */ typedef struct { WORD wMid; WORD wPid; MMVERSION vDriverVersion; CHAR szPname[MAXPNAMELEN]; DWORD dwFormats; WORD wChannels; WORD wReserved1; DWORD dwSupport; GUID ManufacturerGuid; GUID ProductGuid; GUID NameGuid; } MA_WAVEOUTCAPS2A; typedef struct { WORD wMid; WORD wPid; MMVERSION vDriverVersion; CHAR szPname[MAXPNAMELEN]; DWORD dwFormats; WORD wChannels; WORD wReserved1; GUID ManufacturerGuid; GUID ProductGuid; GUID NameGuid; } MA_WAVEINCAPS2A; typedef UINT (WINAPI * MA_PFN_waveOutGetNumDevs)(void); typedef MMRESULT (WINAPI * MA_PFN_waveOutGetDevCapsA)(ma_uintptr uDeviceID, LPWAVEOUTCAPSA pwoc, UINT cbwoc); typedef MMRESULT (WINAPI * MA_PFN_waveOutOpen)(LPHWAVEOUT phwo, UINT uDeviceID, LPCWAVEFORMATEX pwfx, DWORD_PTR dwCallback, DWORD_PTR dwInstance, DWORD fdwOpen); typedef MMRESULT (WINAPI * MA_PFN_waveOutClose)(HWAVEOUT hwo); typedef MMRESULT (WINAPI * MA_PFN_waveOutPrepareHeader)(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh); typedef MMRESULT (WINAPI * MA_PFN_waveOutUnprepareHeader)(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh); typedef MMRESULT (WINAPI * MA_PFN_waveOutWrite)(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh); typedef MMRESULT (WINAPI * MA_PFN_waveOutReset)(HWAVEOUT hwo); typedef UINT (WINAPI * MA_PFN_waveInGetNumDevs)(void); typedef MMRESULT (WINAPI * MA_PFN_waveInGetDevCapsA)(ma_uintptr uDeviceID, LPWAVEINCAPSA pwic, UINT cbwic); typedef MMRESULT (WINAPI * MA_PFN_waveInOpen)(LPHWAVEIN phwi, UINT uDeviceID, LPCWAVEFORMATEX pwfx, DWORD_PTR dwCallback, DWORD_PTR dwInstance, DWORD fdwOpen); typedef MMRESULT (WINAPI * MA_PFN_waveInClose)(HWAVEIN hwi); typedef MMRESULT (WINAPI * MA_PFN_waveInPrepareHeader)(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh); typedef MMRESULT (WINAPI * MA_PFN_waveInUnprepareHeader)(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh); typedef MMRESULT (WINAPI * MA_PFN_waveInAddBuffer)(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh); typedef MMRESULT (WINAPI * MA_PFN_waveInStart)(HWAVEIN hwi); typedef MMRESULT (WINAPI * MA_PFN_waveInReset)(HWAVEIN hwi); static ma_result ma_result_from_MMRESULT(MMRESULT resultMM) { switch (resultMM) { case MMSYSERR_NOERROR: return MA_SUCCESS; case MMSYSERR_BADDEVICEID: return MA_INVALID_ARGS; case MMSYSERR_INVALHANDLE: return MA_INVALID_ARGS; case MMSYSERR_NOMEM: return MA_OUT_OF_MEMORY; case MMSYSERR_INVALFLAG: return MA_INVALID_ARGS; case MMSYSERR_INVALPARAM: return MA_INVALID_ARGS; case MMSYSERR_HANDLEBUSY: return MA_BUSY; case MMSYSERR_ERROR: return MA_ERROR; default: return MA_ERROR; } } static char* ma_find_last_character(char* str, char ch) { char* last; if (str == NULL) { return NULL; } last = NULL; while (*str != '\0') { if (*str == ch) { last = str; } str += 1; } return last; } static ma_uint32 ma_get_period_size_in_bytes(ma_uint32 periodSizeInFrames, ma_format format, ma_uint32 channels) { return periodSizeInFrames * ma_get_bytes_per_frame(format, channels); } /* Our own "WAVECAPS" structure that contains generic information shared between WAVEOUTCAPS2 and WAVEINCAPS2 so we can do things generically and typesafely. Names are being kept the same for consistency. */ typedef struct { CHAR szPname[MAXPNAMELEN]; DWORD dwFormats; WORD wChannels; GUID NameGuid; } MA_WAVECAPSA; static ma_result ma_get_best_info_from_formats_flags__winmm(DWORD dwFormats, WORD channels, WORD* pBitsPerSample, DWORD* pSampleRate) { WORD bitsPerSample = 0; DWORD sampleRate = 0; if (pBitsPerSample) { *pBitsPerSample = 0; } if (pSampleRate) { *pSampleRate = 0; } if (channels == 1) { bitsPerSample = 16; if ((dwFormats & WAVE_FORMAT_48M16) != 0) { sampleRate = 48000; } else if ((dwFormats & WAVE_FORMAT_44M16) != 0) { sampleRate = 44100; } else if ((dwFormats & WAVE_FORMAT_2M16) != 0) { sampleRate = 22050; } else if ((dwFormats & WAVE_FORMAT_1M16) != 0) { sampleRate = 11025; } else if ((dwFormats & WAVE_FORMAT_96M16) != 0) { sampleRate = 96000; } else { bitsPerSample = 8; if ((dwFormats & WAVE_FORMAT_48M08) != 0) { sampleRate = 48000; } else if ((dwFormats & WAVE_FORMAT_44M08) != 0) { sampleRate = 44100; } else if ((dwFormats & WAVE_FORMAT_2M08) != 0) { sampleRate = 22050; } else if ((dwFormats & WAVE_FORMAT_1M08) != 0) { sampleRate = 11025; } else if ((dwFormats & WAVE_FORMAT_96M08) != 0) { sampleRate = 96000; } else { return MA_FORMAT_NOT_SUPPORTED; } } } else { bitsPerSample = 16; if ((dwFormats & WAVE_FORMAT_48S16) != 0) { sampleRate = 48000; } else if ((dwFormats & WAVE_FORMAT_44S16) != 0) { sampleRate = 44100; } else if ((dwFormats & WAVE_FORMAT_2S16) != 0) { sampleRate = 22050; } else if ((dwFormats & WAVE_FORMAT_1S16) != 0) { sampleRate = 11025; } else if ((dwFormats & WAVE_FORMAT_96S16) != 0) { sampleRate = 96000; } else { bitsPerSample = 8; if ((dwFormats & WAVE_FORMAT_48S08) != 0) { sampleRate = 48000; } else if ((dwFormats & WAVE_FORMAT_44S08) != 0) { sampleRate = 44100; } else if ((dwFormats & WAVE_FORMAT_2S08) != 0) { sampleRate = 22050; } else if ((dwFormats & WAVE_FORMAT_1S08) != 0) { sampleRate = 11025; } else if ((dwFormats & WAVE_FORMAT_96S08) != 0) { sampleRate = 96000; } else { return MA_FORMAT_NOT_SUPPORTED; } } } if (pBitsPerSample) { *pBitsPerSample = bitsPerSample; } if (pSampleRate) { *pSampleRate = sampleRate; } return MA_SUCCESS; } static ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD channels, WAVEFORMATEX* pWF) { ma_result result; MA_ASSERT(pWF != NULL); MA_ZERO_OBJECT(pWF); pWF->cbSize = sizeof(*pWF); pWF->wFormatTag = WAVE_FORMAT_PCM; pWF->nChannels = (WORD)channels; if (pWF->nChannels > 2) { pWF->nChannels = 2; } result = ma_get_best_info_from_formats_flags__winmm(dwFormats, channels, &pWF->wBitsPerSample, &pWF->nSamplesPerSec); if (result != MA_SUCCESS) { return result; } pWF->nBlockAlign = (WORD)(pWF->nChannels * pWF->wBitsPerSample / 8); pWF->nAvgBytesPerSec = pWF->nBlockAlign * pWF->nSamplesPerSec; return MA_SUCCESS; } static ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, MA_WAVECAPSA* pCaps, ma_device_info* pDeviceInfo) { WORD bitsPerSample; DWORD sampleRate; ma_result result; MA_ASSERT(pContext != NULL); MA_ASSERT(pCaps != NULL); MA_ASSERT(pDeviceInfo != NULL); /* Name / Description Unfortunately the name specified in WAVE(OUT/IN)CAPS2 is limited to 31 characters. This results in an unprofessional looking situation where the names of the devices are truncated. To help work around this, we need to look at the name GUID and try looking in the registry for the full name. If we can't find it there, we need to just fall back to the default name. */ /* Set the default to begin with. */ ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), pCaps->szPname, (size_t)-1); /* Now try the registry. There's a few things to consider here: - The name GUID can be null, in which we case we just need to stick to the original 31 characters. - If the name GUID is not present in the registry we'll also need to stick to the original 31 characters. - I like consistency, so I want the returned device names to be consistent with those returned by WASAPI and DirectSound. The problem, however is that WASAPI and DirectSound use " ()" format (such as "Speakers (High Definition Audio)"), but WinMM does not specificy the component name. From my admittedly limited testing, I've notice the component name seems to usually fit within the 31 characters of the fixed sized buffer, so what I'm going to do is parse that string for the component name, and then concatenate the name from the registry. */ if (!ma_is_guid_null(&pCaps->NameGuid)) { wchar_t guidStrW[256]; if (((MA_PFN_StringFromGUID2)pContext->win32.StringFromGUID2)(&pCaps->NameGuid, guidStrW, ma_countof(guidStrW)) > 0) { char guidStr[256]; char keyStr[1024]; HKEY hKey; WideCharToMultiByte(CP_UTF8, 0, guidStrW, -1, guidStr, sizeof(guidStr), 0, FALSE); ma_strcpy_s(keyStr, sizeof(keyStr), "SYSTEM\\CurrentControlSet\\Control\\MediaCategories\\"); ma_strcat_s(keyStr, sizeof(keyStr), guidStr); if (((MA_PFN_RegOpenKeyExA)pContext->win32.RegOpenKeyExA)(HKEY_LOCAL_MACHINE, keyStr, 0, KEY_READ, &hKey) == ERROR_SUCCESS) { BYTE nameFromReg[512]; DWORD nameFromRegSize = sizeof(nameFromReg); LONG resultWin32 = ((MA_PFN_RegQueryValueExA)pContext->win32.RegQueryValueExA)(hKey, "Name", 0, NULL, (LPBYTE)nameFromReg, (LPDWORD)&nameFromRegSize); ((MA_PFN_RegCloseKey)pContext->win32.RegCloseKey)(hKey); if (resultWin32 == ERROR_SUCCESS) { /* We have the value from the registry, so now we need to construct the name string. */ char name[1024]; if (ma_strcpy_s(name, sizeof(name), pDeviceInfo->name) == 0) { char* nameBeg = ma_find_last_character(name, '('); if (nameBeg != NULL) { size_t leadingLen = (nameBeg - name); ma_strncpy_s(nameBeg + 1, sizeof(name) - leadingLen, (const char*)nameFromReg, (size_t)-1); /* The closing ")", if it can fit. */ if (leadingLen + nameFromRegSize < sizeof(name)-1) { ma_strcat_s(name, sizeof(name), ")"); } ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), name, (size_t)-1); } } } } } } result = ma_get_best_info_from_formats_flags__winmm(pCaps->dwFormats, pCaps->wChannels, &bitsPerSample, &sampleRate); if (result != MA_SUCCESS) { return result; } if (bitsPerSample == 8) { pDeviceInfo->nativeDataFormats[0].format = ma_format_u8; } else if (bitsPerSample == 16) { pDeviceInfo->nativeDataFormats[0].format = ma_format_s16; } else if (bitsPerSample == 24) { pDeviceInfo->nativeDataFormats[0].format = ma_format_s24; } else if (bitsPerSample == 32) { pDeviceInfo->nativeDataFormats[0].format = ma_format_s32; } else { return MA_FORMAT_NOT_SUPPORTED; } pDeviceInfo->nativeDataFormats[0].channels = pCaps->wChannels; pDeviceInfo->nativeDataFormats[0].sampleRate = sampleRate; pDeviceInfo->nativeDataFormats[0].flags = 0; pDeviceInfo->nativeDataFormatCount = 1; return MA_SUCCESS; } static ma_result ma_context_get_device_info_from_WAVEOUTCAPS2(ma_context* pContext, MA_WAVEOUTCAPS2A* pCaps, ma_device_info* pDeviceInfo) { MA_WAVECAPSA caps; MA_ASSERT(pContext != NULL); MA_ASSERT(pCaps != NULL); MA_ASSERT(pDeviceInfo != NULL); MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname)); caps.dwFormats = pCaps->dwFormats; caps.wChannels = pCaps->wChannels; caps.NameGuid = pCaps->NameGuid; return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo); } static ma_result ma_context_get_device_info_from_WAVEINCAPS2(ma_context* pContext, MA_WAVEINCAPS2A* pCaps, ma_device_info* pDeviceInfo) { MA_WAVECAPSA caps; MA_ASSERT(pContext != NULL); MA_ASSERT(pCaps != NULL); MA_ASSERT(pDeviceInfo != NULL); MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname)); caps.dwFormats = pCaps->dwFormats; caps.wChannels = pCaps->wChannels; caps.NameGuid = pCaps->NameGuid; return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo); } static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { UINT playbackDeviceCount; UINT captureDeviceCount; UINT iPlaybackDevice; UINT iCaptureDevice; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Playback. */ playbackDeviceCount = ((MA_PFN_waveOutGetNumDevs)pContext->winmm.waveOutGetNumDevs)(); for (iPlaybackDevice = 0; iPlaybackDevice < playbackDeviceCount; ++iPlaybackDevice) { MMRESULT result; MA_WAVEOUTCAPS2A caps; MA_ZERO_OBJECT(&caps); result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(iPlaybackDevice, (WAVEOUTCAPSA*)&caps, sizeof(caps)); if (result == MMSYSERR_NOERROR) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.winmm = iPlaybackDevice; /* The first enumerated device is the default device. */ if (iPlaybackDevice == 0) { deviceInfo.isDefault = MA_TRUE; } if (ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) { ma_bool32 cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { return MA_SUCCESS; /* Enumeration was stopped. */ } } } } /* Capture. */ captureDeviceCount = ((MA_PFN_waveInGetNumDevs)pContext->winmm.waveInGetNumDevs)(); for (iCaptureDevice = 0; iCaptureDevice < captureDeviceCount; ++iCaptureDevice) { MMRESULT result; MA_WAVEINCAPS2A caps; MA_ZERO_OBJECT(&caps); result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(iCaptureDevice, (WAVEINCAPSA*)&caps, sizeof(caps)); if (result == MMSYSERR_NOERROR) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.winmm = iCaptureDevice; /* The first enumerated device is the default device. */ if (iCaptureDevice == 0) { deviceInfo.isDefault = MA_TRUE; } if (ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) { ma_bool32 cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { return MA_SUCCESS; /* Enumeration was stopped. */ } } } } return MA_SUCCESS; } static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { UINT winMMDeviceID; MA_ASSERT(pContext != NULL); winMMDeviceID = 0; if (pDeviceID != NULL) { winMMDeviceID = (UINT)pDeviceID->winmm; } pDeviceInfo->id.winmm = winMMDeviceID; /* The first ID is the default device. */ if (winMMDeviceID == 0) { pDeviceInfo->isDefault = MA_TRUE; } if (deviceType == ma_device_type_playback) { MMRESULT result; MA_WAVEOUTCAPS2A caps; MA_ZERO_OBJECT(&caps); result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(winMMDeviceID, (WAVEOUTCAPSA*)&caps, sizeof(caps)); if (result == MMSYSERR_NOERROR) { return ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, pDeviceInfo); } } else { MMRESULT result; MA_WAVEINCAPS2A caps; MA_ZERO_OBJECT(&caps); result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(winMMDeviceID, (WAVEINCAPSA*)&caps, sizeof(caps)); if (result == MMSYSERR_NOERROR) { return ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, pDeviceInfo); } } return MA_NO_DEVICE; } static ma_result ma_device_uninit__winmm(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ((MA_PFN_waveInClose)pDevice->pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture); CloseHandle((HANDLE)pDevice->winmm.hEventCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ((MA_PFN_waveOutReset)pDevice->pContext->winmm.waveOutReset)((HWAVEOUT)pDevice->winmm.hDevicePlayback); ((MA_PFN_waveOutClose)pDevice->pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback); CloseHandle((HANDLE)pDevice->winmm.hEventPlayback); } ma_free(pDevice->winmm._pHeapData, &pDevice->pContext->allocationCallbacks); MA_ZERO_OBJECT(&pDevice->winmm); /* Safety. */ return MA_SUCCESS; } static ma_uint32 ma_calculate_period_size_in_frames_from_descriptor__winmm(const ma_device_descriptor* pDescriptor, ma_uint32 nativeSampleRate, ma_performance_profile performanceProfile) { /* WinMM has a minimum period size of 40ms. */ ma_uint32 minPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(40, nativeSampleRate); ma_uint32 periodSizeInFrames; periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, nativeSampleRate, performanceProfile); if (periodSizeInFrames < minPeriodSizeInFrames) { periodSizeInFrames = minPeriodSizeInFrames; } return periodSizeInFrames; } static ma_result ma_device_init__winmm(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { const char* errorMsg = ""; ma_result errorCode = MA_ERROR; ma_result result = MA_SUCCESS; ma_uint32 heapSize; UINT winMMDeviceIDPlayback = 0; UINT winMMDeviceIDCapture = 0; MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->winmm); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* No exlusive mode with WinMM. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } if (pDescriptorPlayback->pDeviceID != NULL) { winMMDeviceIDPlayback = (UINT)pDescriptorPlayback->pDeviceID->winmm; } if (pDescriptorCapture->pDeviceID != NULL) { winMMDeviceIDCapture = (UINT)pDescriptorCapture->pDeviceID->winmm; } /* The capture device needs to be initialized first. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { WAVEINCAPSA caps; WAVEFORMATEX wf; MMRESULT resultMM; /* We use an event to know when a new fragment needs to be enqueued. */ pDevice->winmm.hEventCapture = (ma_handle)CreateEventW(NULL, TRUE, TRUE, NULL); if (pDevice->winmm.hEventCapture == NULL) { errorMsg = "[WinMM] Failed to create event for fragment enqueing for the capture device.", errorCode = ma_result_from_GetLastError(GetLastError()); goto on_error; } /* The format should be based on the device's actual format. */ if (((MA_PFN_waveInGetDevCapsA)pDevice->pContext->winmm.waveInGetDevCapsA)(winMMDeviceIDCapture, &caps, sizeof(caps)) != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to retrieve internal device caps.", errorCode = MA_FORMAT_NOT_SUPPORTED; goto on_error; } result = ma_formats_flags_to_WAVEFORMATEX__winmm(caps.dwFormats, caps.wChannels, &wf); if (result != MA_SUCCESS) { errorMsg = "[WinMM] Could not find appropriate format for internal device.", errorCode = result; goto on_error; } resultMM = ((MA_PFN_waveInOpen)pDevice->pContext->winmm.waveInOpen)((LPHWAVEIN)&pDevice->winmm.hDeviceCapture, winMMDeviceIDCapture, &wf, (DWORD_PTR)pDevice->winmm.hEventCapture, (DWORD_PTR)pDevice, CALLBACK_EVENT | WAVE_ALLOWSYNC); if (resultMM != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to open capture device.", errorCode = MA_FAILED_TO_OPEN_BACKEND_DEVICE; goto on_error; } pDescriptorCapture->format = ma_format_from_WAVEFORMATEX(&wf); pDescriptorCapture->channels = wf.nChannels; pDescriptorCapture->sampleRate = wf.nSamplesPerSec; ma_channel_map_init_standard(ma_standard_channel_map_microsoft, pDescriptorCapture->channelMap, ma_countof(pDescriptorCapture->channelMap), pDescriptorCapture->channels); pDescriptorCapture->periodCount = pDescriptorCapture->periodCount; pDescriptorCapture->periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__winmm(pDescriptorCapture, pDescriptorCapture->sampleRate, pConfig->performanceProfile); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { WAVEOUTCAPSA caps; WAVEFORMATEX wf; MMRESULT resultMM; /* We use an event to know when a new fragment needs to be enqueued. */ pDevice->winmm.hEventPlayback = (ma_handle)CreateEventW(NULL, TRUE, TRUE, NULL); if (pDevice->winmm.hEventPlayback == NULL) { errorMsg = "[WinMM] Failed to create event for fragment enqueing for the playback device.", errorCode = ma_result_from_GetLastError(GetLastError()); goto on_error; } /* The format should be based on the device's actual format. */ if (((MA_PFN_waveOutGetDevCapsA)pDevice->pContext->winmm.waveOutGetDevCapsA)(winMMDeviceIDPlayback, &caps, sizeof(caps)) != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to retrieve internal device caps.", errorCode = MA_FORMAT_NOT_SUPPORTED; goto on_error; } result = ma_formats_flags_to_WAVEFORMATEX__winmm(caps.dwFormats, caps.wChannels, &wf); if (result != MA_SUCCESS) { errorMsg = "[WinMM] Could not find appropriate format for internal device.", errorCode = result; goto on_error; } resultMM = ((MA_PFN_waveOutOpen)pDevice->pContext->winmm.waveOutOpen)((LPHWAVEOUT)&pDevice->winmm.hDevicePlayback, winMMDeviceIDPlayback, &wf, (DWORD_PTR)pDevice->winmm.hEventPlayback, (DWORD_PTR)pDevice, CALLBACK_EVENT | WAVE_ALLOWSYNC); if (resultMM != MMSYSERR_NOERROR) { errorMsg = "[WinMM] Failed to open playback device.", errorCode = MA_FAILED_TO_OPEN_BACKEND_DEVICE; goto on_error; } pDescriptorPlayback->format = ma_format_from_WAVEFORMATEX(&wf); pDescriptorPlayback->channels = wf.nChannels; pDescriptorPlayback->sampleRate = wf.nSamplesPerSec; ma_channel_map_init_standard(ma_standard_channel_map_microsoft, pDescriptorPlayback->channelMap, ma_countof(pDescriptorPlayback->channelMap), pDescriptorPlayback->channels); pDescriptorPlayback->periodCount = pDescriptorPlayback->periodCount; pDescriptorPlayback->periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__winmm(pDescriptorPlayback, pDescriptorPlayback->sampleRate, pConfig->performanceProfile); } /* The heap allocated data is allocated like so: [Capture WAVEHDRs][Playback WAVEHDRs][Capture Intermediary Buffer][Playback Intermediary Buffer] */ heapSize = 0; if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { heapSize += sizeof(WAVEHDR)*pDescriptorCapture->periodCount + (pDescriptorCapture->periodSizeInFrames * pDescriptorCapture->periodCount * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels)); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { heapSize += sizeof(WAVEHDR)*pDescriptorPlayback->periodCount + (pDescriptorPlayback->periodSizeInFrames * pDescriptorPlayback->periodCount * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels)); } pDevice->winmm._pHeapData = (ma_uint8*)ma_calloc(heapSize, &pDevice->pContext->allocationCallbacks); if (pDevice->winmm._pHeapData == NULL) { errorMsg = "[WinMM] Failed to allocate memory for the intermediary buffer.", errorCode = MA_OUT_OF_MEMORY; goto on_error; } MA_ZERO_MEMORY(pDevice->winmm._pHeapData, heapSize); if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_uint32 iPeriod; if (pConfig->deviceType == ma_device_type_capture) { pDevice->winmm.pWAVEHDRCapture = pDevice->winmm._pHeapData; pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount)); } else { pDevice->winmm.pWAVEHDRCapture = pDevice->winmm._pHeapData; pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount + pDescriptorPlayback->periodCount)); } /* Prepare headers. */ for (iPeriod = 0; iPeriod < pDescriptorCapture->periodCount; ++iPeriod) { ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDescriptorCapture->periodSizeInFrames, pDescriptorCapture->format, pDescriptorCapture->channels); ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferCapture + (periodSizeInBytes*iPeriod)); ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwBufferLength = periodSizeInBytes; ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwFlags = 0L; ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwLoops = 0L; ((MA_PFN_waveInPrepareHeader)pDevice->pContext->winmm.waveInPrepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); /* The user data of the WAVEHDR structure is a single flag the controls whether or not it is ready for writing. Consider it to be named "isLocked". A value of 0 means it's unlocked and available for writing. A value of 1 means it's locked. */ ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwUser = 0; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_uint32 iPeriod; if (pConfig->deviceType == ma_device_type_playback) { pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData; pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*pDescriptorPlayback->periodCount); } else { pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount)); pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDescriptorCapture->periodCount + pDescriptorPlayback->periodCount)) + (pDescriptorCapture->periodSizeInFrames*pDescriptorCapture->periodCount*ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels)); } /* Prepare headers. */ for (iPeriod = 0; iPeriod < pDescriptorPlayback->periodCount; ++iPeriod) { ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDescriptorPlayback->periodSizeInFrames, pDescriptorPlayback->format, pDescriptorPlayback->channels); ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferPlayback + (periodSizeInBytes*iPeriod)); ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwBufferLength = periodSizeInBytes; ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwFlags = 0L; ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwLoops = 0L; ((MA_PFN_waveOutPrepareHeader)pDevice->pContext->winmm.waveOutPrepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR)); /* The user data of the WAVEHDR structure is a single flag the controls whether or not it is ready for writing. Consider it to be named "isLocked". A value of 0 means it's unlocked and available for writing. A value of 1 means it's locked. */ ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwUser = 0; } } return MA_SUCCESS; on_error: if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { if (pDevice->winmm.pWAVEHDRCapture != NULL) { ma_uint32 iPeriod; for (iPeriod = 0; iPeriod < pDescriptorCapture->periodCount; ++iPeriod) { ((MA_PFN_waveInUnprepareHeader)pDevice->pContext->winmm.waveInUnprepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); } } ((MA_PFN_waveInClose)pDevice->pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { if (pDevice->winmm.pWAVEHDRCapture != NULL) { ma_uint32 iPeriod; for (iPeriod = 0; iPeriod < pDescriptorPlayback->periodCount; ++iPeriod) { ((MA_PFN_waveOutUnprepareHeader)pDevice->pContext->winmm.waveOutUnprepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR)); } } ((MA_PFN_waveOutClose)pDevice->pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback); } ma_free(pDevice->winmm._pHeapData, &pDevice->pContext->allocationCallbacks); if (errorMsg != NULL && errorMsg[0] != '\0') { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "%s", errorMsg); } return errorCode; } static ma_result ma_device_start__winmm(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { MMRESULT resultMM; WAVEHDR* pWAVEHDR; ma_uint32 iPeriod; pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRCapture; /* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */ ResetEvent((HANDLE)pDevice->winmm.hEventCapture); /* To start the device we attach all of the buffers and then start it. As the buffers are filled with data we will get notifications. */ for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) { resultMM = ((MA_PFN_waveInAddBuffer)pDevice->pContext->winmm.waveInAddBuffer)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((LPWAVEHDR)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR)); if (resultMM != MMSYSERR_NOERROR) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WinMM] Failed to attach input buffers to capture device in preparation for capture."); return ma_result_from_MMRESULT(resultMM); } /* Make sure all of the buffers start out locked. We don't want to access them until the backend tells us we can. */ pWAVEHDR[iPeriod].dwUser = 1; /* 1 = locked. */ } /* Capture devices need to be explicitly started, unlike playback devices. */ resultMM = ((MA_PFN_waveInStart)pDevice->pContext->winmm.waveInStart)((HWAVEIN)pDevice->winmm.hDeviceCapture); if (resultMM != MMSYSERR_NOERROR) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WinMM] Failed to start backend device."); return ma_result_from_MMRESULT(resultMM); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* Don't need to do anything for playback. It'll be started automatically in ma_device_start__winmm(). */ } return MA_SUCCESS; } static ma_result ma_device_stop__winmm(ma_device* pDevice) { MMRESULT resultMM; MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { if (pDevice->winmm.hDeviceCapture == NULL) { return MA_INVALID_ARGS; } resultMM = ((MA_PFN_waveInReset)pDevice->pContext->winmm.waveInReset)((HWAVEIN)pDevice->winmm.hDeviceCapture); if (resultMM != MMSYSERR_NOERROR) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[WinMM] WARNING: Failed to reset capture device."); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_uint32 iPeriod; WAVEHDR* pWAVEHDR; if (pDevice->winmm.hDevicePlayback == NULL) { return MA_INVALID_ARGS; } /* We need to drain the device. To do this we just loop over each header and if it's locked just wait for the event. */ pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback; for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; iPeriod += 1) { if (pWAVEHDR[iPeriod].dwUser == 1) { /* 1 = locked. */ if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventPlayback, INFINITE) != WAIT_OBJECT_0) { break; /* An error occurred so just abandon ship and stop the device without draining. */ } pWAVEHDR[iPeriod].dwUser = 0; } } resultMM = ((MA_PFN_waveOutReset)pDevice->pContext->winmm.waveOutReset)((HWAVEOUT)pDevice->winmm.hDevicePlayback); if (resultMM != MMSYSERR_NOERROR) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_WARNING, "[WinMM] WARNING: Failed to reset playback device."); } } return MA_SUCCESS; } static ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { ma_result result = MA_SUCCESS; MMRESULT resultMM; ma_uint32 totalFramesWritten; WAVEHDR* pWAVEHDR; MA_ASSERT(pDevice != NULL); MA_ASSERT(pPCMFrames != NULL); if (pFramesWritten != NULL) { *pFramesWritten = 0; } pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback; /* Keep processing as much data as possible. */ totalFramesWritten = 0; while (totalFramesWritten < frameCount) { /* If the current header has some space available we need to write part of it. */ if (pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwUser == 0) { /* 0 = unlocked. */ /* This header has room in it. We copy as much of it as we can. If we end up fully consuming the buffer we need to write it out and move on to the next iteration. */ ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); ma_uint32 framesRemainingInHeader = (pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwBufferLength/bpf) - pDevice->winmm.headerFramesConsumedPlayback; ma_uint32 framesToCopy = ma_min(framesRemainingInHeader, (frameCount - totalFramesWritten)); const void* pSrc = ma_offset_ptr(pPCMFrames, totalFramesWritten*bpf); void* pDst = ma_offset_ptr(pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].lpData, pDevice->winmm.headerFramesConsumedPlayback*bpf); MA_COPY_MEMORY(pDst, pSrc, framesToCopy*bpf); pDevice->winmm.headerFramesConsumedPlayback += framesToCopy; totalFramesWritten += framesToCopy; /* If we've consumed the buffer entirely we need to write it out to the device. */ if (pDevice->winmm.headerFramesConsumedPlayback == (pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwBufferLength/bpf)) { pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwUser = 1; /* 1 = locked. */ pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwFlags &= ~WHDR_DONE; /* <-- Need to make sure the WHDR_DONE flag is unset. */ /* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */ ResetEvent((HANDLE)pDevice->winmm.hEventPlayback); /* The device will be started here. */ resultMM = ((MA_PFN_waveOutWrite)pDevice->pContext->winmm.waveOutWrite)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &pWAVEHDR[pDevice->winmm.iNextHeaderPlayback], sizeof(WAVEHDR)); if (resultMM != MMSYSERR_NOERROR) { result = ma_result_from_MMRESULT(resultMM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WinMM] waveOutWrite() failed."); break; } /* Make sure we move to the next header. */ pDevice->winmm.iNextHeaderPlayback = (pDevice->winmm.iNextHeaderPlayback + 1) % pDevice->playback.internalPeriods; pDevice->winmm.headerFramesConsumedPlayback = 0; } /* If at this point we have consumed the entire input buffer we can return. */ MA_ASSERT(totalFramesWritten <= frameCount); if (totalFramesWritten == frameCount) { break; } /* Getting here means there's more to process. */ continue; } /* Getting here means there isn't enough room in the buffer and we need to wait for one to become available. */ if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventPlayback, INFINITE) != WAIT_OBJECT_0) { result = MA_ERROR; break; } /* Something happened. If the next buffer has been marked as done we need to reset a bit of state. */ if ((pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwFlags & WHDR_DONE) != 0) { pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwUser = 0; /* 0 = unlocked (make it available for writing). */ pDevice->winmm.headerFramesConsumedPlayback = 0; } /* If the device has been stopped we need to break. */ if (ma_device_get_state(pDevice) != ma_device_state_started) { break; } } if (pFramesWritten != NULL) { *pFramesWritten = totalFramesWritten; } return result; } static ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) { ma_result result = MA_SUCCESS; MMRESULT resultMM; ma_uint32 totalFramesRead; WAVEHDR* pWAVEHDR; MA_ASSERT(pDevice != NULL); MA_ASSERT(pPCMFrames != NULL); if (pFramesRead != NULL) { *pFramesRead = 0; } pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRCapture; /* Keep processing as much data as possible. */ totalFramesRead = 0; while (totalFramesRead < frameCount) { /* If the current header has some space available we need to write part of it. */ if (pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwUser == 0) { /* 0 = unlocked. */ /* The buffer is available for reading. If we fully consume it we need to add it back to the buffer. */ ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); ma_uint32 framesRemainingInHeader = (pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwBufferLength/bpf) - pDevice->winmm.headerFramesConsumedCapture; ma_uint32 framesToCopy = ma_min(framesRemainingInHeader, (frameCount - totalFramesRead)); const void* pSrc = ma_offset_ptr(pWAVEHDR[pDevice->winmm.iNextHeaderCapture].lpData, pDevice->winmm.headerFramesConsumedCapture*bpf); void* pDst = ma_offset_ptr(pPCMFrames, totalFramesRead*bpf); MA_COPY_MEMORY(pDst, pSrc, framesToCopy*bpf); pDevice->winmm.headerFramesConsumedCapture += framesToCopy; totalFramesRead += framesToCopy; /* If we've consumed the buffer entirely we need to add it back to the device. */ if (pDevice->winmm.headerFramesConsumedCapture == (pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwBufferLength/bpf)) { pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwUser = 1; /* 1 = locked. */ pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwFlags &= ~WHDR_DONE; /* <-- Need to make sure the WHDR_DONE flag is unset. */ /* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */ ResetEvent((HANDLE)pDevice->winmm.hEventCapture); /* The device will be started here. */ resultMM = ((MA_PFN_waveInAddBuffer)pDevice->pContext->winmm.waveInAddBuffer)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((LPWAVEHDR)pDevice->winmm.pWAVEHDRCapture)[pDevice->winmm.iNextHeaderCapture], sizeof(WAVEHDR)); if (resultMM != MMSYSERR_NOERROR) { result = ma_result_from_MMRESULT(resultMM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[WinMM] waveInAddBuffer() failed."); break; } /* Make sure we move to the next header. */ pDevice->winmm.iNextHeaderCapture = (pDevice->winmm.iNextHeaderCapture + 1) % pDevice->capture.internalPeriods; pDevice->winmm.headerFramesConsumedCapture = 0; } /* If at this point we have filled the entire input buffer we can return. */ MA_ASSERT(totalFramesRead <= frameCount); if (totalFramesRead == frameCount) { break; } /* Getting here means there's more to process. */ continue; } /* Getting here means there isn't enough any data left to send to the client which means we need to wait for more. */ if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventCapture, INFINITE) != WAIT_OBJECT_0) { result = MA_ERROR; break; } /* Something happened. If the next buffer has been marked as done we need to reset a bit of state. */ if ((pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwFlags & WHDR_DONE) != 0) { pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwUser = 0; /* 0 = unlocked (make it available for reading). */ pDevice->winmm.headerFramesConsumedCapture = 0; } /* If the device has been stopped we need to break. */ if (ma_device_get_state(pDevice) != ma_device_state_started) { break; } } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } return result; } static ma_result ma_context_uninit__winmm(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_winmm); ma_dlclose(pContext, pContext->winmm.hWinMM); return MA_SUCCESS; } static ma_result ma_context_init__winmm(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); (void)pConfig; pContext->winmm.hWinMM = ma_dlopen(pContext, "winmm.dll"); if (pContext->winmm.hWinMM == NULL) { return MA_NO_BACKEND; } pContext->winmm.waveOutGetNumDevs = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutGetNumDevs"); pContext->winmm.waveOutGetDevCapsA = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutGetDevCapsA"); pContext->winmm.waveOutOpen = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutOpen"); pContext->winmm.waveOutClose = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutClose"); pContext->winmm.waveOutPrepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutPrepareHeader"); pContext->winmm.waveOutUnprepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutUnprepareHeader"); pContext->winmm.waveOutWrite = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutWrite"); pContext->winmm.waveOutReset = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutReset"); pContext->winmm.waveInGetNumDevs = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInGetNumDevs"); pContext->winmm.waveInGetDevCapsA = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInGetDevCapsA"); pContext->winmm.waveInOpen = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInOpen"); pContext->winmm.waveInClose = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInClose"); pContext->winmm.waveInPrepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInPrepareHeader"); pContext->winmm.waveInUnprepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInUnprepareHeader"); pContext->winmm.waveInAddBuffer = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInAddBuffer"); pContext->winmm.waveInStart = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInStart"); pContext->winmm.waveInReset = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInReset"); pCallbacks->onContextInit = ma_context_init__winmm; pCallbacks->onContextUninit = ma_context_uninit__winmm; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__winmm; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__winmm; pCallbacks->onDeviceInit = ma_device_init__winmm; pCallbacks->onDeviceUninit = ma_device_uninit__winmm; pCallbacks->onDeviceStart = ma_device_start__winmm; pCallbacks->onDeviceStop = ma_device_stop__winmm; pCallbacks->onDeviceRead = ma_device_read__winmm; pCallbacks->onDeviceWrite = ma_device_write__winmm; pCallbacks->onDeviceDataLoop = NULL; /* This is a blocking read-write API, so this can be NULL since miniaudio will manage the audio thread for us. */ return MA_SUCCESS; } #endif /****************************************************************************** ALSA Backend ******************************************************************************/ #ifdef MA_HAS_ALSA #include /* poll(), struct pollfd */ #include /* eventfd() */ #ifdef MA_NO_RUNTIME_LINKING /* asoundlib.h marks some functions with "inline" which isn't always supported. Need to emulate it. */ #if !defined(__cplusplus) #if defined(__STRICT_ANSI__) #if !defined(inline) #define inline __inline__ __attribute__((always_inline)) #define MA_INLINE_DEFINED #endif #endif #endif #include #if defined(MA_INLINE_DEFINED) #undef inline #undef MA_INLINE_DEFINED #endif typedef snd_pcm_uframes_t ma_snd_pcm_uframes_t; typedef snd_pcm_sframes_t ma_snd_pcm_sframes_t; typedef snd_pcm_stream_t ma_snd_pcm_stream_t; typedef snd_pcm_format_t ma_snd_pcm_format_t; typedef snd_pcm_access_t ma_snd_pcm_access_t; typedef snd_pcm_t ma_snd_pcm_t; typedef snd_pcm_hw_params_t ma_snd_pcm_hw_params_t; typedef snd_pcm_sw_params_t ma_snd_pcm_sw_params_t; typedef snd_pcm_format_mask_t ma_snd_pcm_format_mask_t; typedef snd_pcm_info_t ma_snd_pcm_info_t; typedef snd_pcm_channel_area_t ma_snd_pcm_channel_area_t; typedef snd_pcm_chmap_t ma_snd_pcm_chmap_t; typedef snd_pcm_state_t ma_snd_pcm_state_t; /* snd_pcm_stream_t */ #define MA_SND_PCM_STREAM_PLAYBACK SND_PCM_STREAM_PLAYBACK #define MA_SND_PCM_STREAM_CAPTURE SND_PCM_STREAM_CAPTURE /* snd_pcm_format_t */ #define MA_SND_PCM_FORMAT_UNKNOWN SND_PCM_FORMAT_UNKNOWN #define MA_SND_PCM_FORMAT_U8 SND_PCM_FORMAT_U8 #define MA_SND_PCM_FORMAT_S16_LE SND_PCM_FORMAT_S16_LE #define MA_SND_PCM_FORMAT_S16_BE SND_PCM_FORMAT_S16_BE #define MA_SND_PCM_FORMAT_S24_LE SND_PCM_FORMAT_S24_LE #define MA_SND_PCM_FORMAT_S24_BE SND_PCM_FORMAT_S24_BE #define MA_SND_PCM_FORMAT_S32_LE SND_PCM_FORMAT_S32_LE #define MA_SND_PCM_FORMAT_S32_BE SND_PCM_FORMAT_S32_BE #define MA_SND_PCM_FORMAT_FLOAT_LE SND_PCM_FORMAT_FLOAT_LE #define MA_SND_PCM_FORMAT_FLOAT_BE SND_PCM_FORMAT_FLOAT_BE #define MA_SND_PCM_FORMAT_FLOAT64_LE SND_PCM_FORMAT_FLOAT64_LE #define MA_SND_PCM_FORMAT_FLOAT64_BE SND_PCM_FORMAT_FLOAT64_BE #define MA_SND_PCM_FORMAT_MU_LAW SND_PCM_FORMAT_MU_LAW #define MA_SND_PCM_FORMAT_A_LAW SND_PCM_FORMAT_A_LAW #define MA_SND_PCM_FORMAT_S24_3LE SND_PCM_FORMAT_S24_3LE #define MA_SND_PCM_FORMAT_S24_3BE SND_PCM_FORMAT_S24_3BE /* ma_snd_pcm_access_t */ #define MA_SND_PCM_ACCESS_MMAP_INTERLEAVED SND_PCM_ACCESS_MMAP_INTERLEAVED #define MA_SND_PCM_ACCESS_MMAP_NONINTERLEAVED SND_PCM_ACCESS_MMAP_NONINTERLEAVED #define MA_SND_PCM_ACCESS_MMAP_COMPLEX SND_PCM_ACCESS_MMAP_COMPLEX #define MA_SND_PCM_ACCESS_RW_INTERLEAVED SND_PCM_ACCESS_RW_INTERLEAVED #define MA_SND_PCM_ACCESS_RW_NONINTERLEAVED SND_PCM_ACCESS_RW_NONINTERLEAVED /* Channel positions. */ #define MA_SND_CHMAP_UNKNOWN SND_CHMAP_UNKNOWN #define MA_SND_CHMAP_NA SND_CHMAP_NA #define MA_SND_CHMAP_MONO SND_CHMAP_MONO #define MA_SND_CHMAP_FL SND_CHMAP_FL #define MA_SND_CHMAP_FR SND_CHMAP_FR #define MA_SND_CHMAP_RL SND_CHMAP_RL #define MA_SND_CHMAP_RR SND_CHMAP_RR #define MA_SND_CHMAP_FC SND_CHMAP_FC #define MA_SND_CHMAP_LFE SND_CHMAP_LFE #define MA_SND_CHMAP_SL SND_CHMAP_SL #define MA_SND_CHMAP_SR SND_CHMAP_SR #define MA_SND_CHMAP_RC SND_CHMAP_RC #define MA_SND_CHMAP_FLC SND_CHMAP_FLC #define MA_SND_CHMAP_FRC SND_CHMAP_FRC #define MA_SND_CHMAP_RLC SND_CHMAP_RLC #define MA_SND_CHMAP_RRC SND_CHMAP_RRC #define MA_SND_CHMAP_FLW SND_CHMAP_FLW #define MA_SND_CHMAP_FRW SND_CHMAP_FRW #define MA_SND_CHMAP_FLH SND_CHMAP_FLH #define MA_SND_CHMAP_FCH SND_CHMAP_FCH #define MA_SND_CHMAP_FRH SND_CHMAP_FRH #define MA_SND_CHMAP_TC SND_CHMAP_TC #define MA_SND_CHMAP_TFL SND_CHMAP_TFL #define MA_SND_CHMAP_TFR SND_CHMAP_TFR #define MA_SND_CHMAP_TFC SND_CHMAP_TFC #define MA_SND_CHMAP_TRL SND_CHMAP_TRL #define MA_SND_CHMAP_TRR SND_CHMAP_TRR #define MA_SND_CHMAP_TRC SND_CHMAP_TRC #define MA_SND_CHMAP_TFLC SND_CHMAP_TFLC #define MA_SND_CHMAP_TFRC SND_CHMAP_TFRC #define MA_SND_CHMAP_TSL SND_CHMAP_TSL #define MA_SND_CHMAP_TSR SND_CHMAP_TSR #define MA_SND_CHMAP_LLFE SND_CHMAP_LLFE #define MA_SND_CHMAP_RLFE SND_CHMAP_RLFE #define MA_SND_CHMAP_BC SND_CHMAP_BC #define MA_SND_CHMAP_BLC SND_CHMAP_BLC #define MA_SND_CHMAP_BRC SND_CHMAP_BRC /* Open mode flags. */ #define MA_SND_PCM_NO_AUTO_RESAMPLE SND_PCM_NO_AUTO_RESAMPLE #define MA_SND_PCM_NO_AUTO_CHANNELS SND_PCM_NO_AUTO_CHANNELS #define MA_SND_PCM_NO_AUTO_FORMAT SND_PCM_NO_AUTO_FORMAT #else #include /* For EPIPE, etc. */ typedef unsigned long ma_snd_pcm_uframes_t; typedef long ma_snd_pcm_sframes_t; typedef int ma_snd_pcm_stream_t; typedef int ma_snd_pcm_format_t; typedef int ma_snd_pcm_access_t; typedef int ma_snd_pcm_state_t; typedef struct ma_snd_pcm_t ma_snd_pcm_t; typedef struct ma_snd_pcm_hw_params_t ma_snd_pcm_hw_params_t; typedef struct ma_snd_pcm_sw_params_t ma_snd_pcm_sw_params_t; typedef struct ma_snd_pcm_format_mask_t ma_snd_pcm_format_mask_t; typedef struct ma_snd_pcm_info_t ma_snd_pcm_info_t; typedef struct { void* addr; unsigned int first; unsigned int step; } ma_snd_pcm_channel_area_t; typedef struct { unsigned int channels; unsigned int pos[1]; } ma_snd_pcm_chmap_t; /* snd_pcm_state_t */ #define MA_SND_PCM_STATE_OPEN 0 #define MA_SND_PCM_STATE_SETUP 1 #define MA_SND_PCM_STATE_PREPARED 2 #define MA_SND_PCM_STATE_RUNNING 3 #define MA_SND_PCM_STATE_XRUN 4 #define MA_SND_PCM_STATE_DRAINING 5 #define MA_SND_PCM_STATE_PAUSED 6 #define MA_SND_PCM_STATE_SUSPENDED 7 #define MA_SND_PCM_STATE_DISCONNECTED 8 /* snd_pcm_stream_t */ #define MA_SND_PCM_STREAM_PLAYBACK 0 #define MA_SND_PCM_STREAM_CAPTURE 1 /* snd_pcm_format_t */ #define MA_SND_PCM_FORMAT_UNKNOWN -1 #define MA_SND_PCM_FORMAT_U8 1 #define MA_SND_PCM_FORMAT_S16_LE 2 #define MA_SND_PCM_FORMAT_S16_BE 3 #define MA_SND_PCM_FORMAT_S24_LE 6 #define MA_SND_PCM_FORMAT_S24_BE 7 #define MA_SND_PCM_FORMAT_S32_LE 10 #define MA_SND_PCM_FORMAT_S32_BE 11 #define MA_SND_PCM_FORMAT_FLOAT_LE 14 #define MA_SND_PCM_FORMAT_FLOAT_BE 15 #define MA_SND_PCM_FORMAT_FLOAT64_LE 16 #define MA_SND_PCM_FORMAT_FLOAT64_BE 17 #define MA_SND_PCM_FORMAT_MU_LAW 20 #define MA_SND_PCM_FORMAT_A_LAW 21 #define MA_SND_PCM_FORMAT_S24_3LE 32 #define MA_SND_PCM_FORMAT_S24_3BE 33 /* snd_pcm_access_t */ #define MA_SND_PCM_ACCESS_MMAP_INTERLEAVED 0 #define MA_SND_PCM_ACCESS_MMAP_NONINTERLEAVED 1 #define MA_SND_PCM_ACCESS_MMAP_COMPLEX 2 #define MA_SND_PCM_ACCESS_RW_INTERLEAVED 3 #define MA_SND_PCM_ACCESS_RW_NONINTERLEAVED 4 /* Channel positions. */ #define MA_SND_CHMAP_UNKNOWN 0 #define MA_SND_CHMAP_NA 1 #define MA_SND_CHMAP_MONO 2 #define MA_SND_CHMAP_FL 3 #define MA_SND_CHMAP_FR 4 #define MA_SND_CHMAP_RL 5 #define MA_SND_CHMAP_RR 6 #define MA_SND_CHMAP_FC 7 #define MA_SND_CHMAP_LFE 8 #define MA_SND_CHMAP_SL 9 #define MA_SND_CHMAP_SR 10 #define MA_SND_CHMAP_RC 11 #define MA_SND_CHMAP_FLC 12 #define MA_SND_CHMAP_FRC 13 #define MA_SND_CHMAP_RLC 14 #define MA_SND_CHMAP_RRC 15 #define MA_SND_CHMAP_FLW 16 #define MA_SND_CHMAP_FRW 17 #define MA_SND_CHMAP_FLH 18 #define MA_SND_CHMAP_FCH 19 #define MA_SND_CHMAP_FRH 20 #define MA_SND_CHMAP_TC 21 #define MA_SND_CHMAP_TFL 22 #define MA_SND_CHMAP_TFR 23 #define MA_SND_CHMAP_TFC 24 #define MA_SND_CHMAP_TRL 25 #define MA_SND_CHMAP_TRR 26 #define MA_SND_CHMAP_TRC 27 #define MA_SND_CHMAP_TFLC 28 #define MA_SND_CHMAP_TFRC 29 #define MA_SND_CHMAP_TSL 30 #define MA_SND_CHMAP_TSR 31 #define MA_SND_CHMAP_LLFE 32 #define MA_SND_CHMAP_RLFE 33 #define MA_SND_CHMAP_BC 34 #define MA_SND_CHMAP_BLC 35 #define MA_SND_CHMAP_BRC 36 /* Open mode flags. */ #define MA_SND_PCM_NO_AUTO_RESAMPLE 0x00010000 #define MA_SND_PCM_NO_AUTO_CHANNELS 0x00020000 #define MA_SND_PCM_NO_AUTO_FORMAT 0x00040000 #endif typedef int (* ma_snd_pcm_open_proc) (ma_snd_pcm_t **pcm, const char *name, ma_snd_pcm_stream_t stream, int mode); typedef int (* ma_snd_pcm_close_proc) (ma_snd_pcm_t *pcm); typedef size_t (* ma_snd_pcm_hw_params_sizeof_proc) (void); typedef int (* ma_snd_pcm_hw_params_any_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params); typedef int (* ma_snd_pcm_hw_params_set_format_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t val); typedef int (* ma_snd_pcm_hw_params_set_format_first_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t *format); typedef void (* ma_snd_pcm_hw_params_get_format_mask_proc) (ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_mask_t *mask); typedef int (* ma_snd_pcm_hw_params_set_channels_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int val); typedef int (* ma_snd_pcm_hw_params_set_channels_near_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *val); typedef int (* ma_snd_pcm_hw_params_set_channels_minmax_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *minimum, unsigned int *maximum); typedef int (* ma_snd_pcm_hw_params_set_rate_resample_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int val); typedef int (* ma_snd_pcm_hw_params_set_rate_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int val, int dir); typedef int (* ma_snd_pcm_hw_params_set_rate_near_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *val, int *dir); typedef int (* ma_snd_pcm_hw_params_set_buffer_size_near_proc)(ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_uframes_t *val); typedef int (* ma_snd_pcm_hw_params_set_periods_near_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *val, int *dir); typedef int (* ma_snd_pcm_hw_params_set_access_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_access_t _access); typedef int (* ma_snd_pcm_hw_params_get_format_proc) (const ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t *format); typedef int (* ma_snd_pcm_hw_params_get_channels_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val); typedef int (* ma_snd_pcm_hw_params_get_channels_min_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val); typedef int (* ma_snd_pcm_hw_params_get_channels_max_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val); typedef int (* ma_snd_pcm_hw_params_get_rate_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *rate, int *dir); typedef int (* ma_snd_pcm_hw_params_get_rate_min_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *rate, int *dir); typedef int (* ma_snd_pcm_hw_params_get_rate_max_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *rate, int *dir); typedef int (* ma_snd_pcm_hw_params_get_buffer_size_proc) (const ma_snd_pcm_hw_params_t *params, ma_snd_pcm_uframes_t *val); typedef int (* ma_snd_pcm_hw_params_get_periods_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val, int *dir); typedef int (* ma_snd_pcm_hw_params_get_access_proc) (const ma_snd_pcm_hw_params_t *params, ma_snd_pcm_access_t *_access); typedef int (* ma_snd_pcm_hw_params_test_format_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t val); typedef int (* ma_snd_pcm_hw_params_test_channels_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int val); typedef int (* ma_snd_pcm_hw_params_test_rate_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int val, int dir); typedef int (* ma_snd_pcm_hw_params_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params); typedef size_t (* ma_snd_pcm_sw_params_sizeof_proc) (void); typedef int (* ma_snd_pcm_sw_params_current_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params); typedef int (* ma_snd_pcm_sw_params_get_boundary_proc) (const ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t* val); typedef int (* ma_snd_pcm_sw_params_set_avail_min_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val); typedef int (* ma_snd_pcm_sw_params_set_start_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val); typedef int (* ma_snd_pcm_sw_params_set_stop_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val); typedef int (* ma_snd_pcm_sw_params_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params); typedef size_t (* ma_snd_pcm_format_mask_sizeof_proc) (void); typedef int (* ma_snd_pcm_format_mask_test_proc) (const ma_snd_pcm_format_mask_t *mask, ma_snd_pcm_format_t val); typedef ma_snd_pcm_chmap_t * (* ma_snd_pcm_get_chmap_proc) (ma_snd_pcm_t *pcm); typedef ma_snd_pcm_state_t (* ma_snd_pcm_state_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_prepare_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_start_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_drop_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_drain_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_reset_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_device_name_hint_proc) (int card, const char *iface, void ***hints); typedef char * (* ma_snd_device_name_get_hint_proc) (const void *hint, const char *id); typedef int (* ma_snd_card_get_index_proc) (const char *name); typedef int (* ma_snd_device_name_free_hint_proc) (void **hints); typedef int (* ma_snd_pcm_mmap_begin_proc) (ma_snd_pcm_t *pcm, const ma_snd_pcm_channel_area_t **areas, ma_snd_pcm_uframes_t *offset, ma_snd_pcm_uframes_t *frames); typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_mmap_commit_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_uframes_t offset, ma_snd_pcm_uframes_t frames); typedef int (* ma_snd_pcm_recover_proc) (ma_snd_pcm_t *pcm, int err, int silent); typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_readi_proc) (ma_snd_pcm_t *pcm, void *buffer, ma_snd_pcm_uframes_t size); typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_writei_proc) (ma_snd_pcm_t *pcm, const void *buffer, ma_snd_pcm_uframes_t size); typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_proc) (ma_snd_pcm_t *pcm); typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_update_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_wait_proc) (ma_snd_pcm_t *pcm, int timeout); typedef int (* ma_snd_pcm_nonblock_proc) (ma_snd_pcm_t *pcm, int nonblock); typedef int (* ma_snd_pcm_info_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_info_t* info); typedef size_t (* ma_snd_pcm_info_sizeof_proc) (void); typedef const char* (* ma_snd_pcm_info_get_name_proc) (const ma_snd_pcm_info_t* info); typedef int (* ma_snd_pcm_poll_descriptors_proc) (ma_snd_pcm_t *pcm, struct pollfd *pfds, unsigned int space); typedef int (* ma_snd_pcm_poll_descriptors_count_proc) (ma_snd_pcm_t *pcm); typedef int (* ma_snd_pcm_poll_descriptors_revents_proc) (ma_snd_pcm_t *pcm, struct pollfd *pfds, unsigned int nfds, unsigned short *revents); typedef int (* ma_snd_config_update_free_global_proc) (void); /* This array specifies each of the common devices that can be used for both playback and capture. */ static const char* g_maCommonDeviceNamesALSA[] = { "default", "null", "pulse", "jack" }; /* This array allows us to blacklist specific playback devices. */ static const char* g_maBlacklistedPlaybackDeviceNamesALSA[] = { "" }; /* This array allows us to blacklist specific capture devices. */ static const char* g_maBlacklistedCaptureDeviceNamesALSA[] = { "" }; static ma_snd_pcm_format_t ma_convert_ma_format_to_alsa_format(ma_format format) { ma_snd_pcm_format_t ALSAFormats[] = { MA_SND_PCM_FORMAT_UNKNOWN, /* ma_format_unknown */ MA_SND_PCM_FORMAT_U8, /* ma_format_u8 */ MA_SND_PCM_FORMAT_S16_LE, /* ma_format_s16 */ MA_SND_PCM_FORMAT_S24_3LE, /* ma_format_s24 */ MA_SND_PCM_FORMAT_S32_LE, /* ma_format_s32 */ MA_SND_PCM_FORMAT_FLOAT_LE /* ma_format_f32 */ }; if (ma_is_big_endian()) { ALSAFormats[0] = MA_SND_PCM_FORMAT_UNKNOWN; ALSAFormats[1] = MA_SND_PCM_FORMAT_U8; ALSAFormats[2] = MA_SND_PCM_FORMAT_S16_BE; ALSAFormats[3] = MA_SND_PCM_FORMAT_S24_3BE; ALSAFormats[4] = MA_SND_PCM_FORMAT_S32_BE; ALSAFormats[5] = MA_SND_PCM_FORMAT_FLOAT_BE; } return ALSAFormats[format]; } static ma_format ma_format_from_alsa(ma_snd_pcm_format_t formatALSA) { if (ma_is_little_endian()) { switch (formatALSA) { case MA_SND_PCM_FORMAT_S16_LE: return ma_format_s16; case MA_SND_PCM_FORMAT_S24_3LE: return ma_format_s24; case MA_SND_PCM_FORMAT_S32_LE: return ma_format_s32; case MA_SND_PCM_FORMAT_FLOAT_LE: return ma_format_f32; default: break; } } else { switch (formatALSA) { case MA_SND_PCM_FORMAT_S16_BE: return ma_format_s16; case MA_SND_PCM_FORMAT_S24_3BE: return ma_format_s24; case MA_SND_PCM_FORMAT_S32_BE: return ma_format_s32; case MA_SND_PCM_FORMAT_FLOAT_BE: return ma_format_f32; default: break; } } /* Endian agnostic. */ switch (formatALSA) { case MA_SND_PCM_FORMAT_U8: return ma_format_u8; default: return ma_format_unknown; } } static ma_channel ma_convert_alsa_channel_position_to_ma_channel(unsigned int alsaChannelPos) { switch (alsaChannelPos) { case MA_SND_CHMAP_MONO: return MA_CHANNEL_MONO; case MA_SND_CHMAP_FL: return MA_CHANNEL_FRONT_LEFT; case MA_SND_CHMAP_FR: return MA_CHANNEL_FRONT_RIGHT; case MA_SND_CHMAP_RL: return MA_CHANNEL_BACK_LEFT; case MA_SND_CHMAP_RR: return MA_CHANNEL_BACK_RIGHT; case MA_SND_CHMAP_FC: return MA_CHANNEL_FRONT_CENTER; case MA_SND_CHMAP_LFE: return MA_CHANNEL_LFE; case MA_SND_CHMAP_SL: return MA_CHANNEL_SIDE_LEFT; case MA_SND_CHMAP_SR: return MA_CHANNEL_SIDE_RIGHT; case MA_SND_CHMAP_RC: return MA_CHANNEL_BACK_CENTER; case MA_SND_CHMAP_FLC: return MA_CHANNEL_FRONT_LEFT_CENTER; case MA_SND_CHMAP_FRC: return MA_CHANNEL_FRONT_RIGHT_CENTER; case MA_SND_CHMAP_RLC: return 0; case MA_SND_CHMAP_RRC: return 0; case MA_SND_CHMAP_FLW: return 0; case MA_SND_CHMAP_FRW: return 0; case MA_SND_CHMAP_FLH: return 0; case MA_SND_CHMAP_FCH: return 0; case MA_SND_CHMAP_FRH: return 0; case MA_SND_CHMAP_TC: return MA_CHANNEL_TOP_CENTER; case MA_SND_CHMAP_TFL: return MA_CHANNEL_TOP_FRONT_LEFT; case MA_SND_CHMAP_TFR: return MA_CHANNEL_TOP_FRONT_RIGHT; case MA_SND_CHMAP_TFC: return MA_CHANNEL_TOP_FRONT_CENTER; case MA_SND_CHMAP_TRL: return MA_CHANNEL_TOP_BACK_LEFT; case MA_SND_CHMAP_TRR: return MA_CHANNEL_TOP_BACK_RIGHT; case MA_SND_CHMAP_TRC: return MA_CHANNEL_TOP_BACK_CENTER; default: break; } return 0; } static ma_bool32 ma_is_common_device_name__alsa(const char* name) { size_t iName; for (iName = 0; iName < ma_countof(g_maCommonDeviceNamesALSA); ++iName) { if (ma_strcmp(name, g_maCommonDeviceNamesALSA[iName]) == 0) { return MA_TRUE; } } return MA_FALSE; } static ma_bool32 ma_is_playback_device_blacklisted__alsa(const char* name) { size_t iName; for (iName = 0; iName < ma_countof(g_maBlacklistedPlaybackDeviceNamesALSA); ++iName) { if (ma_strcmp(name, g_maBlacklistedPlaybackDeviceNamesALSA[iName]) == 0) { return MA_TRUE; } } return MA_FALSE; } static ma_bool32 ma_is_capture_device_blacklisted__alsa(const char* name) { size_t iName; for (iName = 0; iName < ma_countof(g_maBlacklistedCaptureDeviceNamesALSA); ++iName) { if (ma_strcmp(name, g_maBlacklistedCaptureDeviceNamesALSA[iName]) == 0) { return MA_TRUE; } } return MA_FALSE; } static ma_bool32 ma_is_device_blacklisted__alsa(ma_device_type deviceType, const char* name) { if (deviceType == ma_device_type_playback) { return ma_is_playback_device_blacklisted__alsa(name); } else { return ma_is_capture_device_blacklisted__alsa(name); } } static const char* ma_find_char(const char* str, char c, int* index) { int i = 0; for (;;) { if (str[i] == '\0') { if (index) *index = -1; return NULL; } if (str[i] == c) { if (index) *index = i; return str + i; } i += 1; } /* Should never get here, but treat it as though the character was not found to make me feel better inside. */ if (index) *index = -1; return NULL; } static ma_bool32 ma_is_device_name_in_hw_format__alsa(const char* hwid) { /* This function is just checking whether or not hwid is in "hw:%d,%d" format. */ int commaPos; const char* dev; int i; if (hwid == NULL) { return MA_FALSE; } if (hwid[0] != 'h' || hwid[1] != 'w' || hwid[2] != ':') { return MA_FALSE; } hwid += 3; dev = ma_find_char(hwid, ',', &commaPos); if (dev == NULL) { return MA_FALSE; } else { dev += 1; /* Skip past the ",". */ } /* Check if the part between the ":" and the "," contains only numbers. If not, return false. */ for (i = 0; i < commaPos; ++i) { if (hwid[i] < '0' || hwid[i] > '9') { return MA_FALSE; } } /* Check if everything after the "," is numeric. If not, return false. */ i = 0; while (dev[i] != '\0') { if (dev[i] < '0' || dev[i] > '9') { return MA_FALSE; } i += 1; } return MA_TRUE; } static int ma_convert_device_name_to_hw_format__alsa(ma_context* pContext, char* dst, size_t dstSize, const char* src) /* Returns 0 on success, non-0 on error. */ { /* src should look something like this: "hw:CARD=I82801AAICH,DEV=0" */ int colonPos; int commaPos; char card[256]; const char* dev; int cardIndex; if (dst == NULL) { return -1; } if (dstSize < 7) { return -1; /* Absolute minimum size of the output buffer is 7 bytes. */ } *dst = '\0'; /* Safety. */ if (src == NULL) { return -1; } /* If the input name is already in "hw:%d,%d" format, just return that verbatim. */ if (ma_is_device_name_in_hw_format__alsa(src)) { return ma_strcpy_s(dst, dstSize, src); } src = ma_find_char(src, ':', &colonPos); if (src == NULL) { return -1; /* Couldn't find a colon */ } dev = ma_find_char(src, ',', &commaPos); if (dev == NULL) { dev = "0"; ma_strncpy_s(card, sizeof(card), src+6, (size_t)-1); /* +6 = ":CARD=" */ } else { dev = dev + 5; /* +5 = ",DEV=" */ ma_strncpy_s(card, sizeof(card), src+6, commaPos-6); /* +6 = ":CARD=" */ } cardIndex = ((ma_snd_card_get_index_proc)pContext->alsa.snd_card_get_index)(card); if (cardIndex < 0) { return -2; /* Failed to retrieve the card index. */ } /* Construction. */ dst[0] = 'h'; dst[1] = 'w'; dst[2] = ':'; if (ma_itoa_s(cardIndex, dst+3, dstSize-3, 10) != 0) { return -3; } if (ma_strcat_s(dst, dstSize, ",") != 0) { return -3; } if (ma_strcat_s(dst, dstSize, dev) != 0) { return -3; } return 0; } static ma_bool32 ma_does_id_exist_in_list__alsa(ma_device_id* pUniqueIDs, ma_uint32 count, const char* pHWID) { ma_uint32 i; MA_ASSERT(pHWID != NULL); for (i = 0; i < count; ++i) { if (ma_strcmp(pUniqueIDs[i].alsa, pHWID) == 0) { return MA_TRUE; } } return MA_FALSE; } static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMode, ma_device_type deviceType, const ma_device_id* pDeviceID, int openMode, ma_snd_pcm_t** ppPCM) { ma_snd_pcm_t* pPCM; ma_snd_pcm_stream_t stream; MA_ASSERT(pContext != NULL); MA_ASSERT(ppPCM != NULL); *ppPCM = NULL; pPCM = NULL; stream = (deviceType == ma_device_type_playback) ? MA_SND_PCM_STREAM_PLAYBACK : MA_SND_PCM_STREAM_CAPTURE; if (pDeviceID == NULL) { ma_bool32 isDeviceOpen; size_t i; /* We're opening the default device. I don't know if trying anything other than "default" is necessary, but it makes me feel better to try as hard as we can get to get _something_ working. */ const char* defaultDeviceNames[] = { "default", NULL, NULL, NULL, NULL, NULL, NULL }; if (shareMode == ma_share_mode_exclusive) { defaultDeviceNames[1] = "hw"; defaultDeviceNames[2] = "hw:0"; defaultDeviceNames[3] = "hw:0,0"; } else { if (deviceType == ma_device_type_playback) { defaultDeviceNames[1] = "dmix"; defaultDeviceNames[2] = "dmix:0"; defaultDeviceNames[3] = "dmix:0,0"; } else { defaultDeviceNames[1] = "dsnoop"; defaultDeviceNames[2] = "dsnoop:0"; defaultDeviceNames[3] = "dsnoop:0,0"; } defaultDeviceNames[4] = "hw"; defaultDeviceNames[5] = "hw:0"; defaultDeviceNames[6] = "hw:0,0"; } isDeviceOpen = MA_FALSE; for (i = 0; i < ma_countof(defaultDeviceNames); ++i) { if (defaultDeviceNames[i] != NULL && defaultDeviceNames[i][0] != '\0') { if (((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, defaultDeviceNames[i], stream, openMode) == 0) { isDeviceOpen = MA_TRUE; break; } } } if (!isDeviceOpen) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_open() failed when trying to open an appropriate default device."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } } else { /* We're trying to open a specific device. There's a few things to consider here: miniaudio recongnizes a special format of device id that excludes the "hw", "dmix", etc. prefix. It looks like this: ":0,0", ":0,1", etc. When an ID of this format is specified, it indicates to miniaudio that it can try different combinations of plugins ("hw", "dmix", etc.) until it finds an appropriate one that works. This comes in very handy when trying to open a device in shared mode ("dmix"), vs exclusive mode ("hw"). */ /* May end up needing to make small adjustments to the ID, so make a copy. */ ma_device_id deviceID = *pDeviceID; int resultALSA = -ENODEV; if (deviceID.alsa[0] != ':') { /* The ID is not in ":0,0" format. Use the ID exactly as-is. */ resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, deviceID.alsa, stream, openMode); } else { char hwid[256]; /* The ID is in ":0,0" format. Try different plugins depending on the shared mode. */ if (deviceID.alsa[1] == '\0') { deviceID.alsa[0] = '\0'; /* An ID of ":" should be converted to "". */ } if (shareMode == ma_share_mode_shared) { if (deviceType == ma_device_type_playback) { ma_strcpy_s(hwid, sizeof(hwid), "dmix"); } else { ma_strcpy_s(hwid, sizeof(hwid), "dsnoop"); } if (ma_strcat_s(hwid, sizeof(hwid), deviceID.alsa) == 0) { resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode); } } /* If at this point we still don't have an open device it means we're either preferencing exclusive mode or opening with "dmix"/"dsnoop" failed. */ if (resultALSA != 0) { ma_strcpy_s(hwid, sizeof(hwid), "hw"); if (ma_strcat_s(hwid, sizeof(hwid), deviceID.alsa) == 0) { resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode); } } } if (resultALSA < 0) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_open() failed."); return ma_result_from_errno(-resultALSA); } } *ppPCM = pPCM; return MA_SUCCESS; } static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { int resultALSA; ma_bool32 cbResult = MA_TRUE; char** ppDeviceHints; ma_device_id* pUniqueIDs = NULL; ma_uint32 uniqueIDCount = 0; char** ppNextDeviceHint; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); ma_mutex_lock(&pContext->alsa.internalDeviceEnumLock); resultALSA = ((ma_snd_device_name_hint_proc)pContext->alsa.snd_device_name_hint)(-1, "pcm", (void***)&ppDeviceHints); if (resultALSA < 0) { ma_mutex_unlock(&pContext->alsa.internalDeviceEnumLock); return ma_result_from_errno(-resultALSA); } ppNextDeviceHint = ppDeviceHints; while (*ppNextDeviceHint != NULL) { char* NAME = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "NAME"); char* DESC = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "DESC"); char* IOID = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "IOID"); ma_device_type deviceType = ma_device_type_playback; ma_bool32 stopEnumeration = MA_FALSE; char hwid[sizeof(pUniqueIDs->alsa)]; ma_device_info deviceInfo; if ((IOID == NULL || ma_strcmp(IOID, "Output") == 0)) { deviceType = ma_device_type_playback; } if ((IOID != NULL && ma_strcmp(IOID, "Input" ) == 0)) { deviceType = ma_device_type_capture; } if (NAME != NULL) { if (pContext->alsa.useVerboseDeviceEnumeration) { /* Verbose mode. Use the name exactly as-is. */ ma_strncpy_s(hwid, sizeof(hwid), NAME, (size_t)-1); } else { /* Simplified mode. Use ":%d,%d" format. */ if (ma_convert_device_name_to_hw_format__alsa(pContext, hwid, sizeof(hwid), NAME) == 0) { /* At this point, hwid looks like "hw:0,0". In simplified enumeration mode, we actually want to strip off the plugin name so it looks like ":0,0". The reason for this is that this special format is detected at device initialization time and is used as an indicator to try and use the most appropriate plugin depending on the device type and sharing mode. */ char* dst = hwid; char* src = hwid+2; while ((*dst++ = *src++)); } else { /* Conversion to "hw:%d,%d" failed. Just use the name as-is. */ ma_strncpy_s(hwid, sizeof(hwid), NAME, (size_t)-1); } if (ma_does_id_exist_in_list__alsa(pUniqueIDs, uniqueIDCount, hwid)) { goto next_device; /* The device has already been enumerated. Move on to the next one. */ } else { /* The device has not yet been enumerated. Make sure it's added to our list so that it's not enumerated again. */ size_t newCapacity = sizeof(*pUniqueIDs) * (uniqueIDCount + 1); ma_device_id* pNewUniqueIDs = (ma_device_id*)ma_realloc(pUniqueIDs, newCapacity, &pContext->allocationCallbacks); if (pNewUniqueIDs == NULL) { goto next_device; /* Failed to allocate memory. */ } pUniqueIDs = pNewUniqueIDs; MA_COPY_MEMORY(pUniqueIDs[uniqueIDCount].alsa, hwid, sizeof(hwid)); uniqueIDCount += 1; } } } else { MA_ZERO_MEMORY(hwid, sizeof(hwid)); } MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.id.alsa, sizeof(deviceInfo.id.alsa), hwid, (size_t)-1); /* There's no good way to determine whether or not a device is the default on Linux. We're just going to do something simple and just use the name of "default" as the indicator. */ if (ma_strcmp(deviceInfo.id.alsa, "default") == 0) { deviceInfo.isDefault = MA_TRUE; } /* DESC is the friendly name. We treat this slightly differently depending on whether or not we are using verbose device enumeration. In verbose mode we want to take the entire description so that the end-user can distinguish between the subdevices of each card/dev pair. In simplified mode, however, we only want the first part of the description. The value in DESC seems to be split into two lines, with the first line being the name of the device and the second line being a description of the device. I don't like having the description be across two lines because it makes formatting ugly and annoying. I'm therefore deciding to put it all on a single line with the second line being put into parentheses. In simplified mode I'm just stripping the second line entirely. */ if (DESC != NULL) { int lfPos; const char* line2 = ma_find_char(DESC, '\n', &lfPos); if (line2 != NULL) { line2 += 1; /* Skip past the new-line character. */ if (pContext->alsa.useVerboseDeviceEnumeration) { /* Verbose mode. Put the second line in brackets. */ ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), DESC, lfPos); ma_strcat_s (deviceInfo.name, sizeof(deviceInfo.name), " ("); ma_strcat_s (deviceInfo.name, sizeof(deviceInfo.name), line2); ma_strcat_s (deviceInfo.name, sizeof(deviceInfo.name), ")"); } else { /* Simplified mode. Strip the second line entirely. */ ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), DESC, lfPos); } } else { /* There's no second line. Just copy the whole description. */ ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), DESC, (size_t)-1); } } if (!ma_is_device_blacklisted__alsa(deviceType, NAME)) { cbResult = callback(pContext, deviceType, &deviceInfo, pUserData); } /* Some devices are both playback and capture, but they are only enumerated by ALSA once. We need to fire the callback again for the other device type in this case. We do this for known devices and where the IOID hint is NULL, which means both Input and Output. */ if (cbResult) { if (ma_is_common_device_name__alsa(NAME) || IOID == NULL) { if (deviceType == ma_device_type_playback) { if (!ma_is_capture_device_blacklisted__alsa(NAME)) { cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } } else { if (!ma_is_playback_device_blacklisted__alsa(NAME)) { cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } } } } if (cbResult == MA_FALSE) { stopEnumeration = MA_TRUE; } next_device: free(NAME); free(DESC); free(IOID); ppNextDeviceHint += 1; /* We need to stop enumeration if the callback returned false. */ if (stopEnumeration) { break; } } ma_free(pUniqueIDs, &pContext->allocationCallbacks); ((ma_snd_device_name_free_hint_proc)pContext->alsa.snd_device_name_free_hint)((void**)ppDeviceHints); ma_mutex_unlock(&pContext->alsa.internalDeviceEnumLock); return MA_SUCCESS; } typedef struct { ma_device_type deviceType; const ma_device_id* pDeviceID; ma_share_mode shareMode; ma_device_info* pDeviceInfo; ma_bool32 foundDevice; } ma_context_get_device_info_enum_callback_data__alsa; static ma_bool32 ma_context_get_device_info_enum_callback__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData) { ma_context_get_device_info_enum_callback_data__alsa* pData = (ma_context_get_device_info_enum_callback_data__alsa*)pUserData; MA_ASSERT(pData != NULL); (void)pContext; if (pData->pDeviceID == NULL && ma_strcmp(pDeviceInfo->id.alsa, "default") == 0) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1); pData->foundDevice = MA_TRUE; } else { if (pData->deviceType == deviceType && (pData->pDeviceID != NULL && ma_strcmp(pData->pDeviceID->alsa, pDeviceInfo->id.alsa) == 0)) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1); pData->foundDevice = MA_TRUE; } } /* Keep enumerating until we have found the device. */ return !pData->foundDevice; } static void ma_context_test_rate_and_add_native_data_format__alsa(ma_context* pContext, ma_snd_pcm_t* pPCM, ma_snd_pcm_hw_params_t* pHWParams, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 flags, ma_device_info* pDeviceInfo) { MA_ASSERT(pPCM != NULL); MA_ASSERT(pHWParams != NULL); MA_ASSERT(pDeviceInfo != NULL); if (pDeviceInfo->nativeDataFormatCount < ma_countof(pDeviceInfo->nativeDataFormats) && ((ma_snd_pcm_hw_params_test_rate_proc)pContext->alsa.snd_pcm_hw_params_test_rate)(pPCM, pHWParams, sampleRate, 0) == 0) { pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = format; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = sampleRate; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = flags; pDeviceInfo->nativeDataFormatCount += 1; } } static void ma_context_iterate_rates_and_add_native_data_format__alsa(ma_context* pContext, ma_snd_pcm_t* pPCM, ma_snd_pcm_hw_params_t* pHWParams, ma_format format, ma_uint32 channels, ma_uint32 flags, ma_device_info* pDeviceInfo) { ma_uint32 iSampleRate; unsigned int minSampleRate; unsigned int maxSampleRate; int sampleRateDir; /* Not used. Just passed into snd_pcm_hw_params_get_rate_min/max(). */ /* There could be a range. */ ((ma_snd_pcm_hw_params_get_rate_min_proc)pContext->alsa.snd_pcm_hw_params_get_rate_min)(pHWParams, &minSampleRate, &sampleRateDir); ((ma_snd_pcm_hw_params_get_rate_max_proc)pContext->alsa.snd_pcm_hw_params_get_rate_max)(pHWParams, &maxSampleRate, &sampleRateDir); /* Make sure our sample rates are clamped to sane values. Stupid devices like "pulse" will reports rates like "1" which is ridiculus. */ minSampleRate = ma_clamp(minSampleRate, (unsigned int)ma_standard_sample_rate_min, (unsigned int)ma_standard_sample_rate_max); maxSampleRate = ma_clamp(maxSampleRate, (unsigned int)ma_standard_sample_rate_min, (unsigned int)ma_standard_sample_rate_max); for (iSampleRate = 0; iSampleRate < ma_countof(g_maStandardSampleRatePriorities); iSampleRate += 1) { ma_uint32 standardSampleRate = g_maStandardSampleRatePriorities[iSampleRate]; if (standardSampleRate >= minSampleRate && standardSampleRate <= maxSampleRate) { ma_context_test_rate_and_add_native_data_format__alsa(pContext, pPCM, pHWParams, format, channels, standardSampleRate, flags, pDeviceInfo); } } /* Now make sure our min and max rates are included just in case they aren't in the range of our standard rates. */ if (!ma_is_standard_sample_rate(minSampleRate)) { ma_context_test_rate_and_add_native_data_format__alsa(pContext, pPCM, pHWParams, format, channels, minSampleRate, flags, pDeviceInfo); } if (!ma_is_standard_sample_rate(maxSampleRate) && maxSampleRate != minSampleRate) { ma_context_test_rate_and_add_native_data_format__alsa(pContext, pPCM, pHWParams, format, channels, maxSampleRate, flags, pDeviceInfo); } } static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_context_get_device_info_enum_callback_data__alsa data; ma_result result; int resultALSA; ma_snd_pcm_t* pPCM; ma_snd_pcm_hw_params_t* pHWParams; ma_uint32 iFormat; ma_uint32 iChannel; MA_ASSERT(pContext != NULL); /* We just enumerate to find basic information about the device. */ data.deviceType = deviceType; data.pDeviceID = pDeviceID; data.pDeviceInfo = pDeviceInfo; data.foundDevice = MA_FALSE; result = ma_context_enumerate_devices__alsa(pContext, ma_context_get_device_info_enum_callback__alsa, &data); if (result != MA_SUCCESS) { return result; } if (!data.foundDevice) { return MA_NO_DEVICE; } if (ma_strcmp(pDeviceInfo->id.alsa, "default") == 0) { pDeviceInfo->isDefault = MA_TRUE; } /* For detailed info we need to open the device. */ result = ma_context_open_pcm__alsa(pContext, ma_share_mode_shared, deviceType, pDeviceID, 0, &pPCM); if (result != MA_SUCCESS) { return result; } /* We need to initialize a HW parameters object in order to know what formats are supported. */ pHWParams = (ma_snd_pcm_hw_params_t*)ma_calloc(((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)(), &pContext->allocationCallbacks); if (pHWParams == NULL) { ((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM); return MA_OUT_OF_MEMORY; } resultALSA = ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams); if (resultALSA < 0) { ma_free(pHWParams, &pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed."); return ma_result_from_errno(-resultALSA); } /* Some ALSA devices can support many permutations of formats, channels and rates. We only support a fixed number of permutations which means we need to employ some strategies to ensure the best combinations are returned. An example is the "pulse" device which can do it's own data conversion in software and as a result can support any combination of format, channels and rate. We want to ensure the the first data formats are the best. We have a list of favored sample formats and sample rates, so these will be the basis of our iteration. */ /* Formats. We just iterate over our standard formats and test them, making sure we reset the configuration space each iteration. */ for (iFormat = 0; iFormat < ma_countof(g_maFormatPriorities); iFormat += 1) { ma_format format = g_maFormatPriorities[iFormat]; /* For each format we need to make sure we reset the configuration space so we don't return channel counts and rates that aren't compatible with a format. */ ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams); /* Test the format first. If this fails it means the format is not supported and we can skip it. */ if (((ma_snd_pcm_hw_params_test_format_proc)pContext->alsa.snd_pcm_hw_params_test_format)(pPCM, pHWParams, ma_convert_ma_format_to_alsa_format(format)) == 0) { /* The format is supported. */ unsigned int minChannels; unsigned int maxChannels; /* The configuration space needs to be restricted to this format so we can get an accurate picture of which sample rates and channel counts are support with this format. */ ((ma_snd_pcm_hw_params_set_format_proc)pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, ma_convert_ma_format_to_alsa_format(format)); /* Now we need to check for supported channels. */ ((ma_snd_pcm_hw_params_get_channels_min_proc)pContext->alsa.snd_pcm_hw_params_get_channels_min)(pHWParams, &minChannels); ((ma_snd_pcm_hw_params_get_channels_max_proc)pContext->alsa.snd_pcm_hw_params_get_channels_max)(pHWParams, &maxChannels); if (minChannels > MA_MAX_CHANNELS) { continue; /* Too many channels. */ } if (maxChannels < MA_MIN_CHANNELS) { continue; /* Not enough channels. */ } /* Make sure the channel count is clamped. This is mainly intended for the max channels because some devices can report an unbound maximum. */ minChannels = ma_clamp(minChannels, MA_MIN_CHANNELS, MA_MAX_CHANNELS); maxChannels = ma_clamp(maxChannels, MA_MIN_CHANNELS, MA_MAX_CHANNELS); if (minChannels == MA_MIN_CHANNELS && maxChannels == MA_MAX_CHANNELS) { /* The device supports all channels. Don't iterate over every single one. Instead just set the channels to 0 which means all channels are supported. */ ma_context_iterate_rates_and_add_native_data_format__alsa(pContext, pPCM, pHWParams, format, 0, 0, pDeviceInfo); /* Intentionally setting the channel count to 0 as that means all channels are supported. */ } else { /* The device only supports a specific set of channels. We need to iterate over all of them. */ for (iChannel = minChannels; iChannel <= maxChannels; iChannel += 1) { /* Test the channel before applying it to the configuration space. */ unsigned int channels = iChannel; /* Make sure our channel range is reset before testing again or else we'll always fail the test. */ ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams); ((ma_snd_pcm_hw_params_set_format_proc)pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, ma_convert_ma_format_to_alsa_format(format)); if (((ma_snd_pcm_hw_params_test_channels_proc)pContext->alsa.snd_pcm_hw_params_test_channels)(pPCM, pHWParams, channels) == 0) { /* The channel count is supported. */ /* The configuration space now needs to be restricted to the channel count before extracting the sample rate. */ ((ma_snd_pcm_hw_params_set_channels_proc)pContext->alsa.snd_pcm_hw_params_set_channels)(pPCM, pHWParams, channels); /* Only after the configuration space has been restricted to the specific channel count should we iterate over our sample rates. */ ma_context_iterate_rates_and_add_native_data_format__alsa(pContext, pPCM, pHWParams, format, channels, 0, pDeviceInfo); } else { /* The channel count is not supported. Skip. */ } } } } else { /* The format is not supported. Skip. */ } } ma_free(pHWParams, &pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM); return MA_SUCCESS; } static ma_result ma_device_uninit__alsa(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if ((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) { ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture); close(pDevice->alsa.wakeupfdCapture); ma_free(pDevice->alsa.pPollDescriptorsCapture, &pDevice->pContext->allocationCallbacks); } if ((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback) { ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback); close(pDevice->alsa.wakeupfdPlayback); ma_free(pDevice->alsa.pPollDescriptorsPlayback, &pDevice->pContext->allocationCallbacks); } return MA_SUCCESS; } static ma_result ma_device_init_by_type__alsa(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptor, ma_device_type deviceType) { ma_result result; int resultALSA; ma_snd_pcm_t* pPCM; ma_bool32 isUsingMMap; ma_snd_pcm_format_t formatALSA; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; ma_channel internalChannelMap[MA_MAX_CHANNELS]; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; int openMode; ma_snd_pcm_hw_params_t* pHWParams; ma_snd_pcm_sw_params_t* pSWParams; ma_snd_pcm_uframes_t bufferBoundary; int pollDescriptorCount; struct pollfd* pPollDescriptors; int wakeupfd; MA_ASSERT(pConfig != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); /* This function should only be called for playback _or_ capture, never duplex. */ MA_ASSERT(pDevice != NULL); formatALSA = ma_convert_ma_format_to_alsa_format(pDescriptor->format); openMode = 0; if (pConfig->alsa.noAutoResample) { openMode |= MA_SND_PCM_NO_AUTO_RESAMPLE; } if (pConfig->alsa.noAutoChannels) { openMode |= MA_SND_PCM_NO_AUTO_CHANNELS; } if (pConfig->alsa.noAutoFormat) { openMode |= MA_SND_PCM_NO_AUTO_FORMAT; } result = ma_context_open_pcm__alsa(pDevice->pContext, pDescriptor->shareMode, deviceType, pDescriptor->pDeviceID, openMode, &pPCM); if (result != MA_SUCCESS) { return result; } /* Hardware parameters. */ pHWParams = (ma_snd_pcm_hw_params_t*)ma_calloc(((ma_snd_pcm_hw_params_sizeof_proc)pDevice->pContext->alsa.snd_pcm_hw_params_sizeof)(), &pDevice->pContext->allocationCallbacks); if (pHWParams == NULL) { ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to allocate memory for hardware parameters."); return MA_OUT_OF_MEMORY; } resultALSA = ((ma_snd_pcm_hw_params_any_proc)pDevice->pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed."); return ma_result_from_errno(-resultALSA); } /* MMAP Mode. Try using interleaved MMAP access. If this fails, fall back to standard readi/writei. */ isUsingMMap = MA_FALSE; #if 0 /* NOTE: MMAP mode temporarily disabled. */ if (deviceType != ma_device_type_capture) { /* <-- Disabling MMAP mode for capture devices because I apparently do not have a device that supports it which means I can't test it... Contributions welcome. */ if (!pConfig->alsa.noMMap && ma_device__is_async(pDevice)) { if (((ma_snd_pcm_hw_params_set_access_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_MMAP_INTERLEAVED) == 0) { pDevice->alsa.isUsingMMap = MA_TRUE; } } } #endif if (!isUsingMMap) { resultALSA = ((ma_snd_pcm_hw_params_set_access_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_RW_INTERLEAVED); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set access mode to neither SND_PCM_ACCESS_MMAP_INTERLEAVED nor SND_PCM_ACCESS_RW_INTERLEAVED. snd_pcm_hw_params_set_access() failed."); return ma_result_from_errno(-resultALSA); } } /* Most important properties first. The documentation for OSS (yes, I know this is ALSA!) recommends format, channels, then sample rate. I can't find any documentation for ALSA specifically, so I'm going to copy the recommendation for OSS. */ /* Format. */ { /* At this point we should have a list of supported formats, so now we need to find the best one. We first check if the requested format is supported, and if so, use that one. If it's not supported, we just run though a list of formats and try to find the best one. */ if (formatALSA == MA_SND_PCM_FORMAT_UNKNOWN || ((ma_snd_pcm_hw_params_test_format_proc)pDevice->pContext->alsa.snd_pcm_hw_params_test_format)(pPCM, pHWParams, formatALSA) != 0) { /* We're either requesting the native format or the specified format is not supported. */ size_t iFormat; formatALSA = MA_SND_PCM_FORMAT_UNKNOWN; for (iFormat = 0; iFormat < ma_countof(g_maFormatPriorities); ++iFormat) { if (((ma_snd_pcm_hw_params_test_format_proc)pDevice->pContext->alsa.snd_pcm_hw_params_test_format)(pPCM, pHWParams, ma_convert_ma_format_to_alsa_format(g_maFormatPriorities[iFormat])) == 0) { formatALSA = ma_convert_ma_format_to_alsa_format(g_maFormatPriorities[iFormat]); break; } } if (formatALSA == MA_SND_PCM_FORMAT_UNKNOWN) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. The device does not support any miniaudio formats."); return MA_FORMAT_NOT_SUPPORTED; } } resultALSA = ((ma_snd_pcm_hw_params_set_format_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, formatALSA); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. snd_pcm_hw_params_set_format() failed."); return ma_result_from_errno(-resultALSA); } internalFormat = ma_format_from_alsa(formatALSA); if (internalFormat == ma_format_unknown) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] The chosen format is not supported by miniaudio."); return MA_FORMAT_NOT_SUPPORTED; } } /* Channels. */ { unsigned int channels = pDescriptor->channels; if (channels == 0) { channels = MA_DEFAULT_CHANNELS; } resultALSA = ((ma_snd_pcm_hw_params_set_channels_near_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_channels_near)(pPCM, pHWParams, &channels); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set channel count. snd_pcm_hw_params_set_channels_near() failed."); return ma_result_from_errno(-resultALSA); } internalChannels = (ma_uint32)channels; } /* Sample Rate */ { unsigned int sampleRate; /* It appears there's either a bug in ALSA, a bug in some drivers, or I'm doing something silly; but having resampling enabled causes problems with some device configurations when used in conjunction with MMAP access mode. To fix this problem we need to disable resampling. To reproduce this problem, open the "plug:dmix" device, and set the sample rate to 44100. Internally, it looks like dmix uses a sample rate of 48000. The hardware parameters will get set correctly with no errors, but it looks like the 44100 -> 48000 resampling doesn't work properly - but only with MMAP access mode. You will notice skipping/crackling in the audio, and it'll run at a slightly faster rate. miniaudio has built-in support for sample rate conversion (albeit low quality at the moment), so disabling resampling should be fine for us. The only problem is that it won't be taking advantage of any kind of hardware-accelerated resampling and it won't be very good quality until I get a chance to improve the quality of miniaudio's software sample rate conversion. I don't currently know if the dmix plugin is the only one with this error. Indeed, this is the only one I've been able to reproduce this error with. In the future, we may want to restrict the disabling of resampling to only known bad plugins. */ ((ma_snd_pcm_hw_params_set_rate_resample_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_rate_resample)(pPCM, pHWParams, 0); sampleRate = pDescriptor->sampleRate; if (sampleRate == 0) { sampleRate = MA_DEFAULT_SAMPLE_RATE; } resultALSA = ((ma_snd_pcm_hw_params_set_rate_near_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_rate_near)(pPCM, pHWParams, &sampleRate, 0); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Sample rate not supported. snd_pcm_hw_params_set_rate_near() failed."); return ma_result_from_errno(-resultALSA); } internalSampleRate = (ma_uint32)sampleRate; } /* Periods. */ { ma_uint32 periods = pDescriptor->periodCount; resultALSA = ((ma_snd_pcm_hw_params_set_periods_near_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_periods_near)(pPCM, pHWParams, &periods, NULL); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set period count. snd_pcm_hw_params_set_periods_near() failed."); return ma_result_from_errno(-resultALSA); } internalPeriods = periods; } /* Buffer Size */ { ma_snd_pcm_uframes_t actualBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, internalSampleRate, pConfig->performanceProfile) * internalPeriods; resultALSA = ((ma_snd_pcm_hw_params_set_buffer_size_near_proc)pDevice->pContext->alsa.snd_pcm_hw_params_set_buffer_size_near)(pPCM, pHWParams, &actualBufferSizeInFrames); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set buffer size for device. snd_pcm_hw_params_set_buffer_size() failed."); return ma_result_from_errno(-resultALSA); } internalPeriodSizeInFrames = actualBufferSizeInFrames / internalPeriods; } /* Apply hardware parameters. */ resultALSA = ((ma_snd_pcm_hw_params_proc)pDevice->pContext->alsa.snd_pcm_hw_params)(pPCM, pHWParams); if (resultALSA < 0) { ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set hardware parameters. snd_pcm_hw_params() failed."); return ma_result_from_errno(-resultALSA); } ma_free(pHWParams, &pDevice->pContext->allocationCallbacks); pHWParams = NULL; /* Software parameters. */ pSWParams = (ma_snd_pcm_sw_params_t*)ma_calloc(((ma_snd_pcm_sw_params_sizeof_proc)pDevice->pContext->alsa.snd_pcm_sw_params_sizeof)(), &pDevice->pContext->allocationCallbacks); if (pSWParams == NULL) { ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to allocate memory for software parameters."); return MA_OUT_OF_MEMORY; } resultALSA = ((ma_snd_pcm_sw_params_current_proc)pDevice->pContext->alsa.snd_pcm_sw_params_current)(pPCM, pSWParams); if (resultALSA < 0) { ma_free(pSWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize software parameters. snd_pcm_sw_params_current() failed."); return ma_result_from_errno(-resultALSA); } resultALSA = ((ma_snd_pcm_sw_params_set_avail_min_proc)pDevice->pContext->alsa.snd_pcm_sw_params_set_avail_min)(pPCM, pSWParams, ma_prev_power_of_2(internalPeriodSizeInFrames)); if (resultALSA < 0) { ma_free(pSWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_sw_params_set_avail_min() failed."); return ma_result_from_errno(-resultALSA); } resultALSA = ((ma_snd_pcm_sw_params_get_boundary_proc)pDevice->pContext->alsa.snd_pcm_sw_params_get_boundary)(pSWParams, &bufferBoundary); if (resultALSA < 0) { bufferBoundary = internalPeriodSizeInFrames * internalPeriods; } if (deviceType == ma_device_type_playback && !isUsingMMap) { /* Only playback devices in writei/readi mode need a start threshold. */ /* Subtle detail here with the start threshold. When in playback-only mode (no full-duplex) we can set the start threshold to the size of a period. But for full-duplex we need to set it such that it is at least two periods. */ resultALSA = ((ma_snd_pcm_sw_params_set_start_threshold_proc)pDevice->pContext->alsa.snd_pcm_sw_params_set_start_threshold)(pPCM, pSWParams, internalPeriodSizeInFrames*2); if (resultALSA < 0) { ma_free(pSWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set start threshold for playback device. snd_pcm_sw_params_set_start_threshold() failed."); return ma_result_from_errno(-resultALSA); } resultALSA = ((ma_snd_pcm_sw_params_set_stop_threshold_proc)pDevice->pContext->alsa.snd_pcm_sw_params_set_stop_threshold)(pPCM, pSWParams, bufferBoundary); if (resultALSA < 0) { /* Set to boundary to loop instead of stop in the event of an xrun. */ ma_free(pSWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set stop threshold for playback device. snd_pcm_sw_params_set_stop_threshold() failed."); return ma_result_from_errno(-resultALSA); } } resultALSA = ((ma_snd_pcm_sw_params_proc)pDevice->pContext->alsa.snd_pcm_sw_params)(pPCM, pSWParams); if (resultALSA < 0) { ma_free(pSWParams, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set software parameters. snd_pcm_sw_params() failed."); return ma_result_from_errno(-resultALSA); } ma_free(pSWParams, &pDevice->pContext->allocationCallbacks); pSWParams = NULL; /* Grab the internal channel map. For now we're not going to bother trying to change the channel map and instead just do it ourselves. */ { ma_snd_pcm_chmap_t* pChmap = NULL; if (pDevice->pContext->alsa.snd_pcm_get_chmap != NULL) { pChmap = ((ma_snd_pcm_get_chmap_proc)pDevice->pContext->alsa.snd_pcm_get_chmap)(pPCM); } if (pChmap != NULL) { ma_uint32 iChannel; /* There are cases where the returned channel map can have a different channel count than was returned by snd_pcm_hw_params_set_channels_near(). */ if (pChmap->channels >= internalChannels) { /* Drop excess channels. */ for (iChannel = 0; iChannel < internalChannels; ++iChannel) { internalChannelMap[iChannel] = ma_convert_alsa_channel_position_to_ma_channel(pChmap->pos[iChannel]); } } else { ma_uint32 i; /* Excess channels use defaults. Do an initial fill with defaults, overwrite the first pChmap->channels, validate to ensure there are no duplicate channels. If validation fails, fall back to defaults. */ ma_bool32 isValid = MA_TRUE; /* Fill with defaults. */ ma_channel_map_init_standard(ma_standard_channel_map_alsa, internalChannelMap, ma_countof(internalChannelMap), internalChannels); /* Overwrite first pChmap->channels channels. */ for (iChannel = 0; iChannel < pChmap->channels; ++iChannel) { internalChannelMap[iChannel] = ma_convert_alsa_channel_position_to_ma_channel(pChmap->pos[iChannel]); } /* Validate. */ for (i = 0; i < internalChannels && isValid; ++i) { ma_uint32 j; for (j = i+1; j < internalChannels; ++j) { if (internalChannelMap[i] == internalChannelMap[j]) { isValid = MA_FALSE; break; } } } /* If our channel map is invalid, fall back to defaults. */ if (!isValid) { ma_channel_map_init_standard(ma_standard_channel_map_alsa, internalChannelMap, ma_countof(internalChannelMap), internalChannels); } } free(pChmap); pChmap = NULL; } else { /* Could not retrieve the channel map. Fall back to a hard-coded assumption. */ ma_channel_map_init_standard(ma_standard_channel_map_alsa, internalChannelMap, ma_countof(internalChannelMap), internalChannels); } } /* We need to retrieve the poll descriptors so we can use poll() to wait for data to become available for reading or writing. There's no well defined maximum for this so we're just going to allocate this on the heap. */ pollDescriptorCount = ((ma_snd_pcm_poll_descriptors_count_proc)pDevice->pContext->alsa.snd_pcm_poll_descriptors_count)(pPCM); if (pollDescriptorCount <= 0) { ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to retrieve poll descriptors count."); return MA_ERROR; } pPollDescriptors = (struct pollfd*)ma_malloc(sizeof(*pPollDescriptors) * (pollDescriptorCount + 1), &pDevice->pContext->allocationCallbacks); /* +1 because we want room for the wakeup descriptor. */ if (pPollDescriptors == NULL) { ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to allocate memory for poll descriptors."); return MA_OUT_OF_MEMORY; } /* We need an eventfd to wakeup from poll() and avoid a deadlock in situations where the driver never returns from writei() and readi(). This has been observed with the "pulse" device. */ wakeupfd = eventfd(0, 0); if (wakeupfd < 0) { ma_free(pPollDescriptors, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to create eventfd for poll wakeup."); return ma_result_from_errno(errno); } /* We'll place the wakeup fd at the start of the buffer. */ pPollDescriptors[0].fd = wakeupfd; pPollDescriptors[0].events = POLLIN; /* We only care about waiting to read from the wakeup file descriptor. */ pPollDescriptors[0].revents = 0; /* We can now extract the PCM poll descriptors which we place after the wakeup descriptor. */ pollDescriptorCount = ((ma_snd_pcm_poll_descriptors_proc)pDevice->pContext->alsa.snd_pcm_poll_descriptors)(pPCM, pPollDescriptors + 1, pollDescriptorCount); /* +1 because we want to place these descriptors after the wakeup descriptor. */ if (pollDescriptorCount <= 0) { close(wakeupfd); ma_free(pPollDescriptors, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to retrieve poll descriptors."); return MA_ERROR; } if (deviceType == ma_device_type_capture) { pDevice->alsa.pollDescriptorCountCapture = pollDescriptorCount; pDevice->alsa.pPollDescriptorsCapture = pPollDescriptors; pDevice->alsa.wakeupfdCapture = wakeupfd; } else { pDevice->alsa.pollDescriptorCountPlayback = pollDescriptorCount; pDevice->alsa.pPollDescriptorsPlayback = pPollDescriptors; pDevice->alsa.wakeupfdPlayback = wakeupfd; } /* We're done. Prepare the device. */ resultALSA = ((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)(pPCM); if (resultALSA < 0) { close(wakeupfd); ma_free(pPollDescriptors, &pDevice->pContext->allocationCallbacks); ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to prepare device."); return ma_result_from_errno(-resultALSA); } if (deviceType == ma_device_type_capture) { pDevice->alsa.pPCMCapture = (ma_ptr)pPCM; pDevice->alsa.isUsingMMapCapture = isUsingMMap; } else { pDevice->alsa.pPCMPlayback = (ma_ptr)pPCM; pDevice->alsa.isUsingMMapPlayback = isUsingMMap; } pDescriptor->format = internalFormat; pDescriptor->channels = internalChannels; pDescriptor->sampleRate = internalSampleRate; ma_channel_map_copy(pDescriptor->channelMap, internalChannelMap, ma_min(internalChannels, MA_MAX_CHANNELS)); pDescriptor->periodSizeInFrames = internalPeriodSizeInFrames; pDescriptor->periodCount = internalPeriods; return MA_SUCCESS; } static ma_result ma_device_init__alsa(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->alsa); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_by_type__alsa(pDevice, pConfig, pDescriptorCapture, ma_device_type_capture); if (result != MA_SUCCESS) { return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_by_type__alsa(pDevice, pConfig, pDescriptorPlayback, ma_device_type_playback); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_start__alsa(ma_device* pDevice) { int resultALSA; if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture); if (resultALSA < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start capture device."); return ma_result_from_errno(-resultALSA); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* Don't need to do anything for playback because it'll be started automatically when enough data has been written. */ } return MA_SUCCESS; } static ma_result ma_device_stop__alsa(ma_device* pDevice) { if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Dropping capture device...\n"); ((ma_snd_pcm_drop_proc)pDevice->pContext->alsa.snd_pcm_drop)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Dropping capture device successful.\n"); /* We need to prepare the device again, otherwise we won't be able to restart the device. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Preparing capture device...\n"); if (((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) < 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Preparing capture device failed.\n"); } else { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Preparing capture device successful.\n"); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Dropping playback device...\n"); ((ma_snd_pcm_drop_proc)pDevice->pContext->alsa.snd_pcm_drop)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Dropping playback device successful.\n"); /* We need to prepare the device again, otherwise we won't be able to restart the device. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Preparing playback device...\n"); if (((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback) < 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Preparing playback device failed.\n"); } else { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Preparing playback device successful.\n"); } } return MA_SUCCESS; } static ma_result ma_device_wait__alsa(ma_device* pDevice, ma_snd_pcm_t* pPCM, struct pollfd* pPollDescriptors, int pollDescriptorCount, short requiredEvent) { for (;;) { unsigned short revents; int resultALSA; int resultPoll = poll(pPollDescriptors, pollDescriptorCount, -1); if (resultPoll < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] poll() failed."); return ma_result_from_errno(errno); } /* Before checking the ALSA poll descriptor flag we need to check if the wakeup descriptor has had it's POLLIN flag set. If so, we need to actually read the data and then exit function. The wakeup descriptor will be the first item in the descriptors buffer. */ if ((pPollDescriptors[0].revents & POLLIN) != 0) { ma_uint64 t; int resultRead = read(pPollDescriptors[0].fd, &t, sizeof(t)); /* <-- Important that we read here so that the next write() does not block. */ if (resultRead < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] read() failed."); return ma_result_from_errno(errno); } ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] POLLIN set for wakeupfd\n"); return MA_DEVICE_NOT_STARTED; } /* Getting here means that some data should be able to be read. We need to use ALSA to translate the revents flags for us. */ resultALSA = ((ma_snd_pcm_poll_descriptors_revents_proc)pDevice->pContext->alsa.snd_pcm_poll_descriptors_revents)(pPCM, pPollDescriptors + 1, pollDescriptorCount - 1, &revents); /* +1, -1 to ignore the wakeup descriptor. */ if (resultALSA < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_poll_descriptors_revents() failed."); return ma_result_from_errno(-resultALSA); } if ((revents & POLLERR) != 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] POLLERR detected."); return ma_result_from_errno(errno); } if ((revents & requiredEvent) == requiredEvent) { break; /* We're done. Data available for reading or writing. */ } } return MA_SUCCESS; } static ma_result ma_device_wait_read__alsa(ma_device* pDevice) { return ma_device_wait__alsa(pDevice, (ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, (struct pollfd*)pDevice->alsa.pPollDescriptorsCapture, pDevice->alsa.pollDescriptorCountCapture + 1, POLLIN); /* +1 to account for the wakeup descriptor. */ } static ma_result ma_device_wait_write__alsa(ma_device* pDevice) { return ma_device_wait__alsa(pDevice, (ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, (struct pollfd*)pDevice->alsa.pPollDescriptorsPlayback, pDevice->alsa.pollDescriptorCountPlayback + 1, POLLOUT); /* +1 to account for the wakeup descriptor. */ } static ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead) { ma_snd_pcm_sframes_t resultALSA = 0; MA_ASSERT(pDevice != NULL); MA_ASSERT(pFramesOut != NULL); if (pFramesRead != NULL) { *pFramesRead = 0; } while (ma_device_get_state(pDevice) == ma_device_state_started) { ma_result result; /* The first thing to do is wait for data to become available for reading. This will return an error code if the device has been stopped. */ result = ma_device_wait_read__alsa(pDevice); if (result != MA_SUCCESS) { return result; } /* Getting here means we should have data available. */ resultALSA = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, pFramesOut, frameCount); if (resultALSA >= 0) { break; /* Success. */ } else { if (resultALSA == -EAGAIN) { /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "EGAIN (read)\n");*/ continue; /* Try again. */ } else if (resultALSA == -EPIPE) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "EPIPE (read)\n"); /* Overrun. Recover and try again. If this fails we need to return an error. */ resultALSA = ((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, resultALSA, MA_TRUE); if (resultALSA < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after overrun."); return ma_result_from_errno((int)-resultALSA); } resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture); if (resultALSA < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun."); return ma_result_from_errno((int)-resultALSA); } continue; /* Try reading again. */ } } } if (pFramesRead != NULL) { *pFramesRead = resultALSA; } return MA_SUCCESS; } static ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { ma_snd_pcm_sframes_t resultALSA = 0; MA_ASSERT(pDevice != NULL); MA_ASSERT(pFrames != NULL); if (pFramesWritten != NULL) { *pFramesWritten = 0; } while (ma_device_get_state(pDevice) == ma_device_state_started) { ma_result result; /* The first thing to do is wait for space to become available for writing. This will return an error code if the device has been stopped. */ result = ma_device_wait_write__alsa(pDevice); if (result != MA_SUCCESS) { return result; } resultALSA = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, pFrames, frameCount); if (resultALSA >= 0) { break; /* Success. */ } else { if (resultALSA == -EAGAIN) { /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "EGAIN (write)\n");*/ continue; /* Try again. */ } else if (resultALSA == -EPIPE) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "EPIPE (write)\n"); /* Underrun. Recover and try again. If this fails we need to return an error. */ resultALSA = ((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, resultALSA, MA_TRUE); /* MA_TRUE=silent (don't print anything on error). */ if (resultALSA < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after underrun."); return ma_result_from_errno((int)-resultALSA); } /* In my testing I have had a situation where writei() does not automatically restart the device even though I've set it up as such in the software parameters. What will happen is writei() will block indefinitely even though the number of frames is well beyond the auto-start threshold. To work around this I've needed to add an explicit start here. Not sure if this is me just being stupid and not recovering the device properly, but this definitely feels like something isn't quite right here. */ resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback); if (resultALSA < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun."); return ma_result_from_errno((int)-resultALSA); } continue; /* Try writing again. */ } } } if (pFramesWritten != NULL) { *pFramesWritten = resultALSA; } return MA_SUCCESS; } static ma_result ma_device_data_loop_wakeup__alsa(ma_device* pDevice) { ma_uint64 t = 1; int resultWrite = 0; MA_ASSERT(pDevice != NULL); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Waking up...\n"); /* Write to an eventfd to trigger a wakeup from poll() and abort any reading or writing. */ if (pDevice->alsa.pPollDescriptorsCapture != NULL) { resultWrite = write(pDevice->alsa.wakeupfdCapture, &t, sizeof(t)); } if (pDevice->alsa.pPollDescriptorsPlayback != NULL) { resultWrite = write(pDevice->alsa.wakeupfdPlayback, &t, sizeof(t)); } if (resultWrite < 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[ALSA] write() failed.\n"); return ma_result_from_errno(errno); } ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[ALSA] Waking up completed successfully.\n"); return MA_SUCCESS; } static ma_result ma_context_uninit__alsa(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_alsa); /* Clean up memory for memory leak checkers. */ ((ma_snd_config_update_free_global_proc)pContext->alsa.snd_config_update_free_global)(); #ifndef MA_NO_RUNTIME_LINKING ma_dlclose(pContext, pContext->alsa.asoundSO); #endif ma_mutex_uninit(&pContext->alsa.internalDeviceEnumLock); return MA_SUCCESS; } static ma_result ma_context_init__alsa(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { ma_result result; #ifndef MA_NO_RUNTIME_LINKING const char* libasoundNames[] = { "libasound.so.2", "libasound.so" }; size_t i; for (i = 0; i < ma_countof(libasoundNames); ++i) { pContext->alsa.asoundSO = ma_dlopen(pContext, libasoundNames[i]); if (pContext->alsa.asoundSO != NULL) { break; } } if (pContext->alsa.asoundSO == NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "[ALSA] Failed to open shared object.\n"); return MA_NO_BACKEND; } pContext->alsa.snd_pcm_open = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_open"); pContext->alsa.snd_pcm_close = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_close"); pContext->alsa.snd_pcm_hw_params_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_sizeof"); pContext->alsa.snd_pcm_hw_params_any = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_any"); pContext->alsa.snd_pcm_hw_params_set_format = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_format"); pContext->alsa.snd_pcm_hw_params_set_format_first = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_format_first"); pContext->alsa.snd_pcm_hw_params_get_format_mask = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_format_mask"); pContext->alsa.snd_pcm_hw_params_set_channels = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_channels"); pContext->alsa.snd_pcm_hw_params_set_channels_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_channels_near"); pContext->alsa.snd_pcm_hw_params_set_channels_minmax = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_channels_minmax"); pContext->alsa.snd_pcm_hw_params_set_rate_resample = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_rate_resample"); pContext->alsa.snd_pcm_hw_params_set_rate = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_rate"); pContext->alsa.snd_pcm_hw_params_set_rate_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_rate_near"); pContext->alsa.snd_pcm_hw_params_set_buffer_size_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_buffer_size_near"); pContext->alsa.snd_pcm_hw_params_set_periods_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_periods_near"); pContext->alsa.snd_pcm_hw_params_set_access = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_access"); pContext->alsa.snd_pcm_hw_params_get_format = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_format"); pContext->alsa.snd_pcm_hw_params_get_channels = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_channels"); pContext->alsa.snd_pcm_hw_params_get_channels_min = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_channels_min"); pContext->alsa.snd_pcm_hw_params_get_channels_max = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_channels_max"); pContext->alsa.snd_pcm_hw_params_get_rate = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_rate"); pContext->alsa.snd_pcm_hw_params_get_rate_min = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_rate_min"); pContext->alsa.snd_pcm_hw_params_get_rate_max = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_rate_max"); pContext->alsa.snd_pcm_hw_params_get_buffer_size = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_buffer_size"); pContext->alsa.snd_pcm_hw_params_get_periods = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_periods"); pContext->alsa.snd_pcm_hw_params_get_access = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_access"); pContext->alsa.snd_pcm_hw_params_test_format = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_test_format"); pContext->alsa.snd_pcm_hw_params_test_channels = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_test_channels"); pContext->alsa.snd_pcm_hw_params_test_rate = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_test_rate"); pContext->alsa.snd_pcm_hw_params = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params"); pContext->alsa.snd_pcm_sw_params_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_sizeof"); pContext->alsa.snd_pcm_sw_params_current = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_current"); pContext->alsa.snd_pcm_sw_params_get_boundary = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_get_boundary"); pContext->alsa.snd_pcm_sw_params_set_avail_min = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_set_avail_min"); pContext->alsa.snd_pcm_sw_params_set_start_threshold = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_set_start_threshold"); pContext->alsa.snd_pcm_sw_params_set_stop_threshold = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_set_stop_threshold"); pContext->alsa.snd_pcm_sw_params = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params"); pContext->alsa.snd_pcm_format_mask_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_format_mask_sizeof"); pContext->alsa.snd_pcm_format_mask_test = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_format_mask_test"); pContext->alsa.snd_pcm_get_chmap = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_get_chmap"); pContext->alsa.snd_pcm_state = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_state"); pContext->alsa.snd_pcm_prepare = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_prepare"); pContext->alsa.snd_pcm_start = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_start"); pContext->alsa.snd_pcm_drop = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_drop"); pContext->alsa.snd_pcm_drain = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_drain"); pContext->alsa.snd_pcm_reset = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_reset"); pContext->alsa.snd_device_name_hint = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_device_name_hint"); pContext->alsa.snd_device_name_get_hint = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_device_name_get_hint"); pContext->alsa.snd_card_get_index = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_card_get_index"); pContext->alsa.snd_device_name_free_hint = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_device_name_free_hint"); pContext->alsa.snd_pcm_mmap_begin = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_mmap_begin"); pContext->alsa.snd_pcm_mmap_commit = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_mmap_commit"); pContext->alsa.snd_pcm_recover = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_recover"); pContext->alsa.snd_pcm_readi = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_readi"); pContext->alsa.snd_pcm_writei = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_writei"); pContext->alsa.snd_pcm_avail = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_avail"); pContext->alsa.snd_pcm_avail_update = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_avail_update"); pContext->alsa.snd_pcm_wait = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_wait"); pContext->alsa.snd_pcm_nonblock = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_nonblock"); pContext->alsa.snd_pcm_info = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_info"); pContext->alsa.snd_pcm_info_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_info_sizeof"); pContext->alsa.snd_pcm_info_get_name = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_info_get_name"); pContext->alsa.snd_pcm_poll_descriptors = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_poll_descriptors"); pContext->alsa.snd_pcm_poll_descriptors_count = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_poll_descriptors_count"); pContext->alsa.snd_pcm_poll_descriptors_revents = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_poll_descriptors_revents"); pContext->alsa.snd_config_update_free_global = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_config_update_free_global"); #else /* The system below is just for type safety. */ ma_snd_pcm_open_proc _snd_pcm_open = snd_pcm_open; ma_snd_pcm_close_proc _snd_pcm_close = snd_pcm_close; ma_snd_pcm_hw_params_sizeof_proc _snd_pcm_hw_params_sizeof = snd_pcm_hw_params_sizeof; ma_snd_pcm_hw_params_any_proc _snd_pcm_hw_params_any = snd_pcm_hw_params_any; ma_snd_pcm_hw_params_set_format_proc _snd_pcm_hw_params_set_format = snd_pcm_hw_params_set_format; ma_snd_pcm_hw_params_set_format_first_proc _snd_pcm_hw_params_set_format_first = snd_pcm_hw_params_set_format_first; ma_snd_pcm_hw_params_get_format_mask_proc _snd_pcm_hw_params_get_format_mask = snd_pcm_hw_params_get_format_mask; ma_snd_pcm_hw_params_set_channels_proc _snd_pcm_hw_params_set_channels = snd_pcm_hw_params_set_channels; ma_snd_pcm_hw_params_set_channels_near_proc _snd_pcm_hw_params_set_channels_near = snd_pcm_hw_params_set_channels_near; ma_snd_pcm_hw_params_set_rate_resample_proc _snd_pcm_hw_params_set_rate_resample = snd_pcm_hw_params_set_rate_resample; ma_snd_pcm_hw_params_set_rate_near _snd_pcm_hw_params_set_rate = snd_pcm_hw_params_set_rate; ma_snd_pcm_hw_params_set_rate_near_proc _snd_pcm_hw_params_set_rate_near = snd_pcm_hw_params_set_rate_near; ma_snd_pcm_hw_params_set_rate_minmax_proc _snd_pcm_hw_params_set_rate_minmax = snd_pcm_hw_params_set_rate_minmax; ma_snd_pcm_hw_params_set_buffer_size_near_proc _snd_pcm_hw_params_set_buffer_size_near = snd_pcm_hw_params_set_buffer_size_near; ma_snd_pcm_hw_params_set_periods_near_proc _snd_pcm_hw_params_set_periods_near = snd_pcm_hw_params_set_periods_near; ma_snd_pcm_hw_params_set_access_proc _snd_pcm_hw_params_set_access = snd_pcm_hw_params_set_access; ma_snd_pcm_hw_params_get_format_proc _snd_pcm_hw_params_get_format = snd_pcm_hw_params_get_format; ma_snd_pcm_hw_params_get_channels_proc _snd_pcm_hw_params_get_channels = snd_pcm_hw_params_get_channels; ma_snd_pcm_hw_params_get_channels_min_proc _snd_pcm_hw_params_get_channels_min = snd_pcm_hw_params_get_channels_min; ma_snd_pcm_hw_params_get_channels_max_proc _snd_pcm_hw_params_get_channels_max = snd_pcm_hw_params_get_channels_max; ma_snd_pcm_hw_params_get_rate_proc _snd_pcm_hw_params_get_rate = snd_pcm_hw_params_get_rate; ma_snd_pcm_hw_params_get_rate_min_proc _snd_pcm_hw_params_get_rate_min = snd_pcm_hw_params_get_rate_min; ma_snd_pcm_hw_params_get_rate_max_proc _snd_pcm_hw_params_get_rate_max = snd_pcm_hw_params_get_rate_max; ma_snd_pcm_hw_params_get_buffer_size_proc _snd_pcm_hw_params_get_buffer_size = snd_pcm_hw_params_get_buffer_size; ma_snd_pcm_hw_params_get_periods_proc _snd_pcm_hw_params_get_periods = snd_pcm_hw_params_get_periods; ma_snd_pcm_hw_params_get_access_proc _snd_pcm_hw_params_get_access = snd_pcm_hw_params_get_access; ma_snd_pcm_hw_params_test_format_proc _snd_pcm_hw_params_test_format = snd_pcm_hw_params_test_format; ma_snd_pcm_hw_params_test_channels_proc _snd_pcm_hw_params_test_channels = snd_pcm_hw_params_test_channels; ma_snd_pcm_hw_params_test_rate_proc _snd_pcm_hw_params_test_rate = snd_pcm_hw_params_test_rate; ma_snd_pcm_hw_params_proc _snd_pcm_hw_params = snd_pcm_hw_params; ma_snd_pcm_sw_params_sizeof_proc _snd_pcm_sw_params_sizeof = snd_pcm_sw_params_sizeof; ma_snd_pcm_sw_params_current_proc _snd_pcm_sw_params_current = snd_pcm_sw_params_current; ma_snd_pcm_sw_params_get_boundary_proc _snd_pcm_sw_params_get_boundary = snd_pcm_sw_params_get_boundary; ma_snd_pcm_sw_params_set_avail_min_proc _snd_pcm_sw_params_set_avail_min = snd_pcm_sw_params_set_avail_min; ma_snd_pcm_sw_params_set_start_threshold_proc _snd_pcm_sw_params_set_start_threshold = snd_pcm_sw_params_set_start_threshold; ma_snd_pcm_sw_params_set_stop_threshold_proc _snd_pcm_sw_params_set_stop_threshold = snd_pcm_sw_params_set_stop_threshold; ma_snd_pcm_sw_params_proc _snd_pcm_sw_params = snd_pcm_sw_params; ma_snd_pcm_format_mask_sizeof_proc _snd_pcm_format_mask_sizeof = snd_pcm_format_mask_sizeof; ma_snd_pcm_format_mask_test_proc _snd_pcm_format_mask_test = snd_pcm_format_mask_test; ma_snd_pcm_get_chmap_proc _snd_pcm_get_chmap = snd_pcm_get_chmap; ma_snd_pcm_state_proc _snd_pcm_state = snd_pcm_state; ma_snd_pcm_prepare_proc _snd_pcm_prepare = snd_pcm_prepare; ma_snd_pcm_start_proc _snd_pcm_start = snd_pcm_start; ma_snd_pcm_drop_proc _snd_pcm_drop = snd_pcm_drop; ma_snd_pcm_drain_proc _snd_pcm_drain = snd_pcm_drain; ma_snd_pcm_reset_proc _snd_pcm_reset = snd_pcm_reset; ma_snd_device_name_hint_proc _snd_device_name_hint = snd_device_name_hint; ma_snd_device_name_get_hint_proc _snd_device_name_get_hint = snd_device_name_get_hint; ma_snd_card_get_index_proc _snd_card_get_index = snd_card_get_index; ma_snd_device_name_free_hint_proc _snd_device_name_free_hint = snd_device_name_free_hint; ma_snd_pcm_mmap_begin_proc _snd_pcm_mmap_begin = snd_pcm_mmap_begin; ma_snd_pcm_mmap_commit_proc _snd_pcm_mmap_commit = snd_pcm_mmap_commit; ma_snd_pcm_recover_proc _snd_pcm_recover = snd_pcm_recover; ma_snd_pcm_readi_proc _snd_pcm_readi = snd_pcm_readi; ma_snd_pcm_writei_proc _snd_pcm_writei = snd_pcm_writei; ma_snd_pcm_avail_proc _snd_pcm_avail = snd_pcm_avail; ma_snd_pcm_avail_update_proc _snd_pcm_avail_update = snd_pcm_avail_update; ma_snd_pcm_wait_proc _snd_pcm_wait = snd_pcm_wait; ma_snd_pcm_nonblock_proc _snd_pcm_nonblock = snd_pcm_nonblock; ma_snd_pcm_info_proc _snd_pcm_info = snd_pcm_info; ma_snd_pcm_info_sizeof_proc _snd_pcm_info_sizeof = snd_pcm_info_sizeof; ma_snd_pcm_info_get_name_proc _snd_pcm_info_get_name = snd_pcm_info_get_name; ma_snd_pcm_poll_descriptors _snd_pcm_poll_descriptors = snd_pcm_poll_descriptors; ma_snd_pcm_poll_descriptors_count _snd_pcm_poll_descriptors_count = snd_pcm_poll_descriptors_count; ma_snd_pcm_poll_descriptors_revents _snd_pcm_poll_descriptors_revents = snd_pcm_poll_descriptors_revents; ma_snd_config_update_free_global_proc _snd_config_update_free_global = snd_config_update_free_global; pContext->alsa.snd_pcm_open = (ma_proc)_snd_pcm_open; pContext->alsa.snd_pcm_close = (ma_proc)_snd_pcm_close; pContext->alsa.snd_pcm_hw_params_sizeof = (ma_proc)_snd_pcm_hw_params_sizeof; pContext->alsa.snd_pcm_hw_params_any = (ma_proc)_snd_pcm_hw_params_any; pContext->alsa.snd_pcm_hw_params_set_format = (ma_proc)_snd_pcm_hw_params_set_format; pContext->alsa.snd_pcm_hw_params_set_format_first = (ma_proc)_snd_pcm_hw_params_set_format_first; pContext->alsa.snd_pcm_hw_params_get_format_mask = (ma_proc)_snd_pcm_hw_params_get_format_mask; pContext->alsa.snd_pcm_hw_params_set_channels = (ma_proc)_snd_pcm_hw_params_set_channels; pContext->alsa.snd_pcm_hw_params_set_channels_near = (ma_proc)_snd_pcm_hw_params_set_channels_near; pContext->alsa.snd_pcm_hw_params_set_channels_minmax = (ma_proc)_snd_pcm_hw_params_set_channels_minmax; pContext->alsa.snd_pcm_hw_params_set_rate_resample = (ma_proc)_snd_pcm_hw_params_set_rate_resample; pContext->alsa.snd_pcm_hw_params_set_rate = (ma_proc)_snd_pcm_hw_params_set_rate; pContext->alsa.snd_pcm_hw_params_set_rate_near = (ma_proc)_snd_pcm_hw_params_set_rate_near; pContext->alsa.snd_pcm_hw_params_set_buffer_size_near = (ma_proc)_snd_pcm_hw_params_set_buffer_size_near; pContext->alsa.snd_pcm_hw_params_set_periods_near = (ma_proc)_snd_pcm_hw_params_set_periods_near; pContext->alsa.snd_pcm_hw_params_set_access = (ma_proc)_snd_pcm_hw_params_set_access; pContext->alsa.snd_pcm_hw_params_get_format = (ma_proc)_snd_pcm_hw_params_get_format; pContext->alsa.snd_pcm_hw_params_get_channels = (ma_proc)_snd_pcm_hw_params_get_channels; pContext->alsa.snd_pcm_hw_params_get_channels_min = (ma_proc)_snd_pcm_hw_params_get_channels_min; pContext->alsa.snd_pcm_hw_params_get_channels_max = (ma_proc)_snd_pcm_hw_params_get_channels_max; pContext->alsa.snd_pcm_hw_params_get_rate = (ma_proc)_snd_pcm_hw_params_get_rate; pContext->alsa.snd_pcm_hw_params_get_rate_min = (ma_proc)_snd_pcm_hw_params_get_rate_min; pContext->alsa.snd_pcm_hw_params_get_rate_max = (ma_proc)_snd_pcm_hw_params_get_rate_max; pContext->alsa.snd_pcm_hw_params_get_buffer_size = (ma_proc)_snd_pcm_hw_params_get_buffer_size; pContext->alsa.snd_pcm_hw_params_get_periods = (ma_proc)_snd_pcm_hw_params_get_periods; pContext->alsa.snd_pcm_hw_params_get_access = (ma_proc)_snd_pcm_hw_params_get_access; pContext->alsa.snd_pcm_hw_params_test_format = (ma_proc)_snd_pcm_hw_params_test_format; pContext->alsa.snd_pcm_hw_params_test_channels = (ma_proc)_snd_pcm_hw_params_test_channels; pContext->alsa.snd_pcm_hw_params_test_rate = (ma_proc)_snd_pcm_hw_params_test_rate; pContext->alsa.snd_pcm_hw_params = (ma_proc)_snd_pcm_hw_params; pContext->alsa.snd_pcm_sw_params_sizeof = (ma_proc)_snd_pcm_sw_params_sizeof; pContext->alsa.snd_pcm_sw_params_current = (ma_proc)_snd_pcm_sw_params_current; pContext->alsa.snd_pcm_sw_params_get_boundary = (ma_proc)_snd_pcm_sw_params_get_boundary; pContext->alsa.snd_pcm_sw_params_set_avail_min = (ma_proc)_snd_pcm_sw_params_set_avail_min; pContext->alsa.snd_pcm_sw_params_set_start_threshold = (ma_proc)_snd_pcm_sw_params_set_start_threshold; pContext->alsa.snd_pcm_sw_params_set_stop_threshold = (ma_proc)_snd_pcm_sw_params_set_stop_threshold; pContext->alsa.snd_pcm_sw_params = (ma_proc)_snd_pcm_sw_params; pContext->alsa.snd_pcm_format_mask_sizeof = (ma_proc)_snd_pcm_format_mask_sizeof; pContext->alsa.snd_pcm_format_mask_test = (ma_proc)_snd_pcm_format_mask_test; pContext->alsa.snd_pcm_get_chmap = (ma_proc)_snd_pcm_get_chmap; pContext->alsa.snd_pcm_state = (ma_proc)_snd_pcm_state; pContext->alsa.snd_pcm_prepare = (ma_proc)_snd_pcm_prepare; pContext->alsa.snd_pcm_start = (ma_proc)_snd_pcm_start; pContext->alsa.snd_pcm_drop = (ma_proc)_snd_pcm_drop; pContext->alsa.snd_pcm_drain = (ma_proc)_snd_pcm_drain; pContext->alsa.snd_pcm_reset = (ma_proc)_snd_pcm_reset; pContext->alsa.snd_device_name_hint = (ma_proc)_snd_device_name_hint; pContext->alsa.snd_device_name_get_hint = (ma_proc)_snd_device_name_get_hint; pContext->alsa.snd_card_get_index = (ma_proc)_snd_card_get_index; pContext->alsa.snd_device_name_free_hint = (ma_proc)_snd_device_name_free_hint; pContext->alsa.snd_pcm_mmap_begin = (ma_proc)_snd_pcm_mmap_begin; pContext->alsa.snd_pcm_mmap_commit = (ma_proc)_snd_pcm_mmap_commit; pContext->alsa.snd_pcm_recover = (ma_proc)_snd_pcm_recover; pContext->alsa.snd_pcm_readi = (ma_proc)_snd_pcm_readi; pContext->alsa.snd_pcm_writei = (ma_proc)_snd_pcm_writei; pContext->alsa.snd_pcm_avail = (ma_proc)_snd_pcm_avail; pContext->alsa.snd_pcm_avail_update = (ma_proc)_snd_pcm_avail_update; pContext->alsa.snd_pcm_wait = (ma_proc)_snd_pcm_wait; pContext->alsa.snd_pcm_nonblock = (ma_proc)_snd_pcm_nonblock; pContext->alsa.snd_pcm_info = (ma_proc)_snd_pcm_info; pContext->alsa.snd_pcm_info_sizeof = (ma_proc)_snd_pcm_info_sizeof; pContext->alsa.snd_pcm_info_get_name = (ma_proc)_snd_pcm_info_get_name; pContext->alsa.snd_pcm_poll_descriptors = (ma_proc)_snd_pcm_poll_descriptors; pContext->alsa.snd_pcm_poll_descriptors_count = (ma_proc)_snd_pcm_poll_descriptors_count; pContext->alsa.snd_pcm_poll_descriptors_revents = (ma_proc)_snd_pcm_poll_descriptors_revents; pContext->alsa.snd_config_update_free_global = (ma_proc)_snd_config_update_free_global; #endif pContext->alsa.useVerboseDeviceEnumeration = pConfig->alsa.useVerboseDeviceEnumeration; result = ma_mutex_init(&pContext->alsa.internalDeviceEnumLock); if (result != MA_SUCCESS) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[ALSA] WARNING: Failed to initialize mutex for internal device enumeration."); return result; } pCallbacks->onContextInit = ma_context_init__alsa; pCallbacks->onContextUninit = ma_context_uninit__alsa; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__alsa; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__alsa; pCallbacks->onDeviceInit = ma_device_init__alsa; pCallbacks->onDeviceUninit = ma_device_uninit__alsa; pCallbacks->onDeviceStart = ma_device_start__alsa; pCallbacks->onDeviceStop = ma_device_stop__alsa; pCallbacks->onDeviceRead = ma_device_read__alsa; pCallbacks->onDeviceWrite = ma_device_write__alsa; pCallbacks->onDeviceDataLoop = NULL; pCallbacks->onDeviceDataLoopWakeup = ma_device_data_loop_wakeup__alsa; return MA_SUCCESS; } #endif /* ALSA */ /****************************************************************************** PulseAudio Backend ******************************************************************************/ #ifdef MA_HAS_PULSEAUDIO /* The PulseAudio API, along with Apple's Core Audio, is the worst of the maintream audio APIs. This is a brief description of what's going on in the PulseAudio backend. I apologize if this gets a bit ranty for your liking - you might want to skip this discussion. PulseAudio has something they call the "Simple API", which unfortunately isn't suitable for miniaudio. I've not seen anywhere where it allows you to enumerate over devices, nor does it seem to support the ability to stop and start streams. Looking at the documentation, it appears as though the stream is constantly running and you prevent sound from being emitted or captured by simply not calling the read or write functions. This is not a professional solution as it would be much better to *actually* stop the underlying stream. Perhaps the simple API has some smarts to do this automatically, but I'm not sure. Another limitation with the simple API is that it seems inefficient when you want to have multiple streams to a single context. For these reasons, miniaudio is not using the simple API. Since we're not using the simple API, we're left with the asynchronous API as our only other option. And boy, is this where it starts to get fun, and I don't mean that in a good way... The problems start with the very name of the API - "asynchronous". Yes, this is an asynchronous oriented API which means your commands don't immediately take effect. You instead need to issue your commands, and then wait for them to complete. The waiting mechanism is enabled through the use of a "main loop". In the asychronous API you cannot get away from the main loop, and the main loop is where almost all of PulseAudio's problems stem from. When you first initialize PulseAudio you need an object referred to as "main loop". You can implement this yourself by defining your own vtable, but it's much easier to just use one of the built-in main loop implementations. There's two generic implementations called pa_mainloop and pa_threaded_mainloop, and another implementation specific to GLib called pa_glib_mainloop. We're using pa_threaded_mainloop because it simplifies management of the worker thread. The idea of the main loop object is pretty self explanatory - you're supposed to use it to implement a worker thread which runs in a loop. The main loop is where operations are actually executed. To initialize the main loop, you just use `pa_threaded_mainloop_new()`. This is the first function you'll call. You can then get a pointer to the vtable with `pa_threaded_mainloop_get_api()` (the main loop vtable is called `pa_mainloop_api`). Again, you can bypass the threaded main loop object entirely and just implement `pa_mainloop_api` directly, but there's no need for it unless you're doing something extremely specialized such as if you want to integrate it into your application's existing main loop infrastructure. (EDIT 2021-01-26: miniaudio is no longer using `pa_threaded_mainloop` due to this issue: https://github.com/mackron/miniaudio/issues/262. It is now using `pa_mainloop` which turns out to be a simpler solution anyway. The rest of this rant still applies, however.) Once you have your main loop vtable (the `pa_mainloop_api` object) you can create the PulseAudio context. This is very similar to miniaudio's context and they map to each other quite well. You have one context to many streams, which is basically the same as miniaudio's one `ma_context` to many `ma_device`s. Here's where it starts to get annoying, however. When you first create the PulseAudio context, which is done with `pa_context_new()`, it's not actually connected to anything. When you connect, you call `pa_context_connect()`. However, if you remember, PulseAudio is an asynchronous API. That means you cannot just assume the context is connected after `pa_context_context()` has returned. You instead need to wait for it to connect. To do this, you need to either wait for a callback to get fired, which you can set with `pa_context_set_state_callback()`, or you can continuously poll the context's state. Either way, you need to run this in a loop. All objects from here out are created from the context, and, I believe, you can't be creating these objects until the context is connected. This waiting loop is therefore unavoidable. In order for the waiting to ever complete, however, the main loop needs to be running. Before attempting to connect the context, the main loop needs to be started with `pa_threaded_mainloop_start()`. The reason for this asynchronous design is to support cases where you're connecting to a remote server, say through a local network or an internet connection. However, the *VAST* majority of cases don't involve this at all - they just connect to a local "server" running on the host machine. The fact that this would be the default rather than making `pa_context_connect()` synchronous tends to boggle the mind. Once the context has been created and connected you can start creating a stream. A PulseAudio stream is analogous to miniaudio's device. The initialization of a stream is fairly standard - you configure some attributes (analogous to miniaudio's device config) and then call `pa_stream_new()` to actually create it. Here is where we start to get into "operations". When configuring the stream, you can get information about the source (such as sample format, sample rate, etc.), however it's not synchronous. Instead, a `pa_operation` object is returned from `pa_context_get_source_info_by_name()` (capture) or `pa_context_get_sink_info_by_name()` (playback). Then, you need to run a loop (again!) to wait for the operation to complete which you can determine via a callback or polling, just like we did with the context. Then, as an added bonus, you need to decrement the reference counter of the `pa_operation` object to ensure memory is cleaned up. All of that just to retrieve basic information about a device! Once the basic information about the device has been retrieved, miniaudio can now create the stream with `ma_stream_new()`. Like the context, this needs to be connected. But we need to be careful here, because we're now about to introduce one of the most horrific design choices in PulseAudio. PulseAudio allows you to specify a callback that is fired when data can be written to or read from a stream. The language is important here because PulseAudio takes it literally, specifically the "can be". You would think these callbacks would be appropriate as the place for writing and reading data to and from the stream, and that would be right, except when it's not. When you initialize the stream, you can set a flag that tells PulseAudio to not start the stream automatically. This is required because miniaudio does not auto-start devices straight after initialization - you need to call `ma_device_start()` manually. The problem is that even when this flag is specified, PulseAudio will immediately fire it's write or read callback. This is *technically* correct (based on the wording in the documentation) because indeed, data *can* be written at this point. The problem is that it's not *practical*. It makes sense that the write/read callback would be where a program will want to write or read data to or from the stream, but when it's called before the application has even requested that the stream be started, it's just not practical because the program probably isn't ready for any kind of data delivery at that point (it may still need to load files or whatnot). Instead, this callback should only be fired when the application requests the stream be started which is how it works with literally *every* other callback-based audio API. Since miniaudio forbids firing of the data callback until the device has been started (as it should be with *all* callback based APIs), logic needs to be added to ensure miniaudio doesn't just blindly fire the application-defined data callback from within the PulseAudio callback before the stream has actually been started. The device state is used for this - if the state is anything other than `ma_device_state_starting` or `ma_device_state_started`, the main data callback is not fired. This, unfortunately, is not the end of the problems with the PulseAudio write callback. Any normal callback based audio API will continuously fire the callback at regular intervals based on the size of the internal buffer. This will only ever be fired when the device is running, and will be fired regardless of whether or not the user actually wrote anything to the device/stream. This not the case in PulseAudio. In PulseAudio, the data callback will *only* be called if you wrote something to it previously. That means, if you don't call `pa_stream_write()`, the callback will not get fired. On the surface you wouldn't think this would matter because you should be always writing data, and if you don't have anything to write, just write silence. That's fine until you want to drain the stream. You see, if you're continuously writing data to the stream, the stream will never get drained! That means in order to drain the stream, you need to *not* write data to it! But remember, when you don't write data to the stream, the callback won't get fired again! Why is draining important? Because that's how we've defined stopping to work in miniaudio. In miniaudio, stopping the device requires it to be drained before returning from ma_device_stop(). So we've stopped the device, which requires us to drain, but draining requires us to *not* write data to the stream (or else it won't ever complete draining), but not writing to the stream means the callback won't get fired again! This becomes a problem when stopping and then restarting the device. When the device is stopped, it's drained, which requires us to *not* write anything to the stream. But then, since we didn't write anything to it, the write callback will *never* get called again if we just resume the stream naively. This means that starting the stream requires us to write data to the stream from outside the callback. This disconnect is something PulseAudio has got seriously wrong - there should only ever be a single source of data delivery, that being the callback. (I have tried using `pa_stream_flush()` to trigger the write callback to fire, but this just doesn't work for some reason.) Once you've created the stream, you need to connect it which involves the whole waiting procedure. This is the same process as the context, only this time you'll poll for the state with `pa_stream_get_status()`. The starting and stopping of a streaming is referred to as "corking" in PulseAudio. The analogy is corking a barrel. To start the stream, you uncork it, to stop it you cork it. Personally I think it's silly - why would you not just call it "starting" and "stopping" like any other normal audio API? Anyway, the act of corking is, you guessed it, asynchronous. This means you'll need our waiting loop as usual. Again, why this asynchronous design is the default is absolutely beyond me. Would it really be that hard to just make it run synchronously? Teardown is pretty simple (what?!). It's just a matter of calling the relevant `_unref()` function on each object in reverse order that they were initialized in. That's about it from the PulseAudio side. A bit ranty, I know, but they really need to fix that main loop and callback system. They're embarrassingly unpractical. The main loop thing is an easy fix - have synchronous versions of all APIs. If an application wants these to run asynchronously, they can execute them in a separate thread themselves. The desire to run these asynchronously is such a niche requirement - it makes no sense to make it the default. The stream write callback needs to be change, or an alternative provided, that is constantly fired, regardless of whether or not `pa_stream_write()` has been called, and it needs to take a pointer to a buffer as a parameter which the program just writes to directly rather than having to call `pa_stream_writable_size()` and `pa_stream_write()`. These changes alone will change PulseAudio from one of the worst audio APIs to one of the best. */ /* It is assumed pulseaudio.h is available when linking at compile time. When linking at compile time, we use the declarations in the header to check for type safety. We cannot do this when linking at run time because the header might not be available. */ #ifdef MA_NO_RUNTIME_LINKING /* pulseaudio.h marks some functions with "inline" which isn't always supported. Need to emulate it. */ #if !defined(__cplusplus) #if defined(__STRICT_ANSI__) #if !defined(inline) #define inline __inline__ __attribute__((always_inline)) #define MA_INLINE_DEFINED #endif #endif #endif #include #if defined(MA_INLINE_DEFINED) #undef inline #undef MA_INLINE_DEFINED #endif #define MA_PA_OK PA_OK #define MA_PA_ERR_ACCESS PA_ERR_ACCESS #define MA_PA_ERR_INVALID PA_ERR_INVALID #define MA_PA_ERR_NOENTITY PA_ERR_NOENTITY #define MA_PA_ERR_NOTSUPPORTED PA_ERR_NOTSUPPORTED #define MA_PA_CHANNELS_MAX PA_CHANNELS_MAX #define MA_PA_RATE_MAX PA_RATE_MAX typedef pa_context_flags_t ma_pa_context_flags_t; #define MA_PA_CONTEXT_NOFLAGS PA_CONTEXT_NOFLAGS #define MA_PA_CONTEXT_NOAUTOSPAWN PA_CONTEXT_NOAUTOSPAWN #define MA_PA_CONTEXT_NOFAIL PA_CONTEXT_NOFAIL typedef pa_stream_flags_t ma_pa_stream_flags_t; #define MA_PA_STREAM_NOFLAGS PA_STREAM_NOFLAGS #define MA_PA_STREAM_START_CORKED PA_STREAM_START_CORKED #define MA_PA_STREAM_INTERPOLATE_TIMING PA_STREAM_INTERPOLATE_TIMING #define MA_PA_STREAM_NOT_MONOTONIC PA_STREAM_NOT_MONOTONIC #define MA_PA_STREAM_AUTO_TIMING_UPDATE PA_STREAM_AUTO_TIMING_UPDATE #define MA_PA_STREAM_NO_REMAP_CHANNELS PA_STREAM_NO_REMAP_CHANNELS #define MA_PA_STREAM_NO_REMIX_CHANNELS PA_STREAM_NO_REMIX_CHANNELS #define MA_PA_STREAM_FIX_FORMAT PA_STREAM_FIX_FORMAT #define MA_PA_STREAM_FIX_RATE PA_STREAM_FIX_RATE #define MA_PA_STREAM_FIX_CHANNELS PA_STREAM_FIX_CHANNELS #define MA_PA_STREAM_DONT_MOVE PA_STREAM_DONT_MOVE #define MA_PA_STREAM_VARIABLE_RATE PA_STREAM_VARIABLE_RATE #define MA_PA_STREAM_PEAK_DETECT PA_STREAM_PEAK_DETECT #define MA_PA_STREAM_START_MUTED PA_STREAM_START_MUTED #define MA_PA_STREAM_ADJUST_LATENCY PA_STREAM_ADJUST_LATENCY #define MA_PA_STREAM_EARLY_REQUESTS PA_STREAM_EARLY_REQUESTS #define MA_PA_STREAM_DONT_INHIBIT_AUTO_SUSPEND PA_STREAM_DONT_INHIBIT_AUTO_SUSPEND #define MA_PA_STREAM_START_UNMUTED PA_STREAM_START_UNMUTED #define MA_PA_STREAM_FAIL_ON_SUSPEND PA_STREAM_FAIL_ON_SUSPEND #define MA_PA_STREAM_RELATIVE_VOLUME PA_STREAM_RELATIVE_VOLUME #define MA_PA_STREAM_PASSTHROUGH PA_STREAM_PASSTHROUGH typedef pa_sink_flags_t ma_pa_sink_flags_t; #define MA_PA_SINK_NOFLAGS PA_SINK_NOFLAGS #define MA_PA_SINK_HW_VOLUME_CTRL PA_SINK_HW_VOLUME_CTRL #define MA_PA_SINK_LATENCY PA_SINK_LATENCY #define MA_PA_SINK_HARDWARE PA_SINK_HARDWARE #define MA_PA_SINK_NETWORK PA_SINK_NETWORK #define MA_PA_SINK_HW_MUTE_CTRL PA_SINK_HW_MUTE_CTRL #define MA_PA_SINK_DECIBEL_VOLUME PA_SINK_DECIBEL_VOLUME #define MA_PA_SINK_FLAT_VOLUME PA_SINK_FLAT_VOLUME #define MA_PA_SINK_DYNAMIC_LATENCY PA_SINK_DYNAMIC_LATENCY #define MA_PA_SINK_SET_FORMATS PA_SINK_SET_FORMATS typedef pa_source_flags_t ma_pa_source_flags_t; #define MA_PA_SOURCE_NOFLAGS PA_SOURCE_NOFLAGS #define MA_PA_SOURCE_HW_VOLUME_CTRL PA_SOURCE_HW_VOLUME_CTRL #define MA_PA_SOURCE_LATENCY PA_SOURCE_LATENCY #define MA_PA_SOURCE_HARDWARE PA_SOURCE_HARDWARE #define MA_PA_SOURCE_NETWORK PA_SOURCE_NETWORK #define MA_PA_SOURCE_HW_MUTE_CTRL PA_SOURCE_HW_MUTE_CTRL #define MA_PA_SOURCE_DECIBEL_VOLUME PA_SOURCE_DECIBEL_VOLUME #define MA_PA_SOURCE_DYNAMIC_LATENCY PA_SOURCE_DYNAMIC_LATENCY #define MA_PA_SOURCE_FLAT_VOLUME PA_SOURCE_FLAT_VOLUME typedef pa_context_state_t ma_pa_context_state_t; #define MA_PA_CONTEXT_UNCONNECTED PA_CONTEXT_UNCONNECTED #define MA_PA_CONTEXT_CONNECTING PA_CONTEXT_CONNECTING #define MA_PA_CONTEXT_AUTHORIZING PA_CONTEXT_AUTHORIZING #define MA_PA_CONTEXT_SETTING_NAME PA_CONTEXT_SETTING_NAME #define MA_PA_CONTEXT_READY PA_CONTEXT_READY #define MA_PA_CONTEXT_FAILED PA_CONTEXT_FAILED #define MA_PA_CONTEXT_TERMINATED PA_CONTEXT_TERMINATED typedef pa_stream_state_t ma_pa_stream_state_t; #define MA_PA_STREAM_UNCONNECTED PA_STREAM_UNCONNECTED #define MA_PA_STREAM_CREATING PA_STREAM_CREATING #define MA_PA_STREAM_READY PA_STREAM_READY #define MA_PA_STREAM_FAILED PA_STREAM_FAILED #define MA_PA_STREAM_TERMINATED PA_STREAM_TERMINATED typedef pa_operation_state_t ma_pa_operation_state_t; #define MA_PA_OPERATION_RUNNING PA_OPERATION_RUNNING #define MA_PA_OPERATION_DONE PA_OPERATION_DONE #define MA_PA_OPERATION_CANCELLED PA_OPERATION_CANCELLED typedef pa_sink_state_t ma_pa_sink_state_t; #define MA_PA_SINK_INVALID_STATE PA_SINK_INVALID_STATE #define MA_PA_SINK_RUNNING PA_SINK_RUNNING #define MA_PA_SINK_IDLE PA_SINK_IDLE #define MA_PA_SINK_SUSPENDED PA_SINK_SUSPENDED typedef pa_source_state_t ma_pa_source_state_t; #define MA_PA_SOURCE_INVALID_STATE PA_SOURCE_INVALID_STATE #define MA_PA_SOURCE_RUNNING PA_SOURCE_RUNNING #define MA_PA_SOURCE_IDLE PA_SOURCE_IDLE #define MA_PA_SOURCE_SUSPENDED PA_SOURCE_SUSPENDED typedef pa_seek_mode_t ma_pa_seek_mode_t; #define MA_PA_SEEK_RELATIVE PA_SEEK_RELATIVE #define MA_PA_SEEK_ABSOLUTE PA_SEEK_ABSOLUTE #define MA_PA_SEEK_RELATIVE_ON_READ PA_SEEK_RELATIVE_ON_READ #define MA_PA_SEEK_RELATIVE_END PA_SEEK_RELATIVE_END typedef pa_channel_position_t ma_pa_channel_position_t; #define MA_PA_CHANNEL_POSITION_INVALID PA_CHANNEL_POSITION_INVALID #define MA_PA_CHANNEL_POSITION_MONO PA_CHANNEL_POSITION_MONO #define MA_PA_CHANNEL_POSITION_FRONT_LEFT PA_CHANNEL_POSITION_FRONT_LEFT #define MA_PA_CHANNEL_POSITION_FRONT_RIGHT PA_CHANNEL_POSITION_FRONT_RIGHT #define MA_PA_CHANNEL_POSITION_FRONT_CENTER PA_CHANNEL_POSITION_FRONT_CENTER #define MA_PA_CHANNEL_POSITION_REAR_CENTER PA_CHANNEL_POSITION_REAR_CENTER #define MA_PA_CHANNEL_POSITION_REAR_LEFT PA_CHANNEL_POSITION_REAR_LEFT #define MA_PA_CHANNEL_POSITION_REAR_RIGHT PA_CHANNEL_POSITION_REAR_RIGHT #define MA_PA_CHANNEL_POSITION_LFE PA_CHANNEL_POSITION_LFE #define MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER #define MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER #define MA_PA_CHANNEL_POSITION_SIDE_LEFT PA_CHANNEL_POSITION_SIDE_LEFT #define MA_PA_CHANNEL_POSITION_SIDE_RIGHT PA_CHANNEL_POSITION_SIDE_RIGHT #define MA_PA_CHANNEL_POSITION_AUX0 PA_CHANNEL_POSITION_AUX0 #define MA_PA_CHANNEL_POSITION_AUX1 PA_CHANNEL_POSITION_AUX1 #define MA_PA_CHANNEL_POSITION_AUX2 PA_CHANNEL_POSITION_AUX2 #define MA_PA_CHANNEL_POSITION_AUX3 PA_CHANNEL_POSITION_AUX3 #define MA_PA_CHANNEL_POSITION_AUX4 PA_CHANNEL_POSITION_AUX4 #define MA_PA_CHANNEL_POSITION_AUX5 PA_CHANNEL_POSITION_AUX5 #define MA_PA_CHANNEL_POSITION_AUX6 PA_CHANNEL_POSITION_AUX6 #define MA_PA_CHANNEL_POSITION_AUX7 PA_CHANNEL_POSITION_AUX7 #define MA_PA_CHANNEL_POSITION_AUX8 PA_CHANNEL_POSITION_AUX8 #define MA_PA_CHANNEL_POSITION_AUX9 PA_CHANNEL_POSITION_AUX9 #define MA_PA_CHANNEL_POSITION_AUX10 PA_CHANNEL_POSITION_AUX10 #define MA_PA_CHANNEL_POSITION_AUX11 PA_CHANNEL_POSITION_AUX11 #define MA_PA_CHANNEL_POSITION_AUX12 PA_CHANNEL_POSITION_AUX12 #define MA_PA_CHANNEL_POSITION_AUX13 PA_CHANNEL_POSITION_AUX13 #define MA_PA_CHANNEL_POSITION_AUX14 PA_CHANNEL_POSITION_AUX14 #define MA_PA_CHANNEL_POSITION_AUX15 PA_CHANNEL_POSITION_AUX15 #define MA_PA_CHANNEL_POSITION_AUX16 PA_CHANNEL_POSITION_AUX16 #define MA_PA_CHANNEL_POSITION_AUX17 PA_CHANNEL_POSITION_AUX17 #define MA_PA_CHANNEL_POSITION_AUX18 PA_CHANNEL_POSITION_AUX18 #define MA_PA_CHANNEL_POSITION_AUX19 PA_CHANNEL_POSITION_AUX19 #define MA_PA_CHANNEL_POSITION_AUX20 PA_CHANNEL_POSITION_AUX20 #define MA_PA_CHANNEL_POSITION_AUX21 PA_CHANNEL_POSITION_AUX21 #define MA_PA_CHANNEL_POSITION_AUX22 PA_CHANNEL_POSITION_AUX22 #define MA_PA_CHANNEL_POSITION_AUX23 PA_CHANNEL_POSITION_AUX23 #define MA_PA_CHANNEL_POSITION_AUX24 PA_CHANNEL_POSITION_AUX24 #define MA_PA_CHANNEL_POSITION_AUX25 PA_CHANNEL_POSITION_AUX25 #define MA_PA_CHANNEL_POSITION_AUX26 PA_CHANNEL_POSITION_AUX26 #define MA_PA_CHANNEL_POSITION_AUX27 PA_CHANNEL_POSITION_AUX27 #define MA_PA_CHANNEL_POSITION_AUX28 PA_CHANNEL_POSITION_AUX28 #define MA_PA_CHANNEL_POSITION_AUX29 PA_CHANNEL_POSITION_AUX29 #define MA_PA_CHANNEL_POSITION_AUX30 PA_CHANNEL_POSITION_AUX30 #define MA_PA_CHANNEL_POSITION_AUX31 PA_CHANNEL_POSITION_AUX31 #define MA_PA_CHANNEL_POSITION_TOP_CENTER PA_CHANNEL_POSITION_TOP_CENTER #define MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT PA_CHANNEL_POSITION_TOP_FRONT_LEFT #define MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT PA_CHANNEL_POSITION_TOP_FRONT_RIGHT #define MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER PA_CHANNEL_POSITION_TOP_FRONT_CENTER #define MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT PA_CHANNEL_POSITION_TOP_REAR_LEFT #define MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT PA_CHANNEL_POSITION_TOP_REAR_RIGHT #define MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER PA_CHANNEL_POSITION_TOP_REAR_CENTER #define MA_PA_CHANNEL_POSITION_LEFT PA_CHANNEL_POSITION_LEFT #define MA_PA_CHANNEL_POSITION_RIGHT PA_CHANNEL_POSITION_RIGHT #define MA_PA_CHANNEL_POSITION_CENTER PA_CHANNEL_POSITION_CENTER #define MA_PA_CHANNEL_POSITION_SUBWOOFER PA_CHANNEL_POSITION_SUBWOOFER typedef pa_channel_map_def_t ma_pa_channel_map_def_t; #define MA_PA_CHANNEL_MAP_AIFF PA_CHANNEL_MAP_AIFF #define MA_PA_CHANNEL_MAP_ALSA PA_CHANNEL_MAP_ALSA #define MA_PA_CHANNEL_MAP_AUX PA_CHANNEL_MAP_AUX #define MA_PA_CHANNEL_MAP_WAVEEX PA_CHANNEL_MAP_WAVEEX #define MA_PA_CHANNEL_MAP_OSS PA_CHANNEL_MAP_OSS #define MA_PA_CHANNEL_MAP_DEFAULT PA_CHANNEL_MAP_DEFAULT typedef pa_sample_format_t ma_pa_sample_format_t; #define MA_PA_SAMPLE_INVALID PA_SAMPLE_INVALID #define MA_PA_SAMPLE_U8 PA_SAMPLE_U8 #define MA_PA_SAMPLE_ALAW PA_SAMPLE_ALAW #define MA_PA_SAMPLE_ULAW PA_SAMPLE_ULAW #define MA_PA_SAMPLE_S16LE PA_SAMPLE_S16LE #define MA_PA_SAMPLE_S16BE PA_SAMPLE_S16BE #define MA_PA_SAMPLE_FLOAT32LE PA_SAMPLE_FLOAT32LE #define MA_PA_SAMPLE_FLOAT32BE PA_SAMPLE_FLOAT32BE #define MA_PA_SAMPLE_S32LE PA_SAMPLE_S32LE #define MA_PA_SAMPLE_S32BE PA_SAMPLE_S32BE #define MA_PA_SAMPLE_S24LE PA_SAMPLE_S24LE #define MA_PA_SAMPLE_S24BE PA_SAMPLE_S24BE #define MA_PA_SAMPLE_S24_32LE PA_SAMPLE_S24_32LE #define MA_PA_SAMPLE_S24_32BE PA_SAMPLE_S24_32BE typedef pa_mainloop ma_pa_mainloop; typedef pa_threaded_mainloop ma_pa_threaded_mainloop; typedef pa_mainloop_api ma_pa_mainloop_api; typedef pa_context ma_pa_context; typedef pa_operation ma_pa_operation; typedef pa_stream ma_pa_stream; typedef pa_spawn_api ma_pa_spawn_api; typedef pa_buffer_attr ma_pa_buffer_attr; typedef pa_channel_map ma_pa_channel_map; typedef pa_cvolume ma_pa_cvolume; typedef pa_sample_spec ma_pa_sample_spec; typedef pa_sink_info ma_pa_sink_info; typedef pa_source_info ma_pa_source_info; typedef pa_context_notify_cb_t ma_pa_context_notify_cb_t; typedef pa_sink_info_cb_t ma_pa_sink_info_cb_t; typedef pa_source_info_cb_t ma_pa_source_info_cb_t; typedef pa_stream_success_cb_t ma_pa_stream_success_cb_t; typedef pa_stream_request_cb_t ma_pa_stream_request_cb_t; typedef pa_stream_notify_cb_t ma_pa_stream_notify_cb_t; typedef pa_free_cb_t ma_pa_free_cb_t; #else #define MA_PA_OK 0 #define MA_PA_ERR_ACCESS 1 #define MA_PA_ERR_INVALID 2 #define MA_PA_ERR_NOENTITY 5 #define MA_PA_ERR_NOTSUPPORTED 19 #define MA_PA_CHANNELS_MAX 32 #define MA_PA_RATE_MAX 384000 typedef int ma_pa_context_flags_t; #define MA_PA_CONTEXT_NOFLAGS 0x00000000 #define MA_PA_CONTEXT_NOAUTOSPAWN 0x00000001 #define MA_PA_CONTEXT_NOFAIL 0x00000002 typedef int ma_pa_stream_flags_t; #define MA_PA_STREAM_NOFLAGS 0x00000000 #define MA_PA_STREAM_START_CORKED 0x00000001 #define MA_PA_STREAM_INTERPOLATE_TIMING 0x00000002 #define MA_PA_STREAM_NOT_MONOTONIC 0x00000004 #define MA_PA_STREAM_AUTO_TIMING_UPDATE 0x00000008 #define MA_PA_STREAM_NO_REMAP_CHANNELS 0x00000010 #define MA_PA_STREAM_NO_REMIX_CHANNELS 0x00000020 #define MA_PA_STREAM_FIX_FORMAT 0x00000040 #define MA_PA_STREAM_FIX_RATE 0x00000080 #define MA_PA_STREAM_FIX_CHANNELS 0x00000100 #define MA_PA_STREAM_DONT_MOVE 0x00000200 #define MA_PA_STREAM_VARIABLE_RATE 0x00000400 #define MA_PA_STREAM_PEAK_DETECT 0x00000800 #define MA_PA_STREAM_START_MUTED 0x00001000 #define MA_PA_STREAM_ADJUST_LATENCY 0x00002000 #define MA_PA_STREAM_EARLY_REQUESTS 0x00004000 #define MA_PA_STREAM_DONT_INHIBIT_AUTO_SUSPEND 0x00008000 #define MA_PA_STREAM_START_UNMUTED 0x00010000 #define MA_PA_STREAM_FAIL_ON_SUSPEND 0x00020000 #define MA_PA_STREAM_RELATIVE_VOLUME 0x00040000 #define MA_PA_STREAM_PASSTHROUGH 0x00080000 typedef int ma_pa_sink_flags_t; #define MA_PA_SINK_NOFLAGS 0x00000000 #define MA_PA_SINK_HW_VOLUME_CTRL 0x00000001 #define MA_PA_SINK_LATENCY 0x00000002 #define MA_PA_SINK_HARDWARE 0x00000004 #define MA_PA_SINK_NETWORK 0x00000008 #define MA_PA_SINK_HW_MUTE_CTRL 0x00000010 #define MA_PA_SINK_DECIBEL_VOLUME 0x00000020 #define MA_PA_SINK_FLAT_VOLUME 0x00000040 #define MA_PA_SINK_DYNAMIC_LATENCY 0x00000080 #define MA_PA_SINK_SET_FORMATS 0x00000100 typedef int ma_pa_source_flags_t; #define MA_PA_SOURCE_NOFLAGS 0x00000000 #define MA_PA_SOURCE_HW_VOLUME_CTRL 0x00000001 #define MA_PA_SOURCE_LATENCY 0x00000002 #define MA_PA_SOURCE_HARDWARE 0x00000004 #define MA_PA_SOURCE_NETWORK 0x00000008 #define MA_PA_SOURCE_HW_MUTE_CTRL 0x00000010 #define MA_PA_SOURCE_DECIBEL_VOLUME 0x00000020 #define MA_PA_SOURCE_DYNAMIC_LATENCY 0x00000040 #define MA_PA_SOURCE_FLAT_VOLUME 0x00000080 typedef int ma_pa_context_state_t; #define MA_PA_CONTEXT_UNCONNECTED 0 #define MA_PA_CONTEXT_CONNECTING 1 #define MA_PA_CONTEXT_AUTHORIZING 2 #define MA_PA_CONTEXT_SETTING_NAME 3 #define MA_PA_CONTEXT_READY 4 #define MA_PA_CONTEXT_FAILED 5 #define MA_PA_CONTEXT_TERMINATED 6 typedef int ma_pa_stream_state_t; #define MA_PA_STREAM_UNCONNECTED 0 #define MA_PA_STREAM_CREATING 1 #define MA_PA_STREAM_READY 2 #define MA_PA_STREAM_FAILED 3 #define MA_PA_STREAM_TERMINATED 4 typedef int ma_pa_operation_state_t; #define MA_PA_OPERATION_RUNNING 0 #define MA_PA_OPERATION_DONE 1 #define MA_PA_OPERATION_CANCELLED 2 typedef int ma_pa_sink_state_t; #define MA_PA_SINK_INVALID_STATE -1 #define MA_PA_SINK_RUNNING 0 #define MA_PA_SINK_IDLE 1 #define MA_PA_SINK_SUSPENDED 2 typedef int ma_pa_source_state_t; #define MA_PA_SOURCE_INVALID_STATE -1 #define MA_PA_SOURCE_RUNNING 0 #define MA_PA_SOURCE_IDLE 1 #define MA_PA_SOURCE_SUSPENDED 2 typedef int ma_pa_seek_mode_t; #define MA_PA_SEEK_RELATIVE 0 #define MA_PA_SEEK_ABSOLUTE 1 #define MA_PA_SEEK_RELATIVE_ON_READ 2 #define MA_PA_SEEK_RELATIVE_END 3 typedef int ma_pa_channel_position_t; #define MA_PA_CHANNEL_POSITION_INVALID -1 #define MA_PA_CHANNEL_POSITION_MONO 0 #define MA_PA_CHANNEL_POSITION_FRONT_LEFT 1 #define MA_PA_CHANNEL_POSITION_FRONT_RIGHT 2 #define MA_PA_CHANNEL_POSITION_FRONT_CENTER 3 #define MA_PA_CHANNEL_POSITION_REAR_CENTER 4 #define MA_PA_CHANNEL_POSITION_REAR_LEFT 5 #define MA_PA_CHANNEL_POSITION_REAR_RIGHT 6 #define MA_PA_CHANNEL_POSITION_LFE 7 #define MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER 8 #define MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER 9 #define MA_PA_CHANNEL_POSITION_SIDE_LEFT 10 #define MA_PA_CHANNEL_POSITION_SIDE_RIGHT 11 #define MA_PA_CHANNEL_POSITION_AUX0 12 #define MA_PA_CHANNEL_POSITION_AUX1 13 #define MA_PA_CHANNEL_POSITION_AUX2 14 #define MA_PA_CHANNEL_POSITION_AUX3 15 #define MA_PA_CHANNEL_POSITION_AUX4 16 #define MA_PA_CHANNEL_POSITION_AUX5 17 #define MA_PA_CHANNEL_POSITION_AUX6 18 #define MA_PA_CHANNEL_POSITION_AUX7 19 #define MA_PA_CHANNEL_POSITION_AUX8 20 #define MA_PA_CHANNEL_POSITION_AUX9 21 #define MA_PA_CHANNEL_POSITION_AUX10 22 #define MA_PA_CHANNEL_POSITION_AUX11 23 #define MA_PA_CHANNEL_POSITION_AUX12 24 #define MA_PA_CHANNEL_POSITION_AUX13 25 #define MA_PA_CHANNEL_POSITION_AUX14 26 #define MA_PA_CHANNEL_POSITION_AUX15 27 #define MA_PA_CHANNEL_POSITION_AUX16 28 #define MA_PA_CHANNEL_POSITION_AUX17 29 #define MA_PA_CHANNEL_POSITION_AUX18 30 #define MA_PA_CHANNEL_POSITION_AUX19 31 #define MA_PA_CHANNEL_POSITION_AUX20 32 #define MA_PA_CHANNEL_POSITION_AUX21 33 #define MA_PA_CHANNEL_POSITION_AUX22 34 #define MA_PA_CHANNEL_POSITION_AUX23 35 #define MA_PA_CHANNEL_POSITION_AUX24 36 #define MA_PA_CHANNEL_POSITION_AUX25 37 #define MA_PA_CHANNEL_POSITION_AUX26 38 #define MA_PA_CHANNEL_POSITION_AUX27 39 #define MA_PA_CHANNEL_POSITION_AUX28 40 #define MA_PA_CHANNEL_POSITION_AUX29 41 #define MA_PA_CHANNEL_POSITION_AUX30 42 #define MA_PA_CHANNEL_POSITION_AUX31 43 #define MA_PA_CHANNEL_POSITION_TOP_CENTER 44 #define MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT 45 #define MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT 46 #define MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER 47 #define MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT 48 #define MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT 49 #define MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER 50 #define MA_PA_CHANNEL_POSITION_LEFT MA_PA_CHANNEL_POSITION_FRONT_LEFT #define MA_PA_CHANNEL_POSITION_RIGHT MA_PA_CHANNEL_POSITION_FRONT_RIGHT #define MA_PA_CHANNEL_POSITION_CENTER MA_PA_CHANNEL_POSITION_FRONT_CENTER #define MA_PA_CHANNEL_POSITION_SUBWOOFER MA_PA_CHANNEL_POSITION_LFE typedef int ma_pa_channel_map_def_t; #define MA_PA_CHANNEL_MAP_AIFF 0 #define MA_PA_CHANNEL_MAP_ALSA 1 #define MA_PA_CHANNEL_MAP_AUX 2 #define MA_PA_CHANNEL_MAP_WAVEEX 3 #define MA_PA_CHANNEL_MAP_OSS 4 #define MA_PA_CHANNEL_MAP_DEFAULT MA_PA_CHANNEL_MAP_AIFF typedef int ma_pa_sample_format_t; #define MA_PA_SAMPLE_INVALID -1 #define MA_PA_SAMPLE_U8 0 #define MA_PA_SAMPLE_ALAW 1 #define MA_PA_SAMPLE_ULAW 2 #define MA_PA_SAMPLE_S16LE 3 #define MA_PA_SAMPLE_S16BE 4 #define MA_PA_SAMPLE_FLOAT32LE 5 #define MA_PA_SAMPLE_FLOAT32BE 6 #define MA_PA_SAMPLE_S32LE 7 #define MA_PA_SAMPLE_S32BE 8 #define MA_PA_SAMPLE_S24LE 9 #define MA_PA_SAMPLE_S24BE 10 #define MA_PA_SAMPLE_S24_32LE 11 #define MA_PA_SAMPLE_S24_32BE 12 typedef struct ma_pa_mainloop ma_pa_mainloop; typedef struct ma_pa_threaded_mainloop ma_pa_threaded_mainloop; typedef struct ma_pa_mainloop_api ma_pa_mainloop_api; typedef struct ma_pa_context ma_pa_context; typedef struct ma_pa_operation ma_pa_operation; typedef struct ma_pa_stream ma_pa_stream; typedef struct ma_pa_spawn_api ma_pa_spawn_api; typedef struct { ma_uint32 maxlength; ma_uint32 tlength; ma_uint32 prebuf; ma_uint32 minreq; ma_uint32 fragsize; } ma_pa_buffer_attr; typedef struct { ma_uint8 channels; ma_pa_channel_position_t map[MA_PA_CHANNELS_MAX]; } ma_pa_channel_map; typedef struct { ma_uint8 channels; ma_uint32 values[MA_PA_CHANNELS_MAX]; } ma_pa_cvolume; typedef struct { ma_pa_sample_format_t format; ma_uint32 rate; ma_uint8 channels; } ma_pa_sample_spec; typedef struct { const char* name; ma_uint32 index; const char* description; ma_pa_sample_spec sample_spec; ma_pa_channel_map channel_map; ma_uint32 owner_module; ma_pa_cvolume volume; int mute; ma_uint32 monitor_source; const char* monitor_source_name; ma_uint64 latency; const char* driver; ma_pa_sink_flags_t flags; void* proplist; ma_uint64 configured_latency; ma_uint32 base_volume; ma_pa_sink_state_t state; ma_uint32 n_volume_steps; ma_uint32 card; ma_uint32 n_ports; void** ports; void* active_port; ma_uint8 n_formats; void** formats; } ma_pa_sink_info; typedef struct { const char *name; ma_uint32 index; const char *description; ma_pa_sample_spec sample_spec; ma_pa_channel_map channel_map; ma_uint32 owner_module; ma_pa_cvolume volume; int mute; ma_uint32 monitor_of_sink; const char *monitor_of_sink_name; ma_uint64 latency; const char *driver; ma_pa_source_flags_t flags; void* proplist; ma_uint64 configured_latency; ma_uint32 base_volume; ma_pa_source_state_t state; ma_uint32 n_volume_steps; ma_uint32 card; ma_uint32 n_ports; void** ports; void* active_port; ma_uint8 n_formats; void** formats; } ma_pa_source_info; typedef void (* ma_pa_context_notify_cb_t)(ma_pa_context* c, void* userdata); typedef void (* ma_pa_sink_info_cb_t) (ma_pa_context* c, const ma_pa_sink_info* i, int eol, void* userdata); typedef void (* ma_pa_source_info_cb_t) (ma_pa_context* c, const ma_pa_source_info* i, int eol, void* userdata); typedef void (* ma_pa_stream_success_cb_t)(ma_pa_stream* s, int success, void* userdata); typedef void (* ma_pa_stream_request_cb_t)(ma_pa_stream* s, size_t nbytes, void* userdata); typedef void (* ma_pa_stream_notify_cb_t) (ma_pa_stream* s, void* userdata); typedef void (* ma_pa_free_cb_t) (void* p); #endif typedef ma_pa_mainloop* (* ma_pa_mainloop_new_proc) (void); typedef void (* ma_pa_mainloop_free_proc) (ma_pa_mainloop* m); typedef void (* ma_pa_mainloop_quit_proc) (ma_pa_mainloop* m, int retval); typedef ma_pa_mainloop_api* (* ma_pa_mainloop_get_api_proc) (ma_pa_mainloop* m); typedef int (* ma_pa_mainloop_iterate_proc) (ma_pa_mainloop* m, int block, int* retval); typedef void (* ma_pa_mainloop_wakeup_proc) (ma_pa_mainloop* m); typedef ma_pa_threaded_mainloop* (* ma_pa_threaded_mainloop_new_proc) (void); typedef void (* ma_pa_threaded_mainloop_free_proc) (ma_pa_threaded_mainloop* m); typedef int (* ma_pa_threaded_mainloop_start_proc) (ma_pa_threaded_mainloop* m); typedef void (* ma_pa_threaded_mainloop_stop_proc) (ma_pa_threaded_mainloop* m); typedef void (* ma_pa_threaded_mainloop_lock_proc) (ma_pa_threaded_mainloop* m); typedef void (* ma_pa_threaded_mainloop_unlock_proc) (ma_pa_threaded_mainloop* m); typedef void (* ma_pa_threaded_mainloop_wait_proc) (ma_pa_threaded_mainloop* m); typedef void (* ma_pa_threaded_mainloop_signal_proc) (ma_pa_threaded_mainloop* m, int wait_for_accept); typedef void (* ma_pa_threaded_mainloop_accept_proc) (ma_pa_threaded_mainloop* m); typedef int (* ma_pa_threaded_mainloop_get_retval_proc) (ma_pa_threaded_mainloop* m); typedef ma_pa_mainloop_api* (* ma_pa_threaded_mainloop_get_api_proc) (ma_pa_threaded_mainloop* m); typedef int (* ma_pa_threaded_mainloop_in_thread_proc) (ma_pa_threaded_mainloop* m); typedef void (* ma_pa_threaded_mainloop_set_name_proc) (ma_pa_threaded_mainloop* m, const char* name); typedef ma_pa_context* (* ma_pa_context_new_proc) (ma_pa_mainloop_api* mainloop, const char* name); typedef void (* ma_pa_context_unref_proc) (ma_pa_context* c); typedef int (* ma_pa_context_connect_proc) (ma_pa_context* c, const char* server, ma_pa_context_flags_t flags, const ma_pa_spawn_api* api); typedef void (* ma_pa_context_disconnect_proc) (ma_pa_context* c); typedef void (* ma_pa_context_set_state_callback_proc) (ma_pa_context* c, ma_pa_context_notify_cb_t cb, void* userdata); typedef ma_pa_context_state_t (* ma_pa_context_get_state_proc) (ma_pa_context* c); typedef ma_pa_operation* (* ma_pa_context_get_sink_info_list_proc) (ma_pa_context* c, ma_pa_sink_info_cb_t cb, void* userdata); typedef ma_pa_operation* (* ma_pa_context_get_source_info_list_proc) (ma_pa_context* c, ma_pa_source_info_cb_t cb, void* userdata); typedef ma_pa_operation* (* ma_pa_context_get_sink_info_by_name_proc) (ma_pa_context* c, const char* name, ma_pa_sink_info_cb_t cb, void* userdata); typedef ma_pa_operation* (* ma_pa_context_get_source_info_by_name_proc)(ma_pa_context* c, const char* name, ma_pa_source_info_cb_t cb, void* userdata); typedef void (* ma_pa_operation_unref_proc) (ma_pa_operation* o); typedef ma_pa_operation_state_t (* ma_pa_operation_get_state_proc) (ma_pa_operation* o); typedef ma_pa_channel_map* (* ma_pa_channel_map_init_extend_proc) (ma_pa_channel_map* m, unsigned channels, ma_pa_channel_map_def_t def); typedef int (* ma_pa_channel_map_valid_proc) (const ma_pa_channel_map* m); typedef int (* ma_pa_channel_map_compatible_proc) (const ma_pa_channel_map* m, const ma_pa_sample_spec* ss); typedef ma_pa_stream* (* ma_pa_stream_new_proc) (ma_pa_context* c, const char* name, const ma_pa_sample_spec* ss, const ma_pa_channel_map* map); typedef void (* ma_pa_stream_unref_proc) (ma_pa_stream* s); typedef int (* ma_pa_stream_connect_playback_proc) (ma_pa_stream* s, const char* dev, const ma_pa_buffer_attr* attr, ma_pa_stream_flags_t flags, const ma_pa_cvolume* volume, ma_pa_stream* sync_stream); typedef int (* ma_pa_stream_connect_record_proc) (ma_pa_stream* s, const char* dev, const ma_pa_buffer_attr* attr, ma_pa_stream_flags_t flags); typedef int (* ma_pa_stream_disconnect_proc) (ma_pa_stream* s); typedef ma_pa_stream_state_t (* ma_pa_stream_get_state_proc) (ma_pa_stream* s); typedef const ma_pa_sample_spec* (* ma_pa_stream_get_sample_spec_proc) (ma_pa_stream* s); typedef const ma_pa_channel_map* (* ma_pa_stream_get_channel_map_proc) (ma_pa_stream* s); typedef const ma_pa_buffer_attr* (* ma_pa_stream_get_buffer_attr_proc) (ma_pa_stream* s); typedef ma_pa_operation* (* ma_pa_stream_set_buffer_attr_proc) (ma_pa_stream* s, const ma_pa_buffer_attr* attr, ma_pa_stream_success_cb_t cb, void* userdata); typedef const char* (* ma_pa_stream_get_device_name_proc) (ma_pa_stream* s); typedef void (* ma_pa_stream_set_write_callback_proc) (ma_pa_stream* s, ma_pa_stream_request_cb_t cb, void* userdata); typedef void (* ma_pa_stream_set_read_callback_proc) (ma_pa_stream* s, ma_pa_stream_request_cb_t cb, void* userdata); typedef void (* ma_pa_stream_set_suspended_callback_proc) (ma_pa_stream* s, ma_pa_stream_notify_cb_t cb, void* userdata); typedef void (* ma_pa_stream_set_moved_callback_proc) (ma_pa_stream* s, ma_pa_stream_notify_cb_t cb, void* userdata); typedef int (* ma_pa_stream_is_suspended_proc) (const ma_pa_stream* s); typedef ma_pa_operation* (* ma_pa_stream_flush_proc) (ma_pa_stream* s, ma_pa_stream_success_cb_t cb, void* userdata); typedef ma_pa_operation* (* ma_pa_stream_drain_proc) (ma_pa_stream* s, ma_pa_stream_success_cb_t cb, void* userdata); typedef int (* ma_pa_stream_is_corked_proc) (ma_pa_stream* s); typedef ma_pa_operation* (* ma_pa_stream_cork_proc) (ma_pa_stream* s, int b, ma_pa_stream_success_cb_t cb, void* userdata); typedef ma_pa_operation* (* ma_pa_stream_trigger_proc) (ma_pa_stream* s, ma_pa_stream_success_cb_t cb, void* userdata); typedef int (* ma_pa_stream_begin_write_proc) (ma_pa_stream* s, void** data, size_t* nbytes); typedef int (* ma_pa_stream_write_proc) (ma_pa_stream* s, const void* data, size_t nbytes, ma_pa_free_cb_t free_cb, int64_t offset, ma_pa_seek_mode_t seek); typedef int (* ma_pa_stream_peek_proc) (ma_pa_stream* s, const void** data, size_t* nbytes); typedef int (* ma_pa_stream_drop_proc) (ma_pa_stream* s); typedef size_t (* ma_pa_stream_writable_size_proc) (ma_pa_stream* s); typedef size_t (* ma_pa_stream_readable_size_proc) (ma_pa_stream* s); typedef struct { ma_uint32 count; ma_uint32 capacity; ma_device_info* pInfo; } ma_pulse_device_enum_data; static ma_result ma_result_from_pulse(int result) { if (result < 0) { return MA_ERROR; } switch (result) { case MA_PA_OK: return MA_SUCCESS; case MA_PA_ERR_ACCESS: return MA_ACCESS_DENIED; case MA_PA_ERR_INVALID: return MA_INVALID_ARGS; case MA_PA_ERR_NOENTITY: return MA_NO_DEVICE; default: return MA_ERROR; } } #if 0 static ma_pa_sample_format_t ma_format_to_pulse(ma_format format) { if (ma_is_little_endian()) { switch (format) { case ma_format_s16: return MA_PA_SAMPLE_S16LE; case ma_format_s24: return MA_PA_SAMPLE_S24LE; case ma_format_s32: return MA_PA_SAMPLE_S32LE; case ma_format_f32: return MA_PA_SAMPLE_FLOAT32LE; default: break; } } else { switch (format) { case ma_format_s16: return MA_PA_SAMPLE_S16BE; case ma_format_s24: return MA_PA_SAMPLE_S24BE; case ma_format_s32: return MA_PA_SAMPLE_S32BE; case ma_format_f32: return MA_PA_SAMPLE_FLOAT32BE; default: break; } } /* Endian agnostic. */ switch (format) { case ma_format_u8: return MA_PA_SAMPLE_U8; default: return MA_PA_SAMPLE_INVALID; } } #endif static ma_format ma_format_from_pulse(ma_pa_sample_format_t format) { if (ma_is_little_endian()) { switch (format) { case MA_PA_SAMPLE_S16LE: return ma_format_s16; case MA_PA_SAMPLE_S24LE: return ma_format_s24; case MA_PA_SAMPLE_S32LE: return ma_format_s32; case MA_PA_SAMPLE_FLOAT32LE: return ma_format_f32; default: break; } } else { switch (format) { case MA_PA_SAMPLE_S16BE: return ma_format_s16; case MA_PA_SAMPLE_S24BE: return ma_format_s24; case MA_PA_SAMPLE_S32BE: return ma_format_s32; case MA_PA_SAMPLE_FLOAT32BE: return ma_format_f32; default: break; } } /* Endian agnostic. */ switch (format) { case MA_PA_SAMPLE_U8: return ma_format_u8; default: return ma_format_unknown; } } static ma_channel ma_channel_position_from_pulse(ma_pa_channel_position_t position) { switch (position) { case MA_PA_CHANNEL_POSITION_INVALID: return MA_CHANNEL_NONE; case MA_PA_CHANNEL_POSITION_MONO: return MA_CHANNEL_MONO; case MA_PA_CHANNEL_POSITION_FRONT_LEFT: return MA_CHANNEL_FRONT_LEFT; case MA_PA_CHANNEL_POSITION_FRONT_RIGHT: return MA_CHANNEL_FRONT_RIGHT; case MA_PA_CHANNEL_POSITION_FRONT_CENTER: return MA_CHANNEL_FRONT_CENTER; case MA_PA_CHANNEL_POSITION_REAR_CENTER: return MA_CHANNEL_BACK_CENTER; case MA_PA_CHANNEL_POSITION_REAR_LEFT: return MA_CHANNEL_BACK_LEFT; case MA_PA_CHANNEL_POSITION_REAR_RIGHT: return MA_CHANNEL_BACK_RIGHT; case MA_PA_CHANNEL_POSITION_LFE: return MA_CHANNEL_LFE; case MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: return MA_CHANNEL_FRONT_LEFT_CENTER; case MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: return MA_CHANNEL_FRONT_RIGHT_CENTER; case MA_PA_CHANNEL_POSITION_SIDE_LEFT: return MA_CHANNEL_SIDE_LEFT; case MA_PA_CHANNEL_POSITION_SIDE_RIGHT: return MA_CHANNEL_SIDE_RIGHT; case MA_PA_CHANNEL_POSITION_AUX0: return MA_CHANNEL_AUX_0; case MA_PA_CHANNEL_POSITION_AUX1: return MA_CHANNEL_AUX_1; case MA_PA_CHANNEL_POSITION_AUX2: return MA_CHANNEL_AUX_2; case MA_PA_CHANNEL_POSITION_AUX3: return MA_CHANNEL_AUX_3; case MA_PA_CHANNEL_POSITION_AUX4: return MA_CHANNEL_AUX_4; case MA_PA_CHANNEL_POSITION_AUX5: return MA_CHANNEL_AUX_5; case MA_PA_CHANNEL_POSITION_AUX6: return MA_CHANNEL_AUX_6; case MA_PA_CHANNEL_POSITION_AUX7: return MA_CHANNEL_AUX_7; case MA_PA_CHANNEL_POSITION_AUX8: return MA_CHANNEL_AUX_8; case MA_PA_CHANNEL_POSITION_AUX9: return MA_CHANNEL_AUX_9; case MA_PA_CHANNEL_POSITION_AUX10: return MA_CHANNEL_AUX_10; case MA_PA_CHANNEL_POSITION_AUX11: return MA_CHANNEL_AUX_11; case MA_PA_CHANNEL_POSITION_AUX12: return MA_CHANNEL_AUX_12; case MA_PA_CHANNEL_POSITION_AUX13: return MA_CHANNEL_AUX_13; case MA_PA_CHANNEL_POSITION_AUX14: return MA_CHANNEL_AUX_14; case MA_PA_CHANNEL_POSITION_AUX15: return MA_CHANNEL_AUX_15; case MA_PA_CHANNEL_POSITION_AUX16: return MA_CHANNEL_AUX_16; case MA_PA_CHANNEL_POSITION_AUX17: return MA_CHANNEL_AUX_17; case MA_PA_CHANNEL_POSITION_AUX18: return MA_CHANNEL_AUX_18; case MA_PA_CHANNEL_POSITION_AUX19: return MA_CHANNEL_AUX_19; case MA_PA_CHANNEL_POSITION_AUX20: return MA_CHANNEL_AUX_20; case MA_PA_CHANNEL_POSITION_AUX21: return MA_CHANNEL_AUX_21; case MA_PA_CHANNEL_POSITION_AUX22: return MA_CHANNEL_AUX_22; case MA_PA_CHANNEL_POSITION_AUX23: return MA_CHANNEL_AUX_23; case MA_PA_CHANNEL_POSITION_AUX24: return MA_CHANNEL_AUX_24; case MA_PA_CHANNEL_POSITION_AUX25: return MA_CHANNEL_AUX_25; case MA_PA_CHANNEL_POSITION_AUX26: return MA_CHANNEL_AUX_26; case MA_PA_CHANNEL_POSITION_AUX27: return MA_CHANNEL_AUX_27; case MA_PA_CHANNEL_POSITION_AUX28: return MA_CHANNEL_AUX_28; case MA_PA_CHANNEL_POSITION_AUX29: return MA_CHANNEL_AUX_29; case MA_PA_CHANNEL_POSITION_AUX30: return MA_CHANNEL_AUX_30; case MA_PA_CHANNEL_POSITION_AUX31: return MA_CHANNEL_AUX_31; case MA_PA_CHANNEL_POSITION_TOP_CENTER: return MA_CHANNEL_TOP_CENTER; case MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT: return MA_CHANNEL_TOP_FRONT_LEFT; case MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: return MA_CHANNEL_TOP_FRONT_RIGHT; case MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER: return MA_CHANNEL_TOP_FRONT_CENTER; case MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT: return MA_CHANNEL_TOP_BACK_LEFT; case MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT: return MA_CHANNEL_TOP_BACK_RIGHT; case MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER: return MA_CHANNEL_TOP_BACK_CENTER; default: return MA_CHANNEL_NONE; } } #if 0 static ma_pa_channel_position_t ma_channel_position_to_pulse(ma_channel position) { switch (position) { case MA_CHANNEL_NONE: return MA_PA_CHANNEL_POSITION_INVALID; case MA_CHANNEL_FRONT_LEFT: return MA_PA_CHANNEL_POSITION_FRONT_LEFT; case MA_CHANNEL_FRONT_RIGHT: return MA_PA_CHANNEL_POSITION_FRONT_RIGHT; case MA_CHANNEL_FRONT_CENTER: return MA_PA_CHANNEL_POSITION_FRONT_CENTER; case MA_CHANNEL_LFE: return MA_PA_CHANNEL_POSITION_LFE; case MA_CHANNEL_BACK_LEFT: return MA_PA_CHANNEL_POSITION_REAR_LEFT; case MA_CHANNEL_BACK_RIGHT: return MA_PA_CHANNEL_POSITION_REAR_RIGHT; case MA_CHANNEL_FRONT_LEFT_CENTER: return MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER; case MA_CHANNEL_FRONT_RIGHT_CENTER: return MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER; case MA_CHANNEL_BACK_CENTER: return MA_PA_CHANNEL_POSITION_REAR_CENTER; case MA_CHANNEL_SIDE_LEFT: return MA_PA_CHANNEL_POSITION_SIDE_LEFT; case MA_CHANNEL_SIDE_RIGHT: return MA_PA_CHANNEL_POSITION_SIDE_RIGHT; case MA_CHANNEL_TOP_CENTER: return MA_PA_CHANNEL_POSITION_TOP_CENTER; case MA_CHANNEL_TOP_FRONT_LEFT: return MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT; case MA_CHANNEL_TOP_FRONT_CENTER: return MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER; case MA_CHANNEL_TOP_FRONT_RIGHT: return MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT; case MA_CHANNEL_TOP_BACK_LEFT: return MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT; case MA_CHANNEL_TOP_BACK_CENTER: return MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER; case MA_CHANNEL_TOP_BACK_RIGHT: return MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT; case MA_CHANNEL_19: return MA_PA_CHANNEL_POSITION_AUX18; case MA_CHANNEL_20: return MA_PA_CHANNEL_POSITION_AUX19; case MA_CHANNEL_21: return MA_PA_CHANNEL_POSITION_AUX20; case MA_CHANNEL_22: return MA_PA_CHANNEL_POSITION_AUX21; case MA_CHANNEL_23: return MA_PA_CHANNEL_POSITION_AUX22; case MA_CHANNEL_24: return MA_PA_CHANNEL_POSITION_AUX23; case MA_CHANNEL_25: return MA_PA_CHANNEL_POSITION_AUX24; case MA_CHANNEL_26: return MA_PA_CHANNEL_POSITION_AUX25; case MA_CHANNEL_27: return MA_PA_CHANNEL_POSITION_AUX26; case MA_CHANNEL_28: return MA_PA_CHANNEL_POSITION_AUX27; case MA_CHANNEL_29: return MA_PA_CHANNEL_POSITION_AUX28; case MA_CHANNEL_30: return MA_PA_CHANNEL_POSITION_AUX29; case MA_CHANNEL_31: return MA_PA_CHANNEL_POSITION_AUX30; case MA_CHANNEL_32: return MA_PA_CHANNEL_POSITION_AUX31; default: return (ma_pa_channel_position_t)position; } } #endif static ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_ptr pMainLoop, ma_pa_operation* pOP) { int resultPA; ma_pa_operation_state_t state; MA_ASSERT(pContext != NULL); MA_ASSERT(pOP != NULL); for (;;) { state = ((ma_pa_operation_get_state_proc)pContext->pulse.pa_operation_get_state)(pOP); if (state != MA_PA_OPERATION_RUNNING) { break; /* Done. */ } resultPA = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pMainLoop, 1, NULL); if (resultPA < 0) { return ma_result_from_pulse(resultPA); } } return MA_SUCCESS; } static ma_result ma_wait_for_operation_and_unref__pulse(ma_context* pContext, ma_ptr pMainLoop, ma_pa_operation* pOP) { ma_result result; if (pOP == NULL) { return MA_INVALID_ARGS; } result = ma_wait_for_operation__pulse(pContext, pMainLoop, pOP); ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); return result; } static ma_result ma_wait_for_pa_context_to_connect__pulse(ma_context* pContext, ma_ptr pMainLoop, ma_ptr pPulseContext) { int resultPA; ma_pa_context_state_t state; for (;;) { state = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)((ma_pa_context*)pPulseContext); if (state == MA_PA_CONTEXT_READY) { break; /* Done. */ } if (state == MA_PA_CONTEXT_FAILED || state == MA_PA_CONTEXT_TERMINATED) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while connecting the PulseAudio context."); return MA_ERROR; } resultPA = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pMainLoop, 1, NULL); if (resultPA < 0) { return ma_result_from_pulse(resultPA); } } /* Should never get here. */ return MA_SUCCESS; } static ma_result ma_wait_for_pa_stream_to_connect__pulse(ma_context* pContext, ma_ptr pMainLoop, ma_ptr pStream) { int resultPA; ma_pa_stream_state_t state; for (;;) { state = ((ma_pa_stream_get_state_proc)pContext->pulse.pa_stream_get_state)((ma_pa_stream*)pStream); if (state == MA_PA_STREAM_READY) { break; /* Done. */ } if (state == MA_PA_STREAM_FAILED || state == MA_PA_STREAM_TERMINATED) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while connecting the PulseAudio stream."); return MA_ERROR; } resultPA = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pMainLoop, 1, NULL); if (resultPA < 0) { return ma_result_from_pulse(resultPA); } } return MA_SUCCESS; } static ma_result ma_init_pa_mainloop_and_pa_context__pulse(ma_context* pContext, const char* pApplicationName, const char* pServerName, ma_bool32 tryAutoSpawn, ma_ptr* ppMainLoop, ma_ptr* ppPulseContext) { ma_result result; ma_ptr pMainLoop; ma_ptr pPulseContext; MA_ASSERT(ppMainLoop != NULL); MA_ASSERT(ppPulseContext != NULL); /* The PulseAudio context maps well to miniaudio's notion of a context. The pa_context object will be initialized as part of the ma_context. */ pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)(); if (pMainLoop == NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create mainloop."); return MA_FAILED_TO_INIT_BACKEND; } pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)((ma_pa_mainloop*)pMainLoop), pApplicationName); if (pPulseContext == NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio context."); ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)(pMainLoop)); return MA_FAILED_TO_INIT_BACKEND; } /* Now we need to connect to the context. Everything is asynchronous so we need to wait for it to connect before returning. */ result = ma_result_from_pulse(((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)((ma_pa_context*)pPulseContext, pServerName, (tryAutoSpawn) ? 0 : MA_PA_CONTEXT_NOAUTOSPAWN, NULL)); if (result != MA_SUCCESS) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio context."); ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)(pMainLoop)); return result; } /* Since ma_context_init() runs synchronously we need to wait for the PulseAudio context to connect before we return. */ result = ma_wait_for_pa_context_to_connect__pulse(pContext, pMainLoop, pPulseContext); if (result != MA_SUCCESS) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[PulseAudio] Waiting for connection failed."); ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)(pMainLoop)); return result; } *ppMainLoop = pMainLoop; *ppPulseContext = pPulseContext; return MA_SUCCESS; } static void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) { ma_pa_sink_info* pInfoOut; if (endOfList > 0) { return; } /* There has been a report that indicates that pInfo can be null which results in a null pointer dereference below. We'll check for this for safety. */ if (pInfo == NULL) { return; } pInfoOut = (ma_pa_sink_info*)pUserData; MA_ASSERT(pInfoOut != NULL); *pInfoOut = *pInfo; (void)pPulseContext; /* Unused. */ } static void ma_device_source_info_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData) { ma_pa_source_info* pInfoOut; if (endOfList > 0) { return; } /* There has been a report that indicates that pInfo can be null which results in a null pointer dereference below. We'll check for this for safety. */ if (pInfo == NULL) { return; } pInfoOut = (ma_pa_source_info*)pUserData; MA_ASSERT(pInfoOut != NULL); *pInfoOut = *pInfo; (void)pPulseContext; /* Unused. */ } #if 0 static void ma_device_sink_name_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) { ma_device* pDevice; if (endOfList > 0) { return; } pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), pInfo->description, (size_t)-1); (void)pPulseContext; /* Unused. */ } static void ma_device_source_name_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData) { ma_device* pDevice; if (endOfList > 0) { return; } pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), pInfo->description, (size_t)-1); (void)pPulseContext; /* Unused. */ } #endif static ma_result ma_context_get_sink_info__pulse(ma_context* pContext, const char* pDeviceName, ma_pa_sink_info* pSinkInfo) { ma_pa_operation* pOP; pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pContext->pulse.pPulseContext, pDeviceName, ma_device_sink_info_callback, pSinkInfo); if (pOP == NULL) { return MA_ERROR; } return ma_wait_for_operation_and_unref__pulse(pContext, pContext->pulse.pMainLoop, pOP); } static ma_result ma_context_get_source_info__pulse(ma_context* pContext, const char* pDeviceName, ma_pa_source_info* pSourceInfo) { ma_pa_operation* pOP; pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pContext->pulse.pPulseContext, pDeviceName, ma_device_source_info_callback, pSourceInfo); if (pOP == NULL) { return MA_ERROR; } return ma_wait_for_operation_and_unref__pulse(pContext, pContext->pulse.pMainLoop, pOP); } static ma_result ma_context_get_default_device_index__pulse(ma_context* pContext, ma_device_type deviceType, ma_uint32* pIndex) { ma_result result; MA_ASSERT(pContext != NULL); MA_ASSERT(pIndex != NULL); if (pIndex != NULL) { *pIndex = (ma_uint32)-1; } if (deviceType == ma_device_type_playback) { ma_pa_sink_info sinkInfo; result = ma_context_get_sink_info__pulse(pContext, NULL, &sinkInfo); if (result != MA_SUCCESS) { return result; } if (pIndex != NULL) { *pIndex = sinkInfo.index; } } if (deviceType == ma_device_type_capture) { ma_pa_source_info sourceInfo; result = ma_context_get_source_info__pulse(pContext, NULL, &sourceInfo); if (result != MA_SUCCESS) { return result; } if (pIndex != NULL) { *pIndex = sourceInfo.index; } } return MA_SUCCESS; } typedef struct { ma_context* pContext; ma_enum_devices_callback_proc callback; void* pUserData; ma_bool32 isTerminated; ma_uint32 defaultDeviceIndexPlayback; ma_uint32 defaultDeviceIndexCapture; } ma_context_enumerate_devices_callback_data__pulse; static void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pSinkInfo, int endOfList, void* pUserData) { ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData; ma_device_info deviceInfo; MA_ASSERT(pData != NULL); if (endOfList || pData->isTerminated) { return; } MA_ZERO_OBJECT(&deviceInfo); /* The name from PulseAudio is the ID for miniaudio. */ if (pSinkInfo->name != NULL) { ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSinkInfo->name, (size_t)-1); } /* The description from PulseAudio is the name for miniaudio. */ if (pSinkInfo->description != NULL) { ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSinkInfo->description, (size_t)-1); } if (pSinkInfo->index == pData->defaultDeviceIndexPlayback) { deviceInfo.isDefault = MA_TRUE; } pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_playback, &deviceInfo, pData->pUserData); (void)pPulseContext; /* Unused. */ } static void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pSourceInfo, int endOfList, void* pUserData) { ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData; ma_device_info deviceInfo; MA_ASSERT(pData != NULL); if (endOfList || pData->isTerminated) { return; } MA_ZERO_OBJECT(&deviceInfo); /* The name from PulseAudio is the ID for miniaudio. */ if (pSourceInfo->name != NULL) { ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSourceInfo->name, (size_t)-1); } /* The description from PulseAudio is the name for miniaudio. */ if (pSourceInfo->description != NULL) { ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSourceInfo->description, (size_t)-1); } if (pSourceInfo->index == pData->defaultDeviceIndexCapture) { deviceInfo.isDefault = MA_TRUE; } pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_capture, &deviceInfo, pData->pUserData); (void)pPulseContext; /* Unused. */ } static ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_result result = MA_SUCCESS; ma_context_enumerate_devices_callback_data__pulse callbackData; ma_pa_operation* pOP = NULL; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); callbackData.pContext = pContext; callbackData.callback = callback; callbackData.pUserData = pUserData; callbackData.isTerminated = MA_FALSE; callbackData.defaultDeviceIndexPlayback = (ma_uint32)-1; callbackData.defaultDeviceIndexCapture = (ma_uint32)-1; /* We need to get the index of the default devices. */ ma_context_get_default_device_index__pulse(pContext, ma_device_type_playback, &callbackData.defaultDeviceIndexPlayback); ma_context_get_default_device_index__pulse(pContext, ma_device_type_capture, &callbackData.defaultDeviceIndexCapture); /* Playback. */ if (!callbackData.isTerminated) { pOP = ((ma_pa_context_get_sink_info_list_proc)pContext->pulse.pa_context_get_sink_info_list)((ma_pa_context*)(pContext->pulse.pPulseContext), ma_context_enumerate_devices_sink_callback__pulse, &callbackData); if (pOP == NULL) { result = MA_ERROR; goto done; } result = ma_wait_for_operation__pulse(pContext, pContext->pulse.pMainLoop, pOP); ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); if (result != MA_SUCCESS) { goto done; } } /* Capture. */ if (!callbackData.isTerminated) { pOP = ((ma_pa_context_get_source_info_list_proc)pContext->pulse.pa_context_get_source_info_list)((ma_pa_context*)(pContext->pulse.pPulseContext), ma_context_enumerate_devices_source_callback__pulse, &callbackData); if (pOP == NULL) { result = MA_ERROR; goto done; } result = ma_wait_for_operation__pulse(pContext, pContext->pulse.pMainLoop, pOP); ((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP); if (result != MA_SUCCESS) { goto done; } } done: return result; } typedef struct { ma_device_info* pDeviceInfo; ma_uint32 defaultDeviceIndex; ma_bool32 foundDevice; } ma_context_get_device_info_callback_data__pulse; static void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData) { ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData; if (endOfList > 0) { return; } MA_ASSERT(pData != NULL); pData->foundDevice = MA_TRUE; if (pInfo->name != NULL) { ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1); } if (pInfo->description != NULL) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1); } /* We're just reporting a single data format here. I think technically PulseAudio might support all formats, but I don't trust that PulseAudio will do *anything* right, so I'm just going to report the "native" device format. */ pData->pDeviceInfo->nativeDataFormats[0].format = ma_format_from_pulse(pInfo->sample_spec.format); pData->pDeviceInfo->nativeDataFormats[0].channels = pInfo->sample_spec.channels; pData->pDeviceInfo->nativeDataFormats[0].sampleRate = pInfo->sample_spec.rate; pData->pDeviceInfo->nativeDataFormats[0].flags = 0; pData->pDeviceInfo->nativeDataFormatCount = 1; if (pData->defaultDeviceIndex == pInfo->index) { pData->pDeviceInfo->isDefault = MA_TRUE; } (void)pPulseContext; /* Unused. */ } static void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData) { ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData; if (endOfList > 0) { return; } MA_ASSERT(pData != NULL); pData->foundDevice = MA_TRUE; if (pInfo->name != NULL) { ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1); } if (pInfo->description != NULL) { ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1); } /* We're just reporting a single data format here. I think technically PulseAudio might support all formats, but I don't trust that PulseAudio will do *anything* right, so I'm just going to report the "native" device format. */ pData->pDeviceInfo->nativeDataFormats[0].format = ma_format_from_pulse(pInfo->sample_spec.format); pData->pDeviceInfo->nativeDataFormats[0].channels = pInfo->sample_spec.channels; pData->pDeviceInfo->nativeDataFormats[0].sampleRate = pInfo->sample_spec.rate; pData->pDeviceInfo->nativeDataFormats[0].flags = 0; pData->pDeviceInfo->nativeDataFormatCount = 1; if (pData->defaultDeviceIndex == pInfo->index) { pData->pDeviceInfo->isDefault = MA_TRUE; } (void)pPulseContext; /* Unused. */ } static ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_result result = MA_SUCCESS; ma_context_get_device_info_callback_data__pulse callbackData; ma_pa_operation* pOP = NULL; const char* pDeviceName = NULL; MA_ASSERT(pContext != NULL); callbackData.pDeviceInfo = pDeviceInfo; callbackData.foundDevice = MA_FALSE; if (pDeviceID != NULL) { pDeviceName = pDeviceID->pulse; } else { pDeviceName = NULL; } result = ma_context_get_default_device_index__pulse(pContext, deviceType, &callbackData.defaultDeviceIndex); if (deviceType == ma_device_type_playback) { pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)(pContext->pulse.pPulseContext), pDeviceName, ma_context_get_device_info_sink_callback__pulse, &callbackData); } else { pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)(pContext->pulse.pPulseContext), pDeviceName, ma_context_get_device_info_source_callback__pulse, &callbackData); } if (pOP != NULL) { ma_wait_for_operation_and_unref__pulse(pContext, pContext->pulse.pMainLoop, pOP); } else { result = MA_ERROR; goto done; } if (!callbackData.foundDevice) { result = MA_NO_DEVICE; goto done; } done: return result; } static ma_result ma_device_uninit__pulse(ma_device* pDevice) { ma_context* pContext; MA_ASSERT(pDevice != NULL); pContext = pDevice->pContext; MA_ASSERT(pContext != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture); ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); ((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); } if (pDevice->type == ma_device_type_duplex) { ma_duplex_rb_uninit(&pDevice->duplexRB); } ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pDevice->pulse.pPulseContext); ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pDevice->pulse.pPulseContext); ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pDevice->pulse.pMainLoop); return MA_SUCCESS; } static ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 periodSizeInFrames, ma_uint32 periods, const ma_pa_sample_spec* ss) { ma_pa_buffer_attr attr; attr.maxlength = periodSizeInFrames * periods * ma_get_bytes_per_frame(ma_format_from_pulse(ss->format), ss->channels); attr.tlength = attr.maxlength / periods; attr.prebuf = (ma_uint32)-1; attr.minreq = (ma_uint32)-1; attr.fragsize = attr.maxlength / periods; return attr; } static ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const char* pStreamName, const ma_pa_sample_spec* ss, const ma_pa_channel_map* cmap) { static int g_StreamCounter = 0; char actualStreamName[256]; if (pStreamName != NULL) { ma_strncpy_s(actualStreamName, sizeof(actualStreamName), pStreamName, (size_t)-1); } else { ma_strcpy_s(actualStreamName, sizeof(actualStreamName), "miniaudio:"); ma_itoa_s(g_StreamCounter, actualStreamName + 8, sizeof(actualStreamName)-8, 10); /* 8 = strlen("miniaudio:") */ } g_StreamCounter += 1; return ((ma_pa_stream_new_proc)pDevice->pContext->pulse.pa_stream_new)((ma_pa_context*)pDevice->pulse.pPulseContext, actualStreamName, ss, cmap); } static void ma_device_on_read__pulse(ma_pa_stream* pStream, size_t byteCount, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; ma_uint32 bpf; ma_uint32 deviceState; ma_uint64 frameCount; ma_uint64 framesProcessed; MA_ASSERT(pDevice != NULL); /* Don't do anything if the device isn't initialized yet. Yes, this can happen because PulseAudio can fire this callback before the stream has even started. Ridiculous. */ deviceState = ma_device_get_state(pDevice); if (deviceState != ma_device_state_starting && deviceState != ma_device_state_started) { return; } bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); MA_ASSERT(bpf > 0); frameCount = byteCount / bpf; framesProcessed = 0; while (ma_device_get_state(pDevice) == ma_device_state_started && framesProcessed < frameCount) { const void* pMappedPCMFrames; size_t bytesMapped; ma_uint64 framesMapped; int pulseResult = ((ma_pa_stream_peek_proc)pDevice->pContext->pulse.pa_stream_peek)(pStream, &pMappedPCMFrames, &bytesMapped); if (pulseResult < 0) { break; /* Failed to map. Abort. */ } framesMapped = bytesMapped / bpf; if (framesMapped > 0) { if (pMappedPCMFrames != NULL) { ma_device_handle_backend_data_callback(pDevice, NULL, pMappedPCMFrames, framesMapped); } else { /* It's a hole. */ ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[PulseAudio] ma_device_on_read__pulse: Hole.\n"); } pulseResult = ((ma_pa_stream_drop_proc)pDevice->pContext->pulse.pa_stream_drop)(pStream); if (pulseResult < 0) { break; /* Failed to drop the buffer. */ } framesProcessed += framesMapped; } else { /* Nothing was mapped. Just abort. */ break; } } } static ma_result ma_device_write_to_stream__pulse(ma_device* pDevice, ma_pa_stream* pStream, ma_uint64* pFramesProcessed) { ma_result result = MA_SUCCESS; ma_uint64 framesProcessed = 0; size_t bytesMapped; ma_uint32 bpf; ma_uint32 deviceState; MA_ASSERT(pDevice != NULL); MA_ASSERT(pStream != NULL); bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); MA_ASSERT(bpf > 0); deviceState = ma_device_get_state(pDevice); bytesMapped = ((ma_pa_stream_writable_size_proc)pDevice->pContext->pulse.pa_stream_writable_size)(pStream); if (bytesMapped != (size_t)-1) { if (bytesMapped > 0) { ma_uint64 framesMapped; void* pMappedPCMFrames; int pulseResult = ((ma_pa_stream_begin_write_proc)pDevice->pContext->pulse.pa_stream_begin_write)(pStream, &pMappedPCMFrames, &bytesMapped); if (pulseResult < 0) { result = ma_result_from_pulse(pulseResult); goto done; } framesMapped = bytesMapped / bpf; if (deviceState == ma_device_state_started || deviceState == ma_device_state_starting) { /* Check for starting state just in case this is being used to do the initial fill. */ ma_device_handle_backend_data_callback(pDevice, pMappedPCMFrames, NULL, framesMapped); } else { /* Device is not started. Write silence. */ ma_silence_pcm_frames(pMappedPCMFrames, framesMapped, pDevice->playback.format, pDevice->playback.channels); } pulseResult = ((ma_pa_stream_write_proc)pDevice->pContext->pulse.pa_stream_write)(pStream, pMappedPCMFrames, bytesMapped, NULL, 0, MA_PA_SEEK_RELATIVE); if (pulseResult < 0) { result = ma_result_from_pulse(pulseResult); goto done; /* Failed to write data to stream. */ } framesProcessed += framesMapped; } else { result = MA_SUCCESS; /* No data available for writing. */ goto done; } } else { result = MA_ERROR; /* Failed to retrieve the writable size. Abort. */ goto done; } done: if (pFramesProcessed != NULL) { *pFramesProcessed = framesProcessed; } return result; } static void ma_device_on_write__pulse(ma_pa_stream* pStream, size_t byteCount, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; ma_uint32 bpf; ma_uint64 frameCount; ma_uint64 framesProcessed; ma_uint32 deviceState; ma_result result; MA_ASSERT(pDevice != NULL); /* Don't do anything if the device isn't initialized yet. Yes, this can happen because PulseAudio can fire this callback before the stream has even started. Ridiculous. */ deviceState = ma_device_get_state(pDevice); if (deviceState != ma_device_state_starting && deviceState != ma_device_state_started) { return; } bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); MA_ASSERT(bpf > 0); frameCount = byteCount / bpf; framesProcessed = 0; while (framesProcessed < frameCount) { ma_uint64 framesProcessedThisIteration; /* Don't keep trying to process frames if the device isn't started. */ deviceState = ma_device_get_state(pDevice); if (deviceState != ma_device_state_starting && deviceState != ma_device_state_started) { break; } result = ma_device_write_to_stream__pulse(pDevice, pStream, &framesProcessedThisIteration); if (result != MA_SUCCESS) { break; } framesProcessed += framesProcessedThisIteration; } } static void ma_device_on_suspended__pulse(ma_pa_stream* pStream, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; int suspended; (void)pStream; suspended = ((ma_pa_stream_is_suspended_proc)pDevice->pContext->pulse.pa_stream_is_suspended)(pStream); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[Pulse] Device suspended state changed. pa_stream_is_suspended() returned %d.\n", suspended); if (suspended < 0) { return; } if (suspended == 1) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[Pulse] Device suspended state changed. Suspended.\n"); ma_device__on_notification_stopped(pDevice); } else { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "[Pulse] Device suspended state changed. Resumed.\n"); ma_device__on_notification_started(pDevice); } } static void ma_device_on_rerouted__pulse(ma_pa_stream* pStream, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; (void)pStream; (void)pUserData; ma_device__on_notification_rerouted(pDevice); } static ma_uint32 ma_calculate_period_size_in_frames_from_descriptor__pulse(const ma_device_descriptor* pDescriptor, ma_uint32 nativeSampleRate, ma_performance_profile performanceProfile) { /* There have been reports from users where buffers of < ~20ms result glitches when running through PipeWire. To work around this we're going to have to use a different default buffer size. */ const ma_uint32 defaultPeriodSizeInMilliseconds_LowLatency = 25; const ma_uint32 defaultPeriodSizeInMilliseconds_Conservative = MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE; MA_ASSERT(nativeSampleRate != 0); if (pDescriptor->periodSizeInFrames == 0) { if (pDescriptor->periodSizeInMilliseconds == 0) { if (performanceProfile == ma_performance_profile_low_latency) { return ma_calculate_buffer_size_in_frames_from_milliseconds(defaultPeriodSizeInMilliseconds_LowLatency, nativeSampleRate); } else { return ma_calculate_buffer_size_in_frames_from_milliseconds(defaultPeriodSizeInMilliseconds_Conservative, nativeSampleRate); } } else { return ma_calculate_buffer_size_in_frames_from_milliseconds(pDescriptor->periodSizeInMilliseconds, nativeSampleRate); } } else { return pDescriptor->periodSizeInFrames; } } static ma_result ma_device_init__pulse(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { /* Notes for PulseAudio: - We're always using native format/channels/rate regardless of whether or not PulseAudio supports the format directly through their own data conversion system. I'm doing this to reduce as much variability from the PulseAudio side as possible because it's seems to be extremely unreliable at everything it does. - When both the period size in frames and milliseconds are 0, we default to miniaudio's default buffer sizes rather than leaving it up to PulseAudio because I don't trust PulseAudio to give us any kind of reasonable latency by default. - Do not ever, *ever* forget to use MA_PA_STREAM_ADJUST_LATENCY. If you don't specify this flag, capture mode will just not work properly until you open another PulseAudio app. */ ma_result result = MA_SUCCESS; int error = 0; const char* devPlayback = NULL; const char* devCapture = NULL; ma_format format = ma_format_unknown; ma_uint32 channels = 0; ma_uint32 sampleRate = 0; ma_pa_sink_info sinkInfo; ma_pa_source_info sourceInfo; ma_pa_sample_spec ss; ma_pa_channel_map cmap; ma_pa_buffer_attr attr; const ma_pa_sample_spec* pActualSS = NULL; const ma_pa_channel_map* pActualCMap = NULL; const ma_pa_buffer_attr* pActualAttr = NULL; ma_uint32 iChannel; ma_pa_stream_flags_t streamFlags; MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->pulse); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* No exclusive mode with the PulseAudio backend. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { if (pDescriptorPlayback->pDeviceID != NULL) { devPlayback = pDescriptorPlayback->pDeviceID->pulse; } format = pDescriptorPlayback->format; channels = pDescriptorPlayback->channels; sampleRate = pDescriptorPlayback->sampleRate; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { if (pDescriptorCapture->pDeviceID != NULL) { devCapture = pDescriptorCapture->pDeviceID->pulse; } format = pDescriptorCapture->format; channels = pDescriptorCapture->channels; sampleRate = pDescriptorCapture->sampleRate; } result = ma_init_pa_mainloop_and_pa_context__pulse(pDevice->pContext, pDevice->pContext->pulse.pApplicationName, pDevice->pContext->pulse.pServerName, MA_FALSE, &pDevice->pulse.pMainLoop, &pDevice->pulse.pPulseContext); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to initialize PA mainloop and context for device.\n"); return result; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { result = ma_context_get_source_info__pulse(pDevice->pContext, devCapture, &sourceInfo); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve source info for capture device."); goto on_error0; } ss = sourceInfo.sample_spec; cmap = sourceInfo.channel_map; /* Use the requested sample rate if one was specified. */ if (pDescriptorCapture->sampleRate != 0) { ss.rate = pDescriptorCapture->sampleRate; } if (ma_format_from_pulse(ss.format) == ma_format_unknown) { if (ma_is_little_endian()) { ss.format = MA_PA_SAMPLE_FLOAT32LE; } else { ss.format = MA_PA_SAMPLE_FLOAT32BE; } ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] sample_spec.format not supported by miniaudio. Defaulting to PA_SAMPLE_FLOAT32.\n"); } if (ss.rate == 0) { ss.rate = MA_DEFAULT_SAMPLE_RATE; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] sample_spec.rate = 0. Defaulting to %d.\n", ss.rate); } if (ss.channels == 0) { ss.channels = MA_DEFAULT_CHANNELS; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] sample_spec.channels = 0. Defaulting to %d.\n", ss.channels); } /* We now have enough information to calculate our actual period size in frames. */ pDescriptorCapture->periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__pulse(pDescriptorCapture, ss.rate, pConfig->performanceProfile); attr = ma_device__pa_buffer_attr_new(pDescriptorCapture->periodSizeInFrames, pDescriptorCapture->periodCount, &ss); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Capture attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; periodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDescriptorCapture->periodSizeInFrames); pDevice->pulse.pStreamCapture = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNameCapture, &ss, &cmap); if (pDevice->pulse.pStreamCapture == NULL) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio capture stream.\n"); result = MA_ERROR; goto on_error0; } /* The callback needs to be set before connecting the stream. */ ((ma_pa_stream_set_read_callback_proc)pDevice->pContext->pulse.pa_stream_set_read_callback)((ma_pa_stream*)pDevice->pulse.pStreamCapture, ma_device_on_read__pulse, pDevice); /* State callback for checking when the device has been corked. */ ((ma_pa_stream_set_suspended_callback_proc)pDevice->pContext->pulse.pa_stream_set_suspended_callback)((ma_pa_stream*)pDevice->pulse.pStreamCapture, ma_device_on_suspended__pulse, pDevice); /* Rerouting notification. */ ((ma_pa_stream_set_moved_callback_proc)pDevice->pContext->pulse.pa_stream_set_moved_callback)((ma_pa_stream*)pDevice->pulse.pStreamCapture, ma_device_on_rerouted__pulse, pDevice); /* Connect after we've got all of our internal state set up. */ streamFlags = MA_PA_STREAM_START_CORKED | MA_PA_STREAM_ADJUST_LATENCY | MA_PA_STREAM_FIX_FORMAT | MA_PA_STREAM_FIX_RATE | MA_PA_STREAM_FIX_CHANNELS; if (devCapture != NULL) { streamFlags |= MA_PA_STREAM_DONT_MOVE; } error = ((ma_pa_stream_connect_record_proc)pDevice->pContext->pulse.pa_stream_connect_record)((ma_pa_stream*)pDevice->pulse.pStreamCapture, devCapture, &attr, streamFlags); if (error != MA_PA_OK) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio capture stream."); result = ma_result_from_pulse(error); goto on_error1; } result = ma_wait_for_pa_stream_to_connect__pulse(pDevice->pContext, pDevice->pulse.pMainLoop, (ma_pa_stream*)pDevice->pulse.pStreamCapture); if (result != MA_SUCCESS) { goto on_error2; } /* Internal format. */ pActualSS = ((ma_pa_stream_get_sample_spec_proc)pDevice->pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamCapture); if (pActualSS != NULL) { ss = *pActualSS; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Capture sample spec: format=%s, channels=%d, rate=%d\n", ma_get_format_name(ma_format_from_pulse(ss.format)), ss.channels, ss.rate); } else { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Failed to retrieve capture sample spec.\n"); } pDescriptorCapture->format = ma_format_from_pulse(ss.format); pDescriptorCapture->channels = ss.channels; pDescriptorCapture->sampleRate = ss.rate; if (pDescriptorCapture->format == ma_format_unknown || pDescriptorCapture->channels == 0 || pDescriptorCapture->sampleRate == 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Capture sample spec is invalid. Device unusable by miniaudio. format=%s, channels=%d, sampleRate=%d.\n", ma_get_format_name(pDescriptorCapture->format), pDescriptorCapture->channels, pDescriptorCapture->sampleRate); result = MA_ERROR; goto on_error4; } /* Internal channel map. */ /* Bug in PipeWire. There have been reports that PipeWire is returning AUX channels when reporting the channel map. To somewhat workaround this, I'm hacking in a hard coded channel map for mono and stereo. In this case it should be safe to assume mono = MONO and stereo = LEFT/RIGHT. For all other channel counts we need to just put up with whatever PipeWire reports and hope it gets fixed sooner than later. I might remove this hack later. */ if (pDescriptorCapture->channels > 2) { pActualCMap = ((ma_pa_stream_get_channel_map_proc)pDevice->pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamCapture); if (pActualCMap != NULL) { cmap = *pActualCMap; } for (iChannel = 0; iChannel < pDescriptorCapture->channels; ++iChannel) { pDescriptorCapture->channelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]); } } else { /* Hack for mono and stereo. */ if (pDescriptorCapture->channels == 1) { pDescriptorCapture->channelMap[0] = MA_CHANNEL_MONO; } else if (pDescriptorCapture->channels == 2) { pDescriptorCapture->channelMap[0] = MA_CHANNEL_FRONT_LEFT; pDescriptorCapture->channelMap[1] = MA_CHANNEL_FRONT_RIGHT; } else { MA_ASSERT(MA_FALSE); /* Should never hit this. */ } } /* Buffer. */ pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pDevice->pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture); if (pActualAttr != NULL) { attr = *pActualAttr; } if (attr.fragsize > 0) { pDescriptorCapture->periodCount = ma_max(attr.maxlength / attr.fragsize, 1); } else { pDescriptorCapture->periodCount = 1; } pDescriptorCapture->periodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels) / pDescriptorCapture->periodCount; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Capture actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; periodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDescriptorCapture->periodSizeInFrames); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { result = ma_context_get_sink_info__pulse(pDevice->pContext, devPlayback, &sinkInfo); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve sink info for playback device.\n"); goto on_error2; } ss = sinkInfo.sample_spec; cmap = sinkInfo.channel_map; /* Use the requested sample rate if one was specified. */ if (pDescriptorPlayback->sampleRate != 0) { ss.rate = pDescriptorPlayback->sampleRate; } if (ma_format_from_pulse(ss.format) == ma_format_unknown) { if (ma_is_little_endian()) { ss.format = MA_PA_SAMPLE_FLOAT32LE; } else { ss.format = MA_PA_SAMPLE_FLOAT32BE; } ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] sample_spec.format not supported by miniaudio. Defaulting to PA_SAMPLE_FLOAT32.\n"); } if (ss.rate == 0) { ss.rate = MA_DEFAULT_SAMPLE_RATE; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] sample_spec.rate = 0. Defaulting to %d.\n", ss.rate); } if (ss.channels == 0) { ss.channels = MA_DEFAULT_CHANNELS; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] sample_spec.channels = 0. Defaulting to %d.\n", ss.channels); } /* We now have enough information to calculate the actual buffer size in frames. */ pDescriptorPlayback->periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__pulse(pDescriptorPlayback, ss.rate, pConfig->performanceProfile); attr = ma_device__pa_buffer_attr_new(pDescriptorPlayback->periodSizeInFrames, pDescriptorPlayback->periodCount, &ss); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Playback attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; periodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDescriptorPlayback->periodSizeInFrames); pDevice->pulse.pStreamPlayback = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNamePlayback, &ss, &cmap); if (pDevice->pulse.pStreamPlayback == NULL) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio playback stream.\n"); result = MA_ERROR; goto on_error2; } /* Note that this callback will be fired as soon as the stream is connected, even though it's started as corked. The callback needs to handle a device state of ma_device_state_uninitialized. */ ((ma_pa_stream_set_write_callback_proc)pDevice->pContext->pulse.pa_stream_set_write_callback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_device_on_write__pulse, pDevice); /* State callback for checking when the device has been corked. */ ((ma_pa_stream_set_suspended_callback_proc)pDevice->pContext->pulse.pa_stream_set_suspended_callback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_device_on_suspended__pulse, pDevice); /* Rerouting notification. */ ((ma_pa_stream_set_moved_callback_proc)pDevice->pContext->pulse.pa_stream_set_moved_callback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_device_on_rerouted__pulse, pDevice); /* Connect after we've got all of our internal state set up. */ streamFlags = MA_PA_STREAM_START_CORKED | MA_PA_STREAM_ADJUST_LATENCY | MA_PA_STREAM_FIX_FORMAT | MA_PA_STREAM_FIX_RATE | MA_PA_STREAM_FIX_CHANNELS; if (devPlayback != NULL) { streamFlags |= MA_PA_STREAM_DONT_MOVE; } error = ((ma_pa_stream_connect_playback_proc)pDevice->pContext->pulse.pa_stream_connect_playback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, devPlayback, &attr, streamFlags, NULL, NULL); if (error != MA_PA_OK) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio playback stream."); result = ma_result_from_pulse(error); goto on_error3; } result = ma_wait_for_pa_stream_to_connect__pulse(pDevice->pContext, pDevice->pulse.pMainLoop, (ma_pa_stream*)pDevice->pulse.pStreamPlayback); if (result != MA_SUCCESS) { goto on_error3; } /* Internal format. */ pActualSS = ((ma_pa_stream_get_sample_spec_proc)pDevice->pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); if (pActualSS != NULL) { ss = *pActualSS; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Playback sample spec: format=%s, channels=%d, rate=%d\n", ma_get_format_name(ma_format_from_pulse(ss.format)), ss.channels, ss.rate); } else { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Failed to retrieve playback sample spec.\n"); } pDescriptorPlayback->format = ma_format_from_pulse(ss.format); pDescriptorPlayback->channels = ss.channels; pDescriptorPlayback->sampleRate = ss.rate; if (pDescriptorPlayback->format == ma_format_unknown || pDescriptorPlayback->channels == 0 || pDescriptorPlayback->sampleRate == 0) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Playback sample spec is invalid. Device unusable by miniaudio. format=%s, channels=%d, sampleRate=%d.\n", ma_get_format_name(pDescriptorPlayback->format), pDescriptorPlayback->channels, pDescriptorPlayback->sampleRate); result = MA_ERROR; goto on_error4; } /* Internal channel map. */ /* Bug in PipeWire. There have been reports that PipeWire is returning AUX channels when reporting the channel map. To somewhat workaround this, I'm hacking in a hard coded channel map for mono and stereo. In this case it should be safe to assume mono = MONO and stereo = LEFT/RIGHT. For all other channel counts we need to just put up with whatever PipeWire reports and hope it gets fixed sooner than later. I might remove this hack later. */ if (pDescriptorPlayback->channels > 2) { pActualCMap = ((ma_pa_stream_get_channel_map_proc)pDevice->pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); if (pActualCMap != NULL) { cmap = *pActualCMap; } for (iChannel = 0; iChannel < pDescriptorPlayback->channels; ++iChannel) { pDescriptorPlayback->channelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]); } } else { /* Hack for mono and stereo. */ if (pDescriptorPlayback->channels == 1) { pDescriptorPlayback->channelMap[0] = MA_CHANNEL_MONO; } else if (pDescriptorPlayback->channels == 2) { pDescriptorPlayback->channelMap[0] = MA_CHANNEL_FRONT_LEFT; pDescriptorPlayback->channelMap[1] = MA_CHANNEL_FRONT_RIGHT; } else { MA_ASSERT(MA_FALSE); /* Should never hit this. */ } } /* Buffer. */ pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pDevice->pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); if (pActualAttr != NULL) { attr = *pActualAttr; } if (attr.tlength > 0) { pDescriptorPlayback->periodCount = ma_max(attr.maxlength / attr.tlength, 1); } else { pDescriptorPlayback->periodCount = 1; } pDescriptorPlayback->periodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels) / pDescriptorPlayback->periodCount; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[PulseAudio] Playback actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDescriptorPlayback->periodSizeInFrames); } /* We need a ring buffer for handling duplex mode. We can use the main duplex ring buffer in the main part of the ma_device struct. We cannot, however, depend on ma_device_init() initializing this for us later on because that will only do it if it's a fully asynchronous backend - i.e. the onDeviceDataLoop callback is NULL, which is not the case for PulseAudio. */ if (pConfig->deviceType == ma_device_type_duplex) { ma_format rbFormat = (format != ma_format_unknown) ? format : pDescriptorCapture->format; ma_uint32 rbChannels = (channels > 0) ? channels : pDescriptorCapture->channels; ma_uint32 rbSampleRate = (sampleRate > 0) ? sampleRate : pDescriptorCapture->sampleRate; result = ma_duplex_rb_init(rbFormat, rbChannels, rbSampleRate, pDescriptorCapture->sampleRate, pDescriptorCapture->periodSizeInFrames, &pDevice->pContext->allocationCallbacks, &pDevice->duplexRB); if (result != MA_SUCCESS) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to initialize ring buffer. %s.\n", ma_result_description(result)); goto on_error4; } } return MA_SUCCESS; on_error4: if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ((ma_pa_stream_disconnect_proc)pDevice->pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); } on_error3: if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ((ma_pa_stream_unref_proc)pDevice->pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback); } on_error2: if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ((ma_pa_stream_disconnect_proc)pDevice->pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture); } on_error1: if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ((ma_pa_stream_unref_proc)pDevice->pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture); } on_error0: return result; } static void ma_pulse_operation_complete_callback(ma_pa_stream* pStream, int success, void* pUserData) { ma_bool32* pIsSuccessful = (ma_bool32*)pUserData; MA_ASSERT(pIsSuccessful != NULL); *pIsSuccessful = (ma_bool32)success; (void)pStream; /* Unused. */ } static ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_type deviceType, int cork) { ma_context* pContext = pDevice->pContext; ma_bool32 wasSuccessful; ma_pa_stream* pStream; ma_pa_operation* pOP; ma_result result; /* This should not be called with a duplex device type. */ if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } wasSuccessful = MA_FALSE; pStream = (ma_pa_stream*)((deviceType == ma_device_type_capture) ? pDevice->pulse.pStreamCapture : pDevice->pulse.pStreamPlayback); MA_ASSERT(pStream != NULL); pOP = ((ma_pa_stream_cork_proc)pContext->pulse.pa_stream_cork)(pStream, cork, ma_pulse_operation_complete_callback, &wasSuccessful); if (pOP == NULL) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to cork PulseAudio stream."); return MA_ERROR; } result = ma_wait_for_operation_and_unref__pulse(pDevice->pContext, pDevice->pulse.pMainLoop, pOP); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while waiting for the PulseAudio stream to cork."); return result; } if (!wasSuccessful) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to %s PulseAudio stream.", (cork) ? "stop" : "start"); return MA_ERROR; } return MA_SUCCESS; } static ma_result ma_device_start__pulse(ma_device* pDevice) { ma_result result; MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 0); if (result != MA_SUCCESS) { return result; } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* We need to fill some data before uncorking. Not doing this will result in the write callback never getting fired. We're not going to abort if writing fails because I still want the device to get uncorked. */ ma_device_write_to_stream__pulse(pDevice, (ma_pa_stream*)(pDevice->pulse.pStreamPlayback), NULL); /* No need to check the result here. Always want to fall through an uncork.*/ result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 0); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_stop__pulse(ma_device* pDevice) { ma_result result; MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 1); if (result != MA_SUCCESS) { return result; } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { /* Ideally we would drain the device here, but there's been cases where PulseAudio seems to be broken on some systems to the point where no audio processing seems to happen. When this happens, draining never completes and we get stuck here. For now I'm disabling draining of the device so we don't just freeze the application. */ #if 0 ma_pa_operation* pOP = ((ma_pa_stream_drain_proc)pDevice->pContext->pulse.pa_stream_drain)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_pulse_operation_complete_callback, &wasSuccessful); ma_wait_for_operation_and_unref__pulse(pDevice->pContext, pDevice->pulse.pMainLoop, pOP); #endif result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 1); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_data_loop__pulse(ma_device* pDevice) { int resultPA; MA_ASSERT(pDevice != NULL); /* NOTE: Don't start the device here. It'll be done at a higher level. */ /* All data is handled through callbacks. All we need to do is iterate over the main loop and let the callbacks deal with it. */ while (ma_device_get_state(pDevice) == ma_device_state_started) { resultPA = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL); if (resultPA < 0) { break; } } /* NOTE: Don't stop the device here. It'll be done at a higher level. */ return MA_SUCCESS; } static ma_result ma_device_data_loop_wakeup__pulse(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); ((ma_pa_mainloop_wakeup_proc)pDevice->pContext->pulse.pa_mainloop_wakeup)((ma_pa_mainloop*)pDevice->pulse.pMainLoop); return MA_SUCCESS; } static ma_result ma_context_uninit__pulse(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_pulseaudio); ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pContext->pulse.pPulseContext); ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pContext->pulse.pPulseContext); ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pContext->pulse.pMainLoop); ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); #ifndef MA_NO_RUNTIME_LINKING ma_dlclose(pContext, pContext->pulse.pulseSO); #endif return MA_SUCCESS; } static ma_result ma_context_init__pulse(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { ma_result result; #ifndef MA_NO_RUNTIME_LINKING const char* libpulseNames[] = { "libpulse.so", "libpulse.so.0" }; size_t i; for (i = 0; i < ma_countof(libpulseNames); ++i) { pContext->pulse.pulseSO = ma_dlopen(pContext, libpulseNames[i]); if (pContext->pulse.pulseSO != NULL) { break; } } if (pContext->pulse.pulseSO == NULL) { return MA_NO_BACKEND; } pContext->pulse.pa_mainloop_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_new"); pContext->pulse.pa_mainloop_free = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_free"); pContext->pulse.pa_mainloop_quit = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_quit"); pContext->pulse.pa_mainloop_get_api = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_get_api"); pContext->pulse.pa_mainloop_iterate = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_iterate"); pContext->pulse.pa_mainloop_wakeup = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_wakeup"); pContext->pulse.pa_threaded_mainloop_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_new"); pContext->pulse.pa_threaded_mainloop_free = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_free"); pContext->pulse.pa_threaded_mainloop_start = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_start"); pContext->pulse.pa_threaded_mainloop_stop = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_stop"); pContext->pulse.pa_threaded_mainloop_lock = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_lock"); pContext->pulse.pa_threaded_mainloop_unlock = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_unlock"); pContext->pulse.pa_threaded_mainloop_wait = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_wait"); pContext->pulse.pa_threaded_mainloop_signal = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_signal"); pContext->pulse.pa_threaded_mainloop_accept = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_accept"); pContext->pulse.pa_threaded_mainloop_get_retval = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_get_retval"); pContext->pulse.pa_threaded_mainloop_get_api = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_get_api"); pContext->pulse.pa_threaded_mainloop_in_thread = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_in_thread"); pContext->pulse.pa_threaded_mainloop_set_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_threaded_mainloop_set_name"); pContext->pulse.pa_context_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_new"); pContext->pulse.pa_context_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_unref"); pContext->pulse.pa_context_connect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_connect"); pContext->pulse.pa_context_disconnect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_disconnect"); pContext->pulse.pa_context_set_state_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_set_state_callback"); pContext->pulse.pa_context_get_state = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_state"); pContext->pulse.pa_context_get_sink_info_list = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_sink_info_list"); pContext->pulse.pa_context_get_source_info_list = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_source_info_list"); pContext->pulse.pa_context_get_sink_info_by_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_sink_info_by_name"); pContext->pulse.pa_context_get_source_info_by_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_source_info_by_name"); pContext->pulse.pa_operation_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_operation_unref"); pContext->pulse.pa_operation_get_state = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_operation_get_state"); pContext->pulse.pa_channel_map_init_extend = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_channel_map_init_extend"); pContext->pulse.pa_channel_map_valid = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_channel_map_valid"); pContext->pulse.pa_channel_map_compatible = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_channel_map_compatible"); pContext->pulse.pa_stream_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_new"); pContext->pulse.pa_stream_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_unref"); pContext->pulse.pa_stream_connect_playback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_connect_playback"); pContext->pulse.pa_stream_connect_record = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_connect_record"); pContext->pulse.pa_stream_disconnect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_disconnect"); pContext->pulse.pa_stream_get_state = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_state"); pContext->pulse.pa_stream_get_sample_spec = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_sample_spec"); pContext->pulse.pa_stream_get_channel_map = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_channel_map"); pContext->pulse.pa_stream_get_buffer_attr = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_buffer_attr"); pContext->pulse.pa_stream_set_buffer_attr = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_buffer_attr"); pContext->pulse.pa_stream_get_device_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_device_name"); pContext->pulse.pa_stream_set_write_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_write_callback"); pContext->pulse.pa_stream_set_read_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_read_callback"); pContext->pulse.pa_stream_set_suspended_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_suspended_callback"); pContext->pulse.pa_stream_set_moved_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_moved_callback"); pContext->pulse.pa_stream_is_suspended = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_is_suspended"); pContext->pulse.pa_stream_flush = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_flush"); pContext->pulse.pa_stream_drain = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_drain"); pContext->pulse.pa_stream_is_corked = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_is_corked"); pContext->pulse.pa_stream_cork = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_cork"); pContext->pulse.pa_stream_trigger = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_trigger"); pContext->pulse.pa_stream_begin_write = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_begin_write"); pContext->pulse.pa_stream_write = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_write"); pContext->pulse.pa_stream_peek = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_peek"); pContext->pulse.pa_stream_drop = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_drop"); pContext->pulse.pa_stream_writable_size = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_writable_size"); pContext->pulse.pa_stream_readable_size = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_readable_size"); #else /* This strange assignment system is just for type safety. */ ma_pa_mainloop_new_proc _pa_mainloop_new = pa_mainloop_new; ma_pa_mainloop_free_proc _pa_mainloop_free = pa_mainloop_free; ma_pa_mainloop_quit_proc _pa_mainloop_quit = pa_mainloop_quit; ma_pa_mainloop_get_api_proc _pa_mainloop_get_api = pa_mainloop_get_api; ma_pa_mainloop_iterate_proc _pa_mainloop_iterate = pa_mainloop_iterate; ma_pa_mainloop_wakeup_proc _pa_mainloop_wakeup = pa_mainloop_wakeup; ma_pa_threaded_mainloop_new_proc _pa_threaded_mainloop_new = pa_threaded_mainloop_new; ma_pa_threaded_mainloop_free_proc _pa_threaded_mainloop_free = pa_threaded_mainloop_free; ma_pa_threaded_mainloop_start_proc _pa_threaded_mainloop_start = pa_threaded_mainloop_start; ma_pa_threaded_mainloop_stop_proc _pa_threaded_mainloop_stop = pa_threaded_mainloop_stop; ma_pa_threaded_mainloop_lock_proc _pa_threaded_mainloop_lock = pa_threaded_mainloop_lock; ma_pa_threaded_mainloop_unlock_proc _pa_threaded_mainloop_unlock = pa_threaded_mainloop_unlock; ma_pa_threaded_mainloop_wait_proc _pa_threaded_mainloop_wait = pa_threaded_mainloop_wait; ma_pa_threaded_mainloop_signal_proc _pa_threaded_mainloop_signal = pa_threaded_mainloop_signal; ma_pa_threaded_mainloop_accept_proc _pa_threaded_mainloop_accept = pa_threaded_mainloop_accept; ma_pa_threaded_mainloop_get_retval_proc _pa_threaded_mainloop_get_retval = pa_threaded_mainloop_get_retval; ma_pa_threaded_mainloop_get_api_proc _pa_threaded_mainloop_get_api = pa_threaded_mainloop_get_api; ma_pa_threaded_mainloop_in_thread_proc _pa_threaded_mainloop_in_thread = pa_threaded_mainloop_in_thread; ma_pa_threaded_mainloop_set_name_proc _pa_threaded_mainloop_set_name = pa_threaded_mainloop_set_name; ma_pa_context_new_proc _pa_context_new = pa_context_new; ma_pa_context_unref_proc _pa_context_unref = pa_context_unref; ma_pa_context_connect_proc _pa_context_connect = pa_context_connect; ma_pa_context_disconnect_proc _pa_context_disconnect = pa_context_disconnect; ma_pa_context_set_state_callback_proc _pa_context_set_state_callback = pa_context_set_state_callback; ma_pa_context_get_state_proc _pa_context_get_state = pa_context_get_state; ma_pa_context_get_sink_info_list_proc _pa_context_get_sink_info_list = pa_context_get_sink_info_list; ma_pa_context_get_source_info_list_proc _pa_context_get_source_info_list = pa_context_get_source_info_list; ma_pa_context_get_sink_info_by_name_proc _pa_context_get_sink_info_by_name = pa_context_get_sink_info_by_name; ma_pa_context_get_source_info_by_name_proc _pa_context_get_source_info_by_name= pa_context_get_source_info_by_name; ma_pa_operation_unref_proc _pa_operation_unref = pa_operation_unref; ma_pa_operation_get_state_proc _pa_operation_get_state = pa_operation_get_state; ma_pa_channel_map_init_extend_proc _pa_channel_map_init_extend = pa_channel_map_init_extend; ma_pa_channel_map_valid_proc _pa_channel_map_valid = pa_channel_map_valid; ma_pa_channel_map_compatible_proc _pa_channel_map_compatible = pa_channel_map_compatible; ma_pa_stream_new_proc _pa_stream_new = pa_stream_new; ma_pa_stream_unref_proc _pa_stream_unref = pa_stream_unref; ma_pa_stream_connect_playback_proc _pa_stream_connect_playback = pa_stream_connect_playback; ma_pa_stream_connect_record_proc _pa_stream_connect_record = pa_stream_connect_record; ma_pa_stream_disconnect_proc _pa_stream_disconnect = pa_stream_disconnect; ma_pa_stream_get_state_proc _pa_stream_get_state = pa_stream_get_state; ma_pa_stream_get_sample_spec_proc _pa_stream_get_sample_spec = pa_stream_get_sample_spec; ma_pa_stream_get_channel_map_proc _pa_stream_get_channel_map = pa_stream_get_channel_map; ma_pa_stream_get_buffer_attr_proc _pa_stream_get_buffer_attr = pa_stream_get_buffer_attr; ma_pa_stream_set_buffer_attr_proc _pa_stream_set_buffer_attr = pa_stream_set_buffer_attr; ma_pa_stream_get_device_name_proc _pa_stream_get_device_name = pa_stream_get_device_name; ma_pa_stream_set_write_callback_proc _pa_stream_set_write_callback = pa_stream_set_write_callback; ma_pa_stream_set_read_callback_proc _pa_stream_set_read_callback = pa_stream_set_read_callback; ma_pa_stream_set_suspended_callback_proc _pa_stream_set_suspended_callback = pa_stream_set_suspended_callback; ma_pa_stream_set_moved_callback_proc _pa_stream_set_moved_callback = pa_stream_set_moved_callback; ma_pa_stream_is_suspended_proc _pa_stream_is_suspended = pa_stream_is_suspended; ma_pa_stream_flush_proc _pa_stream_flush = pa_stream_flush; ma_pa_stream_drain_proc _pa_stream_drain = pa_stream_drain; ma_pa_stream_is_corked_proc _pa_stream_is_corked = pa_stream_is_corked; ma_pa_stream_cork_proc _pa_stream_cork = pa_stream_cork; ma_pa_stream_trigger_proc _pa_stream_trigger = pa_stream_trigger; ma_pa_stream_begin_write_proc _pa_stream_begin_write = pa_stream_begin_write; ma_pa_stream_write_proc _pa_stream_write = pa_stream_write; ma_pa_stream_peek_proc _pa_stream_peek = pa_stream_peek; ma_pa_stream_drop_proc _pa_stream_drop = pa_stream_drop; ma_pa_stream_writable_size_proc _pa_stream_writable_size = pa_stream_writable_size; ma_pa_stream_readable_size_proc _pa_stream_readable_size = pa_stream_readable_size; pContext->pulse.pa_mainloop_new = (ma_proc)_pa_mainloop_new; pContext->pulse.pa_mainloop_free = (ma_proc)_pa_mainloop_free; pContext->pulse.pa_mainloop_quit = (ma_proc)_pa_mainloop_quit; pContext->pulse.pa_mainloop_get_api = (ma_proc)_pa_mainloop_get_api; pContext->pulse.pa_mainloop_iterate = (ma_proc)_pa_mainloop_iterate; pContext->pulse.pa_mainloop_wakeup = (ma_proc)_pa_mainloop_wakeup; pContext->pulse.pa_threaded_mainloop_new = (ma_proc)_pa_threaded_mainloop_new; pContext->pulse.pa_threaded_mainloop_free = (ma_proc)_pa_threaded_mainloop_free; pContext->pulse.pa_threaded_mainloop_start = (ma_proc)_pa_threaded_mainloop_start; pContext->pulse.pa_threaded_mainloop_stop = (ma_proc)_pa_threaded_mainloop_stop; pContext->pulse.pa_threaded_mainloop_lock = (ma_proc)_pa_threaded_mainloop_lock; pContext->pulse.pa_threaded_mainloop_unlock = (ma_proc)_pa_threaded_mainloop_unlock; pContext->pulse.pa_threaded_mainloop_wait = (ma_proc)_pa_threaded_mainloop_wait; pContext->pulse.pa_threaded_mainloop_signal = (ma_proc)_pa_threaded_mainloop_signal; pContext->pulse.pa_threaded_mainloop_accept = (ma_proc)_pa_threaded_mainloop_accept; pContext->pulse.pa_threaded_mainloop_get_retval = (ma_proc)_pa_threaded_mainloop_get_retval; pContext->pulse.pa_threaded_mainloop_get_api = (ma_proc)_pa_threaded_mainloop_get_api; pContext->pulse.pa_threaded_mainloop_in_thread = (ma_proc)_pa_threaded_mainloop_in_thread; pContext->pulse.pa_threaded_mainloop_set_name = (ma_proc)_pa_threaded_mainloop_set_name; pContext->pulse.pa_context_new = (ma_proc)_pa_context_new; pContext->pulse.pa_context_unref = (ma_proc)_pa_context_unref; pContext->pulse.pa_context_connect = (ma_proc)_pa_context_connect; pContext->pulse.pa_context_disconnect = (ma_proc)_pa_context_disconnect; pContext->pulse.pa_context_set_state_callback = (ma_proc)_pa_context_set_state_callback; pContext->pulse.pa_context_get_state = (ma_proc)_pa_context_get_state; pContext->pulse.pa_context_get_sink_info_list = (ma_proc)_pa_context_get_sink_info_list; pContext->pulse.pa_context_get_source_info_list = (ma_proc)_pa_context_get_source_info_list; pContext->pulse.pa_context_get_sink_info_by_name = (ma_proc)_pa_context_get_sink_info_by_name; pContext->pulse.pa_context_get_source_info_by_name = (ma_proc)_pa_context_get_source_info_by_name; pContext->pulse.pa_operation_unref = (ma_proc)_pa_operation_unref; pContext->pulse.pa_operation_get_state = (ma_proc)_pa_operation_get_state; pContext->pulse.pa_channel_map_init_extend = (ma_proc)_pa_channel_map_init_extend; pContext->pulse.pa_channel_map_valid = (ma_proc)_pa_channel_map_valid; pContext->pulse.pa_channel_map_compatible = (ma_proc)_pa_channel_map_compatible; pContext->pulse.pa_stream_new = (ma_proc)_pa_stream_new; pContext->pulse.pa_stream_unref = (ma_proc)_pa_stream_unref; pContext->pulse.pa_stream_connect_playback = (ma_proc)_pa_stream_connect_playback; pContext->pulse.pa_stream_connect_record = (ma_proc)_pa_stream_connect_record; pContext->pulse.pa_stream_disconnect = (ma_proc)_pa_stream_disconnect; pContext->pulse.pa_stream_get_state = (ma_proc)_pa_stream_get_state; pContext->pulse.pa_stream_get_sample_spec = (ma_proc)_pa_stream_get_sample_spec; pContext->pulse.pa_stream_get_channel_map = (ma_proc)_pa_stream_get_channel_map; pContext->pulse.pa_stream_get_buffer_attr = (ma_proc)_pa_stream_get_buffer_attr; pContext->pulse.pa_stream_set_buffer_attr = (ma_proc)_pa_stream_set_buffer_attr; pContext->pulse.pa_stream_get_device_name = (ma_proc)_pa_stream_get_device_name; pContext->pulse.pa_stream_set_write_callback = (ma_proc)_pa_stream_set_write_callback; pContext->pulse.pa_stream_set_read_callback = (ma_proc)_pa_stream_set_read_callback; pContext->pulse.pa_stream_set_suspended_callback = (ma_proc)_pa_stream_set_suspended_callback; pContext->pulse.pa_stream_set_moved_callback = (ma_proc)_pa_stream_set_moved_callback; pContext->pulse.pa_stream_is_suspended = (ma_proc)_pa_stream_is_suspended; pContext->pulse.pa_stream_flush = (ma_proc)_pa_stream_flush; pContext->pulse.pa_stream_drain = (ma_proc)_pa_stream_drain; pContext->pulse.pa_stream_is_corked = (ma_proc)_pa_stream_is_corked; pContext->pulse.pa_stream_cork = (ma_proc)_pa_stream_cork; pContext->pulse.pa_stream_trigger = (ma_proc)_pa_stream_trigger; pContext->pulse.pa_stream_begin_write = (ma_proc)_pa_stream_begin_write; pContext->pulse.pa_stream_write = (ma_proc)_pa_stream_write; pContext->pulse.pa_stream_peek = (ma_proc)_pa_stream_peek; pContext->pulse.pa_stream_drop = (ma_proc)_pa_stream_drop; pContext->pulse.pa_stream_writable_size = (ma_proc)_pa_stream_writable_size; pContext->pulse.pa_stream_readable_size = (ma_proc)_pa_stream_readable_size; #endif /* We need to make a copy of the application and server names so we can pass them to the pa_context of each device. */ pContext->pulse.pApplicationName = ma_copy_string(pConfig->pulse.pApplicationName, &pContext->allocationCallbacks); if (pContext->pulse.pApplicationName == NULL && pConfig->pulse.pApplicationName != NULL) { return MA_OUT_OF_MEMORY; } pContext->pulse.pServerName = ma_copy_string(pConfig->pulse.pServerName, &pContext->allocationCallbacks); if (pContext->pulse.pServerName == NULL && pConfig->pulse.pServerName != NULL) { ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); return MA_OUT_OF_MEMORY; } result = ma_init_pa_mainloop_and_pa_context__pulse(pContext, pConfig->pulse.pApplicationName, pConfig->pulse.pServerName, pConfig->pulse.tryAutoSpawn, &pContext->pulse.pMainLoop, &pContext->pulse.pPulseContext); if (result != MA_SUCCESS) { ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks); ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks); #ifndef MA_NO_RUNTIME_LINKING ma_dlclose(pContext, pContext->pulse.pulseSO); #endif return result; } /* With pa_mainloop we run a synchronous backend, but we implement our own main loop. */ pCallbacks->onContextInit = ma_context_init__pulse; pCallbacks->onContextUninit = ma_context_uninit__pulse; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__pulse; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__pulse; pCallbacks->onDeviceInit = ma_device_init__pulse; pCallbacks->onDeviceUninit = ma_device_uninit__pulse; pCallbacks->onDeviceStart = ma_device_start__pulse; pCallbacks->onDeviceStop = ma_device_stop__pulse; pCallbacks->onDeviceRead = NULL; /* Not used because we're implementing onDeviceDataLoop. */ pCallbacks->onDeviceWrite = NULL; /* Not used because we're implementing onDeviceDataLoop. */ pCallbacks->onDeviceDataLoop = ma_device_data_loop__pulse; pCallbacks->onDeviceDataLoopWakeup = ma_device_data_loop_wakeup__pulse; return MA_SUCCESS; } #endif /****************************************************************************** JACK Backend ******************************************************************************/ #ifdef MA_HAS_JACK /* It is assumed jack.h is available when compile-time linking is being used. */ #ifdef MA_NO_RUNTIME_LINKING #include typedef jack_nframes_t ma_jack_nframes_t; typedef jack_options_t ma_jack_options_t; typedef jack_status_t ma_jack_status_t; typedef jack_client_t ma_jack_client_t; typedef jack_port_t ma_jack_port_t; typedef JackProcessCallback ma_JackProcessCallback; typedef JackBufferSizeCallback ma_JackBufferSizeCallback; typedef JackShutdownCallback ma_JackShutdownCallback; #define MA_JACK_DEFAULT_AUDIO_TYPE JACK_DEFAULT_AUDIO_TYPE #define ma_JackNoStartServer JackNoStartServer #define ma_JackPortIsInput JackPortIsInput #define ma_JackPortIsOutput JackPortIsOutput #define ma_JackPortIsPhysical JackPortIsPhysical #else typedef ma_uint32 ma_jack_nframes_t; typedef int ma_jack_options_t; typedef int ma_jack_status_t; typedef struct ma_jack_client_t ma_jack_client_t; typedef struct ma_jack_port_t ma_jack_port_t; typedef int (* ma_JackProcessCallback) (ma_jack_nframes_t nframes, void* arg); typedef int (* ma_JackBufferSizeCallback)(ma_jack_nframes_t nframes, void* arg); typedef void (* ma_JackShutdownCallback) (void* arg); #define MA_JACK_DEFAULT_AUDIO_TYPE "32 bit float mono audio" #define ma_JackNoStartServer 1 #define ma_JackPortIsInput 1 #define ma_JackPortIsOutput 2 #define ma_JackPortIsPhysical 4 #endif typedef ma_jack_client_t* (* ma_jack_client_open_proc) (const char* client_name, ma_jack_options_t options, ma_jack_status_t* status, ...); typedef int (* ma_jack_client_close_proc) (ma_jack_client_t* client); typedef int (* ma_jack_client_name_size_proc) (void); typedef int (* ma_jack_set_process_callback_proc) (ma_jack_client_t* client, ma_JackProcessCallback process_callback, void* arg); typedef int (* ma_jack_set_buffer_size_callback_proc)(ma_jack_client_t* client, ma_JackBufferSizeCallback bufsize_callback, void* arg); typedef void (* ma_jack_on_shutdown_proc) (ma_jack_client_t* client, ma_JackShutdownCallback function, void* arg); typedef ma_jack_nframes_t (* ma_jack_get_sample_rate_proc) (ma_jack_client_t* client); typedef ma_jack_nframes_t (* ma_jack_get_buffer_size_proc) (ma_jack_client_t* client); typedef const char** (* ma_jack_get_ports_proc) (ma_jack_client_t* client, const char* port_name_pattern, const char* type_name_pattern, unsigned long flags); typedef int (* ma_jack_activate_proc) (ma_jack_client_t* client); typedef int (* ma_jack_deactivate_proc) (ma_jack_client_t* client); typedef int (* ma_jack_connect_proc) (ma_jack_client_t* client, const char* source_port, const char* destination_port); typedef ma_jack_port_t* (* ma_jack_port_register_proc) (ma_jack_client_t* client, const char* port_name, const char* port_type, unsigned long flags, unsigned long buffer_size); typedef const char* (* ma_jack_port_name_proc) (const ma_jack_port_t* port); typedef void* (* ma_jack_port_get_buffer_proc) (ma_jack_port_t* port, ma_jack_nframes_t nframes); typedef void (* ma_jack_free_proc) (void* ptr); static ma_result ma_context_open_client__jack(ma_context* pContext, ma_jack_client_t** ppClient) { size_t maxClientNameSize; char clientName[256]; ma_jack_status_t status; ma_jack_client_t* pClient; MA_ASSERT(pContext != NULL); MA_ASSERT(ppClient != NULL); if (ppClient) { *ppClient = NULL; } maxClientNameSize = ((ma_jack_client_name_size_proc)pContext->jack.jack_client_name_size)(); /* Includes null terminator. */ ma_strncpy_s(clientName, ma_min(sizeof(clientName), maxClientNameSize), (pContext->jack.pClientName != NULL) ? pContext->jack.pClientName : "miniaudio", (size_t)-1); pClient = ((ma_jack_client_open_proc)pContext->jack.jack_client_open)(clientName, (pContext->jack.tryStartServer) ? 0 : ma_JackNoStartServer, &status, NULL); if (pClient == NULL) { return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } if (ppClient) { *ppClient = pClient; } return MA_SUCCESS; } static ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Playback. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); deviceInfo.isDefault = MA_TRUE; /* JACK only uses default devices. */ cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } /* Capture. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); deviceInfo.isDefault = MA_TRUE; /* JACK only uses default devices. */ cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } (void)cbResult; /* For silencing a static analysis warning. */ return MA_SUCCESS; } static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_jack_client_t* pClient; ma_result result; const char** ppPorts; MA_ASSERT(pContext != NULL); if (pDeviceID != NULL && pDeviceID->jack != 0) { return MA_NO_DEVICE; /* Don't know the device. */ } /* Name / Description */ if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } /* Jack only uses default devices. */ pDeviceInfo->isDefault = MA_TRUE; /* Jack only supports f32 and has a specific channel count and sample rate. */ pDeviceInfo->nativeDataFormats[0].format = ma_format_f32; /* The channel count and sample rate can only be determined by opening the device. */ result = ma_context_open_client__jack(pContext, &pClient); if (result != MA_SUCCESS) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client."); return result; } pDeviceInfo->nativeDataFormats[0].sampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pClient); pDeviceInfo->nativeDataFormats[0].channels = 0; ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ((deviceType == ma_device_type_playback) ? ma_JackPortIsInput : ma_JackPortIsOutput)); if (ppPorts == NULL) { ((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pClient); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } while (ppPorts[pDeviceInfo->nativeDataFormats[0].channels] != NULL) { pDeviceInfo->nativeDataFormats[0].channels += 1; } pDeviceInfo->nativeDataFormats[0].flags = 0; pDeviceInfo->nativeDataFormatCount = 1; ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts); ((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pClient); (void)pContext; return MA_SUCCESS; } static ma_result ma_device_uninit__jack(ma_device* pDevice) { ma_context* pContext; MA_ASSERT(pDevice != NULL); pContext = pDevice->pContext; MA_ASSERT(pContext != NULL); if (pDevice->jack.pClient != NULL) { ((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pDevice->jack.pClient); } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_free(pDevice->jack.pIntermediaryBufferCapture, &pDevice->pContext->allocationCallbacks); ma_free(pDevice->jack.ppPortsCapture, &pDevice->pContext->allocationCallbacks); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_free(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks); ma_free(pDevice->jack.ppPortsPlayback, &pDevice->pContext->allocationCallbacks); } return MA_SUCCESS; } static void ma_device__jack_shutdown_callback(void* pUserData) { /* JACK died. Stop the device. */ ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); ma_device_stop(pDevice); } static int ma_device__jack_buffer_size_callback(ma_jack_nframes_t frameCount, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { size_t newBufferSize = frameCount * (pDevice->capture.internalChannels * ma_get_bytes_per_sample(pDevice->capture.internalFormat)); float* pNewBuffer = (float*)ma_calloc(newBufferSize, &pDevice->pContext->allocationCallbacks); if (pNewBuffer == NULL) { return MA_OUT_OF_MEMORY; } ma_free(pDevice->jack.pIntermediaryBufferCapture, &pDevice->pContext->allocationCallbacks); pDevice->jack.pIntermediaryBufferCapture = pNewBuffer; pDevice->playback.internalPeriodSizeInFrames = frameCount; } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { size_t newBufferSize = frameCount * (pDevice->playback.internalChannels * ma_get_bytes_per_sample(pDevice->playback.internalFormat)); float* pNewBuffer = (float*)ma_calloc(newBufferSize, &pDevice->pContext->allocationCallbacks); if (pNewBuffer == NULL) { return MA_OUT_OF_MEMORY; } ma_free(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks); pDevice->jack.pIntermediaryBufferPlayback = pNewBuffer; pDevice->playback.internalPeriodSizeInFrames = frameCount; } return 0; } static int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* pUserData) { ma_device* pDevice; ma_context* pContext; ma_uint32 iChannel; pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); pContext = pDevice->pContext; MA_ASSERT(pContext != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { /* Channels need to be interleaved. */ for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) { const float* pSrc = (const float*)((ma_jack_port_get_buffer_proc)pContext->jack.jack_port_get_buffer)((ma_jack_port_t*)pDevice->jack.ppPortsCapture[iChannel], frameCount); if (pSrc != NULL) { float* pDst = pDevice->jack.pIntermediaryBufferCapture + iChannel; ma_jack_nframes_t iFrame; for (iFrame = 0; iFrame < frameCount; ++iFrame) { *pDst = *pSrc; pDst += pDevice->capture.internalChannels; pSrc += 1; } } } ma_device_handle_backend_data_callback(pDevice, NULL, pDevice->jack.pIntermediaryBufferCapture, frameCount); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_device_handle_backend_data_callback(pDevice, pDevice->jack.pIntermediaryBufferPlayback, NULL, frameCount); /* Channels need to be deinterleaved. */ for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) { float* pDst = (float*)((ma_jack_port_get_buffer_proc)pContext->jack.jack_port_get_buffer)((ma_jack_port_t*)pDevice->jack.ppPortsPlayback[iChannel], frameCount); if (pDst != NULL) { const float* pSrc = pDevice->jack.pIntermediaryBufferPlayback + iChannel; ma_jack_nframes_t iFrame; for (iFrame = 0; iFrame < frameCount; ++iFrame) { *pDst = *pSrc; pDst += 1; pSrc += pDevice->playback.internalChannels; } } } } return 0; } static ma_result ma_device_init__jack(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; ma_uint32 periodSizeInFrames; MA_ASSERT(pConfig != NULL); MA_ASSERT(pDevice != NULL); if (pConfig->deviceType == ma_device_type_loopback) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Loopback mode not supported."); return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* Only supporting default devices with JACK. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->pDeviceID != NULL && pDescriptorPlayback->pDeviceID->jack != 0) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->pDeviceID != NULL && pDescriptorCapture->pDeviceID->jack != 0)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Only default devices are supported."); return MA_NO_DEVICE; } /* No exclusive mode with the JACK backend. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Exclusive mode not supported."); return MA_SHARE_MODE_NOT_SUPPORTED; } /* Open the client. */ result = ma_context_open_client__jack(pDevice->pContext, (ma_jack_client_t**)&pDevice->jack.pClient); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client."); return result; } /* Callbacks. */ if (((ma_jack_set_process_callback_proc)pDevice->pContext->jack.jack_set_process_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_process_callback, pDevice) != 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to set process callback."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } if (((ma_jack_set_buffer_size_callback_proc)pDevice->pContext->jack.jack_set_buffer_size_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_buffer_size_callback, pDevice) != 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to set buffer size callback."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } ((ma_jack_on_shutdown_proc)pDevice->pContext->jack.jack_on_shutdown)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_shutdown_callback, pDevice); /* The buffer size in frames can change. */ periodSizeInFrames = ((ma_jack_get_buffer_size_proc)pDevice->pContext->jack.jack_get_buffer_size)((ma_jack_client_t*)pDevice->jack.pClient); if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_uint32 iPort; const char** ppPorts; pDescriptorCapture->format = ma_format_f32; pDescriptorCapture->channels = 0; pDescriptorCapture->sampleRate = ((ma_jack_get_sample_rate_proc)pDevice->pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient); ma_channel_map_init_standard(ma_standard_channel_map_alsa, pDescriptorCapture->channelMap, ma_countof(pDescriptorCapture->channelMap), pDescriptorCapture->channels); ppPorts = ((ma_jack_get_ports_proc)pDevice->pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput); if (ppPorts == NULL) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } /* Need to count the number of ports first so we can allocate some memory. */ while (ppPorts[pDescriptorCapture->channels] != NULL) { pDescriptorCapture->channels += 1; } pDevice->jack.ppPortsCapture = (ma_ptr*)ma_malloc(sizeof(*pDevice->jack.ppPortsCapture) * pDescriptorCapture->channels, &pDevice->pContext->allocationCallbacks); if (pDevice->jack.ppPortsCapture == NULL) { return MA_OUT_OF_MEMORY; } for (iPort = 0; iPort < pDescriptorCapture->channels; iPort += 1) { char name[64]; ma_strcpy_s(name, sizeof(name), "capture"); ma_itoa_s((int)iPort, name+7, sizeof(name)-7, 10); /* 7 = length of "capture" */ pDevice->jack.ppPortsCapture[iPort] = ((ma_jack_port_register_proc)pDevice->pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsInput, 0); if (pDevice->jack.ppPortsCapture[iPort] == NULL) { ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); ma_device_uninit__jack(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to register ports."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } } ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); pDescriptorCapture->periodSizeInFrames = periodSizeInFrames; pDescriptorCapture->periodCount = 1; /* There's no notion of a period in JACK. Just set to 1. */ pDevice->jack.pIntermediaryBufferCapture = (float*)ma_calloc(pDescriptorCapture->periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels), &pDevice->pContext->allocationCallbacks); if (pDevice->jack.pIntermediaryBufferCapture == NULL) { ma_device_uninit__jack(pDevice); return MA_OUT_OF_MEMORY; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_uint32 iPort; const char** ppPorts; pDescriptorPlayback->format = ma_format_f32; pDescriptorPlayback->channels = 0; pDescriptorPlayback->sampleRate = ((ma_jack_get_sample_rate_proc)pDevice->pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient); ma_channel_map_init_standard(ma_standard_channel_map_alsa, pDescriptorPlayback->channelMap, ma_countof(pDescriptorPlayback->channelMap), pDescriptorPlayback->channels); ppPorts = ((ma_jack_get_ports_proc)pDevice->pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput); if (ppPorts == NULL) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } /* Need to count the number of ports first so we can allocate some memory. */ while (ppPorts[pDescriptorPlayback->channels] != NULL) { pDescriptorPlayback->channels += 1; } pDevice->jack.ppPortsPlayback = (ma_ptr*)ma_malloc(sizeof(*pDevice->jack.ppPortsPlayback) * pDescriptorPlayback->channels, &pDevice->pContext->allocationCallbacks); if (pDevice->jack.ppPortsPlayback == NULL) { ma_free(pDevice->jack.ppPortsCapture, &pDevice->pContext->allocationCallbacks); return MA_OUT_OF_MEMORY; } for (iPort = 0; iPort < pDescriptorPlayback->channels; iPort += 1) { char name[64]; ma_strcpy_s(name, sizeof(name), "playback"); ma_itoa_s((int)iPort, name+8, sizeof(name)-8, 10); /* 8 = length of "playback" */ pDevice->jack.ppPortsPlayback[iPort] = ((ma_jack_port_register_proc)pDevice->pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsOutput, 0); if (pDevice->jack.ppPortsPlayback[iPort] == NULL) { ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); ma_device_uninit__jack(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to register ports."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } } ((ma_jack_free_proc)pDevice->pContext->jack.jack_free)((void*)ppPorts); pDescriptorPlayback->periodSizeInFrames = periodSizeInFrames; pDescriptorPlayback->periodCount = 1; /* There's no notion of a period in JACK. Just set to 1. */ pDevice->jack.pIntermediaryBufferPlayback = (float*)ma_calloc(pDescriptorPlayback->periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels), &pDevice->pContext->allocationCallbacks); if (pDevice->jack.pIntermediaryBufferPlayback == NULL) { ma_device_uninit__jack(pDevice); return MA_OUT_OF_MEMORY; } } return MA_SUCCESS; } static ma_result ma_device_start__jack(ma_device* pDevice) { ma_context* pContext = pDevice->pContext; int resultJACK; size_t i; resultJACK = ((ma_jack_activate_proc)pContext->jack.jack_activate)((ma_jack_client_t*)pDevice->jack.pClient); if (resultJACK != 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to activate the JACK client."); return MA_FAILED_TO_START_BACKEND_DEVICE; } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput); if (ppServerPorts == NULL) { ((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to retrieve physical ports."); return MA_ERROR; } for (i = 0; ppServerPorts[i] != NULL; ++i) { const char* pServerPort = ppServerPorts[i]; const char* pClientPort = ((ma_jack_port_name_proc)pContext->jack.jack_port_name)((ma_jack_port_t*)pDevice->jack.ppPortsCapture[i]); resultJACK = ((ma_jack_connect_proc)pContext->jack.jack_connect)((ma_jack_client_t*)pDevice->jack.pClient, pServerPort, pClientPort); if (resultJACK != 0) { ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts); ((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to connect ports."); return MA_ERROR; } } ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput); if (ppServerPorts == NULL) { ((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to retrieve physical ports."); return MA_ERROR; } for (i = 0; ppServerPorts[i] != NULL; ++i) { const char* pServerPort = ppServerPorts[i]; const char* pClientPort = ((ma_jack_port_name_proc)pContext->jack.jack_port_name)((ma_jack_port_t*)pDevice->jack.ppPortsPlayback[i]); resultJACK = ((ma_jack_connect_proc)pContext->jack.jack_connect)((ma_jack_client_t*)pDevice->jack.pClient, pClientPort, pServerPort); if (resultJACK != 0) { ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts); ((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] Failed to connect ports."); return MA_ERROR; } } ((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts); } return MA_SUCCESS; } static ma_result ma_device_stop__jack(ma_device* pDevice) { ma_context* pContext = pDevice->pContext; if (((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient) != 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[JACK] An error occurred when deactivating the JACK client."); return MA_ERROR; } ma_device__on_notification_stopped(pDevice); return MA_SUCCESS; } static ma_result ma_context_uninit__jack(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_jack); ma_free(pContext->jack.pClientName, &pContext->allocationCallbacks); pContext->jack.pClientName = NULL; #ifndef MA_NO_RUNTIME_LINKING ma_dlclose(pContext, pContext->jack.jackSO); #endif return MA_SUCCESS; } static ma_result ma_context_init__jack(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { #ifndef MA_NO_RUNTIME_LINKING const char* libjackNames[] = { #ifdef MA_WIN32 "libjack.dll", "libjack64.dll" #else "libjack.so", "libjack.so.0" #endif }; size_t i; for (i = 0; i < ma_countof(libjackNames); ++i) { pContext->jack.jackSO = ma_dlopen(pContext, libjackNames[i]); if (pContext->jack.jackSO != NULL) { break; } } if (pContext->jack.jackSO == NULL) { return MA_NO_BACKEND; } pContext->jack.jack_client_open = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_client_open"); pContext->jack.jack_client_close = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_client_close"); pContext->jack.jack_client_name_size = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_client_name_size"); pContext->jack.jack_set_process_callback = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_set_process_callback"); pContext->jack.jack_set_buffer_size_callback = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_set_buffer_size_callback"); pContext->jack.jack_on_shutdown = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_on_shutdown"); pContext->jack.jack_get_sample_rate = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_get_sample_rate"); pContext->jack.jack_get_buffer_size = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_get_buffer_size"); pContext->jack.jack_get_ports = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_get_ports"); pContext->jack.jack_activate = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_activate"); pContext->jack.jack_deactivate = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_deactivate"); pContext->jack.jack_connect = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_connect"); pContext->jack.jack_port_register = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_port_register"); pContext->jack.jack_port_name = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_port_name"); pContext->jack.jack_port_get_buffer = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_port_get_buffer"); pContext->jack.jack_free = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_free"); #else /* This strange assignment system is here just to ensure type safety of miniaudio's function pointer types. If anything differs slightly the compiler should throw a warning. */ ma_jack_client_open_proc _jack_client_open = jack_client_open; ma_jack_client_close_proc _jack_client_close = jack_client_close; ma_jack_client_name_size_proc _jack_client_name_size = jack_client_name_size; ma_jack_set_process_callback_proc _jack_set_process_callback = jack_set_process_callback; ma_jack_set_buffer_size_callback_proc _jack_set_buffer_size_callback = jack_set_buffer_size_callback; ma_jack_on_shutdown_proc _jack_on_shutdown = jack_on_shutdown; ma_jack_get_sample_rate_proc _jack_get_sample_rate = jack_get_sample_rate; ma_jack_get_buffer_size_proc _jack_get_buffer_size = jack_get_buffer_size; ma_jack_get_ports_proc _jack_get_ports = jack_get_ports; ma_jack_activate_proc _jack_activate = jack_activate; ma_jack_deactivate_proc _jack_deactivate = jack_deactivate; ma_jack_connect_proc _jack_connect = jack_connect; ma_jack_port_register_proc _jack_port_register = jack_port_register; ma_jack_port_name_proc _jack_port_name = jack_port_name; ma_jack_port_get_buffer_proc _jack_port_get_buffer = jack_port_get_buffer; ma_jack_free_proc _jack_free = jack_free; pContext->jack.jack_client_open = (ma_proc)_jack_client_open; pContext->jack.jack_client_close = (ma_proc)_jack_client_close; pContext->jack.jack_client_name_size = (ma_proc)_jack_client_name_size; pContext->jack.jack_set_process_callback = (ma_proc)_jack_set_process_callback; pContext->jack.jack_set_buffer_size_callback = (ma_proc)_jack_set_buffer_size_callback; pContext->jack.jack_on_shutdown = (ma_proc)_jack_on_shutdown; pContext->jack.jack_get_sample_rate = (ma_proc)_jack_get_sample_rate; pContext->jack.jack_get_buffer_size = (ma_proc)_jack_get_buffer_size; pContext->jack.jack_get_ports = (ma_proc)_jack_get_ports; pContext->jack.jack_activate = (ma_proc)_jack_activate; pContext->jack.jack_deactivate = (ma_proc)_jack_deactivate; pContext->jack.jack_connect = (ma_proc)_jack_connect; pContext->jack.jack_port_register = (ma_proc)_jack_port_register; pContext->jack.jack_port_name = (ma_proc)_jack_port_name; pContext->jack.jack_port_get_buffer = (ma_proc)_jack_port_get_buffer; pContext->jack.jack_free = (ma_proc)_jack_free; #endif if (pConfig->jack.pClientName != NULL) { pContext->jack.pClientName = ma_copy_string(pConfig->jack.pClientName, &pContext->allocationCallbacks); } pContext->jack.tryStartServer = pConfig->jack.tryStartServer; /* Getting here means the JACK library is installed, but it doesn't necessarily mean it's usable. We need to quickly test this by connecting a temporary client. */ { ma_jack_client_t* pDummyClient; ma_result result = ma_context_open_client__jack(pContext, &pDummyClient); if (result != MA_SUCCESS) { ma_free(pContext->jack.pClientName, &pContext->allocationCallbacks); #ifndef MA_NO_RUNTIME_LINKING ma_dlclose(pContext, pContext->jack.jackSO); #endif return MA_NO_BACKEND; } ((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pDummyClient); } pCallbacks->onContextInit = ma_context_init__jack; pCallbacks->onContextUninit = ma_context_uninit__jack; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__jack; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__jack; pCallbacks->onDeviceInit = ma_device_init__jack; pCallbacks->onDeviceUninit = ma_device_uninit__jack; pCallbacks->onDeviceStart = ma_device_start__jack; pCallbacks->onDeviceStop = ma_device_stop__jack; pCallbacks->onDeviceRead = NULL; /* Not used because JACK is asynchronous. */ pCallbacks->onDeviceWrite = NULL; /* Not used because JACK is asynchronous. */ pCallbacks->onDeviceDataLoop = NULL; /* Not used because JACK is asynchronous. */ return MA_SUCCESS; } #endif /* JACK */ /****************************************************************************** Core Audio Backend References ========== - Technical Note TN2091: Device input using the HAL Output Audio Unit https://developer.apple.com/library/archive/technotes/tn2091/_index.html ******************************************************************************/ #ifdef MA_HAS_COREAUDIO #include #if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE == 1 #define MA_APPLE_MOBILE #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1 #define MA_APPLE_TV #endif #if defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1 #define MA_APPLE_WATCH #endif #if __has_feature(objc_arc) #define MA_BRIDGE_TRANSFER __bridge_transfer #define MA_BRIDGE_RETAINED __bridge_retained #else #define MA_BRIDGE_TRANSFER #define MA_BRIDGE_RETAINED #endif #else #define MA_APPLE_DESKTOP #endif #if defined(MA_APPLE_DESKTOP) #include #else #include #endif #include /* CoreFoundation */ typedef Boolean (* ma_CFStringGetCString_proc)(CFStringRef theString, char* buffer, CFIndex bufferSize, CFStringEncoding encoding); typedef void (* ma_CFRelease_proc)(CFTypeRef cf); /* CoreAudio */ #if defined(MA_APPLE_DESKTOP) typedef OSStatus (* ma_AudioObjectGetPropertyData_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, UInt32 inQualifierDataSize, const void* inQualifierData, UInt32* ioDataSize, void* outData); typedef OSStatus (* ma_AudioObjectGetPropertyDataSize_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, UInt32 inQualifierDataSize, const void* inQualifierData, UInt32* outDataSize); typedef OSStatus (* ma_AudioObjectSetPropertyData_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, UInt32 inQualifierDataSize, const void* inQualifierData, UInt32 inDataSize, const void* inData); typedef OSStatus (* ma_AudioObjectAddPropertyListener_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, AudioObjectPropertyListenerProc inListener, void* inClientData); typedef OSStatus (* ma_AudioObjectRemovePropertyListener_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, AudioObjectPropertyListenerProc inListener, void* inClientData); #endif /* AudioToolbox */ typedef AudioComponent (* ma_AudioComponentFindNext_proc)(AudioComponent inComponent, const AudioComponentDescription* inDesc); typedef OSStatus (* ma_AudioComponentInstanceDispose_proc)(AudioComponentInstance inInstance); typedef OSStatus (* ma_AudioComponentInstanceNew_proc)(AudioComponent inComponent, AudioComponentInstance* outInstance); typedef OSStatus (* ma_AudioOutputUnitStart_proc)(AudioUnit inUnit); typedef OSStatus (* ma_AudioOutputUnitStop_proc)(AudioUnit inUnit); typedef OSStatus (* ma_AudioUnitAddPropertyListener_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitPropertyListenerProc inProc, void* inProcUserData); typedef OSStatus (* ma_AudioUnitGetPropertyInfo_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32* outDataSize, Boolean* outWriteable); typedef OSStatus (* ma_AudioUnitGetProperty_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void* outData, UInt32* ioDataSize); typedef OSStatus (* ma_AudioUnitSetProperty_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, const void* inData, UInt32 inDataSize); typedef OSStatus (* ma_AudioUnitInitialize_proc)(AudioUnit inUnit); typedef OSStatus (* ma_AudioUnitRender_proc)(AudioUnit inUnit, AudioUnitRenderActionFlags* ioActionFlags, const AudioTimeStamp* inTimeStamp, UInt32 inOutputBusNumber, UInt32 inNumberFrames, AudioBufferList* ioData); #define MA_COREAUDIO_OUTPUT_BUS 0 #define MA_COREAUDIO_INPUT_BUS 1 #if defined(MA_APPLE_DESKTOP) static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit); #endif /* Core Audio So far, Core Audio has been the worst backend to work with due to being both unintuitive and having almost no documentation apart from comments in the headers (which admittedly are quite good). For my own purposes, and for anybody out there whose needing to figure out how this darn thing works, I'm going to outline a few things here. Since miniaudio is a fairly low-level API, one of the things it needs is control over specific devices, and it needs to be able to identify whether or not it can be used as playback and/or capture. The AudioObject API is the only one I've seen that supports this level of detail. There was some public domain sample code I stumbled across that used the AudioComponent and AudioUnit APIs, but I couldn't see anything that gave low-level control over device selection and capabilities (the distinction between playback and capture in particular). Therefore, miniaudio is using the AudioObject API. Most (all?) functions in the AudioObject API take a AudioObjectID as it's input. This is the device identifier. When retrieving global information, such as the device list, you use kAudioObjectSystemObject. When retrieving device-specific data, you pass in the ID for that device. In order to retrieve device-specific IDs you need to enumerate over each of the devices. This is done using the AudioObjectGetPropertyDataSize() and AudioObjectGetPropertyData() APIs which seem to be the central APIs for retrieving information about the system and specific devices. To use the AudioObjectGetPropertyData() API you need to use the notion of a property address. A property address is a structure with three variables and is used to identify which property you are getting or setting. The first is the "selector" which is basically the specific property that you're wanting to retrieve or set. The second is the "scope", which is typically set to kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyScopeInput for input-specific properties and kAudioObjectPropertyScopeOutput for output-specific properties. The last is the "element" which is always set to kAudioObjectPropertyElementMain in miniaudio's case. I don't know of any cases where this would be set to anything different. Back to the earlier issue of device retrieval, you first use the AudioObjectGetPropertyDataSize() API to retrieve the size of the raw data which is just a list of AudioDeviceID's. You use the kAudioObjectSystemObject AudioObjectID, and a property address with the kAudioHardwarePropertyDevices selector and the kAudioObjectPropertyScopeGlobal scope. Once you have the size, allocate a block of memory of that size and then call AudioObjectGetPropertyData(). The data is just a list of AudioDeviceID's so just do "dataSize/sizeof(AudioDeviceID)" to know the device count. */ static ma_result ma_result_from_OSStatus(OSStatus status) { switch (status) { case noErr: return MA_SUCCESS; #if defined(MA_APPLE_DESKTOP) case kAudioHardwareNotRunningError: return MA_DEVICE_NOT_STARTED; case kAudioHardwareUnspecifiedError: return MA_ERROR; case kAudioHardwareUnknownPropertyError: return MA_INVALID_ARGS; case kAudioHardwareBadPropertySizeError: return MA_INVALID_OPERATION; case kAudioHardwareIllegalOperationError: return MA_INVALID_OPERATION; case kAudioHardwareBadObjectError: return MA_INVALID_ARGS; case kAudioHardwareBadDeviceError: return MA_INVALID_ARGS; case kAudioHardwareBadStreamError: return MA_INVALID_ARGS; case kAudioHardwareUnsupportedOperationError: return MA_INVALID_OPERATION; case kAudioDeviceUnsupportedFormatError: return MA_FORMAT_NOT_SUPPORTED; case kAudioDevicePermissionsError: return MA_ACCESS_DENIED; #endif default: return MA_ERROR; } } #if 0 static ma_channel ma_channel_from_AudioChannelBitmap(AudioChannelBitmap bit) { switch (bit) { case kAudioChannelBit_Left: return MA_CHANNEL_LEFT; case kAudioChannelBit_Right: return MA_CHANNEL_RIGHT; case kAudioChannelBit_Center: return MA_CHANNEL_FRONT_CENTER; case kAudioChannelBit_LFEScreen: return MA_CHANNEL_LFE; case kAudioChannelBit_LeftSurround: return MA_CHANNEL_BACK_LEFT; case kAudioChannelBit_RightSurround: return MA_CHANNEL_BACK_RIGHT; case kAudioChannelBit_LeftCenter: return MA_CHANNEL_FRONT_LEFT_CENTER; case kAudioChannelBit_RightCenter: return MA_CHANNEL_FRONT_RIGHT_CENTER; case kAudioChannelBit_CenterSurround: return MA_CHANNEL_BACK_CENTER; case kAudioChannelBit_LeftSurroundDirect: return MA_CHANNEL_SIDE_LEFT; case kAudioChannelBit_RightSurroundDirect: return MA_CHANNEL_SIDE_RIGHT; case kAudioChannelBit_TopCenterSurround: return MA_CHANNEL_TOP_CENTER; case kAudioChannelBit_VerticalHeightLeft: return MA_CHANNEL_TOP_FRONT_LEFT; case kAudioChannelBit_VerticalHeightCenter: return MA_CHANNEL_TOP_FRONT_CENTER; case kAudioChannelBit_VerticalHeightRight: return MA_CHANNEL_TOP_FRONT_RIGHT; case kAudioChannelBit_TopBackLeft: return MA_CHANNEL_TOP_BACK_LEFT; case kAudioChannelBit_TopBackCenter: return MA_CHANNEL_TOP_BACK_CENTER; case kAudioChannelBit_TopBackRight: return MA_CHANNEL_TOP_BACK_RIGHT; default: return MA_CHANNEL_NONE; } } #endif static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescription* pDescription, ma_format* pFormatOut) { MA_ASSERT(pDescription != NULL); MA_ASSERT(pFormatOut != NULL); *pFormatOut = ma_format_unknown; /* Safety. */ /* There's a few things miniaudio doesn't support. */ if (pDescription->mFormatID != kAudioFormatLinearPCM) { return MA_FORMAT_NOT_SUPPORTED; } /* We don't support any non-packed formats that are aligned high. */ if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsAlignedHigh) != 0) { return MA_FORMAT_NOT_SUPPORTED; } /* Only supporting native-endian. */ if ((ma_is_little_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) != 0) || (ma_is_big_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) == 0)) { return MA_FORMAT_NOT_SUPPORTED; } /* We are not currently supporting non-interleaved formats (this will be added in a future version of miniaudio). */ /*if ((pDescription->mFormatFlags & kAudioFormatFlagIsNonInterleaved) != 0) { return MA_FORMAT_NOT_SUPPORTED; }*/ if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsFloat) != 0) { if (pDescription->mBitsPerChannel == 32) { *pFormatOut = ma_format_f32; return MA_SUCCESS; } } else { if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsSignedInteger) != 0) { if (pDescription->mBitsPerChannel == 16) { *pFormatOut = ma_format_s16; return MA_SUCCESS; } else if (pDescription->mBitsPerChannel == 24) { if (pDescription->mBytesPerFrame == (pDescription->mBitsPerChannel/8 * pDescription->mChannelsPerFrame)) { *pFormatOut = ma_format_s24; return MA_SUCCESS; } else { if (pDescription->mBytesPerFrame/pDescription->mChannelsPerFrame == sizeof(ma_int32)) { /* TODO: Implement ma_format_s24_32. */ /**pFormatOut = ma_format_s24_32;*/ /*return MA_SUCCESS;*/ return MA_FORMAT_NOT_SUPPORTED; } } } else if (pDescription->mBitsPerChannel == 32) { *pFormatOut = ma_format_s32; return MA_SUCCESS; } } else { if (pDescription->mBitsPerChannel == 8) { *pFormatOut = ma_format_u8; return MA_SUCCESS; } } } /* Getting here means the format is not supported. */ return MA_FORMAT_NOT_SUPPORTED; } #if defined(MA_APPLE_DESKTOP) static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label) { switch (label) { case kAudioChannelLabel_Unknown: return MA_CHANNEL_NONE; case kAudioChannelLabel_Unused: return MA_CHANNEL_NONE; case kAudioChannelLabel_UseCoordinates: return MA_CHANNEL_NONE; case kAudioChannelLabel_Left: return MA_CHANNEL_LEFT; case kAudioChannelLabel_Right: return MA_CHANNEL_RIGHT; case kAudioChannelLabel_Center: return MA_CHANNEL_FRONT_CENTER; case kAudioChannelLabel_LFEScreen: return MA_CHANNEL_LFE; case kAudioChannelLabel_LeftSurround: return MA_CHANNEL_BACK_LEFT; case kAudioChannelLabel_RightSurround: return MA_CHANNEL_BACK_RIGHT; case kAudioChannelLabel_LeftCenter: return MA_CHANNEL_FRONT_LEFT_CENTER; case kAudioChannelLabel_RightCenter: return MA_CHANNEL_FRONT_RIGHT_CENTER; case kAudioChannelLabel_CenterSurround: return MA_CHANNEL_BACK_CENTER; case kAudioChannelLabel_LeftSurroundDirect: return MA_CHANNEL_SIDE_LEFT; case kAudioChannelLabel_RightSurroundDirect: return MA_CHANNEL_SIDE_RIGHT; case kAudioChannelLabel_TopCenterSurround: return MA_CHANNEL_TOP_CENTER; case kAudioChannelLabel_VerticalHeightLeft: return MA_CHANNEL_TOP_FRONT_LEFT; case kAudioChannelLabel_VerticalHeightCenter: return MA_CHANNEL_TOP_FRONT_CENTER; case kAudioChannelLabel_VerticalHeightRight: return MA_CHANNEL_TOP_FRONT_RIGHT; case kAudioChannelLabel_TopBackLeft: return MA_CHANNEL_TOP_BACK_LEFT; case kAudioChannelLabel_TopBackCenter: return MA_CHANNEL_TOP_BACK_CENTER; case kAudioChannelLabel_TopBackRight: return MA_CHANNEL_TOP_BACK_RIGHT; case kAudioChannelLabel_RearSurroundLeft: return MA_CHANNEL_BACK_LEFT; case kAudioChannelLabel_RearSurroundRight: return MA_CHANNEL_BACK_RIGHT; case kAudioChannelLabel_LeftWide: return MA_CHANNEL_SIDE_LEFT; case kAudioChannelLabel_RightWide: return MA_CHANNEL_SIDE_RIGHT; case kAudioChannelLabel_LFE2: return MA_CHANNEL_LFE; case kAudioChannelLabel_LeftTotal: return MA_CHANNEL_LEFT; case kAudioChannelLabel_RightTotal: return MA_CHANNEL_RIGHT; case kAudioChannelLabel_HearingImpaired: return MA_CHANNEL_NONE; case kAudioChannelLabel_Narration: return MA_CHANNEL_MONO; case kAudioChannelLabel_Mono: return MA_CHANNEL_MONO; case kAudioChannelLabel_DialogCentricMix: return MA_CHANNEL_MONO; case kAudioChannelLabel_CenterSurroundDirect: return MA_CHANNEL_BACK_CENTER; case kAudioChannelLabel_Haptic: return MA_CHANNEL_NONE; case kAudioChannelLabel_Ambisonic_W: return MA_CHANNEL_NONE; case kAudioChannelLabel_Ambisonic_X: return MA_CHANNEL_NONE; case kAudioChannelLabel_Ambisonic_Y: return MA_CHANNEL_NONE; case kAudioChannelLabel_Ambisonic_Z: return MA_CHANNEL_NONE; case kAudioChannelLabel_MS_Mid: return MA_CHANNEL_LEFT; case kAudioChannelLabel_MS_Side: return MA_CHANNEL_RIGHT; case kAudioChannelLabel_XY_X: return MA_CHANNEL_LEFT; case kAudioChannelLabel_XY_Y: return MA_CHANNEL_RIGHT; case kAudioChannelLabel_HeadphonesLeft: return MA_CHANNEL_LEFT; case kAudioChannelLabel_HeadphonesRight: return MA_CHANNEL_RIGHT; case kAudioChannelLabel_ClickTrack: return MA_CHANNEL_NONE; case kAudioChannelLabel_ForeignLanguage: return MA_CHANNEL_NONE; case kAudioChannelLabel_Discrete: return MA_CHANNEL_NONE; case kAudioChannelLabel_Discrete_0: return MA_CHANNEL_AUX_0; case kAudioChannelLabel_Discrete_1: return MA_CHANNEL_AUX_1; case kAudioChannelLabel_Discrete_2: return MA_CHANNEL_AUX_2; case kAudioChannelLabel_Discrete_3: return MA_CHANNEL_AUX_3; case kAudioChannelLabel_Discrete_4: return MA_CHANNEL_AUX_4; case kAudioChannelLabel_Discrete_5: return MA_CHANNEL_AUX_5; case kAudioChannelLabel_Discrete_6: return MA_CHANNEL_AUX_6; case kAudioChannelLabel_Discrete_7: return MA_CHANNEL_AUX_7; case kAudioChannelLabel_Discrete_8: return MA_CHANNEL_AUX_8; case kAudioChannelLabel_Discrete_9: return MA_CHANNEL_AUX_9; case kAudioChannelLabel_Discrete_10: return MA_CHANNEL_AUX_10; case kAudioChannelLabel_Discrete_11: return MA_CHANNEL_AUX_11; case kAudioChannelLabel_Discrete_12: return MA_CHANNEL_AUX_12; case kAudioChannelLabel_Discrete_13: return MA_CHANNEL_AUX_13; case kAudioChannelLabel_Discrete_14: return MA_CHANNEL_AUX_14; case kAudioChannelLabel_Discrete_15: return MA_CHANNEL_AUX_15; case kAudioChannelLabel_Discrete_65535: return MA_CHANNEL_NONE; #if 0 /* Introduced in a later version of macOS. */ case kAudioChannelLabel_HOA_ACN: return MA_CHANNEL_NONE; case kAudioChannelLabel_HOA_ACN_0: return MA_CHANNEL_AUX_0; case kAudioChannelLabel_HOA_ACN_1: return MA_CHANNEL_AUX_1; case kAudioChannelLabel_HOA_ACN_2: return MA_CHANNEL_AUX_2; case kAudioChannelLabel_HOA_ACN_3: return MA_CHANNEL_AUX_3; case kAudioChannelLabel_HOA_ACN_4: return MA_CHANNEL_AUX_4; case kAudioChannelLabel_HOA_ACN_5: return MA_CHANNEL_AUX_5; case kAudioChannelLabel_HOA_ACN_6: return MA_CHANNEL_AUX_6; case kAudioChannelLabel_HOA_ACN_7: return MA_CHANNEL_AUX_7; case kAudioChannelLabel_HOA_ACN_8: return MA_CHANNEL_AUX_8; case kAudioChannelLabel_HOA_ACN_9: return MA_CHANNEL_AUX_9; case kAudioChannelLabel_HOA_ACN_10: return MA_CHANNEL_AUX_10; case kAudioChannelLabel_HOA_ACN_11: return MA_CHANNEL_AUX_11; case kAudioChannelLabel_HOA_ACN_12: return MA_CHANNEL_AUX_12; case kAudioChannelLabel_HOA_ACN_13: return MA_CHANNEL_AUX_13; case kAudioChannelLabel_HOA_ACN_14: return MA_CHANNEL_AUX_14; case kAudioChannelLabel_HOA_ACN_15: return MA_CHANNEL_AUX_15; case kAudioChannelLabel_HOA_ACN_65024: return MA_CHANNEL_NONE; #endif default: return MA_CHANNEL_NONE; } } static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel* pChannelMap, size_t channelMapCap) { MA_ASSERT(pChannelLayout != NULL); if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) { UInt32 iChannel; for (iChannel = 0; iChannel < pChannelLayout->mNumberChannelDescriptions && iChannel < channelMapCap; ++iChannel) { pChannelMap[iChannel] = ma_channel_from_AudioChannelLabel(pChannelLayout->mChannelDescriptions[iChannel].mChannelLabel); } } else #if 0 if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelBitmap) { /* This is the same kind of system that's used by Windows audio APIs. */ UInt32 iChannel = 0; UInt32 iBit; AudioChannelBitmap bitmap = pChannelLayout->mChannelBitmap; for (iBit = 0; iBit < 32 && iChannel < channelMapCap; ++iBit) { AudioChannelBitmap bit = bitmap & (1 << iBit); if (bit != 0) { pChannelMap[iChannel++] = ma_channel_from_AudioChannelBit(bit); } } } else #endif { /* Need to use the tag to determine the channel map. For now I'm just assuming a default channel map, but later on this should be updated to determine the mapping based on the tag. */ UInt32 channelCount; /* Our channel map retrieval APIs below take 32-bit integers, so we'll want to clamp the channel map capacity. */ if (channelMapCap > 0xFFFFFFFF) { channelMapCap = 0xFFFFFFFF; } channelCount = ma_min(AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag), (UInt32)channelMapCap); switch (pChannelLayout->mChannelLayoutTag) { case kAudioChannelLayoutTag_Mono: case kAudioChannelLayoutTag_Stereo: case kAudioChannelLayoutTag_StereoHeadphones: case kAudioChannelLayoutTag_MatrixStereo: case kAudioChannelLayoutTag_MidSide: case kAudioChannelLayoutTag_XY: case kAudioChannelLayoutTag_Binaural: case kAudioChannelLayoutTag_Ambisonic_B_Format: { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, channelCount); } break; case kAudioChannelLayoutTag_Octagonal: { pChannelMap[7] = MA_CHANNEL_SIDE_RIGHT; pChannelMap[6] = MA_CHANNEL_SIDE_LEFT; } /* Intentional fallthrough. */ case kAudioChannelLayoutTag_Hexagonal: { pChannelMap[5] = MA_CHANNEL_BACK_CENTER; } /* Intentional fallthrough. */ case kAudioChannelLayoutTag_Pentagonal: { pChannelMap[4] = MA_CHANNEL_FRONT_CENTER; } /* Intentional fallghrough. */ case kAudioChannelLayoutTag_Quadraphonic: { pChannelMap[3] = MA_CHANNEL_BACK_RIGHT; pChannelMap[2] = MA_CHANNEL_BACK_LEFT; pChannelMap[1] = MA_CHANNEL_RIGHT; pChannelMap[0] = MA_CHANNEL_LEFT; } break; /* TODO: Add support for more tags here. */ default: { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, channelCount); } break; } } return MA_SUCCESS; } #if (defined(MAC_OS_VERSION_12_0) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_VERSION_12_0) || \ (defined(__IPHONE_15_0) && __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_15_0) #define AUDIO_OBJECT_PROPERTY_ELEMENT kAudioObjectPropertyElementMain #else /* kAudioObjectPropertyElementMaster is deprecated. */ #define AUDIO_OBJECT_PROPERTY_ELEMENT kAudioObjectPropertyElementMaster #endif static ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt32* pDeviceCount, AudioObjectID** ppDeviceObjectIDs) /* NOTE: Free the returned buffer with ma_free(). */ { AudioObjectPropertyAddress propAddressDevices; UInt32 deviceObjectsDataSize; OSStatus status; AudioObjectID* pDeviceObjectIDs; MA_ASSERT(pContext != NULL); MA_ASSERT(pDeviceCount != NULL); MA_ASSERT(ppDeviceObjectIDs != NULL); /* Safety. */ *pDeviceCount = 0; *ppDeviceObjectIDs = NULL; propAddressDevices.mSelector = kAudioHardwarePropertyDevices; propAddressDevices.mScope = kAudioObjectPropertyScopeGlobal; propAddressDevices.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(kAudioObjectSystemObject, &propAddressDevices, 0, NULL, &deviceObjectsDataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } pDeviceObjectIDs = (AudioObjectID*)ma_malloc(deviceObjectsDataSize, &pContext->allocationCallbacks); if (pDeviceObjectIDs == NULL) { return MA_OUT_OF_MEMORY; } status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDevices, 0, NULL, &deviceObjectsDataSize, pDeviceObjectIDs); if (status != noErr) { ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } *pDeviceCount = deviceObjectsDataSize / sizeof(AudioObjectID); *ppDeviceObjectIDs = pDeviceObjectIDs; return MA_SUCCESS; } static ma_result ma_get_AudioObject_uid_as_CFStringRef(ma_context* pContext, AudioObjectID objectID, CFStringRef* pUID) { AudioObjectPropertyAddress propAddress; UInt32 dataSize; OSStatus status; MA_ASSERT(pContext != NULL); propAddress.mSelector = kAudioDevicePropertyDeviceUID; propAddress.mScope = kAudioObjectPropertyScopeGlobal; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; dataSize = sizeof(*pUID); status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(objectID, &propAddress, 0, NULL, &dataSize, pUID); if (status != noErr) { return ma_result_from_OSStatus(status); } return MA_SUCCESS; } static ma_result ma_get_AudioObject_uid(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut) { CFStringRef uid; ma_result result; MA_ASSERT(pContext != NULL); result = ma_get_AudioObject_uid_as_CFStringRef(pContext, objectID, &uid); if (result != MA_SUCCESS) { return result; } if (!((ma_CFStringGetCString_proc)pContext->coreaudio.CFStringGetCString)(uid, bufferOut, bufferSize, kCFStringEncodingUTF8)) { return MA_ERROR; } ((ma_CFRelease_proc)pContext->coreaudio.CFRelease)(uid); return MA_SUCCESS; } static ma_result ma_get_AudioObject_name(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut) { AudioObjectPropertyAddress propAddress; CFStringRef deviceName = NULL; UInt32 dataSize; OSStatus status; MA_ASSERT(pContext != NULL); propAddress.mSelector = kAudioDevicePropertyDeviceNameCFString; propAddress.mScope = kAudioObjectPropertyScopeGlobal; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; dataSize = sizeof(deviceName); status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(objectID, &propAddress, 0, NULL, &dataSize, &deviceName); if (status != noErr) { return ma_result_from_OSStatus(status); } if (!((ma_CFStringGetCString_proc)pContext->coreaudio.CFStringGetCString)(deviceName, bufferOut, bufferSize, kCFStringEncodingUTF8)) { return MA_ERROR; } ((ma_CFRelease_proc)pContext->coreaudio.CFRelease)(deviceName); return MA_SUCCESS; } static ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID deviceObjectID, AudioObjectPropertyScope scope) { AudioObjectPropertyAddress propAddress; UInt32 dataSize; OSStatus status; AudioBufferList* pBufferList; ma_bool32 isSupported; MA_ASSERT(pContext != NULL); /* To know whether or not a device is an input device we need ot look at the stream configuration. If it has an output channel it's a playback device. */ propAddress.mSelector = kAudioDevicePropertyStreamConfiguration; propAddress.mScope = scope; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return MA_FALSE; } pBufferList = (AudioBufferList*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pBufferList == NULL) { return MA_FALSE; /* Out of memory. */ } status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pBufferList); if (status != noErr) { ma_free(pBufferList, &pContext->allocationCallbacks); return MA_FALSE; } isSupported = MA_FALSE; if (pBufferList->mNumberBuffers > 0) { isSupported = MA_TRUE; } ma_free(pBufferList, &pContext->allocationCallbacks); return isSupported; } static ma_bool32 ma_does_AudioObject_support_playback(ma_context* pContext, AudioObjectID deviceObjectID) { return ma_does_AudioObject_support_scope(pContext, deviceObjectID, kAudioObjectPropertyScopeOutput); } static ma_bool32 ma_does_AudioObject_support_capture(ma_context* pContext, AudioObjectID deviceObjectID) { return ma_does_AudioObject_support_scope(pContext, deviceObjectID, kAudioObjectPropertyScopeInput); } static ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pDescriptionCount, AudioStreamRangedDescription** ppDescriptions) /* NOTE: Free the returned pointer with ma_free(). */ { AudioObjectPropertyAddress propAddress; UInt32 dataSize; OSStatus status; AudioStreamRangedDescription* pDescriptions; MA_ASSERT(pContext != NULL); MA_ASSERT(pDescriptionCount != NULL); MA_ASSERT(ppDescriptions != NULL); /* TODO: Experiment with kAudioStreamPropertyAvailablePhysicalFormats instead of (or in addition to) kAudioStreamPropertyAvailableVirtualFormats. My MacBook Pro uses s24/32 format, however, which miniaudio does not currently support. */ propAddress.mSelector = kAudioStreamPropertyAvailableVirtualFormats; /*kAudioStreamPropertyAvailablePhysicalFormats;*/ propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } pDescriptions = (AudioStreamRangedDescription*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pDescriptions == NULL) { return MA_OUT_OF_MEMORY; } status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pDescriptions); if (status != noErr) { ma_free(pDescriptions, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } *pDescriptionCount = dataSize / sizeof(*pDescriptions); *ppDescriptions = pDescriptions; return MA_SUCCESS; } static ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, AudioChannelLayout** ppChannelLayout) /* NOTE: Free the returned pointer with ma_free(). */ { AudioObjectPropertyAddress propAddress; UInt32 dataSize; OSStatus status; AudioChannelLayout* pChannelLayout; MA_ASSERT(pContext != NULL); MA_ASSERT(ppChannelLayout != NULL); *ppChannelLayout = NULL; /* Safety. */ propAddress.mSelector = kAudioDevicePropertyPreferredChannelLayout; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } pChannelLayout = (AudioChannelLayout*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pChannelLayout == NULL) { return MA_OUT_OF_MEMORY; } status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pChannelLayout); if (status != noErr) { ma_free(pChannelLayout, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } *ppChannelLayout = pChannelLayout; return MA_SUCCESS; } static ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pChannelCount) { AudioChannelLayout* pChannelLayout; ma_result result; MA_ASSERT(pContext != NULL); MA_ASSERT(pChannelCount != NULL); *pChannelCount = 0; /* Safety. */ result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout); if (result != MA_SUCCESS) { return result; } if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) { *pChannelCount = pChannelLayout->mNumberChannelDescriptions; } else if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelBitmap) { *pChannelCount = ma_count_set_bits(pChannelLayout->mChannelBitmap); } else { *pChannelCount = AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag); } ma_free(pChannelLayout, &pContext->allocationCallbacks); return MA_SUCCESS; } #if 0 static ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_channel* pChannelMap, size_t channelMapCap) { AudioChannelLayout* pChannelLayout; ma_result result; MA_ASSERT(pContext != NULL); result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout); if (result != MA_SUCCESS) { return result; /* Rather than always failing here, would it be more robust to simply assume a default? */ } result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, pChannelMap, channelMapCap); if (result != MA_SUCCESS) { ma_free(pChannelLayout, &pContext->allocationCallbacks); return result; } ma_free(pChannelLayout, &pContext->allocationCallbacks); return result; } #endif static ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pSampleRateRangesCount, AudioValueRange** ppSampleRateRanges) /* NOTE: Free the returned pointer with ma_free(). */ { AudioObjectPropertyAddress propAddress; UInt32 dataSize; OSStatus status; AudioValueRange* pSampleRateRanges; MA_ASSERT(pContext != NULL); MA_ASSERT(pSampleRateRangesCount != NULL); MA_ASSERT(ppSampleRateRanges != NULL); /* Safety. */ *pSampleRateRangesCount = 0; *ppSampleRateRanges = NULL; propAddress.mSelector = kAudioDevicePropertyAvailableNominalSampleRates; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize); if (status != noErr) { return ma_result_from_OSStatus(status); } pSampleRateRanges = (AudioValueRange*)ma_malloc(dataSize, &pContext->allocationCallbacks); if (pSampleRateRanges == NULL) { return MA_OUT_OF_MEMORY; } status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pSampleRateRanges); if (status != noErr) { ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } *pSampleRateRangesCount = dataSize / sizeof(*pSampleRateRanges); *ppSampleRateRanges = pSampleRateRanges; return MA_SUCCESS; } #if 0 static ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 sampleRateIn, ma_uint32* pSampleRateOut) { UInt32 sampleRateRangeCount; AudioValueRange* pSampleRateRanges; ma_result result; MA_ASSERT(pContext != NULL); MA_ASSERT(pSampleRateOut != NULL); *pSampleRateOut = 0; /* Safety. */ result = ma_get_AudioObject_sample_rates(pContext, deviceObjectID, deviceType, &sampleRateRangeCount, &pSampleRateRanges); if (result != MA_SUCCESS) { return result; } if (sampleRateRangeCount == 0) { ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_ERROR; /* Should never hit this case should we? */ } if (sampleRateIn == 0) { /* Search in order of miniaudio's preferred priority. */ UInt32 iMALSampleRate; for (iMALSampleRate = 0; iMALSampleRate < ma_countof(g_maStandardSampleRatePriorities); ++iMALSampleRate) { ma_uint32 malSampleRate = g_maStandardSampleRatePriorities[iMALSampleRate]; UInt32 iCASampleRate; for (iCASampleRate = 0; iCASampleRate < sampleRateRangeCount; ++iCASampleRate) { AudioValueRange caSampleRate = pSampleRateRanges[iCASampleRate]; if (caSampleRate.mMinimum <= malSampleRate && caSampleRate.mMaximum >= malSampleRate) { *pSampleRateOut = malSampleRate; ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_SUCCESS; } } } /* If we get here it means none of miniaudio's standard sample rates matched any of the supported sample rates from the device. In this case we just fall back to the first one reported by Core Audio. */ MA_ASSERT(sampleRateRangeCount > 0); *pSampleRateOut = pSampleRateRanges[0].mMinimum; ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_SUCCESS; } else { /* Find the closest match to this sample rate. */ UInt32 currentAbsoluteDifference = INT32_MAX; UInt32 iCurrentClosestRange = (UInt32)-1; UInt32 iRange; for (iRange = 0; iRange < sampleRateRangeCount; ++iRange) { if (pSampleRateRanges[iRange].mMinimum <= sampleRateIn && pSampleRateRanges[iRange].mMaximum >= sampleRateIn) { *pSampleRateOut = sampleRateIn; ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_SUCCESS; } else { UInt32 absoluteDifference; if (pSampleRateRanges[iRange].mMinimum > sampleRateIn) { absoluteDifference = pSampleRateRanges[iRange].mMinimum - sampleRateIn; } else { absoluteDifference = sampleRateIn - pSampleRateRanges[iRange].mMaximum; } if (currentAbsoluteDifference > absoluteDifference) { currentAbsoluteDifference = absoluteDifference; iCurrentClosestRange = iRange; } } } MA_ASSERT(iCurrentClosestRange != (UInt32)-1); *pSampleRateOut = pSampleRateRanges[iCurrentClosestRange].mMinimum; ma_free(pSampleRateRanges, &pContext->allocationCallbacks); return MA_SUCCESS; } /* Should never get here, but it would mean we weren't able to find any suitable sample rates. */ /*ma_free(pSampleRateRanges, &pContext->allocationCallbacks);*/ /*return MA_ERROR;*/ } #endif static ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 bufferSizeInFramesIn, ma_uint32* pBufferSizeInFramesOut) { AudioObjectPropertyAddress propAddress; AudioValueRange bufferSizeRange; UInt32 dataSize; OSStatus status; MA_ASSERT(pContext != NULL); MA_ASSERT(pBufferSizeInFramesOut != NULL); *pBufferSizeInFramesOut = 0; /* Safety. */ propAddress.mSelector = kAudioDevicePropertyBufferFrameSizeRange; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; dataSize = sizeof(bufferSizeRange); status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, &bufferSizeRange); if (status != noErr) { return ma_result_from_OSStatus(status); } /* This is just a clamp. */ if (bufferSizeInFramesIn < bufferSizeRange.mMinimum) { *pBufferSizeInFramesOut = (ma_uint32)bufferSizeRange.mMinimum; } else if (bufferSizeInFramesIn > bufferSizeRange.mMaximum) { *pBufferSizeInFramesOut = (ma_uint32)bufferSizeRange.mMaximum; } else { *pBufferSizeInFramesOut = bufferSizeInFramesIn; } return MA_SUCCESS; } static ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pPeriodSizeInOut) { ma_result result; ma_uint32 chosenBufferSizeInFrames; AudioObjectPropertyAddress propAddress; UInt32 dataSize; OSStatus status; MA_ASSERT(pContext != NULL); result = ma_get_AudioObject_closest_buffer_size_in_frames(pContext, deviceObjectID, deviceType, *pPeriodSizeInOut, &chosenBufferSizeInFrames); if (result != MA_SUCCESS) { return result; } /* Try setting the size of the buffer... If this fails we just use whatever is currently set. */ propAddress.mSelector = kAudioDevicePropertyBufferFrameSize; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; ((ma_AudioObjectSetPropertyData_proc)pContext->coreaudio.AudioObjectSetPropertyData)(deviceObjectID, &propAddress, 0, NULL, sizeof(chosenBufferSizeInFrames), &chosenBufferSizeInFrames); /* Get the actual size of the buffer. */ dataSize = sizeof(*pPeriodSizeInOut); status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, &chosenBufferSizeInFrames); if (status != noErr) { return ma_result_from_OSStatus(status); } *pPeriodSizeInOut = chosenBufferSizeInFrames; return MA_SUCCESS; } static ma_result ma_find_default_AudioObjectID(ma_context* pContext, ma_device_type deviceType, AudioObjectID* pDeviceObjectID) { AudioObjectPropertyAddress propAddressDefaultDevice; UInt32 defaultDeviceObjectIDSize = sizeof(AudioObjectID); AudioObjectID defaultDeviceObjectID; OSStatus status; MA_ASSERT(pContext != NULL); MA_ASSERT(pDeviceObjectID != NULL); /* Safety. */ *pDeviceObjectID = 0; propAddressDefaultDevice.mScope = kAudioObjectPropertyScopeGlobal; propAddressDefaultDevice.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; if (deviceType == ma_device_type_playback) { propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultOutputDevice; } else { propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultInputDevice; } defaultDeviceObjectIDSize = sizeof(AudioObjectID); status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDefaultDevice, 0, NULL, &defaultDeviceObjectIDSize, &defaultDeviceObjectID); if (status == noErr) { *pDeviceObjectID = defaultDeviceObjectID; return MA_SUCCESS; } /* If we get here it means we couldn't find the device. */ return MA_NO_DEVICE; } static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, AudioObjectID* pDeviceObjectID) { MA_ASSERT(pContext != NULL); MA_ASSERT(pDeviceObjectID != NULL); /* Safety. */ *pDeviceObjectID = 0; if (pDeviceID == NULL) { /* Default device. */ return ma_find_default_AudioObjectID(pContext, deviceType, pDeviceObjectID); } else { /* Explicit device. */ UInt32 deviceCount; AudioObjectID* pDeviceObjectIDs; ma_result result; UInt32 iDevice; result = ma_get_device_object_ids__coreaudio(pContext, &deviceCount, &pDeviceObjectIDs); if (result != MA_SUCCESS) { return result; } for (iDevice = 0; iDevice < deviceCount; ++iDevice) { AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice]; char uid[256]; if (ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(uid), uid) != MA_SUCCESS) { continue; } if (deviceType == ma_device_type_playback) { if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) { if (strcmp(uid, pDeviceID->coreaudio) == 0) { *pDeviceObjectID = deviceObjectID; ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); return MA_SUCCESS; } } } else { if (ma_does_AudioObject_support_capture(pContext, deviceObjectID)) { if (strcmp(uid, pDeviceID->coreaudio) == 0) { *pDeviceObjectID = deviceObjectID; ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); return MA_SUCCESS; } } } } ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); } /* If we get here it means we couldn't find the device. */ return MA_NO_DEVICE; } static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const AudioStreamBasicDescription* pOrigFormat, AudioStreamBasicDescription* pFormat) { UInt32 deviceFormatDescriptionCount; AudioStreamRangedDescription* pDeviceFormatDescriptions; ma_result result; ma_uint32 desiredSampleRate; ma_uint32 desiredChannelCount; ma_format desiredFormat; AudioStreamBasicDescription bestDeviceFormatSoFar; ma_bool32 hasSupportedFormat; UInt32 iFormat; result = ma_get_AudioObject_stream_descriptions(pContext, deviceObjectID, deviceType, &deviceFormatDescriptionCount, &pDeviceFormatDescriptions); if (result != MA_SUCCESS) { return result; } desiredSampleRate = sampleRate; if (desiredSampleRate == 0) { desiredSampleRate = pOrigFormat->mSampleRate; } desiredChannelCount = channels; if (desiredChannelCount == 0) { desiredChannelCount = pOrigFormat->mChannelsPerFrame; } desiredFormat = format; if (desiredFormat == ma_format_unknown) { result = ma_format_from_AudioStreamBasicDescription(pOrigFormat, &desiredFormat); if (result != MA_SUCCESS || desiredFormat == ma_format_unknown) { desiredFormat = g_maFormatPriorities[0]; } } /* If we get here it means we don't have an exact match to what the client is asking for. We'll need to find the closest one. The next loop will check for formats that have the same sample rate to what we're asking for. If there is, we prefer that one in all cases. */ MA_ZERO_OBJECT(&bestDeviceFormatSoFar); hasSupportedFormat = MA_FALSE; for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) { ma_format format; ma_result formatResult = ma_format_from_AudioStreamBasicDescription(&pDeviceFormatDescriptions[iFormat].mFormat, &format); if (formatResult == MA_SUCCESS && format != ma_format_unknown) { hasSupportedFormat = MA_TRUE; bestDeviceFormatSoFar = pDeviceFormatDescriptions[iFormat].mFormat; break; } } if (!hasSupportedFormat) { ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks); return MA_FORMAT_NOT_SUPPORTED; } for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) { AudioStreamBasicDescription thisDeviceFormat = pDeviceFormatDescriptions[iFormat].mFormat; ma_format thisSampleFormat; ma_result formatResult; ma_format bestSampleFormatSoFar; /* If the format is not supported by miniaudio we need to skip this one entirely. */ formatResult = ma_format_from_AudioStreamBasicDescription(&pDeviceFormatDescriptions[iFormat].mFormat, &thisSampleFormat); if (formatResult != MA_SUCCESS || thisSampleFormat == ma_format_unknown) { continue; /* The format is not supported by miniaudio. Skip. */ } ma_format_from_AudioStreamBasicDescription(&bestDeviceFormatSoFar, &bestSampleFormatSoFar); /* Getting here means the format is supported by miniaudio which makes this format a candidate. */ if (thisDeviceFormat.mSampleRate != desiredSampleRate) { /* The sample rate does not match, but this format could still be usable, although it's a very low priority. If the best format so far has an equal sample rate we can just ignore this one. */ if (bestDeviceFormatSoFar.mSampleRate == desiredSampleRate) { continue; /* The best sample rate so far has the same sample rate as what we requested which means it's still the best so far. Skip this format. */ } else { /* In this case, neither the best format so far nor this one have the same sample rate. Check the channel count next. */ if (thisDeviceFormat.mChannelsPerFrame != desiredChannelCount) { /* This format has a different sample rate _and_ a different channel count. */ if (bestDeviceFormatSoFar.mChannelsPerFrame == desiredChannelCount) { continue; /* No change to the best format. */ } else { /* Both this format and the best so far have different sample rates and different channel counts. Whichever has the best format is the new best. */ if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) { bestDeviceFormatSoFar = thisDeviceFormat; continue; } else { continue; /* No change to the best format. */ } } } else { /* This format has a different sample rate but the desired channel count. */ if (bestDeviceFormatSoFar.mChannelsPerFrame == desiredChannelCount) { /* Both this format and the best so far have the desired channel count. Whichever has the best format is the new best. */ if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) { bestDeviceFormatSoFar = thisDeviceFormat; continue; } else { continue; /* No change to the best format for now. */ } } else { /* This format has the desired channel count, but the best so far does not. We have a new best. */ bestDeviceFormatSoFar = thisDeviceFormat; continue; } } } } else { /* The sample rates match which makes this format a very high priority contender. If the best format so far has a different sample rate it needs to be replaced with this one. */ if (bestDeviceFormatSoFar.mSampleRate != desiredSampleRate) { bestDeviceFormatSoFar = thisDeviceFormat; continue; } else { /* In this case both this format and the best format so far have the same sample rate. Check the channel count next. */ if (thisDeviceFormat.mChannelsPerFrame == desiredChannelCount) { /* In this case this format has the same channel count as what the client is requesting. If the best format so far has a different count, this one becomes the new best. */ if (bestDeviceFormatSoFar.mChannelsPerFrame != desiredChannelCount) { bestDeviceFormatSoFar = thisDeviceFormat; continue; } else { /* In this case both this format and the best so far have the ideal sample rate and channel count. Check the format. */ if (thisSampleFormat == desiredFormat) { bestDeviceFormatSoFar = thisDeviceFormat; break; /* Found the exact match. */ } else { /* The formats are different. The new best format is the one with the highest priority format according to miniaudio. */ if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) { bestDeviceFormatSoFar = thisDeviceFormat; continue; } else { continue; /* No change to the best format for now. */ } } } } else { /* In this case the channel count is different to what the client has requested. If the best so far has the same channel count as the requested count then it remains the best. */ if (bestDeviceFormatSoFar.mChannelsPerFrame == desiredChannelCount) { continue; } else { /* This is the case where both have the same sample rate (good) but different channel counts. Right now both have about the same priority, but we need to compare the format now. */ if (thisSampleFormat == bestSampleFormatSoFar) { if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) { bestDeviceFormatSoFar = thisDeviceFormat; continue; } else { continue; /* No change to the best format for now. */ } } } } } } } *pFormat = bestDeviceFormatSoFar; ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks); return MA_SUCCESS; } static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel* pChannelMap, size_t channelMapCap) { AudioUnitScope deviceScope; AudioUnitElement deviceBus; UInt32 channelLayoutSize; OSStatus status; AudioChannelLayout* pChannelLayout; ma_result result; MA_ASSERT(pContext != NULL); if (deviceType == ma_device_type_playback) { deviceScope = kAudioUnitScope_Input; deviceBus = MA_COREAUDIO_OUTPUT_BUS; } else { deviceScope = kAudioUnitScope_Output; deviceBus = MA_COREAUDIO_INPUT_BUS; } status = ((ma_AudioUnitGetPropertyInfo_proc)pContext->coreaudio.AudioUnitGetPropertyInfo)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, &channelLayoutSize, NULL); if (status != noErr) { return ma_result_from_OSStatus(status); } pChannelLayout = (AudioChannelLayout*)ma_malloc(channelLayoutSize, &pContext->allocationCallbacks); if (pChannelLayout == NULL) { return MA_OUT_OF_MEMORY; } status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, pChannelLayout, &channelLayoutSize); if (status != noErr) { ma_free(pChannelLayout, &pContext->allocationCallbacks); return ma_result_from_OSStatus(status); } result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, pChannelMap, channelMapCap); if (result != MA_SUCCESS) { ma_free(pChannelLayout, &pContext->allocationCallbacks); return result; } ma_free(pChannelLayout, &pContext->allocationCallbacks); return MA_SUCCESS; } #endif /* MA_APPLE_DESKTOP */ #if !defined(MA_APPLE_DESKTOP) static void ma_AVAudioSessionPortDescription_to_device_info(AVAudioSessionPortDescription* pPortDesc, ma_device_info* pInfo) { MA_ZERO_OBJECT(pInfo); ma_strncpy_s(pInfo->name, sizeof(pInfo->name), [pPortDesc.portName UTF8String], (size_t)-1); ma_strncpy_s(pInfo->id.coreaudio, sizeof(pInfo->id.coreaudio), [pPortDesc.UID UTF8String], (size_t)-1); } #endif static ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { #if defined(MA_APPLE_DESKTOP) UInt32 deviceCount; AudioObjectID* pDeviceObjectIDs; AudioObjectID defaultDeviceObjectIDPlayback; AudioObjectID defaultDeviceObjectIDCapture; ma_result result; UInt32 iDevice; ma_find_default_AudioObjectID(pContext, ma_device_type_playback, &defaultDeviceObjectIDPlayback); /* OK if this fails. */ ma_find_default_AudioObjectID(pContext, ma_device_type_capture, &defaultDeviceObjectIDCapture); /* OK if this fails. */ result = ma_get_device_object_ids__coreaudio(pContext, &deviceCount, &pDeviceObjectIDs); if (result != MA_SUCCESS) { return result; } for (iDevice = 0; iDevice < deviceCount; ++iDevice) { AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice]; ma_device_info info; MA_ZERO_OBJECT(&info); if (ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(info.id.coreaudio), info.id.coreaudio) != MA_SUCCESS) { continue; } if (ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(info.name), info.name) != MA_SUCCESS) { continue; } if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) { if (deviceObjectID == defaultDeviceObjectIDPlayback) { info.isDefault = MA_TRUE; } if (!callback(pContext, ma_device_type_playback, &info, pUserData)) { break; } } if (ma_does_AudioObject_support_capture(pContext, deviceObjectID)) { if (deviceObjectID == defaultDeviceObjectIDCapture) { info.isDefault = MA_TRUE; } if (!callback(pContext, ma_device_type_capture, &info, pUserData)) { break; } } } ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks); #else ma_device_info info; NSArray *pInputs = [[[AVAudioSession sharedInstance] currentRoute] inputs]; NSArray *pOutputs = [[[AVAudioSession sharedInstance] currentRoute] outputs]; for (AVAudioSessionPortDescription* pPortDesc in pOutputs) { ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, &info); if (!callback(pContext, ma_device_type_playback, &info, pUserData)) { return MA_SUCCESS; } } for (AVAudioSessionPortDescription* pPortDesc in pInputs) { ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, &info); if (!callback(pContext, ma_device_type_capture, &info, pUserData)) { return MA_SUCCESS; } } #endif return MA_SUCCESS; } static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_result result; MA_ASSERT(pContext != NULL); #if defined(MA_APPLE_DESKTOP) /* Desktop */ { AudioObjectID deviceObjectID; AudioObjectID defaultDeviceObjectID; UInt32 streamDescriptionCount; AudioStreamRangedDescription* pStreamDescriptions; UInt32 iStreamDescription; UInt32 sampleRateRangeCount; AudioValueRange* pSampleRateRanges; ma_find_default_AudioObjectID(pContext, deviceType, &defaultDeviceObjectID); /* OK if this fails. */ result = ma_find_AudioObjectID(pContext, deviceType, pDeviceID, &deviceObjectID); if (result != MA_SUCCESS) { return result; } result = ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(pDeviceInfo->id.coreaudio), pDeviceInfo->id.coreaudio); if (result != MA_SUCCESS) { return result; } result = ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(pDeviceInfo->name), pDeviceInfo->name); if (result != MA_SUCCESS) { return result; } if (deviceObjectID == defaultDeviceObjectID) { pDeviceInfo->isDefault = MA_TRUE; } /* There could be a large number of permutations here. Fortunately there is only a single channel count being reported which reduces this quite a bit. For sample rates we're only reporting those that are one of miniaudio's recognized "standard" rates. If there are still more formats than can fit into our fixed sized array we'll just need to truncate them. This is unlikely and will probably only happen if some driver performs software data conversion and therefore reports every possible format and sample rate. */ pDeviceInfo->nativeDataFormatCount = 0; /* Formats. */ { ma_format uniqueFormats[ma_format_count]; ma_uint32 uniqueFormatCount = 0; ma_uint32 channels; /* Channels. */ result = ma_get_AudioObject_channel_count(pContext, deviceObjectID, deviceType, &channels); if (result != MA_SUCCESS) { return result; } /* Formats. */ result = ma_get_AudioObject_stream_descriptions(pContext, deviceObjectID, deviceType, &streamDescriptionCount, &pStreamDescriptions); if (result != MA_SUCCESS) { return result; } for (iStreamDescription = 0; iStreamDescription < streamDescriptionCount; ++iStreamDescription) { ma_format format; ma_bool32 hasFormatBeenHandled = MA_FALSE; ma_uint32 iOutputFormat; ma_uint32 iSampleRate; result = ma_format_from_AudioStreamBasicDescription(&pStreamDescriptions[iStreamDescription].mFormat, &format); if (result != MA_SUCCESS) { continue; } MA_ASSERT(format != ma_format_unknown); /* Make sure the format isn't already in the output list. */ for (iOutputFormat = 0; iOutputFormat < uniqueFormatCount; ++iOutputFormat) { if (uniqueFormats[iOutputFormat] == format) { hasFormatBeenHandled = MA_TRUE; break; } } /* If we've already handled this format just skip it. */ if (hasFormatBeenHandled) { continue; } uniqueFormats[uniqueFormatCount] = format; uniqueFormatCount += 1; /* Sample Rates */ result = ma_get_AudioObject_sample_rates(pContext, deviceObjectID, deviceType, &sampleRateRangeCount, &pSampleRateRanges); if (result != MA_SUCCESS) { return result; } /* Annoyingly Core Audio reports a sample rate range. We just get all the standard rates that are between this range. */ for (iSampleRate = 0; iSampleRate < sampleRateRangeCount; ++iSampleRate) { ma_uint32 iStandardSampleRate; for (iStandardSampleRate = 0; iStandardSampleRate < ma_countof(g_maStandardSampleRatePriorities); iStandardSampleRate += 1) { ma_uint32 standardSampleRate = g_maStandardSampleRatePriorities[iStandardSampleRate]; if (standardSampleRate >= pSampleRateRanges[iSampleRate].mMinimum && standardSampleRate <= pSampleRateRanges[iSampleRate].mMaximum) { /* We have a new data format. Add it to the list. */ pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = format; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = standardSampleRate; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = 0; pDeviceInfo->nativeDataFormatCount += 1; if (pDeviceInfo->nativeDataFormatCount >= ma_countof(pDeviceInfo->nativeDataFormats)) { break; /* No more room for any more formats. */ } } } } ma_free(pSampleRateRanges, &pContext->allocationCallbacks); if (pDeviceInfo->nativeDataFormatCount >= ma_countof(pDeviceInfo->nativeDataFormats)) { break; /* No more room for any more formats. */ } } ma_free(pStreamDescriptions, &pContext->allocationCallbacks); } } #else /* Mobile */ { AudioComponentDescription desc; AudioComponent component; AudioUnit audioUnit; OSStatus status; AudioUnitScope formatScope; AudioUnitElement formatElement; AudioStreamBasicDescription bestFormat; UInt32 propSize; /* We want to ensure we use a consistent device name to device enumeration. */ if (pDeviceID != NULL && pDeviceID->coreaudio[0] != '\0') { ma_bool32 found = MA_FALSE; if (deviceType == ma_device_type_playback) { NSArray *pOutputs = [[[AVAudioSession sharedInstance] currentRoute] outputs]; for (AVAudioSessionPortDescription* pPortDesc in pOutputs) { if (strcmp(pDeviceID->coreaudio, [pPortDesc.UID UTF8String]) == 0) { ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, pDeviceInfo); found = MA_TRUE; break; } } } else { NSArray *pInputs = [[[AVAudioSession sharedInstance] currentRoute] inputs]; for (AVAudioSessionPortDescription* pPortDesc in pInputs) { if (strcmp(pDeviceID->coreaudio, [pPortDesc.UID UTF8String]) == 0) { ma_AVAudioSessionPortDescription_to_device_info(pPortDesc, pDeviceInfo); found = MA_TRUE; break; } } } if (!found) { return MA_DOES_NOT_EXIST; } } else { if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } } /* Retrieving device information is more annoying on mobile than desktop. For simplicity I'm locking this down to whatever format is reported on a temporary I/O unit. The problem, however, is that this doesn't return a value for the sample rate which we need to retrieve from the AVAudioSession shared instance. */ desc.componentType = kAudioUnitType_Output; desc.componentSubType = kAudioUnitSubType_RemoteIO; desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc); if (component == NULL) { return MA_FAILED_TO_INIT_BACKEND; } status = ((ma_AudioComponentInstanceNew_proc)pContext->coreaudio.AudioComponentInstanceNew)(component, &audioUnit); if (status != noErr) { return ma_result_from_OSStatus(status); } formatScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output; formatElement = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS; propSize = sizeof(bestFormat); status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, &propSize); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(audioUnit); return ma_result_from_OSStatus(status); } ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(audioUnit); audioUnit = NULL; /* Only a single format is being reported for iOS. */ pDeviceInfo->nativeDataFormatCount = 1; result = ma_format_from_AudioStreamBasicDescription(&bestFormat, &pDeviceInfo->nativeDataFormats[0].format); if (result != MA_SUCCESS) { return result; } pDeviceInfo->nativeDataFormats[0].channels = bestFormat.mChannelsPerFrame; /* It looks like Apple are wanting to push the whole AVAudioSession thing. Thus, we need to use that to determine device settings. To do this we just get the shared instance and inspect. */ @autoreleasepool { AVAudioSession* pAudioSession = [AVAudioSession sharedInstance]; MA_ASSERT(pAudioSession != NULL); pDeviceInfo->nativeDataFormats[0].sampleRate = (ma_uint32)pAudioSession.sampleRate; } } #endif (void)pDeviceInfo; /* Unused. */ return MA_SUCCESS; } static AudioBufferList* ma_allocate_AudioBufferList__coreaudio(ma_uint32 sizeInFrames, ma_format format, ma_uint32 channels, ma_stream_layout layout, const ma_allocation_callbacks* pAllocationCallbacks) { AudioBufferList* pBufferList; UInt32 audioBufferSizeInBytes; size_t allocationSize; MA_ASSERT(sizeInFrames > 0); MA_ASSERT(format != ma_format_unknown); MA_ASSERT(channels > 0); allocationSize = sizeof(AudioBufferList) - sizeof(AudioBuffer); /* Subtract sizeof(AudioBuffer) because that part is dynamically sized. */ if (layout == ma_stream_layout_interleaved) { /* Interleaved case. This is the simple case because we just have one buffer. */ allocationSize += sizeof(AudioBuffer) * 1; } else { /* Non-interleaved case. This is the more complex case because there's more than one buffer. */ allocationSize += sizeof(AudioBuffer) * channels; } allocationSize += sizeInFrames * ma_get_bytes_per_frame(format, channels); pBufferList = (AudioBufferList*)ma_malloc(allocationSize, pAllocationCallbacks); if (pBufferList == NULL) { return NULL; } audioBufferSizeInBytes = (UInt32)(sizeInFrames * ma_get_bytes_per_sample(format)); if (layout == ma_stream_layout_interleaved) { pBufferList->mNumberBuffers = 1; pBufferList->mBuffers[0].mNumberChannels = channels; pBufferList->mBuffers[0].mDataByteSize = audioBufferSizeInBytes * channels; pBufferList->mBuffers[0].mData = (ma_uint8*)pBufferList + sizeof(AudioBufferList); } else { ma_uint32 iBuffer; pBufferList->mNumberBuffers = channels; for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) { pBufferList->mBuffers[iBuffer].mNumberChannels = 1; pBufferList->mBuffers[iBuffer].mDataByteSize = audioBufferSizeInBytes; pBufferList->mBuffers[iBuffer].mData = (ma_uint8*)pBufferList + ((sizeof(AudioBufferList) - sizeof(AudioBuffer)) + (sizeof(AudioBuffer) * channels)) + (audioBufferSizeInBytes * iBuffer); } } return pBufferList; } static ma_result ma_device_realloc_AudioBufferList__coreaudio(ma_device* pDevice, ma_uint32 sizeInFrames, ma_format format, ma_uint32 channels, ma_stream_layout layout) { MA_ASSERT(pDevice != NULL); MA_ASSERT(format != ma_format_unknown); MA_ASSERT(channels > 0); /* Only resize the buffer if necessary. */ if (pDevice->coreaudio.audioBufferCapInFrames < sizeInFrames) { AudioBufferList* pNewAudioBufferList; pNewAudioBufferList = ma_allocate_AudioBufferList__coreaudio(sizeInFrames, format, channels, layout, &pDevice->pContext->allocationCallbacks); if (pNewAudioBufferList == NULL) { return MA_OUT_OF_MEMORY; } /* At this point we'll have a new AudioBufferList and we can free the old one. */ ma_free(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks); pDevice->coreaudio.pAudioBufferList = pNewAudioBufferList; pDevice->coreaudio.audioBufferCapInFrames = sizeInFrames; } /* Getting here means the capacity of the audio is fine. */ return MA_SUCCESS; } static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pBufferList) { ma_device* pDevice = (ma_device*)pUserData; ma_stream_layout layout; MA_ASSERT(pDevice != NULL); /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "INFO: Output Callback: busNumber=%d, frameCount=%d, mNumberBuffers=%d\n", (int)busNumber, (int)frameCount, (int)pBufferList->mNumberBuffers);*/ /* We need to check whether or not we are outputting interleaved or non-interleaved samples. The way we do this is slightly different for each type. */ layout = ma_stream_layout_interleaved; if (pBufferList->mBuffers[0].mNumberChannels != pDevice->playback.internalChannels) { layout = ma_stream_layout_deinterleaved; } if (layout == ma_stream_layout_interleaved) { /* For now we can assume everything is interleaved. */ UInt32 iBuffer; for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) { if (pBufferList->mBuffers[iBuffer].mNumberChannels == pDevice->playback.internalChannels) { ma_uint32 frameCountForThisBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); if (frameCountForThisBuffer > 0) { ma_device_handle_backend_data_callback(pDevice, pBufferList->mBuffers[iBuffer].mData, NULL, frameCountForThisBuffer); } /*a_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, " frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", (int)frameCount, (int)pBufferList->mBuffers[iBuffer].mNumberChannels, (int)pBufferList->mBuffers[iBuffer].mDataByteSize);*/ } else { /* This case is where the number of channels in the output buffer do not match our internal channels. It could mean that it's not interleaved, in which case we can't handle right now since miniaudio does not yet support non-interleaved streams. We just output silence here. */ MA_ZERO_MEMORY(pBufferList->mBuffers[iBuffer].mData, pBufferList->mBuffers[iBuffer].mDataByteSize); /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, " WARNING: Outputting silence. frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", (int)frameCount, (int)pBufferList->mBuffers[iBuffer].mNumberChannels, (int)pBufferList->mBuffers[iBuffer].mDataByteSize);*/ } } } else { /* This is the deinterleaved case. We need to update each buffer in groups of internalChannels. This assumes each buffer is the same size. */ MA_ASSERT(pDevice->playback.internalChannels <= MA_MAX_CHANNELS); /* This should heve been validated at initialization time. */ /* For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something very strange has happened and we're not going to support it. */ if ((pBufferList->mNumberBuffers % pDevice->playback.internalChannels) == 0) { ma_uint8 tempBuffer[4096]; UInt32 iBuffer; for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; iBuffer += pDevice->playback.internalChannels) { ma_uint32 frameCountPerBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_sample(pDevice->playback.internalFormat); ma_uint32 framesRemaining = frameCountPerBuffer; while (framesRemaining > 0) { void* ppDeinterleavedBuffers[MA_MAX_CHANNELS]; ma_uint32 iChannel; ma_uint32 framesToRead = sizeof(tempBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); if (framesToRead > framesRemaining) { framesToRead = framesRemaining; } ma_device_handle_backend_data_callback(pDevice, tempBuffer, NULL, framesToRead); for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) { ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pBufferList->mBuffers[iBuffer+iChannel].mData, (frameCountPerBuffer - framesRemaining) * ma_get_bytes_per_sample(pDevice->playback.internalFormat)); } ma_deinterleave_pcm_frames(pDevice->playback.internalFormat, pDevice->playback.internalChannels, framesToRead, tempBuffer, ppDeinterleavedBuffers); framesRemaining -= framesToRead; } } } } (void)pActionFlags; (void)pTimeStamp; (void)busNumber; (void)frameCount; return noErr; } static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pUnusedBufferList) { ma_device* pDevice = (ma_device*)pUserData; AudioBufferList* pRenderedBufferList; ma_result result; ma_stream_layout layout; ma_uint32 iBuffer; OSStatus status; MA_ASSERT(pDevice != NULL); pRenderedBufferList = (AudioBufferList*)pDevice->coreaudio.pAudioBufferList; MA_ASSERT(pRenderedBufferList); /* We need to check whether or not we are outputting interleaved or non-interleaved samples. The way we do this is slightly different for each type. */ layout = ma_stream_layout_interleaved; if (pRenderedBufferList->mBuffers[0].mNumberChannels != pDevice->capture.internalChannels) { layout = ma_stream_layout_deinterleaved; } /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "INFO: Input Callback: busNumber=%d, frameCount=%d, mNumberBuffers=%d\n", (int)busNumber, (int)frameCount, (int)pRenderedBufferList->mNumberBuffers);*/ /* There has been a situation reported where frame count passed into this function is greater than the capacity of our capture buffer. There doesn't seem to be a reliable way to determine what the maximum frame count will be, so we need to instead resort to dynamically reallocating our buffer to ensure it's large enough to capture the number of frames requested by this callback. */ result = ma_device_realloc_AudioBufferList__coreaudio(pDevice, frameCount, pDevice->capture.internalFormat, pDevice->capture.internalChannels, layout); if (result != MA_SUCCESS) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "Failed to allocate AudioBufferList for capture.\n"); return noErr; } pRenderedBufferList = (AudioBufferList*)pDevice->coreaudio.pAudioBufferList; MA_ASSERT(pRenderedBufferList); /* When you call AudioUnitRender(), Core Audio tries to be helpful by setting the mDataByteSize to the number of bytes that were actually rendered. The problem with this is that the next call can fail with -50 due to the size no longer being set to the capacity of the buffer, but instead the size in bytes of the previous render. This will cause a problem when a future call to this callback specifies a larger number of frames. To work around this we need to explicitly set the size of each buffer to their respective size in bytes. */ for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; ++iBuffer) { pRenderedBufferList->mBuffers[iBuffer].mDataByteSize = pDevice->coreaudio.audioBufferCapInFrames * ma_get_bytes_per_sample(pDevice->capture.internalFormat) * pRenderedBufferList->mBuffers[iBuffer].mNumberChannels; } status = ((ma_AudioUnitRender_proc)pDevice->pContext->coreaudio.AudioUnitRender)((AudioUnit)pDevice->coreaudio.audioUnitCapture, pActionFlags, pTimeStamp, busNumber, frameCount, pRenderedBufferList); if (status != noErr) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, " ERROR: AudioUnitRender() failed with %d.\n", (int)status); return status; } if (layout == ma_stream_layout_interleaved) { for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; ++iBuffer) { if (pRenderedBufferList->mBuffers[iBuffer].mNumberChannels == pDevice->capture.internalChannels) { ma_device_handle_backend_data_callback(pDevice, NULL, pRenderedBufferList->mBuffers[iBuffer].mData, frameCount); /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, " mDataByteSize=%d.\n", (int)pRenderedBufferList->mBuffers[iBuffer].mDataByteSize);*/ } else { /* This case is where the number of channels in the output buffer do not match our internal channels. It could mean that it's not interleaved, in which case we can't handle right now since miniaudio does not yet support non-interleaved streams. */ ma_uint8 silentBuffer[4096]; ma_uint32 framesRemaining; MA_ZERO_MEMORY(silentBuffer, sizeof(silentBuffer)); framesRemaining = frameCount; while (framesRemaining > 0) { ma_uint32 framesToSend = sizeof(silentBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); if (framesToSend > framesRemaining) { framesToSend = framesRemaining; } ma_device_handle_backend_data_callback(pDevice, NULL, silentBuffer, framesToSend); framesRemaining -= framesToSend; } /*ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, " WARNING: Outputting silence. frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", (int)frameCount, (int)pRenderedBufferList->mBuffers[iBuffer].mNumberChannels, (int)pRenderedBufferList->mBuffers[iBuffer].mDataByteSize);*/ } } } else { /* This is the deinterleaved case. We need to interleave the audio data before sending it to the client. This assumes each buffer is the same size. */ MA_ASSERT(pDevice->capture.internalChannels <= MA_MAX_CHANNELS); /* This should have been validated at initialization time. */ /* For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something very strange has happened and we're not going to support it. */ if ((pRenderedBufferList->mNumberBuffers % pDevice->capture.internalChannels) == 0) { ma_uint8 tempBuffer[4096]; for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; iBuffer += pDevice->capture.internalChannels) { ma_uint32 framesRemaining = frameCount; while (framesRemaining > 0) { void* ppDeinterleavedBuffers[MA_MAX_CHANNELS]; ma_uint32 iChannel; ma_uint32 framesToSend = sizeof(tempBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); if (framesToSend > framesRemaining) { framesToSend = framesRemaining; } for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) { ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pRenderedBufferList->mBuffers[iBuffer+iChannel].mData, (frameCount - framesRemaining) * ma_get_bytes_per_sample(pDevice->capture.internalFormat)); } ma_interleave_pcm_frames(pDevice->capture.internalFormat, pDevice->capture.internalChannels, framesToSend, (const void**)ppDeinterleavedBuffers, tempBuffer); ma_device_handle_backend_data_callback(pDevice, NULL, tempBuffer, framesToSend); framesRemaining -= framesToSend; } } } } (void)pActionFlags; (void)pTimeStamp; (void)busNumber; (void)frameCount; (void)pUnusedBufferList; return noErr; } static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, AudioUnitPropertyID propertyID, AudioUnitScope scope, AudioUnitElement element) { ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); /* Don't do anything if it looks like we're just reinitializing due to a device switch. */ if (((audioUnit == pDevice->coreaudio.audioUnitPlayback) && pDevice->coreaudio.isSwitchingPlaybackDevice) || ((audioUnit == pDevice->coreaudio.audioUnitCapture) && pDevice->coreaudio.isSwitchingCaptureDevice)) { return; } /* There's been a report of a deadlock here when triggered by ma_device_uninit(). It looks like AudioUnitGetProprty (called below) and AudioComponentInstanceDispose (called in ma_device_uninit) can try waiting on the same lock. I'm going to try working around this by not calling any Core Audio APIs in the callback when the device has been stopped or uninitialized. */ if (ma_device_get_state(pDevice) == ma_device_state_uninitialized || ma_device_get_state(pDevice) == ma_device_state_stopping || ma_device_get_state(pDevice) == ma_device_state_stopped) { ma_device__on_notification_stopped(pDevice); } else { UInt32 isRunning; UInt32 isRunningSize = sizeof(isRunning); OSStatus status = ((ma_AudioUnitGetProperty_proc)pDevice->pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioOutputUnitProperty_IsRunning, scope, element, &isRunning, &isRunningSize); if (status != noErr) { goto done; /* Don't really know what to do in this case... just ignore it, I suppose... */ } if (!isRunning) { /* The stop event is a bit annoying in Core Audio because it will be called when we automatically switch the default device. Some scenarios to consider: 1) When the device is unplugged, this will be called _before_ the default device change notification. 2) When the device is changed via the default device change notification, this will be called _after_ the switch. For case #1, we just check if there's a new default device available. If so, we just ignore the stop event. For case #2 we check a flag. */ if (((audioUnit == pDevice->coreaudio.audioUnitPlayback) && pDevice->coreaudio.isDefaultPlaybackDevice) || ((audioUnit == pDevice->coreaudio.audioUnitCapture) && pDevice->coreaudio.isDefaultCaptureDevice)) { /* It looks like the device is switching through an external event, such as the user unplugging the device or changing the default device via the operating system's sound settings. If we're re-initializing the device, we just terminate because we want the stopping of the device to be seamless to the client (we don't want them receiving the stopped event and thinking that the device has stopped when it hasn't!). */ if (((audioUnit == pDevice->coreaudio.audioUnitPlayback) && pDevice->coreaudio.isSwitchingPlaybackDevice) || ((audioUnit == pDevice->coreaudio.audioUnitCapture) && pDevice->coreaudio.isSwitchingCaptureDevice)) { goto done; } /* Getting here means the device is not reinitializing which means it may have been unplugged. From what I can see, it looks like Core Audio will try switching to the new default device seamlessly. We need to somehow find a way to determine whether or not Core Audio will most likely be successful in switching to the new device. TODO: Try to predict if Core Audio will switch devices. If not, the stopped callback needs to be posted. */ goto done; } /* Getting here means we need to stop the device. */ ma_device__on_notification_stopped(pDevice); } } (void)propertyID; /* Unused. */ done: /* Always signal the stop event. It's possible for the "else" case to get hit which can happen during an interruption. */ ma_event_signal(&pDevice->coreaudio.stopEvent); } #if defined(MA_APPLE_DESKTOP) static ma_spinlock g_DeviceTrackingInitLock_CoreAudio = 0; /* A spinlock for mutal exclusion of the init/uninit of the global tracking data. Initialization to 0 is what we need. */ static ma_uint32 g_DeviceTrackingInitCounter_CoreAudio = 0; static ma_mutex g_DeviceTrackingMutex_CoreAudio; static ma_device** g_ppTrackedDevices_CoreAudio = NULL; static ma_uint32 g_TrackedDeviceCap_CoreAudio = 0; static ma_uint32 g_TrackedDeviceCount_CoreAudio = 0; static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UInt32 addressCount, const AudioObjectPropertyAddress* pAddresses, void* pUserData) { ma_device_type deviceType; /* Not sure if I really need to check this, but it makes me feel better. */ if (addressCount == 0) { return noErr; } if (pAddresses[0].mSelector == kAudioHardwarePropertyDefaultOutputDevice) { deviceType = ma_device_type_playback; } else if (pAddresses[0].mSelector == kAudioHardwarePropertyDefaultInputDevice) { deviceType = ma_device_type_capture; } else { return noErr; /* Should never hit this. */ } ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio); { ma_uint32 iDevice; for (iDevice = 0; iDevice < g_TrackedDeviceCount_CoreAudio; iDevice += 1) { ma_result reinitResult; ma_device* pDevice; pDevice = g_ppTrackedDevices_CoreAudio[iDevice]; if (pDevice->type == deviceType || pDevice->type == ma_device_type_duplex) { if (deviceType == ma_device_type_playback) { pDevice->coreaudio.isSwitchingPlaybackDevice = MA_TRUE; reinitResult = ma_device_reinit_internal__coreaudio(pDevice, deviceType, MA_TRUE); pDevice->coreaudio.isSwitchingPlaybackDevice = MA_FALSE; } else { pDevice->coreaudio.isSwitchingCaptureDevice = MA_TRUE; reinitResult = ma_device_reinit_internal__coreaudio(pDevice, deviceType, MA_TRUE); pDevice->coreaudio.isSwitchingCaptureDevice = MA_FALSE; } if (reinitResult == MA_SUCCESS) { ma_device__post_init_setup(pDevice, deviceType); /* Restart the device if required. If this fails we need to stop the device entirely. */ if (ma_device_get_state(pDevice) == ma_device_state_started) { OSStatus status; if (deviceType == ma_device_type_playback) { status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); if (status != noErr) { if (pDevice->type == ma_device_type_duplex) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture); } ma_device__set_state(pDevice, ma_device_state_stopped); } } else if (deviceType == ma_device_type_capture) { status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitCapture); if (status != noErr) { if (pDevice->type == ma_device_type_duplex) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); } ma_device__set_state(pDevice, ma_device_state_stopped); } } } ma_device__on_notification_rerouted(pDevice); } } } } ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); /* Unused parameters. */ (void)objectID; (void)pUserData; return noErr; } static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); ma_spinlock_lock(&g_DeviceTrackingInitLock_CoreAudio); { /* Don't do anything if we've already initializd device tracking. */ if (g_DeviceTrackingInitCounter_CoreAudio == 0) { AudioObjectPropertyAddress propAddress; propAddress.mScope = kAudioObjectPropertyScopeGlobal; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; ma_mutex_init(&g_DeviceTrackingMutex_CoreAudio); propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; ((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; ((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); } g_DeviceTrackingInitCounter_CoreAudio += 1; } ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio); return MA_SUCCESS; } static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); ma_spinlock_lock(&g_DeviceTrackingInitLock_CoreAudio); { if (g_DeviceTrackingInitCounter_CoreAudio > 0) g_DeviceTrackingInitCounter_CoreAudio -= 1; if (g_DeviceTrackingInitCounter_CoreAudio == 0) { AudioObjectPropertyAddress propAddress; propAddress.mScope = kAudioObjectPropertyScopeGlobal; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; ((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; ((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL); /* At this point there should be no tracked devices. If not there's an error somewhere. */ if (g_ppTrackedDevices_CoreAudio != NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "You have uninitialized all contexts while an associated device is still active."); ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio); return MA_INVALID_OPERATION; } ma_mutex_uninit(&g_DeviceTrackingMutex_CoreAudio); } } ma_spinlock_unlock(&g_DeviceTrackingInitLock_CoreAudio); return MA_SUCCESS; } static ma_result ma_device__track__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio); { /* Allocate memory if required. */ if (g_TrackedDeviceCap_CoreAudio <= g_TrackedDeviceCount_CoreAudio) { ma_uint32 newCap; ma_device** ppNewDevices; newCap = g_TrackedDeviceCap_CoreAudio * 2; if (newCap == 0) { newCap = 1; } ppNewDevices = (ma_device**)ma_realloc(g_ppTrackedDevices_CoreAudio, sizeof(*g_ppTrackedDevices_CoreAudio)*newCap, &pDevice->pContext->allocationCallbacks); if (ppNewDevices == NULL) { ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); return MA_OUT_OF_MEMORY; } g_ppTrackedDevices_CoreAudio = ppNewDevices; g_TrackedDeviceCap_CoreAudio = newCap; } g_ppTrackedDevices_CoreAudio[g_TrackedDeviceCount_CoreAudio] = pDevice; g_TrackedDeviceCount_CoreAudio += 1; } ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); return MA_SUCCESS; } static ma_result ma_device__untrack__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio); { ma_uint32 iDevice; for (iDevice = 0; iDevice < g_TrackedDeviceCount_CoreAudio; iDevice += 1) { if (g_ppTrackedDevices_CoreAudio[iDevice] == pDevice) { /* We've found the device. We now need to remove it from the list. */ ma_uint32 jDevice; for (jDevice = iDevice; jDevice < g_TrackedDeviceCount_CoreAudio-1; jDevice += 1) { g_ppTrackedDevices_CoreAudio[jDevice] = g_ppTrackedDevices_CoreAudio[jDevice+1]; } g_TrackedDeviceCount_CoreAudio -= 1; /* If there's nothing else in the list we need to free memory. */ if (g_TrackedDeviceCount_CoreAudio == 0) { ma_free(g_ppTrackedDevices_CoreAudio, &pDevice->pContext->allocationCallbacks); g_ppTrackedDevices_CoreAudio = NULL; g_TrackedDeviceCap_CoreAudio = 0; } break; } } } ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio); return MA_SUCCESS; } #endif #if defined(MA_APPLE_MOBILE) @interface ma_ios_notification_handler:NSObject { ma_device* m_pDevice; } @end @implementation ma_ios_notification_handler -(id)init:(ma_device*)pDevice { self = [super init]; m_pDevice = pDevice; /* For route changes. */ [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handle_route_change:) name:AVAudioSessionRouteChangeNotification object:[AVAudioSession sharedInstance]]; /* For interruptions. */ [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handle_interruption:) name:AVAudioSessionInterruptionNotification object:[AVAudioSession sharedInstance]]; return self; } -(void)dealloc { [self remove_handler]; #if defined(__has_feature) #if !__has_feature(objc_arc) [super dealloc]; #endif #endif } -(void)remove_handler { [[NSNotificationCenter defaultCenter] removeObserver:self name:AVAudioSessionRouteChangeNotification object:nil]; [[NSNotificationCenter defaultCenter] removeObserver:self name:AVAudioSessionInterruptionNotification object:nil]; } -(void)handle_interruption:(NSNotification*)pNotification { NSInteger type = [[[pNotification userInfo] objectForKey:AVAudioSessionInterruptionTypeKey] integerValue]; switch (type) { case AVAudioSessionInterruptionTypeBegan: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Interruption: AVAudioSessionInterruptionTypeBegan\n"); /* Core Audio will have stopped the internal device automatically, but we need explicitly stop it at a higher level to ensure miniaudio-specific state is updated for consistency. */ ma_device_stop(m_pDevice); /* Fire the notification after the device has been stopped to ensure it's in the correct state when the notification handler is invoked. */ ma_device__on_notification_interruption_began(m_pDevice); } break; case AVAudioSessionInterruptionTypeEnded: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Interruption: AVAudioSessionInterruptionTypeEnded\n"); ma_device__on_notification_interruption_ended(m_pDevice); } break; } } -(void)handle_route_change:(NSNotification*)pNotification { AVAudioSession* pSession = [AVAudioSession sharedInstance]; NSInteger reason = [[[pNotification userInfo] objectForKey:AVAudioSessionRouteChangeReasonKey] integerValue]; switch (reason) { case AVAudioSessionRouteChangeReasonOldDeviceUnavailable: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonOldDeviceUnavailable\n"); } break; case AVAudioSessionRouteChangeReasonNewDeviceAvailable: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonNewDeviceAvailable\n"); } break; case AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory\n"); } break; case AVAudioSessionRouteChangeReasonWakeFromSleep: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonWakeFromSleep\n"); } break; case AVAudioSessionRouteChangeReasonOverride: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonOverride\n"); } break; case AVAudioSessionRouteChangeReasonCategoryChange: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonCategoryChange\n"); } break; case AVAudioSessionRouteChangeReasonUnknown: default: { ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_INFO, "[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonUnknown\n"); } break; } ma_log_postf(ma_device_get_log(m_pDevice), MA_LOG_LEVEL_DEBUG, "[Core Audio] Changing Route. inputNumberChannels=%d; outputNumberOfChannels=%d\n", (int)pSession.inputNumberOfChannels, (int)pSession.outputNumberOfChannels); /* Let the application know about the route change. */ ma_device__on_notification_rerouted(m_pDevice); } @end #endif static ma_result ma_device_uninit__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); MA_ASSERT(ma_device_get_state(pDevice) == ma_device_state_uninitialized); #if defined(MA_APPLE_DESKTOP) /* Make sure we're no longer tracking the device. It doesn't matter if we call this for a non-default device because it'll just gracefully ignore it. */ ma_device__untrack__coreaudio(pDevice); #endif #if defined(MA_APPLE_MOBILE) if (pDevice->coreaudio.pNotificationHandler != NULL) { ma_ios_notification_handler* pNotificationHandler = (MA_BRIDGE_TRANSFER ma_ios_notification_handler*)pDevice->coreaudio.pNotificationHandler; [pNotificationHandler remove_handler]; } #endif if (pDevice->coreaudio.audioUnitCapture != NULL) { ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture); } if (pDevice->coreaudio.audioUnitPlayback != NULL) { ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); } if (pDevice->coreaudio.pAudioBufferList) { ma_free(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks); } return MA_SUCCESS; } typedef struct { ma_bool32 allowNominalSampleRateChange; /* Input. */ ma_format formatIn; ma_uint32 channelsIn; ma_uint32 sampleRateIn; ma_channel channelMapIn[MA_MAX_CHANNELS]; ma_uint32 periodSizeInFramesIn; ma_uint32 periodSizeInMillisecondsIn; ma_uint32 periodsIn; ma_share_mode shareMode; ma_performance_profile performanceProfile; ma_bool32 registerStopEvent; /* Output. */ #if defined(MA_APPLE_DESKTOP) AudioObjectID deviceObjectID; #endif AudioComponent component; AudioUnit audioUnit; AudioBufferList* pAudioBufferList; /* Only used for input devices. */ ma_format formatOut; ma_uint32 channelsOut; ma_uint32 sampleRateOut; ma_channel channelMapOut[MA_MAX_CHANNELS]; ma_uint32 periodSizeInFramesOut; ma_uint32 periodsOut; char deviceName[256]; } ma_device_init_internal_data__coreaudio; static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__coreaudio* pData, void* pDevice_DoNotReference) /* <-- pDevice is typed as void* intentionally so as to avoid accidentally referencing it. */ { ma_result result; OSStatus status; UInt32 enableIOFlag; AudioStreamBasicDescription bestFormat; UInt32 actualPeriodSizeInFrames; AURenderCallbackStruct callbackInfo; #if defined(MA_APPLE_DESKTOP) AudioObjectID deviceObjectID; #endif /* This API should only be used for a single device type: playback or capture. No full-duplex mode. */ if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } MA_ASSERT(pContext != NULL); MA_ASSERT(deviceType == ma_device_type_playback || deviceType == ma_device_type_capture); #if defined(MA_APPLE_DESKTOP) pData->deviceObjectID = 0; #endif pData->component = NULL; pData->audioUnit = NULL; pData->pAudioBufferList = NULL; #if defined(MA_APPLE_DESKTOP) result = ma_find_AudioObjectID(pContext, deviceType, pDeviceID, &deviceObjectID); if (result != MA_SUCCESS) { return result; } pData->deviceObjectID = deviceObjectID; #endif /* Core audio doesn't really use the notion of a period so we can leave this unmodified, but not too over the top. */ pData->periodsOut = pData->periodsIn; if (pData->periodsOut == 0) { pData->periodsOut = MA_DEFAULT_PERIODS; } if (pData->periodsOut > 16) { pData->periodsOut = 16; } /* Audio unit. */ status = ((ma_AudioComponentInstanceNew_proc)pContext->coreaudio.AudioComponentInstanceNew)((AudioComponent)pContext->coreaudio.component, (AudioUnit*)&pData->audioUnit); if (status != noErr) { return ma_result_from_OSStatus(status); } /* The input/output buses need to be explicitly enabled and disabled. We set the flag based on the output unit first, then we just swap it for input. */ enableIOFlag = 1; if (deviceType == ma_device_type_capture) { enableIOFlag = 0; } status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, MA_COREAUDIO_OUTPUT_BUS, &enableIOFlag, sizeof(enableIOFlag)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } enableIOFlag = (enableIOFlag == 0) ? 1 : 0; status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, MA_COREAUDIO_INPUT_BUS, &enableIOFlag, sizeof(enableIOFlag)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } /* Set the device to use with this audio unit. This is only used on desktop since we are using defaults on mobile. */ #if defined(MA_APPLE_DESKTOP) status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &deviceObjectID, sizeof(deviceObjectID)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(result); } #else /* For some reason it looks like Apple is only allowing selection of the input device. There does not appear to be any way to change the default output route. I have no idea why this is like this, but for now we'll only be able to configure capture devices. */ if (pDeviceID != NULL) { if (deviceType == ma_device_type_capture) { ma_bool32 found = MA_FALSE; NSArray *pInputs = [[[AVAudioSession sharedInstance] currentRoute] inputs]; for (AVAudioSessionPortDescription* pPortDesc in pInputs) { if (strcmp(pDeviceID->coreaudio, [pPortDesc.UID UTF8String]) == 0) { [[AVAudioSession sharedInstance] setPreferredInput:pPortDesc error:nil]; found = MA_TRUE; break; } } if (found == MA_FALSE) { return MA_DOES_NOT_EXIST; } } } #endif /* Format. This is the hardest part of initialization because there's a few variables to take into account. 1) The format must be supported by the device. 2) The format must be supported miniaudio. 3) There's a priority that miniaudio prefers. Ideally we would like to use a format that's as close to the hardware as possible so we can get as close to a passthrough as possible. The most important property is the sample rate. miniaudio can do format conversion for any sample rate and channel count, but cannot do the same for the sample data format. If the sample data format is not supported by miniaudio it must be ignored completely. On mobile platforms this is a bit different. We just force the use of whatever the audio unit's current format is set to. */ { AudioStreamBasicDescription origFormat; UInt32 origFormatSize = sizeof(origFormat); AudioUnitScope formatScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output; AudioUnitElement formatElement = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS; if (deviceType == ma_device_type_playback) { status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, MA_COREAUDIO_OUTPUT_BUS, &origFormat, &origFormatSize); } else { status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, MA_COREAUDIO_INPUT_BUS, &origFormat, &origFormatSize); } if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } #if defined(MA_APPLE_DESKTOP) result = ma_find_best_format__coreaudio(pContext, deviceObjectID, deviceType, pData->formatIn, pData->channelsIn, pData->sampleRateIn, &origFormat, &bestFormat); if (result != MA_SUCCESS) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return result; } /* Technical Note TN2091: Device input using the HAL Output Audio Unit https://developer.apple.com/library/archive/technotes/tn2091/_index.html This documentation says the following: The internal AudioConverter can handle any *simple* conversion. Typically, this means that a client can specify ANY variant of the PCM formats. Consequently, the device's sample rate should match the desired sample rate. If sample rate conversion is needed, it can be accomplished by buffering the input and converting the data on a separate thread with another AudioConverter. The important part here is the mention that it can handle *simple* conversions, which does *not* include sample rate. We therefore want to ensure the sample rate stays consistent. This document is specifically for input, but I'm going to play it safe and apply the same rule to output as well. I have tried going against the documentation by setting the sample rate anyway, but this just results in AudioUnitRender() returning a result code of -10863. I have also tried changing the format directly on the input scope on the input bus, but this just results in `ca_require: IsStreamFormatWritable(inScope, inElement) NotWritable` when trying to set the format. Something that does seem to work, however, has been setting the nominal sample rate on the deivce object. The problem with this, however, is that it actually changes the sample rate at the operating system level and not just the application. This could be intrusive to the user, however, so I don't think it's wise to make this the default. Instead I'm making this a configuration option. When the `coreaudio.allowNominalSampleRateChange` config option is set to true, changing the sample rate will be allowed. Otherwise it'll be fixed to the current sample rate. To check the system-defined sample rate, run the Audio MIDI Setup program that comes installed on macOS and observe how the sample rate changes as the sample rate is changed by miniaudio. */ if (pData->allowNominalSampleRateChange) { AudioValueRange sampleRateRange; AudioObjectPropertyAddress propAddress; sampleRateRange.mMinimum = bestFormat.mSampleRate; sampleRateRange.mMaximum = bestFormat.mSampleRate; propAddress.mSelector = kAudioDevicePropertyNominalSampleRate; propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput; propAddress.mElement = AUDIO_OBJECT_PROPERTY_ELEMENT; status = ((ma_AudioObjectSetPropertyData_proc)pContext->coreaudio.AudioObjectSetPropertyData)(deviceObjectID, &propAddress, 0, NULL, sizeof(sampleRateRange), &sampleRateRange); if (status != noErr) { bestFormat.mSampleRate = origFormat.mSampleRate; } } else { bestFormat.mSampleRate = origFormat.mSampleRate; } status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat)); if (status != noErr) { /* We failed to set the format, so fall back to the current format of the audio unit. */ bestFormat = origFormat; } #else bestFormat = origFormat; /* Sample rate is a little different here because for some reason kAudioUnitProperty_StreamFormat returns 0... Oh well. We need to instead try setting the sample rate to what the user has requested and then just see the results of it. Need to use some Objective-C here for this since it depends on Apple's AVAudioSession API. To do this we just get the shared AVAudioSession instance and then set it. Note that from what I can tell, it looks like the sample rate is shared between playback and capture for everything. */ @autoreleasepool { AVAudioSession* pAudioSession = [AVAudioSession sharedInstance]; MA_ASSERT(pAudioSession != NULL); [pAudioSession setPreferredSampleRate:(double)pData->sampleRateIn error:nil]; bestFormat.mSampleRate = pAudioSession.sampleRate; /* I've had a report that the channel count returned by AudioUnitGetProperty above is inconsistent with AVAudioSession outputNumberOfChannels. I'm going to try using the AVAudioSession values instead. */ if (deviceType == ma_device_type_playback) { bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.outputNumberOfChannels; } if (deviceType == ma_device_type_capture) { bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.inputNumberOfChannels; } } status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } #endif result = ma_format_from_AudioStreamBasicDescription(&bestFormat, &pData->formatOut); if (result != MA_SUCCESS) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return result; } if (pData->formatOut == ma_format_unknown) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return MA_FORMAT_NOT_SUPPORTED; } pData->channelsOut = bestFormat.mChannelsPerFrame; pData->sampleRateOut = bestFormat.mSampleRate; } /* Clamp the channel count for safety. */ if (pData->channelsOut > MA_MAX_CHANNELS) { pData->channelsOut = MA_MAX_CHANNELS; } /* Internal channel map. This is weird in my testing. If I use the AudioObject to get the channel map, the channel descriptions are set to "Unknown" for some reason. To work around this it looks like retrieving it from the AudioUnit will work. However, and this is where it gets weird, it doesn't seem to work with capture devices, nor at all on iOS... Therefore I'm going to fall back to a default assumption in these cases. */ #if defined(MA_APPLE_DESKTOP) result = ma_get_AudioUnit_channel_map(pContext, pData->audioUnit, deviceType, pData->channelMapOut, pData->channelsOut); if (result != MA_SUCCESS) { #if 0 /* Try falling back to the channel map from the AudioObject. */ result = ma_get_AudioObject_channel_map(pContext, deviceObjectID, deviceType, pData->channelMapOut, pData->channelsOut); if (result != MA_SUCCESS) { return result; } #else /* Fall back to default assumptions. */ ma_channel_map_init_standard(ma_standard_channel_map_default, pData->channelMapOut, ma_countof(pData->channelMapOut), pData->channelsOut); #endif } #else /* TODO: Figure out how to get the channel map using AVAudioSession. */ ma_channel_map_init_standard(ma_standard_channel_map_default, pData->channelMapOut, ma_countof(pData->channelMapOut), pData->channelsOut); #endif /* Buffer size. Not allowing this to be configurable on iOS. */ if (pData->periodSizeInFramesIn == 0) { if (pData->periodSizeInMillisecondsIn == 0) { if (pData->performanceProfile == ma_performance_profile_low_latency) { actualPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY, pData->sampleRateOut); } else { actualPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, pData->sampleRateOut); } } else { actualPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, pData->sampleRateOut); } } else { actualPeriodSizeInFrames = pData->periodSizeInFramesIn; } #if defined(MA_APPLE_DESKTOP) result = ma_set_AudioObject_buffer_size_in_frames(pContext, deviceObjectID, deviceType, &actualPeriodSizeInFrames); if (result != MA_SUCCESS) { return result; } #else /* On iOS, the size of the IO buffer needs to be specified in seconds and is a floating point number. I don't trust any potential truncation errors due to converting from float to integer so I'm going to explicitly set the actual period size to the next power of 2. */ @autoreleasepool { AVAudioSession* pAudioSession = [AVAudioSession sharedInstance]; MA_ASSERT(pAudioSession != NULL); [pAudioSession setPreferredIOBufferDuration:((float)actualPeriodSizeInFrames / pAudioSession.sampleRate) error:nil]; actualPeriodSizeInFrames = ma_next_power_of_2((ma_uint32)(pAudioSession.IOBufferDuration * pAudioSession.sampleRate)); } #endif /* During testing I discovered that the buffer size can be too big. You'll get an error like this: kAudioUnitErr_TooManyFramesToProcess : inFramesToProcess=4096, mMaxFramesPerSlice=512 Note how inFramesToProcess is smaller than mMaxFramesPerSlice. To fix, we need to set kAudioUnitProperty_MaximumFramesPerSlice to that of the size of our buffer, or do it the other way around and set our buffer size to the kAudioUnitProperty_MaximumFramesPerSlice. */ status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualPeriodSizeInFrames, sizeof(actualPeriodSizeInFrames)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } pData->periodSizeInFramesOut = (ma_uint32)actualPeriodSizeInFrames; /* We need a buffer list if this is an input device. We render into this in the input callback. */ if (deviceType == ma_device_type_capture) { ma_bool32 isInterleaved = (bestFormat.mFormatFlags & kAudioFormatFlagIsNonInterleaved) == 0; AudioBufferList* pBufferList; pBufferList = ma_allocate_AudioBufferList__coreaudio(pData->periodSizeInFramesOut, pData->formatOut, pData->channelsOut, (isInterleaved) ? ma_stream_layout_interleaved : ma_stream_layout_deinterleaved, &pContext->allocationCallbacks); if (pBufferList == NULL) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return MA_OUT_OF_MEMORY; } pData->pAudioBufferList = pBufferList; } /* Callbacks. */ callbackInfo.inputProcRefCon = pDevice_DoNotReference; if (deviceType == ma_device_type_playback) { callbackInfo.inputProc = ma_on_output__coreaudio; status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Global, 0, &callbackInfo, sizeof(callbackInfo)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } } else { callbackInfo.inputProc = ma_on_input__coreaudio; status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &callbackInfo, sizeof(callbackInfo)); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } } /* We need to listen for stop events. */ if (pData->registerStopEvent) { status = ((ma_AudioUnitAddPropertyListener_proc)pContext->coreaudio.AudioUnitAddPropertyListener)(pData->audioUnit, kAudioOutputUnitProperty_IsRunning, on_start_stop__coreaudio, pDevice_DoNotReference); if (status != noErr) { ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } } /* Initialize the audio unit. */ status = ((ma_AudioUnitInitialize_proc)pContext->coreaudio.AudioUnitInitialize)(pData->audioUnit); if (status != noErr) { ma_free(pData->pAudioBufferList, &pContext->allocationCallbacks); pData->pAudioBufferList = NULL; ((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit); return ma_result_from_OSStatus(status); } /* Grab the name. */ #if defined(MA_APPLE_DESKTOP) ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(pData->deviceName), pData->deviceName); #else if (deviceType == ma_device_type_playback) { ma_strcpy_s(pData->deviceName, sizeof(pData->deviceName), MA_DEFAULT_PLAYBACK_DEVICE_NAME); } else { ma_strcpy_s(pData->deviceName, sizeof(pData->deviceName), MA_DEFAULT_CAPTURE_DEVICE_NAME); } #endif return result; } #if defined(MA_APPLE_DESKTOP) static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit) { ma_device_init_internal_data__coreaudio data; ma_result result; /* This should only be called for playback or capture, not duplex. */ if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } data.allowNominalSampleRateChange = MA_FALSE; /* Don't change the nominal sample rate when switching devices. */ if (deviceType == ma_device_type_capture) { data.formatIn = pDevice->capture.format; data.channelsIn = pDevice->capture.channels; data.sampleRateIn = pDevice->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap)); data.shareMode = pDevice->capture.shareMode; data.performanceProfile = pDevice->coreaudio.originalPerformanceProfile; data.registerStopEvent = MA_TRUE; if (disposePreviousAudioUnit) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture); ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture); } if (pDevice->coreaudio.pAudioBufferList) { ma_free(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks); } } else if (deviceType == ma_device_type_playback) { data.formatIn = pDevice->playback.format; data.channelsIn = pDevice->playback.channels; data.sampleRateIn = pDevice->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap)); data.shareMode = pDevice->playback.shareMode; data.performanceProfile = pDevice->coreaudio.originalPerformanceProfile; data.registerStopEvent = (pDevice->type != ma_device_type_duplex); if (disposePreviousAudioUnit) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); } } data.periodSizeInFramesIn = pDevice->coreaudio.originalPeriodSizeInFrames; data.periodSizeInMillisecondsIn = pDevice->coreaudio.originalPeriodSizeInMilliseconds; data.periodsIn = pDevice->coreaudio.originalPeriods; /* Need at least 3 periods for duplex. */ if (data.periodsIn < 3 && pDevice->type == ma_device_type_duplex) { data.periodsIn = 3; } result = ma_device_init_internal__coreaudio(pDevice->pContext, deviceType, NULL, &data, (void*)pDevice); if (result != MA_SUCCESS) { return result; } if (deviceType == ma_device_type_capture) { #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID; ma_get_AudioObject_uid(pDevice->pContext, pDevice->coreaudio.deviceObjectIDCapture, sizeof(pDevice->capture.id.coreaudio), pDevice->capture.id.coreaudio); #endif pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit; pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList; pDevice->coreaudio.audioBufferCapInFrames = data.periodSizeInFramesOut; pDevice->capture.internalFormat = data.formatOut; pDevice->capture.internalChannels = data.channelsOut; pDevice->capture.internalSampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->capture.internalPeriods = data.periodsOut; } else if (deviceType == ma_device_type_playback) { #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID; ma_get_AudioObject_uid(pDevice->pContext, pDevice->coreaudio.deviceObjectIDPlayback, sizeof(pDevice->playback.id.coreaudio), pDevice->playback.id.coreaudio); #endif pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit; pDevice->playback.internalFormat = data.formatOut; pDevice->playback.internalChannels = data.channelsOut; pDevice->playback.internalSampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut; pDevice->playback.internalPeriods = data.periodsOut; } return MA_SUCCESS; } #endif /* MA_APPLE_DESKTOP */ static ma_result ma_device_init__coreaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; MA_ASSERT(pDevice != NULL); MA_ASSERT(pConfig != NULL); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* No exclusive mode with the Core Audio backend for now. */ if (((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } /* Capture needs to be initialized first. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_device_init_internal_data__coreaudio data; data.allowNominalSampleRateChange = pConfig->coreaudio.allowNominalSampleRateChange; data.formatIn = pDescriptorCapture->format; data.channelsIn = pDescriptorCapture->channels; data.sampleRateIn = pDescriptorCapture->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pDescriptorCapture->channelMap, sizeof(pDescriptorCapture->channelMap)); data.periodSizeInFramesIn = pDescriptorCapture->periodSizeInFrames; data.periodSizeInMillisecondsIn = pDescriptorCapture->periodSizeInMilliseconds; data.periodsIn = pDescriptorCapture->periodCount; data.shareMode = pDescriptorCapture->shareMode; data.performanceProfile = pConfig->performanceProfile; data.registerStopEvent = MA_TRUE; /* Need at least 3 periods for duplex. */ if (data.periodsIn < 3 && pConfig->deviceType == ma_device_type_duplex) { data.periodsIn = 3; } result = ma_device_init_internal__coreaudio(pDevice->pContext, ma_device_type_capture, pDescriptorCapture->pDeviceID, &data, (void*)pDevice); if (result != MA_SUCCESS) { return result; } pDevice->coreaudio.isDefaultCaptureDevice = (pConfig->capture.pDeviceID == NULL); #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID; #endif pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit; pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList; pDevice->coreaudio.audioBufferCapInFrames = data.periodSizeInFramesOut; pDevice->coreaudio.originalPeriodSizeInFrames = pDescriptorCapture->periodSizeInFrames; pDevice->coreaudio.originalPeriodSizeInMilliseconds = pDescriptorCapture->periodSizeInMilliseconds; pDevice->coreaudio.originalPeriods = pDescriptorCapture->periodCount; pDevice->coreaudio.originalPerformanceProfile = pConfig->performanceProfile; pDescriptorCapture->format = data.formatOut; pDescriptorCapture->channels = data.channelsOut; pDescriptorCapture->sampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDescriptorCapture->channelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDescriptorCapture->periodSizeInFrames = data.periodSizeInFramesOut; pDescriptorCapture->periodCount = data.periodsOut; #if defined(MA_APPLE_DESKTOP) ma_get_AudioObject_uid(pDevice->pContext, pDevice->coreaudio.deviceObjectIDCapture, sizeof(pDevice->capture.id.coreaudio), pDevice->capture.id.coreaudio); /* If we are using the default device we'll need to listen for changes to the system's default device so we can seemlessly switch the device in the background. */ if (pConfig->capture.pDeviceID == NULL) { ma_device__track__coreaudio(pDevice); } #endif } /* Playback. */ if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_device_init_internal_data__coreaudio data; data.allowNominalSampleRateChange = pConfig->coreaudio.allowNominalSampleRateChange; data.formatIn = pDescriptorPlayback->format; data.channelsIn = pDescriptorPlayback->channels; data.sampleRateIn = pDescriptorPlayback->sampleRate; MA_COPY_MEMORY(data.channelMapIn, pDescriptorPlayback->channelMap, sizeof(pDescriptorPlayback->channelMap)); data.shareMode = pDescriptorPlayback->shareMode; data.performanceProfile = pConfig->performanceProfile; /* In full-duplex mode we want the playback buffer to be the same size as the capture buffer. */ if (pConfig->deviceType == ma_device_type_duplex) { data.periodSizeInFramesIn = pDescriptorCapture->periodSizeInFrames; data.periodsIn = pDescriptorCapture->periodCount; data.registerStopEvent = MA_FALSE; } else { data.periodSizeInFramesIn = pDescriptorPlayback->periodSizeInFrames; data.periodSizeInMillisecondsIn = pDescriptorPlayback->periodSizeInMilliseconds; data.periodsIn = pDescriptorPlayback->periodCount; data.registerStopEvent = MA_TRUE; } result = ma_device_init_internal__coreaudio(pDevice->pContext, ma_device_type_playback, pDescriptorPlayback->pDeviceID, &data, (void*)pDevice); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { ((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture); if (pDevice->coreaudio.pAudioBufferList) { ma_free(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks); } } return result; } pDevice->coreaudio.isDefaultPlaybackDevice = (pConfig->playback.pDeviceID == NULL); #if defined(MA_APPLE_DESKTOP) pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID; #endif pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit; pDevice->coreaudio.originalPeriodSizeInFrames = pDescriptorPlayback->periodSizeInFrames; pDevice->coreaudio.originalPeriodSizeInMilliseconds = pDescriptorPlayback->periodSizeInMilliseconds; pDevice->coreaudio.originalPeriods = pDescriptorPlayback->periodCount; pDevice->coreaudio.originalPerformanceProfile = pConfig->performanceProfile; pDescriptorPlayback->format = data.formatOut; pDescriptorPlayback->channels = data.channelsOut; pDescriptorPlayback->sampleRate = data.sampleRateOut; MA_COPY_MEMORY(pDescriptorPlayback->channelMap, data.channelMapOut, sizeof(data.channelMapOut)); pDescriptorPlayback->periodSizeInFrames = data.periodSizeInFramesOut; pDescriptorPlayback->periodCount = data.periodsOut; #if defined(MA_APPLE_DESKTOP) ma_get_AudioObject_uid(pDevice->pContext, pDevice->coreaudio.deviceObjectIDPlayback, sizeof(pDevice->playback.id.coreaudio), pDevice->playback.id.coreaudio); /* If we are using the default device we'll need to listen for changes to the system's default device so we can seemlessly switch the device in the background. */ if (pDescriptorPlayback->pDeviceID == NULL && (pConfig->deviceType != ma_device_type_duplex || pDescriptorCapture->pDeviceID != NULL)) { ma_device__track__coreaudio(pDevice); } #endif } /* When stopping the device, a callback is called on another thread. We need to wait for this callback before returning from ma_device_stop(). This event is used for this. */ ma_event_init(&pDevice->coreaudio.stopEvent); /* We need to detect when a route has changed so we can update the data conversion pipeline accordingly. This is done differently on non-Desktop Apple platforms. */ #if defined(MA_APPLE_MOBILE) pDevice->coreaudio.pNotificationHandler = (MA_BRIDGE_RETAINED void*)[[ma_ios_notification_handler alloc] init:pDevice]; #endif return MA_SUCCESS; } static ma_result ma_device_start__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitCapture); if (status != noErr) { return ma_result_from_OSStatus(status); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); if (status != noErr) { if (pDevice->type == ma_device_type_duplex) { ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture); } return ma_result_from_OSStatus(status); } } return MA_SUCCESS; } static ma_result ma_device_stop__coreaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* It's not clear from the documentation whether or not AudioOutputUnitStop() actually drains the device or not. */ if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture); if (status != noErr) { return ma_result_from_OSStatus(status); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { OSStatus status = ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback); if (status != noErr) { return ma_result_from_OSStatus(status); } } /* We need to wait for the callback to finish before returning. */ ma_event_wait(&pDevice->coreaudio.stopEvent); return MA_SUCCESS; } static ma_result ma_context_uninit__coreaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_coreaudio); #if defined(MA_APPLE_MOBILE) if (!pContext->coreaudio.noAudioSessionDeactivate) { if (![[AVAudioSession sharedInstance] setActive:false error:nil]) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "Failed to deactivate audio session."); return MA_FAILED_TO_INIT_BACKEND; } } #endif #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); #endif #if !defined(MA_APPLE_MOBILE) ma_context__uninit_device_tracking__coreaudio(pContext); #endif (void)pContext; return MA_SUCCESS; } #if defined(MA_APPLE_MOBILE) && defined(__IPHONE_12_0) static AVAudioSessionCategory ma_to_AVAudioSessionCategory(ma_ios_session_category category) { /* The "default" and "none" categories are treated different and should not be used as an input into this function. */ MA_ASSERT(category != ma_ios_session_category_default); MA_ASSERT(category != ma_ios_session_category_none); switch (category) { case ma_ios_session_category_ambient: return AVAudioSessionCategoryAmbient; case ma_ios_session_category_solo_ambient: return AVAudioSessionCategorySoloAmbient; case ma_ios_session_category_playback: return AVAudioSessionCategoryPlayback; case ma_ios_session_category_record: return AVAudioSessionCategoryRecord; case ma_ios_session_category_play_and_record: return AVAudioSessionCategoryPlayAndRecord; case ma_ios_session_category_multi_route: return AVAudioSessionCategoryMultiRoute; case ma_ios_session_category_none: return AVAudioSessionCategoryAmbient; case ma_ios_session_category_default: return AVAudioSessionCategoryAmbient; default: return AVAudioSessionCategoryAmbient; } } #endif static ma_result ma_context_init__coreaudio(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { #if !defined(MA_APPLE_MOBILE) ma_result result; #endif MA_ASSERT(pConfig != NULL); MA_ASSERT(pContext != NULL); #if defined(MA_APPLE_MOBILE) @autoreleasepool { AVAudioSession* pAudioSession = [AVAudioSession sharedInstance]; AVAudioSessionCategoryOptions options = pConfig->coreaudio.sessionCategoryOptions; MA_ASSERT(pAudioSession != NULL); if (pConfig->coreaudio.sessionCategory == ma_ios_session_category_default) { /* I'm going to use trial and error to determine our default session category. First we'll try PlayAndRecord. If that fails we'll try Playback and if that fails we'll try record. If all of these fail we'll just not set the category. */ #if !defined(MA_APPLE_TV) && !defined(MA_APPLE_WATCH) options |= AVAudioSessionCategoryOptionDefaultToSpeaker; #endif if ([pAudioSession setCategory: AVAudioSessionCategoryPlayAndRecord withOptions:options error:nil]) { /* Using PlayAndRecord */ } else if ([pAudioSession setCategory: AVAudioSessionCategoryPlayback withOptions:options error:nil]) { /* Using Playback */ } else if ([pAudioSession setCategory: AVAudioSessionCategoryRecord withOptions:options error:nil]) { /* Using Record */ } else { /* Leave as default? */ } } else { if (pConfig->coreaudio.sessionCategory != ma_ios_session_category_none) { #if defined(__IPHONE_12_0) if (![pAudioSession setCategory: ma_to_AVAudioSessionCategory(pConfig->coreaudio.sessionCategory) withOptions:options error:nil]) { return MA_INVALID_OPERATION; /* Failed to set session category. */ } #else /* Ignore the session category on version 11 and older, but post a warning. */ ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "Session category only supported in iOS 12 and newer."); #endif } } if (!pConfig->coreaudio.noAudioSessionActivate) { if (![pAudioSession setActive:true error:nil]) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "Failed to activate audio session."); return MA_FAILED_TO_INIT_BACKEND; } } } #endif #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) pContext->coreaudio.hCoreFoundation = ma_dlopen(pContext, "CoreFoundation.framework/CoreFoundation"); if (pContext->coreaudio.hCoreFoundation == NULL) { return MA_API_NOT_FOUND; } pContext->coreaudio.CFStringGetCString = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFStringGetCString"); pContext->coreaudio.CFRelease = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFRelease"); pContext->coreaudio.hCoreAudio = ma_dlopen(pContext, "CoreAudio.framework/CoreAudio"); if (pContext->coreaudio.hCoreAudio == NULL) { ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); return MA_API_NOT_FOUND; } pContext->coreaudio.AudioObjectGetPropertyData = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectGetPropertyData"); pContext->coreaudio.AudioObjectGetPropertyDataSize = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectGetPropertyDataSize"); pContext->coreaudio.AudioObjectSetPropertyData = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectSetPropertyData"); pContext->coreaudio.AudioObjectAddPropertyListener = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectAddPropertyListener"); pContext->coreaudio.AudioObjectRemovePropertyListener = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectRemovePropertyListener"); /* It looks like Apple has moved some APIs from AudioUnit into AudioToolbox on more recent versions of macOS. They are still defined in AudioUnit, but just in case they decide to remove them from there entirely I'm going to implement a fallback. The way it'll work is that it'll first try AudioUnit, and if the required symbols are not present there we'll fall back to AudioToolbox. */ pContext->coreaudio.hAudioUnit = ma_dlopen(pContext, "AudioUnit.framework/AudioUnit"); if (pContext->coreaudio.hAudioUnit == NULL) { ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); return MA_API_NOT_FOUND; } if (ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentFindNext") == NULL) { /* Couldn't find the required symbols in AudioUnit, so fall back to AudioToolbox. */ ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); pContext->coreaudio.hAudioUnit = ma_dlopen(pContext, "AudioToolbox.framework/AudioToolbox"); if (pContext->coreaudio.hAudioUnit == NULL) { ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); return MA_API_NOT_FOUND; } } pContext->coreaudio.AudioComponentFindNext = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentFindNext"); pContext->coreaudio.AudioComponentInstanceDispose = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentInstanceDispose"); pContext->coreaudio.AudioComponentInstanceNew = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentInstanceNew"); pContext->coreaudio.AudioOutputUnitStart = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioOutputUnitStart"); pContext->coreaudio.AudioOutputUnitStop = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioOutputUnitStop"); pContext->coreaudio.AudioUnitAddPropertyListener = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitAddPropertyListener"); pContext->coreaudio.AudioUnitGetPropertyInfo = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitGetPropertyInfo"); pContext->coreaudio.AudioUnitGetProperty = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitGetProperty"); pContext->coreaudio.AudioUnitSetProperty = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitSetProperty"); pContext->coreaudio.AudioUnitInitialize = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitInitialize"); pContext->coreaudio.AudioUnitRender = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitRender"); #else pContext->coreaudio.CFStringGetCString = (ma_proc)CFStringGetCString; pContext->coreaudio.CFRelease = (ma_proc)CFRelease; #if defined(MA_APPLE_DESKTOP) pContext->coreaudio.AudioObjectGetPropertyData = (ma_proc)AudioObjectGetPropertyData; pContext->coreaudio.AudioObjectGetPropertyDataSize = (ma_proc)AudioObjectGetPropertyDataSize; pContext->coreaudio.AudioObjectSetPropertyData = (ma_proc)AudioObjectSetPropertyData; pContext->coreaudio.AudioObjectAddPropertyListener = (ma_proc)AudioObjectAddPropertyListener; pContext->coreaudio.AudioObjectRemovePropertyListener = (ma_proc)AudioObjectRemovePropertyListener; #endif pContext->coreaudio.AudioComponentFindNext = (ma_proc)AudioComponentFindNext; pContext->coreaudio.AudioComponentInstanceDispose = (ma_proc)AudioComponentInstanceDispose; pContext->coreaudio.AudioComponentInstanceNew = (ma_proc)AudioComponentInstanceNew; pContext->coreaudio.AudioOutputUnitStart = (ma_proc)AudioOutputUnitStart; pContext->coreaudio.AudioOutputUnitStop = (ma_proc)AudioOutputUnitStop; pContext->coreaudio.AudioUnitAddPropertyListener = (ma_proc)AudioUnitAddPropertyListener; pContext->coreaudio.AudioUnitGetPropertyInfo = (ma_proc)AudioUnitGetPropertyInfo; pContext->coreaudio.AudioUnitGetProperty = (ma_proc)AudioUnitGetProperty; pContext->coreaudio.AudioUnitSetProperty = (ma_proc)AudioUnitSetProperty; pContext->coreaudio.AudioUnitInitialize = (ma_proc)AudioUnitInitialize; pContext->coreaudio.AudioUnitRender = (ma_proc)AudioUnitRender; #endif /* Audio component. */ { AudioComponentDescription desc; desc.componentType = kAudioUnitType_Output; #if defined(MA_APPLE_DESKTOP) desc.componentSubType = kAudioUnitSubType_HALOutput; #else desc.componentSubType = kAudioUnitSubType_RemoteIO; #endif desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; pContext->coreaudio.component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc); if (pContext->coreaudio.component == NULL) { #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); #endif return MA_FAILED_TO_INIT_BACKEND; } } #if !defined(MA_APPLE_MOBILE) result = ma_context__init_device_tracking__coreaudio(pContext); if (result != MA_SUCCESS) { #if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE) ma_dlclose(pContext, pContext->coreaudio.hAudioUnit); ma_dlclose(pContext, pContext->coreaudio.hCoreAudio); ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation); #endif return result; } #endif pContext->coreaudio.noAudioSessionDeactivate = pConfig->coreaudio.noAudioSessionDeactivate; pCallbacks->onContextInit = ma_context_init__coreaudio; pCallbacks->onContextUninit = ma_context_uninit__coreaudio; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__coreaudio; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__coreaudio; pCallbacks->onDeviceInit = ma_device_init__coreaudio; pCallbacks->onDeviceUninit = ma_device_uninit__coreaudio; pCallbacks->onDeviceStart = ma_device_start__coreaudio; pCallbacks->onDeviceStop = ma_device_stop__coreaudio; pCallbacks->onDeviceRead = NULL; pCallbacks->onDeviceWrite = NULL; pCallbacks->onDeviceDataLoop = NULL; return MA_SUCCESS; } #endif /* Core Audio */ /****************************************************************************** sndio Backend ******************************************************************************/ #ifdef MA_HAS_SNDIO #include /* Only supporting OpenBSD. This did not work very well at all on FreeBSD when I tried it. Not sure if this is due to miniaudio's implementation or if it's some kind of system configuration issue, but basically the default device just doesn't emit any sound, or at times you'll hear tiny pieces. I will consider enabling this when there's demand for it or if I can get it tested and debugged more thoroughly. */ #if 0 #if defined(__NetBSD__) || defined(__OpenBSD__) #include #endif #if defined(__FreeBSD__) || defined(__DragonFly__) #include #endif #endif #define MA_SIO_DEVANY "default" #define MA_SIO_PLAY 1 #define MA_SIO_REC 2 #define MA_SIO_NENC 8 #define MA_SIO_NCHAN 8 #define MA_SIO_NRATE 16 #define MA_SIO_NCONF 4 struct ma_sio_hdl; /* <-- Opaque */ struct ma_sio_par { unsigned int bits; unsigned int bps; unsigned int sig; unsigned int le; unsigned int msb; unsigned int rchan; unsigned int pchan; unsigned int rate; unsigned int bufsz; unsigned int xrun; unsigned int round; unsigned int appbufsz; int __pad[3]; unsigned int __magic; }; struct ma_sio_enc { unsigned int bits; unsigned int bps; unsigned int sig; unsigned int le; unsigned int msb; }; struct ma_sio_conf { unsigned int enc; unsigned int rchan; unsigned int pchan; unsigned int rate; }; struct ma_sio_cap { struct ma_sio_enc enc[MA_SIO_NENC]; unsigned int rchan[MA_SIO_NCHAN]; unsigned int pchan[MA_SIO_NCHAN]; unsigned int rate[MA_SIO_NRATE]; int __pad[7]; unsigned int nconf; struct ma_sio_conf confs[MA_SIO_NCONF]; }; typedef struct ma_sio_hdl* (* ma_sio_open_proc) (const char*, unsigned int, int); typedef void (* ma_sio_close_proc) (struct ma_sio_hdl*); typedef int (* ma_sio_setpar_proc) (struct ma_sio_hdl*, struct ma_sio_par*); typedef int (* ma_sio_getpar_proc) (struct ma_sio_hdl*, struct ma_sio_par*); typedef int (* ma_sio_getcap_proc) (struct ma_sio_hdl*, struct ma_sio_cap*); typedef size_t (* ma_sio_write_proc) (struct ma_sio_hdl*, const void*, size_t); typedef size_t (* ma_sio_read_proc) (struct ma_sio_hdl*, void*, size_t); typedef int (* ma_sio_start_proc) (struct ma_sio_hdl*); typedef int (* ma_sio_stop_proc) (struct ma_sio_hdl*); typedef int (* ma_sio_initpar_proc)(struct ma_sio_par*); static ma_uint32 ma_get_standard_sample_rate_priority_index__sndio(ma_uint32 sampleRate) /* Lower = higher priority */ { ma_uint32 i; for (i = 0; i < ma_countof(g_maStandardSampleRatePriorities); ++i) { if (g_maStandardSampleRatePriorities[i] == sampleRate) { return i; } } return (ma_uint32)-1; } static ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int bps, unsigned int sig, unsigned int le, unsigned int msb) { /* We only support native-endian right now. */ if ((ma_is_little_endian() && le == 0) || (ma_is_big_endian() && le == 1)) { return ma_format_unknown; } if (bits == 8 && bps == 1 && sig == 0) { return ma_format_u8; } if (bits == 16 && bps == 2 && sig == 1) { return ma_format_s16; } if (bits == 24 && bps == 3 && sig == 1) { return ma_format_s24; } if (bits == 24 && bps == 4 && sig == 1 && msb == 0) { /*return ma_format_s24_32;*/ } if (bits == 32 && bps == 4 && sig == 1) { return ma_format_s32; } return ma_format_unknown; } static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps) { ma_format bestFormat; unsigned int iConfig; MA_ASSERT(caps != NULL); bestFormat = ma_format_unknown; for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) { unsigned int iEncoding; for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) { unsigned int bits; unsigned int bps; unsigned int sig; unsigned int le; unsigned int msb; ma_format format; if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } bits = caps->enc[iEncoding].bits; bps = caps->enc[iEncoding].bps; sig = caps->enc[iEncoding].sig; le = caps->enc[iEncoding].le; msb = caps->enc[iEncoding].msb; format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb); if (format == ma_format_unknown) { continue; /* Format not supported. */ } if (bestFormat == ma_format_unknown) { bestFormat = format; } else { if (ma_get_format_priority_index(bestFormat) > ma_get_format_priority_index(format)) { /* <-- Lower = better. */ bestFormat = format; } } } } return bestFormat; } static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat) { ma_uint32 maxChannels; unsigned int iConfig; MA_ASSERT(caps != NULL); MA_ASSERT(requiredFormat != ma_format_unknown); /* Just pick whatever configuration has the most channels. */ maxChannels = 0; for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) { /* The encoding should be of requiredFormat. */ unsigned int iEncoding; for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) { unsigned int iChannel; unsigned int bits; unsigned int bps; unsigned int sig; unsigned int le; unsigned int msb; ma_format format; if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } bits = caps->enc[iEncoding].bits; bps = caps->enc[iEncoding].bps; sig = caps->enc[iEncoding].sig; le = caps->enc[iEncoding].le; msb = caps->enc[iEncoding].msb; format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb); if (format != requiredFormat) { continue; } /* Getting here means the format is supported. Iterate over each channel count and grab the biggest one. */ for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) { unsigned int chan = 0; unsigned int channels; if (deviceType == ma_device_type_playback) { chan = caps->confs[iConfig].pchan; } else { chan = caps->confs[iConfig].rchan; } if ((chan & (1UL << iChannel)) == 0) { continue; } if (deviceType == ma_device_type_playback) { channels = caps->pchan[iChannel]; } else { channels = caps->rchan[iChannel]; } if (maxChannels < channels) { maxChannels = channels; } } } } return maxChannels; } static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat, ma_uint32 requiredChannels) { ma_uint32 firstSampleRate; ma_uint32 bestSampleRate; unsigned int iConfig; MA_ASSERT(caps != NULL); MA_ASSERT(requiredFormat != ma_format_unknown); MA_ASSERT(requiredChannels > 0); MA_ASSERT(requiredChannels <= MA_MAX_CHANNELS); firstSampleRate = 0; /* <-- If the device does not support a standard rate we'll fall back to the first one that's found. */ bestSampleRate = 0; for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) { /* The encoding should be of requiredFormat. */ unsigned int iEncoding; for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) { unsigned int iChannel; unsigned int bits; unsigned int bps; unsigned int sig; unsigned int le; unsigned int msb; ma_format format; if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } bits = caps->enc[iEncoding].bits; bps = caps->enc[iEncoding].bps; sig = caps->enc[iEncoding].sig; le = caps->enc[iEncoding].le; msb = caps->enc[iEncoding].msb; format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb); if (format != requiredFormat) { continue; } /* Getting here means the format is supported. Iterate over each channel count and grab the biggest one. */ for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) { unsigned int chan = 0; unsigned int channels; unsigned int iRate; if (deviceType == ma_device_type_playback) { chan = caps->confs[iConfig].pchan; } else { chan = caps->confs[iConfig].rchan; } if ((chan & (1UL << iChannel)) == 0) { continue; } if (deviceType == ma_device_type_playback) { channels = caps->pchan[iChannel]; } else { channels = caps->rchan[iChannel]; } if (channels != requiredChannels) { continue; } /* Getting here means we have found a compatible encoding/channel pair. */ for (iRate = 0; iRate < MA_SIO_NRATE; iRate += 1) { ma_uint32 rate = (ma_uint32)caps->rate[iRate]; ma_uint32 ratePriority; if (firstSampleRate == 0) { firstSampleRate = rate; } /* Disregard this rate if it's not a standard one. */ ratePriority = ma_get_standard_sample_rate_priority_index__sndio(rate); if (ratePriority == (ma_uint32)-1) { continue; } if (ma_get_standard_sample_rate_priority_index__sndio(bestSampleRate) > ratePriority) { /* Lower = better. */ bestSampleRate = rate; } } } } } /* If a standard sample rate was not found just fall back to the first one that was iterated. */ if (bestSampleRate == 0) { bestSampleRate = firstSampleRate; } return bestSampleRate; } static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 isTerminating = MA_FALSE; struct ma_sio_hdl* handle; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* sndio doesn't seem to have a good device enumeration API, so I'm therefore only enumerating over default devices for now. */ /* Playback. */ if (!isTerminating) { handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(MA_SIO_DEVANY, MA_SIO_PLAY, 0); if (handle != NULL) { /* Supports playback. */ ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), MA_SIO_DEVANY); ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME); isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); ((ma_sio_close_proc)pContext->sndio.sio_close)(handle); } } /* Capture. */ if (!isTerminating) { handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(MA_SIO_DEVANY, MA_SIO_REC, 0); if (handle != NULL) { /* Supports capture. */ ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), "default"); ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME); isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); ((ma_sio_close_proc)pContext->sndio.sio_close)(handle); } } return MA_SUCCESS; } static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { char devid[256]; struct ma_sio_hdl* handle; struct ma_sio_cap caps; unsigned int iConfig; MA_ASSERT(pContext != NULL); /* We need to open the device before we can get information about it. */ if (pDeviceID == NULL) { ma_strcpy_s(devid, sizeof(devid), MA_SIO_DEVANY); ma_strcpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (deviceType == ma_device_type_playback) ? MA_DEFAULT_PLAYBACK_DEVICE_NAME : MA_DEFAULT_CAPTURE_DEVICE_NAME); } else { ma_strcpy_s(devid, sizeof(devid), pDeviceID->sndio); ma_strcpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), devid); } handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(devid, (deviceType == ma_device_type_playback) ? MA_SIO_PLAY : MA_SIO_REC, 0); if (handle == NULL) { return MA_NO_DEVICE; } if (((ma_sio_getcap_proc)pContext->sndio.sio_getcap)(handle, &caps) == 0) { return MA_ERROR; } pDeviceInfo->nativeDataFormatCount = 0; for (iConfig = 0; iConfig < caps.nconf; iConfig += 1) { /* The main thing we care about is that the encoding is supported by miniaudio. If it is, we want to give preference to some formats over others. */ unsigned int iEncoding; unsigned int iChannel; unsigned int iRate; for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) { unsigned int bits; unsigned int bps; unsigned int sig; unsigned int le; unsigned int msb; ma_format format; if ((caps.confs[iConfig].enc & (1UL << iEncoding)) == 0) { continue; } bits = caps.enc[iEncoding].bits; bps = caps.enc[iEncoding].bps; sig = caps.enc[iEncoding].sig; le = caps.enc[iEncoding].le; msb = caps.enc[iEncoding].msb; format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb); if (format == ma_format_unknown) { continue; /* Format not supported. */ } /* Channels. */ for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) { unsigned int chan = 0; unsigned int channels; if (deviceType == ma_device_type_playback) { chan = caps.confs[iConfig].pchan; } else { chan = caps.confs[iConfig].rchan; } if ((chan & (1UL << iChannel)) == 0) { continue; } if (deviceType == ma_device_type_playback) { channels = caps.pchan[iChannel]; } else { channels = caps.rchan[iChannel]; } /* Sample Rates. */ for (iRate = 0; iRate < MA_SIO_NRATE; iRate += 1) { if ((caps.confs[iConfig].rate & (1UL << iRate)) != 0) { ma_device_info_add_native_data_format(pDeviceInfo, format, channels, caps.rate[iRate], 0); } } } } } ((ma_sio_close_proc)pContext->sndio.sio_close)(handle); return MA_SUCCESS; } static ma_result ma_device_uninit__sndio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)pDevice->sndio.handleCapture); } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback); } return MA_SUCCESS; } static ma_result ma_device_init_handle__sndio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptor, ma_device_type deviceType) { const char* pDeviceName; ma_ptr handle; int openFlags = 0; struct ma_sio_cap caps; struct ma_sio_par par; const ma_device_id* pDeviceID; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; MA_ASSERT(pConfig != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); MA_ASSERT(pDevice != NULL); if (deviceType == ma_device_type_capture) { openFlags = MA_SIO_REC; } else { openFlags = MA_SIO_PLAY; } pDeviceID = pDescriptor->pDeviceID; format = pDescriptor->format; channels = pDescriptor->channels; sampleRate = pDescriptor->sampleRate; pDeviceName = MA_SIO_DEVANY; if (pDeviceID != NULL) { pDeviceName = pDeviceID->sndio; } handle = (ma_ptr)((ma_sio_open_proc)pDevice->pContext->sndio.sio_open)(pDeviceName, openFlags, 0); if (handle == NULL) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[sndio] Failed to open device."); return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } /* We need to retrieve the device caps to determine the most appropriate format to use. */ if (((ma_sio_getcap_proc)pDevice->pContext->sndio.sio_getcap)((struct ma_sio_hdl*)handle, &caps) == 0) { ((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)handle); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[sndio] Failed to retrieve device caps."); return MA_ERROR; } /* Note: sndio reports a huge range of available channels. This is inconvenient for us because there's no real way, as far as I can tell, to get the _actual_ channel count of the device. I'm therefore restricting this to the requested channels, regardless of whether or not the default channel count is requested. For hardware devices, I'm suspecting only a single channel count will be reported and we can safely use the value returned by ma_find_best_channels_from_sio_cap__sndio(). */ if (deviceType == ma_device_type_capture) { if (format == ma_format_unknown) { format = ma_find_best_format_from_sio_cap__sndio(&caps); } if (channels == 0) { if (strlen(pDeviceName) > strlen("rsnd/") && strncmp(pDeviceName, "rsnd/", strlen("rsnd/")) == 0) { channels = ma_find_best_channels_from_sio_cap__sndio(&caps, deviceType, format); } else { channels = MA_DEFAULT_CHANNELS; } } } else { if (format == ma_format_unknown) { format = ma_find_best_format_from_sio_cap__sndio(&caps); } if (channels == 0) { if (strlen(pDeviceName) > strlen("rsnd/") && strncmp(pDeviceName, "rsnd/", strlen("rsnd/")) == 0) { channels = ma_find_best_channels_from_sio_cap__sndio(&caps, deviceType, format); } else { channels = MA_DEFAULT_CHANNELS; } } } if (sampleRate == 0) { sampleRate = ma_find_best_sample_rate_from_sio_cap__sndio(&caps, pConfig->deviceType, format, channels); } ((ma_sio_initpar_proc)pDevice->pContext->sndio.sio_initpar)(&par); par.msb = 0; par.le = ma_is_little_endian(); switch (format) { case ma_format_u8: { par.bits = 8; par.bps = 1; par.sig = 0; } break; case ma_format_s24: { par.bits = 24; par.bps = 3; par.sig = 1; } break; case ma_format_s32: { par.bits = 32; par.bps = 4; par.sig = 1; } break; case ma_format_s16: case ma_format_f32: case ma_format_unknown: default: { par.bits = 16; par.bps = 2; par.sig = 1; } break; } if (deviceType == ma_device_type_capture) { par.rchan = channels; } else { par.pchan = channels; } par.rate = sampleRate; internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, par.rate, pConfig->performanceProfile); par.round = internalPeriodSizeInFrames; par.appbufsz = par.round * pDescriptor->periodCount; if (((ma_sio_setpar_proc)pDevice->pContext->sndio.sio_setpar)((struct ma_sio_hdl*)handle, &par) == 0) { ((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)handle); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[sndio] Failed to set buffer size."); return MA_ERROR; } if (((ma_sio_getpar_proc)pDevice->pContext->sndio.sio_getpar)((struct ma_sio_hdl*)handle, &par) == 0) { ((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)handle); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[sndio] Failed to retrieve buffer size."); return MA_ERROR; } internalFormat = ma_format_from_sio_enc__sndio(par.bits, par.bps, par.sig, par.le, par.msb); internalChannels = (deviceType == ma_device_type_capture) ? par.rchan : par.pchan; internalSampleRate = par.rate; internalPeriods = par.appbufsz / par.round; internalPeriodSizeInFrames = par.round; if (deviceType == ma_device_type_capture) { pDevice->sndio.handleCapture = handle; } else { pDevice->sndio.handlePlayback = handle; } pDescriptor->format = internalFormat; pDescriptor->channels = internalChannels; pDescriptor->sampleRate = internalSampleRate; ma_channel_map_init_standard(ma_standard_channel_map_sndio, pDescriptor->channelMap, ma_countof(pDescriptor->channelMap), internalChannels); pDescriptor->periodSizeInFrames = internalPeriodSizeInFrames; pDescriptor->periodCount = internalPeriods; return MA_SUCCESS; } static ma_result ma_device_init__sndio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->sndio); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_handle__sndio(pDevice, pConfig, pDescriptorCapture, ma_device_type_capture); if (result != MA_SUCCESS) { return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_handle__sndio(pDevice, pConfig, pDescriptorPlayback, ma_device_type_playback); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_start__sndio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ((ma_sio_start_proc)pDevice->pContext->sndio.sio_start)((struct ma_sio_hdl*)pDevice->sndio.handleCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ((ma_sio_start_proc)pDevice->pContext->sndio.sio_start)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback); /* <-- Doesn't actually playback until data is written. */ } return MA_SUCCESS; } static ma_result ma_device_stop__sndio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* From the documentation: The sio_stop() function puts the audio subsystem in the same state as before sio_start() is called. It stops recording, drains the play buffer and then stops playback. If samples to play are queued but playback hasn't started yet then playback is forced immediately; playback will actually stop once the buffer is drained. In no case are samples in the play buffer discarded. Therefore, sio_stop() performs all of the necessary draining for us. */ if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ((ma_sio_stop_proc)pDevice->pContext->sndio.sio_stop)((struct ma_sio_hdl*)pDevice->sndio.handleCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ((ma_sio_stop_proc)pDevice->pContext->sndio.sio_stop)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback); } return MA_SUCCESS; } static ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { int result; if (pFramesWritten != NULL) { *pFramesWritten = 0; } result = ((ma_sio_write_proc)pDevice->pContext->sndio.sio_write)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); if (result == 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[sndio] Failed to send data from the client to the device."); return MA_IO_ERROR; } if (pFramesWritten != NULL) { *pFramesWritten = frameCount; } return MA_SUCCESS; } static ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) { int result; if (pFramesRead != NULL) { *pFramesRead = 0; } result = ((ma_sio_read_proc)pDevice->pContext->sndio.sio_read)((struct ma_sio_hdl*)pDevice->sndio.handleCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); if (result == 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[sndio] Failed to read data from the device to be sent to the device."); return MA_IO_ERROR; } if (pFramesRead != NULL) { *pFramesRead = frameCount; } return MA_SUCCESS; } static ma_result ma_context_uninit__sndio(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_sndio); (void)pContext; return MA_SUCCESS; } static ma_result ma_context_init__sndio(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { #ifndef MA_NO_RUNTIME_LINKING const char* libsndioNames[] = { "libsndio.so" }; size_t i; for (i = 0; i < ma_countof(libsndioNames); ++i) { pContext->sndio.sndioSO = ma_dlopen(pContext, libsndioNames[i]); if (pContext->sndio.sndioSO != NULL) { break; } } if (pContext->sndio.sndioSO == NULL) { return MA_NO_BACKEND; } pContext->sndio.sio_open = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_open"); pContext->sndio.sio_close = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_close"); pContext->sndio.sio_setpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_setpar"); pContext->sndio.sio_getpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_getpar"); pContext->sndio.sio_getcap = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_getcap"); pContext->sndio.sio_write = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_write"); pContext->sndio.sio_read = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_read"); pContext->sndio.sio_start = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_start"); pContext->sndio.sio_stop = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_stop"); pContext->sndio.sio_initpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_initpar"); #else pContext->sndio.sio_open = sio_open; pContext->sndio.sio_close = sio_close; pContext->sndio.sio_setpar = sio_setpar; pContext->sndio.sio_getpar = sio_getpar; pContext->sndio.sio_getcap = sio_getcap; pContext->sndio.sio_write = sio_write; pContext->sndio.sio_read = sio_read; pContext->sndio.sio_start = sio_start; pContext->sndio.sio_stop = sio_stop; pContext->sndio.sio_initpar = sio_initpar; #endif pCallbacks->onContextInit = ma_context_init__sndio; pCallbacks->onContextUninit = ma_context_uninit__sndio; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__sndio; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__sndio; pCallbacks->onDeviceInit = ma_device_init__sndio; pCallbacks->onDeviceUninit = ma_device_uninit__sndio; pCallbacks->onDeviceStart = ma_device_start__sndio; pCallbacks->onDeviceStop = ma_device_stop__sndio; pCallbacks->onDeviceRead = ma_device_read__sndio; pCallbacks->onDeviceWrite = ma_device_write__sndio; pCallbacks->onDeviceDataLoop = NULL; (void)pConfig; return MA_SUCCESS; } #endif /* sndio */ /****************************************************************************** audio(4) Backend ******************************************************************************/ #ifdef MA_HAS_AUDIO4 #include #include #include #include #include #include #include #if defined(__OpenBSD__) #include #if defined(OpenBSD) && OpenBSD >= 201709 #define MA_AUDIO4_USE_NEW_API #endif #endif static void ma_construct_device_id__audio4(char* id, size_t idSize, const char* base, int deviceIndex) { size_t baseLen; MA_ASSERT(id != NULL); MA_ASSERT(idSize > 0); MA_ASSERT(deviceIndex >= 0); baseLen = strlen(base); MA_ASSERT(idSize > baseLen); ma_strcpy_s(id, idSize, base); ma_itoa_s(deviceIndex, id+baseLen, idSize-baseLen, 10); } static ma_result ma_extract_device_index_from_id__audio4(const char* id, const char* base, int* pIndexOut) { size_t idLen; size_t baseLen; const char* deviceIndexStr; MA_ASSERT(id != NULL); MA_ASSERT(base != NULL); MA_ASSERT(pIndexOut != NULL); idLen = strlen(id); baseLen = strlen(base); if (idLen <= baseLen) { return MA_ERROR; /* Doesn't look like the id starts with the base. */ } if (strncmp(id, base, baseLen) != 0) { return MA_ERROR; /* ID does not begin with base. */ } deviceIndexStr = id + baseLen; if (deviceIndexStr[0] == '\0') { return MA_ERROR; /* No index specified in the ID. */ } if (pIndexOut) { *pIndexOut = atoi(deviceIndexStr); } return MA_SUCCESS; } #if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */ static ma_format ma_format_from_encoding__audio4(unsigned int encoding, unsigned int precision) { if (precision == 8 && (encoding == AUDIO_ENCODING_ULINEAR || encoding == AUDIO_ENCODING_ULINEAR || encoding == AUDIO_ENCODING_ULINEAR_LE || encoding == AUDIO_ENCODING_ULINEAR_BE)) { return ma_format_u8; } else { if (ma_is_little_endian() && encoding == AUDIO_ENCODING_SLINEAR_LE) { if (precision == 16) { return ma_format_s16; } else if (precision == 24) { return ma_format_s24; } else if (precision == 32) { return ma_format_s32; } } else if (ma_is_big_endian() && encoding == AUDIO_ENCODING_SLINEAR_BE) { if (precision == 16) { return ma_format_s16; } else if (precision == 24) { return ma_format_s24; } else if (precision == 32) { return ma_format_s32; } } } return ma_format_unknown; /* Encoding not supported. */ } static void ma_encoding_from_format__audio4(ma_format format, unsigned int* pEncoding, unsigned int* pPrecision) { MA_ASSERT(pEncoding != NULL); MA_ASSERT(pPrecision != NULL); switch (format) { case ma_format_u8: { *pEncoding = AUDIO_ENCODING_ULINEAR; *pPrecision = 8; } break; case ma_format_s24: { *pEncoding = (ma_is_little_endian()) ? AUDIO_ENCODING_SLINEAR_LE : AUDIO_ENCODING_SLINEAR_BE; *pPrecision = 24; } break; case ma_format_s32: { *pEncoding = (ma_is_little_endian()) ? AUDIO_ENCODING_SLINEAR_LE : AUDIO_ENCODING_SLINEAR_BE; *pPrecision = 32; } break; case ma_format_s16: case ma_format_f32: case ma_format_unknown: default: { *pEncoding = (ma_is_little_endian()) ? AUDIO_ENCODING_SLINEAR_LE : AUDIO_ENCODING_SLINEAR_BE; *pPrecision = 16; } break; } } static ma_format ma_format_from_prinfo__audio4(struct audio_prinfo* prinfo) { return ma_format_from_encoding__audio4(prinfo->encoding, prinfo->precision); } static ma_format ma_best_format_from_fd__audio4(int fd, ma_format preferredFormat) { audio_encoding_t encoding; ma_uint32 iFormat; int counter = 0; /* First check to see if the preferred format is supported. */ if (preferredFormat != ma_format_unknown) { counter = 0; for (;;) { MA_ZERO_OBJECT(&encoding); encoding.index = counter; if (ioctl(fd, AUDIO_GETENC, &encoding) < 0) { break; } if (preferredFormat == ma_format_from_encoding__audio4(encoding.encoding, encoding.precision)) { return preferredFormat; /* Found the preferred format. */ } /* Getting here means this encoding does not match our preferred format so we need to more on to the next encoding. */ counter += 1; } } /* Getting here means our preferred format is not supported, so fall back to our standard priorities. */ for (iFormat = 0; iFormat < ma_countof(g_maFormatPriorities); iFormat += 1) { ma_format format = g_maFormatPriorities[iFormat]; counter = 0; for (;;) { MA_ZERO_OBJECT(&encoding); encoding.index = counter; if (ioctl(fd, AUDIO_GETENC, &encoding) < 0) { break; } if (format == ma_format_from_encoding__audio4(encoding.encoding, encoding.precision)) { return format; /* Found a workable format. */ } /* Getting here means this encoding does not match our preferred format so we need to more on to the next encoding. */ counter += 1; } } /* Getting here means not appropriate format was found. */ return ma_format_unknown; } #else static ma_format ma_format_from_swpar__audio4(struct audio_swpar* par) { if (par->bits == 8 && par->bps == 1 && par->sig == 0) { return ma_format_u8; } if (par->bits == 16 && par->bps == 2 && par->sig == 1 && par->le == ma_is_little_endian()) { return ma_format_s16; } if (par->bits == 24 && par->bps == 3 && par->sig == 1 && par->le == ma_is_little_endian()) { return ma_format_s24; } if (par->bits == 32 && par->bps == 4 && par->sig == 1 && par->le == ma_is_little_endian()) { return ma_format_f32; } /* Format not supported. */ return ma_format_unknown; } #endif static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_device_type deviceType, int fd, ma_device_info* pDeviceInfo) { audio_device_t fdDevice; MA_ASSERT(pContext != NULL); MA_ASSERT(fd >= 0); MA_ASSERT(pDeviceInfo != NULL); (void)pContext; (void)deviceType; if (ioctl(fd, AUDIO_GETDEV, &fdDevice) < 0) { return MA_ERROR; /* Failed to retrieve device info. */ } /* Name. */ ma_strcpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), fdDevice.name); #if !defined(MA_AUDIO4_USE_NEW_API) { audio_info_t fdInfo; int counter = 0; ma_uint32 channels; ma_uint32 sampleRate; if (ioctl(fd, AUDIO_GETINFO, &fdInfo) < 0) { return MA_ERROR; } if (deviceType == ma_device_type_playback) { channels = fdInfo.play.channels; sampleRate = fdInfo.play.sample_rate; } else { channels = fdInfo.record.channels; sampleRate = fdInfo.record.sample_rate; } /* Supported formats. We get this by looking at the encodings. */ pDeviceInfo->nativeDataFormatCount = 0; for (;;) { audio_encoding_t encoding; ma_format format; MA_ZERO_OBJECT(&encoding); encoding.index = counter; if (ioctl(fd, AUDIO_GETENC, &encoding) < 0) { break; } format = ma_format_from_encoding__audio4(encoding.encoding, encoding.precision); if (format != ma_format_unknown) { ma_device_info_add_native_data_format(pDeviceInfo, format, channels, sampleRate, 0); } counter += 1; } } #else { struct audio_swpar fdPar; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) { return MA_ERROR; } format = ma_format_from_swpar__audio4(&fdPar); if (format == ma_format_unknown) { return MA_FORMAT_NOT_SUPPORTED; } if (deviceType == ma_device_type_playback) { channels = fdPar.pchan; } else { channels = fdPar.rchan; } sampleRate = fdPar.rate; pDeviceInfo->nativeDataFormatCount = 0; ma_device_info_add_native_data_format(pDeviceInfo, format, channels, sampleRate, 0); } #endif return MA_SUCCESS; } static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { const int maxDevices = 64; char devpath[256]; int iDevice; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Every device will be named "/dev/audioN", with a "/dev/audioctlN" equivalent. We use the "/dev/audioctlN" version here since we can open it even when another process has control of the "/dev/audioN" device. */ for (iDevice = 0; iDevice < maxDevices; ++iDevice) { struct stat st; int fd; ma_bool32 isTerminating = MA_FALSE; ma_strcpy_s(devpath, sizeof(devpath), "/dev/audioctl"); ma_itoa_s(iDevice, devpath+strlen(devpath), sizeof(devpath)-strlen(devpath), 10); if (stat(devpath, &st) < 0) { break; } /* The device exists, but we need to check if it's usable as playback and/or capture. */ /* Playback. */ if (!isTerminating) { fd = open(devpath, O_RDONLY, 0); if (fd >= 0) { /* Supports playback. */ ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_construct_device_id__audio4(deviceInfo.id.audio4, sizeof(deviceInfo.id.audio4), "/dev/audio", iDevice); if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_playback, fd, &deviceInfo) == MA_SUCCESS) { isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } close(fd); } } /* Capture. */ if (!isTerminating) { fd = open(devpath, O_WRONLY, 0); if (fd >= 0) { /* Supports capture. */ ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_construct_device_id__audio4(deviceInfo.id.audio4, sizeof(deviceInfo.id.audio4), "/dev/audio", iDevice); if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_capture, fd, &deviceInfo) == MA_SUCCESS) { isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } close(fd); } } if (isTerminating) { break; } } return MA_SUCCESS; } static ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { int fd = -1; int deviceIndex = -1; char ctlid[256]; ma_result result; MA_ASSERT(pContext != NULL); /* We need to open the "/dev/audioctlN" device to get the info. To do this we need to extract the number from the device ID which will be in "/dev/audioN" format. */ if (pDeviceID == NULL) { /* Default device. */ ma_strcpy_s(ctlid, sizeof(ctlid), "/dev/audioctl"); } else { /* Specific device. We need to convert from "/dev/audioN" to "/dev/audioctlN". */ result = ma_extract_device_index_from_id__audio4(pDeviceID->audio4, "/dev/audio", &deviceIndex); if (result != MA_SUCCESS) { return result; } ma_construct_device_id__audio4(ctlid, sizeof(ctlid), "/dev/audioctl", deviceIndex); } fd = open(ctlid, (deviceType == ma_device_type_playback) ? O_WRONLY : O_RDONLY, 0); if (fd == -1) { return MA_NO_DEVICE; } if (deviceIndex == -1) { ma_strcpy_s(pDeviceInfo->id.audio4, sizeof(pDeviceInfo->id.audio4), "/dev/audio"); } else { ma_construct_device_id__audio4(pDeviceInfo->id.audio4, sizeof(pDeviceInfo->id.audio4), "/dev/audio", deviceIndex); } result = ma_context_get_device_info_from_fd__audio4(pContext, deviceType, fd, pDeviceInfo); close(fd); return result; } static ma_result ma_device_uninit__audio4(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { close(pDevice->audio4.fdCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { close(pDevice->audio4.fdPlayback); } return MA_SUCCESS; } static ma_result ma_device_init_fd__audio4(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptor, ma_device_type deviceType) { const char* pDefaultDeviceNames[] = { "/dev/audio", "/dev/audio0" }; int fd; int fdFlags = 0; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; ma_uint32 internalPeriodSizeInFrames; ma_uint32 internalPeriods; MA_ASSERT(pConfig != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); MA_ASSERT(pDevice != NULL); /* The first thing to do is open the file. */ if (deviceType == ma_device_type_capture) { fdFlags = O_RDONLY; } else { fdFlags = O_WRONLY; } /*fdFlags |= O_NONBLOCK;*/ if (pDescriptor->pDeviceID == NULL) { /* Default device. */ size_t iDevice; for (iDevice = 0; iDevice < ma_countof(pDefaultDeviceNames); ++iDevice) { fd = open(pDefaultDeviceNames[iDevice], fdFlags, 0); if (fd != -1) { break; } } } else { /* Specific device. */ fd = open(pDescriptor->pDeviceID->audio4, fdFlags, 0); } if (fd == -1) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to open device."); return ma_result_from_errno(errno); } #if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */ { audio_info_t fdInfo; /* The documentation is a little bit unclear to me as to how it handles formats. It says the following: Regardless of formats supported by underlying driver, the audio driver accepts the following formats. By then the next sentence says this: `encoding` and `precision` are one of the values obtained by AUDIO_GETENC. It sounds like a direct contradiction to me. I'm going to play this safe any only use the best sample format returned by AUDIO_GETENC. If the requested format is supported we'll use that, but otherwise we'll just use our standard format priorities to pick an appropriate one. */ AUDIO_INITINFO(&fdInfo); /* We get the driver to do as much of the data conversion as possible. */ if (deviceType == ma_device_type_capture) { fdInfo.mode = AUMODE_RECORD; ma_encoding_from_format__audio4(ma_best_format_from_fd__audio4(fd, pDescriptor->format), &fdInfo.record.encoding, &fdInfo.record.precision); if (pDescriptor->channels != 0) { fdInfo.record.channels = ma_clamp(pDescriptor->channels, 1, 12); /* From the documentation: `channels` ranges from 1 to 12. */ } if (pDescriptor->sampleRate != 0) { fdInfo.record.sample_rate = ma_clamp(pDescriptor->sampleRate, 1000, 192000); /* From the documentation: `frequency` ranges from 1000Hz to 192000Hz. (They mean `sample_rate` instead of `frequency`.) */ } } else { fdInfo.mode = AUMODE_PLAY; ma_encoding_from_format__audio4(ma_best_format_from_fd__audio4(fd, pDescriptor->format), &fdInfo.play.encoding, &fdInfo.play.precision); if (pDescriptor->channels != 0) { fdInfo.play.channels = ma_clamp(pDescriptor->channels, 1, 12); /* From the documentation: `channels` ranges from 1 to 12. */ } if (pDescriptor->sampleRate != 0) { fdInfo.play.sample_rate = ma_clamp(pDescriptor->sampleRate, 1000, 192000); /* From the documentation: `frequency` ranges from 1000Hz to 192000Hz. (They mean `sample_rate` instead of `frequency`.) */ } } if (ioctl(fd, AUDIO_SETINFO, &fdInfo) < 0) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to set device format. AUDIO_SETINFO failed."); return ma_result_from_errno(errno); } if (ioctl(fd, AUDIO_GETINFO, &fdInfo) < 0) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] AUDIO_GETINFO failed."); return ma_result_from_errno(errno); } if (deviceType == ma_device_type_capture) { internalFormat = ma_format_from_prinfo__audio4(&fdInfo.record); internalChannels = fdInfo.record.channels; internalSampleRate = fdInfo.record.sample_rate; } else { internalFormat = ma_format_from_prinfo__audio4(&fdInfo.play); internalChannels = fdInfo.play.channels; internalSampleRate = fdInfo.play.sample_rate; } if (internalFormat == ma_format_unknown) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] The device's internal device format is not supported by miniaudio. The device is unusable."); return MA_FORMAT_NOT_SUPPORTED; } /* Buffer. */ { ma_uint32 internalPeriodSizeInBytes; internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, internalSampleRate, pConfig->performanceProfile); internalPeriodSizeInBytes = internalPeriodSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels); if (internalPeriodSizeInBytes < 16) { internalPeriodSizeInBytes = 16; } internalPeriods = pDescriptor->periodCount; if (internalPeriods < 2) { internalPeriods = 2; } /* What miniaudio calls a period, audio4 calls a block. */ AUDIO_INITINFO(&fdInfo); fdInfo.hiwat = internalPeriods; fdInfo.lowat = internalPeriods-1; fdInfo.blocksize = internalPeriodSizeInBytes; if (ioctl(fd, AUDIO_SETINFO, &fdInfo) < 0) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to set internal buffer size. AUDIO_SETINFO failed."); return ma_result_from_errno(errno); } internalPeriods = fdInfo.hiwat; internalPeriodSizeInFrames = fdInfo.blocksize / ma_get_bytes_per_frame(internalFormat, internalChannels); } } #else { struct audio_swpar fdPar; /* We need to retrieve the format of the device so we can know the channel count and sample rate. Then we can calculate the buffer size. */ if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to retrieve initial device parameters."); return ma_result_from_errno(errno); } internalFormat = ma_format_from_swpar__audio4(&fdPar); internalChannels = (deviceType == ma_device_type_capture) ? fdPar.rchan : fdPar.pchan; internalSampleRate = fdPar.rate; if (internalFormat == ma_format_unknown) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] The device's internal device format is not supported by miniaudio. The device is unusable."); return MA_FORMAT_NOT_SUPPORTED; } /* Buffer. */ { ma_uint32 internalPeriodSizeInBytes; internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, internalSampleRate, pConfig->performanceProfile); /* What miniaudio calls a period, audio4 calls a block. */ internalPeriodSizeInBytes = internalPeriodSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels); if (internalPeriodSizeInBytes < 16) { internalPeriodSizeInBytes = 16; } fdPar.nblks = pDescriptor->periodCount; fdPar.round = internalPeriodSizeInBytes; if (ioctl(fd, AUDIO_SETPAR, &fdPar) < 0) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to set device parameters."); return ma_result_from_errno(errno); } if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to retrieve actual device parameters."); return ma_result_from_errno(errno); } } internalFormat = ma_format_from_swpar__audio4(&fdPar); internalChannels = (deviceType == ma_device_type_capture) ? fdPar.rchan : fdPar.pchan; internalSampleRate = fdPar.rate; internalPeriods = fdPar.nblks; internalPeriodSizeInFrames = fdPar.round / ma_get_bytes_per_frame(internalFormat, internalChannels); } #endif if (internalFormat == ma_format_unknown) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] The device's internal device format is not supported by miniaudio. The device is unusable."); return MA_FORMAT_NOT_SUPPORTED; } if (deviceType == ma_device_type_capture) { pDevice->audio4.fdCapture = fd; } else { pDevice->audio4.fdPlayback = fd; } pDescriptor->format = internalFormat; pDescriptor->channels = internalChannels; pDescriptor->sampleRate = internalSampleRate; ma_channel_map_init_standard(ma_standard_channel_map_sound4, pDescriptor->channelMap, ma_countof(pDescriptor->channelMap), internalChannels); pDescriptor->periodSizeInFrames = internalPeriodSizeInFrames; pDescriptor->periodCount = internalPeriods; return MA_SUCCESS; } static ma_result ma_device_init__audio4(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->audio4); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } pDevice->audio4.fdCapture = -1; pDevice->audio4.fdPlayback = -1; /* The version of the operating system dictates whether or not the device is exclusive or shared. NetBSD introduced in-kernel mixing which means it's shared. All other BSD flavours are exclusive as far as I'm aware. */ #if defined(__NetBSD_Version__) && __NetBSD_Version__ >= 800000000 /* NetBSD 8.0+ */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } #else /* All other flavors. */ #endif if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_fd__audio4(pDevice, pConfig, pDescriptorCapture, ma_device_type_capture); if (result != MA_SUCCESS) { return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_fd__audio4(pDevice, pConfig, pDescriptorPlayback, ma_device_type_playback); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { close(pDevice->audio4.fdCapture); } return result; } } return MA_SUCCESS; } static ma_result ma_device_start__audio4(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { if (pDevice->audio4.fdCapture == -1) { return MA_INVALID_ARGS; } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { if (pDevice->audio4.fdPlayback == -1) { return MA_INVALID_ARGS; } } return MA_SUCCESS; } static ma_result ma_device_stop_fd__audio4(ma_device* pDevice, int fd) { if (fd == -1) { return MA_INVALID_ARGS; } #if !defined(MA_AUDIO4_USE_NEW_API) if (ioctl(fd, AUDIO_FLUSH, 0) < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_FLUSH failed."); return ma_result_from_errno(errno); } #else if (ioctl(fd, AUDIO_STOP, 0) < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_STOP failed."); return ma_result_from_errno(errno); } #endif return MA_SUCCESS; } static ma_result ma_device_stop__audio4(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_result result; result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdCapture); if (result != MA_SUCCESS) { return result; } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_result result; /* Drain the device first. If this fails we'll just need to flush without draining. Unfortunately draining isn't available on newer version of OpenBSD. */ #if !defined(MA_AUDIO4_USE_NEW_API) ioctl(pDevice->audio4.fdPlayback, AUDIO_DRAIN, 0); #endif /* Here is where the device is stopped immediately. */ result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdPlayback); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_write__audio4(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { int result; if (pFramesWritten != NULL) { *pFramesWritten = 0; } result = write(pDevice->audio4.fdPlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); if (result < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to write data to the device."); return ma_result_from_errno(errno); } if (pFramesWritten != NULL) { *pFramesWritten = (ma_uint32)result / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); } return MA_SUCCESS; } static ma_result ma_device_read__audio4(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) { int result; if (pFramesRead != NULL) { *pFramesRead = 0; } result = read(pDevice->audio4.fdCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); if (result < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[audio4] Failed to read data from the device."); return ma_result_from_errno(errno); } if (pFramesRead != NULL) { *pFramesRead = (ma_uint32)result / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); } return MA_SUCCESS; } static ma_result ma_context_uninit__audio4(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_audio4); (void)pContext; return MA_SUCCESS; } static ma_result ma_context_init__audio4(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { MA_ASSERT(pContext != NULL); (void)pConfig; pCallbacks->onContextInit = ma_context_init__audio4; pCallbacks->onContextUninit = ma_context_uninit__audio4; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__audio4; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__audio4; pCallbacks->onDeviceInit = ma_device_init__audio4; pCallbacks->onDeviceUninit = ma_device_uninit__audio4; pCallbacks->onDeviceStart = ma_device_start__audio4; pCallbacks->onDeviceStop = ma_device_stop__audio4; pCallbacks->onDeviceRead = ma_device_read__audio4; pCallbacks->onDeviceWrite = ma_device_write__audio4; pCallbacks->onDeviceDataLoop = NULL; return MA_SUCCESS; } #endif /* audio4 */ /****************************************************************************** OSS Backend ******************************************************************************/ #ifdef MA_HAS_OSS #include #include #include #include #ifndef SNDCTL_DSP_HALT #define SNDCTL_DSP_HALT SNDCTL_DSP_RESET #endif #define MA_OSS_DEFAULT_DEVICE_NAME "/dev/dsp" static int ma_open_temp_device__oss() { /* The OSS sample code uses "/dev/mixer" as the device for getting system properties so I'm going to do the same. */ int fd = open("/dev/mixer", O_RDONLY, 0); if (fd >= 0) { return fd; } return -1; } static ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, int* pfd) { const char* deviceName; int flags; MA_ASSERT(pContext != NULL); MA_ASSERT(pfd != NULL); (void)pContext; *pfd = -1; /* This function should only be called for playback or capture, not duplex. */ if (deviceType == ma_device_type_duplex) { return MA_INVALID_ARGS; } deviceName = MA_OSS_DEFAULT_DEVICE_NAME; if (pDeviceID != NULL) { deviceName = pDeviceID->oss; } flags = (deviceType == ma_device_type_playback) ? O_WRONLY : O_RDONLY; if (shareMode == ma_share_mode_exclusive) { flags |= O_EXCL; } *pfd = open(deviceName, flags, 0); if (*pfd == -1) { return ma_result_from_errno(errno); } return MA_SUCCESS; } static ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { int fd; oss_sysinfo si; int result; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); fd = ma_open_temp_device__oss(); if (fd == -1) { ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[OSS] Failed to open a temporary device for retrieving system information used for device enumeration."); return MA_NO_BACKEND; } result = ioctl(fd, SNDCTL_SYSINFO, &si); if (result != -1) { int iAudioDevice; for (iAudioDevice = 0; iAudioDevice < si.numaudios; ++iAudioDevice) { oss_audioinfo ai; ai.dev = iAudioDevice; result = ioctl(fd, SNDCTL_AUDIOINFO, &ai); if (result != -1) { if (ai.devnode[0] != '\0') { /* <-- Can be blank, according to documentation. */ ma_device_info deviceInfo; ma_bool32 isTerminating = MA_FALSE; MA_ZERO_OBJECT(&deviceInfo); /* ID */ ma_strncpy_s(deviceInfo.id.oss, sizeof(deviceInfo.id.oss), ai.devnode, (size_t)-1); /* The human readable device name should be in the "ai.handle" variable, but it can sometimes be empty in which case we just fall back to "ai.name" which is less user friendly, but usually has a value. */ if (ai.handle[0] != '\0') { ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), ai.handle, (size_t)-1); } else { ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), ai.name, (size_t)-1); } /* The device can be both playback and capture. */ if (!isTerminating && (ai.caps & PCM_CAP_OUTPUT) != 0) { isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } if (!isTerminating && (ai.caps & PCM_CAP_INPUT) != 0) { isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } if (isTerminating) { break; } } } } } else { close(fd); ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve system information for device enumeration."); return MA_NO_BACKEND; } close(fd); return MA_SUCCESS; } static void ma_context_add_native_data_format__oss(ma_context* pContext, oss_audioinfo* pAudioInfo, ma_format format, ma_device_info* pDeviceInfo) { unsigned int minChannels; unsigned int maxChannels; unsigned int iRate; MA_ASSERT(pContext != NULL); MA_ASSERT(pAudioInfo != NULL); MA_ASSERT(pDeviceInfo != NULL); /* If we support all channels we just report 0. */ minChannels = ma_clamp(pAudioInfo->min_channels, MA_MIN_CHANNELS, MA_MAX_CHANNELS); maxChannels = ma_clamp(pAudioInfo->max_channels, MA_MIN_CHANNELS, MA_MAX_CHANNELS); /* OSS has this annoying thing where sample rates can be reported in two ways. We prefer explicitness, which OSS has in the form of nrates/rates, however there are times where nrates can be 0, in which case we'll need to use min_rate and max_rate and report only standard rates. */ if (pAudioInfo->nrates > 0) { for (iRate = 0; iRate < pAudioInfo->nrates; iRate += 1) { unsigned int rate = pAudioInfo->rates[iRate]; if (minChannels == MA_MIN_CHANNELS && maxChannels == MA_MAX_CHANNELS) { ma_device_info_add_native_data_format(pDeviceInfo, format, 0, rate, 0); /* Set the channel count to 0 to indicate that all channel counts are supported. */ } else { unsigned int iChannel; for (iChannel = minChannels; iChannel <= maxChannels; iChannel += 1) { ma_device_info_add_native_data_format(pDeviceInfo, format, iChannel, rate, 0); } } } } else { for (iRate = 0; iRate < ma_countof(g_maStandardSampleRatePriorities); iRate += 1) { ma_uint32 standardRate = g_maStandardSampleRatePriorities[iRate]; if (standardRate >= (ma_uint32)pAudioInfo->min_rate && standardRate <= (ma_uint32)pAudioInfo->max_rate) { if (minChannels == MA_MIN_CHANNELS && maxChannels == MA_MAX_CHANNELS) { ma_device_info_add_native_data_format(pDeviceInfo, format, 0, standardRate, 0); /* Set the channel count to 0 to indicate that all channel counts are supported. */ } else { unsigned int iChannel; for (iChannel = minChannels; iChannel <= maxChannels; iChannel += 1) { ma_device_info_add_native_data_format(pDeviceInfo, format, iChannel, standardRate, 0); } } } } } } static ma_result ma_context_get_device_info__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_bool32 foundDevice; int fdTemp; oss_sysinfo si; int result; MA_ASSERT(pContext != NULL); /* Handle the default device a little differently. */ if (pDeviceID == NULL) { if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } return MA_SUCCESS; } /* If we get here it means we are _not_ using the default device. */ foundDevice = MA_FALSE; fdTemp = ma_open_temp_device__oss(); if (fdTemp == -1) { ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[OSS] Failed to open a temporary device for retrieving system information used for device enumeration."); return MA_NO_BACKEND; } result = ioctl(fdTemp, SNDCTL_SYSINFO, &si); if (result != -1) { int iAudioDevice; for (iAudioDevice = 0; iAudioDevice < si.numaudios; ++iAudioDevice) { oss_audioinfo ai; ai.dev = iAudioDevice; result = ioctl(fdTemp, SNDCTL_AUDIOINFO, &ai); if (result != -1) { if (ma_strcmp(ai.devnode, pDeviceID->oss) == 0) { /* It has the same name, so now just confirm the type. */ if ((deviceType == ma_device_type_playback && ((ai.caps & PCM_CAP_OUTPUT) != 0)) || (deviceType == ma_device_type_capture && ((ai.caps & PCM_CAP_INPUT) != 0))) { unsigned int formatMask; /* ID */ ma_strncpy_s(pDeviceInfo->id.oss, sizeof(pDeviceInfo->id.oss), ai.devnode, (size_t)-1); /* The human readable device name should be in the "ai.handle" variable, but it can sometimes be empty in which case we just fall back to "ai.name" which is less user friendly, but usually has a value. */ if (ai.handle[0] != '\0') { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), ai.handle, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), ai.name, (size_t)-1); } pDeviceInfo->nativeDataFormatCount = 0; if (deviceType == ma_device_type_playback) { formatMask = ai.oformats; } else { formatMask = ai.iformats; } if (((formatMask & AFMT_S16_LE) != 0 && ma_is_little_endian()) || (AFMT_S16_BE && ma_is_big_endian())) { ma_context_add_native_data_format__oss(pContext, &ai, ma_format_s16, pDeviceInfo); } if (((formatMask & AFMT_S32_LE) != 0 && ma_is_little_endian()) || (AFMT_S32_BE && ma_is_big_endian())) { ma_context_add_native_data_format__oss(pContext, &ai, ma_format_s32, pDeviceInfo); } if ((formatMask & AFMT_U8) != 0) { ma_context_add_native_data_format__oss(pContext, &ai, ma_format_u8, pDeviceInfo); } foundDevice = MA_TRUE; break; } } } } } else { close(fdTemp); ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve system information for device enumeration."); return MA_NO_BACKEND; } close(fdTemp); if (!foundDevice) { return MA_NO_DEVICE; } return MA_SUCCESS; } static ma_result ma_device_uninit__oss(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { close(pDevice->oss.fdCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { close(pDevice->oss.fdPlayback); } return MA_SUCCESS; } static int ma_format_to_oss(ma_format format) { int ossFormat = AFMT_U8; switch (format) { case ma_format_s16: ossFormat = (ma_is_little_endian()) ? AFMT_S16_LE : AFMT_S16_BE; break; case ma_format_s24: ossFormat = (ma_is_little_endian()) ? AFMT_S32_LE : AFMT_S32_BE; break; case ma_format_s32: ossFormat = (ma_is_little_endian()) ? AFMT_S32_LE : AFMT_S32_BE; break; case ma_format_f32: ossFormat = (ma_is_little_endian()) ? AFMT_S16_LE : AFMT_S16_BE; break; case ma_format_u8: default: ossFormat = AFMT_U8; break; } return ossFormat; } static ma_format ma_format_from_oss(int ossFormat) { if (ossFormat == AFMT_U8) { return ma_format_u8; } else { if (ma_is_little_endian()) { switch (ossFormat) { case AFMT_S16_LE: return ma_format_s16; case AFMT_S32_LE: return ma_format_s32; default: return ma_format_unknown; } } else { switch (ossFormat) { case AFMT_S16_BE: return ma_format_s16; case AFMT_S32_BE: return ma_format_s32; default: return ma_format_unknown; } } } return ma_format_unknown; } static ma_result ma_device_init_fd__oss(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptor, ma_device_type deviceType) { ma_result result; int ossResult; int fd; const ma_device_id* pDeviceID = NULL; ma_share_mode shareMode; int ossFormat; int ossChannels; int ossSampleRate; int ossFragment; MA_ASSERT(pDevice != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); pDeviceID = pDescriptor->pDeviceID; shareMode = pDescriptor->shareMode; ossFormat = ma_format_to_oss((pDescriptor->format != ma_format_unknown) ? pDescriptor->format : ma_format_s16); /* Use s16 by default because OSS doesn't like floating point. */ ossChannels = (int)(pDescriptor->channels > 0) ? pDescriptor->channels : MA_DEFAULT_CHANNELS; ossSampleRate = (int)(pDescriptor->sampleRate > 0) ? pDescriptor->sampleRate : MA_DEFAULT_SAMPLE_RATE; result = ma_context_open_device__oss(pDevice->pContext, deviceType, pDeviceID, shareMode, &fd); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device."); return result; } /* The OSS documantation is very clear about the order we should be initializing the device's properties: 1) Format 2) Channels 3) Sample rate. */ /* Format. */ ossResult = ioctl(fd, SNDCTL_DSP_SETFMT, &ossFormat); if (ossResult == -1) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to set format."); return ma_result_from_errno(errno); } /* Channels. */ ossResult = ioctl(fd, SNDCTL_DSP_CHANNELS, &ossChannels); if (ossResult == -1) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to set channel count."); return ma_result_from_errno(errno); } /* Sample Rate. */ ossResult = ioctl(fd, SNDCTL_DSP_SPEED, &ossSampleRate); if (ossResult == -1) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to set sample rate."); return ma_result_from_errno(errno); } /* Buffer. The documentation says that the fragment settings should be set as soon as possible, but I'm not sure if it should be done before or after format/channels/rate. OSS wants the fragment size in bytes and a power of 2. When setting, we specify the power, not the actual value. */ { ma_uint32 periodSizeInFrames; ma_uint32 periodSizeInBytes; ma_uint32 ossFragmentSizePower; periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, (ma_uint32)ossSampleRate, pConfig->performanceProfile); periodSizeInBytes = ma_round_to_power_of_2(periodSizeInFrames * ma_get_bytes_per_frame(ma_format_from_oss(ossFormat), ossChannels)); if (periodSizeInBytes < 16) { periodSizeInBytes = 16; } ossFragmentSizePower = 4; periodSizeInBytes >>= 4; while (periodSizeInBytes >>= 1) { ossFragmentSizePower += 1; } ossFragment = (int)((pConfig->periods << 16) | ossFragmentSizePower); ossResult = ioctl(fd, SNDCTL_DSP_SETFRAGMENT, &ossFragment); if (ossResult == -1) { close(fd); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to set fragment size and period count."); return ma_result_from_errno(errno); } } /* Internal settings. */ if (deviceType == ma_device_type_capture) { pDevice->oss.fdCapture = fd; } else { pDevice->oss.fdPlayback = fd; } pDescriptor->format = ma_format_from_oss(ossFormat); pDescriptor->channels = ossChannels; pDescriptor->sampleRate = ossSampleRate; ma_channel_map_init_standard(ma_standard_channel_map_sound4, pDescriptor->channelMap, ma_countof(pDescriptor->channelMap), pDescriptor->channels); pDescriptor->periodCount = (ma_uint32)(ossFragment >> 16); pDescriptor->periodSizeInFrames = (ma_uint32)(1 << (ossFragment & 0xFFFF)) / ma_get_bytes_per_frame(pDescriptor->format, pDescriptor->channels); if (pDescriptor->format == ma_format_unknown) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] The device's internal format is not supported by miniaudio."); return MA_FORMAT_NOT_SUPPORTED; } return MA_SUCCESS; } static ma_result ma_device_init__oss(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { MA_ASSERT(pDevice != NULL); MA_ASSERT(pConfig != NULL); MA_ZERO_OBJECT(&pDevice->oss); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_fd__oss(pDevice, pConfig, pDescriptorCapture, ma_device_type_capture); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device."); return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_result result = ma_device_init_fd__oss(pDevice, pConfig, pDescriptorPlayback, ma_device_type_playback); if (result != MA_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device."); return result; } } return MA_SUCCESS; } /* Note on Starting and Stopping ============================= In the past I was using SNDCTL_DSP_HALT to stop the device, however this results in issues when trying to resume the device again. If we use SNDCTL_DSP_HALT, the next write() or read() will fail. Instead what we need to do is just not write or read to and from the device when the device is not running. As a result, both the start and stop functions for OSS are just empty stubs. The starting and stopping logic is handled by ma_device_write__oss() and ma_device_read__oss(). These will check the device state, and if the device is stopped they will simply not do any kind of processing. The downside to this technique is that I've noticed a fairly lengthy delay in stopping the device, up to a second. This is on a virtual machine, and as such might just be due to the virtual drivers, but I'm not fully sure. I am not sure how to work around this problem so for the moment that's just how it's going to have to be. When starting the device, OSS will automatically start it when write() or read() is called. */ static ma_result ma_device_start__oss(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* The device is automatically started with reading and writing. */ (void)pDevice; return MA_SUCCESS; } static ma_result ma_device_stop__oss(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* See note above on why this is empty. */ (void)pDevice; return MA_SUCCESS; } static ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten) { int resultOSS; ma_uint32 deviceState; if (pFramesWritten != NULL) { *pFramesWritten = 0; } /* Don't do any processing if the device is stopped. */ deviceState = ma_device_get_state(pDevice); if (deviceState != ma_device_state_started && deviceState != ma_device_state_starting) { return MA_SUCCESS; } resultOSS = write(pDevice->oss.fdPlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); if (resultOSS < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to send data from the client to the device."); return ma_result_from_errno(errno); } if (pFramesWritten != NULL) { *pFramesWritten = (ma_uint32)resultOSS / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); } return MA_SUCCESS; } static ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead) { int resultOSS; ma_uint32 deviceState; if (pFramesRead != NULL) { *pFramesRead = 0; } /* Don't do any processing if the device is stopped. */ deviceState = ma_device_get_state(pDevice); if (deviceState != ma_device_state_started && deviceState != ma_device_state_starting) { return MA_SUCCESS; } resultOSS = read(pDevice->oss.fdCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels)); if (resultOSS < 0) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OSS] Failed to read data from the device to be sent to the client."); return ma_result_from_errno(errno); } if (pFramesRead != NULL) { *pFramesRead = (ma_uint32)resultOSS / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); } return MA_SUCCESS; } static ma_result ma_context_uninit__oss(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_oss); (void)pContext; return MA_SUCCESS; } static ma_result ma_context_init__oss(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { int fd; int ossVersion; int result; MA_ASSERT(pContext != NULL); (void)pConfig; /* Try opening a temporary device first so we can get version information. This is closed at the end. */ fd = ma_open_temp_device__oss(); if (fd == -1) { ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[OSS] Failed to open temporary device for retrieving system properties."); /* Looks liks OSS isn't installed, or there are no available devices. */ return MA_NO_BACKEND; } /* Grab the OSS version. */ ossVersion = 0; result = ioctl(fd, OSS_GETVERSION, &ossVersion); if (result == -1) { close(fd); ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve OSS version."); return MA_NO_BACKEND; } /* The file handle to temp device is no longer needed. Close ASAP. */ close(fd); pContext->oss.versionMajor = ((ossVersion & 0xFF0000) >> 16); pContext->oss.versionMinor = ((ossVersion & 0x00FF00) >> 8); pCallbacks->onContextInit = ma_context_init__oss; pCallbacks->onContextUninit = ma_context_uninit__oss; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__oss; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__oss; pCallbacks->onDeviceInit = ma_device_init__oss; pCallbacks->onDeviceUninit = ma_device_uninit__oss; pCallbacks->onDeviceStart = ma_device_start__oss; pCallbacks->onDeviceStop = ma_device_stop__oss; pCallbacks->onDeviceRead = ma_device_read__oss; pCallbacks->onDeviceWrite = ma_device_write__oss; pCallbacks->onDeviceDataLoop = NULL; return MA_SUCCESS; } #endif /* OSS */ /****************************************************************************** AAudio Backend ******************************************************************************/ #ifdef MA_HAS_AAUDIO /*#include */ typedef int32_t ma_aaudio_result_t; typedef int32_t ma_aaudio_direction_t; typedef int32_t ma_aaudio_sharing_mode_t; typedef int32_t ma_aaudio_format_t; typedef int32_t ma_aaudio_stream_state_t; typedef int32_t ma_aaudio_performance_mode_t; typedef int32_t ma_aaudio_usage_t; typedef int32_t ma_aaudio_content_type_t; typedef int32_t ma_aaudio_input_preset_t; typedef int32_t ma_aaudio_data_callback_result_t; typedef struct ma_AAudioStreamBuilder_t* ma_AAudioStreamBuilder; typedef struct ma_AAudioStream_t* ma_AAudioStream; #define MA_AAUDIO_UNSPECIFIED 0 /* Result codes. miniaudio only cares about the success code. */ #define MA_AAUDIO_OK 0 /* Directions. */ #define MA_AAUDIO_DIRECTION_OUTPUT 0 #define MA_AAUDIO_DIRECTION_INPUT 1 /* Sharing modes. */ #define MA_AAUDIO_SHARING_MODE_EXCLUSIVE 0 #define MA_AAUDIO_SHARING_MODE_SHARED 1 /* Formats. */ #define MA_AAUDIO_FORMAT_PCM_I16 1 #define MA_AAUDIO_FORMAT_PCM_FLOAT 2 /* Stream states. */ #define MA_AAUDIO_STREAM_STATE_UNINITIALIZED 0 #define MA_AAUDIO_STREAM_STATE_UNKNOWN 1 #define MA_AAUDIO_STREAM_STATE_OPEN 2 #define MA_AAUDIO_STREAM_STATE_STARTING 3 #define MA_AAUDIO_STREAM_STATE_STARTED 4 #define MA_AAUDIO_STREAM_STATE_PAUSING 5 #define MA_AAUDIO_STREAM_STATE_PAUSED 6 #define MA_AAUDIO_STREAM_STATE_FLUSHING 7 #define MA_AAUDIO_STREAM_STATE_FLUSHED 8 #define MA_AAUDIO_STREAM_STATE_STOPPING 9 #define MA_AAUDIO_STREAM_STATE_STOPPED 10 #define MA_AAUDIO_STREAM_STATE_CLOSING 11 #define MA_AAUDIO_STREAM_STATE_CLOSED 12 #define MA_AAUDIO_STREAM_STATE_DISCONNECTED 13 /* Performance modes. */ #define MA_AAUDIO_PERFORMANCE_MODE_NONE 10 #define MA_AAUDIO_PERFORMANCE_MODE_POWER_SAVING 11 #define MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY 12 /* Usage types. */ #define MA_AAUDIO_USAGE_MEDIA 1 #define MA_AAUDIO_USAGE_VOICE_COMMUNICATION 2 #define MA_AAUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING 3 #define MA_AAUDIO_USAGE_ALARM 4 #define MA_AAUDIO_USAGE_NOTIFICATION 5 #define MA_AAUDIO_USAGE_NOTIFICATION_RINGTONE 6 #define MA_AAUDIO_USAGE_NOTIFICATION_EVENT 10 #define MA_AAUDIO_USAGE_ASSISTANCE_ACCESSIBILITY 11 #define MA_AAUDIO_USAGE_ASSISTANCE_NAVIGATION_GUIDANCE 12 #define MA_AAUDIO_USAGE_ASSISTANCE_SONIFICATION 13 #define MA_AAUDIO_USAGE_GAME 14 #define MA_AAUDIO_USAGE_ASSISTANT 16 #define MA_AAUDIO_SYSTEM_USAGE_EMERGENCY 1000 #define MA_AAUDIO_SYSTEM_USAGE_SAFETY 1001 #define MA_AAUDIO_SYSTEM_USAGE_VEHICLE_STATUS 1002 #define MA_AAUDIO_SYSTEM_USAGE_ANNOUNCEMENT 1003 /* Content types. */ #define MA_AAUDIO_CONTENT_TYPE_SPEECH 1 #define MA_AAUDIO_CONTENT_TYPE_MUSIC 2 #define MA_AAUDIO_CONTENT_TYPE_MOVIE 3 #define MA_AAUDIO_CONTENT_TYPE_SONIFICATION 4 /* Input presets. */ #define MA_AAUDIO_INPUT_PRESET_GENERIC 1 #define MA_AAUDIO_INPUT_PRESET_CAMCORDER 5 #define MA_AAUDIO_INPUT_PRESET_VOICE_RECOGNITION 6 #define MA_AAUDIO_INPUT_PRESET_VOICE_COMMUNICATION 7 #define MA_AAUDIO_INPUT_PRESET_UNPROCESSED 9 #define MA_AAUDIO_INPUT_PRESET_VOICE_PERFORMANCE 10 /* Callback results. */ #define MA_AAUDIO_CALLBACK_RESULT_CONTINUE 0 #define MA_AAUDIO_CALLBACK_RESULT_STOP 1 typedef ma_aaudio_data_callback_result_t (* ma_AAudioStream_dataCallback) (ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t numFrames); typedef void (* ma_AAudioStream_errorCallback)(ma_AAudioStream *pStream, void *pUserData, ma_aaudio_result_t error); typedef ma_aaudio_result_t (* MA_PFN_AAudio_createStreamBuilder) (ma_AAudioStreamBuilder** ppBuilder); typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_delete) (ma_AAudioStreamBuilder* pBuilder); typedef void (* MA_PFN_AAudioStreamBuilder_setDeviceId) (ma_AAudioStreamBuilder* pBuilder, int32_t deviceId); typedef void (* MA_PFN_AAudioStreamBuilder_setDirection) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_direction_t direction); typedef void (* MA_PFN_AAudioStreamBuilder_setSharingMode) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_sharing_mode_t sharingMode); typedef void (* MA_PFN_AAudioStreamBuilder_setFormat) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_format_t format); typedef void (* MA_PFN_AAudioStreamBuilder_setChannelCount) (ma_AAudioStreamBuilder* pBuilder, int32_t channelCount); typedef void (* MA_PFN_AAudioStreamBuilder_setSampleRate) (ma_AAudioStreamBuilder* pBuilder, int32_t sampleRate); typedef void (* MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)(ma_AAudioStreamBuilder* pBuilder, int32_t numFrames); typedef void (* MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback) (ma_AAudioStreamBuilder* pBuilder, int32_t numFrames); typedef void (* MA_PFN_AAudioStreamBuilder_setDataCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_dataCallback callback, void* pUserData); typedef void (* MA_PFN_AAudioStreamBuilder_setErrorCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_errorCallback callback, void* pUserData); typedef void (* MA_PFN_AAudioStreamBuilder_setPerformanceMode) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_performance_mode_t mode); typedef void (* MA_PFN_AAudioStreamBuilder_setUsage) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_usage_t contentType); typedef void (* MA_PFN_AAudioStreamBuilder_setContentType) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_content_type_t contentType); typedef void (* MA_PFN_AAudioStreamBuilder_setInputPreset) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_input_preset_t inputPreset); typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_openStream) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream** ppStream); typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_close) (ma_AAudioStream* pStream); typedef ma_aaudio_stream_state_t (* MA_PFN_AAudioStream_getState) (ma_AAudioStream* pStream); typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_waitForStateChange) (ma_AAudioStream* pStream, ma_aaudio_stream_state_t inputState, ma_aaudio_stream_state_t* pNextState, int64_t timeoutInNanoseconds); typedef ma_aaudio_format_t (* MA_PFN_AAudioStream_getFormat) (ma_AAudioStream* pStream); typedef int32_t (* MA_PFN_AAudioStream_getChannelCount) (ma_AAudioStream* pStream); typedef int32_t (* MA_PFN_AAudioStream_getSampleRate) (ma_AAudioStream* pStream); typedef int32_t (* MA_PFN_AAudioStream_getBufferCapacityInFrames) (ma_AAudioStream* pStream); typedef int32_t (* MA_PFN_AAudioStream_getFramesPerDataCallback) (ma_AAudioStream* pStream); typedef int32_t (* MA_PFN_AAudioStream_getFramesPerBurst) (ma_AAudioStream* pStream); typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_requestStart) (ma_AAudioStream* pStream); typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_requestStop) (ma_AAudioStream* pStream); static ma_result ma_result_from_aaudio(ma_aaudio_result_t resultAA) { switch (resultAA) { case MA_AAUDIO_OK: return MA_SUCCESS; default: break; } return MA_ERROR; } static ma_aaudio_usage_t ma_to_usage__aaudio(ma_aaudio_usage usage) { switch (usage) { case ma_aaudio_usage_media: return MA_AAUDIO_USAGE_MEDIA; case ma_aaudio_usage_voice_communication: return MA_AAUDIO_USAGE_VOICE_COMMUNICATION; case ma_aaudio_usage_voice_communication_signalling: return MA_AAUDIO_USAGE_VOICE_COMMUNICATION_SIGNALLING; case ma_aaudio_usage_alarm: return MA_AAUDIO_USAGE_ALARM; case ma_aaudio_usage_notification: return MA_AAUDIO_USAGE_NOTIFICATION; case ma_aaudio_usage_notification_ringtone: return MA_AAUDIO_USAGE_NOTIFICATION_RINGTONE; case ma_aaudio_usage_notification_event: return MA_AAUDIO_USAGE_NOTIFICATION_EVENT; case ma_aaudio_usage_assistance_accessibility: return MA_AAUDIO_USAGE_ASSISTANCE_ACCESSIBILITY; case ma_aaudio_usage_assistance_navigation_guidance: return MA_AAUDIO_USAGE_ASSISTANCE_NAVIGATION_GUIDANCE; case ma_aaudio_usage_assistance_sonification: return MA_AAUDIO_USAGE_ASSISTANCE_SONIFICATION; case ma_aaudio_usage_game: return MA_AAUDIO_USAGE_GAME; case ma_aaudio_usage_assitant: return MA_AAUDIO_USAGE_ASSISTANT; case ma_aaudio_usage_emergency: return MA_AAUDIO_SYSTEM_USAGE_EMERGENCY; case ma_aaudio_usage_safety: return MA_AAUDIO_SYSTEM_USAGE_SAFETY; case ma_aaudio_usage_vehicle_status: return MA_AAUDIO_SYSTEM_USAGE_VEHICLE_STATUS; case ma_aaudio_usage_announcement: return MA_AAUDIO_SYSTEM_USAGE_ANNOUNCEMENT; default: break; } return MA_AAUDIO_USAGE_MEDIA; } static ma_aaudio_content_type_t ma_to_content_type__aaudio(ma_aaudio_content_type contentType) { switch (contentType) { case ma_aaudio_content_type_speech: return MA_AAUDIO_CONTENT_TYPE_SPEECH; case ma_aaudio_content_type_music: return MA_AAUDIO_CONTENT_TYPE_MUSIC; case ma_aaudio_content_type_movie: return MA_AAUDIO_CONTENT_TYPE_MOVIE; case ma_aaudio_content_type_sonification: return MA_AAUDIO_CONTENT_TYPE_SONIFICATION; default: break; } return MA_AAUDIO_CONTENT_TYPE_SPEECH; } static ma_aaudio_input_preset_t ma_to_input_preset__aaudio(ma_aaudio_input_preset inputPreset) { switch (inputPreset) { case ma_aaudio_input_preset_generic: return MA_AAUDIO_INPUT_PRESET_GENERIC; case ma_aaudio_input_preset_camcorder: return MA_AAUDIO_INPUT_PRESET_CAMCORDER; case ma_aaudio_input_preset_voice_recognition: return MA_AAUDIO_INPUT_PRESET_VOICE_RECOGNITION; case ma_aaudio_input_preset_voice_communication: return MA_AAUDIO_INPUT_PRESET_VOICE_COMMUNICATION; case ma_aaudio_input_preset_unprocessed: return MA_AAUDIO_INPUT_PRESET_UNPROCESSED; case ma_aaudio_input_preset_voice_performance: return MA_AAUDIO_INPUT_PRESET_VOICE_PERFORMANCE; default: break; } return MA_AAUDIO_INPUT_PRESET_GENERIC; } static void ma_stream_error_callback__aaudio(ma_AAudioStream* pStream, void* pUserData, ma_aaudio_result_t error) { ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); (void)error; ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[AAudio] ERROR CALLBACK: error=%d, AAudioStream_getState()=%d\n", error, ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream)); /* From the documentation for AAudio, when a device is disconnected all we can do is stop it. However, we cannot stop it from the callback - we need to do it from another thread. Therefore we are going to use an event thread for the AAudio backend to do this cleanly and safely. */ if (((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream) == MA_AAUDIO_STREAM_STATE_DISCONNECTED) { /* We need to post a job to the job thread for processing. This will reroute the device by reinitializing the stream. */ ma_result result; ma_job job = ma_job_init(MA_JOB_TYPE_DEVICE_AAUDIO_REROUTE); job.data.device.aaudio.reroute.pDevice = pDevice; if (pStream == pDevice->aaudio.pStreamCapture) { job.data.device.aaudio.reroute.deviceType = ma_device_type_capture; } else { job.data.device.aaudio.reroute.deviceType = ma_device_type_playback; } result = ma_device_job_thread_post(&pDevice->pContext->aaudio.jobThread, &job); if (result != MA_SUCCESS) { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[AAudio] Device Disconnected. Failed to post job for rerouting.\n"); return; } } } static ma_aaudio_data_callback_result_t ma_stream_data_callback_capture__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount) { ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); ma_device_handle_backend_data_callback(pDevice, NULL, pAudioData, frameCount); (void)pStream; return MA_AAUDIO_CALLBACK_RESULT_CONTINUE; } static ma_aaudio_data_callback_result_t ma_stream_data_callback_playback__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount) { ma_device* pDevice = (ma_device*)pUserData; MA_ASSERT(pDevice != NULL); ma_device_handle_backend_data_callback(pDevice, pAudioData, NULL, frameCount); (void)pStream; return MA_AAUDIO_CALLBACK_RESULT_CONTINUE; } static ma_result ma_create_and_configure_AAudioStreamBuilder__aaudio(ma_context* pContext, const ma_device_id* pDeviceID, ma_device_type deviceType, ma_share_mode shareMode, const ma_device_descriptor* pDescriptor, const ma_device_config* pConfig, ma_device* pDevice, ma_AAudioStreamBuilder** ppBuilder) { ma_AAudioStreamBuilder* pBuilder; ma_aaudio_result_t resultAA; ma_uint32 bufferCapacityInFrames; /* Safety. */ *ppBuilder = NULL; resultAA = ((MA_PFN_AAudio_createStreamBuilder)pContext->aaudio.AAudio_createStreamBuilder)(&pBuilder); if (resultAA != MA_AAUDIO_OK) { return ma_result_from_aaudio(resultAA); } if (pDeviceID != NULL) { ((MA_PFN_AAudioStreamBuilder_setDeviceId)pContext->aaudio.AAudioStreamBuilder_setDeviceId)(pBuilder, pDeviceID->aaudio); } ((MA_PFN_AAudioStreamBuilder_setDirection)pContext->aaudio.AAudioStreamBuilder_setDirection)(pBuilder, (deviceType == ma_device_type_playback) ? MA_AAUDIO_DIRECTION_OUTPUT : MA_AAUDIO_DIRECTION_INPUT); ((MA_PFN_AAudioStreamBuilder_setSharingMode)pContext->aaudio.AAudioStreamBuilder_setSharingMode)(pBuilder, (shareMode == ma_share_mode_shared) ? MA_AAUDIO_SHARING_MODE_SHARED : MA_AAUDIO_SHARING_MODE_EXCLUSIVE); /* If we have a device descriptor make sure we configure the stream builder to take our requested parameters. */ if (pDescriptor != NULL) { MA_ASSERT(pConfig != NULL); /* We must have a device config if we also have a descriptor. The config is required for AAudio specific configuration options. */ if (pDescriptor->sampleRate != 0) { ((MA_PFN_AAudioStreamBuilder_setSampleRate)pContext->aaudio.AAudioStreamBuilder_setSampleRate)(pBuilder, pDescriptor->sampleRate); } if (deviceType == ma_device_type_capture) { if (pDescriptor->channels != 0) { ((MA_PFN_AAudioStreamBuilder_setChannelCount)pContext->aaudio.AAudioStreamBuilder_setChannelCount)(pBuilder, pDescriptor->channels); } if (pDescriptor->format != ma_format_unknown) { ((MA_PFN_AAudioStreamBuilder_setFormat)pContext->aaudio.AAudioStreamBuilder_setFormat)(pBuilder, (pDescriptor->format == ma_format_s16) ? MA_AAUDIO_FORMAT_PCM_I16 : MA_AAUDIO_FORMAT_PCM_FLOAT); } } else { if (pDescriptor->channels != 0) { ((MA_PFN_AAudioStreamBuilder_setChannelCount)pContext->aaudio.AAudioStreamBuilder_setChannelCount)(pBuilder, pDescriptor->channels); } if (pDescriptor->format != ma_format_unknown) { ((MA_PFN_AAudioStreamBuilder_setFormat)pContext->aaudio.AAudioStreamBuilder_setFormat)(pBuilder, (pDescriptor->format == ma_format_s16) ? MA_AAUDIO_FORMAT_PCM_I16 : MA_AAUDIO_FORMAT_PCM_FLOAT); } } /* AAudio is annoying when it comes to it's buffer calculation stuff because it doesn't let you retrieve the actual sample rate until after you've opened the stream. But you need to configure the buffer capacity before you open the stream... :/ To solve, we're just going to assume MA_DEFAULT_SAMPLE_RATE (48000) and move on. */ bufferCapacityInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptor, pDescriptor->sampleRate, pConfig->performanceProfile) * pDescriptor->periodCount; ((MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames)(pBuilder, bufferCapacityInFrames); ((MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback)pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback)(pBuilder, bufferCapacityInFrames / pDescriptor->periodCount); if (deviceType == ma_device_type_capture) { if (pConfig->aaudio.inputPreset != ma_aaudio_input_preset_default && pContext->aaudio.AAudioStreamBuilder_setInputPreset != NULL) { ((MA_PFN_AAudioStreamBuilder_setInputPreset)pContext->aaudio.AAudioStreamBuilder_setInputPreset)(pBuilder, ma_to_input_preset__aaudio(pConfig->aaudio.inputPreset)); } ((MA_PFN_AAudioStreamBuilder_setDataCallback)pContext->aaudio.AAudioStreamBuilder_setDataCallback)(pBuilder, ma_stream_data_callback_capture__aaudio, (void*)pDevice); } else { if (pConfig->aaudio.usage != ma_aaudio_usage_default && pContext->aaudio.AAudioStreamBuilder_setUsage != NULL) { ((MA_PFN_AAudioStreamBuilder_setUsage)pContext->aaudio.AAudioStreamBuilder_setUsage)(pBuilder, ma_to_usage__aaudio(pConfig->aaudio.usage)); } if (pConfig->aaudio.contentType != ma_aaudio_content_type_default && pContext->aaudio.AAudioStreamBuilder_setContentType != NULL) { ((MA_PFN_AAudioStreamBuilder_setContentType)pContext->aaudio.AAudioStreamBuilder_setContentType)(pBuilder, ma_to_content_type__aaudio(pConfig->aaudio.contentType)); } ((MA_PFN_AAudioStreamBuilder_setDataCallback)pContext->aaudio.AAudioStreamBuilder_setDataCallback)(pBuilder, ma_stream_data_callback_playback__aaudio, (void*)pDevice); } /* Not sure how this affects things, but since there's a mapping between miniaudio's performance profiles and AAudio's performance modes, let go ahead and set it. */ ((MA_PFN_AAudioStreamBuilder_setPerformanceMode)pContext->aaudio.AAudioStreamBuilder_setPerformanceMode)(pBuilder, (pConfig->performanceProfile == ma_performance_profile_low_latency) ? MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY : MA_AAUDIO_PERFORMANCE_MODE_NONE); /* We need to set an error callback to detect device changes. */ if (pDevice != NULL) { /* <-- pDevice should never be null if pDescriptor is not null, which is always the case if we hit this branch. Check anyway for safety. */ ((MA_PFN_AAudioStreamBuilder_setErrorCallback)pContext->aaudio.AAudioStreamBuilder_setErrorCallback)(pBuilder, ma_stream_error_callback__aaudio, (void*)pDevice); } } *ppBuilder = pBuilder; return MA_SUCCESS; } static ma_result ma_open_stream_and_close_builder__aaudio(ma_context* pContext, ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream** ppStream) { ma_result result; result = ma_result_from_aaudio(((MA_PFN_AAudioStreamBuilder_openStream)pContext->aaudio.AAudioStreamBuilder_openStream)(pBuilder, ppStream)); ((MA_PFN_AAudioStreamBuilder_delete)pContext->aaudio.AAudioStreamBuilder_delete)(pBuilder); return result; } static ma_result ma_open_stream_basic__aaudio(ma_context* pContext, const ma_device_id* pDeviceID, ma_device_type deviceType, ma_share_mode shareMode, ma_AAudioStream** ppStream) { ma_result result; ma_AAudioStreamBuilder* pBuilder; *ppStream = NULL; result = ma_create_and_configure_AAudioStreamBuilder__aaudio(pContext, pDeviceID, deviceType, shareMode, NULL, NULL, NULL, &pBuilder); if (result != MA_SUCCESS) { return result; } return ma_open_stream_and_close_builder__aaudio(pContext, pBuilder, ppStream); } static ma_result ma_open_stream__aaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_type deviceType, const ma_device_descriptor* pDescriptor, ma_AAudioStream** ppStream) { ma_result result; ma_AAudioStreamBuilder* pBuilder; MA_ASSERT(pDevice != NULL); MA_ASSERT(pDescriptor != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); /* This function should not be called for a full-duplex device type. */ *ppStream = NULL; result = ma_create_and_configure_AAudioStreamBuilder__aaudio(pDevice->pContext, pDescriptor->pDeviceID, deviceType, pDescriptor->shareMode, pDescriptor, pConfig, pDevice, &pBuilder); if (result != MA_SUCCESS) { return result; } return ma_open_stream_and_close_builder__aaudio(pDevice->pContext, pBuilder, ppStream); } static ma_result ma_close_stream__aaudio(ma_context* pContext, ma_AAudioStream* pStream) { return ma_result_from_aaudio(((MA_PFN_AAudioStream_close)pContext->aaudio.AAudioStream_close)(pStream)); } static ma_bool32 ma_has_default_device__aaudio(ma_context* pContext, ma_device_type deviceType) { /* The only way to know this is to try creating a stream. */ ma_AAudioStream* pStream; ma_result result = ma_open_stream_basic__aaudio(pContext, NULL, deviceType, ma_share_mode_shared, &pStream); if (result != MA_SUCCESS) { return MA_FALSE; } ma_close_stream__aaudio(pContext, pStream); return MA_TRUE; } static ma_result ma_wait_for_simple_state_transition__aaudio(ma_context* pContext, ma_AAudioStream* pStream, ma_aaudio_stream_state_t oldState, ma_aaudio_stream_state_t newState) { ma_aaudio_stream_state_t actualNewState; ma_aaudio_result_t resultAA = ((MA_PFN_AAudioStream_waitForStateChange)pContext->aaudio.AAudioStream_waitForStateChange)(pStream, oldState, &actualNewState, 5000000000); /* 5 second timeout. */ if (resultAA != MA_AAUDIO_OK) { return ma_result_from_aaudio(resultAA); } if (newState != actualNewState) { return MA_ERROR; /* Failed to transition into the expected state. */ } return MA_SUCCESS; } static ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Unfortunately AAudio does not have an enumeration API. Therefore I'm only going to report default devices, but only if it can instantiate a stream. */ /* Playback. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.aaudio = MA_AAUDIO_UNSPECIFIED; ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); if (ma_has_default_device__aaudio(pContext, ma_device_type_playback)) { cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } } /* Capture. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.aaudio = MA_AAUDIO_UNSPECIFIED; ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); if (ma_has_default_device__aaudio(pContext, ma_device_type_capture)) { cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } } return MA_SUCCESS; } static void ma_context_add_native_data_format_from_AAudioStream_ex__aaudio(ma_context* pContext, ma_AAudioStream* pStream, ma_format format, ma_uint32 flags, ma_device_info* pDeviceInfo) { MA_ASSERT(pContext != NULL); MA_ASSERT(pStream != NULL); MA_ASSERT(pDeviceInfo != NULL); pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = format; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = ((MA_PFN_AAudioStream_getChannelCount)pContext->aaudio.AAudioStream_getChannelCount)(pStream); pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = ((MA_PFN_AAudioStream_getSampleRate)pContext->aaudio.AAudioStream_getSampleRate)(pStream); pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = flags; pDeviceInfo->nativeDataFormatCount += 1; } static void ma_context_add_native_data_format_from_AAudioStream__aaudio(ma_context* pContext, ma_AAudioStream* pStream, ma_uint32 flags, ma_device_info* pDeviceInfo) { /* AAudio supports s16 and f32. */ ma_context_add_native_data_format_from_AAudioStream_ex__aaudio(pContext, pStream, ma_format_f32, flags, pDeviceInfo); ma_context_add_native_data_format_from_AAudioStream_ex__aaudio(pContext, pStream, ma_format_s16, flags, pDeviceInfo); } static ma_result ma_context_get_device_info__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_AAudioStream* pStream; ma_result result; MA_ASSERT(pContext != NULL); /* ID */ if (pDeviceID != NULL) { pDeviceInfo->id.aaudio = pDeviceID->aaudio; } else { pDeviceInfo->id.aaudio = MA_AAUDIO_UNSPECIFIED; } /* Name */ if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } pDeviceInfo->nativeDataFormatCount = 0; /* We'll need to open the device to get accurate sample rate and channel count information. */ result = ma_open_stream_basic__aaudio(pContext, pDeviceID, deviceType, ma_share_mode_shared, &pStream); if (result != MA_SUCCESS) { return result; } ma_context_add_native_data_format_from_AAudioStream__aaudio(pContext, pStream, 0, pDeviceInfo); ma_close_stream__aaudio(pContext, pStream); pStream = NULL; return MA_SUCCESS; } static ma_result ma_device_uninit__aaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture); pDevice->aaudio.pStreamCapture = NULL; } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback); pDevice->aaudio.pStreamPlayback = NULL; } return MA_SUCCESS; } static ma_result ma_device_init_by_type__aaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_type deviceType, ma_device_descriptor* pDescriptor, ma_AAudioStream** ppStream) { ma_result result; int32_t bufferCapacityInFrames; int32_t framesPerDataCallback; ma_AAudioStream* pStream; MA_ASSERT(pDevice != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(pDescriptor != NULL); *ppStream = NULL; /* Safety. */ /* First step is to open the stream. From there we'll be able to extract the internal configuration. */ result = ma_open_stream__aaudio(pDevice, pConfig, deviceType, pDescriptor, &pStream); if (result != MA_SUCCESS) { return result; /* Failed to open the AAudio stream. */ } /* Now extract the internal configuration. */ pDescriptor->format = (((MA_PFN_AAudioStream_getFormat)pDevice->pContext->aaudio.AAudioStream_getFormat)(pStream) == MA_AAUDIO_FORMAT_PCM_I16) ? ma_format_s16 : ma_format_f32; pDescriptor->channels = ((MA_PFN_AAudioStream_getChannelCount)pDevice->pContext->aaudio.AAudioStream_getChannelCount)(pStream); pDescriptor->sampleRate = ((MA_PFN_AAudioStream_getSampleRate)pDevice->pContext->aaudio.AAudioStream_getSampleRate)(pStream); /* For the channel map we need to be sure we don't overflow any buffers. */ if (pDescriptor->channels <= MA_MAX_CHANNELS) { ma_channel_map_init_standard(ma_standard_channel_map_default, pDescriptor->channelMap, ma_countof(pDescriptor->channelMap), pDescriptor->channels); /* <-- Cannot find info on channel order, so assuming a default. */ } else { ma_channel_map_init_blank(pDescriptor->channelMap, MA_MAX_CHANNELS); /* Too many channels. Use a blank channel map. */ } bufferCapacityInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pDevice->pContext->aaudio.AAudioStream_getBufferCapacityInFrames)(pStream); framesPerDataCallback = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pDevice->pContext->aaudio.AAudioStream_getFramesPerDataCallback)(pStream); if (framesPerDataCallback > 0) { pDescriptor->periodSizeInFrames = framesPerDataCallback; pDescriptor->periodCount = bufferCapacityInFrames / framesPerDataCallback; } else { pDescriptor->periodSizeInFrames = bufferCapacityInFrames; pDescriptor->periodCount = 1; } *ppStream = pStream; return MA_SUCCESS; } static ma_result ma_device_init__aaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; MA_ASSERT(pDevice != NULL); if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } pDevice->aaudio.usage = pConfig->aaudio.usage; pDevice->aaudio.contentType = pConfig->aaudio.contentType; pDevice->aaudio.inputPreset = pConfig->aaudio.inputPreset; pDevice->aaudio.noAutoStartAfterReroute = pConfig->aaudio.noAutoStartAfterReroute; if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { result = ma_device_init_by_type__aaudio(pDevice, pConfig, ma_device_type_capture, pDescriptorCapture, (ma_AAudioStream**)&pDevice->aaudio.pStreamCapture); if (result != MA_SUCCESS) { return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { result = ma_device_init_by_type__aaudio(pDevice, pConfig, ma_device_type_playback, pDescriptorPlayback, (ma_AAudioStream**)&pDevice->aaudio.pStreamPlayback); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_start_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream) { ma_aaudio_result_t resultAA; ma_aaudio_stream_state_t currentState; MA_ASSERT(pDevice != NULL); resultAA = ((MA_PFN_AAudioStream_requestStart)pDevice->pContext->aaudio.AAudioStream_requestStart)(pStream); if (resultAA != MA_AAUDIO_OK) { return ma_result_from_aaudio(resultAA); } /* Do we actually need to wait for the device to transition into it's started state? */ /* The device should be in either a starting or started state. If it's not set to started we need to wait for it to transition. It should go from starting to started. */ currentState = ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream); if (currentState != MA_AAUDIO_STREAM_STATE_STARTED) { ma_result result; if (currentState != MA_AAUDIO_STREAM_STATE_STARTING) { return MA_ERROR; /* Expecting the stream to be a starting or started state. */ } result = ma_wait_for_simple_state_transition__aaudio(pDevice->pContext, pStream, currentState, MA_AAUDIO_STREAM_STATE_STARTED); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_stop_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream) { ma_aaudio_result_t resultAA; ma_aaudio_stream_state_t currentState; MA_ASSERT(pDevice != NULL); /* From the AAudio documentation: The stream will stop after all of the data currently buffered has been played. This maps with miniaudio's requirement that device's be drained which means we don't need to implement any draining logic. */ currentState = ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream); if (currentState == MA_AAUDIO_STREAM_STATE_DISCONNECTED) { return MA_SUCCESS; /* The device is disconnected. Don't try stopping it. */ } resultAA = ((MA_PFN_AAudioStream_requestStop)pDevice->pContext->aaudio.AAudioStream_requestStop)(pStream); if (resultAA != MA_AAUDIO_OK) { return ma_result_from_aaudio(resultAA); } /* The device should be in either a stopping or stopped state. If it's not set to started we need to wait for it to transition. It should go from stopping to stopped. */ currentState = ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream); if (currentState != MA_AAUDIO_STREAM_STATE_STOPPED) { ma_result result; if (currentState != MA_AAUDIO_STREAM_STATE_STOPPING) { return MA_ERROR; /* Expecting the stream to be a stopping or stopped state. */ } result = ma_wait_for_simple_state_transition__aaudio(pDevice->pContext, pStream, currentState, MA_AAUDIO_STREAM_STATE_STOPPED); if (result != MA_SUCCESS) { return result; } } return MA_SUCCESS; } static ma_result ma_device_start__aaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_result result = ma_device_start_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture); if (result != MA_SUCCESS) { return result; } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_result result = ma_device_start_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback); if (result != MA_SUCCESS) { if (pDevice->type == ma_device_type_duplex) { ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture); } return result; } } return MA_SUCCESS; } static ma_result ma_device_stop__aaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_result result = ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture); if (result != MA_SUCCESS) { return result; } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_result result = ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback); if (result != MA_SUCCESS) { return result; } } ma_device__on_notification_stopped(pDevice); return MA_SUCCESS; } static ma_result ma_device_reinit__aaudio(ma_device* pDevice, ma_device_type deviceType) { ma_result result; MA_ASSERT(pDevice != NULL); /* The first thing to do is close the streams. */ if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex) { ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture); pDevice->aaudio.pStreamCapture = NULL; } if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback); pDevice->aaudio.pStreamPlayback = NULL; } /* Now we need to reinitialize each streams. The hardest part with this is just filling output the config and descriptors. */ { ma_device_config deviceConfig; ma_device_descriptor descriptorPlayback; ma_device_descriptor descriptorCapture; deviceConfig = ma_device_config_init(deviceType); deviceConfig.playback.pDeviceID = NULL; /* Only doing rerouting with default devices. */ deviceConfig.playback.shareMode = pDevice->playback.shareMode; deviceConfig.playback.format = pDevice->playback.format; deviceConfig.playback.channels = pDevice->playback.channels; deviceConfig.capture.pDeviceID = NULL; /* Only doing rerouting with default devices. */ deviceConfig.capture.shareMode = pDevice->capture.shareMode; deviceConfig.capture.format = pDevice->capture.format; deviceConfig.capture.channels = pDevice->capture.channels; deviceConfig.sampleRate = pDevice->sampleRate; deviceConfig.aaudio.usage = pDevice->aaudio.usage; deviceConfig.aaudio.contentType = pDevice->aaudio.contentType; deviceConfig.aaudio.inputPreset = pDevice->aaudio.inputPreset; deviceConfig.aaudio.noAutoStartAfterReroute = pDevice->aaudio.noAutoStartAfterReroute; deviceConfig.periods = 1; /* Try to get an accurate period size. */ if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { deviceConfig.periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames; } else { deviceConfig.periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames; } if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { descriptorCapture.pDeviceID = deviceConfig.capture.pDeviceID; descriptorCapture.shareMode = deviceConfig.capture.shareMode; descriptorCapture.format = deviceConfig.capture.format; descriptorCapture.channels = deviceConfig.capture.channels; descriptorCapture.sampleRate = deviceConfig.sampleRate; descriptorCapture.periodSizeInFrames = deviceConfig.periodSizeInFrames; descriptorCapture.periodCount = deviceConfig.periods; } if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { descriptorPlayback.pDeviceID = deviceConfig.playback.pDeviceID; descriptorPlayback.shareMode = deviceConfig.playback.shareMode; descriptorPlayback.format = deviceConfig.playback.format; descriptorPlayback.channels = deviceConfig.playback.channels; descriptorPlayback.sampleRate = deviceConfig.sampleRate; descriptorPlayback.periodSizeInFrames = deviceConfig.periodSizeInFrames; descriptorPlayback.periodCount = deviceConfig.periods; } result = ma_device_init__aaudio(pDevice, &deviceConfig, &descriptorPlayback, &descriptorCapture); if (result != MA_SUCCESS) { return result; } result = ma_device_post_init(pDevice, deviceType, &descriptorPlayback, &descriptorCapture); if (result != MA_SUCCESS) { ma_device_uninit__aaudio(pDevice); return result; } /* We'll only ever do this in response to a reroute. */ ma_device__on_notification_rerouted(pDevice); /* If the device is started, start the streams. Maybe make this configurable? */ if (ma_device_get_state(pDevice) == ma_device_state_started) { if (pDevice->aaudio.noAutoStartAfterReroute == MA_FALSE) { ma_device_start__aaudio(pDevice); } else { ma_device_stop(pDevice); /* Do a full device stop so we set internal state correctly. */ } } return MA_SUCCESS; } } static ma_result ma_device_get_info__aaudio(ma_device* pDevice, ma_device_type type, ma_device_info* pDeviceInfo) { ma_AAudioStream* pStream = NULL; MA_ASSERT(pDevice != NULL); MA_ASSERT(type != ma_device_type_duplex); MA_ASSERT(pDeviceInfo != NULL); if (type == ma_device_type_playback) { pStream = (ma_AAudioStream*)pDevice->aaudio.pStreamCapture; pDeviceInfo->id.aaudio = pDevice->capture.id.aaudio; ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); /* Only supporting default devices. */ } if (type == ma_device_type_capture) { pStream = (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback; pDeviceInfo->id.aaudio = pDevice->playback.id.aaudio; ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); /* Only supporting default devices. */ } /* Safety. Should never happen. */ if (pStream == NULL) { return MA_INVALID_OPERATION; } pDeviceInfo->nativeDataFormatCount = 0; ma_context_add_native_data_format_from_AAudioStream__aaudio(pDevice->pContext, pStream, 0, pDeviceInfo); return MA_SUCCESS; } static ma_result ma_context_uninit__aaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_aaudio); ma_device_job_thread_uninit(&pContext->aaudio.jobThread, &pContext->allocationCallbacks); ma_dlclose(pContext, pContext->aaudio.hAAudio); pContext->aaudio.hAAudio = NULL; return MA_SUCCESS; } static ma_result ma_context_init__aaudio(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { size_t i; const char* libNames[] = { "libaaudio.so" }; for (i = 0; i < ma_countof(libNames); ++i) { pContext->aaudio.hAAudio = ma_dlopen(pContext, libNames[i]); if (pContext->aaudio.hAAudio != NULL) { break; } } if (pContext->aaudio.hAAudio == NULL) { return MA_FAILED_TO_INIT_BACKEND; } pContext->aaudio.AAudio_createStreamBuilder = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudio_createStreamBuilder"); pContext->aaudio.AAudioStreamBuilder_delete = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_delete"); pContext->aaudio.AAudioStreamBuilder_setDeviceId = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDeviceId"); pContext->aaudio.AAudioStreamBuilder_setDirection = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDirection"); pContext->aaudio.AAudioStreamBuilder_setSharingMode = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setSharingMode"); pContext->aaudio.AAudioStreamBuilder_setFormat = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setFormat"); pContext->aaudio.AAudioStreamBuilder_setChannelCount = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setChannelCount"); pContext->aaudio.AAudioStreamBuilder_setSampleRate = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setSampleRate"); pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setBufferCapacityInFrames"); pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setFramesPerDataCallback"); pContext->aaudio.AAudioStreamBuilder_setDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDataCallback"); pContext->aaudio.AAudioStreamBuilder_setErrorCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setErrorCallback"); pContext->aaudio.AAudioStreamBuilder_setPerformanceMode = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setPerformanceMode"); pContext->aaudio.AAudioStreamBuilder_setUsage = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setUsage"); pContext->aaudio.AAudioStreamBuilder_setContentType = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setContentType"); pContext->aaudio.AAudioStreamBuilder_setInputPreset = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setInputPreset"); pContext->aaudio.AAudioStreamBuilder_openStream = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_openStream"); pContext->aaudio.AAudioStream_close = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_close"); pContext->aaudio.AAudioStream_getState = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getState"); pContext->aaudio.AAudioStream_waitForStateChange = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_waitForStateChange"); pContext->aaudio.AAudioStream_getFormat = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getFormat"); pContext->aaudio.AAudioStream_getChannelCount = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getChannelCount"); pContext->aaudio.AAudioStream_getSampleRate = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getSampleRate"); pContext->aaudio.AAudioStream_getBufferCapacityInFrames = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getBufferCapacityInFrames"); pContext->aaudio.AAudioStream_getFramesPerDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getFramesPerDataCallback"); pContext->aaudio.AAudioStream_getFramesPerBurst = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getFramesPerBurst"); pContext->aaudio.AAudioStream_requestStart = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_requestStart"); pContext->aaudio.AAudioStream_requestStop = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_requestStop"); pCallbacks->onContextInit = ma_context_init__aaudio; pCallbacks->onContextUninit = ma_context_uninit__aaudio; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__aaudio; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__aaudio; pCallbacks->onDeviceInit = ma_device_init__aaudio; pCallbacks->onDeviceUninit = ma_device_uninit__aaudio; pCallbacks->onDeviceStart = ma_device_start__aaudio; pCallbacks->onDeviceStop = ma_device_stop__aaudio; pCallbacks->onDeviceRead = NULL; /* Not used because AAudio is asynchronous. */ pCallbacks->onDeviceWrite = NULL; /* Not used because AAudio is asynchronous. */ pCallbacks->onDeviceDataLoop = NULL; /* Not used because AAudio is asynchronous. */ pCallbacks->onDeviceGetInfo = ma_device_get_info__aaudio; /* We need a job thread so we can deal with rerouting. */ { ma_result result; ma_device_job_thread_config jobThreadConfig; jobThreadConfig = ma_device_job_thread_config_init(); result = ma_device_job_thread_init(&jobThreadConfig, &pContext->allocationCallbacks, &pContext->aaudio.jobThread); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->aaudio.hAAudio); pContext->aaudio.hAAudio = NULL; return result; } } (void)pConfig; return MA_SUCCESS; } static ma_result ma_job_process__device__aaudio_reroute(ma_job* pJob) { ma_device* pDevice; MA_ASSERT(pJob != NULL); pDevice = (ma_device*)pJob->data.device.aaudio.reroute.pDevice; MA_ASSERT(pDevice != NULL); /* Here is where we need to reroute the device. To do this we need to uninitialize the stream and reinitialize it. */ return ma_device_reinit__aaudio(pDevice, (ma_device_type)pJob->data.device.aaudio.reroute.deviceType); } #else /* Getting here means there is no AAudio backend so we need a no-op job implementation. */ static ma_result ma_job_process__device__aaudio_reroute(ma_job* pJob) { return ma_job_process__noop(pJob); } #endif /* AAudio */ /****************************************************************************** OpenSL|ES Backend ******************************************************************************/ #ifdef MA_HAS_OPENSL #include #ifdef MA_ANDROID #include #endif typedef SLresult (SLAPIENTRY * ma_slCreateEngine_proc)(SLObjectItf* pEngine, SLuint32 numOptions, SLEngineOption* pEngineOptions, SLuint32 numInterfaces, SLInterfaceID* pInterfaceIds, SLboolean* pInterfaceRequired); /* OpenSL|ES has one-per-application objects :( */ static SLObjectItf g_maEngineObjectSL = NULL; static SLEngineItf g_maEngineSL = NULL; static ma_uint32 g_maOpenSLInitCounter = 0; static ma_spinlock g_maOpenSLSpinlock = 0; /* For init/uninit. */ #define MA_OPENSL_OBJ(p) (*((SLObjectItf)(p))) #define MA_OPENSL_OUTPUTMIX(p) (*((SLOutputMixItf)(p))) #define MA_OPENSL_PLAY(p) (*((SLPlayItf)(p))) #define MA_OPENSL_RECORD(p) (*((SLRecordItf)(p))) #ifdef MA_ANDROID #define MA_OPENSL_BUFFERQUEUE(p) (*((SLAndroidSimpleBufferQueueItf)(p))) #else #define MA_OPENSL_BUFFERQUEUE(p) (*((SLBufferQueueItf)(p))) #endif static ma_result ma_result_from_OpenSL(SLuint32 result) { switch (result) { case SL_RESULT_SUCCESS: return MA_SUCCESS; case SL_RESULT_PRECONDITIONS_VIOLATED: return MA_ERROR; case SL_RESULT_PARAMETER_INVALID: return MA_INVALID_ARGS; case SL_RESULT_MEMORY_FAILURE: return MA_OUT_OF_MEMORY; case SL_RESULT_RESOURCE_ERROR: return MA_INVALID_DATA; case SL_RESULT_RESOURCE_LOST: return MA_ERROR; case SL_RESULT_IO_ERROR: return MA_IO_ERROR; case SL_RESULT_BUFFER_INSUFFICIENT: return MA_NO_SPACE; case SL_RESULT_CONTENT_CORRUPTED: return MA_INVALID_DATA; case SL_RESULT_CONTENT_UNSUPPORTED: return MA_FORMAT_NOT_SUPPORTED; case SL_RESULT_CONTENT_NOT_FOUND: return MA_ERROR; case SL_RESULT_PERMISSION_DENIED: return MA_ACCESS_DENIED; case SL_RESULT_FEATURE_UNSUPPORTED: return MA_NOT_IMPLEMENTED; case SL_RESULT_INTERNAL_ERROR: return MA_ERROR; case SL_RESULT_UNKNOWN_ERROR: return MA_ERROR; case SL_RESULT_OPERATION_ABORTED: return MA_ERROR; case SL_RESULT_CONTROL_LOST: return MA_ERROR; default: return MA_ERROR; } } /* Converts an individual OpenSL-style channel identifier (SL_SPEAKER_FRONT_LEFT, etc.) to miniaudio. */ static ma_uint8 ma_channel_id_to_ma__opensl(SLuint32 id) { switch (id) { case SL_SPEAKER_FRONT_LEFT: return MA_CHANNEL_FRONT_LEFT; case SL_SPEAKER_FRONT_RIGHT: return MA_CHANNEL_FRONT_RIGHT; case SL_SPEAKER_FRONT_CENTER: return MA_CHANNEL_FRONT_CENTER; case SL_SPEAKER_LOW_FREQUENCY: return MA_CHANNEL_LFE; case SL_SPEAKER_BACK_LEFT: return MA_CHANNEL_BACK_LEFT; case SL_SPEAKER_BACK_RIGHT: return MA_CHANNEL_BACK_RIGHT; case SL_SPEAKER_FRONT_LEFT_OF_CENTER: return MA_CHANNEL_FRONT_LEFT_CENTER; case SL_SPEAKER_FRONT_RIGHT_OF_CENTER: return MA_CHANNEL_FRONT_RIGHT_CENTER; case SL_SPEAKER_BACK_CENTER: return MA_CHANNEL_BACK_CENTER; case SL_SPEAKER_SIDE_LEFT: return MA_CHANNEL_SIDE_LEFT; case SL_SPEAKER_SIDE_RIGHT: return MA_CHANNEL_SIDE_RIGHT; case SL_SPEAKER_TOP_CENTER: return MA_CHANNEL_TOP_CENTER; case SL_SPEAKER_TOP_FRONT_LEFT: return MA_CHANNEL_TOP_FRONT_LEFT; case SL_SPEAKER_TOP_FRONT_CENTER: return MA_CHANNEL_TOP_FRONT_CENTER; case SL_SPEAKER_TOP_FRONT_RIGHT: return MA_CHANNEL_TOP_FRONT_RIGHT; case SL_SPEAKER_TOP_BACK_LEFT: return MA_CHANNEL_TOP_BACK_LEFT; case SL_SPEAKER_TOP_BACK_CENTER: return MA_CHANNEL_TOP_BACK_CENTER; case SL_SPEAKER_TOP_BACK_RIGHT: return MA_CHANNEL_TOP_BACK_RIGHT; default: return 0; } } /* Converts an individual miniaudio channel identifier (MA_CHANNEL_FRONT_LEFT, etc.) to OpenSL-style. */ static SLuint32 ma_channel_id_to_opensl(ma_uint8 id) { switch (id) { case MA_CHANNEL_MONO: return SL_SPEAKER_FRONT_CENTER; case MA_CHANNEL_FRONT_LEFT: return SL_SPEAKER_FRONT_LEFT; case MA_CHANNEL_FRONT_RIGHT: return SL_SPEAKER_FRONT_RIGHT; case MA_CHANNEL_FRONT_CENTER: return SL_SPEAKER_FRONT_CENTER; case MA_CHANNEL_LFE: return SL_SPEAKER_LOW_FREQUENCY; case MA_CHANNEL_BACK_LEFT: return SL_SPEAKER_BACK_LEFT; case MA_CHANNEL_BACK_RIGHT: return SL_SPEAKER_BACK_RIGHT; case MA_CHANNEL_FRONT_LEFT_CENTER: return SL_SPEAKER_FRONT_LEFT_OF_CENTER; case MA_CHANNEL_FRONT_RIGHT_CENTER: return SL_SPEAKER_FRONT_RIGHT_OF_CENTER; case MA_CHANNEL_BACK_CENTER: return SL_SPEAKER_BACK_CENTER; case MA_CHANNEL_SIDE_LEFT: return SL_SPEAKER_SIDE_LEFT; case MA_CHANNEL_SIDE_RIGHT: return SL_SPEAKER_SIDE_RIGHT; case MA_CHANNEL_TOP_CENTER: return SL_SPEAKER_TOP_CENTER; case MA_CHANNEL_TOP_FRONT_LEFT: return SL_SPEAKER_TOP_FRONT_LEFT; case MA_CHANNEL_TOP_FRONT_CENTER: return SL_SPEAKER_TOP_FRONT_CENTER; case MA_CHANNEL_TOP_FRONT_RIGHT: return SL_SPEAKER_TOP_FRONT_RIGHT; case MA_CHANNEL_TOP_BACK_LEFT: return SL_SPEAKER_TOP_BACK_LEFT; case MA_CHANNEL_TOP_BACK_CENTER: return SL_SPEAKER_TOP_BACK_CENTER; case MA_CHANNEL_TOP_BACK_RIGHT: return SL_SPEAKER_TOP_BACK_RIGHT; default: return 0; } } /* Converts a channel mapping to an OpenSL-style channel mask. */ static SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel* pChannelMap, ma_uint32 channels) { SLuint32 channelMask = 0; ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { channelMask |= ma_channel_id_to_opensl(pChannelMap[iChannel]); } return channelMask; } /* Converts an OpenSL-style channel mask to a miniaudio channel map. */ static void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 channels, ma_channel* pChannelMap) { if (channels == 1 && channelMask == 0) { pChannelMap[0] = MA_CHANNEL_MONO; } else if (channels == 2 && channelMask == 0) { pChannelMap[0] = MA_CHANNEL_FRONT_LEFT; pChannelMap[1] = MA_CHANNEL_FRONT_RIGHT; } else { if (channels == 1 && (channelMask & SL_SPEAKER_FRONT_CENTER) != 0) { pChannelMap[0] = MA_CHANNEL_MONO; } else { /* Just iterate over each bit. */ ma_uint32 iChannel = 0; ma_uint32 iBit; for (iBit = 0; iBit < 32 && iChannel < channels; ++iBit) { SLuint32 bitValue = (channelMask & (1UL << iBit)); if (bitValue != 0) { /* The bit is set. */ pChannelMap[iChannel] = ma_channel_id_to_ma__opensl(bitValue); iChannel += 1; } } } } } static SLuint32 ma_round_to_standard_sample_rate__opensl(SLuint32 samplesPerSec) { if (samplesPerSec <= SL_SAMPLINGRATE_8) { return SL_SAMPLINGRATE_8; } if (samplesPerSec <= SL_SAMPLINGRATE_11_025) { return SL_SAMPLINGRATE_11_025; } if (samplesPerSec <= SL_SAMPLINGRATE_12) { return SL_SAMPLINGRATE_12; } if (samplesPerSec <= SL_SAMPLINGRATE_16) { return SL_SAMPLINGRATE_16; } if (samplesPerSec <= SL_SAMPLINGRATE_22_05) { return SL_SAMPLINGRATE_22_05; } if (samplesPerSec <= SL_SAMPLINGRATE_24) { return SL_SAMPLINGRATE_24; } if (samplesPerSec <= SL_SAMPLINGRATE_32) { return SL_SAMPLINGRATE_32; } if (samplesPerSec <= SL_SAMPLINGRATE_44_1) { return SL_SAMPLINGRATE_44_1; } if (samplesPerSec <= SL_SAMPLINGRATE_48) { return SL_SAMPLINGRATE_48; } /* Android doesn't support more than 48000. */ #ifndef MA_ANDROID if (samplesPerSec <= SL_SAMPLINGRATE_64) { return SL_SAMPLINGRATE_64; } if (samplesPerSec <= SL_SAMPLINGRATE_88_2) { return SL_SAMPLINGRATE_88_2; } if (samplesPerSec <= SL_SAMPLINGRATE_96) { return SL_SAMPLINGRATE_96; } if (samplesPerSec <= SL_SAMPLINGRATE_192) { return SL_SAMPLINGRATE_192; } #endif return SL_SAMPLINGRATE_16; } static SLint32 ma_to_stream_type__opensl(ma_opensl_stream_type streamType) { switch (streamType) { case ma_opensl_stream_type_voice: return SL_ANDROID_STREAM_VOICE; case ma_opensl_stream_type_system: return SL_ANDROID_STREAM_SYSTEM; case ma_opensl_stream_type_ring: return SL_ANDROID_STREAM_RING; case ma_opensl_stream_type_media: return SL_ANDROID_STREAM_MEDIA; case ma_opensl_stream_type_alarm: return SL_ANDROID_STREAM_ALARM; case ma_opensl_stream_type_notification: return SL_ANDROID_STREAM_NOTIFICATION; default: break; } return SL_ANDROID_STREAM_VOICE; } static SLint32 ma_to_recording_preset__opensl(ma_opensl_recording_preset recordingPreset) { switch (recordingPreset) { case ma_opensl_recording_preset_generic: return SL_ANDROID_RECORDING_PRESET_GENERIC; case ma_opensl_recording_preset_camcorder: return SL_ANDROID_RECORDING_PRESET_CAMCORDER; case ma_opensl_recording_preset_voice_recognition: return SL_ANDROID_RECORDING_PRESET_VOICE_RECOGNITION; case ma_opensl_recording_preset_voice_communication: return SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION; case ma_opensl_recording_preset_voice_unprocessed: return SL_ANDROID_RECORDING_PRESET_UNPROCESSED; default: break; } return SL_ANDROID_RECORDING_PRESET_NONE; } static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to enumerate devices. */ if (g_maOpenSLInitCounter == 0) { return MA_INVALID_OPERATION; } /* TODO: Test Me. This is currently untested, so for now we are just returning default devices. */ #if 0 && !defined(MA_ANDROID) ma_bool32 isTerminated = MA_FALSE; SLuint32 pDeviceIDs[128]; SLint32 deviceCount = sizeof(pDeviceIDs) / sizeof(pDeviceIDs[0]); SLAudioIODeviceCapabilitiesItf deviceCaps; SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, (SLInterfaceID)pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps); if (resultSL != SL_RESULT_SUCCESS) { /* The interface may not be supported so just report a default device. */ goto return_default_device; } /* Playback */ if (!isTerminated) { resultSL = (*deviceCaps)->GetAvailableAudioOutputs(deviceCaps, &deviceCount, pDeviceIDs); if (resultSL != SL_RESULT_SUCCESS) { return ma_result_from_OpenSL(resultSL); } for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.opensl = pDeviceIDs[iDevice]; SLAudioOutputDescriptor desc; resultSL = (*deviceCaps)->QueryAudioOutputCapabilities(deviceCaps, deviceInfo.id.opensl, &desc); if (resultSL == SL_RESULT_SUCCESS) { ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), (const char*)desc.pDeviceName, (size_t)-1); ma_bool32 cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { isTerminated = MA_TRUE; break; } } } } /* Capture */ if (!isTerminated) { resultSL = (*deviceCaps)->GetAvailableAudioInputs(deviceCaps, &deviceCount, pDeviceIDs); if (resultSL != SL_RESULT_SUCCESS) { return ma_result_from_OpenSL(resultSL); } for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.opensl = pDeviceIDs[iDevice]; SLAudioInputDescriptor desc; resultSL = (*deviceCaps)->QueryAudioInputCapabilities(deviceCaps, deviceInfo.id.opensl, &desc); if (resultSL == SL_RESULT_SUCCESS) { ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), (const char*)desc.deviceName, (size_t)-1); ma_bool32 cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); if (cbResult == MA_FALSE) { isTerminated = MA_TRUE; break; } } } } return MA_SUCCESS; #else goto return_default_device; #endif return_default_device:; cbResult = MA_TRUE; /* Playback. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.opensl = SL_DEFAULTDEVICEID_AUDIOOUTPUT; ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } /* Capture. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); deviceInfo.id.opensl = SL_DEFAULTDEVICEID_AUDIOINPUT; ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } return MA_SUCCESS; } static void ma_context_add_data_format_ex__opensl(ma_context* pContext, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_device_info* pDeviceInfo) { MA_ASSERT(pContext != NULL); MA_ASSERT(pDeviceInfo != NULL); pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].format = format; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].channels = channels; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].sampleRate = sampleRate; pDeviceInfo->nativeDataFormats[pDeviceInfo->nativeDataFormatCount].flags = 0; pDeviceInfo->nativeDataFormatCount += 1; } static void ma_context_add_data_format__opensl(ma_context* pContext, ma_format format, ma_device_info* pDeviceInfo) { ma_uint32 minChannels = 1; ma_uint32 maxChannels = 2; ma_uint32 minSampleRate = (ma_uint32)ma_standard_sample_rate_8000; ma_uint32 maxSampleRate = (ma_uint32)ma_standard_sample_rate_48000; ma_uint32 iChannel; ma_uint32 iSampleRate; MA_ASSERT(pContext != NULL); MA_ASSERT(pDeviceInfo != NULL); /* Each sample format can support mono and stereo, and we'll support a small subset of standard rates (up to 48000). A better solution would be to somehow find a native sample rate. */ for (iChannel = minChannels; iChannel < maxChannels; iChannel += 1) { for (iSampleRate = 0; iSampleRate < ma_countof(g_maStandardSampleRatePriorities); iSampleRate += 1) { ma_uint32 standardSampleRate = g_maStandardSampleRatePriorities[iSampleRate]; if (standardSampleRate >= minSampleRate && standardSampleRate <= maxSampleRate) { ma_context_add_data_format_ex__opensl(pContext, format, iChannel, standardSampleRate, pDeviceInfo); } } } } static ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { MA_ASSERT(pContext != NULL); MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to get device info. */ if (g_maOpenSLInitCounter == 0) { return MA_INVALID_OPERATION; } /* TODO: Test Me. This is currently untested, so for now we are just returning default devices. */ #if 0 && !defined(MA_ANDROID) SLAudioIODeviceCapabilitiesItf deviceCaps; SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, (SLInterfaceID)pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps); if (resultSL != SL_RESULT_SUCCESS) { /* The interface may not be supported so just report a default device. */ goto return_default_device; } if (deviceType == ma_device_type_playback) { SLAudioOutputDescriptor desc; resultSL = (*deviceCaps)->QueryAudioOutputCapabilities(deviceCaps, pDeviceID->opensl, &desc); if (resultSL != SL_RESULT_SUCCESS) { return ma_result_from_OpenSL(resultSL); } ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (const char*)desc.pDeviceName, (size_t)-1); } else { SLAudioInputDescriptor desc; resultSL = (*deviceCaps)->QueryAudioInputCapabilities(deviceCaps, pDeviceID->opensl, &desc); if (resultSL != SL_RESULT_SUCCESS) { return ma_result_from_OpenSL(resultSL); } ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (const char*)desc.deviceName, (size_t)-1); } goto return_detailed_info; #else goto return_default_device; #endif return_default_device: if (pDeviceID != NULL) { if ((deviceType == ma_device_type_playback && pDeviceID->opensl != SL_DEFAULTDEVICEID_AUDIOOUTPUT) || (deviceType == ma_device_type_capture && pDeviceID->opensl != SL_DEFAULTDEVICEID_AUDIOINPUT)) { return MA_NO_DEVICE; /* Don't know the device. */ } } /* ID and Name / Description */ if (deviceType == ma_device_type_playback) { pDeviceInfo->id.opensl = SL_DEFAULTDEVICEID_AUDIOOUTPUT; ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { pDeviceInfo->id.opensl = SL_DEFAULTDEVICEID_AUDIOINPUT; ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } pDeviceInfo->isDefault = MA_TRUE; goto return_detailed_info; return_detailed_info: /* For now we're just outputting a set of values that are supported by the API but not necessarily supported by the device natively. Later on we should work on this so that it more closely reflects the device's actual native format. */ pDeviceInfo->nativeDataFormatCount = 0; #if defined(MA_ANDROID) && __ANDROID_API__ >= 21 ma_context_add_data_format__opensl(pContext, ma_format_f32, pDeviceInfo); #endif ma_context_add_data_format__opensl(pContext, ma_format_s16, pDeviceInfo); ma_context_add_data_format__opensl(pContext, ma_format_u8, pDeviceInfo); return MA_SUCCESS; } #ifdef MA_ANDROID /*void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, SLuint32 eventFlags, const void* pBuffer, SLuint32 bufferSize, SLuint32 dataUsed, void* pContext)*/ static void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; size_t periodSizeInBytes; ma_uint8* pBuffer; SLresult resultSL; MA_ASSERT(pDevice != NULL); (void)pBufferQueue; /* For now, don't do anything unless the buffer was fully processed. From what I can tell, it looks like OpenSL|ES 1.1 improves on buffer queues to the point that we could much more intelligently handle this, but unfortunately it looks like Android is only supporting OpenSL|ES 1.0.1 for now :( */ /* Don't do anything if the device is not started. */ if (ma_device_get_state(pDevice) != ma_device_state_started) { return; } /* Don't do anything if the device is being drained. */ if (pDevice->opensl.isDrainingCapture) { return; } periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); pBuffer = pDevice->opensl.pBufferCapture + (pDevice->opensl.currentBufferIndexCapture * periodSizeInBytes); ma_device_handle_backend_data_callback(pDevice, NULL, pBuffer, pDevice->capture.internalPeriodSizeInFrames); resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pBuffer, periodSizeInBytes); if (resultSL != SL_RESULT_SUCCESS) { return; } pDevice->opensl.currentBufferIndexCapture = (pDevice->opensl.currentBufferIndexCapture + 1) % pDevice->capture.internalPeriods; } static void ma_buffer_queue_callback_playback__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData) { ma_device* pDevice = (ma_device*)pUserData; size_t periodSizeInBytes; ma_uint8* pBuffer; SLresult resultSL; MA_ASSERT(pDevice != NULL); (void)pBufferQueue; /* Don't do anything if the device is not started. */ if (ma_device_get_state(pDevice) != ma_device_state_started) { return; } /* Don't do anything if the device is being drained. */ if (pDevice->opensl.isDrainingPlayback) { return; } periodSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); pBuffer = pDevice->opensl.pBufferPlayback + (pDevice->opensl.currentBufferIndexPlayback * periodSizeInBytes); ma_device_handle_backend_data_callback(pDevice, pBuffer, NULL, pDevice->playback.internalPeriodSizeInFrames); resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pBuffer, periodSizeInBytes); if (resultSL != SL_RESULT_SUCCESS) { return; } pDevice->opensl.currentBufferIndexPlayback = (pDevice->opensl.currentBufferIndexPlayback + 1) % pDevice->playback.internalPeriods; } #endif static ma_result ma_device_uninit__opensl(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before uninitializing the device. */ if (g_maOpenSLInitCounter == 0) { return MA_INVALID_OPERATION; } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { if (pDevice->opensl.pAudioRecorderObj) { MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Destroy((SLObjectItf)pDevice->opensl.pAudioRecorderObj); } ma_free(pDevice->opensl.pBufferCapture, &pDevice->pContext->allocationCallbacks); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { if (pDevice->opensl.pAudioPlayerObj) { MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Destroy((SLObjectItf)pDevice->opensl.pAudioPlayerObj); } if (pDevice->opensl.pOutputMixObj) { MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Destroy((SLObjectItf)pDevice->opensl.pOutputMixObj); } ma_free(pDevice->opensl.pBufferPlayback, &pDevice->pContext->allocationCallbacks); } return MA_SUCCESS; } #if defined(MA_ANDROID) && __ANDROID_API__ >= 21 typedef SLAndroidDataFormat_PCM_EX ma_SLDataFormat_PCM; #else typedef SLDataFormat_PCM ma_SLDataFormat_PCM; #endif static ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* channelMap, ma_SLDataFormat_PCM* pDataFormat) { /* We need to convert our format/channels/rate so that they aren't set to default. */ if (format == ma_format_unknown) { format = MA_DEFAULT_FORMAT; } if (channels == 0) { channels = MA_DEFAULT_CHANNELS; } if (sampleRate == 0) { sampleRate = MA_DEFAULT_SAMPLE_RATE; } #if defined(MA_ANDROID) && __ANDROID_API__ >= 21 if (format == ma_format_f32) { pDataFormat->formatType = SL_ANDROID_DATAFORMAT_PCM_EX; pDataFormat->representation = SL_ANDROID_PCM_REPRESENTATION_FLOAT; } else { pDataFormat->formatType = SL_DATAFORMAT_PCM; } #else pDataFormat->formatType = SL_DATAFORMAT_PCM; #endif pDataFormat->numChannels = channels; ((SLDataFormat_PCM*)pDataFormat)->samplesPerSec = ma_round_to_standard_sample_rate__opensl(sampleRate * 1000); /* In millihertz. Annoyingly, the sample rate variable is named differently between SLAndroidDataFormat_PCM_EX and SLDataFormat_PCM */ pDataFormat->bitsPerSample = ma_get_bytes_per_sample(format) * 8; pDataFormat->channelMask = ma_channel_map_to_channel_mask__opensl(channelMap, channels); pDataFormat->endianness = (ma_is_little_endian()) ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN; /* Android has a few restrictions on the format as documented here: https://developer.android.com/ndk/guides/audio/opensl-for-android.html - Only mono and stereo is supported. - Only u8 and s16 formats are supported. - Maximum sample rate of 48000. */ #ifdef MA_ANDROID if (pDataFormat->numChannels > 2) { pDataFormat->numChannels = 2; } #if __ANDROID_API__ >= 21 if (pDataFormat->formatType == SL_ANDROID_DATAFORMAT_PCM_EX) { /* It's floating point. */ MA_ASSERT(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT); if (pDataFormat->bitsPerSample > 32) { pDataFormat->bitsPerSample = 32; } } else { if (pDataFormat->bitsPerSample > 16) { pDataFormat->bitsPerSample = 16; } } #else if (pDataFormat->bitsPerSample > 16) { pDataFormat->bitsPerSample = 16; } #endif if (((SLDataFormat_PCM*)pDataFormat)->samplesPerSec > SL_SAMPLINGRATE_48) { ((SLDataFormat_PCM*)pDataFormat)->samplesPerSec = SL_SAMPLINGRATE_48; } #endif pDataFormat->containerSize = pDataFormat->bitsPerSample; /* Always tightly packed for now. */ return MA_SUCCESS; } static ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataFormat, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_bool32 isFloatingPoint = MA_FALSE; #if defined(MA_ANDROID) && __ANDROID_API__ >= 21 if (pDataFormat->formatType == SL_ANDROID_DATAFORMAT_PCM_EX) { MA_ASSERT(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT); isFloatingPoint = MA_TRUE; } #endif if (isFloatingPoint) { if (pDataFormat->bitsPerSample == 32) { *pFormat = ma_format_f32; } } else { if (pDataFormat->bitsPerSample == 8) { *pFormat = ma_format_u8; } else if (pDataFormat->bitsPerSample == 16) { *pFormat = ma_format_s16; } else if (pDataFormat->bitsPerSample == 24) { *pFormat = ma_format_s24; } else if (pDataFormat->bitsPerSample == 32) { *pFormat = ma_format_s32; } } *pChannels = pDataFormat->numChannels; *pSampleRate = ((SLDataFormat_PCM*)pDataFormat)->samplesPerSec / 1000; ma_channel_mask_to_channel_map__opensl(pDataFormat->channelMask, ma_min(pDataFormat->numChannels, channelMapCap), pChannelMap); return MA_SUCCESS; } static ma_result ma_device_init__opensl(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { #ifdef MA_ANDROID SLDataLocator_AndroidSimpleBufferQueue queue; SLresult resultSL; size_t bufferSizeInBytes; SLInterfaceID itfIDs[2]; const SLboolean itfIDsRequired[] = { SL_BOOLEAN_TRUE, /* SL_IID_ANDROIDSIMPLEBUFFERQUEUE */ SL_BOOLEAN_FALSE /* SL_IID_ANDROIDCONFIGURATION */ }; #endif MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to initialize a new device. */ if (g_maOpenSLInitCounter == 0) { return MA_INVALID_OPERATION; } if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* For now, only supporting Android implementations of OpenSL|ES since that's the only one I've been able to test with and I currently depend on Android-specific extensions (simple buffer queues). */ #ifdef MA_ANDROID itfIDs[0] = (SLInterfaceID)pDevice->pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE; itfIDs[1] = (SLInterfaceID)pDevice->pContext->opensl.SL_IID_ANDROIDCONFIGURATION; /* No exclusive mode with OpenSL|ES. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } /* Now we can start initializing the device properly. */ MA_ASSERT(pDevice != NULL); MA_ZERO_OBJECT(&pDevice->opensl); queue.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE; if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { ma_SLDataFormat_PCM pcm; SLDataLocator_IODevice locatorDevice; SLDataSource source; SLDataSink sink; SLAndroidConfigurationItf pRecorderConfig; ma_SLDataFormat_PCM_init__opensl(pDescriptorCapture->format, pDescriptorCapture->channels, pDescriptorCapture->sampleRate, pDescriptorCapture->channelMap, &pcm); locatorDevice.locatorType = SL_DATALOCATOR_IODEVICE; locatorDevice.deviceType = SL_IODEVICE_AUDIOINPUT; locatorDevice.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT; /* Must always use the default device with Android. */ locatorDevice.device = NULL; source.pLocator = &locatorDevice; source.pFormat = NULL; queue.numBuffers = pDescriptorCapture->periodCount; sink.pLocator = &queue; sink.pFormat = (SLDataFormat_PCM*)&pcm; resultSL = (*g_maEngineSL)->CreateAudioRecorder(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioRecorderObj, &source, &sink, ma_countof(itfIDs), itfIDs, itfIDsRequired); if (resultSL == SL_RESULT_CONTENT_UNSUPPORTED || resultSL == SL_RESULT_PARAMETER_INVALID) { /* Unsupported format. Fall back to something safer and try again. If this fails, just abort. */ pcm.formatType = SL_DATAFORMAT_PCM; pcm.numChannels = 1; ((SLDataFormat_PCM*)&pcm)->samplesPerSec = SL_SAMPLINGRATE_16; /* The name of the sample rate variable is different between SLAndroidDataFormat_PCM_EX and SLDataFormat_PCM. */ pcm.bitsPerSample = 16; pcm.containerSize = pcm.bitsPerSample; /* Always tightly packed for now. */ pcm.channelMask = 0; resultSL = (*g_maEngineSL)->CreateAudioRecorder(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioRecorderObj, &source, &sink, ma_countof(itfIDs), itfIDs, itfIDsRequired); } if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio recorder."); return ma_result_from_OpenSL(resultSL); } /* Set the recording preset before realizing the player. */ if (pConfig->opensl.recordingPreset != ma_opensl_recording_preset_default) { resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_ANDROIDCONFIGURATION, &pRecorderConfig); if (resultSL == SL_RESULT_SUCCESS) { SLint32 recordingPreset = ma_to_recording_preset__opensl(pConfig->opensl.recordingPreset); resultSL = (*pRecorderConfig)->SetConfiguration(pRecorderConfig, SL_ANDROID_KEY_RECORDING_PRESET, &recordingPreset, sizeof(SLint32)); if (resultSL != SL_RESULT_SUCCESS) { /* Failed to set the configuration. Just keep going. */ } } } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Realize((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_BOOLEAN_FALSE); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio recorder."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_RECORD, &pDevice->opensl.pAudioRecorder); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_RECORD interface."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueueCapture); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, ma_buffer_queue_callback_capture__opensl_android, pDevice); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback."); return ma_result_from_OpenSL(resultSL); } /* The internal format is determined by the "pcm" object. */ ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDescriptorCapture->format, &pDescriptorCapture->channels, &pDescriptorCapture->sampleRate, pDescriptorCapture->channelMap, ma_countof(pDescriptorCapture->channelMap)); /* Buffer. */ pDescriptorCapture->periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptorCapture, pDescriptorCapture->sampleRate, pConfig->performanceProfile); pDevice->opensl.currentBufferIndexCapture = 0; bufferSizeInBytes = pDescriptorCapture->periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorCapture->format, pDescriptorCapture->channels) * pDescriptorCapture->periodCount; pDevice->opensl.pBufferCapture = (ma_uint8*)ma_calloc(bufferSizeInBytes, &pDevice->pContext->allocationCallbacks); if (pDevice->opensl.pBufferCapture == NULL) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to allocate memory for data buffer."); return MA_OUT_OF_MEMORY; } MA_ZERO_MEMORY(pDevice->opensl.pBufferCapture, bufferSizeInBytes); } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_SLDataFormat_PCM pcm; SLDataSource source; SLDataLocator_OutputMix outmixLocator; SLDataSink sink; SLAndroidConfigurationItf pPlayerConfig; ma_SLDataFormat_PCM_init__opensl(pDescriptorPlayback->format, pDescriptorPlayback->channels, pDescriptorPlayback->sampleRate, pDescriptorPlayback->channelMap, &pcm); resultSL = (*g_maEngineSL)->CreateOutputMix(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pOutputMixObj, 0, NULL, NULL); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create output mix."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Realize((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_BOOLEAN_FALSE); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize output mix object."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->GetInterface((SLObjectItf)pDevice->opensl.pOutputMixObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_OUTPUTMIX, &pDevice->opensl.pOutputMix); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_OUTPUTMIX interface."); return ma_result_from_OpenSL(resultSL); } /* Set the output device. */ if (pDescriptorPlayback->pDeviceID != NULL) { SLuint32 deviceID_OpenSL = pDescriptorPlayback->pDeviceID->opensl; MA_OPENSL_OUTPUTMIX(pDevice->opensl.pOutputMix)->ReRoute((SLOutputMixItf)pDevice->opensl.pOutputMix, 1, &deviceID_OpenSL); } queue.numBuffers = pDescriptorPlayback->periodCount; source.pLocator = &queue; source.pFormat = (SLDataFormat_PCM*)&pcm; outmixLocator.locatorType = SL_DATALOCATOR_OUTPUTMIX; outmixLocator.outputMix = (SLObjectItf)pDevice->opensl.pOutputMixObj; sink.pLocator = &outmixLocator; sink.pFormat = NULL; resultSL = (*g_maEngineSL)->CreateAudioPlayer(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioPlayerObj, &source, &sink, ma_countof(itfIDs), itfIDs, itfIDsRequired); if (resultSL == SL_RESULT_CONTENT_UNSUPPORTED || resultSL == SL_RESULT_PARAMETER_INVALID) { /* Unsupported format. Fall back to something safer and try again. If this fails, just abort. */ pcm.formatType = SL_DATAFORMAT_PCM; pcm.numChannels = 2; ((SLDataFormat_PCM*)&pcm)->samplesPerSec = SL_SAMPLINGRATE_16; pcm.bitsPerSample = 16; pcm.containerSize = pcm.bitsPerSample; /* Always tightly packed for now. */ pcm.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT; resultSL = (*g_maEngineSL)->CreateAudioPlayer(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioPlayerObj, &source, &sink, ma_countof(itfIDs), itfIDs, itfIDsRequired); } if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio player."); return ma_result_from_OpenSL(resultSL); } /* Set the stream type before realizing the player. */ if (pConfig->opensl.streamType != ma_opensl_stream_type_default) { resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_ANDROIDCONFIGURATION, &pPlayerConfig); if (resultSL == SL_RESULT_SUCCESS) { SLint32 streamType = ma_to_stream_type__opensl(pConfig->opensl.streamType); resultSL = (*pPlayerConfig)->SetConfiguration(pPlayerConfig, SL_ANDROID_KEY_STREAM_TYPE, &streamType, sizeof(SLint32)); if (resultSL != SL_RESULT_SUCCESS) { /* Failed to set the configuration. Just keep going. */ } } } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Realize((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_BOOLEAN_FALSE); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio player."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_PLAY, &pDevice->opensl.pAudioPlayer); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_PLAY interface."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, (SLInterfaceID)pDevice->pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueuePlayback); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface."); return ma_result_from_OpenSL(resultSL); } resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, ma_buffer_queue_callback_playback__opensl_android, pDevice); if (resultSL != SL_RESULT_SUCCESS) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback."); return ma_result_from_OpenSL(resultSL); } /* The internal format is determined by the "pcm" object. */ ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDescriptorPlayback->format, &pDescriptorPlayback->channels, &pDescriptorPlayback->sampleRate, pDescriptorPlayback->channelMap, ma_countof(pDescriptorPlayback->channelMap)); /* Buffer. */ pDescriptorPlayback->periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_descriptor(pDescriptorPlayback, pDescriptorPlayback->sampleRate, pConfig->performanceProfile); pDevice->opensl.currentBufferIndexPlayback = 0; bufferSizeInBytes = pDescriptorPlayback->periodSizeInFrames * ma_get_bytes_per_frame(pDescriptorPlayback->format, pDescriptorPlayback->channels) * pDescriptorPlayback->periodCount; pDevice->opensl.pBufferPlayback = (ma_uint8*)ma_calloc(bufferSizeInBytes, &pDevice->pContext->allocationCallbacks); if (pDevice->opensl.pBufferPlayback == NULL) { ma_device_uninit__opensl(pDevice); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to allocate memory for data buffer."); return MA_OUT_OF_MEMORY; } MA_ZERO_MEMORY(pDevice->opensl.pBufferPlayback, bufferSizeInBytes); } return MA_SUCCESS; #else return MA_NO_BACKEND; /* Non-Android implementations are not supported. */ #endif } static ma_result ma_device_start__opensl(ma_device* pDevice) { SLresult resultSL; size_t periodSizeInBytes; ma_uint32 iPeriod; MA_ASSERT(pDevice != NULL); MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to start the device. */ if (g_maOpenSLInitCounter == 0) { return MA_INVALID_OPERATION; } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_RECORDING); if (resultSL != SL_RESULT_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal capture device."); return ma_result_from_OpenSL(resultSL); } periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels); for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) { resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pDevice->opensl.pBufferCapture + (periodSizeInBytes * iPeriod), periodSizeInBytes); if (resultSL != SL_RESULT_SUCCESS) { MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for capture device."); return ma_result_from_OpenSL(resultSL); } } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_PLAYING); if (resultSL != SL_RESULT_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal playback device."); return ma_result_from_OpenSL(resultSL); } /* In playback mode (no duplex) we need to load some initial buffers. In duplex mode we need to enqueu silent buffers. */ if (pDevice->type == ma_device_type_duplex) { MA_ZERO_MEMORY(pDevice->opensl.pBufferPlayback, pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels)); } else { ma_device__read_frames_from_client(pDevice, pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods, pDevice->opensl.pBufferPlayback); } periodSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels); for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) { resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pDevice->opensl.pBufferPlayback + (periodSizeInBytes * iPeriod), periodSizeInBytes); if (resultSL != SL_RESULT_SUCCESS) { MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED); ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for playback device."); return ma_result_from_OpenSL(resultSL); } } } return MA_SUCCESS; } static ma_result ma_device_drain__opensl(ma_device* pDevice, ma_device_type deviceType) { SLAndroidSimpleBufferQueueItf pBufferQueue; MA_ASSERT(deviceType == ma_device_type_capture || deviceType == ma_device_type_playback); if (pDevice->type == ma_device_type_capture) { pBufferQueue = (SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture; pDevice->opensl.isDrainingCapture = MA_TRUE; } else { pBufferQueue = (SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback; pDevice->opensl.isDrainingPlayback = MA_TRUE; } for (;;) { SLAndroidSimpleBufferQueueState state; MA_OPENSL_BUFFERQUEUE(pBufferQueue)->GetState(pBufferQueue, &state); if (state.count == 0) { break; } ma_sleep(10); } if (pDevice->type == ma_device_type_capture) { pDevice->opensl.isDrainingCapture = MA_FALSE; } else { pDevice->opensl.isDrainingPlayback = MA_FALSE; } return MA_SUCCESS; } static ma_result ma_device_stop__opensl(ma_device* pDevice) { SLresult resultSL; MA_ASSERT(pDevice != NULL); MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before stopping/uninitializing the device. */ if (g_maOpenSLInitCounter == 0) { return MA_INVALID_OPERATION; } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_device_drain__opensl(pDevice, ma_device_type_capture); resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED); if (resultSL != SL_RESULT_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal capture device."); return ma_result_from_OpenSL(resultSL); } MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Clear((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_device_drain__opensl(pDevice, ma_device_type_playback); resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED); if (resultSL != SL_RESULT_SUCCESS) { ma_log_post(ma_device_get_log(pDevice), MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal playback device."); return ma_result_from_OpenSL(resultSL); } MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Clear((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback); } /* Make sure the client is aware that the device has stopped. There may be an OpenSL|ES callback for this, but I haven't found it. */ ma_device__on_notification_stopped(pDevice); return MA_SUCCESS; } static ma_result ma_context_uninit__opensl(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_opensl); (void)pContext; /* Uninit global data. */ ma_spinlock_lock(&g_maOpenSLSpinlock); { MA_ASSERT(g_maOpenSLInitCounter > 0); /* If you've triggered this, it means you have ma_context_init/uninit mismatch. Each successful call to ma_context_init() must be matched up with a call to ma_context_uninit(). */ g_maOpenSLInitCounter -= 1; if (g_maOpenSLInitCounter == 0) { (*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL); } } ma_spinlock_unlock(&g_maOpenSLSpinlock); return MA_SUCCESS; } static ma_result ma_dlsym_SLInterfaceID__opensl(ma_context* pContext, const char* pName, ma_handle* pHandle) { /* We need to return an error if the symbol cannot be found. This is important because there have been reports that some symbols do not exist. */ ma_handle* p = (ma_handle*)ma_dlsym(pContext, pContext->opensl.libOpenSLES, pName); if (p == NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_INFO, "[OpenSL] Cannot find symbol %s", pName); return MA_NO_BACKEND; } *pHandle = *p; return MA_SUCCESS; } static ma_result ma_context_init_engine_nolock__opensl(ma_context* pContext) { g_maOpenSLInitCounter += 1; if (g_maOpenSLInitCounter == 1) { SLresult resultSL; resultSL = ((ma_slCreateEngine_proc)pContext->opensl.slCreateEngine)(&g_maEngineObjectSL, 0, NULL, 0, NULL, NULL); if (resultSL != SL_RESULT_SUCCESS) { g_maOpenSLInitCounter -= 1; return ma_result_from_OpenSL(resultSL); } (*g_maEngineObjectSL)->Realize(g_maEngineObjectSL, SL_BOOLEAN_FALSE); resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, (SLInterfaceID)pContext->opensl.SL_IID_ENGINE, &g_maEngineSL); if (resultSL != SL_RESULT_SUCCESS) { (*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL); g_maOpenSLInitCounter -= 1; return ma_result_from_OpenSL(resultSL); } } return MA_SUCCESS; } static ma_result ma_context_init__opensl(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { ma_result result; #if !defined(MA_NO_RUNTIME_LINKING) size_t i; const char* libOpenSLESNames[] = { "libOpenSLES.so" }; #endif MA_ASSERT(pContext != NULL); (void)pConfig; #if !defined(MA_NO_RUNTIME_LINKING) /* Dynamically link against libOpenSLES.so. I have now had multiple reports that SL_IID_ANDROIDSIMPLEBUFFERQUEUE cannot be found. One report was happening at compile time and another at runtime. To try working around this, I'm going to link to libOpenSLES at runtime and extract the symbols rather than reference them directly. This should, hopefully, fix these issues as the compiler won't see any references to the symbols and will hopefully skip the checks. */ for (i = 0; i < ma_countof(libOpenSLESNames); i += 1) { pContext->opensl.libOpenSLES = ma_dlopen(pContext, libOpenSLESNames[i]); if (pContext->opensl.libOpenSLES != NULL) { break; } } if (pContext->opensl.libOpenSLES == NULL) { ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_INFO, "[OpenSL] Could not find libOpenSLES.so"); return MA_NO_BACKEND; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_ENGINE", &pContext->opensl.SL_IID_ENGINE); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_AUDIOIODEVICECAPABILITIES", &pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_ANDROIDSIMPLEBUFFERQUEUE", &pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_RECORD", &pContext->opensl.SL_IID_RECORD); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_PLAY", &pContext->opensl.SL_IID_PLAY); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_OUTPUTMIX", &pContext->opensl.SL_IID_OUTPUTMIX); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } result = ma_dlsym_SLInterfaceID__opensl(pContext, "SL_IID_ANDROIDCONFIGURATION", &pContext->opensl.SL_IID_ANDROIDCONFIGURATION); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); return result; } pContext->opensl.slCreateEngine = (ma_proc)ma_dlsym(pContext, pContext->opensl.libOpenSLES, "slCreateEngine"); if (pContext->opensl.slCreateEngine == NULL) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_INFO, "[OpenSL] Cannot find symbol slCreateEngine."); return MA_NO_BACKEND; } #else pContext->opensl.SL_IID_ENGINE = (ma_handle)SL_IID_ENGINE; pContext->opensl.SL_IID_AUDIOIODEVICECAPABILITIES = (ma_handle)SL_IID_AUDIOIODEVICECAPABILITIES; pContext->opensl.SL_IID_ANDROIDSIMPLEBUFFERQUEUE = (ma_handle)SL_IID_ANDROIDSIMPLEBUFFERQUEUE; pContext->opensl.SL_IID_RECORD = (ma_handle)SL_IID_RECORD; pContext->opensl.SL_IID_PLAY = (ma_handle)SL_IID_PLAY; pContext->opensl.SL_IID_OUTPUTMIX = (ma_handle)SL_IID_OUTPUTMIX; pContext->opensl.SL_IID_ANDROIDCONFIGURATION = (ma_handle)SL_IID_ANDROIDCONFIGURATION; pContext->opensl.slCreateEngine = (ma_proc)slCreateEngine; #endif /* Initialize global data first if applicable. */ ma_spinlock_lock(&g_maOpenSLSpinlock); { result = ma_context_init_engine_nolock__opensl(pContext); } ma_spinlock_unlock(&g_maOpenSLSpinlock); if (result != MA_SUCCESS) { ma_dlclose(pContext, pContext->opensl.libOpenSLES); ma_log_post(ma_context_get_log(pContext), MA_LOG_LEVEL_INFO, "[OpenSL] Failed to initialize OpenSL engine."); return result; } pCallbacks->onContextInit = ma_context_init__opensl; pCallbacks->onContextUninit = ma_context_uninit__opensl; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__opensl; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__opensl; pCallbacks->onDeviceInit = ma_device_init__opensl; pCallbacks->onDeviceUninit = ma_device_uninit__opensl; pCallbacks->onDeviceStart = ma_device_start__opensl; pCallbacks->onDeviceStop = ma_device_stop__opensl; pCallbacks->onDeviceRead = NULL; /* Not needed because OpenSL|ES is asynchronous. */ pCallbacks->onDeviceWrite = NULL; /* Not needed because OpenSL|ES is asynchronous. */ pCallbacks->onDeviceDataLoop = NULL; /* Not needed because OpenSL|ES is asynchronous. */ return MA_SUCCESS; } #endif /* OpenSL|ES */ /****************************************************************************** Web Audio Backend ******************************************************************************/ #ifdef MA_HAS_WEBAUDIO #include static ma_bool32 ma_is_capture_supported__webaudio() { return EM_ASM_INT({ return (navigator.mediaDevices !== undefined && navigator.mediaDevices.getUserMedia !== undefined); }, 0) != 0; /* Must pass in a dummy argument for C99 compatibility. */ } #ifdef __cplusplus extern "C" { #endif void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_capture__webaudio(ma_device* pDevice, int frameCount, float* pFrames) { ma_device_handle_backend_data_callback(pDevice, NULL, pFrames, (ma_uint32)frameCount); } void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_playback__webaudio(ma_device* pDevice, int frameCount, float* pFrames) { ma_device_handle_backend_data_callback(pDevice, pFrames, NULL, (ma_uint32)frameCount); } #ifdef __cplusplus } #endif static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_bool32 cbResult = MA_TRUE; MA_ASSERT(pContext != NULL); MA_ASSERT(callback != NULL); /* Only supporting default devices for now. */ /* Playback. */ if (cbResult) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); deviceInfo.isDefault = MA_TRUE; /* Only supporting default devices. */ cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData); } /* Capture. */ if (cbResult) { if (ma_is_capture_supported__webaudio()) { ma_device_info deviceInfo; MA_ZERO_OBJECT(&deviceInfo); ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); deviceInfo.isDefault = MA_TRUE; /* Only supporting default devices. */ cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData); } } return MA_SUCCESS; } static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { MA_ASSERT(pContext != NULL); if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) { return MA_NO_DEVICE; } MA_ZERO_MEMORY(pDeviceInfo->id.webaudio, sizeof(pDeviceInfo->id.webaudio)); /* Only supporting default devices for now. */ (void)pDeviceID; if (deviceType == ma_device_type_playback) { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } /* Only supporting default devices. */ pDeviceInfo->isDefault = MA_TRUE; /* Web Audio can support any number of channels and sample rates. It only supports f32 formats, however. */ pDeviceInfo->nativeDataFormats[0].flags = 0; pDeviceInfo->nativeDataFormats[0].format = ma_format_unknown; pDeviceInfo->nativeDataFormats[0].channels = 0; /* All channels are supported. */ pDeviceInfo->nativeDataFormats[0].sampleRate = EM_ASM_INT({ try { var temp = new (window.AudioContext || window.webkitAudioContext)(); var sampleRate = temp.sampleRate; temp.close(); return sampleRate; } catch(e) { return 0; } }, 0); /* Must pass in a dummy argument for C99 compatibility. */ if (pDeviceInfo->nativeDataFormats[0].sampleRate == 0) { return MA_NO_DEVICE; } pDeviceInfo->nativeDataFormatCount = 1; return MA_SUCCESS; } static void ma_device_uninit_by_index__webaudio(ma_device* pDevice, ma_device_type deviceType, int deviceIndex) { MA_ASSERT(pDevice != NULL); EM_ASM({ var device = miniaudio.get_device_by_index($0); /* Make sure all nodes are disconnected and marked for collection. */ if (device.scriptNode !== undefined) { device.scriptNode.onaudioprocess = function(e) {}; /* We want to reset the callback to ensure it doesn't get called after AudioContext.close() has returned. Shouldn't happen since we're disconnecting, but just to be safe... */ device.scriptNode.disconnect(); device.scriptNode = undefined; } if (device.streamNode !== undefined) { device.streamNode.disconnect(); device.streamNode = undefined; } /* Stop the device. I think there is a chance the callback could get fired after calling this, hence why we want to clear the callback before closing. */ device.webaudio.close(); device.webaudio = undefined; /* Can't forget to free the intermediary buffer. This is the buffer that's shared between JavaScript and C. */ if (device.intermediaryBuffer !== undefined) { Module._free(device.intermediaryBuffer); device.intermediaryBuffer = undefined; device.intermediaryBufferView = undefined; device.intermediaryBufferSizeInBytes = undefined; } /* Make sure the device is untracked so the slot can be reused later. */ miniaudio.untrack_device_by_index($0); }, deviceIndex, deviceType); } static ma_result ma_device_uninit__webaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_playback, pDevice->webaudio.indexPlayback); } return MA_SUCCESS; } static ma_uint32 ma_calculate_period_size_in_frames_from_descriptor__webaudio(const ma_device_descriptor* pDescriptor, ma_uint32 nativeSampleRate, ma_performance_profile performanceProfile) { /* There have been reports of the default buffer size being too small on some browsers. There have been reports of the default buffer size being too small on some browsers. If we're using default buffer size, we'll make sure the period size is a big biffer than our standard defaults. */ ma_uint32 periodSizeInFrames; if (pDescriptor->periodSizeInFrames == 0) { if (pDescriptor->periodSizeInMilliseconds == 0) { if (performanceProfile == ma_performance_profile_low_latency) { periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(33, nativeSampleRate); /* 1 frame @ 30 FPS */ } else { periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(333, nativeSampleRate); } } else { periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pDescriptor->periodSizeInMilliseconds, nativeSampleRate); } } else { periodSizeInFrames = pDescriptor->periodSizeInFrames; } /* The size of the buffer must be a power of 2 and between 256 and 16384. */ if (periodSizeInFrames < 256) { periodSizeInFrames = 256; } else if (periodSizeInFrames > 16384) { periodSizeInFrames = 16384; } else { periodSizeInFrames = ma_next_power_of_2(periodSizeInFrames); } return periodSizeInFrames; } static ma_result ma_device_init_by_type__webaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptor, ma_device_type deviceType) { int deviceIndex; ma_uint32 channels; ma_uint32 sampleRate; ma_uint32 periodSizeInFrames; MA_ASSERT(pDevice != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(deviceType != ma_device_type_duplex); if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) { return MA_NO_DEVICE; } /* We're going to calculate some stuff in C just to simplify the JS code. */ channels = (pDescriptor->channels > 0) ? pDescriptor->channels : MA_DEFAULT_CHANNELS; sampleRate = (pDescriptor->sampleRate > 0) ? pDescriptor->sampleRate : MA_DEFAULT_SAMPLE_RATE; periodSizeInFrames = ma_calculate_period_size_in_frames_from_descriptor__webaudio(pDescriptor, sampleRate, pConfig->performanceProfile); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_DEBUG, "periodSizeInFrames = %d\n", (int)periodSizeInFrames); /* We create the device on the JavaScript side and reference it using an index. We use this to make it possible to reference the device between JavaScript and C. */ deviceIndex = EM_ASM_INT({ var channels = $0; var sampleRate = $1; var bufferSize = $2; /* In PCM frames. */ var isCapture = $3; var pDevice = $4; if (typeof(window.miniaudio) === 'undefined') { return -1; /* Context not initialized. */ } var device = {}; /* The AudioContext must be created in a suspended state. */ device.webaudio = new (window.AudioContext || window.webkitAudioContext)({sampleRate:sampleRate}); device.webaudio.suspend(); device.state = 1; /* ma_device_state_stopped */ /* We need an intermediary buffer which we use for JavaScript and C interop. This buffer stores interleaved f32 PCM data. Because it's passed between JavaScript and C it needs to be allocated and freed using Module._malloc() and Module._free(). */ device.intermediaryBufferSizeInBytes = channels * bufferSize * 4; device.intermediaryBuffer = Module._malloc(device.intermediaryBufferSizeInBytes); device.intermediaryBufferView = new Float32Array(Module.HEAPF32.buffer, device.intermediaryBuffer, device.intermediaryBufferSizeInBytes); /* Both playback and capture devices use a ScriptProcessorNode for performing per-sample operations. ScriptProcessorNode is actually deprecated so this is likely to be temporary. The way this works for playback is very simple. You just set a callback that's periodically fired, just like a normal audio callback function. But apparently this design is "flawed" and is now deprecated in favour of something called AudioWorklets which _forces_ you to load a _separate_ .js file at run time... nice... Hopefully ScriptProcessorNode will continue to work for years to come, but this may need to change to use AudioSourceBufferNode instead, which I think is what Emscripten uses for it's built-in SDL implementation. I'll be avoiding that insane AudioWorklet API like the plague... For capture it is a bit unintuitive. We use the ScriptProccessorNode _only_ to get the raw PCM data. It is connected to an AudioContext just like the playback case, however we just output silence to the AudioContext instead of passing any real data. It would make more sense to me to use the MediaRecorder API, but unfortunately you need to specify a MIME time (Opus, Vorbis, etc.) for the binary blob that's returned to the client, but I've been unable to figure out how to get this as raw PCM. The closest I can think is to use the MIME type for WAV files and just parse it, but I don't know how well this would work. Although ScriptProccessorNode is deprecated, in practice it seems to have pretty good browser support so I'm leaving it like this for now. If anyone knows how I could get raw PCM data using the MediaRecorder API please let me know! */ device.scriptNode = device.webaudio.createScriptProcessor(bufferSize, (isCapture) ? channels : 0, (isCapture) ? 0 : channels); if (isCapture) { device.scriptNode.onaudioprocess = function(e) { if (device.intermediaryBuffer === undefined) { return; /* This means the device has been uninitialized. */ } if (device.intermediaryBufferView.length == 0) { /* Recreate intermediaryBufferView when losing reference to the underlying buffer, probably due to emscripten resizing heap. */ device.intermediaryBufferView = new Float32Array(Module.HEAPF32.buffer, device.intermediaryBuffer, device.intermediaryBufferSizeInBytes); } /* Make sure silence it output to the AudioContext destination. Not doing this will cause sound to come out of the speakers! */ for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) { e.outputBuffer.getChannelData(iChannel).fill(0.0); } /* There are some situations where we may want to send silence to the client. */ var sendSilence = false; if (device.streamNode === undefined) { sendSilence = true; } /* Sanity check. This will never happen, right? */ if (e.inputBuffer.numberOfChannels != channels) { console.log("Capture: Channel count mismatch. " + e.inputBufer.numberOfChannels + " != " + channels + ". Sending silence."); sendSilence = true; } /* This looped design guards against the situation where e.inputBuffer is a different size to the original buffer size. Should never happen in practice. */ var totalFramesProcessed = 0; while (totalFramesProcessed < e.inputBuffer.length) { var framesRemaining = e.inputBuffer.length - totalFramesProcessed; var framesToProcess = framesRemaining; if (framesToProcess > (device.intermediaryBufferSizeInBytes/channels/4)) { framesToProcess = (device.intermediaryBufferSizeInBytes/channels/4); } /* We need to do the reverse of the playback case. We need to interleave the input data and copy it into the intermediary buffer. Then we send it to the client. */ if (sendSilence) { device.intermediaryBufferView.fill(0.0); } else { for (var iFrame = 0; iFrame < framesToProcess; ++iFrame) { for (var iChannel = 0; iChannel < e.inputBuffer.numberOfChannels; ++iChannel) { device.intermediaryBufferView[iFrame*channels + iChannel] = e.inputBuffer.getChannelData(iChannel)[totalFramesProcessed + iFrame]; } } } /* Send data to the client from our intermediary buffer. */ _ma_device_process_pcm_frames_capture__webaudio(pDevice, framesToProcess, device.intermediaryBuffer); totalFramesProcessed += framesToProcess; } }; navigator.mediaDevices.getUserMedia({audio:true, video:false}) .then(function(stream) { device.streamNode = device.webaudio.createMediaStreamSource(stream); device.streamNode.connect(device.scriptNode); device.scriptNode.connect(device.webaudio.destination); }) .catch(function(error) { /* I think this should output silence... */ device.scriptNode.connect(device.webaudio.destination); }); } else { device.scriptNode.onaudioprocess = function(e) { if (device.intermediaryBuffer === undefined) { return; /* This means the device has been uninitialized. */ } if(device.intermediaryBufferView.length == 0) { /* Recreate intermediaryBufferView when losing reference to the underlying buffer, probably due to emscripten resizing heap. */ device.intermediaryBufferView = new Float32Array(Module.HEAPF32.buffer, device.intermediaryBuffer, device.intermediaryBufferSizeInBytes); } var outputSilence = false; /* Sanity check. This will never happen, right? */ if (e.outputBuffer.numberOfChannels != channels) { console.log("Playback: Channel count mismatch. " + e.outputBufer.numberOfChannels + " != " + channels + ". Outputting silence."); outputSilence = true; return; } /* This looped design guards against the situation where e.outputBuffer is a different size to the original buffer size. Should never happen in practice. */ var totalFramesProcessed = 0; while (totalFramesProcessed < e.outputBuffer.length) { var framesRemaining = e.outputBuffer.length - totalFramesProcessed; var framesToProcess = framesRemaining; if (framesToProcess > (device.intermediaryBufferSizeInBytes/channels/4)) { framesToProcess = (device.intermediaryBufferSizeInBytes/channels/4); } /* Read data from the client into our intermediary buffer. */ _ma_device_process_pcm_frames_playback__webaudio(pDevice, framesToProcess, device.intermediaryBuffer); /* At this point we'll have data in our intermediary buffer which we now need to deinterleave and copy over to the output buffers. */ if (outputSilence) { for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) { e.outputBuffer.getChannelData(iChannel).fill(0.0); } } else { for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) { var outputBuffer = e.outputBuffer.getChannelData(iChannel); var intermediaryBuffer = device.intermediaryBufferView; for (var iFrame = 0; iFrame < framesToProcess; ++iFrame) { outputBuffer[totalFramesProcessed + iFrame] = intermediaryBuffer[iFrame*channels + iChannel]; } } } totalFramesProcessed += framesToProcess; } }; device.scriptNode.connect(device.webaudio.destination); } return miniaudio.track_device(device); }, channels, sampleRate, periodSizeInFrames, deviceType == ma_device_type_capture, pDevice); if (deviceIndex < 0) { return MA_FAILED_TO_OPEN_BACKEND_DEVICE; } if (deviceType == ma_device_type_capture) { pDevice->webaudio.indexCapture = deviceIndex; } else { pDevice->webaudio.indexPlayback = deviceIndex; } pDescriptor->format = ma_format_f32; pDescriptor->channels = channels; ma_channel_map_init_standard(ma_standard_channel_map_webaudio, pDescriptor->channelMap, ma_countof(pDescriptor->channelMap), pDescriptor->channels); pDescriptor->sampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex); pDescriptor->periodSizeInFrames = periodSizeInFrames; pDescriptor->periodCount = 1; return MA_SUCCESS; } static ma_result ma_device_init__webaudio(ma_device* pDevice, const ma_device_config* pConfig, ma_device_descriptor* pDescriptorPlayback, ma_device_descriptor* pDescriptorCapture) { ma_result result; if (pConfig->deviceType == ma_device_type_loopback) { return MA_DEVICE_TYPE_NOT_SUPPORTED; } /* No exclusive mode with Web Audio. */ if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pDescriptorPlayback->shareMode == ma_share_mode_exclusive) || ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pDescriptorCapture->shareMode == ma_share_mode_exclusive)) { return MA_SHARE_MODE_NOT_SUPPORTED; } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { result = ma_device_init_by_type__webaudio(pDevice, pConfig, pDescriptorCapture, ma_device_type_capture); if (result != MA_SUCCESS) { return result; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { result = ma_device_init_by_type__webaudio(pDevice, pConfig, pDescriptorPlayback, ma_device_type_playback); if (result != MA_SUCCESS) { if (pConfig->deviceType == ma_device_type_duplex) { ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture); } return result; } } return MA_SUCCESS; } static ma_result ma_device_start__webaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { EM_ASM({ var device = miniaudio.get_device_by_index($0); device.webaudio.resume(); device.state = 2; /* ma_device_state_started */ }, pDevice->webaudio.indexCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { EM_ASM({ var device = miniaudio.get_device_by_index($0); device.webaudio.resume(); device.state = 2; /* ma_device_state_started */ }, pDevice->webaudio.indexPlayback); } return MA_SUCCESS; } static ma_result ma_device_stop__webaudio(ma_device* pDevice) { MA_ASSERT(pDevice != NULL); /* From the WebAudio API documentation for AudioContext.suspend(): Suspends the progression of AudioContext's currentTime, allows any current context processing blocks that are already processed to be played to the destination, and then allows the system to release its claim on audio hardware. I read this to mean that "any current context processing blocks" are processed by suspend() - i.e. They they are drained. We therefore shouldn't need to do any kind of explicit draining. */ if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) { EM_ASM({ var device = miniaudio.get_device_by_index($0); device.webaudio.suspend(); device.state = 1; /* ma_device_state_stopped */ }, pDevice->webaudio.indexCapture); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { EM_ASM({ var device = miniaudio.get_device_by_index($0); device.webaudio.suspend(); device.state = 1; /* ma_device_state_stopped */ }, pDevice->webaudio.indexPlayback); } ma_device__on_notification_stopped(pDevice); return MA_SUCCESS; } static ma_result ma_context_uninit__webaudio(ma_context* pContext) { MA_ASSERT(pContext != NULL); MA_ASSERT(pContext->backend == ma_backend_webaudio); (void)pContext; /* Unused. */ /* Remove the global miniaudio object from window if there are no more references to it. */ EM_ASM({ if (typeof(window.miniaudio) !== 'undefined') { window.miniaudio.referenceCount--; if (window.miniaudio.referenceCount === 0) { delete window.miniaudio; } } }); return MA_SUCCESS; } static ma_result ma_context_init__webaudio(ma_context* pContext, const ma_context_config* pConfig, ma_backend_callbacks* pCallbacks) { int resultFromJS; MA_ASSERT(pContext != NULL); (void)pConfig; /* Unused. */ /* Here is where our global JavaScript object is initialized. */ resultFromJS = EM_ASM_INT({ if (typeof window === 'undefined' || (window.AudioContext || window.webkitAudioContext) === undefined) { return 0; /* Web Audio not supported. */ } if (typeof(window.miniaudio) === 'undefined') { window.miniaudio = { referenceCount: 0 }; miniaudio.devices = []; /* Device cache for mapping devices to indexes for JavaScript/C interop. */ miniaudio.track_device = function(device) { /* Try inserting into a free slot first. */ for (var iDevice = 0; iDevice < miniaudio.devices.length; ++iDevice) { if (miniaudio.devices[iDevice] == null) { miniaudio.devices[iDevice] = device; return iDevice; } } /* Getting here means there is no empty slots in the array so we just push to the end. */ miniaudio.devices.push(device); return miniaudio.devices.length - 1; }; miniaudio.untrack_device_by_index = function(deviceIndex) { /* We just set the device's slot to null. The slot will get reused in the next call to ma_track_device. */ miniaudio.devices[deviceIndex] = null; /* Trim the array if possible. */ while (miniaudio.devices.length > 0) { if (miniaudio.devices[miniaudio.devices.length-1] == null) { miniaudio.devices.pop(); } else { break; } } }; miniaudio.untrack_device = function(device) { for (var iDevice = 0; iDevice < miniaudio.devices.length; ++iDevice) { if (miniaudio.devices[iDevice] == device) { return miniaudio.untrack_device_by_index(iDevice); } } }; miniaudio.get_device_by_index = function(deviceIndex) { return miniaudio.devices[deviceIndex]; }; miniaudio.unlock_event_types = (function(){ return ['touchstart', 'touchend', 'click']; })(); miniaudio.unlock = function() { for(var i = 0; i < miniaudio.devices.length; ++i) { var device = miniaudio.devices[i]; if (device != null && device.webaudio != null && device.state === 2 /* ma_device_state_started */) { device.webaudio.resume(); } } miniaudio.unlock_event_types.map(function(event_type) { document.removeEventListener(event_type, miniaudio.unlock, true); }); }; miniaudio.unlock_event_types.map(function(event_type) { document.addEventListener(event_type, miniaudio.unlock, true); }); } window.miniaudio.referenceCount++; return 1; }, 0); /* Must pass in a dummy argument for C99 compatibility. */ if (resultFromJS != 1) { return MA_FAILED_TO_INIT_BACKEND; } pCallbacks->onContextInit = ma_context_init__webaudio; pCallbacks->onContextUninit = ma_context_uninit__webaudio; pCallbacks->onContextEnumerateDevices = ma_context_enumerate_devices__webaudio; pCallbacks->onContextGetDeviceInfo = ma_context_get_device_info__webaudio; pCallbacks->onDeviceInit = ma_device_init__webaudio; pCallbacks->onDeviceUninit = ma_device_uninit__webaudio; pCallbacks->onDeviceStart = ma_device_start__webaudio; pCallbacks->onDeviceStop = ma_device_stop__webaudio; pCallbacks->onDeviceRead = NULL; /* Not needed because WebAudio is asynchronous. */ pCallbacks->onDeviceWrite = NULL; /* Not needed because WebAudio is asynchronous. */ pCallbacks->onDeviceDataLoop = NULL; /* Not needed because WebAudio is asynchronous. */ return MA_SUCCESS; } #endif /* Web Audio */ static ma_bool32 ma__is_channel_map_valid(const ma_channel* pChannelMap, ma_uint32 channels) { /* A blank channel map should be allowed, in which case it should use an appropriate default which will depend on context. */ if (pChannelMap != NULL && pChannelMap[0] != MA_CHANNEL_NONE) { ma_uint32 iChannel; if (channels == 0 || channels > MA_MAX_CHANNELS) { return MA_FALSE; /* Channel count out of range. */ } /* A channel cannot be present in the channel map more than once. */ for (iChannel = 0; iChannel < channels; ++iChannel) { ma_uint32 jChannel; for (jChannel = iChannel + 1; jChannel < channels; ++jChannel) { if (pChannelMap[iChannel] == pChannelMap[jChannel]) { return MA_FALSE; } } } } return MA_TRUE; } static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType) { ma_result result; MA_ASSERT(pDevice != NULL); if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { if (pDevice->capture.format == ma_format_unknown) { pDevice->capture.format = pDevice->capture.internalFormat; } if (pDevice->capture.channels == 0) { pDevice->capture.channels = pDevice->capture.internalChannels; } if (pDevice->capture.channelMap[0] == MA_CHANNEL_NONE) { MA_ASSERT(pDevice->capture.channels <= MA_MAX_CHANNELS); if (pDevice->capture.internalChannels == pDevice->capture.channels) { ma_channel_map_copy(pDevice->capture.channelMap, pDevice->capture.internalChannelMap, pDevice->capture.channels); } else { if (pDevice->capture.channelMixMode == ma_channel_mix_mode_simple) { ma_channel_map_init_blank(pDevice->capture.channelMap, pDevice->capture.channels); } else { ma_channel_map_init_standard(ma_standard_channel_map_default, pDevice->capture.channelMap, ma_countof(pDevice->capture.channelMap), pDevice->capture.channels); } } } } if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { if (pDevice->playback.format == ma_format_unknown) { pDevice->playback.format = pDevice->playback.internalFormat; } if (pDevice->playback.channels == 0) { pDevice->playback.channels = pDevice->playback.internalChannels; } if (pDevice->playback.channelMap[0] == MA_CHANNEL_NONE) { MA_ASSERT(pDevice->playback.channels <= MA_MAX_CHANNELS); if (pDevice->playback.internalChannels == pDevice->playback.channels) { ma_channel_map_copy(pDevice->playback.channelMap, pDevice->playback.internalChannelMap, pDevice->playback.channels); } else { if (pDevice->playback.channelMixMode == ma_channel_mix_mode_simple) { ma_channel_map_init_blank(pDevice->playback.channelMap, pDevice->playback.channels); } else { ma_channel_map_init_standard(ma_standard_channel_map_default, pDevice->playback.channelMap, ma_countof(pDevice->playback.channelMap), pDevice->playback.channels); } } } } if (pDevice->sampleRate == 0) { if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { pDevice->sampleRate = pDevice->capture.internalSampleRate; } else { pDevice->sampleRate = pDevice->playback.internalSampleRate; } } /* Data converters. */ if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { /* Converting from internal device format to client format. */ ma_data_converter_config converterConfig = ma_data_converter_config_init_default(); converterConfig.formatIn = pDevice->capture.internalFormat; converterConfig.channelsIn = pDevice->capture.internalChannels; converterConfig.sampleRateIn = pDevice->capture.internalSampleRate; converterConfig.pChannelMapIn = pDevice->capture.internalChannelMap; converterConfig.formatOut = pDevice->capture.format; converterConfig.channelsOut = pDevice->capture.channels; converterConfig.sampleRateOut = pDevice->sampleRate; converterConfig.pChannelMapOut = pDevice->capture.channelMap; converterConfig.channelMixMode = pDevice->capture.channelMixMode; converterConfig.calculateLFEFromSpatialChannels = pDevice->capture.calculateLFEFromSpatialChannels; converterConfig.allowDynamicSampleRate = MA_FALSE; converterConfig.resampling.algorithm = pDevice->resampling.algorithm; converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder; converterConfig.resampling.pBackendVTable = pDevice->resampling.pBackendVTable; converterConfig.resampling.pBackendUserData = pDevice->resampling.pBackendUserData; /* Make sure the old converter is uninitialized first. */ if (ma_device_get_state(pDevice) != ma_device_state_uninitialized) { ma_data_converter_uninit(&pDevice->capture.converter, &pDevice->pContext->allocationCallbacks); } result = ma_data_converter_init(&converterConfig, &pDevice->pContext->allocationCallbacks, &pDevice->capture.converter); if (result != MA_SUCCESS) { return result; } } if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { /* Converting from client format to device format. */ ma_data_converter_config converterConfig = ma_data_converter_config_init_default(); converterConfig.formatIn = pDevice->playback.format; converterConfig.channelsIn = pDevice->playback.channels; converterConfig.sampleRateIn = pDevice->sampleRate; converterConfig.pChannelMapIn = pDevice->playback.channelMap; converterConfig.formatOut = pDevice->playback.internalFormat; converterConfig.channelsOut = pDevice->playback.internalChannels; converterConfig.sampleRateOut = pDevice->playback.internalSampleRate; converterConfig.pChannelMapOut = pDevice->playback.internalChannelMap; converterConfig.channelMixMode = pDevice->playback.channelMixMode; converterConfig.calculateLFEFromSpatialChannels = pDevice->playback.calculateLFEFromSpatialChannels; converterConfig.allowDynamicSampleRate = MA_FALSE; converterConfig.resampling.algorithm = pDevice->resampling.algorithm; converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder; converterConfig.resampling.pBackendVTable = pDevice->resampling.pBackendVTable; converterConfig.resampling.pBackendUserData = pDevice->resampling.pBackendUserData; /* Make sure the old converter is uninitialized first. */ if (ma_device_get_state(pDevice) != ma_device_state_uninitialized) { ma_data_converter_uninit(&pDevice->playback.converter, &pDevice->pContext->allocationCallbacks); } result = ma_data_converter_init(&converterConfig, &pDevice->pContext->allocationCallbacks, &pDevice->playback.converter); if (result != MA_SUCCESS) { return result; } } /* In playback mode, if the data converter does not support retrieval of the required number of input frames given a number of output frames, we need to fall back to a heap-allocated cache. */ if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { ma_uint64 unused; pDevice->playback.inputCacheConsumed = 0; pDevice->playback.inputCacheRemaining = 0; if (deviceType == ma_device_type_duplex || ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, 1, &unused) != MA_SUCCESS) { /* We need a heap allocated cache. We want to size this based on the period size. */ void* pNewInputCache; ma_uint64 newInputCacheCap; ma_uint64 newInputCacheSizeInBytes; newInputCacheCap = ma_calculate_frame_count_after_resampling(pDevice->playback.internalSampleRate, pDevice->sampleRate, pDevice->playback.internalPeriodSizeInFrames); newInputCacheSizeInBytes = newInputCacheCap * ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); if (newInputCacheSizeInBytes > MA_SIZE_MAX) { ma_free(pDevice->playback.pInputCache, &pDevice->pContext->allocationCallbacks); pDevice->playback.pInputCache = NULL; pDevice->playback.inputCacheCap = 0; return MA_OUT_OF_MEMORY; /* Allocation too big. Should never hit this, but makes the cast below safer for 32-bit builds. */ } pNewInputCache = ma_realloc(pDevice->playback.pInputCache, (size_t)newInputCacheSizeInBytes, &pDevice->pContext->allocationCallbacks); if (pNewInputCache == NULL) { ma_free(pDevice->playback.pInputCache, &pDevice->pContext->allocationCallbacks); pDevice->playback.pInputCache = NULL; pDevice->playback.inputCacheCap = 0; return MA_OUT_OF_MEMORY; } pDevice->playback.pInputCache = pNewInputCache; pDevice->playback.inputCacheCap = newInputCacheCap; } else { /* Heap allocation not required. Make sure we clear out the old cache just in case this function was called in response to a route change. */ ma_free(pDevice->playback.pInputCache, &pDevice->pContext->allocationCallbacks); pDevice->playback.pInputCache = NULL; pDevice->playback.inputCacheCap = 0; } } return MA_SUCCESS; } MA_API ma_result ma_device_post_init(ma_device* pDevice, ma_device_type deviceType, const ma_device_descriptor* pDescriptorPlayback, const ma_device_descriptor* pDescriptorCapture) { ma_result result; if (pDevice == NULL) { return MA_INVALID_ARGS; } /* Capture. */ if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { if (ma_device_descriptor_is_valid(pDescriptorCapture) == MA_FALSE) { return MA_INVALID_ARGS; } pDevice->capture.internalFormat = pDescriptorCapture->format; pDevice->capture.internalChannels = pDescriptorCapture->channels; pDevice->capture.internalSampleRate = pDescriptorCapture->sampleRate; MA_COPY_MEMORY(pDevice->capture.internalChannelMap, pDescriptorCapture->channelMap, sizeof(pDescriptorCapture->channelMap)); pDevice->capture.internalPeriodSizeInFrames = pDescriptorCapture->periodSizeInFrames; pDevice->capture.internalPeriods = pDescriptorCapture->periodCount; if (pDevice->capture.internalPeriodSizeInFrames == 0) { pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pDescriptorCapture->periodSizeInMilliseconds, pDescriptorCapture->sampleRate); } } /* Playback. */ if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { if (ma_device_descriptor_is_valid(pDescriptorPlayback) == MA_FALSE) { return MA_INVALID_ARGS; } pDevice->playback.internalFormat = pDescriptorPlayback->format; pDevice->playback.internalChannels = pDescriptorPlayback->channels; pDevice->playback.internalSampleRate = pDescriptorPlayback->sampleRate; MA_COPY_MEMORY(pDevice->playback.internalChannelMap, pDescriptorPlayback->channelMap, sizeof(pDescriptorPlayback->channelMap)); pDevice->playback.internalPeriodSizeInFrames = pDescriptorPlayback->periodSizeInFrames; pDevice->playback.internalPeriods = pDescriptorPlayback->periodCount; if (pDevice->playback.internalPeriodSizeInFrames == 0) { pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pDescriptorPlayback->periodSizeInMilliseconds, pDescriptorPlayback->sampleRate); } } /* The name of the device can be retrieved from device info. This may be temporary and replaced with a `ma_device_get_info(pDevice, deviceType)` instead. For loopback devices, we need to retrieve the name of the playback device. */ { ma_device_info deviceInfo; if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) { result = ma_device_get_info(pDevice, (deviceType == ma_device_type_loopback) ? ma_device_type_playback : ma_device_type_capture, &deviceInfo); if (result == MA_SUCCESS) { ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), deviceInfo.name, (size_t)-1); } else { /* We failed to retrieve the device info. Fall back to a default name. */ if (pDescriptorCapture->pDeviceID == NULL) { ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), "Capture Device", (size_t)-1); } } } if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) { result = ma_device_get_info(pDevice, ma_device_type_playback, &deviceInfo); if (result == MA_SUCCESS) { ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), deviceInfo.name, (size_t)-1); } else { /* We failed to retrieve the device info. Fall back to a default name. */ if (pDescriptorPlayback->pDeviceID == NULL) { ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), "Playback Device", (size_t)-1); } } } } /* Update data conversion. */ return ma_device__post_init_setup(pDevice, deviceType); /* TODO: Should probably rename ma_device__post_init_setup() to something better. */ } static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData) { ma_device* pDevice = (ma_device*)pData; MA_ASSERT(pDevice != NULL); #ifdef MA_WIN32 ma_CoInitializeEx(pDevice->pContext, NULL, MA_COINIT_VALUE); #endif /* When the device is being initialized it's initial state is set to ma_device_state_uninitialized. Before returning from ma_device_init(), the state needs to be set to something valid. In miniaudio the device's default state immediately after initialization is stopped, so therefore we need to mark the device as such. miniaudio will wait on the worker thread to signal an event to know when the worker thread is ready for action. */ ma_device__set_state(pDevice, ma_device_state_stopped); ma_event_signal(&pDevice->stopEvent); for (;;) { /* <-- This loop just keeps the thread alive. The main audio loop is inside. */ ma_result startResult; ma_result stopResult; /* <-- This will store the result from onDeviceStop(). If it returns an error, we don't fire the stopped notification callback. */ /* We wait on an event to know when something has requested that the device be started and the main loop entered. */ ma_event_wait(&pDevice->wakeupEvent); /* Default result code. */ pDevice->workResult = MA_SUCCESS; /* If the reason for the wake up is that we are terminating, just break from the loop. */ if (ma_device_get_state(pDevice) == ma_device_state_uninitialized) { break; } /* Getting to this point means the device is wanting to get started. The function that has requested that the device be started will be waiting on an event (pDevice->startEvent) which means we need to make sure we signal the event in both the success and error case. It's important that the state of the device is set _before_ signaling the event. */ MA_ASSERT(ma_device_get_state(pDevice) == ma_device_state_starting); /* If the device has a start callback, start it now. */ if (pDevice->pContext->callbacks.onDeviceStart != NULL) { startResult = pDevice->pContext->callbacks.onDeviceStart(pDevice); } else { startResult = MA_SUCCESS; } /* If starting was not successful we'll need to loop back to the start and wait for something to happen (pDevice->wakeupEvent). */ if (startResult != MA_SUCCESS) { pDevice->workResult = startResult; ma_event_signal(&pDevice->startEvent); /* <-- Always signal the start event so ma_device_start() can return as it'll be waiting on it. */ continue; } /* Make sure the state is set appropriately. */ ma_device__set_state(pDevice, ma_device_state_started); /* <-- Set this before signaling the event so that the state is always guaranteed to be good after ma_device_start() has returned. */ ma_event_signal(&pDevice->startEvent); ma_device__on_notification_started(pDevice); if (pDevice->pContext->callbacks.onDeviceDataLoop != NULL) { pDevice->pContext->callbacks.onDeviceDataLoop(pDevice); } else { /* The backend is not using a custom main loop implementation, so now fall back to the blocking read-write implementation. */ ma_device_audio_thread__default_read_write(pDevice); } /* Getting here means we have broken from the main loop which happens the application has requested that device be stopped. */ if (pDevice->pContext->callbacks.onDeviceStop != NULL) { stopResult = pDevice->pContext->callbacks.onDeviceStop(pDevice); } else { stopResult = MA_SUCCESS; /* No stop callback with the backend. Just assume successful. */ } /* After the device has stopped, make sure an event is posted. Don't post a stopped event if stopping failed. This can happen on some backends when the underlying stream has been stopped due to the device being physically unplugged or disabled via an OS setting. */ if (stopResult == MA_SUCCESS) { ma_device__on_notification_stopped(pDevice); } /* A function somewhere is waiting for the device to have stopped for real so we need to signal an event to allow it to continue. */ ma_device__set_state(pDevice, ma_device_state_stopped); ma_event_signal(&pDevice->stopEvent); } #ifdef MA_WIN32 ma_CoUninitialize(pDevice->pContext); #endif return (ma_thread_result)0; } /* Helper for determining whether or not the given device is initialized. */ static ma_bool32 ma_device__is_initialized(ma_device* pDevice) { if (pDevice == NULL) { return MA_FALSE; } return ma_device_get_state(pDevice) != ma_device_state_uninitialized; } #ifdef MA_WIN32 static ma_result ma_context_uninit_backend_apis__win32(ma_context* pContext) { /* For some reason UWP complains when CoUninitialize() is called. I'm just not going to call it on UWP. */ #ifdef MA_WIN32_DESKTOP ma_CoUninitialize(pContext); ma_dlclose(pContext, pContext->win32.hUser32DLL); ma_dlclose(pContext, pContext->win32.hOle32DLL); ma_dlclose(pContext, pContext->win32.hAdvapi32DLL); #else (void)pContext; #endif return MA_SUCCESS; } static ma_result ma_context_init_backend_apis__win32(ma_context* pContext) { #ifdef MA_WIN32_DESKTOP /* Ole32.dll */ pContext->win32.hOle32DLL = ma_dlopen(pContext, "ole32.dll"); if (pContext->win32.hOle32DLL == NULL) { return MA_FAILED_TO_INIT_BACKEND; } pContext->win32.CoInitializeEx = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoInitializeEx"); pContext->win32.CoUninitialize = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoUninitialize"); pContext->win32.CoCreateInstance = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoCreateInstance"); pContext->win32.CoTaskMemFree = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoTaskMemFree"); pContext->win32.PropVariantClear = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "PropVariantClear"); pContext->win32.StringFromGUID2 = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "StringFromGUID2"); /* User32.dll */ pContext->win32.hUser32DLL = ma_dlopen(pContext, "user32.dll"); if (pContext->win32.hUser32DLL == NULL) { return MA_FAILED_TO_INIT_BACKEND; } pContext->win32.GetForegroundWindow = (ma_proc)ma_dlsym(pContext, pContext->win32.hUser32DLL, "GetForegroundWindow"); pContext->win32.GetDesktopWindow = (ma_proc)ma_dlsym(pContext, pContext->win32.hUser32DLL, "GetDesktopWindow"); /* Advapi32.dll */ pContext->win32.hAdvapi32DLL = ma_dlopen(pContext, "advapi32.dll"); if (pContext->win32.hAdvapi32DLL == NULL) { return MA_FAILED_TO_INIT_BACKEND; } pContext->win32.RegOpenKeyExA = (ma_proc)ma_dlsym(pContext, pContext->win32.hAdvapi32DLL, "RegOpenKeyExA"); pContext->win32.RegCloseKey = (ma_proc)ma_dlsym(pContext, pContext->win32.hAdvapi32DLL, "RegCloseKey"); pContext->win32.RegQueryValueExA = (ma_proc)ma_dlsym(pContext, pContext->win32.hAdvapi32DLL, "RegQueryValueExA"); #else (void)pContext; /* Unused. */ #endif ma_CoInitializeEx(pContext, NULL, MA_COINIT_VALUE); return MA_SUCCESS; } #else static ma_result ma_context_uninit_backend_apis__nix(ma_context* pContext) { #if defined(MA_USE_RUNTIME_LINKING_FOR_PTHREAD) && !defined(MA_NO_RUNTIME_LINKING) ma_dlclose(pContext, pContext->posix.pthreadSO); #else (void)pContext; #endif return MA_SUCCESS; } static ma_result ma_context_init_backend_apis__nix(ma_context* pContext) { /* pthread */ #if defined(MA_USE_RUNTIME_LINKING_FOR_PTHREAD) && !defined(MA_NO_RUNTIME_LINKING) const char* libpthreadFileNames[] = { "libpthread.so", "libpthread.so.0", "libpthread.dylib" }; size_t i; for (i = 0; i < sizeof(libpthreadFileNames) / sizeof(libpthreadFileNames[0]); ++i) { pContext->posix.pthreadSO = ma_dlopen(pContext, libpthreadFileNames[i]); if (pContext->posix.pthreadSO != NULL) { break; } } if (pContext->posix.pthreadSO == NULL) { return MA_FAILED_TO_INIT_BACKEND; } pContext->posix.pthread_create = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_create"); pContext->posix.pthread_join = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_join"); pContext->posix.pthread_mutex_init = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_init"); pContext->posix.pthread_mutex_destroy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_destroy"); pContext->posix.pthread_mutex_lock = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_lock"); pContext->posix.pthread_mutex_unlock = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_unlock"); pContext->posix.pthread_cond_init = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_init"); pContext->posix.pthread_cond_destroy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_destroy"); pContext->posix.pthread_cond_wait = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_wait"); pContext->posix.pthread_cond_signal = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_signal"); pContext->posix.pthread_attr_init = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_init"); pContext->posix.pthread_attr_destroy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_destroy"); pContext->posix.pthread_attr_setschedpolicy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_setschedpolicy"); pContext->posix.pthread_attr_getschedparam = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_getschedparam"); pContext->posix.pthread_attr_setschedparam = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_setschedparam"); #else pContext->posix.pthread_create = (ma_proc)pthread_create; pContext->posix.pthread_join = (ma_proc)pthread_join; pContext->posix.pthread_mutex_init = (ma_proc)pthread_mutex_init; pContext->posix.pthread_mutex_destroy = (ma_proc)pthread_mutex_destroy; pContext->posix.pthread_mutex_lock = (ma_proc)pthread_mutex_lock; pContext->posix.pthread_mutex_unlock = (ma_proc)pthread_mutex_unlock; pContext->posix.pthread_cond_init = (ma_proc)pthread_cond_init; pContext->posix.pthread_cond_destroy = (ma_proc)pthread_cond_destroy; pContext->posix.pthread_cond_wait = (ma_proc)pthread_cond_wait; pContext->posix.pthread_cond_signal = (ma_proc)pthread_cond_signal; pContext->posix.pthread_attr_init = (ma_proc)pthread_attr_init; pContext->posix.pthread_attr_destroy = (ma_proc)pthread_attr_destroy; #if !defined(__EMSCRIPTEN__) pContext->posix.pthread_attr_setschedpolicy = (ma_proc)pthread_attr_setschedpolicy; pContext->posix.pthread_attr_getschedparam = (ma_proc)pthread_attr_getschedparam; pContext->posix.pthread_attr_setschedparam = (ma_proc)pthread_attr_setschedparam; #endif #endif return MA_SUCCESS; } #endif static ma_result ma_context_init_backend_apis(ma_context* pContext) { ma_result result; #ifdef MA_WIN32 result = ma_context_init_backend_apis__win32(pContext); #else result = ma_context_init_backend_apis__nix(pContext); #endif return result; } static ma_result ma_context_uninit_backend_apis(ma_context* pContext) { ma_result result; #ifdef MA_WIN32 result = ma_context_uninit_backend_apis__win32(pContext); #else result = ma_context_uninit_backend_apis__nix(pContext); #endif return result; } static ma_bool32 ma_context_is_backend_asynchronous(ma_context* pContext) { MA_ASSERT(pContext != NULL); if (pContext->callbacks.onDeviceRead == NULL && pContext->callbacks.onDeviceWrite == NULL) { if (pContext->callbacks.onDeviceDataLoop == NULL) { return MA_TRUE; } else { return MA_FALSE; } } else { return MA_FALSE; } } /* The default capacity doesn't need to be too big. */ #ifndef MA_DEFAULT_DEVICE_JOB_QUEUE_CAPACITY #define MA_DEFAULT_DEVICE_JOB_QUEUE_CAPACITY 32 #endif MA_API ma_device_job_thread_config ma_device_job_thread_config_init(void) { ma_device_job_thread_config config; MA_ZERO_OBJECT(&config); config.noThread = MA_FALSE; config.jobQueueCapacity = MA_DEFAULT_DEVICE_JOB_QUEUE_CAPACITY; config.jobQueueFlags = 0; return config; } static ma_thread_result MA_THREADCALL ma_device_job_thread_entry(void* pUserData) { ma_device_job_thread* pJobThread = (ma_device_job_thread*)pUserData; MA_ASSERT(pJobThread != NULL); for (;;) { ma_result result; ma_job job; result = ma_device_job_thread_next(pJobThread, &job); if (result != MA_SUCCESS) { break; } if (job.toc.breakup.code == MA_JOB_TYPE_QUIT) { break; } ma_job_process(&job); } return (ma_thread_result)0; } MA_API ma_result ma_device_job_thread_init(const ma_device_job_thread_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_device_job_thread* pJobThread) { ma_result result; ma_job_queue_config jobQueueConfig; if (pJobThread == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pJobThread); if (pConfig == NULL) { return MA_INVALID_ARGS; } /* Initialize the job queue before the thread to ensure it's in a valid state. */ jobQueueConfig = ma_job_queue_config_init(pConfig->jobQueueFlags, pConfig->jobQueueCapacity); result = ma_job_queue_init(&jobQueueConfig, pAllocationCallbacks, &pJobThread->jobQueue); if (result != MA_SUCCESS) { return result; /* Failed to initialize job queue. */ } /* The thread needs to be initialized after the job queue to ensure the thread doesn't try to access it prematurely. */ if (pConfig->noThread == MA_FALSE) { result = ma_thread_create(&pJobThread->thread, ma_thread_priority_normal, 0, ma_device_job_thread_entry, pJobThread, pAllocationCallbacks); if (result != MA_SUCCESS) { ma_job_queue_uninit(&pJobThread->jobQueue, pAllocationCallbacks); return result; /* Failed to create the job thread. */ } pJobThread->_hasThread = MA_TRUE; } else { pJobThread->_hasThread = MA_FALSE; } return MA_SUCCESS; } MA_API void ma_device_job_thread_uninit(ma_device_job_thread* pJobThread, const ma_allocation_callbacks* pAllocationCallbacks) { if (pJobThread == NULL) { return; } /* The first thing to do is post a quit message to the job queue. If we're using a thread we'll need to wait for it. */ { ma_job job = ma_job_init(MA_JOB_TYPE_QUIT); ma_device_job_thread_post(pJobThread, &job); } /* Wait for the thread to terminate naturally. */ if (pJobThread->_hasThread) { ma_thread_wait(&pJobThread->thread); } /* At this point the thread should be terminated so we can safely uninitialize the job queue. */ ma_job_queue_uninit(&pJobThread->jobQueue, pAllocationCallbacks); } MA_API ma_result ma_device_job_thread_post(ma_device_job_thread* pJobThread, const ma_job* pJob) { if (pJobThread == NULL || pJob == NULL) { return MA_INVALID_ARGS; } return ma_job_queue_post(&pJobThread->jobQueue, pJob); } MA_API ma_result ma_device_job_thread_next(ma_device_job_thread* pJobThread, ma_job* pJob) { if (pJob == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pJob); if (pJobThread == NULL) { return MA_INVALID_ARGS; } return ma_job_queue_next(&pJobThread->jobQueue, pJob); } MA_API ma_context_config ma_context_config_init(void) { ma_context_config config; MA_ZERO_OBJECT(&config); return config; } MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext) { ma_result result; ma_context_config defaultConfig; ma_backend defaultBackends[ma_backend_null+1]; ma_uint32 iBackend; ma_backend* pBackendsToIterate; ma_uint32 backendsToIterateCount; if (pContext == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pContext); /* Always make sure the config is set first to ensure properties are available as soon as possible. */ if (pConfig == NULL) { defaultConfig = ma_context_config_init(); pConfig = &defaultConfig; } /* Allocation callbacks need to come first because they'll be passed around to other areas. */ result = ma_allocation_callbacks_init_copy(&pContext->allocationCallbacks, &pConfig->allocationCallbacks); if (result != MA_SUCCESS) { return result; } /* Get a lot set up first so we can start logging ASAP. */ if (pConfig->pLog != NULL) { pContext->pLog = pConfig->pLog; } else { result = ma_log_init(&pContext->allocationCallbacks, &pContext->log); if (result == MA_SUCCESS) { pContext->pLog = &pContext->log; } else { pContext->pLog = NULL; /* Logging is not available. */ } } pContext->threadPriority = pConfig->threadPriority; pContext->threadStackSize = pConfig->threadStackSize; pContext->pUserData = pConfig->pUserData; /* Backend APIs need to be initialized first. This is where external libraries will be loaded and linked. */ result = ma_context_init_backend_apis(pContext); if (result != MA_SUCCESS) { return result; } for (iBackend = 0; iBackend <= ma_backend_null; ++iBackend) { defaultBackends[iBackend] = (ma_backend)iBackend; } pBackendsToIterate = (ma_backend*)backends; backendsToIterateCount = backendCount; if (pBackendsToIterate == NULL) { pBackendsToIterate = (ma_backend*)defaultBackends; backendsToIterateCount = ma_countof(defaultBackends); } MA_ASSERT(pBackendsToIterate != NULL); for (iBackend = 0; iBackend < backendsToIterateCount; iBackend += 1) { ma_backend backend = pBackendsToIterate[iBackend]; /* Make sure all callbacks are reset so we don't accidentally drag in any from previously failed initialization attempts. */ MA_ZERO_OBJECT(&pContext->callbacks); /* These backends are using the new callback system. */ switch (backend) { #ifdef MA_HAS_WASAPI case ma_backend_wasapi: { pContext->callbacks.onContextInit = ma_context_init__wasapi; } break; #endif #ifdef MA_HAS_DSOUND case ma_backend_dsound: { pContext->callbacks.onContextInit = ma_context_init__dsound; } break; #endif #ifdef MA_HAS_WINMM case ma_backend_winmm: { pContext->callbacks.onContextInit = ma_context_init__winmm; } break; #endif #ifdef MA_HAS_COREAUDIO case ma_backend_coreaudio: { pContext->callbacks.onContextInit = ma_context_init__coreaudio; } break; #endif #ifdef MA_HAS_SNDIO case ma_backend_sndio: { pContext->callbacks.onContextInit = ma_context_init__sndio; } break; #endif #ifdef MA_HAS_AUDIO4 case ma_backend_audio4: { pContext->callbacks.onContextInit = ma_context_init__audio4; } break; #endif #ifdef MA_HAS_OSS case ma_backend_oss: { pContext->callbacks.onContextInit = ma_context_init__oss; } break; #endif #ifdef MA_HAS_PULSEAUDIO case ma_backend_pulseaudio: { pContext->callbacks.onContextInit = ma_context_init__pulse; } break; #endif #ifdef MA_HAS_ALSA case ma_backend_alsa: { pContext->callbacks.onContextInit = ma_context_init__alsa; } break; #endif #ifdef MA_HAS_JACK case ma_backend_jack: { pContext->callbacks.onContextInit = ma_context_init__jack; } break; #endif #ifdef MA_HAS_AAUDIO case ma_backend_aaudio: { if (ma_is_backend_enabled(backend)) { pContext->callbacks.onContextInit = ma_context_init__aaudio; } } break; #endif #ifdef MA_HAS_OPENSL case ma_backend_opensl: { if (ma_is_backend_enabled(backend)) { pContext->callbacks.onContextInit = ma_context_init__opensl; } } break; #endif #ifdef MA_HAS_WEBAUDIO case ma_backend_webaudio: { pContext->callbacks.onContextInit = ma_context_init__webaudio; } break; #endif #ifdef MA_HAS_CUSTOM case ma_backend_custom: { /* Slightly different logic for custom backends. Custom backends can optionally set all of their callbacks in the config. */ pContext->callbacks = pConfig->custom; } break; #endif #ifdef MA_HAS_NULL case ma_backend_null: { pContext->callbacks.onContextInit = ma_context_init__null; } break; #endif default: break; } if (pContext->callbacks.onContextInit != NULL) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "Attempting to initialize %s backend...\n", ma_get_backend_name(backend)); result = pContext->callbacks.onContextInit(pContext, pConfig, &pContext->callbacks); } else { result = MA_NO_BACKEND; } /* If this iteration was successful, return. */ if (result == MA_SUCCESS) { result = ma_mutex_init(&pContext->deviceEnumLock); if (result != MA_SUCCESS) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device enumeration. ma_context_get_devices() is not thread safe.\n"); } result = ma_mutex_init(&pContext->deviceInfoLock); if (result != MA_SUCCESS) { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device info retrieval. ma_context_get_device_info() is not thread safe.\n"); } ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "System Architecture:\n"); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " Endian: %s\n", ma_is_little_endian() ? "LE" : "BE"); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " SSE2: %s\n", ma_has_sse2() ? "YES" : "NO"); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " AVX2: %s\n", ma_has_avx2() ? "YES" : "NO"); ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, " NEON: %s\n", ma_has_neon() ? "YES" : "NO"); pContext->backend = backend; return result; } else { ma_log_postf(ma_context_get_log(pContext), MA_LOG_LEVEL_DEBUG, "Failed to initialize %s backend.\n", ma_get_backend_name(backend)); } } /* If we get here it means an error occurred. */ MA_ZERO_OBJECT(pContext); /* Safety. */ return MA_NO_BACKEND; } MA_API ma_result ma_context_uninit(ma_context* pContext) { if (pContext == NULL) { return MA_INVALID_ARGS; } if (pContext->callbacks.onContextUninit != NULL) { pContext->callbacks.onContextUninit(pContext); } ma_mutex_uninit(&pContext->deviceEnumLock); ma_mutex_uninit(&pContext->deviceInfoLock); ma_free(pContext->pDeviceInfos, &pContext->allocationCallbacks); ma_context_uninit_backend_apis(pContext); if (pContext->pLog == &pContext->log) { ma_log_uninit(&pContext->log); } return MA_SUCCESS; } MA_API size_t ma_context_sizeof() { return sizeof(ma_context); } MA_API ma_log* ma_context_get_log(ma_context* pContext) { if (pContext == NULL) { return NULL; } return pContext->pLog; } MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData) { ma_result result; if (pContext == NULL || callback == NULL) { return MA_INVALID_ARGS; } if (pContext->callbacks.onContextEnumerateDevices == NULL) { return MA_INVALID_OPERATION; } ma_mutex_lock(&pContext->deviceEnumLock); { result = pContext->callbacks.onContextEnumerateDevices(pContext, callback, pUserData); } ma_mutex_unlock(&pContext->deviceEnumLock); return result; } static ma_bool32 ma_context_get_devices__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData) { /* We need to insert the device info into our main internal buffer. Where it goes depends on the device type. If it's a capture device it's just appended to the end. If it's a playback device it's inserted just before the first capture device. */ /* First make sure we have room. Since the number of devices we add to the list is usually relatively small I've decided to use a simple fixed size increment for buffer expansion. */ const ma_uint32 bufferExpansionCount = 2; const ma_uint32 totalDeviceInfoCount = pContext->playbackDeviceInfoCount + pContext->captureDeviceInfoCount; if (totalDeviceInfoCount >= pContext->deviceInfoCapacity) { ma_uint32 newCapacity = pContext->deviceInfoCapacity + bufferExpansionCount; ma_device_info* pNewInfos = (ma_device_info*)ma_realloc(pContext->pDeviceInfos, sizeof(*pContext->pDeviceInfos)*newCapacity, &pContext->allocationCallbacks); if (pNewInfos == NULL) { return MA_FALSE; /* Out of memory. */ } pContext->pDeviceInfos = pNewInfos; pContext->deviceInfoCapacity = newCapacity; } if (deviceType == ma_device_type_playback) { /* Playback. Insert just before the first capture device. */ /* The first thing to do is move all of the capture devices down a slot. */ ma_uint32 iFirstCaptureDevice = pContext->playbackDeviceInfoCount; size_t iCaptureDevice; for (iCaptureDevice = totalDeviceInfoCount; iCaptureDevice > iFirstCaptureDevice; --iCaptureDevice) { pContext->pDeviceInfos[iCaptureDevice] = pContext->pDeviceInfos[iCaptureDevice-1]; } /* Now just insert where the first capture device was before moving it down a slot. */ pContext->pDeviceInfos[iFirstCaptureDevice] = *pInfo; pContext->playbackDeviceInfoCount += 1; } else { /* Capture. Insert at the end. */ pContext->pDeviceInfos[totalDeviceInfoCount] = *pInfo; pContext->captureDeviceInfoCount += 1; } (void)pUserData; return MA_TRUE; } MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount) { ma_result result; /* Safety. */ if (ppPlaybackDeviceInfos != NULL) *ppPlaybackDeviceInfos = NULL; if (pPlaybackDeviceCount != NULL) *pPlaybackDeviceCount = 0; if (ppCaptureDeviceInfos != NULL) *ppCaptureDeviceInfos = NULL; if (pCaptureDeviceCount != NULL) *pCaptureDeviceCount = 0; if (pContext == NULL) { return MA_INVALID_ARGS; } if (pContext->callbacks.onContextEnumerateDevices == NULL) { return MA_INVALID_OPERATION; } /* Note that we don't use ma_context_enumerate_devices() here because we want to do locking at a higher level. */ ma_mutex_lock(&pContext->deviceEnumLock); { /* Reset everything first. */ pContext->playbackDeviceInfoCount = 0; pContext->captureDeviceInfoCount = 0; /* Now enumerate over available devices. */ result = pContext->callbacks.onContextEnumerateDevices(pContext, ma_context_get_devices__enum_callback, NULL); if (result == MA_SUCCESS) { /* Playback devices. */ if (ppPlaybackDeviceInfos != NULL) { *ppPlaybackDeviceInfos = pContext->pDeviceInfos; } if (pPlaybackDeviceCount != NULL) { *pPlaybackDeviceCount = pContext->playbackDeviceInfoCount; } /* Capture devices. */ if (ppCaptureDeviceInfos != NULL) { *ppCaptureDeviceInfos = pContext->pDeviceInfos; /* Capture devices come after playback devices. */ if (pContext->playbackDeviceInfoCount > 0) { /* Conditional, because NULL+0 is undefined behavior. */ *ppCaptureDeviceInfos += pContext->playbackDeviceInfoCount; } } if (pCaptureDeviceCount != NULL) { *pCaptureDeviceCount = pContext->captureDeviceInfoCount; } } } ma_mutex_unlock(&pContext->deviceEnumLock); return result; } MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_info* pDeviceInfo) { ma_result result; ma_device_info deviceInfo; /* NOTE: Do not clear pDeviceInfo on entry. The reason is the pDeviceID may actually point to pDeviceInfo->id which will break things. */ if (pContext == NULL || pDeviceInfo == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(&deviceInfo); /* Help the backend out by copying over the device ID if we have one. */ if (pDeviceID != NULL) { MA_COPY_MEMORY(&deviceInfo.id, pDeviceID, sizeof(*pDeviceID)); } if (pContext->callbacks.onContextGetDeviceInfo == NULL) { return MA_INVALID_OPERATION; } ma_mutex_lock(&pContext->deviceInfoLock); { result = pContext->callbacks.onContextGetDeviceInfo(pContext, deviceType, pDeviceID, &deviceInfo); } ma_mutex_unlock(&pContext->deviceInfoLock); *pDeviceInfo = deviceInfo; return result; } MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext) { if (pContext == NULL) { return MA_FALSE; } return ma_is_loopback_supported(pContext->backend); } MA_API ma_device_config ma_device_config_init(ma_device_type deviceType) { ma_device_config config; MA_ZERO_OBJECT(&config); config.deviceType = deviceType; config.resampling = ma_resampler_config_init(ma_format_unknown, 0, 0, 0, ma_resample_algorithm_linear); /* Format/channels/rate don't matter here. */ return config; } MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice) { ma_result result; ma_device_descriptor descriptorPlayback; ma_device_descriptor descriptorCapture; /* The context can be null, in which case we self-manage it. */ if (pContext == NULL) { return ma_device_init_ex(NULL, 0, NULL, pConfig, pDevice); } if (pDevice == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDevice); if (pConfig == NULL) { return MA_INVALID_ARGS; } /* Check that we have our callbacks defined. */ if (pContext->callbacks.onDeviceInit == NULL) { return MA_INVALID_OPERATION; } /* Basic config validation. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) { if (pConfig->capture.channels > MA_MAX_CHANNELS) { return MA_INVALID_ARGS; } if (!ma__is_channel_map_valid(pConfig->capture.pChannelMap, pConfig->capture.channels)) { return MA_INVALID_ARGS; } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { if (pConfig->playback.channels > MA_MAX_CHANNELS) { return MA_INVALID_ARGS; } if (!ma__is_channel_map_valid(pConfig->playback.pChannelMap, pConfig->playback.channels)) { return MA_INVALID_ARGS; } } pDevice->pContext = pContext; /* Set the user data and log callback ASAP to ensure it is available for the entire initialization process. */ pDevice->pUserData = pConfig->pUserData; pDevice->onData = pConfig->dataCallback; pDevice->onNotification = pConfig->notificationCallback; pDevice->onStop = pConfig->stopCallback; if (pConfig->playback.pDeviceID != NULL) { MA_COPY_MEMORY(&pDevice->playback.id, pConfig->playback.pDeviceID, sizeof(pDevice->playback.id)); pDevice->playback.pID = &pDevice->playback.id; } else { pDevice->playback.pID = NULL; } if (pConfig->capture.pDeviceID != NULL) { MA_COPY_MEMORY(&pDevice->capture.id, pConfig->capture.pDeviceID, sizeof(pDevice->capture.id)); pDevice->capture.pID = &pDevice->capture.id; } else { pDevice->capture.pID = NULL; } pDevice->noPreSilencedOutputBuffer = pConfig->noPreSilencedOutputBuffer; pDevice->noClip = pConfig->noClip; pDevice->noDisableDenormals = pConfig->noDisableDenormals; pDevice->noFixedSizedCallback = pConfig->noFixedSizedCallback; pDevice->masterVolumeFactor = 1; pDevice->type = pConfig->deviceType; pDevice->sampleRate = pConfig->sampleRate; pDevice->resampling.algorithm = pConfig->resampling.algorithm; pDevice->resampling.linear.lpfOrder = pConfig->resampling.linear.lpfOrder; pDevice->resampling.pBackendVTable = pConfig->resampling.pBackendVTable; pDevice->resampling.pBackendUserData = pConfig->resampling.pBackendUserData; pDevice->capture.shareMode = pConfig->capture.shareMode; pDevice->capture.format = pConfig->capture.format; pDevice->capture.channels = pConfig->capture.channels; ma_channel_map_copy_or_default(pDevice->capture.channelMap, ma_countof(pDevice->capture.channelMap), pConfig->capture.pChannelMap, pConfig->capture.channels); pDevice->capture.channelMixMode = pConfig->capture.channelMixMode; pDevice->capture.calculateLFEFromSpatialChannels = pConfig->capture.calculateLFEFromSpatialChannels; pDevice->playback.shareMode = pConfig->playback.shareMode; pDevice->playback.format = pConfig->playback.format; pDevice->playback.channels = pConfig->playback.channels; ma_channel_map_copy_or_default(pDevice->playback.channelMap, ma_countof(pDevice->playback.channelMap), pConfig->playback.pChannelMap, pConfig->playback.channels); pDevice->playback.channelMixMode = pConfig->playback.channelMixMode; pDevice->playback.calculateLFEFromSpatialChannels = pConfig->playback.calculateLFEFromSpatialChannels; result = ma_mutex_init(&pDevice->startStopLock); if (result != MA_SUCCESS) { return result; } /* When the device is started, the worker thread is the one that does the actual startup of the backend device. We use a semaphore to wait for the background thread to finish the work. The same applies for stopping the device. Each of these semaphores is released internally by the worker thread when the work is completed. The start semaphore is also used to wake up the worker thread. */ result = ma_event_init(&pDevice->wakeupEvent); if (result != MA_SUCCESS) { ma_mutex_uninit(&pDevice->startStopLock); return result; } result = ma_event_init(&pDevice->startEvent); if (result != MA_SUCCESS) { ma_event_uninit(&pDevice->wakeupEvent); ma_mutex_uninit(&pDevice->startStopLock); return result; } result = ma_event_init(&pDevice->stopEvent); if (result != MA_SUCCESS) { ma_event_uninit(&pDevice->startEvent); ma_event_uninit(&pDevice->wakeupEvent); ma_mutex_uninit(&pDevice->startStopLock); return result; } MA_ZERO_OBJECT(&descriptorPlayback); descriptorPlayback.pDeviceID = pConfig->playback.pDeviceID; descriptorPlayback.shareMode = pConfig->playback.shareMode; descriptorPlayback.format = pConfig->playback.format; descriptorPlayback.channels = pConfig->playback.channels; descriptorPlayback.sampleRate = pConfig->sampleRate; ma_channel_map_copy_or_default(descriptorPlayback.channelMap, ma_countof(descriptorPlayback.channelMap), pConfig->playback.pChannelMap, pConfig->playback.channels); descriptorPlayback.periodSizeInFrames = pConfig->periodSizeInFrames; descriptorPlayback.periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; descriptorPlayback.periodCount = pConfig->periods; if (descriptorPlayback.periodCount == 0) { descriptorPlayback.periodCount = MA_DEFAULT_PERIODS; } MA_ZERO_OBJECT(&descriptorCapture); descriptorCapture.pDeviceID = pConfig->capture.pDeviceID; descriptorCapture.shareMode = pConfig->capture.shareMode; descriptorCapture.format = pConfig->capture.format; descriptorCapture.channels = pConfig->capture.channels; descriptorCapture.sampleRate = pConfig->sampleRate; ma_channel_map_copy_or_default(descriptorCapture.channelMap, ma_countof(descriptorCapture.channelMap), pConfig->capture.pChannelMap, pConfig->capture.channels); descriptorCapture.periodSizeInFrames = pConfig->periodSizeInFrames; descriptorCapture.periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds; descriptorCapture.periodCount = pConfig->periods; if (descriptorCapture.periodCount == 0) { descriptorCapture.periodCount = MA_DEFAULT_PERIODS; } result = pContext->callbacks.onDeviceInit(pDevice, pConfig, &descriptorPlayback, &descriptorCapture); if (result != MA_SUCCESS) { ma_event_uninit(&pDevice->startEvent); ma_event_uninit(&pDevice->wakeupEvent); ma_mutex_uninit(&pDevice->startStopLock); return result; } #if 0 /* On output the descriptors will contain the *actual* data format of the device. We need this to know how to convert the data between the requested format and the internal format. */ if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { if (!ma_device_descriptor_is_valid(&descriptorCapture)) { ma_device_uninit(pDevice); return MA_INVALID_ARGS; } pDevice->capture.internalFormat = descriptorCapture.format; pDevice->capture.internalChannels = descriptorCapture.channels; pDevice->capture.internalSampleRate = descriptorCapture.sampleRate; ma_channel_map_copy(pDevice->capture.internalChannelMap, descriptorCapture.channelMap, descriptorCapture.channels); pDevice->capture.internalPeriodSizeInFrames = descriptorCapture.periodSizeInFrames; pDevice->capture.internalPeriods = descriptorCapture.periodCount; if (pDevice->capture.internalPeriodSizeInFrames == 0) { pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(descriptorCapture.periodSizeInMilliseconds, descriptorCapture.sampleRate); } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { if (!ma_device_descriptor_is_valid(&descriptorPlayback)) { ma_device_uninit(pDevice); return MA_INVALID_ARGS; } pDevice->playback.internalFormat = descriptorPlayback.format; pDevice->playback.internalChannels = descriptorPlayback.channels; pDevice->playback.internalSampleRate = descriptorPlayback.sampleRate; ma_channel_map_copy(pDevice->playback.internalChannelMap, descriptorPlayback.channelMap, descriptorPlayback.channels); pDevice->playback.internalPeriodSizeInFrames = descriptorPlayback.periodSizeInFrames; pDevice->playback.internalPeriods = descriptorPlayback.periodCount; if (pDevice->playback.internalPeriodSizeInFrames == 0) { pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(descriptorPlayback.periodSizeInMilliseconds, descriptorPlayback.sampleRate); } } /* The name of the device can be retrieved from device info. This may be temporary and replaced with a `ma_device_get_info(pDevice, deviceType)` instead. For loopback devices, we need to retrieve the name of the playback device. */ { ma_device_info deviceInfo; if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { result = ma_device_get_info(pDevice, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_playback : ma_device_type_capture, &deviceInfo); if (result == MA_SUCCESS) { ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), deviceInfo.name, (size_t)-1); } else { /* We failed to retrieve the device info. Fall back to a default name. */ if (descriptorCapture.pDeviceID == NULL) { ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), "Capture Device", (size_t)-1); } } } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { result = ma_device_get_info(pDevice, ma_device_type_playback, &deviceInfo); if (result == MA_SUCCESS) { ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), deviceInfo.name, (size_t)-1); } else { /* We failed to retrieve the device info. Fall back to a default name. */ if (descriptorPlayback.pDeviceID == NULL) { ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1); } else { ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), "Playback Device", (size_t)-1); } } } } ma_device__post_init_setup(pDevice, pConfig->deviceType); #endif result = ma_device_post_init(pDevice, pConfig->deviceType, &descriptorPlayback, &descriptorCapture); if (result != MA_SUCCESS) { ma_device_uninit(pDevice); return result; } /* If we're using fixed sized callbacks we'll need to make use of an intermediary buffer. Needs to be done after post_init_setup() because we'll need access to the sample rate. */ if (pConfig->noFixedSizedCallback == MA_FALSE) { /* We're using a fixed sized data callback so we'll need an intermediary buffer. */ ma_uint32 intermediaryBufferCap = pConfig->periodSizeInFrames; if (intermediaryBufferCap == 0) { intermediaryBufferCap = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pDevice->sampleRate); } if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) { ma_uint32 intermediaryBufferSizeInBytes; pDevice->capture.intermediaryBufferLen = 0; pDevice->capture.intermediaryBufferCap = intermediaryBufferCap; if (pDevice->capture.intermediaryBufferCap == 0) { pDevice->capture.intermediaryBufferCap = pDevice->capture.internalPeriodSizeInFrames; } intermediaryBufferSizeInBytes = pDevice->capture.intermediaryBufferCap * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels); pDevice->capture.pIntermediaryBuffer = ma_malloc((size_t)intermediaryBufferSizeInBytes, &pContext->allocationCallbacks); if (pDevice->capture.pIntermediaryBuffer == NULL) { ma_device_uninit(pDevice); return MA_OUT_OF_MEMORY; } /* Silence the buffer for safety. */ ma_silence_pcm_frames(pDevice->capture.pIntermediaryBuffer, pDevice->capture.intermediaryBufferCap, pDevice->capture.format, pDevice->capture.channels); pDevice->capture.intermediaryBufferLen = pDevice->capture.intermediaryBufferCap; } if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) { ma_uint64 intermediaryBufferSizeInBytes; pDevice->playback.intermediaryBufferLen = 0; if (pConfig->deviceType == ma_device_type_duplex) { pDevice->playback.intermediaryBufferCap = pDevice->capture.intermediaryBufferCap; /* In duplex mode, make sure the intermediary buffer is always the same size as the capture side. */ } else { pDevice->playback.intermediaryBufferCap = intermediaryBufferCap; if (pDevice->playback.intermediaryBufferCap == 0) { pDevice->playback.intermediaryBufferCap = pDevice->playback.internalPeriodSizeInFrames; } } intermediaryBufferSizeInBytes = pDevice->playback.intermediaryBufferCap * ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels); pDevice->playback.pIntermediaryBuffer = ma_malloc((size_t)intermediaryBufferSizeInBytes, &pContext->allocationCallbacks); if (pDevice->playback.pIntermediaryBuffer == NULL) { ma_device_uninit(pDevice); return MA_OUT_OF_MEMORY; } /* Silence the buffer for safety. */ ma_silence_pcm_frames(pDevice->playback.pIntermediaryBuffer, pDevice->playback.intermediaryBufferCap, pDevice->playback.format, pDevice->playback.channels); pDevice->playback.intermediaryBufferLen = 0; } } else { /* Not using a fixed sized data callback so no need for an intermediary buffer. */ } /* Some backends don't require the worker thread. */ if (!ma_context_is_backend_asynchronous(pContext)) { /* The worker thread. */ result = ma_thread_create(&pDevice->thread, pContext->threadPriority, pContext->threadStackSize, ma_worker_thread, pDevice, &pContext->allocationCallbacks); if (result != MA_SUCCESS) { ma_device_uninit(pDevice); return result; } /* Wait for the worker thread to put the device into it's stopped state for real. */ ma_event_wait(&pDevice->stopEvent); MA_ASSERT(ma_device_get_state(pDevice) == ma_device_state_stopped); } else { /* If the backend is asynchronous and the device is duplex, we'll need an intermediary ring buffer. Note that this needs to be done after ma_device__post_init_setup(). */ if (ma_context_is_backend_asynchronous(pContext)) { if (pConfig->deviceType == ma_device_type_duplex) { result = ma_duplex_rb_init(pDevice->capture.format, pDevice->capture.channels, pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames, &pDevice->pContext->allocationCallbacks, &pDevice->duplexRB); if (result != MA_SUCCESS) { ma_device_uninit(pDevice); return result; } } } ma_device__set_state(pDevice, ma_device_state_stopped); } /* Log device information. */ { ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, "[%s]\n", ma_get_backend_name(pDevice->pContext->backend)); if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { char name[MA_MAX_DEVICE_NAME_LENGTH + 1]; ma_device_get_name(pDevice, (pDevice->type == ma_device_type_loopback) ? ma_device_type_playback : ma_device_type_capture, name, sizeof(name), NULL); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " %s (%s)\n", name, "Capture"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Format: %s -> %s\n", ma_get_format_name(pDevice->capture.internalFormat), ma_get_format_name(pDevice->capture.format)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channels: %d -> %d\n", pDevice->capture.internalChannels, pDevice->capture.channels); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d\n", pDevice->capture.internalSampleRate, pDevice->sampleRate); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)\n", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Conversion:\n"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s\n", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Post Format Conversion: %s\n", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channel Routing: %s\n", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Resampling: %s\n", pDevice->capture.converter.hasResampler ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Passthrough: %s\n", pDevice->capture.converter.isPassthrough ? "YES" : "NO"); { char channelMapStr[1024]; ma_channel_map_to_string(pDevice->capture.internalChannelMap, pDevice->capture.internalChannels, channelMapStr, sizeof(channelMapStr)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channel Map In: {%s}\n", channelMapStr); ma_channel_map_to_string(pDevice->capture.channelMap, pDevice->capture.channels, channelMapStr, sizeof(channelMapStr)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channel Map Out: {%s}\n", channelMapStr); } } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { char name[MA_MAX_DEVICE_NAME_LENGTH + 1]; ma_device_get_name(pDevice, ma_device_type_playback, name, sizeof(name), NULL); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " %s (%s)\n", name, "Playback"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Format: %s -> %s\n", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channels: %d -> %d\n", pDevice->playback.channels, pDevice->playback.internalChannels); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->playback.internalSampleRate); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)\n", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Conversion:\n"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s\n", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Post Format Conversion: %s\n", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channel Routing: %s\n", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Resampling: %s\n", pDevice->playback.converter.hasResampler ? "YES" : "NO"); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Passthrough: %s\n", pDevice->playback.converter.isPassthrough ? "YES" : "NO"); { char channelMapStr[1024]; ma_channel_map_to_string(pDevice->playback.channelMap, pDevice->playback.channels, channelMapStr, sizeof(channelMapStr)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channel Map In: {%s}\n", channelMapStr); ma_channel_map_to_string(pDevice->playback.internalChannelMap, pDevice->playback.internalChannels, channelMapStr, sizeof(channelMapStr)); ma_log_postf(ma_device_get_log(pDevice), MA_LOG_LEVEL_INFO, " Channel Map Out: {%s}\n", channelMapStr); } } } MA_ASSERT(ma_device_get_state(pDevice) == ma_device_state_stopped); return MA_SUCCESS; } MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice) { ma_result result; ma_context* pContext; ma_backend defaultBackends[ma_backend_null+1]; ma_uint32 iBackend; ma_backend* pBackendsToIterate; ma_uint32 backendsToIterateCount; ma_allocation_callbacks allocationCallbacks; if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pContextConfig != NULL) { result = ma_allocation_callbacks_init_copy(&allocationCallbacks, &pContextConfig->allocationCallbacks); if (result != MA_SUCCESS) { return result; } } else { allocationCallbacks = ma_allocation_callbacks_init_default(); } pContext = (ma_context*)ma_malloc(sizeof(*pContext), &allocationCallbacks); if (pContext == NULL) { return MA_OUT_OF_MEMORY; } for (iBackend = 0; iBackend <= ma_backend_null; ++iBackend) { defaultBackends[iBackend] = (ma_backend)iBackend; } pBackendsToIterate = (ma_backend*)backends; backendsToIterateCount = backendCount; if (pBackendsToIterate == NULL) { pBackendsToIterate = (ma_backend*)defaultBackends; backendsToIterateCount = ma_countof(defaultBackends); } result = MA_NO_BACKEND; for (iBackend = 0; iBackend < backendsToIterateCount; ++iBackend) { /* This is a hack for iOS. If the context config is null, there's a good chance the `ma_device_init(NULL, &deviceConfig, pDevice);` pattern is being used. In this case, set the session category based on the device type. */ #if defined(MA_APPLE_MOBILE) ma_context_config contextConfig; if (pContextConfig == NULL) { contextConfig = ma_context_config_init(); switch (pConfig->deviceType) { case ma_device_type_duplex: { contextConfig.coreaudio.sessionCategory = ma_ios_session_category_play_and_record; } break; case ma_device_type_capture: { contextConfig.coreaudio.sessionCategory = ma_ios_session_category_record; } break; case ma_device_type_playback: default: { contextConfig.coreaudio.sessionCategory = ma_ios_session_category_playback; } break; } pContextConfig = &contextConfig; } #endif result = ma_context_init(&pBackendsToIterate[iBackend], 1, pContextConfig, pContext); if (result == MA_SUCCESS) { result = ma_device_init(pContext, pConfig, pDevice); if (result == MA_SUCCESS) { break; /* Success. */ } else { ma_context_uninit(pContext); /* Failure. */ } } } if (result != MA_SUCCESS) { ma_free(pContext, &allocationCallbacks); return result; } pDevice->isOwnerOfContext = MA_TRUE; return result; } MA_API void ma_device_uninit(ma_device* pDevice) { if (!ma_device__is_initialized(pDevice)) { return; } /* Make sure the device is stopped first. The backends will probably handle this naturally, but I like to do it explicitly for my own sanity. */ if (ma_device_is_started(pDevice)) { ma_device_stop(pDevice); } /* Putting the device into an uninitialized state will make the worker thread return. */ ma_device__set_state(pDevice, ma_device_state_uninitialized); /* Wake up the worker thread and wait for it to properly terminate. */ if (!ma_context_is_backend_asynchronous(pDevice->pContext)) { ma_event_signal(&pDevice->wakeupEvent); ma_thread_wait(&pDevice->thread); } if (pDevice->pContext->callbacks.onDeviceUninit != NULL) { pDevice->pContext->callbacks.onDeviceUninit(pDevice); } ma_event_uninit(&pDevice->stopEvent); ma_event_uninit(&pDevice->startEvent); ma_event_uninit(&pDevice->wakeupEvent); ma_mutex_uninit(&pDevice->startStopLock); if (ma_context_is_backend_asynchronous(pDevice->pContext)) { if (pDevice->type == ma_device_type_duplex) { ma_duplex_rb_uninit(&pDevice->duplexRB); } } if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) { ma_data_converter_uninit(&pDevice->capture.converter, &pDevice->pContext->allocationCallbacks); } if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) { ma_data_converter_uninit(&pDevice->playback.converter, &pDevice->pContext->allocationCallbacks); } if (pDevice->playback.pInputCache != NULL) { ma_free(pDevice->playback.pInputCache, &pDevice->pContext->allocationCallbacks); } if (pDevice->capture.pIntermediaryBuffer != NULL) { ma_free(pDevice->capture.pIntermediaryBuffer, &pDevice->pContext->allocationCallbacks); } if (pDevice->playback.pIntermediaryBuffer != NULL) { ma_free(pDevice->playback.pIntermediaryBuffer, &pDevice->pContext->allocationCallbacks); } if (pDevice->isOwnerOfContext) { ma_allocation_callbacks allocationCallbacks = pDevice->pContext->allocationCallbacks; ma_context_uninit(pDevice->pContext); ma_free(pDevice->pContext, &allocationCallbacks); } MA_ZERO_OBJECT(pDevice); } MA_API ma_context* ma_device_get_context(ma_device* pDevice) { if (pDevice == NULL) { return NULL; } return pDevice->pContext; } MA_API ma_log* ma_device_get_log(ma_device* pDevice) { return ma_context_get_log(ma_device_get_context(pDevice)); } MA_API ma_result ma_device_get_info(ma_device* pDevice, ma_device_type type, ma_device_info* pDeviceInfo) { if (pDeviceInfo == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDeviceInfo); if (pDevice == NULL) { return MA_INVALID_ARGS; } /* If the onDeviceGetInfo() callback is set, use that. Otherwise we'll fall back to ma_context_get_device_info(). */ if (pDevice->pContext->callbacks.onDeviceGetInfo != NULL) { return pDevice->pContext->callbacks.onDeviceGetInfo(pDevice, type, pDeviceInfo); } /* Getting here means onDeviceGetInfo is not implemented so we need to fall back to an alternative. */ if (type == ma_device_type_playback) { return ma_context_get_device_info(pDevice->pContext, type, pDevice->playback.pID, pDeviceInfo); } else { return ma_context_get_device_info(pDevice->pContext, type, pDevice->capture.pID, pDeviceInfo); } } MA_API ma_result ma_device_get_name(ma_device* pDevice, ma_device_type type, char* pName, size_t nameCap, size_t* pLengthNotIncludingNullTerminator) { ma_result result; ma_device_info deviceInfo; if (pLengthNotIncludingNullTerminator != NULL) { *pLengthNotIncludingNullTerminator = 0; } if (pName != NULL && nameCap > 0) { pName[0] = '\0'; } result = ma_device_get_info(pDevice, type, &deviceInfo); if (result != MA_SUCCESS) { return result; } if (pName != NULL) { ma_strncpy_s(pName, nameCap, deviceInfo.name, (size_t)-1); /* For safety, make sure the length is based on the truncated output string rather than the source. Otherwise the caller might assume the output buffer contains more content than it actually does. */ if (pLengthNotIncludingNullTerminator != NULL) { *pLengthNotIncludingNullTerminator = strlen(pName); } } else { /* Name not specified. Just report the length of the source string. */ if (pLengthNotIncludingNullTerminator != NULL) { *pLengthNotIncludingNullTerminator = strlen(deviceInfo.name); } } return MA_SUCCESS; } MA_API ma_result ma_device_start(ma_device* pDevice) { ma_result result; if (pDevice == NULL) { return MA_INVALID_ARGS; } if (ma_device_get_state(pDevice) == ma_device_state_uninitialized) { return MA_INVALID_OPERATION; /* Not initialized. */ } if (ma_device_get_state(pDevice) == ma_device_state_started) { return MA_SUCCESS; /* Already started. */ } ma_mutex_lock(&pDevice->startStopLock); { /* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a stopped or paused state. */ MA_ASSERT(ma_device_get_state(pDevice) == ma_device_state_stopped); ma_device__set_state(pDevice, ma_device_state_starting); /* Asynchronous backends need to be handled differently. */ if (ma_context_is_backend_asynchronous(pDevice->pContext)) { if (pDevice->pContext->callbacks.onDeviceStart != NULL) { result = pDevice->pContext->callbacks.onDeviceStart(pDevice); } else { result = MA_INVALID_OPERATION; } if (result == MA_SUCCESS) { ma_device__set_state(pDevice, ma_device_state_started); ma_device__on_notification_started(pDevice); } } else { /* Synchronous backends are started by signaling an event that's being waited on in the worker thread. We first wake up the thread and then wait for the start event. */ ma_event_signal(&pDevice->wakeupEvent); /* Wait for the worker thread to finish starting the device. Note that the worker thread will be the one who puts the device into the started state. Don't call ma_device__set_state() here. */ ma_event_wait(&pDevice->startEvent); result = pDevice->workResult; } /* We changed the state from stopped to started, so if we failed, make sure we put the state back to stopped. */ if (result != MA_SUCCESS) { ma_device__set_state(pDevice, ma_device_state_stopped); } } ma_mutex_unlock(&pDevice->startStopLock); return result; } MA_API ma_result ma_device_stop(ma_device* pDevice) { ma_result result; if (pDevice == NULL) { return MA_INVALID_ARGS; } if (ma_device_get_state(pDevice) == ma_device_state_uninitialized) { return MA_INVALID_OPERATION; /* Not initialized. */ } if (ma_device_get_state(pDevice) == ma_device_state_stopped) { return MA_SUCCESS; /* Already stopped. */ } ma_mutex_lock(&pDevice->startStopLock); { /* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a started or paused state. */ MA_ASSERT(ma_device_get_state(pDevice) == ma_device_state_started); ma_device__set_state(pDevice, ma_device_state_stopping); /* Asynchronous backends need to be handled differently. */ if (ma_context_is_backend_asynchronous(pDevice->pContext)) { /* Asynchronous backends must have a stop operation. */ if (pDevice->pContext->callbacks.onDeviceStop != NULL) { result = pDevice->pContext->callbacks.onDeviceStop(pDevice); } else { result = MA_INVALID_OPERATION; } ma_device__set_state(pDevice, ma_device_state_stopped); } else { /* Synchronous backends. The stop callback is always called from the worker thread. Do not call the stop callback here. If the backend is implementing it's own audio thread loop we'll need to wake it up if required. Note that we need to make sure the state of the device is *not* playing right now, which it shouldn't be since we set it above. This is super important though, so I'm asserting it here as well for extra safety in case we accidentally change something later. */ MA_ASSERT(ma_device_get_state(pDevice) != ma_device_state_started); if (pDevice->pContext->callbacks.onDeviceDataLoopWakeup != NULL) { pDevice->pContext->callbacks.onDeviceDataLoopWakeup(pDevice); } /* We need to wait for the worker thread to become available for work before returning. Note that the worker thread will be the one who puts the device into the stopped state. Don't call ma_device__set_state() here. */ ma_event_wait(&pDevice->stopEvent); result = MA_SUCCESS; } /* This is a safety measure to ensure the internal buffer has been cleared so any leftover does not get played the next time the device starts. Ideally this should be drained by the backend first. */ pDevice->playback.intermediaryBufferLen = 0; pDevice->playback.inputCacheConsumed = 0; pDevice->playback.inputCacheRemaining = 0; } ma_mutex_unlock(&pDevice->startStopLock); return result; } MA_API ma_bool32 ma_device_is_started(const ma_device* pDevice) { return ma_device_get_state(pDevice) == ma_device_state_started; } MA_API ma_device_state ma_device_get_state(const ma_device* pDevice) { if (pDevice == NULL) { return ma_device_state_uninitialized; } return (ma_device_state)c89atomic_load_i32((ma_int32*)&pDevice->state); /* Naughty cast to get rid of a const warning. */ } MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume) { if (pDevice == NULL) { return MA_INVALID_ARGS; } if (volume < 0.0f) { return MA_INVALID_ARGS; } c89atomic_exchange_f32(&pDevice->masterVolumeFactor, volume); return MA_SUCCESS; } MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume) { if (pVolume == NULL) { return MA_INVALID_ARGS; } if (pDevice == NULL) { *pVolume = 0; return MA_INVALID_ARGS; } *pVolume = c89atomic_load_f32(&pDevice->masterVolumeFactor); return MA_SUCCESS; } MA_API ma_result ma_device_set_master_volume_db(ma_device* pDevice, float gainDB) { if (gainDB > 0) { return MA_INVALID_ARGS; } return ma_device_set_master_volume(pDevice, ma_volume_db_to_linear(gainDB)); } MA_API ma_result ma_device_get_master_volume_db(ma_device* pDevice, float* pGainDB) { float factor; ma_result result; if (pGainDB == NULL) { return MA_INVALID_ARGS; } result = ma_device_get_master_volume(pDevice, &factor); if (result != MA_SUCCESS) { *pGainDB = 0; return result; } *pGainDB = ma_volume_linear_to_db(factor); return MA_SUCCESS; } MA_API ma_result ma_device_handle_backend_data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount) { if (pDevice == NULL) { return MA_INVALID_ARGS; } if (pOutput == NULL && pInput == NULL) { return MA_INVALID_ARGS; } if (pDevice->type == ma_device_type_duplex) { if (pInput != NULL) { ma_device__handle_duplex_callback_capture(pDevice, frameCount, pInput, &pDevice->duplexRB.rb); } if (pOutput != NULL) { ma_device__handle_duplex_callback_playback(pDevice, frameCount, pOutput, &pDevice->duplexRB.rb); } } else { if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_loopback) { if (pInput == NULL) { return MA_INVALID_ARGS; } ma_device__send_frames_to_client(pDevice, frameCount, pInput); } if (pDevice->type == ma_device_type_playback) { if (pOutput == NULL) { return MA_INVALID_ARGS; } ma_device__read_frames_from_client(pDevice, frameCount, pOutput); } } return MA_SUCCESS; } MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_descriptor(const ma_device_descriptor* pDescriptor, ma_uint32 nativeSampleRate, ma_performance_profile performanceProfile) { if (pDescriptor == NULL) { return 0; } /* We must have a non-0 native sample rate, but some backends don't allow retrieval of this at the time when the size of the buffer needs to be determined. In this case we need to just take a best guess and move on. We'll try using the sample rate in pDescriptor first. If that's not set we'll just fall back to MA_DEFAULT_SAMPLE_RATE. */ if (nativeSampleRate == 0) { nativeSampleRate = pDescriptor->sampleRate; } if (nativeSampleRate == 0) { nativeSampleRate = MA_DEFAULT_SAMPLE_RATE; } MA_ASSERT(nativeSampleRate != 0); if (pDescriptor->periodSizeInFrames == 0) { if (pDescriptor->periodSizeInMilliseconds == 0) { if (performanceProfile == ma_performance_profile_low_latency) { return ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY, nativeSampleRate); } else { return ma_calculate_buffer_size_in_frames_from_milliseconds(MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE, nativeSampleRate); } } else { return ma_calculate_buffer_size_in_frames_from_milliseconds(pDescriptor->periodSizeInMilliseconds, nativeSampleRate); } } else { return pDescriptor->periodSizeInFrames; } } #endif /* MA_NO_DEVICE_IO */ MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate) { /* Prevent a division by zero. */ if (sampleRate == 0) { return 0; } return bufferSizeInFrames*1000 / sampleRate; } MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate) { /* Prevent a division by zero. */ if (sampleRate == 0) { return 0; } return bufferSizeInMilliseconds*sampleRate / 1000; } MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels) { if (dst == src) { return; /* No-op. */ } ma_copy_memory_64(dst, src, frameCount * ma_get_bytes_per_frame(format, channels)); } MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels) { if (format == ma_format_u8) { ma_uint64 sampleCount = frameCount * channels; ma_uint64 iSample; for (iSample = 0; iSample < sampleCount; iSample += 1) { ((ma_uint8*)p)[iSample] = 128; } } else { ma_zero_memory_64(p, frameCount * ma_get_bytes_per_frame(format, channels)); } } MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels) { return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels)); } MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels) { return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels)); } MA_API void ma_clip_samples_u8(ma_uint8* pDst, const ma_int16* pSrc, ma_uint64 count) { ma_uint64 iSample; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_u8(pSrc[iSample]); } } MA_API void ma_clip_samples_s16(ma_int16* pDst, const ma_int32* pSrc, ma_uint64 count) { ma_uint64 iSample; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_s16(pSrc[iSample]); } } MA_API void ma_clip_samples_s24(ma_uint8* pDst, const ma_int64* pSrc, ma_uint64 count) { ma_uint64 iSample; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); for (iSample = 0; iSample < count; iSample += 1) { ma_int64 s = ma_clip_s24(pSrc[iSample]); pDst[iSample*3 + 0] = (ma_uint8)((s & 0x000000FF) >> 0); pDst[iSample*3 + 1] = (ma_uint8)((s & 0x0000FF00) >> 8); pDst[iSample*3 + 2] = (ma_uint8)((s & 0x00FF0000) >> 16); } } MA_API void ma_clip_samples_s32(ma_int32* pDst, const ma_int64* pSrc, ma_uint64 count) { ma_uint64 iSample; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_s32(pSrc[iSample]); } } MA_API void ma_clip_samples_f32(float* pDst, const float* pSrc, ma_uint64 count) { ma_uint64 iSample; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_f32(pSrc[iSample]); } } MA_API void ma_clip_pcm_frames(void* pDst, const void* pSrc, ma_uint64 frameCount, ma_format format, ma_uint32 channels) { ma_uint64 sampleCount; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); sampleCount = frameCount * channels; switch (format) { case ma_format_u8: ma_clip_samples_u8( (ma_uint8*)pDst, (const ma_int16*)pSrc, sampleCount); break; case ma_format_s16: ma_clip_samples_s16((ma_int16*)pDst, (const ma_int32*)pSrc, sampleCount); break; case ma_format_s24: ma_clip_samples_s24((ma_uint8*)pDst, (const ma_int64*)pSrc, sampleCount); break; case ma_format_s32: ma_clip_samples_s32((ma_int32*)pDst, (const ma_int64*)pSrc, sampleCount); break; case ma_format_f32: ma_clip_samples_f32(( float*)pDst, (const float*)pSrc, sampleCount); break; /* Do nothing if we don't know the format. We're including these here to silence a compiler warning about enums not being handled by the switch. */ case ma_format_unknown: case ma_format_count: break; } } MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint64 sampleCount, float factor) { ma_uint64 iSample; if (pSamplesOut == NULL || pSamplesIn == NULL) { return; } for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamplesOut[iSample] = (ma_uint8)(pSamplesIn[iSample] * factor); } } MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint64 sampleCount, float factor) { ma_uint64 iSample; if (pSamplesOut == NULL || pSamplesIn == NULL) { return; } for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamplesOut[iSample] = (ma_int16)(pSamplesIn[iSample] * factor); } } MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint64 sampleCount, float factor) { ma_uint64 iSample; ma_uint8* pSamplesOut8; ma_uint8* pSamplesIn8; if (pSamplesOut == NULL || pSamplesIn == NULL) { return; } pSamplesOut8 = (ma_uint8*)pSamplesOut; pSamplesIn8 = (ma_uint8*)pSamplesIn; for (iSample = 0; iSample < sampleCount; iSample += 1) { ma_int32 sampleS32; sampleS32 = (ma_int32)(((ma_uint32)(pSamplesIn8[iSample*3+0]) << 8) | ((ma_uint32)(pSamplesIn8[iSample*3+1]) << 16) | ((ma_uint32)(pSamplesIn8[iSample*3+2])) << 24); sampleS32 = (ma_int32)(sampleS32 * factor); pSamplesOut8[iSample*3+0] = (ma_uint8)(((ma_uint32)sampleS32 & 0x0000FF00) >> 8); pSamplesOut8[iSample*3+1] = (ma_uint8)(((ma_uint32)sampleS32 & 0x00FF0000) >> 16); pSamplesOut8[iSample*3+2] = (ma_uint8)(((ma_uint32)sampleS32 & 0xFF000000) >> 24); } } MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint64 sampleCount, float factor) { ma_uint64 iSample; if (pSamplesOut == NULL || pSamplesIn == NULL) { return; } for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamplesOut[iSample] = (ma_int32)(pSamplesIn[iSample] * factor); } } MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint64 sampleCount, float factor) { ma_uint64 iSample; if (pSamplesOut == NULL || pSamplesIn == NULL) { return; } if (factor == 1) { if (pSamplesOut == pSamplesIn) { /* In place. No-op. */ } else { /* Just a copy. */ for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamplesOut[iSample] = pSamplesIn[iSample]; } } } else { for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamplesOut[iSample] = pSamplesIn[iSample] * factor; } } } MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint64 sampleCount, float factor) { ma_copy_and_apply_volume_factor_u8(pSamples, pSamples, sampleCount, factor); } MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint64 sampleCount, float factor) { ma_copy_and_apply_volume_factor_s16(pSamples, pSamples, sampleCount, factor); } MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint64 sampleCount, float factor) { ma_copy_and_apply_volume_factor_s24(pSamples, pSamples, sampleCount, factor); } MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint64 sampleCount, float factor) { ma_copy_and_apply_volume_factor_s32(pSamples, pSamples, sampleCount, factor); } MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint64 sampleCount, float factor) { ma_copy_and_apply_volume_factor_f32(pSamples, pSamples, sampleCount, factor); } MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pFramesOut, const ma_uint8* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_u8(pFramesOut, pFramesIn, frameCount*channels, factor); } MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pFramesOut, const ma_int16* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_s16(pFramesOut, pFramesIn, frameCount*channels, factor); } MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_s24(pFramesOut, pFramesIn, frameCount*channels, factor); } MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pFramesOut, const ma_int32* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_s32(pFramesOut, pFramesIn, frameCount*channels, factor); } MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pFramesOut, const float* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_f32(pFramesOut, pFramesIn, frameCount*channels, factor); } MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor) { switch (format) { case ma_format_u8: ma_copy_and_apply_volume_factor_pcm_frames_u8 ((ma_uint8*)pFramesOut, (const ma_uint8*)pFramesIn, frameCount, channels, factor); return; case ma_format_s16: ma_copy_and_apply_volume_factor_pcm_frames_s16((ma_int16*)pFramesOut, (const ma_int16*)pFramesIn, frameCount, channels, factor); return; case ma_format_s24: ma_copy_and_apply_volume_factor_pcm_frames_s24( pFramesOut, pFramesIn, frameCount, channels, factor); return; case ma_format_s32: ma_copy_and_apply_volume_factor_pcm_frames_s32((ma_int32*)pFramesOut, (const ma_int32*)pFramesIn, frameCount, channels, factor); return; case ma_format_f32: ma_copy_and_apply_volume_factor_pcm_frames_f32( (float*)pFramesOut, (const float*)pFramesIn, frameCount, channels, factor); return; default: return; /* Do nothing. */ } } MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_pcm_frames_u8(pFrames, pFrames, frameCount, channels, factor); } MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_pcm_frames_s16(pFrames, pFrames, frameCount, channels, factor); } MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_pcm_frames_s24(pFrames, pFrames, frameCount, channels, factor); } MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_pcm_frames_s32(pFrames, pFrames, frameCount, channels, factor); } MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint64 frameCount, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_pcm_frames_f32(pFrames, pFrames, frameCount, channels, factor); } MA_API void ma_apply_volume_factor_pcm_frames(void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float factor) { ma_copy_and_apply_volume_factor_pcm_frames(pFramesOut, pFramesOut, frameCount, format, channels, factor); } MA_API void ma_copy_and_apply_volume_factor_per_channel_f32(float* pFramesOut, const float* pFramesIn, ma_uint64 frameCount, ma_uint32 channels, float* pChannelGains) { ma_uint64 iFrame; if (channels == 2) { /* TODO: Do an optimized implementation for stereo and mono. Can do a SIMD optimized implementation as well. */ } for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOut[iFrame * channels + iChannel] = pFramesIn[iFrame * channels + iChannel] * pChannelGains[iChannel]; } } } static MA_INLINE ma_int16 ma_apply_volume_unclipped_u8(ma_int16 x, ma_int16 volume) { return (ma_int16)(((ma_int32)x * (ma_int32)volume) >> 8); } static MA_INLINE ma_int32 ma_apply_volume_unclipped_s16(ma_int32 x, ma_int16 volume) { return (ma_int32)((x * volume) >> 8); } static MA_INLINE ma_int64 ma_apply_volume_unclipped_s24(ma_int64 x, ma_int16 volume) { return (ma_int64)((x * volume) >> 8); } static MA_INLINE ma_int64 ma_apply_volume_unclipped_s32(ma_int64 x, ma_int16 volume) { return (ma_int64)((x * volume) >> 8); } static MA_INLINE float ma_apply_volume_unclipped_f32(float x, float volume) { return x * volume; } MA_API void ma_copy_and_apply_volume_and_clip_samples_u8(ma_uint8* pDst, const ma_int16* pSrc, ma_uint64 count, float volume) { ma_uint64 iSample; ma_int16 volumeFixed; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); volumeFixed = ma_float_to_fixed_16(volume); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_u8(ma_apply_volume_unclipped_u8(pSrc[iSample], volumeFixed)); } } MA_API void ma_copy_and_apply_volume_and_clip_samples_s16(ma_int16* pDst, const ma_int32* pSrc, ma_uint64 count, float volume) { ma_uint64 iSample; ma_int16 volumeFixed; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); volumeFixed = ma_float_to_fixed_16(volume); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_s16(ma_apply_volume_unclipped_s16(pSrc[iSample], volumeFixed)); } } MA_API void ma_copy_and_apply_volume_and_clip_samples_s24(ma_uint8* pDst, const ma_int64* pSrc, ma_uint64 count, float volume) { ma_uint64 iSample; ma_int16 volumeFixed; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); volumeFixed = ma_float_to_fixed_16(volume); for (iSample = 0; iSample < count; iSample += 1) { ma_int64 s = ma_clip_s24(ma_apply_volume_unclipped_s24(pSrc[iSample], volumeFixed)); pDst[iSample*3 + 0] = (ma_uint8)((s & 0x000000FF) >> 0); pDst[iSample*3 + 1] = (ma_uint8)((s & 0x0000FF00) >> 8); pDst[iSample*3 + 2] = (ma_uint8)((s & 0x00FF0000) >> 16); } } MA_API void ma_copy_and_apply_volume_and_clip_samples_s32(ma_int32* pDst, const ma_int64* pSrc, ma_uint64 count, float volume) { ma_uint64 iSample; ma_int16 volumeFixed; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); volumeFixed = ma_float_to_fixed_16(volume); for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_s32(ma_apply_volume_unclipped_s32(pSrc[iSample], volumeFixed)); } } MA_API void ma_copy_and_apply_volume_and_clip_samples_f32(float* pDst, const float* pSrc, ma_uint64 count, float volume) { ma_uint64 iSample; MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); /* For the f32 case we need to make sure this supports in-place processing where the input and output buffers are the same. */ for (iSample = 0; iSample < count; iSample += 1) { pDst[iSample] = ma_clip_f32(ma_apply_volume_unclipped_f32(pSrc[iSample], volume)); } } MA_API void ma_copy_and_apply_volume_and_clip_pcm_frames(void* pDst, const void* pSrc, ma_uint64 frameCount, ma_format format, ma_uint32 channels, float volume) { MA_ASSERT(pDst != NULL); MA_ASSERT(pSrc != NULL); if (volume == 1) { ma_clip_pcm_frames(pDst, pSrc, frameCount, format, channels); /* Optimized case for volume = 1. */ } else if (volume == 0) { ma_silence_pcm_frames(pDst, frameCount, format, channels); /* Optimized case for volume = 0. */ } else { ma_uint64 sampleCount = frameCount * channels; switch (format) { case ma_format_u8: ma_copy_and_apply_volume_and_clip_samples_u8( (ma_uint8*)pDst, (const ma_int16*)pSrc, sampleCount, volume); break; case ma_format_s16: ma_copy_and_apply_volume_and_clip_samples_s16((ma_int16*)pDst, (const ma_int32*)pSrc, sampleCount, volume); break; case ma_format_s24: ma_copy_and_apply_volume_and_clip_samples_s24((ma_uint8*)pDst, (const ma_int64*)pSrc, sampleCount, volume); break; case ma_format_s32: ma_copy_and_apply_volume_and_clip_samples_s32((ma_int32*)pDst, (const ma_int64*)pSrc, sampleCount, volume); break; case ma_format_f32: ma_copy_and_apply_volume_and_clip_samples_f32(( float*)pDst, (const float*)pSrc, sampleCount, volume); break; /* Do nothing if we don't know the format. We're including these here to silence a compiler warning about enums not being handled by the switch. */ case ma_format_unknown: case ma_format_count: break; } } } MA_API float ma_volume_linear_to_db(float factor) { return 20*ma_log10f(factor); } MA_API float ma_volume_db_to_linear(float gain) { return ma_powf(10, gain/20.0f); } /************************************************************************************************************************************************************** Format Conversion **************************************************************************************************************************************************************/ static MA_INLINE ma_int16 ma_pcm_sample_f32_to_s16(float x) { return (ma_int16)(x * 32767.0f); } static MA_INLINE ma_int16 ma_pcm_sample_u8_to_s16_no_scale(ma_uint8 x) { return (ma_int16)((ma_int16)x - 128); } static MA_INLINE ma_int64 ma_pcm_sample_s24_to_s32_no_scale(const ma_uint8* x) { return (ma_int64)(((ma_uint64)x[0] << 40) | ((ma_uint64)x[1] << 48) | ((ma_uint64)x[2] << 56)) >> 40; /* Make sure the sign bits are maintained. */ } static MA_INLINE void ma_pcm_sample_s32_to_s24_no_scale(ma_int64 x, ma_uint8* s24) { s24[0] = (ma_uint8)((x & 0x000000FF) >> 0); s24[1] = (ma_uint8)((x & 0x0000FF00) >> 8); s24[2] = (ma_uint8)((x & 0x00FF0000) >> 16); } /* u8 */ MA_API void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { (void)ditherMode; ma_copy_memory_64(dst, src, count * sizeof(ma_uint8)); } static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int16* dst_s16 = (ma_int16*)dst; const ma_uint8* src_u8 = (const ma_uint8*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int16 x = src_u8[i]; x = (ma_int16)(x - 128); x = (ma_int16)(x << 8); dst_s16[i] = x; } (void)ditherMode; } static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_s24 = (ma_uint8*)dst; const ma_uint8* src_u8 = (const ma_uint8*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int16 x = src_u8[i]; x = (ma_int16)(x - 128); dst_s24[i*3+0] = 0; dst_s24[i*3+1] = 0; dst_s24[i*3+2] = (ma_uint8)((ma_int8)x); } (void)ditherMode; } static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int32* dst_s32 = (ma_int32*)dst; const ma_uint8* src_u8 = (const ma_uint8*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = src_u8[i]; x = x - 128; x = x << 24; dst_s32[i] = x; } (void)ditherMode; } static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { float* dst_f32 = (float*)dst; const ma_uint8* src_u8 = (const ma_uint8*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { float x = (float)src_u8[i]; x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */ x = x - 1; /* 0..2 to -1..1 */ dst_f32[i] = x; } (void)ditherMode; } static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode); } #endif } #ifdef MA_USE_REFERENCE_CONVERSION_APIS static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_uint8* dst_u8 = (ma_uint8*)dst; const ma_uint8** src_u8 = (const ma_uint8**)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame]; } } } #else static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_uint8* dst_u8 = (ma_uint8*)dst; const ma_uint8** src_u8 = (const ma_uint8**)src; if (channels == 1) { ma_copy_memory_64(dst, src[0], frameCount * sizeof(ma_uint8)); } else if (channels == 2) { ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { dst_u8[iFrame*2 + 0] = src_u8[0][iFrame]; dst_u8[iFrame*2 + 1] = src_u8[1][iFrame]; } } else { ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame]; } } } } #endif MA_API void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_interleave_u8__reference(dst, src, frameCount, channels); #else ma_pcm_interleave_u8__optimized(dst, src, frameCount, channels); #endif } static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_uint8** dst_u8 = (ma_uint8**)dst; const ma_uint8* src_u8 = (const ma_uint8*)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_u8[iChannel][iFrame] = src_u8[iFrame*channels + iChannel]; } } } static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels); #else ma_pcm_deinterleave_u8__optimized(dst, src, frameCount, channels); #endif } /* s16 */ static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_u8 = (ma_uint8*)dst; const ma_int16* src_s16 = (const ma_int16*)src; if (ditherMode == ma_dither_mode_none) { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int16 x = src_s16[i]; x = (ma_int16)(x >> 8); x = (ma_int16)(x + 128); dst_u8[i] = (ma_uint8)x; } } else { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int16 x = src_s16[i]; /* Dither. Don't overflow. */ ma_int32 dither = ma_dither_s32(ditherMode, -0x80, 0x7F); if ((x + dither) <= 0x7FFF) { x = (ma_int16)(x + dither); } else { x = 0x7FFF; } x = (ma_int16)(x >> 8); x = (ma_int16)(x + 128); dst_u8[i] = (ma_uint8)x; } } } static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode); } #endif } MA_API void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { (void)ditherMode; ma_copy_memory_64(dst, src, count * sizeof(ma_int16)); } static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_s24 = (ma_uint8*)dst; const ma_int16* src_s16 = (const ma_int16*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { dst_s24[i*3+0] = 0; dst_s24[i*3+1] = (ma_uint8)(src_s16[i] & 0xFF); dst_s24[i*3+2] = (ma_uint8)(src_s16[i] >> 8); } (void)ditherMode; } static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int32* dst_s32 = (ma_int32*)dst; const ma_int16* src_s16 = (const ma_int16*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { dst_s32[i] = src_s16[i] << 16; } (void)ditherMode; } static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { float* dst_f32 = (float*)dst; const ma_int16* src_s16 = (const ma_int16*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { float x = (float)src_s16[i]; #if 0 /* The accurate way. */ x = x + 32768.0f; /* -32768..32767 to 0..65535 */ x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */ x = x - 1; /* 0..2 to -1..1 */ #else /* The fast way. */ x = x * 0.000030517578125f; /* -32768..32767 to -1..0.999969482421875 */ #endif dst_f32[i] = x; } (void)ditherMode; } static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_int16* dst_s16 = (ma_int16*)dst; const ma_int16** src_s16 = (const ma_int16**)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_s16[iFrame*channels + iChannel] = src_s16[iChannel][iFrame]; } } } static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_interleave_s16__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_interleave_s16__reference(dst, src, frameCount, channels); #else ma_pcm_interleave_s16__optimized(dst, src, frameCount, channels); #endif } static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_int16** dst_s16 = (ma_int16**)dst; const ma_int16* src_s16 = (const ma_int16*)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_s16[iChannel][iFrame] = src_s16[iFrame*channels + iChannel]; } } } static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels); #else ma_pcm_deinterleave_s16__optimized(dst, src, frameCount, channels); #endif } /* s24 */ static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_u8 = (ma_uint8*)dst; const ma_uint8* src_s24 = (const ma_uint8*)src; if (ditherMode == ma_dither_mode_none) { ma_uint64 i; for (i = 0; i < count; i += 1) { dst_u8[i] = (ma_uint8)((ma_int8)src_s24[i*3 + 2] + 128); } } else { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); /* Dither. Don't overflow. */ ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF); if ((ma_int64)x + dither <= 0x7FFFFFFF) { x = x + dither; } else { x = 0x7FFFFFFF; } x = x >> 24; x = x + 128; dst_u8[i] = (ma_uint8)x; } } } static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int16* dst_s16 = (ma_int16*)dst; const ma_uint8* src_s24 = (const ma_uint8*)src; if (ditherMode == ma_dither_mode_none) { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_uint16 dst_lo = ((ma_uint16)src_s24[i*3 + 1]); ma_uint16 dst_hi = (ma_uint16)((ma_uint16)src_s24[i*3 + 2] << 8); dst_s16[i] = (ma_int16)(dst_lo | dst_hi); } } else { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); /* Dither. Don't overflow. */ ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF); if ((ma_int64)x + dither <= 0x7FFFFFFF) { x = x + dither; } else { x = 0x7FFFFFFF; } x = x >> 16; dst_s16[i] = (ma_int16)x; } } } static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode); } #endif } MA_API void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { (void)ditherMode; ma_copy_memory_64(dst, src, count * 3); } static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int32* dst_s32 = (ma_int32*)dst; const ma_uint8* src_s24 = (const ma_uint8*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { dst_s32[i] = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24); } (void)ditherMode; } static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { float* dst_f32 = (float*)dst; const ma_uint8* src_s24 = (const ma_uint8*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { float x = (float)(((ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24)) >> 8); #if 0 /* The accurate way. */ x = x + 8388608.0f; /* -8388608..8388607 to 0..16777215 */ x = x * 0.00000011920929665621f; /* 0..16777215 to 0..2 */ x = x - 1; /* 0..2 to -1..1 */ #else /* The fast way. */ x = x * 0.00000011920928955078125f; /* -8388608..8388607 to -1..0.999969482421875 */ #endif dst_f32[i] = x; } (void)ditherMode; } static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_uint8* dst8 = (ma_uint8*)dst; const ma_uint8** src8 = (const ma_uint8**)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst8[iFrame*3*channels + iChannel*3 + 0] = src8[iChannel][iFrame*3 + 0]; dst8[iFrame*3*channels + iChannel*3 + 1] = src8[iChannel][iFrame*3 + 1]; dst8[iFrame*3*channels + iChannel*3 + 2] = src8[iChannel][iFrame*3 + 2]; } } } static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_interleave_s24__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_interleave_s24__reference(dst, src, frameCount, channels); #else ma_pcm_interleave_s24__optimized(dst, src, frameCount, channels); #endif } static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_uint8** dst8 = (ma_uint8**)dst; const ma_uint8* src8 = (const ma_uint8*)src; ma_uint32 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst8[iChannel][iFrame*3 + 0] = src8[iFrame*3*channels + iChannel*3 + 0]; dst8[iChannel][iFrame*3 + 1] = src8[iFrame*3*channels + iChannel*3 + 1]; dst8[iChannel][iFrame*3 + 2] = src8[iFrame*3*channels + iChannel*3 + 2]; } } } static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels); #else ma_pcm_deinterleave_s24__optimized(dst, src, frameCount, channels); #endif } /* s32 */ static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_u8 = (ma_uint8*)dst; const ma_int32* src_s32 = (const ma_int32*)src; if (ditherMode == ma_dither_mode_none) { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = src_s32[i]; x = x >> 24; x = x + 128; dst_u8[i] = (ma_uint8)x; } } else { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = src_s32[i]; /* Dither. Don't overflow. */ ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF); if ((ma_int64)x + dither <= 0x7FFFFFFF) { x = x + dither; } else { x = 0x7FFFFFFF; } x = x >> 24; x = x + 128; dst_u8[i] = (ma_uint8)x; } } } static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int16* dst_s16 = (ma_int16*)dst; const ma_int32* src_s32 = (const ma_int32*)src; if (ditherMode == ma_dither_mode_none) { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = src_s32[i]; x = x >> 16; dst_s16[i] = (ma_int16)x; } } else { ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 x = src_s32[i]; /* Dither. Don't overflow. */ ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF); if ((ma_int64)x + dither <= 0x7FFFFFFF) { x = x + dither; } else { x = 0x7FFFFFFF; } x = x >> 16; dst_s16[i] = (ma_int16)x; } } } static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_s24 = (ma_uint8*)dst; const ma_int32* src_s32 = (const ma_int32*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { ma_uint32 x = (ma_uint32)src_s32[i]; dst_s24[i*3+0] = (ma_uint8)((x & 0x0000FF00) >> 8); dst_s24[i*3+1] = (ma_uint8)((x & 0x00FF0000) >> 16); dst_s24[i*3+2] = (ma_uint8)((x & 0xFF000000) >> 24); } (void)ditherMode; /* No dithering for s32 -> s24. */ } static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode); } #endif } MA_API void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { (void)ditherMode; ma_copy_memory_64(dst, src, count * sizeof(ma_int32)); } static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { float* dst_f32 = (float*)dst; const ma_int32* src_s32 = (const ma_int32*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { double x = src_s32[i]; #if 0 x = x + 2147483648.0; x = x * 0.0000000004656612873077392578125; x = x - 1; #else x = x / 2147483648.0; #endif dst_f32[i] = (float)x; } (void)ditherMode; /* No dithering for s32 -> f32. */ } static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_int32* dst_s32 = (ma_int32*)dst; const ma_int32** src_s32 = (const ma_int32**)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_s32[iFrame*channels + iChannel] = src_s32[iChannel][iFrame]; } } } static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_interleave_s32__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_interleave_s32__reference(dst, src, frameCount, channels); #else ma_pcm_interleave_s32__optimized(dst, src, frameCount, channels); #endif } static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_int32** dst_s32 = (ma_int32**)dst; const ma_int32* src_s32 = (const ma_int32*)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_s32[iChannel][iFrame] = src_s32[iFrame*channels + iChannel]; } } } static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels); #else ma_pcm_deinterleave_s32__optimized(dst, src, frameCount, channels); #endif } /* f32 */ static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint64 i; ma_uint8* dst_u8 = (ma_uint8*)dst; const float* src_f32 = (const float*)src; float ditherMin = 0; float ditherMax = 0; if (ditherMode != ma_dither_mode_none) { ditherMin = 1.0f / -128; ditherMax = 1.0f / 127; } for (i = 0; i < count; i += 1) { float x = src_f32[i]; x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ x = x + 1; /* -1..1 to 0..2 */ x = x * 127.5f; /* 0..2 to 0..255 */ dst_u8[i] = (ma_uint8)x; } } static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode); } #endif } #ifdef MA_USE_REFERENCE_CONVERSION_APIS static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint64 i; ma_int16* dst_s16 = (ma_int16*)dst; const float* src_f32 = (const float*)src; float ditherMin = 0; float ditherMax = 0; if (ditherMode != ma_dither_mode_none) { ditherMin = 1.0f / -32768; ditherMax = 1.0f / 32767; } for (i = 0; i < count; i += 1) { float x = src_f32[i]; x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ #if 0 /* The accurate way. */ x = x + 1; /* -1..1 to 0..2 */ x = x * 32767.5f; /* 0..2 to 0..65535 */ x = x - 32768.0f; /* 0...65535 to -32768..32767 */ #else /* The fast way. */ x = x * 32767.0f; /* -1..1 to -32767..32767 */ #endif dst_s16[i] = (ma_int16)x; } } #else static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint64 i; ma_uint64 i4; ma_uint64 count4; ma_int16* dst_s16 = (ma_int16*)dst; const float* src_f32 = (const float*)src; float ditherMin = 0; float ditherMax = 0; if (ditherMode != ma_dither_mode_none) { ditherMin = 1.0f / -32768; ditherMax = 1.0f / 32767; } /* Unrolled. */ i = 0; count4 = count >> 2; for (i4 = 0; i4 < count4; i4 += 1) { float d0 = ma_dither_f32(ditherMode, ditherMin, ditherMax); float d1 = ma_dither_f32(ditherMode, ditherMin, ditherMax); float d2 = ma_dither_f32(ditherMode, ditherMin, ditherMax); float d3 = ma_dither_f32(ditherMode, ditherMin, ditherMax); float x0 = src_f32[i+0]; float x1 = src_f32[i+1]; float x2 = src_f32[i+2]; float x3 = src_f32[i+3]; x0 = x0 + d0; x1 = x1 + d1; x2 = x2 + d2; x3 = x3 + d3; x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0)); x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1)); x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2)); x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3)); x0 = x0 * 32767.0f; x1 = x1 * 32767.0f; x2 = x2 * 32767.0f; x3 = x3 * 32767.0f; dst_s16[i+0] = (ma_int16)x0; dst_s16[i+1] = (ma_int16)x1; dst_s16[i+2] = (ma_int16)x2; dst_s16[i+3] = (ma_int16)x3; i += 4; } /* Leftover. */ for (; i < count; i += 1) { float x = src_f32[i]; x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ x = x * 32767.0f; /* -1..1 to -32767..32767 */ dst_s16[i] = (ma_int16)x; } } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint64 i; ma_uint64 i8; ma_uint64 count8; ma_int16* dst_s16; const float* src_f32; float ditherMin; float ditherMax; /* Both the input and output buffers need to be aligned to 16 bytes. */ if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) { ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); return; } dst_s16 = (ma_int16*)dst; src_f32 = (const float*)src; ditherMin = 0; ditherMax = 0; if (ditherMode != ma_dither_mode_none) { ditherMin = 1.0f / -32768; ditherMax = 1.0f / 32767; } i = 0; /* SSE2. SSE allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */ count8 = count >> 3; for (i8 = 0; i8 < count8; i8 += 1) { __m128 d0; __m128 d1; __m128 x0; __m128 x1; if (ditherMode == ma_dither_mode_none) { d0 = _mm_set1_ps(0); d1 = _mm_set1_ps(0); } else if (ditherMode == ma_dither_mode_rectangle) { d0 = _mm_set_ps( ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax) ); d1 = _mm_set_ps( ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax) ); } else { d0 = _mm_set_ps( ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax) ); d1 = _mm_set_ps( ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax) ); } x0 = *((__m128*)(src_f32 + i) + 0); x1 = *((__m128*)(src_f32 + i) + 1); x0 = _mm_add_ps(x0, d0); x1 = _mm_add_ps(x1, d1); x0 = _mm_mul_ps(x0, _mm_set1_ps(32767.0f)); x1 = _mm_mul_ps(x1, _mm_set1_ps(32767.0f)); _mm_stream_si128(((__m128i*)(dst_s16 + i)), _mm_packs_epi32(_mm_cvttps_epi32(x0), _mm_cvttps_epi32(x1))); i += 8; } /* Leftover. */ for (; i < count; i += 1) { float x = src_f32[i]; x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ x = x * 32767.0f; /* -1..1 to -32767..32767 */ dst_s16[i] = (ma_int16)x; } } #endif /* SSE2 */ #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint64 i; ma_uint64 i16; ma_uint64 count16; ma_int16* dst_s16; const float* src_f32; float ditherMin; float ditherMax; /* Both the input and output buffers need to be aligned to 32 bytes. */ if ((((ma_uintptr)dst & 31) != 0) || (((ma_uintptr)src & 31) != 0)) { ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); return; } dst_s16 = (ma_int16*)dst; src_f32 = (const float*)src; ditherMin = 0; ditherMax = 0; if (ditherMode != ma_dither_mode_none) { ditherMin = 1.0f / -32768; ditherMax = 1.0f / 32767; } i = 0; /* AVX2. AVX2 allows us to output 16 s16's at a time which means our loop is unrolled 16 times. */ count16 = count >> 4; for (i16 = 0; i16 < count16; i16 += 1) { __m256 d0; __m256 d1; __m256 x0; __m256 x1; __m256i i0; __m256i i1; __m256i p0; __m256i p1; __m256i r; if (ditherMode == ma_dither_mode_none) { d0 = _mm256_set1_ps(0); d1 = _mm256_set1_ps(0); } else if (ditherMode == ma_dither_mode_rectangle) { d0 = _mm256_set_ps( ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax) ); d1 = _mm256_set_ps( ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax), ma_dither_f32_rectangle(ditherMin, ditherMax) ); } else { d0 = _mm256_set_ps( ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax) ); d1 = _mm256_set_ps( ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax), ma_dither_f32_triangle(ditherMin, ditherMax) ); } x0 = *((__m256*)(src_f32 + i) + 0); x1 = *((__m256*)(src_f32 + i) + 1); x0 = _mm256_add_ps(x0, d0); x1 = _mm256_add_ps(x1, d1); x0 = _mm256_mul_ps(x0, _mm256_set1_ps(32767.0f)); x1 = _mm256_mul_ps(x1, _mm256_set1_ps(32767.0f)); /* Computing the final result is a little more complicated for AVX2 than SSE2. */ i0 = _mm256_cvttps_epi32(x0); i1 = _mm256_cvttps_epi32(x1); p0 = _mm256_permute2x128_si256(i0, i1, 0 | 32); p1 = _mm256_permute2x128_si256(i0, i1, 1 | 48); r = _mm256_packs_epi32(p0, p1); _mm256_stream_si256(((__m256i*)(dst_s16 + i)), r); i += 16; } /* Leftover. */ for (; i < count; i += 1) { float x = src_f32[i]; x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ x = x * 32767.0f; /* -1..1 to -32767..32767 */ dst_s16[i] = (ma_int16)x; } } #endif /* AVX2 */ #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint64 i; ma_uint64 i8; ma_uint64 count8; ma_int16* dst_s16; const float* src_f32; float ditherMin; float ditherMax; if (!ma_has_neon()) { return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); } /* Both the input and output buffers need to be aligned to 16 bytes. */ if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) { ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); return; } dst_s16 = (ma_int16*)dst; src_f32 = (const float*)src; ditherMin = 0; ditherMax = 0; if (ditherMode != ma_dither_mode_none) { ditherMin = 1.0f / -32768; ditherMax = 1.0f / 32767; } i = 0; /* NEON. NEON allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */ count8 = count >> 3; for (i8 = 0; i8 < count8; i8 += 1) { float32x4_t d0; float32x4_t d1; float32x4_t x0; float32x4_t x1; int32x4_t i0; int32x4_t i1; if (ditherMode == ma_dither_mode_none) { d0 = vmovq_n_f32(0); d1 = vmovq_n_f32(0); } else if (ditherMode == ma_dither_mode_rectangle) { float d0v[4]; d0v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax); d0v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax); d0v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax); d0v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax); d0 = vld1q_f32(d0v); float d1v[4]; d1v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax); d1v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax); d1v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax); d1v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax); d1 = vld1q_f32(d1v); } else { float d0v[4]; d0v[0] = ma_dither_f32_triangle(ditherMin, ditherMax); d0v[1] = ma_dither_f32_triangle(ditherMin, ditherMax); d0v[2] = ma_dither_f32_triangle(ditherMin, ditherMax); d0v[3] = ma_dither_f32_triangle(ditherMin, ditherMax); d0 = vld1q_f32(d0v); float d1v[4]; d1v[0] = ma_dither_f32_triangle(ditherMin, ditherMax); d1v[1] = ma_dither_f32_triangle(ditherMin, ditherMax); d1v[2] = ma_dither_f32_triangle(ditherMin, ditherMax); d1v[3] = ma_dither_f32_triangle(ditherMin, ditherMax); d1 = vld1q_f32(d1v); } x0 = *((float32x4_t*)(src_f32 + i) + 0); x1 = *((float32x4_t*)(src_f32 + i) + 1); x0 = vaddq_f32(x0, d0); x1 = vaddq_f32(x1, d1); x0 = vmulq_n_f32(x0, 32767.0f); x1 = vmulq_n_f32(x1, 32767.0f); i0 = vcvtq_s32_f32(x0); i1 = vcvtq_s32_f32(x1); *((int16x8_t*)(dst_s16 + i)) = vcombine_s16(vqmovn_s32(i0), vqmovn_s32(i1)); i += 8; } /* Leftover. */ for (; i < count; i += 1) { float x = src_f32[i]; x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax); x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ x = x * 32767.0f; /* -1..1 to -32767..32767 */ dst_s16[i] = (ma_int16)x; } } #endif /* Neon */ #endif /* MA_USE_REFERENCE_CONVERSION_APIS */ MA_API void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_uint8* dst_s24 = (ma_uint8*)dst; const float* src_f32 = (const float*)src; ma_uint64 i; for (i = 0; i < count; i += 1) { ma_int32 r; float x = src_f32[i]; x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ #if 0 /* The accurate way. */ x = x + 1; /* -1..1 to 0..2 */ x = x * 8388607.5f; /* 0..2 to 0..16777215 */ x = x - 8388608.0f; /* 0..16777215 to -8388608..8388607 */ #else /* The fast way. */ x = x * 8388607.0f; /* -1..1 to -8388607..8388607 */ #endif r = (ma_int32)x; dst_s24[(i*3)+0] = (ma_uint8)((r & 0x0000FF) >> 0); dst_s24[(i*3)+1] = (ma_uint8)((r & 0x00FF00) >> 8); dst_s24[(i*3)+2] = (ma_uint8)((r & 0xFF0000) >> 16); } (void)ditherMode; /* No dithering for f32 -> s24. */ } static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode); } #endif } static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_int32* dst_s32 = (ma_int32*)dst; const float* src_f32 = (const float*)src; ma_uint32 i; for (i = 0; i < count; i += 1) { double x = src_f32[i]; x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */ #if 0 /* The accurate way. */ x = x + 1; /* -1..1 to 0..2 */ x = x * 2147483647.5; /* 0..2 to 0..4294967295 */ x = x - 2147483648.0; /* 0...4294967295 to -2147483648..2147483647 */ #else /* The fast way. */ x = x * 2147483647.0; /* -1..1 to -2147483647..2147483647 */ #endif dst_s32[i] = (ma_int32)x; } (void)ditherMode; /* No dithering for f32 -> s32. */ } static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode); } #if defined(MA_SUPPORT_SSE2) static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_AVX2) static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); } #endif #if defined(MA_SUPPORT_NEON) static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); } #endif MA_API void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode); #else # if MA_PREFERRED_SIMD == MA_SIMD_AVX2 if (ma_has_avx2()) { ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2 if (ma_has_sse2()) { ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode); } else #elif MA_PREFERRED_SIMD == MA_SIMD_NEON if (ma_has_neon()) { ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode); } else #endif { ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode); } #endif } MA_API void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode) { (void)ditherMode; ma_copy_memory_64(dst, src, count * sizeof(float)); } static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { float* dst_f32 = (float*)dst; const float** src_f32 = (const float**)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_f32[iFrame*channels + iChannel] = src_f32[iChannel][iFrame]; } } } static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_interleave_f32__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_interleave_f32__reference(dst, src, frameCount, channels); #else ma_pcm_interleave_f32__optimized(dst, src, frameCount, channels); #endif } static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { float** dst_f32 = (float**)dst; const float* src_f32 = (const float*)src; ma_uint64 iFrame; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; iChannel += 1) { dst_f32[iChannel][iFrame] = src_f32[iFrame*channels + iChannel]; } } } static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels); } MA_API void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels) { #ifdef MA_USE_REFERENCE_CONVERSION_APIS ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels); #else ma_pcm_deinterleave_f32__optimized(dst, src, frameCount, channels); #endif } MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode) { if (formatOut == formatIn) { ma_copy_memory_64(pOut, pIn, sampleCount * ma_get_bytes_per_sample(formatOut)); return; } switch (formatIn) { case ma_format_u8: { switch (formatOut) { case ma_format_s16: ma_pcm_u8_to_s16(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s24: ma_pcm_u8_to_s24(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s32: ma_pcm_u8_to_s32(pOut, pIn, sampleCount, ditherMode); return; case ma_format_f32: ma_pcm_u8_to_f32(pOut, pIn, sampleCount, ditherMode); return; default: break; } } break; case ma_format_s16: { switch (formatOut) { case ma_format_u8: ma_pcm_s16_to_u8( pOut, pIn, sampleCount, ditherMode); return; case ma_format_s24: ma_pcm_s16_to_s24(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s32: ma_pcm_s16_to_s32(pOut, pIn, sampleCount, ditherMode); return; case ma_format_f32: ma_pcm_s16_to_f32(pOut, pIn, sampleCount, ditherMode); return; default: break; } } break; case ma_format_s24: { switch (formatOut) { case ma_format_u8: ma_pcm_s24_to_u8( pOut, pIn, sampleCount, ditherMode); return; case ma_format_s16: ma_pcm_s24_to_s16(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s32: ma_pcm_s24_to_s32(pOut, pIn, sampleCount, ditherMode); return; case ma_format_f32: ma_pcm_s24_to_f32(pOut, pIn, sampleCount, ditherMode); return; default: break; } } break; case ma_format_s32: { switch (formatOut) { case ma_format_u8: ma_pcm_s32_to_u8( pOut, pIn, sampleCount, ditherMode); return; case ma_format_s16: ma_pcm_s32_to_s16(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s24: ma_pcm_s32_to_s24(pOut, pIn, sampleCount, ditherMode); return; case ma_format_f32: ma_pcm_s32_to_f32(pOut, pIn, sampleCount, ditherMode); return; default: break; } } break; case ma_format_f32: { switch (formatOut) { case ma_format_u8: ma_pcm_f32_to_u8( pOut, pIn, sampleCount, ditherMode); return; case ma_format_s16: ma_pcm_f32_to_s16(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s24: ma_pcm_f32_to_s24(pOut, pIn, sampleCount, ditherMode); return; case ma_format_s32: ma_pcm_f32_to_s32(pOut, pIn, sampleCount, ditherMode); return; default: break; } } break; default: break; } } MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode) { ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode); } MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames) { if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) { return; /* Invalid args. */ } /* For efficiency we do this per format. */ switch (format) { case ma_format_s16: { const ma_int16* pSrcS16 = (const ma_int16*)pInterleavedPCMFrames; ma_uint64 iPCMFrame; for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { ma_int16* pDstS16 = (ma_int16*)ppDeinterleavedPCMFrames[iChannel]; pDstS16[iPCMFrame] = pSrcS16[iPCMFrame*channels+iChannel]; } } } break; case ma_format_f32: { const float* pSrcF32 = (const float*)pInterleavedPCMFrames; ma_uint64 iPCMFrame; for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { float* pDstF32 = (float*)ppDeinterleavedPCMFrames[iChannel]; pDstF32[iPCMFrame] = pSrcF32[iPCMFrame*channels+iChannel]; } } } break; default: { ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format); ma_uint64 iPCMFrame; for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { void* pDst = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes); const void* pSrc = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes); memcpy(pDst, pSrc, sampleSizeInBytes); } } } break; } } MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames) { switch (format) { case ma_format_s16: { ma_int16* pDstS16 = (ma_int16*)pInterleavedPCMFrames; ma_uint64 iPCMFrame; for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { const ma_int16* pSrcS16 = (const ma_int16*)ppDeinterleavedPCMFrames[iChannel]; pDstS16[iPCMFrame*channels+iChannel] = pSrcS16[iPCMFrame]; } } } break; case ma_format_f32: { float* pDstF32 = (float*)pInterleavedPCMFrames; ma_uint64 iPCMFrame; for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { const float* pSrcF32 = (const float*)ppDeinterleavedPCMFrames[iChannel]; pDstF32[iPCMFrame*channels+iChannel] = pSrcF32[iPCMFrame]; } } } break; default: { ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format); ma_uint64 iPCMFrame; for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { void* pDst = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes); const void* pSrc = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes); memcpy(pDst, pSrc, sampleSizeInBytes); } } } break; } } /************************************************************************************************************************************************************** Biquad Filter **************************************************************************************************************************************************************/ #ifndef MA_BIQUAD_FIXED_POINT_SHIFT #define MA_BIQUAD_FIXED_POINT_SHIFT 14 #endif static ma_int32 ma_biquad_float_to_fp(double x) { return (ma_int32)(x * (1 << MA_BIQUAD_FIXED_POINT_SHIFT)); } MA_API ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2) { ma_biquad_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.b0 = b0; config.b1 = b1; config.b2 = b2; config.a0 = a0; config.a1 = a1; config.a2 = a2; return config; } typedef struct { size_t sizeInBytes; size_t r1Offset; size_t r2Offset; } ma_biquad_heap_layout; static ma_result ma_biquad_get_heap_layout(const ma_biquad_config* pConfig, ma_biquad_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* R0 */ pHeapLayout->r1Offset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(ma_biquad_coefficient) * pConfig->channels; /* R1 */ pHeapLayout->r2Offset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(ma_biquad_coefficient) * pConfig->channels; /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_biquad_get_heap_size(const ma_biquad_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_biquad_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_biquad_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_biquad_init_preallocated(const ma_biquad_config* pConfig, void* pHeap, ma_biquad* pBQ) { ma_result result; ma_biquad_heap_layout heapLayout; if (pBQ == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pBQ); result = ma_biquad_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pBQ->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pBQ->pR1 = (ma_biquad_coefficient*)ma_offset_ptr(pHeap, heapLayout.r1Offset); pBQ->pR2 = (ma_biquad_coefficient*)ma_offset_ptr(pHeap, heapLayout.r2Offset); return ma_biquad_reinit(pConfig, pBQ); } MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_biquad* pBQ) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_biquad_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_biquad_init_preallocated(pConfig, pHeap, pBQ); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pBQ->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_biquad_uninit(ma_biquad* pBQ, const ma_allocation_callbacks* pAllocationCallbacks) { if (pBQ == NULL) { return; } if (pBQ->_ownsHeap) { ma_free(pBQ->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ) { if (pBQ == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->a0 == 0) { return MA_INVALID_ARGS; /* Division by zero. */ } /* Only supporting f32 and s16. */ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } /* The format cannot be changed after initialization. */ if (pBQ->format != ma_format_unknown && pBQ->format != pConfig->format) { return MA_INVALID_OPERATION; } /* The channel count cannot be changed after initialization. */ if (pBQ->channels != 0 && pBQ->channels != pConfig->channels) { return MA_INVALID_OPERATION; } pBQ->format = pConfig->format; pBQ->channels = pConfig->channels; /* Normalize. */ if (pConfig->format == ma_format_f32) { pBQ->b0.f32 = (float)(pConfig->b0 / pConfig->a0); pBQ->b1.f32 = (float)(pConfig->b1 / pConfig->a0); pBQ->b2.f32 = (float)(pConfig->b2 / pConfig->a0); pBQ->a1.f32 = (float)(pConfig->a1 / pConfig->a0); pBQ->a2.f32 = (float)(pConfig->a2 / pConfig->a0); } else { pBQ->b0.s32 = ma_biquad_float_to_fp(pConfig->b0 / pConfig->a0); pBQ->b1.s32 = ma_biquad_float_to_fp(pConfig->b1 / pConfig->a0); pBQ->b2.s32 = ma_biquad_float_to_fp(pConfig->b2 / pConfig->a0); pBQ->a1.s32 = ma_biquad_float_to_fp(pConfig->a1 / pConfig->a0); pBQ->a2.s32 = ma_biquad_float_to_fp(pConfig->a2 / pConfig->a0); } return MA_SUCCESS; } MA_API ma_result ma_biquad_clear_cache(ma_biquad* pBQ) { if (pBQ == NULL) { return MA_INVALID_ARGS; } if (pBQ->format == ma_format_f32) { pBQ->pR1->f32 = 0; pBQ->pR2->f32 = 0; } else { pBQ->pR1->s32 = 0; pBQ->pR2->s32 = 0; } return MA_SUCCESS; } static MA_INLINE void ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(ma_biquad* pBQ, float* pY, const float* pX) { ma_uint32 c; const ma_uint32 channels = pBQ->channels; const float b0 = pBQ->b0.f32; const float b1 = pBQ->b1.f32; const float b2 = pBQ->b2.f32; const float a1 = pBQ->a1.f32; const float a2 = pBQ->a2.f32; MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { float r1 = pBQ->pR1[c].f32; float r2 = pBQ->pR2[c].f32; float x = pX[c]; float y; y = b0*x + r1; r1 = b1*x - a1*y + r2; r2 = b2*x - a2*y; pY[c] = y; pBQ->pR1[c].f32 = r1; pBQ->pR2[c].f32 = r2; } } static MA_INLINE void ma_biquad_process_pcm_frame_f32(ma_biquad* pBQ, float* pY, const float* pX) { ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(pBQ, pY, pX); } static MA_INLINE void ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX) { ma_uint32 c; const ma_uint32 channels = pBQ->channels; const ma_int32 b0 = pBQ->b0.s32; const ma_int32 b1 = pBQ->b1.s32; const ma_int32 b2 = pBQ->b2.s32; const ma_int32 a1 = pBQ->a1.s32; const ma_int32 a2 = pBQ->a2.s32; MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { ma_int32 r1 = pBQ->pR1[c].s32; ma_int32 r2 = pBQ->pR2[c].s32; ma_int32 x = pX[c]; ma_int32 y; y = (b0*x + r1) >> MA_BIQUAD_FIXED_POINT_SHIFT; r1 = (b1*x - a1*y + r2); r2 = (b2*x - a2*y); pY[c] = (ma_int16)ma_clamp(y, -32768, 32767); pBQ->pR1[c].s32 = r1; pBQ->pR2[c].s32 = r2; } } static MA_INLINE void ma_biquad_process_pcm_frame_s16(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX) { ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX); } MA_API ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint32 n; if (pBQ == NULL || pFramesOut == NULL || pFramesIn == NULL) { return MA_INVALID_ARGS; } /* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */ if (pBQ->format == ma_format_f32) { /* */ float* pY = ( float*)pFramesOut; const float* pX = (const float*)pFramesIn; for (n = 0; n < frameCount; n += 1) { ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(pBQ, pY, pX); pY += pBQ->channels; pX += pBQ->channels; } } else if (pBQ->format == ma_format_s16) { /* */ ma_int16* pY = ( ma_int16*)pFramesOut; const ma_int16* pX = (const ma_int16*)pFramesIn; for (n = 0; n < frameCount; n += 1) { ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX); pY += pBQ->channels; pX += pBQ->channels; } } else { MA_ASSERT(MA_FALSE); return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */ } return MA_SUCCESS; } MA_API ma_uint32 ma_biquad_get_latency(const ma_biquad* pBQ) { if (pBQ == NULL) { return 0; } return 2; } /************************************************************************************************************************************************************** Low-Pass Filter **************************************************************************************************************************************************************/ MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency) { ma_lpf1_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.q = 0.5; return config; } MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q) { ma_lpf2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.q = q; /* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */ if (config.q == 0) { config.q = 0.707107; } return config; } typedef struct { size_t sizeInBytes; size_t r1Offset; } ma_lpf1_heap_layout; static ma_result ma_lpf1_get_heap_layout(const ma_lpf1_config* pConfig, ma_lpf1_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* R1 */ pHeapLayout->r1Offset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(ma_biquad_coefficient) * pConfig->channels; /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_lpf1_get_heap_size(const ma_lpf1_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_lpf1_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } result = ma_lpf1_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_lpf1_init_preallocated(const ma_lpf1_config* pConfig, void* pHeap, ma_lpf1* pLPF) { ma_result result; ma_lpf1_heap_layout heapLayout; if (pLPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pLPF); result = ma_lpf1_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pLPF->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pLPF->pR1 = (ma_biquad_coefficient*)ma_offset_ptr(pHeap, heapLayout.r1Offset); return ma_lpf1_reinit(pConfig, pLPF); } MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf1* pLPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_lpf1_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_lpf1_init_preallocated(pConfig, pHeap, pLPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pLPF->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_lpf1_uninit(ma_lpf1* pLPF, const ma_allocation_callbacks* pAllocationCallbacks) { if (pLPF == NULL) { return; } if (pLPF->_ownsHeap) { ma_free(pLPF->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF) { double a; if (pLPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } /* Only supporting f32 and s16. */ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } /* The format cannot be changed after initialization. */ if (pLPF->format != ma_format_unknown && pLPF->format != pConfig->format) { return MA_INVALID_OPERATION; } /* The channel count cannot be changed after initialization. */ if (pLPF->channels != 0 && pLPF->channels != pConfig->channels) { return MA_INVALID_OPERATION; } pLPF->format = pConfig->format; pLPF->channels = pConfig->channels; a = ma_expd(-2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate); if (pConfig->format == ma_format_f32) { pLPF->a.f32 = (float)a; } else { pLPF->a.s32 = ma_biquad_float_to_fp(a); } return MA_SUCCESS; } MA_API ma_result ma_lpf1_clear_cache(ma_lpf1* pLPF) { if (pLPF == NULL) { return MA_INVALID_ARGS; } if (pLPF->format == ma_format_f32) { pLPF->a.f32 = 0; } else { pLPF->a.s32 = 0; } return MA_SUCCESS; } static MA_INLINE void ma_lpf1_process_pcm_frame_f32(ma_lpf1* pLPF, float* pY, const float* pX) { ma_uint32 c; const ma_uint32 channels = pLPF->channels; const float a = pLPF->a.f32; const float b = 1 - a; MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { float r1 = pLPF->pR1[c].f32; float x = pX[c]; float y; y = b*x + a*r1; pY[c] = y; pLPF->pR1[c].f32 = y; } } static MA_INLINE void ma_lpf1_process_pcm_frame_s16(ma_lpf1* pLPF, ma_int16* pY, const ma_int16* pX) { ma_uint32 c; const ma_uint32 channels = pLPF->channels; const ma_int32 a = pLPF->a.s32; const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a); MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { ma_int32 r1 = pLPF->pR1[c].s32; ma_int32 x = pX[c]; ma_int32 y; y = (b*x + a*r1) >> MA_BIQUAD_FIXED_POINT_SHIFT; pY[c] = (ma_int16)y; pLPF->pR1[c].s32 = (ma_int32)y; } } MA_API ma_result ma_lpf1_process_pcm_frames(ma_lpf1* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint32 n; if (pLPF == NULL || pFramesOut == NULL || pFramesIn == NULL) { return MA_INVALID_ARGS; } /* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */ if (pLPF->format == ma_format_f32) { /* */ float* pY = ( float*)pFramesOut; const float* pX = (const float*)pFramesIn; for (n = 0; n < frameCount; n += 1) { ma_lpf1_process_pcm_frame_f32(pLPF, pY, pX); pY += pLPF->channels; pX += pLPF->channels; } } else if (pLPF->format == ma_format_s16) { /* */ ma_int16* pY = ( ma_int16*)pFramesOut; const ma_int16* pX = (const ma_int16*)pFramesIn; for (n = 0; n < frameCount; n += 1) { ma_lpf1_process_pcm_frame_s16(pLPF, pY, pX); pY += pLPF->channels; pX += pLPF->channels; } } else { MA_ASSERT(MA_FALSE); return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */ } return MA_SUCCESS; } MA_API ma_uint32 ma_lpf1_get_latency(const ma_lpf1* pLPF) { if (pLPF == NULL) { return 0; } return 1; } static MA_INLINE ma_biquad_config ma_lpf2__get_biquad_config(const ma_lpf2_config* pConfig) { ma_biquad_config bqConfig; double q; double w; double s; double c; double a; MA_ASSERT(pConfig != NULL); q = pConfig->q; w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); a = s / (2*q); bqConfig.b0 = (1 - c) / 2; bqConfig.b1 = 1 - c; bqConfig.b2 = (1 - c) / 2; bqConfig.a0 = 1 + a; bqConfig.a1 = -2 * c; bqConfig.a2 = 1 - a; bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_lpf2_get_heap_size(const ma_lpf2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_lpf2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_lpf2_init_preallocated(const ma_lpf2_config* pConfig, void* pHeap, ma_lpf2* pLPF) { ma_result result; ma_biquad_config bqConfig; if (pLPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pLPF); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_lpf2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pLPF->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_lpf2_init(const ma_lpf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf2* pLPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_lpf2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_lpf2_init_preallocated(pConfig, pHeap, pLPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pLPF->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_lpf2_uninit(ma_lpf2* pLPF, const ma_allocation_callbacks* pAllocationCallbacks) { if (pLPF == NULL) { return; } ma_biquad_uninit(&pLPF->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_lpf2_reinit(const ma_lpf2_config* pConfig, ma_lpf2* pLPF) { ma_result result; ma_biquad_config bqConfig; if (pLPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_lpf2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pLPF->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_lpf2_clear_cache(ma_lpf2* pLPF) { if (pLPF == NULL) { return MA_INVALID_ARGS; } ma_biquad_clear_cache(&pLPF->bq); return MA_SUCCESS; } static MA_INLINE void ma_lpf2_process_pcm_frame_s16(ma_lpf2* pLPF, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pLPF->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_lpf2_process_pcm_frame_f32(ma_lpf2* pLPF, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pLPF->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_lpf2_process_pcm_frames(ma_lpf2* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pLPF == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pLPF->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_lpf2_get_latency(const ma_lpf2* pLPF) { if (pLPF == NULL) { return 0; } return ma_biquad_get_latency(&pLPF->bq); } MA_API ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order) { ma_lpf_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.order = ma_min(order, MA_MAX_FILTER_ORDER); return config; } typedef struct { size_t sizeInBytes; size_t lpf1Offset; size_t lpf2Offset; /* Offset of the first second order filter. Subsequent filters will come straight after, and will each have the same heap size. */ } ma_lpf_heap_layout; static void ma_lpf_calculate_sub_lpf_counts(ma_uint32 order, ma_uint32* pLPF1Count, ma_uint32* pLPF2Count) { MA_ASSERT(pLPF1Count != NULL); MA_ASSERT(pLPF2Count != NULL); *pLPF1Count = order % 2; *pLPF2Count = order / 2; } static ma_result ma_lpf_get_heap_layout(const ma_lpf_config* pConfig, ma_lpf_heap_layout* pHeapLayout) { ma_result result; ma_uint32 lpf1Count; ma_uint32 lpf2Count; ma_uint32 ilpf1; ma_uint32 ilpf2; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } if (pConfig->order > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } ma_lpf_calculate_sub_lpf_counts(pConfig->order, &lpf1Count, &lpf2Count); pHeapLayout->sizeInBytes = 0; /* LPF 1 */ pHeapLayout->lpf1Offset = pHeapLayout->sizeInBytes; for (ilpf1 = 0; ilpf1 < lpf1Count; ilpf1 += 1) { size_t lpf1HeapSizeInBytes; ma_lpf1_config lpf1Config = ma_lpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency); result = ma_lpf1_get_heap_size(&lpf1Config, &lpf1HeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += sizeof(ma_lpf1) + lpf1HeapSizeInBytes; } /* LPF 2*/ pHeapLayout->lpf2Offset = pHeapLayout->sizeInBytes; for (ilpf2 = 0; ilpf2 < lpf2Count; ilpf2 += 1) { size_t lpf2HeapSizeInBytes; ma_lpf2_config lpf2Config = ma_lpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, 0.707107); /* <-- The "q" parameter does not matter for the purpose of calculating the heap size. */ result = ma_lpf2_get_heap_size(&lpf2Config, &lpf2HeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += sizeof(ma_lpf2) + lpf2HeapSizeInBytes; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } static ma_result ma_lpf_reinit__internal(const ma_lpf_config* pConfig, void* pHeap, ma_lpf* pLPF, ma_bool32 isNew) { ma_result result; ma_uint32 lpf1Count; ma_uint32 lpf2Count; ma_uint32 ilpf1; ma_uint32 ilpf2; ma_lpf_heap_layout heapLayout; /* Only used if isNew is true. */ if (pLPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } /* Only supporting f32 and s16. */ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } /* The format cannot be changed after initialization. */ if (pLPF->format != ma_format_unknown && pLPF->format != pConfig->format) { return MA_INVALID_OPERATION; } /* The channel count cannot be changed after initialization. */ if (pLPF->channels != 0 && pLPF->channels != pConfig->channels) { return MA_INVALID_OPERATION; } if (pConfig->order > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } ma_lpf_calculate_sub_lpf_counts(pConfig->order, &lpf1Count, &lpf2Count); /* The filter order can't change between reinits. */ if (!isNew) { if (pLPF->lpf1Count != lpf1Count || pLPF->lpf2Count != lpf2Count) { return MA_INVALID_OPERATION; } } if (isNew) { result = ma_lpf_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pLPF->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pLPF->pLPF1 = (ma_lpf1*)ma_offset_ptr(pHeap, heapLayout.lpf1Offset); pLPF->pLPF2 = (ma_lpf2*)ma_offset_ptr(pHeap, heapLayout.lpf2Offset); } else { MA_ZERO_OBJECT(&heapLayout); /* To silence a compiler warning. */ } for (ilpf1 = 0; ilpf1 < lpf1Count; ilpf1 += 1) { ma_lpf1_config lpf1Config = ma_lpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency); if (isNew) { size_t lpf1HeapSizeInBytes; result = ma_lpf1_get_heap_size(&lpf1Config, &lpf1HeapSizeInBytes); if (result == MA_SUCCESS) { result = ma_lpf1_init_preallocated(&lpf1Config, ma_offset_ptr(pHeap, heapLayout.lpf1Offset + (sizeof(ma_lpf1) * lpf1Count) + (ilpf1 * lpf1HeapSizeInBytes)), &pLPF->pLPF1[ilpf1]); } } else { result = ma_lpf1_reinit(&lpf1Config, &pLPF->pLPF1[ilpf1]); } if (result != MA_SUCCESS) { ma_uint32 jlpf1; for (jlpf1 = 0; jlpf1 < ilpf1; jlpf1 += 1) { ma_lpf1_uninit(&pLPF->pLPF1[jlpf1], NULL); /* No need for allocation callbacks here since we used a preallocated heap allocation. */ } return result; } } for (ilpf2 = 0; ilpf2 < lpf2Count; ilpf2 += 1) { ma_lpf2_config lpf2Config; double q; double a; /* Tempting to use 0.707107, but won't result in a Butterworth filter if the order is > 2. */ if (lpf1Count == 1) { a = (1 + ilpf2*1) * (MA_PI_D/(pConfig->order*1)); /* Odd order. */ } else { a = (1 + ilpf2*2) * (MA_PI_D/(pConfig->order*2)); /* Even order. */ } q = 1 / (2*ma_cosd(a)); lpf2Config = ma_lpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q); if (isNew) { size_t lpf2HeapSizeInBytes; result = ma_lpf2_get_heap_size(&lpf2Config, &lpf2HeapSizeInBytes); if (result == MA_SUCCESS) { result = ma_lpf2_init_preallocated(&lpf2Config, ma_offset_ptr(pHeap, heapLayout.lpf2Offset + (sizeof(ma_lpf2) * lpf2Count) + (ilpf2 * lpf2HeapSizeInBytes)), &pLPF->pLPF2[ilpf2]); } } else { result = ma_lpf2_reinit(&lpf2Config, &pLPF->pLPF2[ilpf2]); } if (result != MA_SUCCESS) { ma_uint32 jlpf1; ma_uint32 jlpf2; for (jlpf1 = 0; jlpf1 < lpf1Count; jlpf1 += 1) { ma_lpf1_uninit(&pLPF->pLPF1[jlpf1], NULL); /* No need for allocation callbacks here since we used a preallocated heap allocation. */ } for (jlpf2 = 0; jlpf2 < ilpf2; jlpf2 += 1) { ma_lpf2_uninit(&pLPF->pLPF2[jlpf2], NULL); /* No need for allocation callbacks here since we used a preallocated heap allocation. */ } return result; } } pLPF->lpf1Count = lpf1Count; pLPF->lpf2Count = lpf2Count; pLPF->format = pConfig->format; pLPF->channels = pConfig->channels; pLPF->sampleRate = pConfig->sampleRate; return MA_SUCCESS; } MA_API ma_result ma_lpf_get_heap_size(const ma_lpf_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_lpf_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_lpf_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return result; } MA_API ma_result ma_lpf_init_preallocated(const ma_lpf_config* pConfig, void* pHeap, ma_lpf* pLPF) { if (pLPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pLPF); return ma_lpf_reinit__internal(pConfig, pHeap, pLPF, /*isNew*/MA_TRUE); } MA_API ma_result ma_lpf_init(const ma_lpf_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf* pLPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_lpf_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_lpf_init_preallocated(pConfig, pHeap, pLPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pLPF->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_lpf_uninit(ma_lpf* pLPF, const ma_allocation_callbacks* pAllocationCallbacks) { ma_uint32 ilpf1; ma_uint32 ilpf2; if (pLPF == NULL) { return; } for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) { ma_lpf1_uninit(&pLPF->pLPF1[ilpf1], pAllocationCallbacks); } for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) { ma_lpf2_uninit(&pLPF->pLPF2[ilpf2], pAllocationCallbacks); } if (pLPF->_ownsHeap) { ma_free(pLPF->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF) { return ma_lpf_reinit__internal(pConfig, NULL, pLPF, /*isNew*/MA_FALSE); } MA_API ma_result ma_lpf_clear_cache(ma_lpf* pLPF) { ma_uint32 ilpf1; ma_uint32 ilpf2; if (pLPF == NULL) { return MA_INVALID_ARGS; } for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) { ma_lpf1_clear_cache(&pLPF->pLPF1[ilpf1]); } for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) { ma_lpf2_clear_cache(&pLPF->pLPF2[ilpf2]); } return MA_SUCCESS; } static MA_INLINE void ma_lpf_process_pcm_frame_f32(ma_lpf* pLPF, float* pY, const void* pX) { ma_uint32 ilpf1; ma_uint32 ilpf2; MA_ASSERT(pLPF->format == ma_format_f32); MA_COPY_MEMORY(pY, pX, ma_get_bytes_per_frame(pLPF->format, pLPF->channels)); for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) { ma_lpf1_process_pcm_frame_f32(&pLPF->pLPF1[ilpf1], pY, pY); } for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) { ma_lpf2_process_pcm_frame_f32(&pLPF->pLPF2[ilpf2], pY, pY); } } static MA_INLINE void ma_lpf_process_pcm_frame_s16(ma_lpf* pLPF, ma_int16* pY, const ma_int16* pX) { ma_uint32 ilpf1; ma_uint32 ilpf2; MA_ASSERT(pLPF->format == ma_format_s16); MA_COPY_MEMORY(pY, pX, ma_get_bytes_per_frame(pLPF->format, pLPF->channels)); for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) { ma_lpf1_process_pcm_frame_s16(&pLPF->pLPF1[ilpf1], pY, pY); } for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) { ma_lpf2_process_pcm_frame_s16(&pLPF->pLPF2[ilpf2], pY, pY); } } MA_API ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_result result; ma_uint32 ilpf1; ma_uint32 ilpf2; if (pLPF == NULL) { return MA_INVALID_ARGS; } /* Faster path for in-place. */ if (pFramesOut == pFramesIn) { for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) { result = ma_lpf1_process_pcm_frames(&pLPF->pLPF1[ilpf1], pFramesOut, pFramesOut, frameCount); if (result != MA_SUCCESS) { return result; } } for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) { result = ma_lpf2_process_pcm_frames(&pLPF->pLPF2[ilpf2], pFramesOut, pFramesOut, frameCount); if (result != MA_SUCCESS) { return result; } } } /* Slightly slower path for copying. */ if (pFramesOut != pFramesIn) { ma_uint32 iFrame; /* */ if (pLPF->format == ma_format_f32) { /* */ float* pFramesOutF32 = ( float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_lpf_process_pcm_frame_f32(pLPF, pFramesOutF32, pFramesInF32); pFramesOutF32 += pLPF->channels; pFramesInF32 += pLPF->channels; } } else if (pLPF->format == ma_format_s16) { /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_lpf_process_pcm_frame_s16(pLPF, pFramesOutS16, pFramesInS16); pFramesOutS16 += pLPF->channels; pFramesInS16 += pLPF->channels; } } else { MA_ASSERT(MA_FALSE); return MA_INVALID_OPERATION; /* Should never hit this. */ } } return MA_SUCCESS; } MA_API ma_uint32 ma_lpf_get_latency(const ma_lpf* pLPF) { if (pLPF == NULL) { return 0; } return pLPF->lpf2Count*2 + pLPF->lpf1Count; } /************************************************************************************************************************************************************** High-Pass Filtering **************************************************************************************************************************************************************/ MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency) { ma_hpf1_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; return config; } MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q) { ma_hpf2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.q = q; /* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */ if (config.q == 0) { config.q = 0.707107; } return config; } typedef struct { size_t sizeInBytes; size_t r1Offset; } ma_hpf1_heap_layout; static ma_result ma_hpf1_get_heap_layout(const ma_hpf1_config* pConfig, ma_hpf1_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* R1 */ pHeapLayout->r1Offset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(ma_biquad_coefficient) * pConfig->channels; /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_hpf1_get_heap_size(const ma_hpf1_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_hpf1_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } result = ma_hpf1_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_hpf1_init_preallocated(const ma_hpf1_config* pConfig, void* pHeap, ma_hpf1* pLPF) { ma_result result; ma_hpf1_heap_layout heapLayout; if (pLPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pLPF); result = ma_hpf1_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pLPF->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pLPF->pR1 = (ma_biquad_coefficient*)ma_offset_ptr(pHeap, heapLayout.r1Offset); return ma_hpf1_reinit(pConfig, pLPF); } MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf1* pLPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_hpf1_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_hpf1_init_preallocated(pConfig, pHeap, pLPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pLPF->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_hpf1_uninit(ma_hpf1* pHPF, const ma_allocation_callbacks* pAllocationCallbacks) { if (pHPF == NULL) { return; } if (pHPF->_ownsHeap) { ma_free(pHPF->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF) { double a; if (pHPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } /* Only supporting f32 and s16. */ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } /* The format cannot be changed after initialization. */ if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) { return MA_INVALID_OPERATION; } /* The channel count cannot be changed after initialization. */ if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) { return MA_INVALID_OPERATION; } pHPF->format = pConfig->format; pHPF->channels = pConfig->channels; a = ma_expd(-2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate); if (pConfig->format == ma_format_f32) { pHPF->a.f32 = (float)a; } else { pHPF->a.s32 = ma_biquad_float_to_fp(a); } return MA_SUCCESS; } static MA_INLINE void ma_hpf1_process_pcm_frame_f32(ma_hpf1* pHPF, float* pY, const float* pX) { ma_uint32 c; const ma_uint32 channels = pHPF->channels; const float a = 1 - pHPF->a.f32; const float b = 1 - a; MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { float r1 = pHPF->pR1[c].f32; float x = pX[c]; float y; y = b*x - a*r1; pY[c] = y; pHPF->pR1[c].f32 = y; } } static MA_INLINE void ma_hpf1_process_pcm_frame_s16(ma_hpf1* pHPF, ma_int16* pY, const ma_int16* pX) { ma_uint32 c; const ma_uint32 channels = pHPF->channels; const ma_int32 a = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - pHPF->a.s32); const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a); MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { ma_int32 r1 = pHPF->pR1[c].s32; ma_int32 x = pX[c]; ma_int32 y; y = (b*x - a*r1) >> MA_BIQUAD_FIXED_POINT_SHIFT; pY[c] = (ma_int16)y; pHPF->pR1[c].s32 = (ma_int32)y; } } MA_API ma_result ma_hpf1_process_pcm_frames(ma_hpf1* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint32 n; if (pHPF == NULL || pFramesOut == NULL || pFramesIn == NULL) { return MA_INVALID_ARGS; } /* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */ if (pHPF->format == ma_format_f32) { /* */ float* pY = ( float*)pFramesOut; const float* pX = (const float*)pFramesIn; for (n = 0; n < frameCount; n += 1) { ma_hpf1_process_pcm_frame_f32(pHPF, pY, pX); pY += pHPF->channels; pX += pHPF->channels; } } else if (pHPF->format == ma_format_s16) { /* */ ma_int16* pY = ( ma_int16*)pFramesOut; const ma_int16* pX = (const ma_int16*)pFramesIn; for (n = 0; n < frameCount; n += 1) { ma_hpf1_process_pcm_frame_s16(pHPF, pY, pX); pY += pHPF->channels; pX += pHPF->channels; } } else { MA_ASSERT(MA_FALSE); return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */ } return MA_SUCCESS; } MA_API ma_uint32 ma_hpf1_get_latency(const ma_hpf1* pHPF) { if (pHPF == NULL) { return 0; } return 1; } static MA_INLINE ma_biquad_config ma_hpf2__get_biquad_config(const ma_hpf2_config* pConfig) { ma_biquad_config bqConfig; double q; double w; double s; double c; double a; MA_ASSERT(pConfig != NULL); q = pConfig->q; w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); a = s / (2*q); bqConfig.b0 = (1 + c) / 2; bqConfig.b1 = -(1 + c); bqConfig.b2 = (1 + c) / 2; bqConfig.a0 = 1 + a; bqConfig.a1 = -2 * c; bqConfig.a2 = 1 - a; bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_hpf2_get_heap_size(const ma_hpf2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_hpf2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_hpf2_init_preallocated(const ma_hpf2_config* pConfig, void* pHeap, ma_hpf2* pHPF) { ma_result result; ma_biquad_config bqConfig; if (pHPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pHPF); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_hpf2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pHPF->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_hpf2_init(const ma_hpf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf2* pHPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_hpf2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_hpf2_init_preallocated(pConfig, pHeap, pHPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pHPF->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_hpf2_uninit(ma_hpf2* pHPF, const ma_allocation_callbacks* pAllocationCallbacks) { if (pHPF == NULL) { return; } ma_biquad_uninit(&pHPF->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF) { ma_result result; ma_biquad_config bqConfig; if (pHPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_hpf2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pHPF->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static MA_INLINE void ma_hpf2_process_pcm_frame_s16(ma_hpf2* pHPF, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pHPF->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_hpf2_process_pcm_frame_f32(ma_hpf2* pHPF, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pHPF->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pHPF == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pHPF->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_hpf2_get_latency(const ma_hpf2* pHPF) { if (pHPF == NULL) { return 0; } return ma_biquad_get_latency(&pHPF->bq); } MA_API ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order) { ma_hpf_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.order = ma_min(order, MA_MAX_FILTER_ORDER); return config; } typedef struct { size_t sizeInBytes; size_t hpf1Offset; size_t hpf2Offset; /* Offset of the first second order filter. Subsequent filters will come straight after, and will each have the same heap size. */ } ma_hpf_heap_layout; static void ma_hpf_calculate_sub_hpf_counts(ma_uint32 order, ma_uint32* pHPF1Count, ma_uint32* pHPF2Count) { MA_ASSERT(pHPF1Count != NULL); MA_ASSERT(pHPF2Count != NULL); *pHPF1Count = order % 2; *pHPF2Count = order / 2; } static ma_result ma_hpf_get_heap_layout(const ma_hpf_config* pConfig, ma_hpf_heap_layout* pHeapLayout) { ma_result result; ma_uint32 hpf1Count; ma_uint32 hpf2Count; ma_uint32 ihpf1; ma_uint32 ihpf2; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } if (pConfig->order > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } ma_hpf_calculate_sub_hpf_counts(pConfig->order, &hpf1Count, &hpf2Count); pHeapLayout->sizeInBytes = 0; /* HPF 1 */ pHeapLayout->hpf1Offset = pHeapLayout->sizeInBytes; for (ihpf1 = 0; ihpf1 < hpf1Count; ihpf1 += 1) { size_t hpf1HeapSizeInBytes; ma_hpf1_config hpf1Config = ma_hpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency); result = ma_hpf1_get_heap_size(&hpf1Config, &hpf1HeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += sizeof(ma_hpf1) + hpf1HeapSizeInBytes; } /* HPF 2*/ pHeapLayout->hpf2Offset = pHeapLayout->sizeInBytes; for (ihpf2 = 0; ihpf2 < hpf2Count; ihpf2 += 1) { size_t hpf2HeapSizeInBytes; ma_hpf2_config hpf2Config = ma_hpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, 0.707107); /* <-- The "q" parameter does not matter for the purpose of calculating the heap size. */ result = ma_hpf2_get_heap_size(&hpf2Config, &hpf2HeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += sizeof(ma_hpf2) + hpf2HeapSizeInBytes; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } static ma_result ma_hpf_reinit__internal(const ma_hpf_config* pConfig, void* pHeap, ma_hpf* pHPF, ma_bool32 isNew) { ma_result result; ma_uint32 hpf1Count; ma_uint32 hpf2Count; ma_uint32 ihpf1; ma_uint32 ihpf2; ma_hpf_heap_layout heapLayout; /* Only used if isNew is true. */ if (pHPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } /* Only supporting f32 and s16. */ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } /* The format cannot be changed after initialization. */ if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) { return MA_INVALID_OPERATION; } /* The channel count cannot be changed after initialization. */ if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) { return MA_INVALID_OPERATION; } if (pConfig->order > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } ma_hpf_calculate_sub_hpf_counts(pConfig->order, &hpf1Count, &hpf2Count); /* The filter order can't change between reinits. */ if (!isNew) { if (pHPF->hpf1Count != hpf1Count || pHPF->hpf2Count != hpf2Count) { return MA_INVALID_OPERATION; } } if (isNew) { result = ma_hpf_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pHPF->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pHPF->pHPF1 = (ma_hpf1*)ma_offset_ptr(pHeap, heapLayout.hpf1Offset); pHPF->pHPF2 = (ma_hpf2*)ma_offset_ptr(pHeap, heapLayout.hpf2Offset); } else { MA_ZERO_OBJECT(&heapLayout); /* To silence a compiler warning. */ } for (ihpf1 = 0; ihpf1 < hpf1Count; ihpf1 += 1) { ma_hpf1_config hpf1Config = ma_hpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency); if (isNew) { size_t hpf1HeapSizeInBytes; result = ma_hpf1_get_heap_size(&hpf1Config, &hpf1HeapSizeInBytes); if (result == MA_SUCCESS) { result = ma_hpf1_init_preallocated(&hpf1Config, ma_offset_ptr(pHeap, heapLayout.hpf1Offset + (sizeof(ma_hpf1) * hpf1Count) + (ihpf1 * hpf1HeapSizeInBytes)), &pHPF->pHPF1[ihpf1]); } } else { result = ma_hpf1_reinit(&hpf1Config, &pHPF->pHPF1[ihpf1]); } if (result != MA_SUCCESS) { ma_uint32 jhpf1; for (jhpf1 = 0; jhpf1 < ihpf1; jhpf1 += 1) { ma_hpf1_uninit(&pHPF->pHPF1[jhpf1], NULL); /* No need for allocation callbacks here since we used a preallocated heap allocation. */ } return result; } } for (ihpf2 = 0; ihpf2 < hpf2Count; ihpf2 += 1) { ma_hpf2_config hpf2Config; double q; double a; /* Tempting to use 0.707107, but won't result in a Butterworth filter if the order is > 2. */ if (hpf1Count == 1) { a = (1 + ihpf2*1) * (MA_PI_D/(pConfig->order*1)); /* Odd order. */ } else { a = (1 + ihpf2*2) * (MA_PI_D/(pConfig->order*2)); /* Even order. */ } q = 1 / (2*ma_cosd(a)); hpf2Config = ma_hpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q); if (isNew) { size_t hpf2HeapSizeInBytes; result = ma_hpf2_get_heap_size(&hpf2Config, &hpf2HeapSizeInBytes); if (result == MA_SUCCESS) { result = ma_hpf2_init_preallocated(&hpf2Config, ma_offset_ptr(pHeap, heapLayout.hpf2Offset + (sizeof(ma_hpf2) * hpf2Count) + (ihpf2 * hpf2HeapSizeInBytes)), &pHPF->pHPF2[ihpf2]); } } else { result = ma_hpf2_reinit(&hpf2Config, &pHPF->pHPF2[ihpf2]); } if (result != MA_SUCCESS) { ma_uint32 jhpf1; ma_uint32 jhpf2; for (jhpf1 = 0; jhpf1 < hpf1Count; jhpf1 += 1) { ma_hpf1_uninit(&pHPF->pHPF1[jhpf1], NULL); /* No need for allocation callbacks here since we used a preallocated heap allocation. */ } for (jhpf2 = 0; jhpf2 < ihpf2; jhpf2 += 1) { ma_hpf2_uninit(&pHPF->pHPF2[jhpf2], NULL); /* No need for allocation callbacks here since we used a preallocated heap allocation. */ } return result; } } pHPF->hpf1Count = hpf1Count; pHPF->hpf2Count = hpf2Count; pHPF->format = pConfig->format; pHPF->channels = pConfig->channels; pHPF->sampleRate = pConfig->sampleRate; return MA_SUCCESS; } MA_API ma_result ma_hpf_get_heap_size(const ma_hpf_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_hpf_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_hpf_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return result; } MA_API ma_result ma_hpf_init_preallocated(const ma_hpf_config* pConfig, void* pHeap, ma_hpf* pLPF) { if (pLPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pLPF); return ma_hpf_reinit__internal(pConfig, pHeap, pLPF, /*isNew*/MA_TRUE); } MA_API ma_result ma_hpf_init(const ma_hpf_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf* pHPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_hpf_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_hpf_init_preallocated(pConfig, pHeap, pHPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pHPF->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_hpf_uninit(ma_hpf* pHPF, const ma_allocation_callbacks* pAllocationCallbacks) { ma_uint32 ihpf1; ma_uint32 ihpf2; if (pHPF == NULL) { return; } for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) { ma_hpf1_uninit(&pHPF->pHPF1[ihpf1], pAllocationCallbacks); } for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) { ma_hpf2_uninit(&pHPF->pHPF2[ihpf2], pAllocationCallbacks); } if (pHPF->_ownsHeap) { ma_free(pHPF->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF) { return ma_hpf_reinit__internal(pConfig, NULL, pHPF, /*isNew*/MA_FALSE); } MA_API ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_result result; ma_uint32 ihpf1; ma_uint32 ihpf2; if (pHPF == NULL) { return MA_INVALID_ARGS; } /* Faster path for in-place. */ if (pFramesOut == pFramesIn) { for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) { result = ma_hpf1_process_pcm_frames(&pHPF->pHPF1[ihpf1], pFramesOut, pFramesOut, frameCount); if (result != MA_SUCCESS) { return result; } } for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) { result = ma_hpf2_process_pcm_frames(&pHPF->pHPF2[ihpf2], pFramesOut, pFramesOut, frameCount); if (result != MA_SUCCESS) { return result; } } } /* Slightly slower path for copying. */ if (pFramesOut != pFramesIn) { ma_uint32 iFrame; /* */ if (pHPF->format == ma_format_f32) { /* */ float* pFramesOutF32 = ( float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pHPF->format, pHPF->channels)); for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) { ma_hpf1_process_pcm_frame_f32(&pHPF->pHPF1[ihpf1], pFramesOutF32, pFramesOutF32); } for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) { ma_hpf2_process_pcm_frame_f32(&pHPF->pHPF2[ihpf2], pFramesOutF32, pFramesOutF32); } pFramesOutF32 += pHPF->channels; pFramesInF32 += pHPF->channels; } } else if (pHPF->format == ma_format_s16) { /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pHPF->format, pHPF->channels)); for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) { ma_hpf1_process_pcm_frame_s16(&pHPF->pHPF1[ihpf1], pFramesOutS16, pFramesOutS16); } for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) { ma_hpf2_process_pcm_frame_s16(&pHPF->pHPF2[ihpf2], pFramesOutS16, pFramesOutS16); } pFramesOutS16 += pHPF->channels; pFramesInS16 += pHPF->channels; } } else { MA_ASSERT(MA_FALSE); return MA_INVALID_OPERATION; /* Should never hit this. */ } } return MA_SUCCESS; } MA_API ma_uint32 ma_hpf_get_latency(const ma_hpf* pHPF) { if (pHPF == NULL) { return 0; } return pHPF->hpf2Count*2 + pHPF->hpf1Count; } /************************************************************************************************************************************************************** Band-Pass Filtering **************************************************************************************************************************************************************/ MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q) { ma_bpf2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.q = q; /* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */ if (config.q == 0) { config.q = 0.707107; } return config; } static MA_INLINE ma_biquad_config ma_bpf2__get_biquad_config(const ma_bpf2_config* pConfig) { ma_biquad_config bqConfig; double q; double w; double s; double c; double a; MA_ASSERT(pConfig != NULL); q = pConfig->q; w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); a = s / (2*q); bqConfig.b0 = q * a; bqConfig.b1 = 0; bqConfig.b2 = -q * a; bqConfig.a0 = 1 + a; bqConfig.a1 = -2 * c; bqConfig.a2 = 1 - a; bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_bpf2_get_heap_size(const ma_bpf2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_bpf2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_bpf2_init_preallocated(const ma_bpf2_config* pConfig, void* pHeap, ma_bpf2* pBPF) { ma_result result; ma_biquad_config bqConfig; if (pBPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pBPF); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_bpf2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pBPF->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_bpf2_init(const ma_bpf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_bpf2* pBPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_bpf2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_bpf2_init_preallocated(pConfig, pHeap, pBPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pBPF->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_bpf2_uninit(ma_bpf2* pBPF, const ma_allocation_callbacks* pAllocationCallbacks) { if (pBPF == NULL) { return; } ma_biquad_uninit(&pBPF->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_bpf2_reinit(const ma_bpf2_config* pConfig, ma_bpf2* pBPF) { ma_result result; ma_biquad_config bqConfig; if (pBPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_bpf2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pBPF->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static MA_INLINE void ma_bpf2_process_pcm_frame_s16(ma_bpf2* pBPF, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pBPF->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_bpf2_process_pcm_frame_f32(ma_bpf2* pBPF, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pBPF->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_bpf2_process_pcm_frames(ma_bpf2* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pBPF == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pBPF->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_bpf2_get_latency(const ma_bpf2* pBPF) { if (pBPF == NULL) { return 0; } return ma_biquad_get_latency(&pBPF->bq); } MA_API ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order) { ma_bpf_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.cutoffFrequency = cutoffFrequency; config.order = ma_min(order, MA_MAX_FILTER_ORDER); return config; } typedef struct { size_t sizeInBytes; size_t bpf2Offset; } ma_bpf_heap_layout; static ma_result ma_bpf_get_heap_layout(const ma_bpf_config* pConfig, ma_bpf_heap_layout* pHeapLayout) { ma_result result; ma_uint32 bpf2Count; ma_uint32 ibpf2; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->order > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } /* We must have an even number of order. */ if ((pConfig->order & 0x1) != 0) { return MA_INVALID_ARGS; } bpf2Count = pConfig->channels / 2; pHeapLayout->sizeInBytes = 0; /* BPF 2 */ pHeapLayout->bpf2Offset = pHeapLayout->sizeInBytes; for (ibpf2 = 0; ibpf2 < bpf2Count; ibpf2 += 1) { size_t bpf2HeapSizeInBytes; ma_bpf2_config bpf2Config = ma_bpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, 0.707107); /* <-- The "q" parameter does not matter for the purpose of calculating the heap size. */ result = ma_bpf2_get_heap_size(&bpf2Config, &bpf2HeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += sizeof(ma_bpf2) + bpf2HeapSizeInBytes; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } static ma_result ma_bpf_reinit__internal(const ma_bpf_config* pConfig, void* pHeap, ma_bpf* pBPF, ma_bool32 isNew) { ma_result result; ma_uint32 bpf2Count; ma_uint32 ibpf2; ma_bpf_heap_layout heapLayout; /* Only used if isNew is true. */ if (pBPF == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } /* Only supporting f32 and s16. */ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } /* The format cannot be changed after initialization. */ if (pBPF->format != ma_format_unknown && pBPF->format != pConfig->format) { return MA_INVALID_OPERATION; } /* The channel count cannot be changed after initialization. */ if (pBPF->channels != 0 && pBPF->channels != pConfig->channels) { return MA_INVALID_OPERATION; } if (pConfig->order > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } /* We must have an even number of order. */ if ((pConfig->order & 0x1) != 0) { return MA_INVALID_ARGS; } bpf2Count = pConfig->order / 2; /* The filter order can't change between reinits. */ if (!isNew) { if (pBPF->bpf2Count != bpf2Count) { return MA_INVALID_OPERATION; } } if (isNew) { result = ma_bpf_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pBPF->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pBPF->pBPF2 = (ma_bpf2*)ma_offset_ptr(pHeap, heapLayout.bpf2Offset); } else { MA_ZERO_OBJECT(&heapLayout); } for (ibpf2 = 0; ibpf2 < bpf2Count; ibpf2 += 1) { ma_bpf2_config bpf2Config; double q; /* TODO: Calculate Q to make this a proper Butterworth filter. */ q = 0.707107; bpf2Config = ma_bpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q); if (isNew) { size_t bpf2HeapSizeInBytes; result = ma_bpf2_get_heap_size(&bpf2Config, &bpf2HeapSizeInBytes); if (result == MA_SUCCESS) { result = ma_bpf2_init_preallocated(&bpf2Config, ma_offset_ptr(pHeap, heapLayout.bpf2Offset + (sizeof(ma_bpf2) * bpf2Count) + (ibpf2 * bpf2HeapSizeInBytes)), &pBPF->pBPF2[ibpf2]); } } else { result = ma_bpf2_reinit(&bpf2Config, &pBPF->pBPF2[ibpf2]); } if (result != MA_SUCCESS) { return result; } } pBPF->bpf2Count = bpf2Count; pBPF->format = pConfig->format; pBPF->channels = pConfig->channels; return MA_SUCCESS; } MA_API ma_result ma_bpf_get_heap_size(const ma_bpf_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_bpf_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_bpf_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_bpf_init_preallocated(const ma_bpf_config* pConfig, void* pHeap, ma_bpf* pBPF) { if (pBPF == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pBPF); return ma_bpf_reinit__internal(pConfig, pHeap, pBPF, /*isNew*/MA_TRUE); } MA_API ma_result ma_bpf_init(const ma_bpf_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_bpf* pBPF) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_bpf_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_bpf_init_preallocated(pConfig, pHeap, pBPF); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pBPF->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_bpf_uninit(ma_bpf* pBPF, const ma_allocation_callbacks* pAllocationCallbacks) { ma_uint32 ibpf2; if (pBPF == NULL) { return; } for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) { ma_bpf2_uninit(&pBPF->pBPF2[ibpf2], pAllocationCallbacks); } if (pBPF->_ownsHeap) { ma_free(pBPF->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF) { return ma_bpf_reinit__internal(pConfig, NULL, pBPF, /*isNew*/MA_FALSE); } MA_API ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_result result; ma_uint32 ibpf2; if (pBPF == NULL) { return MA_INVALID_ARGS; } /* Faster path for in-place. */ if (pFramesOut == pFramesIn) { for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) { result = ma_bpf2_process_pcm_frames(&pBPF->pBPF2[ibpf2], pFramesOut, pFramesOut, frameCount); if (result != MA_SUCCESS) { return result; } } } /* Slightly slower path for copying. */ if (pFramesOut != pFramesIn) { ma_uint32 iFrame; /* */ if (pBPF->format == ma_format_f32) { /* */ float* pFramesOutF32 = ( float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pBPF->format, pBPF->channels)); for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) { ma_bpf2_process_pcm_frame_f32(&pBPF->pBPF2[ibpf2], pFramesOutF32, pFramesOutF32); } pFramesOutF32 += pBPF->channels; pFramesInF32 += pBPF->channels; } } else if (pBPF->format == ma_format_s16) { /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pBPF->format, pBPF->channels)); for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) { ma_bpf2_process_pcm_frame_s16(&pBPF->pBPF2[ibpf2], pFramesOutS16, pFramesOutS16); } pFramesOutS16 += pBPF->channels; pFramesInS16 += pBPF->channels; } } else { MA_ASSERT(MA_FALSE); return MA_INVALID_OPERATION; /* Should never hit this. */ } } return MA_SUCCESS; } MA_API ma_uint32 ma_bpf_get_latency(const ma_bpf* pBPF) { if (pBPF == NULL) { return 0; } return pBPF->bpf2Count*2; } /************************************************************************************************************************************************************** Notching Filter **************************************************************************************************************************************************************/ MA_API ma_notch2_config ma_notch2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency) { ma_notch2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.q = q; config.frequency = frequency; if (config.q == 0) { config.q = 0.707107; } return config; } static MA_INLINE ma_biquad_config ma_notch2__get_biquad_config(const ma_notch2_config* pConfig) { ma_biquad_config bqConfig; double q; double w; double s; double c; double a; MA_ASSERT(pConfig != NULL); q = pConfig->q; w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); a = s / (2*q); bqConfig.b0 = 1; bqConfig.b1 = -2 * c; bqConfig.b2 = 1; bqConfig.a0 = 1 + a; bqConfig.a1 = -2 * c; bqConfig.a2 = 1 - a; bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_notch2_get_heap_size(const ma_notch2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_notch2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_notch2_init_preallocated(const ma_notch2_config* pConfig, void* pHeap, ma_notch2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFilter); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_notch2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_notch2_init(const ma_notch2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_notch2* pFilter) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_notch2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_notch2_init_preallocated(pConfig, pHeap, pFilter); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pFilter->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_notch2_uninit(ma_notch2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks) { if (pFilter == NULL) { return; } ma_biquad_uninit(&pFilter->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_notch2_reinit(const ma_notch2_config* pConfig, ma_notch2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_notch2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static MA_INLINE void ma_notch2_process_pcm_frame_s16(ma_notch2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_notch2_process_pcm_frame_f32(ma_notch2* pFilter, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_notch2_process_pcm_frames(ma_notch2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pFilter == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_notch2_get_latency(const ma_notch2* pFilter) { if (pFilter == NULL) { return 0; } return ma_biquad_get_latency(&pFilter->bq); } /************************************************************************************************************************************************************** Peaking EQ Filter **************************************************************************************************************************************************************/ MA_API ma_peak2_config ma_peak2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency) { ma_peak2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.gainDB = gainDB; config.q = q; config.frequency = frequency; if (config.q == 0) { config.q = 0.707107; } return config; } static MA_INLINE ma_biquad_config ma_peak2__get_biquad_config(const ma_peak2_config* pConfig) { ma_biquad_config bqConfig; double q; double w; double s; double c; double a; double A; MA_ASSERT(pConfig != NULL); q = pConfig->q; w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); a = s / (2*q); A = ma_powd(10, (pConfig->gainDB / 40)); bqConfig.b0 = 1 + (a * A); bqConfig.b1 = -2 * c; bqConfig.b2 = 1 - (a * A); bqConfig.a0 = 1 + (a / A); bqConfig.a1 = -2 * c; bqConfig.a2 = 1 - (a / A); bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_peak2_get_heap_size(const ma_peak2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_peak2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_peak2_init_preallocated(const ma_peak2_config* pConfig, void* pHeap, ma_peak2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFilter); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_peak2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_peak2_init(const ma_peak2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_peak2* pFilter) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_peak2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_peak2_init_preallocated(pConfig, pHeap, pFilter); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pFilter->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_peak2_uninit(ma_peak2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks) { if (pFilter == NULL) { return; } ma_biquad_uninit(&pFilter->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_peak2_reinit(const ma_peak2_config* pConfig, ma_peak2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_peak2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static MA_INLINE void ma_peak2_process_pcm_frame_s16(ma_peak2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_peak2_process_pcm_frame_f32(ma_peak2* pFilter, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_peak2_process_pcm_frames(ma_peak2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pFilter == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_peak2_get_latency(const ma_peak2* pFilter) { if (pFilter == NULL) { return 0; } return ma_biquad_get_latency(&pFilter->bq); } /************************************************************************************************************************************************************** Low Shelf Filter **************************************************************************************************************************************************************/ MA_API ma_loshelf2_config ma_loshelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency) { ma_loshelf2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.gainDB = gainDB; config.shelfSlope = shelfSlope; config.frequency = frequency; return config; } static MA_INLINE ma_biquad_config ma_loshelf2__get_biquad_config(const ma_loshelf2_config* pConfig) { ma_biquad_config bqConfig; double w; double s; double c; double A; double S; double a; double sqrtA; MA_ASSERT(pConfig != NULL); w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); A = ma_powd(10, (pConfig->gainDB / 40)); S = pConfig->shelfSlope; a = s/2 * ma_sqrtd((A + 1/A) * (1/S - 1) + 2); sqrtA = 2*ma_sqrtd(A)*a; bqConfig.b0 = A * ((A + 1) - (A - 1)*c + sqrtA); bqConfig.b1 = 2 * A * ((A - 1) - (A + 1)*c); bqConfig.b2 = A * ((A + 1) - (A - 1)*c - sqrtA); bqConfig.a0 = (A + 1) + (A - 1)*c + sqrtA; bqConfig.a1 = -2 * ((A - 1) + (A + 1)*c); bqConfig.a2 = (A + 1) + (A - 1)*c - sqrtA; bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_loshelf2_get_heap_size(const ma_loshelf2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_loshelf2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_loshelf2_init_preallocated(const ma_loshelf2_config* pConfig, void* pHeap, ma_loshelf2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFilter); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_loshelf2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_loshelf2_init(const ma_loshelf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_loshelf2* pFilter) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_loshelf2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_loshelf2_init_preallocated(pConfig, pHeap, pFilter); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pFilter->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_loshelf2_uninit(ma_loshelf2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks) { if (pFilter == NULL) { return; } ma_biquad_uninit(&pFilter->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_loshelf2_reinit(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_loshelf2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static MA_INLINE void ma_loshelf2_process_pcm_frame_s16(ma_loshelf2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_loshelf2_process_pcm_frame_f32(ma_loshelf2* pFilter, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_loshelf2_process_pcm_frames(ma_loshelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pFilter == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_loshelf2_get_latency(const ma_loshelf2* pFilter) { if (pFilter == NULL) { return 0; } return ma_biquad_get_latency(&pFilter->bq); } /************************************************************************************************************************************************************** High Shelf Filter **************************************************************************************************************************************************************/ MA_API ma_hishelf2_config ma_hishelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency) { ma_hishelf2_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.gainDB = gainDB; config.shelfSlope = shelfSlope; config.frequency = frequency; return config; } static MA_INLINE ma_biquad_config ma_hishelf2__get_biquad_config(const ma_hishelf2_config* pConfig) { ma_biquad_config bqConfig; double w; double s; double c; double A; double S; double a; double sqrtA; MA_ASSERT(pConfig != NULL); w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate; s = ma_sind(w); c = ma_cosd(w); A = ma_powd(10, (pConfig->gainDB / 40)); S = pConfig->shelfSlope; a = s/2 * ma_sqrtd((A + 1/A) * (1/S - 1) + 2); sqrtA = 2*ma_sqrtd(A)*a; bqConfig.b0 = A * ((A + 1) + (A - 1)*c + sqrtA); bqConfig.b1 = -2 * A * ((A - 1) + (A + 1)*c); bqConfig.b2 = A * ((A + 1) + (A - 1)*c - sqrtA); bqConfig.a0 = (A + 1) - (A - 1)*c + sqrtA; bqConfig.a1 = 2 * ((A - 1) - (A + 1)*c); bqConfig.a2 = (A + 1) - (A - 1)*c - sqrtA; bqConfig.format = pConfig->format; bqConfig.channels = pConfig->channels; return bqConfig; } MA_API ma_result ma_hishelf2_get_heap_size(const ma_hishelf2_config* pConfig, size_t* pHeapSizeInBytes) { ma_biquad_config bqConfig; bqConfig = ma_hishelf2__get_biquad_config(pConfig); return ma_biquad_get_heap_size(&bqConfig, pHeapSizeInBytes); } MA_API ma_result ma_hishelf2_init_preallocated(const ma_hishelf2_config* pConfig, void* pHeap, ma_hishelf2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFilter); if (pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_hishelf2__get_biquad_config(pConfig); result = ma_biquad_init_preallocated(&bqConfig, pHeap, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_hishelf2_init(const ma_hishelf2_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hishelf2* pFilter) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_hishelf2_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_hishelf2_init_preallocated(pConfig, pHeap, pFilter); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pFilter->bq._ownsHeap = MA_TRUE; /* <-- This will cause the biquad to take ownership of the heap and free it when it's uninitialized. */ return MA_SUCCESS; } MA_API void ma_hishelf2_uninit(ma_hishelf2* pFilter, const ma_allocation_callbacks* pAllocationCallbacks) { if (pFilter == NULL) { return; } ma_biquad_uninit(&pFilter->bq, pAllocationCallbacks); /* <-- This will free the heap allocation. */ } MA_API ma_result ma_hishelf2_reinit(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter) { ma_result result; ma_biquad_config bqConfig; if (pFilter == NULL || pConfig == NULL) { return MA_INVALID_ARGS; } bqConfig = ma_hishelf2__get_biquad_config(pConfig); result = ma_biquad_reinit(&bqConfig, &pFilter->bq); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } static MA_INLINE void ma_hishelf2_process_pcm_frame_s16(ma_hishelf2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn) { ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn); } static MA_INLINE void ma_hishelf2_process_pcm_frame_f32(ma_hishelf2* pFilter, float* pFrameOut, const float* pFrameIn) { ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn); } MA_API ma_result ma_hishelf2_process_pcm_frames(ma_hishelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pFilter == NULL) { return MA_INVALID_ARGS; } return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount); } MA_API ma_uint32 ma_hishelf2_get_latency(const ma_hishelf2* pFilter) { if (pFilter == NULL) { return 0; } return ma_biquad_get_latency(&pFilter->bq); } /* Delay */ MA_API ma_delay_config ma_delay_config_init(ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 delayInFrames, float decay) { ma_delay_config config; MA_ZERO_OBJECT(&config); config.channels = channels; config.sampleRate = sampleRate; config.delayInFrames = delayInFrames; config.delayStart = (decay == 0) ? MA_TRUE : MA_FALSE; /* Delay the start if it looks like we're not configuring an echo. */ config.wet = 1; config.dry = 1; config.decay = decay; return config; } MA_API ma_result ma_delay_init(const ma_delay_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_delay* pDelay) { if (pDelay == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDelay); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->decay < 0 || pConfig->decay > 1) { return MA_INVALID_ARGS; } pDelay->config = *pConfig; pDelay->bufferSizeInFrames = pConfig->delayInFrames; pDelay->cursor = 0; pDelay->pBuffer = (float*)ma_malloc((size_t)(pDelay->bufferSizeInFrames * ma_get_bytes_per_frame(ma_format_f32, pConfig->channels)), pAllocationCallbacks); if (pDelay->pBuffer == NULL) { return MA_OUT_OF_MEMORY; } ma_silence_pcm_frames(pDelay->pBuffer, pDelay->bufferSizeInFrames, ma_format_f32, pConfig->channels); return MA_SUCCESS; } MA_API void ma_delay_uninit(ma_delay* pDelay, const ma_allocation_callbacks* pAllocationCallbacks) { if (pDelay == NULL) { return; } ma_free(pDelay->pBuffer, pAllocationCallbacks); } MA_API ma_result ma_delay_process_pcm_frames(ma_delay* pDelay, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount) { ma_uint32 iFrame; ma_uint32 iChannel; float* pFramesOutF32 = (float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; if (pDelay == NULL || pFramesOut == NULL || pFramesIn == NULL) { return MA_INVALID_ARGS; } for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < pDelay->config.channels; iChannel += 1) { ma_uint32 iBuffer = (pDelay->cursor * pDelay->config.channels) + iChannel; if (pDelay->config.delayStart) { /* Delayed start. */ /* Read */ pFramesOutF32[iChannel] = pDelay->pBuffer[iBuffer] * pDelay->config.wet; /* Feedback */ pDelay->pBuffer[iBuffer] = (pDelay->pBuffer[iBuffer] * pDelay->config.decay) + (pFramesInF32[iChannel] * pDelay->config.dry); } else { /* Immediate start */ /* Feedback */ pDelay->pBuffer[iBuffer] = (pDelay->pBuffer[iBuffer] * pDelay->config.decay) + (pFramesInF32[iChannel] * pDelay->config.dry); /* Read */ pFramesOutF32[iChannel] = pDelay->pBuffer[iBuffer] * pDelay->config.wet; } } pDelay->cursor = (pDelay->cursor + 1) % pDelay->bufferSizeInFrames; pFramesOutF32 += pDelay->config.channels; pFramesInF32 += pDelay->config.channels; } return MA_SUCCESS; } MA_API void ma_delay_set_wet(ma_delay* pDelay, float value) { if (pDelay == NULL) { return; } pDelay->config.wet = value; } MA_API float ma_delay_get_wet(const ma_delay* pDelay) { if (pDelay == NULL) { return 0; } return pDelay->config.wet; } MA_API void ma_delay_set_dry(ma_delay* pDelay, float value) { if (pDelay == NULL) { return; } pDelay->config.dry = value; } MA_API float ma_delay_get_dry(const ma_delay* pDelay) { if (pDelay == NULL) { return 0; } return pDelay->config.dry; } MA_API void ma_delay_set_decay(ma_delay* pDelay, float value) { if (pDelay == NULL) { return; } pDelay->config.decay = value; } MA_API float ma_delay_get_decay(const ma_delay* pDelay) { if (pDelay == NULL) { return 0; } return pDelay->config.decay; } MA_API ma_gainer_config ma_gainer_config_init(ma_uint32 channels, ma_uint32 smoothTimeInFrames) { ma_gainer_config config; MA_ZERO_OBJECT(&config); config.channels = channels; config.smoothTimeInFrames = smoothTimeInFrames; return config; } typedef struct { size_t sizeInBytes; size_t oldGainsOffset; size_t newGainsOffset; } ma_gainer_heap_layout; static ma_result ma_gainer_get_heap_layout(const ma_gainer_config* pConfig, ma_gainer_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Old gains. */ pHeapLayout->oldGainsOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(float) * pConfig->channels; /* New gains. */ pHeapLayout->newGainsOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(float) * pConfig->channels; /* Alignment. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_gainer_get_heap_size(const ma_gainer_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_gainer_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_gainer_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_gainer_init_preallocated(const ma_gainer_config* pConfig, void* pHeap, ma_gainer* pGainer) { ma_result result; ma_gainer_heap_layout heapLayout; ma_uint32 iChannel; if (pGainer == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pGainer); if (pConfig == NULL || pHeap == NULL) { return MA_INVALID_ARGS; } result = ma_gainer_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pGainer->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pGainer->pOldGains = (float*)ma_offset_ptr(pHeap, heapLayout.oldGainsOffset); pGainer->pNewGains = (float*)ma_offset_ptr(pHeap, heapLayout.newGainsOffset); pGainer->config = *pConfig; pGainer->t = (ma_uint32)-1; /* No interpolation by default. */ for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) { pGainer->pOldGains[iChannel] = 1; pGainer->pNewGains[iChannel] = 1; } return MA_SUCCESS; } MA_API ma_result ma_gainer_init(const ma_gainer_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_gainer* pGainer) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_gainer_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the size of the heap allocation. */ } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_gainer_init_preallocated(pConfig, pHeap, pGainer); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pGainer->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_gainer_uninit(ma_gainer* pGainer, const ma_allocation_callbacks* pAllocationCallbacks) { if (pGainer == NULL) { return; } if (pGainer->_ownsHeap) { ma_free(pGainer->_pHeap, pAllocationCallbacks); } } static float ma_gainer_calculate_current_gain(const ma_gainer* pGainer, ma_uint32 channel) { float a = (float)pGainer->t / pGainer->config.smoothTimeInFrames; return ma_mix_f32_fast(pGainer->pOldGains[channel], pGainer->pNewGains[channel], a); } MA_API ma_result ma_gainer_process_pcm_frames(ma_gainer* pGainer, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint32 iChannel; float* pFramesOutF32 = (float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; if (pGainer == NULL) { return MA_INVALID_ARGS; } if (pGainer->t >= pGainer->config.smoothTimeInFrames) { /* Fast path. No gain calculation required. */ ma_copy_and_apply_volume_factor_per_channel_f32(pFramesOutF32, pFramesInF32, frameCount, pGainer->config.channels, pGainer->pNewGains); /* Now that some frames have been processed we need to make sure future changes to the gain are interpolated. */ if (pGainer->t == (ma_uint32)-1) { pGainer->t = pGainer->config.smoothTimeInFrames; } } else { /* Slow path. Need to interpolate the gain for each channel individually. */ /* We can allow the input and output buffers to be null in which case we'll just update the internal timer. */ if (pFramesOut != NULL && pFramesIn != NULL) { float a = (float)pGainer->t / pGainer->config.smoothTimeInFrames; float d = 1.0f / pGainer->config.smoothTimeInFrames; ma_uint32 channelCount = pGainer->config.channels; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channelCount; iChannel += 1) { pFramesOutF32[iChannel] = pFramesInF32[iChannel] * ma_mix_f32_fast(pGainer->pOldGains[iChannel], pGainer->pNewGains[iChannel], a); } pFramesOutF32 += channelCount; pFramesInF32 += channelCount; a += d; if (a > 1) { a = 1; } } } pGainer->t = (ma_uint32)ma_min(pGainer->t + frameCount, pGainer->config.smoothTimeInFrames); #if 0 /* Reference implementation. */ for (iFrame = 0; iFrame < frameCount; iFrame += 1) { /* We can allow the input and output buffers to be null in which case we'll just update the internal timer. */ if (pFramesOut != NULL && pFramesIn != NULL) { for (iChannel = 0; iChannel < pGainer->config.channels; iChannel += 1) { pFramesOutF32[iFrame*pGainer->config.channels + iChannel] = pFramesInF32[iFrame*pGainer->config.channels + iChannel] * ma_gainer_calculate_current_gain(pGainer, iChannel); } } /* Move interpolation time forward, but don't go beyond our smoothing time. */ pGainer->t = ma_min(pGainer->t + 1, pGainer->config.smoothTimeInFrames); } #endif } return MA_SUCCESS; } static void ma_gainer_set_gain_by_index(ma_gainer* pGainer, float newGain, ma_uint32 iChannel) { pGainer->pOldGains[iChannel] = ma_gainer_calculate_current_gain(pGainer, iChannel); pGainer->pNewGains[iChannel] = newGain; } static void ma_gainer_reset_smoothing_time(ma_gainer* pGainer) { if (pGainer->t == (ma_uint32)-1) { pGainer->t = pGainer->config.smoothTimeInFrames; /* No smoothing required for initial gains setting. */ } else { pGainer->t = 0; } } MA_API ma_result ma_gainer_set_gain(ma_gainer* pGainer, float newGain) { ma_uint32 iChannel; if (pGainer == NULL) { return MA_INVALID_ARGS; } for (iChannel = 0; iChannel < pGainer->config.channels; iChannel += 1) { ma_gainer_set_gain_by_index(pGainer, newGain, iChannel); } /* The smoothing time needs to be reset to ensure we always interpolate by the configured smoothing time, but only if it's not the first setting. */ ma_gainer_reset_smoothing_time(pGainer); return MA_SUCCESS; } MA_API ma_result ma_gainer_set_gains(ma_gainer* pGainer, float* pNewGains) { ma_uint32 iChannel; if (pGainer == NULL || pNewGains == NULL) { return MA_INVALID_ARGS; } for (iChannel = 0; iChannel < pGainer->config.channels; iChannel += 1) { ma_gainer_set_gain_by_index(pGainer, pNewGains[iChannel], iChannel); } /* The smoothing time needs to be reset to ensure we always interpolate by the configured smoothing time, but only if it's not the first setting. */ ma_gainer_reset_smoothing_time(pGainer); return MA_SUCCESS; } MA_API ma_panner_config ma_panner_config_init(ma_format format, ma_uint32 channels) { ma_panner_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.mode = ma_pan_mode_balance; /* Set to balancing mode by default because it's consistent with other audio engines and most likely what the caller is expecting. */ config.pan = 0; return config; } MA_API ma_result ma_panner_init(const ma_panner_config* pConfig, ma_panner* pPanner) { if (pPanner == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pPanner); if (pConfig == NULL) { return MA_INVALID_ARGS; } pPanner->format = pConfig->format; pPanner->channels = pConfig->channels; pPanner->mode = pConfig->mode; pPanner->pan = pConfig->pan; return MA_SUCCESS; } static void ma_stereo_balance_pcm_frames_f32(float* pFramesOut, const float* pFramesIn, ma_uint64 frameCount, float pan) { ma_uint64 iFrame; if (pan > 0) { float factor = 1.0f - pan; if (pFramesOut == pFramesIn) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { pFramesOut[iFrame*2 + 0] = pFramesIn[iFrame*2 + 0] * factor; } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { pFramesOut[iFrame*2 + 0] = pFramesIn[iFrame*2 + 0] * factor; pFramesOut[iFrame*2 + 1] = pFramesIn[iFrame*2 + 1]; } } } else { float factor = 1.0f + pan; if (pFramesOut == pFramesIn) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { pFramesOut[iFrame*2 + 1] = pFramesIn[iFrame*2 + 1] * factor; } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { pFramesOut[iFrame*2 + 0] = pFramesIn[iFrame*2 + 0]; pFramesOut[iFrame*2 + 1] = pFramesIn[iFrame*2 + 1] * factor; } } } } static void ma_stereo_balance_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_format format, float pan) { if (pan == 0) { /* Fast path. No panning required. */ if (pFramesOut == pFramesIn) { /* No-op */ } else { ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, format, 2); } return; } switch (format) { case ma_format_f32: ma_stereo_balance_pcm_frames_f32((float*)pFramesOut, (float*)pFramesIn, frameCount, pan); break; /* Unknown format. Just copy. */ default: { ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, format, 2); } break; } } static void ma_stereo_pan_pcm_frames_f32(float* pFramesOut, const float* pFramesIn, ma_uint64 frameCount, float pan) { ma_uint64 iFrame; if (pan > 0) { float factorL0 = 1.0f - pan; float factorL1 = 0.0f + pan; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float sample0 = (pFramesIn[iFrame*2 + 0] * factorL0); float sample1 = (pFramesIn[iFrame*2 + 0] * factorL1) + pFramesIn[iFrame*2 + 1]; pFramesOut[iFrame*2 + 0] = sample0; pFramesOut[iFrame*2 + 1] = sample1; } } else { float factorR0 = 0.0f - pan; float factorR1 = 1.0f + pan; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float sample0 = pFramesIn[iFrame*2 + 0] + (pFramesIn[iFrame*2 + 1] * factorR0); float sample1 = (pFramesIn[iFrame*2 + 1] * factorR1); pFramesOut[iFrame*2 + 0] = sample0; pFramesOut[iFrame*2 + 1] = sample1; } } } static void ma_stereo_pan_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount, ma_format format, float pan) { if (pan == 0) { /* Fast path. No panning required. */ if (pFramesOut == pFramesIn) { /* No-op */ } else { ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, format, 2); } return; } switch (format) { case ma_format_f32: ma_stereo_pan_pcm_frames_f32((float*)pFramesOut, (float*)pFramesIn, frameCount, pan); break; /* Unknown format. Just copy. */ default: { ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, format, 2); } break; } } MA_API ma_result ma_panner_process_pcm_frames(ma_panner* pPanner, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pPanner == NULL || pFramesOut == NULL || pFramesIn == NULL) { return MA_INVALID_ARGS; } if (pPanner->channels == 2) { /* Stereo case. For now assume channel 0 is left and channel right is 1, but should probably add support for a channel map. */ if (pPanner->mode == ma_pan_mode_balance) { ma_stereo_balance_pcm_frames(pFramesOut, pFramesIn, frameCount, pPanner->format, pPanner->pan); } else { ma_stereo_pan_pcm_frames(pFramesOut, pFramesIn, frameCount, pPanner->format, pPanner->pan); } } else { if (pPanner->channels == 1) { /* Panning has no effect on mono streams. */ ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, pPanner->format, pPanner->channels); } else { /* For now we're not going to support non-stereo set ups. Not sure how I want to handle this case just yet. */ ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, pPanner->format, pPanner->channels); } } return MA_SUCCESS; } MA_API void ma_panner_set_mode(ma_panner* pPanner, ma_pan_mode mode) { if (pPanner == NULL) { return; } pPanner->mode = mode; } MA_API ma_pan_mode ma_panner_get_mode(const ma_panner* pPanner) { if (pPanner == NULL) { return ma_pan_mode_balance; } return pPanner->mode; } MA_API void ma_panner_set_pan(ma_panner* pPanner, float pan) { if (pPanner == NULL) { return; } pPanner->pan = ma_clamp(pan, -1.0f, 1.0f); } MA_API float ma_panner_get_pan(const ma_panner* pPanner) { if (pPanner == NULL) { return 0; } return pPanner->pan; } MA_API ma_fader_config ma_fader_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate) { ma_fader_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; return config; } MA_API ma_result ma_fader_init(const ma_fader_config* pConfig, ma_fader* pFader) { if (pFader == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFader); if (pConfig == NULL) { return MA_INVALID_ARGS; } /* Only f32 is supported for now. */ if (pConfig->format != ma_format_f32) { return MA_INVALID_ARGS; } pFader->config = *pConfig; pFader->volumeBeg = 1; pFader->volumeEnd = 1; pFader->lengthInFrames = 0; pFader->cursorInFrames = 0; return MA_SUCCESS; } MA_API ma_result ma_fader_process_pcm_frames(ma_fader* pFader, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pFader == NULL) { return MA_INVALID_ARGS; } /* For now we need to clamp frameCount so that the cursor never overflows 32-bits. This is required for the conversion to a float which we use for the linear interpolation. This might be changed later. */ if (frameCount + pFader->cursorInFrames > UINT_MAX) { frameCount = UINT_MAX - pFader->cursorInFrames; } /* Optimized path if volumeBeg and volumeEnd are equal. */ if (pFader->volumeBeg == pFader->volumeEnd) { if (pFader->volumeBeg == 1) { /* Straight copy. */ ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, pFader->config.format, pFader->config.channels); } else { /* Copy with volume. */ ma_copy_and_apply_volume_and_clip_pcm_frames(pFramesOut, pFramesIn, frameCount, pFader->config.format, pFader->config.channels, pFader->volumeEnd); } } else { /* Slower path. Volumes are different, so may need to do an interpolation. */ if (pFader->cursorInFrames >= pFader->lengthInFrames) { /* Fast path. We've gone past the end of the fade period so just apply the end volume to all samples. */ ma_copy_and_apply_volume_and_clip_pcm_frames(pFramesOut, pFramesIn, frameCount, pFader->config.format, pFader->config.channels, pFader->volumeEnd); } else { /* Slow path. This is where we do the actual fading. */ ma_uint64 iFrame; ma_uint32 iChannel; /* For now we only support f32. Support for other formats will be added later. */ if (pFader->config.format == ma_format_f32) { const float* pFramesInF32 = (const float*)pFramesIn; /* */ float* pFramesOutF32 = ( float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float a = (ma_uint32)ma_min(pFader->cursorInFrames + iFrame, pFader->lengthInFrames) / (float)((ma_uint32)pFader->lengthInFrames); /* Safe cast due to the frameCount clamp at the top of this function. */ float volume = ma_mix_f32_fast(pFader->volumeBeg, pFader->volumeEnd, a); for (iChannel = 0; iChannel < pFader->config.channels; iChannel += 1) { pFramesOutF32[iFrame*pFader->config.channels + iChannel] = pFramesInF32[iFrame*pFader->config.channels + iChannel] * volume; } } } else { return MA_NOT_IMPLEMENTED; } } } pFader->cursorInFrames += frameCount; return MA_SUCCESS; } MA_API void ma_fader_get_data_format(const ma_fader* pFader, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate) { if (pFader == NULL) { return; } if (pFormat != NULL) { *pFormat = pFader->config.format; } if (pChannels != NULL) { *pChannels = pFader->config.channels; } if (pSampleRate != NULL) { *pSampleRate = pFader->config.sampleRate; } } MA_API void ma_fader_set_fade(ma_fader* pFader, float volumeBeg, float volumeEnd, ma_uint64 lengthInFrames) { if (pFader == NULL) { return; } /* If the volume is negative, use current volume. */ if (volumeBeg < 0) { volumeBeg = ma_fader_get_current_volume(pFader); } /* The length needs to be clamped to 32-bits due to how we convert it to a float for linear interpolation reasons. I might change this requirement later, but for now it's not important. */ if (lengthInFrames > UINT_MAX) { lengthInFrames = UINT_MAX; } pFader->volumeBeg = volumeBeg; pFader->volumeEnd = volumeEnd; pFader->lengthInFrames = lengthInFrames; pFader->cursorInFrames = 0; /* Reset cursor. */ } MA_API float ma_fader_get_current_volume(ma_fader* pFader) { if (pFader == NULL) { return 0.0f; } /* The current volume depends on the position of the cursor. */ if (pFader->cursorInFrames == 0) { return pFader->volumeBeg; } else if (pFader->cursorInFrames >= pFader->lengthInFrames) { return pFader->volumeEnd; } else { /* The cursor is somewhere inside the fading period. We can figure this out with a simple linear interpoluation between volumeBeg and volumeEnd based on our cursor position. */ return ma_mix_f32_fast(pFader->volumeBeg, pFader->volumeEnd, (ma_uint32)pFader->cursorInFrames / (float)((ma_uint32)pFader->lengthInFrames)); /* Safe cast to uint32 because we clamp it in ma_fader_process_pcm_frames(). */ } } MA_API ma_vec3f ma_vec3f_init_3f(float x, float y, float z) { ma_vec3f v; v.x = x; v.y = y; v.z = z; return v; } MA_API ma_vec3f ma_vec3f_sub(ma_vec3f a, ma_vec3f b) { return ma_vec3f_init_3f( a.x - b.x, a.y - b.y, a.z - b.z ); } MA_API ma_vec3f ma_vec3f_neg(ma_vec3f a) { return ma_vec3f_init_3f( -a.x, -a.y, -a.z ); } MA_API float ma_vec3f_dot(ma_vec3f a, ma_vec3f b) { return a.x*b.x + a.y*b.y + a.z*b.z; } MA_API float ma_vec3f_len2(ma_vec3f v) { return ma_vec3f_dot(v, v); } MA_API float ma_vec3f_len(ma_vec3f v) { return (float)ma_sqrtd(ma_vec3f_len2(v)); } MA_API float ma_vec3f_dist(ma_vec3f a, ma_vec3f b) { return ma_vec3f_len(ma_vec3f_sub(a, b)); } MA_API ma_vec3f ma_vec3f_normalize(ma_vec3f v) { float f; float l = ma_vec3f_len(v); if (l == 0) { return ma_vec3f_init_3f(0, 0, 0); } f = 1 / l; v.x *= f; v.y *= f; v.z *= f; return v; } MA_API ma_vec3f ma_vec3f_cross(ma_vec3f a, ma_vec3f b) { return ma_vec3f_init_3f( a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x ); } static void ma_channel_map_apply_f32(float* pFramesOut, const ma_channel* pChannelMapOut, ma_uint32 channelsOut, const float* pFramesIn, const ma_channel* pChannelMapIn, ma_uint32 channelsIn, ma_uint64 frameCount, ma_channel_mix_mode mode, ma_mono_expansion_mode monoExpansionMode); static ma_bool32 ma_is_spatial_channel_position(ma_channel channelPosition); #ifndef MA_DEFAULT_SPEED_OF_SOUND #define MA_DEFAULT_SPEED_OF_SOUND 343.3f #endif /* These vectors represent the direction that speakers are facing from the center point. They're used for panning in the spatializer. Must be normalized. */ static ma_vec3f g_maChannelDirections[MA_CHANNEL_POSITION_COUNT] = { { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_NONE */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_MONO */ {-0.7071f, 0.0f, -0.7071f }, /* MA_CHANNEL_FRONT_LEFT */ {+0.7071f, 0.0f, -0.7071f }, /* MA_CHANNEL_FRONT_RIGHT */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_FRONT_CENTER */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_LFE */ {-0.7071f, 0.0f, +0.7071f }, /* MA_CHANNEL_BACK_LEFT */ {+0.7071f, 0.0f, +0.7071f }, /* MA_CHANNEL_BACK_RIGHT */ {-0.3162f, 0.0f, -0.9487f }, /* MA_CHANNEL_FRONT_LEFT_CENTER */ {+0.3162f, 0.0f, -0.9487f }, /* MA_CHANNEL_FRONT_RIGHT_CENTER */ { 0.0f, 0.0f, +1.0f }, /* MA_CHANNEL_BACK_CENTER */ {-1.0f, 0.0f, 0.0f }, /* MA_CHANNEL_SIDE_LEFT */ {+1.0f, 0.0f, 0.0f }, /* MA_CHANNEL_SIDE_RIGHT */ { 0.0f, +1.0f, 0.0f }, /* MA_CHANNEL_TOP_CENTER */ {-0.5774f, +0.5774f, -0.5774f }, /* MA_CHANNEL_TOP_FRONT_LEFT */ { 0.0f, +0.7071f, -0.7071f }, /* MA_CHANNEL_TOP_FRONT_CENTER */ {+0.5774f, +0.5774f, -0.5774f }, /* MA_CHANNEL_TOP_FRONT_RIGHT */ {-0.5774f, +0.5774f, +0.5774f }, /* MA_CHANNEL_TOP_BACK_LEFT */ { 0.0f, +0.7071f, +0.7071f }, /* MA_CHANNEL_TOP_BACK_CENTER */ {+0.5774f, +0.5774f, +0.5774f }, /* MA_CHANNEL_TOP_BACK_RIGHT */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_0 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_1 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_2 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_3 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_4 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_5 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_6 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_7 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_8 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_9 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_10 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_11 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_12 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_13 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_14 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_15 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_16 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_17 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_18 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_19 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_20 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_21 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_22 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_23 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_24 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_25 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_26 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_27 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_28 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_29 */ { 0.0f, 0.0f, -1.0f }, /* MA_CHANNEL_AUX_30 */ { 0.0f, 0.0f, -1.0f } /* MA_CHANNEL_AUX_31 */ }; static ma_vec3f ma_get_channel_direction(ma_channel channel) { if (channel >= MA_CHANNEL_POSITION_COUNT) { return ma_vec3f_init_3f(0, 0, -1); } else { return g_maChannelDirections[channel]; } } static float ma_attenuation_inverse(float distance, float minDistance, float maxDistance, float rolloff) { if (minDistance >= maxDistance) { return 1; /* To avoid division by zero. Do not attenuate. */ } return minDistance / (minDistance + rolloff * (ma_clamp(distance, minDistance, maxDistance) - minDistance)); } static float ma_attenuation_linear(float distance, float minDistance, float maxDistance, float rolloff) { if (minDistance >= maxDistance) { return 1; /* To avoid division by zero. Do not attenuate. */ } return 1 - rolloff * (ma_clamp(distance, minDistance, maxDistance) - minDistance) / (maxDistance - minDistance); } static float ma_attenuation_exponential(float distance, float minDistance, float maxDistance, float rolloff) { if (minDistance >= maxDistance) { return 1; /* To avoid division by zero. Do not attenuate. */ } return (float)ma_powd(ma_clamp(distance, minDistance, maxDistance) / minDistance, -rolloff); } /* Dopper Effect calculation taken from the OpenAL spec, with two main differences: 1) The source to listener vector will have already been calcualted at an earlier step so we can just use that directly. We need only the position of the source relative to the origin. 2) We don't scale by a frequency because we actually just want the ratio which we'll plug straight into the resampler directly. */ static float ma_doppler_pitch(ma_vec3f relativePosition, ma_vec3f sourceVelocity, ma_vec3f listenVelocity, float speedOfSound, float dopplerFactor) { float len; float vls; float vss; len = ma_vec3f_len(relativePosition); /* There's a case where the position of the source will be right on top of the listener in which case the length will be 0 and we'll end up with a division by zero. We can just return a ratio of 1.0 in this case. This is not considered in the OpenAL spec, but is necessary. */ if (len == 0) { return 1.0; } vls = ma_vec3f_dot(relativePosition, listenVelocity) / len; vss = ma_vec3f_dot(relativePosition, sourceVelocity) / len; vls = ma_min(vls, speedOfSound / dopplerFactor); vss = ma_min(vss, speedOfSound / dopplerFactor); return (speedOfSound - dopplerFactor*vls) / (speedOfSound - dopplerFactor*vss); } static void ma_get_default_channel_map_for_spatializer(ma_channel* pChannelMap, size_t channelMapCap, ma_uint32 channelCount) { /* Special case for stereo. Want to default the left and right speakers to side left and side right so that they're facing directly down the X axis rather than slightly forward. Not doing this will result in sounds being quieter when behind the listener. This might actually be good for some scenerios, but I don't think it's an appropriate default because it can be a bit unexpected. */ if (channelCount == 2) { pChannelMap[0] = MA_CHANNEL_SIDE_LEFT; pChannelMap[1] = MA_CHANNEL_SIDE_RIGHT; } else { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, channelCount); } } MA_API ma_spatializer_listener_config ma_spatializer_listener_config_init(ma_uint32 channelsOut) { ma_spatializer_listener_config config; MA_ZERO_OBJECT(&config); config.channelsOut = channelsOut; config.pChannelMapOut = NULL; config.handedness = ma_handedness_right; config.worldUp = ma_vec3f_init_3f(0, 1, 0); config.coneInnerAngleInRadians = 6.283185f; /* 360 degrees. */ config.coneOuterAngleInRadians = 6.283185f; /* 360 degrees. */ config.coneOuterGain = 0; config.speedOfSound = 343.3f; /* Same as OpenAL. Used for doppler effect. */ return config; } typedef struct { size_t sizeInBytes; size_t channelMapOutOffset; } ma_spatializer_listener_heap_layout; static ma_result ma_spatializer_listener_get_heap_layout(const ma_spatializer_listener_config* pConfig, ma_spatializer_listener_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channelsOut == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Channel map. We always need this, even for passthroughs. */ pHeapLayout->channelMapOutOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(sizeof(*pConfig->pChannelMapOut) * pConfig->channelsOut); return MA_SUCCESS; } MA_API ma_result ma_spatializer_listener_get_heap_size(const ma_spatializer_listener_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_spatializer_listener_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_spatializer_listener_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_spatializer_listener_init_preallocated(const ma_spatializer_listener_config* pConfig, void* pHeap, ma_spatializer_listener* pListener) { ma_result result; ma_spatializer_listener_heap_layout heapLayout; if (pListener == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pListener); result = ma_spatializer_listener_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pListener->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pListener->config = *pConfig; pListener->position = ma_vec3f_init_3f(0, 0, 0); pListener->direction = ma_vec3f_init_3f(0, 0, -1); pListener->velocity = ma_vec3f_init_3f(0, 0, 0); pListener->isEnabled = MA_TRUE; /* Swap the forward direction if we're left handed (it was initialized based on right handed). */ if (pListener->config.handedness == ma_handedness_left) { pListener->direction = ma_vec3f_neg(pListener->direction); } /* We must always have a valid channel map. */ pListener->config.pChannelMapOut = (ma_channel*)ma_offset_ptr(pHeap, heapLayout.channelMapOutOffset); /* Use a slightly different default channel map for stereo. */ if (pConfig->pChannelMapOut == NULL) { ma_get_default_channel_map_for_spatializer(pListener->config.pChannelMapOut, pConfig->channelsOut, pConfig->channelsOut); } else { ma_channel_map_copy_or_default(pListener->config.pChannelMapOut, pConfig->channelsOut, pConfig->pChannelMapOut, pConfig->channelsOut); } return MA_SUCCESS; } MA_API ma_result ma_spatializer_listener_init(const ma_spatializer_listener_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_spatializer_listener* pListener) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_spatializer_listener_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_spatializer_listener_init_preallocated(pConfig, pHeap, pListener); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pListener->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_spatializer_listener_uninit(ma_spatializer_listener* pListener, const ma_allocation_callbacks* pAllocationCallbacks) { if (pListener == NULL) { return; } if (pListener->_ownsHeap) { ma_free(pListener->_pHeap, pAllocationCallbacks); } } MA_API ma_channel* ma_spatializer_listener_get_channel_map(ma_spatializer_listener* pListener) { if (pListener == NULL) { return NULL; } return pListener->config.pChannelMapOut; } MA_API void ma_spatializer_listener_set_cone(ma_spatializer_listener* pListener, float innerAngleInRadians, float outerAngleInRadians, float outerGain) { if (pListener == NULL) { return; } pListener->config.coneInnerAngleInRadians = innerAngleInRadians; pListener->config.coneOuterAngleInRadians = outerAngleInRadians; pListener->config.coneOuterGain = outerGain; } MA_API void ma_spatializer_listener_get_cone(const ma_spatializer_listener* pListener, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain) { if (pListener == NULL) { return; } if (pInnerAngleInRadians != NULL) { *pInnerAngleInRadians = pListener->config.coneInnerAngleInRadians; } if (pOuterAngleInRadians != NULL) { *pOuterAngleInRadians = pListener->config.coneOuterAngleInRadians; } if (pOuterGain != NULL) { *pOuterGain = pListener->config.coneOuterGain; } } MA_API void ma_spatializer_listener_set_position(ma_spatializer_listener* pListener, float x, float y, float z) { if (pListener == NULL) { return; } pListener->position = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_listener_get_position(const ma_spatializer_listener* pListener) { if (pListener == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return pListener->position; } MA_API void ma_spatializer_listener_set_direction(ma_spatializer_listener* pListener, float x, float y, float z) { if (pListener == NULL) { return; } pListener->direction = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_listener_get_direction(const ma_spatializer_listener* pListener) { if (pListener == NULL) { return ma_vec3f_init_3f(0, 0, -1); } return pListener->direction; } MA_API void ma_spatializer_listener_set_velocity(ma_spatializer_listener* pListener, float x, float y, float z) { if (pListener == NULL) { return; } pListener->velocity = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_listener_get_velocity(const ma_spatializer_listener* pListener) { if (pListener == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return pListener->velocity; } MA_API void ma_spatializer_listener_set_speed_of_sound(ma_spatializer_listener* pListener, float speedOfSound) { if (pListener == NULL) { return; } pListener->config.speedOfSound = speedOfSound; } MA_API float ma_spatializer_listener_get_speed_of_sound(const ma_spatializer_listener* pListener) { if (pListener == NULL) { return 0; } return pListener->config.speedOfSound; } MA_API void ma_spatializer_listener_set_world_up(ma_spatializer_listener* pListener, float x, float y, float z) { if (pListener == NULL) { return; } pListener->config.worldUp = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_listener_get_world_up(const ma_spatializer_listener* pListener) { if (pListener == NULL) { return ma_vec3f_init_3f(0, 1, 0); } return pListener->config.worldUp; } MA_API void ma_spatializer_listener_set_enabled(ma_spatializer_listener* pListener, ma_bool32 isEnabled) { if (pListener == NULL) { return; } pListener->isEnabled = isEnabled; } MA_API ma_bool32 ma_spatializer_listener_is_enabled(const ma_spatializer_listener* pListener) { if (pListener == NULL) { return MA_FALSE; } return pListener->isEnabled; } MA_API ma_spatializer_config ma_spatializer_config_init(ma_uint32 channelsIn, ma_uint32 channelsOut) { ma_spatializer_config config; MA_ZERO_OBJECT(&config); config.channelsIn = channelsIn; config.channelsOut = channelsOut; config.pChannelMapIn = NULL; config.attenuationModel = ma_attenuation_model_inverse; config.positioning = ma_positioning_absolute; config.handedness = ma_handedness_right; config.minGain = 0; config.maxGain = 1; config.minDistance = 1; config.maxDistance = MA_FLT_MAX; config.rolloff = 1; config.coneInnerAngleInRadians = 6.283185f; /* 360 degrees. */ config.coneOuterAngleInRadians = 6.283185f; /* 360 degress. */ config.coneOuterGain = 0.0f; config.dopplerFactor = 1; config.directionalAttenuationFactor = 1; config.gainSmoothTimeInFrames = 360; /* 7.5ms @ 48K. */ return config; } static ma_gainer_config ma_spatializer_gainer_config_init(const ma_spatializer_config* pConfig) { MA_ASSERT(pConfig != NULL); return ma_gainer_config_init(pConfig->channelsOut, pConfig->gainSmoothTimeInFrames); } static ma_result ma_spatializer_validate_config(const ma_spatializer_config* pConfig) { MA_ASSERT(pConfig != NULL); if (pConfig->channelsIn == 0 || pConfig->channelsOut == 0) { return MA_INVALID_ARGS; } return MA_SUCCESS; } typedef struct { size_t sizeInBytes; size_t channelMapInOffset; size_t newChannelGainsOffset; size_t gainerOffset; } ma_spatializer_heap_layout; static ma_result ma_spatializer_get_heap_layout(const ma_spatializer_config* pConfig, ma_spatializer_heap_layout* pHeapLayout) { ma_result result; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } result = ma_spatializer_validate_config(pConfig); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes = 0; /* Channel map. */ pHeapLayout->channelMapInOffset = MA_SIZE_MAX; /* <-- MA_SIZE_MAX indicates no allocation necessary. */ if (pConfig->pChannelMapIn != NULL) { pHeapLayout->channelMapInOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(sizeof(*pConfig->pChannelMapIn) * pConfig->channelsIn); } /* New channel gains for output. */ pHeapLayout->newChannelGainsOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(sizeof(float) * pConfig->channelsOut); /* Gainer. */ { size_t gainerHeapSizeInBytes; ma_gainer_config gainerConfig; gainerConfig = ma_spatializer_gainer_config_init(pConfig); result = ma_gainer_get_heap_size(&gainerConfig, &gainerHeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->gainerOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(gainerHeapSizeInBytes); } return MA_SUCCESS; } MA_API ma_result ma_spatializer_get_heap_size(const ma_spatializer_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_spatializer_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; /* Safety. */ result = ma_spatializer_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_spatializer_init_preallocated(const ma_spatializer_config* pConfig, void* pHeap, ma_spatializer* pSpatializer) { ma_result result; ma_spatializer_heap_layout heapLayout; ma_gainer_config gainerConfig; if (pSpatializer == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pSpatializer); if (pConfig == NULL || pHeap == NULL) { return MA_INVALID_ARGS; } result = ma_spatializer_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pSpatializer->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pSpatializer->channelsIn = pConfig->channelsIn; pSpatializer->channelsOut = pConfig->channelsOut; pSpatializer->attenuationModel = pConfig->attenuationModel; pSpatializer->positioning = pConfig->positioning; pSpatializer->handedness = pConfig->handedness; pSpatializer->minGain = pConfig->minGain; pSpatializer->maxGain = pConfig->maxGain; pSpatializer->minDistance = pConfig->minDistance; pSpatializer->maxDistance = pConfig->maxDistance; pSpatializer->rolloff = pConfig->rolloff; pSpatializer->coneInnerAngleInRadians = pConfig->coneInnerAngleInRadians; pSpatializer->coneOuterAngleInRadians = pConfig->coneOuterAngleInRadians; pSpatializer->coneOuterGain = pConfig->coneOuterGain; pSpatializer->dopplerFactor = pConfig->dopplerFactor; pSpatializer->directionalAttenuationFactor = pConfig->directionalAttenuationFactor; pSpatializer->gainSmoothTimeInFrames = pConfig->gainSmoothTimeInFrames; pSpatializer->position = ma_vec3f_init_3f(0, 0, 0); pSpatializer->direction = ma_vec3f_init_3f(0, 0, -1); pSpatializer->velocity = ma_vec3f_init_3f(0, 0, 0); pSpatializer->dopplerPitch = 1; /* Swap the forward direction if we're left handed (it was initialized based on right handed). */ if (pSpatializer->handedness == ma_handedness_left) { pSpatializer->direction = ma_vec3f_neg(pSpatializer->direction); } /* Channel map. This will be on the heap. */ if (pConfig->pChannelMapIn != NULL) { pSpatializer->pChannelMapIn = (ma_channel*)ma_offset_ptr(pHeap, heapLayout.channelMapInOffset); ma_channel_map_copy_or_default(pSpatializer->pChannelMapIn, pSpatializer->channelsIn, pConfig->pChannelMapIn, pSpatializer->channelsIn); } /* New channel gains for output channels. */ pSpatializer->pNewChannelGainsOut = (float*)ma_offset_ptr(pHeap, heapLayout.newChannelGainsOffset); /* Gainer. */ gainerConfig = ma_spatializer_gainer_config_init(pConfig); result = ma_gainer_init_preallocated(&gainerConfig, ma_offset_ptr(pHeap, heapLayout.gainerOffset), &pSpatializer->gainer); if (result != MA_SUCCESS) { return result; /* Failed to initialize the gainer. */ } return MA_SUCCESS; } MA_API ma_result ma_spatializer_init(const ma_spatializer_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_spatializer* pSpatializer) { ma_result result; size_t heapSizeInBytes; void* pHeap; /* We'll need a heap allocation to retrieve the size. */ result = ma_spatializer_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_spatializer_init_preallocated(pConfig, pHeap, pSpatializer); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pSpatializer->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_spatializer_uninit(ma_spatializer* pSpatializer, const ma_allocation_callbacks* pAllocationCallbacks) { if (pSpatializer == NULL) { return; } ma_gainer_uninit(&pSpatializer->gainer, pAllocationCallbacks); if (pSpatializer->_ownsHeap) { ma_free(pSpatializer->_pHeap, pAllocationCallbacks); } } static float ma_calculate_angular_gain(ma_vec3f dirA, ma_vec3f dirB, float coneInnerAngleInRadians, float coneOuterAngleInRadians, float coneOuterGain) { /* Angular attenuation. Unlike distance gain, the math for this is not specified by the OpenAL spec so we'll just go ahead and figure this out for ourselves at the expense of possibly being inconsistent with other implementations. To do cone attenuation, I'm just using the same math that we'd use to implement a basic spotlight in OpenGL. We just need to get the direction from the source to the listener and then do a dot product against that and the direction of the spotlight. Then we just compare that dot product against the cosine of the inner and outer angles. If the dot product is greater than the the outer angle, we just use coneOuterGain. If it's less than the inner angle, we just use a gain of 1. Otherwise we linearly interpolate between 1 and coneOuterGain. */ if (coneInnerAngleInRadians < 6.283185f) { float angularGain = 1; float cutoffInner = (float)ma_cosd(coneInnerAngleInRadians*0.5f); float cutoffOuter = (float)ma_cosd(coneOuterAngleInRadians*0.5f); float d; d = ma_vec3f_dot(dirA, dirB); if (d > cutoffInner) { /* It's inside the inner angle. */ angularGain = 1; } else { /* It's outside the inner angle. */ if (d > cutoffOuter) { /* It's between the inner and outer angle. We need to linearly interpolate between 1 and coneOuterGain. */ angularGain = ma_mix_f32(coneOuterGain, 1, (d - cutoffOuter) / (cutoffInner - cutoffOuter)); } else { /* It's outside the outer angle. */ angularGain = coneOuterGain; } } /*printf("d = %f; cutoffInner = %f; cutoffOuter = %f; angularGain = %f\n", d, cutoffInner, cutoffOuter, angularGain);*/ return angularGain; } else { /* Inner angle is 360 degrees so no need to do any attenuation. */ return 1; } } MA_API ma_result ma_spatializer_process_pcm_frames(ma_spatializer* pSpatializer, ma_spatializer_listener* pListener, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_channel* pChannelMapIn = pSpatializer->pChannelMapIn; ma_channel* pChannelMapOut = pListener->config.pChannelMapOut; if (pSpatializer == NULL) { return MA_INVALID_ARGS; } /* If we're not spatializing we need to run an optimized path. */ if (c89atomic_load_i32(&pSpatializer->attenuationModel) == ma_attenuation_model_none) { if (ma_spatializer_listener_is_enabled(pListener)) { /* No attenuation is required, but we'll need to do some channel conversion. */ if (pSpatializer->channelsIn == pSpatializer->channelsOut) { ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, ma_format_f32, pSpatializer->channelsIn); } else { ma_channel_map_apply_f32((float*)pFramesOut, pChannelMapOut, pSpatializer->channelsOut, (const float*)pFramesIn, pChannelMapIn, pSpatializer->channelsIn, frameCount, ma_channel_mix_mode_rectangular, ma_mono_expansion_mode_default); /* Safe casts to float* because f32 is the only supported format. */ } } else { /* The listener is disabled. Output silence. */ ma_silence_pcm_frames(pFramesOut, frameCount, ma_format_f32, pSpatializer->channelsOut); } /* We're not doing attenuation so don't bother with doppler for now. I'm not sure if this is the correct thinking so might need to review this later. */ pSpatializer->dopplerPitch = 1; } else { /* Let's first determine which listener the sound is closest to. Need to keep in mind that we might not have a world or any listeners, in which case we just spatializer based on the listener being positioned at the origin (0, 0, 0). */ ma_vec3f relativePosNormalized; ma_vec3f relativePos; /* The position relative to the listener. */ ma_vec3f relativeDir; /* The direction of the sound, relative to the listener. */ ma_vec3f listenerVel; /* The volocity of the listener. For doppler pitch calculation. */ float speedOfSound; float distance = 0; float gain = 1; ma_uint32 iChannel; const ma_uint32 channelsOut = pSpatializer->channelsOut; const ma_uint32 channelsIn = pSpatializer->channelsIn; float minDistance = ma_spatializer_get_min_distance(pSpatializer); float maxDistance = ma_spatializer_get_max_distance(pSpatializer); float rolloff = ma_spatializer_get_rolloff(pSpatializer); float dopplerFactor = ma_spatializer_get_doppler_factor(pSpatializer); /* We'll need the listener velocity for doppler pitch calculations. The speed of sound is defined by the listener, so we'll grab that here too. */ if (pListener != NULL) { listenerVel = pListener->velocity; speedOfSound = pListener->config.speedOfSound; } else { listenerVel = ma_vec3f_init_3f(0, 0, 0); speedOfSound = MA_DEFAULT_SPEED_OF_SOUND; } if (pListener == NULL || ma_spatializer_get_positioning(pSpatializer) == ma_positioning_relative) { /* There's no listener or we're using relative positioning. */ relativePos = pSpatializer->position; relativeDir = pSpatializer->direction; } else { /* We've found a listener and we're using absolute positioning. We need to transform the sound's position and direction so that it's relative to listener. Later on we'll use this for determining the factors to apply to each channel to apply the panning effect. */ ma_spatializer_get_relative_position_and_direction(pSpatializer, pListener, &relativePos, &relativeDir); } distance = ma_vec3f_len(relativePos); /* We've gathered the data, so now we can apply some spatialization. */ switch (ma_spatializer_get_attenuation_model(pSpatializer)) { case ma_attenuation_model_inverse: { gain = ma_attenuation_inverse(distance, minDistance, maxDistance, rolloff); } break; case ma_attenuation_model_linear: { gain = ma_attenuation_linear(distance, minDistance, maxDistance, rolloff); } break; case ma_attenuation_model_exponential: { gain = ma_attenuation_exponential(distance, minDistance, maxDistance, rolloff); } break; case ma_attenuation_model_none: default: { gain = 1; } break; } /* Normalize the position. */ if (distance > 0.001f) { float distanceInv = 1/distance; relativePosNormalized = relativePos; relativePosNormalized.x *= distanceInv; relativePosNormalized.y *= distanceInv; relativePosNormalized.z *= distanceInv; } else { distance = 0; relativePosNormalized = ma_vec3f_init_3f(0, 0, 0); } /* Angular attenuation. Unlike distance gain, the math for this is not specified by the OpenAL spec so we'll just go ahead and figure this out for ourselves at the expense of possibly being inconsistent with other implementations. To do cone attenuation, I'm just using the same math that we'd use to implement a basic spotlight in OpenGL. We just need to get the direction from the source to the listener and then do a dot product against that and the direction of the spotlight. Then we just compare that dot product against the cosine of the inner and outer angles. If the dot product is greater than the the outer angle, we just use coneOuterGain. If it's less than the inner angle, we just use a gain of 1. Otherwise we linearly interpolate between 1 and coneOuterGain. */ if (distance > 0) { /* Source anglular gain. */ float spatializerConeInnerAngle; float spatializerConeOuterAngle; float spatializerConeOuterGain; ma_spatializer_get_cone(pSpatializer, &spatializerConeInnerAngle, &spatializerConeOuterAngle, &spatializerConeOuterGain); gain *= ma_calculate_angular_gain(relativeDir, ma_vec3f_neg(relativePosNormalized), spatializerConeInnerAngle, spatializerConeOuterAngle, spatializerConeOuterGain); /* We're supporting angular gain on the listener as well for those who want to reduce the volume of sounds that are positioned behind the listener. On default settings, this will have no effect. */ if (pListener != NULL && pListener->config.coneInnerAngleInRadians < 6.283185f) { ma_vec3f listenerDirection; float listenerInnerAngle; float listenerOuterAngle; float listenerOuterGain; if (pListener->config.handedness == ma_handedness_right) { listenerDirection = ma_vec3f_init_3f(0, 0, -1); } else { listenerDirection = ma_vec3f_init_3f(0, 0, +1); } listenerInnerAngle = pListener->config.coneInnerAngleInRadians; listenerOuterAngle = pListener->config.coneOuterAngleInRadians; listenerOuterGain = pListener->config.coneOuterGain; gain *= ma_calculate_angular_gain(listenerDirection, relativePosNormalized, listenerInnerAngle, listenerOuterAngle, listenerOuterGain); } } else { /* The sound is right on top of the listener. Don't do any angular attenuation. */ } /* Clamp the gain. */ gain = ma_clamp(gain, ma_spatializer_get_min_gain(pSpatializer), ma_spatializer_get_max_gain(pSpatializer)); /* Panning. This is where we'll apply the gain and convert to the output channel count. We have an optimized path for when we're converting to a mono stream. In that case we don't really need to do any panning - we just apply the gain to the final output. */ /*printf("distance=%f; gain=%f\n", distance, gain);*/ /* We must have a valid channel map here to ensure we spatialize properly. */ MA_ASSERT(pChannelMapOut != NULL); /* We're not converting to mono so we'll want to apply some panning. This is where the feeling of something being to the left, right, infront or behind the listener is calculated. I'm just using a basic model here. Note that the code below is not based on any specific algorithm. I'm just implementing this off the top of my head and seeing how it goes. There might be better ways to do this. To determine the direction of the sound relative to a speaker I'm using dot products. Each speaker is given a direction. For example, the left channel in a stereo system will be -1 on the X axis and the right channel will be +1 on the X axis. A dot product is performed against the direction vector of the channel and the normalized position of the sound. */ for (iChannel = 0; iChannel < channelsOut; iChannel += 1) { pSpatializer->pNewChannelGainsOut[iChannel] = gain; } /* Convert to our output channel count. If the listener is disabled we just output silence here. We cannot ignore the whole section of code here because we need to update some internal spatialization state. */ if (ma_spatializer_listener_is_enabled(pListener)) { ma_channel_map_apply_f32((float*)pFramesOut, pChannelMapOut, channelsOut, (const float*)pFramesIn, pChannelMapIn, channelsIn, frameCount, ma_channel_mix_mode_rectangular, ma_mono_expansion_mode_default); } else { ma_silence_pcm_frames(pFramesOut, frameCount, ma_format_f32, pSpatializer->channelsOut); } /* Calculate our per-channel gains. We do this based on the normalized relative position of the sound and it's relation to the direction of the channel. */ if (distance > 0) { ma_vec3f unitPos = relativePos; float distanceInv = 1/distance; unitPos.x *= distanceInv; unitPos.y *= distanceInv; unitPos.z *= distanceInv; for (iChannel = 0; iChannel < channelsOut; iChannel += 1) { ma_channel channelOut; float d; float dMin; channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannel); if (ma_is_spatial_channel_position(channelOut)) { d = ma_mix_f32_fast(1, ma_vec3f_dot(unitPos, ma_get_channel_direction(channelOut)), ma_spatializer_get_directional_attenuation_factor(pSpatializer)); } else { d = 1; /* It's not a spatial channel so there's no real notion of direction. */ } /* In my testing, if the panning effect is too aggressive it makes spatialization feel uncomfortable. The "dMin" variable below is used to control the aggressiveness of the panning effect. When set to 0, panning will be most extreme and any sounds that are positioned on the opposite side of the speaker will be completely silent from that speaker. Not only does this feel uncomfortable, it doesn't even remotely represent the real world at all because sounds that come from your right side are still clearly audible from your left side. Setting "dMin" to 1 will result in no panning at all, which is also not ideal. By setting it to something greater than 0, the spatialization effect becomes much less dramatic and a lot more bearable. Summary: 0 = more extreme panning; 1 = no panning. */ dMin = 0.2f; /* TODO: Consider making this configurable. */ /* At this point, "d" will be positive if the sound is on the same side as the channel and negative if it's on the opposite side. It will be in the range of -1..1. There's two ways I can think of to calculate a panning value. The first is to simply convert it to 0..1, however this has a problem which I'm not entirely happy with. Considering a stereo system, when a sound is positioned right in front of the listener it'll result in each speaker getting a gain of 0.5. I don't know if I like the idea of having a scaling factor of 0.5 being applied to a sound when it's sitting right in front of the listener. I would intuitively expect that to be played at full volume, or close to it. The second idea I think of is to only apply a reduction in gain when the sound is on the opposite side of the speaker. That is, reduce the gain only when the dot product is negative. The problem with this is that there will not be any attenuation as the sound sweeps around the 180 degrees where the dot product is positive. The idea with this option is that you leave the gain at 1 when the sound is being played on the same side as the speaker and then you just reduce the volume when the sound is on the other side. The summarize, I think the first option should give a better sense of spatialization, but the second option is better for preserving the sound's power. UPDATE: In my testing, I find the first option to sound better. You can feel the sense of space a bit better, but you can also hear the reduction in volume when it's right in front. */ #if 1 { /* Scale the dot product from -1..1 to 0..1. Will result in a sound directly in front losing power by being played at 0.5 gain. */ d = (d + 1) * 0.5f; /* -1..1 to 0..1 */ d = ma_max(d, dMin); pSpatializer->pNewChannelGainsOut[iChannel] *= d; } #else { /* Only reduce the volume of the sound if it's on the opposite side. This path keeps the volume more consistent, but comes at the expense of a worse sense of space and positioning. */ if (d < 0) { d += 1; /* Move into the positive range. */ d = ma_max(d, dMin); channelGainsOut[iChannel] *= d; } } #endif } } else { /* Assume the sound is right on top of us. Don't do any panning. */ } /* Now we need to apply the volume to each channel. This needs to run through the gainer to ensure we get a smooth volume transition. */ ma_gainer_set_gains(&pSpatializer->gainer, pSpatializer->pNewChannelGainsOut); ma_gainer_process_pcm_frames(&pSpatializer->gainer, pFramesOut, pFramesOut, frameCount); /* Before leaving we'll want to update our doppler pitch so that the caller can apply some pitch shifting if they desire. Note that we need to negate the relative position here because the doppler calculation needs to be source-to-listener, but ours is listener-to- source. */ if (dopplerFactor > 0) { pSpatializer->dopplerPitch = ma_doppler_pitch(ma_vec3f_sub(pListener->position, pSpatializer->position), pSpatializer->velocity, listenerVel, speedOfSound, dopplerFactor); } else { pSpatializer->dopplerPitch = 1; } } return MA_SUCCESS; } MA_API ma_uint32 ma_spatializer_get_input_channels(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return pSpatializer->channelsIn; } MA_API ma_uint32 ma_spatializer_get_output_channels(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return pSpatializer->channelsOut; } MA_API void ma_spatializer_set_attenuation_model(ma_spatializer* pSpatializer, ma_attenuation_model attenuationModel) { if (pSpatializer == NULL) { return; } c89atomic_exchange_i32(&pSpatializer->attenuationModel, attenuationModel); } MA_API ma_attenuation_model ma_spatializer_get_attenuation_model(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return ma_attenuation_model_none; } return (ma_attenuation_model)c89atomic_load_i32(&pSpatializer->attenuationModel); } MA_API void ma_spatializer_set_positioning(ma_spatializer* pSpatializer, ma_positioning positioning) { if (pSpatializer == NULL) { return; } c89atomic_exchange_i32(&pSpatializer->positioning, positioning); } MA_API ma_positioning ma_spatializer_get_positioning(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return ma_positioning_absolute; } return (ma_positioning)c89atomic_load_i32(&pSpatializer->positioning); } MA_API void ma_spatializer_set_rolloff(ma_spatializer* pSpatializer, float rolloff) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->rolloff, rolloff); } MA_API float ma_spatializer_get_rolloff(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return c89atomic_load_f32(&pSpatializer->rolloff); } MA_API void ma_spatializer_set_min_gain(ma_spatializer* pSpatializer, float minGain) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->minGain, minGain); } MA_API float ma_spatializer_get_min_gain(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return c89atomic_load_f32(&pSpatializer->minGain); } MA_API void ma_spatializer_set_max_gain(ma_spatializer* pSpatializer, float maxGain) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->maxGain, maxGain); } MA_API float ma_spatializer_get_max_gain(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return c89atomic_load_f32(&pSpatializer->maxGain); } MA_API void ma_spatializer_set_min_distance(ma_spatializer* pSpatializer, float minDistance) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->minDistance, minDistance); } MA_API float ma_spatializer_get_min_distance(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return c89atomic_load_f32(&pSpatializer->minDistance); } MA_API void ma_spatializer_set_max_distance(ma_spatializer* pSpatializer, float maxDistance) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->maxDistance, maxDistance); } MA_API float ma_spatializer_get_max_distance(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 0; } return c89atomic_load_f32(&pSpatializer->maxDistance); } MA_API void ma_spatializer_set_cone(ma_spatializer* pSpatializer, float innerAngleInRadians, float outerAngleInRadians, float outerGain) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->coneInnerAngleInRadians, innerAngleInRadians); c89atomic_exchange_f32(&pSpatializer->coneOuterAngleInRadians, outerAngleInRadians); c89atomic_exchange_f32(&pSpatializer->coneOuterGain, outerGain); } MA_API void ma_spatializer_get_cone(const ma_spatializer* pSpatializer, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain) { if (pSpatializer == NULL) { return; } if (pInnerAngleInRadians != NULL) { *pInnerAngleInRadians = c89atomic_load_f32(&pSpatializer->coneInnerAngleInRadians); } if (pOuterAngleInRadians != NULL) { *pOuterAngleInRadians = c89atomic_load_f32(&pSpatializer->coneOuterAngleInRadians); } if (pOuterGain != NULL) { *pOuterGain = c89atomic_load_f32(&pSpatializer->coneOuterGain); } } MA_API void ma_spatializer_set_doppler_factor(ma_spatializer* pSpatializer, float dopplerFactor) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->dopplerFactor, dopplerFactor); } MA_API float ma_spatializer_get_doppler_factor(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 1; } return c89atomic_load_f32(&pSpatializer->dopplerFactor); } MA_API void ma_spatializer_set_directional_attenuation_factor(ma_spatializer* pSpatializer, float directionalAttenuationFactor) { if (pSpatializer == NULL) { return; } c89atomic_exchange_f32(&pSpatializer->directionalAttenuationFactor, directionalAttenuationFactor); } MA_API float ma_spatializer_get_directional_attenuation_factor(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return 1; } return c89atomic_load_f32(&pSpatializer->directionalAttenuationFactor); } MA_API void ma_spatializer_set_position(ma_spatializer* pSpatializer, float x, float y, float z) { if (pSpatializer == NULL) { return; } pSpatializer->position = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_get_position(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return pSpatializer->position; } MA_API void ma_spatializer_set_direction(ma_spatializer* pSpatializer, float x, float y, float z) { if (pSpatializer == NULL) { return; } pSpatializer->direction = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_get_direction(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return ma_vec3f_init_3f(0, 0, -1); } return pSpatializer->direction; } MA_API void ma_spatializer_set_velocity(ma_spatializer* pSpatializer, float x, float y, float z) { if (pSpatializer == NULL) { return; } pSpatializer->velocity = ma_vec3f_init_3f(x, y, z); } MA_API ma_vec3f ma_spatializer_get_velocity(const ma_spatializer* pSpatializer) { if (pSpatializer == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return pSpatializer->velocity; } MA_API void ma_spatializer_get_relative_position_and_direction(const ma_spatializer* pSpatializer, const ma_spatializer_listener* pListener, ma_vec3f* pRelativePos, ma_vec3f* pRelativeDir) { if (pRelativePos != NULL) { pRelativePos->x = 0; pRelativePos->y = 0; pRelativePos->z = 0; } if (pRelativeDir != NULL) { pRelativeDir->x = 0; pRelativeDir->y = 0; pRelativeDir->z = -1; } if (pSpatializer == NULL) { return; } if (pListener == NULL || ma_spatializer_get_positioning(pSpatializer) == ma_positioning_relative) { /* There's no listener or we're using relative positioning. */ if (pRelativePos != NULL) { *pRelativePos = pSpatializer->position; } if (pRelativeDir != NULL) { *pRelativeDir = pSpatializer->direction; } } else { ma_vec3f v; ma_vec3f axisX; ma_vec3f axisY; ma_vec3f axisZ; float m[4][4]; /* We need to calcualte the right vector from our forward and up vectors. This is done with a cross product. */ axisZ = ma_vec3f_normalize(pListener->direction); /* Normalization required here because we can't trust the caller. */ axisX = ma_vec3f_normalize(ma_vec3f_cross(axisZ, pListener->config.worldUp)); /* Normalization required here because the world up vector may not be perpendicular with the forward vector. */ /* The calculation of axisX above can result in a zero-length vector if the listener is looking straight up on the Y axis. We'll need to fall back to a +X in this case so that the calculations below don't fall apart. This is where a quaternion based listener and sound orientation would come in handy. */ if (ma_vec3f_len2(axisX) == 0) { axisX = ma_vec3f_init_3f(1, 0, 0); } axisY = ma_vec3f_cross(axisX, axisZ); /* No normalization is required here because axisX and axisZ are unit length and perpendicular. */ /* We need to swap the X axis if we're left handed because otherwise the cross product above will have resulted in it pointing in the wrong direction (right handed was assumed in the cross products above). */ if (pListener->config.handedness == ma_handedness_left) { axisX = ma_vec3f_neg(axisX); } /* Lookat. */ m[0][0] = axisX.x; m[1][0] = axisX.y; m[2][0] = axisX.z; m[3][0] = -ma_vec3f_dot(axisX, pListener->position); m[0][1] = axisY.x; m[1][1] = axisY.y; m[2][1] = axisY.z; m[3][1] = -ma_vec3f_dot(axisY, pListener->position); m[0][2] = -axisZ.x; m[1][2] = -axisZ.y; m[2][2] = -axisZ.z; m[3][2] = -ma_vec3f_dot(ma_vec3f_neg(axisZ), pListener->position); m[0][3] = 0; m[1][3] = 0; m[2][3] = 0; m[3][3] = 1; /* Multiply the lookat matrix by the spatializer position to transform it to listener space. This allows calculations to work based on the sound being relative to the origin which makes things simpler. */ if (pRelativePos != NULL) { v = pSpatializer->position; pRelativePos->x = m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z + m[3][0] * 1; pRelativePos->y = m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z + m[3][1] * 1; pRelativePos->z = m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z + m[3][2] * 1; } /* The direction of the sound needs to also be transformed so that it's relative to the rotation of the listener. */ if (pRelativeDir != NULL) { v = pSpatializer->direction; pRelativeDir->x = m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z; pRelativeDir->y = m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z; pRelativeDir->z = m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z; } } } /************************************************************************************************************************************************************** Resampling **************************************************************************************************************************************************************/ MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { ma_linear_resampler_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRateIn = sampleRateIn; config.sampleRateOut = sampleRateOut; config.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER); config.lpfNyquistFactor = 1; return config; } typedef struct { size_t sizeInBytes; size_t x0Offset; size_t x1Offset; size_t lpfOffset; } ma_linear_resampler_heap_layout; static void ma_linear_resampler_adjust_timer_for_new_rate(ma_linear_resampler* pResampler, ma_uint32 oldSampleRateOut, ma_uint32 newSampleRateOut) { /* So what's happening here? Basically we need to adjust the fractional component of the time advance based on the new rate. The old time advance will be based on the old sample rate, but we are needing to adjust it to that it's based on the new sample rate. */ ma_uint32 oldRateTimeWhole = pResampler->inTimeFrac / oldSampleRateOut; /* <-- This should almost never be anything other than 0, but leaving it here to make this more general and robust just in case. */ ma_uint32 oldRateTimeFract = pResampler->inTimeFrac % oldSampleRateOut; pResampler->inTimeFrac = (oldRateTimeWhole * newSampleRateOut) + ((oldRateTimeFract * newSampleRateOut) / oldSampleRateOut); /* Make sure the fractional part is less than the output sample rate. */ pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut; pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut; } static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pResampler, void* pHeap, ma_linear_resampler_heap_layout* pHeapLayout, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_bool32 isResamplerAlreadyInitialized) { ma_result result; ma_uint32 gcf; ma_uint32 lpfSampleRate; double lpfCutoffFrequency; ma_lpf_config lpfConfig; ma_uint32 oldSampleRateOut; /* Required for adjusting time advance down the bottom. */ if (pResampler == NULL) { return MA_INVALID_ARGS; } if (sampleRateIn == 0 || sampleRateOut == 0) { return MA_INVALID_ARGS; } oldSampleRateOut = pResampler->config.sampleRateOut; pResampler->config.sampleRateIn = sampleRateIn; pResampler->config.sampleRateOut = sampleRateOut; /* Simplify the sample rate. */ gcf = ma_gcf_u32(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut); pResampler->config.sampleRateIn /= gcf; pResampler->config.sampleRateOut /= gcf; /* Always initialize the low-pass filter, even when the order is 0. */ if (pResampler->config.lpfOrder > MA_MAX_FILTER_ORDER) { return MA_INVALID_ARGS; } lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut)); lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor); lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency, pResampler->config.lpfOrder); /* If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames getting cleared. Instead we re-initialize the filter which will maintain any cached frames. */ if (isResamplerAlreadyInitialized) { result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf); } else { result = ma_lpf_init_preallocated(&lpfConfig, ma_offset_ptr(pHeap, pHeapLayout->lpfOffset), &pResampler->lpf); } if (result != MA_SUCCESS) { return result; } pResampler->inAdvanceInt = pResampler->config.sampleRateIn / pResampler->config.sampleRateOut; pResampler->inAdvanceFrac = pResampler->config.sampleRateIn % pResampler->config.sampleRateOut; /* Our timer was based on the old rate. We need to adjust it so that it's based on the new rate. */ ma_linear_resampler_adjust_timer_for_new_rate(pResampler, oldSampleRateOut, pResampler->config.sampleRateOut); return MA_SUCCESS; } static ma_result ma_linear_resampler_get_heap_layout(const ma_linear_resampler_config* pConfig, ma_linear_resampler_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* x0 */ pHeapLayout->x0Offset = pHeapLayout->sizeInBytes; if (pConfig->format == ma_format_f32) { pHeapLayout->sizeInBytes += sizeof(float) * pConfig->channels; } else { pHeapLayout->sizeInBytes += sizeof(ma_int16) * pConfig->channels; } /* x1 */ pHeapLayout->x1Offset = pHeapLayout->sizeInBytes; if (pConfig->format == ma_format_f32) { pHeapLayout->sizeInBytes += sizeof(float) * pConfig->channels; } else { pHeapLayout->sizeInBytes += sizeof(ma_int16) * pConfig->channels; } /* LPF */ pHeapLayout->lpfOffset = ma_align_64(pHeapLayout->sizeInBytes); { ma_result result; size_t lpfHeapSizeInBytes; ma_lpf_config lpfConfig = ma_lpf_config_init(pConfig->format, pConfig->channels, 1, 1, pConfig->lpfOrder); /* Sample rate and cutoff frequency do not matter. */ result = ma_lpf_get_heap_size(&lpfConfig, &lpfHeapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += lpfHeapSizeInBytes; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_linear_resampler_get_heap_size(const ma_linear_resampler_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_linear_resampler_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_linear_resampler_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_linear_resampler_init_preallocated(const ma_linear_resampler_config* pConfig, void* pHeap, ma_linear_resampler* pResampler) { ma_result result; ma_linear_resampler_heap_layout heapLayout; if (pResampler == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pResampler); result = ma_linear_resampler_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pResampler->config = *pConfig; pResampler->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); if (pConfig->format == ma_format_f32) { pResampler->x0.f32 = (float*)ma_offset_ptr(pHeap, heapLayout.x0Offset); pResampler->x1.f32 = (float*)ma_offset_ptr(pHeap, heapLayout.x1Offset); } else { pResampler->x0.s16 = (ma_int16*)ma_offset_ptr(pHeap, heapLayout.x0Offset); pResampler->x1.s16 = (ma_int16*)ma_offset_ptr(pHeap, heapLayout.x1Offset); } /* Setting the rate will set up the filter and time advances for us. */ result = ma_linear_resampler_set_rate_internal(pResampler, pHeap, &heapLayout, pConfig->sampleRateIn, pConfig->sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_FALSE); if (result != MA_SUCCESS) { return result; } pResampler->inTimeInt = 1; /* Set this to one to force an input sample to always be loaded for the first output frame. */ pResampler->inTimeFrac = 0; return MA_SUCCESS; } MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_linear_resampler* pResampler) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_linear_resampler_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_linear_resampler_init_preallocated(pConfig, pHeap, pResampler); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pResampler->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_linear_resampler_uninit(ma_linear_resampler* pResampler, const ma_allocation_callbacks* pAllocationCallbacks) { if (pResampler == NULL) { return; } ma_lpf_uninit(&pResampler->lpf, pAllocationCallbacks); if (pResampler->_ownsHeap) { ma_free(pResampler->_pHeap, pAllocationCallbacks); } } static MA_INLINE ma_int16 ma_linear_resampler_mix_s16(ma_int16 x, ma_int16 y, ma_int32 a, const ma_int32 shift) { ma_int32 b; ma_int32 c; ma_int32 r; MA_ASSERT(a <= (1<> shift); } static void ma_linear_resampler_interpolate_frame_s16(ma_linear_resampler* pResampler, ma_int16* MA_RESTRICT pFrameOut) { ma_uint32 c; ma_uint32 a; const ma_uint32 channels = pResampler->config.channels; const ma_uint32 shift = 12; MA_ASSERT(pResampler != NULL); MA_ASSERT(pFrameOut != NULL); a = (pResampler->inTimeFrac << shift) / pResampler->config.sampleRateOut; MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { ma_int16 s = ma_linear_resampler_mix_s16(pResampler->x0.s16[c], pResampler->x1.s16[c], a, shift); pFrameOut[c] = s; } } static void ma_linear_resampler_interpolate_frame_f32(ma_linear_resampler* pResampler, float* MA_RESTRICT pFrameOut) { ma_uint32 c; float a; const ma_uint32 channels = pResampler->config.channels; MA_ASSERT(pResampler != NULL); MA_ASSERT(pFrameOut != NULL); a = (float)pResampler->inTimeFrac / pResampler->config.sampleRateOut; MA_ASSUME(channels > 0); for (c = 0; c < channels; c += 1) { float s = ma_mix_f32_fast(pResampler->x0.f32[c], pResampler->x1.f32[c], a); pFrameOut[c] = s; } } static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { const ma_int16* pFramesInS16; /* */ ma_int16* pFramesOutS16; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; MA_ASSERT(pResampler != NULL); MA_ASSERT(pFrameCountIn != NULL); MA_ASSERT(pFrameCountOut != NULL); pFramesInS16 = (const ma_int16*)pFramesIn; pFramesOutS16 = ( ma_int16*)pFramesOut; frameCountIn = *pFrameCountIn; frameCountOut = *pFrameCountOut; framesProcessedIn = 0; framesProcessedOut = 0; while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInS16 != NULL) { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel]; pResampler->x1.s16[iChannel] = pFramesInS16[iChannel]; } pFramesInS16 += pResampler->config.channels; } else { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel]; pResampler->x1.s16[iChannel] = 0; } } /* Filter. */ ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pResampler->x1.s16, pResampler->x1.s16); framesProcessedIn += 1; pResampler->inTimeInt -= 1; } if (pResampler->inTimeInt > 0) { break; /* Ran out of input data. */ } /* Getting here means the frames have been loaded and filtered and we can generate the next output frame. */ if (pFramesOutS16 != NULL) { MA_ASSERT(pResampler->inTimeInt == 0); ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16); pFramesOutS16 += pResampler->config.channels; } framesProcessedOut += 1; /* Advance time forward. */ pResampler->inTimeInt += pResampler->inAdvanceInt; pResampler->inTimeFrac += pResampler->inAdvanceFrac; if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) { pResampler->inTimeFrac -= pResampler->config.sampleRateOut; pResampler->inTimeInt += 1; } } *pFrameCountIn = framesProcessedIn; *pFrameCountOut = framesProcessedOut; return MA_SUCCESS; } static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { const ma_int16* pFramesInS16; /* */ ma_int16* pFramesOutS16; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; MA_ASSERT(pResampler != NULL); MA_ASSERT(pFrameCountIn != NULL); MA_ASSERT(pFrameCountOut != NULL); pFramesInS16 = (const ma_int16*)pFramesIn; pFramesOutS16 = ( ma_int16*)pFramesOut; frameCountIn = *pFrameCountIn; frameCountOut = *pFrameCountOut; framesProcessedIn = 0; framesProcessedOut = 0; while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. */ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInS16 != NULL) { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel]; pResampler->x1.s16[iChannel] = pFramesInS16[iChannel]; } pFramesInS16 += pResampler->config.channels; } else { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel]; pResampler->x1.s16[iChannel] = 0; } } framesProcessedIn += 1; pResampler->inTimeInt -= 1; } if (pResampler->inTimeInt > 0) { break; /* Ran out of input data. */ } /* Getting here means the frames have been loaded and we can generate the next output frame. */ if (pFramesOutS16 != NULL) { MA_ASSERT(pResampler->inTimeInt == 0); ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16); /* Filter. */ ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pFramesOutS16, pFramesOutS16); pFramesOutS16 += pResampler->config.channels; } framesProcessedOut += 1; /* Advance time forward. */ pResampler->inTimeInt += pResampler->inAdvanceInt; pResampler->inTimeFrac += pResampler->inAdvanceFrac; if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) { pResampler->inTimeFrac -= pResampler->config.sampleRateOut; pResampler->inTimeInt += 1; } } *pFrameCountIn = framesProcessedIn; *pFrameCountOut = framesProcessedOut; return MA_SUCCESS; } static ma_result ma_linear_resampler_process_pcm_frames_s16(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { MA_ASSERT(pResampler != NULL); if (pResampler->config.sampleRateIn > pResampler->config.sampleRateOut) { return ma_linear_resampler_process_pcm_frames_s16_downsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } else { return ma_linear_resampler_process_pcm_frames_s16_upsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } } static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { const float* pFramesInF32; /* */ float* pFramesOutF32; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; MA_ASSERT(pResampler != NULL); MA_ASSERT(pFrameCountIn != NULL); MA_ASSERT(pFrameCountOut != NULL); pFramesInF32 = (const float*)pFramesIn; pFramesOutF32 = ( float*)pFramesOut; frameCountIn = *pFrameCountIn; frameCountOut = *pFrameCountOut; framesProcessedIn = 0; framesProcessedOut = 0; while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInF32 != NULL) { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel]; pResampler->x1.f32[iChannel] = pFramesInF32[iChannel]; } pFramesInF32 += pResampler->config.channels; } else { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel]; pResampler->x1.f32[iChannel] = 0; } } /* Filter. */ ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pResampler->x1.f32, pResampler->x1.f32); framesProcessedIn += 1; pResampler->inTimeInt -= 1; } if (pResampler->inTimeInt > 0) { break; /* Ran out of input data. */ } /* Getting here means the frames have been loaded and filtered and we can generate the next output frame. */ if (pFramesOutF32 != NULL) { MA_ASSERT(pResampler->inTimeInt == 0); ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32); pFramesOutF32 += pResampler->config.channels; } framesProcessedOut += 1; /* Advance time forward. */ pResampler->inTimeInt += pResampler->inAdvanceInt; pResampler->inTimeFrac += pResampler->inAdvanceFrac; if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) { pResampler->inTimeFrac -= pResampler->config.sampleRateOut; pResampler->inTimeInt += 1; } } *pFrameCountIn = framesProcessedIn; *pFrameCountOut = framesProcessedOut; return MA_SUCCESS; } static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { const float* pFramesInF32; /* */ float* pFramesOutF32; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; MA_ASSERT(pResampler != NULL); MA_ASSERT(pFrameCountIn != NULL); MA_ASSERT(pFrameCountOut != NULL); pFramesInF32 = (const float*)pFramesIn; pFramesOutF32 = ( float*)pFramesOut; frameCountIn = *pFrameCountIn; frameCountOut = *pFrameCountOut; framesProcessedIn = 0; framesProcessedOut = 0; while (framesProcessedOut < frameCountOut) { /* Before interpolating we need to load the buffers. */ while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) { ma_uint32 iChannel; if (pFramesInF32 != NULL) { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel]; pResampler->x1.f32[iChannel] = pFramesInF32[iChannel]; } pFramesInF32 += pResampler->config.channels; } else { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel]; pResampler->x1.f32[iChannel] = 0; } } framesProcessedIn += 1; pResampler->inTimeInt -= 1; } if (pResampler->inTimeInt > 0) { break; /* Ran out of input data. */ } /* Getting here means the frames have been loaded and we can generate the next output frame. */ if (pFramesOutF32 != NULL) { MA_ASSERT(pResampler->inTimeInt == 0); ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32); /* Filter. */ ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pFramesOutF32, pFramesOutF32); pFramesOutF32 += pResampler->config.channels; } framesProcessedOut += 1; /* Advance time forward. */ pResampler->inTimeInt += pResampler->inAdvanceInt; pResampler->inTimeFrac += pResampler->inAdvanceFrac; if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) { pResampler->inTimeFrac -= pResampler->config.sampleRateOut; pResampler->inTimeInt += 1; } } *pFrameCountIn = framesProcessedIn; *pFrameCountOut = framesProcessedOut; return MA_SUCCESS; } static ma_result ma_linear_resampler_process_pcm_frames_f32(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { MA_ASSERT(pResampler != NULL); if (pResampler->config.sampleRateIn > pResampler->config.sampleRateOut) { return ma_linear_resampler_process_pcm_frames_f32_downsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } else { return ma_linear_resampler_process_pcm_frames_f32_upsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } } MA_API ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { if (pResampler == NULL) { return MA_INVALID_ARGS; } /* */ if (pResampler->config.format == ma_format_s16) { return ma_linear_resampler_process_pcm_frames_s16(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } else if (pResampler->config.format == ma_format_f32) { return ma_linear_resampler_process_pcm_frames_f32(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } else { /* Should never get here. Getting here means the format is not supported and you didn't check the return value of ma_linear_resampler_init(). */ MA_ASSERT(MA_FALSE); return MA_INVALID_ARGS; } } MA_API ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { return ma_linear_resampler_set_rate_internal(pResampler, NULL, NULL, sampleRateIn, sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_TRUE); } MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut) { ma_uint32 n; ma_uint32 d; if (pResampler == NULL) { return MA_INVALID_ARGS; } if (ratioInOut <= 0) { return MA_INVALID_ARGS; } d = 1000; n = (ma_uint32)(ratioInOut * d); if (n == 0) { return MA_INVALID_ARGS; /* Ratio too small. */ } MA_ASSERT(n != 0); return ma_linear_resampler_set_rate(pResampler, n, d); } MA_API ma_uint64 ma_linear_resampler_get_input_latency(const ma_linear_resampler* pResampler) { if (pResampler == NULL) { return 0; } return 1 + ma_lpf_get_latency(&pResampler->lpf); } MA_API ma_uint64 ma_linear_resampler_get_output_latency(const ma_linear_resampler* pResampler) { if (pResampler == NULL) { return 0; } return ma_linear_resampler_get_input_latency(pResampler) * pResampler->config.sampleRateOut / pResampler->config.sampleRateIn; } MA_API ma_result ma_linear_resampler_get_required_input_frame_count(const ma_linear_resampler* pResampler, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount) { ma_uint64 inputFrameCount; if (pInputFrameCount == NULL) { return MA_INVALID_ARGS; } *pInputFrameCount = 0; if (pResampler == NULL) { return MA_INVALID_ARGS; } if (outputFrameCount == 0) { return MA_SUCCESS; } /* Any whole input frames are consumed before the first output frame is generated. */ inputFrameCount = pResampler->inTimeInt; outputFrameCount -= 1; /* The rest of the output frames can be calculated in constant time. */ inputFrameCount += outputFrameCount * pResampler->inAdvanceInt; inputFrameCount += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut; *pInputFrameCount = inputFrameCount; return MA_SUCCESS; } MA_API ma_result ma_linear_resampler_get_expected_output_frame_count(const ma_linear_resampler* pResampler, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount) { ma_uint64 outputFrameCount; ma_uint64 preliminaryInputFrameCountFromFrac; ma_uint64 preliminaryInputFrameCount; if (pOutputFrameCount == NULL) { return MA_INVALID_ARGS; } *pOutputFrameCount = 0; if (pResampler == NULL) { return MA_INVALID_ARGS; } /* The first step is to get a preliminary output frame count. This will either be exactly equal to what we need, or less by 1. We need to determine how many input frames will be consumed by this value. If it's greater than our original input frame count it means we won't be able to generate an extra frame because we will have run out of input data. Otherwise we will have enough input for the generation of an extra output frame. This add-by-one logic is necessary due to how the data loading logic works when processing frames. */ outputFrameCount = (inputFrameCount * pResampler->config.sampleRateOut) / pResampler->config.sampleRateIn; /* We need to determine how many *whole* input frames will have been processed to generate our preliminary output frame count. This is used in the logic below to determine whether or not we need to add an extra output frame. */ preliminaryInputFrameCountFromFrac = (pResampler->inTimeFrac + outputFrameCount*pResampler->inAdvanceFrac) / pResampler->config.sampleRateOut; preliminaryInputFrameCount = (pResampler->inTimeInt + outputFrameCount*pResampler->inAdvanceInt ) + preliminaryInputFrameCountFromFrac; /* If the total number of *whole* input frames that would be required to generate our preliminary output frame count is greather than the amount of whole input frames we have available as input we need to *not* add an extra output frame as there won't be enough data to actually process. Otherwise we need to add the extra output frame. */ if (preliminaryInputFrameCount <= inputFrameCount) { outputFrameCount += 1; } *pOutputFrameCount = outputFrameCount; return MA_SUCCESS; } MA_API ma_result ma_linear_resampler_reset(ma_linear_resampler* pResampler) { ma_uint32 iChannel; if (pResampler == NULL) { return MA_INVALID_ARGS; } /* Timers need to be cleared back to zero. */ pResampler->inTimeInt = 1; /* Set this to one to force an input sample to always be loaded for the first output frame. */ pResampler->inTimeFrac = 0; /* Cached samples need to be cleared. */ if (pResampler->config.format == ma_format_f32) { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.f32[iChannel] = 0; pResampler->x1.f32[iChannel] = 0; } } else { for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) { pResampler->x0.s16[iChannel] = 0; pResampler->x1.s16[iChannel] = 0; } } /* The low pass filter needs to have it's cache reset. */ ma_lpf_clear_cache(&pResampler->lpf); return MA_SUCCESS; } /* Linear resampler backend vtable. */ static ma_linear_resampler_config ma_resampling_backend_get_config__linear(const ma_resampler_config* pConfig) { ma_linear_resampler_config linearConfig; linearConfig = ma_linear_resampler_config_init(pConfig->format, pConfig->channels, pConfig->sampleRateIn, pConfig->sampleRateOut); linearConfig.lpfOrder = pConfig->linear.lpfOrder; return linearConfig; } static ma_result ma_resampling_backend_get_heap_size__linear(void* pUserData, const ma_resampler_config* pConfig, size_t* pHeapSizeInBytes) { ma_linear_resampler_config linearConfig; (void)pUserData; linearConfig = ma_resampling_backend_get_config__linear(pConfig); return ma_linear_resampler_get_heap_size(&linearConfig, pHeapSizeInBytes); } static ma_result ma_resampling_backend_init__linear(void* pUserData, const ma_resampler_config* pConfig, void* pHeap, ma_resampling_backend** ppBackend) { ma_resampler* pResampler = (ma_resampler*)pUserData; ma_result result; ma_linear_resampler_config linearConfig; (void)pUserData; linearConfig = ma_resampling_backend_get_config__linear(pConfig); result = ma_linear_resampler_init_preallocated(&linearConfig, pHeap, &pResampler->state.linear); if (result != MA_SUCCESS) { return result; } *ppBackend = &pResampler->state.linear; return MA_SUCCESS; } static void ma_resampling_backend_uninit__linear(void* pUserData, ma_resampling_backend* pBackend, const ma_allocation_callbacks* pAllocationCallbacks) { (void)pUserData; ma_linear_resampler_uninit((ma_linear_resampler*)pBackend, pAllocationCallbacks); } static ma_result ma_resampling_backend_process__linear(void* pUserData, ma_resampling_backend* pBackend, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { (void)pUserData; return ma_linear_resampler_process_pcm_frames((ma_linear_resampler*)pBackend, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } static ma_result ma_resampling_backend_set_rate__linear(void* pUserData, ma_resampling_backend* pBackend, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { (void)pUserData; return ma_linear_resampler_set_rate((ma_linear_resampler*)pBackend, sampleRateIn, sampleRateOut); } static ma_uint64 ma_resampling_backend_get_input_latency__linear(void* pUserData, const ma_resampling_backend* pBackend) { (void)pUserData; return ma_linear_resampler_get_input_latency((const ma_linear_resampler*)pBackend); } static ma_uint64 ma_resampling_backend_get_output_latency__linear(void* pUserData, const ma_resampling_backend* pBackend) { (void)pUserData; return ma_linear_resampler_get_output_latency((const ma_linear_resampler*)pBackend); } static ma_result ma_resampling_backend_get_required_input_frame_count__linear(void* pUserData, const ma_resampling_backend* pBackend, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount) { (void)pUserData; return ma_linear_resampler_get_required_input_frame_count((const ma_linear_resampler*)pBackend, outputFrameCount, pInputFrameCount); } static ma_result ma_resampling_backend_get_expected_output_frame_count__linear(void* pUserData, const ma_resampling_backend* pBackend, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount) { (void)pUserData; return ma_linear_resampler_get_expected_output_frame_count((const ma_linear_resampler*)pBackend, inputFrameCount, pOutputFrameCount); } static ma_result ma_resampling_backend_reset__linear(void* pUserData, ma_resampling_backend* pBackend) { (void)pUserData; return ma_linear_resampler_reset((ma_linear_resampler*)pBackend); } static ma_resampling_backend_vtable g_ma_linear_resampler_vtable = { ma_resampling_backend_get_heap_size__linear, ma_resampling_backend_init__linear, ma_resampling_backend_uninit__linear, ma_resampling_backend_process__linear, ma_resampling_backend_set_rate__linear, ma_resampling_backend_get_input_latency__linear, ma_resampling_backend_get_output_latency__linear, ma_resampling_backend_get_required_input_frame_count__linear, ma_resampling_backend_get_expected_output_frame_count__linear, ma_resampling_backend_reset__linear }; MA_API ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm) { ma_resampler_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRateIn = sampleRateIn; config.sampleRateOut = sampleRateOut; config.algorithm = algorithm; /* Linear. */ config.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER); return config; } static ma_result ma_resampler_get_vtable(const ma_resampler_config* pConfig, ma_resampler* pResampler, ma_resampling_backend_vtable** ppVTable, void** ppUserData) { MA_ASSERT(pConfig != NULL); MA_ASSERT(ppVTable != NULL); MA_ASSERT(ppUserData != NULL); /* Safety. */ *ppVTable = NULL; *ppUserData = NULL; switch (pConfig->algorithm) { case ma_resample_algorithm_linear: { *ppVTable = &g_ma_linear_resampler_vtable; *ppUserData = pResampler; } break; case ma_resample_algorithm_custom: { *ppVTable = pConfig->pBackendVTable; *ppUserData = pConfig->pBackendUserData; } break; default: return MA_INVALID_ARGS; } return MA_SUCCESS; } MA_API ma_result ma_resampler_get_heap_size(const ma_resampler_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_resampling_backend_vtable* pVTable; void* pVTableUserData; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; if (pConfig == NULL) { return MA_INVALID_ARGS; } result = ma_resampler_get_vtable(pConfig, NULL, &pVTable, &pVTableUserData); if (result != MA_SUCCESS) { return result; } if (pVTable == NULL || pVTable->onGetHeapSize == NULL) { return MA_NOT_IMPLEMENTED; } result = pVTable->onGetHeapSize(pVTableUserData, pConfig, pHeapSizeInBytes); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_resampler_init_preallocated(const ma_resampler_config* pConfig, void* pHeap, ma_resampler* pResampler) { ma_result result; if (pResampler == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pResampler); if (pConfig == NULL) { return MA_INVALID_ARGS; } pResampler->_pHeap = pHeap; pResampler->format = pConfig->format; pResampler->channels = pConfig->channels; pResampler->sampleRateIn = pConfig->sampleRateIn; pResampler->sampleRateOut = pConfig->sampleRateOut; result = ma_resampler_get_vtable(pConfig, pResampler, &pResampler->pBackendVTable, &pResampler->pBackendUserData); if (result != MA_SUCCESS) { return result; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onInit == NULL) { return MA_NOT_IMPLEMENTED; /* onInit not implemented. */ } result = pResampler->pBackendVTable->onInit(pResampler->pBackendUserData, pConfig, pHeap, &pResampler->pBackend); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_resampler_init(const ma_resampler_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_resampler* pResampler) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_resampler_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_resampler_init_preallocated(pConfig, pHeap, pResampler); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pResampler->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_resampler_uninit(ma_resampler* pResampler, const ma_allocation_callbacks* pAllocationCallbacks) { if (pResampler == NULL) { return; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onUninit == NULL) { return; } pResampler->pBackendVTable->onUninit(pResampler->pBackendUserData, pResampler->pBackend, pAllocationCallbacks); if (pResampler->_ownsHeap) { ma_free(pResampler->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { if (pResampler == NULL) { return MA_INVALID_ARGS; } if (pFrameCountOut == NULL && pFrameCountIn == NULL) { return MA_INVALID_ARGS; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onProcess == NULL) { return MA_NOT_IMPLEMENTED; } return pResampler->pBackendVTable->onProcess(pResampler->pBackendUserData, pResampler->pBackend, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } MA_API ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { ma_result result; if (pResampler == NULL) { return MA_INVALID_ARGS; } if (sampleRateIn == 0 || sampleRateOut == 0) { return MA_INVALID_ARGS; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onSetRate == NULL) { return MA_NOT_IMPLEMENTED; } result = pResampler->pBackendVTable->onSetRate(pResampler->pBackendUserData, pResampler->pBackend, sampleRateIn, sampleRateOut); if (result != MA_SUCCESS) { return result; } pResampler->sampleRateIn = sampleRateIn; pResampler->sampleRateOut = sampleRateOut; return MA_SUCCESS; } MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio) { ma_uint32 n; ma_uint32 d; if (pResampler == NULL) { return MA_INVALID_ARGS; } if (ratio <= 0) { return MA_INVALID_ARGS; } d = 1000; n = (ma_uint32)(ratio * d); if (n == 0) { return MA_INVALID_ARGS; /* Ratio too small. */ } MA_ASSERT(n != 0); return ma_resampler_set_rate(pResampler, n, d); } MA_API ma_uint64 ma_resampler_get_input_latency(const ma_resampler* pResampler) { if (pResampler == NULL) { return 0; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onGetInputLatency == NULL) { return 0; } return pResampler->pBackendVTable->onGetInputLatency(pResampler->pBackendUserData, pResampler->pBackend); } MA_API ma_uint64 ma_resampler_get_output_latency(const ma_resampler* pResampler) { if (pResampler == NULL) { return 0; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onGetOutputLatency == NULL) { return 0; } return pResampler->pBackendVTable->onGetOutputLatency(pResampler->pBackendUserData, pResampler->pBackend); } MA_API ma_result ma_resampler_get_required_input_frame_count(const ma_resampler* pResampler, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount) { if (pInputFrameCount == NULL) { return MA_INVALID_ARGS; } *pInputFrameCount = 0; if (pResampler == NULL) { return MA_INVALID_ARGS; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onGetRequiredInputFrameCount == NULL) { return MA_NOT_IMPLEMENTED; } return pResampler->pBackendVTable->onGetRequiredInputFrameCount(pResampler->pBackendUserData, pResampler->pBackend, outputFrameCount, pInputFrameCount); } MA_API ma_result ma_resampler_get_expected_output_frame_count(const ma_resampler* pResampler, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount) { if (pOutputFrameCount == NULL) { return MA_INVALID_ARGS; } *pOutputFrameCount = 0; if (pResampler == NULL) { return MA_INVALID_ARGS; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onGetExpectedOutputFrameCount == NULL) { return MA_NOT_IMPLEMENTED; } return pResampler->pBackendVTable->onGetExpectedOutputFrameCount(pResampler->pBackendUserData, pResampler->pBackend, inputFrameCount, pOutputFrameCount); } MA_API ma_result ma_resampler_reset(ma_resampler* pResampler) { if (pResampler == NULL) { return MA_INVALID_ARGS; } if (pResampler->pBackendVTable == NULL || pResampler->pBackendVTable->onReset == NULL) { return MA_NOT_IMPLEMENTED; } return pResampler->pBackendVTable->onReset(pResampler->pBackendUserData, pResampler->pBackend); } /************************************************************************************************************************************************************** Channel Conversion **************************************************************************************************************************************************************/ #ifndef MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT #define MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT 12 #endif #define MA_PLANE_LEFT 0 #define MA_PLANE_RIGHT 1 #define MA_PLANE_FRONT 2 #define MA_PLANE_BACK 3 #define MA_PLANE_BOTTOM 4 #define MA_PLANE_TOP 5 static float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = { { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_NONE */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_MONO */ { 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT */ { 0.0f, 0.5f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT */ { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_CENTER */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_LFE */ { 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_LEFT */ { 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_RIGHT */ { 0.25f, 0.0f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT_CENTER */ { 0.0f, 0.25f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT_CENTER */ { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_CENTER */ { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_LEFT */ { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_RIGHT */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}, /* MA_CHANNEL_TOP_CENTER */ { 0.33f, 0.0f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_LEFT */ { 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_FRONT_CENTER */ { 0.0f, 0.33f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_RIGHT */ { 0.33f, 0.0f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_LEFT */ { 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_BACK_CENTER */ { 0.0f, 0.33f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_RIGHT */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_0 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_1 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_2 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_3 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_4 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_5 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_6 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_7 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_8 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_9 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_10 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_11 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_12 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_13 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_14 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_15 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_16 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_17 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_18 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_19 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_20 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_21 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_22 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_23 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_24 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_25 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_26 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_27 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_28 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_29 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_30 */ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_31 */ }; static float ma_calculate_channel_position_rectangular_weight(ma_channel channelPositionA, ma_channel channelPositionB) { /* Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to the following output configuration: - front/left - side/left - back/left The front/left output is easy - it the same speaker position so it receives the full contribution of the front/left input. The amount of contribution to apply to the side/left and back/left speakers, however, is a bit more complicated. Imagine the front/left speaker as emitting audio from two planes - the front plane and the left plane. You can think of the front/left speaker emitting half of it's total volume from the front, and the other half from the left. Since part of it's volume is being emitted from the left side, and the side/left and back/left channels also emit audio from the left plane, one would expect that they would receive some amount of contribution from front/left speaker. The amount of contribution depends on how many planes are shared between the two speakers. Note that in the examples below I've added a top/front/left speaker as an example just to show how the math works across 3 spatial dimensions. The first thing to do is figure out how each speaker's volume is spread over each of plane: - front/left: 2 planes (front and left) = 1/2 = half it's total volume on each plane - side/left: 1 plane (left only) = 1/1 = entire volume from left plane - back/left: 2 planes (back and left) = 1/2 = half it's total volume on each plane - top/front/left: 3 planes (top, front and left) = 1/3 = one third it's total volume on each plane The amount of volume each channel contributes to each of it's planes is what controls how much it is willing to given and take to other channels on the same plane. The volume that is willing to the given by one channel is multiplied by the volume that is willing to be taken by the other to produce the final contribution. */ /* Contribution = Sum(Volume to Give * Volume to Take) */ float contribution = g_maChannelPlaneRatios[channelPositionA][0] * g_maChannelPlaneRatios[channelPositionB][0] + g_maChannelPlaneRatios[channelPositionA][1] * g_maChannelPlaneRatios[channelPositionB][1] + g_maChannelPlaneRatios[channelPositionA][2] * g_maChannelPlaneRatios[channelPositionB][2] + g_maChannelPlaneRatios[channelPositionA][3] * g_maChannelPlaneRatios[channelPositionB][3] + g_maChannelPlaneRatios[channelPositionA][4] * g_maChannelPlaneRatios[channelPositionB][4] + g_maChannelPlaneRatios[channelPositionA][5] * g_maChannelPlaneRatios[channelPositionB][5]; return contribution; } MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel* pChannelMapIn, ma_uint32 channelsOut, const ma_channel* pChannelMapOut, ma_channel_mix_mode mixingMode) { ma_channel_converter_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channelsIn = channelsIn; config.channelsOut = channelsOut; config.pChannelMapIn = pChannelMapIn; config.pChannelMapOut = pChannelMapOut; config.mixingMode = mixingMode; return config; } static ma_int32 ma_channel_converter_float_to_fixed(float x) { return (ma_int32)(x * (1< 0); for (iChannel = 0; iChannel < channels; ++iChannel) { if (ma_is_spatial_channel_position(ma_channel_map_get_channel(pChannelMap, channels, iChannel))) { spatialChannelCount++; } } return spatialChannelCount; } static ma_bool32 ma_is_spatial_channel_position(ma_channel channelPosition) { int i; if (channelPosition == MA_CHANNEL_NONE || channelPosition == MA_CHANNEL_MONO || channelPosition == MA_CHANNEL_LFE) { return MA_FALSE; } if (channelPosition >= MA_CHANNEL_AUX_0 && channelPosition <= MA_CHANNEL_AUX_31) { return MA_FALSE; } for (i = 0; i < 6; ++i) { /* Each side of a cube. */ if (g_maChannelPlaneRatios[channelPosition][i] != 0) { return MA_TRUE; } } return MA_FALSE; } static ma_bool32 ma_channel_map_is_passthrough(const ma_channel* pChannelMapIn, ma_uint32 channelsIn, const ma_channel* pChannelMapOut, ma_uint32 channelsOut) { if (channelsOut == channelsIn) { return ma_channel_map_is_equal(pChannelMapOut, pChannelMapIn, channelsOut); } else { return MA_FALSE; /* Channel counts differ, so cannot be a passthrough. */ } } static ma_channel_conversion_path ma_channel_map_get_conversion_path(const ma_channel* pChannelMapIn, ma_uint32 channelsIn, const ma_channel* pChannelMapOut, ma_uint32 channelsOut, ma_channel_mix_mode mode) { if (ma_channel_map_is_passthrough(pChannelMapIn, channelsIn, pChannelMapOut, channelsOut)) { return ma_channel_conversion_path_passthrough; } if (channelsOut == 1 && (pChannelMapOut == NULL || pChannelMapOut[0] == MA_CHANNEL_MONO)) { return ma_channel_conversion_path_mono_out; } if (channelsIn == 1 && (pChannelMapIn == NULL || pChannelMapIn[0] == MA_CHANNEL_MONO)) { return ma_channel_conversion_path_mono_in; } if (mode == ma_channel_mix_mode_custom_weights) { return ma_channel_conversion_path_weights; } /* We can use a simple shuffle if both channel maps have the same channel count and all channel positions are present in both. */ if (channelsIn == channelsOut) { ma_uint32 iChannelIn; ma_bool32 areAllChannelPositionsPresent = MA_TRUE; for (iChannelIn = 0; iChannelIn < channelsIn; ++iChannelIn) { ma_bool32 isInputChannelPositionInOutput = MA_FALSE; if (ma_channel_map_contains_channel_position(channelsOut, pChannelMapOut, ma_channel_map_get_channel(pChannelMapIn, channelsIn, iChannelIn))) { isInputChannelPositionInOutput = MA_TRUE; break; } if (!isInputChannelPositionInOutput) { areAllChannelPositionsPresent = MA_FALSE; break; } } if (areAllChannelPositionsPresent) { return ma_channel_conversion_path_shuffle; } } /* Getting here means we'll need to use weights. */ return ma_channel_conversion_path_weights; } static ma_result ma_channel_map_build_shuffle_table(const ma_channel* pChannelMapIn, ma_uint32 channelCountIn, const ma_channel* pChannelMapOut, ma_uint32 channelCountOut, ma_uint8* pShuffleTable) { ma_uint32 iChannelIn; ma_uint32 iChannelOut; if (pShuffleTable == NULL || channelCountIn == 0 || channelCountOut == 0) { return MA_INVALID_ARGS; } /* When building the shuffle table we just do a 1:1 mapping based on the first occurance of a channel. If the input channel has more than one occurance of a channel position, the second one will be ignored. */ for (iChannelOut = 0; iChannelOut < channelCountOut; iChannelOut += 1) { ma_channel channelOut; /* Default to MA_CHANNEL_INDEX_NULL so that if a mapping is not found it'll be set appropriately. */ pShuffleTable[iChannelOut] = MA_CHANNEL_INDEX_NULL; channelOut = ma_channel_map_get_channel(pChannelMapOut, channelCountOut, iChannelOut); for (iChannelIn = 0; iChannelIn < channelCountIn; iChannelIn += 1) { ma_channel channelIn; channelIn = ma_channel_map_get_channel(pChannelMapIn, channelCountIn, iChannelIn); if (channelOut == channelIn) { pShuffleTable[iChannelOut] = (ma_uint8)iChannelIn; break; } /* Getting here means the channels don't exactly match, but we are going to support some relaxed matching for practicality. If, for example, there are two stereo channel maps, but one uses front left/right and the other uses side left/right, it makes logical sense to just map these. The way we'll do it is we'll check if there is a logical corresponding mapping, and if so, apply it, but we will *not* break from the loop, thereby giving the loop a chance to find an exact match later which will take priority. */ switch (channelOut) { /* Left channels. */ case MA_CHANNEL_FRONT_LEFT: case MA_CHANNEL_SIDE_LEFT: { switch (channelIn) { case MA_CHANNEL_FRONT_LEFT: case MA_CHANNEL_SIDE_LEFT: { pShuffleTable[iChannelOut] = (ma_uint8)iChannelIn; } break; } } break; /* Right channels. */ case MA_CHANNEL_FRONT_RIGHT: case MA_CHANNEL_SIDE_RIGHT: { switch (channelIn) { case MA_CHANNEL_FRONT_RIGHT: case MA_CHANNEL_SIDE_RIGHT: { pShuffleTable[iChannelOut] = (ma_uint8)iChannelIn; } break; } } break; default: break; } } } return MA_SUCCESS; } static void ma_channel_map_apply_shuffle_table_u8(ma_uint8* pFramesOut, ma_uint32 channelsOut, const ma_uint8* pFramesIn, ma_uint32 channelsIn, ma_uint64 frameCount, const ma_uint8* pShuffleTable) { ma_uint64 iFrame; ma_uint32 iChannelOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_uint8 iChannelIn = pShuffleTable[iChannelOut]; if (iChannelIn < channelsIn) { /* For safety, and to deal with MA_CHANNEL_INDEX_NULL. */ pFramesOut[iChannelOut] = pFramesIn[iChannelIn]; } else { pFramesOut[iChannelOut] = 0; } } pFramesOut += channelsOut; pFramesIn += channelsIn; } } static void ma_channel_map_apply_shuffle_table_s16(ma_int16* pFramesOut, ma_uint32 channelsOut, const ma_int16* pFramesIn, ma_uint32 channelsIn, ma_uint64 frameCount, const ma_uint8* pShuffleTable) { ma_uint64 iFrame; ma_uint32 iChannelOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_uint8 iChannelIn = pShuffleTable[iChannelOut]; if (iChannelIn < channelsIn) { /* For safety, and to deal with MA_CHANNEL_INDEX_NULL. */ pFramesOut[iChannelOut] = pFramesIn[iChannelIn]; } else { pFramesOut[iChannelOut] = 0; } } pFramesOut += channelsOut; pFramesIn += channelsIn; } } static void ma_channel_map_apply_shuffle_table_s24(ma_uint8* pFramesOut, ma_uint32 channelsOut, const ma_uint8* pFramesIn, ma_uint32 channelsIn, ma_uint64 frameCount, const ma_uint8* pShuffleTable) { ma_uint64 iFrame; ma_uint32 iChannelOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_uint8 iChannelIn = pShuffleTable[iChannelOut]; if (iChannelIn < channelsIn) { /* For safety, and to deal with MA_CHANNEL_INDEX_NULL. */ pFramesOut[iChannelOut*3 + 0] = pFramesIn[iChannelIn*3 + 0]; pFramesOut[iChannelOut*3 + 1] = pFramesIn[iChannelIn*3 + 1]; pFramesOut[iChannelOut*3 + 2] = pFramesIn[iChannelIn*3 + 2]; } else { pFramesOut[iChannelOut*3 + 0] = 0; } pFramesOut[iChannelOut*3 + 1] = 0; } pFramesOut[iChannelOut*3 + 2] = 0; pFramesOut += channelsOut*3; pFramesIn += channelsIn*3; } } static void ma_channel_map_apply_shuffle_table_s32(ma_int32* pFramesOut, ma_uint32 channelsOut, const ma_int32* pFramesIn, ma_uint32 channelsIn, ma_uint64 frameCount, const ma_uint8* pShuffleTable) { ma_uint64 iFrame; ma_uint32 iChannelOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_uint8 iChannelIn = pShuffleTable[iChannelOut]; if (iChannelIn < channelsIn) { /* For safety, and to deal with MA_CHANNEL_INDEX_NULL. */ pFramesOut[iChannelOut] = pFramesIn[iChannelIn]; } else { pFramesOut[iChannelOut] = 0; } } pFramesOut += channelsOut; pFramesIn += channelsIn; } } static void ma_channel_map_apply_shuffle_table_f32(float* pFramesOut, ma_uint32 channelsOut, const float* pFramesIn, ma_uint32 channelsIn, ma_uint64 frameCount, const ma_uint8* pShuffleTable) { ma_uint64 iFrame; ma_uint32 iChannelOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_uint8 iChannelIn = pShuffleTable[iChannelOut]; if (iChannelIn < channelsIn) { /* For safety, and to deal with MA_CHANNEL_INDEX_NULL. */ pFramesOut[iChannelOut] = pFramesIn[iChannelIn]; } else { pFramesOut[iChannelOut] = 0; } } pFramesOut += channelsOut; pFramesIn += channelsIn; } } static ma_result ma_channel_map_apply_shuffle_table(void* pFramesOut, ma_uint32 channelsOut, const void* pFramesIn, ma_uint32 channelsIn, ma_uint64 frameCount, const ma_uint8* pShuffleTable, ma_format format) { if (pFramesOut == NULL || pFramesIn == NULL || channelsOut == 0 || pShuffleTable == NULL) { return MA_INVALID_ARGS; } switch (format) { case ma_format_u8: { ma_channel_map_apply_shuffle_table_u8((ma_uint8*)pFramesOut, channelsOut, (const ma_uint8*)pFramesIn, channelsIn, frameCount, pShuffleTable); } break; case ma_format_s16: { ma_channel_map_apply_shuffle_table_s16((ma_int16*)pFramesOut, channelsOut, (const ma_int16*)pFramesIn, channelsIn, frameCount, pShuffleTable); } break; case ma_format_s24: { ma_channel_map_apply_shuffle_table_s24((ma_uint8*)pFramesOut, channelsOut, (const ma_uint8*)pFramesIn, channelsIn, frameCount, pShuffleTable); } break; case ma_format_s32: { ma_channel_map_apply_shuffle_table_s32((ma_int32*)pFramesOut, channelsOut, (const ma_int32*)pFramesIn, channelsIn, frameCount, pShuffleTable); } break; case ma_format_f32: { ma_channel_map_apply_shuffle_table_f32((float*)pFramesOut, channelsOut, (const float*)pFramesIn, channelsIn, frameCount, pShuffleTable); } break; default: return MA_INVALID_ARGS; /* Unknown format. */ } return MA_SUCCESS; } static ma_result ma_channel_map_apply_mono_out_f32(float* pFramesOut, const float* pFramesIn, const ma_channel* pChannelMapIn, ma_uint32 channelsIn, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint32 iChannelIn; ma_uint32 accumulationCount; if (pFramesOut == NULL || pFramesIn == NULL || channelsIn == 0) { return MA_INVALID_ARGS; } /* In this case the output stream needs to be the average of all channels, ignoring NONE. */ /* A quick pre-processing step to get the accumulation counter since we're ignoring NONE channels. */ accumulationCount = 0; for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) { if (ma_channel_map_get_channel(pChannelMapIn, channelsIn, iChannelIn) != MA_CHANNEL_NONE) { accumulationCount += 1; } } if (accumulationCount > 0) { /* <-- Prevent a division by zero. */ for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float accumulation = 0; for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) { ma_channel channelIn = ma_channel_map_get_channel(pChannelMapIn, channelsIn, iChannelIn); if (channelIn != MA_CHANNEL_NONE) { accumulation += pFramesIn[iChannelIn]; } } pFramesOut[0] = accumulation / accumulationCount; pFramesOut += 1; pFramesIn += channelsIn; } } else { ma_silence_pcm_frames(pFramesOut, frameCount, ma_format_f32, 1); } return MA_SUCCESS; } static ma_result ma_channel_map_apply_mono_in_f32(float* pFramesOut, const ma_channel* pChannelMapOut, ma_uint32 channelsOut, const float* pFramesIn, ma_uint64 frameCount, ma_mono_expansion_mode monoExpansionMode) { ma_uint64 iFrame; ma_uint32 iChannelOut; if (pFramesOut == NULL || channelsOut == 0 || pFramesIn == NULL) { return MA_INVALID_ARGS; } /* Note that the MA_CHANNEL_NONE channel must be ignored in all cases. */ switch (monoExpansionMode) { case ma_mono_expansion_mode_average: { float weight; ma_uint32 validChannelCount = 0; for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); if (channelOut != MA_CHANNEL_NONE) { validChannelCount += 1; } } weight = 1.0f / validChannelCount; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); if (channelOut != MA_CHANNEL_NONE) { pFramesOut[iChannelOut] = pFramesIn[0] * weight; } } pFramesOut += channelsOut; pFramesIn += 1; } } break; case ma_mono_expansion_mode_stereo_only: { if (channelsOut >= 2) { ma_uint32 iChannelLeft = (ma_uint32)-1; ma_uint32 iChannelRight = (ma_uint32)-1; /* We first need to find our stereo channels. We prefer front-left and front-right, but if they're not available, we'll also try side-left and side-right. If neither are available we'll fall through to the default case below. */ for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); if (channelOut == MA_CHANNEL_SIDE_LEFT) { iChannelLeft = iChannelOut; } if (channelOut == MA_CHANNEL_SIDE_RIGHT) { iChannelRight = iChannelOut; } } for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); if (channelOut == MA_CHANNEL_FRONT_LEFT) { iChannelLeft = iChannelOut; } if (channelOut == MA_CHANNEL_FRONT_RIGHT) { iChannelRight = iChannelOut; } } if (iChannelLeft != (ma_uint32)-1 && iChannelRight != (ma_uint32)-1) { /* We found our stereo channels so we can duplicate the signal across those channels. */ for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); if (channelOut != MA_CHANNEL_NONE) { if (iChannelOut == iChannelLeft || iChannelOut == iChannelRight) { pFramesOut[iChannelOut] = pFramesIn[0]; } else { pFramesOut[iChannelOut] = 0.0f; } } } pFramesOut += channelsOut; pFramesIn += 1; } break; /* Get out of the switch. */ } else { /* Fallthrough. Does not have left and right channels. */ goto default_handler; } } else { /* Fallthrough. Does not have stereo channels. */ goto default_handler; } }; /* Fallthrough. See comments above. */ case ma_mono_expansion_mode_duplicate: default: { default_handler: { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); if (channelOut != MA_CHANNEL_NONE) { pFramesOut[iChannelOut] = pFramesIn[0]; } } pFramesOut += channelsOut; pFramesIn += 1; } } } break; } return MA_SUCCESS; } static void ma_channel_map_apply_f32(float* pFramesOut, const ma_channel* pChannelMapOut, ma_uint32 channelsOut, const float* pFramesIn, const ma_channel* pChannelMapIn, ma_uint32 channelsIn, ma_uint64 frameCount, ma_channel_mix_mode mode, ma_mono_expansion_mode monoExpansionMode) { ma_channel_conversion_path conversionPath = ma_channel_map_get_conversion_path(pChannelMapIn, channelsIn, pChannelMapOut, channelsOut, mode); /* Optimized Path: Passthrough */ if (conversionPath == ma_channel_conversion_path_passthrough) { ma_copy_pcm_frames(pFramesOut, pFramesIn, frameCount, ma_format_f32, channelsOut); return; } /* Special Path: Mono Output. */ if (conversionPath == ma_channel_conversion_path_mono_out) { ma_channel_map_apply_mono_out_f32(pFramesOut, pFramesIn, pChannelMapIn, channelsIn, frameCount); return; } /* Special Path: Mono Input. */ if (conversionPath == ma_channel_conversion_path_mono_in) { ma_channel_map_apply_mono_in_f32(pFramesOut, pChannelMapOut, channelsOut, pFramesIn, frameCount, monoExpansionMode); return; } /* Getting here means we aren't running on an optimized conversion path. */ if (channelsOut <= MA_MAX_CHANNELS) { ma_result result; if (mode == ma_channel_mix_mode_simple) { ma_channel shuffleTable[MA_MAX_CHANNELS]; result = ma_channel_map_build_shuffle_table(pChannelMapIn, channelsIn, pChannelMapOut, channelsOut, shuffleTable); if (result != MA_SUCCESS) { return; } result = ma_channel_map_apply_shuffle_table(pFramesOut, channelsOut, pFramesIn, channelsIn, frameCount, shuffleTable, ma_format_f32); if (result != MA_SUCCESS) { return; } } else { ma_uint32 iFrame; ma_uint32 iChannelOut; ma_uint32 iChannelIn; float weights[32][32]; /* Do not use MA_MAX_CHANNELS here! */ /* If we have a small enough number of channels, pre-compute the weights. Otherwise we'll just need to fall back to a slower path because otherwise we'll run out of stack space. */ if (channelsIn <= ma_countof(weights) && channelsOut <= ma_countof(weights)) { /* Pre-compute weights. */ for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) { ma_channel channelIn = ma_channel_map_get_channel(pChannelMapIn, channelsIn, iChannelIn); weights[iChannelOut][iChannelIn] = ma_calculate_channel_position_rectangular_weight(channelOut, channelIn); } } for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { float accumulation = 0; for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) { accumulation += pFramesIn[iChannelIn] * weights[iChannelOut][iChannelIn]; } pFramesOut[iChannelOut] = accumulation; } pFramesOut += channelsOut; pFramesIn += channelsIn; } } else { /* Cannot pre-compute weights because not enough room in stack-allocated buffer. */ for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelOut = 0; iChannelOut < channelsOut; iChannelOut += 1) { float accumulation = 0; ma_channel channelOut = ma_channel_map_get_channel(pChannelMapOut, channelsOut, iChannelOut); for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) { ma_channel channelIn = ma_channel_map_get_channel(pChannelMapIn, channelsIn, iChannelIn); accumulation += pFramesIn[iChannelIn] * ma_calculate_channel_position_rectangular_weight(channelOut, channelIn); } pFramesOut[iChannelOut] = accumulation; } pFramesOut += channelsOut; pFramesIn += channelsIn; } } } } else { /* Fall back to silence. If you hit this, what are you doing with so many channels?! */ ma_silence_pcm_frames(pFramesOut, frameCount, ma_format_f32, channelsOut); } } typedef struct { size_t sizeInBytes; size_t channelMapInOffset; size_t channelMapOutOffset; size_t shuffleTableOffset; size_t weightsOffset; } ma_channel_converter_heap_layout; static ma_channel_conversion_path ma_channel_converter_config_get_conversion_path(const ma_channel_converter_config* pConfig) { return ma_channel_map_get_conversion_path(pConfig->pChannelMapIn, pConfig->channelsIn, pConfig->pChannelMapOut, pConfig->channelsOut, pConfig->mixingMode); } static ma_result ma_channel_converter_get_heap_layout(const ma_channel_converter_config* pConfig, ma_channel_converter_heap_layout* pHeapLayout) { ma_channel_conversion_path conversionPath; MA_ASSERT(pHeapLayout != NULL); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channelsIn == 0 || pConfig->channelsOut == 0) { return MA_INVALID_ARGS; } if (!ma_channel_map_is_valid(pConfig->pChannelMapIn, pConfig->channelsIn)) { return MA_INVALID_ARGS; } if (!ma_channel_map_is_valid(pConfig->pChannelMapOut, pConfig->channelsOut)) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Input channel map. Only need to allocate this if we have an input channel map (otherwise default channel map is assumed). */ pHeapLayout->channelMapInOffset = pHeapLayout->sizeInBytes; if (pConfig->pChannelMapIn != NULL) { pHeapLayout->sizeInBytes += sizeof(ma_channel) * pConfig->channelsIn; } /* Output channel map. Only need to allocate this if we have an output channel map (otherwise default channel map is assumed). */ pHeapLayout->channelMapOutOffset = pHeapLayout->sizeInBytes; if (pConfig->pChannelMapOut != NULL) { pHeapLayout->sizeInBytes += sizeof(ma_channel) * pConfig->channelsOut; } /* Alignment for the next section. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); /* Whether or not we use weights of a shuffle table depends on the channel map themselves and the algorithm we've chosen. */ conversionPath = ma_channel_converter_config_get_conversion_path(pConfig); /* Shuffle table */ pHeapLayout->shuffleTableOffset = pHeapLayout->sizeInBytes; if (conversionPath == ma_channel_conversion_path_shuffle) { pHeapLayout->sizeInBytes += sizeof(ma_uint8) * pConfig->channelsOut; } /* Weights */ pHeapLayout->weightsOffset = pHeapLayout->sizeInBytes; if (conversionPath == ma_channel_conversion_path_weights) { pHeapLayout->sizeInBytes += sizeof(float*) * pConfig->channelsIn; pHeapLayout->sizeInBytes += sizeof(float ) * pConfig->channelsIn * pConfig->channelsOut; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_channel_converter_get_heap_size(const ma_channel_converter_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_channel_converter_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_channel_converter_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_channel_converter_init_preallocated(const ma_channel_converter_config* pConfig, void* pHeap, ma_channel_converter* pConverter) { ma_result result; ma_channel_converter_heap_layout heapLayout; if (pConverter == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pConverter); result = ma_channel_converter_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pConverter->_pHeap = pHeap; MA_ZERO_MEMORY(pConverter->_pHeap, heapLayout.sizeInBytes); pConverter->format = pConfig->format; pConverter->channelsIn = pConfig->channelsIn; pConverter->channelsOut = pConfig->channelsOut; pConverter->mixingMode = pConfig->mixingMode; if (pConfig->pChannelMapIn != NULL) { pConverter->pChannelMapIn = (ma_channel*)ma_offset_ptr(pHeap, heapLayout.channelMapInOffset); ma_channel_map_copy_or_default(pConverter->pChannelMapIn, pConfig->channelsIn, pConfig->pChannelMapIn, pConfig->channelsIn); } else { pConverter->pChannelMapIn = NULL; /* Use default channel map. */ } if (pConfig->pChannelMapOut != NULL) { pConverter->pChannelMapOut = (ma_channel*)ma_offset_ptr(pHeap, heapLayout.channelMapOutOffset); ma_channel_map_copy_or_default(pConverter->pChannelMapOut, pConfig->channelsOut, pConfig->pChannelMapOut, pConfig->channelsOut); } else { pConverter->pChannelMapOut = NULL; /* Use default channel map. */ } pConverter->conversionPath = ma_channel_converter_config_get_conversion_path(pConfig); if (pConverter->conversionPath == ma_channel_conversion_path_shuffle) { pConverter->pShuffleTable = (ma_uint8*)ma_offset_ptr(pHeap, heapLayout.shuffleTableOffset); ma_channel_map_build_shuffle_table(pConverter->pChannelMapIn, pConverter->channelsIn, pConverter->pChannelMapOut, pConverter->channelsOut, pConverter->pShuffleTable); } if (pConverter->conversionPath == ma_channel_conversion_path_weights) { ma_uint32 iChannelIn; ma_uint32 iChannelOut; if (pConverter->format == ma_format_f32) { pConverter->weights.f32 = (float** )ma_offset_ptr(pHeap, heapLayout.weightsOffset); for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) { pConverter->weights.f32[iChannelIn] = (float*)ma_offset_ptr(pHeap, heapLayout.weightsOffset + ((sizeof(float*) * pConverter->channelsIn) + (sizeof(float) * pConverter->channelsOut * iChannelIn))); } } else { pConverter->weights.s16 = (ma_int32**)ma_offset_ptr(pHeap, heapLayout.weightsOffset); for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) { pConverter->weights.s16[iChannelIn] = (ma_int32*)ma_offset_ptr(pHeap, heapLayout.weightsOffset + ((sizeof(ma_int32*) * pConverter->channelsIn) + (sizeof(ma_int32) * pConverter->channelsOut * iChannelIn))); } } /* Silence our weights by default. */ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; iChannelOut += 1) { if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = 0.0f; } else { pConverter->weights.s16[iChannelIn][iChannelOut] = 0; } } } /* We now need to fill out our weights table. This is determined by the mixing mode. */ /* In all cases we need to make sure all channels that are present in both channel maps have a 1:1 mapping. */ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { ma_channel channelPosIn = ma_channel_map_get_channel(pConverter->pChannelMapIn, pConverter->channelsIn, iChannelIn); for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_channel channelPosOut = ma_channel_map_get_channel(pConverter->pChannelMapOut, pConverter->channelsOut, iChannelOut); if (channelPosIn == channelPosOut) { float weight = 1; if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = weight; } else { pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight); } } } } switch (pConverter->mixingMode) { case ma_channel_mix_mode_custom_weights: { if (pConfig->ppWeights == NULL) { return MA_INVALID_ARGS; /* Config specified a custom weights mixing mode, but no custom weights have been specified. */ } for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; iChannelOut += 1) { float weight = pConfig->ppWeights[iChannelIn][iChannelOut]; if (pConverter->format == ma_format_f32) { pConverter->weights.f32[iChannelIn][iChannelOut] = weight; } else { pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight); } } } } break; case ma_channel_mix_mode_simple: { /* In simple mode, only set weights for channels that have exactly matching types, leave the rest at zero. The 1:1 mappings have already been covered before this switch statement. */ } break; case ma_channel_mix_mode_rectangular: default: { /* Unmapped input channels. */ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { ma_channel channelPosIn = ma_channel_map_get_channel(pConverter->pChannelMapIn, pConverter->channelsIn, iChannelIn); if (ma_is_spatial_channel_position(channelPosIn)) { if (!ma_channel_map_contains_channel_position(pConverter->channelsOut, pConverter->pChannelMapOut, channelPosIn)) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_channel channelPosOut = ma_channel_map_get_channel(pConverter->pChannelMapOut, pConverter->channelsOut, iChannelOut); if (ma_is_spatial_channel_position(channelPosOut)) { float weight = 0; if (pConverter->mixingMode == ma_channel_mix_mode_rectangular) { weight = ma_calculate_channel_position_rectangular_weight(channelPosIn, channelPosOut); } /* Only apply the weight if we haven't already got some contribution from the respective channels. */ if (pConverter->format == ma_format_f32) { if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) { pConverter->weights.f32[iChannelIn][iChannelOut] = weight; } } else { if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) { pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight); } } } } } } } /* Unmapped output channels. */ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_channel channelPosOut = ma_channel_map_get_channel(pConverter->pChannelMapOut, pConverter->channelsOut, iChannelOut); if (ma_is_spatial_channel_position(channelPosOut)) { if (!ma_channel_map_contains_channel_position(pConverter->channelsIn, pConverter->pChannelMapIn, channelPosOut)) { for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { ma_channel channelPosIn = ma_channel_map_get_channel(pConverter->pChannelMapIn, pConverter->channelsIn, iChannelIn); if (ma_is_spatial_channel_position(channelPosIn)) { float weight = 0; if (pConverter->mixingMode == ma_channel_mix_mode_rectangular) { weight = ma_calculate_channel_position_rectangular_weight(channelPosIn, channelPosOut); } /* Only apply the weight if we haven't already got some contribution from the respective channels. */ if (pConverter->format == ma_format_f32) { if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) { pConverter->weights.f32[iChannelIn][iChannelOut] = weight; } } else { if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) { pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight); } } } } } } } /* If LFE is in the output channel map but was not present in the input channel map, configure its weight now */ if (pConfig->calculateLFEFromSpatialChannels) { if (!ma_channel_map_contains_channel_position(pConverter->channelsIn, pConverter->pChannelMapIn, MA_CHANNEL_LFE)) { ma_uint32 spatialChannelCount = ma_channel_map_get_spatial_channel_count(pConverter->pChannelMapIn, pConverter->channelsIn); ma_uint32 iChannelOutLFE; if (spatialChannelCount > 0 && ma_channel_map_find_channel_position(pConverter->channelsOut, pConverter->pChannelMapOut, MA_CHANNEL_LFE, &iChannelOutLFE)) { const float weightForLFE = 1.0f / spatialChannelCount; for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { const ma_channel channelPosIn = ma_channel_map_get_channel(pConverter->pChannelMapIn, pConverter->channelsIn, iChannelIn); if (ma_is_spatial_channel_position(channelPosIn)) { if (pConverter->format == ma_format_f32) { if (pConverter->weights.f32[iChannelIn][iChannelOutLFE] == 0) { pConverter->weights.f32[iChannelIn][iChannelOutLFE] = weightForLFE; } } else { if (pConverter->weights.s16[iChannelIn][iChannelOutLFE] == 0) { pConverter->weights.s16[iChannelIn][iChannelOutLFE] = ma_channel_converter_float_to_fixed(weightForLFE); } } } } } } } } break; } } return MA_SUCCESS; } MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_channel_converter* pConverter) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_channel_converter_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_channel_converter_init_preallocated(pConfig, pHeap, pConverter); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pConverter->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_channel_converter_uninit(ma_channel_converter* pConverter, const ma_allocation_callbacks* pAllocationCallbacks) { if (pConverter == NULL) { return; } if (pConverter->_ownsHeap) { ma_free(pConverter->_pHeap, pAllocationCallbacks); } } static ma_result ma_channel_converter_process_pcm_frames__passthrough(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { MA_ASSERT(pConverter != NULL); MA_ASSERT(pFramesOut != NULL); MA_ASSERT(pFramesIn != NULL); ma_copy_memory_64(pFramesOut, pFramesIn, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut)); return MA_SUCCESS; } static ma_result ma_channel_converter_process_pcm_frames__shuffle(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { MA_ASSERT(pConverter != NULL); MA_ASSERT(pFramesOut != NULL); MA_ASSERT(pFramesIn != NULL); MA_ASSERT(pConverter->channelsIn == pConverter->channelsOut); return ma_channel_map_apply_shuffle_table(pFramesOut, pConverter->channelsOut, pFramesIn, pConverter->channelsIn, frameCount, pConverter->pShuffleTable, pConverter->format); } static ma_result ma_channel_converter_process_pcm_frames__mono_in(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint64 iFrame; MA_ASSERT(pConverter != NULL); MA_ASSERT(pFramesOut != NULL); MA_ASSERT(pFramesIn != NULL); MA_ASSERT(pConverter->channelsIn == 1); switch (pConverter->format) { case ma_format_u8: { /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { pFramesOutU8[iFrame*pConverter->channelsOut + iChannel] = pFramesInU8[iFrame]; } } } break; case ma_format_s16: { /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; if (pConverter->channelsOut == 2) { for (iFrame = 0; iFrame < frameCount; ++iFrame) { pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame]; pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame]; } } else { for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame]; } } } } break; case ma_format_s24: { /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { ma_uint64 iSampleOut = iFrame*pConverter->channelsOut + iChannel; ma_uint64 iSampleIn = iFrame; pFramesOutS24[iSampleOut*3 + 0] = pFramesInS24[iSampleIn*3 + 0]; pFramesOutS24[iSampleOut*3 + 1] = pFramesInS24[iSampleIn*3 + 1]; pFramesOutS24[iSampleOut*3 + 2] = pFramesInS24[iSampleIn*3 + 2]; } } } break; case ma_format_s32: { /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { pFramesOutS32[iFrame*pConverter->channelsOut + iChannel] = pFramesInS32[iFrame]; } } } break; case ma_format_f32: { /* */ float* pFramesOutF32 = ( float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; if (pConverter->channelsOut == 2) { for (iFrame = 0; iFrame < frameCount; ++iFrame) { pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame]; pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame]; } } else { for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) { pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame]; } } } } break; default: return MA_INVALID_OPERATION; /* Unknown format. */ } return MA_SUCCESS; } static ma_result ma_channel_converter_process_pcm_frames__mono_out(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint32 iChannel; MA_ASSERT(pConverter != NULL); MA_ASSERT(pFramesOut != NULL); MA_ASSERT(pFramesIn != NULL); MA_ASSERT(pConverter->channelsOut == 1); switch (pConverter->format) { case ma_format_u8: { /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_int32 t = 0; for (iChannel = 0; iChannel < pConverter->channelsIn; iChannel += 1) { t += ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*pConverter->channelsIn + iChannel]); } pFramesOutU8[iFrame] = ma_clip_u8(t / pConverter->channelsOut); } } break; case ma_format_s16: { /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_int32 t = 0; for (iChannel = 0; iChannel < pConverter->channelsIn; iChannel += 1) { t += pFramesInS16[iFrame*pConverter->channelsIn + iChannel]; } pFramesOutS16[iFrame] = (ma_int16)(t / pConverter->channelsIn); } } break; case ma_format_s24: { /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_int64 t = 0; for (iChannel = 0; iChannel < pConverter->channelsIn; iChannel += 1) { t += ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*pConverter->channelsIn + iChannel)*3]); } ma_pcm_sample_s32_to_s24_no_scale(t / pConverter->channelsIn, &pFramesOutS24[iFrame*3]); } } break; case ma_format_s32: { /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { ma_int64 t = 0; for (iChannel = 0; iChannel < pConverter->channelsIn; iChannel += 1) { t += pFramesInS32[iFrame*pConverter->channelsIn + iChannel]; } pFramesOutS32[iFrame] = (ma_int32)(t / pConverter->channelsIn); } } break; case ma_format_f32: { /* */ float* pFramesOutF32 = ( float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; for (iFrame = 0; iFrame < frameCount; ++iFrame) { float t = 0; for (iChannel = 0; iChannel < pConverter->channelsIn; iChannel += 1) { t += pFramesInF32[iFrame*pConverter->channelsIn + iChannel]; } pFramesOutF32[iFrame] = t / pConverter->channelsIn; } } break; default: return MA_INVALID_OPERATION; /* Unknown format. */ } return MA_SUCCESS; } static ma_result ma_channel_converter_process_pcm_frames__weights(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { ma_uint32 iFrame; ma_uint32 iChannelIn; ma_uint32 iChannelOut; MA_ASSERT(pConverter != NULL); MA_ASSERT(pFramesOut != NULL); MA_ASSERT(pFramesIn != NULL); /* This is the more complicated case. Each of the output channels is accumulated with 0 or more input channels. */ /* Clear. */ ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut)); /* Accumulate. */ switch (pConverter->format) { case ma_format_u8: { /* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut; const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_int16 u8_O = ma_pcm_sample_u8_to_s16_no_scale(pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut]); ma_int16 u8_I = ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8 [iFrame*pConverter->channelsIn + iChannelIn ]); ma_int32 s = (ma_int32)ma_clamp(u8_O + ((u8_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -128, 127); pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_u8((ma_int16)s); } } } } break; case ma_format_s16: { /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut; const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut]; s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT; pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767); } } } } break; case ma_format_s24: { /* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut; const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_int64 s24_O = ma_pcm_sample_s24_to_s32_no_scale(&pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]); ma_int64 s24_I = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24 [(iFrame*pConverter->channelsIn + iChannelIn )*3]); ma_int64 s24 = (ma_int32)ma_clamp(s24_O + ((s24_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -8388608, 8388607); ma_pcm_sample_s32_to_s24_no_scale(s24, &pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]); } } } } break; case ma_format_s32: { /* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut; const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { ma_int64 s = pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut]; s += ((ma_int64)pFramesInS32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT; pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_s32(s); } } } } break; case ma_format_f32: { /* */ float* pFramesOutF32 = ( float*)pFramesOut; const float* pFramesInF32 = (const float*)pFramesIn; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) { for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) { pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut]; } } } } break; default: return MA_INVALID_OPERATION; /* Unknown format. */ } return MA_SUCCESS; } MA_API ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount) { if (pConverter == NULL) { return MA_INVALID_ARGS; } if (pFramesOut == NULL) { return MA_INVALID_ARGS; } if (pFramesIn == NULL) { ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut)); return MA_SUCCESS; } switch (pConverter->conversionPath) { case ma_channel_conversion_path_passthrough: return ma_channel_converter_process_pcm_frames__passthrough(pConverter, pFramesOut, pFramesIn, frameCount); case ma_channel_conversion_path_mono_out: return ma_channel_converter_process_pcm_frames__mono_out(pConverter, pFramesOut, pFramesIn, frameCount); case ma_channel_conversion_path_mono_in: return ma_channel_converter_process_pcm_frames__mono_in(pConverter, pFramesOut, pFramesIn, frameCount); case ma_channel_conversion_path_shuffle: return ma_channel_converter_process_pcm_frames__shuffle(pConverter, pFramesOut, pFramesIn, frameCount); case ma_channel_conversion_path_weights: default: { return ma_channel_converter_process_pcm_frames__weights(pConverter, pFramesOut, pFramesIn, frameCount); } } } MA_API ma_result ma_channel_converter_get_input_channel_map(const ma_channel_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap) { if (pConverter == NULL || pChannelMap == NULL) { return MA_INVALID_ARGS; } ma_channel_map_copy_or_default(pChannelMap, channelMapCap, pConverter->pChannelMapIn, pConverter->channelsIn); return MA_SUCCESS; } MA_API ma_result ma_channel_converter_get_output_channel_map(const ma_channel_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap) { if (pConverter == NULL || pChannelMap == NULL) { return MA_INVALID_ARGS; } ma_channel_map_copy_or_default(pChannelMap, channelMapCap, pConverter->pChannelMapOut, pConverter->channelsOut); return MA_SUCCESS; } /************************************************************************************************************************************************************** Data Conversion **************************************************************************************************************************************************************/ MA_API ma_data_converter_config ma_data_converter_config_init_default() { ma_data_converter_config config; MA_ZERO_OBJECT(&config); config.ditherMode = ma_dither_mode_none; config.resampling.algorithm = ma_resample_algorithm_linear; config.allowDynamicSampleRate = MA_FALSE; /* Disable dynamic sample rates by default because dynamic rate adjustments should be quite rare and it allows an optimization for cases when the in and out sample rates are the same. */ /* Linear resampling defaults. */ config.resampling.linear.lpfOrder = 1; return config; } MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { ma_data_converter_config config = ma_data_converter_config_init_default(); config.formatIn = formatIn; config.formatOut = formatOut; config.channelsIn = channelsIn; config.channelsOut = channelsOut; config.sampleRateIn = sampleRateIn; config.sampleRateOut = sampleRateOut; return config; } typedef struct { size_t sizeInBytes; size_t channelConverterOffset; size_t resamplerOffset; } ma_data_converter_heap_layout; static ma_bool32 ma_data_converter_config_is_resampler_required(const ma_data_converter_config* pConfig) { MA_ASSERT(pConfig != NULL); return pConfig->allowDynamicSampleRate || pConfig->sampleRateIn != pConfig->sampleRateOut; } static ma_format ma_data_converter_config_get_mid_format(const ma_data_converter_config* pConfig) { MA_ASSERT(pConfig != NULL); /* We want to avoid as much data conversion as possible. The channel converter and linear resampler both support s16 and f32 natively. We need to decide on the format to use for this stage. We call this the mid format because it's used in the middle stage of the conversion pipeline. If the output format is either s16 or f32 we use that one. If that is not the case it will do the same thing for the input format. If it's neither we just use f32. If we are using a custom resampling backend, we can only guarantee that f32 will be supported so we'll be forced to use that if resampling is required. */ if (ma_data_converter_config_is_resampler_required(pConfig) && pConfig->resampling.algorithm != ma_resample_algorithm_linear) { return ma_format_f32; /* <-- Force f32 since that is the only one we can guarantee will be supported by the resampler. */ } else { /* */ if (pConfig->formatOut == ma_format_s16 || pConfig->formatOut == ma_format_f32) { return pConfig->formatOut; } else if (pConfig->formatIn == ma_format_s16 || pConfig->formatIn == ma_format_f32) { return pConfig->formatIn; } else { return ma_format_f32; } } } static ma_channel_converter_config ma_channel_converter_config_init_from_data_converter_config(const ma_data_converter_config* pConfig) { ma_channel_converter_config channelConverterConfig; MA_ASSERT(pConfig != NULL); channelConverterConfig = ma_channel_converter_config_init(ma_data_converter_config_get_mid_format(pConfig), pConfig->channelsIn, pConfig->pChannelMapIn, pConfig->channelsOut, pConfig->pChannelMapOut, pConfig->channelMixMode); channelConverterConfig.ppWeights = pConfig->ppChannelWeights; channelConverterConfig.calculateLFEFromSpatialChannels = pConfig->calculateLFEFromSpatialChannels; return channelConverterConfig; } static ma_resampler_config ma_resampler_config_init_from_data_converter_config(const ma_data_converter_config* pConfig) { ma_resampler_config resamplerConfig; ma_uint32 resamplerChannels; MA_ASSERT(pConfig != NULL); /* The resampler is the most expensive part of the conversion process, so we need to do it at the stage where the channel count is at it's lowest. */ if (pConfig->channelsIn < pConfig->channelsOut) { resamplerChannels = pConfig->channelsIn; } else { resamplerChannels = pConfig->channelsOut; } resamplerConfig = ma_resampler_config_init(ma_data_converter_config_get_mid_format(pConfig), resamplerChannels, pConfig->sampleRateIn, pConfig->sampleRateOut, pConfig->resampling.algorithm); resamplerConfig.linear = pConfig->resampling.linear; resamplerConfig.pBackendVTable = pConfig->resampling.pBackendVTable; resamplerConfig.pBackendUserData = pConfig->resampling.pBackendUserData; return resamplerConfig; } static ma_result ma_data_converter_get_heap_layout(const ma_data_converter_config* pConfig, ma_data_converter_heap_layout* pHeapLayout) { ma_result result; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channelsIn == 0 || pConfig->channelsOut == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Channel converter. */ pHeapLayout->channelConverterOffset = pHeapLayout->sizeInBytes; { size_t heapSizeInBytes; ma_channel_converter_config channelConverterConfig = ma_channel_converter_config_init_from_data_converter_config(pConfig); result = ma_channel_converter_get_heap_size(&channelConverterConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += heapSizeInBytes; } /* Resampler. */ pHeapLayout->resamplerOffset = pHeapLayout->sizeInBytes; if (ma_data_converter_config_is_resampler_required(pConfig)) { size_t heapSizeInBytes; ma_resampler_config resamplerConfig = ma_resampler_config_init_from_data_converter_config(pConfig); result = ma_resampler_get_heap_size(&resamplerConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes += heapSizeInBytes; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_data_converter_get_heap_size(const ma_data_converter_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_data_converter_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_data_converter_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_data_converter_init_preallocated(const ma_data_converter_config* pConfig, void* pHeap, ma_data_converter* pConverter) { ma_result result; ma_data_converter_heap_layout heapLayout; ma_format midFormat; ma_bool32 isResamplingRequired; if (pConverter == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pConverter); result = ma_data_converter_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pConverter->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pConverter->formatIn = pConfig->formatIn; pConverter->formatOut = pConfig->formatOut; pConverter->channelsIn = pConfig->channelsIn; pConverter->channelsOut = pConfig->channelsOut; pConverter->sampleRateIn = pConfig->sampleRateIn; pConverter->sampleRateOut = pConfig->sampleRateOut; pConverter->ditherMode = pConfig->ditherMode; /* Determine if resampling is required. We need to do this so we can determine an appropriate mid format to use. If resampling is required, the mid format must be ma_format_f32 since that is the only one that is guaranteed to supported by custom resampling backends. */ isResamplingRequired = ma_data_converter_config_is_resampler_required(pConfig); midFormat = ma_data_converter_config_get_mid_format(pConfig); /* Channel converter. We always initialize this, but we check if it configures itself as a passthrough to determine whether or not it's needed. */ { ma_channel_converter_config channelConverterConfig = ma_channel_converter_config_init_from_data_converter_config(pConfig); result = ma_channel_converter_init_preallocated(&channelConverterConfig, ma_offset_ptr(pHeap, heapLayout.channelConverterOffset), &pConverter->channelConverter); if (result != MA_SUCCESS) { return result; } /* If the channel converter is not a passthrough we need to enable it. Otherwise we can skip it. */ if (pConverter->channelConverter.conversionPath != ma_channel_conversion_path_passthrough) { pConverter->hasChannelConverter = MA_TRUE; } } /* Resampler. */ if (isResamplingRequired) { ma_resampler_config resamplerConfig = ma_resampler_config_init_from_data_converter_config(pConfig); result = ma_resampler_init_preallocated(&resamplerConfig, ma_offset_ptr(pHeap, heapLayout.resamplerOffset), &pConverter->resampler); if (result != MA_SUCCESS) { return result; } pConverter->hasResampler = MA_TRUE; } /* We can simplify pre- and post-format conversion if we have neither channel conversion nor resampling. */ if (pConverter->hasChannelConverter == MA_FALSE && pConverter->hasResampler == MA_FALSE) { /* We have neither channel conversion nor resampling so we'll only need one of pre- or post-format conversion, or none if the input and output formats are the same. */ if (pConverter->formatIn == pConverter->formatOut) { /* The formats are the same so we can just pass through. */ pConverter->hasPreFormatConversion = MA_FALSE; pConverter->hasPostFormatConversion = MA_FALSE; } else { /* The formats are different so we need to do either pre- or post-format conversion. It doesn't matter which. */ pConverter->hasPreFormatConversion = MA_FALSE; pConverter->hasPostFormatConversion = MA_TRUE; } } else { /* We have a channel converter and/or resampler so we'll need channel conversion based on the mid format. */ if (pConverter->formatIn != midFormat) { pConverter->hasPreFormatConversion = MA_TRUE; } if (pConverter->formatOut != midFormat) { pConverter->hasPostFormatConversion = MA_TRUE; } } /* We can enable passthrough optimizations if applicable. Note that we'll only be able to do this if the sample rate is static. */ if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE && pConverter->hasChannelConverter == MA_FALSE && pConverter->hasResampler == MA_FALSE) { pConverter->isPassthrough = MA_TRUE; } /* We now need to determine our execution path. */ if (pConverter->isPassthrough) { pConverter->executionPath = ma_data_converter_execution_path_passthrough; } else { if (pConverter->channelsIn < pConverter->channelsOut) { /* Do resampling first, if necessary. */ MA_ASSERT(pConverter->hasChannelConverter == MA_TRUE); if (pConverter->hasResampler) { pConverter->executionPath = ma_data_converter_execution_path_resample_first; } else { pConverter->executionPath = ma_data_converter_execution_path_channels_only; } } else { /* Do channel conversion first, if necessary. */ if (pConverter->hasChannelConverter) { if (pConverter->hasResampler) { pConverter->executionPath = ma_data_converter_execution_path_channels_first; } else { pConverter->executionPath = ma_data_converter_execution_path_channels_only; } } else { /* Channel routing not required. */ if (pConverter->hasResampler) { pConverter->executionPath = ma_data_converter_execution_path_resample_only; } else { pConverter->executionPath = ma_data_converter_execution_path_format_only; } } } } return MA_SUCCESS; } MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_converter* pConverter) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_data_converter_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_data_converter_init_preallocated(pConfig, pHeap, pConverter); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pConverter->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_data_converter_uninit(ma_data_converter* pConverter, const ma_allocation_callbacks* pAllocationCallbacks) { if (pConverter == NULL) { return; } if (pConverter->hasResampler) { ma_resampler_uninit(&pConverter->resampler, pAllocationCallbacks); } ma_channel_converter_uninit(&pConverter->channelConverter, pAllocationCallbacks); if (pConverter->_ownsHeap) { ma_free(pConverter->_pHeap, pAllocationCallbacks); } } static ma_result ma_data_converter_process_pcm_frames__passthrough(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 frameCount; MA_ASSERT(pConverter != NULL); frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; } frameCountOut = 0; if (pFrameCountOut != NULL) { frameCountOut = *pFrameCountOut; } frameCount = ma_min(frameCountIn, frameCountOut); if (pFramesOut != NULL) { if (pFramesIn != NULL) { ma_copy_memory_64(pFramesOut, pFramesIn, frameCount * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } else { ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } } if (pFrameCountIn != NULL) { *pFrameCountIn = frameCount; } if (pFrameCountOut != NULL) { *pFrameCountOut = frameCount; } return MA_SUCCESS; } static ma_result ma_data_converter_process_pcm_frames__format_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 frameCount; MA_ASSERT(pConverter != NULL); frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; } frameCountOut = 0; if (pFrameCountOut != NULL) { frameCountOut = *pFrameCountOut; } frameCount = ma_min(frameCountIn, frameCountOut); if (pFramesOut != NULL) { if (pFramesIn != NULL) { ma_convert_pcm_frames_format(pFramesOut, pConverter->formatOut, pFramesIn, pConverter->formatIn, frameCount, pConverter->channelsIn, pConverter->ditherMode); } else { ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } } if (pFrameCountIn != NULL) { *pFrameCountIn = frameCount; } if (pFrameCountOut != NULL) { *pFrameCountOut = frameCount; } return MA_SUCCESS; } static ma_result ma_data_converter_process_pcm_frames__resample_with_format_conversion(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { ma_result result = MA_SUCCESS; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; MA_ASSERT(pConverter != NULL); frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; } frameCountOut = 0; if (pFrameCountOut != NULL) { frameCountOut = *pFrameCountOut; } framesProcessedIn = 0; framesProcessedOut = 0; while (framesProcessedOut < frameCountOut) { ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; const ma_uint32 tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->resampler.format, pConverter->resampler.channels); const void* pFramesInThisIteration; /* */ void* pFramesOutThisIteration; ma_uint64 frameCountInThisIteration; ma_uint64 frameCountOutThisIteration; if (pFramesIn != NULL) { pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->formatIn, pConverter->channelsIn)); } else { pFramesInThisIteration = NULL; } if (pFramesOut != NULL) { pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } else { pFramesOutThisIteration = NULL; } /* Do a pre format conversion if necessary. */ if (pConverter->hasPreFormatConversion) { ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; const ma_uint32 tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.format, pConverter->resampler.channels); frameCountInThisIteration = (frameCountIn - framesProcessedIn); if (frameCountInThisIteration > tempBufferInCap) { frameCountInThisIteration = tempBufferInCap; } if (pConverter->hasPostFormatConversion) { if (frameCountInThisIteration > tempBufferOutCap) { frameCountInThisIteration = tempBufferOutCap; } } if (pFramesInThisIteration != NULL) { ma_convert_pcm_frames_format(pTempBufferIn, pConverter->resampler.format, pFramesInThisIteration, pConverter->formatIn, frameCountInThisIteration, pConverter->channelsIn, pConverter->ditherMode); } else { MA_ZERO_MEMORY(pTempBufferIn, sizeof(pTempBufferIn)); } frameCountOutThisIteration = (frameCountOut - framesProcessedOut); if (pConverter->hasPostFormatConversion) { /* Both input and output conversion required. Output to the temp buffer. */ if (frameCountOutThisIteration > tempBufferOutCap) { frameCountOutThisIteration = tempBufferOutCap; } result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferIn, &frameCountInThisIteration, pTempBufferOut, &frameCountOutThisIteration); } else { /* Only pre-format required. Output straight to the output buffer. */ result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferIn, &frameCountInThisIteration, pFramesOutThisIteration, &frameCountOutThisIteration); } if (result != MA_SUCCESS) { break; } } else { /* No pre-format required. Just read straight from the input buffer. */ MA_ASSERT(pConverter->hasPostFormatConversion == MA_TRUE); frameCountInThisIteration = (frameCountIn - framesProcessedIn); frameCountOutThisIteration = (frameCountOut - framesProcessedOut); if (frameCountOutThisIteration > tempBufferOutCap) { frameCountOutThisIteration = tempBufferOutCap; } result = ma_resampler_process_pcm_frames(&pConverter->resampler, pFramesInThisIteration, &frameCountInThisIteration, pTempBufferOut, &frameCountOutThisIteration); if (result != MA_SUCCESS) { break; } } /* If we are doing a post format conversion we need to do that now. */ if (pConverter->hasPostFormatConversion) { if (pFramesOutThisIteration != NULL) { ma_convert_pcm_frames_format(pFramesOutThisIteration, pConverter->formatOut, pTempBufferOut, pConverter->resampler.format, frameCountOutThisIteration, pConverter->resampler.channels, pConverter->ditherMode); } } framesProcessedIn += frameCountInThisIteration; framesProcessedOut += frameCountOutThisIteration; MA_ASSERT(framesProcessedIn <= frameCountIn); MA_ASSERT(framesProcessedOut <= frameCountOut); if (frameCountOutThisIteration == 0) { break; /* Consumed all of our input data. */ } } if (pFrameCountIn != NULL) { *pFrameCountIn = framesProcessedIn; } if (pFrameCountOut != NULL) { *pFrameCountOut = framesProcessedOut; } return result; } static ma_result ma_data_converter_process_pcm_frames__resample_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { MA_ASSERT(pConverter != NULL); if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE) { /* Neither pre- nor post-format required. This is simple case where only resampling is required. */ return ma_resampler_process_pcm_frames(&pConverter->resampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } else { /* Format conversion required. */ return ma_data_converter_process_pcm_frames__resample_with_format_conversion(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); } } static ma_result ma_data_converter_process_pcm_frames__channels_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { ma_result result; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 frameCount; MA_ASSERT(pConverter != NULL); frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; } frameCountOut = 0; if (pFrameCountOut != NULL) { frameCountOut = *pFrameCountOut; } frameCount = ma_min(frameCountIn, frameCountOut); if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE) { /* No format conversion required. */ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pFramesOut, pFramesIn, frameCount); if (result != MA_SUCCESS) { return result; } } else { /* Format conversion required. */ ma_uint64 framesProcessed = 0; while (framesProcessed < frameCount) { ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; const ma_uint32 tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut); const void* pFramesInThisIteration; /* */ void* pFramesOutThisIteration; ma_uint64 frameCountThisIteration; if (pFramesIn != NULL) { pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessed * ma_get_bytes_per_frame(pConverter->formatIn, pConverter->channelsIn)); } else { pFramesInThisIteration = NULL; } if (pFramesOut != NULL) { pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessed * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } else { pFramesOutThisIteration = NULL; } /* Do a pre format conversion if necessary. */ if (pConverter->hasPreFormatConversion) { ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; const ma_uint32 tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsIn); frameCountThisIteration = (frameCount - framesProcessed); if (frameCountThisIteration > tempBufferInCap) { frameCountThisIteration = tempBufferInCap; } if (pConverter->hasPostFormatConversion) { if (frameCountThisIteration > tempBufferOutCap) { frameCountThisIteration = tempBufferOutCap; } } if (pFramesInThisIteration != NULL) { ma_convert_pcm_frames_format(pTempBufferIn, pConverter->channelConverter.format, pFramesInThisIteration, pConverter->formatIn, frameCountThisIteration, pConverter->channelsIn, pConverter->ditherMode); } else { MA_ZERO_MEMORY(pTempBufferIn, sizeof(pTempBufferIn)); } if (pConverter->hasPostFormatConversion) { /* Both input and output conversion required. Output to the temp buffer. */ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferOut, pTempBufferIn, frameCountThisIteration); } else { /* Only pre-format required. Output straight to the output buffer. */ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pFramesOutThisIteration, pTempBufferIn, frameCountThisIteration); } if (result != MA_SUCCESS) { break; } } else { /* No pre-format required. Just read straight from the input buffer. */ MA_ASSERT(pConverter->hasPostFormatConversion == MA_TRUE); frameCountThisIteration = (frameCount - framesProcessed); if (frameCountThisIteration > tempBufferOutCap) { frameCountThisIteration = tempBufferOutCap; } result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferOut, pFramesInThisIteration, frameCountThisIteration); if (result != MA_SUCCESS) { break; } } /* If we are doing a post format conversion we need to do that now. */ if (pConverter->hasPostFormatConversion) { if (pFramesOutThisIteration != NULL) { ma_convert_pcm_frames_format(pFramesOutThisIteration, pConverter->formatOut, pTempBufferOut, pConverter->channelConverter.format, frameCountThisIteration, pConverter->channelConverter.channelsOut, pConverter->ditherMode); } } framesProcessed += frameCountThisIteration; } } if (pFrameCountIn != NULL) { *pFrameCountIn = frameCount; } if (pFrameCountOut != NULL) { *pFrameCountOut = frameCount; } return MA_SUCCESS; } static ma_result ma_data_converter_process_pcm_frames__resample_first(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { ma_result result; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format. */ ma_uint64 tempBufferInCap; ma_uint8 pTempBufferMid[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format, channel converter input format. */ ma_uint64 tempBufferMidCap; ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In channel converter output format. */ ma_uint64 tempBufferOutCap; MA_ASSERT(pConverter != NULL); MA_ASSERT(pConverter->resampler.format == pConverter->channelConverter.format); MA_ASSERT(pConverter->resampler.channels == pConverter->channelConverter.channelsIn); MA_ASSERT(pConverter->resampler.channels < pConverter->channelConverter.channelsOut); frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; } frameCountOut = 0; if (pFrameCountOut != NULL) { frameCountOut = *pFrameCountOut; } framesProcessedIn = 0; framesProcessedOut = 0; tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.format, pConverter->resampler.channels); tempBufferMidCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.format, pConverter->resampler.channels); tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut); while (framesProcessedOut < frameCountOut) { ma_uint64 frameCountInThisIteration; ma_uint64 frameCountOutThisIteration; const void* pRunningFramesIn = NULL; void* pRunningFramesOut = NULL; const void* pResampleBufferIn; void* pChannelsBufferOut; if (pFramesIn != NULL) { pRunningFramesIn = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->formatIn, pConverter->channelsIn)); } if (pFramesOut != NULL) { pRunningFramesOut = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } /* Run input data through the resampler and output it to the temporary buffer. */ frameCountInThisIteration = (frameCountIn - framesProcessedIn); if (pConverter->hasPreFormatConversion) { if (frameCountInThisIteration > tempBufferInCap) { frameCountInThisIteration = tempBufferInCap; } } frameCountOutThisIteration = (frameCountOut - framesProcessedOut); if (frameCountOutThisIteration > tempBufferMidCap) { frameCountOutThisIteration = tempBufferMidCap; } /* We can't read more frames than can fit in the output buffer. */ if (pConverter->hasPostFormatConversion) { if (frameCountOutThisIteration > tempBufferOutCap) { frameCountOutThisIteration = tempBufferOutCap; } } /* We need to ensure we don't try to process too many input frames that we run out of room in the output buffer. If this happens we'll end up glitching. */ /* We need to try to predict how many input frames will be required for the resampler. If the resampler can tell us, we'll use that. Otherwise we'll need to make a best guess. The further off we are from this, the more wasted format conversions we'll end up doing. */ #if 1 { ma_uint64 requiredInputFrameCount; result = ma_resampler_get_required_input_frame_count(&pConverter->resampler, frameCountOutThisIteration, &requiredInputFrameCount); if (result != MA_SUCCESS) { /* Fall back to a best guess. */ requiredInputFrameCount = (frameCountOutThisIteration * pConverter->resampler.sampleRateIn) / pConverter->resampler.sampleRateOut; } if (frameCountInThisIteration > requiredInputFrameCount) { frameCountInThisIteration = requiredInputFrameCount; } } #endif if (pConverter->hasPreFormatConversion) { if (pFramesIn != NULL) { ma_convert_pcm_frames_format(pTempBufferIn, pConverter->resampler.format, pRunningFramesIn, pConverter->formatIn, frameCountInThisIteration, pConverter->channelsIn, pConverter->ditherMode); pResampleBufferIn = pTempBufferIn; } else { pResampleBufferIn = NULL; } } else { pResampleBufferIn = pRunningFramesIn; } result = ma_resampler_process_pcm_frames(&pConverter->resampler, pResampleBufferIn, &frameCountInThisIteration, pTempBufferMid, &frameCountOutThisIteration); if (result != MA_SUCCESS) { return result; } /* The input data has been resampled so now we need to run it through the channel converter. The input data is always contained in pTempBufferMid. We only need to do this part if we have an output buffer. */ if (pFramesOut != NULL) { if (pConverter->hasPostFormatConversion) { pChannelsBufferOut = pTempBufferOut; } else { pChannelsBufferOut = pRunningFramesOut; } result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pChannelsBufferOut, pTempBufferMid, frameCountOutThisIteration); if (result != MA_SUCCESS) { return result; } /* Finally we do post format conversion. */ if (pConverter->hasPostFormatConversion) { ma_convert_pcm_frames_format(pRunningFramesOut, pConverter->formatOut, pChannelsBufferOut, pConverter->channelConverter.format, frameCountOutThisIteration, pConverter->channelConverter.channelsOut, pConverter->ditherMode); } } framesProcessedIn += frameCountInThisIteration; framesProcessedOut += frameCountOutThisIteration; MA_ASSERT(framesProcessedIn <= frameCountIn); MA_ASSERT(framesProcessedOut <= frameCountOut); if (frameCountOutThisIteration == 0) { break; /* Consumed all of our input data. */ } } if (pFrameCountIn != NULL) { *pFrameCountIn = framesProcessedIn; } if (pFrameCountOut != NULL) { *pFrameCountOut = framesProcessedOut; } return MA_SUCCESS; } static ma_result ma_data_converter_process_pcm_frames__channels_first(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { ma_result result; ma_uint64 frameCountIn; ma_uint64 frameCountOut; ma_uint64 framesProcessedIn; ma_uint64 framesProcessedOut; ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format. */ ma_uint64 tempBufferInCap; ma_uint8 pTempBufferMid[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format, channel converter input format. */ ma_uint64 tempBufferMidCap; ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In channel converter output format. */ ma_uint64 tempBufferOutCap; MA_ASSERT(pConverter != NULL); MA_ASSERT(pConverter->resampler.format == pConverter->channelConverter.format); MA_ASSERT(pConverter->resampler.channels == pConverter->channelConverter.channelsOut); MA_ASSERT(pConverter->resampler.channels <= pConverter->channelConverter.channelsIn); frameCountIn = 0; if (pFrameCountIn != NULL) { frameCountIn = *pFrameCountIn; } frameCountOut = 0; if (pFrameCountOut != NULL) { frameCountOut = *pFrameCountOut; } framesProcessedIn = 0; framesProcessedOut = 0; tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsIn); tempBufferMidCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut); tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->resampler.format, pConverter->resampler.channels); while (framesProcessedOut < frameCountOut) { ma_uint64 frameCountInThisIteration; ma_uint64 frameCountOutThisIteration; const void* pRunningFramesIn = NULL; void* pRunningFramesOut = NULL; const void* pChannelsBufferIn; void* pResampleBufferOut; if (pFramesIn != NULL) { pRunningFramesIn = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->formatIn, pConverter->channelsIn)); } if (pFramesOut != NULL) { pRunningFramesOut = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->formatOut, pConverter->channelsOut)); } /* Before doing any processing we need to determine how many frames we should try processing this iteration, for both input and output. The resampler requires us to perform format and channel conversion before passing any data into it. If we get our input count wrong, we'll end up peforming redundant pre-processing. This isn't the end of the world, but it does result in some inefficiencies proportionate to how far our estimates are off. If the resampler has a means to calculate exactly how much we'll need, we'll use that. Otherwise we'll make a best guess. In order to do this, we'll need to calculate the output frame count first. */ frameCountOutThisIteration = (frameCountOut - framesProcessedOut); if (frameCountOutThisIteration > tempBufferMidCap) { frameCountOutThisIteration = tempBufferMidCap; } if (pConverter->hasPostFormatConversion) { if (frameCountOutThisIteration > tempBufferOutCap) { frameCountOutThisIteration = tempBufferOutCap; } } /* Now that we have the output frame count we can determine the input frame count. */ frameCountInThisIteration = (frameCountIn - framesProcessedIn); if (pConverter->hasPreFormatConversion) { if (frameCountInThisIteration > tempBufferInCap) { frameCountInThisIteration = tempBufferInCap; } } if (frameCountInThisIteration > tempBufferMidCap) { frameCountInThisIteration = tempBufferMidCap; } #if 1 { ma_uint64 requiredInputFrameCount; result = ma_resampler_get_required_input_frame_count(&pConverter->resampler, frameCountOutThisIteration, &requiredInputFrameCount); if (result != MA_SUCCESS) { /* Fall back to a best guess. */ requiredInputFrameCount = (frameCountOutThisIteration * pConverter->resampler.sampleRateIn) / pConverter->resampler.sampleRateOut; } if (frameCountInThisIteration > requiredInputFrameCount) { frameCountInThisIteration = requiredInputFrameCount; } } #endif /* Pre format conversion. */ if (pConverter->hasPreFormatConversion) { if (pRunningFramesIn != NULL) { ma_convert_pcm_frames_format(pTempBufferIn, pConverter->channelConverter.format, pRunningFramesIn, pConverter->formatIn, frameCountInThisIteration, pConverter->channelsIn, pConverter->ditherMode); pChannelsBufferIn = pTempBufferIn; } else { pChannelsBufferIn = NULL; } } else { pChannelsBufferIn = pRunningFramesIn; } /* Channel conversion. */ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferMid, pChannelsBufferIn, frameCountInThisIteration); if (result != MA_SUCCESS) { return result; } /* Resampling. */ if (pConverter->hasPostFormatConversion) { pResampleBufferOut = pTempBufferOut; } else { pResampleBufferOut = pRunningFramesOut; } result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferMid, &frameCountInThisIteration, pResampleBufferOut, &frameCountOutThisIteration); if (result != MA_SUCCESS) { return result; } /* Post format conversion. */ if (pConverter->hasPostFormatConversion) { if (pRunningFramesOut != NULL) { ma_convert_pcm_frames_format(pRunningFramesOut, pConverter->formatOut, pResampleBufferOut, pConverter->resampler.format, frameCountOutThisIteration, pConverter->channelsOut, pConverter->ditherMode); } } framesProcessedIn += frameCountInThisIteration; framesProcessedOut += frameCountOutThisIteration; MA_ASSERT(framesProcessedIn <= frameCountIn); MA_ASSERT(framesProcessedOut <= frameCountOut); if (frameCountOutThisIteration == 0) { break; /* Consumed all of our input data. */ } } if (pFrameCountIn != NULL) { *pFrameCountIn = framesProcessedIn; } if (pFrameCountOut != NULL) { *pFrameCountOut = framesProcessedOut; } return MA_SUCCESS; } MA_API ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut) { if (pConverter == NULL) { return MA_INVALID_ARGS; } switch (pConverter->executionPath) { case ma_data_converter_execution_path_passthrough: return ma_data_converter_process_pcm_frames__passthrough(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); case ma_data_converter_execution_path_format_only: return ma_data_converter_process_pcm_frames__format_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); case ma_data_converter_execution_path_channels_only: return ma_data_converter_process_pcm_frames__channels_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); case ma_data_converter_execution_path_resample_only: return ma_data_converter_process_pcm_frames__resample_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); case ma_data_converter_execution_path_resample_first: return ma_data_converter_process_pcm_frames__resample_first(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); case ma_data_converter_execution_path_channels_first: return ma_data_converter_process_pcm_frames__channels_first(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut); default: return MA_INVALID_OPERATION; /* Should never hit this. */ } } MA_API ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut) { if (pConverter == NULL) { return MA_INVALID_ARGS; } if (pConverter->hasResampler == MA_FALSE) { return MA_INVALID_OPERATION; /* Dynamic resampling not enabled. */ } return ma_resampler_set_rate(&pConverter->resampler, sampleRateIn, sampleRateOut); } MA_API ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut) { if (pConverter == NULL) { return MA_INVALID_ARGS; } if (pConverter->hasResampler == MA_FALSE) { return MA_INVALID_OPERATION; /* Dynamic resampling not enabled. */ } return ma_resampler_set_rate_ratio(&pConverter->resampler, ratioInOut); } MA_API ma_uint64 ma_data_converter_get_input_latency(const ma_data_converter* pConverter) { if (pConverter == NULL) { return 0; } if (pConverter->hasResampler) { return ma_resampler_get_input_latency(&pConverter->resampler); } return 0; /* No latency without a resampler. */ } MA_API ma_uint64 ma_data_converter_get_output_latency(const ma_data_converter* pConverter) { if (pConverter == NULL) { return 0; } if (pConverter->hasResampler) { return ma_resampler_get_output_latency(&pConverter->resampler); } return 0; /* No latency without a resampler. */ } MA_API ma_result ma_data_converter_get_required_input_frame_count(const ma_data_converter* pConverter, ma_uint64 outputFrameCount, ma_uint64* pInputFrameCount) { if (pInputFrameCount == NULL) { return MA_INVALID_ARGS; } *pInputFrameCount = 0; if (pConverter == NULL) { return MA_INVALID_ARGS; } if (pConverter->hasResampler) { return ma_resampler_get_required_input_frame_count(&pConverter->resampler, outputFrameCount, pInputFrameCount); } else { *pInputFrameCount = outputFrameCount; /* 1:1 */ return MA_SUCCESS; } } MA_API ma_result ma_data_converter_get_expected_output_frame_count(const ma_data_converter* pConverter, ma_uint64 inputFrameCount, ma_uint64* pOutputFrameCount) { if (pOutputFrameCount == NULL) { return MA_INVALID_ARGS; } *pOutputFrameCount = 0; if (pConverter == NULL) { return MA_INVALID_ARGS; } if (pConverter->hasResampler) { return ma_resampler_get_expected_output_frame_count(&pConverter->resampler, inputFrameCount, pOutputFrameCount); } else { *pOutputFrameCount = inputFrameCount; /* 1:1 */ return MA_SUCCESS; } } MA_API ma_result ma_data_converter_get_input_channel_map(const ma_data_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap) { if (pConverter == NULL || pChannelMap == NULL) { return MA_INVALID_ARGS; } if (pConverter->hasChannelConverter) { ma_channel_converter_get_output_channel_map(&pConverter->channelConverter, pChannelMap, channelMapCap); } else { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pConverter->channelsOut); } return MA_SUCCESS; } MA_API ma_result ma_data_converter_get_output_channel_map(const ma_data_converter* pConverter, ma_channel* pChannelMap, size_t channelMapCap) { if (pConverter == NULL || pChannelMap == NULL) { return MA_INVALID_ARGS; } if (pConverter->hasChannelConverter) { ma_channel_converter_get_input_channel_map(&pConverter->channelConverter, pChannelMap, channelMapCap); } else { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pConverter->channelsIn); } return MA_SUCCESS; } MA_API ma_result ma_data_converter_reset(ma_data_converter* pConverter) { if (pConverter == NULL) { return MA_INVALID_ARGS; } /* There's nothing to do if we're not resampling. */ if (pConverter->hasResampler == MA_FALSE) { return MA_SUCCESS; } return ma_resampler_reset(&pConverter->resampler); } /************************************************************************************************************************************************************** Channel Maps **************************************************************************************************************************************************************/ static ma_channel ma_channel_map_init_standard_channel(ma_standard_channel_map standardChannelMap, ma_uint32 channelCount, ma_uint32 channelIndex); MA_API ma_channel ma_channel_map_get_channel(const ma_channel* pChannelMap, ma_uint32 channelCount, ma_uint32 channelIndex) { if (pChannelMap == NULL) { return ma_channel_map_init_standard_channel(ma_standard_channel_map_default, channelCount, channelIndex); } else { if (channelIndex >= channelCount) { return MA_CHANNEL_NONE; } return pChannelMap[channelIndex]; } } MA_API void ma_channel_map_init_blank(ma_channel* pChannelMap, ma_uint32 channels) { if (pChannelMap == NULL) { return; } MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channels); } static ma_channel ma_channel_map_init_standard_channel_microsoft(ma_uint32 channelCount, ma_uint32 channelIndex) { if (channelCount == 0 || channelIndex >= channelCount) { return MA_CHANNEL_NONE; } /* This is the Microsoft channel map. Based off the speaker configurations mentioned here: https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-ksaudio_channel_config */ switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: /* No defined, but best guess. */ { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; } } break; case 4: { switch (channelIndex) { #ifndef MA_USE_QUAD_MICROSOFT_CHANNEL_MAP /* Surround. Using the Surround profile has the advantage of the 3rd channel (MA_CHANNEL_FRONT_CENTER) mapping nicely with higher channel counts. */ case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_BACK_CENTER; #else /* Quad. */ case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; #endif } } break; case 5: /* Not defined, but best guess. */ { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; } } break; case 6: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_LFE; case 4: return MA_CHANNEL_SIDE_LEFT; case 5: return MA_CHANNEL_SIDE_RIGHT; } } break; case 7: /* Not defined, but best guess. */ { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_LFE; case 4: return MA_CHANNEL_BACK_CENTER; case 5: return MA_CHANNEL_SIDE_LEFT; case 6: return MA_CHANNEL_SIDE_RIGHT; } } break; case 8: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_LFE; case 4: return MA_CHANNEL_BACK_LEFT; case 5: return MA_CHANNEL_BACK_RIGHT; case 6: return MA_CHANNEL_SIDE_LEFT; case 7: return MA_CHANNEL_SIDE_RIGHT; } } break; } if (channelCount > 8) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 8)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel_alsa(ma_uint32 channelCount, ma_uint32 channelIndex) { switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; } } break; case 4: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; } } break; case 5: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; case 4: return MA_CHANNEL_FRONT_CENTER; } } break; case 6: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; case 4: return MA_CHANNEL_FRONT_CENTER; case 5: return MA_CHANNEL_LFE; } } break; case 7: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; case 4: return MA_CHANNEL_FRONT_CENTER; case 5: return MA_CHANNEL_LFE; case 6: return MA_CHANNEL_BACK_CENTER; } } break; case 8: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; case 4: return MA_CHANNEL_FRONT_CENTER; case 5: return MA_CHANNEL_LFE; case 6: return MA_CHANNEL_SIDE_LEFT; case 7: return MA_CHANNEL_SIDE_RIGHT; } } break; } if (channelCount > 8) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 8)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel_rfc3551(ma_uint32 channelCount, ma_uint32 channelIndex) { switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; } } break; case 4: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 2: return MA_CHANNEL_FRONT_CENTER; case 1: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_BACK_CENTER; } } break; case 5: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; } } break; case 6: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_SIDE_LEFT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_FRONT_RIGHT; case 4: return MA_CHANNEL_SIDE_RIGHT; case 5: return MA_CHANNEL_BACK_CENTER; } } break; } if (channelCount > 6) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 6)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel_flac(ma_uint32 channelCount, ma_uint32 channelIndex) { switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; } } break; case 4: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; } } break; case 5: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; } } break; case 6: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_LFE; case 4: return MA_CHANNEL_BACK_LEFT; case 5: return MA_CHANNEL_BACK_RIGHT; } } break; case 7: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_LFE; case 4: return MA_CHANNEL_BACK_CENTER; case 5: return MA_CHANNEL_SIDE_LEFT; case 6: return MA_CHANNEL_SIDE_RIGHT; } } break; case 8: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_LFE; case 4: return MA_CHANNEL_BACK_LEFT; case 5: return MA_CHANNEL_BACK_RIGHT; case 6: return MA_CHANNEL_SIDE_LEFT; case 7: return MA_CHANNEL_SIDE_RIGHT; } } break; } if (channelCount > 8) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 8)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel_vorbis(ma_uint32 channelCount, ma_uint32 channelIndex) { switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; } } break; case 4: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; } } break; case 5: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; } } break; case 6: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; case 5: return MA_CHANNEL_LFE; } } break; case 7: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_SIDE_LEFT; case 4: return MA_CHANNEL_SIDE_RIGHT; case 5: return MA_CHANNEL_BACK_CENTER; case 6: return MA_CHANNEL_LFE; } } break; case 8: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_SIDE_LEFT; case 4: return MA_CHANNEL_SIDE_RIGHT; case 5: return MA_CHANNEL_BACK_LEFT; case 6: return MA_CHANNEL_BACK_RIGHT; case 7: return MA_CHANNEL_LFE; } } break; } if (channelCount > 8) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 8)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel_sound4(ma_uint32 channelCount, ma_uint32 channelIndex) { switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; } } break; case 4: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; } } break; case 5: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; } } break; case 6: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_BACK_LEFT; case 4: return MA_CHANNEL_BACK_RIGHT; case 5: return MA_CHANNEL_LFE; } } break; case 7: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_SIDE_LEFT; case 4: return MA_CHANNEL_SIDE_RIGHT; case 5: return MA_CHANNEL_BACK_CENTER; case 6: return MA_CHANNEL_LFE; } } break; case 8: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_CENTER; case 2: return MA_CHANNEL_FRONT_RIGHT; case 3: return MA_CHANNEL_SIDE_LEFT; case 4: return MA_CHANNEL_SIDE_RIGHT; case 5: return MA_CHANNEL_BACK_LEFT; case 6: return MA_CHANNEL_BACK_RIGHT; case 7: return MA_CHANNEL_LFE; } } break; } if (channelCount > 8) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 8)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel_sndio(ma_uint32 channelCount, ma_uint32 channelIndex) { switch (channelCount) { case 0: return MA_CHANNEL_NONE; case 1: { return MA_CHANNEL_MONO; } break; case 2: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; } } break; case 3: /* No defined, but best guess. */ { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_FRONT_CENTER; } } break; case 4: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; } } break; case 5: /* Not defined, but best guess. */ { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; case 4: return MA_CHANNEL_FRONT_CENTER; } } break; case 6: default: { switch (channelIndex) { case 0: return MA_CHANNEL_FRONT_LEFT; case 1: return MA_CHANNEL_FRONT_RIGHT; case 2: return MA_CHANNEL_BACK_LEFT; case 3: return MA_CHANNEL_BACK_RIGHT; case 4: return MA_CHANNEL_FRONT_CENTER; case 5: return MA_CHANNEL_LFE; } } break; } if (channelCount > 6) { if (channelIndex < 32) { /* We have 32 AUX channels. */ return (ma_channel)(MA_CHANNEL_AUX_0 + (channelIndex - 6)); } } /* Getting here means we don't know how to map the channel position so just return MA_CHANNEL_NONE. */ return MA_CHANNEL_NONE; } static ma_channel ma_channel_map_init_standard_channel(ma_standard_channel_map standardChannelMap, ma_uint32 channelCount, ma_uint32 channelIndex) { if (channelCount == 0 || channelIndex >= channelCount) { return MA_CHANNEL_NONE; } switch (standardChannelMap) { case ma_standard_channel_map_alsa: { return ma_channel_map_init_standard_channel_alsa(channelCount, channelIndex); } break; case ma_standard_channel_map_rfc3551: { return ma_channel_map_init_standard_channel_rfc3551(channelCount, channelIndex); } break; case ma_standard_channel_map_flac: { return ma_channel_map_init_standard_channel_flac(channelCount, channelIndex); } break; case ma_standard_channel_map_vorbis: { return ma_channel_map_init_standard_channel_vorbis(channelCount, channelIndex); } break; case ma_standard_channel_map_sound4: { return ma_channel_map_init_standard_channel_sound4(channelCount, channelIndex); } break; case ma_standard_channel_map_sndio: { return ma_channel_map_init_standard_channel_sndio(channelCount, channelIndex); } break; case ma_standard_channel_map_microsoft: /* Also default. */ /*case ma_standard_channel_map_default;*/ default: { return ma_channel_map_init_standard_channel_microsoft(channelCount, channelIndex); } break; } } MA_API void ma_channel_map_init_standard(ma_standard_channel_map standardChannelMap, ma_channel* pChannelMap, size_t channelMapCap, ma_uint32 channels) { ma_uint32 iChannel; if (pChannelMap == NULL || channelMapCap == 0 || channels == 0) { return; } for (iChannel = 0; iChannel < channels; iChannel += 1) { if (channelMapCap == 0) { break; /* Ran out of room. */ } pChannelMap[0] = ma_channel_map_init_standard_channel(standardChannelMap, channels, iChannel); pChannelMap += 1; channelMapCap -= 1; } } MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels) { if (pOut != NULL && pIn != NULL && channels > 0) { MA_COPY_MEMORY(pOut, pIn, sizeof(*pOut) * channels); } } MA_API void ma_channel_map_copy_or_default(ma_channel* pOut, size_t channelMapCapOut, const ma_channel* pIn, ma_uint32 channels) { if (pOut == NULL || channels == 0) { return; } if (pIn != NULL) { ma_channel_map_copy(pOut, pIn, channels); } else { ma_channel_map_init_standard(ma_standard_channel_map_default, pOut, channelMapCapOut, channels); } } MA_API ma_bool32 ma_channel_map_is_valid(const ma_channel* pChannelMap, ma_uint32 channels) { /* A channel count of 0 is invalid. */ if (channels == 0) { return MA_FALSE; } /* It does not make sense to have a mono channel when there is more than 1 channel. */ if (channels > 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < channels; ++iChannel) { if (ma_channel_map_get_channel(pChannelMap, channels, iChannel) == MA_CHANNEL_MONO) { return MA_FALSE; } } } return MA_TRUE; } MA_API ma_bool32 ma_channel_map_is_equal(const ma_channel* pChannelMapA, const ma_channel* pChannelMapB, ma_uint32 channels) { ma_uint32 iChannel; if (pChannelMapA == pChannelMapB) { return MA_TRUE; } for (iChannel = 0; iChannel < channels; ++iChannel) { if (ma_channel_map_get_channel(pChannelMapA, channels, iChannel) != ma_channel_map_get_channel(pChannelMapB, channels, iChannel)) { return MA_FALSE; } } return MA_TRUE; } MA_API ma_bool32 ma_channel_map_is_blank(const ma_channel* pChannelMap, ma_uint32 channels) { ma_uint32 iChannel; /* A null channel map is equivalent to the default channel map. */ if (pChannelMap == NULL) { return MA_FALSE; } for (iChannel = 0; iChannel < channels; ++iChannel) { if (pChannelMap[iChannel] != MA_CHANNEL_NONE) { return MA_FALSE; } } return MA_TRUE; } MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel* pChannelMap, ma_channel channelPosition) { return ma_channel_map_find_channel_position(channels, pChannelMap, channelPosition, NULL); } MA_API ma_bool32 ma_channel_map_find_channel_position(ma_uint32 channels, const ma_channel* pChannelMap, ma_channel channelPosition, ma_uint32* pChannelIndex) { ma_uint32 iChannel; if (pChannelIndex != NULL) { *pChannelIndex = (ma_uint32)-1; } for (iChannel = 0; iChannel < channels; ++iChannel) { if (ma_channel_map_get_channel(pChannelMap, channels, iChannel) == channelPosition) { if (pChannelIndex != NULL) { *pChannelIndex = iChannel; } return MA_TRUE; } } /* Getting here means the channel position was not found. */ return MA_FALSE; } MA_API size_t ma_channel_map_to_string(const ma_channel* pChannelMap, ma_uint32 channels, char* pBufferOut, size_t bufferCap) { size_t len; ma_uint32 iChannel; len = 0; for (iChannel = 0; iChannel < channels; iChannel += 1) { const char* pChannelStr = ma_channel_position_to_string(ma_channel_map_get_channel(pChannelMap, channels, iChannel)); size_t channelStrLen = strlen(pChannelStr); /* Append the string if necessary. */ if (pBufferOut != NULL && bufferCap > len + channelStrLen) { MA_COPY_MEMORY(pBufferOut + len, pChannelStr, channelStrLen); } len += channelStrLen; /* Append a space if it's not the last item. */ if (iChannel+1 < channels) { if (pBufferOut != NULL && bufferCap > len + 1) { pBufferOut[len] = ' '; } len += 1; } } /* Null terminate. Don't increment the length here. */ if (pBufferOut != NULL && bufferCap > len + 1) { pBufferOut[len] = '\0'; } return len; } MA_API const char* ma_channel_position_to_string(ma_channel channel) { switch (channel) { case MA_CHANNEL_NONE : return "CHANNEL_NONE"; case MA_CHANNEL_MONO : return "CHANNEL_MONO"; case MA_CHANNEL_FRONT_LEFT : return "CHANNEL_FRONT_LEFT"; case MA_CHANNEL_FRONT_RIGHT : return "CHANNEL_FRONT_RIGHT"; case MA_CHANNEL_FRONT_CENTER : return "CHANNEL_FRONT_CENTER"; case MA_CHANNEL_LFE : return "CHANNEL_LFE"; case MA_CHANNEL_BACK_LEFT : return "CHANNEL_BACK_LEFT"; case MA_CHANNEL_BACK_RIGHT : return "CHANNEL_BACK_RIGHT"; case MA_CHANNEL_FRONT_LEFT_CENTER : return "CHANNEL_FRONT_LEFT_CENTER "; case MA_CHANNEL_FRONT_RIGHT_CENTER: return "CHANNEL_FRONT_RIGHT_CENTER"; case MA_CHANNEL_BACK_CENTER : return "CHANNEL_BACK_CENTER"; case MA_CHANNEL_SIDE_LEFT : return "CHANNEL_SIDE_LEFT"; case MA_CHANNEL_SIDE_RIGHT : return "CHANNEL_SIDE_RIGHT"; case MA_CHANNEL_TOP_CENTER : return "CHANNEL_TOP_CENTER"; case MA_CHANNEL_TOP_FRONT_LEFT : return "CHANNEL_TOP_FRONT_LEFT"; case MA_CHANNEL_TOP_FRONT_CENTER : return "CHANNEL_TOP_FRONT_CENTER"; case MA_CHANNEL_TOP_FRONT_RIGHT : return "CHANNEL_TOP_FRONT_RIGHT"; case MA_CHANNEL_TOP_BACK_LEFT : return "CHANNEL_TOP_BACK_LEFT"; case MA_CHANNEL_TOP_BACK_CENTER : return "CHANNEL_TOP_BACK_CENTER"; case MA_CHANNEL_TOP_BACK_RIGHT : return "CHANNEL_TOP_BACK_RIGHT"; case MA_CHANNEL_AUX_0 : return "CHANNEL_AUX_0"; case MA_CHANNEL_AUX_1 : return "CHANNEL_AUX_1"; case MA_CHANNEL_AUX_2 : return "CHANNEL_AUX_2"; case MA_CHANNEL_AUX_3 : return "CHANNEL_AUX_3"; case MA_CHANNEL_AUX_4 : return "CHANNEL_AUX_4"; case MA_CHANNEL_AUX_5 : return "CHANNEL_AUX_5"; case MA_CHANNEL_AUX_6 : return "CHANNEL_AUX_6"; case MA_CHANNEL_AUX_7 : return "CHANNEL_AUX_7"; case MA_CHANNEL_AUX_8 : return "CHANNEL_AUX_8"; case MA_CHANNEL_AUX_9 : return "CHANNEL_AUX_9"; case MA_CHANNEL_AUX_10 : return "CHANNEL_AUX_10"; case MA_CHANNEL_AUX_11 : return "CHANNEL_AUX_11"; case MA_CHANNEL_AUX_12 : return "CHANNEL_AUX_12"; case MA_CHANNEL_AUX_13 : return "CHANNEL_AUX_13"; case MA_CHANNEL_AUX_14 : return "CHANNEL_AUX_14"; case MA_CHANNEL_AUX_15 : return "CHANNEL_AUX_15"; case MA_CHANNEL_AUX_16 : return "CHANNEL_AUX_16"; case MA_CHANNEL_AUX_17 : return "CHANNEL_AUX_17"; case MA_CHANNEL_AUX_18 : return "CHANNEL_AUX_18"; case MA_CHANNEL_AUX_19 : return "CHANNEL_AUX_19"; case MA_CHANNEL_AUX_20 : return "CHANNEL_AUX_20"; case MA_CHANNEL_AUX_21 : return "CHANNEL_AUX_21"; case MA_CHANNEL_AUX_22 : return "CHANNEL_AUX_22"; case MA_CHANNEL_AUX_23 : return "CHANNEL_AUX_23"; case MA_CHANNEL_AUX_24 : return "CHANNEL_AUX_24"; case MA_CHANNEL_AUX_25 : return "CHANNEL_AUX_25"; case MA_CHANNEL_AUX_26 : return "CHANNEL_AUX_26"; case MA_CHANNEL_AUX_27 : return "CHANNEL_AUX_27"; case MA_CHANNEL_AUX_28 : return "CHANNEL_AUX_28"; case MA_CHANNEL_AUX_29 : return "CHANNEL_AUX_29"; case MA_CHANNEL_AUX_30 : return "CHANNEL_AUX_30"; case MA_CHANNEL_AUX_31 : return "CHANNEL_AUX_31"; default: break; } return "UNKNOWN"; } /************************************************************************************************************************************************************** Conversion Helpers **************************************************************************************************************************************************************/ MA_API ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn) { ma_data_converter_config config; config = ma_data_converter_config_init(formatIn, formatOut, channelsIn, channelsOut, sampleRateIn, sampleRateOut); config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER); return ma_convert_frames_ex(pOut, frameCountOut, pIn, frameCountIn, &config); } MA_API ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig) { ma_result result; ma_data_converter converter; if (frameCountIn == 0 || pConfig == NULL) { return 0; } result = ma_data_converter_init(pConfig, NULL, &converter); if (result != MA_SUCCESS) { return 0; /* Failed to initialize the data converter. */ } if (pOut == NULL) { result = ma_data_converter_get_expected_output_frame_count(&converter, frameCountIn, &frameCountOut); if (result != MA_SUCCESS) { if (result == MA_NOT_IMPLEMENTED) { /* No way to calculate the number of frames, so we'll need to brute force it and loop. */ frameCountOut = 0; while (frameCountIn > 0) { ma_uint64 framesProcessedIn = frameCountIn; ma_uint64 framesProcessedOut = 0xFFFFFFFF; result = ma_data_converter_process_pcm_frames(&converter, pIn, &framesProcessedIn, NULL, &framesProcessedOut); if (result != MA_SUCCESS) { break; } frameCountIn -= framesProcessedIn; } } } } else { result = ma_data_converter_process_pcm_frames(&converter, pIn, &frameCountIn, pOut, &frameCountOut); if (result != MA_SUCCESS) { frameCountOut = 0; } } ma_data_converter_uninit(&converter, NULL); return frameCountOut; } /************************************************************************************************************************************************************** Ring Buffer **************************************************************************************************************************************************************/ static MA_INLINE ma_uint32 ma_rb__extract_offset_in_bytes(ma_uint32 encodedOffset) { return encodedOffset & 0x7FFFFFFF; } static MA_INLINE ma_uint32 ma_rb__extract_offset_loop_flag(ma_uint32 encodedOffset) { return encodedOffset & 0x80000000; } static MA_INLINE void* ma_rb__get_read_ptr(ma_rb* pRB) { MA_ASSERT(pRB != NULL); return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(c89atomic_load_32(&pRB->encodedReadOffset))); } static MA_INLINE void* ma_rb__get_write_ptr(ma_rb* pRB) { MA_ASSERT(pRB != NULL); return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(c89atomic_load_32(&pRB->encodedWriteOffset))); } static MA_INLINE ma_uint32 ma_rb__construct_offset(ma_uint32 offsetInBytes, ma_uint32 offsetLoopFlag) { return offsetLoopFlag | offsetInBytes; } static MA_INLINE void ma_rb__deconstruct_offset(ma_uint32 encodedOffset, ma_uint32* pOffsetInBytes, ma_uint32* pOffsetLoopFlag) { MA_ASSERT(pOffsetInBytes != NULL); MA_ASSERT(pOffsetLoopFlag != NULL); *pOffsetInBytes = ma_rb__extract_offset_in_bytes(encodedOffset); *pOffsetLoopFlag = ma_rb__extract_offset_loop_flag(encodedOffset); } MA_API ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB) { ma_result result; const ma_uint32 maxSubBufferSize = 0x7FFFFFFF - (MA_SIMD_ALIGNMENT-1); if (pRB == NULL) { return MA_INVALID_ARGS; } if (subbufferSizeInBytes == 0 || subbufferCount == 0) { return MA_INVALID_ARGS; } if (subbufferSizeInBytes > maxSubBufferSize) { return MA_INVALID_ARGS; /* Maximum buffer size is ~2GB. The most significant bit is a flag for use internally. */ } MA_ZERO_OBJECT(pRB); result = ma_allocation_callbacks_init_copy(&pRB->allocationCallbacks, pAllocationCallbacks); if (result != MA_SUCCESS) { return result; } pRB->subbufferSizeInBytes = (ma_uint32)subbufferSizeInBytes; pRB->subbufferCount = (ma_uint32)subbufferCount; if (pOptionalPreallocatedBuffer != NULL) { pRB->subbufferStrideInBytes = (ma_uint32)subbufferStrideInBytes; pRB->pBuffer = pOptionalPreallocatedBuffer; } else { size_t bufferSizeInBytes; /* Here is where we allocate our own buffer. We always want to align this to MA_SIMD_ALIGNMENT for future SIMD optimization opportunity. To do this we need to make sure the stride is a multiple of MA_SIMD_ALIGNMENT. */ pRB->subbufferStrideInBytes = (pRB->subbufferSizeInBytes + (MA_SIMD_ALIGNMENT-1)) & ~MA_SIMD_ALIGNMENT; bufferSizeInBytes = (size_t)pRB->subbufferCount*pRB->subbufferStrideInBytes; pRB->pBuffer = ma_aligned_malloc(bufferSizeInBytes, MA_SIMD_ALIGNMENT, &pRB->allocationCallbacks); if (pRB->pBuffer == NULL) { return MA_OUT_OF_MEMORY; } MA_ZERO_MEMORY(pRB->pBuffer, bufferSizeInBytes); pRB->ownsBuffer = MA_TRUE; } return MA_SUCCESS; } MA_API ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB) { return ma_rb_init_ex(bufferSizeInBytes, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB); } MA_API void ma_rb_uninit(ma_rb* pRB) { if (pRB == NULL) { return; } if (pRB->ownsBuffer) { ma_aligned_free(pRB->pBuffer, &pRB->allocationCallbacks); } } MA_API void ma_rb_reset(ma_rb* pRB) { if (pRB == NULL) { return; } c89atomic_exchange_32(&pRB->encodedReadOffset, 0); c89atomic_exchange_32(&pRB->encodedWriteOffset, 0); } MA_API ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut) { ma_uint32 writeOffset; ma_uint32 writeOffsetInBytes; ma_uint32 writeOffsetLoopFlag; ma_uint32 readOffset; ma_uint32 readOffsetInBytes; ma_uint32 readOffsetLoopFlag; size_t bytesAvailable; size_t bytesRequested; if (pRB == NULL || pSizeInBytes == NULL || ppBufferOut == NULL) { return MA_INVALID_ARGS; } /* The returned buffer should never move ahead of the write pointer. */ writeOffset = c89atomic_load_32(&pRB->encodedWriteOffset); ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); readOffset = c89atomic_load_32(&pRB->encodedReadOffset); ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag); /* The number of bytes available depends on whether or not the read and write pointers are on the same loop iteration. If so, we can only read up to the write pointer. If not, we can only read up to the end of the buffer. */ if (readOffsetLoopFlag == writeOffsetLoopFlag) { bytesAvailable = writeOffsetInBytes - readOffsetInBytes; } else { bytesAvailable = pRB->subbufferSizeInBytes - readOffsetInBytes; } bytesRequested = *pSizeInBytes; if (bytesRequested > bytesAvailable) { bytesRequested = bytesAvailable; } *pSizeInBytes = bytesRequested; (*ppBufferOut) = ma_rb__get_read_ptr(pRB); return MA_SUCCESS; } MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes) { ma_uint32 readOffset; ma_uint32 readOffsetInBytes; ma_uint32 readOffsetLoopFlag; ma_uint32 newReadOffsetInBytes; ma_uint32 newReadOffsetLoopFlag; if (pRB == NULL) { return MA_INVALID_ARGS; } readOffset = c89atomic_load_32(&pRB->encodedReadOffset); ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag); /* Check that sizeInBytes is correct. It should never go beyond the end of the buffer. */ newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + sizeInBytes); if (newReadOffsetInBytes > pRB->subbufferSizeInBytes) { return MA_INVALID_ARGS; /* <-- sizeInBytes will cause the read offset to overflow. */ } /* Move the read pointer back to the start if necessary. */ newReadOffsetLoopFlag = readOffsetLoopFlag; if (newReadOffsetInBytes == pRB->subbufferSizeInBytes) { newReadOffsetInBytes = 0; newReadOffsetLoopFlag ^= 0x80000000; } c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetLoopFlag, newReadOffsetInBytes)); if (ma_rb_pointer_distance(pRB) == 0) { return MA_AT_END; } else { return MA_SUCCESS; } } MA_API ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut) { ma_uint32 readOffset; ma_uint32 readOffsetInBytes; ma_uint32 readOffsetLoopFlag; ma_uint32 writeOffset; ma_uint32 writeOffsetInBytes; ma_uint32 writeOffsetLoopFlag; size_t bytesAvailable; size_t bytesRequested; if (pRB == NULL || pSizeInBytes == NULL || ppBufferOut == NULL) { return MA_INVALID_ARGS; } /* The returned buffer should never overtake the read buffer. */ readOffset = c89atomic_load_32(&pRB->encodedReadOffset); ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag); writeOffset = c89atomic_load_32(&pRB->encodedWriteOffset); ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); /* In the case of writing, if the write pointer and the read pointer are on the same loop iteration we can only write up to the end of the buffer. Otherwise we can only write up to the read pointer. The write pointer should never overtake the read pointer. */ if (writeOffsetLoopFlag == readOffsetLoopFlag) { bytesAvailable = pRB->subbufferSizeInBytes - writeOffsetInBytes; } else { bytesAvailable = readOffsetInBytes - writeOffsetInBytes; } bytesRequested = *pSizeInBytes; if (bytesRequested > bytesAvailable) { bytesRequested = bytesAvailable; } *pSizeInBytes = bytesRequested; *ppBufferOut = ma_rb__get_write_ptr(pRB); /* Clear the buffer if desired. */ if (pRB->clearOnWriteAcquire) { MA_ZERO_MEMORY(*ppBufferOut, *pSizeInBytes); } return MA_SUCCESS; } MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes) { ma_uint32 writeOffset; ma_uint32 writeOffsetInBytes; ma_uint32 writeOffsetLoopFlag; ma_uint32 newWriteOffsetInBytes; ma_uint32 newWriteOffsetLoopFlag; if (pRB == NULL) { return MA_INVALID_ARGS; } writeOffset = c89atomic_load_32(&pRB->encodedWriteOffset); ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); /* Check that sizeInBytes is correct. It should never go beyond the end of the buffer. */ newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + sizeInBytes); if (newWriteOffsetInBytes > pRB->subbufferSizeInBytes) { return MA_INVALID_ARGS; /* <-- sizeInBytes will cause the read offset to overflow. */ } /* Move the read pointer back to the start if necessary. */ newWriteOffsetLoopFlag = writeOffsetLoopFlag; if (newWriteOffsetInBytes == pRB->subbufferSizeInBytes) { newWriteOffsetInBytes = 0; newWriteOffsetLoopFlag ^= 0x80000000; } c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetLoopFlag, newWriteOffsetInBytes)); if (ma_rb_pointer_distance(pRB) == 0) { return MA_AT_END; } else { return MA_SUCCESS; } } MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes) { ma_uint32 readOffset; ma_uint32 readOffsetInBytes; ma_uint32 readOffsetLoopFlag; ma_uint32 writeOffset; ma_uint32 writeOffsetInBytes; ma_uint32 writeOffsetLoopFlag; ma_uint32 newReadOffsetInBytes; ma_uint32 newReadOffsetLoopFlag; if (pRB == NULL || offsetInBytes > pRB->subbufferSizeInBytes) { return MA_INVALID_ARGS; } readOffset = c89atomic_load_32(&pRB->encodedReadOffset); ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag); writeOffset = c89atomic_load_32(&pRB->encodedWriteOffset); ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); newReadOffsetLoopFlag = readOffsetLoopFlag; /* We cannot go past the write buffer. */ if (readOffsetLoopFlag == writeOffsetLoopFlag) { if ((readOffsetInBytes + offsetInBytes) > writeOffsetInBytes) { newReadOffsetInBytes = writeOffsetInBytes; } else { newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + offsetInBytes); } } else { /* May end up looping. */ if ((readOffsetInBytes + offsetInBytes) >= pRB->subbufferSizeInBytes) { newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + offsetInBytes) - pRB->subbufferSizeInBytes; newReadOffsetLoopFlag ^= 0x80000000; /* <-- Looped. */ } else { newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + offsetInBytes); } } c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetInBytes, newReadOffsetLoopFlag)); return MA_SUCCESS; } MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes) { ma_uint32 readOffset; ma_uint32 readOffsetInBytes; ma_uint32 readOffsetLoopFlag; ma_uint32 writeOffset; ma_uint32 writeOffsetInBytes; ma_uint32 writeOffsetLoopFlag; ma_uint32 newWriteOffsetInBytes; ma_uint32 newWriteOffsetLoopFlag; if (pRB == NULL) { return MA_INVALID_ARGS; } readOffset = c89atomic_load_32(&pRB->encodedReadOffset); ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag); writeOffset = c89atomic_load_32(&pRB->encodedWriteOffset); ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); newWriteOffsetLoopFlag = writeOffsetLoopFlag; /* We cannot go past the write buffer. */ if (readOffsetLoopFlag == writeOffsetLoopFlag) { /* May end up looping. */ if ((writeOffsetInBytes + offsetInBytes) >= pRB->subbufferSizeInBytes) { newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + offsetInBytes) - pRB->subbufferSizeInBytes; newWriteOffsetLoopFlag ^= 0x80000000; /* <-- Looped. */ } else { newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + offsetInBytes); } } else { if ((writeOffsetInBytes + offsetInBytes) > readOffsetInBytes) { newWriteOffsetInBytes = readOffsetInBytes; } else { newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + offsetInBytes); } } c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetInBytes, newWriteOffsetLoopFlag)); return MA_SUCCESS; } MA_API ma_int32 ma_rb_pointer_distance(ma_rb* pRB) { ma_uint32 readOffset; ma_uint32 readOffsetInBytes; ma_uint32 readOffsetLoopFlag; ma_uint32 writeOffset; ma_uint32 writeOffsetInBytes; ma_uint32 writeOffsetLoopFlag; if (pRB == NULL) { return 0; } readOffset = c89atomic_load_32(&pRB->encodedReadOffset); ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag); writeOffset = c89atomic_load_32(&pRB->encodedWriteOffset); ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag); if (readOffsetLoopFlag == writeOffsetLoopFlag) { return writeOffsetInBytes - readOffsetInBytes; } else { return writeOffsetInBytes + (pRB->subbufferSizeInBytes - readOffsetInBytes); } } MA_API ma_uint32 ma_rb_available_read(ma_rb* pRB) { ma_int32 dist; if (pRB == NULL) { return 0; } dist = ma_rb_pointer_distance(pRB); if (dist < 0) { return 0; } return dist; } MA_API ma_uint32 ma_rb_available_write(ma_rb* pRB) { if (pRB == NULL) { return 0; } return (ma_uint32)(ma_rb_get_subbuffer_size(pRB) - ma_rb_pointer_distance(pRB)); } MA_API size_t ma_rb_get_subbuffer_size(ma_rb* pRB) { if (pRB == NULL) { return 0; } return pRB->subbufferSizeInBytes; } MA_API size_t ma_rb_get_subbuffer_stride(ma_rb* pRB) { if (pRB == NULL) { return 0; } if (pRB->subbufferStrideInBytes == 0) { return (size_t)pRB->subbufferSizeInBytes; } return (size_t)pRB->subbufferStrideInBytes; } MA_API size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex) { if (pRB == NULL) { return 0; } return subbufferIndex * ma_rb_get_subbuffer_stride(pRB); } MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer) { if (pRB == NULL) { return NULL; } return ma_offset_ptr(pBuffer, ma_rb_get_subbuffer_offset(pRB, subbufferIndex)); } static MA_INLINE ma_uint32 ma_pcm_rb_get_bpf(ma_pcm_rb* pRB) { MA_ASSERT(pRB != NULL); return ma_get_bytes_per_frame(pRB->format, pRB->channels); } MA_API ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB) { ma_uint32 bpf; ma_result result; if (pRB == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pRB); bpf = ma_get_bytes_per_frame(format, channels); if (bpf == 0) { return MA_INVALID_ARGS; } result = ma_rb_init_ex(subbufferSizeInFrames*bpf, subbufferCount, subbufferStrideInFrames*bpf, pOptionalPreallocatedBuffer, pAllocationCallbacks, &pRB->rb); if (result != MA_SUCCESS) { return result; } pRB->format = format; pRB->channels = channels; return MA_SUCCESS; } MA_API ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB) { return ma_pcm_rb_init_ex(format, channels, bufferSizeInFrames, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB); } MA_API void ma_pcm_rb_uninit(ma_pcm_rb* pRB) { if (pRB == NULL) { return; } ma_rb_uninit(&pRB->rb); } MA_API void ma_pcm_rb_reset(ma_pcm_rb* pRB) { if (pRB == NULL) { return; } ma_rb_reset(&pRB->rb); } MA_API ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut) { size_t sizeInBytes; ma_result result; if (pRB == NULL || pSizeInFrames == NULL) { return MA_INVALID_ARGS; } sizeInBytes = *pSizeInFrames * ma_pcm_rb_get_bpf(pRB); result = ma_rb_acquire_read(&pRB->rb, &sizeInBytes, ppBufferOut); if (result != MA_SUCCESS) { return result; } *pSizeInFrames = (ma_uint32)(sizeInBytes / (size_t)ma_pcm_rb_get_bpf(pRB)); return MA_SUCCESS; } MA_API ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames) { if (pRB == NULL) { return MA_INVALID_ARGS; } return ma_rb_commit_read(&pRB->rb, sizeInFrames * ma_pcm_rb_get_bpf(pRB)); } MA_API ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut) { size_t sizeInBytes; ma_result result; if (pRB == NULL) { return MA_INVALID_ARGS; } sizeInBytes = *pSizeInFrames * ma_pcm_rb_get_bpf(pRB); result = ma_rb_acquire_write(&pRB->rb, &sizeInBytes, ppBufferOut); if (result != MA_SUCCESS) { return result; } *pSizeInFrames = (ma_uint32)(sizeInBytes / ma_pcm_rb_get_bpf(pRB)); return MA_SUCCESS; } MA_API ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames) { if (pRB == NULL) { return MA_INVALID_ARGS; } return ma_rb_commit_write(&pRB->rb, sizeInFrames * ma_pcm_rb_get_bpf(pRB)); } MA_API ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames) { if (pRB == NULL) { return MA_INVALID_ARGS; } return ma_rb_seek_read(&pRB->rb, offsetInFrames * ma_pcm_rb_get_bpf(pRB)); } MA_API ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames) { if (pRB == NULL) { return MA_INVALID_ARGS; } return ma_rb_seek_write(&pRB->rb, offsetInFrames * ma_pcm_rb_get_bpf(pRB)); } MA_API ma_int32 ma_pcm_rb_pointer_distance(ma_pcm_rb* pRB) { if (pRB == NULL) { return 0; } return ma_rb_pointer_distance(&pRB->rb) / ma_pcm_rb_get_bpf(pRB); } MA_API ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB) { if (pRB == NULL) { return 0; } return ma_rb_available_read(&pRB->rb) / ma_pcm_rb_get_bpf(pRB); } MA_API ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB) { if (pRB == NULL) { return 0; } return ma_rb_available_write(&pRB->rb) / ma_pcm_rb_get_bpf(pRB); } MA_API ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB) { if (pRB == NULL) { return 0; } return (ma_uint32)(ma_rb_get_subbuffer_size(&pRB->rb) / ma_pcm_rb_get_bpf(pRB)); } MA_API ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB) { if (pRB == NULL) { return 0; } return (ma_uint32)(ma_rb_get_subbuffer_stride(&pRB->rb) / ma_pcm_rb_get_bpf(pRB)); } MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex) { if (pRB == NULL) { return 0; } return (ma_uint32)(ma_rb_get_subbuffer_offset(&pRB->rb, subbufferIndex) / ma_pcm_rb_get_bpf(pRB)); } MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer) { if (pRB == NULL) { return NULL; } return ma_rb_get_subbuffer_ptr(&pRB->rb, subbufferIndex, pBuffer); } MA_API ma_result ma_duplex_rb_init(ma_format captureFormat, ma_uint32 captureChannels, ma_uint32 sampleRate, ma_uint32 captureInternalSampleRate, ma_uint32 captureInternalPeriodSizeInFrames, const ma_allocation_callbacks* pAllocationCallbacks, ma_duplex_rb* pRB) { ma_result result; ma_uint32 sizeInFrames; sizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(sampleRate, captureInternalSampleRate, captureInternalPeriodSizeInFrames * 5); if (sizeInFrames == 0) { return MA_INVALID_ARGS; } result = ma_pcm_rb_init(captureFormat, captureChannels, sizeInFrames, NULL, pAllocationCallbacks, &pRB->rb); if (result != MA_SUCCESS) { return result; } /* Seek forward a bit so we have a bit of a buffer in case of desyncs. */ ma_pcm_rb_seek_write((ma_pcm_rb*)pRB, captureInternalPeriodSizeInFrames * 2); return MA_SUCCESS; } MA_API ma_result ma_duplex_rb_uninit(ma_duplex_rb* pRB) { ma_pcm_rb_uninit((ma_pcm_rb*)pRB); return MA_SUCCESS; } /************************************************************************************************************************************************************** Miscellaneous Helpers **************************************************************************************************************************************************************/ MA_API const char* ma_result_description(ma_result result) { switch (result) { case MA_SUCCESS: return "No error"; case MA_ERROR: return "Unknown error"; case MA_INVALID_ARGS: return "Invalid argument"; case MA_INVALID_OPERATION: return "Invalid operation"; case MA_OUT_OF_MEMORY: return "Out of memory"; case MA_OUT_OF_RANGE: return "Out of range"; case MA_ACCESS_DENIED: return "Permission denied"; case MA_DOES_NOT_EXIST: return "Resource does not exist"; case MA_ALREADY_EXISTS: return "Resource already exists"; case MA_TOO_MANY_OPEN_FILES: return "Too many open files"; case MA_INVALID_FILE: return "Invalid file"; case MA_TOO_BIG: return "Too large"; case MA_PATH_TOO_LONG: return "Path too long"; case MA_NAME_TOO_LONG: return "Name too long"; case MA_NOT_DIRECTORY: return "Not a directory"; case MA_IS_DIRECTORY: return "Is a directory"; case MA_DIRECTORY_NOT_EMPTY: return "Directory not empty"; case MA_AT_END: return "At end"; case MA_NO_SPACE: return "No space available"; case MA_BUSY: return "Device or resource busy"; case MA_IO_ERROR: return "Input/output error"; case MA_INTERRUPT: return "Interrupted"; case MA_UNAVAILABLE: return "Resource unavailable"; case MA_ALREADY_IN_USE: return "Resource already in use"; case MA_BAD_ADDRESS: return "Bad address"; case MA_BAD_SEEK: return "Illegal seek"; case MA_BAD_PIPE: return "Broken pipe"; case MA_DEADLOCK: return "Deadlock"; case MA_TOO_MANY_LINKS: return "Too many links"; case MA_NOT_IMPLEMENTED: return "Not implemented"; case MA_NO_MESSAGE: return "No message of desired type"; case MA_BAD_MESSAGE: return "Invalid message"; case MA_NO_DATA_AVAILABLE: return "No data available"; case MA_INVALID_DATA: return "Invalid data"; case MA_TIMEOUT: return "Timeout"; case MA_NO_NETWORK: return "Network unavailable"; case MA_NOT_UNIQUE: return "Not unique"; case MA_NOT_SOCKET: return "Socket operation on non-socket"; case MA_NO_ADDRESS: return "Destination address required"; case MA_BAD_PROTOCOL: return "Protocol wrong type for socket"; case MA_PROTOCOL_UNAVAILABLE: return "Protocol not available"; case MA_PROTOCOL_NOT_SUPPORTED: return "Protocol not supported"; case MA_PROTOCOL_FAMILY_NOT_SUPPORTED: return "Protocol family not supported"; case MA_ADDRESS_FAMILY_NOT_SUPPORTED: return "Address family not supported"; case MA_SOCKET_NOT_SUPPORTED: return "Socket type not supported"; case MA_CONNECTION_RESET: return "Connection reset"; case MA_ALREADY_CONNECTED: return "Already connected"; case MA_NOT_CONNECTED: return "Not connected"; case MA_CONNECTION_REFUSED: return "Connection refused"; case MA_NO_HOST: return "No host"; case MA_IN_PROGRESS: return "Operation in progress"; case MA_CANCELLED: return "Operation cancelled"; case MA_MEMORY_ALREADY_MAPPED: return "Memory already mapped"; case MA_FORMAT_NOT_SUPPORTED: return "Format not supported"; case MA_DEVICE_TYPE_NOT_SUPPORTED: return "Device type not supported"; case MA_SHARE_MODE_NOT_SUPPORTED: return "Share mode not supported"; case MA_NO_BACKEND: return "No backend"; case MA_NO_DEVICE: return "No device"; case MA_API_NOT_FOUND: return "API not found"; case MA_INVALID_DEVICE_CONFIG: return "Invalid device config"; case MA_DEVICE_NOT_INITIALIZED: return "Device not initialized"; case MA_DEVICE_NOT_STARTED: return "Device not started"; case MA_FAILED_TO_INIT_BACKEND: return "Failed to initialize backend"; case MA_FAILED_TO_OPEN_BACKEND_DEVICE: return "Failed to open backend device"; case MA_FAILED_TO_START_BACKEND_DEVICE: return "Failed to start backend device"; case MA_FAILED_TO_STOP_BACKEND_DEVICE: return "Failed to stop backend device"; default: return "Unknown error"; } } MA_API void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { if (pAllocationCallbacks->onMalloc != NULL) { return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); } else { return NULL; /* Do not fall back to the default implementation. */ } } else { return ma__malloc_default(sz, NULL); } } MA_API void* ma_calloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks) { void* p = ma_malloc(sz, pAllocationCallbacks); if (p != NULL) { MA_ZERO_MEMORY(p, sz); } return p; } MA_API void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(p, sz, pAllocationCallbacks->pUserData); } else { return NULL; /* Do not fall back to the default implementation. */ } } else { return ma__realloc_default(p, sz, NULL); } } MA_API void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks) { if (p == NULL) { return; } if (pAllocationCallbacks != NULL) { if (pAllocationCallbacks->onFree != NULL) { pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } else { return; /* Do no fall back to the default implementation. */ } } else { ma__free_default(p, NULL); } } MA_API void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks) { size_t extraBytes; void* pUnaligned; void* pAligned; if (alignment == 0) { return 0; } extraBytes = alignment-1 + sizeof(void*); pUnaligned = ma_malloc(sz + extraBytes, pAllocationCallbacks); if (pUnaligned == NULL) { return NULL; } pAligned = (void*)(((ma_uintptr)pUnaligned + extraBytes) & ~((ma_uintptr)(alignment-1))); ((void**)pAligned)[-1] = pUnaligned; return pAligned; } MA_API void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks) { ma_free(((void**)p)[-1], pAllocationCallbacks); } MA_API const char* ma_get_format_name(ma_format format) { switch (format) { case ma_format_unknown: return "Unknown"; case ma_format_u8: return "8-bit Unsigned Integer"; case ma_format_s16: return "16-bit Signed Integer"; case ma_format_s24: return "24-bit Signed Integer (Tightly Packed)"; case ma_format_s32: return "32-bit Signed Integer"; case ma_format_f32: return "32-bit IEEE Floating Point"; default: return "Invalid"; } } MA_API void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels) { ma_uint32 i; for (i = 0; i < channels; ++i) { pOut[i] = ma_mix_f32(pInA[i], pInB[i], factor); } } MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format) { ma_uint32 sizes[] = { 0, /* unknown */ 1, /* u8 */ 2, /* s16 */ 3, /* s24 */ 4, /* s32 */ 4, /* f32 */ }; return sizes[format]; } MA_API ma_data_source_config ma_data_source_config_init(void) { ma_data_source_config config; MA_ZERO_OBJECT(&config); return config; } MA_API ma_result ma_data_source_init(const ma_data_source_config* pConfig, ma_data_source* pDataSource) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDataSourceBase); if (pConfig == NULL) { return MA_INVALID_ARGS; } pDataSourceBase->vtable = pConfig->vtable; pDataSourceBase->rangeBegInFrames = 0; pDataSourceBase->rangeEndInFrames = ~((ma_uint64)0); pDataSourceBase->loopBegInFrames = 0; pDataSourceBase->loopEndInFrames = ~((ma_uint64)0); pDataSourceBase->pCurrent = pDataSource; /* Always read from ourself by default. */ pDataSourceBase->pNext = NULL; pDataSourceBase->onGetNext = NULL; return MA_SUCCESS; } MA_API void ma_data_source_uninit(ma_data_source* pDataSource) { if (pDataSource == NULL) { return; } /* This is placeholder in case we need this later. Data sources need to call this in their uninitialization routine to ensure things work later on if something is added here. */ } static ma_result ma_data_source_resolve_current(ma_data_source* pDataSource, ma_data_source** ppCurrentDataSource) { ma_data_source_base* pCurrentDataSource = (ma_data_source_base*)pDataSource; MA_ASSERT(pDataSource != NULL); MA_ASSERT(ppCurrentDataSource != NULL); if (pCurrentDataSource->pCurrent == NULL) { /* The current data source is NULL. If we're using this in the context of a chain we need to return NULL here so that we don't end up looping. Otherwise we just return the data source itself. */ if (pCurrentDataSource->pNext != NULL || pCurrentDataSource->onGetNext != NULL) { pCurrentDataSource = NULL; } else { pCurrentDataSource = (ma_data_source_base*)pDataSource; /* Not being used in a chain. Make sure we just always read from the data source itself at all times. */ } } else { pCurrentDataSource = (ma_data_source_base*)pCurrentDataSource->pCurrent; } *ppCurrentDataSource = pCurrentDataSource; return MA_SUCCESS; } static ma_result ma_data_source_read_pcm_frames_within_range(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; ma_result result; ma_uint64 framesRead = 0; ma_bool32 loop = ma_data_source_is_looping(pDataSource); if (pDataSourceBase == NULL) { return MA_AT_END; } if (frameCount == 0) { return MA_INVALID_ARGS; } if ((pDataSourceBase->vtable->flags & MA_DATA_SOURCE_SELF_MANAGED_RANGE_AND_LOOP_POINT) != 0 || (pDataSourceBase->rangeEndInFrames == ~((ma_uint64)0) && (pDataSourceBase->loopEndInFrames == ~((ma_uint64)0) || loop == MA_FALSE))) { /* Either the data source is self-managing the range, or no range is set - just read like normal. The data source itself will tell us when the end is reached. */ result = pDataSourceBase->vtable->onRead(pDataSourceBase, pFramesOut, frameCount, &framesRead); } else { /* Need to clamp to within the range. */ ma_uint64 cursor; result = ma_data_source_get_cursor_in_pcm_frames(pDataSourceBase, &cursor); if (result != MA_SUCCESS) { /* Failed to retrieve the cursor. Cannot read within a range or loop points. Just read like normal - this may happen for things like noise data sources where it doesn't really matter. */ result = pDataSourceBase->vtable->onRead(pDataSourceBase, pFramesOut, frameCount, &framesRead); } else { ma_uint64 rangeEnd; /* We have the cursor. We need to make sure we don't read beyond our range. */ rangeEnd = pDataSourceBase->rangeEndInFrames; /* If looping, make sure we're within range. */ if (loop) { if (pDataSourceBase->loopEndInFrames != ~((ma_uint64)0)) { rangeEnd = ma_min(rangeEnd, pDataSourceBase->rangeBegInFrames + pDataSourceBase->loopEndInFrames); } } if (frameCount > (rangeEnd - cursor) && rangeEnd != ~((ma_uint64)0)) { frameCount = (rangeEnd - cursor); } /* If the cursor is sitting on the end of the range the frame count will be set to 0 which can result in MA_INVALID_ARGS. In this case, we don't want to try reading, but instead return MA_AT_END so the higher level function can know about it. */ if (frameCount > 0) { result = pDataSourceBase->vtable->onRead(pDataSourceBase, pFramesOut, frameCount, &framesRead); } else { result = MA_AT_END; /* The cursor is sitting on the end of the range which means we're at the end. */ } } } if (pFramesRead != NULL) { *pFramesRead = framesRead; } /* We need to make sure MA_AT_END is returned if we hit the end of the range. */ if (result == MA_SUCCESS && framesRead == 0) { result = MA_AT_END; } return result; } MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_result result = MA_SUCCESS; ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; ma_data_source_base* pCurrentDataSource; void* pRunningFramesOut = pFramesOut; ma_uint64 totalFramesProcessed = 0; ma_format format; ma_uint32 channels; ma_uint32 emptyLoopCounter = 0; /* Keeps track of how many times 0 frames have been read. For infinite loop detection of sounds with no audio data. */ ma_bool32 loop; if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pDataSourceBase == NULL) { return MA_INVALID_ARGS; } loop = ma_data_source_is_looping(pDataSource); /* We need to know the data format so we can advance the output buffer as we read frames. If this fails, chaining will not work and we'll just read as much as we can from the current source. */ if (ma_data_source_get_data_format(pDataSource, &format, &channels, NULL, NULL, 0) != MA_SUCCESS) { result = ma_data_source_resolve_current(pDataSource, (ma_data_source**)&pCurrentDataSource); if (result != MA_SUCCESS) { return result; } return ma_data_source_read_pcm_frames_within_range(pCurrentDataSource, pFramesOut, frameCount, pFramesRead); } /* Looping is a bit of a special case. When the `loop` argument is true, chaining will not work and only the current data source will be read from. */ /* Keep reading until we've read as many frames as possible. */ while (totalFramesProcessed < frameCount) { ma_uint64 framesProcessed; ma_uint64 framesRemaining = frameCount - totalFramesProcessed; /* We need to resolve the data source that we'll actually be reading from. */ result = ma_data_source_resolve_current(pDataSource, (ma_data_source**)&pCurrentDataSource); if (result != MA_SUCCESS) { break; } if (pCurrentDataSource == NULL) { break; } result = ma_data_source_read_pcm_frames_within_range(pCurrentDataSource, pRunningFramesOut, framesRemaining, &framesProcessed); totalFramesProcessed += framesProcessed; /* If we encounted an error from the read callback, make sure it's propagated to the caller. The caller may need to know whether or not MA_BUSY is returned which is not necessarily considered an error. */ if (result != MA_SUCCESS && result != MA_AT_END) { break; } /* We can determine if we've reached the end by checking if ma_data_source_read_pcm_frames_within_range() returned MA_AT_END. To loop back to the start, all we need to do is seek back to the first frame. */ if (result == MA_AT_END) { /* The result needs to be reset back to MA_SUCCESS (from MA_AT_END) so that we don't accidentally return MA_AT_END when data has been read in prior loop iterations. at the end of this function, the result will be checked for MA_SUCCESS, and if the total number of frames processed is 0, will be explicitly set to MA_AT_END. */ result = MA_SUCCESS; /* We reached the end. If we're looping, we just loop back to the start of the current data source. If we're not looping we need to check if we have another in the chain, and if so, switch to it. */ if (loop) { if (framesProcessed == 0) { emptyLoopCounter += 1; if (emptyLoopCounter > 1) { break; /* Infinite loop detected. Get out. */ } } else { emptyLoopCounter = 0; } result = ma_data_source_seek_to_pcm_frame(pCurrentDataSource, pCurrentDataSource->loopBegInFrames); if (result != MA_SUCCESS) { break; /* Failed to loop. Abort. */ } /* Don't return MA_AT_END for looping sounds. */ result = MA_SUCCESS; } else { if (pCurrentDataSource->pNext != NULL) { pDataSourceBase->pCurrent = pCurrentDataSource->pNext; } else if (pCurrentDataSource->onGetNext != NULL) { pDataSourceBase->pCurrent = pCurrentDataSource->onGetNext(pCurrentDataSource); if (pDataSourceBase->pCurrent == NULL) { break; /* Our callback did not return a next data source. We're done. */ } } else { /* Reached the end of the chain. We're done. */ break; } /* The next data source needs to be rewound to ensure data is read in looping scenarios. */ result = ma_data_source_seek_to_pcm_frame(pDataSourceBase->pCurrent, 0); if (result != MA_SUCCESS) { break; } } } if (pRunningFramesOut != NULL) { pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesProcessed * ma_get_bytes_per_frame(format, channels)); } } if (pFramesRead != NULL) { *pFramesRead = totalFramesProcessed; } MA_ASSERT(!(result == MA_AT_END && totalFramesProcessed > 0)); /* We should never be returning MA_AT_END if we read some data. */ if (result == MA_SUCCESS && totalFramesProcessed == 0) { result = MA_AT_END; } return result; } MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked) { return ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount, pFramesSeeked); } MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSourceBase == NULL) { return MA_SUCCESS; } if (pDataSourceBase->vtable->onSeek == NULL) { return MA_NOT_IMPLEMENTED; } if (frameIndex > pDataSourceBase->rangeEndInFrames) { return MA_INVALID_OPERATION; /* Trying to seek to far forward. */ } return pDataSourceBase->vtable->onSeek(pDataSource, pDataSourceBase->rangeBegInFrames + frameIndex); } MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; ma_result result; ma_format format; ma_uint32 channels; ma_uint32 sampleRate; /* Initialize to defaults for safety just in case the data source does not implement this callback. */ if (pFormat != NULL) { *pFormat = ma_format_unknown; } if (pChannels != NULL) { *pChannels = 0; } if (pSampleRate != NULL) { *pSampleRate = 0; } if (pChannelMap != NULL) { MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channelMapCap); } if (pDataSourceBase == NULL) { return MA_INVALID_ARGS; } if (pDataSourceBase->vtable->onGetDataFormat == NULL) { return MA_NOT_IMPLEMENTED; } result = pDataSourceBase->vtable->onGetDataFormat(pDataSource, &format, &channels, &sampleRate, pChannelMap, channelMapCap); if (result != MA_SUCCESS) { return result; } if (pFormat != NULL) { *pFormat = format; } if (pChannels != NULL) { *pChannels = channels; } if (pSampleRate != NULL) { *pSampleRate = sampleRate; } /* Channel map was passed in directly to the callback. This is safe due to the channelMapCap parameter. */ return MA_SUCCESS; } MA_API ma_result ma_data_source_get_cursor_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pCursor) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; ma_result result; ma_uint64 cursor; if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; if (pDataSourceBase == NULL) { return MA_SUCCESS; } if (pDataSourceBase->vtable->onGetCursor == NULL) { return MA_NOT_IMPLEMENTED; } result = pDataSourceBase->vtable->onGetCursor(pDataSourceBase, &cursor); if (result != MA_SUCCESS) { return result; } /* The cursor needs to be made relative to the start of the range. */ if (cursor < pDataSourceBase->rangeBegInFrames) { /* Safety check so we don't return some huge number. */ *pCursor = 0; } else { *pCursor = cursor - pDataSourceBase->rangeBegInFrames; } return MA_SUCCESS; } MA_API ma_result ma_data_source_get_length_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pLength) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; if (pDataSourceBase == NULL) { return MA_INVALID_ARGS; } /* If we have a range defined we'll use that to determine the length. This is one of rare times where we'll actually trust the caller. If they've set the range, I think it's mostly safe to assume they've set it based on some higher level knowledge of the structure of the sound bank. */ if (pDataSourceBase->rangeEndInFrames != ~((ma_uint64)0)) { *pLength = pDataSourceBase->rangeEndInFrames - pDataSourceBase->rangeBegInFrames; return MA_SUCCESS; } /* Getting here means a range is not defined so we'll need to get the data source itself to tell us the length. */ if (pDataSourceBase->vtable->onGetLength == NULL) { return MA_NOT_IMPLEMENTED; } return pDataSourceBase->vtable->onGetLength(pDataSource, pLength); } MA_API ma_result ma_data_source_get_cursor_in_seconds(ma_data_source* pDataSource, float* pCursor) { ma_result result; ma_uint64 cursorInPCMFrames; ma_uint32 sampleRate; if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; result = ma_data_source_get_cursor_in_pcm_frames(pDataSource, &cursorInPCMFrames); if (result != MA_SUCCESS) { return result; } result = ma_data_source_get_data_format(pDataSource, NULL, NULL, &sampleRate, NULL, 0); if (result != MA_SUCCESS) { return result; } /* VC6 does not support division of unsigned 64-bit integers with floating point numbers. Need to use a signed number. This shouldn't effect anything in practice. */ *pCursor = (ma_int64)cursorInPCMFrames / (float)sampleRate; return MA_SUCCESS; } MA_API ma_result ma_data_source_get_length_in_seconds(ma_data_source* pDataSource, float* pLength) { ma_result result; ma_uint64 lengthInPCMFrames; ma_uint32 sampleRate; if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; result = ma_data_source_get_length_in_pcm_frames(pDataSource, &lengthInPCMFrames); if (result != MA_SUCCESS) { return result; } result = ma_data_source_get_data_format(pDataSource, NULL, NULL, &sampleRate, NULL, 0); if (result != MA_SUCCESS) { return result; } /* VC6 does not support division of unsigned 64-bit integers with floating point numbers. Need to use a signed number. This shouldn't effect anything in practice. */ *pLength = (ma_int64)lengthInPCMFrames / (float)sampleRate; return MA_SUCCESS; } MA_API ma_result ma_data_source_set_looping(ma_data_source* pDataSource, ma_bool32 isLooping) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_INVALID_ARGS; } c89atomic_exchange_32(&pDataSourceBase->isLooping, isLooping); /* If there's no callback for this just treat it as a successful no-op. */ if (pDataSourceBase->vtable->onSetLooping == NULL) { return MA_SUCCESS; } return pDataSourceBase->vtable->onSetLooping(pDataSource, isLooping); } MA_API ma_bool32 ma_data_source_is_looping(const ma_data_source* pDataSource) { const ma_data_source_base* pDataSourceBase = (const ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_FALSE; } return c89atomic_load_32(&pDataSourceBase->isLooping); } MA_API ma_result ma_data_source_set_range_in_pcm_frames(ma_data_source* pDataSource, ma_uint64 rangeBegInFrames, ma_uint64 rangeEndInFrames) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; ma_result result; ma_uint64 cursor; ma_uint64 loopBegAbsolute; ma_uint64 loopEndAbsolute; if (pDataSource == NULL) { return MA_INVALID_ARGS; } if (rangeEndInFrames < rangeBegInFrames) { return MA_INVALID_ARGS; /* The end of the range must come after the beginning. */ } /* The loop points need to be updated. We'll be storing the loop points relative to the range. We'll update these so that they maintain their absolute positioning. The loop points will then be clamped to the range. */ loopBegAbsolute = pDataSourceBase->loopBegInFrames + pDataSourceBase->rangeBegInFrames; loopEndAbsolute = pDataSourceBase->loopEndInFrames + ((pDataSourceBase->loopEndInFrames != ~((ma_uint64)0)) ? pDataSourceBase->rangeBegInFrames : 0); pDataSourceBase->rangeBegInFrames = rangeBegInFrames; pDataSourceBase->rangeEndInFrames = rangeEndInFrames; /* Make the loop points relative again, and make sure they're clamped to within the range. */ if (loopBegAbsolute > pDataSourceBase->rangeBegInFrames) { pDataSourceBase->loopBegInFrames = loopBegAbsolute - pDataSourceBase->rangeBegInFrames; } else { pDataSourceBase->loopBegInFrames = 0; } if (pDataSourceBase->loopBegInFrames > pDataSourceBase->rangeEndInFrames) { pDataSourceBase->loopBegInFrames = pDataSourceBase->rangeEndInFrames; } /* Only need to update the loop end point if it's not -1. */ if (loopEndAbsolute != ~((ma_uint64)0)) { if (loopEndAbsolute > pDataSourceBase->rangeBegInFrames) { pDataSourceBase->loopEndInFrames = loopEndAbsolute - pDataSourceBase->rangeBegInFrames; } else { pDataSourceBase->loopEndInFrames = 0; } if (pDataSourceBase->loopEndInFrames > pDataSourceBase->rangeEndInFrames && pDataSourceBase->loopEndInFrames) { pDataSourceBase->loopEndInFrames = pDataSourceBase->rangeEndInFrames; } } /* If the new range is past the current cursor position we need to seek to it. */ result = ma_data_source_get_cursor_in_pcm_frames(pDataSource, &cursor); if (result == MA_SUCCESS) { /* Seek to within range. Note that our seek positions here are relative to the new range. */ if (cursor < rangeBegInFrames) { ma_data_source_seek_to_pcm_frame(pDataSource, 0); } else if (cursor > rangeEndInFrames) { ma_data_source_seek_to_pcm_frame(pDataSource, rangeEndInFrames - rangeBegInFrames); } } else { /* We failed to get the cursor position. Probably means the data source has no notion of a cursor such a noise data source. Just pretend the seeking worked. */ } return MA_SUCCESS; } MA_API void ma_data_source_get_range_in_pcm_frames(const ma_data_source* pDataSource, ma_uint64* pRangeBegInFrames, ma_uint64* pRangeEndInFrames) { const ma_data_source_base* pDataSourceBase = (const ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return; } if (pRangeBegInFrames != NULL) { *pRangeBegInFrames = pDataSourceBase->rangeBegInFrames; } if (pRangeEndInFrames != NULL) { *pRangeEndInFrames = pDataSourceBase->rangeEndInFrames; } } MA_API ma_result ma_data_source_set_loop_point_in_pcm_frames(ma_data_source* pDataSource, ma_uint64 loopBegInFrames, ma_uint64 loopEndInFrames) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_INVALID_ARGS; } if (loopEndInFrames < loopBegInFrames) { return MA_INVALID_ARGS; /* The end of the loop point must come after the beginning. */ } if (loopEndInFrames > pDataSourceBase->rangeEndInFrames && loopEndInFrames != ~((ma_uint64)0)) { return MA_INVALID_ARGS; /* The end of the loop point must not go beyond the range. */ } pDataSourceBase->loopBegInFrames = loopBegInFrames; pDataSourceBase->loopEndInFrames = loopEndInFrames; /* The end cannot exceed the range. */ if (pDataSourceBase->loopEndInFrames > (pDataSourceBase->rangeEndInFrames - pDataSourceBase->rangeBegInFrames) && pDataSourceBase->loopEndInFrames != ~((ma_uint64)0)) { pDataSourceBase->loopEndInFrames = (pDataSourceBase->rangeEndInFrames - pDataSourceBase->rangeBegInFrames); } return MA_SUCCESS; } MA_API void ma_data_source_get_loop_point_in_pcm_frames(const ma_data_source* pDataSource, ma_uint64* pLoopBegInFrames, ma_uint64* pLoopEndInFrames) { const ma_data_source_base* pDataSourceBase = (const ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return; } if (pLoopBegInFrames != NULL) { *pLoopBegInFrames = pDataSourceBase->loopBegInFrames; } if (pLoopEndInFrames != NULL) { *pLoopEndInFrames = pDataSourceBase->loopEndInFrames; } } MA_API ma_result ma_data_source_set_current(ma_data_source* pDataSource, ma_data_source* pCurrentDataSource) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_INVALID_ARGS; } pDataSourceBase->pCurrent = pCurrentDataSource; return MA_SUCCESS; } MA_API ma_data_source* ma_data_source_get_current(const ma_data_source* pDataSource) { const ma_data_source_base* pDataSourceBase = (const ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return NULL; } return pDataSourceBase->pCurrent; } MA_API ma_result ma_data_source_set_next(ma_data_source* pDataSource, ma_data_source* pNextDataSource) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_INVALID_ARGS; } pDataSourceBase->pNext = pNextDataSource; return MA_SUCCESS; } MA_API ma_data_source* ma_data_source_get_next(const ma_data_source* pDataSource) { const ma_data_source_base* pDataSourceBase = (const ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return NULL; } return pDataSourceBase->pNext; } MA_API ma_result ma_data_source_set_next_callback(ma_data_source* pDataSource, ma_data_source_get_next_proc onGetNext) { ma_data_source_base* pDataSourceBase = (ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return MA_INVALID_ARGS; } pDataSourceBase->onGetNext = onGetNext; return MA_SUCCESS; } MA_API ma_data_source_get_next_proc ma_data_source_get_next_callback(const ma_data_source* pDataSource) { const ma_data_source_base* pDataSourceBase = (const ma_data_source_base*)pDataSource; if (pDataSource == NULL) { return NULL; } return pDataSourceBase->onGetNext; } static ma_result ma_audio_buffer_ref__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_audio_buffer_ref* pAudioBufferRef = (ma_audio_buffer_ref*)pDataSource; ma_uint64 framesRead = ma_audio_buffer_ref_read_pcm_frames(pAudioBufferRef, pFramesOut, frameCount, MA_FALSE); if (pFramesRead != NULL) { *pFramesRead = framesRead; } if (framesRead < frameCount || framesRead == 0) { return MA_AT_END; } return MA_SUCCESS; } static ma_result ma_audio_buffer_ref__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_audio_buffer_ref_seek_to_pcm_frame((ma_audio_buffer_ref*)pDataSource, frameIndex); } static ma_result ma_audio_buffer_ref__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_audio_buffer_ref* pAudioBufferRef = (ma_audio_buffer_ref*)pDataSource; *pFormat = pAudioBufferRef->format; *pChannels = pAudioBufferRef->channels; *pSampleRate = pAudioBufferRef->sampleRate; ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pAudioBufferRef->channels); return MA_SUCCESS; } static ma_result ma_audio_buffer_ref__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { ma_audio_buffer_ref* pAudioBufferRef = (ma_audio_buffer_ref*)pDataSource; *pCursor = pAudioBufferRef->cursor; return MA_SUCCESS; } static ma_result ma_audio_buffer_ref__data_source_on_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { ma_audio_buffer_ref* pAudioBufferRef = (ma_audio_buffer_ref*)pDataSource; *pLength = pAudioBufferRef->sizeInFrames; return MA_SUCCESS; } static ma_data_source_vtable g_ma_audio_buffer_ref_data_source_vtable = { ma_audio_buffer_ref__data_source_on_read, ma_audio_buffer_ref__data_source_on_seek, ma_audio_buffer_ref__data_source_on_get_data_format, ma_audio_buffer_ref__data_source_on_get_cursor, ma_audio_buffer_ref__data_source_on_get_length, NULL, /* onSetLooping */ 0 }; MA_API ma_result ma_audio_buffer_ref_init(ma_format format, ma_uint32 channels, const void* pData, ma_uint64 sizeInFrames, ma_audio_buffer_ref* pAudioBufferRef) { ma_result result; ma_data_source_config dataSourceConfig; if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pAudioBufferRef); dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_audio_buffer_ref_data_source_vtable; result = ma_data_source_init(&dataSourceConfig, &pAudioBufferRef->ds); if (result != MA_SUCCESS) { return result; } pAudioBufferRef->format = format; pAudioBufferRef->channels = channels; pAudioBufferRef->sampleRate = 0; /* TODO: Version 0.12. Set this to sampleRate. */ pAudioBufferRef->cursor = 0; pAudioBufferRef->sizeInFrames = sizeInFrames; pAudioBufferRef->pData = pData; return MA_SUCCESS; } MA_API void ma_audio_buffer_ref_uninit(ma_audio_buffer_ref* pAudioBufferRef) { if (pAudioBufferRef == NULL) { return; } ma_data_source_uninit(&pAudioBufferRef->ds); } MA_API ma_result ma_audio_buffer_ref_set_data(ma_audio_buffer_ref* pAudioBufferRef, const void* pData, ma_uint64 sizeInFrames) { if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } pAudioBufferRef->cursor = 0; pAudioBufferRef->sizeInFrames = sizeInFrames; pAudioBufferRef->pData = pData; return MA_SUCCESS; } MA_API ma_uint64 ma_audio_buffer_ref_read_pcm_frames(ma_audio_buffer_ref* pAudioBufferRef, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop) { ma_uint64 totalFramesRead = 0; if (pAudioBufferRef == NULL) { return 0; } if (frameCount == 0) { return 0; } while (totalFramesRead < frameCount) { ma_uint64 framesAvailable = pAudioBufferRef->sizeInFrames - pAudioBufferRef->cursor; ma_uint64 framesRemaining = frameCount - totalFramesRead; ma_uint64 framesToRead; framesToRead = framesRemaining; if (framesToRead > framesAvailable) { framesToRead = framesAvailable; } if (pFramesOut != NULL) { ma_copy_pcm_frames(ma_offset_ptr(pFramesOut, totalFramesRead * ma_get_bytes_per_frame(pAudioBufferRef->format, pAudioBufferRef->channels)), ma_offset_ptr(pAudioBufferRef->pData, pAudioBufferRef->cursor * ma_get_bytes_per_frame(pAudioBufferRef->format, pAudioBufferRef->channels)), framesToRead, pAudioBufferRef->format, pAudioBufferRef->channels); } totalFramesRead += framesToRead; pAudioBufferRef->cursor += framesToRead; if (pAudioBufferRef->cursor == pAudioBufferRef->sizeInFrames) { if (loop) { pAudioBufferRef->cursor = 0; } else { break; /* We've reached the end and we're not looping. Done. */ } } MA_ASSERT(pAudioBufferRef->cursor < pAudioBufferRef->sizeInFrames); } return totalFramesRead; } MA_API ma_result ma_audio_buffer_ref_seek_to_pcm_frame(ma_audio_buffer_ref* pAudioBufferRef, ma_uint64 frameIndex) { if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } if (frameIndex > pAudioBufferRef->sizeInFrames) { return MA_INVALID_ARGS; } pAudioBufferRef->cursor = (size_t)frameIndex; return MA_SUCCESS; } MA_API ma_result ma_audio_buffer_ref_map(ma_audio_buffer_ref* pAudioBufferRef, void** ppFramesOut, ma_uint64* pFrameCount) { ma_uint64 framesAvailable; ma_uint64 frameCount = 0; if (ppFramesOut != NULL) { *ppFramesOut = NULL; /* Safety. */ } if (pFrameCount != NULL) { frameCount = *pFrameCount; *pFrameCount = 0; /* Safety. */ } if (pAudioBufferRef == NULL || ppFramesOut == NULL || pFrameCount == NULL) { return MA_INVALID_ARGS; } framesAvailable = pAudioBufferRef->sizeInFrames - pAudioBufferRef->cursor; if (frameCount > framesAvailable) { frameCount = framesAvailable; } *ppFramesOut = ma_offset_ptr(pAudioBufferRef->pData, pAudioBufferRef->cursor * ma_get_bytes_per_frame(pAudioBufferRef->format, pAudioBufferRef->channels)); *pFrameCount = frameCount; return MA_SUCCESS; } MA_API ma_result ma_audio_buffer_ref_unmap(ma_audio_buffer_ref* pAudioBufferRef, ma_uint64 frameCount) { ma_uint64 framesAvailable; if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } framesAvailable = pAudioBufferRef->sizeInFrames - pAudioBufferRef->cursor; if (frameCount > framesAvailable) { return MA_INVALID_ARGS; /* The frame count was too big. This should never happen in an unmapping. Need to make sure the caller is aware of this. */ } pAudioBufferRef->cursor += frameCount; if (pAudioBufferRef->cursor == pAudioBufferRef->sizeInFrames) { return MA_AT_END; /* Successful. Need to tell the caller that the end has been reached so that it can loop if desired. */ } else { return MA_SUCCESS; } } MA_API ma_bool32 ma_audio_buffer_ref_at_end(const ma_audio_buffer_ref* pAudioBufferRef) { if (pAudioBufferRef == NULL) { return MA_FALSE; } return pAudioBufferRef->cursor == pAudioBufferRef->sizeInFrames; } MA_API ma_result ma_audio_buffer_ref_get_cursor_in_pcm_frames(const ma_audio_buffer_ref* pAudioBufferRef, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } *pCursor = pAudioBufferRef->cursor; return MA_SUCCESS; } MA_API ma_result ma_audio_buffer_ref_get_length_in_pcm_frames(const ma_audio_buffer_ref* pAudioBufferRef, ma_uint64* pLength) { if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } *pLength = pAudioBufferRef->sizeInFrames; return MA_SUCCESS; } MA_API ma_result ma_audio_buffer_ref_get_available_frames(const ma_audio_buffer_ref* pAudioBufferRef, ma_uint64* pAvailableFrames) { if (pAvailableFrames == NULL) { return MA_INVALID_ARGS; } *pAvailableFrames = 0; if (pAudioBufferRef == NULL) { return MA_INVALID_ARGS; } if (pAudioBufferRef->sizeInFrames <= pAudioBufferRef->cursor) { *pAvailableFrames = 0; } else { *pAvailableFrames = pAudioBufferRef->sizeInFrames - pAudioBufferRef->cursor; } return MA_SUCCESS; } MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks) { ma_audio_buffer_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = 0; /* TODO: Version 0.12. Set this to sampleRate. */ config.sizeInFrames = sizeInFrames; config.pData = pData; ma_allocation_callbacks_init_copy(&config.allocationCallbacks, pAllocationCallbacks); return config; } static ma_result ma_audio_buffer_init_ex(const ma_audio_buffer_config* pConfig, ma_bool32 doCopy, ma_audio_buffer* pAudioBuffer) { ma_result result; if (pAudioBuffer == NULL) { return MA_INVALID_ARGS; } MA_ZERO_MEMORY(pAudioBuffer, sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData)); /* Safety. Don't overwrite the extra data. */ if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->sizeInFrames == 0) { return MA_INVALID_ARGS; /* Not allowing buffer sizes of 0 frames. */ } result = ma_audio_buffer_ref_init(pConfig->format, pConfig->channels, NULL, 0, &pAudioBuffer->ref); if (result != MA_SUCCESS) { return result; } /* TODO: Version 0.12. Set this in ma_audio_buffer_ref_init() instead of here. */ pAudioBuffer->ref.sampleRate = pConfig->sampleRate; ma_allocation_callbacks_init_copy(&pAudioBuffer->allocationCallbacks, &pConfig->allocationCallbacks); if (doCopy) { ma_uint64 allocationSizeInBytes; void* pData; allocationSizeInBytes = pConfig->sizeInFrames * ma_get_bytes_per_frame(pConfig->format, pConfig->channels); if (allocationSizeInBytes > MA_SIZE_MAX) { return MA_OUT_OF_MEMORY; /* Too big. */ } pData = ma_malloc((size_t)allocationSizeInBytes, &pAudioBuffer->allocationCallbacks); /* Safe cast to size_t. */ if (pData == NULL) { return MA_OUT_OF_MEMORY; } if (pConfig->pData != NULL) { ma_copy_pcm_frames(pData, pConfig->pData, pConfig->sizeInFrames, pConfig->format, pConfig->channels); } else { ma_silence_pcm_frames(pData, pConfig->sizeInFrames, pConfig->format, pConfig->channels); } ma_audio_buffer_ref_set_data(&pAudioBuffer->ref, pData, pConfig->sizeInFrames); pAudioBuffer->ownsData = MA_TRUE; } else { ma_audio_buffer_ref_set_data(&pAudioBuffer->ref, pConfig->pData, pConfig->sizeInFrames); pAudioBuffer->ownsData = MA_FALSE; } return MA_SUCCESS; } static void ma_audio_buffer_uninit_ex(ma_audio_buffer* pAudioBuffer, ma_bool32 doFree) { if (pAudioBuffer == NULL) { return; } if (pAudioBuffer->ownsData && pAudioBuffer->ref.pData != &pAudioBuffer->_pExtraData[0]) { ma_free((void*)pAudioBuffer->ref.pData, &pAudioBuffer->allocationCallbacks); /* Naugty const cast, but OK in this case since we've guarded it with the ownsData check. */ } if (doFree) { ma_free(pAudioBuffer, &pAudioBuffer->allocationCallbacks); } ma_audio_buffer_ref_uninit(&pAudioBuffer->ref); } MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer) { return ma_audio_buffer_init_ex(pConfig, MA_FALSE, pAudioBuffer); } MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer) { return ma_audio_buffer_init_ex(pConfig, MA_TRUE, pAudioBuffer); } MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer) { ma_result result; ma_audio_buffer* pAudioBuffer; ma_audio_buffer_config innerConfig; /* We'll be making some changes to the config, so need to make a copy. */ ma_uint64 allocationSizeInBytes; if (ppAudioBuffer == NULL) { return MA_INVALID_ARGS; } *ppAudioBuffer = NULL; /* Safety. */ if (pConfig == NULL) { return MA_INVALID_ARGS; } innerConfig = *pConfig; ma_allocation_callbacks_init_copy(&innerConfig.allocationCallbacks, &pConfig->allocationCallbacks); allocationSizeInBytes = sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData) + (pConfig->sizeInFrames * ma_get_bytes_per_frame(pConfig->format, pConfig->channels)); if (allocationSizeInBytes > MA_SIZE_MAX) { return MA_OUT_OF_MEMORY; /* Too big. */ } pAudioBuffer = (ma_audio_buffer*)ma_malloc((size_t)allocationSizeInBytes, &innerConfig.allocationCallbacks); /* Safe cast to size_t. */ if (pAudioBuffer == NULL) { return MA_OUT_OF_MEMORY; } if (pConfig->pData != NULL) { ma_copy_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->pData, pConfig->sizeInFrames, pConfig->format, pConfig->channels); } else { ma_silence_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->sizeInFrames, pConfig->format, pConfig->channels); } innerConfig.pData = &pAudioBuffer->_pExtraData[0]; result = ma_audio_buffer_init_ex(&innerConfig, MA_FALSE, pAudioBuffer); if (result != MA_SUCCESS) { ma_free(pAudioBuffer, &innerConfig.allocationCallbacks); return result; } *ppAudioBuffer = pAudioBuffer; return MA_SUCCESS; } MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer) { ma_audio_buffer_uninit_ex(pAudioBuffer, MA_FALSE); } MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer) { ma_audio_buffer_uninit_ex(pAudioBuffer, MA_TRUE); } MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop) { if (pAudioBuffer == NULL) { return 0; } return ma_audio_buffer_ref_read_pcm_frames(&pAudioBuffer->ref, pFramesOut, frameCount, loop); } MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex) { if (pAudioBuffer == NULL) { return MA_INVALID_ARGS; } return ma_audio_buffer_ref_seek_to_pcm_frame(&pAudioBuffer->ref, frameIndex); } MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount) { if (ppFramesOut != NULL) { *ppFramesOut = NULL; /* Safety. */ } if (pAudioBuffer == NULL) { if (pFrameCount != NULL) { *pFrameCount = 0; } return MA_INVALID_ARGS; } return ma_audio_buffer_ref_map(&pAudioBuffer->ref, ppFramesOut, pFrameCount); } MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount) { if (pAudioBuffer == NULL) { return MA_INVALID_ARGS; } return ma_audio_buffer_ref_unmap(&pAudioBuffer->ref, frameCount); } MA_API ma_bool32 ma_audio_buffer_at_end(const ma_audio_buffer* pAudioBuffer) { if (pAudioBuffer == NULL) { return MA_FALSE; } return ma_audio_buffer_ref_at_end(&pAudioBuffer->ref); } MA_API ma_result ma_audio_buffer_get_cursor_in_pcm_frames(const ma_audio_buffer* pAudioBuffer, ma_uint64* pCursor) { if (pAudioBuffer == NULL) { return MA_INVALID_ARGS; } return ma_audio_buffer_ref_get_cursor_in_pcm_frames(&pAudioBuffer->ref, pCursor); } MA_API ma_result ma_audio_buffer_get_length_in_pcm_frames(const ma_audio_buffer* pAudioBuffer, ma_uint64* pLength) { if (pAudioBuffer == NULL) { return MA_INVALID_ARGS; } return ma_audio_buffer_ref_get_length_in_pcm_frames(&pAudioBuffer->ref, pLength); } MA_API ma_result ma_audio_buffer_get_available_frames(const ma_audio_buffer* pAudioBuffer, ma_uint64* pAvailableFrames) { if (pAvailableFrames == NULL) { return MA_INVALID_ARGS; } *pAvailableFrames = 0; if (pAudioBuffer == NULL) { return MA_INVALID_ARGS; } return ma_audio_buffer_ref_get_available_frames(&pAudioBuffer->ref, pAvailableFrames); } MA_API ma_result ma_paged_audio_buffer_data_init(ma_format format, ma_uint32 channels, ma_paged_audio_buffer_data* pData) { if (pData == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pData); pData->format = format; pData->channels = channels; pData->pTail = &pData->head; return MA_SUCCESS; } MA_API void ma_paged_audio_buffer_data_uninit(ma_paged_audio_buffer_data* pData, const ma_allocation_callbacks* pAllocationCallbacks) { ma_paged_audio_buffer_page* pPage; if (pData == NULL) { return; } /* All pages need to be freed. */ pPage = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pData->head.pNext); while (pPage != NULL) { ma_paged_audio_buffer_page* pNext = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pPage->pNext); ma_free(pPage, pAllocationCallbacks); pPage = pNext; } } MA_API ma_paged_audio_buffer_page* ma_paged_audio_buffer_data_get_head(ma_paged_audio_buffer_data* pData) { if (pData == NULL) { return NULL; } return &pData->head; } MA_API ma_paged_audio_buffer_page* ma_paged_audio_buffer_data_get_tail(ma_paged_audio_buffer_data* pData) { if (pData == NULL) { return NULL; } return pData->pTail; } MA_API ma_result ma_paged_audio_buffer_data_get_length_in_pcm_frames(ma_paged_audio_buffer_data* pData, ma_uint64* pLength) { ma_paged_audio_buffer_page* pPage; if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; if (pData == NULL) { return MA_INVALID_ARGS; } /* Calculate the length from the linked list. */ for (pPage = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pData->head.pNext); pPage != NULL; pPage = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pPage->pNext)) { *pLength += pPage->sizeInFrames; } return MA_SUCCESS; } MA_API ma_result ma_paged_audio_buffer_data_allocate_page(ma_paged_audio_buffer_data* pData, ma_uint64 pageSizeInFrames, const void* pInitialData, const ma_allocation_callbacks* pAllocationCallbacks, ma_paged_audio_buffer_page** ppPage) { ma_paged_audio_buffer_page* pPage; ma_uint64 allocationSize; if (ppPage == NULL) { return MA_INVALID_ARGS; } *ppPage = NULL; if (pData == NULL) { return MA_INVALID_ARGS; } allocationSize = sizeof(*pPage) + (pageSizeInFrames * ma_get_bytes_per_frame(pData->format, pData->channels)); if (allocationSize > MA_SIZE_MAX) { return MA_OUT_OF_MEMORY; /* Too big. */ } pPage = (ma_paged_audio_buffer_page*)ma_malloc((size_t)allocationSize, pAllocationCallbacks); /* Safe cast to size_t. */ if (pPage == NULL) { return MA_OUT_OF_MEMORY; } pPage->pNext = NULL; pPage->sizeInFrames = pageSizeInFrames; if (pInitialData != NULL) { ma_copy_pcm_frames(pPage->pAudioData, pInitialData, pageSizeInFrames, pData->format, pData->channels); } *ppPage = pPage; return MA_SUCCESS; } MA_API ma_result ma_paged_audio_buffer_data_free_page(ma_paged_audio_buffer_data* pData, ma_paged_audio_buffer_page* pPage, const ma_allocation_callbacks* pAllocationCallbacks) { if (pData == NULL || pPage == NULL) { return MA_INVALID_ARGS; } /* It's assumed the page is not attached to the list. */ ma_free(pPage, pAllocationCallbacks); return MA_SUCCESS; } MA_API ma_result ma_paged_audio_buffer_data_append_page(ma_paged_audio_buffer_data* pData, ma_paged_audio_buffer_page* pPage) { if (pData == NULL || pPage == NULL) { return MA_INVALID_ARGS; } /* This function assumes the page has been filled with audio data by this point. As soon as we append, the page will be available for reading. */ /* First thing to do is update the tail. */ for (;;) { ma_paged_audio_buffer_page* pOldTail = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pData->pTail); ma_paged_audio_buffer_page* pNewTail = pPage; if (c89atomic_compare_exchange_weak_ptr((volatile void**)&pData->pTail, (void**)&pOldTail, pNewTail)) { /* Here is where we append the page to the list. After this, the page is attached to the list and ready to be read from. */ c89atomic_exchange_ptr(&pOldTail->pNext, pPage); break; /* Done. */ } } return MA_SUCCESS; } MA_API ma_result ma_paged_audio_buffer_data_allocate_and_append_page(ma_paged_audio_buffer_data* pData, ma_uint32 pageSizeInFrames, const void* pInitialData, const ma_allocation_callbacks* pAllocationCallbacks) { ma_result result; ma_paged_audio_buffer_page* pPage; result = ma_paged_audio_buffer_data_allocate_page(pData, pageSizeInFrames, pInitialData, pAllocationCallbacks, &pPage); if (result != MA_SUCCESS) { return result; } return ma_paged_audio_buffer_data_append_page(pData, pPage); /* <-- Should never fail. */ } MA_API ma_paged_audio_buffer_config ma_paged_audio_buffer_config_init(ma_paged_audio_buffer_data* pData) { ma_paged_audio_buffer_config config; MA_ZERO_OBJECT(&config); config.pData = pData; return config; } static ma_result ma_paged_audio_buffer__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_paged_audio_buffer_read_pcm_frames((ma_paged_audio_buffer*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_paged_audio_buffer__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_paged_audio_buffer_seek_to_pcm_frame((ma_paged_audio_buffer*)pDataSource, frameIndex); } static ma_result ma_paged_audio_buffer__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_paged_audio_buffer* pPagedAudioBuffer = (ma_paged_audio_buffer*)pDataSource; *pFormat = pPagedAudioBuffer->pData->format; *pChannels = pPagedAudioBuffer->pData->channels; *pSampleRate = 0; /* There is no notion of a sample rate with audio buffers. */ ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pPagedAudioBuffer->pData->channels); return MA_SUCCESS; } static ma_result ma_paged_audio_buffer__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_paged_audio_buffer_get_cursor_in_pcm_frames((ma_paged_audio_buffer*)pDataSource, pCursor); } static ma_result ma_paged_audio_buffer__data_source_on_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_paged_audio_buffer_get_length_in_pcm_frames((ma_paged_audio_buffer*)pDataSource, pLength); } static ma_data_source_vtable g_ma_paged_audio_buffer_data_source_vtable = { ma_paged_audio_buffer__data_source_on_read, ma_paged_audio_buffer__data_source_on_seek, ma_paged_audio_buffer__data_source_on_get_data_format, ma_paged_audio_buffer__data_source_on_get_cursor, ma_paged_audio_buffer__data_source_on_get_length, NULL, /* onSetLooping */ 0 }; MA_API ma_result ma_paged_audio_buffer_init(const ma_paged_audio_buffer_config* pConfig, ma_paged_audio_buffer* pPagedAudioBuffer) { ma_result result; ma_data_source_config dataSourceConfig; if (pPagedAudioBuffer == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pPagedAudioBuffer); /* A config is required for the format and channel count. */ if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->pData == NULL) { return MA_INVALID_ARGS; /* No underlying data specified. */ } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_paged_audio_buffer_data_source_vtable; result = ma_data_source_init(&dataSourceConfig, &pPagedAudioBuffer->ds); if (result != MA_SUCCESS) { return result; } pPagedAudioBuffer->pData = pConfig->pData; pPagedAudioBuffer->pCurrent = ma_paged_audio_buffer_data_get_head(pConfig->pData); pPagedAudioBuffer->relativeCursor = 0; pPagedAudioBuffer->absoluteCursor = 0; return MA_SUCCESS; } MA_API void ma_paged_audio_buffer_uninit(ma_paged_audio_buffer* pPagedAudioBuffer) { if (pPagedAudioBuffer == NULL) { return; } /* Nothing to do. The data needs to be deleted separately. */ } MA_API ma_result ma_paged_audio_buffer_read_pcm_frames(ma_paged_audio_buffer* pPagedAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint64 totalFramesRead = 0; ma_format format; ma_uint32 channels; if (pPagedAudioBuffer == NULL) { return MA_INVALID_ARGS; } format = pPagedAudioBuffer->pData->format; channels = pPagedAudioBuffer->pData->channels; while (totalFramesRead < frameCount) { /* Read from the current page. The buffer should never be in a state where this is NULL. */ ma_uint64 framesRemainingInCurrentPage; ma_uint64 framesRemainingToRead = frameCount - totalFramesRead; ma_uint64 framesToReadThisIteration; MA_ASSERT(pPagedAudioBuffer->pCurrent != NULL); framesRemainingInCurrentPage = pPagedAudioBuffer->pCurrent->sizeInFrames - pPagedAudioBuffer->relativeCursor; framesToReadThisIteration = ma_min(framesRemainingInCurrentPage, framesRemainingToRead); ma_copy_pcm_frames(ma_offset_pcm_frames_ptr(pFramesOut, totalFramesRead, format, channels), ma_offset_pcm_frames_ptr(pPagedAudioBuffer->pCurrent->pAudioData, pPagedAudioBuffer->relativeCursor, format, channels), framesToReadThisIteration, format, channels); totalFramesRead += framesToReadThisIteration; pPagedAudioBuffer->absoluteCursor += framesToReadThisIteration; pPagedAudioBuffer->relativeCursor += framesToReadThisIteration; /* Move to the next page if necessary. If there's no more pages, we need to return MA_AT_END. */ MA_ASSERT(pPagedAudioBuffer->relativeCursor <= pPagedAudioBuffer->pCurrent->sizeInFrames); if (pPagedAudioBuffer->relativeCursor == pPagedAudioBuffer->pCurrent->sizeInFrames) { /* We reached the end of the page. Need to move to the next. If there's no more pages, we're done. */ ma_paged_audio_buffer_page* pNext = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pPagedAudioBuffer->pCurrent->pNext); if (pNext == NULL) { result = MA_AT_END; break; /* We've reached the end. */ } else { pPagedAudioBuffer->pCurrent = pNext; pPagedAudioBuffer->relativeCursor = 0; } } } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } return result; } MA_API ma_result ma_paged_audio_buffer_seek_to_pcm_frame(ma_paged_audio_buffer* pPagedAudioBuffer, ma_uint64 frameIndex) { if (pPagedAudioBuffer == NULL) { return MA_INVALID_ARGS; } if (frameIndex == pPagedAudioBuffer->absoluteCursor) { return MA_SUCCESS; /* Nothing to do. */ } if (frameIndex < pPagedAudioBuffer->absoluteCursor) { /* Moving backwards. Need to move the cursor back to the start, and then move forward. */ pPagedAudioBuffer->pCurrent = ma_paged_audio_buffer_data_get_head(pPagedAudioBuffer->pData); pPagedAudioBuffer->absoluteCursor = 0; pPagedAudioBuffer->relativeCursor = 0; /* Fall through to the forward seeking section below. */ } if (frameIndex > pPagedAudioBuffer->absoluteCursor) { /* Moving forward. */ ma_paged_audio_buffer_page* pPage; ma_uint64 runningCursor = 0; for (pPage = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&ma_paged_audio_buffer_data_get_head(pPagedAudioBuffer->pData)->pNext); pPage != NULL; pPage = (ma_paged_audio_buffer_page*)c89atomic_load_ptr(&pPage->pNext)) { ma_uint64 pageRangeBeg = runningCursor; ma_uint64 pageRangeEnd = pageRangeBeg + pPage->sizeInFrames; if (frameIndex >= pageRangeBeg) { if (frameIndex < pageRangeEnd || (frameIndex == pageRangeEnd && pPage == (ma_paged_audio_buffer_page*)c89atomic_load_ptr(ma_paged_audio_buffer_data_get_tail(pPagedAudioBuffer->pData)))) { /* A small edge case - allow seeking to the very end of the buffer. */ /* We found the page. */ pPagedAudioBuffer->pCurrent = pPage; pPagedAudioBuffer->absoluteCursor = frameIndex; pPagedAudioBuffer->relativeCursor = frameIndex - pageRangeBeg; return MA_SUCCESS; } } runningCursor = pageRangeEnd; } /* Getting here means we tried seeking too far forward. Don't change any state. */ return MA_BAD_SEEK; } return MA_SUCCESS; } MA_API ma_result ma_paged_audio_buffer_get_cursor_in_pcm_frames(ma_paged_audio_buffer* pPagedAudioBuffer, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; /* Safety. */ if (pPagedAudioBuffer == NULL) { return MA_INVALID_ARGS; } *pCursor = pPagedAudioBuffer->absoluteCursor; return MA_SUCCESS; } MA_API ma_result ma_paged_audio_buffer_get_length_in_pcm_frames(ma_paged_audio_buffer* pPagedAudioBuffer, ma_uint64* pLength) { return ma_paged_audio_buffer_data_get_length_in_pcm_frames(pPagedAudioBuffer->pData, pLength); } /************************************************************************************************************************************************************** VFS **************************************************************************************************************************************************************/ MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pFile == NULL) { return MA_INVALID_ARGS; } *pFile = NULL; if (pVFS == NULL || pFilePath == NULL || openMode == 0) { return MA_INVALID_ARGS; } if (pCallbacks->onOpen == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onOpen(pVFS, pFilePath, openMode, pFile); } MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pFile == NULL) { return MA_INVALID_ARGS; } *pFile = NULL; if (pVFS == NULL || pFilePath == NULL || openMode == 0) { return MA_INVALID_ARGS; } if (pCallbacks->onOpenW == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onOpenW(pVFS, pFilePath, openMode, pFile); } MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pVFS == NULL || file == NULL) { return MA_INVALID_ARGS; } if (pCallbacks->onClose == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onClose(pVFS, file); } MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; ma_result result; size_t bytesRead; if (pBytesRead != NULL) { *pBytesRead = 0; } if (pVFS == NULL || file == NULL || pDst == NULL) { return MA_INVALID_ARGS; } if (pCallbacks->onRead == NULL) { return MA_NOT_IMPLEMENTED; } result = pCallbacks->onRead(pVFS, file, pDst, sizeInBytes, &bytesRead); if (pBytesRead != NULL) { *pBytesRead = bytesRead; } if (result == MA_SUCCESS && bytesRead == 0 && sizeInBytes > 0) { result = MA_AT_END; } return result; } MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pBytesWritten != NULL) { *pBytesWritten = 0; } if (pVFS == NULL || file == NULL || pSrc == NULL) { return MA_INVALID_ARGS; } if (pCallbacks->onWrite == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onWrite(pVFS, file, pSrc, sizeInBytes, pBytesWritten); } MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pVFS == NULL || file == NULL) { return MA_INVALID_ARGS; } if (pCallbacks->onSeek == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onSeek(pVFS, file, offset, origin); } MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; if (pVFS == NULL || file == NULL) { return MA_INVALID_ARGS; } if (pCallbacks->onTell == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onTell(pVFS, file, pCursor); } MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) { ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS; if (pInfo == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pInfo); if (pVFS == NULL || file == NULL) { return MA_INVALID_ARGS; } if (pCallbacks->onInfo == NULL) { return MA_NOT_IMPLEMENTED; } return pCallbacks->onInfo(pVFS, file, pInfo); } static ma_result ma_vfs_open_and_read_file_ex(ma_vfs* pVFS, const char* pFilePath, const wchar_t* pFilePathW, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks) { ma_result result; ma_vfs_file file; ma_file_info info; void* pData; size_t bytesRead; if (ppData != NULL) { *ppData = NULL; } if (pSize != NULL) { *pSize = 0; } if (ppData == NULL) { return MA_INVALID_ARGS; } if (pFilePath != NULL) { result = ma_vfs_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file); } else { result = ma_vfs_open_w(pVFS, pFilePathW, MA_OPEN_MODE_READ, &file); } if (result != MA_SUCCESS) { return result; } result = ma_vfs_info(pVFS, file, &info); if (result != MA_SUCCESS) { ma_vfs_close(pVFS, file); return result; } if (info.sizeInBytes > MA_SIZE_MAX) { ma_vfs_close(pVFS, file); return MA_TOO_BIG; } pData = ma_malloc((size_t)info.sizeInBytes, pAllocationCallbacks); /* Safe cast. */ if (pData == NULL) { ma_vfs_close(pVFS, file); return result; } result = ma_vfs_read(pVFS, file, pData, (size_t)info.sizeInBytes, &bytesRead); /* Safe cast. */ ma_vfs_close(pVFS, file); if (result != MA_SUCCESS) { ma_free(pData, pAllocationCallbacks); return result; } if (pSize != NULL) { *pSize = bytesRead; } MA_ASSERT(ppData != NULL); *ppData = pData; return MA_SUCCESS; } MA_API ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks) { return ma_vfs_open_and_read_file_ex(pVFS, pFilePath, NULL, ppData, pSize, pAllocationCallbacks); } MA_API ma_result ma_vfs_open_and_read_file_w(ma_vfs* pVFS, const wchar_t* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks) { return ma_vfs_open_and_read_file_ex(pVFS, NULL, pFilePath, ppData, pSize, pAllocationCallbacks); } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) static void ma_default_vfs__get_open_settings_win32(ma_uint32 openMode, DWORD* pDesiredAccess, DWORD* pShareMode, DWORD* pCreationDisposition) { *pDesiredAccess = 0; if ((openMode & MA_OPEN_MODE_READ) != 0) { *pDesiredAccess |= GENERIC_READ; } if ((openMode & MA_OPEN_MODE_WRITE) != 0) { *pDesiredAccess |= GENERIC_WRITE; } *pShareMode = 0; if ((openMode & MA_OPEN_MODE_READ) != 0) { *pShareMode |= FILE_SHARE_READ; } if ((openMode & MA_OPEN_MODE_WRITE) != 0) { *pCreationDisposition = CREATE_ALWAYS; /* Opening in write mode. Truncate. */ } else { *pCreationDisposition = OPEN_EXISTING; /* Opening in read mode. File must exist. */ } } static ma_result ma_default_vfs_open__win32(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { HANDLE hFile; DWORD dwDesiredAccess; DWORD dwShareMode; DWORD dwCreationDisposition; (void)pVFS; ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition); hFile = CreateFileA(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) { return ma_result_from_GetLastError(GetLastError()); } *pFile = hFile; return MA_SUCCESS; } static ma_result ma_default_vfs_open_w__win32(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { HANDLE hFile; DWORD dwDesiredAccess; DWORD dwShareMode; DWORD dwCreationDisposition; (void)pVFS; ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition); hFile = CreateFileW(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) { return ma_result_from_GetLastError(GetLastError()); } *pFile = hFile; return MA_SUCCESS; } static ma_result ma_default_vfs_close__win32(ma_vfs* pVFS, ma_vfs_file file) { (void)pVFS; if (CloseHandle((HANDLE)file) == 0) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static ma_result ma_default_vfs_read__win32(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) { ma_result result = MA_SUCCESS; size_t totalBytesRead; (void)pVFS; totalBytesRead = 0; while (totalBytesRead < sizeInBytes) { size_t bytesRemaining; DWORD bytesToRead; DWORD bytesRead; BOOL readResult; bytesRemaining = sizeInBytes - totalBytesRead; if (bytesRemaining >= 0xFFFFFFFF) { bytesToRead = 0xFFFFFFFF; } else { bytesToRead = (DWORD)bytesRemaining; } readResult = ReadFile((HANDLE)file, ma_offset_ptr(pDst, totalBytesRead), bytesToRead, &bytesRead, NULL); if (readResult == 1 && bytesRead == 0) { result = MA_AT_END; break; /* EOF */ } totalBytesRead += bytesRead; if (bytesRead < bytesToRead) { break; /* EOF */ } if (readResult == 0) { result = ma_result_from_GetLastError(GetLastError()); break; } } if (pBytesRead != NULL) { *pBytesRead = totalBytesRead; } return result; } static ma_result ma_default_vfs_write__win32(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) { ma_result result = MA_SUCCESS; size_t totalBytesWritten; (void)pVFS; totalBytesWritten = 0; while (totalBytesWritten < sizeInBytes) { size_t bytesRemaining; DWORD bytesToWrite; DWORD bytesWritten; BOOL writeResult; bytesRemaining = sizeInBytes - totalBytesWritten; if (bytesRemaining >= 0xFFFFFFFF) { bytesToWrite = 0xFFFFFFFF; } else { bytesToWrite = (DWORD)bytesRemaining; } writeResult = WriteFile((HANDLE)file, ma_offset_ptr(pSrc, totalBytesWritten), bytesToWrite, &bytesWritten, NULL); totalBytesWritten += bytesWritten; if (writeResult == 0) { result = ma_result_from_GetLastError(GetLastError()); break; } } if (pBytesWritten != NULL) { *pBytesWritten = totalBytesWritten; } return result; } static ma_result ma_default_vfs_seek__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) { LARGE_INTEGER liDistanceToMove; DWORD dwMoveMethod; BOOL result; (void)pVFS; liDistanceToMove.QuadPart = offset; /* */ if (origin == ma_seek_origin_current) { dwMoveMethod = FILE_CURRENT; } else if (origin == ma_seek_origin_end) { dwMoveMethod = FILE_END; } else { dwMoveMethod = FILE_BEGIN; } #if (defined(_MSC_VER) && _MSC_VER <= 1200) || defined(__DMC__) /* No SetFilePointerEx() so restrict to 31 bits. */ if (origin > 0x7FFFFFFF) { return MA_OUT_OF_RANGE; } result = SetFilePointer((HANDLE)file, (LONG)liDistanceToMove.QuadPart, NULL, dwMoveMethod); #else result = SetFilePointerEx((HANDLE)file, liDistanceToMove, NULL, dwMoveMethod); #endif if (result == 0) { return ma_result_from_GetLastError(GetLastError()); } return MA_SUCCESS; } static ma_result ma_default_vfs_tell__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) { LARGE_INTEGER liZero; LARGE_INTEGER liTell; BOOL result; #if (defined(_MSC_VER) && _MSC_VER <= 1200) || defined(__DMC__) LONG tell; #endif (void)pVFS; liZero.QuadPart = 0; #if (defined(_MSC_VER) && _MSC_VER <= 1200) || defined(__DMC__) result = SetFilePointer((HANDLE)file, (LONG)liZero.QuadPart, &tell, FILE_CURRENT); liTell.QuadPart = tell; #else result = SetFilePointerEx((HANDLE)file, liZero, &liTell, FILE_CURRENT); #endif if (result == 0) { return ma_result_from_GetLastError(GetLastError()); } if (pCursor != NULL) { *pCursor = liTell.QuadPart; } return MA_SUCCESS; } static ma_result ma_default_vfs_info__win32(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) { BY_HANDLE_FILE_INFORMATION fi; BOOL result; (void)pVFS; result = GetFileInformationByHandle((HANDLE)file, &fi); if (result == 0) { return ma_result_from_GetLastError(GetLastError()); } pInfo->sizeInBytes = ((ma_uint64)fi.nFileSizeHigh << 32) | ((ma_uint64)fi.nFileSizeLow); return MA_SUCCESS; } #else static ma_result ma_default_vfs_open__stdio(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { ma_result result; FILE* pFileStd; const char* pOpenModeStr; MA_ASSERT(pFilePath != NULL); MA_ASSERT(openMode != 0); MA_ASSERT(pFile != NULL); (void)pVFS; if ((openMode & MA_OPEN_MODE_READ) != 0) { if ((openMode & MA_OPEN_MODE_WRITE) != 0) { pOpenModeStr = "r+"; } else { pOpenModeStr = "rb"; } } else { pOpenModeStr = "wb"; } result = ma_fopen(&pFileStd, pFilePath, pOpenModeStr); if (result != MA_SUCCESS) { return result; } *pFile = pFileStd; return MA_SUCCESS; } static ma_result ma_default_vfs_open_w__stdio(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { ma_result result; FILE* pFileStd; const wchar_t* pOpenModeStr; MA_ASSERT(pFilePath != NULL); MA_ASSERT(openMode != 0); MA_ASSERT(pFile != NULL); (void)pVFS; if ((openMode & MA_OPEN_MODE_READ) != 0) { if ((openMode & MA_OPEN_MODE_WRITE) != 0) { pOpenModeStr = L"r+"; } else { pOpenModeStr = L"rb"; } } else { pOpenModeStr = L"wb"; } result = ma_wfopen(&pFileStd, pFilePath, pOpenModeStr, (pVFS != NULL) ? &((ma_default_vfs*)pVFS)->allocationCallbacks : NULL); if (result != MA_SUCCESS) { return result; } *pFile = pFileStd; return MA_SUCCESS; } static ma_result ma_default_vfs_close__stdio(ma_vfs* pVFS, ma_vfs_file file) { MA_ASSERT(file != NULL); (void)pVFS; fclose((FILE*)file); return MA_SUCCESS; } static ma_result ma_default_vfs_read__stdio(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) { size_t result; MA_ASSERT(file != NULL); MA_ASSERT(pDst != NULL); (void)pVFS; result = fread(pDst, 1, sizeInBytes, (FILE*)file); if (pBytesRead != NULL) { *pBytesRead = result; } if (result != sizeInBytes) { if (result == 0 && feof((FILE*)file)) { return MA_AT_END; } else { return ma_result_from_errno(ferror((FILE*)file)); } } return MA_SUCCESS; } static ma_result ma_default_vfs_write__stdio(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) { size_t result; MA_ASSERT(file != NULL); MA_ASSERT(pSrc != NULL); (void)pVFS; result = fwrite(pSrc, 1, sizeInBytes, (FILE*)file); if (pBytesWritten != NULL) { *pBytesWritten = result; } if (result != sizeInBytes) { return ma_result_from_errno(ferror((FILE*)file)); } return MA_SUCCESS; } static ma_result ma_default_vfs_seek__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) { int result; int whence; MA_ASSERT(file != NULL); (void)pVFS; if (origin == ma_seek_origin_start) { whence = SEEK_SET; } else if (origin == ma_seek_origin_end) { whence = SEEK_END; } else { whence = SEEK_CUR; } #if defined(_WIN32) #if defined(_MSC_VER) && _MSC_VER > 1200 result = _fseeki64((FILE*)file, offset, whence); #else /* No _fseeki64() so restrict to 31 bits. */ if (origin > 0x7FFFFFFF) { return MA_OUT_OF_RANGE; } result = fseek((FILE*)file, (int)offset, whence); #endif #else result = fseek((FILE*)file, (long int)offset, whence); #endif if (result != 0) { return MA_ERROR; } return MA_SUCCESS; } static ma_result ma_default_vfs_tell__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) { ma_int64 result; MA_ASSERT(file != NULL); MA_ASSERT(pCursor != NULL); (void)pVFS; #if defined(_WIN32) #if defined(_MSC_VER) && _MSC_VER > 1200 result = _ftelli64((FILE*)file); #else result = ftell((FILE*)file); #endif #else result = ftell((FILE*)file); #endif *pCursor = result; return MA_SUCCESS; } #if !defined(_MSC_VER) && !((defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 1) || defined(_XOPEN_SOURCE) || defined(_POSIX_SOURCE)) && !defined(MA_BSD) int fileno(FILE *stream); #endif static ma_result ma_default_vfs_info__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) { int fd; struct stat info; MA_ASSERT(file != NULL); MA_ASSERT(pInfo != NULL); (void)pVFS; #if defined(_MSC_VER) fd = _fileno((FILE*)file); #else fd = fileno((FILE*)file); #endif if (fstat(fd, &info) != 0) { return ma_result_from_errno(errno); } pInfo->sizeInBytes = info.st_size; return MA_SUCCESS; } #endif static ma_result ma_default_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { if (pFile == NULL) { return MA_INVALID_ARGS; } *pFile = NULL; if (pFilePath == NULL || openMode == 0) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_open__win32(pVFS, pFilePath, openMode, pFile); #else return ma_default_vfs_open__stdio(pVFS, pFilePath, openMode, pFile); #endif } static ma_result ma_default_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { if (pFile == NULL) { return MA_INVALID_ARGS; } *pFile = NULL; if (pFilePath == NULL || openMode == 0) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_open_w__win32(pVFS, pFilePath, openMode, pFile); #else return ma_default_vfs_open_w__stdio(pVFS, pFilePath, openMode, pFile); #endif } static ma_result ma_default_vfs_close(ma_vfs* pVFS, ma_vfs_file file) { if (file == NULL) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_close__win32(pVFS, file); #else return ma_default_vfs_close__stdio(pVFS, file); #endif } static ma_result ma_default_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) { if (pBytesRead != NULL) { *pBytesRead = 0; } if (file == NULL || pDst == NULL) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_read__win32(pVFS, file, pDst, sizeInBytes, pBytesRead); #else return ma_default_vfs_read__stdio(pVFS, file, pDst, sizeInBytes, pBytesRead); #endif } static ma_result ma_default_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) { if (pBytesWritten != NULL) { *pBytesWritten = 0; } if (file == NULL || pSrc == NULL) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_write__win32(pVFS, file, pSrc, sizeInBytes, pBytesWritten); #else return ma_default_vfs_write__stdio(pVFS, file, pSrc, sizeInBytes, pBytesWritten); #endif } static ma_result ma_default_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) { if (file == NULL) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_seek__win32(pVFS, file, offset, origin); #else return ma_default_vfs_seek__stdio(pVFS, file, offset, origin); #endif } static ma_result ma_default_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; if (file == NULL) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_tell__win32(pVFS, file, pCursor); #else return ma_default_vfs_tell__stdio(pVFS, file, pCursor); #endif } static ma_result ma_default_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) { if (pInfo == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pInfo); if (file == NULL) { return MA_INVALID_ARGS; } #if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP) && !defined(MA_NO_WIN32_FILEIO) return ma_default_vfs_info__win32(pVFS, file, pInfo); #else return ma_default_vfs_info__stdio(pVFS, file, pInfo); #endif } MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks) { if (pVFS == NULL) { return MA_INVALID_ARGS; } pVFS->cb.onOpen = ma_default_vfs_open; pVFS->cb.onOpenW = ma_default_vfs_open_w; pVFS->cb.onClose = ma_default_vfs_close; pVFS->cb.onRead = ma_default_vfs_read; pVFS->cb.onWrite = ma_default_vfs_write; pVFS->cb.onSeek = ma_default_vfs_seek; pVFS->cb.onTell = ma_default_vfs_tell; pVFS->cb.onInfo = ma_default_vfs_info; ma_allocation_callbacks_init_copy(&pVFS->allocationCallbacks, pAllocationCallbacks); return MA_SUCCESS; } MA_API ma_result ma_vfs_or_default_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { if (pVFS != NULL) { return ma_vfs_open(pVFS, pFilePath, openMode, pFile); } else { return ma_default_vfs_open(pVFS, pFilePath, openMode, pFile); } } MA_API ma_result ma_vfs_or_default_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile) { if (pVFS != NULL) { return ma_vfs_open_w(pVFS, pFilePath, openMode, pFile); } else { return ma_default_vfs_open_w(pVFS, pFilePath, openMode, pFile); } } MA_API ma_result ma_vfs_or_default_close(ma_vfs* pVFS, ma_vfs_file file) { if (pVFS != NULL) { return ma_vfs_close(pVFS, file); } else { return ma_default_vfs_close(pVFS, file); } } MA_API ma_result ma_vfs_or_default_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead) { if (pVFS != NULL) { return ma_vfs_read(pVFS, file, pDst, sizeInBytes, pBytesRead); } else { return ma_default_vfs_read(pVFS, file, pDst, sizeInBytes, pBytesRead); } } MA_API ma_result ma_vfs_or_default_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten) { if (pVFS != NULL) { return ma_vfs_write(pVFS, file, pSrc, sizeInBytes, pBytesWritten); } else { return ma_default_vfs_write(pVFS, file, pSrc, sizeInBytes, pBytesWritten); } } MA_API ma_result ma_vfs_or_default_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin) { if (pVFS != NULL) { return ma_vfs_seek(pVFS, file, offset, origin); } else { return ma_default_vfs_seek(pVFS, file, offset, origin); } } MA_API ma_result ma_vfs_or_default_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor) { if (pVFS != NULL) { return ma_vfs_tell(pVFS, file, pCursor); } else { return ma_default_vfs_tell(pVFS, file, pCursor); } } MA_API ma_result ma_vfs_or_default_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo) { if (pVFS != NULL) { return ma_vfs_info(pVFS, file, pInfo); } else { return ma_default_vfs_info(pVFS, file, pInfo); } } /************************************************************************************************************************************************************** Decoding and Encoding Headers. These are auto-generated from a tool. **************************************************************************************************************************************************************/ #if !defined(MA_NO_WAV) && (!defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING)) /* dr_wav_h begin */ #ifndef dr_wav_h #define dr_wav_h #ifdef __cplusplus extern "C" { #endif #define DRWAV_STRINGIFY(x) #x #define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x) #define DRWAV_VERSION_MAJOR 0 #define DRWAV_VERSION_MINOR 13 #define DRWAV_VERSION_REVISION 7 #define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION) #include typedef signed char drwav_int8; typedef unsigned char drwav_uint8; typedef signed short drwav_int16; typedef unsigned short drwav_uint16; typedef signed int drwav_int32; typedef unsigned int drwav_uint32; #if defined(_MSC_VER) && !defined(__clang__) typedef signed __int64 drwav_int64; typedef unsigned __int64 drwav_uint64; #else #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wlong-long" #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc++11-long-long" #endif #endif typedef signed long long drwav_int64; typedef unsigned long long drwav_uint64; #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif #endif #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(_M_ARM64) || defined(__powerpc64__) typedef drwav_uint64 drwav_uintptr; #else typedef drwav_uint32 drwav_uintptr; #endif typedef drwav_uint8 drwav_bool8; typedef drwav_uint32 drwav_bool32; #define DRWAV_TRUE 1 #define DRWAV_FALSE 0 #if !defined(DRWAV_API) #if defined(DRWAV_DLL) #if defined(_WIN32) #define DRWAV_DLL_IMPORT __declspec(dllimport) #define DRWAV_DLL_EXPORT __declspec(dllexport) #define DRWAV_DLL_PRIVATE static #else #if defined(__GNUC__) && __GNUC__ >= 4 #define DRWAV_DLL_IMPORT __attribute__((visibility("default"))) #define DRWAV_DLL_EXPORT __attribute__((visibility("default"))) #define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden"))) #else #define DRWAV_DLL_IMPORT #define DRWAV_DLL_EXPORT #define DRWAV_DLL_PRIVATE static #endif #endif #if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION) #define DRWAV_API DRWAV_DLL_EXPORT #else #define DRWAV_API DRWAV_DLL_IMPORT #endif #define DRWAV_PRIVATE DRWAV_DLL_PRIVATE #else #define DRWAV_API extern #define DRWAV_PRIVATE static #endif #endif typedef drwav_int32 drwav_result; #define DRWAV_SUCCESS 0 #define DRWAV_ERROR -1 #define DRWAV_INVALID_ARGS -2 #define DRWAV_INVALID_OPERATION -3 #define DRWAV_OUT_OF_MEMORY -4 #define DRWAV_OUT_OF_RANGE -5 #define DRWAV_ACCESS_DENIED -6 #define DRWAV_DOES_NOT_EXIST -7 #define DRWAV_ALREADY_EXISTS -8 #define DRWAV_TOO_MANY_OPEN_FILES -9 #define DRWAV_INVALID_FILE -10 #define DRWAV_TOO_BIG -11 #define DRWAV_PATH_TOO_LONG -12 #define DRWAV_NAME_TOO_LONG -13 #define DRWAV_NOT_DIRECTORY -14 #define DRWAV_IS_DIRECTORY -15 #define DRWAV_DIRECTORY_NOT_EMPTY -16 #define DRWAV_END_OF_FILE -17 #define DRWAV_NO_SPACE -18 #define DRWAV_BUSY -19 #define DRWAV_IO_ERROR -20 #define DRWAV_INTERRUPT -21 #define DRWAV_UNAVAILABLE -22 #define DRWAV_ALREADY_IN_USE -23 #define DRWAV_BAD_ADDRESS -24 #define DRWAV_BAD_SEEK -25 #define DRWAV_BAD_PIPE -26 #define DRWAV_DEADLOCK -27 #define DRWAV_TOO_MANY_LINKS -28 #define DRWAV_NOT_IMPLEMENTED -29 #define DRWAV_NO_MESSAGE -30 #define DRWAV_BAD_MESSAGE -31 #define DRWAV_NO_DATA_AVAILABLE -32 #define DRWAV_INVALID_DATA -33 #define DRWAV_TIMEOUT -34 #define DRWAV_NO_NETWORK -35 #define DRWAV_NOT_UNIQUE -36 #define DRWAV_NOT_SOCKET -37 #define DRWAV_NO_ADDRESS -38 #define DRWAV_BAD_PROTOCOL -39 #define DRWAV_PROTOCOL_UNAVAILABLE -40 #define DRWAV_PROTOCOL_NOT_SUPPORTED -41 #define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42 #define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43 #define DRWAV_SOCKET_NOT_SUPPORTED -44 #define DRWAV_CONNECTION_RESET -45 #define DRWAV_ALREADY_CONNECTED -46 #define DRWAV_NOT_CONNECTED -47 #define DRWAV_CONNECTION_REFUSED -48 #define DRWAV_NO_HOST -49 #define DRWAV_IN_PROGRESS -50 #define DRWAV_CANCELLED -51 #define DRWAV_MEMORY_ALREADY_MAPPED -52 #define DRWAV_AT_END -53 #define DR_WAVE_FORMAT_PCM 0x1 #define DR_WAVE_FORMAT_ADPCM 0x2 #define DR_WAVE_FORMAT_IEEE_FLOAT 0x3 #define DR_WAVE_FORMAT_ALAW 0x6 #define DR_WAVE_FORMAT_MULAW 0x7 #define DR_WAVE_FORMAT_DVI_ADPCM 0x11 #define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE #define DRWAV_SEQUENTIAL 0x00000001 DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision); DRWAV_API const char* drwav_version_string(void); typedef enum { drwav_seek_origin_start, drwav_seek_origin_current } drwav_seek_origin; typedef enum { drwav_container_riff, drwav_container_w64, drwav_container_rf64 } drwav_container; typedef struct { union { drwav_uint8 fourcc[4]; drwav_uint8 guid[16]; } id; drwav_uint64 sizeInBytes; unsigned int paddingSize; } drwav_chunk_header; typedef struct { drwav_uint16 formatTag; drwav_uint16 channels; drwav_uint32 sampleRate; drwav_uint32 avgBytesPerSec; drwav_uint16 blockAlign; drwav_uint16 bitsPerSample; drwav_uint16 extendedSize; drwav_uint16 validBitsPerSample; drwav_uint32 channelMask; drwav_uint8 subFormat[16]; } drwav_fmt; DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT); typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite); typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin); typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT); typedef struct { void* pUserData; void* (* onMalloc)(size_t sz, void* pUserData); void* (* onRealloc)(void* p, size_t sz, void* pUserData); void (* onFree)(void* p, void* pUserData); } drwav_allocation_callbacks; typedef struct { const drwav_uint8* data; size_t dataSize; size_t currentReadPos; } drwav__memory_stream; typedef struct { void** ppData; size_t* pDataSize; size_t dataSize; size_t dataCapacity; size_t currentWritePos; } drwav__memory_stream_write; typedef struct { drwav_container container; drwav_uint32 format; drwav_uint32 channels; drwav_uint32 sampleRate; drwav_uint32 bitsPerSample; } drwav_data_format; typedef enum { drwav_metadata_type_none = 0, drwav_metadata_type_unknown = 1 << 0, drwav_metadata_type_smpl = 1 << 1, drwav_metadata_type_inst = 1 << 2, drwav_metadata_type_cue = 1 << 3, drwav_metadata_type_acid = 1 << 4, drwav_metadata_type_bext = 1 << 5, drwav_metadata_type_list_label = 1 << 6, drwav_metadata_type_list_note = 1 << 7, drwav_metadata_type_list_labelled_cue_region = 1 << 8, drwav_metadata_type_list_info_software = 1 << 9, drwav_metadata_type_list_info_copyright = 1 << 10, drwav_metadata_type_list_info_title = 1 << 11, drwav_metadata_type_list_info_artist = 1 << 12, drwav_metadata_type_list_info_comment = 1 << 13, drwav_metadata_type_list_info_date = 1 << 14, drwav_metadata_type_list_info_genre = 1 << 15, drwav_metadata_type_list_info_album = 1 << 16, drwav_metadata_type_list_info_tracknumber = 1 << 17, drwav_metadata_type_list_all_info_strings = drwav_metadata_type_list_info_software | drwav_metadata_type_list_info_copyright | drwav_metadata_type_list_info_title | drwav_metadata_type_list_info_artist | drwav_metadata_type_list_info_comment | drwav_metadata_type_list_info_date | drwav_metadata_type_list_info_genre | drwav_metadata_type_list_info_album | drwav_metadata_type_list_info_tracknumber, drwav_metadata_type_list_all_adtl = drwav_metadata_type_list_label | drwav_metadata_type_list_note | drwav_metadata_type_list_labelled_cue_region, drwav_metadata_type_all = -2, drwav_metadata_type_all_including_unknown = -1 } drwav_metadata_type; typedef enum { drwav_smpl_loop_type_forward = 0, drwav_smpl_loop_type_pingpong = 1, drwav_smpl_loop_type_backward = 2 } drwav_smpl_loop_type; typedef struct { drwav_uint32 cuePointId; drwav_uint32 type; drwav_uint32 firstSampleByteOffset; drwav_uint32 lastSampleByteOffset; drwav_uint32 sampleFraction; drwav_uint32 playCount; } drwav_smpl_loop; typedef struct { drwav_uint32 manufacturerId; drwav_uint32 productId; drwav_uint32 samplePeriodNanoseconds; drwav_uint32 midiUnityNote; drwav_uint32 midiPitchFraction; drwav_uint32 smpteFormat; drwav_uint32 smpteOffset; drwav_uint32 sampleLoopCount; drwav_uint32 samplerSpecificDataSizeInBytes; drwav_smpl_loop* pLoops; drwav_uint8* pSamplerSpecificData; } drwav_smpl; typedef struct { drwav_int8 midiUnityNote; drwav_int8 fineTuneCents; drwav_int8 gainDecibels; drwav_int8 lowNote; drwav_int8 highNote; drwav_int8 lowVelocity; drwav_int8 highVelocity; } drwav_inst; typedef struct { drwav_uint32 id; drwav_uint32 playOrderPosition; drwav_uint8 dataChunkId[4]; drwav_uint32 chunkStart; drwav_uint32 blockStart; drwav_uint32 sampleByteOffset; } drwav_cue_point; typedef struct { drwav_uint32 cuePointCount; drwav_cue_point *pCuePoints; } drwav_cue; typedef enum { drwav_acid_flag_one_shot = 1, drwav_acid_flag_root_note_set = 2, drwav_acid_flag_stretch = 4, drwav_acid_flag_disk_based = 8, drwav_acid_flag_acidizer = 16 } drwav_acid_flag; typedef struct { drwav_uint32 flags; drwav_uint16 midiUnityNote; drwav_uint16 reserved1; float reserved2; drwav_uint32 numBeats; drwav_uint16 meterDenominator; drwav_uint16 meterNumerator; float tempo; } drwav_acid; typedef struct { drwav_uint32 cuePointId; drwav_uint32 stringLength; char* pString; } drwav_list_label_or_note; typedef struct { char* pDescription; char* pOriginatorName; char* pOriginatorReference; char pOriginationDate[10]; char pOriginationTime[8]; drwav_uint64 timeReference; drwav_uint16 version; char* pCodingHistory; drwav_uint32 codingHistorySize; drwav_uint8* pUMID; drwav_uint16 loudnessValue; drwav_uint16 loudnessRange; drwav_uint16 maxTruePeakLevel; drwav_uint16 maxMomentaryLoudness; drwav_uint16 maxShortTermLoudness; } drwav_bext; typedef struct { drwav_uint32 stringLength; char* pString; } drwav_list_info_text; typedef struct { drwav_uint32 cuePointId; drwav_uint32 sampleLength; drwav_uint8 purposeId[4]; drwav_uint16 country; drwav_uint16 language; drwav_uint16 dialect; drwav_uint16 codePage; drwav_uint32 stringLength; char* pString; } drwav_list_labelled_cue_region; typedef enum { drwav_metadata_location_invalid, drwav_metadata_location_top_level, drwav_metadata_location_inside_info_list, drwav_metadata_location_inside_adtl_list } drwav_metadata_location; typedef struct { drwav_uint8 id[4]; drwav_metadata_location chunkLocation; drwav_uint32 dataSizeInBytes; drwav_uint8* pData; } drwav_unknown_metadata; typedef struct { drwav_metadata_type type; union { drwav_cue cue; drwav_smpl smpl; drwav_acid acid; drwav_inst inst; drwav_bext bext; drwav_list_label_or_note labelOrNote; drwav_list_labelled_cue_region labelledCueRegion; drwav_list_info_text infoText; drwav_unknown_metadata unknown; } data; } drwav_metadata; typedef struct { drwav_read_proc onRead; drwav_write_proc onWrite; drwav_seek_proc onSeek; void* pUserData; drwav_allocation_callbacks allocationCallbacks; drwav_container container; drwav_fmt fmt; drwav_uint32 sampleRate; drwav_uint16 channels; drwav_uint16 bitsPerSample; drwav_uint16 translatedFormatTag; drwav_uint64 totalPCMFrameCount; drwav_uint64 dataChunkDataSize; drwav_uint64 dataChunkDataPos; drwav_uint64 bytesRemaining; drwav_uint64 readCursorInPCMFrames; drwav_uint64 dataChunkDataSizeTargetWrite; drwav_bool32 isSequentialWrite; drwav_metadata_type allowedMetadataTypes; drwav_metadata* pMetadata; drwav_uint32 metadataCount; drwav__memory_stream memoryStream; drwav__memory_stream_write memoryStreamWrite; struct { drwav_uint32 bytesRemainingInBlock; drwav_uint16 predictor[2]; drwav_int32 delta[2]; drwav_int32 cachedFrames[4]; drwav_uint32 cachedFrameCount; drwav_int32 prevFrames[2][2]; } msadpcm; struct { drwav_uint32 bytesRemainingInBlock; drwav_int32 predictor[2]; drwav_int32 stepIndex[2]; drwav_int32 cachedFrames[16]; drwav_uint32 cachedFrameCount; } ima; } drwav; DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_with_metadata(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_write_with_metadata(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks, drwav_metadata* pMetadata, drwav_uint32 metadataCount); DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalFrameCount, drwav_metadata* pMetadata, drwav_uint32 metadataCount); DRWAV_API drwav_metadata* drwav_take_ownership_of_metadata(drwav* pWav); DRWAV_API drwav_result drwav_uninit(drwav* pWav); DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut); DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex); DRWAV_API drwav_result drwav_get_cursor_in_pcm_frames(drwav* pWav, drwav_uint64* pCursor); DRWAV_API drwav_result drwav_get_length_in_pcm_frames(drwav* pWav, drwav_uint64* pLength); DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData); DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData); #ifndef DR_WAV_NO_CONVERSION_API DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut); DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount); DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount); DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount); DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut); DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount); DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount); DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount); DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut); DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount); DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount); DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount); DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount); #endif #ifndef DR_WAV_NO_STDIO DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_with_metadata(drwav* pWav, const char* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_with_metadata_w(drwav* pWav, const wchar_t* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); #endif DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_memory_with_metadata(drwav* pWav, const void* data, size_t dataSize, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks); #ifndef DR_WAV_NO_CONVERSION_API DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); #ifndef DR_WAV_NO_STDIO DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); #endif DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks); #endif DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks); DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data); DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data); DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data); DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data); DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data); DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data); DRWAV_API float drwav_bytes_to_f32(const drwav_uint8* data); DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]); DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b); #ifdef __cplusplus } #endif #endif /* dr_wav_h end */ #endif /* MA_NO_WAV */ #if !defined(MA_NO_FLAC) && !defined(MA_NO_DECODING) /* dr_flac_h begin */ #ifndef dr_flac_h #define dr_flac_h #ifdef __cplusplus extern "C" { #endif #define DRFLAC_STRINGIFY(x) #x #define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x) #define DRFLAC_VERSION_MAJOR 0 #define DRFLAC_VERSION_MINOR 12 #define DRFLAC_VERSION_REVISION 39 #define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION) #include typedef signed char drflac_int8; typedef unsigned char drflac_uint8; typedef signed short drflac_int16; typedef unsigned short drflac_uint16; typedef signed int drflac_int32; typedef unsigned int drflac_uint32; #if defined(_MSC_VER) && !defined(__clang__) typedef signed __int64 drflac_int64; typedef unsigned __int64 drflac_uint64; #else #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wlong-long" #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc++11-long-long" #endif #endif typedef signed long long drflac_int64; typedef unsigned long long drflac_uint64; #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif #endif #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined(_M_IA64) || defined(__aarch64__) || defined(_M_ARM64) || defined(__powerpc64__) typedef drflac_uint64 drflac_uintptr; #else typedef drflac_uint32 drflac_uintptr; #endif typedef drflac_uint8 drflac_bool8; typedef drflac_uint32 drflac_bool32; #define DRFLAC_TRUE 1 #define DRFLAC_FALSE 0 #if !defined(DRFLAC_API) #if defined(DRFLAC_DLL) #if defined(_WIN32) #define DRFLAC_DLL_IMPORT __declspec(dllimport) #define DRFLAC_DLL_EXPORT __declspec(dllexport) #define DRFLAC_DLL_PRIVATE static #else #if defined(__GNUC__) && __GNUC__ >= 4 #define DRFLAC_DLL_IMPORT __attribute__((visibility("default"))) #define DRFLAC_DLL_EXPORT __attribute__((visibility("default"))) #define DRFLAC_DLL_PRIVATE __attribute__((visibility("hidden"))) #else #define DRFLAC_DLL_IMPORT #define DRFLAC_DLL_EXPORT #define DRFLAC_DLL_PRIVATE static #endif #endif #if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION) #define DRFLAC_API DRFLAC_DLL_EXPORT #else #define DRFLAC_API DRFLAC_DLL_IMPORT #endif #define DRFLAC_PRIVATE DRFLAC_DLL_PRIVATE #else #define DRFLAC_API extern #define DRFLAC_PRIVATE static #endif #endif #if defined(_MSC_VER) && _MSC_VER >= 1700 #define DRFLAC_DEPRECATED __declspec(deprecated) #elif (defined(__GNUC__) && __GNUC__ >= 4) #define DRFLAC_DEPRECATED __attribute__((deprecated)) #elif defined(__has_feature) #if __has_feature(attribute_deprecated) #define DRFLAC_DEPRECATED __attribute__((deprecated)) #else #define DRFLAC_DEPRECATED #endif #else #define DRFLAC_DEPRECATED #endif DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision); DRFLAC_API const char* drflac_version_string(void); #ifndef DR_FLAC_BUFFER_SIZE #define DR_FLAC_BUFFER_SIZE 4096 #endif #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) #define DRFLAC_64BIT #endif #ifdef DRFLAC_64BIT typedef drflac_uint64 drflac_cache_t; #else typedef drflac_uint32 drflac_cache_t; #endif #define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 #define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 #define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 #define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 #define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 #define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 #define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 #define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 #define DRFLAC_PICTURE_TYPE_OTHER 0 #define DRFLAC_PICTURE_TYPE_FILE_ICON 1 #define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 #define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 #define DRFLAC_PICTURE_TYPE_COVER_BACK 4 #define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 #define DRFLAC_PICTURE_TYPE_MEDIA 6 #define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 #define DRFLAC_PICTURE_TYPE_ARTIST 8 #define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 #define DRFLAC_PICTURE_TYPE_BAND 10 #define DRFLAC_PICTURE_TYPE_COMPOSER 11 #define DRFLAC_PICTURE_TYPE_LYRICIST 12 #define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 #define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 #define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 #define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 #define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 #define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 #define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 #define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 typedef enum { drflac_container_native, drflac_container_ogg, drflac_container_unknown } drflac_container; typedef enum { drflac_seek_origin_start, drflac_seek_origin_current } drflac_seek_origin; typedef struct { drflac_uint64 firstPCMFrame; drflac_uint64 flacFrameOffset; drflac_uint16 pcmFrameCount; } drflac_seekpoint; typedef struct { drflac_uint16 minBlockSizeInPCMFrames; drflac_uint16 maxBlockSizeInPCMFrames; drflac_uint32 minFrameSizeInPCMFrames; drflac_uint32 maxFrameSizeInPCMFrames; drflac_uint32 sampleRate; drflac_uint8 channels; drflac_uint8 bitsPerSample; drflac_uint64 totalPCMFrameCount; drflac_uint8 md5[16]; } drflac_streaminfo; typedef struct { drflac_uint32 type; const void* pRawData; drflac_uint32 rawDataSize; union { drflac_streaminfo streaminfo; struct { int unused; } padding; struct { drflac_uint32 id; const void* pData; drflac_uint32 dataSize; } application; struct { drflac_uint32 seekpointCount; const drflac_seekpoint* pSeekpoints; } seektable; struct { drflac_uint32 vendorLength; const char* vendor; drflac_uint32 commentCount; const void* pComments; } vorbis_comment; struct { char catalog[128]; drflac_uint64 leadInSampleCount; drflac_bool32 isCD; drflac_uint8 trackCount; const void* pTrackData; } cuesheet; struct { drflac_uint32 type; drflac_uint32 mimeLength; const char* mime; drflac_uint32 descriptionLength; const char* description; drflac_uint32 width; drflac_uint32 height; drflac_uint32 colorDepth; drflac_uint32 indexColorCount; drflac_uint32 pictureDataSize; const drflac_uint8* pPictureData; } picture; } data; } drflac_metadata; typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); typedef struct { void* pUserData; void* (* onMalloc)(size_t sz, void* pUserData); void* (* onRealloc)(void* p, size_t sz, void* pUserData); void (* onFree)(void* p, void* pUserData); } drflac_allocation_callbacks; typedef struct { const drflac_uint8* data; size_t dataSize; size_t currentReadPos; } drflac__memory_stream; typedef struct { drflac_read_proc onRead; drflac_seek_proc onSeek; void* pUserData; size_t unalignedByteCount; drflac_cache_t unalignedCache; drflac_uint32 nextL2Line; drflac_uint32 consumedBits; drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; drflac_cache_t cache; drflac_uint16 crc16; drflac_cache_t crc16Cache; drflac_uint32 crc16CacheIgnoredBytes; } drflac_bs; typedef struct { drflac_uint8 subframeType; drflac_uint8 wastedBitsPerSample; drflac_uint8 lpcOrder; drflac_int32* pSamplesS32; } drflac_subframe; typedef struct { drflac_uint64 pcmFrameNumber; drflac_uint32 flacFrameNumber; drflac_uint32 sampleRate; drflac_uint16 blockSizeInPCMFrames; drflac_uint8 channelAssignment; drflac_uint8 bitsPerSample; drflac_uint8 crc8; } drflac_frame_header; typedef struct { drflac_frame_header header; drflac_uint32 pcmFramesRemaining; drflac_subframe subframes[8]; } drflac_frame; typedef struct { drflac_meta_proc onMeta; void* pUserDataMD; drflac_allocation_callbacks allocationCallbacks; drflac_uint32 sampleRate; drflac_uint8 channels; drflac_uint8 bitsPerSample; drflac_uint16 maxBlockSizeInPCMFrames; drflac_uint64 totalPCMFrameCount; drflac_container container; drflac_uint32 seekpointCount; drflac_frame currentFLACFrame; drflac_uint64 currentPCMFrame; drflac_uint64 firstFLACFramePosInBytes; drflac__memory_stream memoryStream; drflac_int32* pDecodedSamples; drflac_seekpoint* pSeekpoints; void* _oggbs; drflac_bool32 _noSeekTableSeek : 1; drflac_bool32 _noBinarySearchSeek : 1; drflac_bool32 _noBruteForceSeek : 1; drflac_bs bs; drflac_uint8 pExtraData[1]; } drflac; DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API void drflac_close(drflac* pFlac); DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut); DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut); DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut); DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex); #ifndef DR_FLAC_NO_STDIO DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); #endif DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); #ifndef DR_FLAC_NO_STDIO DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); #endif DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks); typedef struct { drflac_uint32 countRemaining; const char* pRunningData; } drflac_vorbis_comment_iterator; DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments); DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut); typedef struct { drflac_uint32 countRemaining; const char* pRunningData; } drflac_cuesheet_track_iterator; typedef struct { drflac_uint64 offset; drflac_uint8 index; drflac_uint8 reserved[3]; } drflac_cuesheet_track_index; typedef struct { drflac_uint64 offset; drflac_uint8 trackNumber; char ISRC[12]; drflac_bool8 isAudio; drflac_bool8 preEmphasis; drflac_uint8 indexCount; const drflac_cuesheet_track_index* pIndexPoints; } drflac_cuesheet_track; DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData); DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack); #ifdef __cplusplus } #endif #endif /* dr_flac_h end */ #endif /* MA_NO_FLAC */ #if !defined(MA_NO_MP3) && !defined(MA_NO_DECODING) /* dr_mp3_h begin */ #ifndef dr_mp3_h #define dr_mp3_h #ifdef __cplusplus extern "C" { #endif #define DRMP3_STRINGIFY(x) #x #define DRMP3_XSTRINGIFY(x) DRMP3_STRINGIFY(x) #define DRMP3_VERSION_MAJOR 0 #define DRMP3_VERSION_MINOR 6 #define DRMP3_VERSION_REVISION 34 #define DRMP3_VERSION_STRING DRMP3_XSTRINGIFY(DRMP3_VERSION_MAJOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_MINOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_REVISION) #include typedef signed char drmp3_int8; typedef unsigned char drmp3_uint8; typedef signed short drmp3_int16; typedef unsigned short drmp3_uint16; typedef signed int drmp3_int32; typedef unsigned int drmp3_uint32; #if defined(_MSC_VER) && !defined(__clang__) typedef signed __int64 drmp3_int64; typedef unsigned __int64 drmp3_uint64; #else #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wlong-long" #if defined(__clang__) #pragma GCC diagnostic ignored "-Wc++11-long-long" #endif #endif typedef signed long long drmp3_int64; typedef unsigned long long drmp3_uint64; #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif #endif #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(_M_ARM64) || defined(__powerpc64__) typedef drmp3_uint64 drmp3_uintptr; #else typedef drmp3_uint32 drmp3_uintptr; #endif typedef drmp3_uint8 drmp3_bool8; typedef drmp3_uint32 drmp3_bool32; #define DRMP3_TRUE 1 #define DRMP3_FALSE 0 #if !defined(DRMP3_API) #if defined(DRMP3_DLL) #if defined(_WIN32) #define DRMP3_DLL_IMPORT __declspec(dllimport) #define DRMP3_DLL_EXPORT __declspec(dllexport) #define DRMP3_DLL_PRIVATE static #else #if defined(__GNUC__) && __GNUC__ >= 4 #define DRMP3_DLL_IMPORT __attribute__((visibility("default"))) #define DRMP3_DLL_EXPORT __attribute__((visibility("default"))) #define DRMP3_DLL_PRIVATE __attribute__((visibility("hidden"))) #else #define DRMP3_DLL_IMPORT #define DRMP3_DLL_EXPORT #define DRMP3_DLL_PRIVATE static #endif #endif #if defined(DR_MP3_IMPLEMENTATION) || defined(DRMP3_IMPLEMENTATION) #define DRMP3_API DRMP3_DLL_EXPORT #else #define DRMP3_API DRMP3_DLL_IMPORT #endif #define DRMP3_PRIVATE DRMP3_DLL_PRIVATE #else #define DRMP3_API extern #define DRMP3_PRIVATE static #endif #endif typedef drmp3_int32 drmp3_result; #define DRMP3_SUCCESS 0 #define DRMP3_ERROR -1 #define DRMP3_INVALID_ARGS -2 #define DRMP3_INVALID_OPERATION -3 #define DRMP3_OUT_OF_MEMORY -4 #define DRMP3_OUT_OF_RANGE -5 #define DRMP3_ACCESS_DENIED -6 #define DRMP3_DOES_NOT_EXIST -7 #define DRMP3_ALREADY_EXISTS -8 #define DRMP3_TOO_MANY_OPEN_FILES -9 #define DRMP3_INVALID_FILE -10 #define DRMP3_TOO_BIG -11 #define DRMP3_PATH_TOO_LONG -12 #define DRMP3_NAME_TOO_LONG -13 #define DRMP3_NOT_DIRECTORY -14 #define DRMP3_IS_DIRECTORY -15 #define DRMP3_DIRECTORY_NOT_EMPTY -16 #define DRMP3_END_OF_FILE -17 #define DRMP3_NO_SPACE -18 #define DRMP3_BUSY -19 #define DRMP3_IO_ERROR -20 #define DRMP3_INTERRUPT -21 #define DRMP3_UNAVAILABLE -22 #define DRMP3_ALREADY_IN_USE -23 #define DRMP3_BAD_ADDRESS -24 #define DRMP3_BAD_SEEK -25 #define DRMP3_BAD_PIPE -26 #define DRMP3_DEADLOCK -27 #define DRMP3_TOO_MANY_LINKS -28 #define DRMP3_NOT_IMPLEMENTED -29 #define DRMP3_NO_MESSAGE -30 #define DRMP3_BAD_MESSAGE -31 #define DRMP3_NO_DATA_AVAILABLE -32 #define DRMP3_INVALID_DATA -33 #define DRMP3_TIMEOUT -34 #define DRMP3_NO_NETWORK -35 #define DRMP3_NOT_UNIQUE -36 #define DRMP3_NOT_SOCKET -37 #define DRMP3_NO_ADDRESS -38 #define DRMP3_BAD_PROTOCOL -39 #define DRMP3_PROTOCOL_UNAVAILABLE -40 #define DRMP3_PROTOCOL_NOT_SUPPORTED -41 #define DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED -42 #define DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED -43 #define DRMP3_SOCKET_NOT_SUPPORTED -44 #define DRMP3_CONNECTION_RESET -45 #define DRMP3_ALREADY_CONNECTED -46 #define DRMP3_NOT_CONNECTED -47 #define DRMP3_CONNECTION_REFUSED -48 #define DRMP3_NO_HOST -49 #define DRMP3_IN_PROGRESS -50 #define DRMP3_CANCELLED -51 #define DRMP3_MEMORY_ALREADY_MAPPED -52 #define DRMP3_AT_END -53 #define DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME 1152 #define DRMP3_MAX_SAMPLES_PER_FRAME (DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME*2) #ifdef _MSC_VER #define DRMP3_INLINE __forceinline #elif defined(__GNUC__) #if defined(__STRICT_ANSI__) #define DRMP3_GNUC_INLINE_HINT __inline__ #else #define DRMP3_GNUC_INLINE_HINT inline #endif #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 2)) || defined(__clang__) #define DRMP3_INLINE DRMP3_GNUC_INLINE_HINT __attribute__((always_inline)) #else #define DRMP3_INLINE DRMP3_GNUC_INLINE_HINT #endif #elif defined(__WATCOMC__) #define DRMP3_INLINE __inline #else #define DRMP3_INLINE #endif DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision); DRMP3_API const char* drmp3_version_string(void); typedef struct { int frame_bytes, channels, hz, layer, bitrate_kbps; } drmp3dec_frame_info; typedef struct { float mdct_overlap[2][9*32], qmf_state[15*2*32]; int reserv, free_format_bytes; drmp3_uint8 header[4], reserv_buf[511]; } drmp3dec; DRMP3_API void drmp3dec_init(drmp3dec *dec); DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info); DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples); typedef enum { drmp3_seek_origin_start, drmp3_seek_origin_current } drmp3_seek_origin; typedef struct { drmp3_uint64 seekPosInBytes; drmp3_uint64 pcmFrameIndex; drmp3_uint16 mp3FramesToDiscard; drmp3_uint16 pcmFramesToDiscard; } drmp3_seek_point; typedef size_t (* drmp3_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); typedef drmp3_bool32 (* drmp3_seek_proc)(void* pUserData, int offset, drmp3_seek_origin origin); typedef struct { void* pUserData; void* (* onMalloc)(size_t sz, void* pUserData); void* (* onRealloc)(void* p, size_t sz, void* pUserData); void (* onFree)(void* p, void* pUserData); } drmp3_allocation_callbacks; typedef struct { drmp3_uint32 channels; drmp3_uint32 sampleRate; } drmp3_config; typedef struct { drmp3dec decoder; drmp3_uint32 channels; drmp3_uint32 sampleRate; drmp3_read_proc onRead; drmp3_seek_proc onSeek; void* pUserData; drmp3_allocation_callbacks allocationCallbacks; drmp3_uint32 mp3FrameChannels; drmp3_uint32 mp3FrameSampleRate; drmp3_uint32 pcmFramesConsumedInMP3Frame; drmp3_uint32 pcmFramesRemainingInMP3Frame; drmp3_uint8 pcmFrames[sizeof(float)*DRMP3_MAX_SAMPLES_PER_FRAME]; drmp3_uint64 currentPCMFrame; drmp3_uint64 streamCursor; drmp3_seek_point* pSeekPoints; drmp3_uint32 seekPointCount; size_t dataSize; size_t dataCapacity; size_t dataConsumed; drmp3_uint8* pData; drmp3_bool32 atEnd : 1; struct { const drmp3_uint8* pData; size_t dataSize; size_t currentReadPos; } memory; } drmp3; DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks); #ifndef DR_MP3_NO_STDIO DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks); #endif DRMP3_API void drmp3_uninit(drmp3* pMP3); DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut); DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut); DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex); DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3); DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3); DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount); DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints); DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints); DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); #ifndef DR_MP3_NO_STDIO DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks); #endif DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks); DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks); #ifdef __cplusplus } #endif #endif /* dr_mp3_h end */ #endif /* MA_NO_MP3 */ /************************************************************************************************************************************************************** Decoding **************************************************************************************************************************************************************/ #ifndef MA_NO_DECODING static ma_result ma_decoder_read_bytes(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead, size_t* pBytesRead) { MA_ASSERT(pDecoder != NULL); return pDecoder->onRead(pDecoder, pBufferOut, bytesToRead, pBytesRead); } static ma_result ma_decoder_seek_bytes(ma_decoder* pDecoder, ma_int64 byteOffset, ma_seek_origin origin) { MA_ASSERT(pDecoder != NULL); return pDecoder->onSeek(pDecoder, byteOffset, origin); } static ma_result ma_decoder_tell_bytes(ma_decoder* pDecoder, ma_int64* pCursor) { MA_ASSERT(pDecoder != NULL); if (pDecoder->onTell == NULL) { return MA_NOT_IMPLEMENTED; } return pDecoder->onTell(pDecoder, pCursor); } MA_API ma_decoding_backend_config ma_decoding_backend_config_init(ma_format preferredFormat, ma_uint32 seekPointCount) { ma_decoding_backend_config config; MA_ZERO_OBJECT(&config); config.preferredFormat = preferredFormat; config.seekPointCount = seekPointCount; return config; } MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate) { ma_decoder_config config; MA_ZERO_OBJECT(&config); config.format = outputFormat; config.channels = outputChannels; config.sampleRate = outputSampleRate; config.resampling = ma_resampler_config_init(ma_format_unknown, 0, 0, 0, ma_resample_algorithm_linear); /* Format/channels/rate doesn't matter here. */ config.encodingFormat = ma_encoding_format_unknown; /* Note that we are intentionally leaving the channel map empty here which will cause the default channel map to be used. */ return config; } MA_API ma_decoder_config ma_decoder_config_init_default() { return ma_decoder_config_init(ma_format_unknown, 0, 0); } MA_API ma_decoder_config ma_decoder_config_init_copy(const ma_decoder_config* pConfig) { ma_decoder_config config; if (pConfig != NULL) { config = *pConfig; } else { MA_ZERO_OBJECT(&config); } return config; } static ma_result ma_decoder__init_data_converter(ma_decoder* pDecoder, const ma_decoder_config* pConfig) { ma_result result; ma_data_converter_config converterConfig; ma_format internalFormat; ma_uint32 internalChannels; ma_uint32 internalSampleRate; ma_channel internalChannelMap[MA_MAX_CHANNELS]; MA_ASSERT(pDecoder != NULL); MA_ASSERT(pConfig != NULL); result = ma_data_source_get_data_format(pDecoder->pBackend, &internalFormat, &internalChannels, &internalSampleRate, internalChannelMap, ma_countof(internalChannelMap)); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the internal data format. */ } /* Make sure we're not asking for too many channels. */ if (pConfig->channels > MA_MAX_CHANNELS) { return MA_INVALID_ARGS; } /* The internal channels should have already been validated at a higher level, but we'll do it again explicitly here for safety. */ if (internalChannels > MA_MAX_CHANNELS) { return MA_INVALID_ARGS; } /* Output format. */ if (pConfig->format == ma_format_unknown) { pDecoder->outputFormat = internalFormat; } else { pDecoder->outputFormat = pConfig->format; } if (pConfig->channels == 0) { pDecoder->outputChannels = internalChannels; } else { pDecoder->outputChannels = pConfig->channels; } if (pConfig->sampleRate == 0) { pDecoder->outputSampleRate = internalSampleRate; } else { pDecoder->outputSampleRate = pConfig->sampleRate; } converterConfig = ma_data_converter_config_init( internalFormat, pDecoder->outputFormat, internalChannels, pDecoder->outputChannels, internalSampleRate, pDecoder->outputSampleRate ); converterConfig.pChannelMapIn = internalChannelMap; converterConfig.pChannelMapOut = pConfig->pChannelMap; converterConfig.channelMixMode = pConfig->channelMixMode; converterConfig.ditherMode = pConfig->ditherMode; converterConfig.allowDynamicSampleRate = MA_FALSE; /* Never allow dynamic sample rate conversion. Setting this to true will disable passthrough optimizations. */ converterConfig.resampling = pConfig->resampling; result = ma_data_converter_init(&converterConfig, &pDecoder->allocationCallbacks, &pDecoder->converter); if (result != MA_SUCCESS) { return result; } /* Now that we have the decoder we need to determine whether or not we need a heap-allocated cache. We'll need this if the data converter does not support calculation of the required input frame count. To determine support for this we'll just run a test. */ { ma_uint64 unused; result = ma_data_converter_get_required_input_frame_count(&pDecoder->converter, 1, &unused); if (result != MA_SUCCESS) { /* We were unable to calculate the required input frame count which means we'll need to use a heap-allocated cache. */ ma_uint64 inputCacheCapSizeInBytes; pDecoder->inputCacheCap = MA_DATA_CONVERTER_STACK_BUFFER_SIZE / ma_get_bytes_per_frame(internalFormat, internalChannels); /* Not strictly necessary, but keeping here for safety in case we change the default value of pDecoder->inputCacheCap. */ inputCacheCapSizeInBytes = pDecoder->inputCacheCap * ma_get_bytes_per_frame(internalFormat, internalChannels); if (inputCacheCapSizeInBytes > MA_SIZE_MAX) { ma_data_converter_uninit(&pDecoder->converter, &pDecoder->allocationCallbacks); return MA_OUT_OF_MEMORY; } pDecoder->pInputCache = ma_malloc((size_t)inputCacheCapSizeInBytes, &pDecoder->allocationCallbacks); /* Safe cast to size_t. */ if (pDecoder->pInputCache == NULL) { ma_data_converter_uninit(&pDecoder->converter, &pDecoder->allocationCallbacks); return MA_OUT_OF_MEMORY; } } } return MA_SUCCESS; } static ma_result ma_decoder_internal_on_read__custom(void* pUserData, void* pBufferOut, size_t bytesToRead, size_t* pBytesRead) { ma_decoder* pDecoder = (ma_decoder*)pUserData; MA_ASSERT(pDecoder != NULL); return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead, pBytesRead); } static ma_result ma_decoder_internal_on_seek__custom(void* pUserData, ma_int64 offset, ma_seek_origin origin) { ma_decoder* pDecoder = (ma_decoder*)pUserData; MA_ASSERT(pDecoder != NULL); return ma_decoder_seek_bytes(pDecoder, offset, origin); } static ma_result ma_decoder_internal_on_tell__custom(void* pUserData, ma_int64* pCursor) { ma_decoder* pDecoder = (ma_decoder*)pUserData; MA_ASSERT(pDecoder != NULL); return ma_decoder_tell_bytes(pDecoder, pCursor); } static ma_result ma_decoder_init_from_vtable(const ma_decoding_backend_vtable* pVTable, void* pVTableUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; ma_decoding_backend_config backendConfig; ma_data_source* pBackend; MA_ASSERT(pVTable != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(pDecoder != NULL); if (pVTable->onInit == NULL) { return MA_NOT_IMPLEMENTED; } backendConfig = ma_decoding_backend_config_init(pConfig->format, pConfig->seekPointCount); result = pVTable->onInit(pVTableUserData, ma_decoder_internal_on_read__custom, ma_decoder_internal_on_seek__custom, ma_decoder_internal_on_tell__custom, pDecoder, &backendConfig, &pDecoder->allocationCallbacks, &pBackend); if (result != MA_SUCCESS) { return result; /* Failed to initialize the backend from this vtable. */ } /* Getting here means we were able to initialize the backend so we can now initialize the decoder. */ pDecoder->pBackend = pBackend; pDecoder->pBackendVTable = pVTable; pDecoder->pBackendUserData = pConfig->pCustomBackendUserData; return MA_SUCCESS; } static ma_result ma_decoder_init_custom__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result = MA_NO_BACKEND; size_t ivtable; MA_ASSERT(pConfig != NULL); MA_ASSERT(pDecoder != NULL); if (pConfig->ppCustomBackendVTables == NULL) { return MA_NO_BACKEND; } /* The order each backend is listed is what defines the priority. */ for (ivtable = 0; ivtable < pConfig->customBackendCount; ivtable += 1) { const ma_decoding_backend_vtable* pVTable = pConfig->ppCustomBackendVTables[ivtable]; if (pVTable != NULL && pVTable->onInit != NULL) { result = ma_decoder_init_from_vtable(pVTable, pConfig->pCustomBackendUserData, pConfig, pDecoder); if (result == MA_SUCCESS) { return MA_SUCCESS; } else { /* Initialization failed. Move on to the next one, but seek back to the start first so the next vtable starts from the first byte of the file. */ result = ma_decoder_seek_bytes(pDecoder, 0, ma_seek_origin_start); if (result != MA_SUCCESS) { return result; /* Failed to seek back to the start. */ } } } else { /* No vtable. */ } } /* Getting here means we couldn't find a backend. */ return MA_NO_BACKEND; } /* WAV */ #ifdef dr_wav_h #define MA_HAS_WAV typedef struct { ma_data_source_base ds; ma_read_proc onRead; ma_seek_proc onSeek; ma_tell_proc onTell; void* pReadSeekTellUserData; ma_format format; /* Can be f32, s16 or s32. */ #if !defined(MA_NO_WAV) drwav dr; #endif } ma_wav; MA_API ma_result ma_wav_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav); MA_API ma_result ma_wav_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav); MA_API ma_result ma_wav_init_file_w(const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav); MA_API ma_result ma_wav_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav); MA_API void ma_wav_uninit(ma_wav* pWav, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_wav_read_pcm_frames(ma_wav* pWav, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_wav_seek_to_pcm_frame(ma_wav* pWav, ma_uint64 frameIndex); MA_API ma_result ma_wav_get_data_format(ma_wav* pWav, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_wav_get_cursor_in_pcm_frames(ma_wav* pWav, ma_uint64* pCursor); MA_API ma_result ma_wav_get_length_in_pcm_frames(ma_wav* pWav, ma_uint64* pLength); static ma_result ma_wav_ds_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_wav_read_pcm_frames((ma_wav*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_wav_ds_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_wav_seek_to_pcm_frame((ma_wav*)pDataSource, frameIndex); } static ma_result ma_wav_ds_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_wav_get_data_format((ma_wav*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_wav_ds_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_wav_get_cursor_in_pcm_frames((ma_wav*)pDataSource, pCursor); } static ma_result ma_wav_ds_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_wav_get_length_in_pcm_frames((ma_wav*)pDataSource, pLength); } static ma_data_source_vtable g_ma_wav_ds_vtable = { ma_wav_ds_read, ma_wav_ds_seek, ma_wav_ds_get_data_format, ma_wav_ds_get_cursor, ma_wav_ds_get_length, NULL, /* onSetLooping */ 0 }; #if !defined(MA_NO_WAV) static drwav_allocation_callbacks drwav_allocation_callbacks_from_miniaudio(const ma_allocation_callbacks* pAllocationCallbacks) { drwav_allocation_callbacks callbacks; if (pAllocationCallbacks != NULL) { callbacks.onMalloc = pAllocationCallbacks->onMalloc; callbacks.onRealloc = pAllocationCallbacks->onRealloc; callbacks.onFree = pAllocationCallbacks->onFree; callbacks.pUserData = pAllocationCallbacks->pUserData; } else { callbacks.onMalloc = ma__malloc_default; callbacks.onRealloc = ma__realloc_default; callbacks.onFree = ma__free_default; callbacks.pUserData = NULL; } return callbacks; } static size_t ma_wav_dr_callback__read(void* pUserData, void* pBufferOut, size_t bytesToRead) { ma_wav* pWav = (ma_wav*)pUserData; ma_result result; size_t bytesRead; MA_ASSERT(pWav != NULL); result = pWav->onRead(pWav->pReadSeekTellUserData, pBufferOut, bytesToRead, &bytesRead); (void)result; return bytesRead; } static drwav_bool32 ma_wav_dr_callback__seek(void* pUserData, int offset, drwav_seek_origin origin) { ma_wav* pWav = (ma_wav*)pUserData; ma_result result; ma_seek_origin maSeekOrigin; MA_ASSERT(pWav != NULL); maSeekOrigin = ma_seek_origin_start; if (origin == drwav_seek_origin_current) { maSeekOrigin = ma_seek_origin_current; } result = pWav->onSeek(pWav->pReadSeekTellUserData, offset, maSeekOrigin); if (result != MA_SUCCESS) { return MA_FALSE; } return MA_TRUE; } #endif static ma_result ma_wav_init_internal(const ma_decoding_backend_config* pConfig, ma_wav* pWav) { ma_result result; ma_data_source_config dataSourceConfig; if (pWav == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pWav); pWav->format = ma_format_unknown; /* Use closest match to source file by default. */ if (pConfig != NULL && (pConfig->preferredFormat == ma_format_f32 || pConfig->preferredFormat == ma_format_s16 || pConfig->preferredFormat == ma_format_s32)) { pWav->format = pConfig->preferredFormat; } else { /* Getting here means something other than f32 and s16 was specified. Just leave this unset to use the default format. */ } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_wav_ds_vtable; result = ma_data_source_init(&dataSourceConfig, &pWav->ds); if (result != MA_SUCCESS) { return result; /* Failed to initialize the base data source. */ } return MA_SUCCESS; } MA_API ma_result ma_wav_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav) { ma_result result; result = ma_wav_init_internal(pConfig, pWav); if (result != MA_SUCCESS) { return result; } if (onRead == NULL || onSeek == NULL) { return MA_INVALID_ARGS; /* onRead and onSeek are mandatory. */ } pWav->onRead = onRead; pWav->onSeek = onSeek; pWav->onTell = onTell; pWav->pReadSeekTellUserData = pReadSeekTellUserData; #if !defined(MA_NO_WAV) { drwav_allocation_callbacks wavAllocationCallbacks = drwav_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drwav_bool32 wavResult; wavResult = drwav_init(&pWav->dr, ma_wav_dr_callback__read, ma_wav_dr_callback__seek, pWav, &wavAllocationCallbacks); if (wavResult != MA_TRUE) { return MA_INVALID_FILE; } /* If an explicit format was not specified, try picking the closest match based on the internal format. The format needs to be supported by miniaudio. */ if (pWav->format == ma_format_unknown) { switch (pWav->dr.translatedFormatTag) { case DR_WAVE_FORMAT_PCM: { if (pWav->dr.bitsPerSample == 8) { pWav->format = ma_format_u8; } else if (pWav->dr.bitsPerSample == 16) { pWav->format = ma_format_s16; } else if (pWav->dr.bitsPerSample == 24) { pWav->format = ma_format_s24; } else if (pWav->dr.bitsPerSample == 32) { pWav->format = ma_format_s32; } } break; case DR_WAVE_FORMAT_IEEE_FLOAT: { if (pWav->dr.bitsPerSample == 32) { pWav->format = ma_format_f32; } } break; default: break; } /* Fall back to f32 if we couldn't find anything. */ if (pWav->format == ma_format_unknown) { pWav->format = ma_format_f32; } } return MA_SUCCESS; } #else { /* wav is disabled. */ (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav) { ma_result result; result = ma_wav_init_internal(pConfig, pWav); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_WAV) { drwav_allocation_callbacks wavAllocationCallbacks = drwav_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drwav_bool32 wavResult; wavResult = drwav_init_file(&pWav->dr, pFilePath, &wavAllocationCallbacks); if (wavResult != MA_TRUE) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* wav is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_init_file_w(const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav) { ma_result result; result = ma_wav_init_internal(pConfig, pWav); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_WAV) { drwav_allocation_callbacks wavAllocationCallbacks = drwav_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drwav_bool32 wavResult; wavResult = drwav_init_file_w(&pWav->dr, pFilePath, &wavAllocationCallbacks); if (wavResult != MA_TRUE) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* wav is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_wav* pWav) { ma_result result; result = ma_wav_init_internal(pConfig, pWav); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_WAV) { drwav_allocation_callbacks wavAllocationCallbacks = drwav_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drwav_bool32 wavResult; wavResult = drwav_init_memory(&pWav->dr, pData, dataSize, &wavAllocationCallbacks); if (wavResult != MA_TRUE) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* wav is disabled. */ (void)pData; (void)dataSize; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API void ma_wav_uninit(ma_wav* pWav, const ma_allocation_callbacks* pAllocationCallbacks) { if (pWav == NULL) { return; } (void)pAllocationCallbacks; #if !defined(MA_NO_WAV) { drwav_uninit(&pWav->dr); } #else { /* wav is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); } #endif ma_data_source_uninit(&pWav->ds); } MA_API ma_result ma_wav_read_pcm_frames(ma_wav* pWav, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pWav == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_WAV) { /* We always use floating point format. */ ma_result result = MA_SUCCESS; /* Must be initialized to MA_SUCCESS. */ ma_uint64 totalFramesRead = 0; ma_format format; ma_wav_get_data_format(pWav, &format, NULL, NULL, NULL, 0); switch (format) { case ma_format_f32: { totalFramesRead = drwav_read_pcm_frames_f32(&pWav->dr, frameCount, (float*)pFramesOut); } break; case ma_format_s16: { totalFramesRead = drwav_read_pcm_frames_s16(&pWav->dr, frameCount, (drwav_int16*)pFramesOut); } break; case ma_format_s32: { totalFramesRead = drwav_read_pcm_frames_s32(&pWav->dr, frameCount, (drwav_int32*)pFramesOut); } break; /* Fallback to a raw read. */ case ma_format_unknown: return MA_INVALID_OPERATION; /* <-- this should never be hit because initialization would just fall back to a supported format. */ default: { totalFramesRead = drwav_read_pcm_frames(&pWav->dr, frameCount, pFramesOut); } break; } /* In the future we'll update dr_wav to return MA_AT_END for us. */ if (totalFramesRead == 0) { result = MA_AT_END; } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } if (result == MA_SUCCESS && totalFramesRead == 0) { result = MA_AT_END; } return result; } #else { /* wav is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)pFramesOut; (void)frameCount; (void)pFramesRead; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_seek_to_pcm_frame(ma_wav* pWav, ma_uint64 frameIndex) { if (pWav == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_WAV) { drwav_bool32 wavResult; wavResult = drwav_seek_to_pcm_frame(&pWav->dr, frameIndex); if (wavResult != DRWAV_TRUE) { return MA_ERROR; } return MA_SUCCESS; } #else { /* wav is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)frameIndex; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_get_data_format(ma_wav* pWav, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { /* Defaults for safety. */ if (pFormat != NULL) { *pFormat = ma_format_unknown; } if (pChannels != NULL) { *pChannels = 0; } if (pSampleRate != NULL) { *pSampleRate = 0; } if (pChannelMap != NULL) { MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channelMapCap); } if (pWav == NULL) { return MA_INVALID_OPERATION; } if (pFormat != NULL) { *pFormat = pWav->format; } #if !defined(MA_NO_WAV) { if (pChannels != NULL) { *pChannels = pWav->dr.channels; } if (pSampleRate != NULL) { *pSampleRate = pWav->dr.sampleRate; } if (pChannelMap != NULL) { ma_channel_map_init_standard(ma_standard_channel_map_microsoft, pChannelMap, channelMapCap, pWav->dr.channels); } return MA_SUCCESS; } #else { /* wav is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_get_cursor_in_pcm_frames(ma_wav* pWav, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; /* Safety. */ if (pWav == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_WAV) { drwav_result wavResult = drwav_get_cursor_in_pcm_frames(&pWav->dr, pCursor); if (wavResult != DRWAV_SUCCESS) { return (ma_result)wavResult; /* dr_wav result codes map to miniaudio's. */ } return MA_SUCCESS; } #else { /* wav is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_wav_get_length_in_pcm_frames(ma_wav* pWav, ma_uint64* pLength) { if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; /* Safety. */ if (pWav == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_WAV) { drwav_result wavResult = drwav_get_length_in_pcm_frames(&pWav->dr, pLength); if (wavResult != DRWAV_SUCCESS) { return (ma_result)wavResult; /* dr_wav result codes map to miniaudio's. */ } return MA_SUCCESS; } #else { /* wav is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } static ma_result ma_decoding_backend_init__wav(void* pUserData, ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_wav* pWav; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pWav = (ma_wav*)ma_malloc(sizeof(*pWav), pAllocationCallbacks); if (pWav == NULL) { return MA_OUT_OF_MEMORY; } result = ma_wav_init(onRead, onSeek, onTell, pReadSeekTellUserData, pConfig, pAllocationCallbacks, pWav); if (result != MA_SUCCESS) { ma_free(pWav, pAllocationCallbacks); return result; } *ppBackend = pWav; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file__wav(void* pUserData, const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_wav* pWav; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pWav = (ma_wav*)ma_malloc(sizeof(*pWav), pAllocationCallbacks); if (pWav == NULL) { return MA_OUT_OF_MEMORY; } result = ma_wav_init_file(pFilePath, pConfig, pAllocationCallbacks, pWav); if (result != MA_SUCCESS) { ma_free(pWav, pAllocationCallbacks); return result; } *ppBackend = pWav; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file_w__wav(void* pUserData, const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_wav* pWav; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pWav = (ma_wav*)ma_malloc(sizeof(*pWav), pAllocationCallbacks); if (pWav == NULL) { return MA_OUT_OF_MEMORY; } result = ma_wav_init_file_w(pFilePath, pConfig, pAllocationCallbacks, pWav); if (result != MA_SUCCESS) { ma_free(pWav, pAllocationCallbacks); return result; } *ppBackend = pWav; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_memory__wav(void* pUserData, const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_wav* pWav; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pWav = (ma_wav*)ma_malloc(sizeof(*pWav), pAllocationCallbacks); if (pWav == NULL) { return MA_OUT_OF_MEMORY; } result = ma_wav_init_memory(pData, dataSize, pConfig, pAllocationCallbacks, pWav); if (result != MA_SUCCESS) { ma_free(pWav, pAllocationCallbacks); return result; } *ppBackend = pWav; return MA_SUCCESS; } static void ma_decoding_backend_uninit__wav(void* pUserData, ma_data_source* pBackend, const ma_allocation_callbacks* pAllocationCallbacks) { ma_wav* pWav = (ma_wav*)pBackend; (void)pUserData; ma_wav_uninit(pWav, pAllocationCallbacks); ma_free(pWav, pAllocationCallbacks); } static ma_decoding_backend_vtable g_ma_decoding_backend_vtable_wav = { ma_decoding_backend_init__wav, ma_decoding_backend_init_file__wav, ma_decoding_backend_init_file_w__wav, ma_decoding_backend_init_memory__wav, ma_decoding_backend_uninit__wav }; static ma_result ma_decoder_init_wav__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { return ma_decoder_init_from_vtable(&g_ma_decoding_backend_vtable_wav, NULL, pConfig, pDecoder); } #endif /* dr_wav_h */ /* FLAC */ #ifdef dr_flac_h #define MA_HAS_FLAC typedef struct { ma_data_source_base ds; ma_read_proc onRead; ma_seek_proc onSeek; ma_tell_proc onTell; void* pReadSeekTellUserData; ma_format format; /* Can be f32, s16 or s32. */ #if !defined(MA_NO_FLAC) drflac* dr; #endif } ma_flac; MA_API ma_result ma_flac_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac); MA_API ma_result ma_flac_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac); MA_API ma_result ma_flac_init_file_w(const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac); MA_API ma_result ma_flac_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac); MA_API void ma_flac_uninit(ma_flac* pFlac, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_flac_read_pcm_frames(ma_flac* pFlac, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_flac_seek_to_pcm_frame(ma_flac* pFlac, ma_uint64 frameIndex); MA_API ma_result ma_flac_get_data_format(ma_flac* pFlac, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_flac_get_cursor_in_pcm_frames(ma_flac* pFlac, ma_uint64* pCursor); MA_API ma_result ma_flac_get_length_in_pcm_frames(ma_flac* pFlac, ma_uint64* pLength); static ma_result ma_flac_ds_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_flac_read_pcm_frames((ma_flac*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_flac_ds_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_flac_seek_to_pcm_frame((ma_flac*)pDataSource, frameIndex); } static ma_result ma_flac_ds_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_flac_get_data_format((ma_flac*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_flac_ds_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_flac_get_cursor_in_pcm_frames((ma_flac*)pDataSource, pCursor); } static ma_result ma_flac_ds_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_flac_get_length_in_pcm_frames((ma_flac*)pDataSource, pLength); } static ma_data_source_vtable g_ma_flac_ds_vtable = { ma_flac_ds_read, ma_flac_ds_seek, ma_flac_ds_get_data_format, ma_flac_ds_get_cursor, ma_flac_ds_get_length, NULL, /* onSetLooping */ 0 }; #if !defined(MA_NO_FLAC) static drflac_allocation_callbacks drflac_allocation_callbacks_from_miniaudio(const ma_allocation_callbacks* pAllocationCallbacks) { drflac_allocation_callbacks callbacks; if (pAllocationCallbacks != NULL) { callbacks.onMalloc = pAllocationCallbacks->onMalloc; callbacks.onRealloc = pAllocationCallbacks->onRealloc; callbacks.onFree = pAllocationCallbacks->onFree; callbacks.pUserData = pAllocationCallbacks->pUserData; } else { callbacks.onMalloc = ma__malloc_default; callbacks.onRealloc = ma__realloc_default; callbacks.onFree = ma__free_default; callbacks.pUserData = NULL; } return callbacks; } static size_t ma_flac_dr_callback__read(void* pUserData, void* pBufferOut, size_t bytesToRead) { ma_flac* pFlac = (ma_flac*)pUserData; ma_result result; size_t bytesRead; MA_ASSERT(pFlac != NULL); result = pFlac->onRead(pFlac->pReadSeekTellUserData, pBufferOut, bytesToRead, &bytesRead); (void)result; return bytesRead; } static drflac_bool32 ma_flac_dr_callback__seek(void* pUserData, int offset, drflac_seek_origin origin) { ma_flac* pFlac = (ma_flac*)pUserData; ma_result result; ma_seek_origin maSeekOrigin; MA_ASSERT(pFlac != NULL); maSeekOrigin = ma_seek_origin_start; if (origin == drflac_seek_origin_current) { maSeekOrigin = ma_seek_origin_current; } result = pFlac->onSeek(pFlac->pReadSeekTellUserData, offset, maSeekOrigin); if (result != MA_SUCCESS) { return MA_FALSE; } return MA_TRUE; } #endif static ma_result ma_flac_init_internal(const ma_decoding_backend_config* pConfig, ma_flac* pFlac) { ma_result result; ma_data_source_config dataSourceConfig; if (pFlac == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pFlac); pFlac->format = ma_format_f32; /* f32 by default. */ if (pConfig != NULL && (pConfig->preferredFormat == ma_format_f32 || pConfig->preferredFormat == ma_format_s16 || pConfig->preferredFormat == ma_format_s32)) { pFlac->format = pConfig->preferredFormat; } else { /* Getting here means something other than f32 and s16 was specified. Just leave this unset to use the default format. */ } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_flac_ds_vtable; result = ma_data_source_init(&dataSourceConfig, &pFlac->ds); if (result != MA_SUCCESS) { return result; /* Failed to initialize the base data source. */ } return MA_SUCCESS; } MA_API ma_result ma_flac_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac) { ma_result result; result = ma_flac_init_internal(pConfig, pFlac); if (result != MA_SUCCESS) { return result; } if (onRead == NULL || onSeek == NULL) { return MA_INVALID_ARGS; /* onRead and onSeek are mandatory. */ } pFlac->onRead = onRead; pFlac->onSeek = onSeek; pFlac->onTell = onTell; pFlac->pReadSeekTellUserData = pReadSeekTellUserData; #if !defined(MA_NO_FLAC) { drflac_allocation_callbacks flacAllocationCallbacks = drflac_allocation_callbacks_from_miniaudio(pAllocationCallbacks); pFlac->dr = drflac_open(ma_flac_dr_callback__read, ma_flac_dr_callback__seek, pFlac, &flacAllocationCallbacks); if (pFlac->dr == NULL) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* flac is disabled. */ (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac) { ma_result result; result = ma_flac_init_internal(pConfig, pFlac); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_FLAC) { drflac_allocation_callbacks flacAllocationCallbacks = drflac_allocation_callbacks_from_miniaudio(pAllocationCallbacks); pFlac->dr = drflac_open_file(pFilePath, &flacAllocationCallbacks); if (pFlac->dr == NULL) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* flac is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_init_file_w(const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac) { ma_result result; result = ma_flac_init_internal(pConfig, pFlac); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_FLAC) { drflac_allocation_callbacks flacAllocationCallbacks = drflac_allocation_callbacks_from_miniaudio(pAllocationCallbacks); pFlac->dr = drflac_open_file_w(pFilePath, &flacAllocationCallbacks); if (pFlac->dr == NULL) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* flac is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_flac* pFlac) { ma_result result; result = ma_flac_init_internal(pConfig, pFlac); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_FLAC) { drflac_allocation_callbacks flacAllocationCallbacks = drflac_allocation_callbacks_from_miniaudio(pAllocationCallbacks); pFlac->dr = drflac_open_memory(pData, dataSize, &flacAllocationCallbacks); if (pFlac->dr == NULL) { return MA_INVALID_FILE; } return MA_SUCCESS; } #else { /* flac is disabled. */ (void)pData; (void)dataSize; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API void ma_flac_uninit(ma_flac* pFlac, const ma_allocation_callbacks* pAllocationCallbacks) { if (pFlac == NULL) { return; } (void)pAllocationCallbacks; #if !defined(MA_NO_FLAC) { drflac_close(pFlac->dr); } #else { /* flac is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); } #endif ma_data_source_uninit(&pFlac->ds); } MA_API ma_result ma_flac_read_pcm_frames(ma_flac* pFlac, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pFlac == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_FLAC) { /* We always use floating point format. */ ma_result result = MA_SUCCESS; /* Must be initialized to MA_SUCCESS. */ ma_uint64 totalFramesRead = 0; ma_format format; ma_flac_get_data_format(pFlac, &format, NULL, NULL, NULL, 0); switch (format) { case ma_format_f32: { totalFramesRead = drflac_read_pcm_frames_f32(pFlac->dr, frameCount, (float*)pFramesOut); } break; case ma_format_s16: { totalFramesRead = drflac_read_pcm_frames_s16(pFlac->dr, frameCount, (drflac_int16*)pFramesOut); } break; case ma_format_s32: { totalFramesRead = drflac_read_pcm_frames_s32(pFlac->dr, frameCount, (drflac_int32*)pFramesOut); } break; case ma_format_u8: case ma_format_s24: case ma_format_unknown: default: { return MA_INVALID_OPERATION; }; } /* In the future we'll update dr_flac to return MA_AT_END for us. */ if (totalFramesRead == 0) { result = MA_AT_END; } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } if (result == MA_SUCCESS && totalFramesRead == 0) { result = MA_AT_END; } return result; } #else { /* flac is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)pFramesOut; (void)frameCount; (void)pFramesRead; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_seek_to_pcm_frame(ma_flac* pFlac, ma_uint64 frameIndex) { if (pFlac == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_FLAC) { drflac_bool32 flacResult; flacResult = drflac_seek_to_pcm_frame(pFlac->dr, frameIndex); if (flacResult != DRFLAC_TRUE) { return MA_ERROR; } return MA_SUCCESS; } #else { /* flac is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)frameIndex; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_get_data_format(ma_flac* pFlac, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { /* Defaults for safety. */ if (pFormat != NULL) { *pFormat = ma_format_unknown; } if (pChannels != NULL) { *pChannels = 0; } if (pSampleRate != NULL) { *pSampleRate = 0; } if (pChannelMap != NULL) { MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channelMapCap); } if (pFlac == NULL) { return MA_INVALID_OPERATION; } if (pFormat != NULL) { *pFormat = pFlac->format; } #if !defined(MA_NO_FLAC) { if (pChannels != NULL) { *pChannels = pFlac->dr->channels; } if (pSampleRate != NULL) { *pSampleRate = pFlac->dr->sampleRate; } if (pChannelMap != NULL) { ma_channel_map_init_standard(ma_standard_channel_map_microsoft, pChannelMap, channelMapCap, pFlac->dr->channels); } return MA_SUCCESS; } #else { /* flac is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_get_cursor_in_pcm_frames(ma_flac* pFlac, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; /* Safety. */ if (pFlac == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_FLAC) { *pCursor = pFlac->dr->currentPCMFrame; return MA_SUCCESS; } #else { /* flac is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_flac_get_length_in_pcm_frames(ma_flac* pFlac, ma_uint64* pLength) { if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; /* Safety. */ if (pFlac == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_FLAC) { *pLength = pFlac->dr->totalPCMFrameCount; return MA_SUCCESS; } #else { /* flac is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } static ma_result ma_decoding_backend_init__flac(void* pUserData, ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_flac* pFlac; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pFlac = (ma_flac*)ma_malloc(sizeof(*pFlac), pAllocationCallbacks); if (pFlac == NULL) { return MA_OUT_OF_MEMORY; } result = ma_flac_init(onRead, onSeek, onTell, pReadSeekTellUserData, pConfig, pAllocationCallbacks, pFlac); if (result != MA_SUCCESS) { ma_free(pFlac, pAllocationCallbacks); return result; } *ppBackend = pFlac; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file__flac(void* pUserData, const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_flac* pFlac; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pFlac = (ma_flac*)ma_malloc(sizeof(*pFlac), pAllocationCallbacks); if (pFlac == NULL) { return MA_OUT_OF_MEMORY; } result = ma_flac_init_file(pFilePath, pConfig, pAllocationCallbacks, pFlac); if (result != MA_SUCCESS) { ma_free(pFlac, pAllocationCallbacks); return result; } *ppBackend = pFlac; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file_w__flac(void* pUserData, const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_flac* pFlac; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pFlac = (ma_flac*)ma_malloc(sizeof(*pFlac), pAllocationCallbacks); if (pFlac == NULL) { return MA_OUT_OF_MEMORY; } result = ma_flac_init_file_w(pFilePath, pConfig, pAllocationCallbacks, pFlac); if (result != MA_SUCCESS) { ma_free(pFlac, pAllocationCallbacks); return result; } *ppBackend = pFlac; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_memory__flac(void* pUserData, const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_flac* pFlac; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pFlac = (ma_flac*)ma_malloc(sizeof(*pFlac), pAllocationCallbacks); if (pFlac == NULL) { return MA_OUT_OF_MEMORY; } result = ma_flac_init_memory(pData, dataSize, pConfig, pAllocationCallbacks, pFlac); if (result != MA_SUCCESS) { ma_free(pFlac, pAllocationCallbacks); return result; } *ppBackend = pFlac; return MA_SUCCESS; } static void ma_decoding_backend_uninit__flac(void* pUserData, ma_data_source* pBackend, const ma_allocation_callbacks* pAllocationCallbacks) { ma_flac* pFlac = (ma_flac*)pBackend; (void)pUserData; ma_flac_uninit(pFlac, pAllocationCallbacks); ma_free(pFlac, pAllocationCallbacks); } static ma_decoding_backend_vtable g_ma_decoding_backend_vtable_flac = { ma_decoding_backend_init__flac, ma_decoding_backend_init_file__flac, ma_decoding_backend_init_file_w__flac, ma_decoding_backend_init_memory__flac, ma_decoding_backend_uninit__flac }; static ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { return ma_decoder_init_from_vtable(&g_ma_decoding_backend_vtable_flac, NULL, pConfig, pDecoder); } #endif /* dr_flac_h */ /* MP3 */ #ifdef dr_mp3_h #define MA_HAS_MP3 typedef struct { ma_data_source_base ds; ma_read_proc onRead; ma_seek_proc onSeek; ma_tell_proc onTell; void* pReadSeekTellUserData; ma_format format; /* Can be f32 or s16. */ #if !defined(MA_NO_MP3) drmp3 dr; drmp3_uint32 seekPointCount; drmp3_seek_point* pSeekPoints; /* Only used if seek table generation is used. */ #endif } ma_mp3; MA_API ma_result ma_mp3_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3); MA_API ma_result ma_mp3_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3); MA_API ma_result ma_mp3_init_file_w(const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3); MA_API ma_result ma_mp3_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3); MA_API void ma_mp3_uninit(ma_mp3* pMP3, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_mp3_read_pcm_frames(ma_mp3* pMP3, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_mp3_seek_to_pcm_frame(ma_mp3* pMP3, ma_uint64 frameIndex); MA_API ma_result ma_mp3_get_data_format(ma_mp3* pMP3, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_mp3_get_cursor_in_pcm_frames(ma_mp3* pMP3, ma_uint64* pCursor); MA_API ma_result ma_mp3_get_length_in_pcm_frames(ma_mp3* pMP3, ma_uint64* pLength); static ma_result ma_mp3_ds_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_mp3_read_pcm_frames((ma_mp3*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_mp3_ds_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_mp3_seek_to_pcm_frame((ma_mp3*)pDataSource, frameIndex); } static ma_result ma_mp3_ds_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_mp3_get_data_format((ma_mp3*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_mp3_ds_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_mp3_get_cursor_in_pcm_frames((ma_mp3*)pDataSource, pCursor); } static ma_result ma_mp3_ds_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_mp3_get_length_in_pcm_frames((ma_mp3*)pDataSource, pLength); } static ma_data_source_vtable g_ma_mp3_ds_vtable = { ma_mp3_ds_read, ma_mp3_ds_seek, ma_mp3_ds_get_data_format, ma_mp3_ds_get_cursor, ma_mp3_ds_get_length, NULL, /* onSetLooping */ 0 }; #if !defined(MA_NO_MP3) static drmp3_allocation_callbacks drmp3_allocation_callbacks_from_miniaudio(const ma_allocation_callbacks* pAllocationCallbacks) { drmp3_allocation_callbacks callbacks; if (pAllocationCallbacks != NULL) { callbacks.onMalloc = pAllocationCallbacks->onMalloc; callbacks.onRealloc = pAllocationCallbacks->onRealloc; callbacks.onFree = pAllocationCallbacks->onFree; callbacks.pUserData = pAllocationCallbacks->pUserData; } else { callbacks.onMalloc = ma__malloc_default; callbacks.onRealloc = ma__realloc_default; callbacks.onFree = ma__free_default; callbacks.pUserData = NULL; } return callbacks; } static size_t ma_mp3_dr_callback__read(void* pUserData, void* pBufferOut, size_t bytesToRead) { ma_mp3* pMP3 = (ma_mp3*)pUserData; ma_result result; size_t bytesRead; MA_ASSERT(pMP3 != NULL); result = pMP3->onRead(pMP3->pReadSeekTellUserData, pBufferOut, bytesToRead, &bytesRead); (void)result; return bytesRead; } static drmp3_bool32 ma_mp3_dr_callback__seek(void* pUserData, int offset, drmp3_seek_origin origin) { ma_mp3* pMP3 = (ma_mp3*)pUserData; ma_result result; ma_seek_origin maSeekOrigin; MA_ASSERT(pMP3 != NULL); maSeekOrigin = ma_seek_origin_start; if (origin == drmp3_seek_origin_current) { maSeekOrigin = ma_seek_origin_current; } result = pMP3->onSeek(pMP3->pReadSeekTellUserData, offset, maSeekOrigin); if (result != MA_SUCCESS) { return MA_FALSE; } return MA_TRUE; } #endif static ma_result ma_mp3_init_internal(const ma_decoding_backend_config* pConfig, ma_mp3* pMP3) { ma_result result; ma_data_source_config dataSourceConfig; if (pMP3 == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pMP3); pMP3->format = ma_format_f32; /* f32 by default. */ if (pConfig != NULL && (pConfig->preferredFormat == ma_format_f32 || pConfig->preferredFormat == ma_format_s16)) { pMP3->format = pConfig->preferredFormat; } else { /* Getting here means something other than f32 and s16 was specified. Just leave this unset to use the default format. */ } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_mp3_ds_vtable; result = ma_data_source_init(&dataSourceConfig, &pMP3->ds); if (result != MA_SUCCESS) { return result; /* Failed to initialize the base data source. */ } return MA_SUCCESS; } static ma_result ma_mp3_generate_seek_table(ma_mp3* pMP3, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks) { drmp3_bool32 mp3Result; drmp3_uint32 seekPointCount = 0; drmp3_seek_point* pSeekPoints = NULL; MA_ASSERT(pMP3 != NULL); MA_ASSERT(pConfig != NULL); seekPointCount = pConfig->seekPointCount; if (seekPointCount > 0) { pSeekPoints = (drmp3_seek_point*)ma_malloc(sizeof(*pMP3->pSeekPoints) * seekPointCount, pAllocationCallbacks); if (pSeekPoints == NULL) { return MA_OUT_OF_MEMORY; } } mp3Result = drmp3_calculate_seek_points(&pMP3->dr, &seekPointCount, pSeekPoints); if (mp3Result != MA_TRUE) { ma_free(pSeekPoints, pAllocationCallbacks); return MA_ERROR; } mp3Result = drmp3_bind_seek_table(&pMP3->dr, seekPointCount, pSeekPoints); if (mp3Result != MA_TRUE) { ma_free(pSeekPoints, pAllocationCallbacks); return MA_ERROR; } pMP3->seekPointCount = seekPointCount; pMP3->pSeekPoints = pSeekPoints; return MA_SUCCESS; } MA_API ma_result ma_mp3_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3) { ma_result result; result = ma_mp3_init_internal(pConfig, pMP3); if (result != MA_SUCCESS) { return result; } if (onRead == NULL || onSeek == NULL) { return MA_INVALID_ARGS; /* onRead and onSeek are mandatory. */ } pMP3->onRead = onRead; pMP3->onSeek = onSeek; pMP3->onTell = onTell; pMP3->pReadSeekTellUserData = pReadSeekTellUserData; #if !defined(MA_NO_MP3) { drmp3_allocation_callbacks mp3AllocationCallbacks = drmp3_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drmp3_bool32 mp3Result; mp3Result = drmp3_init(&pMP3->dr, ma_mp3_dr_callback__read, ma_mp3_dr_callback__seek, pMP3, &mp3AllocationCallbacks); if (mp3Result != MA_TRUE) { return MA_INVALID_FILE; } ma_mp3_generate_seek_table(pMP3, pConfig, pAllocationCallbacks); return MA_SUCCESS; } #else { /* mp3 is disabled. */ (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3) { ma_result result; result = ma_mp3_init_internal(pConfig, pMP3); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_MP3) { drmp3_allocation_callbacks mp3AllocationCallbacks = drmp3_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drmp3_bool32 mp3Result; mp3Result = drmp3_init_file(&pMP3->dr, pFilePath, &mp3AllocationCallbacks); if (mp3Result != MA_TRUE) { return MA_INVALID_FILE; } ma_mp3_generate_seek_table(pMP3, pConfig, pAllocationCallbacks); return MA_SUCCESS; } #else { /* mp3 is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_init_file_w(const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3) { ma_result result; result = ma_mp3_init_internal(pConfig, pMP3); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_MP3) { drmp3_allocation_callbacks mp3AllocationCallbacks = drmp3_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drmp3_bool32 mp3Result; mp3Result = drmp3_init_file_w(&pMP3->dr, pFilePath, &mp3AllocationCallbacks); if (mp3Result != MA_TRUE) { return MA_INVALID_FILE; } ma_mp3_generate_seek_table(pMP3, pConfig, pAllocationCallbacks); return MA_SUCCESS; } #else { /* mp3 is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_mp3* pMP3) { ma_result result; result = ma_mp3_init_internal(pConfig, pMP3); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_MP3) { drmp3_allocation_callbacks mp3AllocationCallbacks = drmp3_allocation_callbacks_from_miniaudio(pAllocationCallbacks); drmp3_bool32 mp3Result; mp3Result = drmp3_init_memory(&pMP3->dr, pData, dataSize, &mp3AllocationCallbacks); if (mp3Result != MA_TRUE) { return MA_INVALID_FILE; } ma_mp3_generate_seek_table(pMP3, pConfig, pAllocationCallbacks); return MA_SUCCESS; } #else { /* mp3 is disabled. */ (void)pData; (void)dataSize; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API void ma_mp3_uninit(ma_mp3* pMP3, const ma_allocation_callbacks* pAllocationCallbacks) { if (pMP3 == NULL) { return; } #if !defined(MA_NO_MP3) { drmp3_uninit(&pMP3->dr); } #else { /* mp3 is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); } #endif /* Seek points need to be freed after the MP3 decoder has been uninitialized to ensure they're no longer being referenced. */ ma_free(pMP3->pSeekPoints, pAllocationCallbacks); ma_data_source_uninit(&pMP3->ds); } MA_API ma_result ma_mp3_read_pcm_frames(ma_mp3* pMP3, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pMP3 == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_MP3) { /* We always use floating point format. */ ma_result result = MA_SUCCESS; /* Must be initialized to MA_SUCCESS. */ ma_uint64 totalFramesRead = 0; ma_format format; ma_mp3_get_data_format(pMP3, &format, NULL, NULL, NULL, 0); switch (format) { case ma_format_f32: { totalFramesRead = drmp3_read_pcm_frames_f32(&pMP3->dr, frameCount, (float*)pFramesOut); } break; case ma_format_s16: { totalFramesRead = drmp3_read_pcm_frames_s16(&pMP3->dr, frameCount, (drmp3_int16*)pFramesOut); } break; case ma_format_u8: case ma_format_s24: case ma_format_s32: case ma_format_unknown: default: { return MA_INVALID_OPERATION; }; } /* In the future we'll update dr_mp3 to return MA_AT_END for us. */ if (totalFramesRead == 0) { result = MA_AT_END; } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } return result; } #else { /* mp3 is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)pFramesOut; (void)frameCount; (void)pFramesRead; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_seek_to_pcm_frame(ma_mp3* pMP3, ma_uint64 frameIndex) { if (pMP3 == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_MP3) { drmp3_bool32 mp3Result; mp3Result = drmp3_seek_to_pcm_frame(&pMP3->dr, frameIndex); if (mp3Result != DRMP3_TRUE) { return MA_ERROR; } return MA_SUCCESS; } #else { /* mp3 is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)frameIndex; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_get_data_format(ma_mp3* pMP3, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { /* Defaults for safety. */ if (pFormat != NULL) { *pFormat = ma_format_unknown; } if (pChannels != NULL) { *pChannels = 0; } if (pSampleRate != NULL) { *pSampleRate = 0; } if (pChannelMap != NULL) { MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channelMapCap); } if (pMP3 == NULL) { return MA_INVALID_OPERATION; } if (pFormat != NULL) { *pFormat = pMP3->format; } #if !defined(MA_NO_MP3) { if (pChannels != NULL) { *pChannels = pMP3->dr.channels; } if (pSampleRate != NULL) { *pSampleRate = pMP3->dr.sampleRate; } if (pChannelMap != NULL) { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pMP3->dr.channels); } return MA_SUCCESS; } #else { /* mp3 is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_get_cursor_in_pcm_frames(ma_mp3* pMP3, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; /* Safety. */ if (pMP3 == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_MP3) { *pCursor = pMP3->dr.currentPCMFrame; return MA_SUCCESS; } #else { /* mp3 is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_mp3_get_length_in_pcm_frames(ma_mp3* pMP3, ma_uint64* pLength) { if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; /* Safety. */ if (pMP3 == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_MP3) { *pLength = drmp3_get_pcm_frame_count(&pMP3->dr); return MA_SUCCESS; } #else { /* mp3 is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } static ma_result ma_decoding_backend_init__mp3(void* pUserData, ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_mp3* pMP3; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pMP3 = (ma_mp3*)ma_malloc(sizeof(*pMP3), pAllocationCallbacks); if (pMP3 == NULL) { return MA_OUT_OF_MEMORY; } result = ma_mp3_init(onRead, onSeek, onTell, pReadSeekTellUserData, pConfig, pAllocationCallbacks, pMP3); if (result != MA_SUCCESS) { ma_free(pMP3, pAllocationCallbacks); return result; } *ppBackend = pMP3; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file__mp3(void* pUserData, const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_mp3* pMP3; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pMP3 = (ma_mp3*)ma_malloc(sizeof(*pMP3), pAllocationCallbacks); if (pMP3 == NULL) { return MA_OUT_OF_MEMORY; } result = ma_mp3_init_file(pFilePath, pConfig, pAllocationCallbacks, pMP3); if (result != MA_SUCCESS) { ma_free(pMP3, pAllocationCallbacks); return result; } *ppBackend = pMP3; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file_w__mp3(void* pUserData, const wchar_t* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_mp3* pMP3; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pMP3 = (ma_mp3*)ma_malloc(sizeof(*pMP3), pAllocationCallbacks); if (pMP3 == NULL) { return MA_OUT_OF_MEMORY; } result = ma_mp3_init_file_w(pFilePath, pConfig, pAllocationCallbacks, pMP3); if (result != MA_SUCCESS) { ma_free(pMP3, pAllocationCallbacks); return result; } *ppBackend = pMP3; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_memory__mp3(void* pUserData, const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_mp3* pMP3; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pMP3 = (ma_mp3*)ma_malloc(sizeof(*pMP3), pAllocationCallbacks); if (pMP3 == NULL) { return MA_OUT_OF_MEMORY; } result = ma_mp3_init_memory(pData, dataSize, pConfig, pAllocationCallbacks, pMP3); if (result != MA_SUCCESS) { ma_free(pMP3, pAllocationCallbacks); return result; } *ppBackend = pMP3; return MA_SUCCESS; } static void ma_decoding_backend_uninit__mp3(void* pUserData, ma_data_source* pBackend, const ma_allocation_callbacks* pAllocationCallbacks) { ma_mp3* pMP3 = (ma_mp3*)pBackend; (void)pUserData; ma_mp3_uninit(pMP3, pAllocationCallbacks); ma_free(pMP3, pAllocationCallbacks); } static ma_decoding_backend_vtable g_ma_decoding_backend_vtable_mp3 = { ma_decoding_backend_init__mp3, ma_decoding_backend_init_file__mp3, ma_decoding_backend_init_file_w__mp3, ma_decoding_backend_init_memory__mp3, ma_decoding_backend_uninit__mp3 }; static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { return ma_decoder_init_from_vtable(&g_ma_decoding_backend_vtable_mp3, NULL, pConfig, pDecoder); } #endif /* dr_mp3_h */ /* Vorbis */ #ifdef STB_VORBIS_INCLUDE_STB_VORBIS_H #define MA_HAS_VORBIS /* The size in bytes of each chunk of data to read from the Vorbis stream. */ #define MA_VORBIS_DATA_CHUNK_SIZE 4096 typedef struct { ma_data_source_base ds; ma_read_proc onRead; ma_seek_proc onSeek; ma_tell_proc onTell; void* pReadSeekTellUserData; ma_allocation_callbacks allocationCallbacks; /* Store the allocation callbacks within the structure because we may need to dynamically expand a buffer in ma_stbvorbis_read_pcm_frames() when using push mode. */ ma_format format; /* Only f32 is allowed with stb_vorbis. */ ma_uint32 channels; ma_uint32 sampleRate; ma_uint64 cursor; #if !defined(MA_NO_VORBIS) stb_vorbis* stb; ma_bool32 usingPushMode; struct { ma_uint8* pData; size_t dataSize; size_t dataCapacity; ma_uint32 framesConsumed; /* The number of frames consumed in ppPacketData. */ ma_uint32 framesRemaining; /* The number of frames remaining in ppPacketData. */ float** ppPacketData; } push; #endif } ma_stbvorbis; MA_API ma_result ma_stbvorbis_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_stbvorbis* pVorbis); MA_API ma_result ma_stbvorbis_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_stbvorbis* pVorbis); MA_API ma_result ma_stbvorbis_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_stbvorbis* pVorbis); MA_API void ma_stbvorbis_uninit(ma_stbvorbis* pVorbis, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_stbvorbis_read_pcm_frames(ma_stbvorbis* pVorbis, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead); MA_API ma_result ma_stbvorbis_seek_to_pcm_frame(ma_stbvorbis* pVorbis, ma_uint64 frameIndex); MA_API ma_result ma_stbvorbis_get_data_format(ma_stbvorbis* pVorbis, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap); MA_API ma_result ma_stbvorbis_get_cursor_in_pcm_frames(ma_stbvorbis* pVorbis, ma_uint64* pCursor); MA_API ma_result ma_stbvorbis_get_length_in_pcm_frames(ma_stbvorbis* pVorbis, ma_uint64* pLength); static ma_result ma_stbvorbis_ds_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_stbvorbis_read_pcm_frames((ma_stbvorbis*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_stbvorbis_ds_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_stbvorbis_seek_to_pcm_frame((ma_stbvorbis*)pDataSource, frameIndex); } static ma_result ma_stbvorbis_ds_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_stbvorbis_get_data_format((ma_stbvorbis*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_stbvorbis_ds_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_stbvorbis_get_cursor_in_pcm_frames((ma_stbvorbis*)pDataSource, pCursor); } static ma_result ma_stbvorbis_ds_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_stbvorbis_get_length_in_pcm_frames((ma_stbvorbis*)pDataSource, pLength); } static ma_data_source_vtable g_ma_stbvorbis_ds_vtable = { ma_stbvorbis_ds_read, ma_stbvorbis_ds_seek, ma_stbvorbis_ds_get_data_format, ma_stbvorbis_ds_get_cursor, ma_stbvorbis_ds_get_length, NULL, /* onSetLooping */ 0 }; static ma_result ma_stbvorbis_init_internal(const ma_decoding_backend_config* pConfig, ma_stbvorbis* pVorbis) { ma_result result; ma_data_source_config dataSourceConfig; (void)pConfig; if (pVorbis == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pVorbis); pVorbis->format = ma_format_f32; /* Only supporting f32. */ dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_stbvorbis_ds_vtable; result = ma_data_source_init(&dataSourceConfig, &pVorbis->ds); if (result != MA_SUCCESS) { return result; /* Failed to initialize the base data source. */ } return MA_SUCCESS; } #if !defined(MA_NO_VORBIS) static ma_result ma_stbvorbis_post_init(ma_stbvorbis* pVorbis) { stb_vorbis_info info; MA_ASSERT(pVorbis != NULL); info = stb_vorbis_get_info(pVorbis->stb); pVorbis->channels = info.channels; pVorbis->sampleRate = info.sample_rate; return MA_SUCCESS; } #endif MA_API ma_result ma_stbvorbis_init(ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_stbvorbis* pVorbis) { ma_result result; result = ma_stbvorbis_init_internal(pConfig, pVorbis); if (result != MA_SUCCESS) { return result; } if (onRead == NULL || onSeek == NULL) { return MA_INVALID_ARGS; /* onRead and onSeek are mandatory. */ } pVorbis->onRead = onRead; pVorbis->onSeek = onSeek; pVorbis->onTell = onTell; pVorbis->pReadSeekTellUserData = pReadSeekTellUserData; ma_allocation_callbacks_init_copy(&pVorbis->allocationCallbacks, pAllocationCallbacks); #if !defined(MA_NO_VORBIS) { /* stb_vorbis lacks a callback based API for it's pulling API which means we're stuck with the pushing API. In order for us to be able to successfully initialize the decoder we need to supply it with enough data. We need to keep loading data until we have enough. */ stb_vorbis* stb; size_t dataSize = 0; size_t dataCapacity = 0; ma_uint8* pData = NULL; /* <-- Must be initialized to NULL. */ for (;;) { int vorbisError; int consumedDataSize; /* <-- Fill by stb_vorbis_open_pushdata(). */ size_t bytesRead; ma_uint8* pNewData; /* Allocate memory for the new chunk. */ dataCapacity += MA_VORBIS_DATA_CHUNK_SIZE; pNewData = (ma_uint8*)ma_realloc(pData, dataCapacity, pAllocationCallbacks); if (pNewData == NULL) { ma_free(pData, pAllocationCallbacks); return MA_OUT_OF_MEMORY; } pData = pNewData; /* Read in the next chunk. */ result = pVorbis->onRead(pVorbis->pReadSeekTellUserData, ma_offset_ptr(pData, dataSize), (dataCapacity - dataSize), &bytesRead); dataSize += bytesRead; if (result != MA_SUCCESS) { ma_free(pData, pAllocationCallbacks); return result; } /* We have a maximum of 31 bits with stb_vorbis. */ if (dataSize > INT_MAX) { ma_free(pData, pAllocationCallbacks); return MA_TOO_BIG; } stb = stb_vorbis_open_pushdata(pData, (int)dataSize, &consumedDataSize, &vorbisError, NULL); if (stb != NULL) { /* Successfully opened the Vorbis decoder. We might have some leftover unprocessed data so we'll need to move that down to the front. */ dataSize -= (size_t)consumedDataSize; /* Consume the data. */ MA_MOVE_MEMORY(pData, ma_offset_ptr(pData, consumedDataSize), dataSize); break; } else { /* Failed to open the decoder. */ if (vorbisError == VORBIS_need_more_data) { continue; } else { ma_free(pData, pAllocationCallbacks); return MA_ERROR; /* Failed to open the stb_vorbis decoder. */ } } } MA_ASSERT(stb != NULL); pVorbis->stb = stb; pVorbis->push.pData = pData; pVorbis->push.dataSize = dataSize; pVorbis->push.dataCapacity = dataCapacity; pVorbis->usingPushMode = MA_TRUE; result = ma_stbvorbis_post_init(pVorbis); if (result != MA_SUCCESS) { stb_vorbis_close(pVorbis->stb); ma_free(pData, pAllocationCallbacks); return result; } return MA_SUCCESS; } #else { /* vorbis is disabled. */ (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_stbvorbis_init_file(const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_stbvorbis* pVorbis) { ma_result result; result = ma_stbvorbis_init_internal(pConfig, pVorbis); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_VORBIS) { (void)pAllocationCallbacks; /* Don't know how to make use of this with stb_vorbis. */ /* We can use stb_vorbis' pull mode for file based streams. */ pVorbis->stb = stb_vorbis_open_filename(pFilePath, NULL, NULL); if (pVorbis->stb == NULL) { return MA_INVALID_FILE; } pVorbis->usingPushMode = MA_FALSE; result = ma_stbvorbis_post_init(pVorbis); if (result != MA_SUCCESS) { stb_vorbis_close(pVorbis->stb); return result; } return MA_SUCCESS; } #else { /* vorbis is disabled. */ (void)pFilePath; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_stbvorbis_init_memory(const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_stbvorbis* pVorbis) { ma_result result; result = ma_stbvorbis_init_internal(pConfig, pVorbis); if (result != MA_SUCCESS) { return result; } #if !defined(MA_NO_VORBIS) { (void)pAllocationCallbacks; /* stb_vorbis uses an int as it's size specifier, restricting it to 32-bit even on 64-bit systems. *sigh*. */ if (dataSize > INT_MAX) { return MA_TOO_BIG; } pVorbis->stb = stb_vorbis_open_memory((const unsigned char*)pData, (int)dataSize, NULL, NULL); if (pVorbis->stb == NULL) { return MA_INVALID_FILE; } pVorbis->usingPushMode = MA_FALSE; result = ma_stbvorbis_post_init(pVorbis); if (result != MA_SUCCESS) { stb_vorbis_close(pVorbis->stb); return result; } return MA_SUCCESS; } #else { /* vorbis is disabled. */ (void)pData; (void)dataSize; (void)pAllocationCallbacks; return MA_NOT_IMPLEMENTED; } #endif } MA_API void ma_stbvorbis_uninit(ma_stbvorbis* pVorbis, const ma_allocation_callbacks* pAllocationCallbacks) { if (pVorbis == NULL) { return; } #if !defined(MA_NO_VORBIS) { stb_vorbis_close(pVorbis->stb); /* We'll have to clear some memory if we're using push mode. */ if (pVorbis->usingPushMode) { ma_free(pVorbis->push.pData, pAllocationCallbacks); } } #else { /* vorbis is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); } #endif ma_data_source_uninit(&pVorbis->ds); } MA_API ma_result ma_stbvorbis_read_pcm_frames(ma_stbvorbis* pVorbis, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pVorbis == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_VORBIS) { /* We always use floating point format. */ ma_result result = MA_SUCCESS; /* Must be initialized to MA_SUCCESS. */ ma_uint64 totalFramesRead = 0; ma_format format; ma_uint32 channels; ma_stbvorbis_get_data_format(pVorbis, &format, &channels, NULL, NULL, 0); if (format == ma_format_f32) { /* We read differently depending on whether or not we're using push mode. */ if (pVorbis->usingPushMode) { /* Push mode. This is the complex case. */ float* pFramesOutF32 = (float*)pFramesOut; while (totalFramesRead < frameCount) { /* The first thing to do is read from any already-cached frames. */ ma_uint32 framesToReadFromCache = (ma_uint32)ma_min(pVorbis->push.framesRemaining, (frameCount - totalFramesRead)); /* Safe cast because pVorbis->framesRemaining is 32-bit. */ /* The output pointer can be null in which case we just treate it as a seek. */ if (pFramesOut != NULL) { ma_uint64 iFrame; for (iFrame = 0; iFrame < framesToReadFromCache; iFrame += 1) { ma_uint32 iChannel; for (iChannel = 0; iChannel < pVorbis->channels; iChannel += 1) { pFramesOutF32[iChannel] = pVorbis->push.ppPacketData[iChannel][pVorbis->push.framesConsumed + iFrame]; } pFramesOutF32 += pVorbis->channels; } } /* Update pointers and counters. */ pVorbis->push.framesConsumed += framesToReadFromCache; pVorbis->push.framesRemaining -= framesToReadFromCache; totalFramesRead += framesToReadFromCache; /* Don't bother reading any more frames right now if we've just finished loading. */ if (totalFramesRead == frameCount) { break; } MA_ASSERT(pVorbis->push.framesRemaining == 0); /* Getting here means we've run out of cached frames. We'll need to load some more. */ for (;;) { int samplesRead = 0; int consumedDataSize; /* We need to case dataSize to an int, so make sure we can do it safely. */ if (pVorbis->push.dataSize > INT_MAX) { break; /* Too big. */ } consumedDataSize = stb_vorbis_decode_frame_pushdata(pVorbis->stb, pVorbis->push.pData, (int)pVorbis->push.dataSize, NULL, &pVorbis->push.ppPacketData, &samplesRead); if (consumedDataSize != 0) { /* Successfully decoded a Vorbis frame. Consume the data. */ pVorbis->push.dataSize -= (size_t)consumedDataSize; MA_MOVE_MEMORY(pVorbis->push.pData, ma_offset_ptr(pVorbis->push.pData, consumedDataSize), pVorbis->push.dataSize); pVorbis->push.framesConsumed = 0; pVorbis->push.framesRemaining = samplesRead; break; } else { /* Not enough data. Read more. */ size_t bytesRead; /* Expand the data buffer if necessary. */ if (pVorbis->push.dataCapacity == pVorbis->push.dataSize) { size_t newCap = pVorbis->push.dataCapacity + MA_VORBIS_DATA_CHUNK_SIZE; ma_uint8* pNewData; pNewData = (ma_uint8*)ma_realloc(pVorbis->push.pData, newCap, &pVorbis->allocationCallbacks); if (pNewData == NULL) { result = MA_OUT_OF_MEMORY; break; } pVorbis->push.pData = pNewData; pVorbis->push.dataCapacity = newCap; } /* We should have enough room to load some data. */ result = pVorbis->onRead(pVorbis->pReadSeekTellUserData, ma_offset_ptr(pVorbis->push.pData, pVorbis->push.dataSize), (pVorbis->push.dataCapacity - pVorbis->push.dataSize), &bytesRead); pVorbis->push.dataSize += bytesRead; if (result != MA_SUCCESS) { break; /* Failed to read any data. Get out. */ } } } /* If we don't have a success code at this point it means we've encounted an error or the end of the file has been reached (probably the latter). */ if (result != MA_SUCCESS) { break; } } } else { /* Pull mode. This is the simple case, but we still need to run in a loop because stb_vorbis loves using 32-bit instead of 64-bit. */ while (totalFramesRead < frameCount) { ma_uint64 framesRemaining = (frameCount - totalFramesRead); int framesRead; if (framesRemaining > INT_MAX) { framesRemaining = INT_MAX; } framesRead = stb_vorbis_get_samples_float_interleaved(pVorbis->stb, channels, (float*)ma_offset_pcm_frames_ptr(pFramesOut, totalFramesRead, format, channels), (int)framesRemaining * channels); /* Safe cast. */ totalFramesRead += framesRead; if (framesRead < (int)framesRemaining) { break; /* Nothing left to read. Get out. */ } } } } else { result = MA_INVALID_ARGS; } pVorbis->cursor += totalFramesRead; if (totalFramesRead == 0) { result = MA_AT_END; } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } if (result == MA_SUCCESS && totalFramesRead == 0) { result = MA_AT_END; } return result; } #else { /* vorbis is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)pFramesOut; (void)frameCount; (void)pFramesRead; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_stbvorbis_seek_to_pcm_frame(ma_stbvorbis* pVorbis, ma_uint64 frameIndex) { if (pVorbis == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_VORBIS) { /* Different seeking methods depending on whether or not we're using push mode. */ if (pVorbis->usingPushMode) { /* Push mode. This is the complex case. */ ma_result result; float buffer[4096]; /* This is terribly inefficient because stb_vorbis does not have a good seeking solution with it's push API. Currently this just performs a full decode right from the start of the stream. Later on I'll need to write a layer that goes through all of the Ogg pages until we find the one containing the sample we need. Then we know exactly where to seek for stb_vorbis. TODO: Use seeking logic documented for stb_vorbis_flush_pushdata(). */ /* Seek to the start of the file to begin with. */ result = pVorbis->onSeek(pVorbis->pReadSeekTellUserData, 0, ma_seek_origin_start); if (result != MA_SUCCESS) { return result; } stb_vorbis_flush_pushdata(pVorbis->stb); pVorbis->push.framesRemaining = 0; pVorbis->push.dataSize = 0; /* Move the cursor back to the start. We'll increment this in the loop below. */ pVorbis->cursor = 0; while (pVorbis->cursor < frameIndex) { ma_uint64 framesRead; ma_uint64 framesToRead = ma_countof(buffer)/pVorbis->channels; if (framesToRead > (frameIndex - pVorbis->cursor)) { framesToRead = (frameIndex - pVorbis->cursor); } result = ma_stbvorbis_read_pcm_frames(pVorbis, buffer, framesToRead, &framesRead); pVorbis->cursor += framesRead; if (result != MA_SUCCESS) { return result; } } } else { /* Pull mode. This is the simple case. */ int vorbisResult; if (frameIndex > UINT_MAX) { return MA_INVALID_ARGS; /* Trying to seek beyond the 32-bit maximum of stb_vorbis. */ } vorbisResult = stb_vorbis_seek(pVorbis->stb, (unsigned int)frameIndex); /* Safe cast. */ if (vorbisResult == 0) { return MA_ERROR; /* See failed. */ } pVorbis->cursor = frameIndex; } return MA_SUCCESS; } #else { /* vorbis is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); (void)frameIndex; return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_stbvorbis_get_data_format(ma_stbvorbis* pVorbis, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { /* Defaults for safety. */ if (pFormat != NULL) { *pFormat = ma_format_unknown; } if (pChannels != NULL) { *pChannels = 0; } if (pSampleRate != NULL) { *pSampleRate = 0; } if (pChannelMap != NULL) { MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channelMapCap); } if (pVorbis == NULL) { return MA_INVALID_OPERATION; } if (pFormat != NULL) { *pFormat = pVorbis->format; } #if !defined(MA_NO_VORBIS) { if (pChannels != NULL) { *pChannels = pVorbis->channels; } if (pSampleRate != NULL) { *pSampleRate = pVorbis->sampleRate; } if (pChannelMap != NULL) { ma_channel_map_init_standard(ma_standard_channel_map_vorbis, pChannelMap, channelMapCap, pVorbis->channels); } return MA_SUCCESS; } #else { /* vorbis is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_stbvorbis_get_cursor_in_pcm_frames(ma_stbvorbis* pVorbis, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; /* Safety. */ if (pVorbis == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_VORBIS) { *pCursor = pVorbis->cursor; return MA_SUCCESS; } #else { /* vorbis is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } MA_API ma_result ma_stbvorbis_get_length_in_pcm_frames(ma_stbvorbis* pVorbis, ma_uint64* pLength) { if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; /* Safety. */ if (pVorbis == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_VORBIS) { if (pVorbis->usingPushMode) { *pLength = 0; /* I don't know of a good way to determine this reliably with stb_vorbis and push mode. */ } else { *pLength = stb_vorbis_stream_length_in_samples(pVorbis->stb); } return MA_SUCCESS; } #else { /* vorbis is disabled. Should never hit this since initialization would have failed. */ MA_ASSERT(MA_FALSE); return MA_NOT_IMPLEMENTED; } #endif } static ma_result ma_decoding_backend_init__stbvorbis(void* pUserData, ma_read_proc onRead, ma_seek_proc onSeek, ma_tell_proc onTell, void* pReadSeekTellUserData, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_stbvorbis* pVorbis; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pVorbis = (ma_stbvorbis*)ma_malloc(sizeof(*pVorbis), pAllocationCallbacks); if (pVorbis == NULL) { return MA_OUT_OF_MEMORY; } result = ma_stbvorbis_init(onRead, onSeek, onTell, pReadSeekTellUserData, pConfig, pAllocationCallbacks, pVorbis); if (result != MA_SUCCESS) { ma_free(pVorbis, pAllocationCallbacks); return result; } *ppBackend = pVorbis; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_file__stbvorbis(void* pUserData, const char* pFilePath, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_stbvorbis* pVorbis; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pVorbis = (ma_stbvorbis*)ma_malloc(sizeof(*pVorbis), pAllocationCallbacks); if (pVorbis == NULL) { return MA_OUT_OF_MEMORY; } result = ma_stbvorbis_init_file(pFilePath, pConfig, pAllocationCallbacks, pVorbis); if (result != MA_SUCCESS) { ma_free(pVorbis, pAllocationCallbacks); return result; } *ppBackend = pVorbis; return MA_SUCCESS; } static ma_result ma_decoding_backend_init_memory__stbvorbis(void* pUserData, const void* pData, size_t dataSize, const ma_decoding_backend_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source** ppBackend) { ma_result result; ma_stbvorbis* pVorbis; (void)pUserData; /* For now not using pUserData, but once we start storing the vorbis decoder state within the ma_decoder structure this will be set to the decoder so we can avoid a malloc. */ /* For now we're just allocating the decoder backend on the heap. */ pVorbis = (ma_stbvorbis*)ma_malloc(sizeof(*pVorbis), pAllocationCallbacks); if (pVorbis == NULL) { return MA_OUT_OF_MEMORY; } result = ma_stbvorbis_init_memory(pData, dataSize, pConfig, pAllocationCallbacks, pVorbis); if (result != MA_SUCCESS) { ma_free(pVorbis, pAllocationCallbacks); return result; } *ppBackend = pVorbis; return MA_SUCCESS; } static void ma_decoding_backend_uninit__stbvorbis(void* pUserData, ma_data_source* pBackend, const ma_allocation_callbacks* pAllocationCallbacks) { ma_stbvorbis* pVorbis = (ma_stbvorbis*)pBackend; (void)pUserData; ma_stbvorbis_uninit(pVorbis, pAllocationCallbacks); ma_free(pVorbis, pAllocationCallbacks); } static ma_decoding_backend_vtable g_ma_decoding_backend_vtable_stbvorbis = { ma_decoding_backend_init__stbvorbis, ma_decoding_backend_init_file__stbvorbis, NULL, /* onInitFileW() */ ma_decoding_backend_init_memory__stbvorbis, ma_decoding_backend_uninit__stbvorbis }; static ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { return ma_decoder_init_from_vtable(&g_ma_decoding_backend_vtable_stbvorbis, NULL, pConfig, pDecoder); } #endif /* STB_VORBIS_INCLUDE_STB_VORBIS_H */ static ma_result ma_decoder__init_allocation_callbacks(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { MA_ASSERT(pDecoder != NULL); if (pConfig != NULL) { return ma_allocation_callbacks_init_copy(&pDecoder->allocationCallbacks, &pConfig->allocationCallbacks); } else { pDecoder->allocationCallbacks = ma_allocation_callbacks_init_default(); return MA_SUCCESS; } } static ma_result ma_decoder__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_decoder_read_pcm_frames((ma_decoder*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_decoder__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_decoder_seek_to_pcm_frame((ma_decoder*)pDataSource, frameIndex); } static ma_result ma_decoder__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_decoder_get_data_format((ma_decoder*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_decoder__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_decoder_get_cursor_in_pcm_frames((ma_decoder*)pDataSource, pCursor); } static ma_result ma_decoder__data_source_on_get_length(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_decoder_get_length_in_pcm_frames((ma_decoder*)pDataSource, pLength); } static ma_data_source_vtable g_ma_decoder_data_source_vtable = { ma_decoder__data_source_on_read, ma_decoder__data_source_on_seek, ma_decoder__data_source_on_get_data_format, ma_decoder__data_source_on_get_cursor, ma_decoder__data_source_on_get_length, NULL, /* onSetLooping */ 0 }; static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, ma_decoder_tell_proc onTell, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; ma_data_source_config dataSourceConfig; MA_ASSERT(pConfig != NULL); if (pDecoder == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDecoder); if (onRead == NULL || onSeek == NULL) { return MA_INVALID_ARGS; } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_decoder_data_source_vtable; result = ma_data_source_init(&dataSourceConfig, &pDecoder->ds); if (result != MA_SUCCESS) { return result; } pDecoder->onRead = onRead; pDecoder->onSeek = onSeek; pDecoder->onTell = onTell; pDecoder->pUserData = pUserData; result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder); if (result != MA_SUCCESS) { ma_data_source_uninit(&pDecoder->ds); return result; } return MA_SUCCESS; } static ma_result ma_decoder__postinit(const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; result = ma_decoder__init_data_converter(pDecoder, pConfig); /* If we failed post initialization we need to uninitialize the decoder before returning to prevent a memory leak. */ if (result != MA_SUCCESS) { ma_decoder_uninit(pDecoder); return result; } return result; } static ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result = MA_NO_BACKEND; MA_ASSERT(pConfig != NULL); MA_ASSERT(pDecoder != NULL); /* Silence some warnings in the case that we don't have any decoder backends enabled. */ (void)onRead; (void)onSeek; (void)pUserData; /* If we've specified a specific encoding type, try that first. */ if (pConfig->encodingFormat != ma_encoding_format_unknown) { #ifdef MA_HAS_WAV if (pConfig->encodingFormat == ma_encoding_format_wav) { result = ma_decoder_init_wav__internal(pConfig, pDecoder); } #endif #ifdef MA_HAS_FLAC if (pConfig->encodingFormat == ma_encoding_format_flac) { result = ma_decoder_init_flac__internal(pConfig, pDecoder); } #endif #ifdef MA_HAS_MP3 if (pConfig->encodingFormat == ma_encoding_format_mp3) { result = ma_decoder_init_mp3__internal(pConfig, pDecoder); } #endif #ifdef MA_HAS_VORBIS if (pConfig->encodingFormat == ma_encoding_format_vorbis) { result = ma_decoder_init_vorbis__internal(pConfig, pDecoder); } #endif /* If we weren't able to initialize the decoder, seek back to the start to give the next attempts a clean start. */ if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } if (result != MA_SUCCESS) { /* Getting here means we couldn't load a specific decoding backend based on the encoding format. */ /* We use trial and error to open a decoder. We prioritize custom decoders so that if they implement the same encoding format they take priority over the built-in decoders. */ if (result != MA_SUCCESS) { result = ma_decoder_init_custom__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } /* If we get to this point and we still haven't found a decoder, and the caller has requested a specific encoding format, there's no hope for it. Abort. */ if (pConfig->encodingFormat != ma_encoding_format_unknown) { return MA_NO_BACKEND; } #ifdef MA_HAS_WAV if (result != MA_SUCCESS) { result = ma_decoder_init_wav__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_FLAC if (result != MA_SUCCESS) { result = ma_decoder_init_flac__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_MP3 if (result != MA_SUCCESS) { result = ma_decoder_init_mp3__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_VORBIS if (result != MA_SUCCESS) { result = ma_decoder_init_vorbis__internal(pConfig, pDecoder); if (result != MA_SUCCESS) { onSeek(pDecoder, 0, ma_seek_origin_start); } } #endif } if (result != MA_SUCCESS) { return result; } return ma_decoder__postinit(pConfig, pDecoder); } MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_decoder_config config; ma_result result; config = ma_decoder_config_init_copy(pConfig); result = ma_decoder__preinit(onRead, onSeek, NULL, pUserData, &config, pDecoder); if (result != MA_SUCCESS) { return result; } return ma_decoder_init__internal(onRead, onSeek, pUserData, &config, pDecoder); } static ma_result ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead, size_t* pBytesRead) { size_t bytesRemaining; MA_ASSERT(pDecoder->data.memory.dataSize >= pDecoder->data.memory.currentReadPos); if (pBytesRead != NULL) { *pBytesRead = 0; } bytesRemaining = pDecoder->data.memory.dataSize - pDecoder->data.memory.currentReadPos; if (bytesToRead > bytesRemaining) { bytesToRead = bytesRemaining; } if (bytesRemaining == 0) { return MA_AT_END; } if (bytesToRead > 0) { MA_COPY_MEMORY(pBufferOut, pDecoder->data.memory.pData + pDecoder->data.memory.currentReadPos, bytesToRead); pDecoder->data.memory.currentReadPos += bytesToRead; } if (pBytesRead != NULL) { *pBytesRead = bytesToRead; } return MA_SUCCESS; } static ma_result ma_decoder__on_seek_memory(ma_decoder* pDecoder, ma_int64 byteOffset, ma_seek_origin origin) { if (byteOffset > 0 && (ma_uint64)byteOffset > MA_SIZE_MAX) { return MA_BAD_SEEK; } if (origin == ma_seek_origin_current) { if (byteOffset > 0) { if (pDecoder->data.memory.currentReadPos + byteOffset > pDecoder->data.memory.dataSize) { byteOffset = (ma_int64)(pDecoder->data.memory.dataSize - pDecoder->data.memory.currentReadPos); /* Trying to seek too far forward. */ } pDecoder->data.memory.currentReadPos += (size_t)byteOffset; } else { if (pDecoder->data.memory.currentReadPos < (size_t)-byteOffset) { byteOffset = -(ma_int64)pDecoder->data.memory.currentReadPos; /* Trying to seek too far backwards. */ } pDecoder->data.memory.currentReadPos -= (size_t)-byteOffset; } } else { if (origin == ma_seek_origin_end) { if (byteOffset < 0) { byteOffset = -byteOffset; } if (byteOffset > (ma_int64)pDecoder->data.memory.dataSize) { pDecoder->data.memory.currentReadPos = 0; /* Trying to seek too far back. */ } else { pDecoder->data.memory.currentReadPos = pDecoder->data.memory.dataSize - (size_t)byteOffset; } } else { if ((size_t)byteOffset <= pDecoder->data.memory.dataSize) { pDecoder->data.memory.currentReadPos = (size_t)byteOffset; } else { pDecoder->data.memory.currentReadPos = pDecoder->data.memory.dataSize; /* Trying to seek too far forward. */ } } } return MA_SUCCESS; } static ma_result ma_decoder__on_tell_memory(ma_decoder* pDecoder, ma_int64* pCursor) { MA_ASSERT(pDecoder != NULL); MA_ASSERT(pCursor != NULL); *pCursor = (ma_int64)pDecoder->data.memory.currentReadPos; return MA_SUCCESS; } static ma_result ma_decoder__preinit_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result = ma_decoder__preinit(ma_decoder__on_read_memory, ma_decoder__on_seek_memory, ma_decoder__on_tell_memory, NULL, pConfig, pDecoder); if (result != MA_SUCCESS) { return result; } if (pData == NULL || dataSize == 0) { return MA_INVALID_ARGS; } pDecoder->data.memory.pData = (const ma_uint8*)pData; pDecoder->data.memory.dataSize = dataSize; pDecoder->data.memory.currentReadPos = 0; (void)pConfig; return MA_SUCCESS; } MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_decoder_config config; ma_result result; config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */ result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder); if (result != MA_SUCCESS) { return result; } return ma_decoder_init__internal(ma_decoder__on_read_memory, ma_decoder__on_seek_memory, NULL, &config, pDecoder); } #if defined(MA_HAS_WAV) || \ defined(MA_HAS_MP3) || \ defined(MA_HAS_FLAC) || \ defined(MA_HAS_VORBIS) || \ defined(MA_HAS_OPUS) #define MA_HAS_PATH_API #endif #if defined(MA_HAS_PATH_API) static const char* ma_path_file_name(const char* path) { const char* fileName; if (path == NULL) { return NULL; } fileName = path; /* We just loop through the path until we find the last slash. */ while (path[0] != '\0') { if (path[0] == '/' || path[0] == '\\') { fileName = path; } path += 1; } /* At this point the file name is sitting on a slash, so just move forward. */ while (fileName[0] != '\0' && (fileName[0] == '/' || fileName[0] == '\\')) { fileName += 1; } return fileName; } static const wchar_t* ma_path_file_name_w(const wchar_t* path) { const wchar_t* fileName; if (path == NULL) { return NULL; } fileName = path; /* We just loop through the path until we find the last slash. */ while (path[0] != '\0') { if (path[0] == '/' || path[0] == '\\') { fileName = path; } path += 1; } /* At this point the file name is sitting on a slash, so just move forward. */ while (fileName[0] != '\0' && (fileName[0] == '/' || fileName[0] == '\\')) { fileName += 1; } return fileName; } static const char* ma_path_extension(const char* path) { const char* extension; const char* lastOccurance; if (path == NULL) { path = ""; } extension = ma_path_file_name(path); lastOccurance = NULL; /* Just find the last '.' and return. */ while (extension[0] != '\0') { if (extension[0] == '.') { extension += 1; lastOccurance = extension; } extension += 1; } return (lastOccurance != NULL) ? lastOccurance : extension; } static const wchar_t* ma_path_extension_w(const wchar_t* path) { const wchar_t* extension; const wchar_t* lastOccurance; if (path == NULL) { path = L""; } extension = ma_path_file_name_w(path); lastOccurance = NULL; /* Just find the last '.' and return. */ while (extension[0] != '\0') { if (extension[0] == '.') { extension += 1; lastOccurance = extension; } extension += 1; } return (lastOccurance != NULL) ? lastOccurance : extension; } static ma_bool32 ma_path_extension_equal(const char* path, const char* extension) { const char* ext1; const char* ext2; if (path == NULL || extension == NULL) { return MA_FALSE; } ext1 = extension; ext2 = ma_path_extension(path); #if defined(_MSC_VER) || defined(__DMC__) return _stricmp(ext1, ext2) == 0; #else return strcasecmp(ext1, ext2) == 0; #endif } static ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* extension) { const wchar_t* ext1; const wchar_t* ext2; if (path == NULL || extension == NULL) { return MA_FALSE; } ext1 = extension; ext2 = ma_path_extension_w(path); #if defined(_MSC_VER) || defined(__WATCOMC__) || defined(__DMC__) return _wcsicmp(ext1, ext2) == 0; #else /* I'm not aware of a wide character version of strcasecmp(). I'm therefore converting the extensions to multibyte strings and comparing those. This isn't the most efficient way to do it, but it should work OK. */ { char ext1MB[4096]; char ext2MB[4096]; const wchar_t* pext1 = ext1; const wchar_t* pext2 = ext2; mbstate_t mbs1; mbstate_t mbs2; MA_ZERO_OBJECT(&mbs1); MA_ZERO_OBJECT(&mbs2); if (wcsrtombs(ext1MB, &pext1, sizeof(ext1MB), &mbs1) == (size_t)-1) { return MA_FALSE; } if (wcsrtombs(ext2MB, &pext2, sizeof(ext2MB), &mbs2) == (size_t)-1) { return MA_FALSE; } return strcasecmp(ext1MB, ext2MB) == 0; } #endif } #endif /* MA_HAS_PATH_API */ static ma_result ma_decoder__on_read_vfs(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead, size_t* pBytesRead) { MA_ASSERT(pDecoder != NULL); MA_ASSERT(pBufferOut != NULL); return ma_vfs_or_default_read(pDecoder->data.vfs.pVFS, pDecoder->data.vfs.file, pBufferOut, bytesToRead, pBytesRead); } static ma_result ma_decoder__on_seek_vfs(ma_decoder* pDecoder, ma_int64 offset, ma_seek_origin origin) { MA_ASSERT(pDecoder != NULL); return ma_vfs_or_default_seek(pDecoder->data.vfs.pVFS, pDecoder->data.vfs.file, offset, origin); } static ma_result ma_decoder__on_tell_vfs(ma_decoder* pDecoder, ma_int64* pCursor) { MA_ASSERT(pDecoder != NULL); return ma_vfs_or_default_tell(pDecoder->data.vfs.pVFS, pDecoder->data.vfs.file, pCursor); } static ma_result ma_decoder__preinit_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; ma_vfs_file file; result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, ma_decoder__on_tell_vfs, NULL, pConfig, pDecoder); if (result != MA_SUCCESS) { return result; } if (pFilePath == NULL || pFilePath[0] == '\0') { return MA_INVALID_ARGS; } result = ma_vfs_or_default_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file); if (result != MA_SUCCESS) { return result; } pDecoder->data.vfs.pVFS = pVFS; pDecoder->data.vfs.file = file; return MA_SUCCESS; } MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; ma_decoder_config config; config = ma_decoder_config_init_copy(pConfig); result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder); if (result != MA_SUCCESS) { return result; } result = MA_NO_BACKEND; if (config.encodingFormat != ma_encoding_format_unknown) { #ifdef MA_HAS_WAV if (config.encodingFormat == ma_encoding_format_wav) { result = ma_decoder_init_wav__internal(&config, pDecoder); } #endif #ifdef MA_HAS_FLAC if (config.encodingFormat == ma_encoding_format_flac) { result = ma_decoder_init_flac__internal(&config, pDecoder); } #endif #ifdef MA_HAS_MP3 if (config.encodingFormat == ma_encoding_format_mp3) { result = ma_decoder_init_mp3__internal(&config, pDecoder); } #endif #ifdef MA_HAS_VORBIS if (config.encodingFormat == ma_encoding_format_vorbis) { result = ma_decoder_init_vorbis__internal(&config, pDecoder); } #endif /* Make sure we seek back to the start if we didn't initialize a decoder successfully so the next attempts have a fresh start. */ if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } if (result != MA_SUCCESS) { /* Getting here means we weren't able to initialize a decoder of a specific encoding format. */ /* We use trial and error to open a decoder. We prioritize custom decoders so that if they implement the same encoding format they take priority over the built-in decoders. */ if (result != MA_SUCCESS) { result = ma_decoder_init_custom__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } /* If we get to this point and we still haven't found a decoder, and the caller has requested a specific encoding format, there's no hope for it. Abort. */ if (config.encodingFormat != ma_encoding_format_unknown) { return MA_NO_BACKEND; } #ifdef MA_HAS_WAV if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "wav")) { result = ma_decoder_init_wav__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_FLAC if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "flac")) { result = ma_decoder_init_flac__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_MP3 if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "mp3")) { result = ma_decoder_init_mp3__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } #endif } /* If we still haven't got a result just use trial and error. Otherwise we can finish up. */ if (result != MA_SUCCESS) { result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder); } else { result = ma_decoder__postinit(&config, pDecoder); } if (result != MA_SUCCESS) { if (pDecoder->data.vfs.file != NULL) { /* <-- Will be reset to NULL if ma_decoder_uninit() is called in one of the steps above which allows us to avoid a double close of the file. */ ma_vfs_or_default_close(pVFS, pDecoder->data.vfs.file); } return result; } return MA_SUCCESS; } static ma_result ma_decoder__preinit_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; ma_vfs_file file; result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, ma_decoder__on_tell_vfs, NULL, pConfig, pDecoder); if (result != MA_SUCCESS) { return result; } if (pFilePath == NULL || pFilePath[0] == '\0') { return MA_INVALID_ARGS; } result = ma_vfs_or_default_open_w(pVFS, pFilePath, MA_OPEN_MODE_READ, &file); if (result != MA_SUCCESS) { return result; } pDecoder->data.vfs.pVFS = pVFS; pDecoder->data.vfs.file = file; return MA_SUCCESS; } MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { ma_result result; ma_decoder_config config; config = ma_decoder_config_init_copy(pConfig); result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder); if (result != MA_SUCCESS) { return result; } result = MA_NO_BACKEND; if (config.encodingFormat != ma_encoding_format_unknown) { #ifdef MA_HAS_WAV if (config.encodingFormat == ma_encoding_format_wav) { result = ma_decoder_init_wav__internal(&config, pDecoder); } #endif #ifdef MA_HAS_FLAC if (config.encodingFormat == ma_encoding_format_flac) { result = ma_decoder_init_flac__internal(&config, pDecoder); } #endif #ifdef MA_HAS_MP3 if (config.encodingFormat == ma_encoding_format_mp3) { result = ma_decoder_init_mp3__internal(&config, pDecoder); } #endif #ifdef MA_HAS_VORBIS if (config.encodingFormat == ma_encoding_format_vorbis) { result = ma_decoder_init_vorbis__internal(&config, pDecoder); } #endif /* Make sure we seek back to the start if we didn't initialize a decoder successfully so the next attempts have a fresh start. */ if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } if (result != MA_SUCCESS) { /* Getting here means we weren't able to initialize a decoder of a specific encoding format. */ /* We use trial and error to open a decoder. We prioritize custom decoders so that if they implement the same encoding format they take priority over the built-in decoders. */ if (result != MA_SUCCESS) { result = ma_decoder_init_custom__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } /* If we get to this point and we still haven't found a decoder, and the caller has requested a specific encoding format, there's no hope for it. Abort. */ if (config.encodingFormat != ma_encoding_format_unknown) { return MA_NO_BACKEND; } #ifdef MA_HAS_WAV if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"wav")) { result = ma_decoder_init_wav__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_FLAC if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"flac")) { result = ma_decoder_init_flac__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } #endif #ifdef MA_HAS_MP3 if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"mp3")) { result = ma_decoder_init_mp3__internal(&config, pDecoder); if (result != MA_SUCCESS) { ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start); } } #endif } /* If we still haven't got a result just use trial and error. Otherwise we can finish up. */ if (result != MA_SUCCESS) { result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder); } else { result = ma_decoder__postinit(&config, pDecoder); } if (result != MA_SUCCESS) { ma_vfs_or_default_close(pVFS, pDecoder->data.vfs.file); return result; } return MA_SUCCESS; } MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { return ma_decoder_init_vfs(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder) { return ma_decoder_init_vfs_w(NULL, pFilePath, pConfig, pDecoder); } MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder) { if (pDecoder == NULL) { return MA_INVALID_ARGS; } if (pDecoder->pBackend != NULL) { if (pDecoder->pBackendVTable != NULL && pDecoder->pBackendVTable->onUninit != NULL) { pDecoder->pBackendVTable->onUninit(pDecoder->pBackendUserData, pDecoder->pBackend, &pDecoder->allocationCallbacks); } } if (pDecoder->onRead == ma_decoder__on_read_vfs) { ma_vfs_or_default_close(pDecoder->data.vfs.pVFS, pDecoder->data.vfs.file); pDecoder->data.vfs.file = NULL; } ma_data_converter_uninit(&pDecoder->converter, &pDecoder->allocationCallbacks); ma_data_source_uninit(&pDecoder->ds); if (pDecoder->pInputCache != NULL) { ma_free(pDecoder->pInputCache, &pDecoder->allocationCallbacks); } return MA_SUCCESS; } MA_API ma_result ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint64 totalFramesReadOut; void* pRunningFramesOut; if (pFramesRead != NULL) { *pFramesRead = 0; /* Safety. */ } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pDecoder == NULL) { return MA_INVALID_ARGS; } if (pDecoder->pBackend == NULL) { return MA_INVALID_OPERATION; } /* Fast path. */ if (pDecoder->converter.isPassthrough) { result = ma_data_source_read_pcm_frames(pDecoder->pBackend, pFramesOut, frameCount, &totalFramesReadOut); } else { /* Getting here means we need to do data conversion. If we're seeking forward and are _not_ doing resampling we can run this in a fast path. If we're doing resampling we need to run through each sample because we need to ensure it's internal cache is updated. */ if (pFramesOut == NULL && pDecoder->converter.hasResampler == MA_FALSE) { result = ma_data_source_read_pcm_frames(pDecoder->pBackend, NULL, frameCount, &totalFramesReadOut); } else { /* Slow path. Need to run everything through the data converter. */ ma_format internalFormat; ma_uint32 internalChannels; totalFramesReadOut = 0; pRunningFramesOut = pFramesOut; result = ma_data_source_get_data_format(pDecoder->pBackend, &internalFormat, &internalChannels, NULL, NULL, 0); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the internal format and channel count. */ } /* We run a different path depending on whether or not we are using a heap-allocated intermediary buffer or not. If the data converter does not support the calculation of the required number of input frames, we'll use the heap-allocated path. Otherwise we'll use the stack-allocated path. */ if (pDecoder->pInputCache != NULL) { /* We don't have a way of determining the required number of input frames, so need to persistently store input data in a cache. */ while (totalFramesReadOut < frameCount) { ma_uint64 framesToReadThisIterationIn; ma_uint64 framesToReadThisIterationOut; /* If there's any data available in the cache, that needs to get processed first. */ if (pDecoder->inputCacheRemaining > 0) { framesToReadThisIterationOut = (frameCount - totalFramesReadOut); framesToReadThisIterationIn = framesToReadThisIterationOut; if (framesToReadThisIterationIn > pDecoder->inputCacheRemaining) { framesToReadThisIterationIn = pDecoder->inputCacheRemaining; } result = ma_data_converter_process_pcm_frames(&pDecoder->converter, ma_offset_pcm_frames_ptr(pDecoder->pInputCache, pDecoder->inputCacheConsumed, internalFormat, internalChannels), &framesToReadThisIterationIn, pRunningFramesOut, &framesToReadThisIterationOut); if (result != MA_SUCCESS) { break; } pDecoder->inputCacheConsumed += framesToReadThisIterationIn; pDecoder->inputCacheRemaining -= framesToReadThisIterationIn; totalFramesReadOut += framesToReadThisIterationOut; if (pRunningFramesOut != NULL) { pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesToReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels)); } if (framesToReadThisIterationIn == 0 && framesToReadThisIterationOut == 0) { break; /* We're done. */ } } /* Getting here means there's no data in the cache and we need to fill it up from the data source. */ if (pDecoder->inputCacheRemaining == 0) { pDecoder->inputCacheConsumed = 0; result = ma_data_source_read_pcm_frames(pDecoder->pBackend, pDecoder->pInputCache, pDecoder->inputCacheCap, &pDecoder->inputCacheRemaining); if (result != MA_SUCCESS) { break; } } } } else { /* We have a way of determining the required number of input frames so just use the stack. */ while (totalFramesReadOut < frameCount) { ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In internal format. */ ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(internalFormat, internalChannels); ma_uint64 framesToReadThisIterationIn; ma_uint64 framesReadThisIterationIn; ma_uint64 framesToReadThisIterationOut; ma_uint64 framesReadThisIterationOut; ma_uint64 requiredInputFrameCount; framesToReadThisIterationOut = (frameCount - totalFramesReadOut); framesToReadThisIterationIn = framesToReadThisIterationOut; if (framesToReadThisIterationIn > intermediaryBufferCap) { framesToReadThisIterationIn = intermediaryBufferCap; } ma_data_converter_get_required_input_frame_count(&pDecoder->converter, framesToReadThisIterationOut, &requiredInputFrameCount); if (framesToReadThisIterationIn > requiredInputFrameCount) { framesToReadThisIterationIn = requiredInputFrameCount; } if (requiredInputFrameCount > 0) { result = ma_data_source_read_pcm_frames(pDecoder->pBackend, pIntermediaryBuffer, framesToReadThisIterationIn, &framesReadThisIterationIn); } else { framesReadThisIterationIn = 0; } /* At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any input frames, we still want to try processing frames because there may some output frames generated from cached input data. */ framesReadThisIterationOut = framesToReadThisIterationOut; result = ma_data_converter_process_pcm_frames(&pDecoder->converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut); if (result != MA_SUCCESS) { break; } totalFramesReadOut += framesReadThisIterationOut; if (pRunningFramesOut != NULL) { pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels)); } if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) { break; /* We're done. */ } } } } } pDecoder->readPointerInPCMFrames += totalFramesReadOut; if (pFramesRead != NULL) { *pFramesRead = totalFramesReadOut; } if (result == MA_SUCCESS && totalFramesReadOut == 0) { result = MA_AT_END; } return result; } MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex) { if (pDecoder == NULL) { return MA_INVALID_ARGS; } if (pDecoder->pBackend != NULL) { ma_result result; ma_uint64 internalFrameIndex; ma_uint32 internalSampleRate; ma_uint64 currentFrameIndex; result = ma_data_source_get_data_format(pDecoder->pBackend, NULL, NULL, &internalSampleRate, NULL, 0); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the internal sample rate. */ } if (internalSampleRate == pDecoder->outputSampleRate) { internalFrameIndex = frameIndex; } else { internalFrameIndex = ma_calculate_frame_count_after_resampling(internalSampleRate, pDecoder->outputSampleRate, frameIndex); } /* Only seek if we're requesting a different frame to what we're currently sitting on. */ ma_data_source_get_cursor_in_pcm_frames(pDecoder->pBackend, ¤tFrameIndex); if (currentFrameIndex != internalFrameIndex) { result = ma_data_source_seek_to_pcm_frame(pDecoder->pBackend, internalFrameIndex); if (result == MA_SUCCESS) { pDecoder->readPointerInPCMFrames = frameIndex; } /* Reset the data converter so that any cached data in the resampler is cleared. */ ma_data_converter_reset(&pDecoder->converter); } return result; } /* Should never get here, but if we do it means onSeekToPCMFrame was not set by the backend. */ return MA_INVALID_ARGS; } MA_API ma_result ma_decoder_get_data_format(ma_decoder* pDecoder, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { if (pDecoder == NULL) { return MA_INVALID_ARGS; } if (pFormat != NULL) { *pFormat = pDecoder->outputFormat; } if (pChannels != NULL) { *pChannels = pDecoder->outputChannels; } if (pSampleRate != NULL) { *pSampleRate = pDecoder->outputSampleRate; } if (pChannelMap != NULL) { ma_data_converter_get_output_channel_map(&pDecoder->converter, pChannelMap, channelMapCap); } return MA_SUCCESS; } MA_API ma_result ma_decoder_get_cursor_in_pcm_frames(ma_decoder* pDecoder, ma_uint64* pCursor) { if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; if (pDecoder == NULL) { return MA_INVALID_ARGS; } *pCursor = pDecoder->readPointerInPCMFrames; return MA_SUCCESS; } MA_API ma_result ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder, ma_uint64* pLength) { if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; if (pDecoder == NULL) { return MA_INVALID_ARGS; } if (pDecoder->pBackend != NULL) { ma_result result; ma_uint64 internalLengthInPCMFrames; ma_uint32 internalSampleRate; result = ma_data_source_get_length_in_pcm_frames(pDecoder->pBackend, &internalLengthInPCMFrames); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the internal length. */ } result = ma_data_source_get_data_format(pDecoder->pBackend, NULL, NULL, &internalSampleRate, NULL, 0); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the internal sample rate. */ } if (internalSampleRate == pDecoder->outputSampleRate) { *pLength = internalLengthInPCMFrames; } else { *pLength = ma_calculate_frame_count_after_resampling(pDecoder->outputSampleRate, internalSampleRate, internalLengthInPCMFrames); } return MA_SUCCESS; } else { return MA_NO_BACKEND; } } MA_API ma_result ma_decoder_get_available_frames(ma_decoder* pDecoder, ma_uint64* pAvailableFrames) { ma_result result; ma_uint64 totalFrameCount; if (pAvailableFrames == NULL) { return MA_INVALID_ARGS; } *pAvailableFrames = 0; if (pDecoder == NULL) { return MA_INVALID_ARGS; } result = ma_decoder_get_length_in_pcm_frames(pDecoder, &totalFrameCount); if (result != MA_SUCCESS) { return result; } if (totalFrameCount <= pDecoder->readPointerInPCMFrames) { *pAvailableFrames = 0; } else { *pAvailableFrames = totalFrameCount - pDecoder->readPointerInPCMFrames; } return MA_SUCCESS; } static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_config* pConfigOut, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) { ma_result result; ma_uint64 totalFrameCount; ma_uint64 bpf; ma_uint64 dataCapInFrames; void* pPCMFramesOut; MA_ASSERT(pDecoder != NULL); totalFrameCount = 0; bpf = ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels); /* The frame count is unknown until we try reading. Thus, we just run in a loop. */ dataCapInFrames = 0; pPCMFramesOut = NULL; for (;;) { ma_uint64 frameCountToTryReading; ma_uint64 framesJustRead; /* Make room if there's not enough. */ if (totalFrameCount == dataCapInFrames) { void* pNewPCMFramesOut; ma_uint64 newDataCapInFrames = dataCapInFrames*2; if (newDataCapInFrames == 0) { newDataCapInFrames = 4096; } if ((newDataCapInFrames * bpf) > MA_SIZE_MAX) { ma_free(pPCMFramesOut, &pDecoder->allocationCallbacks); return MA_TOO_BIG; } pNewPCMFramesOut = (void*)ma_realloc(pPCMFramesOut, (size_t)(newDataCapInFrames * bpf), &pDecoder->allocationCallbacks); if (pNewPCMFramesOut == NULL) { ma_free(pPCMFramesOut, &pDecoder->allocationCallbacks); return MA_OUT_OF_MEMORY; } dataCapInFrames = newDataCapInFrames; pPCMFramesOut = pNewPCMFramesOut; } frameCountToTryReading = dataCapInFrames - totalFrameCount; MA_ASSERT(frameCountToTryReading > 0); result = ma_decoder_read_pcm_frames(pDecoder, (ma_uint8*)pPCMFramesOut + (totalFrameCount * bpf), frameCountToTryReading, &framesJustRead); totalFrameCount += framesJustRead; if (result != MA_SUCCESS) { break; } if (framesJustRead < frameCountToTryReading) { break; } } if (pConfigOut != NULL) { pConfigOut->format = pDecoder->outputFormat; pConfigOut->channels = pDecoder->outputChannels; pConfigOut->sampleRate = pDecoder->outputSampleRate; } if (ppPCMFramesOut != NULL) { *ppPCMFramesOut = pPCMFramesOut; } else { ma_free(pPCMFramesOut, &pDecoder->allocationCallbacks); } if (pFrameCountOut != NULL) { *pFrameCountOut = totalFrameCount; } ma_decoder_uninit(pDecoder); return MA_SUCCESS; } MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) { ma_result result; ma_decoder_config config; ma_decoder decoder; if (pFrameCountOut != NULL) { *pFrameCountOut = 0; } if (ppPCMFramesOut != NULL) { *ppPCMFramesOut = NULL; } config = ma_decoder_config_init_copy(pConfig); result = ma_decoder_init_vfs(pVFS, pFilePath, &config, &decoder); if (result != MA_SUCCESS) { return result; } result = ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut); return result; } MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) { return ma_decode_from_vfs(NULL, pFilePath, pConfig, pFrameCountOut, ppPCMFramesOut); } MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut) { ma_decoder_config config; ma_decoder decoder; ma_result result; if (pFrameCountOut != NULL) { *pFrameCountOut = 0; } if (ppPCMFramesOut != NULL) { *ppPCMFramesOut = NULL; } if (pData == NULL || dataSize == 0) { return MA_INVALID_ARGS; } config = ma_decoder_config_init_copy(pConfig); result = ma_decoder_init_memory(pData, dataSize, &config, &decoder); if (result != MA_SUCCESS) { return result; } return ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut); } #endif /* MA_NO_DECODING */ #ifndef MA_NO_ENCODING #if defined(MA_HAS_WAV) static size_t ma_encoder__internal_on_write_wav(void* pUserData, const void* pData, size_t bytesToWrite) { ma_encoder* pEncoder = (ma_encoder*)pUserData; size_t bytesWritten = 0; MA_ASSERT(pEncoder != NULL); pEncoder->onWrite(pEncoder, pData, bytesToWrite, &bytesWritten); return bytesWritten; } static drwav_bool32 ma_encoder__internal_on_seek_wav(void* pUserData, int offset, drwav_seek_origin origin) { ma_encoder* pEncoder = (ma_encoder*)pUserData; ma_result result; MA_ASSERT(pEncoder != NULL); result = pEncoder->onSeek(pEncoder, offset, (origin == drwav_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current); if (result != MA_SUCCESS) { return DRWAV_FALSE; } else { return DRWAV_TRUE; } } static ma_result ma_encoder__on_init_wav(ma_encoder* pEncoder) { drwav_data_format wavFormat; drwav_allocation_callbacks allocationCallbacks; drwav* pWav; MA_ASSERT(pEncoder != NULL); pWav = (drwav*)ma_malloc(sizeof(*pWav), &pEncoder->config.allocationCallbacks); if (pWav == NULL) { return MA_OUT_OF_MEMORY; } wavFormat.container = drwav_container_riff; wavFormat.channels = pEncoder->config.channels; wavFormat.sampleRate = pEncoder->config.sampleRate; wavFormat.bitsPerSample = ma_get_bytes_per_sample(pEncoder->config.format) * 8; if (pEncoder->config.format == ma_format_f32) { wavFormat.format = DR_WAVE_FORMAT_IEEE_FLOAT; } else { wavFormat.format = DR_WAVE_FORMAT_PCM; } allocationCallbacks.pUserData = pEncoder->config.allocationCallbacks.pUserData; allocationCallbacks.onMalloc = pEncoder->config.allocationCallbacks.onMalloc; allocationCallbacks.onRealloc = pEncoder->config.allocationCallbacks.onRealloc; allocationCallbacks.onFree = pEncoder->config.allocationCallbacks.onFree; if (!drwav_init_write(pWav, &wavFormat, ma_encoder__internal_on_write_wav, ma_encoder__internal_on_seek_wav, pEncoder, &allocationCallbacks)) { return MA_ERROR; } pEncoder->pInternalEncoder = pWav; return MA_SUCCESS; } static void ma_encoder__on_uninit_wav(ma_encoder* pEncoder) { drwav* pWav; MA_ASSERT(pEncoder != NULL); pWav = (drwav*)pEncoder->pInternalEncoder; MA_ASSERT(pWav != NULL); drwav_uninit(pWav); ma_free(pWav, &pEncoder->config.allocationCallbacks); } static ma_result ma_encoder__on_write_pcm_frames_wav(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount, ma_uint64* pFramesWritten) { drwav* pWav; ma_uint64 framesWritten; MA_ASSERT(pEncoder != NULL); pWav = (drwav*)pEncoder->pInternalEncoder; MA_ASSERT(pWav != NULL); framesWritten = drwav_write_pcm_frames(pWav, frameCount, pFramesIn); if (pFramesWritten != NULL) { *pFramesWritten = framesWritten; } return MA_SUCCESS; } #endif MA_API ma_encoder_config ma_encoder_config_init(ma_encoding_format encodingFormat, ma_format format, ma_uint32 channels, ma_uint32 sampleRate) { ma_encoder_config config; MA_ZERO_OBJECT(&config); config.encodingFormat = encodingFormat; config.format = format; config.channels = channels; config.sampleRate = sampleRate; return config; } MA_API ma_result ma_encoder_preinit(const ma_encoder_config* pConfig, ma_encoder* pEncoder) { ma_result result; if (pEncoder == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pEncoder); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->format == ma_format_unknown || pConfig->channels == 0 || pConfig->sampleRate == 0) { return MA_INVALID_ARGS; } pEncoder->config = *pConfig; result = ma_allocation_callbacks_init_copy(&pEncoder->config.allocationCallbacks, &pConfig->allocationCallbacks); if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_encoder_init__internal(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, ma_encoder* pEncoder) { ma_result result = MA_SUCCESS; /* This assumes ma_encoder_preinit() has been called prior. */ MA_ASSERT(pEncoder != NULL); if (onWrite == NULL || onSeek == NULL) { return MA_INVALID_ARGS; } pEncoder->onWrite = onWrite; pEncoder->onSeek = onSeek; pEncoder->pUserData = pUserData; switch (pEncoder->config.encodingFormat) { case ma_encoding_format_wav: { #if defined(MA_HAS_WAV) pEncoder->onInit = ma_encoder__on_init_wav; pEncoder->onUninit = ma_encoder__on_uninit_wav; pEncoder->onWritePCMFrames = ma_encoder__on_write_pcm_frames_wav; #else result = MA_NO_BACKEND; #endif } break; default: { result = MA_INVALID_ARGS; } break; } /* Getting here means we should have our backend callbacks set up. */ if (result == MA_SUCCESS) { result = pEncoder->onInit(pEncoder); } return result; } static ma_result ma_encoder__on_write_vfs(ma_encoder* pEncoder, const void* pBufferIn, size_t bytesToWrite, size_t* pBytesWritten) { return ma_vfs_or_default_write(pEncoder->data.vfs.pVFS, pEncoder->data.vfs.file, pBufferIn, bytesToWrite, pBytesWritten); } static ma_result ma_encoder__on_seek_vfs(ma_encoder* pEncoder, ma_int64 offset, ma_seek_origin origin) { return ma_vfs_or_default_seek(pEncoder->data.vfs.pVFS, pEncoder->data.vfs.file, offset, origin); } MA_API ma_result ma_encoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder) { ma_result result; ma_vfs_file file; result = ma_encoder_preinit(pConfig, pEncoder); if (result != MA_SUCCESS) { return result; } /* Now open the file. If this fails we don't need to uninitialize the encoder. */ result = ma_vfs_or_default_open(pVFS, pFilePath, MA_OPEN_MODE_WRITE, &file); if (result != MA_SUCCESS) { return result; } pEncoder->data.vfs.pVFS = pVFS; pEncoder->data.vfs.file = file; result = ma_encoder_init__internal(ma_encoder__on_write_vfs, ma_encoder__on_seek_vfs, NULL, pEncoder); if (result != MA_SUCCESS) { ma_vfs_or_default_close(pVFS, file); return result; } return MA_SUCCESS; } MA_API ma_result ma_encoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder) { ma_result result; ma_vfs_file file; result = ma_encoder_preinit(pConfig, pEncoder); if (result != MA_SUCCESS) { return result; } /* Now open the file. If this fails we don't need to uninitialize the encoder. */ result = ma_vfs_or_default_open_w(pVFS, pFilePath, MA_OPEN_MODE_WRITE, &file); if (result != MA_SUCCESS) { return result; } pEncoder->data.vfs.pVFS = pVFS; pEncoder->data.vfs.file = file; result = ma_encoder_init__internal(ma_encoder__on_write_vfs, ma_encoder__on_seek_vfs, NULL, pEncoder); if (result != MA_SUCCESS) { ma_vfs_or_default_close(pVFS, file); return result; } return MA_SUCCESS; } MA_API ma_result ma_encoder_init_file(const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder) { return ma_encoder_init_vfs(NULL, pFilePath, pConfig, pEncoder); } MA_API ma_result ma_encoder_init_file_w(const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder) { return ma_encoder_init_vfs_w(NULL, pFilePath, pConfig, pEncoder); } MA_API ma_result ma_encoder_init(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, const ma_encoder_config* pConfig, ma_encoder* pEncoder) { ma_result result; result = ma_encoder_preinit(pConfig, pEncoder); if (result != MA_SUCCESS) { return result; } return ma_encoder_init__internal(onWrite, onSeek, pUserData, pEncoder); } MA_API void ma_encoder_uninit(ma_encoder* pEncoder) { if (pEncoder == NULL) { return; } if (pEncoder->onUninit) { pEncoder->onUninit(pEncoder); } /* If we have a file handle, close it. */ if (pEncoder->onWrite == ma_encoder__on_write_vfs) { ma_vfs_or_default_close(pEncoder->data.vfs.pVFS, pEncoder->data.vfs.file); pEncoder->data.vfs.file = NULL; } } MA_API ma_result ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount, ma_uint64* pFramesWritten) { if (pFramesWritten != NULL) { *pFramesWritten = 0; } if (pEncoder == NULL || pFramesIn == NULL) { return MA_INVALID_ARGS; } return pEncoder->onWritePCMFrames(pEncoder, pFramesIn, frameCount, pFramesWritten); } #endif /* MA_NO_ENCODING */ /************************************************************************************************************************************************************** Generation **************************************************************************************************************************************************************/ #ifndef MA_NO_GENERATION MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency) { ma_waveform_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.sampleRate = sampleRate; config.type = type; config.amplitude = amplitude; config.frequency = frequency; return config; } static ma_result ma_waveform__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_waveform_read_pcm_frames((ma_waveform*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_waveform__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_waveform_seek_to_pcm_frame((ma_waveform*)pDataSource, frameIndex); } static ma_result ma_waveform__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_waveform* pWaveform = (ma_waveform*)pDataSource; *pFormat = pWaveform->config.format; *pChannels = pWaveform->config.channels; *pSampleRate = pWaveform->config.sampleRate; ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pWaveform->config.channels); return MA_SUCCESS; } static ma_result ma_waveform__data_source_on_get_cursor(ma_data_source* pDataSource, ma_uint64* pCursor) { ma_waveform* pWaveform = (ma_waveform*)pDataSource; *pCursor = (ma_uint64)(pWaveform->time / pWaveform->advance); return MA_SUCCESS; } static double ma_waveform__calculate_advance(ma_uint32 sampleRate, double frequency) { return (1.0 / (sampleRate / frequency)); } static void ma_waveform__update_advance(ma_waveform* pWaveform) { pWaveform->advance = ma_waveform__calculate_advance(pWaveform->config.sampleRate, pWaveform->config.frequency); } static ma_data_source_vtable g_ma_waveform_data_source_vtable = { ma_waveform__data_source_on_read, ma_waveform__data_source_on_seek, ma_waveform__data_source_on_get_data_format, ma_waveform__data_source_on_get_cursor, NULL, /* onGetLength. There's no notion of a length in waveforms. */ NULL, /* onSetLooping */ 0 }; MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform) { ma_result result; ma_data_source_config dataSourceConfig; if (pWaveform == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pWaveform); dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_waveform_data_source_vtable; result = ma_data_source_init(&dataSourceConfig, &pWaveform->ds); if (result != MA_SUCCESS) { return result; } pWaveform->config = *pConfig; pWaveform->advance = ma_waveform__calculate_advance(pWaveform->config.sampleRate, pWaveform->config.frequency); pWaveform->time = 0; return MA_SUCCESS; } MA_API void ma_waveform_uninit(ma_waveform* pWaveform) { if (pWaveform == NULL) { return; } ma_data_source_uninit(&pWaveform->ds); } MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude) { if (pWaveform == NULL) { return MA_INVALID_ARGS; } pWaveform->config.amplitude = amplitude; return MA_SUCCESS; } MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency) { if (pWaveform == NULL) { return MA_INVALID_ARGS; } pWaveform->config.frequency = frequency; ma_waveform__update_advance(pWaveform); return MA_SUCCESS; } MA_API ma_result ma_waveform_set_type(ma_waveform* pWaveform, ma_waveform_type type) { if (pWaveform == NULL) { return MA_INVALID_ARGS; } pWaveform->config.type = type; return MA_SUCCESS; } MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate) { if (pWaveform == NULL) { return MA_INVALID_ARGS; } pWaveform->config.sampleRate = sampleRate; ma_waveform__update_advance(pWaveform); return MA_SUCCESS; } static float ma_waveform_sine_f32(double time, double amplitude) { return (float)(ma_sind(MA_TAU_D * time) * amplitude); } static ma_int16 ma_waveform_sine_s16(double time, double amplitude) { return ma_pcm_sample_f32_to_s16(ma_waveform_sine_f32(time, amplitude)); } static float ma_waveform_square_f32(double time, double amplitude) { double f = time - (ma_int64)time; double r; if (f < 0.5) { r = amplitude; } else { r = -amplitude; } return (float)r; } static ma_int16 ma_waveform_square_s16(double time, double amplitude) { return ma_pcm_sample_f32_to_s16(ma_waveform_square_f32(time, amplitude)); } static float ma_waveform_triangle_f32(double time, double amplitude) { double f = time - (ma_int64)time; double r; r = 2 * ma_abs(2 * (f - 0.5)) - 1; return (float)(r * amplitude); } static ma_int16 ma_waveform_triangle_s16(double time, double amplitude) { return ma_pcm_sample_f32_to_s16(ma_waveform_triangle_f32(time, amplitude)); } static float ma_waveform_sawtooth_f32(double time, double amplitude) { double f = time - (ma_int64)time; double r; r = 2 * (f - 0.5); return (float)(r * amplitude); } static ma_int16 ma_waveform_sawtooth_s16(double time, double amplitude) { return ma_pcm_sample_f32_to_s16(ma_waveform_sawtooth_f32(time, amplitude)); } static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint64 iChannel; ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format); ma_uint32 bpf = bps * pWaveform->config.channels; MA_ASSERT(pWaveform != NULL); MA_ASSERT(pFramesOut != NULL); if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s; } } } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_waveform_sine_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint64 iChannel; ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format); ma_uint32 bpf = bps * pWaveform->config.channels; MA_ASSERT(pWaveform != NULL); MA_ASSERT(pFramesOut != NULL); if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s; } } } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_waveform_square_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint64 iChannel; ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format); ma_uint32 bpf = bps * pWaveform->config.channels; MA_ASSERT(pWaveform != NULL); MA_ASSERT(pFramesOut != NULL); if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s; } } } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_waveform_triangle_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint64 iChannel; ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format); ma_uint32 bpf = bps * pWaveform->config.channels; MA_ASSERT(pWaveform != NULL); MA_ASSERT(pFramesOut != NULL); if (pWaveform->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s; } } } else if (pWaveform->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_waveform_sawtooth_s16(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.amplitude); pWaveform->time += pWaveform->advance; for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } MA_API ma_result ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pWaveform == NULL) { return MA_INVALID_ARGS; } if (pFramesOut != NULL) { switch (pWaveform->config.type) { case ma_waveform_type_sine: { ma_waveform_read_pcm_frames__sine(pWaveform, pFramesOut, frameCount); } break; case ma_waveform_type_square: { ma_waveform_read_pcm_frames__square(pWaveform, pFramesOut, frameCount); } break; case ma_waveform_type_triangle: { ma_waveform_read_pcm_frames__triangle(pWaveform, pFramesOut, frameCount); } break; case ma_waveform_type_sawtooth: { ma_waveform_read_pcm_frames__sawtooth(pWaveform, pFramesOut, frameCount); } break; default: return MA_INVALID_OPERATION; /* Unknown waveform type. */ } } else { pWaveform->time += pWaveform->advance * (ma_int64)frameCount; /* Cast to int64 required for VC6. Won't affect anything in practice. */ } if (pFramesRead != NULL) { *pFramesRead = frameCount; } return MA_SUCCESS; } MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex) { if (pWaveform == NULL) { return MA_INVALID_ARGS; } pWaveform->time = pWaveform->advance * (ma_int64)frameIndex; /* Casting for VC6. Won't be an issue in practice. */ return MA_SUCCESS; } MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude) { ma_noise_config config; MA_ZERO_OBJECT(&config); config.format = format; config.channels = channels; config.type = type; config.seed = seed; config.amplitude = amplitude; if (config.seed == 0) { config.seed = MA_DEFAULT_LCG_SEED; } return config; } static ma_result ma_noise__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_noise_read_pcm_frames((ma_noise*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_noise__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex) { /* No-op. Just pretend to be successful. */ (void)pDataSource; (void)frameIndex; return MA_SUCCESS; } static ma_result ma_noise__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { ma_noise* pNoise = (ma_noise*)pDataSource; *pFormat = pNoise->config.format; *pChannels = pNoise->config.channels; *pSampleRate = 0; /* There is no notion of sample rate with noise generation. */ ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pNoise->config.channels); return MA_SUCCESS; } static ma_data_source_vtable g_ma_noise_data_source_vtable = { ma_noise__data_source_on_read, ma_noise__data_source_on_seek, /* No-op for noise. */ ma_noise__data_source_on_get_data_format, NULL, /* onGetCursor. No notion of a cursor for noise. */ NULL, /* onGetLength. No notion of a length for noise. */ NULL, /* onSetLooping */ 0 }; #ifndef MA_PINK_NOISE_BIN_SIZE #define MA_PINK_NOISE_BIN_SIZE 16 #endif typedef struct { size_t sizeInBytes; struct { size_t binOffset; size_t accumulationOffset; size_t counterOffset; } pink; struct { size_t accumulationOffset; } brownian; } ma_noise_heap_layout; static ma_result ma_noise_get_heap_layout(const ma_noise_config* pConfig, ma_noise_heap_layout* pHeapLayout) { MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->channels == 0) { return MA_INVALID_ARGS; } pHeapLayout->sizeInBytes = 0; /* Pink. */ if (pConfig->type == ma_noise_type_pink) { /* bin */ pHeapLayout->pink.binOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(double*) * pConfig->channels; pHeapLayout->sizeInBytes += sizeof(double ) * pConfig->channels * MA_PINK_NOISE_BIN_SIZE; /* accumulation */ pHeapLayout->pink.accumulationOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(double) * pConfig->channels; /* counter */ pHeapLayout->pink.counterOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(ma_uint32) * pConfig->channels; } /* Brownian. */ if (pConfig->type == ma_noise_type_brownian) { /* accumulation */ pHeapLayout->brownian.accumulationOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += sizeof(double) * pConfig->channels; } /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_noise_get_heap_size(const ma_noise_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_noise_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_noise_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_noise_init_preallocated(const ma_noise_config* pConfig, void* pHeap, ma_noise* pNoise) { ma_result result; ma_noise_heap_layout heapLayout; ma_data_source_config dataSourceConfig; ma_uint32 iChannel; if (pNoise == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNoise); result = ma_noise_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pNoise->_pHeap = pHeap; MA_ZERO_MEMORY(pNoise->_pHeap, heapLayout.sizeInBytes); dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_noise_data_source_vtable; result = ma_data_source_init(&dataSourceConfig, &pNoise->ds); if (result != MA_SUCCESS) { return result; } pNoise->config = *pConfig; ma_lcg_seed(&pNoise->lcg, pConfig->seed); if (pNoise->config.type == ma_noise_type_pink) { pNoise->state.pink.bin = (double** )ma_offset_ptr(pHeap, heapLayout.pink.binOffset); pNoise->state.pink.accumulation = (double* )ma_offset_ptr(pHeap, heapLayout.pink.accumulationOffset); pNoise->state.pink.counter = (ma_uint32*)ma_offset_ptr(pHeap, heapLayout.pink.counterOffset); for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) { pNoise->state.pink.bin[iChannel] = (double*)ma_offset_ptr(pHeap, heapLayout.pink.binOffset + (sizeof(double*) * pConfig->channels) + (sizeof(double) * MA_PINK_NOISE_BIN_SIZE * iChannel)); pNoise->state.pink.accumulation[iChannel] = 0; pNoise->state.pink.counter[iChannel] = 1; } } if (pNoise->config.type == ma_noise_type_brownian) { pNoise->state.brownian.accumulation = (double*)ma_offset_ptr(pHeap, heapLayout.brownian.accumulationOffset); for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) { pNoise->state.brownian.accumulation[iChannel] = 0; } } return MA_SUCCESS; } MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_noise* pNoise) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_noise_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_noise_init_preallocated(pConfig, pHeap, pNoise); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pNoise->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_noise_uninit(ma_noise* pNoise, const ma_allocation_callbacks* pAllocationCallbacks) { if (pNoise == NULL) { return; } ma_data_source_uninit(&pNoise->ds); if (pNoise->_ownsHeap) { ma_free(pNoise->_pHeap, pAllocationCallbacks); } } MA_API ma_result ma_noise_set_amplitude(ma_noise* pNoise, double amplitude) { if (pNoise == NULL) { return MA_INVALID_ARGS; } pNoise->config.amplitude = amplitude; return MA_SUCCESS; } MA_API ma_result ma_noise_set_seed(ma_noise* pNoise, ma_int32 seed) { if (pNoise == NULL) { return MA_INVALID_ARGS; } pNoise->lcg.state = seed; return MA_SUCCESS; } MA_API ma_result ma_noise_set_type(ma_noise* pNoise, ma_noise_type type) { if (pNoise == NULL) { return MA_INVALID_ARGS; } pNoise->config.type = type; return MA_SUCCESS; } static MA_INLINE float ma_noise_f32_white(ma_noise* pNoise) { return (float)(ma_lcg_rand_f64(&pNoise->lcg) * pNoise->config.amplitude); } static MA_INLINE ma_int16 ma_noise_s16_white(ma_noise* pNoise) { return ma_pcm_sample_f32_to_s16(ma_noise_f32_white(pNoise)); } static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__white(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint32 iChannel; const ma_uint32 channels = pNoise->config.channels; MA_ASSUME(channels > 0); if (pNoise->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_white(pNoise); for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutF32[iFrame*channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutF32[iFrame*channels + iChannel] = ma_noise_f32_white(pNoise); } } } } else if (pNoise->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_noise_s16_white(pNoise); for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutS16[iFrame*channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutS16[iFrame*channels + iChannel] = ma_noise_s16_white(pNoise); } } } } else { const ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format); const ma_uint32 bpf = bps * channels; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_white(pNoise); for (iChannel = 0; iChannel < channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { float s = ma_noise_f32_white(pNoise); ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } return frameCount; } static MA_INLINE unsigned int ma_tzcnt32(unsigned int x) { unsigned int n; /* Special case for odd numbers since they should happen about half the time. */ if (x & 0x1) { return 0; } if (x == 0) { return sizeof(x) << 3; } n = 1; if ((x & 0x0000FFFF) == 0) { x >>= 16; n += 16; } if ((x & 0x000000FF) == 0) { x >>= 8; n += 8; } if ((x & 0x0000000F) == 0) { x >>= 4; n += 4; } if ((x & 0x00000003) == 0) { x >>= 2; n += 2; } n -= x & 0x00000001; return n; } /* Pink noise generation based on Tonic (public domain) with modifications. https://github.com/TonicAudio/Tonic/blob/master/src/Tonic/Noise.h This is basically _the_ reference for pink noise from what I've found: http://www.firstpr.com.au/dsp/pink-noise/ */ static MA_INLINE float ma_noise_f32_pink(ma_noise* pNoise, ma_uint32 iChannel) { double result; double binPrev; double binNext; unsigned int ibin; ibin = ma_tzcnt32(pNoise->state.pink.counter[iChannel]) & (MA_PINK_NOISE_BIN_SIZE - 1); binPrev = pNoise->state.pink.bin[iChannel][ibin]; binNext = ma_lcg_rand_f64(&pNoise->lcg); pNoise->state.pink.bin[iChannel][ibin] = binNext; pNoise->state.pink.accumulation[iChannel] += (binNext - binPrev); pNoise->state.pink.counter[iChannel] += 1; result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.pink.accumulation[iChannel]); result /= 10; return (float)(result * pNoise->config.amplitude); } static MA_INLINE ma_int16 ma_noise_s16_pink(ma_noise* pNoise, ma_uint32 iChannel) { return ma_pcm_sample_f32_to_s16(ma_noise_f32_pink(pNoise, iChannel)); } static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint32 iChannel; const ma_uint32 channels = pNoise->config.channels; MA_ASSUME(channels > 0); if (pNoise->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_pink(pNoise, 0); for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutF32[iFrame*channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutF32[iFrame*channels + iChannel] = ma_noise_f32_pink(pNoise, iChannel); } } } } else if (pNoise->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_noise_s16_pink(pNoise, 0); for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutS16[iFrame*channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutS16[iFrame*channels + iChannel] = ma_noise_s16_pink(pNoise, iChannel); } } } } else { const ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format); const ma_uint32 bpf = bps * channels; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_pink(pNoise, 0); for (iChannel = 0; iChannel < channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { float s = ma_noise_f32_pink(pNoise, iChannel); ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } return frameCount; } static MA_INLINE float ma_noise_f32_brownian(ma_noise* pNoise, ma_uint32 iChannel) { double result; result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.brownian.accumulation[iChannel]); result /= 1.005; /* Don't escape the -1..1 range on average. */ pNoise->state.brownian.accumulation[iChannel] = result; result /= 20; return (float)(result * pNoise->config.amplitude); } static MA_INLINE ma_int16 ma_noise_s16_brownian(ma_noise* pNoise, ma_uint32 iChannel) { return ma_pcm_sample_f32_to_s16(ma_noise_f32_brownian(pNoise, iChannel)); } static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__brownian(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount) { ma_uint64 iFrame; ma_uint32 iChannel; const ma_uint32 channels = pNoise->config.channels; MA_ASSUME(channels > 0); if (pNoise->config.format == ma_format_f32) { float* pFramesOutF32 = (float*)pFramesOut; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_brownian(pNoise, 0); for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutF32[iFrame*channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutF32[iFrame*channels + iChannel] = ma_noise_f32_brownian(pNoise, iChannel); } } } } else if (pNoise->config.format == ma_format_s16) { ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { ma_int16 s = ma_noise_s16_brownian(pNoise, 0); for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutS16[iFrame*channels + iChannel] = s; } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { pFramesOutS16[iFrame*channels + iChannel] = ma_noise_s16_brownian(pNoise, iChannel); } } } } else { const ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format); const ma_uint32 bpf = bps * channels; if (pNoise->config.duplicateChannels) { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { float s = ma_noise_f32_brownian(pNoise, 0); for (iChannel = 0; iChannel < channels; iChannel += 1) { ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } else { for (iFrame = 0; iFrame < frameCount; iFrame += 1) { for (iChannel = 0; iChannel < channels; iChannel += 1) { float s = ma_noise_f32_brownian(pNoise, iChannel); ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none); } } } } return frameCount; } MA_API ma_result ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_uint64 framesRead = 0; if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } if (pNoise == NULL) { return MA_INVALID_ARGS; } /* The output buffer is allowed to be NULL. Since we aren't tracking cursors or anything we can just do nothing and pretend to be successful. */ if (pFramesOut == NULL) { framesRead = frameCount; } else { switch (pNoise->config.type) { case ma_noise_type_white: framesRead = ma_noise_read_pcm_frames__white (pNoise, pFramesOut, frameCount); break; case ma_noise_type_pink: framesRead = ma_noise_read_pcm_frames__pink (pNoise, pFramesOut, frameCount); break; case ma_noise_type_brownian: framesRead = ma_noise_read_pcm_frames__brownian(pNoise, pFramesOut, frameCount); break; default: return MA_INVALID_OPERATION; /* Unknown noise type. */ } } if (pFramesRead != NULL) { *pFramesRead = framesRead; } return MA_SUCCESS; } #endif /* MA_NO_GENERATION */ #ifndef MA_NO_RESOURCE_MANAGER #ifndef MA_RESOURCE_MANAGER_PAGE_SIZE_IN_MILLISECONDS #define MA_RESOURCE_MANAGER_PAGE_SIZE_IN_MILLISECONDS 1000 #endif #ifndef MA_JOB_TYPE_RESOURCE_MANAGER_QUEUE_CAPACITY #define MA_JOB_TYPE_RESOURCE_MANAGER_QUEUE_CAPACITY 1024 #endif MA_API ma_resource_manager_pipeline_notifications ma_resource_manager_pipeline_notifications_init(void) { ma_resource_manager_pipeline_notifications notifications; MA_ZERO_OBJECT(¬ifications); return notifications; } static void ma_resource_manager_pipeline_notifications_signal_all_notifications(const ma_resource_manager_pipeline_notifications* pPipelineNotifications) { if (pPipelineNotifications == NULL) { return; } if (pPipelineNotifications->init.pNotification) { ma_async_notification_signal(pPipelineNotifications->init.pNotification); } if (pPipelineNotifications->done.pNotification) { ma_async_notification_signal(pPipelineNotifications->done.pNotification); } } static void ma_resource_manager_pipeline_notifications_acquire_all_fences(const ma_resource_manager_pipeline_notifications* pPipelineNotifications) { if (pPipelineNotifications == NULL) { return; } if (pPipelineNotifications->init.pFence != NULL) { ma_fence_acquire(pPipelineNotifications->init.pFence); } if (pPipelineNotifications->done.pFence != NULL) { ma_fence_acquire(pPipelineNotifications->done.pFence); } } static void ma_resource_manager_pipeline_notifications_release_all_fences(const ma_resource_manager_pipeline_notifications* pPipelineNotifications) { if (pPipelineNotifications == NULL) { return; } if (pPipelineNotifications->init.pFence != NULL) { ma_fence_release(pPipelineNotifications->init.pFence); } if (pPipelineNotifications->done.pFence != NULL) { ma_fence_release(pPipelineNotifications->done.pFence); } } #ifndef MA_DEFAULT_HASH_SEED #define MA_DEFAULT_HASH_SEED 42 #endif /* MurmurHash3. Based on code from https://github.com/PeterScott/murmur3/blob/master/murmur3.c (public domain). */ #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #if __GNUC__ >= 7 #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" #endif #endif static MA_INLINE ma_uint32 ma_rotl32(ma_uint32 x, ma_int8 r) { return (x << r) | (x >> (32 - r)); } static MA_INLINE ma_uint32 ma_hash_getblock(const ma_uint32* blocks, int i) { ma_uint32 block; /* Try silencing a sanitization warning about unaligned access by doing a memcpy() instead of assignment. */ MA_COPY_MEMORY(&block, ma_offset_ptr(blocks, i * sizeof(block)), sizeof(block)); if (ma_is_little_endian()) { return block; } else { return ma_swap_endian_uint32(block); } } static MA_INLINE ma_uint32 ma_hash_fmix32(ma_uint32 h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } static ma_uint32 ma_hash_32(const void* key, int len, ma_uint32 seed) { const ma_uint8* data = (const ma_uint8*)key; const ma_uint32* blocks; const ma_uint8* tail; const int nblocks = len / 4; ma_uint32 h1 = seed; ma_uint32 c1 = 0xcc9e2d51; ma_uint32 c2 = 0x1b873593; ma_uint32 k1; int i; blocks = (const ma_uint32 *)(data + nblocks*4); for(i = -nblocks; i; i++) { k1 = ma_hash_getblock(blocks,i); k1 *= c1; k1 = ma_rotl32(k1, 15); k1 *= c2; h1 ^= k1; h1 = ma_rotl32(h1, 13); h1 = h1*5 + 0xe6546b64; } tail = (const ma_uint8*)(data + nblocks*4); k1 = 0; switch(len & 3) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; k1 *= c1; k1 = ma_rotl32(k1, 15); k1 *= c2; h1 ^= k1; }; h1 ^= len; h1 = ma_hash_fmix32(h1); return h1; } #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #endif /* End MurmurHash3 */ static ma_uint32 ma_hash_string_32(const char* str) { return ma_hash_32(str, (int)strlen(str), MA_DEFAULT_HASH_SEED); } static ma_uint32 ma_hash_string_w_32(const wchar_t* str) { return ma_hash_32(str, (int)wcslen(str) * sizeof(*str), MA_DEFAULT_HASH_SEED); } /* Basic BST Functions */ static ma_result ma_resource_manager_data_buffer_node_search(ma_resource_manager* pResourceManager, ma_uint32 hashedName32, ma_resource_manager_data_buffer_node** ppDataBufferNode) { ma_resource_manager_data_buffer_node* pCurrentNode; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(ppDataBufferNode != NULL); pCurrentNode = pResourceManager->pRootDataBufferNode; while (pCurrentNode != NULL) { if (hashedName32 == pCurrentNode->hashedName32) { break; /* Found. */ } else if (hashedName32 < pCurrentNode->hashedName32) { pCurrentNode = pCurrentNode->pChildLo; } else { pCurrentNode = pCurrentNode->pChildHi; } } *ppDataBufferNode = pCurrentNode; if (pCurrentNode == NULL) { return MA_DOES_NOT_EXIST; } else { return MA_SUCCESS; } } static ma_result ma_resource_manager_data_buffer_node_insert_point(ma_resource_manager* pResourceManager, ma_uint32 hashedName32, ma_resource_manager_data_buffer_node** ppInsertPoint) { ma_result result = MA_SUCCESS; ma_resource_manager_data_buffer_node* pCurrentNode; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(ppInsertPoint != NULL); *ppInsertPoint = NULL; if (pResourceManager->pRootDataBufferNode == NULL) { return MA_SUCCESS; /* No items. */ } /* We need to find the node that will become the parent of the new node. If a node is found that already has the same hashed name we need to return MA_ALREADY_EXISTS. */ pCurrentNode = pResourceManager->pRootDataBufferNode; while (pCurrentNode != NULL) { if (hashedName32 == pCurrentNode->hashedName32) { result = MA_ALREADY_EXISTS; break; } else { if (hashedName32 < pCurrentNode->hashedName32) { if (pCurrentNode->pChildLo == NULL) { result = MA_SUCCESS; break; } else { pCurrentNode = pCurrentNode->pChildLo; } } else { if (pCurrentNode->pChildHi == NULL) { result = MA_SUCCESS; break; } else { pCurrentNode = pCurrentNode->pChildHi; } } } } *ppInsertPoint = pCurrentNode; return result; } static ma_result ma_resource_manager_data_buffer_node_insert_at(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, ma_resource_manager_data_buffer_node* pInsertPoint) { MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); /* The key must have been set before calling this function. */ MA_ASSERT(pDataBufferNode->hashedName32 != 0); if (pInsertPoint == NULL) { /* It's the first node. */ pResourceManager->pRootDataBufferNode = pDataBufferNode; } else { /* It's not the first node. It needs to be inserted. */ if (pDataBufferNode->hashedName32 < pInsertPoint->hashedName32) { MA_ASSERT(pInsertPoint->pChildLo == NULL); pInsertPoint->pChildLo = pDataBufferNode; } else { MA_ASSERT(pInsertPoint->pChildHi == NULL); pInsertPoint->pChildHi = pDataBufferNode; } } pDataBufferNode->pParent = pInsertPoint; return MA_SUCCESS; } #if 0 /* Unused for now. */ static ma_result ma_resource_manager_data_buffer_node_insert(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode) { ma_result result; ma_resource_manager_data_buffer_node* pInsertPoint; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); result = ma_resource_manager_data_buffer_node_insert_point(pResourceManager, pDataBufferNode->hashedName32, &pInsertPoint); if (result != MA_SUCCESS) { return MA_INVALID_ARGS; } return ma_resource_manager_data_buffer_node_insert_at(pResourceManager, pDataBufferNode, pInsertPoint); } #endif static MA_INLINE ma_resource_manager_data_buffer_node* ma_resource_manager_data_buffer_node_find_min(ma_resource_manager_data_buffer_node* pDataBufferNode) { ma_resource_manager_data_buffer_node* pCurrentNode; MA_ASSERT(pDataBufferNode != NULL); pCurrentNode = pDataBufferNode; while (pCurrentNode->pChildLo != NULL) { pCurrentNode = pCurrentNode->pChildLo; } return pCurrentNode; } static MA_INLINE ma_resource_manager_data_buffer_node* ma_resource_manager_data_buffer_node_find_max(ma_resource_manager_data_buffer_node* pDataBufferNode) { ma_resource_manager_data_buffer_node* pCurrentNode; MA_ASSERT(pDataBufferNode != NULL); pCurrentNode = pDataBufferNode; while (pCurrentNode->pChildHi != NULL) { pCurrentNode = pCurrentNode->pChildHi; } return pCurrentNode; } static MA_INLINE ma_resource_manager_data_buffer_node* ma_resource_manager_data_buffer_node_find_inorder_successor(ma_resource_manager_data_buffer_node* pDataBufferNode) { MA_ASSERT(pDataBufferNode != NULL); MA_ASSERT(pDataBufferNode->pChildHi != NULL); return ma_resource_manager_data_buffer_node_find_min(pDataBufferNode->pChildHi); } static MA_INLINE ma_resource_manager_data_buffer_node* ma_resource_manager_data_buffer_node_find_inorder_predecessor(ma_resource_manager_data_buffer_node* pDataBufferNode) { MA_ASSERT(pDataBufferNode != NULL); MA_ASSERT(pDataBufferNode->pChildLo != NULL); return ma_resource_manager_data_buffer_node_find_max(pDataBufferNode->pChildLo); } static ma_result ma_resource_manager_data_buffer_node_remove(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode) { MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); if (pDataBufferNode->pChildLo == NULL) { if (pDataBufferNode->pChildHi == NULL) { /* Simple case - deleting a buffer with no children. */ if (pDataBufferNode->pParent == NULL) { MA_ASSERT(pResourceManager->pRootDataBufferNode == pDataBufferNode); /* There is only a single buffer in the tree which should be equal to the root node. */ pResourceManager->pRootDataBufferNode = NULL; } else { if (pDataBufferNode->pParent->pChildLo == pDataBufferNode) { pDataBufferNode->pParent->pChildLo = NULL; } else { pDataBufferNode->pParent->pChildHi = NULL; } } } else { /* Node has one child - pChildHi != NULL. */ pDataBufferNode->pChildHi->pParent = pDataBufferNode->pParent; if (pDataBufferNode->pParent == NULL) { MA_ASSERT(pResourceManager->pRootDataBufferNode == pDataBufferNode); pResourceManager->pRootDataBufferNode = pDataBufferNode->pChildHi; } else { if (pDataBufferNode->pParent->pChildLo == pDataBufferNode) { pDataBufferNode->pParent->pChildLo = pDataBufferNode->pChildHi; } else { pDataBufferNode->pParent->pChildHi = pDataBufferNode->pChildHi; } } } } else { if (pDataBufferNode->pChildHi == NULL) { /* Node has one child - pChildLo != NULL. */ pDataBufferNode->pChildLo->pParent = pDataBufferNode->pParent; if (pDataBufferNode->pParent == NULL) { MA_ASSERT(pResourceManager->pRootDataBufferNode == pDataBufferNode); pResourceManager->pRootDataBufferNode = pDataBufferNode->pChildLo; } else { if (pDataBufferNode->pParent->pChildLo == pDataBufferNode) { pDataBufferNode->pParent->pChildLo = pDataBufferNode->pChildLo; } else { pDataBufferNode->pParent->pChildHi = pDataBufferNode->pChildLo; } } } else { /* Complex case - deleting a node with two children. */ ma_resource_manager_data_buffer_node* pReplacementDataBufferNode; /* For now we are just going to use the in-order successor as the replacement, but we may want to try to keep this balanced by switching between the two. */ pReplacementDataBufferNode = ma_resource_manager_data_buffer_node_find_inorder_successor(pDataBufferNode); MA_ASSERT(pReplacementDataBufferNode != NULL); /* Now that we have our replacement node we can make the change. The simple way to do this would be to just exchange the values, and then remove the replacement node, however we track specific nodes via pointers which means we can't just swap out the values. We need to instead just change the pointers around. The replacement node should have at most 1 child. Therefore, we can detach it in terms of our simpler cases above. What we're essentially doing is detaching the replacement node and reinserting it into the same position as the deleted node. */ MA_ASSERT(pReplacementDataBufferNode->pParent != NULL); /* The replacement node should never be the root which means it should always have a parent. */ MA_ASSERT(pReplacementDataBufferNode->pChildLo == NULL); /* Because we used in-order successor. This would be pChildHi == NULL if we used in-order predecessor. */ if (pReplacementDataBufferNode->pChildHi == NULL) { if (pReplacementDataBufferNode->pParent->pChildLo == pReplacementDataBufferNode) { pReplacementDataBufferNode->pParent->pChildLo = NULL; } else { pReplacementDataBufferNode->pParent->pChildHi = NULL; } } else { pReplacementDataBufferNode->pChildHi->pParent = pReplacementDataBufferNode->pParent; if (pReplacementDataBufferNode->pParent->pChildLo == pReplacementDataBufferNode) { pReplacementDataBufferNode->pParent->pChildLo = pReplacementDataBufferNode->pChildHi; } else { pReplacementDataBufferNode->pParent->pChildHi = pReplacementDataBufferNode->pChildHi; } } /* The replacement node has essentially been detached from the binary tree, so now we need to replace the old data buffer with it. The first thing to update is the parent */ if (pDataBufferNode->pParent != NULL) { if (pDataBufferNode->pParent->pChildLo == pDataBufferNode) { pDataBufferNode->pParent->pChildLo = pReplacementDataBufferNode; } else { pDataBufferNode->pParent->pChildHi = pReplacementDataBufferNode; } } /* Now need to update the replacement node's pointers. */ pReplacementDataBufferNode->pParent = pDataBufferNode->pParent; pReplacementDataBufferNode->pChildLo = pDataBufferNode->pChildLo; pReplacementDataBufferNode->pChildHi = pDataBufferNode->pChildHi; /* Now the children of the replacement node need to have their parent pointers updated. */ if (pReplacementDataBufferNode->pChildLo != NULL) { pReplacementDataBufferNode->pChildLo->pParent = pReplacementDataBufferNode; } if (pReplacementDataBufferNode->pChildHi != NULL) { pReplacementDataBufferNode->pChildHi->pParent = pReplacementDataBufferNode; } /* Now the root node needs to be updated. */ if (pResourceManager->pRootDataBufferNode == pDataBufferNode) { pResourceManager->pRootDataBufferNode = pReplacementDataBufferNode; } } } return MA_SUCCESS; } #if 0 /* Unused for now. */ static ma_result ma_resource_manager_data_buffer_node_remove_by_key(ma_resource_manager* pResourceManager, ma_uint32 hashedName32) { ma_result result; ma_resource_manager_data_buffer_node* pDataBufferNode; result = ma_resource_manager_data_buffer_search(pResourceManager, hashedName32, &pDataBufferNode); if (result != MA_SUCCESS) { return result; /* Could not find the data buffer. */ } return ma_resource_manager_data_buffer_remove(pResourceManager, pDataBufferNode); } #endif static ma_resource_manager_data_supply_type ma_resource_manager_data_buffer_node_get_data_supply_type(ma_resource_manager_data_buffer_node* pDataBufferNode) { return (ma_resource_manager_data_supply_type)c89atomic_load_i32(&pDataBufferNode->data.type); } static void ma_resource_manager_data_buffer_node_set_data_supply_type(ma_resource_manager_data_buffer_node* pDataBufferNode, ma_resource_manager_data_supply_type supplyType) { c89atomic_exchange_i32(&pDataBufferNode->data.type, supplyType); } static ma_result ma_resource_manager_data_buffer_node_increment_ref(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, ma_uint32* pNewRefCount) { ma_uint32 refCount; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); (void)pResourceManager; refCount = c89atomic_fetch_add_32(&pDataBufferNode->refCount, 1) + 1; if (pNewRefCount != NULL) { *pNewRefCount = refCount; } return MA_SUCCESS; } static ma_result ma_resource_manager_data_buffer_node_decrement_ref(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, ma_uint32* pNewRefCount) { ma_uint32 refCount; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); (void)pResourceManager; refCount = c89atomic_fetch_sub_32(&pDataBufferNode->refCount, 1) - 1; if (pNewRefCount != NULL) { *pNewRefCount = refCount; } return MA_SUCCESS; } static void ma_resource_manager_data_buffer_node_free(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode) { MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); if (pDataBufferNode->isDataOwnedByResourceManager) { if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBufferNode) == ma_resource_manager_data_supply_type_encoded) { ma_free((void*)pDataBufferNode->data.backend.encoded.pData, &pResourceManager->config.allocationCallbacks); pDataBufferNode->data.backend.encoded.pData = NULL; pDataBufferNode->data.backend.encoded.sizeInBytes = 0; } else if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBufferNode) == ma_resource_manager_data_supply_type_decoded) { ma_free((void*)pDataBufferNode->data.backend.decoded.pData, &pResourceManager->config.allocationCallbacks); pDataBufferNode->data.backend.decoded.pData = NULL; pDataBufferNode->data.backend.decoded.totalFrameCount = 0; } else if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBufferNode) == ma_resource_manager_data_supply_type_decoded_paged) { ma_paged_audio_buffer_data_uninit(&pDataBufferNode->data.backend.decodedPaged.data, &pResourceManager->config.allocationCallbacks); } else { /* Should never hit this if the node was successfully initialized. */ MA_ASSERT(pDataBufferNode->result != MA_SUCCESS); } } /* The data buffer itself needs to be freed. */ ma_free(pDataBufferNode, &pResourceManager->config.allocationCallbacks); } static ma_result ma_resource_manager_data_buffer_node_result(const ma_resource_manager_data_buffer_node* pDataBufferNode) { MA_ASSERT(pDataBufferNode != NULL); return (ma_result)c89atomic_load_i32((ma_result*)&pDataBufferNode->result); /* Need a naughty const-cast here. */ } static ma_bool32 ma_resource_manager_is_threading_enabled(const ma_resource_manager* pResourceManager) { MA_ASSERT(pResourceManager != NULL); return (pResourceManager->config.flags & MA_RESOURCE_MANAGER_FLAG_NO_THREADING) == 0; } typedef struct { union { ma_async_notification_event e; ma_async_notification_poll p; } backend; /* Must be the first member. */ ma_resource_manager* pResourceManager; } ma_resource_manager_inline_notification; static ma_result ma_resource_manager_inline_notification_init(ma_resource_manager* pResourceManager, ma_resource_manager_inline_notification* pNotification) { MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pNotification != NULL); pNotification->pResourceManager = pResourceManager; if (ma_resource_manager_is_threading_enabled(pResourceManager)) { return ma_async_notification_event_init(&pNotification->backend.e); } else { return ma_async_notification_poll_init(&pNotification->backend.p); } } static void ma_resource_manager_inline_notification_uninit(ma_resource_manager_inline_notification* pNotification) { MA_ASSERT(pNotification != NULL); if (ma_resource_manager_is_threading_enabled(pNotification->pResourceManager)) { ma_async_notification_event_uninit(&pNotification->backend.e); } else { /* No need to uninitialize a polling notification. */ } } static void ma_resource_manager_inline_notification_wait(ma_resource_manager_inline_notification* pNotification) { MA_ASSERT(pNotification != NULL); if (ma_resource_manager_is_threading_enabled(pNotification->pResourceManager)) { ma_async_notification_event_wait(&pNotification->backend.e); } else { while (ma_async_notification_poll_is_signalled(&pNotification->backend.p) == MA_FALSE) { ma_result result = ma_resource_manager_process_next_job(pNotification->pResourceManager); if (result == MA_NO_DATA_AVAILABLE || result == MA_CANCELLED) { break; } } } } static void ma_resource_manager_inline_notification_wait_and_uninit(ma_resource_manager_inline_notification* pNotification) { ma_resource_manager_inline_notification_wait(pNotification); ma_resource_manager_inline_notification_uninit(pNotification); } static void ma_resource_manager_data_buffer_bst_lock(ma_resource_manager* pResourceManager) { MA_ASSERT(pResourceManager != NULL); if (ma_resource_manager_is_threading_enabled(pResourceManager)) { #ifndef MA_NO_THREADING { ma_mutex_lock(&pResourceManager->dataBufferBSTLock); } #else { MA_ASSERT(MA_FALSE); /* Should never hit this. */ } #endif } else { /* Threading not enabled. Do nothing. */ } } static void ma_resource_manager_data_buffer_bst_unlock(ma_resource_manager* pResourceManager) { MA_ASSERT(pResourceManager != NULL); if (ma_resource_manager_is_threading_enabled(pResourceManager)) { #ifndef MA_NO_THREADING { ma_mutex_unlock(&pResourceManager->dataBufferBSTLock); } #else { MA_ASSERT(MA_FALSE); /* Should never hit this. */ } #endif } else { /* Threading not enabled. Do nothing. */ } } #ifndef MA_NO_THREADING static ma_thread_result MA_THREADCALL ma_resource_manager_job_thread(void* pUserData) { ma_resource_manager* pResourceManager = (ma_resource_manager*)pUserData; MA_ASSERT(pResourceManager != NULL); for (;;) { ma_result result; ma_job job; result = ma_resource_manager_next_job(pResourceManager, &job); if (result != MA_SUCCESS) { break; } /* Terminate if we got a quit message. */ if (job.toc.breakup.code == MA_JOB_TYPE_QUIT) { break; } ma_job_process(&job); } return (ma_thread_result)0; } #endif MA_API ma_resource_manager_config ma_resource_manager_config_init(void) { ma_resource_manager_config config; MA_ZERO_OBJECT(&config); config.decodedFormat = ma_format_unknown; config.decodedChannels = 0; config.decodedSampleRate = 0; config.jobThreadCount = 1; /* A single miniaudio-managed job thread by default. */ config.jobQueueCapacity = MA_JOB_TYPE_RESOURCE_MANAGER_QUEUE_CAPACITY; /* Flags. */ config.flags = 0; #ifdef MA_NO_THREADING { /* Threading is disabled at compile time so disable threading at runtime as well by default. */ config.flags |= MA_RESOURCE_MANAGER_FLAG_NO_THREADING; config.jobThreadCount = 0; } #endif return config; } MA_API ma_result ma_resource_manager_init(const ma_resource_manager_config* pConfig, ma_resource_manager* pResourceManager) { ma_result result; ma_job_queue_config jobQueueConfig; if (pResourceManager == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pResourceManager); if (pConfig == NULL) { return MA_INVALID_ARGS; } #ifndef MA_NO_THREADING { if (pConfig->jobThreadCount > ma_countof(pResourceManager->jobThreads)) { return MA_INVALID_ARGS; /* Requesting too many job threads. */ } } #endif pResourceManager->config = *pConfig; ma_allocation_callbacks_init_copy(&pResourceManager->config.allocationCallbacks, &pConfig->allocationCallbacks); /* Get the log set up early so we can start using it as soon as possible. */ if (pResourceManager->config.pLog == NULL) { result = ma_log_init(&pResourceManager->config.allocationCallbacks, &pResourceManager->log); if (result == MA_SUCCESS) { pResourceManager->config.pLog = &pResourceManager->log; } else { pResourceManager->config.pLog = NULL; /* Logging is unavailable. */ } } if (pResourceManager->config.pVFS == NULL) { result = ma_default_vfs_init(&pResourceManager->defaultVFS, &pResourceManager->config.allocationCallbacks); if (result != MA_SUCCESS) { return result; /* Failed to initialize the default file system. */ } pResourceManager->config.pVFS = &pResourceManager->defaultVFS; } /* If threading has been disabled at compile time, enfore it at run time as well. */ #ifdef MA_NO_THREADING { pResourceManager->config.flags |= MA_RESOURCE_MANAGER_FLAG_NO_THREADING; } #endif /* We need to force MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING if MA_RESOURCE_MANAGER_FLAG_NO_THREADING is set. */ if ((pResourceManager->config.flags & MA_RESOURCE_MANAGER_FLAG_NO_THREADING) != 0) { pResourceManager->config.flags |= MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING; /* We cannot allow job threads when MA_RESOURCE_MANAGER_FLAG_NO_THREADING has been set. This is an invalid use case. */ if (pResourceManager->config.jobThreadCount > 0) { return MA_INVALID_ARGS; } } /* Job queue. */ jobQueueConfig.capacity = pResourceManager->config.jobQueueCapacity; jobQueueConfig.flags = 0; if ((pResourceManager->config.flags & MA_RESOURCE_MANAGER_FLAG_NON_BLOCKING) != 0) { if (pResourceManager->config.jobThreadCount > 0) { return MA_INVALID_ARGS; /* Non-blocking mode is only valid for self-managed job threads. */ } jobQueueConfig.flags |= MA_JOB_QUEUE_FLAG_NON_BLOCKING; } result = ma_job_queue_init(&jobQueueConfig, &pResourceManager->config.allocationCallbacks, &pResourceManager->jobQueue); if (result != MA_SUCCESS) { return result; } /* Custom decoding backends. */ if (pConfig->ppCustomDecodingBackendVTables != NULL && pConfig->customDecodingBackendCount > 0) { size_t sizeInBytes = sizeof(*pResourceManager->config.ppCustomDecodingBackendVTables) * pConfig->customDecodingBackendCount; pResourceManager->config.ppCustomDecodingBackendVTables = (ma_decoding_backend_vtable**)ma_malloc(sizeInBytes, &pResourceManager->config.allocationCallbacks); if (pResourceManager->config.ppCustomDecodingBackendVTables == NULL) { ma_job_queue_uninit(&pResourceManager->jobQueue, &pResourceManager->config.allocationCallbacks); return MA_OUT_OF_MEMORY; } MA_COPY_MEMORY(pResourceManager->config.ppCustomDecodingBackendVTables, pConfig->ppCustomDecodingBackendVTables, sizeInBytes); pResourceManager->config.customDecodingBackendCount = pConfig->customDecodingBackendCount; pResourceManager->config.pCustomDecodingBackendUserData = pConfig->pCustomDecodingBackendUserData; } /* Here is where we initialize our threading stuff. We don't do this if we don't support threading. */ if (ma_resource_manager_is_threading_enabled(pResourceManager)) { #ifndef MA_NO_THREADING { ma_uint32 iJobThread; /* Data buffer lock. */ result = ma_mutex_init(&pResourceManager->dataBufferBSTLock); if (result != MA_SUCCESS) { ma_job_queue_uninit(&pResourceManager->jobQueue, &pResourceManager->config.allocationCallbacks); return result; } /* Create the job threads last to ensure the threads has access to valid data. */ for (iJobThread = 0; iJobThread < pResourceManager->config.jobThreadCount; iJobThread += 1) { result = ma_thread_create(&pResourceManager->jobThreads[iJobThread], ma_thread_priority_normal, 0, ma_resource_manager_job_thread, pResourceManager, &pResourceManager->config.allocationCallbacks); if (result != MA_SUCCESS) { ma_mutex_uninit(&pResourceManager->dataBufferBSTLock); ma_job_queue_uninit(&pResourceManager->jobQueue, &pResourceManager->config.allocationCallbacks); return result; } } } #else { /* Threading is disabled at compile time. We should never get here because validation checks should have already been performed. */ MA_ASSERT(MA_FALSE); } #endif } return MA_SUCCESS; } static void ma_resource_manager_delete_all_data_buffer_nodes(ma_resource_manager* pResourceManager) { MA_ASSERT(pResourceManager); /* If everything was done properly, there shouldn't be any active data buffers. */ while (pResourceManager->pRootDataBufferNode != NULL) { ma_resource_manager_data_buffer_node* pDataBufferNode = pResourceManager->pRootDataBufferNode; ma_resource_manager_data_buffer_node_remove(pResourceManager, pDataBufferNode); /* The data buffer has been removed from the BST, so now we need to free it's data. */ ma_resource_manager_data_buffer_node_free(pResourceManager, pDataBufferNode); } } MA_API void ma_resource_manager_uninit(ma_resource_manager* pResourceManager) { if (pResourceManager == NULL) { return; } /* Job threads need to be killed first. To do this we need to post a quit message to the message queue and then wait for the thread. The quit message will never be removed from the queue which means it will never not be returned after being encounted for the first time which means all threads will eventually receive it. */ ma_resource_manager_post_job_quit(pResourceManager); /* Wait for every job to finish before continuing to ensure nothing is sill trying to access any of our objects below. */ if (ma_resource_manager_is_threading_enabled(pResourceManager)) { #ifndef MA_NO_THREADING { ma_uint32 iJobThread; for (iJobThread = 0; iJobThread < pResourceManager->config.jobThreadCount; iJobThread += 1) { ma_thread_wait(&pResourceManager->jobThreads[iJobThread]); } } #else { MA_ASSERT(MA_FALSE); /* Should never hit this. */ } #endif } /* At this point the thread should have returned and no other thread should be accessing our data. We can now delete all data buffers. */ ma_resource_manager_delete_all_data_buffer_nodes(pResourceManager); /* The job queue is no longer needed. */ ma_job_queue_uninit(&pResourceManager->jobQueue, &pResourceManager->config.allocationCallbacks); /* We're no longer doing anything with data buffers so the lock can now be uninitialized. */ if (ma_resource_manager_is_threading_enabled(pResourceManager)) { #ifndef MA_NO_THREADING { ma_mutex_uninit(&pResourceManager->dataBufferBSTLock); } #else { MA_ASSERT(MA_FALSE); /* Should never hit this. */ } #endif } ma_free(pResourceManager->config.ppCustomDecodingBackendVTables, &pResourceManager->config.allocationCallbacks); if (pResourceManager->config.pLog == &pResourceManager->log) { ma_log_uninit(&pResourceManager->log); } } MA_API ma_log* ma_resource_manager_get_log(ma_resource_manager* pResourceManager) { if (pResourceManager == NULL) { return NULL; } return pResourceManager->config.pLog; } MA_API ma_resource_manager_data_source_config ma_resource_manager_data_source_config_init(void) { ma_resource_manager_data_source_config config; MA_ZERO_OBJECT(&config); config.rangeEndInPCMFrames = ~((ma_uint64)0); config.loopPointEndInPCMFrames = ~((ma_uint64)0); return config; } static ma_decoder_config ma_resource_manager__init_decoder_config(ma_resource_manager* pResourceManager) { ma_decoder_config config; config = ma_decoder_config_init(pResourceManager->config.decodedFormat, pResourceManager->config.decodedChannels, pResourceManager->config.decodedSampleRate); config.allocationCallbacks = pResourceManager->config.allocationCallbacks; config.ppCustomBackendVTables = pResourceManager->config.ppCustomDecodingBackendVTables; config.customBackendCount = pResourceManager->config.customDecodingBackendCount; config.pCustomBackendUserData = pResourceManager->config.pCustomDecodingBackendUserData; return config; } static ma_result ma_resource_manager__init_decoder(ma_resource_manager* pResourceManager, const char* pFilePath, const wchar_t* pFilePathW, ma_decoder* pDecoder) { ma_result result; ma_decoder_config config; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pFilePath != NULL || pFilePathW != NULL); MA_ASSERT(pDecoder != NULL); config = ma_resource_manager__init_decoder_config(pResourceManager); if (pFilePath != NULL) { result = ma_decoder_init_vfs(pResourceManager->config.pVFS, pFilePath, &config, pDecoder); if (result != MA_SUCCESS) { ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Failed to load file \"%s\". %s.\n", pFilePath, ma_result_description(result)); return result; } } else { result = ma_decoder_init_vfs_w(pResourceManager->config.pVFS, pFilePathW, &config, pDecoder); if (result != MA_SUCCESS) { #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(_MSC_VER) ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Failed to load file \"%ls\". %s.\n", pFilePathW, ma_result_description(result)); #endif return result; } } return MA_SUCCESS; } static ma_data_source* ma_resource_manager_data_buffer_get_connector(ma_resource_manager_data_buffer* pDataBuffer) { switch (pDataBuffer->pNode->data.type) { case ma_resource_manager_data_supply_type_encoded: return &pDataBuffer->connector.decoder; case ma_resource_manager_data_supply_type_decoded: return &pDataBuffer->connector.buffer; case ma_resource_manager_data_supply_type_decoded_paged: return &pDataBuffer->connector.pagedBuffer; case ma_resource_manager_data_supply_type_unknown: default: { ma_log_postf(ma_resource_manager_get_log(pDataBuffer->pResourceManager), MA_LOG_LEVEL_ERROR, "Failed to retrieve data buffer connector. Unknown data supply type.\n"); return NULL; }; }; } static ma_result ma_resource_manager_data_buffer_init_connector(ma_resource_manager_data_buffer* pDataBuffer, const ma_resource_manager_data_source_config* pConfig, ma_async_notification* pInitNotification, ma_fence* pInitFence) { ma_result result; MA_ASSERT(pDataBuffer != NULL); MA_ASSERT(pConfig != NULL); MA_ASSERT(pDataBuffer->isConnectorInitialized == MA_FALSE); /* The underlying data buffer must be initialized before we'll be able to know how to initialize the backend. */ result = ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode); if (result != MA_SUCCESS && result != MA_BUSY) { return result; /* The data buffer is in an erroneous state. */ } /* We need to initialize either a ma_decoder or an ma_audio_buffer depending on whether or not the backing data is encoded or decoded. These act as the "instance" to the data and are used to form the connection between underlying data buffer and the data source. If the data buffer is decoded, we can use an ma_audio_buffer. This enables us to use memory mapping when mixing which saves us a bit of data movement overhead. */ switch (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode)) { case ma_resource_manager_data_supply_type_encoded: /* Connector is a decoder. */ { ma_decoder_config config; config = ma_resource_manager__init_decoder_config(pDataBuffer->pResourceManager); result = ma_decoder_init_memory(pDataBuffer->pNode->data.backend.encoded.pData, pDataBuffer->pNode->data.backend.encoded.sizeInBytes, &config, &pDataBuffer->connector.decoder); } break; case ma_resource_manager_data_supply_type_decoded: /* Connector is an audio buffer. */ { ma_audio_buffer_config config; config = ma_audio_buffer_config_init(pDataBuffer->pNode->data.backend.decoded.format, pDataBuffer->pNode->data.backend.decoded.channels, pDataBuffer->pNode->data.backend.decoded.totalFrameCount, pDataBuffer->pNode->data.backend.decoded.pData, NULL); result = ma_audio_buffer_init(&config, &pDataBuffer->connector.buffer); } break; case ma_resource_manager_data_supply_type_decoded_paged: /* Connector is a paged audio buffer. */ { ma_paged_audio_buffer_config config; config = ma_paged_audio_buffer_config_init(&pDataBuffer->pNode->data.backend.decodedPaged.data); result = ma_paged_audio_buffer_init(&config, &pDataBuffer->connector.pagedBuffer); } break; case ma_resource_manager_data_supply_type_unknown: default: { /* Unknown data supply type. Should never happen. Need to post an error here. */ return MA_INVALID_ARGS; }; } /* Initialization of the connector is when we can fire the init notification. This will give the application access to the format/channels/rate of the data source. */ if (result == MA_SUCCESS) { /* Make sure the looping state is set before returning in order to handle the case where the loop state was set on the data buffer before the connector was initialized. */ ma_data_source_set_range_in_pcm_frames(pDataBuffer, pConfig->rangeBegInPCMFrames, pConfig->rangeEndInPCMFrames); ma_data_source_set_loop_point_in_pcm_frames(pDataBuffer, pConfig->loopPointBegInPCMFrames, pConfig->loopPointEndInPCMFrames); ma_data_source_set_looping(pDataBuffer, pConfig->isLooping); pDataBuffer->isConnectorInitialized = MA_TRUE; if (pInitNotification != NULL) { ma_async_notification_signal(pInitNotification); } if (pInitFence != NULL) { ma_fence_release(pInitFence); } } /* At this point the backend should be initialized. We do *not* want to set pDataSource->result here - that needs to be done at a higher level to ensure it's done as the last step. */ return result; } static ma_result ma_resource_manager_data_buffer_uninit_connector(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer* pDataBuffer) { MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBuffer != NULL); switch (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode)) { case ma_resource_manager_data_supply_type_encoded: /* Connector is a decoder. */ { ma_decoder_uninit(&pDataBuffer->connector.decoder); } break; case ma_resource_manager_data_supply_type_decoded: /* Connector is an audio buffer. */ { ma_audio_buffer_uninit(&pDataBuffer->connector.buffer); } break; case ma_resource_manager_data_supply_type_decoded_paged: /* Connector is a paged audio buffer. */ { ma_paged_audio_buffer_uninit(&pDataBuffer->connector.pagedBuffer); } break; case ma_resource_manager_data_supply_type_unknown: default: { /* Unknown data supply type. Should never happen. Need to post an error here. */ return MA_INVALID_ARGS; }; } return MA_SUCCESS; } static ma_uint32 ma_resource_manager_data_buffer_node_next_execution_order(ma_resource_manager_data_buffer_node* pDataBufferNode) { MA_ASSERT(pDataBufferNode != NULL); return c89atomic_fetch_add_32(&pDataBufferNode->executionCounter, 1); } static ma_result ma_resource_manager_data_buffer_node_init_supply_encoded(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, const char* pFilePath, const wchar_t* pFilePathW) { ma_result result; size_t dataSizeInBytes; void* pData; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); MA_ASSERT(pFilePath != NULL || pFilePathW != NULL); result = ma_vfs_open_and_read_file_ex(pResourceManager->config.pVFS, pFilePath, pFilePathW, &pData, &dataSizeInBytes, &pResourceManager->config.allocationCallbacks); if (result != MA_SUCCESS) { if (pFilePath != NULL) { ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Failed to load file \"%s\". %s.\n", pFilePath, ma_result_description(result)); } else { #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(_MSC_VER) ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Failed to load file \"%ls\". %s.\n", pFilePathW, ma_result_description(result)); #endif } return result; } pDataBufferNode->data.backend.encoded.pData = pData; pDataBufferNode->data.backend.encoded.sizeInBytes = dataSizeInBytes; ma_resource_manager_data_buffer_node_set_data_supply_type(pDataBufferNode, ma_resource_manager_data_supply_type_encoded); /* <-- Must be set last. */ return MA_SUCCESS; } static ma_result ma_resource_manager_data_buffer_node_init_supply_decoded(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, const char* pFilePath, const wchar_t* pFilePathW, ma_uint32 flags, ma_decoder** ppDecoder) { ma_result result = MA_SUCCESS; ma_decoder* pDecoder; ma_uint64 totalFrameCount; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); MA_ASSERT(ppDecoder != NULL); MA_ASSERT(pFilePath != NULL || pFilePathW != NULL); *ppDecoder = NULL; /* For safety. */ pDecoder = (ma_decoder*)ma_malloc(sizeof(*pDecoder), &pResourceManager->config.allocationCallbacks); if (pDecoder == NULL) { return MA_OUT_OF_MEMORY; } result = ma_resource_manager__init_decoder(pResourceManager, pFilePath, pFilePathW, pDecoder); if (result != MA_SUCCESS) { ma_free(pDecoder, &pResourceManager->config.allocationCallbacks); return result; } /* At this point we have the decoder and we now need to initialize the data supply. This will be either a decoded buffer, or a decoded paged buffer. A regular buffer is just one big heap allocated buffer, whereas a paged buffer is a linked list of paged-sized buffers. The latter is used when the length of a sound is unknown until a full decode has been performed. */ if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_UNKNOWN_LENGTH) == 0) { result = ma_decoder_get_length_in_pcm_frames(pDecoder, &totalFrameCount); if (result != MA_SUCCESS) { return result; } } else { totalFrameCount = 0; } if (totalFrameCount > 0) { /* It's a known length. The data supply is a regular decoded buffer. */ ma_uint64 dataSizeInBytes; void* pData; dataSizeInBytes = totalFrameCount * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels); if (dataSizeInBytes > MA_SIZE_MAX) { ma_decoder_uninit(pDecoder); ma_free(pDecoder, &pResourceManager->config.allocationCallbacks); return MA_TOO_BIG; } pData = ma_malloc((size_t)dataSizeInBytes, &pResourceManager->config.allocationCallbacks); if (pData == NULL) { ma_decoder_uninit(pDecoder); ma_free(pDecoder, &pResourceManager->config.allocationCallbacks); return MA_OUT_OF_MEMORY; } /* The buffer needs to be initialized to silence in case the caller reads from it. */ ma_silence_pcm_frames(pData, totalFrameCount, pDecoder->outputFormat, pDecoder->outputChannels); /* Data has been allocated and the data supply can now be initialized. */ pDataBufferNode->data.backend.decoded.pData = pData; pDataBufferNode->data.backend.decoded.totalFrameCount = totalFrameCount; pDataBufferNode->data.backend.decoded.format = pDecoder->outputFormat; pDataBufferNode->data.backend.decoded.channels = pDecoder->outputChannels; pDataBufferNode->data.backend.decoded.sampleRate = pDecoder->outputSampleRate; pDataBufferNode->data.backend.decoded.decodedFrameCount = 0; ma_resource_manager_data_buffer_node_set_data_supply_type(pDataBufferNode, ma_resource_manager_data_supply_type_decoded); /* <-- Must be set last. */ } else { /* It's an unknown length. The data supply is a paged decoded buffer. Setting this up is actually easier than the non-paged decoded buffer because we just need to initialize a ma_paged_audio_buffer object. */ result = ma_paged_audio_buffer_data_init(pDecoder->outputFormat, pDecoder->outputChannels, &pDataBufferNode->data.backend.decodedPaged.data); if (result != MA_SUCCESS) { ma_decoder_uninit(pDecoder); ma_free(pDecoder, &pResourceManager->config.allocationCallbacks); return result; } pDataBufferNode->data.backend.decodedPaged.sampleRate = pDecoder->outputSampleRate; pDataBufferNode->data.backend.decodedPaged.decodedFrameCount = 0; ma_resource_manager_data_buffer_node_set_data_supply_type(pDataBufferNode, ma_resource_manager_data_supply_type_decoded_paged); /* <-- Must be set last. */ } *ppDecoder = pDecoder; return MA_SUCCESS; } static ma_result ma_resource_manager_data_buffer_node_decode_next_page(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, ma_decoder* pDecoder) { ma_result result = MA_SUCCESS; ma_uint64 pageSizeInFrames; ma_uint64 framesToTryReading; ma_uint64 framesRead; MA_ASSERT(pResourceManager != NULL); MA_ASSERT(pDataBufferNode != NULL); MA_ASSERT(pDecoder != NULL); /* We need to know the size of a page in frames to know how many frames to decode. */ pageSizeInFrames = MA_RESOURCE_MANAGER_PAGE_SIZE_IN_MILLISECONDS * (pDecoder->outputSampleRate/1000); framesToTryReading = pageSizeInFrames; /* Here is where we do the decoding of the next page. We'll run a slightly different path depending on whether or not we're using a flat or paged buffer because the allocation of the page differs between the two. For a flat buffer it's an offset to an already-allocated buffer. For a paged buffer, we need to allocate a new page and attach it to the linked list. */ switch (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBufferNode)) { case ma_resource_manager_data_supply_type_decoded: { /* The destination buffer is an offset to the existing buffer. Don't read more than we originally retrieved when we first initialized the decoder. */ void* pDst; ma_uint64 framesRemaining = pDataBufferNode->data.backend.decoded.totalFrameCount - pDataBufferNode->data.backend.decoded.decodedFrameCount; if (framesToTryReading > framesRemaining) { framesToTryReading = framesRemaining; } if (framesToTryReading > 0) { pDst = ma_offset_ptr( pDataBufferNode->data.backend.decoded.pData, pDataBufferNode->data.backend.decoded.decodedFrameCount * ma_get_bytes_per_frame(pDataBufferNode->data.backend.decoded.format, pDataBufferNode->data.backend.decoded.channels) ); MA_ASSERT(pDst != NULL); result = ma_decoder_read_pcm_frames(pDecoder, pDst, framesToTryReading, &framesRead); if (framesRead > 0) { pDataBufferNode->data.backend.decoded.decodedFrameCount += framesRead; } } else { framesRead = 0; } } break; case ma_resource_manager_data_supply_type_decoded_paged: { /* The destination buffer is a freshly allocated page. */ ma_paged_audio_buffer_page* pPage; result = ma_paged_audio_buffer_data_allocate_page(&pDataBufferNode->data.backend.decodedPaged.data, framesToTryReading, NULL, &pResourceManager->config.allocationCallbacks, &pPage); if (result != MA_SUCCESS) { return result; } result = ma_decoder_read_pcm_frames(pDecoder, pPage->pAudioData, framesToTryReading, &framesRead); if (framesRead > 0) { pPage->sizeInFrames = framesRead; result = ma_paged_audio_buffer_data_append_page(&pDataBufferNode->data.backend.decodedPaged.data, pPage); if (result == MA_SUCCESS) { pDataBufferNode->data.backend.decodedPaged.decodedFrameCount += framesRead; } else { /* Failed to append the page. Just abort and set the status to MA_AT_END. */ ma_paged_audio_buffer_data_free_page(&pDataBufferNode->data.backend.decodedPaged.data, pPage, &pResourceManager->config.allocationCallbacks); result = MA_AT_END; } } else { /* No frames were read. Free the page and just set the status to MA_AT_END. */ ma_paged_audio_buffer_data_free_page(&pDataBufferNode->data.backend.decodedPaged.data, pPage, &pResourceManager->config.allocationCallbacks); result = MA_AT_END; } } break; case ma_resource_manager_data_supply_type_encoded: case ma_resource_manager_data_supply_type_unknown: default: { /* Unexpected data supply type. */ ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_ERROR, "Unexpected data supply type (%d) when decoding page.", ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBufferNode)); return MA_ERROR; }; } if (result == MA_SUCCESS && framesRead == 0) { result = MA_AT_END; } return result; } static ma_result ma_resource_manager_data_buffer_node_acquire_critical_section(ma_resource_manager* pResourceManager, const char* pFilePath, const wchar_t* pFilePathW, ma_uint32 hashedName32, ma_uint32 flags, const ma_resource_manager_data_supply* pExistingData, ma_fence* pInitFence, ma_fence* pDoneFence, ma_resource_manager_inline_notification* pInitNotification, ma_resource_manager_data_buffer_node** ppDataBufferNode) { ma_result result = MA_SUCCESS; ma_resource_manager_data_buffer_node* pDataBufferNode = NULL; ma_resource_manager_data_buffer_node* pInsertPoint; if (ppDataBufferNode != NULL) { *ppDataBufferNode = NULL; } result = ma_resource_manager_data_buffer_node_insert_point(pResourceManager, hashedName32, &pInsertPoint); if (result == MA_ALREADY_EXISTS) { /* The node already exists. We just need to increment the reference count. */ pDataBufferNode = pInsertPoint; result = ma_resource_manager_data_buffer_node_increment_ref(pResourceManager, pDataBufferNode, NULL); if (result != MA_SUCCESS) { return result; /* Should never happen. Failed to increment the reference count. */ } result = MA_ALREADY_EXISTS; goto done; } else { /* The node does not already exist. We need to post a LOAD_DATA_BUFFER_NODE job here. This needs to be done inside the critical section to ensure an uninitialization of the node does not occur before initialization on another thread. */ pDataBufferNode = (ma_resource_manager_data_buffer_node*)ma_malloc(sizeof(*pDataBufferNode), &pResourceManager->config.allocationCallbacks); if (pDataBufferNode == NULL) { return MA_OUT_OF_MEMORY; } MA_ZERO_OBJECT(pDataBufferNode); pDataBufferNode->hashedName32 = hashedName32; pDataBufferNode->refCount = 1; /* Always set to 1 by default (this is our first reference). */ if (pExistingData == NULL) { pDataBufferNode->data.type = ma_resource_manager_data_supply_type_unknown; /* <-- We won't know this until we start decoding. */ pDataBufferNode->result = MA_BUSY; /* Must be set to MA_BUSY before we leave the critical section, so might as well do it now. */ pDataBufferNode->isDataOwnedByResourceManager = MA_TRUE; } else { pDataBufferNode->data = *pExistingData; pDataBufferNode->result = MA_SUCCESS; /* Not loading asynchronously, so just set the status */ pDataBufferNode->isDataOwnedByResourceManager = MA_FALSE; } result = ma_resource_manager_data_buffer_node_insert_at(pResourceManager, pDataBufferNode, pInsertPoint); if (result != MA_SUCCESS) { ma_free(pDataBufferNode, &pResourceManager->config.allocationCallbacks); return result; /* Should never happen. Failed to insert the data buffer into the BST. */ } /* Here is where we'll post the job, but only if we're loading asynchronously. If we're loading synchronously we'll defer loading to a later stage, outside of the critical section. */ if (pDataBufferNode->isDataOwnedByResourceManager && (flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC) != 0) { /* Loading asynchronously. Post the job. */ ma_job job; char* pFilePathCopy = NULL; wchar_t* pFilePathWCopy = NULL; /* We need a copy of the file path. We should probably make this more efficient, but for now we'll do a transient memory allocation. */ if (pFilePath != NULL) { pFilePathCopy = ma_copy_string(pFilePath, &pResourceManager->config.allocationCallbacks); } else { pFilePathWCopy = ma_copy_string_w(pFilePathW, &pResourceManager->config.allocationCallbacks); } if (pFilePathCopy == NULL && pFilePathWCopy == NULL) { ma_resource_manager_data_buffer_node_remove(pResourceManager, pDataBufferNode); ma_free(pDataBufferNode, &pResourceManager->config.allocationCallbacks); return MA_OUT_OF_MEMORY; } if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_init(pResourceManager, pInitNotification); } /* Acquire init and done fences before posting the job. These will be unacquired by the job thread. */ if (pInitFence != NULL) { ma_fence_acquire(pInitFence); } if (pDoneFence != NULL) { ma_fence_acquire(pDoneFence); } /* We now have everything we need to post the job to the job thread. */ job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER_NODE); job.order = ma_resource_manager_data_buffer_node_next_execution_order(pDataBufferNode); job.data.resourceManager.loadDataBufferNode.pResourceManager = pResourceManager; job.data.resourceManager.loadDataBufferNode.pDataBufferNode = pDataBufferNode; job.data.resourceManager.loadDataBufferNode.pFilePath = pFilePathCopy; job.data.resourceManager.loadDataBufferNode.pFilePathW = pFilePathWCopy; job.data.resourceManager.loadDataBufferNode.flags = flags; job.data.resourceManager.loadDataBufferNode.pInitNotification = ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) ? pInitNotification : NULL; job.data.resourceManager.loadDataBufferNode.pDoneNotification = NULL; job.data.resourceManager.loadDataBufferNode.pInitFence = pInitFence; job.data.resourceManager.loadDataBufferNode.pDoneFence = pDoneFence; result = ma_resource_manager_post_job(pResourceManager, &job); if (result != MA_SUCCESS) { /* Failed to post job. Probably ran out of memory. */ ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_ERROR, "Failed to post MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER_NODE job. %s.\n", ma_result_description(result)); /* Fences were acquired before posting the job, but since the job was not able to be posted, we need to make sure we release them so nothing gets stuck waiting. */ if (pInitFence != NULL) { ma_fence_release(pInitFence); } if (pDoneFence != NULL) { ma_fence_release(pDoneFence); } if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_init(pResourceManager, pInitNotification); } ma_free(pFilePathCopy, &pResourceManager->config.allocationCallbacks); ma_free(pFilePathWCopy, &pResourceManager->config.allocationCallbacks); ma_resource_manager_data_buffer_node_remove(pResourceManager, pDataBufferNode); ma_free(pDataBufferNode, &pResourceManager->config.allocationCallbacks); return result; } } } done: if (ppDataBufferNode != NULL) { *ppDataBufferNode = pDataBufferNode; } return result; } static ma_result ma_resource_manager_data_buffer_node_acquire(ma_resource_manager* pResourceManager, const char* pFilePath, const wchar_t* pFilePathW, ma_uint32 hashedName32, ma_uint32 flags, const ma_resource_manager_data_supply* pExistingData, ma_fence* pInitFence, ma_fence* pDoneFence, ma_resource_manager_data_buffer_node** ppDataBufferNode) { ma_result result = MA_SUCCESS; ma_bool32 nodeAlreadyExists = MA_FALSE; ma_resource_manager_data_buffer_node* pDataBufferNode = NULL; ma_resource_manager_inline_notification initNotification; /* Used when the WAIT_INIT flag is set. */ if (ppDataBufferNode != NULL) { *ppDataBufferNode = NULL; /* Safety. */ } if (pResourceManager == NULL || (pFilePath == NULL && pFilePathW == NULL && hashedName32 == 0)) { return MA_INVALID_ARGS; } /* If we're specifying existing data, it must be valid. */ if (pExistingData != NULL && pExistingData->type == ma_resource_manager_data_supply_type_unknown) { return MA_INVALID_ARGS; } /* If we don't support threading, remove the ASYNC flag to make the rest of this a bit simpler. */ if (ma_resource_manager_is_threading_enabled(pResourceManager) == MA_FALSE) { flags &= ~MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC; } if (hashedName32 == 0) { if (pFilePath != NULL) { hashedName32 = ma_hash_string_32(pFilePath); } else { hashedName32 = ma_hash_string_w_32(pFilePathW); } } /* Here is where we either increment the node's reference count or allocate a new one and add it to the BST. When allocating a new node, we need to make sure the LOAD_DATA_BUFFER_NODE job is posted inside the critical section just in case the caller immediately uninitializes the node as this will ensure the FREE_DATA_BUFFER_NODE job is given an execution order such that the node is not uninitialized before initialization. */ ma_resource_manager_data_buffer_bst_lock(pResourceManager); { result = ma_resource_manager_data_buffer_node_acquire_critical_section(pResourceManager, pFilePath, pFilePathW, hashedName32, flags, pExistingData, pInitFence, pDoneFence, &initNotification, &pDataBufferNode); } ma_resource_manager_data_buffer_bst_unlock(pResourceManager); if (result == MA_ALREADY_EXISTS) { nodeAlreadyExists = MA_TRUE; result = MA_SUCCESS; } else { if (result != MA_SUCCESS) { return result; } } /* If we're loading synchronously, we'll need to load everything now. When loading asynchronously, a job will have been posted inside the BST critical section so that an uninitialization can be allocated an appropriate execution order thereby preventing it from being uninitialized before the node is initialized by the decoding thread(s). */ if (nodeAlreadyExists == MA_FALSE) { /* Don't need to try loading anything if the node already exists. */ if (pFilePath == NULL && pFilePathW == NULL) { /* If this path is hit, it means a buffer is being copied (i.e. initialized from only the hashed name), but that node has been freed in the meantime, probably from some other thread. This is an invalid operation. */ ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Cloning data buffer node failed because the source node was released. The source node must remain valid until the cloning has completed.\n"); result = MA_INVALID_OPERATION; goto done; } if (pDataBufferNode->isDataOwnedByResourceManager) { if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC) == 0) { /* Loading synchronously. Load the sound in it's entirety here. */ if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE) == 0) { /* No decoding. This is the simple case - just store the file contents in memory. */ result = ma_resource_manager_data_buffer_node_init_supply_encoded(pResourceManager, pDataBufferNode, pFilePath, pFilePathW); if (result != MA_SUCCESS) { goto done; } } else { /* Decoding. We do this the same way as we do when loading asynchronously. */ ma_decoder* pDecoder; result = ma_resource_manager_data_buffer_node_init_supply_decoded(pResourceManager, pDataBufferNode, pFilePath, pFilePathW, flags, &pDecoder); if (result != MA_SUCCESS) { goto done; } /* We have the decoder, now decode page by page just like we do when loading asynchronously. */ for (;;) { /* Decode next page. */ result = ma_resource_manager_data_buffer_node_decode_next_page(pResourceManager, pDataBufferNode, pDecoder); if (result != MA_SUCCESS) { break; /* Will return MA_AT_END when the last page has been decoded. */ } } /* Reaching the end needs to be considered successful. */ if (result == MA_AT_END) { result = MA_SUCCESS; } /* At this point the data buffer is either fully decoded or some error occurred. Either way, the decoder is no longer necessary. */ ma_decoder_uninit(pDecoder); ma_free(pDecoder, &pResourceManager->config.allocationCallbacks); } /* Getting here means we were successful. Make sure the status of the node is updated accordingly. */ c89atomic_exchange_i32(&pDataBufferNode->result, result); } else { /* Loading asynchronously. We may need to wait for initialization. */ if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_wait(&initNotification); } } } else { /* The data is not managed by the resource manager so there's nothing else to do. */ MA_ASSERT(pExistingData != NULL); } } done: /* If we failed to initialize the data buffer we need to free it. */ if (result != MA_SUCCESS) { if (nodeAlreadyExists == MA_FALSE) { ma_resource_manager_data_buffer_node_remove(pResourceManager, pDataBufferNode); ma_free(pDataBufferNode, &pResourceManager->config.allocationCallbacks); } } /* The init notification needs to be uninitialized. This will be used if the node does not already exist, and we've specified ASYNC | WAIT_INIT. */ if (nodeAlreadyExists == MA_FALSE && pDataBufferNode->isDataOwnedByResourceManager && (flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC) != 0) { if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_uninit(&initNotification); } } if (ppDataBufferNode != NULL) { *ppDataBufferNode = pDataBufferNode; } return result; } static ma_result ma_resource_manager_data_buffer_node_unacquire(ma_resource_manager* pResourceManager, ma_resource_manager_data_buffer_node* pDataBufferNode, const char* pName, const wchar_t* pNameW) { ma_result result = MA_SUCCESS; ma_uint32 refCount = 0xFFFFFFFF; /* The new reference count of the node after decrementing. Initialize to non-0 to be safe we don't fall into the freeing path. */ ma_uint32 hashedName32 = 0; if (pResourceManager == NULL) { return MA_INVALID_ARGS; } if (pDataBufferNode == NULL) { if (pName == NULL && pNameW == NULL) { return MA_INVALID_ARGS; } if (pName != NULL) { hashedName32 = ma_hash_string_32(pName); } else { hashedName32 = ma_hash_string_w_32(pNameW); } } /* The first thing to do is decrement the reference counter of the node. Then, if the reference count is zero, we need to free the node. If the node is still in the process of loading, we'll need to post a job to the job queue to free the node. Otherwise we'll just do it here. */ ma_resource_manager_data_buffer_bst_lock(pResourceManager); { /* Might need to find the node. Must be done inside the critical section. */ if (pDataBufferNode == NULL) { result = ma_resource_manager_data_buffer_node_search(pResourceManager, hashedName32, &pDataBufferNode); if (result != MA_SUCCESS) { goto stage2; /* Couldn't find the node. */ } } result = ma_resource_manager_data_buffer_node_decrement_ref(pResourceManager, pDataBufferNode, &refCount); if (result != MA_SUCCESS) { goto stage2; /* Should never happen. */ } if (refCount == 0) { result = ma_resource_manager_data_buffer_node_remove(pResourceManager, pDataBufferNode); if (result != MA_SUCCESS) { goto stage2; /* An error occurred when trying to remove the data buffer. This should never happen. */ } } } ma_resource_manager_data_buffer_bst_unlock(pResourceManager); stage2: if (result != MA_SUCCESS) { return result; } /* Here is where we need to free the node. We don't want to do this inside the critical section above because we want to keep that as small as possible for multi-threaded efficiency. */ if (refCount == 0) { if (ma_resource_manager_data_buffer_node_result(pDataBufferNode) == MA_BUSY) { /* The sound is still loading. We need to delay the freeing of the node to a safe time. */ ma_job job; /* We need to mark the node as unavailable for the sake of the resource manager worker threads. */ c89atomic_exchange_i32(&pDataBufferNode->result, MA_UNAVAILABLE); job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER_NODE); job.order = ma_resource_manager_data_buffer_node_next_execution_order(pDataBufferNode); job.data.resourceManager.freeDataBufferNode.pResourceManager = pResourceManager; job.data.resourceManager.freeDataBufferNode.pDataBufferNode = pDataBufferNode; result = ma_resource_manager_post_job(pResourceManager, &job); if (result != MA_SUCCESS) { ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_ERROR, "Failed to post MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER_NODE job. %s.\n", ma_result_description(result)); return result; } /* If we don't support threading, process the job queue here. */ if (ma_resource_manager_is_threading_enabled(pResourceManager) == MA_FALSE) { while (ma_resource_manager_data_buffer_node_result(pDataBufferNode) == MA_BUSY) { result = ma_resource_manager_process_next_job(pResourceManager); if (result == MA_NO_DATA_AVAILABLE || result == MA_CANCELLED) { result = MA_SUCCESS; break; } } } else { /* Threading is enabled. The job queue will deal with the rest of the cleanup from here. */ } } else { /* The sound isn't loading so we can just free the node here. */ ma_resource_manager_data_buffer_node_free(pResourceManager, pDataBufferNode); } } return result; } static ma_uint32 ma_resource_manager_data_buffer_next_execution_order(ma_resource_manager_data_buffer* pDataBuffer) { MA_ASSERT(pDataBuffer != NULL); return c89atomic_fetch_add_32(&pDataBuffer->executionCounter, 1); } static ma_result ma_resource_manager_data_buffer_cb__read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_resource_manager_data_buffer_read_pcm_frames((ma_resource_manager_data_buffer*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_resource_manager_data_buffer_cb__seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_resource_manager_data_buffer_seek_to_pcm_frame((ma_resource_manager_data_buffer*)pDataSource, frameIndex); } static ma_result ma_resource_manager_data_buffer_cb__get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_resource_manager_data_buffer_get_data_format((ma_resource_manager_data_buffer*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_resource_manager_data_buffer_cb__get_cursor_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_resource_manager_data_buffer_get_cursor_in_pcm_frames((ma_resource_manager_data_buffer*)pDataSource, pCursor); } static ma_result ma_resource_manager_data_buffer_cb__get_length_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_resource_manager_data_buffer_get_length_in_pcm_frames((ma_resource_manager_data_buffer*)pDataSource, pLength); } static ma_result ma_resource_manager_data_buffer_cb__set_looping(ma_data_source* pDataSource, ma_bool32 isLooping) { ma_resource_manager_data_buffer* pDataBuffer = (ma_resource_manager_data_buffer*)pDataSource; MA_ASSERT(pDataBuffer != NULL); c89atomic_exchange_32(&pDataBuffer->isLooping, isLooping); /* The looping state needs to be set on the connector as well or else looping won't work when we read audio data. */ ma_data_source_set_looping(ma_resource_manager_data_buffer_get_connector(pDataBuffer), isLooping); return MA_SUCCESS; } static ma_data_source_vtable g_ma_resource_manager_data_buffer_vtable = { ma_resource_manager_data_buffer_cb__read_pcm_frames, ma_resource_manager_data_buffer_cb__seek_to_pcm_frame, ma_resource_manager_data_buffer_cb__get_data_format, ma_resource_manager_data_buffer_cb__get_cursor_in_pcm_frames, ma_resource_manager_data_buffer_cb__get_length_in_pcm_frames, ma_resource_manager_data_buffer_cb__set_looping, 0 }; static ma_result ma_resource_manager_data_buffer_init_ex_internal(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_uint32 hashedName32, ma_resource_manager_data_buffer* pDataBuffer) { ma_result result = MA_SUCCESS; ma_resource_manager_data_buffer_node* pDataBufferNode; ma_data_source_config dataSourceConfig; ma_bool32 async; ma_uint32 flags; ma_resource_manager_pipeline_notifications notifications; if (pDataBuffer == NULL) { if (pConfig != NULL && pConfig->pNotifications != NULL) { ma_resource_manager_pipeline_notifications_signal_all_notifications(pConfig->pNotifications); } return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDataBuffer); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->pNotifications != NULL) { notifications = *pConfig->pNotifications; /* From here on out we should be referencing `notifications` instead of `pNotifications`. Set this to NULL to catch errors at testing time. */ } else { MA_ZERO_OBJECT(¬ifications); } /* For safety, always remove the ASYNC flag if threading is disabled on the resource manager. */ flags = pConfig->flags; if (ma_resource_manager_is_threading_enabled(pResourceManager) == MA_FALSE) { flags &= ~MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC; } async = (flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC) != 0; /* Fences need to be acquired before doing anything. These must be aquired and released outside of the node to ensure there's no holes where ma_fence_wait() could prematurely return before the data buffer has completed initialization. When loading asynchronously, the node acquisition routine below will acquire the fences on this thread and then release them on the async thread when the operation is complete. These fences are always released at the "done" tag at the end of this function. They'll be acquired a second if loading asynchronously. This double acquisition system is just done to simplify code maintanence. */ ma_resource_manager_pipeline_notifications_acquire_all_fences(¬ifications); { /* We first need to acquire a node. If ASYNC is not set, this will not return until the entire sound has been loaded. */ result = ma_resource_manager_data_buffer_node_acquire(pResourceManager, pConfig->pFilePath, pConfig->pFilePathW, hashedName32, flags, NULL, notifications.init.pFence, notifications.done.pFence, &pDataBufferNode); if (result != MA_SUCCESS) { ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); goto done; } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_resource_manager_data_buffer_vtable; result = ma_data_source_init(&dataSourceConfig, &pDataBuffer->ds); if (result != MA_SUCCESS) { ma_resource_manager_data_buffer_node_unacquire(pResourceManager, pDataBufferNode, NULL, NULL); ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); goto done; } pDataBuffer->pResourceManager = pResourceManager; pDataBuffer->pNode = pDataBufferNode; pDataBuffer->flags = flags; pDataBuffer->result = MA_BUSY; /* Always default to MA_BUSY for safety. It'll be overwritten when loading completes or an error occurs. */ /* If we're loading asynchronously we need to post a job to the job queue to initialize the connector. */ if (async == MA_FALSE || ma_resource_manager_data_buffer_node_result(pDataBufferNode) == MA_SUCCESS) { /* Loading synchronously or the data has already been fully loaded. We can just initialize the connector from here without a job. */ result = ma_resource_manager_data_buffer_init_connector(pDataBuffer, pConfig, NULL, NULL); c89atomic_exchange_i32(&pDataBuffer->result, result); ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); goto done; } else { /* The node's data supply isn't initialized yet. The caller has requested that we load asynchronously so we need to post a job to do this. */ ma_job job; ma_resource_manager_inline_notification initNotification; /* Used when the WAIT_INIT flag is set. */ if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_init(pResourceManager, &initNotification); } /* The status of the data buffer needs to be set to MA_BUSY before posting the job so that the worker thread is aware of it's busy state. If the LOAD_DATA_BUFFER job sees a status other than MA_BUSY, it'll assume an error and fall through to an early exit. */ c89atomic_exchange_i32(&pDataBuffer->result, MA_BUSY); /* Acquire fences a second time. These will be released by the async thread. */ ma_resource_manager_pipeline_notifications_acquire_all_fences(¬ifications); job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER); job.order = ma_resource_manager_data_buffer_next_execution_order(pDataBuffer); job.data.resourceManager.loadDataBuffer.pDataBuffer = pDataBuffer; job.data.resourceManager.loadDataBuffer.pInitNotification = ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) ? &initNotification : notifications.init.pNotification; job.data.resourceManager.loadDataBuffer.pDoneNotification = notifications.done.pNotification; job.data.resourceManager.loadDataBuffer.pInitFence = notifications.init.pFence; job.data.resourceManager.loadDataBuffer.pDoneFence = notifications.done.pFence; job.data.resourceManager.loadDataBuffer.rangeBegInPCMFrames = pConfig->rangeBegInPCMFrames; job.data.resourceManager.loadDataBuffer.rangeEndInPCMFrames = pConfig->rangeEndInPCMFrames; job.data.resourceManager.loadDataBuffer.loopPointBegInPCMFrames = pConfig->loopPointBegInPCMFrames; job.data.resourceManager.loadDataBuffer.loopPointEndInPCMFrames = pConfig->loopPointEndInPCMFrames; job.data.resourceManager.loadDataBuffer.isLooping = pConfig->isLooping; result = ma_resource_manager_post_job(pResourceManager, &job); if (result != MA_SUCCESS) { /* We failed to post the job. Most likely there isn't enough room in the queue's buffer. */ ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_ERROR, "Failed to post MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_BUFFER job. %s.\n", ma_result_description(result)); c89atomic_exchange_i32(&pDataBuffer->result, result); /* Release the fences after the result has been set on the data buffer. */ ma_resource_manager_pipeline_notifications_release_all_fences(¬ifications); } else { if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_wait(&initNotification); if (notifications.init.pNotification != NULL) { ma_async_notification_signal(notifications.init.pNotification); } /* NOTE: Do not release the init fence here. It will have been done by the job. */ /* Make sure we return an error if initialization failed on the async thread. */ result = ma_resource_manager_data_buffer_result(pDataBuffer); if (result == MA_BUSY) { result = MA_SUCCESS; } } } if ((flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { ma_resource_manager_inline_notification_uninit(&initNotification); } } if (result != MA_SUCCESS) { ma_resource_manager_data_buffer_node_unacquire(pResourceManager, pDataBufferNode, NULL, NULL); goto done; } } done: if (result == MA_SUCCESS) { if (pConfig->initialSeekPointInPCMFrames > 0) { ma_resource_manager_data_buffer_seek_to_pcm_frame(pDataBuffer, pConfig->initialSeekPointInPCMFrames); } } ma_resource_manager_pipeline_notifications_release_all_fences(¬ifications); return result; } MA_API ma_result ma_resource_manager_data_buffer_init_ex(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_buffer* pDataBuffer) { return ma_resource_manager_data_buffer_init_ex_internal(pResourceManager, pConfig, 0, pDataBuffer); } MA_API ma_result ma_resource_manager_data_buffer_init(ma_resource_manager* pResourceManager, const char* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_buffer* pDataBuffer) { ma_resource_manager_data_source_config config; config = ma_resource_manager_data_source_config_init(); config.pFilePath = pFilePath; config.flags = flags; config.pNotifications = pNotifications; return ma_resource_manager_data_buffer_init_ex(pResourceManager, &config, pDataBuffer); } MA_API ma_result ma_resource_manager_data_buffer_init_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_buffer* pDataBuffer) { ma_resource_manager_data_source_config config; config = ma_resource_manager_data_source_config_init(); config.pFilePathW = pFilePath; config.flags = flags; config.pNotifications = pNotifications; return ma_resource_manager_data_buffer_init_ex(pResourceManager, &config, pDataBuffer); } MA_API ma_result ma_resource_manager_data_buffer_init_copy(ma_resource_manager* pResourceManager, const ma_resource_manager_data_buffer* pExistingDataBuffer, ma_resource_manager_data_buffer* pDataBuffer) { ma_resource_manager_data_source_config config; if (pExistingDataBuffer == NULL) { return MA_INVALID_ARGS; } MA_ASSERT(pExistingDataBuffer->pNode != NULL); /* <-- If you've triggered this, you've passed in an invalid existing data buffer. */ config = ma_resource_manager_data_source_config_init(); config.flags = pExistingDataBuffer->flags; return ma_resource_manager_data_buffer_init_ex_internal(pResourceManager, &config, pExistingDataBuffer->pNode->hashedName32, pDataBuffer); } static ma_result ma_resource_manager_data_buffer_uninit_internal(ma_resource_manager_data_buffer* pDataBuffer) { MA_ASSERT(pDataBuffer != NULL); /* The connector should be uninitialized first. */ ma_resource_manager_data_buffer_uninit_connector(pDataBuffer->pResourceManager, pDataBuffer); /* With the connector uninitialized we can unacquire the node. */ ma_resource_manager_data_buffer_node_unacquire(pDataBuffer->pResourceManager, pDataBuffer->pNode, NULL, NULL); /* The base data source needs to be uninitialized as well. */ ma_data_source_uninit(&pDataBuffer->ds); return MA_SUCCESS; } MA_API ma_result ma_resource_manager_data_buffer_uninit(ma_resource_manager_data_buffer* pDataBuffer) { ma_result result; if (pDataBuffer == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_buffer_result(pDataBuffer) == MA_SUCCESS) { /* The data buffer can be deleted synchronously. */ return ma_resource_manager_data_buffer_uninit_internal(pDataBuffer); } else { /* The data buffer needs to be deleted asynchronously because it's still loading. With the status set to MA_UNAVAILABLE, no more pages will be loaded and the uninitialization should happen fairly quickly. Since the caller owns the data buffer, we need to wait for this event to get processed before returning. */ ma_resource_manager_inline_notification notification; ma_job job; /* We need to mark the node as unavailable so we don't try reading from it anymore, but also to let the loading thread know that it needs to abort it's loading procedure. */ c89atomic_exchange_i32(&pDataBuffer->result, MA_UNAVAILABLE); result = ma_resource_manager_inline_notification_init(pDataBuffer->pResourceManager, ¬ification); if (result != MA_SUCCESS) { return result; /* Failed to create the notification. This should rarely, if ever, happen. */ } job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER); job.order = ma_resource_manager_data_buffer_next_execution_order(pDataBuffer); job.data.resourceManager.freeDataBuffer.pDataBuffer = pDataBuffer; job.data.resourceManager.freeDataBuffer.pDoneNotification = ¬ification; job.data.resourceManager.freeDataBuffer.pDoneFence = NULL; result = ma_resource_manager_post_job(pDataBuffer->pResourceManager, &job); if (result != MA_SUCCESS) { ma_resource_manager_inline_notification_uninit(¬ification); return result; } ma_resource_manager_inline_notification_wait_and_uninit(¬ification); } return result; } MA_API ma_result ma_resource_manager_data_buffer_read_pcm_frames(ma_resource_manager_data_buffer* pDataBuffer, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint64 framesRead = 0; ma_bool32 isDecodedBufferBusy = MA_FALSE; /* Safety. */ if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } /* We cannot be using the data buffer after it's been uninitialized. If you trigger this assert it means you're trying to read from the data buffer after it's been uninitialized or is in the process of uninitializing. */ MA_ASSERT(ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) != MA_UNAVAILABLE); /* If the node is not initialized we need to abort with a busy code. */ if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode) == ma_resource_manager_data_supply_type_unknown) { return MA_BUSY; /* Still loading. */ } if (pDataBuffer->seekToCursorOnNextRead) { pDataBuffer->seekToCursorOnNextRead = MA_FALSE; result = ma_data_source_seek_to_pcm_frame(ma_resource_manager_data_buffer_get_connector(pDataBuffer), pDataBuffer->seekTargetInPCMFrames); if (result != MA_SUCCESS) { return result; } } /* For decoded buffers (not paged) we need to check beforehand how many frames we have available. We cannot exceed this amount. We'll read as much as we can, and then return MA_BUSY. */ if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode) == ma_resource_manager_data_supply_type_decoded) { ma_uint64 availableFrames; isDecodedBufferBusy = (ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) == MA_BUSY); if (ma_resource_manager_data_buffer_get_available_frames(pDataBuffer, &availableFrames) == MA_SUCCESS) { /* Don't try reading more than the available frame count. */ if (frameCount > availableFrames) { frameCount = availableFrames; /* If there's no frames available we want to set the status to MA_AT_END. The logic below will check if the node is busy, and if so, change it to MA_BUSY. The reason we do this is because we don't want to call `ma_data_source_read_pcm_frames()` if the frame count is 0 because that'll result in a situation where it's possible MA_AT_END won't get returned. */ if (frameCount == 0) { result = MA_AT_END; } } else { isDecodedBufferBusy = MA_FALSE; /* We have enough frames available in the buffer to avoid a MA_BUSY status. */ } } } /* Don't attempt to read anything if we've got no frames available. */ if (frameCount > 0) { result = ma_data_source_read_pcm_frames(ma_resource_manager_data_buffer_get_connector(pDataBuffer), pFramesOut, frameCount, &framesRead); } /* If we returned MA_AT_END, but the node is still loading, we don't want to return that code or else the caller will interpret the sound as at the end and terminate decoding. */ if (result == MA_AT_END) { if (ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) == MA_BUSY) { result = MA_BUSY; } } if (isDecodedBufferBusy) { result = MA_BUSY; } if (pFramesRead != NULL) { *pFramesRead = framesRead; } if (result == MA_SUCCESS && framesRead == 0) { result = MA_AT_END; } return result; } MA_API ma_result ma_resource_manager_data_buffer_seek_to_pcm_frame(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64 frameIndex) { ma_result result; /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) != MA_UNAVAILABLE); /* If we haven't yet got a connector we need to abort. */ if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode) == ma_resource_manager_data_supply_type_unknown) { pDataBuffer->seekTargetInPCMFrames = frameIndex; pDataBuffer->seekToCursorOnNextRead = MA_TRUE; return MA_BUSY; /* Still loading. */ } result = ma_data_source_seek_to_pcm_frame(ma_resource_manager_data_buffer_get_connector(pDataBuffer), frameIndex); if (result != MA_SUCCESS) { return result; } pDataBuffer->seekTargetInPCMFrames = ~(ma_uint64)0; /* <-- For identification purposes. */ pDataBuffer->seekToCursorOnNextRead = MA_FALSE; return MA_SUCCESS; } MA_API ma_result ma_resource_manager_data_buffer_get_data_format(ma_resource_manager_data_buffer* pDataBuffer, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) != MA_UNAVAILABLE); switch (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode)) { case ma_resource_manager_data_supply_type_encoded: { return ma_data_source_get_data_format(&pDataBuffer->connector.decoder, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); }; case ma_resource_manager_data_supply_type_decoded: { *pFormat = pDataBuffer->pNode->data.backend.decoded.format; *pChannels = pDataBuffer->pNode->data.backend.decoded.channels; *pSampleRate = pDataBuffer->pNode->data.backend.decoded.sampleRate; ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pDataBuffer->pNode->data.backend.decoded.channels); return MA_SUCCESS; }; case ma_resource_manager_data_supply_type_decoded_paged: { *pFormat = pDataBuffer->pNode->data.backend.decodedPaged.data.format; *pChannels = pDataBuffer->pNode->data.backend.decodedPaged.data.channels; *pSampleRate = pDataBuffer->pNode->data.backend.decodedPaged.sampleRate; ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, pDataBuffer->pNode->data.backend.decoded.channels); return MA_SUCCESS; }; case ma_resource_manager_data_supply_type_unknown: { return MA_BUSY; /* Still loading. */ }; default: { /* Unknown supply type. Should never hit this. */ return MA_INVALID_ARGS; } } } MA_API ma_result ma_resource_manager_data_buffer_get_cursor_in_pcm_frames(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64* pCursor) { /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) != MA_UNAVAILABLE); if (pDataBuffer == NULL || pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; switch (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode)) { case ma_resource_manager_data_supply_type_encoded: { return ma_decoder_get_cursor_in_pcm_frames(&pDataBuffer->connector.decoder, pCursor); }; case ma_resource_manager_data_supply_type_decoded: { return ma_audio_buffer_get_cursor_in_pcm_frames(&pDataBuffer->connector.buffer, pCursor); }; case ma_resource_manager_data_supply_type_decoded_paged: { return ma_paged_audio_buffer_get_cursor_in_pcm_frames(&pDataBuffer->connector.pagedBuffer, pCursor); }; case ma_resource_manager_data_supply_type_unknown: { return MA_BUSY; }; default: { return MA_INVALID_ARGS; } } } MA_API ma_result ma_resource_manager_data_buffer_get_length_in_pcm_frames(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64* pLength) { /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) != MA_UNAVAILABLE); if (pDataBuffer == NULL || pLength == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode) == ma_resource_manager_data_supply_type_unknown) { return MA_BUSY; /* Still loading. */ } return ma_data_source_get_length_in_pcm_frames(ma_resource_manager_data_buffer_get_connector(pDataBuffer), pLength); } MA_API ma_result ma_resource_manager_data_buffer_result(const ma_resource_manager_data_buffer* pDataBuffer) { if (pDataBuffer == NULL) { return MA_INVALID_ARGS; } return (ma_result)c89atomic_load_i32((ma_result*)&pDataBuffer->result); /* Need a naughty const-cast here. */ } MA_API ma_result ma_resource_manager_data_buffer_set_looping(ma_resource_manager_data_buffer* pDataBuffer, ma_bool32 isLooping) { return ma_data_source_set_looping(pDataBuffer, isLooping); } MA_API ma_bool32 ma_resource_manager_data_buffer_is_looping(const ma_resource_manager_data_buffer* pDataBuffer) { return ma_data_source_is_looping(pDataBuffer); } MA_API ma_result ma_resource_manager_data_buffer_get_available_frames(ma_resource_manager_data_buffer* pDataBuffer, ma_uint64* pAvailableFrames) { if (pAvailableFrames == NULL) { return MA_INVALID_ARGS; } *pAvailableFrames = 0; if (pDataBuffer == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode) == ma_resource_manager_data_supply_type_unknown) { if (ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode) == MA_BUSY) { return MA_BUSY; } else { return MA_INVALID_OPERATION; /* No connector. */ } } switch (ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode)) { case ma_resource_manager_data_supply_type_encoded: { return ma_decoder_get_available_frames(&pDataBuffer->connector.decoder, pAvailableFrames); }; case ma_resource_manager_data_supply_type_decoded: { return ma_audio_buffer_get_available_frames(&pDataBuffer->connector.buffer, pAvailableFrames); }; case ma_resource_manager_data_supply_type_decoded_paged: { ma_uint64 cursor; ma_paged_audio_buffer_get_cursor_in_pcm_frames(&pDataBuffer->connector.pagedBuffer, &cursor); if (pDataBuffer->pNode->data.backend.decodedPaged.decodedFrameCount > cursor) { *pAvailableFrames = pDataBuffer->pNode->data.backend.decodedPaged.decodedFrameCount - cursor; } else { *pAvailableFrames = 0; } return MA_SUCCESS; }; case ma_resource_manager_data_supply_type_unknown: default: { /* Unknown supply type. Should never hit this. */ return MA_INVALID_ARGS; } } } MA_API ma_result ma_resource_manager_register_file(ma_resource_manager* pResourceManager, const char* pFilePath, ma_uint32 flags) { return ma_resource_manager_data_buffer_node_acquire(pResourceManager, pFilePath, NULL, 0, flags, NULL, NULL, NULL, NULL); } MA_API ma_result ma_resource_manager_register_file_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath, ma_uint32 flags) { return ma_resource_manager_data_buffer_node_acquire(pResourceManager, NULL, pFilePath, 0, flags, NULL, NULL, NULL, NULL); } static ma_result ma_resource_manager_register_data(ma_resource_manager* pResourceManager, const char* pName, const wchar_t* pNameW, ma_resource_manager_data_supply* pExistingData) { return ma_resource_manager_data_buffer_node_acquire(pResourceManager, pName, pNameW, 0, 0, pExistingData, NULL, NULL, NULL); } static ma_result ma_resource_manager_register_decoded_data_internal(ma_resource_manager* pResourceManager, const char* pName, const wchar_t* pNameW, const void* pData, ma_uint64 frameCount, ma_format format, ma_uint32 channels, ma_uint32 sampleRate) { ma_resource_manager_data_supply data; data.type = ma_resource_manager_data_supply_type_decoded; data.backend.decoded.pData = pData; data.backend.decoded.totalFrameCount = frameCount; data.backend.decoded.format = format; data.backend.decoded.channels = channels; data.backend.decoded.sampleRate = sampleRate; return ma_resource_manager_register_data(pResourceManager, pName, pNameW, &data); } MA_API ma_result ma_resource_manager_register_decoded_data(ma_resource_manager* pResourceManager, const char* pName, const void* pData, ma_uint64 frameCount, ma_format format, ma_uint32 channels, ma_uint32 sampleRate) { return ma_resource_manager_register_decoded_data_internal(pResourceManager, pName, NULL, pData, frameCount, format, channels, sampleRate); } MA_API ma_result ma_resource_manager_register_decoded_data_w(ma_resource_manager* pResourceManager, const wchar_t* pName, const void* pData, ma_uint64 frameCount, ma_format format, ma_uint32 channels, ma_uint32 sampleRate) { return ma_resource_manager_register_decoded_data_internal(pResourceManager, NULL, pName, pData, frameCount, format, channels, sampleRate); } static ma_result ma_resource_manager_register_encoded_data_internal(ma_resource_manager* pResourceManager, const char* pName, const wchar_t* pNameW, const void* pData, size_t sizeInBytes) { ma_resource_manager_data_supply data; data.type = ma_resource_manager_data_supply_type_encoded; data.backend.encoded.pData = pData; data.backend.encoded.sizeInBytes = sizeInBytes; return ma_resource_manager_register_data(pResourceManager, pName, pNameW, &data); } MA_API ma_result ma_resource_manager_register_encoded_data(ma_resource_manager* pResourceManager, const char* pName, const void* pData, size_t sizeInBytes) { return ma_resource_manager_register_encoded_data_internal(pResourceManager, pName, NULL, pData, sizeInBytes); } MA_API ma_result ma_resource_manager_register_encoded_data_w(ma_resource_manager* pResourceManager, const wchar_t* pName, const void* pData, size_t sizeInBytes) { return ma_resource_manager_register_encoded_data_internal(pResourceManager, NULL, pName, pData, sizeInBytes); } MA_API ma_result ma_resource_manager_unregister_file(ma_resource_manager* pResourceManager, const char* pFilePath) { return ma_resource_manager_unregister_data(pResourceManager, pFilePath); } MA_API ma_result ma_resource_manager_unregister_file_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath) { return ma_resource_manager_unregister_data_w(pResourceManager, pFilePath); } MA_API ma_result ma_resource_manager_unregister_data(ma_resource_manager* pResourceManager, const char* pName) { return ma_resource_manager_data_buffer_node_unacquire(pResourceManager, NULL, pName, NULL); } MA_API ma_result ma_resource_manager_unregister_data_w(ma_resource_manager* pResourceManager, const wchar_t* pName) { return ma_resource_manager_data_buffer_node_unacquire(pResourceManager, NULL, NULL, pName); } static ma_uint32 ma_resource_manager_data_stream_next_execution_order(ma_resource_manager_data_stream* pDataStream) { MA_ASSERT(pDataStream != NULL); return c89atomic_fetch_add_32(&pDataStream->executionCounter, 1); } static ma_bool32 ma_resource_manager_data_stream_is_decoder_at_end(const ma_resource_manager_data_stream* pDataStream) { MA_ASSERT(pDataStream != NULL); return c89atomic_load_32((ma_bool32*)&pDataStream->isDecoderAtEnd); } static ma_uint32 ma_resource_manager_data_stream_seek_counter(const ma_resource_manager_data_stream* pDataStream) { MA_ASSERT(pDataStream != NULL); return c89atomic_load_32((ma_uint32*)&pDataStream->seekCounter); } static ma_result ma_resource_manager_data_stream_cb__read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_resource_manager_data_stream_read_pcm_frames((ma_resource_manager_data_stream*)pDataSource, pFramesOut, frameCount, pFramesRead); } static ma_result ma_resource_manager_data_stream_cb__seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex) { return ma_resource_manager_data_stream_seek_to_pcm_frame((ma_resource_manager_data_stream*)pDataSource, frameIndex); } static ma_result ma_resource_manager_data_stream_cb__get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { return ma_resource_manager_data_stream_get_data_format((ma_resource_manager_data_stream*)pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } static ma_result ma_resource_manager_data_stream_cb__get_cursor_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pCursor) { return ma_resource_manager_data_stream_get_cursor_in_pcm_frames((ma_resource_manager_data_stream*)pDataSource, pCursor); } static ma_result ma_resource_manager_data_stream_cb__get_length_in_pcm_frames(ma_data_source* pDataSource, ma_uint64* pLength) { return ma_resource_manager_data_stream_get_length_in_pcm_frames((ma_resource_manager_data_stream*)pDataSource, pLength); } static ma_result ma_resource_manager_data_stream_cb__set_looping(ma_data_source* pDataSource, ma_bool32 isLooping) { ma_resource_manager_data_stream* pDataStream = (ma_resource_manager_data_stream*)pDataSource; MA_ASSERT(pDataStream != NULL); c89atomic_exchange_32(&pDataStream->isLooping, isLooping); return MA_SUCCESS; } static ma_data_source_vtable g_ma_resource_manager_data_stream_vtable = { ma_resource_manager_data_stream_cb__read_pcm_frames, ma_resource_manager_data_stream_cb__seek_to_pcm_frame, ma_resource_manager_data_stream_cb__get_data_format, ma_resource_manager_data_stream_cb__get_cursor_in_pcm_frames, ma_resource_manager_data_stream_cb__get_length_in_pcm_frames, ma_resource_manager_data_stream_cb__set_looping, MA_DATA_SOURCE_SELF_MANAGED_RANGE_AND_LOOP_POINT }; static void ma_resource_manager_data_stream_set_absolute_cursor(ma_resource_manager_data_stream* pDataStream, ma_uint64 absoluteCursor) { /* Loop if possible. */ if (absoluteCursor > pDataStream->totalLengthInPCMFrames && pDataStream->totalLengthInPCMFrames > 0) { absoluteCursor = absoluteCursor % pDataStream->totalLengthInPCMFrames; } c89atomic_exchange_64(&pDataStream->absoluteCursor, absoluteCursor); } MA_API ma_result ma_resource_manager_data_stream_init_ex(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_stream* pDataStream) { ma_result result; ma_data_source_config dataSourceConfig; char* pFilePathCopy = NULL; wchar_t* pFilePathWCopy = NULL; ma_job job; ma_bool32 waitBeforeReturning = MA_FALSE; ma_resource_manager_inline_notification waitNotification; ma_resource_manager_pipeline_notifications notifications; if (pDataStream == NULL) { if (pConfig != NULL && pConfig->pNotifications != NULL) { ma_resource_manager_pipeline_notifications_signal_all_notifications(pConfig->pNotifications); } return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDataStream); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->pNotifications != NULL) { notifications = *pConfig->pNotifications; /* From here on out, `notifications` should be used instead of `pNotifications`. Setting this to NULL to catch any errors at testing time. */ } else { MA_ZERO_OBJECT(¬ifications); } dataSourceConfig = ma_data_source_config_init(); dataSourceConfig.vtable = &g_ma_resource_manager_data_stream_vtable; result = ma_data_source_init(&dataSourceConfig, &pDataStream->ds); if (result != MA_SUCCESS) { ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); return result; } pDataStream->pResourceManager = pResourceManager; pDataStream->flags = pConfig->flags; pDataStream->result = MA_BUSY; ma_data_source_set_range_in_pcm_frames(pDataStream, pConfig->rangeBegInPCMFrames, pConfig->rangeEndInPCMFrames); ma_data_source_set_loop_point_in_pcm_frames(pDataStream, pConfig->loopPointBegInPCMFrames, pConfig->loopPointEndInPCMFrames); ma_data_source_set_looping(pDataStream, pConfig->isLooping); if (pResourceManager == NULL || (pConfig->pFilePath == NULL && pConfig->pFilePathW == NULL)) { ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); return MA_INVALID_ARGS; } /* We want all access to the VFS and the internal decoder to happen on the job thread just to keep things easier to manage for the VFS. */ /* We need a copy of the file path. We should probably make this more efficient, but for now we'll do a transient memory allocation. */ if (pConfig->pFilePath != NULL) { pFilePathCopy = ma_copy_string(pConfig->pFilePath, &pResourceManager->config.allocationCallbacks); } else { pFilePathWCopy = ma_copy_string_w(pConfig->pFilePathW, &pResourceManager->config.allocationCallbacks); } if (pFilePathCopy == NULL && pFilePathWCopy == NULL) { ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); return MA_OUT_OF_MEMORY; } /* We need to check for the presence of MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC. If it's not set, we need to wait before returning. Otherwise we can return immediately. Likewise, we'll also check for MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT and do the same. */ if ((pConfig->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_ASYNC) == 0 || (pConfig->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT) != 0) { waitBeforeReturning = MA_TRUE; ma_resource_manager_inline_notification_init(pResourceManager, &waitNotification); } ma_resource_manager_pipeline_notifications_acquire_all_fences(¬ifications); /* Set the absolute cursor to our initial seek position so retrieval of the cursor returns a good value. */ ma_resource_manager_data_stream_set_absolute_cursor(pDataStream, pConfig->initialSeekPointInPCMFrames); /* We now have everything we need to post the job. This is the last thing we need to do from here. The rest will be done by the job thread. */ job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_LOAD_DATA_STREAM); job.order = ma_resource_manager_data_stream_next_execution_order(pDataStream); job.data.resourceManager.loadDataStream.pDataStream = pDataStream; job.data.resourceManager.loadDataStream.pFilePath = pFilePathCopy; job.data.resourceManager.loadDataStream.pFilePathW = pFilePathWCopy; job.data.resourceManager.loadDataStream.initialSeekPoint = pConfig->initialSeekPointInPCMFrames; job.data.resourceManager.loadDataStream.pInitNotification = (waitBeforeReturning == MA_TRUE) ? &waitNotification : notifications.init.pNotification; job.data.resourceManager.loadDataStream.pInitFence = notifications.init.pFence; result = ma_resource_manager_post_job(pResourceManager, &job); if (result != MA_SUCCESS) { ma_resource_manager_pipeline_notifications_signal_all_notifications(¬ifications); ma_resource_manager_pipeline_notifications_release_all_fences(¬ifications); if (waitBeforeReturning) { ma_resource_manager_inline_notification_uninit(&waitNotification); } ma_free(pFilePathCopy, &pResourceManager->config.allocationCallbacks); ma_free(pFilePathWCopy, &pResourceManager->config.allocationCallbacks); return result; } /* Wait if needed. */ if (waitBeforeReturning) { ma_resource_manager_inline_notification_wait_and_uninit(&waitNotification); if (notifications.init.pNotification != NULL) { ma_async_notification_signal(notifications.init.pNotification); } /* NOTE: Do not release pInitFence here. That will be done by the job. */ } return MA_SUCCESS; } MA_API ma_result ma_resource_manager_data_stream_init(ma_resource_manager* pResourceManager, const char* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_stream* pDataStream) { ma_resource_manager_data_source_config config; config = ma_resource_manager_data_source_config_init(); config.pFilePath = pFilePath; config.flags = flags; config.pNotifications = pNotifications; return ma_resource_manager_data_stream_init_ex(pResourceManager, &config, pDataStream); } MA_API ma_result ma_resource_manager_data_stream_init_w(ma_resource_manager* pResourceManager, const wchar_t* pFilePath, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_stream* pDataStream) { ma_resource_manager_data_source_config config; config = ma_resource_manager_data_source_config_init(); config.pFilePathW = pFilePath; config.flags = flags; config.pNotifications = pNotifications; return ma_resource_manager_data_stream_init_ex(pResourceManager, &config, pDataStream); } MA_API ma_result ma_resource_manager_data_stream_uninit(ma_resource_manager_data_stream* pDataStream) { ma_resource_manager_inline_notification freeEvent; ma_job job; if (pDataStream == NULL) { return MA_INVALID_ARGS; } /* The first thing to do is set the result to unavailable. This will prevent future page decoding. */ c89atomic_exchange_i32(&pDataStream->result, MA_UNAVAILABLE); /* We need to post a job to ensure we're not in the middle or decoding or anything. Because the object is owned by the caller, we'll need to wait for it to complete before returning which means we need an event. */ ma_resource_manager_inline_notification_init(pDataStream->pResourceManager, &freeEvent); job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_STREAM); job.order = ma_resource_manager_data_stream_next_execution_order(pDataStream); job.data.resourceManager.freeDataStream.pDataStream = pDataStream; job.data.resourceManager.freeDataStream.pDoneNotification = &freeEvent; job.data.resourceManager.freeDataStream.pDoneFence = NULL; ma_resource_manager_post_job(pDataStream->pResourceManager, &job); /* We need to wait for the job to finish processing before we return. */ ma_resource_manager_inline_notification_wait_and_uninit(&freeEvent); return MA_SUCCESS; } static ma_uint32 ma_resource_manager_data_stream_get_page_size_in_frames(ma_resource_manager_data_stream* pDataStream) { MA_ASSERT(pDataStream != NULL); MA_ASSERT(pDataStream->isDecoderInitialized == MA_TRUE); return MA_RESOURCE_MANAGER_PAGE_SIZE_IN_MILLISECONDS * (pDataStream->decoder.outputSampleRate/1000); } static void* ma_resource_manager_data_stream_get_page_data_pointer(ma_resource_manager_data_stream* pDataStream, ma_uint32 pageIndex, ma_uint32 relativeCursor) { MA_ASSERT(pDataStream != NULL); MA_ASSERT(pDataStream->isDecoderInitialized == MA_TRUE); MA_ASSERT(pageIndex == 0 || pageIndex == 1); return ma_offset_ptr(pDataStream->pPageData, ((ma_resource_manager_data_stream_get_page_size_in_frames(pDataStream) * pageIndex) + relativeCursor) * ma_get_bytes_per_frame(pDataStream->decoder.outputFormat, pDataStream->decoder.outputChannels)); } static void ma_resource_manager_data_stream_fill_page(ma_resource_manager_data_stream* pDataStream, ma_uint32 pageIndex) { ma_result result = MA_SUCCESS; ma_uint64 pageSizeInFrames; ma_uint64 totalFramesReadForThisPage = 0; void* pPageData = ma_resource_manager_data_stream_get_page_data_pointer(pDataStream, pageIndex, 0); pageSizeInFrames = ma_resource_manager_data_stream_get_page_size_in_frames(pDataStream); /* The decoder needs to inherit the stream's looping and range state. */ { ma_uint64 rangeBeg; ma_uint64 rangeEnd; ma_uint64 loopPointBeg; ma_uint64 loopPointEnd; ma_data_source_set_looping(&pDataStream->decoder, ma_resource_manager_data_stream_is_looping(pDataStream)); ma_data_source_get_range_in_pcm_frames(pDataStream, &rangeBeg, &rangeEnd); ma_data_source_set_range_in_pcm_frames(&pDataStream->decoder, rangeBeg, rangeEnd); ma_data_source_get_loop_point_in_pcm_frames(pDataStream, &loopPointBeg, &loopPointEnd); ma_data_source_set_loop_point_in_pcm_frames(&pDataStream->decoder, loopPointBeg, loopPointEnd); } /* Just read straight from the decoder. It will deal with ranges and looping for us. */ result = ma_data_source_read_pcm_frames(&pDataStream->decoder, pPageData, pageSizeInFrames, &totalFramesReadForThisPage); if (result == MA_AT_END || totalFramesReadForThisPage < pageSizeInFrames) { c89atomic_exchange_32(&pDataStream->isDecoderAtEnd, MA_TRUE); } c89atomic_exchange_32(&pDataStream->pageFrameCount[pageIndex], (ma_uint32)totalFramesReadForThisPage); c89atomic_exchange_32(&pDataStream->isPageValid[pageIndex], MA_TRUE); } static void ma_resource_manager_data_stream_fill_pages(ma_resource_manager_data_stream* pDataStream) { ma_uint32 iPage; MA_ASSERT(pDataStream != NULL); for (iPage = 0; iPage < 2; iPage += 1) { ma_resource_manager_data_stream_fill_page(pDataStream, iPage); } } static ma_result ma_resource_manager_data_stream_map(ma_resource_manager_data_stream* pDataStream, void** ppFramesOut, ma_uint64* pFrameCount) { ma_uint64 framesAvailable; ma_uint64 frameCount = 0; /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_stream_result(pDataStream) != MA_UNAVAILABLE); if (pFrameCount != NULL) { frameCount = *pFrameCount; *pFrameCount = 0; } if (ppFramesOut != NULL) { *ppFramesOut = NULL; } if (pDataStream == NULL || ppFramesOut == NULL || pFrameCount == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_stream_result(pDataStream) != MA_SUCCESS) { return MA_INVALID_OPERATION; } /* Don't attempt to read while we're in the middle of seeking. Tell the caller that we're busy. */ if (ma_resource_manager_data_stream_seek_counter(pDataStream) > 0) { return MA_BUSY; } /* If the page we're on is invalid it means we've caught up to the job thread. */ if (c89atomic_load_32(&pDataStream->isPageValid[pDataStream->currentPageIndex]) == MA_FALSE) { framesAvailable = 0; } else { /* The page we're on is valid so we must have some frames available. We need to make sure that we don't overflow into the next page, even if it's valid. The reason is that the unmap process will only post an update for one page at a time. Keeping mapping tied to page boundaries makes this simpler. */ ma_uint32 currentPageFrameCount = c89atomic_load_32(&pDataStream->pageFrameCount[pDataStream->currentPageIndex]); MA_ASSERT(currentPageFrameCount >= pDataStream->relativeCursor); framesAvailable = currentPageFrameCount - pDataStream->relativeCursor; } /* If there's no frames available and the result is set to MA_AT_END we need to return MA_AT_END. */ if (framesAvailable == 0) { if (ma_resource_manager_data_stream_is_decoder_at_end(pDataStream)) { return MA_AT_END; } else { return MA_BUSY; /* There are no frames available, but we're not marked as EOF so we might have caught up to the job thread. Need to return MA_BUSY and wait for more data. */ } } MA_ASSERT(framesAvailable > 0); if (frameCount > framesAvailable) { frameCount = framesAvailable; } *ppFramesOut = ma_resource_manager_data_stream_get_page_data_pointer(pDataStream, pDataStream->currentPageIndex, pDataStream->relativeCursor); *pFrameCount = frameCount; return MA_SUCCESS; } static ma_result ma_resource_manager_data_stream_unmap(ma_resource_manager_data_stream* pDataStream, ma_uint64 frameCount) { ma_uint32 newRelativeCursor; ma_uint32 pageSizeInFrames; ma_job job; /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_stream_result(pDataStream) != MA_UNAVAILABLE); if (pDataStream == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_stream_result(pDataStream) != MA_SUCCESS) { return MA_INVALID_OPERATION; } /* The frame count should always fit inside a 32-bit integer. */ if (frameCount > 0xFFFFFFFF) { return MA_INVALID_ARGS; } pageSizeInFrames = ma_resource_manager_data_stream_get_page_size_in_frames(pDataStream); /* The absolute cursor needs to be updated for ma_resource_manager_data_stream_get_cursor_in_pcm_frames(). */ ma_resource_manager_data_stream_set_absolute_cursor(pDataStream, c89atomic_load_64(&pDataStream->absoluteCursor) + frameCount); /* Here is where we need to check if we need to load a new page, and if so, post a job to load it. */ newRelativeCursor = pDataStream->relativeCursor + (ma_uint32)frameCount; /* If the new cursor has flowed over to the next page we need to mark the old one as invalid and post an event for it. */ if (newRelativeCursor >= pageSizeInFrames) { newRelativeCursor -= pageSizeInFrames; /* Here is where we post the job start decoding. */ job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_STREAM); job.order = ma_resource_manager_data_stream_next_execution_order(pDataStream); job.data.resourceManager.pageDataStream.pDataStream = pDataStream; job.data.resourceManager.pageDataStream.pageIndex = pDataStream->currentPageIndex; /* The page needs to be marked as invalid so that the public API doesn't try reading from it. */ c89atomic_exchange_32(&pDataStream->isPageValid[pDataStream->currentPageIndex], MA_FALSE); /* Before posting the job we need to make sure we set some state. */ pDataStream->relativeCursor = newRelativeCursor; pDataStream->currentPageIndex = (pDataStream->currentPageIndex + 1) & 0x01; return ma_resource_manager_post_job(pDataStream->pResourceManager, &job); } else { /* We haven't moved into a new page so we can just move the cursor forward. */ pDataStream->relativeCursor = newRelativeCursor; return MA_SUCCESS; } } MA_API ma_result ma_resource_manager_data_stream_read_pcm_frames(ma_resource_manager_data_stream* pDataStream, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint64 totalFramesProcessed; ma_format format; ma_uint32 channels; /* Safety. */ if (pFramesRead != NULL) { *pFramesRead = 0; } if (frameCount == 0) { return MA_INVALID_ARGS; } /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_stream_result(pDataStream) != MA_UNAVAILABLE); if (pDataStream == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_stream_result(pDataStream) != MA_SUCCESS) { return MA_INVALID_OPERATION; } /* Don't attempt to read while we're in the middle of seeking. Tell the caller that we're busy. */ if (ma_resource_manager_data_stream_seek_counter(pDataStream) > 0) { return MA_BUSY; } ma_resource_manager_data_stream_get_data_format(pDataStream, &format, &channels, NULL, NULL, 0); /* Reading is implemented in terms of map/unmap. We need to run this in a loop because mapping is clamped against page boundaries. */ totalFramesProcessed = 0; while (totalFramesProcessed < frameCount) { void* pMappedFrames; ma_uint64 mappedFrameCount; mappedFrameCount = frameCount - totalFramesProcessed; result = ma_resource_manager_data_stream_map(pDataStream, &pMappedFrames, &mappedFrameCount); if (result != MA_SUCCESS) { break; } /* Copy the mapped data to the output buffer if we have one. It's allowed for pFramesOut to be NULL in which case a relative forward seek is performed. */ if (pFramesOut != NULL) { ma_copy_pcm_frames(ma_offset_pcm_frames_ptr(pFramesOut, totalFramesProcessed, format, channels), pMappedFrames, mappedFrameCount, format, channels); } totalFramesProcessed += mappedFrameCount; result = ma_resource_manager_data_stream_unmap(pDataStream, mappedFrameCount); if (result != MA_SUCCESS) { break; /* This is really bad - will only get an error here if we failed to post a job to the queue for loading the next page. */ } } if (pFramesRead != NULL) { *pFramesRead = totalFramesProcessed; } if (result == MA_SUCCESS && totalFramesProcessed == 0) { result = MA_AT_END; } return result; } MA_API ma_result ma_resource_manager_data_stream_seek_to_pcm_frame(ma_resource_manager_data_stream* pDataStream, ma_uint64 frameIndex) { ma_job job; ma_result streamResult; streamResult = ma_resource_manager_data_stream_result(pDataStream); /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(streamResult != MA_UNAVAILABLE); if (pDataStream == NULL) { return MA_INVALID_ARGS; } if (streamResult != MA_SUCCESS && streamResult != MA_BUSY) { return MA_INVALID_OPERATION; } /* If we're not already seeking and we're sitting on the same frame, just make this a no-op. */ if (c89atomic_load_32(&pDataStream->seekCounter) == 0) { if (c89atomic_load_64(&pDataStream->absoluteCursor) == frameIndex) { return MA_SUCCESS; } } /* Increment the seek counter first to indicate to read_paged_pcm_frames() and map_paged_pcm_frames() that we are in the middle of a seek and MA_BUSY should be returned. */ c89atomic_fetch_add_32(&pDataStream->seekCounter, 1); /* Update the absolute cursor so that ma_resource_manager_data_stream_get_cursor_in_pcm_frames() returns the new position. */ ma_resource_manager_data_stream_set_absolute_cursor(pDataStream, frameIndex); /* We need to clear our currently loaded pages so that the stream starts playback from the new seek point as soon as possible. These are for the purpose of the public API and will be ignored by the seek job. The seek job will operate on the assumption that both pages have been marked as invalid and the cursor is at the start of the first page. */ pDataStream->relativeCursor = 0; pDataStream->currentPageIndex = 0; c89atomic_exchange_32(&pDataStream->isPageValid[0], MA_FALSE); c89atomic_exchange_32(&pDataStream->isPageValid[1], MA_FALSE); /* Make sure the data stream is not marked as at the end or else if we seek in response to hitting the end, we won't be able to read any more data. */ c89atomic_exchange_32(&pDataStream->isDecoderAtEnd, MA_FALSE); /* The public API is not allowed to touch the internal decoder so we need to use a job to perform the seek. When seeking, the job thread will assume both pages are invalid and any content contained within them will be discarded and replaced with newly decoded data. */ job = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_SEEK_DATA_STREAM); job.order = ma_resource_manager_data_stream_next_execution_order(pDataStream); job.data.resourceManager.seekDataStream.pDataStream = pDataStream; job.data.resourceManager.seekDataStream.frameIndex = frameIndex; return ma_resource_manager_post_job(pDataStream->pResourceManager, &job); } MA_API ma_result ma_resource_manager_data_stream_get_data_format(ma_resource_manager_data_stream* pDataStream, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_stream_result(pDataStream) != MA_UNAVAILABLE); if (pFormat != NULL) { *pFormat = ma_format_unknown; } if (pChannels != NULL) { *pChannels = 0; } if (pSampleRate != NULL) { *pSampleRate = 0; } if (pChannelMap != NULL) { MA_ZERO_MEMORY(pChannelMap, sizeof(*pChannelMap) * channelMapCap); } if (pDataStream == NULL) { return MA_INVALID_ARGS; } if (ma_resource_manager_data_stream_result(pDataStream) != MA_SUCCESS) { return MA_INVALID_OPERATION; } /* We're being a little bit naughty here and accessing the internal decoder from the public API. The output data format is constant, and we've defined this function such that the application is responsible for ensuring it's not called while uninitializing so it should be safe. */ return ma_data_source_get_data_format(&pDataStream->decoder, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } MA_API ma_result ma_resource_manager_data_stream_get_cursor_in_pcm_frames(ma_resource_manager_data_stream* pDataStream, ma_uint64* pCursor) { ma_result result; if (pCursor == NULL) { return MA_INVALID_ARGS; } *pCursor = 0; /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(ma_resource_manager_data_stream_result(pDataStream) != MA_UNAVAILABLE); if (pDataStream == NULL) { return MA_INVALID_ARGS; } /* If the stream is in an erroneous state we need to return an invalid operation. We can allow this to be called when the data stream is in a busy state because the caller may have asked for an initial seek position and it's convenient to return that as the cursor position. */ result = ma_resource_manager_data_stream_result(pDataStream); if (result != MA_SUCCESS && result != MA_BUSY) { return MA_INVALID_OPERATION; } *pCursor = c89atomic_load_64(&pDataStream->absoluteCursor); return MA_SUCCESS; } MA_API ma_result ma_resource_manager_data_stream_get_length_in_pcm_frames(ma_resource_manager_data_stream* pDataStream, ma_uint64* pLength) { ma_result streamResult; if (pLength == NULL) { return MA_INVALID_ARGS; } *pLength = 0; streamResult = ma_resource_manager_data_stream_result(pDataStream); /* We cannot be using the data source after it's been uninitialized. */ MA_ASSERT(streamResult != MA_UNAVAILABLE); if (pDataStream == NULL) { return MA_INVALID_ARGS; } if (streamResult != MA_SUCCESS) { return streamResult; } /* We most definitely do not want to be calling ma_decoder_get_length_in_pcm_frames() directly. Instead we want to use a cached value that we calculated when we initialized it on the job thread. */ *pLength = pDataStream->totalLengthInPCMFrames; if (*pLength == 0) { return MA_NOT_IMPLEMENTED; /* Some decoders may not have a known length. */ } return MA_SUCCESS; } MA_API ma_result ma_resource_manager_data_stream_result(const ma_resource_manager_data_stream* pDataStream) { if (pDataStream == NULL) { return MA_INVALID_ARGS; } return (ma_result)c89atomic_load_i32(&pDataStream->result); } MA_API ma_result ma_resource_manager_data_stream_set_looping(ma_resource_manager_data_stream* pDataStream, ma_bool32 isLooping) { return ma_data_source_set_looping(pDataStream, isLooping); } MA_API ma_bool32 ma_resource_manager_data_stream_is_looping(const ma_resource_manager_data_stream* pDataStream) { if (pDataStream == NULL) { return MA_FALSE; } return c89atomic_load_32((ma_bool32*)&pDataStream->isLooping); /* Naughty const-cast. Value won't change from here in practice (maybe from another thread). */ } MA_API ma_result ma_resource_manager_data_stream_get_available_frames(ma_resource_manager_data_stream* pDataStream, ma_uint64* pAvailableFrames) { ma_uint32 pageIndex0; ma_uint32 pageIndex1; ma_uint32 relativeCursor; ma_uint64 availableFrames; if (pAvailableFrames == NULL) { return MA_INVALID_ARGS; } *pAvailableFrames = 0; if (pDataStream == NULL) { return MA_INVALID_ARGS; } pageIndex0 = pDataStream->currentPageIndex; pageIndex1 = (pDataStream->currentPageIndex + 1) & 0x01; relativeCursor = pDataStream->relativeCursor; availableFrames = 0; if (c89atomic_load_32(&pDataStream->isPageValid[pageIndex0])) { availableFrames += c89atomic_load_32(&pDataStream->pageFrameCount[pageIndex0]) - relativeCursor; if (c89atomic_load_32(&pDataStream->isPageValid[pageIndex1])) { availableFrames += c89atomic_load_32(&pDataStream->pageFrameCount[pageIndex1]); } } *pAvailableFrames = availableFrames; return MA_SUCCESS; } static ma_result ma_resource_manager_data_source_preinit(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_source* pDataSource) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDataSource); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pResourceManager == NULL) { return MA_INVALID_ARGS; } pDataSource->flags = pConfig->flags; return MA_SUCCESS; } MA_API ma_result ma_resource_manager_data_source_init_ex(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source_config* pConfig, ma_resource_manager_data_source* pDataSource) { ma_result result; result = ma_resource_manager_data_source_preinit(pResourceManager, pConfig, pDataSource); if (result != MA_SUCCESS) { return result; } /* The data source itself is just a data stream or a data buffer. */ if ((pConfig->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_init_ex(pResourceManager, pConfig, &pDataSource->backend.stream); } else { return ma_resource_manager_data_buffer_init_ex(pResourceManager, pConfig, &pDataSource->backend.buffer); } } MA_API ma_result ma_resource_manager_data_source_init(ma_resource_manager* pResourceManager, const char* pName, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_source* pDataSource) { ma_resource_manager_data_source_config config; config = ma_resource_manager_data_source_config_init(); config.pFilePath = pName; config.flags = flags; config.pNotifications = pNotifications; return ma_resource_manager_data_source_init_ex(pResourceManager, &config, pDataSource); } MA_API ma_result ma_resource_manager_data_source_init_w(ma_resource_manager* pResourceManager, const wchar_t* pName, ma_uint32 flags, const ma_resource_manager_pipeline_notifications* pNotifications, ma_resource_manager_data_source* pDataSource) { ma_resource_manager_data_source_config config; config = ma_resource_manager_data_source_config_init(); config.pFilePathW = pName; config.flags = flags; config.pNotifications = pNotifications; return ma_resource_manager_data_source_init_ex(pResourceManager, &config, pDataSource); } MA_API ma_result ma_resource_manager_data_source_init_copy(ma_resource_manager* pResourceManager, const ma_resource_manager_data_source* pExistingDataSource, ma_resource_manager_data_source* pDataSource) { ma_result result; ma_resource_manager_data_source_config config; if (pExistingDataSource == NULL) { return MA_INVALID_ARGS; } config = ma_resource_manager_data_source_config_init(); config.flags = pExistingDataSource->flags; result = ma_resource_manager_data_source_preinit(pResourceManager, &config, pDataSource); if (result != MA_SUCCESS) { return result; } /* Copying can only be done from data buffers. Streams cannot be copied. */ if ((pExistingDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return MA_INVALID_OPERATION; } return ma_resource_manager_data_buffer_init_copy(pResourceManager, &pExistingDataSource->backend.buffer, &pDataSource->backend.buffer); } MA_API ma_result ma_resource_manager_data_source_uninit(ma_resource_manager_data_source* pDataSource) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } /* All we need to is uninitialize the underlying data buffer or data stream. */ if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_uninit(&pDataSource->backend.stream); } else { return ma_resource_manager_data_buffer_uninit(&pDataSource->backend.buffer); } } MA_API ma_result ma_resource_manager_data_source_read_pcm_frames(ma_resource_manager_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { /* Safety. */ if (pFramesRead != NULL) { *pFramesRead = 0; } if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_read_pcm_frames(&pDataSource->backend.stream, pFramesOut, frameCount, pFramesRead); } else { return ma_resource_manager_data_buffer_read_pcm_frames(&pDataSource->backend.buffer, pFramesOut, frameCount, pFramesRead); } } MA_API ma_result ma_resource_manager_data_source_seek_to_pcm_frame(ma_resource_manager_data_source* pDataSource, ma_uint64 frameIndex) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_seek_to_pcm_frame(&pDataSource->backend.stream, frameIndex); } else { return ma_resource_manager_data_buffer_seek_to_pcm_frame(&pDataSource->backend.buffer, frameIndex); } } MA_API ma_result ma_resource_manager_data_source_map(ma_resource_manager_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_map(&pDataSource->backend.stream, ppFramesOut, pFrameCount); } else { return MA_NOT_IMPLEMENTED; /* Mapping not supported with data buffers. */ } } MA_API ma_result ma_resource_manager_data_source_unmap(ma_resource_manager_data_source* pDataSource, ma_uint64 frameCount) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_unmap(&pDataSource->backend.stream, frameCount); } else { return MA_NOT_IMPLEMENTED; /* Mapping not supported with data buffers. */ } } MA_API ma_result ma_resource_manager_data_source_get_data_format(ma_resource_manager_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_get_data_format(&pDataSource->backend.stream, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } else { return ma_resource_manager_data_buffer_get_data_format(&pDataSource->backend.buffer, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } } MA_API ma_result ma_resource_manager_data_source_get_cursor_in_pcm_frames(ma_resource_manager_data_source* pDataSource, ma_uint64* pCursor) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_get_cursor_in_pcm_frames(&pDataSource->backend.stream, pCursor); } else { return ma_resource_manager_data_buffer_get_cursor_in_pcm_frames(&pDataSource->backend.buffer, pCursor); } } MA_API ma_result ma_resource_manager_data_source_get_length_in_pcm_frames(ma_resource_manager_data_source* pDataSource, ma_uint64* pLength) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_get_length_in_pcm_frames(&pDataSource->backend.stream, pLength); } else { return ma_resource_manager_data_buffer_get_length_in_pcm_frames(&pDataSource->backend.buffer, pLength); } } MA_API ma_result ma_resource_manager_data_source_result(const ma_resource_manager_data_source* pDataSource) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_result(&pDataSource->backend.stream); } else { return ma_resource_manager_data_buffer_result(&pDataSource->backend.buffer); } } MA_API ma_result ma_resource_manager_data_source_set_looping(ma_resource_manager_data_source* pDataSource, ma_bool32 isLooping) { if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_set_looping(&pDataSource->backend.stream, isLooping); } else { return ma_resource_manager_data_buffer_set_looping(&pDataSource->backend.buffer, isLooping); } } MA_API ma_bool32 ma_resource_manager_data_source_is_looping(const ma_resource_manager_data_source* pDataSource) { if (pDataSource == NULL) { return MA_FALSE; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_is_looping(&pDataSource->backend.stream); } else { return ma_resource_manager_data_buffer_is_looping(&pDataSource->backend.buffer); } } MA_API ma_result ma_resource_manager_data_source_get_available_frames(ma_resource_manager_data_source* pDataSource, ma_uint64* pAvailableFrames) { if (pAvailableFrames == NULL) { return MA_INVALID_ARGS; } *pAvailableFrames = 0; if (pDataSource == NULL) { return MA_INVALID_ARGS; } if ((pDataSource->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_STREAM) != 0) { return ma_resource_manager_data_stream_get_available_frames(&pDataSource->backend.stream, pAvailableFrames); } else { return ma_resource_manager_data_buffer_get_available_frames(&pDataSource->backend.buffer, pAvailableFrames); } } MA_API ma_result ma_resource_manager_post_job(ma_resource_manager* pResourceManager, const ma_job* pJob) { if (pResourceManager == NULL) { return MA_INVALID_ARGS; } return ma_job_queue_post(&pResourceManager->jobQueue, pJob); } MA_API ma_result ma_resource_manager_post_job_quit(ma_resource_manager* pResourceManager) { ma_job job = ma_job_init(MA_JOB_TYPE_QUIT); return ma_resource_manager_post_job(pResourceManager, &job); } MA_API ma_result ma_resource_manager_next_job(ma_resource_manager* pResourceManager, ma_job* pJob) { if (pResourceManager == NULL) { return MA_INVALID_ARGS; } return ma_job_queue_next(&pResourceManager->jobQueue, pJob); } static ma_result ma_job_process__resource_manager__load_data_buffer_node(ma_job* pJob) { ma_result result = MA_SUCCESS; ma_resource_manager* pResourceManager; ma_resource_manager_data_buffer_node* pDataBufferNode; MA_ASSERT(pJob != NULL); pResourceManager = (ma_resource_manager*)pJob->data.resourceManager.loadDataBufferNode.pResourceManager; MA_ASSERT(pResourceManager != NULL); pDataBufferNode = (ma_resource_manager_data_buffer_node*)pJob->data.resourceManager.loadDataBufferNode.pDataBufferNode; MA_ASSERT(pDataBufferNode != NULL); MA_ASSERT(pDataBufferNode->isDataOwnedByResourceManager == MA_TRUE); /* The data should always be owned by the resource manager. */ /* The data buffer is not getting deleted, but we may be getting executed out of order. If so, we need to push the job back onto the queue and return. */ if (pJob->order != c89atomic_load_32(&pDataBufferNode->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Attempting to execute out of order. Probably interleaved with a MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER job. */ } /* First thing we need to do is check whether or not the data buffer is getting deleted. If so we just abort. */ if (ma_resource_manager_data_buffer_node_result(pDataBufferNode) != MA_BUSY) { result = ma_resource_manager_data_buffer_node_result(pDataBufferNode); /* The data buffer may be getting deleted before it's even been loaded. */ goto done; } /* We're ready to start loading. Essentially what we're doing here is initializing the data supply of the node. Once this is complete, data buffers can have their connectors initialized which will allow then to have audio data read from them. Note that when the data supply type has been moved away from "unknown", that is when other threads will determine that the node is available for data delivery and the data buffer connectors can be initialized. Therefore, it's important that it is set after the data supply has been initialized. */ if ((pJob->data.resourceManager.loadDataBufferNode.flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_DECODE) != 0) { /* Decoding. This is the complex case because we're not going to be doing the entire decoding process here. Instead it's going to be split of multiple jobs and loaded in pages. The reason for this is to evenly distribute decoding time across multiple sounds, rather than having one huge sound hog all the available processing resources. The first thing we do is initialize a decoder. This is allocated on the heap and is passed around to the paging jobs. When the last paging job has completed it's processing, it'll free the decoder for us. This job does not do any actual decoding. It instead just posts a PAGE_DATA_BUFFER_NODE job which is where the actual decoding work will be done. However, once this job is complete, the node will be in a state where data buffer connectors can be initialized. */ ma_decoder* pDecoder; /* <-- Free'd on the last page decode. */ ma_job pageDataBufferNodeJob; /* Allocate the decoder by initializing a decoded data supply. */ result = ma_resource_manager_data_buffer_node_init_supply_decoded(pResourceManager, pDataBufferNode, pJob->data.resourceManager.loadDataBufferNode.pFilePath, pJob->data.resourceManager.loadDataBufferNode.pFilePathW, pJob->data.resourceManager.loadDataBufferNode.flags, &pDecoder); /* Don't ever propagate an MA_BUSY result code or else the resource manager will think the node is just busy decoding rather than in an error state. This should never happen, but including this logic for safety just in case. */ if (result == MA_BUSY) { result = MA_ERROR; } if (result != MA_SUCCESS) { if (pJob->data.resourceManager.loadDataBufferNode.pFilePath != NULL) { ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Failed to initialize data supply for \"%s\". %s.\n", pJob->data.resourceManager.loadDataBufferNode.pFilePath, ma_result_description(result)); } else { #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(_MSC_VER) ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_WARNING, "Failed to initialize data supply for \"%ls\", %s.\n", pJob->data.resourceManager.loadDataBufferNode.pFilePathW, ma_result_description(result)); #endif } goto done; } /* At this point the node's data supply is initialized and other threads can start initializing their data buffer connectors. However, no data will actually be available until we start to actually decode it. To do this, we need to post a paging job which is where the decoding work is done. Note that if an error occurred at an earlier point, this section will have been skipped. */ pageDataBufferNodeJob = ma_job_init(MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE); pageDataBufferNodeJob.order = ma_resource_manager_data_buffer_node_next_execution_order(pDataBufferNode); pageDataBufferNodeJob.data.resourceManager.pageDataBufferNode.pResourceManager = pResourceManager; pageDataBufferNodeJob.data.resourceManager.pageDataBufferNode.pDataBufferNode = pDataBufferNode; pageDataBufferNodeJob.data.resourceManager.pageDataBufferNode.pDecoder = pDecoder; pageDataBufferNodeJob.data.resourceManager.pageDataBufferNode.pDoneNotification = pJob->data.resourceManager.loadDataBufferNode.pDoneNotification; pageDataBufferNodeJob.data.resourceManager.pageDataBufferNode.pDoneFence = pJob->data.resourceManager.loadDataBufferNode.pDoneFence; /* The job has been set up so it can now be posted. */ result = ma_resource_manager_post_job(pResourceManager, &pageDataBufferNodeJob); /* When we get here, we want to make sure the result code is set to MA_BUSY. The reason for this is that the result will be copied over to the node's internal result variable. In this case, since the decoding is still in-progress, we need to make sure the result code is set to MA_BUSY. */ if (result != MA_SUCCESS) { ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_ERROR, "Failed to post MA_JOB_TYPE_RESOURCE_MANAGER_PAGE_DATA_BUFFER_NODE job. %s\n", ma_result_description(result)); ma_decoder_uninit(pDecoder); ma_free(pDecoder, &pResourceManager->config.allocationCallbacks); } else { result = MA_BUSY; } } else { /* No decoding. This is the simple case. We need only read the file content into memory and we're done. */ result = ma_resource_manager_data_buffer_node_init_supply_encoded(pResourceManager, pDataBufferNode, pJob->data.resourceManager.loadDataBufferNode.pFilePath, pJob->data.resourceManager.loadDataBufferNode.pFilePathW); } done: /* File paths are no longer needed. */ ma_free(pJob->data.resourceManager.loadDataBufferNode.pFilePath, &pResourceManager->config.allocationCallbacks); ma_free(pJob->data.resourceManager.loadDataBufferNode.pFilePathW, &pResourceManager->config.allocationCallbacks); /* We need to set the result to at the very end to ensure no other threads try reading the data before we've fully initialized the object. Other threads are going to be inspecting this variable to determine whether or not they're ready to read data. We can only change the result if it's set to MA_BUSY because otherwise we may be changing away from an error code which would be bad. An example is if the application creates a data buffer, but then immediately deletes it before we've got to this point. In this case, pDataBuffer->result will be MA_UNAVAILABLE, and setting it to MA_SUCCESS or any other error code would cause the buffer to look like it's in a state that it's not. */ c89atomic_compare_and_swap_i32(&pDataBufferNode->result, MA_BUSY, result); /* At this point initialization is complete and we can signal the notification if any. */ if (pJob->data.resourceManager.loadDataBufferNode.pInitNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.loadDataBufferNode.pInitNotification); } if (pJob->data.resourceManager.loadDataBufferNode.pInitFence != NULL) { ma_fence_release(pJob->data.resourceManager.loadDataBufferNode.pInitFence); } /* If we have a success result it means we've fully loaded the buffer. This will happen in the non-decoding case. */ if (result != MA_BUSY) { if (pJob->data.resourceManager.loadDataBufferNode.pDoneNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.loadDataBufferNode.pDoneNotification); } if (pJob->data.resourceManager.loadDataBufferNode.pDoneFence != NULL) { ma_fence_release(pJob->data.resourceManager.loadDataBufferNode.pDoneFence); } } /* Increment the node's execution pointer so that the next jobs can be processed. This is how we keep decoding of pages in-order. */ c89atomic_fetch_add_32(&pDataBufferNode->executionPointer, 1); return result; } static ma_result ma_job_process__resource_manager__free_data_buffer_node(ma_job* pJob) { ma_resource_manager* pResourceManager; ma_resource_manager_data_buffer_node* pDataBufferNode; MA_ASSERT(pJob != NULL); pResourceManager = (ma_resource_manager*)pJob->data.resourceManager.freeDataBufferNode.pResourceManager; MA_ASSERT(pResourceManager != NULL); pDataBufferNode = (ma_resource_manager_data_buffer_node*)pJob->data.resourceManager.freeDataBufferNode.pDataBufferNode; MA_ASSERT(pDataBufferNode != NULL); if (pJob->order != c89atomic_load_32(&pDataBufferNode->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } ma_resource_manager_data_buffer_node_free(pResourceManager, pDataBufferNode); /* The event needs to be signalled last. */ if (pJob->data.resourceManager.freeDataBufferNode.pDoneNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.freeDataBufferNode.pDoneNotification); } if (pJob->data.resourceManager.freeDataBufferNode.pDoneFence != NULL) { ma_fence_release(pJob->data.resourceManager.freeDataBufferNode.pDoneFence); } c89atomic_fetch_add_32(&pDataBufferNode->executionPointer, 1); return MA_SUCCESS; } static ma_result ma_job_process__resource_manager__page_data_buffer_node(ma_job* pJob) { ma_result result = MA_SUCCESS; ma_resource_manager* pResourceManager; ma_resource_manager_data_buffer_node* pDataBufferNode; MA_ASSERT(pJob != NULL); pResourceManager = (ma_resource_manager*)pJob->data.resourceManager.pageDataBufferNode.pResourceManager; MA_ASSERT(pResourceManager != NULL); pDataBufferNode = (ma_resource_manager_data_buffer_node*)pJob->data.resourceManager.pageDataBufferNode.pDataBufferNode; MA_ASSERT(pDataBufferNode != NULL); if (pJob->order != c89atomic_load_32(&pDataBufferNode->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } /* Don't do any more decoding if the data buffer has started the uninitialization process. */ result = ma_resource_manager_data_buffer_node_result(pDataBufferNode); if (result != MA_BUSY) { goto done; } /* We're ready to decode the next page. */ result = ma_resource_manager_data_buffer_node_decode_next_page(pResourceManager, pDataBufferNode, (ma_decoder*)pJob->data.resourceManager.pageDataBufferNode.pDecoder); /* If we have a success code by this point, we want to post another job. We're going to set the result back to MA_BUSY to make it clear that there's still more to load. */ if (result == MA_SUCCESS) { ma_job newJob; newJob = *pJob; /* Everything is the same as the input job, except the execution order. */ newJob.order = ma_resource_manager_data_buffer_node_next_execution_order(pDataBufferNode); /* We need a fresh execution order. */ result = ma_resource_manager_post_job(pResourceManager, &newJob); /* Since the sound isn't yet fully decoded we want the status to be set to busy. */ if (result == MA_SUCCESS) { result = MA_BUSY; } } done: /* If there's still more to decode the result will be set to MA_BUSY. Otherwise we can free the decoder. */ if (result != MA_BUSY) { ma_decoder_uninit((ma_decoder*)pJob->data.resourceManager.pageDataBufferNode.pDecoder); ma_free(pJob->data.resourceManager.pageDataBufferNode.pDecoder, &pResourceManager->config.allocationCallbacks); } /* If we reached the end we need to treat it as successful. */ if (result == MA_AT_END) { result = MA_SUCCESS; } /* Make sure we set the result of node in case some error occurred. */ c89atomic_compare_and_swap_i32(&pDataBufferNode->result, MA_BUSY, result); /* Signal the notification after setting the result in case the notification callback wants to inspect the result code. */ if (result != MA_BUSY) { if (pJob->data.resourceManager.pageDataBufferNode.pDoneNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.pageDataBufferNode.pDoneNotification); } if (pJob->data.resourceManager.pageDataBufferNode.pDoneFence != NULL) { ma_fence_release(pJob->data.resourceManager.pageDataBufferNode.pDoneFence); } } c89atomic_fetch_add_32(&pDataBufferNode->executionPointer, 1); return result; } static ma_result ma_job_process__resource_manager__load_data_buffer(ma_job* pJob) { ma_result result = MA_SUCCESS; ma_resource_manager* pResourceManager; ma_resource_manager_data_buffer* pDataBuffer; ma_resource_manager_data_supply_type dataSupplyType = ma_resource_manager_data_supply_type_unknown; ma_bool32 isConnectorInitialized = MA_FALSE; /* All we're doing here is checking if the node has finished loading. If not, we just re-post the job and keep waiting. Otherwise we increment the execution counter and set the buffer's result code. */ MA_ASSERT(pJob != NULL); pDataBuffer = (ma_resource_manager_data_buffer*)pJob->data.resourceManager.loadDataBuffer.pDataBuffer; MA_ASSERT(pDataBuffer != NULL); pResourceManager = pDataBuffer->pResourceManager; if (pJob->order != c89atomic_load_32(&pDataBuffer->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Attempting to execute out of order. Probably interleaved with a MA_JOB_TYPE_RESOURCE_MANAGER_FREE_DATA_BUFFER job. */ } /* First thing we need to do is check whether or not the data buffer is getting deleted. If so we just abort, but making sure we increment the execution pointer. */ result = ma_resource_manager_data_buffer_result(pDataBuffer); if (result != MA_BUSY) { goto done; /* <-- This will ensure the exucution pointer is incremented. */ } else { result = MA_SUCCESS; /* <-- Make sure this is reset. */ } /* Try initializing the connector if we haven't already. */ isConnectorInitialized = pDataBuffer->isConnectorInitialized; if (isConnectorInitialized == MA_FALSE) { dataSupplyType = ma_resource_manager_data_buffer_node_get_data_supply_type(pDataBuffer->pNode); if (dataSupplyType != ma_resource_manager_data_supply_type_unknown) { /* We can now initialize the connector. If this fails, we need to abort. It's very rare for this to fail. */ ma_resource_manager_data_source_config dataSourceConfig; /* For setting initial looping state and range. */ dataSourceConfig = ma_resource_manager_data_source_config_init(); dataSourceConfig.rangeBegInPCMFrames = pJob->data.resourceManager.loadDataBuffer.rangeBegInPCMFrames; dataSourceConfig.rangeEndInPCMFrames = pJob->data.resourceManager.loadDataBuffer.rangeEndInPCMFrames; dataSourceConfig.loopPointBegInPCMFrames = pJob->data.resourceManager.loadDataBuffer.loopPointBegInPCMFrames; dataSourceConfig.loopPointEndInPCMFrames = pJob->data.resourceManager.loadDataBuffer.loopPointEndInPCMFrames; dataSourceConfig.isLooping = pJob->data.resourceManager.loadDataBuffer.isLooping; result = ma_resource_manager_data_buffer_init_connector(pDataBuffer, &dataSourceConfig, pJob->data.resourceManager.loadDataBuffer.pInitNotification, pJob->data.resourceManager.loadDataBuffer.pInitFence); if (result != MA_SUCCESS) { ma_log_postf(ma_resource_manager_get_log(pResourceManager), MA_LOG_LEVEL_ERROR, "Failed to initialize connector for data buffer. %s.\n", ma_result_description(result)); goto done; } } else { /* Don't have a known data supply type. Most likely the data buffer node is still loading, but it could be that an error occurred. */ } } else { /* The connector is already initialized. Nothing to do here. */ } /* If the data node is still loading, we need to repost the job and *not* increment the execution pointer (i.e. we need to not fall through to the "done" label). There is a hole between here and the where the data connector is initialized where the data buffer node may have finished initializing. We need to check for this by checking the result of the data buffer node and whether or not we had an unknown data supply type at the time of trying to initialize the data connector. */ result = ma_resource_manager_data_buffer_node_result(pDataBuffer->pNode); if (result == MA_BUSY || (result == MA_SUCCESS && isConnectorInitialized == MA_FALSE && dataSupplyType == ma_resource_manager_data_supply_type_unknown)) { return ma_resource_manager_post_job(pResourceManager, pJob); } done: /* Only move away from a busy code so that we don't trash any existing error codes. */ c89atomic_compare_and_swap_i32(&pDataBuffer->result, MA_BUSY, result); /* Only signal the other threads after the result has been set just for cleanliness sake. */ if (pJob->data.resourceManager.loadDataBuffer.pDoneNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.loadDataBuffer.pDoneNotification); } if (pJob->data.resourceManager.loadDataBuffer.pDoneFence != NULL) { ma_fence_release(pJob->data.resourceManager.loadDataBuffer.pDoneFence); } /* If at this point the data buffer has not had it's connector initialized, it means the notification event was never signalled which means we need to signal it here. */ if (pDataBuffer->isConnectorInitialized == MA_FALSE && result != MA_SUCCESS) { if (pJob->data.resourceManager.loadDataBuffer.pInitNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.loadDataBuffer.pInitNotification); } if (pJob->data.resourceManager.loadDataBuffer.pInitFence != NULL) { ma_fence_release(pJob->data.resourceManager.loadDataBuffer.pInitFence); } } c89atomic_fetch_add_32(&pDataBuffer->executionPointer, 1); return result; } static ma_result ma_job_process__resource_manager__free_data_buffer(ma_job* pJob) { ma_resource_manager* pResourceManager; ma_resource_manager_data_buffer* pDataBuffer; MA_ASSERT(pJob != NULL); pDataBuffer = (ma_resource_manager_data_buffer*)pJob->data.resourceManager.freeDataBuffer.pDataBuffer; MA_ASSERT(pDataBuffer != NULL); pResourceManager = pDataBuffer->pResourceManager; if (pJob->order != c89atomic_load_32(&pDataBuffer->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } ma_resource_manager_data_buffer_uninit_internal(pDataBuffer); /* The event needs to be signalled last. */ if (pJob->data.resourceManager.freeDataBuffer.pDoneNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.freeDataBuffer.pDoneNotification); } if (pJob->data.resourceManager.freeDataBuffer.pDoneFence != NULL) { ma_fence_release(pJob->data.resourceManager.freeDataBuffer.pDoneFence); } c89atomic_fetch_add_32(&pDataBuffer->executionPointer, 1); return MA_SUCCESS; } static ma_result ma_job_process__resource_manager__load_data_stream(ma_job* pJob) { ma_result result = MA_SUCCESS; ma_decoder_config decoderConfig; ma_uint32 pageBufferSizeInBytes; ma_resource_manager* pResourceManager; ma_resource_manager_data_stream* pDataStream; MA_ASSERT(pJob != NULL); pDataStream = (ma_resource_manager_data_stream*)pJob->data.resourceManager.loadDataStream.pDataStream; MA_ASSERT(pDataStream != NULL); pResourceManager = pDataStream->pResourceManager; if (pJob->order != c89atomic_load_32(&pDataStream->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } if (ma_resource_manager_data_stream_result(pDataStream) != MA_BUSY) { result = MA_INVALID_OPERATION; /* Most likely the data stream is being uninitialized. */ goto done; } /* We need to initialize the decoder first so we can determine the size of the pages. */ decoderConfig = ma_resource_manager__init_decoder_config(pResourceManager); if (pJob->data.resourceManager.loadDataStream.pFilePath != NULL) { result = ma_decoder_init_vfs(pResourceManager->config.pVFS, pJob->data.resourceManager.loadDataStream.pFilePath, &decoderConfig, &pDataStream->decoder); } else { result = ma_decoder_init_vfs_w(pResourceManager->config.pVFS, pJob->data.resourceManager.loadDataStream.pFilePathW, &decoderConfig, &pDataStream->decoder); } if (result != MA_SUCCESS) { goto done; } /* Retrieve the total length of the file before marking the decoder are loaded. */ if ((pDataStream->flags & MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_UNKNOWN_LENGTH) == 0) { result = ma_decoder_get_length_in_pcm_frames(&pDataStream->decoder, &pDataStream->totalLengthInPCMFrames); if (result != MA_SUCCESS) { goto done; /* Failed to retrieve the length. */ } } else { pDataStream->totalLengthInPCMFrames = 0; } /* Only mark the decoder as initialized when the length of the decoder has been retrieved because that can possibly require a scan over the whole file and we don't want to have another thread trying to access the decoder while it's scanning. */ pDataStream->isDecoderInitialized = MA_TRUE; /* We have the decoder so we can now initialize our page buffer. */ pageBufferSizeInBytes = ma_resource_manager_data_stream_get_page_size_in_frames(pDataStream) * 2 * ma_get_bytes_per_frame(pDataStream->decoder.outputFormat, pDataStream->decoder.outputChannels); pDataStream->pPageData = ma_malloc(pageBufferSizeInBytes, &pResourceManager->config.allocationCallbacks); if (pDataStream->pPageData == NULL) { ma_decoder_uninit(&pDataStream->decoder); result = MA_OUT_OF_MEMORY; goto done; } /* Seek to our initial seek point before filling the initial pages. */ ma_decoder_seek_to_pcm_frame(&pDataStream->decoder, pJob->data.resourceManager.loadDataStream.initialSeekPoint); /* We have our decoder and our page buffer, so now we need to fill our pages. */ ma_resource_manager_data_stream_fill_pages(pDataStream); /* And now we're done. We want to make sure the result is MA_SUCCESS. */ result = MA_SUCCESS; done: ma_free(pJob->data.resourceManager.loadDataStream.pFilePath, &pResourceManager->config.allocationCallbacks); ma_free(pJob->data.resourceManager.loadDataStream.pFilePathW, &pResourceManager->config.allocationCallbacks); /* We can only change the status away from MA_BUSY. If it's set to anything else it means an error has occurred somewhere or the uninitialization process has started (most likely). */ c89atomic_compare_and_swap_i32(&pDataStream->result, MA_BUSY, result); /* Only signal the other threads after the result has been set just for cleanliness sake. */ if (pJob->data.resourceManager.loadDataStream.pInitNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.loadDataStream.pInitNotification); } if (pJob->data.resourceManager.loadDataStream.pInitFence != NULL) { ma_fence_release(pJob->data.resourceManager.loadDataStream.pInitFence); } c89atomic_fetch_add_32(&pDataStream->executionPointer, 1); return result; } static ma_result ma_job_process__resource_manager__free_data_stream(ma_job* pJob) { ma_resource_manager* pResourceManager; ma_resource_manager_data_stream* pDataStream; MA_ASSERT(pJob != NULL); pDataStream = (ma_resource_manager_data_stream*)pJob->data.resourceManager.freeDataStream.pDataStream; MA_ASSERT(pDataStream != NULL); pResourceManager = pDataStream->pResourceManager; if (pJob->order != c89atomic_load_32(&pDataStream->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } /* If our status is not MA_UNAVAILABLE we have a bug somewhere. */ MA_ASSERT(ma_resource_manager_data_stream_result(pDataStream) == MA_UNAVAILABLE); if (pDataStream->isDecoderInitialized) { ma_decoder_uninit(&pDataStream->decoder); } if (pDataStream->pPageData != NULL) { ma_free(pDataStream->pPageData, &pResourceManager->config.allocationCallbacks); pDataStream->pPageData = NULL; /* Just in case... */ } ma_data_source_uninit(&pDataStream->ds); /* The event needs to be signalled last. */ if (pJob->data.resourceManager.freeDataStream.pDoneNotification != NULL) { ma_async_notification_signal(pJob->data.resourceManager.freeDataStream.pDoneNotification); } if (pJob->data.resourceManager.freeDataStream.pDoneFence != NULL) { ma_fence_release(pJob->data.resourceManager.freeDataStream.pDoneFence); } /*c89atomic_fetch_add_32(&pDataStream->executionPointer, 1);*/ return MA_SUCCESS; } static ma_result ma_job_process__resource_manager__page_data_stream(ma_job* pJob) { ma_result result = MA_SUCCESS; ma_resource_manager* pResourceManager; ma_resource_manager_data_stream* pDataStream; MA_ASSERT(pJob != NULL); pDataStream = (ma_resource_manager_data_stream*)pJob->data.resourceManager.pageDataStream.pDataStream; MA_ASSERT(pDataStream != NULL); pResourceManager = pDataStream->pResourceManager; if (pJob->order != c89atomic_load_32(&pDataStream->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } /* For streams, the status should be MA_SUCCESS. */ if (ma_resource_manager_data_stream_result(pDataStream) != MA_SUCCESS) { result = MA_INVALID_OPERATION; goto done; } ma_resource_manager_data_stream_fill_page(pDataStream, pJob->data.resourceManager.pageDataStream.pageIndex); done: c89atomic_fetch_add_32(&pDataStream->executionPointer, 1); return result; } static ma_result ma_job_process__resource_manager__seek_data_stream(ma_job* pJob) { ma_result result = MA_SUCCESS; ma_resource_manager* pResourceManager; ma_resource_manager_data_stream* pDataStream; MA_ASSERT(pJob != NULL); pDataStream = (ma_resource_manager_data_stream*)pJob->data.resourceManager.seekDataStream.pDataStream; MA_ASSERT(pDataStream != NULL); pResourceManager = pDataStream->pResourceManager; if (pJob->order != c89atomic_load_32(&pDataStream->executionPointer)) { return ma_resource_manager_post_job(pResourceManager, pJob); /* Out of order. */ } /* For streams the status should be MA_SUCCESS for this to do anything. */ if (ma_resource_manager_data_stream_result(pDataStream) != MA_SUCCESS || pDataStream->isDecoderInitialized == MA_FALSE) { result = MA_INVALID_OPERATION; goto done; } /* With seeking we just assume both pages are invalid and the relative frame cursor at position 0. This is basically exactly the same as loading, except instead of initializing the decoder, we seek to a frame. */ ma_decoder_seek_to_pcm_frame(&pDataStream->decoder, pJob->data.resourceManager.seekDataStream.frameIndex); /* After seeking we'll need to reload the pages. */ ma_resource_manager_data_stream_fill_pages(pDataStream); /* We need to let the public API know that we're done seeking. */ c89atomic_fetch_sub_32(&pDataStream->seekCounter, 1); done: c89atomic_fetch_add_32(&pDataStream->executionPointer, 1); return result; } MA_API ma_result ma_resource_manager_process_job(ma_resource_manager* pResourceManager, ma_job* pJob) { if (pResourceManager == NULL || pJob == NULL) { return MA_INVALID_ARGS; } return ma_job_process(pJob); } MA_API ma_result ma_resource_manager_process_next_job(ma_resource_manager* pResourceManager) { ma_result result; ma_job job; if (pResourceManager == NULL) { return MA_INVALID_ARGS; } /* This will return MA_CANCELLED if the next job is a quit job. */ result = ma_resource_manager_next_job(pResourceManager, &job); if (result != MA_SUCCESS) { return result; } return ma_job_process(&job); } #else /* We'll get here if the resource manager is being excluded from the build. We need to define the job processing callbacks as no-ops. */ static ma_result ma_job_process__resource_manager__load_data_buffer_node(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__free_data_buffer_node(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__page_data_buffer_node(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__load_data_buffer(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__free_data_buffer(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__load_data_stream(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__free_data_stream(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__page_data_stream(ma_job* pJob) { return ma_job_process__noop(pJob); } static ma_result ma_job_process__resource_manager__seek_data_stream(ma_job* pJob) { return ma_job_process__noop(pJob); } #endif /* MA_NO_RESOURCE_MANAGER */ #ifndef MA_NO_NODE_GRAPH /* 10ms @ 48K = 480. Must never exceed 65535. */ #ifndef MA_DEFAULT_NODE_CACHE_CAP_IN_FRAMES_PER_BUS #define MA_DEFAULT_NODE_CACHE_CAP_IN_FRAMES_PER_BUS 480 #endif static ma_result ma_node_read_pcm_frames(ma_node* pNode, ma_uint32 outputBusIndex, float* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead, ma_uint64 globalTime); MA_API void ma_debug_fill_pcm_frames_with_sine_wave(float* pFramesOut, ma_uint32 frameCount, ma_format format, ma_uint32 channels, ma_uint32 sampleRate) { #ifndef MA_NO_GENERATION { ma_waveform_config waveformConfig; ma_waveform waveform; waveformConfig = ma_waveform_config_init(format, channels, sampleRate, ma_waveform_type_sine, 1.0, 400); ma_waveform_init(&waveformConfig, &waveform); ma_waveform_read_pcm_frames(&waveform, pFramesOut, frameCount, NULL); } #else { (void)pFramesOut; (void)frameCount; (void)format; (void)channels; (void)sampleRate; #if defined(MA_DEBUG_OUTPUT) { #if _MSC_VER #pragma message ("ma_debug_fill_pcm_frames_with_sine_wave() will do nothing because MA_NO_GENERATION is enabled.") #endif } #endif } #endif } static ma_result ma_mix_pcm_frames_f32(float* pDst, const float* pSrc, ma_uint64 frameCount, ma_uint32 channels, float volume) { ma_uint64 iSample; ma_uint64 sampleCount; if (pDst == NULL || pSrc == NULL || channels == 0) { return MA_INVALID_ARGS; } if (volume == 0) { return MA_SUCCESS; /* No changes if the volume is 0. */ } sampleCount = frameCount * channels; if (volume == 1) { for (iSample = 0; iSample < sampleCount; iSample += 1) { pDst[iSample] += pSrc[iSample]; } } else { for (iSample = 0; iSample < sampleCount; iSample += 1) { pDst[iSample] += ma_apply_volume_unclipped_f32(pSrc[iSample], volume); } } return MA_SUCCESS; } MA_API ma_node_graph_config ma_node_graph_config_init(ma_uint32 channels) { ma_node_graph_config config; MA_ZERO_OBJECT(&config); config.channels = channels; config.nodeCacheCapInFrames = MA_DEFAULT_NODE_CACHE_CAP_IN_FRAMES_PER_BUS; return config; } static void ma_node_graph_set_is_reading(ma_node_graph* pNodeGraph, ma_bool32 isReading) { MA_ASSERT(pNodeGraph != NULL); c89atomic_exchange_32(&pNodeGraph->isReading, isReading); } #if 0 static ma_bool32 ma_node_graph_is_reading(ma_node_graph* pNodeGraph) { MA_ASSERT(pNodeGraph != NULL); return c89atomic_load_32(&pNodeGraph->isReading); } #endif static void ma_node_graph_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_node_graph* pNodeGraph = (ma_node_graph*)pNode; ma_uint64 framesRead; ma_node_graph_read_pcm_frames(pNodeGraph, ppFramesOut[0], *pFrameCountOut, &framesRead); *pFrameCountOut = (ma_uint32)framesRead; /* Safe cast. */ (void)ppFramesIn; (void)pFrameCountIn; } static ma_node_vtable g_node_graph_node_vtable = { ma_node_graph_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 0, /* 0 input buses. */ 1, /* 1 output bus. */ 0 /* Flags. */ }; static void ma_node_graph_endpoint_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { MA_ASSERT(pNode != NULL); MA_ASSERT(ma_node_get_input_bus_count(pNode) == 1); MA_ASSERT(ma_node_get_output_bus_count(pNode) == 1); /* Input channel count needs to be the same as the output channel count. */ MA_ASSERT(ma_node_get_input_channels(pNode, 0) == ma_node_get_output_channels(pNode, 0)); /* We don't need to do anything here because it's a passthrough. */ (void)pNode; (void)ppFramesIn; (void)pFrameCountIn; (void)ppFramesOut; (void)pFrameCountOut; #if 0 /* The data has already been mixed. We just need to move it to the output buffer. */ if (ppFramesIn != NULL) { ma_copy_pcm_frames(ppFramesOut[0], ppFramesIn[0], *pFrameCountOut, ma_format_f32, ma_node_get_output_channels(pNode, 0)); } #endif } static ma_node_vtable g_node_graph_endpoint_vtable = { ma_node_graph_endpoint_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* 1 input bus. */ 1, /* 1 output bus. */ MA_NODE_FLAG_PASSTHROUGH /* Flags. The endpoint is a passthrough. */ }; MA_API ma_result ma_node_graph_init(const ma_node_graph_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_node_graph* pNodeGraph) { ma_result result; ma_node_config baseConfig; ma_node_config endpointConfig; if (pNodeGraph == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNodeGraph); pNodeGraph->nodeCacheCapInFrames = pConfig->nodeCacheCapInFrames; if (pNodeGraph->nodeCacheCapInFrames == 0) { pNodeGraph->nodeCacheCapInFrames = MA_DEFAULT_NODE_CACHE_CAP_IN_FRAMES_PER_BUS; } /* Base node so we can use the node graph as a node into another graph. */ baseConfig = ma_node_config_init(); baseConfig.vtable = &g_node_graph_node_vtable; baseConfig.pOutputChannels = &pConfig->channels; result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pNodeGraph->base); if (result != MA_SUCCESS) { return result; } /* Endpoint. */ endpointConfig = ma_node_config_init(); endpointConfig.vtable = &g_node_graph_endpoint_vtable; endpointConfig.pInputChannels = &pConfig->channels; endpointConfig.pOutputChannels = &pConfig->channels; result = ma_node_init(pNodeGraph, &endpointConfig, pAllocationCallbacks, &pNodeGraph->endpoint); if (result != MA_SUCCESS) { ma_node_uninit(&pNodeGraph->base, pAllocationCallbacks); return result; } return MA_SUCCESS; } MA_API void ma_node_graph_uninit(ma_node_graph* pNodeGraph, const ma_allocation_callbacks* pAllocationCallbacks) { if (pNodeGraph == NULL) { return; } ma_node_uninit(&pNodeGraph->endpoint, pAllocationCallbacks); } MA_API ma_node* ma_node_graph_get_endpoint(ma_node_graph* pNodeGraph) { if (pNodeGraph == NULL) { return NULL; } return &pNodeGraph->endpoint; } MA_API ma_result ma_node_graph_read_pcm_frames(ma_node_graph* pNodeGraph, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { ma_result result = MA_SUCCESS; ma_uint64 totalFramesRead; ma_uint32 channels; if (pFramesRead != NULL) { *pFramesRead = 0; /* Safety. */ } if (pNodeGraph == NULL) { return MA_INVALID_ARGS; } channels = ma_node_get_output_channels(&pNodeGraph->endpoint, 0); /* We'll be nice and try to do a full read of all frameCount frames. */ totalFramesRead = 0; while (totalFramesRead < frameCount) { ma_uint32 framesJustRead; ma_uint64 framesToRead = frameCount - totalFramesRead; if (framesToRead > 0xFFFFFFFF) { framesToRead = 0xFFFFFFFF; } ma_node_graph_set_is_reading(pNodeGraph, MA_TRUE); { result = ma_node_read_pcm_frames(&pNodeGraph->endpoint, 0, (float*)ma_offset_pcm_frames_ptr(pFramesOut, totalFramesRead, ma_format_f32, channels), (ma_uint32)framesToRead, &framesJustRead, ma_node_get_time(&pNodeGraph->endpoint)); } ma_node_graph_set_is_reading(pNodeGraph, MA_FALSE); totalFramesRead += framesJustRead; if (result != MA_SUCCESS) { break; } /* Abort if we weren't able to read any frames or else we risk getting stuck in a loop. */ if (framesJustRead == 0) { break; } } /* Let's go ahead and silence any leftover frames just for some added safety to ensure the caller doesn't try emitting garbage out of the speakers. */ if (totalFramesRead < frameCount) { ma_silence_pcm_frames(ma_offset_pcm_frames_ptr(pFramesOut, totalFramesRead, ma_format_f32, channels), (frameCount - totalFramesRead), ma_format_f32, channels); } if (pFramesRead != NULL) { *pFramesRead = totalFramesRead; } return result; } MA_API ma_uint32 ma_node_graph_get_channels(const ma_node_graph* pNodeGraph) { if (pNodeGraph == NULL) { return 0; } return ma_node_get_output_channels(&pNodeGraph->endpoint, 0); } MA_API ma_uint64 ma_node_graph_get_time(const ma_node_graph* pNodeGraph) { if (pNodeGraph == NULL) { return 0; } return ma_node_get_time(&pNodeGraph->endpoint); /* Global time is just the local time of the endpoint. */ } MA_API ma_result ma_node_graph_set_time(ma_node_graph* pNodeGraph, ma_uint64 globalTime) { if (pNodeGraph == NULL) { return MA_INVALID_ARGS; } return ma_node_set_time(&pNodeGraph->endpoint, globalTime); /* Global time is just the local time of the endpoint. */ } #define MA_NODE_OUTPUT_BUS_FLAG_HAS_READ 0x01 /* Whether or not this bus ready to read more data. Only used on nodes with multiple output buses. */ static ma_result ma_node_output_bus_init(ma_node* pNode, ma_uint32 outputBusIndex, ma_uint32 channels, ma_node_output_bus* pOutputBus) { MA_ASSERT(pOutputBus != NULL); MA_ASSERT(outputBusIndex < MA_MAX_NODE_BUS_COUNT); MA_ASSERT(outputBusIndex < ma_node_get_output_bus_count(pNode)); MA_ASSERT(channels < 256); MA_ZERO_OBJECT(pOutputBus); if (channels == 0) { return MA_INVALID_ARGS; } pOutputBus->pNode = pNode; pOutputBus->outputBusIndex = (ma_uint8)outputBusIndex; pOutputBus->channels = (ma_uint8)channels; pOutputBus->flags = MA_NODE_OUTPUT_BUS_FLAG_HAS_READ; /* <-- Important that this flag is set by default. */ pOutputBus->volume = 1; return MA_SUCCESS; } static void ma_node_output_bus_lock(ma_node_output_bus* pOutputBus) { ma_spinlock_lock(&pOutputBus->lock); } static void ma_node_output_bus_unlock(ma_node_output_bus* pOutputBus) { ma_spinlock_unlock(&pOutputBus->lock); } static ma_uint32 ma_node_output_bus_get_channels(const ma_node_output_bus* pOutputBus) { return pOutputBus->channels; } static void ma_node_output_bus_set_has_read(ma_node_output_bus* pOutputBus, ma_bool32 hasRead) { if (hasRead) { c89atomic_fetch_or_32(&pOutputBus->flags, MA_NODE_OUTPUT_BUS_FLAG_HAS_READ); } else { c89atomic_fetch_and_32(&pOutputBus->flags, (ma_uint32)~MA_NODE_OUTPUT_BUS_FLAG_HAS_READ); } } static ma_bool32 ma_node_output_bus_has_read(ma_node_output_bus* pOutputBus) { return (c89atomic_load_32(&pOutputBus->flags) & MA_NODE_OUTPUT_BUS_FLAG_HAS_READ) != 0; } static void ma_node_output_bus_set_is_attached(ma_node_output_bus* pOutputBus, ma_bool32 isAttached) { c89atomic_exchange_32(&pOutputBus->isAttached, isAttached); } static ma_bool32 ma_node_output_bus_is_attached(ma_node_output_bus* pOutputBus) { return c89atomic_load_32(&pOutputBus->isAttached); } static ma_result ma_node_output_bus_set_volume(ma_node_output_bus* pOutputBus, float volume) { MA_ASSERT(pOutputBus != NULL); if (volume < 0.0f) { volume = 0.0f; } c89atomic_exchange_f32(&pOutputBus->volume, volume); return MA_SUCCESS; } static float ma_node_output_bus_get_volume(const ma_node_output_bus* pOutputBus) { return c89atomic_load_f32((float*)&pOutputBus->volume); } static ma_result ma_node_input_bus_init(ma_uint32 channels, ma_node_input_bus* pInputBus) { MA_ASSERT(pInputBus != NULL); MA_ASSERT(channels < 256); MA_ZERO_OBJECT(pInputBus); if (channels == 0) { return MA_INVALID_ARGS; } pInputBus->channels = (ma_uint8)channels; return MA_SUCCESS; } static void ma_node_input_bus_lock(ma_node_input_bus* pInputBus) { MA_ASSERT(pInputBus != NULL); ma_spinlock_lock(&pInputBus->lock); } static void ma_node_input_bus_unlock(ma_node_input_bus* pInputBus) { MA_ASSERT(pInputBus != NULL); ma_spinlock_unlock(&pInputBus->lock); } static void ma_node_input_bus_next_begin(ma_node_input_bus* pInputBus) { c89atomic_fetch_add_32(&pInputBus->nextCounter, 1); } static void ma_node_input_bus_next_end(ma_node_input_bus* pInputBus) { c89atomic_fetch_sub_32(&pInputBus->nextCounter, 1); } static ma_uint32 ma_node_input_bus_get_next_counter(ma_node_input_bus* pInputBus) { return c89atomic_load_32(&pInputBus->nextCounter); } static ma_uint32 ma_node_input_bus_get_channels(const ma_node_input_bus* pInputBus) { return pInputBus->channels; } static void ma_node_input_bus_detach__no_output_bus_lock(ma_node_input_bus* pInputBus, ma_node_output_bus* pOutputBus) { MA_ASSERT(pInputBus != NULL); MA_ASSERT(pOutputBus != NULL); /* Mark the output bus as detached first. This will prevent future iterations on the audio thread from iterating this output bus. */ ma_node_output_bus_set_is_attached(pOutputBus, MA_FALSE); /* We cannot use the output bus lock here since it'll be getting used at a higher level, but we do still need to use the input bus lock since we'll be updating pointers on two different output buses. The same rules apply here as the attaching case. Although we're using a lock here, we're *not* using a lock when iterating over the list in the audio thread. We therefore need to craft this in a way such that the iteration on the audio thread doesn't break. The the first thing to do is swap out the "next" pointer of the previous output bus with the new "next" output bus. This is the operation that matters for iteration on the audio thread. After that, the previous pointer on the new "next" pointer needs to be updated, after which point the linked list will be in a good state. */ ma_node_input_bus_lock(pInputBus); { ma_node_output_bus* pOldPrev = (ma_node_output_bus*)c89atomic_load_ptr(&pOutputBus->pPrev); ma_node_output_bus* pOldNext = (ma_node_output_bus*)c89atomic_load_ptr(&pOutputBus->pNext); if (pOldPrev != NULL) { c89atomic_exchange_ptr(&pOldPrev->pNext, pOldNext); /* <-- This is where the output bus is detached from the list. */ } if (pOldNext != NULL) { c89atomic_exchange_ptr(&pOldNext->pPrev, pOldPrev); /* <-- This is required for detachment. */ } } ma_node_input_bus_unlock(pInputBus); /* At this point the output bus is detached and the linked list is completely unaware of it. Reset some data for safety. */ c89atomic_exchange_ptr(&pOutputBus->pNext, NULL); /* Using atomic exchanges here, mainly for the benefit of analysis tools which don't always recognize spinlocks. */ c89atomic_exchange_ptr(&pOutputBus->pPrev, NULL); /* As above. */ pOutputBus->pInputNode = NULL; pOutputBus->inputNodeInputBusIndex = 0; /* For thread-safety reasons, we don't want to be returning from this straight away. We need to wait for the audio thread to finish with the output bus. There's two things we need to wait for. The first is the part that selects the next output bus in the list, and the other is the part that reads from the output bus. Basically all we're doing is waiting for the input bus to stop referencing the output bus. We're doing this part last because we want the section above to run while the audio thread is finishing up with the output bus, just for efficiency reasons. We marked the output bus as detached right at the top of this function which is going to prevent the audio thread from iterating the output bus again. */ /* Part 1: Wait for the current iteration to complete. */ while (ma_node_input_bus_get_next_counter(pInputBus) > 0) { ma_yield(); } /* Part 2: Wait for any reads to complete. */ while (c89atomic_load_32(&pOutputBus->refCount) > 0) { ma_yield(); } /* At this point we're done detaching and we can be guaranteed that the audio thread is not going to attempt to reference this output bus again (until attached again). */ } #if 0 /* Not used at the moment, but leaving here in case I need it later. */ static void ma_node_input_bus_detach(ma_node_input_bus* pInputBus, ma_node_output_bus* pOutputBus) { MA_ASSERT(pInputBus != NULL); MA_ASSERT(pOutputBus != NULL); ma_node_output_bus_lock(pOutputBus); { ma_node_input_bus_detach__no_output_bus_lock(pInputBus, pOutputBus); } ma_node_output_bus_unlock(pOutputBus); } #endif static void ma_node_input_bus_attach(ma_node_input_bus* pInputBus, ma_node_output_bus* pOutputBus, ma_node* pNewInputNode, ma_uint32 inputNodeInputBusIndex) { MA_ASSERT(pInputBus != NULL); MA_ASSERT(pOutputBus != NULL); ma_node_output_bus_lock(pOutputBus); { ma_node_output_bus* pOldInputNode = (ma_node_output_bus*)c89atomic_load_ptr(&pOutputBus->pInputNode); /* Detach from any existing attachment first if necessary. */ if (pOldInputNode != NULL) { ma_node_input_bus_detach__no_output_bus_lock(pInputBus, pOutputBus); } /* At this point we can be sure the output bus is not attached to anything. The linked list in the old input bus has been updated so that pOutputBus will not get iterated again. */ pOutputBus->pInputNode = pNewInputNode; /* No need for an atomic assignment here because modification of this variable always happens within a lock. */ pOutputBus->inputNodeInputBusIndex = (ma_uint8)inputNodeInputBusIndex; /* As above. */ /* Now we need to attach the output bus to the linked list. This involves updating two pointers on two different output buses so I'm going to go ahead and keep this simple and just use a lock. There are ways to do this without a lock, but it's just too hard to maintain for it's value. Although we're locking here, it's important to remember that we're *not* locking when iterating and reading audio data since that'll be running on the audio thread. As a result we need to be careful how we craft this so that we don't break iteration. What we're going to do is always attach the new item so that it becomes the first item in the list. That way, as we're iterating we won't break any links in the list and iteration will continue safely. The detaching case will also be crafted in a way as to not break list iteration. It's important to remember to use atomic exchanges here since no locking is happening on the audio thread during iteration. */ ma_node_input_bus_lock(pInputBus); { ma_node_output_bus* pNewPrev = &pInputBus->head; ma_node_output_bus* pNewNext = (ma_node_output_bus*)c89atomic_load_ptr(&pInputBus->head.pNext); /* Update the local output bus. */ c89atomic_exchange_ptr(&pOutputBus->pPrev, pNewPrev); c89atomic_exchange_ptr(&pOutputBus->pNext, pNewNext); /* Update the other output buses to point back to the local output bus. */ c89atomic_exchange_ptr(&pInputBus->head.pNext, pOutputBus); /* <-- This is where the output bus is actually attached to the input bus. */ /* Do the previous pointer last. This is only used for detachment. */ if (pNewNext != NULL) { c89atomic_exchange_ptr(&pNewNext->pPrev, pOutputBus); } } ma_node_input_bus_unlock(pInputBus); /* Mark the node as attached last. This is used to controlling whether or the output bus will be iterated on the audio thread. Mainly required for detachment purposes. */ ma_node_output_bus_set_is_attached(pOutputBus, MA_TRUE); } ma_node_output_bus_unlock(pOutputBus); } static ma_node_output_bus* ma_node_input_bus_next(ma_node_input_bus* pInputBus, ma_node_output_bus* pOutputBus) { ma_node_output_bus* pNext; MA_ASSERT(pInputBus != NULL); if (pOutputBus == NULL) { return NULL; } ma_node_input_bus_next_begin(pInputBus); { pNext = pOutputBus; for (;;) { pNext = (ma_node_output_bus*)c89atomic_load_ptr(&pNext->pNext); if (pNext == NULL) { break; /* Reached the end. */ } if (ma_node_output_bus_is_attached(pNext) == MA_FALSE) { continue; /* The node is not attached. Keep checking. */ } /* The next node has been selected. */ break; } /* We need to increment the reference count of the selected node. */ if (pNext != NULL) { c89atomic_fetch_add_32(&pNext->refCount, 1); } /* The previous node is no longer being referenced. */ c89atomic_fetch_sub_32(&pOutputBus->refCount, 1); } ma_node_input_bus_next_end(pInputBus); return pNext; } static ma_node_output_bus* ma_node_input_bus_first(ma_node_input_bus* pInputBus) { return ma_node_input_bus_next(pInputBus, &pInputBus->head); } static ma_result ma_node_input_bus_read_pcm_frames(ma_node* pInputNode, ma_node_input_bus* pInputBus, float* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead, ma_uint64 globalTime) { ma_result result = MA_SUCCESS; ma_node_output_bus* pOutputBus; ma_node_output_bus* pFirst; ma_uint32 inputChannels; ma_bool32 doesOutputBufferHaveContent = MA_FALSE; /* This will be called from the audio thread which means we can't be doing any locking. Basically, this function will not perfom any locking, whereas attaching and detaching will, but crafted in such a way that we don't need to perform any locking here. The important thing to remember is to always iterate in a forward direction. In order to process any data we need to first read from all input buses. That's where this function comes in. This iterates over each of the attachments and accumulates/mixes them. We also convert the channels to the nodes output channel count before mixing. We want to do this channel conversion so that the caller of this function can invoke the processing callback without having to do it themselves. When we iterate over each of the attachments on the input bus, we need to read as much data as we can from each of them so that we don't end up with holes between each of the attachments. To do this, we need to read from each attachment in a loop and read as many frames as we can, up to `frameCount`. */ MA_ASSERT(pInputNode != NULL); MA_ASSERT(pFramesRead != NULL); /* pFramesRead is critical and must always be specified. On input it's undefined and on output it'll be set to the number of frames actually read. */ *pFramesRead = 0; /* Safety. */ inputChannels = ma_node_input_bus_get_channels(pInputBus); /* We need to be careful with how we call ma_node_input_bus_first() and ma_node_input_bus_next(). They are both critical to our lock-free thread-safety system. We can only call ma_node_input_bus_first() once per iteration, however we have an optimization to checks whether or not it's the first item in the list. We therefore need to store a pointer to the first item rather than repeatedly calling ma_node_input_bus_first(). It's safe to keep hold of this pointer, so long as we don't dereference it after calling ma_node_input_bus_next(), which we won't be. */ pFirst = ma_node_input_bus_first(pInputBus); if (pFirst == NULL) { return MA_SUCCESS; /* No attachments. Read nothing. */ } for (pOutputBus = pFirst; pOutputBus != NULL; pOutputBus = ma_node_input_bus_next(pInputBus, pOutputBus)) { ma_uint32 framesProcessed = 0; ma_bool32 isSilentOutput = MA_FALSE; MA_ASSERT(pOutputBus->pNode != NULL); isSilentOutput = (((ma_node_base*)pOutputBus->pNode)->vtable->flags & MA_NODE_FLAG_SILENT_OUTPUT) != 0; if (pFramesOut != NULL) { /* Read. */ float temp[MA_DATA_CONVERTER_STACK_BUFFER_SIZE / sizeof(float)]; ma_uint32 tempCapInFrames = ma_countof(temp) / inputChannels; while (framesProcessed < frameCount) { float* pRunningFramesOut; ma_uint32 framesToRead; ma_uint32 framesJustRead; framesToRead = frameCount - framesProcessed; if (framesToRead > tempCapInFrames) { framesToRead = tempCapInFrames; } pRunningFramesOut = ma_offset_pcm_frames_ptr_f32(pFramesOut, framesProcessed, inputChannels); if (doesOutputBufferHaveContent == MA_FALSE) { /* Fast path. First attachment. We just read straight into the output buffer (no mixing required). */ result = ma_node_read_pcm_frames(pOutputBus->pNode, pOutputBus->outputBusIndex, pRunningFramesOut, framesToRead, &framesJustRead, globalTime + framesProcessed); } else { /* Slow path. Not the first attachment. Mixing required. */ result = ma_node_read_pcm_frames(pOutputBus->pNode, pOutputBus->outputBusIndex, temp, framesToRead, &framesJustRead, globalTime + framesProcessed); if (result == MA_SUCCESS || result == MA_AT_END) { if (isSilentOutput == MA_FALSE) { /* Don't mix if the node outputs silence. */ ma_mix_pcm_frames_f32(pRunningFramesOut, temp, framesJustRead, inputChannels, /*volume*/1); } } } framesProcessed += framesJustRead; /* If we reached the end or otherwise failed to read any data we need to finish up with this output node. */ if (result != MA_SUCCESS) { break; } /* If we didn't read anything, abort so we don't get stuck in a loop. */ if (framesJustRead == 0) { break; } } /* If it's the first attachment we didn't do any mixing. Any leftover samples need to be silenced. */ if (pOutputBus == pFirst && framesProcessed < frameCount) { ma_silence_pcm_frames(ma_offset_pcm_frames_ptr(pFramesOut, framesProcessed, ma_format_f32, inputChannels), (frameCount - framesProcessed), ma_format_f32, inputChannels); } if (isSilentOutput == MA_FALSE) { doesOutputBufferHaveContent = MA_TRUE; } } else { /* Seek. */ ma_node_read_pcm_frames(pOutputBus->pNode, pOutputBus->outputBusIndex, NULL, frameCount, &framesProcessed, globalTime); } } /* If we didn't output anything, output silence. */ if (doesOutputBufferHaveContent == MA_FALSE && pFramesOut != NULL) { ma_silence_pcm_frames(pFramesOut, frameCount, ma_format_f32, inputChannels); } /* In this path we always "process" the entire amount. */ *pFramesRead = frameCount; return result; } MA_API ma_node_config ma_node_config_init(void) { ma_node_config config; MA_ZERO_OBJECT(&config); config.initialState = ma_node_state_started; /* Nodes are started by default. */ config.inputBusCount = MA_NODE_BUS_COUNT_UNKNOWN; config.outputBusCount = MA_NODE_BUS_COUNT_UNKNOWN; return config; } static ma_result ma_node_detach_full(ma_node* pNode); static float* ma_node_get_cached_input_ptr(ma_node* pNode, ma_uint32 inputBusIndex) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_uint32 iInputBus; float* pBasePtr; MA_ASSERT(pNodeBase != NULL); /* Input data is stored at the front of the buffer. */ pBasePtr = pNodeBase->pCachedData; for (iInputBus = 0; iInputBus < inputBusIndex; iInputBus += 1) { pBasePtr += pNodeBase->cachedDataCapInFramesPerBus * ma_node_input_bus_get_channels(&pNodeBase->pInputBuses[iInputBus]); } return pBasePtr; } static float* ma_node_get_cached_output_ptr(ma_node* pNode, ma_uint32 outputBusIndex) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_uint32 iInputBus; ma_uint32 iOutputBus; float* pBasePtr; MA_ASSERT(pNodeBase != NULL); /* Cached output data starts after the input data. */ pBasePtr = pNodeBase->pCachedData; for (iInputBus = 0; iInputBus < ma_node_get_input_bus_count(pNodeBase); iInputBus += 1) { pBasePtr += pNodeBase->cachedDataCapInFramesPerBus * ma_node_input_bus_get_channels(&pNodeBase->pInputBuses[iInputBus]); } for (iOutputBus = 0; iOutputBus < outputBusIndex; iOutputBus += 1) { pBasePtr += pNodeBase->cachedDataCapInFramesPerBus * ma_node_output_bus_get_channels(&pNodeBase->pOutputBuses[iOutputBus]); } return pBasePtr; } typedef struct { size_t sizeInBytes; size_t inputBusOffset; size_t outputBusOffset; size_t cachedDataOffset; ma_uint32 inputBusCount; /* So it doesn't have to be calculated twice. */ ma_uint32 outputBusCount; /* So it doesn't have to be calculated twice. */ } ma_node_heap_layout; static ma_result ma_node_translate_bus_counts(const ma_node_config* pConfig, ma_uint32* pInputBusCount, ma_uint32* pOutputBusCount) { ma_uint32 inputBusCount; ma_uint32 outputBusCount; MA_ASSERT(pConfig != NULL); MA_ASSERT(pInputBusCount != NULL); MA_ASSERT(pOutputBusCount != NULL); /* Bus counts are determined by the vtable, unless they're set to `MA_NODE_BUS_COUNT_UNKNWON`, in which case they're taken from the config. */ if (pConfig->vtable->inputBusCount == MA_NODE_BUS_COUNT_UNKNOWN) { inputBusCount = pConfig->inputBusCount; } else { inputBusCount = pConfig->vtable->inputBusCount; if (pConfig->inputBusCount != MA_NODE_BUS_COUNT_UNKNOWN && pConfig->inputBusCount != pConfig->vtable->inputBusCount) { return MA_INVALID_ARGS; /* Invalid configuration. You must not specify a conflicting bus count between the node's config and the vtable. */ } } if (pConfig->vtable->outputBusCount == MA_NODE_BUS_COUNT_UNKNOWN) { outputBusCount = pConfig->outputBusCount; } else { outputBusCount = pConfig->vtable->outputBusCount; if (pConfig->outputBusCount != MA_NODE_BUS_COUNT_UNKNOWN && pConfig->outputBusCount != pConfig->vtable->outputBusCount) { return MA_INVALID_ARGS; /* Invalid configuration. You must not specify a conflicting bus count between the node's config and the vtable. */ } } /* Bus counts must be within limits. */ if (inputBusCount > MA_MAX_NODE_BUS_COUNT || outputBusCount > MA_MAX_NODE_BUS_COUNT) { return MA_INVALID_ARGS; } /* We must have channel counts for each bus. */ if ((inputBusCount > 0 && pConfig->pInputChannels == NULL) || (outputBusCount > 0 && pConfig->pOutputChannels == NULL)) { return MA_INVALID_ARGS; /* You must specify channel counts for each input and output bus. */ } /* Some special rules for passthrough nodes. */ if ((pConfig->vtable->flags & MA_NODE_FLAG_PASSTHROUGH) != 0) { if (pConfig->vtable->inputBusCount != 1 || pConfig->vtable->outputBusCount != 1) { return MA_INVALID_ARGS; /* Passthrough nodes must have exactly 1 input bus and 1 output bus. */ } if (pConfig->pInputChannels[0] != pConfig->pOutputChannels[0]) { return MA_INVALID_ARGS; /* Passthrough nodes must have the same number of channels between input and output nodes. */ } } *pInputBusCount = inputBusCount; *pOutputBusCount = outputBusCount; return MA_SUCCESS; } static ma_result ma_node_get_heap_layout(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, ma_node_heap_layout* pHeapLayout) { ma_result result; ma_uint32 inputBusCount; ma_uint32 outputBusCount; MA_ASSERT(pHeapLayout != NULL); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL || pConfig->vtable == NULL || pConfig->vtable->onProcess == NULL) { return MA_INVALID_ARGS; } result = ma_node_translate_bus_counts(pConfig, &inputBusCount, &outputBusCount); if (result != MA_SUCCESS) { return result; } pHeapLayout->sizeInBytes = 0; /* Input buses. */ if (inputBusCount > MA_MAX_NODE_LOCAL_BUS_COUNT) { pHeapLayout->inputBusOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(sizeof(ma_node_input_bus) * inputBusCount); } else { pHeapLayout->inputBusOffset = MA_SIZE_MAX; /* MA_SIZE_MAX indicates that no heap allocation is required for the input bus. */ } /* Output buses. */ if (outputBusCount > MA_MAX_NODE_LOCAL_BUS_COUNT) { pHeapLayout->outputBusOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(sizeof(ma_node_output_bus) * outputBusCount); } else { pHeapLayout->outputBusOffset = MA_SIZE_MAX; } /* Cached audio data. We need to allocate memory for a caching both input and output data. We have an optimization where no caching is necessary for specific conditions: - The node has 0 inputs and 1 output. When a node meets the above conditions, no cache is allocated. The size choice for this buffer is a little bit finicky. We don't want to be too wasteful by allocating too much, but at the same time we want it be large enough so that enough frames can be processed for each call to ma_node_read_pcm_frames() so that it keeps things efficient. For now I'm going with 10ms @ 48K which is 480 frames per bus. This is configurable at compile time. It might also be worth investigating whether or not this can be configured at run time. */ if (inputBusCount == 0 && outputBusCount == 1) { /* Fast path. No cache needed. */ pHeapLayout->cachedDataOffset = MA_SIZE_MAX; } else { /* Slow path. Cache needed. */ size_t cachedDataSizeInBytes = 0; ma_uint32 iBus; for (iBus = 0; iBus < inputBusCount; iBus += 1) { cachedDataSizeInBytes += pNodeGraph->nodeCacheCapInFrames * ma_get_bytes_per_frame(ma_format_f32, pConfig->pInputChannels[iBus]); } for (iBus = 0; iBus < outputBusCount; iBus += 1) { cachedDataSizeInBytes += pNodeGraph->nodeCacheCapInFrames * ma_get_bytes_per_frame(ma_format_f32, pConfig->pOutputChannels[iBus]); } pHeapLayout->cachedDataOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(cachedDataSizeInBytes); } /* Not technically part of the heap, but we can output the input and output bus counts so we can avoid a redundant call to ma_node_translate_bus_counts(). */ pHeapLayout->inputBusCount = inputBusCount; pHeapLayout->outputBusCount = outputBusCount; /* Make sure allocation size is aligned. */ pHeapLayout->sizeInBytes = ma_align_64(pHeapLayout->sizeInBytes); return MA_SUCCESS; } MA_API ma_result ma_node_get_heap_size(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_node_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_node_get_heap_layout(pNodeGraph, pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_node_init_preallocated(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, void* pHeap, ma_node* pNode) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_result result; ma_node_heap_layout heapLayout; ma_uint32 iInputBus; ma_uint32 iOutputBus; if (pNodeBase == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNodeBase); result = ma_node_get_heap_layout(pNodeGraph, pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } pNodeBase->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pNodeBase->pNodeGraph = pNodeGraph; pNodeBase->vtable = pConfig->vtable; pNodeBase->state = pConfig->initialState; pNodeBase->stateTimes[ma_node_state_started] = 0; pNodeBase->stateTimes[ma_node_state_stopped] = (ma_uint64)(ma_int64)-1; /* Weird casting for VC6 compatibility. */ pNodeBase->inputBusCount = heapLayout.inputBusCount; pNodeBase->outputBusCount = heapLayout.outputBusCount; if (heapLayout.inputBusOffset != MA_SIZE_MAX) { pNodeBase->pInputBuses = (ma_node_input_bus*)ma_offset_ptr(pHeap, heapLayout.inputBusOffset); } else { pNodeBase->pInputBuses = pNodeBase->_inputBuses; } if (heapLayout.outputBusOffset != MA_SIZE_MAX) { pNodeBase->pOutputBuses = (ma_node_output_bus*)ma_offset_ptr(pHeap, heapLayout.inputBusOffset); } else { pNodeBase->pOutputBuses = pNodeBase->_outputBuses; } if (heapLayout.cachedDataOffset != MA_SIZE_MAX) { pNodeBase->pCachedData = (float*)ma_offset_ptr(pHeap, heapLayout.cachedDataOffset); pNodeBase->cachedDataCapInFramesPerBus = pNodeGraph->nodeCacheCapInFrames; } else { pNodeBase->pCachedData = NULL; } /* We need to run an initialization step for each input and output bus. */ for (iInputBus = 0; iInputBus < ma_node_get_input_bus_count(pNodeBase); iInputBus += 1) { result = ma_node_input_bus_init(pConfig->pInputChannels[iInputBus], &pNodeBase->pInputBuses[iInputBus]); if (result != MA_SUCCESS) { return result; } } for (iOutputBus = 0; iOutputBus < ma_node_get_output_bus_count(pNodeBase); iOutputBus += 1) { result = ma_node_output_bus_init(pNodeBase, iOutputBus, pConfig->pOutputChannels[iOutputBus], &pNodeBase->pOutputBuses[iOutputBus]); if (result != MA_SUCCESS) { return result; } } /* The cached data needs to be initialized to silence (or a sine wave tone if we're debugging). */ if (pNodeBase->pCachedData != NULL) { ma_uint32 iBus; #if 1 /* Toggle this between 0 and 1 to turn debugging on or off. 1 = fill with a sine wave for debugging; 0 = fill with silence. */ /* For safety we'll go ahead and default the buffer to silence. */ for (iBus = 0; iBus < ma_node_get_input_bus_count(pNodeBase); iBus += 1) { ma_silence_pcm_frames(ma_node_get_cached_input_ptr(pNode, iBus), pNodeBase->cachedDataCapInFramesPerBus, ma_format_f32, ma_node_input_bus_get_channels(&pNodeBase->pInputBuses[iBus])); } for (iBus = 0; iBus < ma_node_get_output_bus_count(pNodeBase); iBus += 1) { ma_silence_pcm_frames(ma_node_get_cached_output_ptr(pNode, iBus), pNodeBase->cachedDataCapInFramesPerBus, ma_format_f32, ma_node_output_bus_get_channels(&pNodeBase->pOutputBuses[iBus])); } #else /* For debugging. Default to a sine wave. */ for (iBus = 0; iBus < ma_node_get_input_bus_count(pNodeBase); iBus += 1) { ma_debug_fill_pcm_frames_with_sine_wave(ma_node_get_cached_input_ptr(pNode, iBus), pNodeBase->cachedDataCapInFramesPerBus, ma_format_f32, ma_node_input_bus_get_channels(&pNodeBase->pInputBuses[iBus]), 48000); } for (iBus = 0; iBus < ma_node_get_output_bus_count(pNodeBase); iBus += 1) { ma_debug_fill_pcm_frames_with_sine_wave(ma_node_get_cached_output_ptr(pNode, iBus), pNodeBase->cachedDataCapInFramesPerBus, ma_format_f32, ma_node_output_bus_get_channels(&pNodeBase->pOutputBuses[iBus]), 48000); } #endif } return MA_SUCCESS; } MA_API ma_result ma_node_init(ma_node_graph* pNodeGraph, const ma_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_node* pNode) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_node_get_heap_size(pNodeGraph, pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_node_init_preallocated(pNodeGraph, pConfig, pHeap, pNode); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } ((ma_node_base*)pNode)->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_node_uninit(ma_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_node_base* pNodeBase = (ma_node_base*)pNode; if (pNodeBase == NULL) { return; } /* The first thing we need to do is fully detach the node. This will detach all inputs and outputs. We need to do this first because it will sever the connection with the node graph and allow us to complete uninitialization without needing to worry about thread-safety with the audio thread. The detachment process will wait for any local processing of the node to finish. */ ma_node_detach_full(pNode); /* At this point the node should be completely unreferenced by the node graph and we can finish up the uninitialization process without needing to worry about thread-safety. */ if (pNodeBase->_ownsHeap) { ma_free(pNodeBase->_pHeap, pAllocationCallbacks); } } MA_API ma_node_graph* ma_node_get_node_graph(const ma_node* pNode) { if (pNode == NULL) { return NULL; } return ((const ma_node_base*)pNode)->pNodeGraph; } MA_API ma_uint32 ma_node_get_input_bus_count(const ma_node* pNode) { if (pNode == NULL) { return 0; } return ((ma_node_base*)pNode)->inputBusCount; } MA_API ma_uint32 ma_node_get_output_bus_count(const ma_node* pNode) { if (pNode == NULL) { return 0; } return ((ma_node_base*)pNode)->outputBusCount; } MA_API ma_uint32 ma_node_get_input_channels(const ma_node* pNode, ma_uint32 inputBusIndex) { const ma_node_base* pNodeBase = (const ma_node_base*)pNode; if (pNode == NULL) { return 0; } if (inputBusIndex >= ma_node_get_input_bus_count(pNode)) { return 0; /* Invalid bus index. */ } return ma_node_input_bus_get_channels(&pNodeBase->pInputBuses[inputBusIndex]); } MA_API ma_uint32 ma_node_get_output_channels(const ma_node* pNode, ma_uint32 outputBusIndex) { const ma_node_base* pNodeBase = (const ma_node_base*)pNode; if (pNode == NULL) { return 0; } if (outputBusIndex >= ma_node_get_output_bus_count(pNode)) { return 0; /* Invalid bus index. */ } return ma_node_output_bus_get_channels(&pNodeBase->pOutputBuses[outputBusIndex]); } static ma_result ma_node_detach_full(ma_node* pNode) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_uint32 iInputBus; if (pNodeBase == NULL) { return MA_INVALID_ARGS; } /* Make sure the node is completely detached first. This will not return until the output bus is guaranteed to no longer be referenced by the audio thread. */ ma_node_detach_all_output_buses(pNode); /* At this point all output buses will have been detached from the graph and we can be guaranteed that none of it's input nodes will be getting processed by the graph. We can detach these without needing to worry about the audio thread touching them. */ for (iInputBus = 0; iInputBus < ma_node_get_input_bus_count(pNode); iInputBus += 1) { ma_node_input_bus* pInputBus; ma_node_output_bus* pOutputBus; pInputBus = &pNodeBase->pInputBuses[iInputBus]; /* This is important. We cannot be using ma_node_input_bus_first() or ma_node_input_bus_next(). Those functions are specifically for the audio thread. We'll instead just manually iterate using standard linked list logic. We don't need to worry about the audio thread referencing these because the step above severed the connection to the graph. */ for (pOutputBus = (ma_node_output_bus*)c89atomic_load_ptr(&pInputBus->head.pNext); pOutputBus != NULL; pOutputBus = (ma_node_output_bus*)c89atomic_load_ptr(&pOutputBus->pNext)) { ma_node_detach_output_bus(pOutputBus->pNode, pOutputBus->outputBusIndex); /* This won't do any waiting in practice and should be efficient. */ } } return MA_SUCCESS; } MA_API ma_result ma_node_detach_output_bus(ma_node* pNode, ma_uint32 outputBusIndex) { ma_result result = MA_SUCCESS; ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_node_base* pInputNodeBase; if (pNode == NULL) { return MA_INVALID_ARGS; } if (outputBusIndex >= ma_node_get_output_bus_count(pNode)) { return MA_INVALID_ARGS; /* Invalid output bus index. */ } /* We need to lock the output bus because we need to inspect the input node and grab it's input bus. */ ma_node_output_bus_lock(&pNodeBase->pOutputBuses[outputBusIndex]); { pInputNodeBase = (ma_node_base*)pNodeBase->pOutputBuses[outputBusIndex].pInputNode; if (pInputNodeBase != NULL) { ma_node_input_bus_detach__no_output_bus_lock(&pInputNodeBase->pInputBuses[pNodeBase->pOutputBuses[outputBusIndex].inputNodeInputBusIndex], &pNodeBase->pOutputBuses[outputBusIndex]); } } ma_node_output_bus_unlock(&pNodeBase->pOutputBuses[outputBusIndex]); return result; } MA_API ma_result ma_node_detach_all_output_buses(ma_node* pNode) { ma_uint32 iOutputBus; if (pNode == NULL) { return MA_INVALID_ARGS; } for (iOutputBus = 0; iOutputBus < ma_node_get_output_bus_count(pNode); iOutputBus += 1) { ma_node_detach_output_bus(pNode, iOutputBus); } return MA_SUCCESS; } MA_API ma_result ma_node_attach_output_bus(ma_node* pNode, ma_uint32 outputBusIndex, ma_node* pOtherNode, ma_uint32 otherNodeInputBusIndex) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_node_base* pOtherNodeBase = (ma_node_base*)pOtherNode; if (pNodeBase == NULL || pOtherNodeBase == NULL) { return MA_INVALID_ARGS; } if (pNodeBase == pOtherNodeBase) { return MA_INVALID_OPERATION; /* Cannot attach a node to itself. */ } if (outputBusIndex >= ma_node_get_output_bus_count(pNode) || otherNodeInputBusIndex >= ma_node_get_input_bus_count(pOtherNode)) { return MA_INVALID_OPERATION; /* Invalid bus index. */ } /* The output channel count of the output node must be the same as the input channel count of the input node. */ if (ma_node_get_output_channels(pNode, outputBusIndex) != ma_node_get_input_channels(pOtherNode, otherNodeInputBusIndex)) { return MA_INVALID_OPERATION; /* Channel count is incompatible. */ } /* This will deal with detaching if the output bus is already attached to something. */ ma_node_input_bus_attach(&pOtherNodeBase->pInputBuses[otherNodeInputBusIndex], &pNodeBase->pOutputBuses[outputBusIndex], pOtherNode, otherNodeInputBusIndex); return MA_SUCCESS; } MA_API ma_result ma_node_set_output_bus_volume(ma_node* pNode, ma_uint32 outputBusIndex, float volume) { ma_node_base* pNodeBase = (ma_node_base*)pNode; if (pNodeBase == NULL) { return MA_INVALID_ARGS; } if (outputBusIndex >= ma_node_get_output_bus_count(pNode)) { return MA_INVALID_ARGS; /* Invalid bus index. */ } return ma_node_output_bus_set_volume(&pNodeBase->pOutputBuses[outputBusIndex], volume); } MA_API float ma_node_get_output_bus_volume(const ma_node* pNode, ma_uint32 outputBusIndex) { const ma_node_base* pNodeBase = (const ma_node_base*)pNode; if (pNodeBase == NULL) { return 0; } if (outputBusIndex >= ma_node_get_output_bus_count(pNode)) { return 0; /* Invalid bus index. */ } return ma_node_output_bus_get_volume(&pNodeBase->pOutputBuses[outputBusIndex]); } MA_API ma_result ma_node_set_state(ma_node* pNode, ma_node_state state) { ma_node_base* pNodeBase = (ma_node_base*)pNode; if (pNodeBase == NULL) { return MA_INVALID_ARGS; } c89atomic_exchange_i32(&pNodeBase->state, state); return MA_SUCCESS; } MA_API ma_node_state ma_node_get_state(const ma_node* pNode) { const ma_node_base* pNodeBase = (const ma_node_base*)pNode; if (pNodeBase == NULL) { return ma_node_state_stopped; } return (ma_node_state)c89atomic_load_i32(&pNodeBase->state); } MA_API ma_result ma_node_set_state_time(ma_node* pNode, ma_node_state state, ma_uint64 globalTime) { if (pNode == NULL) { return MA_INVALID_ARGS; } /* Validation check for safety since we'll be using this as an index into stateTimes[]. */ if (state != ma_node_state_started && state != ma_node_state_stopped) { return MA_INVALID_ARGS; } c89atomic_exchange_64(&((ma_node_base*)pNode)->stateTimes[state], globalTime); return MA_SUCCESS; } MA_API ma_uint64 ma_node_get_state_time(const ma_node* pNode, ma_node_state state) { if (pNode == NULL) { return 0; } /* Validation check for safety since we'll be using this as an index into stateTimes[]. */ if (state != ma_node_state_started && state != ma_node_state_stopped) { return 0; } return c89atomic_load_64(&((ma_node_base*)pNode)->stateTimes[state]); } MA_API ma_node_state ma_node_get_state_by_time(const ma_node* pNode, ma_uint64 globalTime) { if (pNode == NULL) { return ma_node_state_stopped; } return ma_node_get_state_by_time_range(pNode, globalTime, globalTime); } MA_API ma_node_state ma_node_get_state_by_time_range(const ma_node* pNode, ma_uint64 globalTimeBeg, ma_uint64 globalTimeEnd) { ma_node_state state; if (pNode == NULL) { return ma_node_state_stopped; } state = ma_node_get_state(pNode); /* An explicitly stopped node is always stopped. */ if (state == ma_node_state_stopped) { return ma_node_state_stopped; } /* Getting here means the node is marked as started, but it may still not be truly started due to it's start time not having been reached yet. Also, the stop time may have also been reached in which case it'll be considered stopped. */ if (ma_node_get_state_time(pNode, ma_node_state_started) > globalTimeBeg) { return ma_node_state_stopped; /* Start time has not yet been reached. */ } if (ma_node_get_state_time(pNode, ma_node_state_stopped) <= globalTimeEnd) { return ma_node_state_stopped; /* Stop time has been reached. */ } /* Getting here means the node is marked as started and is within it's start/stop times. */ return ma_node_state_started; } MA_API ma_uint64 ma_node_get_time(const ma_node* pNode) { if (pNode == NULL) { return 0; } return c89atomic_load_64(&((ma_node_base*)pNode)->localTime); } MA_API ma_result ma_node_set_time(ma_node* pNode, ma_uint64 localTime) { if (pNode == NULL) { return MA_INVALID_ARGS; } c89atomic_exchange_64(&((ma_node_base*)pNode)->localTime, localTime); return MA_SUCCESS; } static void ma_node_process_pcm_frames_internal(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_node_base* pNodeBase = (ma_node_base*)pNode; MA_ASSERT(pNode != NULL); if (pNodeBase->vtable->onProcess) { pNodeBase->vtable->onProcess(pNode, ppFramesIn, pFrameCountIn, ppFramesOut, pFrameCountOut); } } static ma_result ma_node_read_pcm_frames(ma_node* pNode, ma_uint32 outputBusIndex, float* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead, ma_uint64 globalTime) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_result result = MA_SUCCESS; ma_uint32 iInputBus; ma_uint32 iOutputBus; ma_uint32 inputBusCount; ma_uint32 outputBusCount; ma_uint32 totalFramesRead = 0; float* ppFramesIn[MA_MAX_NODE_BUS_COUNT]; float* ppFramesOut[MA_MAX_NODE_BUS_COUNT]; ma_uint64 globalTimeBeg; ma_uint64 globalTimeEnd; ma_uint64 startTime; ma_uint64 stopTime; ma_uint32 timeOffsetBeg; ma_uint32 timeOffsetEnd; ma_uint32 frameCountIn; ma_uint32 frameCountOut; /* pFramesRead is mandatory. It must be used to determine how many frames were read. It's normal and expected that the number of frames read may be different to that requested. Therefore, the caller must look at this value to correctly determine how many frames were read. */ MA_ASSERT(pFramesRead != NULL); /* <-- If you've triggered this assert, you're using this function wrong. You *must* use this variable and inspect it after the call returns. */ if (pFramesRead == NULL) { return MA_INVALID_ARGS; } *pFramesRead = 0; /* Safety. */ if (pNodeBase == NULL) { return MA_INVALID_ARGS; } if (outputBusIndex >= ma_node_get_output_bus_count(pNodeBase)) { return MA_INVALID_ARGS; /* Invalid output bus index. */ } /* Don't do anything if we're in a stopped state. */ if (ma_node_get_state_by_time_range(pNode, globalTime, globalTime + frameCount) != ma_node_state_started) { return MA_SUCCESS; /* We're in a stopped state. This is not an error - we just need to not read anything. */ } globalTimeBeg = globalTime; globalTimeEnd = globalTime + frameCount; startTime = ma_node_get_state_time(pNode, ma_node_state_started); stopTime = ma_node_get_state_time(pNode, ma_node_state_stopped); /* At this point we know that we are inside our start/stop times. However, we may need to adjust our frame count and output pointer to accomodate since we could be straddling the time period that this function is getting called for. It's possible (and likely) that the start time does not line up with the output buffer. We therefore need to offset it by a number of frames to accomodate. The same thing applies for the stop time. */ timeOffsetBeg = (globalTimeBeg < startTime) ? (ma_uint32)(globalTimeEnd - startTime) : 0; timeOffsetEnd = (globalTimeEnd > stopTime) ? (ma_uint32)(globalTimeEnd - stopTime) : 0; /* Trim based on the start offset. We need to silence the start of the buffer. */ if (timeOffsetBeg > 0) { ma_silence_pcm_frames(pFramesOut, timeOffsetBeg, ma_format_f32, ma_node_get_output_channels(pNode, outputBusIndex)); pFramesOut += timeOffsetBeg * ma_node_get_output_channels(pNode, outputBusIndex); frameCount -= timeOffsetBeg; } /* Trim based on the end offset. We don't need to silence the tail section because we'll just have a reduced value written to pFramesRead. */ if (timeOffsetEnd > 0) { frameCount -= timeOffsetEnd; } /* We run on different paths depending on the bus counts. */ inputBusCount = ma_node_get_input_bus_count(pNode); outputBusCount = ma_node_get_output_bus_count(pNode); /* Run a simplified path when there are no inputs and one output. In this case there's nothing to actually read and we can go straight to output. This is a very common scenario because the vast majority of data source nodes will use this setup so this optimization I think is worthwhile. */ if (inputBusCount == 0 && outputBusCount == 1) { /* Fast path. No need to read from input and no need for any caching. */ frameCountIn = 0; frameCountOut = frameCount; /* Just read as much as we can. The callback will return what was actually read. */ ppFramesOut[0] = pFramesOut; ma_node_process_pcm_frames_internal(pNode, NULL, &frameCountIn, ppFramesOut, &frameCountOut); totalFramesRead = frameCountOut; } else { /* Slow path. Need to read input data. */ if ((pNodeBase->vtable->flags & MA_NODE_FLAG_PASSTHROUGH) != 0) { /* Fast path. We're running a passthrough. We need to read directly into the output buffer, but still fire the callback so that event handling and trigger nodes can do their thing. Since it's a passthrough there's no need for any kind of caching logic. */ MA_ASSERT(outputBusCount == inputBusCount); MA_ASSERT(outputBusCount == 1); MA_ASSERT(outputBusIndex == 0); /* We just read directly from input bus to output buffer, and then afterwards fire the callback. */ ppFramesOut[0] = pFramesOut; ppFramesIn[0] = ppFramesOut[0]; result = ma_node_input_bus_read_pcm_frames(pNodeBase, &pNodeBase->pInputBuses[0], ppFramesIn[0], frameCount, &totalFramesRead, globalTime); if (result == MA_SUCCESS) { /* Even though it's a passthrough, we still need to fire the callback. */ frameCountIn = totalFramesRead; frameCountOut = totalFramesRead; if (totalFramesRead > 0) { ma_node_process_pcm_frames_internal(pNode, (const float**)ppFramesIn, &frameCountIn, ppFramesOut, &frameCountOut); /* From GCC: expected 'const float **' but argument is of type 'float **'. Shouldn't this be implicit? Excplicit cast to silence the warning. */ } /* A passthrough should never have modified the input and output frame counts. If you're triggering these assers you need to fix your processing callback. */ MA_ASSERT(frameCountIn == totalFramesRead); MA_ASSERT(frameCountOut == totalFramesRead); } } else { /* Slow path. Need to do caching. */ ma_uint32 framesToProcessIn; ma_uint32 framesToProcessOut; ma_bool32 consumeNullInput = MA_FALSE; /* We use frameCount as a basis for the number of frames to read since that's what's being requested, however we still need to clamp it to whatever can fit in the cache. This will also be used as the basis for determining how many input frames to read. This is not ideal because it can result in too many input frames being read which introduces latency. To solve this, nodes can implement an optional callback called onGetRequiredInputFrameCount which is used as hint to miniaudio as to how many input frames it needs to read at a time. This callback is completely optional, and if it's not set, miniaudio will assume `frameCount`. This function will be called multiple times for each period of time, once for each output node. We cannot read from each input node each time this function is called. Instead we need to check whether or not this is first output bus to be read from for this time period, and if so, read from our input data. To determine whether or not we're ready to read data, we check a flag. There will be one flag for each output. When the flag is set, it means data has been read previously and that we're ready to advance time forward for our input nodes by reading fresh data. */ framesToProcessOut = frameCount; if (framesToProcessOut > pNodeBase->cachedDataCapInFramesPerBus) { framesToProcessOut = pNodeBase->cachedDataCapInFramesPerBus; } framesToProcessIn = frameCount; if (pNodeBase->vtable->onGetRequiredInputFrameCount) { pNodeBase->vtable->onGetRequiredInputFrameCount(pNode, framesToProcessOut, &framesToProcessIn); /* <-- It does not matter if this fails. */ } if (framesToProcessIn > pNodeBase->cachedDataCapInFramesPerBus) { framesToProcessIn = pNodeBase->cachedDataCapInFramesPerBus; } MA_ASSERT(framesToProcessIn <= 0xFFFF); MA_ASSERT(framesToProcessOut <= 0xFFFF); if (ma_node_output_bus_has_read(&pNodeBase->pOutputBuses[outputBusIndex])) { /* Getting here means we need to do another round of processing. */ pNodeBase->cachedFrameCountOut = 0; for (;;) { frameCountOut = 0; /* We need to prepare our output frame pointers for processing. In the same iteration we need to mark every output bus as unread so that future calls to this function for different buses for the current time period don't pull in data when they should instead be reading from cache. */ for (iOutputBus = 0; iOutputBus < outputBusCount; iOutputBus += 1) { ma_node_output_bus_set_has_read(&pNodeBase->pOutputBuses[iOutputBus], MA_FALSE); /* <-- This is what tells the next calls to this function for other output buses for this time period to read from cache instead of pulling in more data. */ ppFramesOut[iOutputBus] = ma_node_get_cached_output_ptr(pNode, iOutputBus); } /* We only need to read from input buses if there isn't already some data in the cache. */ if (pNodeBase->cachedFrameCountIn == 0) { ma_uint32 maxFramesReadIn = 0; /* Here is where we pull in data from the input buses. This is what will trigger an advance in time. */ for (iInputBus = 0; iInputBus < inputBusCount; iInputBus += 1) { ma_uint32 framesRead; /* The first thing to do is get the offset within our bulk allocation to store this input data. */ ppFramesIn[iInputBus] = ma_node_get_cached_input_ptr(pNode, iInputBus); /* Once we've determined our destination pointer we can read. Note that we must inspect the number of frames read and fill any leftovers with silence for safety. */ result = ma_node_input_bus_read_pcm_frames(pNodeBase, &pNodeBase->pInputBuses[iInputBus], ppFramesIn[iInputBus], framesToProcessIn, &framesRead, globalTime); if (result != MA_SUCCESS) { /* It doesn't really matter if we fail because we'll just fill with silence. */ framesRead = 0; /* Just for safety, but I don't think it's really needed. */ } /* TODO: Minor optimization opportunity here. If no frames were read and the buffer is already filled with silence, no need to re-silence it. */ /* Any leftover frames need to silenced for safety. */ if (framesRead < framesToProcessIn) { ma_silence_pcm_frames(ppFramesIn[iInputBus] + (framesRead * ma_node_get_input_channels(pNodeBase, iInputBus)), (framesToProcessIn - framesRead), ma_format_f32, ma_node_get_input_channels(pNodeBase, iInputBus)); } maxFramesReadIn = ma_max(maxFramesReadIn, framesRead); } /* This was a fresh load of input data so reset our consumption counter. */ pNodeBase->consumedFrameCountIn = 0; /* We don't want to keep processing if there's nothing to process, so set the number of cached input frames to the maximum number we read from each attachment (the lesser will be padded with silence). If we didn't read anything, this will be set to 0 and the entire buffer will have been assigned to silence. This being equal to 0 is an important property for us because it allows us to detect when NULL can be passed into the processing callback for the input buffer for the purpose of continuous processing. */ pNodeBase->cachedFrameCountIn = (ma_uint16)maxFramesReadIn; } else { /* We don't need to read anything, but we do need to prepare our input frame pointers. */ for (iInputBus = 0; iInputBus < inputBusCount; iInputBus += 1) { ppFramesIn[iInputBus] = ma_node_get_cached_input_ptr(pNode, iInputBus) + (pNodeBase->consumedFrameCountIn * ma_node_get_input_channels(pNodeBase, iInputBus)); } } /* At this point we have our input data so now we need to do some processing. Sneaky little optimization here - we can set the pointer to the output buffer for this output bus so that the final copy into the output buffer is done directly by onProcess(). */ if (pFramesOut != NULL) { ppFramesOut[outputBusIndex] = ma_offset_pcm_frames_ptr_f32(pFramesOut, pNodeBase->cachedFrameCountOut, ma_node_get_output_channels(pNode, outputBusIndex)); } /* Give the processing function the entire capacity of the output buffer. */ frameCountOut = (framesToProcessOut - pNodeBase->cachedFrameCountOut); /* We need to treat nodes with continuous processing a little differently. For these ones, we always want to fire the callback with the requested number of frames, regardless of pNodeBase->cachedFrameCountIn, which could be 0. Also, we want to check if we can pass in NULL for the input buffer to the callback. */ if ((pNodeBase->vtable->flags & MA_NODE_FLAG_CONTINUOUS_PROCESSING) != 0) { /* We're using continuous processing. Make sure we specify the whole frame count at all times. */ frameCountIn = framesToProcessIn; /* Give the processing function as much input data as we've got in the buffer, including any silenced padding from short reads. */ if ((pNodeBase->vtable->flags & MA_NODE_FLAG_ALLOW_NULL_INPUT) != 0 && pNodeBase->consumedFrameCountIn == 0 && pNodeBase->cachedFrameCountIn == 0) { consumeNullInput = MA_TRUE; } else { consumeNullInput = MA_FALSE; } /* Since we're using continuous processing we're always passing in a full frame count regardless of how much input data was read. If this is greater than what we read as input, we'll end up with an underflow. We instead need to make sure our cached frame count is set to the number of frames we'll be passing to the data callback. Not doing this will result in an underflow when we "consume" the cached data later on. Note that this check needs to be done after the "consumeNullInput" check above because we use the property of cachedFrameCountIn being 0 to determine whether or not we should be passing in a null pointer to the processing callback for when the node is configured with MA_NODE_FLAG_ALLOW_NULL_INPUT. */ if (pNodeBase->cachedFrameCountIn < (ma_uint16)frameCountIn) { pNodeBase->cachedFrameCountIn = (ma_uint16)frameCountIn; } } else { frameCountIn = pNodeBase->cachedFrameCountIn; /* Give the processing function as much valid input data as we've got. */ consumeNullInput = MA_FALSE; } /* Process data slightly differently depending on whether or not we're consuming NULL input (checked just above). */ if (consumeNullInput) { ma_node_process_pcm_frames_internal(pNode, NULL, &frameCountIn, ppFramesOut, &frameCountOut); } else { /* We want to skip processing if there's no input data, but we can only do that safely if we know that there is no chance of any output frames being produced. If continuous processing is being used, this won't be a problem because the input frame count will always be non-0. However, if continuous processing is *not* enabled and input and output data is processed at different rates, we still need to process that last input frame because there could be a few excess output frames needing to be produced from cached data. The `MA_NODE_FLAG_DIFFERENT_PROCESSING_RATES` flag is used as the indicator for determining whether or not we need to process the node even when there are no input frames available right now. */ if (frameCountIn > 0 || (pNodeBase->vtable->flags & MA_NODE_FLAG_DIFFERENT_PROCESSING_RATES) != 0) { ma_node_process_pcm_frames_internal(pNode, (const float**)ppFramesIn, &frameCountIn, ppFramesOut, &frameCountOut); /* From GCC: expected 'const float **' but argument is of type 'float **'. Shouldn't this be implicit? Excplicit cast to silence the warning. */ } else { frameCountOut = 0; /* No data was processed. */ } } /* Thanks to our sneaky optimization above we don't need to do any data copying directly into the output buffer - the onProcess() callback just did that for us. We do, however, need to apply the number of input and output frames that were processed. Note that due to continuous processing above, we need to do explicit checks here. If we just consumed a NULL input buffer it means that no actual input data was processed from the internal buffers and we don't want to be modifying any counters. */ if (consumeNullInput == MA_FALSE) { pNodeBase->consumedFrameCountIn += (ma_uint16)frameCountIn; pNodeBase->cachedFrameCountIn -= (ma_uint16)frameCountIn; } /* The cached output frame count is always equal to what we just read. */ pNodeBase->cachedFrameCountOut += (ma_uint16)frameCountOut; /* If we couldn't process any data, we're done. The loop needs to be terminated here or else we'll get stuck in a loop. */ if (pNodeBase->cachedFrameCountOut == framesToProcessOut || (frameCountOut == 0 && frameCountIn == 0)) { break; } } } else { /* We're not needing to read anything from the input buffer so just read directly from our already-processed data. */ if (pFramesOut != NULL) { ma_copy_pcm_frames(pFramesOut, ma_node_get_cached_output_ptr(pNodeBase, outputBusIndex), pNodeBase->cachedFrameCountOut, ma_format_f32, ma_node_get_output_channels(pNodeBase, outputBusIndex)); } } /* The number of frames read is always equal to the number of cached output frames. */ totalFramesRead = pNodeBase->cachedFrameCountOut; /* Now that we've read the data, make sure our read flag is set. */ ma_node_output_bus_set_has_read(&pNodeBase->pOutputBuses[outputBusIndex], MA_TRUE); } } /* Apply volume, if necessary. */ ma_apply_volume_factor_f32(pFramesOut, totalFramesRead * ma_node_get_output_channels(pNodeBase, outputBusIndex), ma_node_output_bus_get_volume(&pNodeBase->pOutputBuses[outputBusIndex])); /* Advance our local time forward. */ c89atomic_fetch_add_64(&pNodeBase->localTime, (ma_uint64)totalFramesRead); *pFramesRead = totalFramesRead + timeOffsetBeg; /* Must include the silenced section at the start of the buffer. */ return result; } /* Data source node. */ MA_API ma_data_source_node_config ma_data_source_node_config_init(ma_data_source* pDataSource) { ma_data_source_node_config config; MA_ZERO_OBJECT(&config); config.nodeConfig = ma_node_config_init(); config.pDataSource = pDataSource; return config; } static void ma_data_source_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_data_source_node* pDataSourceNode = (ma_data_source_node*)pNode; ma_format format; ma_uint32 channels; ma_uint32 frameCount; ma_uint64 framesRead = 0; MA_ASSERT(pDataSourceNode != NULL); MA_ASSERT(pDataSourceNode->pDataSource != NULL); MA_ASSERT(ma_node_get_input_bus_count(pDataSourceNode) == 0); MA_ASSERT(ma_node_get_output_bus_count(pDataSourceNode) == 1); /* We don't want to read from ppFramesIn at all. Instead we read from the data source. */ (void)ppFramesIn; (void)pFrameCountIn; frameCount = *pFrameCountOut; /* miniaudio should never be calling this with a frame count of zero. */ MA_ASSERT(frameCount > 0); if (ma_data_source_get_data_format(pDataSourceNode->pDataSource, &format, &channels, NULL, NULL, 0) == MA_SUCCESS) { /* <-- Don't care about sample rate here. */ /* The node graph system requires samples be in floating point format. This is checked in ma_data_source_node_init(). */ MA_ASSERT(format == ma_format_f32); (void)format; /* Just to silence some static analysis tools. */ ma_data_source_read_pcm_frames(pDataSourceNode->pDataSource, ppFramesOut[0], frameCount, &framesRead); } *pFrameCountOut = (ma_uint32)framesRead; } static ma_node_vtable g_ma_data_source_node_vtable = { ma_data_source_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 0, /* 0 input buses. */ 1, /* 1 output bus. */ 0 }; MA_API ma_result ma_data_source_node_init(ma_node_graph* pNodeGraph, const ma_data_source_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_data_source_node* pDataSourceNode) { ma_result result; ma_format format; /* For validating the format, which must be ma_format_f32. */ ma_uint32 channels; /* For specifying the channel count of the output bus. */ ma_node_config baseConfig; if (pDataSourceNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDataSourceNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } result = ma_data_source_get_data_format(pConfig->pDataSource, &format, &channels, NULL, NULL, 0); /* Don't care about sample rate. This will check pDataSource for NULL. */ if (result != MA_SUCCESS) { return result; } MA_ASSERT(format == ma_format_f32); /* <-- If you've triggered this it means your data source is not outputting floating-point samples. You must configure your data source to use ma_format_f32. */ if (format != ma_format_f32) { return MA_INVALID_ARGS; /* Invalid format. */ } /* The channel count is defined by the data source. If the caller has manually changed the channels we just ignore it. */ baseConfig = pConfig->nodeConfig; baseConfig.vtable = &g_ma_data_source_node_vtable; /* Explicitly set the vtable here to prevent callers from setting it incorrectly. */ /* The channel count is defined by the data source. It is invalid for the caller to manually set the channel counts in the config. `ma_data_source_node_config_init()` will have defaulted the channel count pointer to NULL which is how it must remain. If you trigger any of these asserts it means you're explicitly setting the channel count. Instead, configure the output channel count of your data source to be the necessary channel count. */ if (baseConfig.pOutputChannels != NULL) { return MA_INVALID_ARGS; } baseConfig.pOutputChannels = &channels; result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pDataSourceNode->base); if (result != MA_SUCCESS) { return result; } pDataSourceNode->pDataSource = pConfig->pDataSource; return MA_SUCCESS; } MA_API void ma_data_source_node_uninit(ma_data_source_node* pDataSourceNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_node_uninit(&pDataSourceNode->base, pAllocationCallbacks); } MA_API ma_result ma_data_source_node_set_looping(ma_data_source_node* pDataSourceNode, ma_bool32 isLooping) { if (pDataSourceNode == NULL) { return MA_INVALID_ARGS; } return ma_data_source_set_looping(pDataSourceNode->pDataSource, isLooping); } MA_API ma_bool32 ma_data_source_node_is_looping(ma_data_source_node* pDataSourceNode) { if (pDataSourceNode == NULL) { return MA_FALSE; } return ma_data_source_is_looping(pDataSourceNode->pDataSource); } /* Splitter Node. */ MA_API ma_splitter_node_config ma_splitter_node_config_init(ma_uint32 channels) { ma_splitter_node_config config; MA_ZERO_OBJECT(&config); config.nodeConfig = ma_node_config_init(); config.channels = channels; config.outputBusCount = 2; return config; } static void ma_splitter_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_node_base* pNodeBase = (ma_node_base*)pNode; ma_uint32 iOutputBus; ma_uint32 channels; MA_ASSERT(pNodeBase != NULL); MA_ASSERT(ma_node_get_input_bus_count(pNodeBase) == 1); MA_ASSERT(ma_node_get_output_bus_count(pNodeBase) >= 2); /* We don't need to consider the input frame count - it'll be the same as the output frame count and we process everything. */ (void)pFrameCountIn; /* NOTE: This assumes the same number of channels for all inputs and outputs. This was checked in ma_splitter_node_init(). */ channels = ma_node_get_input_channels(pNodeBase, 0); /* Splitting is just copying the first input bus and copying it over to each output bus. */ for (iOutputBus = 0; iOutputBus < ma_node_get_output_bus_count(pNodeBase); iOutputBus += 1) { ma_copy_pcm_frames(ppFramesOut[iOutputBus], ppFramesIn[0], *pFrameCountOut, ma_format_f32, channels); } } static ma_node_vtable g_ma_splitter_node_vtable = { ma_splitter_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* 1 input bus. */ MA_NODE_BUS_COUNT_UNKNOWN, /* The output bus count is specified on a per-node basis. */ 0 }; MA_API ma_result ma_splitter_node_init(ma_node_graph* pNodeGraph, const ma_splitter_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_splitter_node* pSplitterNode) { ma_result result; ma_node_config baseConfig; ma_uint32 pInputChannels[1]; ma_uint32 pOutputChannels[MA_MAX_NODE_BUS_COUNT]; ma_uint32 iOutputBus; if (pSplitterNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pSplitterNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->outputBusCount > MA_MAX_NODE_BUS_COUNT) { return MA_INVALID_ARGS; /* Too many output buses. */ } /* Splitters require the same number of channels between inputs and outputs. */ pInputChannels[0] = pConfig->channels; for (iOutputBus = 0; iOutputBus < pConfig->outputBusCount; iOutputBus += 1) { pOutputChannels[iOutputBus] = pConfig->channels; } baseConfig = pConfig->nodeConfig; baseConfig.vtable = &g_ma_splitter_node_vtable; baseConfig.pInputChannels = pInputChannels; baseConfig.pOutputChannels = pOutputChannels; baseConfig.outputBusCount = pConfig->outputBusCount; result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pSplitterNode->base); if (result != MA_SUCCESS) { return result; /* Failed to initialize the base node. */ } return MA_SUCCESS; } MA_API void ma_splitter_node_uninit(ma_splitter_node* pSplitterNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_node_uninit(pSplitterNode, pAllocationCallbacks); } /* Biquad Node */ MA_API ma_biquad_node_config ma_biquad_node_config_init(ma_uint32 channels, float b0, float b1, float b2, float a0, float a1, float a2) { ma_biquad_node_config config; config.nodeConfig = ma_node_config_init(); config.biquad = ma_biquad_config_init(ma_format_f32, channels, b0, b1, b2, a0, a1, a2); return config; } static void ma_biquad_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_biquad_node* pLPFNode = (ma_biquad_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_biquad_process_pcm_frames(&pLPFNode->biquad, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_biquad_node_vtable = { ma_biquad_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_biquad_node_init(ma_node_graph* pNodeGraph, const ma_biquad_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_biquad_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->biquad.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_biquad_init(&pConfig->biquad, pAllocationCallbacks, &pNode->biquad); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_biquad_node_vtable; baseNodeConfig.pInputChannels = &pConfig->biquad.channels; baseNodeConfig.pOutputChannels = &pConfig->biquad.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_biquad_node_reinit(const ma_biquad_config* pConfig, ma_biquad_node* pNode) { ma_biquad_node* pLPFNode = (ma_biquad_node*)pNode; MA_ASSERT(pNode != NULL); return ma_biquad_reinit(pConfig, &pLPFNode->biquad); } MA_API void ma_biquad_node_uninit(ma_biquad_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_biquad_node* pLPFNode = (ma_biquad_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_biquad_uninit(&pLPFNode->biquad, pAllocationCallbacks); } /* Low Pass Filter Node */ MA_API ma_lpf_node_config ma_lpf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order) { ma_lpf_node_config config; config.nodeConfig = ma_node_config_init(); config.lpf = ma_lpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency, order); return config; } static void ma_lpf_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_lpf_node* pLPFNode = (ma_lpf_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_lpf_process_pcm_frames(&pLPFNode->lpf, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_lpf_node_vtable = { ma_lpf_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_lpf_node_init(ma_node_graph* pNodeGraph, const ma_lpf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_lpf_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->lpf.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_lpf_init(&pConfig->lpf, pAllocationCallbacks, &pNode->lpf); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_lpf_node_vtable; baseNodeConfig.pInputChannels = &pConfig->lpf.channels; baseNodeConfig.pOutputChannels = &pConfig->lpf.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_lpf_node_reinit(const ma_lpf_config* pConfig, ma_lpf_node* pNode) { ma_lpf_node* pLPFNode = (ma_lpf_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_lpf_reinit(pConfig, &pLPFNode->lpf); } MA_API void ma_lpf_node_uninit(ma_lpf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_lpf_node* pLPFNode = (ma_lpf_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_lpf_uninit(&pLPFNode->lpf, pAllocationCallbacks); } /* High Pass Filter Node */ MA_API ma_hpf_node_config ma_hpf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order) { ma_hpf_node_config config; config.nodeConfig = ma_node_config_init(); config.hpf = ma_hpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency, order); return config; } static void ma_hpf_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_hpf_node* pHPFNode = (ma_hpf_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_hpf_process_pcm_frames(&pHPFNode->hpf, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_hpf_node_vtable = { ma_hpf_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_hpf_node_init(ma_node_graph* pNodeGraph, const ma_hpf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hpf_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->hpf.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_hpf_init(&pConfig->hpf, pAllocationCallbacks, &pNode->hpf); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_hpf_node_vtable; baseNodeConfig.pInputChannels = &pConfig->hpf.channels; baseNodeConfig.pOutputChannels = &pConfig->hpf.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_hpf_node_reinit(const ma_hpf_config* pConfig, ma_hpf_node* pNode) { ma_hpf_node* pHPFNode = (ma_hpf_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_hpf_reinit(pConfig, &pHPFNode->hpf); } MA_API void ma_hpf_node_uninit(ma_hpf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_hpf_node* pHPFNode = (ma_hpf_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_hpf_uninit(&pHPFNode->hpf, pAllocationCallbacks); } /* Band Pass Filter Node */ MA_API ma_bpf_node_config ma_bpf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order) { ma_bpf_node_config config; config.nodeConfig = ma_node_config_init(); config.bpf = ma_bpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency, order); return config; } static void ma_bpf_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_bpf_node* pBPFNode = (ma_bpf_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_bpf_process_pcm_frames(&pBPFNode->bpf, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_bpf_node_vtable = { ma_bpf_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_bpf_node_init(ma_node_graph* pNodeGraph, const ma_bpf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_bpf_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->bpf.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_bpf_init(&pConfig->bpf, pAllocationCallbacks, &pNode->bpf); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_bpf_node_vtable; baseNodeConfig.pInputChannels = &pConfig->bpf.channels; baseNodeConfig.pOutputChannels = &pConfig->bpf.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_bpf_node_reinit(const ma_bpf_config* pConfig, ma_bpf_node* pNode) { ma_bpf_node* pBPFNode = (ma_bpf_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_bpf_reinit(pConfig, &pBPFNode->bpf); } MA_API void ma_bpf_node_uninit(ma_bpf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_bpf_node* pBPFNode = (ma_bpf_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_bpf_uninit(&pBPFNode->bpf, pAllocationCallbacks); } /* Notching Filter Node */ MA_API ma_notch_node_config ma_notch_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency) { ma_notch_node_config config; config.nodeConfig = ma_node_config_init(); config.notch = ma_notch2_config_init(ma_format_f32, channels, sampleRate, q, frequency); return config; } static void ma_notch_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_notch_node* pBPFNode = (ma_notch_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_notch2_process_pcm_frames(&pBPFNode->notch, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_notch_node_vtable = { ma_notch_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_notch_node_init(ma_node_graph* pNodeGraph, const ma_notch_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_notch_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->notch.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_notch2_init(&pConfig->notch, pAllocationCallbacks, &pNode->notch); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_notch_node_vtable; baseNodeConfig.pInputChannels = &pConfig->notch.channels; baseNodeConfig.pOutputChannels = &pConfig->notch.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_notch_node_reinit(const ma_notch_config* pConfig, ma_notch_node* pNode) { ma_notch_node* pNotchNode = (ma_notch_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_notch2_reinit(pConfig, &pNotchNode->notch); } MA_API void ma_notch_node_uninit(ma_notch_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_notch_node* pNotchNode = (ma_notch_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_notch2_uninit(&pNotchNode->notch, pAllocationCallbacks); } /* Peaking Filter Node */ MA_API ma_peak_node_config ma_peak_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency) { ma_peak_node_config config; config.nodeConfig = ma_node_config_init(); config.peak = ma_peak2_config_init(ma_format_f32, channels, sampleRate, gainDB, q, frequency); return config; } static void ma_peak_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_peak_node* pBPFNode = (ma_peak_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_peak2_process_pcm_frames(&pBPFNode->peak, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_peak_node_vtable = { ma_peak_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_peak_node_init(ma_node_graph* pNodeGraph, const ma_peak_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_peak_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->peak.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_peak2_init(&pConfig->peak, pAllocationCallbacks, &pNode->peak); if (result != MA_SUCCESS) { ma_node_uninit(pNode, pAllocationCallbacks); return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_peak_node_vtable; baseNodeConfig.pInputChannels = &pConfig->peak.channels; baseNodeConfig.pOutputChannels = &pConfig->peak.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_peak_node_reinit(const ma_peak_config* pConfig, ma_peak_node* pNode) { ma_peak_node* pPeakNode = (ma_peak_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_peak2_reinit(pConfig, &pPeakNode->peak); } MA_API void ma_peak_node_uninit(ma_peak_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_peak_node* pPeakNode = (ma_peak_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_peak2_uninit(&pPeakNode->peak, pAllocationCallbacks); } /* Low Shelf Filter Node */ MA_API ma_loshelf_node_config ma_loshelf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency) { ma_loshelf_node_config config; config.nodeConfig = ma_node_config_init(); config.loshelf = ma_loshelf2_config_init(ma_format_f32, channels, sampleRate, gainDB, q, frequency); return config; } static void ma_loshelf_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_loshelf_node* pBPFNode = (ma_loshelf_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_loshelf2_process_pcm_frames(&pBPFNode->loshelf, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_loshelf_node_vtable = { ma_loshelf_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_loshelf_node_init(ma_node_graph* pNodeGraph, const ma_loshelf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_loshelf_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->loshelf.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_loshelf2_init(&pConfig->loshelf, pAllocationCallbacks, &pNode->loshelf); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_loshelf_node_vtable; baseNodeConfig.pInputChannels = &pConfig->loshelf.channels; baseNodeConfig.pOutputChannels = &pConfig->loshelf.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_loshelf_node_reinit(const ma_loshelf_config* pConfig, ma_loshelf_node* pNode) { ma_loshelf_node* pLoshelfNode = (ma_loshelf_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_loshelf2_reinit(pConfig, &pLoshelfNode->loshelf); } MA_API void ma_loshelf_node_uninit(ma_loshelf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_loshelf_node* pLoshelfNode = (ma_loshelf_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_loshelf2_uninit(&pLoshelfNode->loshelf, pAllocationCallbacks); } /* High Shelf Filter Node */ MA_API ma_hishelf_node_config ma_hishelf_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency) { ma_hishelf_node_config config; config.nodeConfig = ma_node_config_init(); config.hishelf = ma_hishelf2_config_init(ma_format_f32, channels, sampleRate, gainDB, q, frequency); return config; } static void ma_hishelf_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_hishelf_node* pBPFNode = (ma_hishelf_node*)pNode; MA_ASSERT(pNode != NULL); (void)pFrameCountIn; ma_hishelf2_process_pcm_frames(&pBPFNode->hishelf, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_hishelf_node_vtable = { ma_hishelf_node_process_pcm_frames, NULL, /* onGetRequiredInputFrameCount */ 1, /* One input. */ 1, /* One output. */ 0 /* Default flags. */ }; MA_API ma_result ma_hishelf_node_init(ma_node_graph* pNodeGraph, const ma_hishelf_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_hishelf_node* pNode) { ma_result result; ma_node_config baseNodeConfig; if (pNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pNode); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->hishelf.format != ma_format_f32) { return MA_INVALID_ARGS; /* The format must be f32. */ } result = ma_hishelf2_init(&pConfig->hishelf, pAllocationCallbacks, &pNode->hishelf); if (result != MA_SUCCESS) { return result; } baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_hishelf_node_vtable; baseNodeConfig.pInputChannels = &pConfig->hishelf.channels; baseNodeConfig.pOutputChannels = &pConfig->hishelf.channels; result = ma_node_init(pNodeGraph, &baseNodeConfig, pAllocationCallbacks, pNode); if (result != MA_SUCCESS) { return result; } return result; } MA_API ma_result ma_hishelf_node_reinit(const ma_hishelf_config* pConfig, ma_hishelf_node* pNode) { ma_hishelf_node* pHishelfNode = (ma_hishelf_node*)pNode; if (pNode == NULL) { return MA_INVALID_ARGS; } return ma_hishelf2_reinit(pConfig, &pHishelfNode->hishelf); } MA_API void ma_hishelf_node_uninit(ma_hishelf_node* pNode, const ma_allocation_callbacks* pAllocationCallbacks) { ma_hishelf_node* pHishelfNode = (ma_hishelf_node*)pNode; if (pNode == NULL) { return; } ma_node_uninit(pNode, pAllocationCallbacks); ma_hishelf2_uninit(&pHishelfNode->hishelf, pAllocationCallbacks); } MA_API ma_delay_node_config ma_delay_node_config_init(ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 delayInFrames, float decay) { ma_delay_node_config config; config.nodeConfig = ma_node_config_init(); config.delay = ma_delay_config_init(channels, sampleRate, delayInFrames, decay); return config; } static void ma_delay_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_delay_node* pDelayNode = (ma_delay_node*)pNode; (void)pFrameCountIn; ma_delay_process_pcm_frames(&pDelayNode->delay, ppFramesOut[0], ppFramesIn[0], *pFrameCountOut); } static ma_node_vtable g_ma_delay_node_vtable = { ma_delay_node_process_pcm_frames, NULL, 1, /* 1 input channels. */ 1, /* 1 output channel. */ MA_NODE_FLAG_CONTINUOUS_PROCESSING /* Delay requires continuous processing to ensure the tail get's processed. */ }; MA_API ma_result ma_delay_node_init(ma_node_graph* pNodeGraph, const ma_delay_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_delay_node* pDelayNode) { ma_result result; ma_node_config baseConfig; if (pDelayNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pDelayNode); result = ma_delay_init(&pConfig->delay, pAllocationCallbacks, &pDelayNode->delay); if (result != MA_SUCCESS) { return result; } baseConfig = pConfig->nodeConfig; baseConfig.vtable = &g_ma_delay_node_vtable; baseConfig.pInputChannels = &pConfig->delay.channels; baseConfig.pOutputChannels = &pConfig->delay.channels; result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pDelayNode->baseNode); if (result != MA_SUCCESS) { ma_delay_uninit(&pDelayNode->delay, pAllocationCallbacks); return result; } return result; } MA_API void ma_delay_node_uninit(ma_delay_node* pDelayNode, const ma_allocation_callbacks* pAllocationCallbacks) { if (pDelayNode == NULL) { return; } /* The base node is always uninitialized first. */ ma_node_uninit(pDelayNode, pAllocationCallbacks); ma_delay_uninit(&pDelayNode->delay, pAllocationCallbacks); } MA_API void ma_delay_node_set_wet(ma_delay_node* pDelayNode, float value) { if (pDelayNode == NULL) { return; } ma_delay_set_wet(&pDelayNode->delay, value); } MA_API float ma_delay_node_get_wet(const ma_delay_node* pDelayNode) { if (pDelayNode == NULL) { return 0; } return ma_delay_get_wet(&pDelayNode->delay); } MA_API void ma_delay_node_set_dry(ma_delay_node* pDelayNode, float value) { if (pDelayNode == NULL) { return; } ma_delay_set_dry(&pDelayNode->delay, value); } MA_API float ma_delay_node_get_dry(const ma_delay_node* pDelayNode) { if (pDelayNode == NULL) { return 0; } return ma_delay_get_dry(&pDelayNode->delay); } MA_API void ma_delay_node_set_decay(ma_delay_node* pDelayNode, float value) { if (pDelayNode == NULL) { return; } ma_delay_set_decay(&pDelayNode->delay, value); } MA_API float ma_delay_node_get_decay(const ma_delay_node* pDelayNode) { if (pDelayNode == NULL) { return 0; } return ma_delay_get_decay(&pDelayNode->delay); } #endif /* MA_NO_NODE_GRAPH */ /* SECTION: miniaudio_engine.c */ #if !defined(MA_NO_ENGINE) && !defined(MA_NO_NODE_GRAPH) /************************************************************************************************************************************************************** Engine **************************************************************************************************************************************************************/ #define MA_SEEK_TARGET_NONE (~(ma_uint64)0) MA_API ma_engine_node_config ma_engine_node_config_init(ma_engine* pEngine, ma_engine_node_type type, ma_uint32 flags) { ma_engine_node_config config; MA_ZERO_OBJECT(&config); config.pEngine = pEngine; config.type = type; config.isPitchDisabled = (flags & MA_SOUND_FLAG_NO_PITCH) != 0; config.isSpatializationDisabled = (flags & MA_SOUND_FLAG_NO_SPATIALIZATION) != 0; config.monoExpansionMode = pEngine->monoExpansionMode; return config; } static void ma_engine_node_update_pitch_if_required(ma_engine_node* pEngineNode) { ma_bool32 isUpdateRequired = MA_FALSE; float newPitch; MA_ASSERT(pEngineNode != NULL); newPitch = c89atomic_load_explicit_f32(&pEngineNode->pitch, c89atomic_memory_order_acquire); if (pEngineNode->oldPitch != newPitch) { pEngineNode->oldPitch = newPitch; isUpdateRequired = MA_TRUE; } if (pEngineNode->oldDopplerPitch != pEngineNode->spatializer.dopplerPitch) { pEngineNode->oldDopplerPitch = pEngineNode->spatializer.dopplerPitch; isUpdateRequired = MA_TRUE; } if (isUpdateRequired) { float basePitch = (float)pEngineNode->sampleRate / ma_engine_get_sample_rate(pEngineNode->pEngine); ma_linear_resampler_set_rate_ratio(&pEngineNode->resampler, basePitch * pEngineNode->oldPitch * pEngineNode->oldDopplerPitch); } } static ma_bool32 ma_engine_node_is_pitching_enabled(const ma_engine_node* pEngineNode) { MA_ASSERT(pEngineNode != NULL); /* Don't try to be clever by skiping resampling in the pitch=1 case or else you'll glitch when moving away from 1. */ return !c89atomic_load_explicit_32(&pEngineNode->isPitchDisabled, c89atomic_memory_order_acquire); } static ma_bool32 ma_engine_node_is_spatialization_enabled(const ma_engine_node* pEngineNode) { MA_ASSERT(pEngineNode != NULL); return !c89atomic_load_explicit_32(&pEngineNode->isSpatializationDisabled, c89atomic_memory_order_acquire); } static ma_uint64 ma_engine_node_get_required_input_frame_count(const ma_engine_node* pEngineNode, ma_uint64 outputFrameCount) { ma_uint64 inputFrameCount = 0; if (ma_engine_node_is_pitching_enabled(pEngineNode)) { ma_result result = ma_linear_resampler_get_required_input_frame_count(&pEngineNode->resampler, outputFrameCount, &inputFrameCount); if (result != MA_SUCCESS) { inputFrameCount = 0; } } else { inputFrameCount = outputFrameCount; /* No resampling, so 1:1. */ } return inputFrameCount; } static void ma_engine_node_process_pcm_frames__general(ma_engine_node* pEngineNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_uint32 frameCountIn; ma_uint32 frameCountOut; ma_uint32 totalFramesProcessedIn; ma_uint32 totalFramesProcessedOut; ma_uint32 channelsIn; ma_uint32 channelsOut; ma_bool32 isPitchingEnabled; ma_bool32 isFadingEnabled; ma_bool32 isSpatializationEnabled; ma_bool32 isPanningEnabled; frameCountIn = *pFrameCountIn; frameCountOut = *pFrameCountOut; channelsIn = ma_spatializer_get_input_channels(&pEngineNode->spatializer); channelsOut = ma_spatializer_get_output_channels(&pEngineNode->spatializer); totalFramesProcessedIn = 0; totalFramesProcessedOut = 0; isPitchingEnabled = ma_engine_node_is_pitching_enabled(pEngineNode); isFadingEnabled = pEngineNode->fader.volumeBeg != 1 || pEngineNode->fader.volumeEnd != 1; isSpatializationEnabled = ma_engine_node_is_spatialization_enabled(pEngineNode); isPanningEnabled = pEngineNode->panner.pan != 0 && channelsOut != 1; /* Keep going while we've still got data available for processing. */ while (totalFramesProcessedOut < frameCountOut) { /* We need to process in a specific order. We always do resampling first because it's likely we're going to be increasing the channel count after spatialization. Also, I want to do fading based on the output sample rate. We'll first read into a buffer from the resampler. Then we'll do all processing that operates on the on the input channel count. We'll then get the spatializer to output to the output buffer and then do all effects from that point directly in the output buffer in-place. Note that we're always running the resampler. If we try to be clever and skip resampling when the pitch is 1, we'll get a glitch when we move away from 1, back to 1, and then away from 1 again. We'll want to implement any pitch=1 optimizations in the resampler itself. There's a small optimization here that we'll utilize since it might be a fairly common case. When the input and output channel counts are the same, we'll read straight into the output buffer from the resampler and do everything in-place. */ const float* pRunningFramesIn; float* pRunningFramesOut; float* pWorkingBuffer; /* This is the buffer that we'll be processing frames in. This is in input channels. */ float temp[MA_DATA_CONVERTER_STACK_BUFFER_SIZE / sizeof(float)]; ma_uint32 tempCapInFrames = ma_countof(temp) / channelsIn; ma_uint32 framesAvailableIn; ma_uint32 framesAvailableOut; ma_uint32 framesJustProcessedIn; ma_uint32 framesJustProcessedOut; ma_bool32 isWorkingBufferValid = MA_FALSE; framesAvailableIn = frameCountIn - totalFramesProcessedIn; framesAvailableOut = frameCountOut - totalFramesProcessedOut; pRunningFramesIn = ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessedIn, channelsIn); pRunningFramesOut = ma_offset_pcm_frames_ptr_f32(ppFramesOut[0], totalFramesProcessedOut, channelsOut); if (channelsIn == channelsOut) { /* Fast path. Channel counts are the same. No need for an intermediary input buffer. */ pWorkingBuffer = pRunningFramesOut; } else { /* Slow path. Channel counts are different. Need to use an intermediary input buffer. */ pWorkingBuffer = temp; if (framesAvailableOut > tempCapInFrames) { framesAvailableOut = tempCapInFrames; } } /* First is resampler. */ if (isPitchingEnabled) { ma_uint64 resampleFrameCountIn = framesAvailableIn; ma_uint64 resampleFrameCountOut = framesAvailableOut; ma_linear_resampler_process_pcm_frames(&pEngineNode->resampler, pRunningFramesIn, &resampleFrameCountIn, pWorkingBuffer, &resampleFrameCountOut); isWorkingBufferValid = MA_TRUE; framesJustProcessedIn = (ma_uint32)resampleFrameCountIn; framesJustProcessedOut = (ma_uint32)resampleFrameCountOut; } else { framesJustProcessedIn = ma_min(framesAvailableIn, framesAvailableOut); framesJustProcessedOut = framesJustProcessedIn; /* When no resampling is being performed, the number of output frames is the same as input frames. */ } /* Fading. */ if (isFadingEnabled) { if (isWorkingBufferValid) { ma_fader_process_pcm_frames(&pEngineNode->fader, pWorkingBuffer, pWorkingBuffer, framesJustProcessedOut); /* In-place processing. */ } else { ma_fader_process_pcm_frames(&pEngineNode->fader, pWorkingBuffer, pRunningFramesIn, framesJustProcessedOut); isWorkingBufferValid = MA_TRUE; } } /* If at this point we still haven't actually done anything with the working buffer we need to just read straight from the input buffer. */ if (isWorkingBufferValid == MA_FALSE) { pWorkingBuffer = (float*)pRunningFramesIn; /* Naughty const cast, but it's safe at this point because we won't ever be writing to it from this point out. */ } /* Spatialization. */ if (isSpatializationEnabled) { ma_uint32 iListener; /* When determining the listener to use, we first check to see if the sound is pinned to a specific listener. If so, we use that. Otherwise we just use the closest listener. */ if (pEngineNode->pinnedListenerIndex != MA_LISTENER_INDEX_CLOSEST && pEngineNode->pinnedListenerIndex < ma_engine_get_listener_count(pEngineNode->pEngine)) { iListener = pEngineNode->pinnedListenerIndex; } else { iListener = ma_engine_find_closest_listener(pEngineNode->pEngine, pEngineNode->spatializer.position.x, pEngineNode->spatializer.position.y, pEngineNode->spatializer.position.z); } ma_spatializer_process_pcm_frames(&pEngineNode->spatializer, &pEngineNode->pEngine->listeners[iListener], pRunningFramesOut, pWorkingBuffer, framesJustProcessedOut); } else { /* No spatialization, but we still need to do channel conversion. */ if (channelsIn == channelsOut) { /* No channel conversion required. Just copy straight to the output buffer. */ ma_copy_pcm_frames(pRunningFramesOut, pWorkingBuffer, framesJustProcessedOut, ma_format_f32, channelsOut); } else { /* Channel conversion required. TODO: Add support for channel maps here. */ ma_channel_map_apply_f32(pRunningFramesOut, NULL, channelsOut, pWorkingBuffer, NULL, channelsIn, framesJustProcessedOut, ma_channel_mix_mode_simple, pEngineNode->monoExpansionMode); } } /* At this point we can guarantee that the output buffer contains valid data. We can process everything in place now. */ /* Panning. */ if (isPanningEnabled) { ma_panner_process_pcm_frames(&pEngineNode->panner, pRunningFramesOut, pRunningFramesOut, framesJustProcessedOut); /* In-place processing. */ } /* We're done for this chunk. */ totalFramesProcessedIn += framesJustProcessedIn; totalFramesProcessedOut += framesJustProcessedOut; /* If we didn't process any output frames this iteration it means we've either run out of input data, or run out of room in the output buffer. */ if (framesJustProcessedOut == 0) { break; } } /* At this point we're done processing. */ *pFrameCountIn = totalFramesProcessedIn; *pFrameCountOut = totalFramesProcessedOut; } static void ma_engine_node_process_pcm_frames__sound(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { /* For sounds, we need to first read from the data source. Then we need to apply the engine effects (pan, pitch, fades, etc.). */ ma_result result = MA_SUCCESS; ma_sound* pSound = (ma_sound*)pNode; ma_uint32 frameCount = *pFrameCountOut; ma_uint32 totalFramesRead = 0; ma_format dataSourceFormat; ma_uint32 dataSourceChannels; ma_uint8 temp[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; ma_uint32 tempCapInFrames; ma_uint64 seekTarget; /* This is a data source node which means no input buses. */ (void)ppFramesIn; (void)pFrameCountIn; /* If we're marked at the end we need to stop the sound and do nothing. */ if (ma_sound_at_end(pSound)) { ma_sound_stop(pSound); *pFrameCountOut = 0; return; } /* If we're seeking, do so now before reading. */ seekTarget = c89atomic_load_64(&pSound->seekTarget); if (seekTarget != MA_SEEK_TARGET_NONE) { ma_data_source_seek_to_pcm_frame(pSound->pDataSource, seekTarget); /* Any time-dependant effects need to have their times updated. */ ma_node_set_time(pSound, seekTarget); c89atomic_exchange_64(&pSound->seekTarget, MA_SEEK_TARGET_NONE); } /* We want to update the pitch once. For sounds, this can be either at the start or at the end. If we don't force this to only ever be updating once, we could end up in a situation where retrieving the required input frame count ends up being different to what we actually retrieve. What could happen is that the required input frame count is calculated, the pitch is update, and then this processing function is called resulting in a different number of input frames being processed. Do not call this in ma_engine_node_process_pcm_frames__general() or else you'll hit the aforementioned bug. */ ma_engine_node_update_pitch_if_required(&pSound->engineNode); /* For the convenience of the caller, we're doing to allow data sources to use non-floating-point formats and channel counts that differ from the main engine. */ result = ma_data_source_get_data_format(pSound->pDataSource, &dataSourceFormat, &dataSourceChannels, NULL, NULL, 0); if (result == MA_SUCCESS) { tempCapInFrames = sizeof(temp) / ma_get_bytes_per_frame(dataSourceFormat, dataSourceChannels); /* Keep reading until we've read as much as was requested or we reach the end of the data source. */ while (totalFramesRead < frameCount) { ma_uint32 framesRemaining = frameCount - totalFramesRead; ma_uint32 framesToRead; ma_uint64 framesJustRead; ma_uint32 frameCountIn; ma_uint32 frameCountOut; const float* pRunningFramesIn; float* pRunningFramesOut; /* The first thing we need to do is read into the temporary buffer. We can calculate exactly how many input frames we'll need after resampling. */ framesToRead = (ma_uint32)ma_engine_node_get_required_input_frame_count(&pSound->engineNode, framesRemaining); if (framesToRead > tempCapInFrames) { framesToRead = tempCapInFrames; } result = ma_data_source_read_pcm_frames(pSound->pDataSource, temp, framesToRead, &framesJustRead); /* If we reached the end of the sound we'll want to mark it as at the end and stop it. This should never be returned for looping sounds. */ if (result == MA_AT_END) { c89atomic_exchange_32(&pSound->atEnd, MA_TRUE); /* This will be set to false in ma_sound_start(). */ } pRunningFramesOut = ma_offset_pcm_frames_ptr_f32(ppFramesOut[0], totalFramesRead, ma_engine_get_channels(ma_sound_get_engine(pSound))); frameCountIn = (ma_uint32)framesJustRead; frameCountOut = framesRemaining; /* Convert if necessary. */ if (dataSourceFormat == ma_format_f32) { /* Fast path. No data conversion necessary. */ pRunningFramesIn = (float*)temp; ma_engine_node_process_pcm_frames__general(&pSound->engineNode, &pRunningFramesIn, &frameCountIn, &pRunningFramesOut, &frameCountOut); } else { /* Slow path. Need to do sample format conversion to f32. If we give the f32 buffer the same count as the first temp buffer, we're guaranteed it'll be large enough. */ float tempf32[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* Do not do `MA_DATA_CONVERTER_STACK_BUFFER_SIZE/sizeof(float)` here like we've done in other places. */ ma_convert_pcm_frames_format(tempf32, ma_format_f32, temp, dataSourceFormat, framesJustRead, dataSourceChannels, ma_dither_mode_none); /* Now that we have our samples in f32 format we can process like normal. */ pRunningFramesIn = tempf32; ma_engine_node_process_pcm_frames__general(&pSound->engineNode, &pRunningFramesIn, &frameCountIn, &pRunningFramesOut, &frameCountOut); } /* We should have processed all of our input frames since we calculated the required number of input frames at the top. */ MA_ASSERT(frameCountIn == framesJustRead); totalFramesRead += (ma_uint32)frameCountOut; /* Safe cast. */ if (result != MA_SUCCESS || ma_sound_at_end(pSound)) { break; /* Might have reached the end. */ } } } *pFrameCountOut = totalFramesRead; } static void ma_engine_node_process_pcm_frames__group(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { /* Make sure the pitch is updated before trying to read anything. It's important that this is done only once and not in ma_engine_node_process_pcm_frames__general(). The reason for this is that ma_engine_node_process_pcm_frames__general() will call ma_engine_node_get_required_input_frame_count(), and if another thread modifies the pitch just after that call it can result in a glitch due to the input rate changing. */ ma_engine_node_update_pitch_if_required((ma_engine_node*)pNode); /* For groups, the input data has already been read and we just need to apply the effect. */ ma_engine_node_process_pcm_frames__general((ma_engine_node*)pNode, ppFramesIn, pFrameCountIn, ppFramesOut, pFrameCountOut); } static ma_result ma_engine_node_get_required_input_frame_count__group(ma_node* pNode, ma_uint32 outputFrameCount, ma_uint32* pInputFrameCount) { ma_uint64 inputFrameCount; MA_ASSERT(pInputFrameCount != NULL); /* Our pitch will affect this calculation. We need to update it. */ ma_engine_node_update_pitch_if_required((ma_engine_node*)pNode); inputFrameCount = ma_engine_node_get_required_input_frame_count((ma_engine_node*)pNode, outputFrameCount); if (inputFrameCount > 0xFFFFFFFF) { inputFrameCount = 0xFFFFFFFF; /* Will never happen because miniaudio will only ever process in relatively small chunks. */ } *pInputFrameCount = (ma_uint32)inputFrameCount; return MA_SUCCESS; } static ma_node_vtable g_ma_engine_node_vtable__sound = { ma_engine_node_process_pcm_frames__sound, NULL, /* onGetRequiredInputFrameCount */ 0, /* Sounds are data source nodes which means they have zero inputs (their input is drawn from the data source itself). */ 1, /* Sounds have one output bus. */ 0 /* Default flags. */ }; static ma_node_vtable g_ma_engine_node_vtable__group = { ma_engine_node_process_pcm_frames__group, ma_engine_node_get_required_input_frame_count__group, 1, /* Groups have one input bus. */ 1, /* Groups have one output bus. */ MA_NODE_FLAG_DIFFERENT_PROCESSING_RATES /* The engine node does resampling so should let miniaudio know about it. */ }; static ma_node_config ma_engine_node_base_node_config_init(const ma_engine_node_config* pConfig) { ma_node_config baseNodeConfig; if (pConfig->type == ma_engine_node_type_sound) { /* Sound. */ baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_engine_node_vtable__sound; baseNodeConfig.initialState = ma_node_state_stopped; /* Sounds are stopped by default. */ } else { /* Group. */ baseNodeConfig = ma_node_config_init(); baseNodeConfig.vtable = &g_ma_engine_node_vtable__group; baseNodeConfig.initialState = ma_node_state_started; /* Groups are started by default. */ } return baseNodeConfig; } static ma_spatializer_config ma_engine_node_spatializer_config_init(const ma_node_config* pBaseNodeConfig) { return ma_spatializer_config_init(pBaseNodeConfig->pInputChannels[0], pBaseNodeConfig->pOutputChannels[0]); } typedef struct { size_t sizeInBytes; size_t baseNodeOffset; size_t resamplerOffset; size_t spatializerOffset; } ma_engine_node_heap_layout; static ma_result ma_engine_node_get_heap_layout(const ma_engine_node_config* pConfig, ma_engine_node_heap_layout* pHeapLayout) { ma_result result; size_t tempHeapSize; ma_node_config baseNodeConfig; ma_linear_resampler_config resamplerConfig; ma_spatializer_config spatializerConfig; ma_uint32 channelsIn; ma_uint32 channelsOut; MA_ASSERT(pHeapLayout); MA_ZERO_OBJECT(pHeapLayout); if (pConfig == NULL) { return MA_INVALID_ARGS; } if (pConfig->pEngine == NULL) { return MA_INVALID_ARGS; /* An engine must be specified. */ } pHeapLayout->sizeInBytes = 0; channelsIn = (pConfig->channelsIn != 0) ? pConfig->channelsIn : ma_engine_get_channels(pConfig->pEngine); channelsOut = (pConfig->channelsOut != 0) ? pConfig->channelsOut : ma_engine_get_channels(pConfig->pEngine); /* Base node. */ baseNodeConfig = ma_engine_node_base_node_config_init(pConfig); baseNodeConfig.pInputChannels = &channelsIn; baseNodeConfig.pOutputChannels = &channelsOut; result = ma_node_get_heap_size(ma_engine_get_node_graph(pConfig->pEngine), &baseNodeConfig, &tempHeapSize); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the size of the heap for the base node. */ } pHeapLayout->baseNodeOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(tempHeapSize); /* Resmapler. */ resamplerConfig = ma_linear_resampler_config_init(ma_format_f32, channelsIn, 1, 1); /* Input and output sample rates don't affect the calculation of the heap size. */ resamplerConfig.lpfOrder = 0; result = ma_linear_resampler_get_heap_size(&resamplerConfig, &tempHeapSize); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the size of the heap for the resampler. */ } pHeapLayout->resamplerOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(tempHeapSize); /* Spatializer. */ spatializerConfig = ma_engine_node_spatializer_config_init(&baseNodeConfig); result = ma_spatializer_get_heap_size(&spatializerConfig, &tempHeapSize); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the size of the heap for the spatializer. */ } pHeapLayout->spatializerOffset = pHeapLayout->sizeInBytes; pHeapLayout->sizeInBytes += ma_align_64(tempHeapSize); return MA_SUCCESS; } MA_API ma_result ma_engine_node_get_heap_size(const ma_engine_node_config* pConfig, size_t* pHeapSizeInBytes) { ma_result result; ma_engine_node_heap_layout heapLayout; if (pHeapSizeInBytes == NULL) { return MA_INVALID_ARGS; } *pHeapSizeInBytes = 0; result = ma_engine_node_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } *pHeapSizeInBytes = heapLayout.sizeInBytes; return MA_SUCCESS; } MA_API ma_result ma_engine_node_init_preallocated(const ma_engine_node_config* pConfig, void* pHeap, ma_engine_node* pEngineNode) { ma_result result; ma_engine_node_heap_layout heapLayout; ma_node_config baseNodeConfig; ma_linear_resampler_config resamplerConfig; ma_fader_config faderConfig; ma_spatializer_config spatializerConfig; ma_panner_config pannerConfig; ma_uint32 channelsIn; ma_uint32 channelsOut; if (pEngineNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pEngineNode); result = ma_engine_node_get_heap_layout(pConfig, &heapLayout); if (result != MA_SUCCESS) { return result; } if (pConfig->pinnedListenerIndex != MA_LISTENER_INDEX_CLOSEST && pConfig->pinnedListenerIndex >= ma_engine_get_listener_count(pConfig->pEngine)) { return MA_INVALID_ARGS; /* Invalid listener. */ } pEngineNode->_pHeap = pHeap; MA_ZERO_MEMORY(pHeap, heapLayout.sizeInBytes); pEngineNode->pEngine = pConfig->pEngine; pEngineNode->sampleRate = (pConfig->sampleRate > 0) ? pConfig->sampleRate : ma_engine_get_sample_rate(pEngineNode->pEngine); pEngineNode->monoExpansionMode = pConfig->monoExpansionMode; pEngineNode->pitch = 1; pEngineNode->oldPitch = 1; pEngineNode->oldDopplerPitch = 1; pEngineNode->isPitchDisabled = pConfig->isPitchDisabled; pEngineNode->isSpatializationDisabled = pConfig->isSpatializationDisabled; pEngineNode->pinnedListenerIndex = pConfig->pinnedListenerIndex; channelsIn = (pConfig->channelsIn != 0) ? pConfig->channelsIn : ma_engine_get_channels(pConfig->pEngine); channelsOut = (pConfig->channelsOut != 0) ? pConfig->channelsOut : ma_engine_get_channels(pConfig->pEngine); /* Base node. */ baseNodeConfig = ma_engine_node_base_node_config_init(pConfig); baseNodeConfig.pInputChannels = &channelsIn; baseNodeConfig.pOutputChannels = &channelsOut; result = ma_node_init_preallocated(&pConfig->pEngine->nodeGraph, &baseNodeConfig, ma_offset_ptr(pHeap, heapLayout.baseNodeOffset), &pEngineNode->baseNode); if (result != MA_SUCCESS) { goto error0; } /* We can now initialize the effects we need in order to implement the engine node. There's a defined order of operations here, mainly centered around when we convert our channels from the data source's native channel count to the engine's channel count. As a rule, we want to do as much computation as possible before spatialization because there's a chance that will increase the channel count, thereby increasing the amount of work needing to be done to process. */ /* We'll always do resampling first. */ resamplerConfig = ma_linear_resampler_config_init(ma_format_f32, baseNodeConfig.pInputChannels[0], pEngineNode->sampleRate, ma_engine_get_sample_rate(pEngineNode->pEngine)); resamplerConfig.lpfOrder = 0; /* <-- Need to disable low-pass filtering for pitch shifting for now because there's cases where the biquads are becoming unstable. Need to figure out a better fix for this. */ result = ma_linear_resampler_init_preallocated(&resamplerConfig, ma_offset_ptr(pHeap, heapLayout.resamplerOffset), &pEngineNode->resampler); if (result != MA_SUCCESS) { goto error1; } /* After resampling will come the fader. */ faderConfig = ma_fader_config_init(ma_format_f32, baseNodeConfig.pInputChannels[0], ma_engine_get_sample_rate(pEngineNode->pEngine)); result = ma_fader_init(&faderConfig, &pEngineNode->fader); if (result != MA_SUCCESS) { goto error2; } /* Spatialization comes next. We spatialize based ont he node's output channel count. It's up the caller to ensure channels counts link up correctly in the node graph. */ spatializerConfig = ma_engine_node_spatializer_config_init(&baseNodeConfig); spatializerConfig.gainSmoothTimeInFrames = pEngineNode->pEngine->gainSmoothTimeInFrames; result = ma_spatializer_init_preallocated(&spatializerConfig, ma_offset_ptr(pHeap, heapLayout.spatializerOffset), &pEngineNode->spatializer); if (result != MA_SUCCESS) { goto error2; } /* After spatialization comes panning. We need to do this after spatialization because otherwise we wouldn't be able to pan mono sounds. */ pannerConfig = ma_panner_config_init(ma_format_f32, baseNodeConfig.pOutputChannels[0]); result = ma_panner_init(&pannerConfig, &pEngineNode->panner); if (result != MA_SUCCESS) { goto error3; } return MA_SUCCESS; /* No need for allocation callbacks here because we use a preallocated heap. */ error3: ma_spatializer_uninit(&pEngineNode->spatializer, NULL); error2: ma_linear_resampler_uninit(&pEngineNode->resampler, NULL); error1: ma_node_uninit(&pEngineNode->baseNode, NULL); error0: return result; } MA_API ma_result ma_engine_node_init(const ma_engine_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_engine_node* pEngineNode) { ma_result result; size_t heapSizeInBytes; void* pHeap; result = ma_engine_node_get_heap_size(pConfig, &heapSizeInBytes); if (result != MA_SUCCESS) { return result; } if (heapSizeInBytes > 0) { pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pHeap == NULL) { return MA_OUT_OF_MEMORY; } } else { pHeap = NULL; } result = ma_engine_node_init_preallocated(pConfig, pHeap, pEngineNode); if (result != MA_SUCCESS) { ma_free(pHeap, pAllocationCallbacks); return result; } pEngineNode->_ownsHeap = MA_TRUE; return MA_SUCCESS; } MA_API void ma_engine_node_uninit(ma_engine_node* pEngineNode, const ma_allocation_callbacks* pAllocationCallbacks) { /* The base node always needs to be uninitialized first to ensure it's detached from the graph completely before we destroy anything that might be in the middle of being used by the processing function. */ ma_node_uninit(&pEngineNode->baseNode, pAllocationCallbacks); /* Now that the node has been uninitialized we can safely uninitialize the rest. */ ma_spatializer_uninit(&pEngineNode->spatializer, pAllocationCallbacks); ma_linear_resampler_uninit(&pEngineNode->resampler, pAllocationCallbacks); /* Free the heap last. */ if (pEngineNode->_ownsHeap) { ma_free(pEngineNode->_pHeap, pAllocationCallbacks); } } MA_API ma_sound_config ma_sound_config_init(void) { return ma_sound_config_init_2(NULL); } MA_API ma_sound_config ma_sound_config_init_2(ma_engine* pEngine) { ma_sound_config config; MA_ZERO_OBJECT(&config); if (pEngine != NULL) { config.monoExpansionMode = pEngine->monoExpansionMode; } else { config.monoExpansionMode = ma_mono_expansion_mode_default; } config.rangeEndInPCMFrames = ~((ma_uint64)0); config.loopPointEndInPCMFrames = ~((ma_uint64)0); return config; } MA_API ma_sound_group_config ma_sound_group_config_init(void) { return ma_sound_group_config_init_2(NULL); } MA_API ma_sound_group_config ma_sound_group_config_init_2(ma_engine* pEngine) { ma_sound_group_config config; MA_ZERO_OBJECT(&config); if (pEngine != NULL) { config.monoExpansionMode = pEngine->monoExpansionMode; } else { config.monoExpansionMode = ma_mono_expansion_mode_default; } return config; } MA_API ma_engine_config ma_engine_config_init(void) { ma_engine_config config; MA_ZERO_OBJECT(&config); config.listenerCount = 1; /* Always want at least one listener. */ config.monoExpansionMode = ma_mono_expansion_mode_default; return config; } #if !defined(MA_NO_DEVICE_IO) static void ma_engine_data_callback_internal(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount) { ma_engine* pEngine = (ma_engine*)pDevice->pUserData; (void)pFramesIn; /* Experiment: Try processing a resource manager job if we're on the Emscripten build. This serves two purposes: 1) It ensures jobs are actually processed at some point since we cannot guarantee that the caller is doing the right thing and calling ma_resource_manager_process_next_job(); and 2) It's an attempt at working around an issue where processing jobs on the Emscripten main loop doesn't work as well as it should. When trying to load sounds without the `DECODE` flag or with the `ASYNC` flag, the sound data is just not able to be loaded in time before the callback is processed. I think it's got something to do with the single- threaded nature of Web, but I'm not entirely sure. */ #if !defined(MA_NO_RESOURCE_MANAGER) && defined(MA_EMSCRIPTEN) { if (pEngine->pResourceManager != NULL) { if ((pEngine->pResourceManager->config.flags & MA_RESOURCE_MANAGER_FLAG_NO_THREADING) != 0) { ma_resource_manager_process_next_job(pEngine->pResourceManager); } } } #endif ma_engine_read_pcm_frames(pEngine, pFramesOut, frameCount, NULL); } #endif MA_API ma_result ma_engine_init(const ma_engine_config* pConfig, ma_engine* pEngine) { ma_result result; ma_node_graph_config nodeGraphConfig; ma_engine_config engineConfig; ma_spatializer_listener_config listenerConfig; ma_uint32 iListener; if (pEngine == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pEngine); /* The config is allowed to be NULL in which case we use defaults for everything. */ if (pConfig != NULL) { engineConfig = *pConfig; } else { engineConfig = ma_engine_config_init(); } pEngine->monoExpansionMode = engineConfig.monoExpansionMode; ma_allocation_callbacks_init_copy(&pEngine->allocationCallbacks, &engineConfig.allocationCallbacks); #if !defined(MA_NO_RESOURCE_MANAGER) { pEngine->pResourceManager = engineConfig.pResourceManager; } #endif #if !defined(MA_NO_DEVICE_IO) { pEngine->pDevice = engineConfig.pDevice; /* If we don't have a device, we need one. */ if (pEngine->pDevice == NULL && engineConfig.noDevice == MA_FALSE) { ma_device_config deviceConfig; pEngine->pDevice = (ma_device*)ma_malloc(sizeof(*pEngine->pDevice), &pEngine->allocationCallbacks); if (pEngine->pDevice == NULL) { return MA_OUT_OF_MEMORY; } deviceConfig = ma_device_config_init(ma_device_type_playback); deviceConfig.playback.pDeviceID = engineConfig.pPlaybackDeviceID; deviceConfig.playback.format = ma_format_f32; deviceConfig.playback.channels = engineConfig.channels; deviceConfig.sampleRate = engineConfig.sampleRate; deviceConfig.dataCallback = ma_engine_data_callback_internal; deviceConfig.pUserData = pEngine; deviceConfig.notificationCallback = engineConfig.notificationCallback; deviceConfig.periodSizeInFrames = engineConfig.periodSizeInFrames; deviceConfig.periodSizeInMilliseconds = engineConfig.periodSizeInMilliseconds; deviceConfig.noPreSilencedOutputBuffer = MA_TRUE; /* We'll always be outputting to every frame in the callback so there's no need for a pre-silenced buffer. */ deviceConfig.noClip = MA_TRUE; /* The engine will do clipping itself. */ if (engineConfig.pContext == NULL) { ma_context_config contextConfig = ma_context_config_init(); contextConfig.allocationCallbacks = pEngine->allocationCallbacks; contextConfig.pLog = engineConfig.pLog; /* If the engine config does not specify a log, use the resource manager's if we have one. */ #ifndef MA_NO_RESOURCE_MANAGER { if (contextConfig.pLog == NULL && engineConfig.pResourceManager != NULL) { contextConfig.pLog = ma_resource_manager_get_log(engineConfig.pResourceManager); } } #endif result = ma_device_init_ex(NULL, 0, &contextConfig, &deviceConfig, pEngine->pDevice); } else { result = ma_device_init(engineConfig.pContext, &deviceConfig, pEngine->pDevice); } if (result != MA_SUCCESS) { ma_free(pEngine->pDevice, &pEngine->allocationCallbacks); pEngine->pDevice = NULL; return result; } pEngine->ownsDevice = MA_TRUE; } /* Update the channel count and sample rate of the engine config so we can reference it below. */ if (pEngine->pDevice != NULL) { engineConfig.channels = pEngine->pDevice->playback.channels; engineConfig.sampleRate = pEngine->pDevice->sampleRate; } } #endif if (engineConfig.channels == 0 || engineConfig.sampleRate == 0) { return MA_INVALID_ARGS; } pEngine->sampleRate = engineConfig.sampleRate; /* The engine always uses either the log that was passed into the config, or the context's log is available. */ if (engineConfig.pLog != NULL) { pEngine->pLog = engineConfig.pLog; } else { #if !defined(MA_NO_DEVICE_IO) { pEngine->pLog = ma_device_get_log(pEngine->pDevice); } #else { pEngine->pLog = NULL; } #endif } /* The engine is a node graph. This needs to be initialized after we have the device so we can can determine the channel count. */ nodeGraphConfig = ma_node_graph_config_init(engineConfig.channels); nodeGraphConfig.nodeCacheCapInFrames = (engineConfig.periodSizeInFrames > 0xFFFF) ? 0xFFFF : (ma_uint16)engineConfig.periodSizeInFrames; result = ma_node_graph_init(&nodeGraphConfig, &pEngine->allocationCallbacks, &pEngine->nodeGraph); if (result != MA_SUCCESS) { goto on_error_1; } /* We need at least one listener. */ if (engineConfig.listenerCount == 0) { engineConfig.listenerCount = 1; } if (engineConfig.listenerCount > MA_ENGINE_MAX_LISTENERS) { result = MA_INVALID_ARGS; /* Too many listeners. */ goto on_error_1; } for (iListener = 0; iListener < engineConfig.listenerCount; iListener += 1) { listenerConfig = ma_spatializer_listener_config_init(ma_node_graph_get_channels(&pEngine->nodeGraph)); /* If we're using a device, use the device's channel map for the listener. Otherwise just use miniaudio's default channel map. */ #if !defined(MA_NO_DEVICE_IO) { if (pEngine->pDevice != NULL) { /* Temporarily disabled. There is a subtle bug here where front-left and front-right will be used by the device's channel map, but this is not what we want to use for spatialization. Instead we want to use side-left and side-right. I need to figure out a better solution for this. For now, disabling the user of device channel maps. */ /*listenerConfig.pChannelMapOut = pEngine->pDevice->playback.channelMap;*/ } } #endif result = ma_spatializer_listener_init(&listenerConfig, &pEngine->allocationCallbacks, &pEngine->listeners[iListener]); /* TODO: Change this to a pre-allocated heap. */ if (result != MA_SUCCESS) { goto on_error_2; } pEngine->listenerCount += 1; } /* Gain smoothing for spatialized sounds. */ pEngine->gainSmoothTimeInFrames = engineConfig.gainSmoothTimeInFrames; if (pEngine->gainSmoothTimeInFrames == 0) { ma_uint32 gainSmoothTimeInMilliseconds = engineConfig.gainSmoothTimeInMilliseconds; if (gainSmoothTimeInMilliseconds == 0) { gainSmoothTimeInMilliseconds = 8; } pEngine->gainSmoothTimeInFrames = (gainSmoothTimeInMilliseconds * ma_engine_get_sample_rate(pEngine)) / 1000; /* 8ms by default. */ } /* We need a resource manager. */ #ifndef MA_NO_RESOURCE_MANAGER { if (pEngine->pResourceManager == NULL) { ma_resource_manager_config resourceManagerConfig; pEngine->pResourceManager = (ma_resource_manager*)ma_malloc(sizeof(*pEngine->pResourceManager), &pEngine->allocationCallbacks); if (pEngine->pResourceManager == NULL) { result = MA_OUT_OF_MEMORY; goto on_error_2; } resourceManagerConfig = ma_resource_manager_config_init(); resourceManagerConfig.pLog = pEngine->pLog; /* Always use the engine's log for internally-managed resource managers. */ resourceManagerConfig.decodedFormat = ma_format_f32; resourceManagerConfig.decodedChannels = 0; /* Leave the decoded channel count as 0 so we can get good spatialization. */ resourceManagerConfig.decodedSampleRate = ma_engine_get_sample_rate(pEngine); ma_allocation_callbacks_init_copy(&resourceManagerConfig.allocationCallbacks, &pEngine->allocationCallbacks); resourceManagerConfig.pVFS = engineConfig.pResourceManagerVFS; /* The Emscripten build cannot use threads. */ #if defined(MA_EMSCRIPTEN) { resourceManagerConfig.jobThreadCount = 0; resourceManagerConfig.flags |= MA_RESOURCE_MANAGER_FLAG_NO_THREADING; } #endif result = ma_resource_manager_init(&resourceManagerConfig, pEngine->pResourceManager); if (result != MA_SUCCESS) { goto on_error_3; } pEngine->ownsResourceManager = MA_TRUE; } } #endif /* Setup some stuff for inlined sounds. That is sounds played with ma_engine_play_sound(). */ pEngine->inlinedSoundLock = 0; pEngine->pInlinedSoundHead = NULL; /* Start the engine if required. This should always be the last step. */ #if !defined(MA_NO_DEVICE_IO) { if (engineConfig.noAutoStart == MA_FALSE && pEngine->pDevice != NULL) { result = ma_engine_start(pEngine); if (result != MA_SUCCESS) { goto on_error_4; /* Failed to start the engine. */ } } } #endif return MA_SUCCESS; #if !defined(MA_NO_DEVICE_IO) on_error_4: #endif #if !defined(MA_NO_RESOURCE_MANAGER) on_error_3: if (pEngine->ownsResourceManager) { ma_free(pEngine->pResourceManager, &pEngine->allocationCallbacks); } #endif /* MA_NO_RESOURCE_MANAGER */ on_error_2: for (iListener = 0; iListener < pEngine->listenerCount; iListener += 1) { ma_spatializer_listener_uninit(&pEngine->listeners[iListener], &pEngine->allocationCallbacks); } ma_node_graph_uninit(&pEngine->nodeGraph, &pEngine->allocationCallbacks); on_error_1: #if !defined(MA_NO_DEVICE_IO) { if (pEngine->ownsDevice) { ma_device_uninit(pEngine->pDevice); ma_free(pEngine->pDevice, &pEngine->allocationCallbacks); } } #endif return result; } MA_API void ma_engine_uninit(ma_engine* pEngine) { ma_uint32 iListener; if (pEngine == NULL) { return; } /* The device must be uninitialized before the node graph to ensure the audio thread doesn't try accessing it. */ #if !defined(MA_NO_DEVICE_IO) { if (pEngine->ownsDevice) { ma_device_uninit(pEngine->pDevice); ma_free(pEngine->pDevice, &pEngine->allocationCallbacks); } else { if (pEngine->pDevice != NULL) { ma_device_stop(pEngine->pDevice); } } } #endif /* All inlined sounds need to be deleted. I'm going to use a lock here just to future proof in case I want to do some kind of garbage collection later on. */ ma_spinlock_lock(&pEngine->inlinedSoundLock); { for (;;) { ma_sound_inlined* pSoundToDelete = pEngine->pInlinedSoundHead; if (pSoundToDelete == NULL) { break; /* Done. */ } pEngine->pInlinedSoundHead = pSoundToDelete->pNext; ma_sound_uninit(&pSoundToDelete->sound); ma_free(pSoundToDelete, &pEngine->allocationCallbacks); } } ma_spinlock_unlock(&pEngine->inlinedSoundLock); for (iListener = 0; iListener < pEngine->listenerCount; iListener += 1) { ma_spatializer_listener_uninit(&pEngine->listeners[iListener], &pEngine->allocationCallbacks); } /* Make sure the node graph is uninitialized after the audio thread has been shutdown to prevent accessing of the node graph after being uninitialized. */ ma_node_graph_uninit(&pEngine->nodeGraph, &pEngine->allocationCallbacks); /* Uninitialize the resource manager last to ensure we don't have a thread still trying to access it. */ #ifndef MA_NO_RESOURCE_MANAGER if (pEngine->ownsResourceManager) { ma_resource_manager_uninit(pEngine->pResourceManager); ma_free(pEngine->pResourceManager, &pEngine->allocationCallbacks); } #endif } MA_API ma_result ma_engine_read_pcm_frames(ma_engine* pEngine, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead) { return ma_node_graph_read_pcm_frames(&pEngine->nodeGraph, pFramesOut, frameCount, pFramesRead); } MA_API ma_node_graph* ma_engine_get_node_graph(ma_engine* pEngine) { if (pEngine == NULL) { return NULL; } return &pEngine->nodeGraph; } #if !defined(MA_NO_RESOURCE_MANAGER) MA_API ma_resource_manager* ma_engine_get_resource_manager(ma_engine* pEngine) { if (pEngine == NULL) { return NULL; } #if !defined(MA_NO_RESOURCE_MANAGER) { return pEngine->pResourceManager; } #else { return NULL; } #endif } #endif MA_API ma_device* ma_engine_get_device(ma_engine* pEngine) { if (pEngine == NULL) { return NULL; } #if !defined(MA_NO_DEVICE_IO) { return pEngine->pDevice; } #else { return NULL; } #endif } MA_API ma_log* ma_engine_get_log(ma_engine* pEngine) { if (pEngine == NULL) { return NULL; } if (pEngine->pLog != NULL) { return pEngine->pLog; } else { #if !defined(MA_NO_DEVICE_IO) { return ma_device_get_log(ma_engine_get_device(pEngine)); } #else { return NULL; } #endif } } MA_API ma_node* ma_engine_get_endpoint(ma_engine* pEngine) { return ma_node_graph_get_endpoint(&pEngine->nodeGraph); } MA_API ma_uint64 ma_engine_get_time(const ma_engine* pEngine) { return ma_node_graph_get_time(&pEngine->nodeGraph); } MA_API ma_result ma_engine_set_time(ma_engine* pEngine, ma_uint64 globalTime) { return ma_node_graph_set_time(&pEngine->nodeGraph, globalTime); } MA_API ma_uint32 ma_engine_get_channels(const ma_engine* pEngine) { return ma_node_graph_get_channels(&pEngine->nodeGraph); } MA_API ma_uint32 ma_engine_get_sample_rate(const ma_engine* pEngine) { if (pEngine == NULL) { return 0; } return pEngine->sampleRate; } MA_API ma_result ma_engine_start(ma_engine* pEngine) { ma_result result; if (pEngine == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_DEVICE_IO) { if (pEngine->pDevice != NULL) { result = ma_device_start(pEngine->pDevice); } else { result = MA_INVALID_OPERATION; /* The engine is running without a device which means there's no real notion of "starting" the engine. */ } } #else { result = MA_INVALID_OPERATION; /* Device IO is disabled, so there's no real notion of "starting" the engine. */ } #endif if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_engine_stop(ma_engine* pEngine) { ma_result result; if (pEngine == NULL) { return MA_INVALID_ARGS; } #if !defined(MA_NO_DEVICE_IO) { if (pEngine->pDevice != NULL) { result = ma_device_stop(pEngine->pDevice); } else { result = MA_INVALID_OPERATION; /* The engine is running without a device which means there's no real notion of "stopping" the engine. */ } } #else { result = MA_INVALID_OPERATION; /* Device IO is disabled, so there's no real notion of "stopping" the engine. */ } #endif if (result != MA_SUCCESS) { return result; } return MA_SUCCESS; } MA_API ma_result ma_engine_set_volume(ma_engine* pEngine, float volume) { if (pEngine == NULL) { return MA_INVALID_ARGS; } return ma_node_set_output_bus_volume(ma_node_graph_get_endpoint(&pEngine->nodeGraph), 0, volume); } MA_API ma_result ma_engine_set_gain_db(ma_engine* pEngine, float gainDB) { if (pEngine == NULL) { return MA_INVALID_ARGS; } return ma_node_set_output_bus_volume(ma_node_graph_get_endpoint(&pEngine->nodeGraph), 0, ma_volume_db_to_linear(gainDB)); } MA_API ma_uint32 ma_engine_get_listener_count(const ma_engine* pEngine) { if (pEngine == NULL) { return 0; } return pEngine->listenerCount; } MA_API ma_uint32 ma_engine_find_closest_listener(const ma_engine* pEngine, float absolutePosX, float absolutePosY, float absolutePosZ) { ma_uint32 iListener; ma_uint32 iListenerClosest; float closestLen2 = MA_FLT_MAX; if (pEngine == NULL || pEngine->listenerCount == 1) { return 0; } iListenerClosest = 0; for (iListener = 0; iListener < pEngine->listenerCount; iListener += 1) { if (ma_engine_listener_is_enabled(pEngine, iListener)) { float len2 = ma_vec3f_len2(ma_vec3f_sub(pEngine->listeners[iListener].position, ma_vec3f_init_3f(absolutePosX, absolutePosY, absolutePosZ))); if (closestLen2 > len2) { closestLen2 = len2; iListenerClosest = iListener; } } } MA_ASSERT(iListenerClosest < 255); return iListenerClosest; } MA_API void ma_engine_listener_set_position(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return; } ma_spatializer_listener_set_position(&pEngine->listeners[listenerIndex], x, y, z); } MA_API ma_vec3f ma_engine_listener_get_position(const ma_engine* pEngine, ma_uint32 listenerIndex) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return ma_vec3f_init_3f(0, 0, 0); } return ma_spatializer_listener_get_position(&pEngine->listeners[listenerIndex]); } MA_API void ma_engine_listener_set_direction(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return; } ma_spatializer_listener_set_direction(&pEngine->listeners[listenerIndex], x, y, z); } MA_API ma_vec3f ma_engine_listener_get_direction(const ma_engine* pEngine, ma_uint32 listenerIndex) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return ma_vec3f_init_3f(0, 0, -1); } return ma_spatializer_listener_get_direction(&pEngine->listeners[listenerIndex]); } MA_API void ma_engine_listener_set_velocity(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return; } ma_spatializer_listener_set_velocity(&pEngine->listeners[listenerIndex], x, y, z); } MA_API ma_vec3f ma_engine_listener_get_velocity(const ma_engine* pEngine, ma_uint32 listenerIndex) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return ma_vec3f_init_3f(0, 0, 0); } return ma_spatializer_listener_get_velocity(&pEngine->listeners[listenerIndex]); } MA_API void ma_engine_listener_set_cone(ma_engine* pEngine, ma_uint32 listenerIndex, float innerAngleInRadians, float outerAngleInRadians, float outerGain) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return; } ma_spatializer_listener_set_cone(&pEngine->listeners[listenerIndex], innerAngleInRadians, outerAngleInRadians, outerGain); } MA_API void ma_engine_listener_get_cone(const ma_engine* pEngine, ma_uint32 listenerIndex, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain) { if (pInnerAngleInRadians != NULL) { *pInnerAngleInRadians = 0; } if (pOuterAngleInRadians != NULL) { *pOuterAngleInRadians = 0; } if (pOuterGain != NULL) { *pOuterGain = 0; } ma_spatializer_listener_get_cone(&pEngine->listeners[listenerIndex], pInnerAngleInRadians, pOuterAngleInRadians, pOuterGain); } MA_API void ma_engine_listener_set_world_up(ma_engine* pEngine, ma_uint32 listenerIndex, float x, float y, float z) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return; } ma_spatializer_listener_set_world_up(&pEngine->listeners[listenerIndex], x, y, z); } MA_API ma_vec3f ma_engine_listener_get_world_up(const ma_engine* pEngine, ma_uint32 listenerIndex) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return ma_vec3f_init_3f(0, 1, 0); } return ma_spatializer_listener_get_world_up(&pEngine->listeners[listenerIndex]); } MA_API void ma_engine_listener_set_enabled(ma_engine* pEngine, ma_uint32 listenerIndex, ma_bool32 isEnabled) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return; } ma_spatializer_listener_set_enabled(&pEngine->listeners[listenerIndex], isEnabled); } MA_API ma_bool32 ma_engine_listener_is_enabled(const ma_engine* pEngine, ma_uint32 listenerIndex) { if (pEngine == NULL || listenerIndex >= pEngine->listenerCount) { return MA_FALSE; } return ma_spatializer_listener_is_enabled(&pEngine->listeners[listenerIndex]); } #ifndef MA_NO_RESOURCE_MANAGER MA_API ma_result ma_engine_play_sound_ex(ma_engine* pEngine, const char* pFilePath, ma_node* pNode, ma_uint32 nodeInputBusIndex) { ma_result result = MA_SUCCESS; ma_sound_inlined* pSound = NULL; ma_sound_inlined* pNextSound = NULL; if (pEngine == NULL || pFilePath == NULL) { return MA_INVALID_ARGS; } /* Attach to the endpoint node if nothing is specicied. */ if (pNode == NULL) { pNode = ma_node_graph_get_endpoint(&pEngine->nodeGraph); nodeInputBusIndex = 0; } /* We want to check if we can recycle an already-allocated inlined sound. Since this is just a helper I'm not *too* concerned about performance here and I'm happy to use a lock to keep the implementation simple. Maybe this can be optimized later if there's enough demand, but if this function is being used it probably means the caller doesn't really care too much. What we do is check the atEnd flag. When this is true, we can recycle the sound. Otherwise we just keep iterating. If we reach the end without finding a sound to recycle we just allocate a new one. This doesn't scale well for a massive number of sounds being played simultaneously as we don't ever actually free the sound objects. Some kind of garbage collection routine might be valuable for this which I'll think about. */ ma_spinlock_lock(&pEngine->inlinedSoundLock); { ma_uint32 soundFlags = 0; for (pNextSound = pEngine->pInlinedSoundHead; pNextSound != NULL; pNextSound = pNextSound->pNext) { if (ma_sound_at_end(&pNextSound->sound)) { /* The sound is at the end which means it's available for recycling. All we need to do is uninitialize it and reinitialize it. All we're doing is recycling memory. */ pSound = pNextSound; c89atomic_fetch_sub_32(&pEngine->inlinedSoundCount, 1); break; } } if (pSound != NULL) { /* We actually want to detach the sound from the list here. The reason is because we want the sound to be in a consistent state at the non-recycled case to simplify the logic below. */ if (pEngine->pInlinedSoundHead == pSound) { pEngine->pInlinedSoundHead = pSound->pNext; } if (pSound->pPrev != NULL) { pSound->pPrev->pNext = pSound->pNext; } if (pSound->pNext != NULL) { pSound->pNext->pPrev = pSound->pPrev; } /* Now the previous sound needs to be uninitialized. */ ma_sound_uninit(&pNextSound->sound); } else { /* No sound available for recycling. Allocate one now. */ pSound = (ma_sound_inlined*)ma_malloc(sizeof(*pSound), &pEngine->allocationCallbacks); } if (pSound != NULL) { /* Safety check for the allocation above. */ /* At this point we should have memory allocated for the inlined sound. We just need to initialize it like a normal sound now. */ soundFlags |= MA_SOUND_FLAG_ASYNC; /* For inlined sounds we don't want to be sitting around waiting for stuff to load so force an async load. */ soundFlags |= MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT; /* We want specific control over where the sound is attached in the graph. We'll attach it manually just before playing the sound. */ soundFlags |= MA_SOUND_FLAG_NO_PITCH; /* Pitching isn't usable with inlined sounds, so disable it to save on speed. */ soundFlags |= MA_SOUND_FLAG_NO_SPATIALIZATION; /* Not currently doing spatialization with inlined sounds, but this might actually change later. For now disable spatialization. Will be removed if we ever add support for spatialization here. */ result = ma_sound_init_from_file(pEngine, pFilePath, soundFlags, NULL, NULL, &pSound->sound); if (result == MA_SUCCESS) { /* Now attach the sound to the graph. */ result = ma_node_attach_output_bus(pSound, 0, pNode, nodeInputBusIndex); if (result == MA_SUCCESS) { /* At this point the sound should be loaded and we can go ahead and add it to the list. The new item becomes the new head. */ pSound->pNext = pEngine->pInlinedSoundHead; pSound->pPrev = NULL; pEngine->pInlinedSoundHead = pSound; /* <-- This is what attaches the sound to the list. */ if (pSound->pNext != NULL) { pSound->pNext->pPrev = pSound; } } else { ma_free(pSound, &pEngine->allocationCallbacks); } } else { ma_free(pSound, &pEngine->allocationCallbacks); } } else { result = MA_OUT_OF_MEMORY; } } ma_spinlock_unlock(&pEngine->inlinedSoundLock); if (result != MA_SUCCESS) { return result; } /* Finally we can start playing the sound. */ result = ma_sound_start(&pSound->sound); if (result != MA_SUCCESS) { /* Failed to start the sound. We need to mark it for recycling and return an error. */ c89atomic_exchange_32(&pSound->sound.atEnd, MA_TRUE); return result; } c89atomic_fetch_add_32(&pEngine->inlinedSoundCount, 1); return result; } MA_API ma_result ma_engine_play_sound(ma_engine* pEngine, const char* pFilePath, ma_sound_group* pGroup) { return ma_engine_play_sound_ex(pEngine, pFilePath, pGroup, 0); } #endif static ma_result ma_sound_preinit(ma_engine* pEngine, ma_sound* pSound) { if (pSound == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pSound); pSound->seekTarget = MA_SEEK_TARGET_NONE; if (pEngine == NULL) { return MA_INVALID_ARGS; } return MA_SUCCESS; } static ma_result ma_sound_init_from_data_source_internal(ma_engine* pEngine, const ma_sound_config* pConfig, ma_sound* pSound) { ma_result result; ma_engine_node_config engineNodeConfig; ma_engine_node_type type; /* Will be set to ma_engine_node_type_group if no data source is specified. */ /* Do not clear pSound to zero here - that's done at a higher level with ma_sound_preinit(). */ MA_ASSERT(pEngine != NULL); MA_ASSERT(pSound != NULL); if (pConfig == NULL) { return MA_INVALID_ARGS; } pSound->pDataSource = pConfig->pDataSource; if (pConfig->pDataSource != NULL) { type = ma_engine_node_type_sound; } else { type = ma_engine_node_type_group; } /* Sounds are engine nodes. Before we can initialize this we need to determine the channel count. If we can't do this we need to abort. It's up to the caller to ensure they're using a data source that provides this information upfront. */ engineNodeConfig = ma_engine_node_config_init(pEngine, type, pConfig->flags); engineNodeConfig.channelsIn = pConfig->channelsIn; engineNodeConfig.channelsOut = pConfig->channelsOut; engineNodeConfig.monoExpansionMode = pConfig->monoExpansionMode; /* If we're loading from a data source the input channel count needs to be the data source's native channel count. */ if (pConfig->pDataSource != NULL) { result = ma_data_source_get_data_format(pConfig->pDataSource, NULL, &engineNodeConfig.channelsIn, &engineNodeConfig.sampleRate, NULL, 0); if (result != MA_SUCCESS) { return result; /* Failed to retrieve the channel count. */ } if (engineNodeConfig.channelsIn == 0) { return MA_INVALID_OPERATION; /* Invalid channel count. */ } if (engineNodeConfig.channelsOut == MA_SOUND_SOURCE_CHANNEL_COUNT) { engineNodeConfig.channelsOut = engineNodeConfig.channelsIn; } } /* Getting here means we should have a valid channel count and we can initialize the engine node. */ result = ma_engine_node_init(&engineNodeConfig, &pEngine->allocationCallbacks, &pSound->engineNode); if (result != MA_SUCCESS) { return result; } /* If no attachment is specified, attach the sound straight to the endpoint. */ if (pConfig->pInitialAttachment == NULL) { /* No group. Attach straight to the endpoint by default, unless the caller has requested that it not. */ if ((pConfig->flags & MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT) == 0) { result = ma_node_attach_output_bus(pSound, 0, ma_node_graph_get_endpoint(&pEngine->nodeGraph), 0); } } else { /* An attachment is specified. Attach to it by default. The sound has only a single output bus, and the config will specify which input bus to attach to. */ result = ma_node_attach_output_bus(pSound, 0, pConfig->pInitialAttachment, pConfig->initialAttachmentInputBusIndex); } if (result != MA_SUCCESS) { ma_engine_node_uninit(&pSound->engineNode, &pEngine->allocationCallbacks); return result; } /* Apply initial range and looping state to the data source if applicable. */ if (pConfig->rangeBegInPCMFrames != 0 || pConfig->rangeEndInPCMFrames != ~((ma_uint64)0)) { ma_data_source_set_range_in_pcm_frames(ma_sound_get_data_source(pSound), pConfig->rangeBegInPCMFrames, pConfig->rangeEndInPCMFrames); } if (pConfig->loopPointBegInPCMFrames != 0 || pConfig->loopPointEndInPCMFrames != ~((ma_uint64)0)) { ma_data_source_set_range_in_pcm_frames(ma_sound_get_data_source(pSound), pConfig->loopPointBegInPCMFrames, pConfig->loopPointEndInPCMFrames); } ma_sound_set_looping(pSound, pConfig->isLooping); return MA_SUCCESS; } #ifndef MA_NO_RESOURCE_MANAGER MA_API ma_result ma_sound_init_from_file_internal(ma_engine* pEngine, const ma_sound_config* pConfig, ma_sound* pSound) { ma_result result = MA_SUCCESS; ma_uint32 flags; ma_sound_config config; ma_resource_manager_pipeline_notifications notifications; /* The engine requires knowledge of the channel count of the underlying data source before it can initialize the sound. Therefore, we need to make the resource manager wait until initialization of the underlying data source to be initialized so we can get access to the channel count. To do this, the MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT is forced. Because we're initializing the data source before the sound, there's a chance the notification will get triggered before this function returns. This is OK, so long as the caller is aware of it and can avoid accessing the sound from within the notification. */ flags = pConfig->flags | MA_RESOURCE_MANAGER_DATA_SOURCE_FLAG_WAIT_INIT; pSound->pResourceManagerDataSource = (ma_resource_manager_data_source*)ma_malloc(sizeof(*pSound->pResourceManagerDataSource), &pEngine->allocationCallbacks); if (pSound->pResourceManagerDataSource == NULL) { return MA_OUT_OF_MEMORY; } notifications = ma_resource_manager_pipeline_notifications_init(); notifications.done.pFence = pConfig->pDoneFence; /* We must wrap everything around the fence if one was specified. This ensures ma_fence_wait() does not return prematurely before the sound has finished initializing. */ if (notifications.done.pFence) { ma_fence_acquire(notifications.done.pFence); } { ma_resource_manager_data_source_config resourceManagerDataSourceConfig = ma_resource_manager_data_source_config_init(); resourceManagerDataSourceConfig.pFilePath = pConfig->pFilePath; resourceManagerDataSourceConfig.pFilePathW = pConfig->pFilePathW; resourceManagerDataSourceConfig.flags = flags; resourceManagerDataSourceConfig.pNotifications = ¬ifications; resourceManagerDataSourceConfig.initialSeekPointInPCMFrames = pConfig->initialSeekPointInPCMFrames; resourceManagerDataSourceConfig.rangeBegInPCMFrames = pConfig->rangeBegInPCMFrames; resourceManagerDataSourceConfig.rangeEndInPCMFrames = pConfig->rangeEndInPCMFrames; resourceManagerDataSourceConfig.loopPointBegInPCMFrames = pConfig->loopPointBegInPCMFrames; resourceManagerDataSourceConfig.loopPointEndInPCMFrames = pConfig->loopPointEndInPCMFrames; resourceManagerDataSourceConfig.isLooping = pConfig->isLooping; result = ma_resource_manager_data_source_init_ex(pEngine->pResourceManager, &resourceManagerDataSourceConfig, pSound->pResourceManagerDataSource); if (result != MA_SUCCESS) { goto done; } pSound->ownsDataSource = MA_TRUE; /* <-- Important. Not setting this will result in the resource manager data source never getting uninitialized. */ /* We need to use a slightly customized version of the config so we'll need to make a copy. */ config = *pConfig; config.pFilePath = NULL; config.pFilePathW = NULL; config.pDataSource = pSound->pResourceManagerDataSource; result = ma_sound_init_from_data_source_internal(pEngine, &config, pSound); if (result != MA_SUCCESS) { ma_resource_manager_data_source_uninit(pSound->pResourceManagerDataSource); ma_free(pSound->pResourceManagerDataSource, &pEngine->allocationCallbacks); MA_ZERO_OBJECT(pSound); goto done; } } done: if (notifications.done.pFence) { ma_fence_release(notifications.done.pFence); } return result; } MA_API ma_result ma_sound_init_from_file(ma_engine* pEngine, const char* pFilePath, ma_uint32 flags, ma_sound_group* pGroup, ma_fence* pDoneFence, ma_sound* pSound) { ma_sound_config config = ma_sound_config_init_2(pEngine); config.pFilePath = pFilePath; config.flags = flags; config.pInitialAttachment = pGroup; config.pDoneFence = pDoneFence; return ma_sound_init_ex(pEngine, &config, pSound); } MA_API ma_result ma_sound_init_from_file_w(ma_engine* pEngine, const wchar_t* pFilePath, ma_uint32 flags, ma_sound_group* pGroup, ma_fence* pDoneFence, ma_sound* pSound) { ma_sound_config config = ma_sound_config_init_2(pEngine); config.pFilePathW = pFilePath; config.flags = flags; config.pInitialAttachment = pGroup; config.pDoneFence = pDoneFence; return ma_sound_init_ex(pEngine, &config, pSound); } MA_API ma_result ma_sound_init_copy(ma_engine* pEngine, const ma_sound* pExistingSound, ma_uint32 flags, ma_sound_group* pGroup, ma_sound* pSound) { ma_result result; ma_sound_config config; result = ma_sound_preinit(pEngine, pSound); if (result != MA_SUCCESS) { return result; } if (pExistingSound == NULL) { return MA_INVALID_ARGS; } /* Cloning only works for data buffers (not streams) that are loaded from the resource manager. */ if (pExistingSound->pResourceManagerDataSource == NULL) { return MA_INVALID_OPERATION; } /* We need to make a clone of the data source. If the data source is not a data buffer (i.e. a stream) the this will fail. */ pSound->pResourceManagerDataSource = (ma_resource_manager_data_source*)ma_malloc(sizeof(*pSound->pResourceManagerDataSource), &pEngine->allocationCallbacks); if (pSound->pResourceManagerDataSource == NULL) { return MA_OUT_OF_MEMORY; } result = ma_resource_manager_data_source_init_copy(pEngine->pResourceManager, pExistingSound->pResourceManagerDataSource, pSound->pResourceManagerDataSource); if (result != MA_SUCCESS) { ma_free(pSound->pResourceManagerDataSource, &pEngine->allocationCallbacks); return result; } config = ma_sound_config_init_2(pEngine); config.pDataSource = pSound->pResourceManagerDataSource; config.flags = flags; config.pInitialAttachment = pGroup; config.monoExpansionMode = pExistingSound->engineNode.monoExpansionMode; result = ma_sound_init_from_data_source_internal(pEngine, &config, pSound); if (result != MA_SUCCESS) { ma_resource_manager_data_source_uninit(pSound->pResourceManagerDataSource); ma_free(pSound->pResourceManagerDataSource, &pEngine->allocationCallbacks); MA_ZERO_OBJECT(pSound); return result; } return MA_SUCCESS; } #endif MA_API ma_result ma_sound_init_from_data_source(ma_engine* pEngine, ma_data_source* pDataSource, ma_uint32 flags, ma_sound_group* pGroup, ma_sound* pSound) { ma_sound_config config = ma_sound_config_init_2(pEngine); config.pDataSource = pDataSource; config.flags = flags; config.pInitialAttachment = pGroup; return ma_sound_init_ex(pEngine, &config, pSound); } MA_API ma_result ma_sound_init_ex(ma_engine* pEngine, const ma_sound_config* pConfig, ma_sound* pSound) { ma_result result; result = ma_sound_preinit(pEngine, pSound); if (result != MA_SUCCESS) { return result; } if (pConfig == NULL) { return MA_INVALID_ARGS; } /* We need to load the sound differently depending on whether or not we're loading from a file. */ #ifndef MA_NO_RESOURCE_MANAGER if (pConfig->pFilePath != NULL || pConfig->pFilePathW != NULL) { return ma_sound_init_from_file_internal(pEngine, pConfig, pSound); } else #endif { /* Getting here means we're not loading from a file. We may be loading from an already-initialized data source, or none at all. If we aren't specifying any data source, we'll be initializing the the equivalent to a group. ma_data_source_init_from_data_source_internal() will deal with this for us, so no special treatment required here. */ return ma_sound_init_from_data_source_internal(pEngine, pConfig, pSound); } } MA_API void ma_sound_uninit(ma_sound* pSound) { if (pSound == NULL) { return; } /* Always uninitialize the node first. This ensures it's detached from the graph and does not return until it has done so which makes thread safety beyond this point trivial. */ ma_engine_node_uninit(&pSound->engineNode, &pSound->engineNode.pEngine->allocationCallbacks); /* Once the sound is detached from the group we can guarantee that it won't be referenced by the mixer thread which means it's safe for us to destroy the data source. */ #ifndef MA_NO_RESOURCE_MANAGER if (pSound->ownsDataSource) { ma_resource_manager_data_source_uninit(pSound->pResourceManagerDataSource); ma_free(pSound->pResourceManagerDataSource, &pSound->engineNode.pEngine->allocationCallbacks); pSound->pDataSource = NULL; } #else MA_ASSERT(pSound->ownsDataSource == MA_FALSE); #endif } MA_API ma_engine* ma_sound_get_engine(const ma_sound* pSound) { if (pSound == NULL) { return NULL; } return pSound->engineNode.pEngine; } MA_API ma_data_source* ma_sound_get_data_source(const ma_sound* pSound) { if (pSound == NULL) { return NULL; } return pSound->pDataSource; } MA_API ma_result ma_sound_start(ma_sound* pSound) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* If the sound is already playing, do nothing. */ if (ma_sound_is_playing(pSound)) { return MA_SUCCESS; } /* If the sound is at the end it means we want to start from the start again. */ if (ma_sound_at_end(pSound)) { ma_result result = ma_data_source_seek_to_pcm_frame(pSound->pDataSource, 0); if (result != MA_SUCCESS && result != MA_NOT_IMPLEMENTED) { return result; /* Failed to seek back to the start. */ } /* Make sure we clear the end indicator. */ c89atomic_exchange_32(&pSound->atEnd, MA_FALSE); } /* Make sure the sound is started. If there's a start delay, the sound won't actually start until the start time is reached. */ ma_node_set_state(pSound, ma_node_state_started); return MA_SUCCESS; } MA_API ma_result ma_sound_stop(ma_sound* pSound) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* This will stop the sound immediately. Use ma_sound_set_stop_time() to stop the sound at a specific time. */ ma_node_set_state(pSound, ma_node_state_stopped); return MA_SUCCESS; } MA_API void ma_sound_set_volume(ma_sound* pSound, float volume) { if (pSound == NULL) { return; } /* The volume is controlled via the output bus. */ ma_node_set_output_bus_volume(pSound, 0, volume); } MA_API float ma_sound_get_volume(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_node_get_output_bus_volume(pSound, 0); } MA_API void ma_sound_set_pan(ma_sound* pSound, float pan) { if (pSound == NULL) { return; } ma_panner_set_pan(&pSound->engineNode.panner, pan); } MA_API float ma_sound_get_pan(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_panner_get_pan(&pSound->engineNode.panner); } MA_API void ma_sound_set_pan_mode(ma_sound* pSound, ma_pan_mode panMode) { if (pSound == NULL) { return; } ma_panner_set_mode(&pSound->engineNode.panner, panMode); } MA_API ma_pan_mode ma_sound_get_pan_mode(const ma_sound* pSound) { if (pSound == NULL) { return ma_pan_mode_balance; } return ma_panner_get_mode(&pSound->engineNode.panner); } MA_API void ma_sound_set_pitch(ma_sound* pSound, float pitch) { if (pSound == NULL) { return; } if (pitch <= 0) { return; } c89atomic_exchange_explicit_f32(&pSound->engineNode.pitch, pitch, c89atomic_memory_order_release); } MA_API float ma_sound_get_pitch(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return c89atomic_load_f32(&pSound->engineNode.pitch); /* Naughty const-cast for this. */ } MA_API void ma_sound_set_spatialization_enabled(ma_sound* pSound, ma_bool32 enabled) { if (pSound == NULL) { return; } c89atomic_exchange_explicit_32(&pSound->engineNode.isSpatializationDisabled, !enabled, c89atomic_memory_order_release); } MA_API ma_bool32 ma_sound_is_spatialization_enabled(const ma_sound* pSound) { if (pSound == NULL) { return MA_FALSE; } return ma_engine_node_is_spatialization_enabled(&pSound->engineNode); } MA_API void ma_sound_set_pinned_listener_index(ma_sound* pSound, ma_uint32 listenerIndex) { if (pSound == NULL || listenerIndex >= ma_engine_get_listener_count(ma_sound_get_engine(pSound))) { return; } c89atomic_exchange_explicit_32(&pSound->engineNode.pinnedListenerIndex, listenerIndex, c89atomic_memory_order_release); } MA_API ma_uint32 ma_sound_get_pinned_listener_index(const ma_sound* pSound) { if (pSound == NULL) { return MA_LISTENER_INDEX_CLOSEST; } return c89atomic_load_explicit_32(&pSound->engineNode.pinnedListenerIndex, c89atomic_memory_order_acquire); } MA_API ma_uint32 ma_sound_get_listener_index(const ma_sound* pSound) { ma_uint32 listenerIndex; if (pSound == NULL) { return 0; } listenerIndex = ma_sound_get_pinned_listener_index(pSound); if (listenerIndex == MA_LISTENER_INDEX_CLOSEST) { ma_vec3f position = ma_sound_get_position(pSound); return ma_engine_find_closest_listener(ma_sound_get_engine(pSound), position.x, position.y, position.z); } return listenerIndex; } MA_API ma_vec3f ma_sound_get_direction_to_listener(const ma_sound* pSound) { ma_vec3f relativePos; ma_engine* pEngine; if (pSound == NULL) { return ma_vec3f_init_3f(0, 0, -1); } pEngine = ma_sound_get_engine(pSound); if (pEngine == NULL) { return ma_vec3f_init_3f(0, 0, -1); } ma_spatializer_get_relative_position_and_direction(&pSound->engineNode.spatializer, &pEngine->listeners[ma_sound_get_listener_index(pSound)], &relativePos, NULL); return ma_vec3f_normalize(ma_vec3f_neg(relativePos)); } MA_API void ma_sound_set_position(ma_sound* pSound, float x, float y, float z) { if (pSound == NULL) { return; } ma_spatializer_set_position(&pSound->engineNode.spatializer, x, y, z); } MA_API ma_vec3f ma_sound_get_position(const ma_sound* pSound) { if (pSound == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return ma_spatializer_get_position(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_direction(ma_sound* pSound, float x, float y, float z) { if (pSound == NULL) { return; } ma_spatializer_set_direction(&pSound->engineNode.spatializer, x, y, z); } MA_API ma_vec3f ma_sound_get_direction(const ma_sound* pSound) { if (pSound == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return ma_spatializer_get_direction(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_velocity(ma_sound* pSound, float x, float y, float z) { if (pSound == NULL) { return; } ma_spatializer_set_velocity(&pSound->engineNode.spatializer, x, y, z); } MA_API ma_vec3f ma_sound_get_velocity(const ma_sound* pSound) { if (pSound == NULL) { return ma_vec3f_init_3f(0, 0, 0); } return ma_spatializer_get_velocity(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_attenuation_model(ma_sound* pSound, ma_attenuation_model attenuationModel) { if (pSound == NULL) { return; } ma_spatializer_set_attenuation_model(&pSound->engineNode.spatializer, attenuationModel); } MA_API ma_attenuation_model ma_sound_get_attenuation_model(const ma_sound* pSound) { if (pSound == NULL) { return ma_attenuation_model_none; } return ma_spatializer_get_attenuation_model(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_positioning(ma_sound* pSound, ma_positioning positioning) { if (pSound == NULL) { return; } ma_spatializer_set_positioning(&pSound->engineNode.spatializer, positioning); } MA_API ma_positioning ma_sound_get_positioning(const ma_sound* pSound) { if (pSound == NULL) { return ma_positioning_absolute; } return ma_spatializer_get_positioning(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_rolloff(ma_sound* pSound, float rolloff) { if (pSound == NULL) { return; } ma_spatializer_set_rolloff(&pSound->engineNode.spatializer, rolloff); } MA_API float ma_sound_get_rolloff(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_spatializer_get_rolloff(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_min_gain(ma_sound* pSound, float minGain) { if (pSound == NULL) { return; } ma_spatializer_set_min_gain(&pSound->engineNode.spatializer, minGain); } MA_API float ma_sound_get_min_gain(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_spatializer_get_min_gain(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_max_gain(ma_sound* pSound, float maxGain) { if (pSound == NULL) { return; } ma_spatializer_set_max_gain(&pSound->engineNode.spatializer, maxGain); } MA_API float ma_sound_get_max_gain(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_spatializer_get_max_gain(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_min_distance(ma_sound* pSound, float minDistance) { if (pSound == NULL) { return; } ma_spatializer_set_min_distance(&pSound->engineNode.spatializer, minDistance); } MA_API float ma_sound_get_min_distance(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_spatializer_get_min_distance(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_max_distance(ma_sound* pSound, float maxDistance) { if (pSound == NULL) { return; } ma_spatializer_set_max_distance(&pSound->engineNode.spatializer, maxDistance); } MA_API float ma_sound_get_max_distance(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_spatializer_get_max_distance(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_cone(ma_sound* pSound, float innerAngleInRadians, float outerAngleInRadians, float outerGain) { if (pSound == NULL) { return; } ma_spatializer_set_cone(&pSound->engineNode.spatializer, innerAngleInRadians, outerAngleInRadians, outerGain); } MA_API void ma_sound_get_cone(const ma_sound* pSound, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain) { if (pInnerAngleInRadians != NULL) { *pInnerAngleInRadians = 0; } if (pOuterAngleInRadians != NULL) { *pOuterAngleInRadians = 0; } if (pOuterGain != NULL) { *pOuterGain = 0; } ma_spatializer_get_cone(&pSound->engineNode.spatializer, pInnerAngleInRadians, pOuterAngleInRadians, pOuterGain); } MA_API void ma_sound_set_doppler_factor(ma_sound* pSound, float dopplerFactor) { if (pSound == NULL) { return; } ma_spatializer_set_doppler_factor(&pSound->engineNode.spatializer, dopplerFactor); } MA_API float ma_sound_get_doppler_factor(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_spatializer_get_doppler_factor(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_directional_attenuation_factor(ma_sound* pSound, float directionalAttenuationFactor) { if (pSound == NULL) { return; } ma_spatializer_set_directional_attenuation_factor(&pSound->engineNode.spatializer, directionalAttenuationFactor); } MA_API float ma_sound_get_directional_attenuation_factor(const ma_sound* pSound) { if (pSound == NULL) { return 1; } return ma_spatializer_get_directional_attenuation_factor(&pSound->engineNode.spatializer); } MA_API void ma_sound_set_fade_in_pcm_frames(ma_sound* pSound, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInFrames) { if (pSound == NULL) { return; } ma_fader_set_fade(&pSound->engineNode.fader, volumeBeg, volumeEnd, fadeLengthInFrames); } MA_API void ma_sound_set_fade_in_milliseconds(ma_sound* pSound, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInMilliseconds) { if (pSound == NULL) { return; } ma_sound_set_fade_in_pcm_frames(pSound, volumeBeg, volumeEnd, (fadeLengthInMilliseconds * pSound->engineNode.fader.config.sampleRate) / 1000); } MA_API float ma_sound_get_current_fade_volume(ma_sound* pSound) { if (pSound == NULL) { return MA_INVALID_ARGS; } return ma_fader_get_current_volume(&pSound->engineNode.fader); } MA_API void ma_sound_set_start_time_in_pcm_frames(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInFrames) { if (pSound == NULL) { return; } ma_node_set_state_time(pSound, ma_node_state_started, absoluteGlobalTimeInFrames); } MA_API void ma_sound_set_start_time_in_milliseconds(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInMilliseconds) { if (pSound == NULL) { return; } ma_sound_set_start_time_in_pcm_frames(pSound, absoluteGlobalTimeInMilliseconds * ma_engine_get_sample_rate(ma_sound_get_engine(pSound)) / 1000); } MA_API void ma_sound_set_stop_time_in_pcm_frames(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInFrames) { if (pSound == NULL) { return; } ma_node_set_state_time(pSound, ma_node_state_stopped, absoluteGlobalTimeInFrames); } MA_API void ma_sound_set_stop_time_in_milliseconds(ma_sound* pSound, ma_uint64 absoluteGlobalTimeInMilliseconds) { if (pSound == NULL) { return; } ma_sound_set_stop_time_in_pcm_frames(pSound, absoluteGlobalTimeInMilliseconds * ma_engine_get_sample_rate(ma_sound_get_engine(pSound)) / 1000); } MA_API ma_bool32 ma_sound_is_playing(const ma_sound* pSound) { if (pSound == NULL) { return MA_FALSE; } return ma_node_get_state_by_time(pSound, ma_engine_get_time(ma_sound_get_engine(pSound))) == ma_node_state_started; } MA_API ma_uint64 ma_sound_get_time_in_pcm_frames(const ma_sound* pSound) { if (pSound == NULL) { return 0; } return ma_node_get_time(pSound); } MA_API void ma_sound_set_looping(ma_sound* pSound, ma_bool32 isLooping) { if (pSound == NULL) { return; } /* Looping is only a valid concept if the sound is backed by a data source. */ if (pSound->pDataSource == NULL) { return; } /* The looping state needs to be applied to the data source in order for any looping to actually happen. */ ma_data_source_set_looping(pSound->pDataSource, isLooping); } MA_API ma_bool32 ma_sound_is_looping(const ma_sound* pSound) { if (pSound == NULL) { return MA_FALSE; } /* There is no notion of looping for sounds that are not backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_FALSE; } return ma_data_source_is_looping(pSound->pDataSource); } MA_API ma_bool32 ma_sound_at_end(const ma_sound* pSound) { if (pSound == NULL) { return MA_FALSE; } /* There is no notion of an end of a sound if it's not backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_FALSE; } return c89atomic_load_32(&pSound->atEnd); } MA_API ma_result ma_sound_seek_to_pcm_frame(ma_sound* pSound, ma_uint64 frameIndex) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* Seeking is only valid for sounds that are backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_INVALID_OPERATION; } /* We can't be seeking while reading at the same time. We just set the seek target and get the mixing thread to do the actual seek. */ c89atomic_exchange_64(&pSound->seekTarget, frameIndex); return MA_SUCCESS; } MA_API ma_result ma_sound_get_data_format(ma_sound* pSound, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap, size_t channelMapCap) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* The data format is retrieved directly from the data source if the sound is backed by one. Otherwise we pull it from the node. */ if (pSound->pDataSource == NULL) { ma_uint32 channels; if (pFormat != NULL) { *pFormat = ma_format_f32; } channels = ma_node_get_input_channels(&pSound->engineNode, 0); if (pChannels != NULL) { *pChannels = channels; } if (pSampleRate != NULL) { *pSampleRate = pSound->engineNode.resampler.config.sampleRateIn; } if (pChannelMap != NULL) { ma_channel_map_init_standard(ma_standard_channel_map_default, pChannelMap, channelMapCap, channels); } return MA_SUCCESS; } else { return ma_data_source_get_data_format(pSound->pDataSource, pFormat, pChannels, pSampleRate, pChannelMap, channelMapCap); } } MA_API ma_result ma_sound_get_cursor_in_pcm_frames(ma_sound* pSound, ma_uint64* pCursor) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* The notion of a cursor is only valid for sounds that are backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_INVALID_OPERATION; } return ma_data_source_get_cursor_in_pcm_frames(pSound->pDataSource, pCursor); } MA_API ma_result ma_sound_get_length_in_pcm_frames(ma_sound* pSound, ma_uint64* pLength) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* The notion of a sound length is only valid for sounds that are backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_INVALID_OPERATION; } return ma_data_source_get_length_in_pcm_frames(pSound->pDataSource, pLength); } MA_API ma_result ma_sound_get_cursor_in_seconds(ma_sound* pSound, float* pCursor) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* The notion of a cursor is only valid for sounds that are backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_INVALID_OPERATION; } return ma_data_source_get_cursor_in_seconds(pSound->pDataSource, pCursor); } MA_API ma_result ma_sound_get_length_in_seconds(ma_sound* pSound, float* pLength) { if (pSound == NULL) { return MA_INVALID_ARGS; } /* The notion of a sound length is only valid for sounds that are backed by a data source. */ if (pSound->pDataSource == NULL) { return MA_INVALID_OPERATION; } return ma_data_source_get_length_in_seconds(pSound->pDataSource, pLength); } MA_API ma_result ma_sound_group_init(ma_engine* pEngine, ma_uint32 flags, ma_sound_group* pParentGroup, ma_sound_group* pGroup) { ma_sound_group_config config = ma_sound_group_config_init_2(pEngine); config.flags = flags; config.pInitialAttachment = pParentGroup; return ma_sound_group_init_ex(pEngine, &config, pGroup); } MA_API ma_result ma_sound_group_init_ex(ma_engine* pEngine, const ma_sound_group_config* pConfig, ma_sound_group* pGroup) { ma_sound_config soundConfig; if (pGroup == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pGroup); if (pConfig == NULL) { return MA_INVALID_ARGS; } /* A sound group is just a sound without a data source. */ soundConfig = *pConfig; soundConfig.pFilePath = NULL; soundConfig.pFilePathW = NULL; soundConfig.pDataSource = NULL; /* Groups need to have spatialization disabled by default because I think it'll be pretty rare that programs will want to spatialize groups (but not unheard of). Certainly it feels like disabling this by default feels like the right option. Spatialization can be enabled with a call to ma_sound_group_set_spatialization_enabled(). */ soundConfig.flags |= MA_SOUND_FLAG_NO_SPATIALIZATION; return ma_sound_init_ex(pEngine, &soundConfig, pGroup); } MA_API void ma_sound_group_uninit(ma_sound_group* pGroup) { ma_sound_uninit(pGroup); } MA_API ma_engine* ma_sound_group_get_engine(const ma_sound_group* pGroup) { return ma_sound_get_engine(pGroup); } MA_API ma_result ma_sound_group_start(ma_sound_group* pGroup) { return ma_sound_start(pGroup); } MA_API ma_result ma_sound_group_stop(ma_sound_group* pGroup) { return ma_sound_stop(pGroup); } MA_API void ma_sound_group_set_volume(ma_sound_group* pGroup, float volume) { ma_sound_set_volume(pGroup, volume); } MA_API float ma_sound_group_get_volume(const ma_sound_group* pGroup) { return ma_sound_get_volume(pGroup); } MA_API void ma_sound_group_set_pan(ma_sound_group* pGroup, float pan) { ma_sound_set_pan(pGroup, pan); } MA_API float ma_sound_group_get_pan(const ma_sound_group* pGroup) { return ma_sound_get_pan(pGroup); } MA_API void ma_sound_group_set_pan_mode(ma_sound_group* pGroup, ma_pan_mode panMode) { ma_sound_set_pan_mode(pGroup, panMode); } MA_API ma_pan_mode ma_sound_group_get_pan_mode(const ma_sound_group* pGroup) { return ma_sound_get_pan_mode(pGroup); } MA_API void ma_sound_group_set_pitch(ma_sound_group* pGroup, float pitch) { ma_sound_set_pitch(pGroup, pitch); } MA_API float ma_sound_group_get_pitch(const ma_sound_group* pGroup) { return ma_sound_get_pitch(pGroup); } MA_API void ma_sound_group_set_spatialization_enabled(ma_sound_group* pGroup, ma_bool32 enabled) { ma_sound_set_spatialization_enabled(pGroup, enabled); } MA_API ma_bool32 ma_sound_group_is_spatialization_enabled(const ma_sound_group* pGroup) { return ma_sound_is_spatialization_enabled(pGroup); } MA_API void ma_sound_group_set_pinned_listener_index(ma_sound_group* pGroup, ma_uint32 listenerIndex) { ma_sound_set_pinned_listener_index(pGroup, listenerIndex); } MA_API ma_uint32 ma_sound_group_get_pinned_listener_index(const ma_sound_group* pGroup) { return ma_sound_get_pinned_listener_index(pGroup); } MA_API ma_uint32 ma_sound_group_get_listener_index(const ma_sound_group* pGroup) { return ma_sound_get_listener_index(pGroup); } MA_API ma_vec3f ma_sound_group_get_direction_to_listener(const ma_sound_group* pGroup) { return ma_sound_get_direction_to_listener(pGroup); } MA_API void ma_sound_group_set_position(ma_sound_group* pGroup, float x, float y, float z) { ma_sound_set_position(pGroup, x, y, z); } MA_API ma_vec3f ma_sound_group_get_position(const ma_sound_group* pGroup) { return ma_sound_get_position(pGroup); } MA_API void ma_sound_group_set_direction(ma_sound_group* pGroup, float x, float y, float z) { ma_sound_set_direction(pGroup, x, y, z); } MA_API ma_vec3f ma_sound_group_get_direction(const ma_sound_group* pGroup) { return ma_sound_get_direction(pGroup); } MA_API void ma_sound_group_set_velocity(ma_sound_group* pGroup, float x, float y, float z) { ma_sound_set_velocity(pGroup, x, y, z); } MA_API ma_vec3f ma_sound_group_get_velocity(const ma_sound_group* pGroup) { return ma_sound_get_velocity(pGroup); } MA_API void ma_sound_group_set_attenuation_model(ma_sound_group* pGroup, ma_attenuation_model attenuationModel) { ma_sound_set_attenuation_model(pGroup, attenuationModel); } MA_API ma_attenuation_model ma_sound_group_get_attenuation_model(const ma_sound_group* pGroup) { return ma_sound_get_attenuation_model(pGroup); } MA_API void ma_sound_group_set_positioning(ma_sound_group* pGroup, ma_positioning positioning) { ma_sound_set_positioning(pGroup, positioning); } MA_API ma_positioning ma_sound_group_get_positioning(const ma_sound_group* pGroup) { return ma_sound_get_positioning(pGroup); } MA_API void ma_sound_group_set_rolloff(ma_sound_group* pGroup, float rolloff) { ma_sound_set_rolloff(pGroup, rolloff); } MA_API float ma_sound_group_get_rolloff(const ma_sound_group* pGroup) { return ma_sound_get_rolloff(pGroup); } MA_API void ma_sound_group_set_min_gain(ma_sound_group* pGroup, float minGain) { ma_sound_set_min_gain(pGroup, minGain); } MA_API float ma_sound_group_get_min_gain(const ma_sound_group* pGroup) { return ma_sound_get_min_gain(pGroup); } MA_API void ma_sound_group_set_max_gain(ma_sound_group* pGroup, float maxGain) { ma_sound_set_max_gain(pGroup, maxGain); } MA_API float ma_sound_group_get_max_gain(const ma_sound_group* pGroup) { return ma_sound_get_max_gain(pGroup); } MA_API void ma_sound_group_set_min_distance(ma_sound_group* pGroup, float minDistance) { ma_sound_set_min_distance(pGroup, minDistance); } MA_API float ma_sound_group_get_min_distance(const ma_sound_group* pGroup) { return ma_sound_get_min_distance(pGroup); } MA_API void ma_sound_group_set_max_distance(ma_sound_group* pGroup, float maxDistance) { ma_sound_set_max_distance(pGroup, maxDistance); } MA_API float ma_sound_group_get_max_distance(const ma_sound_group* pGroup) { return ma_sound_get_max_distance(pGroup); } MA_API void ma_sound_group_set_cone(ma_sound_group* pGroup, float innerAngleInRadians, float outerAngleInRadians, float outerGain) { ma_sound_set_cone(pGroup, innerAngleInRadians, outerAngleInRadians, outerGain); } MA_API void ma_sound_group_get_cone(const ma_sound_group* pGroup, float* pInnerAngleInRadians, float* pOuterAngleInRadians, float* pOuterGain) { ma_sound_get_cone(pGroup, pInnerAngleInRadians, pOuterAngleInRadians, pOuterGain); } MA_API void ma_sound_group_set_doppler_factor(ma_sound_group* pGroup, float dopplerFactor) { ma_sound_set_doppler_factor(pGroup, dopplerFactor); } MA_API float ma_sound_group_get_doppler_factor(const ma_sound_group* pGroup) { return ma_sound_get_doppler_factor(pGroup); } MA_API void ma_sound_group_set_directional_attenuation_factor(ma_sound_group* pGroup, float directionalAttenuationFactor) { ma_sound_set_directional_attenuation_factor(pGroup, directionalAttenuationFactor); } MA_API float ma_sound_group_get_directional_attenuation_factor(const ma_sound_group* pGroup) { return ma_sound_get_directional_attenuation_factor(pGroup); } MA_API void ma_sound_group_set_fade_in_pcm_frames(ma_sound_group* pGroup, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInFrames) { ma_sound_set_fade_in_pcm_frames(pGroup, volumeBeg, volumeEnd, fadeLengthInFrames); } MA_API void ma_sound_group_set_fade_in_milliseconds(ma_sound_group* pGroup, float volumeBeg, float volumeEnd, ma_uint64 fadeLengthInMilliseconds) { ma_sound_set_fade_in_milliseconds(pGroup, volumeBeg, volumeEnd, fadeLengthInMilliseconds); } MA_API float ma_sound_group_get_current_fade_volume(ma_sound_group* pGroup) { return ma_sound_get_current_fade_volume(pGroup); } MA_API void ma_sound_group_set_start_time_in_pcm_frames(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInFrames) { ma_sound_set_start_time_in_pcm_frames(pGroup, absoluteGlobalTimeInFrames); } MA_API void ma_sound_group_set_start_time_in_milliseconds(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInMilliseconds) { ma_sound_set_start_time_in_milliseconds(pGroup, absoluteGlobalTimeInMilliseconds); } MA_API void ma_sound_group_set_stop_time_in_pcm_frames(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInFrames) { ma_sound_set_stop_time_in_pcm_frames(pGroup, absoluteGlobalTimeInFrames); } MA_API void ma_sound_group_set_stop_time_in_milliseconds(ma_sound_group* pGroup, ma_uint64 absoluteGlobalTimeInMilliseconds) { ma_sound_set_stop_time_in_milliseconds(pGroup, absoluteGlobalTimeInMilliseconds); } MA_API ma_bool32 ma_sound_group_is_playing(const ma_sound_group* pGroup) { return ma_sound_is_playing(pGroup); } MA_API ma_uint64 ma_sound_group_get_time_in_pcm_frames(const ma_sound_group* pGroup) { return ma_sound_get_time_in_pcm_frames(pGroup); } #endif /* MA_NO_ENGINE */ /* END SECTION: miniaudio_engine.c */ /************************************************************************************************************************************************************** *************************************************************************************************************************************************************** Auto Generated ============== All code below is auto-generated from a tool. This mostly consists of decoding backend implementations such as dr_wav, dr_flac, etc. If you find a bug in the code below please report the bug to the respective repository for the relevant project (probably dr_libs). *************************************************************************************************************************************************************** **************************************************************************************************************************************************************/ #if !defined(MA_NO_WAV) && (!defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING)) #if !defined(DR_WAV_IMPLEMENTATION) && !defined(DRWAV_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */ /* dr_wav_c begin */ #ifndef dr_wav_c #define dr_wav_c #ifdef __MRC__ #pragma options opt off #endif #include #include #include #ifndef DR_WAV_NO_STDIO #include #ifndef DR_WAV_NO_WCHAR #include #endif #endif #ifndef DRWAV_ASSERT #include #define DRWAV_ASSERT(expression) assert(expression) #endif #ifndef DRWAV_MALLOC #define DRWAV_MALLOC(sz) malloc((sz)) #endif #ifndef DRWAV_REALLOC #define DRWAV_REALLOC(p, sz) realloc((p), (sz)) #endif #ifndef DRWAV_FREE #define DRWAV_FREE(p) free((p)) #endif #ifndef DRWAV_COPY_MEMORY #define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) #endif #ifndef DRWAV_ZERO_MEMORY #define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) #endif #ifndef DRWAV_ZERO_OBJECT #define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p)) #endif #define drwav_countof(x) (sizeof(x) / sizeof(x[0])) #define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) #define drwav_min(a, b) (((a) < (b)) ? (a) : (b)) #define drwav_max(a, b) (((a) > (b)) ? (a) : (b)) #define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x)))) #define drwav_offset_ptr(p, offset) (((drwav_uint8*)(p)) + (offset)) #define DRWAV_MAX_SIMD_VECTOR_SIZE 64 #if defined(__x86_64__) || defined(_M_X64) #define DRWAV_X64 #elif defined(__i386) || defined(_M_IX86) #define DRWAV_X86 #elif defined(__arm__) || defined(_M_ARM) #define DRWAV_ARM #endif #ifdef _MSC_VER #define DRWAV_INLINE __forceinline #elif defined(__GNUC__) #if defined(__STRICT_ANSI__) #define DRWAV_GNUC_INLINE_HINT __inline__ #else #define DRWAV_GNUC_INLINE_HINT inline #endif #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 2)) || defined(__clang__) #define DRWAV_INLINE DRWAV_GNUC_INLINE_HINT __attribute__((always_inline)) #else #define DRWAV_INLINE DRWAV_GNUC_INLINE_HINT #endif #elif defined(__WATCOMC__) #define DRWAV_INLINE __inline #else #define DRWAV_INLINE #endif #if defined(SIZE_MAX) #define DRWAV_SIZE_MAX SIZE_MAX #else #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) #define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF) #else #define DRWAV_SIZE_MAX 0xFFFFFFFF #endif #endif #if defined(_MSC_VER) && _MSC_VER >= 1400 #define DRWAV_HAS_BYTESWAP16_INTRINSIC #define DRWAV_HAS_BYTESWAP32_INTRINSIC #define DRWAV_HAS_BYTESWAP64_INTRINSIC #elif defined(__clang__) #if defined(__has_builtin) #if __has_builtin(__builtin_bswap16) #define DRWAV_HAS_BYTESWAP16_INTRINSIC #endif #if __has_builtin(__builtin_bswap32) #define DRWAV_HAS_BYTESWAP32_INTRINSIC #endif #if __has_builtin(__builtin_bswap64) #define DRWAV_HAS_BYTESWAP64_INTRINSIC #endif #endif #elif defined(__GNUC__) #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define DRWAV_HAS_BYTESWAP32_INTRINSIC #define DRWAV_HAS_BYTESWAP64_INTRINSIC #endif #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #define DRWAV_HAS_BYTESWAP16_INTRINSIC #endif #endif DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision) { if (pMajor) { *pMajor = DRWAV_VERSION_MAJOR; } if (pMinor) { *pMinor = DRWAV_VERSION_MINOR; } if (pRevision) { *pRevision = DRWAV_VERSION_REVISION; } } DRWAV_API const char* drwav_version_string(void) { return DRWAV_VERSION_STRING; } #ifndef DRWAV_MAX_SAMPLE_RATE #define DRWAV_MAX_SAMPLE_RATE 384000 #endif #ifndef DRWAV_MAX_CHANNELS #define DRWAV_MAX_CHANNELS 256 #endif #ifndef DRWAV_MAX_BITS_PER_SAMPLE #define DRWAV_MAX_BITS_PER_SAMPLE 64 #endif static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; static DRWAV_INLINE int drwav__is_little_endian(void) { #if defined(DRWAV_X86) || defined(DRWAV_X64) return DRWAV_TRUE; #elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN return DRWAV_TRUE; #else int n = 1; return (*(char*)&n) == 1; #endif } static DRWAV_INLINE void drwav_bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid) { int i; for (i = 0; i < 16; ++i) { guid[i] = data[i]; } } static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n) { #ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC #if defined(_MSC_VER) return _byteswap_ushort(n); #elif defined(__GNUC__) || defined(__clang__) return __builtin_bswap16(n); #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); #endif } static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n) { #ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC #if defined(_MSC_VER) return _byteswap_ulong(n); #elif defined(__GNUC__) || defined(__clang__) #if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT) drwav_uint32 r; __asm__ __volatile__ ( #if defined(DRWAV_64BIT) "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) #else "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) #endif ); return r; #else return __builtin_bswap32(n); #endif #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & 0xFF000000) >> 24) | ((n & 0x00FF0000) >> 8) | ((n & 0x0000FF00) << 8) | ((n & 0x000000FF) << 24); #endif } static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n) { #ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC #if defined(_MSC_VER) return _byteswap_uint64(n); #elif defined(__GNUC__) || defined(__clang__) return __builtin_bswap64(n); #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & ((drwav_uint64)0xFF000000 << 32)) >> 56) | ((n & ((drwav_uint64)0x00FF0000 << 32)) >> 40) | ((n & ((drwav_uint64)0x0000FF00 << 32)) >> 24) | ((n & ((drwav_uint64)0x000000FF << 32)) >> 8) | ((n & ((drwav_uint64)0xFF000000 )) << 8) | ((n & ((drwav_uint64)0x00FF0000 )) << 24) | ((n & ((drwav_uint64)0x0000FF00 )) << 40) | ((n & ((drwav_uint64)0x000000FF )) << 56); #endif } static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n) { return (drwav_int16)drwav__bswap16((drwav_uint16)n); } static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount) { drwav_uint64 iSample; for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]); } } static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p) { drwav_uint8 t; t = p[0]; p[0] = p[2]; p[2] = t; } static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount) { drwav_uint64 iSample; for (iSample = 0; iSample < sampleCount; iSample += 1) { drwav_uint8* pSample = pSamples + (iSample*3); drwav__bswap_s24(pSample); } } static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n) { return (drwav_int32)drwav__bswap32((drwav_uint32)n); } static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount) { drwav_uint64 iSample; for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]); } } static DRWAV_INLINE float drwav__bswap_f32(float n) { union { drwav_uint32 i; float f; } x; x.f = n; x.i = drwav__bswap32(x.i); return x.f; } static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount) { drwav_uint64 iSample; for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]); } } static DRWAV_INLINE double drwav__bswap_f64(double n) { union { drwav_uint64 i; double f; } x; x.f = n; x.i = drwav__bswap64(x.i); return x.f; } static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount) { drwav_uint64 iSample; for (iSample = 0; iSample < sampleCount; iSample += 1) { pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]); } } static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample) { switch (bytesPerSample) { case 1: { } break; case 2: { drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount); } break; case 3: { drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount); } break; case 4: { drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount); } break; default: { DRWAV_ASSERT(DRWAV_FALSE); } break; } } static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample) { switch (bytesPerSample) { #if 0 case 2: { drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount); } break; #endif case 4: { drwav__bswap_samples_f32((float*)pSamples, sampleCount); } break; case 8: { drwav__bswap_samples_f64((double*)pSamples, sampleCount); } break; default: { DRWAV_ASSERT(DRWAV_FALSE); } break; } } static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format) { switch (format) { case DR_WAVE_FORMAT_PCM: { drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample); } break; case DR_WAVE_FORMAT_IEEE_FLOAT: { drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample); } break; case DR_WAVE_FORMAT_ALAW: case DR_WAVE_FORMAT_MULAW: { drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount); } break; case DR_WAVE_FORMAT_ADPCM: case DR_WAVE_FORMAT_DVI_ADPCM: default: { DRWAV_ASSERT(DRWAV_FALSE); } break; } } DRWAV_PRIVATE void* drwav__malloc_default(size_t sz, void* pUserData) { (void)pUserData; return DRWAV_MALLOC(sz); } DRWAV_PRIVATE void* drwav__realloc_default(void* p, size_t sz, void* pUserData) { (void)pUserData; return DRWAV_REALLOC(p, sz); } DRWAV_PRIVATE void drwav__free_default(void* p, void* pUserData) { (void)pUserData; DRWAV_FREE(p); } DRWAV_PRIVATE void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks == NULL) { return NULL; } if (pAllocationCallbacks->onMalloc != NULL) { return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); } if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); } return NULL; } DRWAV_PRIVATE void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks == NULL) { return NULL; } if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); } if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { void* p2; p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); if (p2 == NULL) { return NULL; } if (p != NULL) { DRWAV_COPY_MEMORY(p2, p, szOld); pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } return p2; } return NULL; } DRWAV_PRIVATE void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks) { if (p == NULL || pAllocationCallbacks == NULL) { return; } if (pAllocationCallbacks->onFree != NULL) { pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } } DRWAV_PRIVATE drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { return *pAllocationCallbacks; } else { drwav_allocation_callbacks allocationCallbacks; allocationCallbacks.pUserData = NULL; allocationCallbacks.onMalloc = drwav__malloc_default; allocationCallbacks.onRealloc = drwav__realloc_default; allocationCallbacks.onFree = drwav__free_default; return allocationCallbacks; } } static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag) { return formatTag == DR_WAVE_FORMAT_ADPCM || formatTag == DR_WAVE_FORMAT_DVI_ADPCM; } DRWAV_PRIVATE unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize) { return (unsigned int)(chunkSize % 2); } DRWAV_PRIVATE unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize) { return (unsigned int)(chunkSize % 8); } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut); DRWAV_PRIVATE drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount); DRWAV_PRIVATE drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut) { if (container == drwav_container_riff || container == drwav_container_rf64) { drwav_uint8 sizeInBytes[4]; if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) { return DRWAV_AT_END; } if (onRead(pUserData, sizeInBytes, 4) != 4) { return DRWAV_INVALID_FILE; } pHeaderOut->sizeInBytes = drwav_bytes_to_u32(sizeInBytes); pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes); *pRunningBytesReadOut += 8; } else { drwav_uint8 sizeInBytes[8]; if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) { return DRWAV_AT_END; } if (onRead(pUserData, sizeInBytes, 8) != 8) { return DRWAV_INVALID_FILE; } pHeaderOut->sizeInBytes = drwav_bytes_to_u64(sizeInBytes) - 24; pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes); *pRunningBytesReadOut += 24; } return DRWAV_SUCCESS; } DRWAV_PRIVATE drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) { drwav_uint64 bytesRemainingToSeek = offset; while (bytesRemainingToSeek > 0) { if (bytesRemainingToSeek > 0x7FFFFFFF) { if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { return DRWAV_FALSE; } bytesRemainingToSeek -= 0x7FFFFFFF; } else { if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) { return DRWAV_FALSE; } bytesRemainingToSeek = 0; } } return DRWAV_TRUE; } DRWAV_PRIVATE drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData) { if (offset <= 0x7FFFFFFF) { return onSeek(pUserData, (int)offset, drwav_seek_origin_start); } if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) { return DRWAV_FALSE; } offset -= 0x7FFFFFFF; for (;;) { if (offset <= 0x7FFFFFFF) { return onSeek(pUserData, (int)offset, drwav_seek_origin_current); } if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) { return DRWAV_FALSE; } offset -= 0x7FFFFFFF; } } DRWAV_PRIVATE drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut) { drwav_chunk_header header; drwav_uint8 fmt[16]; if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) { return DRWAV_FALSE; } while (((container == drwav_container_riff || container == drwav_container_rf64) && !drwav_fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav_guid_equal(header.id.guid, drwavGUID_W64_FMT))) { if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) { return DRWAV_FALSE; } *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize; if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) { return DRWAV_FALSE; } } if (container == drwav_container_riff || container == drwav_container_rf64) { if (!drwav_fourcc_equal(header.id.fourcc, "fmt ")) { return DRWAV_FALSE; } } else { if (!drwav_guid_equal(header.id.guid, drwavGUID_W64_FMT)) { return DRWAV_FALSE; } } if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) { return DRWAV_FALSE; } *pRunningBytesReadOut += sizeof(fmt); fmtOut->formatTag = drwav_bytes_to_u16(fmt + 0); fmtOut->channels = drwav_bytes_to_u16(fmt + 2); fmtOut->sampleRate = drwav_bytes_to_u32(fmt + 4); fmtOut->avgBytesPerSec = drwav_bytes_to_u32(fmt + 8); fmtOut->blockAlign = drwav_bytes_to_u16(fmt + 12); fmtOut->bitsPerSample = drwav_bytes_to_u16(fmt + 14); fmtOut->extendedSize = 0; fmtOut->validBitsPerSample = 0; fmtOut->channelMask = 0; DRWAV_ZERO_MEMORY(fmtOut->subFormat, sizeof(fmtOut->subFormat)); if (header.sizeInBytes > 16) { drwav_uint8 fmt_cbSize[2]; int bytesReadSoFar = 0; if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) { return DRWAV_FALSE; } *pRunningBytesReadOut += sizeof(fmt_cbSize); bytesReadSoFar = 18; fmtOut->extendedSize = drwav_bytes_to_u16(fmt_cbSize); if (fmtOut->extendedSize > 0) { if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { if (fmtOut->extendedSize != 22) { return DRWAV_FALSE; } } if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) { drwav_uint8 fmtext[22]; if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) { return DRWAV_FALSE; } fmtOut->validBitsPerSample = drwav_bytes_to_u16(fmtext + 0); fmtOut->channelMask = drwav_bytes_to_u32(fmtext + 2); drwav_bytes_to_guid(fmtext + 6, fmtOut->subFormat); } else { if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) { return DRWAV_FALSE; } } *pRunningBytesReadOut += fmtOut->extendedSize; bytesReadSoFar += fmtOut->extendedSize; } if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) { return DRWAV_FALSE; } *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar); } if (header.paddingSize > 0) { if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) { return DRWAV_FALSE; } *pRunningBytesReadOut += header.paddingSize; } return DRWAV_TRUE; } DRWAV_PRIVATE size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor) { size_t bytesRead; DRWAV_ASSERT(onRead != NULL); DRWAV_ASSERT(pCursor != NULL); bytesRead = onRead(pUserData, pBufferOut, bytesToRead); *pCursor += bytesRead; return bytesRead; } #if 0 DRWAV_PRIVATE drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor) { DRWAV_ASSERT(onSeek != NULL); DRWAV_ASSERT(pCursor != NULL); if (!onSeek(pUserData, offset, origin)) { return DRWAV_FALSE; } if (origin == drwav_seek_origin_start) { *pCursor = offset; } else { *pCursor += offset; } return DRWAV_TRUE; } #endif #define DRWAV_SMPL_BYTES 36 #define DRWAV_SMPL_LOOP_BYTES 24 #define DRWAV_INST_BYTES 7 #define DRWAV_ACID_BYTES 24 #define DRWAV_CUE_BYTES 4 #define DRWAV_BEXT_BYTES 602 #define DRWAV_BEXT_DESCRIPTION_BYTES 256 #define DRWAV_BEXT_ORIGINATOR_NAME_BYTES 32 #define DRWAV_BEXT_ORIGINATOR_REF_BYTES 32 #define DRWAV_BEXT_RESERVED_BYTES 180 #define DRWAV_BEXT_UMID_BYTES 64 #define DRWAV_CUE_POINT_BYTES 24 #define DRWAV_LIST_LABEL_OR_NOTE_BYTES 4 #define DRWAV_LIST_LABELLED_TEXT_BYTES 20 #define DRWAV_METADATA_ALIGNMENT 8 typedef enum { drwav__metadata_parser_stage_count, drwav__metadata_parser_stage_read } drwav__metadata_parser_stage; typedef struct { drwav_read_proc onRead; drwav_seek_proc onSeek; void *pReadSeekUserData; drwav__metadata_parser_stage stage; drwav_metadata *pMetadata; drwav_uint32 metadataCount; drwav_uint8 *pData; drwav_uint8 *pDataCursor; drwav_uint64 metadataCursor; drwav_uint64 extraCapacity; } drwav__metadata_parser; DRWAV_PRIVATE size_t drwav__metadata_memory_capacity(drwav__metadata_parser* pParser) { drwav_uint64 cap = sizeof(drwav_metadata) * (drwav_uint64)pParser->metadataCount + pParser->extraCapacity; if (cap > DRWAV_SIZE_MAX) { return 0; } return (size_t)cap; } DRWAV_PRIVATE drwav_uint8* drwav__metadata_get_memory(drwav__metadata_parser* pParser, size_t size, size_t align) { drwav_uint8* pResult; if (align) { drwav_uintptr modulo = (drwav_uintptr)pParser->pDataCursor % align; if (modulo != 0) { pParser->pDataCursor += align - modulo; } } pResult = pParser->pDataCursor; DRWAV_ASSERT((pResult + size) <= (pParser->pData + drwav__metadata_memory_capacity(pParser))); pParser->pDataCursor += size; return pResult; } DRWAV_PRIVATE void drwav__metadata_request_extra_memory_for_stage_2(drwav__metadata_parser* pParser, size_t bytes, size_t align) { size_t extra = bytes + (align ? (align - 1) : 0); pParser->extraCapacity += extra; } DRWAV_PRIVATE drwav_result drwav__metadata_alloc(drwav__metadata_parser* pParser, drwav_allocation_callbacks* pAllocationCallbacks) { if (pParser->extraCapacity != 0 || pParser->metadataCount != 0) { pAllocationCallbacks->onFree(pParser->pData, pAllocationCallbacks->pUserData); pParser->pData = (drwav_uint8*)pAllocationCallbacks->onMalloc(drwav__metadata_memory_capacity(pParser), pAllocationCallbacks->pUserData); pParser->pDataCursor = pParser->pData; if (pParser->pData == NULL) { return DRWAV_OUT_OF_MEMORY; } pParser->pMetadata = (drwav_metadata*)drwav__metadata_get_memory(pParser, sizeof(drwav_metadata) * pParser->metadataCount, 1); pParser->metadataCursor = 0; } return DRWAV_SUCCESS; } DRWAV_PRIVATE size_t drwav__metadata_parser_read(drwav__metadata_parser* pParser, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor) { if (pCursor != NULL) { return drwav__on_read(pParser->onRead, pParser->pReadSeekUserData, pBufferOut, bytesToRead, pCursor); } else { return pParser->onRead(pParser->pReadSeekUserData, pBufferOut, bytesToRead); } } DRWAV_PRIVATE drwav_uint64 drwav__read_smpl_to_metadata_obj(drwav__metadata_parser* pParser, const drwav_chunk_header* pChunkHeader, drwav_metadata* pMetadata) { drwav_uint8 smplHeaderData[DRWAV_SMPL_BYTES]; drwav_uint64 totalBytesRead = 0; size_t bytesJustRead = drwav__metadata_parser_read(pParser, smplHeaderData, sizeof(smplHeaderData), &totalBytesRead); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); DRWAV_ASSERT(pChunkHeader != NULL); if (bytesJustRead == sizeof(smplHeaderData)) { drwav_uint32 iSampleLoop; pMetadata->type = drwav_metadata_type_smpl; pMetadata->data.smpl.manufacturerId = drwav_bytes_to_u32(smplHeaderData + 0); pMetadata->data.smpl.productId = drwav_bytes_to_u32(smplHeaderData + 4); pMetadata->data.smpl.samplePeriodNanoseconds = drwav_bytes_to_u32(smplHeaderData + 8); pMetadata->data.smpl.midiUnityNote = drwav_bytes_to_u32(smplHeaderData + 12); pMetadata->data.smpl.midiPitchFraction = drwav_bytes_to_u32(smplHeaderData + 16); pMetadata->data.smpl.smpteFormat = drwav_bytes_to_u32(smplHeaderData + 20); pMetadata->data.smpl.smpteOffset = drwav_bytes_to_u32(smplHeaderData + 24); pMetadata->data.smpl.sampleLoopCount = drwav_bytes_to_u32(smplHeaderData + 28); pMetadata->data.smpl.samplerSpecificDataSizeInBytes = drwav_bytes_to_u32(smplHeaderData + 32); if (pMetadata->data.smpl.sampleLoopCount == (pChunkHeader->sizeInBytes - DRWAV_SMPL_BYTES) / DRWAV_SMPL_LOOP_BYTES) { pMetadata->data.smpl.pLoops = (drwav_smpl_loop*)drwav__metadata_get_memory(pParser, sizeof(drwav_smpl_loop) * pMetadata->data.smpl.sampleLoopCount, DRWAV_METADATA_ALIGNMENT); for (iSampleLoop = 0; iSampleLoop < pMetadata->data.smpl.sampleLoopCount; ++iSampleLoop) { drwav_uint8 smplLoopData[DRWAV_SMPL_LOOP_BYTES]; bytesJustRead = drwav__metadata_parser_read(pParser, smplLoopData, sizeof(smplLoopData), &totalBytesRead); if (bytesJustRead == sizeof(smplLoopData)) { pMetadata->data.smpl.pLoops[iSampleLoop].cuePointId = drwav_bytes_to_u32(smplLoopData + 0); pMetadata->data.smpl.pLoops[iSampleLoop].type = drwav_bytes_to_u32(smplLoopData + 4); pMetadata->data.smpl.pLoops[iSampleLoop].firstSampleByteOffset = drwav_bytes_to_u32(smplLoopData + 8); pMetadata->data.smpl.pLoops[iSampleLoop].lastSampleByteOffset = drwav_bytes_to_u32(smplLoopData + 12); pMetadata->data.smpl.pLoops[iSampleLoop].sampleFraction = drwav_bytes_to_u32(smplLoopData + 16); pMetadata->data.smpl.pLoops[iSampleLoop].playCount = drwav_bytes_to_u32(smplLoopData + 20); } else { break; } } if (pMetadata->data.smpl.samplerSpecificDataSizeInBytes > 0) { pMetadata->data.smpl.pSamplerSpecificData = drwav__metadata_get_memory(pParser, pMetadata->data.smpl.samplerSpecificDataSizeInBytes, 1); DRWAV_ASSERT(pMetadata->data.smpl.pSamplerSpecificData != NULL); drwav__metadata_parser_read(pParser, pMetadata->data.smpl.pSamplerSpecificData, pMetadata->data.smpl.samplerSpecificDataSizeInBytes, &totalBytesRead); } } } return totalBytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__read_cue_to_metadata_obj(drwav__metadata_parser* pParser, const drwav_chunk_header* pChunkHeader, drwav_metadata* pMetadata) { drwav_uint8 cueHeaderSectionData[DRWAV_CUE_BYTES]; drwav_uint64 totalBytesRead = 0; size_t bytesJustRead = drwav__metadata_parser_read(pParser, cueHeaderSectionData, sizeof(cueHeaderSectionData), &totalBytesRead); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); if (bytesJustRead == sizeof(cueHeaderSectionData)) { pMetadata->type = drwav_metadata_type_cue; pMetadata->data.cue.cuePointCount = drwav_bytes_to_u32(cueHeaderSectionData); if (pMetadata->data.cue.cuePointCount == (pChunkHeader->sizeInBytes - DRWAV_CUE_BYTES) / DRWAV_CUE_POINT_BYTES) { pMetadata->data.cue.pCuePoints = (drwav_cue_point*)drwav__metadata_get_memory(pParser, sizeof(drwav_cue_point) * pMetadata->data.cue.cuePointCount, DRWAV_METADATA_ALIGNMENT); DRWAV_ASSERT(pMetadata->data.cue.pCuePoints != NULL); if (pMetadata->data.cue.cuePointCount > 0) { drwav_uint32 iCuePoint; for (iCuePoint = 0; iCuePoint < pMetadata->data.cue.cuePointCount; ++iCuePoint) { drwav_uint8 cuePointData[DRWAV_CUE_POINT_BYTES]; bytesJustRead = drwav__metadata_parser_read(pParser, cuePointData, sizeof(cuePointData), &totalBytesRead); if (bytesJustRead == sizeof(cuePointData)) { pMetadata->data.cue.pCuePoints[iCuePoint].id = drwav_bytes_to_u32(cuePointData + 0); pMetadata->data.cue.pCuePoints[iCuePoint].playOrderPosition = drwav_bytes_to_u32(cuePointData + 4); pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[0] = cuePointData[8]; pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[1] = cuePointData[9]; pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[2] = cuePointData[10]; pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[3] = cuePointData[11]; pMetadata->data.cue.pCuePoints[iCuePoint].chunkStart = drwav_bytes_to_u32(cuePointData + 12); pMetadata->data.cue.pCuePoints[iCuePoint].blockStart = drwav_bytes_to_u32(cuePointData + 16); pMetadata->data.cue.pCuePoints[iCuePoint].sampleByteOffset = drwav_bytes_to_u32(cuePointData + 20); } else { break; } } } } } return totalBytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__read_inst_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata) { drwav_uint8 instData[DRWAV_INST_BYTES]; drwav_uint64 bytesRead = drwav__metadata_parser_read(pParser, instData, sizeof(instData), NULL); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); if (bytesRead == sizeof(instData)) { pMetadata->type = drwav_metadata_type_inst; pMetadata->data.inst.midiUnityNote = (drwav_int8)instData[0]; pMetadata->data.inst.fineTuneCents = (drwav_int8)instData[1]; pMetadata->data.inst.gainDecibels = (drwav_int8)instData[2]; pMetadata->data.inst.lowNote = (drwav_int8)instData[3]; pMetadata->data.inst.highNote = (drwav_int8)instData[4]; pMetadata->data.inst.lowVelocity = (drwav_int8)instData[5]; pMetadata->data.inst.highVelocity = (drwav_int8)instData[6]; } return bytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__read_acid_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata) { drwav_uint8 acidData[DRWAV_ACID_BYTES]; drwav_uint64 bytesRead = drwav__metadata_parser_read(pParser, acidData, sizeof(acidData), NULL); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); if (bytesRead == sizeof(acidData)) { pMetadata->type = drwav_metadata_type_acid; pMetadata->data.acid.flags = drwav_bytes_to_u32(acidData + 0); pMetadata->data.acid.midiUnityNote = drwav_bytes_to_u16(acidData + 4); pMetadata->data.acid.reserved1 = drwav_bytes_to_u16(acidData + 6); pMetadata->data.acid.reserved2 = drwav_bytes_to_f32(acidData + 8); pMetadata->data.acid.numBeats = drwav_bytes_to_u32(acidData + 12); pMetadata->data.acid.meterDenominator = drwav_bytes_to_u16(acidData + 16); pMetadata->data.acid.meterNumerator = drwav_bytes_to_u16(acidData + 18); pMetadata->data.acid.tempo = drwav_bytes_to_f32(acidData + 20); } return bytesRead; } DRWAV_PRIVATE size_t drwav__strlen(const char* str) { size_t result = 0; while (*str++) { result += 1; } return result; } DRWAV_PRIVATE size_t drwav__strlen_clamped(const char* str, size_t maxToRead) { size_t result = 0; while (*str++ && result < maxToRead) { result += 1; } return result; } DRWAV_PRIVATE char* drwav__metadata_copy_string(drwav__metadata_parser* pParser, const char* str, size_t maxToRead) { size_t len = drwav__strlen_clamped(str, maxToRead); if (len) { char* result = (char*)drwav__metadata_get_memory(pParser, len + 1, 1); DRWAV_ASSERT(result != NULL); DRWAV_COPY_MEMORY(result, str, len); result[len] = '\0'; return result; } else { return NULL; } } typedef struct { const void* pBuffer; size_t sizeInBytes; size_t cursor; } drwav_buffer_reader; DRWAV_PRIVATE drwav_result drwav_buffer_reader_init(const void* pBuffer, size_t sizeInBytes, drwav_buffer_reader* pReader) { DRWAV_ASSERT(pBuffer != NULL); DRWAV_ASSERT(pReader != NULL); DRWAV_ZERO_OBJECT(pReader); pReader->pBuffer = pBuffer; pReader->sizeInBytes = sizeInBytes; pReader->cursor = 0; return DRWAV_SUCCESS; } DRWAV_PRIVATE const void* drwav_buffer_reader_ptr(const drwav_buffer_reader* pReader) { DRWAV_ASSERT(pReader != NULL); return drwav_offset_ptr(pReader->pBuffer, pReader->cursor); } DRWAV_PRIVATE drwav_result drwav_buffer_reader_seek(drwav_buffer_reader* pReader, size_t bytesToSeek) { DRWAV_ASSERT(pReader != NULL); if (pReader->cursor + bytesToSeek > pReader->sizeInBytes) { return DRWAV_BAD_SEEK; } pReader->cursor += bytesToSeek; return DRWAV_SUCCESS; } DRWAV_PRIVATE drwav_result drwav_buffer_reader_read(drwav_buffer_reader* pReader, void* pDst, size_t bytesToRead, size_t* pBytesRead) { drwav_result result = DRWAV_SUCCESS; size_t bytesRemaining; DRWAV_ASSERT(pReader != NULL); if (pBytesRead != NULL) { *pBytesRead = 0; } bytesRemaining = (pReader->sizeInBytes - pReader->cursor); if (bytesToRead > bytesRemaining) { bytesToRead = bytesRemaining; } if (pDst == NULL) { result = drwav_buffer_reader_seek(pReader, bytesToRead); } else { DRWAV_COPY_MEMORY(pDst, drwav_buffer_reader_ptr(pReader), bytesToRead); pReader->cursor += bytesToRead; } DRWAV_ASSERT(pReader->cursor <= pReader->sizeInBytes); if (result == DRWAV_SUCCESS) { if (pBytesRead != NULL) { *pBytesRead = bytesToRead; } } return DRWAV_SUCCESS; } DRWAV_PRIVATE drwav_result drwav_buffer_reader_read_u16(drwav_buffer_reader* pReader, drwav_uint16* pDst) { drwav_result result; size_t bytesRead; drwav_uint8 data[2]; DRWAV_ASSERT(pReader != NULL); DRWAV_ASSERT(pDst != NULL); *pDst = 0; result = drwav_buffer_reader_read(pReader, data, sizeof(*pDst), &bytesRead); if (result != DRWAV_SUCCESS || bytesRead != sizeof(*pDst)) { return result; } *pDst = drwav_bytes_to_u16(data); return DRWAV_SUCCESS; } DRWAV_PRIVATE drwav_result drwav_buffer_reader_read_u32(drwav_buffer_reader* pReader, drwav_uint32* pDst) { drwav_result result; size_t bytesRead; drwav_uint8 data[4]; DRWAV_ASSERT(pReader != NULL); DRWAV_ASSERT(pDst != NULL); *pDst = 0; result = drwav_buffer_reader_read(pReader, data, sizeof(*pDst), &bytesRead); if (result != DRWAV_SUCCESS || bytesRead != sizeof(*pDst)) { return result; } *pDst = drwav_bytes_to_u32(data); return DRWAV_SUCCESS; } DRWAV_PRIVATE drwav_uint64 drwav__read_bext_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata, drwav_uint64 chunkSize) { drwav_uint8 bextData[DRWAV_BEXT_BYTES]; size_t bytesRead = drwav__metadata_parser_read(pParser, bextData, sizeof(bextData), NULL); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); if (bytesRead == sizeof(bextData)) { drwav_buffer_reader reader; drwav_uint32 timeReferenceLow; drwav_uint32 timeReferenceHigh; size_t extraBytes; pMetadata->type = drwav_metadata_type_bext; if (drwav_buffer_reader_init(bextData, bytesRead, &reader) == DRWAV_SUCCESS) { pMetadata->data.bext.pDescription = drwav__metadata_copy_string(pParser, (const char*)drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_DESCRIPTION_BYTES); drwav_buffer_reader_seek(&reader, DRWAV_BEXT_DESCRIPTION_BYTES); pMetadata->data.bext.pOriginatorName = drwav__metadata_copy_string(pParser, (const char*)drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_ORIGINATOR_NAME_BYTES); drwav_buffer_reader_seek(&reader, DRWAV_BEXT_ORIGINATOR_NAME_BYTES); pMetadata->data.bext.pOriginatorReference = drwav__metadata_copy_string(pParser, (const char*)drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_ORIGINATOR_REF_BYTES); drwav_buffer_reader_seek(&reader, DRWAV_BEXT_ORIGINATOR_REF_BYTES); drwav_buffer_reader_read(&reader, pMetadata->data.bext.pOriginationDate, sizeof(pMetadata->data.bext.pOriginationDate), NULL); drwav_buffer_reader_read(&reader, pMetadata->data.bext.pOriginationTime, sizeof(pMetadata->data.bext.pOriginationTime), NULL); drwav_buffer_reader_read_u32(&reader, &timeReferenceLow); drwav_buffer_reader_read_u32(&reader, &timeReferenceHigh); pMetadata->data.bext.timeReference = ((drwav_uint64)timeReferenceHigh << 32) + timeReferenceLow; drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.version); pMetadata->data.bext.pUMID = drwav__metadata_get_memory(pParser, DRWAV_BEXT_UMID_BYTES, 1); drwav_buffer_reader_read(&reader, pMetadata->data.bext.pUMID, DRWAV_BEXT_UMID_BYTES, NULL); drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.loudnessValue); drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.loudnessRange); drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.maxTruePeakLevel); drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.maxMomentaryLoudness); drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.maxShortTermLoudness); DRWAV_ASSERT((drwav_offset_ptr(drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_RESERVED_BYTES)) == (bextData + DRWAV_BEXT_BYTES)); extraBytes = (size_t)(chunkSize - DRWAV_BEXT_BYTES); if (extraBytes > 0) { pMetadata->data.bext.pCodingHistory = (char*)drwav__metadata_get_memory(pParser, extraBytes + 1, 1); DRWAV_ASSERT(pMetadata->data.bext.pCodingHistory != NULL); bytesRead += drwav__metadata_parser_read(pParser, pMetadata->data.bext.pCodingHistory, extraBytes, NULL); pMetadata->data.bext.codingHistorySize = (drwav_uint32)drwav__strlen(pMetadata->data.bext.pCodingHistory); } else { pMetadata->data.bext.pCodingHistory = NULL; pMetadata->data.bext.codingHistorySize = 0; } } } return bytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__read_list_label_or_note_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata, drwav_uint64 chunkSize, drwav_metadata_type type) { drwav_uint8 cueIDBuffer[DRWAV_LIST_LABEL_OR_NOTE_BYTES]; drwav_uint64 totalBytesRead = 0; size_t bytesJustRead = drwav__metadata_parser_read(pParser, cueIDBuffer, sizeof(cueIDBuffer), &totalBytesRead); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); if (bytesJustRead == sizeof(cueIDBuffer)) { drwav_uint32 sizeIncludingNullTerminator; pMetadata->type = type; pMetadata->data.labelOrNote.cuePointId = drwav_bytes_to_u32(cueIDBuffer); sizeIncludingNullTerminator = (drwav_uint32)chunkSize - DRWAV_LIST_LABEL_OR_NOTE_BYTES; if (sizeIncludingNullTerminator > 0) { pMetadata->data.labelOrNote.stringLength = sizeIncludingNullTerminator - 1; pMetadata->data.labelOrNote.pString = (char*)drwav__metadata_get_memory(pParser, sizeIncludingNullTerminator, 1); DRWAV_ASSERT(pMetadata->data.labelOrNote.pString != NULL); drwav__metadata_parser_read(pParser, pMetadata->data.labelOrNote.pString, sizeIncludingNullTerminator, &totalBytesRead); } else { pMetadata->data.labelOrNote.stringLength = 0; pMetadata->data.labelOrNote.pString = NULL; } } return totalBytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__read_list_labelled_cue_region_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata, drwav_uint64 chunkSize) { drwav_uint8 buffer[DRWAV_LIST_LABELLED_TEXT_BYTES]; drwav_uint64 totalBytesRead = 0; size_t bytesJustRead = drwav__metadata_parser_read(pParser, buffer, sizeof(buffer), &totalBytesRead); DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read); if (bytesJustRead == sizeof(buffer)) { drwav_uint32 sizeIncludingNullTerminator; pMetadata->type = drwav_metadata_type_list_labelled_cue_region; pMetadata->data.labelledCueRegion.cuePointId = drwav_bytes_to_u32(buffer + 0); pMetadata->data.labelledCueRegion.sampleLength = drwav_bytes_to_u32(buffer + 4); pMetadata->data.labelledCueRegion.purposeId[0] = buffer[8]; pMetadata->data.labelledCueRegion.purposeId[1] = buffer[9]; pMetadata->data.labelledCueRegion.purposeId[2] = buffer[10]; pMetadata->data.labelledCueRegion.purposeId[3] = buffer[11]; pMetadata->data.labelledCueRegion.country = drwav_bytes_to_u16(buffer + 12); pMetadata->data.labelledCueRegion.language = drwav_bytes_to_u16(buffer + 14); pMetadata->data.labelledCueRegion.dialect = drwav_bytes_to_u16(buffer + 16); pMetadata->data.labelledCueRegion.codePage = drwav_bytes_to_u16(buffer + 18); sizeIncludingNullTerminator = (drwav_uint32)chunkSize - DRWAV_LIST_LABELLED_TEXT_BYTES; if (sizeIncludingNullTerminator > 0) { pMetadata->data.labelledCueRegion.stringLength = sizeIncludingNullTerminator - 1; pMetadata->data.labelledCueRegion.pString = (char*)drwav__metadata_get_memory(pParser, sizeIncludingNullTerminator, 1); DRWAV_ASSERT(pMetadata->data.labelledCueRegion.pString != NULL); drwav__metadata_parser_read(pParser, pMetadata->data.labelledCueRegion.pString, sizeIncludingNullTerminator, &totalBytesRead); } else { pMetadata->data.labelledCueRegion.stringLength = 0; pMetadata->data.labelledCueRegion.pString = NULL; } } return totalBytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__metadata_process_info_text_chunk(drwav__metadata_parser* pParser, drwav_uint64 chunkSize, drwav_metadata_type type) { drwav_uint64 bytesRead = 0; drwav_uint32 stringSizeWithNullTerminator = (drwav_uint32)chunkSize; if (pParser->stage == drwav__metadata_parser_stage_count) { pParser->metadataCount += 1; drwav__metadata_request_extra_memory_for_stage_2(pParser, stringSizeWithNullTerminator, 1); } else { drwav_metadata* pMetadata = &pParser->pMetadata[pParser->metadataCursor]; pMetadata->type = type; if (stringSizeWithNullTerminator > 0) { pMetadata->data.infoText.stringLength = stringSizeWithNullTerminator - 1; pMetadata->data.infoText.pString = (char*)drwav__metadata_get_memory(pParser, stringSizeWithNullTerminator, 1); DRWAV_ASSERT(pMetadata->data.infoText.pString != NULL); bytesRead = drwav__metadata_parser_read(pParser, pMetadata->data.infoText.pString, (size_t)stringSizeWithNullTerminator, NULL); if (bytesRead == chunkSize) { pParser->metadataCursor += 1; } else { } } else { pMetadata->data.infoText.stringLength = 0; pMetadata->data.infoText.pString = NULL; pParser->metadataCursor += 1; } } return bytesRead; } DRWAV_PRIVATE drwav_uint64 drwav__metadata_process_unknown_chunk(drwav__metadata_parser* pParser, const drwav_uint8* pChunkId, drwav_uint64 chunkSize, drwav_metadata_location location) { drwav_uint64 bytesRead = 0; if (location == drwav_metadata_location_invalid) { return 0; } if (drwav_fourcc_equal(pChunkId, "data") || drwav_fourcc_equal(pChunkId, "fmt") || drwav_fourcc_equal(pChunkId, "fact")) { return 0; } if (pParser->stage == drwav__metadata_parser_stage_count) { pParser->metadataCount += 1; drwav__metadata_request_extra_memory_for_stage_2(pParser, (size_t)chunkSize, 1); } else { drwav_metadata* pMetadata = &pParser->pMetadata[pParser->metadataCursor]; pMetadata->type = drwav_metadata_type_unknown; pMetadata->data.unknown.chunkLocation = location; pMetadata->data.unknown.id[0] = pChunkId[0]; pMetadata->data.unknown.id[1] = pChunkId[1]; pMetadata->data.unknown.id[2] = pChunkId[2]; pMetadata->data.unknown.id[3] = pChunkId[3]; pMetadata->data.unknown.dataSizeInBytes = (drwav_uint32)chunkSize; pMetadata->data.unknown.pData = (drwav_uint8 *)drwav__metadata_get_memory(pParser, (size_t)chunkSize, 1); DRWAV_ASSERT(pMetadata->data.unknown.pData != NULL); bytesRead = drwav__metadata_parser_read(pParser, pMetadata->data.unknown.pData, pMetadata->data.unknown.dataSizeInBytes, NULL); if (bytesRead == pMetadata->data.unknown.dataSizeInBytes) { pParser->metadataCursor += 1; } else { } } return bytesRead; } DRWAV_PRIVATE drwav_bool32 drwav__chunk_matches(drwav_metadata_type allowedMetadataTypes, const drwav_uint8* pChunkID, drwav_metadata_type type, const char* pID) { return (allowedMetadataTypes & type) && drwav_fourcc_equal(pChunkID, pID); } DRWAV_PRIVATE drwav_uint64 drwav__metadata_process_chunk(drwav__metadata_parser* pParser, const drwav_chunk_header* pChunkHeader, drwav_metadata_type allowedMetadataTypes) { const drwav_uint8 *pChunkID = pChunkHeader->id.fourcc; drwav_uint64 bytesRead = 0; if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_smpl, "smpl")) { if (pChunkHeader->sizeInBytes >= DRWAV_SMPL_BYTES) { if (pParser->stage == drwav__metadata_parser_stage_count) { drwav_uint8 buffer[4]; size_t bytesJustRead; if (!pParser->onSeek(pParser->pReadSeekUserData, 28, drwav_seek_origin_current)) { return bytesRead; } bytesRead += 28; bytesJustRead = drwav__metadata_parser_read(pParser, buffer, sizeof(buffer), &bytesRead); if (bytesJustRead == sizeof(buffer)) { drwav_uint32 loopCount = drwav_bytes_to_u32(buffer); drwav_uint64 calculatedLoopCount; calculatedLoopCount = (pChunkHeader->sizeInBytes - DRWAV_SMPL_BYTES) / DRWAV_SMPL_LOOP_BYTES; if (calculatedLoopCount == loopCount) { bytesJustRead = drwav__metadata_parser_read(pParser, buffer, sizeof(buffer), &bytesRead); if (bytesJustRead == sizeof(buffer)) { drwav_uint32 samplerSpecificDataSizeInBytes = drwav_bytes_to_u32(buffer); pParser->metadataCount += 1; drwav__metadata_request_extra_memory_for_stage_2(pParser, sizeof(drwav_smpl_loop) * loopCount, DRWAV_METADATA_ALIGNMENT); drwav__metadata_request_extra_memory_for_stage_2(pParser, samplerSpecificDataSizeInBytes, 1); } } else { } } } else { bytesRead = drwav__read_smpl_to_metadata_obj(pParser, pChunkHeader, &pParser->pMetadata[pParser->metadataCursor]); if (bytesRead == pChunkHeader->sizeInBytes) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_inst, "inst")) { if (pChunkHeader->sizeInBytes == DRWAV_INST_BYTES) { if (pParser->stage == drwav__metadata_parser_stage_count) { pParser->metadataCount += 1; } else { bytesRead = drwav__read_inst_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor]); if (bytesRead == pChunkHeader->sizeInBytes) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_acid, "acid")) { if (pChunkHeader->sizeInBytes == DRWAV_ACID_BYTES) { if (pParser->stage == drwav__metadata_parser_stage_count) { pParser->metadataCount += 1; } else { bytesRead = drwav__read_acid_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor]); if (bytesRead == pChunkHeader->sizeInBytes) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_cue, "cue ")) { if (pChunkHeader->sizeInBytes >= DRWAV_CUE_BYTES) { if (pParser->stage == drwav__metadata_parser_stage_count) { size_t cueCount; pParser->metadataCount += 1; cueCount = (size_t)(pChunkHeader->sizeInBytes - DRWAV_CUE_BYTES) / DRWAV_CUE_POINT_BYTES; drwav__metadata_request_extra_memory_for_stage_2(pParser, sizeof(drwav_cue_point) * cueCount, DRWAV_METADATA_ALIGNMENT); } else { bytesRead = drwav__read_cue_to_metadata_obj(pParser, pChunkHeader, &pParser->pMetadata[pParser->metadataCursor]); if (bytesRead == pChunkHeader->sizeInBytes) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_bext, "bext")) { if (pChunkHeader->sizeInBytes >= DRWAV_BEXT_BYTES) { if (pParser->stage == drwav__metadata_parser_stage_count) { char buffer[DRWAV_BEXT_DESCRIPTION_BYTES + 1]; size_t allocSizeNeeded = DRWAV_BEXT_UMID_BYTES; size_t bytesJustRead; buffer[DRWAV_BEXT_DESCRIPTION_BYTES] = '\0'; bytesJustRead = drwav__metadata_parser_read(pParser, buffer, DRWAV_BEXT_DESCRIPTION_BYTES, &bytesRead); if (bytesJustRead != DRWAV_BEXT_DESCRIPTION_BYTES) { return bytesRead; } allocSizeNeeded += drwav__strlen(buffer) + 1; buffer[DRWAV_BEXT_ORIGINATOR_NAME_BYTES] = '\0'; bytesJustRead = drwav__metadata_parser_read(pParser, buffer, DRWAV_BEXT_ORIGINATOR_NAME_BYTES, &bytesRead); if (bytesJustRead != DRWAV_BEXT_ORIGINATOR_NAME_BYTES) { return bytesRead; } allocSizeNeeded += drwav__strlen(buffer) + 1; buffer[DRWAV_BEXT_ORIGINATOR_REF_BYTES] = '\0'; bytesJustRead = drwav__metadata_parser_read(pParser, buffer, DRWAV_BEXT_ORIGINATOR_REF_BYTES, &bytesRead); if (bytesJustRead != DRWAV_BEXT_ORIGINATOR_REF_BYTES) { return bytesRead; } allocSizeNeeded += drwav__strlen(buffer) + 1; allocSizeNeeded += (size_t)pChunkHeader->sizeInBytes - DRWAV_BEXT_BYTES; drwav__metadata_request_extra_memory_for_stage_2(pParser, allocSizeNeeded, 1); pParser->metadataCount += 1; } else { bytesRead = drwav__read_bext_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor], pChunkHeader->sizeInBytes); if (bytesRead == pChunkHeader->sizeInBytes) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav_fourcc_equal(pChunkID, "LIST") || drwav_fourcc_equal(pChunkID, "list")) { drwav_metadata_location listType = drwav_metadata_location_invalid; while (bytesRead < pChunkHeader->sizeInBytes) { drwav_uint8 subchunkId[4]; drwav_uint8 subchunkSizeBuffer[4]; drwav_uint64 subchunkDataSize; drwav_uint64 subchunkBytesRead = 0; drwav_uint64 bytesJustRead = drwav__metadata_parser_read(pParser, subchunkId, sizeof(subchunkId), &bytesRead); if (bytesJustRead != sizeof(subchunkId)) { break; } if (drwav_fourcc_equal(subchunkId, "adtl")) { listType = drwav_metadata_location_inside_adtl_list; continue; } else if (drwav_fourcc_equal(subchunkId, "INFO")) { listType = drwav_metadata_location_inside_info_list; continue; } bytesJustRead = drwav__metadata_parser_read(pParser, subchunkSizeBuffer, sizeof(subchunkSizeBuffer), &bytesRead); if (bytesJustRead != sizeof(subchunkSizeBuffer)) { break; } subchunkDataSize = drwav_bytes_to_u32(subchunkSizeBuffer); if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_label, "labl") || drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_note, "note")) { if (subchunkDataSize >= DRWAV_LIST_LABEL_OR_NOTE_BYTES) { drwav_uint64 stringSizeWithNullTerm = subchunkDataSize - DRWAV_LIST_LABEL_OR_NOTE_BYTES; if (pParser->stage == drwav__metadata_parser_stage_count) { pParser->metadataCount += 1; drwav__metadata_request_extra_memory_for_stage_2(pParser, (size_t)stringSizeWithNullTerm, 1); } else { subchunkBytesRead = drwav__read_list_label_or_note_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor], subchunkDataSize, drwav_fourcc_equal(subchunkId, "labl") ? drwav_metadata_type_list_label : drwav_metadata_type_list_note); if (subchunkBytesRead == subchunkDataSize) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_labelled_cue_region, "ltxt")) { if (subchunkDataSize >= DRWAV_LIST_LABELLED_TEXT_BYTES) { drwav_uint64 stringSizeWithNullTerminator = subchunkDataSize - DRWAV_LIST_LABELLED_TEXT_BYTES; if (pParser->stage == drwav__metadata_parser_stage_count) { pParser->metadataCount += 1; drwav__metadata_request_extra_memory_for_stage_2(pParser, (size_t)stringSizeWithNullTerminator, 1); } else { subchunkBytesRead = drwav__read_list_labelled_cue_region_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor], subchunkDataSize); if (subchunkBytesRead == subchunkDataSize) { pParser->metadataCursor += 1; } else { } } } else { } } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_software, "ISFT")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_software); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_copyright, "ICOP")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_copyright); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_title, "INAM")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_title); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_artist, "IART")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_artist); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_comment, "ICMT")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_comment); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_date, "ICRD")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_date); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_genre, "IGNR")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_genre); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_album, "IPRD")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_album); } else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_tracknumber, "ITRK")) { subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_tracknumber); } else if ((allowedMetadataTypes & drwav_metadata_type_unknown) != 0) { subchunkBytesRead = drwav__metadata_process_unknown_chunk(pParser, subchunkId, subchunkDataSize, listType); } bytesRead += subchunkBytesRead; DRWAV_ASSERT(subchunkBytesRead <= subchunkDataSize); if (subchunkBytesRead < subchunkDataSize) { drwav_uint64 bytesToSeek = subchunkDataSize - subchunkBytesRead; if (!pParser->onSeek(pParser->pReadSeekUserData, (int)bytesToSeek, drwav_seek_origin_current)) { break; } bytesRead += bytesToSeek; } if ((subchunkDataSize % 2) == 1) { if (!pParser->onSeek(pParser->pReadSeekUserData, 1, drwav_seek_origin_current)) { break; } bytesRead += 1; } } } else if ((allowedMetadataTypes & drwav_metadata_type_unknown) != 0) { bytesRead = drwav__metadata_process_unknown_chunk(pParser, pChunkID, pChunkHeader->sizeInBytes, drwav_metadata_location_top_level); } return bytesRead; } DRWAV_PRIVATE drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav) { drwav_uint32 bytesPerFrame; if ((pWav->bitsPerSample & 0x7) == 0) { bytesPerFrame = (pWav->bitsPerSample * pWav->fmt.channels) >> 3; } else { bytesPerFrame = pWav->fmt.blockAlign; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW || pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { if (bytesPerFrame != pWav->fmt.channels) { return 0; } } return bytesPerFrame; } DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT) { if (pFMT == NULL) { return 0; } if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) { return pFMT->formatTag; } else { return drwav_bytes_to_u16(pFMT->subFormat); } } DRWAV_PRIVATE drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pWav == NULL || onRead == NULL || onSeek == NULL) { return DRWAV_FALSE; } DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav)); pWav->onRead = onRead; pWav->onSeek = onSeek; pWav->pUserData = pReadSeekUserData; pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) { return DRWAV_FALSE; } return DRWAV_TRUE; } DRWAV_PRIVATE drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags) { drwav_uint64 cursor; drwav_bool32 sequential; drwav_uint8 riff[4]; drwav_fmt fmt; unsigned short translatedFormatTag; drwav_bool32 foundDataChunk; drwav_uint64 dataChunkSize = 0; drwav_uint64 sampleCountFromFactChunk = 0; drwav_uint64 chunkSize; drwav__metadata_parser metadataParser; cursor = 0; sequential = (flags & DRWAV_SEQUENTIAL) != 0; if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) { return DRWAV_FALSE; } if (drwav_fourcc_equal(riff, "RIFF")) { pWav->container = drwav_container_riff; } else if (drwav_fourcc_equal(riff, "riff")) { int i; drwav_uint8 riff2[12]; pWav->container = drwav_container_w64; if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) { return DRWAV_FALSE; } for (i = 0; i < 12; ++i) { if (riff2[i] != drwavGUID_W64_RIFF[i+4]) { return DRWAV_FALSE; } } } else if (drwav_fourcc_equal(riff, "RF64")) { pWav->container = drwav_container_rf64; } else { return DRWAV_FALSE; } if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { drwav_uint8 chunkSizeBytes[4]; drwav_uint8 wave[4]; if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) { return DRWAV_FALSE; } if (pWav->container == drwav_container_riff) { if (drwav_bytes_to_u32(chunkSizeBytes) < 36) { return DRWAV_FALSE; } } else { if (drwav_bytes_to_u32(chunkSizeBytes) != 0xFFFFFFFF) { return DRWAV_FALSE; } } if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) { return DRWAV_FALSE; } if (!drwav_fourcc_equal(wave, "WAVE")) { return DRWAV_FALSE; } } else { drwav_uint8 chunkSizeBytes[8]; drwav_uint8 wave[16]; if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) { return DRWAV_FALSE; } if (drwav_bytes_to_u64(chunkSizeBytes) < 80) { return DRWAV_FALSE; } if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) { return DRWAV_FALSE; } if (!drwav_guid_equal(wave, drwavGUID_W64_WAVE)) { return DRWAV_FALSE; } } if (pWav->container == drwav_container_rf64) { drwav_uint8 sizeBytes[8]; drwav_uint64 bytesRemainingInChunk; drwav_chunk_header header; drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header); if (result != DRWAV_SUCCESS) { return DRWAV_FALSE; } if (!drwav_fourcc_equal(header.id.fourcc, "ds64")) { return DRWAV_FALSE; } bytesRemainingInChunk = header.sizeInBytes + header.paddingSize; if (!drwav__seek_forward(pWav->onSeek, 8, pWav->pUserData)) { return DRWAV_FALSE; } bytesRemainingInChunk -= 8; cursor += 8; if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) { return DRWAV_FALSE; } bytesRemainingInChunk -= 8; dataChunkSize = drwav_bytes_to_u64(sizeBytes); if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) { return DRWAV_FALSE; } bytesRemainingInChunk -= 8; sampleCountFromFactChunk = drwav_bytes_to_u64(sizeBytes); if (!drwav__seek_forward(pWav->onSeek, bytesRemainingInChunk, pWav->pUserData)) { return DRWAV_FALSE; } cursor += bytesRemainingInChunk; } if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) { return DRWAV_FALSE; } if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE) || (fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS) || (fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) || fmt.blockAlign == 0) { return DRWAV_FALSE; } translatedFormatTag = fmt.formatTag; if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) { translatedFormatTag = drwav_bytes_to_u16(fmt.subFormat + 0); } DRWAV_ZERO_MEMORY(&metadataParser, sizeof(metadataParser)); if (!sequential && pWav->allowedMetadataTypes != drwav_metadata_type_none && (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64)) { drwav_uint64 cursorForMetadata = cursor; metadataParser.onRead = pWav->onRead; metadataParser.onSeek = pWav->onSeek; metadataParser.pReadSeekUserData = pWav->pUserData; metadataParser.stage = drwav__metadata_parser_stage_count; for (;;) { drwav_result result; drwav_uint64 bytesRead; drwav_uint64 remainingBytes; drwav_chunk_header header; result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursorForMetadata, &header); if (result != DRWAV_SUCCESS) { break; } bytesRead = drwav__metadata_process_chunk(&metadataParser, &header, pWav->allowedMetadataTypes); DRWAV_ASSERT(bytesRead <= header.sizeInBytes); remainingBytes = header.sizeInBytes - bytesRead + header.paddingSize; if (!drwav__seek_forward(pWav->onSeek, remainingBytes, pWav->pUserData)) { break; } cursorForMetadata += remainingBytes; } if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) { return DRWAV_FALSE; } drwav__metadata_alloc(&metadataParser, &pWav->allocationCallbacks); metadataParser.stage = drwav__metadata_parser_stage_read; } foundDataChunk = DRWAV_FALSE; for (;;) { drwav_chunk_header header; drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header); if (result != DRWAV_SUCCESS) { if (!foundDataChunk) { return DRWAV_FALSE; } else { break; } } if (!sequential && onChunk != NULL) { drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt); if (callbackBytesRead > 0) { if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) { return DRWAV_FALSE; } } } if (!sequential && pWav->allowedMetadataTypes != drwav_metadata_type_none && (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64)) { drwav_uint64 bytesRead = drwav__metadata_process_chunk(&metadataParser, &header, pWav->allowedMetadataTypes); if (bytesRead > 0) { if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) { return DRWAV_FALSE; } } } if (!foundDataChunk) { pWav->dataChunkDataPos = cursor; } chunkSize = header.sizeInBytes; if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { if (drwav_fourcc_equal(header.id.fourcc, "data")) { foundDataChunk = DRWAV_TRUE; if (pWav->container != drwav_container_rf64) { dataChunkSize = chunkSize; } } } else { if (drwav_guid_equal(header.id.guid, drwavGUID_W64_DATA)) { foundDataChunk = DRWAV_TRUE; dataChunkSize = chunkSize; } } if (foundDataChunk && sequential) { break; } if (pWav->container == drwav_container_riff) { if (drwav_fourcc_equal(header.id.fourcc, "fact")) { drwav_uint32 sampleCount; if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) { return DRWAV_FALSE; } chunkSize -= 4; if (!foundDataChunk) { pWav->dataChunkDataPos = cursor; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { sampleCountFromFactChunk = sampleCount; } else { sampleCountFromFactChunk = 0; } } } else if (pWav->container == drwav_container_w64) { if (drwav_guid_equal(header.id.guid, drwavGUID_W64_FACT)) { if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) { return DRWAV_FALSE; } chunkSize -= 8; if (!foundDataChunk) { pWav->dataChunkDataPos = cursor; } } } else if (pWav->container == drwav_container_rf64) { } chunkSize += header.paddingSize; if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) { break; } cursor += chunkSize; if (!foundDataChunk) { pWav->dataChunkDataPos = cursor; } } pWav->pMetadata = metadataParser.pMetadata; pWav->metadataCount = metadataParser.metadataCount; if (!foundDataChunk) { return DRWAV_FALSE; } if (!sequential) { if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) { return DRWAV_FALSE; } cursor = pWav->dataChunkDataPos; } pWav->fmt = fmt; pWav->sampleRate = fmt.sampleRate; pWav->channels = fmt.channels; pWav->bitsPerSample = fmt.bitsPerSample; pWav->bytesRemaining = dataChunkSize; pWav->translatedFormatTag = translatedFormatTag; pWav->dataChunkDataSize = dataChunkSize; if (sampleCountFromFactChunk != 0) { pWav->totalPCMFrameCount = sampleCountFromFactChunk; } else { drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return DRWAV_FALSE; } pWav->totalPCMFrameCount = dataChunkSize / bytesPerFrame; if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { drwav_uint64 totalBlockHeaderSizeInBytes; drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; if ((blockCount * fmt.blockAlign) < dataChunkSize) { blockCount += 1; } totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels); pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { drwav_uint64 totalBlockHeaderSizeInBytes; drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; if ((blockCount * fmt.blockAlign) < dataChunkSize) { blockCount += 1; } totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels); pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels; pWav->totalPCMFrameCount += blockCount; } } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { if (pWav->channels > 2) { return DRWAV_FALSE; } } if (drwav_get_bytes_per_pcm_frame(pWav) == 0) { return DRWAV_FALSE; } #ifdef DR_WAV_LIBSNDFILE_COMPAT if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign; pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels; } #endif return DRWAV_TRUE; } DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) { return DRWAV_FALSE; } return drwav_init__internal(pWav, onChunk, pChunkUserData, flags); } DRWAV_API drwav_bool32 drwav_init_with_metadata(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { if (!drwav_preinit(pWav, onRead, onSeek, pUserData, pAllocationCallbacks)) { return DRWAV_FALSE; } pWav->allowedMetadataTypes = drwav_metadata_type_all_including_unknown; return drwav_init__internal(pWav, NULL, NULL, flags); } DRWAV_API drwav_metadata* drwav_take_ownership_of_metadata(drwav* pWav) { drwav_metadata *result = pWav->pMetadata; pWav->pMetadata = NULL; pWav->metadataCount = 0; return result; } DRWAV_PRIVATE size_t drwav__write(drwav* pWav, const void* pData, size_t dataSize) { DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->onWrite != NULL); return pWav->onWrite(pWav->pUserData, pData, dataSize); } DRWAV_PRIVATE size_t drwav__write_byte(drwav* pWav, drwav_uint8 byte) { DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->onWrite != NULL); return pWav->onWrite(pWav->pUserData, &byte, 1); } DRWAV_PRIVATE size_t drwav__write_u16ne_to_le(drwav* pWav, drwav_uint16 value) { DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->onWrite != NULL); if (!drwav__is_little_endian()) { value = drwav__bswap16(value); } return drwav__write(pWav, &value, 2); } DRWAV_PRIVATE size_t drwav__write_u32ne_to_le(drwav* pWav, drwav_uint32 value) { DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->onWrite != NULL); if (!drwav__is_little_endian()) { value = drwav__bswap32(value); } return drwav__write(pWav, &value, 4); } DRWAV_PRIVATE size_t drwav__write_u64ne_to_le(drwav* pWav, drwav_uint64 value) { DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->onWrite != NULL); if (!drwav__is_little_endian()) { value = drwav__bswap64(value); } return drwav__write(pWav, &value, 8); } DRWAV_PRIVATE size_t drwav__write_f32ne_to_le(drwav* pWav, float value) { union { drwav_uint32 u32; float f32; } u; DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->onWrite != NULL); u.f32 = value; if (!drwav__is_little_endian()) { u.u32 = drwav__bswap32(u.u32); } return drwav__write(pWav, &u.u32, 4); } DRWAV_PRIVATE size_t drwav__write_or_count(drwav* pWav, const void* pData, size_t dataSize) { if (pWav == NULL) { return dataSize; } return drwav__write(pWav, pData, dataSize); } DRWAV_PRIVATE size_t drwav__write_or_count_byte(drwav* pWav, drwav_uint8 byte) { if (pWav == NULL) { return 1; } return drwav__write_byte(pWav, byte); } DRWAV_PRIVATE size_t drwav__write_or_count_u16ne_to_le(drwav* pWav, drwav_uint16 value) { if (pWav == NULL) { return 2; } return drwav__write_u16ne_to_le(pWav, value); } DRWAV_PRIVATE size_t drwav__write_or_count_u32ne_to_le(drwav* pWav, drwav_uint32 value) { if (pWav == NULL) { return 4; } return drwav__write_u32ne_to_le(pWav, value); } #if 0 DRWAV_PRIVATE size_t drwav__write_or_count_u64ne_to_le(drwav* pWav, drwav_uint64 value) { if (pWav == NULL) { return 8; } return drwav__write_u64ne_to_le(pWav, value); } #endif DRWAV_PRIVATE size_t drwav__write_or_count_f32ne_to_le(drwav* pWav, float value) { if (pWav == NULL) { return 4; } return drwav__write_f32ne_to_le(pWav, value); } DRWAV_PRIVATE size_t drwav__write_or_count_string_to_fixed_size_buf(drwav* pWav, char* str, size_t bufFixedSize) { size_t len; if (pWav == NULL) { return bufFixedSize; } len = drwav__strlen_clamped(str, bufFixedSize); drwav__write_or_count(pWav, str, len); if (len < bufFixedSize) { size_t i; for (i = 0; i < bufFixedSize - len; ++i) { drwav__write_byte(pWav, 0); } } return bufFixedSize; } DRWAV_PRIVATE size_t drwav__write_or_count_metadata(drwav* pWav, drwav_metadata* pMetadatas, drwav_uint32 metadataCount) { size_t bytesWritten = 0; drwav_bool32 hasListAdtl = DRWAV_FALSE; drwav_bool32 hasListInfo = DRWAV_FALSE; drwav_uint32 iMetadata; if (pMetadatas == NULL || metadataCount == 0) { return 0; } for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) { drwav_metadata* pMetadata = &pMetadatas[iMetadata]; drwav_uint32 chunkSize = 0; if ((pMetadata->type & drwav_metadata_type_list_all_info_strings) || (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_info_list)) { hasListInfo = DRWAV_TRUE; } if ((pMetadata->type & drwav_metadata_type_list_all_adtl) || (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_adtl_list)) { hasListAdtl = DRWAV_TRUE; } switch (pMetadata->type) { case drwav_metadata_type_smpl: { drwav_uint32 iLoop; chunkSize = DRWAV_SMPL_BYTES + DRWAV_SMPL_LOOP_BYTES * pMetadata->data.smpl.sampleLoopCount + pMetadata->data.smpl.samplerSpecificDataSizeInBytes; bytesWritten += drwav__write_or_count(pWav, "smpl", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.manufacturerId); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.productId); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.samplePeriodNanoseconds); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.midiUnityNote); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.midiPitchFraction); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.smpteFormat); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.smpteOffset); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.sampleLoopCount); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.samplerSpecificDataSizeInBytes); for (iLoop = 0; iLoop < pMetadata->data.smpl.sampleLoopCount; ++iLoop) { bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].cuePointId); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].type); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].firstSampleByteOffset); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].lastSampleByteOffset); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].sampleFraction); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].playCount); } if (pMetadata->data.smpl.samplerSpecificDataSizeInBytes > 0) { bytesWritten += drwav__write(pWav, pMetadata->data.smpl.pSamplerSpecificData, pMetadata->data.smpl.samplerSpecificDataSizeInBytes); } } break; case drwav_metadata_type_inst: { chunkSize = DRWAV_INST_BYTES; bytesWritten += drwav__write_or_count(pWav, "inst", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.midiUnityNote, 1); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.fineTuneCents, 1); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.gainDecibels, 1); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.lowNote, 1); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.highNote, 1); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.lowVelocity, 1); bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.highVelocity, 1); } break; case drwav_metadata_type_cue: { drwav_uint32 iCuePoint; chunkSize = DRWAV_CUE_BYTES + DRWAV_CUE_POINT_BYTES * pMetadata->data.cue.cuePointCount; bytesWritten += drwav__write_or_count(pWav, "cue ", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.cuePointCount); for (iCuePoint = 0; iCuePoint < pMetadata->data.cue.cuePointCount; ++iCuePoint) { bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].id); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].playOrderPosition); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId, 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].chunkStart); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].blockStart); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].sampleByteOffset); } } break; case drwav_metadata_type_acid: { chunkSize = DRWAV_ACID_BYTES; bytesWritten += drwav__write_or_count(pWav, "acid", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.acid.flags); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.midiUnityNote); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.reserved1); bytesWritten += drwav__write_or_count_f32ne_to_le(pWav, pMetadata->data.acid.reserved2); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.acid.numBeats); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.meterDenominator); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.meterNumerator); bytesWritten += drwav__write_or_count_f32ne_to_le(pWav, pMetadata->data.acid.tempo); } break; case drwav_metadata_type_bext: { char reservedBuf[DRWAV_BEXT_RESERVED_BYTES]; drwav_uint32 timeReferenceLow; drwav_uint32 timeReferenceHigh; chunkSize = DRWAV_BEXT_BYTES + pMetadata->data.bext.codingHistorySize; bytesWritten += drwav__write_or_count(pWav, "bext", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count_string_to_fixed_size_buf(pWav, pMetadata->data.bext.pDescription, DRWAV_BEXT_DESCRIPTION_BYTES); bytesWritten += drwav__write_or_count_string_to_fixed_size_buf(pWav, pMetadata->data.bext.pOriginatorName, DRWAV_BEXT_ORIGINATOR_NAME_BYTES); bytesWritten += drwav__write_or_count_string_to_fixed_size_buf(pWav, pMetadata->data.bext.pOriginatorReference, DRWAV_BEXT_ORIGINATOR_REF_BYTES); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pOriginationDate, sizeof(pMetadata->data.bext.pOriginationDate)); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pOriginationTime, sizeof(pMetadata->data.bext.pOriginationTime)); timeReferenceLow = (drwav_uint32)(pMetadata->data.bext.timeReference & 0xFFFFFFFF); timeReferenceHigh = (drwav_uint32)(pMetadata->data.bext.timeReference >> 32); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, timeReferenceLow); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, timeReferenceHigh); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.version); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pUMID, DRWAV_BEXT_UMID_BYTES); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.loudnessValue); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.loudnessRange); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.maxTruePeakLevel); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.maxMomentaryLoudness); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.maxShortTermLoudness); DRWAV_ZERO_MEMORY(reservedBuf, sizeof(reservedBuf)); bytesWritten += drwav__write_or_count(pWav, reservedBuf, sizeof(reservedBuf)); if (pMetadata->data.bext.codingHistorySize > 0) { bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pCodingHistory, pMetadata->data.bext.codingHistorySize); } } break; case drwav_metadata_type_unknown: { if (pMetadata->data.unknown.chunkLocation == drwav_metadata_location_top_level) { chunkSize = pMetadata->data.unknown.dataSizeInBytes; bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.id, 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.pData, pMetadata->data.unknown.dataSizeInBytes); } } break; default: break; } if ((chunkSize % 2) != 0) { bytesWritten += drwav__write_or_count_byte(pWav, 0); } } if (hasListInfo) { drwav_uint32 chunkSize = 4; for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) { drwav_metadata* pMetadata = &pMetadatas[iMetadata]; if ((pMetadata->type & drwav_metadata_type_list_all_info_strings)) { chunkSize += 8; chunkSize += pMetadata->data.infoText.stringLength + 1; } else if (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_info_list) { chunkSize += 8; chunkSize += pMetadata->data.unknown.dataSizeInBytes; } if ((chunkSize % 2) != 0) { chunkSize += 1; } } bytesWritten += drwav__write_or_count(pWav, "LIST", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count(pWav, "INFO", 4); for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) { drwav_metadata* pMetadata = &pMetadatas[iMetadata]; drwav_uint32 subchunkSize = 0; if (pMetadata->type & drwav_metadata_type_list_all_info_strings) { const char* pID = NULL; switch (pMetadata->type) { case drwav_metadata_type_list_info_software: pID = "ISFT"; break; case drwav_metadata_type_list_info_copyright: pID = "ICOP"; break; case drwav_metadata_type_list_info_title: pID = "INAM"; break; case drwav_metadata_type_list_info_artist: pID = "IART"; break; case drwav_metadata_type_list_info_comment: pID = "ICMT"; break; case drwav_metadata_type_list_info_date: pID = "ICRD"; break; case drwav_metadata_type_list_info_genre: pID = "IGNR"; break; case drwav_metadata_type_list_info_album: pID = "IPRD"; break; case drwav_metadata_type_list_info_tracknumber: pID = "ITRK"; break; default: break; } DRWAV_ASSERT(pID != NULL); if (pMetadata->data.infoText.stringLength) { subchunkSize = pMetadata->data.infoText.stringLength + 1; bytesWritten += drwav__write_or_count(pWav, pID, 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.infoText.pString, pMetadata->data.infoText.stringLength); bytesWritten += drwav__write_or_count_byte(pWav, '\0'); } } else if (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_info_list) { if (pMetadata->data.unknown.dataSizeInBytes) { subchunkSize = pMetadata->data.unknown.dataSizeInBytes; bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.id, 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.unknown.dataSizeInBytes); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.pData, subchunkSize); } } if ((subchunkSize % 2) != 0) { bytesWritten += drwav__write_or_count_byte(pWav, 0); } } } if (hasListAdtl) { drwav_uint32 chunkSize = 4; for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) { drwav_metadata* pMetadata = &pMetadatas[iMetadata]; switch (pMetadata->type) { case drwav_metadata_type_list_label: case drwav_metadata_type_list_note: { chunkSize += 8; chunkSize += DRWAV_LIST_LABEL_OR_NOTE_BYTES; if (pMetadata->data.labelOrNote.stringLength > 0) { chunkSize += pMetadata->data.labelOrNote.stringLength + 1; } } break; case drwav_metadata_type_list_labelled_cue_region: { chunkSize += 8; chunkSize += DRWAV_LIST_LABELLED_TEXT_BYTES; if (pMetadata->data.labelledCueRegion.stringLength > 0) { chunkSize += pMetadata->data.labelledCueRegion.stringLength + 1; } } break; case drwav_metadata_type_unknown: { if (pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_adtl_list) { chunkSize += 8; chunkSize += pMetadata->data.unknown.dataSizeInBytes; } } break; default: break; } if ((chunkSize % 2) != 0) { chunkSize += 1; } } bytesWritten += drwav__write_or_count(pWav, "LIST", 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize); bytesWritten += drwav__write_or_count(pWav, "adtl", 4); for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) { drwav_metadata* pMetadata = &pMetadatas[iMetadata]; drwav_uint32 subchunkSize = 0; switch (pMetadata->type) { case drwav_metadata_type_list_label: case drwav_metadata_type_list_note: { if (pMetadata->data.labelOrNote.stringLength > 0) { const char *pID = NULL; if (pMetadata->type == drwav_metadata_type_list_label) { pID = "labl"; } else if (pMetadata->type == drwav_metadata_type_list_note) { pID = "note"; } DRWAV_ASSERT(pID != NULL); DRWAV_ASSERT(pMetadata->data.labelOrNote.pString != NULL); subchunkSize = DRWAV_LIST_LABEL_OR_NOTE_BYTES; bytesWritten += drwav__write_or_count(pWav, pID, 4); subchunkSize += pMetadata->data.labelOrNote.stringLength + 1; bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.labelOrNote.cuePointId); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.labelOrNote.pString, pMetadata->data.labelOrNote.stringLength); bytesWritten += drwav__write_or_count_byte(pWav, '\0'); } } break; case drwav_metadata_type_list_labelled_cue_region: { subchunkSize = DRWAV_LIST_LABELLED_TEXT_BYTES; bytesWritten += drwav__write_or_count(pWav, "ltxt", 4); if (pMetadata->data.labelledCueRegion.stringLength > 0) { subchunkSize += pMetadata->data.labelledCueRegion.stringLength + 1; } bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.labelledCueRegion.cuePointId); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.labelledCueRegion.sampleLength); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.labelledCueRegion.purposeId, 4); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.country); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.language); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.dialect); bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.codePage); if (pMetadata->data.labelledCueRegion.stringLength > 0) { DRWAV_ASSERT(pMetadata->data.labelledCueRegion.pString != NULL); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.labelledCueRegion.pString, pMetadata->data.labelledCueRegion.stringLength); bytesWritten += drwav__write_or_count_byte(pWav, '\0'); } } break; case drwav_metadata_type_unknown: { if (pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_adtl_list) { subchunkSize = pMetadata->data.unknown.dataSizeInBytes; DRWAV_ASSERT(pMetadata->data.unknown.pData != NULL); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.id, 4); bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize); bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.pData, subchunkSize); } } break; default: break; } if ((subchunkSize % 2) != 0) { bytesWritten += drwav__write_or_count_byte(pWav, 0); } } } DRWAV_ASSERT((bytesWritten % 2) == 0); return bytesWritten; } DRWAV_PRIVATE drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize, drwav_metadata* pMetadata, drwav_uint32 metadataCount) { drwav_uint64 chunkSize = 4 + 24 + (drwav_uint64)drwav__write_or_count_metadata(NULL, pMetadata, metadataCount) + 8 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); if (chunkSize > 0xFFFFFFFFUL) { chunkSize = 0xFFFFFFFFUL; } return (drwav_uint32)chunkSize; } DRWAV_PRIVATE drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize) { if (dataChunkSize <= 0xFFFFFFFFUL) { return (drwav_uint32)dataChunkSize; } else { return 0xFFFFFFFFUL; } } DRWAV_PRIVATE drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize) { drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize); return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize; } DRWAV_PRIVATE drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize) { return 24 + dataChunkSize; } DRWAV_PRIVATE drwav_uint64 drwav__riff_chunk_size_rf64(drwav_uint64 dataChunkSize, drwav_metadata *metadata, drwav_uint32 numMetadata) { drwav_uint64 chunkSize = 4 + 36 + 24 + (drwav_uint64)drwav__write_or_count_metadata(NULL, metadata, numMetadata) + 8 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); if (chunkSize > 0xFFFFFFFFUL) { chunkSize = 0xFFFFFFFFUL; } return chunkSize; } DRWAV_PRIVATE drwav_uint64 drwav__data_chunk_size_rf64(drwav_uint64 dataChunkSize) { return dataChunkSize; } DRWAV_PRIVATE drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pWav == NULL || onWrite == NULL) { return DRWAV_FALSE; } if (!isSequential && onSeek == NULL) { return DRWAV_FALSE; } if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) { return DRWAV_FALSE; } if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) { return DRWAV_FALSE; } DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav)); pWav->onWrite = onWrite; pWav->onSeek = onSeek; pWav->pUserData = pUserData; pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) { return DRWAV_FALSE; } pWav->fmt.formatTag = (drwav_uint16)pFormat->format; pWav->fmt.channels = (drwav_uint16)pFormat->channels; pWav->fmt.sampleRate = pFormat->sampleRate; pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8); pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8); pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; pWav->fmt.extendedSize = 0; pWav->isSequentialWrite = isSequential; return DRWAV_TRUE; } DRWAV_PRIVATE drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount) { size_t runningPos = 0; drwav_uint64 initialDataChunkSize = 0; drwav_uint64 chunkSizeFMT; if (pWav->isSequentialWrite) { initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8; if (pFormat->container == drwav_container_riff) { if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) { return DRWAV_FALSE; } } } pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize; if (pFormat->container == drwav_container_riff) { drwav_uint32 chunkSizeRIFF = 28 + (drwav_uint32)initialDataChunkSize; runningPos += drwav__write(pWav, "RIFF", 4); runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeRIFF); runningPos += drwav__write(pWav, "WAVE", 4); } else if (pFormat->container == drwav_container_w64) { drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; runningPos += drwav__write(pWav, drwavGUID_W64_RIFF, 16); runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeRIFF); runningPos += drwav__write(pWav, drwavGUID_W64_WAVE, 16); } else if (pFormat->container == drwav_container_rf64) { runningPos += drwav__write(pWav, "RF64", 4); runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); runningPos += drwav__write(pWav, "WAVE", 4); } if (pFormat->container == drwav_container_rf64) { drwav_uint32 initialds64ChunkSize = 28; drwav_uint64 initialRiffChunkSize = 8 + initialds64ChunkSize + initialDataChunkSize; runningPos += drwav__write(pWav, "ds64", 4); runningPos += drwav__write_u32ne_to_le(pWav, initialds64ChunkSize); runningPos += drwav__write_u64ne_to_le(pWav, initialRiffChunkSize); runningPos += drwav__write_u64ne_to_le(pWav, initialDataChunkSize); runningPos += drwav__write_u64ne_to_le(pWav, totalSampleCount); runningPos += drwav__write_u32ne_to_le(pWav, 0); } if (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64) { chunkSizeFMT = 16; runningPos += drwav__write(pWav, "fmt ", 4); runningPos += drwav__write_u32ne_to_le(pWav, (drwav_uint32)chunkSizeFMT); } else if (pFormat->container == drwav_container_w64) { chunkSizeFMT = 40; runningPos += drwav__write(pWav, drwavGUID_W64_FMT, 16); runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeFMT); } runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.formatTag); runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.channels); runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.sampleRate); runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.avgBytesPerSec); runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.blockAlign); runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.bitsPerSample); if (!pWav->isSequentialWrite && pWav->pMetadata != NULL && pWav->metadataCount > 0 && (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64)) { runningPos += drwav__write_or_count_metadata(pWav, pWav->pMetadata, pWav->metadataCount); } pWav->dataChunkDataPos = runningPos; if (pFormat->container == drwav_container_riff) { drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize; runningPos += drwav__write(pWav, "data", 4); runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeDATA); } else if (pFormat->container == drwav_container_w64) { drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; runningPos += drwav__write(pWav, drwavGUID_W64_DATA, 16); runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeDATA); } else if (pFormat->container == drwav_container_rf64) { runningPos += drwav__write(pWav, "data", 4); runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); } pWav->container = pFormat->container; pWav->channels = (drwav_uint16)pFormat->channels; pWav->sampleRate = pFormat->sampleRate; pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample; pWav->translatedFormatTag = (drwav_uint16)pFormat->format; pWav->dataChunkDataPos = runningPos; return DRWAV_TRUE; } DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) { if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) { return DRWAV_FALSE; } return drwav_init_write__internal(pWav, pFormat, 0); } DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) { if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) { return DRWAV_FALSE; } return drwav_init_write__internal(pWav, pFormat, totalSampleCount); } DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pFormat == NULL) { return DRWAV_FALSE; } return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_write_with_metadata(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks, drwav_metadata* pMetadata, drwav_uint32 metadataCount) { if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) { return DRWAV_FALSE; } pWav->pMetadata = pMetadata; pWav->metadataCount = metadataCount; return drwav_init_write__internal(pWav, pFormat, 0); } DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalFrameCount, drwav_metadata* pMetadata, drwav_uint32 metadataCount) { drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalFrameCount * pFormat->channels * pFormat->bitsPerSample/8.0); drwav_uint64 riffChunkSizeBytes; drwav_uint64 fileSizeBytes = 0; if (pFormat->container == drwav_container_riff) { riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes, pMetadata, metadataCount); fileSizeBytes = (8 + riffChunkSizeBytes); } else if (pFormat->container == drwav_container_w64) { riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes); fileSizeBytes = riffChunkSizeBytes; } else if (pFormat->container == drwav_container_rf64) { riffChunkSizeBytes = drwav__riff_chunk_size_rf64(targetDataSizeBytes, pMetadata, metadataCount); fileSizeBytes = (8 + riffChunkSizeBytes); } return fileSizeBytes; } #ifndef DR_WAV_NO_STDIO #include DRWAV_PRIVATE drwav_result drwav_result_from_errno(int e) { switch (e) { case 0: return DRWAV_SUCCESS; #ifdef EPERM case EPERM: return DRWAV_INVALID_OPERATION; #endif #ifdef ENOENT case ENOENT: return DRWAV_DOES_NOT_EXIST; #endif #ifdef ESRCH case ESRCH: return DRWAV_DOES_NOT_EXIST; #endif #ifdef EINTR case EINTR: return DRWAV_INTERRUPT; #endif #ifdef EIO case EIO: return DRWAV_IO_ERROR; #endif #ifdef ENXIO case ENXIO: return DRWAV_DOES_NOT_EXIST; #endif #ifdef E2BIG case E2BIG: return DRWAV_INVALID_ARGS; #endif #ifdef ENOEXEC case ENOEXEC: return DRWAV_INVALID_FILE; #endif #ifdef EBADF case EBADF: return DRWAV_INVALID_FILE; #endif #ifdef ECHILD case ECHILD: return DRWAV_ERROR; #endif #ifdef EAGAIN case EAGAIN: return DRWAV_UNAVAILABLE; #endif #ifdef ENOMEM case ENOMEM: return DRWAV_OUT_OF_MEMORY; #endif #ifdef EACCES case EACCES: return DRWAV_ACCESS_DENIED; #endif #ifdef EFAULT case EFAULT: return DRWAV_BAD_ADDRESS; #endif #ifdef ENOTBLK case ENOTBLK: return DRWAV_ERROR; #endif #ifdef EBUSY case EBUSY: return DRWAV_BUSY; #endif #ifdef EEXIST case EEXIST: return DRWAV_ALREADY_EXISTS; #endif #ifdef EXDEV case EXDEV: return DRWAV_ERROR; #endif #ifdef ENODEV case ENODEV: return DRWAV_DOES_NOT_EXIST; #endif #ifdef ENOTDIR case ENOTDIR: return DRWAV_NOT_DIRECTORY; #endif #ifdef EISDIR case EISDIR: return DRWAV_IS_DIRECTORY; #endif #ifdef EINVAL case EINVAL: return DRWAV_INVALID_ARGS; #endif #ifdef ENFILE case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES; #endif #ifdef EMFILE case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES; #endif #ifdef ENOTTY case ENOTTY: return DRWAV_INVALID_OPERATION; #endif #ifdef ETXTBSY case ETXTBSY: return DRWAV_BUSY; #endif #ifdef EFBIG case EFBIG: return DRWAV_TOO_BIG; #endif #ifdef ENOSPC case ENOSPC: return DRWAV_NO_SPACE; #endif #ifdef ESPIPE case ESPIPE: return DRWAV_BAD_SEEK; #endif #ifdef EROFS case EROFS: return DRWAV_ACCESS_DENIED; #endif #ifdef EMLINK case EMLINK: return DRWAV_TOO_MANY_LINKS; #endif #ifdef EPIPE case EPIPE: return DRWAV_BAD_PIPE; #endif #ifdef EDOM case EDOM: return DRWAV_OUT_OF_RANGE; #endif #ifdef ERANGE case ERANGE: return DRWAV_OUT_OF_RANGE; #endif #ifdef EDEADLK case EDEADLK: return DRWAV_DEADLOCK; #endif #ifdef ENAMETOOLONG case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG; #endif #ifdef ENOLCK case ENOLCK: return DRWAV_ERROR; #endif #ifdef ENOSYS case ENOSYS: return DRWAV_NOT_IMPLEMENTED; #endif #ifdef ENOTEMPTY case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY; #endif #ifdef ELOOP case ELOOP: return DRWAV_TOO_MANY_LINKS; #endif #ifdef ENOMSG case ENOMSG: return DRWAV_NO_MESSAGE; #endif #ifdef EIDRM case EIDRM: return DRWAV_ERROR; #endif #ifdef ECHRNG case ECHRNG: return DRWAV_ERROR; #endif #ifdef EL2NSYNC case EL2NSYNC: return DRWAV_ERROR; #endif #ifdef EL3HLT case EL3HLT: return DRWAV_ERROR; #endif #ifdef EL3RST case EL3RST: return DRWAV_ERROR; #endif #ifdef ELNRNG case ELNRNG: return DRWAV_OUT_OF_RANGE; #endif #ifdef EUNATCH case EUNATCH: return DRWAV_ERROR; #endif #ifdef ENOCSI case ENOCSI: return DRWAV_ERROR; #endif #ifdef EL2HLT case EL2HLT: return DRWAV_ERROR; #endif #ifdef EBADE case EBADE: return DRWAV_ERROR; #endif #ifdef EBADR case EBADR: return DRWAV_ERROR; #endif #ifdef EXFULL case EXFULL: return DRWAV_ERROR; #endif #ifdef ENOANO case ENOANO: return DRWAV_ERROR; #endif #ifdef EBADRQC case EBADRQC: return DRWAV_ERROR; #endif #ifdef EBADSLT case EBADSLT: return DRWAV_ERROR; #endif #ifdef EBFONT case EBFONT: return DRWAV_INVALID_FILE; #endif #ifdef ENOSTR case ENOSTR: return DRWAV_ERROR; #endif #ifdef ENODATA case ENODATA: return DRWAV_NO_DATA_AVAILABLE; #endif #ifdef ETIME case ETIME: return DRWAV_TIMEOUT; #endif #ifdef ENOSR case ENOSR: return DRWAV_NO_DATA_AVAILABLE; #endif #ifdef ENONET case ENONET: return DRWAV_NO_NETWORK; #endif #ifdef ENOPKG case ENOPKG: return DRWAV_ERROR; #endif #ifdef EREMOTE case EREMOTE: return DRWAV_ERROR; #endif #ifdef ENOLINK case ENOLINK: return DRWAV_ERROR; #endif #ifdef EADV case EADV: return DRWAV_ERROR; #endif #ifdef ESRMNT case ESRMNT: return DRWAV_ERROR; #endif #ifdef ECOMM case ECOMM: return DRWAV_ERROR; #endif #ifdef EPROTO case EPROTO: return DRWAV_ERROR; #endif #ifdef EMULTIHOP case EMULTIHOP: return DRWAV_ERROR; #endif #ifdef EDOTDOT case EDOTDOT: return DRWAV_ERROR; #endif #ifdef EBADMSG case EBADMSG: return DRWAV_BAD_MESSAGE; #endif #ifdef EOVERFLOW case EOVERFLOW: return DRWAV_TOO_BIG; #endif #ifdef ENOTUNIQ case ENOTUNIQ: return DRWAV_NOT_UNIQUE; #endif #ifdef EBADFD case EBADFD: return DRWAV_ERROR; #endif #ifdef EREMCHG case EREMCHG: return DRWAV_ERROR; #endif #ifdef ELIBACC case ELIBACC: return DRWAV_ACCESS_DENIED; #endif #ifdef ELIBBAD case ELIBBAD: return DRWAV_INVALID_FILE; #endif #ifdef ELIBSCN case ELIBSCN: return DRWAV_INVALID_FILE; #endif #ifdef ELIBMAX case ELIBMAX: return DRWAV_ERROR; #endif #ifdef ELIBEXEC case ELIBEXEC: return DRWAV_ERROR; #endif #ifdef EILSEQ case EILSEQ: return DRWAV_INVALID_DATA; #endif #ifdef ERESTART case ERESTART: return DRWAV_ERROR; #endif #ifdef ESTRPIPE case ESTRPIPE: return DRWAV_ERROR; #endif #ifdef EUSERS case EUSERS: return DRWAV_ERROR; #endif #ifdef ENOTSOCK case ENOTSOCK: return DRWAV_NOT_SOCKET; #endif #ifdef EDESTADDRREQ case EDESTADDRREQ: return DRWAV_NO_ADDRESS; #endif #ifdef EMSGSIZE case EMSGSIZE: return DRWAV_TOO_BIG; #endif #ifdef EPROTOTYPE case EPROTOTYPE: return DRWAV_BAD_PROTOCOL; #endif #ifdef ENOPROTOOPT case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE; #endif #ifdef EPROTONOSUPPORT case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED; #endif #ifdef ESOCKTNOSUPPORT case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED; #endif #ifdef EOPNOTSUPP case EOPNOTSUPP: return DRWAV_INVALID_OPERATION; #endif #ifdef EPFNOSUPPORT case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED; #endif #ifdef EAFNOSUPPORT case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED; #endif #ifdef EADDRINUSE case EADDRINUSE: return DRWAV_ALREADY_IN_USE; #endif #ifdef EADDRNOTAVAIL case EADDRNOTAVAIL: return DRWAV_ERROR; #endif #ifdef ENETDOWN case ENETDOWN: return DRWAV_NO_NETWORK; #endif #ifdef ENETUNREACH case ENETUNREACH: return DRWAV_NO_NETWORK; #endif #ifdef ENETRESET case ENETRESET: return DRWAV_NO_NETWORK; #endif #ifdef ECONNABORTED case ECONNABORTED: return DRWAV_NO_NETWORK; #endif #ifdef ECONNRESET case ECONNRESET: return DRWAV_CONNECTION_RESET; #endif #ifdef ENOBUFS case ENOBUFS: return DRWAV_NO_SPACE; #endif #ifdef EISCONN case EISCONN: return DRWAV_ALREADY_CONNECTED; #endif #ifdef ENOTCONN case ENOTCONN: return DRWAV_NOT_CONNECTED; #endif #ifdef ESHUTDOWN case ESHUTDOWN: return DRWAV_ERROR; #endif #ifdef ETOOMANYREFS case ETOOMANYREFS: return DRWAV_ERROR; #endif #ifdef ETIMEDOUT case ETIMEDOUT: return DRWAV_TIMEOUT; #endif #ifdef ECONNREFUSED case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED; #endif #ifdef EHOSTDOWN case EHOSTDOWN: return DRWAV_NO_HOST; #endif #ifdef EHOSTUNREACH case EHOSTUNREACH: return DRWAV_NO_HOST; #endif #ifdef EALREADY case EALREADY: return DRWAV_IN_PROGRESS; #endif #ifdef EINPROGRESS case EINPROGRESS: return DRWAV_IN_PROGRESS; #endif #ifdef ESTALE case ESTALE: return DRWAV_INVALID_FILE; #endif #ifdef EUCLEAN case EUCLEAN: return DRWAV_ERROR; #endif #ifdef ENOTNAM case ENOTNAM: return DRWAV_ERROR; #endif #ifdef ENAVAIL case ENAVAIL: return DRWAV_ERROR; #endif #ifdef EISNAM case EISNAM: return DRWAV_ERROR; #endif #ifdef EREMOTEIO case EREMOTEIO: return DRWAV_IO_ERROR; #endif #ifdef EDQUOT case EDQUOT: return DRWAV_NO_SPACE; #endif #ifdef ENOMEDIUM case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST; #endif #ifdef EMEDIUMTYPE case EMEDIUMTYPE: return DRWAV_ERROR; #endif #ifdef ECANCELED case ECANCELED: return DRWAV_CANCELLED; #endif #ifdef ENOKEY case ENOKEY: return DRWAV_ERROR; #endif #ifdef EKEYEXPIRED case EKEYEXPIRED: return DRWAV_ERROR; #endif #ifdef EKEYREVOKED case EKEYREVOKED: return DRWAV_ERROR; #endif #ifdef EKEYREJECTED case EKEYREJECTED: return DRWAV_ERROR; #endif #ifdef EOWNERDEAD case EOWNERDEAD: return DRWAV_ERROR; #endif #ifdef ENOTRECOVERABLE case ENOTRECOVERABLE: return DRWAV_ERROR; #endif #ifdef ERFKILL case ERFKILL: return DRWAV_ERROR; #endif #ifdef EHWPOISON case EHWPOISON: return DRWAV_ERROR; #endif default: return DRWAV_ERROR; } } DRWAV_PRIVATE drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err; #endif if (ppFile != NULL) { *ppFile = NULL; } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return DRWAV_INVALID_ARGS; } #if defined(_MSC_VER) && _MSC_VER >= 1400 err = fopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return drwav_result_from_errno(err); } #else #if defined(_WIN32) || defined(__APPLE__) *ppFile = fopen(pFilePath, pOpenMode); #else #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) *ppFile = fopen64(pFilePath, pOpenMode); #else *ppFile = fopen(pFilePath, pOpenMode); #endif #endif if (*ppFile == NULL) { drwav_result result = drwav_result_from_errno(errno); if (result == DRWAV_SUCCESS) { result = DRWAV_ERROR; } return result; } #endif return DRWAV_SUCCESS; } #if defined(_WIN32) #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) #define DRWAV_HAS_WFOPEN #endif #endif #ifndef DR_WAV_NO_WCHAR DRWAV_PRIVATE drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks) { if (ppFile != NULL) { *ppFile = NULL; } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return DRWAV_INVALID_ARGS; } #if defined(DRWAV_HAS_WFOPEN) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return drwav_result_from_errno(err); } #else *ppFile = _wfopen(pFilePath, pOpenMode); if (*ppFile == NULL) { return drwav_result_from_errno(errno); } #endif (void)pAllocationCallbacks; } #else #if defined(__DJGPP__) { } #else { mbstate_t mbs; size_t lenMB; const wchar_t* pFilePathTemp = pFilePath; char* pFilePathMB = NULL; char pOpenModeMB[32] = {0}; DRWAV_ZERO_OBJECT(&mbs); lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); if (lenMB == (size_t)-1) { return drwav_result_from_errno(errno); } pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); if (pFilePathMB == NULL) { return DRWAV_OUT_OF_MEMORY; } pFilePathTemp = pFilePath; DRWAV_ZERO_OBJECT(&mbs); wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); { size_t i = 0; for (;;) { if (pOpenMode[i] == 0) { pOpenModeMB[i] = '\0'; break; } pOpenModeMB[i] = (char)pOpenMode[i]; i += 1; } } *ppFile = fopen(pFilePathMB, pOpenModeMB); drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks); } #endif if (*ppFile == NULL) { return DRWAV_ERROR; } #endif return DRWAV_SUCCESS; } #endif DRWAV_PRIVATE size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead) { return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData); } DRWAV_PRIVATE size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite) { return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData); } DRWAV_PRIVATE drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin) { return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; } DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks); } DRWAV_PRIVATE drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, drwav_metadata_type allowedMetadataTypes, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav_bool32 result; result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks); if (result != DRWAV_TRUE) { fclose(pFile); return result; } pWav->allowedMetadataTypes = allowedMetadataTypes; result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags); if (result != DRWAV_TRUE) { fclose(pFile); return result; } return DRWAV_TRUE; } DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { FILE* pFile; if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) { return DRWAV_FALSE; } return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, drwav_metadata_type_none, pAllocationCallbacks); } #ifndef DR_WAV_NO_WCHAR DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { FILE* pFile; if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) { return DRWAV_FALSE; } return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, drwav_metadata_type_none, pAllocationCallbacks); } #endif DRWAV_API drwav_bool32 drwav_init_file_with_metadata(drwav* pWav, const char* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { FILE* pFile; if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) { return DRWAV_FALSE; } return drwav_init_file__internal_FILE(pWav, pFile, NULL, NULL, flags, drwav_metadata_type_all_including_unknown, pAllocationCallbacks); } #ifndef DR_WAV_NO_WCHAR DRWAV_API drwav_bool32 drwav_init_file_with_metadata_w(drwav* pWav, const wchar_t* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { FILE* pFile; if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) { return DRWAV_FALSE; } return drwav_init_file__internal_FILE(pWav, pFile, NULL, NULL, flags, drwav_metadata_type_all_including_unknown, pAllocationCallbacks); } #endif DRWAV_PRIVATE drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav_bool32 result; result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks); if (result != DRWAV_TRUE) { fclose(pFile); return result; } result = drwav_init_write__internal(pWav, pFormat, totalSampleCount); if (result != DRWAV_TRUE) { fclose(pFile); return result; } return DRWAV_TRUE; } DRWAV_PRIVATE drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) { FILE* pFile; if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) { return DRWAV_FALSE; } return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks); } #ifndef DR_WAV_NO_WCHAR DRWAV_PRIVATE drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) { FILE* pFile; if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) { return DRWAV_FALSE; } return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks); } #endif DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pFormat == NULL) { return DRWAV_FALSE; } return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); } #ifndef DR_WAV_NO_WCHAR DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pFormat == NULL) { return DRWAV_FALSE; } return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); } #endif #endif DRWAV_PRIVATE size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead) { drwav* pWav = (drwav*)pUserData; size_t bytesRemaining; DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos); bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos; if (bytesToRead > bytesRemaining) { bytesToRead = bytesRemaining; } if (bytesToRead > 0) { DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead); pWav->memoryStream.currentReadPos += bytesToRead; } return bytesToRead; } DRWAV_PRIVATE drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin) { drwav* pWav = (drwav*)pUserData; DRWAV_ASSERT(pWav != NULL); if (origin == drwav_seek_origin_current) { if (offset > 0) { if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) { return DRWAV_FALSE; } } else { if (pWav->memoryStream.currentReadPos < (size_t)-offset) { return DRWAV_FALSE; } } pWav->memoryStream.currentReadPos += offset; } else { if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) { pWav->memoryStream.currentReadPos = offset; } else { return DRWAV_FALSE; } } return DRWAV_TRUE; } DRWAV_PRIVATE size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite) { drwav* pWav = (drwav*)pUserData; size_t bytesRemaining; DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos); bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos; if (bytesRemaining < bytesToWrite) { void* pNewData; size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2; if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) { newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite; } pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks); if (pNewData == NULL) { return 0; } *pWav->memoryStreamWrite.ppData = pNewData; pWav->memoryStreamWrite.dataCapacity = newDataCapacity; } DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite); pWav->memoryStreamWrite.currentWritePos += bytesToWrite; if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) { pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos; } *pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize; return bytesToWrite; } DRWAV_PRIVATE drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin) { drwav* pWav = (drwav*)pUserData; DRWAV_ASSERT(pWav != NULL); if (origin == drwav_seek_origin_current) { if (offset > 0) { if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) { offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos); } } else { if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) { offset = -(int)pWav->memoryStreamWrite.currentWritePos; } } pWav->memoryStreamWrite.currentWritePos += offset; } else { if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) { pWav->memoryStreamWrite.currentWritePos = offset; } else { pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize; } } return DRWAV_TRUE; } DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { if (data == NULL || dataSize == 0) { return DRWAV_FALSE; } if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) { return DRWAV_FALSE; } pWav->memoryStream.data = (const drwav_uint8*)data; pWav->memoryStream.dataSize = dataSize; pWav->memoryStream.currentReadPos = 0; return drwav_init__internal(pWav, onChunk, pChunkUserData, flags); } DRWAV_API drwav_bool32 drwav_init_memory_with_metadata(drwav* pWav, const void* data, size_t dataSize, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks) { if (data == NULL || dataSize == 0) { return DRWAV_FALSE; } if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) { return DRWAV_FALSE; } pWav->memoryStream.data = (const drwav_uint8*)data; pWav->memoryStream.dataSize = dataSize; pWav->memoryStream.currentReadPos = 0; pWav->allowedMetadataTypes = drwav_metadata_type_all_including_unknown; return drwav_init__internal(pWav, NULL, NULL, flags); } DRWAV_PRIVATE drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks) { if (ppData == NULL || pDataSize == NULL) { return DRWAV_FALSE; } *ppData = NULL; *pDataSize = 0; if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) { return DRWAV_FALSE; } pWav->memoryStreamWrite.ppData = ppData; pWav->memoryStreamWrite.pDataSize = pDataSize; pWav->memoryStreamWrite.dataSize = 0; pWav->memoryStreamWrite.dataCapacity = 0; pWav->memoryStreamWrite.currentWritePos = 0; return drwav_init_write__internal(pWav, pFormat, totalSampleCount); } DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks) { return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks); } DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pFormat == NULL) { return DRWAV_FALSE; } return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks); } DRWAV_API drwav_result drwav_uninit(drwav* pWav) { drwav_result result = DRWAV_SUCCESS; if (pWav == NULL) { return DRWAV_INVALID_ARGS; } if (pWav->onWrite != NULL) { drwav_uint32 paddingSize = 0; if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) { paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize); } else { paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize); } if (paddingSize > 0) { drwav_uint64 paddingData = 0; drwav__write(pWav, &paddingData, paddingSize); } if (pWav->onSeek && !pWav->isSequentialWrite) { if (pWav->container == drwav_container_riff) { if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) { drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize, pWav->pMetadata, pWav->metadataCount); drwav__write_u32ne_to_le(pWav, riffChunkSize); } if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos - 4, drwav_seek_origin_start)) { drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize); drwav__write_u32ne_to_le(pWav, dataChunkSize); } } else if (pWav->container == drwav_container_w64) { if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) { drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize); drwav__write_u64ne_to_le(pWav, riffChunkSize); } if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos - 8, drwav_seek_origin_start)) { drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize); drwav__write_u64ne_to_le(pWav, dataChunkSize); } } else if (pWav->container == drwav_container_rf64) { int ds64BodyPos = 12 + 8; if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 0, drwav_seek_origin_start)) { drwav_uint64 riffChunkSize = drwav__riff_chunk_size_rf64(pWav->dataChunkDataSize, pWav->pMetadata, pWav->metadataCount); drwav__write_u64ne_to_le(pWav, riffChunkSize); } if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 8, drwav_seek_origin_start)) { drwav_uint64 dataChunkSize = drwav__data_chunk_size_rf64(pWav->dataChunkDataSize); drwav__write_u64ne_to_le(pWav, dataChunkSize); } } } if (pWav->isSequentialWrite) { if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) { result = DRWAV_INVALID_FILE; } } } else { if (pWav->pMetadata != NULL) { pWav->allocationCallbacks.onFree(pWav->pMetadata, pWav->allocationCallbacks.pUserData); } } #ifndef DR_WAV_NO_STDIO if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) { fclose((FILE*)pWav->pUserData); } #endif return result; } DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut) { size_t bytesRead; drwav_uint32 bytesPerFrame; if (pWav == NULL || bytesToRead == 0) { return 0; } if (bytesToRead > pWav->bytesRemaining) { bytesToRead = (size_t)pWav->bytesRemaining; } if (bytesToRead == 0) { return 0; } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } if (pBufferOut != NULL) { bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead); } else { bytesRead = 0; while (bytesRead < bytesToRead) { size_t bytesToSeek = (bytesToRead - bytesRead); if (bytesToSeek > 0x7FFFFFFF) { bytesToSeek = 0x7FFFFFFF; } if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) { break; } bytesRead += bytesToSeek; } while (bytesRead < bytesToRead) { drwav_uint8 buffer[4096]; size_t bytesSeeked; size_t bytesToSeek = (bytesToRead - bytesRead); if (bytesToSeek > sizeof(buffer)) { bytesToSeek = sizeof(buffer); } bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek); bytesRead += bytesSeeked; if (bytesSeeked < bytesToSeek) { break; } } } pWav->readCursorInPCMFrames += bytesRead / bytesPerFrame; pWav->bytesRemaining -= bytesRead; return bytesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) { drwav_uint32 bytesPerFrame; drwav_uint64 bytesToRead; if (pWav == NULL || framesToRead == 0) { return 0; } if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { return 0; } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesToRead = framesToRead * bytesPerFrame; if (bytesToRead > DRWAV_SIZE_MAX) { bytesToRead = (DRWAV_SIZE_MAX / bytesPerFrame) * bytesPerFrame; } if (bytesToRead == 0) { return 0; } return drwav_read_raw(pWav, (size_t)bytesToRead, pBufferOut) / bytesPerFrame; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL) { drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, bytesPerFrame/pWav->channels, pWav->translatedFormatTag); } return framesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut) { if (drwav__is_little_endian()) { return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut); } else { return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut); } } DRWAV_PRIVATE drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav) { if (pWav->onWrite != NULL) { return DRWAV_FALSE; } if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) { return DRWAV_FALSE; } if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { DRWAV_ZERO_OBJECT(&pWav->msadpcm); } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { DRWAV_ZERO_OBJECT(&pWav->ima); } else { DRWAV_ASSERT(DRWAV_FALSE); } } pWav->readCursorInPCMFrames = 0; pWav->bytesRemaining = pWav->dataChunkDataSize; return DRWAV_TRUE; } DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex) { if (pWav == NULL || pWav->onSeek == NULL) { return DRWAV_FALSE; } if (pWav->onWrite != NULL) { return DRWAV_FALSE; } if (pWav->totalPCMFrameCount == 0) { return DRWAV_TRUE; } if (targetFrameIndex > pWav->totalPCMFrameCount) { targetFrameIndex = pWav->totalPCMFrameCount; } if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) { if (targetFrameIndex < pWav->readCursorInPCMFrames) { if (!drwav_seek_to_first_pcm_frame(pWav)) { return DRWAV_FALSE; } } if (targetFrameIndex > pWav->readCursorInPCMFrames) { drwav_uint64 offsetInFrames = targetFrameIndex - pWav->readCursorInPCMFrames; drwav_int16 devnull[2048]; while (offsetInFrames > 0) { drwav_uint64 framesRead = 0; drwav_uint64 framesToRead = offsetInFrames; if (framesToRead > drwav_countof(devnull)/pWav->channels) { framesToRead = drwav_countof(devnull)/pWav->channels; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull); } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull); } else { DRWAV_ASSERT(DRWAV_FALSE); } if (framesRead != framesToRead) { return DRWAV_FALSE; } offsetInFrames -= framesRead; } } } else { drwav_uint64 totalSizeInBytes; drwav_uint64 currentBytePos; drwav_uint64 targetBytePos; drwav_uint64 offset; drwav_uint32 bytesPerFrame; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return DRWAV_FALSE; } totalSizeInBytes = pWav->totalPCMFrameCount * bytesPerFrame; DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining); currentBytePos = totalSizeInBytes - pWav->bytesRemaining; targetBytePos = targetFrameIndex * bytesPerFrame; if (currentBytePos < targetBytePos) { offset = (targetBytePos - currentBytePos); } else { if (!drwav_seek_to_first_pcm_frame(pWav)) { return DRWAV_FALSE; } offset = targetBytePos; } while (offset > 0) { int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset); if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) { return DRWAV_FALSE; } pWav->readCursorInPCMFrames += offset32 / bytesPerFrame; pWav->bytesRemaining -= offset32; offset -= offset32; } } return DRWAV_TRUE; } DRWAV_API drwav_result drwav_get_cursor_in_pcm_frames(drwav* pWav, drwav_uint64* pCursor) { if (pCursor == NULL) { return DRWAV_INVALID_ARGS; } *pCursor = 0; if (pWav == NULL) { return DRWAV_INVALID_ARGS; } *pCursor = pWav->readCursorInPCMFrames; return DRWAV_SUCCESS; } DRWAV_API drwav_result drwav_get_length_in_pcm_frames(drwav* pWav, drwav_uint64* pLength) { if (pLength == NULL) { return DRWAV_INVALID_ARGS; } *pLength = 0; if (pWav == NULL) { return DRWAV_INVALID_ARGS; } *pLength = pWav->totalPCMFrameCount; return DRWAV_SUCCESS; } DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData) { size_t bytesWritten; if (pWav == NULL || bytesToWrite == 0 || pData == NULL) { return 0; } bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite); pWav->dataChunkDataSize += bytesWritten; return bytesWritten; } DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) { drwav_uint64 bytesToWrite; drwav_uint64 bytesWritten; const drwav_uint8* pRunningData; if (pWav == NULL || framesToWrite == 0 || pData == NULL) { return 0; } bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8); if (bytesToWrite > DRWAV_SIZE_MAX) { return 0; } bytesWritten = 0; pRunningData = (const drwav_uint8*)pData; while (bytesToWrite > 0) { size_t bytesJustWritten; drwav_uint64 bytesToWriteThisIteration; bytesToWriteThisIteration = bytesToWrite; DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData); if (bytesJustWritten == 0) { break; } bytesToWrite -= bytesJustWritten; bytesWritten += bytesJustWritten; pRunningData += bytesJustWritten; } return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels; } DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) { drwav_uint64 bytesToWrite; drwav_uint64 bytesWritten; drwav_uint32 bytesPerSample; const drwav_uint8* pRunningData; if (pWav == NULL || framesToWrite == 0 || pData == NULL) { return 0; } bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8); if (bytesToWrite > DRWAV_SIZE_MAX) { return 0; } bytesWritten = 0; pRunningData = (const drwav_uint8*)pData; bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels; if (bytesPerSample == 0) { return 0; } while (bytesToWrite > 0) { drwav_uint8 temp[4096]; drwav_uint32 sampleCount; size_t bytesJustWritten; drwav_uint64 bytesToWriteThisIteration; bytesToWriteThisIteration = bytesToWrite; DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); sampleCount = sizeof(temp)/bytesPerSample; if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) { bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample; } DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration); drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag); bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp); if (bytesJustWritten == 0) { break; } bytesToWrite -= bytesJustWritten; bytesWritten += bytesJustWritten; pRunningData += bytesJustWritten; } return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels; } DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData) { if (drwav__is_little_endian()) { return drwav_write_pcm_frames_le(pWav, framesToWrite, pData); } else { return drwav_write_pcm_frames_be(pWav, framesToWrite, pData); } } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 totalFramesRead = 0; DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(framesToRead > 0); while (pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) { DRWAV_ASSERT(framesToRead > 0); if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) { if (pWav->channels == 1) { drwav_uint8 header[7]; if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { return totalFramesRead; } pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); pWav->msadpcm.predictor[0] = header[0]; pWav->msadpcm.delta[0] = drwav_bytes_to_s16(header + 1); pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav_bytes_to_s16(header + 3); pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav_bytes_to_s16(header + 5); pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0]; pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1]; pWav->msadpcm.cachedFrameCount = 2; } else { drwav_uint8 header[14]; if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { return totalFramesRead; } pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); pWav->msadpcm.predictor[0] = header[0]; pWav->msadpcm.predictor[1] = header[1]; pWav->msadpcm.delta[0] = drwav_bytes_to_s16(header + 2); pWav->msadpcm.delta[1] = drwav_bytes_to_s16(header + 4); pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav_bytes_to_s16(header + 6); pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav_bytes_to_s16(header + 8); pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav_bytes_to_s16(header + 10); pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav_bytes_to_s16(header + 12); pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0]; pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0]; pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1]; pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1]; pWav->msadpcm.cachedFrameCount = 2; } } while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) { if (pBufferOut != NULL) { drwav_uint32 iSample = 0; for (iSample = 0; iSample < pWav->channels; iSample += 1) { pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample]; } pBufferOut += pWav->channels; } framesToRead -= 1; totalFramesRead += 1; pWav->readCursorInPCMFrames += 1; pWav->msadpcm.cachedFrameCount -= 1; } if (framesToRead == 0) { break; } if (pWav->msadpcm.cachedFrameCount == 0) { if (pWav->msadpcm.bytesRemainingInBlock == 0) { continue; } else { static drwav_int32 adaptationTable[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 }; static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 }; drwav_uint8 nibbles; drwav_int32 nibble0; drwav_int32 nibble1; if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) { return totalFramesRead; } pWav->msadpcm.bytesRemainingInBlock -= 1; nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; } nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; } if (pWav->channels == 1) { drwav_int32 newSample0; drwav_int32 newSample1; newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; newSample0 += nibble0 * pWav->msadpcm.delta[0]; newSample0 = drwav_clamp(newSample0, -32768, 32767); pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; if (pWav->msadpcm.delta[0] < 16) { pWav->msadpcm.delta[0] = 16; } pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; pWav->msadpcm.prevFrames[0][1] = newSample0; newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; newSample1 += nibble1 * pWav->msadpcm.delta[0]; newSample1 = drwav_clamp(newSample1, -32768, 32767); pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8; if (pWav->msadpcm.delta[0] < 16) { pWav->msadpcm.delta[0] = 16; } pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; pWav->msadpcm.prevFrames[0][1] = newSample1; pWav->msadpcm.cachedFrames[2] = newSample0; pWav->msadpcm.cachedFrames[3] = newSample1; pWav->msadpcm.cachedFrameCount = 2; } else { drwav_int32 newSample0; drwav_int32 newSample1; newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8; newSample0 += nibble0 * pWav->msadpcm.delta[0]; newSample0 = drwav_clamp(newSample0, -32768, 32767); pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8; if (pWav->msadpcm.delta[0] < 16) { pWav->msadpcm.delta[0] = 16; } pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1]; pWav->msadpcm.prevFrames[0][1] = newSample0; newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8; newSample1 += nibble1 * pWav->msadpcm.delta[1]; newSample1 = drwav_clamp(newSample1, -32768, 32767); pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8; if (pWav->msadpcm.delta[1] < 16) { pWav->msadpcm.delta[1] = 16; } pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1]; pWav->msadpcm.prevFrames[1][1] = newSample1; pWav->msadpcm.cachedFrames[2] = newSample0; pWav->msadpcm.cachedFrames[3] = newSample1; pWav->msadpcm.cachedFrameCount = 1; } } } } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 totalFramesRead = 0; drwav_uint32 iChannel; static drwav_int32 indexTable[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8 }; static drwav_int32 stepTable[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 }; DRWAV_ASSERT(pWav != NULL); DRWAV_ASSERT(framesToRead > 0); while (pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) { DRWAV_ASSERT(framesToRead > 0); if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) { if (pWav->channels == 1) { drwav_uint8 header[4]; if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { return totalFramesRead; } pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); if (header[2] >= drwav_countof(stepTable)) { pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current); pWav->ima.bytesRemainingInBlock = 0; return totalFramesRead; } pWav->ima.predictor[0] = drwav_bytes_to_s16(header + 0); pWav->ima.stepIndex[0] = drwav_clamp(header[2], 0, (drwav_int32)drwav_countof(stepTable)-1); pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0]; pWav->ima.cachedFrameCount = 1; } else { drwav_uint8 header[8]; if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) { return totalFramesRead; } pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header); if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) { pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current); pWav->ima.bytesRemainingInBlock = 0; return totalFramesRead; } pWav->ima.predictor[0] = drwav_bytes_to_s16(header + 0); pWav->ima.stepIndex[0] = drwav_clamp(header[2], 0, (drwav_int32)drwav_countof(stepTable)-1); pWav->ima.predictor[1] = drwav_bytes_to_s16(header + 4); pWav->ima.stepIndex[1] = drwav_clamp(header[6], 0, (drwav_int32)drwav_countof(stepTable)-1); pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0]; pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1]; pWav->ima.cachedFrameCount = 1; } } while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) { if (pBufferOut != NULL) { drwav_uint32 iSample; for (iSample = 0; iSample < pWav->channels; iSample += 1) { pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample]; } pBufferOut += pWav->channels; } framesToRead -= 1; totalFramesRead += 1; pWav->readCursorInPCMFrames += 1; pWav->ima.cachedFrameCount -= 1; } if (framesToRead == 0) { break; } if (pWav->ima.cachedFrameCount == 0) { if (pWav->ima.bytesRemainingInBlock == 0) { continue; } else { pWav->ima.cachedFrameCount = 8; for (iChannel = 0; iChannel < pWav->channels; ++iChannel) { drwav_uint32 iByte; drwav_uint8 nibbles[4]; if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) { pWav->ima.cachedFrameCount = 0; return totalFramesRead; } pWav->ima.bytesRemainingInBlock -= 4; for (iByte = 0; iByte < 4; ++iByte) { drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0); drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4); drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]]; drwav_int32 predictor = pWav->ima.predictor[iChannel]; drwav_int32 diff = step >> 3; if (nibble0 & 1) diff += step >> 2; if (nibble0 & 2) diff += step >> 1; if (nibble0 & 4) diff += step; if (nibble0 & 8) diff = -diff; predictor = drwav_clamp(predictor + diff, -32768, 32767); pWav->ima.predictor[iChannel] = predictor; pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1); pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor; step = stepTable[pWav->ima.stepIndex[iChannel]]; predictor = pWav->ima.predictor[iChannel]; diff = step >> 3; if (nibble1 & 1) diff += step >> 2; if (nibble1 & 2) diff += step >> 1; if (nibble1 & 4) diff += step; if (nibble1 & 8) diff = -diff; predictor = drwav_clamp(predictor + diff, -32768, 32767); pWav->ima.predictor[iChannel] = predictor; pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1); pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor; } } } } } return totalFramesRead; } #ifndef DR_WAV_NO_CONVERSION_API static unsigned short g_drwavAlawTable[256] = { 0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580, 0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0, 0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600, 0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00, 0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58, 0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58, 0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960, 0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0, 0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80, 0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40, 0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00, 0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500, 0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8, 0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8, 0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0, 0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350 }; static unsigned short g_drwavMulawTable[256] = { 0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84, 0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84, 0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004, 0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844, 0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64, 0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74, 0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C, 0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000, 0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C, 0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C, 0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC, 0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC, 0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C, 0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C, 0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084, 0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000 }; static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn) { return (short)g_drwavAlawTable[sampleIn]; } static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn) { return (short)g_drwavMulawTable[sampleIn]; } DRWAV_PRIVATE void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) { size_t i; if (bytesPerSample == 1) { drwav_u8_to_s16(pOut, pIn, totalSampleCount); return; } if (bytesPerSample == 2) { for (i = 0; i < totalSampleCount; ++i) { *pOut++ = ((const drwav_int16*)pIn)[i]; } return; } if (bytesPerSample == 3) { drwav_s24_to_s16(pOut, pIn, totalSampleCount); return; } if (bytesPerSample == 4) { drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount); return; } if (bytesPerSample > 8) { DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); return; } for (i = 0; i < totalSampleCount; ++i) { drwav_uint64 sample = 0; unsigned int shift = (8 - bytesPerSample) * 8; unsigned int j; for (j = 0; j < bytesPerSample; j += 1) { DRWAV_ASSERT(j < 8); sample |= (drwav_uint64)(pIn[j]) << shift; shift += 8; } pIn += j; *pOut++ = (drwav_int16)((drwav_int64)sample >> 48); } } DRWAV_PRIVATE void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) { if (bytesPerSample == 4) { drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount); return; } else if (bytesPerSample == 8) { drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount); return; } else { DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); return; } } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; if (pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, NULL); } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; if (pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, NULL); } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; if (pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, NULL); } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { if (pWav == NULL || framesToRead == 0) { return 0; } if (pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, NULL); } if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) { framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) { return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut); } return 0; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels); } return framesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels); } return framesRead; } DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) { int r; size_t i; for (i = 0; i < sampleCount; ++i) { int x = pIn[i]; r = x << 8; r = r - 32768; pOut[i] = (short)r; } } DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) { int r; size_t i; for (i = 0; i < sampleCount; ++i) { int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8; r = x >> 8; pOut[i] = (short)r; } } DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount) { int r; size_t i; for (i = 0; i < sampleCount; ++i) { int x = pIn[i]; r = x >> 16; pOut[i] = (short)r; } } DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount) { int r; size_t i; for (i = 0; i < sampleCount; ++i) { float x = pIn[i]; float c; c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); c = c + 1; r = (int)(c * 32767.5f); r = r - 32768; pOut[i] = (short)r; } } DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount) { int r; size_t i; for (i = 0; i < sampleCount; ++i) { double x = pIn[i]; double c; c = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); c = c + 1; r = (int)(c * 32767.5); r = r - 32768; pOut[i] = (short)r; } } DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; for (i = 0; i < sampleCount; ++i) { pOut[i] = drwav__alaw_to_s16(pIn[i]); } } DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; for (i = 0; i < sampleCount; ++i) { pOut[i] = drwav__mulaw_to_s16(pIn[i]); } } DRWAV_PRIVATE void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample) { unsigned int i; if (bytesPerSample == 1) { drwav_u8_to_f32(pOut, pIn, sampleCount); return; } if (bytesPerSample == 2) { drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount); return; } if (bytesPerSample == 3) { drwav_s24_to_f32(pOut, pIn, sampleCount); return; } if (bytesPerSample == 4) { drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount); return; } if (bytesPerSample > 8) { DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut)); return; } for (i = 0; i < sampleCount; ++i) { drwav_uint64 sample = 0; unsigned int shift = (8 - bytesPerSample) * 8; unsigned int j; for (j = 0; j < bytesPerSample; j += 1) { DRWAV_ASSERT(j < 8); sample |= (drwav_uint64)(pIn[j]) << shift; shift += 8; } pIn += j; *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0); } } DRWAV_PRIVATE void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample) { if (bytesPerSample == 4) { unsigned int i; for (i = 0; i < sampleCount; ++i) { *pOut++ = ((const float*)pIn)[i]; } return; } else if (bytesPerSample == 8) { drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount); return; } else { DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut)); return; } } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__msadpcm_ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 totalFramesRead; drwav_int16 samples16[2048]; totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels); drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToReadThisIteration, samples16); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); pBufferOut += framesRead*pWav->channels; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) { return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { if (pWav == NULL || framesToRead == 0) { return 0; } if (pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, NULL); } if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) { framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { return drwav_read_pcm_frames_f32__msadpcm_ima(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut); } return 0; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels); } return framesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels); } return framesRead; } DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } #ifdef DR_WAV_LIBSNDFILE_COMPAT for (i = 0; i < sampleCount; ++i) { *pOut++ = (pIn[i] / 256.0f) * 2 - 1; } #else for (i = 0; i < sampleCount; ++i) { float x = pIn[i]; x = x * 0.00784313725490196078f; x = x - 1; *pOut++ = x; } #endif } DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = pIn[i] * 0.000030517578125f; } } DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { double x; drwav_uint32 a = ((drwav_uint32)(pIn[i*3+0]) << 8); drwav_uint32 b = ((drwav_uint32)(pIn[i*3+1]) << 16); drwav_uint32 c = ((drwav_uint32)(pIn[i*3+2]) << 24); x = (double)((drwav_int32)(a | b | c) >> 8); *pOut++ = (float)(x * 0.00000011920928955078125); } } DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = (float)(pIn[i] / 2147483648.0); } } DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = (float)pIn[i]; } } DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f; } } DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f; } } DRWAV_PRIVATE void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) { unsigned int i; if (bytesPerSample == 1) { drwav_u8_to_s32(pOut, pIn, totalSampleCount); return; } if (bytesPerSample == 2) { drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount); return; } if (bytesPerSample == 3) { drwav_s24_to_s32(pOut, pIn, totalSampleCount); return; } if (bytesPerSample == 4) { for (i = 0; i < totalSampleCount; ++i) { *pOut++ = ((const drwav_int32*)pIn)[i]; } return; } if (bytesPerSample > 8) { DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); return; } for (i = 0; i < totalSampleCount; ++i) { drwav_uint64 sample = 0; unsigned int shift = (8 - bytesPerSample) * 8; unsigned int j; for (j = 0; j < bytesPerSample; j += 1) { DRWAV_ASSERT(j < 8); sample |= (drwav_uint64)(pIn[j]) << shift; shift += 8; } pIn += j; *pOut++ = (drwav_int32)((drwav_int64)sample >> 32); } } DRWAV_PRIVATE void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample) { if (bytesPerSample == 4) { drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount); return; } else if (bytesPerSample == 8) { drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount); return; } else { DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut)); return; } } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) { return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut); } bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__msadpcm_ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 totalFramesRead = 0; drwav_int16 samples16[2048]; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels); drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToReadThisIteration, samples16); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); pBufferOut += framesRead*pWav->channels; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 totalFramesRead; drwav_uint8 sampleData[4096] = {0}; drwav_uint32 bytesPerFrame; drwav_uint32 bytesPerSample; drwav_uint64 samplesRead; bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav); if (bytesPerFrame == 0) { return 0; } bytesPerSample = bytesPerFrame / pWav->channels; if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) { return 0; } totalFramesRead = 0; while (framesToRead > 0) { drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame); drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData); if (framesRead == 0) { break; } DRWAV_ASSERT(framesRead <= framesToReadThisIteration); samplesRead = framesRead * pWav->channels; if ((samplesRead * bytesPerSample) > sizeof(sampleData)) { DRWAV_ASSERT(DRWAV_FALSE); break; } drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead); pBufferOut += samplesRead; framesToRead -= framesRead; totalFramesRead += framesRead; } return totalFramesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { if (pWav == NULL || framesToRead == 0) { return 0; } if (pBufferOut == NULL) { return drwav_read_pcm_frames(pWav, framesToRead, NULL); } if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) { framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels; } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) { return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) { return drwav_read_pcm_frames_s32__msadpcm_ima(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) { return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) { return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut); } if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) { return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut); } return 0; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) { drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels); } return framesRead; } DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut) { drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut); if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) { drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels); } return framesRead; } DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = ((int)pIn[i] - 128) << 24; } } DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = pIn[i] << 16; } } DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { unsigned int s0 = pIn[i*3 + 0]; unsigned int s1 = pIn[i*3 + 1]; unsigned int s2 = pIn[i*3 + 2]; drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24)); *pOut++ = sample32; } } DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); } } DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]); } } DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i = 0; i < sampleCount; ++i) { *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16; } } DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount) { size_t i; if (pOut == NULL || pIn == NULL) { return; } for (i= 0; i < sampleCount; ++i) { *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16; } } DRWAV_PRIVATE drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) { drwav_uint64 sampleDataSize; drwav_int16* pSampleData; drwav_uint64 framesRead; DRWAV_ASSERT(pWav != NULL); sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16); if (sampleDataSize > DRWAV_SIZE_MAX) { drwav_uninit(pWav); return NULL; } pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); if (pSampleData == NULL) { drwav_uninit(pWav); return NULL; } framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); if (framesRead != pWav->totalPCMFrameCount) { drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); drwav_uninit(pWav); return NULL; } drwav_uninit(pWav); if (sampleRate) { *sampleRate = pWav->sampleRate; } if (channels) { *channels = pWav->channels; } if (totalFrameCount) { *totalFrameCount = pWav->totalPCMFrameCount; } return pSampleData; } DRWAV_PRIVATE float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) { drwav_uint64 sampleDataSize; float* pSampleData; drwav_uint64 framesRead; DRWAV_ASSERT(pWav != NULL); sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float); if (sampleDataSize > DRWAV_SIZE_MAX) { drwav_uninit(pWav); return NULL; } pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); if (pSampleData == NULL) { drwav_uninit(pWav); return NULL; } framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); if (framesRead != pWav->totalPCMFrameCount) { drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); drwav_uninit(pWav); return NULL; } drwav_uninit(pWav); if (sampleRate) { *sampleRate = pWav->sampleRate; } if (channels) { *channels = pWav->channels; } if (totalFrameCount) { *totalFrameCount = pWav->totalPCMFrameCount; } return pSampleData; } DRWAV_PRIVATE drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount) { drwav_uint64 sampleDataSize; drwav_int32* pSampleData; drwav_uint64 framesRead; DRWAV_ASSERT(pWav != NULL); sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32); if (sampleDataSize > DRWAV_SIZE_MAX) { drwav_uninit(pWav); return NULL; } pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); if (pSampleData == NULL) { drwav_uninit(pWav); return NULL; } framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData); if (framesRead != pWav->totalPCMFrameCount) { drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks); drwav_uninit(pWav); return NULL; } drwav_uninit(pWav); if (sampleRate) { *sampleRate = pWav->sampleRate; } if (channels) { *channels = pWav->channels; } if (totalFrameCount) { *totalFrameCount = pWav->totalPCMFrameCount; } return pSampleData; } DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } #ifndef DR_WAV_NO_STDIO DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } #ifndef DR_WAV_NO_WCHAR DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (sampleRateOut) { *sampleRateOut = 0; } if (channelsOut) { *channelsOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (sampleRateOut) { *sampleRateOut = 0; } if (channelsOut) { *channelsOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (sampleRateOut) { *sampleRateOut = 0; } if (channelsOut) { *channelsOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } #endif #endif DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks) { drwav wav; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalFrameCountOut) { *totalFrameCountOut = 0; } if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) { return NULL; } return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut); } #endif DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { drwav__free_from_callbacks(p, pAllocationCallbacks); } else { drwav__free_default(p, NULL); } } DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data) { return ((drwav_uint16)data[0] << 0) | ((drwav_uint16)data[1] << 8); } DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data) { return (drwav_int16)drwav_bytes_to_u16(data); } DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data) { return ((drwav_uint32)data[0] << 0) | ((drwav_uint32)data[1] << 8) | ((drwav_uint32)data[2] << 16) | ((drwav_uint32)data[3] << 24); } DRWAV_API float drwav_bytes_to_f32(const drwav_uint8* data) { union { drwav_uint32 u32; float f32; } value; value.u32 = drwav_bytes_to_u32(data); return value.f32; } DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data) { return (drwav_int32)drwav_bytes_to_u32(data); } DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data) { return ((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) | ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56); } DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data) { return (drwav_int64)drwav_bytes_to_u64(data); } DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]) { int i; for (i = 0; i < 16; i += 1) { if (a[i] != b[i]) { return DRWAV_FALSE; } } return DRWAV_TRUE; } DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b) { return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3]; } #ifdef __MRC__ #pragma options opt reset #endif #endif /* dr_wav_c end */ #endif /* DRWAV_IMPLEMENTATION */ #endif /* MA_NO_WAV */ #if !defined(MA_NO_FLAC) && !defined(MA_NO_DECODING) #if !defined(DR_FLAC_IMPLEMENTATION) && !defined(DRFLAC_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */ /* dr_flac_c begin */ #ifndef dr_flac_c #define dr_flac_c #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic push #if __GNUC__ >= 7 #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" #endif #endif #ifdef __linux__ #ifndef _BSD_SOURCE #define _BSD_SOURCE #endif #ifndef _DEFAULT_SOURCE #define _DEFAULT_SOURCE #endif #ifndef __USE_BSD #define __USE_BSD #endif #include #endif #include #include #ifdef _MSC_VER #define DRFLAC_INLINE __forceinline #elif defined(__GNUC__) #if defined(__STRICT_ANSI__) #define DRFLAC_GNUC_INLINE_HINT __inline__ #else #define DRFLAC_GNUC_INLINE_HINT inline #endif #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 2)) || defined(__clang__) #define DRFLAC_INLINE DRFLAC_GNUC_INLINE_HINT __attribute__((always_inline)) #else #define DRFLAC_INLINE DRFLAC_GNUC_INLINE_HINT #endif #elif defined(__WATCOMC__) #define DRFLAC_INLINE __inline #else #define DRFLAC_INLINE #endif #if defined(__x86_64__) || defined(_M_X64) #define DRFLAC_X64 #elif defined(__i386) || defined(_M_IX86) #define DRFLAC_X86 #elif defined(__arm__) || defined(_M_ARM) || defined(__arm64) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) #define DRFLAC_ARM #endif #if !defined(DR_FLAC_NO_SIMD) #if defined(DRFLAC_X64) || defined(DRFLAC_X86) #if defined(_MSC_VER) && !defined(__clang__) #if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2) #define DRFLAC_SUPPORT_SSE2 #endif #if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41) #define DRFLAC_SUPPORT_SSE41 #endif #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) #if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2) #define DRFLAC_SUPPORT_SSE2 #endif #if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41) #define DRFLAC_SUPPORT_SSE41 #endif #endif #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) #if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include() #define DRFLAC_SUPPORT_SSE2 #endif #if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include() #define DRFLAC_SUPPORT_SSE41 #endif #endif #if defined(DRFLAC_SUPPORT_SSE41) #include #elif defined(DRFLAC_SUPPORT_SSE2) #include #endif #endif #if defined(DRFLAC_ARM) #if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) #define DRFLAC_SUPPORT_NEON #include #endif #endif #endif #if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) #if defined(_MSC_VER) && !defined(__clang__) #if _MSC_VER >= 1400 #include static void drflac__cpuid(int info[4], int fid) { __cpuid(info, fid); } #else #define DRFLAC_NO_CPUID #endif #else #if defined(__GNUC__) || defined(__clang__) static void drflac__cpuid(int info[4], int fid) { #if defined(DRFLAC_X86) && defined(__PIC__) __asm__ __volatile__ ( "xchg{l} {%%}ebx, %k1;" "cpuid;" "xchg{l} {%%}ebx, %k1;" : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) ); #else __asm__ __volatile__ ( "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) ); #endif } #else #define DRFLAC_NO_CPUID #endif #endif #else #define DRFLAC_NO_CPUID #endif static DRFLAC_INLINE drflac_bool32 drflac_has_sse2(void) { #if defined(DRFLAC_SUPPORT_SSE2) #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2) #if defined(DRFLAC_X64) return DRFLAC_TRUE; #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__) return DRFLAC_TRUE; #else #if defined(DRFLAC_NO_CPUID) return DRFLAC_FALSE; #else int info[4]; drflac__cpuid(info, 1); return (info[3] & (1 << 26)) != 0; #endif #endif #else return DRFLAC_FALSE; #endif #else return DRFLAC_FALSE; #endif } static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void) { #if defined(DRFLAC_SUPPORT_SSE41) #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41) #if defined(__SSE4_1__) || defined(__AVX__) return DRFLAC_TRUE; #else #if defined(DRFLAC_NO_CPUID) return DRFLAC_FALSE; #else int info[4]; drflac__cpuid(info, 1); return (info[2] & (1 << 19)) != 0; #endif #endif #else return DRFLAC_FALSE; #endif #else return DRFLAC_FALSE; #endif } #if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) && !defined(__clang__) #define DRFLAC_HAS_LZCNT_INTRINSIC #elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) #define DRFLAC_HAS_LZCNT_INTRINSIC #elif defined(__clang__) #if defined(__has_builtin) #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl) #define DRFLAC_HAS_LZCNT_INTRINSIC #endif #endif #endif #if defined(_MSC_VER) && _MSC_VER >= 1400 && !defined(__clang__) #define DRFLAC_HAS_BYTESWAP16_INTRINSIC #define DRFLAC_HAS_BYTESWAP32_INTRINSIC #define DRFLAC_HAS_BYTESWAP64_INTRINSIC #elif defined(__clang__) #if defined(__has_builtin) #if __has_builtin(__builtin_bswap16) #define DRFLAC_HAS_BYTESWAP16_INTRINSIC #endif #if __has_builtin(__builtin_bswap32) #define DRFLAC_HAS_BYTESWAP32_INTRINSIC #endif #if __has_builtin(__builtin_bswap64) #define DRFLAC_HAS_BYTESWAP64_INTRINSIC #endif #endif #elif defined(__GNUC__) #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define DRFLAC_HAS_BYTESWAP32_INTRINSIC #define DRFLAC_HAS_BYTESWAP64_INTRINSIC #endif #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #define DRFLAC_HAS_BYTESWAP16_INTRINSIC #endif #elif defined(__WATCOMC__) && defined(__386__) #define DRFLAC_HAS_BYTESWAP16_INTRINSIC #define DRFLAC_HAS_BYTESWAP32_INTRINSIC #define DRFLAC_HAS_BYTESWAP64_INTRINSIC extern __inline drflac_uint16 _watcom_bswap16(drflac_uint16); extern __inline drflac_uint32 _watcom_bswap32(drflac_uint32); extern __inline drflac_uint64 _watcom_bswap64(drflac_uint64); #pragma aux _watcom_bswap16 = \ "xchg al, ah" \ parm [ax] \ value [ax] \ modify nomemory; #pragma aux _watcom_bswap32 = \ "bswap eax" \ parm [eax] \ value [eax] \ modify nomemory; #pragma aux _watcom_bswap64 = \ "bswap eax" \ "bswap edx" \ "xchg eax,edx" \ parm [eax edx] \ value [eax edx] \ modify nomemory; #endif #ifndef DRFLAC_ASSERT #include #define DRFLAC_ASSERT(expression) assert(expression) #endif #ifndef DRFLAC_MALLOC #define DRFLAC_MALLOC(sz) malloc((sz)) #endif #ifndef DRFLAC_REALLOC #define DRFLAC_REALLOC(p, sz) realloc((p), (sz)) #endif #ifndef DRFLAC_FREE #define DRFLAC_FREE(p) free((p)) #endif #ifndef DRFLAC_COPY_MEMORY #define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) #endif #ifndef DRFLAC_ZERO_MEMORY #define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) #endif #ifndef DRFLAC_ZERO_OBJECT #define DRFLAC_ZERO_OBJECT(p) DRFLAC_ZERO_MEMORY((p), sizeof(*(p))) #endif #define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 typedef drflac_int32 drflac_result; #define DRFLAC_SUCCESS 0 #define DRFLAC_ERROR -1 #define DRFLAC_INVALID_ARGS -2 #define DRFLAC_INVALID_OPERATION -3 #define DRFLAC_OUT_OF_MEMORY -4 #define DRFLAC_OUT_OF_RANGE -5 #define DRFLAC_ACCESS_DENIED -6 #define DRFLAC_DOES_NOT_EXIST -7 #define DRFLAC_ALREADY_EXISTS -8 #define DRFLAC_TOO_MANY_OPEN_FILES -9 #define DRFLAC_INVALID_FILE -10 #define DRFLAC_TOO_BIG -11 #define DRFLAC_PATH_TOO_LONG -12 #define DRFLAC_NAME_TOO_LONG -13 #define DRFLAC_NOT_DIRECTORY -14 #define DRFLAC_IS_DIRECTORY -15 #define DRFLAC_DIRECTORY_NOT_EMPTY -16 #define DRFLAC_END_OF_FILE -17 #define DRFLAC_NO_SPACE -18 #define DRFLAC_BUSY -19 #define DRFLAC_IO_ERROR -20 #define DRFLAC_INTERRUPT -21 #define DRFLAC_UNAVAILABLE -22 #define DRFLAC_ALREADY_IN_USE -23 #define DRFLAC_BAD_ADDRESS -24 #define DRFLAC_BAD_SEEK -25 #define DRFLAC_BAD_PIPE -26 #define DRFLAC_DEADLOCK -27 #define DRFLAC_TOO_MANY_LINKS -28 #define DRFLAC_NOT_IMPLEMENTED -29 #define DRFLAC_NO_MESSAGE -30 #define DRFLAC_BAD_MESSAGE -31 #define DRFLAC_NO_DATA_AVAILABLE -32 #define DRFLAC_INVALID_DATA -33 #define DRFLAC_TIMEOUT -34 #define DRFLAC_NO_NETWORK -35 #define DRFLAC_NOT_UNIQUE -36 #define DRFLAC_NOT_SOCKET -37 #define DRFLAC_NO_ADDRESS -38 #define DRFLAC_BAD_PROTOCOL -39 #define DRFLAC_PROTOCOL_UNAVAILABLE -40 #define DRFLAC_PROTOCOL_NOT_SUPPORTED -41 #define DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED -42 #define DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED -43 #define DRFLAC_SOCKET_NOT_SUPPORTED -44 #define DRFLAC_CONNECTION_RESET -45 #define DRFLAC_ALREADY_CONNECTED -46 #define DRFLAC_NOT_CONNECTED -47 #define DRFLAC_CONNECTION_REFUSED -48 #define DRFLAC_NO_HOST -49 #define DRFLAC_IN_PROGRESS -50 #define DRFLAC_CANCELLED -51 #define DRFLAC_MEMORY_ALREADY_MAPPED -52 #define DRFLAC_AT_END -53 #define DRFLAC_CRC_MISMATCH -128 #define DRFLAC_SUBFRAME_CONSTANT 0 #define DRFLAC_SUBFRAME_VERBATIM 1 #define DRFLAC_SUBFRAME_FIXED 8 #define DRFLAC_SUBFRAME_LPC 32 #define DRFLAC_SUBFRAME_RESERVED 255 #define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 #define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 #define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 #define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 #define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 #define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 #define DRFLAC_SEEKPOINT_SIZE_IN_BYTES 18 #define DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES 36 #define DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES 12 #define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision) { if (pMajor) { *pMajor = DRFLAC_VERSION_MAJOR; } if (pMinor) { *pMinor = DRFLAC_VERSION_MINOR; } if (pRevision) { *pRevision = DRFLAC_VERSION_REVISION; } } DRFLAC_API const char* drflac_version_string(void) { return DRFLAC_VERSION_STRING; } #if defined(__has_feature) #if __has_feature(thread_sanitizer) #define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread"))) #else #define DRFLAC_NO_THREAD_SANITIZE #endif #else #define DRFLAC_NO_THREAD_SANITIZE #endif #if defined(DRFLAC_HAS_LZCNT_INTRINSIC) static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE; #endif #ifndef DRFLAC_NO_CPUID static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE; static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE; DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void) { static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE; if (!isCPUCapsInitialized) { #if defined(DRFLAC_HAS_LZCNT_INTRINSIC) int info[4] = {0}; drflac__cpuid(info, 0x80000001); drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0; #endif drflac__gIsSSE2Supported = drflac_has_sse2(); drflac__gIsSSE41Supported = drflac_has_sse41(); isCPUCapsInitialized = DRFLAC_TRUE; } } #else static drflac_bool32 drflac__gIsNEONSupported = DRFLAC_FALSE; static DRFLAC_INLINE drflac_bool32 drflac__has_neon(void) { #if defined(DRFLAC_SUPPORT_NEON) #if defined(DRFLAC_ARM) && !defined(DRFLAC_NO_NEON) #if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) return DRFLAC_TRUE; #else return DRFLAC_FALSE; #endif #else return DRFLAC_FALSE; #endif #else return DRFLAC_FALSE; #endif } DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void) { drflac__gIsNEONSupported = drflac__has_neon(); #if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) drflac__gIsLZCNTSupported = DRFLAC_TRUE; #endif } #endif static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian(void) { #if defined(DRFLAC_X86) || defined(DRFLAC_X64) return DRFLAC_TRUE; #elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN return DRFLAC_TRUE; #else int n = 1; return (*(char*)&n) == 1; #endif } static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n) { #ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC #if defined(_MSC_VER) && !defined(__clang__) return _byteswap_ushort(n); #elif defined(__GNUC__) || defined(__clang__) return __builtin_bswap16(n); #elif defined(__WATCOMC__) && defined(__386__) return _watcom_bswap16(n); #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); #endif } static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n) { #ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC #if defined(_MSC_VER) && !defined(__clang__) return _byteswap_ulong(n); #elif defined(__GNUC__) || defined(__clang__) #if defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRFLAC_64BIT) drflac_uint32 r; __asm__ __volatile__ ( #if defined(DRFLAC_64BIT) "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) #else "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) #endif ); return r; #else return __builtin_bswap32(n); #endif #elif defined(__WATCOMC__) && defined(__386__) return _watcom_bswap32(n); #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & 0xFF000000) >> 24) | ((n & 0x00FF0000) >> 8) | ((n & 0x0000FF00) << 8) | ((n & 0x000000FF) << 24); #endif } static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n) { #ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC #if defined(_MSC_VER) && !defined(__clang__) return _byteswap_uint64(n); #elif defined(__GNUC__) || defined(__clang__) return __builtin_bswap64(n); #elif defined(__WATCOMC__) && defined(__386__) return _watcom_bswap64(n); #else #error "This compiler does not support the byte swap intrinsic." #endif #else return ((n & ((drflac_uint64)0xFF000000 << 32)) >> 56) | ((n & ((drflac_uint64)0x00FF0000 << 32)) >> 40) | ((n & ((drflac_uint64)0x0000FF00 << 32)) >> 24) | ((n & ((drflac_uint64)0x000000FF << 32)) >> 8) | ((n & ((drflac_uint64)0xFF000000 )) << 8) | ((n & ((drflac_uint64)0x00FF0000 )) << 24) | ((n & ((drflac_uint64)0x0000FF00 )) << 40) | ((n & ((drflac_uint64)0x000000FF )) << 56); #endif } static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n) { if (drflac__is_little_endian()) { return drflac__swap_endian_uint16(n); } return n; } static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n) { if (drflac__is_little_endian()) { return drflac__swap_endian_uint32(n); } return n; } static DRFLAC_INLINE drflac_uint32 drflac__be2host_32_ptr_unaligned(const void* pData) { const drflac_uint8* pNum = (drflac_uint8*)pData; return *(pNum) << 24 | *(pNum+1) << 16 | *(pNum+2) << 8 | *(pNum+3); } static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n) { if (drflac__is_little_endian()) { return drflac__swap_endian_uint64(n); } return n; } static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n) { if (!drflac__is_little_endian()) { return drflac__swap_endian_uint32(n); } return n; } static DRFLAC_INLINE drflac_uint32 drflac__le2host_32_ptr_unaligned(const void* pData) { const drflac_uint8* pNum = (drflac_uint8*)pData; return *pNum | *(pNum+1) << 8 | *(pNum+2) << 16 | *(pNum+3) << 24; } static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n) { drflac_uint32 result = 0; result |= (n & 0x7F000000) >> 3; result |= (n & 0x007F0000) >> 2; result |= (n & 0x00007F00) >> 1; result |= (n & 0x0000007F) >> 0; return result; } static drflac_uint8 drflac__crc8_table[] = { 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 }; static drflac_uint16 drflac__crc16_table[] = { 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011, 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022, 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072, 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041, 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2, 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082, 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192, 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1, 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1, 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2, 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151, 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132, 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101, 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312, 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321, 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371, 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342, 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2, 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2, 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381, 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291, 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2, 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252, 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261, 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231, 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202 }; static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data) { return drflac__crc8_table[crc ^ data]; } static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count) { #ifdef DR_FLAC_NO_CRC (void)crc; (void)data; (void)count; return 0; #else #if 0 drflac_uint8 p = 0x07; for (int i = count-1; i >= 0; --i) { drflac_uint8 bit = (data & (1 << i)) >> i; if (crc & 0x80) { crc = ((crc << 1) | bit) ^ p; } else { crc = ((crc << 1) | bit); } } return crc; #else drflac_uint32 wholeBytes; drflac_uint32 leftoverBits; drflac_uint64 leftoverDataMask; static drflac_uint64 leftoverDataMaskTable[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F }; DRFLAC_ASSERT(count <= 32); wholeBytes = count >> 3; leftoverBits = count - (wholeBytes*8); leftoverDataMask = leftoverDataMaskTable[leftoverBits]; switch (wholeBytes) { case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); case 0: if (leftoverBits > 0) crc = (drflac_uint8)((crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]); } return crc; #endif #endif } static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data) { return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data]; } static DRFLAC_INLINE drflac_uint16 drflac_crc16_cache(drflac_uint16 crc, drflac_cache_t data) { #ifdef DRFLAC_64BIT crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); #endif crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); return crc; } static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount) { switch (byteCount) { #ifdef DRFLAC_64BIT case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); #endif case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); } return crc; } #if 0 static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count) { #ifdef DR_FLAC_NO_CRC (void)crc; (void)data; (void)count; return 0; #else #if 0 drflac_uint16 p = 0x8005; for (int i = count-1; i >= 0; --i) { drflac_uint16 bit = (data & (1ULL << i)) >> i; if (r & 0x8000) { r = ((r << 1) | bit) ^ p; } else { r = ((r << 1) | bit); } } return crc; #else drflac_uint32 wholeBytes; drflac_uint32 leftoverBits; drflac_uint64 leftoverDataMask; static drflac_uint64 leftoverDataMaskTable[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F }; DRFLAC_ASSERT(count <= 64); wholeBytes = count >> 3; leftoverBits = count & 7; leftoverDataMask = leftoverDataMaskTable[leftoverBits]; switch (wholeBytes) { default: case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; } return crc; #endif #endif } static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count) { #ifdef DR_FLAC_NO_CRC (void)crc; (void)data; (void)count; return 0; #else drflac_uint32 wholeBytes; drflac_uint32 leftoverBits; drflac_uint64 leftoverDataMask; static drflac_uint64 leftoverDataMaskTable[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F }; DRFLAC_ASSERT(count <= 64); wholeBytes = count >> 3; leftoverBits = count & 7; leftoverDataMask = leftoverDataMaskTable[leftoverBits]; switch (wholeBytes) { default: case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits))); case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits))); case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits))); case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits))); case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits))); case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits))); case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits))); case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits))); case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; } return crc; #endif } static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count) { #ifdef DRFLAC_64BIT return drflac_crc16__64bit(crc, data, count); #else return drflac_crc16__32bit(crc, data, count); #endif } #endif #ifdef DRFLAC_64BIT #define drflac__be2host__cache_line drflac__be2host_64 #else #define drflac__be2host__cache_line drflac__be2host_32 #endif #define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) #define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) #define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits) #define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount))) #define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) #define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) #define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount))) #define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1))) #define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) #define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) #define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) #ifndef DR_FLAC_NO_CRC static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs) { bs->crc16 = 0; bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; } static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs) { if (bs->crc16CacheIgnoredBytes == 0) { bs->crc16 = drflac_crc16_cache(bs->crc16, bs->crc16Cache); } else { bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes); bs->crc16CacheIgnoredBytes = 0; } } static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs) { DRFLAC_ASSERT((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0); if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) { drflac__update_crc16(bs); } else { bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes); bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; } return bs->crc16; } #endif static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) { size_t bytesRead; size_t alignedL1LineCount; if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { bs->cache = bs->cacheL2[bs->nextL2Line++]; return DRFLAC_TRUE; } if (bs->unalignedByteCount > 0) { return DRFLAC_FALSE; } bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); bs->nextL2Line = 0; if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { bs->cache = bs->cacheL2[bs->nextL2Line++]; return DRFLAC_TRUE; } alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); if (bs->unalignedByteCount > 0) { bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; } if (alignedL1LineCount > 0) { size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; size_t i; for (i = alignedL1LineCount; i > 0; --i) { bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; } bs->nextL2Line = (drflac_uint32)offset; bs->cache = bs->cacheL2[bs->nextL2Line++]; return DRFLAC_TRUE; } else { bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); return DRFLAC_FALSE; } } static drflac_bool32 drflac__reload_cache(drflac_bs* bs) { size_t bytesRead; #ifndef DR_FLAC_NO_CRC drflac__update_crc16(bs); #endif if (drflac__reload_l1_cache_from_l2(bs)) { bs->cache = drflac__be2host__cache_line(bs->cache); bs->consumedBits = 0; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs->cache; #endif return DRFLAC_TRUE; } bytesRead = bs->unalignedByteCount; if (bytesRead == 0) { bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); return DRFLAC_FALSE; } DRFLAC_ASSERT(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; bs->cache = drflac__be2host__cache_line(bs->unalignedCache); bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs)); bs->unalignedByteCount = 0; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs->cache >> bs->consumedBits; bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; #endif return DRFLAC_TRUE; } static void drflac__reset_cache(drflac_bs* bs) { bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); bs->cache = 0; bs->unalignedByteCount = 0; bs->unalignedCache = 0; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = 0; bs->crc16CacheIgnoredBytes = 0; #endif } static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut) { DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pResultOut != NULL); DRFLAC_ASSERT(bitCount > 0); DRFLAC_ASSERT(bitCount <= 32); if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } } if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { #ifdef DRFLAC_64BIT *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); bs->consumedBits += bitCount; bs->cache <<= bitCount; #else if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); bs->consumedBits += bitCount; bs->cache <<= bitCount; } else { *pResultOut = (drflac_uint32)bs->cache; bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); bs->cache = 0; } #endif return DRFLAC_TRUE; } else { drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); drflac_uint32 bitCountLo = bitCount - bitCountHi; drflac_uint32 resultHi; DRFLAC_ASSERT(bitCountHi > 0); DRFLAC_ASSERT(bitCountHi < 32); resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } if (bitCountLo > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { return DRFLAC_FALSE; } *pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); bs->consumedBits += bitCountLo; bs->cache <<= bitCountLo; return DRFLAC_TRUE; } } static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult) { drflac_uint32 result; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pResult != NULL); DRFLAC_ASSERT(bitCount > 0); DRFLAC_ASSERT(bitCount <= 32); if (!drflac__read_uint32(bs, bitCount, &result)) { return DRFLAC_FALSE; } if (bitCount < 32) { drflac_uint32 signbit; signbit = ((result >> (bitCount-1)) & 0x01); result |= (~signbit + 1) << bitCount; } *pResult = (drflac_int32)result; return DRFLAC_TRUE; } #ifdef DRFLAC_64BIT static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut) { drflac_uint32 resultHi; drflac_uint32 resultLo; DRFLAC_ASSERT(bitCount <= 64); DRFLAC_ASSERT(bitCount > 32); if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { return DRFLAC_FALSE; } if (!drflac__read_uint32(bs, 32, &resultLo)) { return DRFLAC_FALSE; } *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo); return DRFLAC_TRUE; } #endif #if 0 static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut) { drflac_uint64 result; drflac_uint64 signbit; DRFLAC_ASSERT(bitCount <= 64); if (!drflac__read_uint64(bs, bitCount, &result)) { return DRFLAC_FALSE; } signbit = ((result >> (bitCount-1)) & 0x01); result |= (~signbit + 1) << bitCount; *pResultOut = (drflac_int64)result; return DRFLAC_TRUE; } #endif static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult) { drflac_uint32 result; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pResult != NULL); DRFLAC_ASSERT(bitCount > 0); DRFLAC_ASSERT(bitCount <= 16); if (!drflac__read_uint32(bs, bitCount, &result)) { return DRFLAC_FALSE; } *pResult = (drflac_uint16)result; return DRFLAC_TRUE; } #if 0 static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult) { drflac_int32 result; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pResult != NULL); DRFLAC_ASSERT(bitCount > 0); DRFLAC_ASSERT(bitCount <= 16); if (!drflac__read_int32(bs, bitCount, &result)) { return DRFLAC_FALSE; } *pResult = (drflac_int16)result; return DRFLAC_TRUE; } #endif static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult) { drflac_uint32 result; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pResult != NULL); DRFLAC_ASSERT(bitCount > 0); DRFLAC_ASSERT(bitCount <= 8); if (!drflac__read_uint32(bs, bitCount, &result)) { return DRFLAC_FALSE; } *pResult = (drflac_uint8)result; return DRFLAC_TRUE; } static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult) { drflac_int32 result; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pResult != NULL); DRFLAC_ASSERT(bitCount > 0); DRFLAC_ASSERT(bitCount <= 8); if (!drflac__read_int32(bs, bitCount, &result)) { return DRFLAC_FALSE; } *pResult = (drflac_int8)result; return DRFLAC_TRUE; } static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) { if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { bs->consumedBits += (drflac_uint32)bitsToSeek; bs->cache <<= bitsToSeek; return DRFLAC_TRUE; } else { bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); bs->cache = 0; #ifdef DRFLAC_64BIT while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { drflac_uint64 bin; if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { return DRFLAC_FALSE; } bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); } #else while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { drflac_uint32 bin; if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { return DRFLAC_FALSE; } bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); } #endif while (bitsToSeek >= 8) { drflac_uint8 bin; if (!drflac__read_uint8(bs, 8, &bin)) { return DRFLAC_FALSE; } bitsToSeek -= 8; } if (bitsToSeek > 0) { drflac_uint8 bin; if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) { return DRFLAC_FALSE; } bitsToSeek = 0; } DRFLAC_ASSERT(bitsToSeek == 0); return DRFLAC_TRUE; } } static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs) { DRFLAC_ASSERT(bs != NULL); if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { return DRFLAC_FALSE; } for (;;) { drflac_uint8 hi; #ifndef DR_FLAC_NO_CRC drflac__reset_crc16(bs); #endif if (!drflac__read_uint8(bs, 8, &hi)) { return DRFLAC_FALSE; } if (hi == 0xFF) { drflac_uint8 lo; if (!drflac__read_uint8(bs, 6, &lo)) { return DRFLAC_FALSE; } if (lo == 0x3E) { return DRFLAC_TRUE; } else { if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { return DRFLAC_FALSE; } } } } } #if defined(DRFLAC_HAS_LZCNT_INTRINSIC) #define DRFLAC_IMPLEMENT_CLZ_LZCNT #endif #if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(__clang__) #define DRFLAC_IMPLEMENT_CLZ_MSVC #endif #if defined(__WATCOMC__) && defined(__386__) #define DRFLAC_IMPLEMENT_CLZ_WATCOM #endif #ifdef __MRC__ #include #define DRFLAC_IMPLEMENT_CLZ_MRC #endif static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x) { drflac_uint32 n; static drflac_uint32 clz_table_4[] = { 0, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 }; if (x == 0) { return sizeof(x)*8; } n = clz_table_4[x >> (sizeof(x)*8 - 4)]; if (n == 0) { #ifdef DRFLAC_64BIT if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; } if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; } if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; } if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; } #else if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; } if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; } if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; } #endif n += clz_table_4[x >> (sizeof(x)*8 - 4)]; } return n - 1; } #ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported(void) { #if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) return DRFLAC_TRUE; #elif defined(__MRC__) return DRFLAC_TRUE; #else #ifdef DRFLAC_HAS_LZCNT_INTRINSIC return drflac__gIsLZCNTSupported; #else return DRFLAC_FALSE; #endif #endif } static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x) { #if defined(_MSC_VER) #ifdef DRFLAC_64BIT return (drflac_uint32)__lzcnt64(x); #else return (drflac_uint32)__lzcnt(x); #endif #else #if defined(__GNUC__) || defined(__clang__) #if defined(DRFLAC_X64) { drflac_uint64 r; __asm__ __volatile__ ( "lzcnt{ %1, %0| %0, %1}" : "=r"(r) : "r"(x) : "cc" ); return (drflac_uint32)r; } #elif defined(DRFLAC_X86) { drflac_uint32 r; __asm__ __volatile__ ( "lzcnt{l %1, %0| %0, %1}" : "=r"(r) : "r"(x) : "cc" ); return r; } #elif defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) && !defined(DRFLAC_64BIT) { unsigned int r; __asm__ __volatile__ ( #if defined(DRFLAC_64BIT) "clz %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(x) #else "clz %[out], %[in]" : [out]"=r"(r) : [in]"r"(x) #endif ); return r; } #else if (x == 0) { return sizeof(x)*8; } #ifdef DRFLAC_64BIT return (drflac_uint32)__builtin_clzll((drflac_uint64)x); #else return (drflac_uint32)__builtin_clzl((drflac_uint32)x); #endif #endif #else #error "This compiler does not support the lzcnt intrinsic." #endif #endif } #endif #ifdef DRFLAC_IMPLEMENT_CLZ_MSVC #include static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x) { drflac_uint32 n; if (x == 0) { return sizeof(x)*8; } #ifdef DRFLAC_64BIT _BitScanReverse64((unsigned long*)&n, x); #else _BitScanReverse((unsigned long*)&n, x); #endif return sizeof(x)*8 - n - 1; } #endif #ifdef DRFLAC_IMPLEMENT_CLZ_WATCOM static __inline drflac_uint32 drflac__clz_watcom (drflac_uint32); #ifdef DRFLAC_IMPLEMENT_CLZ_WATCOM_LZCNT #pragma aux drflac__clz_watcom_lzcnt = \ "db 0F3h, 0Fh, 0BDh, 0C0h" \ parm [eax] \ value [eax] \ modify nomemory; #else #pragma aux drflac__clz_watcom = \ "bsr eax, eax" \ "xor eax, 31" \ parm [eax] nomemory \ value [eax] \ modify exact [eax] nomemory; #endif #endif static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x) { #ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT if (drflac__is_lzcnt_supported()) { return drflac__clz_lzcnt(x); } else #endif { #ifdef DRFLAC_IMPLEMENT_CLZ_MSVC return drflac__clz_msvc(x); #elif defined(DRFLAC_IMPLEMENT_CLZ_WATCOM_LZCNT) return drflac__clz_watcom_lzcnt(x); #elif defined(DRFLAC_IMPLEMENT_CLZ_WATCOM) return (x == 0) ? sizeof(x)*8 : drflac__clz_watcom(x); #elif defined(__MRC__) return __cntlzw(x); #else return drflac__clz_software(x); #endif } } static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) { drflac_uint32 zeroCounter = 0; drflac_uint32 setBitOffsetPlus1; while (bs->cache == 0) { zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } } if (bs->cache == 1) { *pOffsetOut = zeroCounter + (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs) - 1; if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } return DRFLAC_TRUE; } setBitOffsetPlus1 = drflac__clz(bs->cache); setBitOffsetPlus1 += 1; if (setBitOffsetPlus1 > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { return DRFLAC_FALSE; } bs->consumedBits += setBitOffsetPlus1; bs->cache <<= setBitOffsetPlus1; *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; return DRFLAC_TRUE; } static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart) { DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(offsetFromStart > 0); if (offsetFromStart > 0x7FFFFFFF) { drflac_uint64 bytesRemaining = offsetFromStart; if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { return DRFLAC_FALSE; } bytesRemaining -= 0x7FFFFFFF; while (bytesRemaining > 0x7FFFFFFF) { if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { return DRFLAC_FALSE; } bytesRemaining -= 0x7FFFFFFF; } if (bytesRemaining > 0) { if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { return DRFLAC_FALSE; } } } else { if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { return DRFLAC_FALSE; } } drflac__reset_cache(bs); return DRFLAC_TRUE; } static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut) { drflac_uint8 crc; drflac_uint64 result; drflac_uint8 utf8[7] = {0}; int byteCount; int i; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pNumberOut != NULL); DRFLAC_ASSERT(pCRCOut != NULL); crc = *pCRCOut; if (!drflac__read_uint8(bs, 8, utf8)) { *pNumberOut = 0; return DRFLAC_AT_END; } crc = drflac_crc8(crc, utf8[0], 8); if ((utf8[0] & 0x80) == 0) { *pNumberOut = utf8[0]; *pCRCOut = crc; return DRFLAC_SUCCESS; } if ((utf8[0] & 0xE0) == 0xC0) { byteCount = 2; } else if ((utf8[0] & 0xF0) == 0xE0) { byteCount = 3; } else if ((utf8[0] & 0xF8) == 0xF0) { byteCount = 4; } else if ((utf8[0] & 0xFC) == 0xF8) { byteCount = 5; } else if ((utf8[0] & 0xFE) == 0xFC) { byteCount = 6; } else if ((utf8[0] & 0xFF) == 0xFE) { byteCount = 7; } else { *pNumberOut = 0; return DRFLAC_CRC_MISMATCH; } DRFLAC_ASSERT(byteCount > 1); result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1))); for (i = 1; i < byteCount; ++i) { if (!drflac__read_uint8(bs, 8, utf8 + i)) { *pNumberOut = 0; return DRFLAC_AT_END; } crc = drflac_crc8(crc, utf8[i], 8); result = (result << 6) | (utf8[i] & 0x3F); } *pNumberOut = result; *pCRCOut = crc; return DRFLAC_SUCCESS; } static DRFLAC_INLINE drflac_uint32 drflac__ilog2_u32(drflac_uint32 x) { #if 1 drflac_uint32 result = 0; while (x > 0) { result += 1; x >>= 1; } return result; #endif } static DRFLAC_INLINE drflac_bool32 drflac__use_64_bit_prediction(drflac_uint32 bitsPerSample, drflac_uint32 order, drflac_uint32 precision) { return bitsPerSample + precision + drflac__ilog2_u32(order) > 32; } #if defined(__clang__) __attribute__((no_sanitize("signed-integer-overflow"))) #endif static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) { drflac_int32 prediction = 0; DRFLAC_ASSERT(order <= 32); switch (order) { case 32: prediction += coefficients[31] * pDecodedSamples[-32]; case 31: prediction += coefficients[30] * pDecodedSamples[-31]; case 30: prediction += coefficients[29] * pDecodedSamples[-30]; case 29: prediction += coefficients[28] * pDecodedSamples[-29]; case 28: prediction += coefficients[27] * pDecodedSamples[-28]; case 27: prediction += coefficients[26] * pDecodedSamples[-27]; case 26: prediction += coefficients[25] * pDecodedSamples[-26]; case 25: prediction += coefficients[24] * pDecodedSamples[-25]; case 24: prediction += coefficients[23] * pDecodedSamples[-24]; case 23: prediction += coefficients[22] * pDecodedSamples[-23]; case 22: prediction += coefficients[21] * pDecodedSamples[-22]; case 21: prediction += coefficients[20] * pDecodedSamples[-21]; case 20: prediction += coefficients[19] * pDecodedSamples[-20]; case 19: prediction += coefficients[18] * pDecodedSamples[-19]; case 18: prediction += coefficients[17] * pDecodedSamples[-18]; case 17: prediction += coefficients[16] * pDecodedSamples[-17]; case 16: prediction += coefficients[15] * pDecodedSamples[-16]; case 15: prediction += coefficients[14] * pDecodedSamples[-15]; case 14: prediction += coefficients[13] * pDecodedSamples[-14]; case 13: prediction += coefficients[12] * pDecodedSamples[-13]; case 12: prediction += coefficients[11] * pDecodedSamples[-12]; case 11: prediction += coefficients[10] * pDecodedSamples[-11]; case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; } return (drflac_int32)(prediction >> shift); } static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) { drflac_int64 prediction; DRFLAC_ASSERT(order <= 32); #ifndef DRFLAC_64BIT if (order == 8) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; } else if (order == 7) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; } else if (order == 3) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; } else if (order == 6) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; } else if (order == 5) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; } else if (order == 4) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; } else if (order == 12) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; } else if (order == 2) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; } else if (order == 1) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; } else if (order == 10) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; } else if (order == 9) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; } else if (order == 11) { prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; } else { int j; prediction = 0; for (j = 0; j < (int)order; ++j) { prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1]; } } #endif #ifdef DRFLAC_64BIT prediction = 0; switch (order) { case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10]; case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9]; case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8]; case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7]; case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6]; case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5]; case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4]; case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; } #endif return (drflac_int32)(prediction >> shift); } #if 0 static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { drflac_uint32 i; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pSamplesOut != NULL); for (i = 0; i < count; ++i) { drflac_uint32 zeroCounter = 0; for (;;) { drflac_uint8 bit; if (!drflac__read_uint8(bs, 1, &bit)) { return DRFLAC_FALSE; } if (bit == 0) { zeroCounter += 1; } else { break; } } drflac_uint32 decodedRice; if (riceParam > 0) { if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { return DRFLAC_FALSE; } } else { decodedRice = 0; } decodedRice |= (zeroCounter << riceParam); if ((decodedRice & 0x01)) { decodedRice = ~(decodedRice >> 1); } else { decodedRice = (decodedRice >> 1); } if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + i); } else { pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + i); } } return DRFLAC_TRUE; } #endif #if 0 static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) { drflac_uint32 zeroCounter = 0; drflac_uint32 decodedRice; for (;;) { drflac_uint8 bit; if (!drflac__read_uint8(bs, 1, &bit)) { return DRFLAC_FALSE; } if (bit == 0) { zeroCounter += 1; } else { break; } } if (riceParam > 0) { if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { return DRFLAC_FALSE; } } else { decodedRice = 0; } *pZeroCounterOut = zeroCounter; *pRiceParamPartOut = decodedRice; return DRFLAC_TRUE; } #endif #if 0 static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) { drflac_cache_t riceParamMask; drflac_uint32 zeroCounter; drflac_uint32 setBitOffsetPlus1; drflac_uint32 riceParamPart; drflac_uint32 riceLength; DRFLAC_ASSERT(riceParam > 0); riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); zeroCounter = 0; while (bs->cache == 0) { zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } } setBitOffsetPlus1 = drflac__clz(bs->cache); zeroCounter += setBitOffsetPlus1; setBitOffsetPlus1 += 1; riceLength = setBitOffsetPlus1 + riceParam; if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength)); bs->consumedBits += riceLength; bs->cache <<= riceLength; } else { drflac_uint32 bitCountLo; drflac_cache_t resultHi; bs->consumedBits += riceLength; bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1); bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam); if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { #ifndef DR_FLAC_NO_CRC drflac__update_crc16(bs); #endif bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); bs->consumedBits = 0; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs->cache; #endif } else { if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } if (bitCountLo > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { return DRFLAC_FALSE; } } riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo)); bs->consumedBits += bitCountLo; bs->cache <<= bitCountLo; } pZeroCounterOut[0] = zeroCounter; pRiceParamPartOut[0] = riceParamPart; return DRFLAC_TRUE; } #endif static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) { drflac_uint32 riceParamPlus1 = riceParam + 1; drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1); drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; drflac_cache_t bs_cache = bs->cache; drflac_uint32 bs_consumedBits = bs->consumedBits; drflac_uint32 lzcount = drflac__clz(bs_cache); if (lzcount < sizeof(bs_cache)*8) { pZeroCounterOut[0] = lzcount; extract_rice_param_part: bs_cache <<= lzcount; bs_consumedBits += lzcount; if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); bs_cache <<= riceParamPlus1; bs_consumedBits += riceParamPlus1; } else { drflac_uint32 riceParamPartHi; drflac_uint32 riceParamPartLo; drflac_uint32 riceParamPartLoBitCount; riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { #ifndef DR_FLAC_NO_CRC drflac__update_crc16(bs); #endif bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); bs_consumedBits = riceParamPartLoBitCount; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs_cache; #endif } else { if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } if (riceParamPartLoBitCount > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { return DRFLAC_FALSE; } bs_cache = bs->cache; bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; } riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount))); pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo; bs_cache <<= riceParamPartLoBitCount; } } else { drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits); for (;;) { if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { #ifndef DR_FLAC_NO_CRC drflac__update_crc16(bs); #endif bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); bs_consumedBits = 0; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs_cache; #endif } else { if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } bs_cache = bs->cache; bs_consumedBits = bs->consumedBits; } lzcount = drflac__clz(bs_cache); zeroCounter += lzcount; if (lzcount < sizeof(bs_cache)*8) { break; } } pZeroCounterOut[0] = zeroCounter; goto extract_rice_param_part; } bs->cache = bs_cache; bs->consumedBits = bs_consumedBits; return DRFLAC_TRUE; } static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam) { drflac_uint32 riceParamPlus1 = riceParam + 1; drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; drflac_cache_t bs_cache = bs->cache; drflac_uint32 bs_consumedBits = bs->consumedBits; drflac_uint32 lzcount = drflac__clz(bs_cache); if (lzcount < sizeof(bs_cache)*8) { extract_rice_param_part: bs_cache <<= lzcount; bs_consumedBits += lzcount; if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { bs_cache <<= riceParamPlus1; bs_consumedBits += riceParamPlus1; } else { drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { #ifndef DR_FLAC_NO_CRC drflac__update_crc16(bs); #endif bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); bs_consumedBits = riceParamPartLoBitCount; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs_cache; #endif } else { if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } if (riceParamPartLoBitCount > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { return DRFLAC_FALSE; } bs_cache = bs->cache; bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; } bs_cache <<= riceParamPartLoBitCount; } } else { for (;;) { if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { #ifndef DR_FLAC_NO_CRC drflac__update_crc16(bs); #endif bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); bs_consumedBits = 0; #ifndef DR_FLAC_NO_CRC bs->crc16Cache = bs_cache; #endif } else { if (!drflac__reload_cache(bs)) { return DRFLAC_FALSE; } bs_cache = bs->cache; bs_consumedBits = bs->consumedBits; } lzcount = drflac__clz(bs_cache); if (lzcount < sizeof(bs_cache)*8) { break; } } goto extract_rice_param_part; } bs->cache = bs_cache; bs->consumedBits = bs_consumedBits; return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorder(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; drflac_uint32 zeroCountPart0; drflac_uint32 riceParamPart0; drflac_uint32 riceParamMask; drflac_uint32 i; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pSamplesOut != NULL); (void)bitsPerSample; (void)order; (void)shift; (void)coefficients; riceParamMask = (drflac_uint32)~((~0UL) << riceParam); i = 0; while (i < count) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { return DRFLAC_FALSE; } riceParamPart0 &= riceParamMask; riceParamPart0 |= (zeroCountPart0 << riceParam); riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; pSamplesOut[i] = riceParamPart0; i += 1; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; drflac_uint32 zeroCountPart0 = 0; drflac_uint32 zeroCountPart1 = 0; drflac_uint32 zeroCountPart2 = 0; drflac_uint32 zeroCountPart3 = 0; drflac_uint32 riceParamPart0 = 0; drflac_uint32 riceParamPart1 = 0; drflac_uint32 riceParamPart2 = 0; drflac_uint32 riceParamPart3 = 0; drflac_uint32 riceParamMask; const drflac_int32* pSamplesOutEnd; drflac_uint32 i; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pSamplesOut != NULL); if (lpcOrder == 0) { return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); } riceParamMask = (drflac_uint32)~((~0UL) << riceParam); pSamplesOutEnd = pSamplesOut + (count & ~3); if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { while (pSamplesOut < pSamplesOutEnd) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { return DRFLAC_FALSE; } riceParamPart0 &= riceParamMask; riceParamPart1 &= riceParamMask; riceParamPart2 &= riceParamMask; riceParamPart3 &= riceParamMask; riceParamPart0 |= (zeroCountPart0 << riceParam); riceParamPart1 |= (zeroCountPart1 << riceParam); riceParamPart2 |= (zeroCountPart2 << riceParam); riceParamPart3 |= (zeroCountPart3 << riceParam); riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 1); pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 2); pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 3); pSamplesOut += 4; } } else { while (pSamplesOut < pSamplesOutEnd) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { return DRFLAC_FALSE; } riceParamPart0 &= riceParamMask; riceParamPart1 &= riceParamMask; riceParamPart2 &= riceParamMask; riceParamPart3 &= riceParamMask; riceParamPart0 |= (zeroCountPart0 << riceParam); riceParamPart1 |= (zeroCountPart1 << riceParam); riceParamPart2 |= (zeroCountPart2 << riceParam); riceParamPart3 |= (zeroCountPart3 << riceParam); riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 1); pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 2); pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 3); pSamplesOut += 4; } } i = (count & ~3); while (i < count) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { return DRFLAC_FALSE; } riceParamPart0 &= riceParamMask; riceParamPart0 |= (zeroCountPart0 << riceParam); riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); } else { pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); } i += 1; pSamplesOut += 1; } return DRFLAC_TRUE; } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE __m128i drflac__mm_packs_interleaved_epi32(__m128i a, __m128i b) { __m128i r; r = _mm_packs_epi32(a, b); r = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 1, 2, 0)); r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(3, 1, 2, 0)); r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(3, 1, 2, 0)); return r; } #endif #if defined(DRFLAC_SUPPORT_SSE41) static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a) { return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128())); } static DRFLAC_INLINE __m128i drflac__mm_hadd_epi32(__m128i x) { __m128i x64 = _mm_add_epi32(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2))); __m128i x32 = _mm_shufflelo_epi16(x64, _MM_SHUFFLE(1, 0, 3, 2)); return _mm_add_epi32(x64, x32); } static DRFLAC_INLINE __m128i drflac__mm_hadd_epi64(__m128i x) { return _mm_add_epi64(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2))); } static DRFLAC_INLINE __m128i drflac__mm_srai_epi64(__m128i x, int count) { __m128i lo = _mm_srli_epi64(x, count); __m128i hi = _mm_srai_epi32(x, count); hi = _mm_and_si128(hi, _mm_set_epi32(0xFFFFFFFF, 0, 0xFFFFFFFF, 0)); return _mm_or_si128(lo, hi); } static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { int i; drflac_uint32 riceParamMask; drflac_int32* pDecodedSamples = pSamplesOut; drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); drflac_uint32 zeroCountParts0 = 0; drflac_uint32 zeroCountParts1 = 0; drflac_uint32 zeroCountParts2 = 0; drflac_uint32 zeroCountParts3 = 0; drflac_uint32 riceParamParts0 = 0; drflac_uint32 riceParamParts1 = 0; drflac_uint32 riceParamParts2 = 0; drflac_uint32 riceParamParts3 = 0; __m128i coefficients128_0; __m128i coefficients128_4; __m128i coefficients128_8; __m128i samples128_0; __m128i samples128_4; __m128i samples128_8; __m128i riceParamMask128; const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; riceParamMask = (drflac_uint32)~((~0UL) << riceParam); riceParamMask128 = _mm_set1_epi32(riceParamMask); coefficients128_0 = _mm_setzero_si128(); coefficients128_4 = _mm_setzero_si128(); coefficients128_8 = _mm_setzero_si128(); samples128_0 = _mm_setzero_si128(); samples128_4 = _mm_setzero_si128(); samples128_8 = _mm_setzero_si128(); #if 1 { int runningOrder = order; if (runningOrder >= 4) { coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0)); samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4)); runningOrder -= 4; } else { switch (runningOrder) { case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break; case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break; case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break; } runningOrder = 0; } if (runningOrder >= 4) { coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4)); samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8)); runningOrder -= 4; } else { switch (runningOrder) { case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break; case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break; case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break; } runningOrder = 0; } if (runningOrder == 4) { coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8)); samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12)); runningOrder -= 4; } else { switch (runningOrder) { case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break; case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break; case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break; } runningOrder = 0; } coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3)); coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3)); coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3)); } #else switch (order) { case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12]; case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11]; case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10]; case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9]; case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8]; case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7]; case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6]; case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5]; case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4]; case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3]; case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2]; case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1]; } #endif while (pDecodedSamples < pDecodedSamplesEnd) { __m128i prediction128; __m128i zeroCountPart128; __m128i riceParamPart128; if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { return DRFLAC_FALSE; } zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01))), _mm_set1_epi32(0x01))); if (order <= 4) { for (i = 0; i < 4; i += 1) { prediction128 = _mm_mullo_epi32(coefficients128_0, samples128_0); prediction128 = drflac__mm_hadd_epi32(prediction128); prediction128 = _mm_srai_epi32(prediction128, shift); prediction128 = _mm_add_epi32(riceParamPart128, prediction128); samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); } } else if (order <= 8) { for (i = 0; i < 4; i += 1) { prediction128 = _mm_mullo_epi32(coefficients128_4, samples128_4); prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0)); prediction128 = drflac__mm_hadd_epi32(prediction128); prediction128 = _mm_srai_epi32(prediction128, shift); prediction128 = _mm_add_epi32(riceParamPart128, prediction128); samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); } } else { for (i = 0; i < 4; i += 1) { prediction128 = _mm_mullo_epi32(coefficients128_8, samples128_8); prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_4, samples128_4)); prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0)); prediction128 = drflac__mm_hadd_epi32(prediction128); prediction128 = _mm_srai_epi32(prediction128, shift); prediction128 = _mm_add_epi32(riceParamPart128, prediction128); samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4); samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); } } _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0); pDecodedSamples += 4; } i = (count & ~3); while (i < (int)count) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { return DRFLAC_FALSE; } riceParamParts0 &= riceParamMask; riceParamParts0 |= (zeroCountParts0 << riceParam); riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples); i += 1; pDecodedSamples += 1; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { int i; drflac_uint32 riceParamMask; drflac_int32* pDecodedSamples = pSamplesOut; drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); drflac_uint32 zeroCountParts0 = 0; drflac_uint32 zeroCountParts1 = 0; drflac_uint32 zeroCountParts2 = 0; drflac_uint32 zeroCountParts3 = 0; drflac_uint32 riceParamParts0 = 0; drflac_uint32 riceParamParts1 = 0; drflac_uint32 riceParamParts2 = 0; drflac_uint32 riceParamParts3 = 0; __m128i coefficients128_0; __m128i coefficients128_4; __m128i coefficients128_8; __m128i samples128_0; __m128i samples128_4; __m128i samples128_8; __m128i prediction128; __m128i riceParamMask128; const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; DRFLAC_ASSERT(order <= 12); riceParamMask = (drflac_uint32)~((~0UL) << riceParam); riceParamMask128 = _mm_set1_epi32(riceParamMask); prediction128 = _mm_setzero_si128(); coefficients128_0 = _mm_setzero_si128(); coefficients128_4 = _mm_setzero_si128(); coefficients128_8 = _mm_setzero_si128(); samples128_0 = _mm_setzero_si128(); samples128_4 = _mm_setzero_si128(); samples128_8 = _mm_setzero_si128(); #if 1 { int runningOrder = order; if (runningOrder >= 4) { coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0)); samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4)); runningOrder -= 4; } else { switch (runningOrder) { case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break; case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break; case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break; } runningOrder = 0; } if (runningOrder >= 4) { coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4)); samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8)); runningOrder -= 4; } else { switch (runningOrder) { case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break; case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break; case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break; } runningOrder = 0; } if (runningOrder == 4) { coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8)); samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12)); runningOrder -= 4; } else { switch (runningOrder) { case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break; case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break; case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break; } runningOrder = 0; } coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3)); coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3)); coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3)); } #else switch (order) { case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12]; case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11]; case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10]; case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9]; case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8]; case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7]; case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6]; case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5]; case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4]; case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3]; case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2]; case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1]; } #endif while (pDecodedSamples < pDecodedSamplesEnd) { __m128i zeroCountPart128; __m128i riceParamPart128; if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { return DRFLAC_FALSE; } zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(1))), _mm_set1_epi32(1))); for (i = 0; i < 4; i += 1) { prediction128 = _mm_xor_si128(prediction128, prediction128); switch (order) { case 12: case 11: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(1, 1, 0, 0)))); case 10: case 9: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(3, 3, 2, 2)))); case 8: case 7: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(1, 1, 0, 0)))); case 6: case 5: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(3, 3, 2, 2)))); case 4: case 3: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(1, 1, 0, 0)))); case 2: case 1: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(3, 3, 2, 2)))); } prediction128 = drflac__mm_hadd_epi64(prediction128); prediction128 = drflac__mm_srai_epi64(prediction128, shift); prediction128 = _mm_add_epi32(riceParamPart128, prediction128); samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4); samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); } _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0); pDecodedSamples += 4; } i = (count & ~3); while (i < (int)count) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { return DRFLAC_FALSE; } riceParamParts0 &= riceParamMask; riceParamParts0 |= (zeroCountParts0 << riceParam); riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples); i += 1; pDecodedSamples += 1; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pSamplesOut != NULL); if (lpcOrder > 0 && lpcOrder <= 12) { if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { return drflac__decode_samples_with_residual__rice__sse41_64(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); } else { return drflac__decode_samples_with_residual__rice__sse41_32(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); } } else { return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac__vst2q_s32(drflac_int32* p, int32x4x2_t x) { vst1q_s32(p+0, x.val[0]); vst1q_s32(p+4, x.val[1]); } static DRFLAC_INLINE void drflac__vst2q_u32(drflac_uint32* p, uint32x4x2_t x) { vst1q_u32(p+0, x.val[0]); vst1q_u32(p+4, x.val[1]); } static DRFLAC_INLINE void drflac__vst2q_f32(float* p, float32x4x2_t x) { vst1q_f32(p+0, x.val[0]); vst1q_f32(p+4, x.val[1]); } static DRFLAC_INLINE void drflac__vst2q_s16(drflac_int16* p, int16x4x2_t x) { vst1q_s16(p, vcombine_s16(x.val[0], x.val[1])); } static DRFLAC_INLINE void drflac__vst2q_u16(drflac_uint16* p, uint16x4x2_t x) { vst1q_u16(p, vcombine_u16(x.val[0], x.val[1])); } static DRFLAC_INLINE int32x4_t drflac__vdupq_n_s32x4(drflac_int32 x3, drflac_int32 x2, drflac_int32 x1, drflac_int32 x0) { drflac_int32 x[4]; x[3] = x3; x[2] = x2; x[1] = x1; x[0] = x0; return vld1q_s32(x); } static DRFLAC_INLINE int32x4_t drflac__valignrq_s32_1(int32x4_t a, int32x4_t b) { return vextq_s32(b, a, 1); } static DRFLAC_INLINE uint32x4_t drflac__valignrq_u32_1(uint32x4_t a, uint32x4_t b) { return vextq_u32(b, a, 1); } static DRFLAC_INLINE int32x2_t drflac__vhaddq_s32(int32x4_t x) { int32x2_t r = vadd_s32(vget_high_s32(x), vget_low_s32(x)); return vpadd_s32(r, r); } static DRFLAC_INLINE int64x1_t drflac__vhaddq_s64(int64x2_t x) { return vadd_s64(vget_high_s64(x), vget_low_s64(x)); } static DRFLAC_INLINE int32x4_t drflac__vrevq_s32(int32x4_t x) { return vrev64q_s32(vcombine_s32(vget_high_s32(x), vget_low_s32(x))); } static DRFLAC_INLINE int32x4_t drflac__vnotq_s32(int32x4_t x) { return veorq_s32(x, vdupq_n_s32(0xFFFFFFFF)); } static DRFLAC_INLINE uint32x4_t drflac__vnotq_u32(uint32x4_t x) { return veorq_u32(x, vdupq_n_u32(0xFFFFFFFF)); } static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { int i; drflac_uint32 riceParamMask; drflac_int32* pDecodedSamples = pSamplesOut; drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); drflac_uint32 zeroCountParts[4]; drflac_uint32 riceParamParts[4]; int32x4_t coefficients128_0; int32x4_t coefficients128_4; int32x4_t coefficients128_8; int32x4_t samples128_0; int32x4_t samples128_4; int32x4_t samples128_8; uint32x4_t riceParamMask128; int32x4_t riceParam128; int32x2_t shift64; uint32x4_t one128; const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; riceParamMask = (drflac_uint32)~((~0UL) << riceParam); riceParamMask128 = vdupq_n_u32(riceParamMask); riceParam128 = vdupq_n_s32(riceParam); shift64 = vdup_n_s32(-shift); one128 = vdupq_n_u32(1); { int runningOrder = order; drflac_int32 tempC[4] = {0, 0, 0, 0}; drflac_int32 tempS[4] = {0, 0, 0, 0}; if (runningOrder >= 4) { coefficients128_0 = vld1q_s32(coefficients + 0); samples128_0 = vld1q_s32(pSamplesOut - 4); runningOrder -= 4; } else { switch (runningOrder) { case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; } coefficients128_0 = vld1q_s32(tempC); samples128_0 = vld1q_s32(tempS); runningOrder = 0; } if (runningOrder >= 4) { coefficients128_4 = vld1q_s32(coefficients + 4); samples128_4 = vld1q_s32(pSamplesOut - 8); runningOrder -= 4; } else { switch (runningOrder) { case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; } coefficients128_4 = vld1q_s32(tempC); samples128_4 = vld1q_s32(tempS); runningOrder = 0; } if (runningOrder == 4) { coefficients128_8 = vld1q_s32(coefficients + 8); samples128_8 = vld1q_s32(pSamplesOut - 12); runningOrder -= 4; } else { switch (runningOrder) { case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; } coefficients128_8 = vld1q_s32(tempC); samples128_8 = vld1q_s32(tempS); runningOrder = 0; } coefficients128_0 = drflac__vrevq_s32(coefficients128_0); coefficients128_4 = drflac__vrevq_s32(coefficients128_4); coefficients128_8 = drflac__vrevq_s32(coefficients128_8); } while (pDecodedSamples < pDecodedSamplesEnd) { int32x4_t prediction128; int32x2_t prediction64; uint32x4_t zeroCountPart128; uint32x4_t riceParamPart128; if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) { return DRFLAC_FALSE; } zeroCountPart128 = vld1q_u32(zeroCountParts); riceParamPart128 = vld1q_u32(riceParamParts); riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128); riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128)); riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128)); if (order <= 4) { for (i = 0; i < 4; i += 1) { prediction128 = vmulq_s32(coefficients128_0, samples128_0); prediction64 = drflac__vhaddq_s32(prediction128); prediction64 = vshl_s32(prediction64, shift64); prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); } } else if (order <= 8) { for (i = 0; i < 4; i += 1) { prediction128 = vmulq_s32(coefficients128_4, samples128_4); prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0); prediction64 = drflac__vhaddq_s32(prediction128); prediction64 = vshl_s32(prediction64, shift64); prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); } } else { for (i = 0; i < 4; i += 1) { prediction128 = vmulq_s32(coefficients128_8, samples128_8); prediction128 = vmlaq_s32(prediction128, coefficients128_4, samples128_4); prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0); prediction64 = drflac__vhaddq_s32(prediction128); prediction64 = vshl_s32(prediction64, shift64); prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8); samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); } } vst1q_s32(pDecodedSamples, samples128_0); pDecodedSamples += 4; } i = (count & ~3); while (i < (int)count) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) { return DRFLAC_FALSE; } riceParamParts[0] &= riceParamMask; riceParamParts[0] |= (zeroCountParts[0] << riceParam); riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01]; pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples); i += 1; pDecodedSamples += 1; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { int i; drflac_uint32 riceParamMask; drflac_int32* pDecodedSamples = pSamplesOut; drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); drflac_uint32 zeroCountParts[4]; drflac_uint32 riceParamParts[4]; int32x4_t coefficients128_0; int32x4_t coefficients128_4; int32x4_t coefficients128_8; int32x4_t samples128_0; int32x4_t samples128_4; int32x4_t samples128_8; uint32x4_t riceParamMask128; int32x4_t riceParam128; int64x1_t shift64; uint32x4_t one128; int64x2_t prediction128 = { 0 }; uint32x4_t zeroCountPart128; uint32x4_t riceParamPart128; const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; riceParamMask = (drflac_uint32)~((~0UL) << riceParam); riceParamMask128 = vdupq_n_u32(riceParamMask); riceParam128 = vdupq_n_s32(riceParam); shift64 = vdup_n_s64(-shift); one128 = vdupq_n_u32(1); { int runningOrder = order; drflac_int32 tempC[4] = {0, 0, 0, 0}; drflac_int32 tempS[4] = {0, 0, 0, 0}; if (runningOrder >= 4) { coefficients128_0 = vld1q_s32(coefficients + 0); samples128_0 = vld1q_s32(pSamplesOut - 4); runningOrder -= 4; } else { switch (runningOrder) { case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; } coefficients128_0 = vld1q_s32(tempC); samples128_0 = vld1q_s32(tempS); runningOrder = 0; } if (runningOrder >= 4) { coefficients128_4 = vld1q_s32(coefficients + 4); samples128_4 = vld1q_s32(pSamplesOut - 8); runningOrder -= 4; } else { switch (runningOrder) { case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; } coefficients128_4 = vld1q_s32(tempC); samples128_4 = vld1q_s32(tempS); runningOrder = 0; } if (runningOrder == 4) { coefficients128_8 = vld1q_s32(coefficients + 8); samples128_8 = vld1q_s32(pSamplesOut - 12); runningOrder -= 4; } else { switch (runningOrder) { case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; } coefficients128_8 = vld1q_s32(tempC); samples128_8 = vld1q_s32(tempS); runningOrder = 0; } coefficients128_0 = drflac__vrevq_s32(coefficients128_0); coefficients128_4 = drflac__vrevq_s32(coefficients128_4); coefficients128_8 = drflac__vrevq_s32(coefficients128_8); } while (pDecodedSamples < pDecodedSamplesEnd) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) || !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) { return DRFLAC_FALSE; } zeroCountPart128 = vld1q_u32(zeroCountParts); riceParamPart128 = vld1q_u32(riceParamParts); riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128); riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128)); riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128)); for (i = 0; i < 4; i += 1) { int64x1_t prediction64; prediction128 = veorq_s64(prediction128, prediction128); switch (order) { case 12: case 11: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_8), vget_low_s32(samples128_8))); case 10: case 9: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_8), vget_high_s32(samples128_8))); case 8: case 7: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_4), vget_low_s32(samples128_4))); case 6: case 5: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_4), vget_high_s32(samples128_4))); case 4: case 3: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_0), vget_low_s32(samples128_0))); case 2: case 1: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_0), vget_high_s32(samples128_0))); } prediction64 = drflac__vhaddq_s64(prediction128); prediction64 = vshl_s64(prediction64, shift64); prediction64 = vadd_s64(prediction64, vdup_n_s64(vgetq_lane_u32(riceParamPart128, 0))); samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8); samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); samples128_0 = drflac__valignrq_s32_1(vcombine_s32(vreinterpret_s32_s64(prediction64), vdup_n_s32(0)), samples128_0); riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); } vst1q_s32(pDecodedSamples, samples128_0); pDecodedSamples += 4; } i = (count & ~3); while (i < (int)count) { if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) { return DRFLAC_FALSE; } riceParamParts[0] &= riceParamMask; riceParamParts[0] |= (zeroCountParts[0] << riceParam); riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01]; pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples); i += 1; pDecodedSamples += 1; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(pSamplesOut != NULL); if (lpcOrder > 0 && lpcOrder <= 12) { if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { return drflac__decode_samples_with_residual__rice__neon_64(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); } else { return drflac__decode_samples_with_residual__rice__neon_32(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); } } else { return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); } } #endif static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { #if defined(DRFLAC_SUPPORT_SSE41) if (drflac__gIsSSE41Supported) { return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported) { return drflac__decode_samples_with_residual__rice__neon(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); } else #endif { #if 0 return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); #else return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); #endif } } static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam) { drflac_uint32 i; DRFLAC_ASSERT(bs != NULL); for (i = 0; i < count; ++i) { if (!drflac__seek_rice_parts(bs, riceParam)) { return DRFLAC_FALSE; } } return DRFLAC_TRUE; } #if defined(__clang__) __attribute__((no_sanitize("signed-integer-overflow"))) #endif static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) { drflac_uint32 i; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(unencodedBitsPerSample <= 31); DRFLAC_ASSERT(pSamplesOut != NULL); for (i = 0; i < count; ++i) { if (unencodedBitsPerSample > 0) { if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { return DRFLAC_FALSE; } } else { pSamplesOut[i] = 0; } if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { pSamplesOut[i] += drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + i); } else { pSamplesOut[i] += drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + i); } } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) { drflac_uint8 residualMethod; drflac_uint8 partitionOrder; drflac_uint32 samplesInPartition; drflac_uint32 partitionsRemaining; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(blockSize != 0); DRFLAC_ASSERT(pDecodedSamples != NULL); if (!drflac__read_uint8(bs, 2, &residualMethod)) { return DRFLAC_FALSE; } if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { return DRFLAC_FALSE; } pDecodedSamples += lpcOrder; if (!drflac__read_uint8(bs, 4, &partitionOrder)) { return DRFLAC_FALSE; } if (partitionOrder > 8) { return DRFLAC_FALSE; } if ((blockSize / (1 << partitionOrder)) < lpcOrder) { return DRFLAC_FALSE; } samplesInPartition = (blockSize / (1 << partitionOrder)) - lpcOrder; partitionsRemaining = (1 << partitionOrder); for (;;) { drflac_uint8 riceParam = 0; if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { if (!drflac__read_uint8(bs, 4, &riceParam)) { return DRFLAC_FALSE; } if (riceParam == 15) { riceParam = 0xFF; } } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { if (!drflac__read_uint8(bs, 5, &riceParam)) { return DRFLAC_FALSE; } if (riceParam == 31) { riceParam = 0xFF; } } if (riceParam != 0xFF) { if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pDecodedSamples)) { return DRFLAC_FALSE; } } else { drflac_uint8 unencodedBitsPerSample = 0; if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { return DRFLAC_FALSE; } if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, lpcOrder, lpcShift, lpcPrecision, coefficients, pDecodedSamples)) { return DRFLAC_FALSE; } } pDecodedSamples += samplesInPartition; if (partitionsRemaining == 1) { break; } partitionsRemaining -= 1; if (partitionOrder != 0) { samplesInPartition = blockSize / (1 << partitionOrder); } } return DRFLAC_TRUE; } static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order) { drflac_uint8 residualMethod; drflac_uint8 partitionOrder; drflac_uint32 samplesInPartition; drflac_uint32 partitionsRemaining; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(blockSize != 0); if (!drflac__read_uint8(bs, 2, &residualMethod)) { return DRFLAC_FALSE; } if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { return DRFLAC_FALSE; } if (!drflac__read_uint8(bs, 4, &partitionOrder)) { return DRFLAC_FALSE; } if (partitionOrder > 8) { return DRFLAC_FALSE; } if ((blockSize / (1 << partitionOrder)) <= order) { return DRFLAC_FALSE; } samplesInPartition = (blockSize / (1 << partitionOrder)) - order; partitionsRemaining = (1 << partitionOrder); for (;;) { drflac_uint8 riceParam = 0; if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { if (!drflac__read_uint8(bs, 4, &riceParam)) { return DRFLAC_FALSE; } if (riceParam == 15) { riceParam = 0xFF; } } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { if (!drflac__read_uint8(bs, 5, &riceParam)) { return DRFLAC_FALSE; } if (riceParam == 31) { riceParam = 0xFF; } } if (riceParam != 0xFF) { if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { return DRFLAC_FALSE; } } else { drflac_uint8 unencodedBitsPerSample = 0; if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { return DRFLAC_FALSE; } if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { return DRFLAC_FALSE; } } if (partitionsRemaining == 1) { break; } partitionsRemaining -= 1; samplesInPartition = blockSize / (1 << partitionOrder); } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples) { drflac_uint32 i; drflac_int32 sample; if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { return DRFLAC_FALSE; } for (i = 0; i < blockSize; ++i) { pDecodedSamples[i] = sample; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples) { drflac_uint32 i; for (i = 0; i < blockSize; ++i) { drflac_int32 sample; if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { return DRFLAC_FALSE; } pDecodedSamples[i] = sample; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) { drflac_uint32 i; static drflac_int32 lpcCoefficientsTable[5][4] = { {0, 0, 0, 0}, {1, 0, 0, 0}, {2, -1, 0, 0}, {3, -3, 1, 0}, {4, -6, 4, -1} }; for (i = 0; i < lpcOrder; ++i) { drflac_int32 sample; if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { return DRFLAC_FALSE; } pDecodedSamples[i] = sample; } if (!drflac__decode_samples_with_residual(bs, subframeBitsPerSample, blockSize, lpcOrder, 0, 4, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { return DRFLAC_FALSE; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) { drflac_uint8 i; drflac_uint8 lpcPrecision; drflac_int8 lpcShift; drflac_int32 coefficients[32]; for (i = 0; i < lpcOrder; ++i) { drflac_int32 sample; if (!drflac__read_int32(bs, bitsPerSample, &sample)) { return DRFLAC_FALSE; } pDecodedSamples[i] = sample; } if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { return DRFLAC_FALSE; } if (lpcPrecision == 15) { return DRFLAC_FALSE; } lpcPrecision += 1; if (!drflac__read_int8(bs, 5, &lpcShift)) { return DRFLAC_FALSE; } if (lpcShift < 0) { return DRFLAC_FALSE; } DRFLAC_ZERO_MEMORY(coefficients, sizeof(coefficients)); for (i = 0; i < lpcOrder; ++i) { if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) { return DRFLAC_FALSE; } } if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, lpcPrecision, coefficients, pDecodedSamples)) { return DRFLAC_FALSE; } return DRFLAC_TRUE; } static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header) { const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(header != NULL); for (;;) { drflac_uint8 crc8 = 0xCE; drflac_uint8 reserved = 0; drflac_uint8 blockingStrategy = 0; drflac_uint8 blockSize = 0; drflac_uint8 sampleRate = 0; drflac_uint8 channelAssignment = 0; drflac_uint8 bitsPerSample = 0; drflac_bool32 isVariableBlockSize; if (!drflac__find_and_seek_to_next_sync_code(bs)) { return DRFLAC_FALSE; } if (!drflac__read_uint8(bs, 1, &reserved)) { return DRFLAC_FALSE; } if (reserved == 1) { continue; } crc8 = drflac_crc8(crc8, reserved, 1); if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, blockingStrategy, 1); if (!drflac__read_uint8(bs, 4, &blockSize)) { return DRFLAC_FALSE; } if (blockSize == 0) { continue; } crc8 = drflac_crc8(crc8, blockSize, 4); if (!drflac__read_uint8(bs, 4, &sampleRate)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, sampleRate, 4); if (!drflac__read_uint8(bs, 4, &channelAssignment)) { return DRFLAC_FALSE; } if (channelAssignment > 10) { continue; } crc8 = drflac_crc8(crc8, channelAssignment, 4); if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { return DRFLAC_FALSE; } if (bitsPerSample == 3 || bitsPerSample == 7) { continue; } crc8 = drflac_crc8(crc8, bitsPerSample, 3); if (!drflac__read_uint8(bs, 1, &reserved)) { return DRFLAC_FALSE; } if (reserved == 1) { continue; } crc8 = drflac_crc8(crc8, reserved, 1); isVariableBlockSize = blockingStrategy == 1; if (isVariableBlockSize) { drflac_uint64 pcmFrameNumber; drflac_result result = drflac__read_utf8_coded_number(bs, &pcmFrameNumber, &crc8); if (result != DRFLAC_SUCCESS) { if (result == DRFLAC_AT_END) { return DRFLAC_FALSE; } else { continue; } } header->flacFrameNumber = 0; header->pcmFrameNumber = pcmFrameNumber; } else { drflac_uint64 flacFrameNumber = 0; drflac_result result = drflac__read_utf8_coded_number(bs, &flacFrameNumber, &crc8); if (result != DRFLAC_SUCCESS) { if (result == DRFLAC_AT_END) { return DRFLAC_FALSE; } else { continue; } } header->flacFrameNumber = (drflac_uint32)flacFrameNumber; header->pcmFrameNumber = 0; } DRFLAC_ASSERT(blockSize > 0); if (blockSize == 1) { header->blockSizeInPCMFrames = 192; } else if (blockSize <= 5) { DRFLAC_ASSERT(blockSize >= 2); header->blockSizeInPCMFrames = 576 * (1 << (blockSize - 2)); } else if (blockSize == 6) { if (!drflac__read_uint16(bs, 8, &header->blockSizeInPCMFrames)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 8); header->blockSizeInPCMFrames += 1; } else if (blockSize == 7) { if (!drflac__read_uint16(bs, 16, &header->blockSizeInPCMFrames)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 16); if (header->blockSizeInPCMFrames == 0xFFFF) { return DRFLAC_FALSE; } header->blockSizeInPCMFrames += 1; } else { DRFLAC_ASSERT(blockSize >= 8); header->blockSizeInPCMFrames = 256 * (1 << (blockSize - 8)); } if (sampleRate <= 11) { header->sampleRate = sampleRateTable[sampleRate]; } else if (sampleRate == 12) { if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, header->sampleRate, 8); header->sampleRate *= 1000; } else if (sampleRate == 13) { if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, header->sampleRate, 16); } else if (sampleRate == 14) { if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { return DRFLAC_FALSE; } crc8 = drflac_crc8(crc8, header->sampleRate, 16); header->sampleRate *= 10; } else { continue; } header->channelAssignment = channelAssignment; header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; if (header->bitsPerSample == 0) { header->bitsPerSample = streaminfoBitsPerSample; } if (header->bitsPerSample != streaminfoBitsPerSample) { return DRFLAC_FALSE; } if (!drflac__read_uint8(bs, 8, &header->crc8)) { return DRFLAC_FALSE; } #ifndef DR_FLAC_NO_CRC if (header->crc8 != crc8) { continue; } #endif return DRFLAC_TRUE; } } static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) { drflac_uint8 header; int type; if (!drflac__read_uint8(bs, 8, &header)) { return DRFLAC_FALSE; } if ((header & 0x80) != 0) { return DRFLAC_FALSE; } type = (header & 0x7E) >> 1; if (type == 0) { pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; } else if (type == 1) { pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; } else { if ((type & 0x20) != 0) { pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; pSubframe->lpcOrder = (drflac_uint8)(type & 0x1F) + 1; } else if ((type & 0x08) != 0) { pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; pSubframe->lpcOrder = (drflac_uint8)(type & 0x07); if (pSubframe->lpcOrder > 4) { pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; pSubframe->lpcOrder = 0; } } else { pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; } } if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { return DRFLAC_FALSE; } pSubframe->wastedBitsPerSample = 0; if ((header & 0x01) == 1) { unsigned int wastedBitsPerSample; if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { return DRFLAC_FALSE; } pSubframe->wastedBitsPerSample = (drflac_uint8)wastedBitsPerSample + 1; } return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut) { drflac_subframe* pSubframe; drflac_uint32 subframeBitsPerSample; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(frame != NULL); pSubframe = frame->subframes + subframeIndex; if (!drflac__read_subframe_header(bs, pSubframe)) { return DRFLAC_FALSE; } subframeBitsPerSample = frame->header.bitsPerSample; if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { subframeBitsPerSample += 1; } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { subframeBitsPerSample += 1; } if (subframeBitsPerSample > 32) { return DRFLAC_FALSE; } if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) { return DRFLAC_FALSE; } subframeBitsPerSample -= pSubframe->wastedBitsPerSample; pSubframe->pSamplesS32 = pDecodedSamplesOut; switch (pSubframe->subframeType) { case DRFLAC_SUBFRAME_CONSTANT: { drflac__decode_samples__constant(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32); } break; case DRFLAC_SUBFRAME_VERBATIM: { drflac__decode_samples__verbatim(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32); } break; case DRFLAC_SUBFRAME_FIXED: { drflac__decode_samples__fixed(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32); } break; case DRFLAC_SUBFRAME_LPC: { drflac__decode_samples__lpc(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32); } break; default: return DRFLAC_FALSE; } return DRFLAC_TRUE; } static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) { drflac_subframe* pSubframe; drflac_uint32 subframeBitsPerSample; DRFLAC_ASSERT(bs != NULL); DRFLAC_ASSERT(frame != NULL); pSubframe = frame->subframes + subframeIndex; if (!drflac__read_subframe_header(bs, pSubframe)) { return DRFLAC_FALSE; } subframeBitsPerSample = frame->header.bitsPerSample; if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { subframeBitsPerSample += 1; } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { subframeBitsPerSample += 1; } if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) { return DRFLAC_FALSE; } subframeBitsPerSample -= pSubframe->wastedBitsPerSample; pSubframe->pSamplesS32 = NULL; switch (pSubframe->subframeType) { case DRFLAC_SUBFRAME_CONSTANT: { if (!drflac__seek_bits(bs, subframeBitsPerSample)) { return DRFLAC_FALSE; } } break; case DRFLAC_SUBFRAME_VERBATIM: { unsigned int bitsToSeek = frame->header.blockSizeInPCMFrames * subframeBitsPerSample; if (!drflac__seek_bits(bs, bitsToSeek)) { return DRFLAC_FALSE; } } break; case DRFLAC_SUBFRAME_FIXED: { unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample; if (!drflac__seek_bits(bs, bitsToSeek)) { return DRFLAC_FALSE; } if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) { return DRFLAC_FALSE; } } break; case DRFLAC_SUBFRAME_LPC: { drflac_uint8 lpcPrecision; unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample; if (!drflac__seek_bits(bs, bitsToSeek)) { return DRFLAC_FALSE; } if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { return DRFLAC_FALSE; } if (lpcPrecision == 15) { return DRFLAC_FALSE; } lpcPrecision += 1; bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; if (!drflac__seek_bits(bs, bitsToSeek)) { return DRFLAC_FALSE; } if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) { return DRFLAC_FALSE; } } break; default: return DRFLAC_FALSE; } return DRFLAC_TRUE; } static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment) { drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; DRFLAC_ASSERT(channelAssignment <= 10); return lookup[channelAssignment]; } static drflac_result drflac__decode_flac_frame(drflac* pFlac) { int channelCount; int i; drflac_uint8 paddingSizeInBits; drflac_uint16 desiredCRC16; #ifndef DR_FLAC_NO_CRC drflac_uint16 actualCRC16; #endif DRFLAC_ZERO_MEMORY(pFlac->currentFLACFrame.subframes, sizeof(pFlac->currentFLACFrame.subframes)); if (pFlac->currentFLACFrame.header.blockSizeInPCMFrames > pFlac->maxBlockSizeInPCMFrames) { return DRFLAC_ERROR; } channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); if (channelCount != (int)pFlac->channels) { return DRFLAC_ERROR; } for (i = 0; i < channelCount; ++i) { if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i, pFlac->pDecodedSamples + (pFlac->currentFLACFrame.header.blockSizeInPCMFrames * i))) { return DRFLAC_ERROR; } } paddingSizeInBits = (drflac_uint8)(DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7); if (paddingSizeInBits > 0) { drflac_uint8 padding = 0; if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) { return DRFLAC_AT_END; } } #ifndef DR_FLAC_NO_CRC actualCRC16 = drflac__flush_crc16(&pFlac->bs); #endif if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { return DRFLAC_AT_END; } #ifndef DR_FLAC_NO_CRC if (actualCRC16 != desiredCRC16) { return DRFLAC_CRC_MISMATCH; } #endif pFlac->currentFLACFrame.pcmFramesRemaining = pFlac->currentFLACFrame.header.blockSizeInPCMFrames; return DRFLAC_SUCCESS; } static drflac_result drflac__seek_flac_frame(drflac* pFlac) { int channelCount; int i; drflac_uint16 desiredCRC16; #ifndef DR_FLAC_NO_CRC drflac_uint16 actualCRC16; #endif channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); for (i = 0; i < channelCount; ++i) { if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i)) { return DRFLAC_ERROR; } } if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) { return DRFLAC_ERROR; } #ifndef DR_FLAC_NO_CRC actualCRC16 = drflac__flush_crc16(&pFlac->bs); #endif if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { return DRFLAC_AT_END; } #ifndef DR_FLAC_NO_CRC if (actualCRC16 != desiredCRC16) { return DRFLAC_CRC_MISMATCH; } #endif return DRFLAC_SUCCESS; } static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac) { DRFLAC_ASSERT(pFlac != NULL); for (;;) { drflac_result result; if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } result = drflac__decode_flac_frame(pFlac); if (result != DRFLAC_SUCCESS) { if (result == DRFLAC_CRC_MISMATCH) { continue; } else { return DRFLAC_FALSE; } } return DRFLAC_TRUE; } } static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame) { drflac_uint64 firstPCMFrame; drflac_uint64 lastPCMFrame; DRFLAC_ASSERT(pFlac != NULL); firstPCMFrame = pFlac->currentFLACFrame.header.pcmFrameNumber; if (firstPCMFrame == 0) { firstPCMFrame = ((drflac_uint64)pFlac->currentFLACFrame.header.flacFrameNumber) * pFlac->maxBlockSizeInPCMFrames; } lastPCMFrame = firstPCMFrame + pFlac->currentFLACFrame.header.blockSizeInPCMFrames; if (lastPCMFrame > 0) { lastPCMFrame -= 1; } if (pFirstPCMFrame) { *pFirstPCMFrame = firstPCMFrame; } if (pLastPCMFrame) { *pLastPCMFrame = lastPCMFrame; } } static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac) { drflac_bool32 result; DRFLAC_ASSERT(pFlac != NULL); result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes); DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame)); pFlac->currentPCMFrame = 0; return result; } static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac) { DRFLAC_ASSERT(pFlac != NULL); return drflac__seek_flac_frame(pFlac); } static drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek) { drflac_uint64 pcmFramesRead = 0; while (pcmFramesToSeek > 0) { if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { if (!drflac__read_and_decode_next_flac_frame(pFlac)) { break; } } else { if (pFlac->currentFLACFrame.pcmFramesRemaining > pcmFramesToSeek) { pcmFramesRead += pcmFramesToSeek; pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)pcmFramesToSeek; pcmFramesToSeek = 0; } else { pcmFramesRead += pFlac->currentFLACFrame.pcmFramesRemaining; pcmFramesToSeek -= pFlac->currentFLACFrame.pcmFramesRemaining; pFlac->currentFLACFrame.pcmFramesRemaining = 0; } } } pFlac->currentPCMFrame += pcmFramesRead; return pcmFramesRead; } static drflac_bool32 drflac__seek_to_pcm_frame__brute_force(drflac* pFlac, drflac_uint64 pcmFrameIndex) { drflac_bool32 isMidFrame = DRFLAC_FALSE; drflac_uint64 runningPCMFrameCount; DRFLAC_ASSERT(pFlac != NULL); if (pcmFrameIndex >= pFlac->currentPCMFrame) { runningPCMFrameCount = pFlac->currentPCMFrame; if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) { if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } } else { isMidFrame = DRFLAC_TRUE; } } else { runningPCMFrameCount = 0; if (!drflac__seek_to_first_frame(pFlac)) { return DRFLAC_FALSE; } if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } } for (;;) { drflac_uint64 pcmFrameCountInThisFLACFrame; drflac_uint64 firstPCMFrameInFLACFrame = 0; drflac_uint64 lastPCMFrameInFLACFrame = 0; drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) { drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount; if (!isMidFrame) { drflac_result result = drflac__decode_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; } else { if (result == DRFLAC_CRC_MISMATCH) { goto next_iteration; } else { return DRFLAC_FALSE; } } } else { return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; } } else { if (!isMidFrame) { drflac_result result = drflac__seek_to_next_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { runningPCMFrameCount += pcmFrameCountInThisFLACFrame; } else { if (result == DRFLAC_CRC_MISMATCH) { goto next_iteration; } else { return DRFLAC_FALSE; } } } else { runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining; pFlac->currentFLACFrame.pcmFramesRemaining = 0; isMidFrame = DRFLAC_FALSE; } if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) { return DRFLAC_TRUE; } } next_iteration: if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } } } #if !defined(DR_FLAC_NO_CRC) #define DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO 0.6f static drflac_bool32 drflac__seek_to_approximate_flac_frame_to_byte(drflac* pFlac, drflac_uint64 targetByte, drflac_uint64 rangeLo, drflac_uint64 rangeHi, drflac_uint64* pLastSuccessfulSeekOffset) { DRFLAC_ASSERT(pFlac != NULL); DRFLAC_ASSERT(pLastSuccessfulSeekOffset != NULL); DRFLAC_ASSERT(targetByte >= rangeLo); DRFLAC_ASSERT(targetByte <= rangeHi); *pLastSuccessfulSeekOffset = pFlac->firstFLACFramePosInBytes; for (;;) { drflac_uint64 lastTargetByte = targetByte; if (!drflac__seek_to_byte(&pFlac->bs, targetByte)) { if (targetByte == 0) { drflac__seek_to_first_frame(pFlac); return DRFLAC_FALSE; } targetByte = rangeLo + ((rangeHi - rangeLo)/2); rangeHi = targetByte; } else { DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame)); #if 1 if (!drflac__read_and_decode_next_flac_frame(pFlac)) { targetByte = rangeLo + ((rangeHi - rangeLo)/2); rangeHi = targetByte; } else { break; } #else if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { targetByte = rangeLo + ((rangeHi - rangeLo)/2); rangeHi = targetByte; } else { break; } #endif } if(targetByte == lastTargetByte) { return DRFLAC_FALSE; } } drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL); DRFLAC_ASSERT(targetByte <= rangeHi); *pLastSuccessfulSeekOffset = targetByte; return DRFLAC_TRUE; } static drflac_bool32 drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 offset) { #if 0 if (drflac__decode_flac_frame(pFlac) != DRFLAC_SUCCESS) { if (drflac__read_and_decode_next_flac_frame(pFlac) == DRFLAC_FALSE) { return DRFLAC_FALSE; } } #endif return drflac__seek_forward_by_pcm_frames(pFlac, offset) == offset; } static drflac_bool32 drflac__seek_to_pcm_frame__binary_search_internal(drflac* pFlac, drflac_uint64 pcmFrameIndex, drflac_uint64 byteRangeLo, drflac_uint64 byteRangeHi) { drflac_uint64 targetByte; drflac_uint64 pcmRangeLo = pFlac->totalPCMFrameCount; drflac_uint64 pcmRangeHi = 0; drflac_uint64 lastSuccessfulSeekOffset = (drflac_uint64)-1; drflac_uint64 closestSeekOffsetBeforeTargetPCMFrame = byteRangeLo; drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096; targetByte = byteRangeLo + (drflac_uint64)(((drflac_int64)((pcmFrameIndex - pFlac->currentPCMFrame) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO); if (targetByte > byteRangeHi) { targetByte = byteRangeHi; } for (;;) { if (drflac__seek_to_approximate_flac_frame_to_byte(pFlac, targetByte, byteRangeLo, byteRangeHi, &lastSuccessfulSeekOffset)) { drflac_uint64 newPCMRangeLo; drflac_uint64 newPCMRangeHi; drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &newPCMRangeLo, &newPCMRangeHi); if (pcmRangeLo == newPCMRangeLo) { if (!drflac__seek_to_approximate_flac_frame_to_byte(pFlac, closestSeekOffsetBeforeTargetPCMFrame, closestSeekOffsetBeforeTargetPCMFrame, byteRangeHi, &lastSuccessfulSeekOffset)) { break; } if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) { return DRFLAC_TRUE; } else { break; } } pcmRangeLo = newPCMRangeLo; pcmRangeHi = newPCMRangeHi; if (pcmRangeLo <= pcmFrameIndex && pcmRangeHi >= pcmFrameIndex) { if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame) ) { return DRFLAC_TRUE; } else { break; } } else { const float approxCompressionRatio = (drflac_int64)(lastSuccessfulSeekOffset - pFlac->firstFLACFramePosInBytes) / ((drflac_int64)(pcmRangeLo * pFlac->channels * pFlac->bitsPerSample)/8.0f); if (pcmRangeLo > pcmFrameIndex) { byteRangeHi = lastSuccessfulSeekOffset; if (byteRangeLo > byteRangeHi) { byteRangeLo = byteRangeHi; } targetByte = byteRangeLo + ((byteRangeHi - byteRangeLo) / 2); if (targetByte < byteRangeLo) { targetByte = byteRangeLo; } } else { if ((pcmFrameIndex - pcmRangeLo) < seekForwardThreshold) { if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) { return DRFLAC_TRUE; } else { break; } } else { byteRangeLo = lastSuccessfulSeekOffset; if (byteRangeHi < byteRangeLo) { byteRangeHi = byteRangeLo; } targetByte = lastSuccessfulSeekOffset + (drflac_uint64)(((drflac_int64)((pcmFrameIndex-pcmRangeLo) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * approxCompressionRatio); if (targetByte > byteRangeHi) { targetByte = byteRangeHi; } if (closestSeekOffsetBeforeTargetPCMFrame < lastSuccessfulSeekOffset) { closestSeekOffsetBeforeTargetPCMFrame = lastSuccessfulSeekOffset; } } } } } else { break; } } drflac__seek_to_first_frame(pFlac); return DRFLAC_FALSE; } static drflac_bool32 drflac__seek_to_pcm_frame__binary_search(drflac* pFlac, drflac_uint64 pcmFrameIndex) { drflac_uint64 byteRangeLo; drflac_uint64 byteRangeHi; drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096; if (drflac__seek_to_first_frame(pFlac) == DRFLAC_FALSE) { return DRFLAC_FALSE; } if (pcmFrameIndex < seekForwardThreshold) { return drflac__seek_forward_by_pcm_frames(pFlac, pcmFrameIndex) == pcmFrameIndex; } byteRangeLo = pFlac->firstFLACFramePosInBytes; byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f); return drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi); } #endif static drflac_bool32 drflac__seek_to_pcm_frame__seek_table(drflac* pFlac, drflac_uint64 pcmFrameIndex) { drflac_uint32 iClosestSeekpoint = 0; drflac_bool32 isMidFrame = DRFLAC_FALSE; drflac_uint64 runningPCMFrameCount; drflac_uint32 iSeekpoint; DRFLAC_ASSERT(pFlac != NULL); if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) { return DRFLAC_FALSE; } if (pFlac->pSeekpoints[0].firstPCMFrame > pcmFrameIndex) { return DRFLAC_FALSE; } for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { if (pFlac->pSeekpoints[iSeekpoint].firstPCMFrame >= pcmFrameIndex) { break; } iClosestSeekpoint = iSeekpoint; } if (pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount == 0 || pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount > pFlac->maxBlockSizeInPCMFrames) { return DRFLAC_FALSE; } if (pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame > pFlac->totalPCMFrameCount && pFlac->totalPCMFrameCount > 0) { return DRFLAC_FALSE; } #if !defined(DR_FLAC_NO_CRC) if (pFlac->totalPCMFrameCount > 0) { drflac_uint64 byteRangeLo; drflac_uint64 byteRangeHi; byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f); byteRangeLo = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset; if (iClosestSeekpoint < pFlac->seekpointCount-1) { drflac_uint32 iNextSeekpoint = iClosestSeekpoint + 1; if (pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset >= pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset || pFlac->pSeekpoints[iNextSeekpoint].pcmFrameCount == 0) { return DRFLAC_FALSE; } if (pFlac->pSeekpoints[iNextSeekpoint].firstPCMFrame != (((drflac_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF)) { byteRangeHi = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset - 1; } } if (drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) { if (drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL); if (drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi)) { return DRFLAC_TRUE; } } } } #endif if (pcmFrameIndex >= pFlac->currentPCMFrame && pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame <= pFlac->currentPCMFrame) { runningPCMFrameCount = pFlac->currentPCMFrame; if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) { if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } } else { isMidFrame = DRFLAC_TRUE; } } else { runningPCMFrameCount = pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame; if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) { return DRFLAC_FALSE; } if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } } for (;;) { drflac_uint64 pcmFrameCountInThisFLACFrame; drflac_uint64 firstPCMFrameInFLACFrame = 0; drflac_uint64 lastPCMFrameInFLACFrame = 0; drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) { drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount; if (!isMidFrame) { drflac_result result = drflac__decode_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; } else { if (result == DRFLAC_CRC_MISMATCH) { goto next_iteration; } else { return DRFLAC_FALSE; } } } else { return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; } } else { if (!isMidFrame) { drflac_result result = drflac__seek_to_next_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { runningPCMFrameCount += pcmFrameCountInThisFLACFrame; } else { if (result == DRFLAC_CRC_MISMATCH) { goto next_iteration; } else { return DRFLAC_FALSE; } } } else { runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining; pFlac->currentFLACFrame.pcmFramesRemaining = 0; isMidFrame = DRFLAC_FALSE; } if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) { return DRFLAC_TRUE; } } next_iteration: if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } } } #ifndef DR_FLAC_NO_OGG typedef struct { drflac_uint8 capturePattern[4]; drflac_uint8 structureVersion; drflac_uint8 headerType; drflac_uint64 granulePosition; drflac_uint32 serialNumber; drflac_uint32 sequenceNumber; drflac_uint32 checksum; drflac_uint8 segmentCount; drflac_uint8 segmentTable[255]; } drflac_ogg_page_header; #endif typedef struct { drflac_read_proc onRead; drflac_seek_proc onSeek; drflac_meta_proc onMeta; drflac_container container; void* pUserData; void* pUserDataMD; drflac_uint32 sampleRate; drflac_uint8 channels; drflac_uint8 bitsPerSample; drflac_uint64 totalPCMFrameCount; drflac_uint16 maxBlockSizeInPCMFrames; drflac_uint64 runningFilePos; drflac_bool32 hasStreamInfoBlock; drflac_bool32 hasMetadataBlocks; drflac_bs bs; drflac_frame_header firstFrameHeader; #ifndef DR_FLAC_NO_OGG drflac_uint32 oggSerial; drflac_uint64 oggFirstBytePos; drflac_ogg_page_header oggBosHeader; #endif } drflac_init_info; static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) { blockHeader = drflac__be2host_32(blockHeader); *isLastBlock = (drflac_uint8)((blockHeader & 0x80000000UL) >> 31); *blockType = (drflac_uint8)((blockHeader & 0x7F000000UL) >> 24); *blockSize = (blockHeader & 0x00FFFFFFUL); } static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) { drflac_uint32 blockHeader; *blockSize = 0; if (onRead(pUserData, &blockHeader, 4) != 4) { return DRFLAC_FALSE; } drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); return DRFLAC_TRUE; } static drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) { drflac_uint32 blockSizes; drflac_uint64 frameSizes = 0; drflac_uint64 importantProps; drflac_uint8 md5[16]; if (onRead(pUserData, &blockSizes, 4) != 4) { return DRFLAC_FALSE; } if (onRead(pUserData, &frameSizes, 6) != 6) { return DRFLAC_FALSE; } if (onRead(pUserData, &importantProps, 8) != 8) { return DRFLAC_FALSE; } if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { return DRFLAC_FALSE; } blockSizes = drflac__be2host_32(blockSizes); frameSizes = drflac__be2host_64(frameSizes); importantProps = drflac__be2host_64(importantProps); pStreamInfo->minBlockSizeInPCMFrames = (drflac_uint16)((blockSizes & 0xFFFF0000) >> 16); pStreamInfo->maxBlockSizeInPCMFrames = (drflac_uint16) (blockSizes & 0x0000FFFF); pStreamInfo->minFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40); pStreamInfo->maxFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16); pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44); pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1; pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1; pStreamInfo->totalPCMFrameCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF))); DRFLAC_COPY_MEMORY(pStreamInfo->md5, md5, sizeof(md5)); return DRFLAC_TRUE; } static void* drflac__malloc_default(size_t sz, void* pUserData) { (void)pUserData; return DRFLAC_MALLOC(sz); } static void* drflac__realloc_default(void* p, size_t sz, void* pUserData) { (void)pUserData; return DRFLAC_REALLOC(p, sz); } static void drflac__free_default(void* p, void* pUserData) { (void)pUserData; DRFLAC_FREE(p); } static void* drflac__malloc_from_callbacks(size_t sz, const drflac_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks == NULL) { return NULL; } if (pAllocationCallbacks->onMalloc != NULL) { return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); } if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); } return NULL; } static void* drflac__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drflac_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks == NULL) { return NULL; } if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); } if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { void* p2; p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); if (p2 == NULL) { return NULL; } if (p != NULL) { DRFLAC_COPY_MEMORY(p2, p, szOld); pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } return p2; } return NULL; } static void drflac__free_from_callbacks(void* p, const drflac_allocation_callbacks* pAllocationCallbacks) { if (p == NULL || pAllocationCallbacks == NULL) { return; } if (pAllocationCallbacks->onFree != NULL) { pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } } static drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeekpointCount, drflac_allocation_callbacks* pAllocationCallbacks) { drflac_uint64 runningFilePos = 42; drflac_uint64 seektablePos = 0; drflac_uint32 seektableSize = 0; for (;;) { drflac_metadata metadata; drflac_uint8 isLastBlock = 0; drflac_uint8 blockType; drflac_uint32 blockSize; if (drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize) == DRFLAC_FALSE) { return DRFLAC_FALSE; } runningFilePos += 4; metadata.type = blockType; metadata.pRawData = NULL; metadata.rawDataSize = 0; switch (blockType) { case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: { if (blockSize < 4) { return DRFLAC_FALSE; } if (onMeta) { void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); if (pRawData == NULL) { return DRFLAC_FALSE; } if (onRead(pUserData, pRawData, blockSize) != blockSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.pRawData = pRawData; metadata.rawDataSize = blockSize; metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData); metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32)); metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32); onMeta(pUserDataMD, &metadata); drflac__free_from_callbacks(pRawData, pAllocationCallbacks); } } break; case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: { seektablePos = runningFilePos; seektableSize = blockSize; if (onMeta) { drflac_uint32 seekpointCount; drflac_uint32 iSeekpoint; void* pRawData; seekpointCount = blockSize/DRFLAC_SEEKPOINT_SIZE_IN_BYTES; pRawData = drflac__malloc_from_callbacks(seekpointCount * sizeof(drflac_seekpoint), pAllocationCallbacks); if (pRawData == NULL) { return DRFLAC_FALSE; } for (iSeekpoint = 0; iSeekpoint < seekpointCount; ++iSeekpoint) { drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; if (onRead(pUserData, pSeekpoint, DRFLAC_SEEKPOINT_SIZE_IN_BYTES) != DRFLAC_SEEKPOINT_SIZE_IN_BYTES) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } pSeekpoint->firstPCMFrame = drflac__be2host_64(pSeekpoint->firstPCMFrame); pSeekpoint->flacFrameOffset = drflac__be2host_64(pSeekpoint->flacFrameOffset); pSeekpoint->pcmFrameCount = drflac__be2host_16(pSeekpoint->pcmFrameCount); } metadata.pRawData = pRawData; metadata.rawDataSize = blockSize; metadata.data.seektable.seekpointCount = seekpointCount; metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; onMeta(pUserDataMD, &metadata); drflac__free_from_callbacks(pRawData, pAllocationCallbacks); } } break; case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: { if (blockSize < 8) { return DRFLAC_FALSE; } if (onMeta) { void* pRawData; const char* pRunningData; const char* pRunningDataEnd; drflac_uint32 i; pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); if (pRawData == NULL) { return DRFLAC_FALSE; } if (onRead(pUserData, pRawData, blockSize) != blockSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.pRawData = pRawData; metadata.rawDataSize = blockSize; pRunningData = (const char*)pRawData; pRunningDataEnd = (const char*)pRawData + blockSize; metadata.data.vorbis_comment.vendorLength = drflac__le2host_32_ptr_unaligned(pRunningData); pRunningData += 4; if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; metadata.data.vorbis_comment.commentCount = drflac__le2host_32_ptr_unaligned(pRunningData); pRunningData += 4; if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.data.vorbis_comment.pComments = pRunningData; for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) { drflac_uint32 commentLength; if (pRunningDataEnd - pRunningData < 4) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } commentLength = drflac__le2host_32_ptr_unaligned(pRunningData); pRunningData += 4; if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } pRunningData += commentLength; } onMeta(pUserDataMD, &metadata); drflac__free_from_callbacks(pRawData, pAllocationCallbacks); } } break; case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: { if (blockSize < 396) { return DRFLAC_FALSE; } if (onMeta) { void* pRawData; const char* pRunningData; const char* pRunningDataEnd; size_t bufferSize; drflac_uint8 iTrack; drflac_uint8 iIndex; void* pTrackData; pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); if (pRawData == NULL) { return DRFLAC_FALSE; } if (onRead(pUserData, pRawData, blockSize) != blockSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.pRawData = pRawData; metadata.rawDataSize = blockSize; pRunningData = (const char*)pRawData; pRunningDataEnd = (const char*)pRawData + blockSize; DRFLAC_COPY_MEMORY(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8; metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259; metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; metadata.data.cuesheet.pTrackData = NULL; { const char* pRunningDataSaved = pRunningData; bufferSize = metadata.data.cuesheet.trackCount * DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES; for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) { drflac_uint8 indexCount; drflac_uint32 indexPointSize; if (pRunningDataEnd - pRunningData < DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } pRunningData += 35; indexCount = pRunningData[0]; pRunningData += 1; bufferSize += indexCount * sizeof(drflac_cuesheet_track_index); indexPointSize = indexCount * DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES; if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } pRunningData += indexPointSize; } pRunningData = pRunningDataSaved; } { char* pRunningTrackData; pTrackData = drflac__malloc_from_callbacks(bufferSize, pAllocationCallbacks); if (pTrackData == NULL) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } pRunningTrackData = (char*)pTrackData; for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) { drflac_uint8 indexCount; DRFLAC_COPY_MEMORY(pRunningTrackData, pRunningData, DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES); pRunningData += DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES-1; pRunningTrackData += DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES-1; indexCount = pRunningData[0]; pRunningData += 1; pRunningTrackData += 1; for (iIndex = 0; iIndex < indexCount; ++iIndex) { drflac_cuesheet_track_index* pTrackIndex = (drflac_cuesheet_track_index*)pRunningTrackData; DRFLAC_COPY_MEMORY(pRunningTrackData, pRunningData, DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES); pRunningData += DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES; pRunningTrackData += sizeof(drflac_cuesheet_track_index); pTrackIndex->offset = drflac__be2host_64(pTrackIndex->offset); } } metadata.data.cuesheet.pTrackData = pTrackData; } drflac__free_from_callbacks(pRawData, pAllocationCallbacks); pRawData = NULL; onMeta(pUserDataMD, &metadata); drflac__free_from_callbacks(pTrackData, pAllocationCallbacks); pTrackData = NULL; } } break; case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: { if (blockSize < 32) { return DRFLAC_FALSE; } if (onMeta) { void* pRawData; const char* pRunningData; const char* pRunningDataEnd; pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); if (pRawData == NULL) { return DRFLAC_FALSE; } if (onRead(pUserData, pRawData, blockSize) != blockSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.pRawData = pRawData; metadata.rawDataSize = blockSize; pRunningData = (const char*)pRawData; pRunningDataEnd = (const char*)pRawData + blockSize; metadata.data.picture.type = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; metadata.data.picture.mimeLength = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; metadata.data.picture.descriptionLength = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength; metadata.data.picture.width = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; metadata.data.picture.height = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; metadata.data.picture.colorDepth = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; metadata.data.picture.indexColorCount = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; metadata.data.picture.pictureDataSize = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData; if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } onMeta(pUserDataMD, &metadata); drflac__free_from_callbacks(pRawData, pAllocationCallbacks); } } break; case DRFLAC_METADATA_BLOCK_TYPE_PADDING: { if (onMeta) { metadata.data.padding.unused = 0; if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { isLastBlock = DRFLAC_TRUE; } else { onMeta(pUserDataMD, &metadata); } } } break; case DRFLAC_METADATA_BLOCK_TYPE_INVALID: { if (onMeta) { if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { isLastBlock = DRFLAC_TRUE; } } } break; default: { if (onMeta) { void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); if (pRawData == NULL) { return DRFLAC_FALSE; } if (onRead(pUserData, pRawData, blockSize) != blockSize) { drflac__free_from_callbacks(pRawData, pAllocationCallbacks); return DRFLAC_FALSE; } metadata.pRawData = pRawData; metadata.rawDataSize = blockSize; onMeta(pUserDataMD, &metadata); drflac__free_from_callbacks(pRawData, pAllocationCallbacks); } } break; } if (onMeta == NULL && blockSize > 0) { if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { isLastBlock = DRFLAC_TRUE; } } runningFilePos += blockSize; if (isLastBlock) { break; } } *pSeektablePos = seektablePos; *pSeekpointCount = seektableSize / DRFLAC_SEEKPOINT_SIZE_IN_BYTES; *pFirstFramePos = runningFilePos; return DRFLAC_TRUE; } static drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) { drflac_uint8 isLastBlock; drflac_uint8 blockType; drflac_uint32 blockSize; (void)onSeek; pInit->container = drflac_container_native; if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { return DRFLAC_FALSE; } if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { if (!relaxed) { return DRFLAC_FALSE; } else { pInit->hasStreamInfoBlock = DRFLAC_FALSE; pInit->hasMetadataBlocks = DRFLAC_FALSE; if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) { return DRFLAC_FALSE; } if (pInit->firstFrameHeader.bitsPerSample == 0) { return DRFLAC_FALSE; } pInit->sampleRate = pInit->firstFrameHeader.sampleRate; pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment); pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample; pInit->maxBlockSizeInPCMFrames = 65535; return DRFLAC_TRUE; } } else { drflac_streaminfo streaminfo; if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { return DRFLAC_FALSE; } pInit->hasStreamInfoBlock = DRFLAC_TRUE; pInit->sampleRate = streaminfo.sampleRate; pInit->channels = streaminfo.channels; pInit->bitsPerSample = streaminfo.bitsPerSample; pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount; pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; pInit->hasMetadataBlocks = !isLastBlock; if (onMeta) { drflac_metadata metadata; metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; metadata.pRawData = NULL; metadata.rawDataSize = 0; metadata.data.streaminfo = streaminfo; onMeta(pUserDataMD, &metadata); } return DRFLAC_TRUE; } } #ifndef DR_FLAC_NO_OGG #define DRFLAC_OGG_MAX_PAGE_SIZE 65307 #define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 typedef enum { drflac_ogg_recover_on_crc_mismatch, drflac_ogg_fail_on_crc_mismatch } drflac_ogg_crc_mismatch_recovery; #ifndef DR_FLAC_NO_CRC static drflac_uint32 drflac__crc32_table[] = { 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L, 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L, 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L, 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL, 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L, 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L, 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L, 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL, 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L, 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L, 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L, 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL, 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L, 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L, 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L, 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL, 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL, 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L, 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L, 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL, 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL, 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L, 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L, 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL, 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL, 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L, 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L, 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL, 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL, 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L, 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L, 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL, 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L, 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL, 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL, 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L, 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L, 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL, 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL, 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L, 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L, 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL, 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL, 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L, 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L, 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL, 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL, 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L, 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L, 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL, 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L, 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L, 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L, 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL, 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L, 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L, 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L, 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL, 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L, 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L, 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L, 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL, 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L, 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L }; #endif static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data) { #ifndef DR_FLAC_NO_CRC return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data]; #else (void)data; return crc32; #endif } #if 0 static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data) { crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF)); crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF)); crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF)); crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF)); return crc32; } static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data) { crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF)); crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF)); return crc32; } #endif static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize) { drflac_uint32 i; for (i = 0; i < dataSize; ++i) { crc32 = drflac_crc32_byte(crc32, pData[i]); } return crc32; } static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4]) { return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; } static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) { return 27 + pHeader->segmentCount; } static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) { drflac_uint32 pageBodySize = 0; int i; for (i = 0; i < pHeader->segmentCount; ++i) { pageBodySize += pHeader->segmentTable[i]; } return pageBodySize; } static drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) { drflac_uint8 data[23]; drflac_uint32 i; DRFLAC_ASSERT(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32); if (onRead(pUserData, data, 23) != 23) { return DRFLAC_AT_END; } *pBytesRead += 23; pHeader->capturePattern[0] = 'O'; pHeader->capturePattern[1] = 'g'; pHeader->capturePattern[2] = 'g'; pHeader->capturePattern[3] = 'S'; pHeader->structureVersion = data[0]; pHeader->headerType = data[1]; DRFLAC_COPY_MEMORY(&pHeader->granulePosition, &data[ 2], 8); DRFLAC_COPY_MEMORY(&pHeader->serialNumber, &data[10], 4); DRFLAC_COPY_MEMORY(&pHeader->sequenceNumber, &data[14], 4); DRFLAC_COPY_MEMORY(&pHeader->checksum, &data[18], 4); pHeader->segmentCount = data[22]; data[18] = 0; data[19] = 0; data[20] = 0; data[21] = 0; for (i = 0; i < 23; ++i) { *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]); } if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { return DRFLAC_AT_END; } *pBytesRead += pHeader->segmentCount; for (i = 0; i < pHeader->segmentCount; ++i) { *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]); } return DRFLAC_SUCCESS; } static drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) { drflac_uint8 id[4]; *pBytesRead = 0; if (onRead(pUserData, id, 4) != 4) { return DRFLAC_AT_END; } *pBytesRead += 4; for (;;) { if (drflac_ogg__is_capture_pattern(id)) { drflac_result result; *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32); if (result == DRFLAC_SUCCESS) { return DRFLAC_SUCCESS; } else { if (result == DRFLAC_CRC_MISMATCH) { continue; } else { return result; } } } else { id[0] = id[1]; id[1] = id[2]; id[2] = id[3]; if (onRead(pUserData, &id[3], 1) != 1) { return DRFLAC_AT_END; } *pBytesRead += 1; } } } typedef struct { drflac_read_proc onRead; drflac_seek_proc onSeek; void* pUserData; drflac_uint64 currentBytePos; drflac_uint64 firstBytePos; drflac_uint32 serialNumber; drflac_ogg_page_header bosPageHeader; drflac_ogg_page_header currentPageHeader; drflac_uint32 bytesRemainingInPage; drflac_uint32 pageDataSize; drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE]; } drflac_oggbs; static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) { size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); oggbs->currentBytePos += bytesActuallyRead; return bytesActuallyRead; } static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin) { if (origin == drflac_seek_origin_start) { if (offset <= 0x7FFFFFFF) { if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { return DRFLAC_FALSE; } oggbs->currentBytePos = offset; return DRFLAC_TRUE; } else { if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { return DRFLAC_FALSE; } oggbs->currentBytePos = offset; return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); } } else { while (offset > 0x7FFFFFFF) { if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { return DRFLAC_FALSE; } oggbs->currentBytePos += 0x7FFFFFFF; offset -= 0x7FFFFFFF; } if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { return DRFLAC_FALSE; } oggbs->currentBytePos += offset; return DRFLAC_TRUE; } } static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod) { drflac_ogg_page_header header; for (;;) { drflac_uint32 crc32 = 0; drflac_uint32 bytesRead; drflac_uint32 pageBodySize; #ifndef DR_FLAC_NO_CRC drflac_uint32 actualCRC32; #endif if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { return DRFLAC_FALSE; } oggbs->currentBytePos += bytesRead; pageBodySize = drflac_ogg__get_page_body_size(&header); if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) { continue; } if (header.serialNumber != oggbs->serialNumber) { if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { return DRFLAC_FALSE; } continue; } if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) { return DRFLAC_FALSE; } oggbs->pageDataSize = pageBodySize; #ifndef DR_FLAC_NO_CRC actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize); if (actualCRC32 != header.checksum) { if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) { continue; } else { drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch); return DRFLAC_FALSE; } } #else (void)recoveryMethod; #endif oggbs->currentPageHeader = header; oggbs->bytesRemainingInPage = pageBodySize; return DRFLAC_TRUE; } } #if 0 static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg) { drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; drflac_uint8 iSeg = 0; drflac_uint32 iByte = 0; while (iByte < bytesConsumedInPage) { drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; if (iByte + segmentSize > bytesConsumedInPage) { break; } else { iSeg += 1; iByte += segmentSize; } } *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte); return iSeg; } static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) { for (;;) { drflac_bool32 atEndOfPage = DRFLAC_FALSE; drflac_uint8 bytesRemainingInSeg; drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg; for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; if (segmentSize < 255) { if (iSeg == oggbs->currentPageHeader.segmentCount-1) { atEndOfPage = DRFLAC_TRUE; } break; } bytesToEndOfPacketOrPage += segmentSize; } drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; if (atEndOfPage) { if (!drflac_oggbs__goto_next_page(oggbs)) { return DRFLAC_FALSE; } if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { return DRFLAC_TRUE; } } else { return DRFLAC_TRUE; } } } static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) { return drflac_oggbs__seek_to_next_packet(oggbs); } #endif static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) { drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut; size_t bytesRead = 0; DRFLAC_ASSERT(oggbs != NULL); DRFLAC_ASSERT(pRunningBufferOut != NULL); while (bytesRead < bytesToRead) { size_t bytesRemainingToRead = bytesToRead - bytesRead; if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead); bytesRead += bytesRemainingToRead; oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead; break; } if (oggbs->bytesRemainingInPage > 0) { DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage); bytesRead += oggbs->bytesRemainingInPage; pRunningBufferOut += oggbs->bytesRemainingInPage; oggbs->bytesRemainingInPage = 0; } DRFLAC_ASSERT(bytesRemainingToRead > 0); if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { break; } } return bytesRead; } static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) { drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; int bytesSeeked = 0; DRFLAC_ASSERT(oggbs != NULL); DRFLAC_ASSERT(offset >= 0); if (origin == drflac_seek_origin_start) { if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) { return DRFLAC_FALSE; } if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { return DRFLAC_FALSE; } return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); } DRFLAC_ASSERT(origin == drflac_seek_origin_current); while (bytesSeeked < offset) { int bytesRemainingToSeek = offset - bytesSeeked; DRFLAC_ASSERT(bytesRemainingToSeek >= 0); if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { bytesSeeked += bytesRemainingToSeek; (void)bytesSeeked; oggbs->bytesRemainingInPage -= bytesRemainingToSeek; break; } if (oggbs->bytesRemainingInPage > 0) { bytesSeeked += (int)oggbs->bytesRemainingInPage; oggbs->bytesRemainingInPage = 0; } DRFLAC_ASSERT(bytesRemainingToSeek > 0); if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { return DRFLAC_FALSE; } } return DRFLAC_TRUE; } static drflac_bool32 drflac_ogg__seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) { drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; drflac_uint64 originalBytePos; drflac_uint64 runningGranulePosition; drflac_uint64 runningFrameBytePos; drflac_uint64 runningPCMFrameCount; DRFLAC_ASSERT(oggbs != NULL); originalBytePos = oggbs->currentBytePos; if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes)) { return DRFLAC_FALSE; } oggbs->bytesRemainingInPage = 0; runningGranulePosition = 0; for (;;) { if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); return DRFLAC_FALSE; } runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize; if (oggbs->currentPageHeader.granulePosition >= pcmFrameIndex) { break; } if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { if (oggbs->currentPageHeader.segmentTable[0] >= 2) { drflac_uint8 firstBytesInPage[2]; firstBytesInPage[0] = oggbs->pageData[0]; firstBytesInPage[1] = oggbs->pageData[1]; if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { runningGranulePosition = oggbs->currentPageHeader.granulePosition; } continue; } } } if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { return DRFLAC_FALSE; } if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { return DRFLAC_FALSE; } runningPCMFrameCount = runningGranulePosition; for (;;) { drflac_uint64 firstPCMFrameInFLACFrame = 0; drflac_uint64 lastPCMFrameInFLACFrame = 0; drflac_uint64 pcmFrameCountInThisFrame; if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { return DRFLAC_FALSE; } drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); pcmFrameCountInThisFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; if (pcmFrameIndex == pFlac->totalPCMFrameCount && (runningPCMFrameCount + pcmFrameCountInThisFrame) == pFlac->totalPCMFrameCount) { drflac_result result = drflac__decode_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { pFlac->currentPCMFrame = pcmFrameIndex; pFlac->currentFLACFrame.pcmFramesRemaining = 0; return DRFLAC_TRUE; } else { return DRFLAC_FALSE; } } if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFrame)) { drflac_result result = drflac__decode_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { drflac_uint64 pcmFramesToDecode = (size_t)(pcmFrameIndex - runningPCMFrameCount); if (pcmFramesToDecode == 0) { return DRFLAC_TRUE; } pFlac->currentPCMFrame = runningPCMFrameCount; return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; } else { if (result == DRFLAC_CRC_MISMATCH) { continue; } else { return DRFLAC_FALSE; } } } else { drflac_result result = drflac__seek_to_next_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { runningPCMFrameCount += pcmFrameCountInThisFrame; } else { if (result == DRFLAC_CRC_MISMATCH) { continue; } else { return DRFLAC_FALSE; } } } } } static drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) { drflac_ogg_page_header header; drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; drflac_uint32 bytesRead = 0; (void)relaxed; pInit->container = drflac_container_ogg; pInit->oggFirstBytePos = 0; if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { return DRFLAC_FALSE; } pInit->runningFilePos += bytesRead; for (;;) { int pageBodySize; if ((header.headerType & 0x02) == 0) { return DRFLAC_FALSE; } pageBodySize = drflac_ogg__get_page_body_size(&header); if (pageBodySize == 51) { drflac_uint32 bytesRemainingInPage = pageBodySize; drflac_uint8 packetType; if (onRead(pUserData, &packetType, 1) != 1) { return DRFLAC_FALSE; } bytesRemainingInPage -= 1; if (packetType == 0x7F) { drflac_uint8 sig[4]; if (onRead(pUserData, sig, 4) != 4) { return DRFLAC_FALSE; } bytesRemainingInPage -= 4; if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') { drflac_uint8 mappingVersion[2]; if (onRead(pUserData, mappingVersion, 2) != 2) { return DRFLAC_FALSE; } if (mappingVersion[0] != 1) { return DRFLAC_FALSE; } if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { return DRFLAC_FALSE; } if (onRead(pUserData, sig, 4) != 4) { return DRFLAC_FALSE; } if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') { drflac_streaminfo streaminfo; drflac_uint8 isLastBlock; drflac_uint8 blockType; drflac_uint32 blockSize; if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { return DRFLAC_FALSE; } if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { return DRFLAC_FALSE; } if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { pInit->hasStreamInfoBlock = DRFLAC_TRUE; pInit->sampleRate = streaminfo.sampleRate; pInit->channels = streaminfo.channels; pInit->bitsPerSample = streaminfo.bitsPerSample; pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount; pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; pInit->hasMetadataBlocks = !isLastBlock; if (onMeta) { drflac_metadata metadata; metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; metadata.pRawData = NULL; metadata.rawDataSize = 0; metadata.data.streaminfo = streaminfo; onMeta(pUserDataMD, &metadata); } pInit->runningFilePos += pageBodySize; pInit->oggFirstBytePos = pInit->runningFilePos - 79; pInit->oggSerial = header.serialNumber; pInit->oggBosHeader = header; break; } else { return DRFLAC_FALSE; } } else { return DRFLAC_FALSE; } } else { if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { return DRFLAC_FALSE; } } } else { if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { return DRFLAC_FALSE; } } } else { if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { return DRFLAC_FALSE; } } pInit->runningFilePos += pageBodySize; if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { return DRFLAC_FALSE; } pInit->runningFilePos += bytesRead; } pInit->hasMetadataBlocks = DRFLAC_TRUE; return DRFLAC_TRUE; } #endif static drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) { drflac_bool32 relaxed; drflac_uint8 id[4]; if (pInit == NULL || onRead == NULL || onSeek == NULL) { return DRFLAC_FALSE; } DRFLAC_ZERO_MEMORY(pInit, sizeof(*pInit)); pInit->onRead = onRead; pInit->onSeek = onSeek; pInit->onMeta = onMeta; pInit->container = container; pInit->pUserData = pUserData; pInit->pUserDataMD = pUserDataMD; pInit->bs.onRead = onRead; pInit->bs.onSeek = onSeek; pInit->bs.pUserData = pUserData; drflac__reset_cache(&pInit->bs); relaxed = container != drflac_container_unknown; for (;;) { if (onRead(pUserData, id, 4) != 4) { return DRFLAC_FALSE; } pInit->runningFilePos += 4; if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') { drflac_uint8 header[6]; drflac_uint8 flags; drflac_uint32 headerSize; if (onRead(pUserData, header, 6) != 6) { return DRFLAC_FALSE; } pInit->runningFilePos += 6; flags = header[1]; DRFLAC_COPY_MEMORY(&headerSize, header+2, 4); headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize)); if (flags & 0x10) { headerSize += 10; } if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) { return DRFLAC_FALSE; } pInit->runningFilePos += headerSize; } else { break; } } if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); } #ifndef DR_FLAC_NO_OGG if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); } #endif if (relaxed) { if (container == drflac_container_native) { return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); } #ifndef DR_FLAC_NO_OGG if (container == drflac_container_ogg) { return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); } #endif } return DRFLAC_FALSE; } static void drflac__init_from_info(drflac* pFlac, const drflac_init_info* pInit) { DRFLAC_ASSERT(pFlac != NULL); DRFLAC_ASSERT(pInit != NULL); DRFLAC_ZERO_MEMORY(pFlac, sizeof(*pFlac)); pFlac->bs = pInit->bs; pFlac->onMeta = pInit->onMeta; pFlac->pUserDataMD = pInit->pUserDataMD; pFlac->maxBlockSizeInPCMFrames = pInit->maxBlockSizeInPCMFrames; pFlac->sampleRate = pInit->sampleRate; pFlac->channels = (drflac_uint8)pInit->channels; pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample; pFlac->totalPCMFrameCount = pInit->totalPCMFrameCount; pFlac->container = pInit->container; } static drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac_init_info init; drflac_uint32 allocationSize; drflac_uint32 wholeSIMDVectorCountPerChannel; drflac_uint32 decodedSamplesAllocationSize; #ifndef DR_FLAC_NO_OGG drflac_oggbs* pOggbs = NULL; #endif drflac_uint64 firstFramePos; drflac_uint64 seektablePos; drflac_uint32 seekpointCount; drflac_allocation_callbacks allocationCallbacks; drflac* pFlac; drflac__init_cpu_caps(); if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) { return NULL; } if (pAllocationCallbacks != NULL) { allocationCallbacks = *pAllocationCallbacks; if (allocationCallbacks.onFree == NULL || (allocationCallbacks.onMalloc == NULL && allocationCallbacks.onRealloc == NULL)) { return NULL; } } else { allocationCallbacks.pUserData = NULL; allocationCallbacks.onMalloc = drflac__malloc_default; allocationCallbacks.onRealloc = drflac__realloc_default; allocationCallbacks.onFree = drflac__free_default; } allocationSize = sizeof(drflac); if ((init.maxBlockSizeInPCMFrames % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) { wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))); } else { wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1; } decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels; allocationSize += decodedSamplesAllocationSize; allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; #ifndef DR_FLAC_NO_OGG if (init.container == drflac_container_ogg) { allocationSize += sizeof(drflac_oggbs); pOggbs = (drflac_oggbs*)drflac__malloc_from_callbacks(sizeof(*pOggbs), &allocationCallbacks); if (pOggbs == NULL) { return NULL; } DRFLAC_ZERO_MEMORY(pOggbs, sizeof(*pOggbs)); pOggbs->onRead = onRead; pOggbs->onSeek = onSeek; pOggbs->pUserData = pUserData; pOggbs->currentBytePos = init.oggFirstBytePos; pOggbs->firstBytePos = init.oggFirstBytePos; pOggbs->serialNumber = init.oggSerial; pOggbs->bosPageHeader = init.oggBosHeader; pOggbs->bytesRemainingInPage = 0; } #endif firstFramePos = 42; seektablePos = 0; seekpointCount = 0; if (init.hasMetadataBlocks) { drflac_read_proc onReadOverride = onRead; drflac_seek_proc onSeekOverride = onSeek; void* pUserDataOverride = pUserData; #ifndef DR_FLAC_NO_OGG if (init.container == drflac_container_ogg) { onReadOverride = drflac__on_read_ogg; onSeekOverride = drflac__on_seek_ogg; pUserDataOverride = (void*)pOggbs; } #endif if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seekpointCount, &allocationCallbacks)) { #ifndef DR_FLAC_NO_OGG drflac__free_from_callbacks(pOggbs, &allocationCallbacks); #endif return NULL; } allocationSize += seekpointCount * sizeof(drflac_seekpoint); } pFlac = (drflac*)drflac__malloc_from_callbacks(allocationSize, &allocationCallbacks); if (pFlac == NULL) { #ifndef DR_FLAC_NO_OGG drflac__free_from_callbacks(pOggbs, &allocationCallbacks); #endif return NULL; } drflac__init_from_info(pFlac, &init); pFlac->allocationCallbacks = allocationCallbacks; pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE); #ifndef DR_FLAC_NO_OGG if (init.container == drflac_container_ogg) { drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + (seekpointCount * sizeof(drflac_seekpoint))); DRFLAC_COPY_MEMORY(pInternalOggbs, pOggbs, sizeof(*pOggbs)); drflac__free_from_callbacks(pOggbs, &allocationCallbacks); pOggbs = NULL; pFlac->bs.onRead = drflac__on_read_ogg; pFlac->bs.onSeek = drflac__on_seek_ogg; pFlac->bs.pUserData = (void*)pInternalOggbs; pFlac->_oggbs = (void*)pInternalOggbs; } #endif pFlac->firstFLACFramePosInBytes = firstFramePos; #ifndef DR_FLAC_NO_OGG if (init.container == drflac_container_ogg) { pFlac->pSeekpoints = NULL; pFlac->seekpointCount = 0; } else #endif { if (seektablePos != 0) { pFlac->seekpointCount = seekpointCount; pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize); DRFLAC_ASSERT(pFlac->bs.onSeek != NULL); DRFLAC_ASSERT(pFlac->bs.onRead != NULL); if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) { drflac_uint32 iSeekpoint; for (iSeekpoint = 0; iSeekpoint < seekpointCount; iSeekpoint += 1) { if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints + iSeekpoint, DRFLAC_SEEKPOINT_SIZE_IN_BYTES) == DRFLAC_SEEKPOINT_SIZE_IN_BYTES) { pFlac->pSeekpoints[iSeekpoint].firstPCMFrame = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstPCMFrame); pFlac->pSeekpoints[iSeekpoint].flacFrameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].flacFrameOffset); pFlac->pSeekpoints[iSeekpoint].pcmFrameCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].pcmFrameCount); } else { pFlac->pSeekpoints = NULL; pFlac->seekpointCount = 0; break; } } if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFLACFramePosInBytes, drflac_seek_origin_start)) { drflac__free_from_callbacks(pFlac, &allocationCallbacks); return NULL; } } else { pFlac->pSeekpoints = NULL; pFlac->seekpointCount = 0; } } } if (!init.hasStreamInfoBlock) { pFlac->currentFLACFrame.header = init.firstFrameHeader; for (;;) { drflac_result result = drflac__decode_flac_frame(pFlac); if (result == DRFLAC_SUCCESS) { break; } else { if (result == DRFLAC_CRC_MISMATCH) { if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { drflac__free_from_callbacks(pFlac, &allocationCallbacks); return NULL; } continue; } else { drflac__free_from_callbacks(pFlac, &allocationCallbacks); return NULL; } } } } return pFlac; } #ifndef DR_FLAC_NO_STDIO #include #ifndef DR_FLAC_NO_WCHAR #include #endif #include static drflac_result drflac_result_from_errno(int e) { switch (e) { case 0: return DRFLAC_SUCCESS; #ifdef EPERM case EPERM: return DRFLAC_INVALID_OPERATION; #endif #ifdef ENOENT case ENOENT: return DRFLAC_DOES_NOT_EXIST; #endif #ifdef ESRCH case ESRCH: return DRFLAC_DOES_NOT_EXIST; #endif #ifdef EINTR case EINTR: return DRFLAC_INTERRUPT; #endif #ifdef EIO case EIO: return DRFLAC_IO_ERROR; #endif #ifdef ENXIO case ENXIO: return DRFLAC_DOES_NOT_EXIST; #endif #ifdef E2BIG case E2BIG: return DRFLAC_INVALID_ARGS; #endif #ifdef ENOEXEC case ENOEXEC: return DRFLAC_INVALID_FILE; #endif #ifdef EBADF case EBADF: return DRFLAC_INVALID_FILE; #endif #ifdef ECHILD case ECHILD: return DRFLAC_ERROR; #endif #ifdef EAGAIN case EAGAIN: return DRFLAC_UNAVAILABLE; #endif #ifdef ENOMEM case ENOMEM: return DRFLAC_OUT_OF_MEMORY; #endif #ifdef EACCES case EACCES: return DRFLAC_ACCESS_DENIED; #endif #ifdef EFAULT case EFAULT: return DRFLAC_BAD_ADDRESS; #endif #ifdef ENOTBLK case ENOTBLK: return DRFLAC_ERROR; #endif #ifdef EBUSY case EBUSY: return DRFLAC_BUSY; #endif #ifdef EEXIST case EEXIST: return DRFLAC_ALREADY_EXISTS; #endif #ifdef EXDEV case EXDEV: return DRFLAC_ERROR; #endif #ifdef ENODEV case ENODEV: return DRFLAC_DOES_NOT_EXIST; #endif #ifdef ENOTDIR case ENOTDIR: return DRFLAC_NOT_DIRECTORY; #endif #ifdef EISDIR case EISDIR: return DRFLAC_IS_DIRECTORY; #endif #ifdef EINVAL case EINVAL: return DRFLAC_INVALID_ARGS; #endif #ifdef ENFILE case ENFILE: return DRFLAC_TOO_MANY_OPEN_FILES; #endif #ifdef EMFILE case EMFILE: return DRFLAC_TOO_MANY_OPEN_FILES; #endif #ifdef ENOTTY case ENOTTY: return DRFLAC_INVALID_OPERATION; #endif #ifdef ETXTBSY case ETXTBSY: return DRFLAC_BUSY; #endif #ifdef EFBIG case EFBIG: return DRFLAC_TOO_BIG; #endif #ifdef ENOSPC case ENOSPC: return DRFLAC_NO_SPACE; #endif #ifdef ESPIPE case ESPIPE: return DRFLAC_BAD_SEEK; #endif #ifdef EROFS case EROFS: return DRFLAC_ACCESS_DENIED; #endif #ifdef EMLINK case EMLINK: return DRFLAC_TOO_MANY_LINKS; #endif #ifdef EPIPE case EPIPE: return DRFLAC_BAD_PIPE; #endif #ifdef EDOM case EDOM: return DRFLAC_OUT_OF_RANGE; #endif #ifdef ERANGE case ERANGE: return DRFLAC_OUT_OF_RANGE; #endif #ifdef EDEADLK case EDEADLK: return DRFLAC_DEADLOCK; #endif #ifdef ENAMETOOLONG case ENAMETOOLONG: return DRFLAC_PATH_TOO_LONG; #endif #ifdef ENOLCK case ENOLCK: return DRFLAC_ERROR; #endif #ifdef ENOSYS case ENOSYS: return DRFLAC_NOT_IMPLEMENTED; #endif #ifdef ENOTEMPTY case ENOTEMPTY: return DRFLAC_DIRECTORY_NOT_EMPTY; #endif #ifdef ELOOP case ELOOP: return DRFLAC_TOO_MANY_LINKS; #endif #ifdef ENOMSG case ENOMSG: return DRFLAC_NO_MESSAGE; #endif #ifdef EIDRM case EIDRM: return DRFLAC_ERROR; #endif #ifdef ECHRNG case ECHRNG: return DRFLAC_ERROR; #endif #ifdef EL2NSYNC case EL2NSYNC: return DRFLAC_ERROR; #endif #ifdef EL3HLT case EL3HLT: return DRFLAC_ERROR; #endif #ifdef EL3RST case EL3RST: return DRFLAC_ERROR; #endif #ifdef ELNRNG case ELNRNG: return DRFLAC_OUT_OF_RANGE; #endif #ifdef EUNATCH case EUNATCH: return DRFLAC_ERROR; #endif #ifdef ENOCSI case ENOCSI: return DRFLAC_ERROR; #endif #ifdef EL2HLT case EL2HLT: return DRFLAC_ERROR; #endif #ifdef EBADE case EBADE: return DRFLAC_ERROR; #endif #ifdef EBADR case EBADR: return DRFLAC_ERROR; #endif #ifdef EXFULL case EXFULL: return DRFLAC_ERROR; #endif #ifdef ENOANO case ENOANO: return DRFLAC_ERROR; #endif #ifdef EBADRQC case EBADRQC: return DRFLAC_ERROR; #endif #ifdef EBADSLT case EBADSLT: return DRFLAC_ERROR; #endif #ifdef EBFONT case EBFONT: return DRFLAC_INVALID_FILE; #endif #ifdef ENOSTR case ENOSTR: return DRFLAC_ERROR; #endif #ifdef ENODATA case ENODATA: return DRFLAC_NO_DATA_AVAILABLE; #endif #ifdef ETIME case ETIME: return DRFLAC_TIMEOUT; #endif #ifdef ENOSR case ENOSR: return DRFLAC_NO_DATA_AVAILABLE; #endif #ifdef ENONET case ENONET: return DRFLAC_NO_NETWORK; #endif #ifdef ENOPKG case ENOPKG: return DRFLAC_ERROR; #endif #ifdef EREMOTE case EREMOTE: return DRFLAC_ERROR; #endif #ifdef ENOLINK case ENOLINK: return DRFLAC_ERROR; #endif #ifdef EADV case EADV: return DRFLAC_ERROR; #endif #ifdef ESRMNT case ESRMNT: return DRFLAC_ERROR; #endif #ifdef ECOMM case ECOMM: return DRFLAC_ERROR; #endif #ifdef EPROTO case EPROTO: return DRFLAC_ERROR; #endif #ifdef EMULTIHOP case EMULTIHOP: return DRFLAC_ERROR; #endif #ifdef EDOTDOT case EDOTDOT: return DRFLAC_ERROR; #endif #ifdef EBADMSG case EBADMSG: return DRFLAC_BAD_MESSAGE; #endif #ifdef EOVERFLOW case EOVERFLOW: return DRFLAC_TOO_BIG; #endif #ifdef ENOTUNIQ case ENOTUNIQ: return DRFLAC_NOT_UNIQUE; #endif #ifdef EBADFD case EBADFD: return DRFLAC_ERROR; #endif #ifdef EREMCHG case EREMCHG: return DRFLAC_ERROR; #endif #ifdef ELIBACC case ELIBACC: return DRFLAC_ACCESS_DENIED; #endif #ifdef ELIBBAD case ELIBBAD: return DRFLAC_INVALID_FILE; #endif #ifdef ELIBSCN case ELIBSCN: return DRFLAC_INVALID_FILE; #endif #ifdef ELIBMAX case ELIBMAX: return DRFLAC_ERROR; #endif #ifdef ELIBEXEC case ELIBEXEC: return DRFLAC_ERROR; #endif #ifdef EILSEQ case EILSEQ: return DRFLAC_INVALID_DATA; #endif #ifdef ERESTART case ERESTART: return DRFLAC_ERROR; #endif #ifdef ESTRPIPE case ESTRPIPE: return DRFLAC_ERROR; #endif #ifdef EUSERS case EUSERS: return DRFLAC_ERROR; #endif #ifdef ENOTSOCK case ENOTSOCK: return DRFLAC_NOT_SOCKET; #endif #ifdef EDESTADDRREQ case EDESTADDRREQ: return DRFLAC_NO_ADDRESS; #endif #ifdef EMSGSIZE case EMSGSIZE: return DRFLAC_TOO_BIG; #endif #ifdef EPROTOTYPE case EPROTOTYPE: return DRFLAC_BAD_PROTOCOL; #endif #ifdef ENOPROTOOPT case ENOPROTOOPT: return DRFLAC_PROTOCOL_UNAVAILABLE; #endif #ifdef EPROTONOSUPPORT case EPROTONOSUPPORT: return DRFLAC_PROTOCOL_NOT_SUPPORTED; #endif #ifdef ESOCKTNOSUPPORT case ESOCKTNOSUPPORT: return DRFLAC_SOCKET_NOT_SUPPORTED; #endif #ifdef EOPNOTSUPP case EOPNOTSUPP: return DRFLAC_INVALID_OPERATION; #endif #ifdef EPFNOSUPPORT case EPFNOSUPPORT: return DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED; #endif #ifdef EAFNOSUPPORT case EAFNOSUPPORT: return DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED; #endif #ifdef EADDRINUSE case EADDRINUSE: return DRFLAC_ALREADY_IN_USE; #endif #ifdef EADDRNOTAVAIL case EADDRNOTAVAIL: return DRFLAC_ERROR; #endif #ifdef ENETDOWN case ENETDOWN: return DRFLAC_NO_NETWORK; #endif #ifdef ENETUNREACH case ENETUNREACH: return DRFLAC_NO_NETWORK; #endif #ifdef ENETRESET case ENETRESET: return DRFLAC_NO_NETWORK; #endif #ifdef ECONNABORTED case ECONNABORTED: return DRFLAC_NO_NETWORK; #endif #ifdef ECONNRESET case ECONNRESET: return DRFLAC_CONNECTION_RESET; #endif #ifdef ENOBUFS case ENOBUFS: return DRFLAC_NO_SPACE; #endif #ifdef EISCONN case EISCONN: return DRFLAC_ALREADY_CONNECTED; #endif #ifdef ENOTCONN case ENOTCONN: return DRFLAC_NOT_CONNECTED; #endif #ifdef ESHUTDOWN case ESHUTDOWN: return DRFLAC_ERROR; #endif #ifdef ETOOMANYREFS case ETOOMANYREFS: return DRFLAC_ERROR; #endif #ifdef ETIMEDOUT case ETIMEDOUT: return DRFLAC_TIMEOUT; #endif #ifdef ECONNREFUSED case ECONNREFUSED: return DRFLAC_CONNECTION_REFUSED; #endif #ifdef EHOSTDOWN case EHOSTDOWN: return DRFLAC_NO_HOST; #endif #ifdef EHOSTUNREACH case EHOSTUNREACH: return DRFLAC_NO_HOST; #endif #ifdef EALREADY case EALREADY: return DRFLAC_IN_PROGRESS; #endif #ifdef EINPROGRESS case EINPROGRESS: return DRFLAC_IN_PROGRESS; #endif #ifdef ESTALE case ESTALE: return DRFLAC_INVALID_FILE; #endif #ifdef EUCLEAN case EUCLEAN: return DRFLAC_ERROR; #endif #ifdef ENOTNAM case ENOTNAM: return DRFLAC_ERROR; #endif #ifdef ENAVAIL case ENAVAIL: return DRFLAC_ERROR; #endif #ifdef EISNAM case EISNAM: return DRFLAC_ERROR; #endif #ifdef EREMOTEIO case EREMOTEIO: return DRFLAC_IO_ERROR; #endif #ifdef EDQUOT case EDQUOT: return DRFLAC_NO_SPACE; #endif #ifdef ENOMEDIUM case ENOMEDIUM: return DRFLAC_DOES_NOT_EXIST; #endif #ifdef EMEDIUMTYPE case EMEDIUMTYPE: return DRFLAC_ERROR; #endif #ifdef ECANCELED case ECANCELED: return DRFLAC_CANCELLED; #endif #ifdef ENOKEY case ENOKEY: return DRFLAC_ERROR; #endif #ifdef EKEYEXPIRED case EKEYEXPIRED: return DRFLAC_ERROR; #endif #ifdef EKEYREVOKED case EKEYREVOKED: return DRFLAC_ERROR; #endif #ifdef EKEYREJECTED case EKEYREJECTED: return DRFLAC_ERROR; #endif #ifdef EOWNERDEAD case EOWNERDEAD: return DRFLAC_ERROR; #endif #ifdef ENOTRECOVERABLE case ENOTRECOVERABLE: return DRFLAC_ERROR; #endif #ifdef ERFKILL case ERFKILL: return DRFLAC_ERROR; #endif #ifdef EHWPOISON case EHWPOISON: return DRFLAC_ERROR; #endif default: return DRFLAC_ERROR; } } static drflac_result drflac_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err; #endif if (ppFile != NULL) { *ppFile = NULL; } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return DRFLAC_INVALID_ARGS; } #if defined(_MSC_VER) && _MSC_VER >= 1400 err = fopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return drflac_result_from_errno(err); } #else #if defined(_WIN32) || defined(__APPLE__) *ppFile = fopen(pFilePath, pOpenMode); #else #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) *ppFile = fopen64(pFilePath, pOpenMode); #else *ppFile = fopen(pFilePath, pOpenMode); #endif #endif if (*ppFile == NULL) { drflac_result result = drflac_result_from_errno(errno); if (result == DRFLAC_SUCCESS) { result = DRFLAC_ERROR; } return result; } #endif return DRFLAC_SUCCESS; } #if defined(_WIN32) #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) #define DRFLAC_HAS_WFOPEN #endif #endif #ifndef DR_FLAC_NO_WCHAR static drflac_result drflac_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drflac_allocation_callbacks* pAllocationCallbacks) { if (ppFile != NULL) { *ppFile = NULL; } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return DRFLAC_INVALID_ARGS; } #if defined(DRFLAC_HAS_WFOPEN) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return drflac_result_from_errno(err); } #else *ppFile = _wfopen(pFilePath, pOpenMode); if (*ppFile == NULL) { return drflac_result_from_errno(errno); } #endif (void)pAllocationCallbacks; } #else #if defined(__DJGPP__) { } #else { mbstate_t mbs; size_t lenMB; const wchar_t* pFilePathTemp = pFilePath; char* pFilePathMB = NULL; char pOpenModeMB[32] = {0}; DRFLAC_ZERO_OBJECT(&mbs); lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); if (lenMB == (size_t)-1) { return drflac_result_from_errno(errno); } pFilePathMB = (char*)drflac__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); if (pFilePathMB == NULL) { return DRFLAC_OUT_OF_MEMORY; } pFilePathTemp = pFilePath; DRFLAC_ZERO_OBJECT(&mbs); wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); { size_t i = 0; for (;;) { if (pOpenMode[i] == 0) { pOpenModeMB[i] = '\0'; break; } pOpenModeMB[i] = (char)pOpenMode[i]; i += 1; } } *ppFile = fopen(pFilePathMB, pOpenModeMB); drflac__free_from_callbacks(pFilePathMB, pAllocationCallbacks); } #endif if (*ppFile == NULL) { return DRFLAC_ERROR; } #endif return DRFLAC_SUCCESS; } #endif static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) { return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); } static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) { DRFLAC_ASSERT(offset >= 0); return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; } DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; FILE* pFile; if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) { return NULL; } pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks); if (pFlac == NULL) { fclose(pFile); return NULL; } return pFlac; } #ifndef DR_FLAC_NO_WCHAR DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; FILE* pFile; if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) { return NULL; } pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks); if (pFlac == NULL) { fclose(pFile); return NULL; } return pFlac; } #endif DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; FILE* pFile; if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) { return NULL; } pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks); if (pFlac == NULL) { fclose(pFile); return pFlac; } return pFlac; } #ifndef DR_FLAC_NO_WCHAR DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; FILE* pFile; if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) { return NULL; } pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks); if (pFlac == NULL) { fclose(pFile); return pFlac; } return pFlac; } #endif #endif static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) { drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; size_t bytesRemaining; DRFLAC_ASSERT(memoryStream != NULL); DRFLAC_ASSERT(memoryStream->dataSize >= memoryStream->currentReadPos); bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; if (bytesToRead > bytesRemaining) { bytesToRead = bytesRemaining; } if (bytesToRead > 0) { DRFLAC_COPY_MEMORY(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); memoryStream->currentReadPos += bytesToRead; } return bytesToRead; } static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) { drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; DRFLAC_ASSERT(memoryStream != NULL); DRFLAC_ASSERT(offset >= 0); if (offset > (drflac_int64)memoryStream->dataSize) { return DRFLAC_FALSE; } if (origin == drflac_seek_origin_current) { if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { memoryStream->currentReadPos += offset; } else { return DRFLAC_FALSE; } } else { if ((drflac_uint32)offset <= memoryStream->dataSize) { memoryStream->currentReadPos = offset; } else { return DRFLAC_FALSE; } } return DRFLAC_TRUE; } DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac__memory_stream memoryStream; drflac* pFlac; memoryStream.data = (const drflac_uint8*)pData; memoryStream.dataSize = dataSize; memoryStream.currentReadPos = 0; pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } pFlac->memoryStream = memoryStream; #ifndef DR_FLAC_NO_OGG if (pFlac->container == drflac_container_ogg) { drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; oggbs->pUserData = &pFlac->memoryStream; } else #endif { pFlac->bs.pUserData = &pFlac->memoryStream; } return pFlac; } DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac__memory_stream memoryStream; drflac* pFlac; memoryStream.data = (const drflac_uint8*)pData; memoryStream.dataSize = dataSize; memoryStream.currentReadPos = 0; pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } pFlac->memoryStream = memoryStream; #ifndef DR_FLAC_NO_OGG if (pFlac->container == drflac_container_ogg) { drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; oggbs->pUserData = &pFlac->memoryStream; } else #endif { pFlac->bs.pUserData = &pFlac->memoryStream; } return pFlac; } DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks); } DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData, pAllocationCallbacks); } DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks); } DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) { return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData, pAllocationCallbacks); } DRFLAC_API void drflac_close(drflac* pFlac) { if (pFlac == NULL) { return; } #ifndef DR_FLAC_NO_STDIO if (pFlac->bs.onRead == drflac__on_read_stdio) { fclose((FILE*)pFlac->bs.pUserData); } #ifndef DR_FLAC_NO_OGG if (pFlac->container == drflac_container_ogg) { drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; DRFLAC_ASSERT(pFlac->bs.onRead == drflac__on_read_ogg); if (oggbs->onRead == drflac__on_read_stdio) { fclose((FILE*)oggbs->pUserData); } } #endif #endif drflac__free_from_callbacks(pFlac, &pFlac->allocationCallbacks); } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; for (i = 0; i < frameCount; ++i) { drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; drflac_uint32 right0 = left0 - side0; drflac_uint32 right1 = left1 - side1; drflac_uint32 right2 = left2 - side2; drflac_uint32 right3 = left3 - side3; pOutputSamples[i*8+0] = (drflac_int32)left0; pOutputSamples[i*8+1] = (drflac_int32)right0; pOutputSamples[i*8+2] = (drflac_int32)left1; pOutputSamples[i*8+3] = (drflac_int32)right1; pOutputSamples[i*8+4] = (drflac_int32)left2; pOutputSamples[i*8+5] = (drflac_int32)right2; pOutputSamples[i*8+6] = (drflac_int32)left3; pOutputSamples[i*8+7] = (drflac_int32)right3; } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); for (i = 0; i < frameCount4; ++i) { __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); __m128i right = _mm_sub_epi32(left, side); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; int32x4_t shift0_4; int32x4_t shift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); shift0_4 = vdupq_n_s32(shift0); shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { uint32x4_t left; uint32x4_t side; uint32x4_t right; left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); right = vsubq_u32(left, side); drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; for (i = 0; i < frameCount; ++i) { drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; drflac_uint32 left0 = right0 + side0; drflac_uint32 left1 = right1 + side1; drflac_uint32 left2 = right2 + side2; drflac_uint32 left3 = right3 + side3; pOutputSamples[i*8+0] = (drflac_int32)left0; pOutputSamples[i*8+1] = (drflac_int32)right0; pOutputSamples[i*8+2] = (drflac_int32)left1; pOutputSamples[i*8+3] = (drflac_int32)right1; pOutputSamples[i*8+4] = (drflac_int32)left2; pOutputSamples[i*8+5] = (drflac_int32)right2; pOutputSamples[i*8+6] = (drflac_int32)left3; pOutputSamples[i*8+7] = (drflac_int32)right3; } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); for (i = 0; i < frameCount4; ++i) { __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); __m128i left = _mm_add_epi32(right, side); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; int32x4_t shift0_4; int32x4_t shift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); shift0_4 = vdupq_n_s32(shift0); shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { uint32x4_t side; uint32x4_t right; uint32x4_t left; side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); left = vaddq_u32(right, side); drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left; pOutputSamples[i*2+1] = (drflac_int32)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { for (drflac_uint64 i = 0; i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample); pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_int32 shift = unusedBitsPerSample; if (shift > 0) { shift -= 1; for (i = 0; i < frameCount4; ++i) { drflac_uint32 temp0L; drflac_uint32 temp1L; drflac_uint32 temp2L; drflac_uint32 temp3L; drflac_uint32 temp0R; drflac_uint32 temp1R; drflac_uint32 temp2R; drflac_uint32 temp3R; drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid0 = (mid0 << 1) | (side0 & 0x01); mid1 = (mid1 << 1) | (side1 & 0x01); mid2 = (mid2 << 1) | (side2 & 0x01); mid3 = (mid3 << 1) | (side3 & 0x01); temp0L = (mid0 + side0) << shift; temp1L = (mid1 + side1) << shift; temp2L = (mid2 + side2) << shift; temp3L = (mid3 + side3) << shift; temp0R = (mid0 - side0) << shift; temp1R = (mid1 - side1) << shift; temp2R = (mid2 - side2) << shift; temp3R = (mid3 - side3) << shift; pOutputSamples[i*8+0] = (drflac_int32)temp0L; pOutputSamples[i*8+1] = (drflac_int32)temp0R; pOutputSamples[i*8+2] = (drflac_int32)temp1L; pOutputSamples[i*8+3] = (drflac_int32)temp1R; pOutputSamples[i*8+4] = (drflac_int32)temp2L; pOutputSamples[i*8+5] = (drflac_int32)temp2R; pOutputSamples[i*8+6] = (drflac_int32)temp3L; pOutputSamples[i*8+7] = (drflac_int32)temp3R; } } else { for (i = 0; i < frameCount4; ++i) { drflac_uint32 temp0L; drflac_uint32 temp1L; drflac_uint32 temp2L; drflac_uint32 temp3L; drflac_uint32 temp0R; drflac_uint32 temp1R; drflac_uint32 temp2R; drflac_uint32 temp3R; drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid0 = (mid0 << 1) | (side0 & 0x01); mid1 = (mid1 << 1) | (side1 & 0x01); mid2 = (mid2 << 1) | (side2 & 0x01); mid3 = (mid3 << 1) | (side3 & 0x01); temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1); temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1); temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1); temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1); temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1); temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1); temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1); temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1); pOutputSamples[i*8+0] = (drflac_int32)temp0L; pOutputSamples[i*8+1] = (drflac_int32)temp0R; pOutputSamples[i*8+2] = (drflac_int32)temp1L; pOutputSamples[i*8+3] = (drflac_int32)temp1R; pOutputSamples[i*8+4] = (drflac_int32)temp2L; pOutputSamples[i*8+5] = (drflac_int32)temp2R; pOutputSamples[i*8+6] = (drflac_int32)temp3L; pOutputSamples[i*8+7] = (drflac_int32)temp3R; } } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample); pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample); } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_int32 shift = unusedBitsPerSample; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); if (shift == 0) { for (i = 0; i < frameCount4; ++i) { __m128i mid; __m128i side; __m128i left; __m128i right; mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1; pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1; } } else { shift -= 1; for (i = 0; i < frameCount4; ++i) { __m128i mid; __m128i side; __m128i left; __m128i right; mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift); pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift); } } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_int32 shift = unusedBitsPerSample; int32x4_t wbpsShift0_4; int32x4_t wbpsShift1_4; uint32x4_t one4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); one4 = vdupq_n_u32(1); if (shift == 0) { for (i = 0; i < frameCount4; ++i) { uint32x4_t mid; uint32x4_t side; int32x4_t left; int32x4_t right; mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4)); left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1; pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1; } } else { int32x4_t shift4; shift -= 1; shift4 = vdupq_n_s32(shift); for (i = 0; i < frameCount4; ++i) { uint32x4_t mid; uint32x4_t side; int32x4_t left; int32x4_t right; mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4)); left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift); pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift); } } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { for (drflac_uint64 i = 0; i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)); pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; pOutputSamples[i*8+0] = (drflac_int32)tempL0; pOutputSamples[i*8+1] = (drflac_int32)tempR0; pOutputSamples[i*8+2] = (drflac_int32)tempL1; pOutputSamples[i*8+3] = (drflac_int32)tempR1; pOutputSamples[i*8+4] = (drflac_int32)tempL2; pOutputSamples[i*8+5] = (drflac_int32)tempR2; pOutputSamples[i*8+6] = (drflac_int32)tempL3; pOutputSamples[i*8+7] = (drflac_int32)tempR3; } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; int32x4_t shift4_0 = vdupq_n_s32(shift0); int32x4_t shift4_1 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { int32x4_t left; int32x4_t right; left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift4_0)); right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift4_1)); drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut) { drflac_uint64 framesRead; drflac_uint32 unusedBitsPerSample; if (pFlac == NULL || framesToRead == 0) { return 0; } if (pBufferOut == NULL) { return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); } DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); unusedBitsPerSample = 32 - pFlac->bitsPerSample; framesRead = 0; while (framesToRead > 0) { if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { if (!drflac__read_and_decode_next_flac_frame(pFlac)) { break; } } else { unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; drflac_uint64 frameCountThisIteration = framesToRead; if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; } if (channelCount == 2) { const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; switch (pFlac->currentFLACFrame.header.channelAssignment) { case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: { drflac_read_pcm_frames_s32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: { drflac_read_pcm_frames_s32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: { drflac_read_pcm_frames_s32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: default: { drflac_read_pcm_frames_s32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; } } else { drflac_uint64 i; for (i = 0; i < frameCountThisIteration; ++i) { unsigned int j; for (j = 0; j < channelCount; ++j) { pBufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); } } } framesRead += frameCountThisIteration; pBufferOut += frameCountThisIteration * channelCount; framesToRead -= frameCountThisIteration; pFlac->currentPCMFrame += frameCountThisIteration; pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration; } } return framesRead; } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; for (i = 0; i < frameCount; ++i) { drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); drflac_uint32 right = left - side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; drflac_uint32 right0 = left0 - side0; drflac_uint32 right1 = left1 - side1; drflac_uint32 right2 = left2 - side2; drflac_uint32 right3 = left3 - side3; left0 >>= 16; left1 >>= 16; left2 >>= 16; left3 >>= 16; right0 >>= 16; right1 >>= 16; right2 >>= 16; right3 >>= 16; pOutputSamples[i*8+0] = (drflac_int16)left0; pOutputSamples[i*8+1] = (drflac_int16)right0; pOutputSamples[i*8+2] = (drflac_int16)left1; pOutputSamples[i*8+3] = (drflac_int16)right1; pOutputSamples[i*8+4] = (drflac_int16)left2; pOutputSamples[i*8+5] = (drflac_int16)right2; pOutputSamples[i*8+6] = (drflac_int16)left3; pOutputSamples[i*8+7] = (drflac_int16)right3; } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); for (i = 0; i < frameCount4; ++i) { __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); __m128i right = _mm_sub_epi32(left, side); left = _mm_srai_epi32(left, 16); right = _mm_srai_epi32(right, 16); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; int32x4_t shift0_4; int32x4_t shift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); shift0_4 = vdupq_n_s32(shift0); shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { uint32x4_t left; uint32x4_t side; uint32x4_t right; left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); right = vsubq_u32(left, side); left = vshrq_n_u32(left, 16); right = vshrq_n_u32(right, 16); drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right))); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s16__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s16__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; for (i = 0; i < frameCount; ++i) { drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); drflac_uint32 left = right + side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; drflac_uint32 left0 = right0 + side0; drflac_uint32 left1 = right1 + side1; drflac_uint32 left2 = right2 + side2; drflac_uint32 left3 = right3 + side3; left0 >>= 16; left1 >>= 16; left2 >>= 16; left3 >>= 16; right0 >>= 16; right1 >>= 16; right2 >>= 16; right3 >>= 16; pOutputSamples[i*8+0] = (drflac_int16)left0; pOutputSamples[i*8+1] = (drflac_int16)right0; pOutputSamples[i*8+2] = (drflac_int16)left1; pOutputSamples[i*8+3] = (drflac_int16)right1; pOutputSamples[i*8+4] = (drflac_int16)left2; pOutputSamples[i*8+5] = (drflac_int16)right2; pOutputSamples[i*8+6] = (drflac_int16)left3; pOutputSamples[i*8+7] = (drflac_int16)right3; } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); for (i = 0; i < frameCount4; ++i) { __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); __m128i left = _mm_add_epi32(right, side); left = _mm_srai_epi32(left, 16); right = _mm_srai_epi32(right, 16); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; int32x4_t shift0_4; int32x4_t shift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); shift0_4 = vdupq_n_s32(shift0); shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { uint32x4_t side; uint32x4_t right; uint32x4_t left; side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); left = vaddq_u32(right, side); left = vshrq_n_u32(left, 16); right = vshrq_n_u32(right, 16); drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right))); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; left >>= 16; right >>= 16; pOutputSamples[i*2+0] = (drflac_int16)left; pOutputSamples[i*2+1] = (drflac_int16)right; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s16__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s16__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { for (drflac_uint64 i = 0; i < frameCount; ++i) { drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16); pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift = unusedBitsPerSample; if (shift > 0) { shift -= 1; for (i = 0; i < frameCount4; ++i) { drflac_uint32 temp0L; drflac_uint32 temp1L; drflac_uint32 temp2L; drflac_uint32 temp3L; drflac_uint32 temp0R; drflac_uint32 temp1R; drflac_uint32 temp2R; drflac_uint32 temp3R; drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid0 = (mid0 << 1) | (side0 & 0x01); mid1 = (mid1 << 1) | (side1 & 0x01); mid2 = (mid2 << 1) | (side2 & 0x01); mid3 = (mid3 << 1) | (side3 & 0x01); temp0L = (mid0 + side0) << shift; temp1L = (mid1 + side1) << shift; temp2L = (mid2 + side2) << shift; temp3L = (mid3 + side3) << shift; temp0R = (mid0 - side0) << shift; temp1R = (mid1 - side1) << shift; temp2R = (mid2 - side2) << shift; temp3R = (mid3 - side3) << shift; temp0L >>= 16; temp1L >>= 16; temp2L >>= 16; temp3L >>= 16; temp0R >>= 16; temp1R >>= 16; temp2R >>= 16; temp3R >>= 16; pOutputSamples[i*8+0] = (drflac_int16)temp0L; pOutputSamples[i*8+1] = (drflac_int16)temp0R; pOutputSamples[i*8+2] = (drflac_int16)temp1L; pOutputSamples[i*8+3] = (drflac_int16)temp1R; pOutputSamples[i*8+4] = (drflac_int16)temp2L; pOutputSamples[i*8+5] = (drflac_int16)temp2R; pOutputSamples[i*8+6] = (drflac_int16)temp3L; pOutputSamples[i*8+7] = (drflac_int16)temp3R; } } else { for (i = 0; i < frameCount4; ++i) { drflac_uint32 temp0L; drflac_uint32 temp1L; drflac_uint32 temp2L; drflac_uint32 temp3L; drflac_uint32 temp0R; drflac_uint32 temp1R; drflac_uint32 temp2R; drflac_uint32 temp3R; drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid0 = (mid0 << 1) | (side0 & 0x01); mid1 = (mid1 << 1) | (side1 & 0x01); mid2 = (mid2 << 1) | (side2 & 0x01); mid3 = (mid3 << 1) | (side3 & 0x01); temp0L = ((drflac_int32)(mid0 + side0) >> 1); temp1L = ((drflac_int32)(mid1 + side1) >> 1); temp2L = ((drflac_int32)(mid2 + side2) >> 1); temp3L = ((drflac_int32)(mid3 + side3) >> 1); temp0R = ((drflac_int32)(mid0 - side0) >> 1); temp1R = ((drflac_int32)(mid1 - side1) >> 1); temp2R = ((drflac_int32)(mid2 - side2) >> 1); temp3R = ((drflac_int32)(mid3 - side3) >> 1); temp0L >>= 16; temp1L >>= 16; temp2L >>= 16; temp3L >>= 16; temp0R >>= 16; temp1R >>= 16; temp2R >>= 16; temp3R >>= 16; pOutputSamples[i*8+0] = (drflac_int16)temp0L; pOutputSamples[i*8+1] = (drflac_int16)temp0R; pOutputSamples[i*8+2] = (drflac_int16)temp1L; pOutputSamples[i*8+3] = (drflac_int16)temp1R; pOutputSamples[i*8+4] = (drflac_int16)temp2L; pOutputSamples[i*8+5] = (drflac_int16)temp2R; pOutputSamples[i*8+6] = (drflac_int16)temp3L; pOutputSamples[i*8+7] = (drflac_int16)temp3R; } } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16); pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16); } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift = unusedBitsPerSample; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); if (shift == 0) { for (i = 0; i < frameCount4; ++i) { __m128i mid; __m128i side; __m128i left; __m128i right; mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); left = _mm_srai_epi32(left, 16); right = _mm_srai_epi32(right, 16); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16); pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16); } } else { shift -= 1; for (i = 0; i < frameCount4; ++i) { __m128i mid; __m128i side; __m128i left; __m128i right; mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); left = _mm_srai_epi32(left, 16); right = _mm_srai_epi32(right, 16); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16); pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16); } } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift = unusedBitsPerSample; int32x4_t wbpsShift0_4; int32x4_t wbpsShift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); if (shift == 0) { for (i = 0; i < frameCount4; ++i) { uint32x4_t mid; uint32x4_t side; int32x4_t left; int32x4_t right; mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); left = vshrq_n_s32(left, 16); right = vshrq_n_s32(right, 16); drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16); pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16); } } else { int32x4_t shift4; shift -= 1; shift4 = vdupq_n_s32(shift); for (i = 0; i < frameCount4; ++i) { uint32x4_t mid; uint32x4_t side; int32x4_t left; int32x4_t right; mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); left = vshrq_n_s32(left, 16); right = vshrq_n_s32(right, 16); drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16); pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16); } } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s16__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s16__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { for (drflac_uint64 i = 0; i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) >> 16); pOutputSamples[i*2+1] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) >> 16); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; tempL0 >>= 16; tempL1 >>= 16; tempL2 >>= 16; tempL3 >>= 16; tempR0 >>= 16; tempR1 >>= 16; tempR2 >>= 16; tempR3 >>= 16; pOutputSamples[i*8+0] = (drflac_int16)tempL0; pOutputSamples[i*8+1] = (drflac_int16)tempR0; pOutputSamples[i*8+2] = (drflac_int16)tempL1; pOutputSamples[i*8+3] = (drflac_int16)tempR1; pOutputSamples[i*8+4] = (drflac_int16)tempL2; pOutputSamples[i*8+5] = (drflac_int16)tempR2; pOutputSamples[i*8+6] = (drflac_int16)tempL3; pOutputSamples[i*8+7] = (drflac_int16)tempR3; } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; for (i = 0; i < frameCount4; ++i) { __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); left = _mm_srai_epi32(left, 16); right = _mm_srai_epi32(right, 16); _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; int32x4_t shift0_4 = vdupq_n_s32(shift0); int32x4_t shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { int32x4_t left; int32x4_t right; left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4)); right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4)); left = vshrq_n_s32(left, 16); right = vshrq_n_s32(right, 16); drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_s16__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_s16__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut) { drflac_uint64 framesRead; drflac_uint32 unusedBitsPerSample; if (pFlac == NULL || framesToRead == 0) { return 0; } if (pBufferOut == NULL) { return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); } DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); unusedBitsPerSample = 32 - pFlac->bitsPerSample; framesRead = 0; while (framesToRead > 0) { if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { if (!drflac__read_and_decode_next_flac_frame(pFlac)) { break; } } else { unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; drflac_uint64 frameCountThisIteration = framesToRead; if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; } if (channelCount == 2) { const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; switch (pFlac->currentFLACFrame.header.channelAssignment) { case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: { drflac_read_pcm_frames_s16__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: { drflac_read_pcm_frames_s16__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: { drflac_read_pcm_frames_s16__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: default: { drflac_read_pcm_frames_s16__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; } } else { drflac_uint64 i; for (i = 0; i < frameCountThisIteration; ++i) { unsigned int j; for (j = 0; j < channelCount; ++j) { drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); pBufferOut[(i*channelCount)+j] = (drflac_int16)(sampleS32 >> 16); } } } framesRead += frameCountThisIteration; pBufferOut += frameCountThisIteration * channelCount; framesToRead -= frameCountThisIteration; pFlac->currentPCMFrame += frameCountThisIteration; pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration; } } return framesRead; } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; for (i = 0; i < frameCount; ++i) { drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0); pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; float factor = 1 / 2147483648.0; for (i = 0; i < frameCount4; ++i) { drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; drflac_uint32 right0 = left0 - side0; drflac_uint32 right1 = left1 - side1; drflac_uint32 right2 = left2 - side2; drflac_uint32 right3 = left3 - side3; pOutputSamples[i*8+0] = (drflac_int32)left0 * factor; pOutputSamples[i*8+1] = (drflac_int32)right0 * factor; pOutputSamples[i*8+2] = (drflac_int32)left1 * factor; pOutputSamples[i*8+3] = (drflac_int32)right1 * factor; pOutputSamples[i*8+4] = (drflac_int32)left2 * factor; pOutputSamples[i*8+5] = (drflac_int32)right2 * factor; pOutputSamples[i*8+6] = (drflac_int32)left3 * factor; pOutputSamples[i*8+7] = (drflac_int32)right3 * factor; } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left * factor; pOutputSamples[i*2+1] = (drflac_int32)right * factor; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; __m128 factor; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); factor = _mm_set1_ps(1.0f / 8388608.0f); for (i = 0; i < frameCount4; ++i) { __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); __m128i right = _mm_sub_epi32(left, side); __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; float32x4_t factor4; int32x4_t shift0_4; int32x4_t shift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); factor4 = vdupq_n_f32(1.0f / 8388608.0f); shift0_4 = vdupq_n_s32(shift0); shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { uint32x4_t left; uint32x4_t side; uint32x4_t right; float32x4_t leftf; float32x4_t rightf; left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); right = vsubq_u32(left, side); leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4); rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4); drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 left = pInputSamples0U32[i] << shift0; drflac_uint32 side = pInputSamples1U32[i] << shift1; drflac_uint32 right = left - side; pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; for (i = 0; i < frameCount; ++i) { drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0); pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; float factor = 1 / 2147483648.0; for (i = 0; i < frameCount4; ++i) { drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; drflac_uint32 left0 = right0 + side0; drflac_uint32 left1 = right1 + side1; drflac_uint32 left2 = right2 + side2; drflac_uint32 left3 = right3 + side3; pOutputSamples[i*8+0] = (drflac_int32)left0 * factor; pOutputSamples[i*8+1] = (drflac_int32)right0 * factor; pOutputSamples[i*8+2] = (drflac_int32)left1 * factor; pOutputSamples[i*8+3] = (drflac_int32)right1 * factor; pOutputSamples[i*8+4] = (drflac_int32)left2 * factor; pOutputSamples[i*8+5] = (drflac_int32)right2 * factor; pOutputSamples[i*8+6] = (drflac_int32)left3 * factor; pOutputSamples[i*8+7] = (drflac_int32)right3 * factor; } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left * factor; pOutputSamples[i*2+1] = (drflac_int32)right * factor; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; __m128 factor; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); factor = _mm_set1_ps(1.0f / 8388608.0f); for (i = 0; i < frameCount4; ++i) { __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); __m128i left = _mm_add_epi32(right, side); __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; float32x4_t factor4; int32x4_t shift0_4; int32x4_t shift1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); factor4 = vdupq_n_f32(1.0f / 8388608.0f); shift0_4 = vdupq_n_s32(shift0); shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { uint32x4_t side; uint32x4_t right; uint32x4_t left; float32x4_t leftf; float32x4_t rightf; side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); left = vaddq_u32(right, side); leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4); rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4); drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 side = pInputSamples0U32[i] << shift0; drflac_uint32 right = pInputSamples1U32[i] << shift1; drflac_uint32 left = right + side; pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { for (drflac_uint64 i = 0; i < frameCount; ++i) { drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (float)((((drflac_int32)(mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); pOutputSamples[i*2+1] = (float)((((drflac_int32)(mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift = unusedBitsPerSample; float factor = 1 / 2147483648.0; if (shift > 0) { shift -= 1; for (i = 0; i < frameCount4; ++i) { drflac_uint32 temp0L; drflac_uint32 temp1L; drflac_uint32 temp2L; drflac_uint32 temp3L; drflac_uint32 temp0R; drflac_uint32 temp1R; drflac_uint32 temp2R; drflac_uint32 temp3R; drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid0 = (mid0 << 1) | (side0 & 0x01); mid1 = (mid1 << 1) | (side1 & 0x01); mid2 = (mid2 << 1) | (side2 & 0x01); mid3 = (mid3 << 1) | (side3 & 0x01); temp0L = (mid0 + side0) << shift; temp1L = (mid1 + side1) << shift; temp2L = (mid2 + side2) << shift; temp3L = (mid3 + side3) << shift; temp0R = (mid0 - side0) << shift; temp1R = (mid1 - side1) << shift; temp2R = (mid2 - side2) << shift; temp3R = (mid3 - side3) << shift; pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor; pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor; pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor; pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor; pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor; pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor; pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor; pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor; } } else { for (i = 0; i < frameCount4; ++i) { drflac_uint32 temp0L; drflac_uint32 temp1L; drflac_uint32 temp2L; drflac_uint32 temp3L; drflac_uint32 temp0R; drflac_uint32 temp1R; drflac_uint32 temp2R; drflac_uint32 temp3R; drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid0 = (mid0 << 1) | (side0 & 0x01); mid1 = (mid1 << 1) | (side1 & 0x01); mid2 = (mid2 << 1) | (side2 & 0x01); mid3 = (mid3 << 1) | (side3 & 0x01); temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1); temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1); temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1); temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1); temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1); temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1); temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1); temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1); pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor; pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor; pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor; pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor; pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor; pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor; pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor; pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor; } } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) * factor; pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) * factor; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift = unusedBitsPerSample - 8; float factor; __m128 factor128; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); factor = 1.0f / 8388608.0f; factor128 = _mm_set1_ps(factor); if (shift == 0) { for (i = 0; i < frameCount4; ++i) { __m128i mid; __m128i side; __m128i tempL; __m128i tempR; __m128 leftf; __m128 rightf; mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); tempL = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); tempR = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor; pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor; } } else { shift -= 1; for (i = 0; i < frameCount4; ++i) { __m128i mid; __m128i side; __m128i tempL; __m128i tempR; __m128 leftf; __m128 rightf; mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); tempL = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); tempR = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor; pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor; } } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift = unusedBitsPerSample - 8; float factor; float32x4_t factor4; int32x4_t shift4; int32x4_t wbps0_4; int32x4_t wbps1_4; DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); factor = 1.0f / 8388608.0f; factor4 = vdupq_n_f32(factor); wbps0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); wbps1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); if (shift == 0) { for (i = 0; i < frameCount4; ++i) { int32x4_t lefti; int32x4_t righti; float32x4_t leftf; float32x4_t rightf; uint32x4_t mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4); uint32x4_t side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4); mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); lefti = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); righti = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor; pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor; } } else { shift -= 1; shift4 = vdupq_n_s32(shift); for (i = 0; i < frameCount4; ++i) { uint32x4_t mid; uint32x4_t side; int32x4_t lefti; int32x4_t righti; float32x4_t leftf; float32x4_t rightf; mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4); side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4); mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); lefti = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); righti = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; mid = (mid << 1) | (side & 0x01); pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor; pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor; } } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } #if 0 static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { for (drflac_uint64 i = 0; i < frameCount; ++i) { pOutputSamples[i*2+0] = (float)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0); pOutputSamples[i*2+1] = (float)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0); } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; float factor = 1 / 2147483648.0; for (i = 0; i < frameCount4; ++i) { drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; pOutputSamples[i*8+0] = (drflac_int32)tempL0 * factor; pOutputSamples[i*8+1] = (drflac_int32)tempR0 * factor; pOutputSamples[i*8+2] = (drflac_int32)tempL1 * factor; pOutputSamples[i*8+3] = (drflac_int32)tempR1 * factor; pOutputSamples[i*8+4] = (drflac_int32)tempL2 * factor; pOutputSamples[i*8+5] = (drflac_int32)tempR2 * factor; pOutputSamples[i*8+6] = (drflac_int32)tempL3 * factor; pOutputSamples[i*8+7] = (drflac_int32)tempR3 * factor; } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; } } #if defined(DRFLAC_SUPPORT_SSE2) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; float factor = 1.0f / 8388608.0f; __m128 factor128 = _mm_set1_ps(factor); for (i = 0; i < frameCount4; ++i) { __m128i lefti; __m128i righti; __m128 leftf; __m128 rightf; lefti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); righti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); leftf = _mm_mul_ps(_mm_cvtepi32_ps(lefti), factor128); rightf = _mm_mul_ps(_mm_cvtepi32_ps(righti), factor128); _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; } } #endif #if defined(DRFLAC_SUPPORT_NEON) static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { drflac_uint64 i; drflac_uint64 frameCount4 = frameCount >> 2; const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; float factor = 1.0f / 8388608.0f; float32x4_t factor4 = vdupq_n_f32(factor); int32x4_t shift0_4 = vdupq_n_s32(shift0); int32x4_t shift1_4 = vdupq_n_s32(shift1); for (i = 0; i < frameCount4; ++i) { int32x4_t lefti; int32x4_t righti; float32x4_t leftf; float32x4_t rightf; lefti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4)); righti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4)); leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); } for (i = (frameCount4 << 2); i < frameCount; ++i) { pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; } } #endif static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) { #if defined(DRFLAC_SUPPORT_SSE2) if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #elif defined(DRFLAC_SUPPORT_NEON) if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { drflac_read_pcm_frames_f32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); } else #endif { #if 0 drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #else drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); #endif } } DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut) { drflac_uint64 framesRead; drflac_uint32 unusedBitsPerSample; if (pFlac == NULL || framesToRead == 0) { return 0; } if (pBufferOut == NULL) { return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); } DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); unusedBitsPerSample = 32 - pFlac->bitsPerSample; framesRead = 0; while (framesToRead > 0) { if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { if (!drflac__read_and_decode_next_flac_frame(pFlac)) { break; } } else { unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; drflac_uint64 frameCountThisIteration = framesToRead; if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; } if (channelCount == 2) { const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; switch (pFlac->currentFLACFrame.header.channelAssignment) { case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: { drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: { drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: { drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: default: { drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); } break; } } else { drflac_uint64 i; for (i = 0; i < frameCountThisIteration; ++i) { unsigned int j; for (j = 0; j < channelCount; ++j) { drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); pBufferOut[(i*channelCount)+j] = (float)(sampleS32 / 2147483648.0); } } } framesRead += frameCountThisIteration; pBufferOut += frameCountThisIteration * channelCount; framesToRead -= frameCountThisIteration; pFlac->currentPCMFrame += frameCountThisIteration; pFlac->currentFLACFrame.pcmFramesRemaining -= (unsigned int)frameCountThisIteration; } } return framesRead; } DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) { if (pFlac == NULL) { return DRFLAC_FALSE; } if (pFlac->currentPCMFrame == pcmFrameIndex) { return DRFLAC_TRUE; } if (pFlac->firstFLACFramePosInBytes == 0) { return DRFLAC_FALSE; } if (pcmFrameIndex == 0) { pFlac->currentPCMFrame = 0; return drflac__seek_to_first_frame(pFlac); } else { drflac_bool32 wasSuccessful = DRFLAC_FALSE; drflac_uint64 originalPCMFrame = pFlac->currentPCMFrame; if (pcmFrameIndex > pFlac->totalPCMFrameCount) { pcmFrameIndex = pFlac->totalPCMFrameCount; } if (pcmFrameIndex > pFlac->currentPCMFrame) { drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex - pFlac->currentPCMFrame); if (pFlac->currentFLACFrame.pcmFramesRemaining > offset) { pFlac->currentFLACFrame.pcmFramesRemaining -= offset; pFlac->currentPCMFrame = pcmFrameIndex; return DRFLAC_TRUE; } } else { drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentPCMFrame - pcmFrameIndex); drflac_uint32 currentFLACFramePCMFrameCount = pFlac->currentFLACFrame.header.blockSizeInPCMFrames; drflac_uint32 currentFLACFramePCMFramesConsumed = currentFLACFramePCMFrameCount - pFlac->currentFLACFrame.pcmFramesRemaining; if (currentFLACFramePCMFramesConsumed > offsetAbs) { pFlac->currentFLACFrame.pcmFramesRemaining += offsetAbs; pFlac->currentPCMFrame = pcmFrameIndex; return DRFLAC_TRUE; } } #ifndef DR_FLAC_NO_OGG if (pFlac->container == drflac_container_ogg) { wasSuccessful = drflac_ogg__seek_to_pcm_frame(pFlac, pcmFrameIndex); } else #endif { if (!pFlac->_noSeekTableSeek) { wasSuccessful = drflac__seek_to_pcm_frame__seek_table(pFlac, pcmFrameIndex); } #if !defined(DR_FLAC_NO_CRC) if (!wasSuccessful && !pFlac->_noBinarySearchSeek && pFlac->totalPCMFrameCount > 0) { wasSuccessful = drflac__seek_to_pcm_frame__binary_search(pFlac, pcmFrameIndex); } #endif if (!wasSuccessful && !pFlac->_noBruteForceSeek) { wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex); } } if (wasSuccessful) { pFlac->currentPCMFrame = pcmFrameIndex; } else { if (drflac_seek_to_pcm_frame(pFlac, originalPCMFrame) == DRFLAC_FALSE) { drflac_seek_to_pcm_frame(pFlac, 0); } } return wasSuccessful; } } #if defined(SIZE_MAX) #define DRFLAC_SIZE_MAX SIZE_MAX #else #if defined(DRFLAC_64BIT) #define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF) #else #define DRFLAC_SIZE_MAX 0xFFFFFFFF #endif #endif #define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \ static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\ { \ type* pSampleData = NULL; \ drflac_uint64 totalPCMFrameCount; \ \ DRFLAC_ASSERT(pFlac != NULL); \ \ totalPCMFrameCount = pFlac->totalPCMFrameCount; \ \ if (totalPCMFrameCount == 0) { \ type buffer[4096]; \ drflac_uint64 pcmFramesRead; \ size_t sampleDataBufferSize = sizeof(buffer); \ \ pSampleData = (type*)drflac__malloc_from_callbacks(sampleDataBufferSize, &pFlac->allocationCallbacks); \ if (pSampleData == NULL) { \ goto on_error; \ } \ \ while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \ if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \ type* pNewSampleData; \ size_t newSampleDataBufferSize; \ \ newSampleDataBufferSize = sampleDataBufferSize * 2; \ pNewSampleData = (type*)drflac__realloc_from_callbacks(pSampleData, newSampleDataBufferSize, sampleDataBufferSize, &pFlac->allocationCallbacks); \ if (pNewSampleData == NULL) { \ drflac__free_from_callbacks(pSampleData, &pFlac->allocationCallbacks); \ goto on_error; \ } \ \ sampleDataBufferSize = newSampleDataBufferSize; \ pSampleData = pNewSampleData; \ } \ \ DRFLAC_COPY_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \ totalPCMFrameCount += pcmFramesRead; \ } \ \ \ DRFLAC_ZERO_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \ } else { \ drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \ if (dataSize > (drflac_uint64)DRFLAC_SIZE_MAX) { \ goto on_error; \ } \ \ pSampleData = (type*)drflac__malloc_from_callbacks((size_t)dataSize, &pFlac->allocationCallbacks); \ if (pSampleData == NULL) { \ goto on_error; \ } \ \ totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \ } \ \ if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \ if (channelsOut) *channelsOut = pFlac->channels; \ if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \ \ drflac_close(pFlac); \ return pSampleData; \ \ on_error: \ drflac_close(pFlac); \ return NULL; \ } DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32) DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16) DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float) DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalPCMFrameCountOut) { *totalPCMFrameCountOut = 0; } pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); } DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalPCMFrameCountOut) { *totalPCMFrameCountOut = 0; } pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); } DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (channelsOut) { *channelsOut = 0; } if (sampleRateOut) { *sampleRateOut = 0; } if (totalPCMFrameCountOut) { *totalPCMFrameCountOut = 0; } pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); } #ifndef DR_FLAC_NO_STDIO DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (sampleRate) { *sampleRate = 0; } if (channels) { *channels = 0; } if (totalPCMFrameCount) { *totalPCMFrameCount = 0; } pFlac = drflac_open_file(filename, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); } DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (sampleRate) { *sampleRate = 0; } if (channels) { *channels = 0; } if (totalPCMFrameCount) { *totalPCMFrameCount = 0; } pFlac = drflac_open_file(filename, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); } DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (sampleRate) { *sampleRate = 0; } if (channels) { *channels = 0; } if (totalPCMFrameCount) { *totalPCMFrameCount = 0; } pFlac = drflac_open_file(filename, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); } #endif DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (sampleRate) { *sampleRate = 0; } if (channels) { *channels = 0; } if (totalPCMFrameCount) { *totalPCMFrameCount = 0; } pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); } DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (sampleRate) { *sampleRate = 0; } if (channels) { *channels = 0; } if (totalPCMFrameCount) { *totalPCMFrameCount = 0; } pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); } DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) { drflac* pFlac; if (sampleRate) { *sampleRate = 0; } if (channels) { *channels = 0; } if (totalPCMFrameCount) { *totalPCMFrameCount = 0; } pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); if (pFlac == NULL) { return NULL; } return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); } DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { drflac__free_from_callbacks(p, pAllocationCallbacks); } else { drflac__free_default(p, NULL); } } DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments) { if (pIter == NULL) { return; } pIter->countRemaining = commentCount; pIter->pRunningData = (const char*)pComments; } DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut) { drflac_int32 length; const char* pComment; if (pCommentLengthOut) { *pCommentLengthOut = 0; } if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { return NULL; } length = drflac__le2host_32_ptr_unaligned(pIter->pRunningData); pIter->pRunningData += 4; pComment = pIter->pRunningData; pIter->pRunningData += length; pIter->countRemaining -= 1; if (pCommentLengthOut) { *pCommentLengthOut = length; } return pComment; } DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData) { if (pIter == NULL) { return; } pIter->countRemaining = trackCount; pIter->pRunningData = (const char*)pTrackData; } DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack) { drflac_cuesheet_track cuesheetTrack; const char* pRunningData; drflac_uint64 offsetHi; drflac_uint64 offsetLo; if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { return DRFLAC_FALSE; } pRunningData = pIter->pRunningData; offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; cuesheetTrack.offset = offsetLo | (offsetHi << 32); cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1; DRFLAC_COPY_MEMORY(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12; cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0; cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14; cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1; cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index); pIter->pRunningData = pRunningData; pIter->countRemaining -= 1; if (pCuesheetTrack) { *pCuesheetTrack = cuesheetTrack; } return DRFLAC_TRUE; } #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) #pragma GCC diagnostic pop #endif #endif /* dr_flac_c end */ #endif /* DRFLAC_IMPLEMENTATION */ #endif /* MA_NO_FLAC */ #if !defined(MA_NO_MP3) && !defined(MA_NO_DECODING) #if !defined(DR_MP3_IMPLEMENTATION) && !defined(DRMP3_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */ /* dr_mp3_c begin */ #ifndef dr_mp3_c #define dr_mp3_c #include #include #include DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision) { if (pMajor) { *pMajor = DRMP3_VERSION_MAJOR; } if (pMinor) { *pMinor = DRMP3_VERSION_MINOR; } if (pRevision) { *pRevision = DRMP3_VERSION_REVISION; } } DRMP3_API const char* drmp3_version_string(void) { return DRMP3_VERSION_STRING; } #if defined(__TINYC__) #define DR_MP3_NO_SIMD #endif #define DRMP3_OFFSET_PTR(p, offset) ((void*)((drmp3_uint8*)(p) + (offset))) #define DRMP3_MAX_FREE_FORMAT_FRAME_SIZE 2304 #ifndef DRMP3_MAX_FRAME_SYNC_MATCHES #define DRMP3_MAX_FRAME_SYNC_MATCHES 10 #endif #define DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES DRMP3_MAX_FREE_FORMAT_FRAME_SIZE #define DRMP3_MAX_BITRESERVOIR_BYTES 511 #define DRMP3_SHORT_BLOCK_TYPE 2 #define DRMP3_STOP_BLOCK_TYPE 3 #define DRMP3_MODE_MONO 3 #define DRMP3_MODE_JOINT_STEREO 1 #define DRMP3_HDR_SIZE 4 #define DRMP3_HDR_IS_MONO(h) (((h[3]) & 0xC0) == 0xC0) #define DRMP3_HDR_IS_MS_STEREO(h) (((h[3]) & 0xE0) == 0x60) #define DRMP3_HDR_IS_FREE_FORMAT(h) (((h[2]) & 0xF0) == 0) #define DRMP3_HDR_IS_CRC(h) (!((h[1]) & 1)) #define DRMP3_HDR_TEST_PADDING(h) ((h[2]) & 0x2) #define DRMP3_HDR_TEST_MPEG1(h) ((h[1]) & 0x8) #define DRMP3_HDR_TEST_NOT_MPEG25(h) ((h[1]) & 0x10) #define DRMP3_HDR_TEST_I_STEREO(h) ((h[3]) & 0x10) #define DRMP3_HDR_TEST_MS_STEREO(h) ((h[3]) & 0x20) #define DRMP3_HDR_GET_STEREO_MODE(h) (((h[3]) >> 6) & 3) #define DRMP3_HDR_GET_STEREO_MODE_EXT(h) (((h[3]) >> 4) & 3) #define DRMP3_HDR_GET_LAYER(h) (((h[1]) >> 1) & 3) #define DRMP3_HDR_GET_BITRATE(h) ((h[2]) >> 4) #define DRMP3_HDR_GET_SAMPLE_RATE(h) (((h[2]) >> 2) & 3) #define DRMP3_HDR_GET_MY_SAMPLE_RATE(h) (DRMP3_HDR_GET_SAMPLE_RATE(h) + (((h[1] >> 3) & 1) + ((h[1] >> 4) & 1))*3) #define DRMP3_HDR_IS_FRAME_576(h) ((h[1] & 14) == 2) #define DRMP3_HDR_IS_LAYER_1(h) ((h[1] & 6) == 6) #define DRMP3_BITS_DEQUANTIZER_OUT -1 #define DRMP3_MAX_SCF (255 + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210) #define DRMP3_MAX_SCFI ((DRMP3_MAX_SCF + 3) & ~3) #define DRMP3_MIN(a, b) ((a) > (b) ? (b) : (a)) #define DRMP3_MAX(a, b) ((a) < (b) ? (b) : (a)) #if !defined(DR_MP3_NO_SIMD) #if !defined(DR_MP3_ONLY_SIMD) && (defined(_M_X64) || defined(__x86_64__) || defined(__aarch64__) || defined(_M_ARM64)) #define DR_MP3_ONLY_SIMD #endif #if ((defined(_MSC_VER) && _MSC_VER >= 1400) && defined(_M_X64)) || ((defined(__i386) || defined(_M_IX86) || defined(__i386__) || defined(__x86_64__)) && ((defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__))) #if defined(_MSC_VER) #include #endif #include #define DRMP3_HAVE_SSE 1 #define DRMP3_HAVE_SIMD 1 #define DRMP3_VSTORE _mm_storeu_ps #define DRMP3_VLD _mm_loadu_ps #define DRMP3_VSET _mm_set1_ps #define DRMP3_VADD _mm_add_ps #define DRMP3_VSUB _mm_sub_ps #define DRMP3_VMUL _mm_mul_ps #define DRMP3_VMAC(a, x, y) _mm_add_ps(a, _mm_mul_ps(x, y)) #define DRMP3_VMSB(a, x, y) _mm_sub_ps(a, _mm_mul_ps(x, y)) #define DRMP3_VMUL_S(x, s) _mm_mul_ps(x, _mm_set1_ps(s)) #define DRMP3_VREV(x) _mm_shuffle_ps(x, x, _MM_SHUFFLE(0, 1, 2, 3)) typedef __m128 drmp3_f4; #if defined(_MSC_VER) || defined(DR_MP3_ONLY_SIMD) #define drmp3_cpuid __cpuid #else static __inline__ __attribute__((always_inline)) void drmp3_cpuid(int CPUInfo[], const int InfoType) { #if defined(__PIC__) __asm__ __volatile__( #if defined(__x86_64__) "push %%rbx\n" "cpuid\n" "xchgl %%ebx, %1\n" "pop %%rbx\n" #else "xchgl %%ebx, %1\n" "cpuid\n" "xchgl %%ebx, %1\n" #endif : "=a" (CPUInfo[0]), "=r" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3]) : "a" (InfoType)); #else __asm__ __volatile__( "cpuid" : "=a" (CPUInfo[0]), "=b" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3]) : "a" (InfoType)); #endif } #endif static int drmp3_have_simd(void) { #ifdef DR_MP3_ONLY_SIMD return 1; #else static int g_have_simd; int CPUInfo[4]; #ifdef MINIMP3_TEST static int g_counter; if (g_counter++ > 100) return 0; #endif if (g_have_simd) goto end; drmp3_cpuid(CPUInfo, 0); if (CPUInfo[0] > 0) { drmp3_cpuid(CPUInfo, 1); g_have_simd = (CPUInfo[3] & (1 << 26)) + 1; return g_have_simd - 1; } end: return g_have_simd - 1; #endif } #elif defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64) #include #define DRMP3_HAVE_SSE 0 #define DRMP3_HAVE_SIMD 1 #define DRMP3_VSTORE vst1q_f32 #define DRMP3_VLD vld1q_f32 #define DRMP3_VSET vmovq_n_f32 #define DRMP3_VADD vaddq_f32 #define DRMP3_VSUB vsubq_f32 #define DRMP3_VMUL vmulq_f32 #define DRMP3_VMAC(a, x, y) vmlaq_f32(a, x, y) #define DRMP3_VMSB(a, x, y) vmlsq_f32(a, x, y) #define DRMP3_VMUL_S(x, s) vmulq_f32(x, vmovq_n_f32(s)) #define DRMP3_VREV(x) vcombine_f32(vget_high_f32(vrev64q_f32(x)), vget_low_f32(vrev64q_f32(x))) typedef float32x4_t drmp3_f4; static int drmp3_have_simd(void) { return 1; } #else #define DRMP3_HAVE_SSE 0 #define DRMP3_HAVE_SIMD 0 #ifdef DR_MP3_ONLY_SIMD #error DR_MP3_ONLY_SIMD used, but SSE/NEON not enabled #endif #endif #else #define DRMP3_HAVE_SIMD 0 #endif #if defined(__ARM_ARCH) && (__ARM_ARCH >= 6) && !defined(__aarch64__) && !defined(_M_ARM64) #define DRMP3_HAVE_ARMV6 1 static __inline__ __attribute__((always_inline)) drmp3_int32 drmp3_clip_int16_arm(drmp3_int32 a) { drmp3_int32 x = 0; __asm__ ("ssat %0, #16, %1" : "=r"(x) : "r"(a)); return x; } #else #define DRMP3_HAVE_ARMV6 0 #endif #ifndef DRMP3_ASSERT #include #define DRMP3_ASSERT(expression) assert(expression) #endif #ifndef DRMP3_COPY_MEMORY #define DRMP3_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) #endif #ifndef DRMP3_MOVE_MEMORY #define DRMP3_MOVE_MEMORY(dst, src, sz) memmove((dst), (src), (sz)) #endif #ifndef DRMP3_ZERO_MEMORY #define DRMP3_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) #endif #define DRMP3_ZERO_OBJECT(p) DRMP3_ZERO_MEMORY((p), sizeof(*(p))) #ifndef DRMP3_MALLOC #define DRMP3_MALLOC(sz) malloc((sz)) #endif #ifndef DRMP3_REALLOC #define DRMP3_REALLOC(p, sz) realloc((p), (sz)) #endif #ifndef DRMP3_FREE #define DRMP3_FREE(p) free((p)) #endif typedef struct { const drmp3_uint8 *buf; int pos, limit; } drmp3_bs; typedef struct { float scf[3*64]; drmp3_uint8 total_bands, stereo_bands, bitalloc[64], scfcod[64]; } drmp3_L12_scale_info; typedef struct { drmp3_uint8 tab_offset, code_tab_width, band_count; } drmp3_L12_subband_alloc; typedef struct { const drmp3_uint8 *sfbtab; drmp3_uint16 part_23_length, big_values, scalefac_compress; drmp3_uint8 global_gain, block_type, mixed_block_flag, n_long_sfb, n_short_sfb; drmp3_uint8 table_select[3], region_count[3], subblock_gain[3]; drmp3_uint8 preflag, scalefac_scale, count1_table, scfsi; } drmp3_L3_gr_info; typedef struct { drmp3_bs bs; drmp3_uint8 maindata[DRMP3_MAX_BITRESERVOIR_BYTES + DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES]; drmp3_L3_gr_info gr_info[4]; float grbuf[2][576], scf[40], syn[18 + 15][2*32]; drmp3_uint8 ist_pos[2][39]; } drmp3dec_scratch; static void drmp3_bs_init(drmp3_bs *bs, const drmp3_uint8 *data, int bytes) { bs->buf = data; bs->pos = 0; bs->limit = bytes*8; } static drmp3_uint32 drmp3_bs_get_bits(drmp3_bs *bs, int n) { drmp3_uint32 next, cache = 0, s = bs->pos & 7; int shl = n + s; const drmp3_uint8 *p = bs->buf + (bs->pos >> 3); if ((bs->pos += n) > bs->limit) return 0; next = *p++ & (255 >> s); while ((shl -= 8) > 0) { cache |= next << shl; next = *p++; } return cache | (next >> -shl); } static int drmp3_hdr_valid(const drmp3_uint8 *h) { return h[0] == 0xff && ((h[1] & 0xF0) == 0xf0 || (h[1] & 0xFE) == 0xe2) && (DRMP3_HDR_GET_LAYER(h) != 0) && (DRMP3_HDR_GET_BITRATE(h) != 15) && (DRMP3_HDR_GET_SAMPLE_RATE(h) != 3); } static int drmp3_hdr_compare(const drmp3_uint8 *h1, const drmp3_uint8 *h2) { return drmp3_hdr_valid(h2) && ((h1[1] ^ h2[1]) & 0xFE) == 0 && ((h1[2] ^ h2[2]) & 0x0C) == 0 && !(DRMP3_HDR_IS_FREE_FORMAT(h1) ^ DRMP3_HDR_IS_FREE_FORMAT(h2)); } static unsigned drmp3_hdr_bitrate_kbps(const drmp3_uint8 *h) { static const drmp3_uint8 halfrate[2][3][15] = { { { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,16,24,28,32,40,48,56,64,72,80,88,96,112,128 } }, { { 0,16,20,24,28,32,40,48,56,64,80,96,112,128,160 }, { 0,16,24,28,32,40,48,56,64,80,96,112,128,160,192 }, { 0,16,32,48,64,80,96,112,128,144,160,176,192,208,224 } }, }; return 2*halfrate[!!DRMP3_HDR_TEST_MPEG1(h)][DRMP3_HDR_GET_LAYER(h) - 1][DRMP3_HDR_GET_BITRATE(h)]; } static unsigned drmp3_hdr_sample_rate_hz(const drmp3_uint8 *h) { static const unsigned g_hz[3] = { 44100, 48000, 32000 }; return g_hz[DRMP3_HDR_GET_SAMPLE_RATE(h)] >> (int)!DRMP3_HDR_TEST_MPEG1(h) >> (int)!DRMP3_HDR_TEST_NOT_MPEG25(h); } static unsigned drmp3_hdr_frame_samples(const drmp3_uint8 *h) { return DRMP3_HDR_IS_LAYER_1(h) ? 384 : (1152 >> (int)DRMP3_HDR_IS_FRAME_576(h)); } static int drmp3_hdr_frame_bytes(const drmp3_uint8 *h, int free_format_size) { int frame_bytes = drmp3_hdr_frame_samples(h)*drmp3_hdr_bitrate_kbps(h)*125/drmp3_hdr_sample_rate_hz(h); if (DRMP3_HDR_IS_LAYER_1(h)) { frame_bytes &= ~3; } return frame_bytes ? frame_bytes : free_format_size; } static int drmp3_hdr_padding(const drmp3_uint8 *h) { return DRMP3_HDR_TEST_PADDING(h) ? (DRMP3_HDR_IS_LAYER_1(h) ? 4 : 1) : 0; } #ifndef DR_MP3_ONLY_MP3 static const drmp3_L12_subband_alloc *drmp3_L12_subband_alloc_table(const drmp3_uint8 *hdr, drmp3_L12_scale_info *sci) { const drmp3_L12_subband_alloc *alloc; int mode = DRMP3_HDR_GET_STEREO_MODE(hdr); int nbands, stereo_bands = (mode == DRMP3_MODE_MONO) ? 0 : (mode == DRMP3_MODE_JOINT_STEREO) ? (DRMP3_HDR_GET_STEREO_MODE_EXT(hdr) << 2) + 4 : 32; if (DRMP3_HDR_IS_LAYER_1(hdr)) { static const drmp3_L12_subband_alloc g_alloc_L1[] = { { 76, 4, 32 } }; alloc = g_alloc_L1; nbands = 32; } else if (!DRMP3_HDR_TEST_MPEG1(hdr)) { static const drmp3_L12_subband_alloc g_alloc_L2M2[] = { { 60, 4, 4 }, { 44, 3, 7 }, { 44, 2, 19 } }; alloc = g_alloc_L2M2; nbands = 30; } else { static const drmp3_L12_subband_alloc g_alloc_L2M1[] = { { 0, 4, 3 }, { 16, 4, 8 }, { 32, 3, 12 }, { 40, 2, 7 } }; int sample_rate_idx = DRMP3_HDR_GET_SAMPLE_RATE(hdr); unsigned kbps = drmp3_hdr_bitrate_kbps(hdr) >> (int)(mode != DRMP3_MODE_MONO); if (!kbps) { kbps = 192; } alloc = g_alloc_L2M1; nbands = 27; if (kbps < 56) { static const drmp3_L12_subband_alloc g_alloc_L2M1_lowrate[] = { { 44, 4, 2 }, { 44, 3, 10 } }; alloc = g_alloc_L2M1_lowrate; nbands = sample_rate_idx == 2 ? 12 : 8; } else if (kbps >= 96 && sample_rate_idx != 1) { nbands = 30; } } sci->total_bands = (drmp3_uint8)nbands; sci->stereo_bands = (drmp3_uint8)DRMP3_MIN(stereo_bands, nbands); return alloc; } static void drmp3_L12_read_scalefactors(drmp3_bs *bs, drmp3_uint8 *pba, drmp3_uint8 *scfcod, int bands, float *scf) { static const float g_deq_L12[18*3] = { #define DRMP3_DQ(x) 9.53674316e-07f/x, 7.56931807e-07f/x, 6.00777173e-07f/x DRMP3_DQ(3),DRMP3_DQ(7),DRMP3_DQ(15),DRMP3_DQ(31),DRMP3_DQ(63),DRMP3_DQ(127),DRMP3_DQ(255),DRMP3_DQ(511),DRMP3_DQ(1023),DRMP3_DQ(2047),DRMP3_DQ(4095),DRMP3_DQ(8191),DRMP3_DQ(16383),DRMP3_DQ(32767),DRMP3_DQ(65535),DRMP3_DQ(3),DRMP3_DQ(5),DRMP3_DQ(9) }; int i, m; for (i = 0; i < bands; i++) { float s = 0; int ba = *pba++; int mask = ba ? 4 + ((19 >> scfcod[i]) & 3) : 0; for (m = 4; m; m >>= 1) { if (mask & m) { int b = drmp3_bs_get_bits(bs, 6); s = g_deq_L12[ba*3 - 6 + b % 3]*(int)(1 << 21 >> b/3); } *scf++ = s; } } } static void drmp3_L12_read_scale_info(const drmp3_uint8 *hdr, drmp3_bs *bs, drmp3_L12_scale_info *sci) { static const drmp3_uint8 g_bitalloc_code_tab[] = { 0,17, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16, 0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,16, 0,17,18, 3,19,4,5,16, 0,17,18,16, 0,17,18,19, 4,5,6, 7,8, 9,10,11,12,13,14,15, 0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,14, 0, 2, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16 }; const drmp3_L12_subband_alloc *subband_alloc = drmp3_L12_subband_alloc_table(hdr, sci); int i, k = 0, ba_bits = 0; const drmp3_uint8 *ba_code_tab = g_bitalloc_code_tab; for (i = 0; i < sci->total_bands; i++) { drmp3_uint8 ba; if (i == k) { k += subband_alloc->band_count; ba_bits = subband_alloc->code_tab_width; ba_code_tab = g_bitalloc_code_tab + subband_alloc->tab_offset; subband_alloc++; } ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)]; sci->bitalloc[2*i] = ba; if (i < sci->stereo_bands) { ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)]; } sci->bitalloc[2*i + 1] = sci->stereo_bands ? ba : 0; } for (i = 0; i < 2*sci->total_bands; i++) { sci->scfcod[i] = (drmp3_uint8)(sci->bitalloc[i] ? DRMP3_HDR_IS_LAYER_1(hdr) ? 2 : drmp3_bs_get_bits(bs, 2) : 6); } drmp3_L12_read_scalefactors(bs, sci->bitalloc, sci->scfcod, sci->total_bands*2, sci->scf); for (i = sci->stereo_bands; i < sci->total_bands; i++) { sci->bitalloc[2*i + 1] = 0; } } static int drmp3_L12_dequantize_granule(float *grbuf, drmp3_bs *bs, drmp3_L12_scale_info *sci, int group_size) { int i, j, k, choff = 576; for (j = 0; j < 4; j++) { float *dst = grbuf + group_size*j; for (i = 0; i < 2*sci->total_bands; i++) { int ba = sci->bitalloc[i]; if (ba != 0) { if (ba < 17) { int half = (1 << (ba - 1)) - 1; for (k = 0; k < group_size; k++) { dst[k] = (float)((int)drmp3_bs_get_bits(bs, ba) - half); } } else { unsigned mod = (2 << (ba - 17)) + 1; unsigned code = drmp3_bs_get_bits(bs, mod + 2 - (mod >> 3)); for (k = 0; k < group_size; k++, code /= mod) { dst[k] = (float)((int)(code % mod - mod/2)); } } } dst += choff; choff = 18 - choff; } } return group_size*4; } static void drmp3_L12_apply_scf_384(drmp3_L12_scale_info *sci, const float *scf, float *dst) { int i, k; DRMP3_COPY_MEMORY(dst + 576 + sci->stereo_bands*18, dst + sci->stereo_bands*18, (sci->total_bands - sci->stereo_bands)*18*sizeof(float)); for (i = 0; i < sci->total_bands; i++, dst += 18, scf += 6) { for (k = 0; k < 12; k++) { dst[k + 0] *= scf[0]; dst[k + 576] *= scf[3]; } } } #endif static int drmp3_L3_read_side_info(drmp3_bs *bs, drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr) { static const drmp3_uint8 g_scf_long[8][23] = { { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 }, { 12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2,0 }, { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 }, { 6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36,0 }, { 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 }, { 4,4,4,4,4,4,6,6,8,8,10,12,16,20,24,28,34,42,50,54,76,158,0 }, { 4,4,4,4,4,4,6,6,6,8,10,12,16,18,22,28,34,40,46,54,54,192,0 }, { 4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102,26,0 } }; static const drmp3_uint8 g_scf_short[8][40] = { { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, { 8,8,8,8,8,8,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 }, { 4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 }, { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 }, { 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 }, { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 }, { 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 } }; static const drmp3_uint8 g_scf_mixed[8][40] = { { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, { 12,12,12,4,4,4,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 }, { 6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 }, { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 }, { 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 }, { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 }, { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 }, { 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 } }; unsigned tables, scfsi = 0; int main_data_begin, part_23_sum = 0; int gr_count = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2; int sr_idx = DRMP3_HDR_GET_MY_SAMPLE_RATE(hdr); sr_idx -= (sr_idx != 0); if (DRMP3_HDR_TEST_MPEG1(hdr)) { gr_count *= 2; main_data_begin = drmp3_bs_get_bits(bs, 9); scfsi = drmp3_bs_get_bits(bs, 7 + gr_count); } else { main_data_begin = drmp3_bs_get_bits(bs, 8 + gr_count) >> gr_count; } do { if (DRMP3_HDR_IS_MONO(hdr)) { scfsi <<= 4; } gr->part_23_length = (drmp3_uint16)drmp3_bs_get_bits(bs, 12); part_23_sum += gr->part_23_length; gr->big_values = (drmp3_uint16)drmp3_bs_get_bits(bs, 9); if (gr->big_values > 288) { return -1; } gr->global_gain = (drmp3_uint8)drmp3_bs_get_bits(bs, 8); gr->scalefac_compress = (drmp3_uint16)drmp3_bs_get_bits(bs, DRMP3_HDR_TEST_MPEG1(hdr) ? 4 : 9); gr->sfbtab = g_scf_long[sr_idx]; gr->n_long_sfb = 22; gr->n_short_sfb = 0; if (drmp3_bs_get_bits(bs, 1)) { gr->block_type = (drmp3_uint8)drmp3_bs_get_bits(bs, 2); if (!gr->block_type) { return -1; } gr->mixed_block_flag = (drmp3_uint8)drmp3_bs_get_bits(bs, 1); gr->region_count[0] = 7; gr->region_count[1] = 255; if (gr->block_type == DRMP3_SHORT_BLOCK_TYPE) { scfsi &= 0x0F0F; if (!gr->mixed_block_flag) { gr->region_count[0] = 8; gr->sfbtab = g_scf_short[sr_idx]; gr->n_long_sfb = 0; gr->n_short_sfb = 39; } else { gr->sfbtab = g_scf_mixed[sr_idx]; gr->n_long_sfb = DRMP3_HDR_TEST_MPEG1(hdr) ? 8 : 6; gr->n_short_sfb = 30; } } tables = drmp3_bs_get_bits(bs, 10); tables <<= 5; gr->subblock_gain[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); gr->subblock_gain[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); gr->subblock_gain[2] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); } else { gr->block_type = 0; gr->mixed_block_flag = 0; tables = drmp3_bs_get_bits(bs, 15); gr->region_count[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 4); gr->region_count[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3); gr->region_count[2] = 255; } gr->table_select[0] = (drmp3_uint8)(tables >> 10); gr->table_select[1] = (drmp3_uint8)((tables >> 5) & 31); gr->table_select[2] = (drmp3_uint8)((tables) & 31); gr->preflag = (drmp3_uint8)(DRMP3_HDR_TEST_MPEG1(hdr) ? drmp3_bs_get_bits(bs, 1) : (gr->scalefac_compress >= 500)); gr->scalefac_scale = (drmp3_uint8)drmp3_bs_get_bits(bs, 1); gr->count1_table = (drmp3_uint8)drmp3_bs_get_bits(bs, 1); gr->scfsi = (drmp3_uint8)((scfsi >> 12) & 15); scfsi <<= 4; gr++; } while(--gr_count); if (part_23_sum + bs->pos > bs->limit + main_data_begin*8) { return -1; } return main_data_begin; } static void drmp3_L3_read_scalefactors(drmp3_uint8 *scf, drmp3_uint8 *ist_pos, const drmp3_uint8 *scf_size, const drmp3_uint8 *scf_count, drmp3_bs *bitbuf, int scfsi) { int i, k; for (i = 0; i < 4 && scf_count[i]; i++, scfsi *= 2) { int cnt = scf_count[i]; if (scfsi & 8) { DRMP3_COPY_MEMORY(scf, ist_pos, cnt); } else { int bits = scf_size[i]; if (!bits) { DRMP3_ZERO_MEMORY(scf, cnt); DRMP3_ZERO_MEMORY(ist_pos, cnt); } else { int max_scf = (scfsi < 0) ? (1 << bits) - 1 : -1; for (k = 0; k < cnt; k++) { int s = drmp3_bs_get_bits(bitbuf, bits); ist_pos[k] = (drmp3_uint8)(s == max_scf ? -1 : s); scf[k] = (drmp3_uint8)s; } } } ist_pos += cnt; scf += cnt; } scf[0] = scf[1] = scf[2] = 0; } static float drmp3_L3_ldexp_q2(float y, int exp_q2) { static const float g_expfrac[4] = { 9.31322575e-10f,7.83145814e-10f,6.58544508e-10f,5.53767716e-10f }; int e; do { e = DRMP3_MIN(30*4, exp_q2); y *= g_expfrac[e & 3]*(1 << 30 >> (e >> 2)); } while ((exp_q2 -= e) > 0); return y; } static void drmp3_L3_decode_scalefactors(const drmp3_uint8 *hdr, drmp3_uint8 *ist_pos, drmp3_bs *bs, const drmp3_L3_gr_info *gr, float *scf, int ch) { static const drmp3_uint8 g_scf_partitions[3][28] = { { 6,5,5, 5,6,5,5,5,6,5, 7,3,11,10,0,0, 7, 7, 7,0, 6, 6,6,3, 8, 8,5,0 }, { 8,9,6,12,6,9,9,9,6,9,12,6,15,18,0,0, 6,15,12,0, 6,12,9,6, 6,18,9,0 }, { 9,9,6,12,9,9,9,9,9,9,12,6,18,18,0,0,12,12,12,0,12, 9,9,6,15,12,9,0 } }; const drmp3_uint8 *scf_partition = g_scf_partitions[!!gr->n_short_sfb + !gr->n_long_sfb]; drmp3_uint8 scf_size[4], iscf[40]; int i, scf_shift = gr->scalefac_scale + 1, gain_exp, scfsi = gr->scfsi; float gain; if (DRMP3_HDR_TEST_MPEG1(hdr)) { static const drmp3_uint8 g_scfc_decode[16] = { 0,1,2,3, 12,5,6,7, 9,10,11,13, 14,15,18,19 }; int part = g_scfc_decode[gr->scalefac_compress]; scf_size[1] = scf_size[0] = (drmp3_uint8)(part >> 2); scf_size[3] = scf_size[2] = (drmp3_uint8)(part & 3); } else { static const drmp3_uint8 g_mod[6*4] = { 5,5,4,4,5,5,4,1,4,3,1,1,5,6,6,1,4,4,4,1,4,3,1,1 }; int k, modprod, sfc, ist = DRMP3_HDR_TEST_I_STEREO(hdr) && ch; sfc = gr->scalefac_compress >> ist; for (k = ist*3*4; sfc >= 0; sfc -= modprod, k += 4) { for (modprod = 1, i = 3; i >= 0; i--) { scf_size[i] = (drmp3_uint8)(sfc / modprod % g_mod[k + i]); modprod *= g_mod[k + i]; } } scf_partition += k; scfsi = -16; } drmp3_L3_read_scalefactors(iscf, ist_pos, scf_size, scf_partition, bs, scfsi); if (gr->n_short_sfb) { int sh = 3 - scf_shift; for (i = 0; i < gr->n_short_sfb; i += 3) { iscf[gr->n_long_sfb + i + 0] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 0] + (gr->subblock_gain[0] << sh)); iscf[gr->n_long_sfb + i + 1] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 1] + (gr->subblock_gain[1] << sh)); iscf[gr->n_long_sfb + i + 2] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 2] + (gr->subblock_gain[2] << sh)); } } else if (gr->preflag) { static const drmp3_uint8 g_preamp[10] = { 1,1,1,1,2,2,3,3,3,2 }; for (i = 0; i < 10; i++) { iscf[11 + i] = (drmp3_uint8)(iscf[11 + i] + g_preamp[i]); } } gain_exp = gr->global_gain + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210 - (DRMP3_HDR_IS_MS_STEREO(hdr) ? 2 : 0); gain = drmp3_L3_ldexp_q2(1 << (DRMP3_MAX_SCFI/4), DRMP3_MAX_SCFI - gain_exp); for (i = 0; i < (int)(gr->n_long_sfb + gr->n_short_sfb); i++) { scf[i] = drmp3_L3_ldexp_q2(gain, iscf[i] << scf_shift); } } static const float g_drmp3_pow43[129 + 16] = { 0,-1,-2.519842f,-4.326749f,-6.349604f,-8.549880f,-10.902724f,-13.390518f,-16.000000f,-18.720754f,-21.544347f,-24.463781f,-27.473142f,-30.567351f,-33.741992f,-36.993181f, 0,1,2.519842f,4.326749f,6.349604f,8.549880f,10.902724f,13.390518f,16.000000f,18.720754f,21.544347f,24.463781f,27.473142f,30.567351f,33.741992f,36.993181f,40.317474f,43.711787f,47.173345f,50.699631f,54.288352f,57.937408f,61.644865f,65.408941f,69.227979f,73.100443f,77.024898f,81.000000f,85.024491f,89.097188f,93.216975f,97.382800f,101.593667f,105.848633f,110.146801f,114.487321f,118.869381f,123.292209f,127.755065f,132.257246f,136.798076f,141.376907f,145.993119f,150.646117f,155.335327f,160.060199f,164.820202f,169.614826f,174.443577f,179.305980f,184.201575f,189.129918f,194.090580f,199.083145f,204.107210f,209.162385f,214.248292f,219.364564f,224.510845f,229.686789f,234.892058f,240.126328f,245.389280f,250.680604f,256.000000f,261.347174f,266.721841f,272.123723f,277.552547f,283.008049f,288.489971f,293.998060f,299.532071f,305.091761f,310.676898f,316.287249f,321.922592f,327.582707f,333.267377f,338.976394f,344.709550f,350.466646f,356.247482f,362.051866f,367.879608f,373.730522f,379.604427f,385.501143f,391.420496f,397.362314f,403.326427f,409.312672f,415.320884f,421.350905f,427.402579f,433.475750f,439.570269f,445.685987f,451.822757f,457.980436f,464.158883f,470.357960f,476.577530f,482.817459f,489.077615f,495.357868f,501.658090f,507.978156f,514.317941f,520.677324f,527.056184f,533.454404f,539.871867f,546.308458f,552.764065f,559.238575f,565.731879f,572.243870f,578.774440f,585.323483f,591.890898f,598.476581f,605.080431f,611.702349f,618.342238f,625.000000f,631.675540f,638.368763f,645.079578f }; static float drmp3_L3_pow_43(int x) { float frac; int sign, mult = 256; if (x < 129) { return g_drmp3_pow43[16 + x]; } if (x < 1024) { mult = 16; x <<= 3; } sign = 2*x & 64; frac = (float)((x & 63) - sign) / ((x & ~63) + sign); return g_drmp3_pow43[16 + ((x + sign) >> 6)]*(1.f + frac*((4.f/3) + frac*(2.f/9)))*mult; } static void drmp3_L3_huffman(float *dst, drmp3_bs *bs, const drmp3_L3_gr_info *gr_info, const float *scf, int layer3gr_limit) { static const drmp3_int16 tabs[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 785,785,785,785,784,784,784,784,513,513,513,513,513,513,513,513,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256, -255,1313,1298,1282,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,290,288, -255,1313,1298,1282,769,769,769,769,529,529,529,529,529,529,529,529,528,528,528,528,528,528,528,528,512,512,512,512,512,512,512,512,290,288, -253,-318,-351,-367,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,819,818,547,547,275,275,275,275,561,560,515,546,289,274,288,258, -254,-287,1329,1299,1314,1312,1057,1057,1042,1042,1026,1026,784,784,784,784,529,529,529,529,529,529,529,529,769,769,769,769,768,768,768,768,563,560,306,306,291,259, -252,-413,-477,-542,1298,-575,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-383,-399,1107,1092,1106,1061,849,849,789,789,1104,1091,773,773,1076,1075,341,340,325,309,834,804,577,577,532,532,516,516,832,818,803,816,561,561,531,531,515,546,289,289,288,258, -252,-429,-493,-559,1057,1057,1042,1042,529,529,529,529,529,529,529,529,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,-382,1077,-415,1106,1061,1104,849,849,789,789,1091,1076,1029,1075,834,834,597,581,340,340,339,324,804,833,532,532,832,772,818,803,817,787,816,771,290,290,290,290,288,258, -253,-349,-414,-447,-463,1329,1299,-479,1314,1312,1057,1057,1042,1042,1026,1026,785,785,785,785,784,784,784,784,769,769,769,769,768,768,768,768,-319,851,821,-335,836,850,805,849,341,340,325,336,533,533,579,579,564,564,773,832,578,548,563,516,321,276,306,291,304,259, -251,-572,-733,-830,-863,-879,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,1396,1351,1381,1366,1395,1335,1380,-559,1334,1138,1138,1063,1063,1350,1392,1031,1031,1062,1062,1364,1363,1120,1120,1333,1348,881,881,881,881,375,374,359,373,343,358,341,325,791,791,1123,1122,-703,1105,1045,-719,865,865,790,790,774,774,1104,1029,338,293,323,308,-799,-815,833,788,772,818,803,816,322,292,307,320,561,531,515,546,289,274,288,258, -251,-525,-605,-685,-765,-831,-846,1298,1057,1057,1312,1282,785,785,785,785,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,1399,1398,1383,1367,1382,1396,1351,-511,1381,1366,1139,1139,1079,1079,1124,1124,1364,1349,1363,1333,882,882,882,882,807,807,807,807,1094,1094,1136,1136,373,341,535,535,881,775,867,822,774,-591,324,338,-671,849,550,550,866,864,609,609,293,336,534,534,789,835,773,-751,834,804,308,307,833,788,832,772,562,562,547,547,305,275,560,515,290,290, -252,-397,-477,-557,-622,-653,-719,-735,-750,1329,1299,1314,1057,1057,1042,1042,1312,1282,1024,1024,785,785,785,785,784,784,784,784,769,769,769,769,-383,1127,1141,1111,1126,1140,1095,1110,869,869,883,883,1079,1109,882,882,375,374,807,868,838,881,791,-463,867,822,368,263,852,837,836,-543,610,610,550,550,352,336,534,534,865,774,851,821,850,805,593,533,579,564,773,832,578,578,548,548,577,577,307,276,306,291,516,560,259,259, -250,-2107,-2507,-2764,-2909,-2974,-3007,-3023,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-767,-1052,-1213,-1277,-1358,-1405,-1469,-1535,-1550,-1582,-1614,-1647,-1662,-1694,-1726,-1759,-1774,-1807,-1822,-1854,-1886,1565,-1919,-1935,-1951,-1967,1731,1730,1580,1717,-1983,1729,1564,-1999,1548,-2015,-2031,1715,1595,-2047,1714,-2063,1610,-2079,1609,-2095,1323,1323,1457,1457,1307,1307,1712,1547,1641,1700,1699,1594,1685,1625,1442,1442,1322,1322,-780,-973,-910,1279,1278,1277,1262,1276,1261,1275,1215,1260,1229,-959,974,974,989,989,-943,735,478,478,495,463,506,414,-1039,1003,958,1017,927,942,987,957,431,476,1272,1167,1228,-1183,1256,-1199,895,895,941,941,1242,1227,1212,1135,1014,1014,490,489,503,487,910,1013,985,925,863,894,970,955,1012,847,-1343,831,755,755,984,909,428,366,754,559,-1391,752,486,457,924,997,698,698,983,893,740,740,908,877,739,739,667,667,953,938,497,287,271,271,683,606,590,712,726,574,302,302,738,736,481,286,526,725,605,711,636,724,696,651,589,681,666,710,364,467,573,695,466,466,301,465,379,379,709,604,665,679,316,316,634,633,436,436,464,269,424,394,452,332,438,363,347,408,393,448,331,422,362,407,392,421,346,406,391,376,375,359,1441,1306,-2367,1290,-2383,1337,-2399,-2415,1426,1321,-2431,1411,1336,-2447,-2463,-2479,1169,1169,1049,1049,1424,1289,1412,1352,1319,-2495,1154,1154,1064,1064,1153,1153,416,390,360,404,403,389,344,374,373,343,358,372,327,357,342,311,356,326,1395,1394,1137,1137,1047,1047,1365,1392,1287,1379,1334,1364,1349,1378,1318,1363,792,792,792,792,1152,1152,1032,1032,1121,1121,1046,1046,1120,1120,1030,1030,-2895,1106,1061,1104,849,849,789,789,1091,1076,1029,1090,1060,1075,833,833,309,324,532,532,832,772,818,803,561,561,531,560,515,546,289,274,288,258, -250,-1179,-1579,-1836,-1996,-2124,-2253,-2333,-2413,-2477,-2542,-2574,-2607,-2622,-2655,1314,1313,1298,1312,1282,785,785,785,785,1040,1040,1025,1025,768,768,768,768,-766,-798,-830,-862,-895,-911,-927,-943,-959,-975,-991,-1007,-1023,-1039,-1055,-1070,1724,1647,-1103,-1119,1631,1767,1662,1738,1708,1723,-1135,1780,1615,1779,1599,1677,1646,1778,1583,-1151,1777,1567,1737,1692,1765,1722,1707,1630,1751,1661,1764,1614,1736,1676,1763,1750,1645,1598,1721,1691,1762,1706,1582,1761,1566,-1167,1749,1629,767,766,751,765,494,494,735,764,719,749,734,763,447,447,748,718,477,506,431,491,446,476,461,505,415,430,475,445,504,399,460,489,414,503,383,474,429,459,502,502,746,752,488,398,501,473,413,472,486,271,480,270,-1439,-1455,1357,-1471,-1487,-1503,1341,1325,-1519,1489,1463,1403,1309,-1535,1372,1448,1418,1476,1356,1462,1387,-1551,1475,1340,1447,1402,1386,-1567,1068,1068,1474,1461,455,380,468,440,395,425,410,454,364,467,466,464,453,269,409,448,268,432,1371,1473,1432,1417,1308,1460,1355,1446,1459,1431,1083,1083,1401,1416,1458,1445,1067,1067,1370,1457,1051,1051,1291,1430,1385,1444,1354,1415,1400,1443,1082,1082,1173,1113,1186,1066,1185,1050,-1967,1158,1128,1172,1097,1171,1081,-1983,1157,1112,416,266,375,400,1170,1142,1127,1065,793,793,1169,1033,1156,1096,1141,1111,1155,1080,1126,1140,898,898,808,808,897,897,792,792,1095,1152,1032,1125,1110,1139,1079,1124,882,807,838,881,853,791,-2319,867,368,263,822,852,837,866,806,865,-2399,851,352,262,534,534,821,836,594,594,549,549,593,593,533,533,848,773,579,579,564,578,548,563,276,276,577,576,306,291,516,560,305,305,275,259, -251,-892,-2058,-2620,-2828,-2957,-3023,-3039,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,-559,1530,-575,-591,1528,1527,1407,1526,1391,1023,1023,1023,1023,1525,1375,1268,1268,1103,1103,1087,1087,1039,1039,1523,-604,815,815,815,815,510,495,509,479,508,463,507,447,431,505,415,399,-734,-782,1262,-815,1259,1244,-831,1258,1228,-847,-863,1196,-879,1253,987,987,748,-767,493,493,462,477,414,414,686,669,478,446,461,445,474,429,487,458,412,471,1266,1264,1009,1009,799,799,-1019,-1276,-1452,-1581,-1677,-1757,-1821,-1886,-1933,-1997,1257,1257,1483,1468,1512,1422,1497,1406,1467,1496,1421,1510,1134,1134,1225,1225,1466,1451,1374,1405,1252,1252,1358,1480,1164,1164,1251,1251,1238,1238,1389,1465,-1407,1054,1101,-1423,1207,-1439,830,830,1248,1038,1237,1117,1223,1148,1236,1208,411,426,395,410,379,269,1193,1222,1132,1235,1221,1116,976,976,1192,1162,1177,1220,1131,1191,963,963,-1647,961,780,-1663,558,558,994,993,437,408,393,407,829,978,813,797,947,-1743,721,721,377,392,844,950,828,890,706,706,812,859,796,960,948,843,934,874,571,571,-1919,690,555,689,421,346,539,539,944,779,918,873,932,842,903,888,570,570,931,917,674,674,-2575,1562,-2591,1609,-2607,1654,1322,1322,1441,1441,1696,1546,1683,1593,1669,1624,1426,1426,1321,1321,1639,1680,1425,1425,1305,1305,1545,1668,1608,1623,1667,1592,1638,1666,1320,1320,1652,1607,1409,1409,1304,1304,1288,1288,1664,1637,1395,1395,1335,1335,1622,1636,1394,1394,1319,1319,1606,1621,1392,1392,1137,1137,1137,1137,345,390,360,375,404,373,1047,-2751,-2767,-2783,1062,1121,1046,-2799,1077,-2815,1106,1061,789,789,1105,1104,263,355,310,340,325,354,352,262,339,324,1091,1076,1029,1090,1060,1075,833,833,788,788,1088,1028,818,818,803,803,561,561,531,531,816,771,546,546,289,274,288,258, -253,-317,-381,-446,-478,-509,1279,1279,-811,-1179,-1451,-1756,-1900,-2028,-2189,-2253,-2333,-2414,-2445,-2511,-2526,1313,1298,-2559,1041,1041,1040,1040,1025,1025,1024,1024,1022,1007,1021,991,1020,975,1019,959,687,687,1018,1017,671,671,655,655,1016,1015,639,639,758,758,623,623,757,607,756,591,755,575,754,559,543,543,1009,783,-575,-621,-685,-749,496,-590,750,749,734,748,974,989,1003,958,988,973,1002,942,987,957,972,1001,926,986,941,971,956,1000,910,985,925,999,894,970,-1071,-1087,-1102,1390,-1135,1436,1509,1451,1374,-1151,1405,1358,1480,1420,-1167,1507,1494,1389,1342,1465,1435,1450,1326,1505,1310,1493,1373,1479,1404,1492,1464,1419,428,443,472,397,736,526,464,464,486,457,442,471,484,482,1357,1449,1434,1478,1388,1491,1341,1490,1325,1489,1463,1403,1309,1477,1372,1448,1418,1433,1476,1356,1462,1387,-1439,1475,1340,1447,1402,1474,1324,1461,1371,1473,269,448,1432,1417,1308,1460,-1711,1459,-1727,1441,1099,1099,1446,1386,1431,1401,-1743,1289,1083,1083,1160,1160,1458,1445,1067,1067,1370,1457,1307,1430,1129,1129,1098,1098,268,432,267,416,266,400,-1887,1144,1187,1082,1173,1113,1186,1066,1050,1158,1128,1143,1172,1097,1171,1081,420,391,1157,1112,1170,1142,1127,1065,1169,1049,1156,1096,1141,1111,1155,1080,1126,1154,1064,1153,1140,1095,1048,-2159,1125,1110,1137,-2175,823,823,1139,1138,807,807,384,264,368,263,868,838,853,791,867,822,852,837,866,806,865,790,-2319,851,821,836,352,262,850,805,849,-2399,533,533,835,820,336,261,578,548,563,577,532,532,832,772,562,562,547,547,305,275,560,515,290,290,288,258 }; static const drmp3_uint8 tab32[] = { 130,162,193,209,44,28,76,140,9,9,9,9,9,9,9,9,190,254,222,238,126,94,157,157,109,61,173,205}; static const drmp3_uint8 tab33[] = { 252,236,220,204,188,172,156,140,124,108,92,76,60,44,28,12 }; static const drmp3_int16 tabindex[2*16] = { 0,32,64,98,0,132,180,218,292,364,426,538,648,746,0,1126,1460,1460,1460,1460,1460,1460,1460,1460,1842,1842,1842,1842,1842,1842,1842,1842 }; static const drmp3_uint8 g_linbits[] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,6,8,10,13,4,5,6,7,8,9,11,13 }; #define DRMP3_PEEK_BITS(n) (bs_cache >> (32 - (n))) #define DRMP3_FLUSH_BITS(n) { bs_cache <<= (n); bs_sh += (n); } #define DRMP3_CHECK_BITS while (bs_sh >= 0) { bs_cache |= (drmp3_uint32)*bs_next_ptr++ << bs_sh; bs_sh -= 8; } #define DRMP3_BSPOS ((bs_next_ptr - bs->buf)*8 - 24 + bs_sh) float one = 0.0f; int ireg = 0, big_val_cnt = gr_info->big_values; const drmp3_uint8 *sfb = gr_info->sfbtab; const drmp3_uint8 *bs_next_ptr = bs->buf + bs->pos/8; drmp3_uint32 bs_cache = (((bs_next_ptr[0]*256u + bs_next_ptr[1])*256u + bs_next_ptr[2])*256u + bs_next_ptr[3]) << (bs->pos & 7); int pairs_to_decode, np, bs_sh = (bs->pos & 7) - 8; bs_next_ptr += 4; while (big_val_cnt > 0) { int tab_num = gr_info->table_select[ireg]; int sfb_cnt = gr_info->region_count[ireg++]; const drmp3_int16 *codebook = tabs + tabindex[tab_num]; int linbits = g_linbits[tab_num]; if (linbits) { do { np = *sfb++ / 2; pairs_to_decode = DRMP3_MIN(big_val_cnt, np); one = *scf++; do { int j, w = 5; int leaf = codebook[DRMP3_PEEK_BITS(w)]; while (leaf < 0) { DRMP3_FLUSH_BITS(w); w = leaf & 7; leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)]; } DRMP3_FLUSH_BITS(leaf >> 8); for (j = 0; j < 2; j++, dst++, leaf >>= 4) { int lsb = leaf & 0x0F; if (lsb == 15) { lsb += DRMP3_PEEK_BITS(linbits); DRMP3_FLUSH_BITS(linbits); DRMP3_CHECK_BITS; *dst = one*drmp3_L3_pow_43(lsb)*((drmp3_int32)bs_cache < 0 ? -1: 1); } else { *dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one; } DRMP3_FLUSH_BITS(lsb ? 1 : 0); } DRMP3_CHECK_BITS; } while (--pairs_to_decode); } while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0); } else { do { np = *sfb++ / 2; pairs_to_decode = DRMP3_MIN(big_val_cnt, np); one = *scf++; do { int j, w = 5; int leaf = codebook[DRMP3_PEEK_BITS(w)]; while (leaf < 0) { DRMP3_FLUSH_BITS(w); w = leaf & 7; leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)]; } DRMP3_FLUSH_BITS(leaf >> 8); for (j = 0; j < 2; j++, dst++, leaf >>= 4) { int lsb = leaf & 0x0F; *dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one; DRMP3_FLUSH_BITS(lsb ? 1 : 0); } DRMP3_CHECK_BITS; } while (--pairs_to_decode); } while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0); } } for (np = 1 - big_val_cnt;; dst += 4) { const drmp3_uint8 *codebook_count1 = (gr_info->count1_table) ? tab33 : tab32; int leaf = codebook_count1[DRMP3_PEEK_BITS(4)]; if (!(leaf & 8)) { leaf = codebook_count1[(leaf >> 3) + (bs_cache << 4 >> (32 - (leaf & 3)))]; } DRMP3_FLUSH_BITS(leaf & 7); if (DRMP3_BSPOS > layer3gr_limit) { break; } #define DRMP3_RELOAD_SCALEFACTOR if (!--np) { np = *sfb++/2; if (!np) break; one = *scf++; } #define DRMP3_DEQ_COUNT1(s) if (leaf & (128 >> s)) { dst[s] = ((drmp3_int32)bs_cache < 0) ? -one : one; DRMP3_FLUSH_BITS(1) } DRMP3_RELOAD_SCALEFACTOR; DRMP3_DEQ_COUNT1(0); DRMP3_DEQ_COUNT1(1); DRMP3_RELOAD_SCALEFACTOR; DRMP3_DEQ_COUNT1(2); DRMP3_DEQ_COUNT1(3); DRMP3_CHECK_BITS; } bs->pos = layer3gr_limit; } static void drmp3_L3_midside_stereo(float *left, int n) { int i = 0; float *right = left + 576; #if DRMP3_HAVE_SIMD if (drmp3_have_simd()) { for (; i < n - 3; i += 4) { drmp3_f4 vl = DRMP3_VLD(left + i); drmp3_f4 vr = DRMP3_VLD(right + i); DRMP3_VSTORE(left + i, DRMP3_VADD(vl, vr)); DRMP3_VSTORE(right + i, DRMP3_VSUB(vl, vr)); } #ifdef __GNUC__ if (__builtin_constant_p(n % 4 == 0) && n % 4 == 0) return; #endif } #endif for (; i < n; i++) { float a = left[i]; float b = right[i]; left[i] = a + b; right[i] = a - b; } } static void drmp3_L3_intensity_stereo_band(float *left, int n, float kl, float kr) { int i; for (i = 0; i < n; i++) { left[i + 576] = left[i]*kr; left[i] = left[i]*kl; } } static void drmp3_L3_stereo_top_band(const float *right, const drmp3_uint8 *sfb, int nbands, int max_band[3]) { int i, k; max_band[0] = max_band[1] = max_band[2] = -1; for (i = 0; i < nbands; i++) { for (k = 0; k < sfb[i]; k += 2) { if (right[k] != 0 || right[k + 1] != 0) { max_band[i % 3] = i; break; } } right += sfb[i]; } } static void drmp3_L3_stereo_process(float *left, const drmp3_uint8 *ist_pos, const drmp3_uint8 *sfb, const drmp3_uint8 *hdr, int max_band[3], int mpeg2_sh) { static const float g_pan[7*2] = { 0,1,0.21132487f,0.78867513f,0.36602540f,0.63397460f,0.5f,0.5f,0.63397460f,0.36602540f,0.78867513f,0.21132487f,1,0 }; unsigned i, max_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 7 : 64; for (i = 0; sfb[i]; i++) { unsigned ipos = ist_pos[i]; if ((int)i > max_band[i % 3] && ipos < max_pos) { float kl, kr, s = DRMP3_HDR_TEST_MS_STEREO(hdr) ? 1.41421356f : 1; if (DRMP3_HDR_TEST_MPEG1(hdr)) { kl = g_pan[2*ipos]; kr = g_pan[2*ipos + 1]; } else { kl = 1; kr = drmp3_L3_ldexp_q2(1, (ipos + 1) >> 1 << mpeg2_sh); if (ipos & 1) { kl = kr; kr = 1; } } drmp3_L3_intensity_stereo_band(left, sfb[i], kl*s, kr*s); } else if (DRMP3_HDR_TEST_MS_STEREO(hdr)) { drmp3_L3_midside_stereo(left, sfb[i]); } left += sfb[i]; } } static void drmp3_L3_intensity_stereo(float *left, drmp3_uint8 *ist_pos, const drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr) { int max_band[3], n_sfb = gr->n_long_sfb + gr->n_short_sfb; int i, max_blocks = gr->n_short_sfb ? 3 : 1; drmp3_L3_stereo_top_band(left + 576, gr->sfbtab, n_sfb, max_band); if (gr->n_long_sfb) { max_band[0] = max_band[1] = max_band[2] = DRMP3_MAX(DRMP3_MAX(max_band[0], max_band[1]), max_band[2]); } for (i = 0; i < max_blocks; i++) { int default_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 3 : 0; int itop = n_sfb - max_blocks + i; int prev = itop - max_blocks; ist_pos[itop] = (drmp3_uint8)(max_band[i] >= prev ? default_pos : ist_pos[prev]); } drmp3_L3_stereo_process(left, ist_pos, gr->sfbtab, hdr, max_band, gr[1].scalefac_compress & 1); } static void drmp3_L3_reorder(float *grbuf, float *scratch, const drmp3_uint8 *sfb) { int i, len; float *src = grbuf, *dst = scratch; for (;0 != (len = *sfb); sfb += 3, src += 2*len) { for (i = 0; i < len; i++, src++) { *dst++ = src[0*len]; *dst++ = src[1*len]; *dst++ = src[2*len]; } } DRMP3_COPY_MEMORY(grbuf, scratch, (dst - scratch)*sizeof(float)); } static void drmp3_L3_antialias(float *grbuf, int nbands) { static const float g_aa[2][8] = { {0.85749293f,0.88174200f,0.94962865f,0.98331459f,0.99551782f,0.99916056f,0.99989920f,0.99999316f}, {0.51449576f,0.47173197f,0.31337745f,0.18191320f,0.09457419f,0.04096558f,0.01419856f,0.00369997f} }; for (; nbands > 0; nbands--, grbuf += 18) { int i = 0; #if DRMP3_HAVE_SIMD if (drmp3_have_simd()) for (; i < 8; i += 4) { drmp3_f4 vu = DRMP3_VLD(grbuf + 18 + i); drmp3_f4 vd = DRMP3_VLD(grbuf + 14 - i); drmp3_f4 vc0 = DRMP3_VLD(g_aa[0] + i); drmp3_f4 vc1 = DRMP3_VLD(g_aa[1] + i); vd = DRMP3_VREV(vd); DRMP3_VSTORE(grbuf + 18 + i, DRMP3_VSUB(DRMP3_VMUL(vu, vc0), DRMP3_VMUL(vd, vc1))); vd = DRMP3_VADD(DRMP3_VMUL(vu, vc1), DRMP3_VMUL(vd, vc0)); DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vd)); } #endif #ifndef DR_MP3_ONLY_SIMD for(; i < 8; i++) { float u = grbuf[18 + i]; float d = grbuf[17 - i]; grbuf[18 + i] = u*g_aa[0][i] - d*g_aa[1][i]; grbuf[17 - i] = u*g_aa[1][i] + d*g_aa[0][i]; } #endif } } static void drmp3_L3_dct3_9(float *y) { float s0, s1, s2, s3, s4, s5, s6, s7, s8, t0, t2, t4; s0 = y[0]; s2 = y[2]; s4 = y[4]; s6 = y[6]; s8 = y[8]; t0 = s0 + s6*0.5f; s0 -= s6; t4 = (s4 + s2)*0.93969262f; t2 = (s8 + s2)*0.76604444f; s6 = (s4 - s8)*0.17364818f; s4 += s8 - s2; s2 = s0 - s4*0.5f; y[4] = s4 + s0; s8 = t0 - t2 + s6; s0 = t0 - t4 + t2; s4 = t0 + t4 - s6; s1 = y[1]; s3 = y[3]; s5 = y[5]; s7 = y[7]; s3 *= 0.86602540f; t0 = (s5 + s1)*0.98480775f; t4 = (s5 - s7)*0.34202014f; t2 = (s1 + s7)*0.64278761f; s1 = (s1 - s5 - s7)*0.86602540f; s5 = t0 - s3 - t2; s7 = t4 - s3 - t0; s3 = t4 + s3 - t2; y[0] = s4 - s7; y[1] = s2 + s1; y[2] = s0 - s3; y[3] = s8 + s5; y[5] = s8 - s5; y[6] = s0 + s3; y[7] = s2 - s1; y[8] = s4 + s7; } static void drmp3_L3_imdct36(float *grbuf, float *overlap, const float *window, int nbands) { int i, j; static const float g_twid9[18] = { 0.73727734f,0.79335334f,0.84339145f,0.88701083f,0.92387953f,0.95371695f,0.97629601f,0.99144486f,0.99904822f,0.67559021f,0.60876143f,0.53729961f,0.46174861f,0.38268343f,0.30070580f,0.21643961f,0.13052619f,0.04361938f }; for (j = 0; j < nbands; j++, grbuf += 18, overlap += 9) { float co[9], si[9]; co[0] = -grbuf[0]; si[0] = grbuf[17]; for (i = 0; i < 4; i++) { si[8 - 2*i] = grbuf[4*i + 1] - grbuf[4*i + 2]; co[1 + 2*i] = grbuf[4*i + 1] + grbuf[4*i + 2]; si[7 - 2*i] = grbuf[4*i + 4] - grbuf[4*i + 3]; co[2 + 2*i] = -(grbuf[4*i + 3] + grbuf[4*i + 4]); } drmp3_L3_dct3_9(co); drmp3_L3_dct3_9(si); si[1] = -si[1]; si[3] = -si[3]; si[5] = -si[5]; si[7] = -si[7]; i = 0; #if DRMP3_HAVE_SIMD if (drmp3_have_simd()) for (; i < 8; i += 4) { drmp3_f4 vovl = DRMP3_VLD(overlap + i); drmp3_f4 vc = DRMP3_VLD(co + i); drmp3_f4 vs = DRMP3_VLD(si + i); drmp3_f4 vr0 = DRMP3_VLD(g_twid9 + i); drmp3_f4 vr1 = DRMP3_VLD(g_twid9 + 9 + i); drmp3_f4 vw0 = DRMP3_VLD(window + i); drmp3_f4 vw1 = DRMP3_VLD(window + 9 + i); drmp3_f4 vsum = DRMP3_VADD(DRMP3_VMUL(vc, vr1), DRMP3_VMUL(vs, vr0)); DRMP3_VSTORE(overlap + i, DRMP3_VSUB(DRMP3_VMUL(vc, vr0), DRMP3_VMUL(vs, vr1))); DRMP3_VSTORE(grbuf + i, DRMP3_VSUB(DRMP3_VMUL(vovl, vw0), DRMP3_VMUL(vsum, vw1))); vsum = DRMP3_VADD(DRMP3_VMUL(vovl, vw1), DRMP3_VMUL(vsum, vw0)); DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vsum)); } #endif for (; i < 9; i++) { float ovl = overlap[i]; float sum = co[i]*g_twid9[9 + i] + si[i]*g_twid9[0 + i]; overlap[i] = co[i]*g_twid9[0 + i] - si[i]*g_twid9[9 + i]; grbuf[i] = ovl*window[0 + i] - sum*window[9 + i]; grbuf[17 - i] = ovl*window[9 + i] + sum*window[0 + i]; } } } static void drmp3_L3_idct3(float x0, float x1, float x2, float *dst) { float m1 = x1*0.86602540f; float a1 = x0 - x2*0.5f; dst[1] = x0 + x2; dst[0] = a1 + m1; dst[2] = a1 - m1; } static void drmp3_L3_imdct12(float *x, float *dst, float *overlap) { static const float g_twid3[6] = { 0.79335334f,0.92387953f,0.99144486f, 0.60876143f,0.38268343f,0.13052619f }; float co[3], si[3]; int i; drmp3_L3_idct3(-x[0], x[6] + x[3], x[12] + x[9], co); drmp3_L3_idct3(x[15], x[12] - x[9], x[6] - x[3], si); si[1] = -si[1]; for (i = 0; i < 3; i++) { float ovl = overlap[i]; float sum = co[i]*g_twid3[3 + i] + si[i]*g_twid3[0 + i]; overlap[i] = co[i]*g_twid3[0 + i] - si[i]*g_twid3[3 + i]; dst[i] = ovl*g_twid3[2 - i] - sum*g_twid3[5 - i]; dst[5 - i] = ovl*g_twid3[5 - i] + sum*g_twid3[2 - i]; } } static void drmp3_L3_imdct_short(float *grbuf, float *overlap, int nbands) { for (;nbands > 0; nbands--, overlap += 9, grbuf += 18) { float tmp[18]; DRMP3_COPY_MEMORY(tmp, grbuf, sizeof(tmp)); DRMP3_COPY_MEMORY(grbuf, overlap, 6*sizeof(float)); drmp3_L3_imdct12(tmp, grbuf + 6, overlap + 6); drmp3_L3_imdct12(tmp + 1, grbuf + 12, overlap + 6); drmp3_L3_imdct12(tmp + 2, overlap, overlap + 6); } } static void drmp3_L3_change_sign(float *grbuf) { int b, i; for (b = 0, grbuf += 18; b < 32; b += 2, grbuf += 36) for (i = 1; i < 18; i += 2) grbuf[i] = -grbuf[i]; } static void drmp3_L3_imdct_gr(float *grbuf, float *overlap, unsigned block_type, unsigned n_long_bands) { static const float g_mdct_window[2][18] = { { 0.99904822f,0.99144486f,0.97629601f,0.95371695f,0.92387953f,0.88701083f,0.84339145f,0.79335334f,0.73727734f,0.04361938f,0.13052619f,0.21643961f,0.30070580f,0.38268343f,0.46174861f,0.53729961f,0.60876143f,0.67559021f }, { 1,1,1,1,1,1,0.99144486f,0.92387953f,0.79335334f,0,0,0,0,0,0,0.13052619f,0.38268343f,0.60876143f } }; if (n_long_bands) { drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[0], n_long_bands); grbuf += 18*n_long_bands; overlap += 9*n_long_bands; } if (block_type == DRMP3_SHORT_BLOCK_TYPE) drmp3_L3_imdct_short(grbuf, overlap, 32 - n_long_bands); else drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[block_type == DRMP3_STOP_BLOCK_TYPE], 32 - n_long_bands); } static void drmp3_L3_save_reservoir(drmp3dec *h, drmp3dec_scratch *s) { int pos = (s->bs.pos + 7)/8u; int remains = s->bs.limit/8u - pos; if (remains > DRMP3_MAX_BITRESERVOIR_BYTES) { pos += remains - DRMP3_MAX_BITRESERVOIR_BYTES; remains = DRMP3_MAX_BITRESERVOIR_BYTES; } if (remains > 0) { DRMP3_MOVE_MEMORY(h->reserv_buf, s->maindata + pos, remains); } h->reserv = remains; } static int drmp3_L3_restore_reservoir(drmp3dec *h, drmp3_bs *bs, drmp3dec_scratch *s, int main_data_begin) { int frame_bytes = (bs->limit - bs->pos)/8; int bytes_have = DRMP3_MIN(h->reserv, main_data_begin); DRMP3_COPY_MEMORY(s->maindata, h->reserv_buf + DRMP3_MAX(0, h->reserv - main_data_begin), DRMP3_MIN(h->reserv, main_data_begin)); DRMP3_COPY_MEMORY(s->maindata + bytes_have, bs->buf + bs->pos/8, frame_bytes); drmp3_bs_init(&s->bs, s->maindata, bytes_have + frame_bytes); return h->reserv >= main_data_begin; } static void drmp3_L3_decode(drmp3dec *h, drmp3dec_scratch *s, drmp3_L3_gr_info *gr_info, int nch) { int ch; for (ch = 0; ch < nch; ch++) { int layer3gr_limit = s->bs.pos + gr_info[ch].part_23_length; drmp3_L3_decode_scalefactors(h->header, s->ist_pos[ch], &s->bs, gr_info + ch, s->scf, ch); drmp3_L3_huffman(s->grbuf[ch], &s->bs, gr_info + ch, s->scf, layer3gr_limit); } if (DRMP3_HDR_TEST_I_STEREO(h->header)) { drmp3_L3_intensity_stereo(s->grbuf[0], s->ist_pos[1], gr_info, h->header); } else if (DRMP3_HDR_IS_MS_STEREO(h->header)) { drmp3_L3_midside_stereo(s->grbuf[0], 576); } for (ch = 0; ch < nch; ch++, gr_info++) { int aa_bands = 31; int n_long_bands = (gr_info->mixed_block_flag ? 2 : 0) << (int)(DRMP3_HDR_GET_MY_SAMPLE_RATE(h->header) == 2); if (gr_info->n_short_sfb) { aa_bands = n_long_bands - 1; drmp3_L3_reorder(s->grbuf[ch] + n_long_bands*18, s->syn[0], gr_info->sfbtab + gr_info->n_long_sfb); } drmp3_L3_antialias(s->grbuf[ch], aa_bands); drmp3_L3_imdct_gr(s->grbuf[ch], h->mdct_overlap[ch], gr_info->block_type, n_long_bands); drmp3_L3_change_sign(s->grbuf[ch]); } } static void drmp3d_DCT_II(float *grbuf, int n) { static const float g_sec[24] = { 10.19000816f,0.50060302f,0.50241929f,3.40760851f,0.50547093f,0.52249861f,2.05778098f,0.51544732f,0.56694406f,1.48416460f,0.53104258f,0.64682180f,1.16943991f,0.55310392f,0.78815460f,0.97256821f,0.58293498f,1.06067765f,0.83934963f,0.62250412f,1.72244716f,0.74453628f,0.67480832f,5.10114861f }; int i, k = 0; #if DRMP3_HAVE_SIMD if (drmp3_have_simd()) for (; k < n; k += 4) { drmp3_f4 t[4][8], *x; float *y = grbuf + k; for (x = t[0], i = 0; i < 8; i++, x++) { drmp3_f4 x0 = DRMP3_VLD(&y[i*18]); drmp3_f4 x1 = DRMP3_VLD(&y[(15 - i)*18]); drmp3_f4 x2 = DRMP3_VLD(&y[(16 + i)*18]); drmp3_f4 x3 = DRMP3_VLD(&y[(31 - i)*18]); drmp3_f4 t0 = DRMP3_VADD(x0, x3); drmp3_f4 t1 = DRMP3_VADD(x1, x2); drmp3_f4 t2 = DRMP3_VMUL_S(DRMP3_VSUB(x1, x2), g_sec[3*i + 0]); drmp3_f4 t3 = DRMP3_VMUL_S(DRMP3_VSUB(x0, x3), g_sec[3*i + 1]); x[0] = DRMP3_VADD(t0, t1); x[8] = DRMP3_VMUL_S(DRMP3_VSUB(t0, t1), g_sec[3*i + 2]); x[16] = DRMP3_VADD(t3, t2); x[24] = DRMP3_VMUL_S(DRMP3_VSUB(t3, t2), g_sec[3*i + 2]); } for (x = t[0], i = 0; i < 4; i++, x += 8) { drmp3_f4 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt; xt = DRMP3_VSUB(x0, x7); x0 = DRMP3_VADD(x0, x7); x7 = DRMP3_VSUB(x1, x6); x1 = DRMP3_VADD(x1, x6); x6 = DRMP3_VSUB(x2, x5); x2 = DRMP3_VADD(x2, x5); x5 = DRMP3_VSUB(x3, x4); x3 = DRMP3_VADD(x3, x4); x4 = DRMP3_VSUB(x0, x3); x0 = DRMP3_VADD(x0, x3); x3 = DRMP3_VSUB(x1, x2); x1 = DRMP3_VADD(x1, x2); x[0] = DRMP3_VADD(x0, x1); x[4] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x1), 0.70710677f); x5 = DRMP3_VADD(x5, x6); x6 = DRMP3_VMUL_S(DRMP3_VADD(x6, x7), 0.70710677f); x7 = DRMP3_VADD(x7, xt); x3 = DRMP3_VMUL_S(DRMP3_VADD(x3, x4), 0.70710677f); x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f)); x7 = DRMP3_VADD(x7, DRMP3_VMUL_S(x5, 0.382683432f)); x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f)); x0 = DRMP3_VSUB(xt, x6); xt = DRMP3_VADD(xt, x6); x[1] = DRMP3_VMUL_S(DRMP3_VADD(xt, x7), 0.50979561f); x[2] = DRMP3_VMUL_S(DRMP3_VADD(x4, x3), 0.54119611f); x[3] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x5), 0.60134488f); x[5] = DRMP3_VMUL_S(DRMP3_VADD(x0, x5), 0.89997619f); x[6] = DRMP3_VMUL_S(DRMP3_VSUB(x4, x3), 1.30656302f); x[7] = DRMP3_VMUL_S(DRMP3_VSUB(xt, x7), 2.56291556f); } if (k > n - 3) { #if DRMP3_HAVE_SSE #define DRMP3_VSAVE2(i, v) _mm_storel_pi((__m64 *)(void*)&y[i*18], v) #else #define DRMP3_VSAVE2(i, v) vst1_f32((float32_t *)&y[(i)*18], vget_low_f32(v)) #endif for (i = 0; i < 7; i++, y += 4*18) { drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]); DRMP3_VSAVE2(0, t[0][i]); DRMP3_VSAVE2(1, DRMP3_VADD(t[2][i], s)); DRMP3_VSAVE2(2, DRMP3_VADD(t[1][i], t[1][i + 1])); DRMP3_VSAVE2(3, DRMP3_VADD(t[2][1 + i], s)); } DRMP3_VSAVE2(0, t[0][7]); DRMP3_VSAVE2(1, DRMP3_VADD(t[2][7], t[3][7])); DRMP3_VSAVE2(2, t[1][7]); DRMP3_VSAVE2(3, t[3][7]); } else { #define DRMP3_VSAVE4(i, v) DRMP3_VSTORE(&y[(i)*18], v) for (i = 0; i < 7; i++, y += 4*18) { drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]); DRMP3_VSAVE4(0, t[0][i]); DRMP3_VSAVE4(1, DRMP3_VADD(t[2][i], s)); DRMP3_VSAVE4(2, DRMP3_VADD(t[1][i], t[1][i + 1])); DRMP3_VSAVE4(3, DRMP3_VADD(t[2][1 + i], s)); } DRMP3_VSAVE4(0, t[0][7]); DRMP3_VSAVE4(1, DRMP3_VADD(t[2][7], t[3][7])); DRMP3_VSAVE4(2, t[1][7]); DRMP3_VSAVE4(3, t[3][7]); } } else #endif #ifdef DR_MP3_ONLY_SIMD {} #else for (; k < n; k++) { float t[4][8], *x, *y = grbuf + k; for (x = t[0], i = 0; i < 8; i++, x++) { float x0 = y[i*18]; float x1 = y[(15 - i)*18]; float x2 = y[(16 + i)*18]; float x3 = y[(31 - i)*18]; float t0 = x0 + x3; float t1 = x1 + x2; float t2 = (x1 - x2)*g_sec[3*i + 0]; float t3 = (x0 - x3)*g_sec[3*i + 1]; x[0] = t0 + t1; x[8] = (t0 - t1)*g_sec[3*i + 2]; x[16] = t3 + t2; x[24] = (t3 - t2)*g_sec[3*i + 2]; } for (x = t[0], i = 0; i < 4; i++, x += 8) { float x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt; xt = x0 - x7; x0 += x7; x7 = x1 - x6; x1 += x6; x6 = x2 - x5; x2 += x5; x5 = x3 - x4; x3 += x4; x4 = x0 - x3; x0 += x3; x3 = x1 - x2; x1 += x2; x[0] = x0 + x1; x[4] = (x0 - x1)*0.70710677f; x5 = x5 + x6; x6 = (x6 + x7)*0.70710677f; x7 = x7 + xt; x3 = (x3 + x4)*0.70710677f; x5 -= x7*0.198912367f; x7 += x5*0.382683432f; x5 -= x7*0.198912367f; x0 = xt - x6; xt += x6; x[1] = (xt + x7)*0.50979561f; x[2] = (x4 + x3)*0.54119611f; x[3] = (x0 - x5)*0.60134488f; x[5] = (x0 + x5)*0.89997619f; x[6] = (x4 - x3)*1.30656302f; x[7] = (xt - x7)*2.56291556f; } for (i = 0; i < 7; i++, y += 4*18) { y[0*18] = t[0][i]; y[1*18] = t[2][i] + t[3][i] + t[3][i + 1]; y[2*18] = t[1][i] + t[1][i + 1]; y[3*18] = t[2][i + 1] + t[3][i] + t[3][i + 1]; } y[0*18] = t[0][7]; y[1*18] = t[2][7] + t[3][7]; y[2*18] = t[1][7]; y[3*18] = t[3][7]; } #endif } #ifndef DR_MP3_FLOAT_OUTPUT typedef drmp3_int16 drmp3d_sample_t; static drmp3_int16 drmp3d_scale_pcm(float sample) { drmp3_int16 s; #if DRMP3_HAVE_ARMV6 drmp3_int32 s32 = (drmp3_int32)(sample + .5f); s32 -= (s32 < 0); s = (drmp3_int16)drmp3_clip_int16_arm(s32); #else if (sample >= 32766.5) return (drmp3_int16) 32767; if (sample <= -32767.5) return (drmp3_int16)-32768; s = (drmp3_int16)(sample + .5f); s -= (s < 0); #endif return s; } #else typedef float drmp3d_sample_t; static float drmp3d_scale_pcm(float sample) { return sample*(1.f/32768.f); } #endif static void drmp3d_synth_pair(drmp3d_sample_t *pcm, int nch, const float *z) { float a; a = (z[14*64] - z[ 0]) * 29; a += (z[ 1*64] + z[13*64]) * 213; a += (z[12*64] - z[ 2*64]) * 459; a += (z[ 3*64] + z[11*64]) * 2037; a += (z[10*64] - z[ 4*64]) * 5153; a += (z[ 5*64] + z[ 9*64]) * 6574; a += (z[ 8*64] - z[ 6*64]) * 37489; a += z[ 7*64] * 75038; pcm[0] = drmp3d_scale_pcm(a); z += 2; a = z[14*64] * 104; a += z[12*64] * 1567; a += z[10*64] * 9727; a += z[ 8*64] * 64019; a += z[ 6*64] * -9975; a += z[ 4*64] * -45; a += z[ 2*64] * 146; a += z[ 0*64] * -5; pcm[16*nch] = drmp3d_scale_pcm(a); } static void drmp3d_synth(float *xl, drmp3d_sample_t *dstl, int nch, float *lins) { int i; float *xr = xl + 576*(nch - 1); drmp3d_sample_t *dstr = dstl + (nch - 1); static const float g_win[] = { -1,26,-31,208,218,401,-519,2063,2000,4788,-5517,7134,5959,35640,-39336,74992, -1,24,-35,202,222,347,-581,2080,1952,4425,-5879,7640,5288,33791,-41176,74856, -1,21,-38,196,225,294,-645,2087,1893,4063,-6237,8092,4561,31947,-43006,74630, -1,19,-41,190,227,244,-711,2085,1822,3705,-6589,8492,3776,30112,-44821,74313, -1,17,-45,183,228,197,-779,2075,1739,3351,-6935,8840,2935,28289,-46617,73908, -1,16,-49,176,228,153,-848,2057,1644,3004,-7271,9139,2037,26482,-48390,73415, -2,14,-53,169,227,111,-919,2032,1535,2663,-7597,9389,1082,24694,-50137,72835, -2,13,-58,161,224,72,-991,2001,1414,2330,-7910,9592,70,22929,-51853,72169, -2,11,-63,154,221,36,-1064,1962,1280,2006,-8209,9750,-998,21189,-53534,71420, -2,10,-68,147,215,2,-1137,1919,1131,1692,-8491,9863,-2122,19478,-55178,70590, -3,9,-73,139,208,-29,-1210,1870,970,1388,-8755,9935,-3300,17799,-56778,69679, -3,8,-79,132,200,-57,-1283,1817,794,1095,-8998,9966,-4533,16155,-58333,68692, -4,7,-85,125,189,-83,-1356,1759,605,814,-9219,9959,-5818,14548,-59838,67629, -4,7,-91,117,177,-106,-1428,1698,402,545,-9416,9916,-7154,12980,-61289,66494, -5,6,-97,111,163,-127,-1498,1634,185,288,-9585,9838,-8540,11455,-62684,65290 }; float *zlin = lins + 15*64; const float *w = g_win; zlin[4*15] = xl[18*16]; zlin[4*15 + 1] = xr[18*16]; zlin[4*15 + 2] = xl[0]; zlin[4*15 + 3] = xr[0]; zlin[4*31] = xl[1 + 18*16]; zlin[4*31 + 1] = xr[1 + 18*16]; zlin[4*31 + 2] = xl[1]; zlin[4*31 + 3] = xr[1]; drmp3d_synth_pair(dstr, nch, lins + 4*15 + 1); drmp3d_synth_pair(dstr + 32*nch, nch, lins + 4*15 + 64 + 1); drmp3d_synth_pair(dstl, nch, lins + 4*15); drmp3d_synth_pair(dstl + 32*nch, nch, lins + 4*15 + 64); #if DRMP3_HAVE_SIMD if (drmp3_have_simd()) for (i = 14; i >= 0; i--) { #define DRMP3_VLOAD(k) drmp3_f4 w0 = DRMP3_VSET(*w++); drmp3_f4 w1 = DRMP3_VSET(*w++); drmp3_f4 vz = DRMP3_VLD(&zlin[4*i - 64*k]); drmp3_f4 vy = DRMP3_VLD(&zlin[4*i - 64*(15 - k)]); #define DRMP3_V0(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0)) ; a = DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1)); } #define DRMP3_V1(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1))); } #define DRMP3_V2(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vy, w1), DRMP3_VMUL(vz, w0))); } drmp3_f4 a, b; zlin[4*i] = xl[18*(31 - i)]; zlin[4*i + 1] = xr[18*(31 - i)]; zlin[4*i + 2] = xl[1 + 18*(31 - i)]; zlin[4*i + 3] = xr[1 + 18*(31 - i)]; zlin[4*i + 64] = xl[1 + 18*(1 + i)]; zlin[4*i + 64 + 1] = xr[1 + 18*(1 + i)]; zlin[4*i - 64 + 2] = xl[18*(1 + i)]; zlin[4*i - 64 + 3] = xr[18*(1 + i)]; DRMP3_V0(0) DRMP3_V2(1) DRMP3_V1(2) DRMP3_V2(3) DRMP3_V1(4) DRMP3_V2(5) DRMP3_V1(6) DRMP3_V2(7) { #ifndef DR_MP3_FLOAT_OUTPUT #if DRMP3_HAVE_SSE static const drmp3_f4 g_max = { 32767.0f, 32767.0f, 32767.0f, 32767.0f }; static const drmp3_f4 g_min = { -32768.0f, -32768.0f, -32768.0f, -32768.0f }; __m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, g_max), g_min)), _mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, g_max), g_min))); dstr[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 1); dstr[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 5); dstl[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 0); dstl[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 4); dstr[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 3); dstr[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 7); dstl[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 2); dstl[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 6); #else int16x4_t pcma, pcmb; a = DRMP3_VADD(a, DRMP3_VSET(0.5f)); b = DRMP3_VADD(b, DRMP3_VSET(0.5f)); pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0))))); pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0))))); vst1_lane_s16(dstr + (15 - i)*nch, pcma, 1); vst1_lane_s16(dstr + (17 + i)*nch, pcmb, 1); vst1_lane_s16(dstl + (15 - i)*nch, pcma, 0); vst1_lane_s16(dstl + (17 + i)*nch, pcmb, 0); vst1_lane_s16(dstr + (47 - i)*nch, pcma, 3); vst1_lane_s16(dstr + (49 + i)*nch, pcmb, 3); vst1_lane_s16(dstl + (47 - i)*nch, pcma, 2); vst1_lane_s16(dstl + (49 + i)*nch, pcmb, 2); #endif #else #if DRMP3_HAVE_SSE static const drmp3_f4 g_scale = { 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f }; #else const drmp3_f4 g_scale = vdupq_n_f32(1.0f/32768.0f); #endif a = DRMP3_VMUL(a, g_scale); b = DRMP3_VMUL(b, g_scale); #if DRMP3_HAVE_SSE _mm_store_ss(dstr + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1))); _mm_store_ss(dstr + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(1, 1, 1, 1))); _mm_store_ss(dstl + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0))); _mm_store_ss(dstl + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(0, 0, 0, 0))); _mm_store_ss(dstr + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3))); _mm_store_ss(dstr + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 3, 3, 3))); _mm_store_ss(dstl + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2))); _mm_store_ss(dstl + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 2, 2, 2))); #else vst1q_lane_f32(dstr + (15 - i)*nch, a, 1); vst1q_lane_f32(dstr + (17 + i)*nch, b, 1); vst1q_lane_f32(dstl + (15 - i)*nch, a, 0); vst1q_lane_f32(dstl + (17 + i)*nch, b, 0); vst1q_lane_f32(dstr + (47 - i)*nch, a, 3); vst1q_lane_f32(dstr + (49 + i)*nch, b, 3); vst1q_lane_f32(dstl + (47 - i)*nch, a, 2); vst1q_lane_f32(dstl + (49 + i)*nch, b, 2); #endif #endif } } else #endif #ifdef DR_MP3_ONLY_SIMD {} #else for (i = 14; i >= 0; i--) { #define DRMP3_LOAD(k) float w0 = *w++; float w1 = *w++; float *vz = &zlin[4*i - k*64]; float *vy = &zlin[4*i - (15 - k)*64]; #define DRMP3_S0(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] = vz[j]*w1 + vy[j]*w0, a[j] = vz[j]*w0 - vy[j]*w1; } #define DRMP3_S1(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vz[j]*w0 - vy[j]*w1; } #define DRMP3_S2(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vy[j]*w1 - vz[j]*w0; } float a[4], b[4]; zlin[4*i] = xl[18*(31 - i)]; zlin[4*i + 1] = xr[18*(31 - i)]; zlin[4*i + 2] = xl[1 + 18*(31 - i)]; zlin[4*i + 3] = xr[1 + 18*(31 - i)]; zlin[4*(i + 16)] = xl[1 + 18*(1 + i)]; zlin[4*(i + 16) + 1] = xr[1 + 18*(1 + i)]; zlin[4*(i - 16) + 2] = xl[18*(1 + i)]; zlin[4*(i - 16) + 3] = xr[18*(1 + i)]; DRMP3_S0(0) DRMP3_S2(1) DRMP3_S1(2) DRMP3_S2(3) DRMP3_S1(4) DRMP3_S2(5) DRMP3_S1(6) DRMP3_S2(7) dstr[(15 - i)*nch] = drmp3d_scale_pcm(a[1]); dstr[(17 + i)*nch] = drmp3d_scale_pcm(b[1]); dstl[(15 - i)*nch] = drmp3d_scale_pcm(a[0]); dstl[(17 + i)*nch] = drmp3d_scale_pcm(b[0]); dstr[(47 - i)*nch] = drmp3d_scale_pcm(a[3]); dstr[(49 + i)*nch] = drmp3d_scale_pcm(b[3]); dstl[(47 - i)*nch] = drmp3d_scale_pcm(a[2]); dstl[(49 + i)*nch] = drmp3d_scale_pcm(b[2]); } #endif } static void drmp3d_synth_granule(float *qmf_state, float *grbuf, int nbands, int nch, drmp3d_sample_t *pcm, float *lins) { int i; for (i = 0; i < nch; i++) { drmp3d_DCT_II(grbuf + 576*i, nbands); } DRMP3_COPY_MEMORY(lins, qmf_state, sizeof(float)*15*64); for (i = 0; i < nbands; i += 2) { drmp3d_synth(grbuf + i, pcm + 32*nch*i, nch, lins + i*64); } #ifndef DR_MP3_NONSTANDARD_BUT_LOGICAL if (nch == 1) { for (i = 0; i < 15*64; i += 2) { qmf_state[i] = lins[nbands*64 + i]; } } else #endif { DRMP3_COPY_MEMORY(qmf_state, lins + nbands*64, sizeof(float)*15*64); } } static int drmp3d_match_frame(const drmp3_uint8 *hdr, int mp3_bytes, int frame_bytes) { int i, nmatch; for (i = 0, nmatch = 0; nmatch < DRMP3_MAX_FRAME_SYNC_MATCHES; nmatch++) { i += drmp3_hdr_frame_bytes(hdr + i, frame_bytes) + drmp3_hdr_padding(hdr + i); if (i + DRMP3_HDR_SIZE > mp3_bytes) return nmatch > 0; if (!drmp3_hdr_compare(hdr, hdr + i)) return 0; } return 1; } static int drmp3d_find_frame(const drmp3_uint8 *mp3, int mp3_bytes, int *free_format_bytes, int *ptr_frame_bytes) { int i, k; for (i = 0; i < mp3_bytes - DRMP3_HDR_SIZE; i++, mp3++) { if (drmp3_hdr_valid(mp3)) { int frame_bytes = drmp3_hdr_frame_bytes(mp3, *free_format_bytes); int frame_and_padding = frame_bytes + drmp3_hdr_padding(mp3); for (k = DRMP3_HDR_SIZE; !frame_bytes && k < DRMP3_MAX_FREE_FORMAT_FRAME_SIZE && i + 2*k < mp3_bytes - DRMP3_HDR_SIZE; k++) { if (drmp3_hdr_compare(mp3, mp3 + k)) { int fb = k - drmp3_hdr_padding(mp3); int nextfb = fb + drmp3_hdr_padding(mp3 + k); if (i + k + nextfb + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + k + nextfb)) continue; frame_and_padding = k; frame_bytes = fb; *free_format_bytes = fb; } } if ((frame_bytes && i + frame_and_padding <= mp3_bytes && drmp3d_match_frame(mp3, mp3_bytes - i, frame_bytes)) || (!i && frame_and_padding == mp3_bytes)) { *ptr_frame_bytes = frame_and_padding; return i; } *free_format_bytes = 0; } } *ptr_frame_bytes = 0; return mp3_bytes; } DRMP3_API void drmp3dec_init(drmp3dec *dec) { dec->header[0] = 0; } DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info) { int i = 0, igr, frame_size = 0, success = 1; const drmp3_uint8 *hdr; drmp3_bs bs_frame[1]; drmp3dec_scratch scratch; if (mp3_bytes > 4 && dec->header[0] == 0xff && drmp3_hdr_compare(dec->header, mp3)) { frame_size = drmp3_hdr_frame_bytes(mp3, dec->free_format_bytes) + drmp3_hdr_padding(mp3); if (frame_size != mp3_bytes && (frame_size + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + frame_size))) { frame_size = 0; } } if (!frame_size) { DRMP3_ZERO_MEMORY(dec, sizeof(drmp3dec)); i = drmp3d_find_frame(mp3, mp3_bytes, &dec->free_format_bytes, &frame_size); if (!frame_size || i + frame_size > mp3_bytes) { info->frame_bytes = i; return 0; } } hdr = mp3 + i; DRMP3_COPY_MEMORY(dec->header, hdr, DRMP3_HDR_SIZE); info->frame_bytes = i + frame_size; info->channels = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2; info->hz = drmp3_hdr_sample_rate_hz(hdr); info->layer = 4 - DRMP3_HDR_GET_LAYER(hdr); info->bitrate_kbps = drmp3_hdr_bitrate_kbps(hdr); drmp3_bs_init(bs_frame, hdr + DRMP3_HDR_SIZE, frame_size - DRMP3_HDR_SIZE); if (DRMP3_HDR_IS_CRC(hdr)) { drmp3_bs_get_bits(bs_frame, 16); } if (info->layer == 3) { int main_data_begin = drmp3_L3_read_side_info(bs_frame, scratch.gr_info, hdr); if (main_data_begin < 0 || bs_frame->pos > bs_frame->limit) { drmp3dec_init(dec); return 0; } success = drmp3_L3_restore_reservoir(dec, bs_frame, &scratch, main_data_begin); if (success && pcm != NULL) { for (igr = 0; igr < (DRMP3_HDR_TEST_MPEG1(hdr) ? 2 : 1); igr++, pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*576*info->channels)) { DRMP3_ZERO_MEMORY(scratch.grbuf[0], 576*2*sizeof(float)); drmp3_L3_decode(dec, &scratch, scratch.gr_info + igr*info->channels, info->channels); drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 18, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]); } } drmp3_L3_save_reservoir(dec, &scratch); } else { #ifdef DR_MP3_ONLY_MP3 return 0; #else drmp3_L12_scale_info sci[1]; if (pcm == NULL) { return drmp3_hdr_frame_samples(hdr); } drmp3_L12_read_scale_info(hdr, bs_frame, sci); DRMP3_ZERO_MEMORY(scratch.grbuf[0], 576*2*sizeof(float)); for (i = 0, igr = 0; igr < 3; igr++) { if (12 == (i += drmp3_L12_dequantize_granule(scratch.grbuf[0] + i, bs_frame, sci, info->layer | 1))) { i = 0; drmp3_L12_apply_scf_384(sci, sci->scf + igr, scratch.grbuf[0]); drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 12, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]); DRMP3_ZERO_MEMORY(scratch.grbuf[0], 576*2*sizeof(float)); pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*384*info->channels); } if (bs_frame->pos > bs_frame->limit) { drmp3dec_init(dec); return 0; } } #endif } return success*drmp3_hdr_frame_samples(dec->header); } DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples) { size_t i = 0; #if DRMP3_HAVE_SIMD size_t aligned_count = num_samples & ~7; for(; i < aligned_count; i+=8) { drmp3_f4 scale = DRMP3_VSET(32768.0f); drmp3_f4 a = DRMP3_VMUL(DRMP3_VLD(&in[i ]), scale); drmp3_f4 b = DRMP3_VMUL(DRMP3_VLD(&in[i+4]), scale); #if DRMP3_HAVE_SSE drmp3_f4 s16max = DRMP3_VSET( 32767.0f); drmp3_f4 s16min = DRMP3_VSET(-32768.0f); __m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, s16max), s16min)), _mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, s16max), s16min))); out[i ] = (drmp3_int16)_mm_extract_epi16(pcm8, 0); out[i+1] = (drmp3_int16)_mm_extract_epi16(pcm8, 1); out[i+2] = (drmp3_int16)_mm_extract_epi16(pcm8, 2); out[i+3] = (drmp3_int16)_mm_extract_epi16(pcm8, 3); out[i+4] = (drmp3_int16)_mm_extract_epi16(pcm8, 4); out[i+5] = (drmp3_int16)_mm_extract_epi16(pcm8, 5); out[i+6] = (drmp3_int16)_mm_extract_epi16(pcm8, 6); out[i+7] = (drmp3_int16)_mm_extract_epi16(pcm8, 7); #else int16x4_t pcma, pcmb; a = DRMP3_VADD(a, DRMP3_VSET(0.5f)); b = DRMP3_VADD(b, DRMP3_VSET(0.5f)); pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0))))); pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0))))); vst1_lane_s16(out+i , pcma, 0); vst1_lane_s16(out+i+1, pcma, 1); vst1_lane_s16(out+i+2, pcma, 2); vst1_lane_s16(out+i+3, pcma, 3); vst1_lane_s16(out+i+4, pcmb, 0); vst1_lane_s16(out+i+5, pcmb, 1); vst1_lane_s16(out+i+6, pcmb, 2); vst1_lane_s16(out+i+7, pcmb, 3); #endif } #endif for(; i < num_samples; i++) { float sample = in[i] * 32768.0f; if (sample >= 32766.5) out[i] = (drmp3_int16) 32767; else if (sample <= -32767.5) out[i] = (drmp3_int16)-32768; else { short s = (drmp3_int16)(sample + .5f); s -= (s < 0); out[i] = s; } } } #if defined(SIZE_MAX) #define DRMP3_SIZE_MAX SIZE_MAX #else #if defined(_WIN64) || defined(_LP64) || defined(__LP64__) #define DRMP3_SIZE_MAX ((drmp3_uint64)0xFFFFFFFFFFFFFFFF) #else #define DRMP3_SIZE_MAX 0xFFFFFFFF #endif #endif #ifndef DRMP3_SEEK_LEADING_MP3_FRAMES #define DRMP3_SEEK_LEADING_MP3_FRAMES 2 #endif #define DRMP3_MIN_DATA_CHUNK_SIZE 16384 #ifndef DRMP3_DATA_CHUNK_SIZE #define DRMP3_DATA_CHUNK_SIZE (DRMP3_MIN_DATA_CHUNK_SIZE*4) #endif #define DRMP3_COUNTOF(x) (sizeof(x) / sizeof(x[0])) #define DRMP3_CLAMP(x, lo, hi) (DRMP3_MAX(lo, DRMP3_MIN(x, hi))) #ifndef DRMP3_PI_D #define DRMP3_PI_D 3.14159265358979323846264 #endif #define DRMP3_DEFAULT_RESAMPLER_LPF_ORDER 2 static DRMP3_INLINE float drmp3_mix_f32(float x, float y, float a) { return x*(1-a) + y*a; } static DRMP3_INLINE float drmp3_mix_f32_fast(float x, float y, float a) { float r0 = (y - x); float r1 = r0*a; return x + r1; } static DRMP3_INLINE drmp3_uint32 drmp3_gcf_u32(drmp3_uint32 a, drmp3_uint32 b) { for (;;) { if (b == 0) { break; } else { drmp3_uint32 t = a; a = b; b = t % a; } } return a; } static void* drmp3__malloc_default(size_t sz, void* pUserData) { (void)pUserData; return DRMP3_MALLOC(sz); } static void* drmp3__realloc_default(void* p, size_t sz, void* pUserData) { (void)pUserData; return DRMP3_REALLOC(p, sz); } static void drmp3__free_default(void* p, void* pUserData) { (void)pUserData; DRMP3_FREE(p); } static void* drmp3__malloc_from_callbacks(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks == NULL) { return NULL; } if (pAllocationCallbacks->onMalloc != NULL) { return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); } if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); } return NULL; } static void* drmp3__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks == NULL) { return NULL; } if (pAllocationCallbacks->onRealloc != NULL) { return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); } if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { void* p2; p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); if (p2 == NULL) { return NULL; } if (p != NULL) { DRMP3_COPY_MEMORY(p2, p, szOld); pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } return p2; } return NULL; } static void drmp3__free_from_callbacks(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (p == NULL || pAllocationCallbacks == NULL) { return; } if (pAllocationCallbacks->onFree != NULL) { pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); } } static drmp3_allocation_callbacks drmp3_copy_allocation_callbacks_or_defaults(const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { return *pAllocationCallbacks; } else { drmp3_allocation_callbacks allocationCallbacks; allocationCallbacks.pUserData = NULL; allocationCallbacks.onMalloc = drmp3__malloc_default; allocationCallbacks.onRealloc = drmp3__realloc_default; allocationCallbacks.onFree = drmp3__free_default; return allocationCallbacks; } } static size_t drmp3__on_read(drmp3* pMP3, void* pBufferOut, size_t bytesToRead) { size_t bytesRead = pMP3->onRead(pMP3->pUserData, pBufferOut, bytesToRead); pMP3->streamCursor += bytesRead; return bytesRead; } static drmp3_bool32 drmp3__on_seek(drmp3* pMP3, int offset, drmp3_seek_origin origin) { DRMP3_ASSERT(offset >= 0); if (!pMP3->onSeek(pMP3->pUserData, offset, origin)) { return DRMP3_FALSE; } if (origin == drmp3_seek_origin_start) { pMP3->streamCursor = (drmp3_uint64)offset; } else { pMP3->streamCursor += offset; } return DRMP3_TRUE; } static drmp3_bool32 drmp3__on_seek_64(drmp3* pMP3, drmp3_uint64 offset, drmp3_seek_origin origin) { if (offset <= 0x7FFFFFFF) { return drmp3__on_seek(pMP3, (int)offset, origin); } if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_start)) { return DRMP3_FALSE; } offset -= 0x7FFFFFFF; while (offset > 0) { if (offset <= 0x7FFFFFFF) { if (!drmp3__on_seek(pMP3, (int)offset, drmp3_seek_origin_current)) { return DRMP3_FALSE; } offset = 0; } else { if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_current)) { return DRMP3_FALSE; } offset -= 0x7FFFFFFF; } } return DRMP3_TRUE; } static drmp3_uint32 drmp3_decode_next_frame_ex__callbacks(drmp3* pMP3, drmp3d_sample_t* pPCMFrames) { drmp3_uint32 pcmFramesRead = 0; DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(pMP3->onRead != NULL); if (pMP3->atEnd) { return 0; } for (;;) { drmp3dec_frame_info info; if (pMP3->dataSize < DRMP3_MIN_DATA_CHUNK_SIZE) { size_t bytesRead; if (pMP3->pData != NULL) { DRMP3_MOVE_MEMORY(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize); } pMP3->dataConsumed = 0; if (pMP3->dataCapacity < DRMP3_DATA_CHUNK_SIZE) { drmp3_uint8* pNewData; size_t newDataCap; newDataCap = DRMP3_DATA_CHUNK_SIZE; pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks); if (pNewData == NULL) { return 0; } pMP3->pData = pNewData; pMP3->dataCapacity = newDataCap; } bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize)); if (bytesRead == 0) { if (pMP3->dataSize == 0) { pMP3->atEnd = DRMP3_TRUE; return 0; } } pMP3->dataSize += bytesRead; } if (pMP3->dataSize > INT_MAX) { pMP3->atEnd = DRMP3_TRUE; return 0; } DRMP3_ASSERT(pMP3->pData != NULL); DRMP3_ASSERT(pMP3->dataCapacity > 0); pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->pData + pMP3->dataConsumed, (int)pMP3->dataSize, pPCMFrames, &info); if (info.frame_bytes > 0) { pMP3->dataConsumed += (size_t)info.frame_bytes; pMP3->dataSize -= (size_t)info.frame_bytes; } if (pcmFramesRead > 0) { pcmFramesRead = drmp3_hdr_frame_samples(pMP3->decoder.header); pMP3->pcmFramesConsumedInMP3Frame = 0; pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead; pMP3->mp3FrameChannels = info.channels; pMP3->mp3FrameSampleRate = info.hz; break; } else if (info.frame_bytes == 0) { size_t bytesRead; DRMP3_MOVE_MEMORY(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize); pMP3->dataConsumed = 0; if (pMP3->dataCapacity == pMP3->dataSize) { drmp3_uint8* pNewData; size_t newDataCap; newDataCap = pMP3->dataCapacity + DRMP3_DATA_CHUNK_SIZE; pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks); if (pNewData == NULL) { return 0; } pMP3->pData = pNewData; pMP3->dataCapacity = newDataCap; } bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize)); if (bytesRead == 0) { pMP3->atEnd = DRMP3_TRUE; return 0; } pMP3->dataSize += bytesRead; } }; return pcmFramesRead; } static drmp3_uint32 drmp3_decode_next_frame_ex__memory(drmp3* pMP3, drmp3d_sample_t* pPCMFrames) { drmp3_uint32 pcmFramesRead = 0; drmp3dec_frame_info info; DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(pMP3->memory.pData != NULL); if (pMP3->atEnd) { return 0; } for (;;) { pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->memory.pData + pMP3->memory.currentReadPos, (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos), pPCMFrames, &info); if (pcmFramesRead > 0) { pcmFramesRead = drmp3_hdr_frame_samples(pMP3->decoder.header); pMP3->pcmFramesConsumedInMP3Frame = 0; pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead; pMP3->mp3FrameChannels = info.channels; pMP3->mp3FrameSampleRate = info.hz; break; } else if (info.frame_bytes > 0) { pMP3->memory.currentReadPos += (size_t)info.frame_bytes; } else { break; } } pMP3->memory.currentReadPos += (size_t)info.frame_bytes; return pcmFramesRead; } static drmp3_uint32 drmp3_decode_next_frame_ex(drmp3* pMP3, drmp3d_sample_t* pPCMFrames) { if (pMP3->memory.pData != NULL && pMP3->memory.dataSize > 0) { return drmp3_decode_next_frame_ex__memory(pMP3, pPCMFrames); } else { return drmp3_decode_next_frame_ex__callbacks(pMP3, pPCMFrames); } } static drmp3_uint32 drmp3_decode_next_frame(drmp3* pMP3) { DRMP3_ASSERT(pMP3 != NULL); return drmp3_decode_next_frame_ex(pMP3, (drmp3d_sample_t*)pMP3->pcmFrames); } #if 0 static drmp3_uint32 drmp3_seek_next_frame(drmp3* pMP3) { drmp3_uint32 pcmFrameCount; DRMP3_ASSERT(pMP3 != NULL); pcmFrameCount = drmp3_decode_next_frame_ex(pMP3, NULL); if (pcmFrameCount == 0) { return 0; } pMP3->currentPCMFrame += pcmFrameCount; pMP3->pcmFramesConsumedInMP3Frame = pcmFrameCount; pMP3->pcmFramesRemainingInMP3Frame = 0; return pcmFrameCount; } #endif static drmp3_bool32 drmp3_init_internal(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks) { DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(onRead != NULL); drmp3dec_init(&pMP3->decoder); pMP3->onRead = onRead; pMP3->onSeek = onSeek; pMP3->pUserData = pUserData; pMP3->allocationCallbacks = drmp3_copy_allocation_callbacks_or_defaults(pAllocationCallbacks); if (pMP3->allocationCallbacks.onFree == NULL || (pMP3->allocationCallbacks.onMalloc == NULL && pMP3->allocationCallbacks.onRealloc == NULL)) { return DRMP3_FALSE; } if (drmp3_decode_next_frame(pMP3) == 0) { drmp3__free_from_callbacks(pMP3->pData, &pMP3->allocationCallbacks); return DRMP3_FALSE; } pMP3->channels = pMP3->mp3FrameChannels; pMP3->sampleRate = pMP3->mp3FrameSampleRate; return DRMP3_TRUE; } DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pMP3 == NULL || onRead == NULL) { return DRMP3_FALSE; } DRMP3_ZERO_OBJECT(pMP3); return drmp3_init_internal(pMP3, onRead, onSeek, pUserData, pAllocationCallbacks); } static size_t drmp3__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead) { drmp3* pMP3 = (drmp3*)pUserData; size_t bytesRemaining; DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(pMP3->memory.dataSize >= pMP3->memory.currentReadPos); bytesRemaining = pMP3->memory.dataSize - pMP3->memory.currentReadPos; if (bytesToRead > bytesRemaining) { bytesToRead = bytesRemaining; } if (bytesToRead > 0) { DRMP3_COPY_MEMORY(pBufferOut, pMP3->memory.pData + pMP3->memory.currentReadPos, bytesToRead); pMP3->memory.currentReadPos += bytesToRead; } return bytesToRead; } static drmp3_bool32 drmp3__on_seek_memory(void* pUserData, int byteOffset, drmp3_seek_origin origin) { drmp3* pMP3 = (drmp3*)pUserData; DRMP3_ASSERT(pMP3 != NULL); if (origin == drmp3_seek_origin_current) { if (byteOffset > 0) { if (pMP3->memory.currentReadPos + byteOffset > pMP3->memory.dataSize) { byteOffset = (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos); } } else { if (pMP3->memory.currentReadPos < (size_t)-byteOffset) { byteOffset = -(int)pMP3->memory.currentReadPos; } } pMP3->memory.currentReadPos += byteOffset; } else { if ((drmp3_uint32)byteOffset <= pMP3->memory.dataSize) { pMP3->memory.currentReadPos = byteOffset; } else { pMP3->memory.currentReadPos = pMP3->memory.dataSize; } } return DRMP3_TRUE; } DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pMP3 == NULL) { return DRMP3_FALSE; } DRMP3_ZERO_OBJECT(pMP3); if (pData == NULL || dataSize == 0) { return DRMP3_FALSE; } pMP3->memory.pData = (const drmp3_uint8*)pData; pMP3->memory.dataSize = dataSize; pMP3->memory.currentReadPos = 0; return drmp3_init_internal(pMP3, drmp3__on_read_memory, drmp3__on_seek_memory, pMP3, pAllocationCallbacks); } #ifndef DR_MP3_NO_STDIO #include #include #include static drmp3_result drmp3_result_from_errno(int e) { switch (e) { case 0: return DRMP3_SUCCESS; #ifdef EPERM case EPERM: return DRMP3_INVALID_OPERATION; #endif #ifdef ENOENT case ENOENT: return DRMP3_DOES_NOT_EXIST; #endif #ifdef ESRCH case ESRCH: return DRMP3_DOES_NOT_EXIST; #endif #ifdef EINTR case EINTR: return DRMP3_INTERRUPT; #endif #ifdef EIO case EIO: return DRMP3_IO_ERROR; #endif #ifdef ENXIO case ENXIO: return DRMP3_DOES_NOT_EXIST; #endif #ifdef E2BIG case E2BIG: return DRMP3_INVALID_ARGS; #endif #ifdef ENOEXEC case ENOEXEC: return DRMP3_INVALID_FILE; #endif #ifdef EBADF case EBADF: return DRMP3_INVALID_FILE; #endif #ifdef ECHILD case ECHILD: return DRMP3_ERROR; #endif #ifdef EAGAIN case EAGAIN: return DRMP3_UNAVAILABLE; #endif #ifdef ENOMEM case ENOMEM: return DRMP3_OUT_OF_MEMORY; #endif #ifdef EACCES case EACCES: return DRMP3_ACCESS_DENIED; #endif #ifdef EFAULT case EFAULT: return DRMP3_BAD_ADDRESS; #endif #ifdef ENOTBLK case ENOTBLK: return DRMP3_ERROR; #endif #ifdef EBUSY case EBUSY: return DRMP3_BUSY; #endif #ifdef EEXIST case EEXIST: return DRMP3_ALREADY_EXISTS; #endif #ifdef EXDEV case EXDEV: return DRMP3_ERROR; #endif #ifdef ENODEV case ENODEV: return DRMP3_DOES_NOT_EXIST; #endif #ifdef ENOTDIR case ENOTDIR: return DRMP3_NOT_DIRECTORY; #endif #ifdef EISDIR case EISDIR: return DRMP3_IS_DIRECTORY; #endif #ifdef EINVAL case EINVAL: return DRMP3_INVALID_ARGS; #endif #ifdef ENFILE case ENFILE: return DRMP3_TOO_MANY_OPEN_FILES; #endif #ifdef EMFILE case EMFILE: return DRMP3_TOO_MANY_OPEN_FILES; #endif #ifdef ENOTTY case ENOTTY: return DRMP3_INVALID_OPERATION; #endif #ifdef ETXTBSY case ETXTBSY: return DRMP3_BUSY; #endif #ifdef EFBIG case EFBIG: return DRMP3_TOO_BIG; #endif #ifdef ENOSPC case ENOSPC: return DRMP3_NO_SPACE; #endif #ifdef ESPIPE case ESPIPE: return DRMP3_BAD_SEEK; #endif #ifdef EROFS case EROFS: return DRMP3_ACCESS_DENIED; #endif #ifdef EMLINK case EMLINK: return DRMP3_TOO_MANY_LINKS; #endif #ifdef EPIPE case EPIPE: return DRMP3_BAD_PIPE; #endif #ifdef EDOM case EDOM: return DRMP3_OUT_OF_RANGE; #endif #ifdef ERANGE case ERANGE: return DRMP3_OUT_OF_RANGE; #endif #ifdef EDEADLK case EDEADLK: return DRMP3_DEADLOCK; #endif #ifdef ENAMETOOLONG case ENAMETOOLONG: return DRMP3_PATH_TOO_LONG; #endif #ifdef ENOLCK case ENOLCK: return DRMP3_ERROR; #endif #ifdef ENOSYS case ENOSYS: return DRMP3_NOT_IMPLEMENTED; #endif #ifdef ENOTEMPTY case ENOTEMPTY: return DRMP3_DIRECTORY_NOT_EMPTY; #endif #ifdef ELOOP case ELOOP: return DRMP3_TOO_MANY_LINKS; #endif #ifdef ENOMSG case ENOMSG: return DRMP3_NO_MESSAGE; #endif #ifdef EIDRM case EIDRM: return DRMP3_ERROR; #endif #ifdef ECHRNG case ECHRNG: return DRMP3_ERROR; #endif #ifdef EL2NSYNC case EL2NSYNC: return DRMP3_ERROR; #endif #ifdef EL3HLT case EL3HLT: return DRMP3_ERROR; #endif #ifdef EL3RST case EL3RST: return DRMP3_ERROR; #endif #ifdef ELNRNG case ELNRNG: return DRMP3_OUT_OF_RANGE; #endif #ifdef EUNATCH case EUNATCH: return DRMP3_ERROR; #endif #ifdef ENOCSI case ENOCSI: return DRMP3_ERROR; #endif #ifdef EL2HLT case EL2HLT: return DRMP3_ERROR; #endif #ifdef EBADE case EBADE: return DRMP3_ERROR; #endif #ifdef EBADR case EBADR: return DRMP3_ERROR; #endif #ifdef EXFULL case EXFULL: return DRMP3_ERROR; #endif #ifdef ENOANO case ENOANO: return DRMP3_ERROR; #endif #ifdef EBADRQC case EBADRQC: return DRMP3_ERROR; #endif #ifdef EBADSLT case EBADSLT: return DRMP3_ERROR; #endif #ifdef EBFONT case EBFONT: return DRMP3_INVALID_FILE; #endif #ifdef ENOSTR case ENOSTR: return DRMP3_ERROR; #endif #ifdef ENODATA case ENODATA: return DRMP3_NO_DATA_AVAILABLE; #endif #ifdef ETIME case ETIME: return DRMP3_TIMEOUT; #endif #ifdef ENOSR case ENOSR: return DRMP3_NO_DATA_AVAILABLE; #endif #ifdef ENONET case ENONET: return DRMP3_NO_NETWORK; #endif #ifdef ENOPKG case ENOPKG: return DRMP3_ERROR; #endif #ifdef EREMOTE case EREMOTE: return DRMP3_ERROR; #endif #ifdef ENOLINK case ENOLINK: return DRMP3_ERROR; #endif #ifdef EADV case EADV: return DRMP3_ERROR; #endif #ifdef ESRMNT case ESRMNT: return DRMP3_ERROR; #endif #ifdef ECOMM case ECOMM: return DRMP3_ERROR; #endif #ifdef EPROTO case EPROTO: return DRMP3_ERROR; #endif #ifdef EMULTIHOP case EMULTIHOP: return DRMP3_ERROR; #endif #ifdef EDOTDOT case EDOTDOT: return DRMP3_ERROR; #endif #ifdef EBADMSG case EBADMSG: return DRMP3_BAD_MESSAGE; #endif #ifdef EOVERFLOW case EOVERFLOW: return DRMP3_TOO_BIG; #endif #ifdef ENOTUNIQ case ENOTUNIQ: return DRMP3_NOT_UNIQUE; #endif #ifdef EBADFD case EBADFD: return DRMP3_ERROR; #endif #ifdef EREMCHG case EREMCHG: return DRMP3_ERROR; #endif #ifdef ELIBACC case ELIBACC: return DRMP3_ACCESS_DENIED; #endif #ifdef ELIBBAD case ELIBBAD: return DRMP3_INVALID_FILE; #endif #ifdef ELIBSCN case ELIBSCN: return DRMP3_INVALID_FILE; #endif #ifdef ELIBMAX case ELIBMAX: return DRMP3_ERROR; #endif #ifdef ELIBEXEC case ELIBEXEC: return DRMP3_ERROR; #endif #ifdef EILSEQ case EILSEQ: return DRMP3_INVALID_DATA; #endif #ifdef ERESTART case ERESTART: return DRMP3_ERROR; #endif #ifdef ESTRPIPE case ESTRPIPE: return DRMP3_ERROR; #endif #ifdef EUSERS case EUSERS: return DRMP3_ERROR; #endif #ifdef ENOTSOCK case ENOTSOCK: return DRMP3_NOT_SOCKET; #endif #ifdef EDESTADDRREQ case EDESTADDRREQ: return DRMP3_NO_ADDRESS; #endif #ifdef EMSGSIZE case EMSGSIZE: return DRMP3_TOO_BIG; #endif #ifdef EPROTOTYPE case EPROTOTYPE: return DRMP3_BAD_PROTOCOL; #endif #ifdef ENOPROTOOPT case ENOPROTOOPT: return DRMP3_PROTOCOL_UNAVAILABLE; #endif #ifdef EPROTONOSUPPORT case EPROTONOSUPPORT: return DRMP3_PROTOCOL_NOT_SUPPORTED; #endif #ifdef ESOCKTNOSUPPORT case ESOCKTNOSUPPORT: return DRMP3_SOCKET_NOT_SUPPORTED; #endif #ifdef EOPNOTSUPP case EOPNOTSUPP: return DRMP3_INVALID_OPERATION; #endif #ifdef EPFNOSUPPORT case EPFNOSUPPORT: return DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED; #endif #ifdef EAFNOSUPPORT case EAFNOSUPPORT: return DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED; #endif #ifdef EADDRINUSE case EADDRINUSE: return DRMP3_ALREADY_IN_USE; #endif #ifdef EADDRNOTAVAIL case EADDRNOTAVAIL: return DRMP3_ERROR; #endif #ifdef ENETDOWN case ENETDOWN: return DRMP3_NO_NETWORK; #endif #ifdef ENETUNREACH case ENETUNREACH: return DRMP3_NO_NETWORK; #endif #ifdef ENETRESET case ENETRESET: return DRMP3_NO_NETWORK; #endif #ifdef ECONNABORTED case ECONNABORTED: return DRMP3_NO_NETWORK; #endif #ifdef ECONNRESET case ECONNRESET: return DRMP3_CONNECTION_RESET; #endif #ifdef ENOBUFS case ENOBUFS: return DRMP3_NO_SPACE; #endif #ifdef EISCONN case EISCONN: return DRMP3_ALREADY_CONNECTED; #endif #ifdef ENOTCONN case ENOTCONN: return DRMP3_NOT_CONNECTED; #endif #ifdef ESHUTDOWN case ESHUTDOWN: return DRMP3_ERROR; #endif #ifdef ETOOMANYREFS case ETOOMANYREFS: return DRMP3_ERROR; #endif #ifdef ETIMEDOUT case ETIMEDOUT: return DRMP3_TIMEOUT; #endif #ifdef ECONNREFUSED case ECONNREFUSED: return DRMP3_CONNECTION_REFUSED; #endif #ifdef EHOSTDOWN case EHOSTDOWN: return DRMP3_NO_HOST; #endif #ifdef EHOSTUNREACH case EHOSTUNREACH: return DRMP3_NO_HOST; #endif #ifdef EALREADY case EALREADY: return DRMP3_IN_PROGRESS; #endif #ifdef EINPROGRESS case EINPROGRESS: return DRMP3_IN_PROGRESS; #endif #ifdef ESTALE case ESTALE: return DRMP3_INVALID_FILE; #endif #ifdef EUCLEAN case EUCLEAN: return DRMP3_ERROR; #endif #ifdef ENOTNAM case ENOTNAM: return DRMP3_ERROR; #endif #ifdef ENAVAIL case ENAVAIL: return DRMP3_ERROR; #endif #ifdef EISNAM case EISNAM: return DRMP3_ERROR; #endif #ifdef EREMOTEIO case EREMOTEIO: return DRMP3_IO_ERROR; #endif #ifdef EDQUOT case EDQUOT: return DRMP3_NO_SPACE; #endif #ifdef ENOMEDIUM case ENOMEDIUM: return DRMP3_DOES_NOT_EXIST; #endif #ifdef EMEDIUMTYPE case EMEDIUMTYPE: return DRMP3_ERROR; #endif #ifdef ECANCELED case ECANCELED: return DRMP3_CANCELLED; #endif #ifdef ENOKEY case ENOKEY: return DRMP3_ERROR; #endif #ifdef EKEYEXPIRED case EKEYEXPIRED: return DRMP3_ERROR; #endif #ifdef EKEYREVOKED case EKEYREVOKED: return DRMP3_ERROR; #endif #ifdef EKEYREJECTED case EKEYREJECTED: return DRMP3_ERROR; #endif #ifdef EOWNERDEAD case EOWNERDEAD: return DRMP3_ERROR; #endif #ifdef ENOTRECOVERABLE case ENOTRECOVERABLE: return DRMP3_ERROR; #endif #ifdef ERFKILL case ERFKILL: return DRMP3_ERROR; #endif #ifdef EHWPOISON case EHWPOISON: return DRMP3_ERROR; #endif default: return DRMP3_ERROR; } } static drmp3_result drmp3_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err; #endif if (ppFile != NULL) { *ppFile = NULL; } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return DRMP3_INVALID_ARGS; } #if defined(_MSC_VER) && _MSC_VER >= 1400 err = fopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return drmp3_result_from_errno(err); } #else #if defined(_WIN32) || defined(__APPLE__) *ppFile = fopen(pFilePath, pOpenMode); #else #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) *ppFile = fopen64(pFilePath, pOpenMode); #else *ppFile = fopen(pFilePath, pOpenMode); #endif #endif if (*ppFile == NULL) { drmp3_result result = drmp3_result_from_errno(errno); if (result == DRMP3_SUCCESS) { result = DRMP3_ERROR; } return result; } #endif return DRMP3_SUCCESS; } #if defined(_WIN32) #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) #define DRMP3_HAS_WFOPEN #endif #endif static drmp3_result drmp3_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (ppFile != NULL) { *ppFile = NULL; } if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { return DRMP3_INVALID_ARGS; } #if defined(DRMP3_HAS_WFOPEN) { #if defined(_MSC_VER) && _MSC_VER >= 1400 errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); if (err != 0) { return drmp3_result_from_errno(err); } #else *ppFile = _wfopen(pFilePath, pOpenMode); if (*ppFile == NULL) { return drmp3_result_from_errno(errno); } #endif (void)pAllocationCallbacks; } #else #if defined(__DJGPP__) { } #else { mbstate_t mbs; size_t lenMB; const wchar_t* pFilePathTemp = pFilePath; char* pFilePathMB = NULL; char pOpenModeMB[32] = {0}; DRMP3_ZERO_OBJECT(&mbs); lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); if (lenMB == (size_t)-1) { return drmp3_result_from_errno(errno); } pFilePathMB = (char*)drmp3__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); if (pFilePathMB == NULL) { return DRMP3_OUT_OF_MEMORY; } pFilePathTemp = pFilePath; DRMP3_ZERO_OBJECT(&mbs); wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); { size_t i = 0; for (;;) { if (pOpenMode[i] == 0) { pOpenModeMB[i] = '\0'; break; } pOpenModeMB[i] = (char)pOpenMode[i]; i += 1; } } *ppFile = fopen(pFilePathMB, pOpenModeMB); drmp3__free_from_callbacks(pFilePathMB, pAllocationCallbacks); } #endif if (*ppFile == NULL) { return DRMP3_ERROR; } #endif return DRMP3_SUCCESS; } static size_t drmp3__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead) { return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData); } static drmp3_bool32 drmp3__on_seek_stdio(void* pUserData, int offset, drmp3_seek_origin origin) { return fseek((FILE*)pUserData, offset, (origin == drmp3_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; } DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3_bool32 result; FILE* pFile; if (drmp3_fopen(&pFile, pFilePath, "rb") != DRMP3_SUCCESS) { return DRMP3_FALSE; } result = drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks); if (result != DRMP3_TRUE) { fclose(pFile); return result; } return DRMP3_TRUE; } DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3_bool32 result; FILE* pFile; if (drmp3_wfopen(&pFile, pFilePath, L"rb", pAllocationCallbacks) != DRMP3_SUCCESS) { return DRMP3_FALSE; } result = drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks); if (result != DRMP3_TRUE) { fclose(pFile); return result; } return DRMP3_TRUE; } #endif DRMP3_API void drmp3_uninit(drmp3* pMP3) { if (pMP3 == NULL) { return; } #ifndef DR_MP3_NO_STDIO if (pMP3->onRead == drmp3__on_read_stdio) { FILE* pFile = (FILE*)pMP3->pUserData; if (pFile != NULL) { fclose(pFile); pMP3->pUserData = NULL; } } #endif drmp3__free_from_callbacks(pMP3->pData, &pMP3->allocationCallbacks); } #if defined(DR_MP3_FLOAT_OUTPUT) static void drmp3_f32_to_s16(drmp3_int16* dst, const float* src, drmp3_uint64 sampleCount) { drmp3_uint64 i; drmp3_uint64 i4; drmp3_uint64 sampleCount4; i = 0; sampleCount4 = sampleCount >> 2; for (i4 = 0; i4 < sampleCount4; i4 += 1) { float x0 = src[i+0]; float x1 = src[i+1]; float x2 = src[i+2]; float x3 = src[i+3]; x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0)); x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1)); x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2)); x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3)); x0 = x0 * 32767.0f; x1 = x1 * 32767.0f; x2 = x2 * 32767.0f; x3 = x3 * 32767.0f; dst[i+0] = (drmp3_int16)x0; dst[i+1] = (drmp3_int16)x1; dst[i+2] = (drmp3_int16)x2; dst[i+3] = (drmp3_int16)x3; i += 4; } for (; i < sampleCount; i += 1) { float x = src[i]; x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); x = x * 32767.0f; dst[i] = (drmp3_int16)x; } } #endif #if !defined(DR_MP3_FLOAT_OUTPUT) static void drmp3_s16_to_f32(float* dst, const drmp3_int16* src, drmp3_uint64 sampleCount) { drmp3_uint64 i; for (i = 0; i < sampleCount; i += 1) { float x = (float)src[i]; x = x * 0.000030517578125f; dst[i] = x; } } #endif static drmp3_uint64 drmp3_read_pcm_frames_raw(drmp3* pMP3, drmp3_uint64 framesToRead, void* pBufferOut) { drmp3_uint64 totalFramesRead = 0; DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(pMP3->onRead != NULL); while (framesToRead > 0) { drmp3_uint32 framesToConsume = (drmp3_uint32)DRMP3_MIN(pMP3->pcmFramesRemainingInMP3Frame, framesToRead); if (pBufferOut != NULL) { #if defined(DR_MP3_FLOAT_OUTPUT) float* pFramesOutF32 = (float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(float) * totalFramesRead * pMP3->channels); float* pFramesInF32 = (float*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(float) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels); DRMP3_COPY_MEMORY(pFramesOutF32, pFramesInF32, sizeof(float) * framesToConsume * pMP3->channels); #else drmp3_int16* pFramesOutS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalFramesRead * pMP3->channels); drmp3_int16* pFramesInS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(drmp3_int16) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels); DRMP3_COPY_MEMORY(pFramesOutS16, pFramesInS16, sizeof(drmp3_int16) * framesToConsume * pMP3->channels); #endif } pMP3->currentPCMFrame += framesToConsume; pMP3->pcmFramesConsumedInMP3Frame += framesToConsume; pMP3->pcmFramesRemainingInMP3Frame -= framesToConsume; totalFramesRead += framesToConsume; framesToRead -= framesToConsume; if (framesToRead == 0) { break; } DRMP3_ASSERT(pMP3->pcmFramesRemainingInMP3Frame == 0); if (drmp3_decode_next_frame(pMP3) == 0) { break; } } return totalFramesRead; } DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut) { if (pMP3 == NULL || pMP3->onRead == NULL) { return 0; } #if defined(DR_MP3_FLOAT_OUTPUT) return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut); #else { drmp3_int16 pTempS16[8192]; drmp3_uint64 totalPCMFramesRead = 0; while (totalPCMFramesRead < framesToRead) { drmp3_uint64 framesJustRead; drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead; drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempS16) / pMP3->channels; if (framesToReadNow > framesRemaining) { framesToReadNow = framesRemaining; } framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempS16); if (framesJustRead == 0) { break; } drmp3_s16_to_f32((float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(float) * totalPCMFramesRead * pMP3->channels), pTempS16, framesJustRead * pMP3->channels); totalPCMFramesRead += framesJustRead; } return totalPCMFramesRead; } #endif } DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut) { if (pMP3 == NULL || pMP3->onRead == NULL) { return 0; } #if !defined(DR_MP3_FLOAT_OUTPUT) return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut); #else { float pTempF32[4096]; drmp3_uint64 totalPCMFramesRead = 0; while (totalPCMFramesRead < framesToRead) { drmp3_uint64 framesJustRead; drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead; drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempF32) / pMP3->channels; if (framesToReadNow > framesRemaining) { framesToReadNow = framesRemaining; } framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempF32); if (framesJustRead == 0) { break; } drmp3_f32_to_s16((drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalPCMFramesRead * pMP3->channels), pTempF32, framesJustRead * pMP3->channels); totalPCMFramesRead += framesJustRead; } return totalPCMFramesRead; } #endif } static void drmp3_reset(drmp3* pMP3) { DRMP3_ASSERT(pMP3 != NULL); pMP3->pcmFramesConsumedInMP3Frame = 0; pMP3->pcmFramesRemainingInMP3Frame = 0; pMP3->currentPCMFrame = 0; pMP3->dataSize = 0; pMP3->atEnd = DRMP3_FALSE; drmp3dec_init(&pMP3->decoder); } static drmp3_bool32 drmp3_seek_to_start_of_stream(drmp3* pMP3) { DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(pMP3->onSeek != NULL); if (!drmp3__on_seek(pMP3, 0, drmp3_seek_origin_start)) { return DRMP3_FALSE; } drmp3_reset(pMP3); return DRMP3_TRUE; } static drmp3_bool32 drmp3_seek_forward_by_pcm_frames__brute_force(drmp3* pMP3, drmp3_uint64 frameOffset) { drmp3_uint64 framesRead; #if defined(DR_MP3_FLOAT_OUTPUT) framesRead = drmp3_read_pcm_frames_f32(pMP3, frameOffset, NULL); #else framesRead = drmp3_read_pcm_frames_s16(pMP3, frameOffset, NULL); #endif if (framesRead != frameOffset) { return DRMP3_FALSE; } return DRMP3_TRUE; } static drmp3_bool32 drmp3_seek_to_pcm_frame__brute_force(drmp3* pMP3, drmp3_uint64 frameIndex) { DRMP3_ASSERT(pMP3 != NULL); if (frameIndex == pMP3->currentPCMFrame) { return DRMP3_TRUE; } if (frameIndex < pMP3->currentPCMFrame) { if (!drmp3_seek_to_start_of_stream(pMP3)) { return DRMP3_FALSE; } } DRMP3_ASSERT(frameIndex >= pMP3->currentPCMFrame); return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, (frameIndex - pMP3->currentPCMFrame)); } static drmp3_bool32 drmp3_find_closest_seek_point(drmp3* pMP3, drmp3_uint64 frameIndex, drmp3_uint32* pSeekPointIndex) { drmp3_uint32 iSeekPoint; DRMP3_ASSERT(pSeekPointIndex != NULL); *pSeekPointIndex = 0; if (frameIndex < pMP3->pSeekPoints[0].pcmFrameIndex) { return DRMP3_FALSE; } for (iSeekPoint = 0; iSeekPoint < pMP3->seekPointCount; ++iSeekPoint) { if (pMP3->pSeekPoints[iSeekPoint].pcmFrameIndex > frameIndex) { break; } *pSeekPointIndex = iSeekPoint; } return DRMP3_TRUE; } static drmp3_bool32 drmp3_seek_to_pcm_frame__seek_table(drmp3* pMP3, drmp3_uint64 frameIndex) { drmp3_seek_point seekPoint; drmp3_uint32 priorSeekPointIndex; drmp3_uint16 iMP3Frame; drmp3_uint64 leftoverFrames; DRMP3_ASSERT(pMP3 != NULL); DRMP3_ASSERT(pMP3->pSeekPoints != NULL); DRMP3_ASSERT(pMP3->seekPointCount > 0); if (drmp3_find_closest_seek_point(pMP3, frameIndex, &priorSeekPointIndex)) { seekPoint = pMP3->pSeekPoints[priorSeekPointIndex]; } else { seekPoint.seekPosInBytes = 0; seekPoint.pcmFrameIndex = 0; seekPoint.mp3FramesToDiscard = 0; seekPoint.pcmFramesToDiscard = 0; } if (!drmp3__on_seek_64(pMP3, seekPoint.seekPosInBytes, drmp3_seek_origin_start)) { return DRMP3_FALSE; } drmp3_reset(pMP3); for (iMP3Frame = 0; iMP3Frame < seekPoint.mp3FramesToDiscard; ++iMP3Frame) { drmp3_uint32 pcmFramesRead; drmp3d_sample_t* pPCMFrames; pPCMFrames = NULL; if (iMP3Frame == seekPoint.mp3FramesToDiscard-1) { pPCMFrames = (drmp3d_sample_t*)pMP3->pcmFrames; } pcmFramesRead = drmp3_decode_next_frame_ex(pMP3, pPCMFrames); if (pcmFramesRead == 0) { return DRMP3_FALSE; } } pMP3->currentPCMFrame = seekPoint.pcmFrameIndex - seekPoint.pcmFramesToDiscard; leftoverFrames = frameIndex - pMP3->currentPCMFrame; return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, leftoverFrames); } DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex) { if (pMP3 == NULL || pMP3->onSeek == NULL) { return DRMP3_FALSE; } if (frameIndex == 0) { return drmp3_seek_to_start_of_stream(pMP3); } if (pMP3->pSeekPoints != NULL && pMP3->seekPointCount > 0) { return drmp3_seek_to_pcm_frame__seek_table(pMP3, frameIndex); } else { return drmp3_seek_to_pcm_frame__brute_force(pMP3, frameIndex); } } DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount) { drmp3_uint64 currentPCMFrame; drmp3_uint64 totalPCMFrameCount; drmp3_uint64 totalMP3FrameCount; if (pMP3 == NULL) { return DRMP3_FALSE; } if (pMP3->onSeek == NULL) { return DRMP3_FALSE; } currentPCMFrame = pMP3->currentPCMFrame; if (!drmp3_seek_to_start_of_stream(pMP3)) { return DRMP3_FALSE; } totalPCMFrameCount = 0; totalMP3FrameCount = 0; for (;;) { drmp3_uint32 pcmFramesInCurrentMP3Frame; pcmFramesInCurrentMP3Frame = drmp3_decode_next_frame_ex(pMP3, NULL); if (pcmFramesInCurrentMP3Frame == 0) { break; } totalPCMFrameCount += pcmFramesInCurrentMP3Frame; totalMP3FrameCount += 1; } if (!drmp3_seek_to_start_of_stream(pMP3)) { return DRMP3_FALSE; } if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) { return DRMP3_FALSE; } if (pMP3FrameCount != NULL) { *pMP3FrameCount = totalMP3FrameCount; } if (pPCMFrameCount != NULL) { *pPCMFrameCount = totalPCMFrameCount; } return DRMP3_TRUE; } DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3) { drmp3_uint64 totalPCMFrameCount; if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, NULL, &totalPCMFrameCount)) { return 0; } return totalPCMFrameCount; } DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3) { drmp3_uint64 totalMP3FrameCount; if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, NULL)) { return 0; } return totalMP3FrameCount; } static void drmp3__accumulate_running_pcm_frame_count(drmp3* pMP3, drmp3_uint32 pcmFrameCountIn, drmp3_uint64* pRunningPCMFrameCount, float* pRunningPCMFrameCountFractionalPart) { float srcRatio; float pcmFrameCountOutF; drmp3_uint32 pcmFrameCountOut; srcRatio = (float)pMP3->mp3FrameSampleRate / (float)pMP3->sampleRate; DRMP3_ASSERT(srcRatio > 0); pcmFrameCountOutF = *pRunningPCMFrameCountFractionalPart + (pcmFrameCountIn / srcRatio); pcmFrameCountOut = (drmp3_uint32)pcmFrameCountOutF; *pRunningPCMFrameCountFractionalPart = pcmFrameCountOutF - pcmFrameCountOut; *pRunningPCMFrameCount += pcmFrameCountOut; } typedef struct { drmp3_uint64 bytePos; drmp3_uint64 pcmFrameIndex; } drmp3__seeking_mp3_frame_info; DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints) { drmp3_uint32 seekPointCount; drmp3_uint64 currentPCMFrame; drmp3_uint64 totalMP3FrameCount; drmp3_uint64 totalPCMFrameCount; if (pMP3 == NULL || pSeekPointCount == NULL || pSeekPoints == NULL) { return DRMP3_FALSE; } seekPointCount = *pSeekPointCount; if (seekPointCount == 0) { return DRMP3_FALSE; } currentPCMFrame = pMP3->currentPCMFrame; if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, &totalPCMFrameCount)) { return DRMP3_FALSE; } if (totalMP3FrameCount < DRMP3_SEEK_LEADING_MP3_FRAMES+1) { seekPointCount = 1; pSeekPoints[0].seekPosInBytes = 0; pSeekPoints[0].pcmFrameIndex = 0; pSeekPoints[0].mp3FramesToDiscard = 0; pSeekPoints[0].pcmFramesToDiscard = 0; } else { drmp3_uint64 pcmFramesBetweenSeekPoints; drmp3__seeking_mp3_frame_info mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES+1]; drmp3_uint64 runningPCMFrameCount = 0; float runningPCMFrameCountFractionalPart = 0; drmp3_uint64 nextTargetPCMFrame; drmp3_uint32 iMP3Frame; drmp3_uint32 iSeekPoint; if (seekPointCount > totalMP3FrameCount-1) { seekPointCount = (drmp3_uint32)totalMP3FrameCount-1; } pcmFramesBetweenSeekPoints = totalPCMFrameCount / (seekPointCount+1); if (!drmp3_seek_to_start_of_stream(pMP3)) { return DRMP3_FALSE; } for (iMP3Frame = 0; iMP3Frame < DRMP3_SEEK_LEADING_MP3_FRAMES+1; ++iMP3Frame) { drmp3_uint32 pcmFramesInCurrentMP3FrameIn; DRMP3_ASSERT(pMP3->streamCursor >= pMP3->dataSize); mp3FrameInfo[iMP3Frame].bytePos = pMP3->streamCursor - pMP3->dataSize; mp3FrameInfo[iMP3Frame].pcmFrameIndex = runningPCMFrameCount; pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL); if (pcmFramesInCurrentMP3FrameIn == 0) { return DRMP3_FALSE; } drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart); } nextTargetPCMFrame = 0; for (iSeekPoint = 0; iSeekPoint < seekPointCount; ++iSeekPoint) { nextTargetPCMFrame += pcmFramesBetweenSeekPoints; for (;;) { if (nextTargetPCMFrame < runningPCMFrameCount) { pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos; pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame; pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES; pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex); break; } else { size_t i; drmp3_uint32 pcmFramesInCurrentMP3FrameIn; for (i = 0; i < DRMP3_COUNTOF(mp3FrameInfo)-1; ++i) { mp3FrameInfo[i] = mp3FrameInfo[i+1]; } mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].bytePos = pMP3->streamCursor - pMP3->dataSize; mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].pcmFrameIndex = runningPCMFrameCount; pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL); if (pcmFramesInCurrentMP3FrameIn == 0) { pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos; pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame; pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES; pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex); break; } drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart); } } } if (!drmp3_seek_to_start_of_stream(pMP3)) { return DRMP3_FALSE; } if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) { return DRMP3_FALSE; } } *pSeekPointCount = seekPointCount; return DRMP3_TRUE; } DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints) { if (pMP3 == NULL) { return DRMP3_FALSE; } if (seekPointCount == 0 || pSeekPoints == NULL) { pMP3->seekPointCount = 0; pMP3->pSeekPoints = NULL; } else { pMP3->seekPointCount = seekPointCount; pMP3->pSeekPoints = pSeekPoints; } return DRMP3_TRUE; } static float* drmp3__full_read_and_close_f32(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount) { drmp3_uint64 totalFramesRead = 0; drmp3_uint64 framesCapacity = 0; float* pFrames = NULL; float temp[4096]; DRMP3_ASSERT(pMP3 != NULL); for (;;) { drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels; drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_f32(pMP3, framesToReadRightNow, temp); if (framesJustRead == 0) { break; } if (framesCapacity < totalFramesRead + framesJustRead) { drmp3_uint64 oldFramesBufferSize; drmp3_uint64 newFramesBufferSize; drmp3_uint64 newFramesCap; float* pNewFrames; newFramesCap = framesCapacity * 2; if (newFramesCap < totalFramesRead + framesJustRead) { newFramesCap = totalFramesRead + framesJustRead; } oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(float); newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(float); if (newFramesBufferSize > (drmp3_uint64)DRMP3_SIZE_MAX) { break; } pNewFrames = (float*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks); if (pNewFrames == NULL) { drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks); break; } pFrames = pNewFrames; framesCapacity = newFramesCap; } DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(float))); totalFramesRead += framesJustRead; if (framesJustRead != framesToReadRightNow) { break; } } if (pConfig != NULL) { pConfig->channels = pMP3->channels; pConfig->sampleRate = pMP3->sampleRate; } drmp3_uninit(pMP3); if (pTotalFrameCount) { *pTotalFrameCount = totalFramesRead; } return pFrames; } static drmp3_int16* drmp3__full_read_and_close_s16(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount) { drmp3_uint64 totalFramesRead = 0; drmp3_uint64 framesCapacity = 0; drmp3_int16* pFrames = NULL; drmp3_int16 temp[4096]; DRMP3_ASSERT(pMP3 != NULL); for (;;) { drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels; drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_s16(pMP3, framesToReadRightNow, temp); if (framesJustRead == 0) { break; } if (framesCapacity < totalFramesRead + framesJustRead) { drmp3_uint64 newFramesBufferSize; drmp3_uint64 oldFramesBufferSize; drmp3_uint64 newFramesCap; drmp3_int16* pNewFrames; newFramesCap = framesCapacity * 2; if (newFramesCap < totalFramesRead + framesJustRead) { newFramesCap = totalFramesRead + framesJustRead; } oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(drmp3_int16); newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(drmp3_int16); if (newFramesBufferSize > (drmp3_uint64)DRMP3_SIZE_MAX) { break; } pNewFrames = (drmp3_int16*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks); if (pNewFrames == NULL) { drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks); break; } pFrames = pNewFrames; framesCapacity = newFramesCap; } DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(drmp3_int16))); totalFramesRead += framesJustRead; if (framesJustRead != framesToReadRightNow) { break; } } if (pConfig != NULL) { pConfig->channels = pMP3->channels; pConfig->sampleRate = pMP3->sampleRate; } drmp3_uninit(pMP3); if (pTotalFrameCount) { *pTotalFrameCount = totalFramesRead; } return pFrames; } DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3 mp3; if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) { return NULL; } return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount); } DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3 mp3; if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) { return NULL; } return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount); } DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3 mp3; if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) { return NULL; } return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount); } DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3 mp3; if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) { return NULL; } return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount); } #ifndef DR_MP3_NO_STDIO DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3 mp3; if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) { return NULL; } return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount); } DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks) { drmp3 mp3; if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) { return NULL; } return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount); } #endif DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { return drmp3__malloc_from_callbacks(sz, pAllocationCallbacks); } else { return drmp3__malloc_default(sz, NULL); } } DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks) { if (pAllocationCallbacks != NULL) { drmp3__free_from_callbacks(p, pAllocationCallbacks); } else { drmp3__free_default(p, NULL); } } #endif /* dr_mp3_c end */ #endif /* DRMP3_IMPLEMENTATION */ #endif /* MA_NO_MP3 */ /* End globally disabled warnings. */ #if defined(_MSC_VER) #pragma warning(pop) #endif #endif /* miniaudio_c */ #endif /* MINIAUDIO_IMPLEMENTATION */ /* This software is available as a choice of the following licenses. Choose whichever you prefer. =============================================================================== ALTERNATIVE 1 - Public Domain (www.unlicense.org) =============================================================================== This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to =============================================================================== ALTERNATIVE 2 - MIT No Attribution =============================================================================== Copyright 2020 David Reid Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #line 0 //--- #undef L #undef C #undef R #define error l_error #define panic l_panic #line 1 "3rd_lua.h" /* minilua.h -- Lua in a single header Project URL: https://github.com/edubart/minilua This is Lua 5.4.4 contained in a single header to be bundled in C/C++ applications with ease. Lua is a powerful, efficient, lightweight, embeddable scripting language. Do the following in *one* C file to create the implementation: #define LUA_IMPL By default it detects the system platform to use, however you could explicitly define one. Note that almost no modification was made in the Lua implementation code, thus there are some C variable names that may collide with your code, therefore it is best to declare the Lua implementation in dedicated C file. Optionally provide the following defines: LUA_MAKE_LUA - implement the Lua command line REPL LICENSE MIT License, same as Lua, see end of file. */ /* detect system platform */ #if !defined(LUA_USE_WINDOWS) && !defined(LUA_USE_LINUX) && !defined(LUA_USE_MACOSX) && !defined(LUA_USE_POSIX) && !defined(LUA_USE_C89) #if defined(_WIN32) #define LUA_USE_WINDOWS #elif defined(__linux__) #define LUA_USE_LINUX #elif defined(__APPLE__) #define LUA_USE_MACOSX #else /* probably a POSIX system */ #define LUA_USE_POSIX #define LUA_USE_DLOPEN #endif #endif #ifdef LUA_IMPL #define LUA_CORE /* ** $Id: lprefix.h $ ** Definitions for Lua code that must come before any other header file ** See Copyright Notice in lua.h */ #ifndef lprefix_h #define lprefix_h /* ** Allows POSIX/XSI stuff */ #if !defined(LUA_USE_C89) /* { */ #if !defined(_XOPEN_SOURCE) #define _XOPEN_SOURCE 600 #elif _XOPEN_SOURCE == 0 #undef _XOPEN_SOURCE /* use -D_XOPEN_SOURCE=0 to undefine it */ #endif /* ** Allows manipulation of large files in gcc and some other compilers */ #if !defined(LUA_32BITS) && !defined(_FILE_OFFSET_BITS) #define _LARGEFILE_SOURCE 1 #define _FILE_OFFSET_BITS 64 #endif #endif /* } */ /* ** Windows stuff */ #if defined(_WIN32) /* { */ #if !defined(_CRT_SECURE_NO_WARNINGS) #define _CRT_SECURE_NO_WARNINGS /* avoid warnings about ISO C functions */ #endif #endif /* } */ #endif #endif /* LUA_IMPL */ #ifdef __cplusplus extern "C" { #endif /* ** $Id: luaconf.h $ ** Configuration file for Lua ** See Copyright Notice in lua.h */ #ifndef luaconf_h #define luaconf_h #include #include /* ** =================================================================== ** General Configuration File for Lua ** ** Some definitions here can be changed externally, through the compiler ** (e.g., with '-D' options): They are commented out or protected ** by '#if !defined' guards. However, several other definitions ** should be changed directly here, either because they affect the ** Lua ABI (by making the changes here, you ensure that all software ** connected to Lua, such as C libraries, will be compiled with the same ** configuration); or because they are seldom changed. ** ** Search for "@@" to find all configurable definitions. ** =================================================================== */ /* ** {==================================================================== ** System Configuration: macros to adapt (if needed) Lua to some ** particular platform, for instance restricting it to C89. ** ===================================================================== */ /* @@ LUA_USE_C89 controls the use of non-ISO-C89 features. ** Define it if you want Lua to avoid the use of a few C99 features ** or Windows-specific features on Windows. */ /* #define LUA_USE_C89 */ /* ** By default, Lua on Windows use (some) specific Windows features */ #if !defined(LUA_USE_C89) && defined(_WIN32) && !defined(_WIN32_WCE) #define LUA_USE_WINDOWS /* enable goodies for regular Windows */ #endif #if defined(LUA_USE_WINDOWS) #define LUA_DL_DLL /* enable support for DLL */ #define LUA_USE_C89 /* broadly, Windows is C89 */ #endif #if defined(LUA_USE_LINUX) #define LUA_USE_POSIX #define LUA_USE_DLOPEN /* needs an extra library: -ldl */ #endif #if defined(LUA_USE_MACOSX) #define LUA_USE_POSIX #define LUA_USE_DLOPEN /* MacOS does not need -ldl */ #endif /* @@ LUAI_IS32INT is true iff 'int' has (at least) 32 bits. */ #define LUAI_IS32INT ((UINT_MAX >> 30) >= 3) /* }================================================================== */ /* ** {================================================================== ** Configuration for Number types. These options should not be ** set externally, because any other code connected to Lua must ** use the same configuration. ** =================================================================== */ /* @@ LUA_INT_TYPE defines the type for Lua integers. @@ LUA_FLOAT_TYPE defines the type for Lua floats. ** Lua should work fine with any mix of these options supported ** by your C compiler. The usual configurations are 64-bit integers ** and 'double' (the default), 32-bit integers and 'float' (for ** restricted platforms), and 'long'/'double' (for C compilers not ** compliant with C99, which may not have support for 'long long'). */ /* predefined options for LUA_INT_TYPE */ #define LUA_INT_INT 1 #define LUA_INT_LONG 2 #define LUA_INT_LONGLONG 3 /* predefined options for LUA_FLOAT_TYPE */ #define LUA_FLOAT_FLOAT 1 #define LUA_FLOAT_DOUBLE 2 #define LUA_FLOAT_LONGDOUBLE 3 /* Default configuration ('long long' and 'double', for 64-bit Lua) */ #define LUA_INT_DEFAULT LUA_INT_LONGLONG #define LUA_FLOAT_DEFAULT LUA_FLOAT_DOUBLE /* @@ LUA_32BITS enables Lua with 32-bit integers and 32-bit floats. */ #define LUA_32BITS 0 /* @@ LUA_C89_NUMBERS ensures that Lua uses the largest types available for ** C89 ('long' and 'double'); Windows always has '__int64', so it does ** not need to use this case. */ #if defined(LUA_USE_C89) && !defined(LUA_USE_WINDOWS) #define LUA_C89_NUMBERS 1 #else #define LUA_C89_NUMBERS 0 #endif #if LUA_32BITS /* { */ /* ** 32-bit integers and 'float' */ #if LUAI_IS32INT /* use 'int' if big enough */ #define LUA_INT_TYPE LUA_INT_INT #else /* otherwise use 'long' */ #define LUA_INT_TYPE LUA_INT_LONG #endif #define LUA_FLOAT_TYPE LUA_FLOAT_FLOAT #elif LUA_C89_NUMBERS /* }{ */ /* ** largest types available for C89 ('long' and 'double') */ #define LUA_INT_TYPE LUA_INT_LONG #define LUA_FLOAT_TYPE LUA_FLOAT_DOUBLE #else /* }{ */ /* use defaults */ #define LUA_INT_TYPE LUA_INT_DEFAULT #define LUA_FLOAT_TYPE LUA_FLOAT_DEFAULT #endif /* } */ /* }================================================================== */ /* ** {================================================================== ** Configuration for Paths. ** =================================================================== */ /* ** LUA_PATH_SEP is the character that separates templates in a path. ** LUA_PATH_MARK is the string that marks the substitution points in a ** template. ** LUA_EXEC_DIR in a Windows path is replaced by the executable's ** directory. */ #define LUA_PATH_SEP ";" #define LUA_PATH_MARK "?" #define LUA_EXEC_DIR "!" /* @@ LUA_PATH_DEFAULT is the default path that Lua uses to look for ** Lua libraries. @@ LUA_CPATH_DEFAULT is the default path that Lua uses to look for ** C libraries. ** CHANGE them if your machine has a non-conventional directory ** hierarchy or if you want to install your libraries in ** non-conventional directories. */ #define LUA_VDIR LUA_VERSION_MAJOR "." LUA_VERSION_MINOR #if defined(_WIN32) /* { */ /* ** In Windows, any exclamation mark ('!') in the path is replaced by the ** path of the directory of the executable file of the current process. */ #define LUA_LDIR "!\\lua\\" #define LUA_CDIR "!\\" #define LUA_SHRDIR "!\\..\\share\\lua\\" LUA_VDIR "\\" #if !defined(LUA_PATH_DEFAULT) #define LUA_PATH_DEFAULT \ LUA_LDIR"?.lua;" LUA_LDIR"?\\init.lua;" \ LUA_CDIR"?.lua;" LUA_CDIR"?\\init.lua;" \ LUA_SHRDIR"?.lua;" LUA_SHRDIR"?\\init.lua;" \ ".\\?.lua;" ".\\?\\init.lua" #endif #if !defined(LUA_CPATH_DEFAULT) #define LUA_CPATH_DEFAULT \ LUA_CDIR"?.dll;" \ LUA_CDIR"..\\lib\\lua\\" LUA_VDIR "\\?.dll;" \ LUA_CDIR"loadall.dll;" ".\\?.dll" #endif #else /* }{ */ #define LUA_ROOT "/usr/local/" #define LUA_LDIR LUA_ROOT "share/lua/" LUA_VDIR "/" #define LUA_CDIR LUA_ROOT "lib/lua/" LUA_VDIR "/" #if !defined(LUA_PATH_DEFAULT) #define LUA_PATH_DEFAULT \ LUA_LDIR"?.lua;" LUA_LDIR"?/init.lua;" \ LUA_CDIR"?.lua;" LUA_CDIR"?/init.lua;" \ "./?.lua;" "./?/init.lua" #endif #if !defined(LUA_CPATH_DEFAULT) #define LUA_CPATH_DEFAULT \ LUA_CDIR"?.so;" LUA_CDIR"loadall.so;" "./?.so" #endif #endif /* } */ /* @@ LUA_DIRSEP is the directory separator (for submodules). ** CHANGE it if your machine does not use "/" as the directory separator ** and is not Windows. (On Windows Lua automatically uses "\".) */ #if !defined(LUA_DIRSEP) #if defined(_WIN32) #define LUA_DIRSEP "\\" #else #define LUA_DIRSEP "/" #endif #endif /* }================================================================== */ /* ** {================================================================== ** Marks for exported symbols in the C code ** =================================================================== */ /* @@ LUA_API is a mark for all core API functions. @@ LUALIB_API is a mark for all auxiliary library functions. @@ LUAMOD_API is a mark for all standard library opening functions. ** CHANGE them if you need to define those functions in some special way. ** For instance, if you want to create one Windows DLL with the core and ** the libraries, you may want to use the following definition (define ** LUA_BUILD_AS_DLL to get it). */ #if defined(LUA_BUILD_AS_DLL) /* { */ #if defined(LUA_CORE) || defined(LUA_LIB) /* { */ #define LUA_API __declspec(dllexport) #else /* }{ */ #define LUA_API __declspec(dllimport) #endif /* } */ #else /* }{ */ #define LUA_API extern #endif /* } */ /* ** More often than not the libs go together with the core. */ #define LUALIB_API LUA_API #define LUAMOD_API LUA_API /* @@ LUAI_FUNC is a mark for all extern functions that are not to be ** exported to outside modules. @@ LUAI_DDEF and LUAI_DDEC are marks for all extern (const) variables, ** none of which to be exported to outside modules (LUAI_DDEF for ** definitions and LUAI_DDEC for declarations). ** CHANGE them if you need to mark them in some special way. Elf/gcc ** (versions 3.2 and later) mark them as "hidden" to optimize access ** when Lua is compiled as a shared library. Not all elf targets support ** this attribute. Unfortunately, gcc does not offer a way to check ** whether the target offers that support, and those without support ** give a warning about it. To avoid these warnings, change to the ** default definition. */ #if defined(__GNUC__) && ((__GNUC__*100 + __GNUC_MINOR__) >= 302) && \ defined(__ELF__) /* { */ #define LUAI_FUNC __attribute__((visibility("internal"))) extern #else /* }{ */ #define LUAI_FUNC extern #endif /* } */ #define LUAI_DDEC(dec) LUAI_FUNC dec #define LUAI_DDEF /* empty */ /* }================================================================== */ /* ** {================================================================== ** Compatibility with previous versions ** =================================================================== */ /* @@ LUA_COMPAT_5_3 controls other macros for compatibility with Lua 5.3. ** You can define it to get all options, or change specific options ** to fit your specific needs. */ #if defined(LUA_COMPAT_5_3) /* { */ /* @@ LUA_COMPAT_MATHLIB controls the presence of several deprecated ** functions in the mathematical library. ** (These functions were already officially removed in 5.3; ** nevertheless they are still available here.) */ #define LUA_COMPAT_MATHLIB /* @@ LUA_COMPAT_APIINTCASTS controls the presence of macros for ** manipulating other integer types (lua_pushunsigned, lua_tounsigned, ** luaL_checkint, luaL_checklong, etc.) ** (These macros were also officially removed in 5.3, but they are still ** available here.) */ #define LUA_COMPAT_APIINTCASTS /* @@ LUA_COMPAT_LT_LE controls the emulation of the '__le' metamethod ** using '__lt'. */ #define LUA_COMPAT_LT_LE /* @@ The following macros supply trivial compatibility for some ** changes in the API. The macros themselves document how to ** change your code to avoid using them. ** (Once more, these macros were officially removed in 5.3, but they are ** still available here.) */ #define lua_strlen(L,i) lua_rawlen(L, (i)) #define lua_objlen(L,i) lua_rawlen(L, (i)) #define lua_equal(L,idx1,idx2) lua_compare(L,(idx1),(idx2),LUA_OPEQ) #define lua_lessthan(L,idx1,idx2) lua_compare(L,(idx1),(idx2),LUA_OPLT) #endif /* } */ /* }================================================================== */ /* ** {================================================================== ** Configuration for Numbers (low-level part). ** Change these definitions if no predefined LUA_FLOAT_* / LUA_INT_* ** satisfy your needs. ** =================================================================== */ /* @@ LUAI_UACNUMBER is the result of a 'default argument promotion' @@ over a floating number. @@ l_floatatt(x) corrects float attribute 'x' to the proper float type ** by prefixing it with one of FLT/DBL/LDBL. @@ LUA_NUMBER_FRMLEN is the length modifier for writing floats. @@ LUA_NUMBER_FMT is the format for writing floats. @@ lua_number2str converts a float to a string. @@ l_mathop allows the addition of an 'l' or 'f' to all math operations. @@ l_floor takes the floor of a float. @@ lua_str2number converts a decimal numeral to a number. */ /* The following definitions are good for most cases here */ #define l_floor(x) (l_mathop(floor)(x)) #define lua_number2str(s,sz,n) \ l_sprintf((s), sz, LUA_NUMBER_FMT, (LUAI_UACNUMBER)(n)) /* @@ lua_numbertointeger converts a float number with an integral value ** to an integer, or returns 0 if float is not within the range of ** a lua_Integer. (The range comparisons are tricky because of ** rounding. The tests here assume a two-complement representation, ** where MININTEGER always has an exact representation as a float; ** MAXINTEGER may not have one, and therefore its conversion to float ** may have an ill-defined value.) */ #define lua_numbertointeger(n,p) \ ((n) >= (LUA_NUMBER)(LUA_MININTEGER) && \ (n) < -(LUA_NUMBER)(LUA_MININTEGER) && \ (*(p) = (LUA_INTEGER)(n), 1)) /* now the variable definitions */ #if LUA_FLOAT_TYPE == LUA_FLOAT_FLOAT /* { single float */ #define LUA_NUMBER float #define l_floatatt(n) (FLT_##n) #define LUAI_UACNUMBER double #define LUA_NUMBER_FRMLEN "" #define LUA_NUMBER_FMT "%.7g" #define l_mathop(op) op##f #define lua_str2number(s,p) strtof((s), (p)) #elif LUA_FLOAT_TYPE == LUA_FLOAT_LONGDOUBLE /* }{ long double */ #define LUA_NUMBER long double #define l_floatatt(n) (LDBL_##n) #define LUAI_UACNUMBER long double #define LUA_NUMBER_FRMLEN "L" #define LUA_NUMBER_FMT "%.19Lg" #define l_mathop(op) op##l #define lua_str2number(s,p) strtold((s), (p)) #elif LUA_FLOAT_TYPE == LUA_FLOAT_DOUBLE /* }{ double */ #define LUA_NUMBER double #define l_floatatt(n) (DBL_##n) #define LUAI_UACNUMBER double #define LUA_NUMBER_FRMLEN "" #define LUA_NUMBER_FMT "%.14g" #define l_mathop(op) op #define lua_str2number(s,p) strtod((s), (p)) #else /* }{ */ #error "numeric float type not defined" #endif /* } */ /* @@ LUA_UNSIGNED is the unsigned version of LUA_INTEGER. @@ LUAI_UACINT is the result of a 'default argument promotion' @@ over a LUA_INTEGER. @@ LUA_INTEGER_FRMLEN is the length modifier for reading/writing integers. @@ LUA_INTEGER_FMT is the format for writing integers. @@ LUA_MAXINTEGER is the maximum value for a LUA_INTEGER. @@ LUA_MININTEGER is the minimum value for a LUA_INTEGER. @@ LUA_MAXUNSIGNED is the maximum value for a LUA_UNSIGNED. @@ lua_integer2str converts an integer to a string. */ /* The following definitions are good for most cases here */ #define LUA_INTEGER_FMT "%" LUA_INTEGER_FRMLEN "d" #define LUAI_UACINT LUA_INTEGER #define lua_integer2str(s,sz,n) \ l_sprintf((s), sz, LUA_INTEGER_FMT, (LUAI_UACINT)(n)) /* ** use LUAI_UACINT here to avoid problems with promotions (which ** can turn a comparison between unsigneds into a signed comparison) */ #define LUA_UNSIGNED unsigned LUAI_UACINT /* now the variable definitions */ #if LUA_INT_TYPE == LUA_INT_INT /* { int */ #define LUA_INTEGER int #define LUA_INTEGER_FRMLEN "" #define LUA_MAXINTEGER INT_MAX #define LUA_MININTEGER INT_MIN #define LUA_MAXUNSIGNED UINT_MAX #elif LUA_INT_TYPE == LUA_INT_LONG /* }{ long */ #define LUA_INTEGER long #define LUA_INTEGER_FRMLEN "l" #define LUA_MAXINTEGER LONG_MAX #define LUA_MININTEGER LONG_MIN #define LUA_MAXUNSIGNED ULONG_MAX #elif LUA_INT_TYPE == LUA_INT_LONGLONG /* }{ long long */ /* use presence of macro LLONG_MAX as proxy for C99 compliance */ #if defined(LLONG_MAX) /* { */ /* use ISO C99 stuff */ #define LUA_INTEGER long long #define LUA_INTEGER_FRMLEN "ll" #define LUA_MAXINTEGER LLONG_MAX #define LUA_MININTEGER LLONG_MIN #define LUA_MAXUNSIGNED ULLONG_MAX #elif defined(LUA_USE_WINDOWS) /* }{ */ /* in Windows, can use specific Windows types */ #define LUA_INTEGER __int64 #define LUA_INTEGER_FRMLEN "I64" #define LUA_MAXINTEGER _I64_MAX #define LUA_MININTEGER _I64_MIN #define LUA_MAXUNSIGNED _UI64_MAX #else /* }{ */ #error "Compiler does not support 'long long'. Use option '-DLUA_32BITS' \ or '-DLUA_C89_NUMBERS' (see file 'luaconf.h' for details)" #endif /* } */ #else /* }{ */ #error "numeric integer type not defined" #endif /* } */ /* }================================================================== */ /* ** {================================================================== ** Dependencies with C99 and other C details ** =================================================================== */ /* @@ l_sprintf is equivalent to 'snprintf' or 'sprintf' in C89. ** (All uses in Lua have only one format item.) */ #if !defined(LUA_USE_C89) #define l_sprintf(s,sz,f,i) snprintf(s,sz,f,i) #else #define l_sprintf(s,sz,f,i) ((void)(sz), sprintf(s,f,i)) #endif /* @@ lua_strx2number converts a hexadecimal numeral to a number. ** In C99, 'strtod' does that conversion. Otherwise, you can ** leave 'lua_strx2number' undefined and Lua will provide its own ** implementation. */ #if !defined(LUA_USE_C89) #define lua_strx2number(s,p) lua_str2number(s,p) #endif /* @@ lua_pointer2str converts a pointer to a readable string in a ** non-specified way. */ #define lua_pointer2str(buff,sz,p) l_sprintf(buff,sz,"%p",p) /* @@ lua_number2strx converts a float to a hexadecimal numeral. ** In C99, 'sprintf' (with format specifiers '%a'/'%A') does that. ** Otherwise, you can leave 'lua_number2strx' undefined and Lua will ** provide its own implementation. */ #if !defined(LUA_USE_C89) #define lua_number2strx(L,b,sz,f,n) \ ((void)L, l_sprintf(b,sz,f,(LUAI_UACNUMBER)(n))) #endif /* ** 'strtof' and 'opf' variants for math functions are not valid in ** C89. Otherwise, the macro 'HUGE_VALF' is a good proxy for testing the ** availability of these variants. ('math.h' is already included in ** all files that use these macros.) */ #if defined(LUA_USE_C89) || (defined(HUGE_VAL) && !defined(HUGE_VALF)) #undef l_mathop /* variants not available */ #undef lua_str2number #define l_mathop(op) (lua_Number)op /* no variant */ #define lua_str2number(s,p) ((lua_Number)strtod((s), (p))) #endif /* @@ LUA_KCONTEXT is the type of the context ('ctx') for continuation ** functions. It must be a numerical type; Lua will use 'intptr_t' if ** available, otherwise it will use 'ptrdiff_t' (the nearest thing to ** 'intptr_t' in C89) */ #define LUA_KCONTEXT ptrdiff_t #if !defined(LUA_USE_C89) && defined(__STDC_VERSION__) && \ __STDC_VERSION__ >= 199901L #include #if defined(INTPTR_MAX) /* even in C99 this type is optional */ #undef LUA_KCONTEXT #define LUA_KCONTEXT intptr_t #endif #endif /* @@ lua_getlocaledecpoint gets the locale "radix character" (decimal point). ** Change that if you do not want to use C locales. (Code using this ** macro must include the header 'locale.h'.) */ #if !defined(lua_getlocaledecpoint) #define lua_getlocaledecpoint() (localeconv()->decimal_point[0]) #endif /* ** macros to improve jump prediction, used mostly for error handling ** and debug facilities. (Some macros in the Lua API use these macros. ** Define LUA_NOBUILTIN if you do not want '__builtin_expect' in your ** code.) */ #if !defined(luai_likely) #if defined(__GNUC__) && !defined(LUA_NOBUILTIN) #define luai_likely(x) (__builtin_expect(((x) != 0), 1)) #define luai_unlikely(x) (__builtin_expect(((x) != 0), 0)) #else #define luai_likely(x) (x) #define luai_unlikely(x) (x) #endif #endif #if defined(LUA_CORE) || defined(LUA_LIB) /* shorter names for Lua's own use */ #define l_likely(x) luai_likely(x) #define l_unlikely(x) luai_unlikely(x) #endif /* }================================================================== */ /* ** {================================================================== ** Language Variations ** ===================================================================== */ /* @@ LUA_NOCVTN2S/LUA_NOCVTS2N control how Lua performs some ** coercions. Define LUA_NOCVTN2S to turn off automatic coercion from ** numbers to strings. Define LUA_NOCVTS2N to turn off automatic ** coercion from strings to numbers. */ /* #define LUA_NOCVTN2S */ /* #define LUA_NOCVTS2N */ /* @@ LUA_USE_APICHECK turns on several consistency checks on the C API. ** Define it as a help when debugging C code. */ #if defined(LUA_USE_APICHECK) #include #define luai_apicheck(l,e) assert(e) #endif /* }================================================================== */ /* ** {================================================================== ** Macros that affect the API and must be stable (that is, must be the ** same when you compile Lua and when you compile code that links to ** Lua). ** ===================================================================== */ /* @@ LUAI_MAXSTACK limits the size of the Lua stack. ** CHANGE it if you need a different limit. This limit is arbitrary; ** its only purpose is to stop Lua from consuming unlimited stack ** space (and to reserve some numbers for pseudo-indices). ** (It must fit into max(size_t)/32.) */ #if LUAI_IS32INT #define LUAI_MAXSTACK 1000000 #else #define LUAI_MAXSTACK 15000 #endif /* @@ LUA_EXTRASPACE defines the size of a raw memory area associated with ** a Lua state with very fast access. ** CHANGE it if you need a different size. */ #define LUA_EXTRASPACE (sizeof(void *)) /* @@ LUA_IDSIZE gives the maximum size for the description of the source @@ of a function in debug information. ** CHANGE it if you want a different size. */ #define LUA_IDSIZE 60 /* @@ LUAL_BUFFERSIZE is the buffer size used by the lauxlib buffer system. */ #define LUAL_BUFFERSIZE ((int)(16 * sizeof(void*) * sizeof(lua_Number))) /* @@ LUAI_MAXALIGN defines fields that, when used in a union, ensure ** maximum alignment for the other items in that union. */ #define LUAI_MAXALIGN lua_Number n; double u; void *s; lua_Integer i; long l /* }================================================================== */ /* =================================================================== */ /* ** Local configuration. You can use this space to add your redefinitions ** without modifying the main part of the file. */ #endif /* ** $Id: lua.h $ ** Lua - A Scripting Language ** Lua.org, PUC-Rio, Brazil (http://www.lua.org) ** See Copyright Notice at the end of this file */ #ifndef lua_h #define lua_h #include #include /*#include "luaconf.h"*/ #define LUA_VERSION_MAJOR "5" #define LUA_VERSION_MINOR "4" #define LUA_VERSION_RELEASE "4" #define LUA_VERSION_NUM 504 #define LUA_VERSION_RELEASE_NUM (LUA_VERSION_NUM * 100 + 4) #define LUA_VERSION "Lua " LUA_VERSION_MAJOR "." LUA_VERSION_MINOR #define LUA_RELEASE LUA_VERSION "." LUA_VERSION_RELEASE #define LUA_COPYRIGHT LUA_RELEASE " Copyright (C) 1994-2022 Lua.org, PUC-Rio" #define LUA_AUTHORS "R. Ierusalimschy, L. H. de Figueiredo, W. Celes" /* mark for precompiled code ('Lua') */ #define LUA_SIGNATURE "\x1bLua" /* option for multiple returns in 'lua_pcall' and 'lua_call' */ #define LUA_MULTRET (-1) /* ** Pseudo-indices ** (-LUAI_MAXSTACK is the minimum valid index; we keep some free empty ** space after that to help overflow detection) */ #define LUA_REGISTRYINDEX (-LUAI_MAXSTACK - 1000) #define lua_upvalueindex(i) (LUA_REGISTRYINDEX - (i)) /* thread status */ #define LUA_OK 0 #define LUA_YIELD 1 #define LUA_ERRRUN 2 #define LUA_ERRSYNTAX 3 #define LUA_ERRMEM 4 #define LUA_ERRERR 5 typedef struct lua_State lua_State; /* ** basic types */ #define LUA_TNONE (-1) #define LUA_TNIL 0 #define LUA_TBOOLEAN 1 #define LUA_TLIGHTUSERDATA 2 #define LUA_TNUMBER 3 #define LUA_TSTRING 4 #define LUA_TTABLE 5 #define LUA_TFUNCTION 6 #define LUA_TUSERDATA 7 #define LUA_TTHREAD 8 #define LUA_NUMTYPES 9 /* minimum Lua stack available to a C function */ #define LUA_MINSTACK 20 /* predefined values in the registry */ #define LUA_RIDX_MAINTHREAD 1 #define LUA_RIDX_GLOBALS 2 #define LUA_RIDX_LAST LUA_RIDX_GLOBALS /* type of numbers in Lua */ typedef LUA_NUMBER lua_Number; /* type for integer functions */ typedef LUA_INTEGER lua_Integer; /* unsigned integer type */ typedef LUA_UNSIGNED lua_Unsigned; /* type for continuation-function contexts */ typedef LUA_KCONTEXT lua_KContext; /* ** Type for C functions registered with Lua */ typedef int (*lua_CFunction) (lua_State *L); /* ** Type for continuation functions */ typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx); /* ** Type for functions that read/write blocks when loading/dumping Lua chunks */ typedef const char * (*lua_Reader) (lua_State *L, void *ud, size_t *sz); typedef int (*lua_Writer) (lua_State *L, const void *p, size_t sz, void *ud); /* ** Type for memory-allocation functions */ typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize); /* ** Type for warning functions */ typedef void (*lua_WarnFunction) (void *ud, const char *msg, int tocont); /* ** generic extra include file */ #if defined(LUA_USER_H) #include LUA_USER_H #endif /* ** RCS ident string */ extern const char lua_ident[]; /* ** state manipulation */ LUA_API lua_State *(lua_newstate) (lua_Alloc f, void *ud); LUA_API void (lua_close) (lua_State *L); LUA_API lua_State *(lua_newthread) (lua_State *L); LUA_API int (lua_resetthread) (lua_State *L); LUA_API lua_CFunction (lua_atpanic) (lua_State *L, lua_CFunction panicf); LUA_API lua_Number (lua_version) (lua_State *L); /* ** basic stack manipulation */ LUA_API int (lua_absindex) (lua_State *L, int idx); LUA_API int (lua_gettop) (lua_State *L); LUA_API void (lua_settop) (lua_State *L, int idx); LUA_API void (lua_pushvalue) (lua_State *L, int idx); LUA_API void (lua_rotate) (lua_State *L, int idx, int n); LUA_API void (lua_copy) (lua_State *L, int fromidx, int toidx); LUA_API int (lua_checkstack) (lua_State *L, int n); LUA_API void (lua_xmove) (lua_State *from, lua_State *to, int n); /* ** access functions (stack -> C) */ LUA_API int (lua_isnumber) (lua_State *L, int idx); LUA_API int (lua_isstring) (lua_State *L, int idx); LUA_API int (lua_iscfunction) (lua_State *L, int idx); LUA_API int (lua_isinteger) (lua_State *L, int idx); LUA_API int (lua_isuserdata) (lua_State *L, int idx); LUA_API int (lua_type) (lua_State *L, int idx); LUA_API const char *(lua_typename) (lua_State *L, int tp); LUA_API lua_Number (lua_tonumberx) (lua_State *L, int idx, int *isnum); LUA_API lua_Integer (lua_tointegerx) (lua_State *L, int idx, int *isnum); LUA_API int (lua_toboolean) (lua_State *L, int idx); LUA_API const char *(lua_tolstring) (lua_State *L, int idx, size_t *len); LUA_API lua_Unsigned (lua_rawlen) (lua_State *L, int idx); LUA_API lua_CFunction (lua_tocfunction) (lua_State *L, int idx); LUA_API void *(lua_touserdata) (lua_State *L, int idx); LUA_API lua_State *(lua_tothread) (lua_State *L, int idx); LUA_API const void *(lua_topointer) (lua_State *L, int idx); /* ** Comparison and arithmetic functions */ #define LUA_OPADD 0 /* ORDER TM, ORDER OP */ #define LUA_OPSUB 1 #define LUA_OPMUL 2 #define LUA_OPMOD 3 #define LUA_OPPOW 4 #define LUA_OPDIV 5 #define LUA_OPIDIV 6 #define LUA_OPBAND 7 #define LUA_OPBOR 8 #define LUA_OPBXOR 9 #define LUA_OPSHL 10 #define LUA_OPSHR 11 #define LUA_OPUNM 12 #define LUA_OPBNOT 13 LUA_API void (lua_arith) (lua_State *L, int op); #define LUA_OPEQ 0 #define LUA_OPLT 1 #define LUA_OPLE 2 LUA_API int (lua_rawequal) (lua_State *L, int idx1, int idx2); LUA_API int (lua_compare) (lua_State *L, int idx1, int idx2, int op); /* ** push functions (C -> stack) */ LUA_API void (lua_pushnil) (lua_State *L); LUA_API void (lua_pushnumber) (lua_State *L, lua_Number n); LUA_API void (lua_pushinteger) (lua_State *L, lua_Integer n); LUA_API const char *(lua_pushlstring) (lua_State *L, const char *s, size_t len); LUA_API const char *(lua_pushstring) (lua_State *L, const char *s); LUA_API const char *(lua_pushvfstring) (lua_State *L, const char *fmt, va_list argp); LUA_API const char *(lua_pushfstring) (lua_State *L, const char *fmt, ...); LUA_API void (lua_pushcclosure) (lua_State *L, lua_CFunction fn, int n); LUA_API void (lua_pushboolean) (lua_State *L, int b); LUA_API void (lua_pushlightuserdata) (lua_State *L, void *p); LUA_API int (lua_pushthread) (lua_State *L); /* ** get functions (Lua -> stack) */ LUA_API int (lua_getglobal) (lua_State *L, const char *name); LUA_API int (lua_gettable) (lua_State *L, int idx); LUA_API int (lua_getfield) (lua_State *L, int idx, const char *k); LUA_API int (lua_geti) (lua_State *L, int idx, lua_Integer n); LUA_API int (lua_rawget) (lua_State *L, int idx); LUA_API int (lua_rawgeti) (lua_State *L, int idx, lua_Integer n); LUA_API int (lua_rawgetp) (lua_State *L, int idx, const void *p); LUA_API void (lua_createtable) (lua_State *L, int narr, int nrec); LUA_API void *(lua_newuserdatauv) (lua_State *L, size_t sz, int nuvalue); LUA_API int (lua_getmetatable) (lua_State *L, int objindex); LUA_API int (lua_getiuservalue) (lua_State *L, int idx, int n); /* ** set functions (stack -> Lua) */ LUA_API void (lua_setglobal) (lua_State *L, const char *name); LUA_API void (lua_settable) (lua_State *L, int idx); LUA_API void (lua_setfield) (lua_State *L, int idx, const char *k); LUA_API void (lua_seti) (lua_State *L, int idx, lua_Integer n); LUA_API void (lua_rawset) (lua_State *L, int idx); LUA_API void (lua_rawseti) (lua_State *L, int idx, lua_Integer n); LUA_API void (lua_rawsetp) (lua_State *L, int idx, const void *p); LUA_API int (lua_setmetatable) (lua_State *L, int objindex); LUA_API int (lua_setiuservalue) (lua_State *L, int idx, int n); /* ** 'load' and 'call' functions (load and run Lua code) */ LUA_API void (lua_callk) (lua_State *L, int nargs, int nresults, lua_KContext ctx, lua_KFunction k); #define lua_call(L,n,r) lua_callk(L, (n), (r), 0, NULL) LUA_API int (lua_pcallk) (lua_State *L, int nargs, int nresults, int errfunc, lua_KContext ctx, lua_KFunction k); #define lua_pcall(L,n,r,f) lua_pcallk(L, (n), (r), (f), 0, NULL) LUA_API int (lua_load) (lua_State *L, lua_Reader reader, void *dt, const char *chunkname, const char *mode); LUA_API int (lua_dump) (lua_State *L, lua_Writer writer, void *data, int strip); /* ** coroutine functions */ LUA_API int (lua_yieldk) (lua_State *L, int nresults, lua_KContext ctx, lua_KFunction k); LUA_API int (lua_resume) (lua_State *L, lua_State *from, int narg, int *nres); LUA_API int (lua_status) (lua_State *L); LUA_API int (lua_isyieldable) (lua_State *L); #define lua_yield(L,n) lua_yieldk(L, (n), 0, NULL) /* ** Warning-related functions */ LUA_API void (lua_setwarnf) (lua_State *L, lua_WarnFunction f, void *ud); LUA_API void (lua_warning) (lua_State *L, const char *msg, int tocont); /* ** garbage-collection function and options */ #define LUA_GCSTOP 0 #define LUA_GCRESTART 1 #define LUA_GCCOLLECT 2 #define LUA_GCCOUNT 3 #define LUA_GCCOUNTB 4 #define LUA_GCSTEP 5 #define LUA_GCSETPAUSE 6 #define LUA_GCSETSTEPMUL 7 #define LUA_GCISRUNNING 9 #define LUA_GCGEN 10 #define LUA_GCINC 11 LUA_API int (lua_gc) (lua_State *L, int what, ...); /* ** miscellaneous functions */ LUA_API int (lua_error) (lua_State *L); LUA_API int (lua_next) (lua_State *L, int idx); LUA_API void (lua_concat) (lua_State *L, int n); LUA_API void (lua_len) (lua_State *L, int idx); LUA_API size_t (lua_stringtonumber) (lua_State *L, const char *s); LUA_API lua_Alloc (lua_getallocf) (lua_State *L, void **ud); LUA_API void (lua_setallocf) (lua_State *L, lua_Alloc f, void *ud); LUA_API void (lua_toclose) (lua_State *L, int idx); LUA_API void (lua_closeslot) (lua_State *L, int idx); /* ** {============================================================== ** some useful macros ** =============================================================== */ #define lua_getextraspace(L) ((void *)((char *)(L) - LUA_EXTRASPACE)) #define lua_tonumber(L,i) lua_tonumberx(L,(i),NULL) #define lua_tointeger(L,i) lua_tointegerx(L,(i),NULL) #define lua_pop(L,n) lua_settop(L, -(n)-1) #define lua_newtable(L) lua_createtable(L, 0, 0) #define lua_register(L,n,f) (lua_pushcfunction(L, (f)), lua_setglobal(L, (n))) #define lua_pushcfunction(L,f) lua_pushcclosure(L, (f), 0) #define lua_isfunction(L,n) (lua_type(L, (n)) == LUA_TFUNCTION) #define lua_istable(L,n) (lua_type(L, (n)) == LUA_TTABLE) #define lua_islightuserdata(L,n) (lua_type(L, (n)) == LUA_TLIGHTUSERDATA) #define lua_isnil(L,n) (lua_type(L, (n)) == LUA_TNIL) #define lua_isboolean(L,n) (lua_type(L, (n)) == LUA_TBOOLEAN) #define lua_isthread(L,n) (lua_type(L, (n)) == LUA_TTHREAD) #define lua_isnone(L,n) (lua_type(L, (n)) == LUA_TNONE) #define lua_isnoneornil(L, n) (lua_type(L, (n)) <= 0) #define lua_pushliteral(L, s) lua_pushstring(L, "" s) #define lua_pushglobaltable(L) \ ((void)lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_GLOBALS)) #define lua_tostring(L,i) lua_tolstring(L, (i), NULL) #define lua_insert(L,idx) lua_rotate(L, (idx), 1) #define lua_remove(L,idx) (lua_rotate(L, (idx), -1), lua_pop(L, 1)) #define lua_replace(L,idx) (lua_copy(L, -1, (idx)), lua_pop(L, 1)) /* }============================================================== */ /* ** {============================================================== ** compatibility macros ** =============================================================== */ #if defined(LUA_COMPAT_APIINTCASTS) #define lua_pushunsigned(L,n) lua_pushinteger(L, (lua_Integer)(n)) #define lua_tounsignedx(L,i,is) ((lua_Unsigned)lua_tointegerx(L,i,is)) #define lua_tounsigned(L,i) lua_tounsignedx(L,(i),NULL) #endif #define lua_newuserdata(L,s) lua_newuserdatauv(L,s,1) #define lua_getuservalue(L,idx) lua_getiuservalue(L,idx,1) #define lua_setuservalue(L,idx) lua_setiuservalue(L,idx,1) #define LUA_NUMTAGS LUA_NUMTYPES /* }============================================================== */ /* ** {====================================================================== ** Debug API ** ======================================================================= */ /* ** Event codes */ #define LUA_HOOKCALL 0 #define LUA_HOOKRET 1 #define LUA_HOOKLINE 2 #define LUA_HOOKCOUNT 3 #define LUA_HOOKTAILCALL 4 /* ** Event masks */ #define LUA_MASKCALL (1 << LUA_HOOKCALL) #define LUA_MASKRET (1 << LUA_HOOKRET) #define LUA_MASKLINE (1 << LUA_HOOKLINE) #define LUA_MASKCOUNT (1 << LUA_HOOKCOUNT) typedef struct lua_Debug lua_Debug; /* activation record */ /* Functions to be called by the debugger in specific events */ typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar); LUA_API int (lua_getstack) (lua_State *L, int level, lua_Debug *ar); LUA_API int (lua_getinfo) (lua_State *L, const char *what, lua_Debug *ar); LUA_API const char *(lua_getlocal) (lua_State *L, const lua_Debug *ar, int n); LUA_API const char *(lua_setlocal) (lua_State *L, const lua_Debug *ar, int n); LUA_API const char *(lua_getupvalue) (lua_State *L, int funcindex, int n); LUA_API const char *(lua_setupvalue) (lua_State *L, int funcindex, int n); LUA_API void *(lua_upvalueid) (lua_State *L, int fidx, int n); LUA_API void (lua_upvaluejoin) (lua_State *L, int fidx1, int n1, int fidx2, int n2); LUA_API void (lua_sethook) (lua_State *L, lua_Hook func, int mask, int count); LUA_API lua_Hook (lua_gethook) (lua_State *L); LUA_API int (lua_gethookmask) (lua_State *L); LUA_API int (lua_gethookcount) (lua_State *L); LUA_API int (lua_setcstacklimit) (lua_State *L, unsigned int limit); struct lua_Debug { int event; const char *name; /* (n) */ const char *namewhat; /* (n) 'global', 'local', 'field', 'method' */ const char *what; /* (S) 'Lua', 'C', 'main', 'tail' */ const char *source; /* (S) */ size_t srclen; /* (S) */ int currentline; /* (l) */ int linedefined; /* (S) */ int lastlinedefined; /* (S) */ unsigned char nups; /* (u) number of upvalues */ unsigned char nparams;/* (u) number of parameters */ char isvararg; /* (u) */ char istailcall; /* (t) */ unsigned short ftransfer; /* (r) index of first value transferred */ unsigned short ntransfer; /* (r) number of transferred values */ char short_src[LUA_IDSIZE]; /* (S) */ /* private part */ struct CallInfo *i_ci; /* active function */ }; /* }====================================================================== */ /****************************************************************************** * Copyright (C) 1994-2022 Lua.org, PUC-Rio. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ******************************************************************************/ #endif /* ** $Id: lauxlib.h $ ** Auxiliary functions for building Lua libraries ** See Copyright Notice in lua.h */ #ifndef lauxlib_h #define lauxlib_h #include #include /*#include "luaconf.h"*/ /*#include "lua.h"*/ /* global table */ #define LUA_GNAME "_G" typedef struct luaL_Buffer luaL_Buffer; /* extra error code for 'luaL_loadfilex' */ #define LUA_ERRFILE (LUA_ERRERR+1) /* key, in the registry, for table of loaded modules */ #define LUA_LOADED_TABLE "_LOADED" /* key, in the registry, for table of preloaded loaders */ #define LUA_PRELOAD_TABLE "_PRELOAD" typedef struct luaL_Reg { const char *name; lua_CFunction func; } luaL_Reg; #define LUAL_NUMSIZES (sizeof(lua_Integer)*16 + sizeof(lua_Number)) LUALIB_API void (luaL_checkversion_) (lua_State *L, lua_Number ver, size_t sz); #define luaL_checkversion(L) \ luaL_checkversion_(L, LUA_VERSION_NUM, LUAL_NUMSIZES) LUALIB_API int (luaL_getmetafield) (lua_State *L, int obj, const char *e); LUALIB_API int (luaL_callmeta) (lua_State *L, int obj, const char *e); LUALIB_API const char *(luaL_tolstring) (lua_State *L, int idx, size_t *len); LUALIB_API int (luaL_argerror) (lua_State *L, int arg, const char *extramsg); LUALIB_API int (luaL_typeerror) (lua_State *L, int arg, const char *tname); LUALIB_API const char *(luaL_checklstring) (lua_State *L, int arg, size_t *l); LUALIB_API const char *(luaL_optlstring) (lua_State *L, int arg, const char *def, size_t *l); LUALIB_API lua_Number (luaL_checknumber) (lua_State *L, int arg); LUALIB_API lua_Number (luaL_optnumber) (lua_State *L, int arg, lua_Number def); LUALIB_API lua_Integer (luaL_checkinteger) (lua_State *L, int arg); LUALIB_API lua_Integer (luaL_optinteger) (lua_State *L, int arg, lua_Integer def); LUALIB_API void (luaL_checkstack) (lua_State *L, int sz, const char *msg); LUALIB_API void (luaL_checktype) (lua_State *L, int arg, int t); LUALIB_API void (luaL_checkany) (lua_State *L, int arg); LUALIB_API int (luaL_newmetatable) (lua_State *L, const char *tname); LUALIB_API void (luaL_setmetatable) (lua_State *L, const char *tname); LUALIB_API void *(luaL_testudata) (lua_State *L, int ud, const char *tname); LUALIB_API void *(luaL_checkudata) (lua_State *L, int ud, const char *tname); LUALIB_API void (luaL_where) (lua_State *L, int lvl); LUALIB_API int (luaL_error) (lua_State *L, const char *fmt, ...); LUALIB_API int (luaL_checkoption) (lua_State *L, int arg, const char *def, const char *const lst[]); LUALIB_API int (luaL_fileresult) (lua_State *L, int stat, const char *fname); LUALIB_API int (luaL_execresult) (lua_State *L, int stat); /* predefined references */ #define LUA_NOREF (-2) #define LUA_REFNIL (-1) LUALIB_API int (luaL_ref) (lua_State *L, int t); LUALIB_API void (luaL_unref) (lua_State *L, int t, int ref); LUALIB_API int (luaL_loadfilex) (lua_State *L, const char *filename, const char *mode); #define luaL_loadfile(L,f) luaL_loadfilex(L,f,NULL) LUALIB_API int (luaL_loadbufferx) (lua_State *L, const char *buff, size_t sz, const char *name, const char *mode); LUALIB_API int (luaL_loadstring) (lua_State *L, const char *s); LUALIB_API lua_State *(luaL_newstate) (void); LUALIB_API lua_Integer (luaL_len) (lua_State *L, int idx); LUALIB_API void (luaL_addgsub) (luaL_Buffer *b, const char *s, const char *p, const char *r); LUALIB_API const char *(luaL_gsub) (lua_State *L, const char *s, const char *p, const char *r); LUALIB_API void (luaL_setfuncs) (lua_State *L, const luaL_Reg *l, int nup); LUALIB_API int (luaL_getsubtable) (lua_State *L, int idx, const char *fname); LUALIB_API void (luaL_traceback) (lua_State *L, lua_State *L1, const char *msg, int level); LUALIB_API void (luaL_requiref) (lua_State *L, const char *modname, lua_CFunction openf, int glb); /* ** =============================================================== ** some useful macros ** =============================================================== */ #define luaL_newlibtable(L,l) \ lua_createtable(L, 0, sizeof(l)/sizeof((l)[0]) - 1) #define luaL_newlib(L,l) \ (luaL_checkversion(L), luaL_newlibtable(L,l), luaL_setfuncs(L,l,0)) #define luaL_argcheck(L, cond,arg,extramsg) \ ((void)(luai_likely(cond) || luaL_argerror(L, (arg), (extramsg)))) #define luaL_argexpected(L,cond,arg,tname) \ ((void)(luai_likely(cond) || luaL_typeerror(L, (arg), (tname)))) #define luaL_checkstring(L,n) (luaL_checklstring(L, (n), NULL)) #define luaL_optstring(L,n,d) (luaL_optlstring(L, (n), (d), NULL)) #define luaL_typename(L,i) lua_typename(L, lua_type(L,(i))) #define luaL_dofile(L, fn) \ (luaL_loadfile(L, fn) || lua_pcall(L, 0, LUA_MULTRET, 0)) #define luaL_dostring(L, s) \ (luaL_loadstring(L, s) || lua_pcall(L, 0, LUA_MULTRET, 0)) #define luaL_getmetatable(L,n) (lua_getfield(L, LUA_REGISTRYINDEX, (n))) #define luaL_opt(L,f,n,d) (lua_isnoneornil(L,(n)) ? (d) : f(L,(n))) #define luaL_loadbuffer(L,s,sz,n) luaL_loadbufferx(L,s,sz,n,NULL) /* ** Perform arithmetic operations on lua_Integer values with wrap-around ** semantics, as the Lua core does. */ #define luaL_intop(op,v1,v2) \ ((lua_Integer)((lua_Unsigned)(v1) op (lua_Unsigned)(v2))) /* push the value used to represent failure/error */ #define luaL_pushfail(L) lua_pushnil(L) /* ** Internal assertions for in-house debugging */ #if !defined(lua_assert) #if defined LUAI_ASSERT #include #define lua_assert(c) assert(c) #else #define lua_assert(c) ((void)0) #endif #endif /* ** {====================================================== ** Generic Buffer manipulation ** ======================================================= */ struct luaL_Buffer { char *b; /* buffer address */ size_t size; /* buffer size */ size_t n; /* number of characters in buffer */ lua_State *L; union { LUAI_MAXALIGN; /* ensure maximum alignment for buffer */ char b[LUAL_BUFFERSIZE]; /* initial buffer */ } init; }; #define luaL_bufflen(bf) ((bf)->n) #define luaL_buffaddr(bf) ((bf)->b) #define luaL_addchar(B,c) \ ((void)((B)->n < (B)->size || luaL_prepbuffsize((B), 1)), \ ((B)->b[(B)->n++] = (c))) #define luaL_addsize(B,s) ((B)->n += (s)) #define luaL_buffsub(B,s) ((B)->n -= (s)) LUALIB_API void (luaL_buffinit) (lua_State *L, luaL_Buffer *B); LUALIB_API char *(luaL_prepbuffsize) (luaL_Buffer *B, size_t sz); LUALIB_API void (luaL_addlstring) (luaL_Buffer *B, const char *s, size_t l); LUALIB_API void (luaL_addstring) (luaL_Buffer *B, const char *s); LUALIB_API void (luaL_addvalue) (luaL_Buffer *B); LUALIB_API void (luaL_pushresult) (luaL_Buffer *B); LUALIB_API void (luaL_pushresultsize) (luaL_Buffer *B, size_t sz); LUALIB_API char *(luaL_buffinitsize) (lua_State *L, luaL_Buffer *B, size_t sz); #define luaL_prepbuffer(B) luaL_prepbuffsize(B, LUAL_BUFFERSIZE) /* }====================================================== */ /* ** {====================================================== ** File handles for IO library ** ======================================================= */ /* ** A file handle is a userdata with metatable 'LUA_FILEHANDLE' and ** initial structure 'luaL_Stream' (it may contain other fields ** after that initial structure). */ #define LUA_FILEHANDLE "FILE*" typedef struct luaL_Stream { FILE *f; /* stream (NULL for incompletely created streams) */ lua_CFunction closef; /* to close stream (NULL for closed streams) */ } luaL_Stream; /* }====================================================== */ /* ** {================================================================== ** "Abstraction Layer" for basic report of messages and errors ** =================================================================== */ /* print a string */ #if !defined(lua_writestring) #define lua_writestring(s,l) fwrite((s), sizeof(char), (l), stdout) #endif /* print a newline and flush the output */ #if !defined(lua_writeline) #define lua_writeline() (lua_writestring("\n", 1), fflush(stdout)) #endif /* print an error message */ #if !defined(lua_writestringerror) #define lua_writestringerror(s,p) \ (fprintf(stderr, (s), (p)), fflush(stderr)) #endif /* }================================================================== */ /* ** {============================================================ ** Compatibility with deprecated conversions ** ============================================================= */ #if defined(LUA_COMPAT_APIINTCASTS) #define luaL_checkunsigned(L,a) ((lua_Unsigned)luaL_checkinteger(L,a)) #define luaL_optunsigned(L,a,d) \ ((lua_Unsigned)luaL_optinteger(L,a,(lua_Integer)(d))) #define luaL_checkint(L,n) ((int)luaL_checkinteger(L, (n))) #define luaL_optint(L,n,d) ((int)luaL_optinteger(L, (n), (d))) #define luaL_checklong(L,n) ((long)luaL_checkinteger(L, (n))) #define luaL_optlong(L,n,d) ((long)luaL_optinteger(L, (n), (d))) #endif /* }============================================================ */ #endif /* ** $Id: lualib.h $ ** Lua standard libraries ** See Copyright Notice in lua.h */ #ifndef lualib_h #define lualib_h /*#include "lua.h"*/ /* version suffix for environment variable names */ #define LUA_VERSUFFIX "_" LUA_VERSION_MAJOR "_" LUA_VERSION_MINOR LUAMOD_API int (luaopen_base) (lua_State *L); #define LUA_COLIBNAME "coroutine" LUAMOD_API int (luaopen_coroutine) (lua_State *L); #define LUA_TABLIBNAME "table" LUAMOD_API int (luaopen_table) (lua_State *L); #define LUA_IOLIBNAME "io" LUAMOD_API int (luaopen_io) (lua_State *L); #define LUA_OSLIBNAME "os" LUAMOD_API int (luaopen_os) (lua_State *L); #define LUA_STRLIBNAME "string" LUAMOD_API int (luaopen_string) (lua_State *L); #define LUA_UTF8LIBNAME "utf8" LUAMOD_API int (luaopen_utf8) (lua_State *L); #define LUA_MATHLIBNAME "math" LUAMOD_API int (luaopen_math) (lua_State *L); #define LUA_DBLIBNAME "debug" LUAMOD_API int (luaopen_debug) (lua_State *L); #define LUA_LOADLIBNAME "package" LUAMOD_API int (luaopen_package) (lua_State *L); /* open all previous libraries */ LUALIB_API void (luaL_openlibs) (lua_State *L); #endif #ifdef LUA_IMPL /* ** $Id: llimits.h $ ** Limits, basic types, and some other 'installation-dependent' definitions ** See Copyright Notice in lua.h */ #ifndef llimits_h #define llimits_h #include #include /*#include "lua.h"*/ /* ** 'lu_mem' and 'l_mem' are unsigned/signed integers big enough to count ** the total memory used by Lua (in bytes). Usually, 'size_t' and ** 'ptrdiff_t' should work, but we use 'long' for 16-bit machines. */ #if defined(LUAI_MEM) /* { external definitions? */ typedef LUAI_UMEM lu_mem; typedef LUAI_MEM l_mem; #elif LUAI_IS32INT /* }{ */ typedef size_t lu_mem; typedef ptrdiff_t l_mem; #else /* 16-bit ints */ /* }{ */ typedef unsigned long lu_mem; typedef long l_mem; #endif /* } */ /* chars used as small naturals (so that 'char' is reserved for characters) */ typedef unsigned char lu_byte; typedef signed char ls_byte; /* maximum value for size_t */ #define MAX_SIZET ((size_t)(~(size_t)0)) /* maximum size visible for Lua (must be representable in a lua_Integer) */ #define MAX_SIZE (sizeof(size_t) < sizeof(lua_Integer) ? MAX_SIZET \ : (size_t)(LUA_MAXINTEGER)) #define MAX_LUMEM ((lu_mem)(~(lu_mem)0)) #define MAX_LMEM ((l_mem)(MAX_LUMEM >> 1)) #define MAX_INT INT_MAX /* maximum value of an int */ /* ** floor of the log2 of the maximum signed value for integral type 't'. ** (That is, maximum 'n' such that '2^n' fits in the given signed type.) */ #define log2maxs(t) (sizeof(t) * 8 - 2) /* ** test whether an unsigned value is a power of 2 (or zero) */ #define ispow2(x) (((x) & ((x) - 1)) == 0) /* number of chars of a literal string without the ending \0 */ #define LL(x) (sizeof(x)/sizeof(char) - 1) /* ** conversion of pointer to unsigned integer: ** this is for hashing only; there is no problem if the integer ** cannot hold the whole pointer value */ #define point2uint(p) ((unsigned int)((size_t)(p) & UINT_MAX)) /* types of 'usual argument conversions' for lua_Number and lua_Integer */ typedef LUAI_UACNUMBER l_uacNumber; typedef LUAI_UACINT l_uacInt; /* ** Internal assertions for in-house debugging */ #if defined LUAI_ASSERT #undef NDEBUG #include #define lua_assert(c) assert(c) #endif #if defined(lua_assert) #define check_exp(c,e) (lua_assert(c), (e)) /* to avoid problems with conditions too long */ #define lua_longassert(c) ((c) ? (void)0 : lua_assert(0)) #else #define lua_assert(c) ((void)0) #define check_exp(c,e) (e) #define lua_longassert(c) ((void)0) #endif /* ** assertion for checking API calls */ #if !defined(luai_apicheck) #define luai_apicheck(l,e) ((void)l, lua_assert(e)) #endif #define api_check(l,e,msg) luai_apicheck(l,(e) && msg) /* macro to avoid warnings about unused variables */ #if !defined(UNUSED) #define UNUSED(x) ((void)(x)) #endif /* type casts (a macro highlights casts in the code) */ #define cast(t, exp) ((t)(exp)) #define cast_void(i) cast(void, (i)) #define cast_voidp(i) cast(void *, (i)) #define cast_num(i) cast(lua_Number, (i)) #define cast_int(i) cast(int, (i)) #define cast_uint(i) cast(unsigned int, (i)) #define cast_byte(i) cast(lu_byte, (i)) #define cast_uchar(i) cast(unsigned char, (i)) #define cast_char(i) cast(char, (i)) #define cast_charp(i) cast(char *, (i)) #define cast_sizet(i) cast(size_t, (i)) /* cast a signed lua_Integer to lua_Unsigned */ #if !defined(l_castS2U) #define l_castS2U(i) ((lua_Unsigned)(i)) #endif /* ** cast a lua_Unsigned to a signed lua_Integer; this cast is ** not strict ISO C, but two-complement architectures should ** work fine. */ #if !defined(l_castU2S) #define l_castU2S(i) ((lua_Integer)(i)) #endif /* ** non-return type */ #if !defined(l_noret) #if defined(__GNUC__) #define l_noret void __attribute__((noreturn)) #elif defined(_MSC_VER) && _MSC_VER >= 1200 #define l_noret void __declspec(noreturn) #else #define l_noret void #endif #endif /* ** Inline functions */ #if !defined(LUA_USE_C89) #define l_inline inline #elif defined(__GNUC__) #define l_inline __inline__ #else #define l_inline /* empty */ #endif #define l_sinline static l_inline /* ** type for virtual-machine instructions; ** must be an unsigned with (at least) 4 bytes (see details in lopcodes.h) */ #if LUAI_IS32INT typedef unsigned int l_uint32; #else typedef unsigned long l_uint32; #endif typedef l_uint32 Instruction; /* ** Maximum length for short strings, that is, strings that are ** internalized. (Cannot be smaller than reserved words or tags for ** metamethods, as these strings must be internalized; ** #("function") = 8, #("__newindex") = 10.) */ #if !defined(LUAI_MAXSHORTLEN) #define LUAI_MAXSHORTLEN 40 #endif /* ** Initial size for the string table (must be power of 2). ** The Lua core alone registers ~50 strings (reserved words + ** metaevent keys + a few others). Libraries would typically add ** a few dozens more. */ #if !defined(MINSTRTABSIZE) #define MINSTRTABSIZE 128 #endif /* ** Size of cache for strings in the API. 'N' is the number of ** sets (better be a prime) and "M" is the size of each set (M == 1 ** makes a direct cache.) */ #if !defined(STRCACHE_N) #define STRCACHE_N 53 #define STRCACHE_M 2 #endif /* minimum size for string buffer */ #if !defined(LUA_MINBUFFER) #define LUA_MINBUFFER 32 #endif /* ** Maximum depth for nested C calls, syntactical nested non-terminals, ** and other features implemented through recursion in C. (Value must ** fit in a 16-bit unsigned integer. It must also be compatible with ** the size of the C stack.) */ #if !defined(LUAI_MAXCCALLS) #define LUAI_MAXCCALLS 200 #endif /* ** macros that are executed whenever program enters the Lua core ** ('lua_lock') and leaves the core ('lua_unlock') */ #if !defined(lua_lock) #define lua_lock(L) ((void) 0) #define lua_unlock(L) ((void) 0) #endif /* ** macro executed during Lua functions at points where the ** function can yield. */ #if !defined(luai_threadyield) #define luai_threadyield(L) {lua_unlock(L); lua_lock(L);} #endif /* ** these macros allow user-specific actions when a thread is ** created/deleted/resumed/yielded. */ #if !defined(luai_userstateopen) #define luai_userstateopen(L) ((void)L) #endif #if !defined(luai_userstateclose) #define luai_userstateclose(L) ((void)L) #endif #if !defined(luai_userstatethread) #define luai_userstatethread(L,L1) ((void)L) #endif #if !defined(luai_userstatefree) #define luai_userstatefree(L,L1) ((void)L) #endif #if !defined(luai_userstateresume) #define luai_userstateresume(L,n) ((void)L) #endif #if !defined(luai_userstateyield) #define luai_userstateyield(L,n) ((void)L) #endif /* ** The luai_num* macros define the primitive operations over numbers. */ /* floor division (defined as 'floor(a/b)') */ #if !defined(luai_numidiv) #define luai_numidiv(L,a,b) ((void)L, l_floor(luai_numdiv(L,a,b))) #endif /* float division */ #if !defined(luai_numdiv) #define luai_numdiv(L,a,b) ((a)/(b)) #endif /* ** modulo: defined as 'a - floor(a/b)*b'; the direct computation ** using this definition has several problems with rounding errors, ** so it is better to use 'fmod'. 'fmod' gives the result of ** 'a - trunc(a/b)*b', and therefore must be corrected when ** 'trunc(a/b) ~= floor(a/b)'. That happens when the division has a ** non-integer negative result: non-integer result is equivalent to ** a non-zero remainder 'm'; negative result is equivalent to 'a' and ** 'b' with different signs, or 'm' and 'b' with different signs ** (as the result 'm' of 'fmod' has the same sign of 'a'). */ #if !defined(luai_nummod) #define luai_nummod(L,a,b,m) \ { (void)L; (m) = l_mathop(fmod)(a,b); \ if (((m) > 0) ? (b) < 0 : ((m) < 0 && (b) > 0)) (m) += (b); } #endif /* exponentiation */ #if !defined(luai_numpow) #define luai_numpow(L,a,b) \ ((void)L, (b == 2) ? (a)*(a) : l_mathop(pow)(a,b)) #endif /* the others are quite standard operations */ #if !defined(luai_numadd) #define luai_numadd(L,a,b) ((a)+(b)) #define luai_numsub(L,a,b) ((a)-(b)) #define luai_nummul(L,a,b) ((a)*(b)) #define luai_numunm(L,a) (-(a)) #define luai_numeq(a,b) ((a)==(b)) #define luai_numlt(a,b) ((a)<(b)) #define luai_numle(a,b) ((a)<=(b)) #define luai_numgt(a,b) ((a)>(b)) #define luai_numge(a,b) ((a)>=(b)) #define luai_numisnan(a) (!luai_numeq((a), (a))) #endif /* ** macro to control inclusion of some hard tests on stack reallocation */ #if !defined(HARDSTACKTESTS) #define condmovestack(L,pre,pos) ((void)0) #else /* realloc stack keeping its size */ #define condmovestack(L,pre,pos) \ { int sz_ = stacksize(L); pre; luaD_reallocstack((L), sz_, 0); pos; } #endif #if !defined(HARDMEMTESTS) #define condchangemem(L,pre,pos) ((void)0) #else #define condchangemem(L,pre,pos) \ { if (gcrunning(G(L))) { pre; luaC_fullgc(L, 0); pos; } } #endif #endif /* ** $Id: lobject.h $ ** Type definitions for Lua objects ** See Copyright Notice in lua.h */ #ifndef lobject_h #define lobject_h #include /*#include "llimits.h"*/ /*#include "lua.h"*/ /* ** Extra types for collectable non-values */ #define LUA_TUPVAL LUA_NUMTYPES /* upvalues */ #define LUA_TPROTO (LUA_NUMTYPES+1) /* function prototypes */ #define LUA_TDEADKEY (LUA_NUMTYPES+2) /* removed keys in tables */ /* ** number of all possible types (including LUA_TNONE but excluding DEADKEY) */ #define LUA_TOTALTYPES (LUA_TPROTO + 2) /* ** tags for Tagged Values have the following use of bits: ** bits 0-3: actual tag (a LUA_T* constant) ** bits 4-5: variant bits ** bit 6: whether value is collectable */ /* add variant bits to a type */ #define makevariant(t,v) ((t) | ((v) << 4)) /* ** Union of all Lua values */ typedef union Value { struct GCObject *gc; /* collectable objects */ void *p; /* light userdata */ lua_CFunction f; /* light C functions */ lua_Integer i; /* integer numbers */ lua_Number n; /* float numbers */ } Value; /* ** Tagged Values. This is the basic representation of values in Lua: ** an actual value plus a tag with its type. */ #define TValuefields Value value_; lu_byte tt_ typedef struct TValue { TValuefields; } TValue; #define val_(o) ((o)->value_) #define valraw(o) (val_(o)) /* raw type tag of a TValue */ #define rawtt(o) ((o)->tt_) /* tag with no variants (bits 0-3) */ #define novariant(t) ((t) & 0x0F) /* type tag of a TValue (bits 0-3 for tags + variant bits 4-5) */ #define withvariant(t) ((t) & 0x3F) #define ttypetag(o) withvariant(rawtt(o)) /* type of a TValue */ #define ttype(o) (novariant(rawtt(o))) /* Macros to test type */ #define checktag(o,t) (rawtt(o) == (t)) #define checktype(o,t) (ttype(o) == (t)) /* Macros for internal tests */ /* collectable object has the same tag as the original value */ #define righttt(obj) (ttypetag(obj) == gcvalue(obj)->tt) /* ** Any value being manipulated by the program either is non ** collectable, or the collectable object has the right tag ** and it is not dead. The option 'L == NULL' allows other ** macros using this one to be used where L is not available. */ #define checkliveness(L,obj) \ ((void)L, lua_longassert(!iscollectable(obj) || \ (righttt(obj) && (L == NULL || !isdead(G(L),gcvalue(obj)))))) /* Macros to set values */ /* set a value's tag */ #define settt_(o,t) ((o)->tt_=(t)) /* main macro to copy values (from 'obj2' to 'obj1') */ #define setobj(L,obj1,obj2) \ { TValue *io1=(obj1); const TValue *io2=(obj2); \ io1->value_ = io2->value_; settt_(io1, io2->tt_); \ checkliveness(L,io1); lua_assert(!isnonstrictnil(io1)); } /* ** Different types of assignments, according to source and destination. ** (They are mostly equal now, but may be different in the future.) */ /* from stack to stack */ #define setobjs2s(L,o1,o2) setobj(L,s2v(o1),s2v(o2)) /* to stack (not from same stack) */ #define setobj2s(L,o1,o2) setobj(L,s2v(o1),o2) /* from table to same table */ #define setobjt2t setobj /* to new object */ #define setobj2n setobj /* to table */ #define setobj2t setobj /* ** Entries in a Lua stack. Field 'tbclist' forms a list of all ** to-be-closed variables active in this stack. Dummy entries are ** used when the distance between two tbc variables does not fit ** in an unsigned short. They are represented by delta==0, and ** their real delta is always the maximum value that fits in ** that field. */ typedef union StackValue { TValue val; struct { TValuefields; unsigned short delta; } tbclist; } StackValue; /* index to stack elements */ typedef StackValue *StkId; /* convert a 'StackValue' to a 'TValue' */ #define s2v(o) (&(o)->val) /* ** {================================================================== ** Nil ** =================================================================== */ /* Standard nil */ #define LUA_VNIL makevariant(LUA_TNIL, 0) /* Empty slot (which might be different from a slot containing nil) */ #define LUA_VEMPTY makevariant(LUA_TNIL, 1) /* Value returned for a key not found in a table (absent key) */ #define LUA_VABSTKEY makevariant(LUA_TNIL, 2) /* macro to test for (any kind of) nil */ #define ttisnil(v) checktype((v), LUA_TNIL) /* macro to test for a standard nil */ #define ttisstrictnil(o) checktag((o), LUA_VNIL) #define setnilvalue(obj) settt_(obj, LUA_VNIL) #define isabstkey(v) checktag((v), LUA_VABSTKEY) /* ** macro to detect non-standard nils (used only in assertions) */ #define isnonstrictnil(v) (ttisnil(v) && !ttisstrictnil(v)) /* ** By default, entries with any kind of nil are considered empty. ** (In any definition, values associated with absent keys must also ** be accepted as empty.) */ #define isempty(v) ttisnil(v) /* macro defining a value corresponding to an absent key */ #define ABSTKEYCONSTANT {NULL}, LUA_VABSTKEY /* mark an entry as empty */ #define setempty(v) settt_(v, LUA_VEMPTY) /* }================================================================== */ /* ** {================================================================== ** Booleans ** =================================================================== */ #define LUA_VFALSE makevariant(LUA_TBOOLEAN, 0) #define LUA_VTRUE makevariant(LUA_TBOOLEAN, 1) #define ttisboolean(o) checktype((o), LUA_TBOOLEAN) #define ttisfalse(o) checktag((o), LUA_VFALSE) #define ttistrue(o) checktag((o), LUA_VTRUE) #define l_isfalse(o) (ttisfalse(o) || ttisnil(o)) #define setbfvalue(obj) settt_(obj, LUA_VFALSE) #define setbtvalue(obj) settt_(obj, LUA_VTRUE) /* }================================================================== */ /* ** {================================================================== ** Threads ** =================================================================== */ #define LUA_VTHREAD makevariant(LUA_TTHREAD, 0) #define ttisthread(o) checktag((o), ctb(LUA_VTHREAD)) #define thvalue(o) check_exp(ttisthread(o), gco2th(val_(o).gc)) #define setthvalue(L,obj,x) \ { TValue *io = (obj); lua_State *x_ = (x); \ val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VTHREAD)); \ checkliveness(L,io); } #define setthvalue2s(L,o,t) setthvalue(L,s2v(o),t) /* }================================================================== */ /* ** {================================================================== ** Collectable Objects ** =================================================================== */ /* ** Common Header for all collectable objects (in macro form, to be ** included in other objects) */ #define CommonHeader struct GCObject *next; lu_byte tt; lu_byte marked /* Common type for all collectable objects */ typedef struct GCObject { CommonHeader; } GCObject; /* Bit mark for collectable types */ #define BIT_ISCOLLECTABLE (1 << 6) #define iscollectable(o) (rawtt(o) & BIT_ISCOLLECTABLE) /* mark a tag as collectable */ #define ctb(t) ((t) | BIT_ISCOLLECTABLE) #define gcvalue(o) check_exp(iscollectable(o), val_(o).gc) #define gcvalueraw(v) ((v).gc) #define setgcovalue(L,obj,x) \ { TValue *io = (obj); GCObject *i_g=(x); \ val_(io).gc = i_g; settt_(io, ctb(i_g->tt)); } /* }================================================================== */ /* ** {================================================================== ** Numbers ** =================================================================== */ /* Variant tags for numbers */ #define LUA_VNUMINT makevariant(LUA_TNUMBER, 0) /* integer numbers */ #define LUA_VNUMFLT makevariant(LUA_TNUMBER, 1) /* float numbers */ #define ttisnumber(o) checktype((o), LUA_TNUMBER) #define ttisfloat(o) checktag((o), LUA_VNUMFLT) #define ttisinteger(o) checktag((o), LUA_VNUMINT) #define nvalue(o) check_exp(ttisnumber(o), \ (ttisinteger(o) ? cast_num(ivalue(o)) : fltvalue(o))) #define fltvalue(o) check_exp(ttisfloat(o), val_(o).n) #define ivalue(o) check_exp(ttisinteger(o), val_(o).i) #define fltvalueraw(v) ((v).n) #define ivalueraw(v) ((v).i) #define setfltvalue(obj,x) \ { TValue *io=(obj); val_(io).n=(x); settt_(io, LUA_VNUMFLT); } #define chgfltvalue(obj,x) \ { TValue *io=(obj); lua_assert(ttisfloat(io)); val_(io).n=(x); } #define setivalue(obj,x) \ { TValue *io=(obj); val_(io).i=(x); settt_(io, LUA_VNUMINT); } #define chgivalue(obj,x) \ { TValue *io=(obj); lua_assert(ttisinteger(io)); val_(io).i=(x); } /* }================================================================== */ /* ** {================================================================== ** Strings ** =================================================================== */ /* Variant tags for strings */ #define LUA_VSHRSTR makevariant(LUA_TSTRING, 0) /* short strings */ #define LUA_VLNGSTR makevariant(LUA_TSTRING, 1) /* long strings */ #define ttisstring(o) checktype((o), LUA_TSTRING) #define ttisshrstring(o) checktag((o), ctb(LUA_VSHRSTR)) #define ttislngstring(o) checktag((o), ctb(LUA_VLNGSTR)) #define tsvalueraw(v) (gco2ts((v).gc)) #define tsvalue(o) check_exp(ttisstring(o), gco2ts(val_(o).gc)) #define setsvalue(L,obj,x) \ { TValue *io = (obj); TString *x_ = (x); \ val_(io).gc = obj2gco(x_); settt_(io, ctb(x_->tt)); \ checkliveness(L,io); } /* set a string to the stack */ #define setsvalue2s(L,o,s) setsvalue(L,s2v(o),s) /* set a string to a new object */ #define setsvalue2n setsvalue /* ** Header for a string value. */ typedef struct TString { CommonHeader; lu_byte extra; /* reserved words for short strings; "has hash" for longs */ lu_byte shrlen; /* length for short strings */ unsigned int hash; union { size_t lnglen; /* length for long strings */ struct TString *hnext; /* linked list for hash table */ } u; char contents[1]; } TString; /* ** Get the actual string (array of bytes) from a 'TString'. */ #define getstr(ts) ((ts)->contents) /* get the actual string (array of bytes) from a Lua value */ #define svalue(o) getstr(tsvalue(o)) /* get string length from 'TString *s' */ #define tsslen(s) ((s)->tt == LUA_VSHRSTR ? (s)->shrlen : (s)->u.lnglen) /* get string length from 'TValue *o' */ #define vslen(o) tsslen(tsvalue(o)) /* }================================================================== */ /* ** {================================================================== ** Userdata ** =================================================================== */ /* ** Light userdata should be a variant of userdata, but for compatibility ** reasons they are also different types. */ #define LUA_VLIGHTUSERDATA makevariant(LUA_TLIGHTUSERDATA, 0) #define LUA_VUSERDATA makevariant(LUA_TUSERDATA, 0) #define ttislightuserdata(o) checktag((o), LUA_VLIGHTUSERDATA) #define ttisfulluserdata(o) checktag((o), ctb(LUA_VUSERDATA)) #define pvalue(o) check_exp(ttislightuserdata(o), val_(o).p) #define uvalue(o) check_exp(ttisfulluserdata(o), gco2u(val_(o).gc)) #define pvalueraw(v) ((v).p) #define setpvalue(obj,x) \ { TValue *io=(obj); val_(io).p=(x); settt_(io, LUA_VLIGHTUSERDATA); } #define setuvalue(L,obj,x) \ { TValue *io = (obj); Udata *x_ = (x); \ val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VUSERDATA)); \ checkliveness(L,io); } /* Ensures that addresses after this type are always fully aligned. */ typedef union UValue { TValue uv; LUAI_MAXALIGN; /* ensures maximum alignment for udata bytes */ } UValue; /* ** Header for userdata with user values; ** memory area follows the end of this structure. */ typedef struct Udata { CommonHeader; unsigned short nuvalue; /* number of user values */ size_t len; /* number of bytes */ struct Table *metatable; GCObject *gclist; UValue uv[1]; /* user values */ } Udata; /* ** Header for userdata with no user values. These userdata do not need ** to be gray during GC, and therefore do not need a 'gclist' field. ** To simplify, the code always use 'Udata' for both kinds of userdata, ** making sure it never accesses 'gclist' on userdata with no user values. ** This structure here is used only to compute the correct size for ** this representation. (The 'bindata' field in its end ensures correct ** alignment for binary data following this header.) */ typedef struct Udata0 { CommonHeader; unsigned short nuvalue; /* number of user values */ size_t len; /* number of bytes */ struct Table *metatable; union {LUAI_MAXALIGN;} bindata; } Udata0; /* compute the offset of the memory area of a userdata */ #define udatamemoffset(nuv) \ ((nuv) == 0 ? offsetof(Udata0, bindata) \ : offsetof(Udata, uv) + (sizeof(UValue) * (nuv))) /* get the address of the memory block inside 'Udata' */ #define getudatamem(u) (cast_charp(u) + udatamemoffset((u)->nuvalue)) /* compute the size of a userdata */ #define sizeudata(nuv,nb) (udatamemoffset(nuv) + (nb)) /* }================================================================== */ /* ** {================================================================== ** Prototypes ** =================================================================== */ #define LUA_VPROTO makevariant(LUA_TPROTO, 0) /* ** Description of an upvalue for function prototypes */ typedef struct Upvaldesc { TString *name; /* upvalue name (for debug information) */ lu_byte instack; /* whether it is in stack (register) */ lu_byte idx; /* index of upvalue (in stack or in outer function's list) */ lu_byte kind; /* kind of corresponding variable */ } Upvaldesc; /* ** Description of a local variable for function prototypes ** (used for debug information) */ typedef struct LocVar { TString *varname; int startpc; /* first point where variable is active */ int endpc; /* first point where variable is dead */ } LocVar; /* ** Associates the absolute line source for a given instruction ('pc'). ** The array 'lineinfo' gives, for each instruction, the difference in ** lines from the previous instruction. When that difference does not ** fit into a byte, Lua saves the absolute line for that instruction. ** (Lua also saves the absolute line periodically, to speed up the ** computation of a line number: we can use binary search in the ** absolute-line array, but we must traverse the 'lineinfo' array ** linearly to compute a line.) */ typedef struct AbsLineInfo { int pc; int line; } AbsLineInfo; /* ** Function Prototypes */ typedef struct Proto { CommonHeader; lu_byte numparams; /* number of fixed (named) parameters */ lu_byte is_vararg; lu_byte maxstacksize; /* number of registers needed by this function */ int sizeupvalues; /* size of 'upvalues' */ int sizek; /* size of 'k' */ int sizecode; int sizelineinfo; int sizep; /* size of 'p' */ int sizelocvars; int sizeabslineinfo; /* size of 'abslineinfo' */ int linedefined; /* debug information */ int lastlinedefined; /* debug information */ TValue *k; /* constants used by the function */ Instruction *code; /* opcodes */ struct Proto **p; /* functions defined inside the function */ Upvaldesc *upvalues; /* upvalue information */ ls_byte *lineinfo; /* information about source lines (debug information) */ AbsLineInfo *abslineinfo; /* idem */ LocVar *locvars; /* information about local variables (debug information) */ TString *source; /* used for debug information */ GCObject *gclist; } Proto; /* }================================================================== */ /* ** {================================================================== ** Functions ** =================================================================== */ #define LUA_VUPVAL makevariant(LUA_TUPVAL, 0) /* Variant tags for functions */ #define LUA_VLCL makevariant(LUA_TFUNCTION, 0) /* Lua closure */ #define LUA_VLCF makevariant(LUA_TFUNCTION, 1) /* light C function */ #define LUA_VCCL makevariant(LUA_TFUNCTION, 2) /* C closure */ #define ttisfunction(o) checktype(o, LUA_TFUNCTION) #define ttisLclosure(o) checktag((o), ctb(LUA_VLCL)) #define ttislcf(o) checktag((o), LUA_VLCF) #define ttisCclosure(o) checktag((o), ctb(LUA_VCCL)) #define ttisclosure(o) (ttisLclosure(o) || ttisCclosure(o)) #define isLfunction(o) ttisLclosure(o) #define clvalue(o) check_exp(ttisclosure(o), gco2cl(val_(o).gc)) #define clLvalue(o) check_exp(ttisLclosure(o), gco2lcl(val_(o).gc)) #define fvalue(o) check_exp(ttislcf(o), val_(o).f) #define clCvalue(o) check_exp(ttisCclosure(o), gco2ccl(val_(o).gc)) #define fvalueraw(v) ((v).f) #define setclLvalue(L,obj,x) \ { TValue *io = (obj); LClosure *x_ = (x); \ val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VLCL)); \ checkliveness(L,io); } #define setclLvalue2s(L,o,cl) setclLvalue(L,s2v(o),cl) #define setfvalue(obj,x) \ { TValue *io=(obj); val_(io).f=(x); settt_(io, LUA_VLCF); } #define setclCvalue(L,obj,x) \ { TValue *io = (obj); CClosure *x_ = (x); \ val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VCCL)); \ checkliveness(L,io); } /* ** Upvalues for Lua closures */ typedef struct UpVal { CommonHeader; lu_byte tbc; /* true if it represents a to-be-closed variable */ TValue *v; /* points to stack or to its own value */ union { struct { /* (when open) */ struct UpVal *next; /* linked list */ struct UpVal **previous; } open; TValue value; /* the value (when closed) */ } u; } UpVal; #define ClosureHeader \ CommonHeader; lu_byte nupvalues; GCObject *gclist typedef struct CClosure { ClosureHeader; lua_CFunction f; TValue upvalue[1]; /* list of upvalues */ } CClosure; typedef struct LClosure { ClosureHeader; struct Proto *p; UpVal *upvals[1]; /* list of upvalues */ } LClosure; typedef union Closure { CClosure c; LClosure l; } Closure; #define getproto(o) (clLvalue(o)->p) /* }================================================================== */ /* ** {================================================================== ** Tables ** =================================================================== */ #define LUA_VTABLE makevariant(LUA_TTABLE, 0) #define ttistable(o) checktag((o), ctb(LUA_VTABLE)) #define hvalue(o) check_exp(ttistable(o), gco2t(val_(o).gc)) #define sethvalue(L,obj,x) \ { TValue *io = (obj); Table *x_ = (x); \ val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VTABLE)); \ checkliveness(L,io); } #define sethvalue2s(L,o,h) sethvalue(L,s2v(o),h) /* ** Nodes for Hash tables: A pack of two TValue's (key-value pairs) ** plus a 'next' field to link colliding entries. The distribution ** of the key's fields ('key_tt' and 'key_val') not forming a proper ** 'TValue' allows for a smaller size for 'Node' both in 4-byte ** and 8-byte alignments. */ typedef union Node { struct NodeKey { TValuefields; /* fields for value */ lu_byte key_tt; /* key type */ int next; /* for chaining */ Value key_val; /* key value */ } u; TValue i_val; /* direct access to node's value as a proper 'TValue' */ } Node; /* copy a value into a key */ #define setnodekey(L,node,obj) \ { Node *n_=(node); const TValue *io_=(obj); \ n_->u.key_val = io_->value_; n_->u.key_tt = io_->tt_; \ checkliveness(L,io_); } /* copy a value from a key */ #define getnodekey(L,obj,node) \ { TValue *io_=(obj); const Node *n_=(node); \ io_->value_ = n_->u.key_val; io_->tt_ = n_->u.key_tt; \ checkliveness(L,io_); } /* ** About 'alimit': if 'isrealasize(t)' is true, then 'alimit' is the ** real size of 'array'. Otherwise, the real size of 'array' is the ** smallest power of two not smaller than 'alimit' (or zero iff 'alimit' ** is zero); 'alimit' is then used as a hint for #t. */ #define BITRAS (1 << 7) #define isrealasize(t) (!((t)->flags & BITRAS)) #define setrealasize(t) ((t)->flags &= cast_byte(~BITRAS)) #define setnorealasize(t) ((t)->flags |= BITRAS) typedef struct Table { CommonHeader; lu_byte flags; /* 1<

u.key_tt) #define keyval(node) ((node)->u.key_val) #define keyisnil(node) (keytt(node) == LUA_TNIL) #define keyisinteger(node) (keytt(node) == LUA_VNUMINT) #define keyival(node) (keyval(node).i) #define keyisshrstr(node) (keytt(node) == ctb(LUA_VSHRSTR)) #define keystrval(node) (gco2ts(keyval(node).gc)) #define setnilkey(node) (keytt(node) = LUA_TNIL) #define keyiscollectable(n) (keytt(n) & BIT_ISCOLLECTABLE) #define gckey(n) (keyval(n).gc) #define gckeyN(n) (keyiscollectable(n) ? gckey(n) : NULL) /* ** Dead keys in tables have the tag DEADKEY but keep their original ** gcvalue. This distinguishes them from regular keys but allows them to ** be found when searched in a special way. ('next' needs that to find ** keys removed from a table during a traversal.) */ #define setdeadkey(node) (keytt(node) = LUA_TDEADKEY) #define keyisdead(node) (keytt(node) == LUA_TDEADKEY) /* }================================================================== */ /* ** 'module' operation for hashing (size is always a power of 2) */ #define lmod(s,size) \ (check_exp((size&(size-1))==0, (cast_int((s) & ((size)-1))))) #define twoto(x) (1<<(x)) #define sizenode(t) (twoto((t)->lsizenode)) /* size of buffer for 'luaO_utf8esc' function */ #define UTF8BUFFSZ 8 LUAI_FUNC int luaO_utf8esc (char *buff, unsigned long x); LUAI_FUNC int luaO_ceillog2 (unsigned int x); LUAI_FUNC int luaO_rawarith (lua_State *L, int op, const TValue *p1, const TValue *p2, TValue *res); LUAI_FUNC void luaO_arith (lua_State *L, int op, const TValue *p1, const TValue *p2, StkId res); LUAI_FUNC size_t luaO_str2num (const char *s, TValue *o); LUAI_FUNC int luaO_hexavalue (int c); LUAI_FUNC void luaO_tostring (lua_State *L, TValue *obj); LUAI_FUNC const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp); LUAI_FUNC const char *luaO_pushfstring (lua_State *L, const char *fmt, ...); LUAI_FUNC void luaO_chunkid (char *out, const char *source, size_t srclen); #endif /* ** $Id: lmem.h $ ** Interface to Memory Manager ** See Copyright Notice in lua.h */ #ifndef lmem_h #define lmem_h #include /*#include "llimits.h"*/ /*#include "lua.h"*/ #define luaM_error(L) luaD_throw(L, LUA_ERRMEM) /* ** This macro tests whether it is safe to multiply 'n' by the size of ** type 't' without overflows. Because 'e' is always constant, it avoids ** the runtime division MAX_SIZET/(e). ** (The macro is somewhat complex to avoid warnings: The 'sizeof' ** comparison avoids a runtime comparison when overflow cannot occur. ** The compiler should be able to optimize the real test by itself, but ** when it does it, it may give a warning about "comparison is always ** false due to limited range of data type"; the +1 tricks the compiler, ** avoiding this warning but also this optimization.) */ #define luaM_testsize(n,e) \ (sizeof(n) >= sizeof(size_t) && cast_sizet((n)) + 1 > MAX_SIZET/(e)) #define luaM_checksize(L,n,e) \ (luaM_testsize(n,e) ? luaM_toobig(L) : cast_void(0)) /* ** Computes the minimum between 'n' and 'MAX_SIZET/sizeof(t)', so that ** the result is not larger than 'n' and cannot overflow a 'size_t' ** when multiplied by the size of type 't'. (Assumes that 'n' is an ** 'int' or 'unsigned int' and that 'int' is not larger than 'size_t'.) */ #define luaM_limitN(n,t) \ ((cast_sizet(n) <= MAX_SIZET/sizeof(t)) ? (n) : \ cast_uint((MAX_SIZET/sizeof(t)))) /* ** Arrays of chars do not need any test */ #define luaM_reallocvchar(L,b,on,n) \ cast_charp(luaM_saferealloc_(L, (b), (on)*sizeof(char), (n)*sizeof(char))) #define luaM_freemem(L, b, s) luaM_free_(L, (b), (s)) #define luaM_free(L, b) luaM_free_(L, (b), sizeof(*(b))) #define luaM_freearray(L, b, n) luaM_free_(L, (b), (n)*sizeof(*(b))) #define luaM_new(L,t) cast(t*, luaM_malloc_(L, sizeof(t), 0)) #define luaM_newvector(L,n,t) cast(t*, luaM_malloc_(L, (n)*sizeof(t), 0)) #define luaM_newvectorchecked(L,n,t) \ (luaM_checksize(L,n,sizeof(t)), luaM_newvector(L,n,t)) #define luaM_newobject(L,tag,s) luaM_malloc_(L, (s), tag) #define luaM_growvector(L,v,nelems,size,t,limit,e) \ ((v)=cast(t *, luaM_growaux_(L,v,nelems,&(size),sizeof(t), \ luaM_limitN(limit,t),e))) #define luaM_reallocvector(L, v,oldn,n,t) \ (cast(t *, luaM_realloc_(L, v, cast_sizet(oldn) * sizeof(t), \ cast_sizet(n) * sizeof(t)))) #define luaM_shrinkvector(L,v,size,fs,t) \ ((v)=cast(t *, luaM_shrinkvector_(L, v, &(size), fs, sizeof(t)))) LUAI_FUNC l_noret luaM_toobig (lua_State *L); /* not to be called directly */ LUAI_FUNC void *luaM_realloc_ (lua_State *L, void *block, size_t oldsize, size_t size); LUAI_FUNC void *luaM_saferealloc_ (lua_State *L, void *block, size_t oldsize, size_t size); LUAI_FUNC void luaM_free_ (lua_State *L, void *block, size_t osize); LUAI_FUNC void *luaM_growaux_ (lua_State *L, void *block, int nelems, int *size, int size_elem, int limit, const char *what); LUAI_FUNC void *luaM_shrinkvector_ (lua_State *L, void *block, int *nelem, int final_n, int size_elem); LUAI_FUNC void *luaM_malloc_ (lua_State *L, size_t size, int tag); #endif /* ** $Id: ltm.h $ ** Tag methods ** See Copyright Notice in lua.h */ #ifndef ltm_h #define ltm_h /*#include "lobject.h"*/ /* * WARNING: if you change the order of this enumeration, * grep "ORDER TM" and "ORDER OP" */ typedef enum { TM_INDEX, TM_NEWINDEX, TM_GC, TM_MODE, TM_LEN, TM_EQ, /* last tag method with fast access */ TM_ADD, TM_SUB, TM_MUL, TM_MOD, TM_POW, TM_DIV, TM_IDIV, TM_BAND, TM_BOR, TM_BXOR, TM_SHL, TM_SHR, TM_UNM, TM_BNOT, TM_LT, TM_LE, TM_CONCAT, TM_CALL, TM_CLOSE, TM_N /* number of elements in the enum */ } TMS; /* ** Mask with 1 in all fast-access methods. A 1 in any of these bits ** in the flag of a (meta)table means the metatable does not have the ** corresponding metamethod field. (Bit 7 of the flag is used for ** 'isrealasize'.) */ #define maskflags (~(~0u << (TM_EQ + 1))) /* ** Test whether there is no tagmethod. ** (Because tagmethods use raw accesses, the result may be an "empty" nil.) */ #define notm(tm) ttisnil(tm) #define gfasttm(g,et,e) ((et) == NULL ? NULL : \ ((et)->flags & (1u<<(e))) ? NULL : luaT_gettm(et, e, (g)->tmname[e])) #define fasttm(l,et,e) gfasttm(G(l), et, e) #define ttypename(x) luaT_typenames_[(x) + 1] LUAI_DDEC(const char *const luaT_typenames_[LUA_TOTALTYPES];) LUAI_FUNC const char *luaT_objtypename (lua_State *L, const TValue *o); LUAI_FUNC const TValue *luaT_gettm (Table *events, TMS event, TString *ename); LUAI_FUNC const TValue *luaT_gettmbyobj (lua_State *L, const TValue *o, TMS event); LUAI_FUNC void luaT_init (lua_State *L); LUAI_FUNC void luaT_callTM (lua_State *L, const TValue *f, const TValue *p1, const TValue *p2, const TValue *p3); LUAI_FUNC void luaT_callTMres (lua_State *L, const TValue *f, const TValue *p1, const TValue *p2, StkId p3); LUAI_FUNC void luaT_trybinTM (lua_State *L, const TValue *p1, const TValue *p2, StkId res, TMS event); LUAI_FUNC void luaT_tryconcatTM (lua_State *L); LUAI_FUNC void luaT_trybinassocTM (lua_State *L, const TValue *p1, const TValue *p2, int inv, StkId res, TMS event); LUAI_FUNC void luaT_trybiniTM (lua_State *L, const TValue *p1, lua_Integer i2, int inv, StkId res, TMS event); LUAI_FUNC int luaT_callorderTM (lua_State *L, const TValue *p1, const TValue *p2, TMS event); LUAI_FUNC int luaT_callorderiTM (lua_State *L, const TValue *p1, int v2, int inv, int isfloat, TMS event); LUAI_FUNC void luaT_adjustvarargs (lua_State *L, int nfixparams, struct CallInfo *ci, const Proto *p); LUAI_FUNC void luaT_getvarargs (lua_State *L, struct CallInfo *ci, StkId where, int wanted); #endif /* ** $Id: lstate.h $ ** Global State ** See Copyright Notice in lua.h */ #ifndef lstate_h #define lstate_h /*#include "lua.h"*/ /*#include "lobject.h"*/ /*#include "ltm.h"*/ /*#include "lzio.h"*/ /* ** Some notes about garbage-collected objects: All objects in Lua must ** be kept somehow accessible until being freed, so all objects always ** belong to one (and only one) of these lists, using field 'next' of ** the 'CommonHeader' for the link: ** ** 'allgc': all objects not marked for finalization; ** 'finobj': all objects marked for finalization; ** 'tobefnz': all objects ready to be finalized; ** 'fixedgc': all objects that are not to be collected (currently ** only small strings, such as reserved words). ** ** For the generational collector, some of these lists have marks for ** generations. Each mark points to the first element in the list for ** that particular generation; that generation goes until the next mark. ** ** 'allgc' -> 'survival': new objects; ** 'survival' -> 'old': objects that survived one collection; ** 'old1' -> 'reallyold': objects that became old in last collection; ** 'reallyold' -> NULL: objects old for more than one cycle. ** ** 'finobj' -> 'finobjsur': new objects marked for finalization; ** 'finobjsur' -> 'finobjold1': survived """"; ** 'finobjold1' -> 'finobjrold': just old """"; ** 'finobjrold' -> NULL: really old """". ** ** All lists can contain elements older than their main ages, due ** to 'luaC_checkfinalizer' and 'udata2finalize', which move ** objects between the normal lists and the "marked for finalization" ** lists. Moreover, barriers can age young objects in young lists as ** OLD0, which then become OLD1. However, a list never contains ** elements younger than their main ages. ** ** The generational collector also uses a pointer 'firstold1', which ** points to the first OLD1 object in the list. It is used to optimize ** 'markold'. (Potentially OLD1 objects can be anywhere between 'allgc' ** and 'reallyold', but often the list has no OLD1 objects or they are ** after 'old1'.) Note the difference between it and 'old1': ** 'firstold1': no OLD1 objects before this point; there can be all ** ages after it. ** 'old1': no objects younger than OLD1 after this point. */ /* ** Moreover, there is another set of lists that control gray objects. ** These lists are linked by fields 'gclist'. (All objects that ** can become gray have such a field. The field is not the same ** in all objects, but it always has this name.) Any gray object ** must belong to one of these lists, and all objects in these lists ** must be gray (with two exceptions explained below): ** ** 'gray': regular gray objects, still waiting to be visited. ** 'grayagain': objects that must be revisited at the atomic phase. ** That includes ** - black objects got in a write barrier; ** - all kinds of weak tables during propagation phase; ** - all threads. ** 'weak': tables with weak values to be cleared; ** 'ephemeron': ephemeron tables with white->white entries; ** 'allweak': tables with weak keys and/or weak values to be cleared. ** ** The exceptions to that "gray rule" are: ** - TOUCHED2 objects in generational mode stay in a gray list (because ** they must be visited again at the end of the cycle), but they are ** marked black because assignments to them must activate barriers (to ** move them back to TOUCHED1). ** - Open upvales are kept gray to avoid barriers, but they stay out ** of gray lists. (They don't even have a 'gclist' field.) */ /* ** About 'nCcalls': This count has two parts: the lower 16 bits counts ** the number of recursive invocations in the C stack; the higher ** 16 bits counts the number of non-yieldable calls in the stack. ** (They are together so that we can change and save both with one ** instruction.) */ /* true if this thread does not have non-yieldable calls in the stack */ #define yieldable(L) (((L)->nCcalls & 0xffff0000) == 0) /* real number of C calls */ #define getCcalls(L) ((L)->nCcalls & 0xffff) /* Increment the number of non-yieldable calls */ #define incnny(L) ((L)->nCcalls += 0x10000) /* Decrement the number of non-yieldable calls */ #define decnny(L) ((L)->nCcalls -= 0x10000) /* Non-yieldable call increment */ #define nyci (0x10000 | 1) struct lua_longjmp; /* defined in ldo.c */ /* ** Atomic type (relative to signals) to better ensure that 'lua_sethook' ** is thread safe */ #if !defined(l_signalT) #include #define l_signalT sig_atomic_t #endif /* ** Extra stack space to handle TM calls and some other extras. This ** space is not included in 'stack_last'. It is used only to avoid stack ** checks, either because the element will be promptly popped or because ** there will be a stack check soon after the push. Function frames ** never use this extra space, so it does not need to be kept clean. */ #define EXTRA_STACK 5 #define BASIC_STACK_SIZE (2*LUA_MINSTACK) #define stacksize(th) cast_int((th)->stack_last - (th)->stack) /* kinds of Garbage Collection */ #define KGC_INC 0 /* incremental gc */ #define KGC_GEN 1 /* generational gc */ typedef struct stringtable { TString **hash; int nuse; /* number of elements */ int size; } stringtable; /* ** Information about a call. ** About union 'u': ** - field 'l' is used only for Lua functions; ** - field 'c' is used only for C functions. ** About union 'u2': ** - field 'funcidx' is used only by C functions while doing a ** protected call; ** - field 'nyield' is used only while a function is "doing" an ** yield (from the yield until the next resume); ** - field 'nres' is used only while closing tbc variables when ** returning from a function; ** - field 'transferinfo' is used only during call/returnhooks, ** before the function starts or after it ends. */ typedef struct CallInfo { StkId func; /* function index in the stack */ StkId top; /* top for this function */ struct CallInfo *previous, *next; /* dynamic call link */ union { struct { /* only for Lua functions */ const Instruction *savedpc; volatile l_signalT trap; int nextraargs; /* # of extra arguments in vararg functions */ } l; struct { /* only for C functions */ lua_KFunction k; /* continuation in case of yields */ ptrdiff_t old_errfunc; lua_KContext ctx; /* context info. in case of yields */ } c; } u; union { int funcidx; /* called-function index */ int nyield; /* number of values yielded */ int nres; /* number of values returned */ struct { /* info about transferred values (for call/return hooks) */ unsigned short ftransfer; /* offset of first value transferred */ unsigned short ntransfer; /* number of values transferred */ } transferinfo; } u2; short nresults; /* expected number of results from this function */ unsigned short callstatus; } CallInfo; /* ** Bits in CallInfo status */ #define CIST_OAH (1<<0) /* original value of 'allowhook' */ #define CIST_C (1<<1) /* call is running a C function */ #define CIST_FRESH (1<<2) /* call is on a fresh "luaV_execute" frame */ #define CIST_HOOKED (1<<3) /* call is running a debug hook */ #define CIST_YPCALL (1<<4) /* doing a yieldable protected call */ #define CIST_TAIL (1<<5) /* call was tail called */ #define CIST_HOOKYIELD (1<<6) /* last hook called yielded */ #define CIST_FIN (1<<7) /* function "called" a finalizer */ #define CIST_TRAN (1<<8) /* 'ci' has transfer information */ #define CIST_CLSRET (1<<9) /* function is closing tbc variables */ /* Bits 10-12 are used for CIST_RECST (see below) */ #define CIST_RECST 10 #if defined(LUA_COMPAT_LT_LE) #define CIST_LEQ (1<<13) /* using __lt for __le */ #endif /* ** Field CIST_RECST stores the "recover status", used to keep the error ** status while closing to-be-closed variables in coroutines, so that ** Lua can correctly resume after an yield from a __close method called ** because of an error. (Three bits are enough for error status.) */ #define getcistrecst(ci) (((ci)->callstatus >> CIST_RECST) & 7) #define setcistrecst(ci,st) \ check_exp(((st) & 7) == (st), /* status must fit in three bits */ \ ((ci)->callstatus = ((ci)->callstatus & ~(7 << CIST_RECST)) \ | ((st) << CIST_RECST))) /* active function is a Lua function */ #define isLua(ci) (!((ci)->callstatus & CIST_C)) /* call is running Lua code (not a hook) */ #define isLuacode(ci) (!((ci)->callstatus & (CIST_C | CIST_HOOKED))) /* assume that CIST_OAH has offset 0 and that 'v' is strictly 0/1 */ #define setoah(st,v) ((st) = ((st) & ~CIST_OAH) | (v)) #define getoah(st) ((st) & CIST_OAH) /* ** 'global state', shared by all threads of this state */ typedef struct global_State { lua_Alloc frealloc; /* function to reallocate memory */ void *ud; /* auxiliary data to 'frealloc' */ l_mem totalbytes; /* number of bytes currently allocated - GCdebt */ l_mem GCdebt; /* bytes allocated not yet compensated by the collector */ lu_mem GCestimate; /* an estimate of the non-garbage memory in use */ lu_mem lastatomic; /* see function 'genstep' in file 'lgc.c' */ stringtable strt; /* hash table for strings */ TValue l_registry; TValue nilvalue; /* a nil value */ unsigned int seed; /* randomized seed for hashes */ lu_byte currentwhite; lu_byte gcstate; /* state of garbage collector */ lu_byte gckind; /* kind of GC running */ lu_byte gcstopem; /* stops emergency collections */ lu_byte genminormul; /* control for minor generational collections */ lu_byte genmajormul; /* control for major generational collections */ lu_byte gcstp; /* control whether GC is running */ lu_byte gcemergency; /* true if this is an emergency collection */ lu_byte gcpause; /* size of pause between successive GCs */ lu_byte gcstepmul; /* GC "speed" */ lu_byte gcstepsize; /* (log2 of) GC granularity */ GCObject *allgc; /* list of all collectable objects */ GCObject **sweepgc; /* current position of sweep in list */ GCObject *finobj; /* list of collectable objects with finalizers */ GCObject *gray; /* list of gray objects */ GCObject *grayagain; /* list of objects to be traversed atomically */ GCObject *weak; /* list of tables with weak values */ GCObject *ephemeron; /* list of ephemeron tables (weak keys) */ GCObject *allweak; /* list of all-weak tables */ GCObject *tobefnz; /* list of userdata to be GC */ GCObject *fixedgc; /* list of objects not to be collected */ /* fields for generational collector */ GCObject *survival; /* start of objects that survived one GC cycle */ GCObject *old1; /* start of old1 objects */ GCObject *reallyold; /* objects more than one cycle old ("really old") */ GCObject *firstold1; /* first OLD1 object in the list (if any) */ GCObject *finobjsur; /* list of survival objects with finalizers */ GCObject *finobjold1; /* list of old1 objects with finalizers */ GCObject *finobjrold; /* list of really old objects with finalizers */ struct lua_State *twups; /* list of threads with open upvalues */ lua_CFunction panic; /* to be called in unprotected errors */ struct lua_State *mainthread; TString *memerrmsg; /* message for memory-allocation errors */ TString *tmname[TM_N]; /* array with tag-method names */ struct Table *mt[LUA_NUMTAGS]; /* metatables for basic types */ TString *strcache[STRCACHE_N][STRCACHE_M]; /* cache for strings in API */ lua_WarnFunction warnf; /* warning function */ void *ud_warn; /* auxiliary data to 'warnf' */ } global_State; /* ** 'per thread' state */ struct lua_State { CommonHeader; lu_byte status; lu_byte allowhook; unsigned short nci; /* number of items in 'ci' list */ StkId top; /* first free slot in the stack */ global_State *l_G; CallInfo *ci; /* call info for current function */ StkId stack_last; /* end of stack (last element + 1) */ StkId stack; /* stack base */ UpVal *openupval; /* list of open upvalues in this stack */ StkId tbclist; /* list of to-be-closed variables */ GCObject *gclist; struct lua_State *twups; /* list of threads with open upvalues */ struct lua_longjmp *errorJmp; /* current error recover point */ CallInfo base_ci; /* CallInfo for first level (C calling Lua) */ volatile lua_Hook hook; ptrdiff_t errfunc; /* current error handling function (stack index) */ l_uint32 nCcalls; /* number of nested (non-yieldable | C) calls */ int oldpc; /* last pc traced */ int basehookcount; int hookcount; volatile l_signalT hookmask; }; #define G(L) (L->l_G) /* ** 'g->nilvalue' being a nil value flags that the state was completely ** build. */ #define completestate(g) ttisnil(&g->nilvalue) /* ** Union of all collectable objects (only for conversions) ** ISO C99, 6.5.2.3 p.5: ** "if a union contains several structures that share a common initial ** sequence [...], and if the union object currently contains one ** of these structures, it is permitted to inspect the common initial ** part of any of them anywhere that a declaration of the complete type ** of the union is visible." */ union GCUnion { GCObject gc; /* common header */ struct TString ts; struct Udata u; union Closure cl; struct Table h; struct Proto p; struct lua_State th; /* thread */ struct UpVal upv; }; /* ** ISO C99, 6.7.2.1 p.14: ** "A pointer to a union object, suitably converted, points to each of ** its members [...], and vice versa." */ #define cast_u(o) cast(union GCUnion *, (o)) /* macros to convert a GCObject into a specific value */ #define gco2ts(o) \ check_exp(novariant((o)->tt) == LUA_TSTRING, &((cast_u(o))->ts)) #define gco2u(o) check_exp((o)->tt == LUA_VUSERDATA, &((cast_u(o))->u)) #define gco2lcl(o) check_exp((o)->tt == LUA_VLCL, &((cast_u(o))->cl.l)) #define gco2ccl(o) check_exp((o)->tt == LUA_VCCL, &((cast_u(o))->cl.c)) #define gco2cl(o) \ check_exp(novariant((o)->tt) == LUA_TFUNCTION, &((cast_u(o))->cl)) #define gco2t(o) check_exp((o)->tt == LUA_VTABLE, &((cast_u(o))->h)) #define gco2p(o) check_exp((o)->tt == LUA_VPROTO, &((cast_u(o))->p)) #define gco2th(o) check_exp((o)->tt == LUA_VTHREAD, &((cast_u(o))->th)) #define gco2upv(o) check_exp((o)->tt == LUA_VUPVAL, &((cast_u(o))->upv)) /* ** macro to convert a Lua object into a GCObject ** (The access to 'tt' tries to ensure that 'v' is actually a Lua object.) */ #define obj2gco(v) check_exp((v)->tt >= LUA_TSTRING, &(cast_u(v)->gc)) /* actual number of total bytes allocated */ #define gettotalbytes(g) cast(lu_mem, (g)->totalbytes + (g)->GCdebt) LUAI_FUNC void luaE_setdebt (global_State *g, l_mem debt); LUAI_FUNC void luaE_freethread (lua_State *L, lua_State *L1); LUAI_FUNC CallInfo *luaE_extendCI (lua_State *L); LUAI_FUNC void luaE_freeCI (lua_State *L); LUAI_FUNC void luaE_shrinkCI (lua_State *L); LUAI_FUNC void luaE_checkcstack (lua_State *L); LUAI_FUNC void luaE_incCstack (lua_State *L); LUAI_FUNC void luaE_warning (lua_State *L, const char *msg, int tocont); LUAI_FUNC void luaE_warnerror (lua_State *L, const char *where); LUAI_FUNC int luaE_resetthread (lua_State *L, int status); #endif /* ** $Id: lzio.h $ ** Buffered streams ** See Copyright Notice in lua.h */ #ifndef lzio_h #define lzio_h /*#include "lua.h"*/ /*#include "lmem.h"*/ #define EOZ (-1) /* end of stream */ typedef struct Zio ZIO; #define zgetc(z) (((z)->n--)>0 ? cast_uchar(*(z)->p++) : luaZ_fill(z)) typedef struct Mbuffer { char *buffer; size_t n; size_t buffsize; } Mbuffer; #define luaZ_initbuffer(L, buff) ((buff)->buffer = NULL, (buff)->buffsize = 0) #define luaZ_buffer(buff) ((buff)->buffer) #define luaZ_sizebuffer(buff) ((buff)->buffsize) #define luaZ_bufflen(buff) ((buff)->n) #define luaZ_buffremove(buff,i) ((buff)->n -= (i)) #define luaZ_resetbuffer(buff) ((buff)->n = 0) #define luaZ_resizebuffer(L, buff, size) \ ((buff)->buffer = luaM_reallocvchar(L, (buff)->buffer, \ (buff)->buffsize, size), \ (buff)->buffsize = size) #define luaZ_freebuffer(L, buff) luaZ_resizebuffer(L, buff, 0) LUAI_FUNC void luaZ_init (lua_State *L, ZIO *z, lua_Reader reader, void *data); LUAI_FUNC size_t luaZ_read (ZIO* z, void *b, size_t n); /* read next n bytes */ /* --------- Private Part ------------------ */ struct Zio { size_t n; /* bytes still unread */ const char *p; /* current position in buffer */ lua_Reader reader; /* reader function */ void *data; /* additional data */ lua_State *L; /* Lua state (for reader) */ }; LUAI_FUNC int luaZ_fill (ZIO *z); #endif /* ** $Id: lopcodes.h $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lopcodes_h #define lopcodes_h /*#include "llimits.h"*/ /*=========================================================================== We assume that instructions are unsigned 32-bit integers. All instructions have an opcode in the first 7 bits. Instructions can have the following formats: 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 iABC C(8) | B(8) |k| A(8) | Op(7) | iABx Bx(17) | A(8) | Op(7) | iAsBx sBx (signed)(17) | A(8) | Op(7) | iAx Ax(25) | Op(7) | isJ sJ(25) | Op(7) | A signed argument is represented in excess K: the represented value is the written unsigned value minus K, where K is half the maximum for the corresponding unsigned argument. ===========================================================================*/ enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ /* ** size and position of opcode arguments. */ #define SIZE_C 8 #define SIZE_B 8 #define SIZE_Bx (SIZE_C + SIZE_B + 1) #define SIZE_A 8 #define SIZE_Ax (SIZE_Bx + SIZE_A) #define SIZE_sJ (SIZE_Bx + SIZE_A) #define SIZE_OP 7 #define POS_OP 0 #define POS_A (POS_OP + SIZE_OP) #define POS_k (POS_A + SIZE_A) #define POS_B (POS_k + 1) #define POS_C (POS_B + SIZE_B) #define POS_Bx POS_k #define POS_Ax POS_A #define POS_sJ POS_A /* ** limits for opcode arguments. ** we use (signed) 'int' to manipulate most arguments, ** so they must fit in ints. */ /* Check whether type 'int' has at least 'b' bits ('b' < 32) */ #define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1) #if L_INTHASBITS(SIZE_Bx) #define MAXARG_Bx ((1<>1) /* 'sBx' is signed */ #if L_INTHASBITS(SIZE_Ax) #define MAXARG_Ax ((1<> 1) #define MAXARG_A ((1<> 1) #define int2sC(i) ((i) + OFFSET_sC) #define sC2int(i) ((i) - OFFSET_sC) /* creates a mask with 'n' 1 bits at position 'p' */ #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) /* creates a mask with 'n' 0 bits at position 'p' */ #define MASK0(n,p) (~MASK1(n,p)) /* ** the following macros help to manipulate instructions */ #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<>(pos)) & MASK1(size,0))) #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ ((cast(Instruction, v)<> sC */ OP_SHLI,/* A B sC R[A] := sC << R[B] */ OP_ADD,/* A B C R[A] := R[B] + R[C] */ OP_SUB,/* A B C R[A] := R[B] - R[C] */ OP_MUL,/* A B C R[A] := R[B] * R[C] */ OP_MOD,/* A B C R[A] := R[B] % R[C] */ OP_POW,/* A B C R[A] := R[B] ^ R[C] */ OP_DIV,/* A B C R[A] := R[B] / R[C] */ OP_IDIV,/* A B C R[A] := R[B] // R[C] */ OP_BAND,/* A B C R[A] := R[B] & R[C] */ OP_BOR,/* A B C R[A] := R[B] | R[C] */ OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ OP_SHL,/* A B C R[A] := R[B] << R[C] */ OP_SHR,/* A B C R[A] := R[B] >> R[C] */ OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */ OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ OP_UNM,/* A B R[A] := -R[B] */ OP_BNOT,/* A B R[A] := ~R[B] */ OP_NOT,/* A B R[A] := not R[B] */ OP_LEN,/* A B R[A] := #R[B] (length operator) */ OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ OP_CLOSE,/* A close all upvalues >= R[A] */ OP_TBC,/* A mark variable A "to be closed" */ OP_JMP,/* sJ pc += sJ */ OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ OP_TEST,/* A k if (not R[A] == k) then pc++ */ OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */ OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ OP_RETURN0,/* return */ OP_RETURN1,/* A return R[A] */ OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ OP_FORPREP,/* A Bx ; if not to run then pc+=Bx+1; */ OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */ OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ OP_VARARGPREP,/*A (adjust vararg parameters) */ OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ } OpCode; #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) /*=========================================================================== Notes: (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean value, in a code equivalent to (not cond ? false : true). (It produces false and skips the next instruction producing true.) (*) Opcodes OP_MMBIN and variants follow each arithmetic and bitwise opcode. If the operation succeeds, it skips this next opcode. Otherwise, this opcode calls the corresponding metamethod. (*) Opcode OP_TESTSET is used in short-circuit expressions that need both to jump and to produce a value, such as (a = b or c). (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then 'top' is set to last_result+1, so next open instruction (OP_CALL, OP_RETURN*, OP_SETLIST) may use 'top'. (*) In OP_VARARG, if (C == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to 'top'. (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always OP_EXTRAARG. (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the bits of C). (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a power of 2) plus 1, or zero for size zero. If not k, the array size is C. Otherwise, the array size is EXTRAARG _ C. (*) For comparisons, k specifies what condition the test should accept (true or false). (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped (the constant is the first operand). (*) All 'skips' (pc++) assume that next instruction is a jump. (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the function builds upvalues, which may need to be closed. C > 0 means the function is vararg, so that its 'func' must be corrected before returning; in this case, (C - 1) is its number of fixed parameters. (*) In comparisons with an immediate operand, C signals whether the original operand was a float. (It must be corrected in case of metamethods.) ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-2: op mode ** bit 3: instruction set register A ** bit 4: operator is a test (next instruction must be a jump) ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) ** bit 7: instruction is an MM instruction (call a metamethod) */ LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) /* "out top" (set top for next instruction) */ #define isOT(i) \ ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ GET_OPCODE(i) == OP_TAILCALL) /* "in top" (uses top from previous instruction) */ #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) #define opmode(mm,ot,it,t,a,m) \ (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m)) /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 #endif /* ** $Id: ldebug.h $ ** Auxiliary functions from Debug Interface module ** See Copyright Notice in lua.h */ #ifndef ldebug_h #define ldebug_h /*#include "lstate.h"*/ #define pcRel(pc, p) (cast_int((pc) - (p)->code) - 1) /* Active Lua function (given call info) */ #define ci_func(ci) (clLvalue(s2v((ci)->func))) #define resethookcount(L) (L->hookcount = L->basehookcount) /* ** mark for entries in 'lineinfo' array that has absolute information in ** 'abslineinfo' array */ #define ABSLINEINFO (-0x80) /* ** MAXimum number of successive Instructions WiTHout ABSolute line ** information. (A power of two allows fast divisions.) */ #if !defined(MAXIWTHABS) #define MAXIWTHABS 128 #endif LUAI_FUNC int luaG_getfuncline (const Proto *f, int pc); LUAI_FUNC const char *luaG_findlocal (lua_State *L, CallInfo *ci, int n, StkId *pos); LUAI_FUNC l_noret luaG_typeerror (lua_State *L, const TValue *o, const char *opname); LUAI_FUNC l_noret luaG_callerror (lua_State *L, const TValue *o); LUAI_FUNC l_noret luaG_forerror (lua_State *L, const TValue *o, const char *what); LUAI_FUNC l_noret luaG_concaterror (lua_State *L, const TValue *p1, const TValue *p2); LUAI_FUNC l_noret luaG_opinterror (lua_State *L, const TValue *p1, const TValue *p2, const char *msg); LUAI_FUNC l_noret luaG_tointerror (lua_State *L, const TValue *p1, const TValue *p2); LUAI_FUNC l_noret luaG_ordererror (lua_State *L, const TValue *p1, const TValue *p2); LUAI_FUNC l_noret luaG_runerror (lua_State *L, const char *fmt, ...); LUAI_FUNC const char *luaG_addinfo (lua_State *L, const char *msg, TString *src, int line); LUAI_FUNC l_noret luaG_errormsg (lua_State *L); LUAI_FUNC int luaG_traceexec (lua_State *L, const Instruction *pc); #endif /* ** $Id: ldo.h $ ** Stack and Call structure of Lua ** See Copyright Notice in lua.h */ #ifndef ldo_h #define ldo_h /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lzio.h"*/ /* ** Macro to check stack size and grow stack if needed. Parameters ** 'pre'/'pos' allow the macro to preserve a pointer into the ** stack across reallocations, doing the work only when needed. ** It also allows the running of one GC step when the stack is ** reallocated. ** 'condmovestack' is used in heavy tests to force a stack reallocation ** at every check. */ #define luaD_checkstackaux(L,n,pre,pos) \ if (l_unlikely(L->stack_last - L->top <= (n))) \ { pre; luaD_growstack(L, n, 1); pos; } \ else { condmovestack(L,pre,pos); } /* In general, 'pre'/'pos' are empty (nothing to save) */ #define luaD_checkstack(L,n) luaD_checkstackaux(L,n,(void)0,(void)0) #define savestack(L,p) ((char *)(p) - (char *)L->stack) #define restorestack(L,n) ((StkId)((char *)L->stack + (n))) /* macro to check stack size, preserving 'p' */ #define checkstackGCp(L,n,p) \ luaD_checkstackaux(L, n, \ ptrdiff_t t__ = savestack(L, p); /* save 'p' */ \ luaC_checkGC(L), /* stack grow uses memory */ \ p = restorestack(L, t__)) /* 'pos' part: restore 'p' */ /* macro to check stack size and GC */ #define checkstackGC(L,fsize) \ luaD_checkstackaux(L, (fsize), luaC_checkGC(L), (void)0) /* type of protected functions, to be ran by 'runprotected' */ typedef void (*Pfunc) (lua_State *L, void *ud); LUAI_FUNC void luaD_seterrorobj (lua_State *L, int errcode, StkId oldtop); LUAI_FUNC int luaD_protectedparser (lua_State *L, ZIO *z, const char *name, const char *mode); LUAI_FUNC void luaD_hook (lua_State *L, int event, int line, int fTransfer, int nTransfer); LUAI_FUNC void luaD_hookcall (lua_State *L, CallInfo *ci); LUAI_FUNC int luaD_pretailcall (lua_State *L, CallInfo *ci, StkId func, int narg1, int delta); LUAI_FUNC CallInfo *luaD_precall (lua_State *L, StkId func, int nResults); LUAI_FUNC void luaD_call (lua_State *L, StkId func, int nResults); LUAI_FUNC void luaD_callnoyield (lua_State *L, StkId func, int nResults); LUAI_FUNC StkId luaD_tryfuncTM (lua_State *L, StkId func); LUAI_FUNC int luaD_closeprotected (lua_State *L, ptrdiff_t level, int status); LUAI_FUNC int luaD_pcall (lua_State *L, Pfunc func, void *u, ptrdiff_t oldtop, ptrdiff_t ef); LUAI_FUNC void luaD_poscall (lua_State *L, CallInfo *ci, int nres); LUAI_FUNC int luaD_reallocstack (lua_State *L, int newsize, int raiseerror); LUAI_FUNC int luaD_growstack (lua_State *L, int n, int raiseerror); LUAI_FUNC void luaD_shrinkstack (lua_State *L); LUAI_FUNC void luaD_inctop (lua_State *L); LUAI_FUNC l_noret luaD_throw (lua_State *L, int errcode); LUAI_FUNC int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud); #endif /* ** $Id: lgc.h $ ** Garbage Collector ** See Copyright Notice in lua.h */ #ifndef lgc_h #define lgc_h /*#include "lobject.h"*/ /*#include "lstate.h"*/ /* ** Collectable objects may have one of three colors: white, which means ** the object is not marked; gray, which means the object is marked, but ** its references may be not marked; and black, which means that the ** object and all its references are marked. The main invariant of the ** garbage collector, while marking objects, is that a black object can ** never point to a white one. Moreover, any gray object must be in a ** "gray list" (gray, grayagain, weak, allweak, ephemeron) so that it ** can be visited again before finishing the collection cycle. (Open ** upvalues are an exception to this rule.) These lists have no meaning ** when the invariant is not being enforced (e.g., sweep phase). */ /* ** Possible states of the Garbage Collector */ #define GCSpropagate 0 #define GCSenteratomic 1 #define GCSatomic 2 #define GCSswpallgc 3 #define GCSswpfinobj 4 #define GCSswptobefnz 5 #define GCSswpend 6 #define GCScallfin 7 #define GCSpause 8 #define issweepphase(g) \ (GCSswpallgc <= (g)->gcstate && (g)->gcstate <= GCSswpend) /* ** macro to tell when main invariant (white objects cannot point to black ** ones) must be kept. During a collection, the sweep ** phase may break the invariant, as objects turned white may point to ** still-black objects. The invariant is restored when sweep ends and ** all objects are white again. */ #define keepinvariant(g) ((g)->gcstate <= GCSatomic) /* ** some useful bit tricks */ #define resetbits(x,m) ((x) &= cast_byte(~(m))) #define setbits(x,m) ((x) |= (m)) #define testbits(x,m) ((x) & (m)) #define bitmask(b) (1<<(b)) #define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2)) #define l_setbit(x,b) setbits(x, bitmask(b)) #define resetbit(x,b) resetbits(x, bitmask(b)) #define testbit(x,b) testbits(x, bitmask(b)) /* ** Layout for bit use in 'marked' field. First three bits are ** used for object "age" in generational mode. Last bit is used ** by tests. */ #define WHITE0BIT 3 /* object is white (type 0) */ #define WHITE1BIT 4 /* object is white (type 1) */ #define BLACKBIT 5 /* object is black */ #define FINALIZEDBIT 6 /* object has been marked for finalization */ #define TESTBIT 7 #define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT) #define iswhite(x) testbits((x)->marked, WHITEBITS) #define isblack(x) testbit((x)->marked, BLACKBIT) #define isgray(x) /* neither white nor black */ \ (!testbits((x)->marked, WHITEBITS | bitmask(BLACKBIT))) #define tofinalize(x) testbit((x)->marked, FINALIZEDBIT) #define otherwhite(g) ((g)->currentwhite ^ WHITEBITS) #define isdeadm(ow,m) ((m) & (ow)) #define isdead(g,v) isdeadm(otherwhite(g), (v)->marked) #define changewhite(x) ((x)->marked ^= WHITEBITS) #define nw2black(x) \ check_exp(!iswhite(x), l_setbit((x)->marked, BLACKBIT)) #define luaC_white(g) cast_byte((g)->currentwhite & WHITEBITS) /* object age in generational mode */ #define G_NEW 0 /* created in current cycle */ #define G_SURVIVAL 1 /* created in previous cycle */ #define G_OLD0 2 /* marked old by frw. barrier in this cycle */ #define G_OLD1 3 /* first full cycle as old */ #define G_OLD 4 /* really old object (not to be visited) */ #define G_TOUCHED1 5 /* old object touched this cycle */ #define G_TOUCHED2 6 /* old object touched in previous cycle */ #define AGEBITS 7 /* all age bits (111) */ #define getage(o) ((o)->marked & AGEBITS) #define setage(o,a) ((o)->marked = cast_byte(((o)->marked & (~AGEBITS)) | a)) #define isold(o) (getage(o) > G_SURVIVAL) #define changeage(o,f,t) \ check_exp(getage(o) == (f), (o)->marked ^= ((f)^(t))) /* Default Values for GC parameters */ #define LUAI_GENMAJORMUL 100 #define LUAI_GENMINORMUL 20 /* wait memory to double before starting new cycle */ #define LUAI_GCPAUSE 200 /* ** some gc parameters are stored divided by 4 to allow a maximum value ** up to 1023 in a 'lu_byte'. */ #define getgcparam(p) ((p) * 4) #define setgcparam(p,v) ((p) = (v) / 4) #define LUAI_GCMUL 100 /* how much to allocate before next GC step (log2) */ #define LUAI_GCSTEPSIZE 13 /* 8 KB */ /* ** Check whether the declared GC mode is generational. While in ** generational mode, the collector can go temporarily to incremental ** mode to improve performance. This is signaled by 'g->lastatomic != 0'. */ #define isdecGCmodegen(g) (g->gckind == KGC_GEN || g->lastatomic != 0) /* ** Control when GC is running: */ #define GCSTPUSR 1 /* bit true when GC stopped by user */ #define GCSTPGC 2 /* bit true when GC stopped by itself */ #define GCSTPCLS 4 /* bit true when closing Lua state */ #define gcrunning(g) ((g)->gcstp == 0) /* ** Does one step of collection when debt becomes positive. 'pre'/'pos' ** allows some adjustments to be done only when needed. macro ** 'condchangemem' is used only for heavy tests (forcing a full ** GC cycle on every opportunity) */ #define luaC_condGC(L,pre,pos) \ { if (G(L)->GCdebt > 0) { pre; luaC_step(L); pos;}; \ condchangemem(L,pre,pos); } /* more often than not, 'pre'/'pos' are empty */ #define luaC_checkGC(L) luaC_condGC(L,(void)0,(void)0) #define luaC_barrier(L,p,v) ( \ (iscollectable(v) && isblack(p) && iswhite(gcvalue(v))) ? \ luaC_barrier_(L,obj2gco(p),gcvalue(v)) : cast_void(0)) #define luaC_barrierback(L,p,v) ( \ (iscollectable(v) && isblack(p) && iswhite(gcvalue(v))) ? \ luaC_barrierback_(L,p) : cast_void(0)) #define luaC_objbarrier(L,p,o) ( \ (isblack(p) && iswhite(o)) ? \ luaC_barrier_(L,obj2gco(p),obj2gco(o)) : cast_void(0)) LUAI_FUNC void luaC_fix (lua_State *L, GCObject *o); LUAI_FUNC void luaC_freeallobjects (lua_State *L); LUAI_FUNC void luaC_step (lua_State *L); LUAI_FUNC void luaC_runtilstate (lua_State *L, int statesmask); LUAI_FUNC void luaC_fullgc (lua_State *L, int isemergency); LUAI_FUNC GCObject *luaC_newobj (lua_State *L, int tt, size_t sz); LUAI_FUNC void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v); LUAI_FUNC void luaC_barrierback_ (lua_State *L, GCObject *o); LUAI_FUNC void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt); LUAI_FUNC void luaC_changemode (lua_State *L, int newmode); #endif /* ** $Id: lfunc.h $ ** Auxiliary functions to manipulate prototypes and closures ** See Copyright Notice in lua.h */ #ifndef lfunc_h #define lfunc_h /*#include "lobject.h"*/ #define sizeCclosure(n) (cast_int(offsetof(CClosure, upvalue)) + \ cast_int(sizeof(TValue)) * (n)) #define sizeLclosure(n) (cast_int(offsetof(LClosure, upvals)) + \ cast_int(sizeof(TValue *)) * (n)) /* test whether thread is in 'twups' list */ #define isintwups(L) (L->twups != L) /* ** maximum number of upvalues in a closure (both C and Lua). (Value ** must fit in a VM register.) */ #define MAXUPVAL 255 #define upisopen(up) ((up)->v != &(up)->u.value) #define uplevel(up) check_exp(upisopen(up), cast(StkId, (up)->v)) /* ** maximum number of misses before giving up the cache of closures ** in prototypes */ #define MAXMISS 10 /* special status to close upvalues preserving the top of the stack */ #define CLOSEKTOP (-1) LUAI_FUNC Proto *luaF_newproto (lua_State *L); LUAI_FUNC CClosure *luaF_newCclosure (lua_State *L, int nupvals); LUAI_FUNC LClosure *luaF_newLclosure (lua_State *L, int nupvals); LUAI_FUNC void luaF_initupvals (lua_State *L, LClosure *cl); LUAI_FUNC UpVal *luaF_findupval (lua_State *L, StkId level); LUAI_FUNC void luaF_newtbcupval (lua_State *L, StkId level); LUAI_FUNC void luaF_closeupval (lua_State *L, StkId level); LUAI_FUNC void luaF_close (lua_State *L, StkId level, int status, int yy); LUAI_FUNC void luaF_unlinkupval (UpVal *uv); LUAI_FUNC void luaF_freeproto (lua_State *L, Proto *f); LUAI_FUNC const char *luaF_getlocalname (const Proto *func, int local_number, int pc); #endif /* ** $Id: lstring.h $ ** String table (keep all strings handled by Lua) ** See Copyright Notice in lua.h */ #ifndef lstring_h #define lstring_h /*#include "lgc.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /* ** Memory-allocation error message must be preallocated (it cannot ** be created after memory is exhausted) */ #define MEMERRMSG "not enough memory" /* ** Size of a TString: Size of the header plus space for the string ** itself (including final '\0'). */ #define sizelstring(l) (offsetof(TString, contents) + ((l) + 1) * sizeof(char)) #define luaS_newliteral(L, s) (luaS_newlstr(L, "" s, \ (sizeof(s)/sizeof(char))-1)) /* ** test whether a string is a reserved word */ #define isreserved(s) ((s)->tt == LUA_VSHRSTR && (s)->extra > 0) /* ** equality for short strings, which are always internalized */ #define eqshrstr(a,b) check_exp((a)->tt == LUA_VSHRSTR, (a) == (b)) LUAI_FUNC unsigned int luaS_hash (const char *str, size_t l, unsigned int seed); LUAI_FUNC unsigned int luaS_hashlongstr (TString *ts); LUAI_FUNC int luaS_eqlngstr (TString *a, TString *b); LUAI_FUNC void luaS_resize (lua_State *L, int newsize); LUAI_FUNC void luaS_clearcache (global_State *g); LUAI_FUNC void luaS_init (lua_State *L); LUAI_FUNC void luaS_remove (lua_State *L, TString *ts); LUAI_FUNC Udata *luaS_newudata (lua_State *L, size_t s, int nuvalue); LUAI_FUNC TString *luaS_newlstr (lua_State *L, const char *str, size_t l); LUAI_FUNC TString *luaS_new (lua_State *L, const char *str); LUAI_FUNC TString *luaS_createlngstrobj (lua_State *L, size_t l); #endif /* ** $Id: lundump.h $ ** load precompiled Lua chunks ** See Copyright Notice in lua.h */ #ifndef lundump_h #define lundump_h /*#include "llimits.h"*/ /*#include "lobject.h"*/ /*#include "lzio.h"*/ /* data to catch conversion errors */ #define LUAC_DATA "\x19\x93\r\n\x1a\n" #define LUAC_INT 0x5678 #define LUAC_NUM cast_num(370.5) /* ** Encode major-minor version in one byte, one nibble for each */ #define MYINT(s) (s[0]-'0') /* assume one-digit numerals */ #define LUAC_VERSION (MYINT(LUA_VERSION_MAJOR)*16+MYINT(LUA_VERSION_MINOR)) #define LUAC_FORMAT 0 /* this is the official format */ /* load one chunk; from lundump.c */ LUAI_FUNC LClosure* luaU_undump (lua_State* L, ZIO* Z, const char* name); /* dump one chunk; from ldump.c */ LUAI_FUNC int luaU_dump (lua_State* L, const Proto* f, lua_Writer w, void* data, int strip); #endif /* ** $Id: lapi.h $ ** Auxiliary functions from Lua API ** See Copyright Notice in lua.h */ #ifndef lapi_h #define lapi_h /*#include "llimits.h"*/ /*#include "lstate.h"*/ /* Increments 'L->top', checking for stack overflows */ #define api_incr_top(L) {L->top++; api_check(L, L->top <= L->ci->top, \ "stack overflow");} /* ** If a call returns too many multiple returns, the callee may not have ** stack space to accommodate all results. In this case, this macro ** increases its stack space ('L->ci->top'). */ #define adjustresults(L,nres) \ { if ((nres) <= LUA_MULTRET && L->ci->top < L->top) L->ci->top = L->top; } /* Ensure the stack has at least 'n' elements */ #define api_checknelems(L,n) api_check(L, (n) < (L->top - L->ci->func), \ "not enough elements in the stack") /* ** To reduce the overhead of returning from C functions, the presence of ** to-be-closed variables in these functions is coded in the CallInfo's ** field 'nresults', in a way that functions with no to-be-closed variables ** with zero, one, or "all" wanted results have no overhead. Functions ** with other number of wanted results, as well as functions with ** variables to be closed, have an extra check. */ #define hastocloseCfunc(n) ((n) < LUA_MULTRET) /* Map [-1, inf) (range of 'nresults') into (-inf, -2] */ #define codeNresults(n) (-(n) - 3) #define decodeNresults(n) (-(n) - 3) #endif /* ** $Id: llex.h $ ** Lexical Analyzer ** See Copyright Notice in lua.h */ #ifndef llex_h #define llex_h #include /*#include "lobject.h"*/ /*#include "lzio.h"*/ /* ** Single-char tokens (terminal symbols) are represented by their own ** numeric code. Other tokens start at the following value. */ #define FIRST_RESERVED (UCHAR_MAX + 1) #if !defined(LUA_ENV) #define LUA_ENV "_ENV" #endif /* * WARNING: if you change the order of this enumeration, * grep "ORDER RESERVED" */ enum RESERVED { /* terminal symbols denoted by reserved words */ TK_AND = FIRST_RESERVED, TK_BREAK, TK_DO, TK_ELSE, TK_ELSEIF, TK_END, TK_FALSE, TK_FOR, TK_FUNCTION, TK_GOTO, TK_IF, TK_IN, TK_LOCAL, TK_NIL, TK_NOT, TK_OR, TK_REPEAT, TK_RETURN, TK_THEN, TK_TRUE, TK_UNTIL, TK_WHILE, /* other terminal symbols */ TK_IDIV, TK_CONCAT, TK_DOTS, TK_EQ, TK_GE, TK_LE, TK_NE, TK_SHL, TK_SHR, TK_DBCOLON, TK_EOS, TK_FLT, TK_INT, TK_NAME, TK_STRING }; /* number of reserved words */ #define NUM_RESERVED (cast_int(TK_WHILE-FIRST_RESERVED + 1)) typedef union { lua_Number r; lua_Integer i; TString *ts; } SemInfo; /* semantics information */ typedef struct Token { int token; SemInfo seminfo; } Token; /* state of the lexer plus state of the parser when shared by all functions */ typedef struct LexState { int current; /* current character (charint) */ int linenumber; /* input line counter */ int lastline; /* line of last token 'consumed' */ Token t; /* current token */ Token lookahead; /* look ahead token */ struct FuncState *fs; /* current function (parser) */ struct lua_State *L; ZIO *z; /* input stream */ Mbuffer *buff; /* buffer for tokens */ Table *h; /* to avoid collection/reuse strings */ struct Dyndata *dyd; /* dynamic structures used by the parser */ TString *source; /* current source name */ TString *envn; /* environment variable name */ } LexState; LUAI_FUNC void luaX_init (lua_State *L); LUAI_FUNC void luaX_setinput (lua_State *L, LexState *ls, ZIO *z, TString *source, int firstchar); LUAI_FUNC TString *luaX_newstring (LexState *ls, const char *str, size_t l); LUAI_FUNC void luaX_next (LexState *ls); LUAI_FUNC int luaX_lookahead (LexState *ls); LUAI_FUNC l_noret luaX_syntaxerror (LexState *ls, const char *s); LUAI_FUNC const char *luaX_token2str (LexState *ls, int token); #endif /* ** $Id: ltable.h $ ** Lua tables (hash) ** See Copyright Notice in lua.h */ #ifndef ltable_h #define ltable_h /*#include "lobject.h"*/ #define gnode(t,i) (&(t)->node[i]) #define gval(n) (&(n)->i_val) #define gnext(n) ((n)->u.next) /* ** Clear all bits of fast-access metamethods, which means that the table ** may have any of these metamethods. (First access that fails after the ** clearing will set the bit again.) */ #define invalidateTMcache(t) ((t)->flags &= ~maskflags) /* true when 't' is using 'dummynode' as its hash part */ #define isdummy(t) ((t)->lastfree == NULL) /* allocated size for hash nodes */ #define allocsizenode(t) (isdummy(t) ? 0 : sizenode(t)) /* returns the Node, given the value of a table entry */ #define nodefromval(v) cast(Node *, (v)) LUAI_FUNC const TValue *luaH_getint (Table *t, lua_Integer key); LUAI_FUNC void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value); LUAI_FUNC const TValue *luaH_getshortstr (Table *t, TString *key); LUAI_FUNC const TValue *luaH_getstr (Table *t, TString *key); LUAI_FUNC const TValue *luaH_get (Table *t, const TValue *key); LUAI_FUNC void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value); LUAI_FUNC void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value); LUAI_FUNC void luaH_finishset (lua_State *L, Table *t, const TValue *key, const TValue *slot, TValue *value); LUAI_FUNC Table *luaH_new (lua_State *L); LUAI_FUNC void luaH_resize (lua_State *L, Table *t, unsigned int nasize, unsigned int nhsize); LUAI_FUNC void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize); LUAI_FUNC void luaH_free (lua_State *L, Table *t); LUAI_FUNC int luaH_next (lua_State *L, Table *t, StkId key); LUAI_FUNC lua_Unsigned luaH_getn (Table *t); LUAI_FUNC unsigned int luaH_realasize (const Table *t); #if defined(LUA_DEBUG) LUAI_FUNC Node *luaH_mainposition (const Table *t, const TValue *key); LUAI_FUNC int luaH_isdummy (const Table *t); #endif #endif /* ** $Id: lparser.h $ ** Lua Parser ** See Copyright Notice in lua.h */ #ifndef lparser_h #define lparser_h /*#include "llimits.h"*/ /*#include "lobject.h"*/ /*#include "lzio.h"*/ /* ** Expression and variable descriptor. ** Code generation for variables and expressions can be delayed to allow ** optimizations; An 'expdesc' structure describes a potentially-delayed ** variable/expression. It has a description of its "main" value plus a ** list of conditional jumps that can also produce its value (generated ** by short-circuit operators 'and'/'or'). */ /* kinds of variables/expressions */ typedef enum { VVOID, /* when 'expdesc' describes the last expression of a list, this kind means an empty list (so, no expression) */ VNIL, /* constant nil */ VTRUE, /* constant true */ VFALSE, /* constant false */ VK, /* constant in 'k'; info = index of constant in 'k' */ VKFLT, /* floating constant; nval = numerical float value */ VKINT, /* integer constant; ival = numerical integer value */ VKSTR, /* string constant; strval = TString address; (string is fixed by the lexer) */ VNONRELOC, /* expression has its value in a fixed register; info = result register */ VLOCAL, /* local variable; var.ridx = register index; var.vidx = relative index in 'actvar.arr' */ VUPVAL, /* upvalue variable; info = index of upvalue in 'upvalues' */ VCONST, /* compile-time variable; info = absolute index in 'actvar.arr' */ VINDEXED, /* indexed variable; ind.t = table register; ind.idx = key's R index */ VINDEXUP, /* indexed upvalue; ind.t = table upvalue; ind.idx = key's K index */ VINDEXI, /* indexed variable with constant integer; ind.t = table register; ind.idx = key's value */ VINDEXSTR, /* indexed variable with literal string; ind.t = table register; ind.idx = key's K index */ VJMP, /* expression is a test/comparison; info = pc of corresponding jump instruction */ VRELOC, /* expression can put result in any register; info = instruction pc */ VCALL, /* expression is a function call; info = instruction pc */ VVARARG /* vararg expression; info = instruction pc */ } expkind; #define vkisvar(k) (VLOCAL <= (k) && (k) <= VINDEXSTR) #define vkisindexed(k) (VINDEXED <= (k) && (k) <= VINDEXSTR) typedef struct expdesc { expkind k; union { lua_Integer ival; /* for VKINT */ lua_Number nval; /* for VKFLT */ TString *strval; /* for VKSTR */ int info; /* for generic use */ struct { /* for indexed variables */ short idx; /* index (R or "long" K) */ lu_byte t; /* table (register or upvalue) */ } ind; struct { /* for local variables */ lu_byte ridx; /* register holding the variable */ unsigned short vidx; /* compiler index (in 'actvar.arr') */ } var; } u; int t; /* patch list of 'exit when true' */ int f; /* patch list of 'exit when false' */ } expdesc; /* kinds of variables */ #define VDKREG 0 /* regular */ #define RDKCONST 1 /* constant */ #define RDKTOCLOSE 2 /* to-be-closed */ #define RDKCTC 3 /* compile-time constant */ /* description of an active local variable */ typedef union Vardesc { struct { TValuefields; /* constant value (if it is a compile-time constant) */ lu_byte kind; lu_byte ridx; /* register holding the variable */ short pidx; /* index of the variable in the Proto's 'locvars' array */ TString *name; /* variable name */ } vd; TValue k; /* constant value (if any) */ } Vardesc; /* description of pending goto statements and label statements */ typedef struct Labeldesc { TString *name; /* label identifier */ int pc; /* position in code */ int line; /* line where it appeared */ lu_byte nactvar; /* number of active variables in that position */ lu_byte close; /* goto that escapes upvalues */ } Labeldesc; /* list of labels or gotos */ typedef struct Labellist { Labeldesc *arr; /* array */ int n; /* number of entries in use */ int size; /* array size */ } Labellist; /* dynamic structures used by the parser */ typedef struct Dyndata { struct { /* list of all active local variables */ Vardesc *arr; int n; int size; } actvar; Labellist gt; /* list of pending gotos */ Labellist label; /* list of active labels */ } Dyndata; /* control of blocks */ struct BlockCnt; /* defined in lparser.c */ /* state needed to generate code for a given function */ typedef struct FuncState { Proto *f; /* current function header */ struct FuncState *prev; /* enclosing function */ struct LexState *ls; /* lexical state */ struct BlockCnt *bl; /* chain of current blocks */ int pc; /* next position to code (equivalent to 'ncode') */ int lasttarget; /* 'label' of last 'jump label' */ int previousline; /* last line that was saved in 'lineinfo' */ int nk; /* number of elements in 'k' */ int np; /* number of elements in 'p' */ int nabslineinfo; /* number of elements in 'abslineinfo' */ int firstlocal; /* index of first local var (in Dyndata array) */ int firstlabel; /* index of first label (in 'dyd->label->arr') */ short ndebugvars; /* number of elements in 'f->locvars' */ lu_byte nactvar; /* number of active local variables */ lu_byte nups; /* number of upvalues */ lu_byte freereg; /* first free register */ lu_byte iwthabs; /* instructions issued since last absolute line info */ lu_byte needclose; /* function needs to close upvalues when returning */ } FuncState; LUAI_FUNC int luaY_nvarstack (FuncState *fs); LUAI_FUNC LClosure *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff, Dyndata *dyd, const char *name, int firstchar); #endif /* ** $Id: lcode.h $ ** Code generator for Lua ** See Copyright Notice in lua.h */ #ifndef lcode_h #define lcode_h /*#include "llex.h"*/ /*#include "lobject.h"*/ /*#include "lopcodes.h"*/ /*#include "lparser.h"*/ /* ** Marks the end of a patch list. It is an invalid value both as an absolute ** address, and as a list link (would link an element to itself). */ #define NO_JUMP (-1) /* ** grep "ORDER OPR" if you change these enums (ORDER OP) */ typedef enum BinOpr { /* arithmetic operators */ OPR_ADD, OPR_SUB, OPR_MUL, OPR_MOD, OPR_POW, OPR_DIV, OPR_IDIV, /* bitwise operators */ OPR_BAND, OPR_BOR, OPR_BXOR, OPR_SHL, OPR_SHR, /* string operator */ OPR_CONCAT, /* comparison operators */ OPR_EQ, OPR_LT, OPR_LE, OPR_NE, OPR_GT, OPR_GE, /* logical operators */ OPR_AND, OPR_OR, OPR_NOBINOPR } BinOpr; /* true if operation is foldable (that is, it is arithmetic or bitwise) */ #define foldbinop(op) ((op) <= OPR_SHR) #define luaK_codeABC(fs,o,a,b,c) luaK_codeABCk(fs,o,a,b,c,0) typedef enum UnOpr { OPR_MINUS, OPR_BNOT, OPR_NOT, OPR_LEN, OPR_NOUNOPR } UnOpr; /* get (pointer to) instruction of given 'expdesc' */ #define getinstruction(fs,e) ((fs)->f->code[(e)->u.info]) #define luaK_setmultret(fs,e) luaK_setreturns(fs, e, LUA_MULTRET) #define luaK_jumpto(fs,t) luaK_patchlist(fs, luaK_jump(fs), t) LUAI_FUNC int luaK_code (FuncState *fs, Instruction i); LUAI_FUNC int luaK_codeABx (FuncState *fs, OpCode o, int A, unsigned int Bx); LUAI_FUNC int luaK_codeAsBx (FuncState *fs, OpCode o, int A, int Bx); LUAI_FUNC int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k); LUAI_FUNC int luaK_isKint (expdesc *e); LUAI_FUNC int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v); LUAI_FUNC void luaK_fixline (FuncState *fs, int line); LUAI_FUNC void luaK_nil (FuncState *fs, int from, int n); LUAI_FUNC void luaK_reserveregs (FuncState *fs, int n); LUAI_FUNC void luaK_checkstack (FuncState *fs, int n); LUAI_FUNC void luaK_int (FuncState *fs, int reg, lua_Integer n); LUAI_FUNC void luaK_dischargevars (FuncState *fs, expdesc *e); LUAI_FUNC int luaK_exp2anyreg (FuncState *fs, expdesc *e); LUAI_FUNC void luaK_exp2anyregup (FuncState *fs, expdesc *e); LUAI_FUNC void luaK_exp2nextreg (FuncState *fs, expdesc *e); LUAI_FUNC void luaK_exp2val (FuncState *fs, expdesc *e); LUAI_FUNC int luaK_exp2RK (FuncState *fs, expdesc *e); LUAI_FUNC void luaK_self (FuncState *fs, expdesc *e, expdesc *key); LUAI_FUNC void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k); LUAI_FUNC void luaK_goiftrue (FuncState *fs, expdesc *e); LUAI_FUNC void luaK_goiffalse (FuncState *fs, expdesc *e); LUAI_FUNC void luaK_storevar (FuncState *fs, expdesc *var, expdesc *e); LUAI_FUNC void luaK_setreturns (FuncState *fs, expdesc *e, int nresults); LUAI_FUNC void luaK_setoneret (FuncState *fs, expdesc *e); LUAI_FUNC int luaK_jump (FuncState *fs); LUAI_FUNC void luaK_ret (FuncState *fs, int first, int nret); LUAI_FUNC void luaK_patchlist (FuncState *fs, int list, int target); LUAI_FUNC void luaK_patchtohere (FuncState *fs, int list); LUAI_FUNC void luaK_concat (FuncState *fs, int *l1, int l2); LUAI_FUNC int luaK_getlabel (FuncState *fs); LUAI_FUNC void luaK_prefix (FuncState *fs, UnOpr op, expdesc *v, int line); LUAI_FUNC void luaK_infix (FuncState *fs, BinOpr op, expdesc *v); LUAI_FUNC void luaK_posfix (FuncState *fs, BinOpr op, expdesc *v1, expdesc *v2, int line); LUAI_FUNC void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize); LUAI_FUNC void luaK_setlist (FuncState *fs, int base, int nelems, int tostore); LUAI_FUNC void luaK_finish (FuncState *fs); LUAI_FUNC l_noret luaK_semerror (LexState *ls, const char *msg); #endif /* ** $Id: lvm.h $ ** Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lvm_h #define lvm_h /*#include "ldo.h"*/ /*#include "lobject.h"*/ /*#include "ltm.h"*/ #if !defined(LUA_NOCVTN2S) #define cvt2str(o) ttisnumber(o) #else #define cvt2str(o) 0 /* no conversion from numbers to strings */ #endif #if !defined(LUA_NOCVTS2N) #define cvt2num(o) ttisstring(o) #else #define cvt2num(o) 0 /* no conversion from strings to numbers */ #endif /* ** You can define LUA_FLOORN2I if you want to convert floats to integers ** by flooring them (instead of raising an error if they are not ** integral values) */ #if !defined(LUA_FLOORN2I) #define LUA_FLOORN2I F2Ieq #endif /* ** Rounding modes for float->integer coercion */ typedef enum { F2Ieq, /* no rounding; accepts only integral values */ F2Ifloor, /* takes the floor of the number */ F2Iceil /* takes the ceil of the number */ } F2Imod; /* convert an object to a float (including string coercion) */ #define tonumber(o,n) \ (ttisfloat(o) ? (*(n) = fltvalue(o), 1) : luaV_tonumber_(o,n)) /* convert an object to a float (without string coercion) */ #define tonumberns(o,n) \ (ttisfloat(o) ? ((n) = fltvalue(o), 1) : \ (ttisinteger(o) ? ((n) = cast_num(ivalue(o)), 1) : 0)) /* convert an object to an integer (including string coercion) */ #define tointeger(o,i) \ (l_likely(ttisinteger(o)) ? (*(i) = ivalue(o), 1) \ : luaV_tointeger(o,i,LUA_FLOORN2I)) /* convert an object to an integer (without string coercion) */ #define tointegerns(o,i) \ (l_likely(ttisinteger(o)) ? (*(i) = ivalue(o), 1) \ : luaV_tointegerns(o,i,LUA_FLOORN2I)) #define intop(op,v1,v2) l_castU2S(l_castS2U(v1) op l_castS2U(v2)) #define luaV_rawequalobj(t1,t2) luaV_equalobj(NULL,t1,t2) /* ** fast track for 'gettable': if 't' is a table and 't[k]' is present, ** return 1 with 'slot' pointing to 't[k]' (position of final result). ** Otherwise, return 0 (meaning it will have to check metamethod) ** with 'slot' pointing to an empty 't[k]' (if 't' is a table) or NULL ** (otherwise). 'f' is the raw get function to use. */ #define luaV_fastget(L,t,k,slot,f) \ (!ttistable(t) \ ? (slot = NULL, 0) /* not a table; 'slot' is NULL and result is 0 */ \ : (slot = f(hvalue(t), k), /* else, do raw access */ \ !isempty(slot))) /* result not empty? */ /* ** Special case of 'luaV_fastget' for integers, inlining the fast case ** of 'luaH_getint'. */ #define luaV_fastgeti(L,t,k,slot) \ (!ttistable(t) \ ? (slot = NULL, 0) /* not a table; 'slot' is NULL and result is 0 */ \ : (slot = (l_castS2U(k) - 1u < hvalue(t)->alimit) \ ? &hvalue(t)->array[k - 1] : luaH_getint(hvalue(t), k), \ !isempty(slot))) /* result not empty? */ /* ** Finish a fast set operation (when fast get succeeds). In that case, ** 'slot' points to the place to put the value. */ #define luaV_finishfastset(L,t,slot,v) \ { setobj2t(L, cast(TValue *,slot), v); \ luaC_barrierback(L, gcvalue(t), v); } LUAI_FUNC int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2); LUAI_FUNC int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r); LUAI_FUNC int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r); LUAI_FUNC int luaV_tonumber_ (const TValue *obj, lua_Number *n); LUAI_FUNC int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode); LUAI_FUNC int luaV_tointegerns (const TValue *obj, lua_Integer *p, F2Imod mode); LUAI_FUNC int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode); LUAI_FUNC void luaV_finishget (lua_State *L, const TValue *t, TValue *key, StkId val, const TValue *slot); LUAI_FUNC void luaV_finishset (lua_State *L, const TValue *t, TValue *key, TValue *val, const TValue *slot); LUAI_FUNC void luaV_finishOp (lua_State *L); LUAI_FUNC void luaV_execute (lua_State *L, CallInfo *ci); LUAI_FUNC void luaV_concat (lua_State *L, int total); LUAI_FUNC lua_Integer luaV_idiv (lua_State *L, lua_Integer x, lua_Integer y); LUAI_FUNC lua_Integer luaV_mod (lua_State *L, lua_Integer x, lua_Integer y); LUAI_FUNC lua_Number luaV_modf (lua_State *L, lua_Number x, lua_Number y); LUAI_FUNC lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y); LUAI_FUNC void luaV_objlen (lua_State *L, StkId ra, const TValue *rb); #endif /* ** $Id: lctype.h $ ** 'ctype' functions for Lua ** See Copyright Notice in lua.h */ #ifndef lctype_h #define lctype_h /*#include "lua.h"*/ /* ** WARNING: the functions defined here do not necessarily correspond ** to the similar functions in the standard C ctype.h. They are ** optimized for the specific needs of Lua. */ #if !defined(LUA_USE_CTYPE) #if 'A' == 65 && '0' == 48 /* ASCII case: can use its own tables; faster and fixed */ #define LUA_USE_CTYPE 0 #else /* must use standard C ctype */ #define LUA_USE_CTYPE 1 #endif #endif #if !LUA_USE_CTYPE /* { */ #include /*#include "llimits.h"*/ #define ALPHABIT 0 #define DIGITBIT 1 #define PRINTBIT 2 #define SPACEBIT 3 #define XDIGITBIT 4 #define MASK(B) (1 << (B)) /* ** add 1 to char to allow index -1 (EOZ) */ #define testprop(c,p) (luai_ctype_[(c)+1] & (p)) /* ** 'lalpha' (Lua alphabetic) and 'lalnum' (Lua alphanumeric) both include '_' */ #define lislalpha(c) testprop(c, MASK(ALPHABIT)) #define lislalnum(c) testprop(c, (MASK(ALPHABIT) | MASK(DIGITBIT))) #define lisdigit(c) testprop(c, MASK(DIGITBIT)) #define lisspace(c) testprop(c, MASK(SPACEBIT)) #define lisprint(c) testprop(c, MASK(PRINTBIT)) #define lisxdigit(c) testprop(c, MASK(XDIGITBIT)) /* ** In ASCII, this 'ltolower' is correct for alphabetic characters and ** for '.'. That is enough for Lua needs. ('check_exp' ensures that ** the character either is an upper-case letter or is unchanged by ** the transformation, which holds for lower-case letters and '.'.) */ #define ltolower(c) \ check_exp(('A' <= (c) && (c) <= 'Z') || (c) == ((c) | ('A' ^ 'a')), \ (c) | ('A' ^ 'a')) /* one entry for each character and for -1 (EOZ) */ LUAI_DDEC(const lu_byte luai_ctype_[UCHAR_MAX + 2];) #else /* }{ */ /* ** use standard C ctypes */ #include #define lislalpha(c) (isalpha(c) || (c) == '_') #define lislalnum(c) (isalnum(c) || (c) == '_') #define lisdigit(c) (isdigit(c)) #define lisspace(c) (isspace(c)) #define lisprint(c) (isprint(c)) #define lisxdigit(c) (isxdigit(c)) #define ltolower(c) (tolower(c)) #endif /* } */ #endif /* ** $Id: lzio.c $ ** Buffered streams ** See Copyright Notice in lua.h */ #define lzio_c #define LUA_CORE /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "llimits.h"*/ /*#include "lmem.h"*/ /*#include "lstate.h"*/ /*#include "lzio.h"*/ int luaZ_fill (ZIO *z) { size_t size; lua_State *L = z->L; const char *buff; lua_unlock(L); buff = z->reader(L, z->data, &size); lua_lock(L); if (buff == NULL || size == 0) return EOZ; z->n = size - 1; /* discount char being returned */ z->p = buff; return cast_uchar(*(z->p++)); } void luaZ_init (lua_State *L, ZIO *z, lua_Reader reader, void *data) { z->L = L; z->reader = reader; z->data = data; z->n = 0; z->p = NULL; } /* --------------------------------------------------------------- read --- */ size_t luaZ_read (ZIO *z, void *b, size_t n) { while (n) { size_t m; if (z->n == 0) { /* no bytes in buffer? */ if (luaZ_fill(z) == EOZ) /* try to read more */ return n; /* no more input; return number of missing bytes */ else { z->n++; /* luaZ_fill consumed first byte; put it back */ z->p--; } } m = (n <= z->n) ? n : z->n; /* min. between n and z->n */ memcpy(b, z->p, m); z->n -= m; z->p += m; b = (char *)b + m; n -= m; } return 0; } /* ** $Id: lctype.c $ ** 'ctype' functions for Lua ** See Copyright Notice in lua.h */ #define lctype_c #define LUA_CORE /*#include "lprefix.h"*/ /*#include "lctype.h"*/ #if !LUA_USE_CTYPE /* { */ #include #if defined (LUA_UCID) /* accept UniCode IDentifiers? */ /* consider all non-ascii codepoints to be alphabetic */ #define NONA 0x01 #else #define NONA 0x00 /* default */ #endif LUAI_DDEF const lu_byte luai_ctype_[UCHAR_MAX + 2] = { 0x00, /* EOZ */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 0. */ 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 1. */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, /* 2. */ 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, /* 3. */ 0x16, 0x16, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x05, /* 4. */ 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, /* 5. */ 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x05, 0x04, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x05, /* 6. */ 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, /* 7. */ 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x00, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* 8. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* 9. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* a. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* b. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, 0x00, 0x00, NONA, NONA, NONA, NONA, NONA, NONA, /* c. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* d. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* e. */ NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, 0x00, 0x00, 0x00, /* f. */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; #endif /* } */ /* ** $Id: lopcodes.c $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #define lopcodes_c #define LUA_CORE /*#include "lprefix.h"*/ /*#include "lopcodes.h"*/ /* ORDER OP */ LUAI_DDEF const lu_byte luaP_opmodes[NUM_OPCODES] = { /* MM OT IT T A mode opcode */ opmode(0, 0, 0, 0, 1, iABC) /* OP_MOVE */ ,opmode(0, 0, 0, 0, 1, iAsBx) /* OP_LOADI */ ,opmode(0, 0, 0, 0, 1, iAsBx) /* OP_LOADF */ ,opmode(0, 0, 0, 0, 1, iABx) /* OP_LOADK */ ,opmode(0, 0, 0, 0, 1, iABx) /* OP_LOADKX */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_LOADFALSE */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_LFALSESKIP */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_LOADTRUE */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_LOADNIL */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETUPVAL */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETUPVAL */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETTABUP */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETTABLE */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETI */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETFIELD */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETTABUP */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETTABLE */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETI */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETFIELD */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_NEWTABLE */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SELF */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_ADDI */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_ADDK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SUBK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_MULK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_MODK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_POWK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_DIVK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_IDIVK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BANDK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BORK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BXORK */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHRI */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHLI */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_ADD */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SUB */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_MUL */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_MOD */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_POW */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_DIV */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_IDIV */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BAND */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BOR */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BXOR */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHL */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHR */ ,opmode(1, 0, 0, 0, 0, iABC) /* OP_MMBIN */ ,opmode(1, 0, 0, 0, 0, iABC) /* OP_MMBINI*/ ,opmode(1, 0, 0, 0, 0, iABC) /* OP_MMBINK*/ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_UNM */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_BNOT */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_NOT */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_LEN */ ,opmode(0, 0, 0, 0, 1, iABC) /* OP_CONCAT */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_CLOSE */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_TBC */ ,opmode(0, 0, 0, 0, 0, isJ) /* OP_JMP */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_EQ */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_LT */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_LE */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_EQK */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_EQI */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_LTI */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_LEI */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_GTI */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_GEI */ ,opmode(0, 0, 0, 1, 0, iABC) /* OP_TEST */ ,opmode(0, 0, 0, 1, 1, iABC) /* OP_TESTSET */ ,opmode(0, 1, 1, 0, 1, iABC) /* OP_CALL */ ,opmode(0, 1, 1, 0, 1, iABC) /* OP_TAILCALL */ ,opmode(0, 0, 1, 0, 0, iABC) /* OP_RETURN */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_RETURN0 */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_RETURN1 */ ,opmode(0, 0, 0, 0, 1, iABx) /* OP_FORLOOP */ ,opmode(0, 0, 0, 0, 1, iABx) /* OP_FORPREP */ ,opmode(0, 0, 0, 0, 0, iABx) /* OP_TFORPREP */ ,opmode(0, 0, 0, 0, 0, iABC) /* OP_TFORCALL */ ,opmode(0, 0, 0, 0, 1, iABx) /* OP_TFORLOOP */ ,opmode(0, 0, 1, 0, 0, iABC) /* OP_SETLIST */ ,opmode(0, 0, 0, 0, 1, iABx) /* OP_CLOSURE */ ,opmode(0, 1, 0, 0, 1, iABC) /* OP_VARARG */ ,opmode(0, 0, 1, 0, 1, iABC) /* OP_VARARGPREP */ ,opmode(0, 0, 0, 0, 0, iAx) /* OP_EXTRAARG */ }; /* ** $Id: lmem.c $ ** Interface to Memory Manager ** See Copyright Notice in lua.h */ #define lmem_c #define LUA_CORE /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lgc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ #if defined(EMERGENCYGCTESTS) /* ** First allocation will fail whenever not building initial state. ** (This fail will trigger 'tryagain' and a full GC cycle at every ** allocation.) */ static void *firsttry (global_State *g, void *block, size_t os, size_t ns) { if (completestate(g) && ns > 0) /* frees never fail */ return NULL; /* fail */ else /* normal allocation */ return (*g->frealloc)(g->ud, block, os, ns); } #else #define firsttry(g,block,os,ns) ((*g->frealloc)(g->ud, block, os, ns)) #endif /* ** About the realloc function: ** void *frealloc (void *ud, void *ptr, size_t osize, size_t nsize); ** ('osize' is the old size, 'nsize' is the new size) ** ** - frealloc(ud, p, x, 0) frees the block 'p' and returns NULL. ** Particularly, frealloc(ud, NULL, 0, 0) does nothing, ** which is equivalent to free(NULL) in ISO C. ** ** - frealloc(ud, NULL, x, s) creates a new block of size 's' ** (no matter 'x'). Returns NULL if it cannot create the new block. ** ** - otherwise, frealloc(ud, b, x, y) reallocates the block 'b' from ** size 'x' to size 'y'. Returns NULL if it cannot reallocate the ** block to the new size. */ /* ** {================================================================== ** Functions to allocate/deallocate arrays for the Parser ** =================================================================== */ /* ** Minimum size for arrays during parsing, to avoid overhead of ** reallocating to size 1, then 2, and then 4. All these arrays ** will be reallocated to exact sizes or erased when parsing ends. */ #define MINSIZEARRAY 4 void *luaM_growaux_ (lua_State *L, void *block, int nelems, int *psize, int size_elems, int limit, const char *what) { void *newblock; int size = *psize; if (nelems + 1 <= size) /* does one extra element still fit? */ return block; /* nothing to be done */ if (size >= limit / 2) { /* cannot double it? */ if (l_unlikely(size >= limit)) /* cannot grow even a little? */ luaG_runerror(L, "too many %s (limit is %d)", what, limit); size = limit; /* still have at least one free place */ } else { size *= 2; if (size < MINSIZEARRAY) size = MINSIZEARRAY; /* minimum size */ } lua_assert(nelems + 1 <= size && size <= limit); /* 'limit' ensures that multiplication will not overflow */ newblock = luaM_saferealloc_(L, block, cast_sizet(*psize) * size_elems, cast_sizet(size) * size_elems); *psize = size; /* update only when everything else is OK */ return newblock; } /* ** In prototypes, the size of the array is also its number of ** elements (to save memory). So, if it cannot shrink an array ** to its number of elements, the only option is to raise an ** error. */ void *luaM_shrinkvector_ (lua_State *L, void *block, int *size, int final_n, int size_elem) { void *newblock; size_t oldsize = cast_sizet((*size) * size_elem); size_t newsize = cast_sizet(final_n * size_elem); lua_assert(newsize <= oldsize); newblock = luaM_saferealloc_(L, block, oldsize, newsize); *size = final_n; return newblock; } /* }================================================================== */ l_noret luaM_toobig (lua_State *L) { luaG_runerror(L, "memory allocation error: block too big"); } /* ** Free memory */ void luaM_free_ (lua_State *L, void *block, size_t osize) { global_State *g = G(L); lua_assert((osize == 0) == (block == NULL)); (*g->frealloc)(g->ud, block, osize, 0); g->GCdebt -= osize; } /* ** In case of allocation fail, this function will do an emergency ** collection to free some memory and then try the allocation again. ** The GC should not be called while state is not fully built, as the ** collector is not yet fully initialized. Also, it should not be called ** when 'gcstopem' is true, because then the interpreter is in the ** middle of a collection step. */ static void *tryagain (lua_State *L, void *block, size_t osize, size_t nsize) { global_State *g = G(L); if (completestate(g) && !g->gcstopem) { luaC_fullgc(L, 1); /* try to free some memory... */ return (*g->frealloc)(g->ud, block, osize, nsize); /* try again */ } else return NULL; /* cannot free any memory without a full state */ } /* ** Generic allocation routine. */ void *luaM_realloc_ (lua_State *L, void *block, size_t osize, size_t nsize) { void *newblock; global_State *g = G(L); lua_assert((osize == 0) == (block == NULL)); newblock = firsttry(g, block, osize, nsize); if (l_unlikely(newblock == NULL && nsize > 0)) { newblock = tryagain(L, block, osize, nsize); if (newblock == NULL) /* still no memory? */ return NULL; /* do not update 'GCdebt' */ } lua_assert((nsize == 0) == (newblock == NULL)); g->GCdebt = (g->GCdebt + nsize) - osize; return newblock; } void *luaM_saferealloc_ (lua_State *L, void *block, size_t osize, size_t nsize) { void *newblock = luaM_realloc_(L, block, osize, nsize); if (l_unlikely(newblock == NULL && nsize > 0)) /* allocation failed? */ luaM_error(L); return newblock; } void *luaM_malloc_ (lua_State *L, size_t size, int tag) { if (size == 0) return NULL; /* that's all */ else { global_State *g = G(L); void *newblock = firsttry(g, NULL, tag, size); if (l_unlikely(newblock == NULL)) { newblock = tryagain(L, NULL, tag, size); if (newblock == NULL) luaM_error(L); } g->GCdebt += size; return newblock; } } /* ** $Id: lundump.c $ ** load precompiled Lua chunks ** See Copyright Notice in lua.h */ #define lundump_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstring.h"*/ /*#include "lundump.h"*/ /*#include "lzio.h"*/ #if !defined(luai_verifycode) #define luai_verifycode(L,f) /* empty */ #endif typedef struct { lua_State *L; ZIO *Z; const char *name; } LoadState; static l_noret error (LoadState *S, const char *why) { luaO_pushfstring(S->L, "%s: bad binary format (%s)", S->name, why); luaD_throw(S->L, LUA_ERRSYNTAX); } /* ** All high-level loads go through loadVector; you can change it to ** adapt to the endianness of the input */ #define loadVector(S,b,n) loadBlock(S,b,(n)*sizeof((b)[0])) static void loadBlock (LoadState *S, void *b, size_t size) { if (luaZ_read(S->Z, b, size) != 0) error(S, "truncated chunk"); } #define loadVar(S,x) loadVector(S,&x,1) static lu_byte loadByte (LoadState *S) { int b = zgetc(S->Z); if (b == EOZ) error(S, "truncated chunk"); return cast_byte(b); } static size_t loadUnsigned (LoadState *S, size_t limit) { size_t x = 0; int b; limit >>= 7; do { b = loadByte(S); if (x >= limit) error(S, "integer overflow"); x = (x << 7) | (b & 0x7f); } while ((b & 0x80) == 0); return x; } static size_t loadSize (LoadState *S) { return loadUnsigned(S, ~(size_t)0); } static int loadInt (LoadState *S) { return cast_int(loadUnsigned(S, INT_MAX)); } static lua_Number loadNumber (LoadState *S) { lua_Number x; loadVar(S, x); return x; } static lua_Integer loadInteger (LoadState *S) { lua_Integer x; loadVar(S, x); return x; } /* ** Load a nullable string into prototype 'p'. */ static TString *loadStringN (LoadState *S, Proto *p) { lua_State *L = S->L; TString *ts; size_t size = loadSize(S); if (size == 0) /* no string? */ return NULL; else if (--size <= LUAI_MAXSHORTLEN) { /* short string? */ char buff[LUAI_MAXSHORTLEN]; loadVector(S, buff, size); /* load string into buffer */ ts = luaS_newlstr(L, buff, size); /* create string */ } else { /* long string */ ts = luaS_createlngstrobj(L, size); /* create string */ setsvalue2s(L, L->top, ts); /* anchor it ('loadVector' can GC) */ luaD_inctop(L); loadVector(S, getstr(ts), size); /* load directly in final place */ L->top--; /* pop string */ } luaC_objbarrier(L, p, ts); return ts; } /* ** Load a non-nullable string into prototype 'p'. */ static TString *loadString (LoadState *S, Proto *p) { TString *st = loadStringN(S, p); if (st == NULL) error(S, "bad format for constant string"); return st; } static void loadCode (LoadState *S, Proto *f) { int n = loadInt(S); f->code = luaM_newvectorchecked(S->L, n, Instruction); f->sizecode = n; loadVector(S, f->code, n); } static void loadFunction(LoadState *S, Proto *f, TString *psource); static void loadConstants (LoadState *S, Proto *f) { int i; int n = loadInt(S); f->k = luaM_newvectorchecked(S->L, n, TValue); f->sizek = n; for (i = 0; i < n; i++) setnilvalue(&f->k[i]); for (i = 0; i < n; i++) { TValue *o = &f->k[i]; int t = loadByte(S); switch (t) { case LUA_VNIL: setnilvalue(o); break; case LUA_VFALSE: setbfvalue(o); break; case LUA_VTRUE: setbtvalue(o); break; case LUA_VNUMFLT: setfltvalue(o, loadNumber(S)); break; case LUA_VNUMINT: setivalue(o, loadInteger(S)); break; case LUA_VSHRSTR: case LUA_VLNGSTR: setsvalue2n(S->L, o, loadString(S, f)); break; default: lua_assert(0); } } } static void loadProtos (LoadState *S, Proto *f) { int i; int n = loadInt(S); f->p = luaM_newvectorchecked(S->L, n, Proto *); f->sizep = n; for (i = 0; i < n; i++) f->p[i] = NULL; for (i = 0; i < n; i++) { f->p[i] = luaF_newproto(S->L); luaC_objbarrier(S->L, f, f->p[i]); loadFunction(S, f->p[i], f->source); } } /* ** Load the upvalues for a function. The names must be filled first, ** because the filling of the other fields can raise read errors and ** the creation of the error message can call an emergency collection; ** in that case all prototypes must be consistent for the GC. */ static void loadUpvalues (LoadState *S, Proto *f) { int i, n; n = loadInt(S); f->upvalues = luaM_newvectorchecked(S->L, n, Upvaldesc); f->sizeupvalues = n; for (i = 0; i < n; i++) /* make array valid for GC */ f->upvalues[i].name = NULL; for (i = 0; i < n; i++) { /* following calls can raise errors */ f->upvalues[i].instack = loadByte(S); f->upvalues[i].idx = loadByte(S); f->upvalues[i].kind = loadByte(S); } } static void loadDebug (LoadState *S, Proto *f) { int i, n; n = loadInt(S); f->lineinfo = luaM_newvectorchecked(S->L, n, ls_byte); f->sizelineinfo = n; loadVector(S, f->lineinfo, n); n = loadInt(S); f->abslineinfo = luaM_newvectorchecked(S->L, n, AbsLineInfo); f->sizeabslineinfo = n; for (i = 0; i < n; i++) { f->abslineinfo[i].pc = loadInt(S); f->abslineinfo[i].line = loadInt(S); } n = loadInt(S); f->locvars = luaM_newvectorchecked(S->L, n, LocVar); f->sizelocvars = n; for (i = 0; i < n; i++) f->locvars[i].varname = NULL; for (i = 0; i < n; i++) { f->locvars[i].varname = loadStringN(S, f); f->locvars[i].startpc = loadInt(S); f->locvars[i].endpc = loadInt(S); } n = loadInt(S); for (i = 0; i < n; i++) f->upvalues[i].name = loadStringN(S, f); } static void loadFunction (LoadState *S, Proto *f, TString *psource) { f->source = loadStringN(S, f); if (f->source == NULL) /* no source in dump? */ f->source = psource; /* reuse parent's source */ f->linedefined = loadInt(S); f->lastlinedefined = loadInt(S); f->numparams = loadByte(S); f->is_vararg = loadByte(S); f->maxstacksize = loadByte(S); loadCode(S, f); loadConstants(S, f); loadUpvalues(S, f); loadProtos(S, f); loadDebug(S, f); } static void checkliteral (LoadState *S, const char *s, const char *msg) { char buff[sizeof(LUA_SIGNATURE) + sizeof(LUAC_DATA)]; /* larger than both */ size_t len = strlen(s); loadVector(S, buff, len); if (memcmp(s, buff, len) != 0) error(S, msg); } static void fchecksize (LoadState *S, size_t size, const char *tname) { if (loadByte(S) != size) error(S, luaO_pushfstring(S->L, "%s size mismatch", tname)); } #define checksize(S,t) fchecksize(S,sizeof(t),#t) static void checkHeader (LoadState *S) { /* skip 1st char (already read and checked) */ checkliteral(S, &LUA_SIGNATURE[1], "not a binary chunk"); if (loadByte(S) != LUAC_VERSION) error(S, "version mismatch"); if (loadByte(S) != LUAC_FORMAT) error(S, "format mismatch"); checkliteral(S, LUAC_DATA, "corrupted chunk"); checksize(S, Instruction); checksize(S, lua_Integer); checksize(S, lua_Number); if (loadInteger(S) != LUAC_INT) error(S, "integer format mismatch"); if (loadNumber(S) != LUAC_NUM) error(S, "float format mismatch"); } /* ** Load precompiled chunk. */ LClosure *luaU_undump(lua_State *L, ZIO *Z, const char *name) { LoadState S; LClosure *cl; if (*name == '@' || *name == '=') S.name = name + 1; else if (*name == LUA_SIGNATURE[0]) S.name = "binary string"; else S.name = name; S.L = L; S.Z = Z; checkHeader(&S); cl = luaF_newLclosure(L, loadByte(&S)); setclLvalue2s(L, L->top, cl); luaD_inctop(L); cl->p = luaF_newproto(L); luaC_objbarrier(L, cl, cl->p); loadFunction(&S, cl->p, NULL); lua_assert(cl->nupvalues == cl->p->sizeupvalues); luai_verifycode(L, cl->p); return cl; } /* ** $Id: ldump.c $ ** save precompiled Lua chunks ** See Copyright Notice in lua.h */ #define ldump_c #define LUA_CORE /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lundump.h"*/ typedef struct { lua_State *L; lua_Writer writer; void *data; int strip; int status; } DumpState; /* ** All high-level dumps go through dumpVector; you can change it to ** change the endianness of the result */ #define dumpVector(D,v,n) dumpBlock(D,v,(n)*sizeof((v)[0])) #define dumpLiteral(D, s) dumpBlock(D,s,sizeof(s) - sizeof(char)) static void dumpBlock (DumpState *D, const void *b, size_t size) { if (D->status == 0 && size > 0) { lua_unlock(D->L); D->status = (*D->writer)(D->L, b, size, D->data); lua_lock(D->L); } } #define dumpVar(D,x) dumpVector(D,&x,1) static void dumpByte (DumpState *D, int y) { lu_byte x = (lu_byte)y; dumpVar(D, x); } /* dumpInt Buff Size */ #define DIBS ((sizeof(size_t) * 8 / 7) + 1) static void dumpSize (DumpState *D, size_t x) { lu_byte buff[DIBS]; int n = 0; do { buff[DIBS - (++n)] = x & 0x7f; /* fill buffer in reverse order */ x >>= 7; } while (x != 0); buff[DIBS - 1] |= 0x80; /* mark last byte */ dumpVector(D, buff + DIBS - n, n); } static void dumpInt (DumpState *D, int x) { dumpSize(D, x); } static void dumpNumber (DumpState *D, lua_Number x) { dumpVar(D, x); } static void dumpInteger (DumpState *D, lua_Integer x) { dumpVar(D, x); } static void dumpString (DumpState *D, const TString *s) { if (s == NULL) dumpSize(D, 0); else { size_t size = tsslen(s); const char *str = getstr(s); dumpSize(D, size + 1); dumpVector(D, str, size); } } static void dumpCode (DumpState *D, const Proto *f) { dumpInt(D, f->sizecode); dumpVector(D, f->code, f->sizecode); } static void dumpFunction(DumpState *D, const Proto *f, TString *psource); static void dumpConstants (DumpState *D, const Proto *f) { int i; int n = f->sizek; dumpInt(D, n); for (i = 0; i < n; i++) { const TValue *o = &f->k[i]; int tt = ttypetag(o); dumpByte(D, tt); switch (tt) { case LUA_VNUMFLT: dumpNumber(D, fltvalue(o)); break; case LUA_VNUMINT: dumpInteger(D, ivalue(o)); break; case LUA_VSHRSTR: case LUA_VLNGSTR: dumpString(D, tsvalue(o)); break; default: lua_assert(tt == LUA_VNIL || tt == LUA_VFALSE || tt == LUA_VTRUE); } } } static void dumpProtos (DumpState *D, const Proto *f) { int i; int n = f->sizep; dumpInt(D, n); for (i = 0; i < n; i++) dumpFunction(D, f->p[i], f->source); } static void dumpUpvalues (DumpState *D, const Proto *f) { int i, n = f->sizeupvalues; dumpInt(D, n); for (i = 0; i < n; i++) { dumpByte(D, f->upvalues[i].instack); dumpByte(D, f->upvalues[i].idx); dumpByte(D, f->upvalues[i].kind); } } static void dumpDebug (DumpState *D, const Proto *f) { int i, n; n = (D->strip) ? 0 : f->sizelineinfo; dumpInt(D, n); dumpVector(D, f->lineinfo, n); n = (D->strip) ? 0 : f->sizeabslineinfo; dumpInt(D, n); for (i = 0; i < n; i++) { dumpInt(D, f->abslineinfo[i].pc); dumpInt(D, f->abslineinfo[i].line); } n = (D->strip) ? 0 : f->sizelocvars; dumpInt(D, n); for (i = 0; i < n; i++) { dumpString(D, f->locvars[i].varname); dumpInt(D, f->locvars[i].startpc); dumpInt(D, f->locvars[i].endpc); } n = (D->strip) ? 0 : f->sizeupvalues; dumpInt(D, n); for (i = 0; i < n; i++) dumpString(D, f->upvalues[i].name); } static void dumpFunction (DumpState *D, const Proto *f, TString *psource) { if (D->strip || f->source == psource) dumpString(D, NULL); /* no debug info or same source as its parent */ else dumpString(D, f->source); dumpInt(D, f->linedefined); dumpInt(D, f->lastlinedefined); dumpByte(D, f->numparams); dumpByte(D, f->is_vararg); dumpByte(D, f->maxstacksize); dumpCode(D, f); dumpConstants(D, f); dumpUpvalues(D, f); dumpProtos(D, f); dumpDebug(D, f); } static void dumpHeader (DumpState *D) { dumpLiteral(D, LUA_SIGNATURE); dumpByte(D, LUAC_VERSION); dumpByte(D, LUAC_FORMAT); dumpLiteral(D, LUAC_DATA); dumpByte(D, sizeof(Instruction)); dumpByte(D, sizeof(lua_Integer)); dumpByte(D, sizeof(lua_Number)); dumpInteger(D, LUAC_INT); dumpNumber(D, LUAC_NUM); } /* ** dump Lua function as precompiled chunk */ int luaU_dump(lua_State *L, const Proto *f, lua_Writer w, void *data, int strip) { DumpState D; D.L = L; D.writer = w; D.data = data; D.strip = strip; D.status = 0; dumpHeader(&D); dumpByte(&D, f->sizeupvalues); dumpFunction(&D, f, NULL); return D.status; } /* ** $Id: lstate.c $ ** Global State ** See Copyright Notice in lua.h */ #define lstate_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include /*#include "lua.h"*/ /*#include "lapi.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lgc.h"*/ /*#include "llex.h"*/ /*#include "lmem.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /* ** thread state + extra space */ typedef struct LX { lu_byte extra_[LUA_EXTRASPACE]; lua_State l; } LX; /* ** Main thread combines a thread state and the global state */ typedef struct LG { LX l; global_State g; } LG; #define fromstate(L) (cast(LX *, cast(lu_byte *, (L)) - offsetof(LX, l))) /* ** A macro to create a "random" seed when a state is created; ** the seed is used to randomize string hashes. */ #if !defined(luai_makeseed) #include /* ** Compute an initial seed with some level of randomness. ** Rely on Address Space Layout Randomization (if present) and ** current time. */ #define addbuff(b,p,e) \ { size_t t = cast_sizet(e); \ memcpy(b + p, &t, sizeof(t)); p += sizeof(t); } static unsigned int luai_makeseed (lua_State *L) { char buff[3 * sizeof(size_t)]; unsigned int h = cast_uint(time(NULL)); int p = 0; addbuff(buff, p, L); /* heap variable */ addbuff(buff, p, &h); /* local variable */ addbuff(buff, p, &lua_newstate); /* public function */ lua_assert(p == sizeof(buff)); return luaS_hash(buff, p, h); } #endif /* ** set GCdebt to a new value keeping the value (totalbytes + GCdebt) ** invariant (and avoiding underflows in 'totalbytes') */ void luaE_setdebt (global_State *g, l_mem debt) { l_mem tb = gettotalbytes(g); lua_assert(tb > 0); if (debt < tb - MAX_LMEM) debt = tb - MAX_LMEM; /* will make 'totalbytes == MAX_LMEM' */ g->totalbytes = tb - debt; g->GCdebt = debt; } LUA_API int lua_setcstacklimit (lua_State *L, unsigned int limit) { UNUSED(L); UNUSED(limit); return LUAI_MAXCCALLS; /* warning?? */ } CallInfo *luaE_extendCI (lua_State *L) { CallInfo *ci; lua_assert(L->ci->next == NULL); ci = luaM_new(L, CallInfo); lua_assert(L->ci->next == NULL); L->ci->next = ci; ci->previous = L->ci; ci->next = NULL; ci->u.l.trap = 0; L->nci++; return ci; } /* ** free all CallInfo structures not in use by a thread */ void luaE_freeCI (lua_State *L) { CallInfo *ci = L->ci; CallInfo *next = ci->next; ci->next = NULL; while ((ci = next) != NULL) { next = ci->next; luaM_free(L, ci); L->nci--; } } /* ** free half of the CallInfo structures not in use by a thread, ** keeping the first one. */ void luaE_shrinkCI (lua_State *L) { CallInfo *ci = L->ci->next; /* first free CallInfo */ CallInfo *next; if (ci == NULL) return; /* no extra elements */ while ((next = ci->next) != NULL) { /* two extra elements? */ CallInfo *next2 = next->next; /* next's next */ ci->next = next2; /* remove next from the list */ L->nci--; luaM_free(L, next); /* free next */ if (next2 == NULL) break; /* no more elements */ else { next2->previous = ci; ci = next2; /* continue */ } } } /* ** Called when 'getCcalls(L)' larger or equal to LUAI_MAXCCALLS. ** If equal, raises an overflow error. If value is larger than ** LUAI_MAXCCALLS (which means it is handling an overflow) but ** not much larger, does not report an error (to allow overflow ** handling to work). */ void luaE_checkcstack (lua_State *L) { if (getCcalls(L) == LUAI_MAXCCALLS) luaG_runerror(L, "C stack overflow"); else if (getCcalls(L) >= (LUAI_MAXCCALLS / 10 * 11)) luaD_throw(L, LUA_ERRERR); /* error while handling stack error */ } LUAI_FUNC void luaE_incCstack (lua_State *L) { L->nCcalls++; if (l_unlikely(getCcalls(L) >= LUAI_MAXCCALLS)) luaE_checkcstack(L); } static void stack_init (lua_State *L1, lua_State *L) { int i; CallInfo *ci; /* initialize stack array */ L1->stack = luaM_newvector(L, BASIC_STACK_SIZE + EXTRA_STACK, StackValue); L1->tbclist = L1->stack; for (i = 0; i < BASIC_STACK_SIZE + EXTRA_STACK; i++) setnilvalue(s2v(L1->stack + i)); /* erase new stack */ L1->top = L1->stack; L1->stack_last = L1->stack + BASIC_STACK_SIZE; /* initialize first ci */ ci = &L1->base_ci; ci->next = ci->previous = NULL; ci->callstatus = CIST_C; ci->func = L1->top; ci->u.c.k = NULL; ci->nresults = 0; setnilvalue(s2v(L1->top)); /* 'function' entry for this 'ci' */ L1->top++; ci->top = L1->top + LUA_MINSTACK; L1->ci = ci; } static void freestack (lua_State *L) { if (L->stack == NULL) return; /* stack not completely built yet */ L->ci = &L->base_ci; /* free the entire 'ci' list */ luaE_freeCI(L); lua_assert(L->nci == 0); luaM_freearray(L, L->stack, stacksize(L) + EXTRA_STACK); /* free stack */ } /* ** Create registry table and its predefined values */ static void init_registry (lua_State *L, global_State *g) { /* create registry */ Table *registry = luaH_new(L); sethvalue(L, &g->l_registry, registry); luaH_resize(L, registry, LUA_RIDX_LAST, 0); /* registry[LUA_RIDX_MAINTHREAD] = L */ setthvalue(L, ®istry->array[LUA_RIDX_MAINTHREAD - 1], L); /* registry[LUA_RIDX_GLOBALS] = new table (table of globals) */ sethvalue(L, ®istry->array[LUA_RIDX_GLOBALS - 1], luaH_new(L)); } /* ** open parts of the state that may cause memory-allocation errors. */ static void f_luaopen (lua_State *L, void *ud) { global_State *g = G(L); UNUSED(ud); stack_init(L, L); /* init stack */ init_registry(L, g); luaS_init(L); luaT_init(L); luaX_init(L); g->gcstp = 0; /* allow gc */ setnilvalue(&g->nilvalue); /* now state is complete */ luai_userstateopen(L); } /* ** preinitialize a thread with consistent values without allocating ** any memory (to avoid errors) */ static void preinit_thread (lua_State *L, global_State *g) { G(L) = g; L->stack = NULL; L->ci = NULL; L->nci = 0; L->twups = L; /* thread has no upvalues */ L->nCcalls = 0; L->errorJmp = NULL; L->hook = NULL; L->hookmask = 0; L->basehookcount = 0; L->allowhook = 1; resethookcount(L); L->openupval = NULL; L->status = LUA_OK; L->errfunc = 0; L->oldpc = 0; } static void close_state (lua_State *L) { global_State *g = G(L); if (!completestate(g)) /* closing a partially built state? */ luaC_freeallobjects(L); /* just collect its objects */ else { /* closing a fully built state */ L->ci = &L->base_ci; /* unwind CallInfo list */ luaD_closeprotected(L, 1, LUA_OK); /* close all upvalues */ luaC_freeallobjects(L); /* collect all objects */ luai_userstateclose(L); } luaM_freearray(L, G(L)->strt.hash, G(L)->strt.size); freestack(L); lua_assert(gettotalbytes(g) == sizeof(LG)); (*g->frealloc)(g->ud, fromstate(L), sizeof(LG), 0); /* free main block */ } LUA_API lua_State *lua_newthread (lua_State *L) { global_State *g; lua_State *L1; lua_lock(L); g = G(L); luaC_checkGC(L); /* create new thread */ L1 = &cast(LX *, luaM_newobject(L, LUA_TTHREAD, sizeof(LX)))->l; L1->marked = luaC_white(g); L1->tt = LUA_VTHREAD; /* link it on list 'allgc' */ L1->next = g->allgc; g->allgc = obj2gco(L1); /* anchor it on L stack */ setthvalue2s(L, L->top, L1); api_incr_top(L); preinit_thread(L1, g); L1->hookmask = L->hookmask; L1->basehookcount = L->basehookcount; L1->hook = L->hook; resethookcount(L1); /* initialize L1 extra space */ memcpy(lua_getextraspace(L1), lua_getextraspace(g->mainthread), LUA_EXTRASPACE); luai_userstatethread(L, L1); stack_init(L1, L); /* init stack */ lua_unlock(L); return L1; } void luaE_freethread (lua_State *L, lua_State *L1) { LX *l = fromstate(L1); luaF_closeupval(L1, L1->stack); /* close all upvalues */ lua_assert(L1->openupval == NULL); luai_userstatefree(L, L1); freestack(L1); luaM_free(L, l); } int luaE_resetthread (lua_State *L, int status) { CallInfo *ci = L->ci = &L->base_ci; /* unwind CallInfo list */ setnilvalue(s2v(L->stack)); /* 'function' entry for basic 'ci' */ ci->func = L->stack; ci->callstatus = CIST_C; if (status == LUA_YIELD) status = LUA_OK; L->status = LUA_OK; /* so it can run __close metamethods */ status = luaD_closeprotected(L, 1, status); if (status != LUA_OK) /* errors? */ luaD_seterrorobj(L, status, L->stack + 1); else L->top = L->stack + 1; ci->top = L->top + LUA_MINSTACK; luaD_reallocstack(L, cast_int(ci->top - L->stack), 0); return status; } LUA_API int lua_resetthread (lua_State *L) { int status; lua_lock(L); status = luaE_resetthread(L, L->status); lua_unlock(L); return status; } LUA_API lua_State *lua_newstate (lua_Alloc f, void *ud) { int i; lua_State *L; global_State *g; LG *l = cast(LG *, (*f)(ud, NULL, LUA_TTHREAD, sizeof(LG))); if (l == NULL) return NULL; L = &l->l.l; g = &l->g; L->tt = LUA_VTHREAD; g->currentwhite = bitmask(WHITE0BIT); L->marked = luaC_white(g); preinit_thread(L, g); g->allgc = obj2gco(L); /* by now, only object is the main thread */ L->next = NULL; incnny(L); /* main thread is always non yieldable */ g->frealloc = f; g->ud = ud; g->warnf = NULL; g->ud_warn = NULL; g->mainthread = L; g->seed = luai_makeseed(L); g->gcstp = GCSTPGC; /* no GC while building state */ g->strt.size = g->strt.nuse = 0; g->strt.hash = NULL; setnilvalue(&g->l_registry); g->panic = NULL; g->gcstate = GCSpause; g->gckind = KGC_INC; g->gcstopem = 0; g->gcemergency = 0; g->finobj = g->tobefnz = g->fixedgc = NULL; g->firstold1 = g->survival = g->old1 = g->reallyold = NULL; g->finobjsur = g->finobjold1 = g->finobjrold = NULL; g->sweepgc = NULL; g->gray = g->grayagain = NULL; g->weak = g->ephemeron = g->allweak = NULL; g->twups = NULL; g->totalbytes = sizeof(LG); g->GCdebt = 0; g->lastatomic = 0; setivalue(&g->nilvalue, 0); /* to signal that state is not yet built */ setgcparam(g->gcpause, LUAI_GCPAUSE); setgcparam(g->gcstepmul, LUAI_GCMUL); g->gcstepsize = LUAI_GCSTEPSIZE; setgcparam(g->genmajormul, LUAI_GENMAJORMUL); g->genminormul = LUAI_GENMINORMUL; for (i=0; i < LUA_NUMTAGS; i++) g->mt[i] = NULL; if (luaD_rawrunprotected(L, f_luaopen, NULL) != LUA_OK) { /* memory allocation error: free partial state */ close_state(L); L = NULL; } return L; } LUA_API void lua_close (lua_State *L) { lua_lock(L); L = G(L)->mainthread; /* only the main thread can be closed */ close_state(L); } void luaE_warning (lua_State *L, const char *msg, int tocont) { lua_WarnFunction wf = G(L)->warnf; if (wf != NULL) wf(G(L)->ud_warn, msg, tocont); } /* ** Generate a warning from an error message */ void luaE_warnerror (lua_State *L, const char *where) { TValue *errobj = s2v(L->top - 1); /* error object */ const char *msg = (ttisstring(errobj)) ? svalue(errobj) : "error object is not a string"; /* produce warning "error in %s (%s)" (where, msg) */ luaE_warning(L, "error in ", 1); luaE_warning(L, where, 1); luaE_warning(L, " (", 1); luaE_warning(L, msg, 1); luaE_warning(L, ")", 0); } /* ** $Id: lgc.c $ ** Garbage Collector ** See Copyright Notice in lua.h */ #define lgc_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lgc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /* ** Maximum number of elements to sweep in each single step. ** (Large enough to dissipate fixed overheads but small enough ** to allow small steps for the collector.) */ #define GCSWEEPMAX 100 /* ** Maximum number of finalizers to call in each single step. */ #define GCFINMAX 10 /* ** Cost of calling one finalizer. */ #define GCFINALIZECOST 50 /* ** The equivalent, in bytes, of one unit of "work" (visiting a slot, ** sweeping an object, etc.) */ #define WORK2MEM sizeof(TValue) /* ** macro to adjust 'pause': 'pause' is actually used like ** 'pause / PAUSEADJ' (value chosen by tests) */ #define PAUSEADJ 100 /* mask with all color bits */ #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) /* mask with all GC bits */ #define maskgcbits (maskcolors | AGEBITS) /* macro to erase all color bits then set only the current white bit */ #define makewhite(g,x) \ (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) /* make an object gray (neither white nor black) */ #define set2gray(x) resetbits(x->marked, maskcolors) /* make an object black (coming from any color) */ #define set2black(x) \ (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) /* ** Protected access to objects in values */ #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) #define markvalue(g,o) { checkliveness(g->mainthread,o); \ if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } /* ** mark an object that can be NULL (either because it is really optional, ** or it was stripped as debug info, or inside an uncompleted structure) */ #define markobjectN(g,t) { if (t) markobject(g,t); } static void reallymarkobject (global_State *g, GCObject *o); static lu_mem atomic (lua_State *L); static void entersweep (lua_State *L); /* ** {====================================================== ** Generic functions ** ======================================================= */ /* ** one after last element in a hash array */ #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) static GCObject **getgclist (GCObject *o) { switch (o->tt) { case LUA_VTABLE: return &gco2t(o)->gclist; case LUA_VLCL: return &gco2lcl(o)->gclist; case LUA_VCCL: return &gco2ccl(o)->gclist; case LUA_VTHREAD: return &gco2th(o)->gclist; case LUA_VPROTO: return &gco2p(o)->gclist; case LUA_VUSERDATA: { Udata *u = gco2u(o); lua_assert(u->nuvalue > 0); return &u->gclist; } default: lua_assert(0); return 0; } } /* ** Link a collectable object 'o' with a known type into the list 'p'. ** (Must be a macro to access the 'gclist' field in different types.) */ #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { lua_assert(!isgray(o)); /* cannot be in a gray list */ *pnext = *list; *list = o; set2gray(o); /* now it is */ } /* ** Link a generic collectable object 'o' into the list 'p'. */ #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) /* ** Clear keys for empty entries in tables. If entry is empty, mark its ** entry as dead. This allows the collection of the key, but keeps its ** entry in the table: its removal could break a chain and could break ** a table traversal. Other places never manipulate dead keys, because ** its associated empty value is enough to signal that the entry is ** logically empty. */ static void clearkey (Node *n) { lua_assert(isempty(gval(n))); if (keyiscollectable(n)) setdeadkey(n); /* unused key; remove it */ } /* ** tells whether a key or value can be cleared from a weak ** table. Non-collectable objects are never removed from weak ** tables. Strings behave as 'values', so are never removed too. for ** other objects: if really collected, cannot keep them; for objects ** being finalized, keep them in keys, but not in values */ static int iscleared (global_State *g, const GCObject *o) { if (o == NULL) return 0; /* non-collectable value */ else if (novariant(o->tt) == LUA_TSTRING) { markobject(g, o); /* strings are 'values', so are never weak */ return 0; } else return iswhite(o); } /* ** Barrier that moves collector forward, that is, marks the white object ** 'v' being pointed by the black object 'o'. In the generational ** mode, 'v' must also become old, if 'o' is old; however, it cannot ** be changed directly to OLD, because it may still point to non-old ** objects. So, it is marked as OLD0. In the next cycle it will become ** OLD1, and in the next it will finally become OLD (regular old). By ** then, any object it points to will also be old. If called in the ** incremental sweep phase, it clears the black object to white (sweep ** it) to avoid other barrier calls for this same object. (That cannot ** be done is generational mode, as its sweep does not distinguish ** whites from deads.) */ void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { global_State *g = G(L); lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); if (keepinvariant(g)) { /* must keep invariant? */ reallymarkobject(g, v); /* restore invariant */ if (isold(o)) { lua_assert(!isold(v)); /* white object could not be old */ setage(v, G_OLD0); /* restore generational invariant */ } } else { /* sweep phase */ lua_assert(issweepphase(g)); if (g->gckind == KGC_INC) /* incremental mode? */ makewhite(g, o); /* mark 'o' as white to avoid other barriers */ } } /* ** barrier that moves collector backward, that is, mark the black object ** pointing to a white object as gray again. */ void luaC_barrierback_ (lua_State *L, GCObject *o) { global_State *g = G(L); lua_assert(isblack(o) && !isdead(g, o)); lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); if (getage(o) == G_TOUCHED2) /* already in gray list? */ set2gray(o); /* make it gray to become touched1 */ else /* link it in 'grayagain' and paint it gray */ linkobjgclist(o, g->grayagain); if (isold(o)) /* generational mode? */ setage(o, G_TOUCHED1); /* touched in current cycle */ } void luaC_fix (lua_State *L, GCObject *o) { global_State *g = G(L); lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ set2gray(o); /* they will be gray forever */ setage(o, G_OLD); /* and old forever */ g->allgc = o->next; /* remove object from 'allgc' list */ o->next = g->fixedgc; /* link it to 'fixedgc' list */ g->fixedgc = o; } /* ** create a new collectable object (with given type and size) and link ** it to 'allgc' list. */ GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { global_State *g = G(L); GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); o->marked = luaC_white(g); o->tt = tt; o->next = g->allgc; g->allgc = o; return o; } /* }====================================================== */ /* ** {====================================================== ** Mark functions ** ======================================================= */ /* ** Mark an object. Userdata with no user values, strings, and closed ** upvalues are visited and turned black here. Open upvalues are ** already indirectly linked through their respective threads in the ** 'twups' list, so they don't go to the gray list; nevertheless, they ** are kept gray to avoid barriers, as their values will be revisited ** by the thread or by 'remarkupvals'. Other objects are added to the ** gray list to be visited (and turned black) later. Both userdata and ** upvalues can call this function recursively, but this recursion goes ** for at most two levels: An upvalue cannot refer to another upvalue ** (only closures can), and a userdata's metatable must be a table. */ static void reallymarkobject (global_State *g, GCObject *o) { switch (o->tt) { case LUA_VSHRSTR: case LUA_VLNGSTR: { set2black(o); /* nothing to visit */ break; } case LUA_VUPVAL: { UpVal *uv = gco2upv(o); if (upisopen(uv)) set2gray(uv); /* open upvalues are kept gray */ else set2black(uv); /* closed upvalues are visited here */ markvalue(g, uv->v); /* mark its content */ break; } case LUA_VUSERDATA: { Udata *u = gco2u(o); if (u->nuvalue == 0) { /* no user values? */ markobjectN(g, u->metatable); /* mark its metatable */ set2black(u); /* nothing else to mark */ break; } /* else... */ } /* FALLTHROUGH */ case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: case LUA_VTHREAD: case LUA_VPROTO: { linkobjgclist(o, g->gray); /* to be visited later */ break; } default: lua_assert(0); break; } } /* ** mark metamethods for basic types */ static void markmt (global_State *g) { int i; for (i=0; i < LUA_NUMTAGS; i++) markobjectN(g, g->mt[i]); } /* ** mark all objects in list of being-finalized */ static lu_mem markbeingfnz (global_State *g) { GCObject *o; lu_mem count = 0; for (o = g->tobefnz; o != NULL; o = o->next) { count++; markobject(g, o); } return count; } /* ** For each non-marked thread, simulates a barrier between each open ** upvalue and its value. (If the thread is collected, the value will be ** assigned to the upvalue, but then it can be too late for the barrier ** to act. The "barrier" does not need to check colors: A non-marked ** thread must be young; upvalues cannot be older than their threads; so ** any visited upvalue must be young too.) Also removes the thread from ** the list, as it was already visited. Removes also threads with no ** upvalues, as they have nothing to be checked. (If the thread gets an ** upvalue later, it will be linked in the list again.) */ static int remarkupvals (global_State *g) { lua_State *thread; lua_State **p = &g->twups; int work = 0; /* estimate of how much work was done here */ while ((thread = *p) != NULL) { work++; if (!iswhite(thread) && thread->openupval != NULL) p = &thread->twups; /* keep marked thread with upvalues in the list */ else { /* thread is not marked or without upvalues */ UpVal *uv; lua_assert(!isold(thread) || thread->openupval == NULL); *p = thread->twups; /* remove thread from the list */ thread->twups = thread; /* mark that it is out of list */ for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { lua_assert(getage(uv) <= getage(thread)); work++; if (!iswhite(uv)) { /* upvalue already visited? */ lua_assert(upisopen(uv) && isgray(uv)); markvalue(g, uv->v); /* mark its value */ } } } } return work; } static void cleargraylists (global_State *g) { g->gray = g->grayagain = NULL; g->weak = g->allweak = g->ephemeron = NULL; } /* ** mark root set and reset all gray lists, to start a new collection */ static void restartcollection (global_State *g) { cleargraylists(g); markobject(g, g->mainthread); markvalue(g, &g->l_registry); markmt(g); markbeingfnz(g); /* mark any finalizing object left from previous cycle */ } /* }====================================================== */ /* ** {====================================================== ** Traverse functions ** ======================================================= */ /* ** Check whether object 'o' should be kept in the 'grayagain' list for ** post-processing by 'correctgraylist'. (It could put all old objects ** in the list and leave all the work to 'correctgraylist', but it is ** more efficient to avoid adding elements that will be removed.) Only ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go ** back to a gray list, but then it must become OLD. (That is what ** 'correctgraylist' does when it finds a TOUCHED2 object.) */ static void genlink (global_State *g, GCObject *o) { lua_assert(isblack(o)); if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ } /* everything else do not need to be linked back */ else if (getage(o) == G_TOUCHED2) changeage(o, G_TOUCHED2, G_OLD); /* advance age */ } /* ** Traverse a table with weak values and link it to proper list. During ** propagate phase, keep it in 'grayagain' list, to be revisited in the ** atomic phase. In the atomic phase, if table has any white value, ** put it in 'weak' list, to be cleared. */ static void traverseweakvalue (global_State *g, Table *h) { Node *n, *limit = gnodelast(h); /* if there is array part, assume it may have white values (it is not worth traversing it now just to check) */ int hasclears = (h->alimit > 0); for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ if (isempty(gval(n))) /* entry is empty? */ clearkey(n); /* clear its key */ else { lua_assert(!keyisnil(n)); markkey(g, n); if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ hasclears = 1; /* table will have to be cleared */ } } if (g->gcstate == GCSatomic && hasclears) linkgclist(h, g->weak); /* has to be cleared later */ else linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ } /* ** Traverse an ephemeron table and link it to proper list. Returns true ** iff any object was marked during this traversal (which implies that ** convergence has to continue). During propagation phase, keep table ** in 'grayagain' list, to be visited again in the atomic phase. In ** the atomic phase, if table has any white->white entry, it has to ** be revisited during ephemeron convergence (as that key may turn ** black). Otherwise, if it has any white key, table has to be cleared ** (in the atomic phase). In generational mode, some tables ** must be kept in some gray list for post-processing; this is done ** by 'genlink'. */ static int traverseephemeron (global_State *g, Table *h, int inv) { int marked = 0; /* true if an object is marked in this traversal */ int hasclears = 0; /* true if table has white keys */ int hasww = 0; /* true if table has entry "white-key -> white-value" */ unsigned int i; unsigned int asize = luaH_realasize(h); unsigned int nsize = sizenode(h); /* traverse array part */ for (i = 0; i < asize; i++) { if (valiswhite(&h->array[i])) { marked = 1; reallymarkobject(g, gcvalue(&h->array[i])); } } /* traverse hash part; if 'inv', traverse descending (see 'convergeephemerons') */ for (i = 0; i < nsize; i++) { Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); if (isempty(gval(n))) /* entry is empty? */ clearkey(n); /* clear its key */ else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ hasclears = 1; /* table must be cleared */ if (valiswhite(gval(n))) /* value not marked yet? */ hasww = 1; /* white-white entry */ } else if (valiswhite(gval(n))) { /* value not marked yet? */ marked = 1; reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ } } /* link table into proper list */ if (g->gcstate == GCSpropagate) linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ else if (hasww) /* table has white->white entries? */ linkgclist(h, g->ephemeron); /* have to propagate again */ else if (hasclears) /* table has white keys? */ linkgclist(h, g->allweak); /* may have to clean white keys */ else genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ return marked; } static void traversestrongtable (global_State *g, Table *h) { Node *n, *limit = gnodelast(h); unsigned int i; unsigned int asize = luaH_realasize(h); for (i = 0; i < asize; i++) /* traverse array part */ markvalue(g, &h->array[i]); for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ if (isempty(gval(n))) /* entry is empty? */ clearkey(n); /* clear its key */ else { lua_assert(!keyisnil(n)); markkey(g, n); markvalue(g, gval(n)); } } genlink(g, obj2gco(h)); } static lu_mem traversetable (global_State *g, Table *h) { const char *weakkey, *weakvalue; const TValue *mode = gfasttm(g, h->metatable, TM_MODE); markobjectN(g, h->metatable); if (mode && ttisstring(mode) && /* is there a weak mode? */ (cast_void(weakkey = strchr(svalue(mode), 'k')), cast_void(weakvalue = strchr(svalue(mode), 'v')), (weakkey || weakvalue))) { /* is really weak? */ if (!weakkey) /* strong keys? */ traverseweakvalue(g, h); else if (!weakvalue) /* strong values? */ traverseephemeron(g, h, 0); else /* all weak */ linkgclist(h, g->allweak); /* nothing to traverse now */ } else /* not weak */ traversestrongtable(g, h); return 1 + h->alimit + 2 * allocsizenode(h); } static int traverseudata (global_State *g, Udata *u) { int i; markobjectN(g, u->metatable); /* mark its metatable */ for (i = 0; i < u->nuvalue; i++) markvalue(g, &u->uv[i].uv); genlink(g, obj2gco(u)); return 1 + u->nuvalue; } /* ** Traverse a prototype. (While a prototype is being build, its ** arrays can be larger than needed; the extra slots are filled with ** NULL, so the use of 'markobjectN') */ static int traverseproto (global_State *g, Proto *f) { int i; markobjectN(g, f->source); for (i = 0; i < f->sizek; i++) /* mark literals */ markvalue(g, &f->k[i]); for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ markobjectN(g, f->upvalues[i].name); for (i = 0; i < f->sizep; i++) /* mark nested protos */ markobjectN(g, f->p[i]); for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ markobjectN(g, f->locvars[i].varname); return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; } static int traverseCclosure (global_State *g, CClosure *cl) { int i; for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ markvalue(g, &cl->upvalue[i]); return 1 + cl->nupvalues; } /* ** Traverse a Lua closure, marking its prototype and its upvalues. ** (Both can be NULL while closure is being created.) */ static int traverseLclosure (global_State *g, LClosure *cl) { int i; markobjectN(g, cl->p); /* mark its prototype */ for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ UpVal *uv = cl->upvals[i]; markobjectN(g, uv); /* mark upvalue */ } return 1 + cl->nupvalues; } /* ** Traverse a thread, marking the elements in the stack up to its top ** and cleaning the rest of the stack in the final traversal. That ** ensures that the entire stack have valid (non-dead) objects. ** Threads have no barriers. In gen. mode, old threads must be visited ** at every cycle, because they might point to young objects. In inc. ** mode, the thread can still be modified before the end of the cycle, ** and therefore it must be visited again in the atomic phase. To ensure ** these visits, threads must return to a gray list if they are not new ** (which can only happen in generational mode) or if the traverse is in ** the propagate phase (which can only happen in incremental mode). */ static int traversethread (global_State *g, lua_State *th) { UpVal *uv; StkId o = th->stack; if (isold(th) || g->gcstate == GCSpropagate) linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ if (o == NULL) return 1; /* stack not completely built yet */ lua_assert(g->gcstate == GCSatomic || th->openupval == NULL || isintwups(th)); for (; o < th->top; o++) /* mark live elements in the stack */ markvalue(g, s2v(o)); for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) markobject(g, uv); /* open upvalues cannot be collected */ if (g->gcstate == GCSatomic) { /* final traversal? */ for (; o < th->stack_last + EXTRA_STACK; o++) setnilvalue(s2v(o)); /* clear dead stack slice */ /* 'remarkupvals' may have removed thread from 'twups' list */ if (!isintwups(th) && th->openupval != NULL) { th->twups = g->twups; /* link it back to the list */ g->twups = th; } } else if (!g->gcemergency) luaD_shrinkstack(th); /* do not change stack in emergency cycle */ return 1 + stacksize(th); } /* ** traverse one gray object, turning it to black. */ static lu_mem propagatemark (global_State *g) { GCObject *o = g->gray; nw2black(o); g->gray = *getgclist(o); /* remove from 'gray' list */ switch (o->tt) { case LUA_VTABLE: return traversetable(g, gco2t(o)); case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); case LUA_VPROTO: return traverseproto(g, gco2p(o)); case LUA_VTHREAD: return traversethread(g, gco2th(o)); default: lua_assert(0); return 0; } } static lu_mem propagateall (global_State *g) { lu_mem tot = 0; while (g->gray) tot += propagatemark(g); return tot; } /* ** Traverse all ephemeron tables propagating marks from keys to values. ** Repeat until it converges, that is, nothing new is marked. 'dir' ** inverts the direction of the traversals, trying to speed up ** convergence on chains in the same table. ** */ static void convergeephemerons (global_State *g) { int changed; int dir = 0; do { GCObject *w; GCObject *next = g->ephemeron; /* get ephemeron list */ g->ephemeron = NULL; /* tables may return to this list when traversed */ changed = 0; while ((w = next) != NULL) { /* for each ephemeron table */ Table *h = gco2t(w); next = h->gclist; /* list is rebuilt during loop */ nw2black(h); /* out of the list (for now) */ if (traverseephemeron(g, h, dir)) { /* marked some value? */ propagateall(g); /* propagate changes */ changed = 1; /* will have to revisit all ephemeron tables */ } } dir = !dir; /* invert direction next time */ } while (changed); /* repeat until no more changes */ } /* }====================================================== */ /* ** {====================================================== ** Sweep Functions ** ======================================================= */ /* ** clear entries with unmarked keys from all weaktables in list 'l' */ static void clearbykeys (global_State *g, GCObject *l) { for (; l; l = gco2t(l)->gclist) { Table *h = gco2t(l); Node *limit = gnodelast(h); Node *n; for (n = gnode(h, 0); n < limit; n++) { if (iscleared(g, gckeyN(n))) /* unmarked key? */ setempty(gval(n)); /* remove entry */ if (isempty(gval(n))) /* is entry empty? */ clearkey(n); /* clear its key */ } } } /* ** clear entries with unmarked values from all weaktables in list 'l' up ** to element 'f' */ static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { for (; l != f; l = gco2t(l)->gclist) { Table *h = gco2t(l); Node *n, *limit = gnodelast(h); unsigned int i; unsigned int asize = luaH_realasize(h); for (i = 0; i < asize; i++) { TValue *o = &h->array[i]; if (iscleared(g, gcvalueN(o))) /* value was collected? */ setempty(o); /* remove entry */ } for (n = gnode(h, 0); n < limit; n++) { if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ setempty(gval(n)); /* remove entry */ if (isempty(gval(n))) /* is entry empty? */ clearkey(n); /* clear its key */ } } } static void freeupval (lua_State *L, UpVal *uv) { if (upisopen(uv)) luaF_unlinkupval(uv); luaM_free(L, uv); } static void freeobj (lua_State *L, GCObject *o) { switch (o->tt) { case LUA_VPROTO: luaF_freeproto(L, gco2p(o)); break; case LUA_VUPVAL: freeupval(L, gco2upv(o)); break; case LUA_VLCL: { LClosure *cl = gco2lcl(o); luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); break; } case LUA_VCCL: { CClosure *cl = gco2ccl(o); luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); break; } case LUA_VTABLE: luaH_free(L, gco2t(o)); break; case LUA_VTHREAD: luaE_freethread(L, gco2th(o)); break; case LUA_VUSERDATA: { Udata *u = gco2u(o); luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); break; } case LUA_VSHRSTR: { TString *ts = gco2ts(o); luaS_remove(L, ts); /* remove it from hash table */ luaM_freemem(L, ts, sizelstring(ts->shrlen)); break; } case LUA_VLNGSTR: { TString *ts = gco2ts(o); luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); break; } default: lua_assert(0); } } /* ** sweep at most 'countin' elements from a list of GCObjects erasing dead ** objects, where a dead object is one marked with the old (non current) ** white; change all non-dead objects back to white, preparing for next ** collection cycle. Return where to continue the traversal or NULL if ** list is finished. ('*countout' gets the number of elements traversed.) */ static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, int *countout) { global_State *g = G(L); int ow = otherwhite(g); int i; int white = luaC_white(g); /* current white */ for (i = 0; *p != NULL && i < countin; i++) { GCObject *curr = *p; int marked = curr->marked; if (isdeadm(ow, marked)) { /* is 'curr' dead? */ *p = curr->next; /* remove 'curr' from list */ freeobj(L, curr); /* erase 'curr' */ } else { /* change mark to 'white' */ curr->marked = cast_byte((marked & ~maskgcbits) | white); p = &curr->next; /* go to next element */ } } if (countout) *countout = i; /* number of elements traversed */ return (*p == NULL) ? NULL : p; } /* ** sweep a list until a live object (or end of list) */ static GCObject **sweeptolive (lua_State *L, GCObject **p) { GCObject **old = p; do { p = sweeplist(L, p, 1, NULL); } while (p == old); return p; } /* }====================================================== */ /* ** {====================================================== ** Finalization ** ======================================================= */ /* ** If possible, shrink string table. */ static void checkSizes (lua_State *L, global_State *g) { if (!g->gcemergency) { if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ l_mem olddebt = g->GCdebt; luaS_resize(L, g->strt.size / 2); g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ } } } /* ** Get the next udata to be finalized from the 'tobefnz' list, and ** link it back into the 'allgc' list. */ static GCObject *udata2finalize (global_State *g) { GCObject *o = g->tobefnz; /* get first element */ lua_assert(tofinalize(o)); g->tobefnz = o->next; /* remove it from 'tobefnz' list */ o->next = g->allgc; /* return it to 'allgc' list */ g->allgc = o; resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ if (issweepphase(g)) makewhite(g, o); /* "sweep" object */ else if (getage(o) == G_OLD1) g->firstold1 = o; /* it is the first OLD1 object in the list */ return o; } static void dothecall (lua_State *L, void *ud) { UNUSED(ud); luaD_callnoyield(L, L->top - 2, 0); } static void GCTM (lua_State *L) { global_State *g = G(L); const TValue *tm; TValue v; lua_assert(!g->gcemergency); setgcovalue(L, &v, udata2finalize(g)); tm = luaT_gettmbyobj(L, &v, TM_GC); if (!notm(tm)) { /* is there a finalizer? */ int status; lu_byte oldah = L->allowhook; int oldgcstp = g->gcstp; g->gcstp |= GCSTPGC; /* avoid GC steps */ L->allowhook = 0; /* stop debug hooks during GC metamethod */ setobj2s(L, L->top++, tm); /* push finalizer... */ setobj2s(L, L->top++, &v); /* ... and its argument */ L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ L->allowhook = oldah; /* restore hooks */ g->gcstp = oldgcstp; /* restore state */ if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ luaE_warnerror(L, "__gc"); L->top--; /* pops error object */ } } } /* ** Call a few finalizers */ static int runafewfinalizers (lua_State *L, int n) { global_State *g = G(L); int i; for (i = 0; i < n && g->tobefnz; i++) GCTM(L); /* call one finalizer */ return i; } /* ** call all pending finalizers */ static void callallpendingfinalizers (lua_State *L) { global_State *g = G(L); while (g->tobefnz) GCTM(L); } /* ** find last 'next' field in list 'p' list (to add elements in its end) */ static GCObject **findlast (GCObject **p) { while (*p != NULL) p = &(*p)->next; return p; } /* ** Move all unreachable objects (or 'all' objects) that need ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). ** (Note that objects after 'finobjold1' cannot be white, so they ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, ** so the whole list is traversed.) */ static void separatetobefnz (global_State *g, int all) { GCObject *curr; GCObject **p = &g->finobj; GCObject **lastnext = findlast(&g->tobefnz); while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ lua_assert(tofinalize(curr)); if (!(iswhite(curr) || all)) /* not being collected? */ p = &curr->next; /* don't bother with it */ else { if (curr == g->finobjsur) /* removing 'finobjsur'? */ g->finobjsur = curr->next; /* correct it */ *p = curr->next; /* remove 'curr' from 'finobj' list */ curr->next = *lastnext; /* link at the end of 'tobefnz' list */ *lastnext = curr; lastnext = &curr->next; } } } /* ** If pointer 'p' points to 'o', move it to the next element. */ static void checkpointer (GCObject **p, GCObject *o) { if (o == *p) *p = o->next; } /* ** Correct pointers to objects inside 'allgc' list when ** object 'o' is being removed from the list. */ static void correctpointers (global_State *g, GCObject *o) { checkpointer(&g->survival, o); checkpointer(&g->old1, o); checkpointer(&g->reallyold, o); checkpointer(&g->firstold1, o); } /* ** if object 'o' has a finalizer, remove it from 'allgc' list (must ** search the list to find it) and link it in 'finobj' list. */ void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { global_State *g = G(L); if (tofinalize(o) || /* obj. is already marked... */ gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */ (g->gcstp & GCSTPCLS)) /* or closing state? */ return; /* nothing to be done */ else { /* move 'o' to 'finobj' list */ GCObject **p; if (issweepphase(g)) { makewhite(g, o); /* "sweep" object 'o' */ if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ } else correctpointers(g, o); /* search for pointer pointing to 'o' */ for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } *p = o->next; /* remove 'o' from 'allgc' list */ o->next = g->finobj; /* link it in 'finobj' list */ g->finobj = o; l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ } } /* }====================================================== */ /* ** {====================================================== ** Generational Collector ** ======================================================= */ static void setpause (global_State *g); /* ** Sweep a list of objects to enter generational mode. Deletes dead ** objects and turns the non dead to old. All non-dead threads---which ** are now old---must be in a gray list. Everything else is not in a ** gray list. Open upvalues are also kept gray. */ static void sweep2old (lua_State *L, GCObject **p) { GCObject *curr; global_State *g = G(L); while ((curr = *p) != NULL) { if (iswhite(curr)) { /* is 'curr' dead? */ lua_assert(isdead(g, curr)); *p = curr->next; /* remove 'curr' from list */ freeobj(L, curr); /* erase 'curr' */ } else { /* all surviving objects become old */ setage(curr, G_OLD); if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ lua_State *th = gco2th(curr); linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ } else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) set2gray(curr); /* open upvalues are always gray */ else /* everything else is black */ nw2black(curr); p = &curr->next; /* go to next element */ } } } /* ** Sweep for generational mode. Delete dead objects. (Because the ** collection is not incremental, there are no "new white" objects ** during the sweep. So, any white object must be dead.) For ** non-dead objects, advance their ages and clear the color of ** new objects. (Old objects keep their colors.) ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced ** here, because these old-generation objects are usually not swept ** here. They will all be advanced in 'correctgraylist'. That function ** will also remove objects turned white here from any gray list. */ static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, GCObject *limit, GCObject **pfirstold1) { static const lu_byte nextage[] = { G_SURVIVAL, /* from G_NEW */ G_OLD1, /* from G_SURVIVAL */ G_OLD1, /* from G_OLD0 */ G_OLD, /* from G_OLD1 */ G_OLD, /* from G_OLD (do not change) */ G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ }; int white = luaC_white(g); GCObject *curr; while ((curr = *p) != limit) { if (iswhite(curr)) { /* is 'curr' dead? */ lua_assert(!isold(curr) && isdead(g, curr)); *p = curr->next; /* remove 'curr' from list */ freeobj(L, curr); /* erase 'curr' */ } else { /* correct mark and age */ if (getage(curr) == G_NEW) { /* new objects go back to white */ int marked = curr->marked & ~maskgcbits; /* erase GC bits */ curr->marked = cast_byte(marked | G_SURVIVAL | white); } else { /* all other objects will be old, and so keep their color */ setage(curr, nextage[getage(curr)]); if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) *pfirstold1 = curr; /* first OLD1 object in the list */ } p = &curr->next; /* go to next element */ } } return p; } /* ** Traverse a list making all its elements white and clearing their ** age. In incremental mode, all objects are 'new' all the time, ** except for fixed strings (which are always old). */ static void whitelist (global_State *g, GCObject *p) { int white = luaC_white(g); for (; p != NULL; p = p->next) p->marked = cast_byte((p->marked & ~maskgcbits) | white); } /* ** Correct a list of gray objects. Return pointer to where rest of the ** list should be linked. ** Because this correction is done after sweeping, young objects might ** be turned white and still be in the list. They are only removed. ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; ** Non-white threads also remain on the list; 'TOUCHED2' objects become ** regular old; they and anything else are removed from the list. */ static GCObject **correctgraylist (GCObject **p) { GCObject *curr; while ((curr = *p) != NULL) { GCObject **next = getgclist(curr); if (iswhite(curr)) goto remove; /* remove all white objects */ else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ lua_assert(isgray(curr)); nw2black(curr); /* make it black, for next barrier */ changeage(curr, G_TOUCHED1, G_TOUCHED2); goto remain; /* keep it in the list and go to next element */ } else if (curr->tt == LUA_VTHREAD) { lua_assert(isgray(curr)); goto remain; /* keep non-white threads on the list */ } else { /* everything else is removed */ lua_assert(isold(curr)); /* young objects should be white here */ if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ nw2black(curr); /* make object black (to be removed) */ goto remove; } remove: *p = *next; continue; remain: p = next; continue; } return p; } /* ** Correct all gray lists, coalescing them into 'grayagain'. */ static void correctgraylists (global_State *g) { GCObject **list = correctgraylist(&g->grayagain); *list = g->weak; g->weak = NULL; list = correctgraylist(list); *list = g->allweak; g->allweak = NULL; list = correctgraylist(list); *list = g->ephemeron; g->ephemeron = NULL; correctgraylist(list); } /* ** Mark black 'OLD1' objects when starting a new young collection. ** Gray objects are already in some gray list, and so will be visited ** in the atomic step. */ static void markold (global_State *g, GCObject *from, GCObject *to) { GCObject *p; for (p = from; p != to; p = p->next) { if (getage(p) == G_OLD1) { lua_assert(!iswhite(p)); changeage(p, G_OLD1, G_OLD); /* now they are old */ if (isblack(p)) reallymarkobject(g, p); } } } /* ** Finish a young-generation collection. */ static void finishgencycle (lua_State *L, global_State *g) { correctgraylists(g); checkSizes(L, g); g->gcstate = GCSpropagate; /* skip restart */ if (!g->gcemergency) callallpendingfinalizers(L); } /* ** Does a young collection. First, mark 'OLD1' objects. Then does the ** atomic step. Then, sweep all lists and advance pointers. Finally, ** finish the collection. */ static void youngcollection (lua_State *L, global_State *g) { GCObject **psurvival; /* to point to first non-dead survival object */ GCObject *dummy; /* dummy out parameter to 'sweepgen' */ lua_assert(g->gcstate == GCSpropagate); if (g->firstold1) { /* are there regular OLD1 objects? */ markold(g, g->firstold1, g->reallyold); /* mark them */ g->firstold1 = NULL; /* no more OLD1 objects (for now) */ } markold(g, g->finobj, g->finobjrold); markold(g, g->tobefnz, NULL); atomic(L); /* sweep nursery and get a pointer to its last live element */ g->gcstate = GCSswpallgc; psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); /* sweep 'survival' */ sweepgen(L, g, psurvival, g->old1, &g->firstold1); g->reallyold = g->old1; g->old1 = *psurvival; /* 'survival' survivals are old now */ g->survival = g->allgc; /* all news are survivals */ /* repeat for 'finobj' lists */ dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); /* sweep 'survival' */ sweepgen(L, g, psurvival, g->finobjold1, &dummy); g->finobjrold = g->finobjold1; g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ g->finobjsur = g->finobj; /* all news are survivals */ sweepgen(L, g, &g->tobefnz, NULL, &dummy); finishgencycle(L, g); } /* ** Clears all gray lists, sweeps objects, and prepare sublists to enter ** generational mode. The sweeps remove dead objects and turn all ** surviving objects to old. Threads go back to 'grayagain'; everything ** else is turned black (not in any gray list). */ static void atomic2gen (lua_State *L, global_State *g) { cleargraylists(g); /* sweep all elements making them old */ g->gcstate = GCSswpallgc; sweep2old(L, &g->allgc); /* everything alive now is old */ g->reallyold = g->old1 = g->survival = g->allgc; g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ /* repeat for 'finobj' lists */ sweep2old(L, &g->finobj); g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; sweep2old(L, &g->tobefnz); g->gckind = KGC_GEN; g->lastatomic = 0; g->GCestimate = gettotalbytes(g); /* base for memory control */ finishgencycle(L, g); } /* ** Enter generational mode. Must go until the end of an atomic cycle ** to ensure that all objects are correctly marked and weak tables ** are cleared. Then, turn all objects into old and finishes the ** collection. */ static lu_mem entergen (lua_State *L, global_State *g) { lu_mem numobjs; luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ numobjs = atomic(L); /* propagates all and then do the atomic stuff */ atomic2gen(L, g); return numobjs; } /* ** Enter incremental mode. Turn all objects white, make all ** intermediate lists point to NULL (to avoid invalid pointers), ** and go to the pause state. */ static void enterinc (global_State *g) { whitelist(g, g->allgc); g->reallyold = g->old1 = g->survival = NULL; whitelist(g, g->finobj); whitelist(g, g->tobefnz); g->finobjrold = g->finobjold1 = g->finobjsur = NULL; g->gcstate = GCSpause; g->gckind = KGC_INC; g->lastatomic = 0; } /* ** Change collector mode to 'newmode'. */ void luaC_changemode (lua_State *L, int newmode) { global_State *g = G(L); if (newmode != g->gckind) { if (newmode == KGC_GEN) /* entering generational mode? */ entergen(L, g); else enterinc(g); /* entering incremental mode */ } g->lastatomic = 0; } /* ** Does a full collection in generational mode. */ static lu_mem fullgen (lua_State *L, global_State *g) { enterinc(g); return entergen(L, g); } /* ** Set debt for the next minor collection, which will happen when ** memory grows 'genminormul'%. */ static void setminordebt (global_State *g) { luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); } /* ** Does a major collection after last collection was a "bad collection". ** ** When the program is building a big structure, it allocates lots of ** memory but generates very little garbage. In those scenarios, ** the generational mode just wastes time doing small collections, and ** major collections are frequently what we call a "bad collection", a ** collection that frees too few objects. To avoid the cost of switching ** between generational mode and the incremental mode needed for full ** (major) collections, the collector tries to stay in incremental mode ** after a bad collection, and to switch back to generational mode only ** after a "good" collection (one that traverses less than 9/8 objects ** of the previous one). ** The collector must choose whether to stay in incremental mode or to ** switch back to generational mode before sweeping. At this point, it ** does not know the real memory in use, so it cannot use memory to ** decide whether to return to generational mode. Instead, it uses the ** number of objects traversed (returned by 'atomic') as a proxy. The ** field 'g->lastatomic' keeps this count from the last collection. ** ('g->lastatomic != 0' also means that the last collection was bad.) */ static void stepgenfull (lua_State *L, global_State *g) { lu_mem newatomic; /* count of traversed objects */ lu_mem lastatomic = g->lastatomic; /* count from last collection */ if (g->gckind == KGC_GEN) /* still in generational mode? */ enterinc(g); /* enter incremental mode */ luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ newatomic = atomic(L); /* mark everybody */ if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ atomic2gen(L, g); /* return to generational mode */ setminordebt(g); } else { /* another bad collection; stay in incremental mode */ g->GCestimate = gettotalbytes(g); /* first estimate */; entersweep(L); luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ setpause(g); g->lastatomic = newatomic; } } /* ** Does a generational "step". ** Usually, this means doing a minor collection and setting the debt to ** make another collection when memory grows 'genminormul'% larger. ** ** However, there are exceptions. If memory grows 'genmajormul'% ** larger than it was at the end of the last major collection (kept ** in 'g->GCestimate'), the function does a major collection. At the ** end, it checks whether the major collection was able to free a ** decent amount of memory (at least half the growth in memory since ** previous major collection). If so, the collector keeps its state, ** and the next collection will probably be minor again. Otherwise, ** we have what we call a "bad collection". In that case, set the field ** 'g->lastatomic' to signal that fact, so that the next collection will ** go to 'stepgenfull'. ** ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; ** in that case, do a minor collection. */ static void genstep (lua_State *L, global_State *g) { if (g->lastatomic != 0) /* last collection was a bad one? */ stepgenfull(L, g); /* do a full step */ else { lu_mem majorbase = g->GCestimate; /* memory after last major collection */ lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { lu_mem numobjs = fullgen(L, g); /* do a major collection */ if (gettotalbytes(g) < majorbase + (majorinc / 2)) { /* collected at least half of memory growth since last major collection; keep doing minor collections */ setminordebt(g); } else { /* bad collection */ g->lastatomic = numobjs; /* signal that last collection was bad */ setpause(g); /* do a long wait for next (major) collection */ } } else { /* regular case; do a minor collection */ youngcollection(L, g); setminordebt(g); g->GCestimate = majorbase; /* preserve base value */ } } lua_assert(isdecGCmodegen(g)); } /* }====================================================== */ /* ** {====================================================== ** GC control ** ======================================================= */ /* ** Set the "time" to wait before starting a new GC cycle; cycle will ** start when memory use hits the threshold of ('estimate' * pause / ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, ** because Lua cannot even start with less than PAUSEADJ bytes). */ static void setpause (global_State *g) { l_mem threshold, debt; int pause = getgcparam(g->gcpause); l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ lua_assert(estimate > 0); threshold = (pause < MAX_LMEM / estimate) /* overflow? */ ? estimate * pause /* no overflow */ : MAX_LMEM; /* overflow; truncate to maximum */ debt = gettotalbytes(g) - threshold; if (debt > 0) debt = 0; luaE_setdebt(g, debt); } /* ** Enter first sweep phase. ** The call to 'sweeptolive' makes the pointer point to an object ** inside the list (instead of to the header), so that the real sweep do ** not need to skip objects created between "now" and the start of the ** real sweep. */ static void entersweep (lua_State *L) { global_State *g = G(L); g->gcstate = GCSswpallgc; lua_assert(g->sweepgc == NULL); g->sweepgc = sweeptolive(L, &g->allgc); } /* ** Delete all objects in list 'p' until (but not including) object ** 'limit'. */ static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { while (p != limit) { GCObject *next = p->next; freeobj(L, p); p = next; } } /* ** Call all finalizers of the objects in the given Lua state, and ** then free all objects, except for the main thread. */ void luaC_freeallobjects (lua_State *L) { global_State *g = G(L); g->gcstp = GCSTPCLS; /* no extra finalizers after here */ luaC_changemode(L, KGC_INC); separatetobefnz(g, 1); /* separate all objects with finalizers */ lua_assert(g->finobj == NULL); callallpendingfinalizers(L); deletelist(L, g->allgc, obj2gco(g->mainthread)); lua_assert(g->finobj == NULL); /* no new finalizers */ deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ lua_assert(g->strt.nuse == 0); } static lu_mem atomic (lua_State *L) { global_State *g = G(L); lu_mem work = 0; GCObject *origweak, *origall; GCObject *grayagain = g->grayagain; /* save original list */ g->grayagain = NULL; lua_assert(g->ephemeron == NULL && g->weak == NULL); lua_assert(!iswhite(g->mainthread)); g->gcstate = GCSatomic; markobject(g, L); /* mark running thread */ /* registry and global metatables may be changed by API */ markvalue(g, &g->l_registry); markmt(g); /* mark global metatables */ work += propagateall(g); /* empties 'gray' list */ /* remark occasional upvalues of (maybe) dead threads */ work += remarkupvals(g); work += propagateall(g); /* propagate changes */ g->gray = grayagain; work += propagateall(g); /* traverse 'grayagain' list */ convergeephemerons(g); /* at this point, all strongly accessible objects are marked. */ /* Clear values from weak tables, before checking finalizers */ clearbyvalues(g, g->weak, NULL); clearbyvalues(g, g->allweak, NULL); origweak = g->weak; origall = g->allweak; separatetobefnz(g, 0); /* separate objects to be finalized */ work += markbeingfnz(g); /* mark objects that will be finalized */ work += propagateall(g); /* remark, to propagate 'resurrection' */ convergeephemerons(g); /* at this point, all resurrected objects are marked. */ /* remove dead objects from weak tables */ clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ /* clear values from resurrected weak tables */ clearbyvalues(g, g->weak, origweak); clearbyvalues(g, g->allweak, origall); luaS_clearcache(g); g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ lua_assert(g->gray == NULL); return work; /* estimate of slots marked by 'atomic' */ } static int sweepstep (lua_State *L, global_State *g, int nextstate, GCObject **nextlist) { if (g->sweepgc) { l_mem olddebt = g->GCdebt; int count; g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); g->GCestimate += g->GCdebt - olddebt; /* update estimate */ return count; } else { /* enter next state */ g->gcstate = nextstate; g->sweepgc = nextlist; return 0; /* no work done */ } } static lu_mem singlestep (lua_State *L) { global_State *g = G(L); lu_mem work; lua_assert(!g->gcstopem); /* collector is not reentrant */ g->gcstopem = 1; /* no emergency collections while collecting */ switch (g->gcstate) { case GCSpause: { restartcollection(g); g->gcstate = GCSpropagate; work = 1; break; } case GCSpropagate: { if (g->gray == NULL) { /* no more gray objects? */ g->gcstate = GCSenteratomic; /* finish propagate phase */ work = 0; } else work = propagatemark(g); /* traverse one gray object */ break; } case GCSenteratomic: { work = atomic(L); /* work is what was traversed by 'atomic' */ entersweep(L); g->GCestimate = gettotalbytes(g); /* first estimate */; break; } case GCSswpallgc: { /* sweep "regular" objects */ work = sweepstep(L, g, GCSswpfinobj, &g->finobj); break; } case GCSswpfinobj: { /* sweep objects with finalizers */ work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); break; } case GCSswptobefnz: { /* sweep objects to be finalized */ work = sweepstep(L, g, GCSswpend, NULL); break; } case GCSswpend: { /* finish sweeps */ checkSizes(L, g); g->gcstate = GCScallfin; work = 0; break; } case GCScallfin: { /* call remaining finalizers */ if (g->tobefnz && !g->gcemergency) { g->gcstopem = 0; /* ok collections during finalizers */ work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; } else { /* emergency mode or no more finalizers */ g->gcstate = GCSpause; /* finish collection */ work = 0; } break; } default: lua_assert(0); return 0; } g->gcstopem = 0; return work; } /* ** advances the garbage collector until it reaches a state allowed ** by 'statemask' */ void luaC_runtilstate (lua_State *L, int statesmask) { global_State *g = G(L); while (!testbit(statesmask, g->gcstate)) singlestep(L); } /* ** Performs a basic incremental step. The debt and step size are ** converted from bytes to "units of work"; then the function loops ** running single steps until adding that many units of work or ** finishing a cycle (pause state). Finally, it sets the debt that ** controls when next step will be performed. */ static void incstep (lua_State *L, global_State *g) { int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul : MAX_LMEM; /* overflow; keep maximum value */ do { /* repeat until pause or enough "credit" (negative debt) */ lu_mem work = singlestep(L); /* perform one single step */ debt -= work; } while (debt > -stepsize && g->gcstate != GCSpause); if (g->gcstate == GCSpause) setpause(g); /* pause until next cycle */ else { debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ luaE_setdebt(g, debt); } } /* ** performs a basic GC step if collector is running */ void luaC_step (lua_State *L) { global_State *g = G(L); lua_assert(!g->gcemergency); if (gcrunning(g)) { /* running? */ if(isdecGCmodegen(g)) genstep(L, g); else incstep(L, g); } } /* ** Perform a full collection in incremental mode. ** Before running the collection, check 'keepinvariant'; if it is true, ** there may be some objects marked as black, so the collector has ** to sweep all objects to turn them back to white (as white has not ** changed, nothing will be collected). */ static void fullinc (lua_State *L, global_State *g) { if (keepinvariant(g)) /* black objects? */ entersweep(L); /* sweep everything to turn them back to white */ /* finish any pending sweep phase to start a new cycle */ luaC_runtilstate(L, bitmask(GCSpause)); luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ /* estimate must be correct after a full GC cycle */ lua_assert(g->GCestimate == gettotalbytes(g)); luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ setpause(g); } /* ** Performs a full GC cycle; if 'isemergency', set a flag to avoid ** some operations which could change the interpreter state in some ** unexpected ways (running finalizers and shrinking some structures). */ void luaC_fullgc (lua_State *L, int isemergency) { global_State *g = G(L); lua_assert(!g->gcemergency); g->gcemergency = isemergency; /* set flag */ if (g->gckind == KGC_INC) fullinc(L, g); else fullgen(L, g); g->gcemergency = 0; } /* }====================================================== */ /* ** $Id: llex.c $ ** Lexical Analyzer ** See Copyright Notice in lua.h */ #define llex_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include /*#include "lua.h"*/ /*#include "lctype.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lgc.h"*/ /*#include "llex.h"*/ /*#include "lobject.h"*/ /*#include "lparser.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "lzio.h"*/ #define next(ls) (ls->current = zgetc(ls->z)) #define currIsNewline(ls) (ls->current == '\n' || ls->current == '\r') /* ORDER RESERVED */ static const char *const luaX_tokens [] = { "and", "break", "do", "else", "elseif", "end", "false", "for", "function", "goto", "if", "in", "local", "nil", "not", "or", "repeat", "return", "then", "true", "until", "while", "//", "..", "...", "==", ">=", "<=", "~=", "<<", ">>", "::", "", "", "", "", "" }; #define save_and_next(ls) (save(ls, ls->current), next(ls)) static l_noret lexerror (LexState *ls, const char *msg, int token); static void save (LexState *ls, int c) { Mbuffer *b = ls->buff; if (luaZ_bufflen(b) + 1 > luaZ_sizebuffer(b)) { size_t newsize; if (luaZ_sizebuffer(b) >= MAX_SIZE/2) lexerror(ls, "lexical element too long", 0); newsize = luaZ_sizebuffer(b) * 2; luaZ_resizebuffer(ls->L, b, newsize); } b->buffer[luaZ_bufflen(b)++] = cast_char(c); } void luaX_init (lua_State *L) { int i; TString *e = luaS_newliteral(L, LUA_ENV); /* create env name */ luaC_fix(L, obj2gco(e)); /* never collect this name */ for (i=0; iextra = cast_byte(i+1); /* reserved word */ } } const char *luaX_token2str (LexState *ls, int token) { if (token < FIRST_RESERVED) { /* single-byte symbols? */ if (lisprint(token)) return luaO_pushfstring(ls->L, "'%c'", token); else /* control character */ return luaO_pushfstring(ls->L, "'<\\%d>'", token); } else { const char *s = luaX_tokens[token - FIRST_RESERVED]; if (token < TK_EOS) /* fixed format (symbols and reserved words)? */ return luaO_pushfstring(ls->L, "'%s'", s); else /* names, strings, and numerals */ return s; } } static const char *txtToken (LexState *ls, int token) { switch (token) { case TK_NAME: case TK_STRING: case TK_FLT: case TK_INT: save(ls, '\0'); return luaO_pushfstring(ls->L, "'%s'", luaZ_buffer(ls->buff)); default: return luaX_token2str(ls, token); } } static l_noret lexerror (LexState *ls, const char *msg, int token) { msg = luaG_addinfo(ls->L, msg, ls->source, ls->linenumber); if (token) luaO_pushfstring(ls->L, "%s near %s", msg, txtToken(ls, token)); luaD_throw(ls->L, LUA_ERRSYNTAX); } l_noret luaX_syntaxerror (LexState *ls, const char *msg) { lexerror(ls, msg, ls->t.token); } /* ** Creates a new string and anchors it in scanner's table so that it ** will not be collected until the end of the compilation; by that time ** it should be anchored somewhere. It also internalizes long strings, ** ensuring there is only one copy of each unique string. The table ** here is used as a set: the string enters as the key, while its value ** is irrelevant. We use the string itself as the value only because it ** is a TValue readly available. Later, the code generation can change ** this value. */ TString *luaX_newstring (LexState *ls, const char *str, size_t l) { lua_State *L = ls->L; TString *ts = luaS_newlstr(L, str, l); /* create new string */ const TValue *o = luaH_getstr(ls->h, ts); if (!ttisnil(o)) /* string already present? */ ts = keystrval(nodefromval(o)); /* get saved copy */ else { /* not in use yet */ TValue *stv = s2v(L->top++); /* reserve stack space for string */ setsvalue(L, stv, ts); /* temporarily anchor the string */ luaH_finishset(L, ls->h, stv, o, stv); /* t[string] = string */ /* table is not a metatable, so it does not need to invalidate cache */ luaC_checkGC(L); L->top--; /* remove string from stack */ } return ts; } /* ** increment line number and skips newline sequence (any of ** \n, \r, \n\r, or \r\n) */ static void inclinenumber (LexState *ls) { int old = ls->current; lua_assert(currIsNewline(ls)); next(ls); /* skip '\n' or '\r' */ if (currIsNewline(ls) && ls->current != old) next(ls); /* skip '\n\r' or '\r\n' */ if (++ls->linenumber >= MAX_INT) lexerror(ls, "chunk has too many lines", 0); } void luaX_setinput (lua_State *L, LexState *ls, ZIO *z, TString *source, int firstchar) { ls->t.token = 0; ls->L = L; ls->current = firstchar; ls->lookahead.token = TK_EOS; /* no look-ahead token */ ls->z = z; ls->fs = NULL; ls->linenumber = 1; ls->lastline = 1; ls->source = source; ls->envn = luaS_newliteral(L, LUA_ENV); /* get env name */ luaZ_resizebuffer(ls->L, ls->buff, LUA_MINBUFFER); /* initialize buffer */ } /* ** ======================================================= ** LEXICAL ANALYZER ** ======================================================= */ static int check_next1 (LexState *ls, int c) { if (ls->current == c) { next(ls); return 1; } else return 0; } /* ** Check whether current char is in set 'set' (with two chars) and ** saves it */ static int check_next2 (LexState *ls, const char *set) { lua_assert(set[2] == '\0'); if (ls->current == set[0] || ls->current == set[1]) { save_and_next(ls); return 1; } else return 0; } /* LUA_NUMBER */ /* ** This function is quite liberal in what it accepts, as 'luaO_str2num' ** will reject ill-formed numerals. Roughly, it accepts the following ** pattern: ** ** %d(%x|%.|([Ee][+-]?))* | 0[Xx](%x|%.|([Pp][+-]?))* ** ** The only tricky part is to accept [+-] only after a valid exponent ** mark, to avoid reading '3-4' or '0xe+1' as a single number. ** ** The caller might have already read an initial dot. */ static int read_numeral (LexState *ls, SemInfo *seminfo) { TValue obj; const char *expo = "Ee"; int first = ls->current; lua_assert(lisdigit(ls->current)); save_and_next(ls); if (first == '0' && check_next2(ls, "xX")) /* hexadecimal? */ expo = "Pp"; for (;;) { if (check_next2(ls, expo)) /* exponent mark? */ check_next2(ls, "-+"); /* optional exponent sign */ else if (lisxdigit(ls->current) || ls->current == '.') /* '%x|%.' */ save_and_next(ls); else break; } if (lislalpha(ls->current)) /* is numeral touching a letter? */ save_and_next(ls); /* force an error */ save(ls, '\0'); if (luaO_str2num(luaZ_buffer(ls->buff), &obj) == 0) /* format error? */ lexerror(ls, "malformed number", TK_FLT); if (ttisinteger(&obj)) { seminfo->i = ivalue(&obj); return TK_INT; } else { lua_assert(ttisfloat(&obj)); seminfo->r = fltvalue(&obj); return TK_FLT; } } /* ** read a sequence '[=*[' or ']=*]', leaving the last bracket. If ** sequence is well formed, return its number of '='s + 2; otherwise, ** return 1 if it is a single bracket (no '='s and no 2nd bracket); ** otherwise (an unfinished '[==...') return 0. */ static size_t skip_sep (LexState *ls) { size_t count = 0; int s = ls->current; lua_assert(s == '[' || s == ']'); save_and_next(ls); while (ls->current == '=') { save_and_next(ls); count++; } return (ls->current == s) ? count + 2 : (count == 0) ? 1 : 0; } static void read_long_string (LexState *ls, SemInfo *seminfo, size_t sep) { int line = ls->linenumber; /* initial line (for error message) */ save_and_next(ls); /* skip 2nd '[' */ if (currIsNewline(ls)) /* string starts with a newline? */ inclinenumber(ls); /* skip it */ for (;;) { switch (ls->current) { case EOZ: { /* error */ const char *what = (seminfo ? "string" : "comment"); const char *msg = luaO_pushfstring(ls->L, "unfinished long %s (starting at line %d)", what, line); lexerror(ls, msg, TK_EOS); break; /* to avoid warnings */ } case ']': { if (skip_sep(ls) == sep) { save_and_next(ls); /* skip 2nd ']' */ goto endloop; } break; } case '\n': case '\r': { save(ls, '\n'); inclinenumber(ls); if (!seminfo) luaZ_resetbuffer(ls->buff); /* avoid wasting space */ break; } default: { if (seminfo) save_and_next(ls); else next(ls); } } } endloop: if (seminfo) seminfo->ts = luaX_newstring(ls, luaZ_buffer(ls->buff) + sep, luaZ_bufflen(ls->buff) - 2 * sep); } static void esccheck (LexState *ls, int c, const char *msg) { if (!c) { if (ls->current != EOZ) save_and_next(ls); /* add current to buffer for error message */ lexerror(ls, msg, TK_STRING); } } static int gethexa (LexState *ls) { save_and_next(ls); esccheck (ls, lisxdigit(ls->current), "hexadecimal digit expected"); return luaO_hexavalue(ls->current); } static int readhexaesc (LexState *ls) { int r = gethexa(ls); r = (r << 4) + gethexa(ls); luaZ_buffremove(ls->buff, 2); /* remove saved chars from buffer */ return r; } static unsigned long readutf8esc (LexState *ls) { unsigned long r; int i = 4; /* chars to be removed: '\', 'u', '{', and first digit */ save_and_next(ls); /* skip 'u' */ esccheck(ls, ls->current == '{', "missing '{'"); r = gethexa(ls); /* must have at least one digit */ while (cast_void(save_and_next(ls)), lisxdigit(ls->current)) { i++; esccheck(ls, r <= (0x7FFFFFFFu >> 4), "UTF-8 value too large"); r = (r << 4) + luaO_hexavalue(ls->current); } esccheck(ls, ls->current == '}', "missing '}'"); next(ls); /* skip '}' */ luaZ_buffremove(ls->buff, i); /* remove saved chars from buffer */ return r; } static void utf8esc (LexState *ls) { char buff[UTF8BUFFSZ]; int n = luaO_utf8esc(buff, readutf8esc(ls)); for (; n > 0; n--) /* add 'buff' to string */ save(ls, buff[UTF8BUFFSZ - n]); } static int readdecesc (LexState *ls) { int i; int r = 0; /* result accumulator */ for (i = 0; i < 3 && lisdigit(ls->current); i++) { /* read up to 3 digits */ r = 10*r + ls->current - '0'; save_and_next(ls); } esccheck(ls, r <= UCHAR_MAX, "decimal escape too large"); luaZ_buffremove(ls->buff, i); /* remove read digits from buffer */ return r; } static void read_string (LexState *ls, int del, SemInfo *seminfo) { save_and_next(ls); /* keep delimiter (for error messages) */ while (ls->current != del) { switch (ls->current) { case EOZ: lexerror(ls, "unfinished string", TK_EOS); break; /* to avoid warnings */ case '\n': case '\r': lexerror(ls, "unfinished string", TK_STRING); break; /* to avoid warnings */ case '\\': { /* escape sequences */ int c; /* final character to be saved */ save_and_next(ls); /* keep '\\' for error messages */ switch (ls->current) { case 'a': c = '\a'; goto read_save; case 'b': c = '\b'; goto read_save; case 'f': c = '\f'; goto read_save; case 'n': c = '\n'; goto read_save; case 'r': c = '\r'; goto read_save; case 't': c = '\t'; goto read_save; case 'v': c = '\v'; goto read_save; case 'x': c = readhexaesc(ls); goto read_save; case 'u': utf8esc(ls); goto no_save; case '\n': case '\r': inclinenumber(ls); c = '\n'; goto only_save; case '\\': case '\"': case '\'': c = ls->current; goto read_save; case EOZ: goto no_save; /* will raise an error next loop */ case 'z': { /* zap following span of spaces */ luaZ_buffremove(ls->buff, 1); /* remove '\\' */ next(ls); /* skip the 'z' */ while (lisspace(ls->current)) { if (currIsNewline(ls)) inclinenumber(ls); else next(ls); } goto no_save; } default: { esccheck(ls, lisdigit(ls->current), "invalid escape sequence"); c = readdecesc(ls); /* digital escape '\ddd' */ goto only_save; } } read_save: next(ls); /* go through */ only_save: luaZ_buffremove(ls->buff, 1); /* remove '\\' */ save(ls, c); /* go through */ no_save: break; } default: save_and_next(ls); } } save_and_next(ls); /* skip delimiter */ seminfo->ts = luaX_newstring(ls, luaZ_buffer(ls->buff) + 1, luaZ_bufflen(ls->buff) - 2); } static int llex (LexState *ls, SemInfo *seminfo) { luaZ_resetbuffer(ls->buff); for (;;) { switch (ls->current) { case '\n': case '\r': { /* line breaks */ inclinenumber(ls); break; } case ' ': case '\f': case '\t': case '\v': { /* spaces */ next(ls); break; } case '-': { /* '-' or '--' (comment) */ next(ls); if (ls->current != '-') return '-'; /* else is a comment */ next(ls); if (ls->current == '[') { /* long comment? */ size_t sep = skip_sep(ls); luaZ_resetbuffer(ls->buff); /* 'skip_sep' may dirty the buffer */ if (sep >= 2) { read_long_string(ls, NULL, sep); /* skip long comment */ luaZ_resetbuffer(ls->buff); /* previous call may dirty the buff. */ break; } } /* else short comment */ while (!currIsNewline(ls) && ls->current != EOZ) next(ls); /* skip until end of line (or end of file) */ break; } case '[': { /* long string or simply '[' */ size_t sep = skip_sep(ls); if (sep >= 2) { read_long_string(ls, seminfo, sep); return TK_STRING; } else if (sep == 0) /* '[=...' missing second bracket? */ lexerror(ls, "invalid long string delimiter", TK_STRING); return '['; } case '=': { next(ls); if (check_next1(ls, '=')) return TK_EQ; /* '==' */ else return '='; } case '<': { next(ls); if (check_next1(ls, '=')) return TK_LE; /* '<=' */ else if (check_next1(ls, '<')) return TK_SHL; /* '<<' */ else return '<'; } case '>': { next(ls); if (check_next1(ls, '=')) return TK_GE; /* '>=' */ else if (check_next1(ls, '>')) return TK_SHR; /* '>>' */ else return '>'; } case '/': { next(ls); if (check_next1(ls, '/')) return TK_IDIV; /* '//' */ else return '/'; } case '~': { next(ls); if (check_next1(ls, '=')) return TK_NE; /* '~=' */ else return '~'; } case ':': { next(ls); if (check_next1(ls, ':')) return TK_DBCOLON; /* '::' */ else return ':'; } case '"': case '\'': { /* short literal strings */ read_string(ls, ls->current, seminfo); return TK_STRING; } case '.': { /* '.', '..', '...', or number */ save_and_next(ls); if (check_next1(ls, '.')) { if (check_next1(ls, '.')) return TK_DOTS; /* '...' */ else return TK_CONCAT; /* '..' */ } else if (!lisdigit(ls->current)) return '.'; else return read_numeral(ls, seminfo); } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { return read_numeral(ls, seminfo); } case EOZ: { return TK_EOS; } default: { if (lislalpha(ls->current)) { /* identifier or reserved word? */ TString *ts; do { save_and_next(ls); } while (lislalnum(ls->current)); ts = luaX_newstring(ls, luaZ_buffer(ls->buff), luaZ_bufflen(ls->buff)); seminfo->ts = ts; if (isreserved(ts)) /* reserved word? */ return ts->extra - 1 + FIRST_RESERVED; else { return TK_NAME; } } else { /* single-char tokens ('+', '*', '%', '{', '}', ...) */ int c = ls->current; next(ls); return c; } } } } } void luaX_next (LexState *ls) { ls->lastline = ls->linenumber; if (ls->lookahead.token != TK_EOS) { /* is there a look-ahead token? */ ls->t = ls->lookahead; /* use this one */ ls->lookahead.token = TK_EOS; /* and discharge it */ } else ls->t.token = llex(ls, &ls->t.seminfo); /* read next token */ } int luaX_lookahead (LexState *ls) { lua_assert(ls->lookahead.token == TK_EOS); ls->lookahead.token = llex(ls, &ls->lookahead.seminfo); return ls->lookahead.token; } /* ** $Id: lcode.c $ ** Code generator for Lua ** See Copyright Notice in lua.h */ #define lcode_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include #include #include /*#include "lua.h"*/ /*#include "lcode.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lgc.h"*/ /*#include "llex.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lopcodes.h"*/ /*#include "lparser.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "lvm.h"*/ /* Maximum number of registers in a Lua function (must fit in 8 bits) */ #define MAXREGS 255 #define hasjumps(e) ((e)->t != (e)->f) static int codesJ (FuncState *fs, OpCode o, int sj, int k); /* semantic error */ l_noret luaK_semerror (LexState *ls, const char *msg) { ls->t.token = 0; /* remove "near " from final message */ luaX_syntaxerror(ls, msg); } /* ** If expression is a numeric constant, fills 'v' with its value ** and returns 1. Otherwise, returns 0. */ static int tonumeral (const expdesc *e, TValue *v) { if (hasjumps(e)) return 0; /* not a numeral */ switch (e->k) { case VKINT: if (v) setivalue(v, e->u.ival); return 1; case VKFLT: if (v) setfltvalue(v, e->u.nval); return 1; default: return 0; } } /* ** Get the constant value from a constant expression */ static TValue *const2val (FuncState *fs, const expdesc *e) { lua_assert(e->k == VCONST); return &fs->ls->dyd->actvar.arr[e->u.info].k; } /* ** If expression is a constant, fills 'v' with its value ** and returns 1. Otherwise, returns 0. */ int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { if (hasjumps(e)) return 0; /* not a constant */ switch (e->k) { case VFALSE: setbfvalue(v); return 1; case VTRUE: setbtvalue(v); return 1; case VNIL: setnilvalue(v); return 1; case VKSTR: { setsvalue(fs->ls->L, v, e->u.strval); return 1; } case VCONST: { setobj(fs->ls->L, v, const2val(fs, e)); return 1; } default: return tonumeral(e, v); } } /* ** Return the previous instruction of the current code. If there ** may be a jump target between the current instruction and the ** previous one, return an invalid instruction (to avoid wrong ** optimizations). */ static Instruction *previousinstruction (FuncState *fs) { static const Instruction invalidinstruction = ~(Instruction)0; if (fs->pc > fs->lasttarget) return &fs->f->code[fs->pc - 1]; /* previous instruction */ else return cast(Instruction*, &invalidinstruction); } /* ** Create a OP_LOADNIL instruction, but try to optimize: if the previous ** instruction is also OP_LOADNIL and ranges are compatible, adjust ** range of previous instruction instead of emitting a new one. (For ** instance, 'local a; local b' will generate a single opcode.) */ void luaK_nil (FuncState *fs, int from, int n) { int l = from + n - 1; /* last register to set nil */ Instruction *previous = previousinstruction(fs); if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ int pfrom = GETARG_A(*previous); /* get previous range */ int pl = pfrom + GETARG_B(*previous); if ((pfrom <= from && from <= pl + 1) || (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ if (pl > l) l = pl; /* l = max(l, pl) */ SETARG_A(*previous, from); SETARG_B(*previous, l - from); return; } /* else go through */ } luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ } /* ** Gets the destination address of a jump instruction. Used to traverse ** a list of jumps. */ static int getjump (FuncState *fs, int pc) { int offset = GETARG_sJ(fs->f->code[pc]); if (offset == NO_JUMP) /* point to itself represents end of list */ return NO_JUMP; /* end of list */ else return (pc+1)+offset; /* turn offset into absolute position */ } /* ** Fix jump instruction at position 'pc' to jump to 'dest'. ** (Jump addresses are relative in Lua) */ static void fixjump (FuncState *fs, int pc, int dest) { Instruction *jmp = &fs->f->code[pc]; int offset = dest - (pc + 1); lua_assert(dest != NO_JUMP); if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) luaX_syntaxerror(fs->ls, "control structure too long"); lua_assert(GET_OPCODE(*jmp) == OP_JMP); SETARG_sJ(*jmp, offset); } /* ** Concatenate jump-list 'l2' into jump-list 'l1' */ void luaK_concat (FuncState *fs, int *l1, int l2) { if (l2 == NO_JUMP) return; /* nothing to concatenate? */ else if (*l1 == NO_JUMP) /* no original list? */ *l1 = l2; /* 'l1' points to 'l2' */ else { int list = *l1; int next; while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ list = next; fixjump(fs, list, l2); /* last element links to 'l2' */ } } /* ** Create a jump instruction and return its position, so its destination ** can be fixed later (with 'fixjump'). */ int luaK_jump (FuncState *fs) { return codesJ(fs, OP_JMP, NO_JUMP, 0); } /* ** Code a 'return' instruction */ void luaK_ret (FuncState *fs, int first, int nret) { OpCode op; switch (nret) { case 0: op = OP_RETURN0; break; case 1: op = OP_RETURN1; break; default: op = OP_RETURN; break; } luaK_codeABC(fs, op, first, nret + 1, 0); } /* ** Code a "conditional jump", that is, a test or comparison opcode ** followed by a jump. Return jump position. */ static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { luaK_codeABCk(fs, op, A, B, C, k); return luaK_jump(fs); } /* ** returns current 'pc' and marks it as a jump target (to avoid wrong ** optimizations with consecutive instructions not in the same basic block). */ int luaK_getlabel (FuncState *fs) { fs->lasttarget = fs->pc; return fs->pc; } /* ** Returns the position of the instruction "controlling" a given ** jump (that is, its condition), or the jump itself if it is ** unconditional. */ static Instruction *getjumpcontrol (FuncState *fs, int pc) { Instruction *pi = &fs->f->code[pc]; if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) return pi-1; else return pi; } /* ** Patch destination register for a TESTSET instruction. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination ** register. Otherwise, change instruction to a simple 'TEST' (produces ** no register value) */ static int patchtestreg (FuncState *fs, int node, int reg) { Instruction *i = getjumpcontrol(fs, node); if (GET_OPCODE(*i) != OP_TESTSET) return 0; /* cannot patch other instructions */ if (reg != NO_REG && reg != GETARG_B(*i)) SETARG_A(*i, reg); else { /* no register to put value or register already has the value; change instruction to simple test */ *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); } return 1; } /* ** Traverse a list of tests ensuring no one produces a value */ static void removevalues (FuncState *fs, int list) { for (; list != NO_JUMP; list = getjump(fs, list)) patchtestreg(fs, list, NO_REG); } /* ** Traverse a list of tests, patching their destination address and ** registers: tests producing values jump to 'vtarget' (and put their ** values in 'reg'), other tests jump to 'dtarget'. */ static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, int dtarget) { while (list != NO_JUMP) { int next = getjump(fs, list); if (patchtestreg(fs, list, reg)) fixjump(fs, list, vtarget); else fixjump(fs, list, dtarget); /* jump to default target */ list = next; } } /* ** Path all jumps in 'list' to jump to 'target'. ** (The assert means that we cannot fix a jump to a forward address ** because we only know addresses once code is generated.) */ void luaK_patchlist (FuncState *fs, int list, int target) { lua_assert(target <= fs->pc); patchlistaux(fs, list, target, NO_REG, target); } void luaK_patchtohere (FuncState *fs, int list) { int hr = luaK_getlabel(fs); /* mark "here" as a jump target */ luaK_patchlist(fs, list, hr); } /* limit for difference between lines in relative line info. */ #define LIMLINEDIFF 0x80 /* ** Save line info for a new instruction. If difference from last line ** does not fit in a byte, of after that many instructions, save a new ** absolute line info; (in that case, the special value 'ABSLINEINFO' ** in 'lineinfo' signals the existence of this absolute information.) ** Otherwise, store the difference from last line in 'lineinfo'. */ static void savelineinfo (FuncState *fs, Proto *f, int line) { int linedif = line - fs->previousline; int pc = fs->pc - 1; /* last instruction coded */ if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) { luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines"); f->abslineinfo[fs->nabslineinfo].pc = pc; f->abslineinfo[fs->nabslineinfo++].line = line; linedif = ABSLINEINFO; /* signal that there is absolute information */ fs->iwthabs = 1; /* restart counter */ } luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, MAX_INT, "opcodes"); f->lineinfo[pc] = linedif; fs->previousline = line; /* last line saved */ } /* ** Remove line information from the last instruction. ** If line information for that instruction is absolute, set 'iwthabs' ** above its max to force the new (replacing) instruction to have ** absolute line info, too. */ static void removelastlineinfo (FuncState *fs) { Proto *f = fs->f; int pc = fs->pc - 1; /* last instruction coded */ if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */ fs->previousline -= f->lineinfo[pc]; /* correct last line saved */ fs->iwthabs--; /* undo previous increment */ } else { /* absolute line information */ lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); fs->nabslineinfo--; /* remove it */ fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */ } } /* ** Remove the last instruction created, correcting line information ** accordingly. */ static void removelastinstruction (FuncState *fs) { removelastlineinfo(fs); fs->pc--; } /* ** Emit instruction 'i', checking for array sizes and saving also its ** line information. Return 'i' position. */ int luaK_code (FuncState *fs, Instruction i) { Proto *f = fs->f; /* put new instruction in code array */ luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, MAX_INT, "opcodes"); f->code[fs->pc++] = i; savelineinfo(fs, f, fs->ls->lastline); return fs->pc - 1; /* index of new instruction */ } /* ** Format and emit an 'iABC' instruction. (Assertions check consistency ** of parameters versus opcode.) */ int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { lua_assert(getOpMode(o) == iABC); lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C && (k & ~1) == 0); return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); } /* ** Format and emit an 'iABx' instruction. */ int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { lua_assert(getOpMode(o) == iABx); lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); return luaK_code(fs, CREATE_ABx(o, a, bc)); } /* ** Format and emit an 'iAsBx' instruction. */ int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) { unsigned int b = bc + OFFSET_sBx; lua_assert(getOpMode(o) == iAsBx); lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); return luaK_code(fs, CREATE_ABx(o, a, b)); } /* ** Format and emit an 'isJ' instruction. */ static int codesJ (FuncState *fs, OpCode o, int sj, int k) { unsigned int j = sj + OFFSET_sJ; lua_assert(getOpMode(o) == isJ); lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); return luaK_code(fs, CREATE_sJ(o, j, k)); } /* ** Emit an "extra argument" instruction (format 'iAx') */ static int codeextraarg (FuncState *fs, int a) { lua_assert(a <= MAXARG_Ax); return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); } /* ** Emit a "load constant" instruction, using either 'OP_LOADK' ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' ** instruction with "extra argument". */ static int luaK_codek (FuncState *fs, int reg, int k) { if (k <= MAXARG_Bx) return luaK_codeABx(fs, OP_LOADK, reg, k); else { int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); codeextraarg(fs, k); return p; } } /* ** Check register-stack level, keeping track of its maximum size ** in field 'maxstacksize' */ void luaK_checkstack (FuncState *fs, int n) { int newstack = fs->freereg + n; if (newstack > fs->f->maxstacksize) { if (newstack >= MAXREGS) luaX_syntaxerror(fs->ls, "function or expression needs too many registers"); fs->f->maxstacksize = cast_byte(newstack); } } /* ** Reserve 'n' registers in register stack */ void luaK_reserveregs (FuncState *fs, int n) { luaK_checkstack(fs, n); fs->freereg += n; } /* ** Free register 'reg', if it is neither a constant index nor ** a local variable. ) */ static void freereg (FuncState *fs, int reg) { if (reg >= luaY_nvarstack(fs)) { fs->freereg--; lua_assert(reg == fs->freereg); } } /* ** Free two registers in proper order */ static void freeregs (FuncState *fs, int r1, int r2) { if (r1 > r2) { freereg(fs, r1); freereg(fs, r2); } else { freereg(fs, r2); freereg(fs, r1); } } /* ** Free register used by expression 'e' (if any) */ static void freeexp (FuncState *fs, expdesc *e) { if (e->k == VNONRELOC) freereg(fs, e->u.info); } /* ** Free registers used by expressions 'e1' and 'e2' (if any) in proper ** order. */ static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; freeregs(fs, r1, r2); } /* ** Add constant 'v' to prototype's list of constants (field 'k'). ** Use scanner's table to cache position of constants in constant list ** and try to reuse constants. Because some values should not be used ** as keys (nil cannot be a key, integer keys can collapse with float ** keys), the caller must provide a useful 'key' for indexing the cache. ** Note that all functions share the same table, so entering or exiting ** a function can make some indices wrong. */ static int addk (FuncState *fs, TValue *key, TValue *v) { TValue val; lua_State *L = fs->ls->L; Proto *f = fs->f; const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */ int k, oldsize; if (ttisinteger(idx)) { /* is there an index there? */ k = cast_int(ivalue(idx)); /* correct value? (warning: must distinguish floats from integers!) */ if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && luaV_rawequalobj(&f->k[k], v)) return k; /* reuse index */ } /* constant not found; create a new entry */ oldsize = f->sizek; k = fs->nk; /* numerical value does not need GC barrier; table has no metatable, so it does not need to invalidate cache */ setivalue(&val, k); luaH_finishset(L, fs->ls->h, key, idx, &val); luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); setobj(L, &f->k[k], v); fs->nk++; luaC_barrier(L, f, v); return k; } /* ** Add a string to list of constants and return its index. */ static int stringK (FuncState *fs, TString *s) { TValue o; setsvalue(fs->ls->L, &o, s); return addk(fs, &o, &o); /* use string itself as key */ } /* ** Add an integer to list of constants and return its index. */ static int luaK_intK (FuncState *fs, lua_Integer n) { TValue o; setivalue(&o, n); return addk(fs, &o, &o); /* use integer itself as key */ } /* ** Add a float to list of constants and return its index. Floats ** with integral values need a different key, to avoid collision ** with actual integers. To that, we add to the number its smaller ** power-of-two fraction that is still significant in its scale. ** For doubles, that would be 1/2^52. ** (This method is not bulletproof: there may be another float ** with that value, and for floats larger than 2^53 the result is ** still an integer. At worst, this only wastes an entry with ** a duplicate.) */ static int luaK_numberK (FuncState *fs, lua_Number r) { TValue o; lua_Integer ik; setfltvalue(&o, r); if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */ return addk(fs, &o, &o); /* use number itself as key */ else { /* must build an alternative key */ const int nbm = l_floatatt(MANT_DIG); const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1); const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */ TValue kv; setfltvalue(&kv, k); /* result is not an integral value, unless value is too large */ lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) || l_mathop(fabs)(r) >= l_mathop(1e6)); return addk(fs, &kv, &o); } } /* ** Add a false to list of constants and return its index. */ static int boolF (FuncState *fs) { TValue o; setbfvalue(&o); return addk(fs, &o, &o); /* use boolean itself as key */ } /* ** Add a true to list of constants and return its index. */ static int boolT (FuncState *fs) { TValue o; setbtvalue(&o); return addk(fs, &o, &o); /* use boolean itself as key */ } /* ** Add nil to list of constants and return its index. */ static int nilK (FuncState *fs) { TValue k, v; setnilvalue(&v); /* cannot use nil as key; instead use table itself to represent nil */ sethvalue(fs->ls->L, &k, fs->ls->h); return addk(fs, &k, &v); } /* ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of ** overflows in the hidden addition inside 'int2sC'. */ static int fitsC (lua_Integer i) { return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); } /* ** Check whether 'i' can be stored in an 'sBx' operand. */ static int fitsBx (lua_Integer i) { return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); } void luaK_int (FuncState *fs, int reg, lua_Integer i) { if (fitsBx(i)) luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i)); else luaK_codek(fs, reg, luaK_intK(fs, i)); } static void luaK_float (FuncState *fs, int reg, lua_Number f) { lua_Integer fi; if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); else luaK_codek(fs, reg, luaK_numberK(fs, f)); } /* ** Convert a constant in 'v' into an expression description 'e' */ static void const2exp (TValue *v, expdesc *e) { switch (ttypetag(v)) { case LUA_VNUMINT: e->k = VKINT; e->u.ival = ivalue(v); break; case LUA_VNUMFLT: e->k = VKFLT; e->u.nval = fltvalue(v); break; case LUA_VFALSE: e->k = VFALSE; break; case LUA_VTRUE: e->k = VTRUE; break; case LUA_VNIL: e->k = VNIL; break; case LUA_VSHRSTR: case LUA_VLNGSTR: e->k = VKSTR; e->u.strval = tsvalue(v); break; default: lua_assert(0); } } /* ** Fix an expression to return the number of results 'nresults'. ** 'e' must be a multi-ret expression (function call or vararg). */ void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { Instruction *pc = &getinstruction(fs, e); if (e->k == VCALL) /* expression is an open function call? */ SETARG_C(*pc, nresults + 1); else { lua_assert(e->k == VVARARG); SETARG_C(*pc, nresults + 1); SETARG_A(*pc, fs->freereg); luaK_reserveregs(fs, 1); } } /* ** Convert a VKSTR to a VK */ static void str2K (FuncState *fs, expdesc *e) { lua_assert(e->k == VKSTR); e->u.info = stringK(fs, e->u.strval); e->k = VK; } /* ** Fix an expression to return one result. ** If expression is not a multi-ret expression (function call or ** vararg), it already returns one result, so nothing needs to be done. ** Function calls become VNONRELOC expressions (as its result comes ** fixed in the base register of the call), while vararg expressions ** become VRELOC (as OP_VARARG puts its results where it wants). ** (Calls are created returning one result, so that does not need ** to be fixed.) */ void luaK_setoneret (FuncState *fs, expdesc *e) { if (e->k == VCALL) { /* expression is an open function call? */ /* already returns 1 value */ lua_assert(GETARG_C(getinstruction(fs, e)) == 2); e->k = VNONRELOC; /* result has fixed position */ e->u.info = GETARG_A(getinstruction(fs, e)); } else if (e->k == VVARARG) { SETARG_C(getinstruction(fs, e), 2); e->k = VRELOC; /* can relocate its simple result */ } } /* ** Ensure that expression 'e' is not a variable (nor a ). ** (Expression still may have jump lists.) */ void luaK_dischargevars (FuncState *fs, expdesc *e) { switch (e->k) { case VCONST: { const2exp(const2val(fs, e), e); break; } case VLOCAL: { /* already in a register */ e->u.info = e->u.var.ridx; e->k = VNONRELOC; /* becomes a non-relocatable value */ break; } case VUPVAL: { /* move value to some (pending) register */ e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); e->k = VRELOC; break; } case VINDEXUP: { e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); e->k = VRELOC; break; } case VINDEXI: { freereg(fs, e->u.ind.t); e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); e->k = VRELOC; break; } case VINDEXSTR: { freereg(fs, e->u.ind.t); e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); e->k = VRELOC; break; } case VINDEXED: { freeregs(fs, e->u.ind.t, e->u.ind.idx); e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); e->k = VRELOC; break; } case VVARARG: case VCALL: { luaK_setoneret(fs, e); break; } default: break; /* there is one value available (somewhere) */ } } /* ** Ensure expression value is in register 'reg', making 'e' a ** non-relocatable expression. ** (Expression still may have jump lists.) */ static void discharge2reg (FuncState *fs, expdesc *e, int reg) { luaK_dischargevars(fs, e); switch (e->k) { case VNIL: { luaK_nil(fs, reg, 1); break; } case VFALSE: { luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); break; } case VTRUE: { luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); break; } case VKSTR: { str2K(fs, e); } /* FALLTHROUGH */ case VK: { luaK_codek(fs, reg, e->u.info); break; } case VKFLT: { luaK_float(fs, reg, e->u.nval); break; } case VKINT: { luaK_int(fs, reg, e->u.ival); break; } case VRELOC: { Instruction *pc = &getinstruction(fs, e); SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ break; } case VNONRELOC: { if (reg != e->u.info) luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); break; } default: { lua_assert(e->k == VJMP); return; /* nothing to do... */ } } e->u.info = reg; e->k = VNONRELOC; } /* ** Ensure expression value is in a register, making 'e' a ** non-relocatable expression. ** (Expression still may have jump lists.) */ static void discharge2anyreg (FuncState *fs, expdesc *e) { if (e->k != VNONRELOC) { /* no fixed register yet? */ luaK_reserveregs(fs, 1); /* get a register */ discharge2reg(fs, e, fs->freereg-1); /* put value there */ } } static int code_loadbool (FuncState *fs, int A, OpCode op) { luaK_getlabel(fs); /* those instructions may be jump targets */ return luaK_codeABC(fs, op, A, 0, 0); } /* ** check whether list has any jump that do not produce a value ** or produce an inverted value */ static int need_value (FuncState *fs, int list) { for (; list != NO_JUMP; list = getjump(fs, list)) { Instruction i = *getjumpcontrol(fs, list); if (GET_OPCODE(i) != OP_TESTSET) return 1; } return 0; /* not found */ } /* ** Ensures final expression result (which includes results from its ** jump lists) is in register 'reg'. ** If expression has jumps, need to patch these jumps either to ** its final position or to "load" instructions (for those tests ** that do not produce values). */ static void exp2reg (FuncState *fs, expdesc *e, int reg) { discharge2reg(fs, e, reg); if (e->k == VJMP) /* expression itself is a test? */ luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ if (hasjumps(e)) { int final; /* position after whole expression */ int p_f = NO_JUMP; /* position of an eventual LOAD false */ int p_t = NO_JUMP; /* position of an eventual LOAD true */ if (need_value(fs, e->t) || need_value(fs, e->f)) { int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */ p_t = code_loadbool(fs, reg, OP_LOADTRUE); /* jump around these booleans if 'e' is not a test */ luaK_patchtohere(fs, fj); } final = luaK_getlabel(fs); patchlistaux(fs, e->f, final, reg, p_f); patchlistaux(fs, e->t, final, reg, p_t); } e->f = e->t = NO_JUMP; e->u.info = reg; e->k = VNONRELOC; } /* ** Ensures final expression result is in next available register. */ void luaK_exp2nextreg (FuncState *fs, expdesc *e) { luaK_dischargevars(fs, e); freeexp(fs, e); luaK_reserveregs(fs, 1); exp2reg(fs, e, fs->freereg - 1); } /* ** Ensures final expression result is in some (any) register ** and return that register. */ int luaK_exp2anyreg (FuncState *fs, expdesc *e) { luaK_dischargevars(fs, e); if (e->k == VNONRELOC) { /* expression already has a register? */ if (!hasjumps(e)) /* no jumps? */ return e->u.info; /* result is already in a register */ if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */ exp2reg(fs, e, e->u.info); /* put final result in it */ return e->u.info; } /* else expression has jumps and cannot change its register to hold the jump values, because it is a local variable. Go through to the default case. */ } luaK_exp2nextreg(fs, e); /* default: use next available register */ return e->u.info; } /* ** Ensures final expression result is either in a register ** or in an upvalue. */ void luaK_exp2anyregup (FuncState *fs, expdesc *e) { if (e->k != VUPVAL || hasjumps(e)) luaK_exp2anyreg(fs, e); } /* ** Ensures final expression result is either in a register ** or it is a constant. */ void luaK_exp2val (FuncState *fs, expdesc *e) { if (hasjumps(e)) luaK_exp2anyreg(fs, e); else luaK_dischargevars(fs, e); } /* ** Try to make 'e' a K expression with an index in the range of R/K ** indices. Return true iff succeeded. */ static int luaK_exp2K (FuncState *fs, expdesc *e) { if (!hasjumps(e)) { int info; switch (e->k) { /* move constants to 'k' */ case VTRUE: info = boolT(fs); break; case VFALSE: info = boolF(fs); break; case VNIL: info = nilK(fs); break; case VKINT: info = luaK_intK(fs, e->u.ival); break; case VKFLT: info = luaK_numberK(fs, e->u.nval); break; case VKSTR: info = stringK(fs, e->u.strval); break; case VK: info = e->u.info; break; default: return 0; /* not a constant */ } if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */ e->k = VK; /* make expression a 'K' expression */ e->u.info = info; return 1; } } /* else, expression doesn't fit; leave it unchanged */ return 0; } /* ** Ensures final expression result is in a valid R/K index ** (that is, it is either in a register or in 'k' with an index ** in the range of R/K indices). ** Returns 1 iff expression is K. */ int luaK_exp2RK (FuncState *fs, expdesc *e) { if (luaK_exp2K(fs, e)) return 1; else { /* not a constant in the right range: put it in a register */ luaK_exp2anyreg(fs, e); return 0; } } static void codeABRK (FuncState *fs, OpCode o, int a, int b, expdesc *ec) { int k = luaK_exp2RK(fs, ec); luaK_codeABCk(fs, o, a, b, ec->u.info, k); } /* ** Generate code to store result of expression 'ex' into variable 'var'. */ void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { switch (var->k) { case VLOCAL: { freeexp(fs, ex); exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */ return; } case VUPVAL: { int e = luaK_exp2anyreg(fs, ex); luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); break; } case VINDEXUP: { codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); break; } case VINDEXI: { codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); break; } case VINDEXSTR: { codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); break; } case VINDEXED: { codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); break; } default: lua_assert(0); /* invalid var kind to store */ } freeexp(fs, ex); } /* ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). */ void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { int ereg; luaK_exp2anyreg(fs, e); ereg = e->u.info; /* register where 'e' was placed */ freeexp(fs, e); e->u.info = fs->freereg; /* base register for op_self */ e->k = VNONRELOC; /* self expression has a fixed register */ luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ codeABRK(fs, OP_SELF, e->u.info, ereg, key); freeexp(fs, key); } /* ** Negate condition 'e' (where 'e' is a comparison). */ static void negatecondition (FuncState *fs, expdesc *e) { Instruction *pc = getjumpcontrol(fs, e->u.info); lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && GET_OPCODE(*pc) != OP_TEST); SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); } /* ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' ** is true, code will jump if 'e' is true.) Return jump position. ** Optimize when 'e' is 'not' something, inverting the condition ** and removing the 'not'. */ static int jumponcond (FuncState *fs, expdesc *e, int cond) { if (e->k == VRELOC) { Instruction ie = getinstruction(fs, e); if (GET_OPCODE(ie) == OP_NOT) { removelastinstruction(fs); /* remove previous OP_NOT */ return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); } /* else go through */ } discharge2anyreg(fs, e); freeexp(fs, e); return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); } /* ** Emit code to go through if 'e' is true, jump otherwise. */ void luaK_goiftrue (FuncState *fs, expdesc *e) { int pc; /* pc of new jump */ luaK_dischargevars(fs, e); switch (e->k) { case VJMP: { /* condition? */ negatecondition(fs, e); /* jump when it is false */ pc = e->u.info; /* save jump position */ break; } case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { pc = NO_JUMP; /* always true; do nothing */ break; } default: { pc = jumponcond(fs, e, 0); /* jump when false */ break; } } luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ e->t = NO_JUMP; } /* ** Emit code to go through if 'e' is false, jump otherwise. */ void luaK_goiffalse (FuncState *fs, expdesc *e) { int pc; /* pc of new jump */ luaK_dischargevars(fs, e); switch (e->k) { case VJMP: { pc = e->u.info; /* already jump if true */ break; } case VNIL: case VFALSE: { pc = NO_JUMP; /* always false; do nothing */ break; } default: { pc = jumponcond(fs, e, 1); /* jump if true */ break; } } luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ e->f = NO_JUMP; } /* ** Code 'not e', doing constant folding. */ static void codenot (FuncState *fs, expdesc *e) { switch (e->k) { case VNIL: case VFALSE: { e->k = VTRUE; /* true == not nil == not false */ break; } case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ break; } case VJMP: { negatecondition(fs, e); break; } case VRELOC: case VNONRELOC: { discharge2anyreg(fs, e); freeexp(fs, e); e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); e->k = VRELOC; break; } default: lua_assert(0); /* cannot happen */ } /* interchange true and false lists */ { int temp = e->f; e->f = e->t; e->t = temp; } removevalues(fs, e->f); /* values are useless when negated */ removevalues(fs, e->t); } /* ** Check whether expression 'e' is a small literal string */ static int isKstr (FuncState *fs, expdesc *e) { return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && ttisshrstring(&fs->f->k[e->u.info])); } /* ** Check whether expression 'e' is a literal integer. */ int luaK_isKint (expdesc *e) { return (e->k == VKINT && !hasjumps(e)); } /* ** Check whether expression 'e' is a literal integer in ** proper range to fit in register C */ static int isCint (expdesc *e) { return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); } /* ** Check whether expression 'e' is a literal integer in ** proper range to fit in register sC */ static int isSCint (expdesc *e) { return luaK_isKint(e) && fitsC(e->u.ival); } /* ** Check whether expression 'e' is a literal integer or float in ** proper range to fit in a register (sB or sC). */ static int isSCnumber (expdesc *e, int *pi, int *isfloat) { lua_Integer i; if (e->k == VKINT) i = e->u.ival; else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) *isfloat = 1; else return 0; /* not a number */ if (!hasjumps(e) && fitsC(i)) { *pi = int2sC(cast_int(i)); return 1; } else return 0; } /* ** Create expression 't[k]'. 't' must have its final result already in a ** register or upvalue. Upvalues can only be indexed by literal strings. ** Keys can be literal strings in the constant table or arbitrary ** values in registers. */ void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { if (k->k == VKSTR) str2K(fs, k); lua_assert(!hasjumps(t) && (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */ luaK_exp2anyreg(fs, t); /* put it in a register */ if (t->k == VUPVAL) { t->u.ind.t = t->u.info; /* upvalue index */ t->u.ind.idx = k->u.info; /* literal string */ t->k = VINDEXUP; } else { /* register index of the table */ t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info; if (isKstr(fs, k)) { t->u.ind.idx = k->u.info; /* literal string */ t->k = VINDEXSTR; } else if (isCint(k)) { t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */ t->k = VINDEXI; } else { t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */ t->k = VINDEXED; } } } /* ** Return false if folding can raise an error. ** Bitwise operations need operands convertible to integers; division ** operations cannot have 0 as divisor. */ static int validop (int op, TValue *v1, TValue *v2) { switch (op) { case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ lua_Integer i; return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) && luaV_tointegerns(v2, &i, LUA_FLOORN2I)); } case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ return (nvalue(v2) != 0); default: return 1; /* everything else is valid */ } } /* ** Try to "constant-fold" an operation; return 1 iff successful. ** (In this case, 'e1' has the final result.) */ static int constfolding (FuncState *fs, int op, expdesc *e1, const expdesc *e2) { TValue v1, v2, res; if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) return 0; /* non-numeric operands or not safe to fold */ luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ if (ttisinteger(&res)) { e1->k = VKINT; e1->u.ival = ivalue(&res); } else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ lua_Number n = fltvalue(&res); if (luai_numisnan(n) || n == 0) return 0; e1->k = VKFLT; e1->u.nval = n; } return 1; } /* ** Emit code for unary expressions that "produce values" ** (everything but 'not'). ** Expression to produce final result will be encoded in 'e'. */ static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ freeexp(fs, e); e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ e->k = VRELOC; /* all those operations are relocatable */ luaK_fixline(fs, line); } /* ** Emit code for binary expressions that "produce values" ** (everything but logical operators 'and'/'or' and comparison ** operators). ** Expression to produce final result will be encoded in 'e1'. */ static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, OpCode op, int v2, int flip, int line, OpCode mmop, TMS event) { int v1 = luaK_exp2anyreg(fs, e1); int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); freeexps(fs, e1, e2); e1->u.info = pc; e1->k = VRELOC; /* all those operations are relocatable */ luaK_fixline(fs, line); luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */ luaK_fixline(fs, line); } /* ** Emit code for binary expressions that "produce values" over ** two registers. */ static void codebinexpval (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int line) { int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */ lua_assert(OP_ADD <= op && op <= OP_SHR); finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, cast(TMS, (op - OP_ADD) + TM_ADD)); } /* ** Code binary operators with immediate operands. */ static void codebini (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int flip, int line, TMS event) { int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */ lua_assert(e2->k == VKINT); finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); } /* Try to code a binary operator negating its second operand. ** For the metamethod, 2nd operand must keep its original value. */ static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, OpCode op, int line, TMS event) { if (!luaK_isKint(e2)) return 0; /* not an integer constant */ else { lua_Integer i2 = e2->u.ival; if (!(fitsC(i2) && fitsC(-i2))) return 0; /* not in the proper range */ else { /* operating a small integer constant */ int v2 = cast_int(i2); finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); /* correct metamethod argument */ SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); return 1; /* successfully coded */ } } } static void swapexps (expdesc *e1, expdesc *e2) { expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */ } /* ** Code arithmetic operators ('+', '-', ...). If second operand is a ** constant in the proper range, use variant opcodes with K operands. */ static void codearith (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int flip, int line) { TMS event = cast(TMS, opr + TM_ADD); if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */ int v2 = e2->u.info; /* K index */ OpCode op = cast(OpCode, opr + OP_ADDK); finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); } else { /* 'e2' is neither an immediate nor a K operand */ OpCode op = cast(OpCode, opr + OP_ADD); if (flip) swapexps(e1, e2); /* back to original order */ codebinexpval(fs, op, e1, e2, line); /* use standard operators */ } } /* ** Code commutative operators ('+', '*'). If first operand is a ** numeric constant, change order of operands to try to use an ** immediate or K operator. */ static void codecommutative (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2, int line) { int flip = 0; if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */ swapexps(e1, e2); /* change order */ flip = 1; } if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */ codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD); else codearith(fs, op, e1, e2, flip, line); } /* ** Code bitwise operations; they are all associative, so the function ** tries to put an integer constant as the 2nd operand (a K operand). */ static void codebitwise (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int line) { int flip = 0; int v2; OpCode op; if (e1->k == VKINT && luaK_exp2RK(fs, e1)) { swapexps(e1, e2); /* 'e2' will be the constant operand */ flip = 1; } else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */ op = cast(OpCode, opr + OP_ADD); codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */ return; } v2 = e2->u.info; /* index in K array */ op = cast(OpCode, opr + OP_ADDK); lua_assert(ttisinteger(&fs->f->k[v2])); finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, cast(TMS, opr + TM_ADD)); } /* ** Emit code for order comparisons. When using an immediate operand, ** 'isfloat' tells whether the original value was a float. */ static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) { int r1, r2; int im; int isfloat = 0; if (isSCnumber(e2, &im, &isfloat)) { /* use immediate operand */ r1 = luaK_exp2anyreg(fs, e1); r2 = im; op = cast(OpCode, (op - OP_LT) + OP_LTI); } else if (isSCnumber(e1, &im, &isfloat)) { /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ r1 = luaK_exp2anyreg(fs, e2); r2 = im; op = (op == OP_LT) ? OP_GTI : OP_GEI; } else { /* regular case, compare two registers */ r1 = luaK_exp2anyreg(fs, e1); r2 = luaK_exp2anyreg(fs, e2); } freeexps(fs, e1, e2); e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); e1->k = VJMP; } /* ** Emit code for equality comparisons ('==', '~='). ** 'e1' was already put as RK by 'luaK_infix'. */ static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { int r1, r2; int im; int isfloat = 0; /* not needed here, but kept for symmetry */ OpCode op; if (e1->k != VNONRELOC) { lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); swapexps(e1, e2); } r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */ if (isSCnumber(e2, &im, &isfloat)) { op = OP_EQI; r2 = im; /* immediate operand */ } else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */ op = OP_EQK; r2 = e2->u.info; /* constant index */ } else { op = OP_EQ; /* will compare two registers */ r2 = luaK_exp2anyreg(fs, e2); } freeexps(fs, e1, e2); e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); e1->k = VJMP; } /* ** Apply prefix operation 'op' to expression 'e'. */ void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; luaK_dischargevars(fs, e); switch (op) { case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ if (constfolding(fs, op + LUA_OPUNM, e, &ef)) break; /* else */ /* FALLTHROUGH */ case OPR_LEN: codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); break; case OPR_NOT: codenot(fs, e); break; default: lua_assert(0); } } /* ** Process 1st operand 'v' of binary operation 'op' before reading ** 2nd operand. */ void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { luaK_dischargevars(fs, v); switch (op) { case OPR_AND: { luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ break; } case OPR_OR: { luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ break; } case OPR_CONCAT: { luaK_exp2nextreg(fs, v); /* operand must be on the stack */ break; } case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: case OPR_BAND: case OPR_BOR: case OPR_BXOR: case OPR_SHL: case OPR_SHR: { if (!tonumeral(v, NULL)) luaK_exp2anyreg(fs, v); /* else keep numeral, which may be folded with 2nd operand */ break; } case OPR_EQ: case OPR_NE: { if (!tonumeral(v, NULL)) luaK_exp2RK(fs, v); /* else keep numeral, which may be an immediate operand */ break; } case OPR_LT: case OPR_LE: case OPR_GT: case OPR_GE: { int dummy, dummy2; if (!isSCnumber(v, &dummy, &dummy2)) luaK_exp2anyreg(fs, v); /* else keep numeral, which may be an immediate operand */ break; } default: lua_assert(0); } } /* ** Create code for '(e1 .. e2)'. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', ** because concatenation is right associative), merge both CONCATs. */ static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { Instruction *ie2 = previousinstruction(fs); if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */ int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */ lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); freeexp(fs, e2); SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */ SETARG_B(*ie2, n + 1); /* will concatenate one more element */ } else { /* 'e2' is not a concatenation */ luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */ freeexp(fs, e2); luaK_fixline(fs, line); } } /* ** Finalize code for binary operation, after reading 2nd operand. */ void luaK_posfix (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2, int line) { luaK_dischargevars(fs, e2); if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) return; /* done by folding */ switch (opr) { case OPR_AND: { lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */ luaK_concat(fs, &e2->f, e1->f); *e1 = *e2; break; } case OPR_OR: { lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */ luaK_concat(fs, &e2->t, e1->t); *e1 = *e2; break; } case OPR_CONCAT: { /* e1 .. e2 */ luaK_exp2nextreg(fs, e2); codeconcat(fs, e1, e2, line); break; } case OPR_ADD: case OPR_MUL: { codecommutative(fs, opr, e1, e2, line); break; } case OPR_SUB: { if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) break; /* coded as (r1 + -I) */ /* ELSE */ } /* FALLTHROUGH */ case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { codearith(fs, opr, e1, e2, 0, line); break; } case OPR_BAND: case OPR_BOR: case OPR_BXOR: { codebitwise(fs, opr, e1, e2, line); break; } case OPR_SHL: { if (isSCint(e1)) { swapexps(e1, e2); codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */ } else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { /* coded as (r1 >> -I) */; } else /* regular case (two registers) */ codebinexpval(fs, OP_SHL, e1, e2, line); break; } case OPR_SHR: { if (isSCint(e2)) codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */ else /* regular case (two registers) */ codebinexpval(fs, OP_SHR, e1, e2, line); break; } case OPR_EQ: case OPR_NE: { codeeq(fs, opr, e1, e2); break; } case OPR_LT: case OPR_LE: { OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); codeorder(fs, op, e1, e2); break; } case OPR_GT: case OPR_GE: { /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */ OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); swapexps(e1, e2); codeorder(fs, op, e1, e2); break; } default: lua_assert(0); } } /* ** Change line information associated with current position, by removing ** previous info and adding it again with new line. */ void luaK_fixline (FuncState *fs, int line) { removelastlineinfo(fs); savelineinfo(fs, fs->f, line); } void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { Instruction *inst = &fs->f->code[pc]; int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */ int extra = asize / (MAXARG_C + 1); /* higher bits of array size */ int rc = asize % (MAXARG_C + 1); /* lower bits of array size */ int k = (extra > 0); /* true iff needs extra argument */ *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); } /* ** Emit a SETLIST instruction. ** 'base' is register that keeps table; ** 'nelems' is #table plus those to be stored now; ** 'tostore' is number of values (in registers 'base + 1',...) to add to ** table (or LUA_MULTRET to add up to stack top). */ void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); if (tostore == LUA_MULTRET) tostore = 0; if (nelems <= MAXARG_C) luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); else { int extra = nelems / (MAXARG_C + 1); nelems %= (MAXARG_C + 1); luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); codeextraarg(fs, extra); } fs->freereg = base + 1; /* free registers with list values */ } /* ** return the final target of a jump (skipping jumps to jumps) */ static int finaltarget (Instruction *code, int i) { int count; for (count = 0; count < 100; count++) { /* avoid infinite loops */ Instruction pc = code[i]; if (GET_OPCODE(pc) != OP_JMP) break; else i += GETARG_sJ(pc) + 1; } return i; } /* ** Do a final pass over the code of a function, doing small peephole ** optimizations and adjustments. */ void luaK_finish (FuncState *fs) { int i; Proto *p = fs->f; for (i = 0; i < fs->pc; i++) { Instruction *pc = &p->code[i]; lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); switch (GET_OPCODE(*pc)) { case OP_RETURN0: case OP_RETURN1: { if (!(fs->needclose || p->is_vararg)) break; /* no extra work */ /* else use OP_RETURN to do the extra work */ SET_OPCODE(*pc, OP_RETURN); } /* FALLTHROUGH */ case OP_RETURN: case OP_TAILCALL: { if (fs->needclose) SETARG_k(*pc, 1); /* signal that it needs to close */ if (p->is_vararg) SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */ break; } case OP_JMP: { int target = finaltarget(p->code, i); fixjump(fs, i, target); break; } default: break; } } } /* ** $Id: lparser.c $ ** Lua Parser ** See Copyright Notice in lua.h */ #define lparser_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include /*#include "lua.h"*/ /*#include "lcode.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "llex.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lopcodes.h"*/ /*#include "lparser.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /* maximum number of local variables per function (must be smaller than 250, due to the bytecode format) */ #define MAXVARS 200 #define hasmultret(k) ((k) == VCALL || (k) == VVARARG) /* because all strings are unified by the scanner, the parser can use pointer equality for string equality */ #define eqstr(a,b) ((a) == (b)) /* ** nodes for block list (list of active blocks) */ typedef struct BlockCnt { struct BlockCnt *previous; /* chain */ int firstlabel; /* index of first label in this block */ int firstgoto; /* index of first pending goto in this block */ lu_byte nactvar; /* # active locals outside the block */ lu_byte upval; /* true if some variable in the block is an upvalue */ lu_byte isloop; /* true if 'block' is a loop */ lu_byte insidetbc; /* true if inside the scope of a to-be-closed var. */ } BlockCnt; /* ** prototypes for recursive non-terminal functions */ static void statement (LexState *ls); static void expr (LexState *ls, expdesc *v); static l_noret error_expected (LexState *ls, int token) { luaX_syntaxerror(ls, luaO_pushfstring(ls->L, "%s expected", luaX_token2str(ls, token))); } static l_noret errorlimit (FuncState *fs, int limit, const char *what) { lua_State *L = fs->ls->L; const char *msg; int line = fs->f->linedefined; const char *where = (line == 0) ? "main function" : luaO_pushfstring(L, "function at line %d", line); msg = luaO_pushfstring(L, "too many %s (limit is %d) in %s", what, limit, where); luaX_syntaxerror(fs->ls, msg); } static void checklimit (FuncState *fs, int v, int l, const char *what) { if (v > l) errorlimit(fs, l, what); } /* ** Test whether next token is 'c'; if so, skip it. */ static int testnext (LexState *ls, int c) { if (ls->t.token == c) { luaX_next(ls); return 1; } else return 0; } /* ** Check that next token is 'c'. */ static void check (LexState *ls, int c) { if (ls->t.token != c) error_expected(ls, c); } /* ** Check that next token is 'c' and skip it. */ static void checknext (LexState *ls, int c) { check(ls, c); luaX_next(ls); } #define check_condition(ls,c,msg) { if (!(c)) luaX_syntaxerror(ls, msg); } /* ** Check that next token is 'what' and skip it. In case of error, ** raise an error that the expected 'what' should match a 'who' ** in line 'where' (if that is not the current line). */ static void check_match (LexState *ls, int what, int who, int where) { if (l_unlikely(!testnext(ls, what))) { if (where == ls->linenumber) /* all in the same line? */ error_expected(ls, what); /* do not need a complex message */ else { luaX_syntaxerror(ls, luaO_pushfstring(ls->L, "%s expected (to close %s at line %d)", luaX_token2str(ls, what), luaX_token2str(ls, who), where)); } } } static TString *str_checkname (LexState *ls) { TString *ts; check(ls, TK_NAME); ts = ls->t.seminfo.ts; luaX_next(ls); return ts; } static void init_exp (expdesc *e, expkind k, int i) { e->f = e->t = NO_JUMP; e->k = k; e->u.info = i; } static void codestring (expdesc *e, TString *s) { e->f = e->t = NO_JUMP; e->k = VKSTR; e->u.strval = s; } static void codename (LexState *ls, expdesc *e) { codestring(e, str_checkname(ls)); } /* ** Register a new local variable in the active 'Proto' (for debug ** information). */ static int registerlocalvar (LexState *ls, FuncState *fs, TString *varname) { Proto *f = fs->f; int oldsize = f->sizelocvars; luaM_growvector(ls->L, f->locvars, fs->ndebugvars, f->sizelocvars, LocVar, SHRT_MAX, "local variables"); while (oldsize < f->sizelocvars) f->locvars[oldsize++].varname = NULL; f->locvars[fs->ndebugvars].varname = varname; f->locvars[fs->ndebugvars].startpc = fs->pc; luaC_objbarrier(ls->L, f, varname); return fs->ndebugvars++; } /* ** Create a new local variable with the given 'name'. Return its index ** in the function. */ static int new_localvar (LexState *ls, TString *name) { lua_State *L = ls->L; FuncState *fs = ls->fs; Dyndata *dyd = ls->dyd; Vardesc *var; checklimit(fs, dyd->actvar.n + 1 - fs->firstlocal, MAXVARS, "local variables"); luaM_growvector(L, dyd->actvar.arr, dyd->actvar.n + 1, dyd->actvar.size, Vardesc, USHRT_MAX, "local variables"); var = &dyd->actvar.arr[dyd->actvar.n++]; var->vd.kind = VDKREG; /* default */ var->vd.name = name; return dyd->actvar.n - 1 - fs->firstlocal; } #define new_localvarliteral(ls,v) \ new_localvar(ls, \ luaX_newstring(ls, "" v, (sizeof(v)/sizeof(char)) - 1)); /* ** Return the "variable description" (Vardesc) of a given variable. ** (Unless noted otherwise, all variables are referred to by their ** compiler indices.) */ static Vardesc *getlocalvardesc (FuncState *fs, int vidx) { return &fs->ls->dyd->actvar.arr[fs->firstlocal + vidx]; } /* ** Convert 'nvar', a compiler index level, to its corresponding ** register. For that, search for the highest variable below that level ** that is in a register and uses its register index ('ridx') plus one. */ static int reglevel (FuncState *fs, int nvar) { while (nvar-- > 0) { Vardesc *vd = getlocalvardesc(fs, nvar); /* get previous variable */ if (vd->vd.kind != RDKCTC) /* is in a register? */ return vd->vd.ridx + 1; } return 0; /* no variables in registers */ } /* ** Return the number of variables in the register stack for the given ** function. */ int luaY_nvarstack (FuncState *fs) { return reglevel(fs, fs->nactvar); } /* ** Get the debug-information entry for current variable 'vidx'. */ static LocVar *localdebuginfo (FuncState *fs, int vidx) { Vardesc *vd = getlocalvardesc(fs, vidx); if (vd->vd.kind == RDKCTC) return NULL; /* no debug info. for constants */ else { int idx = vd->vd.pidx; lua_assert(idx < fs->ndebugvars); return &fs->f->locvars[idx]; } } /* ** Create an expression representing variable 'vidx' */ static void init_var (FuncState *fs, expdesc *e, int vidx) { e->f = e->t = NO_JUMP; e->k = VLOCAL; e->u.var.vidx = vidx; e->u.var.ridx = getlocalvardesc(fs, vidx)->vd.ridx; } /* ** Raises an error if variable described by 'e' is read only */ static void check_readonly (LexState *ls, expdesc *e) { FuncState *fs = ls->fs; TString *varname = NULL; /* to be set if variable is const */ switch (e->k) { case VCONST: { varname = ls->dyd->actvar.arr[e->u.info].vd.name; break; } case VLOCAL: { Vardesc *vardesc = getlocalvardesc(fs, e->u.var.vidx); if (vardesc->vd.kind != VDKREG) /* not a regular variable? */ varname = vardesc->vd.name; break; } case VUPVAL: { Upvaldesc *up = &fs->f->upvalues[e->u.info]; if (up->kind != VDKREG) varname = up->name; break; } default: return; /* other cases cannot be read-only */ } if (varname) { const char *msg = luaO_pushfstring(ls->L, "attempt to assign to const variable '%s'", getstr(varname)); luaK_semerror(ls, msg); /* error */ } } /* ** Start the scope for the last 'nvars' created variables. */ static void adjustlocalvars (LexState *ls, int nvars) { FuncState *fs = ls->fs; int reglevel = luaY_nvarstack(fs); int i; for (i = 0; i < nvars; i++) { int vidx = fs->nactvar++; Vardesc *var = getlocalvardesc(fs, vidx); var->vd.ridx = reglevel++; var->vd.pidx = registerlocalvar(ls, fs, var->vd.name); } } /* ** Close the scope for all variables up to level 'tolevel'. ** (debug info.) */ static void removevars (FuncState *fs, int tolevel) { fs->ls->dyd->actvar.n -= (fs->nactvar - tolevel); while (fs->nactvar > tolevel) { LocVar *var = localdebuginfo(fs, --fs->nactvar); if (var) /* does it have debug information? */ var->endpc = fs->pc; } } /* ** Search the upvalues of the function 'fs' for one ** with the given 'name'. */ static int searchupvalue (FuncState *fs, TString *name) { int i; Upvaldesc *up = fs->f->upvalues; for (i = 0; i < fs->nups; i++) { if (eqstr(up[i].name, name)) return i; } return -1; /* not found */ } static Upvaldesc *allocupvalue (FuncState *fs) { Proto *f = fs->f; int oldsize = f->sizeupvalues; checklimit(fs, fs->nups + 1, MAXUPVAL, "upvalues"); luaM_growvector(fs->ls->L, f->upvalues, fs->nups, f->sizeupvalues, Upvaldesc, MAXUPVAL, "upvalues"); while (oldsize < f->sizeupvalues) f->upvalues[oldsize++].name = NULL; return &f->upvalues[fs->nups++]; } static int newupvalue (FuncState *fs, TString *name, expdesc *v) { Upvaldesc *up = allocupvalue(fs); FuncState *prev = fs->prev; if (v->k == VLOCAL) { up->instack = 1; up->idx = v->u.var.ridx; up->kind = getlocalvardesc(prev, v->u.var.vidx)->vd.kind; lua_assert(eqstr(name, getlocalvardesc(prev, v->u.var.vidx)->vd.name)); } else { up->instack = 0; up->idx = cast_byte(v->u.info); up->kind = prev->f->upvalues[v->u.info].kind; lua_assert(eqstr(name, prev->f->upvalues[v->u.info].name)); } up->name = name; luaC_objbarrier(fs->ls->L, fs->f, name); return fs->nups - 1; } /* ** Look for an active local variable with the name 'n' in the ** function 'fs'. If found, initialize 'var' with it and return ** its expression kind; otherwise return -1. */ static int searchvar (FuncState *fs, TString *n, expdesc *var) { int i; for (i = cast_int(fs->nactvar) - 1; i >= 0; i--) { Vardesc *vd = getlocalvardesc(fs, i); if (eqstr(n, vd->vd.name)) { /* found? */ if (vd->vd.kind == RDKCTC) /* compile-time constant? */ init_exp(var, VCONST, fs->firstlocal + i); else /* real variable */ init_var(fs, var, i); return var->k; } } return -1; /* not found */ } /* ** Mark block where variable at given level was defined ** (to emit close instructions later). */ static void markupval (FuncState *fs, int level) { BlockCnt *bl = fs->bl; while (bl->nactvar > level) bl = bl->previous; bl->upval = 1; fs->needclose = 1; } /* ** Mark that current block has a to-be-closed variable. */ static void marktobeclosed (FuncState *fs) { BlockCnt *bl = fs->bl; bl->upval = 1; bl->insidetbc = 1; fs->needclose = 1; } /* ** Find a variable with the given name 'n'. If it is an upvalue, add ** this upvalue into all intermediate functions. If it is a global, set ** 'var' as 'void' as a flag. */ static void singlevaraux (FuncState *fs, TString *n, expdesc *var, int base) { if (fs == NULL) /* no more levels? */ init_exp(var, VVOID, 0); /* default is global */ else { int v = searchvar(fs, n, var); /* look up locals at current level */ if (v >= 0) { /* found? */ if (v == VLOCAL && !base) markupval(fs, var->u.var.vidx); /* local will be used as an upval */ } else { /* not found as local at current level; try upvalues */ int idx = searchupvalue(fs, n); /* try existing upvalues */ if (idx < 0) { /* not found? */ singlevaraux(fs->prev, n, var, 0); /* try upper levels */ if (var->k == VLOCAL || var->k == VUPVAL) /* local or upvalue? */ idx = newupvalue(fs, n, var); /* will be a new upvalue */ else /* it is a global or a constant */ return; /* don't need to do anything at this level */ } init_exp(var, VUPVAL, idx); /* new or old upvalue */ } } } /* ** Find a variable with the given name 'n', handling global variables ** too. */ static void singlevar (LexState *ls, expdesc *var) { TString *varname = str_checkname(ls); FuncState *fs = ls->fs; singlevaraux(fs, varname, var, 1); if (var->k == VVOID) { /* global name? */ expdesc key; singlevaraux(fs, ls->envn, var, 1); /* get environment variable */ lua_assert(var->k != VVOID); /* this one must exist */ codestring(&key, varname); /* key is variable name */ luaK_indexed(fs, var, &key); /* env[varname] */ } } /* ** Adjust the number of results from an expression list 'e' with 'nexps' ** expressions to 'nvars' values. */ static void adjust_assign (LexState *ls, int nvars, int nexps, expdesc *e) { FuncState *fs = ls->fs; int needed = nvars - nexps; /* extra values needed */ if (hasmultret(e->k)) { /* last expression has multiple returns? */ int extra = needed + 1; /* discount last expression itself */ if (extra < 0) extra = 0; luaK_setreturns(fs, e, extra); /* last exp. provides the difference */ } else { if (e->k != VVOID) /* at least one expression? */ luaK_exp2nextreg(fs, e); /* close last expression */ if (needed > 0) /* missing values? */ luaK_nil(fs, fs->freereg, needed); /* complete with nils */ } if (needed > 0) luaK_reserveregs(fs, needed); /* registers for extra values */ else /* adding 'needed' is actually a subtraction */ fs->freereg += needed; /* remove extra values */ } #define enterlevel(ls) luaE_incCstack(ls->L) #define leavelevel(ls) ((ls)->L->nCcalls--) /* ** Generates an error that a goto jumps into the scope of some ** local variable. */ static l_noret jumpscopeerror (LexState *ls, Labeldesc *gt) { const char *varname = getstr(getlocalvardesc(ls->fs, gt->nactvar)->vd.name); const char *msg = " at line %d jumps into the scope of local '%s'"; msg = luaO_pushfstring(ls->L, msg, getstr(gt->name), gt->line, varname); luaK_semerror(ls, msg); /* raise the error */ } /* ** Solves the goto at index 'g' to given 'label' and removes it ** from the list of pending goto's. ** If it jumps into the scope of some variable, raises an error. */ static void solvegoto (LexState *ls, int g, Labeldesc *label) { int i; Labellist *gl = &ls->dyd->gt; /* list of goto's */ Labeldesc *gt = &gl->arr[g]; /* goto to be resolved */ lua_assert(eqstr(gt->name, label->name)); if (l_unlikely(gt->nactvar < label->nactvar)) /* enter some scope? */ jumpscopeerror(ls, gt); luaK_patchlist(ls->fs, gt->pc, label->pc); for (i = g; i < gl->n - 1; i++) /* remove goto from pending list */ gl->arr[i] = gl->arr[i + 1]; gl->n--; } /* ** Search for an active label with the given name. */ static Labeldesc *findlabel (LexState *ls, TString *name) { int i; Dyndata *dyd = ls->dyd; /* check labels in current function for a match */ for (i = ls->fs->firstlabel; i < dyd->label.n; i++) { Labeldesc *lb = &dyd->label.arr[i]; if (eqstr(lb->name, name)) /* correct label? */ return lb; } return NULL; /* label not found */ } /* ** Adds a new label/goto in the corresponding list. */ static int newlabelentry (LexState *ls, Labellist *l, TString *name, int line, int pc) { int n = l->n; luaM_growvector(ls->L, l->arr, n, l->size, Labeldesc, SHRT_MAX, "labels/gotos"); l->arr[n].name = name; l->arr[n].line = line; l->arr[n].nactvar = ls->fs->nactvar; l->arr[n].close = 0; l->arr[n].pc = pc; l->n = n + 1; return n; } static int newgotoentry (LexState *ls, TString *name, int line, int pc) { return newlabelentry(ls, &ls->dyd->gt, name, line, pc); } /* ** Solves forward jumps. Check whether new label 'lb' matches any ** pending gotos in current block and solves them. Return true ** if any of the goto's need to close upvalues. */ static int solvegotos (LexState *ls, Labeldesc *lb) { Labellist *gl = &ls->dyd->gt; int i = ls->fs->bl->firstgoto; int needsclose = 0; while (i < gl->n) { if (eqstr(gl->arr[i].name, lb->name)) { needsclose |= gl->arr[i].close; solvegoto(ls, i, lb); /* will remove 'i' from the list */ } else i++; } return needsclose; } /* ** Create a new label with the given 'name' at the given 'line'. ** 'last' tells whether label is the last non-op statement in its ** block. Solves all pending goto's to this new label and adds ** a close instruction if necessary. ** Returns true iff it added a close instruction. */ static int createlabel (LexState *ls, TString *name, int line, int last) { FuncState *fs = ls->fs; Labellist *ll = &ls->dyd->label; int l = newlabelentry(ls, ll, name, line, luaK_getlabel(fs)); if (last) { /* label is last no-op statement in the block? */ /* assume that locals are already out of scope */ ll->arr[l].nactvar = fs->bl->nactvar; } if (solvegotos(ls, &ll->arr[l])) { /* need close? */ luaK_codeABC(fs, OP_CLOSE, luaY_nvarstack(fs), 0, 0); return 1; } return 0; } /* ** Adjust pending gotos to outer level of a block. */ static void movegotosout (FuncState *fs, BlockCnt *bl) { int i; Labellist *gl = &fs->ls->dyd->gt; /* correct pending gotos to current block */ for (i = bl->firstgoto; i < gl->n; i++) { /* for each pending goto */ Labeldesc *gt = &gl->arr[i]; /* leaving a variable scope? */ if (reglevel(fs, gt->nactvar) > reglevel(fs, bl->nactvar)) gt->close |= bl->upval; /* jump may need a close */ gt->nactvar = bl->nactvar; /* update goto level */ } } static void enterblock (FuncState *fs, BlockCnt *bl, lu_byte isloop) { bl->isloop = isloop; bl->nactvar = fs->nactvar; bl->firstlabel = fs->ls->dyd->label.n; bl->firstgoto = fs->ls->dyd->gt.n; bl->upval = 0; bl->insidetbc = (fs->bl != NULL && fs->bl->insidetbc); bl->previous = fs->bl; fs->bl = bl; lua_assert(fs->freereg == luaY_nvarstack(fs)); } /* ** generates an error for an undefined 'goto'. */ static l_noret undefgoto (LexState *ls, Labeldesc *gt) { const char *msg; if (eqstr(gt->name, luaS_newliteral(ls->L, "break"))) { msg = "break outside loop at line %d"; msg = luaO_pushfstring(ls->L, msg, gt->line); } else { msg = "no visible label '%s' for at line %d"; msg = luaO_pushfstring(ls->L, msg, getstr(gt->name), gt->line); } luaK_semerror(ls, msg); } static void leaveblock (FuncState *fs) { BlockCnt *bl = fs->bl; LexState *ls = fs->ls; int hasclose = 0; int stklevel = reglevel(fs, bl->nactvar); /* level outside the block */ if (bl->isloop) /* fix pending breaks? */ hasclose = createlabel(ls, luaS_newliteral(ls->L, "break"), 0, 0); if (!hasclose && bl->previous && bl->upval) luaK_codeABC(fs, OP_CLOSE, stklevel, 0, 0); fs->bl = bl->previous; removevars(fs, bl->nactvar); lua_assert(bl->nactvar == fs->nactvar); fs->freereg = stklevel; /* free registers */ ls->dyd->label.n = bl->firstlabel; /* remove local labels */ if (bl->previous) /* inner block? */ movegotosout(fs, bl); /* update pending gotos to outer block */ else { if (bl->firstgoto < ls->dyd->gt.n) /* pending gotos in outer block? */ undefgoto(ls, &ls->dyd->gt.arr[bl->firstgoto]); /* error */ } } /* ** adds a new prototype into list of prototypes */ static Proto *addprototype (LexState *ls) { Proto *clp; lua_State *L = ls->L; FuncState *fs = ls->fs; Proto *f = fs->f; /* prototype of current function */ if (fs->np >= f->sizep) { int oldsize = f->sizep; luaM_growvector(L, f->p, fs->np, f->sizep, Proto *, MAXARG_Bx, "functions"); while (oldsize < f->sizep) f->p[oldsize++] = NULL; } f->p[fs->np++] = clp = luaF_newproto(L); luaC_objbarrier(L, f, clp); return clp; } /* ** codes instruction to create new closure in parent function. ** The OP_CLOSURE instruction uses the last available register, ** so that, if it invokes the GC, the GC knows which registers ** are in use at that time. */ static void codeclosure (LexState *ls, expdesc *v) { FuncState *fs = ls->fs->prev; init_exp(v, VRELOC, luaK_codeABx(fs, OP_CLOSURE, 0, fs->np - 1)); luaK_exp2nextreg(fs, v); /* fix it at the last register */ } static void open_func (LexState *ls, FuncState *fs, BlockCnt *bl) { Proto *f = fs->f; fs->prev = ls->fs; /* linked list of funcstates */ fs->ls = ls; ls->fs = fs; fs->pc = 0; fs->previousline = f->linedefined; fs->iwthabs = 0; fs->lasttarget = 0; fs->freereg = 0; fs->nk = 0; fs->nabslineinfo = 0; fs->np = 0; fs->nups = 0; fs->ndebugvars = 0; fs->nactvar = 0; fs->needclose = 0; fs->firstlocal = ls->dyd->actvar.n; fs->firstlabel = ls->dyd->label.n; fs->bl = NULL; f->source = ls->source; luaC_objbarrier(ls->L, f, f->source); f->maxstacksize = 2; /* registers 0/1 are always valid */ enterblock(fs, bl, 0); } static void close_func (LexState *ls) { lua_State *L = ls->L; FuncState *fs = ls->fs; Proto *f = fs->f; luaK_ret(fs, luaY_nvarstack(fs), 0); /* final return */ leaveblock(fs); lua_assert(fs->bl == NULL); luaK_finish(fs); luaM_shrinkvector(L, f->code, f->sizecode, fs->pc, Instruction); luaM_shrinkvector(L, f->lineinfo, f->sizelineinfo, fs->pc, ls_byte); luaM_shrinkvector(L, f->abslineinfo, f->sizeabslineinfo, fs->nabslineinfo, AbsLineInfo); luaM_shrinkvector(L, f->k, f->sizek, fs->nk, TValue); luaM_shrinkvector(L, f->p, f->sizep, fs->np, Proto *); luaM_shrinkvector(L, f->locvars, f->sizelocvars, fs->ndebugvars, LocVar); luaM_shrinkvector(L, f->upvalues, f->sizeupvalues, fs->nups, Upvaldesc); ls->fs = fs->prev; luaC_checkGC(L); } /*============================================================*/ /* GRAMMAR RULES */ /*============================================================*/ /* ** check whether current token is in the follow set of a block. ** 'until' closes syntactical blocks, but do not close scope, ** so it is handled in separate. */ static int block_follow (LexState *ls, int withuntil) { switch (ls->t.token) { case TK_ELSE: case TK_ELSEIF: case TK_END: case TK_EOS: return 1; case TK_UNTIL: return withuntil; default: return 0; } } static void statlist (LexState *ls) { /* statlist -> { stat [';'] } */ while (!block_follow(ls, 1)) { if (ls->t.token == TK_RETURN) { statement(ls); return; /* 'return' must be last statement */ } statement(ls); } } static void fieldsel (LexState *ls, expdesc *v) { /* fieldsel -> ['.' | ':'] NAME */ FuncState *fs = ls->fs; expdesc key; luaK_exp2anyregup(fs, v); luaX_next(ls); /* skip the dot or colon */ codename(ls, &key); luaK_indexed(fs, v, &key); } static void yindex (LexState *ls, expdesc *v) { /* index -> '[' expr ']' */ luaX_next(ls); /* skip the '[' */ expr(ls, v); luaK_exp2val(ls->fs, v); checknext(ls, ']'); } /* ** {====================================================================== ** Rules for Constructors ** ======================================================================= */ typedef struct ConsControl { expdesc v; /* last list item read */ expdesc *t; /* table descriptor */ int nh; /* total number of 'record' elements */ int na; /* number of array elements already stored */ int tostore; /* number of array elements pending to be stored */ } ConsControl; static void recfield (LexState *ls, ConsControl *cc) { /* recfield -> (NAME | '['exp']') = exp */ FuncState *fs = ls->fs; int reg = ls->fs->freereg; expdesc tab, key, val; if (ls->t.token == TK_NAME) { checklimit(fs, cc->nh, MAX_INT, "items in a constructor"); codename(ls, &key); } else /* ls->t.token == '[' */ yindex(ls, &key); cc->nh++; checknext(ls, '='); tab = *cc->t; luaK_indexed(fs, &tab, &key); expr(ls, &val); luaK_storevar(fs, &tab, &val); fs->freereg = reg; /* free registers */ } static void closelistfield (FuncState *fs, ConsControl *cc) { if (cc->v.k == VVOID) return; /* there is no list item */ luaK_exp2nextreg(fs, &cc->v); cc->v.k = VVOID; if (cc->tostore == LFIELDS_PER_FLUSH) { luaK_setlist(fs, cc->t->u.info, cc->na, cc->tostore); /* flush */ cc->na += cc->tostore; cc->tostore = 0; /* no more items pending */ } } static void lastlistfield (FuncState *fs, ConsControl *cc) { if (cc->tostore == 0) return; if (hasmultret(cc->v.k)) { luaK_setmultret(fs, &cc->v); luaK_setlist(fs, cc->t->u.info, cc->na, LUA_MULTRET); cc->na--; /* do not count last expression (unknown number of elements) */ } else { if (cc->v.k != VVOID) luaK_exp2nextreg(fs, &cc->v); luaK_setlist(fs, cc->t->u.info, cc->na, cc->tostore); } cc->na += cc->tostore; } static void listfield (LexState *ls, ConsControl *cc) { /* listfield -> exp */ expr(ls, &cc->v); cc->tostore++; } static void field (LexState *ls, ConsControl *cc) { /* field -> listfield | recfield */ switch(ls->t.token) { case TK_NAME: { /* may be 'listfield' or 'recfield' */ if (luaX_lookahead(ls) != '=') /* expression? */ listfield(ls, cc); else recfield(ls, cc); break; } case '[': { recfield(ls, cc); break; } default: { listfield(ls, cc); break; } } } static void constructor (LexState *ls, expdesc *t) { /* constructor -> '{' [ field { sep field } [sep] ] '}' sep -> ',' | ';' */ FuncState *fs = ls->fs; int line = ls->linenumber; int pc = luaK_codeABC(fs, OP_NEWTABLE, 0, 0, 0); ConsControl cc; luaK_code(fs, 0); /* space for extra arg. */ cc.na = cc.nh = cc.tostore = 0; cc.t = t; init_exp(t, VNONRELOC, fs->freereg); /* table will be at stack top */ luaK_reserveregs(fs, 1); init_exp(&cc.v, VVOID, 0); /* no value (yet) */ checknext(ls, '{'); do { lua_assert(cc.v.k == VVOID || cc.tostore > 0); if (ls->t.token == '}') break; closelistfield(fs, &cc); field(ls, &cc); } while (testnext(ls, ',') || testnext(ls, ';')); check_match(ls, '}', '{', line); lastlistfield(fs, &cc); luaK_settablesize(fs, pc, t->u.info, cc.na, cc.nh); } /* }====================================================================== */ static void setvararg (FuncState *fs, int nparams) { fs->f->is_vararg = 1; luaK_codeABC(fs, OP_VARARGPREP, nparams, 0, 0); } static void parlist (LexState *ls) { /* parlist -> [ {NAME ','} (NAME | '...') ] */ FuncState *fs = ls->fs; Proto *f = fs->f; int nparams = 0; int isvararg = 0; if (ls->t.token != ')') { /* is 'parlist' not empty? */ do { switch (ls->t.token) { case TK_NAME: { new_localvar(ls, str_checkname(ls)); nparams++; break; } case TK_DOTS: { luaX_next(ls); isvararg = 1; break; } default: luaX_syntaxerror(ls, " or '...' expected"); } } while (!isvararg && testnext(ls, ',')); } adjustlocalvars(ls, nparams); f->numparams = cast_byte(fs->nactvar); if (isvararg) setvararg(fs, f->numparams); /* declared vararg */ luaK_reserveregs(fs, fs->nactvar); /* reserve registers for parameters */ } static void body (LexState *ls, expdesc *e, int ismethod, int line) { /* body -> '(' parlist ')' block END */ FuncState new_fs; BlockCnt bl; new_fs.f = addprototype(ls); new_fs.f->linedefined = line; open_func(ls, &new_fs, &bl); checknext(ls, '('); if (ismethod) { new_localvarliteral(ls, "self"); /* create 'self' parameter */ adjustlocalvars(ls, 1); } parlist(ls); checknext(ls, ')'); statlist(ls); new_fs.f->lastlinedefined = ls->linenumber; check_match(ls, TK_END, TK_FUNCTION, line); codeclosure(ls, e); close_func(ls); } static int explist (LexState *ls, expdesc *v) { /* explist -> expr { ',' expr } */ int n = 1; /* at least one expression */ expr(ls, v); while (testnext(ls, ',')) { luaK_exp2nextreg(ls->fs, v); expr(ls, v); n++; } return n; } static void funcargs (LexState *ls, expdesc *f, int line) { FuncState *fs = ls->fs; expdesc args; int base, nparams; switch (ls->t.token) { case '(': { /* funcargs -> '(' [ explist ] ')' */ luaX_next(ls); if (ls->t.token == ')') /* arg list is empty? */ args.k = VVOID; else { explist(ls, &args); if (hasmultret(args.k)) luaK_setmultret(fs, &args); } check_match(ls, ')', '(', line); break; } case '{': { /* funcargs -> constructor */ constructor(ls, &args); break; } case TK_STRING: { /* funcargs -> STRING */ codestring(&args, ls->t.seminfo.ts); luaX_next(ls); /* must use 'seminfo' before 'next' */ break; } default: { luaX_syntaxerror(ls, "function arguments expected"); } } lua_assert(f->k == VNONRELOC); base = f->u.info; /* base register for call */ if (hasmultret(args.k)) nparams = LUA_MULTRET; /* open call */ else { if (args.k != VVOID) luaK_exp2nextreg(fs, &args); /* close last argument */ nparams = fs->freereg - (base+1); } init_exp(f, VCALL, luaK_codeABC(fs, OP_CALL, base, nparams+1, 2)); luaK_fixline(fs, line); fs->freereg = base+1; /* call remove function and arguments and leaves (unless changed) one result */ } /* ** {====================================================================== ** Expression parsing ** ======================================================================= */ static void primaryexp (LexState *ls, expdesc *v) { /* primaryexp -> NAME | '(' expr ')' */ switch (ls->t.token) { case '(': { int line = ls->linenumber; luaX_next(ls); expr(ls, v); check_match(ls, ')', '(', line); luaK_dischargevars(ls->fs, v); return; } case TK_NAME: { singlevar(ls, v); return; } default: { luaX_syntaxerror(ls, "unexpected symbol"); } } } static void suffixedexp (LexState *ls, expdesc *v) { /* suffixedexp -> primaryexp { '.' NAME | '[' exp ']' | ':' NAME funcargs | funcargs } */ FuncState *fs = ls->fs; int line = ls->linenumber; primaryexp(ls, v); for (;;) { switch (ls->t.token) { case '.': { /* fieldsel */ fieldsel(ls, v); break; } case '[': { /* '[' exp ']' */ expdesc key; luaK_exp2anyregup(fs, v); yindex(ls, &key); luaK_indexed(fs, v, &key); break; } case ':': { /* ':' NAME funcargs */ expdesc key; luaX_next(ls); codename(ls, &key); luaK_self(fs, v, &key); funcargs(ls, v, line); break; } case '(': case TK_STRING: case '{': { /* funcargs */ luaK_exp2nextreg(fs, v); funcargs(ls, v, line); break; } default: return; } } } static void simpleexp (LexState *ls, expdesc *v) { /* simpleexp -> FLT | INT | STRING | NIL | TRUE | FALSE | ... | constructor | FUNCTION body | suffixedexp */ switch (ls->t.token) { case TK_FLT: { init_exp(v, VKFLT, 0); v->u.nval = ls->t.seminfo.r; break; } case TK_INT: { init_exp(v, VKINT, 0); v->u.ival = ls->t.seminfo.i; break; } case TK_STRING: { codestring(v, ls->t.seminfo.ts); break; } case TK_NIL: { init_exp(v, VNIL, 0); break; } case TK_TRUE: { init_exp(v, VTRUE, 0); break; } case TK_FALSE: { init_exp(v, VFALSE, 0); break; } case TK_DOTS: { /* vararg */ FuncState *fs = ls->fs; check_condition(ls, fs->f->is_vararg, "cannot use '...' outside a vararg function"); init_exp(v, VVARARG, luaK_codeABC(fs, OP_VARARG, 0, 0, 1)); break; } case '{': { /* constructor */ constructor(ls, v); return; } case TK_FUNCTION: { luaX_next(ls); body(ls, v, 0, ls->linenumber); return; } default: { suffixedexp(ls, v); return; } } luaX_next(ls); } static UnOpr getunopr (int op) { switch (op) { case TK_NOT: return OPR_NOT; case '-': return OPR_MINUS; case '~': return OPR_BNOT; case '#': return OPR_LEN; default: return OPR_NOUNOPR; } } static BinOpr getbinopr (int op) { switch (op) { case '+': return OPR_ADD; case '-': return OPR_SUB; case '*': return OPR_MUL; case '%': return OPR_MOD; case '^': return OPR_POW; case '/': return OPR_DIV; case TK_IDIV: return OPR_IDIV; case '&': return OPR_BAND; case '|': return OPR_BOR; case '~': return OPR_BXOR; case TK_SHL: return OPR_SHL; case TK_SHR: return OPR_SHR; case TK_CONCAT: return OPR_CONCAT; case TK_NE: return OPR_NE; case TK_EQ: return OPR_EQ; case '<': return OPR_LT; case TK_LE: return OPR_LE; case '>': return OPR_GT; case TK_GE: return OPR_GE; case TK_AND: return OPR_AND; case TK_OR: return OPR_OR; default: return OPR_NOBINOPR; } } /* ** Priority table for binary operators. */ static const struct { lu_byte left; /* left priority for each binary operator */ lu_byte right; /* right priority */ } priority[] = { /* ORDER OPR */ {10, 10}, {10, 10}, /* '+' '-' */ {11, 11}, {11, 11}, /* '*' '%' */ {14, 13}, /* '^' (right associative) */ {11, 11}, {11, 11}, /* '/' '//' */ {6, 6}, {4, 4}, {5, 5}, /* '&' '|' '~' */ {7, 7}, {7, 7}, /* '<<' '>>' */ {9, 8}, /* '..' (right associative) */ {3, 3}, {3, 3}, {3, 3}, /* ==, <, <= */ {3, 3}, {3, 3}, {3, 3}, /* ~=, >, >= */ {2, 2}, {1, 1} /* and, or */ }; #define UNARY_PRIORITY 12 /* priority for unary operators */ /* ** subexpr -> (simpleexp | unop subexpr) { binop subexpr } ** where 'binop' is any binary operator with a priority higher than 'limit' */ static BinOpr subexpr (LexState *ls, expdesc *v, int limit) { BinOpr op; UnOpr uop; enterlevel(ls); uop = getunopr(ls->t.token); if (uop != OPR_NOUNOPR) { /* prefix (unary) operator? */ int line = ls->linenumber; luaX_next(ls); /* skip operator */ subexpr(ls, v, UNARY_PRIORITY); luaK_prefix(ls->fs, uop, v, line); } else simpleexp(ls, v); /* expand while operators have priorities higher than 'limit' */ op = getbinopr(ls->t.token); while (op != OPR_NOBINOPR && priority[op].left > limit) { expdesc v2; BinOpr nextop; int line = ls->linenumber; luaX_next(ls); /* skip operator */ luaK_infix(ls->fs, op, v); /* read sub-expression with higher priority */ nextop = subexpr(ls, &v2, priority[op].right); luaK_posfix(ls->fs, op, v, &v2, line); op = nextop; } leavelevel(ls); return op; /* return first untreated operator */ } static void expr (LexState *ls, expdesc *v) { subexpr(ls, v, 0); } /* }==================================================================== */ /* ** {====================================================================== ** Rules for Statements ** ======================================================================= */ static void block (LexState *ls) { /* block -> statlist */ FuncState *fs = ls->fs; BlockCnt bl; enterblock(fs, &bl, 0); statlist(ls); leaveblock(fs); } /* ** structure to chain all variables in the left-hand side of an ** assignment */ struct LHS_assign { struct LHS_assign *prev; expdesc v; /* variable (global, local, upvalue, or indexed) */ }; /* ** check whether, in an assignment to an upvalue/local variable, the ** upvalue/local variable is begin used in a previous assignment to a ** table. If so, save original upvalue/local value in a safe place and ** use this safe copy in the previous assignment. */ static void check_conflict (LexState *ls, struct LHS_assign *lh, expdesc *v) { FuncState *fs = ls->fs; int extra = fs->freereg; /* eventual position to save local variable */ int conflict = 0; for (; lh; lh = lh->prev) { /* check all previous assignments */ if (vkisindexed(lh->v.k)) { /* assignment to table field? */ if (lh->v.k == VINDEXUP) { /* is table an upvalue? */ if (v->k == VUPVAL && lh->v.u.ind.t == v->u.info) { conflict = 1; /* table is the upvalue being assigned now */ lh->v.k = VINDEXSTR; lh->v.u.ind.t = extra; /* assignment will use safe copy */ } } else { /* table is a register */ if (v->k == VLOCAL && lh->v.u.ind.t == v->u.var.ridx) { conflict = 1; /* table is the local being assigned now */ lh->v.u.ind.t = extra; /* assignment will use safe copy */ } /* is index the local being assigned? */ if (lh->v.k == VINDEXED && v->k == VLOCAL && lh->v.u.ind.idx == v->u.var.ridx) { conflict = 1; lh->v.u.ind.idx = extra; /* previous assignment will use safe copy */ } } } } if (conflict) { /* copy upvalue/local value to a temporary (in position 'extra') */ if (v->k == VLOCAL) luaK_codeABC(fs, OP_MOVE, extra, v->u.var.ridx, 0); else luaK_codeABC(fs, OP_GETUPVAL, extra, v->u.info, 0); luaK_reserveregs(fs, 1); } } /* ** Parse and compile a multiple assignment. The first "variable" ** (a 'suffixedexp') was already read by the caller. ** ** assignment -> suffixedexp restassign ** restassign -> ',' suffixedexp restassign | '=' explist */ static void restassign (LexState *ls, struct LHS_assign *lh, int nvars) { expdesc e; check_condition(ls, vkisvar(lh->v.k), "syntax error"); check_readonly(ls, &lh->v); if (testnext(ls, ',')) { /* restassign -> ',' suffixedexp restassign */ struct LHS_assign nv; nv.prev = lh; suffixedexp(ls, &nv.v); if (!vkisindexed(nv.v.k)) check_conflict(ls, lh, &nv.v); enterlevel(ls); /* control recursion depth */ restassign(ls, &nv, nvars+1); leavelevel(ls); } else { /* restassign -> '=' explist */ int nexps; checknext(ls, '='); nexps = explist(ls, &e); if (nexps != nvars) adjust_assign(ls, nvars, nexps, &e); else { luaK_setoneret(ls->fs, &e); /* close last expression */ luaK_storevar(ls->fs, &lh->v, &e); return; /* avoid default */ } } init_exp(&e, VNONRELOC, ls->fs->freereg-1); /* default assignment */ luaK_storevar(ls->fs, &lh->v, &e); } static int cond (LexState *ls) { /* cond -> exp */ expdesc v; expr(ls, &v); /* read condition */ if (v.k == VNIL) v.k = VFALSE; /* 'falses' are all equal here */ luaK_goiftrue(ls->fs, &v); return v.f; } static void gotostat (LexState *ls) { FuncState *fs = ls->fs; int line = ls->linenumber; TString *name = str_checkname(ls); /* label's name */ Labeldesc *lb = findlabel(ls, name); if (lb == NULL) /* no label? */ /* forward jump; will be resolved when the label is declared */ newgotoentry(ls, name, line, luaK_jump(fs)); else { /* found a label */ /* backward jump; will be resolved here */ int lblevel = reglevel(fs, lb->nactvar); /* label level */ if (luaY_nvarstack(fs) > lblevel) /* leaving the scope of a variable? */ luaK_codeABC(fs, OP_CLOSE, lblevel, 0, 0); /* create jump and link it to the label */ luaK_patchlist(fs, luaK_jump(fs), lb->pc); } } /* ** Break statement. Semantically equivalent to "goto break". */ static void breakstat (LexState *ls) { int line = ls->linenumber; luaX_next(ls); /* skip break */ newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, luaK_jump(ls->fs)); } /* ** Check whether there is already a label with the given 'name'. */ static void checkrepeated (LexState *ls, TString *name) { Labeldesc *lb = findlabel(ls, name); if (l_unlikely(lb != NULL)) { /* already defined? */ const char *msg = "label '%s' already defined on line %d"; msg = luaO_pushfstring(ls->L, msg, getstr(name), lb->line); luaK_semerror(ls, msg); /* error */ } } static void labelstat (LexState *ls, TString *name, int line) { /* label -> '::' NAME '::' */ checknext(ls, TK_DBCOLON); /* skip double colon */ while (ls->t.token == ';' || ls->t.token == TK_DBCOLON) statement(ls); /* skip other no-op statements */ checkrepeated(ls, name); /* check for repeated labels */ createlabel(ls, name, line, block_follow(ls, 0)); } static void whilestat (LexState *ls, int line) { /* whilestat -> WHILE cond DO block END */ FuncState *fs = ls->fs; int whileinit; int condexit; BlockCnt bl; luaX_next(ls); /* skip WHILE */ whileinit = luaK_getlabel(fs); condexit = cond(ls); enterblock(fs, &bl, 1); checknext(ls, TK_DO); block(ls); luaK_jumpto(fs, whileinit); check_match(ls, TK_END, TK_WHILE, line); leaveblock(fs); luaK_patchtohere(fs, condexit); /* false conditions finish the loop */ } static void repeatstat (LexState *ls, int line) { /* repeatstat -> REPEAT block UNTIL cond */ int condexit; FuncState *fs = ls->fs; int repeat_init = luaK_getlabel(fs); BlockCnt bl1, bl2; enterblock(fs, &bl1, 1); /* loop block */ enterblock(fs, &bl2, 0); /* scope block */ luaX_next(ls); /* skip REPEAT */ statlist(ls); check_match(ls, TK_UNTIL, TK_REPEAT, line); condexit = cond(ls); /* read condition (inside scope block) */ leaveblock(fs); /* finish scope */ if (bl2.upval) { /* upvalues? */ int exit = luaK_jump(fs); /* normal exit must jump over fix */ luaK_patchtohere(fs, condexit); /* repetition must close upvalues */ luaK_codeABC(fs, OP_CLOSE, reglevel(fs, bl2.nactvar), 0, 0); condexit = luaK_jump(fs); /* repeat after closing upvalues */ luaK_patchtohere(fs, exit); /* normal exit comes to here */ } luaK_patchlist(fs, condexit, repeat_init); /* close the loop */ leaveblock(fs); /* finish loop */ } /* ** Read an expression and generate code to put its results in next ** stack slot. ** */ static void exp1 (LexState *ls) { expdesc e; expr(ls, &e); luaK_exp2nextreg(ls->fs, &e); lua_assert(e.k == VNONRELOC); } /* ** Fix for instruction at position 'pc' to jump to 'dest'. ** (Jump addresses are relative in Lua). 'back' true means ** a back jump. */ static void fixforjump (FuncState *fs, int pc, int dest, int back) { Instruction *jmp = &fs->f->code[pc]; int offset = dest - (pc + 1); if (back) offset = -offset; if (l_unlikely(offset > MAXARG_Bx)) luaX_syntaxerror(fs->ls, "control structure too long"); SETARG_Bx(*jmp, offset); } /* ** Generate code for a 'for' loop. */ static void forbody (LexState *ls, int base, int line, int nvars, int isgen) { /* forbody -> DO block */ static const OpCode forprep[2] = {OP_FORPREP, OP_TFORPREP}; static const OpCode forloop[2] = {OP_FORLOOP, OP_TFORLOOP}; BlockCnt bl; FuncState *fs = ls->fs; int prep, endfor; checknext(ls, TK_DO); prep = luaK_codeABx(fs, forprep[isgen], base, 0); enterblock(fs, &bl, 0); /* scope for declared variables */ adjustlocalvars(ls, nvars); luaK_reserveregs(fs, nvars); block(ls); leaveblock(fs); /* end of scope for declared variables */ fixforjump(fs, prep, luaK_getlabel(fs), 0); if (isgen) { /* generic for? */ luaK_codeABC(fs, OP_TFORCALL, base, 0, nvars); luaK_fixline(fs, line); } endfor = luaK_codeABx(fs, forloop[isgen], base, 0); fixforjump(fs, endfor, prep + 1, 1); luaK_fixline(fs, line); } static void fornum (LexState *ls, TString *varname, int line) { /* fornum -> NAME = exp,exp[,exp] forbody */ FuncState *fs = ls->fs; int base = fs->freereg; new_localvarliteral(ls, "(for state)"); new_localvarliteral(ls, "(for state)"); new_localvarliteral(ls, "(for state)"); new_localvar(ls, varname); checknext(ls, '='); exp1(ls); /* initial value */ checknext(ls, ','); exp1(ls); /* limit */ if (testnext(ls, ',')) exp1(ls); /* optional step */ else { /* default step = 1 */ luaK_int(fs, fs->freereg, 1); luaK_reserveregs(fs, 1); } adjustlocalvars(ls, 3); /* control variables */ forbody(ls, base, line, 1, 0); } static void forlist (LexState *ls, TString *indexname) { /* forlist -> NAME {,NAME} IN explist forbody */ FuncState *fs = ls->fs; expdesc e; int nvars = 5; /* gen, state, control, toclose, 'indexname' */ int line; int base = fs->freereg; /* create control variables */ new_localvarliteral(ls, "(for state)"); new_localvarliteral(ls, "(for state)"); new_localvarliteral(ls, "(for state)"); new_localvarliteral(ls, "(for state)"); /* create declared variables */ new_localvar(ls, indexname); while (testnext(ls, ',')) { new_localvar(ls, str_checkname(ls)); nvars++; } checknext(ls, TK_IN); line = ls->linenumber; adjust_assign(ls, 4, explist(ls, &e), &e); adjustlocalvars(ls, 4); /* control variables */ marktobeclosed(fs); /* last control var. must be closed */ luaK_checkstack(fs, 3); /* extra space to call generator */ forbody(ls, base, line, nvars - 4, 1); } static void forstat (LexState *ls, int line) { /* forstat -> FOR (fornum | forlist) END */ FuncState *fs = ls->fs; TString *varname; BlockCnt bl; enterblock(fs, &bl, 1); /* scope for loop and control variables */ luaX_next(ls); /* skip 'for' */ varname = str_checkname(ls); /* first variable name */ switch (ls->t.token) { case '=': fornum(ls, varname, line); break; case ',': case TK_IN: forlist(ls, varname); break; default: luaX_syntaxerror(ls, "'=' or 'in' expected"); } check_match(ls, TK_END, TK_FOR, line); leaveblock(fs); /* loop scope ('break' jumps to this point) */ } static void test_then_block (LexState *ls, int *escapelist) { /* test_then_block -> [IF | ELSEIF] cond THEN block */ BlockCnt bl; FuncState *fs = ls->fs; expdesc v; int jf; /* instruction to skip 'then' code (if condition is false) */ luaX_next(ls); /* skip IF or ELSEIF */ expr(ls, &v); /* read condition */ checknext(ls, TK_THEN); if (ls->t.token == TK_BREAK) { /* 'if x then break' ? */ int line = ls->linenumber; luaK_goiffalse(ls->fs, &v); /* will jump if condition is true */ luaX_next(ls); /* skip 'break' */ enterblock(fs, &bl, 0); /* must enter block before 'goto' */ newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, v.t); while (testnext(ls, ';')) {} /* skip semicolons */ if (block_follow(ls, 0)) { /* jump is the entire block? */ leaveblock(fs); return; /* and that is it */ } else /* must skip over 'then' part if condition is false */ jf = luaK_jump(fs); } else { /* regular case (not a break) */ luaK_goiftrue(ls->fs, &v); /* skip over block if condition is false */ enterblock(fs, &bl, 0); jf = v.f; } statlist(ls); /* 'then' part */ leaveblock(fs); if (ls->t.token == TK_ELSE || ls->t.token == TK_ELSEIF) /* followed by 'else'/'elseif'? */ luaK_concat(fs, escapelist, luaK_jump(fs)); /* must jump over it */ luaK_patchtohere(fs, jf); } static void ifstat (LexState *ls, int line) { /* ifstat -> IF cond THEN block {ELSEIF cond THEN block} [ELSE block] END */ FuncState *fs = ls->fs; int escapelist = NO_JUMP; /* exit list for finished parts */ test_then_block(ls, &escapelist); /* IF cond THEN block */ while (ls->t.token == TK_ELSEIF) test_then_block(ls, &escapelist); /* ELSEIF cond THEN block */ if (testnext(ls, TK_ELSE)) block(ls); /* 'else' part */ check_match(ls, TK_END, TK_IF, line); luaK_patchtohere(fs, escapelist); /* patch escape list to 'if' end */ } static void localfunc (LexState *ls) { expdesc b; FuncState *fs = ls->fs; int fvar = fs->nactvar; /* function's variable index */ new_localvar(ls, str_checkname(ls)); /* new local variable */ adjustlocalvars(ls, 1); /* enter its scope */ body(ls, &b, 0, ls->linenumber); /* function created in next register */ /* debug information will only see the variable after this point! */ localdebuginfo(fs, fvar)->startpc = fs->pc; } static int getlocalattribute (LexState *ls) { /* ATTRIB -> ['<' Name '>'] */ if (testnext(ls, '<')) { const char *attr = getstr(str_checkname(ls)); checknext(ls, '>'); if (strcmp(attr, "const") == 0) return RDKCONST; /* read-only variable */ else if (strcmp(attr, "close") == 0) return RDKTOCLOSE; /* to-be-closed variable */ else luaK_semerror(ls, luaO_pushfstring(ls->L, "unknown attribute '%s'", attr)); } return VDKREG; /* regular variable */ } static void checktoclose (FuncState *fs, int level) { if (level != -1) { /* is there a to-be-closed variable? */ marktobeclosed(fs); luaK_codeABC(fs, OP_TBC, reglevel(fs, level), 0, 0); } } static void localstat (LexState *ls) { /* stat -> LOCAL NAME ATTRIB { ',' NAME ATTRIB } ['=' explist] */ FuncState *fs = ls->fs; int toclose = -1; /* index of to-be-closed variable (if any) */ Vardesc *var; /* last variable */ int vidx, kind; /* index and kind of last variable */ int nvars = 0; int nexps; expdesc e; do { vidx = new_localvar(ls, str_checkname(ls)); kind = getlocalattribute(ls); getlocalvardesc(fs, vidx)->vd.kind = kind; if (kind == RDKTOCLOSE) { /* to-be-closed? */ if (toclose != -1) /* one already present? */ luaK_semerror(ls, "multiple to-be-closed variables in local list"); toclose = fs->nactvar + nvars; } nvars++; } while (testnext(ls, ',')); if (testnext(ls, '=')) nexps = explist(ls, &e); else { e.k = VVOID; nexps = 0; } var = getlocalvardesc(fs, vidx); /* get last variable */ if (nvars == nexps && /* no adjustments? */ var->vd.kind == RDKCONST && /* last variable is const? */ luaK_exp2const(fs, &e, &var->k)) { /* compile-time constant? */ var->vd.kind = RDKCTC; /* variable is a compile-time constant */ adjustlocalvars(ls, nvars - 1); /* exclude last variable */ fs->nactvar++; /* but count it */ } else { adjust_assign(ls, nvars, nexps, &e); adjustlocalvars(ls, nvars); } checktoclose(fs, toclose); } static int funcname (LexState *ls, expdesc *v) { /* funcname -> NAME {fieldsel} [':' NAME] */ int ismethod = 0; singlevar(ls, v); while (ls->t.token == '.') fieldsel(ls, v); if (ls->t.token == ':') { ismethod = 1; fieldsel(ls, v); } return ismethod; } static void funcstat (LexState *ls, int line) { /* funcstat -> FUNCTION funcname body */ int ismethod; expdesc v, b; luaX_next(ls); /* skip FUNCTION */ ismethod = funcname(ls, &v); body(ls, &b, ismethod, line); check_readonly(ls, &v); luaK_storevar(ls->fs, &v, &b); luaK_fixline(ls->fs, line); /* definition "happens" in the first line */ } static void exprstat (LexState *ls) { /* stat -> func | assignment */ FuncState *fs = ls->fs; struct LHS_assign v; suffixedexp(ls, &v.v); if (ls->t.token == '=' || ls->t.token == ',') { /* stat -> assignment ? */ v.prev = NULL; restassign(ls, &v, 1); } else { /* stat -> func */ Instruction *inst; check_condition(ls, v.v.k == VCALL, "syntax error"); inst = &getinstruction(fs, &v.v); SETARG_C(*inst, 1); /* call statement uses no results */ } } static void retstat (LexState *ls) { /* stat -> RETURN [explist] [';'] */ FuncState *fs = ls->fs; expdesc e; int nret; /* number of values being returned */ int first = luaY_nvarstack(fs); /* first slot to be returned */ if (block_follow(ls, 1) || ls->t.token == ';') nret = 0; /* return no values */ else { nret = explist(ls, &e); /* optional return values */ if (hasmultret(e.k)) { luaK_setmultret(fs, &e); if (e.k == VCALL && nret == 1 && !fs->bl->insidetbc) { /* tail call? */ SET_OPCODE(getinstruction(fs,&e), OP_TAILCALL); lua_assert(GETARG_A(getinstruction(fs,&e)) == luaY_nvarstack(fs)); } nret = LUA_MULTRET; /* return all values */ } else { if (nret == 1) /* only one single value? */ first = luaK_exp2anyreg(fs, &e); /* can use original slot */ else { /* values must go to the top of the stack */ luaK_exp2nextreg(fs, &e); lua_assert(nret == fs->freereg - first); } } } luaK_ret(fs, first, nret); testnext(ls, ';'); /* skip optional semicolon */ } static void statement (LexState *ls) { int line = ls->linenumber; /* may be needed for error messages */ enterlevel(ls); switch (ls->t.token) { case ';': { /* stat -> ';' (empty statement) */ luaX_next(ls); /* skip ';' */ break; } case TK_IF: { /* stat -> ifstat */ ifstat(ls, line); break; } case TK_WHILE: { /* stat -> whilestat */ whilestat(ls, line); break; } case TK_DO: { /* stat -> DO block END */ luaX_next(ls); /* skip DO */ block(ls); check_match(ls, TK_END, TK_DO, line); break; } case TK_FOR: { /* stat -> forstat */ forstat(ls, line); break; } case TK_REPEAT: { /* stat -> repeatstat */ repeatstat(ls, line); break; } case TK_FUNCTION: { /* stat -> funcstat */ funcstat(ls, line); break; } case TK_LOCAL: { /* stat -> localstat */ luaX_next(ls); /* skip LOCAL */ if (testnext(ls, TK_FUNCTION)) /* local function? */ localfunc(ls); else localstat(ls); break; } case TK_DBCOLON: { /* stat -> label */ luaX_next(ls); /* skip double colon */ labelstat(ls, str_checkname(ls), line); break; } case TK_RETURN: { /* stat -> retstat */ luaX_next(ls); /* skip RETURN */ retstat(ls); break; } case TK_BREAK: { /* stat -> breakstat */ breakstat(ls); break; } case TK_GOTO: { /* stat -> 'goto' NAME */ luaX_next(ls); /* skip 'goto' */ gotostat(ls); break; } default: { /* stat -> func | assignment */ exprstat(ls); break; } } lua_assert(ls->fs->f->maxstacksize >= ls->fs->freereg && ls->fs->freereg >= luaY_nvarstack(ls->fs)); ls->fs->freereg = luaY_nvarstack(ls->fs); /* free registers */ leavelevel(ls); } /* }====================================================================== */ /* ** compiles the main function, which is a regular vararg function with an ** upvalue named LUA_ENV */ static void mainfunc (LexState *ls, FuncState *fs) { BlockCnt bl; Upvaldesc *env; open_func(ls, fs, &bl); setvararg(fs, 0); /* main function is always declared vararg */ env = allocupvalue(fs); /* ...set environment upvalue */ env->instack = 1; env->idx = 0; env->kind = VDKREG; env->name = ls->envn; luaC_objbarrier(ls->L, fs->f, env->name); luaX_next(ls); /* read first token */ statlist(ls); /* parse main body */ check(ls, TK_EOS); close_func(ls); } LClosure *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff, Dyndata *dyd, const char *name, int firstchar) { LexState lexstate; FuncState funcstate; LClosure *cl = luaF_newLclosure(L, 1); /* create main closure */ setclLvalue2s(L, L->top, cl); /* anchor it (to avoid being collected) */ luaD_inctop(L); lexstate.h = luaH_new(L); /* create table for scanner */ sethvalue2s(L, L->top, lexstate.h); /* anchor it */ luaD_inctop(L); funcstate.f = cl->p = luaF_newproto(L); luaC_objbarrier(L, cl, cl->p); funcstate.f->source = luaS_new(L, name); /* create and anchor TString */ luaC_objbarrier(L, funcstate.f, funcstate.f->source); lexstate.buff = buff; lexstate.dyd = dyd; dyd->actvar.n = dyd->gt.n = dyd->label.n = 0; luaX_setinput(L, &lexstate, z, funcstate.f->source, firstchar); mainfunc(&lexstate, &funcstate); lua_assert(!funcstate.prev && funcstate.nups == 1 && !lexstate.fs); /* all scopes should be correctly finished */ lua_assert(dyd->actvar.n == 0 && dyd->gt.n == 0 && dyd->label.n == 0); L->top--; /* remove scanner's table */ return cl; /* closure is on the stack, too */ } /* ** $Id: ldebug.c $ ** Debug Interface ** See Copyright Notice in lua.h */ #define ldebug_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include #include /*#include "lua.h"*/ /*#include "lapi.h"*/ /*#include "lcode.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lobject.h"*/ /*#include "lopcodes.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /*#include "lvm.h"*/ #define noLuaClosure(f) ((f) == NULL || (f)->c.tt == LUA_VCCL) static const char *funcnamefromcall (lua_State *L, CallInfo *ci, const char **name); static int currentpc (CallInfo *ci) { lua_assert(isLua(ci)); return pcRel(ci->u.l.savedpc, ci_func(ci)->p); } /* ** Get a "base line" to find the line corresponding to an instruction. ** Base lines are regularly placed at MAXIWTHABS intervals, so usually ** an integer division gets the right place. When the source file has ** large sequences of empty/comment lines, it may need extra entries, ** so the original estimate needs a correction. ** If the original estimate is -1, the initial 'if' ensures that the ** 'while' will run at least once. ** The assertion that the estimate is a lower bound for the correct base ** is valid as long as the debug info has been generated with the same ** value for MAXIWTHABS or smaller. (Previous releases use a little ** smaller value.) */ static int getbaseline (const Proto *f, int pc, int *basepc) { if (f->sizeabslineinfo == 0 || pc < f->abslineinfo[0].pc) { *basepc = -1; /* start from the beginning */ return f->linedefined; } else { int i = cast_uint(pc) / MAXIWTHABS - 1; /* get an estimate */ /* estimate must be a lower bound of the correct base */ lua_assert(i < 0 || (i < f->sizeabslineinfo && f->abslineinfo[i].pc <= pc)); while (i + 1 < f->sizeabslineinfo && pc >= f->abslineinfo[i + 1].pc) i++; /* low estimate; adjust it */ *basepc = f->abslineinfo[i].pc; return f->abslineinfo[i].line; } } /* ** Get the line corresponding to instruction 'pc' in function 'f'; ** first gets a base line and from there does the increments until ** the desired instruction. */ int luaG_getfuncline (const Proto *f, int pc) { if (f->lineinfo == NULL) /* no debug information? */ return -1; else { int basepc; int baseline = getbaseline(f, pc, &basepc); while (basepc++ < pc) { /* walk until given instruction */ lua_assert(f->lineinfo[basepc] != ABSLINEINFO); baseline += f->lineinfo[basepc]; /* correct line */ } return baseline; } } static int getcurrentline (CallInfo *ci) { return luaG_getfuncline(ci_func(ci)->p, currentpc(ci)); } /* ** Set 'trap' for all active Lua frames. ** This function can be called during a signal, under "reasonable" ** assumptions. A new 'ci' is completely linked in the list before it ** becomes part of the "active" list, and we assume that pointers are ** atomic; see comment in next function. ** (A compiler doing interprocedural optimizations could, theoretically, ** reorder memory writes in such a way that the list could be ** temporarily broken while inserting a new element. We simply assume it ** has no good reasons to do that.) */ static void settraps (CallInfo *ci) { for (; ci != NULL; ci = ci->previous) if (isLua(ci)) ci->u.l.trap = 1; } /* ** This function can be called during a signal, under "reasonable" ** assumptions. ** Fields 'basehookcount' and 'hookcount' (set by 'resethookcount') ** are for debug only, and it is no problem if they get arbitrary ** values (causes at most one wrong hook call). 'hookmask' is an atomic ** value. We assume that pointers are atomic too (e.g., gcc ensures that ** for all platforms where it runs). Moreover, 'hook' is always checked ** before being called (see 'luaD_hook'). */ LUA_API void lua_sethook (lua_State *L, lua_Hook func, int mask, int count) { if (func == NULL || mask == 0) { /* turn off hooks? */ mask = 0; func = NULL; } L->hook = func; L->basehookcount = count; resethookcount(L); L->hookmask = cast_byte(mask); if (mask) settraps(L->ci); /* to trace inside 'luaV_execute' */ } LUA_API lua_Hook lua_gethook (lua_State *L) { return L->hook; } LUA_API int lua_gethookmask (lua_State *L) { return L->hookmask; } LUA_API int lua_gethookcount (lua_State *L) { return L->basehookcount; } LUA_API int lua_getstack (lua_State *L, int level, lua_Debug *ar) { int status; CallInfo *ci; if (level < 0) return 0; /* invalid (negative) level */ lua_lock(L); for (ci = L->ci; level > 0 && ci != &L->base_ci; ci = ci->previous) level--; if (level == 0 && ci != &L->base_ci) { /* level found? */ status = 1; ar->i_ci = ci; } else status = 0; /* no such level */ lua_unlock(L); return status; } static const char *upvalname (const Proto *p, int uv) { TString *s = check_exp(uv < p->sizeupvalues, p->upvalues[uv].name); if (s == NULL) return "?"; else return getstr(s); } static const char *findvararg (CallInfo *ci, int n, StkId *pos) { if (clLvalue(s2v(ci->func))->p->is_vararg) { int nextra = ci->u.l.nextraargs; if (n >= -nextra) { /* 'n' is negative */ *pos = ci->func - nextra - (n + 1); return "(vararg)"; /* generic name for any vararg */ } } return NULL; /* no such vararg */ } const char *luaG_findlocal (lua_State *L, CallInfo *ci, int n, StkId *pos) { StkId base = ci->func + 1; const char *name = NULL; if (isLua(ci)) { if (n < 0) /* access to vararg values? */ return findvararg(ci, n, pos); else name = luaF_getlocalname(ci_func(ci)->p, n, currentpc(ci)); } if (name == NULL) { /* no 'standard' name? */ StkId limit = (ci == L->ci) ? L->top : ci->next->func; if (limit - base >= n && n > 0) { /* is 'n' inside 'ci' stack? */ /* generic name for any valid slot */ name = isLua(ci) ? "(temporary)" : "(C temporary)"; } else return NULL; /* no name */ } if (pos) *pos = base + (n - 1); return name; } LUA_API const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n) { const char *name; lua_lock(L); if (ar == NULL) { /* information about non-active function? */ if (!isLfunction(s2v(L->top - 1))) /* not a Lua function? */ name = NULL; else /* consider live variables at function start (parameters) */ name = luaF_getlocalname(clLvalue(s2v(L->top - 1))->p, n, 0); } else { /* active function; get information through 'ar' */ StkId pos = NULL; /* to avoid warnings */ name = luaG_findlocal(L, ar->i_ci, n, &pos); if (name) { setobjs2s(L, L->top, pos); api_incr_top(L); } } lua_unlock(L); return name; } LUA_API const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n) { StkId pos = NULL; /* to avoid warnings */ const char *name; lua_lock(L); name = luaG_findlocal(L, ar->i_ci, n, &pos); if (name) { setobjs2s(L, pos, L->top - 1); L->top--; /* pop value */ } lua_unlock(L); return name; } static void funcinfo (lua_Debug *ar, Closure *cl) { if (noLuaClosure(cl)) { ar->source = "=[C]"; ar->srclen = LL("=[C]"); ar->linedefined = -1; ar->lastlinedefined = -1; ar->what = "C"; } else { const Proto *p = cl->l.p; if (p->source) { ar->source = getstr(p->source); ar->srclen = tsslen(p->source); } else { ar->source = "=?"; ar->srclen = LL("=?"); } ar->linedefined = p->linedefined; ar->lastlinedefined = p->lastlinedefined; ar->what = (ar->linedefined == 0) ? "main" : "Lua"; } luaO_chunkid(ar->short_src, ar->source, ar->srclen); } static int nextline (const Proto *p, int currentline, int pc) { if (p->lineinfo[pc] != ABSLINEINFO) return currentline + p->lineinfo[pc]; else return luaG_getfuncline(p, pc); } static void collectvalidlines (lua_State *L, Closure *f) { if (noLuaClosure(f)) { setnilvalue(s2v(L->top)); api_incr_top(L); } else { int i; TValue v; const Proto *p = f->l.p; int currentline = p->linedefined; Table *t = luaH_new(L); /* new table to store active lines */ sethvalue2s(L, L->top, t); /* push it on stack */ api_incr_top(L); setbtvalue(&v); /* boolean 'true' to be the value of all indices */ if (!p->is_vararg) /* regular function? */ i = 0; /* consider all instructions */ else { /* vararg function */ lua_assert(GET_OPCODE(p->code[0]) == OP_VARARGPREP); currentline = nextline(p, currentline, 0); i = 1; /* skip first instruction (OP_VARARGPREP) */ } for (; i < p->sizelineinfo; i++) { /* for each instruction */ currentline = nextline(p, currentline, i); /* get its line */ luaH_setint(L, t, currentline, &v); /* table[line] = true */ } } } static const char *getfuncname (lua_State *L, CallInfo *ci, const char **name) { /* calling function is a known function? */ if (ci != NULL && !(ci->callstatus & CIST_TAIL)) return funcnamefromcall(L, ci->previous, name); else return NULL; /* no way to find a name */ } static int auxgetinfo (lua_State *L, const char *what, lua_Debug *ar, Closure *f, CallInfo *ci) { int status = 1; for (; *what; what++) { switch (*what) { case 'S': { funcinfo(ar, f); break; } case 'l': { ar->currentline = (ci && isLua(ci)) ? getcurrentline(ci) : -1; break; } case 'u': { ar->nups = (f == NULL) ? 0 : f->c.nupvalues; if (noLuaClosure(f)) { ar->isvararg = 1; ar->nparams = 0; } else { ar->isvararg = f->l.p->is_vararg; ar->nparams = f->l.p->numparams; } break; } case 't': { ar->istailcall = (ci) ? ci->callstatus & CIST_TAIL : 0; break; } case 'n': { ar->namewhat = getfuncname(L, ci, &ar->name); if (ar->namewhat == NULL) { ar->namewhat = ""; /* not found */ ar->name = NULL; } break; } case 'r': { if (ci == NULL || !(ci->callstatus & CIST_TRAN)) ar->ftransfer = ar->ntransfer = 0; else { ar->ftransfer = ci->u2.transferinfo.ftransfer; ar->ntransfer = ci->u2.transferinfo.ntransfer; } break; } case 'L': case 'f': /* handled by lua_getinfo */ break; default: status = 0; /* invalid option */ } } return status; } LUA_API int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar) { int status; Closure *cl; CallInfo *ci; TValue *func; lua_lock(L); if (*what == '>') { ci = NULL; func = s2v(L->top - 1); api_check(L, ttisfunction(func), "function expected"); what++; /* skip the '>' */ L->top--; /* pop function */ } else { ci = ar->i_ci; func = s2v(ci->func); lua_assert(ttisfunction(func)); } cl = ttisclosure(func) ? clvalue(func) : NULL; status = auxgetinfo(L, what, ar, cl, ci); if (strchr(what, 'f')) { setobj2s(L, L->top, func); api_incr_top(L); } if (strchr(what, 'L')) collectvalidlines(L, cl); lua_unlock(L); return status; } /* ** {====================================================== ** Symbolic Execution ** ======================================================= */ static const char *getobjname (const Proto *p, int lastpc, int reg, const char **name); /* ** Find a "name" for the constant 'c'. */ static void kname (const Proto *p, int c, const char **name) { TValue *kvalue = &p->k[c]; *name = (ttisstring(kvalue)) ? svalue(kvalue) : "?"; } /* ** Find a "name" for the register 'c'. */ static void rname (const Proto *p, int pc, int c, const char **name) { const char *what = getobjname(p, pc, c, name); /* search for 'c' */ if (!(what && *what == 'c')) /* did not find a constant name? */ *name = "?"; } /* ** Find a "name" for a 'C' value in an RK instruction. */ static void rkname (const Proto *p, int pc, Instruction i, const char **name) { int c = GETARG_C(i); /* key index */ if (GETARG_k(i)) /* is 'c' a constant? */ kname(p, c, name); else /* 'c' is a register */ rname(p, pc, c, name); } static int filterpc (int pc, int jmptarget) { if (pc < jmptarget) /* is code conditional (inside a jump)? */ return -1; /* cannot know who sets that register */ else return pc; /* current position sets that register */ } /* ** Try to find last instruction before 'lastpc' that modified register 'reg'. */ static int findsetreg (const Proto *p, int lastpc, int reg) { int pc; int setreg = -1; /* keep last instruction that changed 'reg' */ int jmptarget = 0; /* any code before this address is conditional */ if (testMMMode(GET_OPCODE(p->code[lastpc]))) lastpc--; /* previous instruction was not actually executed */ for (pc = 0; pc < lastpc; pc++) { Instruction i = p->code[pc]; OpCode op = GET_OPCODE(i); int a = GETARG_A(i); int change; /* true if current instruction changed 'reg' */ switch (op) { case OP_LOADNIL: { /* set registers from 'a' to 'a+b' */ int b = GETARG_B(i); change = (a <= reg && reg <= a + b); break; } case OP_TFORCALL: { /* affect all regs above its base */ change = (reg >= a + 2); break; } case OP_CALL: case OP_TAILCALL: { /* affect all registers above base */ change = (reg >= a); break; } case OP_JMP: { /* doesn't change registers, but changes 'jmptarget' */ int b = GETARG_sJ(i); int dest = pc + 1 + b; /* jump does not skip 'lastpc' and is larger than current one? */ if (dest <= lastpc && dest > jmptarget) jmptarget = dest; /* update 'jmptarget' */ change = 0; break; } default: /* any instruction that sets A */ change = (testAMode(op) && reg == a); break; } if (change) setreg = filterpc(pc, jmptarget); } return setreg; } /* ** Check whether table being indexed by instruction 'i' is the ** environment '_ENV' */ static const char *gxf (const Proto *p, int pc, Instruction i, int isup) { int t = GETARG_B(i); /* table index */ const char *name; /* name of indexed variable */ if (isup) /* is an upvalue? */ name = upvalname(p, t); else getobjname(p, pc, t, &name); return (name && strcmp(name, LUA_ENV) == 0) ? "global" : "field"; } static const char *getobjname (const Proto *p, int lastpc, int reg, const char **name) { int pc; *name = luaF_getlocalname(p, reg + 1, lastpc); if (*name) /* is a local? */ return "local"; /* else try symbolic execution */ pc = findsetreg(p, lastpc, reg); if (pc != -1) { /* could find instruction? */ Instruction i = p->code[pc]; OpCode op = GET_OPCODE(i); switch (op) { case OP_MOVE: { int b = GETARG_B(i); /* move from 'b' to 'a' */ if (b < GETARG_A(i)) return getobjname(p, pc, b, name); /* get name for 'b' */ break; } case OP_GETTABUP: { int k = GETARG_C(i); /* key index */ kname(p, k, name); return gxf(p, pc, i, 1); } case OP_GETTABLE: { int k = GETARG_C(i); /* key index */ rname(p, pc, k, name); return gxf(p, pc, i, 0); } case OP_GETI: { *name = "integer index"; return "field"; } case OP_GETFIELD: { int k = GETARG_C(i); /* key index */ kname(p, k, name); return gxf(p, pc, i, 0); } case OP_GETUPVAL: { *name = upvalname(p, GETARG_B(i)); return "upvalue"; } case OP_LOADK: case OP_LOADKX: { int b = (op == OP_LOADK) ? GETARG_Bx(i) : GETARG_Ax(p->code[pc + 1]); if (ttisstring(&p->k[b])) { *name = svalue(&p->k[b]); return "constant"; } break; } case OP_SELF: { rkname(p, pc, i, name); return "method"; } default: break; /* go through to return NULL */ } } return NULL; /* could not find reasonable name */ } /* ** Try to find a name for a function based on the code that called it. ** (Only works when function was called by a Lua function.) ** Returns what the name is (e.g., "for iterator", "method", ** "metamethod") and sets '*name' to point to the name. */ static const char *funcnamefromcode (lua_State *L, const Proto *p, int pc, const char **name) { TMS tm = (TMS)0; /* (initial value avoids warnings) */ Instruction i = p->code[pc]; /* calling instruction */ switch (GET_OPCODE(i)) { case OP_CALL: case OP_TAILCALL: return getobjname(p, pc, GETARG_A(i), name); /* get function name */ case OP_TFORCALL: { /* for iterator */ *name = "for iterator"; return "for iterator"; } /* other instructions can do calls through metamethods */ case OP_SELF: case OP_GETTABUP: case OP_GETTABLE: case OP_GETI: case OP_GETFIELD: tm = TM_INDEX; break; case OP_SETTABUP: case OP_SETTABLE: case OP_SETI: case OP_SETFIELD: tm = TM_NEWINDEX; break; case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: { tm = cast(TMS, GETARG_C(i)); break; } case OP_UNM: tm = TM_UNM; break; case OP_BNOT: tm = TM_BNOT; break; case OP_LEN: tm = TM_LEN; break; case OP_CONCAT: tm = TM_CONCAT; break; case OP_EQ: tm = TM_EQ; break; /* no cases for OP_EQI and OP_EQK, as they don't call metamethods */ case OP_LT: case OP_LTI: case OP_GTI: tm = TM_LT; break; case OP_LE: case OP_LEI: case OP_GEI: tm = TM_LE; break; case OP_CLOSE: case OP_RETURN: tm = TM_CLOSE; break; default: return NULL; /* cannot find a reasonable name */ } *name = getstr(G(L)->tmname[tm]) + 2; return "metamethod"; } /* ** Try to find a name for a function based on how it was called. */ static const char *funcnamefromcall (lua_State *L, CallInfo *ci, const char **name) { if (ci->callstatus & CIST_HOOKED) { /* was it called inside a hook? */ *name = "?"; return "hook"; } else if (ci->callstatus & CIST_FIN) { /* was it called as a finalizer? */ *name = "__gc"; return "metamethod"; /* report it as such */ } else if (isLua(ci)) return funcnamefromcode(L, ci_func(ci)->p, currentpc(ci), name); else return NULL; } /* }====================================================== */ /* ** Check whether pointer 'o' points to some value in the stack ** frame of the current function. Because 'o' may not point to a ** value in this stack, we cannot compare it with the region ** boundaries (undefined behaviour in ISO C). */ static int isinstack (CallInfo *ci, const TValue *o) { StkId pos; for (pos = ci->func + 1; pos < ci->top; pos++) { if (o == s2v(pos)) return 1; } return 0; /* not found */ } /* ** Checks whether value 'o' came from an upvalue. (That can only happen ** with instructions OP_GETTABUP/OP_SETTABUP, which operate directly on ** upvalues.) */ static const char *getupvalname (CallInfo *ci, const TValue *o, const char **name) { LClosure *c = ci_func(ci); int i; for (i = 0; i < c->nupvalues; i++) { if (c->upvals[i]->v == o) { *name = upvalname(c->p, i); return "upvalue"; } } return NULL; } static const char *formatvarinfo (lua_State *L, const char *kind, const char *name) { if (kind == NULL) return ""; /* no information */ else return luaO_pushfstring(L, " (%s '%s')", kind, name); } /* ** Build a string with a "description" for the value 'o', such as ** "variable 'x'" or "upvalue 'y'". */ static const char *varinfo (lua_State *L, const TValue *o) { CallInfo *ci = L->ci; const char *name = NULL; /* to avoid warnings */ const char *kind = NULL; if (isLua(ci)) { kind = getupvalname(ci, o, &name); /* check whether 'o' is an upvalue */ if (!kind && isinstack(ci, o)) /* no? try a register */ kind = getobjname(ci_func(ci)->p, currentpc(ci), cast_int(cast(StkId, o) - (ci->func + 1)), &name); } return formatvarinfo(L, kind, name); } /* ** Raise a type error */ static l_noret typeerror (lua_State *L, const TValue *o, const char *op, const char *extra) { const char *t = luaT_objtypename(L, o); luaG_runerror(L, "attempt to %s a %s value%s", op, t, extra); } /* ** Raise a type error with "standard" information about the faulty ** object 'o' (using 'varinfo'). */ l_noret luaG_typeerror (lua_State *L, const TValue *o, const char *op) { typeerror(L, o, op, varinfo(L, o)); } /* ** Raise an error for calling a non-callable object. Try to find a name ** for the object based on how it was called ('funcnamefromcall'); if it ** cannot get a name there, try 'varinfo'. */ l_noret luaG_callerror (lua_State *L, const TValue *o) { CallInfo *ci = L->ci; const char *name = NULL; /* to avoid warnings */ const char *kind = funcnamefromcall(L, ci, &name); const char *extra = kind ? formatvarinfo(L, kind, name) : varinfo(L, o); typeerror(L, o, "call", extra); } l_noret luaG_forerror (lua_State *L, const TValue *o, const char *what) { luaG_runerror(L, "bad 'for' %s (number expected, got %s)", what, luaT_objtypename(L, o)); } l_noret luaG_concaterror (lua_State *L, const TValue *p1, const TValue *p2) { if (ttisstring(p1) || cvt2str(p1)) p1 = p2; luaG_typeerror(L, p1, "concatenate"); } l_noret luaG_opinterror (lua_State *L, const TValue *p1, const TValue *p2, const char *msg) { if (!ttisnumber(p1)) /* first operand is wrong? */ p2 = p1; /* now second is wrong */ luaG_typeerror(L, p2, msg); } /* ** Error when both values are convertible to numbers, but not to integers */ l_noret luaG_tointerror (lua_State *L, const TValue *p1, const TValue *p2) { lua_Integer temp; if (!luaV_tointegerns(p1, &temp, LUA_FLOORN2I)) p2 = p1; luaG_runerror(L, "number%s has no integer representation", varinfo(L, p2)); } l_noret luaG_ordererror (lua_State *L, const TValue *p1, const TValue *p2) { const char *t1 = luaT_objtypename(L, p1); const char *t2 = luaT_objtypename(L, p2); if (strcmp(t1, t2) == 0) luaG_runerror(L, "attempt to compare two %s values", t1); else luaG_runerror(L, "attempt to compare %s with %s", t1, t2); } /* add src:line information to 'msg' */ const char *luaG_addinfo (lua_State *L, const char *msg, TString *src, int line) { char buff[LUA_IDSIZE]; if (src) luaO_chunkid(buff, getstr(src), tsslen(src)); else { /* no source available; use "?" instead */ buff[0] = '?'; buff[1] = '\0'; } return luaO_pushfstring(L, "%s:%d: %s", buff, line, msg); } l_noret luaG_errormsg (lua_State *L) { if (L->errfunc != 0) { /* is there an error handling function? */ StkId errfunc = restorestack(L, L->errfunc); lua_assert(ttisfunction(s2v(errfunc))); setobjs2s(L, L->top, L->top - 1); /* move argument */ setobjs2s(L, L->top - 1, errfunc); /* push function */ L->top++; /* assume EXTRA_STACK */ luaD_callnoyield(L, L->top - 2, 1); /* call it */ } luaD_throw(L, LUA_ERRRUN); } l_noret luaG_runerror (lua_State *L, const char *fmt, ...) { CallInfo *ci = L->ci; const char *msg; va_list argp; luaC_checkGC(L); /* error message uses memory */ va_start(argp, fmt); msg = luaO_pushvfstring(L, fmt, argp); /* format message */ va_end(argp); if (isLua(ci)) /* if Lua function, add source:line information */ luaG_addinfo(L, msg, ci_func(ci)->p->source, getcurrentline(ci)); luaG_errormsg(L); } /* ** Check whether new instruction 'newpc' is in a different line from ** previous instruction 'oldpc'. More often than not, 'newpc' is only ** one or a few instructions after 'oldpc' (it must be after, see ** caller), so try to avoid calling 'luaG_getfuncline'. If they are ** too far apart, there is a good chance of a ABSLINEINFO in the way, ** so it goes directly to 'luaG_getfuncline'. */ static int changedline (const Proto *p, int oldpc, int newpc) { if (p->lineinfo == NULL) /* no debug information? */ return 0; if (newpc - oldpc < MAXIWTHABS / 2) { /* not too far apart? */ int delta = 0; /* line diference */ int pc = oldpc; for (;;) { int lineinfo = p->lineinfo[++pc]; if (lineinfo == ABSLINEINFO) break; /* cannot compute delta; fall through */ delta += lineinfo; if (pc == newpc) return (delta != 0); /* delta computed successfully */ } } /* either instructions are too far apart or there is an absolute line info in the way; compute line difference explicitly */ return (luaG_getfuncline(p, oldpc) != luaG_getfuncline(p, newpc)); } /* ** Traces the execution of a Lua function. Called before the execution ** of each opcode, when debug is on. 'L->oldpc' stores the last ** instruction traced, to detect line changes. When entering a new ** function, 'npci' will be zero and will test as a new line whatever ** the value of 'oldpc'. Some exceptional conditions may return to ** a function without setting 'oldpc'. In that case, 'oldpc' may be ** invalid; if so, use zero as a valid value. (A wrong but valid 'oldpc' ** at most causes an extra call to a line hook.) ** This function is not "Protected" when called, so it should correct ** 'L->top' before calling anything that can run the GC. */ int luaG_traceexec (lua_State *L, const Instruction *pc) { CallInfo *ci = L->ci; lu_byte mask = L->hookmask; const Proto *p = ci_func(ci)->p; int counthook; if (!(mask & (LUA_MASKLINE | LUA_MASKCOUNT))) { /* no hooks? */ ci->u.l.trap = 0; /* don't need to stop again */ return 0; /* turn off 'trap' */ } pc++; /* reference is always next instruction */ ci->u.l.savedpc = pc; /* save 'pc' */ counthook = (--L->hookcount == 0 && (mask & LUA_MASKCOUNT)); if (counthook) resethookcount(L); /* reset count */ else if (!(mask & LUA_MASKLINE)) return 1; /* no line hook and count != 0; nothing to be done now */ if (ci->callstatus & CIST_HOOKYIELD) { /* called hook last time? */ ci->callstatus &= ~CIST_HOOKYIELD; /* erase mark */ return 1; /* do not call hook again (VM yielded, so it did not move) */ } if (!isIT(*(ci->u.l.savedpc - 1))) /* top not being used? */ L->top = ci->top; /* correct top */ if (counthook) luaD_hook(L, LUA_HOOKCOUNT, -1, 0, 0); /* call count hook */ if (mask & LUA_MASKLINE) { /* 'L->oldpc' may be invalid; use zero in this case */ int oldpc = (L->oldpc < p->sizecode) ? L->oldpc : 0; int npci = pcRel(pc, p); if (npci <= oldpc || /* call hook when jump back (loop), */ changedline(p, oldpc, npci)) { /* or when enter new line */ int newline = luaG_getfuncline(p, npci); luaD_hook(L, LUA_HOOKLINE, newline, 0, 0); /* call line hook */ } L->oldpc = npci; /* 'pc' of last call to line hook */ } if (L->status == LUA_YIELD) { /* did hook yield? */ if (counthook) L->hookcount = 1; /* undo decrement to zero */ ci->u.l.savedpc--; /* undo increment (resume will increment it again) */ ci->callstatus |= CIST_HOOKYIELD; /* mark that it yielded */ luaD_throw(L, LUA_YIELD); } return 1; /* keep 'trap' on */ } /* ** $Id: lfunc.c $ ** Auxiliary functions to manipulate prototypes and closures ** See Copyright Notice in lua.h */ #define lfunc_c #define LUA_CORE /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lgc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ CClosure *luaF_newCclosure (lua_State *L, int nupvals) { GCObject *o = luaC_newobj(L, LUA_VCCL, sizeCclosure(nupvals)); CClosure *c = gco2ccl(o); c->nupvalues = cast_byte(nupvals); return c; } LClosure *luaF_newLclosure (lua_State *L, int nupvals) { GCObject *o = luaC_newobj(L, LUA_VLCL, sizeLclosure(nupvals)); LClosure *c = gco2lcl(o); c->p = NULL; c->nupvalues = cast_byte(nupvals); while (nupvals--) c->upvals[nupvals] = NULL; return c; } /* ** fill a closure with new closed upvalues */ void luaF_initupvals (lua_State *L, LClosure *cl) { int i; for (i = 0; i < cl->nupvalues; i++) { GCObject *o = luaC_newobj(L, LUA_VUPVAL, sizeof(UpVal)); UpVal *uv = gco2upv(o); uv->v = &uv->u.value; /* make it closed */ setnilvalue(uv->v); cl->upvals[i] = uv; luaC_objbarrier(L, cl, uv); } } /* ** Create a new upvalue at the given level, and link it to the list of ** open upvalues of 'L' after entry 'prev'. **/ static UpVal *newupval (lua_State *L, int tbc, StkId level, UpVal **prev) { GCObject *o = luaC_newobj(L, LUA_VUPVAL, sizeof(UpVal)); UpVal *uv = gco2upv(o); UpVal *next = *prev; uv->v = s2v(level); /* current value lives in the stack */ uv->tbc = tbc; uv->u.open.next = next; /* link it to list of open upvalues */ uv->u.open.previous = prev; if (next) next->u.open.previous = &uv->u.open.next; *prev = uv; if (!isintwups(L)) { /* thread not in list of threads with upvalues? */ L->twups = G(L)->twups; /* link it to the list */ G(L)->twups = L; } return uv; } /* ** Find and reuse, or create if it does not exist, an upvalue ** at the given level. */ UpVal *luaF_findupval (lua_State *L, StkId level) { UpVal **pp = &L->openupval; UpVal *p; lua_assert(isintwups(L) || L->openupval == NULL); while ((p = *pp) != NULL && uplevel(p) >= level) { /* search for it */ lua_assert(!isdead(G(L), p)); if (uplevel(p) == level) /* corresponding upvalue? */ return p; /* return it */ pp = &p->u.open.next; } /* not found: create a new upvalue after 'pp' */ return newupval(L, 0, level, pp); } /* ** Call closing method for object 'obj' with error message 'err'. The ** boolean 'yy' controls whether the call is yieldable. ** (This function assumes EXTRA_STACK.) */ static void callclosemethod (lua_State *L, TValue *obj, TValue *err, int yy) { StkId top = L->top; const TValue *tm = luaT_gettmbyobj(L, obj, TM_CLOSE); setobj2s(L, top, tm); /* will call metamethod... */ setobj2s(L, top + 1, obj); /* with 'self' as the 1st argument */ setobj2s(L, top + 2, err); /* and error msg. as 2nd argument */ L->top = top + 3; /* add function and arguments */ if (yy) luaD_call(L, top, 0); else luaD_callnoyield(L, top, 0); } /* ** Check whether object at given level has a close metamethod and raise ** an error if not. */ static void checkclosemth (lua_State *L, StkId level) { const TValue *tm = luaT_gettmbyobj(L, s2v(level), TM_CLOSE); if (ttisnil(tm)) { /* no metamethod? */ int idx = cast_int(level - L->ci->func); /* variable index */ const char *vname = luaG_findlocal(L, L->ci, idx, NULL); if (vname == NULL) vname = "?"; luaG_runerror(L, "variable '%s' got a non-closable value", vname); } } /* ** Prepare and call a closing method. ** If status is CLOSEKTOP, the call to the closing method will be pushed ** at the top of the stack. Otherwise, values can be pushed right after ** the 'level' of the upvalue being closed, as everything after that ** won't be used again. */ static void prepcallclosemth (lua_State *L, StkId level, int status, int yy) { TValue *uv = s2v(level); /* value being closed */ TValue *errobj; if (status == CLOSEKTOP) errobj = &G(L)->nilvalue; /* error object is nil */ else { /* 'luaD_seterrorobj' will set top to level + 2 */ errobj = s2v(level + 1); /* error object goes after 'uv' */ luaD_seterrorobj(L, status, level + 1); /* set error object */ } callclosemethod(L, uv, errobj, yy); } /* ** Maximum value for deltas in 'tbclist', dependent on the type ** of delta. (This macro assumes that an 'L' is in scope where it ** is used.) */ #define MAXDELTA \ ((256ul << ((sizeof(L->stack->tbclist.delta) - 1) * 8)) - 1) /* ** Insert a variable in the list of to-be-closed variables. */ void luaF_newtbcupval (lua_State *L, StkId level) { lua_assert(level > L->tbclist); if (l_isfalse(s2v(level))) return; /* false doesn't need to be closed */ checkclosemth(L, level); /* value must have a close method */ while (cast_uint(level - L->tbclist) > MAXDELTA) { L->tbclist += MAXDELTA; /* create a dummy node at maximum delta */ L->tbclist->tbclist.delta = 0; } level->tbclist.delta = cast(unsigned short, level - L->tbclist); L->tbclist = level; } void luaF_unlinkupval (UpVal *uv) { lua_assert(upisopen(uv)); *uv->u.open.previous = uv->u.open.next; if (uv->u.open.next) uv->u.open.next->u.open.previous = uv->u.open.previous; } /* ** Close all upvalues up to the given stack level. */ void luaF_closeupval (lua_State *L, StkId level) { UpVal *uv; StkId upl; /* stack index pointed by 'uv' */ while ((uv = L->openupval) != NULL && (upl = uplevel(uv)) >= level) { TValue *slot = &uv->u.value; /* new position for value */ lua_assert(uplevel(uv) < L->top); luaF_unlinkupval(uv); /* remove upvalue from 'openupval' list */ setobj(L, slot, uv->v); /* move value to upvalue slot */ uv->v = slot; /* now current value lives here */ if (!iswhite(uv)) { /* neither white nor dead? */ nw2black(uv); /* closed upvalues cannot be gray */ luaC_barrier(L, uv, slot); } } } /* ** Remove firt element from the tbclist plus its dummy nodes. */ static void poptbclist (lua_State *L) { StkId tbc = L->tbclist; lua_assert(tbc->tbclist.delta > 0); /* first element cannot be dummy */ tbc -= tbc->tbclist.delta; while (tbc > L->stack && tbc->tbclist.delta == 0) tbc -= MAXDELTA; /* remove dummy nodes */ L->tbclist = tbc; } /* ** Close all upvalues and to-be-closed variables up to the given stack ** level. */ void luaF_close (lua_State *L, StkId level, int status, int yy) { ptrdiff_t levelrel = savestack(L, level); luaF_closeupval(L, level); /* first, close the upvalues */ while (L->tbclist >= level) { /* traverse tbc's down to that level */ StkId tbc = L->tbclist; /* get variable index */ poptbclist(L); /* remove it from list */ prepcallclosemth(L, tbc, status, yy); /* close variable */ level = restorestack(L, levelrel); } } Proto *luaF_newproto (lua_State *L) { GCObject *o = luaC_newobj(L, LUA_VPROTO, sizeof(Proto)); Proto *f = gco2p(o); f->k = NULL; f->sizek = 0; f->p = NULL; f->sizep = 0; f->code = NULL; f->sizecode = 0; f->lineinfo = NULL; f->sizelineinfo = 0; f->abslineinfo = NULL; f->sizeabslineinfo = 0; f->upvalues = NULL; f->sizeupvalues = 0; f->numparams = 0; f->is_vararg = 0; f->maxstacksize = 0; f->locvars = NULL; f->sizelocvars = 0; f->linedefined = 0; f->lastlinedefined = 0; f->source = NULL; return f; } void luaF_freeproto (lua_State *L, Proto *f) { luaM_freearray(L, f->code, f->sizecode); luaM_freearray(L, f->p, f->sizep); luaM_freearray(L, f->k, f->sizek); luaM_freearray(L, f->lineinfo, f->sizelineinfo); luaM_freearray(L, f->abslineinfo, f->sizeabslineinfo); luaM_freearray(L, f->locvars, f->sizelocvars); luaM_freearray(L, f->upvalues, f->sizeupvalues); luaM_free(L, f); } /* ** Look for n-th local variable at line 'line' in function 'func'. ** Returns NULL if not found. */ const char *luaF_getlocalname (const Proto *f, int local_number, int pc) { int i; for (i = 0; isizelocvars && f->locvars[i].startpc <= pc; i++) { if (pc < f->locvars[i].endpc) { /* is variable active? */ local_number--; if (local_number == 0) return getstr(f->locvars[i].varname); } } return NULL; /* not found */ } /* ** $Id: lobject.c $ ** Some generic functions over Lua objects ** See Copyright Notice in lua.h */ #define lobject_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include #include #include #include #include /*#include "lua.h"*/ /*#include "lctype.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "lvm.h"*/ /* ** Computes ceil(log2(x)) */ int luaO_ceillog2 (unsigned int x) { static const lu_byte log_2[256] = { /* log_2[i] = ceil(log2(i - 1)) */ 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 }; int l = 0; x--; while (x >= 256) { l += 8; x >>= 8; } return l + log_2[x]; } static lua_Integer intarith (lua_State *L, int op, lua_Integer v1, lua_Integer v2) { switch (op) { case LUA_OPADD: return intop(+, v1, v2); case LUA_OPSUB:return intop(-, v1, v2); case LUA_OPMUL:return intop(*, v1, v2); case LUA_OPMOD: return luaV_mod(L, v1, v2); case LUA_OPIDIV: return luaV_idiv(L, v1, v2); case LUA_OPBAND: return intop(&, v1, v2); case LUA_OPBOR: return intop(|, v1, v2); case LUA_OPBXOR: return intop(^, v1, v2); case LUA_OPSHL: return luaV_shiftl(v1, v2); case LUA_OPSHR: return luaV_shiftl(v1, -v2); case LUA_OPUNM: return intop(-, 0, v1); case LUA_OPBNOT: return intop(^, ~l_castS2U(0), v1); default: lua_assert(0); return 0; } } static lua_Number numarith (lua_State *L, int op, lua_Number v1, lua_Number v2) { switch (op) { case LUA_OPADD: return luai_numadd(L, v1, v2); case LUA_OPSUB: return luai_numsub(L, v1, v2); case LUA_OPMUL: return luai_nummul(L, v1, v2); case LUA_OPDIV: return luai_numdiv(L, v1, v2); case LUA_OPPOW: return luai_numpow(L, v1, v2); case LUA_OPIDIV: return luai_numidiv(L, v1, v2); case LUA_OPUNM: return luai_numunm(L, v1); case LUA_OPMOD: return luaV_modf(L, v1, v2); default: lua_assert(0); return 0; } } int luaO_rawarith (lua_State *L, int op, const TValue *p1, const TValue *p2, TValue *res) { switch (op) { case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* operate only on integers */ lua_Integer i1; lua_Integer i2; if (tointegerns(p1, &i1) && tointegerns(p2, &i2)) { setivalue(res, intarith(L, op, i1, i2)); return 1; } else return 0; /* fail */ } case LUA_OPDIV: case LUA_OPPOW: { /* operate only on floats */ lua_Number n1; lua_Number n2; if (tonumberns(p1, n1) && tonumberns(p2, n2)) { setfltvalue(res, numarith(L, op, n1, n2)); return 1; } else return 0; /* fail */ } default: { /* other operations */ lua_Number n1; lua_Number n2; if (ttisinteger(p1) && ttisinteger(p2)) { setivalue(res, intarith(L, op, ivalue(p1), ivalue(p2))); return 1; } else if (tonumberns(p1, n1) && tonumberns(p2, n2)) { setfltvalue(res, numarith(L, op, n1, n2)); return 1; } else return 0; /* fail */ } } } void luaO_arith (lua_State *L, int op, const TValue *p1, const TValue *p2, StkId res) { if (!luaO_rawarith(L, op, p1, p2, s2v(res))) { /* could not perform raw operation; try metamethod */ luaT_trybinTM(L, p1, p2, res, cast(TMS, (op - LUA_OPADD) + TM_ADD)); } } int luaO_hexavalue (int c) { if (lisdigit(c)) return c - '0'; else return (ltolower(c) - 'a') + 10; } static int isneg (const char **s) { if (**s == '-') { (*s)++; return 1; } else if (**s == '+') (*s)++; return 0; } /* ** {================================================================== ** Lua's implementation for 'lua_strx2number' ** =================================================================== */ #if !defined(lua_strx2number) /* maximum number of significant digits to read (to avoid overflows even with single floats) */ #define MAXSIGDIG 30 /* ** convert a hexadecimal numeric string to a number, following ** C99 specification for 'strtod' */ static lua_Number lua_strx2number (const char *s, char **endptr) { int dot = lua_getlocaledecpoint(); lua_Number r = l_mathop(0.0); /* result (accumulator) */ int sigdig = 0; /* number of significant digits */ int nosigdig = 0; /* number of non-significant digits */ int e = 0; /* exponent correction */ int neg; /* 1 if number is negative */ int hasdot = 0; /* true after seen a dot */ *endptr = cast_charp(s); /* nothing is valid yet */ while (lisspace(cast_uchar(*s))) s++; /* skip initial spaces */ neg = isneg(&s); /* check sign */ if (!(*s == '0' && (*(s + 1) == 'x' || *(s + 1) == 'X'))) /* check '0x' */ return l_mathop(0.0); /* invalid format (no '0x') */ for (s += 2; ; s++) { /* skip '0x' and read numeral */ if (*s == dot) { if (hasdot) break; /* second dot? stop loop */ else hasdot = 1; } else if (lisxdigit(cast_uchar(*s))) { if (sigdig == 0 && *s == '0') /* non-significant digit (zero)? */ nosigdig++; else if (++sigdig <= MAXSIGDIG) /* can read it without overflow? */ r = (r * l_mathop(16.0)) + luaO_hexavalue(*s); else e++; /* too many digits; ignore, but still count for exponent */ if (hasdot) e--; /* decimal digit? correct exponent */ } else break; /* neither a dot nor a digit */ } if (nosigdig + sigdig == 0) /* no digits? */ return l_mathop(0.0); /* invalid format */ *endptr = cast_charp(s); /* valid up to here */ e *= 4; /* each digit multiplies/divides value by 2^4 */ if (*s == 'p' || *s == 'P') { /* exponent part? */ int exp1 = 0; /* exponent value */ int neg1; /* exponent sign */ s++; /* skip 'p' */ neg1 = isneg(&s); /* sign */ if (!lisdigit(cast_uchar(*s))) return l_mathop(0.0); /* invalid; must have at least one digit */ while (lisdigit(cast_uchar(*s))) /* read exponent */ exp1 = exp1 * 10 + *(s++) - '0'; if (neg1) exp1 = -exp1; e += exp1; *endptr = cast_charp(s); /* valid up to here */ } if (neg) r = -r; return l_mathop(ldexp)(r, e); } #endif /* }====================================================== */ /* maximum length of a numeral to be converted to a number */ #if !defined (L_MAXLENNUM) #define L_MAXLENNUM 200 #endif /* ** Convert string 's' to a Lua number (put in 'result'). Return NULL on ** fail or the address of the ending '\0' on success. ('mode' == 'x') ** means a hexadecimal numeral. */ static const char *l_str2dloc (const char *s, lua_Number *result, int mode) { char *endptr; *result = (mode == 'x') ? lua_strx2number(s, &endptr) /* try to convert */ : lua_str2number(s, &endptr); if (endptr == s) return NULL; /* nothing recognized? */ while (lisspace(cast_uchar(*endptr))) endptr++; /* skip trailing spaces */ return (*endptr == '\0') ? endptr : NULL; /* OK iff no trailing chars */ } /* ** Convert string 's' to a Lua number (put in 'result') handling the ** current locale. ** This function accepts both the current locale or a dot as the radix ** mark. If the conversion fails, it may mean number has a dot but ** locale accepts something else. In that case, the code copies 's' ** to a buffer (because 's' is read-only), changes the dot to the ** current locale radix mark, and tries to convert again. ** The variable 'mode' checks for special characters in the string: ** - 'n' means 'inf' or 'nan' (which should be rejected) ** - 'x' means a hexadecimal numeral ** - '.' just optimizes the search for the common case (no special chars) */ static const char *l_str2d (const char *s, lua_Number *result) { const char *endptr; const char *pmode = strpbrk(s, ".xXnN"); /* look for special chars */ int mode = pmode ? ltolower(cast_uchar(*pmode)) : 0; if (mode == 'n') /* reject 'inf' and 'nan' */ return NULL; endptr = l_str2dloc(s, result, mode); /* try to convert */ if (endptr == NULL) { /* failed? may be a different locale */ char buff[L_MAXLENNUM + 1]; const char *pdot = strchr(s, '.'); if (pdot == NULL || strlen(s) > L_MAXLENNUM) return NULL; /* string too long or no dot; fail */ strcpy(buff, s); /* copy string to buffer */ buff[pdot - s] = lua_getlocaledecpoint(); /* correct decimal point */ endptr = l_str2dloc(buff, result, mode); /* try again */ if (endptr != NULL) endptr = s + (endptr - buff); /* make relative to 's' */ } return endptr; } #define MAXBY10 cast(lua_Unsigned, LUA_MAXINTEGER / 10) #define MAXLASTD cast_int(LUA_MAXINTEGER % 10) static const char *l_str2int (const char *s, lua_Integer *result) { lua_Unsigned a = 0; int empty = 1; int neg; while (lisspace(cast_uchar(*s))) s++; /* skip initial spaces */ neg = isneg(&s); if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) { /* hex? */ s += 2; /* skip '0x' */ for (; lisxdigit(cast_uchar(*s)); s++) { a = a * 16 + luaO_hexavalue(*s); empty = 0; } } else { /* decimal */ for (; lisdigit(cast_uchar(*s)); s++) { int d = *s - '0'; if (a >= MAXBY10 && (a > MAXBY10 || d > MAXLASTD + neg)) /* overflow? */ return NULL; /* do not accept it (as integer) */ a = a * 10 + d; empty = 0; } } while (lisspace(cast_uchar(*s))) s++; /* skip trailing spaces */ if (empty || *s != '\0') return NULL; /* something wrong in the numeral */ else { *result = l_castU2S((neg) ? 0u - a : a); return s; } } size_t luaO_str2num (const char *s, TValue *o) { lua_Integer i; lua_Number n; const char *e; if ((e = l_str2int(s, &i)) != NULL) { /* try as an integer */ setivalue(o, i); } else if ((e = l_str2d(s, &n)) != NULL) { /* else try as a float */ setfltvalue(o, n); } else return 0; /* conversion failed */ return (e - s) + 1; /* success; return string size */ } int luaO_utf8esc (char *buff, unsigned long x) { int n = 1; /* number of bytes put in buffer (backwards) */ lua_assert(x <= 0x7FFFFFFFu); if (x < 0x80) /* ascii? */ buff[UTF8BUFFSZ - 1] = cast_char(x); else { /* need continuation bytes */ unsigned int mfb = 0x3f; /* maximum that fits in first byte */ do { /* add continuation bytes */ buff[UTF8BUFFSZ - (n++)] = cast_char(0x80 | (x & 0x3f)); x >>= 6; /* remove added bits */ mfb >>= 1; /* now there is one less bit available in first byte */ } while (x > mfb); /* still needs continuation byte? */ buff[UTF8BUFFSZ - n] = cast_char((~mfb << 1) | x); /* add first byte */ } return n; } /* ** Maximum length of the conversion of a number to a string. Must be ** enough to accommodate both LUA_INTEGER_FMT and LUA_NUMBER_FMT. ** (For a long long int, this is 19 digits plus a sign and a final '\0', ** adding to 21. For a long double, it can go to a sign, 33 digits, ** the dot, an exponent letter, an exponent sign, 5 exponent digits, ** and a final '\0', adding to 43.) */ #define MAXNUMBER2STR 44 /* ** Convert a number object to a string, adding it to a buffer */ static int tostringbuff (TValue *obj, char *buff) { int len; lua_assert(ttisnumber(obj)); if (ttisinteger(obj)) len = lua_integer2str(buff, MAXNUMBER2STR, ivalue(obj)); else { len = lua_number2str(buff, MAXNUMBER2STR, fltvalue(obj)); if (buff[strspn(buff, "-0123456789")] == '\0') { /* looks like an int? */ buff[len++] = lua_getlocaledecpoint(); buff[len++] = '0'; /* adds '.0' to result */ } } return len; } /* ** Convert a number object to a Lua string, replacing the value at 'obj' */ void luaO_tostring (lua_State *L, TValue *obj) { char buff[MAXNUMBER2STR]; int len = tostringbuff(obj, buff); setsvalue(L, obj, luaS_newlstr(L, buff, len)); } /* ** {================================================================== ** 'luaO_pushvfstring' ** =================================================================== */ /* size for buffer space used by 'luaO_pushvfstring' */ #define BUFVFS 200 /* buffer used by 'luaO_pushvfstring' */ typedef struct BuffFS { lua_State *L; int pushed; /* number of string pieces already on the stack */ int blen; /* length of partial string in 'space' */ char space[BUFVFS]; /* holds last part of the result */ } BuffFS; /* ** Push given string to the stack, as part of the buffer, and ** join the partial strings in the stack into one. */ static void pushstr (BuffFS *buff, const char *str, size_t l) { lua_State *L = buff->L; setsvalue2s(L, L->top, luaS_newlstr(L, str, l)); L->top++; /* may use one extra slot */ buff->pushed++; luaV_concat(L, buff->pushed); /* join partial results into one */ buff->pushed = 1; } /* ** empty the buffer space into the stack */ static void clearbuff (BuffFS *buff) { pushstr(buff, buff->space, buff->blen); /* push buffer contents */ buff->blen = 0; /* space now is empty */ } /* ** Get a space of size 'sz' in the buffer. If buffer has not enough ** space, empty it. 'sz' must fit in an empty buffer. */ static char *getbuff (BuffFS *buff, int sz) { lua_assert(buff->blen <= BUFVFS); lua_assert(sz <= BUFVFS); if (sz > BUFVFS - buff->blen) /* not enough space? */ clearbuff(buff); return buff->space + buff->blen; } #define addsize(b,sz) ((b)->blen += (sz)) /* ** Add 'str' to the buffer. If string is larger than the buffer space, ** push the string directly to the stack. */ static void addstr2buff (BuffFS *buff, const char *str, size_t slen) { if (slen <= BUFVFS) { /* does string fit into buffer? */ char *bf = getbuff(buff, cast_int(slen)); memcpy(bf, str, slen); /* add string to buffer */ addsize(buff, cast_int(slen)); } else { /* string larger than buffer */ clearbuff(buff); /* string comes after buffer's content */ pushstr(buff, str, slen); /* push string */ } } /* ** Add a number to the buffer. */ static void addnum2buff (BuffFS *buff, TValue *num) { char *numbuff = getbuff(buff, MAXNUMBER2STR); int len = tostringbuff(num, numbuff); /* format number into 'numbuff' */ addsize(buff, len); } /* ** this function handles only '%d', '%c', '%f', '%p', '%s', and '%%' conventional formats, plus Lua-specific '%I' and '%U' */ const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) { BuffFS buff; /* holds last part of the result */ const char *e; /* points to next '%' */ buff.pushed = buff.blen = 0; buff.L = L; while ((e = strchr(fmt, '%')) != NULL) { addstr2buff(&buff, fmt, e - fmt); /* add 'fmt' up to '%' */ switch (*(e + 1)) { /* conversion specifier */ case 's': { /* zero-terminated string */ const char *s = va_arg(argp, char *); if (s == NULL) s = "(null)"; addstr2buff(&buff, s, strlen(s)); break; } case 'c': { /* an 'int' as a character */ char c = cast_uchar(va_arg(argp, int)); addstr2buff(&buff, &c, sizeof(char)); break; } case 'd': { /* an 'int' */ TValue num; setivalue(&num, va_arg(argp, int)); addnum2buff(&buff, &num); break; } case 'I': { /* a 'lua_Integer' */ TValue num; setivalue(&num, cast(lua_Integer, va_arg(argp, l_uacInt))); addnum2buff(&buff, &num); break; } case 'f': { /* a 'lua_Number' */ TValue num; setfltvalue(&num, cast_num(va_arg(argp, l_uacNumber))); addnum2buff(&buff, &num); break; } case 'p': { /* a pointer */ const int sz = 3 * sizeof(void*) + 8; /* enough space for '%p' */ char *bf = getbuff(&buff, sz); void *p = va_arg(argp, void *); int len = lua_pointer2str(bf, sz, p); addsize(&buff, len); break; } case 'U': { /* a 'long' as a UTF-8 sequence */ char bf[UTF8BUFFSZ]; int len = luaO_utf8esc(bf, va_arg(argp, long)); addstr2buff(&buff, bf + UTF8BUFFSZ - len, len); break; } case '%': { addstr2buff(&buff, "%", 1); break; } default: { luaG_runerror(L, "invalid option '%%%c' to 'lua_pushfstring'", *(e + 1)); } } fmt = e + 2; /* skip '%' and the specifier */ } addstr2buff(&buff, fmt, strlen(fmt)); /* rest of 'fmt' */ clearbuff(&buff); /* empty buffer into the stack */ lua_assert(buff.pushed == 1); return svalue(s2v(L->top - 1)); } const char *luaO_pushfstring (lua_State *L, const char *fmt, ...) { const char *msg; va_list argp; va_start(argp, fmt); msg = luaO_pushvfstring(L, fmt, argp); va_end(argp); return msg; } /* }================================================================== */ #define RETS "..." #define PRE "[string \"" #define POS "\"]" #define addstr(a,b,l) ( memcpy(a,b,(l) * sizeof(char)), a += (l) ) void luaO_chunkid (char *out, const char *source, size_t srclen) { size_t bufflen = LUA_IDSIZE; /* free space in buffer */ if (*source == '=') { /* 'literal' source */ if (srclen <= bufflen) /* small enough? */ memcpy(out, source + 1, srclen * sizeof(char)); else { /* truncate it */ addstr(out, source + 1, bufflen - 1); *out = '\0'; } } else if (*source == '@') { /* file name */ if (srclen <= bufflen) /* small enough? */ memcpy(out, source + 1, srclen * sizeof(char)); else { /* add '...' before rest of name */ addstr(out, RETS, LL(RETS)); bufflen -= LL(RETS); memcpy(out, source + 1 + srclen - bufflen, bufflen * sizeof(char)); } } else { /* string; format as [string "source"] */ const char *nl = strchr(source, '\n'); /* find first new line (if any) */ addstr(out, PRE, LL(PRE)); /* add prefix */ bufflen -= LL(PRE RETS POS) + 1; /* save space for prefix+suffix+'\0' */ if (srclen < bufflen && nl == NULL) { /* small one-line source? */ addstr(out, source, srclen); /* keep it */ } else { if (nl != NULL) srclen = nl - source; /* stop at first newline */ if (srclen > bufflen) srclen = bufflen; addstr(out, source, srclen); addstr(out, RETS, LL(RETS)); } memcpy(out, POS, (LL(POS) + 1) * sizeof(char)); } } /* ** $Id: ltm.c $ ** Tag methods ** See Copyright Notice in lua.h */ #define ltm_c #define LUA_CORE /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lgc.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /*#include "lvm.h"*/ static const char udatatypename[] = "userdata"; LUAI_DDEF const char *const luaT_typenames_[LUA_TOTALTYPES] = { "no value", "nil", "boolean", udatatypename, "number", "string", "table", "function", udatatypename, "thread", "upvalue", "proto" /* these last cases are used for tests only */ }; void luaT_init (lua_State *L) { static const char *const luaT_eventname[] = { /* ORDER TM */ "__index", "__newindex", "__gc", "__mode", "__len", "__eq", "__add", "__sub", "__mul", "__mod", "__pow", "__div", "__idiv", "__band", "__bor", "__bxor", "__shl", "__shr", "__unm", "__bnot", "__lt", "__le", "__concat", "__call", "__close" }; int i; for (i=0; itmname[i] = luaS_new(L, luaT_eventname[i]); luaC_fix(L, obj2gco(G(L)->tmname[i])); /* never collect these names */ } } /* ** function to be used with macro "fasttm": optimized for absence of ** tag methods */ const TValue *luaT_gettm (Table *events, TMS event, TString *ename) { const TValue *tm = luaH_getshortstr(events, ename); lua_assert(event <= TM_EQ); if (notm(tm)) { /* no tag method? */ events->flags |= cast_byte(1u<metatable; break; case LUA_TUSERDATA: mt = uvalue(o)->metatable; break; default: mt = G(L)->mt[ttype(o)]; } return (mt ? luaH_getshortstr(mt, G(L)->tmname[event]) : &G(L)->nilvalue); } /* ** Return the name of the type of an object. For tables and userdata ** with metatable, use their '__name' metafield, if present. */ const char *luaT_objtypename (lua_State *L, const TValue *o) { Table *mt; if ((ttistable(o) && (mt = hvalue(o)->metatable) != NULL) || (ttisfulluserdata(o) && (mt = uvalue(o)->metatable) != NULL)) { const TValue *name = luaH_getshortstr(mt, luaS_new(L, "__name")); if (ttisstring(name)) /* is '__name' a string? */ return getstr(tsvalue(name)); /* use it as type name */ } return ttypename(ttype(o)); /* else use standard type name */ } void luaT_callTM (lua_State *L, const TValue *f, const TValue *p1, const TValue *p2, const TValue *p3) { StkId func = L->top; setobj2s(L, func, f); /* push function (assume EXTRA_STACK) */ setobj2s(L, func + 1, p1); /* 1st argument */ setobj2s(L, func + 2, p2); /* 2nd argument */ setobj2s(L, func + 3, p3); /* 3rd argument */ L->top = func + 4; /* metamethod may yield only when called from Lua code */ if (isLuacode(L->ci)) luaD_call(L, func, 0); else luaD_callnoyield(L, func, 0); } void luaT_callTMres (lua_State *L, const TValue *f, const TValue *p1, const TValue *p2, StkId res) { ptrdiff_t result = savestack(L, res); StkId func = L->top; setobj2s(L, func, f); /* push function (assume EXTRA_STACK) */ setobj2s(L, func + 1, p1); /* 1st argument */ setobj2s(L, func + 2, p2); /* 2nd argument */ L->top += 3; /* metamethod may yield only when called from Lua code */ if (isLuacode(L->ci)) luaD_call(L, func, 1); else luaD_callnoyield(L, func, 1); res = restorestack(L, result); setobjs2s(L, res, --L->top); /* move result to its place */ } static int callbinTM (lua_State *L, const TValue *p1, const TValue *p2, StkId res, TMS event) { const TValue *tm = luaT_gettmbyobj(L, p1, event); /* try first operand */ if (notm(tm)) tm = luaT_gettmbyobj(L, p2, event); /* try second operand */ if (notm(tm)) return 0; luaT_callTMres(L, tm, p1, p2, res); return 1; } void luaT_trybinTM (lua_State *L, const TValue *p1, const TValue *p2, StkId res, TMS event) { if (l_unlikely(!callbinTM(L, p1, p2, res, event))) { switch (event) { case TM_BAND: case TM_BOR: case TM_BXOR: case TM_SHL: case TM_SHR: case TM_BNOT: { if (ttisnumber(p1) && ttisnumber(p2)) luaG_tointerror(L, p1, p2); else luaG_opinterror(L, p1, p2, "perform bitwise operation on"); } /* calls never return, but to avoid warnings: *//* FALLTHROUGH */ default: luaG_opinterror(L, p1, p2, "perform arithmetic on"); } } } void luaT_tryconcatTM (lua_State *L) { StkId top = L->top; if (l_unlikely(!callbinTM(L, s2v(top - 2), s2v(top - 1), top - 2, TM_CONCAT))) luaG_concaterror(L, s2v(top - 2), s2v(top - 1)); } void luaT_trybinassocTM (lua_State *L, const TValue *p1, const TValue *p2, int flip, StkId res, TMS event) { if (flip) luaT_trybinTM(L, p2, p1, res, event); else luaT_trybinTM(L, p1, p2, res, event); } void luaT_trybiniTM (lua_State *L, const TValue *p1, lua_Integer i2, int flip, StkId res, TMS event) { TValue aux; setivalue(&aux, i2); luaT_trybinassocTM(L, p1, &aux, flip, res, event); } /* ** Calls an order tag method. ** For lessequal, LUA_COMPAT_LT_LE keeps compatibility with old ** behavior: if there is no '__le', try '__lt', based on l <= r iff ** !(r < l) (assuming a total order). If the metamethod yields during ** this substitution, the continuation has to know about it (to negate ** the result of rtop, event)) /* try original event */ return !l_isfalse(s2v(L->top)); #if defined(LUA_COMPAT_LT_LE) else if (event == TM_LE) { /* try '!(p2 < p1)' for '(p1 <= p2)' */ L->ci->callstatus |= CIST_LEQ; /* mark it is doing 'lt' for 'le' */ if (callbinTM(L, p2, p1, L->top, TM_LT)) { L->ci->callstatus ^= CIST_LEQ; /* clear mark */ return l_isfalse(s2v(L->top)); } /* else error will remove this 'ci'; no need to clear mark */ } #endif luaG_ordererror(L, p1, p2); /* no metamethod found */ return 0; /* to avoid warnings */ } int luaT_callorderiTM (lua_State *L, const TValue *p1, int v2, int flip, int isfloat, TMS event) { TValue aux; const TValue *p2; if (isfloat) { setfltvalue(&aux, cast_num(v2)); } else setivalue(&aux, v2); if (flip) { /* arguments were exchanged? */ p2 = p1; p1 = &aux; /* correct them */ } else p2 = &aux; return luaT_callorderTM(L, p1, p2, event); } void luaT_adjustvarargs (lua_State *L, int nfixparams, CallInfo *ci, const Proto *p) { int i; int actual = cast_int(L->top - ci->func) - 1; /* number of arguments */ int nextra = actual - nfixparams; /* number of extra arguments */ ci->u.l.nextraargs = nextra; luaD_checkstack(L, p->maxstacksize + 1); /* copy function to the top of the stack */ setobjs2s(L, L->top++, ci->func); /* move fixed parameters to the top of the stack */ for (i = 1; i <= nfixparams; i++) { setobjs2s(L, L->top++, ci->func + i); setnilvalue(s2v(ci->func + i)); /* erase original parameter (for GC) */ } ci->func += actual + 1; ci->top += actual + 1; lua_assert(L->top <= ci->top && ci->top <= L->stack_last); } void luaT_getvarargs (lua_State *L, CallInfo *ci, StkId where, int wanted) { int i; int nextra = ci->u.l.nextraargs; if (wanted < 0) { wanted = nextra; /* get all extra arguments available */ checkstackGCp(L, nextra, where); /* ensure stack space */ L->top = where + nextra; /* next instruction will need top */ } for (i = 0; i < wanted && i < nextra; i++) setobjs2s(L, where + i, ci->func - nextra + i); for (; i < wanted; i++) /* complete required results with nil */ setnilvalue(s2v(where + i)); } /* ** $Id: lstring.c $ ** String table (keeps all strings handled by Lua) ** See Copyright Notice in lua.h */ #define lstring_c #define LUA_CORE /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /* ** Maximum size for string table. */ #define MAXSTRTB cast_int(luaM_limitN(MAX_INT, TString*)) /* ** equality for long strings */ int luaS_eqlngstr (TString *a, TString *b) { size_t len = a->u.lnglen; lua_assert(a->tt == LUA_VLNGSTR && b->tt == LUA_VLNGSTR); return (a == b) || /* same instance or... */ ((len == b->u.lnglen) && /* equal length and ... */ (memcmp(getstr(a), getstr(b), len) == 0)); /* equal contents */ } unsigned int luaS_hash (const char *str, size_t l, unsigned int seed) { unsigned int h = seed ^ cast_uint(l); for (; l > 0; l--) h ^= ((h<<5) + (h>>2) + cast_byte(str[l - 1])); return h; } unsigned int luaS_hashlongstr (TString *ts) { lua_assert(ts->tt == LUA_VLNGSTR); if (ts->extra == 0) { /* no hash? */ size_t len = ts->u.lnglen; ts->hash = luaS_hash(getstr(ts), len, ts->hash); ts->extra = 1; /* now it has its hash */ } return ts->hash; } static void tablerehash (TString **vect, int osize, int nsize) { int i; for (i = osize; i < nsize; i++) /* clear new elements */ vect[i] = NULL; for (i = 0; i < osize; i++) { /* rehash old part of the array */ TString *p = vect[i]; vect[i] = NULL; while (p) { /* for each string in the list */ TString *hnext = p->u.hnext; /* save next */ unsigned int h = lmod(p->hash, nsize); /* new position */ p->u.hnext = vect[h]; /* chain it into array */ vect[h] = p; p = hnext; } } } /* ** Resize the string table. If allocation fails, keep the current size. ** (This can degrade performance, but any non-zero size should work ** correctly.) */ void luaS_resize (lua_State *L, int nsize) { stringtable *tb = &G(L)->strt; int osize = tb->size; TString **newvect; if (nsize < osize) /* shrinking table? */ tablerehash(tb->hash, osize, nsize); /* depopulate shrinking part */ newvect = luaM_reallocvector(L, tb->hash, osize, nsize, TString*); if (l_unlikely(newvect == NULL)) { /* reallocation failed? */ if (nsize < osize) /* was it shrinking table? */ tablerehash(tb->hash, nsize, osize); /* restore to original size */ /* leave table as it was */ } else { /* allocation succeeded */ tb->hash = newvect; tb->size = nsize; if (nsize > osize) tablerehash(newvect, osize, nsize); /* rehash for new size */ } } /* ** Clear API string cache. (Entries cannot be empty, so fill them with ** a non-collectable string.) */ void luaS_clearcache (global_State *g) { int i, j; for (i = 0; i < STRCACHE_N; i++) for (j = 0; j < STRCACHE_M; j++) { if (iswhite(g->strcache[i][j])) /* will entry be collected? */ g->strcache[i][j] = g->memerrmsg; /* replace it with something fixed */ } } /* ** Initialize the string table and the string cache */ void luaS_init (lua_State *L) { global_State *g = G(L); int i, j; stringtable *tb = &G(L)->strt; tb->hash = luaM_newvector(L, MINSTRTABSIZE, TString*); tablerehash(tb->hash, 0, MINSTRTABSIZE); /* clear array */ tb->size = MINSTRTABSIZE; /* pre-create memory-error message */ g->memerrmsg = luaS_newliteral(L, MEMERRMSG); luaC_fix(L, obj2gco(g->memerrmsg)); /* it should never be collected */ for (i = 0; i < STRCACHE_N; i++) /* fill cache with valid strings */ for (j = 0; j < STRCACHE_M; j++) g->strcache[i][j] = g->memerrmsg; } /* ** creates a new string object */ static TString *createstrobj (lua_State *L, size_t l, int tag, unsigned int h) { TString *ts; GCObject *o; size_t totalsize; /* total size of TString object */ totalsize = sizelstring(l); o = luaC_newobj(L, tag, totalsize); ts = gco2ts(o); ts->hash = h; ts->extra = 0; getstr(ts)[l] = '\0'; /* ending 0 */ return ts; } TString *luaS_createlngstrobj (lua_State *L, size_t l) { TString *ts = createstrobj(L, l, LUA_VLNGSTR, G(L)->seed); ts->u.lnglen = l; return ts; } void luaS_remove (lua_State *L, TString *ts) { stringtable *tb = &G(L)->strt; TString **p = &tb->hash[lmod(ts->hash, tb->size)]; while (*p != ts) /* find previous element */ p = &(*p)->u.hnext; *p = (*p)->u.hnext; /* remove element from its list */ tb->nuse--; } static void growstrtab (lua_State *L, stringtable *tb) { if (l_unlikely(tb->nuse == MAX_INT)) { /* too many strings? */ luaC_fullgc(L, 1); /* try to free some... */ if (tb->nuse == MAX_INT) /* still too many? */ luaM_error(L); /* cannot even create a message... */ } if (tb->size <= MAXSTRTB / 2) /* can grow string table? */ luaS_resize(L, tb->size * 2); } /* ** Checks whether short string exists and reuses it or creates a new one. */ static TString *internshrstr (lua_State *L, const char *str, size_t l) { TString *ts; global_State *g = G(L); stringtable *tb = &g->strt; unsigned int h = luaS_hash(str, l, g->seed); TString **list = &tb->hash[lmod(h, tb->size)]; lua_assert(str != NULL); /* otherwise 'memcmp'/'memcpy' are undefined */ for (ts = *list; ts != NULL; ts = ts->u.hnext) { if (l == ts->shrlen && (memcmp(str, getstr(ts), l * sizeof(char)) == 0)) { /* found! */ if (isdead(g, ts)) /* dead (but not collected yet)? */ changewhite(ts); /* resurrect it */ return ts; } } /* else must create a new string */ if (tb->nuse >= tb->size) { /* need to grow string table? */ growstrtab(L, tb); list = &tb->hash[lmod(h, tb->size)]; /* rehash with new size */ } ts = createstrobj(L, l, LUA_VSHRSTR, h); memcpy(getstr(ts), str, l * sizeof(char)); ts->shrlen = cast_byte(l); ts->u.hnext = *list; *list = ts; tb->nuse++; return ts; } /* ** new string (with explicit length) */ TString *luaS_newlstr (lua_State *L, const char *str, size_t l) { if (l <= LUAI_MAXSHORTLEN) /* short string? */ return internshrstr(L, str, l); else { TString *ts; if (l_unlikely(l >= (MAX_SIZE - sizeof(TString))/sizeof(char))) luaM_toobig(L); ts = luaS_createlngstrobj(L, l); memcpy(getstr(ts), str, l * sizeof(char)); return ts; } } /* ** Create or reuse a zero-terminated string, first checking in the ** cache (using the string address as a key). The cache can contain ** only zero-terminated strings, so it is safe to use 'strcmp' to ** check hits. */ TString *luaS_new (lua_State *L, const char *str) { unsigned int i = point2uint(str) % STRCACHE_N; /* hash */ int j; TString **p = G(L)->strcache[i]; for (j = 0; j < STRCACHE_M; j++) { if (strcmp(str, getstr(p[j])) == 0) /* hit? */ return p[j]; /* that is it */ } /* normal route */ for (j = STRCACHE_M - 1; j > 0; j--) p[j] = p[j - 1]; /* move out last element */ /* new element is first in the list */ p[0] = luaS_newlstr(L, str, strlen(str)); return p[0]; } Udata *luaS_newudata (lua_State *L, size_t s, int nuvalue) { Udata *u; int i; GCObject *o; if (l_unlikely(s > MAX_SIZE - udatamemoffset(nuvalue))) luaM_toobig(L); o = luaC_newobj(L, LUA_VUSERDATA, sizeudata(nuvalue, s)); u = gco2u(o); u->len = s; u->nuvalue = nuvalue; u->metatable = NULL; for (i = 0; i < nuvalue; i++) setnilvalue(&u->uv[i].uv); return u; } /* ** $Id: ltable.c $ ** Lua tables (hash) ** See Copyright Notice in lua.h */ #define ltable_c #define LUA_CORE /*#include "lprefix.h"*/ /* ** Implementation of tables (aka arrays, objects, or hash tables). ** Tables keep its elements in two parts: an array part and a hash part. ** Non-negative integer keys are all candidates to be kept in the array ** part. The actual size of the array is the largest 'n' such that ** more than half the slots between 1 and n are in use. ** Hash uses a mix of chained scatter table with Brent's variation. ** A main invariant of these tables is that, if an element is not ** in its main position (i.e. the 'original' position that its hash gives ** to it), then the colliding element is in its own main position. ** Hence even when the load factor reaches 100%, performance remains good. */ #include #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lgc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "lvm.h"*/ /* ** MAXABITS is the largest integer such that MAXASIZE fits in an ** unsigned int. */ #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) /* ** MAXASIZE is the maximum size of the array part. It is the minimum ** between 2^MAXABITS and the maximum size that, measured in bytes, ** fits in a 'size_t'. */ #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) /* ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a ** signed int. */ #define MAXHBITS (MAXABITS - 1) /* ** MAXHSIZE is the maximum size of the hash part. It is the minimum ** between 2^MAXHBITS and the maximum size such that, measured in bytes, ** it fits in a 'size_t'. */ #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) /* ** When the original hash value is good, hashing by a power of 2 ** avoids the cost of '%'. */ #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) /* ** for other types, it is better to avoid modulo by power of 2, as ** they can have many 2 factors. */ #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) #define hashstr(t,str) hashpow2(t, (str)->hash) #define hashboolean(t,p) hashpow2(t, p) #define hashpointer(t,p) hashmod(t, point2uint(p)) #define dummynode (&dummynode_) static const Node dummynode_ = { {{NULL}, LUA_VEMPTY, /* value's value and type */ LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ }; static const TValue absentkey = {ABSTKEYCONSTANT}; /* ** Hash for integers. To allow a good hash, use the remainder operator ** ('%'). If integer fits as a non-negative int, compute an int ** remainder, which is faster. Otherwise, use an unsigned-integer ** remainder, which uses all bits and ensures a non-negative result. */ static Node *hashint (const Table *t, lua_Integer i) { lua_Unsigned ui = l_castS2U(i); if (ui <= (unsigned int)INT_MAX) return hashmod(t, cast_int(ui)); else return hashmod(t, ui); } /* ** Hash for floating-point numbers. ** The main computation should be just ** n = frexp(n, &i); return (n * INT_MAX) + i ** but there are some numerical subtleties. ** In a two-complement representation, INT_MAX does not has an exact ** representation as a float, but INT_MIN does; because the absolute ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with ** INT_MIN. */ #if !defined(l_hashfloat) static int l_hashfloat (lua_Number n) { int i; lua_Integer ni; n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); return 0; } else { /* normal case */ unsigned int u = cast_uint(i) + cast_uint(ni); return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); } } #endif /* ** returns the 'main' position of an element in a table (that is, ** the index of its hash value). */ static Node *mainpositionTV (const Table *t, const TValue *key) { switch (ttypetag(key)) { case LUA_VNUMINT: { lua_Integer i = ivalue(key); return hashint(t, i); } case LUA_VNUMFLT: { lua_Number n = fltvalue(key); return hashmod(t, l_hashfloat(n)); } case LUA_VSHRSTR: { TString *ts = tsvalue(key); return hashstr(t, ts); } case LUA_VLNGSTR: { TString *ts = tsvalue(key); return hashpow2(t, luaS_hashlongstr(ts)); } case LUA_VFALSE: return hashboolean(t, 0); case LUA_VTRUE: return hashboolean(t, 1); case LUA_VLIGHTUSERDATA: { void *p = pvalue(key); return hashpointer(t, p); } case LUA_VLCF: { lua_CFunction f = fvalue(key); return hashpointer(t, f); } default: { GCObject *o = gcvalue(key); return hashpointer(t, o); } } } l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { TValue key; getnodekey(cast(lua_State *, NULL), &key, nd); return mainpositionTV(t, &key); } /* ** Check whether key 'k1' is equal to the key in node 'n2'. This ** equality is raw, so there are no metamethods. Floats with integer ** values have been normalized, so integers cannot be equal to ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so ** that short strings are handled in the default case. ** A true 'deadok' means to accept dead keys as equal to their original ** values. All dead keys are compared in the default case, by pointer ** identity. (Only collectable objects can produce dead keys.) Note that ** dead long strings are also compared by identity. ** Once a key is dead, its corresponding value may be collected, and ** then another value can be created with the same address. If this ** other value is given to 'next', 'equalkey' will signal a false ** positive. In a regular traversal, this situation should never happen, ** as all keys given to 'next' came from the table itself, and therefore ** could not have been collected. Outside a regular traversal, we ** have garbage in, garbage out. What is relevant is that this false ** positive does not break anything. (In particular, 'next' will return ** some other valid item on the table or nil.) */ static int equalkey (const TValue *k1, const Node *n2, int deadok) { if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ !(deadok && keyisdead(n2) && iscollectable(k1))) return 0; /* cannot be same key */ switch (keytt(n2)) { case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1; case LUA_VNUMINT: return (ivalue(k1) == keyival(n2)); case LUA_VNUMFLT: return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); case LUA_VLIGHTUSERDATA: return pvalue(k1) == pvalueraw(keyval(n2)); case LUA_VLCF: return fvalue(k1) == fvalueraw(keyval(n2)); case ctb(LUA_VLNGSTR): return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); default: return gcvalue(k1) == gcvalueraw(keyval(n2)); } } /* ** True if value of 'alimit' is equal to the real size of the array ** part of table 't'. (Otherwise, the array part must be larger than ** 'alimit'.) */ #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) /* ** Returns the real size of the 'array' array */ LUAI_FUNC unsigned int luaH_realasize (const Table *t) { if (limitequalsasize(t)) return t->alimit; /* this is the size */ else { unsigned int size = t->alimit; /* compute the smallest power of 2 not smaller than 'n' */ size |= (size >> 1); size |= (size >> 2); size |= (size >> 4); size |= (size >> 8); size |= (size >> 16); #if (UINT_MAX >> 30) > 3 size |= (size >> 32); /* unsigned int has more than 32 bits */ #endif size++; lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); return size; } } /* ** Check whether real size of the array is a power of 2. ** (If it is not, 'alimit' cannot be changed to any other value ** without changing the real size.) */ static int ispow2realasize (const Table *t) { return (!isrealasize(t) || ispow2(t->alimit)); } static unsigned int setlimittosize (Table *t) { t->alimit = luaH_realasize(t); setrealasize(t); return t->alimit; } #define limitasasize(t) check_exp(isrealasize(t), t->alimit) /* ** "Generic" get version. (Not that generic: not valid for integers, ** which may be in array part, nor for floats with integral values.) ** See explanation about 'deadok' in function 'equalkey'. */ static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { Node *n = mainpositionTV(t, key); for (;;) { /* check whether 'key' is somewhere in the chain */ if (equalkey(key, n, deadok)) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) return &absentkey; /* not found */ n += nx; } } } /* ** returns the index for 'k' if 'k' is an appropriate key to live in ** the array part of a table, 0 otherwise. */ static unsigned int arrayindex (lua_Integer k) { if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ return cast_uint(k); /* 'key' is an appropriate array index */ else return 0; } /* ** returns the index of a 'key' for table traversals. First goes all ** elements in the array part, then elements in the hash part. The ** beginning of a traversal is signaled by 0. */ static unsigned int findindex (lua_State *L, Table *t, TValue *key, unsigned int asize) { unsigned int i; if (ttisnil(key)) return 0; /* first iteration */ i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; if (i - 1u < asize) /* is 'key' inside array part? */ return i; /* yes; that's the index */ else { const TValue *n = getgeneric(t, key, 1); if (l_unlikely(isabstkey(n))) luaG_runerror(L, "invalid key to 'next'"); /* key not found */ i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ /* hash elements are numbered after array ones */ return (i + 1) + asize; } } int luaH_next (lua_State *L, Table *t, StkId key) { unsigned int asize = luaH_realasize(t); unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ for (; i < asize; i++) { /* try first array part */ if (!isempty(&t->array[i])) { /* a non-empty entry? */ setivalue(s2v(key), i + 1); setobj2s(L, key + 1, &t->array[i]); return 1; } } for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ Node *n = gnode(t, i); getnodekey(L, s2v(key), n); setobj2s(L, key + 1, gval(n)); return 1; } } return 0; /* no more elements */ } static void freehash (lua_State *L, Table *t) { if (!isdummy(t)) luaM_freearray(L, t->node, cast_sizet(sizenode(t))); } /* ** {============================================================= ** Rehash ** ============================================================== */ /* ** Compute the optimal size for the array part of table 't'. 'nums' is a ** "count array" where 'nums[i]' is the number of integers in the table ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of ** integer keys in the table and leaves with the number of keys that ** will go to the array part; return the optimal size. (The condition ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) */ static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { int i; unsigned int twotoi; /* 2^i (candidate for optimal size) */ unsigned int a = 0; /* number of elements smaller than 2^i */ unsigned int na = 0; /* number of elements to go to array part */ unsigned int optimal = 0; /* optimal size for array part */ /* loop while keys can fill more than half of total size */ for (i = 0, twotoi = 1; twotoi > 0 && *pna > twotoi / 2; i++, twotoi *= 2) { a += nums[i]; if (a > twotoi/2) { /* more than half elements present? */ optimal = twotoi; /* optimal size (till now) */ na = a; /* all elements up to 'optimal' will go to array part */ } } lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); *pna = na; return optimal; } static int countint (lua_Integer key, unsigned int *nums) { unsigned int k = arrayindex(key); if (k != 0) { /* is 'key' an appropriate array index? */ nums[luaO_ceillog2(k)]++; /* count as such */ return 1; } else return 0; } /* ** Count keys in array part of table 't': Fill 'nums[i]' with ** number of keys that will go into corresponding slice and return ** total number of non-nil keys. */ static unsigned int numusearray (const Table *t, unsigned int *nums) { int lg; unsigned int ttlg; /* 2^lg */ unsigned int ause = 0; /* summation of 'nums' */ unsigned int i = 1; /* count to traverse all array keys */ unsigned int asize = limitasasize(t); /* real array size */ /* traverse each slice */ for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { unsigned int lc = 0; /* counter */ unsigned int lim = ttlg; if (lim > asize) { lim = asize; /* adjust upper limit */ if (i > lim) break; /* no more elements to count */ } /* count elements in range (2^(lg - 1), 2^lg] */ for (; i <= lim; i++) { if (!isempty(&t->array[i-1])) lc++; } nums[lg] += lc; ause += lc; } return ause; } static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { int totaluse = 0; /* total number of elements */ int ause = 0; /* elements added to 'nums' (can go to array part) */ int i = sizenode(t); while (i--) { Node *n = &t->node[i]; if (!isempty(gval(n))) { if (keyisinteger(n)) ause += countint(keyival(n), nums); totaluse++; } } *pna += ause; return totaluse; } /* ** Creates an array for the hash part of a table with the given ** size, or reuses the dummy node if size is zero. ** The computation for size overflow is in two steps: the first ** comparison ensures that the shift in the second one does not ** overflow. */ static void setnodevector (lua_State *L, Table *t, unsigned int size) { if (size == 0) { /* no elements to hash part? */ t->node = cast(Node *, dummynode); /* use common 'dummynode' */ t->lsizenode = 0; t->lastfree = NULL; /* signal that it is using dummy node */ } else { int i; int lsize = luaO_ceillog2(size); if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) luaG_runerror(L, "table overflow"); size = twoto(lsize); t->node = luaM_newvector(L, size, Node); for (i = 0; i < (int)size; i++) { Node *n = gnode(t, i); gnext(n) = 0; setnilkey(n); setempty(gval(n)); } t->lsizenode = cast_byte(lsize); t->lastfree = gnode(t, size); /* all positions are free */ } } /* ** (Re)insert all elements from the hash part of 'ot' into table 't'. */ static void reinsert (lua_State *L, Table *ot, Table *t) { int j; int size = sizenode(ot); for (j = 0; j < size; j++) { Node *old = gnode(ot, j); if (!isempty(gval(old))) { /* doesn't need barrier/invalidate cache, as entry was already present in the table */ TValue k; getnodekey(L, &k, old); luaH_set(L, t, &k, gval(old)); } } } /* ** Exchange the hash part of 't1' and 't2'. */ static void exchangehashpart (Table *t1, Table *t2) { lu_byte lsizenode = t1->lsizenode; Node *node = t1->node; Node *lastfree = t1->lastfree; t1->lsizenode = t2->lsizenode; t1->node = t2->node; t1->lastfree = t2->lastfree; t2->lsizenode = lsizenode; t2->node = node; t2->lastfree = lastfree; } /* ** Resize table 't' for the new given sizes. Both allocations (for ** the hash part and for the array part) can fail, which creates some ** subtleties. If the first allocation, for the hash part, fails, an ** error is raised and that is it. Otherwise, it copies the elements from ** the shrinking part of the array (if it is shrinking) into the new ** hash. Then it reallocates the array part. If that fails, the table ** is in its original state; the function frees the new hash part and then ** raises the allocation error. Otherwise, it sets the new hash part ** into the table, initializes the new part of the array (if any) with ** nils and reinserts the elements of the old hash back into the new ** parts of the table. */ void luaH_resize (lua_State *L, Table *t, unsigned int newasize, unsigned int nhsize) { unsigned int i; Table newt; /* to keep the new hash part */ unsigned int oldasize = setlimittosize(t); TValue *newarray; /* create new hash part with appropriate size into 'newt' */ setnodevector(L, &newt, nhsize); if (newasize < oldasize) { /* will array shrink? */ t->alimit = newasize; /* pretend array has new size... */ exchangehashpart(t, &newt); /* and new hash */ /* re-insert into the new hash the elements from vanishing slice */ for (i = newasize; i < oldasize; i++) { if (!isempty(&t->array[i])) luaH_setint(L, t, i + 1, &t->array[i]); } t->alimit = oldasize; /* restore current size... */ exchangehashpart(t, &newt); /* and hash (in case of errors) */ } /* allocate new array */ newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ freehash(L, &newt); /* release new hash part */ luaM_error(L); /* raise error (with array unchanged) */ } /* allocation ok; initialize new part of the array */ exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ t->array = newarray; /* set new array part */ t->alimit = newasize; for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ setempty(&t->array[i]); /* re-insert elements from old hash part into new parts */ reinsert(L, &newt, t); /* 'newt' now has the old hash */ freehash(L, &newt); /* free old hash part */ } void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { int nsize = allocsizenode(t); luaH_resize(L, t, nasize, nsize); } /* ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i */ static void rehash (lua_State *L, Table *t, const TValue *ek) { unsigned int asize; /* optimal size for array part */ unsigned int na; /* number of keys in the array part */ unsigned int nums[MAXABITS + 1]; int i; int totaluse; for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ setlimittosize(t); na = numusearray(t, nums); /* count keys in array part */ totaluse = na; /* all those keys are integer keys */ totaluse += numusehash(t, nums, &na); /* count keys in hash part */ /* count extra key */ if (ttisinteger(ek)) na += countint(ivalue(ek), nums); totaluse++; /* compute new size for array part */ asize = computesizes(nums, &na); /* resize the table to new computed sizes */ luaH_resize(L, t, asize, totaluse - na); } /* ** }============================================================= */ Table *luaH_new (lua_State *L) { GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); Table *t = gco2t(o); t->metatable = NULL; t->flags = cast_byte(maskflags); /* table has no metamethod fields */ t->array = NULL; t->alimit = 0; setnodevector(L, t, 0); return t; } void luaH_free (lua_State *L, Table *t) { freehash(L, t); luaM_freearray(L, t->array, luaH_realasize(t)); luaM_free(L, t); } static Node *getfreepos (Table *t) { if (!isdummy(t)) { while (t->lastfree > t->node) { t->lastfree--; if (keyisnil(t->lastfree)) return t->lastfree; } } return NULL; /* could not find a free place */ } /* ** inserts a new key into a hash table; first, check whether key's main ** position is free. If not, check whether colliding node is in its main ** position or not: if it is not, move colliding node to an empty place and ** put new key in its main position; otherwise (colliding node is in its main ** position), new key goes to an empty position. */ void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) { Node *mp; TValue aux; if (l_unlikely(ttisnil(key))) luaG_runerror(L, "table index is nil"); else if (ttisfloat(key)) { lua_Number f = fltvalue(key); lua_Integer k; if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ setivalue(&aux, k); key = &aux; /* insert it as an integer */ } else if (l_unlikely(luai_numisnan(f))) luaG_runerror(L, "table index is NaN"); } if (ttisnil(value)) return; /* do not insert nil values */ mp = mainpositionTV(t, key); if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ Node *othern; Node *f = getfreepos(t); /* get a free place */ if (f == NULL) { /* cannot find a free place? */ rehash(L, t, key); /* grow table */ /* whatever called 'newkey' takes care of TM cache */ luaH_set(L, t, key, value); /* insert key into grown table */ return; } lua_assert(!isdummy(t)); othern = mainpositionfromnode(t, mp); if (othern != mp) { /* is colliding node out of its main position? */ /* yes; move colliding node into free position */ while (othern + gnext(othern) != mp) /* find previous */ othern += gnext(othern); gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ if (gnext(mp) != 0) { gnext(f) += cast_int(mp - f); /* correct 'next' */ gnext(mp) = 0; /* now 'mp' is free */ } setempty(gval(mp)); } else { /* colliding node is in its own main position */ /* new node will go into free position */ if (gnext(mp) != 0) gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ else lua_assert(gnext(f) == 0); gnext(mp) = cast_int(f - mp); mp = f; } } setnodekey(L, mp, key); luaC_barrierback(L, obj2gco(t), key); lua_assert(isempty(gval(mp))); setobj2t(L, gval(mp), value); } /* ** Search function for integers. If integer is inside 'alimit', get it ** directly from the array part. Otherwise, if 'alimit' is not equal to ** the real size of the array, key still can be in the array part. In ** this case, try to avoid a call to 'luaH_realasize' when key is just ** one more than the limit (so that it can be incremented without ** changing the real size of the array). */ const TValue *luaH_getint (Table *t, lua_Integer key) { if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ return &t->array[key - 1]; else if (!limitequalsasize(t) && /* key still may be in the array part? */ (l_castS2U(key) == t->alimit + 1 || l_castS2U(key) - 1u < luaH_realasize(t))) { t->alimit = cast_uint(key); /* probably '#t' is here now */ return &t->array[key - 1]; } else { Node *n = hashint(t, key); for (;;) { /* check whether 'key' is somewhere in the chain */ if (keyisinteger(n) && keyival(n) == key) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) break; n += nx; } } return &absentkey; } } /* ** search function for short strings */ const TValue *luaH_getshortstr (Table *t, TString *key) { Node *n = hashstr(t, key); lua_assert(key->tt == LUA_VSHRSTR); for (;;) { /* check whether 'key' is somewhere in the chain */ if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) return &absentkey; /* not found */ n += nx; } } } const TValue *luaH_getstr (Table *t, TString *key) { if (key->tt == LUA_VSHRSTR) return luaH_getshortstr(t, key); else { /* for long strings, use generic case */ TValue ko; setsvalue(cast(lua_State *, NULL), &ko, key); return getgeneric(t, &ko, 0); } } /* ** main search function */ const TValue *luaH_get (Table *t, const TValue *key) { switch (ttypetag(key)) { case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); case LUA_VNIL: return &absentkey; case LUA_VNUMFLT: { lua_Integer k; if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ return luaH_getint(t, k); /* use specialized version */ /* else... */ } /* FALLTHROUGH */ default: return getgeneric(t, key, 0); } } /* ** Finish a raw "set table" operation, where 'slot' is where the value ** should have been (the result of a previous "get table"). ** Beware: when using this function you probably need to check a GC ** barrier and invalidate the TM cache. */ void luaH_finishset (lua_State *L, Table *t, const TValue *key, const TValue *slot, TValue *value) { if (isabstkey(slot)) luaH_newkey(L, t, key, value); else setobj2t(L, cast(TValue *, slot), value); } /* ** beware: when using this function you probably need to check a GC ** barrier and invalidate the TM cache. */ void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { const TValue *slot = luaH_get(t, key); luaH_finishset(L, t, key, slot, value); } void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { const TValue *p = luaH_getint(t, key); if (isabstkey(p)) { TValue k; setivalue(&k, key); luaH_newkey(L, t, &k, value); } else setobj2t(L, cast(TValue *, p), value); } /* ** Try to find a boundary in the hash part of table 't'. From the ** caller, we know that 'j' is zero or present and that 'j + 1' is ** present. We want to find a larger key that is absent from the ** table, so that we can do a binary search between the two keys to ** find a boundary. We keep doubling 'j' until we get an absent index. ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is ** absent, we are ready for the binary search. ('j', being max integer, ** is larger or equal to 'i', but it cannot be equal because it is ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a ** boundary. ('j + 1' cannot be a present integer key because it is ** not a valid integer in Lua.) */ static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { lua_Unsigned i; if (j == 0) j++; /* the caller ensures 'j + 1' is present */ do { i = j; /* 'i' is a present index */ if (j <= l_castS2U(LUA_MAXINTEGER) / 2) j *= 2; else { j = LUA_MAXINTEGER; if (isempty(luaH_getint(t, j))) /* t[j] not present? */ break; /* 'j' now is an absent index */ else /* weird case */ return j; /* well, max integer is a boundary... */ } } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ /* i < j && t[i] present && t[j] absent */ while (j - i > 1u) { /* do a binary search between them */ lua_Unsigned m = (i + j) / 2; if (isempty(luaH_getint(t, m))) j = m; else i = m; } return i; } static unsigned int binsearch (const TValue *array, unsigned int i, unsigned int j) { while (j - i > 1u) { /* binary search */ unsigned int m = (i + j) / 2; if (isempty(&array[m - 1])) j = m; else i = m; } return i; } /* ** Try to find a boundary in table 't'. (A 'boundary' is an integer index ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent ** and 'maxinteger' if t[maxinteger] is present.) ** (In the next explanation, we use Lua indices, that is, with base 1. ** The code itself uses base 0 when indexing the array part of the table.) ** The code starts with 'limit = t->alimit', a position in the array ** part that may be a boundary. ** ** (1) If 't[limit]' is empty, there must be a boundary before it. ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' ** is present. If so, it is a boundary. Otherwise, do a binary search ** between 0 and limit to find a boundary. In both cases, try to ** use this boundary as the new 'alimit', as a hint for the next call. ** ** (2) If 't[limit]' is not empty and the array has more elements ** after 'limit', try to find a boundary there. Again, try first ** the special case (which should be quite frequent) where 'limit+1' ** is empty, so that 'limit' is a boundary. Otherwise, check the ** last element of the array part. If it is empty, there must be a ** boundary between the old limit (present) and the last element ** (absent), which is found with a binary search. (This boundary always ** can be a new limit.) ** ** (3) The last case is when there are no elements in the array part ** (limit == 0) or its last element (the new limit) is present. ** In this case, must check the hash part. If there is no hash part ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call ** 'hash_search' to find a boundary in the hash part of the table. ** (In those cases, the boundary is not inside the array part, and ** therefore cannot be used as a new limit.) */ lua_Unsigned luaH_getn (Table *t) { unsigned int limit = t->alimit; if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ /* there must be a boundary before 'limit' */ if (limit >= 2 && !isempty(&t->array[limit - 2])) { /* 'limit - 1' is a boundary; can it be a new limit? */ if (ispow2realasize(t) && !ispow2(limit - 1)) { t->alimit = limit - 1; setnorealasize(t); /* now 'alimit' is not the real size */ } return limit - 1; } else { /* must search for a boundary in [0, limit] */ unsigned int boundary = binsearch(t->array, 0, limit); /* can this boundary represent the real size of the array? */ if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { t->alimit = boundary; /* use it as the new limit */ setnorealasize(t); } return boundary; } } /* 'limit' is zero or present in table */ if (!limitequalsasize(t)) { /* (2)? */ /* 'limit' > 0 and array has more elements after 'limit' */ if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ return limit; /* this is the boundary */ /* else, try last element in the array */ limit = luaH_realasize(t); if (isempty(&t->array[limit - 1])) { /* empty? */ /* there must be a boundary in the array after old limit, and it must be a valid new limit */ unsigned int boundary = binsearch(t->array, t->alimit, limit); t->alimit = boundary; return boundary; } /* else, new limit is present in the table; check the hash part */ } /* (3) 'limit' is the last element and either is zero or present in table */ lua_assert(limit == luaH_realasize(t) && (limit == 0 || !isempty(&t->array[limit - 1]))); if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) return limit; /* 'limit + 1' is absent */ else /* 'limit + 1' is also present */ return hash_search(t, limit); } #if defined(LUA_DEBUG) /* export these functions for the test library */ Node *luaH_mainposition (const Table *t, const TValue *key) { return mainpositionTV(t, key); } int luaH_isdummy (const Table *t) { return isdummy(t); } #endif /* ** $Id: ldo.c $ ** Stack and Call structure of Lua ** See Copyright Notice in lua.h */ #define ldo_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include #include /*#include "lua.h"*/ /*#include "lapi.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lgc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lopcodes.h"*/ /*#include "lparser.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /*#include "lundump.h"*/ /*#include "lvm.h"*/ /*#include "lzio.h"*/ #define errorstatus(s) ((s) > LUA_YIELD) /* ** {====================================================== ** Error-recovery functions ** ======================================================= */ /* ** LUAI_THROW/LUAI_TRY define how Lua does exception handling. By ** default, Lua handles errors with exceptions when compiling as ** C++ code, with _longjmp/_setjmp when asked to use them, and with ** longjmp/setjmp otherwise. */ #if !defined(LUAI_THROW) /* { */ #if defined(__cplusplus) && !defined(LUA_USE_LONGJMP) /* { */ /* C++ exceptions */ #define LUAI_THROW(L,c) throw(c) #define LUAI_TRY(L,c,a) \ try { a } catch(...) { if ((c)->status == 0) (c)->status = -1; } #define luai_jmpbuf int /* dummy variable */ #elif defined(LUA_USE_POSIX) /* }{ */ /* in POSIX, try _longjmp/_setjmp (more efficient) */ #define LUAI_THROW(L,c) _longjmp((c)->b, 1) #define LUAI_TRY(L,c,a) if (_setjmp((c)->b) == 0) { a } #define luai_jmpbuf jmp_buf #else /* }{ */ /* ISO C handling with long jumps */ #define LUAI_THROW(L,c) longjmp((c)->b, 1) #define LUAI_TRY(L,c,a) if (setjmp((c)->b) == 0) { a } #define luai_jmpbuf jmp_buf #endif /* } */ #endif /* } */ /* chain list of long jump buffers */ struct lua_longjmp { struct lua_longjmp *previous; luai_jmpbuf b; volatile int status; /* error code */ }; void luaD_seterrorobj (lua_State *L, int errcode, StkId oldtop) { switch (errcode) { case LUA_ERRMEM: { /* memory error? */ setsvalue2s(L, oldtop, G(L)->memerrmsg); /* reuse preregistered msg. */ break; } case LUA_ERRERR: { setsvalue2s(L, oldtop, luaS_newliteral(L, "error in error handling")); break; } case LUA_OK: { /* special case only for closing upvalues */ setnilvalue(s2v(oldtop)); /* no error message */ break; } default: { lua_assert(errorstatus(errcode)); /* real error */ setobjs2s(L, oldtop, L->top - 1); /* error message on current top */ break; } } L->top = oldtop + 1; } l_noret luaD_throw (lua_State *L, int errcode) { if (L->errorJmp) { /* thread has an error handler? */ L->errorJmp->status = errcode; /* set status */ LUAI_THROW(L, L->errorJmp); /* jump to it */ } else { /* thread has no error handler */ global_State *g = G(L); errcode = luaE_resetthread(L, errcode); /* close all upvalues */ if (g->mainthread->errorJmp) { /* main thread has a handler? */ setobjs2s(L, g->mainthread->top++, L->top - 1); /* copy error obj. */ luaD_throw(g->mainthread, errcode); /* re-throw in main thread */ } else { /* no handler at all; abort */ if (g->panic) { /* panic function? */ lua_unlock(L); g->panic(L); /* call panic function (last chance to jump out) */ } abort(); } } } int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) { l_uint32 oldnCcalls = L->nCcalls; struct lua_longjmp lj; lj.status = LUA_OK; lj.previous = L->errorJmp; /* chain new error handler */ L->errorJmp = &lj; LUAI_TRY(L, &lj, (*f)(L, ud); ); L->errorJmp = lj.previous; /* restore old error handler */ L->nCcalls = oldnCcalls; return lj.status; } /* }====================================================== */ /* ** {================================================================== ** Stack reallocation ** =================================================================== */ static void correctstack (lua_State *L, StkId oldstack, StkId newstack) { CallInfo *ci; UpVal *up; L->top = (L->top - oldstack) + newstack; L->tbclist = (L->tbclist - oldstack) + newstack; for (up = L->openupval; up != NULL; up = up->u.open.next) up->v = s2v((uplevel(up) - oldstack) + newstack); for (ci = L->ci; ci != NULL; ci = ci->previous) { ci->top = (ci->top - oldstack) + newstack; ci->func = (ci->func - oldstack) + newstack; if (isLua(ci)) ci->u.l.trap = 1; /* signal to update 'trap' in 'luaV_execute' */ } } /* some space for error handling */ #define ERRORSTACKSIZE (LUAI_MAXSTACK + 200) /* ** Reallocate the stack to a new size, correcting all pointers into ** it. (There are pointers to a stack from its upvalues, from its list ** of call infos, plus a few individual pointers.) The reallocation is ** done in two steps (allocation + free) because the correction must be ** done while both addresses (the old stack and the new one) are valid. ** (In ISO C, any pointer use after the pointer has been deallocated is ** undefined behavior.) ** In case of allocation error, raise an error or return false according ** to 'raiseerror'. */ int luaD_reallocstack (lua_State *L, int newsize, int raiseerror) { int oldsize = stacksize(L); int i; StkId newstack = luaM_reallocvector(L, NULL, 0, newsize + EXTRA_STACK, StackValue); lua_assert(newsize <= LUAI_MAXSTACK || newsize == ERRORSTACKSIZE); if (l_unlikely(newstack == NULL)) { /* reallocation failed? */ if (raiseerror) luaM_error(L); else return 0; /* do not raise an error */ } /* number of elements to be copied to the new stack */ i = ((oldsize <= newsize) ? oldsize : newsize) + EXTRA_STACK; memcpy(newstack, L->stack, i * sizeof(StackValue)); for (; i < newsize + EXTRA_STACK; i++) setnilvalue(s2v(newstack + i)); /* erase new segment */ correctstack(L, L->stack, newstack); luaM_freearray(L, L->stack, oldsize + EXTRA_STACK); L->stack = newstack; L->stack_last = L->stack + newsize; return 1; } /* ** Try to grow the stack by at least 'n' elements. when 'raiseerror' ** is true, raises any error; otherwise, return 0 in case of errors. */ int luaD_growstack (lua_State *L, int n, int raiseerror) { int size = stacksize(L); if (l_unlikely(size > LUAI_MAXSTACK)) { /* if stack is larger than maximum, thread is already using the extra space reserved for errors, that is, thread is handling a stack error; cannot grow further than that. */ lua_assert(stacksize(L) == ERRORSTACKSIZE); if (raiseerror) luaD_throw(L, LUA_ERRERR); /* error inside message handler */ return 0; /* if not 'raiseerror', just signal it */ } else { int newsize = 2 * size; /* tentative new size */ int needed = cast_int(L->top - L->stack) + n; if (newsize > LUAI_MAXSTACK) /* cannot cross the limit */ newsize = LUAI_MAXSTACK; if (newsize < needed) /* but must respect what was asked for */ newsize = needed; if (l_likely(newsize <= LUAI_MAXSTACK)) return luaD_reallocstack(L, newsize, raiseerror); else { /* stack overflow */ /* add extra size to be able to handle the error message */ luaD_reallocstack(L, ERRORSTACKSIZE, raiseerror); if (raiseerror) luaG_runerror(L, "stack overflow"); return 0; } } } static int stackinuse (lua_State *L) { CallInfo *ci; int res; StkId lim = L->top; for (ci = L->ci; ci != NULL; ci = ci->previous) { if (lim < ci->top) lim = ci->top; } lua_assert(lim <= L->stack_last); res = cast_int(lim - L->stack) + 1; /* part of stack in use */ if (res < LUA_MINSTACK) res = LUA_MINSTACK; /* ensure a minimum size */ return res; } /* ** If stack size is more than 3 times the current use, reduce that size ** to twice the current use. (So, the final stack size is at most 2/3 the ** previous size, and half of its entries are empty.) ** As a particular case, if stack was handling a stack overflow and now ** it is not, 'max' (limited by LUAI_MAXSTACK) will be smaller than ** stacksize (equal to ERRORSTACKSIZE in this case), and so the stack ** will be reduced to a "regular" size. */ void luaD_shrinkstack (lua_State *L) { int inuse = stackinuse(L); int nsize = inuse * 2; /* proposed new size */ int max = inuse * 3; /* maximum "reasonable" size */ if (max > LUAI_MAXSTACK) { max = LUAI_MAXSTACK; /* respect stack limit */ if (nsize > LUAI_MAXSTACK) nsize = LUAI_MAXSTACK; } /* if thread is currently not handling a stack overflow and its size is larger than maximum "reasonable" size, shrink it */ if (inuse <= LUAI_MAXSTACK && stacksize(L) > max) luaD_reallocstack(L, nsize, 0); /* ok if that fails */ else /* don't change stack */ condmovestack(L,{},{}); /* (change only for debugging) */ luaE_shrinkCI(L); /* shrink CI list */ } void luaD_inctop (lua_State *L) { luaD_checkstack(L, 1); L->top++; } /* }================================================================== */ /* ** Call a hook for the given event. Make sure there is a hook to be ** called. (Both 'L->hook' and 'L->hookmask', which trigger this ** function, can be changed asynchronously by signals.) */ void luaD_hook (lua_State *L, int event, int line, int ftransfer, int ntransfer) { lua_Hook hook = L->hook; if (hook && L->allowhook) { /* make sure there is a hook */ int mask = CIST_HOOKED; CallInfo *ci = L->ci; ptrdiff_t top = savestack(L, L->top); /* preserve original 'top' */ ptrdiff_t ci_top = savestack(L, ci->top); /* idem for 'ci->top' */ lua_Debug ar; ar.event = event; ar.currentline = line; ar.i_ci = ci; if (ntransfer != 0) { mask |= CIST_TRAN; /* 'ci' has transfer information */ ci->u2.transferinfo.ftransfer = ftransfer; ci->u2.transferinfo.ntransfer = ntransfer; } if (isLua(ci) && L->top < ci->top) L->top = ci->top; /* protect entire activation register */ luaD_checkstack(L, LUA_MINSTACK); /* ensure minimum stack size */ if (ci->top < L->top + LUA_MINSTACK) ci->top = L->top + LUA_MINSTACK; L->allowhook = 0; /* cannot call hooks inside a hook */ ci->callstatus |= mask; lua_unlock(L); (*hook)(L, &ar); lua_lock(L); lua_assert(!L->allowhook); L->allowhook = 1; ci->top = restorestack(L, ci_top); L->top = restorestack(L, top); ci->callstatus &= ~mask; } } /* ** Executes a call hook for Lua functions. This function is called ** whenever 'hookmask' is not zero, so it checks whether call hooks are ** active. */ void luaD_hookcall (lua_State *L, CallInfo *ci) { L->oldpc = 0; /* set 'oldpc' for new function */ if (L->hookmask & LUA_MASKCALL) { /* is call hook on? */ int event = (ci->callstatus & CIST_TAIL) ? LUA_HOOKTAILCALL : LUA_HOOKCALL; Proto *p = ci_func(ci)->p; ci->u.l.savedpc++; /* hooks assume 'pc' is already incremented */ luaD_hook(L, event, -1, 1, p->numparams); ci->u.l.savedpc--; /* correct 'pc' */ } } /* ** Executes a return hook for Lua and C functions and sets/corrects ** 'oldpc'. (Note that this correction is needed by the line hook, so it ** is done even when return hooks are off.) */ static void rethook (lua_State *L, CallInfo *ci, int nres) { if (L->hookmask & LUA_MASKRET) { /* is return hook on? */ StkId firstres = L->top - nres; /* index of first result */ int delta = 0; /* correction for vararg functions */ int ftransfer; if (isLua(ci)) { Proto *p = ci_func(ci)->p; if (p->is_vararg) delta = ci->u.l.nextraargs + p->numparams + 1; } ci->func += delta; /* if vararg, back to virtual 'func' */ ftransfer = cast(unsigned short, firstres - ci->func); luaD_hook(L, LUA_HOOKRET, -1, ftransfer, nres); /* call it */ ci->func -= delta; } if (isLua(ci = ci->previous)) L->oldpc = pcRel(ci->u.l.savedpc, ci_func(ci)->p); /* set 'oldpc' */ } /* ** Check whether 'func' has a '__call' metafield. If so, put it in the ** stack, below original 'func', so that 'luaD_precall' can call it. Raise ** an error if there is no '__call' metafield. */ StkId luaD_tryfuncTM (lua_State *L, StkId func) { const TValue *tm; StkId p; checkstackGCp(L, 1, func); /* space for metamethod */ tm = luaT_gettmbyobj(L, s2v(func), TM_CALL); /* (after previous GC) */ if (l_unlikely(ttisnil(tm))) luaG_callerror(L, s2v(func)); /* nothing to call */ for (p = L->top; p > func; p--) /* open space for metamethod */ setobjs2s(L, p, p-1); L->top++; /* stack space pre-allocated by the caller */ setobj2s(L, func, tm); /* metamethod is the new function to be called */ return func; } /* ** Given 'nres' results at 'firstResult', move 'wanted' of them to 'res'. ** Handle most typical cases (zero results for commands, one result for ** expressions, multiple results for tail calls/single parameters) ** separated. */ l_sinline void moveresults (lua_State *L, StkId res, int nres, int wanted) { StkId firstresult; int i; switch (wanted) { /* handle typical cases separately */ case 0: /* no values needed */ L->top = res; return; case 1: /* one value needed */ if (nres == 0) /* no results? */ setnilvalue(s2v(res)); /* adjust with nil */ else /* at least one result */ setobjs2s(L, res, L->top - nres); /* move it to proper place */ L->top = res + 1; return; case LUA_MULTRET: wanted = nres; /* we want all results */ break; default: /* two/more results and/or to-be-closed variables */ if (hastocloseCfunc(wanted)) { /* to-be-closed variables? */ ptrdiff_t savedres = savestack(L, res); L->ci->callstatus |= CIST_CLSRET; /* in case of yields */ L->ci->u2.nres = nres; luaF_close(L, res, CLOSEKTOP, 1); L->ci->callstatus &= ~CIST_CLSRET; if (L->hookmask) /* if needed, call hook after '__close's */ rethook(L, L->ci, nres); res = restorestack(L, savedres); /* close and hook can move stack */ wanted = decodeNresults(wanted); if (wanted == LUA_MULTRET) wanted = nres; /* we want all results */ } break; } /* generic case */ firstresult = L->top - nres; /* index of first result */ if (nres > wanted) /* extra results? */ nres = wanted; /* don't need them */ for (i = 0; i < nres; i++) /* move all results to correct place */ setobjs2s(L, res + i, firstresult + i); for (; i < wanted; i++) /* complete wanted number of results */ setnilvalue(s2v(res + i)); L->top = res + wanted; /* top points after the last result */ } /* ** Finishes a function call: calls hook if necessary, moves current ** number of results to proper place, and returns to previous call ** info. If function has to close variables, hook must be called after ** that. */ void luaD_poscall (lua_State *L, CallInfo *ci, int nres) { int wanted = ci->nresults; if (l_unlikely(L->hookmask && !hastocloseCfunc(wanted))) rethook(L, ci, nres); /* move results to proper place */ moveresults(L, ci->func, nres, wanted); /* function cannot be in any of these cases when returning */ lua_assert(!(ci->callstatus & (CIST_HOOKED | CIST_YPCALL | CIST_FIN | CIST_TRAN | CIST_CLSRET))); L->ci = ci->previous; /* back to caller (after closing variables) */ } #define next_ci(L) (L->ci->next ? L->ci->next : luaE_extendCI(L)) l_sinline CallInfo *prepCallInfo (lua_State *L, StkId func, int nret, int mask, StkId top) { CallInfo *ci = L->ci = next_ci(L); /* new frame */ ci->func = func; ci->nresults = nret; ci->callstatus = mask; ci->top = top; return ci; } /* ** precall for C functions */ l_sinline int precallC (lua_State *L, StkId func, int nresults, lua_CFunction f) { int n; /* number of returns */ CallInfo *ci; checkstackGCp(L, LUA_MINSTACK, func); /* ensure minimum stack size */ L->ci = ci = prepCallInfo(L, func, nresults, CIST_C, L->top + LUA_MINSTACK); lua_assert(ci->top <= L->stack_last); if (l_unlikely(L->hookmask & LUA_MASKCALL)) { int narg = cast_int(L->top - func) - 1; luaD_hook(L, LUA_HOOKCALL, -1, 1, narg); } lua_unlock(L); n = (*f)(L); /* do the actual call */ lua_lock(L); api_checknelems(L, n); luaD_poscall(L, ci, n); return n; } /* ** Prepare a function for a tail call, building its call info on top ** of the current call info. 'narg1' is the number of arguments plus 1 ** (so that it includes the function itself). Return the number of ** results, if it was a C function, or -1 for a Lua function. */ int luaD_pretailcall (lua_State *L, CallInfo *ci, StkId func, int narg1, int delta) { retry: switch (ttypetag(s2v(func))) { case LUA_VCCL: /* C closure */ return precallC(L, func, LUA_MULTRET, clCvalue(s2v(func))->f); case LUA_VLCF: /* light C function */ return precallC(L, func, LUA_MULTRET, fvalue(s2v(func))); case LUA_VLCL: { /* Lua function */ Proto *p = clLvalue(s2v(func))->p; int fsize = p->maxstacksize; /* frame size */ int nfixparams = p->numparams; int i; checkstackGCp(L, fsize - delta, func); ci->func -= delta; /* restore 'func' (if vararg) */ for (i = 0; i < narg1; i++) /* move down function and arguments */ setobjs2s(L, ci->func + i, func + i); func = ci->func; /* moved-down function */ for (; narg1 <= nfixparams; narg1++) setnilvalue(s2v(func + narg1)); /* complete missing arguments */ ci->top = func + 1 + fsize; /* top for new function */ lua_assert(ci->top <= L->stack_last); ci->u.l.savedpc = p->code; /* starting point */ ci->callstatus |= CIST_TAIL; L->top = func + narg1; /* set top */ return -1; } default: { /* not a function */ func = luaD_tryfuncTM(L, func); /* try to get '__call' metamethod */ /* return luaD_pretailcall(L, ci, func, narg1 + 1, delta); */ narg1++; goto retry; /* try again */ } } } /* ** Prepares the call to a function (C or Lua). For C functions, also do ** the call. The function to be called is at '*func'. The arguments ** are on the stack, right after the function. Returns the CallInfo ** to be executed, if it was a Lua function. Otherwise (a C function) ** returns NULL, with all the results on the stack, starting at the ** original function position. */ CallInfo *luaD_precall (lua_State *L, StkId func, int nresults) { retry: switch (ttypetag(s2v(func))) { case LUA_VCCL: /* C closure */ precallC(L, func, nresults, clCvalue(s2v(func))->f); return NULL; case LUA_VLCF: /* light C function */ precallC(L, func, nresults, fvalue(s2v(func))); return NULL; case LUA_VLCL: { /* Lua function */ CallInfo *ci; Proto *p = clLvalue(s2v(func))->p; int narg = cast_int(L->top - func) - 1; /* number of real arguments */ int nfixparams = p->numparams; int fsize = p->maxstacksize; /* frame size */ checkstackGCp(L, fsize, func); L->ci = ci = prepCallInfo(L, func, nresults, 0, func + 1 + fsize); ci->u.l.savedpc = p->code; /* starting point */ for (; narg < nfixparams; narg++) setnilvalue(s2v(L->top++)); /* complete missing arguments */ lua_assert(ci->top <= L->stack_last); return ci; } default: { /* not a function */ func = luaD_tryfuncTM(L, func); /* try to get '__call' metamethod */ /* return luaD_precall(L, func, nresults); */ goto retry; /* try again with metamethod */ } } } /* ** Call a function (C or Lua) through C. 'inc' can be 1 (increment ** number of recursive invocations in the C stack) or nyci (the same ** plus increment number of non-yieldable calls). */ l_sinline void ccall (lua_State *L, StkId func, int nResults, int inc) { CallInfo *ci; L->nCcalls += inc; if (l_unlikely(getCcalls(L) >= LUAI_MAXCCALLS)) luaE_checkcstack(L); if ((ci = luaD_precall(L, func, nResults)) != NULL) { /* Lua function? */ ci->callstatus = CIST_FRESH; /* mark that it is a "fresh" execute */ luaV_execute(L, ci); /* call it */ } L->nCcalls -= inc; } /* ** External interface for 'ccall' */ void luaD_call (lua_State *L, StkId func, int nResults) { ccall(L, func, nResults, 1); } /* ** Similar to 'luaD_call', but does not allow yields during the call. */ void luaD_callnoyield (lua_State *L, StkId func, int nResults) { ccall(L, func, nResults, nyci); } /* ** Finish the job of 'lua_pcallk' after it was interrupted by an yield. ** (The caller, 'finishCcall', does the final call to 'adjustresults'.) ** The main job is to complete the 'luaD_pcall' called by 'lua_pcallk'. ** If a '__close' method yields here, eventually control will be back ** to 'finishCcall' (when that '__close' method finally returns) and ** 'finishpcallk' will run again and close any still pending '__close' ** methods. Similarly, if a '__close' method errs, 'precover' calls ** 'unroll' which calls ''finishCcall' and we are back here again, to ** close any pending '__close' methods. ** Note that, up to the call to 'luaF_close', the corresponding ** 'CallInfo' is not modified, so that this repeated run works like the ** first one (except that it has at least one less '__close' to do). In ** particular, field CIST_RECST preserves the error status across these ** multiple runs, changing only if there is a new error. */ static int finishpcallk (lua_State *L, CallInfo *ci) { int status = getcistrecst(ci); /* get original status */ if (l_likely(status == LUA_OK)) /* no error? */ status = LUA_YIELD; /* was interrupted by an yield */ else { /* error */ StkId func = restorestack(L, ci->u2.funcidx); L->allowhook = getoah(ci->callstatus); /* restore 'allowhook' */ luaF_close(L, func, status, 1); /* can yield or raise an error */ func = restorestack(L, ci->u2.funcidx); /* stack may be moved */ luaD_seterrorobj(L, status, func); luaD_shrinkstack(L); /* restore stack size in case of overflow */ setcistrecst(ci, LUA_OK); /* clear original status */ } ci->callstatus &= ~CIST_YPCALL; L->errfunc = ci->u.c.old_errfunc; /* if it is here, there were errors or yields; unlike 'lua_pcallk', do not change status */ return status; } /* ** Completes the execution of a C function interrupted by an yield. ** The interruption must have happened while the function was either ** closing its tbc variables in 'moveresults' or executing ** 'lua_callk'/'lua_pcallk'. In the first case, it just redoes ** 'luaD_poscall'. In the second case, the call to 'finishpcallk' ** finishes the interrupted execution of 'lua_pcallk'. After that, it ** calls the continuation of the interrupted function and finally it ** completes the job of the 'luaD_call' that called the function. In ** the call to 'adjustresults', we do not know the number of results ** of the function called by 'lua_callk'/'lua_pcallk', so we are ** conservative and use LUA_MULTRET (always adjust). */ static void finishCcall (lua_State *L, CallInfo *ci) { int n; /* actual number of results from C function */ if (ci->callstatus & CIST_CLSRET) { /* was returning? */ lua_assert(hastocloseCfunc(ci->nresults)); n = ci->u2.nres; /* just redo 'luaD_poscall' */ /* don't need to reset CIST_CLSRET, as it will be set again anyway */ } else { int status = LUA_YIELD; /* default if there were no errors */ /* must have a continuation and must be able to call it */ lua_assert(ci->u.c.k != NULL && yieldable(L)); if (ci->callstatus & CIST_YPCALL) /* was inside a 'lua_pcallk'? */ status = finishpcallk(L, ci); /* finish it */ adjustresults(L, LUA_MULTRET); /* finish 'lua_callk' */ lua_unlock(L); n = (*ci->u.c.k)(L, status, ci->u.c.ctx); /* call continuation */ lua_lock(L); api_checknelems(L, n); } luaD_poscall(L, ci, n); /* finish 'luaD_call' */ } /* ** Executes "full continuation" (everything in the stack) of a ** previously interrupted coroutine until the stack is empty (or another ** interruption long-jumps out of the loop). */ static void unroll (lua_State *L, void *ud) { CallInfo *ci; UNUSED(ud); while ((ci = L->ci) != &L->base_ci) { /* something in the stack */ if (!isLua(ci)) /* C function? */ finishCcall(L, ci); /* complete its execution */ else { /* Lua function */ luaV_finishOp(L); /* finish interrupted instruction */ luaV_execute(L, ci); /* execute down to higher C 'boundary' */ } } } /* ** Try to find a suspended protected call (a "recover point") for the ** given thread. */ static CallInfo *findpcall (lua_State *L) { CallInfo *ci; for (ci = L->ci; ci != NULL; ci = ci->previous) { /* search for a pcall */ if (ci->callstatus & CIST_YPCALL) return ci; } return NULL; /* no pending pcall */ } /* ** Signal an error in the call to 'lua_resume', not in the execution ** of the coroutine itself. (Such errors should not be handled by any ** coroutine error handler and should not kill the coroutine.) */ static int resume_error (lua_State *L, const char *msg, int narg) { L->top -= narg; /* remove args from the stack */ setsvalue2s(L, L->top, luaS_new(L, msg)); /* push error message */ api_incr_top(L); lua_unlock(L); return LUA_ERRRUN; } /* ** Do the work for 'lua_resume' in protected mode. Most of the work ** depends on the status of the coroutine: initial state, suspended ** inside a hook, or regularly suspended (optionally with a continuation ** function), plus erroneous cases: non-suspended coroutine or dead ** coroutine. */ static void resume (lua_State *L, void *ud) { int n = *(cast(int*, ud)); /* number of arguments */ StkId firstArg = L->top - n; /* first argument */ CallInfo *ci = L->ci; if (L->status == LUA_OK) /* starting a coroutine? */ ccall(L, firstArg - 1, LUA_MULTRET, 0); /* just call its body */ else { /* resuming from previous yield */ lua_assert(L->status == LUA_YIELD); L->status = LUA_OK; /* mark that it is running (again) */ if (isLua(ci)) { /* yielded inside a hook? */ L->top = firstArg; /* discard arguments */ luaV_execute(L, ci); /* just continue running Lua code */ } else { /* 'common' yield */ if (ci->u.c.k != NULL) { /* does it have a continuation function? */ lua_unlock(L); n = (*ci->u.c.k)(L, LUA_YIELD, ci->u.c.ctx); /* call continuation */ lua_lock(L); api_checknelems(L, n); } luaD_poscall(L, ci, n); /* finish 'luaD_call' */ } unroll(L, NULL); /* run continuation */ } } /* ** Unrolls a coroutine in protected mode while there are recoverable ** errors, that is, errors inside a protected call. (Any error ** interrupts 'unroll', and this loop protects it again so it can ** continue.) Stops with a normal end (status == LUA_OK), an yield ** (status == LUA_YIELD), or an unprotected error ('findpcall' doesn't ** find a recover point). */ static int precover (lua_State *L, int status) { CallInfo *ci; while (errorstatus(status) && (ci = findpcall(L)) != NULL) { L->ci = ci; /* go down to recovery functions */ setcistrecst(ci, status); /* status to finish 'pcall' */ status = luaD_rawrunprotected(L, unroll, NULL); } return status; } LUA_API int lua_resume (lua_State *L, lua_State *from, int nargs, int *nresults) { int status; lua_lock(L); if (L->status == LUA_OK) { /* may be starting a coroutine */ if (L->ci != &L->base_ci) /* not in base level? */ return resume_error(L, "cannot resume non-suspended coroutine", nargs); else if (L->top - (L->ci->func + 1) == nargs) /* no function? */ return resume_error(L, "cannot resume dead coroutine", nargs); } else if (L->status != LUA_YIELD) /* ended with errors? */ return resume_error(L, "cannot resume dead coroutine", nargs); L->nCcalls = (from) ? getCcalls(from) : 0; if (getCcalls(L) >= LUAI_MAXCCALLS) return resume_error(L, "C stack overflow", nargs); L->nCcalls++; luai_userstateresume(L, nargs); api_checknelems(L, (L->status == LUA_OK) ? nargs + 1 : nargs); status = luaD_rawrunprotected(L, resume, &nargs); /* continue running after recoverable errors */ status = precover(L, status); if (l_likely(!errorstatus(status))) lua_assert(status == L->status); /* normal end or yield */ else { /* unrecoverable error */ L->status = cast_byte(status); /* mark thread as 'dead' */ luaD_seterrorobj(L, status, L->top); /* push error message */ L->ci->top = L->top; } *nresults = (status == LUA_YIELD) ? L->ci->u2.nyield : cast_int(L->top - (L->ci->func + 1)); lua_unlock(L); return status; } LUA_API int lua_isyieldable (lua_State *L) { return yieldable(L); } LUA_API int lua_yieldk (lua_State *L, int nresults, lua_KContext ctx, lua_KFunction k) { CallInfo *ci; luai_userstateyield(L, nresults); lua_lock(L); ci = L->ci; api_checknelems(L, nresults); if (l_unlikely(!yieldable(L))) { if (L != G(L)->mainthread) luaG_runerror(L, "attempt to yield across a C-call boundary"); else luaG_runerror(L, "attempt to yield from outside a coroutine"); } L->status = LUA_YIELD; ci->u2.nyield = nresults; /* save number of results */ if (isLua(ci)) { /* inside a hook? */ lua_assert(!isLuacode(ci)); api_check(L, nresults == 0, "hooks cannot yield values"); api_check(L, k == NULL, "hooks cannot continue after yielding"); } else { if ((ci->u.c.k = k) != NULL) /* is there a continuation? */ ci->u.c.ctx = ctx; /* save context */ luaD_throw(L, LUA_YIELD); } lua_assert(ci->callstatus & CIST_HOOKED); /* must be inside a hook */ lua_unlock(L); return 0; /* return to 'luaD_hook' */ } /* ** Auxiliary structure to call 'luaF_close' in protected mode. */ struct CloseP { StkId level; int status; }; /* ** Auxiliary function to call 'luaF_close' in protected mode. */ static void closepaux (lua_State *L, void *ud) { struct CloseP *pcl = cast(struct CloseP *, ud); luaF_close(L, pcl->level, pcl->status, 0); } /* ** Calls 'luaF_close' in protected mode. Return the original status ** or, in case of errors, the new status. */ int luaD_closeprotected (lua_State *L, ptrdiff_t level, int status) { CallInfo *old_ci = L->ci; lu_byte old_allowhooks = L->allowhook; for (;;) { /* keep closing upvalues until no more errors */ struct CloseP pcl; pcl.level = restorestack(L, level); pcl.status = status; status = luaD_rawrunprotected(L, &closepaux, &pcl); if (l_likely(status == LUA_OK)) /* no more errors? */ return pcl.status; else { /* an error occurred; restore saved state and repeat */ L->ci = old_ci; L->allowhook = old_allowhooks; } } } /* ** Call the C function 'func' in protected mode, restoring basic ** thread information ('allowhook', etc.) and in particular ** its stack level in case of errors. */ int luaD_pcall (lua_State *L, Pfunc func, void *u, ptrdiff_t old_top, ptrdiff_t ef) { int status; CallInfo *old_ci = L->ci; lu_byte old_allowhooks = L->allowhook; ptrdiff_t old_errfunc = L->errfunc; L->errfunc = ef; status = luaD_rawrunprotected(L, func, u); if (l_unlikely(status != LUA_OK)) { /* an error occurred? */ L->ci = old_ci; L->allowhook = old_allowhooks; status = luaD_closeprotected(L, old_top, status); luaD_seterrorobj(L, status, restorestack(L, old_top)); luaD_shrinkstack(L); /* restore stack size in case of overflow */ } L->errfunc = old_errfunc; return status; } /* ** Execute a protected parser. */ struct SParser { /* data to 'f_parser' */ ZIO *z; Mbuffer buff; /* dynamic structure used by the scanner */ Dyndata dyd; /* dynamic structures used by the parser */ const char *mode; const char *name; }; static void checkmode (lua_State *L, const char *mode, const char *x) { if (mode && strchr(mode, x[0]) == NULL) { luaO_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", x, mode); luaD_throw(L, LUA_ERRSYNTAX); } } static void f_parser (lua_State *L, void *ud) { LClosure *cl; struct SParser *p = cast(struct SParser *, ud); int c = zgetc(p->z); /* read first character */ if (c == LUA_SIGNATURE[0]) { checkmode(L, p->mode, "binary"); cl = luaU_undump(L, p->z, p->name); } else { checkmode(L, p->mode, "text"); cl = luaY_parser(L, p->z, &p->buff, &p->dyd, p->name, c); } lua_assert(cl->nupvalues == cl->p->sizeupvalues); luaF_initupvals(L, cl); } int luaD_protectedparser (lua_State *L, ZIO *z, const char *name, const char *mode) { struct SParser p; int status; incnny(L); /* cannot yield during parsing */ p.z = z; p.name = name; p.mode = mode; p.dyd.actvar.arr = NULL; p.dyd.actvar.size = 0; p.dyd.gt.arr = NULL; p.dyd.gt.size = 0; p.dyd.label.arr = NULL; p.dyd.label.size = 0; luaZ_initbuffer(L, &p.buff); status = luaD_pcall(L, f_parser, &p, savestack(L, L->top), L->errfunc); luaZ_freebuffer(L, &p.buff); luaM_freearray(L, p.dyd.actvar.arr, p.dyd.actvar.size); luaM_freearray(L, p.dyd.gt.arr, p.dyd.gt.size); luaM_freearray(L, p.dyd.label.arr, p.dyd.label.size); decnny(L); return status; } /* ** $Id: lvm.c $ ** Lua virtual machine ** See Copyright Notice in lua.h */ #define lvm_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include #include #include #include #include /*#include "lua.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lgc.h"*/ /*#include "lobject.h"*/ /*#include "lopcodes.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /*#include "lvm.h"*/ /* ** By default, use jump tables in the main interpreter loop on gcc ** and compatible compilers. */ #if !defined(LUA_USE_JUMPTABLE) #if defined(__GNUC__) #define LUA_USE_JUMPTABLE 1 #else #define LUA_USE_JUMPTABLE 0 #endif #endif /* limit for table tag-method chains (to avoid infinite loops) */ #define MAXTAGLOOP 2000 /* ** 'l_intfitsf' checks whether a given integer is in the range that ** can be converted to a float without rounding. Used in comparisons. */ /* number of bits in the mantissa of a float */ #define NBM (l_floatatt(MANT_DIG)) /* ** Check whether some integers may not fit in a float, testing whether ** (maxinteger >> NBM) > 0. (That implies (1 << NBM) <= maxinteger.) ** (The shifts are done in parts, to avoid shifting by more than the size ** of an integer. In a worst case, NBM == 113 for long double and ** sizeof(long) == 32.) */ #if ((((LUA_MAXINTEGER >> (NBM / 4)) >> (NBM / 4)) >> (NBM / 4)) \ >> (NBM - (3 * (NBM / 4)))) > 0 /* limit for integers that fit in a float */ #define MAXINTFITSF ((lua_Unsigned)1 << NBM) /* check whether 'i' is in the interval [-MAXINTFITSF, MAXINTFITSF] */ #define l_intfitsf(i) ((MAXINTFITSF + l_castS2U(i)) <= (2 * MAXINTFITSF)) #else /* all integers fit in a float precisely */ #define l_intfitsf(i) 1 #endif /* ** Try to convert a value from string to a number value. ** If the value is not a string or is a string not representing ** a valid numeral (or if coercions from strings to numbers ** are disabled via macro 'cvt2num'), do not modify 'result' ** and return 0. */ static int l_strton (const TValue *obj, TValue *result) { lua_assert(obj != result); if (!cvt2num(obj)) /* is object not a string? */ return 0; else return (luaO_str2num(svalue(obj), result) == vslen(obj) + 1); } /* ** Try to convert a value to a float. The float case is already handled ** by the macro 'tonumber'. */ int luaV_tonumber_ (const TValue *obj, lua_Number *n) { TValue v; if (ttisinteger(obj)) { *n = cast_num(ivalue(obj)); return 1; } else if (l_strton(obj, &v)) { /* string coercible to number? */ *n = nvalue(&v); /* convert result of 'luaO_str2num' to a float */ return 1; } else return 0; /* conversion failed */ } /* ** try to convert a float to an integer, rounding according to 'mode'. */ int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode) { lua_Number f = l_floor(n); if (n != f) { /* not an integral value? */ if (mode == F2Ieq) return 0; /* fails if mode demands integral value */ else if (mode == F2Iceil) /* needs ceil? */ f += 1; /* convert floor to ceil (remember: n != f) */ } return lua_numbertointeger(f, p); } /* ** try to convert a value to an integer, rounding according to 'mode', ** without string coercion. ** ("Fast track" handled by macro 'tointegerns'.) */ int luaV_tointegerns (const TValue *obj, lua_Integer *p, F2Imod mode) { if (ttisfloat(obj)) return luaV_flttointeger(fltvalue(obj), p, mode); else if (ttisinteger(obj)) { *p = ivalue(obj); return 1; } else return 0; } /* ** try to convert a value to an integer. */ int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode) { TValue v; if (l_strton(obj, &v)) /* does 'obj' point to a numerical string? */ obj = &v; /* change it to point to its corresponding number */ return luaV_tointegerns(obj, p, mode); } /* ** Try to convert a 'for' limit to an integer, preserving the semantics ** of the loop. Return true if the loop must not run; otherwise, '*p' ** gets the integer limit. ** (The following explanation assumes a positive step; it is valid for ** negative steps mutatis mutandis.) ** If the limit is an integer or can be converted to an integer, ** rounding down, that is the limit. ** Otherwise, check whether the limit can be converted to a float. If ** the float is too large, clip it to LUA_MAXINTEGER. If the float ** is too negative, the loop should not run, because any initial ** integer value is greater than such limit; so, the function returns ** true to signal that. (For this latter case, no integer limit would be ** correct; even a limit of LUA_MININTEGER would run the loop once for ** an initial value equal to LUA_MININTEGER.) */ static int forlimit (lua_State *L, lua_Integer init, const TValue *lim, lua_Integer *p, lua_Integer step) { if (!luaV_tointeger(lim, p, (step < 0 ? F2Iceil : F2Ifloor))) { /* not coercible to in integer */ lua_Number flim; /* try to convert to float */ if (!tonumber(lim, &flim)) /* cannot convert to float? */ luaG_forerror(L, lim, "limit"); /* else 'flim' is a float out of integer bounds */ if (luai_numlt(0, flim)) { /* if it is positive, it is too large */ if (step < 0) return 1; /* initial value must be less than it */ *p = LUA_MAXINTEGER; /* truncate */ } else { /* it is less than min integer */ if (step > 0) return 1; /* initial value must be greater than it */ *p = LUA_MININTEGER; /* truncate */ } } return (step > 0 ? init > *p : init < *p); /* not to run? */ } /* ** Prepare a numerical for loop (opcode OP_FORPREP). ** Return true to skip the loop. Otherwise, ** after preparation, stack will be as follows: ** ra : internal index (safe copy of the control variable) ** ra + 1 : loop counter (integer loops) or limit (float loops) ** ra + 2 : step ** ra + 3 : control variable */ static int forprep (lua_State *L, StkId ra) { TValue *pinit = s2v(ra); TValue *plimit = s2v(ra + 1); TValue *pstep = s2v(ra + 2); if (ttisinteger(pinit) && ttisinteger(pstep)) { /* integer loop? */ lua_Integer init = ivalue(pinit); lua_Integer step = ivalue(pstep); lua_Integer limit; if (step == 0) luaG_runerror(L, "'for' step is zero"); setivalue(s2v(ra + 3), init); /* control variable */ if (forlimit(L, init, plimit, &limit, step)) return 1; /* skip the loop */ else { /* prepare loop counter */ lua_Unsigned count; if (step > 0) { /* ascending loop? */ count = l_castS2U(limit) - l_castS2U(init); if (step != 1) /* avoid division in the too common case */ count /= l_castS2U(step); } else { /* step < 0; descending loop */ count = l_castS2U(init) - l_castS2U(limit); /* 'step+1' avoids negating 'mininteger' */ count /= l_castS2U(-(step + 1)) + 1u; } /* store the counter in place of the limit (which won't be needed anymore) */ setivalue(plimit, l_castU2S(count)); } } else { /* try making all values floats */ lua_Number init; lua_Number limit; lua_Number step; if (l_unlikely(!tonumber(plimit, &limit))) luaG_forerror(L, plimit, "limit"); if (l_unlikely(!tonumber(pstep, &step))) luaG_forerror(L, pstep, "step"); if (l_unlikely(!tonumber(pinit, &init))) luaG_forerror(L, pinit, "initial value"); if (step == 0) luaG_runerror(L, "'for' step is zero"); if (luai_numlt(0, step) ? luai_numlt(limit, init) : luai_numlt(init, limit)) return 1; /* skip the loop */ else { /* make sure internal values are all floats */ setfltvalue(plimit, limit); setfltvalue(pstep, step); setfltvalue(s2v(ra), init); /* internal index */ setfltvalue(s2v(ra + 3), init); /* control variable */ } } return 0; } /* ** Execute a step of a float numerical for loop, returning ** true iff the loop must continue. (The integer case is ** written online with opcode OP_FORLOOP, for performance.) */ static int floatforloop (StkId ra) { lua_Number step = fltvalue(s2v(ra + 2)); lua_Number limit = fltvalue(s2v(ra + 1)); lua_Number idx = fltvalue(s2v(ra)); /* internal index */ idx = luai_numadd(L, idx, step); /* increment index */ if (luai_numlt(0, step) ? luai_numle(idx, limit) : luai_numle(limit, idx)) { chgfltvalue(s2v(ra), idx); /* update internal index */ setfltvalue(s2v(ra + 3), idx); /* and control variable */ return 1; /* jump back */ } else return 0; /* finish the loop */ } /* ** Finish the table access 'val = t[key]'. ** if 'slot' is NULL, 't' is not a table; otherwise, 'slot' points to ** t[k] entry (which must be empty). */ void luaV_finishget (lua_State *L, const TValue *t, TValue *key, StkId val, const TValue *slot) { int loop; /* counter to avoid infinite loops */ const TValue *tm; /* metamethod */ for (loop = 0; loop < MAXTAGLOOP; loop++) { if (slot == NULL) { /* 't' is not a table? */ lua_assert(!ttistable(t)); tm = luaT_gettmbyobj(L, t, TM_INDEX); if (l_unlikely(notm(tm))) luaG_typeerror(L, t, "index"); /* no metamethod */ /* else will try the metamethod */ } else { /* 't' is a table */ lua_assert(isempty(slot)); tm = fasttm(L, hvalue(t)->metatable, TM_INDEX); /* table's metamethod */ if (tm == NULL) { /* no metamethod? */ setnilvalue(s2v(val)); /* result is nil */ return; } /* else will try the metamethod */ } if (ttisfunction(tm)) { /* is metamethod a function? */ luaT_callTMres(L, tm, t, key, val); /* call it */ return; } t = tm; /* else try to access 'tm[key]' */ if (luaV_fastget(L, t, key, slot, luaH_get)) { /* fast track? */ setobj2s(L, val, slot); /* done */ return; } /* else repeat (tail call 'luaV_finishget') */ } luaG_runerror(L, "'__index' chain too long; possible loop"); } /* ** Finish a table assignment 't[key] = val'. ** If 'slot' is NULL, 't' is not a table. Otherwise, 'slot' points ** to the entry 't[key]', or to a value with an absent key if there ** is no such entry. (The value at 'slot' must be empty, otherwise ** 'luaV_fastget' would have done the job.) */ void luaV_finishset (lua_State *L, const TValue *t, TValue *key, TValue *val, const TValue *slot) { int loop; /* counter to avoid infinite loops */ for (loop = 0; loop < MAXTAGLOOP; loop++) { const TValue *tm; /* '__newindex' metamethod */ if (slot != NULL) { /* is 't' a table? */ Table *h = hvalue(t); /* save 't' table */ lua_assert(isempty(slot)); /* slot must be empty */ tm = fasttm(L, h->metatable, TM_NEWINDEX); /* get metamethod */ if (tm == NULL) { /* no metamethod? */ luaH_finishset(L, h, key, slot, val); /* set new value */ invalidateTMcache(h); luaC_barrierback(L, obj2gco(h), val); return; } /* else will try the metamethod */ } else { /* not a table; check metamethod */ tm = luaT_gettmbyobj(L, t, TM_NEWINDEX); if (l_unlikely(notm(tm))) luaG_typeerror(L, t, "index"); } /* try the metamethod */ if (ttisfunction(tm)) { luaT_callTM(L, tm, t, key, val); return; } t = tm; /* else repeat assignment over 'tm' */ if (luaV_fastget(L, t, key, slot, luaH_get)) { luaV_finishfastset(L, t, slot, val); return; /* done */ } /* else 'return luaV_finishset(L, t, key, val, slot)' (loop) */ } luaG_runerror(L, "'__newindex' chain too long; possible loop"); } /* ** Compare two strings 'ls' x 'rs', returning an integer less-equal- ** -greater than zero if 'ls' is less-equal-greater than 'rs'. ** The code is a little tricky because it allows '\0' in the strings ** and it uses 'strcoll' (to respect locales) for each segments ** of the strings. */ static int l_strcmp (const TString *ls, const TString *rs) { const char *l = getstr(ls); size_t ll = tsslen(ls); const char *r = getstr(rs); size_t lr = tsslen(rs); for (;;) { /* for each segment */ int temp = strcoll(l, r); if (temp != 0) /* not equal? */ return temp; /* done */ else { /* strings are equal up to a '\0' */ size_t len = strlen(l); /* index of first '\0' in both strings */ if (len == lr) /* 'rs' is finished? */ return (len == ll) ? 0 : 1; /* check 'ls' */ else if (len == ll) /* 'ls' is finished? */ return -1; /* 'ls' is less than 'rs' ('rs' is not finished) */ /* both strings longer than 'len'; go on comparing after the '\0' */ len++; l += len; ll -= len; r += len; lr -= len; } } } /* ** Check whether integer 'i' is less than float 'f'. If 'i' has an ** exact representation as a float ('l_intfitsf'), compare numbers as ** floats. Otherwise, use the equivalence 'i < f <=> i < ceil(f)'. ** If 'ceil(f)' is out of integer range, either 'f' is greater than ** all integers or less than all integers. ** (The test with 'l_intfitsf' is only for performance; the else ** case is correct for all values, but it is slow due to the conversion ** from float to int.) ** When 'f' is NaN, comparisons must result in false. */ l_sinline int LTintfloat (lua_Integer i, lua_Number f) { if (l_intfitsf(i)) return luai_numlt(cast_num(i), f); /* compare them as floats */ else { /* i < f <=> i < ceil(f) */ lua_Integer fi; if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */ return i < fi; /* compare them as integers */ else /* 'f' is either greater or less than all integers */ return f > 0; /* greater? */ } } /* ** Check whether integer 'i' is less than or equal to float 'f'. ** See comments on previous function. */ l_sinline int LEintfloat (lua_Integer i, lua_Number f) { if (l_intfitsf(i)) return luai_numle(cast_num(i), f); /* compare them as floats */ else { /* i <= f <=> i <= floor(f) */ lua_Integer fi; if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */ return i <= fi; /* compare them as integers */ else /* 'f' is either greater or less than all integers */ return f > 0; /* greater? */ } } /* ** Check whether float 'f' is less than integer 'i'. ** See comments on previous function. */ l_sinline int LTfloatint (lua_Number f, lua_Integer i) { if (l_intfitsf(i)) return luai_numlt(f, cast_num(i)); /* compare them as floats */ else { /* f < i <=> floor(f) < i */ lua_Integer fi; if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */ return fi < i; /* compare them as integers */ else /* 'f' is either greater or less than all integers */ return f < 0; /* less? */ } } /* ** Check whether float 'f' is less than or equal to integer 'i'. ** See comments on previous function. */ l_sinline int LEfloatint (lua_Number f, lua_Integer i) { if (l_intfitsf(i)) return luai_numle(f, cast_num(i)); /* compare them as floats */ else { /* f <= i <=> ceil(f) <= i */ lua_Integer fi; if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */ return fi <= i; /* compare them as integers */ else /* 'f' is either greater or less than all integers */ return f < 0; /* less? */ } } /* ** Return 'l < r', for numbers. */ l_sinline int LTnum (const TValue *l, const TValue *r) { lua_assert(ttisnumber(l) && ttisnumber(r)); if (ttisinteger(l)) { lua_Integer li = ivalue(l); if (ttisinteger(r)) return li < ivalue(r); /* both are integers */ else /* 'l' is int and 'r' is float */ return LTintfloat(li, fltvalue(r)); /* l < r ? */ } else { lua_Number lf = fltvalue(l); /* 'l' must be float */ if (ttisfloat(r)) return luai_numlt(lf, fltvalue(r)); /* both are float */ else /* 'l' is float and 'r' is int */ return LTfloatint(lf, ivalue(r)); } } /* ** Return 'l <= r', for numbers. */ l_sinline int LEnum (const TValue *l, const TValue *r) { lua_assert(ttisnumber(l) && ttisnumber(r)); if (ttisinteger(l)) { lua_Integer li = ivalue(l); if (ttisinteger(r)) return li <= ivalue(r); /* both are integers */ else /* 'l' is int and 'r' is float */ return LEintfloat(li, fltvalue(r)); /* l <= r ? */ } else { lua_Number lf = fltvalue(l); /* 'l' must be float */ if (ttisfloat(r)) return luai_numle(lf, fltvalue(r)); /* both are float */ else /* 'l' is float and 'r' is int */ return LEfloatint(lf, ivalue(r)); } } /* ** return 'l < r' for non-numbers. */ static int lessthanothers (lua_State *L, const TValue *l, const TValue *r) { lua_assert(!ttisnumber(l) || !ttisnumber(r)); if (ttisstring(l) && ttisstring(r)) /* both are strings? */ return l_strcmp(tsvalue(l), tsvalue(r)) < 0; else return luaT_callorderTM(L, l, r, TM_LT); } /* ** Main operation less than; return 'l < r'. */ int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r) { if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */ return LTnum(l, r); else return lessthanothers(L, l, r); } /* ** return 'l <= r' for non-numbers. */ static int lessequalothers (lua_State *L, const TValue *l, const TValue *r) { lua_assert(!ttisnumber(l) || !ttisnumber(r)); if (ttisstring(l) && ttisstring(r)) /* both are strings? */ return l_strcmp(tsvalue(l), tsvalue(r)) <= 0; else return luaT_callorderTM(L, l, r, TM_LE); } /* ** Main operation less than or equal to; return 'l <= r'. */ int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r) { if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */ return LEnum(l, r); else return lessequalothers(L, l, r); } /* ** Main operation for equality of Lua values; return 't1 == t2'. ** L == NULL means raw equality (no metamethods) */ int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2) { const TValue *tm; if (ttypetag(t1) != ttypetag(t2)) { /* not the same variant? */ if (ttype(t1) != ttype(t2) || ttype(t1) != LUA_TNUMBER) return 0; /* only numbers can be equal with different variants */ else { /* two numbers with different variants */ /* One of them is an integer. If the other does not have an integer value, they cannot be equal; otherwise, compare their integer values. */ lua_Integer i1, i2; return (luaV_tointegerns(t1, &i1, F2Ieq) && luaV_tointegerns(t2, &i2, F2Ieq) && i1 == i2); } } /* values have same type and same variant */ switch (ttypetag(t1)) { case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1; case LUA_VNUMINT: return (ivalue(t1) == ivalue(t2)); case LUA_VNUMFLT: return luai_numeq(fltvalue(t1), fltvalue(t2)); case LUA_VLIGHTUSERDATA: return pvalue(t1) == pvalue(t2); case LUA_VLCF: return fvalue(t1) == fvalue(t2); case LUA_VSHRSTR: return eqshrstr(tsvalue(t1), tsvalue(t2)); case LUA_VLNGSTR: return luaS_eqlngstr(tsvalue(t1), tsvalue(t2)); case LUA_VUSERDATA: { if (uvalue(t1) == uvalue(t2)) return 1; else if (L == NULL) return 0; tm = fasttm(L, uvalue(t1)->metatable, TM_EQ); if (tm == NULL) tm = fasttm(L, uvalue(t2)->metatable, TM_EQ); break; /* will try TM */ } case LUA_VTABLE: { if (hvalue(t1) == hvalue(t2)) return 1; else if (L == NULL) return 0; tm = fasttm(L, hvalue(t1)->metatable, TM_EQ); if (tm == NULL) tm = fasttm(L, hvalue(t2)->metatable, TM_EQ); break; /* will try TM */ } default: return gcvalue(t1) == gcvalue(t2); } if (tm == NULL) /* no TM? */ return 0; /* objects are different */ else { luaT_callTMres(L, tm, t1, t2, L->top); /* call TM */ return !l_isfalse(s2v(L->top)); } } /* macro used by 'luaV_concat' to ensure that element at 'o' is a string */ #define tostring(L,o) \ (ttisstring(o) || (cvt2str(o) && (luaO_tostring(L, o), 1))) #define isemptystr(o) (ttisshrstring(o) && tsvalue(o)->shrlen == 0) /* copy strings in stack from top - n up to top - 1 to buffer */ static void copy2buff (StkId top, int n, char *buff) { size_t tl = 0; /* size already copied */ do { size_t l = vslen(s2v(top - n)); /* length of string being copied */ memcpy(buff + tl, svalue(s2v(top - n)), l * sizeof(char)); tl += l; } while (--n > 0); } /* ** Main operation for concatenation: concat 'total' values in the stack, ** from 'L->top - total' up to 'L->top - 1'. */ void luaV_concat (lua_State *L, int total) { if (total == 1) return; /* "all" values already concatenated */ do { StkId top = L->top; int n = 2; /* number of elements handled in this pass (at least 2) */ if (!(ttisstring(s2v(top - 2)) || cvt2str(s2v(top - 2))) || !tostring(L, s2v(top - 1))) luaT_tryconcatTM(L); else if (isemptystr(s2v(top - 1))) /* second operand is empty? */ cast_void(tostring(L, s2v(top - 2))); /* result is first operand */ else if (isemptystr(s2v(top - 2))) { /* first operand is empty string? */ setobjs2s(L, top - 2, top - 1); /* result is second op. */ } else { /* at least two non-empty string values; get as many as possible */ size_t tl = vslen(s2v(top - 1)); TString *ts; /* collect total length and number of strings */ for (n = 1; n < total && tostring(L, s2v(top - n - 1)); n++) { size_t l = vslen(s2v(top - n - 1)); if (l_unlikely(l >= (MAX_SIZE/sizeof(char)) - tl)) luaG_runerror(L, "string length overflow"); tl += l; } if (tl <= LUAI_MAXSHORTLEN) { /* is result a short string? */ char buff[LUAI_MAXSHORTLEN]; copy2buff(top, n, buff); /* copy strings to buffer */ ts = luaS_newlstr(L, buff, tl); } else { /* long string; copy strings directly to final result */ ts = luaS_createlngstrobj(L, tl); copy2buff(top, n, getstr(ts)); } setsvalue2s(L, top - n, ts); /* create result */ } total -= n-1; /* got 'n' strings to create 1 new */ L->top -= n-1; /* popped 'n' strings and pushed one */ } while (total > 1); /* repeat until only 1 result left */ } /* ** Main operation 'ra = #rb'. */ void luaV_objlen (lua_State *L, StkId ra, const TValue *rb) { const TValue *tm; switch (ttypetag(rb)) { case LUA_VTABLE: { Table *h = hvalue(rb); tm = fasttm(L, h->metatable, TM_LEN); if (tm) break; /* metamethod? break switch to call it */ setivalue(s2v(ra), luaH_getn(h)); /* else primitive len */ return; } case LUA_VSHRSTR: { setivalue(s2v(ra), tsvalue(rb)->shrlen); return; } case LUA_VLNGSTR: { setivalue(s2v(ra), tsvalue(rb)->u.lnglen); return; } default: { /* try metamethod */ tm = luaT_gettmbyobj(L, rb, TM_LEN); if (l_unlikely(notm(tm))) /* no metamethod? */ luaG_typeerror(L, rb, "get length of"); break; } } luaT_callTMres(L, tm, rb, rb, ra); } /* ** Integer division; return 'm // n', that is, floor(m/n). ** C division truncates its result (rounds towards zero). ** 'floor(q) == trunc(q)' when 'q >= 0' or when 'q' is integer, ** otherwise 'floor(q) == trunc(q) - 1'. */ lua_Integer luaV_idiv (lua_State *L, lua_Integer m, lua_Integer n) { if (l_unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */ if (n == 0) luaG_runerror(L, "attempt to divide by zero"); return intop(-, 0, m); /* n==-1; avoid overflow with 0x80000...//-1 */ } else { lua_Integer q = m / n; /* perform C division */ if ((m ^ n) < 0 && m % n != 0) /* 'm/n' would be negative non-integer? */ q -= 1; /* correct result for different rounding */ return q; } } /* ** Integer modulus; return 'm % n'. (Assume that C '%' with ** negative operands follows C99 behavior. See previous comment ** about luaV_idiv.) */ lua_Integer luaV_mod (lua_State *L, lua_Integer m, lua_Integer n) { if (l_unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */ if (n == 0) luaG_runerror(L, "attempt to perform 'n%%0'"); return 0; /* m % -1 == 0; avoid overflow with 0x80000...%-1 */ } else { lua_Integer r = m % n; if (r != 0 && (r ^ n) < 0) /* 'm/n' would be non-integer negative? */ r += n; /* correct result for different rounding */ return r; } } /* ** Float modulus */ lua_Number luaV_modf (lua_State *L, lua_Number m, lua_Number n) { lua_Number r; luai_nummod(L, m, n, r); return r; } /* number of bits in an integer */ #define NBITS cast_int(sizeof(lua_Integer) * CHAR_BIT) /* ** Shift left operation. (Shift right just negates 'y'.) */ #define luaV_shiftr(x,y) luaV_shiftl(x,intop(-, 0, y)) lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y) { if (y < 0) { /* shift right? */ if (y <= -NBITS) return 0; else return intop(>>, x, -y); } else { /* shift left */ if (y >= NBITS) return 0; else return intop(<<, x, y); } } /* ** create a new Lua closure, push it in the stack, and initialize ** its upvalues. */ static void pushclosure (lua_State *L, Proto *p, UpVal **encup, StkId base, StkId ra) { int nup = p->sizeupvalues; Upvaldesc *uv = p->upvalues; int i; LClosure *ncl = luaF_newLclosure(L, nup); ncl->p = p; setclLvalue2s(L, ra, ncl); /* anchor new closure in stack */ for (i = 0; i < nup; i++) { /* fill in its upvalues */ if (uv[i].instack) /* upvalue refers to local variable? */ ncl->upvals[i] = luaF_findupval(L, base + uv[i].idx); else /* get upvalue from enclosing function */ ncl->upvals[i] = encup[uv[i].idx]; luaC_objbarrier(L, ncl, ncl->upvals[i]); } } /* ** finish execution of an opcode interrupted by a yield */ void luaV_finishOp (lua_State *L) { CallInfo *ci = L->ci; StkId base = ci->func + 1; Instruction inst = *(ci->u.l.savedpc - 1); /* interrupted instruction */ OpCode op = GET_OPCODE(inst); switch (op) { /* finish its execution */ case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: { setobjs2s(L, base + GETARG_A(*(ci->u.l.savedpc - 2)), --L->top); break; } case OP_UNM: case OP_BNOT: case OP_LEN: case OP_GETTABUP: case OP_GETTABLE: case OP_GETI: case OP_GETFIELD: case OP_SELF: { setobjs2s(L, base + GETARG_A(inst), --L->top); break; } case OP_LT: case OP_LE: case OP_LTI: case OP_LEI: case OP_GTI: case OP_GEI: case OP_EQ: { /* note that 'OP_EQI'/'OP_EQK' cannot yield */ int res = !l_isfalse(s2v(L->top - 1)); L->top--; #if defined(LUA_COMPAT_LT_LE) if (ci->callstatus & CIST_LEQ) { /* "<=" using "<" instead? */ ci->callstatus ^= CIST_LEQ; /* clear mark */ res = !res; /* negate result */ } #endif lua_assert(GET_OPCODE(*ci->u.l.savedpc) == OP_JMP); if (res != GETARG_k(inst)) /* condition failed? */ ci->u.l.savedpc++; /* skip jump instruction */ break; } case OP_CONCAT: { StkId top = L->top - 1; /* top when 'luaT_tryconcatTM' was called */ int a = GETARG_A(inst); /* first element to concatenate */ int total = cast_int(top - 1 - (base + a)); /* yet to concatenate */ setobjs2s(L, top - 2, top); /* put TM result in proper position */ L->top = top - 1; /* top is one after last element (at top-2) */ luaV_concat(L, total); /* concat them (may yield again) */ break; } case OP_CLOSE: { /* yielded closing variables */ ci->u.l.savedpc--; /* repeat instruction to close other vars. */ break; } case OP_RETURN: { /* yielded closing variables */ StkId ra = base + GETARG_A(inst); /* adjust top to signal correct number of returns, in case the return is "up to top" ('isIT') */ L->top = ra + ci->u2.nres; /* repeat instruction to close other vars. and complete the return */ ci->u.l.savedpc--; break; } default: { /* only these other opcodes can yield */ lua_assert(op == OP_TFORCALL || op == OP_CALL || op == OP_TAILCALL || op == OP_SETTABUP || op == OP_SETTABLE || op == OP_SETI || op == OP_SETFIELD); break; } } } /* ** {================================================================== ** Macros for arithmetic/bitwise/comparison opcodes in 'luaV_execute' ** =================================================================== */ #define l_addi(L,a,b) intop(+, a, b) #define l_subi(L,a,b) intop(-, a, b) #define l_muli(L,a,b) intop(*, a, b) #define l_band(a,b) intop(&, a, b) #define l_bor(a,b) intop(|, a, b) #define l_bxor(a,b) intop(^, a, b) #define l_lti(a,b) (a < b) #define l_lei(a,b) (a <= b) #define l_gti(a,b) (a > b) #define l_gei(a,b) (a >= b) /* ** Arithmetic operations with immediate operands. 'iop' is the integer ** operation, 'fop' is the float operation. */ #define op_arithI(L,iop,fop) { \ TValue *v1 = vRB(i); \ int imm = GETARG_sC(i); \ if (ttisinteger(v1)) { \ lua_Integer iv1 = ivalue(v1); \ pc++; setivalue(s2v(ra), iop(L, iv1, imm)); \ } \ else if (ttisfloat(v1)) { \ lua_Number nb = fltvalue(v1); \ lua_Number fimm = cast_num(imm); \ pc++; setfltvalue(s2v(ra), fop(L, nb, fimm)); \ }} /* ** Auxiliary function for arithmetic operations over floats and others ** with two register operands. */ #define op_arithf_aux(L,v1,v2,fop) { \ lua_Number n1; lua_Number n2; \ if (tonumberns(v1, n1) && tonumberns(v2, n2)) { \ pc++; setfltvalue(s2v(ra), fop(L, n1, n2)); \ }} /* ** Arithmetic operations over floats and others with register operands. */ #define op_arithf(L,fop) { \ TValue *v1 = vRB(i); \ TValue *v2 = vRC(i); \ op_arithf_aux(L, v1, v2, fop); } /* ** Arithmetic operations with K operands for floats. */ #define op_arithfK(L,fop) { \ TValue *v1 = vRB(i); \ TValue *v2 = KC(i); lua_assert(ttisnumber(v2)); \ op_arithf_aux(L, v1, v2, fop); } /* ** Arithmetic operations over integers and floats. */ #define op_arith_aux(L,v1,v2,iop,fop) { \ if (ttisinteger(v1) && ttisinteger(v2)) { \ lua_Integer i1 = ivalue(v1); lua_Integer i2 = ivalue(v2); \ pc++; setivalue(s2v(ra), iop(L, i1, i2)); \ } \ else op_arithf_aux(L, v1, v2, fop); } /* ** Arithmetic operations with register operands. */ #define op_arith(L,iop,fop) { \ TValue *v1 = vRB(i); \ TValue *v2 = vRC(i); \ op_arith_aux(L, v1, v2, iop, fop); } /* ** Arithmetic operations with K operands. */ #define op_arithK(L,iop,fop) { \ TValue *v1 = vRB(i); \ TValue *v2 = KC(i); lua_assert(ttisnumber(v2)); \ op_arith_aux(L, v1, v2, iop, fop); } /* ** Bitwise operations with constant operand. */ #define op_bitwiseK(L,op) { \ TValue *v1 = vRB(i); \ TValue *v2 = KC(i); \ lua_Integer i1; \ lua_Integer i2 = ivalue(v2); \ if (tointegerns(v1, &i1)) { \ pc++; setivalue(s2v(ra), op(i1, i2)); \ }} /* ** Bitwise operations with register operands. */ #define op_bitwise(L,op) { \ TValue *v1 = vRB(i); \ TValue *v2 = vRC(i); \ lua_Integer i1; lua_Integer i2; \ if (tointegerns(v1, &i1) && tointegerns(v2, &i2)) { \ pc++; setivalue(s2v(ra), op(i1, i2)); \ }} /* ** Order operations with register operands. 'opn' actually works ** for all numbers, but the fast track improves performance for ** integers. */ #define op_order(L,opi,opn,other) { \ int cond; \ TValue *rb = vRB(i); \ if (ttisinteger(s2v(ra)) && ttisinteger(rb)) { \ lua_Integer ia = ivalue(s2v(ra)); \ lua_Integer ib = ivalue(rb); \ cond = opi(ia, ib); \ } \ else if (ttisnumber(s2v(ra)) && ttisnumber(rb)) \ cond = opn(s2v(ra), rb); \ else \ Protect(cond = other(L, s2v(ra), rb)); \ docondjump(); } /* ** Order operations with immediate operand. (Immediate operand is ** always small enough to have an exact representation as a float.) */ #define op_orderI(L,opi,opf,inv,tm) { \ int cond; \ int im = GETARG_sB(i); \ if (ttisinteger(s2v(ra))) \ cond = opi(ivalue(s2v(ra)), im); \ else if (ttisfloat(s2v(ra))) { \ lua_Number fa = fltvalue(s2v(ra)); \ lua_Number fim = cast_num(im); \ cond = opf(fa, fim); \ } \ else { \ int isf = GETARG_C(i); \ Protect(cond = luaT_callorderiTM(L, s2v(ra), im, inv, isf, tm)); \ } \ docondjump(); } /* }================================================================== */ /* ** {================================================================== ** Function 'luaV_execute': main interpreter loop ** =================================================================== */ /* ** some macros for common tasks in 'luaV_execute' */ #define RA(i) (base+GETARG_A(i)) #define RB(i) (base+GETARG_B(i)) #define vRB(i) s2v(RB(i)) #define KB(i) (k+GETARG_B(i)) #define RC(i) (base+GETARG_C(i)) #define vRC(i) s2v(RC(i)) #define KC(i) (k+GETARG_C(i)) #define RKC(i) ((TESTARG_k(i)) ? k + GETARG_C(i) : s2v(base + GETARG_C(i))) #define updatetrap(ci) (trap = ci->u.l.trap) #define updatebase(ci) (base = ci->func + 1) #define updatestack(ci) \ { if (l_unlikely(trap)) { updatebase(ci); ra = RA(i); } } /* ** Execute a jump instruction. The 'updatetrap' allows signals to stop ** tight loops. (Without it, the local copy of 'trap' could never change.) */ #define dojump(ci,i,e) { pc += GETARG_sJ(i) + e; updatetrap(ci); } /* for test instructions, execute the jump instruction that follows it */ #define donextjump(ci) { Instruction ni = *pc; dojump(ci, ni, 1); } /* ** do a conditional jump: skip next instruction if 'cond' is not what ** was expected (parameter 'k'), else do next instruction, which must ** be a jump. */ #define docondjump() if (cond != GETARG_k(i)) pc++; else donextjump(ci); /* ** Correct global 'pc'. */ #define savepc(L) (ci->u.l.savedpc = pc) /* ** Whenever code can raise errors, the global 'pc' and the global ** 'top' must be correct to report occasional errors. */ #define savestate(L,ci) (savepc(L), L->top = ci->top) /* ** Protect code that, in general, can raise errors, reallocate the ** stack, and change the hooks. */ #define Protect(exp) (savestate(L,ci), (exp), updatetrap(ci)) /* special version that does not change the top */ #define ProtectNT(exp) (savepc(L), (exp), updatetrap(ci)) /* ** Protect code that can only raise errors. (That is, it cannot change ** the stack or hooks.) */ #define halfProtect(exp) (savestate(L,ci), (exp)) /* 'c' is the limit of live values in the stack */ #define checkGC(L,c) \ { luaC_condGC(L, (savepc(L), L->top = (c)), \ updatetrap(ci)); \ luai_threadyield(L); } /* fetch an instruction and prepare its execution */ #define vmfetch() { \ if (l_unlikely(trap)) { /* stack reallocation or hooks? */ \ trap = luaG_traceexec(L, pc); /* handle hooks */ \ updatebase(ci); /* correct stack */ \ } \ i = *(pc++); \ ra = RA(i); /* WARNING: any stack reallocation invalidates 'ra' */ \ } #define vmdispatch(o) switch(o) #define vmcase(l) case l: #define vmbreak break void luaV_execute (lua_State *L, CallInfo *ci) { LClosure *cl; TValue *k; StkId base; const Instruction *pc; int trap; #if LUA_USE_JUMPTABLE /*#include "ljumptab.h"*/ /* ** $Id: ljumptab.h $ ** Jump Table for the Lua interpreter ** See Copyright Notice in lua.h */ #undef vmdispatch #undef vmcase #undef vmbreak #define vmdispatch(x) goto *disptab[x]; #define vmcase(l) L_##l: #define vmbreak vmfetch(); vmdispatch(GET_OPCODE(i)); static const void *const disptab[NUM_OPCODES] = { #if 0 ** you can update the following list with this command: ** ** sed -n '/^OP_/\!d; s/OP_/\&\&L_OP_/ ; s/,.*/,/ ; s/\/.*// ; p' lopcodes.h ** #endif &&L_OP_MOVE, &&L_OP_LOADI, &&L_OP_LOADF, &&L_OP_LOADK, &&L_OP_LOADKX, &&L_OP_LOADFALSE, &&L_OP_LFALSESKIP, &&L_OP_LOADTRUE, &&L_OP_LOADNIL, &&L_OP_GETUPVAL, &&L_OP_SETUPVAL, &&L_OP_GETTABUP, &&L_OP_GETTABLE, &&L_OP_GETI, &&L_OP_GETFIELD, &&L_OP_SETTABUP, &&L_OP_SETTABLE, &&L_OP_SETI, &&L_OP_SETFIELD, &&L_OP_NEWTABLE, &&L_OP_SELF, &&L_OP_ADDI, &&L_OP_ADDK, &&L_OP_SUBK, &&L_OP_MULK, &&L_OP_MODK, &&L_OP_POWK, &&L_OP_DIVK, &&L_OP_IDIVK, &&L_OP_BANDK, &&L_OP_BORK, &&L_OP_BXORK, &&L_OP_SHRI, &&L_OP_SHLI, &&L_OP_ADD, &&L_OP_SUB, &&L_OP_MUL, &&L_OP_MOD, &&L_OP_POW, &&L_OP_DIV, &&L_OP_IDIV, &&L_OP_BAND, &&L_OP_BOR, &&L_OP_BXOR, &&L_OP_SHL, &&L_OP_SHR, &&L_OP_MMBIN, &&L_OP_MMBINI, &&L_OP_MMBINK, &&L_OP_UNM, &&L_OP_BNOT, &&L_OP_NOT, &&L_OP_LEN, &&L_OP_CONCAT, &&L_OP_CLOSE, &&L_OP_TBC, &&L_OP_JMP, &&L_OP_EQ, &&L_OP_LT, &&L_OP_LE, &&L_OP_EQK, &&L_OP_EQI, &&L_OP_LTI, &&L_OP_LEI, &&L_OP_GTI, &&L_OP_GEI, &&L_OP_TEST, &&L_OP_TESTSET, &&L_OP_CALL, &&L_OP_TAILCALL, &&L_OP_RETURN, &&L_OP_RETURN0, &&L_OP_RETURN1, &&L_OP_FORLOOP, &&L_OP_FORPREP, &&L_OP_TFORPREP, &&L_OP_TFORCALL, &&L_OP_TFORLOOP, &&L_OP_SETLIST, &&L_OP_CLOSURE, &&L_OP_VARARG, &&L_OP_VARARGPREP, &&L_OP_EXTRAARG }; #endif startfunc: trap = L->hookmask; returning: /* trap already set */ cl = clLvalue(s2v(ci->func)); k = cl->p->k; pc = ci->u.l.savedpc; if (l_unlikely(trap)) { if (pc == cl->p->code) { /* first instruction (not resuming)? */ if (cl->p->is_vararg) trap = 0; /* hooks will start after VARARGPREP instruction */ else /* check 'call' hook */ luaD_hookcall(L, ci); } ci->u.l.trap = 1; /* assume trap is on, for now */ } base = ci->func + 1; /* main loop of interpreter */ for (;;) { Instruction i; /* instruction being executed */ StkId ra; /* instruction's A register */ vmfetch(); #if 0 /* low-level line tracing for debugging Lua */ printf("line: %d\n", luaG_getfuncline(cl->p, pcRel(pc, cl->p))); #endif lua_assert(base == ci->func + 1); lua_assert(base <= L->top && L->top < L->stack_last); /* invalidate top for instructions not expecting it */ lua_assert(isIT(i) || (cast_void(L->top = base), 1)); vmdispatch (GET_OPCODE(i)) { vmcase(OP_MOVE) { setobjs2s(L, ra, RB(i)); vmbreak; } vmcase(OP_LOADI) { lua_Integer b = GETARG_sBx(i); setivalue(s2v(ra), b); vmbreak; } vmcase(OP_LOADF) { int b = GETARG_sBx(i); setfltvalue(s2v(ra), cast_num(b)); vmbreak; } vmcase(OP_LOADK) { TValue *rb = k + GETARG_Bx(i); setobj2s(L, ra, rb); vmbreak; } vmcase(OP_LOADKX) { TValue *rb; rb = k + GETARG_Ax(*pc); pc++; setobj2s(L, ra, rb); vmbreak; } vmcase(OP_LOADFALSE) { setbfvalue(s2v(ra)); vmbreak; } vmcase(OP_LFALSESKIP) { setbfvalue(s2v(ra)); pc++; /* skip next instruction */ vmbreak; } vmcase(OP_LOADTRUE) { setbtvalue(s2v(ra)); vmbreak; } vmcase(OP_LOADNIL) { int b = GETARG_B(i); do { setnilvalue(s2v(ra++)); } while (b--); vmbreak; } vmcase(OP_GETUPVAL) { int b = GETARG_B(i); setobj2s(L, ra, cl->upvals[b]->v); vmbreak; } vmcase(OP_SETUPVAL) { UpVal *uv = cl->upvals[GETARG_B(i)]; setobj(L, uv->v, s2v(ra)); luaC_barrier(L, uv, s2v(ra)); vmbreak; } vmcase(OP_GETTABUP) { const TValue *slot; TValue *upval = cl->upvals[GETARG_B(i)]->v; TValue *rc = KC(i); TString *key = tsvalue(rc); /* key must be a string */ if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) { setobj2s(L, ra, slot); } else Protect(luaV_finishget(L, upval, rc, ra, slot)); vmbreak; } vmcase(OP_GETTABLE) { const TValue *slot; TValue *rb = vRB(i); TValue *rc = vRC(i); lua_Unsigned n; if (ttisinteger(rc) /* fast track for integers? */ ? (cast_void(n = ivalue(rc)), luaV_fastgeti(L, rb, n, slot)) : luaV_fastget(L, rb, rc, slot, luaH_get)) { setobj2s(L, ra, slot); } else Protect(luaV_finishget(L, rb, rc, ra, slot)); vmbreak; } vmcase(OP_GETI) { const TValue *slot; TValue *rb = vRB(i); int c = GETARG_C(i); if (luaV_fastgeti(L, rb, c, slot)) { setobj2s(L, ra, slot); } else { TValue key; setivalue(&key, c); Protect(luaV_finishget(L, rb, &key, ra, slot)); } vmbreak; } vmcase(OP_GETFIELD) { const TValue *slot; TValue *rb = vRB(i); TValue *rc = KC(i); TString *key = tsvalue(rc); /* key must be a string */ if (luaV_fastget(L, rb, key, slot, luaH_getshortstr)) { setobj2s(L, ra, slot); } else Protect(luaV_finishget(L, rb, rc, ra, slot)); vmbreak; } vmcase(OP_SETTABUP) { const TValue *slot; TValue *upval = cl->upvals[GETARG_A(i)]->v; TValue *rb = KB(i); TValue *rc = RKC(i); TString *key = tsvalue(rb); /* key must be a string */ if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) { luaV_finishfastset(L, upval, slot, rc); } else Protect(luaV_finishset(L, upval, rb, rc, slot)); vmbreak; } vmcase(OP_SETTABLE) { const TValue *slot; TValue *rb = vRB(i); /* key (table is in 'ra') */ TValue *rc = RKC(i); /* value */ lua_Unsigned n; if (ttisinteger(rb) /* fast track for integers? */ ? (cast_void(n = ivalue(rb)), luaV_fastgeti(L, s2v(ra), n, slot)) : luaV_fastget(L, s2v(ra), rb, slot, luaH_get)) { luaV_finishfastset(L, s2v(ra), slot, rc); } else Protect(luaV_finishset(L, s2v(ra), rb, rc, slot)); vmbreak; } vmcase(OP_SETI) { const TValue *slot; int c = GETARG_B(i); TValue *rc = RKC(i); if (luaV_fastgeti(L, s2v(ra), c, slot)) { luaV_finishfastset(L, s2v(ra), slot, rc); } else { TValue key; setivalue(&key, c); Protect(luaV_finishset(L, s2v(ra), &key, rc, slot)); } vmbreak; } vmcase(OP_SETFIELD) { const TValue *slot; TValue *rb = KB(i); TValue *rc = RKC(i); TString *key = tsvalue(rb); /* key must be a string */ if (luaV_fastget(L, s2v(ra), key, slot, luaH_getshortstr)) { luaV_finishfastset(L, s2v(ra), slot, rc); } else Protect(luaV_finishset(L, s2v(ra), rb, rc, slot)); vmbreak; } vmcase(OP_NEWTABLE) { int b = GETARG_B(i); /* log2(hash size) + 1 */ int c = GETARG_C(i); /* array size */ Table *t; if (b > 0) b = 1 << (b - 1); /* size is 2^(b - 1) */ lua_assert((!TESTARG_k(i)) == (GETARG_Ax(*pc) == 0)); if (TESTARG_k(i)) /* non-zero extra argument? */ c += GETARG_Ax(*pc) * (MAXARG_C + 1); /* add it to size */ pc++; /* skip extra argument */ L->top = ra + 1; /* correct top in case of emergency GC */ t = luaH_new(L); /* memory allocation */ sethvalue2s(L, ra, t); if (b != 0 || c != 0) luaH_resize(L, t, c, b); /* idem */ checkGC(L, ra + 1); vmbreak; } vmcase(OP_SELF) { const TValue *slot; TValue *rb = vRB(i); TValue *rc = RKC(i); TString *key = tsvalue(rc); /* key must be a string */ setobj2s(L, ra + 1, rb); if (luaV_fastget(L, rb, key, slot, luaH_getstr)) { setobj2s(L, ra, slot); } else Protect(luaV_finishget(L, rb, rc, ra, slot)); vmbreak; } vmcase(OP_ADDI) { op_arithI(L, l_addi, luai_numadd); vmbreak; } vmcase(OP_ADDK) { op_arithK(L, l_addi, luai_numadd); vmbreak; } vmcase(OP_SUBK) { op_arithK(L, l_subi, luai_numsub); vmbreak; } vmcase(OP_MULK) { op_arithK(L, l_muli, luai_nummul); vmbreak; } vmcase(OP_MODK) { op_arithK(L, luaV_mod, luaV_modf); vmbreak; } vmcase(OP_POWK) { op_arithfK(L, luai_numpow); vmbreak; } vmcase(OP_DIVK) { op_arithfK(L, luai_numdiv); vmbreak; } vmcase(OP_IDIVK) { op_arithK(L, luaV_idiv, luai_numidiv); vmbreak; } vmcase(OP_BANDK) { op_bitwiseK(L, l_band); vmbreak; } vmcase(OP_BORK) { op_bitwiseK(L, l_bor); vmbreak; } vmcase(OP_BXORK) { op_bitwiseK(L, l_bxor); vmbreak; } vmcase(OP_SHRI) { TValue *rb = vRB(i); int ic = GETARG_sC(i); lua_Integer ib; if (tointegerns(rb, &ib)) { pc++; setivalue(s2v(ra), luaV_shiftl(ib, -ic)); } vmbreak; } vmcase(OP_SHLI) { TValue *rb = vRB(i); int ic = GETARG_sC(i); lua_Integer ib; if (tointegerns(rb, &ib)) { pc++; setivalue(s2v(ra), luaV_shiftl(ic, ib)); } vmbreak; } vmcase(OP_ADD) { op_arith(L, l_addi, luai_numadd); vmbreak; } vmcase(OP_SUB) { op_arith(L, l_subi, luai_numsub); vmbreak; } vmcase(OP_MUL) { op_arith(L, l_muli, luai_nummul); vmbreak; } vmcase(OP_MOD) { op_arith(L, luaV_mod, luaV_modf); vmbreak; } vmcase(OP_POW) { op_arithf(L, luai_numpow); vmbreak; } vmcase(OP_DIV) { /* float division (always with floats) */ op_arithf(L, luai_numdiv); vmbreak; } vmcase(OP_IDIV) { /* floor division */ op_arith(L, luaV_idiv, luai_numidiv); vmbreak; } vmcase(OP_BAND) { op_bitwise(L, l_band); vmbreak; } vmcase(OP_BOR) { op_bitwise(L, l_bor); vmbreak; } vmcase(OP_BXOR) { op_bitwise(L, l_bxor); vmbreak; } vmcase(OP_SHR) { op_bitwise(L, luaV_shiftr); vmbreak; } vmcase(OP_SHL) { op_bitwise(L, luaV_shiftl); vmbreak; } vmcase(OP_MMBIN) { Instruction pi = *(pc - 2); /* original arith. expression */ TValue *rb = vRB(i); TMS tm = (TMS)GETARG_C(i); StkId result = RA(pi); lua_assert(OP_ADD <= GET_OPCODE(pi) && GET_OPCODE(pi) <= OP_SHR); Protect(luaT_trybinTM(L, s2v(ra), rb, result, tm)); vmbreak; } vmcase(OP_MMBINI) { Instruction pi = *(pc - 2); /* original arith. expression */ int imm = GETARG_sB(i); TMS tm = (TMS)GETARG_C(i); int flip = GETARG_k(i); StkId result = RA(pi); Protect(luaT_trybiniTM(L, s2v(ra), imm, flip, result, tm)); vmbreak; } vmcase(OP_MMBINK) { Instruction pi = *(pc - 2); /* original arith. expression */ TValue *imm = KB(i); TMS tm = (TMS)GETARG_C(i); int flip = GETARG_k(i); StkId result = RA(pi); Protect(luaT_trybinassocTM(L, s2v(ra), imm, flip, result, tm)); vmbreak; } vmcase(OP_UNM) { TValue *rb = vRB(i); lua_Number nb; if (ttisinteger(rb)) { lua_Integer ib = ivalue(rb); setivalue(s2v(ra), intop(-, 0, ib)); } else if (tonumberns(rb, nb)) { setfltvalue(s2v(ra), luai_numunm(L, nb)); } else Protect(luaT_trybinTM(L, rb, rb, ra, TM_UNM)); vmbreak; } vmcase(OP_BNOT) { TValue *rb = vRB(i); lua_Integer ib; if (tointegerns(rb, &ib)) { setivalue(s2v(ra), intop(^, ~l_castS2U(0), ib)); } else Protect(luaT_trybinTM(L, rb, rb, ra, TM_BNOT)); vmbreak; } vmcase(OP_NOT) { TValue *rb = vRB(i); if (l_isfalse(rb)) setbtvalue(s2v(ra)); else setbfvalue(s2v(ra)); vmbreak; } vmcase(OP_LEN) { Protect(luaV_objlen(L, ra, vRB(i))); vmbreak; } vmcase(OP_CONCAT) { int n = GETARG_B(i); /* number of elements to concatenate */ L->top = ra + n; /* mark the end of concat operands */ ProtectNT(luaV_concat(L, n)); checkGC(L, L->top); /* 'luaV_concat' ensures correct top */ vmbreak; } vmcase(OP_CLOSE) { Protect(luaF_close(L, ra, LUA_OK, 1)); vmbreak; } vmcase(OP_TBC) { /* create new to-be-closed upvalue */ halfProtect(luaF_newtbcupval(L, ra)); vmbreak; } vmcase(OP_JMP) { dojump(ci, i, 0); vmbreak; } vmcase(OP_EQ) { int cond; TValue *rb = vRB(i); Protect(cond = luaV_equalobj(L, s2v(ra), rb)); docondjump(); vmbreak; } vmcase(OP_LT) { op_order(L, l_lti, LTnum, lessthanothers); vmbreak; } vmcase(OP_LE) { op_order(L, l_lei, LEnum, lessequalothers); vmbreak; } vmcase(OP_EQK) { TValue *rb = KB(i); /* basic types do not use '__eq'; we can use raw equality */ int cond = luaV_rawequalobj(s2v(ra), rb); docondjump(); vmbreak; } vmcase(OP_EQI) { int cond; int im = GETARG_sB(i); if (ttisinteger(s2v(ra))) cond = (ivalue(s2v(ra)) == im); else if (ttisfloat(s2v(ra))) cond = luai_numeq(fltvalue(s2v(ra)), cast_num(im)); else cond = 0; /* other types cannot be equal to a number */ docondjump(); vmbreak; } vmcase(OP_LTI) { op_orderI(L, l_lti, luai_numlt, 0, TM_LT); vmbreak; } vmcase(OP_LEI) { op_orderI(L, l_lei, luai_numle, 0, TM_LE); vmbreak; } vmcase(OP_GTI) { op_orderI(L, l_gti, luai_numgt, 1, TM_LT); vmbreak; } vmcase(OP_GEI) { op_orderI(L, l_gei, luai_numge, 1, TM_LE); vmbreak; } vmcase(OP_TEST) { int cond = !l_isfalse(s2v(ra)); docondjump(); vmbreak; } vmcase(OP_TESTSET) { TValue *rb = vRB(i); if (l_isfalse(rb) == GETARG_k(i)) pc++; else { setobj2s(L, ra, rb); donextjump(ci); } vmbreak; } vmcase(OP_CALL) { CallInfo *newci; int b = GETARG_B(i); int nresults = GETARG_C(i) - 1; if (b != 0) /* fixed number of arguments? */ L->top = ra + b; /* top signals number of arguments */ /* else previous instruction set top */ savepc(L); /* in case of errors */ if ((newci = luaD_precall(L, ra, nresults)) == NULL) updatetrap(ci); /* C call; nothing else to be done */ else { /* Lua call: run function in this same C frame */ ci = newci; goto startfunc; } vmbreak; } vmcase(OP_TAILCALL) { int b = GETARG_B(i); /* number of arguments + 1 (function) */ int n; /* number of results when calling a C function */ int nparams1 = GETARG_C(i); /* delta is virtual 'func' - real 'func' (vararg functions) */ int delta = (nparams1) ? ci->u.l.nextraargs + nparams1 : 0; if (b != 0) L->top = ra + b; else /* previous instruction set top */ b = cast_int(L->top - ra); savepc(ci); /* several calls here can raise errors */ if (TESTARG_k(i)) { luaF_closeupval(L, base); /* close upvalues from current call */ lua_assert(L->tbclist < base); /* no pending tbc variables */ lua_assert(base == ci->func + 1); } if ((n = luaD_pretailcall(L, ci, ra, b, delta)) < 0) /* Lua function? */ goto startfunc; /* execute the callee */ else { /* C function? */ ci->func -= delta; /* restore 'func' (if vararg) */ luaD_poscall(L, ci, n); /* finish caller */ updatetrap(ci); /* 'luaD_poscall' can change hooks */ goto ret; /* caller returns after the tail call */ } } vmcase(OP_RETURN) { int n = GETARG_B(i) - 1; /* number of results */ int nparams1 = GETARG_C(i); if (n < 0) /* not fixed? */ n = cast_int(L->top - ra); /* get what is available */ savepc(ci); if (TESTARG_k(i)) { /* may there be open upvalues? */ ci->u2.nres = n; /* save number of returns */ if (L->top < ci->top) L->top = ci->top; luaF_close(L, base, CLOSEKTOP, 1); updatetrap(ci); updatestack(ci); } if (nparams1) /* vararg function? */ ci->func -= ci->u.l.nextraargs + nparams1; L->top = ra + n; /* set call for 'luaD_poscall' */ luaD_poscall(L, ci, n); updatetrap(ci); /* 'luaD_poscall' can change hooks */ goto ret; } vmcase(OP_RETURN0) { if (l_unlikely(L->hookmask)) { L->top = ra; savepc(ci); luaD_poscall(L, ci, 0); /* no hurry... */ trap = 1; } else { /* do the 'poscall' here */ int nres; L->ci = ci->previous; /* back to caller */ L->top = base - 1; for (nres = ci->nresults; l_unlikely(nres > 0); nres--) setnilvalue(s2v(L->top++)); /* all results are nil */ } goto ret; } vmcase(OP_RETURN1) { if (l_unlikely(L->hookmask)) { L->top = ra + 1; savepc(ci); luaD_poscall(L, ci, 1); /* no hurry... */ trap = 1; } else { /* do the 'poscall' here */ int nres = ci->nresults; L->ci = ci->previous; /* back to caller */ if (nres == 0) L->top = base - 1; /* asked for no results */ else { setobjs2s(L, base - 1, ra); /* at least this result */ L->top = base; for (; l_unlikely(nres > 1); nres--) setnilvalue(s2v(L->top++)); /* complete missing results */ } } ret: /* return from a Lua function */ if (ci->callstatus & CIST_FRESH) return; /* end this frame */ else { ci = ci->previous; goto returning; /* continue running caller in this frame */ } } vmcase(OP_FORLOOP) { if (ttisinteger(s2v(ra + 2))) { /* integer loop? */ lua_Unsigned count = l_castS2U(ivalue(s2v(ra + 1))); if (count > 0) { /* still more iterations? */ lua_Integer step = ivalue(s2v(ra + 2)); lua_Integer idx = ivalue(s2v(ra)); /* internal index */ chgivalue(s2v(ra + 1), count - 1); /* update counter */ idx = intop(+, idx, step); /* add step to index */ chgivalue(s2v(ra), idx); /* update internal index */ setivalue(s2v(ra + 3), idx); /* and control variable */ pc -= GETARG_Bx(i); /* jump back */ } } else if (floatforloop(ra)) /* float loop */ pc -= GETARG_Bx(i); /* jump back */ updatetrap(ci); /* allows a signal to break the loop */ vmbreak; } vmcase(OP_FORPREP) { savestate(L, ci); /* in case of errors */ if (forprep(L, ra)) pc += GETARG_Bx(i) + 1; /* skip the loop */ vmbreak; } vmcase(OP_TFORPREP) { /* create to-be-closed upvalue (if needed) */ halfProtect(luaF_newtbcupval(L, ra + 3)); pc += GETARG_Bx(i); i = *(pc++); /* go to next instruction */ lua_assert(GET_OPCODE(i) == OP_TFORCALL && ra == RA(i)); goto l_tforcall; } vmcase(OP_TFORCALL) { l_tforcall: /* 'ra' has the iterator function, 'ra + 1' has the state, 'ra + 2' has the control variable, and 'ra + 3' has the to-be-closed variable. The call will use the stack after these values (starting at 'ra + 4') */ /* push function, state, and control variable */ memcpy(ra + 4, ra, 3 * sizeof(*ra)); L->top = ra + 4 + 3; ProtectNT(luaD_call(L, ra + 4, GETARG_C(i))); /* do the call */ updatestack(ci); /* stack may have changed */ i = *(pc++); /* go to next instruction */ lua_assert(GET_OPCODE(i) == OP_TFORLOOP && ra == RA(i)); goto l_tforloop; } vmcase(OP_TFORLOOP) { l_tforloop: if (!ttisnil(s2v(ra + 4))) { /* continue loop? */ setobjs2s(L, ra + 2, ra + 4); /* save control variable */ pc -= GETARG_Bx(i); /* jump back */ } vmbreak; } vmcase(OP_SETLIST) { int n = GETARG_B(i); unsigned int last = GETARG_C(i); Table *h = hvalue(s2v(ra)); if (n == 0) n = cast_int(L->top - ra) - 1; /* get up to the top */ else L->top = ci->top; /* correct top in case of emergency GC */ last += n; if (TESTARG_k(i)) { last += GETARG_Ax(*pc) * (MAXARG_C + 1); pc++; } if (last > luaH_realasize(h)) /* needs more space? */ luaH_resizearray(L, h, last); /* preallocate it at once */ for (; n > 0; n--) { TValue *val = s2v(ra + n); setobj2t(L, &h->array[last - 1], val); last--; luaC_barrierback(L, obj2gco(h), val); } vmbreak; } vmcase(OP_CLOSURE) { Proto *p = cl->p->p[GETARG_Bx(i)]; halfProtect(pushclosure(L, p, cl->upvals, base, ra)); checkGC(L, ra + 1); vmbreak; } vmcase(OP_VARARG) { int n = GETARG_C(i) - 1; /* required results */ Protect(luaT_getvarargs(L, ci, ra, n)); vmbreak; } vmcase(OP_VARARGPREP) { ProtectNT(luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p)); if (l_unlikely(trap)) { /* previous "Protect" updated trap */ luaD_hookcall(L, ci); L->oldpc = 1; /* next opcode will be seen as a "new" line */ } updatebase(ci); /* function has new base after adjustment */ vmbreak; } vmcase(OP_EXTRAARG) { lua_assert(0); vmbreak; } } } } /* }================================================================== */ /* ** $Id: lapi.c $ ** Lua API ** See Copyright Notice in lua.h */ #define lapi_c #define LUA_CORE /*#include "lprefix.h"*/ #include #include #include /*#include "lua.h"*/ /*#include "lapi.h"*/ /*#include "ldebug.h"*/ /*#include "ldo.h"*/ /*#include "lfunc.h"*/ /*#include "lgc.h"*/ /*#include "lmem.h"*/ /*#include "lobject.h"*/ /*#include "lstate.h"*/ /*#include "lstring.h"*/ /*#include "ltable.h"*/ /*#include "ltm.h"*/ /*#include "lundump.h"*/ /*#include "lvm.h"*/ const char lua_ident[] = "$LuaVersion: " LUA_COPYRIGHT " $" "$LuaAuthors: " LUA_AUTHORS " $"; /* ** Test for a valid index (one that is not the 'nilvalue'). ** '!ttisnil(o)' implies 'o != &G(L)->nilvalue', so it is not needed. ** However, it covers the most common cases in a faster way. */ #define isvalid(L, o) (!ttisnil(o) || o != &G(L)->nilvalue) /* test for pseudo index */ #define ispseudo(i) ((i) <= LUA_REGISTRYINDEX) /* test for upvalue */ #define isupvalue(i) ((i) < LUA_REGISTRYINDEX) /* ** Convert an acceptable index to a pointer to its respective value. ** Non-valid indices return the special nil value 'G(L)->nilvalue'. */ static TValue *index2value (lua_State *L, int idx) { CallInfo *ci = L->ci; if (idx > 0) { StkId o = ci->func + idx; api_check(L, idx <= L->ci->top - (ci->func + 1), "unacceptable index"); if (o >= L->top) return &G(L)->nilvalue; else return s2v(o); } else if (!ispseudo(idx)) { /* negative index */ api_check(L, idx != 0 && -idx <= L->top - (ci->func + 1), "invalid index"); return s2v(L->top + idx); } else if (idx == LUA_REGISTRYINDEX) return &G(L)->l_registry; else { /* upvalues */ idx = LUA_REGISTRYINDEX - idx; api_check(L, idx <= MAXUPVAL + 1, "upvalue index too large"); if (ttisCclosure(s2v(ci->func))) { /* C closure? */ CClosure *func = clCvalue(s2v(ci->func)); return (idx <= func->nupvalues) ? &func->upvalue[idx-1] : &G(L)->nilvalue; } else { /* light C function or Lua function (through a hook)?) */ api_check(L, ttislcf(s2v(ci->func)), "caller not a C function"); return &G(L)->nilvalue; /* no upvalues */ } } } /* ** Convert a valid actual index (not a pseudo-index) to its address. */ l_sinline StkId index2stack (lua_State *L, int idx) { CallInfo *ci = L->ci; if (idx > 0) { StkId o = ci->func + idx; api_check(L, o < L->top, "invalid index"); return o; } else { /* non-positive index */ api_check(L, idx != 0 && -idx <= L->top - (ci->func + 1), "invalid index"); api_check(L, !ispseudo(idx), "invalid index"); return L->top + idx; } } LUA_API int lua_checkstack (lua_State *L, int n) { int res; CallInfo *ci; lua_lock(L); ci = L->ci; api_check(L, n >= 0, "negative 'n'"); if (L->stack_last - L->top > n) /* stack large enough? */ res = 1; /* yes; check is OK */ else { /* no; need to grow stack */ int inuse = cast_int(L->top - L->stack) + EXTRA_STACK; if (inuse > LUAI_MAXSTACK - n) /* can grow without overflow? */ res = 0; /* no */ else /* try to grow stack */ res = luaD_growstack(L, n, 0); } if (res && ci->top < L->top + n) ci->top = L->top + n; /* adjust frame top */ lua_unlock(L); return res; } LUA_API void lua_xmove (lua_State *from, lua_State *to, int n) { int i; if (from == to) return; lua_lock(to); api_checknelems(from, n); api_check(from, G(from) == G(to), "moving among independent states"); api_check(from, to->ci->top - to->top >= n, "stack overflow"); from->top -= n; for (i = 0; i < n; i++) { setobjs2s(to, to->top, from->top + i); to->top++; /* stack already checked by previous 'api_check' */ } lua_unlock(to); } LUA_API lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf) { lua_CFunction old; lua_lock(L); old = G(L)->panic; G(L)->panic = panicf; lua_unlock(L); return old; } LUA_API lua_Number lua_version (lua_State *L) { UNUSED(L); return LUA_VERSION_NUM; } /* ** basic stack manipulation */ /* ** convert an acceptable stack index into an absolute index */ LUA_API int lua_absindex (lua_State *L, int idx) { return (idx > 0 || ispseudo(idx)) ? idx : cast_int(L->top - L->ci->func) + idx; } LUA_API int lua_gettop (lua_State *L) { return cast_int(L->top - (L->ci->func + 1)); } LUA_API void lua_settop (lua_State *L, int idx) { CallInfo *ci; StkId func, newtop; ptrdiff_t diff; /* difference for new top */ lua_lock(L); ci = L->ci; func = ci->func; if (idx >= 0) { api_check(L, idx <= ci->top - (func + 1), "new top too large"); diff = ((func + 1) + idx) - L->top; for (; diff > 0; diff--) setnilvalue(s2v(L->top++)); /* clear new slots */ } else { api_check(L, -(idx+1) <= (L->top - (func + 1)), "invalid new top"); diff = idx + 1; /* will "subtract" index (as it is negative) */ } api_check(L, L->tbclist < L->top, "previous pop of an unclosed slot"); newtop = L->top + diff; if (diff < 0 && L->tbclist >= newtop) { lua_assert(hastocloseCfunc(ci->nresults)); luaF_close(L, newtop, CLOSEKTOP, 0); } L->top = newtop; /* correct top only after closing any upvalue */ lua_unlock(L); } LUA_API void lua_closeslot (lua_State *L, int idx) { StkId level; lua_lock(L); level = index2stack(L, idx); api_check(L, hastocloseCfunc(L->ci->nresults) && L->tbclist == level, "no variable to close at given level"); luaF_close(L, level, CLOSEKTOP, 0); level = index2stack(L, idx); /* stack may be moved */ setnilvalue(s2v(level)); lua_unlock(L); } /* ** Reverse the stack segment from 'from' to 'to' ** (auxiliary to 'lua_rotate') ** Note that we move(copy) only the value inside the stack. ** (We do not move additional fields that may exist.) */ l_sinline void reverse (lua_State *L, StkId from, StkId to) { for (; from < to; from++, to--) { TValue temp; setobj(L, &temp, s2v(from)); setobjs2s(L, from, to); setobj2s(L, to, &temp); } } /* ** Let x = AB, where A is a prefix of length 'n'. Then, ** rotate x n == BA. But BA == (A^r . B^r)^r. */ LUA_API void lua_rotate (lua_State *L, int idx, int n) { StkId p, t, m; lua_lock(L); t = L->top - 1; /* end of stack segment being rotated */ p = index2stack(L, idx); /* start of segment */ api_check(L, (n >= 0 ? n : -n) <= (t - p + 1), "invalid 'n'"); m = (n >= 0 ? t - n : p - n - 1); /* end of prefix */ reverse(L, p, m); /* reverse the prefix with length 'n' */ reverse(L, m + 1, t); /* reverse the suffix */ reverse(L, p, t); /* reverse the entire segment */ lua_unlock(L); } LUA_API void lua_copy (lua_State *L, int fromidx, int toidx) { TValue *fr, *to; lua_lock(L); fr = index2value(L, fromidx); to = index2value(L, toidx); api_check(L, isvalid(L, to), "invalid index"); setobj(L, to, fr); if (isupvalue(toidx)) /* function upvalue? */ luaC_barrier(L, clCvalue(s2v(L->ci->func)), fr); /* LUA_REGISTRYINDEX does not need gc barrier (collector revisits it before finishing collection) */ lua_unlock(L); } LUA_API void lua_pushvalue (lua_State *L, int idx) { lua_lock(L); setobj2s(L, L->top, index2value(L, idx)); api_incr_top(L); lua_unlock(L); } /* ** access functions (stack -> C) */ LUA_API int lua_type (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return (isvalid(L, o) ? ttype(o) : LUA_TNONE); } LUA_API const char *lua_typename (lua_State *L, int t) { UNUSED(L); api_check(L, LUA_TNONE <= t && t < LUA_NUMTYPES, "invalid type"); return ttypename(t); } LUA_API int lua_iscfunction (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return (ttislcf(o) || (ttisCclosure(o))); } LUA_API int lua_isinteger (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return ttisinteger(o); } LUA_API int lua_isnumber (lua_State *L, int idx) { lua_Number n; const TValue *o = index2value(L, idx); return tonumber(o, &n); } LUA_API int lua_isstring (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return (ttisstring(o) || cvt2str(o)); } LUA_API int lua_isuserdata (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return (ttisfulluserdata(o) || ttislightuserdata(o)); } LUA_API int lua_rawequal (lua_State *L, int index1, int index2) { const TValue *o1 = index2value(L, index1); const TValue *o2 = index2value(L, index2); return (isvalid(L, o1) && isvalid(L, o2)) ? luaV_rawequalobj(o1, o2) : 0; } LUA_API void lua_arith (lua_State *L, int op) { lua_lock(L); if (op != LUA_OPUNM && op != LUA_OPBNOT) api_checknelems(L, 2); /* all other operations expect two operands */ else { /* for unary operations, add fake 2nd operand */ api_checknelems(L, 1); setobjs2s(L, L->top, L->top - 1); api_incr_top(L); } /* first operand at top - 2, second at top - 1; result go to top - 2 */ luaO_arith(L, op, s2v(L->top - 2), s2v(L->top - 1), L->top - 2); L->top--; /* remove second operand */ lua_unlock(L); } LUA_API int lua_compare (lua_State *L, int index1, int index2, int op) { const TValue *o1; const TValue *o2; int i = 0; lua_lock(L); /* may call tag method */ o1 = index2value(L, index1); o2 = index2value(L, index2); if (isvalid(L, o1) && isvalid(L, o2)) { switch (op) { case LUA_OPEQ: i = luaV_equalobj(L, o1, o2); break; case LUA_OPLT: i = luaV_lessthan(L, o1, o2); break; case LUA_OPLE: i = luaV_lessequal(L, o1, o2); break; default: api_check(L, 0, "invalid option"); } } lua_unlock(L); return i; } LUA_API size_t lua_stringtonumber (lua_State *L, const char *s) { size_t sz = luaO_str2num(s, s2v(L->top)); if (sz != 0) api_incr_top(L); return sz; } LUA_API lua_Number lua_tonumberx (lua_State *L, int idx, int *pisnum) { lua_Number n = 0; const TValue *o = index2value(L, idx); int isnum = tonumber(o, &n); if (pisnum) *pisnum = isnum; return n; } LUA_API lua_Integer lua_tointegerx (lua_State *L, int idx, int *pisnum) { lua_Integer res = 0; const TValue *o = index2value(L, idx); int isnum = tointeger(o, &res); if (pisnum) *pisnum = isnum; return res; } LUA_API int lua_toboolean (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return !l_isfalse(o); } LUA_API const char *lua_tolstring (lua_State *L, int idx, size_t *len) { TValue *o; lua_lock(L); o = index2value(L, idx); if (!ttisstring(o)) { if (!cvt2str(o)) { /* not convertible? */ if (len != NULL) *len = 0; lua_unlock(L); return NULL; } luaO_tostring(L, o); luaC_checkGC(L); o = index2value(L, idx); /* previous call may reallocate the stack */ } if (len != NULL) *len = vslen(o); lua_unlock(L); return svalue(o); } LUA_API lua_Unsigned lua_rawlen (lua_State *L, int idx) { const TValue *o = index2value(L, idx); switch (ttypetag(o)) { case LUA_VSHRSTR: return tsvalue(o)->shrlen; case LUA_VLNGSTR: return tsvalue(o)->u.lnglen; case LUA_VUSERDATA: return uvalue(o)->len; case LUA_VTABLE: return luaH_getn(hvalue(o)); default: return 0; } } LUA_API lua_CFunction lua_tocfunction (lua_State *L, int idx) { const TValue *o = index2value(L, idx); if (ttislcf(o)) return fvalue(o); else if (ttisCclosure(o)) return clCvalue(o)->f; else return NULL; /* not a C function */ } l_sinline void *touserdata (const TValue *o) { switch (ttype(o)) { case LUA_TUSERDATA: return getudatamem(uvalue(o)); case LUA_TLIGHTUSERDATA: return pvalue(o); default: return NULL; } } LUA_API void *lua_touserdata (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return touserdata(o); } LUA_API lua_State *lua_tothread (lua_State *L, int idx) { const TValue *o = index2value(L, idx); return (!ttisthread(o)) ? NULL : thvalue(o); } /* ** Returns a pointer to the internal representation of an object. ** Note that ANSI C does not allow the conversion of a pointer to ** function to a 'void*', so the conversion here goes through ** a 'size_t'. (As the returned pointer is only informative, this ** conversion should not be a problem.) */ LUA_API const void *lua_topointer (lua_State *L, int idx) { const TValue *o = index2value(L, idx); switch (ttypetag(o)) { case LUA_VLCF: return cast_voidp(cast_sizet(fvalue(o))); case LUA_VUSERDATA: case LUA_VLIGHTUSERDATA: return touserdata(o); default: { if (iscollectable(o)) return gcvalue(o); else return NULL; } } } /* ** push functions (C -> stack) */ LUA_API void lua_pushnil (lua_State *L) { lua_lock(L); setnilvalue(s2v(L->top)); api_incr_top(L); lua_unlock(L); } LUA_API void lua_pushnumber (lua_State *L, lua_Number n) { lua_lock(L); setfltvalue(s2v(L->top), n); api_incr_top(L); lua_unlock(L); } LUA_API void lua_pushinteger (lua_State *L, lua_Integer n) { lua_lock(L); setivalue(s2v(L->top), n); api_incr_top(L); lua_unlock(L); } /* ** Pushes on the stack a string with given length. Avoid using 's' when ** 'len' == 0 (as 's' can be NULL in that case), due to later use of ** 'memcmp' and 'memcpy'. */ LUA_API const char *lua_pushlstring (lua_State *L, const char *s, size_t len) { TString *ts; lua_lock(L); ts = (len == 0) ? luaS_new(L, "") : luaS_newlstr(L, s, len); setsvalue2s(L, L->top, ts); api_incr_top(L); luaC_checkGC(L); lua_unlock(L); return getstr(ts); } LUA_API const char *lua_pushstring (lua_State *L, const char *s) { lua_lock(L); if (s == NULL) setnilvalue(s2v(L->top)); else { TString *ts; ts = luaS_new(L, s); setsvalue2s(L, L->top, ts); s = getstr(ts); /* internal copy's address */ } api_incr_top(L); luaC_checkGC(L); lua_unlock(L); return s; } LUA_API const char *lua_pushvfstring (lua_State *L, const char *fmt, va_list argp) { const char *ret; lua_lock(L); ret = luaO_pushvfstring(L, fmt, argp); luaC_checkGC(L); lua_unlock(L); return ret; } LUA_API const char *lua_pushfstring (lua_State *L, const char *fmt, ...) { const char *ret; va_list argp; lua_lock(L); va_start(argp, fmt); ret = luaO_pushvfstring(L, fmt, argp); va_end(argp); luaC_checkGC(L); lua_unlock(L); return ret; } LUA_API void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n) { lua_lock(L); if (n == 0) { setfvalue(s2v(L->top), fn); api_incr_top(L); } else { CClosure *cl; api_checknelems(L, n); api_check(L, n <= MAXUPVAL, "upvalue index too large"); cl = luaF_newCclosure(L, n); cl->f = fn; L->top -= n; while (n--) { setobj2n(L, &cl->upvalue[n], s2v(L->top + n)); /* does not need barrier because closure is white */ lua_assert(iswhite(cl)); } setclCvalue(L, s2v(L->top), cl); api_incr_top(L); luaC_checkGC(L); } lua_unlock(L); } LUA_API void lua_pushboolean (lua_State *L, int b) { lua_lock(L); if (b) setbtvalue(s2v(L->top)); else setbfvalue(s2v(L->top)); api_incr_top(L); lua_unlock(L); } LUA_API void lua_pushlightuserdata (lua_State *L, void *p) { lua_lock(L); setpvalue(s2v(L->top), p); api_incr_top(L); lua_unlock(L); } LUA_API int lua_pushthread (lua_State *L) { lua_lock(L); setthvalue(L, s2v(L->top), L); api_incr_top(L); lua_unlock(L); return (G(L)->mainthread == L); } /* ** get functions (Lua -> stack) */ l_sinline int auxgetstr (lua_State *L, const TValue *t, const char *k) { const TValue *slot; TString *str = luaS_new(L, k); if (luaV_fastget(L, t, str, slot, luaH_getstr)) { setobj2s(L, L->top, slot); api_incr_top(L); } else { setsvalue2s(L, L->top, str); api_incr_top(L); luaV_finishget(L, t, s2v(L->top - 1), L->top - 1, slot); } lua_unlock(L); return ttype(s2v(L->top - 1)); } /* ** Get the global table in the registry. Since all predefined ** indices in the registry were inserted right when the registry ** was created and never removed, they must always be in the array ** part of the registry. */ #define getGtable(L) \ (&hvalue(&G(L)->l_registry)->array[LUA_RIDX_GLOBALS - 1]) LUA_API int lua_getglobal (lua_State *L, const char *name) { const TValue *G; lua_lock(L); G = getGtable(L); return auxgetstr(L, G, name); } LUA_API int lua_gettable (lua_State *L, int idx) { const TValue *slot; TValue *t; lua_lock(L); t = index2value(L, idx); if (luaV_fastget(L, t, s2v(L->top - 1), slot, luaH_get)) { setobj2s(L, L->top - 1, slot); } else luaV_finishget(L, t, s2v(L->top - 1), L->top - 1, slot); lua_unlock(L); return ttype(s2v(L->top - 1)); } LUA_API int lua_getfield (lua_State *L, int idx, const char *k) { lua_lock(L); return auxgetstr(L, index2value(L, idx), k); } LUA_API int lua_geti (lua_State *L, int idx, lua_Integer n) { TValue *t; const TValue *slot; lua_lock(L); t = index2value(L, idx); if (luaV_fastgeti(L, t, n, slot)) { setobj2s(L, L->top, slot); } else { TValue aux; setivalue(&aux, n); luaV_finishget(L, t, &aux, L->top, slot); } api_incr_top(L); lua_unlock(L); return ttype(s2v(L->top - 1)); } l_sinline int finishrawget (lua_State *L, const TValue *val) { if (isempty(val)) /* avoid copying empty items to the stack */ setnilvalue(s2v(L->top)); else setobj2s(L, L->top, val); api_incr_top(L); lua_unlock(L); return ttype(s2v(L->top - 1)); } static Table *gettable (lua_State *L, int idx) { TValue *t = index2value(L, idx); api_check(L, ttistable(t), "table expected"); return hvalue(t); } LUA_API int lua_rawget (lua_State *L, int idx) { Table *t; const TValue *val; lua_lock(L); api_checknelems(L, 1); t = gettable(L, idx); val = luaH_get(t, s2v(L->top - 1)); L->top--; /* remove key */ return finishrawget(L, val); } LUA_API int lua_rawgeti (lua_State *L, int idx, lua_Integer n) { Table *t; lua_lock(L); t = gettable(L, idx); return finishrawget(L, luaH_getint(t, n)); } LUA_API int lua_rawgetp (lua_State *L, int idx, const void *p) { Table *t; TValue k; lua_lock(L); t = gettable(L, idx); setpvalue(&k, cast_voidp(p)); return finishrawget(L, luaH_get(t, &k)); } LUA_API void lua_createtable (lua_State *L, int narray, int nrec) { Table *t; lua_lock(L); t = luaH_new(L); sethvalue2s(L, L->top, t); api_incr_top(L); if (narray > 0 || nrec > 0) luaH_resize(L, t, narray, nrec); luaC_checkGC(L); lua_unlock(L); } LUA_API int lua_getmetatable (lua_State *L, int objindex) { const TValue *obj; Table *mt; int res = 0; lua_lock(L); obj = index2value(L, objindex); switch (ttype(obj)) { case LUA_TTABLE: mt = hvalue(obj)->metatable; break; case LUA_TUSERDATA: mt = uvalue(obj)->metatable; break; default: mt = G(L)->mt[ttype(obj)]; break; } if (mt != NULL) { sethvalue2s(L, L->top, mt); api_incr_top(L); res = 1; } lua_unlock(L); return res; } LUA_API int lua_getiuservalue (lua_State *L, int idx, int n) { TValue *o; int t; lua_lock(L); o = index2value(L, idx); api_check(L, ttisfulluserdata(o), "full userdata expected"); if (n <= 0 || n > uvalue(o)->nuvalue) { setnilvalue(s2v(L->top)); t = LUA_TNONE; } else { setobj2s(L, L->top, &uvalue(o)->uv[n - 1].uv); t = ttype(s2v(L->top)); } api_incr_top(L); lua_unlock(L); return t; } /* ** set functions (stack -> Lua) */ /* ** t[k] = value at the top of the stack (where 'k' is a string) */ static void auxsetstr (lua_State *L, const TValue *t, const char *k) { const TValue *slot; TString *str = luaS_new(L, k); api_checknelems(L, 1); if (luaV_fastget(L, t, str, slot, luaH_getstr)) { luaV_finishfastset(L, t, slot, s2v(L->top - 1)); L->top--; /* pop value */ } else { setsvalue2s(L, L->top, str); /* push 'str' (to make it a TValue) */ api_incr_top(L); luaV_finishset(L, t, s2v(L->top - 1), s2v(L->top - 2), slot); L->top -= 2; /* pop value and key */ } lua_unlock(L); /* lock done by caller */ } LUA_API void lua_setglobal (lua_State *L, const char *name) { const TValue *G; lua_lock(L); /* unlock done in 'auxsetstr' */ G = getGtable(L); auxsetstr(L, G, name); } LUA_API void lua_settable (lua_State *L, int idx) { TValue *t; const TValue *slot; lua_lock(L); api_checknelems(L, 2); t = index2value(L, idx); if (luaV_fastget(L, t, s2v(L->top - 2), slot, luaH_get)) { luaV_finishfastset(L, t, slot, s2v(L->top - 1)); } else luaV_finishset(L, t, s2v(L->top - 2), s2v(L->top - 1), slot); L->top -= 2; /* pop index and value */ lua_unlock(L); } LUA_API void lua_setfield (lua_State *L, int idx, const char *k) { lua_lock(L); /* unlock done in 'auxsetstr' */ auxsetstr(L, index2value(L, idx), k); } LUA_API void lua_seti (lua_State *L, int idx, lua_Integer n) { TValue *t; const TValue *slot; lua_lock(L); api_checknelems(L, 1); t = index2value(L, idx); if (luaV_fastgeti(L, t, n, slot)) { luaV_finishfastset(L, t, slot, s2v(L->top - 1)); } else { TValue aux; setivalue(&aux, n); luaV_finishset(L, t, &aux, s2v(L->top - 1), slot); } L->top--; /* pop value */ lua_unlock(L); } static void aux_rawset (lua_State *L, int idx, TValue *key, int n) { Table *t; lua_lock(L); api_checknelems(L, n); t = gettable(L, idx); luaH_set(L, t, key, s2v(L->top - 1)); invalidateTMcache(t); luaC_barrierback(L, obj2gco(t), s2v(L->top - 1)); L->top -= n; lua_unlock(L); } LUA_API void lua_rawset (lua_State *L, int idx) { aux_rawset(L, idx, s2v(L->top - 2), 2); } LUA_API void lua_rawsetp (lua_State *L, int idx, const void *p) { TValue k; setpvalue(&k, cast_voidp(p)); aux_rawset(L, idx, &k, 1); } LUA_API void lua_rawseti (lua_State *L, int idx, lua_Integer n) { Table *t; lua_lock(L); api_checknelems(L, 1); t = gettable(L, idx); luaH_setint(L, t, n, s2v(L->top - 1)); luaC_barrierback(L, obj2gco(t), s2v(L->top - 1)); L->top--; lua_unlock(L); } LUA_API int lua_setmetatable (lua_State *L, int objindex) { TValue *obj; Table *mt; lua_lock(L); api_checknelems(L, 1); obj = index2value(L, objindex); if (ttisnil(s2v(L->top - 1))) mt = NULL; else { api_check(L, ttistable(s2v(L->top - 1)), "table expected"); mt = hvalue(s2v(L->top - 1)); } switch (ttype(obj)) { case LUA_TTABLE: { hvalue(obj)->metatable = mt; if (mt) { luaC_objbarrier(L, gcvalue(obj), mt); luaC_checkfinalizer(L, gcvalue(obj), mt); } break; } case LUA_TUSERDATA: { uvalue(obj)->metatable = mt; if (mt) { luaC_objbarrier(L, uvalue(obj), mt); luaC_checkfinalizer(L, gcvalue(obj), mt); } break; } default: { G(L)->mt[ttype(obj)] = mt; break; } } L->top--; lua_unlock(L); return 1; } LUA_API int lua_setiuservalue (lua_State *L, int idx, int n) { TValue *o; int res; lua_lock(L); api_checknelems(L, 1); o = index2value(L, idx); api_check(L, ttisfulluserdata(o), "full userdata expected"); if (!(cast_uint(n) - 1u < cast_uint(uvalue(o)->nuvalue))) res = 0; /* 'n' not in [1, uvalue(o)->nuvalue] */ else { setobj(L, &uvalue(o)->uv[n - 1].uv, s2v(L->top - 1)); luaC_barrierback(L, gcvalue(o), s2v(L->top - 1)); res = 1; } L->top--; lua_unlock(L); return res; } /* ** 'load' and 'call' functions (run Lua code) */ #define checkresults(L,na,nr) \ api_check(L, (nr) == LUA_MULTRET || (L->ci->top - L->top >= (nr) - (na)), \ "results from function overflow current stack size") LUA_API void lua_callk (lua_State *L, int nargs, int nresults, lua_KContext ctx, lua_KFunction k) { StkId func; lua_lock(L); api_check(L, k == NULL || !isLua(L->ci), "cannot use continuations inside hooks"); api_checknelems(L, nargs+1); api_check(L, L->status == LUA_OK, "cannot do calls on non-normal thread"); checkresults(L, nargs, nresults); func = L->top - (nargs+1); if (k != NULL && yieldable(L)) { /* need to prepare continuation? */ L->ci->u.c.k = k; /* save continuation */ L->ci->u.c.ctx = ctx; /* save context */ luaD_call(L, func, nresults); /* do the call */ } else /* no continuation or no yieldable */ luaD_callnoyield(L, func, nresults); /* just do the call */ adjustresults(L, nresults); lua_unlock(L); } /* ** Execute a protected call. */ struct CallS { /* data to 'f_call' */ StkId func; int nresults; }; static void f_call (lua_State *L, void *ud) { struct CallS *c = cast(struct CallS *, ud); luaD_callnoyield(L, c->func, c->nresults); } LUA_API int lua_pcallk (lua_State *L, int nargs, int nresults, int errfunc, lua_KContext ctx, lua_KFunction k) { struct CallS c; int status; ptrdiff_t func; lua_lock(L); api_check(L, k == NULL || !isLua(L->ci), "cannot use continuations inside hooks"); api_checknelems(L, nargs+1); api_check(L, L->status == LUA_OK, "cannot do calls on non-normal thread"); checkresults(L, nargs, nresults); if (errfunc == 0) func = 0; else { StkId o = index2stack(L, errfunc); api_check(L, ttisfunction(s2v(o)), "error handler must be a function"); func = savestack(L, o); } c.func = L->top - (nargs+1); /* function to be called */ if (k == NULL || !yieldable(L)) { /* no continuation or no yieldable? */ c.nresults = nresults; /* do a 'conventional' protected call */ status = luaD_pcall(L, f_call, &c, savestack(L, c.func), func); } else { /* prepare continuation (call is already protected by 'resume') */ CallInfo *ci = L->ci; ci->u.c.k = k; /* save continuation */ ci->u.c.ctx = ctx; /* save context */ /* save information for error recovery */ ci->u2.funcidx = cast_int(savestack(L, c.func)); ci->u.c.old_errfunc = L->errfunc; L->errfunc = func; setoah(ci->callstatus, L->allowhook); /* save value of 'allowhook' */ ci->callstatus |= CIST_YPCALL; /* function can do error recovery */ luaD_call(L, c.func, nresults); /* do the call */ ci->callstatus &= ~CIST_YPCALL; L->errfunc = ci->u.c.old_errfunc; status = LUA_OK; /* if it is here, there were no errors */ } adjustresults(L, nresults); lua_unlock(L); return status; } LUA_API int lua_load (lua_State *L, lua_Reader reader, void *data, const char *chunkname, const char *mode) { ZIO z; int status; lua_lock(L); if (!chunkname) chunkname = "?"; luaZ_init(L, &z, reader, data); status = luaD_protectedparser(L, &z, chunkname, mode); if (status == LUA_OK) { /* no errors? */ LClosure *f = clLvalue(s2v(L->top - 1)); /* get newly created function */ if (f->nupvalues >= 1) { /* does it have an upvalue? */ /* get global table from registry */ const TValue *gt = getGtable(L); /* set global table as 1st upvalue of 'f' (may be LUA_ENV) */ setobj(L, f->upvals[0]->v, gt); luaC_barrier(L, f->upvals[0], gt); } } lua_unlock(L); return status; } LUA_API int lua_dump (lua_State *L, lua_Writer writer, void *data, int strip) { int status; TValue *o; lua_lock(L); api_checknelems(L, 1); o = s2v(L->top - 1); if (isLfunction(o)) status = luaU_dump(L, getproto(o), writer, data, strip); else status = 1; lua_unlock(L); return status; } LUA_API int lua_status (lua_State *L) { return L->status; } /* ** Garbage-collection function */ LUA_API int lua_gc (lua_State *L, int what, ...) { va_list argp; int res = 0; global_State *g = G(L); if (g->gcstp & GCSTPGC) /* internal stop? */ return -1; /* all options are invalid when stopped */ lua_lock(L); va_start(argp, what); switch (what) { case LUA_GCSTOP: { g->gcstp = GCSTPUSR; /* stopped by the user */ break; } case LUA_GCRESTART: { luaE_setdebt(g, 0); g->gcstp = 0; /* (GCSTPGC must be already zero here) */ break; } case LUA_GCCOLLECT: { luaC_fullgc(L, 0); break; } case LUA_GCCOUNT: { /* GC values are expressed in Kbytes: #bytes/2^10 */ res = cast_int(gettotalbytes(g) >> 10); break; } case LUA_GCCOUNTB: { res = cast_int(gettotalbytes(g) & 0x3ff); break; } case LUA_GCSTEP: { int data = va_arg(argp, int); l_mem debt = 1; /* =1 to signal that it did an actual step */ lu_byte oldstp = g->gcstp; g->gcstp = 0; /* allow GC to run (GCSTPGC must be zero here) */ if (data == 0) { luaE_setdebt(g, 0); /* do a basic step */ luaC_step(L); } else { /* add 'data' to total debt */ debt = cast(l_mem, data) * 1024 + g->GCdebt; luaE_setdebt(g, debt); luaC_checkGC(L); } g->gcstp = oldstp; /* restore previous state */ if (debt > 0 && g->gcstate == GCSpause) /* end of cycle? */ res = 1; /* signal it */ break; } case LUA_GCSETPAUSE: { int data = va_arg(argp, int); res = getgcparam(g->gcpause); setgcparam(g->gcpause, data); break; } case LUA_GCSETSTEPMUL: { int data = va_arg(argp, int); res = getgcparam(g->gcstepmul); setgcparam(g->gcstepmul, data); break; } case LUA_GCISRUNNING: { res = gcrunning(g); break; } case LUA_GCGEN: { int minormul = va_arg(argp, int); int majormul = va_arg(argp, int); res = isdecGCmodegen(g) ? LUA_GCGEN : LUA_GCINC; if (minormul != 0) g->genminormul = minormul; if (majormul != 0) setgcparam(g->genmajormul, majormul); luaC_changemode(L, KGC_GEN); break; } case LUA_GCINC: { int pause = va_arg(argp, int); int stepmul = va_arg(argp, int); int stepsize = va_arg(argp, int); res = isdecGCmodegen(g) ? LUA_GCGEN : LUA_GCINC; if (pause != 0) setgcparam(g->gcpause, pause); if (stepmul != 0) setgcparam(g->gcstepmul, stepmul); if (stepsize != 0) g->gcstepsize = stepsize; luaC_changemode(L, KGC_INC); break; } default: res = -1; /* invalid option */ } va_end(argp); lua_unlock(L); return res; } /* ** miscellaneous functions */ LUA_API int lua_error (lua_State *L) { TValue *errobj; lua_lock(L); errobj = s2v(L->top - 1); api_checknelems(L, 1); /* error object is the memory error message? */ if (ttisshrstring(errobj) && eqshrstr(tsvalue(errobj), G(L)->memerrmsg)) luaM_error(L); /* raise a memory error */ else luaG_errormsg(L); /* raise a regular error */ /* code unreachable; will unlock when control actually leaves the kernel */ return 0; /* to avoid warnings */ } LUA_API int lua_next (lua_State *L, int idx) { Table *t; int more; lua_lock(L); api_checknelems(L, 1); t = gettable(L, idx); more = luaH_next(L, t, L->top - 1); if (more) { api_incr_top(L); } else /* no more elements */ L->top -= 1; /* remove key */ lua_unlock(L); return more; } LUA_API void lua_toclose (lua_State *L, int idx) { int nresults; StkId o; lua_lock(L); o = index2stack(L, idx); nresults = L->ci->nresults; api_check(L, L->tbclist < o, "given index below or equal a marked one"); luaF_newtbcupval(L, o); /* create new to-be-closed upvalue */ if (!hastocloseCfunc(nresults)) /* function not marked yet? */ L->ci->nresults = codeNresults(nresults); /* mark it */ lua_assert(hastocloseCfunc(L->ci->nresults)); lua_unlock(L); } LUA_API void lua_concat (lua_State *L, int n) { lua_lock(L); api_checknelems(L, n); if (n > 0) luaV_concat(L, n); else { /* nothing to concatenate */ setsvalue2s(L, L->top, luaS_newlstr(L, "", 0)); /* push empty string */ api_incr_top(L); } luaC_checkGC(L); lua_unlock(L); } LUA_API void lua_len (lua_State *L, int idx) { TValue *t; lua_lock(L); t = index2value(L, idx); luaV_objlen(L, L->top, t); api_incr_top(L); lua_unlock(L); } LUA_API lua_Alloc lua_getallocf (lua_State *L, void **ud) { lua_Alloc f; lua_lock(L); if (ud) *ud = G(L)->ud; f = G(L)->frealloc; lua_unlock(L); return f; } LUA_API void lua_setallocf (lua_State *L, lua_Alloc f, void *ud) { lua_lock(L); G(L)->ud = ud; G(L)->frealloc = f; lua_unlock(L); } void lua_setwarnf (lua_State *L, lua_WarnFunction f, void *ud) { lua_lock(L); G(L)->ud_warn = ud; G(L)->warnf = f; lua_unlock(L); } void lua_warning (lua_State *L, const char *msg, int tocont) { lua_lock(L); luaE_warning(L, msg, tocont); lua_unlock(L); } LUA_API void *lua_newuserdatauv (lua_State *L, size_t size, int nuvalue) { Udata *u; lua_lock(L); api_check(L, 0 <= nuvalue && nuvalue < USHRT_MAX, "invalid value"); u = luaS_newudata(L, size, nuvalue); setuvalue(L, s2v(L->top), u); api_incr_top(L); luaC_checkGC(L); lua_unlock(L); return getudatamem(u); } static const char *aux_upvalue (TValue *fi, int n, TValue **val, GCObject **owner) { switch (ttypetag(fi)) { case LUA_VCCL: { /* C closure */ CClosure *f = clCvalue(fi); if (!(cast_uint(n) - 1u < cast_uint(f->nupvalues))) return NULL; /* 'n' not in [1, f->nupvalues] */ *val = &f->upvalue[n-1]; if (owner) *owner = obj2gco(f); return ""; } case LUA_VLCL: { /* Lua closure */ LClosure *f = clLvalue(fi); TString *name; Proto *p = f->p; if (!(cast_uint(n) - 1u < cast_uint(p->sizeupvalues))) return NULL; /* 'n' not in [1, p->sizeupvalues] */ *val = f->upvals[n-1]->v; if (owner) *owner = obj2gco(f->upvals[n - 1]); name = p->upvalues[n-1].name; return (name == NULL) ? "(no name)" : getstr(name); } default: return NULL; /* not a closure */ } } LUA_API const char *lua_getupvalue (lua_State *L, int funcindex, int n) { const char *name; TValue *val = NULL; /* to avoid warnings */ lua_lock(L); name = aux_upvalue(index2value(L, funcindex), n, &val, NULL); if (name) { setobj2s(L, L->top, val); api_incr_top(L); } lua_unlock(L); return name; } LUA_API const char *lua_setupvalue (lua_State *L, int funcindex, int n) { const char *name; TValue *val = NULL; /* to avoid warnings */ GCObject *owner = NULL; /* to avoid warnings */ TValue *fi; lua_lock(L); fi = index2value(L, funcindex); api_checknelems(L, 1); name = aux_upvalue(fi, n, &val, &owner); if (name) { L->top--; setobj(L, val, s2v(L->top)); luaC_barrier(L, owner, val); } lua_unlock(L); return name; } static UpVal **getupvalref (lua_State *L, int fidx, int n, LClosure **pf) { static const UpVal *const nullup = NULL; LClosure *f; TValue *fi = index2value(L, fidx); api_check(L, ttisLclosure(fi), "Lua function expected"); f = clLvalue(fi); if (pf) *pf = f; if (1 <= n && n <= f->p->sizeupvalues) return &f->upvals[n - 1]; /* get its upvalue pointer */ else return (UpVal**)&nullup; } LUA_API void *lua_upvalueid (lua_State *L, int fidx, int n) { TValue *fi = index2value(L, fidx); switch (ttypetag(fi)) { case LUA_VLCL: { /* lua closure */ return *getupvalref(L, fidx, n, NULL); } case LUA_VCCL: { /* C closure */ CClosure *f = clCvalue(fi); if (1 <= n && n <= f->nupvalues) return &f->upvalue[n - 1]; /* else */ } /* FALLTHROUGH */ case LUA_VLCF: return NULL; /* light C functions have no upvalues */ default: { api_check(L, 0, "function expected"); return NULL; } } } LUA_API void lua_upvaluejoin (lua_State *L, int fidx1, int n1, int fidx2, int n2) { LClosure *f1; UpVal **up1 = getupvalref(L, fidx1, n1, &f1); UpVal **up2 = getupvalref(L, fidx2, n2, NULL); api_check(L, *up1 != NULL && *up2 != NULL, "invalid upvalue index"); *up1 = *up2; luaC_objbarrier(L, f1, *up1); } /* ** $Id: lauxlib.c $ ** Auxiliary functions for building Lua libraries ** See Copyright Notice in lua.h */ #define lauxlib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include #include /* ** This file uses only the official API of Lua. ** Any function declared here could be written as an application function. */ /*#include "lua.h"*/ /*#include "lauxlib.h"*/ #if !defined(MAX_SIZET) /* maximum value for size_t */ #define MAX_SIZET ((size_t)(~(size_t)0)) #endif /* ** {====================================================== ** Traceback ** ======================================================= */ #define LEVELS1 10 /* size of the first part of the stack */ #define LEVELS2 11 /* size of the second part of the stack */ /* ** Search for 'objidx' in table at index -1. ('objidx' must be an ** absolute index.) Return 1 + string at top if it found a good name. */ static int findfield (lua_State *L, int objidx, int level) { if (level == 0 || !lua_istable(L, -1)) return 0; /* not found */ lua_pushnil(L); /* start 'next' loop */ while (lua_next(L, -2)) { /* for each pair in table */ if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */ if (lua_rawequal(L, objidx, -1)) { /* found object? */ lua_pop(L, 1); /* remove value (but keep name) */ return 1; } else if (findfield(L, objidx, level - 1)) { /* try recursively */ /* stack: lib_name, lib_table, field_name (top) */ lua_pushliteral(L, "."); /* place '.' between the two names */ lua_replace(L, -3); /* (in the slot occupied by table) */ lua_concat(L, 3); /* lib_name.field_name */ return 1; } } lua_pop(L, 1); /* remove value */ } return 0; /* not found */ } /* ** Search for a name for a function in all loaded modules */ static int pushglobalfuncname (lua_State *L, lua_Debug *ar) { int top = lua_gettop(L); lua_getinfo(L, "f", ar); /* push function */ lua_getfield(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE); if (findfield(L, top + 1, 2)) { const char *name = lua_tostring(L, -1); if (strncmp(name, LUA_GNAME ".", 3) == 0) { /* name start with '_G.'? */ lua_pushstring(L, name + 3); /* push name without prefix */ lua_remove(L, -2); /* remove original name */ } lua_copy(L, -1, top + 1); /* copy name to proper place */ lua_settop(L, top + 1); /* remove table "loaded" and name copy */ return 1; } else { lua_settop(L, top); /* remove function and global table */ return 0; } } static void pushfuncname (lua_State *L, lua_Debug *ar) { if (pushglobalfuncname(L, ar)) { /* try first a global name */ lua_pushfstring(L, "function '%s'", lua_tostring(L, -1)); lua_remove(L, -2); /* remove name */ } else if (*ar->namewhat != '\0') /* is there a name from code? */ lua_pushfstring(L, "%s '%s'", ar->namewhat, ar->name); /* use it */ else if (*ar->what == 'm') /* main? */ lua_pushliteral(L, "main chunk"); else if (*ar->what != 'C') /* for Lua functions, use */ lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined); else /* nothing left... */ lua_pushliteral(L, "?"); } static int lastlevel (lua_State *L) { lua_Debug ar; int li = 1, le = 1; /* find an upper bound */ while (lua_getstack(L, le, &ar)) { li = le; le *= 2; } /* do a binary search */ while (li < le) { int m = (li + le)/2; if (lua_getstack(L, m, &ar)) li = m + 1; else le = m; } return le - 1; } LUALIB_API void luaL_traceback (lua_State *L, lua_State *L1, const char *msg, int level) { luaL_Buffer b; lua_Debug ar; int last = lastlevel(L1); int limit2show = (last - level > LEVELS1 + LEVELS2) ? LEVELS1 : -1; luaL_buffinit(L, &b); if (msg) { luaL_addstring(&b, msg); luaL_addchar(&b, '\n'); } luaL_addstring(&b, "stack traceback:"); while (lua_getstack(L1, level++, &ar)) { if (limit2show-- == 0) { /* too many levels? */ int n = last - level - LEVELS2 + 1; /* number of levels to skip */ lua_pushfstring(L, "\n\t...\t(skipping %d levels)", n); luaL_addvalue(&b); /* add warning about skip */ level += n; /* and skip to last levels */ } else { lua_getinfo(L1, "Slnt", &ar); if (ar.currentline <= 0) lua_pushfstring(L, "\n\t%s: in ", ar.short_src); else lua_pushfstring(L, "\n\t%s:%d: in ", ar.short_src, ar.currentline); luaL_addvalue(&b); pushfuncname(L, &ar); luaL_addvalue(&b); if (ar.istailcall) luaL_addstring(&b, "\n\t(...tail calls...)"); } } luaL_pushresult(&b); } /* }====================================================== */ /* ** {====================================================== ** Error-report functions ** ======================================================= */ LUALIB_API int luaL_argerror (lua_State *L, int arg, const char *extramsg) { lua_Debug ar; if (!lua_getstack(L, 0, &ar)) /* no stack frame? */ return luaL_error(L, "bad argument #%d (%s)", arg, extramsg); lua_getinfo(L, "n", &ar); if (strcmp(ar.namewhat, "method") == 0) { arg--; /* do not count 'self' */ if (arg == 0) /* error is in the self argument itself? */ return luaL_error(L, "calling '%s' on bad self (%s)", ar.name, extramsg); } if (ar.name == NULL) ar.name = (pushglobalfuncname(L, &ar)) ? lua_tostring(L, -1) : "?"; return luaL_error(L, "bad argument #%d to '%s' (%s)", arg, ar.name, extramsg); } LUALIB_API int luaL_typeerror (lua_State *L, int arg, const char *tname) { const char *msg; const char *typearg; /* name for the type of the actual argument */ if (luaL_getmetafield(L, arg, "__name") == LUA_TSTRING) typearg = lua_tostring(L, -1); /* use the given type name */ else if (lua_type(L, arg) == LUA_TLIGHTUSERDATA) typearg = "light userdata"; /* special name for messages */ else typearg = luaL_typename(L, arg); /* standard name */ msg = lua_pushfstring(L, "%s expected, got %s", tname, typearg); return luaL_argerror(L, arg, msg); } static void tag_error (lua_State *L, int arg, int tag) { luaL_typeerror(L, arg, lua_typename(L, tag)); } /* ** The use of 'lua_pushfstring' ensures this function does not ** need reserved stack space when called. */ LUALIB_API void luaL_where (lua_State *L, int level) { lua_Debug ar; if (lua_getstack(L, level, &ar)) { /* check function at level */ lua_getinfo(L, "Sl", &ar); /* get info about it */ if (ar.currentline > 0) { /* is there info? */ lua_pushfstring(L, "%s:%d: ", ar.short_src, ar.currentline); return; } } lua_pushfstring(L, ""); /* else, no information available... */ } /* ** Again, the use of 'lua_pushvfstring' ensures this function does ** not need reserved stack space when called. (At worst, it generates ** an error with "stack overflow" instead of the given message.) */ LUALIB_API int luaL_error (lua_State *L, const char *fmt, ...) { va_list argp; va_start(argp, fmt); luaL_where(L, 1); lua_pushvfstring(L, fmt, argp); va_end(argp); lua_concat(L, 2); return lua_error(L); } LUALIB_API int luaL_fileresult (lua_State *L, int stat, const char *fname) { int en = errno; /* calls to Lua API may change this value */ if (stat) { lua_pushboolean(L, 1); return 1; } else { luaL_pushfail(L); if (fname) lua_pushfstring(L, "%s: %s", fname, strerror(en)); else lua_pushstring(L, strerror(en)); lua_pushinteger(L, en); return 3; } } #if !defined(l_inspectstat) /* { */ #if defined(LUA_USE_POSIX) #include /* ** use appropriate macros to interpret 'pclose' return status */ #define l_inspectstat(stat,what) \ if (WIFEXITED(stat)) { stat = WEXITSTATUS(stat); } \ else if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); what = "signal"; } #else #define l_inspectstat(stat,what) /* no op */ #endif #endif /* } */ LUALIB_API int luaL_execresult (lua_State *L, int stat) { if (stat != 0 && errno != 0) /* error with an 'errno'? */ return luaL_fileresult(L, 0, NULL); else { const char *what = "exit"; /* type of termination */ l_inspectstat(stat, what); /* interpret result */ if (*what == 'e' && stat == 0) /* successful termination? */ lua_pushboolean(L, 1); else luaL_pushfail(L); lua_pushstring(L, what); lua_pushinteger(L, stat); return 3; /* return true/fail,what,code */ } } /* }====================================================== */ /* ** {====================================================== ** Userdata's metatable manipulation ** ======================================================= */ LUALIB_API int luaL_newmetatable (lua_State *L, const char *tname) { if (luaL_getmetatable(L, tname) != LUA_TNIL) /* name already in use? */ return 0; /* leave previous value on top, but return 0 */ lua_pop(L, 1); lua_createtable(L, 0, 2); /* create metatable */ lua_pushstring(L, tname); lua_setfield(L, -2, "__name"); /* metatable.__name = tname */ lua_pushvalue(L, -1); lua_setfield(L, LUA_REGISTRYINDEX, tname); /* registry.name = metatable */ return 1; } LUALIB_API void luaL_setmetatable (lua_State *L, const char *tname) { luaL_getmetatable(L, tname); lua_setmetatable(L, -2); } LUALIB_API void *luaL_testudata (lua_State *L, int ud, const char *tname) { void *p = lua_touserdata(L, ud); if (p != NULL) { /* value is a userdata? */ if (lua_getmetatable(L, ud)) { /* does it have a metatable? */ luaL_getmetatable(L, tname); /* get correct metatable */ if (!lua_rawequal(L, -1, -2)) /* not the same? */ p = NULL; /* value is a userdata with wrong metatable */ lua_pop(L, 2); /* remove both metatables */ return p; } } return NULL; /* value is not a userdata with a metatable */ } LUALIB_API void *luaL_checkudata (lua_State *L, int ud, const char *tname) { void *p = luaL_testudata(L, ud, tname); luaL_argexpected(L, p != NULL, ud, tname); return p; } /* }====================================================== */ /* ** {====================================================== ** Argument check functions ** ======================================================= */ LUALIB_API int luaL_checkoption (lua_State *L, int arg, const char *def, const char *const lst[]) { const char *name = (def) ? luaL_optstring(L, arg, def) : luaL_checkstring(L, arg); int i; for (i=0; lst[i]; i++) if (strcmp(lst[i], name) == 0) return i; return luaL_argerror(L, arg, lua_pushfstring(L, "invalid option '%s'", name)); } /* ** Ensures the stack has at least 'space' extra slots, raising an error ** if it cannot fulfill the request. (The error handling needs a few ** extra slots to format the error message. In case of an error without ** this extra space, Lua will generate the same 'stack overflow' error, ** but without 'msg'.) */ LUALIB_API void luaL_checkstack (lua_State *L, int space, const char *msg) { if (l_unlikely(!lua_checkstack(L, space))) { if (msg) luaL_error(L, "stack overflow (%s)", msg); else luaL_error(L, "stack overflow"); } } LUALIB_API void luaL_checktype (lua_State *L, int arg, int t) { if (l_unlikely(lua_type(L, arg) != t)) tag_error(L, arg, t); } LUALIB_API void luaL_checkany (lua_State *L, int arg) { if (l_unlikely(lua_type(L, arg) == LUA_TNONE)) luaL_argerror(L, arg, "value expected"); } LUALIB_API const char *luaL_checklstring (lua_State *L, int arg, size_t *len) { const char *s = lua_tolstring(L, arg, len); if (l_unlikely(!s)) tag_error(L, arg, LUA_TSTRING); return s; } LUALIB_API const char *luaL_optlstring (lua_State *L, int arg, const char *def, size_t *len) { if (lua_isnoneornil(L, arg)) { if (len) *len = (def ? strlen(def) : 0); return def; } else return luaL_checklstring(L, arg, len); } LUALIB_API lua_Number luaL_checknumber (lua_State *L, int arg) { int isnum; lua_Number d = lua_tonumberx(L, arg, &isnum); if (l_unlikely(!isnum)) tag_error(L, arg, LUA_TNUMBER); return d; } LUALIB_API lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number def) { return luaL_opt(L, luaL_checknumber, arg, def); } static void interror (lua_State *L, int arg) { if (lua_isnumber(L, arg)) luaL_argerror(L, arg, "number has no integer representation"); else tag_error(L, arg, LUA_TNUMBER); } LUALIB_API lua_Integer luaL_checkinteger (lua_State *L, int arg) { int isnum; lua_Integer d = lua_tointegerx(L, arg, &isnum); if (l_unlikely(!isnum)) { interror(L, arg); } return d; } LUALIB_API lua_Integer luaL_optinteger (lua_State *L, int arg, lua_Integer def) { return luaL_opt(L, luaL_checkinteger, arg, def); } /* }====================================================== */ /* ** {====================================================== ** Generic Buffer manipulation ** ======================================================= */ /* userdata to box arbitrary data */ typedef struct UBox { void *box; size_t bsize; } UBox; static void *resizebox (lua_State *L, int idx, size_t newsize) { void *ud; lua_Alloc allocf = lua_getallocf(L, &ud); UBox *box = (UBox *)lua_touserdata(L, idx); void *temp = allocf(ud, box->box, box->bsize, newsize); if (l_unlikely(temp == NULL && newsize > 0)) { /* allocation error? */ lua_pushliteral(L, "not enough memory"); lua_error(L); /* raise a memory error */ } box->box = temp; box->bsize = newsize; return temp; } static int boxgc (lua_State *L) { resizebox(L, 1, 0); return 0; } static const luaL_Reg boxmt[] = { /* box metamethods */ {"__gc", boxgc}, {"__close", boxgc}, {NULL, NULL} }; static void newbox (lua_State *L) { UBox *box = (UBox *)lua_newuserdatauv(L, sizeof(UBox), 0); box->box = NULL; box->bsize = 0; if (luaL_newmetatable(L, "_UBOX*")) /* creating metatable? */ luaL_setfuncs(L, boxmt, 0); /* set its metamethods */ lua_setmetatable(L, -2); } /* ** check whether buffer is using a userdata on the stack as a temporary ** buffer */ #define buffonstack(B) ((B)->b != (B)->init.b) /* ** Whenever buffer is accessed, slot 'idx' must either be a box (which ** cannot be NULL) or it is a placeholder for the buffer. */ #define checkbufferlevel(B,idx) \ lua_assert(buffonstack(B) ? lua_touserdata(B->L, idx) != NULL \ : lua_touserdata(B->L, idx) == (void*)B) /* ** Compute new size for buffer 'B', enough to accommodate extra 'sz' ** bytes. */ static size_t newbuffsize (luaL_Buffer *B, size_t sz) { size_t newsize = B->size * 2; /* double buffer size */ if (l_unlikely(MAX_SIZET - sz < B->n)) /* overflow in (B->n + sz)? */ return luaL_error(B->L, "buffer too large"); if (newsize < B->n + sz) /* double is not big enough? */ newsize = B->n + sz; return newsize; } /* ** Returns a pointer to a free area with at least 'sz' bytes in buffer ** 'B'. 'boxidx' is the relative position in the stack where is the ** buffer's box or its placeholder. */ static char *prepbuffsize (luaL_Buffer *B, size_t sz, int boxidx) { checkbufferlevel(B, boxidx); if (B->size - B->n >= sz) /* enough space? */ return B->b + B->n; else { lua_State *L = B->L; char *newbuff; size_t newsize = newbuffsize(B, sz); /* create larger buffer */ if (buffonstack(B)) /* buffer already has a box? */ newbuff = (char *)resizebox(L, boxidx, newsize); /* resize it */ else { /* no box yet */ lua_remove(L, boxidx); /* remove placeholder */ newbox(L); /* create a new box */ lua_insert(L, boxidx); /* move box to its intended position */ lua_toclose(L, boxidx); newbuff = (char *)resizebox(L, boxidx, newsize); memcpy(newbuff, B->b, B->n * sizeof(char)); /* copy original content */ } B->b = newbuff; B->size = newsize; return newbuff + B->n; } } /* ** returns a pointer to a free area with at least 'sz' bytes */ LUALIB_API char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz) { return prepbuffsize(B, sz, -1); } LUALIB_API void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l) { if (l > 0) { /* avoid 'memcpy' when 's' can be NULL */ char *b = prepbuffsize(B, l, -1); memcpy(b, s, l * sizeof(char)); luaL_addsize(B, l); } } LUALIB_API void luaL_addstring (luaL_Buffer *B, const char *s) { luaL_addlstring(B, s, strlen(s)); } LUALIB_API void luaL_pushresult (luaL_Buffer *B) { lua_State *L = B->L; checkbufferlevel(B, -1); lua_pushlstring(L, B->b, B->n); if (buffonstack(B)) lua_closeslot(L, -2); /* close the box */ lua_remove(L, -2); /* remove box or placeholder from the stack */ } LUALIB_API void luaL_pushresultsize (luaL_Buffer *B, size_t sz) { luaL_addsize(B, sz); luaL_pushresult(B); } /* ** 'luaL_addvalue' is the only function in the Buffer system where the ** box (if existent) is not on the top of the stack. So, instead of ** calling 'luaL_addlstring', it replicates the code using -2 as the ** last argument to 'prepbuffsize', signaling that the box is (or will ** be) bellow the string being added to the buffer. (Box creation can ** trigger an emergency GC, so we should not remove the string from the ** stack before we have the space guaranteed.) */ LUALIB_API void luaL_addvalue (luaL_Buffer *B) { lua_State *L = B->L; size_t len; const char *s = lua_tolstring(L, -1, &len); char *b = prepbuffsize(B, len, -2); memcpy(b, s, len * sizeof(char)); luaL_addsize(B, len); lua_pop(L, 1); /* pop string */ } LUALIB_API void luaL_buffinit (lua_State *L, luaL_Buffer *B) { B->L = L; B->b = B->init.b; B->n = 0; B->size = LUAL_BUFFERSIZE; lua_pushlightuserdata(L, (void*)B); /* push placeholder */ } LUALIB_API char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz) { luaL_buffinit(L, B); return prepbuffsize(B, sz, -1); } /* }====================================================== */ /* ** {====================================================== ** Reference system ** ======================================================= */ /* index of free-list header (after the predefined values) */ #define freelist (LUA_RIDX_LAST + 1) /* ** The previously freed references form a linked list: ** t[freelist] is the index of a first free index, or zero if list is ** empty; t[t[freelist]] is the index of the second element; etc. */ LUALIB_API int luaL_ref (lua_State *L, int t) { int ref; if (lua_isnil(L, -1)) { lua_pop(L, 1); /* remove from stack */ return LUA_REFNIL; /* 'nil' has a unique fixed reference */ } t = lua_absindex(L, t); if (lua_rawgeti(L, t, freelist) == LUA_TNIL) { /* first access? */ ref = 0; /* list is empty */ lua_pushinteger(L, 0); /* initialize as an empty list */ lua_rawseti(L, t, freelist); /* ref = t[freelist] = 0 */ } else { /* already initialized */ lua_assert(lua_isinteger(L, -1)); ref = (int)lua_tointeger(L, -1); /* ref = t[freelist] */ } lua_pop(L, 1); /* remove element from stack */ if (ref != 0) { /* any free element? */ lua_rawgeti(L, t, ref); /* remove it from list */ lua_rawseti(L, t, freelist); /* (t[freelist] = t[ref]) */ } else /* no free elements */ ref = (int)lua_rawlen(L, t) + 1; /* get a new reference */ lua_rawseti(L, t, ref); return ref; } LUALIB_API void luaL_unref (lua_State *L, int t, int ref) { if (ref >= 0) { t = lua_absindex(L, t); lua_rawgeti(L, t, freelist); lua_assert(lua_isinteger(L, -1)); lua_rawseti(L, t, ref); /* t[ref] = t[freelist] */ lua_pushinteger(L, ref); lua_rawseti(L, t, freelist); /* t[freelist] = ref */ } } /* }====================================================== */ /* ** {====================================================== ** Load functions ** ======================================================= */ typedef struct LoadF { int n; /* number of pre-read characters */ FILE *f; /* file being read */ char buff[BUFSIZ]; /* area for reading file */ } LoadF; static const char *getF (lua_State *L, void *ud, size_t *size) { LoadF *lf = (LoadF *)ud; (void)L; /* not used */ if (lf->n > 0) { /* are there pre-read characters to be read? */ *size = lf->n; /* return them (chars already in buffer) */ lf->n = 0; /* no more pre-read characters */ } else { /* read a block from file */ /* 'fread' can return > 0 *and* set the EOF flag. If next call to 'getF' called 'fread', it might still wait for user input. The next check avoids this problem. */ if (feof(lf->f)) return NULL; *size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */ } return lf->buff; } static int errfile (lua_State *L, const char *what, int fnameindex) { const char *serr = strerror(errno); const char *filename = lua_tostring(L, fnameindex) + 1; lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr); lua_remove(L, fnameindex); return LUA_ERRFILE; } static int skipBOM (LoadF *lf) { const char *p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */ int c; lf->n = 0; do { c = getc(lf->f); if (c == EOF || c != *(const unsigned char *)p++) return c; lf->buff[lf->n++] = c; /* to be read by the parser */ } while (*p != '\0'); lf->n = 0; /* prefix matched; discard it */ return getc(lf->f); /* return next character */ } /* ** reads the first character of file 'f' and skips an optional BOM mark ** in its beginning plus its first line if it starts with '#'. Returns ** true if it skipped the first line. In any case, '*cp' has the ** first "valid" character of the file (after the optional BOM and ** a first-line comment). */ static int skipcomment (LoadF *lf, int *cp) { int c = *cp = skipBOM(lf); if (c == '#') { /* first line is a comment (Unix exec. file)? */ do { /* skip first line */ c = getc(lf->f); } while (c != EOF && c != '\n'); *cp = getc(lf->f); /* skip end-of-line, if present */ return 1; /* there was a comment */ } else return 0; /* no comment */ } LUALIB_API int luaL_loadfilex (lua_State *L, const char *filename, const char *mode) { LoadF lf; int status, readstatus; int c; int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */ if (filename == NULL) { lua_pushliteral(L, "=stdin"); lf.f = stdin; } else { lua_pushfstring(L, "@%s", filename); lf.f = fopen(filename, "r"); if (lf.f == NULL) return errfile(L, "open", fnameindex); } if (skipcomment(&lf, &c)) /* read initial portion */ lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */ if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */ lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */ if (lf.f == NULL) return errfile(L, "reopen", fnameindex); skipcomment(&lf, &c); /* re-read initial portion */ } if (c != EOF) lf.buff[lf.n++] = c; /* 'c' is the first character of the stream */ status = lua_load(L, getF, &lf, lua_tostring(L, -1), mode); readstatus = ferror(lf.f); if (filename) fclose(lf.f); /* close file (even in case of errors) */ if (readstatus) { lua_settop(L, fnameindex); /* ignore results from 'lua_load' */ return errfile(L, "read", fnameindex); } lua_remove(L, fnameindex); return status; } typedef struct LoadS { const char *s; size_t size; } LoadS; static const char *getS (lua_State *L, void *ud, size_t *size) { LoadS *ls = (LoadS *)ud; (void)L; /* not used */ if (ls->size == 0) return NULL; *size = ls->size; ls->size = 0; return ls->s; } LUALIB_API int luaL_loadbufferx (lua_State *L, const char *buff, size_t size, const char *name, const char *mode) { LoadS ls; ls.s = buff; ls.size = size; return lua_load(L, getS, &ls, name, mode); } LUALIB_API int luaL_loadstring (lua_State *L, const char *s) { return luaL_loadbuffer(L, s, strlen(s), s); } /* }====================================================== */ LUALIB_API int luaL_getmetafield (lua_State *L, int obj, const char *event) { if (!lua_getmetatable(L, obj)) /* no metatable? */ return LUA_TNIL; else { int tt; lua_pushstring(L, event); tt = lua_rawget(L, -2); if (tt == LUA_TNIL) /* is metafield nil? */ lua_pop(L, 2); /* remove metatable and metafield */ else lua_remove(L, -2); /* remove only metatable */ return tt; /* return metafield type */ } } LUALIB_API int luaL_callmeta (lua_State *L, int obj, const char *event) { obj = lua_absindex(L, obj); if (luaL_getmetafield(L, obj, event) == LUA_TNIL) /* no metafield? */ return 0; lua_pushvalue(L, obj); lua_call(L, 1, 1); return 1; } LUALIB_API lua_Integer luaL_len (lua_State *L, int idx) { lua_Integer l; int isnum; lua_len(L, idx); l = lua_tointegerx(L, -1, &isnum); if (l_unlikely(!isnum)) luaL_error(L, "object length is not an integer"); lua_pop(L, 1); /* remove object */ return l; } LUALIB_API const char *luaL_tolstring (lua_State *L, int idx, size_t *len) { idx = lua_absindex(L,idx); if (luaL_callmeta(L, idx, "__tostring")) { /* metafield? */ if (!lua_isstring(L, -1)) luaL_error(L, "'__tostring' must return a string"); } else { switch (lua_type(L, idx)) { case LUA_TNUMBER: { if (lua_isinteger(L, idx)) lua_pushfstring(L, "%I", (LUAI_UACINT)lua_tointeger(L, idx)); else lua_pushfstring(L, "%f", (LUAI_UACNUMBER)lua_tonumber(L, idx)); break; } case LUA_TSTRING: lua_pushvalue(L, idx); break; case LUA_TBOOLEAN: lua_pushstring(L, (lua_toboolean(L, idx) ? "true" : "false")); break; case LUA_TNIL: lua_pushliteral(L, "nil"); break; default: { int tt = luaL_getmetafield(L, idx, "__name"); /* try name */ const char *kind = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : luaL_typename(L, idx); lua_pushfstring(L, "%s: %p", kind, lua_topointer(L, idx)); if (tt != LUA_TNIL) lua_remove(L, -2); /* remove '__name' */ break; } } } return lua_tolstring(L, -1, len); } /* ** set functions from list 'l' into table at top - 'nup'; each ** function gets the 'nup' elements at the top as upvalues. ** Returns with only the table at the stack. */ LUALIB_API void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup) { luaL_checkstack(L, nup, "too many upvalues"); for (; l->name != NULL; l++) { /* fill the table with given functions */ if (l->func == NULL) /* place holder? */ lua_pushboolean(L, 0); else { int i; for (i = 0; i < nup; i++) /* copy upvalues to the top */ lua_pushvalue(L, -nup); lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */ } lua_setfield(L, -(nup + 2), l->name); } lua_pop(L, nup); /* remove upvalues */ } /* ** ensure that stack[idx][fname] has a table and push that table ** into the stack */ LUALIB_API int luaL_getsubtable (lua_State *L, int idx, const char *fname) { if (lua_getfield(L, idx, fname) == LUA_TTABLE) return 1; /* table already there */ else { lua_pop(L, 1); /* remove previous result */ idx = lua_absindex(L, idx); lua_newtable(L); lua_pushvalue(L, -1); /* copy to be left at top */ lua_setfield(L, idx, fname); /* assign new table to field */ return 0; /* false, because did not find table there */ } } /* ** Stripped-down 'require': After checking "loaded" table, calls 'openf' ** to open a module, registers the result in 'package.loaded' table and, ** if 'glb' is true, also registers the result in the global table. ** Leaves resulting module on the top. */ LUALIB_API void luaL_requiref (lua_State *L, const char *modname, lua_CFunction openf, int glb) { luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE); lua_getfield(L, -1, modname); /* LOADED[modname] */ if (!lua_toboolean(L, -1)) { /* package not already loaded? */ lua_pop(L, 1); /* remove field */ lua_pushcfunction(L, openf); lua_pushstring(L, modname); /* argument to open function */ lua_call(L, 1, 1); /* call 'openf' to open module */ lua_pushvalue(L, -1); /* make copy of module (call result) */ lua_setfield(L, -3, modname); /* LOADED[modname] = module */ } lua_remove(L, -2); /* remove LOADED table */ if (glb) { lua_pushvalue(L, -1); /* copy of module */ lua_setglobal(L, modname); /* _G[modname] = module */ } } LUALIB_API void luaL_addgsub (luaL_Buffer *b, const char *s, const char *p, const char *r) { const char *wild; size_t l = strlen(p); while ((wild = strstr(s, p)) != NULL) { luaL_addlstring(b, s, wild - s); /* push prefix */ luaL_addstring(b, r); /* push replacement in place of pattern */ s = wild + l; /* continue after 'p' */ } luaL_addstring(b, s); /* push last suffix */ } LUALIB_API const char *luaL_gsub (lua_State *L, const char *s, const char *p, const char *r) { luaL_Buffer b; luaL_buffinit(L, &b); luaL_addgsub(&b, s, p, r); luaL_pushresult(&b); return lua_tostring(L, -1); } static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) { (void)ud; (void)osize; /* not used */ if (nsize == 0) { free(ptr); return NULL; } else return realloc(ptr, nsize); } static int panic (lua_State *L) { const char *msg = lua_tostring(L, -1); if (msg == NULL) msg = "error object is not a string"; lua_writestringerror("PANIC: unprotected error in call to Lua API (%s)\n", msg); return 0; /* return to Lua to abort */ } /* ** Warning functions: ** warnfoff: warning system is off ** warnfon: ready to start a new message ** warnfcont: previous message is to be continued */ static void warnfoff (void *ud, const char *message, int tocont); static void warnfon (void *ud, const char *message, int tocont); static void warnfcont (void *ud, const char *message, int tocont); /* ** Check whether message is a control message. If so, execute the ** control or ignore it if unknown. */ static int checkcontrol (lua_State *L, const char *message, int tocont) { if (tocont || *(message++) != '@') /* not a control message? */ return 0; else { if (strcmp(message, "off") == 0) lua_setwarnf(L, warnfoff, L); /* turn warnings off */ else if (strcmp(message, "on") == 0) lua_setwarnf(L, warnfon, L); /* turn warnings on */ return 1; /* it was a control message */ } } static void warnfoff (void *ud, const char *message, int tocont) { checkcontrol((lua_State *)ud, message, tocont); } /* ** Writes the message and handle 'tocont', finishing the message ** if needed and setting the next warn function. */ static void warnfcont (void *ud, const char *message, int tocont) { lua_State *L = (lua_State *)ud; lua_writestringerror("%s", message); /* write message */ if (tocont) /* not the last part? */ lua_setwarnf(L, warnfcont, L); /* to be continued */ else { /* last part */ lua_writestringerror("%s", "\n"); /* finish message with end-of-line */ lua_setwarnf(L, warnfon, L); /* next call is a new message */ } } static void warnfon (void *ud, const char *message, int tocont) { if (checkcontrol((lua_State *)ud, message, tocont)) /* control message? */ return; /* nothing else to be done */ lua_writestringerror("%s", "Lua warning: "); /* start a new warning */ warnfcont(ud, message, tocont); /* finish processing */ } LUALIB_API lua_State *luaL_newstate (void) { lua_State *L = lua_newstate(l_alloc, NULL); if (l_likely(L)) { lua_atpanic(L, &panic); lua_setwarnf(L, warnfoff, L); /* default is warnings off */ } return L; } LUALIB_API void luaL_checkversion_ (lua_State *L, lua_Number ver, size_t sz) { lua_Number v = lua_version(L); if (sz != LUAL_NUMSIZES) /* check numeric types */ luaL_error(L, "core and library have incompatible numeric types"); else if (v != ver) luaL_error(L, "version mismatch: app. needs %f, Lua core provides %f", (LUAI_UACNUMBER)ver, (LUAI_UACNUMBER)v); } /* ** $Id: lbaselib.c $ ** Basic library ** See Copyright Notice in lua.h */ #define lbaselib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ static int luaB_print (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ int i; for (i = 1; i <= n; i++) { /* for each argument */ size_t l; const char *s = luaL_tolstring(L, i, &l); /* convert it to string */ if (i > 1) /* not the first element? */ lua_writestring("\t", 1); /* add a tab before it */ lua_writestring(s, l); /* print it */ lua_pop(L, 1); /* pop result */ } lua_writeline(); return 0; } /* ** Creates a warning with all given arguments. ** Check first for errors; otherwise an error may interrupt ** the composition of a warning, leaving it unfinished. */ static int luaB_warn (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ int i; luaL_checkstring(L, 1); /* at least one argument */ for (i = 2; i <= n; i++) luaL_checkstring(L, i); /* make sure all arguments are strings */ for (i = 1; i < n; i++) /* compose warning */ lua_warning(L, lua_tostring(L, i), 1); lua_warning(L, lua_tostring(L, n), 0); /* close warning */ return 0; } #define SPACECHARS " \f\n\r\t\v" static const char *b_str2int (const char *s, int base, lua_Integer *pn) { lua_Unsigned n = 0; int neg = 0; s += strspn(s, SPACECHARS); /* skip initial spaces */ if (*s == '-') { s++; neg = 1; } /* handle sign */ else if (*s == '+') s++; if (!isalnum((unsigned char)*s)) /* no digit? */ return NULL; do { int digit = (isdigit((unsigned char)*s)) ? *s - '0' : (toupper((unsigned char)*s) - 'A') + 10; if (digit >= base) return NULL; /* invalid numeral */ n = n * base + digit; s++; } while (isalnum((unsigned char)*s)); s += strspn(s, SPACECHARS); /* skip trailing spaces */ *pn = (lua_Integer)((neg) ? (0u - n) : n); return s; } static int luaB_tonumber (lua_State *L) { if (lua_isnoneornil(L, 2)) { /* standard conversion? */ if (lua_type(L, 1) == LUA_TNUMBER) { /* already a number? */ lua_settop(L, 1); /* yes; return it */ return 1; } else { size_t l; const char *s = lua_tolstring(L, 1, &l); if (s != NULL && lua_stringtonumber(L, s) == l + 1) return 1; /* successful conversion to number */ /* else not a number */ luaL_checkany(L, 1); /* (but there must be some parameter) */ } } else { size_t l; const char *s; lua_Integer n = 0; /* to avoid warnings */ lua_Integer base = luaL_checkinteger(L, 2); luaL_checktype(L, 1, LUA_TSTRING); /* no numbers as strings */ s = lua_tolstring(L, 1, &l); luaL_argcheck(L, 2 <= base && base <= 36, 2, "base out of range"); if (b_str2int(s, (int)base, &n) == s + l) { lua_pushinteger(L, n); return 1; } /* else not a number */ } /* else not a number */ luaL_pushfail(L); /* not a number */ return 1; } static int luaB_error (lua_State *L) { int level = (int)luaL_optinteger(L, 2, 1); lua_settop(L, 1); if (lua_type(L, 1) == LUA_TSTRING && level > 0) { luaL_where(L, level); /* add extra information */ lua_pushvalue(L, 1); lua_concat(L, 2); } return lua_error(L); } static int luaB_getmetatable (lua_State *L) { luaL_checkany(L, 1); if (!lua_getmetatable(L, 1)) { lua_pushnil(L); return 1; /* no metatable */ } luaL_getmetafield(L, 1, "__metatable"); return 1; /* returns either __metatable field (if present) or metatable */ } static int luaB_setmetatable (lua_State *L) { int t = lua_type(L, 2); luaL_checktype(L, 1, LUA_TTABLE); luaL_argexpected(L, t == LUA_TNIL || t == LUA_TTABLE, 2, "nil or table"); if (l_unlikely(luaL_getmetafield(L, 1, "__metatable") != LUA_TNIL)) return luaL_error(L, "cannot change a protected metatable"); lua_settop(L, 2); lua_setmetatable(L, 1); return 1; } static int luaB_rawequal (lua_State *L) { luaL_checkany(L, 1); luaL_checkany(L, 2); lua_pushboolean(L, lua_rawequal(L, 1, 2)); return 1; } static int luaB_rawlen (lua_State *L) { int t = lua_type(L, 1); luaL_argexpected(L, t == LUA_TTABLE || t == LUA_TSTRING, 1, "table or string"); lua_pushinteger(L, lua_rawlen(L, 1)); return 1; } static int luaB_rawget (lua_State *L) { luaL_checktype(L, 1, LUA_TTABLE); luaL_checkany(L, 2); lua_settop(L, 2); lua_rawget(L, 1); return 1; } static int luaB_rawset (lua_State *L) { luaL_checktype(L, 1, LUA_TTABLE); luaL_checkany(L, 2); luaL_checkany(L, 3); lua_settop(L, 3); lua_rawset(L, 1); return 1; } static int pushmode (lua_State *L, int oldmode) { if (oldmode == -1) luaL_pushfail(L); /* invalid call to 'lua_gc' */ else lua_pushstring(L, (oldmode == LUA_GCINC) ? "incremental" : "generational"); return 1; } /* ** check whether call to 'lua_gc' was valid (not inside a finalizer) */ #define checkvalres(res) { if (res == -1) break; } static int luaB_collectgarbage (lua_State *L) { static const char *const opts[] = {"stop", "restart", "collect", "count", "step", "setpause", "setstepmul", "isrunning", "generational", "incremental", NULL}; static const int optsnum[] = {LUA_GCSTOP, LUA_GCRESTART, LUA_GCCOLLECT, LUA_GCCOUNT, LUA_GCSTEP, LUA_GCSETPAUSE, LUA_GCSETSTEPMUL, LUA_GCISRUNNING, LUA_GCGEN, LUA_GCINC}; int o = optsnum[luaL_checkoption(L, 1, "collect", opts)]; switch (o) { case LUA_GCCOUNT: { int k = lua_gc(L, o); int b = lua_gc(L, LUA_GCCOUNTB); checkvalres(k); lua_pushnumber(L, (lua_Number)k + ((lua_Number)b/1024)); return 1; } case LUA_GCSTEP: { int step = (int)luaL_optinteger(L, 2, 0); int res = lua_gc(L, o, step); checkvalres(res); lua_pushboolean(L, res); return 1; } case LUA_GCSETPAUSE: case LUA_GCSETSTEPMUL: { int p = (int)luaL_optinteger(L, 2, 0); int previous = lua_gc(L, o, p); checkvalres(previous); lua_pushinteger(L, previous); return 1; } case LUA_GCISRUNNING: { int res = lua_gc(L, o); checkvalres(res); lua_pushboolean(L, res); return 1; } case LUA_GCGEN: { int minormul = (int)luaL_optinteger(L, 2, 0); int majormul = (int)luaL_optinteger(L, 3, 0); return pushmode(L, lua_gc(L, o, minormul, majormul)); } case LUA_GCINC: { int pause = (int)luaL_optinteger(L, 2, 0); int stepmul = (int)luaL_optinteger(L, 3, 0); int stepsize = (int)luaL_optinteger(L, 4, 0); return pushmode(L, lua_gc(L, o, pause, stepmul, stepsize)); } default: { int res = lua_gc(L, o); checkvalres(res); lua_pushinteger(L, res); return 1; } } luaL_pushfail(L); /* invalid call (inside a finalizer) */ return 1; } static int luaB_type (lua_State *L) { int t = lua_type(L, 1); luaL_argcheck(L, t != LUA_TNONE, 1, "value expected"); lua_pushstring(L, lua_typename(L, t)); return 1; } static int luaB_next (lua_State *L) { luaL_checktype(L, 1, LUA_TTABLE); lua_settop(L, 2); /* create a 2nd argument if there isn't one */ if (lua_next(L, 1)) return 2; else { lua_pushnil(L); return 1; } } static int pairscont (lua_State *L, int status, lua_KContext k) { (void)L; (void)status; (void)k; /* unused */ return 3; } static int luaB_pairs (lua_State *L) { luaL_checkany(L, 1); if (luaL_getmetafield(L, 1, "__pairs") == LUA_TNIL) { /* no metamethod? */ lua_pushcfunction(L, luaB_next); /* will return generator, */ lua_pushvalue(L, 1); /* state, */ lua_pushnil(L); /* and initial value */ } else { lua_pushvalue(L, 1); /* argument 'self' to metamethod */ lua_callk(L, 1, 3, 0, pairscont); /* get 3 values from metamethod */ } return 3; } /* ** Traversal function for 'ipairs' */ static int ipairsaux (lua_State *L) { lua_Integer i = luaL_checkinteger(L, 2); i = luaL_intop(+, i, 1); lua_pushinteger(L, i); return (lua_geti(L, 1, i) == LUA_TNIL) ? 1 : 2; } /* ** 'ipairs' function. Returns 'ipairsaux', given "table", 0. ** (The given "table" may not be a table.) */ static int luaB_ipairs (lua_State *L) { luaL_checkany(L, 1); lua_pushcfunction(L, ipairsaux); /* iteration function */ lua_pushvalue(L, 1); /* state */ lua_pushinteger(L, 0); /* initial value */ return 3; } static int load_aux (lua_State *L, int status, int envidx) { if (l_likely(status == LUA_OK)) { if (envidx != 0) { /* 'env' parameter? */ lua_pushvalue(L, envidx); /* environment for loaded function */ if (!lua_setupvalue(L, -2, 1)) /* set it as 1st upvalue */ lua_pop(L, 1); /* remove 'env' if not used by previous call */ } return 1; } else { /* error (message is on top of the stack) */ luaL_pushfail(L); lua_insert(L, -2); /* put before error message */ return 2; /* return fail plus error message */ } } static int luaB_loadfile (lua_State *L) { const char *fname = luaL_optstring(L, 1, NULL); const char *mode = luaL_optstring(L, 2, NULL); int env = (!lua_isnone(L, 3) ? 3 : 0); /* 'env' index or 0 if no 'env' */ int status = luaL_loadfilex(L, fname, mode); return load_aux(L, status, env); } /* ** {====================================================== ** Generic Read function ** ======================================================= */ /* ** reserved slot, above all arguments, to hold a copy of the returned ** string to avoid it being collected while parsed. 'load' has four ** optional arguments (chunk, source name, mode, and environment). */ #define RESERVEDSLOT 5 /* ** Reader for generic 'load' function: 'lua_load' uses the ** stack for internal stuff, so the reader cannot change the ** stack top. Instead, it keeps its resulting string in a ** reserved slot inside the stack. */ static const char *generic_reader (lua_State *L, void *ud, size_t *size) { (void)(ud); /* not used */ luaL_checkstack(L, 2, "too many nested functions"); lua_pushvalue(L, 1); /* get function */ lua_call(L, 0, 1); /* call it */ if (lua_isnil(L, -1)) { lua_pop(L, 1); /* pop result */ *size = 0; return NULL; } else if (l_unlikely(!lua_isstring(L, -1))) luaL_error(L, "reader function must return a string"); lua_replace(L, RESERVEDSLOT); /* save string in reserved slot */ return lua_tolstring(L, RESERVEDSLOT, size); } static int luaB_load (lua_State *L) { int status; size_t l; const char *s = lua_tolstring(L, 1, &l); const char *mode = luaL_optstring(L, 3, "bt"); int env = (!lua_isnone(L, 4) ? 4 : 0); /* 'env' index or 0 if no 'env' */ if (s != NULL) { /* loading a string? */ const char *chunkname = luaL_optstring(L, 2, s); status = luaL_loadbufferx(L, s, l, chunkname, mode); } else { /* loading from a reader function */ const char *chunkname = luaL_optstring(L, 2, "=(load)"); luaL_checktype(L, 1, LUA_TFUNCTION); lua_settop(L, RESERVEDSLOT); /* create reserved slot */ status = lua_load(L, generic_reader, NULL, chunkname, mode); } return load_aux(L, status, env); } /* }====================================================== */ static int dofilecont (lua_State *L, int d1, lua_KContext d2) { (void)d1; (void)d2; /* only to match 'lua_Kfunction' prototype */ return lua_gettop(L) - 1; } static int luaB_dofile (lua_State *L) { const char *fname = luaL_optstring(L, 1, NULL); lua_settop(L, 1); if (l_unlikely(luaL_loadfile(L, fname) != LUA_OK)) return lua_error(L); lua_callk(L, 0, LUA_MULTRET, 0, dofilecont); return dofilecont(L, 0, 0); } static int luaB_assert (lua_State *L) { if (l_likely(lua_toboolean(L, 1))) /* condition is true? */ return lua_gettop(L); /* return all arguments */ else { /* error */ luaL_checkany(L, 1); /* there must be a condition */ lua_remove(L, 1); /* remove it */ lua_pushliteral(L, "assertion failed!"); /* default message */ lua_settop(L, 1); /* leave only message (default if no other one) */ return luaB_error(L); /* call 'error' */ } } static int luaB_select (lua_State *L) { int n = lua_gettop(L); if (lua_type(L, 1) == LUA_TSTRING && *lua_tostring(L, 1) == '#') { lua_pushinteger(L, n-1); return 1; } else { lua_Integer i = luaL_checkinteger(L, 1); if (i < 0) i = n + i; else if (i > n) i = n; luaL_argcheck(L, 1 <= i, 1, "index out of range"); return n - (int)i; } } /* ** Continuation function for 'pcall' and 'xpcall'. Both functions ** already pushed a 'true' before doing the call, so in case of success ** 'finishpcall' only has to return everything in the stack minus ** 'extra' values (where 'extra' is exactly the number of items to be ** ignored). */ static int finishpcall (lua_State *L, int status, lua_KContext extra) { if (l_unlikely(status != LUA_OK && status != LUA_YIELD)) { /* error? */ lua_pushboolean(L, 0); /* first result (false) */ lua_pushvalue(L, -2); /* error message */ return 2; /* return false, msg */ } else return lua_gettop(L) - (int)extra; /* return all results */ } static int luaB_pcall (lua_State *L) { int status; luaL_checkany(L, 1); lua_pushboolean(L, 1); /* first result if no errors */ lua_insert(L, 1); /* put it in place */ status = lua_pcallk(L, lua_gettop(L) - 2, LUA_MULTRET, 0, 0, finishpcall); return finishpcall(L, status, 0); } /* ** Do a protected call with error handling. After 'lua_rotate', the ** stack will have ; so, the function passes ** 2 to 'finishpcall' to skip the 2 first values when returning results. */ static int luaB_xpcall (lua_State *L) { int status; int n = lua_gettop(L); luaL_checktype(L, 2, LUA_TFUNCTION); /* check error function */ lua_pushboolean(L, 1); /* first result */ lua_pushvalue(L, 1); /* function */ lua_rotate(L, 3, 2); /* move them below function's arguments */ status = lua_pcallk(L, n - 2, LUA_MULTRET, 2, 2, finishpcall); return finishpcall(L, status, 2); } static int luaB_tostring (lua_State *L) { luaL_checkany(L, 1); luaL_tolstring(L, 1, NULL); return 1; } static const luaL_Reg base_funcs[] = { {"assert", luaB_assert}, {"collectgarbage", luaB_collectgarbage}, {"dofile", luaB_dofile}, {"error", luaB_error}, {"getmetatable", luaB_getmetatable}, {"ipairs", luaB_ipairs}, {"loadfile", luaB_loadfile}, {"load", luaB_load}, {"next", luaB_next}, {"pairs", luaB_pairs}, {"pcall", luaB_pcall}, {"print", luaB_print}, {"warn", luaB_warn}, {"rawequal", luaB_rawequal}, {"rawlen", luaB_rawlen}, {"rawget", luaB_rawget}, {"rawset", luaB_rawset}, {"select", luaB_select}, {"setmetatable", luaB_setmetatable}, {"tonumber", luaB_tonumber}, {"tostring", luaB_tostring}, {"type", luaB_type}, {"xpcall", luaB_xpcall}, /* placeholders */ {LUA_GNAME, NULL}, {"_VERSION", NULL}, {NULL, NULL} }; LUAMOD_API int luaopen_base (lua_State *L) { /* open lib into global table */ lua_pushglobaltable(L); luaL_setfuncs(L, base_funcs, 0); /* set global _G */ lua_pushvalue(L, -1); lua_setfield(L, -2, LUA_GNAME); /* set global _VERSION */ lua_pushliteral(L, LUA_VERSION); lua_setfield(L, -2, "_VERSION"); return 1; } /* ** $Id: lcorolib.c $ ** Coroutine Library ** See Copyright Notice in lua.h */ #define lcorolib_c #define LUA_LIB /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ static lua_State *getco (lua_State *L) { lua_State *co = lua_tothread(L, 1); luaL_argexpected(L, co, 1, "thread"); return co; } /* ** Resumes a coroutine. Returns the number of results for non-error ** cases or -1 for errors. */ static int auxresume (lua_State *L, lua_State *co, int narg) { int status, nres; if (l_unlikely(!lua_checkstack(co, narg))) { lua_pushliteral(L, "too many arguments to resume"); return -1; /* error flag */ } lua_xmove(L, co, narg); status = lua_resume(co, L, narg, &nres); if (l_likely(status == LUA_OK || status == LUA_YIELD)) { if (l_unlikely(!lua_checkstack(L, nres + 1))) { lua_pop(co, nres); /* remove results anyway */ lua_pushliteral(L, "too many results to resume"); return -1; /* error flag */ } lua_xmove(co, L, nres); /* move yielded values */ return nres; } else { lua_xmove(co, L, 1); /* move error message */ return -1; /* error flag */ } } static int luaB_coresume (lua_State *L) { lua_State *co = getco(L); int r; r = auxresume(L, co, lua_gettop(L) - 1); if (l_unlikely(r < 0)) { lua_pushboolean(L, 0); lua_insert(L, -2); return 2; /* return false + error message */ } else { lua_pushboolean(L, 1); lua_insert(L, -(r + 1)); return r + 1; /* return true + 'resume' returns */ } } static int luaB_auxwrap (lua_State *L) { lua_State *co = lua_tothread(L, lua_upvalueindex(1)); int r = auxresume(L, co, lua_gettop(L)); if (l_unlikely(r < 0)) { /* error? */ int stat = lua_status(co); if (stat != LUA_OK && stat != LUA_YIELD) { /* error in the coroutine? */ stat = lua_resetthread(co); /* close its tbc variables */ lua_assert(stat != LUA_OK); lua_xmove(co, L, 1); /* move error message to the caller */ } if (stat != LUA_ERRMEM && /* not a memory error and ... */ lua_type(L, -1) == LUA_TSTRING) { /* ... error object is a string? */ luaL_where(L, 1); /* add extra info, if available */ lua_insert(L, -2); lua_concat(L, 2); } return lua_error(L); /* propagate error */ } return r; } static int luaB_cocreate (lua_State *L) { lua_State *NL; luaL_checktype(L, 1, LUA_TFUNCTION); NL = lua_newthread(L); lua_pushvalue(L, 1); /* move function to top */ lua_xmove(L, NL, 1); /* move function from L to NL */ return 1; } static int luaB_cowrap (lua_State *L) { luaB_cocreate(L); lua_pushcclosure(L, luaB_auxwrap, 1); return 1; } static int luaB_yield (lua_State *L) { return lua_yield(L, lua_gettop(L)); } #define COS_RUN 0 #define COS_DEAD 1 #define COS_YIELD 2 #define COS_NORM 3 static const char *const statname[] = {"running", "dead", "suspended", "normal"}; static int auxstatus (lua_State *L, lua_State *co) { if (L == co) return COS_RUN; else { switch (lua_status(co)) { case LUA_YIELD: return COS_YIELD; case LUA_OK: { lua_Debug ar; if (lua_getstack(co, 0, &ar)) /* does it have frames? */ return COS_NORM; /* it is running */ else if (lua_gettop(co) == 0) return COS_DEAD; else return COS_YIELD; /* initial state */ } default: /* some error occurred */ return COS_DEAD; } } } static int luaB_costatus (lua_State *L) { lua_State *co = getco(L); lua_pushstring(L, statname[auxstatus(L, co)]); return 1; } static int luaB_yieldable (lua_State *L) { lua_State *co = lua_isnone(L, 1) ? L : getco(L); lua_pushboolean(L, lua_isyieldable(co)); return 1; } static int luaB_corunning (lua_State *L) { int ismain = lua_pushthread(L); lua_pushboolean(L, ismain); return 2; } static int luaB_close (lua_State *L) { lua_State *co = getco(L); int status = auxstatus(L, co); switch (status) { case COS_DEAD: case COS_YIELD: { status = lua_resetthread(co); if (status == LUA_OK) { lua_pushboolean(L, 1); return 1; } else { lua_pushboolean(L, 0); lua_xmove(co, L, 1); /* move error message */ return 2; } } default: /* normal or running coroutine */ return luaL_error(L, "cannot close a %s coroutine", statname[status]); } } static const luaL_Reg co_funcs[] = { {"create", luaB_cocreate}, {"resume", luaB_coresume}, {"running", luaB_corunning}, {"status", luaB_costatus}, {"wrap", luaB_cowrap}, {"yield", luaB_yield}, {"isyieldable", luaB_yieldable}, {"close", luaB_close}, {NULL, NULL} }; LUAMOD_API int luaopen_coroutine (lua_State *L) { luaL_newlib(L, co_funcs); return 1; } /* ** $Id: ldblib.c $ ** Interface from Lua to its debug API ** See Copyright Notice in lua.h */ #define ldblib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ /* ** The hook table at registry[HOOKKEY] maps threads to their current ** hook function. */ static const char *const HOOKKEY = "_HOOKKEY"; /* ** If L1 != L, L1 can be in any state, and therefore there are no ** guarantees about its stack space; any push in L1 must be ** checked. */ static void checkstack (lua_State *L, lua_State *L1, int n) { if (l_unlikely(L != L1 && !lua_checkstack(L1, n))) luaL_error(L, "stack overflow"); } static int db_getregistry (lua_State *L) { lua_pushvalue(L, LUA_REGISTRYINDEX); return 1; } static int db_getmetatable (lua_State *L) { luaL_checkany(L, 1); if (!lua_getmetatable(L, 1)) { lua_pushnil(L); /* no metatable */ } return 1; } static int db_setmetatable (lua_State *L) { int t = lua_type(L, 2); luaL_argexpected(L, t == LUA_TNIL || t == LUA_TTABLE, 2, "nil or table"); lua_settop(L, 2); lua_setmetatable(L, 1); return 1; /* return 1st argument */ } static int db_getuservalue (lua_State *L) { int n = (int)luaL_optinteger(L, 2, 1); if (lua_type(L, 1) != LUA_TUSERDATA) luaL_pushfail(L); else if (lua_getiuservalue(L, 1, n) != LUA_TNONE) { lua_pushboolean(L, 1); return 2; } return 1; } static int db_setuservalue (lua_State *L) { int n = (int)luaL_optinteger(L, 3, 1); luaL_checktype(L, 1, LUA_TUSERDATA); luaL_checkany(L, 2); lua_settop(L, 2); if (!lua_setiuservalue(L, 1, n)) luaL_pushfail(L); return 1; } /* ** Auxiliary function used by several library functions: check for ** an optional thread as function's first argument and set 'arg' with ** 1 if this argument is present (so that functions can skip it to ** access their other arguments) */ static lua_State *getthread (lua_State *L, int *arg) { if (lua_isthread(L, 1)) { *arg = 1; return lua_tothread(L, 1); } else { *arg = 0; return L; /* function will operate over current thread */ } } /* ** Variations of 'lua_settable', used by 'db_getinfo' to put results ** from 'lua_getinfo' into result table. Key is always a string; ** value can be a string, an int, or a boolean. */ static void settabss (lua_State *L, const char *k, const char *v) { lua_pushstring(L, v); lua_setfield(L, -2, k); } static void settabsi (lua_State *L, const char *k, int v) { lua_pushinteger(L, v); lua_setfield(L, -2, k); } static void settabsb (lua_State *L, const char *k, int v) { lua_pushboolean(L, v); lua_setfield(L, -2, k); } /* ** In function 'db_getinfo', the call to 'lua_getinfo' may push ** results on the stack; later it creates the result table to put ** these objects. Function 'treatstackoption' puts the result from ** 'lua_getinfo' on top of the result table so that it can call ** 'lua_setfield'. */ static void treatstackoption (lua_State *L, lua_State *L1, const char *fname) { if (L == L1) lua_rotate(L, -2, 1); /* exchange object and table */ else lua_xmove(L1, L, 1); /* move object to the "main" stack */ lua_setfield(L, -2, fname); /* put object into table */ } /* ** Calls 'lua_getinfo' and collects all results in a new table. ** L1 needs stack space for an optional input (function) plus ** two optional outputs (function and line table) from function ** 'lua_getinfo'. */ static int db_getinfo (lua_State *L) { lua_Debug ar; int arg; lua_State *L1 = getthread(L, &arg); const char *options = luaL_optstring(L, arg+2, "flnSrtu"); checkstack(L, L1, 3); luaL_argcheck(L, options[0] != '>', arg + 2, "invalid option '>'"); if (lua_isfunction(L, arg + 1)) { /* info about a function? */ options = lua_pushfstring(L, ">%s", options); /* add '>' to 'options' */ lua_pushvalue(L, arg + 1); /* move function to 'L1' stack */ lua_xmove(L, L1, 1); } else { /* stack level */ if (!lua_getstack(L1, (int)luaL_checkinteger(L, arg + 1), &ar)) { luaL_pushfail(L); /* level out of range */ return 1; } } if (!lua_getinfo(L1, options, &ar)) return luaL_argerror(L, arg+2, "invalid option"); lua_newtable(L); /* table to collect results */ if (strchr(options, 'S')) { lua_pushlstring(L, ar.source, ar.srclen); lua_setfield(L, -2, "source"); settabss(L, "short_src", ar.short_src); settabsi(L, "linedefined", ar.linedefined); settabsi(L, "lastlinedefined", ar.lastlinedefined); settabss(L, "what", ar.what); } if (strchr(options, 'l')) settabsi(L, "currentline", ar.currentline); if (strchr(options, 'u')) { settabsi(L, "nups", ar.nups); settabsi(L, "nparams", ar.nparams); settabsb(L, "isvararg", ar.isvararg); } if (strchr(options, 'n')) { settabss(L, "name", ar.name); settabss(L, "namewhat", ar.namewhat); } if (strchr(options, 'r')) { settabsi(L, "ftransfer", ar.ftransfer); settabsi(L, "ntransfer", ar.ntransfer); } if (strchr(options, 't')) settabsb(L, "istailcall", ar.istailcall); if (strchr(options, 'L')) treatstackoption(L, L1, "activelines"); if (strchr(options, 'f')) treatstackoption(L, L1, "func"); return 1; /* return table */ } static int db_getlocal (lua_State *L) { int arg; lua_State *L1 = getthread(L, &arg); int nvar = (int)luaL_checkinteger(L, arg + 2); /* local-variable index */ if (lua_isfunction(L, arg + 1)) { /* function argument? */ lua_pushvalue(L, arg + 1); /* push function */ lua_pushstring(L, lua_getlocal(L, NULL, nvar)); /* push local name */ return 1; /* return only name (there is no value) */ } else { /* stack-level argument */ lua_Debug ar; const char *name; int level = (int)luaL_checkinteger(L, arg + 1); if (l_unlikely(!lua_getstack(L1, level, &ar))) /* out of range? */ return luaL_argerror(L, arg+1, "level out of range"); checkstack(L, L1, 1); name = lua_getlocal(L1, &ar, nvar); if (name) { lua_xmove(L1, L, 1); /* move local value */ lua_pushstring(L, name); /* push name */ lua_rotate(L, -2, 1); /* re-order */ return 2; } else { luaL_pushfail(L); /* no name (nor value) */ return 1; } } } static int db_setlocal (lua_State *L) { int arg; const char *name; lua_State *L1 = getthread(L, &arg); lua_Debug ar; int level = (int)luaL_checkinteger(L, arg + 1); int nvar = (int)luaL_checkinteger(L, arg + 2); if (l_unlikely(!lua_getstack(L1, level, &ar))) /* out of range? */ return luaL_argerror(L, arg+1, "level out of range"); luaL_checkany(L, arg+3); lua_settop(L, arg+3); checkstack(L, L1, 1); lua_xmove(L, L1, 1); name = lua_setlocal(L1, &ar, nvar); if (name == NULL) lua_pop(L1, 1); /* pop value (if not popped by 'lua_setlocal') */ lua_pushstring(L, name); return 1; } /* ** get (if 'get' is true) or set an upvalue from a closure */ static int auxupvalue (lua_State *L, int get) { const char *name; int n = (int)luaL_checkinteger(L, 2); /* upvalue index */ luaL_checktype(L, 1, LUA_TFUNCTION); /* closure */ name = get ? lua_getupvalue(L, 1, n) : lua_setupvalue(L, 1, n); if (name == NULL) return 0; lua_pushstring(L, name); lua_insert(L, -(get+1)); /* no-op if get is false */ return get + 1; } static int db_getupvalue (lua_State *L) { return auxupvalue(L, 1); } static int db_setupvalue (lua_State *L) { luaL_checkany(L, 3); return auxupvalue(L, 0); } /* ** Check whether a given upvalue from a given closure exists and ** returns its index */ static void *checkupval (lua_State *L, int argf, int argnup, int *pnup) { void *id; int nup = (int)luaL_checkinteger(L, argnup); /* upvalue index */ luaL_checktype(L, argf, LUA_TFUNCTION); /* closure */ id = lua_upvalueid(L, argf, nup); if (pnup) { luaL_argcheck(L, id != NULL, argnup, "invalid upvalue index"); *pnup = nup; } return id; } static int db_upvalueid (lua_State *L) { void *id = checkupval(L, 1, 2, NULL); if (id != NULL) lua_pushlightuserdata(L, id); else luaL_pushfail(L); return 1; } static int db_upvaluejoin (lua_State *L) { int n1, n2; checkupval(L, 1, 2, &n1); checkupval(L, 3, 4, &n2); luaL_argcheck(L, !lua_iscfunction(L, 1), 1, "Lua function expected"); luaL_argcheck(L, !lua_iscfunction(L, 3), 3, "Lua function expected"); lua_upvaluejoin(L, 1, n1, 3, n2); return 0; } /* ** Call hook function registered at hook table for the current ** thread (if there is one) */ static void hookf (lua_State *L, lua_Debug *ar) { static const char *const hooknames[] = {"call", "return", "line", "count", "tail call"}; lua_getfield(L, LUA_REGISTRYINDEX, HOOKKEY); lua_pushthread(L); if (lua_rawget(L, -2) == LUA_TFUNCTION) { /* is there a hook function? */ lua_pushstring(L, hooknames[(int)ar->event]); /* push event name */ if (ar->currentline >= 0) lua_pushinteger(L, ar->currentline); /* push current line */ else lua_pushnil(L); lua_assert(lua_getinfo(L, "lS", ar)); lua_call(L, 2, 0); /* call hook function */ } } /* ** Convert a string mask (for 'sethook') into a bit mask */ static int makemask (const char *smask, int count) { int mask = 0; if (strchr(smask, 'c')) mask |= LUA_MASKCALL; if (strchr(smask, 'r')) mask |= LUA_MASKRET; if (strchr(smask, 'l')) mask |= LUA_MASKLINE; if (count > 0) mask |= LUA_MASKCOUNT; return mask; } /* ** Convert a bit mask (for 'gethook') into a string mask */ static char *unmakemask (int mask, char *smask) { int i = 0; if (mask & LUA_MASKCALL) smask[i++] = 'c'; if (mask & LUA_MASKRET) smask[i++] = 'r'; if (mask & LUA_MASKLINE) smask[i++] = 'l'; smask[i] = '\0'; return smask; } static int db_sethook (lua_State *L) { int arg, mask, count; lua_Hook func; lua_State *L1 = getthread(L, &arg); if (lua_isnoneornil(L, arg+1)) { /* no hook? */ lua_settop(L, arg+1); func = NULL; mask = 0; count = 0; /* turn off hooks */ } else { const char *smask = luaL_checkstring(L, arg+2); luaL_checktype(L, arg+1, LUA_TFUNCTION); count = (int)luaL_optinteger(L, arg + 3, 0); func = hookf; mask = makemask(smask, count); } if (!luaL_getsubtable(L, LUA_REGISTRYINDEX, HOOKKEY)) { /* table just created; initialize it */ lua_pushliteral(L, "k"); lua_setfield(L, -2, "__mode"); /** hooktable.__mode = "k" */ lua_pushvalue(L, -1); lua_setmetatable(L, -2); /* metatable(hooktable) = hooktable */ } checkstack(L, L1, 1); lua_pushthread(L1); lua_xmove(L1, L, 1); /* key (thread) */ lua_pushvalue(L, arg + 1); /* value (hook function) */ lua_rawset(L, -3); /* hooktable[L1] = new Lua hook */ lua_sethook(L1, func, mask, count); return 0; } static int db_gethook (lua_State *L) { int arg; lua_State *L1 = getthread(L, &arg); char buff[5]; int mask = lua_gethookmask(L1); lua_Hook hook = lua_gethook(L1); if (hook == NULL) { /* no hook? */ luaL_pushfail(L); return 1; } else if (hook != hookf) /* external hook? */ lua_pushliteral(L, "external hook"); else { /* hook table must exist */ lua_getfield(L, LUA_REGISTRYINDEX, HOOKKEY); checkstack(L, L1, 1); lua_pushthread(L1); lua_xmove(L1, L, 1); lua_rawget(L, -2); /* 1st result = hooktable[L1] */ lua_remove(L, -2); /* remove hook table */ } lua_pushstring(L, unmakemask(mask, buff)); /* 2nd result = mask */ lua_pushinteger(L, lua_gethookcount(L1)); /* 3rd result = count */ return 3; } static int db_debug (lua_State *L) { for (;;) { char buffer[250]; lua_writestringerror("%s", "lua_debug> "); if (fgets(buffer, sizeof(buffer), stdin) == NULL || strcmp(buffer, "cont\n") == 0) return 0; if (luaL_loadbuffer(L, buffer, strlen(buffer), "=(debug command)") || lua_pcall(L, 0, 0, 0)) lua_writestringerror("%s\n", luaL_tolstring(L, -1, NULL)); lua_settop(L, 0); /* remove eventual returns */ } } static int db_traceback (lua_State *L) { int arg; lua_State *L1 = getthread(L, &arg); const char *msg = lua_tostring(L, arg + 1); if (msg == NULL && !lua_isnoneornil(L, arg + 1)) /* non-string 'msg'? */ lua_pushvalue(L, arg + 1); /* return it untouched */ else { int level = (int)luaL_optinteger(L, arg + 2, (L == L1) ? 1 : 0); luaL_traceback(L, L1, msg, level); } return 1; } static int db_setcstacklimit (lua_State *L) { int limit = (int)luaL_checkinteger(L, 1); int res = lua_setcstacklimit(L, limit); lua_pushinteger(L, res); return 1; } static const luaL_Reg dblib[] = { {"debug", db_debug}, {"getuservalue", db_getuservalue}, {"gethook", db_gethook}, {"getinfo", db_getinfo}, {"getlocal", db_getlocal}, {"getregistry", db_getregistry}, {"getmetatable", db_getmetatable}, {"getupvalue", db_getupvalue}, {"upvaluejoin", db_upvaluejoin}, {"upvalueid", db_upvalueid}, {"setuservalue", db_setuservalue}, {"sethook", db_sethook}, {"setlocal", db_setlocal}, {"setmetatable", db_setmetatable}, {"setupvalue", db_setupvalue}, {"traceback", db_traceback}, {"setcstacklimit", db_setcstacklimit}, {NULL, NULL} }; LUAMOD_API int luaopen_debug (lua_State *L) { luaL_newlib(L, dblib); return 1; } /* ** $Id: liolib.c $ ** Standard I/O (and system) library ** See Copyright Notice in lua.h */ #define liolib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ /* ** Change this macro to accept other modes for 'fopen' besides ** the standard ones. */ #if !defined(l_checkmode) /* accepted extensions to 'mode' in 'fopen' */ #if !defined(L_MODEEXT) #define L_MODEEXT "b" #endif /* Check whether 'mode' matches '[rwa]%+?[L_MODEEXT]*' */ static int l_checkmode (const char *mode) { return (*mode != '\0' && strchr("rwa", *(mode++)) != NULL && (*mode != '+' || ((void)(++mode), 1)) && /* skip if char is '+' */ (strspn(mode, L_MODEEXT) == strlen(mode))); /* check extensions */ } #endif /* ** {====================================================== ** l_popen spawns a new process connected to the current ** one through the file streams. ** ======================================================= */ #if !defined(l_popen) /* { */ #if defined(LUA_USE_POSIX) /* { */ #define l_popen(L,c,m) (fflush(NULL), popen(c,m)) #define l_pclose(L,file) (pclose(file)) #elif defined(LUA_USE_WINDOWS) /* }{ */ #define l_popen(L,c,m) (_popen(c,m)) #define l_pclose(L,file) (_pclose(file)) #if !defined(l_checkmodep) /* Windows accepts "[rw][bt]?" as valid modes */ #define l_checkmodep(m) ((m[0] == 'r' || m[0] == 'w') && \ (m[1] == '\0' || ((m[1] == 'b' || m[1] == 't') && m[2] == '\0'))) #endif #else /* }{ */ /* ISO C definitions */ #define l_popen(L,c,m) \ ((void)c, (void)m, \ luaL_error(L, "'popen' not supported"), \ (FILE*)0) #define l_pclose(L,file) ((void)L, (void)file, -1) #endif /* } */ #endif /* } */ #if !defined(l_checkmodep) /* By default, Lua accepts only "r" or "w" as valid modes */ #define l_checkmodep(m) ((m[0] == 'r' || m[0] == 'w') && m[1] == '\0') #endif /* }====================================================== */ #if !defined(l_getc) /* { */ #if defined(LUA_USE_POSIX) #define l_getc(f) getc_unlocked(f) #define l_lockfile(f) flockfile(f) #define l_unlockfile(f) funlockfile(f) #else #define l_getc(f) getc(f) #define l_lockfile(f) ((void)0) #define l_unlockfile(f) ((void)0) #endif #endif /* } */ /* ** {====================================================== ** l_fseek: configuration for longer offsets ** ======================================================= */ #if !defined(l_fseek) /* { */ #if defined(LUA_USE_POSIX) /* { */ #include #define l_fseek(f,o,w) fseeko(f,o,w) #define l_ftell(f) ftello(f) #define l_seeknum off_t #elif defined(LUA_USE_WINDOWS) && !defined(_CRTIMP_TYPEINFO) \ && defined(_MSC_VER) && (_MSC_VER >= 1400) /* }{ */ /* Windows (but not DDK) and Visual C++ 2005 or higher */ #define l_fseek(f,o,w) _fseeki64(f,o,w) #define l_ftell(f) _ftelli64(f) #define l_seeknum __int64 #else /* }{ */ /* ISO C definitions */ #define l_fseek(f,o,w) fseek(f,o,w) #define l_ftell(f) ftell(f) #define l_seeknum long #endif /* } */ #endif /* } */ /* }====================================================== */ #define IO_PREFIX "_IO_" #define IOPREF_LEN (sizeof(IO_PREFIX)/sizeof(char) - 1) #define IO_INPUT (IO_PREFIX "input") #define IO_OUTPUT (IO_PREFIX "output") typedef luaL_Stream LStream; #define tolstream(L) ((LStream *)luaL_checkudata(L, 1, LUA_FILEHANDLE)) #define isclosed(p) ((p)->closef == NULL) static int io_type (lua_State *L) { LStream *p; luaL_checkany(L, 1); p = (LStream *)luaL_testudata(L, 1, LUA_FILEHANDLE); if (p == NULL) luaL_pushfail(L); /* not a file */ else if (isclosed(p)) lua_pushliteral(L, "closed file"); else lua_pushliteral(L, "file"); return 1; } static int f_tostring (lua_State *L) { LStream *p = tolstream(L); if (isclosed(p)) lua_pushliteral(L, "file (closed)"); else lua_pushfstring(L, "file (%p)", p->f); return 1; } static FILE *tofile (lua_State *L) { LStream *p = tolstream(L); if (l_unlikely(isclosed(p))) luaL_error(L, "attempt to use a closed file"); lua_assert(p->f); return p->f; } /* ** When creating file handles, always creates a 'closed' file handle ** before opening the actual file; so, if there is a memory error, the ** handle is in a consistent state. */ static LStream *newprefile (lua_State *L) { LStream *p = (LStream *)lua_newuserdatauv(L, sizeof(LStream), 0); p->closef = NULL; /* mark file handle as 'closed' */ luaL_setmetatable(L, LUA_FILEHANDLE); return p; } /* ** Calls the 'close' function from a file handle. The 'volatile' avoids ** a bug in some versions of the Clang compiler (e.g., clang 3.0 for ** 32 bits). */ static int aux_close (lua_State *L) { LStream *p = tolstream(L); volatile lua_CFunction cf = p->closef; p->closef = NULL; /* mark stream as closed */ return (*cf)(L); /* close it */ } static int f_close (lua_State *L) { tofile(L); /* make sure argument is an open stream */ return aux_close(L); } static int io_close (lua_State *L) { if (lua_isnone(L, 1)) /* no argument? */ lua_getfield(L, LUA_REGISTRYINDEX, IO_OUTPUT); /* use default output */ return f_close(L); } static int f_gc (lua_State *L) { LStream *p = tolstream(L); if (!isclosed(p) && p->f != NULL) aux_close(L); /* ignore closed and incompletely open files */ return 0; } /* ** function to close regular files */ static int io_fclose (lua_State *L) { LStream *p = tolstream(L); int res = fclose(p->f); return luaL_fileresult(L, (res == 0), NULL); } static LStream *newfile (lua_State *L) { LStream *p = newprefile(L); p->f = NULL; p->closef = &io_fclose; return p; } static void opencheck (lua_State *L, const char *fname, const char *mode) { LStream *p = newfile(L); p->f = fopen(fname, mode); if (l_unlikely(p->f == NULL)) luaL_error(L, "cannot open file '%s' (%s)", fname, strerror(errno)); } static int io_open (lua_State *L) { const char *filename = luaL_checkstring(L, 1); const char *mode = luaL_optstring(L, 2, "r"); LStream *p = newfile(L); const char *md = mode; /* to traverse/check mode */ luaL_argcheck(L, l_checkmode(md), 2, "invalid mode"); p->f = fopen(filename, mode); return (p->f == NULL) ? luaL_fileresult(L, 0, filename) : 1; } /* ** function to close 'popen' files */ static int io_pclose (lua_State *L) { LStream *p = tolstream(L); errno = 0; return luaL_execresult(L, l_pclose(L, p->f)); } static int io_popen (lua_State *L) { const char *filename = luaL_checkstring(L, 1); const char *mode = luaL_optstring(L, 2, "r"); LStream *p = newprefile(L); luaL_argcheck(L, l_checkmodep(mode), 2, "invalid mode"); p->f = l_popen(L, filename, mode); p->closef = &io_pclose; return (p->f == NULL) ? luaL_fileresult(L, 0, filename) : 1; } static int io_tmpfile (lua_State *L) { LStream *p = newfile(L); p->f = tmpfile(); return (p->f == NULL) ? luaL_fileresult(L, 0, NULL) : 1; } static FILE *getiofile (lua_State *L, const char *findex) { LStream *p; lua_getfield(L, LUA_REGISTRYINDEX, findex); p = (LStream *)lua_touserdata(L, -1); if (l_unlikely(isclosed(p))) luaL_error(L, "default %s file is closed", findex + IOPREF_LEN); return p->f; } static int g_iofile (lua_State *L, const char *f, const char *mode) { if (!lua_isnoneornil(L, 1)) { const char *filename = lua_tostring(L, 1); if (filename) opencheck(L, filename, mode); else { tofile(L); /* check that it's a valid file handle */ lua_pushvalue(L, 1); } lua_setfield(L, LUA_REGISTRYINDEX, f); } /* return current value */ lua_getfield(L, LUA_REGISTRYINDEX, f); return 1; } static int io_input (lua_State *L) { return g_iofile(L, IO_INPUT, "r"); } static int io_output (lua_State *L) { return g_iofile(L, IO_OUTPUT, "w"); } static int io_readline (lua_State *L); /* ** maximum number of arguments to 'f:lines'/'io.lines' (it + 3 must fit ** in the limit for upvalues of a closure) */ #define MAXARGLINE 250 /* ** Auxiliary function to create the iteration function for 'lines'. ** The iteration function is a closure over 'io_readline', with ** the following upvalues: ** 1) The file being read (first value in the stack) ** 2) the number of arguments to read ** 3) a boolean, true iff file has to be closed when finished ('toclose') ** *) a variable number of format arguments (rest of the stack) */ static void aux_lines (lua_State *L, int toclose) { int n = lua_gettop(L) - 1; /* number of arguments to read */ luaL_argcheck(L, n <= MAXARGLINE, MAXARGLINE + 2, "too many arguments"); lua_pushvalue(L, 1); /* file */ lua_pushinteger(L, n); /* number of arguments to read */ lua_pushboolean(L, toclose); /* close/not close file when finished */ lua_rotate(L, 2, 3); /* move the three values to their positions */ lua_pushcclosure(L, io_readline, 3 + n); } static int f_lines (lua_State *L) { tofile(L); /* check that it's a valid file handle */ aux_lines(L, 0); return 1; } /* ** Return an iteration function for 'io.lines'. If file has to be ** closed, also returns the file itself as a second result (to be ** closed as the state at the exit of a generic for). */ static int io_lines (lua_State *L) { int toclose; if (lua_isnone(L, 1)) lua_pushnil(L); /* at least one argument */ if (lua_isnil(L, 1)) { /* no file name? */ lua_getfield(L, LUA_REGISTRYINDEX, IO_INPUT); /* get default input */ lua_replace(L, 1); /* put it at index 1 */ tofile(L); /* check that it's a valid file handle */ toclose = 0; /* do not close it after iteration */ } else { /* open a new file */ const char *filename = luaL_checkstring(L, 1); opencheck(L, filename, "r"); lua_replace(L, 1); /* put file at index 1 */ toclose = 1; /* close it after iteration */ } aux_lines(L, toclose); /* push iteration function */ if (toclose) { lua_pushnil(L); /* state */ lua_pushnil(L); /* control */ lua_pushvalue(L, 1); /* file is the to-be-closed variable (4th result) */ return 4; } else return 1; } /* ** {====================================================== ** READ ** ======================================================= */ /* maximum length of a numeral */ #if !defined (L_MAXLENNUM) #define L_MAXLENNUM 200 #endif /* auxiliary structure used by 'read_number' */ typedef struct { FILE *f; /* file being read */ int c; /* current character (look ahead) */ int n; /* number of elements in buffer 'buff' */ char buff[L_MAXLENNUM + 1]; /* +1 for ending '\0' */ } RN; /* ** Add current char to buffer (if not out of space) and read next one */ static int nextc (RN *rn) { if (l_unlikely(rn->n >= L_MAXLENNUM)) { /* buffer overflow? */ rn->buff[0] = '\0'; /* invalidate result */ return 0; /* fail */ } else { rn->buff[rn->n++] = rn->c; /* save current char */ rn->c = l_getc(rn->f); /* read next one */ return 1; } } /* ** Accept current char if it is in 'set' (of size 2) */ static int test2 (RN *rn, const char *set) { if (rn->c == set[0] || rn->c == set[1]) return nextc(rn); else return 0; } /* ** Read a sequence of (hex)digits */ static int readdigits (RN *rn, int hex) { int count = 0; while ((hex ? isxdigit(rn->c) : isdigit(rn->c)) && nextc(rn)) count++; return count; } /* ** Read a number: first reads a valid prefix of a numeral into a buffer. ** Then it calls 'lua_stringtonumber' to check whether the format is ** correct and to convert it to a Lua number. */ static int read_number (lua_State *L, FILE *f) { RN rn; int count = 0; int hex = 0; char decp[2]; rn.f = f; rn.n = 0; decp[0] = lua_getlocaledecpoint(); /* get decimal point from locale */ decp[1] = '.'; /* always accept a dot */ l_lockfile(rn.f); do { rn.c = l_getc(rn.f); } while (isspace(rn.c)); /* skip spaces */ test2(&rn, "-+"); /* optional sign */ if (test2(&rn, "00")) { if (test2(&rn, "xX")) hex = 1; /* numeral is hexadecimal */ else count = 1; /* count initial '0' as a valid digit */ } count += readdigits(&rn, hex); /* integral part */ if (test2(&rn, decp)) /* decimal point? */ count += readdigits(&rn, hex); /* fractional part */ if (count > 0 && test2(&rn, (hex ? "pP" : "eE"))) { /* exponent mark? */ test2(&rn, "-+"); /* exponent sign */ readdigits(&rn, 0); /* exponent digits */ } ungetc(rn.c, rn.f); /* unread look-ahead char */ l_unlockfile(rn.f); rn.buff[rn.n] = '\0'; /* finish string */ if (l_likely(lua_stringtonumber(L, rn.buff))) return 1; /* ok, it is a valid number */ else { /* invalid format */ lua_pushnil(L); /* "result" to be removed */ return 0; /* read fails */ } } static int test_eof (lua_State *L, FILE *f) { int c = getc(f); ungetc(c, f); /* no-op when c == EOF */ lua_pushliteral(L, ""); return (c != EOF); } static int read_line (lua_State *L, FILE *f, int chop) { luaL_Buffer b; int c; luaL_buffinit(L, &b); do { /* may need to read several chunks to get whole line */ char *buff = luaL_prepbuffer(&b); /* preallocate buffer space */ int i = 0; l_lockfile(f); /* no memory errors can happen inside the lock */ while (i < LUAL_BUFFERSIZE && (c = l_getc(f)) != EOF && c != '\n') buff[i++] = c; /* read up to end of line or buffer limit */ l_unlockfile(f); luaL_addsize(&b, i); } while (c != EOF && c != '\n'); /* repeat until end of line */ if (!chop && c == '\n') /* want a newline and have one? */ luaL_addchar(&b, c); /* add ending newline to result */ luaL_pushresult(&b); /* close buffer */ /* return ok if read something (either a newline or something else) */ return (c == '\n' || lua_rawlen(L, -1) > 0); } static void read_all (lua_State *L, FILE *f) { size_t nr; luaL_Buffer b; luaL_buffinit(L, &b); do { /* read file in chunks of LUAL_BUFFERSIZE bytes */ char *p = luaL_prepbuffer(&b); nr = fread(p, sizeof(char), LUAL_BUFFERSIZE, f); luaL_addsize(&b, nr); } while (nr == LUAL_BUFFERSIZE); luaL_pushresult(&b); /* close buffer */ } static int read_chars (lua_State *L, FILE *f, size_t n) { size_t nr; /* number of chars actually read */ char *p; luaL_Buffer b; luaL_buffinit(L, &b); p = luaL_prepbuffsize(&b, n); /* prepare buffer to read whole block */ nr = fread(p, sizeof(char), n, f); /* try to read 'n' chars */ luaL_addsize(&b, nr); luaL_pushresult(&b); /* close buffer */ return (nr > 0); /* true iff read something */ } static int g_read (lua_State *L, FILE *f, int first) { int nargs = lua_gettop(L) - 1; int n, success; clearerr(f); if (nargs == 0) { /* no arguments? */ success = read_line(L, f, 1); n = first + 1; /* to return 1 result */ } else { /* ensure stack space for all results and for auxlib's buffer */ luaL_checkstack(L, nargs+LUA_MINSTACK, "too many arguments"); success = 1; for (n = first; nargs-- && success; n++) { if (lua_type(L, n) == LUA_TNUMBER) { size_t l = (size_t)luaL_checkinteger(L, n); success = (l == 0) ? test_eof(L, f) : read_chars(L, f, l); } else { const char *p = luaL_checkstring(L, n); if (*p == '*') p++; /* skip optional '*' (for compatibility) */ switch (*p) { case 'n': /* number */ success = read_number(L, f); break; case 'l': /* line */ success = read_line(L, f, 1); break; case 'L': /* line with end-of-line */ success = read_line(L, f, 0); break; case 'a': /* file */ read_all(L, f); /* read entire file */ success = 1; /* always success */ break; default: return luaL_argerror(L, n, "invalid format"); } } } } if (ferror(f)) return luaL_fileresult(L, 0, NULL); if (!success) { lua_pop(L, 1); /* remove last result */ luaL_pushfail(L); /* push nil instead */ } return n - first; } static int io_read (lua_State *L) { return g_read(L, getiofile(L, IO_INPUT), 1); } static int f_read (lua_State *L) { return g_read(L, tofile(L), 2); } /* ** Iteration function for 'lines'. */ static int io_readline (lua_State *L) { LStream *p = (LStream *)lua_touserdata(L, lua_upvalueindex(1)); int i; int n = (int)lua_tointeger(L, lua_upvalueindex(2)); if (isclosed(p)) /* file is already closed? */ return luaL_error(L, "file is already closed"); lua_settop(L , 1); luaL_checkstack(L, n, "too many arguments"); for (i = 1; i <= n; i++) /* push arguments to 'g_read' */ lua_pushvalue(L, lua_upvalueindex(3 + i)); n = g_read(L, p->f, 2); /* 'n' is number of results */ lua_assert(n > 0); /* should return at least a nil */ if (lua_toboolean(L, -n)) /* read at least one value? */ return n; /* return them */ else { /* first result is false: EOF or error */ if (n > 1) { /* is there error information? */ /* 2nd result is error message */ return luaL_error(L, "%s", lua_tostring(L, -n + 1)); } if (lua_toboolean(L, lua_upvalueindex(3))) { /* generator created file? */ lua_settop(L, 0); /* clear stack */ lua_pushvalue(L, lua_upvalueindex(1)); /* push file at index 1 */ aux_close(L); /* close it */ } return 0; } } /* }====================================================== */ static int g_write (lua_State *L, FILE *f, int arg) { int nargs = lua_gettop(L) - arg; int status = 1; for (; nargs--; arg++) { if (lua_type(L, arg) == LUA_TNUMBER) { /* optimization: could be done exactly as for strings */ int len = lua_isinteger(L, arg) ? fprintf(f, LUA_INTEGER_FMT, (LUAI_UACINT)lua_tointeger(L, arg)) : fprintf(f, LUA_NUMBER_FMT, (LUAI_UACNUMBER)lua_tonumber(L, arg)); status = status && (len > 0); } else { size_t l; const char *s = luaL_checklstring(L, arg, &l); status = status && (fwrite(s, sizeof(char), l, f) == l); } } if (l_likely(status)) return 1; /* file handle already on stack top */ else return luaL_fileresult(L, status, NULL); } static int io_write (lua_State *L) { return g_write(L, getiofile(L, IO_OUTPUT), 1); } static int f_write (lua_State *L) { FILE *f = tofile(L); lua_pushvalue(L, 1); /* push file at the stack top (to be returned) */ return g_write(L, f, 2); } static int f_seek (lua_State *L) { static const int mode[] = {SEEK_SET, SEEK_CUR, SEEK_END}; static const char *const modenames[] = {"set", "cur", "end", NULL}; FILE *f = tofile(L); int op = luaL_checkoption(L, 2, "cur", modenames); lua_Integer p3 = luaL_optinteger(L, 3, 0); l_seeknum offset = (l_seeknum)p3; luaL_argcheck(L, (lua_Integer)offset == p3, 3, "not an integer in proper range"); op = l_fseek(f, offset, mode[op]); if (l_unlikely(op)) return luaL_fileresult(L, 0, NULL); /* error */ else { lua_pushinteger(L, (lua_Integer)l_ftell(f)); return 1; } } static int f_setvbuf (lua_State *L) { static const int mode[] = {_IONBF, _IOFBF, _IOLBF}; static const char *const modenames[] = {"no", "full", "line", NULL}; FILE *f = tofile(L); int op = luaL_checkoption(L, 2, NULL, modenames); lua_Integer sz = luaL_optinteger(L, 3, LUAL_BUFFERSIZE); int res = setvbuf(f, NULL, mode[op], (size_t)sz); return luaL_fileresult(L, res == 0, NULL); } static int io_flush (lua_State *L) { return luaL_fileresult(L, fflush(getiofile(L, IO_OUTPUT)) == 0, NULL); } static int f_flush (lua_State *L) { return luaL_fileresult(L, fflush(tofile(L)) == 0, NULL); } /* ** functions for 'io' library */ static const luaL_Reg iolib[] = { {"close", io_close}, {"flush", io_flush}, {"input", io_input}, {"lines", io_lines}, {"open", io_open}, {"output", io_output}, {"popen", io_popen}, {"read", io_read}, {"tmpfile", io_tmpfile}, {"type", io_type}, {"write", io_write}, {NULL, NULL} }; /* ** methods for file handles */ static const luaL_Reg meth[] = { {"read", f_read}, {"write", f_write}, {"lines", f_lines}, {"flush", f_flush}, {"seek", f_seek}, {"close", f_close}, {"setvbuf", f_setvbuf}, {NULL, NULL} }; /* ** metamethods for file handles */ static const luaL_Reg metameth[] = { {"__index", NULL}, /* place holder */ {"__gc", f_gc}, {"__close", f_gc}, {"__tostring", f_tostring}, {NULL, NULL} }; static void createmeta (lua_State *L) { luaL_newmetatable(L, LUA_FILEHANDLE); /* metatable for file handles */ luaL_setfuncs(L, metameth, 0); /* add metamethods to new metatable */ luaL_newlibtable(L, meth); /* create method table */ luaL_setfuncs(L, meth, 0); /* add file methods to method table */ lua_setfield(L, -2, "__index"); /* metatable.__index = method table */ lua_pop(L, 1); /* pop metatable */ } /* ** function to (not) close the standard files stdin, stdout, and stderr */ static int io_noclose (lua_State *L) { LStream *p = tolstream(L); p->closef = &io_noclose; /* keep file opened */ luaL_pushfail(L); lua_pushliteral(L, "cannot close standard file"); return 2; } static void createstdfile (lua_State *L, FILE *f, const char *k, const char *fname) { LStream *p = newprefile(L); p->f = f; p->closef = &io_noclose; if (k != NULL) { lua_pushvalue(L, -1); lua_setfield(L, LUA_REGISTRYINDEX, k); /* add file to registry */ } lua_setfield(L, -2, fname); /* add file to module */ } LUAMOD_API int luaopen_io (lua_State *L) { luaL_newlib(L, iolib); /* new module */ createmeta(L); /* create (and set) default files */ createstdfile(L, stdin, IO_INPUT, "stdin"); createstdfile(L, stdout, IO_OUTPUT, "stdout"); createstdfile(L, stderr, NULL, "stderr"); return 1; } /* ** $Id: lmathlib.c $ ** Standard mathematical library ** See Copyright Notice in lua.h */ #define lmathlib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ #undef PI #define PI (l_mathop(3.141592653589793238462643383279502884)) static int math_abs (lua_State *L) { if (lua_isinteger(L, 1)) { lua_Integer n = lua_tointeger(L, 1); if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); lua_pushinteger(L, n); } else lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); return 1; } static int math_sin (lua_State *L) { lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); return 1; } static int math_cos (lua_State *L) { lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); return 1; } static int math_tan (lua_State *L) { lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); return 1; } static int math_asin (lua_State *L) { lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); return 1; } static int math_acos (lua_State *L) { lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); return 1; } static int math_atan (lua_State *L) { lua_Number y = luaL_checknumber(L, 1); lua_Number x = luaL_optnumber(L, 2, 1); lua_pushnumber(L, l_mathop(atan2)(y, x)); return 1; } static int math_toint (lua_State *L) { int valid; lua_Integer n = lua_tointegerx(L, 1, &valid); if (l_likely(valid)) lua_pushinteger(L, n); else { luaL_checkany(L, 1); luaL_pushfail(L); /* value is not convertible to integer */ } return 1; } static void pushnumint (lua_State *L, lua_Number d) { lua_Integer n; if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ lua_pushinteger(L, n); /* result is integer */ else lua_pushnumber(L, d); /* result is float */ } static int math_floor (lua_State *L) { if (lua_isinteger(L, 1)) lua_settop(L, 1); /* integer is its own floor */ else { lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); pushnumint(L, d); } return 1; } static int math_ceil (lua_State *L) { if (lua_isinteger(L, 1)) lua_settop(L, 1); /* integer is its own ceil */ else { lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); pushnumint(L, d); } return 1; } static int math_fmod (lua_State *L) { if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { lua_Integer d = lua_tointeger(L, 2); if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ luaL_argcheck(L, d != 0, 2, "zero"); lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ } else lua_pushinteger(L, lua_tointeger(L, 1) % d); } else lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), luaL_checknumber(L, 2))); return 1; } /* ** next function does not use 'modf', avoiding problems with 'double*' ** (which is not compatible with 'float*') when lua_Number is not ** 'double'. */ static int math_modf (lua_State *L) { if (lua_isinteger(L ,1)) { lua_settop(L, 1); /* number is its own integer part */ lua_pushnumber(L, 0); /* no fractional part */ } else { lua_Number n = luaL_checknumber(L, 1); /* integer part (rounds toward zero) */ lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); pushnumint(L, ip); /* fractional part (test needed for inf/-inf) */ lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); } return 2; } static int math_sqrt (lua_State *L) { lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); return 1; } static int math_ult (lua_State *L) { lua_Integer a = luaL_checkinteger(L, 1); lua_Integer b = luaL_checkinteger(L, 2); lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); return 1; } static int math_log (lua_State *L) { lua_Number x = luaL_checknumber(L, 1); lua_Number res; if (lua_isnoneornil(L, 2)) res = l_mathop(log)(x); else { lua_Number base = luaL_checknumber(L, 2); #if !defined(LUA_USE_C89) if (base == l_mathop(2.0)) res = l_mathop(log2)(x); else #endif if (base == l_mathop(10.0)) res = l_mathop(log10)(x); else res = l_mathop(log)(x)/l_mathop(log)(base); } lua_pushnumber(L, res); return 1; } static int math_exp (lua_State *L) { lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); return 1; } static int math_deg (lua_State *L) { lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); return 1; } static int math_rad (lua_State *L) { lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); return 1; } static int math_min (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ int imin = 1; /* index of current minimum value */ int i; luaL_argcheck(L, n >= 1, 1, "value expected"); for (i = 2; i <= n; i++) { if (lua_compare(L, i, imin, LUA_OPLT)) imin = i; } lua_pushvalue(L, imin); return 1; } static int math_max (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ int imax = 1; /* index of current maximum value */ int i; luaL_argcheck(L, n >= 1, 1, "value expected"); for (i = 2; i <= n; i++) { if (lua_compare(L, imax, i, LUA_OPLT)) imax = i; } lua_pushvalue(L, imax); return 1; } static int math_type (lua_State *L) { if (lua_type(L, 1) == LUA_TNUMBER) lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); else { luaL_checkany(L, 1); luaL_pushfail(L); } return 1; } /* ** {================================================================== ** Pseudo-Random Number Generator based on 'xoshiro256**'. ** =================================================================== */ /* number of binary digits in the mantissa of a float */ #define FIGS l_floatatt(MANT_DIG) #if FIGS > 64 /* there are only 64 random bits; use them all */ #undef FIGS #define FIGS 64 #endif /* ** LUA_RAND32 forces the use of 32-bit integers in the implementation ** of the PRN generator (mainly for testing). */ #if !defined(LUA_RAND32) && !defined(Rand64) /* try to find an integer type with at least 64 bits */ #if (ULONG_MAX >> 31 >> 31) >= 3 /* 'long' has at least 64 bits */ #define Rand64 unsigned long #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) /* there is a 'long long' type (which must have at least 64 bits) */ #define Rand64 unsigned long long #elif (LUA_MAXUNSIGNED >> 31 >> 31) >= 3 /* 'lua_Integer' has at least 64 bits */ #define Rand64 lua_Unsigned #endif #endif #if defined(Rand64) /* { */ /* ** Standard implementation, using 64-bit integers. ** If 'Rand64' has more than 64 bits, the extra bits do not interfere ** with the 64 initial bits, except in a right shift. Moreover, the ** final result has to discard the extra bits. */ /* avoid using extra bits when needed */ #define trim64(x) ((x) & 0xffffffffffffffffu) /* rotate left 'x' by 'n' bits */ static Rand64 rotl (Rand64 x, int n) { return (x << n) | (trim64(x) >> (64 - n)); } static Rand64 nextrand (Rand64 *state) { Rand64 state0 = state[0]; Rand64 state1 = state[1]; Rand64 state2 = state[2] ^ state0; Rand64 state3 = state[3] ^ state1; Rand64 res = rotl(state1 * 5, 7) * 9; state[0] = state0 ^ state3; state[1] = state1 ^ state2; state[2] = state2 ^ (state1 << 17); state[3] = rotl(state3, 45); return res; } /* must take care to not shift stuff by more than 63 slots */ /* ** Convert bits from a random integer into a float in the ** interval [0,1), getting the higher FIG bits from the ** random unsigned integer and converting that to a float. */ /* must throw out the extra (64 - FIGS) bits */ #define shift64_FIG (64 - FIGS) /* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */ #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) static lua_Number I2d (Rand64 x) { return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG; } /* convert a 'Rand64' to a 'lua_Unsigned' */ #define I2UInt(x) ((lua_Unsigned)trim64(x)) /* convert a 'lua_Unsigned' to a 'Rand64' */ #define Int2I(x) ((Rand64)(x)) #else /* no 'Rand64' }{ */ /* get an integer with at least 32 bits */ #if LUAI_IS32INT typedef unsigned int lu_int32; #else typedef unsigned long lu_int32; #endif /* ** Use two 32-bit integers to represent a 64-bit quantity. */ typedef struct Rand64 { lu_int32 h; /* higher half */ lu_int32 l; /* lower half */ } Rand64; /* ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere ** with the 32 initial bits, except in a right shift and comparisons. ** Moreover, the final result has to discard the extra bits. */ /* avoid using extra bits when needed */ #define trim32(x) ((x) & 0xffffffffu) /* ** basic operations on 'Rand64' values */ /* build a new Rand64 value */ static Rand64 packI (lu_int32 h, lu_int32 l) { Rand64 result; result.h = h; result.l = l; return result; } /* return i << n */ static Rand64 Ishl (Rand64 i, int n) { lua_assert(n > 0 && n < 32); return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); } /* i1 ^= i2 */ static void Ixor (Rand64 *i1, Rand64 i2) { i1->h ^= i2.h; i1->l ^= i2.l; } /* return i1 + i2 */ static Rand64 Iadd (Rand64 i1, Rand64 i2) { Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); if (trim32(result.l) < trim32(i1.l)) /* carry? */ result.h++; return result; } /* return i * 5 */ static Rand64 times5 (Rand64 i) { return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ } /* return i * 9 */ static Rand64 times9 (Rand64 i) { return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ } /* return 'i' rotated left 'n' bits */ static Rand64 rotl (Rand64 i, int n) { lua_assert(n > 0 && n < 32); return packI((i.h << n) | (trim32(i.l) >> (32 - n)), (trim32(i.h) >> (32 - n)) | (i.l << n)); } /* for offsets larger than 32, rotate right by 64 - offset */ static Rand64 rotl1 (Rand64 i, int n) { lua_assert(n > 32 && n < 64); n = 64 - n; return packI((trim32(i.h) >> n) | (i.l << (32 - n)), (i.h << (32 - n)) | (trim32(i.l) >> n)); } /* ** implementation of 'xoshiro256**' algorithm on 'Rand64' values */ static Rand64 nextrand (Rand64 *state) { Rand64 res = times9(rotl(times5(state[1]), 7)); Rand64 t = Ishl(state[1], 17); Ixor(&state[2], state[0]); Ixor(&state[3], state[1]); Ixor(&state[1], state[2]); Ixor(&state[0], state[3]); Ixor(&state[2], t); state[3] = rotl1(state[3], 45); return res; } /* ** Converts a 'Rand64' into a float. */ /* an unsigned 1 with proper type */ #define UONE ((lu_int32)1) #if FIGS <= 32 /* 2^(-FIGS) */ #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) /* ** get up to 32 bits from higher half, shifting right to ** throw out the extra bits. */ static lua_Number I2d (Rand64 x) { lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); return h * scaleFIG; } #else /* 32 < FIGS <= 64 */ /* must take care to not shift stuff by more than 31 slots */ /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ #define scaleFIG \ (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) /* ** use FIGS - 32 bits from lower half, throwing out the other ** (32 - (FIGS - 32)) = (64 - FIGS) bits */ #define shiftLOW (64 - FIGS) /* ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) */ #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) static lua_Number I2d (Rand64 x) { lua_Number h = (lua_Number)trim32(x.h) * shiftHI; lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); return (h + l) * scaleFIG; } #endif /* convert a 'Rand64' to a 'lua_Unsigned' */ static lua_Unsigned I2UInt (Rand64 x) { return ((lua_Unsigned)trim32(x.h) << 31 << 1) | (lua_Unsigned)trim32(x.l); } /* convert a 'lua_Unsigned' to a 'Rand64' */ static Rand64 Int2I (lua_Unsigned n) { return packI((lu_int32)(n >> 31 >> 1), (lu_int32)n); } #endif /* } */ /* ** A state uses four 'Rand64' values. */ typedef struct { Rand64 s[4]; } RanState; /* ** Project the random integer 'ran' into the interval [0, n]. ** Because 'ran' has 2^B possible values, the projection can only be ** uniform when the size of the interval is a power of 2 (exact ** division). Otherwise, to get a uniform projection into [0, n], we ** first compute 'lim', the smallest Mersenne number not smaller than ** 'n'. We then project 'ran' into the interval [0, lim]. If the result ** is inside [0, n], we are done. Otherwise, we try with another 'ran', ** until we have a result inside the interval. */ static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, RanState *state) { if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ return ran & n; /* no bias */ else { lua_Unsigned lim = n; /* compute the smallest (2^b - 1) not smaller than 'n' */ lim |= (lim >> 1); lim |= (lim >> 2); lim |= (lim >> 4); lim |= (lim >> 8); lim |= (lim >> 16); #if (LUA_MAXUNSIGNED >> 31) >= 3 lim |= (lim >> 32); /* integer type has more than 32 bits */ #endif lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ && lim >= n /* not smaller than 'n', */ && (lim >> 1) < n); /* and it is the smallest one */ while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ return ran; } } static int math_random (lua_State *L) { lua_Integer low, up; lua_Unsigned p; RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); Rand64 rv = nextrand(state->s); /* next pseudo-random value */ switch (lua_gettop(L)) { /* check number of arguments */ case 0: { /* no arguments */ lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ return 1; } case 1: { /* only upper limit */ low = 1; up = luaL_checkinteger(L, 1); if (up == 0) { /* single 0 as argument? */ lua_pushinteger(L, I2UInt(rv)); /* full random integer */ return 1; } break; } case 2: { /* lower and upper limits */ low = luaL_checkinteger(L, 1); up = luaL_checkinteger(L, 2); break; } default: return luaL_error(L, "wrong number of arguments"); } /* random integer in the interval [low, up] */ luaL_argcheck(L, low <= up, 1, "interval is empty"); /* project random integer into the interval [0, up - low] */ p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); lua_pushinteger(L, p + (lua_Unsigned)low); return 1; } static void setseed (lua_State *L, Rand64 *state, lua_Unsigned n1, lua_Unsigned n2) { int i; state[0] = Int2I(n1); state[1] = Int2I(0xff); /* avoid a zero state */ state[2] = Int2I(n2); state[3] = Int2I(0); for (i = 0; i < 16; i++) nextrand(state); /* discard initial values to "spread" seed */ lua_pushinteger(L, n1); lua_pushinteger(L, n2); } /* ** Set a "random" seed. To get some randomness, use the current time ** and the address of 'L' (in case the machine does address space layout ** randomization). */ static void randseed (lua_State *L, RanState *state) { lua_Unsigned seed1 = (lua_Unsigned)time(NULL); lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; setseed(L, state->s, seed1, seed2); } static int math_randomseed (lua_State *L) { RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); if (lua_isnone(L, 1)) { randseed(L, state); } else { lua_Integer n1 = luaL_checkinteger(L, 1); lua_Integer n2 = luaL_optinteger(L, 2, 0); setseed(L, state->s, n1, n2); } return 2; /* return seeds */ } static const luaL_Reg randfuncs[] = { {"random", math_random}, {"randomseed", math_randomseed}, {NULL, NULL} }; /* ** Register the random functions and initialize their state. */ static void setrandfunc (lua_State *L) { RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); randseed(L, state); /* initialize with a "random" seed */ lua_pop(L, 2); /* remove pushed seeds */ luaL_setfuncs(L, randfuncs, 1); } /* }================================================================== */ /* ** {================================================================== ** Deprecated functions (for compatibility only) ** =================================================================== */ #if defined(LUA_COMPAT_MATHLIB) static int math_cosh (lua_State *L) { lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); return 1; } static int math_sinh (lua_State *L) { lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); return 1; } static int math_tanh (lua_State *L) { lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); return 1; } static int math_pow (lua_State *L) { lua_Number x = luaL_checknumber(L, 1); lua_Number y = luaL_checknumber(L, 2); lua_pushnumber(L, l_mathop(pow)(x, y)); return 1; } static int math_frexp (lua_State *L) { int e; lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); lua_pushinteger(L, e); return 2; } static int math_ldexp (lua_State *L) { lua_Number x = luaL_checknumber(L, 1); int ep = (int)luaL_checkinteger(L, 2); lua_pushnumber(L, l_mathop(ldexp)(x, ep)); return 1; } static int math_log10 (lua_State *L) { lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); return 1; } #endif /* }================================================================== */ static const luaL_Reg mathlib[] = { {"abs", math_abs}, {"acos", math_acos}, {"asin", math_asin}, {"atan", math_atan}, {"ceil", math_ceil}, {"cos", math_cos}, {"deg", math_deg}, {"exp", math_exp}, {"tointeger", math_toint}, {"floor", math_floor}, {"fmod", math_fmod}, {"ult", math_ult}, {"log", math_log}, {"max", math_max}, {"min", math_min}, {"modf", math_modf}, {"rad", math_rad}, {"sin", math_sin}, {"sqrt", math_sqrt}, {"tan", math_tan}, {"type", math_type}, #if defined(LUA_COMPAT_MATHLIB) {"atan2", math_atan}, {"cosh", math_cosh}, {"sinh", math_sinh}, {"tanh", math_tanh}, {"pow", math_pow}, {"frexp", math_frexp}, {"ldexp", math_ldexp}, {"log10", math_log10}, #endif /* placeholders */ {"random", NULL}, {"randomseed", NULL}, {"pi", NULL}, {"huge", NULL}, {"maxinteger", NULL}, {"mininteger", NULL}, {NULL, NULL} }; /* ** Open math library */ LUAMOD_API int luaopen_math (lua_State *L) { luaL_newlib(L, mathlib); lua_pushnumber(L, PI); lua_setfield(L, -2, "pi"); lua_pushnumber(L, (lua_Number)HUGE_VAL); lua_setfield(L, -2, "huge"); lua_pushinteger(L, LUA_MAXINTEGER); lua_setfield(L, -2, "maxinteger"); lua_pushinteger(L, LUA_MININTEGER); lua_setfield(L, -2, "mininteger"); setrandfunc(L); return 1; } /* ** $Id: loadlib.c $ ** Dynamic library loader for Lua ** See Copyright Notice in lua.h ** ** This module contains an implementation of loadlib for Unix systems ** that have dlfcn, an implementation for Windows, and a stub for other ** systems. */ #define loadlib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ /* ** LUA_IGMARK is a mark to ignore all before it when building the ** luaopen_ function name. */ #if !defined (LUA_IGMARK) #define LUA_IGMARK "-" #endif /* ** LUA_CSUBSEP is the character that replaces dots in submodule names ** when searching for a C loader. ** LUA_LSUBSEP is the character that replaces dots in submodule names ** when searching for a Lua loader. */ #if !defined(LUA_CSUBSEP) #define LUA_CSUBSEP LUA_DIRSEP #endif #if !defined(LUA_LSUBSEP) #define LUA_LSUBSEP LUA_DIRSEP #endif /* prefix for open functions in C libraries */ #define LUA_POF "luaopen_" /* separator for open functions in C libraries */ #define LUA_OFSEP "_" /* ** key for table in the registry that keeps handles ** for all loaded C libraries */ static const char *const CLIBS = "_CLIBS"; #define LIB_FAIL "open" #define setprogdir(L) ((void)0) /* ** Special type equivalent to '(void*)' for functions in gcc ** (to suppress warnings when converting function pointers) */ typedef void (*voidf)(void); /* ** system-dependent functions */ /* ** unload library 'lib' */ static void lsys_unloadlib (void *lib); /* ** load C library in file 'path'. If 'seeglb', load with all names in ** the library global. ** Returns the library; in case of error, returns NULL plus an ** error string in the stack. */ static void *lsys_load (lua_State *L, const char *path, int seeglb); /* ** Try to find a function named 'sym' in library 'lib'. ** Returns the function; in case of error, returns NULL plus an ** error string in the stack. */ static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym); #if defined(LUA_USE_DLOPEN) /* { */ /* ** {======================================================================== ** This is an implementation of loadlib based on the dlfcn interface. ** The dlfcn interface is available in Linux, SunOS, Solaris, IRIX, FreeBSD, ** NetBSD, AIX 4.2, HPUX 11, and probably most other Unix flavors, at least ** as an emulation layer on top of native functions. ** ========================================================================= */ #include /* ** Macro to convert pointer-to-void* to pointer-to-function. This cast ** is undefined according to ISO C, but POSIX assumes that it works. ** (The '__extension__' in gnu compilers is only to avoid warnings.) */ #if defined(__GNUC__) #define cast_func(p) (__extension__ (lua_CFunction)(p)) #else #define cast_func(p) ((lua_CFunction)(p)) #endif static void lsys_unloadlib (void *lib) { dlclose(lib); } static void *lsys_load (lua_State *L, const char *path, int seeglb) { void *lib = dlopen(path, RTLD_NOW | (seeglb ? RTLD_GLOBAL : RTLD_LOCAL)); if (l_unlikely(lib == NULL)) lua_pushstring(L, dlerror()); return lib; } static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym) { lua_CFunction f = cast_func(dlsym(lib, sym)); if (l_unlikely(f == NULL)) lua_pushstring(L, dlerror()); return f; } /* }====================================================== */ #elif defined(LUA_DL_DLL) /* }{ */ /* ** {====================================================================== ** This is an implementation of loadlib for Windows using native functions. ** ======================================================================= */ #include /* ** optional flags for LoadLibraryEx */ #if !defined(LUA_LLE_FLAGS) #define LUA_LLE_FLAGS 0 #endif #undef setprogdir /* ** Replace in the path (on the top of the stack) any occurrence ** of LUA_EXEC_DIR with the executable's path. */ static void setprogdir (lua_State *L) { char buff[MAX_PATH + 1]; char *lb; DWORD nsize = sizeof(buff)/sizeof(char); DWORD n = GetModuleFileNameA(NULL, buff, nsize); /* get exec. name */ if (n == 0 || n == nsize || (lb = strrchr(buff, '\\')) == NULL) luaL_error(L, "unable to get ModuleFileName"); else { *lb = '\0'; /* cut name on the last '\\' to get the path */ luaL_gsub(L, lua_tostring(L, -1), LUA_EXEC_DIR, buff); lua_remove(L, -2); /* remove original string */ } } static void pusherror (lua_State *L) { int error = GetLastError(); char buffer[128]; if (FormatMessageA(FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_FROM_SYSTEM, NULL, error, 0, buffer, sizeof(buffer)/sizeof(char), NULL)) lua_pushstring(L, buffer); else lua_pushfstring(L, "system error %d\n", error); } static void lsys_unloadlib (void *lib) { FreeLibrary((HMODULE)lib); } static void *lsys_load (lua_State *L, const char *path, int seeglb) { HMODULE lib = LoadLibraryExA(path, NULL, LUA_LLE_FLAGS); (void)(seeglb); /* not used: symbols are 'global' by default */ if (lib == NULL) pusherror(L); return lib; } static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym) { lua_CFunction f = (lua_CFunction)(voidf)GetProcAddress((HMODULE)lib, sym); if (f == NULL) pusherror(L); return f; } /* }====================================================== */ #else /* }{ */ /* ** {====================================================== ** Fallback for other systems ** ======================================================= */ #undef LIB_FAIL #define LIB_FAIL "absent" #define DLMSG "dynamic libraries not enabled; check your Lua installation" static void lsys_unloadlib (void *lib) { (void)(lib); /* not used */ } static void *lsys_load (lua_State *L, const char *path, int seeglb) { (void)(path); (void)(seeglb); /* not used */ lua_pushliteral(L, DLMSG); return NULL; } static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym) { (void)(lib); (void)(sym); /* not used */ lua_pushliteral(L, DLMSG); return NULL; } /* }====================================================== */ #endif /* } */ /* ** {================================================================== ** Set Paths ** =================================================================== */ /* ** LUA_PATH_VAR and LUA_CPATH_VAR are the names of the environment ** variables that Lua check to set its paths. */ #if !defined(LUA_PATH_VAR) #define LUA_PATH_VAR "LUA_PATH" #endif #if !defined(LUA_CPATH_VAR) #define LUA_CPATH_VAR "LUA_CPATH" #endif /* ** return registry.LUA_NOENV as a boolean */ static int noenv (lua_State *L) { int b; lua_getfield(L, LUA_REGISTRYINDEX, "LUA_NOENV"); b = lua_toboolean(L, -1); lua_pop(L, 1); /* remove value */ return b; } /* ** Set a path */ static void setpath (lua_State *L, const char *fieldname, const char *envname, const char *dft) { const char *dftmark; const char *nver = lua_pushfstring(L, "%s%s", envname, LUA_VERSUFFIX); const char *path = getenv(nver); /* try versioned name */ if (path == NULL) /* no versioned environment variable? */ path = getenv(envname); /* try unversioned name */ if (path == NULL || noenv(L)) /* no environment variable? */ lua_pushstring(L, dft); /* use default */ else if ((dftmark = strstr(path, LUA_PATH_SEP LUA_PATH_SEP)) == NULL) lua_pushstring(L, path); /* nothing to change */ else { /* path contains a ";;": insert default path in its place */ size_t len = strlen(path); luaL_Buffer b; luaL_buffinit(L, &b); if (path < dftmark) { /* is there a prefix before ';;'? */ luaL_addlstring(&b, path, dftmark - path); /* add it */ luaL_addchar(&b, *LUA_PATH_SEP); } luaL_addstring(&b, dft); /* add default */ if (dftmark < path + len - 2) { /* is there a suffix after ';;'? */ luaL_addchar(&b, *LUA_PATH_SEP); luaL_addlstring(&b, dftmark + 2, (path + len - 2) - dftmark); } luaL_pushresult(&b); } setprogdir(L); lua_setfield(L, -3, fieldname); /* package[fieldname] = path value */ lua_pop(L, 1); /* pop versioned variable name ('nver') */ } /* }================================================================== */ /* ** return registry.CLIBS[path] */ static void *checkclib (lua_State *L, const char *path) { void *plib; lua_getfield(L, LUA_REGISTRYINDEX, CLIBS); lua_getfield(L, -1, path); plib = lua_touserdata(L, -1); /* plib = CLIBS[path] */ lua_pop(L, 2); /* pop CLIBS table and 'plib' */ return plib; } /* ** registry.CLIBS[path] = plib -- for queries ** registry.CLIBS[#CLIBS + 1] = plib -- also keep a list of all libraries */ static void addtoclib (lua_State *L, const char *path, void *plib) { lua_getfield(L, LUA_REGISTRYINDEX, CLIBS); lua_pushlightuserdata(L, plib); lua_pushvalue(L, -1); lua_setfield(L, -3, path); /* CLIBS[path] = plib */ lua_rawseti(L, -2, luaL_len(L, -2) + 1); /* CLIBS[#CLIBS + 1] = plib */ lua_pop(L, 1); /* pop CLIBS table */ } /* ** __gc tag method for CLIBS table: calls 'lsys_unloadlib' for all lib ** handles in list CLIBS */ static int gctm (lua_State *L) { lua_Integer n = luaL_len(L, 1); for (; n >= 1; n--) { /* for each handle, in reverse order */ lua_rawgeti(L, 1, n); /* get handle CLIBS[n] */ lsys_unloadlib(lua_touserdata(L, -1)); lua_pop(L, 1); /* pop handle */ } return 0; } /* error codes for 'lookforfunc' */ #define ERRLIB 1 #define ERRFUNC 2 /* ** Look for a C function named 'sym' in a dynamically loaded library ** 'path'. ** First, check whether the library is already loaded; if not, try ** to load it. ** Then, if 'sym' is '*', return true (as library has been loaded). ** Otherwise, look for symbol 'sym' in the library and push a ** C function with that symbol. ** Return 0 and 'true' or a function in the stack; in case of ** errors, return an error code and an error message in the stack. */ static int lookforfunc (lua_State *L, const char *path, const char *sym) { void *reg = checkclib(L, path); /* check loaded C libraries */ if (reg == NULL) { /* must load library? */ reg = lsys_load(L, path, *sym == '*'); /* global symbols if 'sym'=='*' */ if (reg == NULL) return ERRLIB; /* unable to load library */ addtoclib(L, path, reg); } if (*sym == '*') { /* loading only library (no function)? */ lua_pushboolean(L, 1); /* return 'true' */ return 0; /* no errors */ } else { lua_CFunction f = lsys_sym(L, reg, sym); if (f == NULL) return ERRFUNC; /* unable to find function */ lua_pushcfunction(L, f); /* else create new function */ return 0; /* no errors */ } } static int ll_loadlib (lua_State *L) { const char *path = luaL_checkstring(L, 1); const char *init = luaL_checkstring(L, 2); int stat = lookforfunc(L, path, init); if (l_likely(stat == 0)) /* no errors? */ return 1; /* return the loaded function */ else { /* error; error message is on stack top */ luaL_pushfail(L); lua_insert(L, -2); lua_pushstring(L, (stat == ERRLIB) ? LIB_FAIL : "init"); return 3; /* return fail, error message, and where */ } } /* ** {====================================================== ** 'require' function ** ======================================================= */ static int readable (const char *filename) { FILE *f = fopen(filename, "r"); /* try to open file */ if (f == NULL) return 0; /* open failed */ fclose(f); return 1; } /* ** Get the next name in '*path' = 'name1;name2;name3;...', changing ** the ending ';' to '\0' to create a zero-terminated string. Return ** NULL when list ends. */ static const char *getnextfilename (char **path, char *end) { char *sep; char *name = *path; if (name == end) return NULL; /* no more names */ else if (*name == '\0') { /* from previous iteration? */ *name = *LUA_PATH_SEP; /* restore separator */ name++; /* skip it */ } sep = strchr(name, *LUA_PATH_SEP); /* find next separator */ if (sep == NULL) /* separator not found? */ sep = end; /* name goes until the end */ *sep = '\0'; /* finish file name */ *path = sep; /* will start next search from here */ return name; } /* ** Given a path such as ";blabla.so;blublu.so", pushes the string ** ** no file 'blabla.so' ** no file 'blublu.so' */ static void pusherrornotfound (lua_State *L, const char *path) { luaL_Buffer b; luaL_buffinit(L, &b); luaL_addstring(&b, "no file '"); luaL_addgsub(&b, path, LUA_PATH_SEP, "'\n\tno file '"); luaL_addstring(&b, "'"); luaL_pushresult(&b); } static const char *searchpath (lua_State *L, const char *name, const char *path, const char *sep, const char *dirsep) { luaL_Buffer buff; char *pathname; /* path with name inserted */ char *endpathname; /* its end */ const char *filename; /* separator is non-empty and appears in 'name'? */ if (*sep != '\0' && strchr(name, *sep) != NULL) name = luaL_gsub(L, name, sep, dirsep); /* replace it by 'dirsep' */ luaL_buffinit(L, &buff); /* add path to the buffer, replacing marks ('?') with the file name */ luaL_addgsub(&buff, path, LUA_PATH_MARK, name); luaL_addchar(&buff, '\0'); pathname = luaL_buffaddr(&buff); /* writable list of file names */ endpathname = pathname + luaL_bufflen(&buff) - 1; while ((filename = getnextfilename(&pathname, endpathname)) != NULL) { if (readable(filename)) /* does file exist and is readable? */ return lua_pushstring(L, filename); /* save and return name */ } luaL_pushresult(&buff); /* push path to create error message */ pusherrornotfound(L, lua_tostring(L, -1)); /* create error message */ return NULL; /* not found */ } static int ll_searchpath (lua_State *L) { const char *f = searchpath(L, luaL_checkstring(L, 1), luaL_checkstring(L, 2), luaL_optstring(L, 3, "."), luaL_optstring(L, 4, LUA_DIRSEP)); if (f != NULL) return 1; else { /* error message is on top of the stack */ luaL_pushfail(L); lua_insert(L, -2); return 2; /* return fail + error message */ } } static const char *findfile (lua_State *L, const char *name, const char *pname, const char *dirsep) { const char *path; lua_getfield(L, lua_upvalueindex(1), pname); path = lua_tostring(L, -1); if (l_unlikely(path == NULL)) luaL_error(L, "'package.%s' must be a string", pname); return searchpath(L, name, path, ".", dirsep); } static int checkload (lua_State *L, int stat, const char *filename) { if (l_likely(stat)) { /* module loaded successfully? */ lua_pushstring(L, filename); /* will be 2nd argument to module */ return 2; /* return open function and file name */ } else return luaL_error(L, "error loading module '%s' from file '%s':\n\t%s", lua_tostring(L, 1), filename, lua_tostring(L, -1)); } static int searcher_Lua (lua_State *L) { const char *filename; const char *name = luaL_checkstring(L, 1); filename = findfile(L, name, "path", LUA_LSUBSEP); if (filename == NULL) return 1; /* module not found in this path */ return checkload(L, (luaL_loadfile(L, filename) == LUA_OK), filename); } /* ** Try to find a load function for module 'modname' at file 'filename'. ** First, change '.' to '_' in 'modname'; then, if 'modname' has ** the form X-Y (that is, it has an "ignore mark"), build a function ** name "luaopen_X" and look for it. (For compatibility, if that ** fails, it also tries "luaopen_Y".) If there is no ignore mark, ** look for a function named "luaopen_modname". */ static int loadfunc (lua_State *L, const char *filename, const char *modname) { const char *openfunc; const char *mark; modname = luaL_gsub(L, modname, ".", LUA_OFSEP); mark = strchr(modname, *LUA_IGMARK); if (mark) { int stat; openfunc = lua_pushlstring(L, modname, mark - modname); openfunc = lua_pushfstring(L, LUA_POF"%s", openfunc); stat = lookforfunc(L, filename, openfunc); if (stat != ERRFUNC) return stat; modname = mark + 1; /* else go ahead and try old-style name */ } openfunc = lua_pushfstring(L, LUA_POF"%s", modname); return lookforfunc(L, filename, openfunc); } static int searcher_C (lua_State *L) { const char *name = luaL_checkstring(L, 1); const char *filename = findfile(L, name, "cpath", LUA_CSUBSEP); if (filename == NULL) return 1; /* module not found in this path */ return checkload(L, (loadfunc(L, filename, name) == 0), filename); } static int searcher_Croot (lua_State *L) { const char *filename; const char *name = luaL_checkstring(L, 1); const char *p = strchr(name, '.'); int stat; if (p == NULL) return 0; /* is root */ lua_pushlstring(L, name, p - name); filename = findfile(L, lua_tostring(L, -1), "cpath", LUA_CSUBSEP); if (filename == NULL) return 1; /* root not found */ if ((stat = loadfunc(L, filename, name)) != 0) { if (stat != ERRFUNC) return checkload(L, 0, filename); /* real error */ else { /* open function not found */ lua_pushfstring(L, "no module '%s' in file '%s'", name, filename); return 1; } } lua_pushstring(L, filename); /* will be 2nd argument to module */ return 2; } static int searcher_preload (lua_State *L) { const char *name = luaL_checkstring(L, 1); lua_getfield(L, LUA_REGISTRYINDEX, LUA_PRELOAD_TABLE); if (lua_getfield(L, -1, name) == LUA_TNIL) { /* not found? */ lua_pushfstring(L, "no field package.preload['%s']", name); return 1; } else { lua_pushliteral(L, ":preload:"); return 2; } } static void findloader (lua_State *L, const char *name) { int i; luaL_Buffer msg; /* to build error message */ /* push 'package.searchers' to index 3 in the stack */ if (l_unlikely(lua_getfield(L, lua_upvalueindex(1), "searchers") != LUA_TTABLE)) luaL_error(L, "'package.searchers' must be a table"); luaL_buffinit(L, &msg); /* iterate over available searchers to find a loader */ for (i = 1; ; i++) { luaL_addstring(&msg, "\n\t"); /* error-message prefix */ if (l_unlikely(lua_rawgeti(L, 3, i) == LUA_TNIL)) { /* no more searchers? */ lua_pop(L, 1); /* remove nil */ luaL_buffsub(&msg, 2); /* remove prefix */ luaL_pushresult(&msg); /* create error message */ luaL_error(L, "module '%s' not found:%s", name, lua_tostring(L, -1)); } lua_pushstring(L, name); lua_call(L, 1, 2); /* call it */ if (lua_isfunction(L, -2)) /* did it find a loader? */ return; /* module loader found */ else if (lua_isstring(L, -2)) { /* searcher returned error message? */ lua_pop(L, 1); /* remove extra return */ luaL_addvalue(&msg); /* concatenate error message */ } else { /* no error message */ lua_pop(L, 2); /* remove both returns */ luaL_buffsub(&msg, 2); /* remove prefix */ } } } static int ll_require (lua_State *L) { const char *name = luaL_checkstring(L, 1); lua_settop(L, 1); /* LOADED table will be at index 2 */ lua_getfield(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE); lua_getfield(L, 2, name); /* LOADED[name] */ if (lua_toboolean(L, -1)) /* is it there? */ return 1; /* package is already loaded */ /* else must load package */ lua_pop(L, 1); /* remove 'getfield' result */ findloader(L, name); lua_rotate(L, -2, 1); /* function <-> loader data */ lua_pushvalue(L, 1); /* name is 1st argument to module loader */ lua_pushvalue(L, -3); /* loader data is 2nd argument */ /* stack: ...; loader data; loader function; mod. name; loader data */ lua_call(L, 2, 1); /* run loader to load module */ /* stack: ...; loader data; result from loader */ if (!lua_isnil(L, -1)) /* non-nil return? */ lua_setfield(L, 2, name); /* LOADED[name] = returned value */ else lua_pop(L, 1); /* pop nil */ if (lua_getfield(L, 2, name) == LUA_TNIL) { /* module set no value? */ lua_pushboolean(L, 1); /* use true as result */ lua_copy(L, -1, -2); /* replace loader result */ lua_setfield(L, 2, name); /* LOADED[name] = true */ } lua_rotate(L, -2, 1); /* loader data <-> module result */ return 2; /* return module result and loader data */ } /* }====================================================== */ static const luaL_Reg pk_funcs[] = { {"loadlib", ll_loadlib}, {"searchpath", ll_searchpath}, /* placeholders */ {"preload", NULL}, {"cpath", NULL}, {"path", NULL}, {"searchers", NULL}, {"loaded", NULL}, {NULL, NULL} }; static const luaL_Reg ll_funcs[] = { {"require", ll_require}, {NULL, NULL} }; static void createsearcherstable (lua_State *L) { static const lua_CFunction searchers[] = {searcher_preload, searcher_Lua, searcher_C, searcher_Croot, NULL}; int i; /* create 'searchers' table */ lua_createtable(L, sizeof(searchers)/sizeof(searchers[0]) - 1, 0); /* fill it with predefined searchers */ for (i=0; searchers[i] != NULL; i++) { lua_pushvalue(L, -2); /* set 'package' as upvalue for all searchers */ lua_pushcclosure(L, searchers[i], 1); lua_rawseti(L, -2, i+1); } lua_setfield(L, -2, "searchers"); /* put it in field 'searchers' */ } /* ** create table CLIBS to keep track of loaded C libraries, ** setting a finalizer to close all libraries when closing state. */ static void createclibstable (lua_State *L) { luaL_getsubtable(L, LUA_REGISTRYINDEX, CLIBS); /* create CLIBS table */ lua_createtable(L, 0, 1); /* create metatable for CLIBS */ lua_pushcfunction(L, gctm); lua_setfield(L, -2, "__gc"); /* set finalizer for CLIBS table */ lua_setmetatable(L, -2); } LUAMOD_API int luaopen_package (lua_State *L) { createclibstable(L); luaL_newlib(L, pk_funcs); /* create 'package' table */ createsearcherstable(L); /* set paths */ setpath(L, "path", LUA_PATH_VAR, LUA_PATH_DEFAULT); setpath(L, "cpath", LUA_CPATH_VAR, LUA_CPATH_DEFAULT); /* store config information */ lua_pushliteral(L, LUA_DIRSEP "\n" LUA_PATH_SEP "\n" LUA_PATH_MARK "\n" LUA_EXEC_DIR "\n" LUA_IGMARK "\n"); lua_setfield(L, -2, "config"); /* set field 'loaded' */ luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE); lua_setfield(L, -2, "loaded"); /* set field 'preload' */ luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_PRELOAD_TABLE); lua_setfield(L, -2, "preload"); lua_pushglobaltable(L); lua_pushvalue(L, -2); /* set 'package' as upvalue for next lib */ luaL_setfuncs(L, ll_funcs, 1); /* open lib into global table */ lua_pop(L, 1); /* pop global table */ return 1; /* return 'package' table */ } /* ** $Id: loslib.c $ ** Standard Operating System library ** See Copyright Notice in lua.h */ #define loslib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ /* ** {================================================================== ** List of valid conversion specifiers for the 'strftime' function; ** options are grouped by length; group of length 2 start with '||'. ** =================================================================== */ #if !defined(LUA_STRFTIMEOPTIONS) /* { */ /* options for ANSI C 89 (only 1-char options) */ #define L_STRFTIMEC89 "aAbBcdHIjmMpSUwWxXyYZ%" /* options for ISO C 99 and POSIX */ #define L_STRFTIMEC99 "aAbBcCdDeFgGhHIjmMnprRStTuUVwWxXyYzZ%" \ "||" "EcECExEXEyEY" "OdOeOHOIOmOMOSOuOUOVOwOWOy" /* two-char options */ /* options for Windows */ #define L_STRFTIMEWIN "aAbBcdHIjmMpSUwWxXyYzZ%" \ "||" "#c#x#d#H#I#j#m#M#S#U#w#W#y#Y" /* two-char options */ #if defined(LUA_USE_WINDOWS) #define LUA_STRFTIMEOPTIONS L_STRFTIMEWIN #elif defined(LUA_USE_C89) #define LUA_STRFTIMEOPTIONS L_STRFTIMEC89 #else /* C99 specification */ #define LUA_STRFTIMEOPTIONS L_STRFTIMEC99 #endif #endif /* } */ /* }================================================================== */ /* ** {================================================================== ** Configuration for time-related stuff ** =================================================================== */ /* ** type to represent time_t in Lua */ #if !defined(LUA_NUMTIME) /* { */ #define l_timet lua_Integer #define l_pushtime(L,t) lua_pushinteger(L,(lua_Integer)(t)) #define l_gettime(L,arg) luaL_checkinteger(L, arg) #else /* }{ */ #define l_timet lua_Number #define l_pushtime(L,t) lua_pushnumber(L,(lua_Number)(t)) #define l_gettime(L,arg) luaL_checknumber(L, arg) #endif /* } */ #if !defined(l_gmtime) /* { */ /* ** By default, Lua uses gmtime/localtime, except when POSIX is available, ** where it uses gmtime_r/localtime_r */ #if defined(LUA_USE_POSIX) /* { */ #define l_gmtime(t,r) gmtime_r(t,r) #define l_localtime(t,r) localtime_r(t,r) #else /* }{ */ /* ISO C definitions */ #define l_gmtime(t,r) ((void)(r)->tm_sec, gmtime(t)) #define l_localtime(t,r) ((void)(r)->tm_sec, localtime(t)) #endif /* } */ #endif /* } */ /* }================================================================== */ /* ** {================================================================== ** Configuration for 'tmpnam': ** By default, Lua uses tmpnam except when POSIX is available, where ** it uses mkstemp. ** =================================================================== */ #if !defined(lua_tmpnam) /* { */ #if defined(LUA_USE_POSIX) /* { */ #include #define LUA_TMPNAMBUFSIZE 32 #if !defined(LUA_TMPNAMTEMPLATE) #define LUA_TMPNAMTEMPLATE "/tmp/lua_XXXXXX" #endif #define lua_tmpnam(b,e) { \ strcpy(b, LUA_TMPNAMTEMPLATE); \ e = mkstemp(b); \ if (e != -1) close(e); \ e = (e == -1); } #else /* }{ */ /* ISO C definitions */ #define LUA_TMPNAMBUFSIZE L_tmpnam #define lua_tmpnam(b,e) { e = (tmpnam(b) == NULL); } #endif /* } */ #endif /* } */ /* }================================================================== */ static int os_execute (lua_State *L) { const char *cmd = luaL_optstring(L, 1, NULL); int stat; errno = 0; stat = system(cmd); if (cmd != NULL) return luaL_execresult(L, stat); else { lua_pushboolean(L, stat); /* true if there is a shell */ return 1; } } static int os_remove (lua_State *L) { const char *filename = luaL_checkstring(L, 1); return luaL_fileresult(L, remove(filename) == 0, filename); } static int os_rename (lua_State *L) { const char *fromname = luaL_checkstring(L, 1); const char *toname = luaL_checkstring(L, 2); return luaL_fileresult(L, rename(fromname, toname) == 0, NULL); } static int os_tmpname (lua_State *L) { char buff[LUA_TMPNAMBUFSIZE]; int err; lua_tmpnam(buff, err); if (l_unlikely(err)) return luaL_error(L, "unable to generate a unique filename"); lua_pushstring(L, buff); return 1; } static int os_getenv (lua_State *L) { lua_pushstring(L, getenv(luaL_checkstring(L, 1))); /* if NULL push nil */ return 1; } static int os_clock (lua_State *L) { lua_pushnumber(L, ((lua_Number)clock())/(lua_Number)CLOCKS_PER_SEC); return 1; } /* ** {====================================================== ** Time/Date operations ** { year=%Y, month=%m, day=%d, hour=%H, min=%M, sec=%S, ** wday=%w+1, yday=%j, isdst=? } ** ======================================================= */ /* ** About the overflow check: an overflow cannot occur when time ** is represented by a lua_Integer, because either lua_Integer is ** large enough to represent all int fields or it is not large enough ** to represent a time that cause a field to overflow. However, if ** times are represented as doubles and lua_Integer is int, then the ** time 0x1.e1853b0d184f6p+55 would cause an overflow when adding 1900 ** to compute the year. */ static void setfield (lua_State *L, const char *key, int value, int delta) { #if (defined(LUA_NUMTIME) && LUA_MAXINTEGER <= INT_MAX) if (l_unlikely(value > LUA_MAXINTEGER - delta)) luaL_error(L, "field '%s' is out-of-bound", key); #endif lua_pushinteger(L, (lua_Integer)value + delta); lua_setfield(L, -2, key); } static void setboolfield (lua_State *L, const char *key, int value) { if (value < 0) /* undefined? */ return; /* does not set field */ lua_pushboolean(L, value); lua_setfield(L, -2, key); } /* ** Set all fields from structure 'tm' in the table on top of the stack */ static void setallfields (lua_State *L, struct tm *stm) { setfield(L, "year", stm->tm_year, 1900); setfield(L, "month", stm->tm_mon, 1); setfield(L, "day", stm->tm_mday, 0); setfield(L, "hour", stm->tm_hour, 0); setfield(L, "min", stm->tm_min, 0); setfield(L, "sec", stm->tm_sec, 0); setfield(L, "yday", stm->tm_yday, 1); setfield(L, "wday", stm->tm_wday, 1); setboolfield(L, "isdst", stm->tm_isdst); } static int getboolfield (lua_State *L, const char *key) { int res; res = (lua_getfield(L, -1, key) == LUA_TNIL) ? -1 : lua_toboolean(L, -1); lua_pop(L, 1); return res; } static int getfield (lua_State *L, const char *key, int d, int delta) { int isnum; int t = lua_getfield(L, -1, key); /* get field and its type */ lua_Integer res = lua_tointegerx(L, -1, &isnum); if (!isnum) { /* field is not an integer? */ if (l_unlikely(t != LUA_TNIL)) /* some other value? */ return luaL_error(L, "field '%s' is not an integer", key); else if (l_unlikely(d < 0)) /* absent field; no default? */ return luaL_error(L, "field '%s' missing in date table", key); res = d; } else { /* unsigned avoids overflow when lua_Integer has 32 bits */ if (!(res >= 0 ? (lua_Unsigned)res <= (lua_Unsigned)INT_MAX + delta : (lua_Integer)INT_MIN + delta <= res)) return luaL_error(L, "field '%s' is out-of-bound", key); res -= delta; } lua_pop(L, 1); return (int)res; } static const char *checkoption (lua_State *L, const char *conv, ptrdiff_t convlen, char *buff) { const char *option = LUA_STRFTIMEOPTIONS; int oplen = 1; /* length of options being checked */ for (; *option != '\0' && oplen <= convlen; option += oplen) { if (*option == '|') /* next block? */ oplen++; /* will check options with next length (+1) */ else if (memcmp(conv, option, oplen) == 0) { /* match? */ memcpy(buff, conv, oplen); /* copy valid option to buffer */ buff[oplen] = '\0'; return conv + oplen; /* return next item */ } } luaL_argerror(L, 1, lua_pushfstring(L, "invalid conversion specifier '%%%s'", conv)); return conv; /* to avoid warnings */ } static time_t l_checktime (lua_State *L, int arg) { l_timet t = l_gettime(L, arg); luaL_argcheck(L, (time_t)t == t, arg, "time out-of-bounds"); return (time_t)t; } /* maximum size for an individual 'strftime' item */ #define SIZETIMEFMT 250 static int os_date (lua_State *L) { size_t slen; const char *s = luaL_optlstring(L, 1, "%c", &slen); time_t t = luaL_opt(L, l_checktime, 2, time(NULL)); const char *se = s + slen; /* 's' end */ struct tm tmr, *stm; if (*s == '!') { /* UTC? */ stm = l_gmtime(&t, &tmr); s++; /* skip '!' */ } else stm = l_localtime(&t, &tmr); if (stm == NULL) /* invalid date? */ return luaL_error(L, "date result cannot be represented in this installation"); if (strcmp(s, "*t") == 0) { lua_createtable(L, 0, 9); /* 9 = number of fields */ setallfields(L, stm); } else { char cc[4]; /* buffer for individual conversion specifiers */ luaL_Buffer b; cc[0] = '%'; luaL_buffinit(L, &b); while (s < se) { if (*s != '%') /* not a conversion specifier? */ luaL_addchar(&b, *s++); else { size_t reslen; char *buff = luaL_prepbuffsize(&b, SIZETIMEFMT); s++; /* skip '%' */ s = checkoption(L, s, se - s, cc + 1); /* copy specifier to 'cc' */ reslen = strftime(buff, SIZETIMEFMT, cc, stm); luaL_addsize(&b, reslen); } } luaL_pushresult(&b); } return 1; } static int os_time (lua_State *L) { time_t t; if (lua_isnoneornil(L, 1)) /* called without args? */ t = time(NULL); /* get current time */ else { struct tm ts; luaL_checktype(L, 1, LUA_TTABLE); lua_settop(L, 1); /* make sure table is at the top */ ts.tm_year = getfield(L, "year", -1, 1900); ts.tm_mon = getfield(L, "month", -1, 1); ts.tm_mday = getfield(L, "day", -1, 0); ts.tm_hour = getfield(L, "hour", 12, 0); ts.tm_min = getfield(L, "min", 0, 0); ts.tm_sec = getfield(L, "sec", 0, 0); ts.tm_isdst = getboolfield(L, "isdst"); t = mktime(&ts); setallfields(L, &ts); /* update fields with normalized values */ } if (t != (time_t)(l_timet)t || t == (time_t)(-1)) return luaL_error(L, "time result cannot be represented in this installation"); l_pushtime(L, t); return 1; } static int os_difftime (lua_State *L) { time_t t1 = l_checktime(L, 1); time_t t2 = l_checktime(L, 2); lua_pushnumber(L, (lua_Number)difftime(t1, t2)); return 1; } /* }====================================================== */ static int os_setlocale (lua_State *L) { static const int cat[] = {LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME}; static const char *const catnames[] = {"all", "collate", "ctype", "monetary", "numeric", "time", NULL}; const char *l = luaL_optstring(L, 1, NULL); int op = luaL_checkoption(L, 2, "all", catnames); lua_pushstring(L, setlocale(cat[op], l)); return 1; } static int os_exit (lua_State *L) { int status; if (lua_isboolean(L, 1)) status = (lua_toboolean(L, 1) ? EXIT_SUCCESS : EXIT_FAILURE); else status = (int)luaL_optinteger(L, 1, EXIT_SUCCESS); if (lua_toboolean(L, 2)) lua_close(L); if (L) exit(status); /* 'if' to avoid warnings for unreachable 'return' */ return 0; } static const luaL_Reg syslib[] = { {"clock", os_clock}, {"date", os_date}, {"difftime", os_difftime}, {"execute", os_execute}, {"exit", os_exit}, {"getenv", os_getenv}, {"remove", os_remove}, {"rename", os_rename}, {"setlocale", os_setlocale}, {"time", os_time}, {"tmpname", os_tmpname}, {NULL, NULL} }; /* }====================================================== */ LUAMOD_API int luaopen_os (lua_State *L) { luaL_newlib(L, syslib); return 1; } /* ** $Id: lstrlib.c $ ** Standard library for string operations and pattern-matching ** See Copyright Notice in lua.h */ #define lstrlib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include #include #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ /* ** maximum number of captures that a pattern can do during ** pattern-matching. This limit is arbitrary, but must fit in ** an unsigned char. */ #if !defined(LUA_MAXCAPTURES) #define LUA_MAXCAPTURES 32 #endif /* macro to 'unsign' a character */ #define uchar(c) ((unsigned char)(c)) /* ** Some sizes are better limited to fit in 'int', but must also fit in ** 'size_t'. (We assume that 'lua_Integer' cannot be smaller than 'int'.) */ #define MAX_SIZET ((size_t)(~(size_t)0)) #define MAXSIZE \ (sizeof(size_t) < sizeof(int) ? MAX_SIZET : (size_t)(INT_MAX)) static int str_len (lua_State *L) { size_t l; luaL_checklstring(L, 1, &l); lua_pushinteger(L, (lua_Integer)l); return 1; } /* ** translate a relative initial string position ** (negative means back from end): clip result to [1, inf). ** The length of any string in Lua must fit in a lua_Integer, ** so there are no overflows in the casts. ** The inverted comparison avoids a possible overflow ** computing '-pos'. */ static size_t posrelatI (lua_Integer pos, size_t len) { if (pos > 0) return (size_t)pos; else if (pos == 0) return 1; else if (pos < -(lua_Integer)len) /* inverted comparison */ return 1; /* clip to 1 */ else return len + (size_t)pos + 1; } /* ** Gets an optional ending string position from argument 'arg', ** with default value 'def'. ** Negative means back from end: clip result to [0, len] */ static size_t getendpos (lua_State *L, int arg, lua_Integer def, size_t len) { lua_Integer pos = luaL_optinteger(L, arg, def); if (pos > (lua_Integer)len) return len; else if (pos >= 0) return (size_t)pos; else if (pos < -(lua_Integer)len) return 0; else return len + (size_t)pos + 1; } static int str_sub (lua_State *L) { size_t l; const char *s = luaL_checklstring(L, 1, &l); size_t start = posrelatI(luaL_checkinteger(L, 2), l); size_t end = getendpos(L, 3, -1, l); if (start <= end) lua_pushlstring(L, s + start - 1, (end - start) + 1); else lua_pushliteral(L, ""); return 1; } static int str_reverse (lua_State *L) { size_t l, i; luaL_Buffer b; const char *s = luaL_checklstring(L, 1, &l); char *p = luaL_buffinitsize(L, &b, l); for (i = 0; i < l; i++) p[i] = s[l - i - 1]; luaL_pushresultsize(&b, l); return 1; } static int str_lower (lua_State *L) { size_t l; size_t i; luaL_Buffer b; const char *s = luaL_checklstring(L, 1, &l); char *p = luaL_buffinitsize(L, &b, l); for (i=0; i MAXSIZE / n)) return luaL_error(L, "resulting string too large"); else { size_t totallen = (size_t)n * l + (size_t)(n - 1) * lsep; luaL_Buffer b; char *p = luaL_buffinitsize(L, &b, totallen); while (n-- > 1) { /* first n-1 copies (followed by separator) */ memcpy(p, s, l * sizeof(char)); p += l; if (lsep > 0) { /* empty 'memcpy' is not that cheap */ memcpy(p, sep, lsep * sizeof(char)); p += lsep; } } memcpy(p, s, l * sizeof(char)); /* last copy (not followed by separator) */ luaL_pushresultsize(&b, totallen); } return 1; } static int str_byte (lua_State *L) { size_t l; const char *s = luaL_checklstring(L, 1, &l); lua_Integer pi = luaL_optinteger(L, 2, 1); size_t posi = posrelatI(pi, l); size_t pose = getendpos(L, 3, pi, l); int n, i; if (posi > pose) return 0; /* empty interval; return no values */ if (l_unlikely(pose - posi >= (size_t)INT_MAX)) /* arithmetic overflow? */ return luaL_error(L, "string slice too long"); n = (int)(pose - posi) + 1; luaL_checkstack(L, n, "string slice too long"); for (i=0; iinit) { state->init = 1; luaL_buffinit(L, &state->B); } luaL_addlstring(&state->B, (const char *)b, size); return 0; } static int str_dump (lua_State *L) { struct str_Writer state; int strip = lua_toboolean(L, 2); luaL_checktype(L, 1, LUA_TFUNCTION); lua_settop(L, 1); /* ensure function is on the top of the stack */ state.init = 0; if (l_unlikely(lua_dump(L, writer, &state, strip) != 0)) return luaL_error(L, "unable to dump given function"); luaL_pushresult(&state.B); return 1; } /* ** {====================================================== ** METAMETHODS ** ======================================================= */ #if defined(LUA_NOCVTS2N) /* { */ /* no coercion from strings to numbers */ static const luaL_Reg stringmetamethods[] = { {"__index", NULL}, /* placeholder */ {NULL, NULL} }; #else /* }{ */ static int tonum (lua_State *L, int arg) { if (lua_type(L, arg) == LUA_TNUMBER) { /* already a number? */ lua_pushvalue(L, arg); return 1; } else { /* check whether it is a numerical string */ size_t len; const char *s = lua_tolstring(L, arg, &len); return (s != NULL && lua_stringtonumber(L, s) == len + 1); } } static void trymt (lua_State *L, const char *mtname) { lua_settop(L, 2); /* back to the original arguments */ if (l_unlikely(lua_type(L, 2) == LUA_TSTRING || !luaL_getmetafield(L, 2, mtname))) luaL_error(L, "attempt to %s a '%s' with a '%s'", mtname + 2, luaL_typename(L, -2), luaL_typename(L, -1)); lua_insert(L, -3); /* put metamethod before arguments */ lua_call(L, 2, 1); /* call metamethod */ } static int arith (lua_State *L, int op, const char *mtname) { if (tonum(L, 1) && tonum(L, 2)) lua_arith(L, op); /* result will be on the top */ else trymt(L, mtname); return 1; } static int arith_add (lua_State *L) { return arith(L, LUA_OPADD, "__add"); } static int arith_sub (lua_State *L) { return arith(L, LUA_OPSUB, "__sub"); } static int arith_mul (lua_State *L) { return arith(L, LUA_OPMUL, "__mul"); } static int arith_mod (lua_State *L) { return arith(L, LUA_OPMOD, "__mod"); } static int arith_pow (lua_State *L) { return arith(L, LUA_OPPOW, "__pow"); } static int arith_div (lua_State *L) { return arith(L, LUA_OPDIV, "__div"); } static int arith_idiv (lua_State *L) { return arith(L, LUA_OPIDIV, "__idiv"); } static int arith_unm (lua_State *L) { return arith(L, LUA_OPUNM, "__unm"); } static const luaL_Reg stringmetamethods[] = { {"__add", arith_add}, {"__sub", arith_sub}, {"__mul", arith_mul}, {"__mod", arith_mod}, {"__pow", arith_pow}, {"__div", arith_div}, {"__idiv", arith_idiv}, {"__unm", arith_unm}, {"__index", NULL}, /* placeholder */ {NULL, NULL} }; #endif /* } */ /* }====================================================== */ /* ** {====================================================== ** PATTERN MATCHING ** ======================================================= */ #define CAP_UNFINISHED (-1) #define CAP_POSITION (-2) typedef struct MatchState { const char *src_init; /* init of source string */ const char *src_end; /* end ('\0') of source string */ const char *p_end; /* end ('\0') of pattern */ lua_State *L; int matchdepth; /* control for recursive depth (to avoid C stack overflow) */ unsigned char level; /* total number of captures (finished or unfinished) */ struct { const char *init; ptrdiff_t len; } capture[LUA_MAXCAPTURES]; } MatchState; /* recursive function */ static const char *match (MatchState *ms, const char *s, const char *p); /* maximum recursion depth for 'match' */ #if !defined(MAXCCALLS) #define MAXCCALLS 200 #endif #define L_ESC '%' #define SPECIALS "^$*+?.([%-" static int check_capture (MatchState *ms, int l) { l -= '1'; if (l_unlikely(l < 0 || l >= ms->level || ms->capture[l].len == CAP_UNFINISHED)) return luaL_error(ms->L, "invalid capture index %%%d", l + 1); return l; } static int capture_to_close (MatchState *ms) { int level = ms->level; for (level--; level>=0; level--) if (ms->capture[level].len == CAP_UNFINISHED) return level; return luaL_error(ms->L, "invalid pattern capture"); } static const char *classend (MatchState *ms, const char *p) { switch (*p++) { case L_ESC: { if (l_unlikely(p == ms->p_end)) luaL_error(ms->L, "malformed pattern (ends with '%%')"); return p+1; } case '[': { if (*p == '^') p++; do { /* look for a ']' */ if (l_unlikely(p == ms->p_end)) luaL_error(ms->L, "malformed pattern (missing ']')"); if (*(p++) == L_ESC && p < ms->p_end) p++; /* skip escapes (e.g. '%]') */ } while (*p != ']'); return p+1; } default: { return p; } } } static int match_class (int c, int cl) { int res; switch (tolower(cl)) { case 'a' : res = isalpha(c); break; case 'c' : res = iscntrl(c); break; case 'd' : res = isdigit(c); break; case 'g' : res = isgraph(c); break; case 'l' : res = islower(c); break; case 'p' : res = ispunct(c); break; case 's' : res = isspace(c); break; case 'u' : res = isupper(c); break; case 'w' : res = isalnum(c); break; case 'x' : res = isxdigit(c); break; case 'z' : res = (c == 0); break; /* deprecated option */ default: return (cl == c); } return (islower(cl) ? res : !res); } static int matchbracketclass (int c, const char *p, const char *ec) { int sig = 1; if (*(p+1) == '^') { sig = 0; p++; /* skip the '^' */ } while (++p < ec) { if (*p == L_ESC) { p++; if (match_class(c, uchar(*p))) return sig; } else if ((*(p+1) == '-') && (p+2 < ec)) { p+=2; if (uchar(*(p-2)) <= c && c <= uchar(*p)) return sig; } else if (uchar(*p) == c) return sig; } return !sig; } static int singlematch (MatchState *ms, const char *s, const char *p, const char *ep) { if (s >= ms->src_end) return 0; else { int c = uchar(*s); switch (*p) { case '.': return 1; /* matches any char */ case L_ESC: return match_class(c, uchar(*(p+1))); case '[': return matchbracketclass(c, p, ep-1); default: return (uchar(*p) == c); } } } static const char *matchbalance (MatchState *ms, const char *s, const char *p) { if (l_unlikely(p >= ms->p_end - 1)) luaL_error(ms->L, "malformed pattern (missing arguments to '%%b')"); if (*s != *p) return NULL; else { int b = *p; int e = *(p+1); int cont = 1; while (++s < ms->src_end) { if (*s == e) { if (--cont == 0) return s+1; } else if (*s == b) cont++; } } return NULL; /* string ends out of balance */ } static const char *max_expand (MatchState *ms, const char *s, const char *p, const char *ep) { ptrdiff_t i = 0; /* counts maximum expand for item */ while (singlematch(ms, s + i, p, ep)) i++; /* keeps trying to match with the maximum repetitions */ while (i>=0) { const char *res = match(ms, (s+i), ep+1); if (res) return res; i--; /* else didn't match; reduce 1 repetition to try again */ } return NULL; } static const char *min_expand (MatchState *ms, const char *s, const char *p, const char *ep) { for (;;) { const char *res = match(ms, s, ep+1); if (res != NULL) return res; else if (singlematch(ms, s, p, ep)) s++; /* try with one more repetition */ else return NULL; } } static const char *start_capture (MatchState *ms, const char *s, const char *p, int what) { const char *res; int level = ms->level; if (level >= LUA_MAXCAPTURES) luaL_error(ms->L, "too many captures"); ms->capture[level].init = s; ms->capture[level].len = what; ms->level = level+1; if ((res=match(ms, s, p)) == NULL) /* match failed? */ ms->level--; /* undo capture */ return res; } static const char *end_capture (MatchState *ms, const char *s, const char *p) { int l = capture_to_close(ms); const char *res; ms->capture[l].len = s - ms->capture[l].init; /* close capture */ if ((res = match(ms, s, p)) == NULL) /* match failed? */ ms->capture[l].len = CAP_UNFINISHED; /* undo capture */ return res; } static const char *match_capture (MatchState *ms, const char *s, int l) { size_t len; l = check_capture(ms, l); len = ms->capture[l].len; if ((size_t)(ms->src_end-s) >= len && memcmp(ms->capture[l].init, s, len) == 0) return s+len; else return NULL; } static const char *match (MatchState *ms, const char *s, const char *p) { if (l_unlikely(ms->matchdepth-- == 0)) luaL_error(ms->L, "pattern too complex"); init: /* using goto's to optimize tail recursion */ if (p != ms->p_end) { /* end of pattern? */ switch (*p) { case '(': { /* start capture */ if (*(p + 1) == ')') /* position capture? */ s = start_capture(ms, s, p + 2, CAP_POSITION); else s = start_capture(ms, s, p + 1, CAP_UNFINISHED); break; } case ')': { /* end capture */ s = end_capture(ms, s, p + 1); break; } case '$': { if ((p + 1) != ms->p_end) /* is the '$' the last char in pattern? */ goto dflt; /* no; go to default */ s = (s == ms->src_end) ? s : NULL; /* check end of string */ break; } case L_ESC: { /* escaped sequences not in the format class[*+?-]? */ switch (*(p + 1)) { case 'b': { /* balanced string? */ s = matchbalance(ms, s, p + 2); if (s != NULL) { p += 4; goto init; /* return match(ms, s, p + 4); */ } /* else fail (s == NULL) */ break; } case 'f': { /* frontier? */ const char *ep; char previous; p += 2; if (l_unlikely(*p != '[')) luaL_error(ms->L, "missing '[' after '%%f' in pattern"); ep = classend(ms, p); /* points to what is next */ previous = (s == ms->src_init) ? '\0' : *(s - 1); if (!matchbracketclass(uchar(previous), p, ep - 1) && matchbracketclass(uchar(*s), p, ep - 1)) { p = ep; goto init; /* return match(ms, s, ep); */ } s = NULL; /* match failed */ break; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* capture results (%0-%9)? */ s = match_capture(ms, s, uchar(*(p + 1))); if (s != NULL) { p += 2; goto init; /* return match(ms, s, p + 2) */ } break; } default: goto dflt; } break; } default: dflt: { /* pattern class plus optional suffix */ const char *ep = classend(ms, p); /* points to optional suffix */ /* does not match at least once? */ if (!singlematch(ms, s, p, ep)) { if (*ep == '*' || *ep == '?' || *ep == '-') { /* accept empty? */ p = ep + 1; goto init; /* return match(ms, s, ep + 1); */ } else /* '+' or no suffix */ s = NULL; /* fail */ } else { /* matched once */ switch (*ep) { /* handle optional suffix */ case '?': { /* optional */ const char *res; if ((res = match(ms, s + 1, ep + 1)) != NULL) s = res; else { p = ep + 1; goto init; /* else return match(ms, s, ep + 1); */ } break; } case '+': /* 1 or more repetitions */ s++; /* 1 match already done */ /* FALLTHROUGH */ case '*': /* 0 or more repetitions */ s = max_expand(ms, s, p, ep); break; case '-': /* 0 or more repetitions (minimum) */ s = min_expand(ms, s, p, ep); break; default: /* no suffix */ s++; p = ep; goto init; /* return match(ms, s + 1, ep); */ } } break; } } } ms->matchdepth++; return s; } static const char *lmemfind (const char *s1, size_t l1, const char *s2, size_t l2) { if (l2 == 0) return s1; /* empty strings are everywhere */ else if (l2 > l1) return NULL; /* avoids a negative 'l1' */ else { const char *init; /* to search for a '*s2' inside 's1' */ l2--; /* 1st char will be checked by 'memchr' */ l1 = l1-l2; /* 's2' cannot be found after that */ while (l1 > 0 && (init = (const char *)memchr(s1, *s2, l1)) != NULL) { init++; /* 1st char is already checked */ if (memcmp(init, s2+1, l2) == 0) return init-1; else { /* correct 'l1' and 's1' to try again */ l1 -= init-s1; s1 = init; } } return NULL; /* not found */ } } /* ** get information about the i-th capture. If there are no captures ** and 'i==0', return information about the whole match, which ** is the range 's'..'e'. If the capture is a string, return ** its length and put its address in '*cap'. If it is an integer ** (a position), push it on the stack and return CAP_POSITION. */ static size_t get_onecapture (MatchState *ms, int i, const char *s, const char *e, const char **cap) { if (i >= ms->level) { if (l_unlikely(i != 0)) luaL_error(ms->L, "invalid capture index %%%d", i + 1); *cap = s; return e - s; } else { ptrdiff_t capl = ms->capture[i].len; *cap = ms->capture[i].init; if (l_unlikely(capl == CAP_UNFINISHED)) luaL_error(ms->L, "unfinished capture"); else if (capl == CAP_POSITION) lua_pushinteger(ms->L, (ms->capture[i].init - ms->src_init) + 1); return capl; } } /* ** Push the i-th capture on the stack. */ static void push_onecapture (MatchState *ms, int i, const char *s, const char *e) { const char *cap; ptrdiff_t l = get_onecapture(ms, i, s, e, &cap); if (l != CAP_POSITION) lua_pushlstring(ms->L, cap, l); /* else position was already pushed */ } static int push_captures (MatchState *ms, const char *s, const char *e) { int i; int nlevels = (ms->level == 0 && s) ? 1 : ms->level; luaL_checkstack(ms->L, nlevels, "too many captures"); for (i = 0; i < nlevels; i++) push_onecapture(ms, i, s, e); return nlevels; /* number of strings pushed */ } /* check whether pattern has no special characters */ static int nospecials (const char *p, size_t l) { size_t upto = 0; do { if (strpbrk(p + upto, SPECIALS)) return 0; /* pattern has a special character */ upto += strlen(p + upto) + 1; /* may have more after \0 */ } while (upto <= l); return 1; /* no special chars found */ } static void prepstate (MatchState *ms, lua_State *L, const char *s, size_t ls, const char *p, size_t lp) { ms->L = L; ms->matchdepth = MAXCCALLS; ms->src_init = s; ms->src_end = s + ls; ms->p_end = p + lp; } static void reprepstate (MatchState *ms) { ms->level = 0; lua_assert(ms->matchdepth == MAXCCALLS); } static int str_find_aux (lua_State *L, int find) { size_t ls, lp; const char *s = luaL_checklstring(L, 1, &ls); const char *p = luaL_checklstring(L, 2, &lp); size_t init = posrelatI(luaL_optinteger(L, 3, 1), ls) - 1; if (init > ls) { /* start after string's end? */ luaL_pushfail(L); /* cannot find anything */ return 1; } /* explicit request or no special characters? */ if (find && (lua_toboolean(L, 4) || nospecials(p, lp))) { /* do a plain search */ const char *s2 = lmemfind(s + init, ls - init, p, lp); if (s2) { lua_pushinteger(L, (s2 - s) + 1); lua_pushinteger(L, (s2 - s) + lp); return 2; } } else { MatchState ms; const char *s1 = s + init; int anchor = (*p == '^'); if (anchor) { p++; lp--; /* skip anchor character */ } prepstate(&ms, L, s, ls, p, lp); do { const char *res; reprepstate(&ms); if ((res=match(&ms, s1, p)) != NULL) { if (find) { lua_pushinteger(L, (s1 - s) + 1); /* start */ lua_pushinteger(L, res - s); /* end */ return push_captures(&ms, NULL, 0) + 2; } else return push_captures(&ms, s1, res); } } while (s1++ < ms.src_end && !anchor); } luaL_pushfail(L); /* not found */ return 1; } static int str_find (lua_State *L) { return str_find_aux(L, 1); } static int str_match (lua_State *L) { return str_find_aux(L, 0); } /* state for 'gmatch' */ typedef struct GMatchState { const char *src; /* current position */ const char *p; /* pattern */ const char *lastmatch; /* end of last match */ MatchState ms; /* match state */ } GMatchState; static int gmatch_aux (lua_State *L) { GMatchState *gm = (GMatchState *)lua_touserdata(L, lua_upvalueindex(3)); const char *src; gm->ms.L = L; for (src = gm->src; src <= gm->ms.src_end; src++) { const char *e; reprepstate(&gm->ms); if ((e = match(&gm->ms, src, gm->p)) != NULL && e != gm->lastmatch) { gm->src = gm->lastmatch = e; return push_captures(&gm->ms, src, e); } } return 0; /* not found */ } static int gmatch (lua_State *L) { size_t ls, lp; const char *s = luaL_checklstring(L, 1, &ls); const char *p = luaL_checklstring(L, 2, &lp); size_t init = posrelatI(luaL_optinteger(L, 3, 1), ls) - 1; GMatchState *gm; lua_settop(L, 2); /* keep strings on closure to avoid being collected */ gm = (GMatchState *)lua_newuserdatauv(L, sizeof(GMatchState), 0); if (init > ls) /* start after string's end? */ init = ls + 1; /* avoid overflows in 's + init' */ prepstate(&gm->ms, L, s, ls, p, lp); gm->src = s + init; gm->p = p; gm->lastmatch = NULL; lua_pushcclosure(L, gmatch_aux, 3); return 1; } static void add_s (MatchState *ms, luaL_Buffer *b, const char *s, const char *e) { size_t l; lua_State *L = ms->L; const char *news = lua_tolstring(L, 3, &l); const char *p; while ((p = (char *)memchr(news, L_ESC, l)) != NULL) { luaL_addlstring(b, news, p - news); p++; /* skip ESC */ if (*p == L_ESC) /* '%%' */ luaL_addchar(b, *p); else if (*p == '0') /* '%0' */ luaL_addlstring(b, s, e - s); else if (isdigit(uchar(*p))) { /* '%n' */ const char *cap; ptrdiff_t resl = get_onecapture(ms, *p - '1', s, e, &cap); if (resl == CAP_POSITION) luaL_addvalue(b); /* add position to accumulated result */ else luaL_addlstring(b, cap, resl); } else luaL_error(L, "invalid use of '%c' in replacement string", L_ESC); l -= p + 1 - news; news = p + 1; } luaL_addlstring(b, news, l); } /* ** Add the replacement value to the string buffer 'b'. ** Return true if the original string was changed. (Function calls and ** table indexing resulting in nil or false do not change the subject.) */ static int add_value (MatchState *ms, luaL_Buffer *b, const char *s, const char *e, int tr) { lua_State *L = ms->L; switch (tr) { case LUA_TFUNCTION: { /* call the function */ int n; lua_pushvalue(L, 3); /* push the function */ n = push_captures(ms, s, e); /* all captures as arguments */ lua_call(L, n, 1); /* call it */ break; } case LUA_TTABLE: { /* index the table */ push_onecapture(ms, 0, s, e); /* first capture is the index */ lua_gettable(L, 3); break; } default: { /* LUA_TNUMBER or LUA_TSTRING */ add_s(ms, b, s, e); /* add value to the buffer */ return 1; /* something changed */ } } if (!lua_toboolean(L, -1)) { /* nil or false? */ lua_pop(L, 1); /* remove value */ luaL_addlstring(b, s, e - s); /* keep original text */ return 0; /* no changes */ } else if (l_unlikely(!lua_isstring(L, -1))) return luaL_error(L, "invalid replacement value (a %s)", luaL_typename(L, -1)); else { luaL_addvalue(b); /* add result to accumulator */ return 1; /* something changed */ } } static int str_gsub (lua_State *L) { size_t srcl, lp; const char *src = luaL_checklstring(L, 1, &srcl); /* subject */ const char *p = luaL_checklstring(L, 2, &lp); /* pattern */ const char *lastmatch = NULL; /* end of last match */ int tr = lua_type(L, 3); /* replacement type */ lua_Integer max_s = luaL_optinteger(L, 4, srcl + 1); /* max replacements */ int anchor = (*p == '^'); lua_Integer n = 0; /* replacement count */ int changed = 0; /* change flag */ MatchState ms; luaL_Buffer b; luaL_argexpected(L, tr == LUA_TNUMBER || tr == LUA_TSTRING || tr == LUA_TFUNCTION || tr == LUA_TTABLE, 3, "string/function/table"); luaL_buffinit(L, &b); if (anchor) { p++; lp--; /* skip anchor character */ } prepstate(&ms, L, src, srcl, p, lp); while (n < max_s) { const char *e; reprepstate(&ms); /* (re)prepare state for new match */ if ((e = match(&ms, src, p)) != NULL && e != lastmatch) { /* match? */ n++; changed = add_value(&ms, &b, src, e, tr) | changed; src = lastmatch = e; } else if (src < ms.src_end) /* otherwise, skip one character */ luaL_addchar(&b, *src++); else break; /* end of subject */ if (anchor) break; } if (!changed) /* no changes? */ lua_pushvalue(L, 1); /* return original string */ else { /* something changed */ luaL_addlstring(&b, src, ms.src_end-src); luaL_pushresult(&b); /* create and return new string */ } lua_pushinteger(L, n); /* number of substitutions */ return 2; } /* }====================================================== */ /* ** {====================================================== ** STRING FORMAT ** ======================================================= */ #if !defined(lua_number2strx) /* { */ /* ** Hexadecimal floating-point formatter */ #define SIZELENMOD (sizeof(LUA_NUMBER_FRMLEN)/sizeof(char)) /* ** Number of bits that goes into the first digit. It can be any value ** between 1 and 4; the following definition tries to align the number ** to nibble boundaries by making what is left after that first digit a ** multiple of 4. */ #define L_NBFD ((l_floatatt(MANT_DIG) - 1)%4 + 1) /* ** Add integer part of 'x' to buffer and return new 'x' */ static lua_Number adddigit (char *buff, int n, lua_Number x) { lua_Number dd = l_mathop(floor)(x); /* get integer part from 'x' */ int d = (int)dd; buff[n] = (d < 10 ? d + '0' : d - 10 + 'a'); /* add to buffer */ return x - dd; /* return what is left */ } static int num2straux (char *buff, int sz, lua_Number x) { /* if 'inf' or 'NaN', format it like '%g' */ if (x != x || x == (lua_Number)HUGE_VAL || x == -(lua_Number)HUGE_VAL) return l_sprintf(buff, sz, LUA_NUMBER_FMT, (LUAI_UACNUMBER)x); else if (x == 0) { /* can be -0... */ /* create "0" or "-0" followed by exponent */ return l_sprintf(buff, sz, LUA_NUMBER_FMT "x0p+0", (LUAI_UACNUMBER)x); } else { int e; lua_Number m = l_mathop(frexp)(x, &e); /* 'x' fraction and exponent */ int n = 0; /* character count */ if (m < 0) { /* is number negative? */ buff[n++] = '-'; /* add sign */ m = -m; /* make it positive */ } buff[n++] = '0'; buff[n++] = 'x'; /* add "0x" */ m = adddigit(buff, n++, m * (1 << L_NBFD)); /* add first digit */ e -= L_NBFD; /* this digit goes before the radix point */ if (m > 0) { /* more digits? */ buff[n++] = lua_getlocaledecpoint(); /* add radix point */ do { /* add as many digits as needed */ m = adddigit(buff, n++, m * 16); } while (m > 0); } n += l_sprintf(buff + n, sz - n, "p%+d", e); /* add exponent */ lua_assert(n < sz); return n; } } static int lua_number2strx (lua_State *L, char *buff, int sz, const char *fmt, lua_Number x) { int n = num2straux(buff, sz, x); if (fmt[SIZELENMOD] == 'A') { int i; for (i = 0; i < n; i++) buff[i] = toupper(uchar(buff[i])); } else if (l_unlikely(fmt[SIZELENMOD] != 'a')) return luaL_error(L, "modifiers for format '%%a'/'%%A' not implemented"); return n; } #endif /* } */ /* ** Maximum size for items formatted with '%f'. This size is produced ** by format('%.99f', -maxfloat), and is equal to 99 + 3 ('-', '.', ** and '\0') + number of decimal digits to represent maxfloat (which ** is maximum exponent + 1). (99+3+1, adding some extra, 110) */ #define MAX_ITEMF (110 + l_floatatt(MAX_10_EXP)) /* ** All formats except '%f' do not need that large limit. The other ** float formats use exponents, so that they fit in the 99 limit for ** significant digits; 's' for large strings and 'q' add items directly ** to the buffer; all integer formats also fit in the 99 limit. The ** worst case are floats: they may need 99 significant digits, plus ** '0x', '-', '.', 'e+XXXX', and '\0'. Adding some extra, 120. */ #define MAX_ITEM 120 /* valid flags in a format specification */ #if !defined(L_FMTFLAGSF) /* valid flags for a, A, e, E, f, F, g, and G conversions */ #define L_FMTFLAGSF "-+#0 " /* valid flags for o, x, and X conversions */ #define L_FMTFLAGSX "-#0" /* valid flags for d and i conversions */ #define L_FMTFLAGSI "-+0 " /* valid flags for u conversions */ #define L_FMTFLAGSU "-0" /* valid flags for c, p, and s conversions */ #define L_FMTFLAGSC "-" #endif /* ** Maximum size of each format specification (such as "%-099.99d"): ** Initial '%', flags (up to 5), width (2), period, precision (2), ** length modifier (8), conversion specifier, and final '\0', plus some ** extra. */ #define MAX_FORMAT 32 static void addquoted (luaL_Buffer *b, const char *s, size_t len) { luaL_addchar(b, '"'); while (len--) { if (*s == '"' || *s == '\\' || *s == '\n') { luaL_addchar(b, '\\'); luaL_addchar(b, *s); } else if (iscntrl(uchar(*s))) { char buff[10]; if (!isdigit(uchar(*(s+1)))) l_sprintf(buff, sizeof(buff), "\\%d", (int)uchar(*s)); else l_sprintf(buff, sizeof(buff), "\\%03d", (int)uchar(*s)); luaL_addstring(b, buff); } else luaL_addchar(b, *s); s++; } luaL_addchar(b, '"'); } /* ** Serialize a floating-point number in such a way that it can be ** scanned back by Lua. Use hexadecimal format for "common" numbers ** (to preserve precision); inf, -inf, and NaN are handled separately. ** (NaN cannot be expressed as a numeral, so we write '(0/0)' for it.) */ static int quotefloat (lua_State *L, char *buff, lua_Number n) { const char *s; /* for the fixed representations */ if (n == (lua_Number)HUGE_VAL) /* inf? */ s = "1e9999"; else if (n == -(lua_Number)HUGE_VAL) /* -inf? */ s = "-1e9999"; else if (n != n) /* NaN? */ s = "(0/0)"; else { /* format number as hexadecimal */ int nb = lua_number2strx(L, buff, MAX_ITEM, "%" LUA_NUMBER_FRMLEN "a", n); /* ensures that 'buff' string uses a dot as the radix character */ if (memchr(buff, '.', nb) == NULL) { /* no dot? */ char point = lua_getlocaledecpoint(); /* try locale point */ char *ppoint = (char *)memchr(buff, point, nb); if (ppoint) *ppoint = '.'; /* change it to a dot */ } return nb; } /* for the fixed representations */ return l_sprintf(buff, MAX_ITEM, "%s", s); } static void addliteral (lua_State *L, luaL_Buffer *b, int arg) { switch (lua_type(L, arg)) { case LUA_TSTRING: { size_t len; const char *s = lua_tolstring(L, arg, &len); addquoted(b, s, len); break; } case LUA_TNUMBER: { char *buff = luaL_prepbuffsize(b, MAX_ITEM); int nb; if (!lua_isinteger(L, arg)) /* float? */ nb = quotefloat(L, buff, lua_tonumber(L, arg)); else { /* integers */ lua_Integer n = lua_tointeger(L, arg); const char *format = (n == LUA_MININTEGER) /* corner case? */ ? "0x%" LUA_INTEGER_FRMLEN "x" /* use hex */ : LUA_INTEGER_FMT; /* else use default format */ nb = l_sprintf(buff, MAX_ITEM, format, (LUAI_UACINT)n); } luaL_addsize(b, nb); break; } case LUA_TNIL: case LUA_TBOOLEAN: { luaL_tolstring(L, arg, NULL); luaL_addvalue(b); break; } default: { luaL_argerror(L, arg, "value has no literal form"); } } } static const char *get2digits (const char *s) { if (isdigit(uchar(*s))) { s++; if (isdigit(uchar(*s))) s++; /* (2 digits at most) */ } return s; } /* ** Check whether a conversion specification is valid. When called, ** first character in 'form' must be '%' and last character must ** be a valid conversion specifier. 'flags' are the accepted flags; ** 'precision' signals whether to accept a precision. */ static void checkformat (lua_State *L, const char *form, const char *flags, int precision) { const char *spec = form + 1; /* skip '%' */ spec += strspn(spec, flags); /* skip flags */ if (*spec != '0') { /* a width cannot start with '0' */ spec = get2digits(spec); /* skip width */ if (*spec == '.' && precision) { spec++; spec = get2digits(spec); /* skip precision */ } } if (!isalpha(uchar(*spec))) /* did not go to the end? */ luaL_error(L, "invalid conversion specification: '%s'", form); } /* ** Get a conversion specification and copy it to 'form'. ** Return the address of its last character. */ static const char *getformat (lua_State *L, const char *strfrmt, char *form) { /* spans flags, width, and precision ('0' is included as a flag) */ size_t len = strspn(strfrmt, L_FMTFLAGSF "123456789."); len++; /* adds following character (should be the specifier) */ /* still needs space for '%', '\0', plus a length modifier */ if (len >= MAX_FORMAT - 10) luaL_error(L, "invalid format (too long)"); *(form++) = '%'; memcpy(form, strfrmt, len * sizeof(char)); *(form + len) = '\0'; return strfrmt + len - 1; } /* ** add length modifier into formats */ static void addlenmod (char *form, const char *lenmod) { size_t l = strlen(form); size_t lm = strlen(lenmod); char spec = form[l - 1]; strcpy(form + l - 1, lenmod); form[l + lm - 1] = spec; form[l + lm] = '\0'; } static int str_format (lua_State *L) { int top = lua_gettop(L); int arg = 1; size_t sfl; const char *strfrmt = luaL_checklstring(L, arg, &sfl); const char *strfrmt_end = strfrmt+sfl; const char *flags; luaL_Buffer b; luaL_buffinit(L, &b); while (strfrmt < strfrmt_end) { if (*strfrmt != L_ESC) luaL_addchar(&b, *strfrmt++); else if (*++strfrmt == L_ESC) luaL_addchar(&b, *strfrmt++); /* %% */ else { /* format item */ char form[MAX_FORMAT]; /* to store the format ('%...') */ int maxitem = MAX_ITEM; /* maximum length for the result */ char *buff = luaL_prepbuffsize(&b, maxitem); /* to put result */ int nb = 0; /* number of bytes in result */ if (++arg > top) return luaL_argerror(L, arg, "no value"); strfrmt = getformat(L, strfrmt, form); switch (*strfrmt++) { case 'c': { checkformat(L, form, L_FMTFLAGSC, 0); nb = l_sprintf(buff, maxitem, form, (int)luaL_checkinteger(L, arg)); break; } case 'd': case 'i': flags = L_FMTFLAGSI; goto intcase; case 'u': flags = L_FMTFLAGSU; goto intcase; case 'o': case 'x': case 'X': flags = L_FMTFLAGSX; intcase: { lua_Integer n = luaL_checkinteger(L, arg); checkformat(L, form, flags, 1); addlenmod(form, LUA_INTEGER_FRMLEN); nb = l_sprintf(buff, maxitem, form, (LUAI_UACINT)n); break; } case 'a': case 'A': checkformat(L, form, L_FMTFLAGSF, 1); addlenmod(form, LUA_NUMBER_FRMLEN); nb = lua_number2strx(L, buff, maxitem, form, luaL_checknumber(L, arg)); break; case 'f': maxitem = MAX_ITEMF; /* extra space for '%f' */ buff = luaL_prepbuffsize(&b, maxitem); /* FALLTHROUGH */ case 'e': case 'E': case 'g': case 'G': { lua_Number n = luaL_checknumber(L, arg); checkformat(L, form, L_FMTFLAGSF, 1); addlenmod(form, LUA_NUMBER_FRMLEN); nb = l_sprintf(buff, maxitem, form, (LUAI_UACNUMBER)n); break; } case 'p': { const void *p = lua_topointer(L, arg); checkformat(L, form, L_FMTFLAGSC, 0); if (p == NULL) { /* avoid calling 'printf' with argument NULL */ p = "(null)"; /* result */ form[strlen(form) - 1] = 's'; /* format it as a string */ } nb = l_sprintf(buff, maxitem, form, p); break; } case 'q': { if (form[2] != '\0') /* modifiers? */ return luaL_error(L, "specifier '%%q' cannot have modifiers"); addliteral(L, &b, arg); break; } case 's': { size_t l; const char *s = luaL_tolstring(L, arg, &l); if (form[2] == '\0') /* no modifiers? */ luaL_addvalue(&b); /* keep entire string */ else { luaL_argcheck(L, l == strlen(s), arg, "string contains zeros"); checkformat(L, form, L_FMTFLAGSC, 1); if (strchr(form, '.') == NULL && l >= 100) { /* no precision and string is too long to be formatted */ luaL_addvalue(&b); /* keep entire string */ } else { /* format the string into 'buff' */ nb = l_sprintf(buff, maxitem, form, s); lua_pop(L, 1); /* remove result from 'luaL_tolstring' */ } } break; } default: { /* also treat cases 'pnLlh' */ return luaL_error(L, "invalid conversion '%s' to 'format'", form); } } lua_assert(nb < maxitem); luaL_addsize(&b, nb); } } luaL_pushresult(&b); return 1; } /* }====================================================== */ /* ** {====================================================== ** PACK/UNPACK ** ======================================================= */ /* value used for padding */ #if !defined(LUAL_PACKPADBYTE) #define LUAL_PACKPADBYTE 0x00 #endif /* maximum size for the binary representation of an integer */ #define MAXINTSIZE 16 /* number of bits in a character */ #define NB CHAR_BIT /* mask for one character (NB 1's) */ #define MC ((1 << NB) - 1) /* size of a lua_Integer */ #define SZINT ((int)sizeof(lua_Integer)) /* dummy union to get native endianness */ static const union { int dummy; char little; /* true iff machine is little endian */ } nativeendian = {1}; /* ** information to pack/unpack stuff */ typedef struct Header { lua_State *L; int islittle; int maxalign; } Header; /* ** options for pack/unpack */ typedef enum KOption { Kint, /* signed integers */ Kuint, /* unsigned integers */ Kfloat, /* single-precision floating-point numbers */ Knumber, /* Lua "native" floating-point numbers */ Kdouble, /* double-precision floating-point numbers */ Kchar, /* fixed-length strings */ Kstring, /* strings with prefixed length */ Kzstr, /* zero-terminated strings */ Kpadding, /* padding */ Kpaddalign, /* padding for alignment */ Knop /* no-op (configuration or spaces) */ } KOption; /* ** Read an integer numeral from string 'fmt' or return 'df' if ** there is no numeral */ static int digit (int c) { return '0' <= c && c <= '9'; } static int getnum (const char **fmt, int df) { if (!digit(**fmt)) /* no number? */ return df; /* return default value */ else { int a = 0; do { a = a*10 + (*((*fmt)++) - '0'); } while (digit(**fmt) && a <= ((int)MAXSIZE - 9)/10); return a; } } /* ** Read an integer numeral and raises an error if it is larger ** than the maximum size for integers. */ static int getnumlimit (Header *h, const char **fmt, int df) { int sz = getnum(fmt, df); if (l_unlikely(sz > MAXINTSIZE || sz <= 0)) return luaL_error(h->L, "integral size (%d) out of limits [1,%d]", sz, MAXINTSIZE); return sz; } /* ** Initialize Header */ static void initheader (lua_State *L, Header *h) { h->L = L; h->islittle = nativeendian.little; h->maxalign = 1; } /* ** Read and classify next option. 'size' is filled with option's size. */ static KOption getoption (Header *h, const char **fmt, int *size) { /* dummy structure to get native alignment requirements */ struct cD { char c; union { LUAI_MAXALIGN; } u; }; int opt = *((*fmt)++); *size = 0; /* default */ switch (opt) { case 'b': *size = sizeof(char); return Kint; case 'B': *size = sizeof(char); return Kuint; case 'h': *size = sizeof(short); return Kint; case 'H': *size = sizeof(short); return Kuint; case 'l': *size = sizeof(long); return Kint; case 'L': *size = sizeof(long); return Kuint; case 'j': *size = sizeof(lua_Integer); return Kint; case 'J': *size = sizeof(lua_Integer); return Kuint; case 'T': *size = sizeof(size_t); return Kuint; case 'f': *size = sizeof(float); return Kfloat; case 'n': *size = sizeof(lua_Number); return Knumber; case 'd': *size = sizeof(double); return Kdouble; case 'i': *size = getnumlimit(h, fmt, sizeof(int)); return Kint; case 'I': *size = getnumlimit(h, fmt, sizeof(int)); return Kuint; case 's': *size = getnumlimit(h, fmt, sizeof(size_t)); return Kstring; case 'c': *size = getnum(fmt, -1); if (l_unlikely(*size == -1)) luaL_error(h->L, "missing size for format option 'c'"); return Kchar; case 'z': return Kzstr; case 'x': *size = 1; return Kpadding; case 'X': return Kpaddalign; case ' ': break; case '<': h->islittle = 1; break; case '>': h->islittle = 0; break; case '=': h->islittle = nativeendian.little; break; case '!': { const int maxalign = offsetof(struct cD, u); h->maxalign = getnumlimit(h, fmt, maxalign); break; } default: luaL_error(h->L, "invalid format option '%c'", opt); } return Knop; } /* ** Read, classify, and fill other details about the next option. ** 'psize' is filled with option's size, 'notoalign' with its ** alignment requirements. ** Local variable 'size' gets the size to be aligned. (Kpadal option ** always gets its full alignment, other options are limited by ** the maximum alignment ('maxalign'). Kchar option needs no alignment ** despite its size. */ static KOption getdetails (Header *h, size_t totalsize, const char **fmt, int *psize, int *ntoalign) { KOption opt = getoption(h, fmt, psize); int align = *psize; /* usually, alignment follows size */ if (opt == Kpaddalign) { /* 'X' gets alignment from following option */ if (**fmt == '\0' || getoption(h, fmt, &align) == Kchar || align == 0) luaL_argerror(h->L, 1, "invalid next option for option 'X'"); } if (align <= 1 || opt == Kchar) /* need no alignment? */ *ntoalign = 0; else { if (align > h->maxalign) /* enforce maximum alignment */ align = h->maxalign; if (l_unlikely((align & (align - 1)) != 0)) /* not a power of 2? */ luaL_argerror(h->L, 1, "format asks for alignment not power of 2"); *ntoalign = (align - (int)(totalsize & (align - 1))) & (align - 1); } return opt; } /* ** Pack integer 'n' with 'size' bytes and 'islittle' endianness. ** The final 'if' handles the case when 'size' is larger than ** the size of a Lua integer, correcting the extra sign-extension ** bytes if necessary (by default they would be zeros). */ static void packint (luaL_Buffer *b, lua_Unsigned n, int islittle, int size, int neg) { char *buff = luaL_prepbuffsize(b, size); int i; buff[islittle ? 0 : size - 1] = (char)(n & MC); /* first byte */ for (i = 1; i < size; i++) { n >>= NB; buff[islittle ? i : size - 1 - i] = (char)(n & MC); } if (neg && size > SZINT) { /* negative number need sign extension? */ for (i = SZINT; i < size; i++) /* correct extra bytes */ buff[islittle ? i : size - 1 - i] = (char)MC; } luaL_addsize(b, size); /* add result to buffer */ } /* ** Copy 'size' bytes from 'src' to 'dest', correcting endianness if ** given 'islittle' is different from native endianness. */ static void copywithendian (char *dest, const char *src, int size, int islittle) { if (islittle == nativeendian.little) memcpy(dest, src, size); else { dest += size - 1; while (size-- != 0) *(dest--) = *(src++); } } static int str_pack (lua_State *L) { luaL_Buffer b; Header h; const char *fmt = luaL_checkstring(L, 1); /* format string */ int arg = 1; /* current argument to pack */ size_t totalsize = 0; /* accumulate total size of result */ initheader(L, &h); lua_pushnil(L); /* mark to separate arguments from string buffer */ luaL_buffinit(L, &b); while (*fmt != '\0') { int size, ntoalign; KOption opt = getdetails(&h, totalsize, &fmt, &size, &ntoalign); totalsize += ntoalign + size; while (ntoalign-- > 0) luaL_addchar(&b, LUAL_PACKPADBYTE); /* fill alignment */ arg++; switch (opt) { case Kint: { /* signed integers */ lua_Integer n = luaL_checkinteger(L, arg); if (size < SZINT) { /* need overflow check? */ lua_Integer lim = (lua_Integer)1 << ((size * NB) - 1); luaL_argcheck(L, -lim <= n && n < lim, arg, "integer overflow"); } packint(&b, (lua_Unsigned)n, h.islittle, size, (n < 0)); break; } case Kuint: { /* unsigned integers */ lua_Integer n = luaL_checkinteger(L, arg); if (size < SZINT) /* need overflow check? */ luaL_argcheck(L, (lua_Unsigned)n < ((lua_Unsigned)1 << (size * NB)), arg, "unsigned overflow"); packint(&b, (lua_Unsigned)n, h.islittle, size, 0); break; } case Kfloat: { /* C float */ float f = (float)luaL_checknumber(L, arg); /* get argument */ char *buff = luaL_prepbuffsize(&b, sizeof(f)); /* move 'f' to final result, correcting endianness if needed */ copywithendian(buff, (char *)&f, sizeof(f), h.islittle); luaL_addsize(&b, size); break; } case Knumber: { /* Lua float */ lua_Number f = luaL_checknumber(L, arg); /* get argument */ char *buff = luaL_prepbuffsize(&b, sizeof(f)); /* move 'f' to final result, correcting endianness if needed */ copywithendian(buff, (char *)&f, sizeof(f), h.islittle); luaL_addsize(&b, size); break; } case Kdouble: { /* C double */ double f = (double)luaL_checknumber(L, arg); /* get argument */ char *buff = luaL_prepbuffsize(&b, sizeof(f)); /* move 'f' to final result, correcting endianness if needed */ copywithendian(buff, (char *)&f, sizeof(f), h.islittle); luaL_addsize(&b, size); break; } case Kchar: { /* fixed-size string */ size_t len; const char *s = luaL_checklstring(L, arg, &len); luaL_argcheck(L, len <= (size_t)size, arg, "string longer than given size"); luaL_addlstring(&b, s, len); /* add string */ while (len++ < (size_t)size) /* pad extra space */ luaL_addchar(&b, LUAL_PACKPADBYTE); break; } case Kstring: { /* strings with length count */ size_t len; const char *s = luaL_checklstring(L, arg, &len); luaL_argcheck(L, size >= (int)sizeof(size_t) || len < ((size_t)1 << (size * NB)), arg, "string length does not fit in given size"); packint(&b, (lua_Unsigned)len, h.islittle, size, 0); /* pack length */ luaL_addlstring(&b, s, len); totalsize += len; break; } case Kzstr: { /* zero-terminated string */ size_t len; const char *s = luaL_checklstring(L, arg, &len); luaL_argcheck(L, strlen(s) == len, arg, "string contains zeros"); luaL_addlstring(&b, s, len); luaL_addchar(&b, '\0'); /* add zero at the end */ totalsize += len + 1; break; } case Kpadding: luaL_addchar(&b, LUAL_PACKPADBYTE); /* FALLTHROUGH */ case Kpaddalign: case Knop: arg--; /* undo increment */ break; } } luaL_pushresult(&b); return 1; } static int str_packsize (lua_State *L) { Header h; const char *fmt = luaL_checkstring(L, 1); /* format string */ size_t totalsize = 0; /* accumulate total size of result */ initheader(L, &h); while (*fmt != '\0') { int size, ntoalign; KOption opt = getdetails(&h, totalsize, &fmt, &size, &ntoalign); luaL_argcheck(L, opt != Kstring && opt != Kzstr, 1, "variable-length format"); size += ntoalign; /* total space used by option */ luaL_argcheck(L, totalsize <= MAXSIZE - size, 1, "format result too large"); totalsize += size; } lua_pushinteger(L, (lua_Integer)totalsize); return 1; } /* ** Unpack an integer with 'size' bytes and 'islittle' endianness. ** If size is smaller than the size of a Lua integer and integer ** is signed, must do sign extension (propagating the sign to the ** higher bits); if size is larger than the size of a Lua integer, ** it must check the unread bytes to see whether they do not cause an ** overflow. */ static lua_Integer unpackint (lua_State *L, const char *str, int islittle, int size, int issigned) { lua_Unsigned res = 0; int i; int limit = (size <= SZINT) ? size : SZINT; for (i = limit - 1; i >= 0; i--) { res <<= NB; res |= (lua_Unsigned)(unsigned char)str[islittle ? i : size - 1 - i]; } if (size < SZINT) { /* real size smaller than lua_Integer? */ if (issigned) { /* needs sign extension? */ lua_Unsigned mask = (lua_Unsigned)1 << (size*NB - 1); res = ((res ^ mask) - mask); /* do sign extension */ } } else if (size > SZINT) { /* must check unread bytes */ int mask = (!issigned || (lua_Integer)res >= 0) ? 0 : MC; for (i = limit; i < size; i++) { if (l_unlikely((unsigned char)str[islittle ? i : size - 1 - i] != mask)) luaL_error(L, "%d-byte integer does not fit into Lua Integer", size); } } return (lua_Integer)res; } static int str_unpack (lua_State *L) { Header h; const char *fmt = luaL_checkstring(L, 1); size_t ld; const char *data = luaL_checklstring(L, 2, &ld); size_t pos = posrelatI(luaL_optinteger(L, 3, 1), ld) - 1; int n = 0; /* number of results */ luaL_argcheck(L, pos <= ld, 3, "initial position out of string"); initheader(L, &h); while (*fmt != '\0') { int size, ntoalign; KOption opt = getdetails(&h, pos, &fmt, &size, &ntoalign); luaL_argcheck(L, (size_t)ntoalign + size <= ld - pos, 2, "data string too short"); pos += ntoalign; /* skip alignment */ /* stack space for item + next position */ luaL_checkstack(L, 2, "too many results"); n++; switch (opt) { case Kint: case Kuint: { lua_Integer res = unpackint(L, data + pos, h.islittle, size, (opt == Kint)); lua_pushinteger(L, res); break; } case Kfloat: { float f; copywithendian((char *)&f, data + pos, sizeof(f), h.islittle); lua_pushnumber(L, (lua_Number)f); break; } case Knumber: { lua_Number f; copywithendian((char *)&f, data + pos, sizeof(f), h.islittle); lua_pushnumber(L, f); break; } case Kdouble: { double f; copywithendian((char *)&f, data + pos, sizeof(f), h.islittle); lua_pushnumber(L, (lua_Number)f); break; } case Kchar: { lua_pushlstring(L, data + pos, size); break; } case Kstring: { size_t len = (size_t)unpackint(L, data + pos, h.islittle, size, 0); luaL_argcheck(L, len <= ld - pos - size, 2, "data string too short"); lua_pushlstring(L, data + pos + size, len); pos += len; /* skip string */ break; } case Kzstr: { size_t len = strlen(data + pos); luaL_argcheck(L, pos + len < ld, 2, "unfinished string for format 'z'"); lua_pushlstring(L, data + pos, len); pos += len + 1; /* skip string plus final '\0' */ break; } case Kpaddalign: case Kpadding: case Knop: n--; /* undo increment */ break; } pos += size; } lua_pushinteger(L, pos + 1); /* next position */ return n + 1; } /* }====================================================== */ static const luaL_Reg strlib[] = { {"byte", str_byte}, {"char", str_char}, {"dump", str_dump}, {"find", str_find}, {"format", str_format}, {"gmatch", gmatch}, {"gsub", str_gsub}, {"len", str_len}, {"lower", str_lower}, {"match", str_match}, {"rep", str_rep}, {"reverse", str_reverse}, {"sub", str_sub}, {"upper", str_upper}, {"pack", str_pack}, {"packsize", str_packsize}, {"unpack", str_unpack}, {NULL, NULL} }; static void createmetatable (lua_State *L) { /* table to be metatable for strings */ luaL_newlibtable(L, stringmetamethods); luaL_setfuncs(L, stringmetamethods, 0); lua_pushliteral(L, ""); /* dummy string */ lua_pushvalue(L, -2); /* copy table */ lua_setmetatable(L, -2); /* set table as metatable for strings */ lua_pop(L, 1); /* pop dummy string */ lua_pushvalue(L, -2); /* get string library */ lua_setfield(L, -2, "__index"); /* metatable.__index = string */ lua_pop(L, 1); /* pop metatable */ } /* ** Open string library */ LUAMOD_API int luaopen_string (lua_State *L) { luaL_newlib(L, strlib); createmetatable(L); return 1; } /* ** $Id: ltablib.c $ ** Library for Table Manipulation ** See Copyright Notice in lua.h */ #define ltablib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ /* ** Operations that an object must define to mimic a table ** (some functions only need some of them) */ #define TAB_R 1 /* read */ #define TAB_W 2 /* write */ #define TAB_L 4 /* length */ #define TAB_RW (TAB_R | TAB_W) /* read/write */ #define aux_getn(L,n,w) (checktab(L, n, (w) | TAB_L), luaL_len(L, n)) static int checkfield (lua_State *L, const char *key, int n) { lua_pushstring(L, key); return (lua_rawget(L, -n) != LUA_TNIL); } /* ** Check that 'arg' either is a table or can behave like one (that is, ** has a metatable with the required metamethods) */ static void checktab (lua_State *L, int arg, int what) { if (lua_type(L, arg) != LUA_TTABLE) { /* is it not a table? */ int n = 1; /* number of elements to pop */ if (lua_getmetatable(L, arg) && /* must have metatable */ (!(what & TAB_R) || checkfield(L, "__index", ++n)) && (!(what & TAB_W) || checkfield(L, "__newindex", ++n)) && (!(what & TAB_L) || checkfield(L, "__len", ++n))) { lua_pop(L, n); /* pop metatable and tested metamethods */ } else luaL_checktype(L, arg, LUA_TTABLE); /* force an error */ } } static int tinsert (lua_State *L) { lua_Integer pos; /* where to insert new element */ lua_Integer e = aux_getn(L, 1, TAB_RW); e = luaL_intop(+, e, 1); /* first empty element */ switch (lua_gettop(L)) { case 2: { /* called with only 2 arguments */ pos = e; /* insert new element at the end */ break; } case 3: { lua_Integer i; pos = luaL_checkinteger(L, 2); /* 2nd argument is the position */ /* check whether 'pos' is in [1, e] */ luaL_argcheck(L, (lua_Unsigned)pos - 1u < (lua_Unsigned)e, 2, "position out of bounds"); for (i = e; i > pos; i--) { /* move up elements */ lua_geti(L, 1, i - 1); lua_seti(L, 1, i); /* t[i] = t[i - 1] */ } break; } default: { return luaL_error(L, "wrong number of arguments to 'insert'"); } } lua_seti(L, 1, pos); /* t[pos] = v */ return 0; } static int tremove (lua_State *L) { lua_Integer size = aux_getn(L, 1, TAB_RW); lua_Integer pos = luaL_optinteger(L, 2, size); if (pos != size) /* validate 'pos' if given */ /* check whether 'pos' is in [1, size + 1] */ luaL_argcheck(L, (lua_Unsigned)pos - 1u <= (lua_Unsigned)size, 1, "position out of bounds"); lua_geti(L, 1, pos); /* result = t[pos] */ for ( ; pos < size; pos++) { lua_geti(L, 1, pos + 1); lua_seti(L, 1, pos); /* t[pos] = t[pos + 1] */ } lua_pushnil(L); lua_seti(L, 1, pos); /* remove entry t[pos] */ return 1; } /* ** Copy elements (1[f], ..., 1[e]) into (tt[t], tt[t+1], ...). Whenever ** possible, copy in increasing order, which is better for rehashing. ** "possible" means destination after original range, or smaller ** than origin, or copying to another table. */ static int tmove (lua_State *L) { lua_Integer f = luaL_checkinteger(L, 2); lua_Integer e = luaL_checkinteger(L, 3); lua_Integer t = luaL_checkinteger(L, 4); int tt = !lua_isnoneornil(L, 5) ? 5 : 1; /* destination table */ checktab(L, 1, TAB_R); checktab(L, tt, TAB_W); if (e >= f) { /* otherwise, nothing to move */ lua_Integer n, i; luaL_argcheck(L, f > 0 || e < LUA_MAXINTEGER + f, 3, "too many elements to move"); n = e - f + 1; /* number of elements to move */ luaL_argcheck(L, t <= LUA_MAXINTEGER - n + 1, 4, "destination wrap around"); if (t > e || t <= f || (tt != 1 && !lua_compare(L, 1, tt, LUA_OPEQ))) { for (i = 0; i < n; i++) { lua_geti(L, 1, f + i); lua_seti(L, tt, t + i); } } else { for (i = n - 1; i >= 0; i--) { lua_geti(L, 1, f + i); lua_seti(L, tt, t + i); } } } lua_pushvalue(L, tt); /* return destination table */ return 1; } static void addfield (lua_State *L, luaL_Buffer *b, lua_Integer i) { lua_geti(L, 1, i); if (l_unlikely(!lua_isstring(L, -1))) luaL_error(L, "invalid value (%s) at index %I in table for 'concat'", luaL_typename(L, -1), (LUAI_UACINT)i); luaL_addvalue(b); } static int tconcat (lua_State *L) { luaL_Buffer b; lua_Integer last = aux_getn(L, 1, TAB_R); size_t lsep; const char *sep = luaL_optlstring(L, 2, "", &lsep); lua_Integer i = luaL_optinteger(L, 3, 1); last = luaL_optinteger(L, 4, last); luaL_buffinit(L, &b); for (; i < last; i++) { addfield(L, &b, i); luaL_addlstring(&b, sep, lsep); } if (i == last) /* add last value (if interval was not empty) */ addfield(L, &b, i); luaL_pushresult(&b); return 1; } /* ** {====================================================== ** Pack/unpack ** ======================================================= */ static int tpack (lua_State *L) { int i; int n = lua_gettop(L); /* number of elements to pack */ lua_createtable(L, n, 1); /* create result table */ lua_insert(L, 1); /* put it at index 1 */ for (i = n; i >= 1; i--) /* assign elements */ lua_seti(L, 1, i); lua_pushinteger(L, n); lua_setfield(L, 1, "n"); /* t.n = number of elements */ return 1; /* return table */ } static int tunpack (lua_State *L) { lua_Unsigned n; lua_Integer i = luaL_optinteger(L, 2, 1); lua_Integer e = luaL_opt(L, luaL_checkinteger, 3, luaL_len(L, 1)); if (i > e) return 0; /* empty range */ n = (lua_Unsigned)e - i; /* number of elements minus 1 (avoid overflows) */ if (l_unlikely(n >= (unsigned int)INT_MAX || !lua_checkstack(L, (int)(++n)))) return luaL_error(L, "too many results to unpack"); for (; i < e; i++) { /* push arg[i..e - 1] (to avoid overflows) */ lua_geti(L, 1, i); } lua_geti(L, 1, e); /* push last element */ return (int)n; } /* }====================================================== */ /* ** {====================================================== ** Quicksort ** (based on 'Algorithms in MODULA-3', Robert Sedgewick; ** Addison-Wesley, 1993.) ** ======================================================= */ /* type for array indices */ typedef unsigned int IdxT; /* ** Produce a "random" 'unsigned int' to randomize pivot choice. This ** macro is used only when 'sort' detects a big imbalance in the result ** of a partition. (If you don't want/need this "randomness", ~0 is a ** good choice.) */ #if !defined(l_randomizePivot) /* { */ #include /* size of 'e' measured in number of 'unsigned int's */ #define sof(e) (sizeof(e) / sizeof(unsigned int)) /* ** Use 'time' and 'clock' as sources of "randomness". Because we don't ** know the types 'clock_t' and 'time_t', we cannot cast them to ** anything without risking overflows. A safe way to use their values ** is to copy them to an array of a known type and use the array values. */ static unsigned int l_randomizePivot (void) { clock_t c = clock(); time_t t = time(NULL); unsigned int buff[sof(c) + sof(t)]; unsigned int i, rnd = 0; memcpy(buff, &c, sof(c) * sizeof(unsigned int)); memcpy(buff + sof(c), &t, sof(t) * sizeof(unsigned int)); for (i = 0; i < sof(buff); i++) rnd += buff[i]; return rnd; } #endif /* } */ /* arrays larger than 'RANLIMIT' may use randomized pivots */ #define RANLIMIT 100u static void set2 (lua_State *L, IdxT i, IdxT j) { lua_seti(L, 1, i); lua_seti(L, 1, j); } /* ** Return true iff value at stack index 'a' is less than the value at ** index 'b' (according to the order of the sort). */ static int sort_comp (lua_State *L, int a, int b) { if (lua_isnil(L, 2)) /* no function? */ return lua_compare(L, a, b, LUA_OPLT); /* a < b */ else { /* function */ int res; lua_pushvalue(L, 2); /* push function */ lua_pushvalue(L, a-1); /* -1 to compensate function */ lua_pushvalue(L, b-2); /* -2 to compensate function and 'a' */ lua_call(L, 2, 1); /* call function */ res = lua_toboolean(L, -1); /* get result */ lua_pop(L, 1); /* pop result */ return res; } } /* ** Does the partition: Pivot P is at the top of the stack. ** precondition: a[lo] <= P == a[up-1] <= a[up], ** so it only needs to do the partition from lo + 1 to up - 2. ** Pos-condition: a[lo .. i - 1] <= a[i] == P <= a[i + 1 .. up] ** returns 'i'. */ static IdxT partition (lua_State *L, IdxT lo, IdxT up) { IdxT i = lo; /* will be incremented before first use */ IdxT j = up - 1; /* will be decremented before first use */ /* loop invariant: a[lo .. i] <= P <= a[j .. up] */ for (;;) { /* next loop: repeat ++i while a[i] < P */ while ((void)lua_geti(L, 1, ++i), sort_comp(L, -1, -2)) { if (l_unlikely(i == up - 1)) /* a[i] < P but a[up - 1] == P ?? */ luaL_error(L, "invalid order function for sorting"); lua_pop(L, 1); /* remove a[i] */ } /* after the loop, a[i] >= P and a[lo .. i - 1] < P */ /* next loop: repeat --j while P < a[j] */ while ((void)lua_geti(L, 1, --j), sort_comp(L, -3, -1)) { if (l_unlikely(j < i)) /* j < i but a[j] > P ?? */ luaL_error(L, "invalid order function for sorting"); lua_pop(L, 1); /* remove a[j] */ } /* after the loop, a[j] <= P and a[j + 1 .. up] >= P */ if (j < i) { /* no elements out of place? */ /* a[lo .. i - 1] <= P <= a[j + 1 .. i .. up] */ lua_pop(L, 1); /* pop a[j] */ /* swap pivot (a[up - 1]) with a[i] to satisfy pos-condition */ set2(L, up - 1, i); return i; } /* otherwise, swap a[i] - a[j] to restore invariant and repeat */ set2(L, i, j); } } /* ** Choose an element in the middle (2nd-3th quarters) of [lo,up] ** "randomized" by 'rnd' */ static IdxT choosePivot (IdxT lo, IdxT up, unsigned int rnd) { IdxT r4 = (up - lo) / 4; /* range/4 */ IdxT p = rnd % (r4 * 2) + (lo + r4); lua_assert(lo + r4 <= p && p <= up - r4); return p; } /* ** Quicksort algorithm (recursive function) */ static void auxsort (lua_State *L, IdxT lo, IdxT up, unsigned int rnd) { while (lo < up) { /* loop for tail recursion */ IdxT p; /* Pivot index */ IdxT n; /* to be used later */ /* sort elements 'lo', 'p', and 'up' */ lua_geti(L, 1, lo); lua_geti(L, 1, up); if (sort_comp(L, -1, -2)) /* a[up] < a[lo]? */ set2(L, lo, up); /* swap a[lo] - a[up] */ else lua_pop(L, 2); /* remove both values */ if (up - lo == 1) /* only 2 elements? */ return; /* already sorted */ if (up - lo < RANLIMIT || rnd == 0) /* small interval or no randomize? */ p = (lo + up)/2; /* middle element is a good pivot */ else /* for larger intervals, it is worth a random pivot */ p = choosePivot(lo, up, rnd); lua_geti(L, 1, p); lua_geti(L, 1, lo); if (sort_comp(L, -2, -1)) /* a[p] < a[lo]? */ set2(L, p, lo); /* swap a[p] - a[lo] */ else { lua_pop(L, 1); /* remove a[lo] */ lua_geti(L, 1, up); if (sort_comp(L, -1, -2)) /* a[up] < a[p]? */ set2(L, p, up); /* swap a[up] - a[p] */ else lua_pop(L, 2); } if (up - lo == 2) /* only 3 elements? */ return; /* already sorted */ lua_geti(L, 1, p); /* get middle element (Pivot) */ lua_pushvalue(L, -1); /* push Pivot */ lua_geti(L, 1, up - 1); /* push a[up - 1] */ set2(L, p, up - 1); /* swap Pivot (a[p]) with a[up - 1] */ p = partition(L, lo, up); /* a[lo .. p - 1] <= a[p] == P <= a[p + 1 .. up] */ if (p - lo < up - p) { /* lower interval is smaller? */ auxsort(L, lo, p - 1, rnd); /* call recursively for lower interval */ n = p - lo; /* size of smaller interval */ lo = p + 1; /* tail call for [p + 1 .. up] (upper interval) */ } else { auxsort(L, p + 1, up, rnd); /* call recursively for upper interval */ n = up - p; /* size of smaller interval */ up = p - 1; /* tail call for [lo .. p - 1] (lower interval) */ } if ((up - lo) / 128 > n) /* partition too imbalanced? */ rnd = l_randomizePivot(); /* try a new randomization */ } /* tail call auxsort(L, lo, up, rnd) */ } static int sort (lua_State *L) { lua_Integer n = aux_getn(L, 1, TAB_RW); if (n > 1) { /* non-trivial interval? */ luaL_argcheck(L, n < INT_MAX, 1, "array too big"); if (!lua_isnoneornil(L, 2)) /* is there a 2nd argument? */ luaL_checktype(L, 2, LUA_TFUNCTION); /* must be a function */ lua_settop(L, 2); /* make sure there are two arguments */ auxsort(L, 1, (IdxT)n, 0); } return 0; } /* }====================================================== */ static const luaL_Reg tab_funcs[] = { {"concat", tconcat}, {"insert", tinsert}, {"pack", tpack}, {"unpack", tunpack}, {"remove", tremove}, {"move", tmove}, {"sort", sort}, {NULL, NULL} }; LUAMOD_API int luaopen_table (lua_State *L) { luaL_newlib(L, tab_funcs); return 1; } /* ** $Id: lutf8lib.c $ ** Standard library for UTF-8 manipulation ** See Copyright Notice in lua.h */ #define lutf8lib_c #define LUA_LIB /*#include "lprefix.h"*/ #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ #define MAXUNICODE 0x10FFFFu #define MAXUTF 0x7FFFFFFFu /* ** Integer type for decoded UTF-8 values; MAXUTF needs 31 bits. */ #if (UINT_MAX >> 30) >= 1 typedef unsigned int utfint; #else typedef unsigned long utfint; #endif #define iscont(p) ((*(p) & 0xC0) == 0x80) /* from strlib */ /* translate a relative string position: negative means back from end */ static lua_Integer u_posrelat (lua_Integer pos, size_t len) { if (pos >= 0) return pos; else if (0u - (size_t)pos > len) return 0; else return (lua_Integer)len + pos + 1; } /* ** Decode one UTF-8 sequence, returning NULL if byte sequence is ** invalid. The array 'limits' stores the minimum value for each ** sequence length, to check for overlong representations. Its first ** entry forces an error for non-ascii bytes with no continuation ** bytes (count == 0). */ static const char *utf8_decode (const char *s, utfint *val, int strict) { static const utfint limits[] = {~(utfint)0, 0x80, 0x800, 0x10000u, 0x200000u, 0x4000000u}; unsigned int c = (unsigned char)s[0]; utfint res = 0; /* final result */ if (c < 0x80) /* ascii? */ res = c; else { int count = 0; /* to count number of continuation bytes */ for (; c & 0x40; c <<= 1) { /* while it needs continuation bytes... */ unsigned int cc = (unsigned char)s[++count]; /* read next byte */ if ((cc & 0xC0) != 0x80) /* not a continuation byte? */ return NULL; /* invalid byte sequence */ res = (res << 6) | (cc & 0x3F); /* add lower 6 bits from cont. byte */ } res |= ((utfint)(c & 0x7F) << (count * 5)); /* add first byte */ if (count > 5 || res > MAXUTF || res < limits[count]) return NULL; /* invalid byte sequence */ s += count; /* skip continuation bytes read */ } if (strict) { /* check for invalid code points; too large or surrogates */ if (res > MAXUNICODE || (0xD800u <= res && res <= 0xDFFFu)) return NULL; } if (val) *val = res; return s + 1; /* +1 to include first byte */ } /* ** utf8len(s [, i [, j [, lax]]]) --> number of characters that ** start in the range [i,j], or nil + current position if 's' is not ** well formed in that interval */ static int utflen (lua_State *L) { lua_Integer n = 0; /* counter for the number of characters */ size_t len; /* string length in bytes */ const char *s = luaL_checklstring(L, 1, &len); lua_Integer posi = u_posrelat(luaL_optinteger(L, 2, 1), len); lua_Integer posj = u_posrelat(luaL_optinteger(L, 3, -1), len); int lax = lua_toboolean(L, 4); luaL_argcheck(L, 1 <= posi && --posi <= (lua_Integer)len, 2, "initial position out of bounds"); luaL_argcheck(L, --posj < (lua_Integer)len, 3, "final position out of bounds"); while (posi <= posj) { const char *s1 = utf8_decode(s + posi, NULL, !lax); if (s1 == NULL) { /* conversion error? */ luaL_pushfail(L); /* return fail ... */ lua_pushinteger(L, posi + 1); /* ... and current position */ return 2; } posi = s1 - s; n++; } lua_pushinteger(L, n); return 1; } /* ** codepoint(s, [i, [j [, lax]]]) -> returns codepoints for all ** characters that start in the range [i,j] */ static int codepoint (lua_State *L) { size_t len; const char *s = luaL_checklstring(L, 1, &len); lua_Integer posi = u_posrelat(luaL_optinteger(L, 2, 1), len); lua_Integer pose = u_posrelat(luaL_optinteger(L, 3, posi), len); int lax = lua_toboolean(L, 4); int n; const char *se; luaL_argcheck(L, posi >= 1, 2, "out of bounds"); luaL_argcheck(L, pose <= (lua_Integer)len, 3, "out of bounds"); if (posi > pose) return 0; /* empty interval; return no values */ if (pose - posi >= INT_MAX) /* (lua_Integer -> int) overflow? */ return luaL_error(L, "string slice too long"); n = (int)(pose - posi) + 1; /* upper bound for number of returns */ luaL_checkstack(L, n, "string slice too long"); n = 0; /* count the number of returns */ se = s + pose; /* string end */ for (s += posi - 1; s < se;) { utfint code; s = utf8_decode(s, &code, !lax); if (s == NULL) return luaL_error(L, "invalid UTF-8 code"); lua_pushinteger(L, code); n++; } return n; } static void pushutfchar (lua_State *L, int arg) { lua_Unsigned code = (lua_Unsigned)luaL_checkinteger(L, arg); luaL_argcheck(L, code <= MAXUTF, arg, "value out of range"); lua_pushfstring(L, "%U", (long)code); } /* ** utfchar(n1, n2, ...) -> char(n1)..char(n2)... */ static int utfchar (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ if (n == 1) /* optimize common case of single char */ pushutfchar(L, 1); else { int i; luaL_Buffer b; luaL_buffinit(L, &b); for (i = 1; i <= n; i++) { pushutfchar(L, i); luaL_addvalue(&b); } luaL_pushresult(&b); } return 1; } /* ** offset(s, n, [i]) -> index where n-th character counting from ** position 'i' starts; 0 means character at 'i'. */ static int byteoffset (lua_State *L) { size_t len; const char *s = luaL_checklstring(L, 1, &len); lua_Integer n = luaL_checkinteger(L, 2); lua_Integer posi = (n >= 0) ? 1 : len + 1; posi = u_posrelat(luaL_optinteger(L, 3, posi), len); luaL_argcheck(L, 1 <= posi && --posi <= (lua_Integer)len, 3, "position out of bounds"); if (n == 0) { /* find beginning of current byte sequence */ while (posi > 0 && iscont(s + posi)) posi--; } else { if (iscont(s + posi)) return luaL_error(L, "initial position is a continuation byte"); if (n < 0) { while (n < 0 && posi > 0) { /* move back */ do { /* find beginning of previous character */ posi--; } while (posi > 0 && iscont(s + posi)); n++; } } else { n--; /* do not move for 1st character */ while (n > 0 && posi < (lua_Integer)len) { do { /* find beginning of next character */ posi++; } while (iscont(s + posi)); /* (cannot pass final '\0') */ n--; } } } if (n == 0) /* did it find given character? */ lua_pushinteger(L, posi + 1); else /* no such character */ luaL_pushfail(L); return 1; } static int iter_aux (lua_State *L, int strict) { size_t len; const char *s = luaL_checklstring(L, 1, &len); lua_Unsigned n = (lua_Unsigned)lua_tointeger(L, 2); if (n < len) { while (iscont(s + n)) n++; /* skip continuation bytes */ } if (n >= len) /* (also handles original 'n' being negative) */ return 0; /* no more codepoints */ else { utfint code; const char *next = utf8_decode(s + n, &code, strict); if (next == NULL) return luaL_error(L, "invalid UTF-8 code"); lua_pushinteger(L, n + 1); lua_pushinteger(L, code); return 2; } } static int iter_auxstrict (lua_State *L) { return iter_aux(L, 1); } static int iter_auxlax (lua_State *L) { return iter_aux(L, 0); } static int iter_codes (lua_State *L) { int lax = lua_toboolean(L, 2); luaL_checkstring(L, 1); lua_pushcfunction(L, lax ? iter_auxlax : iter_auxstrict); lua_pushvalue(L, 1); lua_pushinteger(L, 0); return 3; } /* pattern to match a single UTF-8 character */ #define UTF8PATT "[\0-\x7F\xC2-\xFD][\x80-\xBF]*" static const luaL_Reg funcs[] = { {"offset", byteoffset}, {"codepoint", codepoint}, {"char", utfchar}, {"len", utflen}, {"codes", iter_codes}, /* placeholders */ {"charpattern", NULL}, {NULL, NULL} }; LUAMOD_API int luaopen_utf8 (lua_State *L) { luaL_newlib(L, funcs); lua_pushlstring(L, UTF8PATT, sizeof(UTF8PATT)/sizeof(char) - 1); lua_setfield(L, -2, "charpattern"); return 1; } /* ** $Id: linit.c $ ** Initialization of libraries for lua.c and other clients ** See Copyright Notice in lua.h */ #define linit_c #define LUA_LIB /* ** If you embed Lua in your program and need to open the standard ** libraries, call luaL_openlibs in your program. If you need a ** different set of libraries, copy this file to your project and edit ** it to suit your needs. ** ** You can also *preload* libraries, so that a later 'require' can ** open the library, which is already linked to the application. ** For that, do the following code: ** ** luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_PRELOAD_TABLE); ** lua_pushcfunction(L, luaopen_modname); ** lua_setfield(L, -2, modname); ** lua_pop(L, 1); // remove PRELOAD table */ /*#include "lprefix.h"*/ #include /*#include "lua.h"*/ /*#include "lualib.h"*/ /*#include "lauxlib.h"*/ /* ** these libs are loaded by lua.c and are readily available to any Lua ** program */ static const luaL_Reg loadedlibs[] = { {LUA_GNAME, luaopen_base}, {LUA_LOADLIBNAME, luaopen_package}, {LUA_COLIBNAME, luaopen_coroutine}, {LUA_TABLIBNAME, luaopen_table}, {LUA_IOLIBNAME, luaopen_io}, {LUA_OSLIBNAME, luaopen_os}, {LUA_STRLIBNAME, luaopen_string}, {LUA_MATHLIBNAME, luaopen_math}, {LUA_UTF8LIBNAME, luaopen_utf8}, {LUA_DBLIBNAME, luaopen_debug}, {NULL, NULL} }; LUALIB_API void luaL_openlibs (lua_State *L) { const luaL_Reg *lib; /* "require" functions from 'loadedlibs' and set results to global table */ for (lib = loadedlibs; lib->func; lib++) { luaL_requiref(L, lib->name, lib->func, 1); lua_pop(L, 1); /* remove lib */ } } #endif /* LUA_IMPL */ #ifdef __cplusplus } #endif #ifdef LUA_MAKE_LUA /* ** $Id: lua.c $ ** Lua stand-alone interpreter ** See Copyright Notice in lua.h */ #define lua_c /*#include "lprefix.h"*/ #include #include #include #include /*#include "lua.h"*/ /*#include "lauxlib.h"*/ /*#include "lualib.h"*/ #if !defined(LUA_PROGNAME) #define LUA_PROGNAME "lua" #endif #if !defined(LUA_INIT_VAR) #define LUA_INIT_VAR "LUA_INIT" #endif #define LUA_INITVARVERSION LUA_INIT_VAR LUA_VERSUFFIX static lua_State *globalL = NULL; static const char *progname = LUA_PROGNAME; #if defined(LUA_USE_POSIX) /* { */ /* ** Use 'sigaction' when available. */ static void setsignal (int sig, void (*handler)(int)) { struct sigaction sa; sa.sa_handler = handler; sa.sa_flags = 0; sigemptyset(&sa.sa_mask); /* do not mask any signal */ sigaction(sig, &sa, NULL); } #else /* }{ */ #define setsignal signal #endif /* } */ /* ** Hook set by signal function to stop the interpreter. */ static void lstop (lua_State *L, lua_Debug *ar) { (void)ar; /* unused arg. */ lua_sethook(L, NULL, 0, 0); /* reset hook */ luaL_error(L, "interrupted!"); } /* ** Function to be called at a C signal. Because a C signal cannot ** just change a Lua state (as there is no proper synchronization), ** this function only sets a hook that, when called, will stop the ** interpreter. */ static void laction (int i) { int flag = LUA_MASKCALL | LUA_MASKRET | LUA_MASKLINE | LUA_MASKCOUNT; setsignal(i, SIG_DFL); /* if another SIGINT happens, terminate process */ lua_sethook(globalL, lstop, flag, 1); } static void print_usage (const char *badoption) { lua_writestringerror("%s: ", progname); if (badoption[1] == 'e' || badoption[1] == 'l') lua_writestringerror("'%s' needs argument\n", badoption); else lua_writestringerror("unrecognized option '%s'\n", badoption); lua_writestringerror( "usage: %s [options] [script [args]]\n" "Available options are:\n" " -e stat execute string 'stat'\n" " -i enter interactive mode after executing 'script'\n" " -l mod require library 'mod' into global 'mod'\n" " -l g=mod require library 'mod' into global 'g'\n" " -v show version information\n" " -E ignore environment variables\n" " -W turn warnings on\n" " -- stop handling options\n" " - stop handling options and execute stdin\n" , progname); } /* ** Prints an error message, adding the program name in front of it ** (if present) */ static void l_message (const char *pname, const char *msg) { if (pname) lua_writestringerror("%s: ", pname); lua_writestringerror("%s\n", msg); } /* ** Check whether 'status' is not OK and, if so, prints the error ** message on the top of the stack. It assumes that the error object ** is a string, as it was either generated by Lua or by 'msghandler'. */ static int report (lua_State *L, int status) { if (status != LUA_OK) { const char *msg = lua_tostring(L, -1); l_message(progname, msg); lua_pop(L, 1); /* remove message */ } return status; } /* ** Message handler used to run all chunks */ static int msghandler (lua_State *L) { const char *msg = lua_tostring(L, 1); if (msg == NULL) { /* is error object not a string? */ if (luaL_callmeta(L, 1, "__tostring") && /* does it have a metamethod */ lua_type(L, -1) == LUA_TSTRING) /* that produces a string? */ return 1; /* that is the message */ else msg = lua_pushfstring(L, "(error object is a %s value)", luaL_typename(L, 1)); } luaL_traceback(L, L, msg, 1); /* append a standard traceback */ return 1; /* return the traceback */ } /* ** Interface to 'lua_pcall', which sets appropriate message function ** and C-signal handler. Used to run all chunks. */ static int docall (lua_State *L, int narg, int nres) { int status; int base = lua_gettop(L) - narg; /* function index */ lua_pushcfunction(L, msghandler); /* push message handler */ lua_insert(L, base); /* put it under function and args */ globalL = L; /* to be available to 'laction' */ setsignal(SIGINT, laction); /* set C-signal handler */ status = lua_pcall(L, narg, nres, base); setsignal(SIGINT, SIG_DFL); /* reset C-signal handler */ lua_remove(L, base); /* remove message handler from the stack */ return status; } static void print_version (void) { lua_writestring(LUA_COPYRIGHT, strlen(LUA_COPYRIGHT)); lua_writeline(); } /* ** Create the 'arg' table, which stores all arguments from the ** command line ('argv'). It should be aligned so that, at index 0, ** it has 'argv[script]', which is the script name. The arguments ** to the script (everything after 'script') go to positive indices; ** other arguments (before the script name) go to negative indices. ** If there is no script name, assume interpreter's name as base. */ static void createargtable (lua_State *L, char **argv, int argc, int script) { int i, narg; if (script == argc) script = 0; /* no script name? */ narg = argc - (script + 1); /* number of positive indices */ lua_createtable(L, narg, script + 1); for (i = 0; i < argc; i++) { lua_pushstring(L, argv[i]); lua_rawseti(L, -2, i - script); } lua_setglobal(L, "arg"); } static int dochunk (lua_State *L, int status) { if (status == LUA_OK) status = docall(L, 0, 0); return report(L, status); } static int dofile (lua_State *L, const char *name) { return dochunk(L, luaL_loadfile(L, name)); } static int dostring (lua_State *L, const char *s, const char *name) { return dochunk(L, luaL_loadbuffer(L, s, strlen(s), name)); } /* ** Receives 'globname[=modname]' and runs 'globname = require(modname)'. */ static int dolibrary (lua_State *L, char *globname) { int status; char *modname = strchr(globname, '='); if (modname == NULL) /* no explicit name? */ modname = globname; /* module name is equal to global name */ else { *modname = '\0'; /* global name ends here */ modname++; /* module name starts after the '=' */ } lua_getglobal(L, "require"); lua_pushstring(L, modname); status = docall(L, 1, 1); /* call 'require(modname)' */ if (status == LUA_OK) lua_setglobal(L, globname); /* globname = require(modname) */ return report(L, status); } /* ** Push on the stack the contents of table 'arg' from 1 to #arg */ static int pushargs (lua_State *L) { int i, n; if (lua_getglobal(L, "arg") != LUA_TTABLE) luaL_error(L, "'arg' is not a table"); n = (int)luaL_len(L, -1); luaL_checkstack(L, n + 3, "too many arguments to script"); for (i = 1; i <= n; i++) lua_rawgeti(L, -i, i); lua_remove(L, -i); /* remove table from the stack */ return n; } static int handle_script (lua_State *L, char **argv) { int status; const char *fname = argv[0]; if (strcmp(fname, "-") == 0 && strcmp(argv[-1], "--") != 0) fname = NULL; /* stdin */ status = luaL_loadfile(L, fname); if (status == LUA_OK) { int n = pushargs(L); /* push arguments to script */ status = docall(L, n, LUA_MULTRET); } return report(L, status); } /* bits of various argument indicators in 'args' */ #define has_error 1 /* bad option */ #define has_i 2 /* -i */ #define has_v 4 /* -v */ #define has_e 8 /* -e */ #define has_E 16 /* -E */ /* ** Traverses all arguments from 'argv', returning a mask with those ** needed before running any Lua code (or an error code if it finds ** any invalid argument). 'first' returns the first not-handled argument ** (either the script name or a bad argument in case of error). */ static int collectargs (char **argv, int *first) { int args = 0; int i; for (i = 1; argv[i] != NULL; i++) { *first = i; if (argv[i][0] != '-') /* not an option? */ return args; /* stop handling options */ switch (argv[i][1]) { /* else check option */ case '-': /* '--' */ if (argv[i][2] != '\0') /* extra characters after '--'? */ return has_error; /* invalid option */ *first = i + 1; return args; case '\0': /* '-' */ return args; /* script "name" is '-' */ case 'E': if (argv[i][2] != '\0') /* extra characters? */ return has_error; /* invalid option */ args |= has_E; break; case 'W': if (argv[i][2] != '\0') /* extra characters? */ return has_error; /* invalid option */ break; case 'i': args |= has_i; /* (-i implies -v) *//* FALLTHROUGH */ case 'v': if (argv[i][2] != '\0') /* extra characters? */ return has_error; /* invalid option */ args |= has_v; break; case 'e': args |= has_e; /* FALLTHROUGH */ case 'l': /* both options need an argument */ if (argv[i][2] == '\0') { /* no concatenated argument? */ i++; /* try next 'argv' */ if (argv[i] == NULL || argv[i][0] == '-') return has_error; /* no next argument or it is another option */ } break; default: /* invalid option */ return has_error; } } *first = i; /* no script name */ return args; } /* ** Processes options 'e' and 'l', which involve running Lua code, and ** 'W', which also affects the state. ** Returns 0 if some code raises an error. */ static int runargs (lua_State *L, char **argv, int n) { int i; for (i = 1; i < n; i++) { int option = argv[i][1]; lua_assert(argv[i][0] == '-'); /* already checked */ switch (option) { case 'e': case 'l': { int status; char *extra = argv[i] + 2; /* both options need an argument */ if (*extra == '\0') extra = argv[++i]; lua_assert(extra != NULL); status = (option == 'e') ? dostring(L, extra, "=(command line)") : dolibrary(L, extra); if (status != LUA_OK) return 0; break; } case 'W': lua_warning(L, "@on", 0); /* warnings on */ break; } } return 1; } static int handle_luainit (lua_State *L) { const char *name = "=" LUA_INITVARVERSION; const char *init = getenv(name + 1); if (init == NULL) { name = "=" LUA_INIT_VAR; init = getenv(name + 1); /* try alternative name */ } if (init == NULL) return LUA_OK; else if (init[0] == '@') return dofile(L, init+1); else return dostring(L, init, name); } /* ** {================================================================== ** Read-Eval-Print Loop (REPL) ** =================================================================== */ #if !defined(LUA_PROMPT) #define LUA_PROMPT "> " #define LUA_PROMPT2 ">> " #endif #if !defined(LUA_MAXINPUT) #define LUA_MAXINPUT 512 #endif /* ** lua_stdin_is_tty detects whether the standard input is a 'tty' (that ** is, whether we're running lua interactively). */ #if !defined(lua_stdin_is_tty) /* { */ #if defined(LUA_USE_POSIX) /* { */ #include #define lua_stdin_is_tty() isatty(0) #elif defined(LUA_USE_WINDOWS) /* }{ */ #include #include #define lua_stdin_is_tty() _isatty(_fileno(stdin)) #else /* }{ */ /* ISO C definition */ #define lua_stdin_is_tty() 1 /* assume stdin is a tty */ #endif /* } */ #endif /* } */ /* ** lua_readline defines how to show a prompt and then read a line from ** the standard input. ** lua_saveline defines how to "save" a read line in a "history". ** lua_freeline defines how to free a line read by lua_readline. */ #if !defined(lua_readline) /* { */ #if defined(LUA_USE_READLINE) /* { */ #include #include #define lua_initreadline(L) ((void)L, rl_readline_name="lua") #define lua_readline(L,b,p) ((void)L, ((b)=readline(p)) != NULL) #define lua_saveline(L,line) ((void)L, add_history(line)) #define lua_freeline(L,b) ((void)L, free(b)) #else /* }{ */ #define lua_initreadline(L) ((void)L) #define lua_readline(L,b,p) \ ((void)L, fputs(p, stdout), fflush(stdout), /* show prompt */ \ fgets(b, LUA_MAXINPUT, stdin) != NULL) /* get line */ #define lua_saveline(L,line) { (void)L; (void)line; } #define lua_freeline(L,b) { (void)L; (void)b; } #endif /* } */ #endif /* } */ /* ** Return the string to be used as a prompt by the interpreter. Leave ** the string (or nil, if using the default value) on the stack, to keep ** it anchored. */ static const char *get_prompt (lua_State *L, int firstline) { if (lua_getglobal(L, firstline ? "_PROMPT" : "_PROMPT2") == LUA_TNIL) return (firstline ? LUA_PROMPT : LUA_PROMPT2); /* use the default */ else { /* apply 'tostring' over the value */ const char *p = luaL_tolstring(L, -1, NULL); lua_remove(L, -2); /* remove original value */ return p; } } /* mark in error messages for incomplete statements */ #define EOFMARK "" #define marklen (sizeof(EOFMARK)/sizeof(char) - 1) /* ** Check whether 'status' signals a syntax error and the error ** message at the top of the stack ends with the above mark for ** incomplete statements. */ static int incomplete (lua_State *L, int status) { if (status == LUA_ERRSYNTAX) { size_t lmsg; const char *msg = lua_tolstring(L, -1, &lmsg); if (lmsg >= marklen && strcmp(msg + lmsg - marklen, EOFMARK) == 0) { lua_pop(L, 1); return 1; } } return 0; /* else... */ } /* ** Prompt the user, read a line, and push it into the Lua stack. */ static int pushline (lua_State *L, int firstline) { char buffer[LUA_MAXINPUT]; char *b = buffer; size_t l; const char *prmt = get_prompt(L, firstline); int readstatus = lua_readline(L, b, prmt); if (readstatus == 0) return 0; /* no input (prompt will be popped by caller) */ lua_pop(L, 1); /* remove prompt */ l = strlen(b); if (l > 0 && b[l-1] == '\n') /* line ends with newline? */ b[--l] = '\0'; /* remove it */ if (firstline && b[0] == '=') /* for compatibility with 5.2, ... */ lua_pushfstring(L, "return %s", b + 1); /* change '=' to 'return' */ else lua_pushlstring(L, b, l); lua_freeline(L, b); return 1; } /* ** Try to compile line on the stack as 'return ;'; on return, stack ** has either compiled chunk or original line (if compilation failed). */ static int addreturn (lua_State *L) { const char *line = lua_tostring(L, -1); /* original line */ const char *retline = lua_pushfstring(L, "return %s;", line); int status = luaL_loadbuffer(L, retline, strlen(retline), "=stdin"); if (status == LUA_OK) { lua_remove(L, -2); /* remove modified line */ if (line[0] != '\0') /* non empty? */ lua_saveline(L, line); /* keep history */ } else lua_pop(L, 2); /* pop result from 'luaL_loadbuffer' and modified line */ return status; } /* ** Read multiple lines until a complete Lua statement */ static int multiline (lua_State *L) { for (;;) { /* repeat until gets a complete statement */ size_t len; const char *line = lua_tolstring(L, 1, &len); /* get what it has */ int status = luaL_loadbuffer(L, line, len, "=stdin"); /* try it */ if (!incomplete(L, status) || !pushline(L, 0)) { lua_saveline(L, line); /* keep history */ return status; /* cannot or should not try to add continuation line */ } lua_pushliteral(L, "\n"); /* add newline... */ lua_insert(L, -2); /* ...between the two lines */ lua_concat(L, 3); /* join them */ } } /* ** Read a line and try to load (compile) it first as an expression (by ** adding "return " in front of it) and second as a statement. Return ** the final status of load/call with the resulting function (if any) ** in the top of the stack. */ static int loadline (lua_State *L) { int status; lua_settop(L, 0); if (!pushline(L, 1)) return -1; /* no input */ if ((status = addreturn(L)) != LUA_OK) /* 'return ...' did not work? */ status = multiline(L); /* try as command, maybe with continuation lines */ lua_remove(L, 1); /* remove line from the stack */ lua_assert(lua_gettop(L) == 1); return status; } /* ** Prints (calling the Lua 'print' function) any values on the stack */ static void l_print (lua_State *L) { int n = lua_gettop(L); if (n > 0) { /* any result to be printed? */ luaL_checkstack(L, LUA_MINSTACK, "too many results to print"); lua_getglobal(L, "print"); lua_insert(L, 1); if (lua_pcall(L, n, 0, 0) != LUA_OK) l_message(progname, lua_pushfstring(L, "error calling 'print' (%s)", lua_tostring(L, -1))); } } /* ** Do the REPL: repeatedly read (load) a line, evaluate (call) it, and ** print any results. */ static void doREPL (lua_State *L) { int status; const char *oldprogname = progname; progname = NULL; /* no 'progname' on errors in interactive mode */ lua_initreadline(L); while ((status = loadline(L)) != -1) { if (status == LUA_OK) status = docall(L, 0, LUA_MULTRET); if (status == LUA_OK) l_print(L); else report(L, status); } lua_settop(L, 0); /* clear stack */ lua_writeline(); progname = oldprogname; } /* }================================================================== */ /* ** Main body of stand-alone interpreter (to be called in protected mode). ** Reads the options and handles them all. */ static int pmain (lua_State *L) { int argc = (int)lua_tointeger(L, 1); char **argv = (char **)lua_touserdata(L, 2); int script; int args = collectargs(argv, &script); luaL_checkversion(L); /* check that interpreter has correct version */ if (argv[0] && argv[0][0]) progname = argv[0]; if (args == has_error) { /* bad arg? */ print_usage(argv[script]); /* 'script' has index of bad arg. */ return 0; } if (args & has_v) /* option '-v'? */ print_version(); if (args & has_E) { /* option '-E'? */ lua_pushboolean(L, 1); /* signal for libraries to ignore env. vars. */ lua_setfield(L, LUA_REGISTRYINDEX, "LUA_NOENV"); } luaL_openlibs(L); /* open standard libraries */ createargtable(L, argv, argc, script); /* create table 'arg' */ lua_gc(L, LUA_GCGEN, 0, 0); /* GC in generational mode */ if (!(args & has_E)) { /* no option '-E'? */ if (handle_luainit(L) != LUA_OK) /* run LUA_INIT */ return 0; /* error running LUA_INIT */ } if (!runargs(L, argv, script)) /* execute arguments -e and -l */ return 0; /* something failed */ if (script < argc && /* execute main script (if there is one) */ handle_script(L, argv + script) != LUA_OK) return 0; if (args & has_i) /* -i option? */ doREPL(L); /* do read-eval-print loop */ else if (script == argc && !(args & (has_e | has_v))) { /* no arguments? */ if (lua_stdin_is_tty()) { /* running in interactive mode? */ print_version(); doREPL(L); /* do read-eval-print loop */ } else dofile(L, NULL); /* executes stdin as a file */ } lua_pushboolean(L, 1); /* signal no errors */ return 1; } int main (int argc, char **argv) { int status, result; lua_State *L = luaL_newstate(); /* create state */ if (L == NULL) { l_message(argv[0], "cannot create state: not enough memory"); return EXIT_FAILURE; } lua_pushcfunction(L, &pmain); /* to call 'pmain' in protected mode */ lua_pushinteger(L, argc); /* 1st argument */ lua_pushlightuserdata(L, argv); /* 2nd argument */ status = lua_pcall(L, 2, 1, 0); /* do the call */ result = lua_toboolean(L, -1); /* get result */ report(L, status); lua_close(L); return (result && status == LUA_OK) ? EXIT_SUCCESS : EXIT_FAILURE; } #endif /* LUA_MAKE_LUA */ /* MIT License Copyright (c) 1994–2019 Lua.org, PUC-Rio. Copyright (c) 2020-2022 Eduardo Bart (https://github.com/edubart). Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #line 0 #undef cast #undef G //--- #line 1 "3rd_stb_image.h" /* stb_image - v2.26 - public domain image loader - http://nothings.org/stb no warranty implied; use at your own risk Do this: #define STB_IMAGE_IMPLEMENTATION before you include this file in *one* C or C++ file to create the implementation. // i.e. it should look like this: #include ... #include ... #include ... #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" You can #define STBI_ASSERT(x) before the #include to avoid using assert.h. And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib) PNG 1/2/4/8/16-bit-per-channel TGA (not sure what subset, if a subset) BMP non-1bpp, non-RLE PSD (composited view only, no extra channels, 8/16 bit-per-channel) GIF (*comp always reports as 4-channel) HDR (radiance rgbE format) PIC (Softimage PIC) PNM (PPM and PGM binary only) Animated GIF still needs a proper API, but here's one way to do it: http://gist.github.com/urraka/685d9a6340b26b830d49 - decode from memory or through FILE (define STBI_NO_STDIO to remove code) - decode from arbitrary I/O callbacks - SIMD acceleration on x86/x64 (SSE2) and ARM (NEON) Full documentation under "DOCUMENTATION" below. LICENSE See end of file for license information. RECENT REVISION HISTORY: 2.26 (2020-07-13) many minor fixes 2.25 (2020-02-02) fix warnings 2.24 (2020-02-02) fix warnings; thread-local failure_reason and flip_vertically 2.23 (2019-08-11) fix clang static analysis warning 2.22 (2019-03-04) gif fixes, fix warnings 2.21 (2019-02-25) fix typo in comment 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs 2.19 (2018-02-11) fix warning 2.18 (2018-01-30) fix warnings 2.17 (2018-01-29) bugfix, 1-bit BMP, 16-bitness query, fix warnings 2.16 (2017-07-23) all functions have 16-bit variants; optimizations; bugfixes 2.15 (2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE detection on GCC 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs 2.13 (2016-12-04) experimental 16-bit API, only for PNG so far; fixes 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes 2.11 (2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64 RGB-format JPEG; remove white matting in PSD; allocate large structures on the stack; correct channel count for PNG & BMP 2.10 (2016-01-22) avoid warning introduced in 2.09 2.09 (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED See end of file for full revision history. ============================ Contributors ========================= Image formats Extensions, features Sean Barrett (jpeg, png, bmp) Jetro Lauha (stbi_info) Nicolas Schulz (hdr, psd) Martin "SpartanJ" Golini (stbi_info) Jonathan Dummer (tga) James "moose2000" Brown (iPhone PNG) Jean-Marc Lienher (gif) Ben "Disch" Wenger (io callbacks) Tom Seddon (pic) Omar Cornut (1/2/4-bit PNG) Thatcher Ulrich (psd) Nicolas Guillemot (vertical flip) Ken Miller (pgm, ppm) Richard Mitton (16-bit PSD) github:urraka (animated gif) Junggon Kim (PNM comments) Christopher Forseth (animated gif) Daniel Gibson (16-bit TGA) socks-the-fox (16-bit PNG) Jeremy Sawicki (handle all ImageNet JPGs) Optimizations & bugfixes Mikhail Morozov (1-bit BMP) Fabian "ryg" Giesen Anael Seghezzi (is-16-bit query) Arseny Kapoulkine John-Mark Allen Carmelo J Fdez-Aguera Bug & warning fixes Marc LeBlanc David Woo Guillaume George Martins Mozeiko Christpher Lloyd Jerry Jansson Joseph Thomson Blazej Dariusz Roszkowski Phil Jordan Dave Moore Roy Eltham Hayaki Saito Nathan Reed Won Chun Luke Graham Johan Duparc Nick Verigakis the Horde3D community Thomas Ruf Ronny Chevalier github:rlyeh Janez Zemva John Bartholomew Michal Cichon github:romigrou Jonathan Blow Ken Hamada Tero Hanninen github:svdijk Laurent Gomila Cort Stratton github:snagar Aruelien Pocheville Sergio Gonzalez Thibault Reuille github:Zelex Cass Everitt Ryamond Barbiero github:grim210 Paul Du Bois Engin Manap Aldo Culquicondor github:sammyhw Philipp Wiesemann Dale Weiler Oriol Ferrer Mesia github:phprus Josh Tobin Matthew Gregan github:poppolopoppo Julian Raschke Gregory Mullen Christian Floisand github:darealshinji Baldur Karlsson Kevin Schmidt JR Smith github:Michaelangel007 Brad Weinberger Matvey Cherevko [reserved] Luca Sas Alexander Veselov Zack Middleton [reserved] Ryan C. Gordon [reserved] [reserved] DO NOT ADD YOUR NAME HERE To add your name to the credits, pick a random blank space in the middle and fill it. 80% of merge conflicts on stb PRs are due to people adding their name at the end of the credits. */ #ifndef STBI_INCLUDE_STB_IMAGE_H #define STBI_INCLUDE_STB_IMAGE_H // DOCUMENTATION // // Limitations: // - no 12-bit-per-channel JPEG // - no JPEGs with arithmetic coding // - GIF always returns *comp=4 // // Basic usage (see HDR discussion below for HDR usage): // int x,y,n; // unsigned char *data = stbi_load(filename, &x, &y, &n, 0); // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel // // ... but 'n' will always be the number that it would have been if you said 0 // stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *channels_in_file -- outputs # of image components in image file // int desired_channels -- if non-zero, # of image components requested in result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data, or NULL on an allocation failure or if the image is // corrupt or invalid. The pixel data consists of *y scanlines of *x pixels, // with each pixel consisting of N interleaved 8-bit components; the first // pixel pointed to is top-left-most in the image. There is no padding between // image scanlines or between pixels, regardless of format. The number of // components N is 'desired_channels' if desired_channels is non-zero, or // *channels_in_file otherwise. If desired_channels is non-zero, // *channels_in_file has the number of components that _would_ have been // output otherwise. E.g. if you set desired_channels to 4, you will always // get RGBA output, but you can check *channels_in_file to see if it's trivially // opaque because e.g. there were only 3 channels in the source image. // // An output image with N components has the following components interleaved // in this order in each pixel: // // N=#comp components // 1 grey // 2 grey, alpha // 3 red, green, blue // 4 red, green, blue, alpha // // If image loading fails for any reason, the return value will be NULL, // and *x, *y, *channels_in_file will be unchanged. The function // stbi_failure_reason() can be queried for an extremely brief, end-user // unfriendly explanation of why the load failed. Define STBI_NO_FAILURE_STRINGS // to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly // more user-friendly ones. // // Paletted PNG, BMP, GIF, and PIC images are automatically depalettized. // // =========================================================================== // // UNICODE: // // If compiling for Windows and you wish to use Unicode filenames, compile // with // #define STBI_WINDOWS_UTF8 // and pass utf8-encoded filenames. Call stbi_convert_wchar_to_utf8 to convert // Windows wchar_t filenames to utf8. // // =========================================================================== // // Philosophy // // stb libraries are designed with the following priorities: // // 1. easy to use // 2. easy to maintain // 3. good performance // // Sometimes I let "good performance" creep up in priority over "easy to maintain", // and for best performance I may provide less-easy-to-use APIs that give higher // performance, in addition to the easy-to-use ones. Nevertheless, it's important // to keep in mind that from the standpoint of you, a client of this library, // all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all. // // Some secondary priorities arise directly from the first two, some of which // provide more explicit reasons why performance can't be emphasized. // // - Portable ("ease of use") // - Small source code footprint ("easy to maintain") // - No dependencies ("ease of use") // // =========================================================================== // // I/O callbacks // // I/O callbacks allow you to read from arbitrary sources, like packaged // files or some other source. Data read from callbacks are processed // through a small internal buffer (currently 128 bytes) to try to reduce // overhead. // // The three functions you must define are "read" (reads some bytes of data), // "skip" (skips some bytes of data), "eof" (reports if the stream is at the end). // // =========================================================================== // // SIMD support // // The JPEG decoder will try to automatically use SIMD kernels on x86 when // supported by the compiler. For ARM Neon support, you must explicitly // request it. // // (The old do-it-yourself SIMD API is no longer supported in the current // code.) // // On x86, SSE2 will automatically be used when available based on a run-time // test; if not, the generic C versions are used as a fall-back. On ARM targets, // the typical path is to have separate builds for NEON and non-NEON devices // (at least this is true for iOS and Android). Therefore, the NEON support is // toggled by a build flag: define STBI_NEON to get NEON loops. // // If for some reason you do not want to use any of SIMD code, or if // you have issues compiling it, you can disable it entirely by // defining STBI_NO_SIMD. // // =========================================================================== // // HDR image support (disable by defining STBI_NO_HDR) // // stb_image supports loading HDR images in general, and currently the Radiance // .HDR file format specifically. You can still load any file through the existing // interface; if you attempt to load an HDR file, it will be automatically remapped // to LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; // both of these constants can be reconfigured through this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); // // (note, do not use _inverse_ constants; stbi_image will invert them // appropriately). // // Additionally, there is a new, parallel interface for loading files as // (linear) floats to preserve the full dynamic range: // // float *data = stbi_loadf(filename, &x, &y, &n, 0); // // If you load LDR images through this interface, those images will // be promoted to floating point values, run through the inverse of // constants corresponding to the above: // // stbi_ldr_to_hdr_scale(1.0f); // stbi_ldr_to_hdr_gamma(2.2f); // // Finally, given a filename (or an open file or memory block--see header // file for details) containing image data, you can query for the "most // appropriate" interface to use (that is, whether the image is HDR or // not), using: // // stbi_is_hdr(char *filename); // // =========================================================================== // // iPhone PNG support: // // By default we convert iphone-formatted PNGs back to RGB, even though // they are internally encoded differently. You can disable this conversion // by calling stbi_convert_iphone_png_to_rgb(0), in which case // you will always just get the native iphone "format" through (which // is BGR stored in RGB). // // Call stbi_set_unpremultiply_on_load(1) as well to force a divide per // pixel to remove any premultiplied alpha *only* if the image file explicitly // says there's premultiplied data (currently only happens in iPhone images, // and only if iPhone convert-to-rgb processing is on). // // =========================================================================== // // ADDITIONAL CONFIGURATION // // - You can suppress implementation of any of the decoders to reduce // your code footprint by #defining one or more of the following // symbols before creating the implementation. // // STBI_NO_JPEG // STBI_NO_PNG // STBI_NO_BMP // STBI_NO_PSD // STBI_NO_TGA // STBI_NO_GIF // STBI_NO_HDR // STBI_NO_PIC // STBI_NO_PNM (.ppm and .pgm) // // - You can request *only* certain decoders and suppress all other ones // (this will be more forward-compatible, as addition of new decoders // doesn't require you to disable them explicitly): // // STBI_ONLY_JPEG // STBI_ONLY_PNG // STBI_ONLY_BMP // STBI_ONLY_PSD // STBI_ONLY_TGA // STBI_ONLY_GIF // STBI_ONLY_HDR // STBI_ONLY_PIC // STBI_ONLY_PNM (.ppm and .pgm) // // - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still // want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB // // - If you define STBI_MAX_DIMENSIONS, stb_image will reject images greater // than that size (in either width or height) without further processing. // This is to let programs in the wild set an upper bound to prevent // denial-of-service attacks on untrusted data, as one could generate a // valid image of gigantic dimensions and force stb_image to allocate a // huge block of memory and spend disproportionate time decoding it. By // default this is set to (1 << 24), which is 16777216, but that's still // very big. #ifndef STBI_NO_STDIO #include #endif // STBI_NO_STDIO #define STBI_VERSION 1 enum { STBI_default = 0, // only used for desired_channels STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4 }; #include typedef unsigned char stbi_uc; typedef unsigned short stbi_us; #ifdef __cplusplus extern "C" { #endif #ifndef STBIDEF #ifdef STB_IMAGE_STATIC #define STBIDEF static #else #define STBIDEF extern #endif #endif ////////////////////////////////////////////////////////////////////////////// // // PRIMARY API - works on images of any type // // // load image by filename, open file, or memory buffer // typedef struct { int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative int (*eof) (void *user); // returns nonzero if we are at end of file/data } stbi_io_callbacks; //////////////////////////////////// // // 8-bits-per-channel interface // STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *channels_in_file, int desired_channels); STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *channels_in_file, int desired_channels); #ifndef STBI_NO_STDIO STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); // for stbi_load_from_file, file pointer is left pointing immediately after image #endif #ifndef STBI_NO_GIF STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp); #endif #ifdef STBI_WINDOWS_UTF8 STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input); #endif //////////////////////////////////// // // 16-bits-per-channel interface // STBIDEF stbi_us *stbi_load_16_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); #ifndef STBI_NO_STDIO STBIDEF stbi_us *stbi_load_16 (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); #endif //////////////////////////////////// // // float-per-channel interface // #ifndef STBI_NO_LINEAR STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); #ifndef STBI_NO_STDIO STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); #endif #endif #ifndef STBI_NO_HDR STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); STBIDEF void stbi_hdr_to_ldr_scale(float scale); #endif // STBI_NO_HDR #ifndef STBI_NO_LINEAR STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); STBIDEF void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_LINEAR // stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO STBIDEF int stbi_is_hdr (char const *filename); STBIDEF int stbi_is_hdr_from_file(FILE *f); #endif // STBI_NO_STDIO // get a VERY brief reason for failure // on most compilers (and ALL modern mainstream compilers) this is threadsafe STBIDEF const char *stbi_failure_reason (void); // free the loaded image -- this is just free() STBIDEF void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len); STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *clbk, void *user); #ifndef STBI_NO_STDIO STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp); STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); STBIDEF int stbi_is_16_bit (char const *filename); STBIDEF int stbi_is_16_bit_from_file(FILE *f); #endif // for image formats that explicitly notate that they have premultiplied alpha, // we just return the colors as stored in the file. set this flag to force // unpremultiplication. results are undefined if the unpremultiply overflow. STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); // indicate whether we should process iphone images back to canonical format, // or just pass them through "as-is" STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert); // flip the image vertically, so the first pixel in the output array is the bottom left STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip); // as above, but only applies to images loaded on the thread that calls the function // this function is only available if your compiler supports thread-local variables; // calling it will fail to link if your compiler doesn't STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip); // ZLIB client - used by PNG, available for other purposes STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); #ifdef __cplusplus } #endif // // //// end header file ///////////////////////////////////////////////////// #endif // STBI_INCLUDE_STB_IMAGE_H #ifdef STB_IMAGE_IMPLEMENTATION #if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \ || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \ || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \ || defined(STBI_ONLY_ZLIB) #ifndef STBI_ONLY_JPEG #define STBI_NO_JPEG #endif #ifndef STBI_ONLY_PNG #define STBI_NO_PNG #endif #ifndef STBI_ONLY_BMP #define STBI_NO_BMP #endif #ifndef STBI_ONLY_PSD #define STBI_NO_PSD #endif #ifndef STBI_ONLY_TGA #define STBI_NO_TGA #endif #ifndef STBI_ONLY_GIF #define STBI_NO_GIF #endif #ifndef STBI_ONLY_HDR #define STBI_NO_HDR #endif #ifndef STBI_ONLY_PIC #define STBI_NO_PIC #endif #ifndef STBI_ONLY_PNM #define STBI_NO_PNM #endif #endif #if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) #define STBI_NO_ZLIB #endif #include #include // ptrdiff_t on osx #include #include #include #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) #include // ldexp, pow #endif #ifndef STBI_NO_STDIO #include #endif #ifndef STBI_ASSERT #include #define STBI_ASSERT(x) assert(x) #endif #ifdef __cplusplus #define STBI_EXTERN extern "C" #else #define STBI_EXTERN extern #endif #ifndef _MSC_VER #ifdef __cplusplus #define stbi_inline inline #else #define stbi_inline #endif #else #define stbi_inline __forceinline #endif #ifndef STBI_NO_THREAD_LOCALS #if defined(__cplusplus) && __cplusplus >= 201103L #define STBI_THREAD_LOCAL thread_local #elif defined(__GNUC__) && __GNUC__ < 5 #define STBI_THREAD_LOCAL __thread #elif defined(_MSC_VER) #define STBI_THREAD_LOCAL __declspec(thread) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_THREADS__) #define STBI_THREAD_LOCAL _Thread_local #endif #ifndef STBI_THREAD_LOCAL #if defined(__GNUC__) #define STBI_THREAD_LOCAL __thread #endif #endif #endif #ifdef _MSC_VER typedef unsigned short stbi__uint16; typedef signed short stbi__int16; typedef unsigned int stbi__uint32; typedef signed int stbi__int32; #else #include typedef uint16_t stbi__uint16; typedef int16_t stbi__int16; typedef uint32_t stbi__uint32; typedef int32_t stbi__int32; #endif // should produce compiler error if size is wrong typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; #ifdef _MSC_VER #define STBI_NOTUSED(v) (void)(v) #else #define STBI_NOTUSED(v) (void)sizeof(v) #endif #ifdef _MSC_VER #define STBI_HAS_LROTL #endif #ifdef STBI_HAS_LROTL #define stbi_lrot(x,y) _lrotl(x,y) #else #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y)))) #endif #if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) // ok #elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) // ok #else #error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." #endif #ifndef STBI_MALLOC #define STBI_MALLOC(sz) malloc(sz) #define STBI_REALLOC(p,newsz) realloc(p,newsz) #define STBI_FREE(p) free(p) #endif #ifndef STBI_REALLOC_SIZED #define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) #endif // x86/x64 detection #if defined(__x86_64__) || defined(_M_X64) #define STBI__X64_TARGET #elif defined(__i386) || defined(_M_IX86) #define STBI__X86_TARGET #endif #if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) // gcc doesn't support sse2 intrinsics unless you compile with -msse2, // which in turn means it gets to use SSE2 everywhere. This is unfortunate, // but previous attempts to provide the SSE2 functions with runtime // detection caused numerous issues. The way architecture extensions are // exposed in GCC/Clang is, sadly, not really suited for one-file libs. // New behavior: if compiled with -msse2, we use SSE2 without any // detection; if not, we don't use it at all. #define STBI_NO_SIMD #endif #if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) // Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET // // 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the // Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant. // As a result, enabling SSE2 on 32-bit MinGW is dangerous when not // simultaneously enabling "-mstackrealign". // // See https://github.com/nothings/stb/issues/81 for more information. // // So default to no SSE2 on 32-bit MinGW. If you've read this far and added // -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2. #define STBI_NO_SIMD #endif #if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) #define STBI_SSE2 #include #ifdef _MSC_VER #if _MSC_VER >= 1400 // not VC6 #include // __cpuid static int stbi__cpuid3(void) { int info[4]; __cpuid(info,1); return info[3]; } #else static int stbi__cpuid3(void) { int res; __asm { mov eax,1 cpuid mov res,edx } return res; } #endif #define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) static int stbi__sse2_available(void) { int info3 = stbi__cpuid3(); return ((info3 >> 26) & 1) != 0; } #endif #else // assume GCC-style if not VC++ #define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) static int stbi__sse2_available(void) { // If we're even attempting to compile this on GCC/Clang, that means // -msse2 is on, which means the compiler is allowed to use SSE2 // instructions at will, and so are we. return 1; } #endif #endif #endif // ARM NEON #if defined(STBI_NO_SIMD) && defined(STBI_NEON) #undef STBI_NEON #endif #ifdef STBI_NEON #include // assume GCC or Clang on ARM targets #define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) #endif #ifndef STBI_SIMD_ALIGN #define STBI_SIMD_ALIGN(type, name) type name #endif #ifndef STBI_MAX_DIMENSIONS #define STBI_MAX_DIMENSIONS (1 << 24) #endif /////////////////////////////////////////////// // // stbi__context struct and start_xxx functions // stbi__context structure is our basic context used by all images, so it // contains all the IO context, plus some basic image information typedef struct { stbi__uint32 img_x, img_y; int img_n, img_out_n; stbi_io_callbacks io; void *io_user_data; int read_from_callbacks; int buflen; stbi_uc buffer_start[128]; int callback_already_read; stbi_uc *img_buffer, *img_buffer_end; stbi_uc *img_buffer_original, *img_buffer_original_end; } stbi__context; static void stbi__refill_buffer(stbi__context *s); // initialize a memory-decode context static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) { s->io.read = NULL; s->read_from_callbacks = 0; s->callback_already_read = 0; s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer; s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len; } // initialize a callback-based context static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) { s->io = *c; s->io_user_data = user; s->buflen = sizeof(s->buffer_start); s->read_from_callbacks = 1; s->callback_already_read = 0; s->img_buffer = s->img_buffer_original = s->buffer_start; stbi__refill_buffer(s); s->img_buffer_original_end = s->img_buffer_end; } #ifndef STBI_NO_STDIO static int stbi__stdio_read(void *user, char *data, int size) { return (int) fread(data,1,size,(FILE*) user); } static void stbi__stdio_skip(void *user, int n) { int ch; fseek((FILE*) user, n, SEEK_CUR); ch = fgetc((FILE*) user); /* have to read a byte to reset feof()'s flag */ if (ch != EOF) { ungetc(ch, (FILE *) user); /* push byte back onto stream if valid. */ } } static int stbi__stdio_eof(void *user) { return feof((FILE*) user) || ferror((FILE *) user); } static stbi_io_callbacks stbi__stdio_callbacks = { stbi__stdio_read, stbi__stdio_skip, stbi__stdio_eof, }; static void stbi__start_file(stbi__context *s, FILE *f) { stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f); } //static void stop_file(stbi__context *s) { } #endif // !STBI_NO_STDIO static void stbi__rewind(stbi__context *s) { // conceptually rewind SHOULD rewind to the beginning of the stream, // but we just rewind to the beginning of the initial buffer, because // we only use it after doing 'test', which only ever looks at at most 92 bytes s->img_buffer = s->img_buffer_original; s->img_buffer_end = s->img_buffer_original_end; } enum { STBI_ORDER_RGB, STBI_ORDER_BGR }; typedef struct { int bits_per_channel; int num_channels; int channel_order; } stbi__result_info; #ifndef STBI_NO_JPEG static int stbi__jpeg_test(stbi__context *s); static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNG static int stbi__png_test(stbi__context *s); static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); static int stbi__png_is16(stbi__context *s); #endif #ifndef STBI_NO_BMP static int stbi__bmp_test(stbi__context *s); static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_TGA static int stbi__tga_test(stbi__context *s); static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PSD static int stbi__psd_test(stbi__context *s); static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc); static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); static int stbi__psd_is16(stbi__context *s); #endif #ifndef STBI_NO_HDR static int stbi__hdr_test(stbi__context *s); static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PIC static int stbi__pic_test(stbi__context *s); static void *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_GIF static int stbi__gif_test(stbi__context *s); static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp); static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNM static int stbi__pnm_test(stbi__context *s); static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); #endif static #ifdef STBI_THREAD_LOCAL STBI_THREAD_LOCAL #endif const char *stbi__g_failure_reason; STBIDEF const char *stbi_failure_reason(void) { return stbi__g_failure_reason; } #ifndef STBI_NO_FAILURE_STRINGS static int stbi__err(const char *str) { stbi__g_failure_reason = str; return 0; } #endif static void *stbi__malloc(size_t size) { return STBI_MALLOC(size); } // stb_image uses ints pervasively, including for offset calculations. // therefore the largest decoded image size we can support with the // current code, even on 64-bit targets, is INT_MAX. this is not a // significant limitation for the intended use case. // // we do, however, need to make sure our size calculations don't // overflow. hence a few helper functions for size calculations that // multiply integers together, making sure that they're non-negative // and no overflow occurs. // return 1 if the sum is valid, 0 on overflow. // negative terms are considered invalid. static int stbi__addsizes_valid(int a, int b) { if (b < 0) return 0; // now 0 <= b <= INT_MAX, hence also // 0 <= INT_MAX - b <= INTMAX. // And "a + b <= INT_MAX" (which might overflow) is the // same as a <= INT_MAX - b (no overflow) return a <= INT_MAX - b; } // returns 1 if the product is valid, 0 on overflow. // negative factors are considered invalid. static int stbi__mul2sizes_valid(int a, int b) { if (a < 0 || b < 0) return 0; if (b == 0) return 1; // mul-by-0 is always safe // portable way to check for no overflows in a*b return a <= INT_MAX/b; } #if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR) // returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow static int stbi__mad2sizes_valid(int a, int b, int add) { return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add); } #endif // returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow static int stbi__mad3sizes_valid(int a, int b, int c, int add) { return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && stbi__addsizes_valid(a*b*c, add); } // returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) { return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && stbi__mul2sizes_valid(a*b*c, d) && stbi__addsizes_valid(a*b*c*d, add); } #endif #if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR) // mallocs with size overflow checking static void *stbi__malloc_mad2(int a, int b, int add) { if (!stbi__mad2sizes_valid(a, b, add)) return NULL; return stbi__malloc(a*b + add); } #endif static void *stbi__malloc_mad3(int a, int b, int c, int add) { if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL; return stbi__malloc(a*b*c + add); } #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) { if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL; return stbi__malloc(a*b*c*d + add); } #endif // stbi__err - error // stbi__errpf - error returning pointer to float // stbi__errpuc - error returning pointer to unsigned char #ifdef STBI_NO_FAILURE_STRINGS #define stbi__err(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) #define stbi__err(x,y) stbi__err(y) #else #define stbi__err(x,y) stbi__err(x) #endif #define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL)) #define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL)) STBIDEF void stbi_image_free(void *retval_from_stbi_load) { STBI_FREE(retval_from_stbi_load); } #ifndef STBI_NO_LINEAR static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); #endif #ifndef STBI_NO_HDR static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); #endif static int stbi__vertically_flip_on_load_global = 0; STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) { stbi__vertically_flip_on_load_global = flag_true_if_should_flip; } #ifndef STBI_THREAD_LOCAL #define stbi__vertically_flip_on_load stbi__vertically_flip_on_load_global #else static STBI_THREAD_LOCAL int stbi__vertically_flip_on_load_local, stbi__vertically_flip_on_load_set; STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip) { stbi__vertically_flip_on_load_local = flag_true_if_should_flip; stbi__vertically_flip_on_load_set = 1; } #define stbi__vertically_flip_on_load (stbi__vertically_flip_on_load_set \ ? stbi__vertically_flip_on_load_local \ : stbi__vertically_flip_on_load_global) #endif // STBI_THREAD_LOCAL static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) { memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order ri->num_channels = 0; #ifndef STBI_NO_JPEG if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp, ri); #endif #ifndef STBI_NO_PNG if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp, ri); #endif #ifndef STBI_NO_BMP if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp, ri); #endif #ifndef STBI_NO_GIF if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp, ri); #endif #ifndef STBI_NO_PSD if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp, ri, bpc); #else STBI_NOTUSED(bpc); #endif #ifndef STBI_NO_PIC if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp, ri); #endif #ifndef STBI_NO_PNM if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp, ri); #endif #ifndef STBI_NO_HDR if (stbi__hdr_test(s)) { float *hdr = stbi__hdr_load(s, x,y,comp,req_comp, ri); return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif #ifndef STBI_NO_TGA // test tga last because it's a crappy test! if (stbi__tga_test(s)) return stbi__tga_load(s,x,y,comp,req_comp, ri); #endif return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); } static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels) { int i; int img_len = w * h * channels; stbi_uc *reduced; reduced = (stbi_uc *) stbi__malloc(img_len); if (reduced == NULL) return stbi__errpuc("outofmem", "Out of memory"); for (i = 0; i < img_len; ++i) reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling STBI_FREE(orig); return reduced; } static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels) { int i; int img_len = w * h * channels; stbi__uint16 *enlarged; enlarged = (stbi__uint16 *) stbi__malloc(img_len*2); if (enlarged == NULL) return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); for (i = 0; i < img_len; ++i) enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff STBI_FREE(orig); return enlarged; } static void stbi__vertical_flip(void *image, int w, int h, int bytes_per_pixel) { int row; size_t bytes_per_row = (size_t)w * bytes_per_pixel; stbi_uc temp[2048]; stbi_uc *bytes = (stbi_uc *)image; for (row = 0; row < (h>>1); row++) { stbi_uc *row0 = bytes + row*bytes_per_row; stbi_uc *row1 = bytes + (h - row - 1)*bytes_per_row; // swap row0 with row1 size_t bytes_left = bytes_per_row; while (bytes_left) { size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); memcpy(temp, row0, bytes_copy); memcpy(row0, row1, bytes_copy); memcpy(row1, temp, bytes_copy); row0 += bytes_copy; row1 += bytes_copy; bytes_left -= bytes_copy; } } } #ifndef STBI_NO_GIF static void stbi__vertical_flip_slices(void *image, int w, int h, int z, int bytes_per_pixel) { int slice; int slice_size = w * h * bytes_per_pixel; stbi_uc *bytes = (stbi_uc *)image; for (slice = 0; slice < z; ++slice) { stbi__vertical_flip(bytes, w, h, bytes_per_pixel); bytes += slice_size; } } #endif static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi__result_info ri; void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); if (result == NULL) return NULL; // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); if (ri.bits_per_channel != 8) { result = stbi__convert_16_to_8((stbi__uint16 *) result, *x, *y, req_comp == 0 ? *comp : req_comp); ri.bits_per_channel = 8; } // @TODO: move stbi__convert_format to here if (stbi__vertically_flip_on_load) { int channels = req_comp ? req_comp : *comp; stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); } return (unsigned char *) result; } static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) { stbi__result_info ri; void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); if (result == NULL) return NULL; // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); if (ri.bits_per_channel != 16) { result = stbi__convert_8_to_16((stbi_uc *) result, *x, *y, req_comp == 0 ? *comp : req_comp); ri.bits_per_channel = 16; } // @TODO: move stbi__convert_format16 to here // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision if (stbi__vertically_flip_on_load) { int channels = req_comp ? req_comp : *comp; stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); } return (stbi__uint16 *) result; } #if !defined(STBI_NO_HDR) && !defined(STBI_NO_LINEAR) static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) { if (stbi__vertically_flip_on_load && result != NULL) { int channels = req_comp ? req_comp : *comp; stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); } } #endif #ifndef STBI_NO_STDIO #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide); STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default); #endif #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input) { return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL); } #endif static FILE *stbi__fopen(char const *filename, char const *mode) { FILE *f; #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) wchar_t wMode[64]; wchar_t wFilename[1024]; if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename))) return 0; if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) return 0; #if _MSC_VER >= 1400 if (0 != _wfopen_s(&f, wFilename, wMode)) f = 0; #else f = _wfopen(wFilename, wMode); #endif #elif defined(_MSC_VER) && _MSC_VER >= 1400 if (0 != fopen_s(&f, filename, mode)) f=0; #else f = fopen(filename, mode); #endif return f; } STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = stbi__fopen(filename, "rb"); unsigned char *result; if (!f) return stbi__errpuc("can't fopen", "Unable to open file"); result = stbi_load_from_file(f,x,y,comp,req_comp); fclose(f); return result; } STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { unsigned char *result; stbi__context s; stbi__start_file(&s,f); result = stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); if (result) { // need to 'unget' all the characters in the IO buffer fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); } return result; } STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi__uint16 *result; stbi__context s; stbi__start_file(&s,f); result = stbi__load_and_postprocess_16bit(&s,x,y,comp,req_comp); if (result) { // need to 'unget' all the characters in the IO buffer fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); } return result; } STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = stbi__fopen(filename, "rb"); stbi__uint16 *result; if (!f) return (stbi_us *) stbi__errpuc("can't fopen", "Unable to open file"); result = stbi_load_from_file_16(f,x,y,comp,req_comp); fclose(f); return result; } #endif //!STBI_NO_STDIO STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); } STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); } STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); } STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); } #ifndef STBI_NO_GIF STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp) { unsigned char *result; stbi__context s; stbi__start_mem(&s,buffer,len); result = (unsigned char*) stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); if (stbi__vertically_flip_on_load) { stbi__vertical_flip_slices( result, *x, *y, *z, *comp ); } return result; } #endif #ifndef STBI_NO_LINEAR static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) { unsigned char *data; #ifndef STBI_NO_HDR if (stbi__hdr_test(s)) { stbi__result_info ri; float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp, &ri); if (hdr_data) stbi__float_postprocess(hdr_data,x,y,comp,req_comp); return hdr_data; } #endif data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); if (data) return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); } STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__loadf_main(&s,x,y,comp,req_comp); } STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); return stbi__loadf_main(&s,x,y,comp,req_comp); } #ifndef STBI_NO_STDIO STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) { float *result; FILE *f = stbi__fopen(filename, "rb"); if (!f) return stbi__errpf("can't fopen", "Unable to open file"); result = stbi_loadf_from_file(f,x,y,comp,req_comp); fclose(f); return result; } STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi__context s; stbi__start_file(&s,f); return stbi__loadf_main(&s,x,y,comp,req_comp); } #endif // !STBI_NO_STDIO #endif // !STBI_NO_LINEAR // these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is // defined, for API simplicity; if STBI_NO_LINEAR is defined, it always // reports false! STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) { #ifndef STBI_NO_HDR stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__hdr_test(&s); #else STBI_NOTUSED(buffer); STBI_NOTUSED(len); return 0; #endif } #ifndef STBI_NO_STDIO STBIDEF int stbi_is_hdr (char const *filename) { FILE *f = stbi__fopen(filename, "rb"); int result=0; if (f) { result = stbi_is_hdr_from_file(f); fclose(f); } return result; } STBIDEF int stbi_is_hdr_from_file(FILE *f) { #ifndef STBI_NO_HDR long pos = ftell(f); int res; stbi__context s; stbi__start_file(&s,f); res = stbi__hdr_test(&s); fseek(f, pos, SEEK_SET); return res; #else STBI_NOTUSED(f); return 0; #endif } #endif // !STBI_NO_STDIO STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) { #ifndef STBI_NO_HDR stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); return stbi__hdr_test(&s); #else STBI_NOTUSED(clbk); STBI_NOTUSED(user); return 0; #endif } #ifndef STBI_NO_LINEAR static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f; STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } #endif static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; } ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // enum { STBI__SCAN_load=0, STBI__SCAN_type, STBI__SCAN_header }; static void stbi__refill_buffer(stbi__context *s) { int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen); s->callback_already_read += (int) (s->img_buffer - s->img_buffer_original); if (n == 0) { // at end of file, treat same as if from memory, but need to handle case // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file s->read_from_callbacks = 0; s->img_buffer = s->buffer_start; s->img_buffer_end = s->buffer_start+1; *s->img_buffer = 0; } else { s->img_buffer = s->buffer_start; s->img_buffer_end = s->buffer_start + n; } } stbi_inline static stbi_uc stbi__get8(stbi__context *s) { if (s->img_buffer < s->img_buffer_end) return *s->img_buffer++; if (s->read_from_callbacks) { stbi__refill_buffer(s); return *s->img_buffer++; } return 0; } #if defined(STBI_NO_JPEG) && defined(STBI_NO_HDR) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) // nothing #else stbi_inline static int stbi__at_eof(stbi__context *s) { if (s->io.read) { if (!(s->io.eof)(s->io_user_data)) return 0; // if feof() is true, check if buffer = end // special case: we've only got the special 0 character at the end if (s->read_from_callbacks == 0) return 1; } return s->img_buffer >= s->img_buffer_end; } #endif #if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) // nothing #else static void stbi__skip(stbi__context *s, int n) { if (n == 0) return; // already there! if (n < 0) { s->img_buffer = s->img_buffer_end; return; } if (s->io.read) { int blen = (int) (s->img_buffer_end - s->img_buffer); if (blen < n) { s->img_buffer = s->img_buffer_end; (s->io.skip)(s->io_user_data, n - blen); return; } } s->img_buffer += n; } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_TGA) && defined(STBI_NO_HDR) && defined(STBI_NO_PNM) // nothing #else static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) { if (s->io.read) { int blen = (int) (s->img_buffer_end - s->img_buffer); if (blen < n) { int res, count; memcpy(buffer, s->img_buffer, blen); count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen); res = (count == (n-blen)); s->img_buffer = s->img_buffer_end; return res; } } if (s->img_buffer+n <= s->img_buffer_end) { memcpy(buffer, s->img_buffer, n); s->img_buffer += n; return 1; } else return 0; } #endif #if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC) // nothing #else static int stbi__get16be(stbi__context *s) { int z = stbi__get8(s); return (z << 8) + stbi__get8(s); } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC) // nothing #else static stbi__uint32 stbi__get32be(stbi__context *s) { stbi__uint32 z = stbi__get16be(s); return (z << 16) + stbi__get16be(s); } #endif #if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) // nothing #else static int stbi__get16le(stbi__context *s) { int z = stbi__get8(s); return z + (stbi__get8(s) << 8); } #endif #ifndef STBI_NO_BMP static stbi__uint32 stbi__get32le(stbi__context *s) { stbi__uint32 z = stbi__get16le(s); return z + (stbi__get16le(s) << 16); } #endif #define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings #if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) // nothing #else ////////////////////////////////////////////////////////////////////////////// // // generic converter from built-in img_n to req_comp // individual types do this automatically as much as possible (e.g. jpeg // does all cases internally since it needs to colorspace convert anyway, // and it never has alpha, so very few cases ). png can automatically // interleave an alpha=255 channel, but falls back to this for other cases // // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing static stbi_uc stbi__compute_y(int r, int g, int b) { return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) // nothing #else static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) { int i,j; unsigned char *good; if (req_comp == img_n) return data; STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0); if (good == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } for (j=0; j < (int) y; ++j) { unsigned char *src = data + j * x * img_n ; unsigned char *dest = good + j * x * req_comp; #define STBI__COMBO(a,b) ((a)*8+(b)) #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch (STBI__COMBO(img_n, req_comp)) { STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=255; } break; STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=255; } break; STBI__CASE(2,1) { dest[0]=src[0]; } break; STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break; STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=255; } break; STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = 255; } break; STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = src[3]; } break; STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break; default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return stbi__errpuc("unsupported", "Unsupported format conversion"); } #undef STBI__CASE } STBI_FREE(data); return good; } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) // nothing #else static stbi__uint16 stbi__compute_y_16(int r, int g, int b) { return (stbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8); } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) // nothing #else static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y) { int i,j; stbi__uint16 *good; if (req_comp == img_n) return data; STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2); if (good == NULL) { STBI_FREE(data); return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); } for (j=0; j < (int) y; ++j) { stbi__uint16 *src = data + j * x * img_n ; stbi__uint16 *dest = good + j * x * req_comp; #define STBI__COMBO(a,b) ((a)*8+(b)) #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch (STBI__COMBO(img_n, req_comp)) { STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=0xffff; } break; STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=0xffff; } break; STBI__CASE(2,1) { dest[0]=src[0]; } break; STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break; STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=0xffff; } break; STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = 0xffff; } break; STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = src[3]; } break; STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break; default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return (stbi__uint16*) stbi__errpuc("unsupported", "Unsupported format conversion"); } #undef STBI__CASE } STBI_FREE(data); return good; } #endif #ifndef STBI_NO_LINEAR static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { int i,k,n; float *output; if (!data) return NULL; output = (float *) stbi__malloc_mad4(x, y, comp, sizeof(float), 0); if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale); } } if (n < comp) { for (i=0; i < x*y; ++i) { output[i*comp + n] = data[i*comp + n]/255.0f; } } STBI_FREE(data); return output; } #endif #ifndef STBI_NO_HDR #define stbi__float2int(x) ((int) (x)) static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) { int i,k,n; stbi_uc *output; if (!data) return NULL; output = (stbi_uc *) stbi__malloc_mad3(x, y, comp, 0); if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = (stbi_uc) stbi__float2int(z); } if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = (stbi_uc) stbi__float2int(z); } } STBI_FREE(data); return output; } #endif ////////////////////////////////////////////////////////////////////////////// // // "baseline" JPEG/JFIF decoder // // simple implementation // - doesn't support delayed output of y-dimension // - simple interface (only one output format: 8-bit interleaved RGB) // - doesn't try to recover corrupt jpegs // - doesn't allow partial loading, loading multiple at once // - still fast on x86 (copying globals into locals doesn't help x86) // - allocates lots of intermediate memory (full size of all components) // - non-interleaved case requires this anyway // - allows good upsampling (see next) // high-quality // - upsampled channels are bilinearly interpolated, even across blocks // - quality integer IDCT derived from IJG's 'slow' // performance // - fast huffman; reasonable integer IDCT // - some SIMD kernels for common paths on targets with SSE2/NEON // - uses a lot of intermediate memory, could cache poorly #ifndef STBI_NO_JPEG // huffman decoding acceleration #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache typedef struct { stbi_uc fast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win stbi__uint16 code[256]; stbi_uc values[256]; stbi_uc size[257]; unsigned int maxcode[18]; int delta[17]; // old 'firstsymbol' - old 'firstcode' } stbi__huffman; typedef struct { stbi__context *s; stbi__huffman huff_dc[4]; stbi__huffman huff_ac[4]; stbi__uint16 dequant[4][64]; stbi__int16 fast_ac[4][1 << FAST_BITS]; // sizes for components, interleaved MCUs int img_h_max, img_v_max; int img_mcu_x, img_mcu_y; int img_mcu_w, img_mcu_h; // definition of jpeg image component struct { int id; int h,v; int tq; int hd,ha; int dc_pred; int x,y,w2,h2; stbi_uc *data; void *raw_data, *raw_coeff; stbi_uc *linebuf; short *coeff; // progressive only int coeff_w, coeff_h; // number of 8x8 coefficient blocks } img_comp[4]; stbi__uint32 code_buffer; // jpeg entropy-coded buffer int code_bits; // number of valid bits unsigned char marker; // marker seen while filling entropy buffer int nomore; // flag if we saw a marker so must stop int progressive; int spec_start; int spec_end; int succ_high; int succ_low; int eob_run; int jfif; int app14_color_transform; // Adobe APP14 tag int rgb; int scan_n, order[4]; int restart_interval, todo; // kernels void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); } stbi__jpeg; static int stbi__build_huffman(stbi__huffman *h, int *count) { int i,j,k=0; unsigned int code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i) for (j=0; j < count[i]; ++j) h->size[k++] = (stbi_uc) (i+1); h->size[k] = 0; // compute actual symbols (from jpeg spec) code = 0; k = 0; for(j=1; j <= 16; ++j) { // compute delta to add to code to compute symbol id h->delta[j] = k - code; if (h->size[k] == j) { while (h->size[k] == j) h->code[k++] = (stbi__uint16) (code++); if (code-1 >= (1u << j)) return stbi__err("bad code lengths","Corrupt JPEG"); } // compute largest code + 1 for this size, preshifted as needed later h->maxcode[j] = code << (16-j); code <<= 1; } h->maxcode[j] = 0xffffffff; // build non-spec acceleration table; 255 is flag for not-accelerated memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) { int s = h->size[i]; if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) { h->fast[c+j] = (stbi_uc) i; } } } return 1; } // build a table that decodes both magnitude and value of small ACs in // one go. static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) { int i; for (i=0; i < (1 << FAST_BITS); ++i) { stbi_uc fast = h->fast[i]; fast_ac[i] = 0; if (fast < 255) { int rs = h->values[fast]; int run = (rs >> 4) & 15; int magbits = rs & 15; int len = h->size[fast]; if (magbits && len + magbits <= FAST_BITS) { // magnitude code followed by receive_extend code int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); int m = 1 << (magbits - 1); if (k < m) k += (~0U << magbits) + 1; // if the result is small enough, we can fit it in fast_ac table if (k >= -128 && k <= 127) fast_ac[i] = (stbi__int16) ((k * 256) + (run * 16) + (len + magbits)); } } } } static void stbi__grow_buffer_unsafe(stbi__jpeg *j) { do { unsigned int b = j->nomore ? 0 : stbi__get8(j->s); if (b == 0xff) { int c = stbi__get8(j->s); while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes if (c != 0) { j->marker = (unsigned char) c; j->nomore = 1; return; } } j->code_buffer |= b << (24 - j->code_bits); j->code_bits += 8; } while (j->code_bits <= 24); } // (1 << n) - 1 static const stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) { unsigned int temp; int c,k; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c]; if (k < 255) { int s = h->size[k]; if (s > j->code_bits) return -1; j->code_buffer <<= s; j->code_bits -= s; return h->values[k]; } // naive test is to shift the code_buffer down so k bits are // valid, then test against maxcode. To speed this up, we've // preshifted maxcode left so that it has (16-k) 0s at the // end; in other words, regardless of the number of bits, it // wants to be compared against something shifted to have 16; // that way we don't need to shift inside the loop. temp = j->code_buffer >> 16; for (k=FAST_BITS+1 ; ; ++k) if (temp < h->maxcode[k]) break; if (k == 17) { // error! code not found j->code_bits -= 16; return -1; } if (k > j->code_bits) return -1; // convert the huffman code to the symbol id c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); // convert the id to a symbol j->code_bits -= k; j->code_buffer <<= k; return h->values[c]; } // bias[n] = (-1<code_bits < n) stbi__grow_buffer_unsafe(j); sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB k = stbi_lrot(j->code_buffer, n); if (n < 0 || n >= (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask))) return 0; j->code_buffer = k & ~stbi__bmask[n]; k &= stbi__bmask[n]; j->code_bits -= n; return k + (stbi__jbias[n] & ~sgn); } // get some unsigned bits stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) { unsigned int k; if (j->code_bits < n) stbi__grow_buffer_unsafe(j); k = stbi_lrot(j->code_buffer, n); j->code_buffer = k & ~stbi__bmask[n]; k &= stbi__bmask[n]; j->code_bits -= n; return k; } stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) { unsigned int k; if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); k = j->code_buffer; j->code_buffer <<= 1; --j->code_bits; return k & 0x80000000; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? static const stbi_uc stbi__jpeg_dezigzag[64+15] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, // let corrupt input sample past end 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }; // decode one 64-entry block-- static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant) { int diff,dc,k; int t; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); t = stbi__jpeg_huff_decode(j, hdc); if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG"); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? stbi__extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) (dc * dequant[0]); // decode AC components, see JPEG spec k = 1; do { unsigned int zig; int c,r,s; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); r = fac[c]; if (r) { // fast-AC path k += (r >> 4) & 15; // run s = r & 15; // combined length j->code_buffer <<= s; j->code_bits -= s; // decode into unzigzag'd location zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) ((r >> 8) * dequant[zig]); } else { int rs = stbi__jpeg_huff_decode(j, hac); if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (rs != 0xf0) break; // end block k += 16; } else { k += r; // decode into unzigzag'd location zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]); } } } while (k < 64); return 1; } static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) { int diff,dc; int t; if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); if (j->succ_high == 0) { // first scan for DC coefficient, must be first memset(data,0,64*sizeof(data[0])); // 0 all the ac values now t = stbi__jpeg_huff_decode(j, hdc); if (t == -1) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); diff = t ? stbi__extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) (dc << j->succ_low); } else { // refinement scan for DC coefficient if (stbi__jpeg_get_bit(j)) data[0] += (short) (1 << j->succ_low); } return 1; } // @OPTIMIZE: store non-zigzagged during the decode passes, // and only de-zigzag when dequantizing static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) { int k; if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); if (j->succ_high == 0) { int shift = j->succ_low; if (j->eob_run) { --j->eob_run; return 1; } k = j->spec_start; do { unsigned int zig; int c,r,s; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); r = fac[c]; if (r) { // fast-AC path k += (r >> 4) & 15; // run s = r & 15; // combined length j->code_buffer <<= s; j->code_bits -= s; zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) ((r >> 8) << shift); } else { int rs = stbi__jpeg_huff_decode(j, hac); if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (r < 15) { j->eob_run = (1 << r); if (r) j->eob_run += stbi__jpeg_get_bits(j, r); --j->eob_run; break; } k += 16; } else { k += r; zig = stbi__jpeg_dezigzag[k++]; data[zig] = (short) (stbi__extend_receive(j,s) << shift); } } } while (k <= j->spec_end); } else { // refinement scan for these AC coefficients short bit = (short) (1 << j->succ_low); if (j->eob_run) { --j->eob_run; for (k = j->spec_start; k <= j->spec_end; ++k) { short *p = &data[stbi__jpeg_dezigzag[k]]; if (*p != 0) if (stbi__jpeg_get_bit(j)) if ((*p & bit)==0) { if (*p > 0) *p += bit; else *p -= bit; } } } else { k = j->spec_start; do { int r,s; int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (r < 15) { j->eob_run = (1 << r) - 1; if (r) j->eob_run += stbi__jpeg_get_bits(j, r); r = 64; // force end of block } else { // r=15 s=0 should write 16 0s, so we just do // a run of 15 0s and then write s (which is 0), // so we don't have to do anything special here } } else { if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG"); // sign bit if (stbi__jpeg_get_bit(j)) s = bit; else s = -bit; } // advance by r while (k <= j->spec_end) { short *p = &data[stbi__jpeg_dezigzag[k++]]; if (*p != 0) { if (stbi__jpeg_get_bit(j)) if ((*p & bit)==0) { if (*p > 0) *p += bit; else *p -= bit; } } else { if (r == 0) { *p = (short) s; break; } --r; } } } while (k <= j->spec_end); } } return 1; } // take a -128..127 value and stbi__clamp it and convert to 0..255 stbi_inline static stbi_uc stbi__clamp(int x) { // trick to use a single test to catch both cases if ((unsigned int) x > 255) { if (x < 0) return 0; if (x > 255) return 255; } return (stbi_uc) x; } #define stbi__f2f(x) ((int) (((x) * 4096 + 0.5))) #define stbi__fsh(x) ((x) * 4096) // derived from jidctint -- DCT_ISLOW #define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ p2 = s2; \ p3 = s6; \ p1 = (p2+p3) * stbi__f2f(0.5411961f); \ t2 = p1 + p3*stbi__f2f(-1.847759065f); \ t3 = p1 + p2*stbi__f2f( 0.765366865f); \ p2 = s0; \ p3 = s4; \ t0 = stbi__fsh(p2+p3); \ t1 = stbi__fsh(p2-p3); \ x0 = t0+t3; \ x3 = t0-t3; \ x1 = t1+t2; \ x2 = t1-t2; \ t0 = s7; \ t1 = s5; \ t2 = s3; \ t3 = s1; \ p3 = t0+t2; \ p4 = t1+t3; \ p1 = t0+t3; \ p2 = t1+t2; \ p5 = (p3+p4)*stbi__f2f( 1.175875602f); \ t0 = t0*stbi__f2f( 0.298631336f); \ t1 = t1*stbi__f2f( 2.053119869f); \ t2 = t2*stbi__f2f( 3.072711026f); \ t3 = t3*stbi__f2f( 1.501321110f); \ p1 = p5 + p1*stbi__f2f(-0.899976223f); \ p2 = p5 + p2*stbi__f2f(-2.562915447f); \ p3 = p3*stbi__f2f(-1.961570560f); \ p4 = p4*stbi__f2f(-0.390180644f); \ t3 += p1+p4; \ t2 += p2+p3; \ t1 += p2+p4; \ t0 += p1+p3; static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) { int i,val[64],*v=val; stbi_uc *o; short *d = data; // columns for (i=0; i < 8; ++i,++d, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0]*4; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. // so we want to round that, which means adding 0.5 * 1<<17, // aka 65536. Also, we'll end up with -128 to 127 that we want // to encode as 0..255 by adding 128, so we'll add that before the shift x0 += 65536 + (128<<17); x1 += 65536 + (128<<17); x2 += 65536 + (128<<17); x3 += 65536 + (128<<17); // tried computing the shifts into temps, or'ing the temps to see // if any were out of range, but that was slower o[0] = stbi__clamp((x0+t3) >> 17); o[7] = stbi__clamp((x0-t3) >> 17); o[1] = stbi__clamp((x1+t2) >> 17); o[6] = stbi__clamp((x1-t2) >> 17); o[2] = stbi__clamp((x2+t1) >> 17); o[5] = stbi__clamp((x2-t1) >> 17); o[3] = stbi__clamp((x3+t0) >> 17); o[4] = stbi__clamp((x3-t0) >> 17); } } #ifdef STBI_SSE2 // sse2 integer IDCT. not the fastest possible implementation but it // produces bit-identical results to the generic C version so it's // fully "transparent". static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) { // This is constructed to match our regular (generic) integer IDCT exactly. __m128i row0, row1, row2, row3, row4, row5, row6, row7; __m128i tmp; // dot product constant: even elems=x, odd elems=y #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y)) // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) // out(1) = c1[even]*x + c1[odd]*y #define dct_rot(out0,out1, x,y,c0,c1) \ __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \ __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \ __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) // out = in << 12 (in 16-bit, out 32-bit) #define dct_widen(out, in) \ __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) // wide add #define dct_wadd(out, a, b) \ __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ __m128i out##_h = _mm_add_epi32(a##_h, b##_h) // wide sub #define dct_wsub(out, a, b) \ __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) // butterfly a/b, add bias, then shift by "s" and pack #define dct_bfly32o(out0, out1, a,b,bias,s) \ { \ __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ dct_wadd(sum, abiased, b); \ dct_wsub(dif, abiased, b); \ out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ } // 8-bit interleave step (for transposes) #define dct_interleave8(a, b) \ tmp = a; \ a = _mm_unpacklo_epi8(a, b); \ b = _mm_unpackhi_epi8(tmp, b) // 16-bit interleave step (for transposes) #define dct_interleave16(a, b) \ tmp = a; \ a = _mm_unpacklo_epi16(a, b); \ b = _mm_unpackhi_epi16(tmp, b) #define dct_pass(bias,shift) \ { \ /* even part */ \ dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \ __m128i sum04 = _mm_add_epi16(row0, row4); \ __m128i dif04 = _mm_sub_epi16(row0, row4); \ dct_widen(t0e, sum04); \ dct_widen(t1e, dif04); \ dct_wadd(x0, t0e, t3e); \ dct_wsub(x3, t0e, t3e); \ dct_wadd(x1, t1e, t2e); \ dct_wsub(x2, t1e, t2e); \ /* odd part */ \ dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \ dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \ __m128i sum17 = _mm_add_epi16(row1, row7); \ __m128i sum35 = _mm_add_epi16(row3, row5); \ dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \ dct_wadd(x4, y0o, y4o); \ dct_wadd(x5, y1o, y5o); \ dct_wadd(x6, y2o, y5o); \ dct_wadd(x7, y3o, y4o); \ dct_bfly32o(row0,row7, x0,x7,bias,shift); \ dct_bfly32o(row1,row6, x1,x6,bias,shift); \ dct_bfly32o(row2,row5, x2,x5,bias,shift); \ dct_bfly32o(row3,row4, x3,x4,bias,shift); \ } __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); // rounding biases in column/row passes, see stbi__idct_block for explanation. __m128i bias_0 = _mm_set1_epi32(512); __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); // load row0 = _mm_load_si128((const __m128i *) (data + 0*8)); row1 = _mm_load_si128((const __m128i *) (data + 1*8)); row2 = _mm_load_si128((const __m128i *) (data + 2*8)); row3 = _mm_load_si128((const __m128i *) (data + 3*8)); row4 = _mm_load_si128((const __m128i *) (data + 4*8)); row5 = _mm_load_si128((const __m128i *) (data + 5*8)); row6 = _mm_load_si128((const __m128i *) (data + 6*8)); row7 = _mm_load_si128((const __m128i *) (data + 7*8)); // column pass dct_pass(bias_0, 10); { // 16bit 8x8 transpose pass 1 dct_interleave16(row0, row4); dct_interleave16(row1, row5); dct_interleave16(row2, row6); dct_interleave16(row3, row7); // transpose pass 2 dct_interleave16(row0, row2); dct_interleave16(row1, row3); dct_interleave16(row4, row6); dct_interleave16(row5, row7); // transpose pass 3 dct_interleave16(row0, row1); dct_interleave16(row2, row3); dct_interleave16(row4, row5); dct_interleave16(row6, row7); } // row pass dct_pass(bias_1, 17); { // pack __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 __m128i p1 = _mm_packus_epi16(row2, row3); __m128i p2 = _mm_packus_epi16(row4, row5); __m128i p3 = _mm_packus_epi16(row6, row7); // 8bit 8x8 transpose pass 1 dct_interleave8(p0, p2); // a0e0a1e1... dct_interleave8(p1, p3); // c0g0c1g1... // transpose pass 2 dct_interleave8(p0, p1); // a0c0e0g0... dct_interleave8(p2, p3); // b0d0f0h0... // transpose pass 3 dct_interleave8(p0, p2); // a0b0c0d0... dct_interleave8(p1, p3); // a4b4c4d4... // store _mm_storel_epi64((__m128i *) out, p0); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride; _mm_storel_epi64((__m128i *) out, p2); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride; _mm_storel_epi64((__m128i *) out, p1); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride; _mm_storel_epi64((__m128i *) out, p3); out += out_stride; _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); } #undef dct_const #undef dct_rot #undef dct_widen #undef dct_wadd #undef dct_wsub #undef dct_bfly32o #undef dct_interleave8 #undef dct_interleave16 #undef dct_pass } #endif // STBI_SSE2 #ifdef STBI_NEON // NEON integer IDCT. should produce bit-identical // results to the generic C version. static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) { int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f)); #define dct_long_mul(out, inq, coeff) \ int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) #define dct_long_mac(out, acc, inq, coeff) \ int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) #define dct_widen(out, inq) \ int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) // wide add #define dct_wadd(out, a, b) \ int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ int32x4_t out##_h = vaddq_s32(a##_h, b##_h) // wide sub #define dct_wsub(out, a, b) \ int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ int32x4_t out##_h = vsubq_s32(a##_h, b##_h) // butterfly a/b, then shift using "shiftop" by "s" and pack #define dct_bfly32o(out0,out1, a,b,shiftop,s) \ { \ dct_wadd(sum, a, b); \ dct_wsub(dif, a, b); \ out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ } #define dct_pass(shiftop, shift) \ { \ /* even part */ \ int16x8_t sum26 = vaddq_s16(row2, row6); \ dct_long_mul(p1e, sum26, rot0_0); \ dct_long_mac(t2e, p1e, row6, rot0_1); \ dct_long_mac(t3e, p1e, row2, rot0_2); \ int16x8_t sum04 = vaddq_s16(row0, row4); \ int16x8_t dif04 = vsubq_s16(row0, row4); \ dct_widen(t0e, sum04); \ dct_widen(t1e, dif04); \ dct_wadd(x0, t0e, t3e); \ dct_wsub(x3, t0e, t3e); \ dct_wadd(x1, t1e, t2e); \ dct_wsub(x2, t1e, t2e); \ /* odd part */ \ int16x8_t sum15 = vaddq_s16(row1, row5); \ int16x8_t sum17 = vaddq_s16(row1, row7); \ int16x8_t sum35 = vaddq_s16(row3, row5); \ int16x8_t sum37 = vaddq_s16(row3, row7); \ int16x8_t sumodd = vaddq_s16(sum17, sum35); \ dct_long_mul(p5o, sumodd, rot1_0); \ dct_long_mac(p1o, p5o, sum17, rot1_1); \ dct_long_mac(p2o, p5o, sum35, rot1_2); \ dct_long_mul(p3o, sum37, rot2_0); \ dct_long_mul(p4o, sum15, rot2_1); \ dct_wadd(sump13o, p1o, p3o); \ dct_wadd(sump24o, p2o, p4o); \ dct_wadd(sump23o, p2o, p3o); \ dct_wadd(sump14o, p1o, p4o); \ dct_long_mac(x4, sump13o, row7, rot3_0); \ dct_long_mac(x5, sump24o, row5, rot3_1); \ dct_long_mac(x6, sump23o, row3, rot3_2); \ dct_long_mac(x7, sump14o, row1, rot3_3); \ dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \ dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \ dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \ dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \ } // load row0 = vld1q_s16(data + 0*8); row1 = vld1q_s16(data + 1*8); row2 = vld1q_s16(data + 2*8); row3 = vld1q_s16(data + 3*8); row4 = vld1q_s16(data + 4*8); row5 = vld1q_s16(data + 5*8); row6 = vld1q_s16(data + 6*8); row7 = vld1q_s16(data + 7*8); // add DC bias row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); // column pass dct_pass(vrshrn_n_s32, 10); // 16bit 8x8 transpose { // these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. // whether compilers actually get this is another story, sadly. #define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; } #define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); } #define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); } // pass 1 dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 dct_trn16(row2, row3); dct_trn16(row4, row5); dct_trn16(row6, row7); // pass 2 dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 dct_trn32(row1, row3); dct_trn32(row4, row6); dct_trn32(row5, row7); // pass 3 dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 dct_trn64(row1, row5); dct_trn64(row2, row6); dct_trn64(row3, row7); #undef dct_trn16 #undef dct_trn32 #undef dct_trn64 } // row pass // vrshrn_n_s32 only supports shifts up to 16, we need // 17. so do a non-rounding shift of 16 first then follow // up with a rounding shift by 1. dct_pass(vshrn_n_s32, 16); { // pack and round uint8x8_t p0 = vqrshrun_n_s16(row0, 1); uint8x8_t p1 = vqrshrun_n_s16(row1, 1); uint8x8_t p2 = vqrshrun_n_s16(row2, 1); uint8x8_t p3 = vqrshrun_n_s16(row3, 1); uint8x8_t p4 = vqrshrun_n_s16(row4, 1); uint8x8_t p5 = vqrshrun_n_s16(row5, 1); uint8x8_t p6 = vqrshrun_n_s16(row6, 1); uint8x8_t p7 = vqrshrun_n_s16(row7, 1); // again, these can translate into one instruction, but often don't. #define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; } #define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); } #define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); } // sadly can't use interleaved stores here since we only write // 8 bytes to each scan line! // 8x8 8-bit transpose pass 1 dct_trn8_8(p0, p1); dct_trn8_8(p2, p3); dct_trn8_8(p4, p5); dct_trn8_8(p6, p7); // pass 2 dct_trn8_16(p0, p2); dct_trn8_16(p1, p3); dct_trn8_16(p4, p6); dct_trn8_16(p5, p7); // pass 3 dct_trn8_32(p0, p4); dct_trn8_32(p1, p5); dct_trn8_32(p2, p6); dct_trn8_32(p3, p7); // store vst1_u8(out, p0); out += out_stride; vst1_u8(out, p1); out += out_stride; vst1_u8(out, p2); out += out_stride; vst1_u8(out, p3); out += out_stride; vst1_u8(out, p4); out += out_stride; vst1_u8(out, p5); out += out_stride; vst1_u8(out, p6); out += out_stride; vst1_u8(out, p7); #undef dct_trn8_8 #undef dct_trn8_16 #undef dct_trn8_32 } #undef dct_long_mul #undef dct_long_mac #undef dct_widen #undef dct_wadd #undef dct_wsub #undef dct_bfly32o #undef dct_pass } #endif // STBI_NEON #define STBI__MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value static stbi_uc stbi__get_marker(stbi__jpeg *j) { stbi_uc x; if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } x = stbi__get8(j->s); if (x != 0xff) return STBI__MARKER_none; while (x == 0xff) x = stbi__get8(j->s); // consume repeated 0xff fill bytes return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] #define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, stbi__jpeg_reset the entropy decoder and // the dc prediction static void stbi__jpeg_reset(stbi__jpeg *j) { j->code_bits = 0; j->code_buffer = 0; j->nomore = 0; j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0; j->marker = STBI__MARKER_none; j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; j->eob_run = 0; // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, // since we don't even allow 1<<30 pixels } static int stbi__parse_entropy_coded_data(stbi__jpeg *z) { stbi__jpeg_reset(z); if (!z->progressive) { if (z->scan_n == 1) { int i,j; STBI_SIMD_ALIGN(short, data[64]); int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { int ha = z->img_comp[n].ha; if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } else { // interleaved int i,j,k,x,y; STBI_SIMD_ALIGN(short, data[64]); for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x)*8; int y2 = (j*z->img_comp[n].v + y)*8; int ha = z->img_comp[n].ha; if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data); } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } } else { if (z->scan_n == 1) { int i,j; int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); if (z->spec_start == 0) { if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) return 0; } else { int ha = z->img_comp[n].ha; if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) return 0; } // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } else { // interleaved int i,j,k,x,y; for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x); int y2 = (j*z->img_comp[n].v + y); short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) return 0; } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); if (!STBI__RESTART(z->marker)) return 1; stbi__jpeg_reset(z); } } } return 1; } } } static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) { int i; for (i=0; i < 64; ++i) data[i] *= dequant[i]; } static void stbi__jpeg_finish(stbi__jpeg *z) { if (z->progressive) { // dequantize and idct the data int i,j,n; for (n=0; n < z->s->img_n; ++n) { int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); } } } } } static int stbi__process_marker(stbi__jpeg *z, int m) { int L; switch (m) { case STBI__MARKER_none: // no marker found return stbi__err("expected marker","Corrupt JPEG"); case 0xDD: // DRI - specify restart interval if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG"); z->restart_interval = stbi__get16be(z->s); return 1; case 0xDB: // DQT - define quantization table L = stbi__get16be(z->s)-2; while (L > 0) { int q = stbi__get8(z->s); int p = q >> 4, sixteen = (p != 0); int t = q & 15,i; if (p != 0 && p != 1) return stbi__err("bad DQT type","Corrupt JPEG"); if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG"); for (i=0; i < 64; ++i) z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); L -= (sixteen ? 129 : 65); } return L==0; case 0xC4: // DHT - define huffman table L = stbi__get16be(z->s)-2; while (L > 0) { stbi_uc *v; int sizes[16],i,n=0; int q = stbi__get8(z->s); int tc = q >> 4; int th = q & 15; if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG"); for (i=0; i < 16; ++i) { sizes[i] = stbi__get8(z->s); n += sizes[i]; } L -= 17; if (tc == 0) { if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0; v = z->huff_dc[th].values; } else { if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0; v = z->huff_ac[th].values; } for (i=0; i < n; ++i) v[i] = stbi__get8(z->s); if (tc != 0) stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); L -= n; } return L==0; } // check for comment block or APP blocks if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { L = stbi__get16be(z->s); if (L < 2) { if (m == 0xFE) return stbi__err("bad COM len","Corrupt JPEG"); else return stbi__err("bad APP len","Corrupt JPEG"); } L -= 2; if (m == 0xE0 && L >= 5) { // JFIF APP0 segment static const unsigned char tag[5] = {'J','F','I','F','\0'}; int ok = 1; int i; for (i=0; i < 5; ++i) if (stbi__get8(z->s) != tag[i]) ok = 0; L -= 5; if (ok) z->jfif = 1; } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment static const unsigned char tag[6] = {'A','d','o','b','e','\0'}; int ok = 1; int i; for (i=0; i < 6; ++i) if (stbi__get8(z->s) != tag[i]) ok = 0; L -= 6; if (ok) { stbi__get8(z->s); // version stbi__get16be(z->s); // flags0 stbi__get16be(z->s); // flags1 z->app14_color_transform = stbi__get8(z->s); // color transform L -= 6; } } stbi__skip(z->s, L); return 1; } return stbi__err("unknown marker","Corrupt JPEG"); } // after we see SOS static int stbi__process_scan_header(stbi__jpeg *z) { int i; int Ls = stbi__get16be(z->s); z->scan_n = stbi__get8(z->s); if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG"); if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG"); for (i=0; i < z->scan_n; ++i) { int id = stbi__get8(z->s), which; int q = stbi__get8(z->s); for (which = 0; which < z->s->img_n; ++which) if (z->img_comp[which].id == id) break; if (which == z->s->img_n) return 0; // no match z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG"); z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG"); z->order[i] = which; } { int aa; z->spec_start = stbi__get8(z->s); z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 aa = stbi__get8(z->s); z->succ_high = (aa >> 4); z->succ_low = (aa & 15); if (z->progressive) { if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) return stbi__err("bad SOS", "Corrupt JPEG"); } else { if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG"); if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG"); z->spec_end = 63; } } return 1; } static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) { int i; for (i=0; i < ncomp; ++i) { if (z->img_comp[i].raw_data) { STBI_FREE(z->img_comp[i].raw_data); z->img_comp[i].raw_data = NULL; z->img_comp[i].data = NULL; } if (z->img_comp[i].raw_coeff) { STBI_FREE(z->img_comp[i].raw_coeff); z->img_comp[i].raw_coeff = 0; z->img_comp[i].coeff = 0; } if (z->img_comp[i].linebuf) { STBI_FREE(z->img_comp[i].linebuf); z->img_comp[i].linebuf = NULL; } } return why; } static int stbi__process_frame_header(stbi__jpeg *z, int scan) { stbi__context *s = z->s; int Lf,p,i,q, h_max=1,v_max=1,c; Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); c = stbi__get8(s); if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count","Corrupt JPEG"); s->img_n = c; for (i=0; i < c; ++i) { z->img_comp[i].data = NULL; z->img_comp[i].linebuf = NULL; } if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); z->rgb = 0; for (i=0; i < s->img_n; ++i) { static const unsigned char rgb[3] = { 'R', 'G', 'B' }; z->img_comp[i].id = stbi__get8(s); if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) ++z->rgb; q = stbi__get8(s); z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); } if (scan != STBI__SCAN_load) return 1; if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode"); for (i=0; i < s->img_n; ++i) { if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; } // compute interleaved mcu info z->img_h_max = h_max; z->img_v_max = v_max; z->img_mcu_w = h_max * 8; z->img_mcu_h = v_max * 8; // these sizes can't be more than 17 bits z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; for (i=0; i < s->img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion // // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) // so these muls can't overflow with 32-bit ints (which we require) z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; z->img_comp[i].coeff = 0; z->img_comp[i].raw_coeff = 0; z->img_comp[i].linebuf = NULL; z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); if (z->img_comp[i].raw_data == NULL) return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); // align blocks for idct using mmx/sse z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); if (z->progressive) { // w2, h2 are multiples of 8 (see above) z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); if (z->img_comp[i].raw_coeff == NULL) return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); } } return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) #define stbi__DNL(x) ((x) == 0xdc) #define stbi__SOI(x) ((x) == 0xd8) #define stbi__EOI(x) ((x) == 0xd9) #define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) #define stbi__SOS(x) ((x) == 0xda) #define stbi__SOF_progressive(x) ((x) == 0xc2) static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) { int m; z->jfif = 0; z->app14_color_transform = -1; // valid values are 0,1,2 z->marker = STBI__MARKER_none; // initialize cached marker to empty m = stbi__get_marker(z); if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG"); if (scan == STBI__SCAN_type) return 1; m = stbi__get_marker(z); while (!stbi__SOF(m)) { if (!stbi__process_marker(z,m)) return 0; m = stbi__get_marker(z); while (m == STBI__MARKER_none) { // some files have extra padding after their blocks, so ok, we'll scan if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG"); m = stbi__get_marker(z); } } z->progressive = stbi__SOF_progressive(m); if (!stbi__process_frame_header(z, scan)) return 0; return 1; } // decode image to YCbCr format static int stbi__decode_jpeg_image(stbi__jpeg *j) { int m; for (m = 0; m < 4; m++) { j->img_comp[m].raw_data = NULL; j->img_comp[m].raw_coeff = NULL; } j->restart_interval = 0; if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0; m = stbi__get_marker(j); while (!stbi__EOI(m)) { if (stbi__SOS(m)) { if (!stbi__process_scan_header(j)) return 0; if (!stbi__parse_entropy_coded_data(j)) return 0; if (j->marker == STBI__MARKER_none ) { // handle 0s at the end of image data from IP Kamera 9060 while (!stbi__at_eof(j->s)) { int x = stbi__get8(j->s); if (x == 255) { j->marker = stbi__get8(j->s); break; } } // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 } } else if (stbi__DNL(m)) { int Ld = stbi__get16be(j->s); stbi__uint32 NL = stbi__get16be(j->s); if (Ld != 4) return stbi__err("bad DNL len", "Corrupt JPEG"); if (NL != j->s->img_y) return stbi__err("bad DNL height", "Corrupt JPEG"); } else { if (!stbi__process_marker(j, m)) return 0; } m = stbi__get_marker(j); } if (j->progressive) stbi__jpeg_finish(j); return 1; } // static jfif-centered resampling (across block boundaries) typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, int w, int hs); #define stbi__div4(x) ((stbi_uc) ((x) >> 2)) static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { STBI_NOTUSED(out); STBI_NOTUSED(in_far); STBI_NOTUSED(w); STBI_NOTUSED(hs); return in_near; } static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate two samples vertically for every one in input int i; STBI_NOTUSED(hs); for (i=0; i < w; ++i) out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); return out; } static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate two samples horizontally for every one in input int i; stbi_uc *input = in_near; if (w == 1) { // if only one sample, can't do any interpolation out[0] = out[1] = input[0]; return out; } out[0] = input[0]; out[1] = stbi__div4(input[0]*3 + input[1] + 2); for (i=1; i < w-1; ++i) { int n = 3*input[i]+2; out[i*2+0] = stbi__div4(n+input[i-1]); out[i*2+1] = stbi__div4(n+input[i+1]); } out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); out[i*2+1] = input[w-1]; STBI_NOTUSED(in_far); STBI_NOTUSED(hs); return out; } #define stbi__div16(x) ((stbi_uc) ((x) >> 4)) static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i,t0,t1; if (w == 1) { out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; out[0] = stbi__div4(t1+2); for (i=1; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = stbi__div16(3*t0 + t1 + 8); out[i*2 ] = stbi__div16(3*t1 + t0 + 8); } out[w*2-1] = stbi__div4(t1+2); STBI_NOTUSED(hs); return out; } #if defined(STBI_SSE2) || defined(STBI_NEON) static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i=0,t0,t1; if (w == 1) { out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; // process groups of 8 pixels for as long as we can. // note we can't handle the last pixel in a row in this loop // because we need to handle the filter boundary conditions. for (; i < ((w-1) & ~7); i += 8) { #if defined(STBI_SSE2) // load and perform the vertical filtering pass // this uses 3*x + y = 4*x + (y - x) __m128i zero = _mm_setzero_si128(); __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i)); __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i)); __m128i farw = _mm_unpacklo_epi8(farb, zero); __m128i nearw = _mm_unpacklo_epi8(nearb, zero); __m128i diff = _mm_sub_epi16(farw, nearw); __m128i nears = _mm_slli_epi16(nearw, 2); __m128i curr = _mm_add_epi16(nears, diff); // current row // horizontal filter works the same based on shifted vers of current // row. "prev" is current row shifted right by 1 pixel; we need to // insert the previous pixel value (from t1). // "next" is current row shifted left by 1 pixel, with first pixel // of next block of 8 pixels added in. __m128i prv0 = _mm_slli_si128(curr, 2); __m128i nxt0 = _mm_srli_si128(curr, 2); __m128i prev = _mm_insert_epi16(prv0, t1, 0); __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7); // horizontal filter, polyphase implementation since it's convenient: // even pixels = 3*cur + prev = cur*4 + (prev - cur) // odd pixels = 3*cur + next = cur*4 + (next - cur) // note the shared term. __m128i bias = _mm_set1_epi16(8); __m128i curs = _mm_slli_epi16(curr, 2); __m128i prvd = _mm_sub_epi16(prev, curr); __m128i nxtd = _mm_sub_epi16(next, curr); __m128i curb = _mm_add_epi16(curs, bias); __m128i even = _mm_add_epi16(prvd, curb); __m128i odd = _mm_add_epi16(nxtd, curb); // interleave even and odd pixels, then undo scaling. __m128i int0 = _mm_unpacklo_epi16(even, odd); __m128i int1 = _mm_unpackhi_epi16(even, odd); __m128i de0 = _mm_srli_epi16(int0, 4); __m128i de1 = _mm_srli_epi16(int1, 4); // pack and write output __m128i outv = _mm_packus_epi16(de0, de1); _mm_storeu_si128((__m128i *) (out + i*2), outv); #elif defined(STBI_NEON) // load and perform the vertical filtering pass // this uses 3*x + y = 4*x + (y - x) uint8x8_t farb = vld1_u8(in_far + i); uint8x8_t nearb = vld1_u8(in_near + i); int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); int16x8_t curr = vaddq_s16(nears, diff); // current row // horizontal filter works the same based on shifted vers of current // row. "prev" is current row shifted right by 1 pixel; we need to // insert the previous pixel value (from t1). // "next" is current row shifted left by 1 pixel, with first pixel // of next block of 8 pixels added in. int16x8_t prv0 = vextq_s16(curr, curr, 7); int16x8_t nxt0 = vextq_s16(curr, curr, 1); int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7); // horizontal filter, polyphase implementation since it's convenient: // even pixels = 3*cur + prev = cur*4 + (prev - cur) // odd pixels = 3*cur + next = cur*4 + (next - cur) // note the shared term. int16x8_t curs = vshlq_n_s16(curr, 2); int16x8_t prvd = vsubq_s16(prev, curr); int16x8_t nxtd = vsubq_s16(next, curr); int16x8_t even = vaddq_s16(curs, prvd); int16x8_t odd = vaddq_s16(curs, nxtd); // undo scaling and round, then store with even/odd phases interleaved uint8x8x2_t o; o.val[0] = vqrshrun_n_s16(even, 4); o.val[1] = vqrshrun_n_s16(odd, 4); vst2_u8(out + i*2, o); #endif // "previous" value for next iter t1 = 3*in_near[i+7] + in_far[i+7]; } t0 = t1; t1 = 3*in_near[i] + in_far[i]; out[i*2] = stbi__div16(3*t1 + t0 + 8); for (++i; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = stbi__div16(3*t0 + t1 + 8); out[i*2 ] = stbi__div16(3*t1 + t0 + 8); } out[w*2-1] = stbi__div4(t1+2); STBI_NOTUSED(hs); return out; } #endif static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) { // resample with nearest-neighbor int i,j; STBI_NOTUSED(in_far); for (i=0; i < w; ++i) for (j=0; j < hs; ++j) out[i*hs+j] = in_near[i]; return out; } // this is a reduced-precision calculation of YCbCr-to-RGB introduced // to make sure the code produces the same results in both SIMD and scalar #define stbi__float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8) static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 20) + (1<<19); // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr* stbi__float2fixed(1.40200f); g = y_fixed + (cr*-stbi__float2fixed(0.71414f)) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); b = y_fixed + cb* stbi__float2fixed(1.77200f); r >>= 20; g >>= 20; b >>= 20; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (stbi_uc)r; out[1] = (stbi_uc)g; out[2] = (stbi_uc)b; out[3] = 255; out += step; } } #if defined(STBI_SSE2) || defined(STBI_NEON) static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) { int i = 0; #ifdef STBI_SSE2 // step == 3 is pretty ugly on the final interleave, and i'm not convinced // it's useful in practice (you wouldn't use it for textures, for example). // so just accelerate step == 4 case. if (step == 4) { // this is a fairly straightforward implementation and not super-optimized. __m128i signflip = _mm_set1_epi8(-0x80); __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f)); __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f)); __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f)); __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f)); __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128); __m128i xw = _mm_set1_epi16(255); // alpha channel for (; i+7 < count; i += 8) { // load __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 // unpack to short (and left-shift cr, cb by 8) __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); // color transform __m128i yws = _mm_srli_epi16(yw, 4); __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); __m128i rws = _mm_add_epi16(cr0, yws); __m128i gwt = _mm_add_epi16(cb0, yws); __m128i bws = _mm_add_epi16(yws, cb1); __m128i gws = _mm_add_epi16(gwt, cr1); // descale __m128i rw = _mm_srai_epi16(rws, 4); __m128i bw = _mm_srai_epi16(bws, 4); __m128i gw = _mm_srai_epi16(gws, 4); // back to byte, set up for transpose __m128i brb = _mm_packus_epi16(rw, bw); __m128i gxb = _mm_packus_epi16(gw, xw); // transpose to interleave channels __m128i t0 = _mm_unpacklo_epi8(brb, gxb); __m128i t1 = _mm_unpackhi_epi8(brb, gxb); __m128i o0 = _mm_unpacklo_epi16(t0, t1); __m128i o1 = _mm_unpackhi_epi16(t0, t1); // store _mm_storeu_si128((__m128i *) (out + 0), o0); _mm_storeu_si128((__m128i *) (out + 16), o1); out += 32; } } #endif #ifdef STBI_NEON // in this version, step=3 support would be easy to add. but is there demand? if (step == 4) { // this is a fairly straightforward implementation and not super-optimized. uint8x8_t signflip = vdup_n_u8(0x80); int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f)); int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f)); int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f)); int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f)); for (; i+7 < count; i += 8) { // load uint8x8_t y_bytes = vld1_u8(y + i); uint8x8_t cr_bytes = vld1_u8(pcr + i); uint8x8_t cb_bytes = vld1_u8(pcb + i); int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); // expand to s16 int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); int16x8_t crw = vshll_n_s8(cr_biased, 7); int16x8_t cbw = vshll_n_s8(cb_biased, 7); // color transform int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); int16x8_t rws = vaddq_s16(yws, cr0); int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); int16x8_t bws = vaddq_s16(yws, cb1); // undo scaling, round, convert to byte uint8x8x4_t o; o.val[0] = vqrshrun_n_s16(rws, 4); o.val[1] = vqrshrun_n_s16(gws, 4); o.val[2] = vqrshrun_n_s16(bws, 4); o.val[3] = vdup_n_u8(255); // store, interleaving r/g/b/a vst4_u8(out, o); out += 8*4; } } #endif for (; i < count; ++i) { int y_fixed = (y[i] << 20) + (1<<19); // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr* stbi__float2fixed(1.40200f); g = y_fixed + cr*-stbi__float2fixed(0.71414f) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); b = y_fixed + cb* stbi__float2fixed(1.77200f); r >>= 20; g >>= 20; b >>= 20; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (stbi_uc)r; out[1] = (stbi_uc)g; out[2] = (stbi_uc)b; out[3] = 255; out += step; } } #endif // set up the kernels static void stbi__setup_jpeg(stbi__jpeg *j) { j->idct_block_kernel = stbi__idct_block; j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; #ifdef STBI_SSE2 if (stbi__sse2_available()) { j->idct_block_kernel = stbi__idct_simd; j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; } #endif #ifdef STBI_NEON j->idct_block_kernel = stbi__idct_simd; j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; #endif } // clean up the temporary component buffers static void stbi__cleanup_jpeg(stbi__jpeg *j) { stbi__free_jpeg_components(j, j->s->img_n, 0); } typedef struct { resample_row_func resample; stbi_uc *line0,*line1; int hs,vs; // expansion factor in each axis int w_lores; // horizontal pixels pre-expansion int ystep; // how far through vertical expansion we are int ypos; // which pre-expansion row we're on } stbi__resample; // fast 0..255 * 0..255 => 0..255 rounded multiplication static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) { unsigned int t = x*y + 128; return (stbi_uc) ((t + (t >>8)) >> 8); } static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) { int n, decode_n, is_rgb; z->s->img_n = 0; // make stbi__cleanup_jpeg safe // validate req_comp if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); // load a jpeg image from whichever source, but leave in YCbCr format if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; } // determine actual number of components to generate n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1; is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); if (z->s->img_n == 3 && n < 3 && !is_rgb) decode_n = 1; else decode_n = z->s->img_n; // resample and color-convert { int k; unsigned int i,j; stbi_uc *output; stbi_uc *coutput[4] = { NULL, NULL, NULL, NULL }; stbi__resample res_comp[4]; for (k=0; k < decode_n; ++k) { stbi__resample *r = &res_comp[k]; // allocate line buffer big enough for upsampling off the edges // with upsample factor of 4 z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } r->hs = z->img_h_max / z->img_comp[k].h; r->vs = z->img_v_max / z->img_comp[k].v; r->ystep = r->vs >> 1; r->w_lores = (z->s->img_x + r->hs-1) / r->hs; r->ypos = 0; r->line0 = r->line1 = z->img_comp[k].data; if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2; else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2; else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel; else r->resample = stbi__resample_row_generic; } // can't error after this so, this is safe output = (stbi_uc *) stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } // now go ahead and resample for (j=0; j < z->s->img_y; ++j) { stbi_uc *out = output + n * z->s->img_x * j; for (k=0; k < decode_n; ++k) { stbi__resample *r = &res_comp[k]; int y_bot = r->ystep >= (r->vs >> 1); coutput[k] = r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, y_bot ? r->line0 : r->line1, r->w_lores, r->hs); if (++r->ystep >= r->vs) { r->ystep = 0; r->line0 = r->line1; if (++r->ypos < z->img_comp[k].y) r->line1 += z->img_comp[k].w2; } } if (n >= 3) { stbi_uc *y = coutput[0]; if (z->s->img_n == 3) { if (is_rgb) { for (i=0; i < z->s->img_x; ++i) { out[0] = y[i]; out[1] = coutput[1][i]; out[2] = coutput[2][i]; out[3] = 255; out += n; } } else { z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); } } else if (z->s->img_n == 4) { if (z->app14_color_transform == 0) { // CMYK for (i=0; i < z->s->img_x; ++i) { stbi_uc m = coutput[3][i]; out[0] = stbi__blinn_8x8(coutput[0][i], m); out[1] = stbi__blinn_8x8(coutput[1][i], m); out[2] = stbi__blinn_8x8(coutput[2][i], m); out[3] = 255; out += n; } } else if (z->app14_color_transform == 2) { // YCCK z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); for (i=0; i < z->s->img_x; ++i) { stbi_uc m = coutput[3][i]; out[0] = stbi__blinn_8x8(255 - out[0], m); out[1] = stbi__blinn_8x8(255 - out[1], m); out[2] = stbi__blinn_8x8(255 - out[2], m); out += n; } } else { // YCbCr + alpha? Ignore the fourth channel for now z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); } } else for (i=0; i < z->s->img_x; ++i) { out[0] = out[1] = out[2] = y[i]; out[3] = 255; // not used if n==3 out += n; } } else { if (is_rgb) { if (n == 1) for (i=0; i < z->s->img_x; ++i) *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); else { for (i=0; i < z->s->img_x; ++i, out += 2) { out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); out[1] = 255; } } } else if (z->s->img_n == 4 && z->app14_color_transform == 0) { for (i=0; i < z->s->img_x; ++i) { stbi_uc m = coutput[3][i]; stbi_uc r = stbi__blinn_8x8(coutput[0][i], m); stbi_uc g = stbi__blinn_8x8(coutput[1][i], m); stbi_uc b = stbi__blinn_8x8(coutput[2][i], m); out[0] = stbi__compute_y(r, g, b); out[1] = 255; out += n; } } else if (z->s->img_n == 4 && z->app14_color_transform == 2) { for (i=0; i < z->s->img_x; ++i) { out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); out[1] = 255; out += n; } } else { stbi_uc *y = coutput[0]; if (n == 1) for (i=0; i < z->s->img_x; ++i) out[i] = y[i]; else for (i=0; i < z->s->img_x; ++i) { *out++ = y[i]; *out++ = 255; } } } } stbi__cleanup_jpeg(z); *out_x = z->s->img_x; *out_y = z->s->img_y; if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output return output; } } static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { unsigned char* result; stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg)); STBI_NOTUSED(ri); j->s = s; stbi__setup_jpeg(j); result = load_jpeg_image(j, x,y,comp,req_comp); STBI_FREE(j); return result; } static int stbi__jpeg_test(stbi__context *s) { int r; stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg)); j->s = s; stbi__setup_jpeg(j); r = stbi__decode_jpeg_header(j, STBI__SCAN_type); stbi__rewind(s); STBI_FREE(j); return r; } static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) { if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { stbi__rewind( j->s ); return 0; } if (x) *x = j->s->img_x; if (y) *y = j->s->img_y; if (comp) *comp = j->s->img_n >= 3 ? 3 : 1; return 1; } static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) { int result; stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg))); j->s = s; result = stbi__jpeg_info_raw(j, x, y, comp); STBI_FREE(j); return result; } #endif // public domain zlib decode v0.2 Sean Barrett 2006-11-18 // simple implementation // - all input must be provided in an upfront buffer // - all output is written to a single output buffer (can malloc/realloc) // performance // - fast huffman #ifndef STBI_NO_ZLIB // fast-way is faster to check than jpeg huffman, but slow way is slower #define STBI__ZFAST_BITS 9 // accelerate all cases in default tables #define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) typedef struct { stbi__uint16 fast[1 << STBI__ZFAST_BITS]; stbi__uint16 firstcode[16]; int maxcode[17]; stbi__uint16 firstsymbol[16]; stbi_uc size[288]; stbi__uint16 value[288]; } stbi__zhuffman; stbi_inline static int stbi__bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } stbi_inline static int stbi__bit_reverse(int v, int bits) { STBI_ASSERT(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return stbi__bitreverse16(v) >> (16-bits); } static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; // DEFLATE spec for generating codes memset(sizes, 0, sizeof(sizes)); memset(z->fast, 0, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) if (sizes[i] > (1 << i)) return stbi__err("bad sizes", "Corrupt PNG"); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (stbi__uint16) code; z->firstsymbol[i] = (stbi__uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); z->maxcode[i] = code << (16-i); // preshift for inner loop code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); z->size [c] = (stbi_uc ) s; z->value[c] = (stbi__uint16) i; if (s <= STBI__ZFAST_BITS) { int j = stbi__bit_reverse(next_code[s],s); while (j < (1 << STBI__ZFAST_BITS)) { z->fast[j] = fastv; j += (1 << s); } } ++next_code[s]; } } return 1; } // zlib-from-memory implementation for PNG reading // because PNG allows splitting the zlib stream arbitrarily, // and it's annoying structurally to have PNG call ZLIB call PNG, // we require PNG read all the IDATs and combine them into a single // memory buffer typedef struct { stbi_uc *zbuffer, *zbuffer_end; int num_bits; stbi__uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; stbi__zhuffman z_length, z_distance; } stbi__zbuf; stbi_inline static int stbi__zeof(stbi__zbuf *z) { return (z->zbuffer >= z->zbuffer_end); } stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) { return stbi__zeof(z) ? 0 : *z->zbuffer++; } static void stbi__fill_bits(stbi__zbuf *z) { do { if (z->code_buffer >= (1U << z->num_bits)) { z->zbuffer = z->zbuffer_end; /* treat this as EOF so we fail. */ return; } z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; z->num_bits += 8; } while (z->num_bits <= 24); } stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) { unsigned int k; if (z->num_bits < n) stbi__fill_bits(z); k = z->code_buffer & ((1 << n) - 1); z->code_buffer >>= n; z->num_bits -= n; return k; } static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) { int b,s,k; // not resolved by fast table, so compute it the slow way // use jpeg approach, which requires MSbits at top k = stbi__bit_reverse(a->code_buffer, 16); for (s=STBI__ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s >= 16) return -1; // invalid code! // code size is s, so: b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; if (b >= sizeof (z->size)) return -1; // some data was corrupt somewhere! if (z->size[b] != s) return -1; // was originally an assert, but report failure instead. a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) { int b,s; if (a->num_bits < 16) { if (stbi__zeof(a)) { return -1; /* report error for unexpected end of data. */ } stbi__fill_bits(a); } b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; if (b) { s = b >> 9; a->code_buffer >>= s; a->num_bits -= s; return b & 511; } return stbi__zhuffman_decode_slowpath(a, z); } static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes { char *q; unsigned int cur, limit, old_limit; z->zout = zout; if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); cur = (unsigned int) (z->zout - z->zout_start); limit = old_limit = (unsigned) (z->zout_end - z->zout_start); if (UINT_MAX - cur < (unsigned) n) return stbi__err("outofmem", "Out of memory"); while (cur + n > limit) { if(limit > UINT_MAX / 2) return stbi__err("outofmem", "Out of memory"); limit *= 2; } q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); STBI_NOTUSED(old_limit); if (q == NULL) return stbi__err("outofmem", "Out of memory"); z->zout_start = q; z->zout = q + cur; z->zout_end = q + limit; return 1; } static const int stbi__zlength_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static const int stbi__zlength_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static const int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static const int stbi__zdist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int stbi__parse_huffman_block(stbi__zbuf *a) { char *zout = a->zout; for(;;) { int z = stbi__zhuffman_decode(a, &a->z_length); if (z < 256) { if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes if (zout >= a->zout_end) { if (!stbi__zexpand(a, zout, 1)) return 0; zout = a->zout; } *zout++ = (char) z; } else { stbi_uc *p; int len,dist; if (z == 256) { a->zout = zout; return 1; } z -= 257; len = stbi__zlength_base[z]; if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); z = stbi__zhuffman_decode(a, &a->z_distance); if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); dist = stbi__zdist_base[z]; if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); if (zout + len > a->zout_end) { if (!stbi__zexpand(a, zout, len)) return 0; zout = a->zout; } p = (stbi_uc *) (zout - dist); if (dist == 1) { // run of one byte; common in images. stbi_uc v = *p; if (len) { do *zout++ = v; while (--len); } } else { if (len) { do *zout++ = *p++; while (--len); } } } } } static int stbi__compute_huffman_codes(stbi__zbuf *a) { static const stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; stbi__zhuffman z_codelength; stbi_uc lencodes[286+32+137];//padding for maximum single op stbi_uc codelength_sizes[19]; int i,n; int hlit = stbi__zreceive(a,5) + 257; int hdist = stbi__zreceive(a,5) + 1; int hclen = stbi__zreceive(a,4) + 4; int ntot = hlit + hdist; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = stbi__zreceive(a,3); codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; } if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < ntot) { int c = stbi__zhuffman_decode(a, &z_codelength); if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); if (c < 16) lencodes[n++] = (stbi_uc) c; else { stbi_uc fill = 0; if (c == 16) { c = stbi__zreceive(a,2)+3; if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG"); fill = lencodes[n-1]; } else if (c == 17) { c = stbi__zreceive(a,3)+3; } else if (c == 18) { c = stbi__zreceive(a,7)+11; } else { return stbi__err("bad codelengths", "Corrupt PNG"); } if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG"); memset(lencodes+n, fill, c); n += c; } } if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG"); if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; return 1; } static int stbi__parse_uncompressed_block(stbi__zbuf *a) { stbi_uc header[4]; int len,nlen,k; if (a->num_bits & 7) stbi__zreceive(a, a->num_bits & 7); // discard // drain the bit-packed data into header k = 0; while (a->num_bits > 0) { header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check a->code_buffer >>= 8; a->num_bits -= 8; } if (a->num_bits < 0) return stbi__err("zlib corrupt","Corrupt PNG"); // now fill header the normal way while (k < 4) header[k++] = stbi__zget8(a); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!stbi__zexpand(a, a->zout, len)) return 0; memcpy(a->zout, a->zbuffer, len); a->zbuffer += len; a->zout += len; return 1; } static int stbi__parse_zlib_header(stbi__zbuf *a) { int cmf = stbi__zget8(a); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = stbi__zget8(a); if (stbi__zeof(a)) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png // window = 1 << (8 + cinfo)... but who cares, we fully buffer output return 1; } static const stbi_uc stbi__zdefault_length[288] = { 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8 }; static const stbi_uc stbi__zdefault_distance[32] = { 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 }; /* Init algorithm: { int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5; } */ static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) { int final, type; if (parse_header) if (!stbi__parse_zlib_header(a)) return 0; a->num_bits = 0; a->code_buffer = 0; do { final = stbi__zreceive(a,1); type = stbi__zreceive(a,2); if (type == 0) { if (!stbi__parse_uncompressed_block(a)) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { // use fixed code lengths if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0; if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; } else { if (!stbi__compute_huffman_codes(a)) return 0; } if (!stbi__parse_huffman_block(a)) return 0; } } while (!final); return 1; } static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) { a->zout_start = obuf; a->zout = obuf; a->zout_end = obuf + olen; a->z_expandable = exp; return stbi__parse_zlib(a, parse_header); } STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) { stbi__zbuf a; char *p = (char *) stbi__malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer + len; if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) { return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); } STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) { stbi__zbuf a; char *p = (char *) stbi__malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer + len; if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) { stbi__zbuf a; a.zbuffer = (stbi_uc *) ibuffer; a.zbuffer_end = (stbi_uc *) ibuffer + ilen; if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) return (int) (a.zout - a.zout_start); else return -1; } STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) { stbi__zbuf a; char *p = (char *) stbi__malloc(16384); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer+len; if (stbi__do_zlib(&a, p, 16384, 1, 0)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) { stbi__zbuf a; a.zbuffer = (stbi_uc *) ibuffer; a.zbuffer_end = (stbi_uc *) ibuffer + ilen; if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) return (int) (a.zout - a.zout_start); else return -1; } #endif // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 // simple implementation // - only 8-bit samples // - no CRC checking // - allocates lots of intermediate memory // - avoids problem of streaming data between subsystems // - avoids explicit window management // performance // - uses stb_zlib, a PD zlib implementation with fast huffman decoding #ifndef STBI_NO_PNG typedef struct { stbi__uint32 length; stbi__uint32 type; } stbi__pngchunk; static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) { stbi__pngchunk c; c.length = stbi__get32be(s); c.type = stbi__get32be(s); return c; } static int stbi__check_png_header(stbi__context *s) { static const stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); return 1; } typedef struct { stbi__context *s; stbi_uc *idata, *expanded, *out; int depth; } stbi__png; enum { STBI__F_none=0, STBI__F_sub=1, STBI__F_up=2, STBI__F_avg=3, STBI__F_paeth=4, // synthetic filters used for first scanline to avoid needing a dummy row of 0s STBI__F_avg_first, STBI__F_paeth_first }; static stbi_uc first_row_filter[5] = { STBI__F_none, STBI__F_sub, STBI__F_none, STBI__F_avg_first, STBI__F_paeth_first }; static int stbi__paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; // create the png data from post-deflated data static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) { int bytes = (depth == 16? 2 : 1); stbi__context *s = a->s; stbi__uint32 i,j,stride = x*out_n*bytes; stbi__uint32 img_len, img_width_bytes; int k; int img_n = s->img_n; // copy it into a local for later int output_bytes = out_n*bytes; int filter_bytes = img_n*bytes; int width = x; STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into if (!a->out) return stbi__err("outofmem", "Out of memory"); if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err("too large", "Corrupt PNG"); img_width_bytes = (((img_n * x * depth) + 7) >> 3); img_len = (img_width_bytes + 1) * y; // we used to check for exact match between raw_len and img_len on non-interlaced PNGs, // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros), // so just check for raw_len < img_len always. if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j; stbi_uc *prior; int filter = *raw++; if (filter > 4) return stbi__err("invalid filter","Corrupt PNG"); if (depth < 8) { if (img_width_bytes > x) return stbi__err("invalid width","Corrupt PNG"); cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place filter_bytes = 1; width = img_width_bytes; } prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above // if first row, use special filter that doesn't sample previous row if (j == 0) filter = first_row_filter[filter]; // handle first byte explicitly for (k=0; k < filter_bytes; ++k) { switch (filter) { case STBI__F_none : cur[k] = raw[k]; break; case STBI__F_sub : cur[k] = raw[k]; break; case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break; case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break; case STBI__F_avg_first : cur[k] = raw[k]; break; case STBI__F_paeth_first: cur[k] = raw[k]; break; } } if (depth == 8) { if (img_n != out_n) cur[img_n] = 255; // first pixel raw += img_n; cur += out_n; prior += out_n; } else if (depth == 16) { if (img_n != out_n) { cur[filter_bytes] = 255; // first pixel top byte cur[filter_bytes+1] = 255; // first pixel bottom byte } raw += filter_bytes; cur += output_bytes; prior += output_bytes; } else { raw += 1; cur += 1; prior += 1; } // this is a little gross, so that we don't switch per-pixel or per-component if (depth < 8 || img_n == out_n) { int nk = (width - 1)*filter_bytes; #define STBI__CASE(f) \ case f: \ for (k=0; k < nk; ++k) switch (filter) { // "none" filter turns into a memcpy here; make that explicit. case STBI__F_none: memcpy(cur, raw, nk); break; STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break; STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break; STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break; STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break; STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break; } #undef STBI__CASE raw += nk; } else { STBI_ASSERT(img_n+1 == out_n); #define STBI__CASE(f) \ case f: \ for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \ for (k=0; k < filter_bytes; ++k) switch (filter) { STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break; STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break; STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break; STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break; STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break; STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break; } #undef STBI__CASE // the loop above sets the high byte of the pixels' alpha, but for // 16 bit png files we also need the low byte set. we'll do that here. if (depth == 16) { cur = a->out + stride*j; // start at the beginning of the row again for (i=0; i < x; ++i,cur+=output_bytes) { cur[filter_bytes+1] = 255; } } } } // we make a separate pass to expand bits to pixels; for performance, // this could run two scanlines behind the above code, so it won't // intefere with filtering but will still be in the cache. if (depth < 8) { for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j; stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes; // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range // note that the final byte might overshoot and write more data than desired. // we can allocate enough data that this never writes out of memory, but it // could also overwrite the next scanline. can it overwrite non-empty data // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. // so we need to explicitly clamp the final ones if (depth == 4) { for (k=x*img_n; k >= 2; k-=2, ++in) { *cur++ = scale * ((*in >> 4) ); *cur++ = scale * ((*in ) & 0x0f); } if (k > 0) *cur++ = scale * ((*in >> 4) ); } else if (depth == 2) { for (k=x*img_n; k >= 4; k-=4, ++in) { *cur++ = scale * ((*in >> 6) ); *cur++ = scale * ((*in >> 4) & 0x03); *cur++ = scale * ((*in >> 2) & 0x03); *cur++ = scale * ((*in ) & 0x03); } if (k > 0) *cur++ = scale * ((*in >> 6) ); if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03); if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03); } else if (depth == 1) { for (k=x*img_n; k >= 8; k-=8, ++in) { *cur++ = scale * ((*in >> 7) ); *cur++ = scale * ((*in >> 6) & 0x01); *cur++ = scale * ((*in >> 5) & 0x01); *cur++ = scale * ((*in >> 4) & 0x01); *cur++ = scale * ((*in >> 3) & 0x01); *cur++ = scale * ((*in >> 2) & 0x01); *cur++ = scale * ((*in >> 1) & 0x01); *cur++ = scale * ((*in ) & 0x01); } if (k > 0) *cur++ = scale * ((*in >> 7) ); if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01); if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01); if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01); if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01); if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01); if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01); } if (img_n != out_n) { int q; // insert alpha = 255 cur = a->out + stride*j; if (img_n == 1) { for (q=x-1; q >= 0; --q) { cur[q*2+1] = 255; cur[q*2+0] = cur[q]; } } else { STBI_ASSERT(img_n == 3); for (q=x-1; q >= 0; --q) { cur[q*4+3] = 255; cur[q*4+2] = cur[q*3+2]; cur[q*4+1] = cur[q*3+1]; cur[q*4+0] = cur[q*3+0]; } } } } } else if (depth == 16) { // force the image data from big-endian to platform-native. // this is done in a separate pass due to the decoding relying // on the data being untouched, but could probably be done // per-line during decode if care is taken. stbi_uc *cur = a->out; stbi__uint16 *cur16 = (stbi__uint16*)cur; for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) { *cur16 = (cur[0] << 8) | cur[1]; } } return 1; } static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) { int bytes = (depth == 16 ? 2 : 1); int out_bytes = out_n * bytes; stbi_uc *final; int p; if (!interlaced) return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); // de-interlacing final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); for (p=0; p < 7; ++p) { int xorig[] = { 0,4,0,2,0,1,0 }; int yorig[] = { 0,0,4,0,2,0,1 }; int xspc[] = { 8,8,4,4,2,2,1 }; int yspc[] = { 8,8,8,4,4,2,2 }; int i,j,x,y; // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; if (x && y) { stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { STBI_FREE(final); return 0; } for (j=0; j < y; ++j) { for (i=0; i < x; ++i) { int out_y = j*yspc[p]+yorig[p]; int out_x = i*xspc[p]+xorig[p]; memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes, a->out + (j*x+i)*out_bytes, out_bytes); } } STBI_FREE(a->out); image_data += img_len; image_data_len -= img_len; } } a->out = final; return 1; } static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi_uc *p = z->out; // compute color-based transparency, assuming we've // already got 255 as the alpha value in the output STBI_ASSERT(out_n == 2 || out_n == 4); if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi__uint16 *p = (stbi__uint16*) z->out; // compute color-based transparency, assuming we've // already got 65535 as the alpha value in the output STBI_ASSERT(out_n == 2 || out_n == 4); if (out_n == 2) { for (i = 0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 65535); p += 2; } } else { for (i = 0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) { stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; stbi_uc *p, *temp_out, *orig = a->out; p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0); if (p == NULL) return stbi__err("outofmem", "Out of memory"); // between here and free(out) below, exitting would leak temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } STBI_FREE(a->out); a->out = temp_out; STBI_NOTUSED(len); return 1; } static int stbi__unpremultiply_on_load = 0; static int stbi__de_iphone_flag = 0; STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) { stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; } STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) { stbi__de_iphone_flag = flag_true_if_should_convert; } static void stbi__de_iphone(stbi__png *z) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi_uc *p = z->out; if (s->img_out_n == 3) { // convert bgr to rgb for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 3; } } else { STBI_ASSERT(s->img_out_n == 4); if (stbi__unpremultiply_on_load) { // convert bgr to rgb and unpremultiply for (i=0; i < pixel_count; ++i) { stbi_uc a = p[3]; stbi_uc t = p[0]; if (a) { stbi_uc half = a / 2; p[0] = (p[2] * 255 + half) / a; p[1] = (p[1] * 255 + half) / a; p[2] = ( t * 255 + half) / a; } else { p[0] = p[2]; p[2] = t; } p += 4; } } else { // convert bgr to rgb for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 4; } } } } #define STBI__PNG_TYPE(a,b,c,d) (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d)) static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) { stbi_uc palette[1024], pal_img_n=0; stbi_uc has_trans=0, tc[3]={0}; stbi__uint16 tc16[3]; stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k,interlace=0, color=0, is_iphone=0; stbi__context *s = z->s; z->expanded = NULL; z->idata = NULL; z->out = NULL; if (!stbi__check_png_header(s)) return 0; if (scan == STBI__SCAN_type) return 1; for (;;) { stbi__pngchunk c = stbi__get_chunk_header(s); switch (c.type) { case STBI__PNG_TYPE('C','g','B','I'): is_iphone = 1; stbi__skip(s, c.length); break; case STBI__PNG_TYPE('I','H','D','R'): { int comp,filter; if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); first = 0; if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); s->img_x = stbi__get32be(s); s->img_y = stbi__get32be(s); if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only"); color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); if (!pal_img_n) { s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); if (scan == STBI__SCAN_header) return 1; } else { // if paletted, then pal_n is our final components, and // img_n is # components to decompress/filter. s->img_n = 1; if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); // if SCAN_header, have to scan to see if we have a tRNS } break; } case STBI__PNG_TYPE('P','L','T','E'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = stbi__get8(s); palette[i*4+1] = stbi__get8(s); palette[i*4+2] = stbi__get8(s); palette[i*4+3] = 255; } break; } case STBI__PNG_TYPE('t','R','N','S'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = stbi__get8(s); } else { if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); has_trans = 1; if (z->depth == 16) { for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is } else { for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger } } break; } case STBI__PNG_TYPE('I','D','A','T'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; } if ((int)(ioff + c.length) < (int)ioff) return 0; if (ioff + c.length > idata_limit) { stbi__uint32 idata_limit_old = idata_limit; stbi_uc *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; STBI_NOTUSED(idata_limit_old); p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); z->idata = p; } if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); ioff += c.length; break; } case STBI__PNG_TYPE('I','E','N','D'): { stbi__uint32 raw_len, bpl; if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (scan != STBI__SCAN_load) return 1; if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); // initial guess for decoded data size to avoid unnecessary reallocs bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); if (z->expanded == NULL) return 0; // zlib should set error STBI_FREE(z->idata); z->idata = NULL; if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) s->img_out_n = s->img_n+1; else s->img_out_n = s->img_n; if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0; if (has_trans) { if (z->depth == 16) { if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0; } else { if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; } } if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) stbi__de_iphone(z); if (pal_img_n) { // pal_img_n == 3 or 4 s->img_n = pal_img_n; // record the actual colors we had s->img_out_n = pal_img_n; if (req_comp >= 3) s->img_out_n = req_comp; if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) return 0; } else if (has_trans) { // non-paletted image with tRNS -> source image has (constant) alpha ++s->img_n; } STBI_FREE(z->expanded); z->expanded = NULL; // end of PNG chunk, read and skip CRC stbi__get32be(s); return 1; } default: // if critical, fail if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS // not threadsafe static char invalid_chunk[] = "XXXX PNG chunk not known"; invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); #endif return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); } stbi__skip(s, c.length); break; } // end of PNG chunk, read and skip CRC stbi__get32be(s); } } static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) { void *result=NULL; if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { if (p->depth <= 8) ri->bits_per_channel = 8; else if (p->depth == 16) ri->bits_per_channel = 16; else return stbi__errpuc("bad bits_per_channel", "PNG not supported: unsupported color depth"); result = p->out; p->out = NULL; if (req_comp && req_comp != p->s->img_out_n) { if (ri->bits_per_channel == 8) result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); else result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); p->s->img_out_n = req_comp; if (result == NULL) return result; } *x = p->s->img_x; *y = p->s->img_y; if (n) *n = p->s->img_n; } STBI_FREE(p->out); p->out = NULL; STBI_FREE(p->expanded); p->expanded = NULL; STBI_FREE(p->idata); p->idata = NULL; return result; } static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { stbi__png p; p.s = s; return stbi__do_png(&p, x,y,comp,req_comp, ri); } static int stbi__png_test(stbi__context *s) { int r; r = stbi__check_png_header(s); stbi__rewind(s); return r; } static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) { if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { stbi__rewind( p->s ); return 0; } if (x) *x = p->s->img_x; if (y) *y = p->s->img_y; if (comp) *comp = p->s->img_n; return 1; } static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) { stbi__png p; p.s = s; return stbi__png_info_raw(&p, x, y, comp); } static int stbi__png_is16(stbi__context *s) { stbi__png p; p.s = s; if (!stbi__png_info_raw(&p, NULL, NULL, NULL)) return 0; if (p.depth != 16) { stbi__rewind(p.s); return 0; } return 1; } #endif // Microsoft/Windows BMP image #ifndef STBI_NO_BMP static int stbi__bmp_test_raw(stbi__context *s) { int r; int sz; if (stbi__get8(s) != 'B') return 0; if (stbi__get8(s) != 'M') return 0; stbi__get32le(s); // discard filesize stbi__get16le(s); // discard reserved stbi__get16le(s); // discard reserved stbi__get32le(s); // discard data offset sz = stbi__get32le(s); r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); return r; } static int stbi__bmp_test(stbi__context *s) { int r = stbi__bmp_test_raw(s); stbi__rewind(s); return r; } // returns 0..31 for the highest set bit static int stbi__high_bit(unsigned int z) { int n=0; if (z == 0) return -1; if (z >= 0x10000) { n += 16; z >>= 16; } if (z >= 0x00100) { n += 8; z >>= 8; } if (z >= 0x00010) { n += 4; z >>= 4; } if (z >= 0x00004) { n += 2; z >>= 2; } if (z >= 0x00002) { n += 1;/* >>= 1;*/ } return n; } static int stbi__bitcount(unsigned int a) { a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits a = (a + (a >> 8)); // max 16 per 8 bits a = (a + (a >> 16)); // max 32 per 8 bits return a & 0xff; } // extract an arbitrarily-aligned N-bit value (N=bits) // from v, and then make it 8-bits long and fractionally // extend it to full full range. static int stbi__shiftsigned(unsigned int v, int shift, int bits) { static unsigned int mul_table[9] = { 0, 0xff/*0b11111111*/, 0x55/*0b01010101*/, 0x49/*0b01001001*/, 0x11/*0b00010001*/, 0x21/*0b00100001*/, 0x41/*0b01000001*/, 0x81/*0b10000001*/, 0x01/*0b00000001*/, }; static unsigned int shift_table[9] = { 0, 0,0,1,0,2,4,6,0, }; if (shift < 0) v <<= -shift; else v >>= shift; STBI_ASSERT(v < 256); v >>= (8-bits); STBI_ASSERT(bits >= 0 && bits <= 8); return (int) ((unsigned) v * mul_table[bits]) >> shift_table[bits]; } typedef struct { int bpp, offset, hsz; unsigned int mr,mg,mb,ma, all_a; int extra_read; } stbi__bmp_data; static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) { int hsz; if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP"); stbi__get32le(s); // discard filesize stbi__get16le(s); // discard reserved stbi__get16le(s); // discard reserved info->offset = stbi__get32le(s); info->hsz = hsz = stbi__get32le(s); info->mr = info->mg = info->mb = info->ma = 0; info->extra_read = 14; if (info->offset < 0) return stbi__errpuc("bad BMP", "bad BMP"); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); if (hsz == 12) { s->img_x = stbi__get16le(s); s->img_y = stbi__get16le(s); } else { s->img_x = stbi__get32le(s); s->img_y = stbi__get32le(s); } if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP"); info->bpp = stbi__get16le(s); if (hsz != 12) { int compress = stbi__get32le(s); if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); stbi__get32le(s); // discard sizeof stbi__get32le(s); // discard hres stbi__get32le(s); // discard vres stbi__get32le(s); // discard colorsused stbi__get32le(s); // discard max important if (hsz == 40 || hsz == 56) { if (hsz == 56) { stbi__get32le(s); stbi__get32le(s); stbi__get32le(s); stbi__get32le(s); } if (info->bpp == 16 || info->bpp == 32) { if (compress == 0) { if (info->bpp == 32) { info->mr = 0xffu << 16; info->mg = 0xffu << 8; info->mb = 0xffu << 0; info->ma = 0xffu << 24; info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 } else { info->mr = 31u << 10; info->mg = 31u << 5; info->mb = 31u << 0; } } else if (compress == 3) { info->mr = stbi__get32le(s); info->mg = stbi__get32le(s); info->mb = stbi__get32le(s); info->extra_read += 12; // not documented, but generated by photoshop and handled by mspaint if (info->mr == info->mg && info->mg == info->mb) { // ?!?!? return stbi__errpuc("bad BMP", "bad BMP"); } } else return stbi__errpuc("bad BMP", "bad BMP"); } } else { int i; if (hsz != 108 && hsz != 124) return stbi__errpuc("bad BMP", "bad BMP"); info->mr = stbi__get32le(s); info->mg = stbi__get32le(s); info->mb = stbi__get32le(s); info->ma = stbi__get32le(s); stbi__get32le(s); // discard color space for (i=0; i < 12; ++i) stbi__get32le(s); // discard color space parameters if (hsz == 124) { stbi__get32le(s); // discard rendering intent stbi__get32le(s); // discard offset of profile data stbi__get32le(s); // discard size of profile data stbi__get32le(s); // discard reserved } } } return (void *) 1; } static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { stbi_uc *out; unsigned int mr=0,mg=0,mb=0,ma=0, all_a; stbi_uc pal[256][4]; int psize=0,i,j,width; int flip_vertically, pad, target; stbi__bmp_data info; STBI_NOTUSED(ri); info.all_a = 255; if (stbi__bmp_parse_header(s, &info) == NULL) return NULL; // error code already set flip_vertically = ((int) s->img_y) > 0; s->img_y = abs((int) s->img_y); if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); mr = info.mr; mg = info.mg; mb = info.mb; ma = info.ma; all_a = info.all_a; if (info.hsz == 12) { if (info.bpp < 24) psize = (info.offset - info.extra_read - 24) / 3; } else { if (info.bpp < 16) psize = (info.offset - info.extra_read - info.hsz) >> 2; } if (psize == 0) { STBI_ASSERT(info.offset == s->callback_already_read + (int) (s->img_buffer - s->img_buffer_original)); if (info.offset != s->callback_already_read + (s->img_buffer - s->buffer_start)) { return stbi__errpuc("bad offset", "Corrupt BMP"); } } if (info.bpp == 24 && ma == 0xff000000) s->img_n = 3; else s->img_n = ma ? 4 : 3; if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 target = req_comp; else target = s->img_n; // if they want monochrome, we'll post-convert // sanity-check size if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) return stbi__errpuc("too large", "Corrupt BMP"); out = (stbi_uc *) stbi__malloc_mad3(target, s->img_x, s->img_y, 0); if (!out) return stbi__errpuc("outofmem", "Out of memory"); if (info.bpp < 16) { int z=0; if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); } for (i=0; i < psize; ++i) { pal[i][2] = stbi__get8(s); pal[i][1] = stbi__get8(s); pal[i][0] = stbi__get8(s); if (info.hsz != 12) stbi__get8(s); pal[i][3] = 255; } stbi__skip(s, info.offset - info.extra_read - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); if (info.bpp == 1) width = (s->img_x + 7) >> 3; else if (info.bpp == 4) width = (s->img_x + 1) >> 1; else if (info.bpp == 8) width = s->img_x; else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); } pad = (-width)&3; if (info.bpp == 1) { for (j=0; j < (int) s->img_y; ++j) { int bit_offset = 7, v = stbi__get8(s); for (i=0; i < (int) s->img_x; ++i) { int color = (v>>bit_offset)&0x1; out[z++] = pal[color][0]; out[z++] = pal[color][1]; out[z++] = pal[color][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) s->img_x) break; if((--bit_offset) < 0) { bit_offset = 7; v = stbi__get8(s); } } stbi__skip(s, pad); } } else { for (j=0; j < (int) s->img_y; ++j) { for (i=0; i < (int) s->img_x; i += 2) { int v=stbi__get8(s),v2=0; if (info.bpp == 4) { v2 = v & 15; v >>= 4; } out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) s->img_x) break; v = (info.bpp == 8) ? stbi__get8(s) : v2; out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; } stbi__skip(s, pad); } } } else { int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; int z = 0; int easy=0; stbi__skip(s, info.offset - info.extra_read - info.hsz); if (info.bpp == 24) width = 3 * s->img_x; else if (info.bpp == 16) width = 2*s->img_x; else /* bpp = 32 and pad = 0 */ width=0; pad = (-width) & 3; if (info.bpp == 24) { easy = 1; } else if (info.bpp == 32) { if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) easy = 2; } if (!easy) { if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } // right shift amt to put high bit in position #7 rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr); gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg); bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb); ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma); if (rcount > 8 || gcount > 8 || bcount > 8 || acount > 8) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } } for (j=0; j < (int) s->img_y; ++j) { if (easy) { for (i=0; i < (int) s->img_x; ++i) { unsigned char a; out[z+2] = stbi__get8(s); out[z+1] = stbi__get8(s); out[z+0] = stbi__get8(s); z += 3; a = (easy == 2 ? stbi__get8(s) : 255); all_a |= a; if (target == 4) out[z++] = a; } } else { int bpp = info.bpp; for (i=0; i < (int) s->img_x; ++i) { stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s)); unsigned int a; out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); all_a |= a; if (target == 4) out[z++] = STBI__BYTECAST(a); } } stbi__skip(s, pad); } } // if alpha channel is all 0s, replace with all 255s if (target == 4 && all_a == 0) for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4) out[i] = 255; if (flip_vertically) { stbi_uc t; for (j=0; j < (int) s->img_y>>1; ++j) { stbi_uc *p1 = out + j *s->img_x*target; stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; for (i=0; i < (int) s->img_x*target; ++i) { t = p1[i]; p1[i] = p2[i]; p2[i] = t; } } } if (req_comp && req_comp != target) { out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // stbi__convert_format frees input on failure } *x = s->img_x; *y = s->img_y; if (comp) *comp = s->img_n; return out; } #endif // Targa Truevision - TGA // by Jonathan Dummer #ifndef STBI_NO_TGA // returns STBI_rgb or whatever, 0 on error static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16) { // only RGB or RGBA (incl. 16bit) or grey allowed if (is_rgb16) *is_rgb16 = 0; switch(bits_per_pixel) { case 8: return STBI_grey; case 16: if(is_grey) return STBI_grey_alpha; // fallthrough case 15: if(is_rgb16) *is_rgb16 = 1; return STBI_rgb; case 24: // fallthrough case 32: return bits_per_pixel/8; default: return 0; } } static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) { int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; int sz, tga_colormap_type; stbi__get8(s); // discard Offset tga_colormap_type = stbi__get8(s); // colormap type if( tga_colormap_type > 1 ) { stbi__rewind(s); return 0; // only RGB or indexed allowed } tga_image_type = stbi__get8(s); // image type if ( tga_colormap_type == 1 ) { // colormapped (paletted) image if (tga_image_type != 1 && tga_image_type != 9) { stbi__rewind(s); return 0; } stbi__skip(s,4); // skip index of first colormap entry and number of entries sz = stbi__get8(s); // check bits per palette color entry if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) { stbi__rewind(s); return 0; } stbi__skip(s,4); // skip image x and y origin tga_colormap_bpp = sz; } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) { stbi__rewind(s); return 0; // only RGB or grey allowed, +/- RLE } stbi__skip(s,9); // skip colormap specification and image x/y origin tga_colormap_bpp = 0; } tga_w = stbi__get16le(s); if( tga_w < 1 ) { stbi__rewind(s); return 0; // test width } tga_h = stbi__get16le(s); if( tga_h < 1 ) { stbi__rewind(s); return 0; // test height } tga_bits_per_pixel = stbi__get8(s); // bits per pixel stbi__get8(s); // ignore alpha bits if (tga_colormap_bpp != 0) { if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { // when using a colormap, tga_bits_per_pixel is the size of the indexes // I don't think anything but 8 or 16bit indexes makes sense stbi__rewind(s); return 0; } tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); } else { tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); } if(!tga_comp) { stbi__rewind(s); return 0; } if (x) *x = tga_w; if (y) *y = tga_h; if (comp) *comp = tga_comp; return 1; // seems to have passed everything } static int stbi__tga_test(stbi__context *s) { int res = 0; int sz, tga_color_type; stbi__get8(s); // discard Offset tga_color_type = stbi__get8(s); // color type if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed sz = stbi__get8(s); // image type if ( tga_color_type == 1 ) { // colormapped (paletted) image if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9 stbi__skip(s,4); // skip index of first colormap entry and number of entries sz = stbi__get8(s); // check bits per palette color entry if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; stbi__skip(s,4); // skip image x and y origin } else { // "normal" image w/o colormap if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE stbi__skip(s,9); // skip colormap specification and image x/y origin } if ( stbi__get16le(s) < 1 ) goto errorEnd; // test width if ( stbi__get16le(s) < 1 ) goto errorEnd; // test height sz = stbi__get8(s); // bits per pixel if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; res = 1; // if we got this far, everything's good and we can return 1 instead of 0 errorEnd: stbi__rewind(s); return res; } // read 16bit value and convert to 24bit RGB static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out) { stbi__uint16 px = (stbi__uint16)stbi__get16le(s); stbi__uint16 fiveBitMask = 31; // we have 3 channels with 5bits each int r = (px >> 10) & fiveBitMask; int g = (px >> 5) & fiveBitMask; int b = px & fiveBitMask; // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later out[0] = (stbi_uc)((r * 255)/31); out[1] = (stbi_uc)((g * 255)/31); out[2] = (stbi_uc)((b * 255)/31); // some people claim that the most significant bit might be used for alpha // (possibly if an alpha-bit is set in the "image descriptor byte") // but that only made 16bit test images completely translucent.. // so let's treat all 15 and 16bit TGAs as RGB with no alpha. } static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { // read in the TGA header stuff int tga_offset = stbi__get8(s); int tga_indexed = stbi__get8(s); int tga_image_type = stbi__get8(s); int tga_is_RLE = 0; int tga_palette_start = stbi__get16le(s); int tga_palette_len = stbi__get16le(s); int tga_palette_bits = stbi__get8(s); int tga_x_origin = stbi__get16le(s); int tga_y_origin = stbi__get16le(s); int tga_width = stbi__get16le(s); int tga_height = stbi__get16le(s); int tga_bits_per_pixel = stbi__get8(s); int tga_comp, tga_rgb16=0; int tga_inverted = stbi__get8(s); // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) // image data unsigned char *tga_data; unsigned char *tga_palette = NULL; int i, j; unsigned char raw_data[4] = {0}; int RLE_count = 0; int RLE_repeating = 0; int read_next_pixel = 1; STBI_NOTUSED(ri); STBI_NOTUSED(tga_x_origin); // @TODO STBI_NOTUSED(tga_y_origin); // @TODO if (tga_height > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); if (tga_width > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); // do a tiny bit of precessing if ( tga_image_type >= 8 ) { tga_image_type -= 8; tga_is_RLE = 1; } tga_inverted = 1 - ((tga_inverted >> 5) & 1); // If I'm paletted, then I'll use the number of bits from the palette if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); // tga info *x = tga_width; *y = tga_height; if (comp) *comp = tga_comp; if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) return stbi__errpuc("too large", "Corrupt TGA"); tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); if (!tga_data) return stbi__errpuc("outofmem", "Out of memory"); // skip to the data's starting position (offset usually = 0) stbi__skip(s, tga_offset ); if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { for (i=0; i < tga_height; ++i) { int row = tga_inverted ? tga_height -i - 1 : i; stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; stbi__getn(s, tga_row, tga_width * tga_comp); } } else { // do I need to load a palette? if ( tga_indexed) { if (tga_palette_len == 0) { /* you have to have at least one entry! */ STBI_FREE(tga_data); return stbi__errpuc("bad palette", "Corrupt TGA"); } // any data to skip? (offset usually = 0) stbi__skip(s, tga_palette_start ); // load the palette tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); if (!tga_palette) { STBI_FREE(tga_data); return stbi__errpuc("outofmem", "Out of memory"); } if (tga_rgb16) { stbi_uc *pal_entry = tga_palette; STBI_ASSERT(tga_comp == STBI_rgb); for (i=0; i < tga_palette_len; ++i) { stbi__tga_read_rgb16(s, pal_entry); pal_entry += tga_comp; } } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { STBI_FREE(tga_data); STBI_FREE(tga_palette); return stbi__errpuc("bad palette", "Corrupt TGA"); } } // load the data for (i=0; i < tga_width * tga_height; ++i) { // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? if ( tga_is_RLE ) { if ( RLE_count == 0 ) { // yep, get the next byte as a RLE command int RLE_cmd = stbi__get8(s); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7; read_next_pixel = 1; } else if ( !RLE_repeating ) { read_next_pixel = 1; } } else { read_next_pixel = 1; } // OK, if I need to read a pixel, do it now if ( read_next_pixel ) { // load however much data we did have if ( tga_indexed ) { // read in index, then perform the lookup int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); if ( pal_idx >= tga_palette_len ) { // invalid index pal_idx = 0; } pal_idx *= tga_comp; for (j = 0; j < tga_comp; ++j) { raw_data[j] = tga_palette[pal_idx+j]; } } else if(tga_rgb16) { STBI_ASSERT(tga_comp == STBI_rgb); stbi__tga_read_rgb16(s, raw_data); } else { // read in the data raw for (j = 0; j < tga_comp; ++j) { raw_data[j] = stbi__get8(s); } } // clear the reading flag for the next pixel read_next_pixel = 0; } // end of reading a pixel // copy data for (j = 0; j < tga_comp; ++j) tga_data[i*tga_comp+j] = raw_data[j]; // in case we're in RLE mode, keep counting down --RLE_count; } // do I need to invert the image? if ( tga_inverted ) { for (j = 0; j*2 < tga_height; ++j) { int index1 = j * tga_width * tga_comp; int index2 = (tga_height - 1 - j) * tga_width * tga_comp; for (i = tga_width * tga_comp; i > 0; --i) { unsigned char temp = tga_data[index1]; tga_data[index1] = tga_data[index2]; tga_data[index2] = temp; ++index1; ++index2; } } } // clear my palette, if I had one if ( tga_palette != NULL ) { STBI_FREE( tga_palette ); } } // swap RGB - if the source data was RGB16, it already is in the right order if (tga_comp >= 3 && !tga_rgb16) { unsigned char* tga_pixel = tga_data; for (i=0; i < tga_width * tga_height; ++i) { unsigned char temp = tga_pixel[0]; tga_pixel[0] = tga_pixel[2]; tga_pixel[2] = temp; tga_pixel += tga_comp; } } // convert to target component count if (req_comp && req_comp != tga_comp) tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); // the things I do to get rid of an error message, and yet keep // Microsoft's C compilers happy... [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; STBI_NOTUSED(tga_palette_start); // OK, done return tga_data; } #endif // ************************************************************************************************* // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB #ifndef STBI_NO_PSD static int stbi__psd_test(stbi__context *s) { int r = (stbi__get32be(s) == 0x38425053); stbi__rewind(s); return r; } static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount) { int count, nleft, len; count = 0; while ((nleft = pixelCount - count) > 0) { len = stbi__get8(s); if (len == 128) { // No-op. } else if (len < 128) { // Copy next len+1 bytes literally. len++; if (len > nleft) return 0; // corrupt data count += len; while (len) { *p = stbi__get8(s); p += 4; len--; } } else if (len > 128) { stbi_uc val; // Next -len+1 bytes in the dest are replicated from next source byte. // (Interpret len as a negative 8-bit int.) len = 257 - len; if (len > nleft) return 0; // corrupt data val = stbi__get8(s); count += len; while (len) { *p = val; p += 4; len--; } } } return 1; } static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) { int pixelCount; int channelCount, compression; int channel, i; int bitdepth; int w,h; stbi_uc *out; STBI_NOTUSED(ri); // Check identifier if (stbi__get32be(s) != 0x38425053) // "8BPS" return stbi__errpuc("not PSD", "Corrupt PSD image"); // Check file type version. if (stbi__get16be(s) != 1) return stbi__errpuc("wrong version", "Unsupported version of PSD image"); // Skip 6 reserved bytes. stbi__skip(s, 6 ); // Read the number of channels (R, G, B, A, etc). channelCount = stbi__get16be(s); if (channelCount < 0 || channelCount > 16) return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); // Read the rows and columns of the image. h = stbi__get32be(s); w = stbi__get32be(s); if (h > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); if (w > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); // Make sure the depth is 8 bits. bitdepth = stbi__get16be(s); if (bitdepth != 8 && bitdepth != 16) return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); // Make sure the color mode is RGB. // Valid options are: // 0: Bitmap // 1: Grayscale // 2: Indexed color // 3: RGB color // 4: CMYK color // 7: Multichannel // 8: Duotone // 9: Lab color if (stbi__get16be(s) != 3) return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) stbi__skip(s,stbi__get32be(s) ); // Skip the image resources. (resolution, pen tool paths, etc) stbi__skip(s, stbi__get32be(s) ); // Skip the reserved data. stbi__skip(s, stbi__get32be(s) ); // Find out if the data is compressed. // Known values: // 0: no compression // 1: RLE compressed compression = stbi__get16be(s); if (compression > 1) return stbi__errpuc("bad compression", "PSD has an unknown compression format"); // Check size if (!stbi__mad3sizes_valid(4, w, h, 0)) return stbi__errpuc("too large", "Corrupt PSD"); // Create the destination image. if (!compression && bitdepth == 16 && bpc == 16) { out = (stbi_uc *) stbi__malloc_mad3(8, w, h, 0); ri->bits_per_channel = 16; } else out = (stbi_uc *) stbi__malloc(4 * w*h); if (!out) return stbi__errpuc("outofmem", "Out of memory"); pixelCount = w*h; // Initialize the data to zero. //memset( out, 0, pixelCount * 4 ); // Finally, the image data. if (compression) { // RLE as used by .PSD and .TIFF // Loop until you get the number of unpacked bytes you are expecting: // Read the next source byte into n. // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. // Else if n is 128, noop. // Endloop // The RLE-compressed data is preceded by a 2-byte data count for each row in the data, // which we're going to just skip. stbi__skip(s, h * channelCount * 2 ); // Read the RLE data by channel. for (channel = 0; channel < 4; channel++) { stbi_uc *p; p = out+channel; if (channel >= channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++, p += 4) *p = (channel == 3 ? 255 : 0); } else { // Read the RLE data. if (!stbi__psd_decode_rle(s, p, pixelCount)) { STBI_FREE(out); return stbi__errpuc("corrupt", "bad RLE data"); } } } } else { // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image. // Read the data by channel. for (channel = 0; channel < 4; channel++) { if (channel >= channelCount) { // Fill this channel with default data. if (bitdepth == 16 && bpc == 16) { stbi__uint16 *q = ((stbi__uint16 *) out) + channel; stbi__uint16 val = channel == 3 ? 65535 : 0; for (i = 0; i < pixelCount; i++, q += 4) *q = val; } else { stbi_uc *p = out+channel; stbi_uc val = channel == 3 ? 255 : 0; for (i = 0; i < pixelCount; i++, p += 4) *p = val; } } else { if (ri->bits_per_channel == 16) { // output bpc stbi__uint16 *q = ((stbi__uint16 *) out) + channel; for (i = 0; i < pixelCount; i++, q += 4) *q = (stbi__uint16) stbi__get16be(s); } else { stbi_uc *p = out+channel; if (bitdepth == 16) { // input bpc for (i = 0; i < pixelCount; i++, p += 4) *p = (stbi_uc) (stbi__get16be(s) >> 8); } else { for (i = 0; i < pixelCount; i++, p += 4) *p = stbi__get8(s); } } } } } // remove weird white matte from PSD if (channelCount >= 4) { if (ri->bits_per_channel == 16) { for (i=0; i < w*h; ++i) { stbi__uint16 *pixel = (stbi__uint16 *) out + 4*i; if (pixel[3] != 0 && pixel[3] != 65535) { float a = pixel[3] / 65535.0f; float ra = 1.0f / a; float inv_a = 65535.0f * (1 - ra); pixel[0] = (stbi__uint16) (pixel[0]*ra + inv_a); pixel[1] = (stbi__uint16) (pixel[1]*ra + inv_a); pixel[2] = (stbi__uint16) (pixel[2]*ra + inv_a); } } } else { for (i=0; i < w*h; ++i) { unsigned char *pixel = out + 4*i; if (pixel[3] != 0 && pixel[3] != 255) { float a = pixel[3] / 255.0f; float ra = 1.0f / a; float inv_a = 255.0f * (1 - ra); pixel[0] = (unsigned char) (pixel[0]*ra + inv_a); pixel[1] = (unsigned char) (pixel[1]*ra + inv_a); pixel[2] = (unsigned char) (pixel[2]*ra + inv_a); } } } } // convert to desired output format if (req_comp && req_comp != 4) { if (ri->bits_per_channel == 16) out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, 4, req_comp, w, h); else out = stbi__convert_format(out, 4, req_comp, w, h); if (out == NULL) return out; // stbi__convert_format frees input on failure } if (comp) *comp = 4; *y = h; *x = w; return out; } #endif // ************************************************************************************************* // Softimage PIC loader // by Tom Seddon // // See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format // See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ #ifndef STBI_NO_PIC static int stbi__pic_is4(stbi__context *s,const char *str) { int i; for (i=0; i<4; ++i) if (stbi__get8(s) != (stbi_uc)str[i]) return 0; return 1; } static int stbi__pic_test_core(stbi__context *s) { int i; if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) return 0; for(i=0;i<84;++i) stbi__get8(s); if (!stbi__pic_is4(s,"PICT")) return 0; return 1; } typedef struct { stbi_uc size,type,channel; } stbi__pic_packet; static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) { int mask=0x80, i; for (i=0; i<4; ++i, mask>>=1) { if (channel & mask) { if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short"); dest[i]=stbi__get8(s); } } return dest; } static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) { int mask=0x80,i; for (i=0;i<4; ++i, mask>>=1) if (channel&mask) dest[i]=src[i]; } static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) { int act_comp=0,num_packets=0,y,chained; stbi__pic_packet packets[10]; // this will (should...) cater for even some bizarre stuff like having data // for the same channel in multiple packets. do { stbi__pic_packet *packet; if (num_packets==sizeof(packets)/sizeof(packets[0])) return stbi__errpuc("bad format","too many packets"); packet = &packets[num_packets++]; chained = stbi__get8(s); packet->size = stbi__get8(s); packet->type = stbi__get8(s); packet->channel = stbi__get8(s); act_comp |= packet->channel; if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)"); if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp"); } while (chained); *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? for(y=0; ytype) { default: return stbi__errpuc("bad format","packet has bad compression type"); case 0: {//uncompressed int x; for(x=0;xchannel,dest)) return 0; break; } case 1://Pure RLE { int left=width, i; while (left>0) { stbi_uc count,value[4]; count=stbi__get8(s); if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)"); if (count > left) count = (stbi_uc) left; if (!stbi__readval(s,packet->channel,value)) return 0; for(i=0; ichannel,dest,value); left -= count; } } break; case 2: {//Mixed RLE int left=width; while (left>0) { int count = stbi__get8(s), i; if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)"); if (count >= 128) { // Repeated stbi_uc value[4]; if (count==128) count = stbi__get16be(s); else count -= 127; if (count > left) return stbi__errpuc("bad file","scanline overrun"); if (!stbi__readval(s,packet->channel,value)) return 0; for(i=0;ichannel,dest,value); } else { // Raw ++count; if (count>left) return stbi__errpuc("bad file","scanline overrun"); for(i=0;ichannel,dest)) return 0; } left-=count; } break; } } } } return result; } static void *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp, stbi__result_info *ri) { stbi_uc *result; int i, x,y, internal_comp; STBI_NOTUSED(ri); if (!comp) comp = &internal_comp; for (i=0; i<92; ++i) stbi__get8(s); x = stbi__get16be(s); y = stbi__get16be(s); if (y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); if (x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)"); if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc("too large", "PIC image too large to decode"); stbi__get32be(s); //skip `ratio' stbi__get16be(s); //skip `fields' stbi__get16be(s); //skip `pad' // intermediate buffer is RGBA result = (stbi_uc *) stbi__malloc_mad3(x, y, 4, 0); memset(result, 0xff, x*y*4); if (!stbi__pic_load_core(s,x,y,comp, result)) { STBI_FREE(result); result=0; } *px = x; *py = y; if (req_comp == 0) req_comp = *comp; result=stbi__convert_format(result,4,req_comp,x,y); return result; } static int stbi__pic_test(stbi__context *s) { int r = stbi__pic_test_core(s); stbi__rewind(s); return r; } #endif // ************************************************************************************************* // GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb #ifndef STBI_NO_GIF typedef struct { stbi__int16 prefix; stbi_uc first; stbi_uc suffix; } stbi__gif_lzw; typedef struct { int w,h; stbi_uc *out; // output buffer (always 4 components) stbi_uc *background; // The current "background" as far as a gif is concerned stbi_uc *history; int flags, bgindex, ratio, transparent, eflags; stbi_uc pal[256][4]; stbi_uc lpal[256][4]; stbi__gif_lzw codes[8192]; stbi_uc *color_table; int parse, step; int lflags; int start_x, start_y; int max_x, max_y; int cur_x, cur_y; int line_size; int delay; } stbi__gif; static int stbi__gif_test_raw(stbi__context *s) { int sz; if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0; sz = stbi__get8(s); if (sz != '9' && sz != '7') return 0; if (stbi__get8(s) != 'a') return 0; return 1; } static int stbi__gif_test(stbi__context *s) { int r = stbi__gif_test_raw(s); stbi__rewind(s); return r; } static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) { int i; for (i=0; i < num_entries; ++i) { pal[i][2] = stbi__get8(s); pal[i][1] = stbi__get8(s); pal[i][0] = stbi__get8(s); pal[i][3] = transp == i ? 0 : 255; } } static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) { stbi_uc version; if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return stbi__err("not GIF", "Corrupt GIF"); version = stbi__get8(s); if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF"); if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF"); stbi__g_failure_reason = ""; g->w = stbi__get16le(s); g->h = stbi__get16le(s); g->flags = stbi__get8(s); g->bgindex = stbi__get8(s); g->ratio = stbi__get8(s); g->transparent = -1; if (g->w > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); if (g->h > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments if (is_info) return 1; if (g->flags & 0x80) stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1); return 1; } static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) { stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif)); if (!stbi__gif_header(s, g, comp, 1)) { STBI_FREE(g); stbi__rewind( s ); return 0; } if (x) *x = g->w; if (y) *y = g->h; STBI_FREE(g); return 1; } static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) { stbi_uc *p, *c; int idx; // recurse to decode the prefixes, since the linked-list is backwards, // and working backwards through an interleaved image would be nasty if (g->codes[code].prefix >= 0) stbi__out_gif_code(g, g->codes[code].prefix); if (g->cur_y >= g->max_y) return; idx = g->cur_x + g->cur_y; p = &g->out[idx]; g->history[idx / 4] = 1; c = &g->color_table[g->codes[code].suffix * 4]; if (c[3] > 128) { // don't render transparent pixels; p[0] = c[2]; p[1] = c[1]; p[2] = c[0]; p[3] = c[3]; } g->cur_x += 4; if (g->cur_x >= g->max_x) { g->cur_x = g->start_x; g->cur_y += g->step; while (g->cur_y >= g->max_y && g->parse > 0) { g->step = (1 << g->parse) * g->line_size; g->cur_y = g->start_y + (g->step >> 1); --g->parse; } } } static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) { stbi_uc lzw_cs; stbi__int32 len, init_code; stbi__uint32 first; stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; stbi__gif_lzw *p; lzw_cs = stbi__get8(s); if (lzw_cs > 12) return NULL; clear = 1 << lzw_cs; first = 1; codesize = lzw_cs + 1; codemask = (1 << codesize) - 1; bits = 0; valid_bits = 0; for (init_code = 0; init_code < clear; init_code++) { g->codes[init_code].prefix = -1; g->codes[init_code].first = (stbi_uc) init_code; g->codes[init_code].suffix = (stbi_uc) init_code; } // support no starting clear code avail = clear+2; oldcode = -1; len = 0; for(;;) { if (valid_bits < codesize) { if (len == 0) { len = stbi__get8(s); // start new block if (len == 0) return g->out; } --len; bits |= (stbi__int32) stbi__get8(s) << valid_bits; valid_bits += 8; } else { stbi__int32 code = bits & codemask; bits >>= codesize; valid_bits -= codesize; // @OPTIMIZE: is there some way we can accelerate the non-clear path? if (code == clear) { // clear code codesize = lzw_cs + 1; codemask = (1 << codesize) - 1; avail = clear + 2; oldcode = -1; first = 0; } else if (code == clear + 1) { // end of stream code stbi__skip(s, len); while ((len = stbi__get8(s)) > 0) stbi__skip(s,len); return g->out; } else if (code <= avail) { if (first) { return stbi__errpuc("no clear code", "Corrupt GIF"); } if (oldcode >= 0) { p = &g->codes[avail++]; if (avail > 8192) { return stbi__errpuc("too many codes", "Corrupt GIF"); } p->prefix = (stbi__int16) oldcode; p->first = g->codes[oldcode].first; p->suffix = (code == avail) ? p->first : g->codes[code].first; } else if (code == avail) return stbi__errpuc("illegal code in raster", "Corrupt GIF"); stbi__out_gif_code(g, (stbi__uint16) code); if ((avail & codemask) == 0 && avail <= 0x0FFF) { codesize++; codemask = (1 << codesize) - 1; } oldcode = code; } else { return stbi__errpuc("illegal code in raster", "Corrupt GIF"); } } } } // this function is designed to support animated gifs, although stb_image doesn't support it // two back is the image from two frames ago, used for a very specific disposal format static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp, stbi_uc *two_back) { int dispose; int first_frame; int pi; int pcount; STBI_NOTUSED(req_comp); // on first frame, any non-written pixels get the background colour (non-transparent) first_frame = 0; if (g->out == 0) { if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header if (!stbi__mad3sizes_valid(4, g->w, g->h, 0)) return stbi__errpuc("too large", "GIF image is too large"); pcount = g->w * g->h; g->out = (stbi_uc *) stbi__malloc(4 * pcount); g->background = (stbi_uc *) stbi__malloc(4 * pcount); g->history = (stbi_uc *) stbi__malloc(pcount); if (!g->out || !g->background || !g->history) return stbi__errpuc("outofmem", "Out of memory"); // image is treated as "transparent" at the start - ie, nothing overwrites the current background; // background colour is only used for pixels that are not rendered first frame, after that "background" // color refers to the color that was there the previous frame. memset(g->out, 0x00, 4 * pcount); memset(g->background, 0x00, 4 * pcount); // state of the background (starts transparent) memset(g->history, 0x00, pcount); // pixels that were affected previous frame first_frame = 1; } else { // second frame - how do we dispose of the previous one? dispose = (g->eflags & 0x1C) >> 2; pcount = g->w * g->h; if ((dispose == 3) && (two_back == 0)) { dispose = 2; // if I don't have an image to revert back to, default to the old background } if (dispose == 3) { // use previous graphic for (pi = 0; pi < pcount; ++pi) { if (g->history[pi]) { memcpy( &g->out[pi * 4], &two_back[pi * 4], 4 ); } } } else if (dispose == 2) { // restore what was changed last frame to background before that frame; for (pi = 0; pi < pcount; ++pi) { if (g->history[pi]) { memcpy( &g->out[pi * 4], &g->background[pi * 4], 4 ); } } } else { // This is a non-disposal case eithe way, so just // leave the pixels as is, and they will become the new background // 1: do not dispose // 0: not specified. } // background is what out is after the undoing of the previou frame; memcpy( g->background, g->out, 4 * g->w * g->h ); } // clear my history; memset( g->history, 0x00, g->w * g->h ); // pixels that were affected previous frame for (;;) { int tag = stbi__get8(s); switch (tag) { case 0x2C: /* Image Descriptor */ { stbi__int32 x, y, w, h; stbi_uc *o; x = stbi__get16le(s); y = stbi__get16le(s); w = stbi__get16le(s); h = stbi__get16le(s); if (((x + w) > (g->w)) || ((y + h) > (g->h))) return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); g->line_size = g->w * 4; g->start_x = x * 4; g->start_y = y * g->line_size; g->max_x = g->start_x + w * 4; g->max_y = g->start_y + h * g->line_size; g->cur_x = g->start_x; g->cur_y = g->start_y; // if the width of the specified rectangle is 0, that means // we may not see *any* pixels or the image is malformed; // to make sure this is caught, move the current y down to // max_y (which is what out_gif_code checks). if (w == 0) g->cur_y = g->max_y; g->lflags = stbi__get8(s); if (g->lflags & 0x40) { g->step = 8 * g->line_size; // first interlaced spacing g->parse = 3; } else { g->step = g->line_size; g->parse = 0; } if (g->lflags & 0x80) { stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); g->color_table = (stbi_uc *) g->lpal; } else if (g->flags & 0x80) { g->color_table = (stbi_uc *) g->pal; } else return stbi__errpuc("missing color table", "Corrupt GIF"); o = stbi__process_gif_raster(s, g); if (!o) return NULL; // if this was the first frame, pcount = g->w * g->h; if (first_frame && (g->bgindex > 0)) { // if first frame, any pixel not drawn to gets the background color for (pi = 0; pi < pcount; ++pi) { if (g->history[pi] == 0) { g->pal[g->bgindex][3] = 255; // just in case it was made transparent, undo that; It will be reset next frame if need be; memcpy( &g->out[pi * 4], &g->pal[g->bgindex], 4 ); } } } return o; } case 0x21: // Comment Extension. { int len; int ext = stbi__get8(s); if (ext == 0xF9) { // Graphic Control Extension. len = stbi__get8(s); if (len == 4) { g->eflags = stbi__get8(s); g->delay = 10 * stbi__get16le(s); // delay - 1/100th of a second, saving as 1/1000ths. // unset old transparent if (g->transparent >= 0) { g->pal[g->transparent][3] = 255; } if (g->eflags & 0x01) { g->transparent = stbi__get8(s); if (g->transparent >= 0) { g->pal[g->transparent][3] = 0; } } else { // don't need transparent stbi__skip(s, 1); g->transparent = -1; } } else { stbi__skip(s, len); break; } } while ((len = stbi__get8(s)) != 0) { stbi__skip(s, len); } break; } case 0x3B: // gif stream termination code return (stbi_uc *) s; // using '1' causes warning on some compilers default: return stbi__errpuc("unknown code", "Corrupt GIF"); } } } static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp) { if (stbi__gif_test(s)) { int layers = 0; stbi_uc *u = 0; stbi_uc *out = 0; stbi_uc *two_back = 0; stbi__gif g; int stride; int out_size = 0; int delays_size = 0; memset(&g, 0, sizeof(g)); if (delays) { *delays = 0; } do { u = stbi__gif_load_next(s, &g, comp, req_comp, two_back); if (u == (stbi_uc *) s) u = 0; // end of animated gif marker if (u) { *x = g.w; *y = g.h; ++layers; stride = g.w * g.h * 4; if (out) { void *tmp = (stbi_uc*) STBI_REALLOC_SIZED( out, out_size, layers * stride ); if (NULL == tmp) { STBI_FREE(g.out); STBI_FREE(g.history); STBI_FREE(g.background); return stbi__errpuc("outofmem", "Out of memory"); } else { out = (stbi_uc*) tmp; out_size = layers * stride; } if (delays) { *delays = (int*) STBI_REALLOC_SIZED( *delays, delays_size, sizeof(int) * layers ); delays_size = layers * sizeof(int); } } else { out = (stbi_uc*)stbi__malloc( layers * stride ); out_size = layers * stride; if (delays) { *delays = (int*) stbi__malloc( layers * sizeof(int) ); delays_size = layers * sizeof(int); } } memcpy( out + ((layers - 1) * stride), u, stride ); if (layers >= 2) { two_back = out - 2 * stride; } if (delays) { (*delays)[layers - 1U] = g.delay; } } } while (u != 0); // free temp buffer; STBI_FREE(g.out); STBI_FREE(g.history); STBI_FREE(g.background); // do the final conversion after loading everything; if (req_comp && req_comp != 4) out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h); *z = layers; return out; } else { return stbi__errpuc("not GIF", "Image was not as a gif type."); } } static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { stbi_uc *u = 0; stbi__gif g; memset(&g, 0, sizeof(g)); STBI_NOTUSED(ri); u = stbi__gif_load_next(s, &g, comp, req_comp, 0); if (u == (stbi_uc *) s) u = 0; // end of animated gif marker if (u) { *x = g.w; *y = g.h; // moved conversion to after successful load so that the same // can be done for multiple frames. if (req_comp && req_comp != 4) u = stbi__convert_format(u, 4, req_comp, g.w, g.h); } else if (g.out) { // if there was an error and we allocated an image buffer, free it! STBI_FREE(g.out); } // free buffers needed for multiple frame loading; STBI_FREE(g.history); STBI_FREE(g.background); return u; } static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) { return stbi__gif_info_raw(s,x,y,comp); } #endif // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR static int stbi__hdr_test_core(stbi__context *s, const char *signature) { int i; for (i=0; signature[i]; ++i) if (stbi__get8(s) != signature[i]) return 0; stbi__rewind(s); return 1; } static int stbi__hdr_test(stbi__context* s) { int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); stbi__rewind(s); if(!r) { r = stbi__hdr_test_core(s, "#?RGBE\n"); stbi__rewind(s); } return r; } #define STBI__HDR_BUFLEN 1024 static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) { int len=0; char c = '\0'; c = (char) stbi__get8(z); while (!stbi__at_eof(z) && c != '\n') { buffer[len++] = c; if (len == STBI__HDR_BUFLEN-1) { // flush to end of line while (!stbi__at_eof(z) && stbi__get8(z) != '\n') ; break; } c = (char) stbi__get8(z); } buffer[len] = 0; return buffer; } static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) { if ( input[3] != 0 ) { float f1; // Exponent f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3; else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1; } if (req_comp == 2) output[1] = 1; if (req_comp == 4) output[3] = 1; } else { switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break; } } } static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { char buffer[STBI__HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; const char *headerToken; STBI_NOTUSED(ri); // Check identifier headerToken = stbi__hdr_gettoken(s,buffer); if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0) return stbi__errpf("not HDR", "Corrupt HDR image"); // Parse header for(;;) { token = stbi__hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = stbi__hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); token += 3; height = (int) strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); token += 3; width = (int) strtol(token, NULL, 10); if (height > STBI_MAX_DIMENSIONS) return stbi__errpf("too large","Very large image (corrupt?)"); if (width > STBI_MAX_DIMENSIONS) return stbi__errpf("too large","Very large image (corrupt?)"); *x = width; *y = height; if (comp) *comp = 3; if (req_comp == 0) req_comp = 3; if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) return stbi__errpf("too large", "HDR image is too large"); // Read data hdr_data = (float *) stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); if (!hdr_data) return stbi__errpf("outofmem", "Out of memory"); // Load image data // image data is stored as some number of sca if ( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { stbi_uc rgbe[4]; main_decode_loop: stbi__getn(s, rgbe, 4); stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); } } } else { // Read RLE-encoded data scanline = NULL; for (j = 0; j < height; ++j) { c1 = stbi__get8(s); c2 = stbi__get8(s); len = stbi__get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) stbi_uc rgbe[4]; rgbe[0] = (stbi_uc) c1; rgbe[1] = (stbi_uc) c2; rgbe[2] = (stbi_uc) len; rgbe[3] = (stbi_uc) stbi__get8(s); stbi__hdr_convert(hdr_data, rgbe, req_comp); i = 1; j = 0; STBI_FREE(scanline); goto main_decode_loop; // yes, this makes no sense } len <<= 8; len |= stbi__get8(s); if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } if (scanline == NULL) { scanline = (stbi_uc *) stbi__malloc_mad2(width, 4, 0); if (!scanline) { STBI_FREE(hdr_data); return stbi__errpf("outofmem", "Out of memory"); } } for (k = 0; k < 4; ++k) { int nleft; i = 0; while ((nleft = width - i) > 0) { count = stbi__get8(s); if (count > 128) { // Run value = stbi__get8(s); count -= 128; if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = stbi__get8(s); } } } for (i=0; i < width; ++i) stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); } if (scanline) STBI_FREE(scanline); } return hdr_data; } static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) { char buffer[STBI__HDR_BUFLEN]; char *token; int valid = 0; int dummy; if (!x) x = &dummy; if (!y) y = &dummy; if (!comp) comp = &dummy; if (stbi__hdr_test(s) == 0) { stbi__rewind( s ); return 0; } for(;;) { token = stbi__hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) { stbi__rewind( s ); return 0; } token = stbi__hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) { stbi__rewind( s ); return 0; } token += 3; *y = (int) strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) { stbi__rewind( s ); return 0; } token += 3; *x = (int) strtol(token, NULL, 10); *comp = 3; return 1; } #endif // STBI_NO_HDR #ifndef STBI_NO_BMP static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) { void *p; stbi__bmp_data info; info.all_a = 255; p = stbi__bmp_parse_header(s, &info); stbi__rewind( s ); if (p == NULL) return 0; if (x) *x = s->img_x; if (y) *y = s->img_y; if (comp) { if (info.bpp == 24 && info.ma == 0xff000000) *comp = 3; else *comp = info.ma ? 4 : 3; } return 1; } #endif #ifndef STBI_NO_PSD static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) { int channelCount, dummy, depth; if (!x) x = &dummy; if (!y) y = &dummy; if (!comp) comp = &dummy; if (stbi__get32be(s) != 0x38425053) { stbi__rewind( s ); return 0; } if (stbi__get16be(s) != 1) { stbi__rewind( s ); return 0; } stbi__skip(s, 6); channelCount = stbi__get16be(s); if (channelCount < 0 || channelCount > 16) { stbi__rewind( s ); return 0; } *y = stbi__get32be(s); *x = stbi__get32be(s); depth = stbi__get16be(s); if (depth != 8 && depth != 16) { stbi__rewind( s ); return 0; } if (stbi__get16be(s) != 3) { stbi__rewind( s ); return 0; } *comp = 4; return 1; } static int stbi__psd_is16(stbi__context *s) { int channelCount, depth; if (stbi__get32be(s) != 0x38425053) { stbi__rewind( s ); return 0; } if (stbi__get16be(s) != 1) { stbi__rewind( s ); return 0; } stbi__skip(s, 6); channelCount = stbi__get16be(s); if (channelCount < 0 || channelCount > 16) { stbi__rewind( s ); return 0; } (void) stbi__get32be(s); (void) stbi__get32be(s); depth = stbi__get16be(s); if (depth != 16) { stbi__rewind( s ); return 0; } return 1; } #endif #ifndef STBI_NO_PIC static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) { int act_comp=0,num_packets=0,chained,dummy; stbi__pic_packet packets[10]; if (!x) x = &dummy; if (!y) y = &dummy; if (!comp) comp = &dummy; if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) { stbi__rewind(s); return 0; } stbi__skip(s, 88); *x = stbi__get16be(s); *y = stbi__get16be(s); if (stbi__at_eof(s)) { stbi__rewind( s); return 0; } if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) { stbi__rewind( s ); return 0; } stbi__skip(s, 8); do { stbi__pic_packet *packet; if (num_packets==sizeof(packets)/sizeof(packets[0])) return 0; packet = &packets[num_packets++]; chained = stbi__get8(s); packet->size = stbi__get8(s); packet->type = stbi__get8(s); packet->channel = stbi__get8(s); act_comp |= packet->channel; if (stbi__at_eof(s)) { stbi__rewind( s ); return 0; } if (packet->size != 8) { stbi__rewind( s ); return 0; } } while (chained); *comp = (act_comp & 0x10 ? 4 : 3); return 1; } #endif // ************************************************************************************************* // Portable Gray Map and Portable Pixel Map loader // by Ken Miller // // PGM: http://netpbm.sourceforge.net/doc/pgm.html // PPM: http://netpbm.sourceforge.net/doc/ppm.html // // Known limitations: // Does not support comments in the header section // Does not support ASCII image data (formats P2 and P3) // Does not support 16-bit-per-channel #ifndef STBI_NO_PNM static int stbi__pnm_test(stbi__context *s) { char p, t; p = (char) stbi__get8(s); t = (char) stbi__get8(s); if (p != 'P' || (t != '5' && t != '6')) { stbi__rewind( s ); return 0; } return 1; } static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { stbi_uc *out; STBI_NOTUSED(ri); if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) return 0; if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); *x = s->img_x; *y = s->img_y; if (comp) *comp = s->img_n; if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0)) return stbi__errpuc("too large", "PNM too large"); out = (stbi_uc *) stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0); if (!out) return stbi__errpuc("outofmem", "Out of memory"); stbi__getn(s, out, s->img_n * s->img_x * s->img_y); if (req_comp && req_comp != s->img_n) { out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // stbi__convert_format frees input on failure } return out; } static int stbi__pnm_isspace(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; } static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) { for (;;) { while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) *c = (char) stbi__get8(s); if (stbi__at_eof(s) || *c != '#') break; while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' ) *c = (char) stbi__get8(s); } } static int stbi__pnm_isdigit(char c) { return c >= '0' && c <= '9'; } static int stbi__pnm_getinteger(stbi__context *s, char *c) { int value = 0; while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { value = value*10 + (*c - '0'); *c = (char) stbi__get8(s); } return value; } static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) { int maxv, dummy; char c, p, t; if (!x) x = &dummy; if (!y) y = &dummy; if (!comp) comp = &dummy; stbi__rewind(s); // Get identifier p = (char) stbi__get8(s); t = (char) stbi__get8(s); if (p != 'P' || (t != '5' && t != '6')) { stbi__rewind(s); return 0; } *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm c = (char) stbi__get8(s); stbi__pnm_skip_whitespace(s, &c); *x = stbi__pnm_getinteger(s, &c); // read width stbi__pnm_skip_whitespace(s, &c); *y = stbi__pnm_getinteger(s, &c); // read height stbi__pnm_skip_whitespace(s, &c); maxv = stbi__pnm_getinteger(s, &c); // read max value if (maxv > 255) return stbi__err("max value > 255", "PPM image not 8-bit"); else return 1; } #endif static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) { #ifndef STBI_NO_JPEG if (stbi__jpeg_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PNG if (stbi__png_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_GIF if (stbi__gif_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_BMP if (stbi__bmp_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PSD if (stbi__psd_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PIC if (stbi__pic_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_PNM if (stbi__pnm_info(s, x, y, comp)) return 1; #endif #ifndef STBI_NO_HDR if (stbi__hdr_info(s, x, y, comp)) return 1; #endif // test tga last because it's a crappy test! #ifndef STBI_NO_TGA if (stbi__tga_info(s, x, y, comp)) return 1; #endif return stbi__err("unknown image type", "Image not of any known type, or corrupt"); } static int stbi__is_16_main(stbi__context *s) { #ifndef STBI_NO_PNG if (stbi__png_is16(s)) return 1; #endif #ifndef STBI_NO_PSD if (stbi__psd_is16(s)) return 1; #endif return 0; } #ifndef STBI_NO_STDIO STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) { FILE *f = stbi__fopen(filename, "rb"); int result; if (!f) return stbi__err("can't fopen", "Unable to open file"); result = stbi_info_from_file(f, x, y, comp); fclose(f); return result; } STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) { int r; stbi__context s; long pos = ftell(f); stbi__start_file(&s, f); r = stbi__info_main(&s,x,y,comp); fseek(f,pos,SEEK_SET); return r; } STBIDEF int stbi_is_16_bit(char const *filename) { FILE *f = stbi__fopen(filename, "rb"); int result; if (!f) return stbi__err("can't fopen", "Unable to open file"); result = stbi_is_16_bit_from_file(f); fclose(f); return result; } STBIDEF int stbi_is_16_bit_from_file(FILE *f) { int r; stbi__context s; long pos = ftell(f); stbi__start_file(&s, f); r = stbi__is_16_main(&s); fseek(f,pos,SEEK_SET); return r; } #endif // !STBI_NO_STDIO STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__info_main(&s,x,y,comp); } STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); return stbi__info_main(&s,x,y,comp); } STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len) { stbi__context s; stbi__start_mem(&s,buffer,len); return stbi__is_16_main(&s); } STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user) { stbi__context s; stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); return stbi__is_16_main(&s); } #endif // STB_IMAGE_IMPLEMENTATION /* revision history: 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs 2.19 (2018-02-11) fix warning 2.18 (2018-01-30) fix warnings 2.17 (2018-01-29) change sbti__shiftsigned to avoid clang -O2 bug 1-bit BMP *_is_16_bit api avoid warnings 2.16 (2017-07-23) all functions have 16-bit variants; STBI_NO_STDIO works again; compilation fixes; fix rounding in unpremultiply; optimize vertical flip; disable raw_len validation; documentation fixes 2.15 (2017-03-18) fix png-1,2,4 bug; now all Imagenet JPGs decode; warning fixes; disable run-time SSE detection on gcc; uniform handling of optional "return" values; thread-safe initialization of zlib tables 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs 2.13 (2016-11-29) add 16-bit API, only supported for PNG right now 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes 2.11 (2016-04-02) allocate large structures on the stack remove white matting for transparent PSD fix reported channel count for PNG & BMP re-enable SSE2 in non-gcc 64-bit support RGB-formatted JPEG read 16-bit PNGs (only as 8-bit) 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED 2.09 (2016-01-16) allow comments in PNM files 16-bit-per-pixel TGA (not bit-per-component) info() for TGA could break due to .hdr handling info() for BMP to shares code instead of sloppy parse can use STBI_REALLOC_SIZED if allocator doesn't support realloc code cleanup 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA 2.07 (2015-09-13) fix compiler warnings partial animated GIF support limited 16-bpc PSD support #ifdef unused functions bug with < 92 byte PIC,PNM,HDR,TGA 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit 2.03 (2015-04-12) extra corruption checking (mmozeiko) stbi_set_flip_vertically_on_load (nguillemot) fix NEON support; fix mingw support 2.02 (2015-01-19) fix incorrect assert, fix warning 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG 2.00 (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) progressive JPEG (stb) PGM/PPM support (Ken Miller) STBI_MALLOC,STBI_REALLOC,STBI_FREE GIF bugfix -- seemingly never worked STBI_NO_*, STBI_ONLY_* 1.48 (2014-12-14) fix incorrectly-named assert() 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) optimize PNG (ryg) fix bug in interlaced PNG with user-specified channel count (stb) 1.46 (2014-08-26) fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG 1.45 (2014-08-16) fix MSVC-ARM internal compiler error by wrapping malloc 1.44 (2014-08-07) various warning fixes from Ronny Chevalier 1.43 (2014-07-15) fix MSVC-only compiler problem in code changed in 1.42 1.42 (2014-07-09) don't define _CRT_SECURE_NO_WARNINGS (affects user code) fixes to stbi__cleanup_jpeg path added STBI_ASSERT to avoid requiring assert.h 1.41 (2014-06-25) fix search&replace from 1.36 that messed up comments/error messages 1.40 (2014-06-22) fix gcc struct-initialization warning 1.39 (2014-06-15) fix to TGA optimization when req_comp != number of components in TGA; fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite) add support for BMP version 5 (more ignored fields) 1.38 (2014-06-06) suppress MSVC warnings on integer casts truncating values fix accidental rename of 'skip' field of I/O 1.37 (2014-06-04) remove duplicate typedef 1.36 (2014-06-03) convert to header file single-file library if de-iphone isn't set, load iphone images color-swapped instead of returning NULL 1.35 (2014-05-27) various warnings fix broken STBI_SIMD path fix bug where stbi_load_from_file no longer left file pointer in correct place fix broken non-easy path for 32-bit BMP (possibly never used) TGA optimization by Arseny Kapoulkine 1.34 (unknown) use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case 1.33 (2011-07-14) make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements 1.32 (2011-07-13) support for "info" function for all supported filetypes (SpartanJ) 1.31 (2011-06-20) a few more leak fixes, bug in PNG handling (SpartanJ) 1.30 (2011-06-11) added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) removed deprecated format-specific test/load functions removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) fix inefficiency in decoding 32-bit BMP (David Woo) 1.29 (2010-08-16) various warning fixes from Aurelien Pocheville 1.28 (2010-08-01) fix bug in GIF palette transparency (SpartanJ) 1.27 (2010-08-01) cast-to-stbi_uc to fix warnings 1.26 (2010-07-24) fix bug in file buffering for PNG reported by SpartanJ 1.25 (2010-07-17) refix trans_data warning (Won Chun) 1.24 (2010-07-12) perf improvements reading from files on platforms with lock-heavy fgetc() minor perf improvements for jpeg deprecated type-specific functions so we'll get feedback if they're needed attempt to fix trans_data warning (Won Chun) 1.23 fixed bug in iPhone support 1.22 (2010-07-10) removed image *writing* support stbi_info support from Jetro Lauha GIF support from Jean-Marc Lienher iPhone PNG-extensions from James Brown warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva) 1.21 fix use of 'stbi_uc' in header (reported by jon blow) 1.20 added support for Softimage PIC, by Tom Seddon 1.19 bug in interlaced PNG corruption check (found by ryg) 1.18 (2008-08-02) fix a threading bug (local mutable static) 1.17 support interlaced PNG 1.16 major bugfix - stbi__convert_format converted one too many pixels 1.15 initialize some fields for thread safety 1.14 fix threadsafe conversion bug header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines 1.10 Fixes for 64-bit (don't use "unsigned long") optimized upsampling by Fabian "ryg" Giesen 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant 0.50 (2006-11-19) first released version */ /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #line 0 #line 1 "3rd_stb_image_write.h" /* stb_image_write - v1.15 - public domain - http://nothings.org/stb writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015 no warranty implied; use at your own risk Before #including, #define STB_IMAGE_WRITE_IMPLEMENTATION in the file that you want to have the implementation. Will probably not work correctly with strict-aliasing optimizations. ABOUT: This header file is a library for writing images to C stdio or a callback. The PNG output is not optimal; it is 20-50% larger than the file written by a decent optimizing implementation; though providing a custom zlib compress function (see STBIW_ZLIB_COMPRESS) can mitigate that. This library is designed for source code compactness and simplicity, not optimal image file size or run-time performance. BUILDING: You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h. You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace malloc,realloc,free. You can #define STBIW_MEMMOVE() to replace memmove() You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function for PNG compression (instead of the builtin one), it must have the following signature: unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality); The returned data will be freed with STBIW_FREE() (free() by default), so it must be heap allocated with STBIW_MALLOC() (malloc() by default), UNICODE: If compiling for Windows and you wish to use Unicode filenames, compile with #define STBIW_WINDOWS_UTF8 and pass utf8-encoded filenames. Call stbiw_convert_wchar_to_utf8 to convert Windows wchar_t filenames to utf8. USAGE: There are five functions, one for each image file format: int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality); int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically There are also five equivalent functions that use an arbitrary write function. You are expected to open/close your file-equivalent before and after calling these: int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); where the callback is: void stbi_write_func(void *context, void *data, int size); You can configure it with these global variables: int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode You can define STBI_WRITE_NO_STDIO to disable the file variant of these functions, so the library will not use stdio.h at all. However, this will also disable HDR writing, because it requires stdio for formatted output. Each function returns 0 on failure and non-0 on success. The functions create an image file defined by the parameters. The image is a rectangle of pixels stored from left-to-right, top-to-bottom. Each pixel contains 'comp' channels of data stored interleaved with 8-bits per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall. The *data pointer points to the first byte of the top-left-most pixel. For PNG, "stride_in_bytes" is the distance in bytes from the first byte of a row of pixels to the first byte of the next row of pixels. PNG creates output files with the same number of components as the input. The BMP format expands Y to RGB in the file format and does not output alpha. PNG supports writing rectangles of data even when the bytes storing rows of data are not consecutive in memory (e.g. sub-rectangles of a larger image), by supplying the stride between the beginning of adjacent rows. The other formats do not. (Thus you cannot write a native-format BMP through the BMP writer, both because it is in BGR order and because it may have padding at the end of the line.) PNG allows you to set the deflate compression level by setting the global variable 'stbi_write_png_compression_level' (it defaults to 8). HDR expects linear float data. Since the format is always 32-bit rgb(e) data, alpha (if provided) is discarded, and for monochrome data it is replicated across all three channels. TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed data, set the global variable 'stbi_write_tga_with_rle' to 0. JPEG does ignore alpha channels in input data; quality is between 1 and 100. Higher quality looks better but results in a bigger image. JPEG baseline (no JPEG progressive). CREDITS: Sean Barrett - PNG/BMP/TGA Baldur Karlsson - HDR Jean-Sebastien Guay - TGA monochrome Tim Kelsey - misc enhancements Alan Hickman - TGA RLE Emmanuel Julien - initial file IO callback implementation Jon Olick - original jo_jpeg.cpp code Daniel Gibson - integrate JPEG, allow external zlib Aarni Koskela - allow choosing PNG filter bugfixes: github:Chribba Guillaume Chereau github:jry2 github:romigrou Sergio Gonzalez Jonas Karlsson Filip Wasil Thatcher Ulrich github:poppolopoppo Patrick Boettcher github:xeekworx Cap Petschulat Simon Rodriguez Ivan Tikhonov github:ignotion Adam Schackart LICENSE See end of file for license information. */ #ifndef INCLUDE_STB_IMAGE_WRITE_H #define INCLUDE_STB_IMAGE_WRITE_H #include // if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline' #ifndef STBIWDEF #ifdef STB_IMAGE_WRITE_STATIC #define STBIWDEF static #else #ifdef __cplusplus #define STBIWDEF extern "C" #else #define STBIWDEF extern #endif #endif #endif #ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations extern int stbi_write_tga_with_rle; extern int stbi_write_png_compression_level; extern int stbi_write_force_png_filter; #endif #ifndef STBI_WRITE_NO_STDIO STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality); #ifdef STBI_WINDOWS_UTF8 STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input); #endif #endif typedef void stbi_write_func(void *context, void *data, int size); STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean); #endif//INCLUDE_STB_IMAGE_WRITE_H #ifdef STB_IMAGE_WRITE_IMPLEMENTATION #ifdef _WIN32 #ifndef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #endif #ifndef _CRT_NONSTDC_NO_DEPRECATE #define _CRT_NONSTDC_NO_DEPRECATE #endif #endif #ifndef STBI_WRITE_NO_STDIO #include #endif // STBI_WRITE_NO_STDIO #include #include #include #include #if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED)) // ok #elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED) // ok #else #error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)." #endif #ifndef STBIW_MALLOC #define STBIW_MALLOC(sz) malloc(sz) #define STBIW_REALLOC(p,newsz) realloc(p,newsz) #define STBIW_FREE(p) free(p) #endif #ifndef STBIW_REALLOC_SIZED #define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz) #endif #ifndef STBIW_MEMMOVE #define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz) #endif #ifndef STBIW_ASSERT #include #define STBIW_ASSERT(x) assert(x) #endif #define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff) #ifdef STB_IMAGE_WRITE_STATIC static int stbi_write_png_compression_level = 8; static int stbi_write_tga_with_rle = 1; static int stbi_write_force_png_filter = -1; #else int stbi_write_png_compression_level = 8; int stbi_write_tga_with_rle = 1; int stbi_write_force_png_filter = -1; #endif static int stbi__flip_vertically_on_write = 0; STBIWDEF void stbi_flip_vertically_on_write(int flag) { stbi__flip_vertically_on_write = flag; } typedef struct { stbi_write_func *func; void *context; unsigned char buffer[64]; int buf_used; } stbi__write_context; // initialize a callback-based context static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context) { s->func = c; s->context = context; } #ifndef STBI_WRITE_NO_STDIO static void stbi__stdio_write(void *context, void *data, int size) { fwrite(data,1,size,(FILE*) context); } #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) #ifdef __cplusplus #define STBIW_EXTERN extern "C" #else #define STBIW_EXTERN extern #endif STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide); STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default); STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input) { return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL); } #endif static FILE *stbiw__fopen(char const *filename, char const *mode) { FILE *f; #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) wchar_t wMode[64]; wchar_t wFilename[1024]; if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename))) return 0; if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) return 0; #if _MSC_VER >= 1400 if (0 != _wfopen_s(&f, wFilename, wMode)) f = 0; #else f = _wfopen(wFilename, wMode); #endif #elif defined(_MSC_VER) && _MSC_VER >= 1400 if (0 != fopen_s(&f, filename, mode)) f=0; #else f = fopen(filename, mode); #endif return f; } static int stbi__start_write_file(stbi__write_context *s, const char *filename) { FILE *f = stbiw__fopen(filename, "wb"); stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f); return f != NULL; } static void stbi__end_write_file(stbi__write_context *s) { fclose((FILE *)s->context); } #endif // !STBI_WRITE_NO_STDIO typedef unsigned int stbiw_uint32; typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1]; static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v) { while (*fmt) { switch (*fmt++) { case ' ': break; case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int)); s->func(s->context,&x,1); break; } case '2': { int x = va_arg(v,int); unsigned char b[2]; b[0] = STBIW_UCHAR(x); b[1] = STBIW_UCHAR(x>>8); s->func(s->context,b,2); break; } case '4': { stbiw_uint32 x = va_arg(v,int); unsigned char b[4]; b[0]=STBIW_UCHAR(x); b[1]=STBIW_UCHAR(x>>8); b[2]=STBIW_UCHAR(x>>16); b[3]=STBIW_UCHAR(x>>24); s->func(s->context,b,4); break; } default: STBIW_ASSERT(0); return; } } } static void stbiw__writef(stbi__write_context *s, const char *fmt, ...) { va_list v; va_start(v, fmt); stbiw__writefv(s, fmt, v); va_end(v); } static void stbiw__write_flush(stbi__write_context *s) { if (s->buf_used) { s->func(s->context, &s->buffer, s->buf_used); s->buf_used = 0; } } static void stbiw__putc(stbi__write_context *s, unsigned char c) { s->func(s->context, &c, 1); } static void stbiw__write1(stbi__write_context *s, unsigned char a) { if (s->buf_used + 1 > sizeof(s->buffer)) stbiw__write_flush(s); s->buffer[s->buf_used++] = a; } static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c) { int n; if (s->buf_used + 3 > sizeof(s->buffer)) stbiw__write_flush(s); n = s->buf_used; s->buf_used = n+3; s->buffer[n+0] = a; s->buffer[n+1] = b; s->buffer[n+2] = c; } static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d) { unsigned char bg[3] = { 255, 0, 255}, px[3]; int k; if (write_alpha < 0) stbiw__write1(s, d[comp - 1]); switch (comp) { case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case case 1: if (expand_mono) stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp else stbiw__write1(s, d[0]); // monochrome TGA break; case 4: if (!write_alpha) { // composite against pink background for (k = 0; k < 3; ++k) px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255; stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]); break; } /* FALLTHROUGH */ case 3: stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]); break; } if (write_alpha > 0) stbiw__write1(s, d[comp - 1]); } static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono) { stbiw_uint32 zero = 0; int i,j, j_end; if (y <= 0) return; if (stbi__flip_vertically_on_write) vdir *= -1; if (vdir < 0) { j_end = -1; j = y-1; } else { j_end = y; j = 0; } for (; j != j_end; j += vdir) { for (i=0; i < x; ++i) { unsigned char *d = (unsigned char *) data + (j*x+i)*comp; stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d); } stbiw__write_flush(s); s->func(s->context, &zero, scanline_pad); } } static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...) { if (y < 0 || x < 0) { return 0; } else { va_list v; va_start(v, fmt); stbiw__writefv(s, fmt, v); va_end(v); stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono); return 1; } } static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data) { int pad = (-x*3) & 3; return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad, "11 4 22 4" "4 44 22 444444", 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header } STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) { stbi__write_context s = { 0 }; stbi__start_write_callbacks(&s, func, context); return stbi_write_bmp_core(&s, x, y, comp, data); } #ifndef STBI_WRITE_NO_STDIO STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data) { stbi__write_context s = { 0 }; if (stbi__start_write_file(&s,filename)) { int r = stbi_write_bmp_core(&s, x, y, comp, data); stbi__end_write_file(&s); return r; } else return 0; } #endif //!STBI_WRITE_NO_STDIO static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data) { int has_alpha = (comp == 2 || comp == 4); int colorbytes = has_alpha ? comp-1 : comp; int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3 if (y < 0 || x < 0) return 0; if (!stbi_write_tga_with_rle) { return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0, "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8); } else { int i,j,k; int jend, jdir; stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8); if (stbi__flip_vertically_on_write) { j = 0; jend = y; jdir = 1; } else { j = y-1; jend = -1; jdir = -1; } for (; j != jend; j += jdir) { unsigned char *row = (unsigned char *) data + j * x * comp; int len; for (i = 0; i < x; i += len) { unsigned char *begin = row + i * comp; int diff = 1; len = 1; if (i < x - 1) { ++len; diff = memcmp(begin, row + (i + 1) * comp, comp); if (diff) { const unsigned char *prev = begin; for (k = i + 2; k < x && len < 128; ++k) { if (memcmp(prev, row + k * comp, comp)) { prev += comp; ++len; } else { --len; break; } } } else { for (k = i + 2; k < x && len < 128; ++k) { if (!memcmp(begin, row + k * comp, comp)) { ++len; } else { break; } } } } if (diff) { unsigned char header = STBIW_UCHAR(len - 1); stbiw__write1(s, header); for (k = 0; k < len; ++k) { stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp); } } else { unsigned char header = STBIW_UCHAR(len - 129); stbiw__write1(s, header); stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin); } } } stbiw__write_flush(s); } return 1; } STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) { stbi__write_context s = { 0 }; stbi__start_write_callbacks(&s, func, context); return stbi_write_tga_core(&s, x, y, comp, (void *) data); } #ifndef STBI_WRITE_NO_STDIO STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data) { stbi__write_context s = { 0 }; if (stbi__start_write_file(&s,filename)) { int r = stbi_write_tga_core(&s, x, y, comp, (void *) data); stbi__end_write_file(&s); return r; } else return 0; } #endif // ************************************************************************************************* // Radiance RGBE HDR writer // by Baldur Karlsson #define stbiw__max(a, b) ((a) > (b) ? (a) : (b)) static void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear) { int exponent; float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2])); if (maxcomp < 1e-32f) { rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; } else { float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp; rgbe[0] = (unsigned char)(linear[0] * normalize); rgbe[1] = (unsigned char)(linear[1] * normalize); rgbe[2] = (unsigned char)(linear[2] * normalize); rgbe[3] = (unsigned char)(exponent + 128); } } static void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte) { unsigned char lengthbyte = STBIW_UCHAR(length+128); STBIW_ASSERT(length+128 <= 255); s->func(s->context, &lengthbyte, 1); s->func(s->context, &databyte, 1); } static void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data) { unsigned char lengthbyte = STBIW_UCHAR(length); STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code s->func(s->context, &lengthbyte, 1); s->func(s->context, data, length); } static void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline) { unsigned char scanlineheader[4] = { 2, 2, 0, 0 }; unsigned char rgbe[4]; float linear[3]; int x; scanlineheader[2] = (width&0xff00)>>8; scanlineheader[3] = (width&0x00ff); /* skip RLE for images too small or large */ if (width < 8 || width >= 32768) { for (x=0; x < width; x++) { switch (ncomp) { case 4: /* fallthrough */ case 3: linear[2] = scanline[x*ncomp + 2]; linear[1] = scanline[x*ncomp + 1]; linear[0] = scanline[x*ncomp + 0]; break; default: linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; break; } stbiw__linear_to_rgbe(rgbe, linear); s->func(s->context, rgbe, 4); } } else { int c,r; /* encode into scratch buffer */ for (x=0; x < width; x++) { switch(ncomp) { case 4: /* fallthrough */ case 3: linear[2] = scanline[x*ncomp + 2]; linear[1] = scanline[x*ncomp + 1]; linear[0] = scanline[x*ncomp + 0]; break; default: linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; break; } stbiw__linear_to_rgbe(rgbe, linear); scratch[x + width*0] = rgbe[0]; scratch[x + width*1] = rgbe[1]; scratch[x + width*2] = rgbe[2]; scratch[x + width*3] = rgbe[3]; } s->func(s->context, scanlineheader, 4); /* RLE each component separately */ for (c=0; c < 4; c++) { unsigned char *comp = &scratch[width*c]; x = 0; while (x < width) { // find first run r = x; while (r+2 < width) { if (comp[r] == comp[r+1] && comp[r] == comp[r+2]) break; ++r; } if (r+2 >= width) r = width; // dump up to first run while (x < r) { int len = r-x; if (len > 128) len = 128; stbiw__write_dump_data(s, len, &comp[x]); x += len; } // if there's a run, output it if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd // find next byte after run while (r < width && comp[r] == comp[x]) ++r; // output run up to r while (x < r) { int len = r-x; if (len > 127) len = 127; stbiw__write_run_data(s, len, comp[x]); x += len; } } } } } } static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data) { if (y <= 0 || x <= 0 || data == NULL) return 0; else { // Each component is stored separately. Allocate scratch space for full output scanline. unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4); int i, len; char buffer[128]; char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n"; s->func(s->context, header, sizeof(header)-1); #ifdef __STDC_WANT_SECURE_LIB__ len = sprintf_s(buffer, sizeof(buffer), "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); #else len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); #endif s->func(s->context, buffer, len); for(i=0; i < y; i++) stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*x*(stbi__flip_vertically_on_write ? y-1-i : i)); STBIW_FREE(scratch); return 1; } } STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data) { stbi__write_context s = { 0 }; stbi__start_write_callbacks(&s, func, context); return stbi_write_hdr_core(&s, x, y, comp, (float *) data); } #ifndef STBI_WRITE_NO_STDIO STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data) { stbi__write_context s = { 0 }; if (stbi__start_write_file(&s,filename)) { int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data); stbi__end_write_file(&s); return r; } else return 0; } #endif // STBI_WRITE_NO_STDIO ////////////////////////////////////////////////////////////////////////////// // // PNG writer // #ifndef STBIW_ZLIB_COMPRESS // stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size() #define stbiw__sbraw(a) ((int *) (void *) (a) - 2) #define stbiw__sbm(a) stbiw__sbraw(a)[0] #define stbiw__sbn(a) stbiw__sbraw(a)[1] #define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a)) #define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0) #define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a))) #define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v)) #define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) #define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0) static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) { int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1; void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2); STBIW_ASSERT(p); if (p) { if (!*arr) ((int *) p)[1] = 0; *arr = (void *) ((int *) p + 2); stbiw__sbm(*arr) = m; } return *arr; } static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) { while (*bitcount >= 8) { stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); *bitbuffer >>= 8; *bitcount -= 8; } return data; } static int stbiw__zlib_bitrev(int code, int codebits) { int res=0; while (codebits--) { res = (res << 1) | (code & 1); code >>= 1; } return res; } static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit) { int i; for (i=0; i < limit && i < 258; ++i) if (a[i] != b[i]) break; return i; } static unsigned int stbiw__zhash(unsigned char *data) { stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 4; hash += hash >> 17; hash ^= hash << 25; hash += hash >> 6; return hash; } #define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount)) #define stbiw__zlib_add(code,codebits) \ (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) #define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c) // default huffman tables #define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) #define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) #define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7) #define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8) #define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n)) #define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) #define stbiw__ZHASH 16384 #endif // STBIW_ZLIB_COMPRESS STBIWDEF unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) { #ifdef STBIW_ZLIB_COMPRESS // user provided a zlib compress implementation, use that return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality); #else // use builtin static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; unsigned int bitbuf=0; int i,j, bitcount=0; unsigned char *out = NULL; unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char**)); if (hash_table == NULL) return NULL; if (quality < 5) quality = 5; stbiw__sbpush(out, 0x78); // DEFLATE 32K window stbiw__sbpush(out, 0x5e); // FLEVEL = 1 stbiw__zlib_add(1,1); // BFINAL = 1 stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman for (i=0; i < stbiw__ZHASH; ++i) hash_table[i] = NULL; i=0; while (i < data_len-3) { // hash next 3 bytes of data to be compressed int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3; unsigned char *bestloc = 0; unsigned char **hlist = hash_table[h]; int n = stbiw__sbcount(hlist); for (j=0; j < n; ++j) { if (hlist[j]-data > i-32768) { // if entry lies within window int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i); if (d >= best) { best=d; bestloc=hlist[j]; } } } // when hash table entry is too long, delete half the entries if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) { STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); stbiw__sbn(hash_table[h]) = quality; } stbiw__sbpush(hash_table[h],data+i); if (bestloc) { // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1); hlist = hash_table[h]; n = stbiw__sbcount(hlist); for (j=0; j < n; ++j) { if (hlist[j]-data > i-32767) { int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1); if (e > best) { // if next match is better, bail on current match bestloc = NULL; break; } } } } if (bestloc) { int d = (int) (data+i - bestloc); // distance back STBIW_ASSERT(d <= 32767 && best <= 258); for (j=0; best > lengthc[j+1]-1; ++j); stbiw__zlib_huff(j+257); if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]); for (j=0; d > distc[j+1]-1; ++j); stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5); if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]); i += best; } else { stbiw__zlib_huffb(data[i]); ++i; } } // write out final bytes for (;i < data_len; ++i) stbiw__zlib_huffb(data[i]); stbiw__zlib_huff(256); // end of block // pad with 0 bits to byte boundary while (bitcount) stbiw__zlib_add(0,1); for (i=0; i < stbiw__ZHASH; ++i) (void) stbiw__sbfree(hash_table[i]); STBIW_FREE(hash_table); { // compute adler32 on input unsigned int s1=1, s2=0; int blocklen = (int) (data_len % 5552); j=0; while (j < data_len) { for (i=0; i < blocklen; ++i) { s1 += data[j+i]; s2 += s1; } s1 %= 65521; s2 %= 65521; j += blocklen; blocklen = 5552; } stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); stbiw__sbpush(out, STBIW_UCHAR(s2)); stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); stbiw__sbpush(out, STBIW_UCHAR(s1)); } *out_len = stbiw__sbn(out); // make returned pointer freeable STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); return (unsigned char *) stbiw__sbraw(out); #endif // STBIW_ZLIB_COMPRESS } static unsigned int stbiw__crc32(unsigned char *buffer, int len) { #ifdef STBIW_CRC32 return STBIW_CRC32(buffer, len); #else static unsigned int crc_table[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; unsigned int crc = ~0u; int i; for (i=0; i < len; ++i) crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; return ~crc; #endif } #define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4) #define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v)); #define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3]) static void stbiw__wpcrc(unsigned char **data, int len) { unsigned int crc = stbiw__crc32(*data - len - 4, len+4); stbiw__wp32(*data, crc); } static unsigned char stbiw__paeth(int a, int b, int c) { int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c); if (pa <= pb && pa <= pc) return STBIW_UCHAR(a); if (pb <= pc) return STBIW_UCHAR(b); return STBIW_UCHAR(c); } // @OPTIMIZE: provide an option that always forces left-predict or paeth predict static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char *line_buffer) { static int mapping[] = { 0,1,2,3,4 }; static int firstmap[] = { 0,1,0,5,6 }; int *mymap = (y != 0) ? mapping : firstmap; int i; int type = mymap[filter_type]; unsigned char *z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height-1-y : y); int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes; if (type==0) { memcpy(line_buffer, z, width*n); return; } // first loop isn't optimized since it's just one pixel for (i = 0; i < n; ++i) { switch (type) { case 1: line_buffer[i] = z[i]; break; case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break; case 3: line_buffer[i] = z[i] - (z[i-signed_stride]>>1); break; case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-signed_stride],0)); break; case 5: line_buffer[i] = z[i]; break; case 6: line_buffer[i] = z[i]; break; } } switch (type) { case 1: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-n]; break; case 2: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-signed_stride]; break; case 3: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - ((z[i-n] + z[i-signed_stride])>>1); break; case 4: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-signed_stride], z[i-signed_stride-n]); break; case 5: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - (z[i-n]>>1); break; case 6: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break; } } STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len) { int force_filter = stbi_write_force_png_filter; int ctype[5] = { -1, 0, 4, 2, 6 }; unsigned char sig[8] = { 137,80,78,71,13,10,26,10 }; unsigned char *out,*o, *filt, *zlib; signed char *line_buffer; int j,zlen; if (stride_bytes == 0) stride_bytes = x * n; if (force_filter >= 5) { force_filter = -1; } filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0; line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; } for (j=0; j < y; ++j) { int filter_type; if (force_filter > -1) { filter_type = force_filter; stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, force_filter, line_buffer); } else { // Estimate the best filter by running through all of them: int best_filter = 0, best_filter_val = 0x7fffffff, est, i; for (filter_type = 0; filter_type < 5; filter_type++) { stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, filter_type, line_buffer); // Estimate the entropy of the line using this filter; the less, the better. est = 0; for (i = 0; i < x*n; ++i) { est += abs((signed char) line_buffer[i]); } if (est < best_filter_val) { best_filter_val = est; best_filter = filter_type; } } if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, best_filter, line_buffer); filter_type = best_filter; } } // when we get here, filter_type contains the filter type, and line_buffer contains the data filt[j*(x*n+1)] = (unsigned char) filter_type; STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n); } STBIW_FREE(line_buffer); zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, stbi_write_png_compression_level); STBIW_FREE(filt); if (!zlib) return 0; // each tag requires 12 bytes of overhead out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12); if (!out) return 0; *out_len = 8 + 12+13 + 12+zlen + 12; o=out; STBIW_MEMMOVE(o,sig,8); o+= 8; stbiw__wp32(o, 13); // header length stbiw__wptag(o, "IHDR"); stbiw__wp32(o, x); stbiw__wp32(o, y); *o++ = 8; *o++ = STBIW_UCHAR(ctype[n]); *o++ = 0; *o++ = 0; *o++ = 0; stbiw__wpcrc(&o,13); stbiw__wp32(o, zlen); stbiw__wptag(o, "IDAT"); STBIW_MEMMOVE(o, zlib, zlen); o += zlen; STBIW_FREE(zlib); stbiw__wpcrc(&o, zlen); stbiw__wp32(o,0); stbiw__wptag(o, "IEND"); stbiw__wpcrc(&o,0); STBIW_ASSERT(o == out + *out_len); return out; } #ifndef STBI_WRITE_NO_STDIO STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes) { FILE *f; int len; unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len); if (png == NULL) return 0; f = stbiw__fopen(filename, "wb"); if (!f) { STBIW_FREE(png); return 0; } fwrite(png, 1, len, f); fclose(f); STBIW_FREE(png); return 1; } #endif STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes) { int len; unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len); if (png == NULL) return 0; func(context, png, len); STBIW_FREE(png); return 1; } /* *************************************************************************** * * JPEG writer * * This is based on Jon Olick's jo_jpeg.cpp: * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html */ static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18, 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 }; static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) { int bitBuf = *bitBufP, bitCnt = *bitCntP; bitCnt += bs[1]; bitBuf |= bs[0] << (24 - bitCnt); while(bitCnt >= 8) { unsigned char c = (bitBuf >> 16) & 255; stbiw__putc(s, c); if(c == 255) { stbiw__putc(s, 0); } bitBuf <<= 8; bitCnt -= 8; } *bitBufP = bitBuf; *bitCntP = bitCnt; } static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) { float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p; float z1, z2, z3, z4, z5, z11, z13; float tmp0 = d0 + d7; float tmp7 = d0 - d7; float tmp1 = d1 + d6; float tmp6 = d1 - d6; float tmp2 = d2 + d5; float tmp5 = d2 - d5; float tmp3 = d3 + d4; float tmp4 = d3 - d4; // Even part float tmp10 = tmp0 + tmp3; // phase 2 float tmp13 = tmp0 - tmp3; float tmp11 = tmp1 + tmp2; float tmp12 = tmp1 - tmp2; d0 = tmp10 + tmp11; // phase 3 d4 = tmp10 - tmp11; z1 = (tmp12 + tmp13) * 0.707106781f; // c4 d2 = tmp13 + z1; // phase 5 d6 = tmp13 - z1; // Odd part tmp10 = tmp4 + tmp5; // phase 2 tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; // The rotator is modified from fig 4-8 to avoid extra negations. z5 = (tmp10 - tmp12) * 0.382683433f; // c6 z2 = tmp10 * 0.541196100f + z5; // c2-c6 z4 = tmp12 * 1.306562965f + z5; // c2+c6 z3 = tmp11 * 0.707106781f; // c4 z11 = tmp7 + z3; // phase 5 z13 = tmp7 - z3; *d5p = z13 + z2; // phase 6 *d3p = z13 - z2; *d1p = z11 + z4; *d7p = z11 - z4; *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6; } static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) { int tmp1 = val < 0 ? -val : val; val = val < 0 ? val-1 : val; bits[1] = 1; while(tmp1 >>= 1) { ++bits[1]; } bits[0] = val & ((1<0)&&(DU[end0pos]==0); --end0pos) { } // end0pos = first element in reverse order !=0 if(end0pos == 0) { stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); return DU[0]; } for(i = 1; i <= end0pos; ++i) { int startpos = i; int nrzeroes; unsigned short bits[2]; for (; DU[i]==0 && i<=end0pos; ++i) { } nrzeroes = i-startpos; if ( nrzeroes >= 16 ) { int lng = nrzeroes>>4; int nrmarker; for (nrmarker=1; nrmarker <= lng; ++nrmarker) stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes); nrzeroes &= 15; } stbiw__jpg_calcBits(DU[i], bits); stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]); stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); } if(end0pos != 63) { stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); } return DU[0]; } static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) { // Constants that don't pollute global namespace static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0}; static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d}; static const unsigned char std_ac_luminance_values[] = { 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08, 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28, 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59, 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6, 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2, 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa }; static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0}; static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77}; static const unsigned char std_ac_chrominance_values[] = { 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91, 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26, 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58, 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4, 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda, 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa }; // Huffman tables static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}}; static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}}; static const unsigned short YAC_HT[256][2] = { {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0}, {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} }; static const unsigned short UVAC_HT[256][2] = { {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0}, {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} }; static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22, 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99}; static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99}; static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f, 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f }; int row, col, i, k, subsample; float fdtbl_Y[64], fdtbl_UV[64]; unsigned char YTable[64], UVTable[64]; if(!data || !width || !height || comp > 4 || comp < 1) { return 0; } quality = quality ? quality : 90; subsample = quality <= 90 ? 1 : 0; quality = quality < 1 ? 1 : quality > 100 ? 100 : quality; quality = quality < 50 ? 5000 / quality : 200 - quality * 2; for(i = 0; i < 64; ++i) { int uvti, yti = (YQT[i]*quality+50)/100; YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti); uvti = (UVQT[i]*quality+50)/100; UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti); } for(row = 0, k = 0; row < 8; ++row) { for(col = 0; col < 8; ++col, ++k) { fdtbl_Y[k] = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); } } // Write Headers { static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 }; static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 }; const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width), 3,1,(unsigned char)(subsample?0x22:0x11),0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 }; s->func(s->context, (void*)head0, sizeof(head0)); s->func(s->context, (void*)YTable, sizeof(YTable)); stbiw__putc(s, 1); s->func(s->context, UVTable, sizeof(UVTable)); s->func(s->context, (void*)head1, sizeof(head1)); s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1); s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values)); stbiw__putc(s, 0x10); // HTYACinfo s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1); s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values)); stbiw__putc(s, 1); // HTUDCinfo s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1); s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values)); stbiw__putc(s, 0x11); // HTUACinfo s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1); s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values)); s->func(s->context, (void*)head2, sizeof(head2)); } // Encode 8x8 macroblocks { static const unsigned short fillBits[] = {0x7F, 7}; int DCY=0, DCU=0, DCV=0; int bitBuf=0, bitCnt=0; // comp == 2 is grey+alpha (alpha is ignored) int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0; const unsigned char *dataR = (const unsigned char *)data; const unsigned char *dataG = dataR + ofsG; const unsigned char *dataB = dataR + ofsB; int x, y, pos; if(subsample) { for(y = 0; y < height; y += 16) { for(x = 0; x < width; x += 16) { float Y[256], U[256], V[256]; for(row = y, pos = 0; row < y+16; ++row) { // row >= height => use last input row int clamped_row = (row < height) ? row : height - 1; int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp; for(col = x; col < x+16; ++col, ++pos) { // if col >= width => use pixel from last input column int p = base_p + ((col < width) ? col : (width-1))*comp; float r = dataR[p], g = dataG[p], b = dataB[p]; Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128; U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b; V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b; } } DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+0, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+8, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+128, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+136, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); // subsample U,V { float subU[64], subV[64]; int yy, xx; for(yy = 0, pos = 0; yy < 8; ++yy) { for(xx = 0; xx < 8; ++xx, ++pos) { int j = yy*32+xx*2; subU[pos] = (U[j+0] + U[j+1] + U[j+16] + U[j+17]) * 0.25f; subV[pos] = (V[j+0] + V[j+1] + V[j+16] + V[j+17]) * 0.25f; } } DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subU, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subV, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); } } } } else { for(y = 0; y < height; y += 8) { for(x = 0; x < width; x += 8) { float Y[64], U[64], V[64]; for(row = y, pos = 0; row < y+8; ++row) { // row >= height => use last input row int clamped_row = (row < height) ? row : height - 1; int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp; for(col = x; col < x+8; ++col, ++pos) { // if col >= width => use pixel from last input column int p = base_p + ((col < width) ? col : (width-1))*comp; float r = dataR[p], g = dataG[p], b = dataB[p]; Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128; U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b; V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b; } } DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y, 8, fdtbl_Y, DCY, YDC_HT, YAC_HT); DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, U, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, V, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); } } } // Do the bit alignment of the EOI marker stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits); } // EOI stbiw__putc(s, 0xFF); stbiw__putc(s, 0xD9); return 1; } STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality) { stbi__write_context s = { 0 }; stbi__start_write_callbacks(&s, func, context); return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality); } #ifndef STBI_WRITE_NO_STDIO STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality) { stbi__write_context s = { 0 }; if (stbi__start_write_file(&s,filename)) { int r = stbi_write_jpg_core(&s, x, y, comp, data, quality); stbi__end_write_file(&s); return r; } else return 0; } #endif #endif // STB_IMAGE_WRITE_IMPLEMENTATION /* Revision history 1.14 (2020-02-02) updated JPEG writer to downsample chroma channels 1.13 1.12 1.11 (2019-08-11) 1.10 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs 1.09 (2018-02-11) fix typo in zlib quality API, improve STB_I_W_STATIC in C++ 1.08 (2018-01-29) add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter 1.07 (2017-07-24) doc fix 1.06 (2017-07-23) writing JPEG (using Jon Olick's code) 1.05 ??? 1.04 (2017-03-03) monochrome BMP expansion 1.03 ??? 1.02 (2016-04-02) avoid allocating large structures on the stack 1.01 (2016-01-16) STBIW_REALLOC_SIZED: support allocators with no realloc support avoid race-condition in crc initialization minor compile issues 1.00 (2015-09-14) installable file IO function 0.99 (2015-09-13) warning fixes; TGA rle support 0.98 (2015-04-08) added STBIW_MALLOC, STBIW_ASSERT etc 0.97 (2015-01-18) fixed HDR asserts, rewrote HDR rle logic 0.96 (2015-01-17) add HDR output fix monochrome BMP 0.95 (2014-08-17) add monochrome TGA output 0.94 (2014-05-31) rename private functions to avoid conflicts with stb_image.h 0.93 (2014-05-27) warning fixes 0.92 (2010-08-01) casts to unsigned char to fix warnings 0.91 (2010-07-17) first public release 0.90 first internal release */ /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #line 0 //--- #undef freelist #define STBTT_malloc(x,u) ((void)(u),MALLOC(x)) #define STBTT_free(x,u) ((void)(u),FREE(x)) #define NK_ASSERT ASSERT #define NK_DTOA(s,n) strcpy(s, va("%f", n)) // override cos built-in nk_dtoa() will freeze while parsing UINT_MAX otherwise #line 1 "3rd_nuklear.h" /* /// # Nuklear /// ![](https://cloud.githubusercontent.com/assets/8057201/11761525/ae06f0ca-a0c6-11e5-819d-5610b25f6ef4.gif) /// /// ## Contents /// 1. About section /// 2. Highlights section /// 3. Features section /// 4. Usage section /// 1. Flags section /// 2. Constants section /// 3. Dependencies section /// 5. Example section /// 6. API section /// 1. Context section /// 2. Input section /// 3. Drawing section /// 4. Window section /// 5. Layouting section /// 6. Groups section /// 7. Tree section /// 8. Properties section /// 7. License section /// 8. Changelog section /// 9. Gallery section /// 10. Credits section /// /// ## About /// This is a minimal state immediate mode graphical user interface toolkit /// written in ANSI C and licensed under public domain. It was designed as a simple /// embeddable user interface for application and does not have any dependencies, /// a default renderbackend or OS window and input handling but instead provides a very modular /// library approach by using simple input state for input and draw /// commands describing primitive shapes as output. So instead of providing a /// layered library that tries to abstract over a number of platform and /// render backends it only focuses on the actual UI. /// /// ## Highlights /// - Graphical user interface toolkit /// - Single header library /// - Written in C89 (a.k.a. ANSI C or ISO C90) /// - Small codebase (~18kLOC) /// - Focus on portability, efficiency and simplicity /// - No dependencies (not even the standard library if not wanted) /// - Fully skinnable and customizable /// - Low memory footprint with total memory control if needed or wanted /// - UTF-8 support /// - No global or hidden state /// - Customizable library modules (you can compile and use only what you need) /// - Optional font baker and vertex buffer output /// /// ## Features /// - Absolutely no platform dependent code /// - Memory management control ranging from/to /// - Ease of use by allocating everything from standard library /// - Control every byte of memory inside the library /// - Font handling control ranging from/to /// - Use your own font implementation for everything /// - Use this libraries internal font baking and handling API /// - Drawing output control ranging from/to /// - Simple shapes for more high level APIs which already have drawing capabilities /// - Hardware accessible anti-aliased vertex buffer output /// - Customizable colors and properties ranging from/to /// - Simple changes to color by filling a simple color table /// - Complete control with ability to use skinning to decorate widgets /// - Bendable UI library with widget ranging from/to /// - Basic widgets like buttons, checkboxes, slider, ... /// - Advanced widget like abstract comboboxes, contextual menus,... /// - Compile time configuration to only compile what you need /// - Subset which can be used if you do not want to link or use the standard library /// - Can be easily modified to only update on user input instead of frame updates /// /// ## Usage /// This library is self contained in one single header file and can be used either /// in header only mode or in implementation mode. The header only mode is used /// by default when included and allows including this header in other headers /// and does not contain the actual implementation.

/// /// The implementation mode requires to define the preprocessor macro /// NK_IMPLEMENTATION in *one* .c/.cpp file before #including this file, e.g.: /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C /// #define NK_IMPLEMENTATION /// #include "nuklear.h" /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Also optionally define the symbols listed in the section "OPTIONAL DEFINES" /// below in header and implementation mode if you want to use additional functionality /// or need more control over the library. /// /// !!! WARNING /// Every time nuklear is included define the same compiler flags. This very important not doing so could lead to compiler errors or even worse stack corruptions. /// /// ### Flags /// Flag | Description /// --------------------------------|------------------------------------------ /// NK_PRIVATE | If defined declares all functions as static, so they can only be accessed inside the file that contains the implementation /// NK_INCLUDE_FIXED_TYPES | If defined it will include header `` for fixed sized types otherwise nuklear tries to select the correct type. If that fails it will throw a compiler error and you have to select the correct types yourself. /// NK_INCLUDE_DEFAULT_ALLOCATOR | If defined it will include header `` and provide additional functions to use this library without caring for memory allocation control and therefore ease memory management. /// NK_INCLUDE_STANDARD_IO | If defined it will include header `` and provide additional functions depending on file loading. /// NK_INCLUDE_STANDARD_VARARGS | If defined it will include header and provide additional functions depending on file loading. /// NK_INCLUDE_STANDARD_BOOL | If defined it will include header `` for nk_bool otherwise nuklear defines nk_bool as int. /// NK_INCLUDE_VERTEX_BUFFER_OUTPUT | Defining this adds a vertex draw command list backend to this library, which allows you to convert queue commands into vertex draw commands. This is mainly if you need a hardware accessible format for OpenGL, DirectX, Vulkan, Metal,... /// NK_INCLUDE_FONT_BAKING | Defining this adds `stb_truetype` and `stb_rect_pack` implementation to this library and provides font baking and rendering. If you already have font handling or do not want to use this font handler you don't have to define it. /// NK_INCLUDE_DEFAULT_FONT | Defining this adds the default font: ProggyClean.ttf into this library which can be loaded into a font atlas and allows using this library without having a truetype font /// NK_INCLUDE_COMMAND_USERDATA | Defining this adds a userdata pointer into each command. Can be useful for example if you want to provide custom shaders depending on the used widget. Can be combined with the style structures. /// NK_BUTTON_TRIGGER_ON_RELEASE | Different platforms require button clicks occurring either on buttons being pressed (up to down) or released (down to up). By default this library will react on buttons being pressed, but if you define this it will only trigger if a button is released. /// NK_ZERO_COMMAND_MEMORY | Defining this will zero out memory for each drawing command added to a drawing queue (inside nk_command_buffer_push). Zeroing command memory is very useful for fast checking (using memcmp) if command buffers are equal and avoid drawing frames when nothing on screen has changed since previous frame. /// NK_UINT_DRAW_INDEX | Defining this will set the size of vertex index elements when using NK_VERTEX_BUFFER_OUTPUT to 32bit instead of the default of 16bit /// NK_KEYSTATE_BASED_INPUT | Define this if your backend uses key state for each frame rather than key press/release events /// /// !!! WARNING /// The following flags will pull in the standard C library: /// - NK_INCLUDE_DEFAULT_ALLOCATOR /// - NK_INCLUDE_STANDARD_IO /// - NK_INCLUDE_STANDARD_VARARGS /// /// !!! WARNING /// The following flags if defined need to be defined for both header and implementation: /// - NK_INCLUDE_FIXED_TYPES /// - NK_INCLUDE_DEFAULT_ALLOCATOR /// - NK_INCLUDE_STANDARD_VARARGS /// - NK_INCLUDE_STANDARD_BOOL /// - NK_INCLUDE_VERTEX_BUFFER_OUTPUT /// - NK_INCLUDE_FONT_BAKING /// - NK_INCLUDE_DEFAULT_FONT /// - NK_INCLUDE_STANDARD_VARARGS /// - NK_INCLUDE_COMMAND_USERDATA /// - NK_UINT_DRAW_INDEX /// /// ### Constants /// Define | Description /// --------------------------------|--------------------------------------- /// NK_BUFFER_DEFAULT_INITIAL_SIZE | Initial buffer size allocated by all buffers while using the default allocator functions included by defining NK_INCLUDE_DEFAULT_ALLOCATOR. If you don't want to allocate the default 4k memory then redefine it. /// NK_MAX_NUMBER_BUFFER | Maximum buffer size for the conversion buffer between float and string Under normal circumstances this should be more than sufficient. /// NK_INPUT_MAX | Defines the max number of bytes which can be added as text input in one frame. Under normal circumstances this should be more than sufficient. /// /// !!! WARNING /// The following constants if defined need to be defined for both header and implementation: /// - NK_MAX_NUMBER_BUFFER /// - NK_BUFFER_DEFAULT_INITIAL_SIZE /// - NK_INPUT_MAX /// /// ### Dependencies /// Function | Description /// ------------|--------------------------------------------------------------- /// NK_ASSERT | If you don't define this, nuklear will use with assert(). /// NK_MEMSET | You can define this to 'memset' or your own memset implementation replacement. If not nuklear will use its own version. /// NK_MEMCPY | You can define this to 'memcpy' or your own memcpy implementation replacement. If not nuklear will use its own version. /// NK_INV_SQRT | You can define this to your own inverse sqrt implementation replacement. If not nuklear will use its own slow and not highly accurate version. /// NK_SIN | You can define this to 'sinf' or your own sine implementation replacement. If not nuklear will use its own approximation implementation. /// NK_COS | You can define this to 'cosf' or your own cosine implementation replacement. If not nuklear will use its own approximation implementation. /// NK_STRTOD | You can define this to `strtod` or your own string to double conversion implementation replacement. If not defined nuklear will use its own imprecise and possibly unsafe version (does not handle nan or infinity!). /// NK_DTOA | You can define this to `dtoa` or your own double to string conversion implementation replacement. If not defined nuklear will use its own imprecise and possibly unsafe version (does not handle nan or infinity!). /// NK_VSNPRINTF| If you define `NK_INCLUDE_STANDARD_VARARGS` as well as `NK_INCLUDE_STANDARD_IO` and want to be safe define this to `vsnprintf` on compilers supporting later versions of C or C++. By default nuklear will check for your stdlib version in C as well as compiler version in C++. if `vsnprintf` is available it will define it to `vsnprintf` directly. If not defined and if you have older versions of C or C++ it will be defined to `vsprintf` which is unsafe. /// /// !!! WARNING /// The following dependencies will pull in the standard C library if not redefined: /// - NK_ASSERT /// /// !!! WARNING /// The following dependencies if defined need to be defined for both header and implementation: /// - NK_ASSERT /// /// !!! WARNING /// The following dependencies if defined need to be defined only for the implementation part: /// - NK_MEMSET /// - NK_MEMCPY /// - NK_SQRT /// - NK_SIN /// - NK_COS /// - NK_STRTOD /// - NK_DTOA /// - NK_VSNPRINTF /// /// ## Example /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// // init gui state /// enum {EASY, HARD}; /// static int op = EASY; /// static float value = 0.6f; /// static int i = 20; /// struct nk_context ctx; /// /// nk_init_fixed(&ctx, calloc(1, MAX_MEMORY), MAX_MEMORY, &font); /// if (nk_begin(&ctx, "Show", nk_rect(50, 50, 220, 220), /// NK_WINDOW_BORDER|NK_WINDOW_MOVABLE|NK_WINDOW_CLOSABLE)) { /// // fixed widget pixel width /// nk_layout_row_static(&ctx, 30, 80, 1); /// if (nk_button_label(&ctx, "button")) { /// // event handling /// } /// /// // fixed widget window ratio width /// nk_layout_row_dynamic(&ctx, 30, 2); /// if (nk_option_label(&ctx, "easy", op == EASY)) op = EASY; /// if (nk_option_label(&ctx, "hard", op == HARD)) op = HARD; /// /// // custom widget pixel width /// nk_layout_row_begin(&ctx, NK_STATIC, 30, 2); /// { /// nk_layout_row_push(&ctx, 50); /// nk_label(&ctx, "Volume:", NK_TEXT_LEFT); /// nk_layout_row_push(&ctx, 110); /// nk_slider_float(&ctx, 0, &value, 1.0f, 0.1f); /// } /// nk_layout_row_end(&ctx); /// } /// nk_end(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// ![](https://cloud.githubusercontent.com/assets/8057201/10187981/584ecd68-675c-11e5-897c-822ef534a876.png) /// /// ## API /// */ #ifndef NK_SINGLE_FILE #define NK_SINGLE_FILE #endif #ifndef NK_NUKLEAR_H_ #define NK_NUKLEAR_H_ #ifdef __cplusplus extern "C" { #endif /* * ============================================================== * * CONSTANTS * * =============================================================== */ #define NK_UNDEFINED (-1.0f) #define NK_UTF_INVALID 0xFFFD /* internal invalid utf8 rune */ #define NK_UTF_SIZE 4 /* describes the number of bytes a glyph consists of*/ #ifndef NK_INPUT_MAX #define NK_INPUT_MAX 16 #endif #ifndef NK_MAX_NUMBER_BUFFER #define NK_MAX_NUMBER_BUFFER 64 #endif #ifndef NK_SCROLLBAR_HIDING_TIMEOUT #define NK_SCROLLBAR_HIDING_TIMEOUT 4.0f #endif /* * ============================================================== * * HELPER * * =============================================================== */ #ifndef NK_API #ifdef NK_PRIVATE #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199409L)) #define NK_API static inline #elif defined(__cplusplus) #define NK_API static inline #else #define NK_API static #endif #else #define NK_API extern #endif #endif #ifndef NK_LIB #ifdef NK_SINGLE_FILE #define NK_LIB static #else #define NK_LIB extern #endif #endif #define NK_INTERN static #define NK_STORAGE static #define NK_GLOBAL static #define NK_FLAG(x) (1 << (x)) #define NK_STRINGIFY(x) #x #define NK_MACRO_STRINGIFY(x) NK_STRINGIFY(x) #define NK_STRING_JOIN_IMMEDIATE(arg1, arg2) arg1 ## arg2 #define NK_STRING_JOIN_DELAY(arg1, arg2) NK_STRING_JOIN_IMMEDIATE(arg1, arg2) #define NK_STRING_JOIN(arg1, arg2) NK_STRING_JOIN_DELAY(arg1, arg2) #ifdef _MSC_VER #define NK_UNIQUE_NAME(name) NK_STRING_JOIN(name,__COUNTER__) #else #define NK_UNIQUE_NAME(name) NK_STRING_JOIN(name,__LINE__) #endif #ifndef NK_STATIC_ASSERT #define NK_STATIC_ASSERT(exp) typedef char NK_UNIQUE_NAME(_dummy_array)[(exp)?1:-1] #endif #ifndef NK_FILE_LINE #ifdef _MSC_VER #define NK_FILE_LINE __FILE__ ":" NK_MACRO_STRINGIFY(__COUNTER__) #else #define NK_FILE_LINE __FILE__ ":" NK_MACRO_STRINGIFY(__LINE__) #endif #endif #define NK_MIN(a,b) ((a) < (b) ? (a) : (b)) #define NK_MAX(a,b) ((a) < (b) ? (b) : (a)) #define NK_CLAMP(i,v,x) (NK_MAX(NK_MIN(v,x), i)) #ifdef NK_INCLUDE_STANDARD_VARARGS #include #if defined(_MSC_VER) && (_MSC_VER >= 1600) /* VS 2010 and above */ #include #define NK_PRINTF_FORMAT_STRING _Printf_format_string_ #else #define NK_PRINTF_FORMAT_STRING #endif #if defined(__GNUC__) #define NK_PRINTF_VARARG_FUNC(fmtargnumber) __attribute__((format(__printf__, fmtargnumber, fmtargnumber+1))) #define NK_PRINTF_VALIST_FUNC(fmtargnumber) __attribute__((format(__printf__, fmtargnumber, 0))) #else #define NK_PRINTF_VARARG_FUNC(fmtargnumber) #define NK_PRINTF_VALIST_FUNC(fmtargnumber) #endif #endif /* * =============================================================== * * BASIC * * =============================================================== */ #ifdef NK_INCLUDE_FIXED_TYPES #include #define NK_INT8 int8_t #define NK_UINT8 uint8_t #define NK_INT16 int16_t #define NK_UINT16 uint16_t #define NK_INT32 int32_t #define NK_UINT32 uint32_t #define NK_SIZE_TYPE uintptr_t #define NK_POINTER_TYPE uintptr_t #else #ifndef NK_INT8 #define NK_INT8 signed char #endif #ifndef NK_UINT8 #define NK_UINT8 unsigned char #endif #ifndef NK_INT16 #define NK_INT16 signed short #endif #ifndef NK_UINT16 #define NK_UINT16 unsigned short #endif #ifndef NK_INT32 #if defined(_MSC_VER) #define NK_INT32 __int32 #else #define NK_INT32 signed int #endif #endif #ifndef NK_UINT32 #if defined(_MSC_VER) #define NK_UINT32 unsigned __int32 #else #define NK_UINT32 unsigned int #endif #endif #ifndef NK_SIZE_TYPE #if defined(_WIN64) && defined(_MSC_VER) #define NK_SIZE_TYPE unsigned __int64 #elif (defined(_WIN32) || defined(WIN32)) && defined(_MSC_VER) #define NK_SIZE_TYPE unsigned __int32 #elif defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) || defined(__ppc64__) #define NK_SIZE_TYPE unsigned long #else #define NK_SIZE_TYPE unsigned int #endif #else #define NK_SIZE_TYPE unsigned long #endif #endif #ifndef NK_POINTER_TYPE #if defined(_WIN64) && defined(_MSC_VER) #define NK_POINTER_TYPE unsigned __int64 #elif (defined(_WIN32) || defined(WIN32)) && defined(_MSC_VER) #define NK_POINTER_TYPE unsigned __int32 #elif defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) || defined(__ppc64__) #define NK_POINTER_TYPE unsigned long #else #define NK_POINTER_TYPE unsigned int #endif #else #define NK_POINTER_TYPE unsigned long #endif #endif #endif #ifndef NK_BOOL #ifdef NK_INCLUDE_STANDARD_BOOL #include #define NK_BOOL bool #else #define NK_BOOL int /* could be char, use int for drop-in replacement backwards compatibility */ #endif #endif typedef NK_INT8 nk_char; typedef NK_UINT8 nk_uchar; typedef NK_UINT8 nk_byte; typedef NK_INT16 nk_short; typedef NK_UINT16 nk_ushort; typedef NK_INT32 nk_int; typedef NK_UINT32 nk_uint; typedef NK_SIZE_TYPE nk_size; typedef NK_POINTER_TYPE nk_ptr; typedef NK_BOOL nk_bool; typedef nk_uint nk_hash; typedef nk_uint nk_flags; typedef nk_uint nk_rune; /* Make sure correct type size: * This will fire with a negative subscript error if the type sizes * are set incorrectly by the compiler, and compile out if not */ NK_STATIC_ASSERT(sizeof(nk_short) == 2); NK_STATIC_ASSERT(sizeof(nk_ushort) == 2); NK_STATIC_ASSERT(sizeof(nk_uint) == 4); NK_STATIC_ASSERT(sizeof(nk_int) == 4); NK_STATIC_ASSERT(sizeof(nk_byte) == 1); NK_STATIC_ASSERT(sizeof(nk_flags) >= 4); NK_STATIC_ASSERT(sizeof(nk_rune) >= 4); NK_STATIC_ASSERT(sizeof(nk_size) >= sizeof(void*)); NK_STATIC_ASSERT(sizeof(nk_ptr) >= sizeof(void*)); #ifdef NK_INCLUDE_STANDARD_BOOL NK_STATIC_ASSERT(sizeof(nk_bool) == sizeof(bool)); #else NK_STATIC_ASSERT(sizeof(nk_bool) >= 2); #endif /* ============================================================================ * * API * * =========================================================================== */ struct nk_buffer; struct nk_allocator; struct nk_command_buffer; struct nk_draw_command; struct nk_convert_config; struct nk_style_item; struct nk_text_edit; struct nk_draw_list; struct nk_user_font; struct nk_panel; struct nk_context; struct nk_draw_vertex_layout_element; struct nk_style_button; struct nk_style_toggle; struct nk_style_selectable; struct nk_style_slide; struct nk_style_progress; struct nk_style_scrollbar; struct nk_style_edit; struct nk_style_property; struct nk_style_chart; struct nk_style_combo; struct nk_style_tab; struct nk_style_window_header; struct nk_style_window; enum {nk_false, nk_true}; struct nk_color {nk_byte r,g,b,a;}; struct nk_colorf {float r,g,b,a;}; struct nk_vec2 {float x,y;}; struct nk_vec2i {short x, y;}; struct nk_rect {float x,y,w,h;}; struct nk_recti {short x,y,w,h;}; typedef char nk_glyph[NK_UTF_SIZE]; typedef union {void *ptr; int id;} nk_handle; struct nk_image {nk_handle handle; nk_ushort w, h; nk_ushort region[4];}; struct nk_nine_slice {struct nk_image img; nk_ushort l, t, r, b;}; struct nk_cursor {struct nk_image img; struct nk_vec2 size, offset;}; struct nk_scroll {nk_uint x, y;}; enum nk_heading {NK_UP, NK_RIGHT, NK_DOWN, NK_LEFT}; enum nk_button_behavior {NK_BUTTON_DEFAULT, NK_BUTTON_REPEATER}; enum nk_modify {NK_FIXED = nk_false, NK_MODIFIABLE = nk_true}; enum nk_orientation {NK_VERTICAL, NK_HORIZONTAL}; enum nk_collapse_states {NK_MINIMIZED = nk_false, NK_MAXIMIZED = nk_true}; enum nk_show_states {NK_HIDDEN = nk_false, NK_SHOWN = nk_true}; enum nk_chart_type {NK_CHART_LINES, NK_CHART_COLUMN, NK_CHART_MAX}; enum nk_chart_event {NK_CHART_HOVERING = 0x01, NK_CHART_CLICKED = 0x02}; enum nk_color_format {NK_RGB, NK_RGBA}; enum nk_popup_type {NK_POPUP_STATIC, NK_POPUP_DYNAMIC}; enum nk_layout_format {NK_DYNAMIC, NK_STATIC}; enum nk_tree_type {NK_TREE_NODE, NK_TREE_TAB}; typedef void*(*nk_plugin_alloc)(nk_handle, void *old, nk_size); typedef void (*nk_plugin_free)(nk_handle, void *old); typedef nk_bool(*nk_plugin_filter)(const struct nk_text_edit*, nk_rune unicode); typedef void(*nk_plugin_paste)(nk_handle, struct nk_text_edit*); typedef void(*nk_plugin_copy)(nk_handle, const char*, int len); struct nk_allocator { nk_handle userdata; nk_plugin_alloc alloc; nk_plugin_free free; }; enum nk_symbol_type { NK_SYMBOL_NONE, NK_SYMBOL_X, NK_SYMBOL_UNDERSCORE, NK_SYMBOL_CIRCLE_SOLID, NK_SYMBOL_CIRCLE_OUTLINE, NK_SYMBOL_RECT_SOLID, NK_SYMBOL_RECT_OUTLINE, NK_SYMBOL_TRIANGLE_UP, NK_SYMBOL_TRIANGLE_DOWN, NK_SYMBOL_TRIANGLE_LEFT, NK_SYMBOL_TRIANGLE_RIGHT, NK_SYMBOL_PLUS, NK_SYMBOL_MINUS, NK_SYMBOL_PIN, //< @-rlyeh NK_SYMBOL_FLOATING, //< @r-lyeh NK_SYMBOL_FULLSCREEN, //< @r-lyeh NK_SYMBOL_RESTORE, //< @r-lyeh NK_SYMBOL_MAX }; /* ============================================================================= * * CONTEXT * * =============================================================================*/ /*/// ### Context /// Contexts are the main entry point and the majestro of nuklear and contain all required state. /// They are used for window, memory, input, style, stack, commands and time management and need /// to be passed into all nuklear GUI specific functions. /// /// #### Usage /// To use a context it first has to be initialized which can be achieved by calling /// one of either `nk_init_default`, `nk_init_fixed`, `nk_init`, `nk_init_custom`. /// Each takes in a font handle and a specific way of handling memory. Memory control /// hereby ranges from standard library to just specifying a fixed sized block of memory /// which nuklear has to manage itself from. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// // [...] /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// --------------------|------------------------------------------------------- /// __nk_init_default__ | Initializes context with standard library memory allocation (malloc,free) /// __nk_init_fixed__ | Initializes context from single fixed size memory block /// __nk_init__ | Initializes context with memory allocator callbacks for alloc and free /// __nk_init_custom__ | Initializes context from two buffers. One for draw commands the other for window/panel/table allocations /// __nk_clear__ | Called at the end of the frame to reset and prepare the context for the next frame /// __nk_free__ | Shutdown and free all memory allocated inside the context /// __nk_set_user_data__| Utility function to pass user data to draw command */ #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR /*/// #### nk_init_default /// Initializes a `nk_context` struct with a default standard library allocator. /// Should be used if you don't want to be bothered with memory management in nuklear. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_init_default(struct nk_context *ctx, const struct nk_user_font *font); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|--------------------------------------------------------------- /// __ctx__ | Must point to an either stack or heap allocated `nk_context` struct /// __font__ | Must point to a previously initialized font handle for more info look at font documentation /// /// Returns either `false(0)` on failure or `true(1)` on success. /// */ NK_API nk_bool nk_init_default(struct nk_context*, const struct nk_user_font*); #endif /*/// #### nk_init_fixed /// Initializes a `nk_context` struct from single fixed size memory block /// Should be used if you want complete control over nuklear's memory management. /// Especially recommended for system with little memory or systems with virtual memory. /// For the later case you can just allocate for example 16MB of virtual memory /// and only the required amount of memory will actually be committed. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_init_fixed(struct nk_context *ctx, void *memory, nk_size size, const struct nk_user_font *font); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// !!! Warning /// make sure the passed memory block is aligned correctly for `nk_draw_commands`. /// /// Parameter | Description /// ------------|-------------------------------------------------------------- /// __ctx__ | Must point to an either stack or heap allocated `nk_context` struct /// __memory__ | Must point to a previously allocated memory block /// __size__ | Must contain the total size of __memory__ /// __font__ | Must point to a previously initialized font handle for more info look at font documentation /// /// Returns either `false(0)` on failure or `true(1)` on success. */ NK_API nk_bool nk_init_fixed(struct nk_context*, void *memory, nk_size size, const struct nk_user_font*); /*/// #### nk_init /// Initializes a `nk_context` struct with memory allocation callbacks for nuklear to allocate /// memory from. Used internally for `nk_init_default` and provides a kitchen sink allocation /// interface to nuklear. Can be useful for cases like monitoring memory consumption. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_init(struct nk_context *ctx, struct nk_allocator *alloc, const struct nk_user_font *font); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|--------------------------------------------------------------- /// __ctx__ | Must point to an either stack or heap allocated `nk_context` struct /// __alloc__ | Must point to a previously allocated memory allocator /// __font__ | Must point to a previously initialized font handle for more info look at font documentation /// /// Returns either `false(0)` on failure or `true(1)` on success. */ NK_API nk_bool nk_init(struct nk_context*, struct nk_allocator*, const struct nk_user_font*); /*/// #### nk_init_custom /// Initializes a `nk_context` struct from two different either fixed or growing /// buffers. The first buffer is for allocating draw commands while the second buffer is /// used for allocating windows, panels and state tables. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_init_custom(struct nk_context *ctx, struct nk_buffer *cmds, struct nk_buffer *pool, const struct nk_user_font *font); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|--------------------------------------------------------------- /// __ctx__ | Must point to an either stack or heap allocated `nk_context` struct /// __cmds__ | Must point to a previously initialized memory buffer either fixed or dynamic to store draw commands into /// __pool__ | Must point to a previously initialized memory buffer either fixed or dynamic to store windows, panels and tables /// __font__ | Must point to a previously initialized font handle for more info look at font documentation /// /// Returns either `false(0)` on failure or `true(1)` on success. */ NK_API nk_bool nk_init_custom(struct nk_context*, struct nk_buffer *cmds, struct nk_buffer *pool, const struct nk_user_font*); /*/// #### nk_clear /// Resets the context state at the end of the frame. This includes mostly /// garbage collector tasks like removing windows or table not called and therefore /// used anymore. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_clear(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct */ NK_API void nk_clear(struct nk_context*); /*/// #### nk_free /// Frees all memory allocated by nuklear. Not needed if context was /// initialized with `nk_init_fixed`. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_free(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct */ NK_API void nk_free(struct nk_context*); #ifdef NK_INCLUDE_COMMAND_USERDATA /*/// #### nk_set_user_data /// Sets the currently passed userdata passed down into each draw command. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_set_user_data(struct nk_context *ctx, nk_handle data); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|-------------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __data__ | Handle with either pointer or index to be passed into every draw commands */ NK_API void nk_set_user_data(struct nk_context*, nk_handle handle); #endif /* ============================================================================= * * INPUT * * =============================================================================*/ /*/// ### Input /// The input API is responsible for holding the current input state composed of /// mouse, key and text input states. /// It is worth noting that no direct OS or window handling is done in nuklear. /// Instead all input state has to be provided by platform specific code. This on one hand /// expects more work from the user and complicates usage but on the other hand /// provides simple abstraction over a big number of platforms, libraries and other /// already provided functionality. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_input_begin(&ctx); /// while (GetEvent(&evt)) { /// if (evt.type == MOUSE_MOVE) /// nk_input_motion(&ctx, evt.motion.x, evt.motion.y); /// else if (evt.type == [...]) { /// // [...] /// } /// } nk_input_end(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Usage /// Input state needs to be provided to nuklear by first calling `nk_input_begin` /// which resets internal state like delta mouse position and button transitions. /// After `nk_input_begin` all current input state needs to be provided. This includes /// mouse motion, button and key pressed and released, text input and scrolling. /// Both event- or state-based input handling are supported by this API /// and should work without problems. Finally after all input state has been /// mirrored `nk_input_end` needs to be called to finish input process. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// Event evt; /// nk_input_begin(&ctx); /// while (GetEvent(&evt)) { /// if (evt.type == MOUSE_MOVE) /// nk_input_motion(&ctx, evt.motion.x, evt.motion.y); /// else if (evt.type == [...]) { /// // [...] /// } /// } /// nk_input_end(&ctx); /// // [...] /// nk_clear(&ctx); /// } nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// --------------------|------------------------------------------------------- /// __nk_input_begin__ | Begins the input mirroring process. Needs to be called before all other `nk_input_xxx` calls /// __nk_input_motion__ | Mirrors mouse cursor position /// __nk_input_key__ | Mirrors key state with either pressed or released /// __nk_input_button__ | Mirrors mouse button state with either pressed or released /// __nk_input_scroll__ | Mirrors mouse scroll values /// __nk_input_char__ | Adds a single ASCII text character into an internal text buffer /// __nk_input_glyph__ | Adds a single multi-byte UTF-8 character into an internal text buffer /// __nk_input_unicode__| Adds a single unicode rune into an internal text buffer /// __nk_input_end__ | Ends the input mirroring process by calculating state changes. Don't call any `nk_input_xxx` function referenced above after this call */ enum nk_keys { NK_KEY_NONE, NK_KEY_SHIFT, NK_KEY_CTRL, NK_KEY_DEL, NK_KEY_ENTER, NK_KEY_TAB, NK_KEY_BACKSPACE, NK_KEY_COPY, NK_KEY_CUT, NK_KEY_PASTE, NK_KEY_UP, NK_KEY_DOWN, NK_KEY_LEFT, NK_KEY_RIGHT, /* Shortcuts: text field */ NK_KEY_TEXT_INSERT_MODE, NK_KEY_TEXT_REPLACE_MODE, NK_KEY_TEXT_RESET_MODE, NK_KEY_TEXT_LINE_START, NK_KEY_TEXT_LINE_END, NK_KEY_TEXT_START, NK_KEY_TEXT_END, NK_KEY_TEXT_UNDO, NK_KEY_TEXT_REDO, NK_KEY_TEXT_SELECT_ALL, NK_KEY_TEXT_WORD_LEFT, NK_KEY_TEXT_WORD_RIGHT, /* Shortcuts: scrollbar */ NK_KEY_SCROLL_START, NK_KEY_SCROLL_END, NK_KEY_SCROLL_DOWN, NK_KEY_SCROLL_UP, NK_KEY_MAX }; enum nk_buttons { NK_BUTTON_LEFT, NK_BUTTON_MIDDLE, NK_BUTTON_RIGHT, NK_BUTTON_DOUBLE, NK_BUTTON_MAX }; /*/// #### nk_input_begin /// Begins the input mirroring process by resetting text, scroll /// mouse, previous mouse position and movement as well as key state transitions, /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_begin(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct */ NK_API void nk_input_begin(struct nk_context*); /*/// #### nk_input_motion /// Mirrors current mouse position to nuklear /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_motion(struct nk_context *ctx, int x, int y); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __x__ | Must hold an integer describing the current mouse cursor x-position /// __y__ | Must hold an integer describing the current mouse cursor y-position */ NK_API void nk_input_motion(struct nk_context*, int x, int y); /*/// #### nk_input_key /// Mirrors the state of a specific key to nuklear /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_key(struct nk_context*, enum nk_keys key, nk_bool down); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __key__ | Must be any value specified in enum `nk_keys` that needs to be mirrored /// __down__ | Must be 0 for key is up and 1 for key is down */ NK_API void nk_input_key(struct nk_context*, enum nk_keys, nk_bool down); /*/// #### nk_input_button /// Mirrors the state of a specific mouse button to nuklear /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_button(struct nk_context *ctx, enum nk_buttons btn, int x, int y, nk_bool down); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __btn__ | Must be any value specified in enum `nk_buttons` that needs to be mirrored /// __x__ | Must contain an integer describing mouse cursor x-position on click up/down /// __y__ | Must contain an integer describing mouse cursor y-position on click up/down /// __down__ | Must be 0 for key is up and 1 for key is down */ NK_API void nk_input_button(struct nk_context*, enum nk_buttons, int x, int y, nk_bool down); /*/// #### nk_input_scroll /// Copies the last mouse scroll value to nuklear. Is generally /// a scroll value. So does not have to come from mouse and could also originate /// TODO finish this sentence /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_scroll(struct nk_context *ctx, struct nk_vec2 val); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __val__ | vector with both X- as well as Y-scroll value */ NK_API void nk_input_scroll(struct nk_context*, struct nk_vec2 val); /*/// #### nk_input_char /// Copies a single ASCII character into an internal text buffer /// This is basically a helper function to quickly push ASCII characters into /// nuklear. /// /// !!! Note /// Stores up to NK_INPUT_MAX bytes between `nk_input_begin` and `nk_input_end`. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_char(struct nk_context *ctx, char c); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __c__ | Must be a single ASCII character preferable one that can be printed */ NK_API void nk_input_char(struct nk_context*, char); /*/// #### nk_input_glyph /// Converts an encoded unicode rune into UTF-8 and copies the result into an /// internal text buffer. /// /// !!! Note /// Stores up to NK_INPUT_MAX bytes between `nk_input_begin` and `nk_input_end`. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_glyph(struct nk_context *ctx, const nk_glyph g); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __g__ | UTF-32 unicode codepoint */ NK_API void nk_input_glyph(struct nk_context*, const nk_glyph); /*/// #### nk_input_unicode /// Converts a unicode rune into UTF-8 and copies the result /// into an internal text buffer. /// !!! Note /// Stores up to NK_INPUT_MAX bytes between `nk_input_begin` and `nk_input_end`. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_unicode(struct nk_context*, nk_rune rune); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct /// __rune__ | UTF-32 unicode codepoint */ NK_API void nk_input_unicode(struct nk_context*, nk_rune); /*/// #### nk_input_end /// End the input mirroring process by resetting mouse grabbing /// state to ensure the mouse cursor is not grabbed indefinitely. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_input_end(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to a previously initialized `nk_context` struct */ NK_API void nk_input_end(struct nk_context*); /* ============================================================================= * * DRAWING * * =============================================================================*/ /*/// ### Drawing /// This library was designed to be render backend agnostic so it does /// not draw anything to screen directly. Instead all drawn shapes, widgets /// are made of, are buffered into memory and make up a command queue. /// Each frame therefore fills the command buffer with draw commands /// that then need to be executed by the user and his own render backend. /// After that the command buffer needs to be cleared and a new frame can be /// started. It is probably important to note that the command buffer is the main /// drawing API and the optional vertex buffer API only takes this format and /// converts it into a hardware accessible format. /// /// #### Usage /// To draw all draw commands accumulated over a frame you need your own render /// backend able to draw a number of 2D primitives. This includes at least /// filled and stroked rectangles, circles, text, lines, triangles and scissors. /// As soon as this criterion is met you can iterate over each draw command /// and execute each draw command in a interpreter like fashion: /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// switch (cmd->type) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case //...: /// //[...] /// } /// } /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// In program flow context draw commands need to be executed after input has been /// gathered and the complete UI with windows and their contained widgets have /// been executed and before calling `nk_clear` which frees all previously /// allocated draw commands. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// Event evt; /// nk_input_begin(&ctx); /// while (GetEvent(&evt)) { /// if (evt.type == MOUSE_MOVE) /// nk_input_motion(&ctx, evt.motion.x, evt.motion.y); /// else if (evt.type == [...]) { /// [...] /// } /// } /// nk_input_end(&ctx); /// // /// // [...] /// // /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// switch (cmd->type) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case ...: /// // [...] /// } /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// You probably noticed that you have to draw all of the UI each frame which is /// quite wasteful. While the actual UI updating loop is quite fast rendering /// without actually needing it is not. So there are multiple things you could do. /// /// First is only update on input. This of course is only an option if your /// application only depends on the UI and does not require any outside calculations. /// If you actually only update on input make sure to update the UI two times each /// frame and call `nk_clear` directly after the first pass and only draw in /// the second pass. In addition it is recommended to also add additional timers /// to make sure the UI is not drawn more than a fixed number of frames per second. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// // [...wait for input ] /// // [...do two UI passes ...] /// do_ui(...) /// nk_clear(&ctx); /// do_ui(...) /// // /// // draw /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// switch (cmd->type) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case ...: /// //[...] /// } /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// The second probably more applicable trick is to only draw if anything changed. /// It is not really useful for applications with continuous draw loop but /// quite useful for desktop applications. To actually get nuklear to only /// draw on changes you first have to define `NK_ZERO_COMMAND_MEMORY` and /// allocate a memory buffer that will store each unique drawing output. /// After each frame you compare the draw command memory inside the library /// with your allocated buffer by memcmp. If memcmp detects differences /// you have to copy the command buffer into the allocated buffer /// and then draw like usual (this example uses fixed memory but you could /// use dynamically allocated memory). /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// //[... other defines ...] /// #define NK_ZERO_COMMAND_MEMORY /// #include "nuklear.h" /// // /// // setup context /// struct nk_context ctx; /// void *last = calloc(1,64*1024); /// void *buf = calloc(1,64*1024); /// nk_init_fixed(&ctx, buf, 64*1024); /// // /// // loop /// while (1) { /// // [...input...] /// // [...ui...] /// void *cmds = nk_buffer_memory(&ctx.memory); /// if (memcmp(cmds, last, ctx.memory.allocated)) { /// memcpy(last,cmds,ctx.memory.allocated); /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// switch (cmd->type) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case ...: /// // [...] /// } /// } /// } /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Finally while using draw commands makes sense for higher abstracted platforms like /// X11 and Win32 or drawing libraries it is often desirable to use graphics /// hardware directly. Therefore it is possible to just define /// `NK_INCLUDE_VERTEX_BUFFER_OUTPUT` which includes optional vertex output. /// To access the vertex output you first have to convert all draw commands into /// vertexes by calling `nk_convert` which takes in your preferred vertex format. /// After successfully converting all draw commands just iterate over and execute all /// vertex draw commands: /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// // fill configuration /// struct your_vertex /// { /// float pos[2]; // important to keep it to 2 floats /// float uv[2]; /// unsigned char col[4]; /// }; /// struct nk_convert_config cfg = {}; /// static const struct nk_draw_vertex_layout_element vertex_layout[] = { /// {NK_VERTEX_POSITION, NK_FORMAT_FLOAT, NK_OFFSETOF(struct your_vertex, pos)}, /// {NK_VERTEX_TEXCOORD, NK_FORMAT_FLOAT, NK_OFFSETOF(struct your_vertex, uv)}, /// {NK_VERTEX_COLOR, NK_FORMAT_R8G8B8A8, NK_OFFSETOF(struct your_vertex, col)}, /// {NK_VERTEX_LAYOUT_END} /// }; /// cfg.shape_AA = NK_ANTI_ALIASING_ON; /// cfg.line_AA = NK_ANTI_ALIASING_ON; /// cfg.vertex_layout = vertex_layout; /// cfg.vertex_size = sizeof(struct your_vertex); /// cfg.vertex_alignment = NK_ALIGNOF(struct your_vertex); /// cfg.circle_segment_count = 22; /// cfg.curve_segment_count = 22; /// cfg.arc_segment_count = 22; /// cfg.global_alpha = 1.0f; /// cfg.null = dev->null; /// // /// // setup buffers and convert /// struct nk_buffer cmds, verts, idx; /// nk_buffer_init_default(&cmds); /// nk_buffer_init_default(&verts); /// nk_buffer_init_default(&idx); /// nk_convert(&ctx, &cmds, &verts, &idx, &cfg); /// // /// // draw /// nk_draw_foreach(cmd, &ctx, &cmds) { /// if (!cmd->elem_count) continue; /// //[...] /// } /// nk_buffer_free(&cms); /// nk_buffer_free(&verts); /// nk_buffer_free(&idx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// --------------------|------------------------------------------------------- /// __nk__begin__ | Returns the first draw command in the context draw command list to be drawn /// __nk__next__ | Increments the draw command iterator to the next command inside the context draw command list /// __nk_foreach__ | Iterates over each draw command inside the context draw command list /// __nk_convert__ | Converts from the abstract draw commands list into a hardware accessible vertex format /// __nk_draw_begin__ | Returns the first vertex command in the context vertex draw list to be executed /// __nk__draw_next__ | Increments the vertex command iterator to the next command inside the context vertex command list /// __nk__draw_end__ | Returns the end of the vertex draw list /// __nk_draw_foreach__ | Iterates over each vertex draw command inside the vertex draw list */ enum nk_anti_aliasing {NK_ANTI_ALIASING_OFF, NK_ANTI_ALIASING_ON}; enum nk_convert_result { NK_CONVERT_SUCCESS = 0, NK_CONVERT_INVALID_PARAM = 1, NK_CONVERT_COMMAND_BUFFER_FULL = NK_FLAG(1), NK_CONVERT_VERTEX_BUFFER_FULL = NK_FLAG(2), NK_CONVERT_ELEMENT_BUFFER_FULL = NK_FLAG(3) }; struct nk_draw_null_texture { nk_handle texture; /* texture handle to a texture with a white pixel */ struct nk_vec2 uv; /* coordinates to a white pixel in the texture */ }; struct nk_convert_config { float global_alpha; /* global alpha value */ enum nk_anti_aliasing line_AA; /* line anti-aliasing flag can be turned off if you are tight on memory */ enum nk_anti_aliasing shape_AA; /* shape anti-aliasing flag can be turned off if you are tight on memory */ unsigned circle_segment_count; /* number of segments used for circles: default to 22 */ unsigned arc_segment_count; /* number of segments used for arcs: default to 22 */ unsigned curve_segment_count; /* number of segments used for curves: default to 22 */ struct nk_draw_null_texture null; /* handle to texture with a white pixel for shape drawing */ const struct nk_draw_vertex_layout_element *vertex_layout; /* describes the vertex output format and packing */ nk_size vertex_size; /* sizeof one vertex for vertex packing */ nk_size vertex_alignment; /* vertex alignment: Can be obtained by NK_ALIGNOF */ }; /*/// #### nk__begin /// Returns a draw command list iterator to iterate all draw /// commands accumulated over one frame. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// const struct nk_command* nk__begin(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | must point to an previously initialized `nk_context` struct at the end of a frame /// /// Returns draw command pointer pointing to the first command inside the draw command list */ NK_API const struct nk_command* nk__begin(struct nk_context*); /*/// #### nk__next /// Returns draw command pointer pointing to the next command inside the draw command list /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// const struct nk_command* nk__next(struct nk_context*, const struct nk_command*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame /// __cmd__ | Must point to an previously a draw command either returned by `nk__begin` or `nk__next` /// /// Returns draw command pointer pointing to the next command inside the draw command list */ NK_API const struct nk_command* nk__next(struct nk_context*, const struct nk_command*); /*/// #### nk_foreach /// Iterates over each draw command inside the context draw command list /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// #define nk_foreach(c, ctx) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame /// __cmd__ | Command pointer initialized to NULL /// /// Iterates over each draw command inside the context draw command list */ #define nk_foreach(c, ctx) for((c) = nk__begin(ctx); (c) != 0; (c) = nk__next(ctx,c)) #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT /*/// #### nk_convert /// Converts all internal draw commands into vertex draw commands and fills /// three buffers with vertexes, vertex draw commands and vertex indices. The vertex format /// as well as some other configuration values have to be configured by filling out a /// `nk_convert_config` struct. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_flags nk_convert(struct nk_context *ctx, struct nk_buffer *cmds, /// struct nk_buffer *vertices, struct nk_buffer *elements, const struct nk_convert_config*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame /// __cmds__ | Must point to a previously initialized buffer to hold converted vertex draw commands /// __vertices__| Must point to a previously initialized buffer to hold all produced vertices /// __elements__| Must point to a previously initialized buffer to hold all produced vertex indices /// __config__ | Must point to a filled out `nk_config` struct to configure the conversion process /// /// Returns one of enum nk_convert_result error codes /// /// Parameter | Description /// --------------------------------|----------------------------------------------------------- /// NK_CONVERT_SUCCESS | Signals a successful draw command to vertex buffer conversion /// NK_CONVERT_INVALID_PARAM | An invalid argument was passed in the function call /// NK_CONVERT_COMMAND_BUFFER_FULL | The provided buffer for storing draw commands is full or failed to allocate more memory /// NK_CONVERT_VERTEX_BUFFER_FULL | The provided buffer for storing vertices is full or failed to allocate more memory /// NK_CONVERT_ELEMENT_BUFFER_FULL | The provided buffer for storing indices is full or failed to allocate more memory */ NK_API nk_flags nk_convert(struct nk_context*, struct nk_buffer *cmds, struct nk_buffer *vertices, struct nk_buffer *elements, const struct nk_convert_config*); /*/// #### nk__draw_begin /// Returns a draw vertex command buffer iterator to iterate over the vertex draw command buffer /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// const struct nk_draw_command* nk__draw_begin(const struct nk_context*, const struct nk_buffer*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame /// __buf__ | Must point to an previously by `nk_convert` filled out vertex draw command buffer /// /// Returns vertex draw command pointer pointing to the first command inside the vertex draw command buffer */ NK_API const struct nk_draw_command* nk__draw_begin(const struct nk_context*, const struct nk_buffer*); /*/// #### nk__draw_end /// Returns the vertex draw command at the end of the vertex draw command buffer /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// const struct nk_draw_command* nk__draw_end(const struct nk_context *ctx, const struct nk_buffer *buf); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame /// __buf__ | Must point to an previously by `nk_convert` filled out vertex draw command buffer /// /// Returns vertex draw command pointer pointing to the end of the last vertex draw command inside the vertex draw command buffer */ NK_API const struct nk_draw_command* nk__draw_end(const struct nk_context*, const struct nk_buffer*); /*/// #### nk__draw_next /// Increments the vertex draw command buffer iterator /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// const struct nk_draw_command* nk__draw_next(const struct nk_draw_command*, const struct nk_buffer*, const struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __cmd__ | Must point to an previously either by `nk__draw_begin` or `nk__draw_next` returned vertex draw command /// __buf__ | Must point to an previously by `nk_convert` filled out vertex draw command buffer /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame /// /// Returns vertex draw command pointer pointing to the end of the last vertex draw command inside the vertex draw command buffer */ NK_API const struct nk_draw_command* nk__draw_next(const struct nk_draw_command*, const struct nk_buffer*, const struct nk_context*); /*/// #### nk_draw_foreach /// Iterates over each vertex draw command inside a vertex draw command buffer /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// #define nk_draw_foreach(cmd,ctx, b) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __cmd__ | `nk_draw_command`iterator set to NULL /// __buf__ | Must point to an previously by `nk_convert` filled out vertex draw command buffer /// __ctx__ | Must point to an previously initialized `nk_context` struct at the end of a frame */ #define nk_draw_foreach(cmd,ctx, b) for((cmd)=nk__draw_begin(ctx, b); (cmd)!=0; (cmd)=nk__draw_next(cmd, b, ctx)) #endif /* ============================================================================= * * WINDOW * * ============================================================================= /// ### Window /// Windows are the main persistent state used inside nuklear and are life time /// controlled by simply "retouching" (i.e. calling) each window each frame. /// All widgets inside nuklear can only be added inside the function pair `nk_begin_xxx` /// and `nk_end`. Calling any widgets outside these two functions will result in an /// assert in debug or no state change in release mode.

/// /// Each window holds frame persistent state like position, size, flags, state tables, /// and some garbage collected internal persistent widget state. Each window /// is linked into a window stack list which determines the drawing and overlapping /// order. The topmost window thereby is the currently active window.

/// /// To change window position inside the stack occurs either automatically by /// user input by being clicked on or programmatically by calling `nk_window_focus`. /// Windows by default are visible unless explicitly being defined with flag /// `NK_WINDOW_HIDDEN`, the user clicked the close button on windows with flag /// `NK_WINDOW_CLOSABLE` or if a window was explicitly hidden by calling /// `nk_window_show`. To explicitly close and destroy a window call `nk_window_close`.

/// /// #### Usage /// To create and keep a window you have to call one of the two `nk_begin_xxx` /// functions to start window declarations and `nk_end` at the end. Furthermore it /// is recommended to check the return value of `nk_begin_xxx` and only process /// widgets inside the window if the value is not 0. Either way you have to call /// `nk_end` at the end of window declarations. Furthermore, do not attempt to /// nest `nk_begin_xxx` calls which will hopefully result in an assert or if not /// in a segmentation fault. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // [... widgets ...] /// } /// nk_end(ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// In the grand concept window and widget declarations need to occur after input /// handling and before drawing to screen. Not doing so can result in higher /// latency or at worst invalid behavior. Furthermore make sure that `nk_clear` /// is called at the end of the frame. While nuklear's default platform backends /// already call `nk_clear` for you if you write your own backend not calling /// `nk_clear` can cause asserts or even worse undefined behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// Event evt; /// nk_input_begin(&ctx); /// while (GetEvent(&evt)) { /// if (evt.type == MOUSE_MOVE) /// nk_input_motion(&ctx, evt.motion.x, evt.motion.y); /// else if (evt.type == [...]) { /// nk_input_xxx(...); /// } /// } /// nk_input_end(&ctx); /// /// if (nk_begin_xxx(...) { /// //[...] /// } /// nk_end(ctx); /// /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case //...: /// //[...] /// } /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// ------------------------------------|---------------------------------------- /// nk_begin | Starts a new window; needs to be called every frame for every window (unless hidden) or otherwise the window gets removed /// nk_begin_titled | Extended window start with separated title and identifier to allow multiple windows with same name but not title /// nk_end | Needs to be called at the end of the window building process to process scaling, scrollbars and general cleanup // /// nk_window_find | Finds and returns the window with give name /// nk_window_get_bounds | Returns a rectangle with screen position and size of the currently processed window. /// nk_window_get_position | Returns the position of the currently processed window /// nk_window_get_size | Returns the size with width and height of the currently processed window /// nk_window_get_width | Returns the width of the currently processed window /// nk_window_get_height | Returns the height of the currently processed window /// nk_window_get_panel | Returns the underlying panel which contains all processing state of the current window /// nk_window_get_content_region | Returns the position and size of the currently visible and non-clipped space inside the currently processed window /// nk_window_get_content_region_min | Returns the upper rectangle position of the currently visible and non-clipped space inside the currently processed window /// nk_window_get_content_region_max | Returns the upper rectangle position of the currently visible and non-clipped space inside the currently processed window /// nk_window_get_content_region_size | Returns the size of the currently visible and non-clipped space inside the currently processed window /// nk_window_get_canvas | Returns the draw command buffer. Can be used to draw custom widgets /// nk_window_get_scroll | Gets the scroll offset of the current window /// nk_window_has_focus | Returns if the currently processed window is currently active /// nk_window_is_collapsed | Returns if the window with given name is currently minimized/collapsed /// nk_window_is_closed | Returns if the currently processed window was closed /// nk_window_is_hidden | Returns if the currently processed window was hidden /// nk_window_is_active | Same as nk_window_has_focus for some reason /// nk_window_is_hovered | Returns if the currently processed window is currently being hovered by mouse /// nk_window_is_any_hovered | Return if any window currently hovered /// nk_item_is_any_active | Returns if any window or widgets is currently hovered or active // /// nk_window_set_bounds | Updates position and size of the currently processed window /// nk_window_set_position | Updates position of the currently process window /// nk_window_set_size | Updates the size of the currently processed window /// nk_window_set_focus | Set the currently processed window as active window /// nk_window_set_scroll | Sets the scroll offset of the current window // /// nk_window_close | Closes the window with given window name which deletes the window at the end of the frame /// nk_window_collapse | Collapses the window with given window name /// nk_window_collapse_if | Collapses the window with given window name if the given condition was met /// nk_window_show | Hides a visible or reshows a hidden window /// nk_window_show_if | Hides/shows a window depending on condition */ /* /// #### nk_panel_flags /// Flag | Description /// ----------------------------|---------------------------------------- /// NK_WINDOW_BORDER | Draws a border around the window to visually separate window from the background /// NK_WINDOW_MOVABLE | The movable flag indicates that a window can be moved by user input or by dragging the window header /// NK_WINDOW_SCALABLE | The scalable flag indicates that a window can be scaled by user input by dragging a scaler icon at the button of the window /// NK_WINDOW_CLOSABLE | Adds a closable icon into the header /// NK_WINDOW_MINIMIZABLE | Adds a minimize icon into the header /// NK_WINDOW_NO_SCROLLBAR | Removes the scrollbar from the window /// NK_WINDOW_TITLE | Forces a header at the top at the window showing the title /// NK_WINDOW_SCROLL_AUTO_HIDE | Automatically hides the window scrollbar if no user interaction: also requires delta time in `nk_context` to be set each frame /// NK_WINDOW_BACKGROUND | Always keep window in the background /// NK_WINDOW_SCALE_LEFT | Puts window scaler in the left-bottom corner instead right-bottom /// NK_WINDOW_NO_INPUT | Prevents window of scaling, moving or getting focus /// /// #### nk_collapse_states /// State | Description /// ----------------|----------------------------------------------------------- /// __NK_MINIMIZED__| UI section is collased and not visible until maximized /// __NK_MAXIMIZED__| UI section is extended and visible until minimized ///

*/ enum nk_panel_flags { NK_WINDOW_BORDER = NK_FLAG(0), NK_WINDOW_MOVABLE = NK_FLAG(1), NK_WINDOW_SCALABLE = NK_FLAG(2), NK_WINDOW_CLOSABLE = NK_FLAG(3), NK_WINDOW_MINIMIZABLE = NK_FLAG(4), NK_WINDOW_TITLE = NK_FLAG(5), NK_WINDOW_SCROLL_AUTO_HIDE = NK_FLAG(6), NK_WINDOW_BACKGROUND = NK_FLAG(7), NK_WINDOW_SCALE_LEFT = NK_FLAG(8), NK_WINDOW_NO_INPUT = NK_FLAG(9), NK_WINDOW_NO_SCROLLBAR_X = NK_FLAG(10), //< @r-lyeh NK_WINDOW_NO_SCROLLBAR_Y = NK_FLAG(11), //< @r-lyeh NK_WINDOW_NO_SCROLLBAR = NK_FLAG(10) | NK_FLAG(11), //< @r-lyeh NK_WINDOW_SCALE_TOP = NK_FLAG(12), //< @r-lyeh NK_WINDOW_PINNABLE = NK_FLAG(13), //< @r-lyeh NK_WINDOW_MAXIMIZABLE = NK_FLAG(14), //< @r-lyeh NK_WINDOW_PUBLIC_FLAGS = 14, //< @r-lyeh }; /*/// #### nk_begin /// Starts a new window; needs to be called every frame for every /// window (unless hidden) or otherwise the window gets removed /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_begin(struct nk_context *ctx, const char *title, struct nk_rect bounds, nk_flags flags); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __title__ | Window title and identifier. Needs to be persistent over frames to identify the window /// __bounds__ | Initial position and window size. However if you do not define `NK_WINDOW_SCALABLE` or `NK_WINDOW_MOVABLE` you can set window position and size every frame /// __flags__ | Window flags defined in the nk_panel_flags section with a number of different window behaviors /// /// Returns `true(1)` if the window can be filled up with widgets from this point /// until `nk_end` or `false(0)` otherwise for example if minimized */ NK_API nk_bool nk_begin(struct nk_context *ctx, const char *title, struct nk_rect bounds, nk_flags flags); /*/// #### nk_begin_titled /// Extended window start with separated title and identifier to allow multiple /// windows with same title but not name /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_begin_titled(struct nk_context *ctx, const char *name, const char *title, struct nk_rect bounds, nk_flags flags); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Window identifier. Needs to be persistent over frames to identify the window /// __title__ | Window title displayed inside header if flag `NK_WINDOW_TITLE` or either `NK_WINDOW_CLOSABLE` or `NK_WINDOW_MINIMIZED` was set /// __bounds__ | Initial position and window size. However if you do not define `NK_WINDOW_SCALABLE` or `NK_WINDOW_MOVABLE` you can set window position and size every frame /// __flags__ | Window flags defined in the nk_panel_flags section with a number of different window behaviors /// /// Returns `true(1)` if the window can be filled up with widgets from this point /// until `nk_end` or `false(0)` otherwise for example if minimized */ NK_API nk_bool nk_begin_titled(struct nk_context *ctx, const char *name, const char *title, struct nk_rect bounds, nk_flags flags); /*/// #### nk_end /// Needs to be called at the end of the window building process to process scaling, scrollbars and general cleanup. /// All widget calls after this functions will result in asserts or no state changes /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_end(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct */ NK_API void nk_end(struct nk_context *ctx); /*/// #### nk_window_find /// Finds and returns a window from passed name /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_window *nk_window_find(struct nk_context *ctx, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Window identifier /// /// Returns a `nk_window` struct pointing to the identified window or NULL if /// no window with the given name was found */ NK_API struct nk_window *nk_window_find(struct nk_context *ctx, const char *name); /*/// #### nk_window_get_bounds /// Returns a rectangle with screen position and size of the currently processed window /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_rect nk_window_get_bounds(const struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns a `nk_rect` struct with window upper left window position and size */ NK_API struct nk_rect nk_window_get_bounds(const struct nk_context *ctx); /*/// #### nk_window_get_position /// Returns the position of the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_window_get_position(const struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns a `nk_vec2` struct with window upper left position */ NK_API struct nk_vec2 nk_window_get_position(const struct nk_context *ctx); /*/// #### nk_window_get_size /// Returns the size with width and height of the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_window_get_size(const struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns a `nk_vec2` struct with window width and height */ NK_API struct nk_vec2 nk_window_get_size(const struct nk_context*); /*/// #### nk_window_get_width /// Returns the width of the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// float nk_window_get_width(const struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns the current window width */ NK_API float nk_window_get_width(const struct nk_context*); /*/// #### nk_window_get_height /// Returns the height of the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// float nk_window_get_height(const struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns the current window height */ NK_API float nk_window_get_height(const struct nk_context*); /*/// #### nk_window_get_panel /// Returns the underlying panel which contains all processing state of the current window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// !!! WARNING /// Do not keep the returned panel pointer around, it is only valid until `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_panel* nk_window_get_panel(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns a pointer to window internal `nk_panel` state. */ NK_API struct nk_panel* nk_window_get_panel(struct nk_context*); /*/// #### nk_window_get_content_region /// Returns the position and size of the currently visible and non-clipped space /// inside the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_rect nk_window_get_content_region(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `nk_rect` struct with screen position and size (no scrollbar offset) /// of the visible space inside the current window */ NK_API struct nk_rect nk_window_get_content_region(struct nk_context*); /*/// #### nk_window_get_content_region_min /// Returns the upper left position of the currently visible and non-clipped /// space inside the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_window_get_content_region_min(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// returns `nk_vec2` struct with upper left screen position (no scrollbar offset) /// of the visible space inside the current window */ NK_API struct nk_vec2 nk_window_get_content_region_min(struct nk_context*); /*/// #### nk_window_get_content_region_max /// Returns the lower right screen position of the currently visible and /// non-clipped space inside the currently processed window. /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_window_get_content_region_max(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `nk_vec2` struct with lower right screen position (no scrollbar offset) /// of the visible space inside the current window */ NK_API struct nk_vec2 nk_window_get_content_region_max(struct nk_context*); /*/// #### nk_window_get_content_region_size /// Returns the size of the currently visible and non-clipped space inside the /// currently processed window /// /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_window_get_content_region_size(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `nk_vec2` struct with size the visible space inside the current window */ NK_API struct nk_vec2 nk_window_get_content_region_size(struct nk_context*); /*/// #### nk_window_get_canvas /// Returns the draw command buffer. Can be used to draw custom widgets /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// !!! WARNING /// Do not keep the returned command buffer pointer around it is only valid until `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_command_buffer* nk_window_get_canvas(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns a pointer to window internal `nk_command_buffer` struct used as /// drawing canvas. Can be used to do custom drawing. */ NK_API struct nk_command_buffer* nk_window_get_canvas(struct nk_context*); /*/// #### nk_window_get_scroll /// Gets the scroll offset for the current window /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_get_scroll(struct nk_context *ctx, nk_uint *offset_x, nk_uint *offset_y); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// -------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __offset_x__ | A pointer to the x offset output (or NULL to ignore) /// __offset_y__ | A pointer to the y offset output (or NULL to ignore) */ NK_API void nk_window_get_scroll(struct nk_context*, nk_uint *offset_x, nk_uint *offset_y); /*/// #### nk_window_has_focus /// Returns if the currently processed window is currently active /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_has_focus(const struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `false(0)` if current window is not active or `true(1)` if it is */ NK_API nk_bool nk_window_has_focus(const struct nk_context*); /*/// #### nk_window_is_hovered /// Return if the current window is being hovered /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_is_hovered(struct nk_context *ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `true(1)` if current window is hovered or `false(0)` otherwise */ NK_API nk_bool nk_window_is_hovered(struct nk_context*); /*/// #### nk_window_is_collapsed /// Returns if the window with given name is currently minimized/collapsed /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_is_collapsed(struct nk_context *ctx, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of window you want to check if it is collapsed /// /// Returns `true(1)` if current window is minimized and `false(0)` if window not /// found or is not minimized */ NK_API nk_bool nk_window_is_collapsed(struct nk_context *ctx, const char *name); /*/// #### nk_window_is_closed /// Returns if the window with given name was closed by calling `nk_close` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_is_closed(struct nk_context *ctx, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of window you want to check if it is closed /// /// Returns `true(1)` if current window was closed or `false(0)` window not found or not closed */ NK_API nk_bool nk_window_is_closed(struct nk_context*, const char*); /*/// #### nk_window_is_hidden /// Returns if the window with given name is hidden /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_is_hidden(struct nk_context *ctx, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of window you want to check if it is hidden /// /// Returns `true(1)` if current window is hidden or `false(0)` window not found or visible */ NK_API nk_bool nk_window_is_hidden(struct nk_context*, const char*); /*/// #### nk_window_is_active /// Same as nk_window_has_focus for some reason /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_is_active(struct nk_context *ctx, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of window you want to check if it is active /// /// Returns `true(1)` if current window is active or `false(0)` window not found or not active */ NK_API nk_bool nk_window_is_active(struct nk_context*, const char*); /*/// #### nk_window_is_any_hovered /// Returns if the any window is being hovered /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_window_is_any_hovered(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `true(1)` if any window is hovered or `false(0)` otherwise */ NK_API nk_bool nk_window_is_any_hovered(struct nk_context*); /*/// #### nk_item_is_any_active /// Returns if the any window is being hovered or any widget is currently active. /// Can be used to decide if input should be processed by UI or your specific input handling. /// Example could be UI and 3D camera to move inside a 3D space. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_item_is_any_active(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// /// Returns `true(1)` if any window is hovered or any item is active or `false(0)` otherwise */ NK_API nk_bool nk_item_is_any_active(struct nk_context*); /*/// #### nk_window_set_bounds /// Updates position and size of window with passed in name /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_set_bounds(struct nk_context*, const char *name, struct nk_rect bounds); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to modify both position and size /// __bounds__ | Must point to a `nk_rect` struct with the new position and size */ NK_API void nk_window_set_bounds(struct nk_context*, const char *name, struct nk_rect bounds); /*/// #### nk_window_set_position /// Updates position of window with passed name /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_set_position(struct nk_context*, const char *name, struct nk_vec2 pos); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to modify both position /// __pos__ | Must point to a `nk_vec2` struct with the new position */ NK_API void nk_window_set_position(struct nk_context*, const char *name, struct nk_vec2 pos); /*/// #### nk_window_set_size /// Updates size of window with passed in name /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_set_size(struct nk_context*, const char *name, struct nk_vec2); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to modify both window size /// __size__ | Must point to a `nk_vec2` struct with new window size */ NK_API void nk_window_set_size(struct nk_context*, const char *name, struct nk_vec2); /*/// #### nk_window_set_focus /// Sets the window with given name as active /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_set_focus(struct nk_context*, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to set focus on */ NK_API void nk_window_set_focus(struct nk_context*, const char *name); /*/// #### nk_window_set_scroll /// Sets the scroll offset for the current window /// !!! WARNING /// Only call this function between calls `nk_begin_xxx` and `nk_end` /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_set_scroll(struct nk_context *ctx, nk_uint offset_x, nk_uint offset_y); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// -------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __offset_x__ | The x offset to scroll to /// __offset_y__ | The y offset to scroll to */ NK_API void nk_window_set_scroll(struct nk_context*, nk_uint offset_x, nk_uint offset_y); /*/// #### nk_window_close /// Closes a window and marks it for being freed at the end of the frame /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_close(struct nk_context *ctx, const char *name); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to close */ NK_API void nk_window_close(struct nk_context *ctx, const char *name); /*/// #### nk_window_collapse /// Updates collapse state of a window with given name /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_collapse(struct nk_context*, const char *name, enum nk_collapse_states state); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to close /// __state__ | value out of nk_collapse_states section */ NK_API void nk_window_collapse(struct nk_context*, const char *name, enum nk_collapse_states state); /*/// #### nk_window_collapse_if /// Updates collapse state of a window with given name if given condition is met /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_collapse_if(struct nk_context*, const char *name, enum nk_collapse_states, int cond); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to either collapse or maximize /// __state__ | value out of nk_collapse_states section the window should be put into /// __cond__ | condition that has to be met to actually commit the collapse state change */ NK_API void nk_window_collapse_if(struct nk_context*, const char *name, enum nk_collapse_states, int cond); /*/// #### nk_window_show /// updates visibility state of a window with given name /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_show(struct nk_context*, const char *name, enum nk_show_states); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to either collapse or maximize /// __state__ | state with either visible or hidden to modify the window with */ NK_API void nk_window_show(struct nk_context*, const char *name, enum nk_show_states); /*/// #### nk_window_show_if /// Updates visibility state of a window with given name if a given condition is met /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_window_show_if(struct nk_context*, const char *name, enum nk_show_states, int cond); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __name__ | Identifier of the window to either hide or show /// __state__ | state with either visible or hidden to modify the window with /// __cond__ | condition that has to be met to actually commit the visbility state change */ NK_API void nk_window_show_if(struct nk_context*, const char *name, enum nk_show_states, int cond); /* ============================================================================= * * LAYOUT * * ============================================================================= /// ### Layouting /// Layouting in general describes placing widget inside a window with position and size. /// While in this particular implementation there are five different APIs for layouting /// each with different trade offs between control and ease of use.

/// /// All layouting methods in this library are based around the concept of a row. /// A row has a height the window content grows by and a number of columns and each /// layouting method specifies how each widget is placed inside the row. /// After a row has been allocated by calling a layouting functions and then /// filled with widgets will advance an internal pointer over the allocated row.

/// /// To actually define a layout you just call the appropriate layouting function /// and each subsequent widget call will place the widget as specified. Important /// here is that if you define more widgets then columns defined inside the layout /// functions it will allocate the next row without you having to make another layouting

/// call. /// /// Biggest limitation with using all these APIs outside the `nk_layout_space_xxx` API /// is that you have to define the row height for each. However the row height /// often depends on the height of the font.

/// /// To fix that internally nuklear uses a minimum row height that is set to the /// height plus padding of currently active font and overwrites the row height /// value if zero.

/// /// If you manually want to change the minimum row height then /// use nk_layout_set_min_row_height, and use nk_layout_reset_min_row_height to /// reset it back to be derived from font height.

/// /// Also if you change the font in nuklear it will automatically change the minimum /// row height for you and. This means if you change the font but still want /// a minimum row height smaller than the font you have to repush your value.

/// /// For actually more advanced UI I would even recommend using the `nk_layout_space_xxx` /// layouting method in combination with a cassowary constraint solver (there are /// some versions on github with permissive license model) to take over all control over widget /// layouting yourself. However for quick and dirty layouting using all the other layouting /// functions should be fine. /// /// #### Usage /// 1. __nk_layout_row_dynamic__

/// The easiest layouting function is `nk_layout_row_dynamic`. It provides each /// widgets with same horizontal space inside the row and dynamically grows /// if the owning window grows in width. So the number of columns dictates /// the size of each widget dynamically by formula: /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// widget_width = (window_width - padding - spacing) * (1/colum_count) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Just like all other layouting APIs if you define more widget than columns this /// library will allocate a new row and keep all layouting parameters previously /// defined. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // first row with height: 30 composed of two widgets /// nk_layout_row_dynamic(&ctx, 30, 2); /// nk_widget(...); /// nk_widget(...); /// // /// // second row with same parameter as defined above /// nk_widget(...); /// nk_widget(...); /// // /// // third row uses 0 for height which will use auto layouting /// nk_layout_row_dynamic(&ctx, 0, 2); /// nk_widget(...); /// nk_widget(...); /// } /// nk_end(...); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// 2. __nk_layout_row_static__

/// Another easy layouting function is `nk_layout_row_static`. It provides each /// widget with same horizontal pixel width inside the row and does not grow /// if the owning window scales smaller or bigger. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // first row with height: 30 composed of two widgets with width: 80 /// nk_layout_row_static(&ctx, 30, 80, 2); /// nk_widget(...); /// nk_widget(...); /// // /// // second row with same parameter as defined above /// nk_widget(...); /// nk_widget(...); /// // /// // third row uses 0 for height which will use auto layouting /// nk_layout_row_static(&ctx, 0, 80, 2); /// nk_widget(...); /// nk_widget(...); /// } /// nk_end(...); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// 3. __nk_layout_row_xxx__

/// A little bit more advanced layouting API are functions `nk_layout_row_begin`, /// `nk_layout_row_push` and `nk_layout_row_end`. They allow to directly /// specify each column pixel or window ratio in a row. It supports either /// directly setting per column pixel width or widget window ratio but not /// both. Furthermore it is a immediate mode API so each value is directly /// pushed before calling a widget. Therefore the layout is not automatically /// repeating like the last two layouting functions. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // first row with height: 25 composed of two widgets with width 60 and 40 /// nk_layout_row_begin(ctx, NK_STATIC, 25, 2); /// nk_layout_row_push(ctx, 60); /// nk_widget(...); /// nk_layout_row_push(ctx, 40); /// nk_widget(...); /// nk_layout_row_end(ctx); /// // /// // second row with height: 25 composed of two widgets with window ratio 0.25 and 0.75 /// nk_layout_row_begin(ctx, NK_DYNAMIC, 25, 2); /// nk_layout_row_push(ctx, 0.25f); /// nk_widget(...); /// nk_layout_row_push(ctx, 0.75f); /// nk_widget(...); /// nk_layout_row_end(ctx); /// // /// // third row with auto generated height: composed of two widgets with window ratio 0.25 and 0.75 /// nk_layout_row_begin(ctx, NK_DYNAMIC, 0, 2); /// nk_layout_row_push(ctx, 0.25f); /// nk_widget(...); /// nk_layout_row_push(ctx, 0.75f); /// nk_widget(...); /// nk_layout_row_end(ctx); /// } /// nk_end(...); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// 4. __nk_layout_row__

/// The array counterpart to API nk_layout_row_xxx is the single nk_layout_row /// functions. Instead of pushing either pixel or window ratio for every widget /// it allows to define it by array. The trade of for less control is that /// `nk_layout_row` is automatically repeating. Otherwise the behavior is the /// same. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // two rows with height: 30 composed of two widgets with width 60 and 40 /// const float size[] = {60,40}; /// nk_layout_row(ctx, NK_STATIC, 30, 2, ratio); /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// // /// // two rows with height: 30 composed of two widgets with window ratio 0.25 and 0.75 /// const float ratio[] = {0.25, 0.75}; /// nk_layout_row(ctx, NK_DYNAMIC, 30, 2, ratio); /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// // /// // two rows with auto generated height composed of two widgets with window ratio 0.25 and 0.75 /// const float ratio[] = {0.25, 0.75}; /// nk_layout_row(ctx, NK_DYNAMIC, 30, 2, ratio); /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// } /// nk_end(...); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// 5. __nk_layout_row_template_xxx__

/// The most complex and second most flexible API is a simplified flexbox version without /// line wrapping and weights for dynamic widgets. It is an immediate mode API but /// unlike `nk_layout_row_xxx` it has auto repeat behavior and needs to be called /// before calling the templated widgets. /// The row template layout has three different per widget size specifier. The first /// one is the `nk_layout_row_template_push_static` with fixed widget pixel width. /// They do not grow if the row grows and will always stay the same. /// The second size specifier is `nk_layout_row_template_push_variable` /// which defines a minimum widget size but it also can grow if more space is available /// not taken by other widgets. /// Finally there are dynamic widgets with `nk_layout_row_template_push_dynamic` /// which are completely flexible and unlike variable widgets can even shrink /// to zero if not enough space is provided. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // two rows with height: 30 composed of three widgets /// nk_layout_row_template_begin(ctx, 30); /// nk_layout_row_template_push_dynamic(ctx); /// nk_layout_row_template_push_variable(ctx, 80); /// nk_layout_row_template_push_static(ctx, 80); /// nk_layout_row_template_end(ctx); /// // /// // first row /// nk_widget(...); // dynamic widget can go to zero if not enough space /// nk_widget(...); // variable widget with min 80 pixel but can grow bigger if enough space /// nk_widget(...); // static widget with fixed 80 pixel width /// // /// // second row same layout /// nk_widget(...); /// nk_widget(...); /// nk_widget(...); /// } /// nk_end(...); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// 6. __nk_layout_space_xxx__

/// Finally the most flexible API directly allows you to place widgets inside the /// window. The space layout API is an immediate mode API which does not support /// row auto repeat and directly sets position and size of a widget. Position /// and size hereby can be either specified as ratio of allocated space or /// allocated space local position and pixel size. Since this API is quite /// powerful there are a number of utility functions to get the available space /// and convert between local allocated space and screen space. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_begin_xxx(...) { /// // static row with height: 500 (you can set column count to INT_MAX if you don't want to be bothered) /// nk_layout_space_begin(ctx, NK_STATIC, 500, INT_MAX); /// nk_layout_space_push(ctx, nk_rect(0,0,150,200)); /// nk_widget(...); /// nk_layout_space_push(ctx, nk_rect(200,200,100,200)); /// nk_widget(...); /// nk_layout_space_end(ctx); /// // /// // dynamic row with height: 500 (you can set column count to INT_MAX if you don't want to be bothered) /// nk_layout_space_begin(ctx, NK_DYNAMIC, 500, INT_MAX); /// nk_layout_space_push(ctx, nk_rect(0.5,0.5,0.1,0.1)); /// nk_widget(...); /// nk_layout_space_push(ctx, nk_rect(0.7,0.6,0.1,0.1)); /// nk_widget(...); /// } /// nk_end(...); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// ----------------------------------------|------------------------------------ /// nk_layout_set_min_row_height | Set the currently used minimum row height to a specified value /// nk_layout_reset_min_row_height | Resets the currently used minimum row height to font height /// nk_layout_widget_bounds | Calculates current width a static layout row can fit inside a window /// nk_layout_ratio_from_pixel | Utility functions to calculate window ratio from pixel size // /// nk_layout_row_dynamic | Current layout is divided into n same sized growing columns /// nk_layout_row_static | Current layout is divided into n same fixed sized columns /// nk_layout_row_begin | Starts a new row with given height and number of columns /// nk_layout_row_push | Pushes another column with given size or window ratio /// nk_layout_row_end | Finished previously started row /// nk_layout_row | Specifies row columns in array as either window ratio or size // /// nk_layout_row_template_begin | Begins the row template declaration /// nk_layout_row_template_push_dynamic | Adds a dynamic column that dynamically grows and can go to zero if not enough space /// nk_layout_row_template_push_variable | Adds a variable column that dynamically grows but does not shrink below specified pixel width /// nk_layout_row_template_push_static | Adds a static column that does not grow and will always have the same size /// nk_layout_row_template_end | Marks the end of the row template // /// nk_layout_space_begin | Begins a new layouting space that allows to specify each widgets position and size /// nk_layout_space_push | Pushes position and size of the next widget in own coordinate space either as pixel or ratio /// nk_layout_space_end | Marks the end of the layouting space // /// nk_layout_space_bounds | Callable after nk_layout_space_begin and returns total space allocated /// nk_layout_space_to_screen | Converts vector from nk_layout_space coordinate space into screen space /// nk_layout_space_to_local | Converts vector from screen space into nk_layout_space coordinates /// nk_layout_space_rect_to_screen | Converts rectangle from nk_layout_space coordinate space into screen space /// nk_layout_space_rect_to_local | Converts rectangle from screen space into nk_layout_space coordinates */ /*/// #### nk_layout_set_min_row_height /// Sets the currently used minimum row height. /// !!! WARNING /// The passed height needs to include both your preferred row height /// as well as padding. No internal padding is added. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_set_min_row_height(struct nk_context*, float height); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __height__ | New minimum row height to be used for auto generating the row height */ NK_API void nk_layout_set_min_row_height(struct nk_context*, float height); /*/// #### nk_layout_reset_min_row_height /// Reset the currently used minimum row height back to `font_height + text_padding + padding` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_reset_min_row_height(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` */ NK_API void nk_layout_reset_min_row_height(struct nk_context*); /*/// #### nk_layout_widget_bounds /// Returns the width of the next row allocate by one of the layouting functions /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_rect nk_layout_widget_bounds(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// /// Return `nk_rect` with both position and size of the next row */ NK_API struct nk_rect nk_layout_widget_bounds(struct nk_context*); /*/// #### nk_layout_ratio_from_pixel /// Utility functions to calculate window ratio from pixel size /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// float nk_layout_ratio_from_pixel(struct nk_context*, float pixel_width); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __pixel__ | Pixel_width to convert to window ratio /// /// Returns `nk_rect` with both position and size of the next row */ NK_API float nk_layout_ratio_from_pixel(struct nk_context*, float pixel_width); /*/// #### nk_layout_row_dynamic /// Sets current row layout to share horizontal space /// between @cols number of widgets evenly. Once called all subsequent widget /// calls greater than @cols will allocate a new row with same layout. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_dynamic(struct nk_context *ctx, float height, int cols); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __height__ | Holds height of each widget in row or zero for auto layouting /// __columns__ | Number of widget inside row */ NK_API void nk_layout_row_dynamic(struct nk_context *ctx, float height, int cols); /*/// #### nk_layout_row_static /// Sets current row layout to fill @cols number of widgets /// in row with same @item_width horizontal size. Once called all subsequent widget /// calls greater than @cols will allocate a new row with same layout. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_static(struct nk_context *ctx, float height, int item_width, int cols); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __height__ | Holds height of each widget in row or zero for auto layouting /// __width__ | Holds pixel width of each widget in the row /// __columns__ | Number of widget inside row */ NK_API void nk_layout_row_static(struct nk_context *ctx, float height, int item_width, int cols); /*/// #### nk_layout_row_begin /// Starts a new dynamic or fixed row with given height and columns. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_begin(struct nk_context *ctx, enum nk_layout_format fmt, float row_height, int cols); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __fmt__ | either `NK_DYNAMIC` for window ratio or `NK_STATIC` for fixed size columns /// __height__ | holds height of each widget in row or zero for auto layouting /// __columns__ | Number of widget inside row */ NK_API void nk_layout_row_begin(struct nk_context *ctx, enum nk_layout_format fmt, float row_height, int cols); /*/// #### nk_layout_row_push /// Specifies either window ratio or width of a single column /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_push(struct nk_context*, float value); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __value__ | either a window ratio or fixed width depending on @fmt in previous `nk_layout_row_begin` call */ NK_API void nk_layout_row_push(struct nk_context*, float value); /*/// #### nk_layout_row_end /// Finished previously started row /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_end(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` */ NK_API void nk_layout_row_end(struct nk_context*); /*/// #### nk_layout_row /// Specifies row columns in array as either window ratio or size /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row(struct nk_context*, enum nk_layout_format, float height, int cols, const float *ratio); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __fmt__ | Either `NK_DYNAMIC` for window ratio or `NK_STATIC` for fixed size columns /// __height__ | Holds height of each widget in row or zero for auto layouting /// __columns__ | Number of widget inside row */ NK_API void nk_layout_row(struct nk_context*, enum nk_layout_format, float height, int cols, const float *ratio); /*/// #### nk_layout_row_template_begin /// Begins the row template declaration /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_template_begin(struct nk_context*, float row_height); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __height__ | Holds height of each widget in row or zero for auto layouting */ NK_API void nk_layout_row_template_begin(struct nk_context*, float row_height); /*/// #### nk_layout_row_template_push_dynamic /// Adds a dynamic column that dynamically grows and can go to zero if not enough space /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_template_push_dynamic(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __height__ | Holds height of each widget in row or zero for auto layouting */ NK_API void nk_layout_row_template_push_dynamic(struct nk_context*); /*/// #### nk_layout_row_template_push_variable /// Adds a variable column that dynamically grows but does not shrink below specified pixel width /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_template_push_variable(struct nk_context*, float min_width); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __width__ | Holds the minimum pixel width the next column must always be */ NK_API void nk_layout_row_template_push_variable(struct nk_context*, float min_width); /*/// #### nk_layout_row_template_push_static /// Adds a static column that does not grow and will always have the same size /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_template_push_static(struct nk_context*, float width); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __width__ | Holds the absolute pixel width value the next column must be */ NK_API void nk_layout_row_template_push_static(struct nk_context*, float width); /*/// #### nk_layout_row_template_end /// Marks the end of the row template /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_row_template_end(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` */ NK_API void nk_layout_row_template_end(struct nk_context*); /*/// #### nk_layout_space_begin /// Begins a new layouting space that allows to specify each widgets position and size. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_space_begin(struct nk_context*, enum nk_layout_format, float height, int widget_count); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_begin_xxx` /// __fmt__ | Either `NK_DYNAMIC` for window ratio or `NK_STATIC` for fixed size columns /// __height__ | Holds height of each widget in row or zero for auto layouting /// __columns__ | Number of widgets inside row */ NK_API void nk_layout_space_begin(struct nk_context*, enum nk_layout_format, float height, int widget_count); /*/// #### nk_layout_space_push /// Pushes position and size of the next widget in own coordinate space either as pixel or ratio /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_space_push(struct nk_context *ctx, struct nk_rect bounds); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// __bounds__ | Position and size in laoyut space local coordinates */ NK_API void nk_layout_space_push(struct nk_context*, struct nk_rect bounds); /*/// #### nk_layout_space_end /// Marks the end of the layout space /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_layout_space_end(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` */ NK_API void nk_layout_space_end(struct nk_context*); /*/// #### nk_layout_space_bounds /// Utility function to calculate total space allocated for `nk_layout_space` /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_rect nk_layout_space_bounds(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// /// Returns `nk_rect` holding the total space allocated */ NK_API struct nk_rect nk_layout_space_bounds(struct nk_context*); /*/// #### nk_layout_space_to_screen /// Converts vector from nk_layout_space coordinate space into screen space /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_layout_space_to_screen(struct nk_context*, struct nk_vec2); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// __vec__ | Position to convert from layout space into screen coordinate space /// /// Returns transformed `nk_vec2` in screen space coordinates */ NK_API struct nk_vec2 nk_layout_space_to_screen(struct nk_context*, struct nk_vec2); /*/// #### nk_layout_space_to_local /// Converts vector from layout space into screen space /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_vec2 nk_layout_space_to_local(struct nk_context*, struct nk_vec2); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// __vec__ | Position to convert from screen space into layout coordinate space /// /// Returns transformed `nk_vec2` in layout space coordinates */ NK_API struct nk_vec2 nk_layout_space_to_local(struct nk_context*, struct nk_vec2); /*/// #### nk_layout_space_rect_to_screen /// Converts rectangle from screen space into layout space /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_rect nk_layout_space_rect_to_screen(struct nk_context*, struct nk_rect); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// __bounds__ | Rectangle to convert from layout space into screen space /// /// Returns transformed `nk_rect` in screen space coordinates */ NK_API struct nk_rect nk_layout_space_rect_to_screen(struct nk_context*, struct nk_rect); /*/// #### nk_layout_space_rect_to_local /// Converts rectangle from layout space into screen space /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_rect nk_layout_space_rect_to_local(struct nk_context*, struct nk_rect); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// __bounds__ | Rectangle to convert from layout space into screen space /// /// Returns transformed `nk_rect` in layout space coordinates */ NK_API struct nk_rect nk_layout_space_rect_to_local(struct nk_context*, struct nk_rect); /*/// #### nk_spacer /// Spacer is a dummy widget that consumes space as usual but doesn't draw anything /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_spacer(struct nk_context* ); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after call `nk_layout_space_begin` /// */ NK_API void nk_spacer(struct nk_context* ); /* ============================================================================= * * GROUP * * ============================================================================= /// ### Groups /// Groups are basically windows inside windows. They allow to subdivide space /// in a window to layout widgets as a group. Almost all more complex widget /// layouting requirements can be solved using groups and basic layouting /// fuctionality. Groups just like windows are identified by an unique name and /// internally keep track of scrollbar offsets by default. However additional /// versions are provided to directly manage the scrollbar. /// /// #### Usage /// To create a group you have to call one of the three `nk_group_begin_xxx` /// functions to start group declarations and `nk_group_end` at the end. Furthermore it /// is required to check the return value of `nk_group_begin_xxx` and only process /// widgets inside the window if the value is not 0. /// Nesting groups is possible and even encouraged since many layouting schemes /// can only be achieved by nesting. Groups, unlike windows, need `nk_group_end` /// to be only called if the corresponding `nk_group_begin_xxx` call does not return 0: /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_group_begin_xxx(ctx, ...) { /// // [... widgets ...] /// nk_group_end(ctx); /// } /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// In the grand concept groups can be called after starting a window /// with `nk_begin_xxx` and before calling `nk_end`: /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// // Input /// Event evt; /// nk_input_begin(&ctx); /// while (GetEvent(&evt)) { /// if (evt.type == MOUSE_MOVE) /// nk_input_motion(&ctx, evt.motion.x, evt.motion.y); /// else if (evt.type == [...]) { /// nk_input_xxx(...); /// } /// } /// nk_input_end(&ctx); /// // /// // Window /// if (nk_begin_xxx(...) { /// // [...widgets...] /// nk_layout_row_dynamic(...); /// if (nk_group_begin_xxx(ctx, ...) { /// //[... widgets ...] /// nk_group_end(ctx); /// } /// } /// nk_end(ctx); /// // /// // Draw /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// switch (cmd->type) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case ...: /// // [...] /// } /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// #### Reference /// Function | Description /// --------------------------------|------------------------------------------- /// nk_group_begin | Start a new group with internal scrollbar handling /// nk_group_begin_titled | Start a new group with separated name and title and internal scrollbar handling /// nk_group_end | Ends a group. Should only be called if nk_group_begin returned non-zero /// nk_group_scrolled_offset_begin | Start a new group with manual separated handling of scrollbar x- and y-offset /// nk_group_scrolled_begin | Start a new group with manual scrollbar handling /// nk_group_scrolled_end | Ends a group with manual scrollbar handling. Should only be called if nk_group_begin returned non-zero /// nk_group_get_scroll | Gets the scroll offset for the given group /// nk_group_set_scroll | Sets the scroll offset for the given group */ /*/// #### nk_group_begin /// Starts a new widget group. Requires a previous layouting function to specify a pos/size. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_group_begin(struct nk_context*, const char *title, nk_flags); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __title__ | Must be an unique identifier for this group that is also used for the group header /// __flags__ | Window flags defined in the nk_panel_flags section with a number of different group behaviors /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_group_begin(struct nk_context*, const char *title, nk_flags); /*/// #### nk_group_begin_titled /// Starts a new widget group. Requires a previous layouting function to specify a pos/size. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_group_begin_titled(struct nk_context*, const char *name, const char *title, nk_flags); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __id__ | Must be an unique identifier for this group /// __title__ | Group header title /// __flags__ | Window flags defined in the nk_panel_flags section with a number of different group behaviors /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_group_begin_titled(struct nk_context*, const char *name, const char *title, nk_flags); /*/// #### nk_group_end /// Ends a widget group /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_group_end(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct */ NK_API void nk_group_end(struct nk_context*); /*/// #### nk_group_scrolled_offset_begin /// starts a new widget group. requires a previous layouting function to specify /// a size. Does not keep track of scrollbar. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_group_scrolled_offset_begin(struct nk_context*, nk_uint *x_offset, nk_uint *y_offset, const char *title, nk_flags flags); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __x_offset__| Scrollbar x-offset to offset all widgets inside the group horizontally. /// __y_offset__| Scrollbar y-offset to offset all widgets inside the group vertically /// __title__ | Window unique group title used to both identify and display in the group header /// __flags__ | Window flags from the nk_panel_flags section /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_group_scrolled_offset_begin(struct nk_context*, nk_uint *x_offset, nk_uint *y_offset, const char *title, nk_flags flags); /*/// #### nk_group_scrolled_begin /// Starts a new widget group. requires a previous /// layouting function to specify a size. Does not keep track of scrollbar. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_group_scrolled_begin(struct nk_context*, struct nk_scroll *off, const char *title, nk_flags); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __off__ | Both x- and y- scroll offset. Allows for manual scrollbar control /// __title__ | Window unique group title used to both identify and display in the group header /// __flags__ | Window flags from nk_panel_flags section /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_group_scrolled_begin(struct nk_context*, struct nk_scroll *off, const char *title, nk_flags); /*/// #### nk_group_scrolled_end /// Ends a widget group after calling nk_group_scrolled_offset_begin or nk_group_scrolled_begin. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_group_scrolled_end(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct */ NK_API void nk_group_scrolled_end(struct nk_context*); /*/// #### nk_group_get_scroll /// Gets the scroll position of the given group. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_group_get_scroll(struct nk_context*, const char *id, nk_uint *x_offset, nk_uint *y_offset); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// -------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __id__ | The id of the group to get the scroll position of /// __x_offset__ | A pointer to the x offset output (or NULL to ignore) /// __y_offset__ | A pointer to the y offset output (or NULL to ignore) */ NK_API void nk_group_get_scroll(struct nk_context*, const char *id, nk_uint *x_offset, nk_uint *y_offset); /*/// #### nk_group_set_scroll /// Sets the scroll position of the given group. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_group_set_scroll(struct nk_context*, const char *id, nk_uint x_offset, nk_uint y_offset); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// -------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __id__ | The id of the group to scroll /// __x_offset__ | The x offset to scroll to /// __y_offset__ | The y offset to scroll to */ NK_API void nk_group_set_scroll(struct nk_context*, const char *id, nk_uint x_offset, nk_uint y_offset); /* ============================================================================= * * TREE * * ============================================================================= /// ### Tree /// Trees represent two different concept. First the concept of a collapsible /// UI section that can be either in a hidden or visible state. They allow the UI /// user to selectively minimize the current set of visible UI to comprehend. /// The second concept are tree widgets for visual UI representation of trees.

/// /// Trees thereby can be nested for tree representations and multiple nested /// collapsible UI sections. All trees are started by calling of the /// `nk_tree_xxx_push_tree` functions and ended by calling one of the /// `nk_tree_xxx_pop_xxx()` functions. Each starting functions takes a title label /// and optionally an image to be displayed and the initial collapse state from /// the nk_collapse_states section.

/// /// The runtime state of the tree is either stored outside the library by the caller /// or inside which requires a unique ID. The unique ID can either be generated /// automatically from `__FILE__` and `__LINE__` with function `nk_tree_push`, /// by `__FILE__` and a user provided ID generated for example by loop index with /// function `nk_tree_push_id` or completely provided from outside by user with /// function `nk_tree_push_hashed`. /// /// #### Usage /// To create a tree you have to call one of the seven `nk_tree_xxx_push_xxx` /// functions to start a collapsible UI section and `nk_tree_xxx_pop` to mark the /// end. /// Each starting function will either return `false(0)` if the tree is collapsed /// or hidden and therefore does not need to be filled with content or `true(1)` /// if visible and required to be filled. /// /// !!! Note /// The tree header does not require and layouting function and instead /// calculates a auto height based on the currently used font size /// /// The tree ending functions only need to be called if the tree content is /// actually visible. So make sure the tree push function is guarded by `if` /// and the pop call is only taken if the tree is visible. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// if (nk_tree_push(ctx, NK_TREE_TAB, "Tree", NK_MINIMIZED)) { /// nk_layout_row_dynamic(...); /// nk_widget(...); /// nk_tree_pop(ctx); /// } /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// ----------------------------|------------------------------------------- /// nk_tree_push | Start a collapsible UI section with internal state management /// nk_tree_push_id | Start a collapsible UI section with internal state management callable in a look /// nk_tree_push_hashed | Start a collapsible UI section with internal state management with full control over internal unique ID use to store state /// nk_tree_image_push | Start a collapsible UI section with image and label header /// nk_tree_image_push_id | Start a collapsible UI section with image and label header and internal state management callable in a look /// nk_tree_image_push_hashed | Start a collapsible UI section with image and label header and internal state management with full control over internal unique ID use to store state /// nk_tree_pop | Ends a collapsible UI section // /// nk_tree_state_push | Start a collapsible UI section with external state management /// nk_tree_state_image_push | Start a collapsible UI section with image and label header and external state management /// nk_tree_state_pop | Ends a collapsabale UI section /// /// #### nk_tree_type /// Flag | Description /// ----------------|---------------------------------------- /// NK_TREE_NODE | Highlighted tree header to mark a collapsible UI section /// NK_TREE_TAB | Non-highlighted tree header closer to tree representations */ /*/// #### nk_tree_push /// Starts a collapsible UI section with internal state management /// !!! WARNING /// To keep track of the runtime tree collapsible state this function uses /// defines `__FILE__` and `__LINE__` to generate a unique ID. If you want /// to call this function in a loop please use `nk_tree_push_id` or /// `nk_tree_push_hashed` instead. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// #define nk_tree_push(ctx, type, title, state) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __title__ | Label printed in the tree header /// __state__ | Initial tree state value out of nk_collapse_states /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ #define nk_tree_push(ctx, type, title, state) nk_tree_push_hashed(ctx, type, title, state, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),__LINE__) /*/// #### nk_tree_push_id /// Starts a collapsible UI section with internal state management callable in a look /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// #define nk_tree_push_id(ctx, type, title, state, id) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __title__ | Label printed in the tree header /// __state__ | Initial tree state value out of nk_collapse_states /// __id__ | Loop counter index if this function is called in a loop /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ #define nk_tree_push_id(ctx, type, title, state, id) nk_tree_push_hashed(ctx, type, title, state, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),id) /*/// #### nk_tree_push_hashed /// Start a collapsible UI section with internal state management with full /// control over internal unique ID used to store state /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_tree_push_hashed(struct nk_context*, enum nk_tree_type, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __title__ | Label printed in the tree header /// __state__ | Initial tree state value out of nk_collapse_states /// __hash__ | Memory block or string to generate the ID from /// __len__ | Size of passed memory block or string in __hash__ /// __seed__ | Seeding value if this function is called in a loop or default to `0` /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_tree_push_hashed(struct nk_context*, enum nk_tree_type, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed); /*/// #### nk_tree_image_push /// Start a collapsible UI section with image and label header /// !!! WARNING /// To keep track of the runtime tree collapsible state this function uses /// defines `__FILE__` and `__LINE__` to generate a unique ID. If you want /// to call this function in a loop please use `nk_tree_image_push_id` or /// `nk_tree_image_push_hashed` instead. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// #define nk_tree_image_push(ctx, type, img, title, state) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __img__ | Image to display inside the header on the left of the label /// __title__ | Label printed in the tree header /// __state__ | Initial tree state value out of nk_collapse_states /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ #define nk_tree_image_push(ctx, type, img, title, state) nk_tree_image_push_hashed(ctx, type, img, title, state, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),__LINE__) /*/// #### nk_tree_image_push_id /// Start a collapsible UI section with image and label header and internal state /// management callable in a look /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// #define nk_tree_image_push_id(ctx, type, img, title, state, id) /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __img__ | Image to display inside the header on the left of the label /// __title__ | Label printed in the tree header /// __state__ | Initial tree state value out of nk_collapse_states /// __id__ | Loop counter index if this function is called in a loop /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ #define nk_tree_image_push_id(ctx, type, img, title, state, id) nk_tree_image_push_hashed(ctx, type, img, title, state, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),id) /*/// #### nk_tree_image_push_hashed /// Start a collapsible UI section with internal state management with full /// control over internal unique ID used to store state /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_tree_image_push_hashed(struct nk_context*, enum nk_tree_type, struct nk_image, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __img__ | Image to display inside the header on the left of the label /// __title__ | Label printed in the tree header /// __state__ | Initial tree state value out of nk_collapse_states /// __hash__ | Memory block or string to generate the ID from /// __len__ | Size of passed memory block or string in __hash__ /// __seed__ | Seeding value if this function is called in a loop or default to `0` /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_tree_image_push_hashed(struct nk_context*, enum nk_tree_type, struct nk_image, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed); /*/// #### nk_tree_pop /// Ends a collapsabale UI section /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_tree_pop(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling `nk_tree_xxx_push_xxx` */ NK_API void nk_tree_pop(struct nk_context*); /*/// #### nk_tree_state_push /// Start a collapsible UI section with external state management /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_tree_state_push(struct nk_context*, enum nk_tree_type, const char *title, enum nk_collapse_states *state); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling `nk_tree_xxx_push_xxx` /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __title__ | Label printed in the tree header /// __state__ | Persistent state to update /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_tree_state_push(struct nk_context*, enum nk_tree_type, const char *title, enum nk_collapse_states *state); /*/// #### nk_tree_state_image_push /// Start a collapsible UI section with image and label header and external state management /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// nk_bool nk_tree_state_image_push(struct nk_context*, enum nk_tree_type, struct nk_image, const char *title, enum nk_collapse_states *state); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling `nk_tree_xxx_push_xxx` /// __img__ | Image to display inside the header on the left of the label /// __type__ | Value from the nk_tree_type section to visually mark a tree node header as either a collapseable UI section or tree node /// __title__ | Label printed in the tree header /// __state__ | Persistent state to update /// /// Returns `true(1)` if visible and fillable with widgets or `false(0)` otherwise */ NK_API nk_bool nk_tree_state_image_push(struct nk_context*, enum nk_tree_type, struct nk_image, const char *title, enum nk_collapse_states *state); /*/// #### nk_tree_state_pop /// Ends a collapsabale UI section /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_tree_state_pop(struct nk_context*); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// ------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling `nk_tree_xxx_push_xxx` */ NK_API void nk_tree_state_pop(struct nk_context*); #define nk_tree_element_push(ctx, type, title, state, sel) nk_tree_element_push_hashed(ctx, type, title, state, sel, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),__LINE__) #define nk_tree_element_push_id(ctx, type, title, state, sel, id) nk_tree_element_push_hashed(ctx, type, title, state, sel, NK_FILE_LINE,nk_strlen(NK_FILE_LINE),id) NK_API nk_bool nk_tree_element_push_hashed(struct nk_context*, enum nk_tree_type, const char *title, enum nk_collapse_states initial_state, nk_bool *selected, const char *hash, int len, int seed); NK_API nk_bool nk_tree_element_image_push_hashed(struct nk_context*, enum nk_tree_type, struct nk_image, const char *title, enum nk_collapse_states initial_state, nk_bool *selected, const char *hash, int len,int seed); NK_API void nk_tree_element_pop(struct nk_context*); /* ============================================================================= * * LIST VIEW * * ============================================================================= */ struct nk_list_view { /* public: */ int begin, end, count; /* private: */ int total_height; struct nk_context *ctx; nk_uint *scroll_pointer; nk_uint scroll_value; }; NK_API nk_bool nk_list_view_begin(struct nk_context*, struct nk_list_view *out, const char *id, nk_flags, int row_height, int row_count); NK_API void nk_list_view_end(struct nk_list_view*); /* ============================================================================= * * WIDGET * * ============================================================================= */ enum nk_widget_layout_states { NK_WIDGET_INVALID, /* The widget cannot be seen and is completely out of view */ NK_WIDGET_VALID, /* The widget is completely inside the window and can be updated and drawn */ NK_WIDGET_ROM /* The widget is partially visible and cannot be updated */ }; enum nk_widget_states { NK_WIDGET_STATE_MODIFIED = NK_FLAG(1), NK_WIDGET_STATE_INACTIVE = NK_FLAG(2), /* widget is neither active nor hovered */ NK_WIDGET_STATE_ENTERED = NK_FLAG(3), /* widget has been hovered on the current frame */ NK_WIDGET_STATE_HOVER = NK_FLAG(4), /* widget is being hovered */ NK_WIDGET_STATE_ACTIVED = NK_FLAG(5),/* widget is currently activated */ NK_WIDGET_STATE_LEFT = NK_FLAG(6), /* widget is from this frame on not hovered anymore */ NK_WIDGET_STATE_HOVERED = NK_WIDGET_STATE_HOVER|NK_WIDGET_STATE_MODIFIED, /* widget is being hovered */ NK_WIDGET_STATE_ACTIVE = NK_WIDGET_STATE_ACTIVED|NK_WIDGET_STATE_MODIFIED /* widget is currently activated */ }; NK_API enum nk_widget_layout_states nk_widget(struct nk_rect*, const struct nk_context*); NK_API enum nk_widget_layout_states nk_widget_fitting(struct nk_rect*, struct nk_context*, struct nk_vec2); NK_API struct nk_rect nk_widget_bounds(struct nk_context*); NK_API struct nk_vec2 nk_widget_position(struct nk_context*); NK_API struct nk_vec2 nk_widget_size(struct nk_context*); NK_API float nk_widget_width(struct nk_context*); NK_API float nk_widget_height(struct nk_context*); NK_API nk_bool nk_widget_is_hovered(struct nk_context*); NK_API nk_bool nk_widget_is_mouse_clicked(struct nk_context*, enum nk_buttons); NK_API nk_bool nk_widget_has_mouse_click_down(struct nk_context*, enum nk_buttons, nk_bool down); NK_API void nk_spacing(struct nk_context*, int cols); /* ============================================================================= * * TEXT * * ============================================================================= */ enum nk_text_align { NK_TEXT_ALIGN_LEFT = 0x01, NK_TEXT_ALIGN_CENTERED = 0x02, NK_TEXT_ALIGN_RIGHT = 0x04, NK_TEXT_ALIGN_TOP = 0x08, NK_TEXT_ALIGN_MIDDLE = 0x10, NK_TEXT_ALIGN_BOTTOM = 0x20 }; enum nk_text_alignment { NK_TEXT_LEFT = NK_TEXT_ALIGN_MIDDLE|NK_TEXT_ALIGN_LEFT, NK_TEXT_CENTERED = NK_TEXT_ALIGN_MIDDLE|NK_TEXT_ALIGN_CENTERED, NK_TEXT_RIGHT = NK_TEXT_ALIGN_MIDDLE|NK_TEXT_ALIGN_RIGHT }; NK_API void nk_text(struct nk_context*, const char*, int, nk_flags); NK_API void nk_text_colored(struct nk_context*, const char*, int, nk_flags, struct nk_color); NK_API void nk_text_wrap(struct nk_context*, const char*, int); NK_API void nk_text_wrap_colored(struct nk_context*, const char*, int, struct nk_color); NK_API void nk_label(struct nk_context*, const char*, nk_flags align); NK_API void nk_label_colored(struct nk_context*, const char*, nk_flags align, struct nk_color); NK_API void nk_label_wrap(struct nk_context*, const char*); NK_API void nk_label_colored_wrap(struct nk_context*, const char*, struct nk_color); NK_API void nk_image(struct nk_context*, struct nk_image); NK_API void nk_image_color(struct nk_context*, struct nk_image, struct nk_color); #ifdef NK_INCLUDE_STANDARD_VARARGS NK_API void nk_labelf(struct nk_context*, nk_flags, NK_PRINTF_FORMAT_STRING const char*, ...) NK_PRINTF_VARARG_FUNC(3); NK_API void nk_labelf_colored(struct nk_context*, nk_flags, struct nk_color, NK_PRINTF_FORMAT_STRING const char*,...) NK_PRINTF_VARARG_FUNC(4); NK_API void nk_labelf_wrap(struct nk_context*, NK_PRINTF_FORMAT_STRING const char*,...) NK_PRINTF_VARARG_FUNC(2); NK_API void nk_labelf_colored_wrap(struct nk_context*, struct nk_color, NK_PRINTF_FORMAT_STRING const char*,...) NK_PRINTF_VARARG_FUNC(3); NK_API void nk_labelfv(struct nk_context*, nk_flags, NK_PRINTF_FORMAT_STRING const char*, va_list) NK_PRINTF_VALIST_FUNC(3); NK_API void nk_labelfv_colored(struct nk_context*, nk_flags, struct nk_color, NK_PRINTF_FORMAT_STRING const char*, va_list) NK_PRINTF_VALIST_FUNC(4); NK_API void nk_labelfv_wrap(struct nk_context*, NK_PRINTF_FORMAT_STRING const char*, va_list) NK_PRINTF_VALIST_FUNC(2); NK_API void nk_labelfv_colored_wrap(struct nk_context*, struct nk_color, NK_PRINTF_FORMAT_STRING const char*, va_list) NK_PRINTF_VALIST_FUNC(3); NK_API void nk_value_bool(struct nk_context*, const char *prefix, int); NK_API void nk_value_int(struct nk_context*, const char *prefix, int); NK_API void nk_value_uint(struct nk_context*, const char *prefix, unsigned int); NK_API void nk_value_float(struct nk_context*, const char *prefix, float); NK_API void nk_value_color_byte(struct nk_context*, const char *prefix, struct nk_color); NK_API void nk_value_color_float(struct nk_context*, const char *prefix, struct nk_color); NK_API void nk_value_color_hex(struct nk_context*, const char *prefix, struct nk_color); #endif /* ============================================================================= * * BUTTON * * ============================================================================= */ NK_API nk_bool nk_button_text(struct nk_context*, const char *title, int len); NK_API nk_bool nk_button_label(struct nk_context*, const char *title); NK_API nk_bool nk_button_color(struct nk_context*, struct nk_color); NK_API nk_bool nk_button_symbol(struct nk_context*, enum nk_symbol_type); NK_API nk_bool nk_button_image(struct nk_context*, struct nk_image img); NK_API nk_bool nk_button_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags text_alignment); NK_API nk_bool nk_button_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment); NK_API nk_bool nk_button_image_label(struct nk_context*, struct nk_image img, const char*, nk_flags text_alignment); NK_API nk_bool nk_button_image_text(struct nk_context*, struct nk_image img, const char*, int, nk_flags alignment); NK_API nk_bool nk_button_text_styled(struct nk_context*, const struct nk_style_button*, const char *title, int len); NK_API nk_bool nk_button_label_styled(struct nk_context*, const struct nk_style_button*, const char *title); NK_API nk_bool nk_button_symbol_styled(struct nk_context*, const struct nk_style_button*, enum nk_symbol_type); NK_API nk_bool nk_button_image_styled(struct nk_context*, const struct nk_style_button*, struct nk_image img); NK_API nk_bool nk_button_symbol_text_styled(struct nk_context*,const struct nk_style_button*, enum nk_symbol_type, const char*, int, nk_flags alignment); NK_API nk_bool nk_button_symbol_label_styled(struct nk_context *ctx, const struct nk_style_button *style, enum nk_symbol_type symbol, const char *title, nk_flags align); NK_API nk_bool nk_button_image_label_styled(struct nk_context*,const struct nk_style_button*, struct nk_image img, const char*, nk_flags text_alignment); NK_API nk_bool nk_button_image_text_styled(struct nk_context*,const struct nk_style_button*, struct nk_image img, const char*, int, nk_flags alignment); NK_API void nk_button_set_behavior(struct nk_context*, enum nk_button_behavior); NK_API nk_bool nk_button_push_behavior(struct nk_context*, enum nk_button_behavior); NK_API nk_bool nk_button_pop_behavior(struct nk_context*); /* ============================================================================= * * CHECKBOX * * ============================================================================= */ NK_API nk_bool nk_check_label(struct nk_context*, const char*, nk_bool active); NK_API nk_bool nk_check_text(struct nk_context*, const char*, int, nk_bool active); NK_API unsigned nk_check_flags_label(struct nk_context*, const char*, unsigned int flags, unsigned int value); NK_API unsigned nk_check_flags_text(struct nk_context*, const char*, int, unsigned int flags, unsigned int value); NK_API nk_bool nk_checkbox_label(struct nk_context*, const char*, nk_bool *active); NK_API nk_bool nk_checkbox_text(struct nk_context*, const char*, int, nk_bool *active); NK_API nk_bool nk_checkbox_flags_label(struct nk_context*, const char*, unsigned int *flags, unsigned int value); NK_API nk_bool nk_checkbox_flags_text(struct nk_context*, const char*, int, unsigned int *flags, unsigned int value); /* ============================================================================= * * RADIO BUTTON * * ============================================================================= */ NK_API nk_bool nk_radio_label(struct nk_context*, const char*, nk_bool *active); NK_API nk_bool nk_radio_text(struct nk_context*, const char*, int, nk_bool *active); NK_API nk_bool nk_option_label(struct nk_context*, const char*, nk_bool active); NK_API nk_bool nk_option_text(struct nk_context*, const char*, int, nk_bool active); /* ============================================================================= * * SELECTABLE * * ============================================================================= */ NK_API nk_bool nk_selectable_label(struct nk_context*, const char*, nk_flags align, nk_bool *value); NK_API nk_bool nk_selectable_text(struct nk_context*, const char*, int, nk_flags align, nk_bool *value); NK_API nk_bool nk_selectable_image_label(struct nk_context*,struct nk_image, const char*, nk_flags align, nk_bool *value); NK_API nk_bool nk_selectable_image_text(struct nk_context*,struct nk_image, const char*, int, nk_flags align, nk_bool *value); NK_API nk_bool nk_selectable_symbol_label(struct nk_context*,enum nk_symbol_type, const char*, nk_flags align, nk_bool *value); NK_API nk_bool nk_selectable_symbol_text(struct nk_context*,enum nk_symbol_type, const char*, int, nk_flags align, nk_bool *value); NK_API nk_bool nk_select_label(struct nk_context*, const char*, nk_flags align, nk_bool value); NK_API nk_bool nk_select_text(struct nk_context*, const char*, int, nk_flags align, nk_bool value); NK_API nk_bool nk_select_image_label(struct nk_context*, struct nk_image,const char*, nk_flags align, nk_bool value); NK_API nk_bool nk_select_image_text(struct nk_context*, struct nk_image,const char*, int, nk_flags align, nk_bool value); NK_API nk_bool nk_select_symbol_label(struct nk_context*,enum nk_symbol_type, const char*, nk_flags align, nk_bool value); NK_API nk_bool nk_select_symbol_text(struct nk_context*,enum nk_symbol_type, const char*, int, nk_flags align, nk_bool value); /* ============================================================================= * * SLIDER * * ============================================================================= */ NK_API float nk_slide_float(struct nk_context*, float min, float val, float max, float step); NK_API int nk_slide_int(struct nk_context*, int min, int val, int max, int step); NK_API nk_bool nk_slider_float(struct nk_context*, float min, float *val, float max, float step); NK_API nk_bool nk_slider_int(struct nk_context*, int min, int *val, int max, int step); /* ============================================================================= * * PROGRESSBAR * * ============================================================================= */ NK_API nk_bool nk_progress(struct nk_context*, nk_size *cur, nk_size max, nk_bool modifyable); NK_API nk_size nk_prog(struct nk_context*, nk_size cur, nk_size max, nk_bool modifyable); /* ============================================================================= * * COLOR PICKER * * ============================================================================= */ NK_API struct nk_colorf nk_color_picker(struct nk_context*, struct nk_colorf, enum nk_color_format); NK_API nk_bool nk_color_pick(struct nk_context*, struct nk_colorf*, enum nk_color_format); /* ============================================================================= * * PROPERTIES * * ============================================================================= /// ### Properties /// Properties are the main value modification widgets in Nuklear. Changing a value /// can be achieved by dragging, adding/removing incremental steps on button click /// or by directly typing a number. /// /// #### Usage /// Each property requires a unique name for identification that is also used for /// displaying a label. If you want to use the same name multiple times make sure /// add a '#' before your name. The '#' will not be shown but will generate a /// unique ID. Each property also takes in a minimum and maximum value. If you want /// to make use of the complete number range of a type just use the provided /// type limits from `limits.h`. For example `INT_MIN` and `INT_MAX` for /// `nk_property_int` and `nk_propertyi`. In additional each property takes in /// a increment value that will be added or subtracted if either the increment /// decrement button is clicked. Finally there is a value for increment per pixel /// dragged that is added or subtracted from the value. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// int value = 0; /// struct nk_context ctx; /// nk_init_xxx(&ctx, ...); /// while (1) { /// // Input /// Event evt; /// nk_input_begin(&ctx); /// while (GetEvent(&evt)) { /// if (evt.type == MOUSE_MOVE) /// nk_input_motion(&ctx, evt.motion.x, evt.motion.y); /// else if (evt.type == [...]) { /// nk_input_xxx(...); /// } /// } /// nk_input_end(&ctx); /// // /// // Window /// if (nk_begin_xxx(...) { /// // Property /// nk_layout_row_dynamic(...); /// nk_property_int(ctx, "ID", INT_MIN, &value, INT_MAX, 1, 1); /// } /// nk_end(ctx); /// // /// // Draw /// const struct nk_command *cmd = 0; /// nk_foreach(cmd, &ctx) { /// switch (cmd->type) { /// case NK_COMMAND_LINE: /// your_draw_line_function(...) /// break; /// case NK_COMMAND_RECT /// your_draw_rect_function(...) /// break; /// case ...: /// // [...] /// } /// nk_clear(&ctx); /// } /// nk_free(&ctx); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// #### Reference /// Function | Description /// --------------------|------------------------------------------- /// nk_property_int | Integer property directly modifying a passed in value /// nk_property_float | Float property directly modifying a passed in value /// nk_property_double | Double property directly modifying a passed in value /// nk_propertyi | Integer property returning the modified int value /// nk_propertyf | Float property returning the modified float value /// nk_propertyd | Double property returning the modified double value /// */ /*/// #### nk_property_int /// Integer property directly modifying a passed in value /// !!! WARNING /// To generate a unique property ID using the same label make sure to insert /// a `#` at the beginning. It will not be shown but guarantees correct behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_property_int(struct nk_context *ctx, const char *name, int min, int *val, int max, int step, float inc_per_pixel); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// --------------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling a layouting function /// __name__ | String used both as a label as well as a unique identifier /// __min__ | Minimum value not allowed to be underflown /// __val__ | Integer pointer to be modified /// __max__ | Maximum value not allowed to be overflown /// __step__ | Increment added and subtracted on increment and decrement button /// __inc_per_pixel__ | Value per pixel added or subtracted on dragging */ NK_API void nk_property_int(struct nk_context*, const char *name, int min, int *val, int max, int step, float inc_per_pixel); /*/// #### nk_property_float /// Float property directly modifying a passed in value /// !!! WARNING /// To generate a unique property ID using the same label make sure to insert /// a `#` at the beginning. It will not be shown but guarantees correct behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_property_float(struct nk_context *ctx, const char *name, float min, float *val, float max, float step, float inc_per_pixel); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// --------------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling a layouting function /// __name__ | String used both as a label as well as a unique identifier /// __min__ | Minimum value not allowed to be underflown /// __val__ | Float pointer to be modified /// __max__ | Maximum value not allowed to be overflown /// __step__ | Increment added and subtracted on increment and decrement button /// __inc_per_pixel__ | Value per pixel added or subtracted on dragging */ NK_API void nk_property_float(struct nk_context*, const char *name, float min, float *val, float max, float step, float inc_per_pixel); /*/// #### nk_property_double /// Double property directly modifying a passed in value /// !!! WARNING /// To generate a unique property ID using the same label make sure to insert /// a `#` at the beginning. It will not be shown but guarantees correct behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// void nk_property_double(struct nk_context *ctx, const char *name, double min, double *val, double max, double step, double inc_per_pixel); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// --------------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling a layouting function /// __name__ | String used both as a label as well as a unique identifier /// __min__ | Minimum value not allowed to be underflown /// __val__ | Double pointer to be modified /// __max__ | Maximum value not allowed to be overflown /// __step__ | Increment added and subtracted on increment and decrement button /// __inc_per_pixel__ | Value per pixel added or subtracted on dragging */ NK_API void nk_property_double(struct nk_context*, const char *name, double min, double *val, double max, double step, float inc_per_pixel); /*/// #### nk_propertyi /// Integer property modifying a passed in value and returning the new value /// !!! WARNING /// To generate a unique property ID using the same label make sure to insert /// a `#` at the beginning. It will not be shown but guarantees correct behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// int nk_propertyi(struct nk_context *ctx, const char *name, int min, int val, int max, int step, float inc_per_pixel); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// --------------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling a layouting function /// __name__ | String used both as a label as well as a unique identifier /// __min__ | Minimum value not allowed to be underflown /// __val__ | Current integer value to be modified and returned /// __max__ | Maximum value not allowed to be overflown /// __step__ | Increment added and subtracted on increment and decrement button /// __inc_per_pixel__ | Value per pixel added or subtracted on dragging /// /// Returns the new modified integer value */ NK_API int nk_propertyi(struct nk_context*, const char *name, int min, int val, int max, int step, float inc_per_pixel); /*/// #### nk_propertyf /// Float property modifying a passed in value and returning the new value /// !!! WARNING /// To generate a unique property ID using the same label make sure to insert /// a `#` at the beginning. It will not be shown but guarantees correct behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// float nk_propertyf(struct nk_context *ctx, const char *name, float min, float val, float max, float step, float inc_per_pixel); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// --------------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling a layouting function /// __name__ | String used both as a label as well as a unique identifier /// __min__ | Minimum value not allowed to be underflown /// __val__ | Current float value to be modified and returned /// __max__ | Maximum value not allowed to be overflown /// __step__ | Increment added and subtracted on increment and decrement button /// __inc_per_pixel__ | Value per pixel added or subtracted on dragging /// /// Returns the new modified float value */ NK_API float nk_propertyf(struct nk_context*, const char *name, float min, float val, float max, float step, float inc_per_pixel); /*/// #### nk_propertyd /// Float property modifying a passed in value and returning the new value /// !!! WARNING /// To generate a unique property ID using the same label make sure to insert /// a `#` at the beginning. It will not be shown but guarantees correct behavior. /// /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c /// float nk_propertyd(struct nk_context *ctx, const char *name, double min, double val, double max, double step, double inc_per_pixel); /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// /// Parameter | Description /// --------------------|----------------------------------------------------------- /// __ctx__ | Must point to an previously initialized `nk_context` struct after calling a layouting function /// __name__ | String used both as a label as well as a unique identifier /// __min__ | Minimum value not allowed to be underflown /// __val__ | Current double value to be modified and returned /// __max__ | Maximum value not allowed to be overflown /// __step__ | Increment added and subtracted on increment and decrement button /// __inc_per_pixel__ | Value per pixel added or subtracted on dragging /// /// Returns the new modified double value */ NK_API double nk_propertyd(struct nk_context*, const char *name, double min, double val, double max, double step, float inc_per_pixel); /* ============================================================================= * * TEXT EDIT * * ============================================================================= */ enum nk_edit_flags { NK_EDIT_DEFAULT = 0, NK_EDIT_READ_ONLY = NK_FLAG(0), NK_EDIT_AUTO_SELECT = NK_FLAG(1), NK_EDIT_SIG_ENTER = NK_FLAG(2), NK_EDIT_ALLOW_TAB = NK_FLAG(3), NK_EDIT_NO_CURSOR = NK_FLAG(4), NK_EDIT_SELECTABLE = NK_FLAG(5), NK_EDIT_CLIPBOARD = NK_FLAG(6), NK_EDIT_CTRL_ENTER_NEWLINE = NK_FLAG(7), NK_EDIT_NO_HORIZONTAL_SCROLL = NK_FLAG(8), NK_EDIT_ALWAYS_INSERT_MODE = NK_FLAG(9), NK_EDIT_MULTILINE = NK_FLAG(10), NK_EDIT_GOTO_END_ON_ACTIVATE = NK_FLAG(11) }; enum nk_edit_types { NK_EDIT_SIMPLE = NK_EDIT_ALWAYS_INSERT_MODE, NK_EDIT_FIELD = NK_EDIT_SIMPLE|NK_EDIT_SELECTABLE|NK_EDIT_CLIPBOARD, NK_EDIT_BOX = NK_EDIT_ALWAYS_INSERT_MODE| NK_EDIT_SELECTABLE| NK_EDIT_MULTILINE|NK_EDIT_ALLOW_TAB|NK_EDIT_CLIPBOARD, NK_EDIT_EDITOR = NK_EDIT_SELECTABLE|NK_EDIT_MULTILINE|NK_EDIT_ALLOW_TAB| NK_EDIT_CLIPBOARD }; enum nk_edit_events { NK_EDIT_ACTIVE = NK_FLAG(0), /* edit widget is currently being modified */ NK_EDIT_INACTIVE = NK_FLAG(1), /* edit widget is not active and is not being modified */ NK_EDIT_ACTIVATED = NK_FLAG(2), /* edit widget went from state inactive to state active */ NK_EDIT_DEACTIVATED = NK_FLAG(3), /* edit widget went from state active to state inactive */ NK_EDIT_COMMITED = NK_FLAG(4) /* edit widget has received an enter and lost focus */ }; NK_API nk_flags nk_edit_string(struct nk_context*, nk_flags, char *buffer, int *len, int max, nk_plugin_filter); NK_API nk_flags nk_edit_string_zero_terminated(struct nk_context*, nk_flags, char *buffer, int max, nk_plugin_filter); NK_API nk_flags nk_edit_buffer(struct nk_context*, nk_flags, struct nk_text_edit*, nk_plugin_filter); NK_API void nk_edit_focus(struct nk_context*, nk_flags flags); NK_API void nk_edit_unfocus(struct nk_context*); /* ============================================================================= * * CHART * * ============================================================================= */ NK_API nk_bool nk_chart_begin(struct nk_context*, enum nk_chart_type, int num, float min, float max); NK_API nk_bool nk_chart_begin_colored(struct nk_context*, enum nk_chart_type, struct nk_color, struct nk_color active, int num, float min, float max); NK_API void nk_chart_add_slot(struct nk_context *ctx, const enum nk_chart_type, int count, float min_value, float max_value); NK_API void nk_chart_add_slot_colored(struct nk_context *ctx, const enum nk_chart_type, struct nk_color, struct nk_color active, int count, float min_value, float max_value); NK_API nk_flags nk_chart_push(struct nk_context*, float); NK_API nk_flags nk_chart_push_slot(struct nk_context*, float, int); NK_API void nk_chart_end(struct nk_context*); NK_API void nk_plot(struct nk_context*, enum nk_chart_type, const float *values, int count, int offset); NK_API void nk_plot_function(struct nk_context*, enum nk_chart_type, void *userdata, float(*value_getter)(void* user, int index), int count, int offset); /* ============================================================================= * * POPUP * * ============================================================================= */ NK_API nk_bool nk_popup_begin(struct nk_context*, enum nk_popup_type, const char*, nk_flags, struct nk_rect bounds); NK_API void nk_popup_close(struct nk_context*); NK_API void nk_popup_end(struct nk_context*); NK_API void nk_popup_get_scroll(struct nk_context*, nk_uint *offset_x, nk_uint *offset_y); NK_API void nk_popup_set_scroll(struct nk_context*, nk_uint offset_x, nk_uint offset_y); /* ============================================================================= * * COMBOBOX * * ============================================================================= */ NK_API int nk_combo(struct nk_context*, const char **items, int count, int selected, int item_height, struct nk_vec2 size); NK_API int nk_combo_separator(struct nk_context*, const char *items_separated_by_separator, int separator, int selected, int count, int item_height, struct nk_vec2 size); NK_API int nk_combo_string(struct nk_context*, const char *items_separated_by_zeros, int selected, int count, int item_height, struct nk_vec2 size); NK_API int nk_combo_callback(struct nk_context*, void(*item_getter)(void*, int, const char**), void *userdata, int selected, int count, int item_height, struct nk_vec2 size); NK_API void nk_combobox(struct nk_context*, const char **items, int count, int *selected, int item_height, struct nk_vec2 size); NK_API void nk_combobox_string(struct nk_context*, const char *items_separated_by_zeros, int *selected, int count, int item_height, struct nk_vec2 size); NK_API void nk_combobox_separator(struct nk_context*, const char *items_separated_by_separator, int separator, int *selected, int count, int item_height, struct nk_vec2 size); NK_API void nk_combobox_callback(struct nk_context*, void(*item_getter)(void*, int, const char**), void*, int *selected, int count, int item_height, struct nk_vec2 size); /* ============================================================================= * * ABSTRACT COMBOBOX * * ============================================================================= */ NK_API nk_bool nk_combo_begin_text(struct nk_context*, const char *selected, int, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_label(struct nk_context*, const char *selected, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_color(struct nk_context*, struct nk_color color, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_symbol(struct nk_context*, enum nk_symbol_type, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_symbol_label(struct nk_context*, const char *selected, enum nk_symbol_type, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_symbol_text(struct nk_context*, const char *selected, int, enum nk_symbol_type, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_image(struct nk_context*, struct nk_image img, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_image_label(struct nk_context*, const char *selected, struct nk_image, struct nk_vec2 size); NK_API nk_bool nk_combo_begin_image_text(struct nk_context*, const char *selected, int, struct nk_image, struct nk_vec2 size); NK_API nk_bool nk_combo_item_label(struct nk_context*, const char*, nk_flags alignment); NK_API nk_bool nk_combo_item_text(struct nk_context*, const char*,int, nk_flags alignment); NK_API nk_bool nk_combo_item_image_label(struct nk_context*, struct nk_image, const char*, nk_flags alignment); NK_API nk_bool nk_combo_item_image_text(struct nk_context*, struct nk_image, const char*, int,nk_flags alignment); NK_API nk_bool nk_combo_item_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags alignment); NK_API nk_bool nk_combo_item_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment); NK_API void nk_combo_close(struct nk_context*); NK_API void nk_combo_end(struct nk_context*); /* ============================================================================= * * CONTEXTUAL * * ============================================================================= */ NK_API nk_bool nk_contextual_begin(struct nk_context*, nk_flags, struct nk_vec2, struct nk_rect trigger_bounds); NK_API nk_bool nk_contextual_item_text(struct nk_context*, const char*, int,nk_flags align); NK_API nk_bool nk_contextual_item_label(struct nk_context*, const char*, nk_flags align); NK_API nk_bool nk_contextual_item_image_label(struct nk_context*, struct nk_image, const char*, nk_flags alignment); NK_API nk_bool nk_contextual_item_image_text(struct nk_context*, struct nk_image, const char*, int len, nk_flags alignment); NK_API nk_bool nk_contextual_item_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags alignment); NK_API nk_bool nk_contextual_item_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment); NK_API void nk_contextual_close(struct nk_context*); NK_API void nk_contextual_end(struct nk_context*); /* ============================================================================= * * TOOLTIP * * ============================================================================= */ NK_API void nk_tooltip(struct nk_context*, const char*); #ifdef NK_INCLUDE_STANDARD_VARARGS NK_API void nk_tooltipf(struct nk_context*, NK_PRINTF_FORMAT_STRING const char*, ...) NK_PRINTF_VARARG_FUNC(2); NK_API void nk_tooltipfv(struct nk_context*, NK_PRINTF_FORMAT_STRING const char*, va_list) NK_PRINTF_VALIST_FUNC(2); #endif NK_API nk_bool nk_tooltip_begin(struct nk_context*, float width); NK_API void nk_tooltip_end(struct nk_context*); /* ============================================================================= * * MENU * * ============================================================================= */ NK_API void nk_menubar_begin(struct nk_context*); NK_API void nk_menubar_end(struct nk_context*); NK_API nk_bool nk_menu_begin_text(struct nk_context*, const char* title, int title_len, nk_flags align, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_label(struct nk_context*, const char*, nk_flags align, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_image(struct nk_context*, const char*, struct nk_image, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_image_text(struct nk_context*, const char*, int,nk_flags align,struct nk_image, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_image_label(struct nk_context*, const char*, nk_flags align,struct nk_image, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_symbol(struct nk_context*, const char*, enum nk_symbol_type, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_symbol_text(struct nk_context*, const char*, int,nk_flags align,enum nk_symbol_type, struct nk_vec2 size); NK_API nk_bool nk_menu_begin_symbol_label(struct nk_context*, const char*, nk_flags align,enum nk_symbol_type, struct nk_vec2 size); NK_API nk_bool nk_menu_item_text(struct nk_context*, const char*, int,nk_flags align); NK_API nk_bool nk_menu_item_label(struct nk_context*, const char*, nk_flags alignment); NK_API nk_bool nk_menu_item_image_label(struct nk_context*, struct nk_image, const char*, nk_flags alignment); NK_API nk_bool nk_menu_item_image_text(struct nk_context*, struct nk_image, const char*, int len, nk_flags alignment); NK_API nk_bool nk_menu_item_symbol_text(struct nk_context*, enum nk_symbol_type, const char*, int, nk_flags alignment); NK_API nk_bool nk_menu_item_symbol_label(struct nk_context*, enum nk_symbol_type, const char*, nk_flags alignment); NK_API void nk_menu_close(struct nk_context*); NK_API void nk_menu_end(struct nk_context*); /* ============================================================================= * * STYLE * * ============================================================================= */ enum nk_style_colors { NK_COLOR_TEXT, NK_COLOR_WINDOW, NK_COLOR_HEADER, NK_COLOR_BORDER, NK_COLOR_BUTTON, NK_COLOR_BUTTON_HOVER, NK_COLOR_BUTTON_ACTIVE, NK_COLOR_TOGGLE, NK_COLOR_TOGGLE_HOVER, NK_COLOR_TOGGLE_CURSOR, NK_COLOR_SELECT, NK_COLOR_SELECT_ACTIVE, NK_COLOR_SLIDER, NK_COLOR_SLIDER_CURSOR, NK_COLOR_SLIDER_CURSOR_HOVER, NK_COLOR_SLIDER_CURSOR_ACTIVE, NK_COLOR_PROPERTY, NK_COLOR_EDIT, NK_COLOR_EDIT_CURSOR, NK_COLOR_COMBO, NK_COLOR_CHART, NK_COLOR_CHART_COLOR, NK_COLOR_CHART_COLOR_HIGHLIGHT, NK_COLOR_SCROLLBAR, NK_COLOR_SCROLLBAR_CURSOR, NK_COLOR_SCROLLBAR_CURSOR_HOVER, NK_COLOR_SCROLLBAR_CURSOR_ACTIVE, NK_COLOR_TAB_HEADER, NK_COLOR_COUNT }; enum nk_style_cursor { NK_CURSOR_ARROW, NK_CURSOR_TEXT, NK_CURSOR_MOVE, NK_CURSOR_RESIZE_VERTICAL, NK_CURSOR_RESIZE_HORIZONTAL, NK_CURSOR_RESIZE_TOP_LEFT_DOWN_RIGHT, NK_CURSOR_RESIZE_TOP_RIGHT_DOWN_LEFT, NK_CURSOR_COUNT }; NK_API void nk_style_default(struct nk_context*); NK_API void nk_style_from_table(struct nk_context*, const struct nk_color*); NK_API void nk_style_load_cursor(struct nk_context*, enum nk_style_cursor, const struct nk_cursor*); NK_API void nk_style_load_all_cursors(struct nk_context*, struct nk_cursor*); NK_API const char* nk_style_get_color_by_name(enum nk_style_colors); NK_API void nk_style_set_font(struct nk_context*, const struct nk_user_font*); NK_API nk_bool nk_style_set_cursor(struct nk_context*, enum nk_style_cursor); NK_API void nk_style_show_cursor(struct nk_context*); NK_API void nk_style_hide_cursor(struct nk_context*); NK_API nk_bool nk_style_push_font(struct nk_context*, const struct nk_user_font*); NK_API nk_bool nk_style_push_float(struct nk_context*, float*, float); NK_API nk_bool nk_style_push_vec2(struct nk_context*, struct nk_vec2*, struct nk_vec2); NK_API nk_bool nk_style_push_style_item(struct nk_context*, struct nk_style_item*, struct nk_style_item); NK_API nk_bool nk_style_push_flags(struct nk_context*, nk_flags*, nk_flags); NK_API nk_bool nk_style_push_color(struct nk_context*, struct nk_color*, struct nk_color); NK_API nk_bool nk_style_pop_font(struct nk_context*); NK_API nk_bool nk_style_pop_float(struct nk_context*); NK_API nk_bool nk_style_pop_vec2(struct nk_context*); NK_API nk_bool nk_style_pop_style_item(struct nk_context*); NK_API nk_bool nk_style_pop_flags(struct nk_context*); NK_API nk_bool nk_style_pop_color(struct nk_context*); /* ============================================================================= * * COLOR * * ============================================================================= */ NK_API struct nk_color nk_rgb(int r, int g, int b); NK_API struct nk_color nk_rgb_iv(const int *rgb); NK_API struct nk_color nk_rgb_bv(const nk_byte* rgb); NK_API struct nk_color nk_rgb_f(float r, float g, float b); NK_API struct nk_color nk_rgb_fv(const float *rgb); NK_API struct nk_color nk_rgb_cf(struct nk_colorf c); NK_API struct nk_color nk_rgb_hex(const char *rgb); NK_API struct nk_color nk_rgba(int r, int g, int b, int a); NK_API struct nk_color nk_rgba_u32(nk_uint); NK_API struct nk_color nk_rgba_iv(const int *rgba); NK_API struct nk_color nk_rgba_bv(const nk_byte *rgba); NK_API struct nk_color nk_rgba_f(float r, float g, float b, float a); NK_API struct nk_color nk_rgba_fv(const float *rgba); NK_API struct nk_color nk_rgba_cf(struct nk_colorf c); NK_API struct nk_color nk_rgba_hex(const char *rgb); NK_API struct nk_colorf nk_hsva_colorf(float h, float s, float v, float a); NK_API struct nk_colorf nk_hsva_colorfv(float *c); NK_API void nk_colorf_hsva_f(float *out_h, float *out_s, float *out_v, float *out_a, struct nk_colorf in); NK_API void nk_colorf_hsva_fv(float *hsva, struct nk_colorf in); NK_API struct nk_color nk_hsv(int h, int s, int v); NK_API struct nk_color nk_hsv_iv(const int *hsv); NK_API struct nk_color nk_hsv_bv(const nk_byte *hsv); NK_API struct nk_color nk_hsv_f(float h, float s, float v); NK_API struct nk_color nk_hsv_fv(const float *hsv); NK_API struct nk_color nk_hsva(int h, int s, int v, int a); NK_API struct nk_color nk_hsva_iv(const int *hsva); NK_API struct nk_color nk_hsva_bv(const nk_byte *hsva); NK_API struct nk_color nk_hsva_f(float h, float s, float v, float a); NK_API struct nk_color nk_hsva_fv(const float *hsva); /* color (conversion nuklear --> user) */ NK_API void nk_color_f(float *r, float *g, float *b, float *a, struct nk_color); NK_API void nk_color_fv(float *rgba_out, struct nk_color); NK_API struct nk_colorf nk_color_cf(struct nk_color); NK_API void nk_color_d(double *r, double *g, double *b, double *a, struct nk_color); NK_API void nk_color_dv(double *rgba_out, struct nk_color); NK_API nk_uint nk_color_u32(struct nk_color); NK_API void nk_color_hex_rgba(char *output, struct nk_color); NK_API void nk_color_hex_rgb(char *output, struct nk_color); NK_API void nk_color_hsv_i(int *out_h, int *out_s, int *out_v, struct nk_color); NK_API void nk_color_hsv_b(nk_byte *out_h, nk_byte *out_s, nk_byte *out_v, struct nk_color); NK_API void nk_color_hsv_iv(int *hsv_out, struct nk_color); NK_API void nk_color_hsv_bv(nk_byte *hsv_out, struct nk_color); NK_API void nk_color_hsv_f(float *out_h, float *out_s, float *out_v, struct nk_color); NK_API void nk_color_hsv_fv(float *hsv_out, struct nk_color); NK_API void nk_color_hsva_i(int *h, int *s, int *v, int *a, struct nk_color); NK_API void nk_color_hsva_b(nk_byte *h, nk_byte *s, nk_byte *v, nk_byte *a, struct nk_color); NK_API void nk_color_hsva_iv(int *hsva_out, struct nk_color); NK_API void nk_color_hsva_bv(nk_byte *hsva_out, struct nk_color); NK_API void nk_color_hsva_f(float *out_h, float *out_s, float *out_v, float *out_a, struct nk_color); NK_API void nk_color_hsva_fv(float *hsva_out, struct nk_color); /* ============================================================================= * * IMAGE * * ============================================================================= */ NK_API nk_handle nk_handle_ptr(void*); NK_API nk_handle nk_handle_id(int); NK_API struct nk_image nk_image_handle(nk_handle); NK_API struct nk_image nk_image_ptr(void*); NK_API struct nk_image nk_image_id(int); NK_API nk_bool nk_image_is_subimage(const struct nk_image* img); NK_API struct nk_image nk_subimage_ptr(void*, nk_ushort w, nk_ushort h, struct nk_rect sub_region); NK_API struct nk_image nk_subimage_id(int, nk_ushort w, nk_ushort h, struct nk_rect sub_region); NK_API struct nk_image nk_subimage_handle(nk_handle, nk_ushort w, nk_ushort h, struct nk_rect sub_region); /* ============================================================================= * * 9-SLICE * * ============================================================================= */ NK_API struct nk_nine_slice nk_nine_slice_handle(nk_handle, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b); NK_API struct nk_nine_slice nk_nine_slice_ptr(void*, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b); NK_API struct nk_nine_slice nk_nine_slice_id(int, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b); NK_API int nk_nine_slice_is_sub9slice(const struct nk_nine_slice* img); NK_API struct nk_nine_slice nk_sub9slice_ptr(void*, nk_ushort w, nk_ushort h, struct nk_rect sub_region, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b); NK_API struct nk_nine_slice nk_sub9slice_id(int, nk_ushort w, nk_ushort h, struct nk_rect sub_region, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b); NK_API struct nk_nine_slice nk_sub9slice_handle(nk_handle, nk_ushort w, nk_ushort h, struct nk_rect sub_region, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b); /* ============================================================================= * * MATH * * ============================================================================= */ NK_API nk_hash nk_murmur_hash(const void *key, int len, nk_hash seed); NK_API void nk_triangle_from_direction(struct nk_vec2 *result, struct nk_rect r, float pad_x, float pad_y, enum nk_heading); NK_API struct nk_vec2 nk_vec2(float x, float y); NK_API struct nk_vec2 nk_vec2i(int x, int y); NK_API struct nk_vec2 nk_vec2v(const float *xy); NK_API struct nk_vec2 nk_vec2iv(const int *xy); NK_API struct nk_rect nk_get_null_rect(void); NK_API struct nk_rect nk_rect(float x, float y, float w, float h); NK_API struct nk_rect nk_recti(int x, int y, int w, int h); NK_API struct nk_rect nk_recta(struct nk_vec2 pos, struct nk_vec2 size); NK_API struct nk_rect nk_rectv(const float *xywh); NK_API struct nk_rect nk_rectiv(const int *xywh); NK_API struct nk_vec2 nk_rect_pos(struct nk_rect); NK_API struct nk_vec2 nk_rect_size(struct nk_rect); /* ============================================================================= * * STRING * * ============================================================================= */ NK_API int nk_strlen(const char *str); NK_API int nk_stricmp(const char *s1, const char *s2); NK_API int nk_stricmpn(const char *s1, const char *s2, int n); NK_API int nk_strtoi(const char *str, const char **endptr); NK_API float nk_strtof(const char *str, const char **endptr); #ifndef NK_STRTOD #define NK_STRTOD nk_strtod NK_API double nk_strtod(const char *str, const char **endptr); #endif NK_API int nk_strfilter(const char *text, const char *regexp); NK_API int nk_strmatch_fuzzy_string(char const *str, char const *pattern, int *out_score); NK_API int nk_strmatch_fuzzy_text(const char *txt, int txt_len, const char *pattern, int *out_score); /* ============================================================================= * * UTF-8 * * ============================================================================= */ NK_API int nk_utf_decode(const char*, nk_rune*, int); NK_API int nk_utf_encode(nk_rune, char*, int); NK_API int nk_utf_len(const char*, int byte_len); NK_API const char* nk_utf_at(const char *buffer, int length, int index, nk_rune *unicode, int *len); /* =============================================================== * * FONT * * ===============================================================*/ /* Font handling in this library was designed to be quite customizable and lets you decide what you want to use and what you want to provide. There are three different ways to use the font atlas. The first two will use your font handling scheme and only requires essential data to run nuklear. The next slightly more advanced features is font handling with vertex buffer output. Finally the most complex API wise is using nuklear's font baking API. 1.) Using your own implementation without vertex buffer output -------------------------------------------------------------- So first up the easiest way to do font handling is by just providing a `nk_user_font` struct which only requires the height in pixel of the used font and a callback to calculate the width of a string. This way of handling fonts is best fitted for using the normal draw shape command API where you do all the text drawing yourself and the library does not require any kind of deeper knowledge about which font handling mechanism you use. IMPORTANT: the `nk_user_font` pointer provided to nuklear has to persist over the complete life time! I know this sucks but it is currently the only way to switch between fonts. float your_text_width_calculation(nk_handle handle, float height, const char *text, int len) { your_font_type *type = handle.ptr; float text_width = ...; return text_width; } struct nk_user_font font; font.userdata.ptr = &your_font_class_or_struct; font.height = your_font_height; font.width = your_text_width_calculation; struct nk_context ctx; nk_init_default(&ctx, &font); 2.) Using your own implementation with vertex buffer output -------------------------------------------------------------- While the first approach works fine if you don't want to use the optional vertex buffer output it is not enough if you do. To get font handling working for these cases you have to provide two additional parameters inside the `nk_user_font`. First a texture atlas handle used to draw text as subimages of a bigger font atlas texture and a callback to query a character's glyph information (offset, size, ...). So it is still possible to provide your own font and use the vertex buffer output. float your_text_width_calculation(nk_handle handle, float height, const char *text, int len) { your_font_type *type = handle.ptr; float text_width = ...; return text_width; } void query_your_font_glyph(nk_handle handle, float font_height, struct nk_user_font_glyph *glyph, nk_rune codepoint, nk_rune next_codepoint) { your_font_type *type = handle.ptr; glyph.width = ...; glyph.height = ...; glyph.xadvance = ...; glyph.uv[0].x = ...; glyph.uv[0].y = ...; glyph.uv[1].x = ...; glyph.uv[1].y = ...; glyph.offset.x = ...; glyph.offset.y = ...; } struct nk_user_font font; font.userdata.ptr = &your_font_class_or_struct; font.height = your_font_height; font.width = your_text_width_calculation; font.query = query_your_font_glyph; font.texture.id = your_font_texture; struct nk_context ctx; nk_init_default(&ctx, &font); 3.) Nuklear font baker ------------------------------------ The final approach if you do not have a font handling functionality or don't want to use it in this library is by using the optional font baker. The font baker APIs can be used to create a font plus font atlas texture and can be used with or without the vertex buffer output. It still uses the `nk_user_font` struct and the two different approaches previously stated still work. The font baker is not located inside `nk_context` like all other systems since it can be understood as more of an extension to nuklear and does not really depend on any `nk_context` state. Font baker need to be initialized first by one of the nk_font_atlas_init_xxx functions. If you don't care about memory just call the default version `nk_font_atlas_init_default` which will allocate all memory from the standard library. If you want to control memory allocation but you don't care if the allocated memory is temporary and therefore can be freed directly after the baking process is over or permanent you can call `nk_font_atlas_init`. After successfully initializing the font baker you can add Truetype(.ttf) fonts from different sources like memory or from file by calling one of the `nk_font_atlas_add_xxx`. functions. Adding font will permanently store each font, font config and ttf memory block(!) inside the font atlas and allows to reuse the font atlas. If you don't want to reuse the font baker by for example adding additional fonts you can call `nk_font_atlas_cleanup` after the baking process is over (after calling nk_font_atlas_end). As soon as you added all fonts you wanted you can now start the baking process for every selected glyph to image by calling `nk_font_atlas_bake`. The baking process returns image memory, width and height which can be used to either create your own image object or upload it to any graphics library. No matter which case you finally have to call `nk_font_atlas_end` which will free all temporary memory including the font atlas image so make sure you created our texture beforehand. `nk_font_atlas_end` requires a handle to your font texture or object and optionally fills a `struct nk_draw_null_texture` which can be used for the optional vertex output. If you don't want it just set the argument to `NULL`. At this point you are done and if you don't want to reuse the font atlas you can call `nk_font_atlas_cleanup` to free all truetype blobs and configuration memory. Finally if you don't use the font atlas and any of it's fonts anymore you need to call `nk_font_atlas_clear` to free all memory still being used. struct nk_font_atlas atlas; nk_font_atlas_init_default(&atlas); nk_font_atlas_begin(&atlas); nk_font *font = nk_font_atlas_add_from_file(&atlas, "Path/To/Your/TTF_Font.ttf", 13, 0); nk_font *font2 = nk_font_atlas_add_from_file(&atlas, "Path/To/Your/TTF_Font2.ttf", 16, 0); const void* img = nk_font_atlas_bake(&atlas, &img_width, &img_height, NK_FONT_ATLAS_RGBA32); nk_font_atlas_end(&atlas, nk_handle_id(texture), 0); struct nk_context ctx; nk_init_default(&ctx, &font->handle); while (1) { } nk_font_atlas_clear(&atlas); The font baker API is probably the most complex API inside this library and I would suggest reading some of my examples `example/` to get a grip on how to use the font atlas. There are a number of details I left out. For example how to merge fonts, configure a font with `nk_font_config` to use other languages, use another texture coordinate format and a lot more: struct nk_font_config cfg = nk_font_config(font_pixel_height); cfg.merge_mode = nk_false or nk_true; cfg.range = nk_font_korean_glyph_ranges(); cfg.coord_type = NK_COORD_PIXEL; nk_font *font = nk_font_atlas_add_from_file(&atlas, "Path/To/Your/TTF_Font.ttf", 13, &cfg); */ struct nk_user_font_glyph; typedef float(*nk_text_width_f)(nk_handle, float h, const char*, int len); typedef void(*nk_query_font_glyph_f)(nk_handle handle, float font_height, struct nk_user_font_glyph *glyph, nk_rune codepoint, nk_rune next_codepoint); #if defined(NK_INCLUDE_VERTEX_BUFFER_OUTPUT) || defined(NK_INCLUDE_SOFTWARE_FONT) struct nk_user_font_glyph { struct nk_vec2 uv[2]; /* texture coordinates */ struct nk_vec2 offset; /* offset between top left and glyph */ float width, height; /* size of the glyph */ float xadvance; /* offset to the next glyph */ }; #endif struct nk_user_font { nk_handle userdata; /* user provided font handle */ float height; /* max height of the font */ nk_text_width_f width; /* font string width in pixel callback */ #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT nk_query_font_glyph_f query; /* font glyph callback to query drawing info */ nk_handle texture; /* texture handle to the used font atlas or texture */ #endif }; #ifdef NK_INCLUDE_FONT_BAKING enum nk_font_coord_type { NK_COORD_UV, /* texture coordinates inside font glyphs are clamped between 0-1 */ NK_COORD_PIXEL /* texture coordinates inside font glyphs are in absolute pixel */ }; struct nk_font; struct nk_baked_font { float height; /* height of the font */ float ascent, descent; /* font glyphs ascent and descent */ nk_rune glyph_offset; /* glyph array offset inside the font glyph baking output array */ nk_rune glyph_count; /* number of glyphs of this font inside the glyph baking array output */ const nk_rune *ranges; /* font codepoint ranges as pairs of (from/to) and 0 as last element */ }; struct nk_font_config { struct nk_font_config *next; /* NOTE: only used internally */ void *ttf_blob; /* pointer to loaded TTF file memory block. * NOTE: not needed for nk_font_atlas_add_from_memory and nk_font_atlas_add_from_file. */ nk_size ttf_size; /* size of the loaded TTF file memory block * NOTE: not needed for nk_font_atlas_add_from_memory and nk_font_atlas_add_from_file. */ unsigned char ttf_data_owned_by_atlas; /* used inside font atlas: default to: 0*/ unsigned char merge_mode; /* merges this font into the last font */ unsigned char pixel_snap; /* align every character to pixel boundary (if true set oversample (1,1)) */ unsigned char oversample_v, oversample_h; /* rasterize at high quality for sub-pixel position */ unsigned char padding[3]; float size; /* baked pixel height of the font */ enum nk_font_coord_type coord_type; /* texture coordinate format with either pixel or UV coordinates */ struct nk_vec2 spacing; /* extra pixel spacing between glyphs */ const nk_rune *range; /* list of unicode ranges (2 values per range, zero terminated) */ struct nk_baked_font *font; /* font to setup in the baking process: NOTE: not needed for font atlas */ nk_rune fallback_glyph; /* fallback glyph to use if a given rune is not found */ struct nk_font_config *n; struct nk_font_config *p; }; struct nk_font_glyph { nk_rune codepoint; float xadvance; float x0, y0, x1, y1, w, h; float u0, v0, u1, v1; float yoffset; //< @r-lyeh }; struct nk_font { struct nk_font *next; struct nk_user_font handle; struct nk_baked_font info; float scale; struct nk_font_glyph *glyphs; const struct nk_font_glyph *fallback; nk_rune fallback_codepoint; nk_handle texture; struct nk_font_config *config; }; enum nk_font_atlas_format { NK_FONT_ATLAS_ALPHA8, NK_FONT_ATLAS_RGBA32 }; struct nk_font_atlas { void *pixel; int tex_width; int tex_height; struct nk_allocator permanent; struct nk_allocator temporary; struct nk_recti custom; struct nk_cursor cursors[NK_CURSOR_COUNT]; int glyph_count; struct nk_font_glyph *glyphs; struct nk_font *default_font; struct nk_font *fonts; struct nk_font_config *config; int font_num; }; /* some language glyph codepoint ranges */ NK_API const nk_rune *nk_font_default_glyph_ranges(void); NK_API const nk_rune *nk_font_chinese_glyph_ranges(void); NK_API const nk_rune *nk_font_cyrillic_glyph_ranges(void); NK_API const nk_rune *nk_font_korean_glyph_ranges(void); #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_font_atlas_init_default(struct nk_font_atlas*); #endif NK_API void nk_font_atlas_init(struct nk_font_atlas*, struct nk_allocator*); NK_API void nk_font_atlas_init_custom(struct nk_font_atlas*, struct nk_allocator *persistent, struct nk_allocator *transient); NK_API void nk_font_atlas_begin(struct nk_font_atlas*); NK_API struct nk_font_config nk_font_config(float pixel_height); NK_API struct nk_font *nk_font_atlas_add(struct nk_font_atlas*, const struct nk_font_config*); #ifdef NK_INCLUDE_DEFAULT_FONT NK_API struct nk_font* nk_font_atlas_add_default(struct nk_font_atlas*, float height, const struct nk_font_config*); #endif NK_API struct nk_font* nk_font_atlas_add_from_memory(struct nk_font_atlas *atlas, void *memory, nk_size size, float height, const struct nk_font_config *config); #ifdef NK_INCLUDE_STANDARD_IO NK_API struct nk_font* nk_font_atlas_add_from_file(struct nk_font_atlas *atlas, const char *file_path, float height, const struct nk_font_config*); #endif NK_API struct nk_font *nk_font_atlas_add_compressed(struct nk_font_atlas*, void *memory, nk_size size, float height, const struct nk_font_config*); NK_API struct nk_font* nk_font_atlas_add_compressed_base85(struct nk_font_atlas*, const char *data, float height, const struct nk_font_config *config); NK_API const void* nk_font_atlas_bake(struct nk_font_atlas*, int *width, int *height, enum nk_font_atlas_format); NK_API void nk_font_atlas_end(struct nk_font_atlas*, nk_handle tex, struct nk_draw_null_texture*); NK_API const struct nk_font_glyph* nk_font_find_glyph(struct nk_font*, nk_rune unicode); NK_API void nk_font_atlas_cleanup(struct nk_font_atlas *atlas); NK_API void nk_font_atlas_clear(struct nk_font_atlas*); #endif /* ============================================================== * * MEMORY BUFFER * * ===============================================================*/ /* A basic (double)-buffer with linear allocation and resetting as only freeing policy. The buffer's main purpose is to control all memory management inside the GUI toolkit and still leave memory control as much as possible in the hand of the user while also making sure the library is easy to use if not as much control is needed. In general all memory inside this library can be provided from the user in three different ways. The first way and the one providing most control is by just passing a fixed size memory block. In this case all control lies in the hand of the user since he can exactly control where the memory comes from and how much memory the library should consume. Of course using the fixed size API removes the ability to automatically resize a buffer if not enough memory is provided so you have to take over the resizing. While being a fixed sized buffer sounds quite limiting, it is very effective in this library since the actual memory consumption is quite stable and has a fixed upper bound for a lot of cases. If you don't want to think about how much memory the library should allocate at all time or have a very dynamic UI with unpredictable memory consumption habits but still want control over memory allocation you can use the dynamic allocator based API. The allocator consists of two callbacks for allocating and freeing memory and optional userdata so you can plugin your own allocator. The final and easiest way can be used by defining NK_INCLUDE_DEFAULT_ALLOCATOR which uses the standard library memory allocation functions malloc and free and takes over complete control over memory in this library. */ struct nk_memory_status { void *memory; unsigned int type; nk_size size; nk_size allocated; nk_size needed; nk_size calls; }; enum nk_allocation_type { NK_BUFFER_FIXED, NK_BUFFER_DYNAMIC }; enum nk_buffer_allocation_type { NK_BUFFER_FRONT, NK_BUFFER_BACK, NK_BUFFER_MAX }; struct nk_buffer_marker { nk_bool active; nk_size offset; }; struct nk_memory {void *ptr;nk_size size;}; struct nk_buffer { struct nk_buffer_marker marker[NK_BUFFER_MAX]; /* buffer marker to free a buffer to a certain offset */ struct nk_allocator pool; /* allocator callback for dynamic buffers */ enum nk_allocation_type type; /* memory management type */ struct nk_memory memory; /* memory and size of the current memory block */ float grow_factor; /* growing factor for dynamic memory management */ nk_size allocated; /* total amount of memory allocated */ nk_size needed; /* totally consumed memory given that enough memory is present */ nk_size calls; /* number of allocation calls */ nk_size size; /* current size of the buffer */ }; #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_buffer_init_default(struct nk_buffer*); #endif NK_API void nk_buffer_init(struct nk_buffer*, const struct nk_allocator*, nk_size size); NK_API void nk_buffer_init_fixed(struct nk_buffer*, void *memory, nk_size size); NK_API void nk_buffer_info(struct nk_memory_status*, struct nk_buffer*); NK_API void nk_buffer_push(struct nk_buffer*, enum nk_buffer_allocation_type type, const void *memory, nk_size size, nk_size align); NK_API void nk_buffer_mark(struct nk_buffer*, enum nk_buffer_allocation_type type); NK_API void nk_buffer_reset(struct nk_buffer*, enum nk_buffer_allocation_type type); NK_API void nk_buffer_clear(struct nk_buffer*); NK_API void nk_buffer_free(struct nk_buffer*); NK_API void *nk_buffer_memory(struct nk_buffer*); NK_API const void *nk_buffer_memory_const(const struct nk_buffer*); NK_API nk_size nk_buffer_total(struct nk_buffer*); /* ============================================================== * * STRING * * ===============================================================*/ /* Basic string buffer which is only used in context with the text editor * to manage and manipulate dynamic or fixed size string content. This is _NOT_ * the default string handling method. The only instance you should have any contact * with this API is if you interact with an `nk_text_edit` object inside one of the * copy and paste functions and even there only for more advanced cases. */ struct nk_str { struct nk_buffer buffer; int len; /* in codepoints/runes/glyphs */ }; #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_str_init_default(struct nk_str*); #endif NK_API void nk_str_init(struct nk_str*, const struct nk_allocator*, nk_size size); NK_API void nk_str_init_fixed(struct nk_str*, void *memory, nk_size size); NK_API void nk_str_clear(struct nk_str*); NK_API void nk_str_free(struct nk_str*); NK_API int nk_str_append_text_char(struct nk_str*, const char*, int); NK_API int nk_str_append_str_char(struct nk_str*, const char*); NK_API int nk_str_append_text_utf8(struct nk_str*, const char*, int); NK_API int nk_str_append_str_utf8(struct nk_str*, const char*); NK_API int nk_str_append_text_runes(struct nk_str*, const nk_rune*, int); NK_API int nk_str_append_str_runes(struct nk_str*, const nk_rune*); NK_API int nk_str_insert_at_char(struct nk_str*, int pos, const char*, int); NK_API int nk_str_insert_at_rune(struct nk_str*, int pos, const char*, int); NK_API int nk_str_insert_text_char(struct nk_str*, int pos, const char*, int); NK_API int nk_str_insert_str_char(struct nk_str*, int pos, const char*); NK_API int nk_str_insert_text_utf8(struct nk_str*, int pos, const char*, int); NK_API int nk_str_insert_str_utf8(struct nk_str*, int pos, const char*); NK_API int nk_str_insert_text_runes(struct nk_str*, int pos, const nk_rune*, int); NK_API int nk_str_insert_str_runes(struct nk_str*, int pos, const nk_rune*); NK_API void nk_str_remove_chars(struct nk_str*, int len); NK_API void nk_str_remove_runes(struct nk_str *str, int len); NK_API void nk_str_delete_chars(struct nk_str*, int pos, int len); NK_API void nk_str_delete_runes(struct nk_str*, int pos, int len); NK_API char *nk_str_at_char(struct nk_str*, int pos); NK_API char *nk_str_at_rune(struct nk_str*, int pos, nk_rune *unicode, int *len); NK_API nk_rune nk_str_rune_at(const struct nk_str*, int pos); NK_API const char *nk_str_at_char_const(const struct nk_str*, int pos); NK_API const char *nk_str_at_const(const struct nk_str*, int pos, nk_rune *unicode, int *len); NK_API char *nk_str_get(struct nk_str*); NK_API const char *nk_str_get_const(const struct nk_str*); NK_API int nk_str_len(struct nk_str*); NK_API int nk_str_len_char(struct nk_str*); /*=============================================================== * * TEXT EDITOR * * ===============================================================*/ /* Editing text in this library is handled by either `nk_edit_string` or * `nk_edit_buffer`. But like almost everything in this library there are multiple * ways of doing it and a balance between control and ease of use with memory * as well as functionality controlled by flags. * * This library generally allows three different levels of memory control: * First of is the most basic way of just providing a simple char array with * string length. This method is probably the easiest way of handling simple * user text input. Main upside is complete control over memory while the biggest * downside in comparison with the other two approaches is missing undo/redo. * * For UIs that require undo/redo the second way was created. It is based on * a fixed size nk_text_edit struct, which has an internal undo/redo stack. * This is mainly useful if you want something more like a text editor but don't want * to have a dynamically growing buffer. * * The final way is using a dynamically growing nk_text_edit struct, which * has both a default version if you don't care where memory comes from and an * allocator version if you do. While the text editor is quite powerful for its * complexity I would not recommend editing gigabytes of data with it. * It is rather designed for uses cases which make sense for a GUI library not for * an full blown text editor. */ #ifndef NK_TEXTEDIT_UNDOSTATECOUNT #define NK_TEXTEDIT_UNDOSTATECOUNT 99 #endif #ifndef NK_TEXTEDIT_UNDOCHARCOUNT #define NK_TEXTEDIT_UNDOCHARCOUNT 999 #endif struct nk_text_edit; struct nk_clipboard { nk_handle userdata; nk_plugin_paste paste; nk_plugin_copy copy; }; struct nk_text_undo_record { int where; short insert_length; short delete_length; short char_storage; }; struct nk_text_undo_state { struct nk_text_undo_record undo_rec[NK_TEXTEDIT_UNDOSTATECOUNT]; nk_rune undo_char[NK_TEXTEDIT_UNDOCHARCOUNT]; short undo_point; short redo_point; short undo_char_point; short redo_char_point; }; enum nk_text_edit_type { NK_TEXT_EDIT_SINGLE_LINE, NK_TEXT_EDIT_MULTI_LINE }; enum nk_text_edit_mode { NK_TEXT_EDIT_MODE_VIEW, NK_TEXT_EDIT_MODE_INSERT, NK_TEXT_EDIT_MODE_REPLACE }; struct nk_text_edit { struct nk_clipboard clip; struct nk_str string; nk_plugin_filter filter; struct nk_vec2 scrollbar; int cursor; int select_start; int select_end; unsigned char mode; unsigned char cursor_at_end_of_line; unsigned char initialized; unsigned char has_preferred_x; unsigned char single_line; unsigned char active; unsigned char padding1; float preferred_x; struct nk_text_undo_state undo; }; /* filter function */ NK_API nk_bool nk_filter_default(const struct nk_text_edit*, nk_rune unicode); NK_API nk_bool nk_filter_ascii(const struct nk_text_edit*, nk_rune unicode); NK_API nk_bool nk_filter_float(const struct nk_text_edit*, nk_rune unicode); NK_API nk_bool nk_filter_decimal(const struct nk_text_edit*, nk_rune unicode); NK_API nk_bool nk_filter_hex(const struct nk_text_edit*, nk_rune unicode); NK_API nk_bool nk_filter_oct(const struct nk_text_edit*, nk_rune unicode); NK_API nk_bool nk_filter_binary(const struct nk_text_edit*, nk_rune unicode); /* text editor */ #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_textedit_init_default(struct nk_text_edit*); #endif NK_API void nk_textedit_init(struct nk_text_edit*, struct nk_allocator*, nk_size size); NK_API void nk_textedit_init_fixed(struct nk_text_edit*, void *memory, nk_size size); NK_API void nk_textedit_free(struct nk_text_edit*); NK_API void nk_textedit_text(struct nk_text_edit*, const char*, int total_len); NK_API void nk_textedit_delete(struct nk_text_edit*, int where, int len); NK_API void nk_textedit_delete_selection(struct nk_text_edit*); NK_API void nk_textedit_select_all(struct nk_text_edit*); NK_API nk_bool nk_textedit_cut(struct nk_text_edit*); NK_API nk_bool nk_textedit_paste(struct nk_text_edit*, char const*, int len); NK_API void nk_textedit_undo(struct nk_text_edit*); NK_API void nk_textedit_redo(struct nk_text_edit*); /* =============================================================== * * DRAWING * * ===============================================================*/ /* This library was designed to be render backend agnostic so it does not draw anything to screen. Instead all drawn shapes, widgets are made of, are buffered into memory and make up a command queue. Each frame therefore fills the command buffer with draw commands that then need to be executed by the user and his own render backend. After that the command buffer needs to be cleared and a new frame can be started. It is probably important to note that the command buffer is the main drawing API and the optional vertex buffer API only takes this format and converts it into a hardware accessible format. To use the command queue to draw your own widgets you can access the command buffer of each window by calling `nk_window_get_canvas` after previously having called `nk_begin`: void draw_red_rectangle_widget(struct nk_context *ctx) { struct nk_command_buffer *canvas; struct nk_input *input = &ctx->input; canvas = nk_window_get_canvas(ctx); struct nk_rect space; enum nk_widget_layout_states state; state = nk_widget(&space, ctx); if (!state) return; if (state != NK_WIDGET_ROM) update_your_widget_by_user_input(...); nk_fill_rect(canvas, space, 0, nk_rgb(255,0,0)); } if (nk_begin(...)) { nk_layout_row_dynamic(ctx, 25, 1); draw_red_rectangle_widget(ctx); } nk_end(..) Important to know if you want to create your own widgets is the `nk_widget` call. It allocates space on the panel reserved for this widget to be used, but also returns the state of the widget space. If your widget is not seen and does not have to be updated it is '0' and you can just return. If it only has to be drawn the state will be `NK_WIDGET_ROM` otherwise you can do both update and draw your widget. The reason for separating is to only draw and update what is actually necessary which is crucial for performance. */ enum nk_command_type { NK_COMMAND_NOP, NK_COMMAND_SCISSOR, NK_COMMAND_LINE, NK_COMMAND_CURVE, NK_COMMAND_RECT, NK_COMMAND_RECT_FILLED, NK_COMMAND_RECT_MULTI_COLOR, NK_COMMAND_CIRCLE, NK_COMMAND_CIRCLE_FILLED, NK_COMMAND_ARC, NK_COMMAND_ARC_FILLED, NK_COMMAND_TRIANGLE, NK_COMMAND_TRIANGLE_FILLED, NK_COMMAND_POLYGON, NK_COMMAND_POLYGON_FILLED, NK_COMMAND_POLYLINE, NK_COMMAND_TEXT, NK_COMMAND_IMAGE, NK_COMMAND_IMAGE_FLIPPED, //< @r-lyeh NK_COMMAND_CUSTOM }; /* command base and header of every command inside the buffer */ struct nk_command { enum nk_command_type type; nk_size next; #ifdef NK_INCLUDE_COMMAND_USERDATA nk_handle userdata; #endif }; struct nk_command_scissor { struct nk_command header; short x, y; unsigned short w, h; }; struct nk_command_line { struct nk_command header; unsigned short line_thickness; struct nk_vec2i begin; struct nk_vec2i end; struct nk_color color; }; struct nk_command_curve { struct nk_command header; unsigned short line_thickness; struct nk_vec2i begin; struct nk_vec2i end; struct nk_vec2i ctrl[2]; struct nk_color color; }; struct nk_command_rect { struct nk_command header; unsigned short rounding; unsigned short line_thickness; short x, y; unsigned short w, h; struct nk_color color; }; struct nk_command_rect_filled { struct nk_command header; unsigned short rounding; short x, y; unsigned short w, h; struct nk_color color; }; struct nk_command_rect_multi_color { struct nk_command header; short x, y; unsigned short w, h; struct nk_color left; struct nk_color top; struct nk_color bottom; struct nk_color right; }; struct nk_command_triangle { struct nk_command header; unsigned short line_thickness; struct nk_vec2i a; struct nk_vec2i b; struct nk_vec2i c; struct nk_color color; }; struct nk_command_triangle_filled { struct nk_command header; struct nk_vec2i a; struct nk_vec2i b; struct nk_vec2i c; struct nk_color color; }; struct nk_command_circle { struct nk_command header; short x, y; unsigned short line_thickness; unsigned short w, h; struct nk_color color; }; struct nk_command_circle_filled { struct nk_command header; short x, y; unsigned short w, h; struct nk_color color; }; struct nk_command_arc { struct nk_command header; short cx, cy; unsigned short r; unsigned short line_thickness; float a[2]; struct nk_color color; }; struct nk_command_arc_filled { struct nk_command header; short cx, cy; unsigned short r; float a[2]; struct nk_color color; }; struct nk_command_polygon { struct nk_command header; struct nk_color color; unsigned short line_thickness; unsigned short point_count; struct nk_vec2i points[1]; }; struct nk_command_polygon_filled { struct nk_command header; struct nk_color color; unsigned short point_count; struct nk_vec2i points[1]; }; struct nk_command_polyline { struct nk_command header; struct nk_color color; unsigned short line_thickness; unsigned short point_count; struct nk_vec2i points[1]; }; struct nk_command_image { struct nk_command header; short x, y; unsigned short w, h; struct nk_image img; struct nk_color col; }; typedef void (*nk_command_custom_callback)(void *canvas, short x,short y, unsigned short w, unsigned short h, nk_handle callback_data); struct nk_command_custom { struct nk_command header; short x, y; unsigned short w, h; nk_handle callback_data; nk_command_custom_callback callback; }; struct nk_command_text { struct nk_command header; const struct nk_user_font *font; struct nk_color background; struct nk_color foreground; short x, y; unsigned short w, h; float height; int length; char string[1]; }; enum nk_command_clipping { NK_CLIPPING_OFF = nk_false, NK_CLIPPING_ON = nk_true }; struct nk_command_buffer { struct nk_buffer *base; struct nk_rect clip; int use_clipping; nk_handle userdata; nk_size begin, end, last; }; /* shape outlines */ NK_API void nk_stroke_line(struct nk_command_buffer *b, float x0, float y0, float x1, float y1, float line_thickness, struct nk_color); NK_API void nk_stroke_curve(struct nk_command_buffer*, float, float, float, float, float, float, float, float, float line_thickness, struct nk_color); NK_API void nk_stroke_rect(struct nk_command_buffer*, struct nk_rect, float rounding, float line_thickness, struct nk_color); NK_API void nk_stroke_circle(struct nk_command_buffer*, struct nk_rect, float line_thickness, struct nk_color); NK_API void nk_stroke_arc(struct nk_command_buffer*, float cx, float cy, float radius, float a_min, float a_max, float line_thickness, struct nk_color); NK_API void nk_stroke_triangle(struct nk_command_buffer*, float, float, float, float, float, float, float line_thichness, struct nk_color); NK_API void nk_stroke_polyline(struct nk_command_buffer*, float *points, int point_count, float line_thickness, struct nk_color col); NK_API void nk_stroke_polygon(struct nk_command_buffer*, float*, int point_count, float line_thickness, struct nk_color); /* filled shades */ NK_API void nk_fill_rect(struct nk_command_buffer*, struct nk_rect, float rounding, struct nk_color); NK_API void nk_fill_rect_multi_color(struct nk_command_buffer*, struct nk_rect, struct nk_color left, struct nk_color top, struct nk_color right, struct nk_color bottom); NK_API void nk_fill_circle(struct nk_command_buffer*, struct nk_rect, struct nk_color); NK_API void nk_fill_arc(struct nk_command_buffer*, float cx, float cy, float radius, float a_min, float a_max, struct nk_color); NK_API void nk_fill_triangle(struct nk_command_buffer*, float x0, float y0, float x1, float y1, float x2, float y2, struct nk_color); NK_API void nk_fill_polygon(struct nk_command_buffer*, float*, int point_count, struct nk_color); /* misc */ NK_API void nk_draw_image(struct nk_command_buffer*, struct nk_rect, const struct nk_image*, struct nk_color); NK_API void nk_draw_nine_slice(struct nk_command_buffer*, struct nk_rect, const struct nk_nine_slice*, struct nk_color); NK_API void nk_draw_text(struct nk_command_buffer*, struct nk_rect, const char *text, int len, const struct nk_user_font*, struct nk_color, struct nk_color); NK_API void nk_push_scissor(struct nk_command_buffer*, struct nk_rect); NK_API void nk_push_custom(struct nk_command_buffer*, struct nk_rect, nk_command_custom_callback, nk_handle usr); /* =============================================================== * * INPUT * * ===============================================================*/ struct nk_mouse_button { nk_bool down; unsigned int clicked; struct nk_vec2 clicked_pos; }; struct nk_mouse { struct nk_mouse_button buttons[NK_BUTTON_MAX]; struct nk_vec2 pos; struct nk_vec2 prev; struct nk_vec2 delta; struct nk_vec2 scroll_delta; unsigned char grab; unsigned char grabbed; unsigned char ungrab; }; struct nk_key { nk_bool down; unsigned int clicked; }; struct nk_keyboard { struct nk_key keys[NK_KEY_MAX]; char text[NK_INPUT_MAX]; int text_len; }; struct nk_input { struct nk_keyboard keyboard; struct nk_mouse mouse; }; NK_API nk_bool nk_input_has_mouse_click(const struct nk_input*, enum nk_buttons); NK_API nk_bool nk_input_has_mouse_click_in_rect(const struct nk_input*, enum nk_buttons, struct nk_rect); NK_API nk_bool nk_input_has_mouse_click_down_in_rect(const struct nk_input*, enum nk_buttons, struct nk_rect, nk_bool down); NK_API nk_bool nk_input_is_mouse_click_in_rect(const struct nk_input*, enum nk_buttons, struct nk_rect); NK_API nk_bool nk_input_is_mouse_click_down_in_rect(const struct nk_input *i, enum nk_buttons id, struct nk_rect b, nk_bool down); NK_API nk_bool nk_input_any_mouse_click_in_rect(const struct nk_input*, struct nk_rect); NK_API nk_bool nk_input_is_mouse_prev_hovering_rect(const struct nk_input*, struct nk_rect); NK_API nk_bool nk_input_is_mouse_hovering_rect(const struct nk_input*, struct nk_rect); NK_API nk_bool nk_input_mouse_clicked(const struct nk_input*, enum nk_buttons, struct nk_rect); NK_API nk_bool nk_input_is_mouse_down(const struct nk_input*, enum nk_buttons); NK_API nk_bool nk_input_is_mouse_pressed(const struct nk_input*, enum nk_buttons); NK_API nk_bool nk_input_is_mouse_released(const struct nk_input*, enum nk_buttons); NK_API nk_bool nk_input_is_key_pressed(const struct nk_input*, enum nk_keys); NK_API nk_bool nk_input_is_key_released(const struct nk_input*, enum nk_keys); NK_API nk_bool nk_input_is_key_down(const struct nk_input*, enum nk_keys); /* =============================================================== * * DRAW LIST * * ===============================================================*/ #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT /* The optional vertex buffer draw list provides a 2D drawing context with antialiasing functionality which takes basic filled or outlined shapes or a path and outputs vertexes, elements and draw commands. The actual draw list API is not required to be used directly while using this library since converting the default library draw command output is done by just calling `nk_convert` but I decided to still make this library accessible since it can be useful. The draw list is based on a path buffering and polygon and polyline rendering API which allows a lot of ways to draw 2D content to screen. In fact it is probably more powerful than needed but allows even more crazy things than this library provides by default. */ #ifdef NK_UINT_DRAW_INDEX typedef nk_uint nk_draw_index; #else typedef nk_ushort nk_draw_index; #endif enum nk_draw_list_stroke { NK_STROKE_OPEN = nk_false, /* build up path has no connection back to the beginning */ NK_STROKE_CLOSED = nk_true /* build up path has a connection back to the beginning */ }; enum nk_draw_vertex_layout_attribute { NK_VERTEX_POSITION, NK_VERTEX_COLOR, NK_VERTEX_TEXCOORD, NK_VERTEX_ATTRIBUTE_COUNT }; enum nk_draw_vertex_layout_format { NK_FORMAT_SCHAR, NK_FORMAT_SSHORT, NK_FORMAT_SINT, NK_FORMAT_UCHAR, NK_FORMAT_USHORT, NK_FORMAT_UINT, NK_FORMAT_FLOAT, NK_FORMAT_DOUBLE, NK_FORMAT_COLOR_BEGIN, NK_FORMAT_R8G8B8 = NK_FORMAT_COLOR_BEGIN, NK_FORMAT_R16G15B16, NK_FORMAT_R32G32B32, NK_FORMAT_R8G8B8A8, NK_FORMAT_B8G8R8A8, NK_FORMAT_R16G15B16A16, NK_FORMAT_R32G32B32A32, NK_FORMAT_R32G32B32A32_FLOAT, NK_FORMAT_R32G32B32A32_DOUBLE, NK_FORMAT_RGB32, NK_FORMAT_RGBA32, NK_FORMAT_COLOR_END = NK_FORMAT_RGBA32, NK_FORMAT_COUNT }; #define NK_VERTEX_LAYOUT_END NK_VERTEX_ATTRIBUTE_COUNT,NK_FORMAT_COUNT,0 struct nk_draw_vertex_layout_element { enum nk_draw_vertex_layout_attribute attribute; enum nk_draw_vertex_layout_format format; nk_size offset; }; struct nk_draw_command { unsigned int elem_count; /* number of elements in the current draw batch */ struct nk_rect clip_rect; /* current screen clipping rectangle */ nk_handle texture; /* current texture to set */ #ifdef NK_INCLUDE_COMMAND_USERDATA nk_handle userdata; #endif }; struct nk_draw_list { struct nk_rect clip_rect; struct nk_vec2 circle_vtx[12]; struct nk_convert_config config; struct nk_buffer *buffer; struct nk_buffer *vertices; struct nk_buffer *elements; unsigned int element_count; unsigned int vertex_count; unsigned int cmd_count; nk_size cmd_offset; unsigned int path_count; unsigned int path_offset; enum nk_anti_aliasing line_AA; enum nk_anti_aliasing shape_AA; #ifdef NK_INCLUDE_COMMAND_USERDATA nk_handle userdata; #endif }; /* draw list */ NK_API void nk_draw_list_init(struct nk_draw_list*); NK_API void nk_draw_list_setup(struct nk_draw_list*, const struct nk_convert_config*, struct nk_buffer *cmds, struct nk_buffer *vertices, struct nk_buffer *elements, enum nk_anti_aliasing line_aa,enum nk_anti_aliasing shape_aa); /* drawing */ #define nk_draw_list_foreach(cmd, can, b) for((cmd)=nk__draw_list_begin(can, b); (cmd)!=0; (cmd)=nk__draw_list_next(cmd, b, can)) NK_API const struct nk_draw_command* nk__draw_list_begin(const struct nk_draw_list*, const struct nk_buffer*); NK_API const struct nk_draw_command* nk__draw_list_next(const struct nk_draw_command*, const struct nk_buffer*, const struct nk_draw_list*); NK_API const struct nk_draw_command* nk__draw_list_end(const struct nk_draw_list*, const struct nk_buffer*); /* path */ NK_API void nk_draw_list_path_clear(struct nk_draw_list*); NK_API void nk_draw_list_path_line_to(struct nk_draw_list*, struct nk_vec2 pos); NK_API void nk_draw_list_path_arc_to_fast(struct nk_draw_list*, struct nk_vec2 center, float radius, int a_min, int a_max); NK_API void nk_draw_list_path_arc_to(struct nk_draw_list*, struct nk_vec2 center, float radius, float a_min, float a_max, unsigned int segments); NK_API void nk_draw_list_path_rect_to(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, float rounding); NK_API void nk_draw_list_path_curve_to(struct nk_draw_list*, struct nk_vec2 p2, struct nk_vec2 p3, struct nk_vec2 p4, unsigned int num_segments); NK_API void nk_draw_list_path_fill(struct nk_draw_list*, struct nk_color); NK_API void nk_draw_list_path_stroke(struct nk_draw_list*, struct nk_color, enum nk_draw_list_stroke closed, float thickness); /* stroke */ NK_API void nk_draw_list_stroke_line(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, struct nk_color, float thickness); NK_API void nk_draw_list_stroke_rect(struct nk_draw_list*, struct nk_rect rect, struct nk_color, float rounding, float thickness); NK_API void nk_draw_list_stroke_triangle(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, struct nk_vec2 c, struct nk_color, float thickness); NK_API void nk_draw_list_stroke_circle(struct nk_draw_list*, struct nk_vec2 center, float radius, struct nk_color, unsigned int segs, float thickness); NK_API void nk_draw_list_stroke_curve(struct nk_draw_list*, struct nk_vec2 p0, struct nk_vec2 cp0, struct nk_vec2 cp1, struct nk_vec2 p1, struct nk_color, unsigned int segments, float thickness); NK_API void nk_draw_list_stroke_poly_line(struct nk_draw_list*, const struct nk_vec2 *pnts, const unsigned int cnt, struct nk_color, enum nk_draw_list_stroke, float thickness, enum nk_anti_aliasing); /* fill */ NK_API void nk_draw_list_fill_rect(struct nk_draw_list*, struct nk_rect rect, struct nk_color, float rounding); NK_API void nk_draw_list_fill_rect_multi_color(struct nk_draw_list*, struct nk_rect rect, struct nk_color left, struct nk_color top, struct nk_color right, struct nk_color bottom); NK_API void nk_draw_list_fill_triangle(struct nk_draw_list*, struct nk_vec2 a, struct nk_vec2 b, struct nk_vec2 c, struct nk_color); NK_API void nk_draw_list_fill_circle(struct nk_draw_list*, struct nk_vec2 center, float radius, struct nk_color col, unsigned int segs); NK_API void nk_draw_list_fill_poly_convex(struct nk_draw_list*, const struct nk_vec2 *points, const unsigned int count, struct nk_color, enum nk_anti_aliasing); /* misc */ NK_API void nk_draw_list_add_image(struct nk_draw_list*, struct nk_image texture, struct nk_rect rect, struct nk_color, int flipped); //< @r-lyeh: + flipped NK_API void nk_draw_list_add_text(struct nk_draw_list*, const struct nk_user_font*, struct nk_rect, const char *text, int len, float font_height, struct nk_color); #ifdef NK_INCLUDE_COMMAND_USERDATA NK_API void nk_draw_list_push_userdata(struct nk_draw_list*, nk_handle userdata); #endif #endif /* =============================================================== * * GUI * * ===============================================================*/ enum nk_style_item_type { NK_STYLE_ITEM_COLOR, NK_STYLE_ITEM_IMAGE, NK_STYLE_ITEM_NINE_SLICE }; union nk_style_item_data { struct nk_color color; struct nk_image image; struct nk_nine_slice slice; }; struct nk_style_item { enum nk_style_item_type type; union nk_style_item_data data; }; struct nk_style_text { struct nk_color color; struct nk_vec2 padding; }; struct nk_style_button { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* text */ struct nk_color text_background; struct nk_color text_normal; struct nk_color text_hover; struct nk_color text_active; nk_flags text_alignment; /* properties */ float border; float rounding; struct nk_vec2 padding; struct nk_vec2 image_padding; struct nk_vec2 touch_padding; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle userdata); void(*draw_end)(struct nk_command_buffer*, nk_handle userdata); }; struct nk_style_toggle { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* cursor */ struct nk_style_item cursor_normal; struct nk_style_item cursor_hover; /* text */ struct nk_color text_normal; struct nk_color text_hover; struct nk_color text_active; struct nk_color text_background; nk_flags text_alignment; /* properties */ struct nk_vec2 padding; struct nk_vec2 touch_padding; float spacing; float border; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle); void(*draw_end)(struct nk_command_buffer*, nk_handle); }; struct nk_style_selectable { /* background (inactive) */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item pressed; /* background (active) */ struct nk_style_item normal_active; struct nk_style_item hover_active; struct nk_style_item pressed_active; /* text color (inactive) */ struct nk_color text_normal; struct nk_color text_hover; struct nk_color text_pressed; /* text color (active) */ struct nk_color text_normal_active; struct nk_color text_hover_active; struct nk_color text_pressed_active; struct nk_color text_background; nk_flags text_alignment; /* properties */ float rounding; struct nk_vec2 padding; struct nk_vec2 touch_padding; struct nk_vec2 image_padding; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle); void(*draw_end)(struct nk_command_buffer*, nk_handle); }; struct nk_style_slider { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* background bar */ struct nk_color bar_normal; struct nk_color bar_hover; struct nk_color bar_active; struct nk_color bar_filled; /* cursor */ struct nk_style_item cursor_normal; struct nk_style_item cursor_hover; struct nk_style_item cursor_active; /* properties */ float border; float rounding; float bar_height; struct nk_vec2 padding; struct nk_vec2 spacing; struct nk_vec2 cursor_size; /* optional buttons */ int show_buttons; struct nk_style_button inc_button; struct nk_style_button dec_button; enum nk_symbol_type inc_symbol; enum nk_symbol_type dec_symbol; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle); void(*draw_end)(struct nk_command_buffer*, nk_handle); }; struct nk_style_progress { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* cursor */ struct nk_style_item cursor_normal; struct nk_style_item cursor_hover; struct nk_style_item cursor_active; struct nk_color cursor_border_color; /* properties */ float rounding; float border; float cursor_border; float cursor_rounding; struct nk_vec2 padding; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle); void(*draw_end)(struct nk_command_buffer*, nk_handle); }; struct nk_style_scrollbar { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* cursor */ struct nk_style_item cursor_normal; struct nk_style_item cursor_hover; struct nk_style_item cursor_active; struct nk_color cursor_border_color; /* properties */ float border; float rounding; float border_cursor; float rounding_cursor; struct nk_vec2 padding; /* optional buttons */ int show_buttons; struct nk_style_button inc_button; struct nk_style_button dec_button; enum nk_symbol_type inc_symbol; enum nk_symbol_type dec_symbol; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle); void(*draw_end)(struct nk_command_buffer*, nk_handle); }; struct nk_style_edit { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; struct nk_style_scrollbar scrollbar; /* cursor */ struct nk_color cursor_normal; struct nk_color cursor_hover; struct nk_color cursor_text_normal; struct nk_color cursor_text_hover; /* text (unselected) */ struct nk_color text_normal; struct nk_color text_hover; struct nk_color text_active; /* text (selected) */ struct nk_color selected_normal; struct nk_color selected_hover; struct nk_color selected_text_normal; struct nk_color selected_text_hover; /* properties */ float border; float rounding; float cursor_size; struct nk_vec2 scrollbar_size; struct nk_vec2 padding; float row_padding; }; struct nk_style_property { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* text */ struct nk_color label_normal; struct nk_color label_hover; struct nk_color label_active; /* symbols */ enum nk_symbol_type sym_left; enum nk_symbol_type sym_right; /* properties */ float border; float rounding; struct nk_vec2 padding; struct nk_style_edit edit; struct nk_style_button inc_button; struct nk_style_button dec_button; /* optional user callbacks */ nk_handle userdata; void(*draw_begin)(struct nk_command_buffer*, nk_handle); void(*draw_end)(struct nk_command_buffer*, nk_handle); }; struct nk_style_chart { /* colors */ struct nk_style_item background; struct nk_color border_color; struct nk_color selected_color; struct nk_color color; /* properties */ float border; float rounding; struct nk_vec2 padding; }; struct nk_style_combo { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; struct nk_color border_color; /* label */ struct nk_color label_normal; struct nk_color label_hover; struct nk_color label_active; /* symbol */ struct nk_color symbol_normal; struct nk_color symbol_hover; struct nk_color symbol_active; /* button */ struct nk_style_button button; enum nk_symbol_type sym_normal; enum nk_symbol_type sym_hover; enum nk_symbol_type sym_active; /* properties */ float border; float rounding; struct nk_vec2 content_padding; struct nk_vec2 button_padding; struct nk_vec2 spacing; }; struct nk_style_tab { /* background */ struct nk_style_item background; struct nk_color border_color; struct nk_color text; /* button */ struct nk_style_button tab_maximize_button; struct nk_style_button tab_minimize_button; struct nk_style_button node_maximize_button; struct nk_style_button node_minimize_button; enum nk_symbol_type sym_minimize; enum nk_symbol_type sym_maximize; /* properties */ float border; float rounding; float indent; struct nk_vec2 padding; struct nk_vec2 spacing; }; enum nk_style_header_align { NK_HEADER_LEFT, NK_HEADER_RIGHT }; struct nk_style_window_header { /* background */ struct nk_style_item normal; struct nk_style_item hover; struct nk_style_item active; /* button */ struct nk_style_button close_button; struct nk_style_button minimize_button; enum nk_symbol_type close_symbol; enum nk_symbol_type minimize_symbol; enum nk_symbol_type maximize_symbol; /* title */ struct nk_color label_normal; struct nk_color label_hover; struct nk_color label_active; /* properties */ enum nk_style_header_align align; struct nk_vec2 padding; struct nk_vec2 label_padding; struct nk_vec2 spacing; }; struct nk_style_window { struct nk_style_window_header header; struct nk_style_item fixed_background; struct nk_color background; struct nk_color border_color; struct nk_color popup_border_color; struct nk_color combo_border_color; struct nk_color contextual_border_color; struct nk_color menu_border_color; struct nk_color group_border_color; struct nk_color tooltip_border_color; struct nk_style_item scaler; float border; float combo_border; float contextual_border; float menu_border; float group_border; float tooltip_border; float popup_border; float min_row_height_padding; float rounding; struct nk_vec2 spacing; struct nk_vec2 scrollbar_size; struct nk_vec2 min_size; struct nk_vec2 padding; struct nk_vec2 group_padding; struct nk_vec2 popup_padding; struct nk_vec2 combo_padding; struct nk_vec2 contextual_padding; struct nk_vec2 menu_padding; struct nk_vec2 tooltip_padding; }; struct nk_style { const struct nk_user_font *font; const struct nk_cursor *cursors[NK_CURSOR_COUNT]; const struct nk_cursor *cursor_active; struct nk_cursor *cursor_last; int cursor_visible; struct nk_style_text text; struct nk_style_button button; struct nk_style_button contextual_button; struct nk_style_button menu_button; struct nk_style_toggle option; struct nk_style_toggle checkbox; struct nk_style_selectable selectable; struct nk_style_slider slider; struct nk_style_progress progress; struct nk_style_property property; struct nk_style_edit edit; struct nk_style_chart chart; struct nk_style_scrollbar scrollh; struct nk_style_scrollbar scrollv; struct nk_style_tab tab; struct nk_style_combo combo; struct nk_style_window window; }; NK_API struct nk_style_item nk_style_item_color(struct nk_color); NK_API struct nk_style_item nk_style_item_image(struct nk_image img); NK_API struct nk_style_item nk_style_item_nine_slice(struct nk_nine_slice slice); NK_API struct nk_style_item nk_style_item_hide(void); /*============================================================== * PANEL * =============================================================*/ #ifndef NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS #define NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS 16 #endif #ifndef NK_CHART_MAX_SLOT #define NK_CHART_MAX_SLOT 4 #endif enum nk_panel_type { NK_PANEL_NONE = 0, NK_PANEL_WINDOW = NK_FLAG(0), NK_PANEL_GROUP = NK_FLAG(1), NK_PANEL_POPUP = NK_FLAG(2), NK_PANEL_CONTEXTUAL = NK_FLAG(4), NK_PANEL_COMBO = NK_FLAG(5), NK_PANEL_MENU = NK_FLAG(6), NK_PANEL_TOOLTIP = NK_FLAG(7) }; enum nk_panel_set { NK_PANEL_SET_NONBLOCK = NK_PANEL_CONTEXTUAL|NK_PANEL_COMBO|NK_PANEL_MENU|NK_PANEL_TOOLTIP, NK_PANEL_SET_POPUP = NK_PANEL_SET_NONBLOCK|NK_PANEL_POPUP, NK_PANEL_SET_SUB = NK_PANEL_SET_POPUP|NK_PANEL_GROUP }; struct nk_chart_slot { enum nk_chart_type type; struct nk_color color; struct nk_color highlight; float min, max, range; int count; struct nk_vec2 last; int index; }; struct nk_chart { int slot; float x, y, w, h; struct nk_chart_slot slots[NK_CHART_MAX_SLOT]; }; enum nk_panel_row_layout_type { NK_LAYOUT_DYNAMIC_FIXED = 0, NK_LAYOUT_DYNAMIC_ROW, NK_LAYOUT_DYNAMIC_FREE, NK_LAYOUT_DYNAMIC, NK_LAYOUT_STATIC_FIXED, NK_LAYOUT_STATIC_ROW, NK_LAYOUT_STATIC_FREE, NK_LAYOUT_STATIC, NK_LAYOUT_TEMPLATE, NK_LAYOUT_COUNT }; struct nk_row_layout { enum nk_panel_row_layout_type type; int index; float height; float min_height; int columns; const float *ratio; float item_width; float item_height; float item_offset; float filled; struct nk_rect item; int tree_depth; float templates[NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS]; }; struct nk_popup_buffer { nk_size begin; nk_size parent; nk_size last; nk_size end; nk_bool active; }; struct nk_menu_state { float x, y, w, h; struct nk_scroll offset; }; struct nk_panel { enum nk_panel_type type; nk_flags flags; struct nk_rect bounds; nk_uint *offset_x; nk_uint *offset_y; float at_x, at_y, max_x; float footer_height; float header_height; float border; unsigned int has_scrolling; struct nk_rect clip; struct nk_menu_state menu; struct nk_row_layout row; struct nk_chart chart; struct nk_command_buffer *buffer; struct nk_panel *parent; }; /*============================================================== * WINDOW * =============================================================*/ #ifndef NK_WINDOW_MAX_NAME #define NK_WINDOW_MAX_NAME 64 #endif struct nk_table; enum nk_window_flags { NK_WINDOW_PRIVATE = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+1), //< @r-lyeh NK_WINDOW_DYNAMIC = NK_WINDOW_PRIVATE, /* special window type growing up in height while being filled to a certain maximum height */ NK_WINDOW_ROM = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+2), //< @r-lyeh /* sets window widgets into a read only mode and does not allow input changes */ NK_WINDOW_NOT_INTERACTIVE = NK_WINDOW_ROM|NK_WINDOW_NO_INPUT, /* prevents all interaction caused by input to either window or widgets inside */ NK_WINDOW_HIDDEN = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+3), //< @r-lyeh /* Hides window and stops any window interaction and drawing */ NK_WINDOW_CLOSED = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+4), //< @r-lyeh /* Directly closes and frees the window at the end of the frame */ NK_WINDOW_MINIMIZED = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+5), //< @r-lyeh /* marks the window as minimized */ NK_WINDOW_REMOVE_ROM = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+6), //< @r-lyeh /* Removes read only mode at the end of the window */ NK_WINDOW_PINNED = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+7), //< @r-lyeh NK_WINDOW_FULLSCREEN = NK_FLAG(NK_WINDOW_PUBLIC_FLAGS+8) //< @r-lyeh }; struct nk_popup_state { struct nk_window *win; enum nk_panel_type type; struct nk_popup_buffer buf; nk_hash name; nk_bool active; unsigned combo_count; unsigned con_count, con_old; unsigned active_con; struct nk_rect header; }; struct nk_edit_state { nk_hash name; unsigned int seq; unsigned int old; int active, prev; int cursor; int sel_start; int sel_end; struct nk_scroll scrollbar; unsigned char mode; unsigned char single_line; }; struct nk_property_state { int active, prev; char buffer[NK_MAX_NUMBER_BUFFER]; int length; int cursor; int select_start; int select_end; nk_hash name; unsigned int seq; unsigned int old; int state; }; struct nk_window { unsigned int seq; nk_hash name; char name_string[NK_WINDOW_MAX_NAME]; nk_flags flags; struct nk_rect bounds; struct nk_scroll scrollbar; struct nk_command_buffer buffer; struct nk_panel *layout; float scrollbar_hiding_timer; /* persistent widget state */ struct nk_property_state property; struct nk_popup_state popup; struct nk_edit_state edit; unsigned int scrolled; struct nk_table *tables; unsigned int table_count; /* window list hooks */ struct nk_window *next; struct nk_window *prev; struct nk_window *parent; #if 1 //< @r-lyeh nk_bool is_window_resizing; float is_window_restoring; // boolean but also a timer [0..1] normalized #endif }; /*============================================================== * STACK * =============================================================*/ /* The style modifier stack can be used to temporarily change a * property inside `nk_style`. For example if you want a special * red button you can temporarily push the old button color onto a stack * draw the button with a red color and then you just pop the old color * back from the stack: * * nk_style_push_style_item(ctx, &ctx->style.button.normal, nk_style_item_color(nk_rgb(255,0,0))); * nk_style_push_style_item(ctx, &ctx->style.button.hover, nk_style_item_color(nk_rgb(255,0,0))); * nk_style_push_style_item(ctx, &ctx->style.button.active, nk_style_item_color(nk_rgb(255,0,0))); * nk_style_push_vec2(ctx, &cx->style.button.padding, nk_vec2(2,2)); * * nk_button(...); * * nk_style_pop_style_item(ctx); * nk_style_pop_style_item(ctx); * nk_style_pop_style_item(ctx); * nk_style_pop_vec2(ctx); * * Nuklear has a stack for style_items, float properties, vector properties, * flags, colors, fonts and for button_behavior. Each has it's own fixed size stack * which can be changed at compile time. */ #ifndef NK_BUTTON_BEHAVIOR_STACK_SIZE #define NK_BUTTON_BEHAVIOR_STACK_SIZE 8 #endif #ifndef NK_FONT_STACK_SIZE #define NK_FONT_STACK_SIZE 8 #endif #ifndef NK_STYLE_ITEM_STACK_SIZE #define NK_STYLE_ITEM_STACK_SIZE 16 #endif #ifndef NK_FLOAT_STACK_SIZE #define NK_FLOAT_STACK_SIZE 32 #endif #ifndef NK_VECTOR_STACK_SIZE #define NK_VECTOR_STACK_SIZE 16 #endif #ifndef NK_FLAGS_STACK_SIZE #define NK_FLAGS_STACK_SIZE 32 #endif #ifndef NK_COLOR_STACK_SIZE #define NK_COLOR_STACK_SIZE 32 #endif #define NK_CONFIGURATION_STACK_TYPE(prefix, name, type)\ struct nk_config_stack_##name##_element {\ prefix##_##type *address;\ prefix##_##type old_value;\ } #define NK_CONFIG_STACK(type,size)\ struct nk_config_stack_##type {\ int head;\ struct nk_config_stack_##type##_element elements[size];\ } #define nk_float float NK_CONFIGURATION_STACK_TYPE(struct nk, style_item, style_item); NK_CONFIGURATION_STACK_TYPE(nk ,float, float); NK_CONFIGURATION_STACK_TYPE(struct nk, vec2, vec2); NK_CONFIGURATION_STACK_TYPE(nk ,flags, flags); NK_CONFIGURATION_STACK_TYPE(struct nk, color, color); NK_CONFIGURATION_STACK_TYPE(const struct nk, user_font, user_font*); NK_CONFIGURATION_STACK_TYPE(enum nk, button_behavior, button_behavior); NK_CONFIG_STACK(style_item, NK_STYLE_ITEM_STACK_SIZE); NK_CONFIG_STACK(float, NK_FLOAT_STACK_SIZE); NK_CONFIG_STACK(vec2, NK_VECTOR_STACK_SIZE); NK_CONFIG_STACK(flags, NK_FLAGS_STACK_SIZE); NK_CONFIG_STACK(color, NK_COLOR_STACK_SIZE); NK_CONFIG_STACK(user_font, NK_FONT_STACK_SIZE); NK_CONFIG_STACK(button_behavior, NK_BUTTON_BEHAVIOR_STACK_SIZE); struct nk_configuration_stacks { struct nk_config_stack_style_item style_items; struct nk_config_stack_float floats; struct nk_config_stack_vec2 vectors; struct nk_config_stack_flags flags; struct nk_config_stack_color colors; struct nk_config_stack_user_font fonts; struct nk_config_stack_button_behavior button_behaviors; }; /*============================================================== * CONTEXT * =============================================================*/ #define NK_VALUE_PAGE_CAPACITY \ (((NK_MAX(sizeof(struct nk_window),sizeof(struct nk_panel)) / sizeof(nk_uint))) / 2) struct nk_table { unsigned int seq; unsigned int size; nk_hash keys[NK_VALUE_PAGE_CAPACITY]; nk_uint values[NK_VALUE_PAGE_CAPACITY]; struct nk_table *next, *prev; }; union nk_page_data { struct nk_table tbl; struct nk_panel pan; struct nk_window win; }; struct nk_page_element { union nk_page_data data; struct nk_page_element *next; struct nk_page_element *prev; }; struct nk_page { unsigned int size; struct nk_page *next; struct nk_page_element win[1]; }; struct nk_pool { struct nk_allocator alloc; enum nk_allocation_type type; unsigned int page_count; struct nk_page *pages; struct nk_page_element *freelist; unsigned capacity; nk_size size; nk_size cap; }; struct nk_context { /* public: can be accessed freely */ struct nk_input input; struct nk_style style; struct nk_buffer memory; struct nk_clipboard clip; nk_flags last_widget_state; enum nk_button_behavior button_behavior; struct nk_configuration_stacks stacks; float delta_time_seconds; /* private: should only be accessed if you know what you are doing */ #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT struct nk_draw_list draw_list; #endif #ifdef NK_INCLUDE_COMMAND_USERDATA nk_handle userdata; #endif /* text editor objects are quite big because of an internal * undo/redo stack. Therefore it does not make sense to have one for * each window for temporary use cases, so I only provide *one* instance * for all windows. This works because the content is cleared anyway */ struct nk_text_edit text_edit; /* draw buffer used for overlay drawing operation like cursor */ struct nk_command_buffer overlay; /* windows */ int build; int use_pool; struct nk_pool pool; struct nk_window *begin; struct nk_window *end; struct nk_window *active; struct nk_window *current; struct nk_page_element *freelist; unsigned int count; unsigned int seq; }; /* ============================================================== * MATH * =============================================================== */ #define NK_PI 3.141592654f #define NK_UTF_INVALID 0xFFFD #define NK_MAX_FLOAT_PRECISION 2 #define NK_UNUSED(x) ((void)(x)) #define NK_SATURATE(x) (NK_MAX(0, NK_MIN(1.0f, x))) #define NK_LEN(a) (sizeof(a)/sizeof(a)[0]) #define NK_ABS(a) (((a) < 0) ? -(a) : (a)) #define NK_BETWEEN(x, a, b) ((a) <= (x) && (x) < (b)) #define NK_INBOX(px, py, x, y, w, h)\ (NK_BETWEEN(px,x,x+w) && NK_BETWEEN(py,y,y+h)) #define NK_INTERSECT(x0, y0, w0, h0, x1, y1, w1, h1) \ ((x1 < (x0 + w0)) && (x0 < (x1 + w1)) && \ (y1 < (y0 + h0)) && (y0 < (y1 + h1))) #define NK_CONTAINS(x, y, w, h, bx, by, bw, bh)\ (NK_INBOX(x,y, bx, by, bw, bh) && NK_INBOX(x+w,y+h, bx, by, bw, bh)) #define nk_vec2_sub(a, b) nk_vec2((a).x - (b).x, (a).y - (b).y) #define nk_vec2_add(a, b) nk_vec2((a).x + (b).x, (a).y + (b).y) #define nk_vec2_len_sqr(a) ((a).x*(a).x+(a).y*(a).y) #define nk_vec2_muls(a, t) nk_vec2((a).x * (t), (a).y * (t)) #define nk_ptr_add(t, p, i) ((t*)((void*)((nk_byte*)(p) + (i)))) #define nk_ptr_add_const(t, p, i) ((const t*)((const void*)((const nk_byte*)(p) + (i)))) #define nk_zero_struct(s) nk_zero(&s, sizeof(s)) /* ============================================================== * ALIGNMENT * =============================================================== */ /* Pointer to Integer type conversion for pointer alignment */ #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC*/ # define NK_UINT_TO_PTR(x) ((void*)(__PTRDIFF_TYPE__)(x)) # define NK_PTR_TO_UINT(x) ((nk_size)(__PTRDIFF_TYPE__)(x)) #elif !defined(__GNUC__) /* works for compilers other than LLVM */ # define NK_UINT_TO_PTR(x) ((void*)&((char*)0)[x]) # define NK_PTR_TO_UINT(x) ((nk_size)(((char*)x)-(char*)0)) #elif defined(NK_USE_FIXED_TYPES) /* used if we have */ # define NK_UINT_TO_PTR(x) ((void*)(uintptr_t)(x)) # define NK_PTR_TO_UINT(x) ((uintptr_t)(x)) #else /* generates warning but works */ # define NK_UINT_TO_PTR(x) ((void*)(x)) # define NK_PTR_TO_UINT(x) ((nk_size)(x)) #endif #define NK_ALIGN_PTR(x, mask)\ (NK_UINT_TO_PTR((NK_PTR_TO_UINT((nk_byte*)(x) + (mask-1)) & ~(mask-1)))) #define NK_ALIGN_PTR_BACK(x, mask)\ (NK_UINT_TO_PTR((NK_PTR_TO_UINT((nk_byte*)(x)) & ~(mask-1)))) #if (defined(__GNUC__) && __GNUC__ >= 4) || defined(__clang__) #define NK_OFFSETOF(st,m) (__builtin_offsetof(st,m)) #else #define NK_OFFSETOF(st,m) ((nk_ptr)&(((st*)0)->m)) #endif #ifdef __cplusplus } #endif #ifdef __cplusplus template struct nk_alignof; template struct nk_helper{enum {value = size_diff};}; template struct nk_helper{enum {value = nk_alignof::value};}; template struct nk_alignof{struct Big {T x; char c;}; enum { diff = sizeof(Big) - sizeof(T), value = nk_helper::value};}; #define NK_ALIGNOF(t) (nk_alignof::value) #else #define NK_ALIGNOF(t) NK_OFFSETOF(struct {char c; t _h;}, _h) #endif #define NK_CONTAINER_OF(ptr,type,member)\ (type*)((void*)((char*)(1 ? (ptr): &((type*)0)->member) - NK_OFFSETOF(type, member))) #endif /* NK_NUKLEAR_H_ */ #ifdef NK_IMPLEMENTATION #ifndef NK_INTERNAL_H #define NK_INTERNAL_H #ifndef NK_POOL_DEFAULT_CAPACITY #define NK_POOL_DEFAULT_CAPACITY 16 #endif #ifndef NK_DEFAULT_COMMAND_BUFFER_SIZE #define NK_DEFAULT_COMMAND_BUFFER_SIZE (4*1024) #endif #ifndef NK_BUFFER_DEFAULT_INITIAL_SIZE #define NK_BUFFER_DEFAULT_INITIAL_SIZE (4*1024) #endif /* standard library headers */ #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR #include /* malloc, free */ #endif #ifdef NK_INCLUDE_STANDARD_IO #include /* fopen, fclose,... */ #endif #ifdef NK_INCLUDE_STANDARD_VARARGS #include /* valist, va_start, va_end, ... */ #endif #ifndef NK_ASSERT #include #define NK_ASSERT(expr) assert(expr) #endif #define NK_DEFAULT (-1) #ifndef NK_VSNPRINTF /* If your compiler does support `vsnprintf` I would highly recommend * defining this to vsnprintf instead since `vsprintf` is basically * unbelievable unsafe and should *NEVER* be used. But I have to support * it since C89 only provides this unsafe version. */ #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) ||\ (defined(__cplusplus) && (__cplusplus >= 201103L)) || \ (defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE >= 200112L)) ||\ (defined(_XOPEN_SOURCE) && (_XOPEN_SOURCE >= 500)) ||\ defined(_ISOC99_SOURCE) || defined(_BSD_SOURCE) #define NK_VSNPRINTF(s,n,f,a) vsnprintf(s,n,f,a) #else #define NK_VSNPRINTF(s,n,f,a) vsprintf(s,f,a) #endif #endif #define NK_SCHAR_MIN (-127) #define NK_SCHAR_MAX 127 #define NK_UCHAR_MIN 0 #define NK_UCHAR_MAX 256 #define NK_SSHORT_MIN (-32767) #define NK_SSHORT_MAX 32767 #define NK_USHORT_MIN 0 #define NK_USHORT_MAX 65535 #define NK_SINT_MIN (-2147483647) #define NK_SINT_MAX 2147483647 #define NK_UINT_MIN 0 #define NK_UINT_MAX 4294967295u /* Make sure correct type size: * This will fire with a negative subscript error if the type sizes * are set incorrectly by the compiler, and compile out if not */ NK_STATIC_ASSERT(sizeof(nk_size) >= sizeof(void*)); NK_STATIC_ASSERT(sizeof(nk_ptr) == sizeof(void*)); NK_STATIC_ASSERT(sizeof(nk_flags) >= 4); NK_STATIC_ASSERT(sizeof(nk_rune) >= 4); NK_STATIC_ASSERT(sizeof(nk_ushort) == 2); NK_STATIC_ASSERT(sizeof(nk_short) == 2); NK_STATIC_ASSERT(sizeof(nk_uint) == 4); NK_STATIC_ASSERT(sizeof(nk_int) == 4); NK_STATIC_ASSERT(sizeof(nk_byte) == 1); #ifdef NK_INCLUDE_STANDARD_BOOL NK_STATIC_ASSERT(sizeof(nk_bool) == sizeof(bool)); #else NK_STATIC_ASSERT(sizeof(nk_bool) == 4); #endif NK_GLOBAL const struct nk_rect nk_null_rect = {-8192.0f, -8192.0f, 16384, 16384}; #define NK_FLOAT_PRECISION 0.00000000000001 NK_GLOBAL const struct nk_color nk_red = {255,0,0,255}; NK_GLOBAL const struct nk_color nk_green = {0,255,0,255}; NK_GLOBAL const struct nk_color nk_blue = {0,0,255,255}; NK_GLOBAL const struct nk_color nk_white = {255,255,255,255}; NK_GLOBAL const struct nk_color nk_black = {0,0,0,255}; NK_GLOBAL const struct nk_color nk_yellow = {255,255,0,255}; /* widget */ #define nk_widget_state_reset(s)\ if ((*(s)) & NK_WIDGET_STATE_MODIFIED)\ (*(s)) = NK_WIDGET_STATE_INACTIVE|NK_WIDGET_STATE_MODIFIED;\ else (*(s)) = NK_WIDGET_STATE_INACTIVE; /* math */ #ifndef NK_INV_SQRT NK_LIB float nk_inv_sqrt(float n); #endif #ifndef NK_SIN NK_LIB float nk_sin(float x); #endif #ifndef NK_COS NK_LIB float nk_cos(float x); #endif NK_LIB nk_uint nk_round_up_pow2(nk_uint v); NK_LIB struct nk_rect nk_shrink_rect(struct nk_rect r, float amount); NK_LIB struct nk_rect nk_pad_rect(struct nk_rect r, struct nk_vec2 pad); NK_LIB void nk_unify(struct nk_rect *clip, const struct nk_rect *a, float x0, float y0, float x1, float y1); NK_LIB double nk_pow(double x, int n); NK_LIB int nk_ifloord(double x); NK_LIB int nk_ifloorf(float x); NK_LIB int nk_iceilf(float x); NK_LIB int nk_log10(double n); /* util */ enum {NK_DO_NOT_STOP_ON_NEW_LINE, NK_STOP_ON_NEW_LINE}; NK_LIB nk_bool nk_is_lower(int c); NK_LIB nk_bool nk_is_upper(int c); NK_LIB int nk_to_upper(int c); NK_LIB int nk_to_lower(int c); #ifndef NK_MEMCPY NK_LIB void* nk_memcopy(void *dst, const void *src, nk_size n); #endif #ifndef NK_MEMSET NK_LIB void nk_memset(void *ptr, int c0, nk_size size); #endif NK_LIB void nk_zero(void *ptr, nk_size size); NK_LIB char *nk_itoa(char *s, long n); NK_LIB int nk_string_float_limit(char *string, int prec); #ifndef NK_DTOA NK_LIB char *nk_dtoa(char *s, double n); #endif NK_LIB int nk_text_clamp(const struct nk_user_font *font, const char *text, int text_len, float space, int *glyphs, float *text_width, nk_rune *sep_list, int sep_count); NK_LIB struct nk_vec2 nk_text_calculate_text_bounds(const struct nk_user_font *font, const char *begin, int byte_len, float row_height, const char **remaining, struct nk_vec2 *out_offset, int *glyphs, int op); #ifdef NK_INCLUDE_STANDARD_VARARGS NK_LIB int nk_strfmt(char *buf, int buf_size, const char *fmt, va_list args); #endif #ifdef NK_INCLUDE_STANDARD_IO NK_LIB char *nk_file_load(const char* path, nk_size* siz, struct nk_allocator *alloc); #endif /* buffer */ #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_LIB void* nk_malloc(nk_handle unused, void *old,nk_size size); NK_LIB void nk_mfree(nk_handle unused, void *ptr); #endif NK_LIB void* nk_buffer_align(void *unaligned, nk_size align, nk_size *alignment, enum nk_buffer_allocation_type type); NK_LIB void* nk_buffer_alloc(struct nk_buffer *b, enum nk_buffer_allocation_type type, nk_size size, nk_size align); NK_LIB void* nk_buffer_realloc(struct nk_buffer *b, nk_size capacity, nk_size *size); /* draw */ NK_LIB void nk_command_buffer_init(struct nk_command_buffer *cb, struct nk_buffer *b, enum nk_command_clipping clip); NK_LIB void nk_command_buffer_reset(struct nk_command_buffer *b); NK_LIB void* nk_command_buffer_push(struct nk_command_buffer* b, enum nk_command_type t, nk_size size); NK_LIB void nk_draw_symbol(struct nk_command_buffer *out, enum nk_symbol_type type, struct nk_rect content, struct nk_color background, struct nk_color foreground, float border_width, const struct nk_user_font *font); /* buffering */ NK_LIB void nk_start_buffer(struct nk_context *ctx, struct nk_command_buffer *b); NK_LIB void nk_start(struct nk_context *ctx, struct nk_window *win); NK_LIB void nk_start_popup(struct nk_context *ctx, struct nk_window *win); NK_LIB void nk_finish_popup(struct nk_context *ctx, struct nk_window*); NK_LIB void nk_finish_buffer(struct nk_context *ctx, struct nk_command_buffer *b); NK_LIB void nk_finish(struct nk_context *ctx, struct nk_window *w); NK_LIB void nk_build(struct nk_context *ctx); /* text editor */ NK_LIB void nk_textedit_clear_state(struct nk_text_edit *state, enum nk_text_edit_type type, nk_plugin_filter filter); NK_LIB void nk_textedit_click(struct nk_text_edit *state, float x, float y, const struct nk_user_font *font, float row_height); NK_LIB void nk_textedit_drag(struct nk_text_edit *state, float x, float y, const struct nk_user_font *font, float row_height); NK_LIB void nk_textedit_key(struct nk_text_edit *state, enum nk_keys key, int shift_mod, const struct nk_user_font *font, float row_height); /* window */ enum nk_window_insert_location { NK_INSERT_BACK, /* inserts window into the back of list (front of screen) */ NK_INSERT_FRONT /* inserts window into the front of list (back of screen) */ }; NK_LIB void *nk_create_window(struct nk_context *ctx); NK_LIB void nk_remove_window(struct nk_context*, struct nk_window*); NK_LIB void nk_free_window(struct nk_context *ctx, struct nk_window *win); NK_LIB struct nk_window *nk_find_window(struct nk_context *ctx, nk_hash hash, const char *name); NK_LIB void nk_insert_window(struct nk_context *ctx, struct nk_window *win, enum nk_window_insert_location loc); /* pool */ NK_LIB void nk_pool_init(struct nk_pool *pool, struct nk_allocator *alloc, unsigned int capacity); NK_LIB void nk_pool_free(struct nk_pool *pool); NK_LIB void nk_pool_init_fixed(struct nk_pool *pool, void *memory, nk_size size); NK_LIB struct nk_page_element *nk_pool_alloc(struct nk_pool *pool); /* page-element */ NK_LIB struct nk_page_element* nk_create_page_element(struct nk_context *ctx); NK_LIB void nk_link_page_element_into_freelist(struct nk_context *ctx, struct nk_page_element *elem); NK_LIB void nk_free_page_element(struct nk_context *ctx, struct nk_page_element *elem); /* table */ NK_LIB struct nk_table* nk_create_table(struct nk_context *ctx); NK_LIB void nk_remove_table(struct nk_window *win, struct nk_table *tbl); NK_LIB void nk_free_table(struct nk_context *ctx, struct nk_table *tbl); NK_LIB void nk_push_table(struct nk_window *win, struct nk_table *tbl); NK_LIB nk_uint *nk_add_value(struct nk_context *ctx, struct nk_window *win, nk_hash name, nk_uint value); NK_LIB nk_uint *nk_find_value(struct nk_window *win, nk_hash name); /* panel */ NK_LIB void *nk_create_panel(struct nk_context *ctx); NK_LIB void nk_free_panel(struct nk_context*, struct nk_panel *pan); NK_LIB nk_bool nk_panel_has_header(nk_flags flags, const char *title); NK_LIB struct nk_vec2 nk_panel_get_padding(const struct nk_style *style, enum nk_panel_type type); NK_LIB float nk_panel_get_border(const struct nk_style *style, nk_flags flags, enum nk_panel_type type); NK_LIB struct nk_color nk_panel_get_border_color(const struct nk_style *style, enum nk_panel_type type); NK_LIB nk_bool nk_panel_is_sub(enum nk_panel_type type); NK_LIB nk_bool nk_panel_is_nonblock(enum nk_panel_type type); NK_LIB nk_bool nk_panel_begin(struct nk_context *ctx, const char *title, enum nk_panel_type panel_type); NK_LIB void nk_panel_end(struct nk_context *ctx); /* layout */ NK_LIB float nk_layout_row_calculate_usable_space(const struct nk_style *style, enum nk_panel_type type, float total_space, int columns); NK_LIB void nk_panel_layout(const struct nk_context *ctx, struct nk_window *win, float height, int cols); NK_LIB void nk_row_layout(struct nk_context *ctx, enum nk_layout_format fmt, float height, int cols, int width); NK_LIB void nk_panel_alloc_row(const struct nk_context *ctx, struct nk_window *win); NK_LIB void nk_layout_widget_space(struct nk_rect *bounds, const struct nk_context *ctx, struct nk_window *win, int modify); NK_LIB void nk_panel_alloc_space(struct nk_rect *bounds, const struct nk_context *ctx); NK_LIB void nk_layout_peek(struct nk_rect *bounds, struct nk_context *ctx); /* popup */ NK_LIB nk_bool nk_nonblock_begin(struct nk_context *ctx, nk_flags flags, struct nk_rect body, struct nk_rect header, enum nk_panel_type panel_type); /* text */ struct nk_text { struct nk_vec2 padding; struct nk_color background; struct nk_color text; }; NK_LIB void nk_widget_text(struct nk_command_buffer *o, struct nk_rect b, const char *string, int len, const struct nk_text *t, nk_flags a, const struct nk_user_font *f); NK_LIB void nk_widget_text_wrap(struct nk_command_buffer *o, struct nk_rect b, const char *string, int len, const struct nk_text *t, const struct nk_user_font *f); /* button */ NK_LIB nk_bool nk_button_behavior(nk_flags *state, struct nk_rect r, const struct nk_input *i, enum nk_button_behavior behavior); NK_LIB const struct nk_style_item* nk_draw_button(struct nk_command_buffer *out, const struct nk_rect *bounds, nk_flags state, const struct nk_style_button *style); NK_LIB nk_bool nk_do_button(nk_flags *state, struct nk_command_buffer *out, struct nk_rect r, const struct nk_style_button *style, const struct nk_input *in, enum nk_button_behavior behavior, struct nk_rect *content); NK_LIB void nk_draw_button_text(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state, const struct nk_style_button *style, const char *txt, int len, nk_flags text_alignment, const struct nk_user_font *font); NK_LIB nk_bool nk_do_button_text(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *string, int len, nk_flags align, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_input *in, const struct nk_user_font *font); NK_LIB void nk_draw_button_symbol(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state, const struct nk_style_button *style, enum nk_symbol_type type, const struct nk_user_font *font); NK_LIB nk_bool nk_do_button_symbol(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, enum nk_symbol_type symbol, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_input *in, const struct nk_user_font *font); NK_LIB void nk_draw_button_image(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state, const struct nk_style_button *style, const struct nk_image *img); NK_LIB nk_bool nk_do_button_image(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, struct nk_image img, enum nk_button_behavior b, const struct nk_style_button *style, const struct nk_input *in); NK_LIB void nk_draw_button_text_symbol(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *label, const struct nk_rect *symbol, nk_flags state, const struct nk_style_button *style, const char *str, int len, enum nk_symbol_type type, const struct nk_user_font *font); NK_LIB nk_bool nk_do_button_text_symbol(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, enum nk_symbol_type symbol, const char *str, int len, nk_flags align, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_user_font *font, const struct nk_input *in); NK_LIB void nk_draw_button_text_image(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *label, const struct nk_rect *image, nk_flags state, const struct nk_style_button *style, const char *str, int len, const struct nk_user_font *font, const struct nk_image *img, nk_flags align); //< @r-lyeh: add last align param NK_LIB nk_bool nk_do_button_text_image(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, struct nk_image img, const char* str, int len, nk_flags align, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_user_font *font, const struct nk_input *in); /* toggle */ enum nk_toggle_type { NK_TOGGLE_CHECK, NK_TOGGLE_OPTION }; NK_LIB nk_bool nk_toggle_behavior(const struct nk_input *in, struct nk_rect select, nk_flags *state, nk_bool active); NK_LIB void nk_draw_checkbox(struct nk_command_buffer *out, nk_flags state, const struct nk_style_toggle *style, nk_bool active, const struct nk_rect *label, const struct nk_rect *selector, const struct nk_rect *cursors, const char *string, int len, const struct nk_user_font *font); NK_LIB void nk_draw_option(struct nk_command_buffer *out, nk_flags state, const struct nk_style_toggle *style, nk_bool active, const struct nk_rect *label, const struct nk_rect *selector, const struct nk_rect *cursors, const char *string, int len, const struct nk_user_font *font); NK_LIB nk_bool nk_do_toggle(nk_flags *state, struct nk_command_buffer *out, struct nk_rect r, nk_bool *active, const char *str, int len, enum nk_toggle_type type, const struct nk_style_toggle *style, const struct nk_input *in, const struct nk_user_font *font); /* progress */ NK_LIB nk_size nk_progress_behavior(nk_flags *state, struct nk_input *in, struct nk_rect r, struct nk_rect cursor, nk_size max, nk_size value, nk_bool modifiable); NK_LIB void nk_draw_progress(struct nk_command_buffer *out, nk_flags state, const struct nk_style_progress *style, const struct nk_rect *bounds, const struct nk_rect *scursor, nk_size value, nk_size max); NK_LIB nk_size nk_do_progress(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, nk_size value, nk_size max, nk_bool modifiable, const struct nk_style_progress *style, struct nk_input *in); /* slider */ NK_LIB float nk_slider_behavior(nk_flags *state, struct nk_rect *logical_cursor, struct nk_rect *visual_cursor, struct nk_input *in, struct nk_rect bounds, float slider_min, float slider_max, float slider_value, float slider_step, float slider_steps); NK_LIB void nk_draw_slider(struct nk_command_buffer *out, nk_flags state, const struct nk_style_slider *style, const struct nk_rect *bounds, const struct nk_rect *visual_cursor, float min, float value, float max); NK_LIB float nk_do_slider(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, float min, float val, float max, float step, const struct nk_style_slider *style, struct nk_input *in, const struct nk_user_font *font); /* scrollbar */ NK_LIB float nk_scrollbar_behavior(nk_flags *state, struct nk_input *in, int has_scrolling, const struct nk_rect *scroll, const struct nk_rect *cursor, const struct nk_rect *empty0, const struct nk_rect *empty1, float scroll_offset, float target, float scroll_step, enum nk_orientation o); NK_LIB void nk_draw_scrollbar(struct nk_command_buffer *out, nk_flags state, const struct nk_style_scrollbar *style, const struct nk_rect *bounds, const struct nk_rect *scroll); NK_LIB float nk_do_scrollbarv(nk_flags *state, struct nk_command_buffer *out, struct nk_rect scroll, int has_scrolling, float offset, float target, float step, float button_pixel_inc, const struct nk_style_scrollbar *style, struct nk_input *in, const struct nk_user_font *font); NK_LIB float nk_do_scrollbarh(nk_flags *state, struct nk_command_buffer *out, struct nk_rect scroll, int has_scrolling, float offset, float target, float step, float button_pixel_inc, const struct nk_style_scrollbar *style, struct nk_input *in, const struct nk_user_font *font); /* selectable */ NK_LIB void nk_draw_selectable(struct nk_command_buffer *out, nk_flags state, const struct nk_style_selectable *style, nk_bool active, const struct nk_rect *bounds, const struct nk_rect *icon, const struct nk_image *img, enum nk_symbol_type sym, const char *string, int len, nk_flags align, const struct nk_user_font *font); NK_LIB nk_bool nk_do_selectable(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *str, int len, nk_flags align, nk_bool *value, const struct nk_style_selectable *style, const struct nk_input *in, const struct nk_user_font *font); NK_LIB nk_bool nk_do_selectable_image(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *str, int len, nk_flags align, nk_bool *value, const struct nk_image *img, const struct nk_style_selectable *style, const struct nk_input *in, const struct nk_user_font *font); /* edit */ NK_LIB void nk_edit_draw_text(struct nk_command_buffer *out, const struct nk_style_edit *style, float pos_x, float pos_y, float x_offset, const char *text, int byte_len, float row_height, const struct nk_user_font *font, struct nk_color background, struct nk_color foreground, nk_bool is_selected); NK_LIB nk_flags nk_do_edit(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, nk_flags flags, nk_plugin_filter filter, struct nk_text_edit *edit, const struct nk_style_edit *style, struct nk_input *in, const struct nk_user_font *font); /* color-picker */ NK_LIB nk_bool nk_color_picker_behavior(nk_flags *state, const struct nk_rect *bounds, const struct nk_rect *matrix, const struct nk_rect *hue_bar, const struct nk_rect *alpha_bar, struct nk_colorf *color, const struct nk_input *in); NK_LIB void nk_draw_color_picker(struct nk_command_buffer *o, const struct nk_rect *matrix, const struct nk_rect *hue_bar, const struct nk_rect *alpha_bar, struct nk_colorf col); NK_LIB nk_bool nk_do_color_picker(nk_flags *state, struct nk_command_buffer *out, struct nk_colorf *col, enum nk_color_format fmt, struct nk_rect bounds, struct nk_vec2 padding, const struct nk_input *in, const struct nk_user_font *font); /* property */ enum nk_property_status { NK_PROPERTY_DEFAULT, NK_PROPERTY_EDIT, NK_PROPERTY_DRAG }; enum nk_property_filter { NK_FILTER_INT, NK_FILTER_FLOAT }; enum nk_property_kind { NK_PROPERTY_INT, NK_PROPERTY_FLOAT, NK_PROPERTY_DOUBLE }; union nk_property { int i; float f; double d; }; struct nk_property_variant { enum nk_property_kind kind; union nk_property value; union nk_property min_value; union nk_property max_value; union nk_property step; }; NK_LIB struct nk_property_variant nk_property_variant_int(int value, int min_value, int max_value, int step); NK_LIB struct nk_property_variant nk_property_variant_float(float value, float min_value, float max_value, float step); NK_LIB struct nk_property_variant nk_property_variant_double(double value, double min_value, double max_value, double step); NK_LIB void nk_drag_behavior(nk_flags *state, const struct nk_input *in, struct nk_rect drag, struct nk_property_variant *variant, float inc_per_pixel); NK_LIB void nk_property_behavior(nk_flags *ws, const struct nk_input *in, struct nk_rect property, struct nk_rect label, struct nk_rect edit, struct nk_rect empty, int *state, struct nk_property_variant *variant, float inc_per_pixel); NK_LIB void nk_draw_property(struct nk_command_buffer *out, const struct nk_style_property *style, const struct nk_rect *bounds, const struct nk_rect *label, nk_flags state, const char *name, int len, const struct nk_user_font *font); NK_LIB void nk_do_property(nk_flags *ws, struct nk_command_buffer *out, struct nk_rect property, const char *name, struct nk_property_variant *variant, float inc_per_pixel, char *buffer, int *len, int *state, int *cursor, int *select_begin, int *select_end, const struct nk_style_property *style, enum nk_property_filter filter, struct nk_input *in, const struct nk_user_font *font, struct nk_text_edit *text_edit, enum nk_button_behavior behavior); NK_LIB void nk_property(struct nk_context *ctx, const char *name, struct nk_property_variant *variant, float inc_per_pixel, const enum nk_property_filter filter); #ifdef NK_INCLUDE_FONT_BAKING #define STB_RECT_PACK_IMPLEMENTATION #define STB_TRUETYPE_IMPLEMENTATION /* Allow consumer to define own STBTT_malloc/STBTT_free, and use the font atlas' allocator otherwise */ #ifndef STBTT_malloc static void* nk_stbtt_malloc(nk_size size, void *user_data) { struct nk_allocator *alloc = (struct nk_allocator *) user_data; return alloc->alloc(alloc->userdata, 0, size); } static void nk_stbtt_free(void *ptr, void *user_data) { struct nk_allocator *alloc = (struct nk_allocator *) user_data; alloc->free(alloc->userdata, ptr); } #define STBTT_malloc(x,u) nk_stbtt_malloc(x,u) #define STBTT_free(x,u) nk_stbtt_free(x,u) #endif /* STBTT_malloc */ #endif /* NK_INCLUDE_FONT_BAKING */ #endif /* =============================================================== * * MATH * * ===============================================================*/ /* Since nuklear is supposed to work on all systems providing floating point math without any dependencies I also had to implement my own math functions for sqrt, sin and cos. Since the actual highly accurate implementations for the standard library functions are quite complex and I do not need high precision for my use cases I use approximations. Sqrt ---- For square root nuklear uses the famous fast inverse square root: https://en.wikipedia.org/wiki/Fast_inverse_square_root with slightly tweaked magic constant. While on today's hardware it is probably not faster it is still fast and accurate enough for nuklear's use cases. IMPORTANT: this requires float format IEEE 754 Sine/Cosine ----------- All constants inside both function are generated Remez's minimax approximations for value range 0...2*PI. The reason why I decided to approximate exactly that range is that nuklear only needs sine and cosine to generate circles which only requires that exact range. In addition I used Remez instead of Taylor for additional precision: www.lolengine.net/blog/2011/12/21/better-function-approximations. The tool I used to generate constants for both sine and cosine (it can actually approximate a lot more functions) can be found here: www.lolengine.net/wiki/oss/lolremez */ #ifndef NK_INV_SQRT #define NK_INV_SQRT nk_inv_sqrt NK_LIB float nk_inv_sqrt(float n) { float x2; const float threehalfs = 1.5f; union {nk_uint i; float f;} conv = {0}; conv.f = n; x2 = n * 0.5f; conv.i = 0x5f375A84 - (conv.i >> 1); conv.f = conv.f * (threehalfs - (x2 * conv.f * conv.f)); return conv.f; } #endif #ifndef NK_SIN #define NK_SIN nk_sin NK_LIB float nk_sin(float x) { NK_STORAGE const float a0 = +1.91059300966915117e-31f; NK_STORAGE const float a1 = +1.00086760103908896f; NK_STORAGE const float a2 = -1.21276126894734565e-2f; NK_STORAGE const float a3 = -1.38078780785773762e-1f; NK_STORAGE const float a4 = -2.67353392911981221e-2f; NK_STORAGE const float a5 = +2.08026600266304389e-2f; NK_STORAGE const float a6 = -3.03996055049204407e-3f; NK_STORAGE const float a7 = +1.38235642404333740e-4f; return a0 + x*(a1 + x*(a2 + x*(a3 + x*(a4 + x*(a5 + x*(a6 + x*a7)))))); } #endif #ifndef NK_COS #define NK_COS nk_cos NK_LIB float nk_cos(float x) { /* New implementation. Also generated using lolremez. */ /* Old version significantly deviated from expected results. */ NK_STORAGE const float a0 = 9.9995999154986614e-1f; NK_STORAGE const float a1 = 1.2548995793001028e-3f; NK_STORAGE const float a2 = -5.0648546280678015e-1f; NK_STORAGE const float a3 = 1.2942246466519995e-2f; NK_STORAGE const float a4 = 2.8668384702547972e-2f; NK_STORAGE const float a5 = 7.3726485210586547e-3f; NK_STORAGE const float a6 = -3.8510875386947414e-3f; NK_STORAGE const float a7 = 4.7196604604366623e-4f; NK_STORAGE const float a8 = -1.8776444013090451e-5f; return a0 + x*(a1 + x*(a2 + x*(a3 + x*(a4 + x*(a5 + x*(a6 + x*(a7 + x*a8))))))); } #endif NK_LIB nk_uint nk_round_up_pow2(nk_uint v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } NK_LIB double nk_pow(double x, int n) { /* check the sign of n */ double r = 1; int plus = n >= 0; n = (plus) ? n : -n; while (n > 0) { if ((n & 1) == 1) r *= x; n /= 2; x *= x; } return plus ? r : 1.0 / r; } NK_LIB int nk_ifloord(double x) { x = (double)((int)x - ((x < 0.0) ? 1 : 0)); return (int)x; } NK_LIB int nk_ifloorf(float x) { x = (float)((int)x - ((x < 0.0f) ? 1 : 0)); return (int)x; } NK_LIB int nk_iceilf(float x) { if (x >= 0) { int i = (int)x; return (x > i) ? i+1: i; } else { int t = (int)x; float r = x - (float)t; return (r > 0.0f) ? t+1: t; } } NK_LIB int nk_log10(double n) { int neg; int ret; int exp = 0; neg = (n < 0) ? 1 : 0; ret = (neg) ? (int)-n : (int)n; while ((ret / 10) > 0) { ret /= 10; exp++; } if (neg) exp = -exp; return exp; } NK_API struct nk_rect nk_get_null_rect(void) { return nk_null_rect; } NK_API struct nk_rect nk_rect(float x, float y, float w, float h) { struct nk_rect r; r.x = x; r.y = y; r.w = w; r.h = h; return r; } NK_API struct nk_rect nk_recti(int x, int y, int w, int h) { struct nk_rect r; r.x = (float)x; r.y = (float)y; r.w = (float)w; r.h = (float)h; return r; } NK_API struct nk_rect nk_recta(struct nk_vec2 pos, struct nk_vec2 size) { return nk_rect(pos.x, pos.y, size.x, size.y); } NK_API struct nk_rect nk_rectv(const float *r) { return nk_rect(r[0], r[1], r[2], r[3]); } NK_API struct nk_rect nk_rectiv(const int *r) { return nk_recti(r[0], r[1], r[2], r[3]); } NK_API struct nk_vec2 nk_rect_pos(struct nk_rect r) { struct nk_vec2 ret; ret.x = r.x; ret.y = r.y; return ret; } NK_API struct nk_vec2 nk_rect_size(struct nk_rect r) { struct nk_vec2 ret; ret.x = r.w; ret.y = r.h; return ret; } NK_LIB struct nk_rect nk_shrink_rect(struct nk_rect r, float amount) { struct nk_rect res; r.w = NK_MAX(r.w, 2 * amount); r.h = NK_MAX(r.h, 2 * amount); res.x = r.x + amount; res.y = r.y + amount; res.w = r.w - 2 * amount; res.h = r.h - 2 * amount; return res; } NK_LIB struct nk_rect nk_pad_rect(struct nk_rect r, struct nk_vec2 pad) { r.w = NK_MAX(r.w, 2 * pad.x); r.h = NK_MAX(r.h, 2 * pad.y); r.x += pad.x; r.y += pad.y; r.w -= 2 * pad.x; r.h -= 2 * pad.y; return r; } NK_API struct nk_vec2 nk_vec2(float x, float y) { struct nk_vec2 ret; ret.x = x; ret.y = y; return ret; } NK_API struct nk_vec2 nk_vec2i(int x, int y) { struct nk_vec2 ret; ret.x = (float)x; ret.y = (float)y; return ret; } NK_API struct nk_vec2 nk_vec2v(const float *v) { return nk_vec2(v[0], v[1]); } NK_API struct nk_vec2 nk_vec2iv(const int *v) { return nk_vec2i(v[0], v[1]); } NK_LIB void nk_unify(struct nk_rect *clip, const struct nk_rect *a, float x0, float y0, float x1, float y1) { NK_ASSERT(a); NK_ASSERT(clip); clip->x = NK_MAX(a->x, x0); clip->y = NK_MAX(a->y, y0); clip->w = NK_MIN(a->x + a->w, x1) - clip->x; clip->h = NK_MIN(a->y + a->h, y1) - clip->y; clip->w = NK_MAX(0, clip->w); clip->h = NK_MAX(0, clip->h); } NK_API void nk_triangle_from_direction(struct nk_vec2 *result, struct nk_rect r, float pad_x, float pad_y, enum nk_heading direction) { float w_half, h_half; NK_ASSERT(result); r.w = NK_MAX(2 * pad_x, r.w); r.w *= direction == NK_DOWN ? 0.5f : 1; //< @r-lyeh *0.5 r.h = NK_MAX(2 * pad_y, r.h); r.h *= direction == NK_DOWN ? 0.5f : 1; //< @r-lyeh *0.5 r.w = r.w - 2 * pad_x; r.h = r.h - 2 * pad_y; r.x = r.x + pad_x; r.y = r.y + pad_y; if(direction == NK_DOWN) r.x += 5, r.y += 5; //< @r-lyeh w_half = r.w / 2.0f; h_half = r.h / 2.0f; if (direction == NK_UP) { result[0] = nk_vec2(r.x + w_half, r.y); result[1] = nk_vec2(r.x + r.w, r.y + r.h); result[2] = nk_vec2(r.x, r.y + r.h); } else if (direction == NK_RIGHT) { result[0] = nk_vec2(r.x, r.y); result[1] = nk_vec2(r.x + r.w, r.y + h_half); result[2] = nk_vec2(r.x, r.y + r.h); } else if (direction == NK_DOWN) { result[0] = nk_vec2(r.x, r.y); result[1] = nk_vec2(r.x + r.w, r.y); result[2] = nk_vec2(r.x + w_half, r.y + r.h); } else { result[0] = nk_vec2(r.x, r.y + h_half); result[1] = nk_vec2(r.x + r.w, r.y); result[2] = nk_vec2(r.x + r.w, r.y + r.h); } } /* =============================================================== * * UTIL * * ===============================================================*/ NK_INTERN int nk_str_match_here(const char *regexp, const char *text); NK_INTERN int nk_str_match_star(int c, const char *regexp, const char *text); NK_LIB nk_bool nk_is_lower(int c) {return (c >= 'a' && c <= 'z') || (c >= 0xE0 && c <= 0xFF);} NK_LIB nk_bool nk_is_upper(int c){return (c >= 'A' && c <= 'Z') || (c >= 0xC0 && c <= 0xDF);} NK_LIB int nk_to_upper(int c) {return (c >= 'a' && c <= 'z') ? (c - ('a' - 'A')) : c;} NK_LIB int nk_to_lower(int c) {return (c >= 'A' && c <= 'Z') ? (c - ('a' + 'A')) : c;} #ifndef NK_MEMCPY #define NK_MEMCPY nk_memcopy NK_LIB void* nk_memcopy(void *dst0, const void *src0, nk_size length) { nk_ptr t; char *dst = (char*)dst0; const char *src = (const char*)src0; if (length == 0 || dst == src) goto done; #define nk_word int #define nk_wsize sizeof(nk_word) #define nk_wmask (nk_wsize-1) #define NK_TLOOP(s) if (t) NK_TLOOP1(s) #define NK_TLOOP1(s) do { s; } while (--t) if (dst < src) { t = (nk_ptr)src; /* only need low bits */ if ((t | (nk_ptr)dst) & nk_wmask) { if ((t ^ (nk_ptr)dst) & nk_wmask || length < nk_wsize) t = length; else t = nk_wsize - (t & nk_wmask); length -= t; NK_TLOOP1(*dst++ = *src++); } t = length / nk_wsize; NK_TLOOP(*(nk_word*)(void*)dst = *(const nk_word*)(const void*)src; src += nk_wsize; dst += nk_wsize); t = length & nk_wmask; NK_TLOOP(*dst++ = *src++); } else { src += length; dst += length; t = (nk_ptr)src; if ((t | (nk_ptr)dst) & nk_wmask) { if ((t ^ (nk_ptr)dst) & nk_wmask || length <= nk_wsize) t = length; else t &= nk_wmask; length -= t; NK_TLOOP1(*--dst = *--src); } t = length / nk_wsize; NK_TLOOP(src -= nk_wsize; dst -= nk_wsize; *(nk_word*)(void*)dst = *(const nk_word*)(const void*)src); t = length & nk_wmask; NK_TLOOP(*--dst = *--src); } #undef nk_word #undef nk_wsize #undef nk_wmask #undef NK_TLOOP #undef NK_TLOOP1 done: return (dst0); } #endif #ifndef NK_MEMSET #define NK_MEMSET nk_memset NK_LIB void nk_memset(void *ptr, int c0, nk_size size) { #define nk_word unsigned #define nk_wsize sizeof(nk_word) #define nk_wmask (nk_wsize - 1) nk_byte *dst = (nk_byte*)ptr; unsigned c = 0; nk_size t = 0; if ((c = (nk_byte)c0) != 0) { c = (c << 8) | c; /* at least 16-bits */ if (sizeof(unsigned int) > 2) c = (c << 16) | c; /* at least 32-bits*/ } /* too small of a word count */ dst = (nk_byte*)ptr; if (size < 3 * nk_wsize) { while (size--) *dst++ = (nk_byte)c0; return; } /* align destination */ if ((t = NK_PTR_TO_UINT(dst) & nk_wmask) != 0) { t = nk_wsize -t; size -= t; do { *dst++ = (nk_byte)c0; } while (--t != 0); } /* fill word */ t = size / nk_wsize; do { *(nk_word*)((void*)dst) = c; dst += nk_wsize; } while (--t != 0); /* fill trailing bytes */ t = (size & nk_wmask); if (t != 0) { do { *dst++ = (nk_byte)c0; } while (--t != 0); } #undef nk_word #undef nk_wsize #undef nk_wmask } #endif NK_LIB void nk_zero(void *ptr, nk_size size) { NK_ASSERT(ptr); NK_MEMSET(ptr, 0, size); } NK_API int nk_strlen(const char *str) { int siz = 0; NK_ASSERT(str); while (str && *str++ != '\0') siz++; return siz; } NK_API int nk_strtoi(const char *str, const char **endptr) { int neg = 1; const char *p = str; int value = 0; NK_ASSERT(str); if (!str) return 0; /* skip whitespace */ while (*p == ' ') p++; if (*p == '-') { neg = -1; p++; } while (*p && *p >= '0' && *p <= '9') { value = value * 10 + (int) (*p - '0'); p++; } if (endptr) *endptr = p; return neg*value; } NK_API double nk_strtod(const char *str, const char **endptr) { double m; double neg = 1.0; const char *p = str; double value = 0; double number = 0; NK_ASSERT(str); if (!str) return 0; /* skip whitespace */ while (*p == ' ') p++; if (*p == '-') { neg = -1.0; p++; } while (*p && *p != '.' && *p != 'e') { value = value * 10.0 + (double) (*p - '0'); p++; } if (*p == '.') { p++; for(m = 0.1; *p && *p != 'e'; p++ ) { value = value + (double) (*p - '0') * m; m *= 0.1; } } if (*p == 'e') { int i, pow, div; p++; if (*p == '-') { div = nk_true; p++; } else if (*p == '+') { div = nk_false; p++; } else div = nk_false; for (pow = 0; *p; p++) pow = pow * 10 + (int) (*p - '0'); for (m = 1.0, i = 0; i < pow; i++) m *= 10.0; if (div) value /= m; else value *= m; } number = value * neg; if (endptr) *endptr = p; return number; } NK_API float nk_strtof(const char *str, const char **endptr) { float float_value; double double_value; double_value = NK_STRTOD(str, endptr); float_value = (float)double_value; return float_value; } NK_API int nk_stricmp(const char *s1, const char *s2) { nk_int c1,c2,d; do { c1 = *s1++; c2 = *s2++; d = c1 - c2; while (d) { if (c1 <= 'Z' && c1 >= 'A') { d += ('a' - 'A'); if (!d) break; } if (c2 <= 'Z' && c2 >= 'A') { d -= ('a' - 'A'); if (!d) break; } return ((d >= 0) << 1) - 1; } } while (c1); return 0; } NK_API int nk_stricmpn(const char *s1, const char *s2, int n) { int c1,c2,d; NK_ASSERT(n >= 0); do { c1 = *s1++; c2 = *s2++; if (!n--) return 0; d = c1 - c2; while (d) { if (c1 <= 'Z' && c1 >= 'A') { d += ('a' - 'A'); if (!d) break; } if (c2 <= 'Z' && c2 >= 'A') { d -= ('a' - 'A'); if (!d) break; } return ((d >= 0) << 1) - 1; } } while (c1); return 0; } NK_INTERN int nk_str_match_here(const char *regexp, const char *text) { if (regexp[0] == '\0') return 1; if (regexp[1] == '*') return nk_str_match_star(regexp[0], regexp+2, text); if (regexp[0] == '$' && regexp[1] == '\0') return *text == '\0'; if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text)) return nk_str_match_here(regexp+1, text+1); return 0; } NK_INTERN int nk_str_match_star(int c, const char *regexp, const char *text) { do {/* a '* matches zero or more instances */ if (nk_str_match_here(regexp, text)) return 1; } while (*text != '\0' && (*text++ == c || c == '.')); return 0; } NK_API int nk_strfilter(const char *text, const char *regexp) { /* c matches any literal character c . matches any single character ^ matches the beginning of the input string $ matches the end of the input string * matches zero or more occurrences of the previous character*/ if (regexp[0] == '^') return nk_str_match_here(regexp+1, text); do { /* must look even if string is empty */ if (nk_str_match_here(regexp, text)) return 1; } while (*text++ != '\0'); return 0; } NK_API int nk_strmatch_fuzzy_text(const char *str, int str_len, const char *pattern, int *out_score) { /* Returns true if each character in pattern is found sequentially within str * if found then out_score is also set. Score value has no intrinsic meaning. * Range varies with pattern. Can only compare scores with same search pattern. */ /* bonus for adjacent matches */ #define NK_ADJACENCY_BONUS 5 /* bonus if match occurs after a separator */ #define NK_SEPARATOR_BONUS 10 /* bonus if match is uppercase and prev is lower */ #define NK_CAMEL_BONUS 10 /* penalty applied for every letter in str before the first match */ #define NK_LEADING_LETTER_PENALTY (-3) /* maximum penalty for leading letters */ #define NK_MAX_LEADING_LETTER_PENALTY (-9) /* penalty for every letter that doesn't matter */ #define NK_UNMATCHED_LETTER_PENALTY (-1) /* loop variables */ int score = 0; char const * pattern_iter = pattern; int str_iter = 0; int prev_matched = nk_false; int prev_lower = nk_false; /* true so if first letter match gets separator bonus*/ int prev_separator = nk_true; /* use "best" matched letter if multiple string letters match the pattern */ char const * best_letter = 0; int best_letter_score = 0; /* loop over strings */ NK_ASSERT(str); NK_ASSERT(pattern); if (!str || !str_len || !pattern) return 0; while (str_iter < str_len) { const char pattern_letter = *pattern_iter; const char str_letter = str[str_iter]; int next_match = *pattern_iter != '\0' && nk_to_lower(pattern_letter) == nk_to_lower(str_letter); int rematch = best_letter && nk_to_upper(*best_letter) == nk_to_upper(str_letter); int advanced = next_match && best_letter; int pattern_repeat = best_letter && *pattern_iter != '\0'; pattern_repeat = pattern_repeat && nk_to_lower(*best_letter) == nk_to_lower(pattern_letter); if (advanced || pattern_repeat) { score += best_letter_score; best_letter = 0; best_letter_score = 0; } if (next_match || rematch) { int new_score = 0; /* Apply penalty for each letter before the first pattern match */ if (pattern_iter == pattern) { int count = (int)(&str[str_iter] - str); int penalty = NK_LEADING_LETTER_PENALTY * count; if (penalty < NK_MAX_LEADING_LETTER_PENALTY) penalty = NK_MAX_LEADING_LETTER_PENALTY; score += penalty; } /* apply bonus for consecutive bonuses */ if (prev_matched) new_score += NK_ADJACENCY_BONUS; /* apply bonus for matches after a separator */ if (prev_separator) new_score += NK_SEPARATOR_BONUS; /* apply bonus across camel case boundaries */ if (prev_lower && nk_is_upper(str_letter)) new_score += NK_CAMEL_BONUS; /* update pattern iter IFF the next pattern letter was matched */ if (next_match) ++pattern_iter; /* update best letter in str which may be for a "next" letter or a rematch */ if (new_score >= best_letter_score) { /* apply penalty for now skipped letter */ if (best_letter != 0) score += NK_UNMATCHED_LETTER_PENALTY; best_letter = &str[str_iter]; best_letter_score = new_score; } prev_matched = nk_true; } else { score += NK_UNMATCHED_LETTER_PENALTY; prev_matched = nk_false; } /* separators should be more easily defined */ prev_lower = nk_is_lower(str_letter) != 0; prev_separator = str_letter == '_' || str_letter == ' '; ++str_iter; } /* apply score for last match */ if (best_letter) score += best_letter_score; /* did not match full pattern */ if (*pattern_iter != '\0') return nk_false; if (out_score) *out_score = score; return nk_true; } NK_API int nk_strmatch_fuzzy_string(char const *str, char const *pattern, int *out_score) { return nk_strmatch_fuzzy_text(str, nk_strlen(str), pattern, out_score); } NK_LIB int nk_string_float_limit(char *string, int prec) { int dot = 0; char *c = string; while (*c) { if (*c == '.') { dot = 1; c++; continue; } if (dot == (prec+1)) { *c = 0; break; } if (dot > 0) dot++; c++; } return (int)(c - string); } NK_INTERN void nk_strrev_ascii(char *s) { int len = nk_strlen(s); int end = len / 2; int i = 0; char t; for (; i < end; ++i) { t = s[i]; s[i] = s[len - 1 - i]; s[len -1 - i] = t; } } NK_LIB char* nk_itoa(char *s, long n) { long i = 0; if (n == 0) { s[i++] = '0'; s[i] = 0; return s; } if (n < 0) { s[i++] = '-'; n = -n; } while (n > 0) { s[i++] = (char)('0' + (n % 10)); n /= 10; } s[i] = 0; if (s[0] == '-') ++s; nk_strrev_ascii(s); return s; } #ifndef NK_DTOA #define NK_DTOA nk_dtoa NK_LIB char* nk_dtoa(char *s, double n) { int useExp = 0; int digit = 0, m = 0, m1 = 0; char *c = s; int neg = 0; NK_ASSERT(s); if (!s) return 0; if (n == 0.0) { s[0] = '0'; s[1] = '\0'; return s; } neg = (n < 0); if (neg) n = -n; /* calculate magnitude */ m = nk_log10(n); useExp = (m >= 14 || (neg && m >= 9) || m <= -9); if (neg) *(c++) = '-'; /* set up for scientific notation */ if (useExp) { if (m < 0) m -= 1; n = n / (double)nk_pow(10.0, m); m1 = m; m = 0; } if (m < 1.0) { m = 0; } /* convert the number */ while (n > NK_FLOAT_PRECISION || m >= 0) { double weight = nk_pow(10.0, m); if (weight > 0) { double t = (double)n / weight; digit = nk_ifloord(t); n -= ((double)digit * weight); *(c++) = (char)('0' + (char)digit); } if (m == 0 && n > 0) *(c++) = '.'; m--; } if (useExp) { /* convert the exponent */ int i, j; *(c++) = 'e'; if (m1 > 0) { *(c++) = '+'; } else { *(c++) = '-'; m1 = -m1; } m = 0; while (m1 > 0) { *(c++) = (char)('0' + (char)(m1 % 10)); m1 /= 10; m++; } c -= m; for (i = 0, j = m-1; i= buf_size) break; iter++; /* flag arguments */ while (*iter) { if (*iter == '-') flag |= NK_ARG_FLAG_LEFT; else if (*iter == '+') flag |= NK_ARG_FLAG_PLUS; else if (*iter == ' ') flag |= NK_ARG_FLAG_SPACE; else if (*iter == '#') flag |= NK_ARG_FLAG_NUM; else if (*iter == '0') flag |= NK_ARG_FLAG_ZERO; else break; iter++; } /* width argument */ width = NK_DEFAULT; if (*iter >= '1' && *iter <= '9') { const char *end; width = nk_strtoi(iter, &end); if (end == iter) width = -1; else iter = end; } else if (*iter == '*') { width = va_arg(args, int); iter++; } /* precision argument */ precision = NK_DEFAULT; if (*iter == '.') { iter++; if (*iter == '*') { precision = va_arg(args, int); iter++; } else { const char *end; precision = nk_strtoi(iter, &end); if (end == iter) precision = -1; else iter = end; } } /* length modifier */ if (*iter == 'h') { if (*(iter+1) == 'h') { arg_type = NK_ARG_TYPE_CHAR; iter++; } else arg_type = NK_ARG_TYPE_SHORT; iter++; } else if (*iter == 'l') { arg_type = NK_ARG_TYPE_LONG; iter++; } else arg_type = NK_ARG_TYPE_DEFAULT; /* specifier */ if (*iter == '%') { NK_ASSERT(arg_type == NK_ARG_TYPE_DEFAULT); NK_ASSERT(precision == NK_DEFAULT); NK_ASSERT(width == NK_DEFAULT); if (len < buf_size) buf[len++] = '%'; } else if (*iter == 's') { /* string */ const char *str = va_arg(args, const char*); NK_ASSERT(str != buf && "buffer and argument are not allowed to overlap!"); NK_ASSERT(arg_type == NK_ARG_TYPE_DEFAULT); NK_ASSERT(precision == NK_DEFAULT); NK_ASSERT(width == NK_DEFAULT); if (str == buf) return -1; while (str && *str && len < buf_size) buf[len++] = *str++; } else if (*iter == 'n') { /* current length callback */ signed int *n = va_arg(args, int*); NK_ASSERT(arg_type == NK_ARG_TYPE_DEFAULT); NK_ASSERT(precision == NK_DEFAULT); NK_ASSERT(width == NK_DEFAULT); if (n) *n = len; } else if (*iter == 'c' || *iter == 'i' || *iter == 'd') { /* signed integer */ long value = 0; const char *num_iter; int num_len, num_print, padding; int cur_precision = NK_MAX(precision, 1); int cur_width = NK_MAX(width, 0); /* retrieve correct value type */ if (arg_type == NK_ARG_TYPE_CHAR) value = (signed char)va_arg(args, int); else if (arg_type == NK_ARG_TYPE_SHORT) value = (signed short)va_arg(args, int); else if (arg_type == NK_ARG_TYPE_LONG) value = va_arg(args, signed long); else if (*iter == 'c') value = (unsigned char)va_arg(args, int); else value = va_arg(args, signed int); /* convert number to string */ nk_itoa(number_buffer, value); num_len = nk_strlen(number_buffer); padding = NK_MAX(cur_width - NK_MAX(cur_precision, num_len), 0); if ((flag & NK_ARG_FLAG_PLUS) || (flag & NK_ARG_FLAG_SPACE)) padding = NK_MAX(padding-1, 0); /* fill left padding up to a total of `width` characters */ if (!(flag & NK_ARG_FLAG_LEFT)) { while (padding-- > 0 && (len < buf_size)) { if ((flag & NK_ARG_FLAG_ZERO) && (precision == NK_DEFAULT)) buf[len++] = '0'; else buf[len++] = ' '; } } /* copy string value representation into buffer */ if ((flag & NK_ARG_FLAG_PLUS) && value >= 0 && len < buf_size) buf[len++] = '+'; else if ((flag & NK_ARG_FLAG_SPACE) && value >= 0 && len < buf_size) buf[len++] = ' '; /* fill up to precision number of digits with '0' */ num_print = NK_MAX(cur_precision, num_len); while (precision && (num_print > num_len) && (len < buf_size)) { buf[len++] = '0'; num_print--; } /* copy string value representation into buffer */ num_iter = number_buffer; while (precision && *num_iter && len < buf_size) buf[len++] = *num_iter++; /* fill right padding up to width characters */ if (flag & NK_ARG_FLAG_LEFT) { while ((padding-- > 0) && (len < buf_size)) buf[len++] = ' '; } } else if (*iter == 'o' || *iter == 'x' || *iter == 'X' || *iter == 'u') { /* unsigned integer */ unsigned long value = 0; int num_len = 0, num_print, padding = 0; int cur_precision = NK_MAX(precision, 1); int cur_width = NK_MAX(width, 0); unsigned int base = (*iter == 'o') ? 8: (*iter == 'u')? 10: 16; /* print oct/hex/dec value */ const char *upper_output_format = "0123456789ABCDEF"; const char *lower_output_format = "0123456789abcdef"; const char *output_format = (*iter == 'x') ? lower_output_format: upper_output_format; /* retrieve correct value type */ if (arg_type == NK_ARG_TYPE_CHAR) value = (unsigned char)va_arg(args, int); else if (arg_type == NK_ARG_TYPE_SHORT) value = (unsigned short)va_arg(args, int); else if (arg_type == NK_ARG_TYPE_LONG) value = va_arg(args, unsigned long); else value = va_arg(args, unsigned int); do { /* convert decimal number into hex/oct number */ int digit = output_format[value % base]; if (num_len < NK_MAX_NUMBER_BUFFER) number_buffer[num_len++] = (char)digit; value /= base; } while (value > 0); num_print = NK_MAX(cur_precision, num_len); padding = NK_MAX(cur_width - NK_MAX(cur_precision, num_len), 0); if (flag & NK_ARG_FLAG_NUM) padding = NK_MAX(padding-1, 0); /* fill left padding up to a total of `width` characters */ if (!(flag & NK_ARG_FLAG_LEFT)) { while ((padding-- > 0) && (len < buf_size)) { if ((flag & NK_ARG_FLAG_ZERO) && (precision == NK_DEFAULT)) buf[len++] = '0'; else buf[len++] = ' '; } } /* fill up to precision number of digits */ if (num_print && (flag & NK_ARG_FLAG_NUM)) { if ((*iter == 'o') && (len < buf_size)) { buf[len++] = '0'; } else if ((*iter == 'x') && ((len+1) < buf_size)) { buf[len++] = '0'; buf[len++] = 'x'; } else if ((*iter == 'X') && ((len+1) < buf_size)) { buf[len++] = '0'; buf[len++] = 'X'; } } while (precision && (num_print > num_len) && (len < buf_size)) { buf[len++] = '0'; num_print--; } /* reverse number direction */ while (num_len > 0) { if (precision && (len < buf_size)) buf[len++] = number_buffer[num_len-1]; num_len--; } /* fill right padding up to width characters */ if (flag & NK_ARG_FLAG_LEFT) { while ((padding-- > 0) && (len < buf_size)) buf[len++] = ' '; } } else if (*iter == 'f') { /* floating point */ const char *num_iter; int cur_precision = (precision < 0) ? 6: precision; int prefix, cur_width = NK_MAX(width, 0); double value = va_arg(args, double); int num_len = 0, frac_len = 0, dot = 0; int padding = 0; NK_ASSERT(arg_type == NK_ARG_TYPE_DEFAULT); NK_DTOA(number_buffer, value); num_len = nk_strlen(number_buffer); /* calculate padding */ num_iter = number_buffer; while (*num_iter && *num_iter != '.') num_iter++; prefix = (*num_iter == '.')?(int)(num_iter - number_buffer)+1:0; padding = NK_MAX(cur_width - (prefix + NK_MIN(cur_precision, num_len - prefix)) , 0); if ((flag & NK_ARG_FLAG_PLUS) || (flag & NK_ARG_FLAG_SPACE)) padding = NK_MAX(padding-1, 0); /* fill left padding up to a total of `width` characters */ if (!(flag & NK_ARG_FLAG_LEFT)) { while (padding-- > 0 && (len < buf_size)) { if (flag & NK_ARG_FLAG_ZERO) buf[len++] = '0'; else buf[len++] = ' '; } } /* copy string value representation into buffer */ num_iter = number_buffer; if ((flag & NK_ARG_FLAG_PLUS) && (value >= 0) && (len < buf_size)) buf[len++] = '+'; else if ((flag & NK_ARG_FLAG_SPACE) && (value >= 0) && (len < buf_size)) buf[len++] = ' '; while (*num_iter) { if (dot) frac_len++; if (len < buf_size) buf[len++] = *num_iter; if (*num_iter == '.') dot = 1; if (frac_len >= cur_precision) break; num_iter++; } /* fill number up to precision */ while (frac_len < cur_precision) { if (!dot && len < buf_size) { buf[len++] = '.'; dot = 1; } if (len < buf_size) buf[len++] = '0'; frac_len++; } /* fill right padding up to width characters */ if (flag & NK_ARG_FLAG_LEFT) { while ((padding-- > 0) && (len < buf_size)) buf[len++] = ' '; } } else { /* Specifier not supported: g,G,e,E,p,z */ NK_ASSERT(0 && "specifier is not supported!"); return result; } } buf[(len >= buf_size)?(buf_size-1):len] = 0; result = (len >= buf_size)?-1:len; return result; } #endif NK_LIB int nk_strfmt(char *buf, int buf_size, const char *fmt, va_list args) { int result = -1; NK_ASSERT(buf); NK_ASSERT(buf_size); if (!buf || !buf_size || !fmt) return 0; #ifdef NK_INCLUDE_STANDARD_IO result = NK_VSNPRINTF(buf, (nk_size)buf_size, fmt, args); result = (result >= buf_size) ? -1: result; buf[buf_size-1] = 0; #else result = nk_vsnprintf(buf, buf_size, fmt, args); #endif return result; } #endif NK_API nk_hash nk_murmur_hash(const void * key, int len, nk_hash seed) { /* 32-Bit MurmurHash3: https://code.google.com/p/smhasher/wiki/MurmurHash3*/ #define NK_ROTL(x,r) ((x) << (r) | ((x) >> (32 - r))) nk_uint h1 = seed; nk_uint k1; const nk_byte *data = (const nk_byte*)key; const nk_byte *keyptr = data; nk_byte *k1ptr; const int bsize = sizeof(k1); const int nblocks = len/4; const nk_uint c1 = 0xcc9e2d51; const nk_uint c2 = 0x1b873593; const nk_byte *tail; int i; /* body */ if (!key) return 0; for (i = 0; i < nblocks; ++i, keyptr += bsize) { k1ptr = (nk_byte*)&k1; k1ptr[0] = keyptr[0]; k1ptr[1] = keyptr[1]; k1ptr[2] = keyptr[2]; k1ptr[3] = keyptr[3]; k1 *= c1; k1 = NK_ROTL(k1,15); k1 *= c2; h1 ^= k1; h1 = NK_ROTL(h1,13); h1 = h1*5+0xe6546b64; } /* tail */ tail = (const nk_byte*)(data + nblocks*4); k1 = 0; switch (len & 3) { case 3: k1 ^= (nk_uint)(tail[2] << 16); /* fallthrough */ case 2: k1 ^= (nk_uint)(tail[1] << 8u); /* fallthrough */ case 1: k1 ^= tail[0]; k1 *= c1; k1 = NK_ROTL(k1,15); k1 *= c2; h1 ^= k1; break; default: break; } /* finalization */ h1 ^= (nk_uint)len; /* fmix32 */ h1 ^= h1 >> 16; h1 *= 0x85ebca6b; h1 ^= h1 >> 13; h1 *= 0xc2b2ae35; h1 ^= h1 >> 16; #undef NK_ROTL return h1; } #ifdef NK_INCLUDE_STANDARD_IO NK_LIB char* nk_file_load(const char* path, nk_size* siz, struct nk_allocator *alloc) { char *buf; FILE *fd; long ret; NK_ASSERT(path); NK_ASSERT(siz); NK_ASSERT(alloc); if (!path || !siz || !alloc) return 0; fd = fopen(path, "rb"); if (!fd) return 0; fseek(fd, 0, SEEK_END); ret = ftell(fd); if (ret < 0) { fclose(fd); return 0; } *siz = (nk_size)ret; fseek(fd, 0, SEEK_SET); buf = (char*)alloc->alloc(alloc->userdata,0, *siz); NK_ASSERT(buf); if (!buf) { fclose(fd); return 0; } *siz = (nk_size)fread(buf, 1,*siz, fd); fclose(fd); return buf; } #endif NK_LIB int nk_text_clamp(const struct nk_user_font *font, const char *text, int text_len, float space, int *glyphs, float *text_width, nk_rune *sep_list, int sep_count) { int i = 0; int glyph_len = 0; float last_width = 0; nk_rune unicode = 0; float width = 0; int len = 0; int g = 0; float s; int sep_len = 0; int sep_g = 0; float sep_width = 0; sep_count = NK_MAX(sep_count,0); glyph_len = nk_utf_decode(text, &unicode, text_len); while (glyph_len && (width < space) && (len < text_len)) { len += glyph_len; s = font->width(font->userdata, font->height, text, len); for (i = 0; i < sep_count; ++i) { if (unicode != sep_list[i]) continue; sep_width = last_width = width; sep_g = g+1; sep_len = len; break; } if (i == sep_count){ last_width = sep_width = width; sep_g = g+1; } width = s; glyph_len = nk_utf_decode(&text[len], &unicode, text_len - len); g++; } if (len >= text_len) { *glyphs = g; *text_width = last_width; return len; } else { *glyphs = sep_g; *text_width = sep_width; return (!sep_len) ? len: sep_len; } } NK_LIB struct nk_vec2 nk_text_calculate_text_bounds(const struct nk_user_font *font, const char *begin, int byte_len, float row_height, const char **remaining, struct nk_vec2 *out_offset, int *glyphs, int op) { float line_height = row_height; struct nk_vec2 text_size = nk_vec2(0,0); float line_width = 0.0f; float glyph_width; int glyph_len = 0; nk_rune unicode = 0; int text_len = 0; if (!begin || byte_len <= 0 || !font) return nk_vec2(0,row_height); glyph_len = nk_utf_decode(begin, &unicode, byte_len); if (!glyph_len) return text_size; glyph_width = font->width(font->userdata, font->height, begin, glyph_len); *glyphs = 0; while ((text_len < byte_len) && glyph_len) { if (unicode == '\n') { text_size.x = NK_MAX(text_size.x, line_width); text_size.y += line_height; line_width = 0; *glyphs+=1; if (op == NK_STOP_ON_NEW_LINE) break; text_len++; glyph_len = nk_utf_decode(begin + text_len, &unicode, byte_len-text_len); continue; } if (unicode == '\r') { text_len++; *glyphs+=1; glyph_len = nk_utf_decode(begin + text_len, &unicode, byte_len-text_len); continue; } *glyphs = *glyphs + 1; text_len += glyph_len; line_width += (float)glyph_width; glyph_len = nk_utf_decode(begin + text_len, &unicode, byte_len-text_len); glyph_width = font->width(font->userdata, font->height, begin+text_len, glyph_len); continue; } if (text_size.x < line_width) text_size.x = line_width; if (out_offset) *out_offset = nk_vec2(line_width, text_size.y + line_height); if (line_width > 0 || text_size.y == 0.0f) text_size.y += line_height; if (remaining) *remaining = begin+text_len; return text_size; } /* ============================================================== * * COLOR * * ===============================================================*/ NK_INTERN int nk_parse_hex(const char *p, int length) { int i = 0; int len = 0; while (len < length) { i <<= 4; if (p[len] >= 'a' && p[len] <= 'f') i += ((p[len] - 'a') + 10); else if (p[len] >= 'A' && p[len] <= 'F') i += ((p[len] - 'A') + 10); else i += (p[len] - '0'); len++; } return i; } NK_API struct nk_color nk_rgba(int r, int g, int b, int a) { struct nk_color ret; ret.r = (nk_byte)NK_CLAMP(0, r, 255); ret.g = (nk_byte)NK_CLAMP(0, g, 255); ret.b = (nk_byte)NK_CLAMP(0, b, 255); ret.a = (nk_byte)NK_CLAMP(0, a, 255); return ret; } NK_API struct nk_color nk_rgb_hex(const char *rgb) { struct nk_color col; const char *c = rgb; if (*c == '#') c++; col.r = (nk_byte)nk_parse_hex(c, 2); col.g = (nk_byte)nk_parse_hex(c+2, 2); col.b = (nk_byte)nk_parse_hex(c+4, 2); col.a = 255; return col; } NK_API struct nk_color nk_rgba_hex(const char *rgb) { struct nk_color col; const char *c = rgb; if (*c == '#') c++; col.r = (nk_byte)nk_parse_hex(c, 2); col.g = (nk_byte)nk_parse_hex(c+2, 2); col.b = (nk_byte)nk_parse_hex(c+4, 2); col.a = (nk_byte)nk_parse_hex(c+6, 2); return col; } NK_API void nk_color_hex_rgba(char *output, struct nk_color col) { #define NK_TO_HEX(i) ((i) <= 9 ? '0' + (i): 'A' - 10 + (i)) output[0] = (char)NK_TO_HEX((col.r & 0xF0) >> 4); output[1] = (char)NK_TO_HEX((col.r & 0x0F)); output[2] = (char)NK_TO_HEX((col.g & 0xF0) >> 4); output[3] = (char)NK_TO_HEX((col.g & 0x0F)); output[4] = (char)NK_TO_HEX((col.b & 0xF0) >> 4); output[5] = (char)NK_TO_HEX((col.b & 0x0F)); output[6] = (char)NK_TO_HEX((col.a & 0xF0) >> 4); output[7] = (char)NK_TO_HEX((col.a & 0x0F)); output[8] = '\0'; #undef NK_TO_HEX } NK_API void nk_color_hex_rgb(char *output, struct nk_color col) { #define NK_TO_HEX(i) ((i) <= 9 ? '0' + (i): 'A' - 10 + (i)) output[0] = (char)NK_TO_HEX((col.r & 0xF0) >> 4); output[1] = (char)NK_TO_HEX((col.r & 0x0F)); output[2] = (char)NK_TO_HEX((col.g & 0xF0) >> 4); output[3] = (char)NK_TO_HEX((col.g & 0x0F)); output[4] = (char)NK_TO_HEX((col.b & 0xF0) >> 4); output[5] = (char)NK_TO_HEX((col.b & 0x0F)); output[6] = '\0'; #undef NK_TO_HEX } NK_API struct nk_color nk_rgba_iv(const int *c) { return nk_rgba(c[0], c[1], c[2], c[3]); } NK_API struct nk_color nk_rgba_bv(const nk_byte *c) { return nk_rgba(c[0], c[1], c[2], c[3]); } NK_API struct nk_color nk_rgb(int r, int g, int b) { struct nk_color ret; ret.r = (nk_byte)NK_CLAMP(0, r, 255); ret.g = (nk_byte)NK_CLAMP(0, g, 255); ret.b = (nk_byte)NK_CLAMP(0, b, 255); ret.a = (nk_byte)255; return ret; } NK_API struct nk_color nk_rgb_iv(const int *c) { return nk_rgb(c[0], c[1], c[2]); } NK_API struct nk_color nk_rgb_bv(const nk_byte* c) { return nk_rgb(c[0], c[1], c[2]); } NK_API struct nk_color nk_rgba_u32(nk_uint in) { struct nk_color ret; ret.r = (in & 0xFF); ret.g = ((in >> 8) & 0xFF); ret.b = ((in >> 16) & 0xFF); ret.a = (nk_byte)((in >> 24) & 0xFF); return ret; } NK_API struct nk_color nk_rgba_f(float r, float g, float b, float a) { struct nk_color ret; ret.r = (nk_byte)(NK_SATURATE(r) * 255.0f); ret.g = (nk_byte)(NK_SATURATE(g) * 255.0f); ret.b = (nk_byte)(NK_SATURATE(b) * 255.0f); ret.a = (nk_byte)(NK_SATURATE(a) * 255.0f); return ret; } NK_API struct nk_color nk_rgba_fv(const float *c) { return nk_rgba_f(c[0], c[1], c[2], c[3]); } NK_API struct nk_color nk_rgba_cf(struct nk_colorf c) { return nk_rgba_f(c.r, c.g, c.b, c.a); } NK_API struct nk_color nk_rgb_f(float r, float g, float b) { struct nk_color ret; ret.r = (nk_byte)(NK_SATURATE(r) * 255.0f); ret.g = (nk_byte)(NK_SATURATE(g) * 255.0f); ret.b = (nk_byte)(NK_SATURATE(b) * 255.0f); ret.a = 255; return ret; } NK_API struct nk_color nk_rgb_fv(const float *c) { return nk_rgb_f(c[0], c[1], c[2]); } NK_API struct nk_color nk_rgb_cf(struct nk_colorf c) { return nk_rgb_f(c.r, c.g, c.b); } NK_API struct nk_color nk_hsv(int h, int s, int v) { return nk_hsva(h, s, v, 255); } NK_API struct nk_color nk_hsv_iv(const int *c) { return nk_hsv(c[0], c[1], c[2]); } NK_API struct nk_color nk_hsv_bv(const nk_byte *c) { return nk_hsv(c[0], c[1], c[2]); } NK_API struct nk_color nk_hsv_f(float h, float s, float v) { return nk_hsva_f(h, s, v, 1.0f); } NK_API struct nk_color nk_hsv_fv(const float *c) { return nk_hsv_f(c[0], c[1], c[2]); } NK_API struct nk_color nk_hsva(int h, int s, int v, int a) { float hf = ((float)NK_CLAMP(0, h, 255)) / 255.0f; float sf = ((float)NK_CLAMP(0, s, 255)) / 255.0f; float vf = ((float)NK_CLAMP(0, v, 255)) / 255.0f; float af = ((float)NK_CLAMP(0, a, 255)) / 255.0f; return nk_hsva_f(hf, sf, vf, af); } NK_API struct nk_color nk_hsva_iv(const int *c) { return nk_hsva(c[0], c[1], c[2], c[3]); } NK_API struct nk_color nk_hsva_bv(const nk_byte *c) { return nk_hsva(c[0], c[1], c[2], c[3]); } NK_API struct nk_colorf nk_hsva_colorf(float h, float s, float v, float a) { int i; float p, q, t, f; struct nk_colorf out = {0,0,0,0}; if (s <= 0.0f) { out.r = v; out.g = v; out.b = v; out.a = a; return out; } h = h / (60.0f/360.0f); i = (int)h; f = h - (float)i; p = v * (1.0f - s); q = v * (1.0f - (s * f)); t = v * (1.0f - s * (1.0f - f)); switch (i) { case 0: default: out.r = v; out.g = t; out.b = p; break; case 1: out.r = q; out.g = v; out.b = p; break; case 2: out.r = p; out.g = v; out.b = t; break; case 3: out.r = p; out.g = q; out.b = v; break; case 4: out.r = t; out.g = p; out.b = v; break; case 5: out.r = v; out.g = p; out.b = q; break;} out.a = a; return out; } NK_API struct nk_colorf nk_hsva_colorfv(float *c) { return nk_hsva_colorf(c[0], c[1], c[2], c[3]); } NK_API struct nk_color nk_hsva_f(float h, float s, float v, float a) { struct nk_colorf c = nk_hsva_colorf(h, s, v, a); return nk_rgba_f(c.r, c.g, c.b, c.a); } NK_API struct nk_color nk_hsva_fv(const float *c) { return nk_hsva_f(c[0], c[1], c[2], c[3]); } NK_API nk_uint nk_color_u32(struct nk_color in) { nk_uint out = (nk_uint)in.r; out |= ((nk_uint)in.g << 8); out |= ((nk_uint)in.b << 16); out |= ((nk_uint)in.a << 24); return out; } NK_API void nk_color_f(float *r, float *g, float *b, float *a, struct nk_color in) { NK_STORAGE const float s = 1.0f/255.0f; *r = (float)in.r * s; *g = (float)in.g * s; *b = (float)in.b * s; *a = (float)in.a * s; } NK_API void nk_color_fv(float *c, struct nk_color in) { nk_color_f(&c[0], &c[1], &c[2], &c[3], in); } NK_API struct nk_colorf nk_color_cf(struct nk_color in) { struct nk_colorf o; nk_color_f(&o.r, &o.g, &o.b, &o.a, in); return o; } NK_API void nk_color_d(double *r, double *g, double *b, double *a, struct nk_color in) { NK_STORAGE const double s = 1.0/255.0; *r = (double)in.r * s; *g = (double)in.g * s; *b = (double)in.b * s; *a = (double)in.a * s; } NK_API void nk_color_dv(double *c, struct nk_color in) { nk_color_d(&c[0], &c[1], &c[2], &c[3], in); } NK_API void nk_color_hsv_f(float *out_h, float *out_s, float *out_v, struct nk_color in) { float a; nk_color_hsva_f(out_h, out_s, out_v, &a, in); } NK_API void nk_color_hsv_fv(float *out, struct nk_color in) { float a; nk_color_hsva_f(&out[0], &out[1], &out[2], &a, in); } NK_API void nk_colorf_hsva_f(float *out_h, float *out_s, float *out_v, float *out_a, struct nk_colorf in) { float chroma; float K = 0.0f; if (in.g < in.b) { const float t = in.g; in.g = in.b; in.b = t; K = -1.f; } if (in.r < in.g) { const float t = in.r; in.r = in.g; in.g = t; K = -2.f/6.0f - K; } chroma = in.r - ((in.g < in.b) ? in.g: in.b); *out_h = NK_ABS(K + (in.g - in.b)/(6.0f * chroma + 1e-20f)); *out_s = chroma / (in.r + 1e-20f); *out_v = in.r; *out_a = in.a; } NK_API void nk_colorf_hsva_fv(float *hsva, struct nk_colorf in) { nk_colorf_hsva_f(&hsva[0], &hsva[1], &hsva[2], &hsva[3], in); } NK_API void nk_color_hsva_f(float *out_h, float *out_s, float *out_v, float *out_a, struct nk_color in) { struct nk_colorf col; nk_color_f(&col.r,&col.g,&col.b,&col.a, in); nk_colorf_hsva_f(out_h, out_s, out_v, out_a, col); } NK_API void nk_color_hsva_fv(float *out, struct nk_color in) { nk_color_hsva_f(&out[0], &out[1], &out[2], &out[3], in); } NK_API void nk_color_hsva_i(int *out_h, int *out_s, int *out_v, int *out_a, struct nk_color in) { float h,s,v,a; nk_color_hsva_f(&h, &s, &v, &a, in); *out_h = (nk_byte)(h * 255.0f); *out_s = (nk_byte)(s * 255.0f); *out_v = (nk_byte)(v * 255.0f); *out_a = (nk_byte)(a * 255.0f); } NK_API void nk_color_hsva_iv(int *out, struct nk_color in) { nk_color_hsva_i(&out[0], &out[1], &out[2], &out[3], in); } NK_API void nk_color_hsva_bv(nk_byte *out, struct nk_color in) { int tmp[4]; nk_color_hsva_i(&tmp[0], &tmp[1], &tmp[2], &tmp[3], in); out[0] = (nk_byte)tmp[0]; out[1] = (nk_byte)tmp[1]; out[2] = (nk_byte)tmp[2]; out[3] = (nk_byte)tmp[3]; } NK_API void nk_color_hsva_b(nk_byte *h, nk_byte *s, nk_byte *v, nk_byte *a, struct nk_color in) { int tmp[4]; nk_color_hsva_i(&tmp[0], &tmp[1], &tmp[2], &tmp[3], in); *h = (nk_byte)tmp[0]; *s = (nk_byte)tmp[1]; *v = (nk_byte)tmp[2]; *a = (nk_byte)tmp[3]; } NK_API void nk_color_hsv_i(int *out_h, int *out_s, int *out_v, struct nk_color in) { int a; nk_color_hsva_i(out_h, out_s, out_v, &a, in); } NK_API void nk_color_hsv_b(nk_byte *out_h, nk_byte *out_s, nk_byte *out_v, struct nk_color in) { int tmp[4]; nk_color_hsva_i(&tmp[0], &tmp[1], &tmp[2], &tmp[3], in); *out_h = (nk_byte)tmp[0]; *out_s = (nk_byte)tmp[1]; *out_v = (nk_byte)tmp[2]; } NK_API void nk_color_hsv_iv(int *out, struct nk_color in) { nk_color_hsv_i(&out[0], &out[1], &out[2], in); } NK_API void nk_color_hsv_bv(nk_byte *out, struct nk_color in) { int tmp[4]; nk_color_hsv_i(&tmp[0], &tmp[1], &tmp[2], in); out[0] = (nk_byte)tmp[0]; out[1] = (nk_byte)tmp[1]; out[2] = (nk_byte)tmp[2]; } /* =============================================================== * * UTF-8 * * ===============================================================*/ NK_GLOBAL const nk_byte nk_utfbyte[NK_UTF_SIZE+1] = {0x80, 0, 0xC0, 0xE0, 0xF0}; NK_GLOBAL const nk_byte nk_utfmask[NK_UTF_SIZE+1] = {0xC0, 0x80, 0xE0, 0xF0, 0xF8}; NK_GLOBAL const nk_uint nk_utfmin[NK_UTF_SIZE+1] = {0, 0, 0x80, 0x800, 0x10000}; NK_GLOBAL const nk_uint nk_utfmax[NK_UTF_SIZE+1] = {0x10FFFF, 0x7F, 0x7FF, 0xFFFF, 0x10FFFF}; NK_INTERN int nk_utf_validate(nk_rune *u, int i) { NK_ASSERT(u); if (!u) return 0; if (!NK_BETWEEN(*u, nk_utfmin[i], nk_utfmax[i]) || NK_BETWEEN(*u, 0xD800, 0xDFFF)) *u = NK_UTF_INVALID; for (i = 1; *u > nk_utfmax[i]; ++i); return i; } NK_INTERN nk_rune nk_utf_decode_byte(char c, int *i) { NK_ASSERT(i); if (!i) return 0; for(*i = 0; *i < (int)NK_LEN(nk_utfmask); ++(*i)) { if (((nk_byte)c & nk_utfmask[*i]) == nk_utfbyte[*i]) return (nk_byte)(c & ~nk_utfmask[*i]); } return 0; } NK_API int nk_utf_decode(const char *c, nk_rune *u, int clen) { int i, j, len, type=0; nk_rune udecoded; NK_ASSERT(c); NK_ASSERT(u); if (!c || !u) return 0; if (!clen) return 0; *u = NK_UTF_INVALID; udecoded = nk_utf_decode_byte(c[0], &len); if (!NK_BETWEEN(len, 1, NK_UTF_SIZE)) return 1; for (i = 1, j = 1; i < clen && j < len; ++i, ++j) { udecoded = (udecoded << 6) | nk_utf_decode_byte(c[i], &type); if (type != 0) return j; } if (j < len) return 0; *u = udecoded; nk_utf_validate(u, len); return len; } NK_INTERN char nk_utf_encode_byte(nk_rune u, int i) { return (char)((nk_utfbyte[i]) | ((nk_byte)u & ~nk_utfmask[i])); } NK_API int nk_utf_encode(nk_rune u, char *c, int clen) { int len, i; len = nk_utf_validate(&u, 0); if (clen < len || !len || len > NK_UTF_SIZE) return 0; for (i = len - 1; i != 0; --i) { c[i] = nk_utf_encode_byte(u, 0); u >>= 6; } c[0] = nk_utf_encode_byte(u, len); return len; } NK_API int nk_utf_len(const char *str, int len) { const char *text; int glyphs = 0; int text_len; int glyph_len; int src_len = 0; nk_rune unicode; NK_ASSERT(str); if (!str || !len) return 0; text = str; text_len = len; glyph_len = nk_utf_decode(text, &unicode, text_len); while (glyph_len && src_len < len) { glyphs++; src_len = src_len + glyph_len; glyph_len = nk_utf_decode(text + src_len, &unicode, text_len - src_len); } return glyphs; } NK_API const char* nk_utf_at(const char *buffer, int length, int index, nk_rune *unicode, int *len) { int i = 0; int src_len = 0; int glyph_len = 0; const char *text; int text_len; NK_ASSERT(buffer); NK_ASSERT(unicode); NK_ASSERT(len); if (!buffer || !unicode || !len) return 0; if (index < 0) { *unicode = NK_UTF_INVALID; *len = 0; return 0; } text = buffer; text_len = length; glyph_len = nk_utf_decode(text, unicode, text_len); while (glyph_len) { if (i == index) { *len = glyph_len; break; } i++; src_len = src_len + glyph_len; glyph_len = nk_utf_decode(text + src_len, unicode, text_len - src_len); } if (i != index) return 0; return buffer + src_len; } /* ============================================================== * * BUFFER * * ===============================================================*/ #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_LIB void* nk_malloc(nk_handle unused, void *old,nk_size size) { NK_UNUSED(unused); NK_UNUSED(old); return malloc(size); } NK_LIB void nk_mfree(nk_handle unused, void *ptr) { NK_UNUSED(unused); free(ptr); } NK_API void nk_buffer_init_default(struct nk_buffer *buffer) { struct nk_allocator alloc; alloc.userdata.ptr = 0; alloc.alloc = nk_malloc; alloc.free = nk_mfree; nk_buffer_init(buffer, &alloc, NK_BUFFER_DEFAULT_INITIAL_SIZE); } #endif NK_API void nk_buffer_init(struct nk_buffer *b, const struct nk_allocator *a, nk_size initial_size) { NK_ASSERT(b); NK_ASSERT(a); NK_ASSERT(initial_size); if (!b || !a || !initial_size) return; nk_zero(b, sizeof(*b)); b->type = NK_BUFFER_DYNAMIC; b->memory.ptr = a->alloc(a->userdata,0, initial_size); b->memory.size = initial_size; b->size = initial_size; b->grow_factor = 2.0f; b->pool = *a; } NK_API void nk_buffer_init_fixed(struct nk_buffer *b, void *m, nk_size size) { NK_ASSERT(b); NK_ASSERT(m); NK_ASSERT(size); if (!b || !m || !size) return; nk_zero(b, sizeof(*b)); b->type = NK_BUFFER_FIXED; b->memory.ptr = m; b->memory.size = size; b->size = size; } NK_LIB void* nk_buffer_align(void *unaligned, nk_size align, nk_size *alignment, enum nk_buffer_allocation_type type) { void *memory = 0; switch (type) { default: case NK_BUFFER_MAX: case NK_BUFFER_FRONT: if (align) { memory = NK_ALIGN_PTR(unaligned, align); *alignment = (nk_size)((nk_byte*)memory - (nk_byte*)unaligned); } else { memory = unaligned; *alignment = 0; } break; case NK_BUFFER_BACK: if (align) { memory = NK_ALIGN_PTR_BACK(unaligned, align); *alignment = (nk_size)((nk_byte*)unaligned - (nk_byte*)memory); } else { memory = unaligned; *alignment = 0; } break; } return memory; } NK_LIB void* nk_buffer_realloc(struct nk_buffer *b, nk_size capacity, nk_size *size) { void *temp; nk_size buffer_size; NK_ASSERT(b); NK_ASSERT(size); if (!b || !size || !b->pool.alloc || !b->pool.free) return 0; buffer_size = b->memory.size; temp = b->pool.alloc(b->pool.userdata, b->memory.ptr, capacity); NK_ASSERT(temp); if (!temp) return 0; *size = capacity; if (temp != b->memory.ptr) { NK_MEMCPY(temp, b->memory.ptr, buffer_size); b->pool.free(b->pool.userdata, b->memory.ptr); } if (b->size == buffer_size) { /* no back buffer so just set correct size */ b->size = capacity; return temp; } else { /* copy back buffer to the end of the new buffer */ void *dst, *src; nk_size back_size; back_size = buffer_size - b->size; dst = nk_ptr_add(void, temp, capacity - back_size); src = nk_ptr_add(void, temp, b->size); NK_MEMCPY(dst, src, back_size); b->size = capacity - back_size; } return temp; } NK_LIB void* nk_buffer_alloc(struct nk_buffer *b, enum nk_buffer_allocation_type type, nk_size size, nk_size align) { int full; nk_size alignment; void *unaligned; void *memory; NK_ASSERT(b); NK_ASSERT(size); if (!b || !size) return 0; b->needed += size; /* calculate total size with needed alignment + size */ if (type == NK_BUFFER_FRONT) unaligned = nk_ptr_add(void, b->memory.ptr, b->allocated); else unaligned = nk_ptr_add(void, b->memory.ptr, b->size - size); memory = nk_buffer_align(unaligned, align, &alignment, type); /* check if buffer has enough memory*/ if (type == NK_BUFFER_FRONT) full = ((b->allocated + size + alignment) > b->size); else full = ((b->size - NK_MIN(b->size,(size + alignment))) <= b->allocated); if (full) { nk_size capacity; if (b->type != NK_BUFFER_DYNAMIC) return 0; NK_ASSERT(b->pool.alloc && b->pool.free); if (b->type != NK_BUFFER_DYNAMIC || !b->pool.alloc || !b->pool.free) return 0; /* buffer is full so allocate bigger buffer if dynamic */ capacity = (nk_size)((float)b->memory.size * b->grow_factor); capacity = NK_MAX(capacity, nk_round_up_pow2((nk_uint)(b->allocated + size))); b->memory.ptr = nk_buffer_realloc(b, capacity, &b->memory.size); if (!b->memory.ptr) return 0; /* align newly allocated pointer */ if (type == NK_BUFFER_FRONT) unaligned = nk_ptr_add(void, b->memory.ptr, b->allocated); else unaligned = nk_ptr_add(void, b->memory.ptr, b->size - size); memory = nk_buffer_align(unaligned, align, &alignment, type); } if (type == NK_BUFFER_FRONT) b->allocated += size + alignment; else b->size -= (size + alignment); b->needed += alignment; b->calls++; return memory; } NK_API void nk_buffer_push(struct nk_buffer *b, enum nk_buffer_allocation_type type, const void *memory, nk_size size, nk_size align) { void *mem = nk_buffer_alloc(b, type, size, align); if (!mem) return; NK_MEMCPY(mem, memory, size); } NK_API void nk_buffer_mark(struct nk_buffer *buffer, enum nk_buffer_allocation_type type) { NK_ASSERT(buffer); if (!buffer) return; buffer->marker[type].active = nk_true; if (type == NK_BUFFER_BACK) buffer->marker[type].offset = buffer->size; else buffer->marker[type].offset = buffer->allocated; } NK_API void nk_buffer_reset(struct nk_buffer *buffer, enum nk_buffer_allocation_type type) { NK_ASSERT(buffer); if (!buffer) return; if (type == NK_BUFFER_BACK) { /* reset back buffer either back to marker or empty */ buffer->needed -= (buffer->memory.size - buffer->marker[type].offset); if (buffer->marker[type].active) buffer->size = buffer->marker[type].offset; else buffer->size = buffer->memory.size; buffer->marker[type].active = nk_false; } else { /* reset front buffer either back to back marker or empty */ buffer->needed -= (buffer->allocated - buffer->marker[type].offset); if (buffer->marker[type].active) buffer->allocated = buffer->marker[type].offset; else buffer->allocated = 0; buffer->marker[type].active = nk_false; } } NK_API void nk_buffer_clear(struct nk_buffer *b) { NK_ASSERT(b); if (!b) return; b->allocated = 0; b->size = b->memory.size; b->calls = 0; b->needed = 0; } NK_API void nk_buffer_free(struct nk_buffer *b) { NK_ASSERT(b); if (!b || !b->memory.ptr) return; if (b->type == NK_BUFFER_FIXED) return; if (!b->pool.free) return; NK_ASSERT(b->pool.free); b->pool.free(b->pool.userdata, b->memory.ptr); } NK_API void nk_buffer_info(struct nk_memory_status *s, struct nk_buffer *b) { NK_ASSERT(b); NK_ASSERT(s); if (!s || !b) return; s->allocated = b->allocated; s->size = b->memory.size; s->needed = b->needed; s->memory = b->memory.ptr; s->calls = b->calls; } NK_API void* nk_buffer_memory(struct nk_buffer *buffer) { NK_ASSERT(buffer); if (!buffer) return 0; return buffer->memory.ptr; } NK_API const void* nk_buffer_memory_const(const struct nk_buffer *buffer) { NK_ASSERT(buffer); if (!buffer) return 0; return buffer->memory.ptr; } NK_API nk_size nk_buffer_total(struct nk_buffer *buffer) { NK_ASSERT(buffer); if (!buffer) return 0; return buffer->memory.size; } /* =============================================================== * * STRING * * ===============================================================*/ #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_str_init_default(struct nk_str *str) { struct nk_allocator alloc; alloc.userdata.ptr = 0; alloc.alloc = nk_malloc; alloc.free = nk_mfree; nk_buffer_init(&str->buffer, &alloc, 32); str->len = 0; } #endif NK_API void nk_str_init(struct nk_str *str, const struct nk_allocator *alloc, nk_size size) { nk_buffer_init(&str->buffer, alloc, size); str->len = 0; } NK_API void nk_str_init_fixed(struct nk_str *str, void *memory, nk_size size) { nk_buffer_init_fixed(&str->buffer, memory, size); str->len = 0; } NK_API int nk_str_append_text_char(struct nk_str *s, const char *str, int len) { char *mem; NK_ASSERT(s); NK_ASSERT(str); if (!s || !str || !len) return 0; mem = (char*)nk_buffer_alloc(&s->buffer, NK_BUFFER_FRONT, (nk_size)len * sizeof(char), 0); if (!mem) return 0; NK_MEMCPY(mem, str, (nk_size)len * sizeof(char)); s->len += nk_utf_len(str, len); return len; } NK_API int nk_str_append_str_char(struct nk_str *s, const char *str) { return nk_str_append_text_char(s, str, nk_strlen(str)); } NK_API int nk_str_append_text_utf8(struct nk_str *str, const char *text, int len) { int i = 0; int byte_len = 0; nk_rune unicode; if (!str || !text || !len) return 0; for (i = 0; i < len; ++i) byte_len += nk_utf_decode(text+byte_len, &unicode, 4); nk_str_append_text_char(str, text, byte_len); return len; } NK_API int nk_str_append_str_utf8(struct nk_str *str, const char *text) { int runes = 0; int byte_len = 0; int num_runes = 0; int glyph_len = 0; nk_rune unicode; if (!str || !text) return 0; glyph_len = byte_len = nk_utf_decode(text+byte_len, &unicode, 4); while (unicode != '\0' && glyph_len) { glyph_len = nk_utf_decode(text+byte_len, &unicode, 4); byte_len += glyph_len; num_runes++; } nk_str_append_text_char(str, text, byte_len); return runes; } NK_API int nk_str_append_text_runes(struct nk_str *str, const nk_rune *text, int len) { int i = 0; int byte_len = 0; nk_glyph glyph; NK_ASSERT(str); if (!str || !text || !len) return 0; for (i = 0; i < len; ++i) { byte_len = nk_utf_encode(text[i], glyph, NK_UTF_SIZE); if (!byte_len) break; nk_str_append_text_char(str, glyph, byte_len); } return len; } NK_API int nk_str_append_str_runes(struct nk_str *str, const nk_rune *runes) { int i = 0; nk_glyph glyph; int byte_len; NK_ASSERT(str); if (!str || !runes) return 0; while (runes[i] != '\0') { byte_len = nk_utf_encode(runes[i], glyph, NK_UTF_SIZE); nk_str_append_text_char(str, glyph, byte_len); i++; } return i; } NK_API int nk_str_insert_at_char(struct nk_str *s, int pos, const char *str, int len) { int i; void *mem; char *src; char *dst; int copylen; NK_ASSERT(s); NK_ASSERT(str); NK_ASSERT(len >= 0); if (!s || !str || !len || (nk_size)pos > s->buffer.allocated) return 0; if ((s->buffer.allocated + (nk_size)len >= s->buffer.memory.size) && (s->buffer.type == NK_BUFFER_FIXED)) return 0; copylen = (int)s->buffer.allocated - pos; if (!copylen) { nk_str_append_text_char(s, str, len); return 1; } mem = nk_buffer_alloc(&s->buffer, NK_BUFFER_FRONT, (nk_size)len * sizeof(char), 0); if (!mem) return 0; /* memmove */ NK_ASSERT(((int)pos + (int)len + ((int)copylen - 1)) >= 0); NK_ASSERT(((int)pos + ((int)copylen - 1)) >= 0); dst = nk_ptr_add(char, s->buffer.memory.ptr, pos + len + (copylen - 1)); src = nk_ptr_add(char, s->buffer.memory.ptr, pos + (copylen-1)); for (i = 0; i < copylen; ++i) *dst-- = *src--; mem = nk_ptr_add(void, s->buffer.memory.ptr, pos); NK_MEMCPY(mem, str, (nk_size)len * sizeof(char)); s->len = nk_utf_len((char *)s->buffer.memory.ptr, (int)s->buffer.allocated); return 1; } NK_API int nk_str_insert_at_rune(struct nk_str *str, int pos, const char *cstr, int len) { int glyph_len; nk_rune unicode; const char *begin; const char *buffer; NK_ASSERT(str); NK_ASSERT(cstr); NK_ASSERT(len); if (!str || !cstr || !len) return 0; begin = nk_str_at_rune(str, pos, &unicode, &glyph_len); if (!str->len) return nk_str_append_text_char(str, cstr, len); buffer = nk_str_get_const(str); if (!begin) return 0; return nk_str_insert_at_char(str, (int)(begin - buffer), cstr, len); } NK_API int nk_str_insert_text_char(struct nk_str *str, int pos, const char *text, int len) { return nk_str_insert_text_utf8(str, pos, text, len); } NK_API int nk_str_insert_str_char(struct nk_str *str, int pos, const char *text) { return nk_str_insert_text_utf8(str, pos, text, nk_strlen(text)); } NK_API int nk_str_insert_text_utf8(struct nk_str *str, int pos, const char *text, int len) { int i = 0; int byte_len = 0; nk_rune unicode; NK_ASSERT(str); NK_ASSERT(text); if (!str || !text || !len) return 0; for (i = 0; i < len; ++i) byte_len += nk_utf_decode(text+byte_len, &unicode, 4); nk_str_insert_at_rune(str, pos, text, byte_len); return len; } NK_API int nk_str_insert_str_utf8(struct nk_str *str, int pos, const char *text) { int runes = 0; int byte_len = 0; int num_runes = 0; int glyph_len = 0; nk_rune unicode; if (!str || !text) return 0; glyph_len = byte_len = nk_utf_decode(text+byte_len, &unicode, 4); while (unicode != '\0' && glyph_len) { glyph_len = nk_utf_decode(text+byte_len, &unicode, 4); byte_len += glyph_len; num_runes++; } nk_str_insert_at_rune(str, pos, text, byte_len); return runes; } NK_API int nk_str_insert_text_runes(struct nk_str *str, int pos, const nk_rune *runes, int len) { int i = 0; int byte_len = 0; nk_glyph glyph; NK_ASSERT(str); if (!str || !runes || !len) return 0; for (i = 0; i < len; ++i) { byte_len = nk_utf_encode(runes[i], glyph, NK_UTF_SIZE); if (!byte_len) break; nk_str_insert_at_rune(str, pos+i, glyph, byte_len); } return len; } NK_API int nk_str_insert_str_runes(struct nk_str *str, int pos, const nk_rune *runes) { int i = 0; nk_glyph glyph; int byte_len; NK_ASSERT(str); if (!str || !runes) return 0; while (runes[i] != '\0') { byte_len = nk_utf_encode(runes[i], glyph, NK_UTF_SIZE); nk_str_insert_at_rune(str, pos+i, glyph, byte_len); i++; } return i; } NK_API void nk_str_remove_chars(struct nk_str *s, int len) { NK_ASSERT(s); NK_ASSERT(len >= 0); if (!s || len < 0 || (nk_size)len > s->buffer.allocated) return; NK_ASSERT(((int)s->buffer.allocated - (int)len) >= 0); s->buffer.allocated -= (nk_size)len; s->len = nk_utf_len((char *)s->buffer.memory.ptr, (int)s->buffer.allocated); } NK_API void nk_str_remove_runes(struct nk_str *str, int len) { int index; const char *begin; const char *end; nk_rune unicode; NK_ASSERT(str); NK_ASSERT(len >= 0); if (!str || len < 0) return; if (len >= str->len) { str->len = 0; return; } index = str->len - len; begin = nk_str_at_rune(str, index, &unicode, &len); end = (const char*)str->buffer.memory.ptr + str->buffer.allocated; nk_str_remove_chars(str, (int)(end-begin)+1); } NK_API void nk_str_delete_chars(struct nk_str *s, int pos, int len) { NK_ASSERT(s); if (!s || !len || (nk_size)pos > s->buffer.allocated || (nk_size)(pos + len) > s->buffer.allocated) return; if ((nk_size)(pos + len) < s->buffer.allocated) { /* memmove */ char *dst = nk_ptr_add(char, s->buffer.memory.ptr, pos); char *src = nk_ptr_add(char, s->buffer.memory.ptr, pos + len); NK_MEMCPY(dst, src, s->buffer.allocated - (nk_size)(pos + len)); NK_ASSERT(((int)s->buffer.allocated - (int)len) >= 0); s->buffer.allocated -= (nk_size)len; } else nk_str_remove_chars(s, len); s->len = nk_utf_len((char *)s->buffer.memory.ptr, (int)s->buffer.allocated); } NK_API void nk_str_delete_runes(struct nk_str *s, int pos, int len) { char *temp; nk_rune unicode; char *begin; char *end; int unused; NK_ASSERT(s); NK_ASSERT(s->len >= pos + len); if (s->len < pos + len) len = NK_CLAMP(0, (s->len - pos), s->len); if (!len) return; temp = (char *)s->buffer.memory.ptr; begin = nk_str_at_rune(s, pos, &unicode, &unused); if (!begin) return; s->buffer.memory.ptr = begin; end = nk_str_at_rune(s, len, &unicode, &unused); s->buffer.memory.ptr = temp; if (!end) return; nk_str_delete_chars(s, (int)(begin - temp), (int)(end - begin)); } NK_API char* nk_str_at_char(struct nk_str *s, int pos) { NK_ASSERT(s); if (!s || pos > (int)s->buffer.allocated) return 0; return nk_ptr_add(char, s->buffer.memory.ptr, pos); } NK_API char* nk_str_at_rune(struct nk_str *str, int pos, nk_rune *unicode, int *len) { int i = 0; int src_len = 0; int glyph_len = 0; char *text; int text_len; NK_ASSERT(str); NK_ASSERT(unicode); NK_ASSERT(len); if (!str || !unicode || !len) return 0; if (pos < 0) { *unicode = 0; *len = 0; return 0; } text = (char*)str->buffer.memory.ptr; text_len = (int)str->buffer.allocated; glyph_len = nk_utf_decode(text, unicode, text_len); while (glyph_len) { if (i == pos) { *len = glyph_len; break; } i++; src_len = src_len + glyph_len; glyph_len = nk_utf_decode(text + src_len, unicode, text_len - src_len); } if (i != pos) return 0; return text + src_len; } NK_API const char* nk_str_at_char_const(const struct nk_str *s, int pos) { NK_ASSERT(s); if (!s || pos > (int)s->buffer.allocated) return 0; return nk_ptr_add(char, s->buffer.memory.ptr, pos); } NK_API const char* nk_str_at_const(const struct nk_str *str, int pos, nk_rune *unicode, int *len) { int i = 0; int src_len = 0; int glyph_len = 0; char *text; int text_len; NK_ASSERT(str); NK_ASSERT(unicode); NK_ASSERT(len); if (!str || !unicode || !len) return 0; if (pos < 0) { *unicode = 0; *len = 0; return 0; } text = (char*)str->buffer.memory.ptr; text_len = (int)str->buffer.allocated; glyph_len = nk_utf_decode(text, unicode, text_len); while (glyph_len) { if (i == pos) { *len = glyph_len; break; } i++; src_len = src_len + glyph_len; glyph_len = nk_utf_decode(text + src_len, unicode, text_len - src_len); } if (i != pos) return 0; return text + src_len; } NK_API nk_rune nk_str_rune_at(const struct nk_str *str, int pos) { int len; nk_rune unicode = 0; nk_str_at_const(str, pos, &unicode, &len); return unicode; } NK_API char* nk_str_get(struct nk_str *s) { NK_ASSERT(s); if (!s || !s->len || !s->buffer.allocated) return 0; return (char*)s->buffer.memory.ptr; } NK_API const char* nk_str_get_const(const struct nk_str *s) { NK_ASSERT(s); if (!s || !s->len || !s->buffer.allocated) return 0; return (const char*)s->buffer.memory.ptr; } NK_API int nk_str_len(struct nk_str *s) { NK_ASSERT(s); if (!s || !s->len || !s->buffer.allocated) return 0; return s->len; } NK_API int nk_str_len_char(struct nk_str *s) { NK_ASSERT(s); if (!s || !s->len || !s->buffer.allocated) return 0; return (int)s->buffer.allocated; } NK_API void nk_str_clear(struct nk_str *str) { NK_ASSERT(str); nk_buffer_clear(&str->buffer); str->len = 0; } NK_API void nk_str_free(struct nk_str *str) { NK_ASSERT(str); nk_buffer_free(&str->buffer); str->len = 0; } /* ============================================================== * * DRAW * * ===============================================================*/ NK_LIB void nk_command_buffer_init(struct nk_command_buffer *cb, struct nk_buffer *b, enum nk_command_clipping clip) { NK_ASSERT(cb); NK_ASSERT(b); if (!cb || !b) return; cb->base = b; cb->use_clipping = (int)clip; cb->begin = b->allocated; cb->end = b->allocated; cb->last = b->allocated; } NK_LIB void nk_command_buffer_reset(struct nk_command_buffer *b) { NK_ASSERT(b); if (!b) return; b->begin = 0; b->end = 0; b->last = 0; b->clip = nk_null_rect; #ifdef NK_INCLUDE_COMMAND_USERDATA b->userdata.ptr = 0; #endif } NK_LIB void* nk_command_buffer_push(struct nk_command_buffer* b, enum nk_command_type t, nk_size size) { NK_STORAGE const nk_size align = NK_ALIGNOF(struct nk_command); struct nk_command *cmd; nk_size alignment; void *unaligned; void *memory; NK_ASSERT(b); NK_ASSERT(b->base); if (!b) return 0; cmd = (struct nk_command*)nk_buffer_alloc(b->base,NK_BUFFER_FRONT,size,align); if (!cmd) return 0; /* make sure the offset to the next command is aligned */ b->last = (nk_size)((nk_byte*)cmd - (nk_byte*)b->base->memory.ptr); unaligned = (nk_byte*)cmd + size; memory = NK_ALIGN_PTR(unaligned, align); alignment = (nk_size)((nk_byte*)memory - (nk_byte*)unaligned); #ifdef NK_ZERO_COMMAND_MEMORY NK_MEMSET(cmd, 0, size + alignment); #endif cmd->type = t; cmd->next = b->base->allocated + alignment; #ifdef NK_INCLUDE_COMMAND_USERDATA cmd->userdata = b->userdata; #endif b->end = cmd->next; return cmd; } NK_API void nk_push_scissor(struct nk_command_buffer *b, struct nk_rect r) { struct nk_command_scissor *cmd; NK_ASSERT(b); if (!b) return; b->clip.x = r.x; b->clip.y = r.y; b->clip.w = r.w; b->clip.h = r.h; cmd = (struct nk_command_scissor*) nk_command_buffer_push(b, NK_COMMAND_SCISSOR, sizeof(*cmd)); if (!cmd) return; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)NK_MAX(0, r.w); cmd->h = (unsigned short)NK_MAX(0, r.h); } NK_API void nk_stroke_line(struct nk_command_buffer *b, float x0, float y0, float x1, float y1, float line_thickness, struct nk_color c) { struct nk_command_line *cmd; NK_ASSERT(b); if (!b || line_thickness <= 0) return; cmd = (struct nk_command_line*) nk_command_buffer_push(b, NK_COMMAND_LINE, sizeof(*cmd)); if (!cmd) return; cmd->line_thickness = (unsigned short)line_thickness; cmd->begin.x = (short)x0; cmd->begin.y = (short)y0; cmd->end.x = (short)x1; cmd->end.y = (short)y1; cmd->color = c; } NK_API void nk_stroke_curve(struct nk_command_buffer *b, float ax, float ay, float ctrl0x, float ctrl0y, float ctrl1x, float ctrl1y, float bx, float by, float line_thickness, struct nk_color col) { struct nk_command_curve *cmd; NK_ASSERT(b); if (!b || col.a == 0 || line_thickness <= 0) return; cmd = (struct nk_command_curve*) nk_command_buffer_push(b, NK_COMMAND_CURVE, sizeof(*cmd)); if (!cmd) return; cmd->line_thickness = (unsigned short)line_thickness; cmd->begin.x = (short)ax; cmd->begin.y = (short)ay; cmd->ctrl[0].x = (short)ctrl0x; cmd->ctrl[0].y = (short)ctrl0y; cmd->ctrl[1].x = (short)ctrl1x; cmd->ctrl[1].y = (short)ctrl1y; cmd->end.x = (short)bx; cmd->end.y = (short)by; cmd->color = col; } NK_API void nk_stroke_rect(struct nk_command_buffer *b, struct nk_rect rect, float rounding, float line_thickness, struct nk_color c) { struct nk_command_rect *cmd; NK_ASSERT(b); if (!b || c.a == 0 || rect.w == 0 || rect.h == 0 || line_thickness <= 0) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_rect*) nk_command_buffer_push(b, NK_COMMAND_RECT, sizeof(*cmd)); if (!cmd) return; cmd->rounding = (unsigned short)rounding; cmd->line_thickness = (unsigned short)line_thickness; cmd->x = (short)rect.x; cmd->y = (short)rect.y; cmd->w = (unsigned short)NK_MAX(0, rect.w); cmd->h = (unsigned short)NK_MAX(0, rect.h); cmd->color = c; } NK_API void nk_fill_rect(struct nk_command_buffer *b, struct nk_rect rect, float rounding, struct nk_color c) { struct nk_command_rect_filled *cmd; NK_ASSERT(b); if (!b || c.a == 0 || rect.w == 0 || rect.h == 0) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_rect_filled*) nk_command_buffer_push(b, NK_COMMAND_RECT_FILLED, sizeof(*cmd)); if (!cmd) return; cmd->rounding = (unsigned short)rounding; cmd->x = (short)rect.x; cmd->y = (short)rect.y; cmd->w = (unsigned short)NK_MAX(0, rect.w); cmd->h = (unsigned short)NK_MAX(0, rect.h); cmd->color = c; } NK_API void nk_fill_rect_multi_color(struct nk_command_buffer *b, struct nk_rect rect, struct nk_color left, struct nk_color top, struct nk_color right, struct nk_color bottom) { struct nk_command_rect_multi_color *cmd; NK_ASSERT(b); if (!b || rect.w == 0 || rect.h == 0) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_rect_multi_color*) nk_command_buffer_push(b, NK_COMMAND_RECT_MULTI_COLOR, sizeof(*cmd)); if (!cmd) return; cmd->x = (short)rect.x; cmd->y = (short)rect.y; cmd->w = (unsigned short)NK_MAX(0, rect.w); cmd->h = (unsigned short)NK_MAX(0, rect.h); cmd->left = left; cmd->top = top; cmd->right = right; cmd->bottom = bottom; } NK_API void nk_stroke_circle(struct nk_command_buffer *b, struct nk_rect r, float line_thickness, struct nk_color c) { struct nk_command_circle *cmd; if (!b || r.w == 0 || r.h == 0 || line_thickness <= 0) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INTERSECT(r.x, r.y, r.w, r.h, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_circle*) nk_command_buffer_push(b, NK_COMMAND_CIRCLE, sizeof(*cmd)); if (!cmd) return; cmd->line_thickness = (unsigned short)line_thickness; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)NK_MAX(r.w, 0); cmd->h = (unsigned short)NK_MAX(r.h, 0); cmd->color = c; } NK_API void nk_fill_circle(struct nk_command_buffer *b, struct nk_rect r, struct nk_color c) { struct nk_command_circle_filled *cmd; NK_ASSERT(b); if (!b || c.a == 0 || r.w == 0 || r.h == 0) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INTERSECT(r.x, r.y, r.w, r.h, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_circle_filled*) nk_command_buffer_push(b, NK_COMMAND_CIRCLE_FILLED, sizeof(*cmd)); if (!cmd) return; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)NK_MAX(r.w, 0); cmd->h = (unsigned short)NK_MAX(r.h, 0); cmd->color = c; } NK_API void nk_stroke_arc(struct nk_command_buffer *b, float cx, float cy, float radius, float a_min, float a_max, float line_thickness, struct nk_color c) { struct nk_command_arc *cmd; if (!b || c.a == 0 || line_thickness <= 0) return; cmd = (struct nk_command_arc*) nk_command_buffer_push(b, NK_COMMAND_ARC, sizeof(*cmd)); if (!cmd) return; cmd->line_thickness = (unsigned short)line_thickness; cmd->cx = (short)cx; cmd->cy = (short)cy; cmd->r = (unsigned short)radius; cmd->a[0] = a_min; cmd->a[1] = a_max; cmd->color = c; } NK_API void nk_fill_arc(struct nk_command_buffer *b, float cx, float cy, float radius, float a_min, float a_max, struct nk_color c) { struct nk_command_arc_filled *cmd; NK_ASSERT(b); if (!b || c.a == 0) return; cmd = (struct nk_command_arc_filled*) nk_command_buffer_push(b, NK_COMMAND_ARC_FILLED, sizeof(*cmd)); if (!cmd) return; cmd->cx = (short)cx; cmd->cy = (short)cy; cmd->r = (unsigned short)radius; cmd->a[0] = a_min; cmd->a[1] = a_max; cmd->color = c; } NK_API void nk_stroke_triangle(struct nk_command_buffer *b, float x0, float y0, float x1, float y1, float x2, float y2, float line_thickness, struct nk_color c) { struct nk_command_triangle *cmd; NK_ASSERT(b); if (!b || c.a == 0 || line_thickness <= 0) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INBOX(x0, y0, clip->x, clip->y, clip->w, clip->h) && !NK_INBOX(x1, y1, clip->x, clip->y, clip->w, clip->h) && !NK_INBOX(x2, y2, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_triangle*) nk_command_buffer_push(b, NK_COMMAND_TRIANGLE, sizeof(*cmd)); if (!cmd) return; cmd->line_thickness = (unsigned short)line_thickness; cmd->a.x = (short)x0; cmd->a.y = (short)y0; cmd->b.x = (short)x1; cmd->b.y = (short)y1; cmd->c.x = (short)x2; cmd->c.y = (short)y2; cmd->color = c; } NK_API void nk_fill_triangle(struct nk_command_buffer *b, float x0, float y0, float x1, float y1, float x2, float y2, struct nk_color c) { struct nk_command_triangle_filled *cmd; NK_ASSERT(b); if (!b || c.a == 0) return; if (!b) return; if (b->use_clipping) { const struct nk_rect *clip = &b->clip; if (!NK_INBOX(x0, y0, clip->x, clip->y, clip->w, clip->h) && !NK_INBOX(x1, y1, clip->x, clip->y, clip->w, clip->h) && !NK_INBOX(x2, y2, clip->x, clip->y, clip->w, clip->h)) return; } cmd = (struct nk_command_triangle_filled*) nk_command_buffer_push(b, NK_COMMAND_TRIANGLE_FILLED, sizeof(*cmd)); if (!cmd) return; cmd->a.x = (short)x0; cmd->a.y = (short)y0; cmd->b.x = (short)x1; cmd->b.y = (short)y1; cmd->c.x = (short)x2; cmd->c.y = (short)y2; cmd->color = c; } NK_API void nk_stroke_polygon(struct nk_command_buffer *b, float *points, int point_count, float line_thickness, struct nk_color col) { int i; nk_size size = 0; struct nk_command_polygon *cmd; NK_ASSERT(b); if (!b || col.a == 0 || line_thickness <= 0) return; size = sizeof(*cmd) + sizeof(short) * 2 * (nk_size)point_count; cmd = (struct nk_command_polygon*) nk_command_buffer_push(b, NK_COMMAND_POLYGON, size); if (!cmd) return; cmd->color = col; cmd->line_thickness = (unsigned short)line_thickness; cmd->point_count = (unsigned short)point_count; for (i = 0; i < point_count; ++i) { cmd->points[i].x = (short)points[i*2]; cmd->points[i].y = (short)points[i*2+1]; } } NK_API void nk_fill_polygon(struct nk_command_buffer *b, float *points, int point_count, struct nk_color col) { int i; nk_size size = 0; struct nk_command_polygon_filled *cmd; NK_ASSERT(b); if (!b || col.a == 0) return; size = sizeof(*cmd) + sizeof(short) * 2 * (nk_size)point_count; cmd = (struct nk_command_polygon_filled*) nk_command_buffer_push(b, NK_COMMAND_POLYGON_FILLED, size); if (!cmd) return; cmd->color = col; cmd->point_count = (unsigned short)point_count; for (i = 0; i < point_count; ++i) { cmd->points[i].x = (short)points[i*2+0]; cmd->points[i].y = (short)points[i*2+1]; } } NK_API void nk_stroke_polyline(struct nk_command_buffer *b, float *points, int point_count, float line_thickness, struct nk_color col) { int i; nk_size size = 0; struct nk_command_polyline *cmd; NK_ASSERT(b); if (!b || col.a == 0 || line_thickness <= 0) return; size = sizeof(*cmd) + sizeof(short) * 2 * (nk_size)point_count; cmd = (struct nk_command_polyline*) nk_command_buffer_push(b, NK_COMMAND_POLYLINE, size); if (!cmd) return; cmd->color = col; cmd->point_count = (unsigned short)point_count; cmd->line_thickness = (unsigned short)line_thickness; for (i = 0; i < point_count; ++i) { cmd->points[i].x = (short)points[i*2]; cmd->points[i].y = (short)points[i*2+1]; } } NK_API void nk_draw_image(struct nk_command_buffer *b, struct nk_rect r, const struct nk_image *img, struct nk_color col) { struct nk_command_image *cmd; NK_ASSERT(b); if (!b) return; if (b->use_clipping) { const struct nk_rect *c = &b->clip; if (c->w == 0 || c->h == 0 || !NK_INTERSECT(r.x, r.y, r.w, r.h, c->x, c->y, c->w, c->h)) return; } cmd = (struct nk_command_image*) nk_command_buffer_push(b, NK_COMMAND_IMAGE, sizeof(*cmd)); if (!cmd) return; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)NK_MAX(0, r.w); cmd->h = (unsigned short)NK_MAX(0, r.h); cmd->img = *img; cmd->col = col; } //< @r-lyeh { NK_API void nk_draw_image_flipped(struct nk_command_buffer *b, struct nk_rect r, const struct nk_image *img, struct nk_color col) { struct nk_command_image *cmd; NK_ASSERT(b); if (!b) return; if (b->use_clipping) { const struct nk_rect *c = &b->clip; if (c->w == 0 || c->h == 0 || !NK_INTERSECT(r.x, r.y, r.w, r.h, c->x, c->y, c->w, c->h)) return; } cmd = (struct nk_command_image*) nk_command_buffer_push(b, NK_COMMAND_IMAGE_FLIPPED, sizeof(*cmd)); if (!cmd) return; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)NK_MAX(0, r.w); cmd->h = (unsigned short)NK_MAX(0, r.h); cmd->img = *img; cmd->col = col; } //< @r-lyeh } NK_API void nk_draw_nine_slice(struct nk_command_buffer *b, struct nk_rect r, const struct nk_nine_slice *slc, struct nk_color col) { struct nk_image img; const struct nk_image *slcimg = (const struct nk_image*)slc; nk_ushort rgnX, rgnY, rgnW, rgnH; rgnX = slcimg->region[0]; rgnY = slcimg->region[1]; rgnW = slcimg->region[2]; rgnH = slcimg->region[3]; /* top-left */ img.handle = slcimg->handle; img.w = slcimg->w; img.h = slcimg->h; img.region[0] = rgnX; img.region[1] = rgnY; img.region[2] = slc->l; img.region[3] = slc->t; nk_draw_image(b, nk_rect(r.x, r.y, (float)slc->l, (float)slc->t), &img, col); #define IMG_RGN(x, y, w, h) img.region[0] = (nk_ushort)(x); img.region[1] = (nk_ushort)(y); img.region[2] = (nk_ushort)(w); img.region[3] = (nk_ushort)(h); /* top-center */ IMG_RGN(rgnX + slc->l, rgnY, rgnW - slc->l - slc->r, slc->t); nk_draw_image(b, nk_rect(r.x + (float)slc->l, r.y, (float)(r.w - slc->l - slc->r), (float)slc->t), &img, col); /* top-right */ IMG_RGN(rgnX + rgnW - slc->r, rgnY, slc->r, slc->t); nk_draw_image(b, nk_rect(r.x + r.w - (float)slc->r, r.y, (float)slc->r, (float)slc->t), &img, col); /* center-left */ IMG_RGN(rgnX, rgnY + slc->t, slc->l, rgnH - slc->t - slc->b); nk_draw_image(b, nk_rect(r.x, r.y + (float)slc->t, (float)slc->l, (float)(r.h - slc->t - slc->b)), &img, col); /* center */ IMG_RGN(rgnX + slc->l, rgnY + slc->t, rgnW - slc->l - slc->r, rgnH - slc->t - slc->b); nk_draw_image(b, nk_rect(r.x + (float)slc->l, r.y + (float)slc->t, (float)(r.w - slc->l - slc->r), (float)(r.h - slc->t - slc->b)), &img, col); /* center-right */ IMG_RGN(rgnX + rgnW - slc->r, rgnY + slc->t, slc->r, rgnH - slc->t - slc->b); nk_draw_image(b, nk_rect(r.x + r.w - (float)slc->r, r.y + (float)slc->t, (float)slc->r, (float)(r.h - slc->t - slc->b)), &img, col); /* bottom-left */ IMG_RGN(rgnX, rgnY + rgnH - slc->b, slc->l, slc->b); nk_draw_image(b, nk_rect(r.x, r.y + r.h - (float)slc->b, (float)slc->l, (float)slc->b), &img, col); /* bottom-center */ IMG_RGN(rgnX + slc->l, rgnY + rgnH - slc->b, rgnW - slc->l - slc->r, slc->b); nk_draw_image(b, nk_rect(r.x + (float)slc->l, r.y + r.h - (float)slc->b, (float)(r.w - slc->l - slc->r), (float)slc->b), &img, col); /* bottom-right */ IMG_RGN(rgnX + rgnW - slc->r, rgnY + rgnH - slc->b, slc->r, slc->b); nk_draw_image(b, nk_rect(r.x + r.w - (float)slc->r, r.y + r.h - (float)slc->b, (float)slc->r, (float)slc->b), &img, col); #undef IMG_RGN } NK_API void nk_push_custom(struct nk_command_buffer *b, struct nk_rect r, nk_command_custom_callback cb, nk_handle usr) { struct nk_command_custom *cmd; NK_ASSERT(b); if (!b) return; if (b->use_clipping) { const struct nk_rect *c = &b->clip; if (c->w == 0 || c->h == 0 || !NK_INTERSECT(r.x, r.y, r.w, r.h, c->x, c->y, c->w, c->h)) return; } cmd = (struct nk_command_custom*) nk_command_buffer_push(b, NK_COMMAND_CUSTOM, sizeof(*cmd)); if (!cmd) return; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)NK_MAX(0, r.w); cmd->h = (unsigned short)NK_MAX(0, r.h); cmd->callback_data = usr; cmd->callback = cb; } NK_API void nk_draw_text(struct nk_command_buffer *b, struct nk_rect r, const char *string, int length, const struct nk_user_font *font, struct nk_color bg, struct nk_color fg) { float text_width = 0; struct nk_command_text *cmd; NK_ASSERT(b); NK_ASSERT(font); if (!b || !string || !length || (bg.a == 0 && fg.a == 0)) return; if (b->use_clipping) { const struct nk_rect *c = &b->clip; if (c->w == 0 || c->h == 0 || !NK_INTERSECT(r.x, r.y, r.w, r.h, c->x, c->y, c->w, c->h)) return; } /* make sure text fits inside bounds */ text_width = font->width(font->userdata, font->height, string, length); if (text_width > r.w){ int glyphs = 0; float txt_width = (float)text_width; length = nk_text_clamp(font, string, length, r.w, &glyphs, &txt_width, 0,0); } if (!length) return; cmd = (struct nk_command_text*) nk_command_buffer_push(b, NK_COMMAND_TEXT, sizeof(*cmd) + (nk_size)(length + 1)); if (!cmd) return; cmd->x = (short)r.x; cmd->y = (short)r.y; cmd->w = (unsigned short)r.w; cmd->h = (unsigned short)r.h; cmd->background = bg; cmd->foreground = fg; cmd->font = font; cmd->length = length; cmd->height = font->height; NK_MEMCPY(cmd->string, string, (nk_size)length); cmd->string[length] = '\0'; } /* =============================================================== * * VERTEX * * ===============================================================*/ #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT NK_API void nk_draw_list_init(struct nk_draw_list *list) { nk_size i = 0; NK_ASSERT(list); if (!list) return; nk_zero(list, sizeof(*list)); for (i = 0; i < NK_LEN(list->circle_vtx); ++i) { const float a = ((float)i / (float)NK_LEN(list->circle_vtx)) * 2 * NK_PI; list->circle_vtx[i].x = (float)NK_COS(a); list->circle_vtx[i].y = (float)NK_SIN(a); } } NK_API void nk_draw_list_setup(struct nk_draw_list *canvas, const struct nk_convert_config *config, struct nk_buffer *cmds, struct nk_buffer *vertices, struct nk_buffer *elements, enum nk_anti_aliasing line_aa, enum nk_anti_aliasing shape_aa) { NK_ASSERT(canvas); NK_ASSERT(config); NK_ASSERT(cmds); NK_ASSERT(vertices); NK_ASSERT(elements); if (!canvas || !config || !cmds || !vertices || !elements) return; canvas->buffer = cmds; canvas->config = *config; canvas->elements = elements; canvas->vertices = vertices; canvas->line_AA = line_aa; canvas->shape_AA = shape_aa; canvas->clip_rect = nk_null_rect; canvas->cmd_offset = 0; canvas->element_count = 0; canvas->vertex_count = 0; canvas->cmd_offset = 0; canvas->cmd_count = 0; canvas->path_count = 0; } NK_API const struct nk_draw_command* nk__draw_list_begin(const struct nk_draw_list *canvas, const struct nk_buffer *buffer) { nk_byte *memory; nk_size offset; const struct nk_draw_command *cmd; NK_ASSERT(buffer); if (!buffer || !buffer->size || !canvas->cmd_count) return 0; memory = (nk_byte*)buffer->memory.ptr; offset = buffer->memory.size - canvas->cmd_offset; cmd = nk_ptr_add(const struct nk_draw_command, memory, offset); return cmd; } NK_API const struct nk_draw_command* nk__draw_list_end(const struct nk_draw_list *canvas, const struct nk_buffer *buffer) { nk_size size; nk_size offset; nk_byte *memory; const struct nk_draw_command *end; NK_ASSERT(buffer); NK_ASSERT(canvas); if (!buffer || !canvas) return 0; memory = (nk_byte*)buffer->memory.ptr; size = buffer->memory.size; offset = size - canvas->cmd_offset; end = nk_ptr_add(const struct nk_draw_command, memory, offset); end -= (canvas->cmd_count-1); return end; } NK_API const struct nk_draw_command* nk__draw_list_next(const struct nk_draw_command *cmd, const struct nk_buffer *buffer, const struct nk_draw_list *canvas) { const struct nk_draw_command *end; NK_ASSERT(buffer); NK_ASSERT(canvas); if (!cmd || !buffer || !canvas) return 0; end = nk__draw_list_end(canvas, buffer); if (cmd <= end) return 0; return (cmd-1); } NK_INTERN struct nk_vec2* nk_draw_list_alloc_path(struct nk_draw_list *list, int count) { struct nk_vec2 *points; NK_STORAGE const nk_size point_align = NK_ALIGNOF(struct nk_vec2); NK_STORAGE const nk_size point_size = sizeof(struct nk_vec2); points = (struct nk_vec2*) nk_buffer_alloc(list->buffer, NK_BUFFER_FRONT, point_size * (nk_size)count, point_align); if (!points) return 0; if (!list->path_offset) { void *memory = nk_buffer_memory(list->buffer); list->path_offset = (unsigned int)((nk_byte*)points - (nk_byte*)memory); } list->path_count += (unsigned int)count; return points; } NK_INTERN struct nk_vec2 nk_draw_list_path_last(struct nk_draw_list *list) { void *memory; struct nk_vec2 *point; NK_ASSERT(list->path_count); memory = nk_buffer_memory(list->buffer); point = nk_ptr_add(struct nk_vec2, memory, list->path_offset); point += (list->path_count-1); return *point; } NK_INTERN struct nk_draw_command* nk_draw_list_push_command(struct nk_draw_list *list, struct nk_rect clip, nk_handle texture) { NK_STORAGE const nk_size cmd_align = NK_ALIGNOF(struct nk_draw_command); NK_STORAGE const nk_size cmd_size = sizeof(struct nk_draw_command); struct nk_draw_command *cmd; NK_ASSERT(list); cmd = (struct nk_draw_command*) nk_buffer_alloc(list->buffer, NK_BUFFER_BACK, cmd_size, cmd_align); if (!cmd) return 0; if (!list->cmd_count) { nk_byte *memory = (nk_byte*)nk_buffer_memory(list->buffer); nk_size total = nk_buffer_total(list->buffer); memory = nk_ptr_add(nk_byte, memory, total); list->cmd_offset = (nk_size)(memory - (nk_byte*)cmd); } cmd->elem_count = 0; cmd->clip_rect = clip; cmd->texture = texture; #ifdef NK_INCLUDE_COMMAND_USERDATA cmd->userdata = list->userdata; #endif list->cmd_count++; list->clip_rect = clip; return cmd; } NK_INTERN struct nk_draw_command* nk_draw_list_command_last(struct nk_draw_list *list) { void *memory; nk_size size; struct nk_draw_command *cmd; NK_ASSERT(list->cmd_count); memory = nk_buffer_memory(list->buffer); size = nk_buffer_total(list->buffer); cmd = nk_ptr_add(struct nk_draw_command, memory, size - list->cmd_offset); return (cmd - (list->cmd_count-1)); } NK_INTERN void nk_draw_list_add_clip(struct nk_draw_list *list, struct nk_rect rect) { NK_ASSERT(list); if (!list) return; if (!list->cmd_count) { nk_draw_list_push_command(list, rect, list->config.null.texture); } else { struct nk_draw_command *prev = nk_draw_list_command_last(list); if (prev->elem_count == 0) prev->clip_rect = rect; nk_draw_list_push_command(list, rect, prev->texture); } } NK_INTERN void nk_draw_list_push_image(struct nk_draw_list *list, nk_handle texture) { NK_ASSERT(list); if (!list) return; if (!list->cmd_count) { nk_draw_list_push_command(list, nk_null_rect, texture); } else { struct nk_draw_command *prev = nk_draw_list_command_last(list); if (prev->elem_count == 0) { prev->texture = texture; #ifdef NK_INCLUDE_COMMAND_USERDATA prev->userdata = list->userdata; #endif } else if (prev->texture.id != texture.id #ifdef NK_INCLUDE_COMMAND_USERDATA || prev->userdata.id != list->userdata.id #endif ) nk_draw_list_push_command(list, prev->clip_rect, texture); } } #ifdef NK_INCLUDE_COMMAND_USERDATA NK_API void nk_draw_list_push_userdata(struct nk_draw_list *list, nk_handle userdata) { list->userdata = userdata; } #endif NK_INTERN void* nk_draw_list_alloc_vertices(struct nk_draw_list *list, nk_size count) { void *vtx; NK_ASSERT(list); if (!list) return 0; vtx = nk_buffer_alloc(list->vertices, NK_BUFFER_FRONT, list->config.vertex_size*count, list->config.vertex_alignment); if (!vtx) return 0; list->vertex_count += (unsigned int)count; /* This assert triggers because your are drawing a lot of stuff and nuklear * defined `nk_draw_index` as `nk_ushort` to safe space be default. * * So you reached the maximum number of indices or rather vertexes. * To solve this issue please change typedef `nk_draw_index` to `nk_uint` * and don't forget to specify the new element size in your drawing * backend (OpenGL, DirectX, ...). For example in OpenGL for `glDrawElements` * instead of specifying `GL_UNSIGNED_SHORT` you have to define `GL_UNSIGNED_INT`. * Sorry for the inconvenience. */ if(sizeof(nk_draw_index)==2) NK_ASSERT((list->vertex_count < NK_USHORT_MAX && "To many vertices for 16-bit vertex indices. Please read comment above on how to solve this problem")); return vtx; } NK_INTERN nk_draw_index* nk_draw_list_alloc_elements(struct nk_draw_list *list, nk_size count) { nk_draw_index *ids; struct nk_draw_command *cmd; NK_STORAGE const nk_size elem_align = NK_ALIGNOF(nk_draw_index); NK_STORAGE const nk_size elem_size = sizeof(nk_draw_index); NK_ASSERT(list); if (!list) return 0; ids = (nk_draw_index*) nk_buffer_alloc(list->elements, NK_BUFFER_FRONT, elem_size*count, elem_align); if (!ids) return 0; cmd = nk_draw_list_command_last(list); list->element_count += (unsigned int)count; cmd->elem_count += (unsigned int)count; return ids; } NK_INTERN int nk_draw_vertex_layout_element_is_end_of_layout( const struct nk_draw_vertex_layout_element *element) { return (element->attribute == NK_VERTEX_ATTRIBUTE_COUNT || element->format == NK_FORMAT_COUNT); } NK_INTERN void nk_draw_vertex_color(void *attr, const float *vals, enum nk_draw_vertex_layout_format format) { /* if this triggers you tried to provide a value format for a color */ float val[4]; NK_ASSERT(format >= NK_FORMAT_COLOR_BEGIN); NK_ASSERT(format <= NK_FORMAT_COLOR_END); if (format < NK_FORMAT_COLOR_BEGIN || format > NK_FORMAT_COLOR_END) return; val[0] = NK_SATURATE(vals[0]); val[1] = NK_SATURATE(vals[1]); val[2] = NK_SATURATE(vals[2]); val[3] = NK_SATURATE(vals[3]); switch (format) { default: NK_ASSERT(0 && "Invalid vertex layout color format"); break; case NK_FORMAT_R8G8B8A8: case NK_FORMAT_R8G8B8: { struct nk_color col = nk_rgba_fv(val); NK_MEMCPY(attr, &col.r, sizeof(col)); } break; case NK_FORMAT_B8G8R8A8: { struct nk_color col = nk_rgba_fv(val); struct nk_color bgra = nk_rgba(col.b, col.g, col.r, col.a); NK_MEMCPY(attr, &bgra, sizeof(bgra)); } break; case NK_FORMAT_R16G15B16: { nk_ushort col[3]; col[0] = (nk_ushort)(val[0]*(float)NK_USHORT_MAX); col[1] = (nk_ushort)(val[1]*(float)NK_USHORT_MAX); col[2] = (nk_ushort)(val[2]*(float)NK_USHORT_MAX); NK_MEMCPY(attr, col, sizeof(col)); } break; case NK_FORMAT_R16G15B16A16: { nk_ushort col[4]; col[0] = (nk_ushort)(val[0]*(float)NK_USHORT_MAX); col[1] = (nk_ushort)(val[1]*(float)NK_USHORT_MAX); col[2] = (nk_ushort)(val[2]*(float)NK_USHORT_MAX); col[3] = (nk_ushort)(val[3]*(float)NK_USHORT_MAX); NK_MEMCPY(attr, col, sizeof(col)); } break; case NK_FORMAT_R32G32B32: { nk_uint col[3]; col[0] = (nk_uint)(val[0]*(float)NK_UINT_MAX); col[1] = (nk_uint)(val[1]*(float)NK_UINT_MAX); col[2] = (nk_uint)(val[2]*(float)NK_UINT_MAX); NK_MEMCPY(attr, col, sizeof(col)); } break; case NK_FORMAT_R32G32B32A32: { nk_uint col[4]; col[0] = (nk_uint)(val[0]*(float)NK_UINT_MAX); col[1] = (nk_uint)(val[1]*(float)NK_UINT_MAX); col[2] = (nk_uint)(val[2]*(float)NK_UINT_MAX); col[3] = (nk_uint)(val[3]*(float)NK_UINT_MAX); NK_MEMCPY(attr, col, sizeof(col)); } break; case NK_FORMAT_R32G32B32A32_FLOAT: NK_MEMCPY(attr, val, sizeof(float)*4); break; case NK_FORMAT_R32G32B32A32_DOUBLE: { double col[4]; col[0] = (double)val[0]; col[1] = (double)val[1]; col[2] = (double)val[2]; col[3] = (double)val[3]; NK_MEMCPY(attr, col, sizeof(col)); } break; case NK_FORMAT_RGB32: case NK_FORMAT_RGBA32: { struct nk_color col = nk_rgba_fv(val); nk_uint color = nk_color_u32(col); NK_MEMCPY(attr, &color, sizeof(color)); } break; } } NK_INTERN void nk_draw_vertex_element(void *dst, const float *values, int value_count, enum nk_draw_vertex_layout_format format) { int value_index; void *attribute = dst; /* if this triggers you tried to provide a color format for a value */ NK_ASSERT(format < NK_FORMAT_COLOR_BEGIN); if (format >= NK_FORMAT_COLOR_BEGIN && format <= NK_FORMAT_COLOR_END) return; for (value_index = 0; value_index < value_count; ++value_index) { switch (format) { default: NK_ASSERT(0 && "invalid vertex layout format"); break; case NK_FORMAT_SCHAR: { char value = (char)NK_CLAMP((float)NK_SCHAR_MIN, values[value_index], (float)NK_SCHAR_MAX); NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(char)); } break; case NK_FORMAT_SSHORT: { nk_short value = (nk_short)NK_CLAMP((float)NK_SSHORT_MIN, values[value_index], (float)NK_SSHORT_MAX); NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(value)); } break; case NK_FORMAT_SINT: { nk_int value = (nk_int)NK_CLAMP((float)NK_SINT_MIN, values[value_index], (float)NK_SINT_MAX); NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(nk_int)); } break; case NK_FORMAT_UCHAR: { unsigned char value = (unsigned char)NK_CLAMP((float)NK_UCHAR_MIN, values[value_index], (float)NK_UCHAR_MAX); NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(unsigned char)); } break; case NK_FORMAT_USHORT: { nk_ushort value = (nk_ushort)NK_CLAMP((float)NK_USHORT_MIN, values[value_index], (float)NK_USHORT_MAX); NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(value)); } break; case NK_FORMAT_UINT: { nk_uint value = (nk_uint)NK_CLAMP((float)NK_UINT_MIN, values[value_index], (float)NK_UINT_MAX); NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(nk_uint)); } break; case NK_FORMAT_FLOAT: NK_MEMCPY(attribute, &values[value_index], sizeof(values[value_index])); attribute = (void*)((char*)attribute + sizeof(float)); break; case NK_FORMAT_DOUBLE: { double value = (double)values[value_index]; NK_MEMCPY(attribute, &value, sizeof(value)); attribute = (void*)((char*)attribute + sizeof(double)); } break; } } } NK_INTERN void* nk_draw_vertex(void *dst, const struct nk_convert_config *config, struct nk_vec2 pos, struct nk_vec2 uv, struct nk_colorf color) { void *result = (void*)((char*)dst + config->vertex_size); const struct nk_draw_vertex_layout_element *elem_iter = config->vertex_layout; while (!nk_draw_vertex_layout_element_is_end_of_layout(elem_iter)) { void *address = (void*)((char*)dst + elem_iter->offset); switch (elem_iter->attribute) { case NK_VERTEX_ATTRIBUTE_COUNT: default: NK_ASSERT(0 && "wrong element attribute"); break; case NK_VERTEX_POSITION: nk_draw_vertex_element(address, &pos.x, 2, elem_iter->format); break; case NK_VERTEX_TEXCOORD: nk_draw_vertex_element(address, &uv.x, 2, elem_iter->format); break; case NK_VERTEX_COLOR: nk_draw_vertex_color(address, &color.r, elem_iter->format); break; } elem_iter++; } return result; } NK_API void nk_draw_list_stroke_poly_line(struct nk_draw_list *list, const struct nk_vec2 *points, const unsigned int points_count, struct nk_color color, enum nk_draw_list_stroke closed, float thickness, enum nk_anti_aliasing aliasing) { nk_size count; int thick_line; struct nk_colorf col; struct nk_colorf col_trans; NK_ASSERT(list); if (!list || points_count < 2) return; color.a = (nk_byte)((float)color.a * list->config.global_alpha); count = points_count; if (!closed) count = points_count-1; thick_line = thickness > 1.0f; #ifdef NK_INCLUDE_COMMAND_USERDATA nk_draw_list_push_userdata(list, list->userdata); #endif color.a = (nk_byte)((float)color.a * list->config.global_alpha); nk_color_fv(&col.r, color); col_trans = col; col_trans.a = 0; if (aliasing == NK_ANTI_ALIASING_ON) { /* ANTI-ALIASED STROKE */ const float AA_SIZE = 1.0f; NK_STORAGE const nk_size pnt_align = NK_ALIGNOF(struct nk_vec2); NK_STORAGE const nk_size pnt_size = sizeof(struct nk_vec2); /* allocate vertices and elements */ nk_size i1 = 0; nk_size vertex_offset; nk_size index = list->vertex_count; const nk_size idx_count = (thick_line) ? (count * 18) : (count * 12); const nk_size vtx_count = (thick_line) ? (points_count * 4): (points_count *3); void *vtx = nk_draw_list_alloc_vertices(list, vtx_count); nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count); nk_size size; struct nk_vec2 *normals, *temp; if (!vtx || !ids) return; /* temporary allocate normals + points */ vertex_offset = (nk_size)((nk_byte*)vtx - (nk_byte*)list->vertices->memory.ptr); nk_buffer_mark(list->vertices, NK_BUFFER_FRONT); size = pnt_size * ((thick_line) ? 5 : 3) * points_count; normals = (struct nk_vec2*) nk_buffer_alloc(list->vertices, NK_BUFFER_FRONT, size, pnt_align); if (!normals) return; temp = normals + points_count; /* make sure vertex pointer is still correct */ vtx = (void*)((nk_byte*)list->vertices->memory.ptr + vertex_offset); /* calculate normals */ for (i1 = 0; i1 < count; ++i1) { const nk_size i2 = ((i1 + 1) == points_count) ? 0 : (i1 + 1); struct nk_vec2 diff = nk_vec2_sub(points[i2], points[i1]); float len; /* vec2 inverted length */ len = nk_vec2_len_sqr(diff); if (len != 0.0f) len = NK_INV_SQRT(len); else len = 1.0f; diff = nk_vec2_muls(diff, len); normals[i1].x = diff.y; normals[i1].y = -diff.x; } if (!closed) normals[points_count-1] = normals[points_count-2]; if (!thick_line) { nk_size idx1, i; if (!closed) { struct nk_vec2 d; temp[0] = nk_vec2_add(points[0], nk_vec2_muls(normals[0], AA_SIZE)); temp[1] = nk_vec2_sub(points[0], nk_vec2_muls(normals[0], AA_SIZE)); d = nk_vec2_muls(normals[points_count-1], AA_SIZE); temp[(points_count-1) * 2 + 0] = nk_vec2_add(points[points_count-1], d); temp[(points_count-1) * 2 + 1] = nk_vec2_sub(points[points_count-1], d); } /* fill elements */ idx1 = index; for (i1 = 0; i1 < count; i1++) { struct nk_vec2 dm; float dmr2; nk_size i2 = ((i1 + 1) == points_count) ? 0 : (i1 + 1); nk_size idx2 = ((i1+1) == points_count) ? index: (idx1 + 3); /* average normals */ dm = nk_vec2_muls(nk_vec2_add(normals[i1], normals[i2]), 0.5f); dmr2 = dm.x * dm.x + dm.y* dm.y; if (dmr2 > 0.000001f) { float scale = 1.0f/dmr2; scale = NK_MIN(100.0f, scale); dm = nk_vec2_muls(dm, scale); } dm = nk_vec2_muls(dm, AA_SIZE); temp[i2*2+0] = nk_vec2_add(points[i2], dm); temp[i2*2+1] = nk_vec2_sub(points[i2], dm); ids[0] = (nk_draw_index)(idx2 + 0); ids[1] = (nk_draw_index)(idx1+0); ids[2] = (nk_draw_index)(idx1 + 2); ids[3] = (nk_draw_index)(idx1+2); ids[4] = (nk_draw_index)(idx2 + 2); ids[5] = (nk_draw_index)(idx2+0); ids[6] = (nk_draw_index)(idx2 + 1); ids[7] = (nk_draw_index)(idx1+1); ids[8] = (nk_draw_index)(idx1 + 0); ids[9] = (nk_draw_index)(idx1+0); ids[10]= (nk_draw_index)(idx2 + 0); ids[11]= (nk_draw_index)(idx2+1); ids += 12; idx1 = idx2; } /* fill vertices */ for (i = 0; i < points_count; ++i) { const struct nk_vec2 uv = list->config.null.uv; vtx = nk_draw_vertex(vtx, &list->config, points[i], uv, col); vtx = nk_draw_vertex(vtx, &list->config, temp[i*2+0], uv, col_trans); vtx = nk_draw_vertex(vtx, &list->config, temp[i*2+1], uv, col_trans); } } else { nk_size idx1, i; const float half_inner_thickness = (thickness - AA_SIZE) * 0.5f; if (!closed) { struct nk_vec2 d1 = nk_vec2_muls(normals[0], half_inner_thickness + AA_SIZE); struct nk_vec2 d2 = nk_vec2_muls(normals[0], half_inner_thickness); temp[0] = nk_vec2_add(points[0], d1); temp[1] = nk_vec2_add(points[0], d2); temp[2] = nk_vec2_sub(points[0], d2); temp[3] = nk_vec2_sub(points[0], d1); d1 = nk_vec2_muls(normals[points_count-1], half_inner_thickness + AA_SIZE); d2 = nk_vec2_muls(normals[points_count-1], half_inner_thickness); temp[(points_count-1)*4+0] = nk_vec2_add(points[points_count-1], d1); temp[(points_count-1)*4+1] = nk_vec2_add(points[points_count-1], d2); temp[(points_count-1)*4+2] = nk_vec2_sub(points[points_count-1], d2); temp[(points_count-1)*4+3] = nk_vec2_sub(points[points_count-1], d1); } /* add all elements */ idx1 = index; for (i1 = 0; i1 < count; ++i1) { struct nk_vec2 dm_out, dm_in; const nk_size i2 = ((i1+1) == points_count) ? 0: (i1 + 1); nk_size idx2 = ((i1+1) == points_count) ? index: (idx1 + 4); /* average normals */ struct nk_vec2 dm = nk_vec2_muls(nk_vec2_add(normals[i1], normals[i2]), 0.5f); float dmr2 = dm.x * dm.x + dm.y* dm.y; if (dmr2 > 0.000001f) { float scale = 1.0f/dmr2; scale = NK_MIN(100.0f, scale); dm = nk_vec2_muls(dm, scale); } dm_out = nk_vec2_muls(dm, ((half_inner_thickness) + AA_SIZE)); dm_in = nk_vec2_muls(dm, half_inner_thickness); temp[i2*4+0] = nk_vec2_add(points[i2], dm_out); temp[i2*4+1] = nk_vec2_add(points[i2], dm_in); temp[i2*4+2] = nk_vec2_sub(points[i2], dm_in); temp[i2*4+3] = nk_vec2_sub(points[i2], dm_out); /* add indexes */ ids[0] = (nk_draw_index)(idx2 + 1); ids[1] = (nk_draw_index)(idx1+1); ids[2] = (nk_draw_index)(idx1 + 2); ids[3] = (nk_draw_index)(idx1+2); ids[4] = (nk_draw_index)(idx2 + 2); ids[5] = (nk_draw_index)(idx2+1); ids[6] = (nk_draw_index)(idx2 + 1); ids[7] = (nk_draw_index)(idx1+1); ids[8] = (nk_draw_index)(idx1 + 0); ids[9] = (nk_draw_index)(idx1+0); ids[10]= (nk_draw_index)(idx2 + 0); ids[11] = (nk_draw_index)(idx2+1); ids[12]= (nk_draw_index)(idx2 + 2); ids[13] = (nk_draw_index)(idx1+2); ids[14]= (nk_draw_index)(idx1 + 3); ids[15] = (nk_draw_index)(idx1+3); ids[16]= (nk_draw_index)(idx2 + 3); ids[17] = (nk_draw_index)(idx2+2); ids += 18; idx1 = idx2; } /* add vertices */ for (i = 0; i < points_count; ++i) { const struct nk_vec2 uv = list->config.null.uv; vtx = nk_draw_vertex(vtx, &list->config, temp[i*4+0], uv, col_trans); vtx = nk_draw_vertex(vtx, &list->config, temp[i*4+1], uv, col); vtx = nk_draw_vertex(vtx, &list->config, temp[i*4+2], uv, col); vtx = nk_draw_vertex(vtx, &list->config, temp[i*4+3], uv, col_trans); } } /* free temporary normals + points */ nk_buffer_reset(list->vertices, NK_BUFFER_FRONT); } else { /* NON ANTI-ALIASED STROKE */ nk_size i1 = 0; nk_size idx = list->vertex_count; const nk_size idx_count = count * 6; const nk_size vtx_count = count * 4; void *vtx = nk_draw_list_alloc_vertices(list, vtx_count); nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count); if (!vtx || !ids) return; for (i1 = 0; i1 < count; ++i1) { float dx, dy; const struct nk_vec2 uv = list->config.null.uv; const nk_size i2 = ((i1+1) == points_count) ? 0 : i1 + 1; const struct nk_vec2 p1 = points[i1]; const struct nk_vec2 p2 = points[i2]; struct nk_vec2 diff = nk_vec2_sub(p2, p1); float len; /* vec2 inverted length */ len = nk_vec2_len_sqr(diff); if (len != 0.0f) len = NK_INV_SQRT(len); else len = 1.0f; diff = nk_vec2_muls(diff, len); /* add vertices */ dx = diff.x * (thickness * 0.5f); dy = diff.y * (thickness * 0.5f); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(p1.x + dy, p1.y - dx), uv, col); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(p2.x + dy, p2.y - dx), uv, col); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(p2.x - dy, p2.y + dx), uv, col); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(p1.x - dy, p1.y + dx), uv, col); ids[0] = (nk_draw_index)(idx+0); ids[1] = (nk_draw_index)(idx+1); ids[2] = (nk_draw_index)(idx+2); ids[3] = (nk_draw_index)(idx+0); ids[4] = (nk_draw_index)(idx+2); ids[5] = (nk_draw_index)(idx+3); ids += 6; idx += 4; } } } NK_API void nk_draw_list_fill_poly_convex(struct nk_draw_list *list, const struct nk_vec2 *points, const unsigned int points_count, struct nk_color color, enum nk_anti_aliasing aliasing) { struct nk_colorf col; struct nk_colorf col_trans; NK_STORAGE const nk_size pnt_align = NK_ALIGNOF(struct nk_vec2); NK_STORAGE const nk_size pnt_size = sizeof(struct nk_vec2); NK_ASSERT(list); if (!list || points_count < 3) return; #ifdef NK_INCLUDE_COMMAND_USERDATA nk_draw_list_push_userdata(list, list->userdata); #endif color.a = (nk_byte)((float)color.a * list->config.global_alpha); nk_color_fv(&col.r, color); col_trans = col; col_trans.a = 0; if (aliasing == NK_ANTI_ALIASING_ON) { nk_size i = 0; nk_size i0 = 0; nk_size i1 = 0; const float AA_SIZE = 1.0f; nk_size vertex_offset = 0; nk_size index = list->vertex_count; const nk_size idx_count = (points_count-2)*3 + points_count*6; const nk_size vtx_count = (points_count*2); void *vtx = nk_draw_list_alloc_vertices(list, vtx_count); nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count); nk_size size = 0; struct nk_vec2 *normals = 0; unsigned int vtx_inner_idx = (unsigned int)(index + 0); unsigned int vtx_outer_idx = (unsigned int)(index + 1); if (!vtx || !ids) return; /* temporary allocate normals */ vertex_offset = (nk_size)((nk_byte*)vtx - (nk_byte*)list->vertices->memory.ptr); nk_buffer_mark(list->vertices, NK_BUFFER_FRONT); size = pnt_size * points_count; normals = (struct nk_vec2*) nk_buffer_alloc(list->vertices, NK_BUFFER_FRONT, size, pnt_align); if (!normals) return; vtx = (void*)((nk_byte*)list->vertices->memory.ptr + vertex_offset); /* add elements */ for (i = 2; i < points_count; i++) { ids[0] = (nk_draw_index)(vtx_inner_idx); ids[1] = (nk_draw_index)(vtx_inner_idx + ((i-1) << 1)); ids[2] = (nk_draw_index)(vtx_inner_idx + (i << 1)); ids += 3; } /* compute normals */ for (i0 = points_count-1, i1 = 0; i1 < points_count; i0 = i1++) { struct nk_vec2 p0 = points[i0]; struct nk_vec2 p1 = points[i1]; struct nk_vec2 diff = nk_vec2_sub(p1, p0); /* vec2 inverted length */ float len = nk_vec2_len_sqr(diff); if (len != 0.0f) len = NK_INV_SQRT(len); else len = 1.0f; diff = nk_vec2_muls(diff, len); normals[i0].x = diff.y; normals[i0].y = -diff.x; } /* add vertices + indexes */ for (i0 = points_count-1, i1 = 0; i1 < points_count; i0 = i1++) { const struct nk_vec2 uv = list->config.null.uv; struct nk_vec2 n0 = normals[i0]; struct nk_vec2 n1 = normals[i1]; struct nk_vec2 dm = nk_vec2_muls(nk_vec2_add(n0, n1), 0.5f); float dmr2 = dm.x*dm.x + dm.y*dm.y; if (dmr2 > 0.000001f) { float scale = 1.0f / dmr2; scale = NK_MIN(scale, 100.0f); dm = nk_vec2_muls(dm, scale); } dm = nk_vec2_muls(dm, AA_SIZE * 0.5f); /* add vertices */ vtx = nk_draw_vertex(vtx, &list->config, nk_vec2_sub(points[i1], dm), uv, col); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2_add(points[i1], dm), uv, col_trans); /* add indexes */ ids[0] = (nk_draw_index)(vtx_inner_idx+(i1<<1)); ids[1] = (nk_draw_index)(vtx_inner_idx+(i0<<1)); ids[2] = (nk_draw_index)(vtx_outer_idx+(i0<<1)); ids[3] = (nk_draw_index)(vtx_outer_idx+(i0<<1)); ids[4] = (nk_draw_index)(vtx_outer_idx+(i1<<1)); ids[5] = (nk_draw_index)(vtx_inner_idx+(i1<<1)); ids += 6; } /* free temporary normals + points */ nk_buffer_reset(list->vertices, NK_BUFFER_FRONT); } else { nk_size i = 0; nk_size index = list->vertex_count; const nk_size idx_count = (points_count-2)*3; const nk_size vtx_count = points_count; void *vtx = nk_draw_list_alloc_vertices(list, vtx_count); nk_draw_index *ids = nk_draw_list_alloc_elements(list, idx_count); if (!vtx || !ids) return; for (i = 0; i < vtx_count; ++i) vtx = nk_draw_vertex(vtx, &list->config, points[i], list->config.null.uv, col); for (i = 2; i < points_count; ++i) { ids[0] = (nk_draw_index)index; ids[1] = (nk_draw_index)(index+ i - 1); ids[2] = (nk_draw_index)(index+i); ids += 3; } } } NK_API void nk_draw_list_path_clear(struct nk_draw_list *list) { NK_ASSERT(list); if (!list) return; nk_buffer_reset(list->buffer, NK_BUFFER_FRONT); list->path_count = 0; list->path_offset = 0; } NK_API void nk_draw_list_path_line_to(struct nk_draw_list *list, struct nk_vec2 pos) { struct nk_vec2 *points = 0; struct nk_draw_command *cmd = 0; NK_ASSERT(list); if (!list) return; if (!list->cmd_count) nk_draw_list_add_clip(list, nk_null_rect); cmd = nk_draw_list_command_last(list); if (cmd && cmd->texture.ptr != list->config.null.texture.ptr) nk_draw_list_push_image(list, list->config.null.texture); points = nk_draw_list_alloc_path(list, 1); if (!points) return; points[0] = pos; } NK_API void nk_draw_list_path_arc_to_fast(struct nk_draw_list *list, struct nk_vec2 center, float radius, int a_min, int a_max) { int a = 0; NK_ASSERT(list); if (!list) return; if (a_min <= a_max) { for (a = a_min; a <= a_max; a++) { const struct nk_vec2 c = list->circle_vtx[(nk_size)a % NK_LEN(list->circle_vtx)]; const float x = center.x + c.x * radius; const float y = center.y + c.y * radius; nk_draw_list_path_line_to(list, nk_vec2(x, y)); } } } NK_API void nk_draw_list_path_arc_to(struct nk_draw_list *list, struct nk_vec2 center, float radius, float a_min, float a_max, unsigned int segments) { unsigned int i = 0; NK_ASSERT(list); if (!list) return; if (radius == 0.0f) return; /* This algorithm for arc drawing relies on these two trigonometric identities[1]: sin(a + b) = sin(a) * cos(b) + cos(a) * sin(b) cos(a + b) = cos(a) * cos(b) - sin(a) * sin(b) Two coordinates (x, y) of a point on a circle centered on the origin can be written in polar form as: x = r * cos(a) y = r * sin(a) where r is the radius of the circle, a is the angle between (x, y) and the origin. This allows us to rotate the coordinates around the origin by an angle b using the following transformation: x' = r * cos(a + b) = x * cos(b) - y * sin(b) y' = r * sin(a + b) = y * cos(b) + x * sin(b) [1] https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities */ {const float d_angle = (a_max - a_min) / (float)segments; const float sin_d = (float)NK_SIN(d_angle); const float cos_d = (float)NK_COS(d_angle); float cx = (float)NK_COS(a_min) * radius; float cy = (float)NK_SIN(a_min) * radius; for(i = 0; i <= segments; ++i) { float new_cx, new_cy; const float x = center.x + cx; const float y = center.y + cy; nk_draw_list_path_line_to(list, nk_vec2(x, y)); new_cx = cx * cos_d - cy * sin_d; new_cy = cy * cos_d + cx * sin_d; cx = new_cx; cy = new_cy; }} } NK_API void nk_draw_list_path_rect_to(struct nk_draw_list *list, struct nk_vec2 a, struct nk_vec2 b, float rounding) { float r; NK_ASSERT(list); if (!list) return; r = rounding; r = NK_MIN(r, ((b.x-a.x) < 0) ? -(b.x-a.x): (b.x-a.x)); r = NK_MIN(r, ((b.y-a.y) < 0) ? -(b.y-a.y): (b.y-a.y)); if (r == 0.0f) { nk_draw_list_path_line_to(list, a); nk_draw_list_path_line_to(list, nk_vec2(b.x,a.y)); nk_draw_list_path_line_to(list, b); nk_draw_list_path_line_to(list, nk_vec2(a.x,b.y)); } else { nk_draw_list_path_arc_to_fast(list, nk_vec2(a.x + r, a.y + r), r, 6, 9); nk_draw_list_path_arc_to_fast(list, nk_vec2(b.x - r, a.y + r), r, 9, 12); nk_draw_list_path_arc_to_fast(list, nk_vec2(b.x - r, b.y - r), r, 0, 3); nk_draw_list_path_arc_to_fast(list, nk_vec2(a.x + r, b.y - r), r, 3, 6); } } NK_API void nk_draw_list_path_curve_to(struct nk_draw_list *list, struct nk_vec2 p2, struct nk_vec2 p3, struct nk_vec2 p4, unsigned int num_segments) { float t_step; unsigned int i_step; struct nk_vec2 p1; NK_ASSERT(list); NK_ASSERT(list->path_count); if (!list || !list->path_count) return; num_segments = NK_MAX(num_segments, 1); p1 = nk_draw_list_path_last(list); t_step = 1.0f/(float)num_segments; for (i_step = 1; i_step <= num_segments; ++i_step) { float t = t_step * (float)i_step; float u = 1.0f - t; float w1 = u*u*u; float w2 = 3*u*u*t; float w3 = 3*u*t*t; float w4 = t * t *t; float x = w1 * p1.x + w2 * p2.x + w3 * p3.x + w4 * p4.x; float y = w1 * p1.y + w2 * p2.y + w3 * p3.y + w4 * p4.y; nk_draw_list_path_line_to(list, nk_vec2(x,y)); } } NK_API void nk_draw_list_path_fill(struct nk_draw_list *list, struct nk_color color) { struct nk_vec2 *points; NK_ASSERT(list); if (!list) return; points = (struct nk_vec2*)nk_buffer_memory(list->buffer); nk_draw_list_fill_poly_convex(list, points, list->path_count, color, list->config.shape_AA); nk_draw_list_path_clear(list); } NK_API void nk_draw_list_path_stroke(struct nk_draw_list *list, struct nk_color color, enum nk_draw_list_stroke closed, float thickness) { struct nk_vec2 *points; NK_ASSERT(list); if (!list) return; points = (struct nk_vec2*)nk_buffer_memory(list->buffer); nk_draw_list_stroke_poly_line(list, points, list->path_count, color, closed, thickness, list->config.line_AA); nk_draw_list_path_clear(list); } NK_API void nk_draw_list_stroke_line(struct nk_draw_list *list, struct nk_vec2 a, struct nk_vec2 b, struct nk_color col, float thickness) { NK_ASSERT(list); if (!list || !col.a) return; if (list->line_AA == NK_ANTI_ALIASING_ON) { nk_draw_list_path_line_to(list, a); nk_draw_list_path_line_to(list, b); } else { nk_draw_list_path_line_to(list, nk_vec2_sub(a,nk_vec2(0.5f,0.5f))); nk_draw_list_path_line_to(list, nk_vec2_sub(b,nk_vec2(0.5f,0.5f))); } nk_draw_list_path_stroke(list, col, NK_STROKE_OPEN, thickness); } NK_API void nk_draw_list_fill_rect(struct nk_draw_list *list, struct nk_rect rect, struct nk_color col, float rounding) { NK_ASSERT(list); if (!list || !col.a) return; if (list->line_AA == NK_ANTI_ALIASING_ON) { nk_draw_list_path_rect_to(list, nk_vec2(rect.x, rect.y), nk_vec2(rect.x + rect.w, rect.y + rect.h), rounding); } else { nk_draw_list_path_rect_to(list, nk_vec2(rect.x-0.5f, rect.y-0.5f), nk_vec2(rect.x + rect.w, rect.y + rect.h), rounding); } nk_draw_list_path_fill(list, col); } NK_API void nk_draw_list_stroke_rect(struct nk_draw_list *list, struct nk_rect rect, struct nk_color col, float rounding, float thickness) { NK_ASSERT(list); if (!list || !col.a) return; if (list->line_AA == NK_ANTI_ALIASING_ON) { nk_draw_list_path_rect_to(list, nk_vec2(rect.x, rect.y), nk_vec2(rect.x + rect.w, rect.y + rect.h), rounding); } else { nk_draw_list_path_rect_to(list, nk_vec2(rect.x-0.5f, rect.y-0.5f), nk_vec2(rect.x + rect.w, rect.y + rect.h), rounding); } nk_draw_list_path_stroke(list, col, NK_STROKE_CLOSED, thickness); } NK_API void nk_draw_list_fill_rect_multi_color(struct nk_draw_list *list, struct nk_rect rect, struct nk_color left, struct nk_color top, struct nk_color right, struct nk_color bottom) { void *vtx; struct nk_colorf col_left, col_top; struct nk_colorf col_right, col_bottom; nk_draw_index *idx; nk_draw_index index; nk_color_fv(&col_left.r, left); nk_color_fv(&col_right.r, right); nk_color_fv(&col_top.r, top); nk_color_fv(&col_bottom.r, bottom); NK_ASSERT(list); if (!list) return; nk_draw_list_push_image(list, list->config.null.texture); index = (nk_draw_index)list->vertex_count; vtx = nk_draw_list_alloc_vertices(list, 4); idx = nk_draw_list_alloc_elements(list, 6); if (!vtx || !idx) return; idx[0] = (nk_draw_index)(index+0); idx[1] = (nk_draw_index)(index+1); idx[2] = (nk_draw_index)(index+2); idx[3] = (nk_draw_index)(index+0); idx[4] = (nk_draw_index)(index+2); idx[5] = (nk_draw_index)(index+3); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(rect.x, rect.y), list->config.null.uv, col_left); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(rect.x + rect.w, rect.y), list->config.null.uv, col_top); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(rect.x + rect.w, rect.y + rect.h), list->config.null.uv, col_right); vtx = nk_draw_vertex(vtx, &list->config, nk_vec2(rect.x, rect.y + rect.h), list->config.null.uv, col_bottom); } NK_API void nk_draw_list_fill_triangle(struct nk_draw_list *list, struct nk_vec2 a, struct nk_vec2 b, struct nk_vec2 c, struct nk_color col) { NK_ASSERT(list); if (!list || !col.a) return; nk_draw_list_path_line_to(list, a); nk_draw_list_path_line_to(list, b); nk_draw_list_path_line_to(list, c); nk_draw_list_path_fill(list, col); } NK_API void nk_draw_list_stroke_triangle(struct nk_draw_list *list, struct nk_vec2 a, struct nk_vec2 b, struct nk_vec2 c, struct nk_color col, float thickness) { NK_ASSERT(list); if (!list || !col.a) return; nk_draw_list_path_line_to(list, a); nk_draw_list_path_line_to(list, b); nk_draw_list_path_line_to(list, c); nk_draw_list_path_stroke(list, col, NK_STROKE_CLOSED, thickness); } NK_API void nk_draw_list_fill_circle(struct nk_draw_list *list, struct nk_vec2 center, float radius, struct nk_color col, unsigned int segs) { float a_max; NK_ASSERT(list); if (!list || !col.a) return; a_max = NK_PI * 2.0f * ((float)segs - 1.0f) / (float)segs; nk_draw_list_path_arc_to(list, center, radius, 0.0f, a_max, segs); nk_draw_list_path_fill(list, col); } NK_API void nk_draw_list_stroke_circle(struct nk_draw_list *list, struct nk_vec2 center, float radius, struct nk_color col, unsigned int segs, float thickness) { float a_max; NK_ASSERT(list); if (!list || !col.a) return; a_max = NK_PI * 2.0f * ((float)segs - 1.0f) / (float)segs; nk_draw_list_path_arc_to(list, center, radius, 0.0f, a_max, segs); nk_draw_list_path_stroke(list, col, NK_STROKE_CLOSED, thickness); } NK_API void nk_draw_list_stroke_curve(struct nk_draw_list *list, struct nk_vec2 p0, struct nk_vec2 cp0, struct nk_vec2 cp1, struct nk_vec2 p1, struct nk_color col, unsigned int segments, float thickness) { NK_ASSERT(list); if (!list || !col.a) return; nk_draw_list_path_line_to(list, p0); nk_draw_list_path_curve_to(list, cp0, cp1, p1, segments); nk_draw_list_path_stroke(list, col, NK_STROKE_OPEN, thickness); } NK_INTERN void nk_draw_list_push_rect_uv(struct nk_draw_list *list, struct nk_vec2 a, struct nk_vec2 c, struct nk_vec2 uva, struct nk_vec2 uvc, struct nk_color color) { void *vtx; struct nk_vec2 uvb; struct nk_vec2 uvd; struct nk_vec2 b; struct nk_vec2 d; struct nk_colorf col; nk_draw_index *idx; nk_draw_index index; NK_ASSERT(list); if (!list) return; nk_color_fv(&col.r, color); uvb = nk_vec2(uvc.x, uva.y); uvd = nk_vec2(uva.x, uvc.y); b = nk_vec2(c.x, a.y); d = nk_vec2(a.x, c.y); index = (nk_draw_index)list->vertex_count; vtx = nk_draw_list_alloc_vertices(list, 4); idx = nk_draw_list_alloc_elements(list, 6); if (!vtx || !idx) return; idx[0] = (nk_draw_index)(index+0); idx[1] = (nk_draw_index)(index+1); idx[2] = (nk_draw_index)(index+2); idx[3] = (nk_draw_index)(index+0); idx[4] = (nk_draw_index)(index+2); idx[5] = (nk_draw_index)(index+3); vtx = nk_draw_vertex(vtx, &list->config, a, uva, col); vtx = nk_draw_vertex(vtx, &list->config, b, uvb, col); vtx = nk_draw_vertex(vtx, &list->config, c, uvc, col); vtx = nk_draw_vertex(vtx, &list->config, d, uvd, col); } NK_API void nk_draw_list_add_image(struct nk_draw_list *list, struct nk_image texture, struct nk_rect rect, struct nk_color color, int flipped) //<@ r-lyeh { NK_ASSERT(list); if (!list) return; /* push new command with given texture */ nk_draw_list_push_image(list, texture.handle); if (nk_image_is_subimage(&texture)) { /* add region inside of the texture */ struct nk_vec2 uv[2]; uv[0].x = (float)texture.region[0]/(float)texture.w; uv[0].y = (float)texture.region[1]/(float)texture.h; uv[1].x = (float)(texture.region[0] + texture.region[2])/(float)texture.w; uv[1].y = (float)(texture.region[1] + texture.region[3])/(float)texture.h; nk_draw_list_push_rect_uv(list, nk_vec2(rect.x, rect.y), nk_vec2(rect.x + rect.w, rect.y + rect.h), uv[0], uv[1], color); } else { if(flipped) //<@ r-lyeh nk_draw_list_push_rect_uv(list, nk_vec2(rect.x, rect.y + rect.h), //<@ r-lyeh nk_vec2(rect.x + rect.w, rect.y), //<@ r-lyeh nk_vec2(0.0f, 0.0f), nk_vec2(1.0f, 1.0f),color); //<@ r-lyeh else nk_draw_list_push_rect_uv(list, nk_vec2(rect.x, rect.y), nk_vec2(rect.x + rect.w, rect.y + rect.h), nk_vec2(0.0f, 0.0f), nk_vec2(1.0f, 1.0f),color); } } NK_API void nk_draw_list_add_text(struct nk_draw_list *list, const struct nk_user_font *font, struct nk_rect rect, const char *text, int len, float font_height, struct nk_color fg) { float x = 0; int text_len = 0; nk_rune unicode = 0; nk_rune next = 0; int glyph_len = 0; int next_glyph_len = 0; struct nk_user_font_glyph g; NK_ASSERT(list); if (!list || !len || !text) return; if (!NK_INTERSECT(rect.x, rect.y, rect.w, rect.h, list->clip_rect.x, list->clip_rect.y, list->clip_rect.w, list->clip_rect.h)) return; nk_draw_list_push_image(list, font->texture); x = rect.x; glyph_len = nk_utf_decode(text, &unicode, len); if (!glyph_len) return; /* draw every glyph image */ fg.a = (nk_byte)((float)fg.a * list->config.global_alpha); while (text_len < len && glyph_len) { float gx, gy, gh, gw; float char_width = 0; if (unicode == NK_UTF_INVALID) break; /* query currently drawn glyph information */ next_glyph_len = nk_utf_decode(text + text_len + glyph_len, &next, (int)len - text_len); font->query(font->userdata, font_height, &g, unicode, (next == NK_UTF_INVALID) ? '\0' : next); /* calculate and draw glyph drawing rectangle and image */ gx = x + g.offset.x; gy = rect.y + g.offset.y; gw = g.width; gh = g.height; char_width = g.xadvance; nk_draw_list_push_rect_uv(list, nk_vec2(gx,gy), nk_vec2(gx + gw, gy+ gh), g.uv[0], g.uv[1], fg); /* offset next glyph */ text_len += glyph_len; x += char_width; glyph_len = next_glyph_len; unicode = next; } } NK_API nk_flags nk_convert(struct nk_context *ctx, struct nk_buffer *cmds, struct nk_buffer *vertices, struct nk_buffer *elements, const struct nk_convert_config *config) { nk_flags res = NK_CONVERT_SUCCESS; const struct nk_command *cmd; NK_ASSERT(ctx); NK_ASSERT(cmds); NK_ASSERT(vertices); NK_ASSERT(elements); NK_ASSERT(config); NK_ASSERT(config->vertex_layout); NK_ASSERT(config->vertex_size); if (!ctx || !cmds || !vertices || !elements || !config || !config->vertex_layout) return NK_CONVERT_INVALID_PARAM; nk_draw_list_setup(&ctx->draw_list, config, cmds, vertices, elements, config->line_AA, config->shape_AA); nk_foreach(cmd, ctx) { #ifdef NK_INCLUDE_COMMAND_USERDATA ctx->draw_list.userdata = cmd->userdata; #endif switch (cmd->type) { case NK_COMMAND_NOP: break; case NK_COMMAND_SCISSOR: { const struct nk_command_scissor *s = (const struct nk_command_scissor*)cmd; nk_draw_list_add_clip(&ctx->draw_list, nk_rect(s->x, s->y, s->w, s->h)); } break; case NK_COMMAND_LINE: { const struct nk_command_line *l = (const struct nk_command_line*)cmd; nk_draw_list_stroke_line(&ctx->draw_list, nk_vec2(l->begin.x, l->begin.y), nk_vec2(l->end.x, l->end.y), l->color, l->line_thickness); } break; case NK_COMMAND_CURVE: { const struct nk_command_curve *q = (const struct nk_command_curve*)cmd; nk_draw_list_stroke_curve(&ctx->draw_list, nk_vec2(q->begin.x, q->begin.y), nk_vec2(q->ctrl[0].x, q->ctrl[0].y), nk_vec2(q->ctrl[1].x, q->ctrl[1].y), nk_vec2(q->end.x, q->end.y), q->color, config->curve_segment_count, q->line_thickness); } break; case NK_COMMAND_RECT: { const struct nk_command_rect *r = (const struct nk_command_rect*)cmd; nk_draw_list_stroke_rect(&ctx->draw_list, nk_rect(r->x, r->y, r->w, r->h), r->color, (float)r->rounding, r->line_thickness); } break; case NK_COMMAND_RECT_FILLED: { const struct nk_command_rect_filled *r = (const struct nk_command_rect_filled*)cmd; nk_draw_list_fill_rect(&ctx->draw_list, nk_rect(r->x, r->y, r->w, r->h), r->color, (float)r->rounding); } break; case NK_COMMAND_RECT_MULTI_COLOR: { const struct nk_command_rect_multi_color *r = (const struct nk_command_rect_multi_color*)cmd; nk_draw_list_fill_rect_multi_color(&ctx->draw_list, nk_rect(r->x, r->y, r->w, r->h), r->left, r->top, r->right, r->bottom); } break; case NK_COMMAND_CIRCLE: { const struct nk_command_circle *c = (const struct nk_command_circle*)cmd; nk_draw_list_stroke_circle(&ctx->draw_list, nk_vec2((float)c->x + (float)c->w/2, (float)c->y + (float)c->h/2), (float)c->w/2, c->color, config->circle_segment_count, c->line_thickness); } break; case NK_COMMAND_CIRCLE_FILLED: { const struct nk_command_circle_filled *c = (const struct nk_command_circle_filled *)cmd; nk_draw_list_fill_circle(&ctx->draw_list, nk_vec2((float)c->x + (float)c->w/2, (float)c->y + (float)c->h/2), (float)c->w/2, c->color, config->circle_segment_count); } break; case NK_COMMAND_ARC: { const struct nk_command_arc *c = (const struct nk_command_arc*)cmd; nk_draw_list_path_line_to(&ctx->draw_list, nk_vec2(c->cx, c->cy)); nk_draw_list_path_arc_to(&ctx->draw_list, nk_vec2(c->cx, c->cy), c->r, c->a[0], c->a[1], config->arc_segment_count); nk_draw_list_path_stroke(&ctx->draw_list, c->color, NK_STROKE_CLOSED, c->line_thickness); } break; case NK_COMMAND_ARC_FILLED: { const struct nk_command_arc_filled *c = (const struct nk_command_arc_filled*)cmd; nk_draw_list_path_line_to(&ctx->draw_list, nk_vec2(c->cx, c->cy)); nk_draw_list_path_arc_to(&ctx->draw_list, nk_vec2(c->cx, c->cy), c->r, c->a[0], c->a[1], config->arc_segment_count); nk_draw_list_path_fill(&ctx->draw_list, c->color); } break; case NK_COMMAND_TRIANGLE: { const struct nk_command_triangle *t = (const struct nk_command_triangle*)cmd; nk_draw_list_stroke_triangle(&ctx->draw_list, nk_vec2(t->a.x, t->a.y), nk_vec2(t->b.x, t->b.y), nk_vec2(t->c.x, t->c.y), t->color, t->line_thickness); } break; case NK_COMMAND_TRIANGLE_FILLED: { const struct nk_command_triangle_filled *t = (const struct nk_command_triangle_filled*)cmd; nk_draw_list_fill_triangle(&ctx->draw_list, nk_vec2(t->a.x, t->a.y), nk_vec2(t->b.x, t->b.y), nk_vec2(t->c.x, t->c.y), t->color); } break; case NK_COMMAND_POLYGON: { int i; const struct nk_command_polygon*p = (const struct nk_command_polygon*)cmd; for (i = 0; i < p->point_count; ++i) { struct nk_vec2 pnt = nk_vec2((float)p->points[i].x, (float)p->points[i].y); nk_draw_list_path_line_to(&ctx->draw_list, pnt); } nk_draw_list_path_stroke(&ctx->draw_list, p->color, NK_STROKE_CLOSED, p->line_thickness); } break; case NK_COMMAND_POLYGON_FILLED: { int i; const struct nk_command_polygon_filled *p = (const struct nk_command_polygon_filled*)cmd; for (i = 0; i < p->point_count; ++i) { struct nk_vec2 pnt = nk_vec2((float)p->points[i].x, (float)p->points[i].y); nk_draw_list_path_line_to(&ctx->draw_list, pnt); } nk_draw_list_path_fill(&ctx->draw_list, p->color); } break; case NK_COMMAND_POLYLINE: { int i; const struct nk_command_polyline *p = (const struct nk_command_polyline*)cmd; for (i = 0; i < p->point_count; ++i) { struct nk_vec2 pnt = nk_vec2((float)p->points[i].x, (float)p->points[i].y); nk_draw_list_path_line_to(&ctx->draw_list, pnt); } nk_draw_list_path_stroke(&ctx->draw_list, p->color, NK_STROKE_OPEN, p->line_thickness); } break; case NK_COMMAND_TEXT: { const struct nk_command_text *t = (const struct nk_command_text*)cmd; nk_draw_list_add_text(&ctx->draw_list, t->font, nk_rect(t->x, t->y, t->w, t->h), t->string, t->length, t->height, t->foreground); } break; case NK_COMMAND_IMAGE: { const struct nk_command_image *i = (const struct nk_command_image*)cmd; nk_draw_list_add_image(&ctx->draw_list, i->img, nk_rect(i->x, i->y, i->w, i->h), i->col, 0); } break; case NK_COMMAND_IMAGE_FLIPPED: { //< @r-lyeh const struct nk_command_image *i = (const struct nk_command_image*)cmd; //< @r-lyeh nk_draw_list_add_image(&ctx->draw_list, i->img, nk_rect(i->x, i->y, i->w, i->h), i->col, 1); //< @r-lyeh } break; //< @r-lyeh case NK_COMMAND_CUSTOM: { const struct nk_command_custom *c = (const struct nk_command_custom*)cmd; c->callback(&ctx->draw_list, c->x, c->y, c->w, c->h, c->callback_data); } break; default: break; } } res |= (cmds->needed > cmds->allocated + (cmds->memory.size - cmds->size)) ? NK_CONVERT_COMMAND_BUFFER_FULL: 0; res |= (vertices->needed > vertices->allocated) ? NK_CONVERT_VERTEX_BUFFER_FULL: 0; res |= (elements->needed > elements->allocated) ? NK_CONVERT_ELEMENT_BUFFER_FULL: 0; return res; } NK_API const struct nk_draw_command* nk__draw_begin(const struct nk_context *ctx, const struct nk_buffer *buffer) { return nk__draw_list_begin(&ctx->draw_list, buffer); } NK_API const struct nk_draw_command* nk__draw_end(const struct nk_context *ctx, const struct nk_buffer *buffer) { return nk__draw_list_end(&ctx->draw_list, buffer); } NK_API const struct nk_draw_command* nk__draw_next(const struct nk_draw_command *cmd, const struct nk_buffer *buffer, const struct nk_context *ctx) { return nk__draw_list_next(cmd, buffer, &ctx->draw_list); } #endif /* stb_rect_pack.h - v1.01 - public domain - rectangle packing */ /* Sean Barrett 2014 */ /* */ /* Useful for e.g. packing rectangular textures into an atlas. */ /* Does not do rotation. */ /* */ /* Before #including, */ /* */ /* #define STB_RECT_PACK_IMPLEMENTATION */ /* */ /* in the file that you want to have the implementation. */ /* */ /* Not necessarily the awesomest packing method, but better than */ /* the totally naive one in stb_truetype (which is primarily what */ /* this is meant to replace). */ /* */ /* Has only had a few tests run, may have issues. */ /* */ /* More docs to come. */ /* */ /* No memory allocations; uses qsort() and assert() from stdlib. */ /* Can override those by defining STBRP_SORT and STBRP_ASSERT. */ /* */ /* This library currently uses the Skyline Bottom-Left algorithm. */ /* */ /* Please note: better rectangle packers are welcome! Please */ /* implement them to the same API, but with a different init */ /* function. */ /* */ /* Credits */ /* */ /* Library */ /* Sean Barrett */ /* Minor features */ /* Martins Mozeiko */ /* github:IntellectualKitty */ /* */ /* Bugfixes / warning fixes */ /* Jeremy Jaussaud */ /* Fabian Giesen */ /* */ /* Version history: */ /* */ /* 1.01 (2021-07-11) always use large rect mode, expose STBRP__MAXVAL in public section */ /* 1.00 (2019-02-25) avoid small space waste; gracefully fail too-wide rectangles */ /* 0.99 (2019-02-07) warning fixes */ /* 0.11 (2017-03-03) return packing success/fail result */ /* 0.10 (2016-10-25) remove cast-away-const to avoid warnings */ /* 0.09 (2016-08-27) fix compiler warnings */ /* 0.08 (2015-09-13) really fix bug with empty rects (w=0 or h=0) */ /* 0.07 (2015-09-13) fix bug with empty rects (w=0 or h=0) */ /* 0.06 (2015-04-15) added STBRP_SORT to allow replacing qsort */ /* 0.05: added STBRP_ASSERT to allow replacing assert */ /* 0.04: fixed minor bug in STBRP_LARGE_RECTS support */ /* 0.01: initial release */ /* */ /* LICENSE */ /* */ /* See end of file for license information. */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* INCLUDE SECTION */ /* */ #ifndef STB_INCLUDE_STB_RECT_PACK_H #define STB_INCLUDE_STB_RECT_PACK_H #define STB_RECT_PACK_VERSION 1 #ifdef STBRP_STATIC #define STBRP_DEF static #else #define STBRP_DEF extern #endif #ifdef __cplusplus extern "C" { #endif typedef struct stbrp_context stbrp_context; typedef struct stbrp_node stbrp_node; typedef struct stbrp_rect stbrp_rect; typedef int stbrp_coord; #define STBRP__MAXVAL 0x7fffffff /* Mostly for internal use, but this is the maximum supported coordinate value. */ STBRP_DEF int stbrp_pack_rects (stbrp_context *context, stbrp_rect *rects, int num_rects); /* Assign packed locations to rectangles. The rectangles are of type */ /* 'stbrp_rect' defined below, stored in the array 'rects', and there */ /* are 'num_rects' many of them. */ /* */ /* Rectangles which are successfully packed have the 'was_packed' flag */ /* set to a non-zero value and 'x' and 'y' store the minimum location */ /* on each axis (i.e. bottom-left in cartesian coordinates, top-left */ /* if you imagine y increasing downwards). Rectangles which do not fit */ /* have the 'was_packed' flag set to 0. */ /* */ /* You should not try to access the 'rects' array from another thread */ /* while this function is running, as the function temporarily reorders */ /* the array while it executes. */ /* */ /* To pack into another rectangle, you need to call stbrp_init_target */ /* again. To continue packing into the same rectangle, you can call */ /* this function again. Calling this multiple times with multiple rect */ /* arrays will probably produce worse packing results than calling it */ /* a single time with the full rectangle array, but the option is */ /* available. */ /* */ /* The function returns 1 if all of the rectangles were successfully */ /* packed and 0 otherwise. */ struct stbrp_rect { /* reserved for your use: */ int id; /* input: */ stbrp_coord w, h; /* output: */ stbrp_coord x, y; int was_packed; /* non-zero if valid packing */ }; /* 16 bytes, nominally */ STBRP_DEF void stbrp_init_target (stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes); /* Initialize a rectangle packer to: */ /* pack a rectangle that is 'width' by 'height' in dimensions */ /* using temporary storage provided by the array 'nodes', which is 'num_nodes' long */ /* */ /* You must call this function every time you start packing into a new target. */ /* */ /* There is no "shutdown" function. The 'nodes' memory must stay valid for */ /* the following stbrp_pack_rects() call (or calls), but can be freed after */ /* the call (or calls) finish. */ /* */ /* Note: to guarantee best results, either: */ /* 1. make sure 'num_nodes' >= 'width' */ /* or 2. call stbrp_allow_out_of_mem() defined below with 'allow_out_of_mem = 1' */ /* */ /* If you don't do either of the above things, widths will be quantized to multiples */ /* of small integers to guarantee the algorithm doesn't run out of temporary storage. */ /* */ /* If you do #2, then the non-quantized algorithm will be used, but the algorithm */ /* may run out of temporary storage and be unable to pack some rectangles. */ STBRP_DEF void stbrp_setup_allow_out_of_mem (stbrp_context *context, int allow_out_of_mem); /* Optionally call this function after init but before doing any packing to */ /* change the handling of the out-of-temp-memory scenario, described above. */ /* If you call init again, this will be reset to the default (false). */ STBRP_DEF void stbrp_setup_heuristic (stbrp_context *context, int heuristic); /* Optionally select which packing heuristic the library should use. Different */ /* heuristics will produce better/worse results for different data sets. */ /* If you call init again, this will be reset to the default. */ enum { STBRP_HEURISTIC_Skyline_default=0, STBRP_HEURISTIC_Skyline_BL_sortHeight = STBRP_HEURISTIC_Skyline_default, STBRP_HEURISTIC_Skyline_BF_sortHeight }; /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* the details of the following structures don't matter to you, but they must */ /* be visible so you can handle the memory allocations for them */ struct stbrp_node { stbrp_coord x,y; stbrp_node *next; }; struct stbrp_context { int width; int height; int align; int init_mode; int heuristic; int num_nodes; stbrp_node *active_head; stbrp_node *free_head; stbrp_node extra[2]; /* we allocate two extra nodes so optimal user-node-count is 'width' not 'width+2' */ }; #ifdef __cplusplus } #endif #endif /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* IMPLEMENTATION SECTION */ /* */ #ifdef STB_RECT_PACK_IMPLEMENTATION #ifndef STBRP_SORT #include #define STBRP_SORT qsort #endif #ifndef STBRP_ASSERT #include #define STBRP_ASSERT assert #endif #ifdef _MSC_VER #define STBRP__NOTUSED(v) (void)(v) #define STBRP__CDECL __cdecl #else #define STBRP__NOTUSED(v) (void)sizeof(v) #define STBRP__CDECL #endif enum { STBRP__INIT_skyline = 1 }; STBRP_DEF void stbrp_setup_heuristic(stbrp_context *context, int heuristic) { switch (context->init_mode) { case STBRP__INIT_skyline: STBRP_ASSERT(heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight || heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight); context->heuristic = heuristic; break; default: STBRP_ASSERT(0); } } STBRP_DEF void stbrp_setup_allow_out_of_mem(stbrp_context *context, int allow_out_of_mem) { if (allow_out_of_mem) /* if it's ok to run out of memory, then don't bother aligning them; */ /* this gives better packing, but may fail due to OOM (even though */ /* the rectangles easily fit). @TODO a smarter approach would be to only */ /* quantize once we've hit OOM, then we could get rid of this parameter. */ context->align = 1; else { /* if it's not ok to run out of memory, then quantize the widths */ /* so that num_nodes is always enough nodes. */ /* */ /* I.e. num_nodes * align >= width */ /* align >= width / num_nodes */ /* align = ceil(width/num_nodes) */ context->align = (context->width + context->num_nodes-1) / context->num_nodes; } } STBRP_DEF void stbrp_init_target(stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes) { int i; for (i=0; i < num_nodes-1; ++i) nodes[i].next = &nodes[i+1]; nodes[i].next = NULL; context->init_mode = STBRP__INIT_skyline; context->heuristic = STBRP_HEURISTIC_Skyline_default; context->free_head = &nodes[0]; context->active_head = &context->extra[0]; context->width = width; context->height = height; context->num_nodes = num_nodes; stbrp_setup_allow_out_of_mem(context, 0); /* node 0 is the full width, node 1 is the sentinel (lets us not store width explicitly) */ context->extra[0].x = 0; context->extra[0].y = 0; context->extra[0].next = &context->extra[1]; context->extra[1].x = (stbrp_coord) width; context->extra[1].y = (1<<30); context->extra[1].next = NULL; } /* find minimum y position if it starts at x1 */ static int stbrp__skyline_find_min_y(stbrp_context *c, stbrp_node *first, int x0, int width, int *pwaste) { stbrp_node *node = first; int x1 = x0 + width; int min_y, visited_width, waste_area; STBRP__NOTUSED(c); STBRP_ASSERT(first->x <= x0); #if 0 /* skip in case we're past the node */ while (node->next->x <= x0) ++node; #else STBRP_ASSERT(node->next->x > x0); /* we ended up handling this in the caller for efficiency */ #endif STBRP_ASSERT(node->x <= x0); min_y = 0; waste_area = 0; visited_width = 0; while (node->x < x1) { if (node->y > min_y) { /* raise min_y higher. */ /* we've accounted for all waste up to min_y, */ /* but we'll now add more waste for everything we've visted */ waste_area += visited_width * (node->y - min_y); min_y = node->y; /* the first time through, visited_width might be reduced */ if (node->x < x0) visited_width += node->next->x - x0; else visited_width += node->next->x - node->x; } else { /* add waste area */ int under_width = node->next->x - node->x; if (under_width + visited_width > width) under_width = width - visited_width; waste_area += under_width * (min_y - node->y); visited_width += under_width; } node = node->next; } *pwaste = waste_area; return min_y; } typedef struct { int x,y; stbrp_node **prev_link; } stbrp__findresult; static stbrp__findresult stbrp__skyline_find_best_pos(stbrp_context *c, int width, int height) { int best_waste = (1<<30), best_x, best_y = (1 << 30); stbrp__findresult fr; stbrp_node **prev, *node, *tail, **best = NULL; /* align to multiple of c->align */ width = (width + c->align - 1); width -= width % c->align; STBRP_ASSERT(width % c->align == 0); /* if it can't possibly fit, bail immediately */ if (width > c->width || height > c->height) { fr.prev_link = NULL; fr.x = fr.y = 0; return fr; } node = c->active_head; prev = &c->active_head; while (node->x + width <= c->width) { int y,waste; y = stbrp__skyline_find_min_y(c, node, node->x, width, &waste); if (c->heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight) { /* actually just want to test BL */ /* bottom left */ if (y < best_y) { best_y = y; best = prev; } } else { /* best-fit */ if (y + height <= c->height) { /* can only use it if it first vertically */ if (y < best_y || (y == best_y && waste < best_waste)) { best_y = y; best_waste = waste; best = prev; } } } prev = &node->next; node = node->next; } best_x = (best == NULL) ? 0 : (*best)->x; /* if doing best-fit (BF), we also have to try aligning right edge to each node position */ /* */ /* e.g, if fitting */ /* */ /* ____________________ */ /* |____________________| */ /* */ /* into */ /* */ /* | | */ /* | ____________| */ /* |____________| */ /* */ /* then right-aligned reduces waste, but bottom-left BL is always chooses left-aligned */ /* */ /* This makes BF take about 2x the time */ if (c->heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight) { tail = c->active_head; node = c->active_head; prev = &c->active_head; /* find first node that's admissible */ while (tail->x < width) tail = tail->next; while (tail) { int xpos = tail->x - width; int y,waste; STBRP_ASSERT(xpos >= 0); /* find the left position that matches this */ while (node->next->x <= xpos) { prev = &node->next; node = node->next; } STBRP_ASSERT(node->next->x > xpos && node->x <= xpos); y = stbrp__skyline_find_min_y(c, node, xpos, width, &waste); if (y + height <= c->height) { if (y <= best_y) { if (y < best_y || waste < best_waste || (waste==best_waste && xpos < best_x)) { best_x = xpos; STBRP_ASSERT(y <= best_y); best_y = y; best_waste = waste; best = prev; } } } tail = tail->next; } } fr.prev_link = best; fr.x = best_x; fr.y = best_y; return fr; } static stbrp__findresult stbrp__skyline_pack_rectangle(stbrp_context *context, int width, int height) { /* find best position according to heuristic */ stbrp__findresult res = stbrp__skyline_find_best_pos(context, width, height); stbrp_node *node, *cur; /* bail if: */ /* 1. it failed */ /* 2. the best node doesn't fit (we don't always check this) */ /* 3. we're out of memory */ if (res.prev_link == NULL || res.y + height > context->height || context->free_head == NULL) { res.prev_link = NULL; return res; } /* on success, create new node */ node = context->free_head; node->x = (stbrp_coord) res.x; node->y = (stbrp_coord) (res.y + height); context->free_head = node->next; /* insert the new node into the right starting point, and */ /* let 'cur' point to the remaining nodes needing to be */ /* stiched back in */ cur = *res.prev_link; if (cur->x < res.x) { /* preserve the existing one, so start testing with the next one */ stbrp_node *next = cur->next; cur->next = node; cur = next; } else { *res.prev_link = node; } /* from here, traverse cur and free the nodes, until we get to one */ /* that shouldn't be freed */ while (cur->next && cur->next->x <= res.x + width) { stbrp_node *next = cur->next; /* move the current node to the free list */ cur->next = context->free_head; context->free_head = cur; cur = next; } /* stitch the list back in */ node->next = cur; if (cur->x < res.x + width) cur->x = (stbrp_coord) (res.x + width); #ifdef _DEBUG cur = context->active_head; while (cur->x < context->width) { STBRP_ASSERT(cur->x < cur->next->x); cur = cur->next; } STBRP_ASSERT(cur->next == NULL); { int count=0; cur = context->active_head; while (cur) { cur = cur->next; ++count; } cur = context->free_head; while (cur) { cur = cur->next; ++count; } STBRP_ASSERT(count == context->num_nodes+2); } #endif return res; } static int STBRP__CDECL rect_height_compare(const void *a, const void *b) { const stbrp_rect *p = (const stbrp_rect *) a; const stbrp_rect *q = (const stbrp_rect *) b; if (p->h > q->h) return -1; if (p->h < q->h) return 1; return (p->w > q->w) ? -1 : (p->w < q->w); } static int STBRP__CDECL rect_original_order(const void *a, const void *b) { const stbrp_rect *p = (const stbrp_rect *) a; const stbrp_rect *q = (const stbrp_rect *) b; return (p->was_packed < q->was_packed) ? -1 : (p->was_packed > q->was_packed); } STBRP_DEF int stbrp_pack_rects(stbrp_context *context, stbrp_rect *rects, int num_rects) { int i, all_rects_packed = 1; /* we use the 'was_packed' field internally to allow sorting/unsorting */ for (i=0; i < num_rects; ++i) { rects[i].was_packed = i; } /* sort according to heuristic */ STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_height_compare); for (i=0; i < num_rects; ++i) { if (rects[i].w == 0 || rects[i].h == 0) { rects[i].x = rects[i].y = 0; /* empty rect needs no space */ } else { stbrp__findresult fr = stbrp__skyline_pack_rectangle(context, rects[i].w, rects[i].h); if (fr.prev_link) { rects[i].x = (stbrp_coord) fr.x; rects[i].y = (stbrp_coord) fr.y; } else { rects[i].x = rects[i].y = STBRP__MAXVAL; } } } /* unsort */ STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_original_order); /* set was_packed flags and all_rects_packed status */ for (i=0; i < num_rects; ++i) { rects[i].was_packed = !(rects[i].x == STBRP__MAXVAL && rects[i].y == STBRP__MAXVAL); if (!rects[i].was_packed) all_rects_packed = 0; } /* return the all_rects_packed status */ return all_rects_packed; } #endif /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ /* stb_truetype.h - v1.26 - public domain */ /* authored from 2009-2021 by Sean Barrett / RAD Game Tools */ /* */ /* ======================================================================= */ /* */ /* NO SECURITY GUARANTEE -- DO NOT USE THIS ON UNTRUSTED FONT FILES */ /* */ /* This library does no range checking of the offsets found in the file, */ /* meaning an attacker can use it to read arbitrary memory. */ /* */ /* ======================================================================= */ /* */ /* This library processes TrueType files: */ /* parse files */ /* extract glyph metrics */ /* extract glyph shapes */ /* render glyphs to one-channel bitmaps with antialiasing (box filter) */ /* render glyphs to one-channel SDF bitmaps (signed-distance field/function) */ /* */ /* Todo: */ /* non-MS cmaps */ /* crashproof on bad data */ /* hinting? (no longer patented) */ /* cleartype-style AA? */ /* optimize: use simple memory allocator for intermediates */ /* optimize: build edge-list directly from curves */ /* optimize: rasterize directly from curves? */ /* */ /* ADDITIONAL CONTRIBUTORS */ /* */ /* Mikko Mononen: compound shape support, more cmap formats */ /* Tor Andersson: kerning, subpixel rendering */ /* Dougall Johnson: OpenType / Type 2 font handling */ /* Daniel Ribeiro Maciel: basic GPOS-based kerning */ /* */ /* Misc other: */ /* Ryan Gordon */ /* Simon Glass */ /* github:IntellectualKitty */ /* Imanol Celaya */ /* Daniel Ribeiro Maciel */ /* */ /* Bug/warning reports/fixes: */ /* "Zer" on mollyrocket Fabian "ryg" Giesen github:NiLuJe */ /* Cass Everitt Martins Mozeiko github:aloucks */ /* stoiko (Haemimont Games) Cap Petschulat github:oyvindjam */ /* Brian Hook Omar Cornut github:vassvik */ /* Walter van Niftrik Ryan Griege */ /* David Gow Peter LaValle */ /* David Given Sergey Popov */ /* Ivan-Assen Ivanov Giumo X. Clanjor */ /* Anthony Pesch Higor Euripedes */ /* Johan Duparc Thomas Fields */ /* Hou Qiming Derek Vinyard */ /* Rob Loach Cort Stratton */ /* Kenney Phillis Jr. Brian Costabile */ /* Ken Voskuil (kaesve) */ /* */ /* VERSION HISTORY */ /* */ /* 1.26 (2021-08-28) fix broken rasterizer */ /* 1.25 (2021-07-11) many fixes */ /* 1.24 (2020-02-05) fix warning */ /* 1.23 (2020-02-02) query SVG data for glyphs; query whole kerning table (but only kern not GPOS) */ /* 1.22 (2019-08-11) minimize missing-glyph duplication; fix kerning if both 'GPOS' and 'kern' are defined */ /* 1.21 (2019-02-25) fix warning */ /* 1.20 (2019-02-07) PackFontRange skips missing codepoints; GetScaleFontVMetrics() */ /* 1.19 (2018-02-11) GPOS kerning, STBTT_fmod */ /* 1.18 (2018-01-29) add missing function */ /* 1.17 (2017-07-23) make more arguments const; doc fix */ /* 1.16 (2017-07-12) SDF support */ /* 1.15 (2017-03-03) make more arguments const */ /* 1.14 (2017-01-16) num-fonts-in-TTC function */ /* 1.13 (2017-01-02) support OpenType fonts, certain Apple fonts */ /* 1.12 (2016-10-25) suppress warnings about casting away const with -Wcast-qual */ /* 1.11 (2016-04-02) fix unused-variable warning */ /* 1.10 (2016-04-02) user-defined fabs(); rare memory leak; remove duplicate typedef */ /* 1.09 (2016-01-16) warning fix; avoid crash on outofmem; use allocation userdata properly */ /* 1.08 (2015-09-13) document stbtt_Rasterize(); fixes for vertical & horizontal edges */ /* 1.07 (2015-08-01) allow PackFontRanges to accept arrays of sparse codepoints; */ /* variant PackFontRanges to pack and render in separate phases; */ /* fix stbtt_GetFontOFfsetForIndex (never worked for non-0 input?); */ /* fixed an assert() bug in the new rasterizer */ /* replace assert() with STBTT_assert() in new rasterizer */ /* */ /* Full history can be found at the end of this file. */ /* */ /* LICENSE */ /* */ /* See end of file for license information. */ /* */ /* USAGE */ /* */ /* Include this file in whatever places need to refer to it. In ONE C/C++ */ /* file, write: */ /* #define STB_TRUETYPE_IMPLEMENTATION */ /* before the #include of this file. This expands out the actual */ /* implementation into that C/C++ file. */ /* */ /* To make the implementation private to the file that generates the implementation, */ /* #define STBTT_STATIC */ /* */ /* Simple 3D API (don't ship this, but it's fine for tools and quick start) */ /* stbtt_BakeFontBitmap() -- bake a font to a bitmap for use as texture */ /* stbtt_GetBakedQuad() -- compute quad to draw for a given char */ /* */ /* Improved 3D API (more shippable): */ /* #include "stb_rect_pack.h" -- optional, but you really want it */ /* stbtt_PackBegin() */ /* stbtt_PackSetOversampling() -- for improved quality on small fonts */ /* stbtt_PackFontRanges() -- pack and renders */ /* stbtt_PackEnd() */ /* stbtt_GetPackedQuad() */ /* */ /* "Load" a font file from a memory buffer (you have to keep the buffer loaded) */ /* stbtt_InitFont() */ /* stbtt_GetFontOffsetForIndex() -- indexing for TTC font collections */ /* stbtt_GetNumberOfFonts() -- number of fonts for TTC font collections */ /* */ /* Render a unicode codepoint to a bitmap */ /* stbtt_GetCodepointBitmap() -- allocates and returns a bitmap */ /* stbtt_MakeCodepointBitmap() -- renders into bitmap you provide */ /* stbtt_GetCodepointBitmapBox() -- how big the bitmap must be */ /* */ /* Character advance/positioning */ /* stbtt_GetCodepointHMetrics() */ /* stbtt_GetFontVMetrics() */ /* stbtt_GetFontVMetricsOS2() */ /* stbtt_GetCodepointKernAdvance() */ /* */ /* Starting with version 1.06, the rasterizer was replaced with a new, */ /* faster and generally-more-precise rasterizer. The new rasterizer more */ /* accurately measures pixel coverage for anti-aliasing, except in the case */ /* where multiple shapes overlap, in which case it overestimates the AA pixel */ /* coverage. Thus, anti-aliasing of intersecting shapes may look wrong. If */ /* this turns out to be a problem, you can re-enable the old rasterizer with */ /* #define STBTT_RASTERIZER_VERSION 1 */ /* which will incur about a 15% speed hit. */ /* */ /* ADDITIONAL DOCUMENTATION */ /* */ /* Immediately after this block comment are a series of sample programs. */ /* */ /* After the sample programs is the "header file" section. This section */ /* includes documentation for each API function. */ /* */ /* Some important concepts to understand to use this library: */ /* */ /* Codepoint */ /* Characters are defined by unicode codepoints, e.g. 65 is */ /* uppercase A, 231 is lowercase c with a cedilla, 0x7e30 is */ /* the hiragana for "ma". */ /* */ /* Glyph */ /* A visual character shape (every codepoint is rendered as */ /* some glyph) */ /* */ /* Glyph index */ /* A font-specific integer ID representing a glyph */ /* */ /* Baseline */ /* Glyph shapes are defined relative to a baseline, which is the */ /* bottom of uppercase characters. Characters extend both above */ /* and below the baseline. */ /* */ /* Current Point */ /* As you draw text to the screen, you keep track of a "current point" */ /* which is the origin of each character. The current point's vertical */ /* position is the baseline. Even "baked fonts" use this model. */ /* */ /* Vertical Font Metrics */ /* The vertical qualities of the font, used to vertically position */ /* and space the characters. See docs for stbtt_GetFontVMetrics. */ /* */ /* Font Size in Pixels or Points */ /* The preferred interface for specifying font sizes in stb_truetype */ /* is to specify how tall the font's vertical extent should be in pixels. */ /* If that sounds good enough, skip the next paragraph. */ /* */ /* Most font APIs instead use "points", which are a common typographic */ /* measurement for describing font size, defined as 72 points per inch. */ /* stb_truetype provides a point API for compatibility. However, true */ /* "per inch" conventions don't make much sense on computer displays */ /* since different monitors have different number of pixels per */ /* inch. For example, Windows traditionally uses a convention that */ /* there are 96 pixels per inch, thus making 'inch' measurements have */ /* nothing to do with inches, and thus effectively defining a point to */ /* be 1.333 pixels. Additionally, the TrueType font data provides */ /* an explicit scale factor to scale a given font's glyphs to points, */ /* but the author has observed that this scale factor is often wrong */ /* for non-commercial fonts, thus making fonts scaled in points */ /* according to the TrueType spec incoherently sized in practice. */ /* */ /* DETAILED USAGE: */ /* */ /* Scale: */ /* Select how high you want the font to be, in points or pixels. */ /* Call ScaleForPixelHeight or ScaleForMappingEmToPixels to compute */ /* a scale factor SF that will be used by all other functions. */ /* */ /* Baseline: */ /* You need to select a y-coordinate that is the baseline of where */ /* your text will appear. Call GetFontBoundingBox to get the baseline-relative */ /* bounding box for all characters. SF*-y0 will be the distance in pixels */ /* that the worst-case character could extend above the baseline, so if */ /* you want the top edge of characters to appear at the top of the */ /* screen where y=0, then you would set the baseline to SF*-y0. */ /* */ /* Current point: */ /* Set the current point where the first character will appear. The */ /* first character could extend left of the current point; this is font */ /* dependent. You can either choose a current point that is the leftmost */ /* point and hope, or add some padding, or check the bounding box or */ /* left-side-bearing of the first character to be displayed and set */ /* the current point based on that. */ /* */ /* Displaying a character: */ /* Compute the bounding box of the character. It will contain signed values */ /* relative to . I.e. if it returns x0,y0,x1,y1, */ /* then the character should be displayed in the rectangle from */ /* to = 32 && *text < 128) { stbtt_aligned_quad q; stbtt_GetBakedQuad(cdata, 512,512, *text-32, &x,&y,&q,1);/* 1=opengl & d3d10+,0=d3d9 */ glTexCoord2f(q.s0,q.t0); glVertex2f(q.x0,q.y0); glTexCoord2f(q.s1,q.t0); glVertex2f(q.x1,q.y0); glTexCoord2f(q.s1,q.t1); glVertex2f(q.x1,q.y1); glTexCoord2f(q.s0,q.t1); glVertex2f(q.x0,q.y1); } ++text; } glEnd(); } #endif /* */ /* */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* Complete program (this compiles): get a single bitmap, print as ASCII art */ /* */ #if 0 #include #define STB_TRUETYPE_IMPLEMENTATION /* force following include to generate implementation */ #include "stb_truetype.h" char ttf_buffer[1<<25]; int main(int argc, char **argv) { stbtt_fontinfo font; unsigned char *bitmap; int w,h,i,j,c = (argc > 1 ? atoi(argv[1]) : 'a'), s = (argc > 2 ? atoi(argv[2]) : 20); fread(ttf_buffer, 1, 1<<25, fopen(argc > 3 ? argv[3] : "c:/windows/fonts/arialbd.ttf", "rb")); stbtt_InitFont(&font, ttf_buffer, stbtt_GetFontOffsetForIndex(ttf_buffer,0)); bitmap = stbtt_GetCodepointBitmap(&font, 0,stbtt_ScaleForPixelHeight(&font, s), c, &w, &h, 0,0); for (j=0; j < h; ++j) { for (i=0; i < w; ++i) putchar(" .:ioVM@"[bitmap[j*w+i]>>5]); putchar('\n'); } return 0; } #endif /* */ /* Output: */ /* */ /* .ii. */ /* @@@@@@. */ /* V@Mio@@o */ /* :i. V@V */ /* :oM@@M */ /* :@@@MM@M */ /* @@o o@M */ /* :@@. M@M */ /* @@@o@@@@ */ /* :M@@V:@@. */ /* */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* Complete program: print "Hello World!" banner, with bugs */ /* */ #if 0 char buffer[24<<20]; unsigned char screen[20][79]; int main(int arg, char **argv) { stbtt_fontinfo font; int i,j,ascent,baseline,ch=0; float scale, xpos=2; /* leave a little padding in case the character extends left */ char *text = "Heljo World!"; /* intentionally misspelled to show 'lj' brokenness */ fread(buffer, 1, 1000000, fopen("c:/windows/fonts/arialbd.ttf", "rb")); stbtt_InitFont(&font, buffer, 0); scale = stbtt_ScaleForPixelHeight(&font, 15); stbtt_GetFontVMetrics(&font, &ascent,0,0); baseline = (int) (ascent*scale); while (text[ch]) { int advance,lsb,x0,y0,x1,y1; float x_shift = xpos - (float) floor(xpos); stbtt_GetCodepointHMetrics(&font, text[ch], &advance, &lsb); stbtt_GetCodepointBitmapBoxSubpixel(&font, text[ch], scale,scale,x_shift,0, &x0,&y0,&x1,&y1); stbtt_MakeCodepointBitmapSubpixel(&font, &screen[baseline + y0][(int) xpos + x0], x1-x0,y1-y0, 79, scale,scale,x_shift,0, text[ch]); /* note that this stomps the old data, so where character boxes overlap (e.g. 'lj') it's wrong */ /* because this API is really for baking character bitmaps into textures. if you want to render */ /* a sequence of characters, you really need to render each bitmap to a temp buffer, then */ /* "alpha blend" that into the working buffer */ xpos += (advance * scale); if (text[ch+1]) xpos += scale*stbtt_GetCodepointKernAdvance(&font, text[ch],text[ch+1]); ++ch; } for (j=0; j < 20; ++j) { for (i=0; i < 78; ++i) putchar(" .:ioVM@"[screen[j][i]>>5]); putchar('\n'); } return 0; } #endif /* //////////////////////////////////////////////////////////////////////////// */ /* //////////////////////////////////////////////////////////////////////////// */ /* // */ /* // INTEGRATION WITH YOUR CODEBASE */ /* // */ /* // The following sections allow you to supply alternate definitions */ /* // of C library functions used by stb_truetype, e.g. if you don't */ /* // link with the C runtime library. */ #ifdef STB_TRUETYPE_IMPLEMENTATION /* #define your own (u)stbtt_int8/16/32 before including to override this */ #ifndef stbtt_uint8 typedef unsigned char stbtt_uint8; typedef signed char stbtt_int8; typedef unsigned short stbtt_uint16; typedef signed short stbtt_int16; typedef unsigned int stbtt_uint32; typedef signed int stbtt_int32; #endif typedef char stbtt__check_size32[sizeof(stbtt_int32)==4 ? 1 : -1]; typedef char stbtt__check_size16[sizeof(stbtt_int16)==2 ? 1 : -1]; /* e.g. #define your own STBTT_ifloor/STBTT_iceil() to avoid math.h */ #ifndef STBTT_ifloor #include #define STBTT_ifloor(x) ((int) floor(x)) #define STBTT_iceil(x) ((int) ceil(x)) #endif #ifndef STBTT_sqrt #include #define STBTT_sqrt(x) sqrt(x) #define STBTT_pow(x,y) pow(x,y) #endif #ifndef STBTT_fmod #include #define STBTT_fmod(x,y) fmod(x,y) #endif #ifndef STBTT_cos #include #define STBTT_cos(x) cos(x) #define STBTT_acos(x) acos(x) #endif #ifndef STBTT_fabs #include #define STBTT_fabs(x) fabs(x) #endif /* #define your own functions "STBTT_malloc" / "STBTT_free" to avoid malloc.h */ #ifndef STBTT_malloc #include #define STBTT_malloc(x,u) ((void)(u),malloc(x)) #define STBTT_free(x,u) ((void)(u),free(x)) #endif #ifndef STBTT_assert #include #define STBTT_assert(x) assert(x) #endif #ifndef STBTT_strlen #include #define STBTT_strlen(x) strlen(x) #endif #ifndef STBTT_memcpy #include #define STBTT_memcpy memcpy #define STBTT_memset memset #endif #endif /* ///////////////////////////////////////////////////////////////////////////// */ /* ///////////////////////////////////////////////////////////////////////////// */ /* // */ /* // INTERFACE */ /* // */ /* // */ #ifndef __STB_INCLUDE_STB_TRUETYPE_H__ #define __STB_INCLUDE_STB_TRUETYPE_H__ #ifdef STBTT_STATIC #define STBTT_DEF static #else #define STBTT_DEF extern #endif #ifdef __cplusplus extern "C" { #endif /* private structure */ typedef struct { unsigned char *data; int cursor; int size; } stbtt__buf; /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* TEXTURE BAKING API */ /* */ /* If you use this API, you only have to call two functions ever. */ /* */ typedef struct { unsigned short x0,y0,x1,y1; /* coordinates of bbox in bitmap */ float xoff,yoff,xadvance; } stbtt_bakedchar; STBTT_DEF int stbtt_BakeFontBitmap(const unsigned char *data, int offset, /* font location (use offset=0 for plain .ttf) */ float pixel_height, /* height of font in pixels */ unsigned char *pixels, int pw, int ph, /* bitmap to be filled in */ int first_char, int num_chars, /* characters to bake */ stbtt_bakedchar *chardata); /* you allocate this, it's num_chars long */ /* if return is positive, the first unused row of the bitmap */ /* if return is negative, returns the negative of the number of characters that fit */ /* if return is 0, no characters fit and no rows were used */ /* This uses a very crappy packing. */ typedef struct { float x0,y0,s0,t0; /* top-left */ float x1,y1,s1,t1; /* bottom-right */ } stbtt_aligned_quad; STBTT_DEF void stbtt_GetBakedQuad(const stbtt_bakedchar *chardata, int pw, int ph, /* same data as above */ int char_index, /* character to display */ float *xpos, float *ypos, /* pointers to current position in screen pixel space */ stbtt_aligned_quad *q, /* output: quad to draw */ int opengl_fillrule); /* true if opengl fill rule; false if DX9 or earlier */ /* Call GetBakedQuad with char_index = 'character - first_char', and it */ /* creates the quad you need to draw and advances the current position. */ /* */ /* The coordinate system used assumes y increases downwards. */ /* */ /* Characters will extend both above and below the current position; */ /* see discussion of "BASELINE" above. */ /* */ /* It's inefficient; you might want to c&p it and optimize it. */ STBTT_DEF void stbtt_GetScaledFontVMetrics(const unsigned char *fontdata, int index, float size, float *ascent, float *descent, float *lineGap); /* Query the font vertical metrics without having to create a font first. */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* NEW TEXTURE BAKING API */ /* */ /* This provides options for packing multiple fonts into one atlas, not */ /* perfectly but better than nothing. */ typedef struct { unsigned short x0,y0,x1,y1; /* coordinates of bbox in bitmap */ float xoff,yoff,xadvance; float xoff2,yoff2; } stbtt_packedchar; typedef struct stbtt_pack_context stbtt_pack_context; typedef struct stbtt_fontinfo stbtt_fontinfo; #ifndef STB_RECT_PACK_VERSION typedef struct stbrp_rect stbrp_rect; #endif STBTT_DEF int stbtt_PackBegin(stbtt_pack_context *spc, unsigned char *pixels, int width, int height, int stride_in_bytes, int padding, void *alloc_context); /* Initializes a packing context stored in the passed-in stbtt_pack_context. */ /* Future calls using this context will pack characters into the bitmap passed */ /* in here: a 1-channel bitmap that is width * height. stride_in_bytes is */ /* the distance from one row to the next (or 0 to mean they are packed tightly */ /* together). "padding" is the amount of padding to leave between each */ /* character (normally you want '1' for bitmaps you'll use as textures with */ /* bilinear filtering). */ /* */ /* Returns 0 on failure, 1 on success. */ STBTT_DEF void stbtt_PackEnd (stbtt_pack_context *spc); /* Cleans up the packing context and frees all memory. */ #define STBTT_POINT_SIZE(x) (-(x)) STBTT_DEF int stbtt_PackFontRange(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, float font_size, int first_unicode_char_in_range, int num_chars_in_range, stbtt_packedchar *chardata_for_range); /* Creates character bitmaps from the font_index'th font found in fontdata (use */ /* font_index=0 if you don't know what that is). It creates num_chars_in_range */ /* bitmaps for characters with unicode values starting at first_unicode_char_in_range */ /* and increasing. Data for how to render them is stored in chardata_for_range; */ /* pass these to stbtt_GetPackedQuad to get back renderable quads. */ /* */ /* font_size is the full height of the character from ascender to descender, */ /* as computed by stbtt_ScaleForPixelHeight. To use a point size as computed */ /* by stbtt_ScaleForMappingEmToPixels, wrap the point size in STBTT_POINT_SIZE() */ /* and pass that result as 'font_size': */ /* ..., 20 , ... // font max minus min y is 20 pixels tall */ /* ..., STBTT_POINT_SIZE(20), ... // 'M' is 20 pixels tall */ typedef struct { float font_size; int first_unicode_codepoint_in_range; /* if non-zero, then the chars are continuous, and this is the first codepoint */ int *array_of_unicode_codepoints; /* if non-zero, then this is an array of unicode codepoints */ int num_chars; stbtt_packedchar *chardata_for_range; /* output */ unsigned char h_oversample, v_oversample; /* don't set these, they're used internally */ } stbtt_pack_range; STBTT_DEF int stbtt_PackFontRanges(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, stbtt_pack_range *ranges, int num_ranges); /* Creates character bitmaps from multiple ranges of characters stored in */ /* ranges. This will usually create a better-packed bitmap than multiple */ /* calls to stbtt_PackFontRange. Note that you can call this multiple */ /* times within a single PackBegin/PackEnd. */ STBTT_DEF void stbtt_PackSetOversampling(stbtt_pack_context *spc, unsigned int h_oversample, unsigned int v_oversample); /* Oversampling a font increases the quality by allowing higher-quality subpixel */ /* positioning, and is especially valuable at smaller text sizes. */ /* */ /* This function sets the amount of oversampling for all following calls to */ /* stbtt_PackFontRange(s) or stbtt_PackFontRangesGatherRects for a given */ /* pack context. The default (no oversampling) is achieved by h_oversample=1 */ /* and v_oversample=1. The total number of pixels required is */ /* h_oversample*v_oversample larger than the default; for example, 2x2 */ /* oversampling requires 4x the storage of 1x1. For best results, render */ /* oversampled textures with bilinear filtering. Look at the readme in */ /* stb/tests/oversample for information about oversampled fonts */ /* */ /* To use with PackFontRangesGather etc., you must set it before calls */ /* call to PackFontRangesGatherRects. */ STBTT_DEF void stbtt_PackSetSkipMissingCodepoints(stbtt_pack_context *spc, int skip); /* If skip != 0, this tells stb_truetype to skip any codepoints for which */ /* there is no corresponding glyph. If skip=0, which is the default, then */ /* codepoints without a glyph recived the font's "missing character" glyph, */ /* typically an empty box by convention. */ STBTT_DEF void stbtt_GetPackedQuad(const stbtt_packedchar *chardata, int pw, int ph, /* same data as above */ int char_index, /* character to display */ float *xpos, float *ypos, /* pointers to current position in screen pixel space */ stbtt_aligned_quad *q, /* output: quad to draw */ int align_to_integer); STBTT_DEF int stbtt_PackFontRangesGatherRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects); STBTT_DEF void stbtt_PackFontRangesPackRects(stbtt_pack_context *spc, stbrp_rect *rects, int num_rects); STBTT_DEF int stbtt_PackFontRangesRenderIntoRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects); /* Calling these functions in sequence is roughly equivalent to calling */ /* stbtt_PackFontRanges(). If you more control over the packing of multiple */ /* fonts, or if you want to pack custom data into a font texture, take a look */ /* at the source to of stbtt_PackFontRanges() and create a custom version */ /* using these functions, e.g. call GatherRects multiple times, */ /* building up a single array of rects, then call PackRects once, */ /* then call RenderIntoRects repeatedly. This may result in a */ /* better packing than calling PackFontRanges multiple times */ /* (or it may not). */ /* this is an opaque structure that you shouldn't mess with which holds */ /* all the context needed from PackBegin to PackEnd. */ struct stbtt_pack_context { void *user_allocator_context; void *pack_info; int width; int height; int stride_in_bytes; int padding; int skip_missing; unsigned int h_oversample, v_oversample; unsigned char *pixels; void *nodes; }; /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* FONT LOADING */ /* */ /* */ STBTT_DEF int stbtt_GetNumberOfFonts(const unsigned char *data); /* This function will determine the number of fonts in a font file. TrueType */ /* collection (.ttc) files may contain multiple fonts, while TrueType font */ /* (.ttf) files only contain one font. The number of fonts can be used for */ /* indexing with the previous function where the index is between zero and one */ /* less than the total fonts. If an error occurs, -1 is returned. */ STBTT_DEF int stbtt_GetFontOffsetForIndex(const unsigned char *data, int index); /* Each .ttf/.ttc file may have more than one font. Each font has a sequential */ /* index number starting from 0. Call this function to get the font offset for */ /* a given index; it returns -1 if the index is out of range. A regular .ttf */ /* file will only define one font and it always be at offset 0, so it will */ /* return '0' for index 0, and -1 for all other indices. */ /* The following structure is defined publicly so you can declare one on */ /* the stack or as a global or etc, but you should treat it as opaque. */ struct stbtt_fontinfo { void * userdata; unsigned char * data; /* pointer to .ttf file */ int fontstart; /* offset of start of font */ int numGlyphs; /* number of glyphs, needed for range checking */ int loca,head,glyf,hhea,hmtx,kern,gpos,svg; /* table locations as offset from start of .ttf */ int index_map; /* a cmap mapping for our chosen character encoding */ int indexToLocFormat; /* format needed to map from glyph index to glyph */ stbtt__buf cff; /* cff font data */ stbtt__buf charstrings; /* the charstring index */ stbtt__buf gsubrs; /* global charstring subroutines index */ stbtt__buf subrs; /* private charstring subroutines index */ stbtt__buf fontdicts; /* array of font dicts */ stbtt__buf fdselect; /* map from glyph to fontdict */ }; STBTT_DEF int stbtt_InitFont(stbtt_fontinfo *info, const unsigned char *data, int offset); /* Given an offset into the file that defines a font, this function builds */ /* the necessary cached info for the rest of the system. You must allocate */ /* the stbtt_fontinfo yourself, and stbtt_InitFont will fill it out. You don't */ /* need to do anything special to free it, because the contents are pure */ /* value data with no additional data structures. Returns 0 on failure. */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* CHARACTER TO GLYPH-INDEX CONVERSIOn */ STBTT_DEF int stbtt_FindGlyphIndex(const stbtt_fontinfo *info, int unicode_codepoint); /* If you're going to perform multiple operations on the same character */ /* and you want a speed-up, call this function with the character you're */ /* going to process, then use glyph-based functions instead of the */ /* codepoint-based functions. */ /* Returns 0 if the character codepoint is not defined in the font. */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* CHARACTER PROPERTIES */ /* */ STBTT_DEF float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float pixels); /* computes a scale factor to produce a font whose "height" is 'pixels' tall. */ /* Height is measured as the distance from the highest ascender to the lowest */ /* descender; in other words, it's equivalent to calling stbtt_GetFontVMetrics */ /* and computing: */ /* scale = pixels / (ascent - descent) */ /* so if you prefer to measure height by the ascent only, use a similar calculation. */ STBTT_DEF float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels); /* computes a scale factor to produce a font whose EM size is mapped to */ /* 'pixels' tall. This is probably what traditional APIs compute, but */ /* I'm not positive. */ STBTT_DEF void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap); /* ascent is the coordinate above the baseline the font extends; descent */ /* is the coordinate below the baseline the font extends (i.e. it is typically negative) */ /* lineGap is the spacing between one row's descent and the next row's ascent... */ /* so you should advance the vertical position by "*ascent - *descent + *lineGap" */ /* these are expressed in unscaled coordinates, so you must multiply by */ /* the scale factor for a given size */ STBTT_DEF int stbtt_GetFontVMetricsOS2(const stbtt_fontinfo *info, int *typoAscent, int *typoDescent, int *typoLineGap); /* analogous to GetFontVMetrics, but returns the "typographic" values from the OS/2 */ /* table (specific to MS/Windows TTF files). */ /* */ /* Returns 1 on success (table present), 0 on failure. */ STBTT_DEF void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1); /* the bounding box around all possible characters */ STBTT_DEF void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing); /* leftSideBearing is the offset from the current horizontal position to the left edge of the character */ /* advanceWidth is the offset from the current horizontal position to the next horizontal position */ /* these are expressed in unscaled coordinates */ STBTT_DEF int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2); /* an additional amount to add to the 'advance' value between ch1 and ch2 */ STBTT_DEF int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1); /* Gets the bounding box of the visible part of the glyph, in unscaled coordinates */ STBTT_DEF void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing); STBTT_DEF int stbtt_GetGlyphKernAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2); STBTT_DEF int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1); /* as above, but takes one or more glyph indices for greater efficiency */ typedef struct stbtt_kerningentry { int glyph1; /* use stbtt_FindGlyphIndex */ int glyph2; int advance; } stbtt_kerningentry; STBTT_DEF int stbtt_GetKerningTableLength(const stbtt_fontinfo *info); STBTT_DEF int stbtt_GetKerningTable(const stbtt_fontinfo *info, stbtt_kerningentry* table, int table_length); /* Retrieves a complete list of all of the kerning pairs provided by the font */ /* stbtt_GetKerningTable never writes more than table_length entries and returns how many entries it did write. */ /* The table will be sorted by (a.glyph1 == b.glyph1)?(a.glyph2 < b.glyph2):(a.glyph1 < b.glyph1) */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* GLYPH SHAPES (you probably don't need these, but they have to go before */ /* the bitmaps for C declaration-order reasons) */ /* */ #ifndef STBTT_vmove /* you can predefine these to use different values (but why?) */ enum { STBTT_vmove=1, STBTT_vline, STBTT_vcurve, STBTT_vcubic }; #endif #ifndef stbtt_vertex /* you can predefine this to use different values */ /* (we share this with other code at RAD) */ #define stbtt_vertex_type short /* can't use stbtt_int16 because that's not visible in the header file */ typedef struct { stbtt_vertex_type x,y,cx,cy,cx1,cy1; unsigned char type,padding; } stbtt_vertex; #endif STBTT_DEF int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index); /* returns non-zero if nothing is drawn for this glyph */ STBTT_DEF int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices); STBTT_DEF int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **vertices); /* returns # of vertices and fills *vertices with the pointer to them */ /* these are expressed in "unscaled" coordinates */ /* */ /* The shape is a series of contours. Each one starts with */ /* a STBTT_moveto, then consists of a series of mixed */ /* STBTT_lineto and STBTT_curveto segments. A lineto */ /* draws a line from previous endpoint to its x,y; a curveto */ /* draws a quadratic bezier from previous endpoint to */ /* its x,y, using cx,cy as the bezier control point. */ STBTT_DEF void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *vertices); /* frees the data allocated above */ STBTT_DEF unsigned char *stbtt_FindSVGDoc(const stbtt_fontinfo *info, int gl); STBTT_DEF int stbtt_GetCodepointSVG(const stbtt_fontinfo *info, int unicode_codepoint, const char **svg); STBTT_DEF int stbtt_GetGlyphSVG(const stbtt_fontinfo *info, int gl, const char **svg); /* fills svg with the character's SVG data. */ /* returns data size or 0 if SVG not found. */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* BITMAP RENDERING */ /* */ STBTT_DEF void stbtt_FreeBitmap(unsigned char *bitmap, void *userdata); /* frees the bitmap allocated below */ STBTT_DEF unsigned char *stbtt_GetCodepointBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff); /* allocates a large-enough single-channel 8bpp bitmap and renders the */ /* specified character/glyph at the specified scale into it, with */ /* antialiasing. 0 is no coverage (transparent), 255 is fully covered (opaque). */ /* *width & *height are filled out with the width & height of the bitmap, */ /* which is stored left-to-right, top-to-bottom. */ /* */ /* xoff/yoff are the offset it pixel space from the glyph origin to the top-left of the bitmap */ STBTT_DEF unsigned char *stbtt_GetCodepointBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff); /* the same as stbtt_GetCodepoitnBitmap, but you can specify a subpixel */ /* shift for the character */ STBTT_DEF void stbtt_MakeCodepointBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint); /* the same as stbtt_GetCodepointBitmap, but you pass in storage for the bitmap */ /* in the form of 'output', with row spacing of 'out_stride' bytes. the bitmap */ /* is clipped to out_w/out_h bytes. Call stbtt_GetCodepointBitmapBox to get the */ /* width and height and positioning info for it first. */ STBTT_DEF void stbtt_MakeCodepointBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint); /* same as stbtt_MakeCodepointBitmap, but you can specify a subpixel */ /* shift for the character */ STBTT_DEF void stbtt_MakeCodepointBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint); /* same as stbtt_MakeCodepointBitmapSubpixel, but prefiltering */ /* is performed (see stbtt_PackSetOversampling) */ STBTT_DEF void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1); /* get the bbox of the bitmap centered around the glyph origin; so the */ /* bitmap width is ix1-ix0, height is iy1-iy0, and location to place */ /* the bitmap top left is (leftSideBearing*scale,iy0). */ /* (Note that the bitmap uses y-increases-down, but the shape uses */ /* y-increases-up, so CodepointBitmapBox and CodepointBox are inverted.) */ STBTT_DEF void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1); /* same as stbtt_GetCodepointBitmapBox, but you can specify a subpixel */ /* shift for the character */ /* the following functions are equivalent to the above functions, but operate */ /* on glyph indices instead of Unicode codepoints (for efficiency) */ STBTT_DEF unsigned char *stbtt_GetGlyphBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff); STBTT_DEF unsigned char *stbtt_GetGlyphBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff); STBTT_DEF void stbtt_MakeGlyphBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph); STBTT_DEF void stbtt_MakeGlyphBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph); STBTT_DEF void stbtt_MakeGlyphBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int glyph); STBTT_DEF void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1); STBTT_DEF void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1); /* @TODO: don't expose this structure */ typedef struct { int w,h,stride; unsigned char *pixels; } stbtt__bitmap; /* rasterize a shape with quadratic beziers into a bitmap */ STBTT_DEF void stbtt_Rasterize(stbtt__bitmap *result, /* 1-channel bitmap to draw into */ float flatness_in_pixels, /* allowable error of curve in pixels */ stbtt_vertex *vertices, /* array of vertices defining shape */ int num_verts, /* number of vertices in above array */ float scale_x, float scale_y, /* scale applied to input vertices */ float shift_x, float shift_y, /* translation applied to input vertices */ int x_off, int y_off, /* another translation applied to input */ int invert, /* if non-zero, vertically flip shape */ void *userdata); /* context for to STBTT_MALLOC */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* Signed Distance Function (or Field) rendering */ STBTT_DEF void stbtt_FreeSDF(unsigned char *bitmap, void *userdata); /* frees the SDF bitmap allocated below */ STBTT_DEF unsigned char * stbtt_GetGlyphSDF(const stbtt_fontinfo *info, float scale, int glyph, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff); STBTT_DEF unsigned char * stbtt_GetCodepointSDF(const stbtt_fontinfo *info, float scale, int codepoint, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff); /* These functions compute a discretized SDF field for a single character, suitable for storing */ /* in a single-channel texture, sampling with bilinear filtering, and testing against */ /* larger than some threshold to produce scalable fonts. */ /* info -- the font */ /* scale -- controls the size of the resulting SDF bitmap, same as it would be creating a regular bitmap */ /* glyph/codepoint -- the character to generate the SDF for */ /* padding -- extra "pixels" around the character which are filled with the distance to the character (not 0), */ /* which allows effects like bit outlines */ /* onedge_value -- value 0-255 to test the SDF against to reconstruct the character (i.e. the isocontour of the character) */ /* pixel_dist_scale -- what value the SDF should increase by when moving one SDF "pixel" away from the edge (on the 0..255 scale) */ /* if positive, > onedge_value is inside; if negative, < onedge_value is inside */ /* width,height -- output height & width of the SDF bitmap (including padding) */ /* xoff,yoff -- output origin of the character */ /* return value -- a 2D array of bytes 0..255, width*height in size */ /* */ /* pixel_dist_scale & onedge_value are a scale & bias that allows you to make */ /* optimal use of the limited 0..255 for your application, trading off precision */ /* and special effects. SDF values outside the range 0..255 are clamped to 0..255. */ /* */ /* Example: */ /* scale = stbtt_ScaleForPixelHeight(22) */ /* padding = 5 */ /* onedge_value = 180 */ /* pixel_dist_scale = 180/5.0 = 36.0 */ /* */ /* This will create an SDF bitmap in which the character is about 22 pixels */ /* high but the whole bitmap is about 22+5+5=32 pixels high. To produce a filled */ /* shape, sample the SDF at each pixel and fill the pixel if the SDF value */ /* is greater than or equal to 180/255. (You'll actually want to antialias, */ /* which is beyond the scope of this example.) Additionally, you can compute */ /* offset outlines (e.g. to stroke the character border inside & outside, */ /* or only outside). For example, to fill outside the character up to 3 SDF */ /* pixels, you would compare against (180-36.0*3)/255 = 72/255. The above */ /* choice of variables maps a range from 5 pixels outside the shape to */ /* 2 pixels inside the shape to 0..255; this is intended primarily for apply */ /* outside effects only (the interior range is needed to allow proper */ /* antialiasing of the font at *smaller* sizes) */ /* */ /* The function computes the SDF analytically at each SDF pixel, not by e.g. */ /* building a higher-res bitmap and approximating it. In theory the quality */ /* should be as high as possible for an SDF of this size & representation, but */ /* unclear if this is true in practice (perhaps building a higher-res bitmap */ /* and computing from that can allow drop-out prevention). */ /* */ /* The algorithm has not been optimized at all, so expect it to be slow */ /* if computing lots of characters or very large sizes. */ /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* Finding the right font... */ /* */ /* You should really just solve this offline, keep your own tables */ /* of what font is what, and don't try to get it out of the .ttf file. */ /* That's because getting it out of the .ttf file is really hard, because */ /* the names in the file can appear in many possible encodings, in many */ /* possible languages, and e.g. if you need a case-insensitive comparison, */ /* the details of that depend on the encoding & language in a complex way */ /* (actually underspecified in truetype, but also gigantic). */ /* */ /* But you can use the provided functions in two possible ways: */ /* stbtt_FindMatchingFont() will use *case-sensitive* comparisons on */ /* unicode-encoded names to try to find the font you want; */ /* you can run this before calling stbtt_InitFont() */ /* */ /* stbtt_GetFontNameString() lets you get any of the various strings */ /* from the file yourself and do your own comparisons on them. */ /* You have to have called stbtt_InitFont() first. */ STBTT_DEF int stbtt_FindMatchingFont(const unsigned char *fontdata, const char *name, int flags); /* returns the offset (not index) of the font that matches, or -1 if none */ /* if you use STBTT_MACSTYLE_DONTCARE, use a font name like "Arial Bold". */ /* if you use any other flag, use a font name like "Arial"; this checks */ /* the 'macStyle' header field; i don't know if fonts set this consistently */ #define STBTT_MACSTYLE_DONTCARE 0 #define STBTT_MACSTYLE_BOLD 1 #define STBTT_MACSTYLE_ITALIC 2 #define STBTT_MACSTYLE_UNDERSCORE 4 #define STBTT_MACSTYLE_NONE 8 /* <= not same as 0, this makes us check the bitfield is 0 */ STBTT_DEF int stbtt_CompareUTF8toUTF16_bigendian(const char *s1, int len1, const char *s2, int len2); /* returns 1/0 whether the first string interpreted as utf8 is identical to */ /* the second string interpreted as big-endian utf16... useful for strings from next func */ STBTT_DEF const char *stbtt_GetFontNameString(const stbtt_fontinfo *font, int *length, int platformID, int encodingID, int languageID, int nameID); /* returns the string (which may be big-endian double byte, e.g. for unicode) */ /* and puts the length in bytes in *length. */ /* */ /* some of the values for the IDs are below; for more see the truetype spec: */ /* http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6name.html */ /* http://www.microsoft.com/typography/otspec/name.htm */ enum { /* platformID */ STBTT_PLATFORM_ID_UNICODE =0, STBTT_PLATFORM_ID_MAC =1, STBTT_PLATFORM_ID_ISO =2, STBTT_PLATFORM_ID_MICROSOFT =3 }; enum { /* encodingID for STBTT_PLATFORM_ID_UNICODE */ STBTT_UNICODE_EID_UNICODE_1_0 =0, STBTT_UNICODE_EID_UNICODE_1_1 =1, STBTT_UNICODE_EID_ISO_10646 =2, STBTT_UNICODE_EID_UNICODE_2_0_BMP=3, STBTT_UNICODE_EID_UNICODE_2_0_FULL=4 }; enum { /* encodingID for STBTT_PLATFORM_ID_MICROSOFT */ STBTT_MS_EID_SYMBOL =0, STBTT_MS_EID_UNICODE_BMP =1, STBTT_MS_EID_SHIFTJIS =2, STBTT_MS_EID_UNICODE_FULL =10 }; enum { /* encodingID for STBTT_PLATFORM_ID_MAC; same as Script Manager codes */ STBTT_MAC_EID_ROMAN =0, STBTT_MAC_EID_ARABIC =4, STBTT_MAC_EID_JAPANESE =1, STBTT_MAC_EID_HEBREW =5, STBTT_MAC_EID_CHINESE_TRAD =2, STBTT_MAC_EID_GREEK =6, STBTT_MAC_EID_KOREAN =3, STBTT_MAC_EID_RUSSIAN =7 }; enum { /* languageID for STBTT_PLATFORM_ID_MICROSOFT; same as LCID... */ /* problematic because there are e.g. 16 english LCIDs and 16 arabic LCIDs */ STBTT_MS_LANG_ENGLISH =0x0409, STBTT_MS_LANG_ITALIAN =0x0410, STBTT_MS_LANG_CHINESE =0x0804, STBTT_MS_LANG_JAPANESE =0x0411, STBTT_MS_LANG_DUTCH =0x0413, STBTT_MS_LANG_KOREAN =0x0412, STBTT_MS_LANG_FRENCH =0x040c, STBTT_MS_LANG_RUSSIAN =0x0419, STBTT_MS_LANG_GERMAN =0x0407, STBTT_MS_LANG_SPANISH =0x0409, STBTT_MS_LANG_HEBREW =0x040d, STBTT_MS_LANG_SWEDISH =0x041D }; enum { /* languageID for STBTT_PLATFORM_ID_MAC */ STBTT_MAC_LANG_ENGLISH =0 , STBTT_MAC_LANG_JAPANESE =11, STBTT_MAC_LANG_ARABIC =12, STBTT_MAC_LANG_KOREAN =23, STBTT_MAC_LANG_DUTCH =4 , STBTT_MAC_LANG_RUSSIAN =32, STBTT_MAC_LANG_FRENCH =1 , STBTT_MAC_LANG_SPANISH =6 , STBTT_MAC_LANG_GERMAN =2 , STBTT_MAC_LANG_SWEDISH =5 , STBTT_MAC_LANG_HEBREW =10, STBTT_MAC_LANG_CHINESE_SIMPLIFIED =33, STBTT_MAC_LANG_ITALIAN =3 , STBTT_MAC_LANG_CHINESE_TRAD =19 }; #ifdef __cplusplus } #endif #endif /* __STB_INCLUDE_STB_TRUETYPE_H__ */ /* ///////////////////////////////////////////////////////////////////////////// */ /* ///////////////////////////////////////////////////////////////////////////// */ /* // */ /* // IMPLEMENTATION */ /* // */ /* // */ #ifdef STB_TRUETYPE_IMPLEMENTATION #ifndef STBTT_MAX_OVERSAMPLE #define STBTT_MAX_OVERSAMPLE 8 #endif #if STBTT_MAX_OVERSAMPLE > 255 #error "STBTT_MAX_OVERSAMPLE cannot be > 255" #endif typedef int stbtt__test_oversample_pow2[(STBTT_MAX_OVERSAMPLE & (STBTT_MAX_OVERSAMPLE-1)) == 0 ? 1 : -1]; #ifndef STBTT_RASTERIZER_VERSION #define STBTT_RASTERIZER_VERSION 2 #endif #ifdef _MSC_VER #define STBTT__NOTUSED(v) (void)(v) #else #define STBTT__NOTUSED(v) (void)sizeof(v) #endif /* //////////////////////////////////////////////////////////////////////// */ /* */ /* stbtt__buf helpers to parse data from file */ /* */ static stbtt_uint8 stbtt__buf_get8(stbtt__buf *b) { if (b->cursor >= b->size) return 0; return b->data[b->cursor++]; } static stbtt_uint8 stbtt__buf_peek8(stbtt__buf *b) { if (b->cursor >= b->size) return 0; return b->data[b->cursor]; } static void stbtt__buf_seek(stbtt__buf *b, int o) { STBTT_assert(!(o > b->size || o < 0)); b->cursor = (o > b->size || o < 0) ? b->size : o; } static void stbtt__buf_skip(stbtt__buf *b, int o) { stbtt__buf_seek(b, b->cursor + o); } static stbtt_uint32 stbtt__buf_get(stbtt__buf *b, int n) { stbtt_uint32 v = 0; int i; STBTT_assert(n >= 1 && n <= 4); for (i = 0; i < n; i++) v = (v << 8) | stbtt__buf_get8(b); return v; } static stbtt__buf stbtt__new_buf(const void *p, size_t size) { stbtt__buf r; STBTT_assert(size < 0x40000000); r.data = (stbtt_uint8*) p; r.size = (int) size; r.cursor = 0; return r; } #define stbtt__buf_get16(b) stbtt__buf_get((b), 2) #define stbtt__buf_get32(b) stbtt__buf_get((b), 4) static stbtt__buf stbtt__buf_range(const stbtt__buf *b, int o, int s) { stbtt__buf r = stbtt__new_buf(NULL, 0); if (o < 0 || s < 0 || o > b->size || s > b->size - o) return r; r.data = b->data + o; r.size = s; return r; } static stbtt__buf stbtt__cff_get_index(stbtt__buf *b) { int count, start, offsize; start = b->cursor; count = stbtt__buf_get16(b); if (count) { offsize = stbtt__buf_get8(b); STBTT_assert(offsize >= 1 && offsize <= 4); stbtt__buf_skip(b, offsize * count); stbtt__buf_skip(b, stbtt__buf_get(b, offsize) - 1); } return stbtt__buf_range(b, start, b->cursor - start); } static stbtt_uint32 stbtt__cff_int(stbtt__buf *b) { int b0 = stbtt__buf_get8(b); if (b0 >= 32 && b0 <= 246) return b0 - 139; else if (b0 >= 247 && b0 <= 250) return (b0 - 247)*256 + stbtt__buf_get8(b) + 108; else if (b0 >= 251 && b0 <= 254) return -(b0 - 251)*256 - stbtt__buf_get8(b) - 108; else if (b0 == 28) return stbtt__buf_get16(b); else if (b0 == 29) return stbtt__buf_get32(b); STBTT_assert(0); return 0; } static void stbtt__cff_skip_operand(stbtt__buf *b) { int v, b0 = stbtt__buf_peek8(b); STBTT_assert(b0 >= 28); if (b0 == 30) { stbtt__buf_skip(b, 1); while (b->cursor < b->size) { v = stbtt__buf_get8(b); if ((v & 0xF) == 0xF || (v >> 4) == 0xF) break; } } else { stbtt__cff_int(b); } } static stbtt__buf stbtt__dict_get(stbtt__buf *b, int key) { stbtt__buf_seek(b, 0); while (b->cursor < b->size) { int start = b->cursor, end, op; while (stbtt__buf_peek8(b) >= 28) stbtt__cff_skip_operand(b); end = b->cursor; op = stbtt__buf_get8(b); if (op == 12) op = stbtt__buf_get8(b) | 0x100; if (op == key) return stbtt__buf_range(b, start, end-start); } return stbtt__buf_range(b, 0, 0); } static void stbtt__dict_get_ints(stbtt__buf *b, int key, int outcount, stbtt_uint32 *out) { int i; stbtt__buf operands = stbtt__dict_get(b, key); for (i = 0; i < outcount && operands.cursor < operands.size; i++) out[i] = stbtt__cff_int(&operands); } static int stbtt__cff_index_count(stbtt__buf *b) { stbtt__buf_seek(b, 0); return stbtt__buf_get16(b); } static stbtt__buf stbtt__cff_index_get(stbtt__buf b, int i) { int count, offsize, start, end; stbtt__buf_seek(&b, 0); count = stbtt__buf_get16(&b); offsize = stbtt__buf_get8(&b); STBTT_assert(i >= 0 && i < count); STBTT_assert(offsize >= 1 && offsize <= 4); stbtt__buf_skip(&b, i*offsize); start = stbtt__buf_get(&b, offsize); end = stbtt__buf_get(&b, offsize); return stbtt__buf_range(&b, 2+(count+1)*offsize+start, end - start); } /* //////////////////////////////////////////////////////////////////////// */ /* */ /* accessors to parse data from file */ /* */ /* on platforms that don't allow misaligned reads, if we want to allow */ /* truetype fonts that aren't padded to alignment, define ALLOW_UNALIGNED_TRUETYPE */ #define ttBYTE(p) (* (stbtt_uint8 *) (p)) #define ttCHAR(p) (* (stbtt_int8 *) (p)) #define ttFixed(p) ttLONG(p) static stbtt_uint16 ttUSHORT(stbtt_uint8 *p) { return p[0]*256 + p[1]; } static stbtt_int16 ttSHORT(stbtt_uint8 *p) { return p[0]*256 + p[1]; } static stbtt_uint32 ttULONG(stbtt_uint8 *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } static stbtt_int32 ttLONG(stbtt_uint8 *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; } #define stbtt_tag4(p,c0,c1,c2,c3) ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3)) #define stbtt_tag(p,str) stbtt_tag4(p,str[0],str[1],str[2],str[3]) static int stbtt__isfont(stbtt_uint8 *font) { /* check the version number */ if (stbtt_tag4(font, '1',0,0,0)) return 1; /* TrueType 1 */ if (stbtt_tag(font, "typ1")) return 1; /* TrueType with type 1 font -- we don't support this! */ if (stbtt_tag(font, "OTTO")) return 1; /* OpenType with CFF */ if (stbtt_tag4(font, 0,1,0,0)) return 1; /* OpenType 1.0 */ if (stbtt_tag(font, "true")) return 1; /* Apple specification for TrueType fonts */ return 0; } /* @OPTIMIZE: binary search */ static stbtt_uint32 stbtt__find_table(stbtt_uint8 *data, stbtt_uint32 fontstart, const char *tag) { stbtt_int32 num_tables = ttUSHORT(data+fontstart+4); stbtt_uint32 tabledir = fontstart + 12; stbtt_int32 i; for (i=0; i < num_tables; ++i) { stbtt_uint32 loc = tabledir + 16*i; if (stbtt_tag(data+loc+0, tag)) return ttULONG(data+loc+8); } return 0; } static int stbtt_GetFontOffsetForIndex_internal(unsigned char *font_collection, int index) { /* if it's just a font, there's only one valid index */ if (stbtt__isfont(font_collection)) return index == 0 ? 0 : -1; /* check if it's a TTC */ if (stbtt_tag(font_collection, "ttcf")) { /* version 1? */ if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) { stbtt_int32 n = ttLONG(font_collection+8); if (index >= n) return -1; return ttULONG(font_collection+12+index*4); } } return -1; } static int stbtt_GetNumberOfFonts_internal(unsigned char *font_collection) { /* if it's just a font, there's only one valid font */ if (stbtt__isfont(font_collection)) return 1; /* check if it's a TTC */ if (stbtt_tag(font_collection, "ttcf")) { /* version 1? */ if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) { return ttLONG(font_collection+8); } } return 0; } static stbtt__buf stbtt__get_subrs(stbtt__buf cff, stbtt__buf fontdict) { stbtt_uint32 subrsoff = 0, private_loc[2] = { 0, 0 }; stbtt__buf pdict; stbtt__dict_get_ints(&fontdict, 18, 2, private_loc); if (!private_loc[1] || !private_loc[0]) return stbtt__new_buf(NULL, 0); pdict = stbtt__buf_range(&cff, private_loc[1], private_loc[0]); stbtt__dict_get_ints(&pdict, 19, 1, &subrsoff); if (!subrsoff) return stbtt__new_buf(NULL, 0); stbtt__buf_seek(&cff, private_loc[1]+subrsoff); return stbtt__cff_get_index(&cff); } /* since most people won't use this, find this table the first time it's needed */ static int stbtt__get_svg(stbtt_fontinfo *info) { stbtt_uint32 t; if (info->svg < 0) { t = stbtt__find_table(info->data, info->fontstart, "SVG "); if (t) { stbtt_uint32 offset = ttULONG(info->data + t + 2); info->svg = t + offset; } else { info->svg = 0; } } return info->svg; } static int stbtt_InitFont_internal(stbtt_fontinfo *info, unsigned char *data, int fontstart) { stbtt_uint32 cmap, t; stbtt_int32 i,numTables; info->data = data; info->fontstart = fontstart; info->cff = stbtt__new_buf(NULL, 0); cmap = stbtt__find_table(data, fontstart, "cmap"); /* required */ info->loca = stbtt__find_table(data, fontstart, "loca"); /* required */ info->head = stbtt__find_table(data, fontstart, "head"); /* required */ info->glyf = stbtt__find_table(data, fontstart, "glyf"); /* required */ info->hhea = stbtt__find_table(data, fontstart, "hhea"); /* required */ info->hmtx = stbtt__find_table(data, fontstart, "hmtx"); /* required */ info->kern = stbtt__find_table(data, fontstart, "kern"); /* not required */ info->gpos = stbtt__find_table(data, fontstart, "GPOS"); /* not required */ if (!cmap || !info->head || !info->hhea || !info->hmtx) return 0; if (info->glyf) { /* required for truetype */ if (!info->loca) return 0; } else { /* initialization for CFF / Type2 fonts (OTF) */ stbtt__buf b, topdict, topdictidx; stbtt_uint32 cstype = 2, charstrings = 0, fdarrayoff = 0, fdselectoff = 0; stbtt_uint32 cff; cff = stbtt__find_table(data, fontstart, "CFF "); if (!cff) return 0; info->fontdicts = stbtt__new_buf(NULL, 0); info->fdselect = stbtt__new_buf(NULL, 0); /* @TODO this should use size from table (not 512MB) */ info->cff = stbtt__new_buf(data+cff, 512*1024*1024); b = info->cff; /* read the header */ stbtt__buf_skip(&b, 2); stbtt__buf_seek(&b, stbtt__buf_get8(&b)); /* hdrsize */ /* @TODO the name INDEX could list multiple fonts, */ /* but we just use the first one. */ stbtt__cff_get_index(&b); /* name INDEX */ topdictidx = stbtt__cff_get_index(&b); topdict = stbtt__cff_index_get(topdictidx, 0); stbtt__cff_get_index(&b); /* string INDEX */ info->gsubrs = stbtt__cff_get_index(&b); stbtt__dict_get_ints(&topdict, 17, 1, &charstrings); stbtt__dict_get_ints(&topdict, 0x100 | 6, 1, &cstype); stbtt__dict_get_ints(&topdict, 0x100 | 36, 1, &fdarrayoff); stbtt__dict_get_ints(&topdict, 0x100 | 37, 1, &fdselectoff); info->subrs = stbtt__get_subrs(b, topdict); /* we only support Type 2 charstrings */ if (cstype != 2) return 0; if (charstrings == 0) return 0; if (fdarrayoff) { /* looks like a CID font */ if (!fdselectoff) return 0; stbtt__buf_seek(&b, fdarrayoff); info->fontdicts = stbtt__cff_get_index(&b); info->fdselect = stbtt__buf_range(&b, fdselectoff, b.size-fdselectoff); } stbtt__buf_seek(&b, charstrings); info->charstrings = stbtt__cff_get_index(&b); } t = stbtt__find_table(data, fontstart, "maxp"); if (t) info->numGlyphs = ttUSHORT(data+t+4); else info->numGlyphs = 0xffff; info->svg = -1; /* find a cmap encoding table we understand *now* to avoid searching */ /* later. (todo: could make this installable) */ /* the same regardless of glyph. */ numTables = ttUSHORT(data + cmap + 2); info->index_map = 0; for (i=0; i < numTables; ++i) { stbtt_uint32 encoding_record = cmap + 4 + 8 * i; /* find an encoding we understand: */ switch(ttUSHORT(data+encoding_record)) { case STBTT_PLATFORM_ID_MICROSOFT: switch (ttUSHORT(data+encoding_record+2)) { case STBTT_MS_EID_UNICODE_BMP: case STBTT_MS_EID_UNICODE_FULL: /* MS/Unicode */ info->index_map = cmap + ttULONG(data+encoding_record+4); break; } break; case STBTT_PLATFORM_ID_UNICODE: /* Mac/iOS has these */ /* all the encodingIDs are unicode, so we don't bother to check it */ info->index_map = cmap + ttULONG(data+encoding_record+4); break; } } if (info->index_map == 0) return 0; info->indexToLocFormat = ttUSHORT(data+info->head + 50); return 1; } STBTT_DEF int stbtt_FindGlyphIndex(const stbtt_fontinfo *info, int unicode_codepoint) { stbtt_uint8 *data = info->data; stbtt_uint32 index_map = info->index_map; stbtt_uint16 format = ttUSHORT(data + index_map + 0); if (format == 0) { /* apple byte encoding */ stbtt_int32 bytes = ttUSHORT(data + index_map + 2); if (unicode_codepoint < bytes-6) return ttBYTE(data + index_map + 6 + unicode_codepoint); return 0; } else if (format == 6) { stbtt_uint32 first = ttUSHORT(data + index_map + 6); stbtt_uint32 count = ttUSHORT(data + index_map + 8); if ((stbtt_uint32) unicode_codepoint >= first && (stbtt_uint32) unicode_codepoint < first+count) return ttUSHORT(data + index_map + 10 + (unicode_codepoint - first)*2); return 0; } else if (format == 2) { STBTT_assert(0); /* @TODO: high-byte mapping for japanese/chinese/korean */ return 0; } else if (format == 4) { /* standard mapping for windows fonts: binary search collection of ranges */ stbtt_uint16 segcount = ttUSHORT(data+index_map+6) >> 1; stbtt_uint16 searchRange = ttUSHORT(data+index_map+8) >> 1; stbtt_uint16 entrySelector = ttUSHORT(data+index_map+10); stbtt_uint16 rangeShift = ttUSHORT(data+index_map+12) >> 1; /* do a binary search of the segments */ stbtt_uint32 endCount = index_map + 14; stbtt_uint32 search = endCount; if (unicode_codepoint > 0xffff) return 0; /* they lie from endCount .. endCount + segCount */ /* but searchRange is the nearest power of two, so... */ if (unicode_codepoint >= ttUSHORT(data + search + rangeShift*2)) search += rangeShift*2; /* now decrement to bias correctly to find smallest */ search -= 2; while (entrySelector) { stbtt_uint16 end; searchRange >>= 1; end = ttUSHORT(data + search + searchRange*2); if (unicode_codepoint > end) search += searchRange*2; --entrySelector; } search += 2; { stbtt_uint16 offset, start, last; stbtt_uint16 item = (stbtt_uint16) ((search - endCount) >> 1); start = ttUSHORT(data + index_map + 14 + segcount*2 + 2 + 2*item); last = ttUSHORT(data + endCount + 2*item); if (unicode_codepoint < start || unicode_codepoint > last) return 0; offset = ttUSHORT(data + index_map + 14 + segcount*6 + 2 + 2*item); if (offset == 0) return (stbtt_uint16) (unicode_codepoint + ttSHORT(data + index_map + 14 + segcount*4 + 2 + 2*item)); return ttUSHORT(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + segcount*6 + 2 + 2*item); } } else if (format == 12 || format == 13) { stbtt_uint32 ngroups = ttULONG(data+index_map+12); stbtt_int32 low,high; low = 0; high = (stbtt_int32)ngroups; /* Binary search the right group. */ while (low < high) { stbtt_int32 mid = low + ((high-low) >> 1); /* rounds down, so low <= mid < high */ stbtt_uint32 start_char = ttULONG(data+index_map+16+mid*12); stbtt_uint32 end_char = ttULONG(data+index_map+16+mid*12+4); if ((stbtt_uint32) unicode_codepoint < start_char) high = mid; else if ((stbtt_uint32) unicode_codepoint > end_char) low = mid+1; else { stbtt_uint32 start_glyph = ttULONG(data+index_map+16+mid*12+8); if (format == 12) return start_glyph + unicode_codepoint-start_char; else /* format == 13 */ return start_glyph; } } return 0; /* not found */ } /* @TODO */ STBTT_assert(0); return 0; } STBTT_DEF int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices) { return stbtt_GetGlyphShape(info, stbtt_FindGlyphIndex(info, unicode_codepoint), vertices); } static void stbtt_setvertex(stbtt_vertex *v, stbtt_uint8 type, stbtt_int32 x, stbtt_int32 y, stbtt_int32 cx, stbtt_int32 cy) { v->type = type; v->x = (stbtt_int16) x; v->y = (stbtt_int16) y; v->cx = (stbtt_int16) cx; v->cy = (stbtt_int16) cy; } static int stbtt__GetGlyfOffset(const stbtt_fontinfo *info, int glyph_index) { int g1,g2; STBTT_assert(!info->cff.size); if (glyph_index >= info->numGlyphs) return -1; /* glyph index out of range */ if (info->indexToLocFormat >= 2) return -1; /* unknown index->glyph map format */ if (info->indexToLocFormat == 0) { g1 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2) * 2; g2 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2 + 2) * 2; } else { g1 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4); g2 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4 + 4); } return g1==g2 ? -1 : g1; /* if length is 0, return -1 */ } static int stbtt__GetGlyphInfoT2(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1); STBTT_DEF int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) { if (info->cff.size) { stbtt__GetGlyphInfoT2(info, glyph_index, x0, y0, x1, y1); } else { int g = stbtt__GetGlyfOffset(info, glyph_index); if (g < 0) return 0; if (x0) *x0 = ttSHORT(info->data + g + 2); if (y0) *y0 = ttSHORT(info->data + g + 4); if (x1) *x1 = ttSHORT(info->data + g + 6); if (y1) *y1 = ttSHORT(info->data + g + 8); } return 1; } STBTT_DEF int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1) { return stbtt_GetGlyphBox(info, stbtt_FindGlyphIndex(info,codepoint), x0,y0,x1,y1); } STBTT_DEF int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index) { stbtt_int16 numberOfContours; int g; if (info->cff.size) return stbtt__GetGlyphInfoT2(info, glyph_index, NULL, NULL, NULL, NULL) == 0; g = stbtt__GetGlyfOffset(info, glyph_index); if (g < 0) return 1; numberOfContours = ttSHORT(info->data + g); return numberOfContours == 0; } static int stbtt__close_shape(stbtt_vertex *vertices, int num_vertices, int was_off, int start_off, stbtt_int32 sx, stbtt_int32 sy, stbtt_int32 scx, stbtt_int32 scy, stbtt_int32 cx, stbtt_int32 cy) { if (start_off) { if (was_off) stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy); stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, sx,sy,scx,scy); } else { if (was_off) stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve,sx,sy,cx,cy); else stbtt_setvertex(&vertices[num_vertices++], STBTT_vline,sx,sy,0,0); } return num_vertices; } static int stbtt__GetGlyphShapeTT(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) { stbtt_int16 numberOfContours; stbtt_uint8 *endPtsOfContours; stbtt_uint8 *data = info->data; stbtt_vertex *vertices=0; int num_vertices=0; int g = stbtt__GetGlyfOffset(info, glyph_index); *pvertices = NULL; if (g < 0) return 0; numberOfContours = ttSHORT(data + g); if (numberOfContours > 0) { stbtt_uint8 flags=0,flagcount; stbtt_int32 ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0; stbtt_int32 x,y,cx,cy,sx,sy, scx,scy; stbtt_uint8 *points; endPtsOfContours = (data + g + 10); ins = ttUSHORT(data + g + 10 + numberOfContours * 2); points = data + g + 10 + numberOfContours * 2 + 2 + ins; n = 1+ttUSHORT(endPtsOfContours + numberOfContours*2-2); m = n + 2*numberOfContours; /* a loose bound on how many vertices we might need */ vertices = (stbtt_vertex *) STBTT_malloc(m * sizeof(vertices[0]), info->userdata); if (vertices == 0) return 0; next_move = 0; flagcount=0; /* in first pass, we load uninterpreted data into the allocated array */ /* above, shifted to the end of the array so we won't overwrite it when */ /* we create our final data starting from the front */ off = m - n; /* starting offset for uninterpreted data, regardless of how m ends up being calculated */ /* first load flags */ for (i=0; i < n; ++i) { if (flagcount == 0) { flags = *points++; if (flags & 8) flagcount = *points++; } else --flagcount; vertices[off+i].type = flags; } /* now load x coordinates */ x=0; for (i=0; i < n; ++i) { flags = vertices[off+i].type; if (flags & 2) { stbtt_int16 dx = *points++; x += (flags & 16) ? dx : -dx; /* ??? */ } else { if (!(flags & 16)) { x = x + (stbtt_int16) (points[0]*256 + points[1]); points += 2; } } vertices[off+i].x = (stbtt_int16) x; } /* now load y coordinates */ y=0; for (i=0; i < n; ++i) { flags = vertices[off+i].type; if (flags & 4) { stbtt_int16 dy = *points++; y += (flags & 32) ? dy : -dy; /* ??? */ } else { if (!(flags & 32)) { y = y + (stbtt_int16) (points[0]*256 + points[1]); points += 2; } } vertices[off+i].y = (stbtt_int16) y; } /* now convert them to our format */ num_vertices=0; sx = sy = cx = cy = scx = scy = 0; for (i=0; i < n; ++i) { flags = vertices[off+i].type; x = (stbtt_int16) vertices[off+i].x; y = (stbtt_int16) vertices[off+i].y; if (next_move == i) { if (i != 0) num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy); /* now start the new one */ start_off = !(flags & 1); if (start_off) { /* if we start off with an off-curve point, then when we need to find a point on the curve */ /* where we can start, and we need to save some state for when we wraparound. */ scx = x; scy = y; if (!(vertices[off+i+1].type & 1)) { /* next point is also a curve point, so interpolate an on-point curve */ sx = (x + (stbtt_int32) vertices[off+i+1].x) >> 1; sy = (y + (stbtt_int32) vertices[off+i+1].y) >> 1; } else { /* otherwise just use the next point as our start point */ sx = (stbtt_int32) vertices[off+i+1].x; sy = (stbtt_int32) vertices[off+i+1].y; ++i; /* we're using point i+1 as the starting point, so skip it */ } } else { sx = x; sy = y; } stbtt_setvertex(&vertices[num_vertices++], STBTT_vmove,sx,sy,0,0); was_off = 0; next_move = 1 + ttUSHORT(endPtsOfContours+j*2); ++j; } else { if (!(flags & 1)) { /* if it's a curve */ if (was_off) /* two off-curve control points in a row means interpolate an on-curve midpoint */ stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy); cx = x; cy = y; was_off = 1; } else { if (was_off) stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, x,y, cx, cy); else stbtt_setvertex(&vertices[num_vertices++], STBTT_vline, x,y,0,0); was_off = 0; } } } num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy); } else if (numberOfContours < 0) { /* Compound shapes. */ int more = 1; stbtt_uint8 *comp = data + g + 10; num_vertices = 0; vertices = 0; while (more) { stbtt_uint16 flags, gidx; int comp_num_verts = 0, i; stbtt_vertex *comp_verts = 0, *tmp = 0; float mtx[6] = {1,0,0,1,0,0}, m, n; flags = ttSHORT(comp); comp+=2; gidx = ttSHORT(comp); comp+=2; if (flags & 2) { /* XY values */ if (flags & 1) { /* shorts */ mtx[4] = ttSHORT(comp); comp+=2; mtx[5] = ttSHORT(comp); comp+=2; } else { mtx[4] = ttCHAR(comp); comp+=1; mtx[5] = ttCHAR(comp); comp+=1; } } else { /* @TODO handle matching point */ STBTT_assert(0); } if (flags & (1<<3)) { /* WE_HAVE_A_SCALE */ mtx[0] = mtx[3] = ttSHORT(comp)/16384.0f; comp+=2; mtx[1] = mtx[2] = 0; } else if (flags & (1<<6)) { /* WE_HAVE_AN_X_AND_YSCALE */ mtx[0] = ttSHORT(comp)/16384.0f; comp+=2; mtx[1] = mtx[2] = 0; mtx[3] = ttSHORT(comp)/16384.0f; comp+=2; } else if (flags & (1<<7)) { /* WE_HAVE_A_TWO_BY_TWO */ mtx[0] = ttSHORT(comp)/16384.0f; comp+=2; mtx[1] = ttSHORT(comp)/16384.0f; comp+=2; mtx[2] = ttSHORT(comp)/16384.0f; comp+=2; mtx[3] = ttSHORT(comp)/16384.0f; comp+=2; } /* Find transformation scales. */ m = (float) STBTT_sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]); n = (float) STBTT_sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]); /* Get indexed glyph. */ comp_num_verts = stbtt_GetGlyphShape(info, gidx, &comp_verts); if (comp_num_verts > 0) { /* Transform vertices. */ for (i = 0; i < comp_num_verts; ++i) { stbtt_vertex* v = &comp_verts[i]; stbtt_vertex_type x,y; x=v->x; y=v->y; v->x = (stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); v->y = (stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); x=v->cx; y=v->cy; v->cx = (stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4])); v->cy = (stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5])); } /* Append vertices. */ tmp = (stbtt_vertex*)STBTT_malloc((num_vertices+comp_num_verts)*sizeof(stbtt_vertex), info->userdata); if (!tmp) { if (vertices) STBTT_free(vertices, info->userdata); if (comp_verts) STBTT_free(comp_verts, info->userdata); return 0; } if (num_vertices > 0 && vertices) STBTT_memcpy(tmp, vertices, num_vertices*sizeof(stbtt_vertex)); STBTT_memcpy(tmp+num_vertices, comp_verts, comp_num_verts*sizeof(stbtt_vertex)); if (vertices) STBTT_free(vertices, info->userdata); vertices = tmp; STBTT_free(comp_verts, info->userdata); num_vertices += comp_num_verts; } /* More components ? */ more = flags & (1<<5); } } else { /* numberOfCounters == 0, do nothing */ } *pvertices = vertices; return num_vertices; } typedef struct { int bounds; int started; float first_x, first_y; float x, y; stbtt_int32 min_x, max_x, min_y, max_y; stbtt_vertex *pvertices; int num_vertices; } stbtt__csctx; #define STBTT__CSCTX_INIT(bounds) {bounds,0, 0,0, 0,0, 0,0,0,0, NULL, 0} static void stbtt__track_vertex(stbtt__csctx *c, stbtt_int32 x, stbtt_int32 y) { if (x > c->max_x || !c->started) c->max_x = x; if (y > c->max_y || !c->started) c->max_y = y; if (x < c->min_x || !c->started) c->min_x = x; if (y < c->min_y || !c->started) c->min_y = y; c->started = 1; } static void stbtt__csctx_v(stbtt__csctx *c, stbtt_uint8 type, stbtt_int32 x, stbtt_int32 y, stbtt_int32 cx, stbtt_int32 cy, stbtt_int32 cx1, stbtt_int32 cy1) { if (c->bounds) { stbtt__track_vertex(c, x, y); if (type == STBTT_vcubic) { stbtt__track_vertex(c, cx, cy); stbtt__track_vertex(c, cx1, cy1); } } else { stbtt_setvertex(&c->pvertices[c->num_vertices], type, x, y, cx, cy); c->pvertices[c->num_vertices].cx1 = (stbtt_int16) cx1; c->pvertices[c->num_vertices].cy1 = (stbtt_int16) cy1; } c->num_vertices++; } static void stbtt__csctx_close_shape(stbtt__csctx *ctx) { if (ctx->first_x != ctx->x || ctx->first_y != ctx->y) stbtt__csctx_v(ctx, STBTT_vline, (int)ctx->first_x, (int)ctx->first_y, 0, 0, 0, 0); } static void stbtt__csctx_rmove_to(stbtt__csctx *ctx, float dx, float dy) { stbtt__csctx_close_shape(ctx); ctx->first_x = ctx->x = ctx->x + dx; ctx->first_y = ctx->y = ctx->y + dy; stbtt__csctx_v(ctx, STBTT_vmove, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); } static void stbtt__csctx_rline_to(stbtt__csctx *ctx, float dx, float dy) { ctx->x += dx; ctx->y += dy; stbtt__csctx_v(ctx, STBTT_vline, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0); } static void stbtt__csctx_rccurve_to(stbtt__csctx *ctx, float dx1, float dy1, float dx2, float dy2, float dx3, float dy3) { float cx1 = ctx->x + dx1; float cy1 = ctx->y + dy1; float cx2 = cx1 + dx2; float cy2 = cy1 + dy2; ctx->x = cx2 + dx3; ctx->y = cy2 + dy3; stbtt__csctx_v(ctx, STBTT_vcubic, (int)ctx->x, (int)ctx->y, (int)cx1, (int)cy1, (int)cx2, (int)cy2); } static stbtt__buf stbtt__get_subr(stbtt__buf idx, int n) { int count = stbtt__cff_index_count(&idx); int bias = 107; if (count >= 33900) bias = 32768; else if (count >= 1240) bias = 1131; n += bias; if (n < 0 || n >= count) return stbtt__new_buf(NULL, 0); return stbtt__cff_index_get(idx, n); } static stbtt__buf stbtt__cid_get_glyph_subrs(const stbtt_fontinfo *info, int glyph_index) { stbtt__buf fdselect = info->fdselect; int nranges, start, end, v, fmt, fdselector = -1, i; stbtt__buf_seek(&fdselect, 0); fmt = stbtt__buf_get8(&fdselect); if (fmt == 0) { /* untested */ stbtt__buf_skip(&fdselect, glyph_index); fdselector = stbtt__buf_get8(&fdselect); } else if (fmt == 3) { nranges = stbtt__buf_get16(&fdselect); start = stbtt__buf_get16(&fdselect); for (i = 0; i < nranges; i++) { v = stbtt__buf_get8(&fdselect); end = stbtt__buf_get16(&fdselect); if (glyph_index >= start && glyph_index < end) { fdselector = v; break; } start = end; } } if (fdselector == -1) stbtt__new_buf(NULL, 0); return stbtt__get_subrs(info->cff, stbtt__cff_index_get(info->fontdicts, fdselector)); } static int stbtt__run_charstring(const stbtt_fontinfo *info, int glyph_index, stbtt__csctx *c) { int in_header = 1, maskbits = 0, subr_stack_height = 0, sp = 0, v, i, b0; int has_subrs = 0, clear_stack; float s[48]; stbtt__buf subr_stack[10], subrs = info->subrs, b; float f; #define STBTT__CSERR(s) (0) /* this currently ignores the initial width value, which isn't needed if we have hmtx */ b = stbtt__cff_index_get(info->charstrings, glyph_index); while (b.cursor < b.size) { i = 0; clear_stack = 1; b0 = stbtt__buf_get8(&b); switch (b0) { /* @TODO implement hinting */ case 0x13: /* hintmask */ case 0x14: /* cntrmask */ if (in_header) maskbits += (sp / 2); /* implicit "vstem" */ in_header = 0; stbtt__buf_skip(&b, (maskbits + 7) / 8); break; case 0x01: /* hstem */ case 0x03: /* vstem */ case 0x12: /* hstemhm */ case 0x17: /* vstemhm */ maskbits += (sp / 2); break; case 0x15: /* rmoveto */ in_header = 0; if (sp < 2) return STBTT__CSERR("rmoveto stack"); stbtt__csctx_rmove_to(c, s[sp-2], s[sp-1]); break; case 0x04: /* vmoveto */ in_header = 0; if (sp < 1) return STBTT__CSERR("vmoveto stack"); stbtt__csctx_rmove_to(c, 0, s[sp-1]); break; case 0x16: /* hmoveto */ in_header = 0; if (sp < 1) return STBTT__CSERR("hmoveto stack"); stbtt__csctx_rmove_to(c, s[sp-1], 0); break; case 0x05: /* rlineto */ if (sp < 2) return STBTT__CSERR("rlineto stack"); for (; i + 1 < sp; i += 2) stbtt__csctx_rline_to(c, s[i], s[i+1]); break; /* hlineto/vlineto and vhcurveto/hvcurveto alternate horizontal and vertical */ /* starting from a different place. */ case 0x07: /* vlineto */ if (sp < 1) return STBTT__CSERR("vlineto stack"); goto vlineto; case 0x06: /* hlineto */ if (sp < 1) return STBTT__CSERR("hlineto stack"); for (;;) { if (i >= sp) break; stbtt__csctx_rline_to(c, s[i], 0); i++; vlineto: if (i >= sp) break; stbtt__csctx_rline_to(c, 0, s[i]); i++; } break; case 0x1F: /* hvcurveto */ if (sp < 4) return STBTT__CSERR("hvcurveto stack"); goto hvcurveto; case 0x1E: /* vhcurveto */ if (sp < 4) return STBTT__CSERR("vhcurveto stack"); for (;;) { if (i + 3 >= sp) break; stbtt__csctx_rccurve_to(c, 0, s[i], s[i+1], s[i+2], s[i+3], (sp - i == 5) ? s[i + 4] : 0.0f); i += 4; hvcurveto: if (i + 3 >= sp) break; stbtt__csctx_rccurve_to(c, s[i], 0, s[i+1], s[i+2], (sp - i == 5) ? s[i+4] : 0.0f, s[i+3]); i += 4; } break; case 0x08: /* rrcurveto */ if (sp < 6) return STBTT__CSERR("rcurveline stack"); for (; i + 5 < sp; i += 6) stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); break; case 0x18: /* rcurveline */ if (sp < 8) return STBTT__CSERR("rcurveline stack"); for (; i + 5 < sp - 2; i += 6) stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); if (i + 1 >= sp) return STBTT__CSERR("rcurveline stack"); stbtt__csctx_rline_to(c, s[i], s[i+1]); break; case 0x19: /* rlinecurve */ if (sp < 8) return STBTT__CSERR("rlinecurve stack"); for (; i + 1 < sp - 6; i += 2) stbtt__csctx_rline_to(c, s[i], s[i+1]); if (i + 5 >= sp) return STBTT__CSERR("rlinecurve stack"); stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]); break; case 0x1A: /* vvcurveto */ case 0x1B: /* hhcurveto */ if (sp < 4) return STBTT__CSERR("(vv|hh)curveto stack"); f = 0.0; if (sp & 1) { f = s[i]; i++; } for (; i + 3 < sp; i += 4) { if (b0 == 0x1B) stbtt__csctx_rccurve_to(c, s[i], f, s[i+1], s[i+2], s[i+3], 0.0); else stbtt__csctx_rccurve_to(c, f, s[i], s[i+1], s[i+2], 0.0, s[i+3]); f = 0.0; } break; case 0x0A: /* callsubr */ if (!has_subrs) { if (info->fdselect.size) subrs = stbtt__cid_get_glyph_subrs(info, glyph_index); has_subrs = 1; } /* FALLTHROUGH */ case 0x1D: /* callgsubr */ if (sp < 1) return STBTT__CSERR("call(g|)subr stack"); v = (int) s[--sp]; if (subr_stack_height >= 10) return STBTT__CSERR("recursion limit"); subr_stack[subr_stack_height++] = b; b = stbtt__get_subr(b0 == 0x0A ? subrs : info->gsubrs, v); if (b.size == 0) return STBTT__CSERR("subr not found"); b.cursor = 0; clear_stack = 0; break; case 0x0B: /* return */ if (subr_stack_height <= 0) return STBTT__CSERR("return outside subr"); b = subr_stack[--subr_stack_height]; clear_stack = 0; break; case 0x0E: /* endchar */ stbtt__csctx_close_shape(c); return 1; case 0x0C: { /* two-byte escape */ float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy3, dy4, dy5, dy6; float dx, dy; int b1 = stbtt__buf_get8(&b); switch (b1) { /* @TODO These "flex" implementations ignore the flex-depth and resolution, */ /* and always draw beziers. */ case 0x22: /* hflex */ if (sp < 7) return STBTT__CSERR("hflex stack"); dx1 = s[0]; dx2 = s[1]; dy2 = s[2]; dx3 = s[3]; dx4 = s[4]; dx5 = s[5]; dx6 = s[6]; stbtt__csctx_rccurve_to(c, dx1, 0, dx2, dy2, dx3, 0); stbtt__csctx_rccurve_to(c, dx4, 0, dx5, -dy2, dx6, 0); break; case 0x23: /* flex */ if (sp < 13) return STBTT__CSERR("flex stack"); dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dy3 = s[5]; dx4 = s[6]; dy4 = s[7]; dx5 = s[8]; dy5 = s[9]; dx6 = s[10]; dy6 = s[11]; /* fd is s[12] */ stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); stbtt__csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); break; case 0x24: /* hflex1 */ if (sp < 9) return STBTT__CSERR("hflex1 stack"); dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dx4 = s[5]; dx5 = s[6]; dy5 = s[7]; dx6 = s[8]; stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, 0); stbtt__csctx_rccurve_to(c, dx4, 0, dx5, dy5, dx6, -(dy1+dy2+dy5)); break; case 0x25: /* flex1 */ if (sp < 11) return STBTT__CSERR("flex1 stack"); dx1 = s[0]; dy1 = s[1]; dx2 = s[2]; dy2 = s[3]; dx3 = s[4]; dy3 = s[5]; dx4 = s[6]; dy4 = s[7]; dx5 = s[8]; dy5 = s[9]; dx6 = dy6 = s[10]; dx = dx1+dx2+dx3+dx4+dx5; dy = dy1+dy2+dy3+dy4+dy5; if (STBTT_fabs(dx) > STBTT_fabs(dy)) dy6 = -dy; else dx6 = -dx; stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3); stbtt__csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6); break; default: return STBTT__CSERR("unimplemented"); } } break; default: if (b0 != 255 && b0 != 28 && b0 < 32) return STBTT__CSERR("reserved operator"); /* push immediate */ if (b0 == 255) { f = (float)(stbtt_int32)stbtt__buf_get32(&b) / 0x10000; } else { stbtt__buf_skip(&b, -1); f = (float)(stbtt_int16)stbtt__cff_int(&b); } if (sp >= 48) return STBTT__CSERR("push stack overflow"); s[sp++] = f; clear_stack = 0; break; } if (clear_stack) sp = 0; } return STBTT__CSERR("no endchar"); #undef STBTT__CSERR } static int stbtt__GetGlyphShapeT2(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) { /* runs the charstring twice, once to count and once to output (to avoid realloc) */ stbtt__csctx count_ctx = STBTT__CSCTX_INIT(1); stbtt__csctx output_ctx = STBTT__CSCTX_INIT(0); if (stbtt__run_charstring(info, glyph_index, &count_ctx)) { *pvertices = (stbtt_vertex*)STBTT_malloc(count_ctx.num_vertices*sizeof(stbtt_vertex), info->userdata); output_ctx.pvertices = *pvertices; if (stbtt__run_charstring(info, glyph_index, &output_ctx)) { STBTT_assert(output_ctx.num_vertices == count_ctx.num_vertices); return output_ctx.num_vertices; } } *pvertices = NULL; return 0; } static int stbtt__GetGlyphInfoT2(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) { stbtt__csctx c = STBTT__CSCTX_INIT(1); int r = stbtt__run_charstring(info, glyph_index, &c); if (x0) *x0 = r ? c.min_x : 0; if (y0) *y0 = r ? c.min_y : 0; if (x1) *x1 = r ? c.max_x : 0; if (y1) *y1 = r ? c.max_y : 0; return r ? c.num_vertices : 0; } STBTT_DEF int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) { if (!info->cff.size) return stbtt__GetGlyphShapeTT(info, glyph_index, pvertices); else return stbtt__GetGlyphShapeT2(info, glyph_index, pvertices); } STBTT_DEF void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing) { stbtt_uint16 numOfLongHorMetrics = ttUSHORT(info->data+info->hhea + 34); if (glyph_index < numOfLongHorMetrics) { if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*glyph_index); if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*glyph_index + 2); } else { if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*(numOfLongHorMetrics-1)); if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*numOfLongHorMetrics + 2*(glyph_index - numOfLongHorMetrics)); } } STBTT_DEF int stbtt_GetKerningTableLength(const stbtt_fontinfo *info) { stbtt_uint8 *data = info->data + info->kern; /* we only look at the first table. it must be 'horizontal' and format 0. */ if (!info->kern) return 0; if (ttUSHORT(data+2) < 1) /* number of tables, need at least 1 */ return 0; if (ttUSHORT(data+8) != 1) /* horizontal flag must be set in format */ return 0; return ttUSHORT(data+10); } STBTT_DEF int stbtt_GetKerningTable(const stbtt_fontinfo *info, stbtt_kerningentry* table, int table_length) { stbtt_uint8 *data = info->data + info->kern; int k, length; /* we only look at the first table. it must be 'horizontal' and format 0. */ if (!info->kern) return 0; if (ttUSHORT(data+2) < 1) /* number of tables, need at least 1 */ return 0; if (ttUSHORT(data+8) != 1) /* horizontal flag must be set in format */ return 0; length = ttUSHORT(data+10); if (table_length < length) length = table_length; for (k = 0; k < length; k++) { table[k].glyph1 = ttUSHORT(data+18+(k*6)); table[k].glyph2 = ttUSHORT(data+20+(k*6)); table[k].advance = ttSHORT(data+22+(k*6)); } return length; } static int stbtt__GetGlyphKernInfoAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2) { stbtt_uint8 *data = info->data + info->kern; stbtt_uint32 needle, straw; int l, r, m; /* we only look at the first table. it must be 'horizontal' and format 0. */ if (!info->kern) return 0; if (ttUSHORT(data+2) < 1) /* number of tables, need at least 1 */ return 0; if (ttUSHORT(data+8) != 1) /* horizontal flag must be set in format */ return 0; l = 0; r = ttUSHORT(data+10) - 1; needle = glyph1 << 16 | glyph2; while (l <= r) { m = (l + r) >> 1; straw = ttULONG(data+18+(m*6)); /* note: unaligned read */ if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else return ttSHORT(data+22+(m*6)); } return 0; } static stbtt_int32 stbtt__GetCoverageIndex(stbtt_uint8 *coverageTable, int glyph) { stbtt_uint16 coverageFormat = ttUSHORT(coverageTable); switch (coverageFormat) { case 1: { stbtt_uint16 glyphCount = ttUSHORT(coverageTable + 2); /* Binary search. */ stbtt_int32 l=0, r=glyphCount-1, m; int straw, needle=glyph; while (l <= r) { stbtt_uint8 *glyphArray = coverageTable + 4; stbtt_uint16 glyphID; m = (l + r) >> 1; glyphID = ttUSHORT(glyphArray + 2 * m); straw = glyphID; if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else { return m; } } break; } case 2: { stbtt_uint16 rangeCount = ttUSHORT(coverageTable + 2); stbtt_uint8 *rangeArray = coverageTable + 4; /* Binary search. */ stbtt_int32 l=0, r=rangeCount-1, m; int strawStart, strawEnd, needle=glyph; while (l <= r) { stbtt_uint8 *rangeRecord; m = (l + r) >> 1; rangeRecord = rangeArray + 6 * m; strawStart = ttUSHORT(rangeRecord); strawEnd = ttUSHORT(rangeRecord + 2); if (needle < strawStart) r = m - 1; else if (needle > strawEnd) l = m + 1; else { stbtt_uint16 startCoverageIndex = ttUSHORT(rangeRecord + 4); return startCoverageIndex + glyph - strawStart; } } break; } default: return -1; /* unsupported */ } return -1; } static stbtt_int32 stbtt__GetGlyphClass(stbtt_uint8 *classDefTable, int glyph) { stbtt_uint16 classDefFormat = ttUSHORT(classDefTable); switch (classDefFormat) { case 1: { stbtt_uint16 startGlyphID = ttUSHORT(classDefTable + 2); stbtt_uint16 glyphCount = ttUSHORT(classDefTable + 4); stbtt_uint8 *classDef1ValueArray = classDefTable + 6; if (glyph >= startGlyphID && glyph < startGlyphID + glyphCount) return (stbtt_int32)ttUSHORT(classDef1ValueArray + 2 * (glyph - startGlyphID)); break; } case 2: { stbtt_uint16 classRangeCount = ttUSHORT(classDefTable + 2); stbtt_uint8 *classRangeRecords = classDefTable + 4; /* Binary search. */ stbtt_int32 l=0, r=classRangeCount-1, m; int strawStart, strawEnd, needle=glyph; while (l <= r) { stbtt_uint8 *classRangeRecord; m = (l + r) >> 1; classRangeRecord = classRangeRecords + 6 * m; strawStart = ttUSHORT(classRangeRecord); strawEnd = ttUSHORT(classRangeRecord + 2); if (needle < strawStart) r = m - 1; else if (needle > strawEnd) l = m + 1; else return (stbtt_int32)ttUSHORT(classRangeRecord + 4); } break; } default: return -1; /* Unsupported definition type, return an error. */ } /* "All glyphs not assigned to a class fall into class 0". (OpenType spec) */ return 0; } /* Define to STBTT_assert(x) if you want to break on unimplemented formats. */ #define STBTT_GPOS_TODO_assert(x) static stbtt_int32 stbtt__GetGlyphGPOSInfoAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2) { stbtt_uint16 lookupListOffset; stbtt_uint8 *lookupList; stbtt_uint16 lookupCount; stbtt_uint8 *data; stbtt_int32 i, sti; if (!info->gpos) return 0; data = info->data + info->gpos; if (ttUSHORT(data+0) != 1) return 0; /* Major version 1 */ if (ttUSHORT(data+2) != 0) return 0; /* Minor version 0 */ lookupListOffset = ttUSHORT(data+8); lookupList = data + lookupListOffset; lookupCount = ttUSHORT(lookupList); for (i=0; i= pairSetCount) return 0; needle=glyph2; r=pairValueCount-1; l=0; /* Binary search. */ while (l <= r) { stbtt_uint16 secondGlyph; stbtt_uint8 *pairValue; m = (l + r) >> 1; pairValue = pairValueArray + (2 + valueRecordPairSizeInBytes) * m; secondGlyph = ttUSHORT(pairValue); straw = secondGlyph; if (needle < straw) r = m - 1; else if (needle > straw) l = m + 1; else { stbtt_int16 xAdvance = ttSHORT(pairValue + 2); return xAdvance; } } } else return 0; break; } case 2: { stbtt_uint16 valueFormat1 = ttUSHORT(table + 4); stbtt_uint16 valueFormat2 = ttUSHORT(table + 6); if (valueFormat1 == 4 && valueFormat2 == 0) { /* Support more formats? */ stbtt_uint16 classDef1Offset = ttUSHORT(table + 8); stbtt_uint16 classDef2Offset = ttUSHORT(table + 10); int glyph1class = stbtt__GetGlyphClass(table + classDef1Offset, glyph1); int glyph2class = stbtt__GetGlyphClass(table + classDef2Offset, glyph2); stbtt_uint16 class1Count = ttUSHORT(table + 12); stbtt_uint16 class2Count = ttUSHORT(table + 14); stbtt_uint8 *class1Records, *class2Records; stbtt_int16 xAdvance; if (glyph1class < 0 || glyph1class >= class1Count) return 0; /* malformed */ if (glyph2class < 0 || glyph2class >= class2Count) return 0; /* malformed */ class1Records = table + 16; class2Records = class1Records + 2 * (glyph1class * class2Count); xAdvance = ttSHORT(class2Records + 2 * glyph2class); return xAdvance; } else return 0; break; } default: return 0; /* Unsupported position format */ } } } return 0; } STBTT_DEF int stbtt_GetGlyphKernAdvance(const stbtt_fontinfo *info, int g1, int g2) { int xAdvance = 0; if (info->gpos) xAdvance += stbtt__GetGlyphGPOSInfoAdvance(info, g1, g2); else if (info->kern) xAdvance += stbtt__GetGlyphKernInfoAdvance(info, g1, g2); return xAdvance; } STBTT_DEF int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2) { if (!info->kern && !info->gpos) /* if no kerning table, don't waste time looking up both codepoint->glyphs */ return 0; return stbtt_GetGlyphKernAdvance(info, stbtt_FindGlyphIndex(info,ch1), stbtt_FindGlyphIndex(info,ch2)); } STBTT_DEF void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing) { stbtt_GetGlyphHMetrics(info, stbtt_FindGlyphIndex(info,codepoint), advanceWidth, leftSideBearing); } STBTT_DEF void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap) { if (ascent ) *ascent = ttSHORT(info->data+info->hhea + 4); if (descent) *descent = ttSHORT(info->data+info->hhea + 6); if (lineGap) *lineGap = ttSHORT(info->data+info->hhea + 8); } STBTT_DEF int stbtt_GetFontVMetricsOS2(const stbtt_fontinfo *info, int *typoAscent, int *typoDescent, int *typoLineGap) { int tab = stbtt__find_table(info->data, info->fontstart, "OS/2"); if (!tab) return 0; if (typoAscent ) *typoAscent = ttSHORT(info->data+tab + 68); if (typoDescent) *typoDescent = ttSHORT(info->data+tab + 70); if (typoLineGap) *typoLineGap = ttSHORT(info->data+tab + 72); return 1; } STBTT_DEF void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1) { *x0 = ttSHORT(info->data + info->head + 36); *y0 = ttSHORT(info->data + info->head + 38); *x1 = ttSHORT(info->data + info->head + 40); *y1 = ttSHORT(info->data + info->head + 42); } STBTT_DEF float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float height) { int fheight = ttSHORT(info->data + info->hhea + 4) - ttSHORT(info->data + info->hhea + 6); return (float) height / fheight; } STBTT_DEF float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels) { int unitsPerEm = ttUSHORT(info->data + info->head + 18); return pixels / unitsPerEm; } STBTT_DEF void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *v) { STBTT_free(v, info->userdata); } STBTT_DEF stbtt_uint8 *stbtt_FindSVGDoc(const stbtt_fontinfo *info, int gl) { int i; stbtt_uint8 *data = info->data; stbtt_uint8 *svg_doc_list = data + stbtt__get_svg((stbtt_fontinfo *) info); int numEntries = ttUSHORT(svg_doc_list); stbtt_uint8 *svg_docs = svg_doc_list + 2; for(i=0; i= ttUSHORT(svg_doc)) && (gl <= ttUSHORT(svg_doc + 2))) return svg_doc; } return 0; } STBTT_DEF int stbtt_GetGlyphSVG(const stbtt_fontinfo *info, int gl, const char **svg) { stbtt_uint8 *data = info->data; stbtt_uint8 *svg_doc; if (info->svg == 0) return 0; svg_doc = stbtt_FindSVGDoc(info, gl); if (svg_doc != NULL) { *svg = (char *) data + info->svg + ttULONG(svg_doc + 4); return ttULONG(svg_doc + 8); } else { return 0; } } STBTT_DEF int stbtt_GetCodepointSVG(const stbtt_fontinfo *info, int unicode_codepoint, const char **svg) { return stbtt_GetGlyphSVG(info, stbtt_FindGlyphIndex(info, unicode_codepoint), svg); } /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* antialiasing software rasterizer */ /* */ STBTT_DEF void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) { int x0=0,y0=0,x1,y1; /* =0 suppresses compiler warning */ if (!stbtt_GetGlyphBox(font, glyph, &x0,&y0,&x1,&y1)) { /* e.g. space character */ if (ix0) *ix0 = 0; if (iy0) *iy0 = 0; if (ix1) *ix1 = 0; if (iy1) *iy1 = 0; } else { /* move to integral bboxes (treating pixels as little squares, what pixels get touched)? */ if (ix0) *ix0 = STBTT_ifloor( x0 * scale_x + shift_x); if (iy0) *iy0 = STBTT_ifloor(-y1 * scale_y + shift_y); if (ix1) *ix1 = STBTT_iceil ( x1 * scale_x + shift_x); if (iy1) *iy1 = STBTT_iceil (-y0 * scale_y + shift_y); } } STBTT_DEF void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) { stbtt_GetGlyphBitmapBoxSubpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1); } STBTT_DEF void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) { stbtt_GetGlyphBitmapBoxSubpixel(font, stbtt_FindGlyphIndex(font,codepoint), scale_x, scale_y,shift_x,shift_y, ix0,iy0,ix1,iy1); } STBTT_DEF void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) { stbtt_GetCodepointBitmapBoxSubpixel(font, codepoint, scale_x, scale_y,0.0f,0.0f, ix0,iy0,ix1,iy1); } /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* Rasterizer */ typedef struct stbtt__hheap_chunk { struct stbtt__hheap_chunk *next; } stbtt__hheap_chunk; typedef struct stbtt__hheap { struct stbtt__hheap_chunk *head; void *first_free; int num_remaining_in_head_chunk; } stbtt__hheap; static void *stbtt__hheap_alloc(stbtt__hheap *hh, size_t size, void *userdata) { if (hh->first_free) { void *p = hh->first_free; hh->first_free = * (void **) p; return p; } else { if (hh->num_remaining_in_head_chunk == 0) { int count = (size < 32 ? 2000 : size < 128 ? 800 : 100); stbtt__hheap_chunk *c = (stbtt__hheap_chunk *) STBTT_malloc(sizeof(stbtt__hheap_chunk) + size * count, userdata); if (c == NULL) return NULL; c->next = hh->head; hh->head = c; hh->num_remaining_in_head_chunk = count; } --hh->num_remaining_in_head_chunk; return (char *) (hh->head) + sizeof(stbtt__hheap_chunk) + size * hh->num_remaining_in_head_chunk; } } static void stbtt__hheap_free(stbtt__hheap *hh, void *p) { *(void **) p = hh->first_free; hh->first_free = p; } static void stbtt__hheap_cleanup(stbtt__hheap *hh, void *userdata) { stbtt__hheap_chunk *c = hh->head; while (c) { stbtt__hheap_chunk *n = c->next; STBTT_free(c, userdata); c = n; } } typedef struct stbtt__edge { float x0,y0, x1,y1; int invert; } stbtt__edge; typedef struct stbtt__active_edge { struct stbtt__active_edge *next; #if STBTT_RASTERIZER_VERSION==1 int x,dx; float ey; int direction; #elif STBTT_RASTERIZER_VERSION==2 float fx,fdx,fdy; float direction; float sy; float ey; #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif } stbtt__active_edge; #if STBTT_RASTERIZER_VERSION == 1 #define STBTT_FIXSHIFT 10 #define STBTT_FIX (1 << STBTT_FIXSHIFT) #define STBTT_FIXMASK (STBTT_FIX-1) static stbtt__active_edge *stbtt__new_active(stbtt__hheap *hh, stbtt__edge *e, int off_x, float start_point, void *userdata) { stbtt__active_edge *z = (stbtt__active_edge *) stbtt__hheap_alloc(hh, sizeof(*z), userdata); float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); STBTT_assert(z != NULL); if (!z) return z; /* round dx down to avoid overshooting */ if (dxdy < 0) z->dx = -STBTT_ifloor(STBTT_FIX * -dxdy); else z->dx = STBTT_ifloor(STBTT_FIX * dxdy); z->x = STBTT_ifloor(STBTT_FIX * e->x0 + z->dx * (start_point - e->y0)); /* use z->dx so when we offset later it's by the same amount */ z->x -= off_x * STBTT_FIX; z->ey = e->y1; z->next = 0; z->direction = e->invert ? 1 : -1; return z; } #elif STBTT_RASTERIZER_VERSION == 2 static stbtt__active_edge *stbtt__new_active(stbtt__hheap *hh, stbtt__edge *e, int off_x, float start_point, void *userdata) { stbtt__active_edge *z = (stbtt__active_edge *) stbtt__hheap_alloc(hh, sizeof(*z), userdata); float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); STBTT_assert(z != NULL); /* STBTT_assert(e->y0 <= start_point); */ if (!z) return z; z->fdx = dxdy; z->fdy = dxdy != 0.0f ? (1.0f/dxdy) : 0.0f; z->fx = e->x0 + dxdy * (start_point - e->y0); z->fx -= off_x; z->direction = e->invert ? 1.0f : -1.0f; z->sy = e->y0; z->ey = e->y1; z->next = 0; return z; } #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif #if STBTT_RASTERIZER_VERSION == 1 /* note: this routine clips fills that extend off the edges... ideally this */ /* wouldn't happen, but it could happen if the truetype glyph bounding boxes */ /* are wrong, or if the user supplies a too-small bitmap */ static void stbtt__fill_active_edges(unsigned char *scanline, int len, stbtt__active_edge *e, int max_weight) { /* non-zero winding fill */ int x0=0, w=0; while (e) { if (w == 0) { /* if we're currently at zero, we need to record the edge start point */ x0 = e->x; w += e->direction; } else { int x1 = e->x; w += e->direction; /* if we went to zero, we need to draw */ if (w == 0) { int i = x0 >> STBTT_FIXSHIFT; int j = x1 >> STBTT_FIXSHIFT; if (i < len && j >= 0) { if (i == j) { /* x0,x1 are the same pixel, so compute combined coverage */ scanline[i] = scanline[i] + (stbtt_uint8) ((x1 - x0) * max_weight >> STBTT_FIXSHIFT); } else { if (i >= 0) /* add antialiasing for x0 */ scanline[i] = scanline[i] + (stbtt_uint8) (((STBTT_FIX - (x0 & STBTT_FIXMASK)) * max_weight) >> STBTT_FIXSHIFT); else i = -1; /* clip */ if (j < len) /* add antialiasing for x1 */ scanline[j] = scanline[j] + (stbtt_uint8) (((x1 & STBTT_FIXMASK) * max_weight) >> STBTT_FIXSHIFT); else j = len; /* clip */ for (++i; i < j; ++i) /* fill pixels between x0 and x1 */ scanline[i] = scanline[i] + (stbtt_uint8) max_weight; } } } } e = e->next; } } static void stbtt__rasterize_sorted_edges(stbtt__bitmap *result, stbtt__edge *e, int n, int vsubsample, int off_x, int off_y, void *userdata) { stbtt__hheap hh = { 0, 0, 0 }; stbtt__active_edge *active = NULL; int y,j=0; int max_weight = (255 / vsubsample); /* weight per vertical scanline */ int s; /* vertical subsample index */ unsigned char scanline_data[512], *scanline; if (result->w > 512) scanline = (unsigned char *) STBTT_malloc(result->w, userdata); else scanline = scanline_data; y = off_y * vsubsample; e[n].y0 = (off_y + result->h) * (float) vsubsample + 1; while (j < result->h) { STBTT_memset(scanline, 0, result->w); for (s=0; s < vsubsample; ++s) { /* find center of pixel for this scanline */ float scan_y = y + 0.5f; stbtt__active_edge **step = &active; /* update all active edges; */ /* remove all active edges that terminate before the center of this scanline */ while (*step) { stbtt__active_edge * z = *step; if (z->ey <= scan_y) { *step = z->next; /* delete from list */ STBTT_assert(z->direction); z->direction = 0; stbtt__hheap_free(&hh, z); } else { z->x += z->dx; /* advance to position for current scanline */ step = &((*step)->next); /* advance through list */ } } /* resort the list if needed */ for(;;) { int changed=0; step = &active; while (*step && (*step)->next) { if ((*step)->x > (*step)->next->x) { stbtt__active_edge *t = *step; stbtt__active_edge *q = t->next; t->next = q->next; q->next = t; *step = q; changed = 1; } step = &(*step)->next; } if (!changed) break; } /* insert all edges that start before the center of this scanline -- omit ones that also end on this scanline */ while (e->y0 <= scan_y) { if (e->y1 > scan_y) { stbtt__active_edge *z = stbtt__new_active(&hh, e, off_x, scan_y, userdata); if (z != NULL) { /* find insertion point */ if (active == NULL) active = z; else if (z->x < active->x) { /* insert at front */ z->next = active; active = z; } else { /* find thing to insert AFTER */ stbtt__active_edge *p = active; while (p->next && p->next->x < z->x) p = p->next; /* at this point, p->next->x is NOT < z->x */ z->next = p->next; p->next = z; } } } ++e; } /* now process all active edges in XOR fashion */ if (active) stbtt__fill_active_edges(scanline, result->w, active, max_weight); ++y; } STBTT_memcpy(result->pixels + j * result->stride, scanline, result->w); ++j; } stbtt__hheap_cleanup(&hh, userdata); if (scanline != scanline_data) STBTT_free(scanline, userdata); } #elif STBTT_RASTERIZER_VERSION == 2 /* the edge passed in here does not cross the vertical line at x or the vertical line at x+1 */ /* (i.e. it has already been clipped to those) */ static void stbtt__handle_clipped_edge(float *scanline, int x, stbtt__active_edge *e, float x0, float y0, float x1, float y1) { if (y0 == y1) return; STBTT_assert(y0 < y1); STBTT_assert(e->sy <= e->ey); if (y0 > e->ey) return; if (y1 < e->sy) return; if (y0 < e->sy) { x0 += (x1-x0) * (e->sy - y0) / (y1-y0); y0 = e->sy; } if (y1 > e->ey) { x1 += (x1-x0) * (e->ey - y1) / (y1-y0); y1 = e->ey; } if (x0 == x) STBTT_assert(x1 <= x+1); else if (x0 == x+1) STBTT_assert(x1 >= x); else if (x0 <= x) STBTT_assert(x1 <= x); else if (x0 >= x+1) STBTT_assert(x1 >= x+1); else STBTT_assert(x1 >= x && x1 <= x+1); if (x0 <= x && x1 <= x) scanline[x] += e->direction * (y1-y0); else if (x0 >= x+1 && x1 >= x+1) ; else { STBTT_assert(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1); scanline[x] += e->direction * (y1-y0) * (1-((x0-x)+(x1-x))/2); /* coverage = 1 - average x position */ } } static float stbtt__sized_trapezoid_area(float height, float top_width, float bottom_width) { STBTT_assert(top_width >= 0); STBTT_assert(bottom_width >= 0); return (top_width + bottom_width) / 2.0f * height; } static float stbtt__position_trapezoid_area(float height, float tx0, float tx1, float bx0, float bx1) { return stbtt__sized_trapezoid_area(height, tx1 - tx0, bx1 - bx0); } static float stbtt__sized_triangle_area(float height, float width) { return height * width / 2; } static void stbtt__fill_active_edges_new(float *scanline, float *scanline_fill, int len, stbtt__active_edge *e, float y_top) { float y_bottom = y_top+1; while (e) { /* brute force every pixel */ /* compute intersection points with top & bottom */ STBTT_assert(e->ey >= y_top); if (e->fdx == 0) { float x0 = e->fx; if (x0 < len) { if (x0 >= 0) { stbtt__handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bottom); stbtt__handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bottom); } else { stbtt__handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bottom); } } } else { float x0 = e->fx; float dx = e->fdx; float xb = x0 + dx; float x_top, x_bottom; float sy0,sy1; float dy = e->fdy; STBTT_assert(e->sy <= y_bottom && e->ey >= y_top); /* compute endpoints of line segment clipped to this scanline (if the */ /* line segment starts on this scanline. x0 is the intersection of the */ /* line with y_top, but that may be off the line segment. */ if (e->sy > y_top) { x_top = x0 + dx * (e->sy - y_top); sy0 = e->sy; } else { x_top = x0; sy0 = y_top; } if (e->ey < y_bottom) { x_bottom = x0 + dx * (e->ey - y_top); sy1 = e->ey; } else { x_bottom = xb; sy1 = y_bottom; } if (x_top >= 0 && x_bottom >= 0 && x_top < len && x_bottom < len) { /* from here on, we don't have to range check x values */ if ((int) x_top == (int) x_bottom) { float height; /* simple case, only spans one pixel */ int x = (int) x_top; height = (sy1 - sy0) * e->direction; STBTT_assert(x >= 0 && x < len); scanline[x] += stbtt__position_trapezoid_area(height, x_top, x+1.0f, x_bottom, x+1.0f); scanline_fill[x] += height; /* everything right of this pixel is filled */ } else { int x,x1,x2; float y_crossing, y_final, step, sign, area; /* covers 2+ pixels */ if (x_top > x_bottom) { /* flip scanline vertically; signed area is the same */ float t; sy0 = y_bottom - (sy0 - y_top); sy1 = y_bottom - (sy1 - y_top); t = sy0, sy0 = sy1, sy1 = t; t = x_bottom, x_bottom = x_top, x_top = t; dx = -dx; dy = -dy; t = x0, x0 = xb, xb = t; } STBTT_assert(dy >= 0); STBTT_assert(dx >= 0); x1 = (int) x_top; x2 = (int) x_bottom; /* compute intersection with y axis at x1+1 */ y_crossing = y_top + dy * (x1+1 - x0); /* compute intersection with y axis at x2 */ y_final = y_top + dy * (x2 - x0); /* x1 x_top x2 x_bottom */ /* y_top +------|-----+------------+------------+--------|---+------------+ */ /* | | | | | | */ /* | | | | | | */ /* sy0 | Txxxxx|............|............|............|............| */ /* y_crossing | *xxxxx.......|............|............|............| */ /* | | xxxxx..|............|............|............| */ /* | | /- xx*xxxx........|............|............| */ /* | | dy < | xxxxxx..|............|............| */ /* y_final | | \- | xx*xxx.........|............| */ /* sy1 | | | | xxxxxB...|............| */ /* | | | | | | */ /* | | | | | | */ /* y_bottom +------------+------------+------------+------------+------------+ */ /* */ /* goal is to measure the area covered by '.' in each pixel */ /* if x2 is right at the right edge of x1, y_crossing can blow up, github #1057 */ /* @TODO: maybe test against sy1 rather than y_bottom? */ if (y_crossing > y_bottom) y_crossing = y_bottom; sign = e->direction; /* area of the rectangle covered from sy0..y_crossing */ area = sign * (y_crossing-sy0); /* area of the triangle (x_top,sy0), (x1+1,sy0), (x1+1,y_crossing) */ scanline[x1] += stbtt__sized_triangle_area(area, x1+1 - x_top); /* check if final y_crossing is blown up; no test case for this */ if (y_final > y_bottom) { y_final = y_bottom; dy = (x2 - (x1+1)), dy = (y_final - y_crossing ) / (dy+!dy); /* if denom=0, y_final = y_crossing, so y_final <= y_bottom */ //< @r-lyeh dix divide by zero } /* in second pixel, area covered by line segment found in first pixel */ /* is always a rectangle 1 wide * the height of that line segment; this */ /* is exactly what the variable 'area' stores. it also gets a contribution */ /* from the line segment within it. the THIRD pixel will get the first */ /* pixel's rectangle contribution, the second pixel's rectangle contribution, */ /* and its own contribution. the 'own contribution' is the same in every pixel except */ /* the leftmost and rightmost, a trapezoid that slides down in each pixel. */ /* the second pixel's contribution to the third pixel will be the */ /* rectangle 1 wide times the height change in the second pixel, which is dy. */ step = sign * dy * 1; /* dy is dy/dx, change in y for every 1 change in x, */ /* which multiplied by 1-pixel-width is how much pixel area changes for each step in x */ /* so the area advances by 'step' every time */ for (x = x1+1; x < x2; ++x) { scanline[x] += area + step/2; /* area of trapezoid is 1*step/2 */ area += step; } STBTT_assert(STBTT_fabs(area) <= 1.01f); /* accumulated error from area += step unless we round step down */ STBTT_assert(sy1 > y_final-0.01f); /* area covered in the last pixel is the rectangle from all the pixels to the left, */ /* plus the trapezoid filled by the line segment in this pixel all the way to the right edge */ scanline[x2] += area + sign * stbtt__position_trapezoid_area(sy1-y_final, (float) x2, x2+1.0f, x_bottom, x2+1.0f); /* the rest of the line is filled based on the total height of the line segment in this pixel */ scanline_fill[x2] += sign * (sy1-sy0); } } else { /* if edge goes outside of box we're drawing, we require */ /* clipping logic. since this does not match the intended use */ /* of this library, we use a different, very slow brute */ /* force implementation */ /* note though that this does happen some of the time because */ /* x_top and x_bottom can be extrapolated at the top & bottom of */ /* the shape and actually lie outside the bounding box */ int x; for (x=0; x < len; ++x) { /* cases: */ /* */ /* there can be up to two intersections with the pixel. any intersection */ /* with left or right edges can be handled by splitting into two (or three) */ /* regions. intersections with top & bottom do not necessitate case-wise logic. */ /* */ /* the old way of doing this found the intersections with the left & right edges, */ /* then used some simple logic to produce up to three segments in sorted order */ /* from top-to-bottom. however, this had a problem: if an x edge was epsilon */ /* across the x border, then the corresponding y position might not be distinct */ /* from the other y segment, and it might ignored as an empty segment. to avoid */ /* that, we need to explicitly produce segments based on x positions. */ /* rename variables to clearly-defined pairs */ float y0 = y_top; float x1 = (float) (x); float x2 = (float) (x+1); float x3 = xb; float y3 = y_bottom; /* x = e->x + e->dx * (y-y_top) */ /* (y-y_top) = (x - e->x) / e->dx */ /* y = (x - e->x) / e->dx + y_top */ float y1 = (x - x0) / dx + y_top; float y2 = (x+1 - x0) / dx + y_top; if (x0 < x1 && x3 > x2) { /* three segments descending down-right */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else if (x3 < x1 && x0 > x2) { /* three segments descending down-left */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x0 < x1 && x3 > x1) { /* two segments across x, down-right */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x3 < x1 && x0 > x1) { /* two segments across x, down-left */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x1,y1); stbtt__handle_clipped_edge(scanline,x,e, x1,y1, x3,y3); } else if (x0 < x2 && x3 > x2) { /* two segments across x+1, down-right */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else if (x3 < x2 && x0 > x2) { /* two segments across x+1, down-left */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x2,y2); stbtt__handle_clipped_edge(scanline,x,e, x2,y2, x3,y3); } else { /* one segment */ stbtt__handle_clipped_edge(scanline,x,e, x0,y0, x3,y3); } } } } e = e->next; } } /* directly AA rasterize edges w/o supersampling */ static void stbtt__rasterize_sorted_edges(stbtt__bitmap *result, stbtt__edge *e, int n, int vsubsample, int off_x, int off_y, void *userdata) { stbtt__hheap hh = { 0, 0, 0 }; stbtt__active_edge *active = NULL; int y,j=0, i; float scanline_data[129], *scanline, *scanline2; STBTT__NOTUSED(vsubsample); if (result->w > 64) scanline = (float *) STBTT_malloc((result->w*2+1) * sizeof(float), userdata); else scanline = scanline_data; scanline2 = scanline + result->w; y = off_y; e[n].y0 = (float) (off_y + result->h) + 1; while (j < result->h) { /* find center of pixel for this scanline */ float scan_y_top = y + 0.0f; float scan_y_bottom = y + 1.0f; stbtt__active_edge **step = &active; STBTT_memset(scanline , 0, result->w*sizeof(scanline[0])); STBTT_memset(scanline2, 0, (result->w+1)*sizeof(scanline[0])); /* update all active edges; */ /* remove all active edges that terminate before the top of this scanline */ while (*step) { stbtt__active_edge * z = *step; if (z->ey <= scan_y_top) { *step = z->next; /* delete from list */ STBTT_assert(z->direction); z->direction = 0; stbtt__hheap_free(&hh, z); } else { step = &((*step)->next); /* advance through list */ } } /* insert all edges that start before the bottom of this scanline */ while (e->y0 <= scan_y_bottom) { if (e->y0 != e->y1) { stbtt__active_edge *z = stbtt__new_active(&hh, e, off_x, scan_y_top, userdata); if (z != NULL) { if (j == 0 && off_y != 0) { if (z->ey < scan_y_top) { /* this can happen due to subpixel positioning and some kind of fp rounding error i think */ z->ey = scan_y_top; } } STBTT_assert(z->ey >= scan_y_top); /* if we get really unlucky a tiny bit of an edge can be out of bounds */ /* insert at front */ z->next = active; active = z; } } ++e; } /* now process all active edges */ if (active) stbtt__fill_active_edges_new(scanline, scanline2+1, result->w, active, scan_y_top); { float sum = 0; for (i=0; i < result->w; ++i) { float k; int m; sum += scanline2[i]; k = scanline[i] + sum; k = (float) STBTT_fabs(k)*255 + 0.5f; m = (int) k; if (m > 255) m = 255; result->pixels[j*result->stride + i] = (unsigned char) m; } } /* advance all the edges */ step = &active; while (*step) { stbtt__active_edge *z = *step; z->fx += z->fdx; /* advance to position for current scanline */ step = &((*step)->next); /* advance through list */ } ++y; ++j; } stbtt__hheap_cleanup(&hh, userdata); if (scanline != scanline_data) STBTT_free(scanline, userdata); } #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif #define STBTT__COMPARE(a,b) ((a)->y0 < (b)->y0) static void stbtt__sort_edges_ins_sort(stbtt__edge *p, int n) { int i,j; for (i=1; i < n; ++i) { stbtt__edge t = p[i], *a = &t; j = i; while (j > 0) { stbtt__edge *b = &p[j-1]; int c = STBTT__COMPARE(a,b); if (!c) break; p[j] = p[j-1]; --j; } if (i != j) p[j] = t; } } static void stbtt__sort_edges_quicksort(stbtt__edge *p, int n) { /* threshold for transitioning to insertion sort */ while (n > 12) { stbtt__edge t; int c01,c12,c,m,i,j; /* compute median of three */ m = n >> 1; c01 = STBTT__COMPARE(&p[0],&p[m]); c12 = STBTT__COMPARE(&p[m],&p[n-1]); /* if 0 >= mid >= end, or 0 < mid < end, then use mid */ if (c01 != c12) { /* otherwise, we'll need to swap something else to middle */ int z; c = STBTT__COMPARE(&p[0],&p[n-1]); /* 0>mid && midn => n; 0 0 */ /* 0n: 0>n => 0; 0 n */ z = (c == c12) ? 0 : n-1; t = p[z]; p[z] = p[m]; p[m] = t; } /* now p[m] is the median-of-three */ /* swap it to the beginning so it won't move around */ t = p[0]; p[0] = p[m]; p[m] = t; /* partition loop */ i=1; j=n-1; for(;;) { /* handling of equality is crucial here */ /* for sentinels & efficiency with duplicates */ for (;;++i) { if (!STBTT__COMPARE(&p[i], &p[0])) break; } for (;;--j) { if (!STBTT__COMPARE(&p[0], &p[j])) break; } /* make sure we haven't crossed */ if (i >= j) break; t = p[i]; p[i] = p[j]; p[j] = t; ++i; --j; } /* recurse on smaller side, iterate on larger */ if (j < (n-i)) { stbtt__sort_edges_quicksort(p,j); p = p+i; n = n-i; } else { stbtt__sort_edges_quicksort(p+i, n-i); n = j; } } } static void stbtt__sort_edges(stbtt__edge *p, int n) { stbtt__sort_edges_quicksort(p, n); stbtt__sort_edges_ins_sort(p, n); } typedef struct { float x,y; } stbtt__point; static void stbtt__rasterize(stbtt__bitmap *result, stbtt__point *pts, int *wcount, int windings, float scale_x, float scale_y, float shift_x, float shift_y, int off_x, int off_y, int invert, void *userdata) { float y_scale_inv = invert ? -scale_y : scale_y; stbtt__edge *e; int n,i,j,k,m; #if STBTT_RASTERIZER_VERSION == 1 int vsubsample = result->h < 8 ? 15 : 5; #elif STBTT_RASTERIZER_VERSION == 2 int vsubsample = 1; #else #error "Unrecognized value of STBTT_RASTERIZER_VERSION" #endif /* vsubsample should divide 255 evenly; otherwise we won't reach full opacity */ /* now we have to blow out the windings into explicit edge lists */ n = 0; for (i=0; i < windings; ++i) n += wcount[i]; e = (stbtt__edge *) STBTT_malloc(sizeof(*e) * (n+1), userdata); /* add an extra one as a sentinel */ if (e == 0) return; n = 0; m=0; for (i=0; i < windings; ++i) { stbtt__point *p = pts + m; m += wcount[i]; j = wcount[i]-1; for (k=0; k < wcount[i]; j=k++) { int a=k,b=j; /* skip the edge if horizontal */ if (p[j].y == p[k].y) continue; /* add edge from j to k to the list */ e[n].invert = 0; if (invert ? p[j].y > p[k].y : p[j].y < p[k].y) { e[n].invert = 1; a=j,b=k; } e[n].x0 = p[a].x * scale_x + shift_x; e[n].y0 = (p[a].y * y_scale_inv + shift_y) * vsubsample; e[n].x1 = p[b].x * scale_x + shift_x; e[n].y1 = (p[b].y * y_scale_inv + shift_y) * vsubsample; ++n; } } /* now sort the edges by their highest point (should snap to integer, and then by x) */ /* STBTT_sort(e, n, sizeof(e[0]), stbtt__edge_compare); */ stbtt__sort_edges(e, n); /* now, traverse the scanlines and find the intersections on each scanline, use xor winding rule */ stbtt__rasterize_sorted_edges(result, e, n, vsubsample, off_x, off_y, userdata); STBTT_free(e, userdata); } static void stbtt__add_point(stbtt__point *points, int n, float x, float y) { if (!points) return; /* during first pass, it's unallocated */ points[n].x = x; points[n].y = y; } /* tessellate until threshold p is happy... @TODO warped to compensate for non-linear stretching */ static int stbtt__tesselate_curve(stbtt__point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float objspace_flatness_squared, int n) { /* midpoint */ float mx = (x0 + 2*x1 + x2)/4; float my = (y0 + 2*y1 + y2)/4; /* versus directly drawn line */ float dx = (x0+x2)/2 - mx; float dy = (y0+y2)/2 - my; if (n > 16) /* 65536 segments on one curve better be enough! */ return 1; if (dx*dx+dy*dy > objspace_flatness_squared) { /* half-pixel error allowed... need to be smaller if AA */ stbtt__tesselate_curve(points, num_points, x0,y0, (x0+x1)/2.0f,(y0+y1)/2.0f, mx,my, objspace_flatness_squared,n+1); stbtt__tesselate_curve(points, num_points, mx,my, (x1+x2)/2.0f,(y1+y2)/2.0f, x2,y2, objspace_flatness_squared,n+1); } else { stbtt__add_point(points, *num_points,x2,y2); *num_points = *num_points+1; } return 1; } static void stbtt__tesselate_cubic(stbtt__point *points, int *num_points, float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3, float objspace_flatness_squared, int n) { /* @TODO this "flatness" calculation is just made-up nonsense that seems to work well enough */ float dx0 = x1-x0; float dy0 = y1-y0; float dx1 = x2-x1; float dy1 = y2-y1; float dx2 = x3-x2; float dy2 = y3-y2; float dx = x3-x0; float dy = y3-y0; float longlen = (float) (STBTT_sqrt(dx0*dx0+dy0*dy0)+STBTT_sqrt(dx1*dx1+dy1*dy1)+STBTT_sqrt(dx2*dx2+dy2*dy2)); float shortlen = (float) STBTT_sqrt(dx*dx+dy*dy); float flatness_squared = longlen*longlen-shortlen*shortlen; if (n > 16) /* 65536 segments on one curve better be enough! */ return; if (flatness_squared > objspace_flatness_squared) { float x01 = (x0+x1)/2; float y01 = (y0+y1)/2; float x12 = (x1+x2)/2; float y12 = (y1+y2)/2; float x23 = (x2+x3)/2; float y23 = (y2+y3)/2; float xa = (x01+x12)/2; float ya = (y01+y12)/2; float xb = (x12+x23)/2; float yb = (y12+y23)/2; float mx = (xa+xb)/2; float my = (ya+yb)/2; stbtt__tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my, objspace_flatness_squared,n+1); stbtt__tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3, objspace_flatness_squared,n+1); } else { stbtt__add_point(points, *num_points,x3,y3); *num_points = *num_points+1; } } /* returns number of contours */ static stbtt__point *stbtt_FlattenCurves(stbtt_vertex *vertices, int num_verts, float objspace_flatness, int **contour_lengths, int *num_contours, void *userdata) { stbtt__point *points=0; int num_points=0; float objspace_flatness_squared = objspace_flatness * objspace_flatness; int i,n=0,start=0, pass; /* count how many "moves" there are to get the contour count */ for (i=0; i < num_verts; ++i) if (vertices[i].type == STBTT_vmove) ++n; *num_contours = n; if (n == 0) return 0; *contour_lengths = (int *) STBTT_malloc(sizeof(**contour_lengths) * n, userdata); if (*contour_lengths == 0) { *num_contours = 0; return 0; } /* make two passes through the points so we don't need to realloc */ for (pass=0; pass < 2; ++pass) { float x=0,y=0; if (pass == 1) { points = (stbtt__point *) STBTT_malloc(num_points * sizeof(points[0]), userdata); if (points == NULL) goto error; } num_points = 0; n= -1; for (i=0; i < num_verts; ++i) { switch (vertices[i].type) { case STBTT_vmove: /* start the next contour */ if (n >= 0) (*contour_lengths)[n] = num_points - start; ++n; start = num_points; x = vertices[i].x, y = vertices[i].y; stbtt__add_point(points, num_points++, x,y); break; case STBTT_vline: x = vertices[i].x, y = vertices[i].y; stbtt__add_point(points, num_points++, x, y); break; case STBTT_vcurve: stbtt__tesselate_curve(points, &num_points, x,y, vertices[i].cx, vertices[i].cy, vertices[i].x, vertices[i].y, objspace_flatness_squared, 0); x = vertices[i].x, y = vertices[i].y; break; case STBTT_vcubic: stbtt__tesselate_cubic(points, &num_points, x,y, vertices[i].cx, vertices[i].cy, vertices[i].cx1, vertices[i].cy1, vertices[i].x, vertices[i].y, objspace_flatness_squared, 0); x = vertices[i].x, y = vertices[i].y; break; } } (*contour_lengths)[n] = num_points - start; } return points; error: STBTT_free(points, userdata); STBTT_free(*contour_lengths, userdata); *contour_lengths = 0; *num_contours = 0; return NULL; } STBTT_DEF void stbtt_Rasterize(stbtt__bitmap *result, float flatness_in_pixels, stbtt_vertex *vertices, int num_verts, float scale_x, float scale_y, float shift_x, float shift_y, int x_off, int y_off, int invert, void *userdata) { float scale = scale_x > scale_y ? scale_y : scale_x; int winding_count = 0; int *winding_lengths = NULL; stbtt__point *windings = stbtt_FlattenCurves(vertices, num_verts, flatness_in_pixels / scale, &winding_lengths, &winding_count, userdata); if (windings) { stbtt__rasterize(result, windings, winding_lengths, winding_count, scale_x, scale_y, shift_x, shift_y, x_off, y_off, invert, userdata); STBTT_free(winding_lengths, userdata); STBTT_free(windings, userdata); } } STBTT_DEF void stbtt_FreeBitmap(unsigned char *bitmap, void *userdata) { STBTT_free(bitmap, userdata); } STBTT_DEF unsigned char *stbtt_GetGlyphBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff) { int ix0,iy0,ix1,iy1; stbtt__bitmap gbm; stbtt_vertex *vertices; int num_verts = stbtt_GetGlyphShape(info, glyph, &vertices); if (scale_x == 0) scale_x = scale_y; if (scale_y == 0) { if (scale_x == 0) { STBTT_free(vertices, info->userdata); return NULL; } scale_y = scale_x; } stbtt_GetGlyphBitmapBoxSubpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,&ix1,&iy1); /* now we get the size */ gbm.w = (ix1 - ix0); gbm.h = (iy1 - iy0); gbm.pixels = NULL; /* in case we error */ if (width ) *width = gbm.w; if (height) *height = gbm.h; if (xoff ) *xoff = ix0; if (yoff ) *yoff = iy0; if (gbm.w && gbm.h) { gbm.pixels = (unsigned char *) STBTT_malloc(gbm.w * gbm.h, info->userdata); if (gbm.pixels) { gbm.stride = gbm.w; stbtt_Rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y, shift_x, shift_y, ix0, iy0, 1, info->userdata); } } STBTT_free(vertices, info->userdata); return gbm.pixels; } STBTT_DEF unsigned char *stbtt_GetGlyphBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetGlyphBitmapSubpixel(info, scale_x, scale_y, 0.0f, 0.0f, glyph, width, height, xoff, yoff); } STBTT_DEF void stbtt_MakeGlyphBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph) { int ix0,iy0; stbtt_vertex *vertices; int num_verts = stbtt_GetGlyphShape(info, glyph, &vertices); stbtt__bitmap gbm; stbtt_GetGlyphBitmapBoxSubpixel(info, glyph, scale_x, scale_y, shift_x, shift_y, &ix0,&iy0,0,0); gbm.pixels = output; gbm.w = out_w; gbm.h = out_h; gbm.stride = out_stride; if (gbm.w && gbm.h) stbtt_Rasterize(&gbm, 0.35f, vertices, num_verts, scale_x, scale_y, shift_x, shift_y, ix0,iy0, 1, info->userdata); STBTT_free(vertices, info->userdata); } STBTT_DEF void stbtt_MakeGlyphBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph) { stbtt_MakeGlyphBitmapSubpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, glyph); } STBTT_DEF unsigned char *stbtt_GetCodepointBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetGlyphBitmapSubpixel(info, scale_x, scale_y,shift_x,shift_y, stbtt_FindGlyphIndex(info,codepoint), width,height,xoff,yoff); } STBTT_DEF void stbtt_MakeCodepointBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int oversample_x, int oversample_y, float *sub_x, float *sub_y, int codepoint) { stbtt_MakeGlyphBitmapSubpixelPrefilter(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, oversample_x, oversample_y, sub_x, sub_y, stbtt_FindGlyphIndex(info,codepoint)); } STBTT_DEF void stbtt_MakeCodepointBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint) { stbtt_MakeGlyphBitmapSubpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, shift_x, shift_y, stbtt_FindGlyphIndex(info,codepoint)); } STBTT_DEF unsigned char *stbtt_GetCodepointBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetCodepointBitmapSubpixel(info, scale_x, scale_y, 0.0f,0.0f, codepoint, width,height,xoff,yoff); } STBTT_DEF void stbtt_MakeCodepointBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint) { stbtt_MakeCodepointBitmapSubpixel(info, output, out_w, out_h, out_stride, scale_x, scale_y, 0.0f,0.0f, codepoint); } /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* bitmap baking */ /* */ /* This is SUPER-CRAPPY packing to keep source code small */ static int stbtt_BakeFontBitmap_internal(unsigned char *data, int offset, /* font location (use offset=0 for plain .ttf) */ float pixel_height, /* height of font in pixels */ unsigned char *pixels, int pw, int ph, /* bitmap to be filled in */ int first_char, int num_chars, /* characters to bake */ stbtt_bakedchar *chardata) { float scale; int x,y,bottom_y, i; stbtt_fontinfo f; f.userdata = NULL; if (!stbtt_InitFont(&f, data, offset)) return -1; STBTT_memset(pixels, 0, pw*ph); /* background of 0 around pixels */ x=y=1; bottom_y = 1; scale = stbtt_ScaleForPixelHeight(&f, pixel_height); for (i=0; i < num_chars; ++i) { int advance, lsb, x0,y0,x1,y1,gw,gh; int g = stbtt_FindGlyphIndex(&f, first_char + i); stbtt_GetGlyphHMetrics(&f, g, &advance, &lsb); stbtt_GetGlyphBitmapBox(&f, g, scale,scale, &x0,&y0,&x1,&y1); gw = x1-x0; gh = y1-y0; if (x + gw + 1 >= pw) y = bottom_y, x = 1; /* advance to next row */ if (y + gh + 1 >= ph) /* check if it fits vertically AFTER potentially moving to next row */ return -i; STBTT_assert(x+gw < pw); STBTT_assert(y+gh < ph); stbtt_MakeGlyphBitmap(&f, pixels+x+y*pw, gw,gh,pw, scale,scale, g); chardata[i].x0 = (stbtt_int16) x; chardata[i].y0 = (stbtt_int16) y; chardata[i].x1 = (stbtt_int16) (x + gw); chardata[i].y1 = (stbtt_int16) (y + gh); chardata[i].xadvance = scale * advance; chardata[i].xoff = (float) x0; chardata[i].yoff = (float) y0; x = x + gw + 1; if (y+gh+1 > bottom_y) bottom_y = y+gh+1; } return bottom_y; } STBTT_DEF void stbtt_GetBakedQuad(const stbtt_bakedchar *chardata, int pw, int ph, int char_index, float *xpos, float *ypos, stbtt_aligned_quad *q, int opengl_fillrule) { float d3d_bias = opengl_fillrule ? 0 : -0.5f; float ipw = 1.0f / pw, iph = 1.0f / ph; const stbtt_bakedchar *b = chardata + char_index; int round_x = STBTT_ifloor((*xpos + b->xoff) + 0.5f); int round_y = STBTT_ifloor((*ypos + b->yoff) + 0.5f); q->x0 = round_x + d3d_bias; q->y0 = round_y + d3d_bias; q->x1 = round_x + b->x1 - b->x0 + d3d_bias; q->y1 = round_y + b->y1 - b->y0 + d3d_bias; q->s0 = b->x0 * ipw; q->t0 = b->y0 * iph; q->s1 = b->x1 * ipw; q->t1 = b->y1 * iph; *xpos += b->xadvance; } /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* rectangle packing replacement routines if you don't have stb_rect_pack.h */ /* */ #ifndef STB_RECT_PACK_VERSION typedef int stbrp_coord; /* ////////////////////////////////////////////////////////////////////////////////// */ /* // */ /* // */ /* COMPILER WARNING ?!?!? // */ /* // */ /* // */ /* if you get a compile warning due to these symbols being defined more than // */ /* once, move #include "stb_rect_pack.h" before #include "stb_truetype.h" // */ /* // */ /* ////////////////////////////////////////////////////////////////////////////////// */ typedef struct { int width,height; int x,y,bottom_y; } stbrp_context; typedef struct { unsigned char x; } stbrp_node; struct stbrp_rect { stbrp_coord x,y; int id,w,h,was_packed; }; static void stbrp_init_target(stbrp_context *con, int pw, int ph, stbrp_node *nodes, int num_nodes) { con->width = pw; con->height = ph; con->x = 0; con->y = 0; con->bottom_y = 0; STBTT__NOTUSED(nodes); STBTT__NOTUSED(num_nodes); } static void stbrp_pack_rects(stbrp_context *con, stbrp_rect *rects, int num_rects) { int i; for (i=0; i < num_rects; ++i) { if (con->x + rects[i].w > con->width) { con->x = 0; con->y = con->bottom_y; } if (con->y + rects[i].h > con->height) break; rects[i].x = con->x; rects[i].y = con->y; rects[i].was_packed = 1; con->x += rects[i].w; if (con->y + rects[i].h > con->bottom_y) con->bottom_y = con->y + rects[i].h; } for ( ; i < num_rects; ++i) rects[i].was_packed = 0; } #endif /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* bitmap baking */ /* */ /* This is SUPER-AWESOME (tm Ryan Gordon) packing using stb_rect_pack.h. If */ /* stb_rect_pack.h isn't available, it uses the BakeFontBitmap strategy. */ STBTT_DEF int stbtt_PackBegin(stbtt_pack_context *spc, unsigned char *pixels, int pw, int ph, int stride_in_bytes, int padding, void *alloc_context) { stbrp_context *context = (stbrp_context *) STBTT_malloc(sizeof(*context) ,alloc_context); int num_nodes = pw - padding; stbrp_node *nodes = (stbrp_node *) STBTT_malloc(sizeof(*nodes ) * num_nodes,alloc_context); if (context == NULL || nodes == NULL) { if (context != NULL) STBTT_free(context, alloc_context); if (nodes != NULL) STBTT_free(nodes , alloc_context); return 0; } spc->user_allocator_context = alloc_context; spc->width = pw; spc->height = ph; spc->pixels = pixels; spc->pack_info = context; spc->nodes = nodes; spc->padding = padding; spc->stride_in_bytes = stride_in_bytes != 0 ? stride_in_bytes : pw; spc->h_oversample = 1; spc->v_oversample = 1; spc->skip_missing = 0; stbrp_init_target(context, pw-padding, ph-padding, nodes, num_nodes); if (pixels) STBTT_memset(pixels, 0, pw*ph); /* background of 0 around pixels */ return 1; } STBTT_DEF void stbtt_PackEnd (stbtt_pack_context *spc) { STBTT_free(spc->nodes , spc->user_allocator_context); STBTT_free(spc->pack_info, spc->user_allocator_context); } STBTT_DEF void stbtt_PackSetOversampling(stbtt_pack_context *spc, unsigned int h_oversample, unsigned int v_oversample) { STBTT_assert(h_oversample <= STBTT_MAX_OVERSAMPLE); STBTT_assert(v_oversample <= STBTT_MAX_OVERSAMPLE); if (h_oversample <= STBTT_MAX_OVERSAMPLE) spc->h_oversample = h_oversample; if (v_oversample <= STBTT_MAX_OVERSAMPLE) spc->v_oversample = v_oversample; } STBTT_DEF void stbtt_PackSetSkipMissingCodepoints(stbtt_pack_context *spc, int skip) { spc->skip_missing = skip; } #define STBTT__OVER_MASK (STBTT_MAX_OVERSAMPLE-1) static void stbtt__h_prefilter(unsigned char *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width) { unsigned char buffer[STBTT_MAX_OVERSAMPLE]; int safe_w = w - kernel_width; int j; STBTT_memset(buffer, 0, STBTT_MAX_OVERSAMPLE); /* suppress bogus warning from VS2013 -analyze */ for (j=0; j < h; ++j) { int i; unsigned int total; STBTT_memset(buffer, 0, kernel_width); total = 0; /* make kernel_width a constant in common cases so compiler can optimize out the divide */ switch (kernel_width) { case 2: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 2); } break; case 3: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 3); } break; case 4: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 4); } break; case 5: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / 5); } break; default: for (i=0; i <= safe_w; ++i) { total += pixels[i] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i]; pixels[i] = (unsigned char) (total / kernel_width); } break; } for (; i < w; ++i) { STBTT_assert(pixels[i] == 0); total -= buffer[i & STBTT__OVER_MASK]; pixels[i] = (unsigned char) (total / kernel_width); } pixels += stride_in_bytes; } } static void stbtt__v_prefilter(unsigned char *pixels, int w, int h, int stride_in_bytes, unsigned int kernel_width) { unsigned char buffer[STBTT_MAX_OVERSAMPLE]; int safe_h = h - kernel_width; int j; STBTT_memset(buffer, 0, STBTT_MAX_OVERSAMPLE); /* suppress bogus warning from VS2013 -analyze */ for (j=0; j < w; ++j) { int i; unsigned int total; STBTT_memset(buffer, 0, kernel_width); total = 0; /* make kernel_width a constant in common cases so compiler can optimize out the divide */ switch (kernel_width) { case 2: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 2); } break; case 3: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 3); } break; case 4: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 4); } break; case 5: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / 5); } break; default: for (i=0; i <= safe_h; ++i) { total += pixels[i*stride_in_bytes] - buffer[i & STBTT__OVER_MASK]; buffer[(i+kernel_width) & STBTT__OVER_MASK] = pixels[i*stride_in_bytes]; pixels[i*stride_in_bytes] = (unsigned char) (total / kernel_width); } break; } for (; i < h; ++i) { STBTT_assert(pixels[i*stride_in_bytes] == 0); total -= buffer[i & STBTT__OVER_MASK]; pixels[i*stride_in_bytes] = (unsigned char) (total / kernel_width); } pixels += 1; } } static float stbtt__oversample_shift(int oversample) { if (!oversample) return 0.0f; /* The prefilter is a box filter of width "oversample", */ /* which shifts phase by (oversample - 1)/2 pixels in */ /* oversampled space. We want to shift in the opposite */ /* direction to counter this. */ return (float)-(oversample - 1) / (2.0f * (float)oversample); } /* rects array must be big enough to accommodate all characters in the given ranges */ STBTT_DEF int stbtt_PackFontRangesGatherRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects) { int i,j,k; int missing_glyph_added = 0; k=0; for (i=0; i < num_ranges; ++i) { float fh = ranges[i].font_size; float scale = fh > 0 ? stbtt_ScaleForPixelHeight(info, fh) : stbtt_ScaleForMappingEmToPixels(info, -fh); ranges[i].h_oversample = (unsigned char) spc->h_oversample; ranges[i].v_oversample = (unsigned char) spc->v_oversample; for (j=0; j < ranges[i].num_chars; ++j) { int x0,y0,x1,y1; int codepoint = ranges[i].array_of_unicode_codepoints == NULL ? ranges[i].first_unicode_codepoint_in_range + j : ranges[i].array_of_unicode_codepoints[j]; int glyph = stbtt_FindGlyphIndex(info, codepoint); if (glyph == 0 && (spc->skip_missing || missing_glyph_added)) { rects[k].w = rects[k].h = 0; } else { stbtt_GetGlyphBitmapBoxSubpixel(info,glyph, scale * spc->h_oversample, scale * spc->v_oversample, 0,0, &x0,&y0,&x1,&y1); rects[k].w = (stbrp_coord) (x1-x0 + spc->padding + spc->h_oversample-1); rects[k].h = (stbrp_coord) (y1-y0 + spc->padding + spc->v_oversample-1); if (glyph == 0) missing_glyph_added = 1; } ++k; } } return k; } STBTT_DEF void stbtt_MakeGlyphBitmapSubpixelPrefilter(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int prefilter_x, int prefilter_y, float *sub_x, float *sub_y, int glyph) { stbtt_MakeGlyphBitmapSubpixel(info, output, out_w - (prefilter_x - 1), out_h - (prefilter_y - 1), out_stride, scale_x, scale_y, shift_x, shift_y, glyph); if (prefilter_x > 1) stbtt__h_prefilter(output, out_w, out_h, out_stride, prefilter_x); if (prefilter_y > 1) stbtt__v_prefilter(output, out_w, out_h, out_stride, prefilter_y); *sub_x = stbtt__oversample_shift(prefilter_x); *sub_y = stbtt__oversample_shift(prefilter_y); } /* rects array must be big enough to accommodate all characters in the given ranges */ STBTT_DEF int stbtt_PackFontRangesRenderIntoRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects) { int i,j,k, missing_glyph = -1, return_value = 1; /* save current values */ int old_h_over = spc->h_oversample; int old_v_over = spc->v_oversample; k = 0; for (i=0; i < num_ranges; ++i) { float fh = ranges[i].font_size; float scale = fh > 0 ? stbtt_ScaleForPixelHeight(info, fh) : stbtt_ScaleForMappingEmToPixels(info, -fh); float recip_h,recip_v,sub_x,sub_y; spc->h_oversample = ranges[i].h_oversample; spc->v_oversample = ranges[i].v_oversample; recip_h = 1.0f / spc->h_oversample; recip_v = 1.0f / spc->v_oversample; sub_x = stbtt__oversample_shift(spc->h_oversample); sub_y = stbtt__oversample_shift(spc->v_oversample); for (j=0; j < ranges[i].num_chars; ++j) { stbrp_rect *r = &rects[k]; if (r->was_packed && r->w != 0 && r->h != 0) { stbtt_packedchar *bc = &ranges[i].chardata_for_range[j]; int advance, lsb, x0,y0,x1,y1; int codepoint = ranges[i].array_of_unicode_codepoints == NULL ? ranges[i].first_unicode_codepoint_in_range + j : ranges[i].array_of_unicode_codepoints[j]; int glyph = stbtt_FindGlyphIndex(info, codepoint); stbrp_coord pad = (stbrp_coord) spc->padding; /* pad on left and top */ r->x += pad; r->y += pad; r->w -= pad; r->h -= pad; stbtt_GetGlyphHMetrics(info, glyph, &advance, &lsb); stbtt_GetGlyphBitmapBox(info, glyph, scale * spc->h_oversample, scale * spc->v_oversample, &x0,&y0,&x1,&y1); stbtt_MakeGlyphBitmapSubpixel(info, spc->pixels + r->x + r->y*spc->stride_in_bytes, r->w - spc->h_oversample+1, r->h - spc->v_oversample+1, spc->stride_in_bytes, scale * spc->h_oversample, scale * spc->v_oversample, 0,0, glyph); if (spc->h_oversample > 1) stbtt__h_prefilter(spc->pixels + r->x + r->y*spc->stride_in_bytes, r->w, r->h, spc->stride_in_bytes, spc->h_oversample); if (spc->v_oversample > 1) stbtt__v_prefilter(spc->pixels + r->x + r->y*spc->stride_in_bytes, r->w, r->h, spc->stride_in_bytes, spc->v_oversample); bc->x0 = (stbtt_int16) r->x; bc->y0 = (stbtt_int16) r->y; bc->x1 = (stbtt_int16) (r->x + r->w); bc->y1 = (stbtt_int16) (r->y + r->h); bc->xadvance = scale * advance; bc->xoff = (float) x0 * recip_h + sub_x; bc->yoff = (float) y0 * recip_v + sub_y; bc->xoff2 = (x0 + r->w) * recip_h + sub_x; bc->yoff2 = (y0 + r->h) * recip_v + sub_y; if (glyph == 0) missing_glyph = j; } else if (spc->skip_missing) { return_value = 0; } else if (r->was_packed && r->w == 0 && r->h == 0 && missing_glyph >= 0) { ranges[i].chardata_for_range[j] = ranges[i].chardata_for_range[missing_glyph]; } else { return_value = 0; /* if any fail, report failure */ } ++k; } } /* restore original values */ spc->h_oversample = old_h_over; spc->v_oversample = old_v_over; return return_value; } STBTT_DEF void stbtt_PackFontRangesPackRects(stbtt_pack_context *spc, stbrp_rect *rects, int num_rects) { stbrp_pack_rects((stbrp_context *) spc->pack_info, rects, num_rects); } STBTT_DEF int stbtt_PackFontRanges(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, stbtt_pack_range *ranges, int num_ranges) { stbtt_fontinfo info; int i,j,n, return_value = 1; /* stbrp_context *context = (stbrp_context *) spc->pack_info; */ stbrp_rect *rects; /* flag all characters as NOT packed */ for (i=0; i < num_ranges; ++i) for (j=0; j < ranges[i].num_chars; ++j) ranges[i].chardata_for_range[j].x0 = ranges[i].chardata_for_range[j].y0 = ranges[i].chardata_for_range[j].x1 = ranges[i].chardata_for_range[j].y1 = 0; n = 0; for (i=0; i < num_ranges; ++i) n += ranges[i].num_chars; rects = (stbrp_rect *) STBTT_malloc(sizeof(*rects) * n, spc->user_allocator_context); if (rects == NULL) return 0; info.userdata = spc->user_allocator_context; stbtt_InitFont(&info, fontdata, stbtt_GetFontOffsetForIndex(fontdata,font_index)); n = stbtt_PackFontRangesGatherRects(spc, &info, ranges, num_ranges, rects); stbtt_PackFontRangesPackRects(spc, rects, n); return_value = stbtt_PackFontRangesRenderIntoRects(spc, &info, ranges, num_ranges, rects); STBTT_free(rects, spc->user_allocator_context); return return_value; } STBTT_DEF int stbtt_PackFontRange(stbtt_pack_context *spc, const unsigned char *fontdata, int font_index, float font_size, int first_unicode_codepoint_in_range, int num_chars_in_range, stbtt_packedchar *chardata_for_range) { stbtt_pack_range range; range.first_unicode_codepoint_in_range = first_unicode_codepoint_in_range; range.array_of_unicode_codepoints = NULL; range.num_chars = num_chars_in_range; range.chardata_for_range = chardata_for_range; range.font_size = font_size; return stbtt_PackFontRanges(spc, fontdata, font_index, &range, 1); } STBTT_DEF void stbtt_GetScaledFontVMetrics(const unsigned char *fontdata, int index, float size, float *ascent, float *descent, float *lineGap) { int i_ascent, i_descent, i_lineGap; float scale; stbtt_fontinfo info; stbtt_InitFont(&info, fontdata, stbtt_GetFontOffsetForIndex(fontdata, index)); scale = size > 0 ? stbtt_ScaleForPixelHeight(&info, size) : stbtt_ScaleForMappingEmToPixels(&info, -size); stbtt_GetFontVMetrics(&info, &i_ascent, &i_descent, &i_lineGap); *ascent = (float) i_ascent * scale; *descent = (float) i_descent * scale; *lineGap = (float) i_lineGap * scale; } STBTT_DEF void stbtt_GetPackedQuad(const stbtt_packedchar *chardata, int pw, int ph, int char_index, float *xpos, float *ypos, stbtt_aligned_quad *q, int align_to_integer) { float ipw = 1.0f / pw, iph = 1.0f / ph; const stbtt_packedchar *b = chardata + char_index; if (align_to_integer) { float x = (float) STBTT_ifloor((*xpos + b->xoff) + 0.5f); float y = (float) STBTT_ifloor((*ypos + b->yoff) + 0.5f); q->x0 = x; q->y0 = y; q->x1 = x + b->xoff2 - b->xoff; q->y1 = y + b->yoff2 - b->yoff; } else { q->x0 = *xpos + b->xoff; q->y0 = *ypos + b->yoff; q->x1 = *xpos + b->xoff2; q->y1 = *ypos + b->yoff2; } q->s0 = b->x0 * ipw; q->t0 = b->y0 * iph; q->s1 = b->x1 * ipw; q->t1 = b->y1 * iph; *xpos += b->xadvance; } /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* sdf computation */ /* */ #define STBTT_min(a,b) ((a) < (b) ? (a) : (b)) #define STBTT_max(a,b) ((a) < (b) ? (b) : (a)) static int stbtt__ray_intersect_bezier(float orig[2], float ray[2], float q0[2], float q1[2], float q2[2], float hits[2][2]) { float q0perp = q0[1]*ray[0] - q0[0]*ray[1]; float q1perp = q1[1]*ray[0] - q1[0]*ray[1]; float q2perp = q2[1]*ray[0] - q2[0]*ray[1]; float roperp = orig[1]*ray[0] - orig[0]*ray[1]; float a = q0perp - 2*q1perp + q2perp; float b = q1perp - q0perp; float c = q0perp - roperp; float s0 = 0., s1 = 0.; int num_s = 0; if (a != 0.0) { float discr = b*b - a*c; if (discr > 0.0) { float rcpna = -1 / a; float d = (float) STBTT_sqrt(discr); s0 = (b+d) * rcpna; s1 = (b-d) * rcpna; if (s0 >= 0.0 && s0 <= 1.0) num_s = 1; if (d > 0.0 && s1 >= 0.0 && s1 <= 1.0) { if (num_s == 0) s0 = s1; ++num_s; } } } else { /* 2*b*s + c = 0 */ /* s = -c / (2*b) */ s0 = c / (-2 * b); if (s0 >= 0.0 && s0 <= 1.0) num_s = 1; } if (num_s == 0) return 0; else { float rcp_len2 = 1 / (ray[0]*ray[0] + ray[1]*ray[1]); float rayn_x = ray[0] * rcp_len2, rayn_y = ray[1] * rcp_len2; float q0d = q0[0]*rayn_x + q0[1]*rayn_y; float q1d = q1[0]*rayn_x + q1[1]*rayn_y; float q2d = q2[0]*rayn_x + q2[1]*rayn_y; float rod = orig[0]*rayn_x + orig[1]*rayn_y; float q10d = q1d - q0d; float q20d = q2d - q0d; float q0rd = q0d - rod; hits[0][0] = q0rd + s0*(2.0f - 2.0f*s0)*q10d + s0*s0*q20d; hits[0][1] = a*s0+b; if (num_s > 1) { hits[1][0] = q0rd + s1*(2.0f - 2.0f*s1)*q10d + s1*s1*q20d; hits[1][1] = a*s1+b; return 2; } else { return 1; } } } static int equal(float *a, float *b) { return (a[0] == b[0] && a[1] == b[1]); } static int stbtt__compute_crossings_x(float x, float y, int nverts, stbtt_vertex *verts) { int i; float orig[2], ray[2] = { 1, 0 }; float y_frac; int winding = 0; /* make sure y never passes through a vertex of the shape */ y_frac = (float) STBTT_fmod(y, 1.0f); if (y_frac < 0.01f) y += 0.01f; else if (y_frac > 0.99f) y -= 0.01f; orig[0] = x; orig[1] = y; /* test a ray from (-infinity,y) to (x,y) */ for (i=0; i < nverts; ++i) { if (verts[i].type == STBTT_vline) { int x0 = (int) verts[i-1].x, y0 = (int) verts[i-1].y; int x1 = (int) verts[i ].x, y1 = (int) verts[i ].y; if (y > STBTT_min(y0,y1) && y < STBTT_max(y0,y1) && x > STBTT_min(x0,x1)) { float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; if (x_inter < x) winding += (y0 < y1) ? 1 : -1; } } if (verts[i].type == STBTT_vcurve) { int x0 = (int) verts[i-1].x , y0 = (int) verts[i-1].y ; int x1 = (int) verts[i ].cx, y1 = (int) verts[i ].cy; int x2 = (int) verts[i ].x , y2 = (int) verts[i ].y ; int ax = STBTT_min(x0,STBTT_min(x1,x2)), ay = STBTT_min(y0,STBTT_min(y1,y2)); int by = STBTT_max(y0,STBTT_max(y1,y2)); if (y > ay && y < by && x > ax) { float q0[2],q1[2],q2[2]; float hits[2][2]; q0[0] = (float)x0; q0[1] = (float)y0; q1[0] = (float)x1; q1[1] = (float)y1; q2[0] = (float)x2; q2[1] = (float)y2; if (equal(q0,q1) || equal(q1,q2)) { x0 = (int)verts[i-1].x; y0 = (int)verts[i-1].y; x1 = (int)verts[i ].x; y1 = (int)verts[i ].y; if (y > STBTT_min(y0,y1) && y < STBTT_max(y0,y1) && x > STBTT_min(x0,x1)) { float x_inter = (y - y0) / (y1 - y0) * (x1-x0) + x0; if (x_inter < x) winding += (y0 < y1) ? 1 : -1; } } else { int num_hits = stbtt__ray_intersect_bezier(orig, ray, q0, q1, q2, hits); if (num_hits >= 1) if (hits[0][0] < 0) winding += (hits[0][1] < 0 ? -1 : 1); if (num_hits >= 2) if (hits[1][0] < 0) winding += (hits[1][1] < 0 ? -1 : 1); } } } } return winding; } static float stbtt__cuberoot( float x ) { if (x<0) return -(float) STBTT_pow(-x,1.0f/3.0f); else return (float) STBTT_pow( x,1.0f/3.0f); } /* x^3 + a*x^2 + b*x + c = 0 */ static int stbtt__solve_cubic(float a, float b, float c, float* r) { float s = -a / 3; float p = b - a*a / 3; float q = a * (2*a*a - 9*b) / 27 + c; float p3 = p*p*p; float d = q*q + 4*p3 / 27; if (d >= 0) { float z = (float) STBTT_sqrt(d); float u = (-q + z) / 2; float v = (-q - z) / 2; u = stbtt__cuberoot(u); v = stbtt__cuberoot(v); r[0] = s + u + v; return 1; } else { float u = (float) STBTT_sqrt(-p/3); float v = (float) STBTT_acos(-STBTT_sqrt(-27/p3) * q / 2) / 3; /* p3 must be negative, since d is negative */ float m = (float) STBTT_cos(v); float n = (float) STBTT_cos(v-3.141592/2)*1.732050808f; r[0] = s + u * 2 * m; r[1] = s - u * (m + n); r[2] = s - u * (m - n); /* STBTT_assert( STBTT_fabs(((r[0]+a)*r[0]+b)*r[0]+c) < 0.05f); // these asserts may not be safe at all scales, though they're in bezier t parameter units so maybe? */ /* STBTT_assert( STBTT_fabs(((r[1]+a)*r[1]+b)*r[1]+c) < 0.05f); */ /* STBTT_assert( STBTT_fabs(((r[2]+a)*r[2]+b)*r[2]+c) < 0.05f); */ return 3; } } STBTT_DEF unsigned char * stbtt_GetGlyphSDF(const stbtt_fontinfo *info, float scale, int glyph, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) { float scale_x = scale, scale_y = scale; int ix0,iy0,ix1,iy1; int w,h; unsigned char *data; if (scale == 0) return NULL; stbtt_GetGlyphBitmapBoxSubpixel(info, glyph, scale, scale, 0.0f,0.0f, &ix0,&iy0,&ix1,&iy1); /* if empty, return NULL */ if (ix0 == ix1 || iy0 == iy1) return NULL; ix0 -= padding; iy0 -= padding; ix1 += padding; iy1 += padding; w = (ix1 - ix0); h = (iy1 - iy0); if (width ) *width = w; if (height) *height = h; if (xoff ) *xoff = ix0; if (yoff ) *yoff = iy0; /* invert for y-downwards bitmaps */ scale_y = -scale_y; { int x,y,i,j; float *precompute; stbtt_vertex *verts; int num_verts = stbtt_GetGlyphShape(info, glyph, &verts); data = (unsigned char *) STBTT_malloc(w * h, info->userdata); precompute = (float *) STBTT_malloc(num_verts * sizeof(float), info->userdata); for (i=0,j=num_verts-1; i < num_verts; j=i++) { if (verts[i].type == STBTT_vline) { float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; float x1 = verts[j].x*scale_x, y1 = verts[j].y*scale_y; float dist = (float) STBTT_sqrt((x1-x0)*(x1-x0) + (y1-y0)*(y1-y0)); precompute[i] = (dist == 0) ? 0.0f : 1.0f / dist; } else if (verts[i].type == STBTT_vcurve) { float x2 = verts[j].x *scale_x, y2 = verts[j].y *scale_y; float x1 = verts[i].cx*scale_x, y1 = verts[i].cy*scale_y; float x0 = verts[i].x *scale_x, y0 = verts[i].y *scale_y; float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; float len2 = bx*bx + by*by; if (len2 != 0.0f) precompute[i] = 1.0f / (bx*bx + by*by); else precompute[i] = 0.0f; } else precompute[i] = 0.0f; } for (y=iy0; y < iy1; ++y) { for (x=ix0; x < ix1; ++x) { float val; float min_dist = 999999.0f; float sx = (float) x + 0.5f; float sy = (float) y + 0.5f; float x_gspace = (sx / scale_x); float y_gspace = (sy / scale_y); int winding = stbtt__compute_crossings_x(x_gspace, y_gspace, num_verts, verts); /* @OPTIMIZE: this could just be a rasterization, but needs to be line vs. non-tesselated curves so a new path */ for (i=0; i < num_verts; ++i) { float x0 = verts[i].x*scale_x, y0 = verts[i].y*scale_y; if (verts[i].type == STBTT_vline && precompute[i] != 0.0f) { float x1 = verts[i-1].x*scale_x, y1 = verts[i-1].y*scale_y; float dist,dist2 = (x0-sx)*(x0-sx) + (y0-sy)*(y0-sy); if (dist2 < min_dist*min_dist) min_dist = (float) STBTT_sqrt(dist2); /* coarse culling against bbox */ /* if (sx > STBTT_min(x0,x1)-min_dist && sx < STBTT_max(x0,x1)+min_dist && */ /* sy > STBTT_min(y0,y1)-min_dist && sy < STBTT_max(y0,y1)+min_dist) */ dist = (float) STBTT_fabs((x1-x0)*(y0-sy) - (y1-y0)*(x0-sx)) * precompute[i]; STBTT_assert(i != 0); if (dist < min_dist) { /* check position along line */ /* x' = x0 + t*(x1-x0), y' = y0 + t*(y1-y0) */ /* minimize (x'-sx)*(x'-sx)+(y'-sy)*(y'-sy) */ float dx = x1-x0, dy = y1-y0; float px = x0-sx, py = y0-sy; /* minimize (px+t*dx)^2 + (py+t*dy)^2 = px*px + 2*px*dx*t + t^2*dx*dx + py*py + 2*py*dy*t + t^2*dy*dy */ /* derivative: 2*px*dx + 2*py*dy + (2*dx*dx+2*dy*dy)*t, set to 0 and solve */ float t = -(px*dx + py*dy) / (dx*dx + dy*dy); if (t >= 0.0f && t <= 1.0f) min_dist = dist; } } else if (verts[i].type == STBTT_vcurve) { float x2 = verts[i-1].x *scale_x, y2 = verts[i-1].y *scale_y; float x1 = verts[i ].cx*scale_x, y1 = verts[i ].cy*scale_y; float box_x0 = STBTT_min(STBTT_min(x0,x1),x2); float box_y0 = STBTT_min(STBTT_min(y0,y1),y2); float box_x1 = STBTT_max(STBTT_max(x0,x1),x2); float box_y1 = STBTT_max(STBTT_max(y0,y1),y2); /* coarse culling against bbox to avoid computing cubic unnecessarily */ if (sx > box_x0-min_dist && sx < box_x1+min_dist && sy > box_y0-min_dist && sy < box_y1+min_dist) { int num=0; float ax = x1-x0, ay = y1-y0; float bx = x0 - 2*x1 + x2, by = y0 - 2*y1 + y2; float mx = x0 - sx, my = y0 - sy; float res[3] = {0.f,0.f,0.f}; float px,py,t,it,dist2; float a_inv = precompute[i]; if (a_inv == 0.0) { /* if a_inv is 0, it's 2nd degree so use quadratic formula */ float a = 3*(ax*bx + ay*by); float b = 2*(ax*ax + ay*ay) + (mx*bx+my*by); float c = mx*ax+my*ay; if (a == 0.0) { /* if a is 0, it's linear */ if (b != 0.0) { res[num++] = -c/b; } } else { float discriminant = b*b - 4*a*c; if (discriminant < 0) num = 0; else { float root = (float) STBTT_sqrt(discriminant); res[0] = (-b - root)/(2*a); res[1] = (-b + root)/(2*a); num = 2; /* don't bother distinguishing 1-solution case, as code below will still work */ } } } else { float b = 3*(ax*bx + ay*by) * a_inv; /* could precompute this as it doesn't depend on sample point */ float c = (2*(ax*ax + ay*ay) + (mx*bx+my*by)) * a_inv; float d = (mx*ax+my*ay) * a_inv; num = stbtt__solve_cubic(b, c, d, res); } dist2 = (x0-sx)*(x0-sx) + (y0-sy)*(y0-sy); if (dist2 < min_dist*min_dist) min_dist = (float) STBTT_sqrt(dist2); if (num >= 1 && res[0] >= 0.0f && res[0] <= 1.0f) { t = res[0], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) STBTT_sqrt(dist2); } if (num >= 2 && res[1] >= 0.0f && res[1] <= 1.0f) { t = res[1], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) STBTT_sqrt(dist2); } if (num >= 3 && res[2] >= 0.0f && res[2] <= 1.0f) { t = res[2], it = 1.0f - t; px = it*it*x0 + 2*t*it*x1 + t*t*x2; py = it*it*y0 + 2*t*it*y1 + t*t*y2; dist2 = (px-sx)*(px-sx) + (py-sy)*(py-sy); if (dist2 < min_dist * min_dist) min_dist = (float) STBTT_sqrt(dist2); } } } } if (winding == 0) min_dist = -min_dist; /* if outside the shape, value is negative */ val = onedge_value + pixel_dist_scale * min_dist; if (val < 0) val = 0; else if (val > 255) val = 255; data[(y-iy0)*w+(x-ix0)] = (unsigned char) val; } } STBTT_free(precompute, info->userdata); STBTT_free(verts, info->userdata); } return data; } STBTT_DEF unsigned char * stbtt_GetCodepointSDF(const stbtt_fontinfo *info, float scale, int codepoint, int padding, unsigned char onedge_value, float pixel_dist_scale, int *width, int *height, int *xoff, int *yoff) { return stbtt_GetGlyphSDF(info, scale, stbtt_FindGlyphIndex(info, codepoint), padding, onedge_value, pixel_dist_scale, width, height, xoff, yoff); } STBTT_DEF void stbtt_FreeSDF(unsigned char *bitmap, void *userdata) { STBTT_free(bitmap, userdata); } /* //////////////////////////////////////////////////////////////////////////// */ /* */ /* font name matching -- recommended not to use this */ /* */ /* check if a utf8 string contains a prefix which is the utf16 string; if so return length of matching utf8 string */ static stbtt_int32 stbtt__CompareUTF8toUTF16_bigendian_prefix(stbtt_uint8 *s1, stbtt_int32 len1, stbtt_uint8 *s2, stbtt_int32 len2) { stbtt_int32 i=0; /* convert utf16 to utf8 and compare the results while converting */ while (len2) { stbtt_uint16 ch = s2[0]*256 + s2[1]; if (ch < 0x80) { if (i >= len1) return -1; if (s1[i++] != ch) return -1; } else if (ch < 0x800) { if (i+1 >= len1) return -1; if (s1[i++] != 0xc0 + (ch >> 6)) return -1; if (s1[i++] != 0x80 + (ch & 0x3f)) return -1; } else if (ch >= 0xd800 && ch < 0xdc00) { stbtt_uint32 c; stbtt_uint16 ch2 = s2[2]*256 + s2[3]; if (i+3 >= len1) return -1; c = ((ch - 0xd800) << 10) + (ch2 - 0xdc00) + 0x10000; if (s1[i++] != 0xf0 + (c >> 18)) return -1; if (s1[i++] != 0x80 + ((c >> 12) & 0x3f)) return -1; if (s1[i++] != 0x80 + ((c >> 6) & 0x3f)) return -1; if (s1[i++] != 0x80 + ((c ) & 0x3f)) return -1; s2 += 2; /* plus another 2 below */ len2 -= 2; } else if (ch >= 0xdc00 && ch < 0xe000) { return -1; } else { if (i+2 >= len1) return -1; if (s1[i++] != 0xe0 + (ch >> 12)) return -1; if (s1[i++] != 0x80 + ((ch >> 6) & 0x3f)) return -1; if (s1[i++] != 0x80 + ((ch ) & 0x3f)) return -1; } s2 += 2; len2 -= 2; } return i; } static int stbtt_CompareUTF8toUTF16_bigendian_internal(char *s1, int len1, char *s2, int len2) { return len1 == stbtt__CompareUTF8toUTF16_bigendian_prefix((stbtt_uint8*) s1, len1, (stbtt_uint8*) s2, len2); } /* returns results in whatever encoding you request... but note that 2-byte encodings */ /* will be BIG-ENDIAN... use stbtt_CompareUTF8toUTF16_bigendian() to compare */ STBTT_DEF const char *stbtt_GetFontNameString(const stbtt_fontinfo *font, int *length, int platformID, int encodingID, int languageID, int nameID) { stbtt_int32 i,count,stringOffset; stbtt_uint8 *fc = font->data; stbtt_uint32 offset = font->fontstart; stbtt_uint32 nm = stbtt__find_table(fc, offset, "name"); if (!nm) return NULL; count = ttUSHORT(fc+nm+2); stringOffset = nm + ttUSHORT(fc+nm+4); for (i=0; i < count; ++i) { stbtt_uint32 loc = nm + 6 + 12 * i; if (platformID == ttUSHORT(fc+loc+0) && encodingID == ttUSHORT(fc+loc+2) && languageID == ttUSHORT(fc+loc+4) && nameID == ttUSHORT(fc+loc+6)) { *length = ttUSHORT(fc+loc+8); return (const char *) (fc+stringOffset+ttUSHORT(fc+loc+10)); } } return NULL; } static int stbtt__matchpair(stbtt_uint8 *fc, stbtt_uint32 nm, stbtt_uint8 *name, stbtt_int32 nlen, stbtt_int32 target_id, stbtt_int32 next_id) { stbtt_int32 i; stbtt_int32 count = ttUSHORT(fc+nm+2); stbtt_int32 stringOffset = nm + ttUSHORT(fc+nm+4); for (i=0; i < count; ++i) { stbtt_uint32 loc = nm + 6 + 12 * i; stbtt_int32 id = ttUSHORT(fc+loc+6); if (id == target_id) { /* find the encoding */ stbtt_int32 platform = ttUSHORT(fc+loc+0), encoding = ttUSHORT(fc+loc+2), language = ttUSHORT(fc+loc+4); /* is this a Unicode encoding? */ if (platform == 0 || (platform == 3 && encoding == 1) || (platform == 3 && encoding == 10)) { stbtt_int32 slen = ttUSHORT(fc+loc+8); stbtt_int32 off = ttUSHORT(fc+loc+10); /* check if there's a prefix match */ stbtt_int32 matchlen = stbtt__CompareUTF8toUTF16_bigendian_prefix(name, nlen, fc+stringOffset+off,slen); if (matchlen >= 0) { /* check for target_id+1 immediately following, with same encoding & language */ if (i+1 < count && ttUSHORT(fc+loc+12+6) == next_id && ttUSHORT(fc+loc+12) == platform && ttUSHORT(fc+loc+12+2) == encoding && ttUSHORT(fc+loc+12+4) == language) { slen = ttUSHORT(fc+loc+12+8); off = ttUSHORT(fc+loc+12+10); if (slen == 0) { if (matchlen == nlen) return 1; } else if (matchlen < nlen && name[matchlen] == ' ') { ++matchlen; if (stbtt_CompareUTF8toUTF16_bigendian_internal((char*) (name+matchlen), nlen-matchlen, (char*)(fc+stringOffset+off),slen)) return 1; } } else { /* if nothing immediately following */ if (matchlen == nlen) return 1; } } } /* @TODO handle other encodings */ } } return 0; } static int stbtt__matches(stbtt_uint8 *fc, stbtt_uint32 offset, stbtt_uint8 *name, stbtt_int32 flags) { stbtt_int32 nlen = (stbtt_int32) STBTT_strlen((char *) name); stbtt_uint32 nm,hd; if (!stbtt__isfont(fc+offset)) return 0; /* check italics/bold/underline flags in macStyle... */ if (flags) { hd = stbtt__find_table(fc, offset, "head"); if ((ttUSHORT(fc+hd+44) & 7) != (flags & 7)) return 0; } nm = stbtt__find_table(fc, offset, "name"); if (!nm) return 0; if (flags) { /* if we checked the macStyle flags, then just check the family and ignore the subfamily */ if (stbtt__matchpair(fc, nm, name, nlen, 16, -1)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 1, -1)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 3, -1)) return 1; } else { if (stbtt__matchpair(fc, nm, name, nlen, 16, 17)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 1, 2)) return 1; if (stbtt__matchpair(fc, nm, name, nlen, 3, -1)) return 1; } return 0; } static int stbtt_FindMatchingFont_internal(unsigned char *font_collection, char *name_utf8, stbtt_int32 flags) { stbtt_int32 i; for (i=0;;++i) { stbtt_int32 off = stbtt_GetFontOffsetForIndex(font_collection, i); if (off < 0) return off; if (stbtt__matches((stbtt_uint8 *) font_collection, off, (stbtt_uint8*) name_utf8, flags)) return off; } } #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif STBTT_DEF int stbtt_BakeFontBitmap(const unsigned char *data, int offset, float pixel_height, unsigned char *pixels, int pw, int ph, int first_char, int num_chars, stbtt_bakedchar *chardata) { return stbtt_BakeFontBitmap_internal((unsigned char *) data, offset, pixel_height, pixels, pw, ph, first_char, num_chars, chardata); } STBTT_DEF int stbtt_GetFontOffsetForIndex(const unsigned char *data, int index) { return stbtt_GetFontOffsetForIndex_internal((unsigned char *) data, index); } STBTT_DEF int stbtt_GetNumberOfFonts(const unsigned char *data) { return stbtt_GetNumberOfFonts_internal((unsigned char *) data); } STBTT_DEF int stbtt_InitFont(stbtt_fontinfo *info, const unsigned char *data, int offset) { return stbtt_InitFont_internal(info, (unsigned char *) data, offset); } STBTT_DEF int stbtt_FindMatchingFont(const unsigned char *fontdata, const char *name, int flags) { return stbtt_FindMatchingFont_internal((unsigned char *) fontdata, (char *) name, flags); } STBTT_DEF int stbtt_CompareUTF8toUTF16_bigendian(const char *s1, int len1, const char *s2, int len2) { return stbtt_CompareUTF8toUTF16_bigendian_internal((char *) s1, len1, (char *) s2, len2); } #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif #endif /* STB_TRUETYPE_IMPLEMENTATION */ /* FULL VERSION HISTORY */ /* */ /* 1.25 (2021-07-11) many fixes */ /* 1.24 (2020-02-05) fix warning */ /* 1.23 (2020-02-02) query SVG data for glyphs; query whole kerning table (but only kern not GPOS) */ /* 1.22 (2019-08-11) minimize missing-glyph duplication; fix kerning if both 'GPOS' and 'kern' are defined */ /* 1.21 (2019-02-25) fix warning */ /* 1.20 (2019-02-07) PackFontRange skips missing codepoints; GetScaleFontVMetrics() */ /* 1.19 (2018-02-11) OpenType GPOS kerning (horizontal only), STBTT_fmod */ /* 1.18 (2018-01-29) add missing function */ /* 1.17 (2017-07-23) make more arguments const; doc fix */ /* 1.16 (2017-07-12) SDF support */ /* 1.15 (2017-03-03) make more arguments const */ /* 1.14 (2017-01-16) num-fonts-in-TTC function */ /* 1.13 (2017-01-02) support OpenType fonts, certain Apple fonts */ /* 1.12 (2016-10-25) suppress warnings about casting away const with -Wcast-qual */ /* 1.11 (2016-04-02) fix unused-variable warning */ /* 1.10 (2016-04-02) allow user-defined fabs() replacement */ /* fix memory leak if fontsize=0.0 */ /* fix warning from duplicate typedef */ /* 1.09 (2016-01-16) warning fix; avoid crash on outofmem; use alloc userdata for PackFontRanges */ /* 1.08 (2015-09-13) document stbtt_Rasterize(); fixes for vertical & horizontal edges */ /* 1.07 (2015-08-01) allow PackFontRanges to accept arrays of sparse codepoints; */ /* allow PackFontRanges to pack and render in separate phases; */ /* fix stbtt_GetFontOFfsetForIndex (never worked for non-0 input?); */ /* fixed an assert() bug in the new rasterizer */ /* replace assert() with STBTT_assert() in new rasterizer */ /* 1.06 (2015-07-14) performance improvements (~35% faster on x86 and x64 on test machine) */ /* also more precise AA rasterizer, except if shapes overlap */ /* remove need for STBTT_sort */ /* 1.05 (2015-04-15) fix misplaced definitions for STBTT_STATIC */ /* 1.04 (2015-04-15) typo in example */ /* 1.03 (2015-04-12) STBTT_STATIC, fix memory leak in new packing, various fixes */ /* 1.02 (2014-12-10) fix various warnings & compile issues w/ stb_rect_pack, C++ */ /* 1.01 (2014-12-08) fix subpixel position when oversampling to exactly match */ /* non-oversampled; STBTT_POINT_SIZE for packed case only */ /* 1.00 (2014-12-06) add new PackBegin etc. API, w/ support for oversampling */ /* 0.99 (2014-09-18) fix multiple bugs with subpixel rendering (ryg) */ /* 0.9 (2014-08-07) support certain mac/iOS fonts without an MS platformID */ /* 0.8b (2014-07-07) fix a warning */ /* 0.8 (2014-05-25) fix a few more warnings */ /* 0.7 (2013-09-25) bugfix: subpixel glyph bug fixed in 0.5 had come back */ /* 0.6c (2012-07-24) improve documentation */ /* 0.6b (2012-07-20) fix a few more warnings */ /* 0.6 (2012-07-17) fix warnings; added stbtt_ScaleForMappingEmToPixels, */ /* stbtt_GetFontBoundingBox, stbtt_IsGlyphEmpty */ /* 0.5 (2011-12-09) bugfixes: */ /* subpixel glyph renderer computed wrong bounding box */ /* first vertex of shape can be off-curve (FreeSans) */ /* 0.4b (2011-12-03) fixed an error in the font baking example */ /* 0.4 (2011-12-01) kerning, subpixel rendering (tor) */ /* bugfixes for: */ /* codepoint-to-glyph conversion using table fmt=12 */ /* codepoint-to-glyph conversion using table fmt=4 */ /* stbtt_GetBakedQuad with non-square texture (Zer) */ /* updated Hello World! sample to use kerning and subpixel */ /* fixed some warnings */ /* 0.3 (2009-06-24) cmap fmt=12, compound shapes (MM) */ /* userdata, malloc-from-userdata, non-zero fill (stb) */ /* 0.2 (2009-03-11) Fix unsigned/signed char warnings */ /* 0.1 (2009-03-09) First public release */ /* */ /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #ifdef NK_INCLUDE_FONT_BAKING /* ------------------------------------------------------------- * * RECT PACK * * --------------------------------------------------------------*/ /* * ============================================================== * * TRUETYPE * * =============================================================== */ #define STBTT_MAX_OVERSAMPLE 8 /* ------------------------------------------------------------- * * FONT BAKING * * --------------------------------------------------------------*/ struct nk_font_bake_data { struct stbtt_fontinfo info; struct stbrp_rect *rects; stbtt_pack_range *ranges; nk_rune range_count; }; struct nk_font_baker { struct nk_allocator alloc; struct stbtt_pack_context spc; struct nk_font_bake_data *build; stbtt_packedchar *packed_chars; struct stbrp_rect *rects; stbtt_pack_range *ranges; }; NK_GLOBAL const nk_size nk_rect_align = NK_ALIGNOF(struct stbrp_rect); NK_GLOBAL const nk_size nk_range_align = NK_ALIGNOF(stbtt_pack_range); NK_GLOBAL const nk_size nk_char_align = NK_ALIGNOF(stbtt_packedchar); NK_GLOBAL const nk_size nk_build_align = NK_ALIGNOF(struct nk_font_bake_data); NK_GLOBAL const nk_size nk_baker_align = NK_ALIGNOF(struct nk_font_baker); NK_INTERN int nk_range_count(const nk_rune *range) { const nk_rune *iter = range; NK_ASSERT(range); if (!range) return 0; while (*(iter++) != 0); return (iter == range) ? 0 : (int)((iter - range)/2); } NK_INTERN int nk_range_glyph_count(const nk_rune *range, int count) { int i = 0; int total_glyphs = 0; for (i = 0; i < count; ++i) { int diff; nk_rune f = range[(i*2)+0]; nk_rune t = range[(i*2)+1]; NK_ASSERT(t >= f); diff = (int)((t - f) + 1); total_glyphs += diff; } return total_glyphs; } NK_API const nk_rune* nk_font_default_glyph_ranges(void) { NK_STORAGE const nk_rune ranges[] = {0x0020, 0x00FF, 0}; return ranges; } NK_API const nk_rune* nk_font_chinese_glyph_ranges(void) { NK_STORAGE const nk_rune ranges[] = { 0x0020, 0x00FF, 0x3000, 0x30FF, 0x31F0, 0x31FF, 0xFF00, 0xFFEF, 0x4e00, 0x9FAF, 0 }; return ranges; } NK_API const nk_rune* nk_font_cyrillic_glyph_ranges(void) { NK_STORAGE const nk_rune ranges[] = { 0x0020, 0x00FF, 0x0400, 0x052F, 0x2DE0, 0x2DFF, 0xA640, 0xA69F, 0 }; return ranges; } NK_API const nk_rune* nk_font_korean_glyph_ranges(void) { NK_STORAGE const nk_rune ranges[] = { 0x0020, 0x00FF, 0x3131, 0x3163, 0xAC00, 0xD79D, 0 }; return ranges; } NK_INTERN void nk_font_baker_memory(nk_size *temp, int *glyph_count, struct nk_font_config *config_list, int count) { int range_count = 0; int total_range_count = 0; struct nk_font_config *iter, *i; NK_ASSERT(config_list); NK_ASSERT(glyph_count); if (!config_list) { *temp = 0; *glyph_count = 0; return; } *glyph_count = 0; for (iter = config_list; iter; iter = iter->next) { i = iter; do {if (!i->range) iter->range = nk_font_default_glyph_ranges(); range_count = nk_range_count(i->range); total_range_count += range_count; *glyph_count += nk_range_glyph_count(i->range, range_count); } while ((i = i->n) != iter); } *temp = (nk_size)*glyph_count * sizeof(struct stbrp_rect); *temp += (nk_size)total_range_count * sizeof(stbtt_pack_range); *temp += (nk_size)*glyph_count * sizeof(stbtt_packedchar); *temp += (nk_size)count * sizeof(struct nk_font_bake_data); *temp += sizeof(struct nk_font_baker); *temp += nk_rect_align + nk_range_align + nk_char_align; *temp += nk_build_align + nk_baker_align; } NK_INTERN struct nk_font_baker* nk_font_baker(void *memory, int glyph_count, int count, struct nk_allocator *alloc) { struct nk_font_baker *baker; if (!memory) return 0; /* setup baker inside a memory block */ baker = (struct nk_font_baker*)NK_ALIGN_PTR(memory, nk_baker_align); baker->build = (struct nk_font_bake_data*)NK_ALIGN_PTR((baker + 1), nk_build_align); baker->packed_chars = (stbtt_packedchar*)NK_ALIGN_PTR((baker->build + count), nk_char_align); baker->rects = (struct stbrp_rect*)NK_ALIGN_PTR((baker->packed_chars + glyph_count), nk_rect_align); baker->ranges = (stbtt_pack_range*)NK_ALIGN_PTR((baker->rects + glyph_count), nk_range_align); baker->alloc = *alloc; return baker; } NK_INTERN int nk_font_bake_pack(struct nk_font_baker *baker, nk_size *image_memory, int *width, int *height, struct nk_recti *custom, const struct nk_font_config *config_list, int count, struct nk_allocator *alloc) { NK_STORAGE const nk_size max_height = 1024 * 32; const struct nk_font_config *config_iter, *it; int total_glyph_count = 0; int total_range_count = 0; int range_count = 0; int i = 0; NK_ASSERT(image_memory); NK_ASSERT(width); NK_ASSERT(height); NK_ASSERT(config_list); NK_ASSERT(count); NK_ASSERT(alloc); if (!image_memory || !width || !height || !config_list || !count) return nk_false; for (config_iter = config_list; config_iter; config_iter = config_iter->next) { it = config_iter; do {range_count = nk_range_count(it->range); total_range_count += range_count; total_glyph_count += nk_range_glyph_count(it->range, range_count); } while ((it = it->n) != config_iter); } /* setup font baker from temporary memory */ for (config_iter = config_list; config_iter; config_iter = config_iter->next) { it = config_iter; do { struct stbtt_fontinfo *font_info = &baker->build[i++].info; font_info->userdata = alloc; if (!stbtt_InitFont(font_info, (const unsigned char*)it->ttf_blob, 0)) return nk_false; } while ((it = it->n) != config_iter); } *height = 0; *width = (total_glyph_count > 1000) ? 1024 : 512; stbtt_PackBegin(&baker->spc, 0, (int)*width, (int)max_height, 0, 1, alloc); { int input_i = 0; int range_n = 0; int rect_n = 0; int char_n = 0; if (custom) { /* pack custom user data first so it will be in the upper left corner*/ struct stbrp_rect custom_space; nk_zero(&custom_space, sizeof(custom_space)); custom_space.w = (stbrp_coord)(custom->w); custom_space.h = (stbrp_coord)(custom->h); stbtt_PackSetOversampling(&baker->spc, 1, 1); stbrp_pack_rects((struct stbrp_context*)baker->spc.pack_info, &custom_space, 1); *height = NK_MAX(*height, (int)(custom_space.y + custom_space.h)); custom->x = (short)custom_space.x; custom->y = (short)custom_space.y; custom->w = (short)custom_space.w; custom->h = (short)custom_space.h; } /* first font pass: pack all glyphs */ for (input_i = 0, config_iter = config_list; input_i < count && config_iter; config_iter = config_iter->next) { it = config_iter; do {int n = 0; int glyph_count; const nk_rune *in_range; const struct nk_font_config *cfg = it; struct nk_font_bake_data *tmp = &baker->build[input_i++]; /* count glyphs + ranges in current font */ glyph_count = 0; range_count = 0; for (in_range = cfg->range; in_range[0] && in_range[1]; in_range += 2) { glyph_count += (int)(in_range[1] - in_range[0]) + 1; range_count++; } /* setup ranges */ tmp->ranges = baker->ranges + range_n; tmp->range_count = (nk_rune)range_count; range_n += range_count; for (i = 0; i < range_count; ++i) { in_range = &cfg->range[i * 2]; tmp->ranges[i].font_size = cfg->size; tmp->ranges[i].first_unicode_codepoint_in_range = (int)in_range[0]; tmp->ranges[i].num_chars = (int)(in_range[1]- in_range[0]) + 1; tmp->ranges[i].chardata_for_range = baker->packed_chars + char_n; char_n += tmp->ranges[i].num_chars; } /* pack */ tmp->rects = baker->rects + rect_n; rect_n += glyph_count; stbtt_PackSetOversampling(&baker->spc, cfg->oversample_h, cfg->oversample_v); n = stbtt_PackFontRangesGatherRects(&baker->spc, &tmp->info, tmp->ranges, (int)tmp->range_count, tmp->rects); stbrp_pack_rects((struct stbrp_context*)baker->spc.pack_info, tmp->rects, (int)n); /* texture height */ for (i = 0; i < n; ++i) { if (tmp->rects[i].was_packed) *height = NK_MAX(*height, tmp->rects[i].y + tmp->rects[i].h); } } while ((it = it->n) != config_iter); } NK_ASSERT(rect_n == total_glyph_count); NK_ASSERT(char_n == total_glyph_count); NK_ASSERT(range_n == total_range_count); } *height = (int)nk_round_up_pow2((nk_uint)*height); *image_memory = (nk_size)(*width) * (nk_size)(*height); return nk_true; } NK_INTERN void nk_font_bake(struct nk_font_baker *baker, void *image_memory, int width, int height, struct nk_font_glyph *glyphs, int glyphs_count, const struct nk_font_config *config_list, int font_count) { int input_i = 0; nk_rune glyph_n = 0; const struct nk_font_config *config_iter; const struct nk_font_config *it; NK_ASSERT(image_memory); NK_ASSERT(width); NK_ASSERT(height); NK_ASSERT(config_list); NK_ASSERT(baker); NK_ASSERT(font_count); NK_ASSERT(glyphs_count); if (!image_memory || !width || !height || !config_list || !font_count || !glyphs || !glyphs_count) return; /* second font pass: render glyphs */ nk_zero(image_memory, (nk_size)((nk_size)width * (nk_size)height)); baker->spc.pixels = (unsigned char*)image_memory; baker->spc.height = (int)height; for (input_i = 0, config_iter = config_list; input_i < font_count && config_iter; config_iter = config_iter->next) { it = config_iter; do {const struct nk_font_config *cfg = it; struct nk_font_bake_data *tmp = &baker->build[input_i++]; stbtt_PackSetOversampling(&baker->spc, cfg->oversample_h, cfg->oversample_v); stbtt_PackFontRangesRenderIntoRects(&baker->spc, &tmp->info, tmp->ranges, (int)tmp->range_count, tmp->rects); } while ((it = it->n) != config_iter); } stbtt_PackEnd(&baker->spc); /* third pass: setup font and glyphs */ for (input_i = 0, config_iter = config_list; input_i < font_count && config_iter; config_iter = config_iter->next) { it = config_iter; do {nk_size i = 0; int char_idx = 0; nk_rune glyph_count = 0; const struct nk_font_config *cfg = it; struct nk_font_bake_data *tmp = &baker->build[input_i++]; struct nk_baked_font *dst_font = cfg->font; float font_scale = stbtt_ScaleForPixelHeight(&tmp->info, cfg->size); int unscaled_ascent, unscaled_descent, unscaled_line_gap; stbtt_GetFontVMetrics(&tmp->info, &unscaled_ascent, &unscaled_descent, &unscaled_line_gap); /* fill baked font */ if (!cfg->merge_mode) { dst_font->ranges = cfg->range; dst_font->height = cfg->size; dst_font->ascent = ((float)unscaled_ascent * font_scale); dst_font->descent = ((float)unscaled_descent * font_scale); dst_font->glyph_offset = glyph_n; /* Need to zero this, or it will carry over from a previous bake, and cause a segfault when accessing glyphs[]. */ dst_font->glyph_count = 0; } /* fill own baked font glyph array */ for (i = 0; i < tmp->range_count; ++i) { stbtt_pack_range *range = &tmp->ranges[i]; for (char_idx = 0; char_idx < range->num_chars; char_idx++) { nk_rune codepoint = 0; float dummy_x = 0, dummy_y = 0; stbtt_aligned_quad q; struct nk_font_glyph *glyph; /* query glyph bounds from stb_truetype */ const stbtt_packedchar *pc = &range->chardata_for_range[char_idx]; if (!pc->x0 && !pc->x1 && !pc->y0 && !pc->y1) continue; codepoint = (nk_rune)(range->first_unicode_codepoint_in_range + char_idx); stbtt_GetPackedQuad(range->chardata_for_range, (int)width, (int)height, char_idx, &dummy_x, &dummy_y, &q, 0); /* fill own glyph type with data */ glyph = &glyphs[dst_font->glyph_offset + dst_font->glyph_count + (unsigned int)glyph_count]; glyph->codepoint = codepoint; glyph->x0 = q.x0; glyph->y0 = q.y0; glyph->x1 = q.x1; glyph->y1 = q.y1; glyph->y0 += (dst_font->ascent + 0.5f); glyph->y1 += (dst_font->ascent + 0.5f); glyph->w = glyph->x1 - glyph->x0 + 0.5f; glyph->h = glyph->y1 - glyph->y0; if (cfg->coord_type == NK_COORD_PIXEL) { glyph->u0 = q.s0 * (float)width; glyph->v0 = q.t0 * (float)height; glyph->u1 = q.s1 * (float)width; glyph->v1 = q.t1 * (float)height; } else { glyph->u0 = q.s0; glyph->v0 = q.t0; glyph->u1 = q.s1; glyph->v1 = q.t1; } glyph->xadvance = (pc->xadvance + cfg->spacing.x); glyph->yoffset = cfg->spacing.y; //< @r-lyeh if (cfg->pixel_snap) glyph->xadvance = (float)(int)(glyph->xadvance + 0.5f); glyph_count++; } } dst_font->glyph_count += glyph_count; glyph_n += glyph_count; } while ((it = it->n) != config_iter); } } NK_INTERN void nk_font_bake_custom_data(void *img_memory, int img_width, int img_height, struct nk_recti img_dst, const char *texture_data_mask, int tex_width, int tex_height, char white, char black) { nk_byte *pixels; int y = 0; int x = 0; int n = 0; NK_ASSERT(img_memory); NK_ASSERT(img_width); NK_ASSERT(img_height); NK_ASSERT(texture_data_mask); NK_UNUSED(tex_height); if (!img_memory || !img_width || !img_height || !texture_data_mask) return; pixels = (nk_byte*)img_memory; for (y = 0, n = 0; y < tex_height; ++y) { for (x = 0; x < tex_width; ++x, ++n) { const int off0 = ((img_dst.x + x) + (img_dst.y + y) * img_width); const int off1 = off0 + 1 + tex_width; pixels[off0] = (texture_data_mask[n] == white) ? 0xFF : 0x00; pixels[off1] = (texture_data_mask[n] == black) ? 0xFF : 0x00; } } } NK_INTERN void nk_font_bake_convert(void *out_memory, int img_width, int img_height, const void *in_memory) { int n = 0; nk_rune *dst; const nk_byte *src; NK_ASSERT(out_memory); NK_ASSERT(in_memory); NK_ASSERT(img_width); NK_ASSERT(img_height); if (!out_memory || !in_memory || !img_height || !img_width) return; dst = (nk_rune*)out_memory; src = (const nk_byte*)in_memory; for (n = (int)(img_width * img_height); n > 0; n--) *dst++ = ((nk_rune)(*src++) << 24) | 0x00FFFFFF; } /* ------------------------------------------------------------- * * FONT * * --------------------------------------------------------------*/ NK_INTERN float nk_font_text_width(nk_handle handle, float height, const char *text, int len) { nk_rune unicode; int text_len = 0; float text_width = 0; int glyph_len = 0; float scale = 0; struct nk_font *font = (struct nk_font*)handle.ptr; NK_ASSERT(font); NK_ASSERT(font->glyphs); if (!font || !text || !len) return 0; scale = height/font->info.height; glyph_len = text_len = nk_utf_decode(text, &unicode, (int)len); if (!glyph_len) return 0; while (text_len <= (int)len && glyph_len) { const struct nk_font_glyph *g; if (unicode == NK_UTF_INVALID) break; /* query currently drawn glyph information */ g = nk_font_find_glyph(font, unicode); text_width += g->xadvance * scale; /* offset next glyph */ glyph_len = nk_utf_decode(text + text_len, &unicode, (int)len - text_len); text_len += glyph_len; } return text_width; } #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT NK_INTERN void nk_font_query_font_glyph(nk_handle handle, float height, struct nk_user_font_glyph *glyph, nk_rune codepoint, nk_rune next_codepoint) { float scale; const struct nk_font_glyph *g; struct nk_font *font; NK_ASSERT(glyph); NK_UNUSED(next_codepoint); font = (struct nk_font*)handle.ptr; NK_ASSERT(font); NK_ASSERT(font->glyphs); if (!font || !glyph) return; scale = height/font->info.height; g = nk_font_find_glyph(font, codepoint); glyph->width = (g->x1 - g->x0) * scale; glyph->height = (g->y1 - g->y0) * scale; glyph->offset = nk_vec2(g->x0 * scale, g->y0 * scale); glyph->xadvance = (g->xadvance * scale); glyph->uv[0] = nk_vec2(g->u0, g->v0); glyph->uv[1] = nk_vec2(g->u1, g->v1); #if 1 //< @r-lyeh: hack to align MaterialIcons glyph->offset.y += g->yoffset; #endif } #endif NK_API const struct nk_font_glyph* nk_font_find_glyph(struct nk_font *font, nk_rune unicode) { int i = 0; int count; int total_glyphs = 0; const struct nk_font_glyph *glyph = 0; const struct nk_font_config *iter = 0; NK_ASSERT(font); NK_ASSERT(font->glyphs); NK_ASSERT(font->info.ranges); if (!font || !font->glyphs) return 0; glyph = font->fallback; iter = font->config; do {count = nk_range_count(iter->range); for (i = 0; i < count; ++i) { nk_rune f = iter->range[(i*2)+0]; nk_rune t = iter->range[(i*2)+1]; int diff = (int)((t - f) + 1); if (unicode >= f && unicode <= t) return &font->glyphs[((nk_rune)total_glyphs + (unicode - f))]; total_glyphs += diff; } } while ((iter = iter->n) != font->config); return glyph; } NK_INTERN void nk_font_init(struct nk_font *font, float pixel_height, nk_rune fallback_codepoint, struct nk_font_glyph *glyphs, const struct nk_baked_font *baked_font, nk_handle atlas) { struct nk_baked_font baked; NK_ASSERT(font); NK_ASSERT(glyphs); NK_ASSERT(baked_font); if (!font || !glyphs || !baked_font) return; baked = *baked_font; font->fallback = 0; font->info = baked; font->scale = (float)pixel_height / (float)font->info.height; font->glyphs = &glyphs[baked_font->glyph_offset]; font->texture = atlas; font->fallback_codepoint = fallback_codepoint; font->fallback = nk_font_find_glyph(font, fallback_codepoint); font->handle.height = font->info.height * font->scale; font->handle.width = nk_font_text_width; font->handle.userdata.ptr = font; #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT font->handle.query = nk_font_query_font_glyph; font->handle.texture = font->texture; #endif } /* --------------------------------------------------------------------------- * * DEFAULT FONT * * ProggyClean.ttf * Copyright (c) 2004, 2005 Tristan Grimmer * MIT license (see License.txt in http://www.upperbounds.net/download/ProggyClean.ttf.zip) * Download and more information at http://upperbounds.net *-----------------------------------------------------------------------------*/ #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Woverlength-strings" #elif defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Woverlength-strings" #endif #ifdef NK_INCLUDE_DEFAULT_FONT NK_GLOBAL const char nk_proggy_clean_ttf_compressed_data_base85[11980+1] = "7])#######hV0qs'/###[),##/l:$#Q6>##5[n42>c-TH`->>#/e>11NNV=Bv(*:.F?uu#(gRU.o0XGH`$vhLG1hxt9?W`#,5LsCp#-i>.r$<$6pD>Lb';9Crc6tgXmKVeU2cD4Eo3R/" "2*>]b(MC;$jPfY.;h^`IWM9Qo#t'X#(v#Y9w0#1D$CIf;W'#pWUPXOuxXuU(H9M(1=Ke$$'5F%)]0^#0X@U.a$FBjVQTSDgEKnIS7EM9>ZY9w0#L;>>#Mx&4Mvt//L[MkA#W@lK.N'[0#7RL_&#w+F%HtG9M#XL`N&.,GM4Pg;--VsM.M0rJfLH2eTM`*oJMHRC`N" "kfimM2J,W-jXS:)r0wK#@Fge$U>`w'N7G#$#fB#$E^$#:9:hk+eOe--6x)F7*E%?76%^GMHePW-Z5l'&GiF#$956:rS?dA#fiK:)Yr+`�j@'DbG&#^$PG.Ll+DNa&VZ>1i%h1S9u5o@YaaW$e+bROPOpxTO7Stwi1::iB1q)C_=dV26J;2,]7op$]uQr@_V7$q^%lQwtuHY]=DX,n3L#0PHDO4f9>dC@O>HBuKPpP*E,N+b3L#lpR/MrTEH.IAQk.a>D[.e;mc." "x]Ip.PH^'/aqUO/$1WxLoW0[iLAw=4h(9.`G" "CRUxHPeR`5Mjol(dUWxZa(>STrPkrJiWx`5U7F#.g*jrohGg`cg:lSTvEY/EV_7H4Q9[Z%cnv;JQYZ5q.l7Zeas:HOIZOB?Ggv:[7MI2k).'2($5FNP&EQ(,)" "U]W]+fh18.vsai00);D3@4ku5P?DP8aJt+;qUM]=+b'8@;mViBKx0DE[-auGl8:PJ&Dj+M6OC]O^((##]`0i)drT;-7X`=-H3[igUnPG-NZlo.#k@h#=Ork$m>a>$-?Tm$UV(?#P6YY#" "'/###xe7q.73rI3*pP/$1>s9)W,JrM7SN]'/4C#v$U`0#V.[0>xQsH$fEmPMgY2u7Kh(G%siIfLSoS+MK2eTM$=5,M8p`A.;_R%#u[K#$x4AG8.kK/HSB==-'Ie/QTtG?-.*^N-4B/ZM" "_3YlQC7(p7q)&](`6_c)$/*JL(L-^(]$wIM`dPtOdGA,U3:w2M-0+WomX2u7lqM2iEumMTcsF?-aT=Z-97UEnXglEn1K-bnEO`gu" "Ft(c%=;Am_Qs@jLooI&NX;]0#j4#F14;gl8-GQpgwhrq8'=l_f-b49'UOqkLu7-##oDY2L(te+Mch&gLYtJ,MEtJfLh'x'M=$CS-ZZ%P]8bZ>#S?YY#%Q&q'3^Fw&?D)UDNrocM3A76/" "/oL?#h7gl85[qW/NDOk%16ij;+:1a'iNIdb-ou8.P*w,v5#EI$TWS>Pot-R*H'-SEpA:g)f+O$%%`kA#G=8RMmG1&O`>to8bC]T&$,n.LoO>29sp3dt-52U%VM#q7'DHpg+#Z9%H[Ket`e;)f#Km8&+DC$I46>#Kr]]u-[=99tts1.qb#q72g1WJO81q+eN'03'eM>&1XxY-caEnO" "j%2n8)),?ILR5^.Ibn<-X-Mq7[a82Lq:F&#ce+S9wsCK*x`569E8ew'He]h:sI[2LM$[guka3ZRd6:t%IG:;$%YiJ:Nq=?eAw;/:nnDq0(CYcMpG)qLN4$##&J-XTt,%OVU4)S1+R-#dg0/Nn?Ku1^0f$B*P:Rowwm-`0PKjYDDM'3]d39VZHEl4,.j']Pk-M.h^&:0FACm$maq-&sgw0t7/6(^xtk%" "LuH88Fj-ekm>GA#_>568x6(OFRl-IZp`&b,_P'$MhLbxfc$mj`,O;&%W2m`Zh:/)Uetw:aJ%]K9h:TcF]u_-Sj9,VK3M.*'&0D[Ca]J9gp8,kAW]" "%(?A%R$f<->Zts'^kn=-^@c4%-pY6qI%J%1IGxfLU9CP8cbPlXv);C=b),<2mOvP8up,UVf3839acAWAW-W?#ao/^#%KYo8fRULNd2.>%m]UK:n%r$'sw]J;5pAoO_#2mO3n,'=H5(et" "Hg*`+RLgv>=4U8guD$I%D:W>-r5V*%j*W:Kvej.Lp$'?;++O'>()jLR-^u68PHm8ZFWe+ej8h:9r6L*0//c&iH&R8pRbA#Kjm%upV1g:" "a_#Ur7FuA#(tRh#.Y5K+@?3<-8m0$PEn;J:rh6?I6uG<-`wMU'ircp0LaE_OtlMb&1#6T.#FDKu#1Lw%u%+GM+X'e?YLfjM[VO0MbuFp7;>Q&#WIo)0@F%q7c#4XAXN-U&VBpqB>0ie&jhZ[?iLR@@_AvA-iQC(=ksRZRVp7`.=+NpBC%rh&3]R:8XDmE5^V8O(x<-+k?'(^](H.aREZSi,#1:[IXaZFOm<-ui#qUq2$##Ri;u75OK#(RtaW-K-F`S+cF]uN`-KMQ%rP/Xri.LRcB##=YL3BgM/3M" "D?@f&1'BW-)Ju#bmmWCMkk&#TR`C,5d>g)F;t,4:@_l8G/5h4vUd%&%950:VXD'QdWoY-F$BtUwmfe$YqL'8(PWX(" "P?^@Po3$##`MSs?DWBZ/S>+4%>fX,VWv/w'KD`LP5IbH;rTV>n3cEK8U#bX]l-/V+^lj3;vlMb&[5YQ8#pekX9JP3XUC72L,,?+Ni&co7ApnO*5NK,((W-i:$,kp'UDAO(G0Sq7MVjJs" "bIu)'Z,*[>br5fX^:FPAWr-m2KgLQ_nN6'8uTGT5g)uLv:873UpTLgH+#FgpH'_o1780Ph8KmxQJ8#H72L4@768@Tm&Q" "h4CB/5OvmA&,Q&QbUoi$a_%3M01H)4x7I^&KQVgtFnV+;[Pc>[m4k//,]1?#`VY[Jr*3&&slRfLiVZJ:]?=K3Sw=[$=uRB?3xk48@aege0jT6'N#(q%.O=?2S]u*(m<-" "V8J'(1)G][68hW$5'q[GC&5j`TE?m'esFGNRM)j,ffZ?-qx8;->g4t*:CIP/[Qap7/9'#(1sao7w-.qNUdkJ)tCF&#B^;xGvn2r9FEPFFFcL@.iFNkTve$m%#QvQS8U@)2Z+3K:AKM5i" "sZ88+dKQ)W6>J%CL`.d*(B`-n8D9oK-XV1q['-5k'cAZ69e;D_?$ZPP&s^+7])$*$#@QYi9,5P r+$%CE=68>K8r0=dSC%%(@p7" ".m7jilQ02'0-VWAgTlGW'b)Tq7VT9q^*^$$.:&N@@" "$&)WHtPm*5_rO0&e%K&#-30j(E4#'Zb.o/(Tpm$>K'f@[PvFl,hfINTNU6u'0pao7%XUp9]5.>%h`8_=VYbxuel.NTSsJfLacFu3B'lQSu/m6-Oqem8T+oE--$0a/k]uj9EwsG>%veR*" "hv^BFpQj:K'#SJ,sB-'#](j.Lg92rTw-*n%@/;39rrJF,l#qV%OrtBeC6/,;qB3ebNW[?,Hqj2L.1NP&GjUR=1D8QaS3Up&@*9wP?+lo7b?@%'k4`p0Z$22%K3+iCZj?XJN4Nm&+YF]u" "@-W$U%VEQ/,,>>#)D#%8cY#YZ?=,`Wdxu/ae&#" "w6)R89tI#6@s'(6Bf7a&?S=^ZI_kS&ai`&=tE72L_D,;^R)7[$so8lKN%5/$(vdfq7+ebA#" "u1p]ovUKW&Y%q]'>$1@-[xfn$7ZTp7mM,G,Ko7a&Gu%G[RMxJs[0MM%wci.LFDK)(%:_i2B5CsR8&9Z&#=mPEnm0f`<&c)QL5uJ#%u%lJj+D-r;BoFDoS97h5g)E#o:&S4weDF,9^Hoe`h*L+_a*NrLW-1pG_&2UdB8" "6e%B/:=>)N4xeW.*wft-;$'58-ESqr#U`'6AQ]m&6/`Z>#S?YY#Vc;r7U2&326d=w&H####?TZ`*4?&.MK?LP8Vxg>$[QXc%QJv92.(Db*B)gb*BM9dM*hJMAo*c&#" "b0v=Pjer]$gG&JXDf->'StvU7505l9$AFvgYRI^&<^b68?j#q9QX4SM'RO#&sL1IM.rJfLUAj221]d##DW=m83u5;'bYx,*Sl0hL(W;;$doB&O/TQ:(Z^xBdLjLV#*8U_72Lh+2Q8Cj0i:6hp&$C/:p(HK>T8Y[gHQ4`4)'$Ab(Nof%V'8hL&#SfD07&6D@M.*J:;$-rv29'M]8qMv-tLp,'886iaC=Hb*YJoKJ,(j%K=H`K.v9HggqBIiZu'QvBT.#=)0ukruV&.)3=(^1`o*Pj4<-#MJ+gLq9-##@HuZPN0]u:h7.T..G:;$/Usj(T7`Q8tT72LnYl<-qx8;-HV7Q-&Xdx%1a,hC=0u+HlsV>nuIQL-5" "_>@kXQtMacfD.m-VAb8;IReM3$wf0''hra*so568'Ip&vRs849'MRYSp%:t:h5qSgwpEr$B>Q,;s(C#$)`svQuF$##-D,##,g68@2[T;.XSdN9Qe)rpt._K-#5wF)sP'##p#C0c%-Gb%" "hd+<-j'Ai*x&&HMkT]C'OSl##5RG[JXaHN;d'uA#x._U;.`PU@(Z3dt4r152@:v,'R.Sj'w#0<-;kPI)FfJ&#AYJ&#//)>-k=m=*XnK$>=)72L]0I%>.G690a:$##<,);?;72#?x9+d;" "^V'9;jY@;)br#q^YQpx:X#Te$Z^'=-=bGhLf:D6&bNwZ9-ZD#n^9HhLMr5G;']d&6'wYmTFmLq9wI>P(9mI[>kC-ekLC/R&CH+s'B;K-M6$EB%is00:" "+A4[7xks.LrNk0&E)wILYF@2L'0Nb$+pv<(2.768/FrY&h$^3i&@+G%JT'<-,v`3;_)I9M^AE]CN?Cl2AZg+%4iTpT3$U4O]GKx'm9)b@p7YsvK3w^YR-" "CdQ*:Ir<($u&)#(&?L9Rg3H)4fiEp^iI9O8KnTj,]H?D*r7'M;PwZ9K0E^k&-cpI;.p/6_vwoFMV<->#%Xi.LxVnrU(4&8/P+:hLSKj$#U%]49t'I:rgMi'FL@a:0Y-uA[39',(vbma*" "hU%<-SRF`Tt:542R_VV$p@[p8DV[A,?1839FWdFTi1O*H&#(AL8[_P%.M>v^-))qOT*F5Cq0`Ye%+$B6i:7@0IXSsDiWP,##P`%/L-" "S(qw%sf/@%#B6;/U7K]uZbi^Oc^2n%t<)'mEVE''n`WnJra$^TKvX5B>;_aSEK',(hwa0:i4G?.Bci.(X[?b*($,=-n<.Q%`(X=?+@Am*Js0&=3bh8K]mL69=Lb,OcZV/);TTm8VI;?%OtJ<(b4mq7M6:u?KRdFl*:xP?Yb.5)%w_I?7uk5JC+FS(m#i'k.'a0i)9<7b'fs'59hq$*5Uhv##pi^8+hIEBF`nvo`;'l0.^S1<-wUK2/Coh58KKhLj" "M=SO*rfO`+qC`W-On.=AJ56>>i2@2LH6A:&5q`?9I3@@'04&p2/LVa*T-4<-i3;M9UvZd+N7>b*eIwg:CC)c<>nO&#$(>.Z-I&J(Q0Hd5Q%7Co-b`-cP)hI;*_F]u`Rb[.j8_Q/<&>uu+VsH$sM9TA%?)(vmJ80),P7E>)tjD%2L=-t#fK[%`v=Q8WlA2);Sa" ">gXm8YB`1d@K#n]76-a$U,mF%Ul:#/'xoFM9QX-$.QN'>" "[%$Z$uF6pA6Ki2O5:8w*vP1<-1`[G,)-m#>0`P&#eb#.3i)rtB61(o'$?X3B2Qft^ae_5tKL9MUe9b*sLEQ95C&`=G?@Mj=wh*'3E>=-<)Gt*Iw)'QG:`@I" "wOf7&]1i'S01B+Ev/Nac#9S;=;YQpg_6U`*kVY39xK,[/6Aj7:'1Bm-_1EYfa1+o&o4hp7KN_Q(OlIo@S%;jVdn0'1h19w,WQhLI)3S#f$2(eb,jr*b;3Vw]*7NH%$c4Vs,eD9>XW8?N]o+(*pgC%/72LV-uW%iewS8W6m2rtCpo'RS1R84=@paTKt)>=%&1[)*vp'u+x,VrwN;&]kuO9JDbg=pO$J*.jVe;u'm0dr9l,<*wMK*Oe=g8lV_KEBFkO'oU]^=[-792#ok,)" "i]lR8qQ2oA8wcRCZ^7w/Njh;?.stX?Q1>S1q4Bn$)K1<-rGdO'$Wr.Lc.CG)$/*JL4tNR/,SVO3,aUw'DJN:)Ss;wGn9A32ijw%FL+Z0Fn.U9;reSq)bmI32U==5ALuG&#Vf1398/pVo" "1*c-(aY168o<`JsSbk-,1N;$>0:OUas(3:8Z972LSfF8eb=c-;>SPw7.6hn3m`9^Xkn(r.qS[0;T%&Qc=+STRxX'q1BNk3&*eu2;&8q$&x>Q#Q7^Tf+6<(d%ZVmj2bDi%.3L2n+4W'$P" "iDDG)g,r%+?,$@?uou5tSe2aN_AQU*'IAO" "URQ##V^Fv-XFbGM7Fl(N<3DhLGF%q.1rC$#:T__&Pi68%0xi_&[qFJ(77j_&JWoF.V735&T,[R*:xFR*K5>>#`bW-?4Ne_&6Ne_&6Ne_&n`kr-#GJcM6X;uM6X;uM(.a..^2TkL%oR(#" ";u.T%fAr%4tJ8&><1=GHZ_+m9/#H1F^R#SC#*N=BA9(D?v[UiFY>>^8p,KKF.W]L29uLkLlu/+4T" "w$)F./^n3+rlo+DB;5sIYGNk+i1t-69Jg--0pao7Sm#K)pdHW&;LuDNH@H>#/X-TI(;P>#,Gc>#0Su>#4`1?#8lC?#xL$#B.`$#F:r$#JF.%#NR@%#R_R%#Vke%#Zww%#_-4^Rh%Sflr-k'MS.o?.5/sWel/wpEM0%3'/1)K^f1-d>G21&v(35>V`39V7A4=onx4" "A1OY5EI0;6Ibgr6M$HS7Q<)58C5w,;WoA*#[%T*#`1g*#d=#+#hI5+#lUG+#pbY+#tnl+#x$),#&1;,#*=M,#.I`,#2Ur,#6b.-#;w[H#iQtA#m^0B#qjBB#uvTB##-hB#'9$C#+E6C#" "/QHC#3^ZC#7jmC#;v)D#?,)4kMYD4lVu`4m`:&5niUA5@(A5BA1]PBB:xlBCC=2CDLXMCEUtiCf&0g2'tN?PGT4CPGT4CPGT4CPGT4CPGT4CPGT4CPGT4CP" "GT4CPGT4CPGT4CPGT4CPGT4CPGT4CP-qekC`.9kEg^+F$kwViFJTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5o,^<-28ZI'O?;xp" "O?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xp;7q-#lLYI:xvD=#"; #endif /* NK_INCLUDE_DEFAULT_FONT */ #define NK_CURSOR_DATA_W 90 #define NK_CURSOR_DATA_H 27 NK_GLOBAL const char nk_custom_cursor_data[NK_CURSOR_DATA_W * NK_CURSOR_DATA_H + 1] = { "..- -XXXXXXX- X - X -XXXXXXX - XXXXXXX" "..- -X.....X- X.X - X.X -X.....X - X.....X" "--- -XXX.XXX- X...X - X...X -X....X - X....X" "X - X.X - X.....X - X.....X -X...X - X...X" "XX - X.X -X.......X- X.......X -X..X.X - X.X..X" "X.X - X.X -XXXX.XXXX- XXXX.XXXX -X.X X.X - X.X X.X" "X..X - X.X - X.X - X.X -XX X.X - X.X XX" "X...X - X.X - X.X - XX X.X XX - X.X - X.X " "X....X - X.X - X.X - X.X X.X X.X - X.X - X.X " "X.....X - X.X - X.X - X..X X.X X..X - X.X - X.X " "X......X - X.X - X.X - X...XXXXXX.XXXXXX...X - X.X XX-XX X.X " "X.......X - X.X - X.X -X.....................X- X.X X.X-X.X X.X " "X........X - X.X - X.X - X...XXXXXX.XXXXXX...X - X.X..X-X..X.X " "X.........X -XXX.XXX- X.X - X..X X.X X..X - X...X-X...X " "X..........X-X.....X- X.X - X.X X.X X.X - X....X-X....X " "X......XXXXX-XXXXXXX- X.X - XX X.X XX - X.....X-X.....X " "X...X..X --------- X.X - X.X - XXXXXXX-XXXXXXX " "X..X X..X - -XXXX.XXXX- XXXX.XXXX ------------------------------------" "X.X X..X - -X.......X- X.......X - XX XX - " "XX X..X - - X.....X - X.....X - X.X X.X - " " X..X - X...X - X...X - X..X X..X - " " XX - X.X - X.X - X...XXXXXXXXXXXXX...X - " "------------ - X - X -X.....................X- " " ----------------------------------- X...XXXXXXXXXXXXX...X - " " - X..X X..X - " " - X.X X.X - " " - XX XX - " }; #ifdef __clang__ #pragma clang diagnostic pop #elif defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic pop #endif NK_GLOBAL unsigned char *nk__barrier; NK_GLOBAL unsigned char *nk__barrier2; NK_GLOBAL unsigned char *nk__barrier3; NK_GLOBAL unsigned char *nk__barrier4; NK_GLOBAL unsigned char *nk__dout; NK_INTERN unsigned int nk_decompress_length(unsigned char *input) { return (unsigned int)((input[8] << 24) + (input[9] << 16) + (input[10] << 8) + input[11]); } NK_INTERN void nk__match(unsigned char *data, unsigned int length) { /* INVERSE of memmove... write each byte before copying the next...*/ NK_ASSERT (nk__dout + length <= nk__barrier); if (nk__dout + length > nk__barrier) { nk__dout += length; return; } if (data < nk__barrier4) { nk__dout = nk__barrier+1; return; } while (length--) *nk__dout++ = *data++; } NK_INTERN void nk__lit(unsigned char *data, unsigned int length) { NK_ASSERT (nk__dout + length <= nk__barrier); if (nk__dout + length > nk__barrier) { nk__dout += length; return; } if (data < nk__barrier2) { nk__dout = nk__barrier+1; return; } NK_MEMCPY(nk__dout, data, length); nk__dout += length; } NK_INTERN unsigned char* nk_decompress_token(unsigned char *i) { #define nk__in2(x) ((i[x] << 8) + i[(x)+1]) #define nk__in3(x) ((i[x] << 16) + nk__in2((x)+1)) #define nk__in4(x) ((i[x] << 24) + nk__in3((x)+1)) if (*i >= 0x20) { /* use fewer if's for cases that expand small */ if (*i >= 0x80) nk__match(nk__dout-i[1]-1, (unsigned int)i[0] - 0x80 + 1), i += 2; else if (*i >= 0x40) nk__match(nk__dout-(nk__in2(0) - 0x4000 + 1), (unsigned int)i[2]+1), i += 3; else /* *i >= 0x20 */ nk__lit(i+1, (unsigned int)i[0] - 0x20 + 1), i += 1 + (i[0] - 0x20 + 1); } else { /* more ifs for cases that expand large, since overhead is amortized */ if (*i >= 0x18) nk__match(nk__dout-(unsigned int)(nk__in3(0) - 0x180000 + 1), (unsigned int)i[3]+1), i += 4; else if (*i >= 0x10) nk__match(nk__dout-(unsigned int)(nk__in3(0) - 0x100000 + 1), (unsigned int)nk__in2(3)+1), i += 5; else if (*i >= 0x08) nk__lit(i+2, (unsigned int)nk__in2(0) - 0x0800 + 1), i += 2 + (nk__in2(0) - 0x0800 + 1); else if (*i == 0x07) nk__lit(i+3, (unsigned int)nk__in2(1) + 1), i += 3 + (nk__in2(1) + 1); else if (*i == 0x06) nk__match(nk__dout-(unsigned int)(nk__in3(1)+1), i[4]+1u), i += 5; else if (*i == 0x04) nk__match(nk__dout-(unsigned int)(nk__in3(1)+1), (unsigned int)nk__in2(4)+1u), i += 6; } return i; } NK_INTERN unsigned int nk_adler32(unsigned int adler32, unsigned char *buffer, unsigned int buflen) { const unsigned long ADLER_MOD = 65521; unsigned long s1 = adler32 & 0xffff, s2 = adler32 >> 16; unsigned long blocklen, i; blocklen = buflen % 5552; while (buflen) { for (i=0; i + 7 < blocklen; i += 8) { s1 += buffer[0]; s2 += s1; s1 += buffer[1]; s2 += s1; s1 += buffer[2]; s2 += s1; s1 += buffer[3]; s2 += s1; s1 += buffer[4]; s2 += s1; s1 += buffer[5]; s2 += s1; s1 += buffer[6]; s2 += s1; s1 += buffer[7]; s2 += s1; buffer += 8; } for (; i < blocklen; ++i) { s1 += *buffer++; s2 += s1; } s1 %= ADLER_MOD; s2 %= ADLER_MOD; buflen -= (unsigned int)blocklen; blocklen = 5552; } return (unsigned int)(s2 << 16) + (unsigned int)s1; } NK_INTERN unsigned int nk_decompress(unsigned char *output, unsigned char *i, unsigned int length) { unsigned int olen; if (nk__in4(0) != 0x57bC0000) return 0; if (nk__in4(4) != 0) return 0; /* error! stream is > 4GB */ olen = nk_decompress_length(i); nk__barrier2 = i; nk__barrier3 = i+length; nk__barrier = output + olen; nk__barrier4 = output; i += 16; nk__dout = output; for (;;) { unsigned char *old_i = i; i = nk_decompress_token(i); if (i == old_i) { if (*i == 0x05 && i[1] == 0xfa) { NK_ASSERT(nk__dout == output + olen); if (nk__dout != output + olen) return 0; if (nk_adler32(1, output, olen) != (unsigned int) nk__in4(2)) return 0; return olen; } else { NK_ASSERT(0); /* NOTREACHED */ return 0; } } NK_ASSERT(nk__dout <= output + olen); if (nk__dout > output + olen) return 0; } } NK_INTERN unsigned int nk_decode_85_byte(char c) { return (unsigned int)((c >= '\\') ? c-36 : c-35); } NK_INTERN void nk_decode_85(unsigned char* dst, const unsigned char* src) { while (*src) { unsigned int tmp = nk_decode_85_byte((char)src[0]) + 85 * (nk_decode_85_byte((char)src[1]) + 85 * (nk_decode_85_byte((char)src[2]) + 85 * (nk_decode_85_byte((char)src[3]) + 85 * nk_decode_85_byte((char)src[4])))); /* we can't assume little-endianess. */ dst[0] = (unsigned char)((tmp >> 0) & 0xFF); dst[1] = (unsigned char)((tmp >> 8) & 0xFF); dst[2] = (unsigned char)((tmp >> 16) & 0xFF); dst[3] = (unsigned char)((tmp >> 24) & 0xFF); src += 5; dst += 4; } } /* ------------------------------------------------------------- * * FONT ATLAS * * --------------------------------------------------------------*/ NK_API struct nk_font_config nk_font_config(float pixel_height) { struct nk_font_config cfg; nk_zero_struct(cfg); cfg.ttf_blob = 0; cfg.ttf_size = 0; cfg.ttf_data_owned_by_atlas = 0; cfg.size = pixel_height*1; //< @r-lyeh : *1 cfg.oversample_h = 3; //< @r-lyeh : 3 cfg.oversample_v = 2; //< @r-lyeh : 1 cfg.pixel_snap = 1; //< @r-lyeh : 0. according to docs, if true set oversample to (1,1) cfg.coord_type = NK_COORD_UV; cfg.spacing = nk_vec2(0,0); cfg.range = nk_font_default_glyph_ranges(); cfg.merge_mode = 0; cfg.fallback_glyph = '?'; cfg.font = 0; cfg.n = 0; return cfg; } #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_font_atlas_init_default(struct nk_font_atlas *atlas) { NK_ASSERT(atlas); if (!atlas) return; nk_zero_struct(*atlas); atlas->temporary.userdata.ptr = 0; atlas->temporary.alloc = nk_malloc; atlas->temporary.free = nk_mfree; atlas->permanent.userdata.ptr = 0; atlas->permanent.alloc = nk_malloc; atlas->permanent.free = nk_mfree; } #endif NK_API void nk_font_atlas_init(struct nk_font_atlas *atlas, struct nk_allocator *alloc) { NK_ASSERT(atlas); NK_ASSERT(alloc); if (!atlas || !alloc) return; nk_zero_struct(*atlas); atlas->permanent = *alloc; atlas->temporary = *alloc; } NK_API void nk_font_atlas_init_custom(struct nk_font_atlas *atlas, struct nk_allocator *permanent, struct nk_allocator *temporary) { NK_ASSERT(atlas); NK_ASSERT(permanent); NK_ASSERT(temporary); if (!atlas || !permanent || !temporary) return; nk_zero_struct(*atlas); atlas->permanent = *permanent; atlas->temporary = *temporary; } NK_API void nk_font_atlas_begin(struct nk_font_atlas *atlas) { NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc && atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc && atlas->permanent.free); if (!atlas || !atlas->permanent.alloc || !atlas->permanent.free || !atlas->temporary.alloc || !atlas->temporary.free) return; if (atlas->glyphs) { atlas->permanent.free(atlas->permanent.userdata, atlas->glyphs); atlas->glyphs = 0; } if (atlas->pixel) { atlas->permanent.free(atlas->permanent.userdata, atlas->pixel); atlas->pixel = 0; } } NK_API struct nk_font* nk_font_atlas_add(struct nk_font_atlas *atlas, const struct nk_font_config *config) { struct nk_font *font = 0; struct nk_font_config *cfg; NK_ASSERT(atlas); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(config); NK_ASSERT(config->ttf_blob); NK_ASSERT(config->ttf_size); NK_ASSERT(config->size > 0.0f); if (!atlas || !config || !config->ttf_blob || !config->ttf_size || config->size <= 0.0f|| !atlas->permanent.alloc || !atlas->permanent.free || !atlas->temporary.alloc || !atlas->temporary.free) return 0; /* allocate font config */ cfg = (struct nk_font_config*) atlas->permanent.alloc(atlas->permanent.userdata,0, sizeof(struct nk_font_config)); NK_MEMCPY(cfg, config, sizeof(*config)); cfg->n = cfg; cfg->p = cfg; if (!config->merge_mode) { /* insert font config into list */ if (!atlas->config) { atlas->config = cfg; cfg->next = 0; } else { struct nk_font_config *i = atlas->config; while (i->next) i = i->next; i->next = cfg; cfg->next = 0; } /* allocate new font */ font = (struct nk_font*) atlas->permanent.alloc(atlas->permanent.userdata,0, sizeof(struct nk_font)); NK_ASSERT(font); nk_zero(font, sizeof(*font)); if (!font) return 0; font->config = cfg; /* insert font into list */ if (!atlas->fonts) { atlas->fonts = font; font->next = 0; } else { struct nk_font *i = atlas->fonts; while (i->next) i = i->next; i->next = font; font->next = 0; } cfg->font = &font->info; } else { /* extend previously added font */ struct nk_font *f = 0; struct nk_font_config *c = 0; NK_ASSERT(atlas->font_num); f = atlas->fonts; c = f->config; cfg->font = &f->info; cfg->n = c; cfg->p = c->p; c->p->n = cfg; c->p = cfg; } /* create own copy of .TTF font blob */ if (!config->ttf_data_owned_by_atlas) { cfg->ttf_blob = atlas->permanent.alloc(atlas->permanent.userdata,0, cfg->ttf_size); NK_ASSERT(cfg->ttf_blob); if (!cfg->ttf_blob) { atlas->font_num++; return 0; } NK_MEMCPY(cfg->ttf_blob, config->ttf_blob, cfg->ttf_size); cfg->ttf_data_owned_by_atlas = 1; } atlas->font_num++; return font; } NK_API struct nk_font* nk_font_atlas_add_from_memory(struct nk_font_atlas *atlas, void *memory, nk_size size, float height, const struct nk_font_config *config) { struct nk_font_config cfg; NK_ASSERT(memory); NK_ASSERT(size); NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); if (!atlas || !atlas->temporary.alloc || !atlas->temporary.free || !memory || !size || !atlas->permanent.alloc || !atlas->permanent.free) return 0; cfg = (config) ? *config: nk_font_config(height); cfg.ttf_blob = memory; cfg.ttf_size = size; cfg.size = height; cfg.ttf_data_owned_by_atlas = 0; return nk_font_atlas_add(atlas, &cfg); } #ifdef NK_INCLUDE_STANDARD_IO NK_API struct nk_font* nk_font_atlas_add_from_file(struct nk_font_atlas *atlas, const char *file_path, float height, const struct nk_font_config *config) { nk_size size; char *memory; struct nk_font_config cfg; NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); if (!atlas || !file_path) return 0; memory = nk_file_load(file_path, &size, &atlas->permanent); if (!memory) return 0; cfg = (config) ? *config: nk_font_config(height); cfg.ttf_blob = memory; cfg.ttf_size = size; cfg.size = height; cfg.ttf_data_owned_by_atlas = 1; return nk_font_atlas_add(atlas, &cfg); } #endif NK_API struct nk_font* nk_font_atlas_add_compressed(struct nk_font_atlas *atlas, void *compressed_data, nk_size compressed_size, float height, const struct nk_font_config *config) { unsigned int decompressed_size; void *decompressed_data; struct nk_font_config cfg; NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); NK_ASSERT(compressed_data); NK_ASSERT(compressed_size); if (!atlas || !compressed_data || !atlas->temporary.alloc || !atlas->temporary.free || !atlas->permanent.alloc || !atlas->permanent.free) return 0; decompressed_size = nk_decompress_length((unsigned char*)compressed_data); decompressed_data = atlas->permanent.alloc(atlas->permanent.userdata,0,decompressed_size); NK_ASSERT(decompressed_data); if (!decompressed_data) return 0; nk_decompress((unsigned char*)decompressed_data, (unsigned char*)compressed_data, (unsigned int)compressed_size); cfg = (config) ? *config: nk_font_config(height); cfg.ttf_blob = decompressed_data; cfg.ttf_size = decompressed_size; cfg.size = height; cfg.ttf_data_owned_by_atlas = 1; return nk_font_atlas_add(atlas, &cfg); } NK_API struct nk_font* nk_font_atlas_add_compressed_base85(struct nk_font_atlas *atlas, const char *data_base85, float height, const struct nk_font_config *config) { int compressed_size; void *compressed_data; struct nk_font *font; NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); NK_ASSERT(data_base85); if (!atlas || !data_base85 || !atlas->temporary.alloc || !atlas->temporary.free || !atlas->permanent.alloc || !atlas->permanent.free) return 0; compressed_size = (((int)nk_strlen(data_base85) + 4) / 5) * 4; compressed_data = atlas->temporary.alloc(atlas->temporary.userdata,0, (nk_size)compressed_size); NK_ASSERT(compressed_data); if (!compressed_data) return 0; nk_decode_85((unsigned char*)compressed_data, (const unsigned char*)data_base85); font = nk_font_atlas_add_compressed(atlas, compressed_data, (nk_size)compressed_size, height, config); atlas->temporary.free(atlas->temporary.userdata, compressed_data); return font; } #ifdef NK_INCLUDE_DEFAULT_FONT NK_API struct nk_font* nk_font_atlas_add_default(struct nk_font_atlas *atlas, float pixel_height, const struct nk_font_config *config) { NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); return nk_font_atlas_add_compressed_base85(atlas, nk_proggy_clean_ttf_compressed_data_base85, pixel_height, config); } #endif NK_API const void* nk_font_atlas_bake(struct nk_font_atlas *atlas, int *width, int *height, enum nk_font_atlas_format fmt) { int i = 0; void *tmp = 0; nk_size tmp_size, img_size; struct nk_font *font_iter; struct nk_font_baker *baker; NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); NK_ASSERT(width); NK_ASSERT(height); if (!atlas || !width || !height || !atlas->temporary.alloc || !atlas->temporary.free || !atlas->permanent.alloc || !atlas->permanent.free) return 0; #ifdef NK_INCLUDE_DEFAULT_FONT /* no font added so just use default font */ if (!atlas->font_num) atlas->default_font = nk_font_atlas_add_default(atlas, 13.0f, 0); #endif NK_ASSERT(atlas->font_num); if (!atlas->font_num) return 0; /* allocate temporary baker memory required for the baking process */ nk_font_baker_memory(&tmp_size, &atlas->glyph_count, atlas->config, atlas->font_num); tmp = atlas->temporary.alloc(atlas->temporary.userdata,0, tmp_size); NK_ASSERT(tmp); if (!tmp) goto failed; NK_MEMSET(tmp,0,tmp_size); /* allocate glyph memory for all fonts */ baker = nk_font_baker(tmp, atlas->glyph_count, atlas->font_num, &atlas->temporary); atlas->glyphs = (struct nk_font_glyph*)atlas->permanent.alloc( atlas->permanent.userdata,0, sizeof(struct nk_font_glyph)*(nk_size)atlas->glyph_count); NK_ASSERT(atlas->glyphs); if (!atlas->glyphs) goto failed; /* pack all glyphs into a tight fit space */ atlas->custom.w = (NK_CURSOR_DATA_W*2)+1; atlas->custom.h = NK_CURSOR_DATA_H + 1; if (!nk_font_bake_pack(baker, &img_size, width, height, &atlas->custom, atlas->config, atlas->font_num, &atlas->temporary)) goto failed; /* allocate memory for the baked image font atlas */ atlas->pixel = atlas->temporary.alloc(atlas->temporary.userdata,0, img_size); NK_ASSERT(atlas->pixel); if (!atlas->pixel) goto failed; /* bake glyphs and custom white pixel into image */ nk_font_bake(baker, atlas->pixel, *width, *height, atlas->glyphs, atlas->glyph_count, atlas->config, atlas->font_num); nk_font_bake_custom_data(atlas->pixel, *width, *height, atlas->custom, nk_custom_cursor_data, NK_CURSOR_DATA_W, NK_CURSOR_DATA_H, '.', 'X'); if (fmt == NK_FONT_ATLAS_RGBA32) { /* convert alpha8 image into rgba32 image */ void *img_rgba = atlas->temporary.alloc(atlas->temporary.userdata,0, (nk_size)(*width * *height * 4)); NK_ASSERT(img_rgba); if (!img_rgba) goto failed; nk_font_bake_convert(img_rgba, *width, *height, atlas->pixel); atlas->temporary.free(atlas->temporary.userdata, atlas->pixel); atlas->pixel = img_rgba; } atlas->tex_width = *width; atlas->tex_height = *height; /* initialize each font */ for (font_iter = atlas->fonts; font_iter; font_iter = font_iter->next) { struct nk_font *font = font_iter; struct nk_font_config *config = font->config; nk_font_init(font, config->size, config->fallback_glyph, atlas->glyphs, config->font, nk_handle_ptr(0)); } /* initialize each cursor */ {NK_STORAGE const struct nk_vec2 nk_cursor_data[NK_CURSOR_COUNT][3] = { /* Pos Size Offset */ {{ 0, 3}, {12,19}, { 0, 0}}, {{13, 0}, { 7,16}, { 4, 8}}, {{31, 0}, {23,23}, {11,11}}, {{21, 0}, { 9, 23}, { 5,11}}, {{55,18}, {23, 9}, {11, 5}}, {{73, 0}, {17,17}, { 9, 9}}, {{55, 0}, {17,17}, { 9, 9}} }; for (i = 0; i < NK_CURSOR_COUNT; ++i) { struct nk_cursor *cursor = &atlas->cursors[i]; cursor->img.w = (unsigned short)*width; cursor->img.h = (unsigned short)*height; cursor->img.region[0] = (unsigned short)(atlas->custom.x + nk_cursor_data[i][0].x); cursor->img.region[1] = (unsigned short)(atlas->custom.y + nk_cursor_data[i][0].y); cursor->img.region[2] = (unsigned short)nk_cursor_data[i][1].x; cursor->img.region[3] = (unsigned short)nk_cursor_data[i][1].y; cursor->size = nk_cursor_data[i][1]; cursor->offset = nk_cursor_data[i][2]; }} /* free temporary memory */ atlas->temporary.free(atlas->temporary.userdata, tmp); return atlas->pixel; failed: /* error so cleanup all memory */ if (tmp) atlas->temporary.free(atlas->temporary.userdata, tmp); if (atlas->glyphs) { atlas->permanent.free(atlas->permanent.userdata, atlas->glyphs); atlas->glyphs = 0; } if (atlas->pixel) { atlas->temporary.free(atlas->temporary.userdata, atlas->pixel); atlas->pixel = 0; } return 0; } NK_API void nk_font_atlas_end(struct nk_font_atlas *atlas, nk_handle texture, struct nk_draw_null_texture *null) { int i = 0; struct nk_font *font_iter; NK_ASSERT(atlas); if (!atlas) { if (!null) return; null->texture = texture; null->uv = nk_vec2(0.5f,0.5f); } if (null) { null->texture = texture; null->uv.x = (atlas->custom.x + 0.5f)/(float)atlas->tex_width; null->uv.y = (atlas->custom.y + 0.5f)/(float)atlas->tex_height; } for (font_iter = atlas->fonts; font_iter; font_iter = font_iter->next) { font_iter->texture = texture; #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT font_iter->handle.texture = texture; #endif } for (i = 0; i < NK_CURSOR_COUNT; ++i) atlas->cursors[i].img.handle = texture; atlas->temporary.free(atlas->temporary.userdata, atlas->pixel); atlas->pixel = 0; atlas->tex_width = 0; atlas->tex_height = 0; atlas->custom.x = 0; atlas->custom.y = 0; atlas->custom.w = 0; atlas->custom.h = 0; } NK_API void nk_font_atlas_cleanup(struct nk_font_atlas *atlas) { NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); if (!atlas || !atlas->permanent.alloc || !atlas->permanent.free) return; if (atlas->config) { struct nk_font_config *iter; for (iter = atlas->config; iter; iter = iter->next) { struct nk_font_config *i; for (i = iter->n; i != iter; i = i->n) { atlas->permanent.free(atlas->permanent.userdata, i->ttf_blob); i->ttf_blob = 0; } atlas->permanent.free(atlas->permanent.userdata, iter->ttf_blob); iter->ttf_blob = 0; } } } NK_API void nk_font_atlas_clear(struct nk_font_atlas *atlas) { NK_ASSERT(atlas); NK_ASSERT(atlas->temporary.alloc); NK_ASSERT(atlas->temporary.free); NK_ASSERT(atlas->permanent.alloc); NK_ASSERT(atlas->permanent.free); if (!atlas || !atlas->permanent.alloc || !atlas->permanent.free) return; if (atlas->config) { struct nk_font_config *iter, *next; for (iter = atlas->config; iter; iter = next) { struct nk_font_config *i, *n; for (i = iter->n; i != iter; i = n) { n = i->n; if (i->ttf_blob) atlas->permanent.free(atlas->permanent.userdata, i->ttf_blob); atlas->permanent.free(atlas->permanent.userdata, i); } next = iter->next; if (i->ttf_blob) atlas->permanent.free(atlas->permanent.userdata, iter->ttf_blob); atlas->permanent.free(atlas->permanent.userdata, iter); } atlas->config = 0; } if (atlas->fonts) { struct nk_font *iter, *next; for (iter = atlas->fonts; iter; iter = next) { next = iter->next; atlas->permanent.free(atlas->permanent.userdata, iter); } atlas->fonts = 0; } if (atlas->glyphs) atlas->permanent.free(atlas->permanent.userdata, atlas->glyphs); nk_zero_struct(*atlas); } #endif /* =============================================================== * * INPUT * * ===============================================================*/ NK_API void nk_input_begin(struct nk_context *ctx) { int i; struct nk_input *in; NK_ASSERT(ctx); if (!ctx) return; in = &ctx->input; for (i = 0; i < NK_BUTTON_MAX; ++i) in->mouse.buttons[i].clicked = 0; in->keyboard.text_len = 0; in->mouse.scroll_delta = nk_vec2(0,0); in->mouse.prev.x = in->mouse.pos.x; in->mouse.prev.y = in->mouse.pos.y; in->mouse.delta.x = 0; in->mouse.delta.y = 0; for (i = 0; i < NK_KEY_MAX; i++) in->keyboard.keys[i].clicked = 0; } NK_API void nk_input_end(struct nk_context *ctx) { struct nk_input *in; NK_ASSERT(ctx); if (!ctx) return; in = &ctx->input; if (in->mouse.grab) in->mouse.grab = 0; if (in->mouse.ungrab) { in->mouse.grabbed = 0; in->mouse.ungrab = 0; in->mouse.grab = 0; } } NK_API void nk_input_motion(struct nk_context *ctx, int x, int y) { struct nk_input *in; NK_ASSERT(ctx); if (!ctx) return; in = &ctx->input; in->mouse.pos.x = (float)x; in->mouse.pos.y = (float)y; in->mouse.delta.x = in->mouse.pos.x - in->mouse.prev.x; in->mouse.delta.y = in->mouse.pos.y - in->mouse.prev.y; } NK_API void nk_input_key(struct nk_context *ctx, enum nk_keys key, nk_bool down) { struct nk_input *in; NK_ASSERT(ctx); if (!ctx) return; in = &ctx->input; #ifdef NK_KEYSTATE_BASED_INPUT if (in->keyboard.keys[key].down != down) in->keyboard.keys[key].clicked++; #else in->keyboard.keys[key].clicked++; #endif in->keyboard.keys[key].down = down; } NK_API void nk_input_button(struct nk_context *ctx, enum nk_buttons id, int x, int y, nk_bool down) { struct nk_mouse_button *btn; struct nk_input *in; NK_ASSERT(ctx); if (!ctx) return; in = &ctx->input; if (in->mouse.buttons[id].down == down) return; btn = &in->mouse.buttons[id]; btn->clicked_pos.x = (float)x; btn->clicked_pos.y = (float)y; btn->down = down; btn->clicked++; } NK_API void nk_input_scroll(struct nk_context *ctx, struct nk_vec2 val) { NK_ASSERT(ctx); if (!ctx) return; ctx->input.mouse.scroll_delta.x += val.x; ctx->input.mouse.scroll_delta.y += val.y; } NK_API void nk_input_glyph(struct nk_context *ctx, const nk_glyph glyph) { int len = 0; nk_rune unicode; struct nk_input *in; NK_ASSERT(ctx); if (!ctx) return; in = &ctx->input; len = nk_utf_decode(glyph, &unicode, NK_UTF_SIZE); if (len && ((in->keyboard.text_len + len) < NK_INPUT_MAX)) { nk_utf_encode(unicode, &in->keyboard.text[in->keyboard.text_len], NK_INPUT_MAX - in->keyboard.text_len); in->keyboard.text_len += len; } } NK_API void nk_input_char(struct nk_context *ctx, char c) { nk_glyph glyph; NK_ASSERT(ctx); if (!ctx) return; glyph[0] = c; nk_input_glyph(ctx, glyph); } NK_API void nk_input_unicode(struct nk_context *ctx, nk_rune unicode) { nk_glyph rune; NK_ASSERT(ctx); if (!ctx) return; nk_utf_encode(unicode, rune, NK_UTF_SIZE); nk_input_glyph(ctx, rune); } NK_API nk_bool nk_input_has_mouse_click(const struct nk_input *i, enum nk_buttons id) { const struct nk_mouse_button *btn; if (!i) return nk_false; btn = &i->mouse.buttons[id]; return (btn->clicked && btn->down == nk_false) ? nk_true : nk_false; } NK_API nk_bool nk_input_has_mouse_click_in_rect(const struct nk_input *i, enum nk_buttons id, struct nk_rect b) { const struct nk_mouse_button *btn; if (!i) return nk_false; btn = &i->mouse.buttons[id]; if (!NK_INBOX(btn->clicked_pos.x,btn->clicked_pos.y,b.x,b.y,b.w,b.h)) return nk_false; return nk_true; } NK_API nk_bool nk_input_has_mouse_click_down_in_rect(const struct nk_input *i, enum nk_buttons id, struct nk_rect b, nk_bool down) { const struct nk_mouse_button *btn; if (!i) return nk_false; btn = &i->mouse.buttons[id]; return nk_input_has_mouse_click_in_rect(i, id, b) && (btn->down == down); } NK_API nk_bool nk_input_is_mouse_click_in_rect(const struct nk_input *i, enum nk_buttons id, struct nk_rect b) { const struct nk_mouse_button *btn; if (!i) return nk_false; btn = &i->mouse.buttons[id]; return (nk_input_has_mouse_click_down_in_rect(i, id, b, nk_false) && btn->clicked) ? nk_true : nk_false; } NK_API nk_bool nk_input_is_mouse_click_down_in_rect(const struct nk_input *i, enum nk_buttons id, struct nk_rect b, nk_bool down) { const struct nk_mouse_button *btn; if (!i) return nk_false; btn = &i->mouse.buttons[id]; return (nk_input_has_mouse_click_down_in_rect(i, id, b, down) && btn->clicked) ? nk_true : nk_false; } NK_API nk_bool nk_input_any_mouse_click_in_rect(const struct nk_input *in, struct nk_rect b) { int i, down = 0; for (i = 0; i < NK_BUTTON_MAX; ++i) down = down || nk_input_is_mouse_click_in_rect(in, (enum nk_buttons)i, b); return down; } NK_API nk_bool nk_input_is_mouse_hovering_rect(const struct nk_input *i, struct nk_rect rect) { if (!i) return nk_false; return NK_INBOX(i->mouse.pos.x, i->mouse.pos.y, rect.x, rect.y, rect.w, rect.h); } NK_API nk_bool nk_input_is_mouse_prev_hovering_rect(const struct nk_input *i, struct nk_rect rect) { if (!i) return nk_false; return NK_INBOX(i->mouse.prev.x, i->mouse.prev.y, rect.x, rect.y, rect.w, rect.h); } NK_API nk_bool nk_input_mouse_clicked(const struct nk_input *i, enum nk_buttons id, struct nk_rect rect) { if (!i) return nk_false; if (!nk_input_is_mouse_hovering_rect(i, rect)) return nk_false; return nk_input_is_mouse_click_in_rect(i, id, rect); } NK_API nk_bool nk_input_is_mouse_down(const struct nk_input *i, enum nk_buttons id) { if (!i) return nk_false; return i->mouse.buttons[id].down; } NK_API nk_bool nk_input_is_mouse_pressed(const struct nk_input *i, enum nk_buttons id) { const struct nk_mouse_button *b; if (!i) return nk_false; b = &i->mouse.buttons[id]; if (b->down && b->clicked) return nk_true; return nk_false; } NK_API nk_bool nk_input_is_mouse_released(const struct nk_input *i, enum nk_buttons id) { if (!i) return nk_false; return (!i->mouse.buttons[id].down && i->mouse.buttons[id].clicked); } NK_API nk_bool nk_input_is_key_pressed(const struct nk_input *i, enum nk_keys key) { const struct nk_key *k; if (!i) return nk_false; k = &i->keyboard.keys[key]; if ((k->down && k->clicked) || (!k->down && k->clicked >= 2)) return nk_true; return nk_false; } NK_API nk_bool nk_input_is_key_released(const struct nk_input *i, enum nk_keys key) { const struct nk_key *k; if (!i) return nk_false; k = &i->keyboard.keys[key]; if ((!k->down && k->clicked) || (k->down && k->clicked >= 2)) return nk_true; return nk_false; } NK_API nk_bool nk_input_is_key_down(const struct nk_input *i, enum nk_keys key) { const struct nk_key *k; if (!i) return nk_false; k = &i->keyboard.keys[key]; if (k->down) return nk_true; return nk_false; } /* =============================================================== * * STYLE * * ===============================================================*/ NK_API void nk_style_default(struct nk_context *ctx){nk_style_from_table(ctx, 0);} #define NK_COLOR_MAP(NK_COLOR)\ NK_COLOR(NK_COLOR_TEXT, 175,175,175,255) \ NK_COLOR(NK_COLOR_WINDOW, 45, 45, 45, 255) \ NK_COLOR(NK_COLOR_HEADER, 40, 40, 40, 255) \ NK_COLOR(NK_COLOR_BORDER, 65, 65, 65, 255) \ NK_COLOR(NK_COLOR_BUTTON, 50, 50, 50, 255) \ NK_COLOR(NK_COLOR_BUTTON_HOVER, 40, 40, 40, 255) \ NK_COLOR(NK_COLOR_BUTTON_ACTIVE, 35, 35, 35, 255) \ NK_COLOR(NK_COLOR_TOGGLE, 100,100,100,255) \ NK_COLOR(NK_COLOR_TOGGLE_HOVER, 120,120,120,255) \ NK_COLOR(NK_COLOR_TOGGLE_CURSOR, 45, 45, 45, 255) \ NK_COLOR(NK_COLOR_SELECT, 45, 45, 45, 255) \ NK_COLOR(NK_COLOR_SELECT_ACTIVE, 35, 35, 35,255) \ NK_COLOR(NK_COLOR_SLIDER, 38, 38, 38, 255) \ NK_COLOR(NK_COLOR_SLIDER_CURSOR, 100,100,100,255) \ NK_COLOR(NK_COLOR_SLIDER_CURSOR_HOVER, 120,120,120,255) \ NK_COLOR(NK_COLOR_SLIDER_CURSOR_ACTIVE, 150,150,150,255) \ NK_COLOR(NK_COLOR_PROPERTY, 38, 38, 38, 255) \ NK_COLOR(NK_COLOR_EDIT, 38, 38, 38, 255) \ NK_COLOR(NK_COLOR_EDIT_CURSOR, 175,175,175,255) \ NK_COLOR(NK_COLOR_COMBO, 45, 45, 45, 255) \ NK_COLOR(NK_COLOR_CHART, 120,120,120,255) \ NK_COLOR(NK_COLOR_CHART_COLOR, 45, 45, 45, 255) \ NK_COLOR(NK_COLOR_CHART_COLOR_HIGHLIGHT, 255, 0, 0, 255) \ NK_COLOR(NK_COLOR_SCROLLBAR, 40, 40, 40, 255) \ NK_COLOR(NK_COLOR_SCROLLBAR_CURSOR, 100,100,100,255) \ NK_COLOR(NK_COLOR_SCROLLBAR_CURSOR_HOVER, 120,120,120,255) \ NK_COLOR(NK_COLOR_SCROLLBAR_CURSOR_ACTIVE, 150,150,150,255) \ NK_COLOR(NK_COLOR_TAB_HEADER, 40, 40, 40,255) NK_GLOBAL const struct nk_color nk_default_color_style[NK_COLOR_COUNT] = { #define NK_COLOR(a,b,c,d,e) {b,c,d,e}, NK_COLOR_MAP(NK_COLOR) #undef NK_COLOR }; NK_GLOBAL const char *nk_color_names[NK_COLOR_COUNT] = { #define NK_COLOR(a,b,c,d,e) #a, NK_COLOR_MAP(NK_COLOR) #undef NK_COLOR }; NK_API const char* nk_style_get_color_by_name(enum nk_style_colors c) { return nk_color_names[c]; } NK_API struct nk_style_item nk_style_item_color(struct nk_color col) { struct nk_style_item i; i.type = NK_STYLE_ITEM_COLOR; i.data.color = col; return i; } NK_API struct nk_style_item nk_style_item_image(struct nk_image img) { struct nk_style_item i; i.type = NK_STYLE_ITEM_IMAGE; i.data.image = img; return i; } NK_API struct nk_style_item nk_style_item_nine_slice(struct nk_nine_slice slice) { struct nk_style_item i; i.type = NK_STYLE_ITEM_NINE_SLICE; i.data.slice = slice; return i; } NK_API struct nk_style_item nk_style_item_hide(void) { struct nk_style_item i; i.type = NK_STYLE_ITEM_COLOR; i.data.color = nk_rgba(0,0,0,0); return i; } NK_API void nk_style_from_table(struct nk_context *ctx, const struct nk_color *table) { struct nk_style *style; struct nk_style_text *text; struct nk_style_button *button; struct nk_style_toggle *toggle; struct nk_style_selectable *select; struct nk_style_slider *slider; struct nk_style_progress *prog; struct nk_style_scrollbar *scroll; struct nk_style_edit *edit; struct nk_style_property *property; struct nk_style_combo *combo; struct nk_style_chart *chart; struct nk_style_tab *tab; struct nk_style_window *win; NK_ASSERT(ctx); if (!ctx) return; style = &ctx->style; table = (!table) ? nk_default_color_style: table; /* default text */ text = &style->text; text->color = table[NK_COLOR_TEXT]; text->padding = nk_vec2(0,0); /* default button */ button = &style->button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_BUTTON]); button->hover = nk_style_item_color(table[NK_COLOR_BUTTON_HOVER]); button->active = nk_style_item_color(table[NK_COLOR_BUTTON_ACTIVE]); button->border_color = table[NK_COLOR_BORDER]; button->text_background = table[NK_COLOR_BUTTON]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(2.0f,2.0f); button->image_padding = nk_vec2(0.0f,0.0f); button->touch_padding = nk_vec2(0.0f, 0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 1.0f; button->rounding = 4.0f; button->draw_begin = 0; button->draw_end = 0; /* contextual button */ button = &style->contextual_button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_WINDOW]); button->hover = nk_style_item_color(table[NK_COLOR_BUTTON_HOVER]); button->active = nk_style_item_color(table[NK_COLOR_BUTTON_ACTIVE]); button->border_color = table[NK_COLOR_WINDOW]; button->text_background = table[NK_COLOR_WINDOW]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(2.0f,2.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; /* menu button */ button = &style->menu_button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_WINDOW]); button->hover = nk_style_item_color(table[NK_COLOR_WINDOW]); button->active = nk_style_item_color(table[NK_COLOR_WINDOW]); button->border_color = table[NK_COLOR_WINDOW]; button->text_background = table[NK_COLOR_WINDOW]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(2.0f,2.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 1.0f; button->draw_begin = 0; button->draw_end = 0; /* checkbox toggle */ toggle = &style->checkbox; nk_zero_struct(*toggle); toggle->normal = nk_style_item_color(table[NK_COLOR_TOGGLE]); toggle->hover = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]); toggle->active = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]); toggle->cursor_normal = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]); toggle->cursor_hover = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]); toggle->userdata = nk_handle_ptr(0); toggle->text_background = table[NK_COLOR_WINDOW]; toggle->text_normal = table[NK_COLOR_TEXT]; toggle->text_hover = table[NK_COLOR_TEXT]; toggle->text_active = table[NK_COLOR_TEXT]; toggle->padding = nk_vec2(2.0f, 2.0f); toggle->touch_padding = nk_vec2(0,0); toggle->border_color = nk_rgba(0,0,0,0); toggle->border = 0.0f; toggle->spacing = 4; /* option toggle */ toggle = &style->option; nk_zero_struct(*toggle); toggle->normal = nk_style_item_color(table[NK_COLOR_TOGGLE]); toggle->hover = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]); toggle->active = nk_style_item_color(table[NK_COLOR_TOGGLE_HOVER]); toggle->cursor_normal = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]); toggle->cursor_hover = nk_style_item_color(table[NK_COLOR_TOGGLE_CURSOR]); toggle->userdata = nk_handle_ptr(0); toggle->text_background = table[NK_COLOR_WINDOW]; toggle->text_normal = table[NK_COLOR_TEXT]; toggle->text_hover = table[NK_COLOR_TEXT]; toggle->text_active = table[NK_COLOR_TEXT]; toggle->padding = nk_vec2(3.0f, 3.0f); toggle->touch_padding = nk_vec2(0,0); toggle->border_color = nk_rgba(0,0,0,0); toggle->border = 0.0f; toggle->spacing = 4; /* selectable */ select = &style->selectable; nk_zero_struct(*select); select->normal = nk_style_item_color(table[NK_COLOR_SELECT]); select->hover = nk_style_item_color(table[NK_COLOR_SELECT]); select->pressed = nk_style_item_color(table[NK_COLOR_SELECT]); select->normal_active = nk_style_item_color(table[NK_COLOR_SELECT_ACTIVE]); select->hover_active = nk_style_item_color(table[NK_COLOR_SELECT_ACTIVE]); select->pressed_active = nk_style_item_color(table[NK_COLOR_SELECT_ACTIVE]); select->text_normal = table[NK_COLOR_TEXT]; select->text_hover = table[NK_COLOR_TEXT]; select->text_pressed = table[NK_COLOR_TEXT]; select->text_normal_active = table[NK_COLOR_TEXT]; select->text_hover_active = table[NK_COLOR_TEXT]; select->text_pressed_active = table[NK_COLOR_TEXT]; select->padding = nk_vec2(2.0f,2.0f); select->image_padding = nk_vec2(2.0f,2.0f); select->touch_padding = nk_vec2(0,0); select->userdata = nk_handle_ptr(0); select->rounding = 0.0f; select->draw_begin = 0; select->draw_end = 0; /* slider */ slider = &style->slider; nk_zero_struct(*slider); slider->normal = nk_style_item_hide(); slider->hover = nk_style_item_hide(); slider->active = nk_style_item_hide(); slider->bar_normal = table[NK_COLOR_SLIDER]; slider->bar_hover = table[NK_COLOR_SLIDER]; slider->bar_active = table[NK_COLOR_SLIDER]; slider->bar_filled = table[NK_COLOR_SLIDER_CURSOR]; slider->cursor_normal = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR]); slider->cursor_hover = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_HOVER]); slider->cursor_active = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_ACTIVE]); slider->inc_symbol = NK_SYMBOL_TRIANGLE_RIGHT; slider->dec_symbol = NK_SYMBOL_TRIANGLE_LEFT; slider->cursor_size = nk_vec2(16,16); slider->padding = nk_vec2(2,2); slider->spacing = nk_vec2(2,2); slider->userdata = nk_handle_ptr(0); slider->show_buttons = nk_false; slider->bar_height = 8; slider->rounding = 0; slider->draw_begin = 0; slider->draw_end = 0; /* slider buttons */ button = &style->slider.inc_button; button->normal = nk_style_item_color(nk_rgb(40,40,40)); button->hover = nk_style_item_color(nk_rgb(42,42,42)); button->active = nk_style_item_color(nk_rgb(44,44,44)); button->border_color = nk_rgb(65,65,65); button->text_background = nk_rgb(40,40,40); button->text_normal = nk_rgb(175,175,175); button->text_hover = nk_rgb(175,175,175); button->text_active = nk_rgb(175,175,175); button->padding = nk_vec2(8.0f,8.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 1.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; style->slider.dec_button = style->slider.inc_button; /* progressbar */ prog = &style->progress; nk_zero_struct(*prog); prog->normal = nk_style_item_color(table[NK_COLOR_SLIDER]); prog->hover = nk_style_item_color(table[NK_COLOR_SLIDER]); prog->active = nk_style_item_color(table[NK_COLOR_SLIDER]); prog->cursor_normal = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR]); prog->cursor_hover = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_HOVER]); prog->cursor_active = nk_style_item_color(table[NK_COLOR_SLIDER_CURSOR_ACTIVE]); prog->border_color = nk_rgba(0,0,0,0); prog->cursor_border_color = nk_rgba(0,0,0,0); prog->userdata = nk_handle_ptr(0); prog->padding = nk_vec2(4,4); prog->rounding = 0; prog->border = 0; prog->cursor_rounding = 0; prog->cursor_border = 0; prog->draw_begin = 0; prog->draw_end = 0; /* scrollbars */ scroll = &style->scrollh; nk_zero_struct(*scroll); scroll->normal = nk_style_item_color(table[NK_COLOR_SCROLLBAR]); scroll->hover = nk_style_item_color(table[NK_COLOR_SCROLLBAR]); scroll->active = nk_style_item_color(table[NK_COLOR_SCROLLBAR]); scroll->cursor_normal = nk_style_item_color(table[NK_COLOR_SCROLLBAR_CURSOR]); scroll->cursor_hover = nk_style_item_color(table[NK_COLOR_SCROLLBAR_CURSOR_HOVER]); scroll->cursor_active = nk_style_item_color(table[NK_COLOR_SCROLLBAR_CURSOR_ACTIVE]); scroll->dec_symbol = NK_SYMBOL_CIRCLE_SOLID; scroll->inc_symbol = NK_SYMBOL_CIRCLE_SOLID; scroll->userdata = nk_handle_ptr(0); scroll->border_color = table[NK_COLOR_SCROLLBAR]; scroll->cursor_border_color = table[NK_COLOR_SCROLLBAR]; scroll->padding = nk_vec2(0,0); scroll->show_buttons = nk_false; scroll->border = 0; scroll->rounding = 0; scroll->border_cursor = 0; scroll->rounding_cursor = 0; scroll->draw_begin = 0; scroll->draw_end = 0; style->scrollv = style->scrollh; /* scrollbars buttons */ button = &style->scrollh.inc_button; button->normal = nk_style_item_color(nk_rgb(40,40,40)); button->hover = nk_style_item_color(nk_rgb(42,42,42)); button->active = nk_style_item_color(nk_rgb(44,44,44)); button->border_color = nk_rgb(65,65,65); button->text_background = nk_rgb(40,40,40); button->text_normal = nk_rgb(175,175,175); button->text_hover = nk_rgb(175,175,175); button->text_active = nk_rgb(175,175,175); button->padding = nk_vec2(4.0f,4.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 1.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; style->scrollh.dec_button = style->scrollh.inc_button; style->scrollv.inc_button = style->scrollh.inc_button; style->scrollv.dec_button = style->scrollh.inc_button; /* edit */ edit = &style->edit; nk_zero_struct(*edit); edit->normal = nk_style_item_color(table[NK_COLOR_EDIT]); edit->hover = nk_style_item_color(table[NK_COLOR_EDIT]); edit->active = nk_style_item_color(table[NK_COLOR_EDIT]); edit->cursor_normal = table[NK_COLOR_TEXT]; edit->cursor_hover = table[NK_COLOR_TEXT]; edit->cursor_text_normal= table[NK_COLOR_EDIT]; edit->cursor_text_hover = table[NK_COLOR_EDIT]; edit->border_color = table[NK_COLOR_BORDER]; edit->text_normal = table[NK_COLOR_TEXT]; edit->text_hover = table[NK_COLOR_TEXT]; edit->text_active = table[NK_COLOR_TEXT]; edit->selected_normal = table[NK_COLOR_TEXT]; edit->selected_hover = table[NK_COLOR_TEXT]; edit->selected_text_normal = table[NK_COLOR_EDIT]; edit->selected_text_hover = table[NK_COLOR_EDIT]; edit->scrollbar_size = nk_vec2(10,10); edit->scrollbar = style->scrollv; edit->padding = nk_vec2(4,4); edit->row_padding = 2; edit->cursor_size = 4; edit->border = 1; edit->rounding = 0; /* property */ property = &style->property; nk_zero_struct(*property); property->normal = nk_style_item_color(table[NK_COLOR_PROPERTY]); property->hover = nk_style_item_color(table[NK_COLOR_PROPERTY]); property->active = nk_style_item_color(table[NK_COLOR_PROPERTY]); property->border_color = table[NK_COLOR_BORDER]; property->label_normal = table[NK_COLOR_TEXT]; property->label_hover = table[NK_COLOR_TEXT]; property->label_active = table[NK_COLOR_TEXT]; property->sym_left = NK_SYMBOL_TRIANGLE_LEFT; property->sym_right = NK_SYMBOL_TRIANGLE_RIGHT; property->userdata = nk_handle_ptr(0); property->padding = nk_vec2(4,4); property->border = 1; property->rounding = 10; property->draw_begin = 0; property->draw_end = 0; /* property buttons */ button = &style->property.dec_button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_PROPERTY]); button->hover = nk_style_item_color(table[NK_COLOR_PROPERTY]); button->active = nk_style_item_color(table[NK_COLOR_PROPERTY]); button->border_color = nk_rgba(0,0,0,0); button->text_background = table[NK_COLOR_PROPERTY]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(0.0f,0.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; style->property.inc_button = style->property.dec_button; /* property edit */ edit = &style->property.edit; nk_zero_struct(*edit); edit->normal = nk_style_item_color(table[NK_COLOR_PROPERTY]); edit->hover = nk_style_item_color(table[NK_COLOR_PROPERTY]); edit->active = nk_style_item_color(table[NK_COLOR_PROPERTY]); edit->border_color = nk_rgba(0,0,0,0); edit->cursor_normal = table[NK_COLOR_TEXT]; edit->cursor_hover = table[NK_COLOR_TEXT]; edit->cursor_text_normal= table[NK_COLOR_EDIT]; edit->cursor_text_hover = table[NK_COLOR_EDIT]; edit->text_normal = table[NK_COLOR_TEXT]; edit->text_hover = table[NK_COLOR_TEXT]; edit->text_active = table[NK_COLOR_TEXT]; edit->selected_normal = table[NK_COLOR_TEXT]; edit->selected_hover = table[NK_COLOR_TEXT]; edit->selected_text_normal = table[NK_COLOR_EDIT]; edit->selected_text_hover = table[NK_COLOR_EDIT]; edit->padding = nk_vec2(0,0); edit->cursor_size = 8; edit->border = 0; edit->rounding = 0; /* chart */ chart = &style->chart; nk_zero_struct(*chart); chart->background = nk_style_item_color(table[NK_COLOR_CHART]); chart->border_color = table[NK_COLOR_BORDER]; chart->selected_color = table[NK_COLOR_CHART_COLOR_HIGHLIGHT]; chart->color = table[NK_COLOR_CHART_COLOR]; chart->padding = nk_vec2(4,4); chart->border = 0; chart->rounding = 0; /* combo */ combo = &style->combo; combo->normal = nk_style_item_color(table[NK_COLOR_COMBO]); combo->hover = nk_style_item_color(table[NK_COLOR_COMBO]); combo->active = nk_style_item_color(table[NK_COLOR_COMBO]); combo->border_color = table[NK_COLOR_BORDER]; combo->label_normal = table[NK_COLOR_TEXT]; combo->label_hover = table[NK_COLOR_TEXT]; combo->label_active = table[NK_COLOR_TEXT]; combo->sym_normal = NK_SYMBOL_TRIANGLE_DOWN; combo->sym_hover = NK_SYMBOL_TRIANGLE_DOWN; combo->sym_active = NK_SYMBOL_TRIANGLE_DOWN; combo->content_padding = nk_vec2(4,4); combo->button_padding = nk_vec2(0,4); combo->spacing = nk_vec2(4,0); combo->border = 1; combo->rounding = 0; /* combo button */ button = &style->combo.button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_COMBO]); button->hover = nk_style_item_color(table[NK_COLOR_COMBO]); button->active = nk_style_item_color(table[NK_COLOR_COMBO]); button->border_color = nk_rgba(0,0,0,0); button->text_background = table[NK_COLOR_COMBO]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(2.0f,2.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; /* tab */ tab = &style->tab; tab->background = nk_style_item_color(table[NK_COLOR_TAB_HEADER]); tab->border_color = table[NK_COLOR_BORDER]; tab->text = table[NK_COLOR_TEXT]; tab->sym_minimize = NK_SYMBOL_TRIANGLE_RIGHT; tab->sym_maximize = NK_SYMBOL_TRIANGLE_DOWN; tab->padding = nk_vec2(4,4); tab->spacing = nk_vec2(4,4); tab->indent = 10.0f; tab->border = 1; tab->rounding = 0; /* tab button */ button = &style->tab.tab_minimize_button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_TAB_HEADER]); button->hover = nk_style_item_color(table[NK_COLOR_TAB_HEADER]); button->active = nk_style_item_color(table[NK_COLOR_TAB_HEADER]); button->border_color = nk_rgba(0,0,0,0); button->text_background = table[NK_COLOR_TAB_HEADER]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(2.0f,2.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; style->tab.tab_maximize_button =*button; /* node button */ button = &style->tab.node_minimize_button; nk_zero_struct(*button); button->normal = nk_style_item_color(table[NK_COLOR_WINDOW]); button->hover = nk_style_item_color(table[NK_COLOR_WINDOW]); button->active = nk_style_item_color(table[NK_COLOR_WINDOW]); button->border_color = nk_rgba(0,0,0,0); button->text_background = table[NK_COLOR_TAB_HEADER]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(2.0f,2.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; style->tab.node_maximize_button =*button; /* window header */ win = &style->window; win->header.align = NK_HEADER_LEFT; //< @r-lyeh NK_HEADER_RIGHT > LEFT win->header.close_symbol = NK_SYMBOL_X; win->header.minimize_symbol = NK_SYMBOL_MINUS; win->header.maximize_symbol = NK_SYMBOL_PLUS; win->header.normal = nk_style_item_color(table[NK_COLOR_HEADER]); win->header.hover = nk_style_item_color(table[NK_COLOR_HEADER]); win->header.active = nk_style_item_color(table[NK_COLOR_HEADER]); win->header.label_normal = table[NK_COLOR_TEXT]; win->header.label_hover = table[NK_COLOR_TEXT]; win->header.label_active = table[NK_COLOR_TEXT]; win->header.label_padding = nk_vec2(4,4); win->header.padding = nk_vec2(4,4); win->header.spacing = nk_vec2(0,0); /* window header close button */ button = &style->window.header.close_button; nk_zero_struct(*button); #if 0 //< @r-lyeh button->normal = nk_style_item_color(table[NK_COLOR_HEADER]); button->hover = nk_style_item_color(table[NK_COLOR_HEADER]); button->active = nk_style_item_color(table[NK_COLOR_HEADER]); button->border_color = nk_rgba(0,0,0,0); button->text_background = table[NK_COLOR_HEADER]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(0.0f,0.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; #endif /* window header minimize button */ button = &style->window.header.minimize_button; nk_zero_struct(*button); #if 0 //< @r-lyeh button->normal = nk_style_item_color(table[NK_COLOR_HEADER]); button->hover = nk_style_item_color(table[NK_COLOR_HEADER]); button->active = nk_style_item_color(table[NK_COLOR_HEADER]); button->border_color = nk_rgba(0,0,0,0); button->text_background = table[NK_COLOR_HEADER]; button->text_normal = table[NK_COLOR_TEXT]; button->text_hover = table[NK_COLOR_TEXT]; button->text_active = table[NK_COLOR_TEXT]; button->padding = nk_vec2(0.0f,0.0f); button->touch_padding = nk_vec2(0.0f,0.0f); button->userdata = nk_handle_ptr(0); button->text_alignment = NK_TEXT_CENTERED; button->border = 0.0f; button->rounding = 0.0f; button->draw_begin = 0; button->draw_end = 0; #endif /* window */ win->background = table[NK_COLOR_WINDOW]; win->fixed_background = nk_style_item_color(table[NK_COLOR_WINDOW]); win->border_color = table[NK_COLOR_BORDER]; win->popup_border_color = table[NK_COLOR_BORDER]; win->combo_border_color = table[NK_COLOR_BORDER]; win->contextual_border_color = table[NK_COLOR_BORDER]; win->menu_border_color = table[NK_COLOR_BORDER]; win->group_border_color = table[NK_COLOR_BORDER]; win->tooltip_border_color = table[NK_COLOR_BORDER]; win->scaler = nk_style_item_color(table[NK_COLOR_TEXT]); win->rounding = 0.0f; win->spacing = nk_vec2(4,4); win->scrollbar_size = nk_vec2(10,10); win->min_size = nk_vec2(64,64); win->combo_border = 1.0f; win->contextual_border = 1.0f; win->menu_border = 1.0f; win->group_border = 1.0f; win->tooltip_border = 1.0f; win->popup_border = 1.0f; win->border = 2.0f; win->min_row_height_padding = 8; win->padding = nk_vec2(4,4); win->group_padding = nk_vec2(4,4); win->popup_padding = nk_vec2(4,4); win->combo_padding = nk_vec2(4,4); win->contextual_padding = nk_vec2(4,4); win->menu_padding = nk_vec2(4,4); win->tooltip_padding = nk_vec2(4,4); } NK_API void nk_style_set_font(struct nk_context *ctx, const struct nk_user_font *font) { struct nk_style *style; NK_ASSERT(ctx); if (!ctx) return; style = &ctx->style; style->font = font; ctx->stacks.fonts.head = 0; if (ctx->current) nk_layout_reset_min_row_height(ctx); } NK_API nk_bool nk_style_push_font(struct nk_context *ctx, const struct nk_user_font *font) { struct nk_config_stack_user_font *font_stack; struct nk_config_stack_user_font_element *element; NK_ASSERT(ctx); if (!ctx) return 0; font_stack = &ctx->stacks.fonts; NK_ASSERT(font_stack->head < (int)NK_LEN(font_stack->elements)); if (font_stack->head >= (int)NK_LEN(font_stack->elements)) return 0; element = &font_stack->elements[font_stack->head++]; element->address = &ctx->style.font; element->old_value = ctx->style.font; ctx->style.font = font; return 1; } NK_API nk_bool nk_style_pop_font(struct nk_context *ctx) { struct nk_config_stack_user_font *font_stack; struct nk_config_stack_user_font_element *element; NK_ASSERT(ctx); if (!ctx) return 0; font_stack = &ctx->stacks.fonts; NK_ASSERT(font_stack->head > 0); if (font_stack->head < 1) return 0; element = &font_stack->elements[--font_stack->head]; *element->address = element->old_value; return 1; } #define NK_STYLE_PUSH_IMPLEMENATION(prefix, type, stack) \ nk_style_push_##type(struct nk_context *ctx, prefix##_##type *address, prefix##_##type value)\ {\ struct nk_config_stack_##type * type_stack;\ struct nk_config_stack_##type##_element *element;\ NK_ASSERT(ctx);\ if (!ctx) return 0;\ type_stack = &ctx->stacks.stack;\ NK_ASSERT(type_stack->head < (int)NK_LEN(type_stack->elements));\ if (type_stack->head >= (int)NK_LEN(type_stack->elements))\ return 0;\ element = &type_stack->elements[type_stack->head++];\ element->address = address;\ element->old_value = *address;\ *address = value;\ return 1;\ } #define NK_STYLE_POP_IMPLEMENATION(type, stack) \ nk_style_pop_##type(struct nk_context *ctx)\ {\ struct nk_config_stack_##type *type_stack;\ struct nk_config_stack_##type##_element *element;\ NK_ASSERT(ctx);\ if (!ctx) return 0;\ type_stack = &ctx->stacks.stack;\ NK_ASSERT(type_stack->head > 0);\ if (type_stack->head < 1)\ return 0;\ element = &type_stack->elements[--type_stack->head];\ *element->address = element->old_value;\ return 1;\ } NK_API nk_bool NK_STYLE_PUSH_IMPLEMENATION(struct nk, style_item, style_items) NK_API nk_bool NK_STYLE_PUSH_IMPLEMENATION(nk,float, floats) NK_API nk_bool NK_STYLE_PUSH_IMPLEMENATION(struct nk, vec2, vectors) NK_API nk_bool NK_STYLE_PUSH_IMPLEMENATION(nk,flags, flags) NK_API nk_bool NK_STYLE_PUSH_IMPLEMENATION(struct nk,color, colors) NK_API nk_bool NK_STYLE_POP_IMPLEMENATION(style_item, style_items) NK_API nk_bool NK_STYLE_POP_IMPLEMENATION(float,floats) NK_API nk_bool NK_STYLE_POP_IMPLEMENATION(vec2, vectors) NK_API nk_bool NK_STYLE_POP_IMPLEMENATION(flags,flags) NK_API nk_bool NK_STYLE_POP_IMPLEMENATION(color,colors) NK_API nk_bool nk_style_set_cursor(struct nk_context *ctx, enum nk_style_cursor c) { struct nk_style *style; NK_ASSERT(ctx); if (!ctx) return 0; style = &ctx->style; if (style->cursors[c]) { style->cursor_active = style->cursors[c]; return 1; } return 0; } NK_API void nk_style_show_cursor(struct nk_context *ctx) { ctx->style.cursor_visible = nk_true; } NK_API void nk_style_hide_cursor(struct nk_context *ctx) { ctx->style.cursor_visible = nk_false; } NK_API void nk_style_load_cursor(struct nk_context *ctx, enum nk_style_cursor cursor, const struct nk_cursor *c) { struct nk_style *style; NK_ASSERT(ctx); if (!ctx) return; style = &ctx->style; style->cursors[cursor] = c; } NK_API void nk_style_load_all_cursors(struct nk_context *ctx, struct nk_cursor *cursors) { int i = 0; struct nk_style *style; NK_ASSERT(ctx); if (!ctx) return; style = &ctx->style; for (i = 0; i < NK_CURSOR_COUNT; ++i) style->cursors[i] = &cursors[i]; style->cursor_visible = nk_true; } /* ============================================================== * * CONTEXT * * ===============================================================*/ NK_INTERN void nk_setup(struct nk_context *ctx, const struct nk_user_font *font) { NK_ASSERT(ctx); if (!ctx) return; nk_zero_struct(*ctx); nk_style_default(ctx); ctx->seq = 1; if (font) ctx->style.font = font; #ifdef NK_INCLUDE_VERTEX_BUFFER_OUTPUT nk_draw_list_init(&ctx->draw_list); #endif } #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API nk_bool nk_init_default(struct nk_context *ctx, const struct nk_user_font *font) { struct nk_allocator alloc; alloc.userdata.ptr = 0; alloc.alloc = nk_malloc; alloc.free = nk_mfree; return nk_init(ctx, &alloc, font); } #endif NK_API nk_bool nk_init_fixed(struct nk_context *ctx, void *memory, nk_size size, const struct nk_user_font *font) { NK_ASSERT(memory); if (!memory) return 0; nk_setup(ctx, font); nk_buffer_init_fixed(&ctx->memory, memory, size); ctx->use_pool = nk_false; return 1; } NK_API nk_bool nk_init_custom(struct nk_context *ctx, struct nk_buffer *cmds, struct nk_buffer *pool, const struct nk_user_font *font) { NK_ASSERT(cmds); NK_ASSERT(pool); if (!cmds || !pool) return 0; nk_setup(ctx, font); ctx->memory = *cmds; if (pool->type == NK_BUFFER_FIXED) { /* take memory from buffer and alloc fixed pool */ nk_pool_init_fixed(&ctx->pool, pool->memory.ptr, pool->memory.size); } else { /* create dynamic pool from buffer allocator */ struct nk_allocator *alloc = &pool->pool; nk_pool_init(&ctx->pool, alloc, NK_POOL_DEFAULT_CAPACITY); } ctx->use_pool = nk_true; return 1; } NK_API nk_bool nk_init(struct nk_context *ctx, struct nk_allocator *alloc, const struct nk_user_font *font) { NK_ASSERT(alloc); if (!alloc) return 0; nk_setup(ctx, font); nk_buffer_init(&ctx->memory, alloc, NK_DEFAULT_COMMAND_BUFFER_SIZE); nk_pool_init(&ctx->pool, alloc, NK_POOL_DEFAULT_CAPACITY); ctx->use_pool = nk_true; return 1; } #ifdef NK_INCLUDE_COMMAND_USERDATA NK_API void nk_set_user_data(struct nk_context *ctx, nk_handle handle) { if (!ctx) return; ctx->userdata = handle; if (ctx->current) ctx->current->buffer.userdata = handle; } #endif NK_API void nk_free(struct nk_context *ctx) { NK_ASSERT(ctx); if (!ctx) return; nk_buffer_free(&ctx->memory); if (ctx->use_pool) nk_pool_free(&ctx->pool); nk_zero(&ctx->input, sizeof(ctx->input)); nk_zero(&ctx->style, sizeof(ctx->style)); nk_zero(&ctx->memory, sizeof(ctx->memory)); ctx->seq = 0; ctx->build = 0; ctx->begin = 0; ctx->end = 0; ctx->active = 0; ctx->current = 0; ctx->freelist = 0; ctx->count = 0; } NK_API void nk_clear(struct nk_context *ctx) { struct nk_window *iter; struct nk_window *next; NK_ASSERT(ctx); if (!ctx) return; if (ctx->use_pool) nk_buffer_clear(&ctx->memory); else nk_buffer_reset(&ctx->memory, NK_BUFFER_FRONT); ctx->build = 0; ctx->memory.calls = 0; ctx->last_widget_state = 0; ctx->style.cursor_active = ctx->style.cursors[NK_CURSOR_ARROW]; NK_MEMSET(&ctx->overlay, 0, sizeof(ctx->overlay)); /* garbage collector */ iter = ctx->begin; while (iter) { /* make sure valid minimized windows do not get removed */ if ((iter->flags & NK_WINDOW_MINIMIZED) && !(iter->flags & NK_WINDOW_CLOSED) && iter->seq == ctx->seq) { iter = iter->next; continue; } /* remove hotness from hidden or closed windows*/ if (((iter->flags & NK_WINDOW_HIDDEN) || (iter->flags & NK_WINDOW_CLOSED)) && iter == ctx->active) { ctx->active = iter->prev; ctx->end = iter->prev; if (!ctx->end) ctx->begin = 0; if (ctx->active) ctx->active->flags &= ~(unsigned)NK_WINDOW_ROM; } /* free unused popup windows */ if (iter->popup.win && iter->popup.win->seq != ctx->seq) { nk_free_window(ctx, iter->popup.win); iter->popup.win = 0; } /* remove unused window state tables */ {struct nk_table *n, *it = iter->tables; while (it) { n = it->next; if (it->seq != ctx->seq) { nk_remove_table(iter, it); nk_zero(it, sizeof(union nk_page_data)); nk_free_table(ctx, it); if (it == iter->tables) iter->tables = n; } it = n; }} /* window itself is not used anymore so free */ if (iter->seq != ctx->seq || iter->flags & NK_WINDOW_CLOSED) { next = iter->next; nk_remove_window(ctx, iter); nk_free_window(ctx, iter); iter = next; } else iter = iter->next; } ctx->seq++; } NK_LIB void nk_start_buffer(struct nk_context *ctx, struct nk_command_buffer *buffer) { NK_ASSERT(ctx); NK_ASSERT(buffer); if (!ctx || !buffer) return; buffer->begin = ctx->memory.allocated; buffer->end = buffer->begin; buffer->last = buffer->begin; buffer->clip = nk_null_rect; } NK_LIB void nk_start(struct nk_context *ctx, struct nk_window *win) { NK_ASSERT(ctx); NK_ASSERT(win); nk_start_buffer(ctx, &win->buffer); } NK_LIB void nk_start_popup(struct nk_context *ctx, struct nk_window *win) { struct nk_popup_buffer *buf; NK_ASSERT(ctx); NK_ASSERT(win); if (!ctx || !win) return; /* save buffer fill state for popup */ buf = &win->popup.buf; buf->begin = win->buffer.end; buf->end = win->buffer.end; buf->parent = win->buffer.last; buf->last = buf->begin; buf->active = nk_true; } NK_LIB void nk_finish_popup(struct nk_context *ctx, struct nk_window *win) { struct nk_popup_buffer *buf; NK_ASSERT(ctx); NK_ASSERT(win); if (!ctx || !win) return; buf = &win->popup.buf; buf->last = win->buffer.last; buf->end = win->buffer.end; } NK_LIB void nk_finish_buffer(struct nk_context *ctx, struct nk_command_buffer *buffer) { NK_ASSERT(ctx); NK_ASSERT(buffer); if (!ctx || !buffer) return; buffer->end = ctx->memory.allocated; } NK_LIB void nk_finish(struct nk_context *ctx, struct nk_window *win) { struct nk_popup_buffer *buf; struct nk_command *parent_last; void *memory; NK_ASSERT(ctx); NK_ASSERT(win); if (!ctx || !win) return; nk_finish_buffer(ctx, &win->buffer); if (!win->popup.buf.active) return; buf = &win->popup.buf; memory = ctx->memory.memory.ptr; parent_last = nk_ptr_add(struct nk_command, memory, buf->parent); parent_last->next = buf->end; } NK_LIB void nk_build(struct nk_context *ctx) { struct nk_window *it = 0; struct nk_command *cmd = 0; nk_byte *buffer = 0; /* draw cursor overlay */ if (!ctx->style.cursor_active) ctx->style.cursor_active = ctx->style.cursors[NK_CURSOR_ARROW]; if (ctx->style.cursor_active && !ctx->input.mouse.grabbed && ctx->style.cursor_visible) { struct nk_rect mouse_bounds; const struct nk_cursor *cursor = ctx->style.cursor_active; nk_command_buffer_init(&ctx->overlay, &ctx->memory, NK_CLIPPING_OFF); nk_start_buffer(ctx, &ctx->overlay); mouse_bounds.x = ctx->input.mouse.pos.x - cursor->offset.x; mouse_bounds.y = ctx->input.mouse.pos.y - cursor->offset.y; mouse_bounds.w = cursor->size.x; mouse_bounds.h = cursor->size.y; nk_draw_image(&ctx->overlay, mouse_bounds, &cursor->img, nk_white); nk_finish_buffer(ctx, &ctx->overlay); } /* build one big draw command list out of all window buffers */ it = ctx->begin; buffer = (nk_byte*)ctx->memory.memory.ptr; while (it != 0) { struct nk_window *next = it->next; if (it->buffer.last == it->buffer.begin || (it->flags & NK_WINDOW_HIDDEN)|| it->seq != ctx->seq) goto cont; cmd = nk_ptr_add(struct nk_command, buffer, it->buffer.last); while (next && ((next->buffer.last == next->buffer.begin) || (next->flags & NK_WINDOW_HIDDEN) || next->seq != ctx->seq)) next = next->next; /* skip empty command buffers */ if (next) cmd->next = next->buffer.begin; cont: it = next; } /* append all popup draw commands into lists */ it = ctx->begin; while (it != 0) { struct nk_window *next = it->next; struct nk_popup_buffer *buf; if (!it->popup.buf.active) goto skip; buf = &it->popup.buf; cmd->next = buf->begin; cmd = nk_ptr_add(struct nk_command, buffer, buf->last); buf->active = nk_false; skip: it = next; } if (cmd) { /* append overlay commands */ if (ctx->overlay.end != ctx->overlay.begin) cmd->next = ctx->overlay.begin; else cmd->next = ctx->memory.allocated; } } NK_API const struct nk_command* nk__begin(struct nk_context *ctx) { struct nk_window *iter; nk_byte *buffer; NK_ASSERT(ctx); if (!ctx) return 0; if (!ctx->count) return 0; buffer = (nk_byte*)ctx->memory.memory.ptr; if (!ctx->build) { nk_build(ctx); ctx->build = nk_true; } iter = ctx->begin; while (iter && ((iter->buffer.begin == iter->buffer.end) || (iter->flags & NK_WINDOW_HIDDEN) || iter->seq != ctx->seq)) iter = iter->next; if (!iter) return 0; return nk_ptr_add_const(struct nk_command, buffer, iter->buffer.begin); } NK_API const struct nk_command* nk__next(struct nk_context *ctx, const struct nk_command *cmd) { nk_byte *buffer; const struct nk_command *next; NK_ASSERT(ctx); if (!ctx || !cmd || !ctx->count) return 0; if (cmd->next >= ctx->memory.allocated) return 0; buffer = (nk_byte*)ctx->memory.memory.ptr; next = nk_ptr_add_const(struct nk_command, buffer, cmd->next); return next; } /* =============================================================== * * POOL * * ===============================================================*/ NK_LIB void nk_pool_init(struct nk_pool *pool, struct nk_allocator *alloc, unsigned int capacity) { NK_ASSERT(capacity >= 1); nk_zero(pool, sizeof(*pool)); pool->alloc = *alloc; pool->capacity = capacity; pool->type = NK_BUFFER_DYNAMIC; pool->pages = 0; } NK_LIB void nk_pool_free(struct nk_pool *pool) { struct nk_page *iter; if (!pool) return; iter = pool->pages; if (pool->type == NK_BUFFER_FIXED) return; while (iter) { struct nk_page *next = iter->next; pool->alloc.free(pool->alloc.userdata, iter); iter = next; } } NK_LIB void nk_pool_init_fixed(struct nk_pool *pool, void *memory, nk_size size) { nk_zero(pool, sizeof(*pool)); NK_ASSERT(size >= sizeof(struct nk_page)); if (size < sizeof(struct nk_page)) return; /* first nk_page_element is embedded in nk_page, additional elements follow in adjacent space */ pool->capacity = (unsigned)(1 + (size - sizeof(struct nk_page)) / sizeof(struct nk_page_element)); pool->pages = (struct nk_page*)memory; pool->type = NK_BUFFER_FIXED; pool->size = size; } NK_LIB struct nk_page_element* nk_pool_alloc(struct nk_pool *pool) { if (!pool->pages || pool->pages->size >= pool->capacity) { /* allocate new page */ struct nk_page *page; if (pool->type == NK_BUFFER_FIXED) { NK_ASSERT(pool->pages); if (!pool->pages) return 0; NK_ASSERT(pool->pages->size < pool->capacity); return 0; } else { nk_size size = sizeof(struct nk_page); size += (pool->capacity - 1) * sizeof(struct nk_page_element); page = (struct nk_page*)pool->alloc.alloc(pool->alloc.userdata,0, size); page->next = pool->pages; pool->pages = page; page->size = 0; } } return &pool->pages->win[pool->pages->size++]; } /* =============================================================== * * PAGE ELEMENT * * ===============================================================*/ NK_LIB struct nk_page_element* nk_create_page_element(struct nk_context *ctx) { struct nk_page_element *elem; if (ctx->freelist) { /* unlink page element from free list */ elem = ctx->freelist; ctx->freelist = elem->next; } else if (ctx->use_pool) { /* allocate page element from memory pool */ elem = nk_pool_alloc(&ctx->pool); NK_ASSERT(elem); if (!elem) return 0; } else { /* allocate new page element from back of fixed size memory buffer */ NK_STORAGE const nk_size size = sizeof(struct nk_page_element); NK_STORAGE const nk_size align = NK_ALIGNOF(struct nk_page_element); elem = (struct nk_page_element*)nk_buffer_alloc(&ctx->memory, NK_BUFFER_BACK, size, align); NK_ASSERT(elem); if (!elem) return 0; } nk_zero_struct(*elem); elem->next = 0; elem->prev = 0; return elem; } NK_LIB void nk_link_page_element_into_freelist(struct nk_context *ctx, struct nk_page_element *elem) { /* link table into freelist */ if (!ctx->freelist) { ctx->freelist = elem; } else { elem->next = ctx->freelist; ctx->freelist = elem; } } NK_LIB void nk_free_page_element(struct nk_context *ctx, struct nk_page_element *elem) { /* we have a pool so just add to free list */ if (ctx->use_pool) { nk_link_page_element_into_freelist(ctx, elem); return; } /* if possible remove last element from back of fixed memory buffer */ {void *elem_end = (void*)(elem + 1); void *buffer_end = (nk_byte*)ctx->memory.memory.ptr + ctx->memory.size; if (elem_end == buffer_end) ctx->memory.size -= sizeof(struct nk_page_element); else nk_link_page_element_into_freelist(ctx, elem);} } /* =============================================================== * * TABLE * * ===============================================================*/ NK_LIB struct nk_table* nk_create_table(struct nk_context *ctx) { struct nk_page_element *elem; elem = nk_create_page_element(ctx); if (!elem) return 0; nk_zero_struct(*elem); return &elem->data.tbl; } NK_LIB void nk_free_table(struct nk_context *ctx, struct nk_table *tbl) { union nk_page_data *pd = NK_CONTAINER_OF(tbl, union nk_page_data, tbl); struct nk_page_element *pe = NK_CONTAINER_OF(pd, struct nk_page_element, data); nk_free_page_element(ctx, pe); } NK_LIB void nk_push_table(struct nk_window *win, struct nk_table *tbl) { if (!win->tables) { win->tables = tbl; tbl->next = 0; tbl->prev = 0; tbl->size = 0; win->table_count = 1; return; } win->tables->prev = tbl; tbl->next = win->tables; tbl->prev = 0; tbl->size = 0; win->tables = tbl; win->table_count++; } NK_LIB void nk_remove_table(struct nk_window *win, struct nk_table *tbl) { if (win->tables == tbl) win->tables = tbl->next; if (tbl->next) tbl->next->prev = tbl->prev; if (tbl->prev) tbl->prev->next = tbl->next; tbl->next = 0; tbl->prev = 0; } NK_LIB nk_uint* nk_add_value(struct nk_context *ctx, struct nk_window *win, nk_hash name, nk_uint value) { NK_ASSERT(ctx); NK_ASSERT(win); if (!win || !ctx) return 0; if (!win->tables || win->tables->size >= NK_VALUE_PAGE_CAPACITY) { struct nk_table *tbl = nk_create_table(ctx); NK_ASSERT(tbl); if (!tbl) return 0; nk_push_table(win, tbl); } win->tables->seq = win->seq; win->tables->keys[win->tables->size] = name; win->tables->values[win->tables->size] = value; return &win->tables->values[win->tables->size++]; } NK_LIB nk_uint* nk_find_value(struct nk_window *win, nk_hash name) { struct nk_table *iter = win->tables; while (iter) { unsigned int i = 0; unsigned int size = iter->size; for (i = 0; i < size; ++i) { if (iter->keys[i] == name) { iter->seq = win->seq; return &iter->values[i]; } } size = NK_VALUE_PAGE_CAPACITY; iter = iter->next; } return 0; } /* =============================================================== * * PANEL * * ===============================================================*/ NK_LIB void* nk_create_panel(struct nk_context *ctx) { struct nk_page_element *elem; elem = nk_create_page_element(ctx); if (!elem) return 0; nk_zero_struct(*elem); return &elem->data.pan; } NK_LIB void nk_free_panel(struct nk_context *ctx, struct nk_panel *pan) { union nk_page_data *pd = NK_CONTAINER_OF(pan, union nk_page_data, pan); struct nk_page_element *pe = NK_CONTAINER_OF(pd, struct nk_page_element, data); nk_free_page_element(ctx, pe); } NK_LIB nk_bool nk_panel_has_header(nk_flags flags, const char *title) { nk_bool active = 0; active = (flags & (NK_WINDOW_CLOSABLE|NK_WINDOW_MINIMIZABLE)); active = active || (flags & NK_WINDOW_TITLE); active = active && !(flags & NK_WINDOW_HIDDEN) && title; return active; } NK_LIB struct nk_vec2 nk_panel_get_padding(const struct nk_style *style, enum nk_panel_type type) { switch (type) { default: case NK_PANEL_WINDOW: return style->window.padding; case NK_PANEL_GROUP: return style->window.group_padding; case NK_PANEL_POPUP: return style->window.popup_padding; case NK_PANEL_CONTEXTUAL: return style->window.contextual_padding; case NK_PANEL_COMBO: return style->window.combo_padding; case NK_PANEL_MENU: return style->window.menu_padding; case NK_PANEL_TOOLTIP: return style->window.menu_padding;} } NK_LIB float nk_panel_get_border(const struct nk_style *style, nk_flags flags, enum nk_panel_type type) { if (flags & NK_WINDOW_BORDER) { switch (type) { default: case NK_PANEL_WINDOW: return style->window.border; case NK_PANEL_GROUP: return style->window.group_border; case NK_PANEL_POPUP: return style->window.popup_border; case NK_PANEL_CONTEXTUAL: return style->window.contextual_border; case NK_PANEL_COMBO: return style->window.combo_border; case NK_PANEL_MENU: return style->window.menu_border; case NK_PANEL_TOOLTIP: return style->window.menu_border; }} else return 0; } NK_LIB struct nk_color nk_panel_get_border_color(const struct nk_style *style, enum nk_panel_type type) { switch (type) { default: case NK_PANEL_WINDOW: return style->window.border_color; case NK_PANEL_GROUP: return style->window.group_border_color; case NK_PANEL_POPUP: return style->window.popup_border_color; case NK_PANEL_CONTEXTUAL: return style->window.contextual_border_color; case NK_PANEL_COMBO: return style->window.combo_border_color; case NK_PANEL_MENU: return style->window.menu_border_color; case NK_PANEL_TOOLTIP: return style->window.menu_border_color;} } NK_LIB nk_bool nk_panel_is_sub(enum nk_panel_type type) { return (type & NK_PANEL_SET_SUB)?1:0; } NK_LIB nk_bool nk_panel_is_nonblock(enum nk_panel_type type) { return (type & NK_PANEL_SET_NONBLOCK)?1:0; } NK_LIB nk_bool nk_panel_begin(struct nk_context *ctx, const char *title, enum nk_panel_type panel_type) { struct nk_input *in; struct nk_window *win; struct nk_panel *layout; struct nk_command_buffer *out; const struct nk_style *style; const struct nk_user_font *font; struct nk_vec2 scrollbar_size; struct nk_vec2 panel_padding; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; nk_zero(ctx->current->layout, sizeof(*ctx->current->layout)); if ((ctx->current->flags & NK_WINDOW_HIDDEN) || (ctx->current->flags & NK_WINDOW_CLOSED)) { nk_zero(ctx->current->layout, sizeof(struct nk_panel)); ctx->current->layout->type = panel_type; return 0; } /* pull state into local stack */ style = &ctx->style; font = style->font; win = ctx->current; layout = win->layout; out = &win->buffer; in = (win->flags & NK_WINDOW_NO_INPUT) ? 0: &ctx->input; #ifdef NK_INCLUDE_COMMAND_USERDATA win->buffer.userdata = ctx->userdata; #endif /* pull style configuration into local stack */ scrollbar_size = style->window.scrollbar_size; panel_padding = nk_panel_get_padding(style, panel_type); /* window movement */ if ((win->flags & NK_WINDOW_MOVABLE) && !(win->flags & NK_WINDOW_ROM)) { nk_bool left_mouse_down; unsigned int left_mouse_clicked; int left_mouse_click_in_cursor; /* calculate draggable window space */ struct nk_rect header; header.x = win->bounds.x; header.y = win->bounds.y; header.w = win->bounds.w; if (nk_panel_has_header(win->flags, title)) { header.h = font->height + 2.0f * style->window.header.padding.y; header.h += 2.0f * style->window.header.label_padding.y; } else header.h = panel_padding.y; /* window movement by dragging */ left_mouse_down = in->mouse.buttons[NK_BUTTON_LEFT].down; left_mouse_clicked = in->mouse.buttons[NK_BUTTON_LEFT].clicked; left_mouse_click_in_cursor = nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, header, nk_true); if (left_mouse_down && left_mouse_click_in_cursor && !left_mouse_clicked) { win->bounds.x = win->bounds.x + in->mouse.delta.x; win->bounds.y = win->bounds.y + in->mouse.delta.y; in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x += in->mouse.delta.x; in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.y += in->mouse.delta.y; ctx->style.cursor_active = ctx->style.cursors[NK_CURSOR_MOVE]; } } /* setup panel */ layout->type = panel_type; layout->flags = win->flags; layout->bounds = win->bounds; layout->bounds.x += panel_padding.x; layout->bounds.w -= 2*panel_padding.x; if (win->flags & NK_WINDOW_BORDER) { layout->border = nk_panel_get_border(style, win->flags, panel_type); layout->bounds = nk_shrink_rect(layout->bounds, layout->border); } else layout->border = 0; layout->at_y = layout->bounds.y; layout->at_x = layout->bounds.x; layout->max_x = 0; layout->header_height = 0; layout->footer_height = 0; nk_layout_reset_min_row_height(ctx); layout->row.index = 0; layout->row.columns = 0; layout->row.ratio = 0; layout->row.item_width = 0; layout->row.tree_depth = 0; layout->row.height = panel_padding.y; layout->has_scrolling = nk_true; if (!(win->flags & NK_WINDOW_NO_SCROLLBAR_Y)) //< @r-lyeh layout->bounds.w -= scrollbar_size.x; if (!nk_panel_is_nonblock(panel_type)) { layout->footer_height = 0; if (!(win->flags & NK_WINDOW_NO_SCROLLBAR_X) || win->flags & NK_WINDOW_SCALABLE) //< @r-lyeh layout->footer_height = scrollbar_size.y; layout->bounds.h -= layout->footer_height; } /* panel header */ if (nk_panel_has_header(win->flags, title)) { struct nk_text text; struct nk_rect header; const struct nk_style_item *background = 0; /* calculate header bounds */ header.x = win->bounds.x; header.y = win->bounds.y; header.w = win->bounds.w; header.h = font->height + 2.0f * style->window.header.padding.y; header.h += (2.0f * style->window.header.label_padding.y); /* shrink panel by header */ layout->header_height = header.h; layout->bounds.y += header.h; layout->bounds.h -= header.h; layout->at_y += header.h; /* select correct header background and text color */ if (ctx->active == win) { background = &style->window.header.active; text.text = style->window.header.label_active; } else if (nk_input_is_mouse_hovering_rect(&ctx->input, header)) { background = &style->window.header.hover; text.text = style->window.header.label_hover; } else { background = &style->window.header.normal; text.text = style->window.header.label_normal; } /* draw header background */ header.h += 1.0f; switch(background->type) { case NK_STYLE_ITEM_IMAGE: text.background = nk_rgba(0,0,0,0); nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: text.background = background->data.color; nk_fill_rect(out, header, 0, background->data.color); break; } /* window close button */ {struct nk_rect button; button.y = header.y + style->window.header.padding.y; button.h = header.h - 2 * style->window.header.padding.y; button.w = button.h; if (win->flags & NK_WINDOW_CLOSABLE) { nk_flags ws = 0; if (style->window.header.align == NK_HEADER_RIGHT || 1) { //< @r-lyeh: ||1 button.x = (header.w + header.x) - (button.w + style->window.header.padding.x); header.w -= button.w + style->window.header.spacing.x + style->window.header.padding.x; } else { button.x = header.x + style->window.header.padding.x; header.x += button.w + style->window.header.spacing.x + style->window.header.padding.x; } if (nk_do_button_symbol(&ws, &win->buffer, button, style->window.header.close_symbol, NK_BUTTON_DEFAULT, &style->window.header.close_button, in, style->font) && !(win->flags & NK_WINDOW_ROM)) { layout->flags |= NK_WINDOW_HIDDEN; layout->flags &= (nk_flags)~NK_WINDOW_MINIMIZED; } } #if 1 //< @r-lyeh /* window pushpin button */ if (win->flags & NK_WINDOW_PINNABLE) { nk_flags ws = 0; if (style->window.header.align == NK_HEADER_RIGHT || 1) { //< @r-lyeh: ||1 button.x = (header.w + header.x) - button.w; if (!(win->flags & NK_WINDOW_CLOSABLE)) { button.x -= style->window.header.padding.x; header.w -= style->window.header.padding.x; } header.w -= button.w + style->window.header.spacing.x; } else { button.x = header.x; button.x -= button.w * 0.25, button.w *= 0.75; //< small align hack to fit minimize+pushpin buttons more closely together header.x += button.w + style->window.header.spacing.x + style->window.header.padding.x; } if (nk_do_button_symbol(&ws, &win->buffer, button, (layout->flags & NK_WINDOW_PINNED)? NK_SYMBOL_PIN : NK_SYMBOL_FLOATING, NK_BUTTON_DEFAULT, &style->window.header.minimize_button, in, style->font) && !(win->flags & NK_WINDOW_ROM)) layout->flags = (layout->flags & NK_WINDOW_PINNED) ? (layout->flags & (nk_flags)~NK_WINDOW_PINNED): layout->flags | NK_WINDOW_PINNED; } #endif #if 1 //< @r-lyeh /* window maximize button */ if (win->flags & NK_WINDOW_MAXIMIZABLE) { nk_flags ws = 0; if (style->window.header.align == NK_HEADER_RIGHT || 1) { //< @r-lyeh: ||1 button.x = (header.w + header.x) - button.w; if (!(win->flags & NK_WINDOW_CLOSABLE)) { button.x -= style->window.header.padding.x; header.w -= style->window.header.padding.x; } header.w -= button.w + style->window.header.spacing.x; } else { button.x = header.x; button.x -= button.w * 0.25, button.w *= 0.75; //< small align hack to fit minimize+pushpin buttons more closely together header.x += button.w + style->window.header.spacing.x + style->window.header.padding.x; } if( win->is_window_resizing && layout->flags & NK_WINDOW_FULLSCREEN ) layout->flags &= (nk_flags)~NK_WINDOW_FULLSCREEN; if (nk_do_button_symbol(&ws, &win->buffer, button, (layout->flags & NK_WINDOW_FULLSCREEN)? NK_SYMBOL_RESTORE : NK_SYMBOL_FULLSCREEN, NK_BUTTON_DEFAULT, &style->window.header.minimize_button, in, style->font) && !(win->flags & NK_WINDOW_ROM) ) layout->flags = (layout->flags & NK_WINDOW_FULLSCREEN) ? (layout->flags & (nk_flags)~NK_WINDOW_FULLSCREEN): layout->flags | NK_WINDOW_FULLSCREEN, win->is_window_restoring = !(layout->flags & NK_WINDOW_FULLSCREEN); } #endif /* window minimize button */ if (win->flags & NK_WINDOW_MINIMIZABLE) { nk_flags ws = 0; if (style->window.header.align == NK_HEADER_RIGHT) { button.x = (header.w + header.x) - button.w; if (!(win->flags & NK_WINDOW_CLOSABLE)) { button.x -= style->window.header.padding.x; header.w -= style->window.header.padding.x; } header.w -= button.w + style->window.header.spacing.x; } else { button.x = header.x; header.x += button.w + style->window.header.spacing.x + style->window.header.padding.x; } if (nk_do_button_symbol(&ws, &win->buffer, button, (layout->flags & NK_WINDOW_MINIMIZED)? style->window.header.maximize_symbol: style->window.header.minimize_symbol, NK_BUTTON_DEFAULT, &style->window.header.minimize_button, in, style->font) && !(win->flags & NK_WINDOW_ROM)) layout->flags = (layout->flags & NK_WINDOW_MINIMIZED) ? (layout->flags & (nk_flags)~NK_WINDOW_MINIMIZED): (layout->flags | NK_WINDOW_MINIMIZED); } } {/* window header title */ int text_len = nk_strlen(title); struct nk_rect label = {0,0,0,0}; float t = font->width(font->userdata, font->height, title, text_len); text.padding = nk_vec2(0,0); label.x = header.x - style->window.header.padding.x; //< @r-lyeh: + -> - // label.x += style->window.header.label_padding.x; //< @r-lyeh: disabled label.y = header.y + style->window.header.label_padding.y; label.h = font->height + 2 * style->window.header.label_padding.y; label.w = t + 2 * style->window.header.spacing.x; label.w = NK_CLAMP(0, label.w, header.x + header.w - label.x); nk_widget_text(out, label, (const char*)title, text_len, &text, NK_TEXT_LEFT, font);} } /* draw window background */ if (!(layout->flags & NK_WINDOW_MINIMIZED) && !(layout->flags & NK_WINDOW_DYNAMIC)) { struct nk_rect body; body.x = win->bounds.x; body.w = win->bounds.w; body.y = (win->bounds.y + layout->header_height); body.h = (win->bounds.h - layout->header_height); switch(style->window.fixed_background.type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, body, &style->window.fixed_background.data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, body, &style->window.fixed_background.data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, body, 0, style->window.fixed_background.data.color); break; } } /* set clipping rectangle */ {struct nk_rect clip; layout->clip = layout->bounds; nk_unify(&clip, &win->buffer.clip, layout->clip.x, layout->clip.y, layout->clip.x + layout->clip.w, layout->clip.y + layout->clip.h); nk_push_scissor(out, clip); layout->clip = clip;} return !(layout->flags & NK_WINDOW_HIDDEN) && !(layout->flags & NK_WINDOW_MINIMIZED); } NK_LIB void nk_panel_end(struct nk_context *ctx) { struct nk_input *in; struct nk_window *window; struct nk_panel *layout; const struct nk_style *style; struct nk_command_buffer *out; struct nk_vec2 scrollbar_size; struct nk_vec2 panel_padding; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; #if 1 //< @r-lyeh ctx->current->is_window_resizing = 0; #endif window = ctx->current; layout = window->layout; style = &ctx->style; out = &window->buffer; in = (layout->flags & NK_WINDOW_ROM || layout->flags & NK_WINDOW_NO_INPUT) ? 0 :&ctx->input; if (!nk_panel_is_sub(layout->type)) nk_push_scissor(out, nk_null_rect); /* cache configuration data */ scrollbar_size = style->window.scrollbar_size; panel_padding = nk_panel_get_padding(style, layout->type); /* update the current cursor Y-position to point over the last added widget */ layout->at_y += layout->row.height; /* dynamic panels */ if (layout->flags & NK_WINDOW_DYNAMIC && !(layout->flags & NK_WINDOW_MINIMIZED)) { /* update panel height to fit dynamic growth */ struct nk_rect empty_space; if (layout->at_y < (layout->bounds.y + layout->bounds.h)) layout->bounds.h = layout->at_y - layout->bounds.y; /* fill top empty space */ empty_space.x = window->bounds.x; empty_space.y = layout->bounds.y; empty_space.h = panel_padding.y; empty_space.w = window->bounds.w; nk_fill_rect(out, empty_space, 0, style->window.background); /* fill left empty space */ empty_space.x = window->bounds.x; empty_space.y = layout->bounds.y; empty_space.w = panel_padding.x + layout->border; empty_space.h = layout->bounds.h; nk_fill_rect(out, empty_space, 0, style->window.background); /* fill right empty space */ empty_space.x = layout->bounds.x + layout->bounds.w; empty_space.y = layout->bounds.y; empty_space.w = panel_padding.x + layout->border; empty_space.h = layout->bounds.h; if (*layout->offset_y == 0 && !(layout->flags & NK_WINDOW_NO_SCROLLBAR_Y)) //< @r-lyeh empty_space.w += scrollbar_size.x; nk_fill_rect(out, empty_space, 0, style->window.background); /* fill bottom empty space */ if (layout->footer_height > 0) { empty_space.x = window->bounds.x; empty_space.y = layout->bounds.y + layout->bounds.h; empty_space.w = window->bounds.w; empty_space.h = layout->footer_height; nk_fill_rect(out, empty_space, 0, style->window.background); } } /* scrollbars */ if ( 1 && //< @r-lyeh !(layout->flags & NK_WINDOW_MINIMIZED) && window->scrollbar_hiding_timer < NK_SCROLLBAR_HIDING_TIMEOUT) { struct nk_rect scroll; int scroll_has_scrolling; float scroll_target; float scroll_offset; float scroll_step; float scroll_inc; /* mouse wheel scrolling */ if (nk_panel_is_sub(layout->type)) { /* sub-window mouse wheel scrolling */ struct nk_window *root_window = window; struct nk_panel *root_panel = window->layout; while (root_panel->parent) root_panel = root_panel->parent; while (root_window->parent) root_window = root_window->parent; /* only allow scrolling if parent window is active */ scroll_has_scrolling = 0; if ((root_window == ctx->active) && layout->has_scrolling) { /* and panel is being hovered and inside clip rect*/ if (nk_input_is_mouse_hovering_rect(in, layout->bounds) && NK_INTERSECT(layout->bounds.x, layout->bounds.y, layout->bounds.w, layout->bounds.h, root_panel->clip.x, root_panel->clip.y, root_panel->clip.w, root_panel->clip.h)) { /* deactivate all parent scrolling */ root_panel = window->layout; while (root_panel->parent) { root_panel->has_scrolling = nk_false; root_panel = root_panel->parent; } root_panel->has_scrolling = nk_false; scroll_has_scrolling = nk_true; } } } else if (!nk_panel_is_sub(layout->type)) { /* window mouse wheel scrolling */ scroll_has_scrolling = (window == ctx->active) && layout->has_scrolling; if (in && (in->mouse.scroll_delta.y > 0 || in->mouse.scroll_delta.x > 0) && scroll_has_scrolling) window->scrolled = nk_true; else window->scrolled = nk_false; } else scroll_has_scrolling = nk_false; if(!(layout->flags & NK_WINDOW_NO_SCROLLBAR_Y)) //< @r-lyeh { /* vertical scrollbar */ nk_flags state = 0; scroll.x = layout->bounds.x + layout->bounds.w + panel_padding.x; scroll.y = layout->bounds.y; scroll.w = scrollbar_size.x; scroll.h = layout->bounds.h; scroll_offset = (float)*layout->offset_y; scroll_step = scroll.h * 0.10f; scroll_inc = scroll.h * 0.01f; scroll_target = (float)(int)(layout->at_y - scroll.y); scroll_offset = nk_do_scrollbarv(&state, out, scroll, scroll_has_scrolling, scroll_offset, scroll_target, scroll_step, scroll_inc, &ctx->style.scrollv, in, style->font); *layout->offset_y = (nk_uint)scroll_offset; if (in && scroll_has_scrolling) in->mouse.scroll_delta.y = 0; } if(!(layout->flags & NK_WINDOW_NO_SCROLLBAR_X)) //< @r-lyeh { /* horizontal scrollbar */ nk_flags state = 0; scroll.x = layout->bounds.x; scroll.y = layout->bounds.y + layout->bounds.h; scroll.w = layout->bounds.w; scroll.h = scrollbar_size.y; scroll_offset = (float)*layout->offset_x; scroll_target = (float)(int)(layout->max_x - scroll.x); scroll_step = layout->max_x * 0.05f; scroll_inc = layout->max_x * 0.005f; scroll_offset = nk_do_scrollbarh(&state, out, scroll, scroll_has_scrolling, scroll_offset, scroll_target, scroll_step, scroll_inc, &ctx->style.scrollh, in, style->font); *layout->offset_x = (nk_uint)scroll_offset; } } /* hide scroll if no user input */ if (window->flags & NK_WINDOW_SCROLL_AUTO_HIDE) { int has_input = ctx->input.mouse.delta.x != 0 || ctx->input.mouse.delta.y != 0 || ctx->input.mouse.scroll_delta.y != 0; int is_window_hovered = nk_window_is_hovered(ctx); int any_item_active = (ctx->last_widget_state & NK_WIDGET_STATE_MODIFIED); if ((!has_input && is_window_hovered) || (!is_window_hovered && !any_item_active)) window->scrollbar_hiding_timer += ctx->delta_time_seconds; else window->scrollbar_hiding_timer = 0; } else window->scrollbar_hiding_timer = 0; /* window border */ if (layout->flags & NK_WINDOW_BORDER) { struct nk_color border_color = nk_panel_get_border_color(style, layout->type); const float padding_y = (layout->flags & NK_WINDOW_MINIMIZED) ? (style->window.border + window->bounds.y + layout->header_height) : ((layout->flags & NK_WINDOW_DYNAMIC) ? (layout->bounds.y + layout->bounds.h + layout->footer_height) : (window->bounds.y + window->bounds.h)); struct nk_rect b = window->bounds; b.h = padding_y - window->bounds.y; nk_stroke_rect(out, b, 0, layout->border, border_color); } /* scaler */ if ((layout->flags & NK_WINDOW_SCALABLE) && in && !(layout->flags & NK_WINDOW_MINIMIZED)) { /* calculate scaler bounds */ struct nk_rect scaler; scaler.w = scrollbar_size.x * 2; //< @r-lyeh x2 easier grabbing scaler.h = scrollbar_size.y * 2; //< @r-lyeh x2 easier grabbing #if 1 //< @r-lyeh: pixel perfect adjustments int scroll_has_scrolling = (window == ctx->active) && layout->has_scrolling; scaler.y = layout->bounds.y + layout->bounds.h - scaler.h + panel_padding.y; if (layout->flags & NK_WINDOW_SCALE_LEFT) scaler.x = layout->bounds.x - panel_padding.x; // + scaler.w * !!(window->flags & NK_WINDOW_NO_SCROLLBAR_Y); //< @r-lyeh else scaler.x = layout->bounds.x + layout->bounds.w - panel_padding.x - (scrollbar_size.x/2) * !(window->flags & NK_WINDOW_NO_SCROLLBAR_Y); if (layout->flags & NK_WINDOW_SCALE_TOP) scaler.y = layout->bounds.y; //< @r-lyeh: 32==title height #if 0 //< @r-lyeh: @fixme: 32 can be guessed from here if (nk_panel_has_header(win->flags, title)) { header.h = font->height + 2.0f * style->window.header.padding.y; header.h += 2.0f * style->window.header.label_padding.y; } else header.h = panel_padding.y; #endif #endif if (layout->flags & NK_WINDOW_NO_SCROLLBAR_Y) //< @r-lyeh scaler.x -= scaler.w; /* draw scaler */ {const struct nk_style_item *item = &style->window.scaler; if (item->type == NK_STYLE_ITEM_IMAGE) nk_draw_image(out, scaler, &item->data.image, nk_white); else { #if 1 //< @r-lyeh if (layout->flags & NK_WINDOW_SCALE_TOP) { if (layout->flags & NK_WINDOW_SCALE_LEFT) { nk_fill_triangle(out, scaler.x, scaler.y + scaler.h, scaler.x + scaler.w, scaler.y, scaler.x, scaler.y, item->data.color); } else { // RIGHT nk_fill_triangle(out, scaler.x, scaler.y, scaler.x + scaler.w, scaler.y, scaler.x + scaler.w, scaler.y + scaler.h, item->data.color); } } else #endif if (layout->flags & NK_WINDOW_SCALE_LEFT) { nk_fill_triangle(out, scaler.x, scaler.y, scaler.x, scaler.y + scaler.h, scaler.x + scaler.w, scaler.y + scaler.h, item->data.color); } else { nk_fill_triangle(out, scaler.x + scaler.w, scaler.y, scaler.x + scaler.w, scaler.y + scaler.h, scaler.x, scaler.y + scaler.h, item->data.color); } }} /* do window scaling */ if (!(window->flags & NK_WINDOW_ROM)) { struct nk_vec2 window_size = style->window.min_size; int left_mouse_down = in->mouse.buttons[NK_BUTTON_LEFT].down; int left_mouse_click_in_scaler = nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, scaler, nk_true); if (left_mouse_down && left_mouse_click_in_scaler) { #if 1 //< @r-lyeh window->is_window_resizing = layout->flags & NK_WINDOW_SCALE_LEFT ? NK_WINDOW_SCALE_LEFT : 1; window->is_window_resizing |= layout->flags & NK_WINDOW_SCALE_TOP ? NK_WINDOW_SCALE_TOP : 0; #endif float delta_x = in->mouse.delta.x; float delta_y = in->mouse.delta.y; //< @r-lyeh if (layout->flags & NK_WINDOW_SCALE_LEFT) { #if 1 //< @r-lyeh: fix broken dragging on rapid mouse movements /* dragging in x-direction */ if( (window->bounds.w - delta_x) > window_size.x * 2 ) { window->bounds.x += delta_x; scaler.x += delta_x; window->bounds.w -= delta_x; } } else #endif #if 1 //< @r-lyeh if (1 /*NK_WINDOW_SCALE_RIGHT*/) { /* dragging in x-direction */ if( (window->bounds.w + delta_x) > window_size.x * 2) { window->bounds.w += delta_x; scaler.x += delta_x; } } #endif /* dragging in y-direction (only possible if static window) */ if (!(layout->flags & NK_WINDOW_DYNAMIC)) { #if 1 //< @r-lyeh if (layout->flags & NK_WINDOW_SCALE_TOP) { /* dragging in y-direction */ if (window_size.y < window->bounds.h + in->mouse.delta.y) { if ((in->mouse.delta.y < 0) || (in->mouse.delta.y > 0 && in->mouse.pos.y >= scaler.y)) { window->bounds.y += delta_y; window->bounds.h -= delta_y; scaler.y += delta_y; } } } else #endif if (window_size.y < window->bounds.h + in->mouse.delta.y) { if ((in->mouse.delta.y < 0) || (in->mouse.delta.y > 0 && in->mouse.pos.y >= scaler.y)) { window->bounds.h = window->bounds.h + in->mouse.delta.y; scaler.y += in->mouse.delta.y; } } } ctx->style.cursor_active = ctx->style.cursors[NK_CURSOR_RESIZE_TOP_RIGHT_DOWN_LEFT]; in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x = scaler.x + scaler.w/2.0f; in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.y = scaler.y + scaler.h/2.0f; } } } if (!nk_panel_is_sub(layout->type)) { /* window is hidden so clear command buffer */ if (layout->flags & NK_WINDOW_HIDDEN) nk_command_buffer_reset(&window->buffer); /* window is visible and not tab */ else nk_finish(ctx, window); } /* NK_WINDOW_REMOVE_ROM flag was set so remove NK_WINDOW_ROM */ if (layout->flags & NK_WINDOW_REMOVE_ROM) { layout->flags &= ~(nk_flags)NK_WINDOW_ROM; layout->flags &= ~(nk_flags)NK_WINDOW_REMOVE_ROM; } window->flags = layout->flags; /* property garbage collector */ if (window->property.active && window->property.old != window->property.seq && window->property.active == window->property.prev) { nk_zero(&window->property, sizeof(window->property)); } else { window->property.old = window->property.seq; window->property.prev = window->property.active; window->property.seq = 0; } /* edit garbage collector */ if (window->edit.active && window->edit.old != window->edit.seq && window->edit.active == window->edit.prev) { nk_zero(&window->edit, sizeof(window->edit)); } else { window->edit.old = window->edit.seq; window->edit.prev = window->edit.active; window->edit.seq = 0; } /* contextual garbage collector */ if (window->popup.active_con && window->popup.con_old != window->popup.con_count) { window->popup.con_count = 0; window->popup.con_old = 0; window->popup.active_con = 0; } else { window->popup.con_old = window->popup.con_count; window->popup.con_count = 0; } window->popup.combo_count = 0; /* helper to make sure you have a 'nk_tree_push' for every 'nk_tree_pop' */ NK_ASSERT(!layout->row.tree_depth); } /* =============================================================== * * WINDOW * * ===============================================================*/ NK_LIB void* nk_create_window(struct nk_context *ctx) { struct nk_page_element *elem; elem = nk_create_page_element(ctx); if (!elem) return 0; elem->data.win.seq = ctx->seq; return &elem->data.win; } NK_LIB void nk_free_window(struct nk_context *ctx, struct nk_window *win) { /* unlink windows from list */ struct nk_table *it = win->tables; if (win->popup.win) { nk_free_window(ctx, win->popup.win); win->popup.win = 0; } win->next = 0; win->prev = 0; while (it) { /*free window state tables */ struct nk_table *n = it->next; nk_remove_table(win, it); nk_free_table(ctx, it); if (it == win->tables) win->tables = n; it = n; } /* link windows into freelist */ {union nk_page_data *pd = NK_CONTAINER_OF(win, union nk_page_data, win); struct nk_page_element *pe = NK_CONTAINER_OF(pd, struct nk_page_element, data); nk_free_page_element(ctx, pe);} } NK_LIB struct nk_window* nk_find_window(struct nk_context *ctx, nk_hash hash, const char *name) { struct nk_window *iter; iter = ctx->begin; while (iter) { NK_ASSERT(iter != iter->next); if (iter->name == hash) { int max_len = nk_strlen(iter->name_string); if (!nk_stricmpn(iter->name_string, name, max_len)) return iter; } iter = iter->next; } return 0; } NK_LIB void nk_insert_window(struct nk_context *ctx, struct nk_window *win, enum nk_window_insert_location loc) { const struct nk_window *iter; NK_ASSERT(ctx); NK_ASSERT(win); if (!win || !ctx) return; iter = ctx->begin; while (iter) { NK_ASSERT(iter != iter->next); NK_ASSERT(iter != win); if (iter == win) return; iter = iter->next; } if (!ctx->begin) { win->next = 0; win->prev = 0; ctx->begin = win; ctx->end = win; ctx->count = 1; return; } if (loc == NK_INSERT_BACK) { struct nk_window *end; end = ctx->end; end->flags |= NK_WINDOW_ROM; end->next = win; win->prev = ctx->end; win->next = 0; ctx->end = win; ctx->active = ctx->end; ctx->end->flags &= ~(nk_flags)NK_WINDOW_ROM; } else { /*ctx->end->flags |= NK_WINDOW_ROM;*/ ctx->begin->prev = win; win->next = ctx->begin; win->prev = 0; ctx->begin = win; ctx->begin->flags &= ~(nk_flags)NK_WINDOW_ROM; } ctx->count++; } NK_LIB void nk_remove_window(struct nk_context *ctx, struct nk_window *win) { if (win == ctx->begin || win == ctx->end) { if (win == ctx->begin) { ctx->begin = win->next; if (win->next) win->next->prev = 0; } if (win == ctx->end) { ctx->end = win->prev; if (win->prev) win->prev->next = 0; } } else { if (win->next) win->next->prev = win->prev; if (win->prev) win->prev->next = win->next; } if (win == ctx->active || !ctx->active) { ctx->active = ctx->end; if (ctx->end) ctx->end->flags &= ~(nk_flags)NK_WINDOW_ROM; } win->next = 0; win->prev = 0; ctx->count--; } NK_API nk_bool nk_begin(struct nk_context *ctx, const char *title, struct nk_rect bounds, nk_flags flags) { return nk_begin_titled(ctx, title, title, bounds, flags); } NK_API nk_bool nk_begin_titled(struct nk_context *ctx, const char *name, const char *title, struct nk_rect bounds, nk_flags flags) { struct nk_window *win; struct nk_style *style; nk_hash name_hash; int name_len; int ret = 0; NK_ASSERT(ctx); NK_ASSERT(name); NK_ASSERT(title); NK_ASSERT(ctx->style.font && ctx->style.font->width && "if this triggers you forgot to add a font"); NK_ASSERT(!ctx->current && "if this triggers you missed a `nk_end` call"); if (!ctx || ctx->current || !title || !name) return 0; /* find or create window */ style = &ctx->style; name_len = (int)nk_strlen(name); name_hash = nk_murmur_hash(name, (int)name_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, name_hash, name); if (!win) { /* create new window */ nk_size name_length = (nk_size)name_len; win = (struct nk_window*)nk_create_window(ctx); NK_ASSERT(win); if (!win) return 0; if (flags & NK_WINDOW_BACKGROUND) nk_insert_window(ctx, win, NK_INSERT_FRONT); else nk_insert_window(ctx, win, NK_INSERT_BACK); nk_command_buffer_init(&win->buffer, &ctx->memory, NK_CLIPPING_ON); win->flags = flags; win->bounds = bounds; win->name = name_hash; name_length = NK_MIN(name_length, NK_WINDOW_MAX_NAME-1); NK_MEMCPY(win->name_string, name, name_length); win->name_string[name_length] = 0; win->popup.win = 0; if (!ctx->active) ctx->active = win; } else { /* update window */ win->flags &= ~(nk_flags)(NK_WINDOW_PRIVATE-1); win->flags |= flags; if (!(win->flags & (NK_WINDOW_MOVABLE | NK_WINDOW_SCALABLE))) win->bounds = bounds; /* If this assert triggers you either: * * I.) Have more than one window with the same name or * II.) You forgot to actually draw the window. * More specific you did not call `nk_clear` (nk_clear will be * automatically called for you if you are using one of the * provided demo backends). */ NK_ASSERT(win->seq != ctx->seq); win->seq = ctx->seq; if (!ctx->active && !(win->flags & NK_WINDOW_HIDDEN)) { ctx->active = win; ctx->end = win; } } if (win->flags & NK_WINDOW_HIDDEN) { ctx->current = win; win->layout = 0; return 0; } else nk_start(ctx, win); /* window overlapping */ if (!(win->flags & NK_WINDOW_HIDDEN) && !(win->flags & NK_WINDOW_NO_INPUT)) { int inpanel, ishovered; struct nk_window *iter = win; float h = ctx->style.font->height + 2.0f * style->window.header.padding.y + (2.0f * style->window.header.label_padding.y); struct nk_rect win_bounds = (!(win->flags & NK_WINDOW_MINIMIZED))? win->bounds: nk_rect(win->bounds.x, win->bounds.y, win->bounds.w, h); /* activate window if hovered and no other window is overlapping this window */ inpanel = nk_input_has_mouse_click_down_in_rect(&ctx->input, NK_BUTTON_LEFT, win_bounds, nk_true); inpanel = inpanel && ctx->input.mouse.buttons[NK_BUTTON_LEFT].clicked; ishovered = nk_input_is_mouse_hovering_rect(&ctx->input, win_bounds); if ((win != ctx->active) && ishovered && !ctx->input.mouse.buttons[NK_BUTTON_LEFT].down) { iter = win->next; while (iter) { struct nk_rect iter_bounds = (!(iter->flags & NK_WINDOW_MINIMIZED))? iter->bounds: nk_rect(iter->bounds.x, iter->bounds.y, iter->bounds.w, h); if (NK_INTERSECT(win_bounds.x, win_bounds.y, win_bounds.w, win_bounds.h, iter_bounds.x, iter_bounds.y, iter_bounds.w, iter_bounds.h) && (!(iter->flags & NK_WINDOW_HIDDEN))) break; if (iter->popup.win && iter->popup.active && !(iter->flags & NK_WINDOW_HIDDEN) && NK_INTERSECT(win->bounds.x, win_bounds.y, win_bounds.w, win_bounds.h, iter->popup.win->bounds.x, iter->popup.win->bounds.y, iter->popup.win->bounds.w, iter->popup.win->bounds.h)) break; iter = iter->next; } } /* activate window if clicked */ if (iter && inpanel && (win != ctx->end)) { iter = win->next; while (iter) { /* try to find a panel with higher priority in the same position */ struct nk_rect iter_bounds = (!(iter->flags & NK_WINDOW_MINIMIZED))? iter->bounds: nk_rect(iter->bounds.x, iter->bounds.y, iter->bounds.w, h); if (NK_INBOX(ctx->input.mouse.pos.x, ctx->input.mouse.pos.y, iter_bounds.x, iter_bounds.y, iter_bounds.w, iter_bounds.h) && !(iter->flags & NK_WINDOW_HIDDEN)) break; if (iter->popup.win && iter->popup.active && !(iter->flags & NK_WINDOW_HIDDEN) && NK_INTERSECT(win_bounds.x, win_bounds.y, win_bounds.w, win_bounds.h, iter->popup.win->bounds.x, iter->popup.win->bounds.y, iter->popup.win->bounds.w, iter->popup.win->bounds.h)) break; iter = iter->next; } } if (iter && !(win->flags & NK_WINDOW_ROM) && (win->flags & NK_WINDOW_BACKGROUND)) { win->flags |= (nk_flags)NK_WINDOW_ROM; iter->flags &= ~(nk_flags)NK_WINDOW_ROM; ctx->active = iter; if (!(iter->flags & NK_WINDOW_BACKGROUND)) { /* current window is active in that position so transfer to top * at the highest priority in stack */ nk_remove_window(ctx, iter); nk_insert_window(ctx, iter, NK_INSERT_BACK); } } else { if (!iter && ctx->end != win) { if (!(win->flags & NK_WINDOW_BACKGROUND)) { /* current window is active in that position so transfer to top * at the highest priority in stack */ nk_remove_window(ctx, win); nk_insert_window(ctx, win, NK_INSERT_BACK); } win->flags &= ~(nk_flags)NK_WINDOW_ROM; ctx->active = win; } if (ctx->end != win && !(win->flags & NK_WINDOW_BACKGROUND)) win->flags |= NK_WINDOW_ROM; } } win->layout = (struct nk_panel*)nk_create_panel(ctx); ctx->current = win; ret = nk_panel_begin(ctx, title, NK_PANEL_WINDOW); win->layout->offset_x = &win->scrollbar.x; win->layout->offset_y = &win->scrollbar.y; return ret; } NK_API void nk_end(struct nk_context *ctx) { struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current && "if this triggers you forgot to call `nk_begin`"); if (!ctx || !ctx->current) return; layout = ctx->current->layout; if (!layout || (layout->type == NK_PANEL_WINDOW && (ctx->current->flags & NK_WINDOW_HIDDEN))) { ctx->current = 0; return; } nk_panel_end(ctx); nk_free_panel(ctx, ctx->current->layout); ctx->current = 0; } NK_API struct nk_rect nk_window_get_bounds(const struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_rect(0,0,0,0); return ctx->current->bounds; } NK_API struct nk_vec2 nk_window_get_position(const struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_vec2(0,0); return nk_vec2(ctx->current->bounds.x, ctx->current->bounds.y); } NK_API struct nk_vec2 nk_window_get_size(const struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_vec2(0,0); return nk_vec2(ctx->current->bounds.w, ctx->current->bounds.h); } NK_API float nk_window_get_width(const struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return 0; return ctx->current->bounds.w; } NK_API float nk_window_get_height(const struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return 0; return ctx->current->bounds.h; } NK_API struct nk_rect nk_window_get_content_region(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_rect(0,0,0,0); return ctx->current->layout->clip; } NK_API struct nk_vec2 nk_window_get_content_region_min(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current) return nk_vec2(0,0); return nk_vec2(ctx->current->layout->clip.x, ctx->current->layout->clip.y); } NK_API struct nk_vec2 nk_window_get_content_region_max(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current) return nk_vec2(0,0); return nk_vec2(ctx->current->layout->clip.x + ctx->current->layout->clip.w, ctx->current->layout->clip.y + ctx->current->layout->clip.h); } NK_API struct nk_vec2 nk_window_get_content_region_size(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current) return nk_vec2(0,0); return nk_vec2(ctx->current->layout->clip.w, ctx->current->layout->clip.h); } NK_API struct nk_command_buffer* nk_window_get_canvas(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current) return 0; return &ctx->current->buffer; } NK_API struct nk_panel* nk_window_get_panel(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return 0; return ctx->current->layout; } NK_API void nk_window_get_scroll(struct nk_context *ctx, nk_uint *offset_x, nk_uint *offset_y) { struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return ; win = ctx->current; if (offset_x) *offset_x = win->scrollbar.x; if (offset_y) *offset_y = win->scrollbar.y; } NK_API nk_bool nk_window_has_focus(const struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current) return 0; return ctx->current == ctx->active; } NK_API nk_bool nk_window_is_hovered(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current || (ctx->current->flags & NK_WINDOW_HIDDEN)) return 0; else { struct nk_rect actual_bounds = ctx->current->bounds; if (ctx->begin->flags & NK_WINDOW_MINIMIZED) { actual_bounds.h = ctx->current->layout->header_height; } return nk_input_is_mouse_hovering_rect(&ctx->input, actual_bounds); } } NK_API nk_bool nk_window_is_any_hovered(struct nk_context *ctx) { struct nk_window *iter; NK_ASSERT(ctx); if (!ctx) return 0; iter = ctx->begin; while (iter) { /* check if window is being hovered */ if(!(iter->flags & NK_WINDOW_HIDDEN)) { /* check if window popup is being hovered */ if (iter->popup.active && iter->popup.win && nk_input_is_mouse_hovering_rect(&ctx->input, iter->popup.win->bounds)) return 1; if (iter->flags & NK_WINDOW_MINIMIZED) { struct nk_rect header = iter->bounds; header.h = ctx->style.font->height + 2 * ctx->style.window.header.padding.y; if (nk_input_is_mouse_hovering_rect(&ctx->input, header)) return 1; } else if (nk_input_is_mouse_hovering_rect(&ctx->input, iter->bounds)) { return 1; } } iter = iter->next; } return 0; } NK_API nk_bool nk_item_is_any_active(struct nk_context *ctx) { int any_hovered = nk_window_is_any_hovered(ctx); int any_active = (ctx->last_widget_state & NK_WIDGET_STATE_MODIFIED); return any_hovered || any_active; } NK_API nk_bool nk_window_is_collapsed(struct nk_context *ctx, const char *name) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return 0; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (!win) return 0; return win->flags & NK_WINDOW_MINIMIZED; } NK_API nk_bool nk_window_is_closed(struct nk_context *ctx, const char *name) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return 1; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (!win) return 1; return (win->flags & NK_WINDOW_CLOSED); } NK_API nk_bool nk_window_is_hidden(struct nk_context *ctx, const char *name) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return 1; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (!win) return 1; return (win->flags & NK_WINDOW_HIDDEN); } NK_API nk_bool nk_window_is_active(struct nk_context *ctx, const char *name) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return 0; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (!win) return 0; return win == ctx->active; } NK_API struct nk_window* nk_window_find(struct nk_context *ctx, const char *name) { int title_len; nk_hash title_hash; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); return nk_find_window(ctx, title_hash, name); } NK_API void nk_window_close(struct nk_context *ctx, const char *name) { struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return; win = nk_window_find(ctx, name); if (!win) return; NK_ASSERT(ctx->current != win && "You cannot close a currently active window"); if (ctx->current == win) return; win->flags |= NK_WINDOW_HIDDEN; win->flags |= NK_WINDOW_CLOSED; } NK_API void nk_window_set_bounds(struct nk_context *ctx, const char *name, struct nk_rect bounds) { struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return; win = nk_window_find(ctx, name); if (!win) return; NK_ASSERT(ctx->current != win && "You cannot update a currently in procecss window"); win->bounds = bounds; } NK_API void nk_window_set_position(struct nk_context *ctx, const char *name, struct nk_vec2 pos) { struct nk_window *win = nk_window_find(ctx, name); if (!win) return; win->bounds.x = pos.x; win->bounds.y = pos.y; } NK_API void nk_window_set_size(struct nk_context *ctx, const char *name, struct nk_vec2 size) { struct nk_window *win = nk_window_find(ctx, name); if (!win) return; win->bounds.w = size.x; win->bounds.h = size.y; } NK_API void nk_window_set_scroll(struct nk_context *ctx, nk_uint offset_x, nk_uint offset_y) { struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; win = ctx->current; win->scrollbar.x = offset_x; win->scrollbar.y = offset_y; } NK_API void nk_window_collapse(struct nk_context *ctx, const char *name, enum nk_collapse_states c) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (!win) return; if (c == NK_MINIMIZED) win->flags |= NK_WINDOW_MINIMIZED; else win->flags &= ~(nk_flags)NK_WINDOW_MINIMIZED; } NK_API void nk_window_collapse_if(struct nk_context *ctx, const char *name, enum nk_collapse_states c, int cond) { NK_ASSERT(ctx); if (!ctx || !cond) return; nk_window_collapse(ctx, name, c); } NK_API void nk_window_show(struct nk_context *ctx, const char *name, enum nk_show_states s) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (!win) return; if (s == NK_HIDDEN) { win->flags |= NK_WINDOW_HIDDEN; } else win->flags &= ~(nk_flags)NK_WINDOW_HIDDEN; } NK_API void nk_window_show_if(struct nk_context *ctx, const char *name, enum nk_show_states s, int cond) { NK_ASSERT(ctx); if (!ctx || !cond) return; nk_window_show(ctx, name, s); } NK_API void nk_window_set_focus(struct nk_context *ctx, const char *name) { int title_len; nk_hash title_hash; struct nk_window *win; NK_ASSERT(ctx); if (!ctx) return; title_len = (int)nk_strlen(name); title_hash = nk_murmur_hash(name, (int)title_len, NK_WINDOW_TITLE); win = nk_find_window(ctx, title_hash, name); if (win && ctx->end != win) { nk_remove_window(ctx, win); nk_insert_window(ctx, win, NK_INSERT_BACK); } ctx->active = win; } /* =============================================================== * * POPUP * * ===============================================================*/ NK_API nk_bool nk_popup_begin(struct nk_context *ctx, enum nk_popup_type type, const char *title, nk_flags flags, struct nk_rect rect) { struct nk_window *popup; struct nk_window *win; struct nk_panel *panel; int title_len; nk_hash title_hash; nk_size allocated; NK_ASSERT(ctx); NK_ASSERT(title); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; panel = win->layout; NK_ASSERT(!(panel->type & NK_PANEL_SET_POPUP) && "popups are not allowed to have popups"); (void)panel; title_len = (int)nk_strlen(title); title_hash = nk_murmur_hash(title, (int)title_len, NK_PANEL_POPUP); popup = win->popup.win; if (!popup) { popup = (struct nk_window*)nk_create_window(ctx); popup->parent = win; win->popup.win = popup; win->popup.active = 0; win->popup.type = NK_PANEL_POPUP; } /* make sure we have correct popup */ if (win->popup.name != title_hash) { if (!win->popup.active) { nk_zero(popup, sizeof(*popup)); win->popup.name = title_hash; win->popup.active = 1; win->popup.type = NK_PANEL_POPUP; } else return 0; } /* popup position is local to window */ ctx->current = popup; rect.x += win->layout->clip.x; rect.y += win->layout->clip.y; /* setup popup data */ popup->parent = win; popup->bounds = rect; popup->seq = ctx->seq; popup->layout = (struct nk_panel*)nk_create_panel(ctx); popup->flags = flags; popup->flags |= NK_WINDOW_BORDER; if (type == NK_POPUP_DYNAMIC) popup->flags |= NK_WINDOW_DYNAMIC; popup->buffer = win->buffer; nk_start_popup(ctx, win); allocated = ctx->memory.allocated; nk_push_scissor(&popup->buffer, nk_null_rect); if (nk_panel_begin(ctx, title, NK_PANEL_POPUP)) { /* popup is running therefore invalidate parent panels */ struct nk_panel *root; root = win->layout; while (root) { root->flags |= NK_WINDOW_ROM; root->flags &= ~(nk_flags)NK_WINDOW_REMOVE_ROM; root = root->parent; } win->popup.active = 1; popup->layout->offset_x = &popup->scrollbar.x; popup->layout->offset_y = &popup->scrollbar.y; popup->layout->parent = win->layout; return 1; } else { /* popup was closed/is invalid so cleanup */ struct nk_panel *root; root = win->layout; while (root) { root->flags |= NK_WINDOW_REMOVE_ROM; root = root->parent; } win->popup.buf.active = 0; win->popup.active = 0; ctx->memory.allocated = allocated; ctx->current = win; nk_free_panel(ctx, popup->layout); popup->layout = 0; return 0; } } NK_LIB nk_bool nk_nonblock_begin(struct nk_context *ctx, nk_flags flags, struct nk_rect body, struct nk_rect header, enum nk_panel_type panel_type) { struct nk_window *popup; struct nk_window *win; struct nk_panel *panel; int is_active = nk_true; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; /* popups cannot have popups */ win = ctx->current; panel = win->layout; NK_ASSERT(!(panel->type & NK_PANEL_SET_POPUP)); (void)panel; popup = win->popup.win; if (!popup) { /* create window for nonblocking popup */ popup = (struct nk_window*)nk_create_window(ctx); popup->parent = win; win->popup.win = popup; win->popup.type = panel_type; nk_command_buffer_init(&popup->buffer, &ctx->memory, NK_CLIPPING_ON); } else { /* close the popup if user pressed outside or in the header */ int pressed, in_body, in_header; #ifdef NK_BUTTON_TRIGGER_ON_RELEASE pressed = nk_input_is_mouse_released(&ctx->input, NK_BUTTON_LEFT); #else pressed = nk_input_is_mouse_pressed(&ctx->input, NK_BUTTON_LEFT); #endif in_body = nk_input_is_mouse_hovering_rect(&ctx->input, body); in_header = nk_input_is_mouse_hovering_rect(&ctx->input, header); if (pressed && (!in_body || in_header)) is_active = nk_false; } win->popup.header = header; if (!is_active) { /* remove read only mode from all parent panels */ struct nk_panel *root = win->layout; while (root) { root->flags |= NK_WINDOW_REMOVE_ROM; root = root->parent; } return is_active; } popup->bounds = body; popup->parent = win; popup->layout = (struct nk_panel*)nk_create_panel(ctx); popup->flags = flags; popup->flags |= NK_WINDOW_BORDER; popup->flags |= NK_WINDOW_DYNAMIC; popup->seq = ctx->seq; win->popup.active = 1; NK_ASSERT(popup->layout); nk_start_popup(ctx, win); popup->buffer = win->buffer; nk_push_scissor(&popup->buffer, nk_null_rect); ctx->current = popup; nk_panel_begin(ctx, 0, panel_type); win->buffer = popup->buffer; popup->layout->parent = win->layout; popup->layout->offset_x = &popup->scrollbar.x; popup->layout->offset_y = &popup->scrollbar.y; /* set read only mode to all parent panels */ {struct nk_panel *root; root = win->layout; while (root) { root->flags |= NK_WINDOW_ROM; root = root->parent; }} return is_active; } NK_API void nk_popup_close(struct nk_context *ctx) { struct nk_window *popup; NK_ASSERT(ctx); if (!ctx || !ctx->current) return; popup = ctx->current; NK_ASSERT(popup->parent); NK_ASSERT(popup->layout->type & NK_PANEL_SET_POPUP); popup->flags |= NK_WINDOW_HIDDEN; } NK_API void nk_popup_end(struct nk_context *ctx) { struct nk_window *win; struct nk_window *popup; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; popup = ctx->current; if (!popup->parent) return; win = popup->parent; if (popup->flags & NK_WINDOW_HIDDEN) { struct nk_panel *root; root = win->layout; while (root) { root->flags |= NK_WINDOW_REMOVE_ROM; root = root->parent; } win->popup.active = 0; } nk_push_scissor(&popup->buffer, nk_null_rect); nk_end(ctx); win->buffer = popup->buffer; nk_finish_popup(ctx, win); ctx->current = win; nk_push_scissor(&win->buffer, win->layout->clip); } NK_API void nk_popup_get_scroll(struct nk_context *ctx, nk_uint *offset_x, nk_uint *offset_y) { struct nk_window *popup; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; popup = ctx->current; if (offset_x) *offset_x = popup->scrollbar.x; if (offset_y) *offset_y = popup->scrollbar.y; } NK_API void nk_popup_set_scroll(struct nk_context *ctx, nk_uint offset_x, nk_uint offset_y) { struct nk_window *popup; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; popup = ctx->current; popup->scrollbar.x = offset_x; popup->scrollbar.y = offset_y; } /* ============================================================== * * CONTEXTUAL * * ===============================================================*/ NK_API nk_bool nk_contextual_begin(struct nk_context *ctx, nk_flags flags, struct nk_vec2 size, struct nk_rect trigger_bounds) { struct nk_window *win; struct nk_window *popup; struct nk_rect body; NK_STORAGE const struct nk_rect null_rect = {-1,-1,0,0}; int is_clicked = 0; int is_open = 0; int ret = 0; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; ++win->popup.con_count; if (ctx->current != ctx->active) return 0; /* check if currently active contextual is active */ popup = win->popup.win; is_open = (popup && win->popup.type == NK_PANEL_CONTEXTUAL); is_clicked = nk_input_mouse_clicked(&ctx->input, NK_BUTTON_RIGHT, trigger_bounds); if (win->popup.active_con && win->popup.con_count != win->popup.active_con) return 0; if (!is_open && win->popup.active_con) win->popup.active_con = 0; if ((!is_open && !is_clicked)) return 0; /* calculate contextual position on click */ win->popup.active_con = win->popup.con_count; if (is_clicked) { body.x = ctx->input.mouse.pos.x; body.y = ctx->input.mouse.pos.y; } else { body.x = popup->bounds.x; body.y = popup->bounds.y; } body.w = size.x; body.h = size.y; /* start nonblocking contextual popup */ ret = nk_nonblock_begin(ctx, flags|NK_WINDOW_NO_SCROLLBAR, body, null_rect, NK_PANEL_CONTEXTUAL); if (ret) win->popup.type = NK_PANEL_CONTEXTUAL; else { win->popup.active_con = 0; win->popup.type = NK_PANEL_NONE; if (win->popup.win) win->popup.win->flags = 0; } return ret; } NK_API nk_bool nk_contextual_item_text(struct nk_context *ctx, const char *text, int len, nk_flags alignment) { struct nk_window *win; const struct nk_input *in; const struct nk_style *style; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; state = nk_widget_fitting(&bounds, ctx, style->contextual_button.padding); if (!state) return nk_false; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_text(&ctx->last_widget_state, &win->buffer, bounds, text, len, alignment, NK_BUTTON_DEFAULT, &style->contextual_button, in, style->font)) { nk_contextual_close(ctx); return nk_true; } return nk_false; } NK_API nk_bool nk_contextual_item_label(struct nk_context *ctx, const char *label, nk_flags align) { return nk_contextual_item_text(ctx, label, nk_strlen(label), align); } NK_API nk_bool nk_contextual_item_image_text(struct nk_context *ctx, struct nk_image img, const char *text, int len, nk_flags align) { struct nk_window *win; const struct nk_input *in; const struct nk_style *style; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; state = nk_widget_fitting(&bounds, ctx, style->contextual_button.padding); if (!state) return nk_false; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_text_image(&ctx->last_widget_state, &win->buffer, bounds, img, text, len, align, NK_BUTTON_DEFAULT, &style->contextual_button, style->font, in)){ nk_contextual_close(ctx); return nk_true; } return nk_false; } NK_API nk_bool nk_contextual_item_image_label(struct nk_context *ctx, struct nk_image img, const char *label, nk_flags align) { return nk_contextual_item_image_text(ctx, img, label, nk_strlen(label), align); } NK_API nk_bool nk_contextual_item_symbol_text(struct nk_context *ctx, enum nk_symbol_type symbol, const char *text, int len, nk_flags align) { struct nk_window *win; const struct nk_input *in; const struct nk_style *style; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; state = nk_widget_fitting(&bounds, ctx, style->contextual_button.padding); if (!state) return nk_false; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_text_symbol(&ctx->last_widget_state, &win->buffer, bounds, symbol, text, len, align, NK_BUTTON_DEFAULT, &style->contextual_button, style->font, in)) { nk_contextual_close(ctx); return nk_true; } return nk_false; } NK_API nk_bool nk_contextual_item_symbol_label(struct nk_context *ctx, enum nk_symbol_type symbol, const char *text, nk_flags align) { return nk_contextual_item_symbol_text(ctx, symbol, text, nk_strlen(text), align); } NK_API void nk_contextual_close(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; nk_popup_close(ctx); } NK_API void nk_contextual_end(struct nk_context *ctx) { struct nk_window *popup; struct nk_panel *panel; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; popup = ctx->current; panel = popup->layout; NK_ASSERT(popup->parent); NK_ASSERT(panel->type & NK_PANEL_SET_POPUP); if (panel->flags & NK_WINDOW_DYNAMIC) { /* Close behavior This is a bit of a hack solution since we do not know before we end our popup how big it will be. We therefore do not directly know when a click outside the non-blocking popup must close it at that direct frame. Instead it will be closed in the next frame.*/ struct nk_rect body = {0,0,0,0}; if (panel->at_y < (panel->bounds.y + panel->bounds.h)) { struct nk_vec2 padding = nk_panel_get_padding(&ctx->style, panel->type); body = panel->bounds; body.y = (panel->at_y + panel->footer_height + panel->border + padding.y + panel->row.height); body.h = (panel->bounds.y + panel->bounds.h) - body.y; } {int pressed = nk_input_is_mouse_pressed(&ctx->input, NK_BUTTON_LEFT); int in_body = nk_input_is_mouse_hovering_rect(&ctx->input, body); if (pressed && in_body) popup->flags |= NK_WINDOW_HIDDEN; } } if (popup->flags & NK_WINDOW_HIDDEN) popup->seq = 0; nk_popup_end(ctx); return; } /* =============================================================== * * MENU * * ===============================================================*/ NK_API void nk_menubar_begin(struct nk_context *ctx) { struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; layout = ctx->current->layout; NK_ASSERT(layout->at_y == layout->bounds.y); /* if this assert triggers you allocated space between nk_begin and nk_menubar_begin. If you want a menubar the first nuklear function after `nk_begin` has to be a `nk_menubar_begin` call. Inside the menubar you then have to allocate space for widgets (also supports multiple rows). Example: if (nk_begin(...)) { nk_menubar_begin(...); nk_layout_xxxx(...); nk_button(...); nk_layout_xxxx(...); nk_button(...); nk_menubar_end(...); } nk_end(...); */ if (layout->flags & NK_WINDOW_HIDDEN || layout->flags & NK_WINDOW_MINIMIZED) return; layout->menu.x = layout->at_x; layout->menu.y = layout->at_y + layout->row.height; layout->menu.w = layout->bounds.w; layout->menu.offset.x = *layout->offset_x; layout->menu.offset.y = *layout->offset_y; *layout->offset_y = 0; } NK_API void nk_menubar_end(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; struct nk_command_buffer *out; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; out = &win->buffer; layout = win->layout; if (layout->flags & NK_WINDOW_HIDDEN || layout->flags & NK_WINDOW_MINIMIZED) return; layout->menu.h = layout->at_y - layout->menu.y; layout->menu.h += layout->row.height + ctx->style.window.spacing.y; layout->bounds.y += layout->menu.h; layout->bounds.h -= layout->menu.h; *layout->offset_x = layout->menu.offset.x; *layout->offset_y = layout->menu.offset.y; layout->at_y = layout->bounds.y - layout->row.height; layout->clip.y = layout->bounds.y; layout->clip.h = layout->bounds.h; nk_push_scissor(out, layout->clip); } NK_INTERN int nk_menu_begin(struct nk_context *ctx, struct nk_window *win, const char *id, int is_clicked, struct nk_rect header, struct nk_vec2 size) { int is_open = 0; int is_active = 0; struct nk_rect body; struct nk_window *popup; nk_hash hash = nk_murmur_hash(id, (int)nk_strlen(id), NK_PANEL_MENU); NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; body.x = header.x; body.w = size.x; body.y = header.y + header.h; body.h = size.y; popup = win->popup.win; is_open = popup ? nk_true : nk_false; is_active = (popup && (win->popup.name == hash) && win->popup.type == NK_PANEL_MENU); if ((is_clicked && is_open && !is_active) || (is_open && !is_active) || (!is_open && !is_active && !is_clicked)) return 0; if (!nk_nonblock_begin(ctx, NK_WINDOW_NO_SCROLLBAR, body, header, NK_PANEL_MENU)) return 0; win->popup.type = NK_PANEL_MENU; win->popup.name = hash; return 1; } NK_API nk_bool nk_menu_begin_text(struct nk_context *ctx, const char *title, int len, nk_flags align, struct nk_vec2 size) { struct nk_window *win; const struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; nk_flags state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; state = nk_widget(&header, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || win->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_text(&ctx->last_widget_state, &win->buffer, header, title, len, align, NK_BUTTON_DEFAULT, &ctx->style.menu_button, in, ctx->style.font)) is_clicked = nk_true; return nk_menu_begin(ctx, win, title, is_clicked, header, size); } NK_API nk_bool nk_menu_begin_label(struct nk_context *ctx, const char *text, nk_flags align, struct nk_vec2 size) { return nk_menu_begin_text(ctx, text, nk_strlen(text), align, size); } NK_API nk_bool nk_menu_begin_image(struct nk_context *ctx, const char *id, struct nk_image img, struct nk_vec2 size) { struct nk_window *win; struct nk_rect header; const struct nk_input *in; int is_clicked = nk_false; nk_flags state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; state = nk_widget(&header, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_image(&ctx->last_widget_state, &win->buffer, header, img, NK_BUTTON_DEFAULT, &ctx->style.menu_button, in)) is_clicked = nk_true; return nk_menu_begin(ctx, win, id, is_clicked, header, size); } NK_API nk_bool nk_menu_begin_symbol(struct nk_context *ctx, const char *id, enum nk_symbol_type sym, struct nk_vec2 size) { struct nk_window *win; const struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; nk_flags state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; state = nk_widget(&header, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_symbol(&ctx->last_widget_state, &win->buffer, header, sym, NK_BUTTON_DEFAULT, &ctx->style.menu_button, in, ctx->style.font)) is_clicked = nk_true; return nk_menu_begin(ctx, win, id, is_clicked, header, size); } NK_API nk_bool nk_menu_begin_image_text(struct nk_context *ctx, const char *title, int len, nk_flags align, struct nk_image img, struct nk_vec2 size) { struct nk_window *win; struct nk_rect header; const struct nk_input *in; int is_clicked = nk_false; nk_flags state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; state = nk_widget(&header, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_text_image(&ctx->last_widget_state, &win->buffer, header, img, title, len, align, NK_BUTTON_DEFAULT, &ctx->style.menu_button, ctx->style.font, in)) is_clicked = nk_true; return nk_menu_begin(ctx, win, title, is_clicked, header, size); } NK_API nk_bool nk_menu_begin_image_label(struct nk_context *ctx, const char *title, nk_flags align, struct nk_image img, struct nk_vec2 size) { return nk_menu_begin_image_text(ctx, title, nk_strlen(title), align, img, size); } NK_API nk_bool nk_menu_begin_symbol_text(struct nk_context *ctx, const char *title, int len, nk_flags align, enum nk_symbol_type sym, struct nk_vec2 size) { struct nk_window *win; struct nk_rect header; const struct nk_input *in; int is_clicked = nk_false; nk_flags state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; state = nk_widget(&header, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; if (nk_do_button_text_symbol(&ctx->last_widget_state, &win->buffer, header, sym, title, len, align, NK_BUTTON_DEFAULT, &ctx->style.menu_button, ctx->style.font, in)) is_clicked = nk_true; return nk_menu_begin(ctx, win, title, is_clicked, header, size); } NK_API nk_bool nk_menu_begin_symbol_label(struct nk_context *ctx, const char *title, nk_flags align, enum nk_symbol_type sym, struct nk_vec2 size ) { return nk_menu_begin_symbol_text(ctx, title, nk_strlen(title), align,sym,size); } NK_API nk_bool nk_menu_item_text(struct nk_context *ctx, const char *title, int len, nk_flags align) { return nk_contextual_item_text(ctx, title, len, align); } NK_API nk_bool nk_menu_item_label(struct nk_context *ctx, const char *label, nk_flags align) { return nk_contextual_item_label(ctx, label, align); } NK_API nk_bool nk_menu_item_image_label(struct nk_context *ctx, struct nk_image img, const char *label, nk_flags align) { return nk_contextual_item_image_label(ctx, img, label, align); } NK_API nk_bool nk_menu_item_image_text(struct nk_context *ctx, struct nk_image img, const char *text, int len, nk_flags align) { return nk_contextual_item_image_text(ctx, img, text, len, align); } NK_API nk_bool nk_menu_item_symbol_text(struct nk_context *ctx, enum nk_symbol_type sym, const char *text, int len, nk_flags align) { return nk_contextual_item_symbol_text(ctx, sym, text, len, align); } NK_API nk_bool nk_menu_item_symbol_label(struct nk_context *ctx, enum nk_symbol_type sym, const char *label, nk_flags align) { return nk_contextual_item_symbol_label(ctx, sym, label, align); } NK_API void nk_menu_close(struct nk_context *ctx) { nk_contextual_close(ctx); } NK_API void nk_menu_end(struct nk_context *ctx) { nk_contextual_end(ctx); } /* =============================================================== * * LAYOUT * * ===============================================================*/ NK_API void nk_layout_set_min_row_height(struct nk_context *ctx, float height) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; layout->row.min_height = height; } NK_API void nk_layout_reset_min_row_height(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; layout->row.min_height = ctx->style.font->height; layout->row.min_height += ctx->style.text.padding.y*2; layout->row.min_height += ctx->style.window.min_row_height_padding*2; } NK_LIB float nk_layout_row_calculate_usable_space(const struct nk_style *style, enum nk_panel_type type, float total_space, int columns) { float panel_spacing; float panel_space; struct nk_vec2 spacing; NK_UNUSED(type); spacing = style->window.spacing; /* calculate the usable panel space */ panel_spacing = (float)NK_MAX(columns - 1, 0) * spacing.x; panel_space = total_space - panel_spacing; return panel_space; } NK_LIB void nk_panel_layout(const struct nk_context *ctx, struct nk_window *win, float height, int cols) { struct nk_panel *layout; const struct nk_style *style; struct nk_command_buffer *out; struct nk_vec2 item_spacing; struct nk_color color; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; /* prefetch some configuration data */ layout = win->layout; style = &ctx->style; out = &win->buffer; color = style->window.background; item_spacing = style->window.spacing; /* if one of these triggers you forgot to add an `if` condition around either a window, group, popup, combobox or contextual menu `begin` and `end` block. Example: if (nk_begin(...) {...} nk_end(...); or if (nk_group_begin(...) { nk_group_end(...);} */ NK_ASSERT(!(layout->flags & NK_WINDOW_MINIMIZED)); NK_ASSERT(!(layout->flags & NK_WINDOW_HIDDEN)); NK_ASSERT(!(layout->flags & NK_WINDOW_CLOSED)); /* update the current row and set the current row layout */ layout->row.index = 0; layout->at_y += layout->row.height; layout->row.columns = cols; if (height == 0.0f) layout->row.height = NK_MAX(height, layout->row.min_height) + item_spacing.y; else layout->row.height = height + item_spacing.y; layout->row.item_offset = 0; if (layout->flags & NK_WINDOW_DYNAMIC) { /* draw background for dynamic panels */ struct nk_rect background; background.x = win->bounds.x; background.w = win->bounds.w; background.y = layout->at_y - 1.0f; background.h = layout->row.height + 1.0f; nk_fill_rect(out, background, 0, color); } } NK_LIB void nk_row_layout(struct nk_context *ctx, enum nk_layout_format fmt, float height, int cols, int width) { /* update the current row and set the current row layout */ struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; nk_panel_layout(ctx, win, height, cols); if (fmt == NK_DYNAMIC) win->layout->row.type = NK_LAYOUT_DYNAMIC_FIXED; else win->layout->row.type = NK_LAYOUT_STATIC_FIXED; win->layout->row.ratio = 0; win->layout->row.filled = 0; win->layout->row.item_offset = 0; win->layout->row.item_width = (float)width; } NK_API float nk_layout_ratio_from_pixel(struct nk_context *ctx, float pixel_width) { struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(pixel_width); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; return NK_CLAMP(0.0f, pixel_width/win->bounds.x, 1.0f); } NK_API void nk_layout_row_dynamic(struct nk_context *ctx, float height, int cols) { nk_row_layout(ctx, NK_DYNAMIC, height, cols, 0); } NK_API void nk_layout_row_static(struct nk_context *ctx, float height, int item_width, int cols) { nk_row_layout(ctx, NK_STATIC, height, cols, item_width); } NK_API void nk_layout_row_begin(struct nk_context *ctx, enum nk_layout_format fmt, float row_height, int cols) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; nk_panel_layout(ctx, win, row_height, cols); if (fmt == NK_DYNAMIC) layout->row.type = NK_LAYOUT_DYNAMIC_ROW; else layout->row.type = NK_LAYOUT_STATIC_ROW; layout->row.ratio = 0; layout->row.filled = 0; layout->row.item_width = 0; layout->row.item_offset = 0; layout->row.columns = cols; } NK_API void nk_layout_row_push(struct nk_context *ctx, float ratio_or_width) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; NK_ASSERT(layout->row.type == NK_LAYOUT_STATIC_ROW || layout->row.type == NK_LAYOUT_DYNAMIC_ROW); if (layout->row.type != NK_LAYOUT_STATIC_ROW && layout->row.type != NK_LAYOUT_DYNAMIC_ROW) return; if (layout->row.type == NK_LAYOUT_DYNAMIC_ROW) { float ratio = ratio_or_width; if ((ratio + layout->row.filled) > 1.0f) return; if (ratio > 0.0f) layout->row.item_width = NK_SATURATE(ratio); else layout->row.item_width = 1.0f - layout->row.filled; } else layout->row.item_width = ratio_or_width; } NK_API void nk_layout_row_end(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; NK_ASSERT(layout->row.type == NK_LAYOUT_STATIC_ROW || layout->row.type == NK_LAYOUT_DYNAMIC_ROW); if (layout->row.type != NK_LAYOUT_STATIC_ROW && layout->row.type != NK_LAYOUT_DYNAMIC_ROW) return; layout->row.item_width = 0; layout->row.item_offset = 0; } NK_API void nk_layout_row(struct nk_context *ctx, enum nk_layout_format fmt, float height, int cols, const float *ratio) { int i; int n_undef = 0; struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; nk_panel_layout(ctx, win, height, cols); if (fmt == NK_DYNAMIC) { /* calculate width of undefined widget ratios */ float r = 0; layout->row.ratio = ratio; for (i = 0; i < cols; ++i) { if (ratio[i] < 0.0f) n_undef++; else r += ratio[i]; } r = NK_SATURATE(1.0f - r); layout->row.type = NK_LAYOUT_DYNAMIC; layout->row.item_width = (r > 0 && n_undef > 0) ? (r / (float)n_undef):0; } else { layout->row.ratio = ratio; layout->row.type = NK_LAYOUT_STATIC; layout->row.item_width = 0; layout->row.item_offset = 0; } layout->row.item_offset = 0; layout->row.filled = 0; } NK_API void nk_layout_row_template_begin(struct nk_context *ctx, float height) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; nk_panel_layout(ctx, win, height, 1); layout->row.type = NK_LAYOUT_TEMPLATE; layout->row.columns = 0; layout->row.ratio = 0; layout->row.item_width = 0; layout->row.item_height = 0; layout->row.item_offset = 0; layout->row.filled = 0; layout->row.item.x = 0; layout->row.item.y = 0; layout->row.item.w = 0; layout->row.item.h = 0; } NK_API void nk_layout_row_template_push_dynamic(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; NK_ASSERT(layout->row.type == NK_LAYOUT_TEMPLATE); NK_ASSERT(layout->row.columns < NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS); if (layout->row.type != NK_LAYOUT_TEMPLATE) return; if (layout->row.columns >= NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS) return; layout->row.templates[layout->row.columns++] = -1.0f; } NK_API void nk_layout_row_template_push_variable(struct nk_context *ctx, float min_width) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; NK_ASSERT(layout->row.type == NK_LAYOUT_TEMPLATE); NK_ASSERT(layout->row.columns < NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS); if (layout->row.type != NK_LAYOUT_TEMPLATE) return; if (layout->row.columns >= NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS) return; layout->row.templates[layout->row.columns++] = -min_width; } NK_API void nk_layout_row_template_push_static(struct nk_context *ctx, float width) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; NK_ASSERT(layout->row.type == NK_LAYOUT_TEMPLATE); NK_ASSERT(layout->row.columns < NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS); if (layout->row.type != NK_LAYOUT_TEMPLATE) return; if (layout->row.columns >= NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS) return; layout->row.templates[layout->row.columns++] = width; } NK_API void nk_layout_row_template_end(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; int i = 0; int variable_count = 0; int min_variable_count = 0; float min_fixed_width = 0.0f; float total_fixed_width = 0.0f; float max_variable_width = 0.0f; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; NK_ASSERT(layout->row.type == NK_LAYOUT_TEMPLATE); if (layout->row.type != NK_LAYOUT_TEMPLATE) return; for (i = 0; i < layout->row.columns; ++i) { float width = layout->row.templates[i]; if (width >= 0.0f) { total_fixed_width += width; min_fixed_width += width; } else if (width < -1.0f) { width = -width; total_fixed_width += width; max_variable_width = NK_MAX(max_variable_width, width); variable_count++; } else { min_variable_count++; variable_count++; } } if (variable_count) { float space = nk_layout_row_calculate_usable_space(&ctx->style, layout->type, layout->bounds.w, layout->row.columns); float var_width = (NK_MAX(space-min_fixed_width,0.0f)) / (float)variable_count; int enough_space = var_width >= max_variable_width; if (!enough_space) var_width = (NK_MAX(space-total_fixed_width,0)) / (float)min_variable_count; for (i = 0; i < layout->row.columns; ++i) { float *width = &layout->row.templates[i]; *width = (*width >= 0.0f)? *width: (*width < -1.0f && !enough_space)? -(*width): var_width; } } } NK_API void nk_layout_space_begin(struct nk_context *ctx, enum nk_layout_format fmt, float height, int widget_count) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; nk_panel_layout(ctx, win, height, widget_count); if (fmt == NK_STATIC) layout->row.type = NK_LAYOUT_STATIC_FREE; else layout->row.type = NK_LAYOUT_DYNAMIC_FREE; layout->row.ratio = 0; layout->row.filled = 0; layout->row.item_width = 0; layout->row.item_offset = 0; } NK_API void nk_layout_space_end(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; layout->row.item_width = 0; layout->row.item_height = 0; layout->row.item_offset = 0; nk_zero(&layout->row.item, sizeof(layout->row.item)); } NK_API void nk_layout_space_push(struct nk_context *ctx, struct nk_rect rect) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; layout->row.item = rect; } NK_API struct nk_rect nk_layout_space_bounds(struct nk_context *ctx) { struct nk_rect ret; struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); win = ctx->current; layout = win->layout; ret.x = layout->clip.x; ret.y = layout->clip.y; ret.w = layout->clip.w; ret.h = layout->row.height; return ret; } NK_API struct nk_rect nk_layout_widget_bounds(struct nk_context *ctx) { struct nk_rect ret; struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); win = ctx->current; layout = win->layout; ret.x = layout->at_x; ret.y = layout->at_y; ret.w = layout->bounds.w - NK_MAX(layout->at_x - layout->bounds.x,0); ret.h = layout->row.height; return ret; } NK_API struct nk_vec2 nk_layout_space_to_screen(struct nk_context *ctx, struct nk_vec2 ret) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); win = ctx->current; layout = win->layout; ret.x += layout->at_x - (float)*layout->offset_x; ret.y += layout->at_y - (float)*layout->offset_y; return ret; } NK_API struct nk_vec2 nk_layout_space_to_local(struct nk_context *ctx, struct nk_vec2 ret) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); win = ctx->current; layout = win->layout; ret.x += -layout->at_x + (float)*layout->offset_x; ret.y += -layout->at_y + (float)*layout->offset_y; return ret; } NK_API struct nk_rect nk_layout_space_rect_to_screen(struct nk_context *ctx, struct nk_rect ret) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); win = ctx->current; layout = win->layout; ret.x += layout->at_x - (float)*layout->offset_x; ret.y += layout->at_y - (float)*layout->offset_y; return ret; } NK_API struct nk_rect nk_layout_space_rect_to_local(struct nk_context *ctx, struct nk_rect ret) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); win = ctx->current; layout = win->layout; ret.x += -layout->at_x + (float)*layout->offset_x; ret.y += -layout->at_y + (float)*layout->offset_y; return ret; } NK_LIB void nk_panel_alloc_row(const struct nk_context *ctx, struct nk_window *win) { struct nk_panel *layout = win->layout; struct nk_vec2 spacing = ctx->style.window.spacing; const float row_height = layout->row.height - spacing.y; nk_panel_layout(ctx, win, row_height, layout->row.columns); } NK_LIB void nk_layout_widget_space(struct nk_rect *bounds, const struct nk_context *ctx, struct nk_window *win, int modify) { struct nk_panel *layout; const struct nk_style *style; struct nk_vec2 spacing; float item_offset = 0; float item_width = 0; float item_spacing = 0; float panel_space = 0; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; style = &ctx->style; NK_ASSERT(bounds); spacing = style->window.spacing; panel_space = nk_layout_row_calculate_usable_space(&ctx->style, layout->type, layout->bounds.w, layout->row.columns); #define NK_FRAC(x) (x - (float)(int)x) /* will be used to remove fookin gaps */ /* calculate the width of one item inside the current layout space */ switch (layout->row.type) { case NK_LAYOUT_DYNAMIC_FIXED: { /* scaling fixed size widgets item width */ float w = NK_MAX(1.0f,panel_space) / (float)layout->row.columns; item_offset = (float)layout->row.index * w; item_width = w + NK_FRAC(item_offset); item_spacing = (float)layout->row.index * spacing.x; } break; case NK_LAYOUT_DYNAMIC_ROW: { /* scaling single ratio widget width */ float w = layout->row.item_width * panel_space; item_offset = layout->row.item_offset; item_width = w + NK_FRAC(item_offset); item_spacing = 0; if (modify) { layout->row.item_offset += w + spacing.x; layout->row.filled += layout->row.item_width; layout->row.index = 0; } } break; case NK_LAYOUT_DYNAMIC_FREE: { /* panel width depended free widget placing */ bounds->x = layout->at_x + (layout->bounds.w * layout->row.item.x); bounds->x -= (float)*layout->offset_x; bounds->y = layout->at_y + (layout->row.height * layout->row.item.y); bounds->y -= (float)*layout->offset_y; bounds->w = layout->bounds.w * layout->row.item.w + NK_FRAC(bounds->x); bounds->h = layout->row.height * layout->row.item.h + NK_FRAC(bounds->y); return; } case NK_LAYOUT_DYNAMIC: { /* scaling arrays of panel width ratios for every widget */ float ratio, w; NK_ASSERT(layout->row.ratio); ratio = (layout->row.ratio[layout->row.index] < 0) ? layout->row.item_width : layout->row.ratio[layout->row.index]; w = (ratio * panel_space); item_spacing = (float)layout->row.index * spacing.x; item_offset = layout->row.item_offset; item_width = w + NK_FRAC(item_offset); if (modify) { layout->row.item_offset += w; layout->row.filled += ratio; } } break; case NK_LAYOUT_STATIC_FIXED: { /* non-scaling fixed widgets item width */ item_width = layout->row.item_width; item_offset = (float)layout->row.index * item_width; item_spacing = (float)layout->row.index * spacing.x; } break; case NK_LAYOUT_STATIC_ROW: { /* scaling single ratio widget width */ item_width = layout->row.item_width; item_offset = layout->row.item_offset; item_spacing = (float)layout->row.index * spacing.x; if (modify) layout->row.item_offset += item_width; } break; case NK_LAYOUT_STATIC_FREE: { /* free widget placing */ bounds->x = layout->at_x + layout->row.item.x; bounds->w = layout->row.item.w; if (((bounds->x + bounds->w) > layout->max_x) && modify) layout->max_x = (bounds->x + bounds->w); bounds->x -= (float)*layout->offset_x; bounds->y = layout->at_y + layout->row.item.y; bounds->y -= (float)*layout->offset_y; bounds->h = layout->row.item.h; return; } case NK_LAYOUT_STATIC: { /* non-scaling array of panel pixel width for every widget */ item_spacing = (float)layout->row.index * spacing.x; item_width = layout->row.ratio[layout->row.index]; item_offset = layout->row.item_offset; if (modify) layout->row.item_offset += item_width; } break; case NK_LAYOUT_TEMPLATE: { /* stretchy row layout with combined dynamic/static widget width*/ float w; NK_ASSERT(layout->row.index < layout->row.columns); NK_ASSERT(layout->row.index < NK_MAX_LAYOUT_ROW_TEMPLATE_COLUMNS); w = layout->row.templates[layout->row.index]; item_offset = layout->row.item_offset; item_width = w + NK_FRAC(item_offset); item_spacing = (float)layout->row.index * spacing.x; if (modify) layout->row.item_offset += w; } break; #undef NK_FRAC default: NK_ASSERT(0); break; }; /* set the bounds of the newly allocated widget */ bounds->w = item_width; bounds->h = layout->row.height - spacing.y; bounds->y = layout->at_y - (float)*layout->offset_y; bounds->x = layout->at_x + item_offset + item_spacing; if (((bounds->x + bounds->w) > layout->max_x) && modify) layout->max_x = bounds->x + bounds->w; bounds->x -= (float)*layout->offset_x; } NK_LIB void nk_panel_alloc_space(struct nk_rect *bounds, const struct nk_context *ctx) { struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; /* check if the end of the row has been hit and begin new row if so */ win = ctx->current; layout = win->layout; if (layout->row.index >= layout->row.columns) nk_panel_alloc_row(ctx, win); /* calculate widget position and size */ nk_layout_widget_space(bounds, ctx, win, nk_true); layout->row.index++; } NK_LIB void nk_layout_peek(struct nk_rect *bounds, struct nk_context *ctx) { float y; int index; struct nk_window *win; struct nk_panel *layout; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) { *bounds = nk_rect(0,0,0,0); return; } win = ctx->current; layout = win->layout; y = layout->at_y; index = layout->row.index; if (layout->row.index >= layout->row.columns) { layout->at_y += layout->row.height; layout->row.index = 0; } nk_layout_widget_space(bounds, ctx, win, nk_false); if (!layout->row.index) { bounds->x -= layout->row.item_offset; } layout->at_y = y; layout->row.index = index; } NK_API void nk_spacer(struct nk_context *ctx ) { struct nk_rect dummy_rect = { 0, 0, 0, 0 }; nk_panel_alloc_space( &dummy_rect, ctx ); } /* =============================================================== * * TREE * * ===============================================================*/ NK_INTERN int nk_tree_state_base(struct nk_context *ctx, enum nk_tree_type type, struct nk_image *img, const char *title, enum nk_collapse_states *state) { struct nk_window *win; struct nk_panel *layout; const struct nk_style *style; struct nk_command_buffer *out; const struct nk_input *in; const struct nk_style_button *button; enum nk_symbol_type symbol; float row_height; struct nk_vec2 item_spacing; struct nk_rect header = {0,0,0,0}; struct nk_rect sym = {0,0,0,0}; struct nk_text text; nk_flags ws = 0; enum nk_widget_layout_states widget_state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; /* cache some data */ win = ctx->current; layout = win->layout; out = &win->buffer; style = &ctx->style; item_spacing = style->window.spacing; /* calculate header bounds and draw background */ row_height = style->font->height + 2 * style->tab.padding.y; nk_layout_set_min_row_height(ctx, row_height); nk_layout_row_dynamic(ctx, row_height, 1); nk_layout_reset_min_row_height(ctx); widget_state = nk_widget(&header, ctx); if (type == NK_TREE_TAB) { const struct nk_style_item *background = &style->tab.background; switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, header, 0, style->tab.border_color); nk_fill_rect(out, nk_shrink_rect(header, style->tab.border), style->tab.rounding, background->data.color); break; } } else text.background = style->window.background; /* update node state */ in = (!(layout->flags & NK_WINDOW_ROM)) ? &ctx->input: 0; in = (in && widget_state == NK_WIDGET_VALID) ? &ctx->input : 0; if (nk_button_behavior(&ws, header, in, NK_BUTTON_DEFAULT)) *state = (*state == NK_MAXIMIZED) ? NK_MINIMIZED : NK_MAXIMIZED; /* select correct button style */ if (*state == NK_MAXIMIZED) { symbol = style->tab.sym_maximize; if (type == NK_TREE_TAB) button = &style->tab.tab_maximize_button; else button = &style->tab.node_maximize_button; } else { symbol = style->tab.sym_minimize; if (type == NK_TREE_TAB) button = &style->tab.tab_minimize_button; else button = &style->tab.node_minimize_button; } {/* draw triangle button */ sym.w = sym.h = style->font->height; sym.y = header.y + style->tab.padding.y; sym.x = header.x + style->tab.padding.x; for( nk_byte *a = &((struct nk_style_button *)button)->normal.data.color.a; a && ((*a = 0), 1); a = 0) //< @r-lyeh A=0 nk_do_button_symbol(&ws, &win->buffer, sym, symbol, NK_BUTTON_DEFAULT, button, 0, style->font); if (img) { /* draw optional image icon */ sym.x = sym.x + sym.w + 4 * item_spacing.x; nk_draw_image(&win->buffer, sym, img, nk_white); sym.w = style->font->height + style->tab.spacing.x;} } {/* draw label */ struct nk_rect label; header.w = NK_MAX(header.w, sym.w + item_spacing.x); label.x = sym.x + sym.w + item_spacing.x; label.y = sym.y; label.w = header.w - (sym.w + item_spacing.y + style->tab.indent); label.h = style->font->height; text.text = style->tab.text; text.padding = nk_vec2(0,0); nk_widget_text(out, label, title, nk_strlen(title), &text, NK_TEXT_LEFT, style->font);} /* increase x-axis cursor widget position pointer */ if (*state == NK_MAXIMIZED) { layout->at_x = header.x + (float)*layout->offset_x + style->tab.indent; layout->bounds.w = NK_MAX(layout->bounds.w, style->tab.indent); layout->bounds.w -= (style->tab.indent + style->window.padding.x); layout->row.tree_depth++; return nk_true; } else return nk_false; } NK_INTERN int nk_tree_base(struct nk_context *ctx, enum nk_tree_type type, struct nk_image *img, const char *title, enum nk_collapse_states initial_state, const char *hash, int len, int line) { struct nk_window *win = ctx->current; int title_len = 0; nk_hash tree_hash = 0; nk_uint *state = 0; /* retrieve tree state from internal widget state tables */ if (!hash) { title_len = (int)nk_strlen(title); tree_hash = nk_murmur_hash(title, (int)title_len, (nk_hash)line); } else tree_hash = nk_murmur_hash(hash, len, (nk_hash)line); state = nk_find_value(win, tree_hash); if (!state) { state = nk_add_value(ctx, win, tree_hash, 0); *state = initial_state; } return nk_tree_state_base(ctx, type, img, title, (enum nk_collapse_states*)state); } #if 1 //< @r-lyeh NK_INTERN int nk_tree_state_base_(struct nk_context *ctx, enum nk_tree_type type, struct nk_image *img, const char *title, enum nk_collapse_states *state) { struct nk_window *win; struct nk_panel *layout; const struct nk_style *style; struct nk_command_buffer *out; const struct nk_input *in; const struct nk_style_button *button; enum nk_symbol_type symbol; float row_height; struct nk_vec2 item_spacing; struct nk_rect header = {0,0,0,0}; struct nk_rect sym = {0,0,0,0}; struct nk_text text; nk_flags ws = 0; enum nk_widget_layout_states widget_state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; /* cache some data */ win = ctx->current; layout = win->layout; out = &win->buffer; style = &ctx->style; item_spacing = style->window.spacing; /* calculate header bounds and draw background */ row_height = style->font->height + 2 * style->tab.padding.y; nk_layout_set_min_row_height(ctx, row_height); nk_layout_row_dynamic(ctx, row_height, 1); nk_layout_reset_min_row_height(ctx); widget_state = nk_widget(&header, ctx); if (type == NK_TREE_TAB) { const struct nk_style_item *background = &style->tab.background; switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, header, 0, style->tab.border_color); nk_fill_rect(out, nk_shrink_rect(header, style->tab.border), style->tab.rounding, background->data.color); break; } } else text.background = style->window.background; int clicked = 0; //< @r-lyeh /* update node state */ in = (!(layout->flags & NK_WINDOW_ROM)) ? &ctx->input: 0; in = (in && widget_state == NK_WIDGET_VALID) ? &ctx->input : 0; if (nk_button_behavior(&ws, header, in, NK_BUTTON_DEFAULT)) { clicked |= 2; if( !input(KEY_LCTRL) && !input(KEY_RCTRL) ) //< @r-lyeh *state = (*state == NK_MAXIMIZED) ? NK_MINIMIZED : NK_MAXIMIZED, clicked |= 4; } /* select correct button style */ if (*state == NK_MAXIMIZED) { symbol = style->tab.sym_maximize; if (type == NK_TREE_TAB) button = &style->tab.tab_maximize_button; else button = &style->tab.node_maximize_button; } else { symbol = style->tab.sym_minimize; if (type == NK_TREE_TAB) button = &style->tab.tab_minimize_button; else button = &style->tab.node_minimize_button; } {/* draw triangle button */ sym.w = sym.h = style->font->height; sym.y = header.y + style->tab.padding.y; sym.x = header.x + style->tab.padding.x; for( nk_byte *a = &((struct nk_style_button *)button)->normal.data.color.a; a && ((*a = 0), 1); a = 0) //< @r-lyeh A=0 nk_do_button_symbol(&ws, &win->buffer, sym, symbol, NK_BUTTON_DEFAULT, button, 0, style->font); if (img) { /* draw optional image icon */ sym.x = sym.x + sym.w + 4 * item_spacing.x; nk_draw_image(&win->buffer, sym, img, nk_white); sym.w = style->font->height + style->tab.spacing.x;} } {/* draw label */ struct nk_rect label; header.w = NK_MAX(header.w, sym.w + item_spacing.x); label.x = sym.x + sym.w + item_spacing.x; label.y = sym.y; label.w = header.w - (sym.w + item_spacing.y + style->tab.indent); label.h = style->font->height; text.text = style->tab.text; text.padding = nk_vec2(0,0); nk_widget_text(out, label, title, nk_strlen(title), &text, NK_TEXT_LEFT, style->font);} /* increase x-axis cursor widget position pointer */ if (*state == NK_MAXIMIZED) { layout->at_x = header.x + (float)*layout->offset_x + style->tab.indent; layout->bounds.w = NK_MAX(layout->bounds.w, style->tab.indent); layout->bounds.w -= (style->tab.indent + style->window.padding.x); layout->row.tree_depth++; return clicked | nk_true; } else return clicked; } NK_INTERN int nk_tree_base_(struct nk_context *ctx, enum nk_tree_type type, struct nk_image *img, const char *title, enum nk_collapse_states initial_state, const char *hash, int len, int line) { struct nk_window *win = ctx->current; int title_len = 0; nk_hash tree_hash = 0; nk_uint *state = 0; /* retrieve tree state from internal widget state tables */ if (!hash) { title_len = (int)nk_strlen(title); tree_hash = nk_murmur_hash(title, (int)title_len, (nk_hash)line); } else tree_hash = nk_murmur_hash(hash, len, (nk_hash)line); state = nk_find_value(win, tree_hash); if (!state) { state = nk_add_value(ctx, win, tree_hash, 0); *state = initial_state; } return nk_tree_state_base_(ctx, type, img, title, (enum nk_collapse_states*)state); } #endif NK_API nk_bool nk_tree_state_push(struct nk_context *ctx, enum nk_tree_type type, const char *title, enum nk_collapse_states *state) { return nk_tree_state_base(ctx, type, 0, title, state); } NK_API nk_bool nk_tree_state_image_push(struct nk_context *ctx, enum nk_tree_type type, struct nk_image img, const char *title, enum nk_collapse_states *state) { return nk_tree_state_base(ctx, type, &img, title, state); } NK_API void nk_tree_state_pop(struct nk_context *ctx) { struct nk_window *win = 0; struct nk_panel *layout = 0; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; layout->at_x -= ctx->style.tab.indent + (float)*layout->offset_x; layout->bounds.w += ctx->style.tab.indent + ctx->style.window.padding.x; NK_ASSERT(layout->row.tree_depth); layout->row.tree_depth--; } NK_API nk_bool nk_tree_push_hashed(struct nk_context *ctx, enum nk_tree_type type, const char *title, enum nk_collapse_states initial_state, const char *hash, int len, int line) { return nk_tree_base(ctx, type, 0, title, initial_state, hash, len, line); } NK_API nk_bool nk_tree_image_push_hashed(struct nk_context *ctx, enum nk_tree_type type, struct nk_image img, const char *title, enum nk_collapse_states initial_state, const char *hash, int len,int seed) { return nk_tree_base(ctx, type, &img, title, initial_state, hash, len, seed); } NK_API void nk_tree_pop(struct nk_context *ctx) { nk_tree_state_pop(ctx); } NK_INTERN int nk_tree_element_image_push_hashed_base(struct nk_context *ctx, enum nk_tree_type type, struct nk_image *img, const char *title, int title_len, enum nk_collapse_states *state, nk_bool *selected) { struct nk_window *win; struct nk_panel *layout; const struct nk_style *style; struct nk_command_buffer *out; const struct nk_input *in; const struct nk_style_button *button; enum nk_symbol_type symbol; float row_height; struct nk_vec2 padding; int text_len; float text_width; struct nk_vec2 item_spacing; struct nk_rect header = {0,0,0,0}; struct nk_rect sym = {0,0,0,0}; nk_flags ws = 0; enum nk_widget_layout_states widget_state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; /* cache some data */ win = ctx->current; layout = win->layout; out = &win->buffer; style = &ctx->style; item_spacing = style->window.spacing; padding = style->selectable.padding; /* calculate header bounds and draw background */ row_height = style->font->height + 2 * style->tab.padding.y; nk_layout_set_min_row_height(ctx, row_height); nk_layout_row_dynamic(ctx, row_height, 1); nk_layout_reset_min_row_height(ctx); widget_state = nk_widget(&header, ctx); if (type == NK_TREE_TAB) { const struct nk_style_item *background = &style->tab.background; switch (background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, header, 0, style->tab.border_color); nk_fill_rect(out, nk_shrink_rect(header, style->tab.border), style->tab.rounding, background->data.color); break; } } in = (!(layout->flags & NK_WINDOW_ROM)) ? &ctx->input: 0; in = (in && widget_state == NK_WIDGET_VALID) ? &ctx->input : 0; /* select correct button style */ if (*state == NK_MAXIMIZED) { symbol = style->tab.sym_maximize; if (type == NK_TREE_TAB) button = &style->tab.tab_maximize_button; else button = &style->tab.node_maximize_button; } else { symbol = style->tab.sym_minimize; if (type == NK_TREE_TAB) button = &style->tab.tab_minimize_button; else button = &style->tab.node_minimize_button; } {/* draw triangle button */ sym.w = sym.h = style->font->height; sym.y = header.y + style->tab.padding.y; sym.x = header.x + style->tab.padding.x; if (nk_do_button_symbol(&ws, &win->buffer, sym, symbol, NK_BUTTON_DEFAULT, button, in, style->font)) *state = (*state == NK_MAXIMIZED) ? NK_MINIMIZED : NK_MAXIMIZED;} /* draw label */ {nk_flags dummy = 0; struct nk_rect label; /* calculate size of the text and tooltip */ text_len = nk_strlen(title); text_width = style->font->width(style->font->userdata, style->font->height, title, text_len); text_width += (4 * padding.x); header.w = NK_MAX(header.w, sym.w + item_spacing.x); label.x = sym.x + sym.w + item_spacing.x; label.y = sym.y; label.w = NK_MIN(header.w - (sym.w + item_spacing.y + style->tab.indent), text_width); label.h = style->font->height; if (img) { nk_do_selectable_image(&dummy, &win->buffer, label, title, title_len, NK_TEXT_LEFT, selected, img, &style->selectable, in, style->font); } else nk_do_selectable(&dummy, &win->buffer, label, title, title_len, NK_TEXT_LEFT, selected, &style->selectable, in, style->font); } /* increase x-axis cursor widget position pointer */ if (*state == NK_MAXIMIZED) { layout->at_x = header.x + (float)*layout->offset_x + style->tab.indent; layout->bounds.w = NK_MAX(layout->bounds.w, style->tab.indent); layout->bounds.w -= (style->tab.indent + style->window.padding.x); layout->row.tree_depth++; return nk_true; } else return nk_false; } NK_INTERN int nk_tree_element_base(struct nk_context *ctx, enum nk_tree_type type, struct nk_image *img, const char *title, enum nk_collapse_states initial_state, nk_bool *selected, const char *hash, int len, int line) { struct nk_window *win = ctx->current; int title_len = 0; nk_hash tree_hash = 0; nk_uint *state = 0; /* retrieve tree state from internal widget state tables */ if (!hash) { title_len = (int)nk_strlen(title); tree_hash = nk_murmur_hash(title, (int)title_len, (nk_hash)line); } else tree_hash = nk_murmur_hash(hash, len, (nk_hash)line); state = nk_find_value(win, tree_hash); if (!state) { state = nk_add_value(ctx, win, tree_hash, 0); *state = initial_state; } return nk_tree_element_image_push_hashed_base(ctx, type, img, title, nk_strlen(title), (enum nk_collapse_states*)state, selected); } NK_API nk_bool nk_tree_element_push_hashed(struct nk_context *ctx, enum nk_tree_type type, const char *title, enum nk_collapse_states initial_state, nk_bool *selected, const char *hash, int len, int seed) { return nk_tree_element_base(ctx, type, 0, title, initial_state, selected, hash, len, seed); } NK_API nk_bool nk_tree_element_image_push_hashed(struct nk_context *ctx, enum nk_tree_type type, struct nk_image img, const char *title, enum nk_collapse_states initial_state, nk_bool *selected, const char *hash, int len,int seed) { return nk_tree_element_base(ctx, type, &img, title, initial_state, selected, hash, len, seed); } NK_API void nk_tree_element_pop(struct nk_context *ctx) { nk_tree_state_pop(ctx); } /* =============================================================== * * GROUP * * ===============================================================*/ NK_API nk_bool nk_group_scrolled_offset_begin(struct nk_context *ctx, nk_uint *x_offset, nk_uint *y_offset, const char *title, nk_flags flags) { struct nk_rect bounds; struct nk_window panel; struct nk_window *win; win = ctx->current; nk_panel_alloc_space(&bounds, ctx); {const struct nk_rect *c = &win->layout->clip; if (!NK_INTERSECT(c->x, c->y, c->w, c->h, bounds.x, bounds.y, bounds.w, bounds.h) && !(flags & NK_WINDOW_MOVABLE)) { return 0; }} if (win->flags & NK_WINDOW_ROM) flags |= NK_WINDOW_ROM; /* initialize a fake window to create the panel from */ nk_zero(&panel, sizeof(panel)); panel.bounds = bounds; panel.flags = flags; panel.scrollbar.x = *x_offset; panel.scrollbar.y = *y_offset; panel.buffer = win->buffer; panel.layout = (struct nk_panel*)nk_create_panel(ctx); ctx->current = &panel; nk_panel_begin(ctx, (flags & NK_WINDOW_TITLE) ? title: 0, NK_PANEL_GROUP); win->buffer = panel.buffer; win->buffer.clip = panel.layout->clip; panel.layout->offset_x = x_offset; panel.layout->offset_y = y_offset; panel.layout->parent = win->layout; win->layout = panel.layout; ctx->current = win; if ((panel.layout->flags & NK_WINDOW_CLOSED) || (panel.layout->flags & NK_WINDOW_MINIMIZED)) { nk_flags f = panel.layout->flags; nk_group_scrolled_end(ctx); if (f & NK_WINDOW_CLOSED) return NK_WINDOW_CLOSED; if (f & NK_WINDOW_MINIMIZED) return NK_WINDOW_MINIMIZED; } return 1; } NK_API void nk_group_scrolled_end(struct nk_context *ctx) { struct nk_window *win; struct nk_panel *parent; struct nk_panel *g; struct nk_rect clip; struct nk_window pan; struct nk_vec2 panel_padding; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; /* make sure nk_group_begin was called correctly */ NK_ASSERT(ctx->current); win = ctx->current; NK_ASSERT(win->layout); g = win->layout; NK_ASSERT(g->parent); parent = g->parent; /* dummy window */ nk_zero_struct(pan); panel_padding = nk_panel_get_padding(&ctx->style, NK_PANEL_GROUP); pan.bounds.y = g->bounds.y - (g->header_height + g->menu.h); pan.bounds.x = g->bounds.x - panel_padding.x; pan.bounds.w = g->bounds.w + 2 * panel_padding.x; pan.bounds.h = g->bounds.h + g->header_height + g->menu.h; if (g->flags & NK_WINDOW_BORDER) { pan.bounds.x -= g->border; pan.bounds.y -= g->border; pan.bounds.w += 2*g->border; pan.bounds.h += 2*g->border; } if (!(g->flags & NK_WINDOW_NO_SCROLLBAR_Y)) { //< @r-lyeh pan.bounds.w += ctx->style.window.scrollbar_size.x; } if (!(g->flags & NK_WINDOW_NO_SCROLLBAR_X)) { //< @r-lyeh pan.bounds.h += ctx->style.window.scrollbar_size.y; } pan.scrollbar.x = *g->offset_x; pan.scrollbar.y = *g->offset_y; pan.flags = g->flags; pan.buffer = win->buffer; pan.layout = g; pan.parent = win; ctx->current = &pan; /* make sure group has correct clipping rectangle */ nk_unify(&clip, &parent->clip, pan.bounds.x, pan.bounds.y, pan.bounds.x + pan.bounds.w, pan.bounds.y + pan.bounds.h + panel_padding.x); nk_push_scissor(&pan.buffer, clip); nk_end(ctx); win->buffer = pan.buffer; nk_push_scissor(&win->buffer, parent->clip); ctx->current = win; win->layout = parent; g->bounds = pan.bounds; return; } NK_API nk_bool nk_group_scrolled_begin(struct nk_context *ctx, struct nk_scroll *scroll, const char *title, nk_flags flags) { return nk_group_scrolled_offset_begin(ctx, &scroll->x, &scroll->y, title, flags); } NK_API nk_bool nk_group_begin_titled(struct nk_context *ctx, const char *id, const char *title, nk_flags flags) { int id_len; nk_hash id_hash; struct nk_window *win; nk_uint *x_offset; nk_uint *y_offset; NK_ASSERT(ctx); NK_ASSERT(id); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !id) return 0; /* find persistent group scrollbar value */ win = ctx->current; id_len = (int)nk_strlen(id); id_hash = nk_murmur_hash(id, (int)id_len, NK_PANEL_GROUP); x_offset = nk_find_value(win, id_hash); if (!x_offset) { x_offset = nk_add_value(ctx, win, id_hash, 0); y_offset = nk_add_value(ctx, win, id_hash+1, 0); NK_ASSERT(x_offset); NK_ASSERT(y_offset); if (!x_offset || !y_offset) return 0; *x_offset = *y_offset = 0; } else y_offset = nk_find_value(win, id_hash+1); return nk_group_scrolled_offset_begin(ctx, x_offset, y_offset, title, flags); } NK_API nk_bool nk_group_begin(struct nk_context *ctx, const char *title, nk_flags flags) { return nk_group_begin_titled(ctx, title, title, flags); } NK_API void nk_group_end(struct nk_context *ctx) { nk_group_scrolled_end(ctx); } NK_API void nk_group_get_scroll(struct nk_context *ctx, const char *id, nk_uint *x_offset, nk_uint *y_offset) { int id_len; nk_hash id_hash; struct nk_window *win; nk_uint *x_offset_ptr; nk_uint *y_offset_ptr; NK_ASSERT(ctx); NK_ASSERT(id); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !id) return; /* find persistent group scrollbar value */ win = ctx->current; id_len = (int)nk_strlen(id); id_hash = nk_murmur_hash(id, (int)id_len, NK_PANEL_GROUP); x_offset_ptr = nk_find_value(win, id_hash); if (!x_offset_ptr) { x_offset_ptr = nk_add_value(ctx, win, id_hash, 0); y_offset_ptr = nk_add_value(ctx, win, id_hash+1, 0); NK_ASSERT(x_offset_ptr); NK_ASSERT(y_offset_ptr); if (!x_offset_ptr || !y_offset_ptr) return; *x_offset_ptr = *y_offset_ptr = 0; } else y_offset_ptr = nk_find_value(win, id_hash+1); if (x_offset) *x_offset = *x_offset_ptr; if (y_offset) *y_offset = *y_offset_ptr; } NK_API void nk_group_set_scroll(struct nk_context *ctx, const char *id, nk_uint x_offset, nk_uint y_offset) { int id_len; nk_hash id_hash; struct nk_window *win; nk_uint *x_offset_ptr; nk_uint *y_offset_ptr; NK_ASSERT(ctx); NK_ASSERT(id); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !id) return; /* find persistent group scrollbar value */ win = ctx->current; id_len = (int)nk_strlen(id); id_hash = nk_murmur_hash(id, (int)id_len, NK_PANEL_GROUP); x_offset_ptr = nk_find_value(win, id_hash); if (!x_offset_ptr) { x_offset_ptr = nk_add_value(ctx, win, id_hash, 0); y_offset_ptr = nk_add_value(ctx, win, id_hash+1, 0); NK_ASSERT(x_offset_ptr); NK_ASSERT(y_offset_ptr); if (!x_offset_ptr || !y_offset_ptr) return; *x_offset_ptr = *y_offset_ptr = 0; } else y_offset_ptr = nk_find_value(win, id_hash+1); *x_offset_ptr = x_offset; *y_offset_ptr = y_offset; } /* =============================================================== * * LIST VIEW * * ===============================================================*/ NK_API nk_bool nk_list_view_begin(struct nk_context *ctx, struct nk_list_view *view, const char *title, nk_flags flags, int row_height, int row_count) { int title_len; nk_hash title_hash; nk_uint *x_offset; nk_uint *y_offset; int result; struct nk_window *win; struct nk_panel *layout; const struct nk_style *style; struct nk_vec2 item_spacing; NK_ASSERT(ctx); NK_ASSERT(view); NK_ASSERT(title); if (!ctx || !view || !title) return 0; win = ctx->current; style = &ctx->style; item_spacing = style->window.spacing; row_height += NK_MAX(0, (int)item_spacing.y); /* find persistent list view scrollbar offset */ title_len = (int)nk_strlen(title); title_hash = nk_murmur_hash(title, (int)title_len, NK_PANEL_GROUP); x_offset = nk_find_value(win, title_hash); if (!x_offset) { x_offset = nk_add_value(ctx, win, title_hash, 0); y_offset = nk_add_value(ctx, win, title_hash+1, 0); NK_ASSERT(x_offset); NK_ASSERT(y_offset); if (!x_offset || !y_offset) return 0; *x_offset = *y_offset = 0; } else y_offset = nk_find_value(win, title_hash+1); view->scroll_value = *y_offset; view->scroll_pointer = y_offset; *y_offset = 0; result = nk_group_scrolled_offset_begin(ctx, x_offset, y_offset, title, flags); win = ctx->current; layout = win->layout; view->total_height = row_height * NK_MAX(row_count,1); view->begin = (int)NK_MAX(((float)view->scroll_value / (float)row_height), 0.0f); view->count = (int)NK_MAX(nk_iceilf((layout->clip.h)/(float)row_height),0); view->count = NK_MIN(view->count, row_count - view->begin); view->end = view->begin + view->count; view->ctx = ctx; return result; } NK_API void nk_list_view_end(struct nk_list_view *view) { struct nk_context *ctx; struct nk_window *win; struct nk_panel *layout; NK_ASSERT(view); NK_ASSERT(view->ctx); NK_ASSERT(view->scroll_pointer); if (!view || !view->ctx) return; ctx = view->ctx; win = ctx->current; layout = win->layout; layout->at_y = layout->bounds.y + (float)view->total_height; *view->scroll_pointer = *view->scroll_pointer + view->scroll_value; nk_group_end(view->ctx); } /* =============================================================== * * WIDGET * * ===============================================================*/ NK_API struct nk_rect nk_widget_bounds(struct nk_context *ctx) { struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_rect(0,0,0,0); nk_layout_peek(&bounds, ctx); return bounds; } NK_API struct nk_vec2 nk_widget_position(struct nk_context *ctx) { struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_vec2(0,0); nk_layout_peek(&bounds, ctx); return nk_vec2(bounds.x, bounds.y); } NK_API struct nk_vec2 nk_widget_size(struct nk_context *ctx) { struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return nk_vec2(0,0); nk_layout_peek(&bounds, ctx); return nk_vec2(bounds.w, bounds.h); } NK_API float nk_widget_width(struct nk_context *ctx) { struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return 0; nk_layout_peek(&bounds, ctx); return bounds.w; } NK_API float nk_widget_height(struct nk_context *ctx) { struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return 0; nk_layout_peek(&bounds, ctx); return bounds.h; } NK_API nk_bool nk_widget_is_hovered(struct nk_context *ctx) { struct nk_rect c, v; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current || ctx->active != ctx->current) return 0; c = ctx->current->layout->clip; c.x = (float)((int)c.x); c.y = (float)((int)c.y); c.w = (float)((int)c.w); c.h = (float)((int)c.h); nk_layout_peek(&bounds, ctx); nk_unify(&v, &c, bounds.x, bounds.y, bounds.x + bounds.w, bounds.y + bounds.h); if (!NK_INTERSECT(c.x, c.y, c.w, c.h, bounds.x, bounds.y, bounds.w, bounds.h)) return 0; return nk_input_is_mouse_hovering_rect(&ctx->input, bounds); } NK_API nk_bool nk_widget_is_mouse_clicked(struct nk_context *ctx, enum nk_buttons btn) { struct nk_rect c, v; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current || ctx->active != ctx->current) return 0; c = ctx->current->layout->clip; c.x = (float)((int)c.x); c.y = (float)((int)c.y); c.w = (float)((int)c.w); c.h = (float)((int)c.h); nk_layout_peek(&bounds, ctx); nk_unify(&v, &c, bounds.x, bounds.y, bounds.x + bounds.w, bounds.y + bounds.h); if (!NK_INTERSECT(c.x, c.y, c.w, c.h, bounds.x, bounds.y, bounds.w, bounds.h)) return 0; return nk_input_mouse_clicked(&ctx->input, btn, bounds); } NK_API nk_bool nk_widget_has_mouse_click_down(struct nk_context *ctx, enum nk_buttons btn, nk_bool down) { struct nk_rect c, v; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current || ctx->active != ctx->current) return 0; c = ctx->current->layout->clip; c.x = (float)((int)c.x); c.y = (float)((int)c.y); c.w = (float)((int)c.w); c.h = (float)((int)c.h); nk_layout_peek(&bounds, ctx); nk_unify(&v, &c, bounds.x, bounds.y, bounds.x + bounds.w, bounds.y + bounds.h); if (!NK_INTERSECT(c.x, c.y, c.w, c.h, bounds.x, bounds.y, bounds.w, bounds.h)) return 0; return nk_input_has_mouse_click_down_in_rect(&ctx->input, btn, bounds, down); } NK_API enum nk_widget_layout_states nk_widget(struct nk_rect *bounds, const struct nk_context *ctx) { struct nk_rect c, v; struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return NK_WIDGET_INVALID; /* allocate space and check if the widget needs to be updated and drawn */ nk_panel_alloc_space(bounds, ctx); win = ctx->current; layout = win->layout; in = &ctx->input; c = layout->clip; /* if one of these triggers you forgot to add an `if` condition around either a window, group, popup, combobox or contextual menu `begin` and `end` block. Example: if (nk_begin(...) {...} nk_end(...); or if (nk_group_begin(...) { nk_group_end(...);} */ NK_ASSERT(!(layout->flags & NK_WINDOW_MINIMIZED)); NK_ASSERT(!(layout->flags & NK_WINDOW_HIDDEN)); NK_ASSERT(!(layout->flags & NK_WINDOW_CLOSED)); /* need to convert to int here to remove floating point errors */ bounds->x = (float)((int)bounds->x); bounds->y = (float)((int)bounds->y); bounds->w = (float)((int)bounds->w); bounds->h = (float)((int)bounds->h); c.x = (float)((int)c.x); c.y = (float)((int)c.y); c.w = (float)((int)c.w); c.h = (float)((int)c.h); nk_unify(&v, &c, bounds->x, bounds->y, bounds->x + bounds->w, bounds->y + bounds->h); if (!NK_INTERSECT(c.x, c.y, c.w, c.h, bounds->x, bounds->y, bounds->w, bounds->h)) return NK_WIDGET_INVALID; if (!NK_INBOX(in->mouse.pos.x, in->mouse.pos.y, v.x, v.y, v.w, v.h)) return NK_WIDGET_ROM; return NK_WIDGET_VALID; } NK_API enum nk_widget_layout_states nk_widget_fitting(struct nk_rect *bounds, struct nk_context *ctx, struct nk_vec2 item_padding) { /* update the bounds to stand without padding */ enum nk_widget_layout_states state; NK_UNUSED(item_padding); NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return NK_WIDGET_INVALID; state = nk_widget(bounds, ctx); return state; } NK_API void nk_spacing(struct nk_context *ctx, int cols) { struct nk_window *win; struct nk_panel *layout; struct nk_rect none; int i, index, rows; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; /* spacing over row boundaries */ win = ctx->current; layout = win->layout; index = (layout->row.index + cols) % layout->row.columns; rows = (layout->row.index + cols) / layout->row.columns; if (rows) { for (i = 0; i < rows; ++i) nk_panel_alloc_row(ctx, win); cols = index; } /* non table layout need to allocate space */ if (layout->row.type != NK_LAYOUT_DYNAMIC_FIXED && layout->row.type != NK_LAYOUT_STATIC_FIXED) { for (i = 0; i < cols; ++i) nk_panel_alloc_space(&none, ctx); } layout->row.index = index; } /* =============================================================== * * TEXT * * ===============================================================*/ NK_LIB void nk_widget_text(struct nk_command_buffer *o, struct nk_rect b, const char *string, int len, const struct nk_text *t, nk_flags a, const struct nk_user_font *f) { struct nk_rect label; float text_width; NK_ASSERT(o); NK_ASSERT(t); if (!o || !t) return; b.h = NK_MAX(b.h, 2 * t->padding.y); label.x = 0; label.w = 0; label.y = b.y + t->padding.y; label.h = NK_MIN(f->height, b.h - 2 * t->padding.y); text_width = f->width(f->userdata, f->height, (const char*)string, len); text_width += (2.0f * t->padding.x); /* align in x-axis */ if (a & NK_TEXT_ALIGN_LEFT) { label.x = b.x + t->padding.x; label.w = NK_MAX(0, b.w - 2 * t->padding.x); } else if (a & NK_TEXT_ALIGN_CENTERED) { label.w = NK_MAX(1, 2 * t->padding.x + (float)text_width); label.x = (b.x + t->padding.x + ((b.w - 2 * t->padding.x) - label.w) / 2); label.x = NK_MAX(b.x + t->padding.x, label.x); label.w = NK_MIN(b.x + b.w, label.x + label.w); if (label.w >= label.x) label.w -= label.x; } else if (a & NK_TEXT_ALIGN_RIGHT) { label.x = NK_MAX(b.x + t->padding.x, (b.x + b.w) - (2 * t->padding.x + (float)text_width)); label.w = (float)text_width + 2 * t->padding.x; } else return; /* align in y-axis */ if (a & NK_TEXT_ALIGN_MIDDLE) { label.y = b.y + b.h/2.0f - (float)f->height/2.0f; label.y += t->padding.y; //< @r-lyeh label.h = NK_MAX(b.h/2.0f, b.h - (b.h/2.0f + f->height/2.0f)); } else if (a & NK_TEXT_ALIGN_BOTTOM) { label.y = b.y + b.h - f->height; label.y += t->padding.y; //< @r-lyeh label.h = f->height; } nk_draw_text(o, label, (const char*)string, len, f, t->background, t->text); } NK_LIB void nk_widget_text_wrap(struct nk_command_buffer *o, struct nk_rect b, const char *string, int len, const struct nk_text *t, const struct nk_user_font *f) { float width; int glyphs = 0; int fitting = 0; int done = 0; struct nk_rect line; struct nk_text text; NK_INTERN nk_rune seperator[] = {' '}; NK_ASSERT(o); NK_ASSERT(t); if (!o || !t) return; text.padding = nk_vec2(0,0); text.background = t->background; text.text = t->text; b.w = NK_MAX(b.w, 2 * t->padding.x); b.h = NK_MAX(b.h, 2 * t->padding.y); b.h = b.h - 2 * t->padding.y; line.x = b.x + t->padding.x; line.y = b.y + t->padding.y; line.w = b.w - 2 * t->padding.x; line.h = 2 * t->padding.y + f->height; fitting = nk_text_clamp(f, string, len, line.w, &glyphs, &width, seperator,NK_LEN(seperator)); while (done < len) { if (!fitting || line.y + line.h >= (b.y + b.h)) break; nk_widget_text(o, line, &string[done], fitting, &text, NK_TEXT_LEFT, f); done += fitting; line.y += f->height + 2 * t->padding.y; fitting = nk_text_clamp(f, &string[done], len - done, line.w, &glyphs, &width, seperator,NK_LEN(seperator)); } } NK_API void nk_text_colored(struct nk_context *ctx, const char *str, int len, nk_flags alignment, struct nk_color color) { struct nk_window *win; const struct nk_style *style; struct nk_vec2 item_padding; struct nk_rect bounds; struct nk_text text; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; style = &ctx->style; nk_panel_alloc_space(&bounds, ctx); item_padding = style->text.padding; text.padding.x = item_padding.x; text.padding.y = item_padding.y; text.background = style->window.background; text.text = color; nk_widget_text(&win->buffer, bounds, str, len, &text, alignment, style->font); } NK_API void nk_text_wrap_colored(struct nk_context *ctx, const char *str, int len, struct nk_color color) { struct nk_window *win; const struct nk_style *style; struct nk_vec2 item_padding; struct nk_rect bounds; struct nk_text text; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; style = &ctx->style; nk_panel_alloc_space(&bounds, ctx); item_padding = style->text.padding; text.padding.x = item_padding.x; text.padding.y = item_padding.y; text.background = style->window.background; text.text = color; nk_widget_text_wrap(&win->buffer, bounds, str, len, &text, style->font); } #ifdef NK_INCLUDE_STANDARD_VARARGS NK_API void nk_labelf_colored(struct nk_context *ctx, nk_flags flags, struct nk_color color, const char *fmt, ...) { va_list args; va_start(args, fmt); nk_labelfv_colored(ctx, flags, color, fmt, args); va_end(args); } NK_API void nk_labelf_colored_wrap(struct nk_context *ctx, struct nk_color color, const char *fmt, ...) { va_list args; va_start(args, fmt); nk_labelfv_colored_wrap(ctx, color, fmt, args); va_end(args); } NK_API void nk_labelf(struct nk_context *ctx, nk_flags flags, const char *fmt, ...) { va_list args; va_start(args, fmt); nk_labelfv(ctx, flags, fmt, args); va_end(args); } NK_API void nk_labelf_wrap(struct nk_context *ctx, const char *fmt,...) { va_list args; va_start(args, fmt); nk_labelfv_wrap(ctx, fmt, args); va_end(args); } NK_API void nk_labelfv_colored(struct nk_context *ctx, nk_flags flags, struct nk_color color, const char *fmt, va_list args) { char buf[256]; nk_strfmt(buf, NK_LEN(buf), fmt, args); nk_label_colored(ctx, buf, flags, color); } NK_API void nk_labelfv_colored_wrap(struct nk_context *ctx, struct nk_color color, const char *fmt, va_list args) { char buf[256]; nk_strfmt(buf, NK_LEN(buf), fmt, args); nk_label_colored_wrap(ctx, buf, color); } NK_API void nk_labelfv(struct nk_context *ctx, nk_flags flags, const char *fmt, va_list args) { char buf[256]; nk_strfmt(buf, NK_LEN(buf), fmt, args); nk_label(ctx, buf, flags); } NK_API void nk_labelfv_wrap(struct nk_context *ctx, const char *fmt, va_list args) { char buf[256]; nk_strfmt(buf, NK_LEN(buf), fmt, args); nk_label_wrap(ctx, buf); } NK_API void nk_value_bool(struct nk_context *ctx, const char *prefix, int value) { nk_labelf(ctx, NK_TEXT_LEFT, "%s: %s", prefix, ((value) ? "true": "false")); } NK_API void nk_value_int(struct nk_context *ctx, const char *prefix, int value) { nk_labelf(ctx, NK_TEXT_LEFT, "%s: %d", prefix, value); } NK_API void nk_value_uint(struct nk_context *ctx, const char *prefix, unsigned int value) { nk_labelf(ctx, NK_TEXT_LEFT, "%s: %u", prefix, value); } NK_API void nk_value_float(struct nk_context *ctx, const char *prefix, float value) { double double_value = (double)value; nk_labelf(ctx, NK_TEXT_LEFT, "%s: %.3f", prefix, double_value); } NK_API void nk_value_color_byte(struct nk_context *ctx, const char *p, struct nk_color c) { nk_labelf(ctx, NK_TEXT_LEFT, "%s: (%d, %d, %d, %d)", p, c.r, c.g, c.b, c.a); } NK_API void nk_value_color_float(struct nk_context *ctx, const char *p, struct nk_color color) { double c[4]; nk_color_dv(c, color); nk_labelf(ctx, NK_TEXT_LEFT, "%s: (%.2f, %.2f, %.2f, %.2f)", p, c[0], c[1], c[2], c[3]); } NK_API void nk_value_color_hex(struct nk_context *ctx, const char *prefix, struct nk_color color) { char hex[16]; nk_color_hex_rgba(hex, color); nk_labelf(ctx, NK_TEXT_LEFT, "%s: %s", prefix, hex); } #endif NK_API void nk_text(struct nk_context *ctx, const char *str, int len, nk_flags alignment) { NK_ASSERT(ctx); if (!ctx) return; nk_text_colored(ctx, str, len, alignment, ctx->style.text.color); } NK_API void nk_text_wrap(struct nk_context *ctx, const char *str, int len) { NK_ASSERT(ctx); if (!ctx) return; nk_text_wrap_colored(ctx, str, len, ctx->style.text.color); } NK_API void nk_label(struct nk_context *ctx, const char *str, nk_flags alignment) { nk_text(ctx, str, nk_strlen(str), alignment); } NK_API void nk_label_colored(struct nk_context *ctx, const char *str, nk_flags align, struct nk_color color) { nk_text_colored(ctx, str, nk_strlen(str), align, color); } NK_API void nk_label_wrap(struct nk_context *ctx, const char *str) { nk_text_wrap(ctx, str, nk_strlen(str)); } NK_API void nk_label_colored_wrap(struct nk_context *ctx, const char *str, struct nk_color color) { nk_text_wrap_colored(ctx, str, nk_strlen(str), color); } /* =============================================================== * * IMAGE * * ===============================================================*/ NK_API nk_handle nk_handle_ptr(void *ptr) { nk_handle handle = {0}; handle.ptr = ptr; return handle; } NK_API nk_handle nk_handle_id(int id) { nk_handle handle; nk_zero_struct(handle); handle.id = id; return handle; } NK_API struct nk_image nk_subimage_ptr(void *ptr, nk_ushort w, nk_ushort h, struct nk_rect r) { struct nk_image s; nk_zero(&s, sizeof(s)); s.handle.ptr = ptr; s.w = w; s.h = h; s.region[0] = (nk_ushort)r.x; s.region[1] = (nk_ushort)r.y; s.region[2] = (nk_ushort)r.w; s.region[3] = (nk_ushort)r.h; return s; } NK_API struct nk_image nk_subimage_id(int id, nk_ushort w, nk_ushort h, struct nk_rect r) { struct nk_image s; nk_zero(&s, sizeof(s)); s.handle.id = id; s.w = w; s.h = h; s.region[0] = (nk_ushort)r.x; s.region[1] = (nk_ushort)r.y; s.region[2] = (nk_ushort)r.w; s.region[3] = (nk_ushort)r.h; return s; } NK_API struct nk_image nk_subimage_handle(nk_handle handle, nk_ushort w, nk_ushort h, struct nk_rect r) { struct nk_image s; nk_zero(&s, sizeof(s)); s.handle = handle; s.w = w; s.h = h; s.region[0] = (nk_ushort)r.x; s.region[1] = (nk_ushort)r.y; s.region[2] = (nk_ushort)r.w; s.region[3] = (nk_ushort)r.h; return s; } NK_API struct nk_image nk_image_handle(nk_handle handle) { struct nk_image s; nk_zero(&s, sizeof(s)); s.handle = handle; s.w = 0; s.h = 0; s.region[0] = 0; s.region[1] = 0; s.region[2] = 0; s.region[3] = 0; return s; } NK_API struct nk_image nk_image_ptr(void *ptr) { struct nk_image s; nk_zero(&s, sizeof(s)); NK_ASSERT(ptr); s.handle.ptr = ptr; s.w = 0; s.h = 0; s.region[0] = 0; s.region[1] = 0; s.region[2] = 0; s.region[3] = 0; return s; } NK_API struct nk_image nk_image_id(int id) { struct nk_image s; nk_zero(&s, sizeof(s)); s.handle.id = id; s.w = 0; s.h = 0; s.region[0] = 0; s.region[1] = 0; s.region[2] = 0; s.region[3] = 0; return s; } NK_API nk_bool nk_image_is_subimage(const struct nk_image* img) { NK_ASSERT(img); return !(img->w == 0 && img->h == 0); } NK_API void nk_image(struct nk_context *ctx, struct nk_image img) { struct nk_window *win; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; if (!nk_widget(&bounds, ctx)) return; nk_draw_image(&win->buffer, bounds, &img, nk_white); } NK_API void nk_image_color(struct nk_context *ctx, struct nk_image img, struct nk_color col) { struct nk_window *win; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; if (!nk_widget(&bounds, ctx)) return; nk_draw_image(&win->buffer, bounds, &img, col); } /* =============================================================== * * 9-SLICE * * ===============================================================*/ NK_API struct nk_nine_slice nk_sub9slice_ptr(void *ptr, nk_ushort w, nk_ushort h, struct nk_rect rgn, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b) { struct nk_nine_slice s; struct nk_image *i = &s.img; nk_zero(&s, sizeof(s)); i->handle.ptr = ptr; i->w = w; i->h = h; i->region[0] = (nk_ushort)rgn.x; i->region[1] = (nk_ushort)rgn.y; i->region[2] = (nk_ushort)rgn.w; i->region[3] = (nk_ushort)rgn.h; s.l = l; s.t = t; s.r = r; s.b = b; return s; } NK_API struct nk_nine_slice nk_sub9slice_id(int id, nk_ushort w, nk_ushort h, struct nk_rect rgn, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b) { struct nk_nine_slice s; struct nk_image *i = &s.img; nk_zero(&s, sizeof(s)); i->handle.id = id; i->w = w; i->h = h; i->region[0] = (nk_ushort)rgn.x; i->region[1] = (nk_ushort)rgn.y; i->region[2] = (nk_ushort)rgn.w; i->region[3] = (nk_ushort)rgn.h; s.l = l; s.t = t; s.r = r; s.b = b; return s; } NK_API struct nk_nine_slice nk_sub9slice_handle(nk_handle handle, nk_ushort w, nk_ushort h, struct nk_rect rgn, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b) { struct nk_nine_slice s; struct nk_image *i = &s.img; nk_zero(&s, sizeof(s)); i->handle = handle; i->w = w; i->h = h; i->region[0] = (nk_ushort)rgn.x; i->region[1] = (nk_ushort)rgn.y; i->region[2] = (nk_ushort)rgn.w; i->region[3] = (nk_ushort)rgn.h; s.l = l; s.t = t; s.r = r; s.b = b; return s; } NK_API struct nk_nine_slice nk_nine_slice_handle(nk_handle handle, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b) { struct nk_nine_slice s; struct nk_image *i = &s.img; nk_zero(&s, sizeof(s)); i->handle = handle; i->w = 0; i->h = 0; i->region[0] = 0; i->region[1] = 0; i->region[2] = 0; i->region[3] = 0; s.l = l; s.t = t; s.r = r; s.b = b; return s; } NK_API struct nk_nine_slice nk_nine_slice_ptr(void *ptr, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b) { struct nk_nine_slice s; struct nk_image *i = &s.img; nk_zero(&s, sizeof(s)); NK_ASSERT(ptr); i->handle.ptr = ptr; i->w = 0; i->h = 0; i->region[0] = 0; i->region[1] = 0; i->region[2] = 0; i->region[3] = 0; s.l = l; s.t = t; s.r = r; s.b = b; return s; } NK_API struct nk_nine_slice nk_nine_slice_id(int id, nk_ushort l, nk_ushort t, nk_ushort r, nk_ushort b) { struct nk_nine_slice s; struct nk_image *i = &s.img; nk_zero(&s, sizeof(s)); i->handle.id = id; i->w = 0; i->h = 0; i->region[0] = 0; i->region[1] = 0; i->region[2] = 0; i->region[3] = 0; s.l = l; s.t = t; s.r = r; s.b = b; return s; } NK_API int nk_nine_slice_is_sub9slice(const struct nk_nine_slice* slice) { NK_ASSERT(slice); return !(slice->img.w == 0 && slice->img.h == 0); } #define NK_GLYPH_CHEVRON_DOWN_ ICON_MD_EXPAND_MORE //< @r-lyeh #define NK_GLYPH_CHEVRON_LEFT_ ICON_MD_KEYBOARD_ARROW_LEFT // NAVIGATE_BEFORE // ARROW_BACKWARD_IOS // CHEVRON_LEFT //< @r-lyeh #define NK_GLYPH_CHEVRON_RIGHT_ ICON_MD_KEYBOARD_ARROW_RIGHT // NAVIGATE_NEXT // ARROW_FORWARD_IOS // CHEVRON_RIGHT //< @r-lyeh #define NK_GLYPH_CHEVRON_UP_ ICON_MD_EXPAND_LESS //< @r-lyeh #define NK_GLYPH_SQUARE_XMARK_ ICON_MD_DISABLED_BY_DEFAULT //< @r-lyeh #define NK_GLYPH_CIRCLE_XMARK_ ICON_MD_HIGHLIGHT_OFF // CANCEL //< @r-lyeh #define NK_GLYPH_XMARK_ ICON_MD_CLOSE //< @r-lyeh #define NK_GLYPH_CARET_DOWN_ ICON_MD_ARROW_DROP_DOWN //< @r-lyeh #define NK_GLYPH_CARET_LEFT_ ICON_MD_ARROW_LEFT //< @r-lyeh #define NK_GLYPH_CARET_RIGHT_ ICON_MD_ARROW_RIGHT //< @r-lyeh #define NK_GLYPH_CARET_UP_ ICON_MD_ARROW_DROP_UP //< @r-lyeh /* ============================================================== * * BUTTON * * ===============================================================*/ NK_LIB void nk_draw_symbol(struct nk_command_buffer *out, enum nk_symbol_type type, struct nk_rect content, struct nk_color background, struct nk_color foreground, float border_width, const struct nk_user_font *font) { switch (type) { case NK_SYMBOL_FULLSCREEN: //< @r-lyeh case NK_SYMBOL_RESTORE: //< @r-lyeh case NK_SYMBOL_PIN: //< @r-lyeh case NK_SYMBOL_FLOATING: //< @r-lyeh case NK_SYMBOL_X: case NK_SYMBOL_UNDERSCORE: case NK_SYMBOL_PLUS: case NK_SYMBOL_MINUS: { /* single character text symbol */ const char *X = (type == NK_SYMBOL_X) ? ICON_MD_CLOSE /*NK_GLYPH_CIRCLE_XMARK_*/: //< @r-lyeh: utf8 (type == NK_SYMBOL_UNDERSCORE) ? "_": //< @r-lyeh: utf8 (type == NK_SYMBOL_FLOATING) ? ICON_MD_PUSH_PIN /*ICON_MD_CROP*/: //< @r-lyeh: utf8 (type == NK_SYMBOL_PIN) ? ICON_MD_PUSH_PIN: //< @r-lyeh: utf8 (type == NK_SYMBOL_FULLSCREEN) ? ICON_MD_FULLSCREEN : //< @r-lyeh: utf8 (type == NK_SYMBOL_RESTORE) ? ICON_MD_FULLSCREEN_EXIT : //< @r-lyeh: utf8 (type == NK_SYMBOL_PLUS) ? NK_GLYPH_CHEVRON_RIGHT_ : NK_GLYPH_CHEVRON_DOWN_; //< @r-lyeh: utf8 struct nk_text text = {0}; // text.background = background; //< @r-lyeh: not used text.text.r = text.text.g = text.text.b = 255; text.text.a = type == NK_SYMBOL_PIN /*|| type == NK_SYMBOL_MINUS*/ ? 192 : 96; //< @r-lyeh: color+alpha nk_widget_text(out, content, X, strlen(X), &text, NK_TEXT_CENTERED, font); //< @r-lyeh: strlen } break; case NK_SYMBOL_CIRCLE_SOLID: case NK_SYMBOL_CIRCLE_OUTLINE: case NK_SYMBOL_RECT_SOLID: case NK_SYMBOL_RECT_OUTLINE: { /* simple empty/filled shapes */ if (type == NK_SYMBOL_RECT_SOLID || type == NK_SYMBOL_RECT_OUTLINE) { nk_fill_rect(out, content, 0, foreground); if (type == NK_SYMBOL_RECT_OUTLINE) nk_fill_rect(out, nk_shrink_rect(content, border_width), 0, background); } else { nk_fill_circle(out, content, foreground); if (type == NK_SYMBOL_CIRCLE_OUTLINE) nk_fill_circle(out, nk_shrink_rect(content, 1), background); } } break; case NK_SYMBOL_TRIANGLE_UP: case NK_SYMBOL_TRIANGLE_DOWN: case NK_SYMBOL_TRIANGLE_LEFT: case NK_SYMBOL_TRIANGLE_RIGHT: { /* single character text symbol */ //< @r-lyeh const char *X = (type == NK_SYMBOL_TRIANGLE_UP) ? NK_GLYPH_CARET_UP_: //< @r-lyeh (type == NK_SYMBOL_TRIANGLE_DOWN) ? NK_GLYPH_CARET_DOWN_: //< @r-lyeh (type == NK_SYMBOL_TRIANGLE_LEFT) ? NK_GLYPH_CARET_LEFT_ : NK_GLYPH_CARET_RIGHT_; //< @r-lyeh struct nk_text text; //< @r-lyeh text.padding = nk_vec2(-6,-0); //< @r-lyeh: -6,-2 for MD, 0,0 for FA text.background = background; //< @r-lyeh text.text = foreground; //< @r-lyeh nk_widget_text(out, content, X, strlen(X), &text, NK_TEXT_LEFT|NK_TEXT_ALIGN_BOTTOM, font); //< @r-lyeh } break; default: case NK_SYMBOL_NONE: case NK_SYMBOL_MAX: break; } } NK_LIB nk_bool nk_button_behavior(nk_flags *state, struct nk_rect r, const struct nk_input *i, enum nk_button_behavior behavior) { int ret = 0; nk_widget_state_reset(state); if (!i) return 0; if (nk_input_is_mouse_hovering_rect(i, r)) { *state = NK_WIDGET_STATE_HOVERED; if (nk_input_is_mouse_down(i, NK_BUTTON_LEFT)) *state = NK_WIDGET_STATE_ACTIVE; if (nk_input_has_mouse_click_in_rect(i, NK_BUTTON_LEFT, r)) { ret = (behavior != NK_BUTTON_DEFAULT) ? nk_input_is_mouse_down(i, NK_BUTTON_LEFT): #ifdef NK_BUTTON_TRIGGER_ON_RELEASE nk_input_is_mouse_released(i, NK_BUTTON_LEFT); #else nk_input_is_mouse_pressed(i, NK_BUTTON_LEFT); #endif } } if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(i, r)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(i, r)) *state |= NK_WIDGET_STATE_LEFT; return ret; } NK_LIB const struct nk_style_item* nk_draw_button(struct nk_command_buffer *out, const struct nk_rect *bounds, nk_flags state, const struct nk_style_button *style) { const struct nk_style_item *background; if (state & NK_WIDGET_STATE_HOVER) background = &style->hover; else if (state & NK_WIDGET_STATE_ACTIVED) background = &style->active; else background = &style->normal; switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, *bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, *bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, *bounds, style->rounding, background->data.color); nk_stroke_rect(out, *bounds, style->rounding, style->border, style->border_color); break; } return background; } NK_LIB nk_bool nk_do_button(nk_flags *state, struct nk_command_buffer *out, struct nk_rect r, const struct nk_style_button *style, const struct nk_input *in, enum nk_button_behavior behavior, struct nk_rect *content) { struct nk_rect bounds; NK_ASSERT(style); NK_ASSERT(state); NK_ASSERT(out); if (!out || !style) return nk_false; /* calculate button content space */ content->x = r.x + style->padding.x + style->border + style->rounding; content->y = r.y + style->padding.y + style->border + style->rounding; content->w = r.w - (2 * style->padding.x + style->border + style->rounding*2); content->h = r.h - (2 * style->padding.y + style->border + style->rounding*2); /* execute button behavior */ bounds.x = r.x - style->touch_padding.x; bounds.y = r.y - style->touch_padding.y; bounds.w = r.w + 2 * style->touch_padding.x; bounds.h = r.h + 2 * style->touch_padding.y; return nk_button_behavior(state, bounds, in, behavior); } NK_LIB void nk_draw_button_text(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state, const struct nk_style_button *style, const char *txt, int len, nk_flags text_alignment, const struct nk_user_font *font) { struct nk_text text; const struct nk_style_item *background; background = nk_draw_button(out, bounds, state, style); /* select correct colors/images */ if (background->type == NK_STYLE_ITEM_COLOR) text.background = background->data.color; else text.background = style->text_background; if (state & NK_WIDGET_STATE_HOVER) text.text = style->text_hover; else if (state & NK_WIDGET_STATE_ACTIVED) text.text = style->text_active; else text.text = style->text_normal; text.padding = nk_vec2(0,0); nk_widget_text(out, *content, txt, len, &text, text_alignment, font); } NK_LIB nk_bool nk_do_button_text(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *string, int len, nk_flags align, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_input *in, const struct nk_user_font *font) { struct nk_rect content; int ret = nk_false; NK_ASSERT(state); NK_ASSERT(style); NK_ASSERT(out); NK_ASSERT(string); NK_ASSERT(font); if (!out || !style || !font || !string) return nk_false; ret = nk_do_button(state, out, bounds, style, in, behavior, &content); if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_button_text(out, &bounds, &content, *state, style, string, len, align, font); if (style->draw_end) style->draw_end(out, style->userdata); return ret; } NK_LIB void nk_draw_button_symbol(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state, const struct nk_style_button *style, enum nk_symbol_type type, const struct nk_user_font *font) { struct nk_color sym, bg; const struct nk_style_item *background; /* select correct colors/images */ background = nk_draw_button(out, bounds, state, style); if (background->type == NK_STYLE_ITEM_COLOR) bg = background->data.color; else bg = style->text_background; if (state & NK_WIDGET_STATE_HOVER) sym = style->text_hover; else if (state & NK_WIDGET_STATE_ACTIVED) sym = style->text_active; else sym = style->text_normal; nk_draw_symbol(out, type, *content, bg, sym, 1, font); } NK_LIB nk_bool nk_do_button_symbol(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, enum nk_symbol_type symbol, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_input *in, const struct nk_user_font *font) { int ret; struct nk_rect content; NK_ASSERT(state); NK_ASSERT(style); NK_ASSERT(font); NK_ASSERT(out); if (!out || !style || !font || !state) return nk_false; ret = nk_do_button(state, out, bounds, style, in, behavior, &content); if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_button_symbol(out, &bounds, &content, *state, style, symbol, font); if (style->draw_end) style->draw_end(out, style->userdata); return ret; } NK_LIB void nk_draw_button_image(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *content, nk_flags state, const struct nk_style_button *style, const struct nk_image *img) { float a = style->text_normal.a / 255.f; nk_draw_button(out, bounds, state, style); nk_draw_image(out, *content, img, nk_rgba_f(a,a,a,1)); // @r-lyeh: nk_white -> nk_rgba_f } NK_LIB nk_bool nk_do_button_image(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, struct nk_image img, enum nk_button_behavior b, const struct nk_style_button *style, const struct nk_input *in) { int ret; struct nk_rect content; NK_ASSERT(state); NK_ASSERT(style); NK_ASSERT(out); if (!out || !style || !state) return nk_false; ret = nk_do_button(state, out, bounds, style, in, b, &content); content.x += style->image_padding.x; content.y += style->image_padding.y; content.w -= 2 * style->image_padding.x; content.h -= 2 * style->image_padding.y; if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_button_image(out, &bounds, &content, *state, style, &img); if (style->draw_end) style->draw_end(out, style->userdata); return ret; } NK_LIB void nk_draw_button_text_symbol(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *label, const struct nk_rect *symbol, nk_flags state, const struct nk_style_button *style, const char *str, int len, enum nk_symbol_type type, const struct nk_user_font *font) { struct nk_color sym; struct nk_text text; const struct nk_style_item *background; /* select correct background colors/images */ background = nk_draw_button(out, bounds, state, style); if (background->type == NK_STYLE_ITEM_COLOR) text.background = background->data.color; else text.background = style->text_background; /* select correct text colors */ if (state & NK_WIDGET_STATE_HOVER) { sym = style->text_hover; text.text = style->text_hover; } else if (state & NK_WIDGET_STATE_ACTIVED) { sym = style->text_active; text.text = style->text_active; } else { sym = style->text_normal; text.text = style->text_normal; } text.padding = nk_vec2(0,0); nk_draw_symbol(out, type, *symbol, style->text_background, sym, 0, font); nk_widget_text(out, *label, str, len, &text, NK_TEXT_CENTERED, font); } NK_LIB nk_bool nk_do_button_text_symbol(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, enum nk_symbol_type symbol, const char *str, int len, nk_flags align, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_user_font *font, const struct nk_input *in) { int ret; struct nk_rect tri = {0,0,0,0}; struct nk_rect content; NK_ASSERT(style); NK_ASSERT(out); NK_ASSERT(font); if (!out || !style || !font) return nk_false; ret = nk_do_button(state, out, bounds, style, in, behavior, &content); tri.y = content.y + (content.h/2) - font->height/2; tri.w = font->height; tri.h = font->height; if (align & NK_TEXT_ALIGN_LEFT) { tri.x = (content.x + content.w) - (2 * style->padding.x + tri.w); tri.x = NK_MAX(tri.x, 0); } else tri.x = content.x + 2 * style->padding.x; /* draw button */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_button_text_symbol(out, &bounds, &content, &tri, *state, style, str, len, symbol, font); if (style->draw_end) style->draw_end(out, style->userdata); return ret; } NK_LIB void nk_draw_button_text_image(struct nk_command_buffer *out, const struct nk_rect *bounds, const struct nk_rect *label, const struct nk_rect *image, nk_flags state, const struct nk_style_button *style, const char *str, int len, const struct nk_user_font *font, const struct nk_image *img, nk_flags align) //< @r-lyeh: add align param { struct nk_text text; const struct nk_style_item *background; background = nk_draw_button(out, bounds, state, style); /* select correct colors */ if (background->type == NK_STYLE_ITEM_COLOR) text.background = background->data.color; else text.background = style->text_background; if (state & NK_WIDGET_STATE_HOVER) text.text = style->text_hover; else if (state & NK_WIDGET_STATE_ACTIVED) text.text = style->text_active; else text.text = style->text_normal; text.padding = nk_vec2(0,0); nk_widget_text(out, *label, str, len, &text, align/*NK_TEXT_CENTERED*/, font); //< @r-lyeh: add align param nk_draw_image(out, *image, img, nk_white); } NK_LIB nk_bool nk_do_button_text_image(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, struct nk_image img, const char* str, int len, nk_flags align, enum nk_button_behavior behavior, const struct nk_style_button *style, const struct nk_user_font *font, const struct nk_input *in) { int ret; struct nk_rect icon; struct nk_rect content; NK_ASSERT(style); NK_ASSERT(state); NK_ASSERT(font); NK_ASSERT(out); if (!out || !font || !style || !str) return nk_false; ret = nk_do_button(state, out, bounds, style, in, behavior, &content); icon.y = bounds.y + style->padding.y; icon.w = icon.h = bounds.h - 2 * style->padding.y; #if 1 //< @r-lyeh reworked whole block: counterpart image align: img right when text_align_left, img left when text_align_right if (align & NK_TEXT_ALIGN_LEFT) { icon.x = (bounds.x + bounds.w) - (2 * style->padding.x) - icon.w; } else { // CENTERED and RIGHT icon.x = bounds.x + 2 * style->padding.x; } #endif icon.x += style->image_padding.x; icon.y += style->image_padding.y; icon.w -= 2 * style->image_padding.x; icon.h -= 2 * style->image_padding.y; if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_button_text_image(out, &bounds, &content, &icon, *state, style, str, len, font, &img, align); //< @r-lyeh: add align param if (style->draw_end) style->draw_end(out, style->userdata); return ret; } NK_API void nk_button_set_behavior(struct nk_context *ctx, enum nk_button_behavior behavior) { NK_ASSERT(ctx); if (!ctx) return; ctx->button_behavior = behavior; } NK_API nk_bool nk_button_push_behavior(struct nk_context *ctx, enum nk_button_behavior behavior) { struct nk_config_stack_button_behavior *button_stack; struct nk_config_stack_button_behavior_element *element; NK_ASSERT(ctx); if (!ctx) return 0; button_stack = &ctx->stacks.button_behaviors; NK_ASSERT(button_stack->head < (int)NK_LEN(button_stack->elements)); if (button_stack->head >= (int)NK_LEN(button_stack->elements)) return 0; element = &button_stack->elements[button_stack->head++]; element->address = &ctx->button_behavior; element->old_value = ctx->button_behavior; ctx->button_behavior = behavior; return 1; } NK_API nk_bool nk_button_pop_behavior(struct nk_context *ctx) { struct nk_config_stack_button_behavior *button_stack; struct nk_config_stack_button_behavior_element *element; NK_ASSERT(ctx); if (!ctx) return 0; button_stack = &ctx->stacks.button_behaviors; NK_ASSERT(button_stack->head > 0); if (button_stack->head < 1) return 0; element = &button_stack->elements[--button_stack->head]; *element->address = element->old_value; return 1; } NK_API nk_bool nk_button_text_styled(struct nk_context *ctx, const struct nk_style_button *style, const char *title, int len) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(style); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!style || !ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_button_text(&ctx->last_widget_state, &win->buffer, bounds, title, len, style->text_alignment, ctx->button_behavior, style, in, ctx->style.font); } NK_API nk_bool nk_button_text(struct nk_context *ctx, const char *title, int len) { NK_ASSERT(ctx); if (!ctx) return 0; return nk_button_text_styled(ctx, &ctx->style.button, title, len); } NK_API nk_bool nk_button_label_styled(struct nk_context *ctx, const struct nk_style_button *style, const char *title) { return nk_button_text_styled(ctx, style, title, nk_strlen(title)); } NK_API nk_bool nk_button_label(struct nk_context *ctx, const char *title) { return nk_button_text(ctx, title, nk_strlen(title)); } NK_API nk_bool nk_button_color(struct nk_context *ctx, struct nk_color color) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; struct nk_style_button button; int ret = 0; struct nk_rect bounds; struct nk_rect content; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; button = ctx->style.button; button.normal = nk_style_item_color(color); button.hover = nk_style_item_color(color); button.active = nk_style_item_color(color); ret = nk_do_button(&ctx->last_widget_state, &win->buffer, bounds, &button, in, ctx->button_behavior, &content); nk_draw_button(&win->buffer, &bounds, ctx->last_widget_state, &button); return ret; } NK_API nk_bool nk_button_symbol_styled(struct nk_context *ctx, const struct nk_style_button *style, enum nk_symbol_type symbol) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_button_symbol(&ctx->last_widget_state, &win->buffer, bounds, symbol, ctx->button_behavior, style, in, ctx->style.font); } NK_API nk_bool nk_button_symbol(struct nk_context *ctx, enum nk_symbol_type symbol) { NK_ASSERT(ctx); if (!ctx) return 0; return nk_button_symbol_styled(ctx, &ctx->style.button, symbol); } NK_API nk_bool nk_button_image_styled(struct nk_context *ctx, const struct nk_style_button *style, struct nk_image img) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_button_image(&ctx->last_widget_state, &win->buffer, bounds, img, ctx->button_behavior, style, in); } NK_API nk_bool nk_button_image(struct nk_context *ctx, struct nk_image img) { NK_ASSERT(ctx); if (!ctx) return 0; return nk_button_image_styled(ctx, &ctx->style.button, img); } NK_API nk_bool nk_button_symbol_text_styled(struct nk_context *ctx, const struct nk_style_button *style, enum nk_symbol_type symbol, const char *text, int len, nk_flags align) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_button_text_symbol(&ctx->last_widget_state, &win->buffer, bounds, symbol, text, len, align, ctx->button_behavior, style, ctx->style.font, in); } NK_API nk_bool nk_button_symbol_text(struct nk_context *ctx, enum nk_symbol_type symbol, const char* text, int len, nk_flags align) { NK_ASSERT(ctx); if (!ctx) return 0; return nk_button_symbol_text_styled(ctx, &ctx->style.button, symbol, text, len, align); } NK_API nk_bool nk_button_symbol_label(struct nk_context *ctx, enum nk_symbol_type symbol, const char *label, nk_flags align) { return nk_button_symbol_text(ctx, symbol, label, nk_strlen(label), align); } NK_API nk_bool nk_button_symbol_label_styled(struct nk_context *ctx, const struct nk_style_button *style, enum nk_symbol_type symbol, const char *title, nk_flags align) { return nk_button_symbol_text_styled(ctx, style, symbol, title, nk_strlen(title), align); } NK_API nk_bool nk_button_image_text_styled(struct nk_context *ctx, const struct nk_style_button *style, struct nk_image img, const char *text, int len, nk_flags align) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_button_text_image(&ctx->last_widget_state, &win->buffer, bounds, img, text, len, align, ctx->button_behavior, style, ctx->style.font, in); } NK_API nk_bool nk_button_image_text(struct nk_context *ctx, struct nk_image img, const char *text, int len, nk_flags align) { return nk_button_image_text_styled(ctx, &ctx->style.button,img, text, len, align); } NK_API nk_bool nk_button_image_label(struct nk_context *ctx, struct nk_image img, const char *label, nk_flags align) { return nk_button_image_text(ctx, img, label, nk_strlen(label), align); } NK_API nk_bool nk_button_image_label_styled(struct nk_context *ctx, const struct nk_style_button *style, struct nk_image img, const char *label, nk_flags text_alignment) { return nk_button_image_text_styled(ctx, style, img, label, nk_strlen(label), text_alignment); } /* =============================================================== * * TOGGLE * * ===============================================================*/ NK_LIB nk_bool nk_toggle_behavior(const struct nk_input *in, struct nk_rect select, nk_flags *state, nk_bool active) { nk_widget_state_reset(state); if (nk_button_behavior(state, select, in, NK_BUTTON_DEFAULT)) { *state = NK_WIDGET_STATE_ACTIVE; active = !active; } if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, select)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(in, select)) *state |= NK_WIDGET_STATE_LEFT; return active; } NK_LIB void nk_draw_checkbox(struct nk_command_buffer *out, nk_flags state, const struct nk_style_toggle *style, nk_bool active, const struct nk_rect *label, const struct nk_rect *selector, const struct nk_rect *cursors, const char *string, int len, const struct nk_user_font *font) { const struct nk_style_item *background; const struct nk_style_item *cursor; struct nk_text text; /* select correct colors/images */ if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover; cursor = &style->cursor_hover; text.text = style->text_hover; } else if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->hover; cursor = &style->cursor_hover; text.text = style->text_active; } else { background = &style->normal; cursor = &style->cursor_normal; text.text = style->text_normal; } /* draw background and cursor */ if (background->type == NK_STYLE_ITEM_COLOR) { nk_fill_rect(out, *selector, 0, style->border_color); nk_fill_rect(out, nk_shrink_rect(*selector, style->border), 0, background->data.color); } else nk_draw_image(out, *selector, &background->data.image, nk_white); if (active) { if (cursor->type == NK_STYLE_ITEM_IMAGE) nk_draw_image(out, *cursors, &cursor->data.image, nk_white); else nk_fill_rect(out, *cursors, 0, cursor->data.color); } text.padding.x = 0; text.padding.y = 0; text.background = style->text_background; nk_widget_text(out, *label, string, len, &text, NK_TEXT_LEFT, font); } NK_LIB void nk_draw_option(struct nk_command_buffer *out, nk_flags state, const struct nk_style_toggle *style, nk_bool active, const struct nk_rect *label, const struct nk_rect *selector, const struct nk_rect *cursors, const char *string, int len, const struct nk_user_font *font) { const struct nk_style_item *background; const struct nk_style_item *cursor; struct nk_text text; /* select correct colors/images */ if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover; cursor = &style->cursor_hover; text.text = style->text_hover; } else if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->hover; cursor = &style->cursor_hover; text.text = style->text_active; } else { background = &style->normal; cursor = &style->cursor_normal; text.text = style->text_normal; } /* draw background and cursor */ if (background->type == NK_STYLE_ITEM_COLOR) { nk_fill_circle(out, *selector, style->border_color); nk_fill_circle(out, nk_shrink_rect(*selector, style->border), background->data.color); } else nk_draw_image(out, *selector, &background->data.image, nk_white); if (active) { if (cursor->type == NK_STYLE_ITEM_IMAGE) nk_draw_image(out, *cursors, &cursor->data.image, nk_white); else nk_fill_circle(out, *cursors, cursor->data.color); } text.padding.x = 0; text.padding.y = 0; text.background = style->text_background; nk_widget_text(out, *label, string, len, &text, NK_TEXT_LEFT, font); } NK_LIB nk_bool nk_do_toggle(nk_flags *state, struct nk_command_buffer *out, struct nk_rect r, nk_bool *active, const char *str, int len, enum nk_toggle_type type, const struct nk_style_toggle *style, const struct nk_input *in, const struct nk_user_font *font) { int was_active; struct nk_rect bounds; struct nk_rect select; struct nk_rect cursor; struct nk_rect label; NK_ASSERT(style); NK_ASSERT(out); NK_ASSERT(font); if (!out || !style || !font || !active) return 0; r.w = NK_MAX(r.w, font->height + 2 * style->padding.x); r.h = NK_MAX(r.h, font->height + 2 * style->padding.y); /* add additional touch padding for touch screen devices */ bounds.x = r.x - style->touch_padding.x; bounds.y = r.y - style->touch_padding.y; bounds.w = r.w + 2 * style->touch_padding.x; bounds.h = r.h + 2 * style->touch_padding.y; /* calculate the selector space */ select.w = font->height; select.h = select.w; select.y = r.y + r.h/2.0f - select.h/2.0f; select.x = r.x; /* calculate the bounds of the cursor inside the selector */ cursor.x = select.x + style->padding.x + style->border; cursor.y = select.y + style->padding.y + style->border; cursor.w = select.w - (2 * style->padding.x + 2 * style->border); cursor.h = select.h - (2 * style->padding.y + 2 * style->border); /* label behind the selector */ label.x = select.x + select.w + style->spacing; label.y = select.y; label.w = NK_MAX(r.x + r.w, label.x) - label.x; label.h = select.w; /* update selector */ was_active = *active; *active = nk_toggle_behavior(in, bounds, state, *active); /* draw selector */ if (style->draw_begin) style->draw_begin(out, style->userdata); if (type == NK_TOGGLE_CHECK) { nk_draw_checkbox(out, *state, style, *active, &label, &select, &cursor, str, len, font); } else { nk_draw_option(out, *state, style, *active, &label, &select, &cursor, str, len, font); } if (style->draw_end) style->draw_end(out, style->userdata); return (was_active != *active); } /*---------------------------------------------------------------- * * CHECKBOX * * --------------------------------------------------------------*/ NK_API nk_bool nk_check_text(struct nk_context *ctx, const char *text, int len, nk_bool active) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; const struct nk_style *style; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return active; win = ctx->current; style = &ctx->style; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return active; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; nk_do_toggle(&ctx->last_widget_state, &win->buffer, bounds, &active, text, len, NK_TOGGLE_CHECK, &style->checkbox, in, style->font); return active; } NK_API unsigned int nk_check_flags_text(struct nk_context *ctx, const char *text, int len, unsigned int flags, unsigned int value) { int old_active; NK_ASSERT(ctx); NK_ASSERT(text); if (!ctx || !text) return flags; old_active = (int)((flags & value) & value); if (nk_check_text(ctx, text, len, old_active)) flags |= value; else flags &= ~value; return flags; } NK_API nk_bool nk_checkbox_text(struct nk_context *ctx, const char *text, int len, nk_bool *active) { int old_val; NK_ASSERT(ctx); NK_ASSERT(text); NK_ASSERT(active); if (!ctx || !text || !active) return 0; old_val = *active; *active = nk_check_text(ctx, text, len, *active); return old_val != *active; } NK_API nk_bool nk_checkbox_flags_text(struct nk_context *ctx, const char *text, int len, unsigned int *flags, unsigned int value) { nk_bool active; NK_ASSERT(ctx); NK_ASSERT(text); NK_ASSERT(flags); if (!ctx || !text || !flags) return 0; active = (int)((*flags & value) & value); if (nk_checkbox_text(ctx, text, len, &active)) { if (active) *flags |= value; else *flags &= ~value; return 1; } return 0; } NK_API nk_bool nk_check_label(struct nk_context *ctx, const char *label, nk_bool active) { return nk_check_text(ctx, label, nk_strlen(label), active); } NK_API unsigned int nk_check_flags_label(struct nk_context *ctx, const char *label, unsigned int flags, unsigned int value) { return nk_check_flags_text(ctx, label, nk_strlen(label), flags, value); } NK_API nk_bool nk_checkbox_label(struct nk_context *ctx, const char *label, nk_bool *active) { return nk_checkbox_text(ctx, label, nk_strlen(label), active); } NK_API nk_bool nk_checkbox_flags_label(struct nk_context *ctx, const char *label, unsigned int *flags, unsigned int value) { return nk_checkbox_flags_text(ctx, label, nk_strlen(label), flags, value); } /*---------------------------------------------------------------- * * OPTION * * --------------------------------------------------------------*/ NK_API nk_bool nk_option_text(struct nk_context *ctx, const char *text, int len, nk_bool is_active) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; const struct nk_style *style; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return is_active; win = ctx->current; style = &ctx->style; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return (int)state; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; nk_do_toggle(&ctx->last_widget_state, &win->buffer, bounds, &is_active, text, len, NK_TOGGLE_OPTION, &style->option, in, style->font); return is_active; } NK_API nk_bool nk_radio_text(struct nk_context *ctx, const char *text, int len, nk_bool *active) { int old_value; NK_ASSERT(ctx); NK_ASSERT(text); NK_ASSERT(active); if (!ctx || !text || !active) return 0; old_value = *active; *active = nk_option_text(ctx, text, len, old_value); return old_value != *active; } NK_API nk_bool nk_option_label(struct nk_context *ctx, const char *label, nk_bool active) { return nk_option_text(ctx, label, nk_strlen(label), active); } NK_API nk_bool nk_radio_label(struct nk_context *ctx, const char *label, nk_bool *active) { return nk_radio_text(ctx, label, nk_strlen(label), active); } /* =============================================================== * * SELECTABLE * * ===============================================================*/ NK_LIB void nk_draw_selectable(struct nk_command_buffer *out, nk_flags state, const struct nk_style_selectable *style, nk_bool active, const struct nk_rect *bounds, const struct nk_rect *icon, const struct nk_image *img, enum nk_symbol_type sym, const char *string, int len, nk_flags align, const struct nk_user_font *font) { const struct nk_style_item *background; struct nk_text text; text.padding = style->padding; /* select correct colors/images */ if (!active) { if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->pressed; text.text = style->text_pressed; } else if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover; text.text = style->text_hover; } else { background = &style->normal; text.text = style->text_normal; } } else { if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->pressed_active; text.text = style->text_pressed_active; } else if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover_active; text.text = style->text_hover_active; } else { background = &style->normal_active; text.text = style->text_normal_active; } } /* draw selectable background and text */ switch (background->type) { case NK_STYLE_ITEM_IMAGE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_image(out, *bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(out, *bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: text.background = background->data.color; nk_fill_rect(out, *bounds, style->rounding, background->data.color); break; } if (icon) { if (img) nk_draw_image(out, *icon, img, nk_white); else nk_draw_symbol(out, sym, *icon, text.background, text.text, 1, font); } nk_widget_text(out, *bounds, string, len, &text, align, font); } NK_LIB nk_bool nk_do_selectable(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *str, int len, nk_flags align, nk_bool *value, const struct nk_style_selectable *style, const struct nk_input *in, const struct nk_user_font *font) { int old_value; struct nk_rect touch; NK_ASSERT(state); NK_ASSERT(out); NK_ASSERT(str); NK_ASSERT(len); NK_ASSERT(value); NK_ASSERT(style); NK_ASSERT(font); if (!state || !out || !str || !len || !value || !style || !font) return 0; old_value = *value; /* remove padding */ touch.x = bounds.x - style->touch_padding.x; touch.y = bounds.y - style->touch_padding.y; touch.w = bounds.w + style->touch_padding.x * 2; touch.h = bounds.h + style->touch_padding.y * 2; /* update button */ if (nk_button_behavior(state, touch, in, NK_BUTTON_DEFAULT)) *value = !(*value); /* draw selectable */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_selectable(out, *state, style, *value, &bounds, 0,0,NK_SYMBOL_NONE, str, len, align, font); if (style->draw_end) style->draw_end(out, style->userdata); return old_value != *value; } NK_LIB nk_bool nk_do_selectable_image(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *str, int len, nk_flags align, nk_bool *value, const struct nk_image *img, const struct nk_style_selectable *style, const struct nk_input *in, const struct nk_user_font *font) { nk_bool old_value; struct nk_rect touch; struct nk_rect icon; NK_ASSERT(state); NK_ASSERT(out); NK_ASSERT(str); NK_ASSERT(len); NK_ASSERT(value); NK_ASSERT(style); NK_ASSERT(font); if (!state || !out || !str || !len || !value || !style || !font) return 0; old_value = *value; /* toggle behavior */ touch.x = bounds.x - style->touch_padding.x; touch.y = bounds.y - style->touch_padding.y; touch.w = bounds.w + style->touch_padding.x * 2; touch.h = bounds.h + style->touch_padding.y * 2; if (nk_button_behavior(state, touch, in, NK_BUTTON_DEFAULT)) *value = !(*value); icon.y = bounds.y + style->padding.y; icon.w = icon.h = bounds.h - 2 * style->padding.y; if (align & NK_TEXT_ALIGN_LEFT) { icon.x = (bounds.x + bounds.w) - (2 * style->padding.x + icon.w); icon.x = NK_MAX(icon.x, 0); } else icon.x = bounds.x + 2 * style->padding.x; icon.x += style->image_padding.x; icon.y += style->image_padding.y; icon.w -= 2 * style->image_padding.x; icon.h -= 2 * style->image_padding.y; /* draw selectable */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_selectable(out, *state, style, *value, &bounds, &icon, img, NK_SYMBOL_NONE, str, len, align, font); if (style->draw_end) style->draw_end(out, style->userdata); return old_value != *value; } NK_LIB nk_bool nk_do_selectable_symbol(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, const char *str, int len, nk_flags align, nk_bool *value, enum nk_symbol_type sym, const struct nk_style_selectable *style, const struct nk_input *in, const struct nk_user_font *font) { int old_value; struct nk_rect touch; struct nk_rect icon; NK_ASSERT(state); NK_ASSERT(out); NK_ASSERT(str); NK_ASSERT(len); NK_ASSERT(value); NK_ASSERT(style); NK_ASSERT(font); if (!state || !out || !str || !len || !value || !style || !font) return 0; old_value = *value; /* toggle behavior */ touch.x = bounds.x - style->touch_padding.x; touch.y = bounds.y - style->touch_padding.y; touch.w = bounds.w + style->touch_padding.x * 2; touch.h = bounds.h + style->touch_padding.y * 2; if (nk_button_behavior(state, touch, in, NK_BUTTON_DEFAULT)) *value = !(*value); icon.y = bounds.y + style->padding.y; icon.w = icon.h = bounds.h - 2 * style->padding.y; if (align & NK_TEXT_ALIGN_LEFT) { icon.x = (bounds.x + bounds.w) - (2 * style->padding.x + icon.w); icon.x = NK_MAX(icon.x, 0); } else icon.x = bounds.x + 2 * style->padding.x; icon.x += style->image_padding.x; icon.y += style->image_padding.y; icon.w -= 2 * style->image_padding.x; icon.h -= 2 * style->image_padding.y; /* draw selectable */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_selectable(out, *state, style, *value, &bounds, &icon, 0, sym, str, len, align, font); if (style->draw_end) style->draw_end(out, style->userdata); return old_value != *value; } NK_API nk_bool nk_selectable_text(struct nk_context *ctx, const char *str, int len, nk_flags align, nk_bool *value) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; const struct nk_style *style; enum nk_widget_layout_states state; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(value); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !value) return 0; win = ctx->current; layout = win->layout; style = &ctx->style; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_selectable(&ctx->last_widget_state, &win->buffer, bounds, str, len, align, value, &style->selectable, in, style->font); } NK_API nk_bool nk_selectable_image_text(struct nk_context *ctx, struct nk_image img, const char *str, int len, nk_flags align, nk_bool *value) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; const struct nk_style *style; enum nk_widget_layout_states state; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(value); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !value) return 0; win = ctx->current; layout = win->layout; style = &ctx->style; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_selectable_image(&ctx->last_widget_state, &win->buffer, bounds, str, len, align, value, &img, &style->selectable, in, style->font); } NK_API nk_bool nk_selectable_symbol_text(struct nk_context *ctx, enum nk_symbol_type sym, const char *str, int len, nk_flags align, nk_bool *value) { struct nk_window *win; struct nk_panel *layout; const struct nk_input *in; const struct nk_style *style; enum nk_widget_layout_states state; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(value); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !value) return 0; win = ctx->current; layout = win->layout; style = &ctx->style; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_selectable_symbol(&ctx->last_widget_state, &win->buffer, bounds, str, len, align, value, sym, &style->selectable, in, style->font); } NK_API nk_bool nk_selectable_symbol_label(struct nk_context *ctx, enum nk_symbol_type sym, const char *title, nk_flags align, nk_bool *value) { return nk_selectable_symbol_text(ctx, sym, title, nk_strlen(title), align, value); } NK_API nk_bool nk_select_text(struct nk_context *ctx, const char *str, int len, nk_flags align, nk_bool value) { nk_selectable_text(ctx, str, len, align, &value);return value; } NK_API nk_bool nk_selectable_label(struct nk_context *ctx, const char *str, nk_flags align, nk_bool *value) { return nk_selectable_text(ctx, str, nk_strlen(str), align, value); } NK_API nk_bool nk_selectable_image_label(struct nk_context *ctx,struct nk_image img, const char *str, nk_flags align, nk_bool *value) { return nk_selectable_image_text(ctx, img, str, nk_strlen(str), align, value); } NK_API nk_bool nk_select_label(struct nk_context *ctx, const char *str, nk_flags align, nk_bool value) { nk_selectable_text(ctx, str, nk_strlen(str), align, &value);return value; } NK_API nk_bool nk_select_image_label(struct nk_context *ctx, struct nk_image img, const char *str, nk_flags align, nk_bool value) { nk_selectable_image_text(ctx, img, str, nk_strlen(str), align, &value);return value; } NK_API nk_bool nk_select_image_text(struct nk_context *ctx, struct nk_image img, const char *str, int len, nk_flags align, nk_bool value) { nk_selectable_image_text(ctx, img, str, len, align, &value);return value; } NK_API nk_bool nk_select_symbol_text(struct nk_context *ctx, enum nk_symbol_type sym, const char *title, int title_len, nk_flags align, nk_bool value) { nk_selectable_symbol_text(ctx, sym, title, title_len, align, &value);return value; } NK_API nk_bool nk_select_symbol_label(struct nk_context *ctx, enum nk_symbol_type sym, const char *title, nk_flags align, nk_bool value) { return nk_select_symbol_text(ctx, sym, title, nk_strlen(title), align, value); } /* =============================================================== * * SLIDER * * ===============================================================*/ NK_LIB float nk_slider_behavior(nk_flags *state, struct nk_rect *logical_cursor, struct nk_rect *visual_cursor, struct nk_input *in, struct nk_rect bounds, float slider_min, float slider_max, float slider_value, float slider_step, float slider_steps) { int left_mouse_down; int left_mouse_click_in_cursor; /* check if visual cursor is being dragged */ nk_widget_state_reset(state); left_mouse_down = in && in->mouse.buttons[NK_BUTTON_LEFT].down; left_mouse_click_in_cursor = in && nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, *visual_cursor, nk_true); if (left_mouse_down && left_mouse_click_in_cursor) { float ratio = 0; const float d = in->mouse.pos.x - (visual_cursor->x+visual_cursor->w*0.5f); const float pxstep = bounds.w / slider_steps; /* only update value if the next slider step is reached */ *state = NK_WIDGET_STATE_ACTIVE; if (NK_ABS(d) >= pxstep) { const float steps = (float)((int)(NK_ABS(d) / pxstep)); slider_value += (d > 0) ? (slider_step*steps) : -(slider_step*steps); slider_value = NK_CLAMP(slider_min, slider_value, slider_max); ratio = (slider_value - slider_min)/slider_step; logical_cursor->x = bounds.x + (logical_cursor->w * ratio); in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x = logical_cursor->x; } } /* slider widget state */ if (nk_input_is_mouse_hovering_rect(in, bounds)) *state = NK_WIDGET_STATE_HOVERED; if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, bounds)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(in, bounds)) *state |= NK_WIDGET_STATE_LEFT; return slider_value; } NK_LIB void nk_draw_slider(struct nk_command_buffer *out, nk_flags state, const struct nk_style_slider *style, const struct nk_rect *bounds, const struct nk_rect *visual_cursor, float min, float value, float max) { struct nk_rect fill; struct nk_rect bar; const struct nk_style_item *background; /* select correct slider images/colors */ struct nk_color bar_color; const struct nk_style_item *cursor; NK_UNUSED(min); NK_UNUSED(max); NK_UNUSED(value); if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->active; bar_color = style->bar_active; cursor = &style->cursor_active; } else if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover; bar_color = style->bar_hover; cursor = &style->cursor_hover; } else { background = &style->normal; bar_color = style->bar_normal; cursor = &style->cursor_normal; } /* calculate slider background bar */ bar.x = bounds->x; bar.y = (visual_cursor->y + visual_cursor->h/2) - bounds->h/12; bar.w = bounds->w; bar.h = bounds->h/6; /* filled background bar style */ fill.w = (visual_cursor->x + (visual_cursor->w/2.0f)) - bar.x; fill.x = bar.x; fill.y = bar.y; fill.h = bar.h; /* draw background */ switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, *bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, *bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, *bounds, style->rounding, background->data.color); nk_stroke_rect(out, *bounds, style->rounding, style->border, style->border_color); break; } /* draw slider bar */ nk_fill_rect(out, bar, style->rounding, bar_color); nk_fill_rect(out, fill, style->rounding, style->bar_filled); /* draw cursor */ if (cursor->type == NK_STYLE_ITEM_IMAGE) nk_draw_image(out, *visual_cursor, &cursor->data.image, nk_white); else nk_fill_circle(out, *visual_cursor, cursor->data.color); } NK_LIB float nk_do_slider(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, float min, float val, float max, float step, const struct nk_style_slider *style, struct nk_input *in, const struct nk_user_font *font) { float slider_range; float slider_min; float slider_max; float slider_value; float slider_steps; float cursor_offset; struct nk_rect visual_cursor; struct nk_rect logical_cursor; NK_ASSERT(style); NK_ASSERT(out); if (!out || !style) return 0; /* remove padding from slider bounds */ bounds.x = bounds.x + style->padding.x; bounds.y = bounds.y + style->padding.y; bounds.h = NK_MAX(bounds.h, 2*style->padding.y); bounds.w = NK_MAX(bounds.w, 2*style->padding.x + style->cursor_size.x); bounds.w -= 2 * style->padding.x; bounds.h -= 2 * style->padding.y; /* optional buttons */ if (style->show_buttons) { nk_flags ws; struct nk_rect button; button.y = bounds.y; button.w = bounds.h; button.h = bounds.h; /* decrement button */ button.x = bounds.x; if (nk_do_button_symbol(&ws, out, button, style->dec_symbol, NK_BUTTON_DEFAULT, &style->dec_button, in, font)) val -= step; /* increment button */ button.x = (bounds.x + bounds.w) - button.w; if (nk_do_button_symbol(&ws, out, button, style->inc_symbol, NK_BUTTON_DEFAULT, &style->inc_button, in, font)) val += step; bounds.x = bounds.x + button.w + style->spacing.x; bounds.w = bounds.w - (2*button.w + 2*style->spacing.x); } /* remove one cursor size to support visual cursor */ bounds.x += style->cursor_size.x*0.5f; bounds.w -= style->cursor_size.x; /* make sure the provided values are correct */ slider_max = NK_MAX(min, max); slider_min = NK_MIN(min, max); slider_value = NK_CLAMP(slider_min, val, slider_max); slider_range = slider_max - slider_min; slider_steps = slider_range / step; cursor_offset = (slider_value - slider_min) / step; /* calculate cursor Basically you have two cursors. One for visual representation and interaction and one for updating the actual cursor value. */ logical_cursor.h = bounds.h; logical_cursor.w = bounds.w / slider_steps; logical_cursor.x = bounds.x + (logical_cursor.w * cursor_offset); logical_cursor.y = bounds.y; visual_cursor.h = style->cursor_size.y; visual_cursor.w = style->cursor_size.x; visual_cursor.y = (bounds.y + bounds.h*0.5f) - visual_cursor.h*0.5f; visual_cursor.x = logical_cursor.x - visual_cursor.w*0.5f; slider_value = nk_slider_behavior(state, &logical_cursor, &visual_cursor, in, bounds, slider_min, slider_max, slider_value, step, slider_steps); visual_cursor.x = logical_cursor.x - visual_cursor.w*0.5f; /* draw slider */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_slider(out, *state, style, &bounds, &visual_cursor, slider_min, slider_value, slider_max); if (style->draw_end) style->draw_end(out, style->userdata); return slider_value; } NK_API nk_bool nk_slider_float(struct nk_context *ctx, float min_value, float *value, float max_value, float value_step) { struct nk_window *win; struct nk_panel *layout; struct nk_input *in; const struct nk_style *style; int ret = 0; float old_value; struct nk_rect bounds; enum nk_widget_layout_states state; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); NK_ASSERT(value); if (!ctx || !ctx->current || !ctx->current->layout || !value) return ret; win = ctx->current; style = &ctx->style; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return ret; in = (/*state == NK_WIDGET_ROM || */ layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; old_value = *value; *value = nk_do_slider(&ctx->last_widget_state, &win->buffer, bounds, min_value, old_value, max_value, value_step, &style->slider, in, style->font); return (old_value > *value || old_value < *value); } NK_API float nk_slide_float(struct nk_context *ctx, float min, float val, float max, float step) { nk_slider_float(ctx, min, &val, max, step); return val; } NK_API int nk_slide_int(struct nk_context *ctx, int min, int val, int max, int step) { float value = (float)val; nk_slider_float(ctx, (float)min, &value, (float)max, (float)step); return (int)value; } NK_API nk_bool nk_slider_int(struct nk_context *ctx, int min, int *val, int max, int step) { int ret; float value = (float)*val; ret = nk_slider_float(ctx, (float)min, &value, (float)max, (float)step); *val = (int)value; return ret; } /* =============================================================== * * PROGRESS * * ===============================================================*/ NK_LIB nk_size nk_progress_behavior(nk_flags *state, struct nk_input *in, struct nk_rect r, struct nk_rect cursor, nk_size max, nk_size value, nk_bool modifiable) { int left_mouse_down = 0; int left_mouse_click_in_cursor = 0; nk_widget_state_reset(state); if (!in || !modifiable) return value; left_mouse_down = in && in->mouse.buttons[NK_BUTTON_LEFT].down; left_mouse_click_in_cursor = in && nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, cursor, nk_true); if (nk_input_is_mouse_hovering_rect(in, r)) *state = NK_WIDGET_STATE_HOVERED; if (in && left_mouse_down && left_mouse_click_in_cursor) { if (left_mouse_down && left_mouse_click_in_cursor) { float ratio = NK_MAX(0, (float)(in->mouse.pos.x - cursor.x)) / (float)cursor.w; value = (nk_size)NK_CLAMP(0, (float)max * ratio, (float)max); in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x = cursor.x + cursor.w/2.0f; *state |= NK_WIDGET_STATE_ACTIVE; } } /* set progressbar widget state */ if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, r)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(in, r)) *state |= NK_WIDGET_STATE_LEFT; return value; } NK_LIB void nk_draw_progress(struct nk_command_buffer *out, nk_flags state, const struct nk_style_progress *style, const struct nk_rect *bounds, const struct nk_rect *scursor, nk_size value, nk_size max) { const struct nk_style_item *background; const struct nk_style_item *cursor; NK_UNUSED(max); NK_UNUSED(value); /* select correct colors/images to draw */ if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->active; cursor = &style->cursor_active; } else if (state & NK_WIDGET_STATE_HOVER){ background = &style->hover; cursor = &style->cursor_hover; } else { background = &style->normal; cursor = &style->cursor_normal; } /* draw background */ switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, *bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, *bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, *bounds, style->rounding, background->data.color); nk_stroke_rect(out, *bounds, style->rounding, style->border, style->border_color); break; } /* draw cursor */ switch(cursor->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, *scursor, &cursor->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, *scursor, &cursor->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, *scursor, style->rounding, cursor->data.color); nk_stroke_rect(out, *scursor, style->rounding, style->border, style->border_color); break; } } NK_LIB nk_size nk_do_progress(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, nk_size value, nk_size max, nk_bool modifiable, const struct nk_style_progress *style, struct nk_input *in) { float prog_scale; nk_size prog_value; struct nk_rect cursor; NK_ASSERT(style); NK_ASSERT(out); if (!out || !style) return 0; /* calculate progressbar cursor */ cursor.w = NK_MAX(bounds.w, 2 * style->padding.x + 2 * style->border); cursor.h = NK_MAX(bounds.h, 2 * style->padding.y + 2 * style->border); cursor = nk_pad_rect(bounds, nk_vec2(style->padding.x + style->border, style->padding.y + style->border)); prog_scale = (float)value / (float)max; /* update progressbar */ prog_value = NK_MIN(value, max); prog_value = nk_progress_behavior(state, in, bounds, cursor,max, prog_value, modifiable); cursor.w = cursor.w * prog_scale; /* draw progressbar */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_progress(out, *state, style, &bounds, &cursor, value, max); if (style->draw_end) style->draw_end(out, style->userdata); return prog_value; } NK_API nk_bool nk_progress(struct nk_context *ctx, nk_size *cur, nk_size max, nk_bool is_modifyable) { struct nk_window *win; struct nk_panel *layout; const struct nk_style *style; struct nk_input *in; struct nk_rect bounds; enum nk_widget_layout_states state; nk_size old_value; NK_ASSERT(ctx); NK_ASSERT(cur); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !cur) return 0; win = ctx->current; style = &ctx->style; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; old_value = *cur; *cur = nk_do_progress(&ctx->last_widget_state, &win->buffer, bounds, *cur, max, is_modifyable, &style->progress, in); return (*cur != old_value); } NK_API nk_size nk_prog(struct nk_context *ctx, nk_size cur, nk_size max, nk_bool modifyable) { nk_progress(ctx, &cur, max, modifyable); return cur; } /* =============================================================== * * SCROLLBAR * * ===============================================================*/ NK_LIB float nk_scrollbar_behavior(nk_flags *state, struct nk_input *in, int has_scrolling, const struct nk_rect *scroll, const struct nk_rect *cursor, const struct nk_rect *empty0, const struct nk_rect *empty1, float scroll_offset, float target, float scroll_step, enum nk_orientation o) { nk_flags ws = 0; int left_mouse_down; unsigned int left_mouse_clicked; int left_mouse_click_in_cursor; float scroll_delta; nk_widget_state_reset(state); if (!in) return scroll_offset; left_mouse_down = in->mouse.buttons[NK_BUTTON_LEFT].down; left_mouse_clicked = in->mouse.buttons[NK_BUTTON_LEFT].clicked; left_mouse_click_in_cursor = nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, *cursor, nk_true); if (nk_input_is_mouse_hovering_rect(in, *scroll)) *state = NK_WIDGET_STATE_HOVERED; scroll_delta = (o == NK_VERTICAL) ? in->mouse.scroll_delta.y: in->mouse.scroll_delta.x; if (left_mouse_down && left_mouse_click_in_cursor && !left_mouse_clicked) { /* update cursor by mouse dragging */ float pixel, delta; *state = NK_WIDGET_STATE_ACTIVE; if (o == NK_VERTICAL) { float cursor_y; pixel = in->mouse.delta.y; delta = (pixel / scroll->h) * target; scroll_offset = NK_CLAMP(0, scroll_offset + delta, target - scroll->h); cursor_y = scroll->y + ((scroll_offset/target) * scroll->h); in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.y = cursor_y + cursor->h/2.0f; } else { float cursor_x; pixel = in->mouse.delta.x; delta = (pixel / scroll->w) * target; scroll_offset = NK_CLAMP(0, scroll_offset + delta, target - scroll->w); cursor_x = scroll->x + ((scroll_offset/target) * scroll->w); in->mouse.buttons[NK_BUTTON_LEFT].clicked_pos.x = cursor_x + cursor->w/2.0f; } } else if ((nk_input_is_key_pressed(in, NK_KEY_SCROLL_UP) && o == NK_VERTICAL && has_scrolling)|| nk_button_behavior(&ws, *empty0, in, NK_BUTTON_DEFAULT)) { /* scroll page up by click on empty space or shortcut */ if (o == NK_VERTICAL) scroll_offset = NK_MAX(0, scroll_offset - scroll->h); else scroll_offset = NK_MAX(0, scroll_offset - scroll->w); } else if ((nk_input_is_key_pressed(in, NK_KEY_SCROLL_DOWN) && o == NK_VERTICAL && has_scrolling) || nk_button_behavior(&ws, *empty1, in, NK_BUTTON_DEFAULT)) { /* scroll page down by click on empty space or shortcut */ if (o == NK_VERTICAL) scroll_offset = NK_MIN(scroll_offset + scroll->h, target - scroll->h); else scroll_offset = NK_MIN(scroll_offset + scroll->w, target - scroll->w); } else if (has_scrolling) { if ((scroll_delta < 0 || (scroll_delta > 0))) { /* update cursor by mouse scrolling */ scroll_offset = scroll_offset + scroll_step * (-scroll_delta); if (o == NK_VERTICAL) scroll_offset = NK_CLAMP(0, scroll_offset, target - scroll->h); else scroll_offset = NK_CLAMP(0, scroll_offset, target - scroll->w); } else if (nk_input_is_key_pressed(in, NK_KEY_SCROLL_START)) { /* update cursor to the beginning */ if (o == NK_VERTICAL) scroll_offset = 0; } else if (nk_input_is_key_pressed(in, NK_KEY_SCROLL_END)) { /* update cursor to the end */ if (o == NK_VERTICAL) scroll_offset = target - scroll->h; } } if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, *scroll)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(in, *scroll)) *state |= NK_WIDGET_STATE_LEFT; return scroll_offset; } NK_LIB void nk_draw_scrollbar(struct nk_command_buffer *out, nk_flags state, const struct nk_style_scrollbar *style, const struct nk_rect *bounds, const struct nk_rect *scroll) { const struct nk_style_item *background; const struct nk_style_item *cursor; /* select correct colors/images to draw */ if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->active; cursor = &style->cursor_active; } else if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover; cursor = &style->cursor_hover; } else { background = &style->normal; cursor = &style->cursor_normal; } /* draw background */ switch (background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, *bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, *bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, *bounds, style->rounding, background->data.color); nk_stroke_rect(out, *bounds, style->rounding, style->border, style->border_color); break; } /* draw cursor */ switch (cursor->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, *scroll, &cursor->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, *scroll, &cursor->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, *scroll, style->rounding_cursor, cursor->data.color); nk_stroke_rect(out, *scroll, style->rounding_cursor, style->border_cursor, style->cursor_border_color); break; } } NK_LIB float nk_do_scrollbarv(nk_flags *state, struct nk_command_buffer *out, struct nk_rect scroll, int has_scrolling, float offset, float target, float step, float button_pixel_inc, const struct nk_style_scrollbar *style, struct nk_input *in, const struct nk_user_font *font) { struct nk_rect empty_north; struct nk_rect empty_south; struct nk_rect cursor; float scroll_step; float scroll_offset; float scroll_off; float scroll_ratio; NK_ASSERT(out); NK_ASSERT(style); NK_ASSERT(state); if (!out || !style) return 0; scroll.w = NK_MAX(scroll.w, 1); scroll.h = NK_MAX(scroll.h, 0); if (target <= scroll.h) return 0; /* optional scrollbar buttons */ if (style->show_buttons) { nk_flags ws; float scroll_h; struct nk_rect button; button.x = scroll.x; button.w = scroll.w; button.h = scroll.w; scroll_h = NK_MAX(scroll.h - 2 * button.h,0); scroll_step = NK_MIN(step, button_pixel_inc); /* decrement button */ button.y = scroll.y; if (nk_do_button_symbol(&ws, out, button, style->dec_symbol, NK_BUTTON_REPEATER, &style->dec_button, in, font)) offset = offset - scroll_step; /* increment button */ button.y = scroll.y + scroll.h - button.h; if (nk_do_button_symbol(&ws, out, button, style->inc_symbol, NK_BUTTON_REPEATER, &style->inc_button, in, font)) offset = offset + scroll_step; scroll.y = scroll.y + button.h; scroll.h = scroll_h; } /* calculate scrollbar constants */ scroll_step = NK_MIN(step, scroll.h); scroll_offset = NK_CLAMP(0, offset, target - scroll.h); scroll_ratio = scroll.h / target; scroll_off = scroll_offset / target; /* calculate scrollbar cursor bounds */ cursor.h = NK_MAX((scroll_ratio * scroll.h) - (2*style->border + 2*style->padding.y), 0); cursor.y = scroll.y + (scroll_off * scroll.h) + style->border + style->padding.y; cursor.w = scroll.w - (2 * style->border + 2 * style->padding.x); cursor.x = scroll.x + style->border + style->padding.x; /* calculate empty space around cursor */ empty_north.x = scroll.x; empty_north.y = scroll.y; empty_north.w = scroll.w; empty_north.h = NK_MAX(cursor.y - scroll.y, 0); empty_south.x = scroll.x; empty_south.y = cursor.y + cursor.h; empty_south.w = scroll.w; empty_south.h = NK_MAX((scroll.y + scroll.h) - (cursor.y + cursor.h), 0); /* update scrollbar */ scroll_offset = nk_scrollbar_behavior(state, in, has_scrolling, &scroll, &cursor, &empty_north, &empty_south, scroll_offset, target, scroll_step, NK_VERTICAL); scroll_off = scroll_offset / target; cursor.y = scroll.y + (scroll_off * scroll.h) + style->border_cursor + style->padding.y; /* draw scrollbar */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_scrollbar(out, *state, style, &scroll, &cursor); if (style->draw_end) style->draw_end(out, style->userdata); return scroll_offset; } NK_LIB float nk_do_scrollbarh(nk_flags *state, struct nk_command_buffer *out, struct nk_rect scroll, int has_scrolling, float offset, float target, float step, float button_pixel_inc, const struct nk_style_scrollbar *style, struct nk_input *in, const struct nk_user_font *font) { struct nk_rect cursor; struct nk_rect empty_west; struct nk_rect empty_east; float scroll_step; float scroll_offset; float scroll_off; float scroll_ratio; NK_ASSERT(out); NK_ASSERT(style); if (!out || !style) return 0; /* scrollbar background */ scroll.h = NK_MAX(scroll.h, 1); scroll.w = NK_MAX(scroll.w, 2 * scroll.h); if (target <= scroll.w) return 0; /* optional scrollbar buttons */ if (style->show_buttons) { nk_flags ws; float scroll_w; struct nk_rect button; button.y = scroll.y; button.w = scroll.h; button.h = scroll.h; scroll_w = scroll.w - 2 * button.w; scroll_step = NK_MIN(step, button_pixel_inc); /* decrement button */ button.x = scroll.x; if (nk_do_button_symbol(&ws, out, button, style->dec_symbol, NK_BUTTON_REPEATER, &style->dec_button, in, font)) offset = offset - scroll_step; /* increment button */ button.x = scroll.x + scroll.w - button.w; if (nk_do_button_symbol(&ws, out, button, style->inc_symbol, NK_BUTTON_REPEATER, &style->inc_button, in, font)) offset = offset + scroll_step; scroll.x = scroll.x + button.w; scroll.w = scroll_w; } /* calculate scrollbar constants */ scroll_step = NK_MIN(step, scroll.w); scroll_offset = NK_CLAMP(0, offset, target - scroll.w); scroll_ratio = scroll.w / target; scroll_off = scroll_offset / target; /* calculate cursor bounds */ cursor.w = (scroll_ratio * scroll.w) - (2*style->border + 2*style->padding.x); cursor.x = scroll.x + (scroll_off * scroll.w) + style->border + style->padding.x; cursor.h = scroll.h - (2 * style->border + 2 * style->padding.y); cursor.y = scroll.y + style->border + style->padding.y; /* calculate empty space around cursor */ empty_west.x = scroll.x; empty_west.y = scroll.y; empty_west.w = cursor.x - scroll.x; empty_west.h = scroll.h; empty_east.x = cursor.x + cursor.w; empty_east.y = scroll.y; empty_east.w = (scroll.x + scroll.w) - (cursor.x + cursor.w); empty_east.h = scroll.h; /* update scrollbar */ scroll_offset = nk_scrollbar_behavior(state, in, has_scrolling, &scroll, &cursor, &empty_west, &empty_east, scroll_offset, target, scroll_step, NK_HORIZONTAL); scroll_off = scroll_offset / target; cursor.x = scroll.x + (scroll_off * scroll.w); /* draw scrollbar */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_scrollbar(out, *state, style, &scroll, &cursor); if (style->draw_end) style->draw_end(out, style->userdata); return scroll_offset; } /* =============================================================== * * TEXT EDITOR * * ===============================================================*/ /* stb_textedit.h - v1.8 - public domain - Sean Barrett */ struct nk_text_find { float x,y; /* position of n'th character */ float height; /* height of line */ int first_char, length; /* first char of row, and length */ int prev_first; /*_ first char of previous row */ }; struct nk_text_edit_row { float x0,x1; /* starting x location, end x location (allows for align=right, etc) */ float baseline_y_delta; /* position of baseline relative to previous row's baseline*/ float ymin,ymax; /* height of row above and below baseline */ int num_chars; }; /* forward declarations */ NK_INTERN void nk_textedit_makeundo_delete(struct nk_text_edit*, int, int); NK_INTERN void nk_textedit_makeundo_insert(struct nk_text_edit*, int, int); NK_INTERN void nk_textedit_makeundo_replace(struct nk_text_edit*, int, int, int); #define NK_TEXT_HAS_SELECTION(s) ((s)->select_start != (s)->select_end) NK_INTERN float nk_textedit_get_width(const struct nk_text_edit *edit, int line_start, int char_id, const struct nk_user_font *font) { int len = 0; nk_rune unicode = 0; const char *str = nk_str_at_const(&edit->string, line_start + char_id, &unicode, &len); return font->width(font->userdata, font->height, str, len); } NK_INTERN void nk_textedit_layout_row(struct nk_text_edit_row *r, struct nk_text_edit *edit, int line_start_id, float row_height, const struct nk_user_font *font) { int l; int glyphs = 0; nk_rune unicode; const char *remaining; int len = nk_str_len_char(&edit->string); const char *end = nk_str_get_const(&edit->string) + len; const char *text = nk_str_at_const(&edit->string, line_start_id, &unicode, &l); const struct nk_vec2 size = nk_text_calculate_text_bounds(font, text, (int)(end - text), row_height, &remaining, 0, &glyphs, NK_STOP_ON_NEW_LINE); r->x0 = 0.0f; r->x1 = size.x; r->baseline_y_delta = size.y; r->ymin = 0.0f; r->ymax = size.y; r->num_chars = glyphs; } NK_INTERN int nk_textedit_locate_coord(struct nk_text_edit *edit, float x, float y, const struct nk_user_font *font, float row_height) { struct nk_text_edit_row r; int n = edit->string.len; float base_y = 0, prev_x; int i=0, k; r.x0 = r.x1 = 0; r.ymin = r.ymax = 0; r.num_chars = 0; /* search rows to find one that straddles 'y' */ while (i < n) { nk_textedit_layout_row(&r, edit, i, row_height, font); if (r.num_chars <= 0) return n; if (i==0 && y < base_y + r.ymin) return 0; if (y < base_y + r.ymax) break; i += r.num_chars; base_y += r.baseline_y_delta; } /* below all text, return 'after' last character */ if (i >= n) return n; /* check if it's before the beginning of the line */ if (x < r.x0) return i; /* check if it's before the end of the line */ if (x < r.x1) { /* search characters in row for one that straddles 'x' */ k = i; prev_x = r.x0; for (i=0; i < r.num_chars; ++i) { float w = nk_textedit_get_width(edit, k, i, font); if (x < prev_x+w) { if (x < prev_x+w/2) return k+i; else return k+i+1; } prev_x += w; } /* shouldn't happen, but if it does, fall through to end-of-line case */ } /* if the last character is a newline, return that. * otherwise return 'after' the last character */ if (nk_str_rune_at(&edit->string, i+r.num_chars-1) == '\n') return i+r.num_chars-1; else return i+r.num_chars; } NK_LIB void nk_textedit_click(struct nk_text_edit *state, float x, float y, const struct nk_user_font *font, float row_height) { /* API click: on mouse down, move the cursor to the clicked location, * and reset the selection */ state->cursor = nk_textedit_locate_coord(state, x, y, font, row_height); state->select_start = state->cursor; state->select_end = state->cursor; state->has_preferred_x = 0; } NK_LIB void nk_textedit_drag(struct nk_text_edit *state, float x, float y, const struct nk_user_font *font, float row_height) { /* API drag: on mouse drag, move the cursor and selection endpoint * to the clicked location */ int p = nk_textedit_locate_coord(state, x, y, font, row_height); if (state->select_start == state->select_end) state->select_start = state->cursor; state->cursor = state->select_end = p; } NK_INTERN void nk_textedit_find_charpos(struct nk_text_find *find, struct nk_text_edit *state, int n, int single_line, const struct nk_user_font *font, float row_height) { /* find the x/y location of a character, and remember info about the previous * row in case we get a move-up event (for page up, we'll have to rescan) */ struct nk_text_edit_row r; int prev_start = 0; int z = state->string.len; int i=0, first; nk_zero_struct(r); if (n == z) { /* if it's at the end, then find the last line -- simpler than trying to explicitly handle this case in the regular code */ nk_textedit_layout_row(&r, state, 0, row_height, font); if (single_line) { find->first_char = 0; find->length = z; } else { while (i < z) { prev_start = i; i += r.num_chars; nk_textedit_layout_row(&r, state, i, row_height, font); } find->first_char = i; find->length = r.num_chars; } find->x = r.x1; find->y = r.ymin; find->height = r.ymax - r.ymin; find->prev_first = prev_start; return; } /* search rows to find the one that straddles character n */ find->y = 0; for(;;) { nk_textedit_layout_row(&r, state, i, row_height, font); if (n < i + r.num_chars) break; prev_start = i; i += r.num_chars; find->y += r.baseline_y_delta; } find->first_char = first = i; find->length = r.num_chars; find->height = r.ymax - r.ymin; find->prev_first = prev_start; /* now scan to find xpos */ find->x = r.x0; for (i=0; first+i < n; ++i) find->x += nk_textedit_get_width(state, first, i, font); } NK_INTERN void nk_textedit_clamp(struct nk_text_edit *state) { /* make the selection/cursor state valid if client altered the string */ int n = state->string.len; if (NK_TEXT_HAS_SELECTION(state)) { if (state->select_start > n) state->select_start = n; if (state->select_end > n) state->select_end = n; /* if clamping forced them to be equal, move the cursor to match */ if (state->select_start == state->select_end) state->cursor = state->select_start; } if (state->cursor > n) state->cursor = n; } NK_API void nk_textedit_delete(struct nk_text_edit *state, int where, int len) { /* delete characters while updating undo */ nk_textedit_makeundo_delete(state, where, len); nk_str_delete_runes(&state->string, where, len); state->has_preferred_x = 0; } NK_API void nk_textedit_delete_selection(struct nk_text_edit *state) { /* delete the section */ nk_textedit_clamp(state); if (NK_TEXT_HAS_SELECTION(state)) { if (state->select_start < state->select_end) { nk_textedit_delete(state, state->select_start, state->select_end - state->select_start); state->select_end = state->cursor = state->select_start; } else { nk_textedit_delete(state, state->select_end, state->select_start - state->select_end); state->select_start = state->cursor = state->select_end; } state->has_preferred_x = 0; } } NK_INTERN void nk_textedit_sortselection(struct nk_text_edit *state) { /* canonicalize the selection so start <= end */ if (state->select_end < state->select_start) { int temp = state->select_end; state->select_end = state->select_start; state->select_start = temp; } } NK_INTERN void nk_textedit_move_to_first(struct nk_text_edit *state) { /* move cursor to first character of selection */ if (NK_TEXT_HAS_SELECTION(state)) { nk_textedit_sortselection(state); state->cursor = state->select_start; state->select_end = state->select_start; state->has_preferred_x = 0; } } NK_INTERN void nk_textedit_move_to_last(struct nk_text_edit *state) { /* move cursor to last character of selection */ if (NK_TEXT_HAS_SELECTION(state)) { nk_textedit_sortselection(state); nk_textedit_clamp(state); state->cursor = state->select_end; state->select_start = state->select_end; state->has_preferred_x = 0; } } NK_INTERN int nk_is_word_boundary( struct nk_text_edit *state, int idx) { int len; nk_rune c; if (idx <= 0) return 1; if (!nk_str_at_rune(&state->string, idx, &c, &len)) return 1; return (c == ' ' || c == '\t' ||c == 0x3000 || c == ',' || c == ';' || c == '(' || c == ')' || c == '{' || c == '}' || c == '[' || c == ']' || c == '|'); } NK_INTERN int nk_textedit_move_to_word_previous(struct nk_text_edit *state) { int c = state->cursor - 1; while( c >= 0 && !nk_is_word_boundary(state, c)) --c; if( c < 0 ) c = 0; return c; } NK_INTERN int nk_textedit_move_to_word_next(struct nk_text_edit *state) { const int len = state->string.len; int c = state->cursor+1; while( c < len && !nk_is_word_boundary(state, c)) ++c; if( c > len ) c = len; return c; } NK_INTERN void nk_textedit_prep_selection_at_cursor(struct nk_text_edit *state) { /* update selection and cursor to match each other */ if (!NK_TEXT_HAS_SELECTION(state)) state->select_start = state->select_end = state->cursor; else state->cursor = state->select_end; } NK_API nk_bool nk_textedit_cut(struct nk_text_edit *state) { /* API cut: delete selection */ if (state->mode == NK_TEXT_EDIT_MODE_VIEW) return 0; if (NK_TEXT_HAS_SELECTION(state)) { nk_textedit_delete_selection(state); /* implicitly clamps */ state->has_preferred_x = 0; return 1; } return 0; } NK_API nk_bool nk_textedit_paste(struct nk_text_edit *state, char const *ctext, int len) { /* API paste: replace existing selection with passed-in text */ int glyphs; const char *text = (const char *) ctext; if (state->mode == NK_TEXT_EDIT_MODE_VIEW) return 0; /* if there's a selection, the paste should delete it */ nk_textedit_clamp(state); nk_textedit_delete_selection(state); /* try to insert the characters */ glyphs = nk_utf_len(ctext, len); if (nk_str_insert_text_char(&state->string, state->cursor, text, len)) { nk_textedit_makeundo_insert(state, state->cursor, glyphs); state->cursor += len; state->has_preferred_x = 0; return 1; } /* remove the undo since we didn't actually insert the characters */ if (state->undo.undo_point) --state->undo.undo_point; return 0; } NK_API void nk_textedit_text(struct nk_text_edit *state, const char *text, int total_len) { nk_rune unicode; int glyph_len; int text_len = 0; NK_ASSERT(state); NK_ASSERT(text); if (!text || !total_len || state->mode == NK_TEXT_EDIT_MODE_VIEW) return; glyph_len = nk_utf_decode(text, &unicode, total_len); while ((text_len < total_len) && glyph_len) { /* don't insert a backward delete, just process the event */ if (unicode == 127) goto next; /* can't add newline in single-line mode */ if (unicode == '\n' && state->single_line) goto next; /* filter incoming text */ if (state->filter && !state->filter(state, unicode)) goto next; if (!NK_TEXT_HAS_SELECTION(state) && state->cursor < state->string.len) { if (state->mode == NK_TEXT_EDIT_MODE_REPLACE) { nk_textedit_makeundo_replace(state, state->cursor, 1, 1); nk_str_delete_runes(&state->string, state->cursor, 1); } if (nk_str_insert_text_utf8(&state->string, state->cursor, text+text_len, 1)) { ++state->cursor; state->has_preferred_x = 0; } } else { nk_textedit_delete_selection(state); /* implicitly clamps */ if (nk_str_insert_text_utf8(&state->string, state->cursor, text+text_len, 1)) { nk_textedit_makeundo_insert(state, state->cursor, 1); ++state->cursor; state->has_preferred_x = 0; } } next: text_len += glyph_len; glyph_len = nk_utf_decode(text + text_len, &unicode, total_len-text_len); } } NK_LIB void nk_textedit_key(struct nk_text_edit *state, enum nk_keys key, int shift_mod, const struct nk_user_font *font, float row_height) { retry: switch (key) { case NK_KEY_NONE: case NK_KEY_CTRL: case NK_KEY_ENTER: case NK_KEY_SHIFT: case NK_KEY_TAB: case NK_KEY_COPY: case NK_KEY_CUT: case NK_KEY_PASTE: case NK_KEY_MAX: default: break; case NK_KEY_TEXT_UNDO: nk_textedit_undo(state); state->has_preferred_x = 0; break; case NK_KEY_TEXT_REDO: nk_textedit_redo(state); state->has_preferred_x = 0; break; case NK_KEY_TEXT_SELECT_ALL: nk_textedit_select_all(state); state->has_preferred_x = 0; break; case NK_KEY_TEXT_INSERT_MODE: if (state->mode == NK_TEXT_EDIT_MODE_VIEW) state->mode = NK_TEXT_EDIT_MODE_INSERT; break; case NK_KEY_TEXT_REPLACE_MODE: if (state->mode == NK_TEXT_EDIT_MODE_VIEW) state->mode = NK_TEXT_EDIT_MODE_REPLACE; break; case NK_KEY_TEXT_RESET_MODE: if (state->mode == NK_TEXT_EDIT_MODE_INSERT || state->mode == NK_TEXT_EDIT_MODE_REPLACE) state->mode = NK_TEXT_EDIT_MODE_VIEW; break; case NK_KEY_LEFT: if (shift_mod) { nk_textedit_clamp(state); nk_textedit_prep_selection_at_cursor(state); /* move selection left */ if (state->select_end > 0) --state->select_end; state->cursor = state->select_end; state->has_preferred_x = 0; } else { /* if currently there's a selection, * move cursor to start of selection */ if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_move_to_first(state); else if (state->cursor > 0) --state->cursor; state->has_preferred_x = 0; } break; case NK_KEY_RIGHT: if (shift_mod) { nk_textedit_prep_selection_at_cursor(state); /* move selection right */ ++state->select_end; nk_textedit_clamp(state); state->cursor = state->select_end; state->has_preferred_x = 0; } else { /* if currently there's a selection, * move cursor to end of selection */ if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_move_to_last(state); else ++state->cursor; nk_textedit_clamp(state); state->has_preferred_x = 0; } break; case NK_KEY_TEXT_WORD_LEFT: if (shift_mod) { if( !NK_TEXT_HAS_SELECTION( state ) ) nk_textedit_prep_selection_at_cursor(state); state->cursor = nk_textedit_move_to_word_previous(state); state->select_end = state->cursor; nk_textedit_clamp(state ); } else { if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_move_to_first(state); else { state->cursor = nk_textedit_move_to_word_previous(state); nk_textedit_clamp(state ); } } break; case NK_KEY_TEXT_WORD_RIGHT: if (shift_mod) { if( !NK_TEXT_HAS_SELECTION( state ) ) nk_textedit_prep_selection_at_cursor(state); state->cursor = nk_textedit_move_to_word_next(state); state->select_end = state->cursor; nk_textedit_clamp(state); } else { if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_move_to_last(state); else { state->cursor = nk_textedit_move_to_word_next(state); nk_textedit_clamp(state ); } } break; case NK_KEY_DOWN: { struct nk_text_find find; struct nk_text_edit_row row; int i, sel = shift_mod; if (state->single_line) { /* on windows, up&down in single-line behave like left&right */ key = NK_KEY_RIGHT; goto retry; } if (sel) nk_textedit_prep_selection_at_cursor(state); else if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_move_to_last(state); /* compute current position of cursor point */ nk_textedit_clamp(state); nk_textedit_find_charpos(&find, state, state->cursor, state->single_line, font, row_height); /* now find character position down a row */ if (find.length) { float x; float goal_x = state->has_preferred_x ? state->preferred_x : find.x; int start = find.first_char + find.length; state->cursor = start; nk_textedit_layout_row(&row, state, state->cursor, row_height, font); x = row.x0; for (i=0; i < row.num_chars && x < row.x1; ++i) { float dx = nk_textedit_get_width(state, start, i, font); x += dx; if (x > goal_x) break; ++state->cursor; } nk_textedit_clamp(state); state->has_preferred_x = 1; state->preferred_x = goal_x; if (sel) state->select_end = state->cursor; } } break; case NK_KEY_UP: { struct nk_text_find find; struct nk_text_edit_row row; int i, sel = shift_mod; if (state->single_line) { /* on windows, up&down become left&right */ key = NK_KEY_LEFT; goto retry; } if (sel) nk_textedit_prep_selection_at_cursor(state); else if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_move_to_first(state); /* compute current position of cursor point */ nk_textedit_clamp(state); nk_textedit_find_charpos(&find, state, state->cursor, state->single_line, font, row_height); /* can only go up if there's a previous row */ if (find.prev_first != find.first_char) { /* now find character position up a row */ float x; float goal_x = state->has_preferred_x ? state->preferred_x : find.x; state->cursor = find.prev_first; nk_textedit_layout_row(&row, state, state->cursor, row_height, font); x = row.x0; for (i=0; i < row.num_chars && x < row.x1; ++i) { float dx = nk_textedit_get_width(state, find.prev_first, i, font); x += dx; if (x > goal_x) break; ++state->cursor; } nk_textedit_clamp(state); state->has_preferred_x = 1; state->preferred_x = goal_x; if (sel) state->select_end = state->cursor; } } break; case NK_KEY_DEL: if (state->mode == NK_TEXT_EDIT_MODE_VIEW) break; if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_delete_selection(state); else { int n = state->string.len; if (state->cursor < n) nk_textedit_delete(state, state->cursor, 1); } state->has_preferred_x = 0; break; case NK_KEY_BACKSPACE: if (state->mode == NK_TEXT_EDIT_MODE_VIEW) break; if (NK_TEXT_HAS_SELECTION(state)) nk_textedit_delete_selection(state); else { nk_textedit_clamp(state); if (state->cursor > 0) { nk_textedit_delete(state, state->cursor-1, 1); --state->cursor; } } state->has_preferred_x = 0; break; case NK_KEY_TEXT_START: if (shift_mod) { nk_textedit_prep_selection_at_cursor(state); state->cursor = state->select_end = 0; state->has_preferred_x = 0; } else { state->cursor = state->select_start = state->select_end = 0; state->has_preferred_x = 0; } break; case NK_KEY_TEXT_END: if (shift_mod) { nk_textedit_prep_selection_at_cursor(state); state->cursor = state->select_end = state->string.len; state->has_preferred_x = 0; } else { state->cursor = state->string.len; state->select_start = state->select_end = 0; state->has_preferred_x = 0; } break; case NK_KEY_TEXT_LINE_START: { if (shift_mod) { struct nk_text_find find; nk_textedit_clamp(state); nk_textedit_prep_selection_at_cursor(state); if (state->string.len && state->cursor == state->string.len) --state->cursor; nk_textedit_find_charpos(&find, state,state->cursor, state->single_line, font, row_height); state->cursor = state->select_end = find.first_char; state->has_preferred_x = 0; } else { struct nk_text_find find; if (state->string.len && state->cursor == state->string.len) --state->cursor; nk_textedit_clamp(state); nk_textedit_move_to_first(state); nk_textedit_find_charpos(&find, state, state->cursor, state->single_line, font, row_height); state->cursor = find.first_char; state->has_preferred_x = 0; } } break; case NK_KEY_TEXT_LINE_END: { if (shift_mod) { struct nk_text_find find; nk_textedit_clamp(state); nk_textedit_prep_selection_at_cursor(state); nk_textedit_find_charpos(&find, state, state->cursor, state->single_line, font, row_height); state->has_preferred_x = 0; state->cursor = find.first_char + find.length; if (find.length > 0 && nk_str_rune_at(&state->string, state->cursor-1) == '\n') --state->cursor; state->select_end = state->cursor; } else { struct nk_text_find find; nk_textedit_clamp(state); nk_textedit_move_to_first(state); nk_textedit_find_charpos(&find, state, state->cursor, state->single_line, font, row_height); state->has_preferred_x = 0; state->cursor = find.first_char + find.length; if (find.length > 0 && nk_str_rune_at(&state->string, state->cursor-1) == '\n') --state->cursor; }} break; } } NK_INTERN void nk_textedit_flush_redo(struct nk_text_undo_state *state) { state->redo_point = NK_TEXTEDIT_UNDOSTATECOUNT; state->redo_char_point = NK_TEXTEDIT_UNDOCHARCOUNT; } NK_INTERN void nk_textedit_discard_undo(struct nk_text_undo_state *state) { /* discard the oldest entry in the undo list */ if (state->undo_point > 0) { /* if the 0th undo state has characters, clean those up */ if (state->undo_rec[0].char_storage >= 0) { int n = state->undo_rec[0].insert_length, i; /* delete n characters from all other records */ state->undo_char_point = (short)(state->undo_char_point - n); NK_MEMCPY(state->undo_char, state->undo_char + n, (nk_size)state->undo_char_point*sizeof(nk_rune)); for (i=0; i < state->undo_point; ++i) { if (state->undo_rec[i].char_storage >= 0) state->undo_rec[i].char_storage = (short) (state->undo_rec[i].char_storage - n); } } --state->undo_point; NK_MEMCPY(state->undo_rec, state->undo_rec+1, (nk_size)((nk_size)state->undo_point * sizeof(state->undo_rec[0]))); } } NK_INTERN void nk_textedit_discard_redo(struct nk_text_undo_state *state) { /* discard the oldest entry in the redo list--it's bad if this ever happens, but because undo & redo have to store the actual characters in different cases, the redo character buffer can fill up even though the undo buffer didn't */ nk_size num; int k = NK_TEXTEDIT_UNDOSTATECOUNT-1; if (state->redo_point <= k) { /* if the k'th undo state has characters, clean those up */ if (state->undo_rec[k].char_storage >= 0) { int n = state->undo_rec[k].insert_length, i; /* delete n characters from all other records */ state->redo_char_point = (short)(state->redo_char_point + n); num = (nk_size)(NK_TEXTEDIT_UNDOCHARCOUNT - state->redo_char_point); NK_MEMCPY(state->undo_char + state->redo_char_point, state->undo_char + state->redo_char_point-n, num * sizeof(char)); for (i = state->redo_point; i < k; ++i) { if (state->undo_rec[i].char_storage >= 0) { state->undo_rec[i].char_storage = (short) (state->undo_rec[i].char_storage + n); } } } ++state->redo_point; num = (nk_size)(NK_TEXTEDIT_UNDOSTATECOUNT - state->redo_point); if (num) NK_MEMCPY(state->undo_rec + state->redo_point-1, state->undo_rec + state->redo_point, num * sizeof(state->undo_rec[0])); } } NK_INTERN struct nk_text_undo_record* nk_textedit_create_undo_record(struct nk_text_undo_state *state, int numchars) { /* any time we create a new undo record, we discard redo*/ nk_textedit_flush_redo(state); /* if we have no free records, we have to make room, * by sliding the existing records down */ if (state->undo_point == NK_TEXTEDIT_UNDOSTATECOUNT) nk_textedit_discard_undo(state); /* if the characters to store won't possibly fit in the buffer, * we can't undo */ if (numchars > NK_TEXTEDIT_UNDOCHARCOUNT) { state->undo_point = 0; state->undo_char_point = 0; return 0; } /* if we don't have enough free characters in the buffer, * we have to make room */ while (state->undo_char_point + numchars > NK_TEXTEDIT_UNDOCHARCOUNT) nk_textedit_discard_undo(state); return &state->undo_rec[state->undo_point++]; } NK_INTERN nk_rune* nk_textedit_createundo(struct nk_text_undo_state *state, int pos, int insert_len, int delete_len) { struct nk_text_undo_record *r = nk_textedit_create_undo_record(state, insert_len); if (r == 0) return 0; r->where = pos; r->insert_length = (short) insert_len; r->delete_length = (short) delete_len; if (insert_len == 0) { r->char_storage = -1; return 0; } else { r->char_storage = state->undo_char_point; state->undo_char_point = (short)(state->undo_char_point + insert_len); return &state->undo_char[r->char_storage]; } } NK_API void nk_textedit_undo(struct nk_text_edit *state) { struct nk_text_undo_state *s = &state->undo; struct nk_text_undo_record u, *r; if (s->undo_point == 0) return; /* we need to do two things: apply the undo record, and create a redo record */ u = s->undo_rec[s->undo_point-1]; r = &s->undo_rec[s->redo_point-1]; r->char_storage = -1; r->insert_length = u.delete_length; r->delete_length = u.insert_length; r->where = u.where; if (u.delete_length) { /* if the undo record says to delete characters, then the redo record will need to re-insert the characters that get deleted, so we need to store them. there are three cases: - there's enough room to store the characters - characters stored for *redoing* don't leave room for redo - characters stored for *undoing* don't leave room for redo if the last is true, we have to bail */ if (s->undo_char_point + u.delete_length >= NK_TEXTEDIT_UNDOCHARCOUNT) { /* the undo records take up too much character space; there's no space * to store the redo characters */ r->insert_length = 0; } else { int i; /* there's definitely room to store the characters eventually */ while (s->undo_char_point + u.delete_length > s->redo_char_point) { /* there's currently not enough room, so discard a redo record */ nk_textedit_discard_redo(s); /* should never happen: */ if (s->redo_point == NK_TEXTEDIT_UNDOSTATECOUNT) return; } r = &s->undo_rec[s->redo_point-1]; r->char_storage = (short)(s->redo_char_point - u.delete_length); s->redo_char_point = (short)(s->redo_char_point - u.delete_length); /* now save the characters */ for (i=0; i < u.delete_length; ++i) s->undo_char[r->char_storage + i] = nk_str_rune_at(&state->string, u.where + i); } /* now we can carry out the deletion */ nk_str_delete_runes(&state->string, u.where, u.delete_length); } /* check type of recorded action: */ if (u.insert_length) { /* easy case: was a deletion, so we need to insert n characters */ nk_str_insert_text_runes(&state->string, u.where, &s->undo_char[u.char_storage], u.insert_length); s->undo_char_point = (short)(s->undo_char_point - u.insert_length); } state->cursor = (short)(u.where + u.insert_length); s->undo_point--; s->redo_point--; } NK_API void nk_textedit_redo(struct nk_text_edit *state) { struct nk_text_undo_state *s = &state->undo; struct nk_text_undo_record *u, r; if (s->redo_point == NK_TEXTEDIT_UNDOSTATECOUNT) return; /* we need to do two things: apply the redo record, and create an undo record */ u = &s->undo_rec[s->undo_point]; r = s->undo_rec[s->redo_point]; /* we KNOW there must be room for the undo record, because the redo record was derived from an undo record */ u->delete_length = r.insert_length; u->insert_length = r.delete_length; u->where = r.where; u->char_storage = -1; if (r.delete_length) { /* the redo record requires us to delete characters, so the undo record needs to store the characters */ if (s->undo_char_point + u->insert_length > s->redo_char_point) { u->insert_length = 0; u->delete_length = 0; } else { int i; u->char_storage = s->undo_char_point; s->undo_char_point = (short)(s->undo_char_point + u->insert_length); /* now save the characters */ for (i=0; i < u->insert_length; ++i) { s->undo_char[u->char_storage + i] = nk_str_rune_at(&state->string, u->where + i); } } nk_str_delete_runes(&state->string, r.where, r.delete_length); } if (r.insert_length) { /* easy case: need to insert n characters */ nk_str_insert_text_runes(&state->string, r.where, &s->undo_char[r.char_storage], r.insert_length); } state->cursor = r.where + r.insert_length; s->undo_point++; s->redo_point++; } NK_INTERN void nk_textedit_makeundo_insert(struct nk_text_edit *state, int where, int length) { nk_textedit_createundo(&state->undo, where, 0, length); } NK_INTERN void nk_textedit_makeundo_delete(struct nk_text_edit *state, int where, int length) { int i; nk_rune *p = nk_textedit_createundo(&state->undo, where, length, 0); if (p) { for (i=0; i < length; ++i) p[i] = nk_str_rune_at(&state->string, where+i); } } NK_INTERN void nk_textedit_makeundo_replace(struct nk_text_edit *state, int where, int old_length, int new_length) { int i; nk_rune *p = nk_textedit_createundo(&state->undo, where, old_length, new_length); if (p) { for (i=0; i < old_length; ++i) p[i] = nk_str_rune_at(&state->string, where+i); } } NK_LIB void nk_textedit_clear_state(struct nk_text_edit *state, enum nk_text_edit_type type, nk_plugin_filter filter) { /* reset the state to default */ state->undo.undo_point = 0; state->undo.undo_char_point = 0; state->undo.redo_point = NK_TEXTEDIT_UNDOSTATECOUNT; state->undo.redo_char_point = NK_TEXTEDIT_UNDOCHARCOUNT; state->select_end = state->select_start = 0; state->cursor = 0; state->has_preferred_x = 0; state->preferred_x = 0; state->cursor_at_end_of_line = 0; state->initialized = 1; state->single_line = (unsigned char)(type == NK_TEXT_EDIT_SINGLE_LINE); state->mode = NK_TEXT_EDIT_MODE_VIEW; state->filter = filter; state->scrollbar = nk_vec2(0,0); } NK_API void nk_textedit_init_fixed(struct nk_text_edit *state, void *memory, nk_size size) { NK_ASSERT(state); NK_ASSERT(memory); if (!state || !memory || !size) return; NK_MEMSET(state, 0, sizeof(struct nk_text_edit)); nk_textedit_clear_state(state, NK_TEXT_EDIT_SINGLE_LINE, 0); nk_str_init_fixed(&state->string, memory, size); } NK_API void nk_textedit_init(struct nk_text_edit *state, struct nk_allocator *alloc, nk_size size) { NK_ASSERT(state); NK_ASSERT(alloc); if (!state || !alloc) return; NK_MEMSET(state, 0, sizeof(struct nk_text_edit)); nk_textedit_clear_state(state, NK_TEXT_EDIT_SINGLE_LINE, 0); nk_str_init(&state->string, alloc, size); } #ifdef NK_INCLUDE_DEFAULT_ALLOCATOR NK_API void nk_textedit_init_default(struct nk_text_edit *state) { NK_ASSERT(state); if (!state) return; NK_MEMSET(state, 0, sizeof(struct nk_text_edit)); nk_textedit_clear_state(state, NK_TEXT_EDIT_SINGLE_LINE, 0); nk_str_init_default(&state->string); } #endif NK_API void nk_textedit_select_all(struct nk_text_edit *state) { NK_ASSERT(state); state->select_start = 0; state->select_end = state->string.len; } NK_API void nk_textedit_free(struct nk_text_edit *state) { NK_ASSERT(state); if (!state) return; nk_str_free(&state->string); } /* =============================================================== * * FILTER * * ===============================================================*/ NK_API nk_bool nk_filter_default(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(unicode); NK_UNUSED(box); return nk_true; } NK_API nk_bool nk_filter_ascii(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(box); if (unicode > 128) return nk_false; else return nk_true; } NK_API nk_bool nk_filter_float(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(box); if ((unicode < '0' || unicode > '9') && unicode != '.' && unicode != '-') return nk_false; else return nk_true; } NK_API nk_bool nk_filter_decimal(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(box); if ((unicode < '0' || unicode > '9') && unicode != '-') return nk_false; else return nk_true; } NK_API nk_bool nk_filter_hex(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(box); if ((unicode < '0' || unicode > '9') && (unicode < 'a' || unicode > 'f') && (unicode < 'A' || unicode > 'F')) return nk_false; else return nk_true; } NK_API nk_bool nk_filter_oct(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(box); if (unicode < '0' || unicode > '7') return nk_false; else return nk_true; } NK_API nk_bool nk_filter_binary(const struct nk_text_edit *box, nk_rune unicode) { NK_UNUSED(box); if (unicode != '0' && unicode != '1') return nk_false; else return nk_true; } /* =============================================================== * * EDIT * * ===============================================================*/ NK_LIB void nk_edit_draw_text(struct nk_command_buffer *out, const struct nk_style_edit *style, float pos_x, float pos_y, float x_offset, const char *text, int byte_len, float row_height, const struct nk_user_font *font, struct nk_color background, struct nk_color foreground, nk_bool is_selected) { NK_ASSERT(out); NK_ASSERT(font); NK_ASSERT(style); if (!text || !byte_len || !out || !style) return; {int glyph_len = 0; nk_rune unicode = 0; int text_len = 0; float line_width = 0; float glyph_width; const char *line = text; float line_offset = 0; int line_count = 0; struct nk_text txt; txt.padding = nk_vec2(0,0); txt.background = background; txt.text = foreground; glyph_len = nk_utf_decode(text+text_len, &unicode, byte_len-text_len); if (!glyph_len) return; while ((text_len < byte_len) && glyph_len) { if (unicode == '\n') { /* new line separator so draw previous line */ struct nk_rect label; label.y = pos_y + line_offset; label.h = row_height; label.w = line_width; label.x = pos_x; if (!line_count) label.x += x_offset; if (is_selected) /* selection needs to draw different background color */ nk_fill_rect(out, label, 0, background); nk_widget_text(out, label, line, (int)((text + text_len) - line), &txt, NK_TEXT_CENTERED, font); text_len++; line_count++; line_width = 0; line = text + text_len; line_offset += row_height; glyph_len = nk_utf_decode(text + text_len, &unicode, (int)(byte_len-text_len)); continue; } if (unicode == '\r') { text_len++; glyph_len = nk_utf_decode(text + text_len, &unicode, byte_len-text_len); continue; } glyph_width = font->width(font->userdata, font->height, text+text_len, glyph_len); line_width += (float)glyph_width; text_len += glyph_len; glyph_len = nk_utf_decode(text + text_len, &unicode, byte_len-text_len); continue; } if (line_width > 0) { /* draw last line */ struct nk_rect label; label.y = pos_y + line_offset; label.h = row_height; label.w = line_width; label.x = pos_x; if (!line_count) label.x += x_offset; if (is_selected) nk_fill_rect(out, label, 0, background); nk_widget_text(out, label, line, (int)((text + text_len) - line), &txt, NK_TEXT_LEFT, font); }} } NK_LIB nk_flags nk_do_edit(nk_flags *state, struct nk_command_buffer *out, struct nk_rect bounds, nk_flags flags, nk_plugin_filter filter, struct nk_text_edit *edit, const struct nk_style_edit *style, struct nk_input *in, const struct nk_user_font *font) { struct nk_rect area; nk_flags ret = 0; float row_height; char prev_state = 0; char is_hovered = 0; char select_all = 0; char cursor_follow = 0; struct nk_rect old_clip; struct nk_rect clip; NK_ASSERT(state); NK_ASSERT(out); NK_ASSERT(style); if (!state || !out || !style) return ret; /* visible text area calculation */ area.x = bounds.x + style->padding.x + style->border; area.y = bounds.y + style->padding.y + style->border; area.w = bounds.w - (2.0f * style->padding.x + 2 * style->border); area.h = bounds.h - (2.0f * style->padding.y + 2 * style->border); if (flags & NK_EDIT_MULTILINE) area.w = NK_MAX(0, area.w - style->scrollbar_size.x); row_height = (flags & NK_EDIT_MULTILINE)? font->height + style->row_padding: area.h; /* calculate clipping rectangle */ old_clip = out->clip; nk_unify(&clip, &old_clip, area.x, area.y, area.x + area.w, area.y + area.h); /* update edit state */ prev_state = (char)edit->active; is_hovered = (char)nk_input_is_mouse_hovering_rect(in, bounds); if (in && in->mouse.buttons[NK_BUTTON_LEFT].clicked && in->mouse.buttons[NK_BUTTON_LEFT].down) { edit->active = NK_INBOX(in->mouse.pos.x, in->mouse.pos.y, bounds.x, bounds.y, bounds.w, bounds.h); } /* (de)activate text editor */ if (!prev_state && edit->active) { const enum nk_text_edit_type type = (flags & NK_EDIT_MULTILINE) ? NK_TEXT_EDIT_MULTI_LINE: NK_TEXT_EDIT_SINGLE_LINE; /* keep scroll position when re-activating edit widget */ struct nk_vec2 oldscrollbar = edit->scrollbar; nk_textedit_clear_state(edit, type, filter); edit->scrollbar = oldscrollbar; if (flags & NK_EDIT_AUTO_SELECT) select_all = nk_true; if (flags & NK_EDIT_GOTO_END_ON_ACTIVATE) { edit->cursor = edit->string.len; in = 0; } } else if (!edit->active) edit->mode = NK_TEXT_EDIT_MODE_VIEW; if (flags & NK_EDIT_READ_ONLY) edit->mode = NK_TEXT_EDIT_MODE_VIEW; else if (flags & NK_EDIT_ALWAYS_INSERT_MODE) edit->mode = NK_TEXT_EDIT_MODE_INSERT; ret = (edit->active) ? NK_EDIT_ACTIVE: NK_EDIT_INACTIVE; if (prev_state != edit->active) ret |= (edit->active) ? NK_EDIT_ACTIVATED: NK_EDIT_DEACTIVATED; /* handle user input */ if (edit->active && in) { int shift_mod = in->keyboard.keys[NK_KEY_SHIFT].down; const float mouse_x = (in->mouse.pos.x - area.x) + edit->scrollbar.x; const float mouse_y = (in->mouse.pos.y - area.y) + edit->scrollbar.y; /* mouse click handler */ is_hovered = (char)nk_input_is_mouse_hovering_rect(in, area); if (select_all) { nk_textedit_select_all(edit); } else if (is_hovered && in->mouse.buttons[NK_BUTTON_LEFT].down && in->mouse.buttons[NK_BUTTON_LEFT].clicked) { nk_textedit_click(edit, mouse_x, mouse_y, font, row_height); } else if (is_hovered && in->mouse.buttons[NK_BUTTON_LEFT].down && (in->mouse.delta.x != 0.0f || in->mouse.delta.y != 0.0f)) { nk_textedit_drag(edit, mouse_x, mouse_y, font, row_height); cursor_follow = nk_true; } else if (is_hovered && in->mouse.buttons[NK_BUTTON_RIGHT].clicked && in->mouse.buttons[NK_BUTTON_RIGHT].down) { nk_textedit_key(edit, NK_KEY_TEXT_WORD_LEFT, nk_false, font, row_height); nk_textedit_key(edit, NK_KEY_TEXT_WORD_RIGHT, nk_true, font, row_height); cursor_follow = nk_true; } {int i; /* keyboard input */ int old_mode = edit->mode; for (i = 0; i < NK_KEY_MAX; ++i) { if (i == NK_KEY_ENTER || i == NK_KEY_TAB) continue; /* special case */ if (nk_input_is_key_pressed(in, (enum nk_keys)i)) { nk_textedit_key(edit, (enum nk_keys)i, shift_mod, font, row_height); cursor_follow = nk_true; } } if (old_mode != edit->mode) { in->keyboard.text_len = 0; }} /* text input */ edit->filter = filter; if (in->keyboard.text_len) { nk_textedit_text(edit, in->keyboard.text, in->keyboard.text_len); cursor_follow = nk_true; in->keyboard.text_len = 0; } /* enter key handler */ if (nk_input_is_key_pressed(in, NK_KEY_ENTER)) { cursor_follow = nk_true; if (flags & NK_EDIT_CTRL_ENTER_NEWLINE && shift_mod) nk_textedit_text(edit, "\n", 1); else if (flags & NK_EDIT_SIG_ENTER) ret |= NK_EDIT_COMMITED; else nk_textedit_text(edit, "\n", 1); } /* cut & copy handler */ {int copy= nk_input_is_key_pressed(in, NK_KEY_COPY); int cut = nk_input_is_key_pressed(in, NK_KEY_CUT); if ((copy || cut) && (flags & NK_EDIT_CLIPBOARD)) { int glyph_len; nk_rune unicode; const char *text; int b = edit->select_start; int e = edit->select_end; int begin = NK_MIN(b, e); int end = NK_MAX(b, e); text = nk_str_at_const(&edit->string, begin, &unicode, &glyph_len); if (edit->clip.copy) edit->clip.copy(edit->clip.userdata, text, end - begin); if (cut && !(flags & NK_EDIT_READ_ONLY)){ nk_textedit_cut(edit); cursor_follow = nk_true; } }} /* paste handler */ {int paste = nk_input_is_key_pressed(in, NK_KEY_PASTE); if (paste && (flags & NK_EDIT_CLIPBOARD) && edit->clip.paste) { edit->clip.paste(edit->clip.userdata, edit); cursor_follow = nk_true; }} /* tab handler */ {int tab = nk_input_is_key_pressed(in, NK_KEY_TAB); if (tab && (flags & NK_EDIT_ALLOW_TAB)) { nk_textedit_text(edit, " ", 4); cursor_follow = nk_true; }} } /* set widget state */ if (edit->active) *state = NK_WIDGET_STATE_ACTIVE; else nk_widget_state_reset(state); if (is_hovered) *state |= NK_WIDGET_STATE_HOVERED; /* DRAW EDIT */ {const char *text = nk_str_get_const(&edit->string); int len = nk_str_len_char(&edit->string); {/* select background colors/images */ const struct nk_style_item *background; if (*state & NK_WIDGET_STATE_ACTIVED) background = &style->active; else if (*state & NK_WIDGET_STATE_HOVER) background = &style->hover; else background = &style->normal; /* draw background frame */ switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(out, bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(out, bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(out, bounds, style->rounding, background->data.color); nk_stroke_rect(out, bounds, style->rounding, style->border, style->border_color); break; }} area.w = NK_MAX(0, area.w - style->cursor_size); if (edit->active) { int total_lines = 1; struct nk_vec2 text_size = nk_vec2(0,0); /* text pointer positions */ const char *cursor_ptr = 0; const char *select_begin_ptr = 0; const char *select_end_ptr = 0; /* 2D pixel positions */ struct nk_vec2 cursor_pos = nk_vec2(0,0); struct nk_vec2 selection_offset_start = nk_vec2(0,0); struct nk_vec2 selection_offset_end = nk_vec2(0,0); int selection_begin = NK_MIN(edit->select_start, edit->select_end); int selection_end = NK_MAX(edit->select_start, edit->select_end); /* calculate total line count + total space + cursor/selection position */ float line_width = 0.0f; if (text && len) { /* utf8 encoding */ float glyph_width; int glyph_len = 0; nk_rune unicode = 0; int text_len = 0; int glyphs = 0; int row_begin = 0; glyph_len = nk_utf_decode(text, &unicode, len); glyph_width = font->width(font->userdata, font->height, text, glyph_len); line_width = 0; /* iterate all lines */ while ((text_len < len) && glyph_len) { /* set cursor 2D position and line */ if (!cursor_ptr && glyphs == edit->cursor) { int glyph_offset; struct nk_vec2 out_offset; struct nk_vec2 row_size; const char *remaining; /* calculate 2d position */ cursor_pos.y = (float)(total_lines-1) * row_height; row_size = nk_text_calculate_text_bounds(font, text+row_begin, text_len-row_begin, row_height, &remaining, &out_offset, &glyph_offset, NK_STOP_ON_NEW_LINE); cursor_pos.x = row_size.x; cursor_ptr = text + text_len; } /* set start selection 2D position and line */ if (!select_begin_ptr && edit->select_start != edit->select_end && glyphs == selection_begin) { int glyph_offset; struct nk_vec2 out_offset; struct nk_vec2 row_size; const char *remaining; /* calculate 2d position */ selection_offset_start.y = (float)(NK_MAX(total_lines-1,0)) * row_height; row_size = nk_text_calculate_text_bounds(font, text+row_begin, text_len-row_begin, row_height, &remaining, &out_offset, &glyph_offset, NK_STOP_ON_NEW_LINE); selection_offset_start.x = row_size.x; select_begin_ptr = text + text_len; } /* set end selection 2D position and line */ if (!select_end_ptr && edit->select_start != edit->select_end && glyphs == selection_end) { int glyph_offset; struct nk_vec2 out_offset; struct nk_vec2 row_size; const char *remaining; /* calculate 2d position */ selection_offset_end.y = (float)(total_lines-1) * row_height; row_size = nk_text_calculate_text_bounds(font, text+row_begin, text_len-row_begin, row_height, &remaining, &out_offset, &glyph_offset, NK_STOP_ON_NEW_LINE); selection_offset_end.x = row_size.x; select_end_ptr = text + text_len; } if (unicode == '\n') { text_size.x = NK_MAX(text_size.x, line_width); total_lines++; line_width = 0; text_len++; glyphs++; row_begin = text_len; glyph_len = nk_utf_decode(text + text_len, &unicode, len-text_len); glyph_width = font->width(font->userdata, font->height, text+text_len, glyph_len); continue; } glyphs++; text_len += glyph_len; line_width += (float)glyph_width; glyph_len = nk_utf_decode(text + text_len, &unicode, len-text_len); glyph_width = font->width(font->userdata, font->height, text+text_len, glyph_len); continue; } text_size.y = (float)total_lines * row_height; #if 1 //< @r-lyeh if (flags & NK_EDIT_GOTO_END_ON_ACTIVATE) { edit->cursor = edit->string.len; // in = 0; } #endif /* handle case when cursor is at end of text buffer */ if (!cursor_ptr && edit->cursor == edit->string.len) { cursor_pos.x = line_width; cursor_pos.y = text_size.y - row_height; } } { /* scrollbar */ if (cursor_follow) { /* update scrollbar to follow cursor */ if (!(flags & NK_EDIT_NO_HORIZONTAL_SCROLL)) { /* horizontal scroll */ const float scroll_increment = area.w * 0.25f; if (cursor_pos.x < edit->scrollbar.x) edit->scrollbar.x = (float)(int)NK_MAX(0.0f, cursor_pos.x - scroll_increment); if (cursor_pos.x >= edit->scrollbar.x + area.w) edit->scrollbar.x = (float)(int)NK_MAX(0.0f, cursor_pos.x - area.w + scroll_increment); } else edit->scrollbar.x = 0; if (flags & NK_EDIT_MULTILINE) { /* vertical scroll */ if (cursor_pos.y < edit->scrollbar.y) edit->scrollbar.y = NK_MAX(0.0f, cursor_pos.y - row_height); if (cursor_pos.y >= edit->scrollbar.y + row_height) edit->scrollbar.y = edit->scrollbar.y + row_height; } else edit->scrollbar.y = 0; } /* scrollbar widget */ if (flags & NK_EDIT_MULTILINE) { nk_flags ws; struct nk_rect scroll; float scroll_target; float scroll_offset; float scroll_step; float scroll_inc; scroll = area; scroll.x = (bounds.x + bounds.w - style->border) - style->scrollbar_size.x; scroll.w = style->scrollbar_size.x; scroll_offset = edit->scrollbar.y; scroll_step = scroll.h * 0.10f; scroll_inc = scroll.h * 0.01f; scroll_target = text_size.y; edit->scrollbar.y = nk_do_scrollbarv(&ws, out, scroll, 0, scroll_offset, scroll_target, scroll_step, scroll_inc, &style->scrollbar, in, font); } } /* draw text */ {struct nk_color background_color; struct nk_color text_color; struct nk_color sel_background_color; struct nk_color sel_text_color; struct nk_color cursor_color; struct nk_color cursor_text_color; const struct nk_style_item *background; nk_push_scissor(out, clip); /* select correct colors to draw */ if (*state & NK_WIDGET_STATE_ACTIVED) { background = &style->active; text_color = style->text_active; sel_text_color = style->selected_text_hover; sel_background_color = style->selected_hover; cursor_color = style->cursor_hover; cursor_text_color = style->cursor_text_hover; } else if (*state & NK_WIDGET_STATE_HOVER) { background = &style->hover; text_color = style->text_hover; sel_text_color = style->selected_text_hover; sel_background_color = style->selected_hover; cursor_text_color = style->cursor_text_hover; cursor_color = style->cursor_hover; } else { background = &style->normal; text_color = style->text_normal; sel_text_color = style->selected_text_normal; sel_background_color = style->selected_normal; cursor_color = style->cursor_normal; cursor_text_color = style->cursor_text_normal; } if (background->type == NK_STYLE_ITEM_IMAGE) background_color = nk_rgba(0,0,0,0); else background_color = background->data.color; if (edit->select_start == edit->select_end) { /* no selection so just draw the complete text */ const char *begin = nk_str_get_const(&edit->string); int l = nk_str_len_char(&edit->string); nk_edit_draw_text(out, style, area.x - edit->scrollbar.x, area.y - edit->scrollbar.y, 0, begin, l, row_height, font, background_color, text_color, nk_false); } else { /* edit has selection so draw 1-3 text chunks */ if (edit->select_start != edit->select_end && selection_begin > 0){ /* draw unselected text before selection */ const char *begin = nk_str_get_const(&edit->string); NK_ASSERT(select_begin_ptr); nk_edit_draw_text(out, style, area.x - edit->scrollbar.x, area.y - edit->scrollbar.y, 0, begin, (int)(select_begin_ptr - begin), row_height, font, background_color, text_color, nk_false); } if (edit->select_start != edit->select_end) { /* draw selected text */ NK_ASSERT(select_begin_ptr); if (!select_end_ptr) { const char *begin = nk_str_get_const(&edit->string); select_end_ptr = begin + nk_str_len_char(&edit->string); } nk_edit_draw_text(out, style, area.x - edit->scrollbar.x, area.y + selection_offset_start.y - edit->scrollbar.y, selection_offset_start.x, select_begin_ptr, (int)(select_end_ptr - select_begin_ptr), row_height, font, sel_background_color, sel_text_color, nk_true); } if ((edit->select_start != edit->select_end && selection_end < edit->string.len)) { /* draw unselected text after selected text */ const char *begin = select_end_ptr; const char *end = nk_str_get_const(&edit->string) + nk_str_len_char(&edit->string); NK_ASSERT(select_end_ptr); nk_edit_draw_text(out, style, area.x - edit->scrollbar.x, area.y + selection_offset_end.y - edit->scrollbar.y, selection_offset_end.x, begin, (int)(end - begin), row_height, font, background_color, text_color, nk_true); } } /* cursor */ if (edit->select_start == edit->select_end) { if (edit->cursor >= nk_str_len(&edit->string) || (cursor_ptr && *cursor_ptr == '\n')) { /* draw cursor at end of line */ struct nk_rect cursor; cursor.w = style->cursor_size; cursor.h = font->height; cursor.x = area.x + cursor_pos.x - edit->scrollbar.x; cursor.y = area.y + cursor_pos.y + row_height/2.0f - cursor.h/2.0f; cursor.y -= edit->scrollbar.y; nk_fill_rect(out, cursor, 0, cursor_color); } else { /* draw cursor inside text */ int glyph_len; struct nk_rect label; struct nk_text txt; nk_rune unicode; NK_ASSERT(cursor_ptr); glyph_len = nk_utf_decode(cursor_ptr, &unicode, 4); label.x = area.x + cursor_pos.x - edit->scrollbar.x; label.y = area.y + cursor_pos.y - edit->scrollbar.y; label.w = font->width(font->userdata, font->height, cursor_ptr, glyph_len); label.h = row_height; txt.padding = nk_vec2(0,0); txt.background = cursor_color;; txt.text = cursor_text_color; nk_fill_rect(out, label, 0, cursor_color); nk_widget_text(out, label, cursor_ptr, glyph_len, &txt, NK_TEXT_LEFT, font); } }} } else { /* not active so just draw text */ int l = nk_str_len_char(&edit->string); const char *begin = nk_str_get_const(&edit->string); const struct nk_style_item *background; struct nk_color background_color; struct nk_color text_color; nk_push_scissor(out, clip); if (*state & NK_WIDGET_STATE_ACTIVED) { background = &style->active; text_color = style->text_active; } else if (*state & NK_WIDGET_STATE_HOVER) { background = &style->hover; text_color = style->text_hover; } else { background = &style->normal; text_color = style->text_normal; } if (background->type == NK_STYLE_ITEM_IMAGE) background_color = nk_rgba(0,0,0,0); else background_color = background->data.color; nk_edit_draw_text(out, style, area.x - edit->scrollbar.x, area.y - edit->scrollbar.y, 0, begin, l, row_height, font, background_color, text_color, nk_false); } nk_push_scissor(out, old_clip);} return ret; } NK_API void nk_edit_focus(struct nk_context *ctx, nk_flags flags) { nk_hash hash; struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; win = ctx->current; hash = win->edit.seq; win->edit.active = nk_true; win->edit.name = hash; if (flags & NK_EDIT_ALWAYS_INSERT_MODE) win->edit.mode = NK_TEXT_EDIT_MODE_INSERT; } NK_API void nk_edit_unfocus(struct nk_context *ctx) { struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; win = ctx->current; win->edit.active = nk_false; win->edit.name = 0; } NK_API nk_flags nk_edit_string(struct nk_context *ctx, nk_flags flags, char *memory, int *len, int max, nk_plugin_filter filter) { nk_hash hash; nk_flags state; struct nk_text_edit *edit; struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(memory); NK_ASSERT(len); if (!ctx || !memory || !len) return 0; filter = (!filter) ? nk_filter_default: filter; win = ctx->current; hash = win->edit.seq; edit = &ctx->text_edit; nk_textedit_clear_state(&ctx->text_edit, (flags & NK_EDIT_MULTILINE)? NK_TEXT_EDIT_MULTI_LINE: NK_TEXT_EDIT_SINGLE_LINE, filter); if (win->edit.active && hash == win->edit.name) { if (flags & NK_EDIT_NO_CURSOR) edit->cursor = nk_utf_len(memory, *len); else edit->cursor = win->edit.cursor; if (!(flags & NK_EDIT_SELECTABLE)) { edit->select_start = win->edit.cursor; edit->select_end = win->edit.cursor; } else { edit->select_start = win->edit.sel_start; edit->select_end = win->edit.sel_end; } edit->mode = win->edit.mode; edit->scrollbar.x = (float)win->edit.scrollbar.x; edit->scrollbar.y = (float)win->edit.scrollbar.y; edit->active = nk_true; } else edit->active = nk_false; max = NK_MAX(1, max); *len = NK_MIN(*len, max-1); nk_str_init_fixed(&edit->string, memory, (nk_size)max); edit->string.buffer.allocated = (nk_size)*len; edit->string.len = nk_utf_len(memory, *len); state = nk_edit_buffer(ctx, flags, edit, filter); *len = (int)edit->string.buffer.allocated; if (edit->active) { win->edit.cursor = edit->cursor; win->edit.sel_start = edit->select_start; win->edit.sel_end = edit->select_end; win->edit.mode = edit->mode; win->edit.scrollbar.x = (nk_uint)edit->scrollbar.x; win->edit.scrollbar.y = (nk_uint)edit->scrollbar.y; } return state; } NK_API nk_flags nk_edit_buffer(struct nk_context *ctx, nk_flags flags, struct nk_text_edit *edit, nk_plugin_filter filter) { struct nk_window *win; struct nk_style *style; struct nk_input *in; enum nk_widget_layout_states state; struct nk_rect bounds; nk_flags ret_flags = 0; unsigned char prev_state; nk_hash hash; /* make sure correct values */ NK_ASSERT(ctx); NK_ASSERT(edit); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; state = nk_widget(&bounds, ctx); if (!state) return state; in = (win->layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; /* check if edit is currently hot item */ hash = win->edit.seq++; if (win->edit.active && hash == win->edit.name) { if (flags & NK_EDIT_NO_CURSOR) edit->cursor = edit->string.len; if (!(flags & NK_EDIT_SELECTABLE)) { edit->select_start = edit->cursor; edit->select_end = edit->cursor; } if (flags & NK_EDIT_CLIPBOARD) edit->clip = ctx->clip; edit->active = (unsigned char)win->edit.active; } else edit->active = nk_false; edit->mode = win->edit.mode; filter = (!filter) ? nk_filter_default: filter; prev_state = (unsigned char)edit->active; in = (flags & NK_EDIT_READ_ONLY) ? 0: in; ret_flags = nk_do_edit(&ctx->last_widget_state, &win->buffer, bounds, flags, filter, edit, &style->edit, in, style->font); if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) ctx->style.cursor_active = ctx->style.cursors[NK_CURSOR_TEXT]; if (edit->active && prev_state != edit->active) { /* current edit is now hot */ win->edit.active = nk_true; win->edit.name = hash; } else if (prev_state && !edit->active) { /* current edit is now cold */ win->edit.active = nk_false; } return ret_flags; } NK_API nk_flags nk_edit_string_zero_terminated(struct nk_context *ctx, nk_flags flags, char *buffer, int max, nk_plugin_filter filter) { nk_flags result; int len = nk_strlen(buffer); result = nk_edit_string(ctx, flags, buffer, &len, max, filter); buffer[NK_MIN(NK_MAX(max-1,0), len)] = '\0'; return result; } /* =============================================================== * * PROPERTY * * ===============================================================*/ NK_LIB void nk_drag_behavior(nk_flags *state, const struct nk_input *in, struct nk_rect drag, struct nk_property_variant *variant, float inc_per_pixel) { int left_mouse_down = in && in->mouse.buttons[NK_BUTTON_LEFT].down; int left_mouse_click_in_cursor = in && nk_input_has_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, drag, nk_true); nk_widget_state_reset(state); if (nk_input_is_mouse_hovering_rect(in, drag)) *state = NK_WIDGET_STATE_HOVERED; if (left_mouse_down && left_mouse_click_in_cursor) { float delta, pixels; pixels = in->mouse.delta.x; delta = pixels * inc_per_pixel; switch (variant->kind) { default: break; case NK_PROPERTY_INT: variant->value.i = variant->value.i + (int)delta; variant->value.i = NK_CLAMP(variant->min_value.i, variant->value.i, variant->max_value.i); break; case NK_PROPERTY_FLOAT: variant->value.f = variant->value.f + (float)delta; variant->value.f = NK_CLAMP(variant->min_value.f, variant->value.f, variant->max_value.f); break; case NK_PROPERTY_DOUBLE: variant->value.d = variant->value.d + (double)delta; variant->value.d = NK_CLAMP(variant->min_value.d, variant->value.d, variant->max_value.d); break; } *state = NK_WIDGET_STATE_ACTIVE; } if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, drag)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(in, drag)) *state |= NK_WIDGET_STATE_LEFT; } NK_LIB void nk_property_behavior(nk_flags *ws, const struct nk_input *in, struct nk_rect property, struct nk_rect label, struct nk_rect edit, struct nk_rect empty, int *state, struct nk_property_variant *variant, float inc_per_pixel) { nk_widget_state_reset(ws); if (in && *state == NK_PROPERTY_DEFAULT) { if (nk_button_behavior(ws, edit, in, NK_BUTTON_DEFAULT)) *state = NK_PROPERTY_EDIT; else if (nk_input_is_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, label, nk_true)) *state = NK_PROPERTY_DRAG; else if (nk_input_is_mouse_click_down_in_rect(in, NK_BUTTON_LEFT, empty, nk_true)) *state = NK_PROPERTY_DRAG; } if (*state == NK_PROPERTY_DRAG) { nk_drag_behavior(ws, in, property, variant, inc_per_pixel); if (!(*ws & NK_WIDGET_STATE_ACTIVED)) *state = NK_PROPERTY_DEFAULT; } } NK_LIB void nk_draw_property(struct nk_command_buffer *out, const struct nk_style_property *style, const struct nk_rect *bounds, const struct nk_rect *label, nk_flags state, const char *name, int len, const struct nk_user_font *font) { struct nk_text text; const struct nk_style_item *background; /* select correct background and text color */ if (state & NK_WIDGET_STATE_ACTIVED) { background = &style->active; text.text = style->label_active; } else if (state & NK_WIDGET_STATE_HOVER) { background = &style->hover; text.text = style->label_hover; } else { background = &style->normal; text.text = style->label_normal; } /* draw background */ switch(background->type) { case NK_STYLE_ITEM_IMAGE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_image(out, *bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(out, *bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: text.background = background->data.color; nk_fill_rect(out, *bounds, style->rounding, background->data.color); nk_stroke_rect(out, *bounds, style->rounding, style->border, background->data.color); break; } /* draw label */ text.padding = nk_vec2(0,0); nk_widget_text(out, *label, name, len, &text, NK_TEXT_CENTERED, font); } NK_LIB void nk_do_property(nk_flags *ws, struct nk_command_buffer *out, struct nk_rect property, const char *name, struct nk_property_variant *variant, float inc_per_pixel, char *buffer, int *len, int *state, int *cursor, int *select_begin, int *select_end, const struct nk_style_property *style, enum nk_property_filter filter, struct nk_input *in, const struct nk_user_font *font, struct nk_text_edit *text_edit, enum nk_button_behavior behavior) { const nk_plugin_filter filters[] = { nk_filter_decimal, nk_filter_float }; nk_bool active, old; int num_len = 0, name_len; char string[NK_MAX_NUMBER_BUFFER]; float size; char *dst = 0; int *length; struct nk_rect left; struct nk_rect right; struct nk_rect label; struct nk_rect edit; struct nk_rect empty; /* left decrement button */ left.h = font->height/2; left.w = left.h; left.x = property.x + style->border + style->padding.x; left.y = property.y + style->border + property.h/2.0f - left.h/2; /* text label */ name_len = nk_strlen(name); size = font->width(font->userdata, font->height, name, name_len); label.x = left.x + left.w + style->padding.x; label.w = (float)size + 2 * style->padding.x; label.y = property.y + style->border + style->padding.y; label.h = property.h - (2 * style->border + 2 * style->padding.y); /* right increment button */ right.y = left.y; right.w = left.w; right.h = left.h; right.x = property.x + property.w - (right.w + style->padding.x); /* edit */ if (*state == NK_PROPERTY_EDIT) { size = font->width(font->userdata, font->height, buffer, *len); size += style->edit.cursor_size; length = len; dst = buffer; } else { switch (variant->kind) { default: break; case NK_PROPERTY_INT: nk_itoa(string, variant->value.i); num_len = nk_strlen(string); break; case NK_PROPERTY_FLOAT: NK_DTOA(string, (double)variant->value.f); num_len = nk_string_float_limit(string, NK_MAX_FLOAT_PRECISION); break; case NK_PROPERTY_DOUBLE: NK_DTOA(string, variant->value.d); num_len = nk_string_float_limit(string, NK_MAX_FLOAT_PRECISION); break; } size = font->width(font->userdata, font->height, string, num_len); dst = string; length = &num_len; } edit.w = (float)size + 2 * style->padding.x; edit.w = NK_MIN(edit.w, right.x - (label.x + label.w)); edit.x = right.x - (edit.w + style->padding.x); edit.y = property.y + style->border; edit.h = property.h - (2 * style->border); /* empty left space activator */ empty.w = edit.x - (label.x + label.w); empty.x = label.x + label.w; empty.y = property.y; empty.h = property.h; /* update property */ old = (*state == NK_PROPERTY_EDIT); nk_property_behavior(ws, in, property, label, edit, empty, state, variant, inc_per_pixel); /* draw property */ if (style->draw_begin) style->draw_begin(out, style->userdata); nk_draw_property(out, style, &property, &label, *ws, name, name_len, font); if (style->draw_end) style->draw_end(out, style->userdata); /* execute right button */ if (nk_do_button_symbol(ws, out, left, style->sym_left, behavior, &style->dec_button, in, font)) { switch (variant->kind) { default: break; case NK_PROPERTY_INT: variant->value.i = NK_CLAMP(variant->min_value.i, variant->value.i - variant->step.i, variant->max_value.i); break; case NK_PROPERTY_FLOAT: variant->value.f = NK_CLAMP(variant->min_value.f, variant->value.f - variant->step.f, variant->max_value.f); break; case NK_PROPERTY_DOUBLE: variant->value.d = NK_CLAMP(variant->min_value.d, variant->value.d - variant->step.d, variant->max_value.d); break; } } /* execute left button */ if (nk_do_button_symbol(ws, out, right, style->sym_right, behavior, &style->inc_button, in, font)) { switch (variant->kind) { default: break; case NK_PROPERTY_INT: variant->value.i = NK_CLAMP(variant->min_value.i, variant->value.i + variant->step.i, variant->max_value.i); break; case NK_PROPERTY_FLOAT: variant->value.f = NK_CLAMP(variant->min_value.f, variant->value.f + variant->step.f, variant->max_value.f); break; case NK_PROPERTY_DOUBLE: variant->value.d = NK_CLAMP(variant->min_value.d, variant->value.d + variant->step.d, variant->max_value.d); break; } } if (old != NK_PROPERTY_EDIT && (*state == NK_PROPERTY_EDIT)) { /* property has been activated so setup buffer */ NK_MEMCPY(buffer, dst, (nk_size)*length); *cursor = nk_utf_len(buffer, *length); *len = *length; length = len; dst = buffer; active = 0; } else active = (*state == NK_PROPERTY_EDIT); /* execute and run text edit field */ nk_textedit_clear_state(text_edit, NK_TEXT_EDIT_SINGLE_LINE, filters[filter]); text_edit->active = (unsigned char)active; text_edit->string.len = *length; text_edit->cursor = NK_CLAMP(0, *cursor, *length); text_edit->select_start = NK_CLAMP(0,*select_begin, *length); text_edit->select_end = NK_CLAMP(0,*select_end, *length); text_edit->string.buffer.allocated = (nk_size)*length; text_edit->string.buffer.memory.size = NK_MAX_NUMBER_BUFFER; text_edit->string.buffer.memory.ptr = dst; text_edit->string.buffer.size = NK_MAX_NUMBER_BUFFER; text_edit->mode = NK_TEXT_EDIT_MODE_INSERT; nk_do_edit(ws, out, edit, NK_EDIT_FIELD|NK_EDIT_AUTO_SELECT, filters[filter], text_edit, &style->edit, (*state == NK_PROPERTY_EDIT) ? in: 0, font); *length = text_edit->string.len; *cursor = text_edit->cursor; *select_begin = text_edit->select_start; *select_end = text_edit->select_end; if (text_edit->active && nk_input_is_key_pressed(in, NK_KEY_ENTER)) text_edit->active = nk_false; if (active && !text_edit->active) { /* property is now not active so convert edit text to value*/ *state = NK_PROPERTY_DEFAULT; buffer[*len] = '\0'; switch (variant->kind) { default: break; case NK_PROPERTY_INT: variant->value.i = nk_strtoi(buffer, 0); variant->value.i = NK_CLAMP(variant->min_value.i, variant->value.i, variant->max_value.i); break; case NK_PROPERTY_FLOAT: nk_string_float_limit(buffer, NK_MAX_FLOAT_PRECISION); variant->value.f = nk_strtof(buffer, 0); variant->value.f = NK_CLAMP(variant->min_value.f, variant->value.f, variant->max_value.f); break; case NK_PROPERTY_DOUBLE: nk_string_float_limit(buffer, NK_MAX_FLOAT_PRECISION); variant->value.d = nk_strtod(buffer, 0); variant->value.d = NK_CLAMP(variant->min_value.d, variant->value.d, variant->max_value.d); break; } } } NK_LIB struct nk_property_variant nk_property_variant_int(int value, int min_value, int max_value, int step) { struct nk_property_variant result; result.kind = NK_PROPERTY_INT; result.value.i = value; result.min_value.i = min_value; result.max_value.i = max_value; result.step.i = step; return result; } NK_LIB struct nk_property_variant nk_property_variant_float(float value, float min_value, float max_value, float step) { struct nk_property_variant result; result.kind = NK_PROPERTY_FLOAT; result.value.f = value; result.min_value.f = min_value; result.max_value.f = max_value; result.step.f = step; return result; } NK_LIB struct nk_property_variant nk_property_variant_double(double value, double min_value, double max_value, double step) { struct nk_property_variant result; result.kind = NK_PROPERTY_DOUBLE; result.value.d = value; result.min_value.d = min_value; result.max_value.d = max_value; result.step.d = step; return result; } NK_LIB void nk_property(struct nk_context *ctx, const char *name, struct nk_property_variant *variant, float inc_per_pixel, const enum nk_property_filter filter) { struct nk_window *win; struct nk_panel *layout; struct nk_input *in; const struct nk_style *style; struct nk_rect bounds; enum nk_widget_layout_states s; int *state = 0; nk_hash hash = 0; char *buffer = 0; int *len = 0; int *cursor = 0; int *select_begin = 0; int *select_end = 0; int old_state; char dummy_buffer[NK_MAX_NUMBER_BUFFER]; int dummy_state = NK_PROPERTY_DEFAULT; int dummy_length = 0; int dummy_cursor = 0; int dummy_select_begin = 0; int dummy_select_end = 0; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return; win = ctx->current; layout = win->layout; style = &ctx->style; s = nk_widget(&bounds, ctx); if (!s) return; /* calculate hash from name */ if (name[0] == '#') { hash = nk_murmur_hash(name, (int)nk_strlen(name), win->property.seq++); name++; /* special number hash */ } else hash = nk_murmur_hash(name, (int)nk_strlen(name), 42); /* check if property is currently hot item */ if (win->property.active && hash == win->property.name) { buffer = win->property.buffer; len = &win->property.length; cursor = &win->property.cursor; state = &win->property.state; select_begin = &win->property.select_start; select_end = &win->property.select_end; } else { buffer = dummy_buffer; len = &dummy_length; cursor = &dummy_cursor; state = &dummy_state; select_begin = &dummy_select_begin; select_end = &dummy_select_end; } /* execute property widget */ old_state = *state; ctx->text_edit.clip = ctx->clip; in = ((s == NK_WIDGET_ROM && !win->property.active) || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; nk_do_property(&ctx->last_widget_state, &win->buffer, bounds, name, variant, inc_per_pixel, buffer, len, state, cursor, select_begin, select_end, &style->property, filter, in, style->font, &ctx->text_edit, ctx->button_behavior); if (in && *state != NK_PROPERTY_DEFAULT && !win->property.active) { /* current property is now hot */ win->property.active = 1; NK_MEMCPY(win->property.buffer, buffer, (nk_size)*len); win->property.length = *len; win->property.cursor = *cursor; win->property.state = *state; win->property.name = hash; win->property.select_start = *select_begin; win->property.select_end = *select_end; if (*state == NK_PROPERTY_DRAG) { ctx->input.mouse.grab = nk_true; ctx->input.mouse.grabbed = nk_true; } } /* check if previously active property is now inactive */ if (*state == NK_PROPERTY_DEFAULT && old_state != NK_PROPERTY_DEFAULT) { if (old_state == NK_PROPERTY_DRAG) { ctx->input.mouse.grab = nk_false; ctx->input.mouse.grabbed = nk_false; ctx->input.mouse.ungrab = nk_true; } win->property.select_start = 0; win->property.select_end = 0; win->property.active = 0; } } NK_API void nk_property_int(struct nk_context *ctx, const char *name, int min, int *val, int max, int step, float inc_per_pixel) { struct nk_property_variant variant; NK_ASSERT(ctx); NK_ASSERT(name); NK_ASSERT(val); if (!ctx || !ctx->current || !name || !val) return; variant = nk_property_variant_int(*val, min, max, step); nk_property(ctx, name, &variant, inc_per_pixel, NK_FILTER_INT); *val = variant.value.i; } NK_API void nk_property_float(struct nk_context *ctx, const char *name, float min, float *val, float max, float step, float inc_per_pixel) { struct nk_property_variant variant; NK_ASSERT(ctx); NK_ASSERT(name); NK_ASSERT(val); if (!ctx || !ctx->current || !name || !val) return; variant = nk_property_variant_float(*val, min, max, step); nk_property(ctx, name, &variant, inc_per_pixel, NK_FILTER_FLOAT); *val = variant.value.f; } NK_API void nk_property_double(struct nk_context *ctx, const char *name, double min, double *val, double max, double step, float inc_per_pixel) { struct nk_property_variant variant; NK_ASSERT(ctx); NK_ASSERT(name); NK_ASSERT(val); if (!ctx || !ctx->current || !name || !val) return; variant = nk_property_variant_double(*val, min, max, step); nk_property(ctx, name, &variant, inc_per_pixel, NK_FILTER_FLOAT); *val = variant.value.d; } NK_API int nk_propertyi(struct nk_context *ctx, const char *name, int min, int val, int max, int step, float inc_per_pixel) { struct nk_property_variant variant; NK_ASSERT(ctx); NK_ASSERT(name); if (!ctx || !ctx->current || !name) return val; variant = nk_property_variant_int(val, min, max, step); nk_property(ctx, name, &variant, inc_per_pixel, NK_FILTER_INT); val = variant.value.i; return val; } NK_API float nk_propertyf(struct nk_context *ctx, const char *name, float min, float val, float max, float step, float inc_per_pixel) { struct nk_property_variant variant; NK_ASSERT(ctx); NK_ASSERT(name); if (!ctx || !ctx->current || !name) return val; variant = nk_property_variant_float(val, min, max, step); nk_property(ctx, name, &variant, inc_per_pixel, NK_FILTER_FLOAT); val = variant.value.f; return val; } NK_API double nk_propertyd(struct nk_context *ctx, const char *name, double min, double val, double max, double step, float inc_per_pixel) { struct nk_property_variant variant; NK_ASSERT(ctx); NK_ASSERT(name); if (!ctx || !ctx->current || !name) return val; variant = nk_property_variant_double(val, min, max, step); nk_property(ctx, name, &variant, inc_per_pixel, NK_FILTER_FLOAT); val = variant.value.d; return val; } /* ============================================================== * * CHART * * ===============================================================*/ NK_API nk_bool nk_chart_begin_colored(struct nk_context *ctx, enum nk_chart_type type, struct nk_color color, struct nk_color highlight, int count, float min_value, float max_value) { struct nk_window *win; struct nk_chart *chart; const struct nk_style *config; const struct nk_style_chart *style; const struct nk_style_item *background; struct nk_rect bounds = {0, 0, 0, 0}; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; if (!nk_widget(&bounds, ctx)) { chart = &ctx->current->layout->chart; nk_zero(chart, sizeof(*chart)); return 0; } win = ctx->current; config = &ctx->style; chart = &win->layout->chart; style = &config->chart; /* setup basic generic chart */ nk_zero(chart, sizeof(*chart)); chart->x = bounds.x + style->padding.x; chart->y = bounds.y + style->padding.y; chart->w = bounds.w - 2 * style->padding.x; chart->h = bounds.h - 2 * style->padding.y; chart->w = NK_MAX(chart->w, 2 * style->padding.x); chart->h = NK_MAX(chart->h, 2 * style->padding.y); /* add first slot into chart */ {struct nk_chart_slot *slot = &chart->slots[chart->slot++]; slot->type = type; slot->count = count; slot->color = color; slot->highlight = highlight; slot->min = NK_MIN(min_value, max_value); slot->max = NK_MAX(min_value, max_value); slot->range = slot->max - slot->min;} /* draw chart background */ background = &style->background; switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(&win->buffer, bounds, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(&win->buffer, bounds, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(&win->buffer, bounds, style->rounding, style->border_color); nk_fill_rect(&win->buffer, nk_shrink_rect(bounds, style->border), style->rounding, style->background.data.color); break; } return 1; } NK_API nk_bool nk_chart_begin(struct nk_context *ctx, const enum nk_chart_type type, int count, float min_value, float max_value) { return nk_chart_begin_colored(ctx, type, ctx->style.chart.color, ctx->style.chart.selected_color, count, min_value, max_value); } NK_API void nk_chart_add_slot_colored(struct nk_context *ctx, const enum nk_chart_type type, struct nk_color color, struct nk_color highlight, int count, float min_value, float max_value) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); NK_ASSERT(ctx->current->layout->chart.slot < NK_CHART_MAX_SLOT); if (!ctx || !ctx->current || !ctx->current->layout) return; if (ctx->current->layout->chart.slot >= NK_CHART_MAX_SLOT) return; /* add another slot into the graph */ {struct nk_chart *chart = &ctx->current->layout->chart; struct nk_chart_slot *slot = &chart->slots[chart->slot++]; slot->type = type; slot->count = count; slot->color = color; slot->highlight = highlight; slot->min = NK_MIN(min_value, max_value); slot->max = NK_MAX(min_value, max_value); slot->range = slot->max - slot->min;} } NK_API void nk_chart_add_slot(struct nk_context *ctx, const enum nk_chart_type type, int count, float min_value, float max_value) { nk_chart_add_slot_colored(ctx, type, ctx->style.chart.color, ctx->style.chart.selected_color, count, min_value, max_value); } NK_INTERN nk_flags nk_chart_push_line(struct nk_context *ctx, struct nk_window *win, struct nk_chart *g, float value, int slot) { struct nk_panel *layout = win->layout; const struct nk_input *i = &ctx->input; struct nk_command_buffer *out = &win->buffer; nk_flags ret = 0; struct nk_vec2 cur; struct nk_rect bounds; struct nk_color color; float step; float range; float ratio; NK_ASSERT(slot >= 0 && slot < NK_CHART_MAX_SLOT); step = g->w / (float)g->slots[slot].count; range = g->slots[slot].max - g->slots[slot].min; ratio = (value - g->slots[slot].min) / range; if (g->slots[slot].index == 0) { /* first data point does not have a connection */ g->slots[slot].last.x = g->x; g->slots[slot].last.y = (g->y + g->h) - ratio * (float)g->h; bounds.x = g->slots[slot].last.x - 2; bounds.y = g->slots[slot].last.y - 2; bounds.w = bounds.h = 4; color = g->slots[slot].color; if (!(layout->flags & NK_WINDOW_ROM) && NK_INBOX(i->mouse.pos.x,i->mouse.pos.y, g->slots[slot].last.x-3, g->slots[slot].last.y-3, 6, 6)){ ret = nk_input_is_mouse_hovering_rect(i, bounds) ? NK_CHART_HOVERING : 0; ret |= (i->mouse.buttons[NK_BUTTON_LEFT].down && i->mouse.buttons[NK_BUTTON_LEFT].clicked) ? NK_CHART_CLICKED: 0; color = g->slots[slot].highlight; } nk_fill_rect(out, bounds, 0, color); g->slots[slot].index += 1; return ret; } /* draw a line between the last data point and the new one */ color = g->slots[slot].color; cur.x = g->x + (float)(step * (float)g->slots[slot].index); cur.y = (g->y + g->h) - (ratio * (float)g->h); nk_stroke_line(out, g->slots[slot].last.x, g->slots[slot].last.y, cur.x, cur.y, 1.0f, color); bounds.x = cur.x - 3; bounds.y = cur.y - 3; bounds.w = bounds.h = 6; /* user selection of current data point */ if (!(layout->flags & NK_WINDOW_ROM)) { if (nk_input_is_mouse_hovering_rect(i, bounds)) { ret = NK_CHART_HOVERING; ret |= (!i->mouse.buttons[NK_BUTTON_LEFT].down && i->mouse.buttons[NK_BUTTON_LEFT].clicked) ? NK_CHART_CLICKED: 0; color = g->slots[slot].highlight; } } nk_fill_rect(out, nk_rect(cur.x - 2, cur.y - 2, 4, 4), 0, color); /* save current data point position */ g->slots[slot].last.x = cur.x; g->slots[slot].last.y = cur.y; g->slots[slot].index += 1; return ret; } NK_INTERN nk_flags nk_chart_push_column(const struct nk_context *ctx, struct nk_window *win, struct nk_chart *chart, float value, int slot) { struct nk_command_buffer *out = &win->buffer; const struct nk_input *in = &ctx->input; struct nk_panel *layout = win->layout; float ratio; nk_flags ret = 0; struct nk_color color; struct nk_rect item = {0,0,0,0}; NK_ASSERT(slot >= 0 && slot < NK_CHART_MAX_SLOT); if (chart->slots[slot].index >= chart->slots[slot].count) return nk_false; if (chart->slots[slot].count) { float padding = (float)(chart->slots[slot].count-1); item.w = (chart->w - padding) / (float)(chart->slots[slot].count); } /* calculate bounds of current bar chart entry */ color = chart->slots[slot].color;; item.h = chart->h * NK_ABS((value/chart->slots[slot].range)); if (value >= 0) { ratio = (value + NK_ABS(chart->slots[slot].min)) / NK_ABS(chart->slots[slot].range); item.y = (chart->y + chart->h) - chart->h * ratio; } else { ratio = (value - chart->slots[slot].max) / chart->slots[slot].range; item.y = chart->y + (chart->h * NK_ABS(ratio)) - item.h; } item.x = chart->x + ((float)chart->slots[slot].index * item.w); item.x = item.x + ((float)chart->slots[slot].index); /* user chart bar selection */ if (!(layout->flags & NK_WINDOW_ROM) && NK_INBOX(in->mouse.pos.x,in->mouse.pos.y,item.x,item.y,item.w,item.h)) { ret = NK_CHART_HOVERING; ret |= (!in->mouse.buttons[NK_BUTTON_LEFT].down && in->mouse.buttons[NK_BUTTON_LEFT].clicked) ? NK_CHART_CLICKED: 0; color = chart->slots[slot].highlight; } nk_fill_rect(out, item, 0, color); chart->slots[slot].index += 1; return ret; } NK_API nk_flags nk_chart_push_slot(struct nk_context *ctx, float value, int slot) { nk_flags flags; struct nk_window *win; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(slot >= 0 && slot < NK_CHART_MAX_SLOT); NK_ASSERT(slot < ctx->current->layout->chart.slot); if (!ctx || !ctx->current || slot >= NK_CHART_MAX_SLOT) return nk_false; if (slot >= ctx->current->layout->chart.slot) return nk_false; win = ctx->current; if (win->layout->chart.slot < slot) return nk_false; switch (win->layout->chart.slots[slot].type) { case NK_CHART_LINES: flags = nk_chart_push_line(ctx, win, &win->layout->chart, value, slot); break; case NK_CHART_COLUMN: flags = nk_chart_push_column(ctx, win, &win->layout->chart, value, slot); break; default: case NK_CHART_MAX: flags = 0; } return flags; } NK_API nk_flags nk_chart_push(struct nk_context *ctx, float value) { return nk_chart_push_slot(ctx, value, 0); } NK_API void nk_chart_end(struct nk_context *ctx) { struct nk_window *win; struct nk_chart *chart; NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; win = ctx->current; chart = &win->layout->chart; NK_MEMSET(chart, 0, sizeof(*chart)); return; } NK_API void nk_plot(struct nk_context *ctx, enum nk_chart_type type, const float *values, int count, int offset) { int i = 0; float min_value; float max_value; NK_ASSERT(ctx); NK_ASSERT(values); if (!ctx || !values || !count) return; min_value = values[offset]; max_value = values[offset]; for (i = 0; i < count; ++i) { min_value = NK_MIN(values[i + offset], min_value); max_value = NK_MAX(values[i + offset], max_value); } if (nk_chart_begin(ctx, type, count, min_value, max_value)) { for (i = 0; i < count; ++i) nk_chart_push(ctx, values[i + offset]); nk_chart_end(ctx); } } NK_API void nk_plot_function(struct nk_context *ctx, enum nk_chart_type type, void *userdata, float(*value_getter)(void* user, int index), int count, int offset) { int i = 0; float min_value; float max_value; NK_ASSERT(ctx); NK_ASSERT(value_getter); if (!ctx || !value_getter || !count) return; max_value = min_value = value_getter(userdata, offset); for (i = 0; i < count; ++i) { float value = value_getter(userdata, i + offset); min_value = NK_MIN(value, min_value); max_value = NK_MAX(value, max_value); } if (nk_chart_begin(ctx, type, count, min_value, max_value)) { for (i = 0; i < count; ++i) nk_chart_push(ctx, value_getter(userdata, i + offset)); nk_chart_end(ctx); } } /* ============================================================== * * COLOR PICKER * * ===============================================================*/ NK_LIB nk_bool nk_color_picker_behavior(nk_flags *state, const struct nk_rect *bounds, const struct nk_rect *matrix, const struct nk_rect *hue_bar, const struct nk_rect *alpha_bar, struct nk_colorf *color, const struct nk_input *in) { float hsva[4]; nk_bool value_changed = 0; nk_bool hsv_changed = 0; NK_ASSERT(state); NK_ASSERT(matrix); NK_ASSERT(hue_bar); NK_ASSERT(color); /* color matrix */ nk_colorf_hsva_fv(hsva, *color); if (nk_button_behavior(state, *matrix, in, NK_BUTTON_REPEATER)) { hsva[1] = NK_SATURATE((in->mouse.pos.x - matrix->x) / (matrix->w-1)); hsva[2] = 1.0f - NK_SATURATE((in->mouse.pos.y - matrix->y) / (matrix->h-1)); value_changed = hsv_changed = 1; } /* hue bar */ if (nk_button_behavior(state, *hue_bar, in, NK_BUTTON_REPEATER)) { hsva[0] = NK_SATURATE((in->mouse.pos.y - hue_bar->y) / (hue_bar->h-1)); value_changed = hsv_changed = 1; } /* alpha bar */ if (alpha_bar) { if (nk_button_behavior(state, *alpha_bar, in, NK_BUTTON_REPEATER)) { hsva[3] = 1.0f - NK_SATURATE((in->mouse.pos.y - alpha_bar->y) / (alpha_bar->h-1)); value_changed = 1; } } nk_widget_state_reset(state); if (hsv_changed) { *color = nk_hsva_colorfv(hsva); *state = NK_WIDGET_STATE_ACTIVE; } if (value_changed) { color->a = hsva[3]; *state = NK_WIDGET_STATE_ACTIVE; } /* set color picker widget state */ if (nk_input_is_mouse_hovering_rect(in, *bounds)) *state = NK_WIDGET_STATE_HOVERED; if (*state & NK_WIDGET_STATE_HOVER && !nk_input_is_mouse_prev_hovering_rect(in, *bounds)) *state |= NK_WIDGET_STATE_ENTERED; else if (nk_input_is_mouse_prev_hovering_rect(in, *bounds)) *state |= NK_WIDGET_STATE_LEFT; return value_changed; } NK_LIB void nk_draw_color_picker(struct nk_command_buffer *o, const struct nk_rect *matrix, const struct nk_rect *hue_bar, const struct nk_rect *alpha_bar, struct nk_colorf col) { NK_STORAGE const struct nk_color black = {0,0,0,255}; NK_STORAGE const struct nk_color white = {255, 255, 255, 255}; NK_STORAGE const struct nk_color black_trans = {0,0,0,0}; const float crosshair_size = 7.0f; struct nk_color temp; float hsva[4]; float line_y; int i; NK_ASSERT(o); NK_ASSERT(matrix); NK_ASSERT(hue_bar); /* draw hue bar */ nk_colorf_hsva_fv(hsva, col); for (i = 0; i < 6; ++i) { NK_GLOBAL const struct nk_color hue_colors[] = { {255, 0, 0, 255}, {255,255,0,255}, {0,255,0,255}, {0, 255,255,255}, {0,0,255,255}, {255, 0, 255, 255}, {255, 0, 0, 255} }; nk_fill_rect_multi_color(o, nk_rect(hue_bar->x, hue_bar->y + (float)i * (hue_bar->h/6.0f) + 0.5f, hue_bar->w, (hue_bar->h/6.0f) + 0.5f), hue_colors[i], hue_colors[i], hue_colors[i+1], hue_colors[i+1]); } line_y = (float)(int)(hue_bar->y + hsva[0] * matrix->h + 0.5f); nk_stroke_line(o, hue_bar->x-1, line_y, hue_bar->x + hue_bar->w + 2, line_y, 1, nk_rgb(255,255,255)); /* draw alpha bar */ if (alpha_bar) { float alpha = NK_SATURATE(col.a); line_y = (float)(int)(alpha_bar->y + (1.0f - alpha) * matrix->h + 0.5f); nk_fill_rect_multi_color(o, *alpha_bar, white, white, black, black); nk_stroke_line(o, alpha_bar->x-1, line_y, alpha_bar->x + alpha_bar->w + 2, line_y, 1, nk_rgb(255,255,255)); } /* draw color matrix */ temp = nk_hsv_f(hsva[0], 1.0f, 1.0f); nk_fill_rect_multi_color(o, *matrix, white, temp, temp, white); nk_fill_rect_multi_color(o, *matrix, black_trans, black_trans, black, black); /* draw cross-hair */ {struct nk_vec2 p; float S = hsva[1]; float V = hsva[2]; p.x = (float)(int)(matrix->x + S * matrix->w); p.y = (float)(int)(matrix->y + (1.0f - V) * matrix->h); nk_stroke_line(o, p.x - crosshair_size, p.y, p.x-2, p.y, 1.0f, white); nk_stroke_line(o, p.x + crosshair_size + 1, p.y, p.x+3, p.y, 1.0f, white); nk_stroke_line(o, p.x, p.y + crosshair_size + 1, p.x, p.y+3, 1.0f, white); nk_stroke_line(o, p.x, p.y - crosshair_size, p.x, p.y-2, 1.0f, white);} } NK_LIB nk_bool nk_do_color_picker(nk_flags *state, struct nk_command_buffer *out, struct nk_colorf *col, enum nk_color_format fmt, struct nk_rect bounds, struct nk_vec2 padding, const struct nk_input *in, const struct nk_user_font *font) { int ret = 0; struct nk_rect matrix; struct nk_rect hue_bar; struct nk_rect alpha_bar; float bar_w; NK_ASSERT(out); NK_ASSERT(col); NK_ASSERT(state); NK_ASSERT(font); if (!out || !col || !state || !font) return ret; bar_w = font->height; bounds.x += padding.x; bounds.y += padding.x; bounds.w -= 2 * padding.x; bounds.h -= 2 * padding.y; matrix.x = bounds.x; matrix.y = bounds.y; matrix.h = bounds.h; matrix.w = bounds.w - (3 * padding.x + 2 * bar_w); hue_bar.w = bar_w; hue_bar.y = bounds.y; hue_bar.h = matrix.h; hue_bar.x = matrix.x + matrix.w + padding.x; alpha_bar.x = hue_bar.x + hue_bar.w + padding.x; alpha_bar.y = bounds.y; alpha_bar.w = bar_w; alpha_bar.h = matrix.h; ret = nk_color_picker_behavior(state, &bounds, &matrix, &hue_bar, (fmt == NK_RGBA) ? &alpha_bar:0, col, in); nk_draw_color_picker(out, &matrix, &hue_bar, (fmt == NK_RGBA) ? &alpha_bar:0, *col); return ret; } NK_API nk_bool nk_color_pick(struct nk_context * ctx, struct nk_colorf *color, enum nk_color_format fmt) { struct nk_window *win; struct nk_panel *layout; const struct nk_style *config; const struct nk_input *in; enum nk_widget_layout_states state; struct nk_rect bounds; NK_ASSERT(ctx); NK_ASSERT(color); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !color) return 0; win = ctx->current; config = &ctx->style; layout = win->layout; state = nk_widget(&bounds, ctx); if (!state) return 0; in = (state == NK_WIDGET_ROM || layout->flags & NK_WINDOW_ROM) ? 0 : &ctx->input; return nk_do_color_picker(&ctx->last_widget_state, &win->buffer, color, fmt, bounds, nk_vec2(0,0), in, config->font); } NK_API struct nk_colorf nk_color_picker(struct nk_context *ctx, struct nk_colorf color, enum nk_color_format fmt) { nk_color_pick(ctx, &color, fmt); return color; } /* ============================================================== * * COMBO * * ===============================================================*/ NK_INTERN nk_bool nk_combo_begin(struct nk_context *ctx, struct nk_window *win, struct nk_vec2 size, nk_bool is_clicked, struct nk_rect header) { struct nk_window *popup; int is_open = 0; int is_active = 0; struct nk_rect body; nk_hash hash; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; popup = win->popup.win; body.x = header.x; body.w = size.x; body.y = header.y + header.h-ctx->style.window.combo_border; body.h = size.y; hash = win->popup.combo_count++; is_open = (popup) ? nk_true:nk_false; is_active = (popup && (win->popup.name == hash) && win->popup.type == NK_PANEL_COMBO); if ((is_clicked && is_open && !is_active) || (is_open && !is_active) || (!is_open && !is_active && !is_clicked)) return 0; if (!nk_nonblock_begin(ctx, 0, body, (is_clicked && is_open)?nk_rect(0,0,0,0):header, NK_PANEL_COMBO)) return 0; win->popup.type = NK_PANEL_COMBO; win->popup.name = hash; return 1; } NK_API nk_bool nk_combo_begin_text(struct nk_context *ctx, const char *selected, int len, struct nk_vec2 size) { const struct nk_input *in; struct nk_window *win; struct nk_style *style; enum nk_widget_layout_states s; int is_clicked = nk_false; struct nk_rect header; const struct nk_style_item *background; struct nk_text text; NK_ASSERT(ctx); NK_ASSERT(selected); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout || !selected) return 0; win = ctx->current; style = &ctx->style; s = nk_widget(&header, ctx); if (s == NK_WIDGET_INVALID) return 0; in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input; if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT)) is_clicked = nk_true; /* draw combo box header background and border */ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) { background = &style->combo.active; text.text = style->combo.label_active; } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) { background = &style->combo.hover; text.text = style->combo.label_hover; } else { background = &style->combo.normal; text.text = style->combo.label_normal; } switch(background->type) { case NK_STYLE_ITEM_IMAGE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: text.background = background->data.color; nk_fill_rect(&win->buffer, header, style->combo.rounding, background->data.color); nk_stroke_rect(&win->buffer, header, style->combo.rounding, style->combo.border, style->combo.border_color); break; } { /* print currently selected text item */ struct nk_rect label; struct nk_rect button; struct nk_rect content; int draw_button_symbol; enum nk_symbol_type sym; if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) sym = style->combo.sym_hover; else if (is_clicked) sym = style->combo.sym_active; else sym = style->combo.sym_normal; /* represents whether or not the combo's button symbol should be drawn */ draw_button_symbol = sym != NK_SYMBOL_NONE; /* calculate button */ button.w = header.h - 2 * style->combo.button_padding.y; button.x = (header.x + header.w - header.h) - style->combo.button_padding.x; button.y = header.y + style->combo.button_padding.y; button.h = button.w; content.x = button.x + style->combo.button.padding.x; content.y = button.y + style->combo.button.padding.y; content.w = button.w - 2 * style->combo.button.padding.x; content.h = button.h - 2 * style->combo.button.padding.y; /* draw selected label */ text.padding = nk_vec2(0,0); label.x = header.x + style->combo.content_padding.x; label.y = header.y + style->combo.content_padding.y; label.h = header.h - 2 * style->combo.content_padding.y; if (draw_button_symbol) label.w = button.x - (style->combo.content_padding.x + style->combo.spacing.x) - label.x; else label.w = header.w - 2 * style->combo.content_padding.x; nk_widget_text(&win->buffer, label, selected, len, &text, NK_TEXT_CENTERED, ctx->style.font); //< @r-lyeh NK_TEXT_LEFT>CENTERED /* draw open/close button */ if (draw_button_symbol) nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state, &ctx->style.combo.button, sym, style->font); } return nk_combo_begin(ctx, win, size, is_clicked, header); } NK_API nk_bool nk_combo_begin_label(struct nk_context *ctx, const char *selected, struct nk_vec2 size) { return nk_combo_begin_text(ctx, selected, nk_strlen(selected), size); } NK_API nk_bool nk_combo_begin_color(struct nk_context *ctx, struct nk_color color, struct nk_vec2 size) { struct nk_window *win; struct nk_style *style; const struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; enum nk_widget_layout_states s; const struct nk_style_item *background; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; s = nk_widget(&header, ctx); if (s == NK_WIDGET_INVALID) return 0; in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input; if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT)) is_clicked = nk_true; /* draw combo box header background and border */ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) background = &style->combo.active; else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) background = &style->combo.hover; else background = &style->combo.normal; switch(background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(&win->buffer, header, style->combo.rounding, background->data.color); nk_stroke_rect(&win->buffer, header, style->combo.rounding, style->combo.border, style->combo.border_color); break; } { struct nk_rect content; struct nk_rect button; struct nk_rect bounds; int draw_button_symbol; enum nk_symbol_type sym; if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) sym = style->combo.sym_hover; else if (is_clicked) sym = style->combo.sym_active; else sym = style->combo.sym_normal; /* represents whether or not the combo's button symbol should be drawn */ draw_button_symbol = sym != NK_SYMBOL_NONE; /* calculate button */ button.w = header.h - 2 * style->combo.button_padding.y; button.x = (header.x + header.w - header.h) - style->combo.button_padding.x; button.y = header.y + style->combo.button_padding.y; button.h = button.w; content.x = button.x + style->combo.button.padding.x; content.y = button.y + style->combo.button.padding.y; content.w = button.w - 2 * style->combo.button.padding.x; content.h = button.h - 2 * style->combo.button.padding.y; /* draw color */ bounds.h = header.h - 4 * style->combo.content_padding.y; bounds.y = header.y + 2 * style->combo.content_padding.y; bounds.x = header.x + 2 * style->combo.content_padding.x; if (draw_button_symbol) bounds.w = (button.x - (style->combo.content_padding.x + style->combo.spacing.x)) - bounds.x; else bounds.w = header.w - 4 * style->combo.content_padding.x; nk_fill_rect(&win->buffer, bounds, 0, color); /* draw open/close button */ if (draw_button_symbol) nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state, &ctx->style.combo.button, sym, style->font); } return nk_combo_begin(ctx, win, size, is_clicked, header); } NK_API nk_bool nk_combo_begin_symbol(struct nk_context *ctx, enum nk_symbol_type symbol, struct nk_vec2 size) { struct nk_window *win; struct nk_style *style; const struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; enum nk_widget_layout_states s; const struct nk_style_item *background; struct nk_color sym_background; struct nk_color symbol_color; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; s = nk_widget(&header, ctx); if (s == NK_WIDGET_INVALID) return 0; in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input; if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT)) is_clicked = nk_true; /* draw combo box header background and border */ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) { background = &style->combo.active; symbol_color = style->combo.symbol_active; } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) { background = &style->combo.hover; symbol_color = style->combo.symbol_hover; } else { background = &style->combo.normal; symbol_color = style->combo.symbol_hover; } switch(background->type) { case NK_STYLE_ITEM_IMAGE: sym_background = nk_rgba(0, 0, 0, 0); nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: sym_background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: sym_background = background->data.color; nk_fill_rect(&win->buffer, header, style->combo.rounding, background->data.color); nk_stroke_rect(&win->buffer, header, style->combo.rounding, style->combo.border, style->combo.border_color); break; } { struct nk_rect bounds = {0,0,0,0}; struct nk_rect content; struct nk_rect button; enum nk_symbol_type sym; if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) sym = style->combo.sym_hover; else if (is_clicked) sym = style->combo.sym_active; else sym = style->combo.sym_normal; /* calculate button */ button.w = header.h - 2 * style->combo.button_padding.y; button.x = (header.x + header.w - header.h) - style->combo.button_padding.y; button.y = header.y + style->combo.button_padding.y; button.h = button.w; content.x = button.x + style->combo.button.padding.x; content.y = button.y + style->combo.button.padding.y; content.w = button.w - 2 * style->combo.button.padding.x; content.h = button.h - 2 * style->combo.button.padding.y; /* draw symbol */ bounds.h = header.h - 2 * style->combo.content_padding.y; bounds.y = header.y + style->combo.content_padding.y; bounds.x = header.x + style->combo.content_padding.x; bounds.w = (button.x - style->combo.content_padding.y) - bounds.x; nk_draw_symbol(&win->buffer, symbol, bounds, sym_background, symbol_color, 1.0f, style->font); /* draw open/close button */ nk_draw_button_symbol(&win->buffer, &bounds, &content, ctx->last_widget_state, &ctx->style.combo.button, sym, style->font); } return nk_combo_begin(ctx, win, size, is_clicked, header); } NK_API nk_bool nk_combo_begin_symbol_text(struct nk_context *ctx, const char *selected, int len, enum nk_symbol_type symbol, struct nk_vec2 size) { struct nk_window *win; struct nk_style *style; struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; enum nk_widget_layout_states s; const struct nk_style_item *background; struct nk_color symbol_color; struct nk_text text; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; s = nk_widget(&header, ctx); if (!s) return 0; in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input; if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT)) is_clicked = nk_true; /* draw combo box header background and border */ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) { background = &style->combo.active; symbol_color = style->combo.symbol_active; text.text = style->combo.label_active; } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) { background = &style->combo.hover; symbol_color = style->combo.symbol_hover; text.text = style->combo.label_hover; } else { background = &style->combo.normal; symbol_color = style->combo.symbol_normal; text.text = style->combo.label_normal; } switch(background->type) { case NK_STYLE_ITEM_IMAGE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: text.background = background->data.color; nk_fill_rect(&win->buffer, header, style->combo.rounding, background->data.color); nk_stroke_rect(&win->buffer, header, style->combo.rounding, style->combo.border, style->combo.border_color); break; } { struct nk_rect content; struct nk_rect button; struct nk_rect label; struct nk_rect image; enum nk_symbol_type sym; if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) sym = style->combo.sym_hover; else if (is_clicked) sym = style->combo.sym_active; else sym = style->combo.sym_normal; /* calculate button */ button.w = header.h - 2 * style->combo.button_padding.y; button.x = (header.x + header.w - header.h) - style->combo.button_padding.x; button.y = header.y + style->combo.button_padding.y; button.h = button.w; content.x = button.x + style->combo.button.padding.x; content.y = button.y + style->combo.button.padding.y; content.w = button.w - 2 * style->combo.button.padding.x; content.h = button.h - 2 * style->combo.button.padding.y; nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state, &ctx->style.combo.button, sym, style->font); /* draw symbol */ image.x = header.x + style->combo.content_padding.x; image.y = header.y + style->combo.content_padding.y; image.h = header.h - 2 * style->combo.content_padding.y; image.w = image.h; nk_draw_symbol(&win->buffer, symbol, image, text.background, symbol_color, 1.0f, style->font); /* draw label */ text.padding = nk_vec2(0,0); label.x = image.x + image.w + style->combo.spacing.x + style->combo.content_padding.x; label.y = header.y + style->combo.content_padding.y; label.w = (button.x - style->combo.content_padding.x) - label.x; label.h = header.h - 2 * style->combo.content_padding.y; nk_widget_text(&win->buffer, label, selected, len, &text, NK_TEXT_LEFT, style->font); } return nk_combo_begin(ctx, win, size, is_clicked, header); } NK_API nk_bool nk_combo_begin_image(struct nk_context *ctx, struct nk_image img, struct nk_vec2 size) { struct nk_window *win; struct nk_style *style; const struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; enum nk_widget_layout_states s; const struct nk_style_item *background; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; s = nk_widget(&header, ctx); if (s == NK_WIDGET_INVALID) return 0; in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input; if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT)) is_clicked = nk_true; /* draw combo box header background and border */ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) background = &style->combo.active; else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) background = &style->combo.hover; else background = &style->combo.normal; switch (background->type) { case NK_STYLE_ITEM_IMAGE: nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: nk_fill_rect(&win->buffer, header, style->combo.rounding, background->data.color); nk_stroke_rect(&win->buffer, header, style->combo.rounding, style->combo.border, style->combo.border_color); break; } { struct nk_rect bounds = {0,0,0,0}; struct nk_rect content; struct nk_rect button; int draw_button_symbol; enum nk_symbol_type sym; if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) sym = style->combo.sym_hover; else if (is_clicked) sym = style->combo.sym_active; else sym = style->combo.sym_normal; /* represents whether or not the combo's button symbol should be drawn */ draw_button_symbol = sym != NK_SYMBOL_NONE; /* calculate button */ button.w = header.h - 2 * style->combo.button_padding.y; button.x = (header.x + header.w - header.h) - style->combo.button_padding.y; button.y = header.y + style->combo.button_padding.y; button.h = button.w; content.x = button.x + style->combo.button.padding.x; content.y = button.y + style->combo.button.padding.y; content.w = button.w - 2 * style->combo.button.padding.x; content.h = button.h - 2 * style->combo.button.padding.y; /* draw image */ bounds.h = header.h - 2 * style->combo.content_padding.y; bounds.y = header.y + style->combo.content_padding.y; bounds.x = header.x + style->combo.content_padding.x; if (draw_button_symbol) bounds.w = (button.x - style->combo.content_padding.y) - bounds.x; else bounds.w = header.w - 2 * style->combo.content_padding.x; nk_draw_image(&win->buffer, bounds, &img, nk_white); /* draw open/close button */ if (draw_button_symbol) nk_draw_button_symbol(&win->buffer, &bounds, &content, ctx->last_widget_state, &ctx->style.combo.button, sym, style->font); } return nk_combo_begin(ctx, win, size, is_clicked, header); } NK_API nk_bool nk_combo_begin_image_text(struct nk_context *ctx, const char *selected, int len, struct nk_image img, struct nk_vec2 size) { struct nk_window *win; struct nk_style *style; struct nk_input *in; struct nk_rect header; int is_clicked = nk_false; enum nk_widget_layout_states s; const struct nk_style_item *background; struct nk_text text; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; win = ctx->current; style = &ctx->style; s = nk_widget(&header, ctx); if (!s) return 0; in = (win->layout->flags & NK_WINDOW_ROM || s == NK_WIDGET_ROM)? 0: &ctx->input; if (nk_button_behavior(&ctx->last_widget_state, header, in, NK_BUTTON_DEFAULT)) is_clicked = nk_true; /* draw combo box header background and border */ if (ctx->last_widget_state & NK_WIDGET_STATE_ACTIVED) { background = &style->combo.active; text.text = style->combo.label_active; } else if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) { background = &style->combo.hover; text.text = style->combo.label_hover; } else { background = &style->combo.normal; text.text = style->combo.label_normal; } switch(background->type) { case NK_STYLE_ITEM_IMAGE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_image(&win->buffer, header, &background->data.image, nk_white); break; case NK_STYLE_ITEM_NINE_SLICE: text.background = nk_rgba(0, 0, 0, 0); nk_draw_nine_slice(&win->buffer, header, &background->data.slice, nk_white); break; case NK_STYLE_ITEM_COLOR: text.background = background->data.color; nk_fill_rect(&win->buffer, header, style->combo.rounding, background->data.color); nk_stroke_rect(&win->buffer, header, style->combo.rounding, style->combo.border, style->combo.border_color); break; } { struct nk_rect content; struct nk_rect button; struct nk_rect label; struct nk_rect image; int draw_button_symbol; enum nk_symbol_type sym; if (ctx->last_widget_state & NK_WIDGET_STATE_HOVER) sym = style->combo.sym_hover; else if (is_clicked) sym = style->combo.sym_active; else sym = style->combo.sym_normal; /* represents whether or not the combo's button symbol should be drawn */ draw_button_symbol = sym != NK_SYMBOL_NONE; /* calculate button */ button.w = header.h - 2 * style->combo.button_padding.y; button.x = (header.x + header.w - header.h) - style->combo.button_padding.x; button.y = header.y + style->combo.button_padding.y; button.h = button.w; content.x = button.x + style->combo.button.padding.x; content.y = button.y + style->combo.button.padding.y; content.w = button.w - 2 * style->combo.button.padding.x; content.h = button.h - 2 * style->combo.button.padding.y; if (draw_button_symbol) nk_draw_button_symbol(&win->buffer, &button, &content, ctx->last_widget_state, &ctx->style.combo.button, sym, style->font); /* draw image */ image.x = header.x + style->combo.content_padding.x; image.y = header.y + style->combo.content_padding.y; image.h = header.h - 2 * style->combo.content_padding.y; image.w = image.h; nk_draw_image(&win->buffer, image, &img, nk_white); /* draw label */ text.padding = nk_vec2(0,0); label.x = image.x + image.w + style->combo.spacing.x + style->combo.content_padding.x; label.y = header.y + style->combo.content_padding.y; label.h = header.h - 2 * style->combo.content_padding.y; if (draw_button_symbol) label.w = (button.x - style->combo.content_padding.x) - label.x; else label.w = (header.x + header.w - style->combo.content_padding.x) - label.x; nk_widget_text(&win->buffer, label, selected, len, &text, NK_TEXT_LEFT, style->font); } return nk_combo_begin(ctx, win, size, is_clicked, header); } NK_API nk_bool nk_combo_begin_symbol_label(struct nk_context *ctx, const char *selected, enum nk_symbol_type type, struct nk_vec2 size) { return nk_combo_begin_symbol_text(ctx, selected, nk_strlen(selected), type, size); } NK_API nk_bool nk_combo_begin_image_label(struct nk_context *ctx, const char *selected, struct nk_image img, struct nk_vec2 size) { return nk_combo_begin_image_text(ctx, selected, nk_strlen(selected), img, size); } NK_API nk_bool nk_combo_item_text(struct nk_context *ctx, const char *text, int len,nk_flags align) { return nk_contextual_item_text(ctx, text, len, align); } NK_API nk_bool nk_combo_item_label(struct nk_context *ctx, const char *label, nk_flags align) { return nk_contextual_item_label(ctx, label, align); } NK_API nk_bool nk_combo_item_image_text(struct nk_context *ctx, struct nk_image img, const char *text, int len, nk_flags alignment) { return nk_contextual_item_image_text(ctx, img, text, len, alignment); } NK_API nk_bool nk_combo_item_image_label(struct nk_context *ctx, struct nk_image img, const char *text, nk_flags alignment) { return nk_contextual_item_image_label(ctx, img, text, alignment); } NK_API nk_bool nk_combo_item_symbol_text(struct nk_context *ctx, enum nk_symbol_type sym, const char *text, int len, nk_flags alignment) { return nk_contextual_item_symbol_text(ctx, sym, text, len, alignment); } NK_API nk_bool nk_combo_item_symbol_label(struct nk_context *ctx, enum nk_symbol_type sym, const char *label, nk_flags alignment) { return nk_contextual_item_symbol_label(ctx, sym, label, alignment); } NK_API void nk_combo_end(struct nk_context *ctx) { nk_contextual_end(ctx); } NK_API void nk_combo_close(struct nk_context *ctx) { nk_contextual_close(ctx); } NK_API int nk_combo(struct nk_context *ctx, const char **items, int count, int selected, int item_height, struct nk_vec2 size) { int i = 0; int max_height; struct nk_vec2 item_spacing; struct nk_vec2 window_padding; NK_ASSERT(ctx); NK_ASSERT(items); NK_ASSERT(ctx->current); if (!ctx || !items ||!count) return selected; item_spacing = ctx->style.window.spacing; window_padding = nk_panel_get_padding(&ctx->style, ctx->current->layout->type); max_height = count * item_height + count * (int)item_spacing.y; max_height += (int)item_spacing.y * 2 + (int)window_padding.y * 2; size.y = NK_MIN(size.y, (float)max_height); if (nk_combo_begin_label(ctx, items[selected], size)) { nk_layout_row_dynamic(ctx, (float)item_height, 1); for (i = 0; i < count; ++i) { if (nk_combo_item_label(ctx, items[i], NK_TEXT_LEFT)) selected = i; } nk_combo_end(ctx); } return selected; } NK_API int nk_combo_separator(struct nk_context *ctx, const char *items_separated_by_separator, int separator, int selected, int count, int item_height, struct nk_vec2 size) { int i; int max_height; struct nk_vec2 item_spacing; struct nk_vec2 window_padding; const char *current_item; const char *iter; int length = 0; NK_ASSERT(ctx); NK_ASSERT(items_separated_by_separator); if (!ctx || !items_separated_by_separator) return selected; /* calculate popup window */ item_spacing = ctx->style.window.spacing; window_padding = nk_panel_get_padding(&ctx->style, ctx->current->layout->type); max_height = count * item_height + count * (int)item_spacing.y; max_height += (int)item_spacing.y * 2 + (int)window_padding.y * 2; size.y = NK_MIN(size.y, (float)max_height); /* find selected item */ current_item = items_separated_by_separator; for (i = 0; i < count; ++i) { iter = current_item; while (*iter && *iter != separator) iter++; length = (int)(iter - current_item); if (i == selected) break; current_item = iter + 1; } if (nk_combo_begin_text(ctx, current_item, length, size)) { current_item = items_separated_by_separator; nk_layout_row_dynamic(ctx, (float)item_height, 1); for (i = 0; i < count; ++i) { iter = current_item; while (*iter && *iter != separator) iter++; length = (int)(iter - current_item); if (nk_combo_item_text(ctx, current_item, length, NK_TEXT_LEFT)) selected = i; current_item = current_item + length + 1; } nk_combo_end(ctx); } return selected; } NK_API int nk_combo_string(struct nk_context *ctx, const char *items_separated_by_zeros, int selected, int count, int item_height, struct nk_vec2 size) { return nk_combo_separator(ctx, items_separated_by_zeros, '\0', selected, count, item_height, size); } NK_API int nk_combo_callback(struct nk_context *ctx, void(*item_getter)(void*, int, const char**), void *userdata, int selected, int count, int item_height, struct nk_vec2 size) { int i; int max_height; struct nk_vec2 item_spacing; struct nk_vec2 window_padding; const char *item; NK_ASSERT(ctx); NK_ASSERT(item_getter); if (!ctx || !item_getter) return selected; /* calculate popup window */ item_spacing = ctx->style.window.spacing; window_padding = nk_panel_get_padding(&ctx->style, ctx->current->layout->type); max_height = count * item_height + count * (int)item_spacing.y; max_height += (int)item_spacing.y * 2 + (int)window_padding.y * 2; size.y = NK_MIN(size.y, (float)max_height); item_getter(userdata, selected, &item); if (nk_combo_begin_label(ctx, item, size)) { nk_layout_row_dynamic(ctx, (float)item_height, 1); for (i = 0; i < count; ++i) { item_getter(userdata, i, &item); if (nk_combo_item_label(ctx, item, NK_TEXT_LEFT)) selected = i; } nk_combo_end(ctx); } return selected; } NK_API void nk_combobox(struct nk_context *ctx, const char **items, int count, int *selected, int item_height, struct nk_vec2 size) { *selected = nk_combo(ctx, items, count, *selected, item_height, size); } NK_API void nk_combobox_string(struct nk_context *ctx, const char *items_separated_by_zeros, int *selected, int count, int item_height, struct nk_vec2 size) { *selected = nk_combo_string(ctx, items_separated_by_zeros, *selected, count, item_height, size); } NK_API void nk_combobox_separator(struct nk_context *ctx, const char *items_separated_by_separator, int separator, int *selected, int count, int item_height, struct nk_vec2 size) { *selected = nk_combo_separator(ctx, items_separated_by_separator, separator, *selected, count, item_height, size); } NK_API void nk_combobox_callback(struct nk_context *ctx, void(*item_getter)(void* data, int id, const char **out_text), void *userdata, int *selected, int count, int item_height, struct nk_vec2 size) { *selected = nk_combo_callback(ctx, item_getter, userdata, *selected, count, item_height, size); } /* =============================================================== * * TOOLTIP * * ===============================================================*/ NK_API nk_bool nk_tooltip_begin(struct nk_context *ctx, float width) { int x,y,w,h; struct nk_window *win; const struct nk_input *in; struct nk_rect bounds; int ret; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); if (!ctx || !ctx->current || !ctx->current->layout) return 0; /* make sure that no nonblocking popup is currently active */ win = ctx->current; in = &ctx->input; if (win->popup.win && (win->popup.type & NK_PANEL_SET_NONBLOCK)) return 0; w = nk_iceilf(width); h = nk_iceilf(nk_null_rect.h); x = nk_ifloorf(in->mouse.pos.x + 1) - (int)win->layout->clip.x; y = nk_ifloorf(in->mouse.pos.y + 1) - (int)win->layout->clip.y; #if 1 //< @r-lyeh avoid tooltip truncation against app borders if( (x+(int)win->layout->clip.x+w) > window_width()/*(win->layout->clip.x+win->layout->clip.w)*/ ) x-=w+1; // if( (y+(int)win->layout->clip.y+h) > (win->layout->clip.y+win->layout->clip.h) ) y-=h+1; #endif bounds.x = (float)x; bounds.y = (float)y; bounds.w = (float)w; bounds.h = (float)h; ret = nk_popup_begin(ctx, NK_POPUP_DYNAMIC, "__##Tooltip##__", NK_WINDOW_NO_SCROLLBAR|NK_WINDOW_BORDER, bounds); if (ret) win->layout->flags &= ~(nk_flags)NK_WINDOW_ROM; win->popup.type = NK_PANEL_TOOLTIP; ctx->current->layout->type = NK_PANEL_TOOLTIP; return ret; } NK_API void nk_tooltip_end(struct nk_context *ctx) { NK_ASSERT(ctx); NK_ASSERT(ctx->current); if (!ctx || !ctx->current) return; ctx->current->seq--; nk_popup_close(ctx); nk_popup_end(ctx); } NK_API void nk_tooltip(struct nk_context *ctx, const char *text) { const struct nk_style *style; struct nk_vec2 padding; int text_len; float text_width; float text_height; NK_ASSERT(ctx); NK_ASSERT(ctx->current); NK_ASSERT(ctx->current->layout); NK_ASSERT(text); if (!ctx || !ctx->current || !ctx->current->layout || !text) return; /* fetch configuration data */ style = &ctx->style; padding = style->window.padding; padding.x += 10; //< @r-lyeh /* calculate size of the text and tooltip */ text_len = nk_strlen(text); text_width = style->font->width(style->font->userdata, style->font->height, text, text_len); text_width += (4 * padding.x); text_height = (style->font->height + 2 * padding.y); /* execute tooltip and fill with text */ if (nk_tooltip_begin(ctx, (float)text_width)) { nk_layout_row_dynamic(ctx, (float)text_height, 1); nk_text(ctx, text, text_len, NK_TEXT_CENTERED); //< @r-lyeh LEFT->CENTERED nk_tooltip_end(ctx); } } #ifdef NK_INCLUDE_STANDARD_VARARGS NK_API void nk_tooltipf(struct nk_context *ctx, const char *fmt, ...) { va_list args; va_start(args, fmt); nk_tooltipfv(ctx, fmt, args); va_end(args); } NK_API void nk_tooltipfv(struct nk_context *ctx, const char *fmt, va_list args) { char buf[256]; nk_strfmt(buf, NK_LEN(buf), fmt, args); nk_tooltip(ctx, buf); } #endif #endif /* NK_IMPLEMENTATION */ /* /// ## License /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~none /// ------------------------------------------------------------------------------ /// This software is available under 2 licenses -- choose whichever you prefer. /// ------------------------------------------------------------------------------ /// ALTERNATIVE A - MIT License /// Copyright (c) 2016-2018 Micha Mettke /// Permission is hereby granted, free of charge, to any person obtaining a copy of /// this software and associated documentation files (the "Software"), to deal in /// the Software without restriction, including without limitation the rights to /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies /// of the Software, and to permit persons to whom the Software is furnished to do /// so, subject to the following conditions: /// The above copyright notice and this permission notice shall be included in all /// copies or substantial portions of the Software. /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE /// SOFTWARE. /// ------------------------------------------------------------------------------ /// ALTERNATIVE B - Public Domain (www.unlicense.org) /// This is free and unencumbered software released into the public domain. /// Anyone is free to copy, modify, publish, use, compile, sell, or distribute this /// software, either in source code form or as a compiled binary, for any purpose, /// commercial or non-commercial, and by any means. /// In jurisdictions that recognize copyright laws, the author or authors of this /// software dedicate any and all copyright interest in the software to the public /// domain. We make this dedication for the benefit of the public at large and to /// the detriment of our heirs and successors. We intend this dedication to be an /// overt act of relinquishment in perpetuity of all present and future rights to /// this software under copyright law. /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN /// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION /// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /// ------------------------------------------------------------------------------ /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// ## Changelog /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~none /// [date] ([x.y.z]) - [description] /// - [date]: date on which the change has been pushed /// - [x.y.z]: Version string, represented in Semantic Versioning format /// - [x]: Major version with API and library breaking changes /// - [y]: Minor version with non-breaking API and library changes /// - [z]: Patch version with no direct changes to the API /// /// - 2022/02/03 (4.9.6) - Allow overriding the NK_INV_SQRT function, similar to NK_SIN and NK_COS /// - 2021/12/22 (4.9.5) - Revert layout bounds not accounting for padding due to regressions /// - 2021/12/22 (4.9.4) - Fix checking hovering when window is minimized /// - 2021/12/22 (4.09.3) - Fix layout bounds not accounting for padding /// - 2021/12/19 (4.09.2) - Update to stb_rect_pack.h v1.01 and stb_truetype.h v1.26 /// - 2021/12/16 (4.09.1) - Fix the majority of GCC warnings /// - 2021/10/16 (4.09.0) - Added nk_spacer() widget /// - 2021/09/22 (4.08.6) - Fix "may be used uninitialized" warnings in nk_widget /// - 2021/09/22 (4.08.5) - GCC __builtin_offsetof only exists in version 4 and later /// - 2021/09/15 (4.08.4) - Fix "'num_len' may be used uninitialized" in nk_do_property /// - 2021/09/15 (4.08.3) - Fix "Templates cannot be declared to have 'C' Linkage" /// - 2021/09/08 (4.08.2) - Fix warnings in C89 builds /// - 2021/09/08 (4.08.1) - Use compiler builtins for NK_OFFSETOF when possible /// - 2021/08/17 (4.08.0) - Implemented 9-slice scaling support for widget styles /// - 2021/08/16 (4.07.5) - Replace usage of memset in nk_font_atlas_bake with NK_MEMSET /// - 2021/08/15 (4.07.4) - Fix conversion and sign conversion warnings /// - 2021/08/08 (4.07.3) - Fix crash when baking merged fonts /// - 2021/08/08 (4.07.2) - Fix Multiline Edit wrong offset /// - 2021/03/17 (4.07.1) - Fix warning about unused parameter /// - 2021/03/17 (4.07.0) - Fix nk_property hover bug /// - 2021/03/15 (4.06.4) - Change nk_propertyi back to int /// - 2021/03/15 (4.06.3) - Update documentation for functions that now return nk_bool /// - 2020/12/19 (4.06.2) - Fix additional C++ style comments which are not allowed in ISO C90. /// - 2020/10/11 (4.06.1) - Fix C++ style comments which are not allowed in ISO C90. /// - 2020/10/07 (4.06.0) - Fix nk_combo return type wrongly changed to nk_bool /// - 2020/09/05 (4.05.0) - Use the nk_font_atlas allocator for stb_truetype memory management. /// - 2020/09/04 (4.04.1) - Replace every boolean int by nk_bool /// - 2020/09/04 (4.04.0) - Add nk_bool with NK_INCLUDE_STANDARD_BOOL /// - 2020/06/13 (4.03.1) - Fix nk_pool allocation sizes. /// - 2020/06/04 (4.03.0) - Made nk_combo header symbols optional. /// - 2020/05/27 (4.02.5) - Fix nk_do_edit: Keep scroll position when re-activating edit widget. /// - 2020/05/09 (4.02.4) - Fix nk_menubar height calculation bug /// - 2020/05/08 (4.02.3) - Fix missing stdarg.h with NK_INCLUDE_STANDARD_VARARGS /// - 2020/04/30 (4.02.2) - Fix nk_edit border drawing bug /// - 2020/04/09 (4.02.1) - Removed unused nk_sqrt function to fix compiler warnings /// - Fixed compiler warnings if you bring your own methods for /// nk_cos/nk_sin/nk_strtod/nk_memset/nk_memcopy/nk_dtoa /// - 2020/04/06 (4.01.10) - Fix bug: Do not use pool before checking for NULL /// - 2020/03/22 (4.01.9) - Fix bug where layout state wasn't restored correctly after /// popping a tree. /// - 2020/03/11 (4.01.8) - Fix bug where padding is subtracted from widget /// - 2020/03/06 (4.01.7) - Fix bug where width padding was applied twice /// - 2020/02/06 (4.01.6) - Update stb_truetype.h and stb_rect_pack.h and separate them /// - 2019/12/10 (4.01.5) - Fix off-by-one error in NK_INTERSECT /// - 2019/10/09 (4.01.4) - Fix bug for autoscrolling in nk_do_edit /// - 2019/09/20 (4.01.3) - Fixed a bug wherein combobox cannot be closed by clicking the header /// when NK_BUTTON_TRIGGER_ON_RELEASE is defined. /// - 2019/09/10 (4.01.2) - Fixed the nk_cos function, which deviated significantly. /// - 2019/09/08 (4.01.1) - Fixed a bug wherein re-baking of fonts caused a segmentation /// fault due to dst_font->glyph_count not being zeroed on subsequent /// bakes of the same set of fonts. /// - 2019/06/23 (4.01.0) - Added nk_***_get_scroll and nk_***_set_scroll for groups, windows, and popups. /// - 2019/06/12 (4.00.3) - Fix panel background drawing bug. /// - 2018/10/31 (4.00.2) - Added NK_KEYSTATE_BASED_INPUT to "fix" state based backends /// like GLFW without breaking key repeat behavior on event based. /// - 2018/04/01 (4.00.1) - Fixed calling `nk_convert` multiple time per single frame. /// - 2018/04/01 (4.00.0) - BREAKING CHANGE: nk_draw_list_clear no longer tries to /// clear provided buffers. So make sure to either free /// or clear each passed buffer after calling nk_convert. /// - 2018/02/23 (3.00.6) - Fixed slider dragging behavior. /// - 2018/01/31 (3.00.5) - Fixed overcalculation of cursor data in font baking process. /// - 2018/01/31 (3.00.4) - Removed name collision with stb_truetype. /// - 2018/01/28 (3.00.3) - Fixed panel window border drawing bug. /// - 2018/01/12 (3.00.2) - Added `nk_group_begin_titled` for separated group identifier and title. /// - 2018/01/07 (3.00.1) - Started to change documentation style. /// - 2018/01/05 (3.00.0) - BREAKING CHANGE: The previous color picker API was broken /// because of conversions between float and byte color representation. /// Color pickers now use floating point values to represent /// HSV values. To get back the old behavior I added some additional /// color conversion functions to cast between nk_color and /// nk_colorf. /// - 2017/12/23 (2.00.7) - Fixed small warning. /// - 2017/12/23 (2.00.7) - Fixed `nk_edit_buffer` behavior if activated to allow input. /// - 2017/12/23 (2.00.7) - Fixed modifyable progressbar dragging visuals and input behavior. /// - 2017/12/04 (2.00.6) - Added formatted string tooltip widget. /// - 2017/11/18 (2.00.5) - Fixed window becoming hidden with flag `NK_WINDOW_NO_INPUT`. /// - 2017/11/15 (2.00.4) - Fixed font merging. /// - 2017/11/07 (2.00.3) - Fixed window size and position modifier functions. /// - 2017/09/14 (2.00.2) - Fixed `nk_edit_buffer` and `nk_edit_focus` behavior. /// - 2017/09/14 (2.00.1) - Fixed window closing behavior. /// - 2017/09/14 (2.00.0) - BREAKING CHANGE: Modifying window position and size functions now /// require the name of the window and must happen outside the window /// building process (between function call nk_begin and nk_end). /// - 2017/09/11 (1.40.9) - Fixed window background flag if background window is declared last. /// - 2017/08/27 (1.40.8) - Fixed `nk_item_is_any_active` for hidden windows. /// - 2017/08/27 (1.40.7) - Fixed window background flag. /// - 2017/07/07 (1.40.6) - Fixed missing clipping rect check for hovering/clicked /// query for widgets. /// - 2017/07/07 (1.40.5) - Fixed drawing bug for vertex output for lines and stroked /// and filled rectangles. /// - 2017/07/07 (1.40.4) - Fixed bug in nk_convert trying to add windows that are in /// process of being destroyed. /// - 2017/07/07 (1.40.3) - Fixed table internal bug caused by storing table size in /// window instead of directly in table. /// - 2017/06/30 (1.40.2) - Removed unneeded semicolon in C++ NK_ALIGNOF macro. /// - 2017/06/30 (1.40.1) - Fixed drawing lines smaller or equal zero. /// - 2017/06/08 (1.40.0) - Removed the breaking part of last commit. Auto layout now only /// comes in effect if you pass in zero was row height argument. /// - 2017/06/08 (1.40.0) - BREAKING CHANGE: while not directly API breaking it will change /// how layouting works. From now there will be an internal minimum /// row height derived from font height. If you need a row smaller than /// that you can directly set it by `nk_layout_set_min_row_height` and /// reset the value back by calling `nk_layout_reset_min_row_height. /// - 2017/06/08 (1.39.1) - Fixed property text edit handling bug caused by past `nk_widget` fix. /// - 2017/06/08 (1.39.0) - Added function to retrieve window space without calling a `nk_layout_xxx` function. /// - 2017/06/06 (1.38.5) - Fixed `nk_convert` return flag for command buffer. /// - 2017/05/23 (1.38.4) - Fixed activation behavior for widgets partially clipped. /// - 2017/05/10 (1.38.3) - Fixed wrong min window size mouse scaling over boundaries. /// - 2017/05/09 (1.38.2) - Fixed vertical scrollbar drawing with not enough space. /// - 2017/05/09 (1.38.1) - Fixed scaler dragging behavior if window size hits minimum size. /// - 2017/05/06 (1.38.0) - Added platform double-click support. /// - 2017/04/20 (1.37.1) - Fixed key repeat found inside glfw demo backends. /// - 2017/04/20 (1.37.0) - Extended properties with selection and clipboard support. /// - 2017/04/20 (1.36.2) - Fixed #405 overlapping rows with zero padding and spacing. /// - 2017/04/09 (1.36.1) - Fixed #403 with another widget float error. /// - 2017/04/09 (1.36.0) - Added window `NK_WINDOW_NO_INPUT` and `NK_WINDOW_NOT_INTERACTIVE` flags. /// - 2017/04/09 (1.35.3) - Fixed buffer heap corruption. /// - 2017/03/25 (1.35.2) - Fixed popup overlapping for `NK_WINDOW_BACKGROUND` windows. /// - 2017/03/25 (1.35.1) - Fixed windows closing behavior. /// - 2017/03/18 (1.35.0) - Added horizontal scroll requested in #377. /// - 2017/03/18 (1.34.3) - Fixed long window header titles. /// - 2017/03/04 (1.34.2) - Fixed text edit filtering. /// - 2017/03/04 (1.34.1) - Fixed group closable flag. /// - 2017/02/25 (1.34.0) - Added custom draw command for better language binding support. /// - 2017/01/24 (1.33.0) - Added programmatic way to remove edit focus. /// - 2017/01/24 (1.32.3) - Fixed wrong define for basic type definitions for windows. /// - 2017/01/21 (1.32.2) - Fixed input capture from hidden or closed windows. /// - 2017/01/21 (1.32.1) - Fixed slider behavior and drawing. /// - 2017/01/13 (1.32.0) - Added flag to put scaler into the bottom left corner. /// - 2017/01/13 (1.31.0) - Added additional row layouting method to combine both /// dynamic and static widgets. /// - 2016/12/31 (1.30.0) - Extended scrollbar offset from 16-bit to 32-bit. /// - 2016/12/31 (1.29.2) - Fixed closing window bug of minimized windows. /// - 2016/12/03 (1.29.1) - Fixed wrapped text with no seperator and C89 error. /// - 2016/12/03 (1.29.0) - Changed text wrapping to process words not characters. /// - 2016/11/22 (1.28.6) - Fixed window minimized closing bug. /// - 2016/11/19 (1.28.5) - Fixed abstract combo box closing behavior. /// - 2016/11/19 (1.28.4) - Fixed tooltip flickering. /// - 2016/11/19 (1.28.3) - Fixed memory leak caused by popup repeated closing. /// - 2016/11/18 (1.28.2) - Fixed memory leak caused by popup panel allocation. /// - 2016/11/10 (1.28.1) - Fixed some warnings and C++ error. /// - 2016/11/10 (1.28.0) - Added additional `nk_button` versions which allows to directly /// pass in a style struct to change buttons visual. /// - 2016/11/10 (1.27.0) - Added additional `nk_tree` versions to support external state /// storage. Just like last the `nk_group` commit the main /// advantage is that you optionally can minimize nuklears runtime /// memory consumption or handle hash collisions. /// - 2016/11/09 (1.26.0) - Added additional `nk_group` version to support external scrollbar /// offset storage. Main advantage is that you can externalize /// the memory management for the offset. It could also be helpful /// if you have a hash collision in `nk_group_begin` but really /// want the name. In addition I added `nk_list_view` which allows /// to draw big lists inside a group without actually having to /// commit the whole list to nuklear (issue #269). /// - 2016/10/30 (1.25.1) - Fixed clipping rectangle bug inside `nk_draw_list`. /// - 2016/10/29 (1.25.0) - Pulled `nk_panel` memory management into nuklear and out of /// the hands of the user. From now on users don't have to care /// about panels unless they care about some information. If you /// still need the panel just call `nk_window_get_panel`. /// - 2016/10/21 (1.24.0) - Changed widget border drawing to stroked rectangle from filled /// rectangle for less overdraw and widget background transparency. /// - 2016/10/18 (1.23.0) - Added `nk_edit_focus` for manually edit widget focus control. /// - 2016/09/29 (1.22.7) - Fixed deduction of basic type in non `` compilation. /// - 2016/09/29 (1.22.6) - Fixed edit widget UTF-8 text cursor drawing bug. /// - 2016/09/28 (1.22.5) - Fixed edit widget UTF-8 text appending/inserting/removing. /// - 2016/09/28 (1.22.4) - Fixed drawing bug inside edit widgets which offset all text /// text in every edit widget if one of them is scrolled. /// - 2016/09/28 (1.22.3) - Fixed small bug in edit widgets if not active. The wrong /// text length is passed. It should have been in bytes but /// was passed as glyphs. /// - 2016/09/20 (1.22.2) - Fixed color button size calculation. /// - 2016/09/20 (1.22.1) - Fixed some `nk_vsnprintf` behavior bugs and removed `` /// again from `NK_INCLUDE_STANDARD_VARARGS`. /// - 2016/09/18 (1.22.0) - C89 does not support vsnprintf only C99 and newer as well /// as C++11 and newer. In addition to use vsnprintf you have /// to include . So just defining `NK_INCLUDE_STD_VAR_ARGS` /// is not enough. That behavior is now fixed. By default if /// both varargs as well as stdio is selected I try to use /// vsnprintf if not possible I will revert to vsprintf. If /// varargs but not stdio was defined I will use my own function. /// - 2016/09/15 (1.21.2) - Fixed panel `close` behavior for deeper panel levels. /// - 2016/09/15 (1.21.1) - Fixed C++ errors and wrong argument to `nk_panel_get_xxxx`. /// - 2016/09/13 (1.21.0) - !BREAKING! Fixed nonblocking popup behavior in menu, combo, /// and contextual which prevented closing in y-direction if /// popup did not reach max height. /// In addition the height parameter was changed into vec2 /// for width and height to have more control over the popup size. /// - 2016/09/13 (1.20.3) - Cleaned up and extended type selection. /// - 2016/09/13 (1.20.2) - Fixed slider behavior hopefully for the last time. This time /// all calculation are correct so no more hackery. /// - 2016/09/13 (1.20.1) - Internal change to divide window/panel flags into panel flags and types. /// Suprisinly spend years in C and still happened to confuse types /// with flags. Probably something to take note. /// - 2016/09/08 (1.20.0) - Added additional helper function to make it easier to just /// take the produced buffers from `nk_convert` and unplug the /// iteration process from `nk_context`. So now you can /// just use the vertex,element and command buffer + two pointer /// inside the command buffer retrieved by calls `nk__draw_begin` /// and `nk__draw_end` and macro `nk_draw_foreach_bounded`. /// - 2016/09/08 (1.19.0) - Added additional asserts to make sure every `nk_xxx_begin` call /// for windows, popups, combobox, menu and contextual is guarded by /// `if` condition and does not produce false drawing output. /// - 2016/09/08 (1.18.0) - Changed confusing name for `NK_SYMBOL_RECT_FILLED`, `NK_SYMBOL_RECT` /// to hopefully easier to understand `NK_SYMBOL_RECT_FILLED` and /// `NK_SYMBOL_RECT_OUTLINE`. /// - 2016/09/08 (1.17.0) - Changed confusing name for `NK_SYMBOL_CIRLCE_FILLED`, `NK_SYMBOL_CIRCLE` /// to hopefully easier to understand `NK_SYMBOL_CIRCLE_FILLED` and /// `NK_SYMBOL_CIRCLE_OUTLINE`. /// - 2016/09/08 (1.16.0) - Added additional checks to select correct types if `NK_INCLUDE_FIXED_TYPES` /// is not defined by supporting the biggest compiler GCC, clang and MSVC. /// - 2016/09/07 (1.15.3) - Fixed `NK_INCLUDE_COMMAND_USERDATA` define to not cause an error. /// - 2016/09/04 (1.15.2) - Fixed wrong combobox height calculation. /// - 2016/09/03 (1.15.1) - Fixed gaps inside combo boxes in OpenGL. /// - 2016/09/02 (1.15.0) - Changed nuklear to not have any default vertex layout and /// instead made it user provided. The range of types to convert /// to is quite limited at the moment, but I would be more than /// happy to accept PRs to add additional. /// - 2016/08/30 (1.14.2) - Removed unused variables. /// - 2016/08/30 (1.14.1) - Fixed C++ build errors. /// - 2016/08/30 (1.14.0) - Removed mouse dragging from SDL demo since it does not work correctly. /// - 2016/08/30 (1.13.4) - Tweaked some default styling variables. /// - 2016/08/30 (1.13.3) - Hopefully fixed drawing bug in slider, in general I would /// refrain from using slider with a big number of steps. /// - 2016/08/30 (1.13.2) - Fixed close and minimize button which would fire even if the /// window was in Read Only Mode. /// - 2016/08/30 (1.13.1) - Fixed popup panel padding handling which was previously just /// a hack for combo box and menu. /// - 2016/08/30 (1.13.0) - Removed `NK_WINDOW_DYNAMIC` flag from public API since /// it is bugged and causes issues in window selection. /// - 2016/08/30 (1.12.0) - Removed scaler size. The size of the scaler is now /// determined by the scrollbar size. /// - 2016/08/30 (1.11.2) - Fixed some drawing bugs caused by changes from 1.11.0. /// - 2016/08/30 (1.11.1) - Fixed overlapping minimized window selection. /// - 2016/08/30 (1.11.0) - Removed some internal complexity and overly complex code /// handling panel padding and panel border. /// - 2016/08/29 (1.10.0) - Added additional height parameter to `nk_combobox_xxx`. /// - 2016/08/29 (1.10.0) - Fixed drawing bug in dynamic popups. /// - 2016/08/29 (1.10.0) - Added experimental mouse scrolling to popups, menus and comboboxes. /// - 2016/08/26 (1.10.0) - Added window name string prepresentation to account for /// hash collisions. Currently limited to `NK_WINDOW_MAX_NAME` /// which in term can be redefined if not big enough. /// - 2016/08/26 (1.10.0) - Added stacks for temporary style/UI changes in code. /// - 2016/08/25 (1.10.0) - Changed `nk_input_is_key_pressed` and 'nk_input_is_key_released' /// to account for key press and release happening in one frame. /// - 2016/08/25 (1.10.0) - Added additional nk_edit flag to directly jump to the end on activate. /// - 2016/08/17 (1.09.6) - Removed invalid check for value zero in `nk_propertyx`. /// - 2016/08/16 (1.09.5) - Fixed ROM mode for deeper levels of popup windows parents. /// - 2016/08/15 (1.09.4) - Editbox are now still active if enter was pressed with flag /// `NK_EDIT_SIG_ENTER`. Main reasoning is to be able to keep /// typing after committing. /// - 2016/08/15 (1.09.4) - Removed redundant code. /// - 2016/08/15 (1.09.4) - Fixed negative numbers in `nk_strtoi` and remove unused variable. /// - 2016/08/15 (1.09.3) - Fixed `NK_WINDOW_BACKGROUND` flag behavior to select a background /// window only as selected by hovering and not by clicking. /// - 2016/08/14 (1.09.2) - Fixed a bug in font atlas which caused wrong loading /// of glyphs for font with multiple ranges. /// - 2016/08/12 (1.09.1) - Added additional function to check if window is currently /// hidden and therefore not visible. /// - 2016/08/12 (1.09.1) - nk_window_is_closed now queries the correct flag `NK_WINDOW_CLOSED` /// instead of the old flag `NK_WINDOW_HIDDEN`. /// - 2016/08/09 (1.09.0) - Added additional double version to nk_property and changed /// the underlying implementation to not cast to float and instead /// work directly on the given values. /// - 2016/08/09 (1.08.0) - Added additional define to overwrite library internal /// floating pointer number to string conversion for additional /// precision. /// - 2016/08/09 (1.08.0) - Added additional define to overwrite library internal /// string to floating point number conversion for additional /// precision. /// - 2016/08/08 (1.07.2) - Fixed compiling error without define `NK_INCLUDE_FIXED_TYPE`. /// - 2016/08/08 (1.07.1) - Fixed possible floating point error inside `nk_widget` leading /// to wrong wiget width calculation which results in widgets falsely /// becoming tagged as not inside window and cannot be accessed. /// - 2016/08/08 (1.07.0) - Nuklear now differentiates between hiding a window (NK_WINDOW_HIDDEN) and /// closing a window (NK_WINDOW_CLOSED). A window can be hidden/shown /// by using `nk_window_show` and closed by either clicking the close /// icon in a window or by calling `nk_window_close`. Only closed /// windows get removed at the end of the frame while hidden windows /// remain. /// - 2016/08/08 (1.06.0) - Added `nk_edit_string_zero_terminated` as a second option to /// `nk_edit_string` which takes, edits and outputs a '\0' terminated string. /// - 2016/08/08 (1.05.4) - Fixed scrollbar auto hiding behavior. /// - 2016/08/08 (1.05.3) - Fixed wrong panel padding selection in `nk_layout_widget_space`. /// - 2016/08/07 (1.05.2) - Fixed old bug in dynamic immediate mode layout API, calculating /// wrong item spacing and panel width. /// - 2016/08/07 (1.05.1) - Hopefully finally fixed combobox popup drawing bug. /// - 2016/08/07 (1.05.0) - Split varargs away from `NK_INCLUDE_STANDARD_IO` into own /// define `NK_INCLUDE_STANDARD_VARARGS` to allow more fine /// grained controlled over library includes. /// - 2016/08/06 (1.04.5) - Changed memset calls to `NK_MEMSET`. /// - 2016/08/04 (1.04.4) - Fixed fast window scaling behavior. /// - 2016/08/04 (1.04.3) - Fixed window scaling, movement bug which appears if you /// move/scale a window and another window is behind it. /// If you are fast enough then the window behind gets activated /// and the operation is blocked. I now require activating /// by hovering only if mouse is not pressed. /// - 2016/08/04 (1.04.2) - Fixed changing fonts. /// - 2016/08/03 (1.04.1) - Fixed `NK_WINDOW_BACKGROUND` behavior. /// - 2016/08/03 (1.04.0) - Added color parameter to `nk_draw_image`. /// - 2016/08/03 (1.04.0) - Added additional window padding style attributes for /// sub windows (combo, menu, ...). /// - 2016/08/03 (1.04.0) - Added functions to show/hide software cursor. /// - 2016/08/03 (1.04.0) - Added `NK_WINDOW_BACKGROUND` flag to force a window /// to be always in the background of the screen. /// - 2016/08/03 (1.03.2) - Removed invalid assert macro for NK_RGB color picker. /// - 2016/08/01 (1.03.1) - Added helper macros into header include guard. /// - 2016/07/29 (1.03.0) - Moved the window/table pool into the header part to /// simplify memory management by removing the need to /// allocate the pool. /// - 2016/07/29 (1.02.0) - Added auto scrollbar hiding window flag which if enabled /// will hide the window scrollbar after NK_SCROLLBAR_HIDING_TIMEOUT /// seconds without window interaction. To make it work /// you have to also set a delta time inside the `nk_context`. /// - 2016/07/25 (1.01.1) - Fixed small panel and panel border drawing bugs. /// - 2016/07/15 (1.01.0) - Added software cursor to `nk_style` and `nk_context`. /// - 2016/07/15 (1.01.0) - Added const correctness to `nk_buffer_push' data argument. /// - 2016/07/15 (1.01.0) - Removed internal font baking API and simplified /// font atlas memory management by converting pointer /// arrays for fonts and font configurations to lists. /// - 2016/07/15 (1.00.0) - Changed button API to use context dependent button /// behavior instead of passing it for every function call. /// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// ## Gallery /// ![Figure [blue]: Feature overview with blue color styling](https://cloud.githubusercontent.com/assets/8057201/13538240/acd96876-e249-11e5-9547-5ac0b19667a0.png) /// ![Figure [red]: Feature overview with red color styling](https://cloud.githubusercontent.com/assets/8057201/13538243/b04acd4c-e249-11e5-8fd2-ad7744a5b446.png) /// ![Figure [widgets]: Widget overview](https://cloud.githubusercontent.com/assets/8057201/11282359/3325e3c6-8eff-11e5-86cb-cf02b0596087.png) /// ![Figure [blackwhite]: Black and white](https://cloud.githubusercontent.com/assets/8057201/11033668/59ab5d04-86e5-11e5-8091-c56f16411565.png) /// ![Figure [filexp]: File explorer](https://cloud.githubusercontent.com/assets/8057201/10718115/02a9ba08-7b6b-11e5-950f-adacdd637739.png) /// ![Figure [opengl]: OpenGL Editor](https://cloud.githubusercontent.com/assets/8057201/12779619/2a20d72c-ca69-11e5-95fe-4edecf820d5c.png) /// ![Figure [nodedit]: Node Editor](https://cloud.githubusercontent.com/assets/8057201/9976995/e81ac04a-5ef7-11e5-872b-acd54fbeee03.gif) /// ![Figure [skinning]: Using skinning in Nuklear](https://cloud.githubusercontent.com/assets/8057201/15991632/76494854-30b8-11e6-9555-a69840d0d50b.png) /// ![Figure [bf]: Heavy modified version](https://cloud.githubusercontent.com/assets/8057201/14902576/339926a8-0d9c-11e6-9fee-a8b73af04473.png) /// /// ## Credits /// Developed by Micha Mettke and every direct or indirect github contributor.

/// /// Embeds [stb_texedit](https://github.com/nothings/stb/blob/master/stb_textedit.h), [stb_truetype](https://github.com/nothings/stb/blob/master/stb_truetype.h) and [stb_rectpack](https://github.com/nothings/stb/blob/master/stb_rect_pack.h) by Sean Barret (public domain)
/// Uses [stddoc.c](https://github.com/r-lyeh/stddoc.c) from r-lyeh@github.com for documentation generation

/// Embeds ProggyClean.ttf font by Tristan Grimmer (MIT license).
/// /// Big thank you to Omar Cornut (ocornut@github) for his [imgui library](https://github.com/ocornut/imgui) and /// giving me the inspiration for this library, Casey Muratori for handmade hero /// and his original immediate mode graphical user interface idea and Sean /// Barret for his amazing single header libraries which restored my faith /// in libraries and brought me to create some of my own. Finally Apoorva Joshi /// for his single header file packer. */ #line 0 #line 1 "3rd_nuklear_glfw_gl3.h" /* * Nuklear - 1.32.0 - public domain * no warrenty implied; use at your own risk. * authored from 2015-2016 by Micha Mettke */ /* * ============================================================== * * API * * =============================================================== */ #ifndef NK_GLFW_GL3_H_ #define NK_GLFW_GL3_H_ //#include enum nk_glfw_init_state{ NK_GLFW3_DEFAULT=0, NK_GLFW3_INSTALL_CALLBACKS }; #ifndef NK_GLFW_TEXT_MAX #define NK_GLFW_TEXT_MAX 256 #endif struct nk_glfw_device { struct nk_buffer cmds; struct nk_draw_null_texture null; GLuint vbo, vao, ebo; GLuint prog; GLuint vert_shdr; GLuint frag_shdr; GLint attrib_pos; GLint attrib_uv; GLint attrib_col; GLint uniform_tex; GLint uniform_proj; GLuint font_tex; }; struct nk_glfw { GLFWwindow *win; int width, height; int display_width, display_height; struct nk_glfw_device ogl; struct nk_context ctx; struct nk_font_atlas atlas; struct nk_vec2 fb_scale; unsigned int text[NK_GLFW_TEXT_MAX]; int text_len; struct nk_vec2 scroll, scroll_bak; //< @r-lyeh, added scroll_bak double last_button_click; int is_double_click_down; struct nk_vec2 double_click_pos; }; NK_API struct nk_context* nk_glfw3_init(struct nk_glfw* glfw, GLFWwindow *win, enum nk_glfw_init_state); NK_API void nk_glfw3_shutdown(struct nk_glfw* glfw); NK_API void nk_glfw3_font_stash_begin(struct nk_glfw* glfw, struct nk_font_atlas **atlas); NK_API void nk_glfw3_font_stash_end(struct nk_glfw* glfw); NK_API void nk_glfw3_new_frame(struct nk_glfw* glfw); NK_API void nk_glfw3_render(struct nk_glfw* glfw, enum nk_anti_aliasing, int max_vertex_buffer, int max_element_buffer); NK_API void nk_glfw3_device_destroy(struct nk_glfw* glfw); NK_API void nk_glfw3_device_create(struct nk_glfw* glfw); NK_API void nk_glfw3_char_callback(GLFWwindow *win, unsigned int codepoint); NK_API void nk_gflw3_scroll_callback(GLFWwindow *win, double xoff, double yoff); NK_API void nk_glfw3_mouse_button_callback(GLFWwindow *win, int button, int action, int mods); /* * ============================================================== * * IMPLEMENTATION * * =============================================================== */ #ifdef NK_GLFW_GL3_IMPLEMENTATION #ifndef NK_GLFW_DOUBLE_CLICK_LO #define NK_GLFW_DOUBLE_CLICK_LO 0.02 #endif #ifndef NK_GLFW_DOUBLE_CLICK_HI #define NK_GLFW_DOUBLE_CLICK_HI 0.2 #endif struct nk_glfw_vertex { float position[2]; float uv[2]; nk_byte col[4]; }; #ifdef __EMSCRIPTEN__ #define NK_SHADER_VERSION "#version 100\n" #else #ifdef __APPLE__ #define NK_SHADER_VERSION "#version 150\n" #else #define NK_SHADER_VERSION "#version 300 es\n" #endif #endif NK_API void nk_glfw3_device_create(struct nk_glfw* glfw) { GLint status; static const GLchar *vertex_shader = NK_SHADER_VERSION "uniform mat4 ProjMtx;\n" #ifdef __EMSCRIPTEN__ "attribute vec2 Position;\n" "attribute vec2 TexCoord;\n" "attribute vec4 Color;\n" "varying vec2 Frag_UV;\n" "varying vec4 Frag_Color;\n" #else "in vec2 Position;\n" "in vec2 TexCoord;\n" "in vec4 Color;\n" "out vec2 Frag_UV;\n" "out vec4 Frag_Color;\n" #endif "void main() {\n" " Frag_UV = TexCoord;\n" " Frag_Color = Color;\n" " gl_Position = ProjMtx * vec4(Position.xy, 0, 1);\n" "}\n"; static const GLchar *fragment_shader = NK_SHADER_VERSION "precision mediump float;\n" "uniform sampler2D Texture;\n" #ifdef __EMSCRIPTEN__ "varying vec2 Frag_UV;\n" "varying vec4 Frag_Color;\n" #else "in vec2 Frag_UV;\n" "in vec4 Frag_Color;\n" "out vec4 Out_Color;\n" #endif "void main(){\n" #ifdef __EMSCRIPTEN__ " gl_FragColor = Frag_Color * texture2D(Texture, Frag_UV);\n" #else " Out_Color = Frag_Color * texture(Texture, Frag_UV.st);\n" #endif "}\n"; struct nk_glfw_device *dev = &glfw->ogl; nk_buffer_init_default(&dev->cmds); dev->prog = glCreateProgram(); dev->vert_shdr = glCreateShader(GL_VERTEX_SHADER); dev->frag_shdr = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(dev->vert_shdr, 1, &vertex_shader, 0); glShaderSource(dev->frag_shdr, 1, &fragment_shader, 0); glCompileShader(dev->vert_shdr); glCompileShader(dev->frag_shdr); glGetShaderiv(dev->vert_shdr, GL_COMPILE_STATUS, &status); assert(status == GL_TRUE); glGetShaderiv(dev->frag_shdr, GL_COMPILE_STATUS, &status); assert(status == GL_TRUE); glAttachShader(dev->prog, dev->vert_shdr); glAttachShader(dev->prog, dev->frag_shdr); glLinkProgram(dev->prog); glGetProgramiv(dev->prog, GL_LINK_STATUS, &status); assert(status == GL_TRUE); dev->uniform_tex = glGetUniformLocation(dev->prog, "Texture"); dev->uniform_proj = glGetUniformLocation(dev->prog, "ProjMtx"); dev->attrib_pos = glGetAttribLocation(dev->prog, "Position"); dev->attrib_uv = glGetAttribLocation(dev->prog, "TexCoord"); dev->attrib_col = glGetAttribLocation(dev->prog, "Color"); { /* buffer setup */ GLsizei vs = sizeof(struct nk_glfw_vertex); size_t vp = offsetof(struct nk_glfw_vertex, position); size_t vt = offsetof(struct nk_glfw_vertex, uv); size_t vc = offsetof(struct nk_glfw_vertex, col); glGenBuffers(1, &dev->vbo); glGenBuffers(1, &dev->ebo); glGenVertexArrays(1, &dev->vao); glBindVertexArray(dev->vao); glBindBuffer(GL_ARRAY_BUFFER, dev->vbo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dev->ebo); glEnableVertexAttribArray((GLuint)dev->attrib_pos); glEnableVertexAttribArray((GLuint)dev->attrib_uv); glEnableVertexAttribArray((GLuint)dev->attrib_col); glVertexAttribPointer((GLuint)dev->attrib_pos, 2, GL_FLOAT, GL_FALSE, vs, (void*)vp); glVertexAttribPointer((GLuint)dev->attrib_uv, 2, GL_FLOAT, GL_FALSE, vs, (void*)vt); glVertexAttribPointer((GLuint)dev->attrib_col, 4, GL_UNSIGNED_BYTE, GL_TRUE, vs, (void*)vc); } glBindTexture(GL_TEXTURE_2D, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #ifndef __EMSCRIPTEN__ glBindVertexArray(0); #endif } NK_INTERN void nk_glfw3_device_upload_atlas(struct nk_glfw* glfw, const void *image, int width, int height) { struct nk_glfw_device *dev = &glfw->ogl; glGenTextures(1, &dev->font_tex); glBindTexture(GL_TEXTURE_2D, dev->font_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)width, (GLsizei)height, 0, GL_RGBA, GL_UNSIGNED_BYTE, image); } NK_API void nk_glfw3_device_destroy(struct nk_glfw* glfw) { struct nk_glfw_device *dev = &glfw->ogl; glDetachShader(dev->prog, dev->vert_shdr); glDetachShader(dev->prog, dev->frag_shdr); glDeleteShader(dev->vert_shdr); glDeleteShader(dev->frag_shdr); glDeleteProgram(dev->prog); glDeleteTextures(1, &dev->font_tex); glDeleteBuffers(1, &dev->vbo); glDeleteBuffers(1, &dev->ebo); nk_buffer_free(&dev->cmds); } NK_API void nk_glfw3_render(struct nk_glfw* glfw, enum nk_anti_aliasing AA, int max_vertex_buffer, int max_element_buffer) { struct nk_glfw_device *dev = &glfw->ogl; GLfloat ortho[4][4] = { {2.0f, 0.0f, 0.0f, 0.0f}, {0.0f,-2.0f, 0.0f, 0.0f}, {0.0f, 0.0f,-1.0f, 0.0f}, {-1.0f,1.0f, 0.0f, 1.0f}, }; ortho[0][0] /= (GLfloat)glfw->width; ortho[1][1] /= (GLfloat)glfw->height; /* setup global state */ glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glEnable(GL_SCISSOR_TEST); glActiveTexture(GL_TEXTURE0); /* setup program */ glUseProgram(dev->prog); glUniform1i(dev->uniform_tex, 0); glUniformMatrix4fv(dev->uniform_proj, 1, GL_FALSE, &ortho[0][0]); glViewport(0,0,(GLsizei)glfw->display_width,(GLsizei)glfw->display_height); { /* convert from command queue into draw list and draw to screen */ const struct nk_draw_command *cmd = NULL; void *vertices, *elements; const nk_draw_index *offset = NULL; /* allocate vertex and element buffer */ glBindVertexArray(dev->vao); glBindBuffer(GL_ARRAY_BUFFER, dev->vbo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dev->ebo); glBufferData(GL_ARRAY_BUFFER, max_vertex_buffer, NULL, GL_STREAM_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, max_element_buffer, NULL, GL_STREAM_DRAW); /* load draw vertices & elements directly into vertex + element buffer */ #ifndef __EMSCRIPTEN__ vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY); elements = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER, GL_WRITE_ONLY); #else vertices = malloc((size_t)max_vertex_buffer); elements = malloc((size_t)max_element_buffer); #endif { /* fill convert configuration */ struct nk_convert_config config; static const struct nk_draw_vertex_layout_element vertex_layout[] = { {NK_VERTEX_POSITION, NK_FORMAT_FLOAT, NK_OFFSETOF(struct nk_glfw_vertex, position)}, {NK_VERTEX_TEXCOORD, NK_FORMAT_FLOAT, NK_OFFSETOF(struct nk_glfw_vertex, uv)}, {NK_VERTEX_COLOR, NK_FORMAT_R8G8B8A8, NK_OFFSETOF(struct nk_glfw_vertex, col)}, {NK_VERTEX_LAYOUT_END} }; NK_MEMSET(&config, 0, sizeof(config)); config.vertex_layout = vertex_layout; config.vertex_size = sizeof(struct nk_glfw_vertex); config.vertex_alignment = NK_ALIGNOF(struct nk_glfw_vertex); config.null = dev->null; config.circle_segment_count = 22; config.curve_segment_count = 22; config.arc_segment_count = 22; config.global_alpha = 1.0f; config.shape_AA = AA; config.line_AA = AA; /* setup buffers to load vertices and elements */ {struct nk_buffer vbuf, ebuf; nk_buffer_init_fixed(&vbuf, vertices, (size_t)max_vertex_buffer); nk_buffer_init_fixed(&ebuf, elements, (size_t)max_element_buffer); nk_convert(&glfw->ctx, &dev->cmds, &vbuf, &ebuf, &config);} } #ifdef __EMSCRIPTEN__ glBufferSubData(GL_ARRAY_BUFFER, 0, (size_t)max_vertex_buffer, vertices); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, (size_t)max_element_buffer, elements); free(vertices); free(elements); #else glUnmapBuffer(GL_ARRAY_BUFFER); glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER); #endif /* iterate over and execute each draw command */ nk_draw_foreach(cmd, &glfw->ctx, &dev->cmds) { if (!cmd->elem_count) continue; glBindTexture(GL_TEXTURE_2D, (GLuint)cmd->texture.id); glScissor( (GLint)(cmd->clip_rect.x * glfw->fb_scale.x), (GLint)((glfw->height - (GLint)(cmd->clip_rect.y + cmd->clip_rect.h)) * glfw->fb_scale.y), (GLint)(cmd->clip_rect.w * glfw->fb_scale.x), (GLint)(cmd->clip_rect.h * glfw->fb_scale.y)); glDrawElements(GL_TRIANGLES, (GLsizei)cmd->elem_count, GL_UNSIGNED_SHORT, offset); offset += cmd->elem_count; } nk_clear(&glfw->ctx); } /* default OpenGL state */ glUseProgram(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #ifndef __EMSCRIPTEN__ glBindVertexArray(0); #endif glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); } NK_API void nk_glfw3_char_callback(GLFWwindow *win, unsigned int codepoint) { if(glfwGetInputMode(win, GLFW_CURSOR) != GLFW_CURSOR_NORMAL) return; //< @r-lyeh: do not grab input when mouse is hidden (fps cam) struct nk_glfw* glfw = glfwGetWindowUserPointer(win); if (glfw->text_len < NK_GLFW_TEXT_MAX) glfw->text[glfw->text_len++] = codepoint; } NK_API void nk_gflw3_scroll_callback(GLFWwindow *win, double xoff, double yoff) { if(glfwGetInputMode(win, GLFW_CURSOR) != GLFW_CURSOR_NORMAL) return; //< @r-lyeh: do not grab input when mouse is hidden (fps cam) struct nk_glfw* glfw = glfwGetWindowUserPointer(win); glfw->scroll.x += (float)xoff; glfw->scroll.y += (float)yoff; glfw->scroll_bak.x += (float)xoff; //< @r-lyeh glfw->scroll_bak.y += (float)yoff; //< @r-lyeh } NK_API void nk_glfw3_mouse_button_callback(GLFWwindow* win, int button, int action, int mods) { if(glfwGetInputMode(win, GLFW_CURSOR) != GLFW_CURSOR_NORMAL) return; //< @r-lyeh: do not grab input when mouse is hidden (fps cam) double x, y; if (button != GLFW_MOUSE_BUTTON_LEFT) return; struct nk_glfw* glfw = glfwGetWindowUserPointer(win); glfwGetCursorPos(win, &x, &y); if (action == GLFW_PRESS) { double dt = glfwGetTime() - glfw->last_button_click; if (dt > NK_GLFW_DOUBLE_CLICK_LO && dt < NK_GLFW_DOUBLE_CLICK_HI) { glfw->is_double_click_down = nk_true; glfw->double_click_pos = nk_vec2((float)x, (float)y); } glfw->last_button_click = glfwGetTime(); } else glfw->is_double_click_down = nk_false; } NK_INTERN void nk_glfw3_clipboard_paste(nk_handle usr, struct nk_text_edit *edit) { (void)usr; struct nk_glfw* glfw = glfwGetWindowUserPointer(window_handle()); // @rlyeh < struct nk_glfw* glfw = usr.ptr; const char *text = glfwGetClipboardString(glfw->win); if (text) nk_textedit_paste(edit, text, nk_strlen(text)); } NK_INTERN void nk_glfw3_clipboard_copy(nk_handle usr, const char *text, int len) { (void)usr; struct nk_glfw* glfw = glfwGetWindowUserPointer(window_handle()); // @rlyeh < struct nk_glfw* glfw = usr.ptr; char *str = 0; if (!len) return; str = (char*)malloc((size_t)len+1); if (!str) return; memcpy(str, text, (size_t)len); str[len] = '\0'; glfwSetClipboardString(glfw->win, str); free(str); } NK_API struct nk_context* nk_glfw3_init(struct nk_glfw* glfw, GLFWwindow *win, enum nk_glfw_init_state init_state) { glfwSetWindowUserPointer(win, glfw); glfw->win = win; if (init_state == NK_GLFW3_INSTALL_CALLBACKS) { glfwSetScrollCallback(win, nk_gflw3_scroll_callback); glfwSetCharCallback(win, nk_glfw3_char_callback); glfwSetMouseButtonCallback(win, nk_glfw3_mouse_button_callback); } nk_init_default(&glfw->ctx, 0); glfw->ctx.clip.copy = nk_glfw3_clipboard_copy; glfw->ctx.clip.paste = nk_glfw3_clipboard_paste; glfw->ctx.clip.userdata = nk_handle_ptr(0); glfw->last_button_click = 0; nk_glfw3_device_create(glfw); glfw->is_double_click_down = nk_false; glfw->double_click_pos = nk_vec2(0, 0); return &glfw->ctx; } NK_API void nk_glfw3_font_stash_begin(struct nk_glfw* glfw, struct nk_font_atlas **atlas) { nk_font_atlas_init_default(&glfw->atlas); nk_font_atlas_begin(&glfw->atlas); *atlas = &glfw->atlas; } NK_API void nk_glfw3_font_stash_end(struct nk_glfw* glfw) { const void *image; int w, h; image = nk_font_atlas_bake(&glfw->atlas, &w, &h, NK_FONT_ATLAS_RGBA32); nk_glfw3_device_upload_atlas(glfw, image, w, h); nk_font_atlas_end(&glfw->atlas, nk_handle_id((int)glfw->ogl.font_tex), &glfw->ogl.null); if (glfw->atlas.default_font) nk_style_set_font(&glfw->ctx, &glfw->atlas.default_font->handle); nk_style_load_all_cursors(&glfw->ctx, glfw->atlas.cursors); //< @r-lyeh nk_style_hide_cursor(&glfw->ctx); //< @r-lyeh } NK_API void nk_glfw3_new_frame(struct nk_glfw* glfw) { int i; double x, y; struct nk_context *ctx = &glfw->ctx; struct GLFWwindow *win = glfw->win; glfwGetWindowSize(win, &glfw->width, &glfw->height); glfwGetFramebufferSize(win, &glfw->display_width, &glfw->display_height); glfw->fb_scale.x = (float)glfw->display_width/(float)glfw->width; glfw->fb_scale.y = (float)glfw->display_height/(float)glfw->height; nk_input_begin(ctx); for (i = 0; i < glfw->text_len; ++i) nk_input_unicode(ctx, glfw->text[i]); #if NK_GLFW_GL3_MOUSE_GRABBING /* optional grabbing behavior */ if (ctx->input.mouse.grab) glfwSetInputMode(glfw->win, GLFW_CURSOR, GLFW_CURSOR_HIDDEN); else if (ctx->input.mouse.ungrab) glfwSetInputMode(glfw->win, GLFW_CURSOR, GLFW_CURSOR_NORMAL); #endif nk_input_key(ctx, NK_KEY_DEL, glfwGetKey(win, GLFW_KEY_DELETE) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_ENTER, glfwGetKey(win, GLFW_KEY_ENTER) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TAB, glfwGetKey(win, GLFW_KEY_TAB) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_BACKSPACE, glfwGetKey(win, GLFW_KEY_BACKSPACE) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_UP, glfwGetKey(win, GLFW_KEY_UP) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_DOWN, glfwGetKey(win, GLFW_KEY_DOWN) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_START, glfwGetKey(win, GLFW_KEY_HOME) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_END, glfwGetKey(win, GLFW_KEY_END) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_SCROLL_START, glfwGetKey(win, GLFW_KEY_HOME) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_SCROLL_END, glfwGetKey(win, GLFW_KEY_END) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_SCROLL_DOWN, glfwGetKey(win, GLFW_KEY_PAGE_DOWN) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_SCROLL_UP, glfwGetKey(win, GLFW_KEY_PAGE_UP) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_SHIFT, glfwGetKey(win, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS|| glfwGetKey(win, GLFW_KEY_RIGHT_SHIFT) == GLFW_PRESS); if (glfwGetKey(win, GLFW_KEY_LEFT_CONTROL) == GLFW_PRESS || glfwGetKey(win, GLFW_KEY_RIGHT_CONTROL) == GLFW_PRESS) { nk_input_key(ctx, NK_KEY_COPY, glfwGetKey(win, GLFW_KEY_C) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_PASTE, glfwGetKey(win, GLFW_KEY_V) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_CUT, glfwGetKey(win, GLFW_KEY_X) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_UNDO, glfwGetKey(win, GLFW_KEY_Z) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_REDO, glfwGetKey(win, GLFW_KEY_R) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_WORD_LEFT, glfwGetKey(win, GLFW_KEY_LEFT) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_WORD_RIGHT, glfwGetKey(win, GLFW_KEY_RIGHT) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_LINE_START, glfwGetKey(win, GLFW_KEY_B) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_TEXT_LINE_END, glfwGetKey(win, GLFW_KEY_E) == GLFW_PRESS); } else { nk_input_key(ctx, NK_KEY_LEFT, glfwGetKey(win, GLFW_KEY_LEFT) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_RIGHT, glfwGetKey(win, GLFW_KEY_RIGHT) == GLFW_PRESS); nk_input_key(ctx, NK_KEY_COPY, 0); nk_input_key(ctx, NK_KEY_PASTE, 0); nk_input_key(ctx, NK_KEY_CUT, 0); nk_input_key(ctx, NK_KEY_SHIFT, 0); } glfwGetCursorPos(win, &x, &y); nk_input_motion(ctx, (int)x, (int)y); #if NK_GLFW_GL3_MOUSE_GRABBING if (ctx->input.mouse.grabbed) { glfwSetCursorPos(glfw->win, ctx->input.mouse.prev.x, ctx->input.mouse.prev.y); ctx->input.mouse.pos.x = ctx->input.mouse.prev.x; ctx->input.mouse.pos.y = ctx->input.mouse.prev.y; } #endif nk_input_button(ctx, NK_BUTTON_LEFT, (int)x, (int)y, glfwGetMouseButton(win, GLFW_MOUSE_BUTTON_LEFT) == GLFW_PRESS); nk_input_button(ctx, NK_BUTTON_MIDDLE, (int)x, (int)y, glfwGetMouseButton(win, GLFW_MOUSE_BUTTON_MIDDLE) == GLFW_PRESS); nk_input_button(ctx, NK_BUTTON_RIGHT, (int)x, (int)y, glfwGetMouseButton(win, GLFW_MOUSE_BUTTON_RIGHT) == GLFW_PRESS); nk_input_button(ctx, NK_BUTTON_DOUBLE, glfw->double_click_pos.x, glfw->double_click_pos.y, glfw->is_double_click_down); nk_input_scroll(ctx, glfw->scroll); nk_input_end(&glfw->ctx); glfw->text_len = 0; glfw->scroll = nk_vec2(0,0); } NK_API void nk_glfw3_shutdown(struct nk_glfw* glfw) { nk_font_atlas_clear(&glfw->atlas); nk_free(&glfw->ctx); nk_glfw3_device_destroy(glfw); memset(glfw, 0, sizeof(*glfw)); } #endif #endif #line 0 #line 1 "3rd_nuklear_filebrowser.h" // file browser for nuklear, based on https://github.com/vurtun/nuklear/blob/master/example/file_browser.c (public domain) // - rlyeh, public domain // // changelog: // - ported to FWK api // - namespaced symbols // - diverse win32 fixes // - adaptive cols/rows // - removed nk_begin()/nk_end() pairs // - dangling nk_group_begin/end() pairs // - simplified file<->media_group concept // - minor cosmetics #ifdef _WIN32 #include // _getcwd() #else #include // getcwd() #include // getpwuid() #endif #if 1 #define BROWSER_PRINTF(...) do {} while(0) #else #define BROWSER_PRINTF printf #endif enum browser_groups { BROWSER_FOLDER, BROWSER_HOME, BROWSER_DESKTOP, BROWSER_COMPUTER, BROWSER_PROJECT, BROWSER_MAXFOLDERS, BROWSER_MAXTYPES = 64, }; struct browser_media_group { unsigned icon; const char *extensions; }; struct browser_media { int font; int icon_sheet; struct nk_image custom_folders[BROWSER_MAXFOLDERS]; struct nk_image custom_files[BROWSER_MAXTYPES]; struct browser_media_group group[BROWSER_MAXTYPES]; } media = {0}; void browser_config_dir(struct nk_image icon, unsigned counter) { if( counter < BROWSER_MAXFOLDERS ) { media.custom_folders[ counter ] = icon; } } void browser_config_type(struct nk_image icon, const char *extensions) { static int counter = 0; if( counter < BROWSER_MAXTYPES ) { media.custom_files[ counter ] = icon; media.group[ counter ].icon = counter; media.group[ counter ].extensions = extensions; ++counter; } } #define BROWSER_MAX_PATH 512 struct browser { /* path */ char file[BROWSER_MAX_PATH]; // selection char directory[BROWSER_MAX_PATH]; // current cwd while browsing char home[BROWSER_MAX_PATH]; char desktop[BROWSER_MAX_PATH]; char computer[BROWSER_MAX_PATH]; char project[BROWSER_MAX_PATH]; // cwd when first invoked /* directory content */ array(char*) files; array(char*) directories; size_t file_count; size_t dir_count; /* view mode */ bool listing; float zooming; }; static struct nk_image* media_icon_for_file(const char *file) { /* extract extension .xxx from file */ char *ext = strrchr(file, '.'); if( ext && strlen(ext) < 16 ) { char ext_dot[16+1]; snprintf(ext_dot, 16, "%s.", ext); /* check for all file definition of all groups for fitting extension. skip first group (default) */ for (int i = 1; i < BROWSER_MAXTYPES && media.group[i].extensions; ++i) { if( strstri(media.group[i].extensions, ext_dot) ) { return &media.custom_files[ media.group[i].icon ]; } } } // return first (default) group return &media.custom_files[0]; } static void browser_reload_directory_content(struct browser *browser, const char *path) { if(path[0] == '\0') path = va("./"); if(!strend(path, "/")) path = va("%s/", path); for(int i = 0; i < array_count(browser->files); ++i) FREE(browser->files[i]); for(int i = 0; i < array_count(browser->directories); ++i) FREE(browser->directories[i]); array_resize(browser->files, 0); array_resize(browser->directories, 0); BROWSER_PRINTF("searching at %s\n", path); const char **list = file_list(path, "*"); for( int i = 0; list[i]; ++i ) { char *absolute = file_pathabs(ifndef(win32, list[i], va("%s/%s", path, list[i]))); // ../dir/./file.ext -> c:/prj/dir/file.ext BROWSER_PRINTF("%s->%s %d->", list[i], absolute, file_directory(absolute) ); if( file_directory(absolute) ) { // remove last '/' if present. ok to overwrite absolute var, file_*() API returns writeable strings. char *dir = absolute; if( dir[ strlen(dir) - 1 ] == '/' ) dir[ strlen(dir) - 1 ] = '\0'; dir = file_name(dir); // /home/rlyeh/prj/fwk/art -> art BROWSER_PRINTF("%s\n", dir); if( dir[0] != '.' ) // skip special files, folders and internal files like .git or .art.zip array_push(browser->directories, STRDUP(dir)); } else { const char *fname = file_name(absolute); BROWSER_PRINTF("%s\n", fname); if( fname[0] != '.' ) // skip special files, folders and internal files like .git or .art.zip array_push(browser->files, STRDUP(fname)); } } browser->file_count = array_count(browser->files); browser->dir_count = array_count(browser->directories); } static void browser_chdir_and_reload_directory_content(struct browser *browser, const char *path) { if( path != browser->directory ) strncpy(browser->directory, path, BROWSER_MAX_PATH); browser_reload_directory_content(browser, path); } static void browser_init(struct browser *browser) { memset(browser, 0, sizeof(*browser)); { /* load files and sub-directory list */ const char *home = getenv("HOME"); #ifdef _WIN32 if (!home) home = getenv("USERPROFILE"); #else if (!home) home = getpwuid(getuid())->pw_dir; #endif snprintf(browser->home, BROWSER_MAX_PATH, "%s/", home); snprintf(browser->desktop, BROWSER_MAX_PATH, "%s/Desktop/", home); snprintf(browser->computer, BROWSER_MAX_PATH, "%s", ifdef(win32, va("%.*s", 3, getenv("windir")), "/")); { ifdef(win32, _getcwd, getcwd)(browser->project, sizeof(browser->project) - 1); // -1 == room for '/' strcat(browser->project, "/"); } BROWSER_PRINTF("%s\n", browser->home); BROWSER_PRINTF("%s\n", browser->desktop); BROWSER_PRINTF("%s\n", browser->computer); BROWSER_PRINTF("%s\n", browser->project); browser_chdir_and_reload_directory_content(browser, browser->project); } } static void browser_free(struct browser *browser) { for(int i = 0; i < array_count(browser->files); ++i) FREE(browser->files[i]); for(int i = 0; i < array_count(browser->directories); ++i) FREE(browser->directories[i]); array_free(browser->files); array_free(browser->directories); memset(browser, 0, sizeof(*browser)); } static int browser_run(struct nk_context *ctx, struct browser *browser, int windowed, struct nk_rect total_space) { int clicked = 0; static float ratio[] = {0.25f, NK_UNDEFINED}; float spacing_x = ctx->style.window.spacing.x; /* output path directory selector in the menubar */ ctx->style.window.spacing.x = 0; if( windowed ) nk_menubar_begin(ctx); { char *d = browser->directory; #ifdef _WIN32 char *begin = d; #else char *begin = d + 1; #endif nk_layout_row_template_begin(ctx, 25); nk_layout_row_template_push_variable(ctx, 40); nk_layout_row_template_push_variable(ctx, 40); nk_layout_row_template_push_variable(ctx, 40); nk_layout_row_template_end(ctx); if (nk_button_label(ctx, !browser->listing ? ICON_MD_LIST : ICON_MD_GRID_VIEW)) { browser->listing ^= 1; } while (*d++) { if (*d == '/') { *d = '\0'; if (nk_button_label(ctx, va("%s" ICON_MD_ARROW_RIGHT, file_name(begin)))) { *d++ = '/'; *d = '\0'; browser_chdir_and_reload_directory_content(browser, browser->directory); break; } *d = '/'; begin = d + 1; } } } if( windowed ) nk_menubar_end(ctx); ctx->style.window.spacing.x = spacing_x; if(nk_window_has_focus(ctx)) { browser->zooming = clampf( browser->zooming + (input(KEY_LCTRL) || input(KEY_RCTRL)) * input_diff(MOUSE_W) * 0.1, 1, 3); } bool compact = 0, tiny = browser->listing; // compact, no left panel. tiny, no large icons size_t cols = total_space.w / (100 * browser->zooming); int icon_height = (67 * browser->zooming) * (tiny ? 0.33 : 1.); // icon height (96) + button padding (??). originally: 135 /**/ if( tiny ) cols = (int)cols+1.5, cols /= 2, compact = total_space.w < 500; // cols <= 2; else cols = (int)cols+1, compact = total_space.w < 500; // cols <= 5; if( cols < 1 ) cols=1; /* window layout */ nk_layout_row(ctx, NK_DYNAMIC, total_space.h, compact ? 1 : 2, compact ? ratio+1 : ratio); if( !compact ) if( nk_group_begin(ctx, "Special", NK_WINDOW_NO_SCROLLBAR) ) { nk_layout_row_dynamic(ctx, 40, 1); if (nk_button_image_label(ctx,media.custom_folders[BROWSER_HOME],"Home",NK_TEXT_RIGHT)) browser_chdir_and_reload_directory_content(browser, browser->home); if (nk_button_image_label(ctx,media.custom_folders[BROWSER_DESKTOP],"Desktop",NK_TEXT_RIGHT)) browser_chdir_and_reload_directory_content(browser, browser->desktop); if (nk_button_image_label(ctx,media.custom_folders[BROWSER_COMPUTER],"Computer",NK_TEXT_RIGHT)) browser_chdir_and_reload_directory_content(browser, browser->computer); if (nk_button_image_label(ctx,media.custom_folders[BROWSER_PROJECT],"Project",NK_TEXT_RIGHT)) browser_chdir_and_reload_directory_content(browser, browser->project); nk_group_end(ctx); } /* output directory content window */ if(nk_group_begin(ctx, "Content", windowed ? NK_WINDOW_NO_SCROLLBAR : 0)) { int index = -1; size_t i = 0, j = 0, k = 0; size_t rows = 0; size_t count = browser->dir_count + browser->file_count; rows = count / cols; for (i = 0; i <= rows; i += 1) { if(!tiny) {size_t n = j + cols; nk_layout_row_dynamic(ctx, icon_height, (int)cols); for (; j < count && j < n; ++j) { /* draw one row of icons */ if (j < browser->dir_count) { /* draw and execute directory buttons */ if (nk_button_image(ctx,media.custom_folders[BROWSER_FOLDER])) index = (int)j; } else { /* draw and execute files buttons */ struct nk_image *icon; size_t fileIndex = ((size_t)j - browser->dir_count); icon = media_icon_for_file(browser->files[fileIndex]); if (nk_button_image(ctx, *icon)) { snprintf(browser->file, BROWSER_MAX_PATH, "%s%s", browser->directory, browser->files[fileIndex]); clicked = 1; } } }} if(!tiny) {size_t n = k + cols; nk_layout_row_dynamic(ctx, 20, (int)cols); for (; k < count && k < n; k++) { /* draw one row of labels */ if (k < browser->dir_count) { nk_label(ctx, browser->directories[k], NK_TEXT_CENTERED); } else { size_t t = k-browser->dir_count; nk_label(ctx,browser->files[t],NK_TEXT_CENTERED); } }} if(tiny) {size_t n = j + cols; nk_layout_row_dynamic(ctx, icon_height, (int)cols); for (; j < count && j < n; ++j) { /* draw one row of icons */ if (j < browser->dir_count) { /* draw and execute directory buttons */ if (nk_button_image_label(ctx,media.custom_folders[BROWSER_FOLDER], browser->directories[j],NK_TEXT_RIGHT)) index = (int)j; } else { /* draw and execute files buttons */ struct nk_image *icon; size_t fileIndex = ((size_t)j - browser->dir_count); icon = media_icon_for_file(browser->files[fileIndex]); size_t t = j-browser->dir_count; if (nk_button_image_label(ctx, *icon, browser->files[t],NK_TEXT_RIGHT)) { snprintf(browser->file, BROWSER_MAX_PATH, "%s%s", browser->directory, browser->files[fileIndex]); clicked = 1; } } #if 0 bool has_focus = nk_window_has_focus(ctx); // @fixme: move out of loop bool has_popups = ui_popups(); // @fixme: move out of loop if( !has_popups && has_focus ) { struct nk_rect bounds = nk_widget_bounds(ctx); if (nk_input_is_mouse_hovering_rect(&ctx->input, bounds) ) { char *name = j < browser->dir_count ? browser->directories[j] : browser->files[j-browser->dir_count]; char fullpath[PATH_MAX]; snprintf(fullpath, PATH_MAX, "%s%s", browser->directory, name); struct stat t = {0}; if( stat( fullpath, &t ) != -1 ) { char tooltip[256]; snprintf(tooltip, 256, "Path: %s\n" "Type: %lld\n" // file type and mode "Size: %lld\n" // file size "Owner: %lld\n" // user ID of file owner "Modified: %s (%lld)", // last modification date name, (int64_t)t.st_mode, (int64_t)t.st_size, (int64_t)t.st_uid, ctime(&t.st_mtime), (int64_t)t.st_mtime ); nk_tooltip(ctx, tooltip); } } } #endif }} } if (index != -1) { BROWSER_PRINTF("%s + %s = ", browser->directory, browser->directories[index]); size_t n = strlen(browser->directory); snprintf(browser->directory + n, BROWSER_MAX_PATH - n, "%s/", browser->directories[index]); BROWSER_PRINTF("%s\n", browser->directory); browser_chdir_and_reload_directory_content(browser, browser->directory); } nk_group_end(ctx); } return clicked; } static struct nk_image icon_load(const char *filename) { texture_t t = texture(filename, 0); return nk_image_id((int)t.id); } static struct nk_image icon_load_rect(unsigned id, unsigned w, unsigned h, unsigned wcell, unsigned hcell, unsigned col, unsigned row) { return nk_subimage_id((int)id, w, h, (struct nk_rect){ wcell * col, hcell * row, wcell, hcell }); } /* demo: struct browser browser = {0}; browser_init(&browser); browser_config_dir(nk_image, BROWSER_HOME); browser_config_dir(nk_image, BROWSER_PROJECT); // [...] browser_config_type(nk_image, ".ext1.ext2.ext3."); browser_config_type(nk_image, ".ext1.ext2.ext3."); browser_config_type(nk_image, ".ext1.ext2.ext3."); // [...] [...] if( nk_begin(ctx, "window", ...) ) { struct nk_rect total_space = nk_window_get_content_region(ctx); if( browser_run(ctx, &browser, 0, total_space) ) { puts( browser->directory ); puts( browser->file ); } } nk_end(); */ #line 0 //--- #ifdef WITH_ASSIMP //{{FILE/*:*/3rd_assimp.h}} //#include "3rd_assimp/cimport.h" //#include "3rd_assimp/scene.h" //#include "3rd_assimp/postprocess.h" //#pragma comment(lib, "3rd/3rd_assimp/x64/assimp") #endif #line 1 "3rd_json5.h" // JSON5 + SJSON parser module // // License: // This software is dual-licensed to the public domain and under the following // license: you are granted a perpetual, irrevocable license to copy, modify, // publish, and distribute this file as you see fit. // No warranty is implied, use at your own risk. // // Credits: // r-lyeh (fork) // Dominik Madarasz (@zaklaus) (original code) #ifndef JSON5_H #define JSON5_H #ifndef JSON5_ASSERT #define JSON5_ASSERT do { printf("JSON5: Error L%d while parsing '%c' in '%.16s'\n", __LINE__, p[0], p); assert(0); } while(0) #endif #include #include typedef enum json5_type { JSON5_UNDEFINED, // 0 JSON5_NULL, // 1 JSON5_BOOL, // 2 JSON5_OBJECT, // 3 JSON5_STRING, // 4 JSON5_ARRAY, // 5 JSON5_INTEGER, // 6 JSON5_REAL, // 7 } json5_type; typedef struct json5 { char* name; #ifdef NDEBUG unsigned type : 3; #else json5_type type; #endif unsigned count : 29; union { struct json5* array; struct json5* nodes; int64_t integer; double real; char* string; int boolean; }; } json5; char* json5_parse(json5 *root, char *source, int flags); void json5_write(FILE *fp, const json5 *root); void json5_free(json5 *root); #endif // JSON5_H // json5 ---------------------------------------------------------------------- #ifdef JSON5_C //#pragma once #include #include #include #include #include char *json5__trim(char *p) { while (*p) { /**/ if( isspace(*p) ) ++p; else if( p[0] == '/' && p[1] == '*' ) { // skip C comment for( p += 2; *p && !(p[0] == '*' && p[1] == '/'); ++p) {} if( *p ) p += 2; } else if( p[0] == '/' && p[1] == '/' ) { // skip C++ comment for( p += 2; *p && p[0] != '\n'; ++p) {} if( *p ) ++p; } else break; } return p; } char *json5__parse_value(json5 *obj, char *p, char **err_code); char *json5__parse_string(json5 *obj, char *p, char **err_code) { assert(obj && p); if( *p == '"' || *p == '\'' || *p == '`' ) { obj->type = JSON5_STRING; obj->string = p + 1; char eos_char = *p, *b = obj->string, *e = b; while (*e) { /**/ if( *e == '\\' && (e[1] == eos_char) ) ++e; else if( *e == '\\' && (e[1] == '\r' || e[1] == '\n') ) *e = ' '; else if( *e == eos_char ) break; ++e; } *e = '\0'; return p = e + 1; } //JSON5_ASSERT; *err_code = "json5_error_invalid_value"; return NULL; } char *json5__parse_object(json5 *obj, char *p, char **err_code) { assert(obj && p); if( 1 /* *p == '{' */ ) { /* <-- for SJSON */ int skip = *p == '{'; /* <-- for SJSON */ obj->type = JSON5_OBJECT; obj->nodes = 0; obj->count = 0; while (*p) { json5 node = { 0 }; do { p = json5__trim(p + skip); skip = 1; } while( *p == ',' ); if( *p == '}' ) { ++p; break; } // @todo: is_unicode() (s[0] == '\\' && isxdigit(s[1]) && isxdigit(s[2]) && isxdigit(s[3]) && isxdigit(s[4]))) { else if( isalnum(*p) || *p == '_' || *p == '$' || *p == '.' ) { // also || is_unicode(p) node.name = p; do { ++p; } while (*p && (isalnum(*p) || *p == '_' || *p == '$' || *p == '.') ); // also || is_unicode(p) char *e = p; p = json5__trim(p); *e = '\0'; } else { //if( *p == '"' || *p == '\'' || *p == '`' ) { char *ps = json5__parse_string(&node, p, err_code); if( !ps ) { return NULL; } p = ps; node.name = node.string; p = json5__trim(p); } // @todo: https://www.ecma-international.org/ecma-262/5.1/#sec-7.6 if( !(node.name && node.name[0]) ) { // !json5__validate_name(node.name) ) { JSON5_ASSERT; *err_code = "json5_error_invalid_name"; return NULL; } if( !p || (*p && (*p != ':' && *p != '=' /* <-- for SJSON */)) ) { JSON5_ASSERT; *err_code = "json5_error_invalid_name"; return NULL; } p = json5__trim(p + 1); p = json5__parse_value(&node, p, err_code); if( *err_code[0] ) { return NULL; } if( node.type != JSON5_UNDEFINED ) { array_push(obj->nodes, node); ++obj->count; } if( *p == '}') { ++p; break; } } return p; } JSON5_ASSERT; *err_code = "json5_error_invalid_value"; return NULL; } char *json5__parse_value(json5 *obj, char *p, char **err_code) { assert(obj && p); p = json5__trim(p); char *is_string = json5__parse_string(obj, p, err_code); if( is_string ) { p = is_string; if( *err_code[0] ) { return NULL; } } else if( *p == '{' ) { p = json5__parse_object( obj, p, err_code ); if( *err_code[0] ) { return NULL; } } else if( *p == '[' ) { obj->type = JSON5_ARRAY; obj->array = 0; obj->count = 0; while (*p) { json5 elem = { 0 }; do { p = json5__trim(p + 1); } while( *p == ',' ); if( *p == ']') { ++p; break; } p = json5__parse_value(&elem, p, err_code); if( *err_code[0] ) { return NULL; } if( elem.type != JSON5_UNDEFINED ) { array_push(obj->array, elem); ++obj->count; } if (*p == ']') { ++p; break; } } } else if( isalpha(*p) || (*p == '-' && !isdigit(p[1])) ) { const char *labels[] = { "null", "on","true", "off","false", "nan","NaN", "-nan","-NaN", "inf","Infinity", "-inf","-Infinity", 0 }; const int lenghts[] = { 4, 2,4, 3,5, 3,3, 4,4, 3,8, 4,9 }; for( int i = 0; labels[i]; ++i ) { if( !strncmp(p, labels[i], lenghts[i] ) ) { p += lenghts[i]; #ifdef _MSC_VER // somehow, NaN is apparently signed in MSC /**/ if( i >= 5 ) obj->type = JSON5_REAL, obj->real = i >= 11 ? -INFINITY : i >= 9 ? INFINITY : i >= 7 ? NAN :-NAN; #else /**/ if( i >= 5 ) obj->type = JSON5_REAL, obj->real = i >= 11 ? -INFINITY : i >= 9 ? INFINITY : i >= 7 ? -NAN : NAN; #endif else if( i >= 1 ) obj->type = JSON5_BOOL, obj->boolean = i <= 2; else obj->type = JSON5_NULL; break; } } if( obj->type == JSON5_UNDEFINED ) { JSON5_ASSERT; *err_code = "json5_error_invalid_value"; return NULL; } } else if( isdigit(*p) || *p == '+' || *p == '-' || *p == '.' ) { char buffer[32] = {0}, *buf = buffer, is_hex = 0, is_dbl = 0; while( *p && strchr("+-.xX0123456789aAbBcCdDeEfF", *p)) { is_hex |= (*p | 32) == 'x'; is_dbl |= *p == '.'; *buf++ = *p++; } obj->type = is_dbl ? JSON5_REAL : JSON5_INTEGER; /**/ if( is_dbl ) sscanf( buffer, "%lf", &obj->real ); else if( is_hex ) sscanf( buffer, "%llx", &obj->integer ); // SCNx64 -> inttypes.h else sscanf( buffer, "%lld", &obj->integer ); // SCNd64 -> inttypes.h } else { return NULL; } return p; } char *json5_parse(json5 *root, char *p, int flags) { char *err_code = ""; *root = (json5) {0}; if( p && p[0] ) { p = json5__trim(p); if( *p == '[' ) { /* <-- for SJSON */ json5__parse_value(root, p, &err_code); } else { json5__parse_object(root, p, &err_code); /* <-- for SJSON */ } } else { root->type = JSON5_OBJECT; } return err_code[0] ? err_code : 0; } void json5_free(json5 *root) { if( root->type == JSON5_ARRAY && root->array ) { for( int i = 0, cnt = array_count(root->array); i < cnt; ++i ) { json5_free(root->array + i); } array_free(root->array); } if( root->type == JSON5_OBJECT && root->nodes ) { for( int i = 0, cnt = array_count(root->nodes); i < cnt; ++i ) { json5_free(root->nodes + i); } array_free(root->nodes); } *root = (json5) {0}; // needed? } void json5_write(FILE *fp, const json5 *o) { static __thread int indent = 0; int tabs = 1; // 0,1,2,4,8 if( o->name ) { fprintf(fp, "%*.s\"%s\"%s", indent * tabs, "", o->name, tabs ? ": " : ":"); } /**/ if( o->type == JSON5_NULL ) fprintf(fp, "%s", "null"); else if( o->type == JSON5_BOOL ) fprintf(fp, "%s", o->boolean ? "true" : "false"); else if( o->type == JSON5_INTEGER ) fprintf(fp, "%lld", o->integer); else if( o->type == JSON5_REAL ) { /**/ if( isnan(o->real) ) fprintf(fp, "%s", signbit(o->real) ? "-nan" : "nan" ); else if( isinf(o->real) ) fprintf(fp, "%s", signbit(o->real) ? "-inf" : "inf" ); else fprintf(fp, "%1.8e", o->real); // %1.8e from google:"randomascii 100 digits" ; %.4llf for compactness } #if 0 else if( o->type == JSON5_STRING ) { // write (escaped) string char chars[] = "\\\"\n\r\b\f\v", remap[] = "\\\"nrbfv", esc[256]; for( int i = 0; chars[i]; ++i ) esc[ chars[i] ] = remap[i]; const char *b = o->string, *e = strpbrk(b, chars), *sep = "\""; while( e ) { fprintf(fp, "%s%.*s\\%c", sep, (int)(e - b), b, esc[(unsigned char)*e] ); e = strpbrk( b = e + 1, chars); sep = ""; } fprintf(fp, "%s%s\"", sep, b); } #else else if( o->type == JSON5_STRING ) { // write string fprintf(fp, "\"%s\"", o->string); } #endif else if( o->type == JSON5_ARRAY ) { const char *sep = ""; fprintf(fp, "%s", tabs ? "[ " : "["); for( int i = 0, cnt = o->count; i < cnt; ++i ) { fprintf(fp, "%s", sep); sep = tabs ? ", " : ","; json5_write(fp, o->array + i); } fprintf(fp, "%s", tabs ? " ]" : "]"); } else if( o->type == JSON5_OBJECT ) { const char *sep = ""; fprintf(fp, "%*.s{%s", 0 * (++indent) * tabs, "", tabs ? "\n":""); for( int i = 0, cnt = o->count; i < cnt; ++i ) { fprintf(fp, "%s", sep); sep = tabs ? ",\n" : ","; json5_write(fp, o->nodes + i); } fprintf(fp, "%s%*.s}", tabs ? "\n":"", (--indent) * tabs, ""); } else { char p[16] = {0}; JSON5_ASSERT; /* "json5_error_invalid_value"; */ } } #ifdef JSON5_BENCH #include int main() { // https://www.reddit.com/r/datasets/comments/1uyd0t/200000_jeopardy_questions_in_a_json_file/ char *content = 0; for( FILE *fp = fopen("jeopardy.json", "rb"); fp; fclose(fp), fp = 0 ) { fseek(fp, 0L, SEEK_END); size_t pos = ftell(fp); fseek(fp, 0L, SEEK_SET); content = (char*)malloc( pos + 1 ); fread(content, 1, pos, fp); content[pos] = 0; } if( content ) { clock_t start = clock(); json5 root = {0}; char *error = json5_parse(&root, content, 0); clock_t end = clock(); double delta = ( end - start ) / (double)CLOCKS_PER_SEC; if( !error ) { printf("Parsing time: %.3fms\n", delta*1000); printf("Total nodes: %d\n", array_count(root.array)); printf("Category: %s, air date: %s\nQuestion: %s\n", root.array[0].nodes[0].string, root.array[0].nodes[1].string, root.array[0].nodes[2].string); } else { printf("Error: %s\n", error); } json5_free(&root); free(content); } } #define main main__ #endif #ifdef JSON5_DEMO int main() { char source5[] = " // comments\n" /* json5 sample */ " unquoted: 'and you can quote me on that',\n" " singleQuotes: 'I can use \"double quotes\" here',\n" " lineBreaks : \"Look, Mom! \\\n" "No \\n's!\",\n" " hexadecimal: 0x100,\n" " leadingDecimalPoint: .8675309, andTrailing: 8675309.,\n" " positiveSign: +1,\n" " trailingComma: 'in objects', andIn: ['arrays', ],\n" " \"backwardsCompatible\": \"with JSON\",\n" "" " ip = \"127.0.0.1\"\n" /* sjson sample */ " port = 8888\n" "" " /* comment //nested comment*/\n" /* tests */ " // comment /*nested comment*/\n" " nil: null," " \"+lšctžýáíé=:\": true,,,," " huge: 2.2239333e5, " " array: [+1,2,-3,4,5], " " hello: 'world /*comment in string*/ //again', " " abc: 42.67, def: false, " " children : { a: 1, b: 2, }," " invalids : [ nan, NaN, -nan, -NaN, inf, Infinity, -inf, -Infinity ]," "" " multiline: `this is\n" "a multiline string\n" "yeah`" "}\n"; json5 root = { 0 }; char *error = json5_parse(&root, source5, 0); if( error ) { printf("Error: %s\n", error); } else { json5_write(stdout, &root); } json5_free(&root); } #define main main__ #endif #endif // JSON5_C #line 0 #line 1 "3rd_gjk.h" // GJK distance algorithm. original code by @vurtun and @randygaul, public domain. // [src] https://gist.github.com/vurtun/29727217c269a2fbf4c0ed9a1d11cb40 // - rlyeh, public domain. /* Gilbert–Johnson–Keerthi (GJK) 3D distance algorithm The Gilbert–Johnson–Keerthi (GJK) distance algorithm is a method of determining the minimum distance between two convex sets. The algorithm's stability, speed which operates in near-constant time, and small storage footprint make it popular for realtime collision detection. Unlike many other distance algorithms, it has no requirments on geometry data to be stored in any specific format, but instead relies solely on a support function to iteratively generate closer simplices to the correct answer using the Minkowski sum (CSO) of two convex shapes. GJK algorithms are used incrementally. In this mode, the final simplex from a previous solution is used as the initial guess in the next iteration. If the positions in the new frame are close to those in the old frame, the algorithm will converge in one or two iterations. */ #ifndef GJK_H #define GJK_H #define GJK_MAX_ITERATIONS 20 typedef struct gjk_support { int aid, bid; vec3 a; vec3 b; } gjk_support; typedef struct gjk_vertex { vec3 a; vec3 b; vec3 p; int aid, bid; } gjk_vertex; typedef struct gjk_simplex { int max_iter, iter; int hit, cnt; gjk_vertex v[4]; float bc[4], D; } gjk_simplex; typedef struct gjk_result { int hit; vec3 p0; vec3 p1; float distance_squared; int iterations; } gjk_result; int gjk(gjk_simplex *s, const gjk_support *sup, vec3 *dv); gjk_result gjk_analyze(const gjk_simplex *s); gjk_result gjk_quad(float a_radius, float b_radius); #endif #ifdef GJK_C //#pragma once #include #include #define GJK_FLT_MAX FLT_MAX // 3.40282347E+38F #define GJK_EPSILON FLT_EPSILON // 1.19209290E-07F float gjk_inv_sqrt(float n) { union {unsigned u; float f;} conv; conv.f = n; conv.u = 0x5f375A84 - (conv.u >> 1); conv.f = conv.f * (1.5f - (n * 0.5f * conv.f * conv.f)); return conv.f; } int gjk(gjk_simplex *s, const gjk_support *sup, vec3 *dv) { assert(s); assert(dv); assert(sup); if (!s || !sup || !dv) return 0; if (s->max_iter > 0 && s->iter >= s->max_iter) return 0; /* I.) Initialize */ if (s->cnt == 0) { s->D = GJK_FLT_MAX; s->max_iter = !s->max_iter ? GJK_MAX_ITERATIONS: s->max_iter; } /* II.) Check for duplications */ for (int i = 0; i < s->cnt; ++i) { if (sup->aid != s->v[i].aid) continue; if (sup->bid != s->v[i].bid) continue; return 0; } /* III.) Add vertex into simplex */ gjk_vertex *vert = &s->v[s->cnt]; vert->a = sup->a; vert->b = sup->b; vert->p = *dv; vert->aid = sup->aid; vert->bid = sup->bid; s->bc[s->cnt++] = 1.0f; /* IV.) Find closest simplex point */ switch (s->cnt) { case 1: break; case 2: { /* -------------------- Line ----------------------- */ vec3 a = s->v[0].p; vec3 b = s->v[1].p; /* compute barycentric coordinates */ vec3 ab = sub3(a, b); vec3 ba = sub3(b, a); float u = dot3(b, ba); float v = dot3(a, ab); if (v <= 0.0f) { /* region A */ s->bc[0] = 1.0f; s->cnt = 1; break; } if (u <= 0.0f) { /* region B */ s->v[0] = s->v[1]; s->bc[0] = 1.0f; s->cnt = 1; break; } /* region AB */ s->bc[0] = u; s->bc[1] = v; s->cnt = 2; } break; case 3: { /* -------------------- Triangle ----------------------- */ vec3 a = s->v[0].p; vec3 b = s->v[1].p; vec3 c = s->v[2].p; vec3 ab = sub3(a, b); vec3 ba = sub3(b, a); vec3 bc = sub3(b, c); vec3 cb = sub3(c, b); vec3 ca = sub3(c, a); vec3 ac = sub3(a, c); /* compute barycentric coordinates */ float u_ab = dot3(b, ba); float v_ab = dot3(a, ab); float u_bc = dot3(c, cb); float v_bc = dot3(b, bc); float u_ca = dot3(a, ac); float v_ca = dot3(c, ca); if (v_ab <= 0.0f && u_ca <= 0.0f) { /* region A */ s->bc[0] = 1.0f; s->cnt = 1; break; } if (u_ab <= 0.0f && v_bc <= 0.0f) { /* region B */ s->v[0] = s->v[1]; s->bc[0] = 1.0f; s->cnt = 1; break; } if (u_bc <= 0.0f && v_ca <= 0.0f) { /* region C */ s->v[0] = s->v[2]; s->bc[0] = 1.0f; s->cnt = 1; break; } /* calculate fractional area */ vec3 n; n = cross3(ba, ca); vec3 n1; n1 = cross3(b, c); vec3 n2; n2 = cross3(c, a); vec3 n3; n3 = cross3(a, b); float u_abc = dot3(n1, n); float v_abc = dot3(n2, n); float w_abc = dot3(n3, n); if (u_ab > 0.0f && v_ab > 0.0f && w_abc <= 0.0f) { /* region AB */ s->bc[0] = u_ab; s->bc[1] = v_ab; s->cnt = 2; break; } if (u_bc > 0.0f && v_bc > 0.0f && u_abc <= 0.0f) { /* region BC */ s->v[0] = s->v[1]; s->v[1] = s->v[2]; s->bc[0] = u_bc; s->bc[1] = v_bc; s->cnt = 2; break; } if (u_ca > 0.0f && v_ca > 0.0f && v_abc <= 0.0f) { /* region CA */ s->v[1] = s->v[0]; s->v[0] = s->v[2]; s->bc[0] = u_ca; s->bc[1] = v_ca; s->cnt = 2; break; } /* region ABC */ assert(u_abc > 0.0f && v_abc > 0.0f && w_abc > 0.0f); s->bc[0] = u_abc; s->bc[1] = v_abc; s->bc[2] = w_abc; s->cnt = 3; } break; case 4: { /* -------------------- Tetrahedron ----------------------- */ vec3 a = s->v[0].p; vec3 b = s->v[1].p; vec3 c = s->v[2].p; vec3 d = s->v[3].p; vec3 ab = sub3(a, b); vec3 ba = sub3(b, a); vec3 bc = sub3(b, c); vec3 cb = sub3(c, b); vec3 ca = sub3(c, a); vec3 ac = sub3(a, c); vec3 db = sub3(d, b); vec3 bd = sub3(b, d); vec3 dc = sub3(d, c); vec3 cd = sub3(c, d); vec3 da = sub3(d, a); vec3 ad = sub3(a, d); /* compute barycentric coordinates */ float u_ab = dot3(b, ba); float v_ab = dot3(a, ab); float u_bc = dot3(c, cb); float v_bc = dot3(b, bc); float u_ca = dot3(a, ac); float v_ca = dot3(c, ca); float u_bd = dot3(d, db); float v_bd = dot3(b, bd); float u_dc = dot3(c, cd); float v_dc = dot3(d, dc); float u_ad = dot3(d, da); float v_ad = dot3(a, ad); /* check verticies for closest point */ if (v_ab <= 0.0f && u_ca <= 0.0f && v_ad <= 0.0f) { /* region A */ s->bc[0] = 1.0f; s->cnt = 1; break; } if (u_ab <= 0.0f && v_bc <= 0.0f && v_bd <= 0.0f) { /* region B */ s->v[0] = s->v[1]; s->bc[0] = 1.0f; s->cnt = 1; break; } if (u_bc <= 0.0f && v_ca <= 0.0f && u_dc <= 0.0f) { /* region C */ s->v[0] = s->v[2]; s->bc[0] = 1.0f; s->cnt = 1; break; } if (u_bd <= 0.0f && v_dc <= 0.0f && u_ad <= 0.0f) { /* region D */ s->v[0] = s->v[3]; s->bc[0] = 1.0f; s->cnt = 1; break; } /* calculate fractional area */ vec3 n; n = cross3(da, ba); vec3 n1; n1 = cross3(d, b); vec3 n2; n2 = cross3(b, a); vec3 n3; n3 = cross3(a, d); float u_adb = dot3(n1, n); float v_adb = dot3(n2, n); float w_adb = dot3(n3, n); n = cross3(ca, da); n1 = cross3(c, d); n2 = cross3(d, a); n3 = cross3(a, c); float u_acd = dot3(n1, n); float v_acd = dot3(n2, n); float w_acd = dot3(n3, n); n = cross3(bc, dc); n1 = cross3(b, d); n2 = cross3(d, c); n3 = cross3(c, b); float u_cbd = dot3(n1, n); float v_cbd = dot3(n2, n); float w_cbd = dot3(n3, n); n = cross3(ba, ca); n1 = cross3(b, c); n2 = cross3(c, a); n3 = cross3(a, b); float u_abc = dot3(n1, n); float v_abc = dot3(n2, n); float w_abc = dot3(n3, n); /* check edges for closest point */ if (w_abc <= 0.0f && v_adb <= 0.0f && u_ab > 0.0f && v_ab > 0.0f) { /* region AB */ s->bc[0] = u_ab; s->bc[1] = v_ab; s->cnt = 2; break; } if (u_abc <= 0.0f && w_cbd <= 0.0f && u_bc > 0.0f && v_bc > 0.0f) { /* region BC */ s->v[0] = s->v[1]; s->v[1] = s->v[2]; s->bc[0] = u_bc; s->bc[1] = v_bc; s->cnt = 2; break; } if (v_abc <= 0.0f && w_acd <= 0.0f && u_ca > 0.0f && v_ca > 0.0f) { /* region CA */ s->v[1] = s->v[0]; s->v[0] = s->v[2]; s->bc[0] = u_ca; s->bc[1] = v_ca; s->cnt = 2; break; } if (v_cbd <= 0.0f && u_acd <= 0.0f && u_dc > 0.0f && v_dc > 0.0f) { /* region DC */ s->v[0] = s->v[3]; s->v[1] = s->v[2]; s->bc[0] = u_dc; s->bc[1] = v_dc; s->cnt = 2; break; } if (v_acd <= 0.0f && w_adb <= 0.0f && u_ad > 0.0f && v_ad > 0.0f) { /* region AD */ s->v[1] = s->v[3]; s->bc[0] = u_ad; s->bc[1] = v_ad; s->cnt = 2; break; } if (u_cbd <= 0.0f && u_adb <= 0.0f && u_bd > 0.0f && v_bd > 0.0f) { /* region BD */ s->v[0] = s->v[1]; s->v[1] = s->v[3]; s->bc[0] = u_bd; s->bc[1] = v_bd; s->cnt = 2; break; } /* calculate fractional volume (volume can be negative!) */ float denom = dot3(cross3(cb, ab), db); // box3(cb, ab, db) float volume = (denom == 0) ? 1.0f: 1.0f/denom; float u_abcd = dot3(cross3(c, d), b) * volume; // box3(c, d, b) float v_abcd = dot3(cross3(c, a), d) * volume; // box3(c, a, d) float w_abcd = dot3(cross3(d, a), b) * volume; // box3(d, a, b) float x_abcd = dot3(cross3(b, a), c) * volume; // box3(b, a, c) /* check faces for closest point */ if (x_abcd <= 0.0f && u_abc > 0.0f && v_abc > 0.0f && w_abc > 0.0f) { /* region ABC */ s->bc[0] = u_abc; s->bc[1] = v_abc; s->bc[2] = w_abc; s->cnt = 3; break; } if (u_abcd <= 0.0f && u_cbd > 0.0f && v_cbd > 0.0f && w_cbd > 0.0f) { /* region CBD */ s->v[0] = s->v[2]; s->v[2] = s->v[3]; s->bc[0] = u_cbd; s->bc[1] = v_cbd; s->bc[2] = w_cbd; s->cnt = 3; break; } if (v_abcd <= 0.0f && u_acd > 0.0f && v_acd > 0.0f && w_acd > 0.0f) { /* region ACD */ s->v[1] = s->v[2]; s->v[2] = s->v[3]; s->bc[0] = u_acd; s->bc[1] = v_acd; s->bc[2] = w_acd; s->cnt = 3; break; } if (w_abcd <= 0.0f && u_adb > 0.0f && v_adb > 0.0f && w_adb > 0.0f) { /* region ADB */ s->v[2] = s->v[1]; s->v[1] = s->v[3]; s->bc[0] = u_adb; s->bc[1] = v_adb; s->bc[2] = w_adb; s->cnt = 3; break; } /* region ABCD */ // assert(u_abcd > 0.0f && v_abcd > 0.0f && w_abcd > 0.0f && x_abcd > 0.0f); // tcc+linux asserts in here: both u_abcd and v_abcd are negative s->bc[0] = u_abcd; s->bc[1] = v_abcd; s->bc[2] = w_abcd; s->bc[3] = x_abcd; s->cnt = 4; } break;} /* V.) Check if origin is enclosed by tetrahedron */ if (s->cnt == 4) { s->hit = 1; return 0; } /* VI.) Ensure closing in on origin to prevent multi-step cycling */ vec3 pnt; float denom = 0; for (int i = 0; i < s->cnt; ++i) denom += s->bc[i]; denom = 1.0f / denom; switch (s->cnt) { case 1: pnt = s->v[0].p; break; case 2: { /* --------- Line -------- */ vec3 a = scale3(s->v[0].p, denom * s->bc[0]); vec3 b = scale3(s->v[1].p, denom * s->bc[1]); pnt = add3(a, b); } break; case 3: { /* ------- Triangle ------ */ vec3 a = scale3(s->v[0].p, denom * s->bc[0]); vec3 b = scale3(s->v[1].p, denom * s->bc[1]); vec3 c = scale3(s->v[2].p, denom * s->bc[2]); pnt = add3(a, b); pnt = add3(pnt, c); } break; case 4: { /* ----- Tetrahedron ----- */ vec3 a = scale3(s->v[0].p, denom * s->bc[0]); vec3 b = scale3(s->v[1].p, denom * s->bc[1]); vec3 c = scale3(s->v[2].p, denom * s->bc[2]); vec3 d = scale3(s->v[3].p, denom * s->bc[3]); pnt = add3(a, b); pnt = add3(pnt, c); pnt = add3(pnt, d); } break;} float d2 = dot3(pnt, pnt); if (d2 >= s->D) return 0; s->D = d2; /* VII.) New search direction */ switch (s->cnt) { default: assert(0); break; case 1: { /* --------- Point -------- */ *dv = scale3(s->v[0].p, -1); } break; case 2: { /* ------ Line segment ---- */ vec3 ba = sub3(s->v[1].p, s->v[0].p); vec3 b0 = scale3(s->v[1].p, -1); vec3 t; t = cross3(ba, b0); *dv = cross3(t, ba); } break; case 3: { /* ------- Triangle ------- */ vec3 ab = sub3(s->v[1].p, s->v[0].p); vec3 ac = sub3(s->v[2].p, s->v[0].p); vec3 n; n = cross3(ab, ac); if (dot3(n, s->v[0].p) <= 0.0f) *dv = n; else *dv = scale3(n, -1); }} if (dot3(*dv,*dv) < GJK_EPSILON * GJK_EPSILON) return 0; return 1; } gjk_result gjk_analyze(const gjk_simplex *s) { gjk_result r = {0}, *res = &r; res->iterations = s->iter; res->hit = s->hit; /* calculate normalization denominator */ float denom = 0; for (int i = 0; i < s->cnt; ++i) denom += s->bc[i]; denom = 1.0f / denom; /* compute closest points */ switch (s->cnt) { default: assert(0); break; case 1: { /* Point */ res->p0 = s->v[0].a; res->p1 = s->v[0].b; } break; case 2: { /* Line */ float as = denom * s->bc[0]; float bs = denom * s->bc[1]; vec3 a = scale3(s->v[0].a, as); vec3 b = scale3(s->v[1].a, bs); vec3 c = scale3(s->v[0].b, as); vec3 d = scale3(s->v[1].b, bs); res->p0 = add3(a, b); res->p1 = add3(c, d); } break; case 3: { /* Triangle */ float as = denom * s->bc[0]; float bs = denom * s->bc[1]; float cs = denom * s->bc[2]; vec3 a = scale3(s->v[0].a, as); vec3 b = scale3(s->v[1].a, bs); vec3 c = scale3(s->v[2].a, cs); vec3 d = scale3(s->v[0].b, as); vec3 e = scale3(s->v[1].b, bs); vec3 f = scale3(s->v[2].b, cs); res->p0 = add3(a, b); res->p0 = add3(res->p0, c); res->p1 = add3(d, e); res->p1 = add3(res->p1, f); } break; case 4: { /* Tetrahedron */ vec3 a = scale3(s->v[0].a, denom * s->bc[0]); vec3 b = scale3(s->v[1].a, denom * s->bc[1]); vec3 c = scale3(s->v[2].a, denom * s->bc[2]); vec3 d = scale3(s->v[3].a, denom * s->bc[3]); res->p0 = add3(a, b); res->p0 = add3(res->p0, c); res->p0 = add3(res->p0, d); res->p1 = res->p0; } break;} if (!res->hit) { /* compute distance */ vec3 d= sub3(res->p1, res->p0); res->distance_squared = dot3(d, d); } else res->distance_squared = 0; return r; } gjk_result gjk_quad(float a_radius, float b_radius) { gjk_result r = {0}, *res = &r; float radius = a_radius + b_radius; float radius_squared = radius * radius; if (res->distance_squared > GJK_EPSILON && res->distance_squared > radius_squared) { res->distance_squared -= radius_squared; /* calculate normal */ vec3 n = sub3(res->p1, res->p0); float l2 = dot3(n, n); if (l2 != 0.0f) { float il = gjk_inv_sqrt(l2); n = scale3(n,il); } vec3 da = scale3(n, a_radius); vec3 db = scale3(n, b_radius); /* calculate new collision points */ res->p0 = add3(res->p0, da); res->p1 = sub3(res->p1, db); } else { vec3 p = add3(res->p0, res->p1); res->p0 = scale3(p, 0.5f); res->p1 = res->p0; res->distance_squared = 0; res->hit = 1; } return r; } #endif #line 0 #line 1 "3rd_compress.h" // compress.c de/compressors into a single-file header // - rlyeh, public domain // // current file format: // header : [1< #ifndef REALLOC #define REALLOC realloc #endif // compressor type [0..15]: high nibble // compression level/flags [0..15]: low hibble // compressor_type << 4 + compression_level = 1 byte enum { RAW = 0, PPP = (1<<4), ULZ = (2<<4), LZ4X = (3<<4), CRSH = (4<<4), DEFL = (5<<4), LZP1 = (6<<4), LZMA = (7<<4), BALZ = (8<<4), LZW3 = (9<<4), LZSS = (10<<4), BCM = (11<<4), NUM_COMPRESSORS = 13 }; // mem de/encoder unsigned mem_bounds(unsigned inlen, unsigned compressor); unsigned mem_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned compressor); unsigned mem_excess(unsigned compressor); unsigned mem_decode(const void *in, unsigned inlen, void *out, unsigned outlen); // file de/encoder unsigned file_encode(FILE* in, FILE* out, FILE *logfile, unsigned cnum, unsigned *clist); unsigned file_decode(FILE* in, FILE* out, FILE *logfile); #endif // COMPRESS_H #ifdef COMPRESS_C //#pragma once #define RAW_C #define PPP_C #define ULZ_C #define LZ4X_C #define CRUSH_C #define DEFLATE_C #define LZP1_C #define LZMA_C #define BALZ_C #define LZRW3A_C #define LZSS_C #define BCM_C #endif //#line 1 "amalgamated_balz.c" // balz.cpp is written and placed in the public domain by Ilya Muravyov // additional code by @r-lyeh (public domain) unsigned balz_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..1]*/); unsigned balz_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned balz_bounds(unsigned inlen, unsigned flags); unsigned balz_excess(unsigned flags); #ifdef BALZ_C //#pragma once #define _CRT_SECURE_NO_WARNINGS #define _CRT_DISABLE_PERFCRIT_LOCKS #include #include #include typedef struct mfile { uint8_t *begin, *seek, *end; } mfile; int minit(mfile *f, const void *ptr, int len) { f->begin = f->seek = f->end = (uint8_t*)ptr; f->end += len; return 0; } int mread(mfile *m, void *buf, int len) { if( len >= (m->end - m->seek) ) len = (m->end - m->seek); memcpy(buf,m->seek,len); m->seek += len; return len; } int mwrite(mfile *m, const void *buf, int len) { if( len >= (m->end - m->seek) ) len = (m->end - m->seek); memcpy(m->seek,buf,len); m->seek += len; return len; } int mtell(mfile *m) { return m->seek - m->begin; } int mavail(mfile *m) { return m->end - m->seek; } int mputc(mfile *m, int i) { uint8_t ch = i; return mwrite(m, &ch, 1); } int mgetc(mfile *m) { if( mavail(m) <= 0 ) return -1; uint8_t ch; mread(m, &ch, 1); return ch; } typedef struct Counter { uint16_t p1; uint16_t p2; } Counter; void CounterCtor(Counter *c) { c->p1 = 1<<15; c->p2 = 1<<15; } uint32_t CounterP(const Counter *c) { return c->p1+c->p2; } void CounterUpdate0(Counter *c) { c->p1-=c->p1>>3; c->p2-=c->p2>>6; } void CounterUpdate1(Counter *c) { c->p1+=(c->p1^65535)>>3; c->p2+=(c->p2^65535)>>6; } typedef struct Encoder { uint32_t code; uint32_t low; uint32_t high; mfile *in, *out; } Encoder; void EncoderCtor(Encoder *e, mfile *in, mfile *out) { e->code = e->low = 0; e->high = -1; e->in = in; e->out = out; } void EncoderEncode(Encoder *e, int bit, Counter *c) { const uint32_t mid=e->low+((((uint64_t)e->high-e->low)*(CounterP(c)<<15))>>32); if (bit) { e->high=mid; CounterUpdate1(c); } else { e->low=mid+1; CounterUpdate0(c); } while ((e->low^e->high)<(1<<24)) { mputc(e->out, e->low>>24); e->low<<=8; e->high=(e->high<<8)|255; } } void EncoderFlush(Encoder *e) { for (int i=0; i<4; ++i) { mputc(e->out, e->low>>24); e->low<<=8; } } void EncoderInit(Encoder *e) { for (int i=0; i<4; ++i) e->code=(e->code<<8)|mgetc(e->in); } int EncoderDecode(Encoder *e, Counter *c) { const uint32_t mid=e->low+((((uint64_t)e->high-e->low)*(CounterP(c)<<15))>>32); const int bit=(e->code<=mid); if (bit) { e->high=mid; CounterUpdate1(c); } else { e->low=mid+1; CounterUpdate0(c); } while ((e->low^e->high)<(1<<24)) { e->code=(e->code<<8)|mgetc(e->in); e->low<<=8; e->high=(e->high<<8)|255; } return bit; } enum { BALZ_TAB_BITS=7 }; enum { BALZ_TAB_SIZE=1<encoder, in, out); for( int i = 0; i < 256; ++i) for( int j = 0; j < 512; ++j) CounterCtor(&cm->counter1[i][j]); for( int i = 0; i < 256; ++i) for( int j = 0; j < BALZ_TAB_SIZE; ++j) CounterCtor(&cm->counter2[i][j]); } void CMInit(CM *cm) { EncoderInit(&cm->encoder); } void CMEncode(CM *cm, int t, int c1) { int ctx=1; while (ctx<512) { const int bit=((t&256)!=0); t+=t; EncoderEncode(&cm->encoder, bit, &cm->counter1[c1][ctx]); ctx+=ctx+bit; } } void CMEncodeIdx(CM *cm, int x, int c2) { int ctx=1; while (ctx>1))!=0); x+=x; EncoderEncode(&cm->encoder, bit, &cm->counter2[c2][ctx]); ctx+=ctx+bit; } } int CMDecode(CM *cm, int c1) { int ctx=1; while (ctx<512) ctx+=ctx+EncoderDecode(&cm->encoder, &cm->counter1[c1][ctx]); return ctx-512; } int CMDecodeIdx(CM *cm, int c2) { int ctx=1; while (ctxencoder, &cm->counter2[c2][ctx]); return ctx-BALZ_TAB_SIZE; } enum { BALZ_MIN_MATCH=3 }; enum { BALZ_MAX_MATCH=255+BALZ_MIN_MATCH }; enum { BALZ_BUF_BITS=25 }; enum { BALZ_BUF_SIZE=1<=-p)&&(*addr<(n-p))) \ *addr+=p; \ else if ((*addr>0)&&(*addr=0) \ *addr+=n; \ } \ else if (*addr=BALZ_MIN_MATCH?(len<BALZ_MAX_MATCH) max_match=BALZ_MAX_MATCH; for (int x=0; xlen) { idx=x; len=l; if (l==max_match) break; } } return get_pts(len, idx); } int balz_compress(const uint8_t *in, unsigned inlen, uint8_t *out, unsigned outlen, unsigned is_max) { balz_init(); *out++ = (inlen >> 24) & 255; *out++ = (inlen >> 16) & 255; *out++ = (inlen >> 8) & 255; *out++ = (inlen >> 0) & 255; outlen -= 4; mfile inf, outf; minit(&inf, in, inlen); minit(&outf, out, outlen); CM cm; CMCtor(&cm, &inf, &outf); int best_idx[BALZ_MAX_MATCH+1]; int n; while ((n=mread(&inf, buf, BALZ_BUF_SIZE))>0) { //e8e9_transform(1,n); memset(tab, 0, sizeof(tab)); int p=0; while ((p<2)&&(pBALZ_MAX_MATCH) max_match=BALZ_MAX_MATCH; for (int x=0; xlen) { for (int i=l; i>len; --i) best_idx[i]=x; idx=x; len=l; if (l==max_match) break; } } if ((is_max)&&(len>=BALZ_MIN_MATCH)) { int sum=get_pts(len, idx)+get_pts_at(p+len, n); if (sumsum) { sum=tmp; len=i; } } idx=best_idx[len]; } } tab[c2][++cnt[c2]&BALZ_TAB_MASK]=hash|p; if (len>=BALZ_MIN_MATCH) { CMEncode(&cm, (256-BALZ_MIN_MATCH)+len, buf[p-1]); CMEncodeIdx(&cm, idx, buf[p-2]); p+=len; } else { CMEncode(&cm, buf[p], buf[p-1]); ++p; } } } EncoderFlush(&cm.encoder); if ( (inf.seek - inf.begin) != inlen) { return 0; // size mismatch error } return (int)(outf.seek - outf.begin) + 4; } int balz_decompress(const uint8_t *in, unsigned inlen, uint8_t *out, unsigned outlen) { balz_init(); uint32_t flen32 = 0; flen32 |= ((uint32_t)*in++) << 24; flen32 |= ((uint32_t)*in++) << 16; flen32 |= ((uint32_t)*in++) << 8; flen32 |= ((uint32_t)*in++) << 0; outlen = flen32; int flen = flen32; inlen -= 4; mfile inf, outf; minit(&inf, in, inlen); minit(&outf, out, outlen); CM cm; CMCtor(&cm, &inf, &outf); CMInit(&cm); #define balz_src_avail ((int)(inf.end - inf.seek)) #define balz_dst_avail ((int)(outf.end - outf.seek)) #define balz_dst_written ((int)(outf.seek - outf.begin)) while(/*(balz_src_avail > 0) &&*/ (balz_dst_written != flen)) { int p=0; while ((p<2) && ((p+balz_dst_written)=256) { return 0; // corrupt file error } buf[p++]=t; } while ((p < BALZ_BUF_SIZE) && (p+balz_dst_written 0)) { const int tmp=p; const int c2=*(uint16_t*)(&buf[p-2]); // unaligned const int t=CMDecode(&cm, buf[p-1]); if (t>=256) { int len=t-256; int s=tab[c2][(cnt[c2]-CMDecodeIdx(&cm, buf[p-2]))&BALZ_TAB_MASK]; buf[p++]=buf[s++]; buf[p++]=buf[s++]; buf[p++]=buf[s++]; while (len--) buf[p++]=buf[s++]; } else buf[p++]=t; tab[c2][++cnt[c2]&BALZ_TAB_MASK]=tmp; } //e8e9_transform(0,p); mwrite(&outf, buf, p); } return (int)(outf.seek - outf.begin); } unsigned balz_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..1]*/) { unsigned level = flags > 0 ? 1 : 0; return (unsigned)balz_compress((const uint8_t *)in, inlen, (uint8_t*)out, outlen, level); } unsigned balz_decode(const void *in, unsigned inlen, void *out, unsigned outlen) { return (unsigned)balz_decompress((const uint8_t *)in, inlen, (uint8_t*)out, outlen); } unsigned balz_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen * 1.1) + 16; // @todo: check src } unsigned balz_excess(unsigned flags) { return (unsigned)0; } #endif // BALZ_C #ifdef BALZ_DEMO //#pragma once #include int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level=1; char out[128]; unsigned outlen = balz_encode(longcopy, strlen(longcopy)+1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; unsigned unpacked = balz_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // BALZ_DEMO //#line 1 "amalgamated_bcm_bwt.c" #ifndef BCM_C // do nothing #elif defined BCM_NO_ENCODER // dummy int bcm_divbwt(const unsigned char *T, unsigned char *U, int *A, int n) { return -1; } #else /* * divsufsort.h for libdivsufsort-lite * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef _DIVSUFSORT_H #define _DIVSUFSORT_H 1 #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /*- Prototypes -*/ /** * Constructs the suffix array of a given string. * @param T[0..n-1] The input string. * @param SA[0..n-1] The output array of suffixes. * @param n The length of the given string. * @return 0 if no error occurred, -1 or -2 otherwise. */ int bcm_divsufsort(const unsigned char *T, int *SA, int n); /** * Constructs the burrows-wheeler transformed string of a given string. * @param T[0..n-1] The input string. * @param U[0..n-1] The output string. (can be T) * @param A[0..n-1] The temporary array. (can be NULL) * @param n The length of the given string. * @return The primary index if no error occurred, -1 or -2 otherwise. */ int bcm_divbwt(const unsigned char *T, unsigned char *U, int *A, int n); #ifdef __cplusplus } /* extern "C" */ #endif /* __cplusplus */ #endif /* _DIVSUFSORT_H */ /* * divsufsort.c for libdivsufsort-lite * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #ifdef _OPENMP # include #endif //#include "bcm_divsufsort.h" /*- Constants -*/ #ifndef INLINE #define INLINE __inline #endif #if defined(ALPHABET_SIZE) && (ALPHABET_SIZE < 1) # undef ALPHABET_SIZE #endif #if !defined(ALPHABET_SIZE) # define ALPHABET_SIZE (256) #endif #define BUCKET_A_SIZE (ALPHABET_SIZE) #define BUCKET_B_SIZE (ALPHABET_SIZE * ALPHABET_SIZE) #if defined(SS_INSERTIONSORT_THRESHOLD) # if SS_INSERTIONSORT_THRESHOLD < 1 # undef SS_INSERTIONSORT_THRESHOLD # define SS_INSERTIONSORT_THRESHOLD (1) # endif #else # define SS_INSERTIONSORT_THRESHOLD (8) #endif #if defined(SS_BLOCKSIZE) # if SS_BLOCKSIZE < 0 # undef SS_BLOCKSIZE # define SS_BLOCKSIZE (0) # elif 32768 <= SS_BLOCKSIZE # undef SS_BLOCKSIZE # define SS_BLOCKSIZE (32767) # endif #else # define SS_BLOCKSIZE (1024) #endif /* minstacksize = log(SS_BLOCKSIZE) / log(3) * 2 */ #if SS_BLOCKSIZE == 0 # define SS_MISORT_STACKSIZE (96) #elif SS_BLOCKSIZE <= 4096 # define SS_MISORT_STACKSIZE (16) #else # define SS_MISORT_STACKSIZE (24) #endif #define SS_SMERGE_STACKSIZE (32) #define TR_INSERTIONSORT_THRESHOLD (8) #define TR_STACKSIZE (64) /*- Macros -*/ #ifndef SWAP # define SWAP(_a, _b) do { t = (_a); (_a) = (_b); (_b) = t; } while(0) #endif /* SWAP */ #ifndef MIN # define MIN(_a, _b) (((_a) < (_b)) ? (_a) : (_b)) #endif /* MIN */ #ifndef MAX # define MAX(_a, _b) (((_a) > (_b)) ? (_a) : (_b)) #endif /* MAX */ #define STACK_PUSH(_a, _b, _c, _d)\ do {\ assert(ssize < STACK_SIZE);\ stack[ssize].a = (_a), stack[ssize].b = (_b),\ stack[ssize].c = (_c), stack[ssize++].d = (_d);\ } while(0) #define STACK_PUSH5(_a, _b, _c, _d, _e)\ do {\ assert(ssize < STACK_SIZE);\ stack[ssize].a = (_a), stack[ssize].b = (_b),\ stack[ssize].c = (_c), stack[ssize].d = (_d), stack[ssize++].e = (_e);\ } while(0) #define STACK_POP(_a, _b, _c, _d)\ do {\ assert(0 <= ssize);\ if(ssize == 0) { return; }\ (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\ (_c) = stack[ssize].c, (_d) = stack[ssize].d;\ } while(0) #define STACK_POP5(_a, _b, _c, _d, _e)\ do {\ assert(0 <= ssize);\ if(ssize == 0) { return; }\ (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\ (_c) = stack[ssize].c, (_d) = stack[ssize].d, (_e) = stack[ssize].e;\ } while(0) #define BUCKET_A(_c0) bucket_A[(_c0)] #if ALPHABET_SIZE == 256 #define BUCKET_B(_c0, _c1) (bucket_B[((_c1) << 8) | (_c0)]) #define BUCKET_BSTAR(_c0, _c1) (bucket_B[((_c0) << 8) | (_c1)]) #else #define BUCKET_B(_c0, _c1) (bucket_B[(_c1) * ALPHABET_SIZE + (_c0)]) #define BUCKET_BSTAR(_c0, _c1) (bucket_B[(_c0) * ALPHABET_SIZE + (_c1)]) #endif /*- Private Functions -*/ static const int lg_table[256]= { -1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 }; #if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) static INLINE int ss_ilg(int n) { #if SS_BLOCKSIZE == 0 return (n & 0xffff0000) ? ((n & 0xff000000) ? 24 + lg_table[(n >> 24) & 0xff] : 16 + lg_table[(n >> 16) & 0xff]) : ((n & 0x0000ff00) ? 8 + lg_table[(n >> 8) & 0xff] : 0 + lg_table[(n >> 0) & 0xff]); #elif SS_BLOCKSIZE < 256 return lg_table[n]; #else return (n & 0xff00) ? 8 + lg_table[(n >> 8) & 0xff] : 0 + lg_table[(n >> 0) & 0xff]; #endif } #endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */ #if SS_BLOCKSIZE != 0 static const int sqq_table[256] = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255 }; static INLINE int ss_isqrt(int x) { int y, e; if(x >= (SS_BLOCKSIZE * SS_BLOCKSIZE)) { return SS_BLOCKSIZE; } e = (x & 0xffff0000) ? ((x & 0xff000000) ? 24 + lg_table[(x >> 24) & 0xff] : 16 + lg_table[(x >> 16) & 0xff]) : ((x & 0x0000ff00) ? 8 + lg_table[(x >> 8) & 0xff] : 0 + lg_table[(x >> 0) & 0xff]); if(e >= 16) { y = sqq_table[x >> ((e - 6) - (e & 1))] << ((e >> 1) - 7); if(e >= 24) { y = (y + 1 + x / y) >> 1; } y = (y + 1 + x / y) >> 1; } else if(e >= 8) { y = (sqq_table[x >> ((e - 6) - (e & 1))] >> (7 - (e >> 1))) + 1; } else { return sqq_table[x] >> 4; } return (x < (y * y)) ? y - 1 : y; } #endif /* SS_BLOCKSIZE != 0 */ /*---------------------------------------------------------------------------*/ /* Compares two suffixes. */ static INLINE int ss_compare(const unsigned char *T, const int *p1, const int *p2, int depth) { const unsigned char *U1, *U2, *U1n, *U2n; for(U1 = T + depth + *p1, U2 = T + depth + *p2, U1n = T + *(p1 + 1) + 2, U2n = T + *(p2 + 1) + 2; (U1 < U1n) && (U2 < U2n) && (*U1 == *U2); ++U1, ++U2) { } return U1 < U1n ? (U2 < U2n ? *U1 - *U2 : 1) : (U2 < U2n ? -1 : 0); } /*---------------------------------------------------------------------------*/ #if (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) /* Insertionsort for small size groups */ static void ss_insertionsort(const unsigned char *T, const int *PA, int *first, int *last, int depth) { int *i, *j; int t; int r; for(i = last - 2; first <= i; --i) { for(t = *i, j = i + 1; 0 < (r = ss_compare(T, PA + t, PA + *j, depth));) { do { *(j - 1) = *j; } while((++j < last) && (*j < 0)); if(last <= j) { break; } } if(r == 0) { *j = ~*j; } *(j - 1) = t; } } #endif /* (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) */ /*---------------------------------------------------------------------------*/ #if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) static INLINE void ss_fixdown(const unsigned char *Td, const int *PA, int *SA, int i, int size) { int j, k; int v; int c, d, e; for(v = SA[i], c = Td[PA[v]]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) { d = Td[PA[SA[k = j++]]]; if(d < (e = Td[PA[SA[j]]])) { k = j; d = e; } if(d <= c) { break; } } SA[i] = v; } /* Simple top-down heapsort. */ static void ss_heapsort(const unsigned char *Td, const int *PA, int *SA, int size) { int i, m; int t; m = size; if((size % 2) == 0) { m--; if(Td[PA[SA[m / 2]]] < Td[PA[SA[m]]]) { SWAP(SA[m], SA[m / 2]); } } for(i = m / 2 - 1; 0 <= i; --i) { ss_fixdown(Td, PA, SA, i, m); } if((size % 2) == 0) { SWAP(SA[0], SA[m]); ss_fixdown(Td, PA, SA, 0, m); } for(i = m - 1; 0 < i; --i) { t = SA[0], SA[0] = SA[i]; ss_fixdown(Td, PA, SA, 0, i); SA[i] = t; } } /*---------------------------------------------------------------------------*/ /* Returns the median of three elements. */ static INLINE int * ss_median3(const unsigned char *Td, const int *PA, int *v1, int *v2, int *v3) { int *t; if(Td[PA[*v1]] > Td[PA[*v2]]) { SWAP(v1, v2); } if(Td[PA[*v2]] > Td[PA[*v3]]) { if(Td[PA[*v1]] > Td[PA[*v3]]) { return v1; } else { return v3; } } return v2; } /* Returns the median of five elements. */ static INLINE int * ss_median5(const unsigned char *Td, const int *PA, int *v1, int *v2, int *v3, int *v4, int *v5) { int *t; if(Td[PA[*v2]] > Td[PA[*v3]]) { SWAP(v2, v3); } if(Td[PA[*v4]] > Td[PA[*v5]]) { SWAP(v4, v5); } if(Td[PA[*v2]] > Td[PA[*v4]]) { SWAP(v2, v4); SWAP(v3, v5); } if(Td[PA[*v1]] > Td[PA[*v3]]) { SWAP(v1, v3); } if(Td[PA[*v1]] > Td[PA[*v4]]) { SWAP(v1, v4); SWAP(v3, v5); } if(Td[PA[*v3]] > Td[PA[*v4]]) { return v4; } return v3; } /* Returns the pivot element. */ static INLINE int * ss_pivot(const unsigned char *Td, const int *PA, int *first, int *last) { int *middle; int t; t = last - first; middle = first + t / 2; if(t <= 512) { if(t <= 32) { return ss_median3(Td, PA, first, middle, last - 1); } else { t >>= 2; return ss_median5(Td, PA, first, first + t, middle, last - 1 - t, last - 1); } } t >>= 3; first = ss_median3(Td, PA, first, first + t, first + (t << 1)); middle = ss_median3(Td, PA, middle - t, middle, middle + t); last = ss_median3(Td, PA, last - 1 - (t << 1), last - 1 - t, last - 1); return ss_median3(Td, PA, first, middle, last); } /*---------------------------------------------------------------------------*/ /* Binary partition for substrings. */ static INLINE int * ss_partition(const int *PA, int *first, int *last, int depth) { int *a, *b; int t; for(a = first - 1, b = last;;) { for(; (++a < b) && ((PA[*a] + depth) >= (PA[*a + 1] + 1));) { *a = ~*a; } for(; (a < --b) && ((PA[*b] + depth) < (PA[*b + 1] + 1));) { } if(b <= a) { break; } t = ~*b; *b = *a; *a = t; } if(first < a) { *first = ~*first; } return a; } /* Multikey introsort for medium size groups. */ static void ss_mintrosort(const unsigned char *T, const int *PA, int *first, int *last, int depth) { #define STACK_SIZE SS_MISORT_STACKSIZE struct { int *a, *b, c; int d; } stack[STACK_SIZE]; const unsigned char *Td; int *a, *b, *c, *d, *e, *f; int s, t; int ssize; int limit; int v, x = 0; for(ssize = 0, limit = ss_ilg(last - first);;) { if((last - first) <= SS_INSERTIONSORT_THRESHOLD) { #if 1 < SS_INSERTIONSORT_THRESHOLD if(1 < (last - first)) { ss_insertionsort(T, PA, first, last, depth); } #endif STACK_POP(first, last, depth, limit); continue; } Td = T + depth; if(limit-- == 0) { ss_heapsort(Td, PA, first, last - first); } if(limit < 0) { for(a = first + 1, v = Td[PA[*first]]; a < last; ++a) { if((x = Td[PA[*a]]) != v) { if(1 < (a - first)) { break; } v = x; first = a; } } if(Td[PA[*first] - 1] < v) { first = ss_partition(PA, first, a, depth); } if((a - first) <= (last - a)) { if(1 < (a - first)) { STACK_PUSH(a, last, depth, -1); last = a, depth += 1, limit = ss_ilg(a - first); } else { first = a, limit = -1; } } else { if(1 < (last - a)) { STACK_PUSH(first, a, depth + 1, ss_ilg(a - first)); first = a, limit = -1; } else { last = a, depth += 1, limit = ss_ilg(a - first); } } continue; } /* choose pivot */ a = ss_pivot(Td, PA, first, last); v = Td[PA[*a]]; SWAP(*first, *a); /* partition */ for(b = first; (++b < last) && ((x = Td[PA[*b]]) == v);) { } if(((a = b) < last) && (x < v)) { for(; (++b < last) && ((x = Td[PA[*b]]) <= v);) { if(x == v) { SWAP(*b, *a); ++a; } } } for(c = last; (b < --c) && ((x = Td[PA[*c]]) == v);) { } if((b < (d = c)) && (x > v)) { for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) { if(x == v) { SWAP(*c, *d); --d; } } } for(; b < c;) { SWAP(*b, *c); for(; (++b < c) && ((x = Td[PA[*b]]) <= v);) { if(x == v) { SWAP(*b, *a); ++a; } } for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) { if(x == v) { SWAP(*c, *d); --d; } } } if(a <= d) { c = b - 1; if((s = a - first) > (t = b - a)) { s = t; } for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } if((s = d - c) > (t = last - d - 1)) { s = t; } for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } a = first + (b - a), c = last - (d - c); b = (v <= Td[PA[*a] - 1]) ? a : ss_partition(PA, a, c, depth); if((a - first) <= (last - c)) { if((last - c) <= (c - b)) { STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); STACK_PUSH(c, last, depth, limit); last = a; } else if((a - first) <= (c - b)) { STACK_PUSH(c, last, depth, limit); STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); last = a; } else { STACK_PUSH(c, last, depth, limit); STACK_PUSH(first, a, depth, limit); first = b, last = c, depth += 1, limit = ss_ilg(c - b); } } else { if((a - first) <= (c - b)) { STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); STACK_PUSH(first, a, depth, limit); first = c; } else if((last - c) <= (c - b)) { STACK_PUSH(first, a, depth, limit); STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); first = c; } else { STACK_PUSH(first, a, depth, limit); STACK_PUSH(c, last, depth, limit); first = b, last = c, depth += 1, limit = ss_ilg(c - b); } } } else { limit += 1; if(Td[PA[*first] - 1] < v) { first = ss_partition(PA, first, last, depth); limit = ss_ilg(last - first); } depth += 1; } } #undef STACK_SIZE } #endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */ /*---------------------------------------------------------------------------*/ #if SS_BLOCKSIZE != 0 static INLINE void ss_blockswap(int *a, int *b, int n) { int t; for(; 0 < n; --n, ++a, ++b) { t = *a, *a = *b, *b = t; } } static INLINE void ss_rotate(int *first, int *middle, int *last) { int *a, *b, t; int l, r; l = middle - first, r = last - middle; for(; (0 < l) && (0 < r);) { if(l == r) { ss_blockswap(first, middle, l); break; } if(l < r) { a = last - 1, b = middle - 1; t = *a; do { *a-- = *b, *b-- = *a; if(b < first) { *a = t; last = a; if((r -= l + 1) <= l) { break; } a -= 1, b = middle - 1; t = *a; } } while(1); } else { a = first, b = middle; t = *a; do { *a++ = *b, *b++ = *a; if(last <= b) { *a = t; first = a + 1; if((l -= r + 1) <= r) { break; } a += 1, b = middle; t = *a; } } while(1); } } } /*---------------------------------------------------------------------------*/ static void ss_inplacemerge(const unsigned char *T, const int *PA, int *first, int *middle, int *last, int depth) { const int *p; int *a, *b; int len, half; int q, r; int x; for(;;) { if(*(last - 1) < 0) { x = 1; p = PA + ~*(last - 1); } else { x = 0; p = PA + *(last - 1); } for(a = first, len = middle - first, half = len >> 1, r = -1; 0 < len; len = half, half >>= 1) { b = a + half; q = ss_compare(T, PA + ((0 <= *b) ? *b : ~*b), p, depth); if(q < 0) { a = b + 1; half -= (len & 1) ^ 1; } else { r = q; } } if(a < middle) { if(r == 0) { *a = ~*a; } ss_rotate(a, middle, last); last -= middle - a; middle = a; if(first == middle) { break; } } --last; if(x != 0) { while(*--last < 0) { } } if(middle == last) { break; } } } /*---------------------------------------------------------------------------*/ /* Merge-forward with internal buffer. */ static void ss_mergeforward(const unsigned char *T, const int *PA, int *first, int *middle, int *last, int *buf, int depth) { int *a, *b, *c, *bufend; int t; int r; bufend = buf + (middle - first) - 1; ss_blockswap(buf, first, middle - first); for(t = *(a = first), b = buf, c = middle;;) { r = ss_compare(T, PA + *b, PA + *c, depth); if(r < 0) { do { *a++ = *b; if(bufend <= b) { *bufend = t; return; } *b++ = *a; } while(*b < 0); } else if(r > 0) { do { *a++ = *c, *c++ = *a; if(last <= c) { while(b < bufend) { *a++ = *b, *b++ = *a; } *a = *b, *b = t; return; } } while(*c < 0); } else { *c = ~*c; do { *a++ = *b; if(bufend <= b) { *bufend = t; return; } *b++ = *a; } while(*b < 0); do { *a++ = *c, *c++ = *a; if(last <= c) { while(b < bufend) { *a++ = *b, *b++ = *a; } *a = *b, *b = t; return; } } while(*c < 0); } } } /* Merge-backward with internal buffer. */ static void ss_mergebackward(const unsigned char *T, const int *PA, int *first, int *middle, int *last, int *buf, int depth) { const int *p1, *p2; int *a, *b, *c, *bufend; int t; int r; int x; bufend = buf + (last - middle) - 1; ss_blockswap(buf, middle, last - middle); x = 0; if(*bufend < 0) { p1 = PA + ~*bufend; x |= 1; } else { p1 = PA + *bufend; } if(*(middle - 1) < 0) { p2 = PA + ~*(middle - 1); x |= 2; } else { p2 = PA + *(middle - 1); } for(t = *(a = last - 1), b = bufend, c = middle - 1;;) { r = ss_compare(T, p1, p2, depth); if(0 < r) { if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; } *a-- = *b; if(b <= buf) { *buf = t; break; } *b-- = *a; if(*b < 0) { p1 = PA + ~*b; x |= 1; } else { p1 = PA + *b; } } else if(r < 0) { if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; } *a-- = *c, *c-- = *a; if(c < first) { while(buf < b) { *a-- = *b, *b-- = *a; } *a = *b, *b = t; break; } if(*c < 0) { p2 = PA + ~*c; x |= 2; } else { p2 = PA + *c; } } else { if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; } *a-- = ~*b; if(b <= buf) { *buf = t; break; } *b-- = *a; if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; } *a-- = *c, *c-- = *a; if(c < first) { while(buf < b) { *a-- = *b, *b-- = *a; } *a = *b, *b = t; break; } if(*b < 0) { p1 = PA + ~*b; x |= 1; } else { p1 = PA + *b; } if(*c < 0) { p2 = PA + ~*c; x |= 2; } else { p2 = PA + *c; } } } } /* D&C based merge. */ static void ss_swapmerge(const unsigned char *T, const int *PA, int *first, int *middle, int *last, int *buf, int bufsize, int depth) { #define STACK_SIZE SS_SMERGE_STACKSIZE #define GETIDX(a) ((0 <= (a)) ? (a) : (~(a))) #define MERGE_CHECK(a, b, c)\ do {\ if(((c) & 1) ||\ (((c) & 2) && (ss_compare(T, PA + GETIDX(*((a) - 1)), PA + *(a), depth) == 0))) {\ *(a) = ~*(a);\ }\ if(((c) & 4) && ((ss_compare(T, PA + GETIDX(*((b) - 1)), PA + *(b), depth) == 0))) {\ *(b) = ~*(b);\ }\ } while(0) struct { int *a, *b, *c; int d; } stack[STACK_SIZE]; int *l, *r, *lm, *rm; int m, len, half; int ssize; int check, next; for(check = 0, ssize = 0;;) { if((last - middle) <= bufsize) { if((first < middle) && (middle < last)) { ss_mergebackward(T, PA, first, middle, last, buf, depth); } MERGE_CHECK(first, last, check); STACK_POP(first, middle, last, check); continue; } if((middle - first) <= bufsize) { if(first < middle) { ss_mergeforward(T, PA, first, middle, last, buf, depth); } MERGE_CHECK(first, last, check); STACK_POP(first, middle, last, check); continue; } for(m = 0, len = MIN(middle - first, last - middle), half = len >> 1; 0 < len; len = half, half >>= 1) { if(ss_compare(T, PA + GETIDX(*(middle + m + half)), PA + GETIDX(*(middle - m - half - 1)), depth) < 0) { m += half + 1; half -= (len & 1) ^ 1; } } if(0 < m) { lm = middle - m, rm = middle + m; ss_blockswap(lm, middle, m); l = r = middle, next = 0; if(rm < last) { if(*rm < 0) { *rm = ~*rm; if(first < lm) { for(; *--l < 0;) { } next |= 4; } next |= 1; } else if(first < lm) { for(; *r < 0; ++r) { } next |= 2; } } if((l - first) <= (last - r)) { STACK_PUSH(r, rm, last, (next & 3) | (check & 4)); middle = lm, last = l, check = (check & 3) | (next & 4); } else { if((next & 2) && (r == middle)) { next ^= 6; } STACK_PUSH(first, lm, l, (check & 3) | (next & 4)); first = r, middle = rm, check = (next & 3) | (check & 4); } } else { if(ss_compare(T, PA + GETIDX(*(middle - 1)), PA + *middle, depth) == 0) { *middle = ~*middle; } MERGE_CHECK(first, last, check); STACK_POP(first, middle, last, check); } } #undef STACK_SIZE } #endif /* SS_BLOCKSIZE != 0 */ /*---------------------------------------------------------------------------*/ /* Substring sort */ static void sssort(const unsigned char *T, const int *PA, int *first, int *last, int *buf, int bufsize, int depth, int n, int lastsuffix) { int *a; #if SS_BLOCKSIZE != 0 int *b, *middle, *curbuf; int j, k, curbufsize, limit; #endif int i; if(lastsuffix != 0) { ++first; } #if SS_BLOCKSIZE == 0 ss_mintrosort(T, PA, first, last, depth); #else if((bufsize < SS_BLOCKSIZE) && (bufsize < (last - first)) && (bufsize < (limit = ss_isqrt(last - first)))) { if(SS_BLOCKSIZE < limit) { limit = SS_BLOCKSIZE; } buf = middle = last - limit, bufsize = limit; } else { middle = last, limit = 0; } for(a = first, i = 0; SS_BLOCKSIZE < (middle - a); a += SS_BLOCKSIZE, ++i) { #if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE ss_mintrosort(T, PA, a, a + SS_BLOCKSIZE, depth); #elif 1 < SS_BLOCKSIZE ss_insertionsort(T, PA, a, a + SS_BLOCKSIZE, depth); #endif curbufsize = last - (a + SS_BLOCKSIZE); curbuf = a + SS_BLOCKSIZE; if(curbufsize <= bufsize) { curbufsize = bufsize, curbuf = buf; } for(b = a, k = SS_BLOCKSIZE, j = i; j & 1; b -= k, k <<= 1, j >>= 1) { ss_swapmerge(T, PA, b - k, b, b + k, curbuf, curbufsize, depth); } } #if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE ss_mintrosort(T, PA, a, middle, depth); #elif 1 < SS_BLOCKSIZE ss_insertionsort(T, PA, a, middle, depth); #endif for(k = SS_BLOCKSIZE; i != 0; k <<= 1, i >>= 1) { if(i & 1) { ss_swapmerge(T, PA, a - k, a, middle, buf, bufsize, depth); a -= k; } } if(limit != 0) { #if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE ss_mintrosort(T, PA, middle, last, depth); #elif 1 < SS_BLOCKSIZE ss_insertionsort(T, PA, middle, last, depth); #endif ss_inplacemerge(T, PA, first, middle, last, depth); } #endif if(lastsuffix != 0) { /* Insert last type B* suffix. */ int PAi[2]; PAi[0] = PA[*(first - 1)], PAi[1] = n - 2; for(a = first, i = *(first - 1); (a < last) && ((*a < 0) || (0 < ss_compare(T, &(PAi[0]), PA + *a, depth))); ++a) { *(a - 1) = *a; } *(a - 1) = i; } } /*---------------------------------------------------------------------------*/ static INLINE int tr_ilg(int n) { return (n & 0xffff0000) ? ((n & 0xff000000) ? 24 + lg_table[(n >> 24) & 0xff] : 16 + lg_table[(n >> 16) & 0xff]) : ((n & 0x0000ff00) ? 8 + lg_table[(n >> 8) & 0xff] : 0 + lg_table[(n >> 0) & 0xff]); } /*---------------------------------------------------------------------------*/ /* Simple insertionsort for small size groups. */ static void tr_insertionsort(const int *ISAd, int *first, int *last) { int *a, *b; int t, r; for(a = first + 1; a < last; ++a) { for(t = *a, b = a - 1; 0 > (r = ISAd[t] - ISAd[*b]);) { do { *(b + 1) = *b; } while((first <= --b) && (*b < 0)); if(b < first) { break; } } if(r == 0) { *b = ~*b; } *(b + 1) = t; } } /*---------------------------------------------------------------------------*/ static INLINE void tr_fixdown(const int *ISAd, int *SA, int i, int size) { int j, k; int v; int c, d, e; for(v = SA[i], c = ISAd[v]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) { d = ISAd[SA[k = j++]]; if(d < (e = ISAd[SA[j]])) { k = j; d = e; } if(d <= c) { break; } } SA[i] = v; } /* Simple top-down heapsort. */ static void tr_heapsort(const int *ISAd, int *SA, int size) { int i, m; int t; m = size; if((size % 2) == 0) { m--; if(ISAd[SA[m / 2]] < ISAd[SA[m]]) { SWAP(SA[m], SA[m / 2]); } } for(i = m / 2 - 1; 0 <= i; --i) { tr_fixdown(ISAd, SA, i, m); } if((size % 2) == 0) { SWAP(SA[0], SA[m]); tr_fixdown(ISAd, SA, 0, m); } for(i = m - 1; 0 < i; --i) { t = SA[0], SA[0] = SA[i]; tr_fixdown(ISAd, SA, 0, i); SA[i] = t; } } /*---------------------------------------------------------------------------*/ /* Returns the median of three elements. */ static INLINE int * tr_median3(const int *ISAd, int *v1, int *v2, int *v3) { int *t; if(ISAd[*v1] > ISAd[*v2]) { SWAP(v1, v2); } if(ISAd[*v2] > ISAd[*v3]) { if(ISAd[*v1] > ISAd[*v3]) { return v1; } else { return v3; } } return v2; } /* Returns the median of five elements. */ static INLINE int * tr_median5(const int *ISAd, int *v1, int *v2, int *v3, int *v4, int *v5) { int *t; if(ISAd[*v2] > ISAd[*v3]) { SWAP(v2, v3); } if(ISAd[*v4] > ISAd[*v5]) { SWAP(v4, v5); } if(ISAd[*v2] > ISAd[*v4]) { SWAP(v2, v4); SWAP(v3, v5); } if(ISAd[*v1] > ISAd[*v3]) { SWAP(v1, v3); } if(ISAd[*v1] > ISAd[*v4]) { SWAP(v1, v4); SWAP(v3, v5); } if(ISAd[*v3] > ISAd[*v4]) { return v4; } return v3; } /* Returns the pivot element. */ static INLINE int * tr_pivot(const int *ISAd, int *first, int *last) { int *middle; int t; t = last - first; middle = first + t / 2; if(t <= 512) { if(t <= 32) { return tr_median3(ISAd, first, middle, last - 1); } else { t >>= 2; return tr_median5(ISAd, first, first + t, middle, last - 1 - t, last - 1); } } t >>= 3; first = tr_median3(ISAd, first, first + t, first + (t << 1)); middle = tr_median3(ISAd, middle - t, middle, middle + t); last = tr_median3(ISAd, last - 1 - (t << 1), last - 1 - t, last - 1); return tr_median3(ISAd, first, middle, last); } /*---------------------------------------------------------------------------*/ typedef struct _trbudget_t trbudget_t; struct _trbudget_t { int chance; int remain; int incval; int count; }; static INLINE void trbudget_init(trbudget_t *budget, int chance, int incval) { budget->chance = chance; budget->remain = budget->incval = incval; } static INLINE int trbudget_check(trbudget_t *budget, int size) { if(size <= budget->remain) { budget->remain -= size; return 1; } if(budget->chance == 0) { budget->count += size; return 0; } budget->remain += budget->incval - size; budget->chance -= 1; return 1; } /*---------------------------------------------------------------------------*/ static INLINE void tr_partition(const int *ISAd, int *first, int *middle, int *last, int **pa, int **pb, int v) { int *a, *b, *c, *d, *e, *f; int t, s; int x = 0; for(b = middle - 1; (++b < last) && ((x = ISAd[*b]) == v);) { } if(((a = b) < last) && (x < v)) { for(; (++b < last) && ((x = ISAd[*b]) <= v);) { if(x == v) { SWAP(*b, *a); ++a; } } } for(c = last; (b < --c) && ((x = ISAd[*c]) == v);) { } if((b < (d = c)) && (x > v)) { for(; (b < --c) && ((x = ISAd[*c]) >= v);) { if(x == v) { SWAP(*c, *d); --d; } } } for(; b < c;) { SWAP(*b, *c); for(; (++b < c) && ((x = ISAd[*b]) <= v);) { if(x == v) { SWAP(*b, *a); ++a; } } for(; (b < --c) && ((x = ISAd[*c]) >= v);) { if(x == v) { SWAP(*c, *d); --d; } } } if(a <= d) { c = b - 1; if((s = a - first) > (t = b - a)) { s = t; } for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } if((s = d - c) > (t = last - d - 1)) { s = t; } for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } first += (b - a), last -= (d - c); } *pa = first, *pb = last; } static void tr_copy(int *ISA, const int *SA, int *first, int *a, int *b, int *last, int depth) { /* sort suffixes of middle partition by using sorted order of suffixes of left and right partition. */ int *c, *d, *e; int s, v; v = b - SA - 1; for(c = first, d = a - 1; c <= d; ++c) { if((0 <= (s = *c - depth)) && (ISA[s] == v)) { *++d = s; ISA[s] = d - SA; } } for(c = last - 1, e = d + 1, d = b; e < d; --c) { if((0 <= (s = *c - depth)) && (ISA[s] == v)) { *--d = s; ISA[s] = d - SA; } } } static void tr_partialcopy(int *ISA, const int *SA, int *first, int *a, int *b, int *last, int depth) { int *c, *d, *e; int s, v; int rank, lastrank, newrank = -1; v = b - SA - 1; lastrank = -1; for(c = first, d = a - 1; c <= d; ++c) { if((0 <= (s = *c - depth)) && (ISA[s] == v)) { *++d = s; rank = ISA[s + depth]; if(lastrank != rank) { lastrank = rank; newrank = d - SA; } ISA[s] = newrank; } } lastrank = -1; for(e = d; first <= e; --e) { rank = ISA[*e]; if(lastrank != rank) { lastrank = rank; newrank = e - SA; } if(newrank != rank) { ISA[*e] = newrank; } } lastrank = -1; for(c = last - 1, e = d + 1, d = b; e < d; --c) { if((0 <= (s = *c - depth)) && (ISA[s] == v)) { *--d = s; rank = ISA[s + depth]; if(lastrank != rank) { lastrank = rank; newrank = d - SA; } ISA[s] = newrank; } } } static void tr_introsort(int *ISA, const int *ISAd, int *SA, int *first, int *last, trbudget_t *budget) { #define STACK_SIZE TR_STACKSIZE struct { const int *a; int *b, *c; int d, e; }stack[STACK_SIZE]; int *a, *b, *c; int t; int v, x = 0; int incr = ISAd - ISA; int limit, next; int ssize, trlink = -1; for(ssize = 0, limit = tr_ilg(last - first);;) { if(limit < 0) { if(limit == -1) { /* tandem repeat partition */ tr_partition(ISAd - incr, first, first, last, &a, &b, last - SA - 1); /* update ranks */ if(a < last) { for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; } } if(b < last) { for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } } /* push */ if(1 < (b - a)) { STACK_PUSH5(NULL, a, b, 0, 0); STACK_PUSH5(ISAd - incr, first, last, -2, trlink); trlink = ssize - 2; } if((a - first) <= (last - b)) { if(1 < (a - first)) { STACK_PUSH5(ISAd, b, last, tr_ilg(last - b), trlink); last = a, limit = tr_ilg(a - first); } else if(1 < (last - b)) { first = b, limit = tr_ilg(last - b); } else { STACK_POP5(ISAd, first, last, limit, trlink); } } else { if(1 < (last - b)) { STACK_PUSH5(ISAd, first, a, tr_ilg(a - first), trlink); first = b, limit = tr_ilg(last - b); } else if(1 < (a - first)) { last = a, limit = tr_ilg(a - first); } else { STACK_POP5(ISAd, first, last, limit, trlink); } } } else if(limit == -2) { /* tandem repeat copy */ a = stack[--ssize].b, b = stack[ssize].c; if(stack[ssize].d == 0) { tr_copy(ISA, SA, first, a, b, last, ISAd - ISA); } else { if(0 <= trlink) { stack[trlink].d = -1; } tr_partialcopy(ISA, SA, first, a, b, last, ISAd - ISA); } STACK_POP5(ISAd, first, last, limit, trlink); } else { /* sorted partition */ if(0 <= *first) { a = first; do { ISA[*a] = a - SA; } while((++a < last) && (0 <= *a)); first = a; } if(first < last) { a = first; do { *a = ~*a; } while(*++a < 0); next = (ISA[*a] != ISAd[*a]) ? tr_ilg(a - first + 1) : -1; if(++a < last) { for(b = first, v = a - SA - 1; b < a; ++b) { ISA[*b] = v; } } /* push */ if(trbudget_check(budget, a - first)) { if((a - first) <= (last - a)) { STACK_PUSH5(ISAd, a, last, -3, trlink); ISAd += incr, last = a, limit = next; } else { if(1 < (last - a)) { STACK_PUSH5(ISAd + incr, first, a, next, trlink); first = a, limit = -3; } else { ISAd += incr, last = a, limit = next; } } } else { if(0 <= trlink) { stack[trlink].d = -1; } if(1 < (last - a)) { first = a, limit = -3; } else { STACK_POP5(ISAd, first, last, limit, trlink); } } } else { STACK_POP5(ISAd, first, last, limit, trlink); } } continue; } if((last - first) <= TR_INSERTIONSORT_THRESHOLD) { tr_insertionsort(ISAd, first, last); limit = -3; continue; } if(limit-- == 0) { tr_heapsort(ISAd, first, last - first); for(a = last - 1; first < a; a = b) { for(x = ISAd[*a], b = a - 1; (first <= b) && (ISAd[*b] == x); --b) { *b = ~*b; } } limit = -3; continue; } /* choose pivot */ a = tr_pivot(ISAd, first, last); SWAP(*first, *a); v = ISAd[*first]; /* partition */ tr_partition(ISAd, first, first + 1, last, &a, &b, v); if((last - first) != (b - a)) { next = (ISA[*a] != v) ? tr_ilg(b - a) : -1; /* update ranks */ for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; } if(b < last) { for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } } /* push */ if((1 < (b - a)) && (trbudget_check(budget, b - a))) { if((a - first) <= (last - b)) { if((last - b) <= (b - a)) { if(1 < (a - first)) { STACK_PUSH5(ISAd + incr, a, b, next, trlink); STACK_PUSH5(ISAd, b, last, limit, trlink); last = a; } else if(1 < (last - b)) { STACK_PUSH5(ISAd + incr, a, b, next, trlink); first = b; } else { ISAd += incr, first = a, last = b, limit = next; } } else if((a - first) <= (b - a)) { if(1 < (a - first)) { STACK_PUSH5(ISAd, b, last, limit, trlink); STACK_PUSH5(ISAd + incr, a, b, next, trlink); last = a; } else { STACK_PUSH5(ISAd, b, last, limit, trlink); ISAd += incr, first = a, last = b, limit = next; } } else { STACK_PUSH5(ISAd, b, last, limit, trlink); STACK_PUSH5(ISAd, first, a, limit, trlink); ISAd += incr, first = a, last = b, limit = next; } } else { if((a - first) <= (b - a)) { if(1 < (last - b)) { STACK_PUSH5(ISAd + incr, a, b, next, trlink); STACK_PUSH5(ISAd, first, a, limit, trlink); first = b; } else if(1 < (a - first)) { STACK_PUSH5(ISAd + incr, a, b, next, trlink); last = a; } else { ISAd += incr, first = a, last = b, limit = next; } } else if((last - b) <= (b - a)) { if(1 < (last - b)) { STACK_PUSH5(ISAd, first, a, limit, trlink); STACK_PUSH5(ISAd + incr, a, b, next, trlink); first = b; } else { STACK_PUSH5(ISAd, first, a, limit, trlink); ISAd += incr, first = a, last = b, limit = next; } } else { STACK_PUSH5(ISAd, first, a, limit, trlink); STACK_PUSH5(ISAd, b, last, limit, trlink); ISAd += incr, first = a, last = b, limit = next; } } } else { if((1 < (b - a)) && (0 <= trlink)) { stack[trlink].d = -1; } if((a - first) <= (last - b)) { if(1 < (a - first)) { STACK_PUSH5(ISAd, b, last, limit, trlink); last = a; } else if(1 < (last - b)) { first = b; } else { STACK_POP5(ISAd, first, last, limit, trlink); } } else { if(1 < (last - b)) { STACK_PUSH5(ISAd, first, a, limit, trlink); first = b; } else if(1 < (a - first)) { last = a; } else { STACK_POP5(ISAd, first, last, limit, trlink); } } } } else { if(trbudget_check(budget, last - first)) { limit = tr_ilg(last - first), ISAd += incr; } else { if(0 <= trlink) { stack[trlink].d = -1; } STACK_POP5(ISAd, first, last, limit, trlink); } } } #undef STACK_SIZE } /*---------------------------------------------------------------------------*/ /* Tandem repeat sort */ static void trsort(int *ISA, int *SA, int n, int depth) { int *ISAd; int *first, *last; trbudget_t budget; int t, skip, unsorted; trbudget_init(&budget, tr_ilg(n) * 2 / 3, n); /* trbudget_init(&budget, tr_ilg(n) * 3 / 4, n); */ for(ISAd = ISA + depth; -n < *SA; ISAd += ISAd - ISA) { first = SA; skip = 0; unsorted = 0; do { if((t = *first) < 0) { first -= t; skip += t; } else { if(skip != 0) { *(first + skip) = skip; skip = 0; } last = SA + ISA[t] + 1; if(1 < (last - first)) { budget.count = 0; tr_introsort(ISA, ISAd, SA, first, last, &budget); if(budget.count != 0) { unsorted += budget.count; } else { skip = first - last; } } else if((last - first) == 1) { skip = -1; } first = last; } } while(first < (SA + n)); if(skip != 0) { *(first + skip) = skip; } if(unsorted == 0) { break; } } } /*---------------------------------------------------------------------------*/ /* Sorts suffixes of type B*. */ static int sort_typeBstar(const unsigned char *T, int *SA, int *bucket_A, int *bucket_B, int n) { int *PAb, *ISAb, *buf; #ifdef _OPENMP int *curbuf; int l; #endif int i, j, k, t, m, bufsize; int c0, c1; #ifdef _OPENMP int d0, d1; int tmp; #endif /* Initialize bucket arrays. */ for(i = 0; i < BUCKET_A_SIZE; ++i) { bucket_A[i] = 0; } for(i = 0; i < BUCKET_B_SIZE; ++i) { bucket_B[i] = 0; } /* Count the number of occurrences of the first one or two characters of each type A, B and B* suffix. Moreover, store the beginning position of all type B* suffixes into the array SA. */ for(i = n - 1, m = n, c0 = T[n - 1]; 0 <= i;) { /* type A suffix. */ do { ++BUCKET_A(c1 = c0); } while((0 <= --i) && ((c0 = T[i]) >= c1)); if(0 <= i) { /* type B* suffix. */ ++BUCKET_BSTAR(c0, c1); SA[--m] = i; /* type B suffix. */ for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { ++BUCKET_B(c0, c1); } } } m = n - m; /* note: A type B* suffix is lexicographically smaller than a type B suffix that begins with the same first two characters. */ /* Calculate the index of start/end point of each bucket. */ for(c0 = 0, i = 0, j = 0; c0 < ALPHABET_SIZE; ++c0) { t = i + BUCKET_A(c0); BUCKET_A(c0) = i + j; /* start point */ i = t + BUCKET_B(c0, c0); for(c1 = c0 + 1; c1 < ALPHABET_SIZE; ++c1) { j += BUCKET_BSTAR(c0, c1); BUCKET_BSTAR(c0, c1) = j; /* end point */ i += BUCKET_B(c0, c1); } } if(0 < m) { /* Sort the type B* suffixes by their first two characters. */ PAb = SA + n - m; ISAb = SA + m; for(i = m - 2; 0 <= i; --i) { t = PAb[i], c0 = T[t], c1 = T[t + 1]; SA[--BUCKET_BSTAR(c0, c1)] = i; } t = PAb[m - 1], c0 = T[t], c1 = T[t + 1]; SA[--BUCKET_BSTAR(c0, c1)] = m - 1; /* Sort the type B* substrings using sssort. */ #ifdef _OPENMP tmp = omp_get_max_threads(); buf = SA + m, bufsize = (n - (2 * m)) / tmp; c0 = ALPHABET_SIZE - 2, c1 = ALPHABET_SIZE - 1, j = m; #pragma omp parallel default(shared) private(curbuf, k, l, d0, d1, tmp) { tmp = omp_get_thread_num(); curbuf = buf + tmp * bufsize; k = 0; for(;;) { #pragma omp critical(sssort_lock) { if(0 < (l = j)) { d0 = c0, d1 = c1; do { k = BUCKET_BSTAR(d0, d1); if(--d1 <= d0) { d1 = ALPHABET_SIZE - 1; if(--d0 < 0) { break; } } } while(((l - k) <= 1) && (0 < (l = k))); c0 = d0, c1 = d1, j = k; } } if(l == 0) { break; } sssort(T, PAb, SA + k, SA + l, curbuf, bufsize, 2, n, *(SA + k) == (m - 1)); } } #else buf = SA + m, bufsize = n - (2 * m); for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) { for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) { i = BUCKET_BSTAR(c0, c1); if(1 < (j - i)) { sssort(T, PAb, SA + i, SA + j, buf, bufsize, 2, n, *(SA + i) == (m - 1)); } } } #endif /* Compute ranks of type B* substrings. */ for(i = m - 1; 0 <= i; --i) { if(0 <= SA[i]) { j = i; do { ISAb[SA[i]] = i; } while((0 <= --i) && (0 <= SA[i])); SA[i + 1] = i - j; if(i <= 0) { break; } } j = i; do { ISAb[SA[i] = ~SA[i]] = j; } while(SA[--i] < 0); ISAb[SA[i]] = j; } /* Construct the inverse suffix array of type B* suffixes using trsort. */ trsort(ISAb, SA, m, 1); /* Set the sorted order of tyoe B* suffixes. */ for(i = n - 1, j = m, c0 = T[n - 1]; 0 <= i;) { for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) >= c1); --i, c1 = c0) { } if(0 <= i) { t = i; for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { } SA[ISAb[--j]] = ((t == 0) || (1 < (t - i))) ? t : ~t; } } /* Calculate the index of start/end point of each bucket. */ BUCKET_B(ALPHABET_SIZE - 1, ALPHABET_SIZE - 1) = n; /* end point */ for(c0 = ALPHABET_SIZE - 2, k = m - 1; 0 <= c0; --c0) { i = BUCKET_A(c0 + 1) - 1; for(c1 = ALPHABET_SIZE - 1; c0 < c1; --c1) { t = i - BUCKET_B(c0, c1); BUCKET_B(c0, c1) = i; /* end point */ /* Move all type B* suffixes to the correct position. */ for(i = t, j = BUCKET_BSTAR(c0, c1); j <= k; --i, --k) { SA[i] = SA[k]; } } BUCKET_BSTAR(c0, c0 + 1) = i - BUCKET_B(c0, c0) + 1; /* start point */ BUCKET_B(c0, c0) = i; /* end point */ } } return m; } /* Constructs the suffix array by using the sorted order of type B* suffixes. */ static void construct_SA(const unsigned char *T, int *SA, int *bucket_A, int *bucket_B, int n, int m) { int *i, *j, *k; int s; int c0, c1, c2; if(0 < m) { /* Construct the sorted order of type B suffixes by using the sorted order of type B* suffixes. */ for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) { /* Scan the suffix array from right to left. */ for(i = SA + BUCKET_BSTAR(c1, c1 + 1), j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1; i <= j; --j) { if(0 < (s = *j)) { assert(T[s] == c1); assert(((s + 1) < n) && (T[s] <= T[s + 1])); assert(T[s - 1] <= T[s]); *j = ~s; c0 = T[--s]; if((0 < s) && (T[s - 1] > c0)) { s = ~s; } if(c0 != c2) { if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; } k = SA + BUCKET_B(c2 = c0, c1); } assert(k < j); *k-- = s; } else { assert(((s == 0) && (T[s] == c1)) || (s < 0)); *j = ~s; } } } } /* Construct the suffix array by using the sorted order of type B suffixes. */ k = SA + BUCKET_A(c2 = T[n - 1]); *k++ = (T[n - 2] < c2) ? ~(n - 1) : (n - 1); /* Scan the suffix array from left to right. */ for(i = SA, j = SA + n; i < j; ++i) { if(0 < (s = *i)) { assert(T[s - 1] >= T[s]); c0 = T[--s]; if((s == 0) || (T[s - 1] < c0)) { s = ~s; } if(c0 != c2) { BUCKET_A(c2) = k - SA; k = SA + BUCKET_A(c2 = c0); } assert(i < k); *k++ = s; } else { assert(s < 0); *i = ~s; } } } /* Constructs the burrows-wheeler transformed string directly by using the sorted order of type B* suffixes. */ static int construct_BWT(const unsigned char *T, int *SA, int *bucket_A, int *bucket_B, int n, int m) { int *i, *j, *k, *orig; int s; int c0, c1, c2; if(0 < m) { /* Construct the sorted order of type B suffixes by using the sorted order of type B* suffixes. */ for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) { /* Scan the suffix array from right to left. */ for(i = SA + BUCKET_BSTAR(c1, c1 + 1), j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1; i <= j; --j) { if(0 < (s = *j)) { assert(T[s] == c1); assert(((s + 1) < n) && (T[s] <= T[s + 1])); assert(T[s - 1] <= T[s]); c0 = T[--s]; *j = ~((int)c0); if((0 < s) && (T[s - 1] > c0)) { s = ~s; } if(c0 != c2) { if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; } k = SA + BUCKET_B(c2 = c0, c1); } assert(k < j); *k-- = s; } else if(s != 0) { *j = ~s; #ifndef NDEBUG } else { assert(T[s] == c1); #endif } } } } /* Construct the BWTed string by using the sorted order of type B suffixes. */ k = SA + BUCKET_A(c2 = T[n - 1]); *k++ = (T[n - 2] < c2) ? ~((int)T[n - 2]) : (n - 1); /* Scan the suffix array from left to right. */ for(i = SA, j = SA + n, orig = SA; i < j; ++i) { if(0 < (s = *i)) { assert(T[s - 1] >= T[s]); c0 = T[--s]; *i = c0; if((0 < s) && (T[s - 1] < c0)) { s = ~((int)T[s - 1]); } if(c0 != c2) { BUCKET_A(c2) = k - SA; k = SA + BUCKET_A(c2 = c0); } assert(i < k); *k++ = s; } else if(s != 0) { *i = ~s; } else { orig = i; } } return orig - SA; } /*---------------------------------------------------------------------------*/ /*- Function -*/ int bcm_divsufsort(const unsigned char *T, int *SA, int n) { int *bucket_A, *bucket_B; int m; int err = 0; /* Check arguments. */ if((T == NULL) || (SA == NULL) || (n < 0)) { return -1; } else if(n == 0) { return 0; } else if(n == 1) { SA[0] = 0; return 0; } else if(n == 2) { m = (T[0] < T[1]); SA[m ^ 1] = 0, SA[m] = 1; return 0; } bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int)); bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int)); /* Suffixsort. */ if((bucket_A != NULL) && (bucket_B != NULL)) { m = sort_typeBstar(T, SA, bucket_A, bucket_B, n); construct_SA(T, SA, bucket_A, bucket_B, n, m); } else { err = -2; } free(bucket_B); free(bucket_A); return err; } int bcm_divbwt(const unsigned char *T, unsigned char *U, int *A, int n) { int *B; int *bucket_A, *bucket_B; int m, pidx, i; /* Check arguments. */ if((T == NULL) || (U == NULL) || (n < 0)) { return -1; } else if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; } if((B = A) == NULL) { B = (int *)malloc((size_t)(n + 1) * sizeof(int)); } bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int)); bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int)); /* Burrows-Wheeler Transform. */ if((B != NULL) && (bucket_A != NULL) && (bucket_B != NULL)) { m = sort_typeBstar(T, B, bucket_A, bucket_B, n); pidx = construct_BWT(T, B, bucket_A, bucket_B, n, m); /* Copy to output string. */ U[0] = T[n - 1]; for(i = 0; i < pidx; ++i) { U[i + 1] = (unsigned char)B[i]; } for(i += 1; i < n; ++i) { U[i] = (unsigned char)B[i]; } pidx += 1; } else { pidx = -2; } free(bucket_B); free(bucket_A); if(A == NULL) { free(B); } return pidx; } #endif // BCM_C //#line 1 "amalgamated_bcm.c" // BCM 1.40 - A BWT-based file compressor // Written and placed in the public domain by Ilya Muravyov (UNLICENSE) // Additional code by @r-lyeh (UNLICENSE) // // Notes: // - BCM decoder has no dependencies. // - BCM encoder requires libdivsufsort, which is MIT licensed. // - #define BCM_NO_ENCODER if you want to exclude libdivsufsort from linkage. unsigned bcm_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags/*[0..(4)..9]*/); unsigned bcm_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned bcm_bounds(unsigned inlen, unsigned flags); unsigned bcm_excess(unsigned flags); // --- #ifdef BCM_C //#pragma once #include #include #include #include #if INTPTR_MAX >= INT64_MAX #define BCM_64BITS 1 #else #define BCM_64BITS 0 #endif #ifndef BCM_REALLOC #define BCM_REALLOC REALLOC #endif # if defined _MSC_VER && !defined __thread #define __thread __declspec(thread) #elif defined __TINYC__ && !defined __thread #define __thread __declspec(thread) #endif #ifndef BALZ_C typedef struct mfile { uint8_t *begin, *seek, *end; } mfile; int minit(mfile *f, const void *ptr, int len) { f->begin = f->seek = f->end = (uint8_t*)ptr; f->end += len; return 0; } int mread(mfile *m, void *buf, int len) { if( len >= (m->end - m->seek) ) len = (m->end - m->seek); memcpy(buf,m->seek,len); m->seek += len; return len; } int mwrite(mfile *m, const void *buf, int len) { if( len >= (m->end - m->seek) ) len = (m->end - m->seek); memcpy(m->seek,buf,len); m->seek += len; return len; } int mtell(mfile *m) { return m->seek - m->begin; } int mavail(mfile *m) { return m->end - m->seek; } int mputc(mfile *m, int i) { uint8_t ch = i; return mwrite(m, &ch, 1); } int mgetc(mfile *m) { if( mavail(m) <= 0 ) return -1; uint8_t ch; mread(m, &ch, 1); return ch; } #endif int bcm_divbwt(const unsigned char *T, unsigned char *U, int *A, int n); // Globals static __thread mfile* g_in; static __thread mfile* g_out; typedef struct bcmEncode { uint32_t low; uint32_t high; uint32_t code; } bcmEncoder; void bcmeCtor(bcmEncoder *e) { e->low=0; e->high=0xFFFFFFFF; e->code=0; } void bcmeFlush(bcmEncoder *e) { for (int i=0; i<4; ++i) { mputc(g_out, e->low>>24); e->low<<=8; } } void bcmeInit(bcmEncoder *e) { for (int i=0; i<4; ++i) e->code=(e->code<<8)+mgetc(g_in); } void bcmeEncodeDirectBits(bcmEncoder *e, int N, uint32_t x) { for (uint32_t i=1<<(N-1); i!=0; i>>=1) { if (x&i) e->high=e->low+((e->high-e->low)>>1); else e->low+=((e->high-e->low)>>1)+1; if ((e->low^e->high)<(1<<24)) { mputc(g_out, e->low>>24); e->low<<=8; e->high=(e->high<<8)+255; } } } void bcmeEncodeBit1(bcmEncoder *e, uint32_t p) { #if BCM_64BITS e->high=e->low+(((uint64_t)(e->high-e->low)*p)>>18); #else e->high=e->low+(((uint64_t)(e->high-e->low)*(p<<(32-18)))>>32); #endif while ((e->low^e->high)<(1<<24)) { mputc(g_out, e->low>>24); e->low<<=8; e->high=(e->high<<8)+255; } } void bcmeEncodeBit0(bcmEncoder *e, uint32_t p) { #if BCM_64BITS e->low+=(((uint64_t)(e->high-e->low)*p)>>18)+1; #else e->low+=(((uint64_t)(e->high-e->low)*(p<<(32-18)))>>32)+1; #endif while ((e->low^e->high)<(1<<24)) { mputc(g_out, e->low>>24); e->low<<=8; e->high=(e->high<<8)+255; } } uint32_t bcmeDecodeDirectBits(bcmEncoder *e, int N) { uint32_t x=0; for (int i=0; ilow+((e->high-e->low)>>1); if (e->code<=mid) { e->high=mid; x+=x+1; } else { e->low=mid+1; x+=x; } if ((e->low^e->high)<(1<<24)) { e->low<<=8; e->high=(e->high<<8)+255; e->code=(e->code<<8)+mgetc(g_in); } } return x; } int bcmeDecodeBit(bcmEncoder *e, uint32_t p) { #if BCM_64BITS const uint32_t mid=e->low+(((uint64_t)(e->high-e->low)*p)>>18); #else const uint32_t mid=e->low+(((uint64_t)(e->high-e->low)*(p<<(32-18)))>>32); #endif const int bit=(e->code<=mid); if (bit) e->high=mid; else e->low=mid+1; while ((e->low^e->high)<(1<<24)) { e->low<<=8; e->high=(e->high<<8)+255; e->code=(e->code<<8)+mgetc(g_in); } return bit; } #define BCM_COUNTER_TEMPLATE(RATE) \ typedef struct bcmCounter##RATE { uint16_t p; } bcmCounter##RATE; \ void bcmCounter##RATE##Ctor(bcmCounter##RATE *c) { c->p=1<<15; /* 0.5 */ } \ void bcmCounter##RATE##UpdateBit0(bcmCounter##RATE *c) { c->p-=c->p>>RATE; } \ void bcmCounter##RATE##UpdateBit1(bcmCounter##RATE *c) { c->p+=(c->p^0xFFFF)>>RATE; } BCM_COUNTER_TEMPLATE(2); BCM_COUNTER_TEMPLATE(4); BCM_COUNTER_TEMPLATE(6); typedef struct bcmCM { bcmEncoder enc; bcmCounter2 counter0[256]; bcmCounter4 counter1[256][256]; bcmCounter6 counter2[2][256][17]; int c1; int c2; int run; } bcmCM; void bcmCMCtor(bcmCM *c) { bcmeCtor(&c->enc); for(int i = 0; i < 256; ++i) { bcmCounter2Ctor(&c->counter0[i]); for(int j = 0; j < 256; ++j) { bcmCounter4Ctor(&c->counter1[i][j]); } for(int k = 0; k < 17; ++k) { bcmCounter6Ctor(&c->counter2[0][i][k]); bcmCounter6Ctor(&c->counter2[1][i][k]); } } c->c1=0; c->c2=0; c->run=0; for (int i=0; i<2; ++i) { for (int j=0; j<256; ++j) { for (int k=0; k<17; ++k) c->counter2[i][j][k].p=(k<<12)-(k==16); } } } void bcmCMEncode(bcmCM *c, int ch) { if (c->c1==c->c2) ++c->run; else c->run=0; const int f=(c->run>2); int ctx=1; while (ctx<256) { const int p0=c->counter0[ctx].p; const int p1=c->counter1[c->c1][ctx].p; const int p2=c->counter1[c->c2][ctx].p; const int p=(((p0+p1)*7)+p2+p2)>>4; const int j=p>>12; const int x1=c->counter2[f][ctx][j].p; const int x2=c->counter2[f][ctx][j+1].p; const int ssep=x1+(((x2-x1)*(p&4095))>>12); if (ch&128) { bcmeEncodeBit1(&c->enc, (ssep*3)+p); bcmCounter2UpdateBit1(&c->counter0[ctx]); bcmCounter4UpdateBit1(&c->counter1[c->c1][ctx]); bcmCounter6UpdateBit1(&c->counter2[f][ctx][j]); bcmCounter6UpdateBit1(&c->counter2[f][ctx][j+1]); ctx+=ctx+1; } else { bcmeEncodeBit0(&c->enc, (ssep*3)+p); bcmCounter2UpdateBit0(&c->counter0[ctx]); bcmCounter4UpdateBit0(&c->counter1[c->c1][ctx]); bcmCounter6UpdateBit0(&c->counter2[f][ctx][j]); bcmCounter6UpdateBit0(&c->counter2[f][ctx][j+1]); ctx+=ctx; } ch+=ch; } c->c2=c->c1; c->c1=ctx-256; } int bcmCMDecode(bcmCM *c) { if (c->c1==c->c2) ++c->run; else c->run=0; const int f=(c->run>2); int ctx=1; while (ctx<256) { const int p0=c->counter0[ctx].p; const int p1=c->counter1[c->c1][ctx].p; const int p2=c->counter1[c->c2][ctx].p; const int p=(((p0+p1)*7)+p2+p2)>>4; const int j=p>>12; const int x1=c->counter2[f][ctx][j].p; const int x2=c->counter2[f][ctx][j+1].p; const int ssep=x1+(((x2-x1)*(p&4095))>>12); if (bcmeDecodeBit(&c->enc, (ssep*3)+p)) { bcmCounter2UpdateBit1(&c->counter0[ctx]); bcmCounter4UpdateBit1(&c->counter1[c->c1][ctx]); bcmCounter6UpdateBit1(&c->counter2[f][ctx][j]); bcmCounter6UpdateBit1(&c->counter2[f][ctx][j+1]); ctx+=ctx+1; } else { bcmCounter2UpdateBit0(&c->counter0[ctx]); bcmCounter4UpdateBit0(&c->counter1[c->c1][ctx]); bcmCounter6UpdateBit0(&c->counter2[f][ctx][j]); bcmCounter6UpdateBit0(&c->counter2[f][ctx][j+1]); ctx+=ctx; } } c->c2=c->c1; return c->c1=ctx-256; } unsigned bcm_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned level) { mfile infile; minit(&infile, in, inlen); g_in = &infile; mfile outfile; minit(&outfile, out, outlen); g_out = &outfile; bcmCM cm; bcmCMCtor(&cm); const int config_tab[10]= { 1<<19, // -0 - 512KiB, @rlyeh: originally was: 0 1<<20, // -1 - 1 MB 1<<22, // -2 - 4 MB 1<<23, // -3 - 8 MB 0x00FFFFFF, // -4 - ~16 MB (Default) 1<<25, // -5 - 32 MB 1<<26, // -6 - 64 MB 1<<27, // -7 - 128 MB 1<<28, // -8 - 256 MB 0x7FFFFFFF, // -9 - ~2 GB }; int block_size=config_tab[level]; int64_t file_size = (int64_t)inlen; if (file_size>0 && block_size>file_size) block_size=(int)(file_size); uint8_t* buf=(uint8_t*)BCM_REALLOC(0, sizeof(uint8_t) * block_size); int* ptr=(int*)BCM_REALLOC(0, sizeof(int) * block_size); int n; while ((n=mread(g_in, buf, block_size))>0) { const int idx=bcm_divbwt(buf, buf, ptr, n); if (idx<1) return 0; // divbwt() failed bcmeEncodeDirectBits(&cm.enc, 32, n); bcmeEncodeDirectBits(&cm.enc, 32, idx); for (int i=0; i0) { if (block_size==0) { if ((block_size=n)>=(1<<24)) // 5*N buf=(uint8_t*)BCM_REALLOC(0, sizeof(uint8_t) * block_size); ptr=(uint32_t*)BCM_REALLOC(0, sizeof(uint32_t) * block_size); } const int idx=bcmeDecodeDirectBits(&cm.enc, 32); if (n>block_size || idx<1 || idx>n) return 0; // corrupt input // Inverse BW-transform if (n>=(1<<24)) // 5*N { int t[257]={0}; for (int i=0; i=idx); for (int p=idx; p;) { p=ptr[p-1]; const int c=buf[p-(p>=idx)]; mputc(g_out, c); } } else // 4*N { int t[257]={0}; for (int i=0; i=idx))<<8; for (int p=idx; p;) { p=ptr[p-1]>>8; const int c=ptr[p-(p>=idx)]&255; mputc(g_out, c); } } } // if (bcmeDecodeDirectBits(&cm.enc, 32)!=crc32) return 0; // crc error BCM_REALLOC(buf, 0); // free BCM_REALLOC(ptr, 0); // free return mtell(g_out); } unsigned bcm_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen * 2); // @todo: check src } unsigned bcm_excess(unsigned flags) { return (unsigned)0; } #endif // BCM_C //#line 1 "amalgamated_crush.c" // crush.cpp // Written and placed in the public domain by Ilya Muravyov // Additional code by @r-lyeh (public domain). @todo: honor unused args inlen/outlen unsigned crush_encode(const void* in, unsigned inlen, void* out, unsigned outlen, unsigned flags); // [0..(4)..10] unsigned crush_decode(const void* in, unsigned inlen, void* out, unsigned outlen); unsigned crush_bounds(unsigned inlen, unsigned flags); unsigned crush_excess(unsigned flags); #ifdef CRUSH_C //#pragma once #ifdef _MSC_VER #define _CRT_SECECURE_NO_WARNINGS #define _CRT_DISABLE_PERFCRIT_LOCKS #endif #include #include // Bit I/O // typedef struct bits { const uint8_t* g_inbuf; uint8_t* g_outbuf; int g_inbuf_pos; int g_outbuf_pos; int bit_buf; int bit_count; } bits; void bits_init(bits *b, const uint8_t* inbuf, uint8_t* outbuf) { b->bit_count=b->bit_buf=b->g_inbuf_pos=b->g_outbuf_pos=0; b->g_inbuf = inbuf; b->g_outbuf = outbuf; } void bits_put(bits *b, int n, int x) { b->bit_buf|=x<bit_count; b->bit_count+=n; while (b->bit_count>=8) { b->g_outbuf[b->g_outbuf_pos++] = b->bit_buf; b->bit_buf>>=8; b->bit_count-=8; } } void bits_flush(bits *b) { bits_put(b, 7, 0); b->bit_count=b->bit_buf=0; } int bits_get(bits *b, int n) { while (b->bit_countbit_buf|=b->g_inbuf[b->g_inbuf_pos++]<bit_count; b->bit_count+=8; } const int x=b->bit_buf&((1<bit_buf>>=n; b->bit_count-=n; return x; } // LZ77 // enum { W_BITS=21 }; // Window size (17..23) enum { W_SIZE=1<b?a:b; } static inline int get_penalty(int a, int b) { int p=0; while (a>b) { a>>=3; ++p; } return p; } static size_t crush_compress(const uint8_t* buf, size_t size, uint8_t* outbuf, size_t outlen, size_t level) { static int head[HASH1_SIZE+HASH2_SIZE]; static int prev[W_SIZE]; //const int max_chain[]={4, 256, 1<<12}; // original [0fast..2uber] const int max_chain[11] = { 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1<<12 }; //[0fastest..10uber] const int max_level = sizeof(max_chain)/sizeof(max_chain[0]); level = level > max_level ? max_level : level; bits bits; { for (int i=0; i=limit) { int s=head[h1]; if (buf[s]==buf[p]) { int l=0; while (++llen) { len=l; offset=p-s; } } } if (len=limit)) { if ((buf[s+len]==buf[p+len])&&(buf[s]==buf[p])) { int l=0; while (++llen+get_penalty((p-s)>>4, offset)) { len=l; offset=p-s; } if (l==max_match) break; } s=prev[s&W_MASK]; } } if ((len==MIN_MATCH)&&(offset>TOO_FAR)) len=0; if ((level>=2)&&(len>=MIN_MATCH)&&(len=limit)) { if ((buf[s+len]==buf[next_p+len])&&(buf[s]==buf[next_p])) { int l=0; while (++llen+get_penalty(next_p-s, offset)) { len=0; break; } if (l==max_lazy) break; } s=prev[s&W_MASK]; } } if (len>=MIN_MATCH) // Match { bits_put(&bits, 1, 1); const int l=len-MIN_MATCH; if (l=(2<(W_BITS-NUM_SLOTS)) bits_put(&bits, log, offset-(1<(W_BITS-NUM_SLOTS) ?bits_get(&bits, log)+(1< 10 ? 10 : flags; return crush_compress((const uint8_t*)in, (size_t)inlen, (uint8_t*)out, (size_t)outlen, (size_t)level); } unsigned crush_decode(const void* in, unsigned inlen, void* out, unsigned outlen) { return crush_decompress((const uint8_t*)in, (size_t)inlen, (uint8_t*)out, (size_t)outlen); } unsigned crush_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen * 1.1) + 16; // @todo: check src } unsigned crush_excess(unsigned flags) { return (unsigned)0; } #endif // CRUSH_C #ifdef CRUSH_DEMO //#pragma once int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level = 1; char out[128]; size_t outlen = crush_encode(longcopy, strlen(longcopy)+1, out, 128, level ); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; size_t unpacked = crush_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // CRUSH_DEMO //#line 1 "amalgamated_deflate.c" // miniz.c v1.15 r4 - public domain de/inflate. See "unlicense" statement at http://unlicense.org/ // Rich Geldreich , last updated Oct. 13, 2013. Then stripped down by @r-lyeh. // Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt // without zlib headers unsigned deflate_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); // [0..(6)..9][10 (uber)] unsigned deflate_decode(const void *in, unsigned inlen, void *out, unsigned outlen); // with zlib headers unsigned deflatez_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); // [0..(6)..9][10 (uber)] unsigned deflatez_decode(const void *in, unsigned inlen, void *out, unsigned outlen); // both options unsigned deflate_bounds(unsigned inlen, unsigned flags); unsigned deflate_excess(unsigned flags); #ifdef DEFLATE_C //#pragma once #include // assert() #include // types #include // realloc() #include // Set to 1 on CPU's that permit efficient integer loads and stores from unaligned addresses. #ifndef MINIZ_USE_UNALIGNED_LOADS_AND_STORES #if defined(_M_X64) || defined(_M_IX86) #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 #else #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 0 #endif #endif // Set to 1 if the processor is little endian. #ifndef MINIZ_LITTLE_ENDIAN #if defined(_M_X64) || defined(_M_IX86) || __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ #define MINIZ_LITTLE_ENDIAN 1 #else #define MINIZ_LITTLE_ENDIAN 0 #endif #endif // Set to 1 if operations on 64-bit integers are reasonably fast (and don't involve compiler generated calls to helper functions). #ifndef MINIZ_HAS_64BIT_REGISTERS #if UINTPTR_MAX > 0xffffffff // defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__) || defined(__ia64__) || defined(__x86_64__) #define MINIZ_HAS_64BIT_REGISTERS 1 #else #define MINIZ_HAS_64BIT_REGISTERS 0 #endif #endif // ------------------- Types and macros typedef uint32_t mz_uint; // An attempt to work around MSVC's spammy "warning C4127: conditional expression is constant" message. #ifdef _MSC_VER #define MZ_MACRO_END while (0, 0) #else #define MZ_MACRO_END while (0) #endif #define MZ_ASSERT(x) assert(x) #define MZ_MAX(a,b) (((a)>(b))?(a):(b)) #define MZ_MIN(a,b) (((a)<(b))?(a):(b)) #define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj)) #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN #define MZ_READ_LE16(p) *((const uint16_t *)(p)) #define MZ_READ_LE32(p) *((const uint32_t *)(p)) #else #define MZ_READ_LE16(p) ((uint32_t)(((const uint8_t *)(p))[0]) | ((uint32_t)(((const uint8_t *)(p))[1]) << 8U)) #define MZ_READ_LE32(p) ((uint32_t)(((const uint8_t *)(p))[0]) | ((uint32_t)(((const uint8_t *)(p))[1]) << 8U) | ((uint32_t)(((const uint8_t *)(p))[2]) << 16U) | ((uint32_t)(((const uint8_t *)(p))[3]) << 24U)) #endif // Return status. typedef enum { TINFL_STATUS_BAD_PARAM = -3, TINFL_STATUS_ADLER32_MISMATCH = -2, TINFL_STATUS_FAILED = -1, TINFL_STATUS_DONE = 0, TINFL_STATUS_NEEDS_MORE_INPUT = 1, TINFL_STATUS_HAS_MORE_OUTPUT = 2 } tinfl_status; struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor; // ------------------- Low-level Decompression (completely independent from all compression API's) // Decompression flags used by tinfl_decompress(). // TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream. // TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input. // TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB). // TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes. enum { TINFL_FLAG_PARSE_ZLIB_HEADER = 1, TINFL_FLAG_HAS_MORE_INPUT = 2, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4, TINFL_FLAG_COMPUTE_ADLER32 = 8 }; #define TINFL_MEMCPY memcpy #define TINFL_MEMSET memset #define TINFL_CR_BEGIN switch(r->m_state) { case 0: #define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; /*printf("L%d\n", __LINE__);*/ goto common_exit; case state_index:; } MZ_MACRO_END #define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END #define TINFL_CR_FINISH } // TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario. #define TINFL_GET_BYTE(state_index, c) do { \ if (pIn_buf_cur >= pIn_buf_end) { \ for ( ; ; ) { \ if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \ TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \ if (pIn_buf_cur < pIn_buf_end) { \ c = *pIn_buf_cur++; \ break; \ } \ } else { \ c = 0; \ break; \ } \ } \ } else c = *pIn_buf_cur++; } MZ_MACRO_END #define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n)) #define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END #define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2. // It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a // Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the // bit buffer contains >=15 bits (deflate's max. Huffman code size). #define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \ do { \ temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \ if (temp >= 0) { \ code_len = temp >> 9; \ if ((code_len) && (num_bits >= code_len)) \ break; \ } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \ code_len = TINFL_FAST_LOOKUP_BITS; \ do { \ temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ } while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \ } TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \ } while (num_bits < 15); // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read // beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully // decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32. // The slow path is only executed at the very end of the input buffer. #define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \ int temp; mz_uint code_len, c; \ if (num_bits < 15) { \ if ((pIn_buf_end - pIn_buf_cur) < 2) { \ TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \ } else { \ bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \ } \ } \ if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \ code_len = temp >> 9, temp &= 511; \ else { \ code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \ } sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END // Internal/private bits follow. enum { TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19, TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS }; typedef struct { uint8_t m_code_size[TINFL_MAX_HUFF_SYMBOLS_0]; int16_t m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2]; } tinfl_huff_table; #if MINIZ_HAS_64BIT_REGISTERS typedef uint64_t tinfl_bit_buf_t; #define TINFL_BITBUF_SIZE (64) #else typedef uint32_t tinfl_bit_buf_t; #define TINFL_BITBUF_SIZE (32) #endif struct tinfl_decompressor_tag { uint32_t m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES]; tinfl_bit_buf_t m_bit_buf; size_t m_dist_from_out_buf_start; tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES]; uint8_t m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137]; }; tinfl_status tinfl_decompress(tinfl_decompressor *r, const uint8_t *pIn_buf_next, size_t *pIn_buf_size, uint8_t *pOut_buf_start, uint8_t *pOut_buf_next, size_t *pOut_buf_size, const uint32_t decomp_flags) { static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static const uint8_t s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; static const int s_min_table_sizes[3] = { 257, 1, 4 }; tinfl_status status = TINFL_STATUS_FAILED; uint32_t num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf; const uint8_t *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size; uint8_t *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size; size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start; // Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter). if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; } num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start; TINFL_CR_BEGIN bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1; if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1); counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8)); if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4))))); if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); } } do { TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1; if (r->m_type == 0) { TINFL_SKIP_BITS(5, num_bits & 7); for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); } if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); } while ((counter) && (num_bits)) { TINFL_GET_BITS(51, dist, 8); while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (uint8_t)dist; counter--; } while (counter) { size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); } while (pIn_buf_cur >= pIn_buf_end) { if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT); } else { TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED); } } n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter); TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n; } } else if (r->m_type == 3) { TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED); } else { if (r->m_type == 1) { uint8_t *p = r->m_tables[0].m_code_size; mz_uint i; r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32); for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8; } else { for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; } MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (uint8_t)s; } r->m_table_sizes[2] = 19; } for ( ; (int)r->m_type >= 0; r->m_type--) { int tree_next, tree_cur; tinfl_huff_table *pTable; mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree); for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++; used_syms = 0, total = 0; next_code[0] = next_code[1] = 0; for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); } if ((65536 != total) && (used_syms > 1)) { TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED); } for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index) { mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue; cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1); if (code_size <= TINFL_FAST_LOOKUP_BITS) { int16_t k = (int16_t)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; } if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (int16_t)tree_next; tree_cur = tree_next; tree_next -= 2; } rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1); for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) { tree_cur -= ((rev_code >>= 1) & 1); if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (int16_t)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1]; } tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (int16_t)sym_index; } if (r->m_type == 2) { for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); ) { mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (uint8_t)dist; continue; } if ((dist == 16) && (!counter)) { TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED); } num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16]; TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s; } if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) { TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED); } TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]); } } for ( ; ; ) { uint8_t *pSrc; for ( ; ; ) { if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2)) { TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]); if (counter >= 256) break; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (uint8_t)counter; } else { int sym2; mz_uint code_len; #if MINIZ_HAS_64BIT_REGISTERS if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; } #else if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } #endif if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } counter = sym2; bit_buf >>= code_len; num_bits -= code_len; if (counter & 256) break; #if !MINIZ_HAS_64BIT_REGISTERS if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } #endif if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } bit_buf >>= code_len; num_bits -= code_len; pOut_buf_cur[0] = (uint8_t)counter; if (sym2 & 256) { pOut_buf_cur++; counter = sym2; break; } pOut_buf_cur[1] = (uint8_t)sym2; pOut_buf_cur += 2; } } if ((counter &= 511) == 256) break; num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; } TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]); num_extra = s_dist_extra[dist]; dist = s_dist_base[dist]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; } dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start; if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) { TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED); } pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask); if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) { while (counter--) { while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask]; } continue; } #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES else if ((counter >= 9) && (counter <= dist)) { const uint8_t *pSrc_end = pSrc + (counter & ~7); do { ((uint32_t *)pOut_buf_cur)[0] = ((const uint32_t *)pSrc)[0]; ((uint32_t *)pOut_buf_cur)[1] = ((const uint32_t *)pSrc)[1]; pOut_buf_cur += 8; } while ((pSrc += 8) < pSrc_end); if ((counter &= 7) < 3) { if (counter) { pOut_buf_cur[0] = pSrc[0]; if (counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } continue; } } #endif do { pOut_buf_cur[0] = pSrc[0]; pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur[2] = pSrc[2]; pOut_buf_cur += 3; pSrc += 3; } while ((int)(counter -= 3) > 2); if ((int)counter > 0) { pOut_buf_cur[0] = pSrc[0]; if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } } } } while (!(r->m_final & 1)); if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; } } TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE); TINFL_CR_FINISH common_exit: r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start; *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next; if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0)) { const uint8_t *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size; uint32_t i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552; while (buf_len) { for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1; s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1; } for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1; s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552; } r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH; } return status; } // end of inflate.c // begin of deflate.c // Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly slower, and raw/dynamic blocks will be output more frequently). #define TDEFL_LESS_MEMORY 0 #ifndef MZ_REALLOC #define MZ_REALLOC REALLOC #endif #ifndef MZ_FORCEINLINE #ifdef _MSC_VER #define MZ_FORCEINLINE __forceinline #elif defined(__GNUC__) #define MZ_FORCEINLINE inline __attribute__((__always_inline__)) #else #define MZ_FORCEINLINE inline #endif #endif // ------------------- Types and macros typedef int32_t mz_bool; #define MZ_FALSE (0) #define MZ_TRUE (1) // ------------------- Low-level Compression API Definitions // tdefl_init() compression flags logically OR'd together (low 12 bits contain the max. number of probes per dictionary search): // TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ (slowest/best compression). enum { TDEFL_HUFFMAN_ONLY = 0, TDEFL_DEFAULT_MAX_PROBES = 128, TDEFL_MAX_PROBES_MASK = 0xFFF }; // TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before the deflate data, and the Adler-32 of the source data at the end. Otherwise, you'll get raw deflate data. // TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even when not writing zlib headers). // TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more efficient lazy parsing. // TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's initialization time to the minimum, but the output may vary from run to run given the same input (depending on the contents of memory). // TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1) // TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled. // TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables. // TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks. // The low 12 bits are reserved to control the max # of hash probes per dictionary lookup (see TDEFL_MAX_PROBES_MASK). enum { TDEFL_WRITE_ZLIB_HEADER = 0x01000, TDEFL_COMPUTE_ADLER32 = 0x02000, TDEFL_GREEDY_PARSING_FLAG = 0x04000, TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000, TDEFL_RLE_MATCHES = 0x10000, TDEFL_FILTER_MATCHES = 0x20000, TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000, TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000 }; // Output stream interface. The compressor uses this interface to write compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time. typedef mz_bool (*tdefl_callback)(const void* pBuf, int len, void *pUser); enum { TDEFL_MAX_HUFF_TABLES = 3, TDEFL_MAX_HUFF_SYMBOLS_0 = 288, TDEFL_MAX_HUFF_SYMBOLS_1 = 32, TDEFL_MAX_HUFF_SYMBOLS_2 = 19, TDEFL_LZ_DICT_SIZE = 32768, TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, TDEFL_MIN_MATCH_LEN = 3, TDEFL_MAX_MATCH_LEN = 258 }; // TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed output block (using static/fixed Huffman codes). #if TDEFL_LESS_MEMORY enum { TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 12, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS }; #else enum { TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 15, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS }; #endif // The low-level tdefl functions below may be used directly if the above helper functions aren't flexible enough. The low-level functions don't make any heap allocations, unlike the above helper functions. typedef enum { TDEFL_STATUS_BAD_PARAM = -2, TDEFL_STATUS_PUT_BUF_FAILED = -1, TDEFL_STATUS_OKAY = 0, TDEFL_STATUS_DONE = 1, } tdefl_status; // Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums typedef enum { TDEFL_NO_FLUSH = 0, TDEFL_SYNC_FLUSH = 2, TDEFL_FULL_FLUSH = 3, TDEFL_FINISH = 4 } tdefl_flush; // tdefl's compression state structure. typedef struct { char *m_outbuffer[3]; // start,seek,end mz_uint m_flags, m_max_probes[2]; int m_greedy_parsing; mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size; uint8_t *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end; mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, m_bit_buffer; mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, m_wants_to_finish; tdefl_status m_prev_return_status; const void *m_pIn_buf; void *m_pOut_buf; size_t *m_pIn_buf_size, *m_pOut_buf_size; tdefl_flush m_flush; const uint8_t *m_pSrc; size_t m_src_buf_left, m_out_buf_ofs; uint8_t m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1]; uint16_t m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; uint16_t m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; uint8_t m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; uint8_t m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE]; uint16_t m_next[TDEFL_LZ_DICT_SIZE]; uint16_t m_hash[TDEFL_LZ_HASH_SIZE]; uint8_t m_output_buf[TDEFL_OUT_BUF_SIZE]; } tdefl_compressor; // ------------------- zlib-style API's // mz_adler32() returns the initial adler-32 value to use when called with ptr==NULL. uint32_t mz_adler32(uint32_t adler, const unsigned char *ptr, size_t buf_len) { uint32_t i, s1 = (adler & 0xffff), s2 = (adler >> 16); size_t block_len = buf_len % 5552; if (!ptr) return 1; // MZ_ADLER32_INIT; while (buf_len) { for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1; s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1; } for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1; s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552; } return (s2 << 16) + s1; } // ------------------- Low-level Compression (independent from all decompression API's) // Purposely making these tables static for faster init and thread safety. static const uint16_t s_tdefl_len_sym[256] = { 257,258,259,260,261,262,263,264,265,265,266,266,267,267,268,268,269,269,269,269,270,270,270,270,271,271,271,271,272,272,272,272, 273,273,273,273,273,273,273,273,274,274,274,274,274,274,274,274,275,275,275,275,275,275,275,275,276,276,276,276,276,276,276,276, 277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278, 279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280, 281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281, 282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282, 283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283, 284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,285 }; static const uint8_t s_tdefl_len_extra[256] = { 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,0 }; static const uint8_t s_tdefl_small_dist_sym[512] = { 0,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11, 11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, 14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15, 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17 }; static const uint8_t s_tdefl_small_dist_extra[512] = { 0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7 }; static const uint8_t s_tdefl_large_dist_sym[128] = { 0,0,18,19,20,20,21,21,22,22,22,22,23,23,23,23,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26, 26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28, 28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29 }; static const uint8_t s_tdefl_large_dist_extra[128] = { 0,0,8,8,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 }; // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values. typedef struct { uint16_t m_key, m_sym_index; } tdefl_sym_freq; static tdefl_sym_freq* tdefl_radix_sort_syms(mz_uint num_syms, tdefl_sym_freq* pSyms0, tdefl_sym_freq* pSyms1) { uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_OBJ(hist); for (i = 0; i < num_syms; i++) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; } while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { const uint32_t* pHist = &hist[pass << 8]; mz_uint offsets[256], cur_ofs = 0; for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; { tdefl_sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; } } return pCur_syms; } // tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) { int root, leaf, next, avbl, used, dpth; if (n==0) return; else if (n==1) { A[0].m_key = 1; return; } A[0].m_key += A[1].m_key; root = 0; leaf = 2; for (next=1; next < n-1; next++) { if (leaf>=n || A[root].m_key=n || (root=0; next--) A[next].m_key = A[A[next].m_key].m_key+1; avbl = 1; used = dpth = 0; root = n-2; next = n-1; while (avbl>0) { while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; } while (avbl>used) { A[next--].m_key = (uint16_t)(dpth); avbl--; } avbl = 2*used; dpth++; used = 0; } } // Limits canonical Huffman code table's max code size. enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 }; static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) { int i; uint32_t total = 0; if (code_list_len <= 1) return; for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; for (i = max_code_size; i > 0; i--) total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); while (total != (1UL << max_code_size)) { pNum_codes[max_code_size]--; for (i = max_code_size - 1; i > 0; i--) if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } total--; } } static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table) { int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_OBJ(num_codes); if (static_table) { for (i = 0; i < table_len; i++) num_codes[d->m_huff_code_sizes[table_num][i]]++; } else { tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms; int num_used_syms = 0; const uint16_t *pSym_count = &d->m_huff_count[table_num][0]; for (i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = (uint16_t)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (uint16_t)i; } pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); tdefl_calculate_minimum_redundancy(pSyms, num_used_syms); for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++; tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, code_size_limit); MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); MZ_CLEAR_OBJ(d->m_huff_codes[table_num]); for (i = 1, j = num_used_syms; i <= code_size_limit; i++) for (l = num_codes[i]; l > 0; l--) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (uint8_t)(i); } next_code[1] = 0; for (j = 0, i = 2; i <= code_size_limit; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1); for (i = 0; i < table_len; i++) { mz_uint rev_code = 0, code, code_size; if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue; code = next_code[code_size]++; for (l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1); d->m_huff_codes[table_num][i] = (uint16_t)rev_code; } } #define TDEFL_PUT_BITS(b, l) do { \ mz_uint bits = b; mz_uint len = l; MZ_ASSERT(bits <= ((1U << len) - 1U)); \ d->m_bit_buffer |= (bits << d->m_bits_in); d->m_bits_in += len; \ while (d->m_bits_in >= 8) { \ if (d->m_pOutput_buf < d->m_pOutput_buf_end) \ *d->m_pOutput_buf++ = (uint8_t)(d->m_bit_buffer); \ d->m_bit_buffer >>= 8; \ d->m_bits_in -= 8; \ } \ } MZ_MACRO_END #define TDEFL_RLE_PREV_CODE_SIZE() { if (rle_repeat_count) { \ if (rle_repeat_count < 3) { \ d->m_huff_count[2][prev_code_size] = (uint16_t)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \ while (rle_repeat_count--) packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \ } else { \ d->m_huff_count[2][16] = (uint16_t)(d->m_huff_count[2][16] + 1); packed_code_sizes[num_packed_code_sizes++] = 16; packed_code_sizes[num_packed_code_sizes++] = (uint8_t)(rle_repeat_count - 3); \ } rle_repeat_count = 0; } } #define TDEFL_RLE_ZERO_CODE_SIZE() { if (rle_z_count) { \ if (rle_z_count < 3) { \ d->m_huff_count[2][0] = (uint16_t)(d->m_huff_count[2][0] + rle_z_count); while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \ } else if (rle_z_count <= 10) { \ d->m_huff_count[2][17] = (uint16_t)(d->m_huff_count[2][17] + 1); packed_code_sizes[num_packed_code_sizes++] = 17; packed_code_sizes[num_packed_code_sizes++] = (uint8_t)(rle_z_count - 3); \ } else { \ d->m_huff_count[2][18] = (uint16_t)(d->m_huff_count[2][18] + 1); packed_code_sizes[num_packed_code_sizes++] = 18; packed_code_sizes[num_packed_code_sizes++] = (uint8_t)(rle_z_count - 11); \ } rle_z_count = 0; } } static uint8_t s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; static void tdefl_start_dynamic_block(tdefl_compressor *d) { int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index; uint8_t code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF; d->m_huff_count[0][256] = 1; tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE); tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE); for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break; for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break; memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes); memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes); total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0; memset(&d->m_huff_count[2][0], 0, sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2); for (i = 0; i < total_code_sizes_to_pack; i++) { uint8_t code_size = code_sizes_to_pack[i]; if (!code_size) { TDEFL_RLE_PREV_CODE_SIZE(); if (++rle_z_count == 138) { TDEFL_RLE_ZERO_CODE_SIZE(); } } else { TDEFL_RLE_ZERO_CODE_SIZE(); if (code_size != prev_code_size) { TDEFL_RLE_PREV_CODE_SIZE(); d->m_huff_count[2][code_size] = (uint16_t)(d->m_huff_count[2][code_size] + 1); packed_code_sizes[num_packed_code_sizes++] = code_size; } else if (++rle_repeat_count == 6) { TDEFL_RLE_PREV_CODE_SIZE(); } } prev_code_size = code_size; } if (rle_repeat_count) { TDEFL_RLE_PREV_CODE_SIZE(); } else { TDEFL_RLE_ZERO_CODE_SIZE(); } tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE); TDEFL_PUT_BITS(2, 2); TDEFL_PUT_BITS(num_lit_codes - 257, 5); TDEFL_PUT_BITS(num_dist_codes - 1, 5); for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) if (d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) break; num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); TDEFL_PUT_BITS(num_bit_lengths - 4, 4); for (i = 0; (int)i < num_bit_lengths; i++) TDEFL_PUT_BITS(d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3); for (packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes; ) { mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2); TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]); if (code >= 16) TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16]); } } static void tdefl_start_static_block(tdefl_compressor *d) { mz_uint i; uint8_t *p = &d->m_huff_code_sizes[0][0]; for (i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8; memset(d->m_huff_code_sizes[1], 5, 32); tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE); tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE); TDEFL_PUT_BITS(1, 2); } static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { mz_uint flags; uint8_t *pLZ_codes; uint8_t *pOutput_buf = d->m_pOutput_buf; uint8_t *pLZ_code_buf_end = d->m_pLZ_code_buf; uint64_t bit_buffer = d->m_bit_buffer; mz_uint bits_in = d->m_bits_in; #define TDEFL_PUT_BITS_FAST(b, l) { bit_buffer |= (((uint64_t)(b)) << bits_in); bits_in += (l); } flags = 1; for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1) { if (flags == 1) flags = *pLZ_codes++ | 0x100; if (flags & 1) { mz_uint s0, s1, n0, n1, sym, num_extra_bits; mz_uint match_len = pLZ_codes[0], match_dist = *(const uint16_t *)(pLZ_codes + 1); pLZ_codes += 3; MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]); // This sequence coaxes MSVC into using cmov's vs. jmp's. s0 = s_tdefl_small_dist_sym[match_dist & 511]; n0 = s_tdefl_small_dist_extra[match_dist & 511]; s1 = s_tdefl_large_dist_sym[match_dist >> 8]; n1 = s_tdefl_large_dist_extra[match_dist >> 8]; sym = (match_dist < 512) ? s0 : s1; num_extra_bits = (match_dist < 512) ? n0 : n1; MZ_ASSERT(d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); } else { mz_uint lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { flags >>= 1; lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { flags >>= 1; lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); } } } if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE; *(uint64_t*)pOutput_buf = bit_buffer; pOutput_buf += (bits_in >> 3); bit_buffer >>= (bits_in & ~7); bits_in &= 7; } #undef TDEFL_PUT_BITS_FAST d->m_pOutput_buf = pOutput_buf; d->m_bits_in = 0; d->m_bit_buffer = 0; while (bits_in) { uint32_t n = MZ_MIN(bits_in, 16); TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n); bit_buffer >>= n; bits_in -= n; } TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); return (d->m_pOutput_buf < d->m_pOutput_buf_end); } #else static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { mz_uint flags; uint8_t *pLZ_codes; flags = 1; for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1) { if (flags == 1) flags = *pLZ_codes++ | 0x100; if (flags & 1) { mz_uint sym, num_extra_bits; mz_uint match_len = pLZ_codes[0], match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3; MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]); if (match_dist < 512) { sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist]; } else { sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8]; } MZ_ASSERT(d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); } else { mz_uint lit = *pLZ_codes++; MZ_ASSERT(d->m_huff_code_sizes[0][lit]); TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); } } TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); return (d->m_pOutput_buf < d->m_pOutput_buf_end); } #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) { if (static_block) tdefl_start_static_block(d); else tdefl_start_dynamic_block(d); return tdefl_compress_lz_codes(d); } static int tdefl_flush_block(tdefl_compressor *d, int flush) { mz_uint saved_bit_buf, saved_bits_in; uint8_t *pSaved_output_buf; mz_bool comp_block_succeeded = MZ_FALSE; int n, use_raw_block = ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size; uint8_t *pOutput_buf_start = ((d->m_outbuffer[0] == NULL) && ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) ? ((uint8_t *)d->m_pOut_buf + d->m_out_buf_ofs) : d->m_output_buf; d->m_pOutput_buf = pOutput_buf_start; d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16; MZ_ASSERT(!d->m_output_flush_remaining); d->m_output_flush_ofs = 0; d->m_output_flush_remaining = 0; *d->m_pLZ_flags = (uint8_t)(*d->m_pLZ_flags >> d->m_num_flags_left); d->m_pLZ_code_buf -= (d->m_num_flags_left == 8); if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) { TDEFL_PUT_BITS(0x78, 8); TDEFL_PUT_BITS(0x01, 8); } TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1); pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in; if (!use_raw_block) comp_block_succeeded = tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || (d->m_total_lz_bytes < 48)); // If the block gets expanded, forget the current contents of the output buffer and send a raw block instead. if ( ((use_raw_block) || ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= d->m_total_lz_bytes))) && ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size) ) { mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; TDEFL_PUT_BITS(0, 2); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) { TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16); } for (i = 0; i < d->m_total_lz_bytes; ++i) { TDEFL_PUT_BITS(d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], 8); } } // Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes. else if (!comp_block_succeeded) { d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; tdefl_compress_block(d, MZ_TRUE); } if (flush) { if (flush == TDEFL_FINISH) { if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { mz_uint i, a = d->m_adler32; for (i = 0; i < 4; i++) { TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); a <<= 8; } } } else { mz_uint i, z = 0; TDEFL_PUT_BITS(0, 3); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, z ^= 0xFFFF) { TDEFL_PUT_BITS(z & 0xFFFF, 16); } } } MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end); memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++; if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) { if (d->m_outbuffer[0]) { *d->m_pIn_buf_size = d->m_pSrc - (const uint8_t *)d->m_pIn_buf; uintptr_t capacity = (uintptr_t)d->m_outbuffer[2] - (uintptr_t)d->m_outbuffer[1]; if( n > capacity ) return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED); memcpy(d->m_outbuffer[1], d->m_output_buf, n); d->m_outbuffer[1] += n; } else if (pOutput_buf_start == d->m_output_buf) { int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs)); memcpy((uint8_t *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy); d->m_out_buf_ofs += bytes_to_copy; if ((n -= bytes_to_copy) != 0) { d->m_output_flush_ofs = bytes_to_copy; d->m_output_flush_remaining = n; } } else { d->m_out_buf_ofs += n; } } return d->m_output_flush_remaining; } #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES #define TDEFL_READ_UNALIGNED_WORD(p) *(const uint16_t*)(p) static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len; mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; const uint16_t *s = (const uint16_t*)(d->m_dict + pos), *p, *q; uint16_t c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), s01 = TDEFL_READ_UNALIGNED_WORD(s); MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return; for ( ; ; ) { for ( ; ; ) { if (--num_probes_left == 0) return; #define TDEFL_PROBE \ next_probe_pos = d->m_next[probe_pos]; \ if ((!next_probe_pos) || ((dist = (uint16_t)(lookahead_pos - next_probe_pos)) > max_dist)) return; \ probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) break; TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE; } if (!dist) break; q = (const uint16_t*)(d->m_dict + probe_pos); if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; p = s; probe_len = 32; do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) ); if (!probe_len) { *pMatch_dist = dist; *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN); break; } else if ((probe_len = ((mz_uint)(p - s) * 2) + (mz_uint)(*(const uint8_t*)p == *(const uint8_t*)q)) > match_len) { *pMatch_dist = dist; if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == max_match_len) break; c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]); } } } #else static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len; mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; const uint8_t *s = d->m_dict + pos, *p, *q; uint8_t c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1]; MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return; for ( ; ; ) { for ( ; ; ) { if (--num_probes_left == 0) return; #define TDEFL_PROBE \ next_probe_pos = d->m_next[probe_pos]; \ if ((!next_probe_pos) || ((dist = (uint16_t)(lookahead_pos - next_probe_pos)) > max_dist)) return; \ probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) break; TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE; } if (!dist) break; p = s; q = d->m_dict + probe_pos; for (probe_len = 0; probe_len < max_match_len; probe_len++) if (*p++ != *q++) break; if (probe_len > match_len) { *pMatch_dist = dist; if ((*pMatch_len = match_len = probe_len) == max_match_len) return; c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1]; } } } #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN static mz_bool tdefl_compress_fast(tdefl_compressor *d) { // Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio. mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left; uint8_t *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags; mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) { const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096; mz_uint dst_pos = (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size); d->m_src_buf_left -= num_bytes_to_process; lookahead_size += num_bytes_to_process; while (num_bytes_to_process) { uint32_t n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process); memcpy(d->m_dict + dst_pos, d->m_pSrc, n); if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos)); d->m_pSrc += n; dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK; num_bytes_to_process -= n; } dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size); if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) break; while (lookahead_size >= 4) { mz_uint cur_match_dist, cur_match_len = 1; uint8_t *pCur_dict = d->m_dict + cur_pos; mz_uint first_trigram = (*(const uint32_t *)pCur_dict) & 0xFFFFFF; mz_uint hash = (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & TDEFL_LEVEL1_HASH_SIZE_MASK; mz_uint probe_pos = d->m_hash[hash]; d->m_hash[hash] = (uint16_t)lookahead_pos; if (((cur_match_dist = (uint16_t)(lookahead_pos - probe_pos)) <= dict_size) && ((*(const uint32_t *)(d->m_dict + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & 0xFFFFFF) == first_trigram)) { const uint16_t *p = (const uint16_t *)pCur_dict; const uint16_t *q = (const uint16_t *)(d->m_dict + probe_pos); uint32_t probe_len = 32; do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) ); cur_match_len = ((mz_uint)(p - (const uint16_t *)pCur_dict) * 2) + (mz_uint)(*(const uint8_t *)p == *(const uint8_t *)q); if (!probe_len) cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0; if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || ((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U))) { cur_match_len = 1; *pLZ_code_buf++ = (uint8_t)first_trigram; *pLZ_flags = (uint8_t)(*pLZ_flags >> 1); d->m_huff_count[0][(uint8_t)first_trigram]++; } else { uint32_t s0, s1; cur_match_len = MZ_MIN(cur_match_len, lookahead_size); MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 1) && (cur_match_dist <= TDEFL_LZ_DICT_SIZE)); cur_match_dist--; pLZ_code_buf[0] = (uint8_t)(cur_match_len - TDEFL_MIN_MATCH_LEN); *(uint16_t *)(&pLZ_code_buf[1]) = (uint16_t)cur_match_dist; pLZ_code_buf += 3; *pLZ_flags = (uint8_t)((*pLZ_flags >> 1) | 0x80); s0 = s_tdefl_small_dist_sym[cur_match_dist & 511]; s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8]; d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++; d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++; } } else { *pLZ_code_buf++ = (uint8_t)first_trigram; *pLZ_flags = (uint8_t)(*pLZ_flags >> 1); d->m_huff_count[0][(uint8_t)first_trigram]++; } if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; } total_lz_bytes += cur_match_len; lookahead_pos += cur_match_len; dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE); cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK; MZ_ASSERT(lookahead_size >= cur_match_len); lookahead_size -= cur_match_len; if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { int n; d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left; } } while (lookahead_size) { uint8_t lit = d->m_dict[cur_pos]; total_lz_bytes++; *pLZ_code_buf++ = lit; *pLZ_flags = (uint8_t)(*pLZ_flags >> 1); if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; } d->m_huff_count[0][lit]++; lookahead_pos++; dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE); cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; lookahead_size--; if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { int n; d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left; } } } d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size; d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left; return MZ_TRUE; } #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, uint8_t lit) { d->m_total_lz_bytes++; *d->m_pLZ_code_buf++ = lit; *d->m_pLZ_flags = (uint8_t)(*d->m_pLZ_flags >> 1); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; } d->m_huff_count[0][lit]++; } static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist) { uint32_t s0, s1; MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && (match_dist <= TDEFL_LZ_DICT_SIZE)); d->m_total_lz_bytes += match_len; d->m_pLZ_code_buf[0] = (uint8_t)(match_len - TDEFL_MIN_MATCH_LEN); match_dist -= 1; d->m_pLZ_code_buf[1] = (uint8_t)(match_dist & 0xFF); d->m_pLZ_code_buf[2] = (uint8_t)(match_dist >> 8); d->m_pLZ_code_buf += 3; *d->m_pLZ_flags = (uint8_t)((*d->m_pLZ_flags >> 1) | 0x80); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; } s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127]; d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++; if (match_len >= TDEFL_MIN_MATCH_LEN) d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++; } static mz_bool tdefl_compress_normal(tdefl_compressor *d) { const uint8_t *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left; tdefl_flush flush = d->m_flush; while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) { mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos; // Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN. if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) { mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2; mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]; mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size); const uint8_t *pSrc_end = pSrc + num_bytes_to_process; src_buf_left -= num_bytes_to_process; d->m_lookahead_size += num_bytes_to_process; while (pSrc != pSrc_end) { uint8_t c = *pSrc++; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (uint16_t)(ins_pos); dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++; } } else { while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) { uint8_t c = *pSrc++; mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; src_buf_left--; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) { mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2; mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << (TDEFL_LZ_HASH_SHIFT * 2)) ^ (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (uint16_t)(ins_pos); } } } d->m_dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size); if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break; // Simple lazy/greedy parsing state machine. len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) { if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) { uint8_t c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK]; cur_match_len = 0; while (cur_match_len < d->m_lookahead_size) { if (d->m_dict[cur_pos + cur_match_len] != c) break; cur_match_len++; } if (cur_match_len < TDEFL_MIN_MATCH_LEN) cur_match_len = 0; else cur_match_dist = 1; } } else { tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len); } if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)) || (cur_pos == cur_match_dist) || ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) { cur_match_dist = cur_match_len = 0; } if (d->m_saved_match_len) { if (cur_match_len > d->m_saved_match_len) { tdefl_record_literal(d, (uint8_t)d->m_saved_lit); if (cur_match_len >= 128) { tdefl_record_match(d, cur_match_len, cur_match_dist); d->m_saved_match_len = 0; len_to_move = cur_match_len; } else { d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len; } } else { tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist); len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0; } } else if (!cur_match_dist) tdefl_record_literal(d, d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]); else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || (cur_match_len >= 128)) { tdefl_record_match(d, cur_match_len, cur_match_dist); len_to_move = cur_match_len; } else { d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len; } // Move the lookahead forward by len_to_move bytes. d->m_lookahead_pos += len_to_move; MZ_ASSERT(d->m_lookahead_size >= len_to_move); d->m_lookahead_size -= len_to_move; d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, TDEFL_LZ_DICT_SIZE); // Check if it's time to flush the current LZ codes to the internal output buffer. if ( (d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) || ( (d->m_total_lz_bytes > 31*1024) && (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= d->m_total_lz_bytes) || (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) ) { int n; d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left; if ((n = tdefl_flush_block(d, 0)) != 0) return (n < 0) ? MZ_FALSE : MZ_TRUE; } } d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left; return MZ_TRUE; } static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) { if (d->m_pIn_buf_size) { *d->m_pIn_buf_size = d->m_pSrc - (const uint8_t *)d->m_pIn_buf; } if (d->m_pOut_buf_size) { size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining); memcpy((uint8_t *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n); d->m_output_flush_ofs += (mz_uint)n; d->m_output_flush_remaining -= (mz_uint)n; d->m_out_buf_ofs += n; *d->m_pOut_buf_size = d->m_out_buf_ofs; } return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY; } tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush) { if (!d) { if (pIn_buf_size) *pIn_buf_size = 0; if (pOut_buf_size) *pOut_buf_size = 0; return TDEFL_STATUS_BAD_PARAM; } d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size; d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size; d->m_pSrc = (const uint8_t *)(pIn_buf); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0; d->m_out_buf_ofs = 0; d->m_flush = flush; if ( ((d->m_outbuffer[0] != NULL) == ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || (d->m_prev_return_status != TDEFL_STATUS_OKAY) || (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || (pIn_buf_size && *pIn_buf_size && !pIn_buf) || (pOut_buf_size && *pOut_buf_size && !pOut_buf) ) { if (pIn_buf_size) *pIn_buf_size = 0; if (pOut_buf_size) *pOut_buf_size = 0; return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM); } d->m_wants_to_finish |= (flush == TDEFL_FINISH); if ((d->m_output_flush_remaining) || (d->m_finished)) return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) && ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) && ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)) == 0)) { if (!tdefl_compress_fast(d)) return d->m_prev_return_status; } else #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN { if (!tdefl_compress_normal(d)) return d->m_prev_return_status; } if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && (pIn_buf)) d->m_adler32 = (uint32_t)mz_adler32(d->m_adler32, (const uint8_t *)pIn_buf, d->m_pSrc - (const uint8_t *)pIn_buf); if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && (!d->m_output_flush_remaining)) { if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status; d->m_finished = (flush == TDEFL_FINISH); if (flush == TDEFL_FULL_FLUSH) { MZ_CLEAR_OBJ(d->m_hash); MZ_CLEAR_OBJ(d->m_next); d->m_dict_size = 0; } } return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); } tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush) { MZ_ASSERT(d->m_outbuffer[0]); MZ_ASSERT(d->m_outbuffer[1]); MZ_ASSERT(d->m_outbuffer[2]); return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush); } tdefl_status tdefl_init(tdefl_compressor *d, void *out, size_t outlen, int flags) { #if 0 d->m_putbuf_callback = putbuf_callback; d->m_pPut_buf_user = pPut_buf_user; d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0; d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3; if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash); d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0; d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0; d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY; d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1; d->m_pIn_buf = NULL; d->m_pOut_buf = NULL; d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL; d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0; memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); #else tdefl_compressor zero = {0}; *d = zero; // invalidated TDEFL_NONDETERMINISTIC_PARSING_FLAG option here d->m_outbuffer[0] = d->m_outbuffer[1] = (char*)out; d->m_outbuffer[2] = d->m_outbuffer[0] + outlen; d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0; d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3; d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY; d->m_adler32 = 1; d->m_flush = TDEFL_NO_FLUSH; //memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); //memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); #endif return TDEFL_STATUS_OKAY; } // end of deflate.c static unsigned deflate_decode_(const void *in, unsigned inlen_, void *out, unsigned outlen_, unsigned zlib) { size_t inlen = inlen_, outlen = outlen_; tinfl_decompressor decomp = {0}; tinfl_status status; // tinfl_init(&decomp); status = tinfl_decompress(&decomp, (const uint8_t*)in, &inlen, (uint8_t*)out, (uint8_t*)out, &outlen, zlib|TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); return (unsigned)((status != TINFL_STATUS_DONE) ? 0 : outlen); } static unsigned deflate_encode_(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..9|10]*/, unsigned zlib_flags) { size_t bytes = 0; if(in && inlen && out && outlen) { int level = flags > 10 ? 10 : flags; const mz_uint tdefl_num_probes[11] = { 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500 }; mz_uint comp_flags = zlib_flags | tdefl_num_probes[level] | (level <= 3 ? TDEFL_GREEDY_PARSING_FLAG : 0); tdefl_compressor *pComp = (tdefl_compressor*)MZ_REALLOC(0,sizeof(tdefl_compressor)); if (!pComp) return MZ_FALSE; if(tdefl_init(pComp, out, outlen, (int)comp_flags) == TDEFL_STATUS_OKAY) { if(tdefl_compress_buffer(pComp, in, inlen, TDEFL_FINISH) == TDEFL_STATUS_DONE) { bytes = pComp->m_outbuffer[1] - pComp->m_outbuffer[0]; } } MZ_REALLOC(pComp, 0); } return (unsigned)bytes; } unsigned deflate_decode(const void *in, unsigned inlen_, void *out, unsigned outlen_) { return deflate_decode_(in, inlen_, out, outlen_, 0); } unsigned deflate_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..9|10]*/) { return deflate_encode_(in, inlen, out, outlen, flags, 0); } unsigned deflatez_decode(const void *in, unsigned inlen_, void *out, unsigned outlen_) { return deflate_decode_(in, inlen_, out, outlen_, TINFL_FLAG_PARSE_ZLIB_HEADER); } unsigned deflatez_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..9|10]*/) { return deflate_encode_(in, inlen, out, outlen, flags, TDEFL_WRITE_ZLIB_HEADER); } unsigned deflate_bounds(unsigned inlen, unsigned flags) { return (unsigned)MZ_MAX(128 + (inlen * 110) / 100, 128 + inlen + ((inlen / (31 * 1024)) + 1) * 5); } unsigned deflate_excess(unsigned flags) { return (unsigned)0; } #endif // DEFLATE_C #ifdef DEFLATE_DEMO //#pragma once int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level=1; char out[128]; unsigned outlen = deflate_encode(longcopy, strlen(longcopy)+1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; unsigned unpacked = deflate_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // DEFLATE_DEMO //#line 1 "amalgamated_lz4x.c" // LZ4X - An optimized LZ4 compressor // Written and placed in the public domain by Ilya Muravyov (UNLICENSED) // MemBased+ThreadSafe by @r-lyeh. unsigned lz4x_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); //[1(fastest)..(6)..15(uber)] unsigned lz4x_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned lz4x_bounds(unsigned inlen, unsigned flags); unsigned lz4x_excess(unsigned flags); #ifdef LZ4X_C //#pragma once #define _CRT_SECURE_NO_WARNINGS #define _CRT_DISABLE_PERFCRIT_LOCKS #include #include #include #include #include #include #ifndef LZ4X_REALLOC #define LZ4X_REALLOC REALLOC #endif #define LZ4X_BLOCK_SIZE (8<<20) // 8 MB #define LZ4X_PADDING_LITERALS 5 #define LZ4X_WINDOW_BITS 16 #define LZ4X_WINDOW_SIZE (1<(b))?(a):(b)) #define LZ4X_LOAD_16(p) (*(const uint16_t*)(p)) #define LZ4X_LOAD_32(p) (*(const uint32_t*)(p)) #define LZ4X_STORE_16(p, x) (*(uint16_t*)(p)=(x)) #define LZ4X_COPY_32(d, s) (*(uint32_t*)(d)=LZ4X_LOAD_32(s)) #define LZ4X_HASH_BITS 18 #define LZ4X_HASH_SIZE (1<>(32-LZ4X_HASH_BITS)) //< @r-lyeh macro below crashes often with /fsanitize=address #define lz4x_wild_copy(d,s,n) do { \ LZ4X_COPY_32(d, s); \ LZ4X_COPY_32(d+4, s+4); \ for (int i_=8; i_=LZ4X_MAX(12-LZ4X_PADDING_LITERALS, LZ4X_MIN_MATCH)) { const int limit=LZ4X_MAX(p-LZ4X_WINDOW_SIZE, LZ4X_NIL); int* left=&nodes[p&LZ4X_WINDOW_MASK][1]; int* right=&nodes[p&LZ4X_WINDOW_MASK][0]; int left_len=0; int right_len=0; const uint32_t h=LZ4X_HASH_32(&in[p]); int s=head[h]; head[h]=p; while (s>limit) { int len=LZ4X_MIN(left_len, right_len); if (in[s+len]==in[p+len]) { while (++lenbest_len) { best_len=len; dist=p-s; if (len==max_match || len>=(1<<16)) break; } } if (in[s+len]0; --p) { int c0=path[p+1].cum+1; if (--count==0) { count=255; ++c0; } int len=path[p].len; if (len>=LZ4X_MIN_MATCH) { int c1=1<<30; const int j=LZ4X_MAX(len-255, LZ4X_MIN_MATCH); for (int i=len; i>=j; --i) { int tmp=path[p+i].cum+3; if (i>=(15+LZ4X_MIN_MATCH)) tmp+=1+((i-(15+LZ4X_MIN_MATCH))/255); if (tmp=LZ4X_MIN_MATCH) { int len=path[p].len-LZ4X_MIN_MATCH; const int nib=LZ4X_MIN(len, 15); if (pp!=p) { const int run=p-pp; if (run>=15) { out[op++]=(15<<4)+nib; int j=run-15; for (; j>=255; j-=255) out[op++]=255; out[op++]=j; } else out[op++]=(run<<4)+nib; lz4x_wild_copy(&out[op], &in[pp], run); op+=run; } else out[op++]=nib; LZ4X_STORE_16(&out[op], path[p].dist); op+=2; if (len>=15) { len-=15; for (; len>=255; len-=255) out[op++]=255; out[op++]=len; } p+=path[p].len; pp=p; } else ++p; } if (pp!=p) { const int run=p-pp; if (run>=15) { out[op++]=15<<4; int j=run-15; for (; j>=255; j-=255) out[op++]=255; out[op++]=j; } else out[op++]=run<<4; lz4x_wild_copy(&out[op], &in[pp], run); op+=run; } LZ4X_REALLOC(path, 0); const int comp_len=op; return comp_len; } int lz4x_compress(const uint8_t *in, size_t inlen, uint8_t *out, size_t outlen, unsigned max_chain) { static __thread int head[LZ4X_HASH_SIZE]; static __thread int tail[LZ4X_WINDOW_SIZE]; int n = (int)inlen; for (int i=0; i=LZ4X_MAX(12-LZ4X_PADDING_LITERALS, LZ4X_MIN_MATCH)) { const int limit=LZ4X_MAX(p-LZ4X_WINDOW_SIZE, LZ4X_NIL); int chain_len=max_chain; int s=head[LZ4X_HASH_32(&in[p])]; while (s>limit) { if (in[s+best_len]==in[p+best_len] && LZ4X_LOAD_32(&in[s])==LZ4X_LOAD_32(&in[p])) { int len=LZ4X_MIN_MATCH; while (lenbest_len) { best_len=len; dist=p-s; if (len==max_match) break; } } if (--chain_len<=0) break; s=tail[s&LZ4X_WINDOW_MASK]; } } if (best_len>=LZ4X_MIN_MATCH) { int len=best_len-LZ4X_MIN_MATCH; const int nib=LZ4X_MIN(len, 15); if (pp!=p) { const int run=p-pp; if (run>=15) { out[op++]=(15<<4)+nib; int j=run-15; for (; j>=255; j-=255) out[op++]=255; out[op++]=j; } else out[op++]=(run<<4)+nib; lz4x_wild_copy(&out[op], &in[pp], run); op+=run; } else out[op++]=nib; LZ4X_STORE_16(&out[op], dist); op+=2; if (len>=15) { len-=15; for (; len>=255; len-=255) out[op++]=255; out[op++]=len; } pp=p+best_len; while (p=15) { out[op++]=15<<4; int j=run-15; for (; j>=255; j-=255) out[op++]=255; out[op++]=j; } else out[op++]=run<<4; lz4x_wild_copy(&out[op], &in[pp], run); op+=run; } const int comp_len=op; return comp_len; } int lz4x_decompress(const uint8_t *in, size_t inlen, uint8_t *out, size_t outlen) { int n = (int)inlen; int p=0; int ip=0; const int ip_end=ip+n; for (;;) { const int token=in[ip++]; if (token>=16) { int run=token>>4; if (run==15) { for (;;) { const int c=in[ip++]; run+=c; if (c!=255) break; } } if ((p+run)>outlen) return 0; // -1 lz4x_wild_copy(&out[p], &in[ip], run); p+=run; ip+=run; if (ip>=ip_end) break; } int s=p-LZ4X_LOAD_16(&in[ip]); ip+=2; if (s<0) return 0; // -1 int len=(token&15)+LZ4X_MIN_MATCH; if (len==(15+LZ4X_MIN_MATCH)) { for (;;) { const int c=in[ip++]; len+=c; if (c!=255) break; } } if ((p+len)>outlen) return 0; // -1 if ((p-s)>=4) { lz4x_wild_copy(&out[p], &out[s], len); p+=len; } else { while (len--!=0) out[p++]=out[s++]; } } return p; } unsigned lz4x_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags/*[1..15*/) { unsigned level = (unsigned)(flags > 15 ? 15 : flags < 1 ? 1 : flags); if(level >= 15) return lz4x_compress_optimal((const uint8_t*)in, inlen, (uint8_t*)out, outlen); return (unsigned)lz4x_compress((const uint8_t*)in, inlen, (uint8_t*)out, outlen, level); } unsigned lz4x_decode(const void *in, unsigned inlen, void *out, unsigned outlen) { return (unsigned)lz4x_decompress((const uint8_t*)in, (size_t)inlen, (uint8_t*)out, (size_t)outlen); } unsigned lz4x_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen * 2 + (inlen/255) + 16); // (inlen + (inlen/255) + 16); } unsigned lz4x_excess(unsigned flags) { return (unsigned)(LZ4X_EXCESS); } #endif // LZ4X_C #ifdef LZ4X_DEMO //#pragma once int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level=1; char out[128]; unsigned outlen = lz4x_encode(longcopy, strlen(longcopy)+1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; unsigned unpacked = lz4x_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // LZ4X_DEMO //#line 1 "amalgamated_lzma.c" // LzFind.c -- Match finder for LZ algorithms 2009-04-22 : Igor Pavlov : Public domain // LzmaDec.c -- LZMA Decoder 2009-09-20 : Igor Pavlov : Public domain // LzmaEnc.c -- LZMA Encoder 2009-11-24 : Igor Pavlov : Public domain // Additional code by @r-lyeh, public domain. TOC: glue.h+lzfind.h/c+lzmaenc.h/c+lzmadec.h/c+glue.c unsigned lzma_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); // [0..(7)..9] unsigned lzma_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned lzma_bounds(unsigned inlen, unsigned flags); unsigned lzma_excess(unsigned flags); #ifdef LZMA_C //#pragma once // glue.h #ifndef LZMA_REALLOC #define LZMA_REALLOC REALLOC #endif #define LZMA_MALLOC(s) LZMA_REALLOC(0, s) #define LZMA_FREE(p) LZMA_REALLOC(p, 0) #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #ifndef max #define max(x,y) ((x) >= (y) ? (x) : (y)) #endif #ifndef min #define min(x,y) ((x) <= (y) ? (x) : (y)) #endif #ifdef _WIN32 //#include #else //#include #endif /* #define SHOW_STAT */ /* #define SHOW_STAT2 */ typedef int State; enum { min_dictionary_bits = 12, min_dictionary_size = 1 << min_dictionary_bits, max_dictionary_bits = 29, max_dictionary_size = 1 << max_dictionary_bits, max_dictionary_bits_c = 27, /* kDicLogSizeMaxCompress */ max_dictionary_size_c = 1 << max_dictionary_bits_c, literal_context_bits = 3, literal_pos_state_bits = 0, /* not used */ pos_state_bits = 2, len_low_bits = 3, len_mid_bits = 3, len_high_bits = 8, len_low_symbols = 1 << len_low_bits, len_mid_symbols = 1 << len_mid_bits, len_high_symbols = 1 << len_high_bits, max_len_symbols = len_low_symbols + len_mid_symbols + len_high_symbols, min_match_len = 2, /* must be 2 */ max_match_len = min_match_len + max_len_symbols - 1, /* 273 */ min_match_len_limit = 5 }; enum { SZ_OK = 0, SZ_ERROR_READ = 8, SZ_ERROR_WRITE = 9, }; // io interface static int readblock( const int fd, uint8_t *buf,int size ); static int writeblock( const int fd, const uint8_t *buf, int size ); /* LzFind.h -- Match finder for LZ algorithms 2009-04-22 : Igor Pavlov : Public domain */ typedef uint32_t CLzRef; typedef struct { uint8_t *bufferBase; uint8_t *buffer; CLzRef *hash; CLzRef *son; uint32_t pos; uint32_t posLimit; uint32_t streamPos; uint32_t lenLimit; uint32_t cyclicBufferPos; uint32_t cyclicBufferSize; /* it must be = (historySize + 1) */ uint32_t matchMaxLen; uint32_t hashMask; uint32_t cutValue; uint32_t blockSize; uint32_t keepSizeBefore; uint32_t keepSizeAfter; uint32_t numHashBytes; uint32_t historySize; uint32_t hashSizeSum; uint32_t numSons; int infd; int result; uint32_t crc; bool btMode; bool streamEndWasReached; } CMatchFinder; /* Conditions: historySize <= 3 GB keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB */ int Mf_Init(CMatchFinder *p, const int ifd, const int mc, uint32_t historySize, uint32_t keepAddBufferBefore, uint32_t matchMaxLen, uint32_t keepAddBufferAfter); void Mf_Free(CMatchFinder *p); /* Conditions: Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func. Mf_GetPointerToCurrentPos_Func's result must be used only before any other function */ typedef uint32_t (*Mf_GetMatches_Func)(void *object, uint32_t *distances); typedef void (*Mf_Skip_Func)(void *object, uint32_t); typedef struct _IMatchFinder { Mf_GetMatches_Func GetMatches; Mf_Skip_Func Skip; } IMatchFinder; void Mf_CreateVTable(CMatchFinder *p, IMatchFinder *vTable); static inline uint32_t Mf_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; } static inline uint8_t Mf_GetIndexByte(CMatchFinder *p, int index) { return p->buffer[index]; } static inline uint8_t * Mf_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; } /* LzFind.c -- Match finder for LZ algorithms 2009-04-22 : Igor Pavlov : Public domain */ static uint32_t crc32[256]; /* Table of CRCs of all 8-bit messages. */ static inline void CRC32_init(void) { for( unsigned n = 0; n < 256; ++n ) { unsigned c = n; for( int k = 0; k < 8; ++k ) { if( c & 1 ) c = 0xEDB88320U ^ ( c >> 1 ); else c >>= 1; } crc32[n] = c; } } static inline void CRC32_update_buf(uint32_t* const crc, const uint8_t* const buffer, const int size) { uint32_t c = *crc; for( int i = 0; i < size; ++i ) c = crc32[(c^buffer[i])&0xFF] ^ ( c >> 8 ); *crc = c; } #define kHash2Size (1 << 10) #define kHash3Size (1 << 16) #define kHash4Size (1 << 20) #define kFix3HashSize (kHash2Size) #define kFix4HashSize (kHash2Size + kHash3Size) #define HASH2_CALC hashValue = cur[0] | ((uint32_t)cur[1] << 8); #define HASH3_CALC { \ uint32_t temp = crc32[cur[0]] ^ cur[1]; \ hash2Value = temp & (kHash2Size - 1); \ hashValue = (temp ^ ((uint32_t)cur[2] << 8)) & p->hashMask; } #define HASH4_CALC { \ uint32_t temp = crc32[cur[0]] ^ cur[1]; \ hash2Value = temp & (kHash2Size - 1); \ hash3Value = (temp ^ ((uint32_t)cur[2] << 8)) & (kHash3Size - 1); \ hashValue = (temp ^ ((uint32_t)cur[2] << 8) ^ (crc32[cur[3]] << 5)) & p->hashMask; } #define kEmptyHashValue 0 #define kMaxValForNormalize ((uint32_t)0xFFFFFFFF) #define kNormalizeStepMin (1 << 10) /* it must be power of 2 */ #define kNormalizeMask (~(kNormalizeStepMin - 1)) #define kStartMaxLen 3 static void Mf_ReadBlock(CMatchFinder *p) { if (p->streamEndWasReached || p->result != SZ_OK) return; for (;;) { uint8_t * const dest = p->buffer + (p->streamPos - p->pos); const int size = (p->bufferBase + p->blockSize - dest); int rd; if (size == 0) return; rd = readblock( p->infd, dest, size ); if (rd != size && errno) { p->result = SZ_ERROR_READ; return; } if (rd == 0) { p->streamEndWasReached = true; return; } CRC32_update_buf( &p->crc, dest, rd ); p->streamPos += rd; if (p->streamPos - p->pos > p->keepSizeAfter) return; } } static void Mf_CheckAndMoveAndRead(CMatchFinder *p) { if ((uint32_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter) { memmove(p->bufferBase, p->buffer - p->keepSizeBefore, p->streamPos - p->pos + p->keepSizeBefore); p->buffer = p->bufferBase + p->keepSizeBefore; } Mf_ReadBlock(p); } void Mf_Free(CMatchFinder *p) { LZMA_FREE(p->hash); p->hash = 0; LZMA_FREE(p->bufferBase); p->bufferBase = 0; } static CLzRef* AllocRefs(uint32_t num) { uint32_t sizeInBytes = num * sizeof(CLzRef); if (sizeInBytes / sizeof(CLzRef) != num) return 0; return (CLzRef *)LZMA_MALLOC(sizeInBytes); } static void Mf_SetLimits(CMatchFinder *p) { uint32_t limit = kMaxValForNormalize - p->pos; uint32_t limit2 = p->cyclicBufferSize - p->cyclicBufferPos; if (limit2 < limit) limit = limit2; limit2 = p->streamPos - p->pos; if (limit2 <= p->keepSizeAfter) { if (limit2 > 0) limit2 = 1; } else limit2 -= p->keepSizeAfter; if (limit2 < limit) limit = limit2; { uint32_t lenLimit = p->streamPos - p->pos; if (lenLimit > p->matchMaxLen) lenLimit = p->matchMaxLen; p->lenLimit = lenLimit; } p->posLimit = p->pos + limit; } int Mf_Init(CMatchFinder *p, const int ifd, const int mc, uint32_t historySize, uint32_t keepAddBufferBefore, uint32_t matchMaxLen, uint32_t keepAddBufferAfter) { const uint32_t sizeReserv = ( historySize >> 1 ) + (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19); p->hash = 0; p->cutValue = mc; p->infd = ifd; p->btMode = true; p->numHashBytes = 4; p->crc = 0xFFFFFFFFU; p->keepSizeBefore = historySize + keepAddBufferBefore + 1; p->keepSizeAfter = matchMaxLen + keepAddBufferAfter; /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */ /* keepSizeBefore + keepSizeAfter + sizeReserv must be < 4G) */ p->blockSize = p->keepSizeBefore + p->keepSizeAfter + sizeReserv; p->buffer = p->bufferBase = (uint8_t *)LZMA_MALLOC(p->blockSize); if( p->bufferBase ) { uint32_t newCyclicBufferSize = historySize + 1; uint32_t hs; p->matchMaxLen = matchMaxLen; { if (p->numHashBytes == 2) hs = (1 << 16) - 1; else { hs = historySize - 1; hs |= (hs >> 1); hs |= (hs >> 2); hs |= (hs >> 4); hs |= (hs >> 8); hs >>= 1; hs |= 0xFFFF; /* don't change it! It's required for Deflate */ if (hs > (1 << 24)) { if (p->numHashBytes == 3) hs = (1 << 24) - 1; else hs >>= 1; } } p->hashMask = hs; hs++; if (p->numHashBytes > 2) hs += kHash2Size; if (p->numHashBytes > 3) hs += kHash3Size; if (p->numHashBytes > 4) hs += kHash4Size; } { uint32_t newSize; p->historySize = historySize; p->hashSizeSum = hs; p->cyclicBufferSize = newCyclicBufferSize; p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize); newSize = p->hashSizeSum + p->numSons; p->hash = AllocRefs(newSize); if (p->hash != 0) { uint32_t i; p->son = p->hash + p->hashSizeSum; for (i = 0; i < p->hashSizeSum; i++) p->hash[i] = kEmptyHashValue; p->cyclicBufferPos = 0; p->pos = p->streamPos = p->cyclicBufferSize; p->result = SZ_OK; p->streamEndWasReached = false; Mf_ReadBlock(p); Mf_SetLimits(p); return 1; } } } Mf_Free(p); return 0; } static void Mf_Normalize3(uint32_t subValue, CLzRef *items, uint32_t numItems) { uint32_t i; for (i = 0; i < numItems; i++) { uint32_t value = items[i]; if (value <= subValue) value = kEmptyHashValue; else value -= subValue; items[i] = value; } } static void Mf_Normalize(CMatchFinder *p) { uint32_t subValue = (p->pos - p->historySize - 1) & kNormalizeMask; Mf_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons); p->posLimit -= subValue; p->pos -= subValue; p->streamPos -= subValue; } static void Mf_CheckLimits(CMatchFinder *p) { if (p->pos == kMaxValForNormalize) Mf_Normalize(p); if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos) Mf_CheckAndMoveAndRead(p); if (p->cyclicBufferPos == p->cyclicBufferSize) p->cyclicBufferPos = 0; Mf_SetLimits(p); } static uint32_t * Hc_GetMatchesSpec(uint32_t lenLimit, uint32_t curMatch, uint32_t pos, const uint8_t *cur, CLzRef *son, uint32_t _cyclicBufferPos, uint32_t _cyclicBufferSize, uint32_t cutValue, uint32_t *distances, uint32_t maxLen) { son[_cyclicBufferPos] = curMatch; for (;;) { uint32_t delta = pos - curMatch; if (cutValue-- == 0 || delta >= _cyclicBufferSize) return distances; { const uint8_t *pb = cur - delta; curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)]; if (pb[maxLen] == cur[maxLen] && *pb == *cur) { uint32_t len = 0; while (++len != lenLimit) if (pb[len] != cur[len]) break; if (maxLen < len) { *distances++ = maxLen = len; *distances++ = delta - 1; if (len == lenLimit) return distances; } } } } } static uint32_t * GetMatchesSpec1( uint32_t lenLimit, uint32_t curMatch, uint32_t pos, const uint8_t *cur, CLzRef *son, uint32_t _cyclicBufferPos, uint32_t _cyclicBufferSize, uint32_t cutValue, uint32_t *distances, uint32_t maxLen ) { CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1; CLzRef *ptr1 = son + (_cyclicBufferPos << 1); uint32_t len0 = 0, len1 = 0; for (;;) { uint32_t delta = pos - curMatch; if (cutValue-- == 0 || delta >= _cyclicBufferSize) { *ptr0 = *ptr1 = kEmptyHashValue; return distances; } { CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1); const uint8_t *pb = cur - delta; uint32_t len = (len0 < len1 ? len0 : len1); if (pb[len] == cur[len]) { if (++len != lenLimit && pb[len] == cur[len]) while (++len != lenLimit) if (pb[len] != cur[len]) break; if (maxLen < len) { *distances++ = maxLen = len; *distances++ = delta - 1; if (len == lenLimit) { *ptr1 = pair[0]; *ptr0 = pair[1]; return distances; } } } if (pb[len] < cur[len]) { *ptr1 = curMatch; ptr1 = pair + 1; curMatch = *ptr1; len1 = len; } else { *ptr0 = curMatch; ptr0 = pair; curMatch = *ptr0; len0 = len; } } } } static void SkipMatchesSpec(uint32_t lenLimit, uint32_t curMatch, uint32_t pos, const uint8_t *cur, CLzRef *son, uint32_t _cyclicBufferPos, uint32_t _cyclicBufferSize, uint32_t cutValue) { CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1; CLzRef *ptr1 = son + (_cyclicBufferPos << 1); uint32_t len0 = 0, len1 = 0; for (;;) { uint32_t delta = pos - curMatch; if (cutValue-- == 0 || delta >= _cyclicBufferSize) { *ptr0 = *ptr1 = kEmptyHashValue; return; } { CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1); const uint8_t *pb = cur - delta; uint32_t len = (len0 < len1 ? len0 : len1); if (pb[len] == cur[len]) { while (++len != lenLimit) if (pb[len] != cur[len]) break; { if (len == lenLimit) { *ptr1 = pair[0]; *ptr0 = pair[1]; return; } } } if (pb[len] < cur[len]) { *ptr1 = curMatch; ptr1 = pair + 1; curMatch = *ptr1; len1 = len; } else { *ptr0 = curMatch; ptr0 = pair; curMatch = *ptr0; len0 = len; } } } } #define MOVE_POS \ ++p->cyclicBufferPos; \ p->buffer++; \ if (++p->pos == p->posLimit) Mf_CheckLimits(p); #define MOVE_POS_RET MOVE_POS return offset; static void Mf_MovePos(CMatchFinder *p) { MOVE_POS; } #define GET_MATCHES_HEADER2(minLen, ret_op) \ uint32_t lenLimit; uint32_t hashValue; const uint8_t *cur; uint32_t curMatch; \ lenLimit = p->lenLimit; { if (lenLimit < minLen) { Mf_MovePos(p); ret_op; }} \ cur = p->buffer; #define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0) #define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue) #define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue #define GET_MATCHES_FOOTER(offset, maxLen) \ offset = (uint32_t)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \ distances + offset, maxLen) - distances); MOVE_POS_RET; #define SKIP_FOOTER \ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS; static uint32_t Bt2_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t offset; GET_MATCHES_HEADER(2) HASH2_CALC; curMatch = p->hash[hashValue]; p->hash[hashValue] = p->pos; offset = 0; GET_MATCHES_FOOTER(offset, 1) } static uint32_t Bt3_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t hash2Value, delta2, maxLen, offset; GET_MATCHES_HEADER(3) HASH3_CALC; delta2 = p->pos - p->hash[hash2Value]; curMatch = p->hash[kFix3HashSize + hashValue]; p->hash[hash2Value] = p->hash[kFix3HashSize + hashValue] = p->pos; maxLen = 2; offset = 0; if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) { for (; maxLen != lenLimit; maxLen++) if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) break; distances[0] = maxLen; distances[1] = delta2 - 1; offset = 2; if (maxLen == lenLimit) { SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS_RET; } } GET_MATCHES_FOOTER(offset, maxLen) } static uint32_t Bt4_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t hash2Value, hash3Value, delta2, delta3, maxLen, offset; GET_MATCHES_HEADER(4) HASH4_CALC; delta2 = p->pos - p->hash[ hash2Value]; delta3 = p->pos - p->hash[kFix3HashSize + hash3Value]; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->hash[kFix4HashSize + hashValue] = p->pos; maxLen = 1; offset = 0; if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) { distances[0] = maxLen = 2; distances[1] = delta2 - 1; offset = 2; } if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur) { maxLen = 3; distances[offset + 1] = delta3 - 1; offset += 2; delta2 = delta3; } if (offset != 0) { for (; maxLen != lenLimit; maxLen++) if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) break; distances[offset - 2] = maxLen; if (maxLen == lenLimit) { SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS_RET; } } if (maxLen < 3) maxLen = 3; GET_MATCHES_FOOTER(offset, maxLen) } static uint32_t Hc4_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t hash2Value, hash3Value, delta2, delta3, maxLen, offset; GET_MATCHES_HEADER(4) HASH4_CALC; delta2 = p->pos - p->hash[ hash2Value]; delta3 = p->pos - p->hash[kFix3HashSize + hash3Value]; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->hash[kFix4HashSize + hashValue] = p->pos; maxLen = 1; offset = 0; if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) { distances[0] = maxLen = 2; distances[1] = delta2 - 1; offset = 2; } if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur) { maxLen = 3; distances[offset + 1] = delta3 - 1; offset += 2; delta2 = delta3; } if (offset != 0) { for (; maxLen != lenLimit; maxLen++) if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) break; distances[offset - 2] = maxLen; if (maxLen == lenLimit) { p->son[p->cyclicBufferPos] = curMatch; MOVE_POS_RET; } } if (maxLen < 3) maxLen = 3; offset = (uint32_t)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p), distances + offset, maxLen) - (distances)); MOVE_POS_RET } static void Bt2_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { SKIP_HEADER(2) HASH2_CALC; curMatch = p->hash[hashValue]; p->hash[hashValue] = p->pos; SKIP_FOOTER } while (--num != 0); } static void Bt3_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { uint32_t hash2Value; SKIP_HEADER(3) HASH3_CALC; curMatch = p->hash[kFix3HashSize + hashValue]; p->hash[hash2Value] = p->hash[kFix3HashSize + hashValue] = p->pos; SKIP_FOOTER } while (--num != 0); } static void Bt4_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { uint32_t hash2Value, hash3Value; SKIP_HEADER(4) HASH4_CALC; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->pos; p->hash[kFix4HashSize + hashValue] = p->pos; SKIP_FOOTER } while (--num != 0); } static void Hc4_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { uint32_t hash2Value, hash3Value; SKIP_HEADER(4) HASH4_CALC; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->hash[kFix4HashSize + hashValue] = p->pos; p->son[p->cyclicBufferPos] = curMatch; MOVE_POS } while (--num != 0); } void Mf_CreateVTable(CMatchFinder *p, IMatchFinder *vTable) { if (!p->btMode) { vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip; } else if (p->numHashBytes == 2) { vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip; } else if (p->numHashBytes == 3) { vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip; } else { vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip; } } /* LzmaEnc.h -- LZMA Encoder 2009-02-07 : Igor Pavlov : Public domain */ /* ---------- CLzmaEncHandle Interface ---------- */ /* LzmaEnc_* functions can return the following exit codes: Returns: SZ_OK - OK SZ_ERROR_WRITE - Write callback error. */ typedef void * CLzmaEncHandle; CLzmaEncHandle LzmaEnc_Init( const int dict_size, const int match_len_limit, const int infd, const int outfd ); void LzmaEnc_Free(CLzmaEncHandle p); int LzmaEnc_Encode(CLzmaEncHandle p); /* LzmaEnc.c -- LZMA Encoder 2009-11-24 : Igor Pavlov : Public domain */ #ifdef SHOW_STAT static int ttt = 0; #endif static int verbosity = 0; enum { Fh_size = 6, // file header size Ft_size = 20, // file trailer size /* 0-3 CRC32 of the uncompressed data */ /* 4-11 size of the uncompressed data */ /* 12-19 member size including header and trailer */ }; typedef uint8_t File_trailer[Ft_size]; static inline void Ft_set_data_crc( File_trailer data, unsigned crc ) { for( int i = 0; i <= 3; ++i ) { data[i] = (uint8_t)crc; crc >>= 8; } } static inline void Ft_set_data_size( File_trailer data, unsigned long long sz ) { for( int i = 4; i <= 11; ++i ) { data[i] = (uint8_t)sz; sz >>= 8; } } static inline void Ft_set_member_size( File_trailer data, unsigned long long sz ) { for( int i = 12; i <= 19; ++i ) { data[i] = (uint8_t)sz; sz >>= 8; } } #define kNumTopBits 24 #define kTopValue ((uint32_t)1 << kNumTopBits) #define kNumBitModelTotalBits 11 #define kBitModelTotal (1 << kNumBitModelTotalBits) #define kNumMoveBits 5 #define kProbInitValue (kBitModelTotal >> 1) #define kNumMoveReducingBits 4 #define kNumBitPriceShiftBits 4 #define kNumLogBits (9 + (int)sizeof(uint32_t) / 2) #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) static void LzmaEnc_FastPosInit(uint8_t *g_FastPos) { int c = 2, slotFast; g_FastPos[0] = 0; g_FastPos[1] = 1; for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++) { uint32_t k = (1 << ((slotFast >> 1) - 1)); uint32_t j; for (j = 0; j < k; j++, c++) g_FastPos[c] = (uint8_t)slotFast; } } #define BSR2_RET(pos, res) { uint32_t i = 6 + ((kNumLogBits - 1) & \ (0 - (((((uint32_t)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ res = p->g_FastPos[pos >> i] + (i * 2); } /* #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ p->g_FastPos[pos >> 6] + 12 : \ p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } */ #define GetPosSlot1(pos) p->g_FastPos[pos] #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); } #define LZMA_NUM_REPS 4 typedef struct { uint32_t price; State state; uint32_t posPrev2; uint32_t backPrev2; uint32_t posPrev; uint32_t backPrev; uint32_t backs[LZMA_NUM_REPS]; bool prev1IsChar; bool prev2; } COptimal; #define kNumOpts (1 << 12) #define kNumLenToPosStates 4 #define kNumPosSlotBits 6 #define kDicLogSizeMin 0 #define kDicLogSizeMax 32 #define kDistTableSizeMax (kDicLogSizeMax * 2) #define kNumAlignBits 4 #define kAlignTableSize (1 << kNumAlignBits) #define kAlignMask (kAlignTableSize - 1) #define kStartPosModelIndex 4 #define kEndPosModelIndex 14 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex) #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) #define LZMA_LC_MAX 8 #define LZMA_LP_MAX 4 #define LZMA_PB_MAX 4 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) #define kLenNumLowBits 3 #define kLenNumLowSymbols (1 << kLenNumLowBits) #define kLenNumMidBits 3 #define kLenNumMidSymbols (1 << kLenNumMidBits) #define kLenNumHighBits 8 #define kLenNumHighSymbols (1 << kLenNumHighBits) #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) #define LZMA_MATCH_LEN_MIN 2 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) #define kNumStates 12 typedef struct { int choice; int choice2; int low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits]; int mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits]; int high[kLenNumHighSymbols]; } CLenEnc; typedef struct { CLenEnc p; uint32_t prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; uint32_t tableSize; uint32_t counters[LZMA_NUM_PB_STATES_MAX]; } CLenPriceEnc; typedef struct { uint64_t low; uint64_t processed; uint8_t *bufBase; uint8_t *buf; uint8_t *bufLim; uint32_t range; uint32_t cacheSize; int outfd; int res; uint8_t cache; } CRangeEnc; typedef struct { uint64_t nowPos64; int *litProbs; IMatchFinder matchFinder; CMatchFinder matchFinderBase; uint32_t optimumEndIndex; uint32_t optimumCurrentIndex; uint32_t longestMatchLength; uint32_t numPairs; uint32_t numAvail; COptimal opt[kNumOpts]; uint8_t g_FastPos[1 << kNumLogBits]; uint32_t ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; uint32_t matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1]; uint32_t numFastBytes; uint32_t additionalOffset; uint32_t reps[LZMA_NUM_REPS]; State state; uint32_t posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; uint32_t distancesPrices[kNumLenToPosStates][kNumFullDistances]; uint32_t alignPrices[kAlignTableSize]; uint32_t alignPriceCount; uint32_t distTableSize; unsigned lc, lp, pb; unsigned lpMask, pbMask; int isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; int isRep[kNumStates]; int isRepG0[kNumStates]; int isRepG1[kNumStates]; int isRepG2[kNumStates]; int isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; int posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; int posEncoders[kNumFullDistances - kEndPosModelIndex]; int posAlignEncoder[1 << kNumAlignBits]; CLenPriceEnc lenEnc; CLenPriceEnc repLenEnc; CRangeEnc rc; uint32_t matchPriceCount; int result; uint32_t dictSize; bool fastMode; bool finished; } CLzmaEnc; static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; #define IsCharState(s) ((s) < 7) #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) #define kInfinityPrice (1 << 30) #define RC_BUF_SIZE (1 << 16) static int RangeEnc_Init( CRangeEnc *p, const int outfd ) { p->low = 0; p->processed = 0; p->range = 0xFFFFFFFF; p->cacheSize = 1; p->outfd = outfd; p->res = SZ_OK; p->cache = 0; p->buf = p->bufBase = (uint8_t *)LZMA_MALLOC( RC_BUF_SIZE ); if( !p->bufBase ) return 0; p->bufLim = p->bufBase + RC_BUF_SIZE; return 1; } static void RangeEnc_Free(CRangeEnc *p) { LZMA_FREE(p->bufBase); p->bufBase = 0; } static void RangeEnc_FlushStream(CRangeEnc *p) { int num; if (p->res != SZ_OK) return; num = p->buf - p->bufBase; if (num != writeblock(p->outfd, p->bufBase, num)) p->res = SZ_ERROR_WRITE; p->processed += num; p->buf = p->bufBase; } static void RangeEnc_ShiftLow(CRangeEnc *p) { if ((uint32_t)p->low < (uint32_t)0xFF000000 || (int)(p->low >> 32) != 0) { uint8_t temp = p->cache; do { uint8_t *buf = p->buf; *buf++ = (uint8_t)(temp + (uint8_t)(p->low >> 32)); p->buf = buf; if (buf == p->bufLim) RangeEnc_FlushStream(p); temp = 0xFF; } while (--p->cacheSize != 0); p->cache = (uint8_t)((uint32_t)p->low >> 24); } p->cacheSize++; p->low = (uint32_t)p->low << 8; } static void RangeEnc_FlushData(CRangeEnc *p) { int i; for (i = 0; i < 5; i++) RangeEnc_ShiftLow(p); } static void RangeEnc_EncodeDirectBits(CRangeEnc *p, uint32_t value, int numBits) { do { p->range >>= 1; p->low += p->range & (0 - ((value >> --numBits) & 1)); if (p->range < kTopValue) { p->range <<= 8; RangeEnc_ShiftLow(p); } } while (numBits != 0); } static void RangeEnc_EncodeBit(CRangeEnc *p, int *prob, uint32_t symbol) { uint32_t ttt = *prob; uint32_t newBound = (p->range >> kNumBitModelTotalBits) * ttt; if (symbol == 0) { p->range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } else { p->low += newBound; p->range -= newBound; ttt -= ttt >> kNumMoveBits; } *prob = (int)ttt; if (p->range < kTopValue) { p->range <<= 8; RangeEnc_ShiftLow(p); } } static void LitEnc_Encode(CRangeEnc *p, int *probs, uint32_t symbol) { symbol |= 0x100; do { RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1); symbol <<= 1; } while (symbol < 0x10000); } static void LitEnc_EncodeMatched(CRangeEnc *p, int *probs, uint32_t symbol, uint32_t matchByte) { uint32_t offs = 0x100; symbol |= 0x100; do { matchByte <<= 1; RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1); symbol <<= 1; offs &= ~(matchByte ^ symbol); } while (symbol < 0x10000); } static void LzmaEnc_InitPriceTables(uint32_t *ProbPrices) { uint32_t i; for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits)) { const int kCyclesBits = kNumBitPriceShiftBits; uint32_t w = i; uint32_t bitCount = 0; int j; for (j = 0; j < kCyclesBits; j++) { w = w * w; bitCount <<= 1; while (w >= ((uint32_t)1 << 16)) { w >>= 1; bitCount++; } } ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); } } #define GET_PRICE(prob, symbol) \ p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; #define GET_PRICEa(prob, symbol) \ ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits] #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] static uint32_t LitEnc_GetPrice(const int *probs, uint32_t symbol, uint32_t *ProbPrices) { uint32_t price = 0; symbol |= 0x100; do { price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1); symbol <<= 1; } while (symbol < 0x10000); return price; } static uint32_t LitEnc_GetPriceMatched(const int *probs, uint32_t symbol, uint32_t matchByte, uint32_t *ProbPrices) { uint32_t price = 0; uint32_t offs = 0x100; symbol |= 0x100; do { matchByte <<= 1; price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1); symbol <<= 1; offs &= ~(matchByte ^ symbol); } while (symbol < 0x10000); return price; } static void RcTree_Encode(CRangeEnc *rc, int *probs, int numBitLevels, uint32_t symbol) { uint32_t m = 1; int i; for (i = numBitLevels; i != 0;) { uint32_t bit; i--; bit = (symbol >> i) & 1; RangeEnc_EncodeBit(rc, probs + m, bit); m = (m << 1) | bit; } } static void RcTree_ReverseEncode(CRangeEnc *rc, int *probs, int numBitLevels, uint32_t symbol) { uint32_t m = 1; int i; for (i = 0; i < numBitLevels; i++) { uint32_t bit = symbol & 1; RangeEnc_EncodeBit(rc, probs + m, bit); m = (m << 1) | bit; symbol >>= 1; } } static uint32_t RcTree_GetPrice(const int *probs, int numBitLevels, uint32_t symbol, uint32_t *ProbPrices) { uint32_t price = 0; symbol |= (1 << numBitLevels); while (symbol != 1) { price += GET_PRICEa(probs[symbol >> 1], symbol & 1); symbol >>= 1; } return price; } static uint32_t RcTree_ReverseGetPrice(const int *probs, int numBitLevels, uint32_t symbol, uint32_t *ProbPrices) { uint32_t price = 0; uint32_t m = 1; int i; for (i = numBitLevels; i != 0; i--) { uint32_t bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) | bit; } return price; } static void LenEnc_Init(CLenEnc *p) { unsigned i; p->choice = p->choice2 = kProbInitValue; for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++) p->low[i] = kProbInitValue; for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++) p->mid[i] = kProbInitValue; for (i = 0; i < kLenNumHighSymbols; i++) p->high[i] = kProbInitValue; } static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, uint32_t symbol, uint32_t posState) { if (symbol < kLenNumLowSymbols) { RangeEnc_EncodeBit(rc, &p->choice, 0); RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol); } else { RangeEnc_EncodeBit(rc, &p->choice, 1); if (symbol < kLenNumLowSymbols + kLenNumMidSymbols) { RangeEnc_EncodeBit(rc, &p->choice2, 0); RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols); } else { RangeEnc_EncodeBit(rc, &p->choice2, 1); RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols); } } } static void LenEnc_SetPrices(CLenEnc *p, uint32_t posState, uint32_t numSymbols, uint32_t *prices, uint32_t *ProbPrices) { uint32_t a0 = GET_PRICE_0a(p->choice); uint32_t a1 = GET_PRICE_1a(p->choice); uint32_t b0 = a1 + GET_PRICE_0a(p->choice2); uint32_t b1 = a1 + GET_PRICE_1a(p->choice2); uint32_t i = 0; for (i = 0; i < kLenNumLowSymbols; i++) { if (i >= numSymbols) return; prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices); } for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++) { if (i >= numSymbols) return; prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices); } for (; i < numSymbols; i++) prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices); } static void LenPriceEnc_UpdateTable(CLenPriceEnc *p, uint32_t posState, uint32_t *ProbPrices) { LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices); p->counters[posState] = p->tableSize; } static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, uint32_t numPosStates, uint32_t *ProbPrices) { uint32_t posState; for (posState = 0; posState < numPosStates; posState++) LenPriceEnc_UpdateTable(p, posState, ProbPrices); } static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, uint32_t symbol, uint32_t posState, bool updatePrice, uint32_t *ProbPrices) { LenEnc_Encode(&p->p, rc, symbol, posState); if (updatePrice) if (--p->counters[posState] == 0) LenPriceEnc_UpdateTable(p, posState, ProbPrices); } static void MovePos(CLzmaEnc *p, uint32_t num) { #ifdef SHOW_STAT ttt += num; printf("\n MovePos %d", num); #endif if (num != 0) { p->additionalOffset += num; p->matchFinder.Skip(&p->matchFinderBase, num); } } static uint32_t ReadMatchDistances(CLzmaEnc *p, uint32_t *numDistancePairsRes) { uint32_t lenRes = 0, numPairs; p->numAvail = Mf_GetNumAvailableBytes(&p->matchFinderBase); numPairs = p->matchFinder.GetMatches(&p->matchFinderBase, p->matches); #ifdef SHOW_STAT printf("\n i = %d numPairs = %d ", ttt, numPairs / 2); ttt++; { uint32_t i; for (i = 0; i < numPairs; i += 2) printf("%2d %6d | ", p->matches[i], p->matches[i + 1]); } #endif if (numPairs > 0) { lenRes = p->matches[numPairs - 2]; if (lenRes == p->numFastBytes) { const uint8_t *pby = Mf_GetPointerToCurrentPos(&p->matchFinderBase) - 1; uint32_t distance = p->matches[numPairs - 1] + 1; uint32_t numAvail = p->numAvail; if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; { const uint8_t *pby2 = pby - distance; for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++) ; } } } p->additionalOffset++; *numDistancePairsRes = numPairs; return lenRes; } #define MakeAsChar(p) (p)->backPrev = (uint32_t)(-1); (p)->prev1IsChar = false; #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = false; #define IsShortRep(p) ((p)->backPrev == 0) static uint32_t GetRepLen1Price(CLzmaEnc *p, State state, uint32_t posState) { return GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]); } static uint32_t GetPureRepPrice(CLzmaEnc *p, uint32_t repIndex, State state, uint32_t posState) { uint32_t price; if (repIndex == 0) { price = GET_PRICE_0(p->isRepG0[state]); price += GET_PRICE_1(p->isRep0Long[state][posState]); } else { price = GET_PRICE_1(p->isRepG0[state]); if (repIndex == 1) price += GET_PRICE_0(p->isRepG1[state]); else { price += GET_PRICE_1(p->isRepG1[state]); price += GET_PRICE(p->isRepG2[state], repIndex - 2); } } return price; } static uint32_t GetRepPrice(CLzmaEnc *p, uint32_t repIndex, uint32_t len, State state, uint32_t posState) { return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] + GetPureRepPrice(p, repIndex, state, posState); } static uint32_t Backward(CLzmaEnc *p, uint32_t *backRes, uint32_t cur) { uint32_t posMem = p->opt[cur].posPrev; uint32_t backMem = p->opt[cur].backPrev; p->optimumEndIndex = cur; do { if (p->opt[cur].prev1IsChar) { MakeAsChar(&p->opt[posMem]) p->opt[posMem].posPrev = posMem - 1; if (p->opt[cur].prev2) { p->opt[posMem - 1].prev1IsChar = false; p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2; p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2; } } { uint32_t posPrev = posMem; uint32_t backCur = backMem; backMem = p->opt[posPrev].backPrev; posMem = p->opt[posPrev].posPrev; p->opt[posPrev].backPrev = backCur; p->opt[posPrev].posPrev = cur; cur = posPrev; } } while (cur != 0); *backRes = p->opt[0].backPrev; p->optimumCurrentIndex = p->opt[0].posPrev; return p->optimumCurrentIndex; } #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300) static uint32_t GetOptimum(CLzmaEnc *p, uint32_t position, uint32_t *backRes) { uint32_t numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur; uint32_t matchPrice, repMatchPrice, normalMatchPrice; uint32_t reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS]; uint32_t *matches; const uint8_t *data; uint8_t curByte, matchByte; if (p->optimumEndIndex != p->optimumCurrentIndex) { const COptimal *opt = &p->opt[p->optimumCurrentIndex]; uint32_t lenRes = opt->posPrev - p->optimumCurrentIndex; *backRes = opt->backPrev; p->optimumCurrentIndex = opt->posPrev; return lenRes; } p->optimumCurrentIndex = p->optimumEndIndex = 0; if (p->additionalOffset == 0) mainLen = ReadMatchDistances(p, &numPairs); else { mainLen = p->longestMatchLength; numPairs = p->numPairs; } numAvail = p->numAvail; if (numAvail < 2) { *backRes = (uint32_t)(-1); return 1; } if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; data = Mf_GetPointerToCurrentPos(&p->matchFinderBase) - 1; repMaxIndex = 0; for (i = 0; i < LZMA_NUM_REPS; i++) { uint32_t lenTest; const uint8_t *data2; reps[i] = p->reps[i]; data2 = data - (reps[i] + 1); if (data[0] != data2[0] || data[1] != data2[1]) { repLens[i] = 0; continue; } for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++) ; repLens[i] = lenTest; if (lenTest > repLens[repMaxIndex]) repMaxIndex = i; } if (repLens[repMaxIndex] >= p->numFastBytes) { uint32_t lenRes; *backRes = repMaxIndex; lenRes = repLens[repMaxIndex]; MovePos(p, lenRes - 1); return lenRes; } matches = p->matches; if (mainLen >= p->numFastBytes) { *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; MovePos(p, mainLen - 1); return mainLen; } curByte = *data; matchByte = *(data - (reps[0] + 1)); if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2) { *backRes = (uint32_t)-1; return 1; } p->opt[0].state = p->state; posState = (position & p->pbMask); { const int *probs = LIT_PROBS(position, *(data - 1)); p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + (!IsCharState(p->state) ? LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices)); } MakeAsChar(&p->opt[1]); matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); if (matchByte == curByte) { uint32_t shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState); if (shortRepPrice < p->opt[1].price) { p->opt[1].price = shortRepPrice; MakeAsShortRep(&p->opt[1]); } } lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]); if (lenEnd < 2) { *backRes = p->opt[1].backPrev; return 1; } p->opt[1].posPrev = 0; for (i = 0; i < LZMA_NUM_REPS; i++) p->opt[0].backs[i] = reps[i]; len = lenEnd; do p->opt[len--].price = kInfinityPrice; while (len >= 2); for (i = 0; i < LZMA_NUM_REPS; i++) { uint32_t repLen = repLens[i]; uint32_t price; if (repLen < 2) continue; price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState); do { uint32_t curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2]; COptimal *opt = &p->opt[repLen]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = 0; opt->backPrev = i; opt->prev1IsChar = false; } } while (--repLen >= 2); } normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); if (len <= mainLen) { uint32_t offs = 0; while (len > matches[offs]) offs += 2; for (; ; len++) { COptimal *opt; uint32_t distance = matches[offs + 1]; uint32_t curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN]; uint32_t lenToPosState = GetLenToPosState(len); if (distance < kNumFullDistances) curAndLenPrice += p->distancesPrices[lenToPosState][distance]; else { uint32_t slot; GetPosSlot2(distance, slot); curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot]; } opt = &p->opt[len]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = 0; opt->backPrev = distance + LZMA_NUM_REPS; opt->prev1IsChar = false; } if (len == matches[offs]) { offs += 2; if (offs == numPairs) break; } } } cur = 0; #ifdef SHOW_STAT2 if (position >= 0) { unsigned i; printf("\n pos = %4X", position); for (i = cur; i <= lenEnd; i++) printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price); } #endif for (;;) { uint32_t numAvailFull, newLen, numPairs, posPrev, state, posState, startLen; uint32_t curPrice, curAnd1Price, matchPrice, repMatchPrice; bool nextIsChar; uint8_t curByte, matchByte; const uint8_t *data; COptimal *curOpt; COptimal *nextOpt; cur++; if (cur == lenEnd) return Backward(p, backRes, cur); newLen = ReadMatchDistances(p, &numPairs); if (newLen >= p->numFastBytes) { p->numPairs = numPairs; p->longestMatchLength = newLen; return Backward(p, backRes, cur); } position++; curOpt = &p->opt[cur]; posPrev = curOpt->posPrev; if (curOpt->prev1IsChar) { posPrev--; if (curOpt->prev2) { state = p->opt[curOpt->posPrev2].state; if (curOpt->backPrev2 < LZMA_NUM_REPS) state = kRepNextStates[state]; else state = kMatchNextStates[state]; } else state = p->opt[posPrev].state; state = kLiteralNextStates[state]; } else state = p->opt[posPrev].state; if (posPrev == cur - 1) { if (IsShortRep(curOpt)) state = kShortRepNextStates[state]; else state = kLiteralNextStates[state]; } else { uint32_t pos; const COptimal *prevOpt; if (curOpt->prev1IsChar && curOpt->prev2) { posPrev = curOpt->posPrev2; pos = curOpt->backPrev2; state = kRepNextStates[state]; } else { pos = curOpt->backPrev; if (pos < LZMA_NUM_REPS) state = kRepNextStates[state]; else state = kMatchNextStates[state]; } prevOpt = &p->opt[posPrev]; if (pos < LZMA_NUM_REPS) { uint32_t i; reps[0] = prevOpt->backs[pos]; for (i = 1; i <= pos; i++) reps[i] = prevOpt->backs[i - 1]; for (; i < LZMA_NUM_REPS; i++) reps[i] = prevOpt->backs[i]; } else { uint32_t i; reps[0] = (pos - LZMA_NUM_REPS); for (i = 1; i < LZMA_NUM_REPS; i++) reps[i] = prevOpt->backs[i - 1]; } } curOpt->state = state; curOpt->backs[0] = reps[0]; curOpt->backs[1] = reps[1]; curOpt->backs[2] = reps[2]; curOpt->backs[3] = reps[3]; curPrice = curOpt->price; nextIsChar = false; data = Mf_GetPointerToCurrentPos(&p->matchFinderBase) - 1; curByte = *data; matchByte = *(data - (reps[0] + 1)); posState = (position & p->pbMask); curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]); { const int *probs = LIT_PROBS(position, *(data - 1)); curAnd1Price += (!IsCharState(state) ? LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices)); } nextOpt = &p->opt[cur + 1]; if (curAnd1Price < nextOpt->price) { nextOpt->price = curAnd1Price; nextOpt->posPrev = cur; MakeAsChar(nextOpt); nextIsChar = true; } matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]); repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0)) { uint32_t shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState); if (shortRepPrice <= nextOpt->price) { nextOpt->price = shortRepPrice; nextOpt->posPrev = cur; MakeAsShortRep(nextOpt); nextIsChar = true; } } numAvailFull = p->numAvail; { uint32_t temp = kNumOpts - 1 - cur; if (temp < numAvailFull) numAvailFull = temp; } if (numAvailFull < 2) continue; numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes); if (!nextIsChar && matchByte != curByte) /* speed optimization */ { /* try Literal + rep0 */ uint32_t temp; uint32_t lenTest2; const uint8_t *data2 = data - (reps[0] + 1); uint32_t limit = p->numFastBytes + 1; if (limit > numAvailFull) limit = numAvailFull; for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++) ; lenTest2 = temp - 1; if (lenTest2 >= 2) { State state2 = kLiteralNextStates[state]; uint32_t posStateNext = (position + 1) & p->pbMask; uint32_t nextRepMatchPrice = curAnd1Price + GET_PRICE_1(p->isMatch[state2][posStateNext]) + GET_PRICE_1(p->isRep[state2]); /* for (; lenTest2 >= 2; lenTest2--) */ { uint32_t curAndLenPrice; COptimal *opt; uint32_t offset = cur + 1 + lenTest2; while (lenEnd < offset) p->opt[++lenEnd].price = kInfinityPrice; curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); opt = &p->opt[offset]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur + 1; opt->backPrev = 0; opt->prev1IsChar = true; opt->prev2 = false; } } } } startLen = 2; /* speed optimization */ { uint32_t repIndex; for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++) { uint32_t lenTest; uint32_t lenTestTemp; uint32_t price; const uint8_t *data2 = data - (reps[repIndex] + 1); if (data[0] != data2[0] || data[1] != data2[1]) continue; for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++) ; while (lenEnd < cur + lenTest) p->opt[++lenEnd].price = kInfinityPrice; lenTestTemp = lenTest; price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState); do { uint32_t curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2]; COptimal *opt = &p->opt[cur + lenTest]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur; opt->backPrev = repIndex; opt->prev1IsChar = false; } } while (--lenTest >= 2); lenTest = lenTestTemp; if (repIndex == 0) startLen = lenTest + 1; /* if (_maxMode) */ { uint32_t lenTest2 = lenTest + 1; uint32_t limit = lenTest2 + p->numFastBytes; uint32_t nextRepMatchPrice; if (limit > numAvailFull) limit = numAvailFull; for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++) ; lenTest2 -= lenTest + 1; if (lenTest2 >= 2) { State state2 = kRepNextStates[state]; uint32_t posStateNext = (position + lenTest) & p->pbMask; uint32_t curAndLenCharPrice = price + p->repLenEnc.prices[posState][lenTest - 2] + GET_PRICE_0(p->isMatch[state2][posStateNext]) + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), data[lenTest], data2[lenTest], p->ProbPrices); state2 = kLiteralNextStates[state2]; posStateNext = (position + lenTest + 1) & p->pbMask; nextRepMatchPrice = curAndLenCharPrice + GET_PRICE_1(p->isMatch[state2][posStateNext]) + GET_PRICE_1(p->isRep[state2]); /* for (; lenTest2 >= 2; lenTest2--) */ { uint32_t curAndLenPrice; COptimal *opt; uint32_t offset = cur + lenTest + 1 + lenTest2; while (lenEnd < offset) p->opt[++lenEnd].price = kInfinityPrice; curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); opt = &p->opt[offset]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur + lenTest + 1; opt->backPrev = 0; opt->prev1IsChar = true; opt->prev2 = true; opt->posPrev2 = cur; opt->backPrev2 = repIndex; } } } } } } /* for (uint32_t lenTest = 2; lenTest <= newLen; lenTest++) */ if (newLen > numAvail) { newLen = numAvail; for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2) ; matches[numPairs] = newLen; numPairs += 2; } if (newLen >= startLen) { uint32_t normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); uint32_t offs, curBack, posSlot; uint32_t lenTest; while (lenEnd < cur + newLen) p->opt[++lenEnd].price = kInfinityPrice; offs = 0; while (startLen > matches[offs]) offs += 2; curBack = matches[offs + 1]; GetPosSlot2(curBack, posSlot); for (lenTest = /*2*/ startLen; ; lenTest++) { uint32_t curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN]; uint32_t lenToPosState = GetLenToPosState(lenTest); COptimal *opt; if (curBack < kNumFullDistances) curAndLenPrice += p->distancesPrices[lenToPosState][curBack]; else curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask]; opt = &p->opt[cur + lenTest]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur; opt->backPrev = curBack + LZMA_NUM_REPS; opt->prev1IsChar = false; } if (/*_maxMode && */lenTest == matches[offs]) { /* Try Match + Literal + Rep0 */ const uint8_t *data2 = data - (curBack + 1); uint32_t lenTest2 = lenTest + 1; uint32_t limit = lenTest2 + p->numFastBytes; uint32_t nextRepMatchPrice; if (limit > numAvailFull) limit = numAvailFull; for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++) ; lenTest2 -= lenTest + 1; if (lenTest2 >= 2) { State state2 = kMatchNextStates[state]; uint32_t posStateNext = (position + lenTest) & p->pbMask; uint32_t curAndLenCharPrice = curAndLenPrice + GET_PRICE_0(p->isMatch[state2][posStateNext]) + LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), data[lenTest], data2[lenTest], p->ProbPrices); state2 = kLiteralNextStates[state2]; posStateNext = (posStateNext + 1) & p->pbMask; nextRepMatchPrice = curAndLenCharPrice + GET_PRICE_1(p->isMatch[state2][posStateNext]) + GET_PRICE_1(p->isRep[state2]); /* for (; lenTest2 >= 2; lenTest2--) */ { uint32_t offset = cur + lenTest + 1 + lenTest2; uint32_t curAndLenPrice; COptimal *opt; while (lenEnd < offset) p->opt[++lenEnd].price = kInfinityPrice; curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); opt = &p->opt[offset]; if (curAndLenPrice < opt->price) { opt->price = curAndLenPrice; opt->posPrev = cur + lenTest + 1; opt->backPrev = 0; opt->prev1IsChar = true; opt->prev2 = true; opt->posPrev2 = cur; opt->backPrev2 = curBack + LZMA_NUM_REPS; } } } offs += 2; if (offs == numPairs) break; curBack = matches[offs + 1]; if (curBack >= kNumFullDistances) GetPosSlot2(curBack, posSlot); } } } } } #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) static uint32_t GetOptimumFast(CLzmaEnc *p, uint32_t *backRes) { uint32_t numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i; const uint8_t *data; const uint32_t *matches; if (p->additionalOffset == 0) mainLen = ReadMatchDistances(p, &numPairs); else { mainLen = p->longestMatchLength; numPairs = p->numPairs; } numAvail = p->numAvail; *backRes = (uint32_t)-1; if (numAvail < 2) return 1; if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; data = Mf_GetPointerToCurrentPos(&p->matchFinderBase) - 1; repLen = repIndex = 0; for (i = 0; i < LZMA_NUM_REPS; i++) { uint32_t len; const uint8_t *data2 = data - (p->reps[i] + 1); if (data[0] != data2[0] || data[1] != data2[1]) continue; for (len = 2; len < numAvail && data[len] == data2[len]; len++) ; if (len >= p->numFastBytes) { *backRes = i; MovePos(p, len - 1); return len; } if (len > repLen) { repIndex = i; repLen = len; } } matches = p->matches; if (mainLen >= p->numFastBytes) { *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; MovePos(p, mainLen - 1); return mainLen; } mainDist = 0; /* for GCC */ if (mainLen >= 2) { mainDist = matches[numPairs - 1]; while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1) { if (!ChangePair(matches[numPairs - 3], mainDist)) break; numPairs -= 2; mainLen = matches[numPairs - 2]; mainDist = matches[numPairs - 1]; } if (mainLen == 2 && mainDist >= 0x80) mainLen = 1; } if (repLen >= 2 && ( (repLen + 1 >= mainLen) || (repLen + 2 >= mainLen && mainDist >= (1 << 9)) || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))) { *backRes = repIndex; MovePos(p, repLen - 1); return repLen; } if (mainLen < 2 || numAvail <= 2) return 1; p->longestMatchLength = ReadMatchDistances(p, &p->numPairs); if (p->longestMatchLength >= 2) { uint32_t newDistance = matches[p->numPairs - 1]; if ((p->longestMatchLength >= mainLen && newDistance < mainDist) || (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) || (p->longestMatchLength > mainLen + 1) || (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist))) return 1; } data = Mf_GetPointerToCurrentPos(&p->matchFinderBase) - 1; for (i = 0; i < LZMA_NUM_REPS; i++) { uint32_t len, limit; const uint8_t *data2 = data - (p->reps[i] + 1); if (data[0] != data2[0] || data[1] != data2[1]) continue; limit = mainLen - 1; for (len = 2; len < limit && data[len] == data2[len]; len++) ; if (len >= limit) return 1; } *backRes = mainDist + LZMA_NUM_REPS; MovePos(p, mainLen - 2); return mainLen; } static void LZe_full_flush(CLzmaEnc *p, uint32_t posState) { const uint32_t len = LZMA_MATCH_LEN_MIN; File_trailer trailer; RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); p->state = kMatchNextStates[p->state]; LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1); RangeEnc_EncodeDirectBits(&p->rc, (((uint32_t)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits); RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); RangeEnc_FlushData(&p->rc); RangeEnc_FlushStream(&p->rc); Ft_set_data_crc( trailer, p->matchFinderBase.crc ^ 0xFFFFFFFFU ); Ft_set_data_size( trailer, p->nowPos64 ); Ft_set_member_size( trailer, p->rc.processed + Fh_size + Ft_size ); if( writeblock( p->rc.outfd, trailer, Ft_size ) != Ft_size ) p->rc.res = SZ_ERROR_WRITE; if( verbosity >= 1 ) { unsigned long long in_size = p->nowPos64; unsigned long long out_size = p->rc.processed + Fh_size + Ft_size; if( in_size == 0 || out_size == 0 ) fputs( " no data compressed.\n", stderr ); else fprintf( stderr, "%6.3f:1, %5.2f%% ratio, %5.2f%% saved, " "%llu in, %llu out.\n", (double)in_size / out_size, ( 100.0 * out_size ) / in_size, 100.0 - ( ( 100.0 * out_size ) / in_size ), in_size, out_size ); } } static int CheckErrors(CLzmaEnc *p) { if (p->result != SZ_OK) return p->result; if (p->rc.res != SZ_OK) p->result = SZ_ERROR_WRITE; if (p->matchFinderBase.result != SZ_OK) p->result = SZ_ERROR_READ; if (p->result != SZ_OK) p->finished = true; return p->result; } static int Flush(CLzmaEnc *p, uint32_t nowPos) { /* ReleaseMFStream(); */ p->finished = true; LZe_full_flush(p, nowPos & p->pbMask); return CheckErrors(p); } static void FillAlignPrices(CLzmaEnc *p) { uint32_t i; for (i = 0; i < kAlignTableSize; i++) p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); p->alignPriceCount = 0; } static void FillDistancesPrices(CLzmaEnc *p) { uint32_t tempPrices[kNumFullDistances]; uint32_t i, lenToPosState; for (i = kStartPosModelIndex; i < kNumFullDistances; i++) { uint32_t posSlot = GetPosSlot1(i); uint32_t footerBits = ((posSlot >> 1) - 1); uint32_t base = ((2 | (posSlot & 1)) << footerBits); tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices); } for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++) { uint32_t posSlot; const int *encoder = p->posSlotEncoder[lenToPosState]; uint32_t *posSlotPrices = p->posSlotPrices[lenToPosState]; for (posSlot = 0; posSlot < p->distTableSize; posSlot++) posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices); for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++) posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits); { uint32_t *distancesPrices = p->distancesPrices[lenToPosState]; uint32_t i; for (i = 0; i < kStartPosModelIndex; i++) distancesPrices[i] = posSlotPrices[i]; for (; i < kNumFullDistances; i++) distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i]; } } p->matchPriceCount = 0; } static int LzmaEnc_CodeOneBlock(CLzmaEnc *p) { uint32_t nowPos32, startPos32; if (p->finished) return p->result; if( CheckErrors(p) != 0 ) return p->result; nowPos32 = (uint32_t)p->nowPos64; startPos32 = nowPos32; if (p->nowPos64 == 0) { uint32_t numPairs; uint8_t curByte; if (Mf_GetNumAvailableBytes(&p->matchFinderBase) == 0) return Flush(p, nowPos32); ReadMatchDistances(p, &numPairs); RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0); p->state = kLiteralNextStates[p->state]; curByte = Mf_GetIndexByte(&p->matchFinderBase, 0 - p->additionalOffset); LitEnc_Encode(&p->rc, p->litProbs, curByte); p->additionalOffset--; nowPos32++; } if (Mf_GetNumAvailableBytes(&p->matchFinderBase) != 0) for (;;) { uint32_t pos, len, posState; if (p->fastMode) len = GetOptimumFast(p, &pos); else len = GetOptimum(p, nowPos32, &pos); #ifdef SHOW_STAT2 printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos); #endif posState = nowPos32 & p->pbMask; if (len == 1 && pos == (uint32_t)-1) { uint8_t curByte; int *probs; const uint8_t *data; RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0); data = Mf_GetPointerToCurrentPos(&p->matchFinderBase) - p->additionalOffset; curByte = *data; probs = LIT_PROBS(nowPos32, *(data - 1)); if (IsCharState(p->state)) LitEnc_Encode(&p->rc, probs, curByte); else LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1)); p->state = kLiteralNextStates[p->state]; } else { RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); if (pos < LZMA_NUM_REPS) { RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1); if (pos == 0) { RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0); RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1)); } else { uint32_t distance = p->reps[pos]; RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1); if (pos == 1) RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0); else { RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1); RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2); if (pos == 3) p->reps[3] = p->reps[2]; p->reps[2] = p->reps[1]; } p->reps[1] = p->reps[0]; p->reps[0] = distance; } if (len == 1) p->state = kShortRepNextStates[p->state]; else { LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); p->state = kRepNextStates[p->state]; } } else { uint32_t posSlot; RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); p->state = kMatchNextStates[p->state]; LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); pos -= LZMA_NUM_REPS; GetPosSlot(pos, posSlot); RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot); if (posSlot >= kStartPosModelIndex) { uint32_t footerBits = ((posSlot >> 1) - 1); uint32_t base = ((2 | (posSlot & 1)) << footerBits); uint32_t posReduced = pos - base; if (posSlot < kEndPosModelIndex) RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced); else { RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); p->alignPriceCount++; } } p->reps[3] = p->reps[2]; p->reps[2] = p->reps[1]; p->reps[1] = p->reps[0]; p->reps[0] = pos; p->matchPriceCount++; } } p->additionalOffset -= len; nowPos32 += len; if (p->additionalOffset == 0) { uint32_t processed; if (!p->fastMode) { if (p->matchPriceCount >= (1 << 7)) FillDistancesPrices(p); if (p->alignPriceCount >= kAlignTableSize) FillAlignPrices(p); } if (Mf_GetNumAvailableBytes(&p->matchFinderBase) == 0) break; processed = nowPos32 - startPos32; if (processed >= (1 << 15)) { p->nowPos64 += nowPos32 - startPos32; return CheckErrors(p); } } } p->nowPos64 += nowPos32 - startPos32; return Flush(p, nowPos32); } CLzmaEncHandle LzmaEnc_Init( const int dict_size, const int match_len_limit, const int infd, const int outfd ) { int i; const uint32_t beforeSize = kNumOpts; CLzmaEnc * const p = (CLzmaEnc *)LZMA_MALLOC(sizeof(CLzmaEnc)); if( !p ) return 0; p->nowPos64 = 0; p->dictSize = dict_size; p->numFastBytes = match_len_limit; p->lc = literal_context_bits; p->lp = 0; p->pb = pos_state_bits; p->optimumEndIndex = 0; p->optimumCurrentIndex = 0; p->additionalOffset = 0; p->state = 0; p->result = SZ_OK; p->fastMode = false; p->finished = false; if (!Mf_Init(&p->matchFinderBase, infd, 16 + ( match_len_limit / 2 ), p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX)) { LZMA_FREE( p ); return 0; } Mf_CreateVTable(&p->matchFinderBase, &p->matchFinder); LzmaEnc_FastPosInit(p->g_FastPos); LzmaEnc_InitPriceTables(p->ProbPrices); for (i = 0; i < kDicLogSizeMaxCompress; i++) if (p->dictSize <= ((uint32_t)1 << i)) break; p->distTableSize = i * 2; if( !RangeEnc_Init( &p->rc, outfd ) ) { LZMA_FREE( p ); return 0; } p->litProbs = (int *)LZMA_MALLOC((0x300 << (p->lc + p->lp)) * sizeof(int)); if( !p->litProbs ) { LZMA_FREE( p ); return 0; } for (i = 0 ; i < LZMA_NUM_REPS; i++) p->reps[i] = 0; for (i = 0; i < kNumStates; i++) { int j; for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) { p->isMatch[i][j] = kProbInitValue; p->isRep0Long[i][j] = kProbInitValue; } p->isRep[i] = kProbInitValue; p->isRepG0[i] = kProbInitValue; p->isRepG1[i] = kProbInitValue; p->isRepG2[i] = kProbInitValue; } { const int num = 0x300 << (p->lp + p->lc); for (i = 0; i < num; i++) p->litProbs[i] = kProbInitValue; } for (i = 0; i < kNumLenToPosStates; i++) { int *probs = p->posSlotEncoder[i]; uint32_t j; for (j = 0; j < (1 << kNumPosSlotBits); j++) probs[j] = kProbInitValue; } for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++) p->posEncoders[i] = kProbInitValue; LenEnc_Init(&p->lenEnc.p); LenEnc_Init(&p->repLenEnc.p); for (i = 0; i < (1 << kNumAlignBits); i++) p->posAlignEncoder[i] = kProbInitValue; p->pbMask = (1 << p->pb) - 1; p->lpMask = (1 << p->lp) - 1; if (!p->fastMode) { FillDistancesPrices(p); FillAlignPrices(p); } p->lenEnc.tableSize = p->repLenEnc.tableSize = p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices); LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices); return p; } void LzmaEnc_Free(CLzmaEncHandle pp) { CLzmaEnc *p = (CLzmaEnc *)pp; Mf_Free(&p->matchFinderBase); LZMA_FREE(p->litProbs); p->litProbs = 0; RangeEnc_Free(&p->rc); LZMA_FREE(p); } int LzmaEnc_Encode(CLzmaEncHandle pp) { int res = SZ_OK; CLzmaEnc *p = (CLzmaEnc *)pp; for (;;) { res = LzmaEnc_CodeOneBlock(p); if( res != SZ_OK || p->finished ) break; } return res; } /* LzmaDec.h -- LZMA Decoder 2009-02-07 : Igor Pavlov : Public domain */ /* ---------- LZMA Properties ---------- */ #define LZMA_PROPS_SIZE 5 /* ---------- LZMA Decoder state ---------- */ /* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case. Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */ #define LZMA_REQUIRED_INPUT_MAX 20 typedef struct { int *probs; uint8_t *dic; const uint8_t *buf; uint32_t range, code; uint32_t dicPos; uint32_t dicBufSize; uint32_t processedPos; uint32_t checkDicSize; unsigned lc, lp, pb; State state; uint32_t reps[4]; unsigned remainLen; uint32_t numProbs; unsigned tempBufSize; bool needFlush; uint8_t tempBuf[LZMA_REQUIRED_INPUT_MAX]; } CLzmaDec; /* There are two types of LZMA streams: 0) Stream with end mark. That end mark adds about 6 bytes to compressed size. 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */ typedef enum { LZMA_FINISH_ANY, /* finish at any point */ LZMA_FINISH_END /* block must be finished at the end */ } ELzmaFinishMode; /* ELzmaFinishMode has meaning only if the decoding reaches output limit !!! You must use LZMA_FINISH_END, when you know that current output buffer covers last bytes of block. In other cases you must use LZMA_FINISH_ANY. If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK, and output value of destLen will be less than output buffer size limit. You can check status result also. You can use multiple checks to test data integrity after full decompression: 1) Check Result and "status" variable. 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize. 3) Check that output(srcLen) = compressedSize, if you know real compressedSize. You must use correct finish mode in that case. */ typedef enum { LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */ LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */ LZMA_STATUS_NOT_FINISHED, /* stream was not finished */ LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */ } ELzmaStatus; /* ELzmaStatus is used only as output value for function call */ static bool LzmaDec_Init(CLzmaDec *p, const uint8_t *raw_props); static void LzmaDec_Free(CLzmaDec *p); /* ---------- Buffer Interface ---------- */ /* It's zlib-like interface. finishMode: It has meaning only if the decoding reaches output limit (*destLen). LZMA_FINISH_ANY - Decode just destLen bytes. LZMA_FINISH_END - Stream must be finished after (*destLen). */ static bool LzmaDec_DecodeToBuf( CLzmaDec *p, uint8_t *dest, uint32_t *destLen, const uint8_t *src, uint32_t *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status ); /* LzmaDec.c -- LZMA Decoder 2009-09-20 : Igor Pavlov : Public domain */ #define kNumTopBits 24 #define kTopValue ((uint32_t)1 << kNumTopBits) #define kNumBitModelTotalBits 11 #define kBitModelTotal (1 << kNumBitModelTotalBits) #define kNumMoveBits 5 #define RC_INIT_SIZE 5 #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); } #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound) #define UPDATE_0(p) range = bound; *(p) = (int)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (int)(ttt - (ttt >> kNumMoveBits)); #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \ { UPDATE_0(p); i = (i + i); A0; } else \ { UPDATE_1(p); i = (i + i) + 1; A1; } #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;) #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); } #define TREE_DECODE(probs, limit, i) \ { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; } /* #define _LZMA_SIZE_OPT */ #ifdef _LZMA_SIZE_OPT #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i) #else #define TREE_6_DECODE(probs, i) \ { i = 1; \ TREE_GET_BIT(probs, i); \ TREE_GET_BIT(probs, i); \ TREE_GET_BIT(probs, i); \ TREE_GET_BIT(probs, i); \ TREE_GET_BIT(probs, i); \ TREE_GET_BIT(probs, i); \ i -= 0x40; } #endif #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); } #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound) #define UPDATE_0_CHECK range = bound; #define UPDATE_1_CHECK range -= bound; code -= bound; #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \ { UPDATE_0_CHECK; i = (i + i); A0; } else \ { UPDATE_1_CHECK; i = (i + i) + 1; A1; } #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;) #define TREE_DECODE_CHECK(probs, limit, i) \ { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; } #define kNumPosBitsMax 4 #define kNumPosStatesMax (1 << kNumPosBitsMax) #define kLenNumLowBits 3 #define kLenNumLowSymbols (1 << kLenNumLowBits) #define kLenNumMidBits 3 #define kLenNumMidSymbols (1 << kLenNumMidBits) #define kLenNumHighBits 8 #define kLenNumHighSymbols (1 << kLenNumHighBits) #define LenChoice 0 #define LenChoice2 (LenChoice + 1) #define LenLow (LenChoice2 + 1) #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) #define kNumLenProbs (LenHigh + kLenNumHighSymbols) #define kNumStates 12 #define kNumLitStates 7 #define kStartPosModelIndex 4 #define kEndPosModelIndex 14 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) #define kNumPosSlotBits 6 #define kNumLenToPosStates 4 #define kNumAlignBits 4 #define kAlignTableSize (1 << kNumAlignBits) #define kMatchMinLen 2 #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) #define IsMatch 0 #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) #define IsRepG0 (IsRep + kNumStates) #define IsRepG1 (IsRepG0 + kNumStates) #define IsRepG2 (IsRepG1 + kNumStates) #define IsRep0Long (IsRepG2 + kNumStates) #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) #define LenCoder (Align + kAlignTableSize) #define RepLenCoder (LenCoder + kNumLenProbs) #define Literal (RepLenCoder + kNumLenProbs) #define LZMA_BASE_SIZE 1846 #define LZMA_LIT_SIZE 768 #define LzmaProps_GetNumProbs(p) ((uint32_t)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp))) #if Literal != LZMA_BASE_SIZE StopCompilingDueBUG #endif /* First LZMA-symbol is always decoded. And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization Out: Result: true - OK false - Error p->remainLen: < kMatchSpecLenStart : normal remain = kMatchSpecLenStart : finished = kMatchSpecLenStart + 1 : Flush marker = kMatchSpecLenStart + 2 : State Init Marker */ static bool LzmaDec_DecodeReal(CLzmaDec *p, uint32_t limit, const uint8_t *bufLimit) { int *probs = p->probs; State state = p->state; uint32_t rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3]; unsigned pbMask = ((unsigned)1 << (p->pb)) - 1; unsigned lpMask = ((unsigned)1 << (p->lp)) - 1; const unsigned lc = p->lc; uint8_t *dic = p->dic; const uint32_t dicBufSize = p->dicBufSize; uint32_t dicPos = p->dicPos; uint32_t processedPos = p->processedPos; uint32_t checkDicSize = p->checkDicSize; unsigned len = 0; const uint8_t *buf = p->buf; uint32_t range = p->range; uint32_t code = p->code; do { int *prob; uint32_t bound; unsigned ttt; unsigned posState = processedPos & pbMask; prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; IF_BIT_0(prob) { unsigned symbol; UPDATE_0(prob); prob = probs + Literal; if (checkDicSize != 0 || processedPos != 0) prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) + (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc)))); if (state < kNumLitStates) { state -= (state < 4) ? state : 3; symbol = 1; do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100); } else { unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; unsigned offs = 0x100; state -= (state < 10) ? 3 : 6; symbol = 1; do { unsigned bit; int *probLit; matchByte <<= 1; bit = (matchByte & offs); probLit = prob + offs + bit + symbol; GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit) } while (symbol < 0x100); } dic[dicPos++] = (uint8_t)symbol; processedPos++; continue; } else { UPDATE_1(prob); prob = probs + IsRep + state; IF_BIT_0(prob) { UPDATE_0(prob); state += kNumStates; prob = probs + LenCoder; } else { UPDATE_1(prob); if (checkDicSize == 0 && processedPos == 0) return false; prob = probs + IsRepG0 + state; IF_BIT_0(prob) { UPDATE_0(prob); prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; IF_BIT_0(prob) { UPDATE_0(prob); dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; dicPos++; processedPos++; state = state < kNumLitStates ? 9 : 11; continue; } UPDATE_1(prob); } else { uint32_t distance; UPDATE_1(prob); prob = probs + IsRepG1 + state; IF_BIT_0(prob) { UPDATE_0(prob); distance = rep1; } else { UPDATE_1(prob); prob = probs + IsRepG2 + state; IF_BIT_0(prob) { UPDATE_0(prob); distance = rep2; } else { UPDATE_1(prob); distance = rep3; rep3 = rep2; } rep2 = rep1; } rep1 = rep0; rep0 = distance; } state = state < kNumLitStates ? 8 : 11; prob = probs + RepLenCoder; } { unsigned limit, offset; int *probLen = prob + LenChoice; IF_BIT_0(probLen) { UPDATE_0(probLen); probLen = prob + LenLow + (posState << kLenNumLowBits); offset = 0; limit = (1 << kLenNumLowBits); } else { UPDATE_1(probLen); probLen = prob + LenChoice2; IF_BIT_0(probLen) { UPDATE_0(probLen); probLen = prob + LenMid + (posState << kLenNumMidBits); offset = kLenNumLowSymbols; limit = (1 << kLenNumMidBits); } else { UPDATE_1(probLen); probLen = prob + LenHigh; offset = kLenNumLowSymbols + kLenNumMidSymbols; limit = (1 << kLenNumHighBits); } } TREE_DECODE(probLen, limit, len); len += offset; } if (state >= kNumStates) { uint32_t distance; prob = probs + PosSlot + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits); TREE_6_DECODE(prob, distance); if (distance >= kStartPosModelIndex) { unsigned posSlot = (unsigned)distance; int numDirectBits = (int)(((distance >> 1) - 1)); distance = (2 | (distance & 1)); if (posSlot < kEndPosModelIndex) { distance <<= numDirectBits; prob = probs + SpecPos + distance - posSlot - 1; { uint32_t mask = 1; unsigned i = 1; do { GET_BIT2(prob + i, i, ; , distance |= mask); mask <<= 1; } while (--numDirectBits != 0); } } else { numDirectBits -= kNumAlignBits; do { NORMALIZE range >>= 1; { uint32_t t; code -= range; t = (0 - ((uint32_t)code >> 31)); /* (uint32_t)((int)code >> 31) */ distance = (distance << 1) + (t + 1); code += range & t; } /* distance <<= 1; if (code >= range) { code -= range; distance |= 1; } */ } while (--numDirectBits != 0); prob = probs + Align; distance <<= kNumAlignBits; { unsigned i = 1; GET_BIT2(prob + i, i, ; , distance |= 1); GET_BIT2(prob + i, i, ; , distance |= 2); GET_BIT2(prob + i, i, ; , distance |= 4); GET_BIT2(prob + i, i, ; , distance |= 8); } if (distance == (uint32_t)0xFFFFFFFF) { len += kMatchSpecLenStart; state -= kNumStates; break; } } } rep3 = rep2; rep2 = rep1; rep1 = rep0; rep0 = distance + 1; if (checkDicSize == 0) { if (distance >= processedPos) return false; } else if (distance >= checkDicSize) return false; state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3; } len += kMatchMinLen; if (limit == dicPos) return false; { uint32_t rem = limit - dicPos; unsigned curLen = ((rem < len) ? (unsigned)rem : len); uint32_t pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0); processedPos += curLen; len -= curLen; if (pos + curLen <= dicBufSize) { uint8_t *dest = dic + dicPos; ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos; const uint8_t *lim = dest + curLen; dicPos += curLen; do *(dest) = (uint8_t)*(dest + src); while (++dest != lim); } else { do { dic[dicPos++] = dic[pos]; if (++pos == dicBufSize) pos = 0; } while (--curLen != 0); } } } } while (dicPos < limit && buf < bufLimit); NORMALIZE; p->buf = buf; p->range = range; p->code = code; p->remainLen = len; p->dicPos = dicPos; p->processedPos = processedPos; p->reps[0] = rep0; p->reps[1] = rep1; p->reps[2] = rep2; p->reps[3] = rep3; p->state = state; return true; } static void LzmaDec_WriteRem(CLzmaDec *p, uint32_t limit) { if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart) { uint8_t *dic = p->dic; uint32_t dicPos = p->dicPos; const uint32_t dicBufSize = p->dicBufSize; unsigned len = p->remainLen; uint32_t rep0 = p->reps[0]; if (limit - dicPos < len) len = (unsigned)(limit - dicPos); if (p->checkDicSize == 0 && dicBufSize - p->processedPos <= len) p->checkDicSize = dicBufSize; p->processedPos += len; p->remainLen -= len; while (len-- != 0) { dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; dicPos++; } p->dicPos = dicPos; } } static int LzmaDec_DecodeReal2(CLzmaDec *p, uint32_t limit, const uint8_t *bufLimit) { const uint32_t dicBufSize = p->dicBufSize; do { uint32_t limit2 = limit; if (p->checkDicSize == 0) { uint32_t rem = dicBufSize - p->processedPos; if (limit - p->dicPos > rem) limit2 = p->dicPos + rem; } if( !LzmaDec_DecodeReal(p, limit2, bufLimit) ) return false; if (p->processedPos >= dicBufSize) p->checkDicSize = dicBufSize; LzmaDec_WriteRem(p, limit); } while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart); if (p->remainLen > kMatchSpecLenStart) { p->remainLen = kMatchSpecLenStart; } return true; } typedef enum { DUMMY_ERROR, /* unexpected end of input stream */ DUMMY_LIT, DUMMY_MATCH, DUMMY_REP } ELzmaDummy; static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const uint8_t *buf, uint32_t inSize) { uint32_t range = p->range; uint32_t code = p->code; const uint8_t *bufLimit = buf + inSize; int *probs = p->probs; State state = p->state; ELzmaDummy res; { int *prob; uint32_t bound; unsigned ttt; unsigned posState = (p->processedPos) & ((1 << p->pb) - 1); prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; IF_BIT_0_CHECK(prob) { UPDATE_0_CHECK /* if (bufLimit - buf >= 7) return DUMMY_LIT; */ prob = probs + Literal; if (p->checkDicSize != 0 || p->processedPos != 0) prob += (LZMA_LIT_SIZE * ((((p->processedPos) & ((1 << (p->lp)) - 1)) << p->lc) + (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->lc)))); if (state < kNumLitStates) { unsigned symbol = 1; do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100); } else { unsigned matchByte = p->dic[p->dicPos - p->reps[0] + ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)]; unsigned offs = 0x100; unsigned symbol = 1; do { unsigned bit; int *probLit; matchByte <<= 1; bit = (matchByte & offs); probLit = prob + offs + bit + symbol; GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit) } while (symbol < 0x100); } res = DUMMY_LIT; } else { unsigned len; UPDATE_1_CHECK; prob = probs + IsRep + state; IF_BIT_0_CHECK(prob) { UPDATE_0_CHECK; state = 0; prob = probs + LenCoder; res = DUMMY_MATCH; } else { UPDATE_1_CHECK; res = DUMMY_REP; prob = probs + IsRepG0 + state; IF_BIT_0_CHECK(prob) { UPDATE_0_CHECK; prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; IF_BIT_0_CHECK(prob) { UPDATE_0_CHECK; NORMALIZE_CHECK; return DUMMY_REP; } else { UPDATE_1_CHECK; } } else { UPDATE_1_CHECK; prob = probs + IsRepG1 + state; IF_BIT_0_CHECK(prob) { UPDATE_0_CHECK; } else { UPDATE_1_CHECK; prob = probs + IsRepG2 + state; IF_BIT_0_CHECK(prob) { UPDATE_0_CHECK; } else { UPDATE_1_CHECK; } } } state = kNumStates; prob = probs + RepLenCoder; } { unsigned limit, offset; int *probLen = prob + LenChoice; IF_BIT_0_CHECK(probLen) { UPDATE_0_CHECK; probLen = prob + LenLow + (posState << kLenNumLowBits); offset = 0; limit = 1 << kLenNumLowBits; } else { UPDATE_1_CHECK; probLen = prob + LenChoice2; IF_BIT_0_CHECK(probLen) { UPDATE_0_CHECK; probLen = prob + LenMid + (posState << kLenNumMidBits); offset = kLenNumLowSymbols; limit = 1 << kLenNumMidBits; } else { UPDATE_1_CHECK; probLen = prob + LenHigh; offset = kLenNumLowSymbols + kLenNumMidSymbols; limit = 1 << kLenNumHighBits; } } TREE_DECODE_CHECK(probLen, limit, len); len += offset; } if (state < 4) { unsigned posSlot; prob = probs + PosSlot + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits); TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot); if (posSlot >= kStartPosModelIndex) { int numDirectBits = ((posSlot >> 1) - 1); /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */ if (posSlot < kEndPosModelIndex) { prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1; } else { numDirectBits -= kNumAlignBits; do { NORMALIZE_CHECK range >>= 1; code -= range & (((code - range) >> 31) - 1); /* if (code >= range) code -= range; */ } while (--numDirectBits != 0); prob = probs + Align; numDirectBits = kNumAlignBits; } { unsigned i = 1; do { GET_BIT_CHECK(prob + i, i); } while (--numDirectBits != 0); } } } } } NORMALIZE_CHECK; return res; } static void LzmaDec_InitRc(CLzmaDec *p, const uint8_t *data) { p->code = ((uint32_t)data[1] << 24) | ((uint32_t)data[2] << 16) | ((uint32_t)data[3] << 8) | ((uint32_t)data[4]); p->range = 0xFFFFFFFF; p->needFlush = false; } static bool LzmaDec_DecodeToDic(CLzmaDec *p, uint32_t dicLimit, const uint8_t *src, uint32_t *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status) { uint32_t inSize = *srcLen; (*srcLen) = 0; LzmaDec_WriteRem(p, dicLimit); *status = LZMA_STATUS_NOT_SPECIFIED; while (p->remainLen != kMatchSpecLenStart) { int checkEndMarkNow; if( p->needFlush ) { for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--) p->tempBuf[p->tempBufSize++] = *src++; if (p->tempBufSize < RC_INIT_SIZE) { *status = LZMA_STATUS_NEEDS_MORE_INPUT; return true; } if (p->tempBuf[0] != 0) return false; LzmaDec_InitRc(p, p->tempBuf); p->tempBufSize = 0; } checkEndMarkNow = 0; if (p->dicPos >= dicLimit) { if (p->remainLen == 0 && p->code == 0) { *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK; return true; } if (finishMode == LZMA_FINISH_ANY) { *status = LZMA_STATUS_NOT_FINISHED; return true; } if (p->remainLen != 0) { *status = LZMA_STATUS_NOT_FINISHED; return false; } checkEndMarkNow = 1; } if (p->tempBufSize == 0) { uint32_t processed; const uint8_t *bufLimit; if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) { int dummyRes = LzmaDec_TryDummy(p, src, inSize); if (dummyRes == DUMMY_ERROR) { memcpy(p->tempBuf, src, inSize); p->tempBufSize = (unsigned)inSize; (*srcLen) += inSize; *status = LZMA_STATUS_NEEDS_MORE_INPUT; return true; } if (checkEndMarkNow && dummyRes != DUMMY_MATCH) { *status = LZMA_STATUS_NOT_FINISHED; return false; } bufLimit = src; } else bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX; p->buf = src; if( !LzmaDec_DecodeReal2(p, dicLimit, bufLimit) ) return false; processed = (uint32_t)(p->buf - src); (*srcLen) += processed; src += processed; inSize -= processed; } else { unsigned rem = p->tempBufSize, lookAhead = 0; while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize) p->tempBuf[rem++] = src[lookAhead++]; p->tempBufSize = rem; if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) { int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem); if (dummyRes == DUMMY_ERROR) { (*srcLen) += lookAhead; *status = LZMA_STATUS_NEEDS_MORE_INPUT; return true; } if (checkEndMarkNow && dummyRes != DUMMY_MATCH) { *status = LZMA_STATUS_NOT_FINISHED; return false; } } p->buf = p->tempBuf; if( !LzmaDec_DecodeReal2(p, dicLimit, p->buf) ) return false; lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf)); (*srcLen) += lookAhead; src += lookAhead; inSize -= lookAhead; p->tempBufSize = 0; } } if (p->code == 0) *status = LZMA_STATUS_FINISHED_WITH_MARK; return (p->code == 0); } static bool LzmaDec_DecodeToBuf( CLzmaDec *p, uint8_t *dest, uint32_t *destLen, const uint8_t *src, uint32_t *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status ) { uint32_t outSize = *destLen; uint32_t inSize = *srcLen; *srcLen = *destLen = 0; for (;;) { uint32_t inSizeCur = inSize, outSizeCur, dicPos; ELzmaFinishMode curFinishMode; bool res; if (p->dicPos == p->dicBufSize) p->dicPos = 0; dicPos = p->dicPos; if (outSize > p->dicBufSize - dicPos) { outSizeCur = p->dicBufSize; curFinishMode = LZMA_FINISH_ANY; } else { outSizeCur = dicPos + outSize; curFinishMode = finishMode; } res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status); src += inSizeCur; inSize -= inSizeCur; *srcLen += inSizeCur; outSizeCur = p->dicPos - dicPos; memcpy(dest, p->dic + dicPos, outSizeCur); dest += outSizeCur; outSize -= outSizeCur; *destLen += outSizeCur; if( !res ) return false; if (outSizeCur == 0 || outSize == 0) return true; } } static void LzmaDec_Free(CLzmaDec *p) { LZMA_FREE( p->dic ); LZMA_FREE( p->probs ); } static bool LzmaDec_Init(CLzmaDec *p, const uint8_t *raw_props) { uint32_t i; uint8_t d = raw_props[0]; p->lc = d % 9; d /= 9; p->pb = d / 5; p->lp = d % 5; p->dicBufSize = raw_props[1] | ((uint32_t)raw_props[2] << 8) | ((uint32_t)raw_props[3] << 16) | ((uint32_t)raw_props[4] << 24); if (p->dicBufSize < min_dictionary_size) p->dicBufSize = min_dictionary_size; p->numProbs = LzmaProps_GetNumProbs(p); p->probs = (int *)LZMA_MALLOC(p->numProbs * sizeof(int)); if( !p->probs ) return false; p->dic = (uint8_t *)LZMA_MALLOC(p->dicBufSize); if (p->dic == 0) { LZMA_FREE( p->probs ); return false; } p->dicPos = 0; p->needFlush = true; p->remainLen = 0; p->tempBufSize = 0; p->processedPos = 0; p->checkDicSize = 0; for( i = 0; i < p->numProbs; ++i ) p->probs[i] = kBitModelTotal >> 1; p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1; p->state = 0; return true; } // glue.c static #ifdef _MSC_VER __declspec(thread) #else __thread #endif struct { uint8_t *begin, *seek, *end; } memfd[2]; /* Returns the number of bytes really read. If (returned value < size) and (errno == 0), means EOF was reached. */ static int readblock( const int fd, uint8_t * buf, int size ) { int avail = (memfd[fd].end - memfd[fd].seek); if( size > avail ) size = avail; memcpy(buf, memfd[fd].seek, size); memfd[fd].seek += size; errno = 0; return size; } /* Returns the number of bytes really written. If (returned value < size), it is always an error. */ static int writeblock( const int fd, const uint8_t *buf, int size ) { int avail = (memfd[fd].end - memfd[fd].seek); if( size > avail ) size = avail; memcpy(memfd[fd].seek, buf, size); memfd[fd].seek += size; errno = 0; return size; } // Customized compression modes. // Lower modes are optimized for low-mem devices. Uber modes A-B-C require *lots of RAM*. static const struct lzma_options { int dictionary_size; /* [4 KiB .. 512 MiB] */ int match_len_limit; /* [5 .. 273] */ } lzma_mappings[] = { // lowmem+fastest modes { 1 << 12, 5 }, // 0 - 39973598 lzma 39.97% c:13.635s d:2.909s { 1 << 16, 6 }, // 1 - 34979790 lzma 34.98% c:19.151s d:2.427s { 1 << 19, 7 }, // 2 - 32881806 lzma 32.88% c:25.592s d:1.907s { 1 << 20, 8 }, // 3 - 31908622 lzma 31.91% c:32.189s d:1.827s { 3 << 19, 10 }, // 4 - 30704458 lzma 30.70% c:40.736s d:1.747s { 1 << 21, 16 }, // 5 - 28807777 lzma 28.81% c:55.690s d:1.645s { 3 << 20, 20 }, // 6 - 28100304 lzma 28.10% c:63.734s d:1.614s { 1 << 22, 28 }, // 7 - 27594705 lzma 27.59% c:72.234s d:1.604s { 1 << 23, 36 }, // 8 - 27051139 lzma 27.05% c:79.418s d:1.586s { 1 << 24, 68 }, // 9 - 26702913 lzma 26.70% c:87.800s d:1.573s { 3 << 23, 132 }, // A - 26667550 lzma 26.67% c:89.020s d:1.581s { 1 << 25, 273 }, // B - 26656366 lzma 26.66% c:89.586s d:1.607s { 1 << 26, 273 }, // C - 26656366 lzma 26.66% c:90.004s d:1.586s // himem+slowest modes }; unsigned lzma_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..9]*/) { uint8_t level = (uint8_t)(flags > 9 ? 9 : flags); int i = 0; memfd[i].begin = memfd[i].seek = memfd[i].end = (uint8_t*)in; memfd[i].end += inlen; int o = 1; memfd[o].begin = memfd[o].seek = memfd[o].end = (uint8_t*)out; memfd[o].end += outlen; writeblock(o, &level, 1); // write 1-byte header struct lzma_options encoder_options = lzma_mappings[level]; CLzmaEncHandle handle = LzmaEnc_Init( encoder_options.dictionary_size, encoder_options.match_len_limit, i, o ); int ok = SZ_OK == LzmaEnc_Encode(handle); LzmaEnc_Free(handle); return ok ? (int)(memfd[o].seek - memfd[o].begin) : 0; } unsigned lzma_decode(const void *in_, unsigned inlen, void *out, unsigned outlen) { const uint8_t *in = (const uint8_t*)in_; // parse 1-byte header uint8_t level = *in++; --inlen; // -d{N}: set dictionary size - [12, 30], default: 23 (8MB) // -fb{N}: set number of fast bytes - [5, 273], default: 128 // -mc{N}: set number of cycles for match finder // -lc{N}: set number of literal context bits - [0, 8], default: 3 // -lp{N}: set number of literal pos bits - [0, 4], default: 0 // -pb{N}: set number of pos bits - [0, 4], default: 2 // -mf{MF_ID}: set Match Finder: [bt2, bt3, bt4, hc4], default: bt4 #pragma pack(push,1) struct { uint8_t d /*d=lc/pb/lp*/; uint32_t dsize; uint64_t rawsize; } props = {0}; #pragma pack(pop) props.d = 0x5D; props.dsize = lzma_mappings[level].dictionary_size; CLzmaDec dec; ELzmaStatus status; LzmaDec_Init(&dec, &props.d); uint32_t srcLen = (uint32_t)inlen, destLen = (uint32_t)outlen; bool ok = LzmaDec_DecodeToBuf(&dec, (uint8_t*)out, &destLen, in, &srcLen, LZMA_FINISH_ANY, &status); LzmaDec_Free(&dec); return (unsigned)(ok ? destLen : 0); } unsigned lzma_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen * 1.1) + 16; // @todo: check src } unsigned lzma_excess(unsigned flags) { return (unsigned)(0); } #endif // LZMA_C #ifdef LZMA_DEMO //#pragma once int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level = 1; char out[128]; unsigned outlen = lzma_encode(longcopy, strlen(longcopy)+1, out, 128, level ); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; unsigned unpacked = lzma_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // LZMA_DEMO //#line 1 "amalgamated_lzp1.c" /*********** Direct port of the old lzp1.c code to a single file header. This is not the best way to make fast compressors on modern hardware and this is by no means a modern competitive compressor. Also, zlib licensed is not strictly public domain, but pretty close terms :o) ----------- Copyright (c) 2019, @r-lyeh Copyright (c) 1998-2012, Charles Bloom This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************/ unsigned lzp1_encode(const void* in, unsigned inlen, void* out, unsigned outlen, unsigned flags); unsigned lzp1_decode(const void* in, unsigned inlen, void* out, unsigned outlen); unsigned lzp1_bounds(unsigned inlen, unsigned flags); unsigned lzp1_excess(unsigned flags); #ifdef LZP1_C //#pragma once #include #define LZP1_BOUNDS(sz) ((sz)+((sz)/8)+256) #define LZP1_EXCESS 256 #define LZP1_HASH_SIZE (1<<16) #define LZP1_HASH(x,y,z) ((x ^ (y << 7) ^ (z<<11)) & 0xFFFF) static int lzp1_encode_(const uint8_t *raw,int rawLen,uint8_t * comp,int compLen) { uint8_t const *table[LZP1_HASH_SIZE]; for(int ix=0;ix= 0xFF ) { *cp++ = 0xFF; ml -= 0xFF; } *cp++ = (uint8_t)ml; } else { // match 10 ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(0); } } else { // match 9 ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(1); } } else { // match 8 ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(0); } } else { // match 7 ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(1); } } else { // match 6 ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(0); } } else { // match 5 ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(1); } } else { // match 4 ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(0); } } else { // match 3 ENC_SHIFT_CONTROL(1); ENC_SHIFT_CONTROL(0); } } else { // match 2 ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(1); } } else { //match 1 ENC_SHIFT_CONTROL(0); ENC_SHIFT_CONTROL(0); } } } } //flush the control while( controlb > 0 ) { control += control; controlb--; } *controlp = (uint8_t)control; return (int)(cp - comp); } static int lzp1_decode_(const uint8_t * comp,int compLen,uint8_t * raw,int rawLen) { uint8_t const *table[LZP1_HASH_SIZE]; for(int ix=0;ix> 8) << 8) | excess; } unsigned lzp1_encode(const void* in, unsigned inlen, void* out, unsigned outlen, unsigned flags) { return (unsigned)lzp1_encode_((const uint8_t*)in, (int)inlen, (uint8_t*)out, (int)outlen); } unsigned lzp1_decode(const void* in, unsigned inlen, void* out, unsigned outlen) { return (unsigned)lzp1_decode_((const uint8_t*)in, (int)inlen, (uint8_t*)out, (int)outlen); } unsigned lzp1_bounds(unsigned inlen, unsigned flags) { return (unsigned)LZP1_BOUNDS(inlen); } unsigned lzp1_excess(unsigned flags) { return (unsigned)LZP1_EXCESS; } #endif // LZP1_C #ifdef LZP1_DEMO //#pragma once int main(int argc, char** argv) { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; char out[128]; int outlen = lzp1_encode(longcopy, strlen(longcopy)+1, out, 128); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, outlen); char redo[128 + 256]; int unpacked = lzp1_decode(out, outlen, redo, 128); printf("%d->%d %s\n", outlen, unpacked, redo); } #define main main__ #endif // LZP1_DEMO //#line 1 "amalgamated_lzrw3a.c" // Author : Ross Williams. Date : 15-Jul-1991. Release : 1. // Modified by @r-lyeh. // // This file contains an implementation of the LZRW3-A data compression // algorithm in the C programming language. // 1 Algorithm is free of patent problems. The algorithm has not been // patented (nor will it be) and is of the LZ77 class which is fairly // clear of patents. // 2 This implementation in C is in the public domain. unsigned lzrw3a_encode(const void* in, unsigned inlen, void* out, unsigned outlen, unsigned flags); unsigned lzrw3a_decode(const void* in, unsigned inlen, void* out, unsigned outlen); unsigned lzrw3a_bounds(unsigned inlen, unsigned flags); unsigned lzrw3a_excess(unsigned flags); #ifdef LZRW3A_C //#pragma once #include #include #define MEM_REQ ( HASH_TABLE_LENGTH*sizeof(uint8_t *) + 16 ) // 16 = ALIGNMENT_FUDGE #define FLAG_BYTES 4 #define FLAG_PACKESS 0 #define FLAG_COPY 1 #define ALIGN_UP(X) ((((uintptr_t)X)+3)&~3) #define MAX_RAW_ITEM (18) #define MAX_RAW_GROUP (16*MAX_RAW_ITEM) #define MAX_CMP_GROUP (2+16*2) #define HASH_TABLE_LENGTH (4096) #define HASH_TABLE_DEPTH_BITS (3) #define PARTITION_LENGTH_BITS (12-HASH_TABLE_DEPTH_BITS) #define PARTITION_LENGTH (1<>4) & HASH_MASK) \ << HASH_TABLE_DEPTH_BITS \ ) #define UPDATE_P(P_BASE,NEWPTR) \ {(P_BASE)[cycle++]=(NEWPTR); cycle&=DEPTH_MASK;} #define UPDATE_I(I_BASE,NEWPTR) \ {hash[(I_BASE)+cycle++]=(NEWPTR); cycle&=DEPTH_MASK;} #define ANY_HASH_INDEX (0) static void lzrw3a_compress(uint8_t* p_wrk_mem, uint8_t* p_src_first, uint32_t src_len, uint8_t* p_dst_first, size_t* p_dst_len) { uint8_t* p_src = p_src_first; uint8_t* p_dst = p_dst_first; uint8_t* p_src_post = p_src_first + src_len; uint8_t* p_dst_post = p_dst_first + src_len; uint8_t* p_src_max1 = p_src_first + src_len - MAX_RAW_ITEM; uint8_t* p_src_max16 = p_src_first + src_len - MAX_RAW_ITEM * 16; #define TOPWORD 0xFFFF0000 uint8_t* p_control; uint32_t control = TOPWORD; uint8_t** hash = (uint8_t**)ALIGN_UP(p_wrk_mem); uint8_t** p_h1 = 0; uint8_t** p_h2 = 0; unsigned cycle = 0; *p_dst++ = FLAG_PACKESS; {unsigned i; for (i = 2; i <= FLAG_BYTES; i++) *p_dst++ = 0; } p_control = p_dst; p_dst += 2; {unsigned i; uint8_t** p_h = hash; #define ZH *p_h++=START_STRING_18 for (i = 0; i < 256; i++) { ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; ZH; } } while (1) { uint8_t* p_ziv = 0; unsigned unroll; unsigned index; uint8_t** p_h0; register unsigned d; register unsigned bestlen; register unsigned bestpos; if (p_dst > p_dst_post) goto overrun; unroll = 16; if (p_src > p_src_max16) { unroll = 1; if (p_src > p_src_max1) { if (p_src == p_src_post) break; else { p_h0 = &hash[ANY_HASH_INDEX]; goto literal; } } } begin_unrolled_loop: p_ziv = p_src; index = HASH(p_src); p_h0 = &hash[index]; bestlen = 0; bestpos = 0; for (d = 0; d < HASH_TABLE_DEPTH; d++) { register uint8_t* s = p_src; register uint8_t* p = p_h0[d]; register unsigned len; if (s[bestlen] == p[bestlen]) { #define PS *p++!=*s++ PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || s++; len = s - p_src - 1; if (len > bestlen) { bestpos = d; bestlen = len; } } } if (bestlen < 3) { literal: *p_dst++ = *p_src++; control &= 0xFFFEFFFF; if (p_h2 != 0) { UPDATE_P(p_h2, p_ziv - 2); } p_h2 = p_h1; p_h1 = p_h0; } else { index += bestpos; *p_dst++ = ((index & 0xF00) >> 4) | (bestlen - 3); *p_dst++ = index & 0xFF; p_src += bestlen; if (p_h1 != 0) { if (p_h2 != 0) { UPDATE_P(p_h2, p_ziv - 2); p_h2 = 0; } UPDATE_P(p_h1, p_ziv - 1); p_h1 = 0; } UPDATE_P(p_h0, p_ziv); } control >>= 1; if (--unroll) goto begin_unrolled_loop; if ((control & TOPWORD) == 0) { *p_control++ = control & 0xFF; *p_control = (control >> 8) & 0xFF; p_control = p_dst; p_dst += 2; control = TOPWORD; } } while (control & TOPWORD) control >>= 1; *p_control++ = control & 0xFF; *p_control++ = (control >> 8) & 0xFF; if (p_control == p_dst) p_dst -= 2; *p_dst_len = p_dst - p_dst_first; return; overrun: *p_dst_first = FLAG_COPY; memcpy(p_dst_first + FLAG_BYTES, p_src_first, src_len); *p_dst_len = src_len + FLAG_BYTES; } static void lzrw3a_decompress(uint8_t* p_wrk_mem, uint8_t* p_src_first, uint32_t src_len, uint8_t* p_dst_first, size_t* p_dst_len) { register uint8_t* p_src = p_src_first + FLAG_BYTES; register uint8_t* p_dst = p_dst_first; uint8_t* p_src_post = p_src_first + src_len; uint8_t* p_src_max16 = p_src_first + src_len - (MAX_CMP_GROUP - 2); uint8_t** hash = (uint8_t**)ALIGN_UP(p_wrk_mem); register uint32_t control = 1; register unsigned literals = 0; unsigned cycle = 0; if (*p_src_first == FLAG_COPY) { memcpy(p_dst_first, p_src_first + FLAG_BYTES, src_len - FLAG_BYTES); *p_dst_len = src_len - FLAG_BYTES; return; } {unsigned i; uint8_t** p_h = hash; #define ZJ *p_h++=START_STRING_18 for (i = 0; i < 256; i++) { ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; ZJ; } } while (p_src != p_src_post) { register unsigned unroll; if (control == 1) { control = 0x10000 | *p_src++; control |= (*p_src++) << 8; } unroll = p_src <= p_src_max16 ? 16 : 1; while (unroll--) { if (control & 1) { register uint8_t* p; register unsigned lenmt; register uint8_t* p_ziv = p_dst; register unsigned index; lenmt = *p_src++; index = ((lenmt & 0xF0) << 4) | *p_src++; p = hash[index]; lenmt &= 0xF; *p_dst++ = *p++; *p_dst++ = *p++; *p_dst++ = *p++; while (lenmt--) *p_dst++ = *p++; if (literals > 0) { register uint8_t* r = p_ziv - literals;; UPDATE_I(HASH(r), r); if (literals == 2) { r++; UPDATE_I(HASH(r), r); } literals = 0; } UPDATE_I(index & (~DEPTH_MASK), p_ziv); } else { *p_dst++ = *p_src++; if (++literals == 3) { register uint8_t* p = p_dst - 3; UPDATE_I(HASH(p), p); literals = 2; } } control >>= 1; } } *p_dst_len = p_dst - p_dst_first; } unsigned lzrw3a_encode(const void* in, unsigned inlen, void* out, unsigned outlen, unsigned flags) { uint8_t workmem[MEM_REQ]; size_t outlen_ = outlen; lzrw3a_compress(workmem, (uint8_t*)in, inlen, (uint8_t*)out, &outlen_); return (unsigned)outlen_; } unsigned lzrw3a_decode(const void* in, unsigned inlen, void* out, unsigned outlen) { uint8_t workmem[MEM_REQ]; size_t outlen_ = outlen; lzrw3a_decompress(workmem, (uint8_t*)in, inlen, (uint8_t*)out, &outlen_); return (unsigned)outlen_; } unsigned lzrw3a_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen * 1.1) + 16; // @todo: check src } unsigned lzrw3a_excess(unsigned flags) { return (unsigned)0; } #endif // LZRW3A_C #ifdef LZRW3A_DEMO //#pragma once #include int main() { const char* longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level = 1; char out[128]; size_t outlen = lzrw3a_encode(longcopy, strlen(longcopy) + 1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy) + 1, (int)outlen); char redo[128]; size_t unpacked = lzrw3a_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // LZRW3A_DEMO //#line 1 "amalgamated_lzss.c" /************************************************************** LZSS.C -- A Data Compression Program *************************************************************** 4/ 6/1989 Haruhiko Okumura 30/12/2019 @r-lyeh Use, distribute, and modify this program freely. **************************************************************/ unsigned lzss_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); unsigned lzss_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned lzss_bounds(unsigned bytes, unsigned flags); unsigned lzss_excess(unsigned flags); #ifdef LZSS_C //#pragma once #include #include #include #define N 4096 /* size of ring buffer */ #define F 18 /* upper limit for match_length */ #define THRESHOLD 2 /* encode string into position and length if match_length is greater than this */ #define NIL N /* index for root of binary search trees */ /* of longest match. These are set by the InsertNode() procedure. */ static int match_position; static int match_length; static void InsertNode(unsigned char* text_buf, int* lson, int* rson, int* dad, int r) /* Inserts string of length F, text_buf[r..r+F-1], into one of the trees (text_buf[r]'th tree) and returns the longest-match position and length via the global variables match_position and match_length. If match_length = F, then removes the old node in favor of the new one, because the old one will be deleted sooner. Note r plays double role, as tree node and position in buffer. */ { int i, p, cmp; unsigned char *key; cmp = 1; key = &text_buf[r]; p = N + 1 + key[0]; rson[r] = lson[r] = NIL; match_length = 0; for ( ; ; ) { if (cmp >= 0) { if (rson[p] != NIL) p = rson[p]; else { rson[p] = r; dad[r] = p; return; } } else { if (lson[p] != NIL) p = lson[p]; else { lson[p] = r; dad[r] = p; return; } } for (i = 1; i < F; i++) if ((cmp = key[i] - text_buf[p + i]) != 0) break; if (i > match_length) { match_position = p; if ((match_length = i) >= F) break; } } dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p]; dad[lson[p]] = r; dad[rson[p]] = r; if (rson[dad[p]] == p) rson[dad[p]] = r; else lson[dad[p]] = r; dad[p] = NIL; /* remove p */ } static void DeleteNode(int* lson, int* rson, int* dad, int p) /* deletes node p from tree */ { int q; if (dad[p] == NIL) return; /* not in tree */ if (rson[p] == NIL) q = lson[p]; else if (lson[p] == NIL) q = rson[p]; else { q = lson[p]; if (rson[q] != NIL) { do { q = rson[q]; } while (rson[q] != NIL); rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q]; lson[q] = lson[p]; dad[lson[p]] = q; } rson[q] = rson[p]; dad[rson[p]] = q; } dad[q] = dad[p]; if (rson[dad[p]] == p) rson[dad[p]] = q; else lson[dad[p]] = q; dad[p] = NIL; } #define _get(c) \ if (! ilen) {\ c = -1; /*EOF;*/ \ break;\ }\ c = *istr;\ ++istr;\ --ilen #define _put(c) \ *ostr = c;\ ++ostr;\ --olen size_t LzssEncode(const char* istr, size_t ilen, char* ostr, size_t olen) { int i, c, len, r, s, last_match_length, code_buf_ptr; unsigned char code_buf[17], mask; size_t codesize = 0; int lson[N + 1], rson[N + 257], dad[N + 1]; /* left & right children & parents -- These constitute binary search trees. */ unsigned char text_buf[N + F - 1]; /* ring buffer of size N, with extra F-1 bytes to facilitate string comparison */ match_position = 0; match_length = 0; if (ilen == 0) return 0; /* initialize trees */ /* For i = 0 to N - 1, rson[i] and lson[i] will be the right and left children of node i. These nodes need not be initialized. Also, dad[i] is the parent of node i. These are initialized to NIL (= N), which stands for 'not used.' For i = 0 to 255, rson[N + i + 1] is the root of the tree for strings that begin with character i. These are initialized to NIL. Note there are 256 trees. */ for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; for (i = 0; i < N; i++) dad[i] = NIL; code_buf[0] = 0; /* code_buf[1..16] saves eight units of code, and code_buf[0] works as eight flags, "1" representing that the unit is an unencoded letter (1 byte), "0" a position-and-length pair (2 bytes). Thus, eight units require at most 16 bytes of code. */ code_buf_ptr = mask = 1; s = 0; r = N - F; for (i = s; i < r; i++) text_buf[i] = 0; /* Clear the buffer with any character that will appear often. */ for (len = 0; len < F && ilen; len++) { _get(c); text_buf[r + len] = c; /* Read F bytes into the last F bytes of the buffer */ } for (i = 1; i <= F; i++) InsertNode(text_buf, lson, rson, dad, r - i); /* Insert the F strings, each of which begins with one or more 'space' characters. Note the order in which these strings are inserted. This way, degenerate trees will be less likely to occur. */ InsertNode(text_buf, lson, rson, dad, r); /* Finally, insert the whole string just read. The global variables match_length and match_position are set. */ do { if (match_length > len) match_length = len; /* match_length may be spuriously long near the end of text. */ if (match_length <= THRESHOLD) { match_length = 1; /* Not long enough match. Send one byte. */ code_buf[0] |= mask; /* 'send one byte' flag */ code_buf[code_buf_ptr++] = text_buf[r]; /* Send uncoded. */ } else { code_buf[code_buf_ptr++] = (unsigned char) match_position; code_buf[code_buf_ptr++] = (unsigned char) (((match_position >> 4) & 0xf0) | (match_length - (THRESHOLD + 1))); /* Send position and length pair. Note match_length > THRESHOLD. */ } if ((mask <<= 1) == 0) { /* Shift mask left one bit. */ for (i = 0; i < code_buf_ptr; i++) { /* Send at most 8 units of */ _put(code_buf[i]); /* code together */ } codesize += code_buf_ptr; code_buf[0] = 0; code_buf_ptr = mask = 1; } last_match_length = match_length; for (i = 0; i < last_match_length && ilen; i++) { _get(c); DeleteNode(lson, rson, dad, s); /* Delete old strings and */ text_buf[s] = c; /* read new bytes */ if (s < F - 1) text_buf[s + N] = c; /* If the position is near the end of buffer, extend the buffer to make string comparison easier. */ s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); /* Since this is a ring buffer, increment the position modulo N. */ InsertNode(text_buf, lson, rson, dad, r); /* Register the string in text_buf[r..r+F-1] */ } while (i++ < last_match_length) { /* After the end of text, */ DeleteNode(lson, rson, dad, s); /* no need to read, but */ s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); if (--len) InsertNode(text_buf, lson, rson, dad, r); /* buffer may not be empty. */ } } while (len > 0); /* until length of string to be processed is zero */ if (code_buf_ptr > 1) { /* Send remaining code. */ for (i = 0; i < code_buf_ptr; i++) { _put(code_buf[i]); } codesize += code_buf_ptr; } return codesize; } #undef _put #define _put(c) \ *ostr++ = c; size_t LzssDecode(const unsigned char* istr, size_t ilen, char *ostr, size_t olen) /* Just the reverse of Encode(). */ { unsigned char text_buf[N + F - 1]; /* ring buffer of size N, with extra F-1 bytes to facilitate string comparison */ int i, j, k, r, c; unsigned int flags; int limit = ilen; char *obak = ostr; for (i = 0; i < N - F; i++) text_buf[i] = 0; r = N - F; flags = 0; for ( ; ; ) { if (((flags >>= 1) & 256) == 0) { _get(c); flags = c | 0xff00; /* uses higher byte cleverly */ } /* to count eight */ if (flags & 1) { _get(c); _put(c); text_buf[r++] = c; r &= (N - 1); } else { _get(i); _get(j); i |= ((j & 0xf0) << 4); j = (j & 0x0f) + THRESHOLD; for (k = 0; k <= j; k++) { c = text_buf[(i + k) & (N - 1)]; _put(c); text_buf[r++] = c; r &= (N - 1); } } } return (size_t)(ostr - obak); } #undef _get #undef _put #undef N #undef F #undef THRESHOLD #undef NIL unsigned lzss_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags) { size_t rc = LzssEncode((const char*)in, (size_t)inlen, (char*)out, (size_t)outlen); return (unsigned)rc; } unsigned lzss_decode(const void *in, unsigned inlen, void *out, unsigned outlen) { size_t rc = LzssDecode((const unsigned char*)in, (size_t)inlen, (char*)out, (size_t)outlen); return (unsigned)rc; } unsigned lzss_bounds(unsigned bytes, unsigned flags) { return (unsigned)(bytes * 1.5) + 16; // @todo: check src } unsigned lzss_excess(unsigned flags) { return (unsigned)0; } #endif // LZSS_C #ifdef LZSS_DEMO //#pragma once #include int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level=1; char out[128]; size_t outlen = lzss_encode(longcopy, strlen(longcopy)+1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; size_t unpacked = lzss_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // LZSS_DEMO //#line 1 "amalgamated_ppp.c" // pred.c -- Original code by Dave Rand's rendition of the predictor algorithm. // Updated by: Ian Donaldson, Carsten Bormann. Additional modifications by @r-lyeh. // // There are no license fees or costs associated with using the Predictor algorithm. // Use the following code at your own risk. unsigned ppp_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); unsigned ppp_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned ppp_bounds(unsigned inlen, unsigned flags); unsigned ppp_excess(unsigned flags); #ifdef PPP_C //#pragma once #include #include #include /* The following hash code is the heart of the algorithm: * It builds a sliding hash sum of the previous 3-and-a-bit * characters which will be used to index the guess table. * A better hash function would result in additional compression, * at the expense of time. */ // original. enwik8: 61.730.508 c:0.729s d:0.453s //#define PPP_HASH_TYPE unsigned short //#define PPP_HASH_TABLE (65536) //#define PPP_HASH(x) Hash = (Hash << 4) ^ (x) // // improved. enwik8: 58.769.363 c:0.772s d:0.490s #define PPP_HASH_TYPE unsigned int #define PPP_HASH_TABLE (1<<18) // 256K #define PPP_HASH(x) Hash = ((Hash * 160) ^ (x)) & (PPP_HASH_TABLE-1) // see: https://encode.su/threads/1025-PREDICTOR-algorithm static int ppp_compress(const unsigned char *source, int slen, unsigned char *dest, int dlen) { PPP_HASH_TYPE Hash = 0; unsigned char GuessTable[PPP_HASH_TABLE] = {0}; unsigned char *orgdest = dest; while (slen) { unsigned char *flagdest = dest++, flags = 0; /* All guess wrong initially */ for (int bitmask=1, i=0; i < 8 && slen; i++, bitmask <<= 1) { if (GuessTable[Hash] != *source) { GuessTable[Hash] = *source; *dest++ = *source; /* Guess wrong, output char */ } else { flags |= bitmask; /* Guess was right - don't output */ } PPP_HASH(*source++);slen--; } *flagdest = flags; } return(dest - orgdest); } static int ppp_decompress(const unsigned char *source, int slen, unsigned char *dest, int dlen) { int final = 1; PPP_HASH_TYPE Hash = 0; unsigned char GuessTable[PPP_HASH_TABLE] = {0}; unsigned char *orgdest = dest; while (slen >= 9) { unsigned char flags = *source++; for (int i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) { if (!(flags & bitmask)) { GuessTable[Hash] = *source; /* Guess wrong */ *dest = *source++; /* Read from source */ slen--; } else { *dest = GuessTable[Hash]; /* Guess correct */ } PPP_HASH(*dest++); } slen--; } while (final && slen > 0) { unsigned char flags = *source++; slen--; for (int i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) { if (!(flags & bitmask)) { if (!slen) break; /* we seem to be really done -- cabo */ GuessTable[Hash] = *source; /* Guess wrong */ *dest = *source++; /* Read from source */ slen--; } else { *dest = GuessTable[Hash]; /* Guess correct */ } PPP_HASH(*dest++); } } return (dest - orgdest); // len } unsigned ppp_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags) { return (unsigned)ppp_compress((const unsigned char *)in, (int)inlen, (unsigned char *)out, (int)outlen); } unsigned ppp_decode(const void *in, unsigned inlen, void *out, unsigned outlen) { return (unsigned)ppp_decompress((const unsigned char *)in, (int)inlen, (unsigned char *)out, (int)outlen); } unsigned ppp_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen/8*9+9); } unsigned ppp_excess(unsigned flags) { return (unsigned)0; } #endif // PPP_C #ifdef PPP_DEMO //#pragma once #include int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level = 0; char out[128]; unsigned outlen = ppp_encode(longcopy, strlen(longcopy)+1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; unsigned unpacked = ppp_decode(out, outlen, redo, 128); printf("%d->%d %s\n", outlen, unpacked, redo); } #define main main__ #endif // PPP_DEMO //#line 1 "amalgamated_raw.c" // raw memcpy de/encoder // - rlyeh, public domain #ifndef RAW_H #define RAW_H unsigned raw_encode(const void *in, unsigned inlen, void *out, unsigned outcap, unsigned flags); unsigned raw_decode(const void *in, unsigned inlen, void *out, unsigned outcap); unsigned raw_bounds(unsigned bytes, unsigned flags); unsigned raw_excess(unsigned flags); #endif #ifdef RAW_C //#pragma once #include unsigned raw_encode(const void *in, unsigned inlen, void *out, unsigned outcap, unsigned flags) { return memcpy(out, in, inlen), inlen; } unsigned raw_decode(const void *in, unsigned inlen, void *out, unsigned outcap) { return memcpy(out, in, inlen), inlen; } unsigned raw_bounds(unsigned bytes, unsigned flags) { return (unsigned)bytes; } unsigned raw_excess(unsigned flags) { return (unsigned)0; } #endif //#line 1 "amalgamated_ulz.c" // ULZ.HPP - An ultra-fast LZ77 compressor // Original C++ code written and placed in the public domain by Ilya Muravyov (UNLICENSED) // Modified by r-lyeh (UNLICENSED) unsigned ulz_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags); // [0..(6)..9] unsigned ulz_decode(const void *in, unsigned inlen, void *out, unsigned outlen); unsigned ulz_bounds(unsigned inlen, unsigned flags); unsigned ulz_excess(unsigned flags); #ifdef ULZ_C //#pragma once #include #include #ifndef ULZ_REALLOC #define ULZ_REALLOC REALLOC #endif enum { ULZ_EXCESS=16, ULZ_WINDOW_BITS=17, // Hard-coded ULZ_WINDOW_SIZE=1<>(32-ULZ_HASH_BITS); } static inline void EncodeMod(uint8_t** p, uint32_t x) { while (x>=128) { x-=128; *(*p)++=128+(x&127); x>>=7; } *(*p)++=x; } static inline uint32_t DecodeMod(const uint8_t** p) { uint32_t x=0; for (int i=0; i<=21; i+=7) { const uint32_t c=*(*p)++; x+=c<HashTable[i]=ULZ_NIL; uint8_t* op=out; int anchor=0; int p=0; while (p=ULZ_MIN_MATCH) { const int limit=(p-ULZ_WINDOW_SIZE) > ULZ_NIL ? (p-ULZ_WINDOW_SIZE) : ULZ_NIL; const uint32_t h=Hash32(&in[p]); int s=u->HashTable[h]; u->HashTable[h]=p; if (s>limit && UnalignedLoad32(&in[s])==UnalignedLoad32(&in[p])) { int len=ULZ_MIN_MATCH; while (len=(7+128)) best_len=0; if (best_len>=ULZ_MIN_MATCH) { const int len=best_len-ULZ_MIN_MATCH; const int token=((dist>>12)&16)+(len < 15 ? len : 15); if (anchor!=p) { const int run=p-anchor; if (run>=7) { *op++=(7<<5)+token; EncodeMod(&op, run-7); } else *op++=(run<<5)+token; WildCopy(op, &in[anchor], run); op+=run; } else *op++=token; if (len>=15) EncodeMod(&op, len-15); UnalignedStore16(op, dist); op+=2; anchor=p+best_len; ++p; u->HashTable[Hash32(&in[p])]=p; ++p; u->HashTable[Hash32(&in[p])]=p; ++p; u->HashTable[Hash32(&in[p])]=p; ++p; p=anchor; } else ++p; } if (anchor!=p) { const int run=p-anchor; if (run>=7) { *op++=7<<5; EncodeMod(&op, run-7); } else *op++=run<<5; WildCopy(op, &in[anchor], run); op+=run; } ULZ_REALLOC(u, 0); return op-out; } static int UlzCompress(const uint8_t* in, int inlen, uint8_t* out, int outlen, int level) { if (level<1 || level>9) return 0; const int max_chain=(level<9)?1<HashTable[i]=ULZ_NIL; uint8_t* op=out; int anchor=0; int p=0; while (p=ULZ_MIN_MATCH) { const int limit=(p-ULZ_WINDOW_SIZE) > ULZ_NIL ? (p-ULZ_WINDOW_SIZE) : ULZ_NIL; int chainlen=max_chain; int s=u->HashTable[Hash32(&in[p])]; while (s>limit) { if (in[s+best_len]==in[p+best_len] && UnalignedLoad32(&in[s])==UnalignedLoad32(&in[p])) { int len=ULZ_MIN_MATCH; while (lenbest_len) { best_len=len; dist=p-s; if (len==max_match) break; } } if (--chainlen==0) break; s=u->Prev[s&ULZ_WINDOW_MASK]; } } if (best_len==ULZ_MIN_MATCH && (p-anchor)>=(7+128)) best_len=0; if (level>=5 && best_len>=ULZ_MIN_MATCH && best_len ULZ_NIL ? (x-ULZ_WINDOW_SIZE) : ULZ_NIL; int chainlen=max_chain; int s=u->HashTable[Hash32(&in[x])]; while (s>limit) { if (in[s+best_len]==in[x+best_len] && UnalignedLoad32(&in[s])==UnalignedLoad32(&in[x])) { int len=ULZ_MIN_MATCH; while (lenPrev[s&ULZ_WINDOW_MASK]; } } if (best_len>=ULZ_MIN_MATCH) { const int len=best_len-ULZ_MIN_MATCH; const int token=((dist>>12)&16)+(len < 15 ? len : 15); if (anchor!=p) { const int run=p-anchor; if (run>=7) { *op++=(7<<5)+token; EncodeMod(&op, run-7); } else *op++=(run<<5)+token; WildCopy(op, &in[anchor], run); op+=run; } else *op++=token; if (len>=15) EncodeMod(&op, len-15); UnalignedStore16(op, dist); op+=2; while (best_len--!=0) { const uint32_t h=Hash32(&in[p]); u->Prev[p&ULZ_WINDOW_MASK]=u->HashTable[h]; u->HashTable[h]=p++; } anchor=p; } else { const uint32_t h=Hash32(&in[p]); u->Prev[p&ULZ_WINDOW_MASK]=u->HashTable[h]; u->HashTable[h]=p++; } } if (anchor!=p) { const int run=p-anchor; if (run>=7) { *op++=7<<5; EncodeMod(&op, run-7); } else *op++=run<<5; WildCopy(op, &in[anchor], run); op+=run; } ULZ_REALLOC(u, 0); return op-out; } static int UlzDecompress(const uint8_t* in, int inlen, uint8_t* out, int outlen) { uint8_t* op=out; const uint8_t* ip=in; const uint8_t* ip_end=ip+inlen; const uint8_t* op_end=op+outlen; while (ip=32) { int run=token>>5; if (run==7) run+=DecodeMod(&ip); if ((op_end-op)=ip_end) break; } int len=(token&15)+ULZ_MIN_MATCH; if (len==(15+ULZ_MIN_MATCH)) len+=DecodeMod(&ip); if ((op_end-op)=8) { WildCopy(op, cp, len); op+=len; } else { *op++=*cp++; *op++=*cp++; *op++=*cp++; *op++=*cp++; while (len--!=4) *op++=*cp++; } } return (ip==ip_end)?op-out:0; } unsigned ulz_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags) { int level = flags > 9 ? 9 : flags; // [0..(6)..9] int rc = level ? UlzCompress((uint8_t *)in, (int)inlen, (uint8_t *)out, (int)outlen, level) : UlzCompressFast((uint8_t *)in, (int)inlen, (uint8_t *)out, (int)outlen); return (unsigned)rc; } unsigned ulz_decode(const void *in, unsigned inlen, void *out, unsigned outlen) { return (unsigned)UlzDecompress((uint8_t *)in, (int)inlen, (uint8_t *)out, (int)outlen); } unsigned ulz_bounds(unsigned inlen, unsigned flags) { return (unsigned)(inlen + inlen/255 + 16); } unsigned ulz_excess(unsigned flags) { return (unsigned)(ULZ_EXCESS); } #endif // ULZ_C #ifdef ULZ_DEMO //#pragma once #include int main() { const char *longcopy = "Hello world! Hello world! Hello world! Hello world!"; int level=1; char out[128]; size_t outlen = ulz_encode(longcopy, strlen(longcopy)+1, out, 128, level); printf("%s %d->%d\n", outlen ? "ok" : "fail", (int)strlen(longcopy)+1, (int)outlen); char redo[128]; size_t unpacked = ulz_decode(out, outlen, redo, 128); printf("%d->%d %s\n", (int)outlen, (int)unpacked, redo); } #define main main__ #endif // ULZ_DEMO //#line 1 "amalgamated_pack.c" #ifdef COMPRESS_C //#pragma once #include #ifdef _MSC_VER # define ftello64 _ftelli64 #elif !defined __GNUC__ # define ftello64 ftell #endif #include #include #include static struct compressor { // id of compressor unsigned enumerator; // name of compressor const char name1, *name4, *name; // returns worst case compression estimation for selected flags unsigned (*bounds)(unsigned bytes, unsigned flags); // returns number of bytes written. 0 if error. unsigned (*encode)(const void *in, unsigned inlen, void *out, unsigned outcap, unsigned flags); // returns number of excess bytes that will be overwritten when decoding. unsigned (*excess)(unsigned flags); // returns number of bytes written. 0 if error. unsigned (*decode)(const void *in, unsigned inlen, void *out, unsigned outcap); } list[] = { { RAW, '0', "raw", "raw", raw_bounds, raw_encode, raw_excess, raw_decode }, { PPP, 'p', "ppp", "ppp", ppp_bounds, ppp_encode, ppp_excess, ppp_decode }, { ULZ, 'u', "ulz", "ulz", ulz_bounds, ulz_encode, ulz_excess, ulz_decode }, { LZ4X, '4', "lz4x", "lz4x", lz4x_bounds, lz4x_encode, lz4x_excess, lz4x_decode }, { CRSH, 'c', "crsh", "crush", crush_bounds, crush_encode, crush_excess, crush_decode }, { DEFL, 'd', "defl", "deflate", deflate_bounds, deflate_encode, deflate_excess, deflate_decode }, { LZP1, '1', "lzp1", "lzp1", lzp1_bounds, lzp1_encode, lzp1_excess, lzp1_decode }, { LZMA, 'm', "lzma", "lzma", lzma_bounds, lzma_encode, lzma_excess, lzma_decode }, { BALZ, 'b', "balz", "balz", balz_bounds, balz_encode, balz_excess, balz_decode }, { LZW3, 'w', "lzw3", "lzrw3a", lzrw3a_bounds, lzrw3a_encode, lzrw3a_excess, lzrw3a_decode }, { LZSS, 's', "lzss", "lzss", lzss_bounds, lzss_encode, lzss_excess, lzss_decode }, { BCM, 'B', "bcm", "bcm", bcm_bounds, bcm_encode, bcm_excess, bcm_decode }, }; char *arc_nameof(unsigned flags) { static __thread char buf[16]; snprintf(buf, 16, "%4s.%c", list[(flags>>4)&0x0F].name4, "0123456789ABCDEF"[flags&0xF]); return buf; } unsigned mem_encode(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned compressor) { *(uint8_t*)out = compressor & 0xff; unsigned ret = list[(compressor >> 4) % NUM_COMPRESSORS].encode(in, inlen, (uint8_t*)out+1, outlen-1, compressor & 0x0F); return ret ? ret+1 : 0; } unsigned mem_decode(const void *in, unsigned inlen, void *out, unsigned outlen) { unsigned compressor = *(uint8_t*)in; return list[(compressor >> 4) % NUM_COMPRESSORS].decode((uint8_t*)in+1, inlen-1, out, outlen); } unsigned mem_bounds(unsigned inlen, unsigned compressor) { return 1 + list[(compressor >> 4) % NUM_COMPRESSORS].bounds(inlen, compressor & 0x0F); } unsigned mem_excess(unsigned compressor) { return list[(compressor >> 4) % NUM_COMPRESSORS].excess(compressor & 0x0F); } // --- // file options static uint8_t COMPRESS_FILE_BLOCK_SIZE = 23; // 2<<(BS+12) = { 8K..256M } static uint8_t COMPRESS_FILE_BLOCK_EXCESS = 0; // 16<> 4) & 3); // BLSIZE = 1ull << ((MAGIC & 15) + 13); #else if( fwrite(&COMPRESS_FILE_BLOCK_SIZE, 1,1, out) < 1) return 0; if( fwrite(&COMPRESS_FILE_BLOCK_EXCESS, 1,1, out) < 1) return 0; uint64_t BS_BYTES = 1ull << COMPRESS_FILE_BLOCK_SIZE; uint64_t BE_BYTES = 1ull << COMPRESS_FILE_BLOCK_EXCESS; #endif uint64_t total_in = 0, total_out = 0; uint8_t *inbuf, *outbuf[2]; inbuf=(uint8_t*)REALLOC(0, BS_BYTES+BE_BYTES); outbuf[0]=(uint8_t*)REALLOC(0, BS_BYTES*1.1+BE_BYTES); outbuf[1]=(uint8_t*)(cnum > 1 ? REALLOC(0, BS_BYTES*1.1+BE_BYTES) : 0); enum { BLOCK_PREVIEW_CHARS = 8 }; char best_compressors_history[BLOCK_PREVIEW_CHARS+1] = {0}, best_compressors_index = BLOCK_PREVIEW_CHARS-1; uint8_t best = 0; clock_t tm = {0}; double enctime = 0; if( logfile ) tm = clock(); { for( uint32_t inlen; (inlen=fread(inbuf, 1, BS_BYTES, in)) > 0 ; ) { uint32_t outlen[2] = {0}; best = clist[0]; for(unsigned i = 0; i < cnum; ++i) { unsigned compr = clist[i] >> 4; unsigned flags = clist[i] & 15; if(logfile) fprintf(logfile, "\r%11lld -> %11lld %4s.%c %s", (long long)(total_in+inlen), (long long)outlen[0], list[compr].name4, "0123456789ABCDEF"[flags], best_compressors_history); outlen[!!i] = list[compr].encode(inbuf, (unsigned)inlen, outbuf[!!i], BS_BYTES, flags); if(!outlen[!!i]) goto fail; if( i && outlen[1] < outlen[0]) { best = clist[i]; outlen[0] = outlen[1]; uint8_t *swap = outbuf[0]; outbuf[0] = outbuf[1]; outbuf[1] = swap; } if(logfile) fprintf(logfile, "\r%11lld -> %11lld %4s.%c %s", (long long)(total_in+inlen), (long long)outlen[0], list[compr].name4, "0123456789ABCDEF"[flags], best_compressors_history); } uint64_t final = 4 + 1 + outlen[0]; // sizeof(outlen[0]) + sizeof(compressor) + compr data double ratio = final * 100.0 / (inlen ? inlen : 1); if(!(ratio < 97 /* && ((outlen[0] - inlen) >= 64*1024) */ )) best = 0; unsigned compr = best >> 4; unsigned flags = best & 15; if( compr ) { uint8_t packer = (compr << 4) | flags; // store block length + compressor + compr data if( fwrite(&outlen[0], 1, 4, out) != 4 ) goto fail; if( fwrite(&packer, 1, 1, out) != 1 ) goto fail; if( fwrite(outbuf[0], 1, outlen[0], out) != outlen[0] ) goto fail; } else { uint8_t packer = 0; // store block length + no-compressor + raw data if( fwrite(&inlen, 1, 4, out) != 4 ) goto fail; if( fwrite(&packer, 1, 1, out) != 1 ) goto fail; if( fwrite(inbuf, 1, inlen, out) != inlen ) goto fail; } total_in += inlen; total_out += 4 + 1 + (best ? outlen[0] : inlen); best_compressors_index = (best_compressors_index+1) % BLOCK_PREVIEW_CHARS; best_compressors_history[best_compressors_index] = list[compr].name1; best_compressors_history[best_compressors_index+1] = 0; } } if( logfile ) enctime = (clock() - tm) / (double)CLOCKS_PER_SEC; if( logfile ) { double ratio = (total_out - 4 - 1) * 100.0 / (total_in ? total_in : 1); fprintf(logfile, "\r%11lld -> %11lld %4s.%c %5.*f%% c:%.*fs ", (long long)total_in, (long long)total_out - 4 - 1, list[best>>4].name4, "0123456789ABCDEF"[best&15], ratio >= 100 ? 1 : 2, ratio, enctime > 99 ? 1 : enctime > 9 ? 2 : 3, enctime); } pass: goto next; fail: total_out = 0; next: REALLOC( outbuf[1], 0 ); REALLOC( outbuf[0], 0 ); REALLOC( inbuf, 0 ); return (unsigned)total_out; } unsigned file_decode(FILE* in, FILE* out, FILE *logfile) { // multi decoder uint8_t block8; if( fread(&block8, 1,1, in ) < 1 ) return 0; uint8_t excess8; if( fread(&excess8, 1,1, in ) < 1 ) return 0; uint64_t BLOCK_SIZE = 1ull << block8; uint64_t EXCESS = 1ull << excess8; unsigned total = 0, outlen; uint8_t* inbuf=(uint8_t*)REALLOC(0, BLOCK_SIZE+EXCESS); uint8_t* outbuf=(uint8_t*)REALLOC(0, BLOCK_SIZE+EXCESS); clock_t tm = {0}; double dectime = 0; if(logfile) tm = clock(); { for(uint32_t inlen=0, loop=0;fread(&inlen, 1, sizeof(inlen), in)>0;++loop) { if (inlen>(BLOCK_SIZE+EXCESS)) goto fail; uint8_t packer; if( fread(&packer, 1,sizeof(packer), in) <= 0 ) goto fail; if(packer) { // read compressed if (fread(inbuf, 1, inlen, in)!=inlen) goto fail; // decompress uint8_t compressor = packer >> 4; outlen=list[compressor % NUM_COMPRESSORS].decode(inbuf, (unsigned)inlen, outbuf, BLOCK_SIZE); if (!outlen) goto fail; } else { // read raw if (fread(outbuf, 1, inlen, in)!=inlen) goto fail; outlen=inlen; } if (fwrite(outbuf, 1, outlen, out) != outlen) { perror("fwrite() failed"); goto fail; } total += outlen; if( logfile ) fprintf(logfile, "%c\b", "\\|/-"[loop&3] ); } } if( logfile ) dectime = (clock() - tm) / (double)CLOCKS_PER_SEC; if( logfile ) fprintf(logfile, "d:%.*fs ", dectime > 99 ? 1 : dectime > 9 ? 2 : 3, dectime ); pass: goto next; fail: total = 0; next: REALLOC( outbuf, 0 ); REALLOC( inbuf, 0 ); return total; } #endif // COMPRESS_C #line 0 #line 1 "3rd_archive.h" // archive.c pak/zip/tar/dir archivers // - rlyeh, public domain #ifndef ARCHIVE_H #define ARCHIVE_H #define ARCHIVE_VERSION "v1.0.1" #endif // ARCHIVE_H #ifdef ARCHIVE_C //#pragma once #define PAK_C #define ZIP_C #define TAR_C #define DIR_C #endif // ARCHIVE_C //#line 1 "src/zip.c" // zip un/packer. based on JUnzip library by Joonas Pihlajamaa (UNLICENSE) // - rlyeh, public domain. // // notes about compression_level: // - plain integers use DEFLATE. Levels are [0(store)..6(default)..9(max)] // - compress.c compression flags are also supported. Just use LZMA|5, ULZ|9, LZ4X|3, etc. // - see zip_put.c for more info. #ifndef ZIP_H #define ZIP_H #include #include typedef struct zip zip; zip* zip_open(const char *file, const char *mode /*r,w,a*/); // only for (w)rite or (a)ppend mode bool zip_append_file(zip*, const char *entryname, const char *comment, FILE *in, unsigned compress_level); bool zip_append_file_timeinfo(zip*, const char *entryname, const char *comment, FILE *in, unsigned compress_level, struct tm *); bool zip_append_mem(zip*, const char *entryname, const char *comment, const void *in, unsigned inlen, unsigned compress_level); bool zip_append_mem_timeinfo(zip*, const char *entryname, const char *comment, const void *in, unsigned inlen, unsigned compress_level, struct tm *); // only for (r)ead mode int zip_find(zip*, const char *entryname); // convert entry to index. returns <0 if not found. unsigned zip_count(zip*); char* zip_name(zip*, unsigned index); char* zip_modt(zip*, unsigned index); unsigned zip_size(zip*, unsigned index); unsigned zip_hash(zip*, unsigned index); bool zip_file(zip*, unsigned index); // is_file? (dir if name ends with '/'; file otherwise) bool zip_test(zip*, unsigned index); char* zip_comment(zip*, unsigned index); unsigned zip_codec(zip*, unsigned index); unsigned zip_offset(zip*, unsigned index); unsigned zip_excess(zip*, unsigned index); void* zip_extract(zip*, unsigned index); // must free() after use bool zip_extract_file(zip*, unsigned index, FILE *out); unsigned zip_extract_inplace(zip*, unsigned index, void *out, unsigned outlen_with_excess); void zip_close(zip*); #endif // ZIP_H // ----------------------------------------------------------------------------- #ifdef ZIP_C //#pragma once #include #include #include #include #include #ifdef _WIN32 #include // _chsize_s #endif #ifndef REALLOC #define REALLOC realloc #endif #ifndef STRDUP #define STRDUP strdup #endif #ifndef FPRINTF #define FPRINTF(...) ((void)0) // printf for error logging #endif #ifndef ERR #define ERR(NUM, ...) (FPRINTF(stderr, "" __VA_ARGS__), FPRINTF(stderr, "(%s:%d) %s\n", __FILE__, __LINE__, strerror(errno)), /*fflush(stderr),*/ (NUM)) // (NUM) #endif #ifndef COMPRESS #define COMPRESS(...) ((unsigned)0) #endif #ifndef DECOMPRESS #define DECOMPRESS(...) ((unsigned)0) #endif #ifndef BOUNDS #define BOUNDS(...) ((unsigned)0) #endif #ifndef EXCESS #define EXCESS(...) ((unsigned)0) #endif #ifdef COMPRESS_H #undef COMPRESS #undef DECOMPRESS #undef BOUNDS #undef EXCESS static unsigned COMPRESS(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..1]*/) { return ( flags > 10 ? mem_encode : deflate_encode )(in, inlen, out, outlen, flags); } static unsigned DECOMPRESS(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags) { return ( flags > 10 ? mem_decode : deflate_decode )(in, inlen, out, outlen); } static unsigned BOUNDS(unsigned inlen, unsigned flags) { return ( flags > 10 ? mem_bounds : deflate_bounds )(inlen, flags); } static unsigned EXCESS(unsigned flags) { return ( flags > 10 ? mem_excess : deflate_excess )(flags); } #elif defined DEFLATE_H #undef COMPRESS #undef DECOMPRESS #undef BOUNDS #undef EXCESS static unsigned COMPRESS(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags /*[0..1]*/) { return deflate_encode(in, inlen, out, outlen, flags); } static unsigned DECOMPRESS(const void *in, unsigned inlen, void *out, unsigned outlen, unsigned flags) { return deflate_decode(in, inlen, out, outlen); } static unsigned BOUNDS(unsigned inlen, unsigned flags) { return deflate_bounds(inlen, flags); } static unsigned EXCESS(unsigned flags) { return deflate_excess(flags); } #endif #pragma pack(push, 1) typedef struct { uint32_t signature; // 0x02014B50 uint16_t versionMadeBy; // unsupported uint16_t versionNeededToExtract; // unsupported uint16_t generalPurposeBitFlag; // unsupported uint16_t compressionMethod; // 0-store,8-deflate uint16_t lastModFileTime; uint16_t lastModFileDate; uint32_t crc32; uint32_t compressedSize; uint32_t uncompressedSize; uint16_t fileNameLength; uint16_t extraFieldLength; // unsupported uint16_t fileCommentLength; // unsupported uint16_t diskNumberStart; // unsupported uint16_t internalFileAttributes; // unsupported uint32_t externalFileAttributes; // unsupported uint32_t relativeOffsetOflocalHeader; } JZGlobalFileHeader; typedef struct { uint32_t signature; // 0x06054b50 uint16_t diskNumber; // unsupported uint16_t centralDirectoryDiskNumber; // unsupported uint16_t numEntriesThisDisk; // unsupported uint16_t numEntries; uint32_t centralDirectorySize; uint32_t centralDirectoryOffset; uint16_t zipCommentLength; // Followed by .ZIP file comment (variable size) } JZEndRecord; #pragma pack(pop) // Verifying that structs are correct sized... typedef int static_assert_sizeof_JZGlobalFileHeader[sizeof(JZGlobalFileHeader) == 46 ? 1:-1]; typedef int static_assert_sizeof_JZEndRecord[sizeof(JZEndRecord) == 22 ? 1:-1]; enum { sizeof_JZLocalFileHeader = 30 }; // Constants enum { JZ_OK = 0, JZ_ERRNO = -1, JZ_BUFFER_SIZE = 65536 }; // Callback prototype for central reading function. Returns Z_OK while done. typedef int (*JZRecordCallback)(FILE *fp, int index, JZGlobalFileHeader *header, char *filename, void *extra, char *comment, void *user_data); // Read ZIP file end record. Will move within file. Returns Z_OK, or error code int jzReadEndRecord(FILE *fp, JZEndRecord *endRecord) { long fileSize, readBytes, i; JZEndRecord *er = 0; if(fseek(fp, 0, SEEK_END)) { return ERR(JZ_ERRNO, "Couldn't go to end of zip file!"); } if((fileSize = ftell(fp)) <= sizeof(JZEndRecord)) { return ERR(JZ_ERRNO, "Too small file to be a zip!"); } unsigned char jzBuffer[JZ_BUFFER_SIZE]; // maximum zip descriptor size readBytes = (fileSize < sizeof(jzBuffer)) ? fileSize : sizeof(jzBuffer); if(fseek(fp, fileSize - readBytes, SEEK_SET)) { return ERR(JZ_ERRNO, "Cannot seek in zip file!"); } if(fread(jzBuffer, 1, readBytes, fp) < readBytes) { return ERR(JZ_ERRNO, "Couldn't read end of zip file!"); } // Naively assume signature can only be found in one place... for(i = readBytes - sizeof(JZEndRecord); i >= 0; i--) { er = (JZEndRecord *)(jzBuffer + i); if(er->signature == 0x06054B50) break; } if(i < 0 || !er) { return ERR(JZ_ERRNO, "End record signature not found in zip!"); } memcpy(endRecord, er, sizeof(JZEndRecord)); JZEndRecord *e = endRecord; FPRINTF(stdout, "end)\n\tsignature: 0x%X\n", e->signature ); // 0x06054b50 FPRINTF(stdout, "\tdiskNumber: %d\n", e->diskNumber ); // unsupported FPRINTF(stdout, "\tcentralDirectoryDiskNumber: %d\n", e->centralDirectoryDiskNumber ); // unsupported FPRINTF(stdout, "\tnumEntriesThisDisk: %d\n", e->numEntriesThisDisk ); // unsupported FPRINTF(stdout, "\tnumEntries: %d\n", e->numEntries ); FPRINTF(stdout, "\tcentralDirectorySize: %u %#x\n", e->centralDirectorySize, e->centralDirectorySize ); FPRINTF(stdout, "\tcentralDirectoryOffset: %u %#x\n", e->centralDirectoryOffset, e->centralDirectoryOffset ); FPRINTF(stdout, "\tzipCommentLength: %d\n---\n", e->zipCommentLength ); if(endRecord->diskNumber || endRecord->centralDirectoryDiskNumber || endRecord->numEntries != endRecord->numEntriesThisDisk) { return ERR(JZ_ERRNO, "Multifile zips not supported!"); } return JZ_OK; } // Read ZIP file global directory. Will move within file. Returns Z_OK, or error code // Callback is called for each record, until callback returns zero int jzReadCentralDirectory(FILE *fp, JZEndRecord *endRecord, JZRecordCallback callback, void *user_data) { JZGlobalFileHeader fileHeader; if(fseek(fp, endRecord->centralDirectoryOffset, SEEK_SET)) { return ERR(JZ_ERRNO, "Cannot seek in zip file!"); } for(int i=0; inumEntries; i++) { FPRINTF(stdout, "%d)\n@-> %lu %#lx\n", i+1, (unsigned long)ftell(fp), (unsigned long)ftell(fp)); long offset = ftell(fp); // store current position if(fread(&fileHeader, 1, sizeof(JZGlobalFileHeader), fp) < sizeof(JZGlobalFileHeader)) { return ERR(JZ_ERRNO, "Couldn't read file header #%d!", i); } JZGlobalFileHeader *g = &fileHeader, copy = *g; FPRINTF(stdout, "\tsignature: %u %#x\n", g->signature, g->signature); // 0x02014B50 FPRINTF(stdout, "\tversionMadeBy: %u %#x\n", g->versionMadeBy, g->versionMadeBy); // unsupported FPRINTF(stdout, "\tversionNeededToExtract: %u %#x\n", g->versionNeededToExtract, g->versionNeededToExtract); // unsupported FPRINTF(stdout, "\tgeneralPurposeBitFlag: %u %#x\n", g->generalPurposeBitFlag, g->generalPurposeBitFlag); // unsupported FPRINTF(stdout, "\tcompressionMethod: %u %#x\n", g->compressionMethod, g->compressionMethod); // 0-store,8-deflate FPRINTF(stdout, "\tlastModFileTime: %u %#x\n", g->lastModFileTime, g->lastModFileTime); FPRINTF(stdout, "\tlastModFileDate: %u %#x\n", g->lastModFileDate, g->lastModFileDate); FPRINTF(stdout, "\tcrc32: %#x\n", g->crc32); FPRINTF(stdout, "\tcompressedSize: %u\n", g->compressedSize); FPRINTF(stdout, "\tuncompressedSize: %u\n", g->uncompressedSize); FPRINTF(stdout, "\tfileNameLength: %u\n", g->fileNameLength); FPRINTF(stdout, "\textraFieldLength: %u\n", g->extraFieldLength); // unsupported FPRINTF(stdout, "\tfileCommentLength: %u\n", g->fileCommentLength); // unsupported FPRINTF(stdout, "\tdiskNumberStart: %u\n", g->diskNumberStart); // unsupported FPRINTF(stdout, "\tinternalFileAttributes: %#x\n", g->internalFileAttributes); // unsupported FPRINTF(stdout, "\texternalFileAttributes: %#x\n", g->externalFileAttributes); // unsupported FPRINTF(stdout, "\trelativeOffsetOflocalHeader: %u %#x\n", g->relativeOffsetOflocalHeader, g->relativeOffsetOflocalHeader); if(fileHeader.signature != 0x02014B50) { return ERR(JZ_ERRNO, "Invalid file header signature %#x #%d!", fileHeader.signature, i); } if(fileHeader.fileNameLength + 1 >= JZ_BUFFER_SIZE) { return ERR(JZ_ERRNO, "Too long file name %u #%d!", fileHeader.fileNameLength, i); } // filename char jzFilename[JZ_BUFFER_SIZE/3]; if(fread(jzFilename, 1, fileHeader.fileNameLength, fp) < fileHeader.fileNameLength) { return ERR(JZ_ERRNO, "Couldn't read filename #%d!", i); } jzFilename[fileHeader.fileNameLength] = '\0'; // NULL terminate // extra block unsigned char jzExtra[JZ_BUFFER_SIZE/3]; if(fread(jzExtra, 1, fileHeader.extraFieldLength, fp) < fileHeader.extraFieldLength) { return ERR(JZ_ERRNO, "Couldn't read extra block #%d!", i); } // comment block char jzComment[JZ_BUFFER_SIZE/3]; if(fread(jzComment, 1, fileHeader.fileCommentLength, fp) < fileHeader.fileCommentLength) { return ERR(JZ_ERRNO, "Couldn't read comment block #%d!", i); } jzComment[fileHeader.fileCommentLength] = '\0'; // NULL terminate // seek to local file header, then skip file header + filename + extra field length if(fseek(fp, fileHeader.relativeOffsetOflocalHeader + sizeof_JZLocalFileHeader - 2 - 2, SEEK_SET)) { return ERR(JZ_ERRNO, "Cannot seek in file!"); } if(fread(&fileHeader.fileNameLength, 1, 2, fp) < 2) { return ERR(JZ_ERRNO, "Couldn't read local filename #%d!", i); } if(fread(&fileHeader.extraFieldLength, 1, 2, fp) < 2) { return ERR(JZ_ERRNO, "Couldn't read local extrafield #%d!", i); } if(fseek(fp, fileHeader.relativeOffsetOflocalHeader + sizeof_JZLocalFileHeader + fileHeader.fileNameLength + fileHeader.extraFieldLength, SEEK_SET)) { return ERR(JZ_ERRNO, "Cannot seek in file!"); } FPRINTF(stdout, "@-> %lu %#lx\n---\n", (unsigned long)ftell(fp), (unsigned long)ftell(fp)); if( JZ_OK != callback(fp, i, &fileHeader, jzFilename, jzExtra, jzComment, user_data) ) break; // keep going while callback returns ok fseek(fp, offset, SEEK_SET); // return to position fseek(fp, sizeof(JZGlobalFileHeader) + copy.fileNameLength, SEEK_CUR); // skip entry fseek(fp, copy.extraFieldLength + copy.fileCommentLength, SEEK_CUR); // skip entry } return JZ_OK; } // Read data from file stream, described by header, to preallocated buffer. Returns Z_OK, or error code int jzReadData(FILE *fp, JZGlobalFileHeader *header, void *out) { if(header->compressionMethod == 0) { // Store - just read it if(fread(out, 1, header->uncompressedSize, fp) < header->uncompressedSize || ferror(fp)) return JZ_ERRNO; } else if((header->compressionMethod & 255) == 8) { // Deflate uint16_t level = header->compressionMethod >> 8; unsigned outlen = header->uncompressedSize; unsigned inlen = header->compressedSize; void *in = REALLOC(0, inlen + 8); // small excess as some decompressors are really wild with output buffers (lz4x) if(in == NULL) return ERR(JZ_ERRNO, "Could not allocate mem for decompress"); unsigned read = fread(in, 1, inlen, fp); if(read != inlen) return ERR(JZ_ERRNO, "Could not read file"); // TODO: more robust read loop unsigned ret = DECOMPRESS(in, inlen, out, outlen, level); REALLOC(in, 0); if(!ret) return ERR(JZ_ERRNO, "Could not decompress"); } else { return JZ_ERRNO; } return JZ_OK; } #define JZHOUR(t) ((t)>>11) #define JZMINUTE(t) (((t)>>5) & 63) #define JZSECOND(t) (((t) & 31) * 2) #define JZTIME(h,m,s) (((h)<<11) + ((m)<<5) + (s)/2) #define JZYEAR(t) (((t)>>9) + 1980) #define JZMONTH(t) (((t)>>5) & 15) #define JZDAY(t) ((t) & 31) #define JZDATE(y,m,d) ((((y)-1980)<<9) + ((m)<<5) + (d)) // end of junzip.c --- struct zip { FILE *in, *out; struct zip_entry { JZGlobalFileHeader header; char timestamp[40]; char *filename; uint64_t offset; void *extra; char *comment; } *entries; unsigned count; }; uint32_t zip__crc32(uint32_t crc, const void *data, size_t n_bytes) { // CRC32 routine is from Björn Samuelsson's public domain implementation at http://home.thep.lu.se/~bjorn/crc/ static uint32_t table[256] = {0}; if(!*table) for(uint32_t i = 0; i < 0x100; ++i) { uint32_t r = i; for(int j = 0; j < 8; ++j) r = (r & 1 ? 0 : (uint32_t)0xEDB88320L) ^ r >> 1; table[i] = r ^ (uint32_t)0xFF000000L; } for(size_t i = 0; i < n_bytes; ++i) { crc = table[(uint8_t)crc ^ ((uint8_t*)data)[i]] ^ crc >> 8; } return crc; } int zip__callback(FILE *fp, int idx, JZGlobalFileHeader *header, char *filename, void *extra, char *comment, void *user_data) { zip *z = user_data; unsigned index = z->count; z->entries = REALLOC(z->entries, (++z->count) * sizeof(struct zip_entry) ); struct zip_entry *e = &z->entries[index]; e->header = *header; e->filename = STRDUP(filename); e->offset = ftell(fp); e->extra = REALLOC(0, header->extraFieldLength); memcpy(e->extra, extra, header->extraFieldLength); e->comment = STRDUP(comment); snprintf(e->timestamp, sizeof(e->timestamp), "%04d/%02d/%02d %02d:%02d:%02d" "%c" "%04d%02d%02d%02d%02d%02d", JZYEAR(header->lastModFileDate), JZMONTH(header->lastModFileDate), JZDAY(header->lastModFileDate), JZHOUR(header->lastModFileTime), JZMINUTE(header->lastModFileTime), JZSECOND(header->lastModFileTime), '\0', // hidden date in base10 JZYEAR(header->lastModFileDate), JZMONTH(header->lastModFileDate), JZDAY(header->lastModFileDate), JZHOUR(header->lastModFileTime), JZMINUTE(header->lastModFileTime), JZSECOND(header->lastModFileTime) ); return JZ_OK; } // zip read int ZIP_DEBUG = 0; int zip_find(zip *z, const char *entryname) { int zip_debug = ZIP_DEBUG; ZIP_DEBUG = 0; if(zip_debug) FPRINTF(stdout, "zip_find(%s)\n", entryname); if( z->in ) for( int i = z->count; --i >= 0; ) { // in case of several copies, grab most recent file (last coincidence) if(zip_debug) FPRINTF(stdout, "\t%d) %s\n", i, z->entries[i].filename); if( 0 == strcmp(entryname, z->entries[i].filename)) return i; } return -1; } bool zip_file(zip *z, unsigned index) { // is_file? (dir if attrib&15 or name ends with '/'; file otherwise) if( z->in && index < z->count ) { char *name = zip_name(z, index); return (name[ strlen(name) ] != '/') && !(z->entries[index].header.externalFileAttributes & 0x10); } return 0; } unsigned zip_count(zip *z) { return z->in ? z->count : 0; } unsigned zip_hash(zip *z, unsigned index) { return z->in && index < z->count ? z->entries[index].header.crc32 : 0; } char *zip_modt(zip *z, unsigned index) { return z->in && index < z->count ? z->entries[index].timestamp : 0; } char *zip_name(zip *z, unsigned index) { return z->in && index < z->count ? z->entries[index].filename : NULL; } char *zip_comment(zip *z, unsigned index) { return z->in && index < z->count ? z->entries[index].comment : NULL; } unsigned zip_size(zip *z, unsigned index) { return z->in && index < z->count ? z->entries[index].header.uncompressedSize : 0; } unsigned zip_offset(zip *z, unsigned index) { return z->in && index < z->count ? z->entries[index].offset : 0; } unsigned zip_codec(zip *z, unsigned index) { if( z->in && index < z->count ) { unsigned cm = z->entries[index].header.compressionMethod; return cm < 255 ? cm : cm >> 8; } return 0; } unsigned zip_excess(zip *z, unsigned index) { if( z->in && index < z->count ) { unsigned level = z->entries[index].header.compressionMethod; unsigned flags = level >> 8; return EXCESS(flags); } return 0; } unsigned zip_extract_inplace(zip *z, unsigned index, void *out, unsigned outlen) { if( z->in && index < z->count ) { JZGlobalFileHeader *header = &(z->entries[index].header); if( outlen >= header->uncompressedSize ) { fseek(z->in, z->entries[index].offset, SEEK_SET); int ret = jzReadData(z->in, header, (char*)out); return ret == JZ_OK ? header->uncompressedSize : 0; } } return 0; } void *zip_extract(zip *z, unsigned index) { // must free() if( z->in && index < z->count ) { unsigned outlen = (unsigned)z->entries[index].header.uncompressedSize; char *out = (char*)REALLOC(0, outlen + 1 + zip_excess(z, index)); unsigned ret = zip_extract_inplace(z, index, out, outlen); return ret ? (out[outlen] = '\0', out) : (REALLOC(out, 0), out = 0); } return NULL; } bool zip_extract_file(zip *z, unsigned index, FILE *out) { void *data = zip_extract(z, index); if( !data ) return false; unsigned datalen = (unsigned)z->entries[index].header.uncompressedSize; bool ok = fwrite(data, 1, datalen, out) == datalen; REALLOC( data, 0 ); return ok; } bool zip_test(zip *z, unsigned index) { void *ret = zip_extract(z, index); bool ok = !!ret; REALLOC(ret, 0); return ok; } // zip append/write bool zip_append_file(zip *z, const char *entryname, const char *comment, FILE *in, unsigned compress_level) { if( !entryname ) return ERR(false, "No filename provided"); struct stat st; struct tm *timeinfo; stat(entryname, &st); timeinfo = localtime(&st.st_mtime); return zip_append_file_timeinfo(z, entryname, comment, in, compress_level, timeinfo); } bool zip_append_file_timeinfo(zip *z, const char *entryname, const char *comment, FILE *in, unsigned compress_level, struct tm* timeinfo) { if( !in ) return ERR(false, "No input file provided"); if( !entryname ) return ERR(false, "No filename provided"); if( !timeinfo ) return ERR(false, "No timeinfo provided"); // @fixme: calc whole crc contents uint32_t crc = 0; unsigned char buf[1<<15]; while(!feof(in) && !ferror(in)) crc = zip__crc32(crc, buf, fread(buf, 1, sizeof(buf), in)); if(ferror(in)) return ERR(false, "Error while calculating CRC, skipping store."); unsigned index = z->count; z->entries = REALLOC(z->entries, (++z->count) * sizeof(struct zip_entry)); if(z->entries == NULL) return ERR(false, "Failed to allocate new entry!"); struct zip_entry *e = &z->entries[index], zero = {0}; *e = zero; e->filename = STRDUP(entryname); e->comment = comment ? STRDUP(comment) : 0; e->header.signature = 0x02014B50; e->header.versionMadeBy = 10; // random stuff e->header.versionNeededToExtract = 10; e->header.generalPurposeBitFlag = 0; e->header.lastModFileTime = JZTIME(timeinfo->tm_hour, timeinfo->tm_min, timeinfo->tm_sec); e->header.lastModFileDate = JZDATE(timeinfo->tm_year+1900,timeinfo->tm_mon+1,timeinfo->tm_mday); e->header.crc32 = crc; e->header.uncompressedSize = ftell(in); e->header.fileNameLength = strlen(entryname); e->header.extraFieldLength = 0; e->header.fileCommentLength = comment ? strlen(comment) : 0; e->header.diskNumberStart = 0; e->header.internalFileAttributes = 0; e->header.externalFileAttributes = 0x20; // whatever this is e->header.relativeOffsetOflocalHeader = ftell(z->out); #if defined _MSC_VER || (defined __TINYC__ && defined _WIN32) static __declspec(thread) #else static __thread #endif void* comp = 0, *data = 0; // if(comp) comp = REALLOC(comp, 1); // re-entry optimization: hopefully the allocator will optimize this out (N>1-byte) // if(data) data = REALLOC(data, 1); // re-entry optimization: hopefully the allocator will optimize this out (N>1-byte) if(!compress_level) goto dont_compress; // Read whole file and and use compress(). Simple but won't handle GB files well. unsigned dataSize = e->header.uncompressedSize, compSize = BOUNDS(e->header.uncompressedSize, compress_level); comp = REALLOC(0, compSize); if(comp == NULL) goto cant_compress; data = REALLOC(0, dataSize + 8); // small excess as some compressors are really wild when reading from buffers (lz4x) if(data == NULL) goto cant_compress; else memset((char*)data + dataSize, 0, 8); fseek(in, 0, SEEK_SET); // rewind size_t bytes = fread(data, 1, dataSize, in); if(bytes != dataSize) { return ERR(false, "Failed to read file in full (%lu vs. %ld bytes)", (unsigned long)bytes, dataSize); } compSize = COMPRESS(data, (unsigned)dataSize, comp, (unsigned)compSize, compress_level); if(!compSize) goto cant_compress; if(compSize >= (dataSize * 0.98) ) goto dont_compress; uint16_t cl = 8 | (compress_level > 10 ? compress_level << 8 : 0); e->header.compressedSize = compSize; e->header.compressionMethod = cl; goto common; cant_compress: dont_compress:; e->header.compressedSize = ftell(in); e->header.compressionMethod = 0; // store method common:; // write local header uint32_t signature = 0x04034B50; fwrite(&signature, 1, sizeof(signature), z->out); fwrite(&(e->header.versionNeededToExtract), 1, sizeof_JZLocalFileHeader - sizeof(signature), z->out); // write filename fwrite(entryname, 1, strlen(entryname), z->out); // write comment // if( comment ) fwrite(comment, 1, strlen(comment), z->out); if(e->header.compressionMethod) { // store compressed blob fwrite(comp, compSize, 1, z->out); } else { // store uncompressed blob fseek(in, 0, SEEK_SET); while(!feof(in) && !ferror(in)) { size_t bytes = fread(buf, 1, sizeof(buf), in); fwrite(buf, 1, bytes, z->out); } } // REALLOC(comp, 0); // see re-entry optimization above // REALLOC(data, 0); // see re-entry optimization above return true; } bool zip_append_mem(zip *z, const char *entryname, const char *comment, const void *in, unsigned inlen, unsigned compress_level) { if( !entryname ) return ERR(false, "No filename provided"); struct stat st; struct tm *timeinfo; stat(entryname, &st); timeinfo = localtime(&st.st_mtime); return zip_append_mem_timeinfo(z, entryname, comment, in, inlen, compress_level, timeinfo); } bool zip_append_mem_timeinfo(zip *z, const char *entryname, const char *comment, const void *in, unsigned inlen, unsigned compress_level, struct tm* timeinfo) { if( !in ) return ERR(false, "No input file provided"); if( !entryname ) return ERR(false, "No filename provided"); if( !timeinfo ) return ERR(false, "No timeinfo provided"); uint32_t crc = zip__crc32(0, in, inlen); unsigned index = z->count; z->entries = REALLOC(z->entries, (++z->count) * sizeof(struct zip_entry)); if(z->entries == NULL) return ERR(false, "Failed to allocate new entry!"); struct zip_entry *e = &z->entries[index], zero = {0}; *e = zero; e->filename = STRDUP(entryname); e->comment = comment ? STRDUP(comment) : 0; e->header.signature = 0x02014B50; e->header.versionMadeBy = 10; // random stuff e->header.versionNeededToExtract = 10; e->header.generalPurposeBitFlag = 0; e->header.lastModFileTime = JZTIME(timeinfo->tm_hour, timeinfo->tm_min, timeinfo->tm_sec); e->header.lastModFileDate = JZDATE(timeinfo->tm_year+1900,timeinfo->tm_mon+1,timeinfo->tm_mday); e->header.crc32 = crc; e->header.uncompressedSize = inlen; e->header.fileNameLength = strlen(entryname); e->header.extraFieldLength = 0; e->header.fileCommentLength = comment ? strlen(comment) : 0; e->header.diskNumberStart = 0; e->header.internalFileAttributes = 0; e->header.externalFileAttributes = 0x20; // whatever this is e->header.relativeOffsetOflocalHeader = ftell(z->out); #if defined _MSC_VER || (defined __TINYC__ && defined _WIN32) static __declspec(thread) #else static __thread #endif void* comp = 0, *data = 0; // if(comp) comp = REALLOC(comp, 1); // re-entry optimization: hopefully the allocator will optimize this out (N>1-byte) // if(data) data = REALLOC(data, 1); // re-entry optimization: hopefully the allocator will optimize this out (N>1-byte) if(!compress_level) goto dont_compress; // Read whole file and and use compress(). Simple but won't handle GB files well. unsigned dataSize = e->header.uncompressedSize, compSize = BOUNDS(e->header.uncompressedSize, compress_level); comp = REALLOC(0, compSize); if(comp == NULL) goto cant_compress; data = REALLOC(0, dataSize + 8); // small excess as some compressors are really wild when reading from buffers (lz4x) if(data == NULL) goto cant_compress; else memset((char*)data + dataSize, 0, 8); size_t bytes = inlen; memcpy(data, in, inlen); if(bytes != dataSize) { return ERR(false, "Failed to read file in full (%lu vs. %ld bytes)", (unsigned long)bytes, dataSize); } compSize = COMPRESS(data, (unsigned)dataSize, comp, (unsigned)compSize, compress_level); if(!compSize) goto cant_compress; if(compSize >= (dataSize * 0.98) ) goto dont_compress; uint16_t cl = 8 | (compress_level > 10 ? compress_level << 8 : 0); e->header.compressedSize = compSize; e->header.compressionMethod = cl; goto common; cant_compress: dont_compress:; e->header.compressedSize = inlen; e->header.compressionMethod = 0; // store method common:; // write local header uint32_t signature = 0x04034B50; fwrite(&signature, 1, sizeof(signature), z->out); fwrite(&(e->header.versionNeededToExtract), 1, sizeof_JZLocalFileHeader - sizeof(signature), z->out); // write filename fwrite(entryname, 1, strlen(entryname), z->out); // write comment // if( comment ) fwrite(comment, 1, strlen(comment), z->out); if(e->header.compressionMethod) { // store compressed blob fwrite(comp, compSize, 1, z->out); } else { // store uncompressed blob fwrite(in, 1, inlen, z->out); } // REALLOC(comp, 0); // see re-entry optimization above // REALLOC(data, 0); // see re-entry optimization above return true; } // zip common zip* zip_open(const char *file, const char *mode /*r,w,a*/) { struct stat buffer; int exists = (stat(file, &buffer) == 0); if( mode[0] == 'a' && !exists ) mode = "wb"; FILE *fp = fopen(file, mode[0] == 'w' ? "wb" : mode[0] == 'a' ? "a+b" : "rb"); if( !fp ) return ERR(NULL, "cannot open file for %s mode", mode); zip zero = {0}, *z = (zip*)REALLOC(0, sizeof(zip)); if( !z ) return fclose(fp), ERR(NULL, "out of mem"); else *z = zero; if( mode[0] == 'w' ) { z->out = fp; return z; } if( mode[0] == 'r' || mode[0] == 'a' ) { z->in = fp; JZEndRecord jzEndRecord = {0}; if(jzReadEndRecord(fp, &jzEndRecord) != JZ_OK) { REALLOC(z, 0); return fclose(fp), ERR(NULL, "Couldn't read ZIP file end record."); } if(jzReadCentralDirectory(fp, &jzEndRecord, zip__callback, z) != JZ_OK) { REALLOC(z, 0); return fclose(fp), ERR(NULL, "Couldn't read ZIP file central directory."); } if( mode[0] == 'a' ) { // resize (by truncation) size_t resize = jzEndRecord.centralDirectoryOffset; int fd = fileno(fp); if( fd != -1 ) { #ifdef _WIN32 int ok = 0 == _chsize_s( fd, resize ); #else int ok = 0 == ftruncate( fd, (off_t)resize ); #endif fflush(fp); fseek( fp, 0L, SEEK_END ); } z->in = NULL; z->out = fp; } return z; } REALLOC(z, 0); return fclose(fp), ERR(NULL, "Unknown open mode %s", mode); } void zip_close(zip* z) { if( z->out && z->count ) { // prepare end record JZEndRecord end = {0}; end.signature = 0x06054b50; end.diskNumber = 0; end.centralDirectoryDiskNumber = 0; end.numEntriesThisDisk = z->count; end.numEntries = z->count; end.centralDirectoryOffset = ftell(z->out); // flush global directory: global file+filename each for(unsigned i = 0; i < z->count; i++) { struct zip_entry *h = &z->entries[i]; JZGlobalFileHeader *g = &h->header; fwrite(g, 1, sizeof(JZGlobalFileHeader), z->out); fwrite(h->filename, 1, g->fileNameLength, z->out); fwrite(h->extra, 1, g->extraFieldLength, z->out); fwrite(h->comment, 1, g->fileCommentLength, z->out); } end.centralDirectorySize = ftell(z->out) - end.centralDirectoryOffset; end.zipCommentLength = 0; // flush end record fwrite(&end, 1, sizeof(end), z->out); } if( z->out ) fclose(z->out); if( z->in ) fclose(z->in); // clean up for(unsigned i = 0; i < z->count; ++i ) { REALLOC(z->entries[i].filename, 0); if(z->entries[i].extra) REALLOC(z->entries[i].extra, 0); if(z->entries[i].comment) REALLOC(z->entries[i].comment, 0); } if(z->entries) REALLOC(z->entries, 0); zip zero = {0}; *z = zero; REALLOC(z, 0); } #endif // ZIP_C //#line 1 "src/tar.c" // gnu tar and ustar extraction // - rlyeh, public domain. #ifndef TAR_H #define TAR_H typedef struct tar tar; tar *tar_open(const char *filename, const char *mode); int tar_find(tar*, const char *entryname); // returns entry number; or <0 if not found. unsigned tar_count(tar*); char* tar_name(tar*, unsigned index); unsigned tar_size(tar*, unsigned index); unsigned tar_offset(tar*, unsigned index); void* tar_extract(tar*, unsigned index); // must free() after use void tar_close(tar *t); #endif // ----------------------------------------------------------------------------- #ifdef TAR_C //#pragma once #include #include #include #include #ifndef STRDUP #define STRDUP strdup #endif #ifndef REALLOC #define REALLOC realloc #endif #ifndef ERR #define ERR(NUM, ...) (fprintf(stderr, "" __VA_ARGS__), fprintf(stderr, "(%s:%d)\n", __FILE__, __LINE__), fflush(stderr), (NUM)) // (NUM) #endif struct tar { FILE *in; unsigned count; struct tar_entry { char *filename; unsigned size; size_t offset; } *entries; }; // equivalent to sscanf(buf, 8, "%.7o", &size); or (12, "%.11o", &modtime) // ignores everything after first null or space, including trailing bytes uint64_t tar__octal( const char *src, const char *eof ) { uint64_t sum = 0, mul = 1; const char *ptr = eof; while( ptr-- >= src ) eof = ( 0 != ptr[1] && 32 != ptr[1] ) ? eof : ptr; while( eof-- >= src ) sum += (uint8_t)(eof[1] - '0') * mul, mul *= 8; return sum; } typedef int (*tar_callback)(const char *filename, unsigned inlen, size_t offset, void *userdata); int tar__push_entry(const char *filename, unsigned inlen, size_t offset, void *userdata) { tar *t = (tar *)userdata; unsigned index = t->count; t->entries = REALLOC(t->entries, (++t->count) * sizeof(struct tar_entry)); struct tar_entry *e = &t->entries[index]; e->filename = STRDUP(filename); e->size = inlen; e->offset = offset; return 1; } int tar__parse( FILE *in, tar_callback yield, void *userdata ) { enum { name = 0, // (null terminated) mode = 100, // (octal) uid = 108, // (octal) gid = 116, // (octal) size = 124, // (octal) modtime = 136, // (octal) checksum = 148, // (octal) type = 156, // \0|'0':file,1:hardlink,2:symlink,3:chardev,4:blockdev,5:dir,6:fifo,L:longnameblocknext linkname = 157, // if !ustar link indicator magic = 257, // if ustar "ustar" -- 6th character may be space or null, else zero version = 263, // if ustar "00", else zero uname = 265, // if ustar owner username, else zero gname = 297, // if ustar owner groupname, else zero devmajor = 329, // if ustar device major number, else zero devminor = 337, // if ustar device minor number , else zero path = 345, // if ustar filename prefix, else zero padding = 500, // if ustar relevant for checksum, else zero total = 512 }; // handle both regular tar and ustar tar filenames until end of tar is found char header[512], entry[512], blank[512] = {0}; while( !ferror(in) ) { if( 512 != fread(header, 1, 512, in ) ) break; if( memcmp( header, blank, 512 ) ) { // if not end of tar if( !memcmp( header+magic, "ustar", 5 ) ) { // if valid ustar int namelen = strlen(header+name), pathlen = strlen(header+path); // read filename snprintf(entry, 512, "%.*s" "%s" "%.*s", pathlen < 155 ? pathlen : 155, header+path, pathlen ? "/" : "", namelen < 100 ? namelen : 100, header+name ); switch( header[type] ) { default: // unsupported file type break; case '5': //yield(entry.back()!='/'?entry+'/':entry,0);// directory break; case 'L': strcpy(entry, header+name); fread(header,1,512,in); // gnu tar long filename break; case '0': case 0: { // regular file uint64_t len = tar__octal(header+size, header+modtime); // decode octal size int cont = yield(entry, len, ftell(in), userdata); // yield entry fseek(in,len,SEEK_CUR); // skip blob fseek(in,(512 - (len & 511)) & 511,SEEK_CUR); // skip padding } } } else return ERR(0, "not a .tar file"); } else return ferror(in) ? ERR(0, "file error") : 1; } return ERR(0, "read error"); } // --- tar *tar_open(const char *filename, const char *mode) { if(mode[0] != 'r') return ERR(NULL, "(w) and (a) not supported for now"); FILE *in = fopen(filename, "rb"); if(!in) return ERR(NULL, "cant open file '%s' for reading", filename); tar zero = {0}, *t = REALLOC(0, sizeof(tar)); if( !t ) { fclose(in); return ERR(NULL, "out of mem"); } *t = zero; t->in = in; tar__parse(in, tar__push_entry, t); return t; } int tar_find(tar *t, const char *entryname) { if( t->in ) for( int i = t->count; --i >= 0; ) { // in case of several copies, grab most recent file (last coincidence) if( 0 == strcmp(entryname, t->entries[i].filename)) return i; } return -1; } unsigned tar_count(tar *t) { return t ? t->count : 0; } char* tar_name(tar *t, unsigned index) { return t && index < t->count ? t->entries[index].filename : 0; } unsigned tar_size(tar *t, unsigned index) { return t && index < t->count ? t->entries[index].size : 0; } unsigned tar_offset(tar *t, unsigned index) { return t && index < t->count ? (unsigned)t->entries[index].offset : 0; } void *tar_extract(tar *t, unsigned index) { if( t && index < t->count ) { fseek(t->in, t->entries[index].offset, SEEK_SET); size_t len = t->entries[index].size; void *data = REALLOC(0, t->entries[index].size); fread(data, 1, len, t->in); return data; } return 0; } void tar_close(tar *t) { fclose(t->in); for( int i = 0; i < t->count; ++i) { REALLOC(t->entries[i].filename, 0); } tar zero = {0}; *t = zero; REALLOC(t, 0); } #ifdef TAR_DEMO int main( int argc, char **argv ) { if(argc <= 1) exit(printf("%s file.tar [file_to_view]\n", argv[0])); tar *t = tar_open(argv[1], "rb"); if( t ) { for( int i = 0; i < tar_count(t); ++i ) { printf("%d) %s (%u bytes)\n", i+1, tar_name(t,i), tar_size(t,i)); char *data = tar_extract(t,i); if(argc>2) if(0==strcmp(argv[2],tar_name(t,i))) printf("%.*s\n", tar_size(t,i), data); free(data); } tar_close(t); } } #define main main__ #endif //TAR_DEMO #endif //TAR_C //#line 1 "src/pak.c" // pak file reading/writing/appending. // - rlyeh, public domain. // // ## PAK // - [ref] https://quakewiki.org/wiki/.pak (public domain). // - Header: 12 bytes // - "PACK" 4-byte // - directory offset uint32 // - directory size uint32 (number of files by dividing this by 64, which is sizeof(pak_entry)) // // - File Directory Entry (Num files * 64 bytes) // - Each Directory Entry: 64 bytes // - file name 56-byte null-terminated string. Includes path. Example: "maps/e1m1.bsp". // - file offset uint32 from beginning of pak file. // - file size uint32 #ifndef PAK_H #define PAK_H typedef struct pak pak; pak* pak_open(const char *fname, const char *mode /*a,r,w*/); // (w)rite or (a)ppend modes only int pak_append_file(pak*, const char *filename, FILE *in); int pak_append_data(pak*, const char *filename, const void *in, unsigned inlen); // (r)ead only mode int pak_find(pak*,const char *fname); // return <0 if error; index otherwise. unsigned pak_count(pak*); unsigned pak_size(pak*,unsigned index); unsigned pak_offset(pak*, unsigned index); char *pak_name(pak*,unsigned index); void *pak_extract(pak*, unsigned index); // must free() after use void pak_close(pak*); #endif // --- #ifdef PAK_C //#pragma once #include #include #include #include #ifndef REALLOC #define REALLOC realloc #endif #ifndef ERR #define ERR(NUM, ...) (fprintf(stderr, "" __VA_ARGS__), fprintf(stderr, "(%s:%d)\n", __FILE__, __LINE__), fflush(stderr), (NUM)) // (NUM) #endif #include static inline uint32_t pak_swap32( uint32_t t ) { return (t >> 24) | (t << 24) | ((t >> 8) & 0xff00) | ((t & 0xff00) << 8); } #if defined(_M_IX86) || defined(_M_X64) // #ifdef LITTLE #define htob32(x) pak_swap32(x) #define btoh32(x) pak_swap32(x) #define htol32(x) (x) #define ltoh32(x) (x) #else #define htob32(x) (x) #define btoh32(x) (x) #define htol32(x) pak_swap32(x) #define ltoh32(x) pak_swap32(x) #endif #pragma pack(push, 1) typedef struct pak_header { char id[4]; uint32_t offset; uint32_t size; } pak_header; typedef struct pak_file { char name[56]; uint32_t offset; uint32_t size; } pak_file; #pragma pack(pop) typedef int static_assert_sizeof_pak_header[sizeof(pak_header) == 12 ? 1:-1]; typedef int static_assert_sizeof_pak_file[sizeof(pak_file) == 64 ? 1:-1]; typedef struct pak { FILE *in, *out; int dummy; pak_file *entries; unsigned count; } pak; pak *pak_open(const char *fname, const char *mode) { struct stat buffer; int exists = (stat(fname, &buffer) == 0); if(mode[0] == 'a' && !exists ) mode = "wb"; if(mode[0] != 'w' && mode[0] != 'r' && mode[0] != 'a') return NULL; FILE *fp = fopen(fname, mode[0] == 'w' ? "wb" : mode[0] == 'r' ? "rb" : "r+b"); if(!fp) return ERR(NULL, "cant open file '%s' in '%s' mode", fname, mode); pak *p = malloc(sizeof(pak)), zero = {0}; if(!p) return fclose(fp), ERR(NULL, "out of mem"); *p = zero; if( mode[0] == 'r' || mode[0] == 'a' ) { pak_header header = {0}; if( fread(&header, 1, sizeof(pak_header), fp) != sizeof(pak_header) ) { return fclose(fp), ERR(NULL, "read error"); } if( memcmp(header.id, "PACK", 4) ) { return fclose(fp), ERR(NULL, "not a .pak file"); } header.offset = ltoh32(header.offset); header.size = ltoh32(header.size); unsigned num_files = header.size / sizeof(pak_file); if( fseek(fp, header.offset, SEEK_SET) != 0 ) { return fclose(fp), ERR(NULL, "read error"); } p->count = num_files; p->entries = REALLOC(0, num_files * sizeof(pak_file)); if( fread(p->entries, num_files, sizeof(pak_file), fp) != sizeof(pak_file) ) { goto fail; } for( unsigned i = 0; i < num_files; ++i ) { pak_file *e = &p->entries[i]; e->offset = ltoh32(e->offset); e->size = ltoh32(e->size); } if( mode[0] == 'a' ) { // resize (by truncation) size_t resize = header.offset; int fd = fileno(fp); if( fd != -1 ) { #ifdef _WIN32 int ok = 0 == _chsize_s( fd, resize ); #else int ok = 0 == ftruncate( fd, (off_t)resize ); #endif fflush(fp); fseek( fp, 0L, SEEK_END ); } p->out = fp; p->in = NULL; } else { p->in = fp; } return p; } if(mode[0] == 'w') { p->out = fp; // write temporary header char header[12] = {0}; if( fwrite(header, 1,12, p->out) != 12) goto fail; return p; } fail:; if(fp) fclose(fp); if(p->entries) REALLOC(p->entries, 0); if(p) REALLOC(p, 0); return NULL; } int pak_append_data(pak *p, const char *filename, const void *in, unsigned inlen) { if(!p->out) return ERR(0, "read-only pak file"); // index meta unsigned index = p->count++; p->entries = REALLOC(p->entries, p->count * sizeof(pak_file)); pak_file *e = &p->entries[index], zero = {0}; *e = zero; snprintf(e->name, 55, "%s", filename); // @todo: verify 56 chars limit e->size = inlen; e->offset = ftell(p->out); // write blob fwrite(in, 1, inlen, p->out); return !ferror(p->out); } int pak_append_file(pak *p, const char *filename, FILE *in) { // index meta unsigned index = p->count++; p->entries = REALLOC(p->entries, p->count * sizeof(pak_file)); pak_file *e = &p->entries[index], zero = {0}; *e = zero; snprintf(e->name, 55, "%s", filename); // @todo: verify 56 chars limit e->offset = ftell(p->out); char buf[1<<15]; while(!feof(in) && !ferror(in)) { size_t bytes = fread(buf, 1, sizeof(buf), in); fwrite(buf, 1, bytes, p->out); } e->size = ftell(p->out) - e->offset; return !ferror(p->out); } void pak_close(pak *p) { if(p->out) { // write toc uint32_t seek = 0 + 12, dirpos = (uint32_t)ftell(p->out), dirlen = p->count * 64; for(unsigned i = 0; i < p->count; ++i) { pak_file *e = &p->entries[i]; // write name (truncated if needed), and trailing zeros char zero[56] = {0}; int namelen = strlen(e->name); fwrite( e->name, 1, namelen >= 56 ? 55 : namelen, p->out ); fwrite( zero, 1, namelen >= 56 ? 1 : 56 - namelen, p->out ); // write offset + length pair uint32_t pseek = htol32(seek); fwrite( &pseek, 1,4, p->out ); uint32_t psize = htol32(e->size); fwrite( &psize, 1,4, p->out ); seek += e->size; } // patch header fseek(p->out, 0L, SEEK_SET); fwrite("PACK", 1,4, p->out); dirpos = htol32(dirpos); fwrite( &dirpos, 1,4, p->out ); dirlen = htol32(dirlen); fwrite( &dirlen, 1,4, p->out ); } // close streams if(p->in) fclose(p->in); if(p->out) fclose(p->out); // clean up for(unsigned i = 0; i < p->count; ++i) { pak_file *e = &p->entries[i]; } REALLOC(p->entries, 0); // delete pak zero = {0}; *p = zero; REALLOC(p, 0); } int pak_find(pak *p, const char *filename) { if( p->in ) { for( int i = p->count; --i >= 0; ) { if(!strcmp(p->entries[i].name, filename)) return i; } } return -1; } unsigned pak_count(pak *p) { return p->in ? p->count : 0; } unsigned pak_offset(pak *p, unsigned index) { return p->in && index < p->count ? p->entries[index].offset : 0; } unsigned pak_size(pak *p, unsigned index) { return p->in && index < p->count ? p->entries[index].size : 0; } char *pak_name(pak *p, unsigned index) { return p->in && index < p->count ? p->entries[index].name : NULL; } void *pak_extract(pak *p, unsigned index) { if( p->in && index < p->count ) { pak_file *e = &p->entries[index]; if( fseek(p->in, e->offset, SEEK_SET) != 0 ) { return ERR(NULL, "cant seek"); } void *buffer = REALLOC(0, e->size); if( !buffer ) { return ERR(NULL, "out of mem"); } if( fread(buffer, 1, e->size, p->in) != e->size ) { REALLOC(buffer, 0); return ERR(NULL, "cant read"); } return buffer; } return NULL; } #ifdef PAK_DEMO int main(int argc, char **argv) { puts("creating test.pak archive (3) ..."); pak *p = pak_open("test.pak", "wb"); if( p ) { pak_append_data(p, "/index.txt", "just a file", strlen("just a file")); pak_append_data(p, "/file/name1.txt", "just another file #1", strlen("just another file #1")); pak_append_data(p, "/file/name2.txt", "just another file #2", strlen("just another file #2")); pak_close(p); } puts("appending file to test.pak (1) ..."); p = pak_open("test.pak", "a+b"); if( p ) { pak_append_data(p, "/new/file", "this is an appended file", strlen("this is an appended file")); pak_close(p); } const char *fname = argc > 1 ? argv[1] : "test.pak"; printf("listing %s archive ...\n", fname); p = pak_open(fname, "rb"); if( p ) { for( unsigned i = 0; i < pak_count(p); ++i ) { printf(" %d) @%08x %11u %s ", i+1, pak_offset(p,i), pak_size(p,i), pak_name(p,i)); void *data = pak_extract(p,i); printf("\r%c\n", data ? 'Y':'N'); if(argc > 2 && data) if(i == pak_find(p,argv[2])) printf("%.*s\n", (int)pak_size(p,i), (char*)data); free(data); } pak_close(p); } puts("ok"); } #endif // PAK_DEMO #endif // PAK_C //#line 1 "src/dir.c" // directory iteration. // - rlyeh, public domain. #ifndef DIR_H #define DIR_H typedef struct dir dir; dir *dir_open(const char *filename, const char *mode); // recursive 'r' int dir_find(dir*, const char *entryname); // returns entry number; or <0 if not found. unsigned dir_count(dir*); char* dir_name(dir*, unsigned index); unsigned dir_size(dir*, unsigned index); unsigned dir_file(dir*, unsigned index); // dir_isfile? bool? void* dir_read(dir*, unsigned index); // must free() after use void dir_close(dir*); #endif // ----------------------------------------------------------------------------- #ifdef DIR_C //#pragma once #include #include #include #include #include # if defined _WIN32 && defined(__TINYC__) #include // tcc #elif defined _WIN32 #include // msc+gcc #else #include #endif #ifndef STRDUP #define STRDUP strdup #endif #ifndef REALLOC #define REALLOC realloc #endif #ifndef ERR #define ERR(NUM, ...) (fprintf(stderr, "" __VA_ARGS__), fprintf(stderr, "(%s:%d)\n", __FILE__, __LINE__), fflush(stderr), (NUM)) // (NUM) #endif typedef struct dir_entry { char *filename; size_t size; size_t is_dir : 1; } dir_entry; struct dir { dir_entry *entry; unsigned count; bool recursive; }; // --- #if !defined(S_ISDIR) # define S_ISDIR(mode) (((mode) & S_IFMT) == S_IFDIR) #endif int dir_yield(dir *d, const char *pathfile, char *name, int namelen) { int ok = 0; #ifdef _WIN32 WIN32_FIND_DATAA fdata = { 0 }; snprintf(name, namelen, "%s/*", pathfile); for( HANDLE h = FindFirstFileA(name, &fdata ); h != INVALID_HANDLE_VALUE; ok = (FindClose( h ), h = INVALID_HANDLE_VALUE, 1)) { for( int next = 1; next; next = FindNextFileA(h, &fdata) != 0 ) { if( fdata.cFileName[0] == '.' ) continue; int is_dir = (fdata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) > 0; snprintf(name, namelen, "%s/%s%s", pathfile, fdata.cFileName, is_dir ? "/" : ""); struct stat st; if( !is_dir ) if(stat(name, &st) < 0) continue; // add dir_entry de = { STRDUP(name), is_dir ? 0 : st.st_size, is_dir }; d->entry = (dir_entry*)REALLOC(d->entry, ++d->count * sizeof(dir_entry)); d->entry[d->count-1] = de; // recurse if (is_dir && d->recursive) { char pf[512]; snprintf(pf, 512, "%.*s", (int)strlen(name) - 1, name); name[0] = 0; dir_yield(d, pf, name, namelen); } } } #else snprintf(name, namelen, "%s/", pathfile); for( DIR *dir = opendir(name); dir; ok = (closedir(dir), dir = 0, 1)) { for( struct dirent *ep; (ep = readdir(dir)) != NULL; ) { if( ep->d_name[0] == '.' ) continue; snprintf(name, namelen, "%s/%s", pathfile, ep->d_name); struct stat st; if( stat(name, &st) < 0 ) continue; DIR *tmp = opendir(/*ep->d_*/name); int is_dir = !!tmp; if(tmp) closedir(tmp); // add dir_entry de = { STRDUP(name), is_dir ? 0 : st.st_size, is_dir }; d->entry = (dir_entry*)REALLOC(d->entry, ++d->count * sizeof(dir_entry)); d->entry[d->count-1] = de; // recurse if (is_dir && d->recursive) { char pf[512]; snprintf(pf, 512, "%s", name); name[0] = 0; dir_yield(d, pf, name, namelen); } } } #endif return ok; } dir *dir_open(const char *pathfile, const char *mode) { dir *d = (dir*)REALLOC(0, sizeof(dir)), zero = {0}; *d = zero; d->recursive = (mode[0] == 'R' || mode[0] == 'r'); char *clean = STRDUP( pathfile ); for( int i = 0; clean[i]; ++i ) if(clean[i] == '\\') clean[i] = '/'; for( int len = strlen(clean); clean[--len] == '/'; ) clean[len] = '\0'; char buffer[2048]; dir_yield(d, clean, buffer, 2048); REALLOC(clean, 0); return d; } int dir_find(dir *d, const char *entryname) { for( int i = d->count; --i >= 0; ) { // in case of several copies, grab most recent file (last coincidence) if( 0 == strcmp(entryname, d->entry[i].filename)) return i; } return -1; } unsigned dir_count(dir *d) { return d ? d->count : 0; } char* dir_name(dir *d, unsigned index) { return d && index < d->count ? d->entry[index].filename : 0; } unsigned dir_size(dir *d, unsigned index) { return d && index < d->count ? (unsigned)d->entry[index].size : 0; } unsigned dir_file(dir *d, unsigned index) { return d && index < d->count ? (unsigned)!d->entry[index].is_dir : 0; } void *dir_read(dir *d, unsigned index) { if( d && index < d->count ) { void *data = 0; for( FILE *fp = fopen(d->entry[index].filename, "rb"); fp; fclose(fp), fp = 0) { size_t len = d->entry[index].size; data = REALLOC(0, len); if( data && fread(data, 1, len, fp) != len ) { data = REALLOC(data, 0); } } return data; } return 0; } void dir_close(dir *d) { for( int i = 0; i < d->count; ++i) { REALLOC(d->entry[i].filename, 0); } dir zero = {0}; *d = zero; REALLOC(d, 0); } #ifdef DIR_DEMO int main( int argc, char **argv ) { dir *d = dir_open(argc > 1 ? argv[1] : "./", "rb"); if( d ) { for( int i = 0; i < dir_count(d); ++i ) { if( dir_file(d,i) ) printf("%3d) %11d %s\n", i + 1, dir_size(d,i), dir_name(d,i)); else printf("%3d) %11s %s\n", i + 1, "

", dir_name(d,i)); char *data = dir_read(d,i); if(argc > 2 && !strcmp(argv[2],dir_name(d,i))) printf("%.*s\n", dir_size(d,i), data); free(data); } dir_close(d); } } #define main main__ #endif //DIR_DEMO #endif //DIR_C #line 0 #line 1 "3rd_thread.h" /* ------------------------------------------------------------------------------ Licensing information can be found at the end of the file. ------------------------------------------------------------------------------ thread.h - v0.31 - Cross platform threading functions for C/C++. Do this: #define THREAD_IMPLEMENTATION before you include this file in *one* C/C++ file to create the implementation. */ #ifndef thread_h #define thread_h #ifndef THREAD_U64 #define THREAD_U64 unsigned long long #endif #define THREAD_HAS_ATOMIC 1 // ref: https://github.com/ufbx/ufbx/blob/master/ufbx.c // ref: https://github.com/gingerBill/gb/blob/master/gb.h #if defined __TINYC__ && !defined _WIN32 #undef THREAD_HAS_ATOMIC #define THREAD_HAS_ATOMIC 0 #if defined(__x86_64__) || defined(_AMD64_) static size_t tcc_atomic_add(volatile size_t *dst, size_t value) { __asm__ __volatile__("lock; xaddq %0, %1;" : "+r" (value), "=m" (*dst) : "m" (dst)); return value; } static size_t tcc_atomic_compare_exchange(volatile size_t *dst, size_t expected, size_t desired) { size_t original; __asm__ __volatile__( "lock; cmpxchgq %2, %1" : "=a"(original), "+m"(*dst) : "q"(desired), "0"(expected) ); return original; } static size_t tcc_atomic_exchanged(volatile size_t *dst, size_t desired) { size_t original; __asm__ __volatile__( "xchgq %0, %1" : "=r"(original), "+m"(*dst) : "0"(desired) ); return original; } #elif defined(__i386__) || defined(_X86_) static size_t tcc_atomic_add(volatile size_t *dst, size_t value) { __asm__ __volatile__("lock; xaddl %0, %1;" : "+r" (value), "=m" (*dst) : "m" (dst)); return value; } static size_t tcc_atomic_compare_exchange(volatile size_t *a, size_t expected, size_t desired) { size_t original; __asm__ __volatile__( "lock; cmpxchgl %2, %1" : "=a"(original), "+m"(*dst) : "q"(desired), "0"(expected) ); return original; } static size_t tcc_atomic_exchanged(volatile size_t *a, size_t desired) { size_t original; __asm__ __volatile__( "xchgl %0, %1" : "=r"(original), "+m"(*dst) : "0"(desired) ); return original; } #else #error Unexpected TCC architecture #endif typedef volatile size_t thread_atomic_int_t; #define thread_atomic_int_inc(ptr) tcc_atomic_add((ptr), 1) #define thread_atomic_int_dec(ptr) tcc_atomic_add((ptr), SIZE_MAX) //#define thread_atomic_int_add(ptr,v) tcc_atomic_add((ptr), (v)) //#define thread_atomic_int_sub(ptr,v) tcc_atomic_add((ptr), -(v)) // meh #define thread_atomic_int_load(ptr) (*(ptr) = 0) // meh #define thread_atomic_int_store(ptr,v) (*(ptr) = (v)) // meh //#define thread_atomic_int_swap(ptr,desired) tcc_atomic_exchanged((ptr),desired) #define thread_atomic_int_compare_and_swap(ptr,expected,desired) tcc_atomic_compare_exchange((ptr),(expected),(desired)) #elif defined __TINYC__ && defined _WIN32 #define THREAD_USE_MCMP 1 #endif #define THREAD_STACK_SIZE_DEFAULT ( 0 ) #define THREAD_SIGNAL_WAIT_INFINITE ( -1 ) #define THREAD_QUEUE_WAIT_INFINITE ( -1 ) typedef void* thread_id_t; thread_id_t thread_current_thread_id( void ); void thread_yield( void ); void thread_set_high_priority( void ); void thread_exit( int return_code ); typedef void* thread_ptr_t; thread_ptr_t thread_init( int (*thread_proc)( void* ), void* user_data, char const* name, int stack_size ); //< @r-lyeh thread_create -> thread_init void thread_term( thread_ptr_t thread ); //< @r-lyeh: renamed thread_destroy -> thread_term int thread_join( thread_ptr_t thread ); int thread_detach( thread_ptr_t thread ); typedef union thread_mutex_t thread_mutex_t; void thread_mutex_init( thread_mutex_t* mutex ); void thread_mutex_term( thread_mutex_t* mutex ); void thread_mutex_lock( thread_mutex_t* mutex ); void thread_mutex_unlock( thread_mutex_t* mutex ); typedef union thread_signal_t thread_signal_t; void thread_signal_init( thread_signal_t* signal ); void thread_signal_term( thread_signal_t* signal ); void thread_signal_raise( thread_signal_t* signal ); int thread_signal_wait( thread_signal_t* signal, int timeout_ms ); #if THREAD_HAS_ATOMIC typedef union thread_atomic_int_t thread_atomic_int_t; int thread_atomic_int_load( thread_atomic_int_t* atomic ); void thread_atomic_int_store( thread_atomic_int_t* atomic, int desired ); int thread_atomic_int_inc( thread_atomic_int_t* atomic ); int thread_atomic_int_dec( thread_atomic_int_t* atomic ); int thread_atomic_int_add( thread_atomic_int_t* atomic, int value ); int thread_atomic_int_sub( thread_atomic_int_t* atomic, int value ); int thread_atomic_int_swap( thread_atomic_int_t* atomic, int desired ); int thread_atomic_int_compare_and_swap( thread_atomic_int_t* atomic, int expected, int desired ); typedef union thread_atomic_ptr_t thread_atomic_ptr_t; void* thread_atomic_ptr_load( thread_atomic_ptr_t* atomic ); void thread_atomic_ptr_store( thread_atomic_ptr_t* atomic, void* desired ); void* thread_atomic_ptr_swap( thread_atomic_ptr_t* atomic, void* desired ); void* thread_atomic_ptr_compare_and_swap( thread_atomic_ptr_t* atomic, void* expected, void* desired ); #endif typedef union thread_timer_t thread_timer_t; void thread_timer_init( thread_timer_t* timer ); void thread_timer_term( thread_timer_t* timer ); void thread_timer_wait( thread_timer_t* timer, THREAD_U64 nanoseconds ); typedef void* thread_tls_t; thread_tls_t thread_tls_create( void ); void thread_tls_destroy( thread_tls_t tls ); void thread_tls_set( thread_tls_t tls, void* value ); void* thread_tls_get( thread_tls_t tls ); typedef struct thread_queue_t thread_queue_t; void thread_queue_init( thread_queue_t* queue, int size, void** values, int count ); void thread_queue_term( thread_queue_t* queue ); int thread_queue_produce( thread_queue_t* queue, void* value, int timeout_ms ); void* thread_queue_consume( thread_queue_t* queue, int timeout_ms ); int thread_queue_count( thread_queue_t* queue ); #if THREAD_USE_MCMP struct mcmp; int mcmp_new(struct mcmp *ctx); int mcmp_del(struct mcmp *ctx); int mcmp_add(struct mcmp *ctx, void *data); void *mcmp_pop(struct mcmp *ctx ); #define thread_queue_t struct mcmp #define thread_queue_init(t,a,b,c) mcmp_new(t) #define thread_queue_produce(t,v,a) mcmp_add(t,v) #define thread_queue_consume(t,a) mcmp_pop(t) #define thread_queue_term(t) mcmp_del(t) #define thread_queue_count(t) exit(-123) #endif #endif /* thread_h */ /** Example ======= Here's a basic sample program which starts a second thread which just waits and prints a message. #define THREAD_IMPLEMENTATION #include "thread.h" #include // for printf int thread_proc( void* user_data) { thread_timer_t timer; thread_timer_init( &timer ); int count = 0; thread_atomic_int_t* exit_flag = (thread_atomic_int_t*) user_data; while( thread_atomic_int_load( exit_flag ) == 0 ) { printf( "Thread... " ); thread_timer_wait( &timer, 1000000000 ); // sleep for a second ++count; } thread_timer_term( &timer ); printf( "Done\n" ); return count; } int main( int argc, char** argv ) { (void) argc, argv; thread_atomic_int_t exit_flag; thread_atomic_int_store( &exit_flag, 0 ); thread_ptr_t thread = thread_init( thread_proc, &exit_flag, "Example thread", THREAD_STACK_SIZE_DEFAULT ); thread_timer_t timer; thread_timer_init( &timer ); for( int i = 0; i < 5; ++i ) { printf( "Main... " ); thread_timer_wait( &timer, 2000000000 ); // sleep for two seconds } thread_timer_term( &timer ); thread_atomic_int_store( &exit_flag, 1 ); // signal thread to exit int retval = thread_join( thread ); printf( "Count: %d\n", retval ); thread_term( thread ); return retval; } API Documentation ================= thread.h is a single-header library, and does not need any .lib files or other binaries, or any build scripts. To use it, you just include thread.h to get the API declarations. To get the definitions, you must include thread.h from *one* single C or C++ file, and #define the symbol `THREAD_IMPLEMENTATION` before you do. Customization ------------- thread.h allows for specifying the exact type of 64-bit unsigned integer to be used in its API. By default, it is defined as `unsigned long long`, but as this is not a standard type on all compilers, you can redefine it by #defining THREAD_U64 before including thread.h. This is useful if you, for example, use the types from `` in the rest of your program, and you want thread.h to use compatible types. In this case, you would include thread.h using the following code: #define THREAD_U64 uint64_t #include "thread.h" Note that when customizing this data type, you need to use the same definition in every place where you include thread.h, as it affect the declarations as well as the definitions. thread_current_thread_id ------------------------ thread_id_t thread_current_thread_id( void ) Returns a unique identifier for the calling thread. After the thread terminates, the id might be reused for new threads. thread_yield ------------ void thread_yield( void ) Makes the calling thread yield execution to another thread. The operating system controls which thread is switched to. thread_set_high_priority ------------------------ void thread_set_high_priority( void ) When created, threads are set to run at normal priority. In some rare cases, such as a sound buffer update loop, it can be necessary to have one thread of your application run on a higher priority than the rest. Calling `thread_set_high_priority` will raise the priority of the calling thread, giving it a chance to be run more often. Do not increase the priority of a thread unless you absolutely have to, as it can negatively affect performance if used without care. thread_exit ----------- void thread_exit( int return_code ) Exits the calling thread, as if you had done `return return_code;` from the main body of the thread function. thread_init ------------- thread_ptr_t thread_init( int (*thread_proc)( void* ), void* user_data, char const* name, int stack_size ) Creates a new thread running the `thread_proc` function, passing the `user_data` through to it. The thread will be given the debug name given in the `name` parameter, if supported on the platform, and it will have the stack size specified in the `stack_size` parameter. To get the operating system default stack size, use the defined constant `THREAD_STACK_SIZE_DEFAULT`. When returning from the thread_proc function, the value you return can be received in another thread by calling thread_join. `thread_init` returns a pointer to the thread instance, which can be used as a parameter to the functions `thread_term` and `thread_join`. thread_term -------------- void thread_term( thread_ptr_t thread ) Destroys a thread that was created by calling `thread_init`. Make sure the thread has exited before you attempt to destroy it. This can be accomplished by calling `thread_join`. It is not possible for force termination of a thread by calling `thread_term`. thread_join ----------- int thread_join( thread_ptr_t thread ) Waits for the specified thread to exit. Returns the value which the thread returned when exiting. thread_detach ------------- int thread_detach( thread_ptr_t thread ) Marks the thread as detached. When a detached thread terminates, its resources are automatically released back to the system without the need for another thread to join with the terminated thread. thread_mutex_init ----------------- void thread_mutex_init( thread_mutex_t* mutex ) Initializes the specified mutex instance, preparing it for use. A mutex can be used to lock sections of code, such that it can only be run by one thread at a time. thread_mutex_term ----------------- void thread_mutex_term( thread_mutex_t* mutex ) Terminates the specified mutex instance, releasing any system resources held by it. thread_mutex_lock ----------------- void thread_mutex_lock( thread_mutex_t* mutex ) Takes an exclusive lock on a mutex. If the lock is already taken by another thread, `thread_mutex_lock` will yield the calling thread and wait for the lock to become available before returning. The mutex must be initialized by calling `thread_mutex_init` before it can be locked. thread_mutex_unlock ------------------- void thread_mutex_unlock( thread_mutex_t* mutex ) Releases a lock taken by calling `thread_mutex_lock`. thread_signal_init ------------------ void thread_signal_init( thread_signal_t* signal ) Initializes the specified signal instance, preparing it for use. A signal works like a flag, which can be waited on by one thread, until it is raised from another thread. thread_signal_term ------------------ void thread_signal_term( thread_signal_t* signal ) Terminates the specified signal instance, releasing any system resources held by it. thread_signal_raise ------------------- void thread_signal_raise( thread_signal_t* signal ) Raise the specified signal. Other threads waiting for the signal will proceed. thread_signal_wait ------------------ int thread_signal_wait( thread_signal_t* signal, int timeout_ms ) Waits for a signal to be raised, or until `timeout_ms` milliseconds have passed. If the wait timed out, a value of 0 is returned, otherwise a non-zero value is returned. If the `timeout_ms` parameter is THREAD_SIGNAL_WAIT_INFINITE, `thread_signal_wait` waits indefinitely. thread_atomic_int_load ---------------------- int thread_atomic_int_load( thread_atomic_int_t* atomic ) Returns the value of `atomic` as an atomic operation. thread_atomic_int_store ----------------------- void thread_atomic_int_store( thread_atomic_int_t* atomic, int desired ) Sets the value of `atomic` as an atomic operation. thread_atomic_int_inc --------------------- int thread_atomic_int_inc( thread_atomic_int_t* atomic ) Increments the value of `atomic` by one, as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_int_dec --------------------- int thread_atomic_int_dec( thread_atomic_int_t* atomic ) Decrements the value of `atomic` by one, as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_int_add --------------------- int thread_atomic_int_add( thread_atomic_int_t* atomic, int value ) Adds the specified value to `atomic`, as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_int_sub --------------------- int thread_atomic_int_sub( thread_atomic_int_t* atomic, int value ) Subtracts the specified value to `atomic`, as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_int_swap ---------------------- int thread_atomic_int_swap( thread_atomic_int_t* atomic, int desired ) Sets the value of `atomic` as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_int_compare_and_swap ---------------------------------- int thread_atomic_int_compare_and_swap( thread_atomic_int_t* atomic, int expected, int desired ) Compares the value of `atomic` to the value of `expected`, and if they match, sets the vale of `atomic` to `desired`, all as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_ptr_load ---------------------- void* thread_atomic_ptr_load( thread_atomic_ptr_t* atomic ) Returns the value of `atomic` as an atomic operation. thread_atomic_ptr_store ----------------------- void thread_atomic_ptr_store( thread_atomic_ptr_t* atomic, void* desired ) Sets the value of `atomic` as an atomic operation. thread_atomic_ptr_swap ---------------------- void* thread_atomic_ptr_swap( thread_atomic_ptr_t* atomic, void* desired ) Sets the value of `atomic` as an atomic operation. Returns the value `atomic` had before the operation. thread_atomic_ptr_compare_and_swap ---------------------------------- void* thread_atomic_ptr_compare_and_swap( thread_atomic_ptr_t* atomic, void* expected, void* desired ) Compares the value of `atomic` to the value of `expected`, and if they match, sets the vale of `atomic` to `desired`, all as an atomic operation. Returns the value `atomic` had before the operation. thread_timer_init ----------------- void thread_timer_init( thread_timer_t* timer ) Initializes the specified timer instance, preparing it for use. A timer can be used to sleep a thread for a high precision duration. thread_timer_term ----------------- void thread_timer_term( thread_timer_t* timer ) Terminates the specified timer instance, releasing any system resources held by it. thread_timer_wait ----------------- void thread_timer_wait( thread_timer_t* timer, THREAD_U64 nanoseconds ) Waits until `nanoseconds` amount of time have passed, before returning. thread_tls_create ----------------- thread_tls_t thread_tls_create( void ) Creates a thread local storage (TLS) index. Once created, each thread has its own value for that TLS index, which can be set or retrieved individually. thread_tls_destroy ------------------ void thread_tls_destroy( thread_tls_t tls ) Destroys the specified TLS index. No further calls to `thread_tls_set` or `thread_tls_get` are valid after this. thread_tls_set -------------- void thread_tls_set( thread_tls_t tls, void* value ) Stores a value in the calling thread's slot for the specified TLS index. Each thread has its own value for each TLS index. thread_tls_get -------------- void* thread_tls_get( thread_tls_t tls ) Retrieves the value from the calling thread's slot for the specified TLS index. Each thread has its own value for each TLS index. thread_queue_init ----------------- void thread_queue_init( thread_queue_t* queue, int size, void** values, int count ) Initializes the specified queue instance, preparing it for use. The queue is a lock-free (but not wait-free) single-producer/single-consumer queue - it will not acquire any locks as long as there is space for adding or items to be consume, but will lock and wait when there is not. The `size` parameter specifies the number of elements in the queue. The `values` parameter is an array of queue slots (`size` elements in length), each being of type `void*`. If the queue is initially empty, the `count` parameter should be 0, otherwise it indicates the number of entires, from the start of the `values` array, that the queue is initialized with. The `values` array is not copied, and must remain valid until `thread_queue_term` is called. thread_queue_term ----------------- void thread_queue_term( thread_queue_t* queue ) Terminates the specified queue instance, releasing any system resources held by it. thread_queue_produce -------------------- int thread_queue_produce( thread_queue_t* queue, void* value, int timeout_ms ) Adds an element to a single-producer/single-consumer queue. If there is space in the queue to add another element, no lock will be taken. If the queue is full, calling thread will sleep until an element is consumed from another thread, before adding the element, or until `timeout_ms` milliseconds have passed. If the wait timed out, a value of 0 is returned, otherwise a non-zero value is returned. If the `timeout_ms` parameter is THREAD_QUEUE_WAIT_INFINITE, `thread_queue_produce` waits indefinitely. thread_queue_consume -------------------- void* thread_queue_consume( thread_queue_t* queue, int timeout_ms ) Removes an element from a single-producer/single-consumer queue. If the queue contains at least one element, no lock will be taken. If the queue is empty, the calling thread will sleep until an element is added from another thread, or until `timeout_ms` milliseconds have passed. If the wait timed out, a value of NULL is returned, otherwise `thread_queue_consume` returns the value that was removed from the queue. If the `timeout_ms` parameter is THREAD_QUEUE_WAIT_INFINITE, `thread_queue_consume` waits indefinitely. thread_queue_count ------------------ int thread_queue_count( thread_queue_t* queue ) Returns the number of elements currently held in a single-producer/single-consumer queue. Be aware that by the time you get the count, it might have changed by another thread calling consume or produce, so use with care. **/ /* ---------------------- IMPLEMENTATION ---------------------- */ #ifndef thread_impl #define thread_impl union thread_mutex_t { void* align; char data[ 64 ]; }; union thread_signal_t { void* align; char data[ 116 ]; }; union thread_atomic_int_t { void* align; long i; }; union thread_atomic_ptr_t { void* ptr; }; union thread_timer_t { void* data; char d[ 8 ]; }; #if !THREAD_USE_MCMP struct thread_queue_t { thread_signal_t data_ready; thread_signal_t space_open; thread_atomic_int_t count; thread_atomic_int_t head; thread_atomic_int_t tail; void** values; int size; #ifndef NDEBUG thread_atomic_int_t id_produce_is_set; thread_id_t id_produce; thread_atomic_int_t id_consume_is_set; thread_id_t id_consume; #endif }; #endif #endif /* thread_impl */ #ifdef THREAD_IMPLEMENTATION #undef THREAD_IMPLEMENTATION #if defined( _WIN32 ) #pragma comment( lib, "winmm" ) //< @r-lyeh, tcc support (remove .lib) #define _CRT_NONSTDC_NO_DEPRECATE #define _CRT_SECURE_NO_WARNINGS #if !defined( _WIN32_WINNT ) || _WIN32_WINNT < 0x0501 #undef _WIN32_WINNT #define _WIN32_WINNT 0x501// requires Windows XP minimum #endif #define _WINSOCKAPI_ #pragma warning( push ) #pragma warning( disable: 4668 ) // 'symbol' is not defined as a preprocessor macro, replacing with '0' for 'directives' #pragma warning( disable: 4255 ) #include #pragma warning( pop ) // To set thread name const DWORD MS_VC_EXCEPTION = 0x406D1388; #pragma pack( push, 8 ) typedef struct tagTHREADNAME_INFO { DWORD dwType; LPCSTR szName; DWORD dwThreadID; DWORD dwFlags; } THREADNAME_INFO; #pragma pack(pop) #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems #ifndef _GNU_SOURCE #define _GNU_SOURCE //< @r-lyeh: pthread_setname_np() #endif #include #include #include #else #error Unknown platform. #endif #ifndef NDEBUG #include #endif thread_id_t thread_current_thread_id( void ) { #if defined( _WIN32 ) return (void*) (uintptr_t)GetCurrentThreadId(); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (void*) pthread_self(); #else #error Unknown platform. #endif } void thread_yield( void ) { #if defined( _WIN32 ) SwitchToThread(); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems sched_yield(); #else #error Unknown platform. #endif } void thread_exit( int return_code ) { #if defined( _WIN32 ) ExitThread( (DWORD) return_code ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_exit( (void*)(uintptr_t) return_code ); #else #error Unknown platform. #endif } thread_ptr_t thread_init( int (*thread_proc)( void* ), void* user_data, char const* name, int stack_size ) { #if defined( _WIN32 ) DWORD thread_id; HANDLE handle = CreateThread( NULL, stack_size > 0 ? (size_t)stack_size : 0U, (LPTHREAD_START_ROUTINE)(uintptr_t) thread_proc, user_data, 0, &thread_id ); if( !handle ) return NULL; #ifdef _MSC_VER //< @r-lyeh: fix mingw64 // Yes, this crazy construct with __try and RaiseException is how you name a thread in Visual Studio :S if( name && IsDebuggerPresent() ) { THREADNAME_INFO info; info.dwType = 0x1000; info.szName = name; info.dwThreadID = thread_id; info.dwFlags = 0; __try { RaiseException( MS_VC_EXCEPTION, 0, sizeof( info ) / sizeof( ULONG_PTR ), (ULONG_PTR*) &info ); } __except( EXCEPTION_EXECUTE_HANDLER ) { } } #endif return (thread_ptr_t) handle; #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_t thread; if( 0 != pthread_create( &thread, NULL, ( void* (*)( void * ) ) thread_proc, user_data ) ) return NULL; #if !defined( __APPLE__ ) && !defined( __EMSCRIPTEN__ ) // max doesn't support pthread_setname_np. alternatives? //< @r-lyeh, ems if( name ) pthread_setname_np( thread, name ); #endif return (thread_ptr_t) thread; #else #error Unknown platform. #endif } void thread_term( thread_ptr_t thread ) { #if defined( _WIN32 ) WaitForSingleObject( (HANDLE) thread, INFINITE ); CloseHandle( (HANDLE) thread ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_join( (pthread_t) thread, NULL ); #else #error Unknown platform. #endif } int thread_join( thread_ptr_t thread ) { #if defined( _WIN32 ) WaitForSingleObject( (HANDLE) thread, INFINITE ); DWORD retval; GetExitCodeThread( (HANDLE) thread, &retval ); return (int) retval; #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems void* retval; pthread_join( (pthread_t) thread, &retval ); return (int)(uintptr_t) retval; #else #error Unknown platform. #endif } int thread_detach( thread_ptr_t thread ) { #if defined( _WIN32 ) return CloseHandle( (HANDLE) thread ) != 0; #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return pthread_detach( (pthread_t) thread ) == 0; #else #error Unknown platform. #endif } void thread_set_high_priority( void ) { #if defined( _WIN32 ) SetThreadPriority( GetCurrentThread(), THREAD_PRIORITY_HIGHEST ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems struct sched_param sp; memset( &sp, 0, sizeof( sp ) ); sp.sched_priority = sched_get_priority_min( SCHED_RR ); pthread_setschedparam( pthread_self(), SCHED_RR, &sp); #else #error Unknown platform. #endif } void thread_mutex_init( thread_mutex_t* mutex ) { #if defined( _WIN32 ) // Compile-time size check #pragma warning( push ) #pragma warning( disable: 4214 ) // nonstandard extension used: bit field types other than int struct x { char thread_mutex_type_too_small : ( sizeof( thread_mutex_t ) < sizeof( CRITICAL_SECTION ) ? 0 : 1 ); }; #pragma warning( pop ) InitializeCriticalSectionAndSpinCount( (CRITICAL_SECTION*) mutex, 32 ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems // Compile-time size check struct x { char thread_mutex_type_too_small : ( sizeof( thread_mutex_t ) < sizeof( pthread_mutex_t ) ? 0 : 1 ); }; pthread_mutex_init( (pthread_mutex_t*) mutex, NULL ); #else #error Unknown platform. #endif } void thread_mutex_term( thread_mutex_t* mutex ) { #if defined( _WIN32 ) DeleteCriticalSection( (CRITICAL_SECTION*) mutex ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_destroy( (pthread_mutex_t*) mutex ); #else #error Unknown platform. #endif } void thread_mutex_lock( thread_mutex_t* mutex ) { #if defined( _WIN32 ) EnterCriticalSection( (CRITICAL_SECTION*) mutex ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_lock( (pthread_mutex_t*) mutex ); #else #error Unknown platform. #endif } void thread_mutex_unlock( thread_mutex_t* mutex ) { #if defined( _WIN32 ) LeaveCriticalSection( (CRITICAL_SECTION*) mutex ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_unlock( (pthread_mutex_t*) mutex ); #else #error Unknown platform. #endif } struct thread_internal_signal_t { #if defined( _WIN32 ) #if _WIN32_WINNT >= 0x0600 CRITICAL_SECTION mutex; CONDITION_VARIABLE condition; int value; #else HANDLE event; #endif #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_t mutex; pthread_cond_t condition; int value; #else #error Unknown platform. #endif }; void thread_signal_init( thread_signal_t* signal ) { // Compile-time size check #pragma warning( push ) #pragma warning( disable: 4214 ) // nonstandard extension used: bit field types other than int struct x { char thread_signal_type_too_small : ( sizeof( thread_signal_t ) < sizeof( struct thread_internal_signal_t ) ? 0 : 1 ); }; #pragma warning( pop ) struct thread_internal_signal_t* internal = (struct thread_internal_signal_t*) signal; #if defined( _WIN32 ) #if _WIN32_WINNT >= 0x0600 InitializeCriticalSectionAndSpinCount( &internal->mutex, 32 ); InitializeConditionVariable( &internal->condition ); internal->value = 0; #else internal->event = CreateEvent( NULL, FALSE, FALSE, NULL ); #endif #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_init( &internal->mutex, NULL ); pthread_cond_init( &internal->condition, NULL ); internal->value = 0; #else #error Unknown platform. #endif } void thread_signal_term( thread_signal_t* signal ) { struct thread_internal_signal_t* internal = (struct thread_internal_signal_t*) signal; #if defined( _WIN32 ) #if _WIN32_WINNT >= 0x0600 DeleteCriticalSection( &internal->mutex ); #else CloseHandle( internal->event ); #endif #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_destroy( &internal->mutex ); pthread_cond_destroy( &internal->condition ); #else #error Unknown platform. #endif } void thread_signal_raise( thread_signal_t* signal ) { struct thread_internal_signal_t* internal = (struct thread_internal_signal_t*) signal; #if defined( _WIN32 ) #if _WIN32_WINNT >= 0x0600 EnterCriticalSection( &internal->mutex ); internal->value = 1; LeaveCriticalSection( &internal->mutex ); WakeConditionVariable( &internal->condition ); #else SetEvent( internal->event ); #endif #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_mutex_lock( &internal->mutex ); internal->value = 1; pthread_mutex_unlock( &internal->mutex ); pthread_cond_signal( &internal->condition ); #else #error Unknown platform. #endif } int thread_signal_wait( thread_signal_t* signal, int timeout_ms ) { struct thread_internal_signal_t* internal = (struct thread_internal_signal_t*) signal; #if defined( _WIN32 ) #if _WIN32_WINNT >= 0x0600 int timed_out = 0; EnterCriticalSection( &internal->mutex ); while( internal->value == 0 ) { BOOL res = SleepConditionVariableCS( &internal->condition, &internal->mutex, timeout_ms < 0 ? INFINITE : timeout_ms ); if( !res && GetLastError() == ERROR_TIMEOUT ) { timed_out = 1; break; } } internal->value = 0; LeaveCriticalSection( &internal->mutex ); return !timed_out; #else int failed = WAIT_OBJECT_0 != WaitForSingleObject( internal->event, timeout_ms < 0 ? INFINITE : timeout_ms ); return !failed; #endif #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems struct timespec ts; if( timeout_ms >= 0 ) { struct timeval tv; gettimeofday( &tv, NULL ); ts.tv_sec = time( NULL ) + timeout_ms / 1000; ts.tv_nsec = tv.tv_usec * 1000 + 1000 * 1000 * ( timeout_ms % 1000 ); ts.tv_sec += ts.tv_nsec / ( 1000 * 1000 * 1000 ); ts.tv_nsec %= ( 1000 * 1000 * 1000 ); } int timed_out = 0; pthread_mutex_lock( &internal->mutex ); while( internal->value == 0 ) { if( timeout_ms < 0 ) pthread_cond_wait( &internal->condition, &internal->mutex ); else if( pthread_cond_timedwait( &internal->condition, &internal->mutex, &ts ) == ETIMEDOUT ) { timed_out = 1; break; } } if( !timed_out ) internal->value = 0; pthread_mutex_unlock( &internal->mutex ); return !timed_out; #else #error Unknown platform. #endif } #if THREAD_HAS_ATOMIC int thread_atomic_int_load( thread_atomic_int_t* atomic ) { #if defined( _WIN32 ) return InterlockedCompareExchange( &atomic->i, 0, 0 ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (int)__sync_fetch_and_add( &atomic->i, 0 ); #else #error Unknown platform. #endif } void thread_atomic_int_store( thread_atomic_int_t* atomic, int desired ) { #if defined( _WIN32 ) InterlockedExchange( &atomic->i, desired ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems __sync_fetch_and_and( &atomic->i, 0 ); __sync_fetch_and_or( &atomic->i, desired ); #else #error Unknown platform. #endif } int thread_atomic_int_inc( thread_atomic_int_t* atomic ) { #if defined( _WIN32 ) return InterlockedIncrement( &atomic->i ) - 1; #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (int)__sync_fetch_and_add( &atomic->i, 1 ); #else #error Unknown platform. #endif } int thread_atomic_int_dec( thread_atomic_int_t* atomic ) { #if defined( _WIN32 ) return InterlockedDecrement( &atomic->i ) + 1; #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (int)__sync_fetch_and_sub( &atomic->i, 1 ); #else #error Unknown platform. #endif } int thread_atomic_int_add( thread_atomic_int_t* atomic, int value ) { #if defined( _WIN32 ) return InterlockedExchangeAdd ( &atomic->i, value ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (int)__sync_fetch_and_add( &atomic->i, value ); #else #error Unknown platform. #endif } int thread_atomic_int_sub( thread_atomic_int_t* atomic, int value ) { #if defined( _WIN32 ) return InterlockedExchangeAdd( &atomic->i, -value ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (int)__sync_fetch_and_sub( &atomic->i, value ); #else #error Unknown platform. #endif } int thread_atomic_int_swap( thread_atomic_int_t* atomic, int desired ) { #if defined( _WIN32 ) return InterlockedExchange( &atomic->i, desired ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems int old = (int)__sync_lock_test_and_set( &atomic->i, desired ); __sync_lock_release( &atomic->i ); return old; #else #error Unknown platform. #endif } int thread_atomic_int_compare_and_swap( thread_atomic_int_t* atomic, int expected, int desired ) { #if defined( _WIN32 ) return InterlockedCompareExchange( &atomic->i, desired, expected ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return (int)__sync_val_compare_and_swap( &atomic->i, expected, desired ); #else #error Unknown platform. #endif } void* thread_atomic_ptr_load( thread_atomic_ptr_t* atomic ) { #if defined( _WIN32 ) return InterlockedCompareExchangePointer( &atomic->ptr, 0, 0 ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return __sync_fetch_and_add( &atomic->ptr, 0 ); #else #error Unknown platform. #endif } void thread_atomic_ptr_store( thread_atomic_ptr_t* atomic, void* desired ) { #if defined( _WIN32 ) #pragma warning( push ) #pragma warning( disable: 4302 ) // 'type cast' : truncation from 'void *' to 'LONG' #pragma warning( disable: 4311 ) // pointer truncation from 'void *' to 'LONG' #pragma warning( disable: 4312 ) // conversion from 'LONG' to 'PVOID' of greater size InterlockedExchangePointer( &atomic->ptr, desired ); #pragma warning( pop ) #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems __sync_lock_test_and_set( &atomic->ptr, desired ); __sync_lock_release( &atomic->ptr ); #else #error Unknown platform. #endif } void* thread_atomic_ptr_swap( thread_atomic_ptr_t* atomic, void* desired ) { #if defined( _WIN32 ) #pragma warning( push ) #pragma warning( disable: 4302 ) // 'type cast' : truncation from 'void *' to 'LONG' #pragma warning( disable: 4311 ) // pointer truncation from 'void *' to 'LONG' #pragma warning( disable: 4312 ) // conversion from 'LONG' to 'PVOID' of greater size return InterlockedExchangePointer( &atomic->ptr, desired ); #pragma warning( pop ) #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems void* old = __sync_lock_test_and_set( &atomic->ptr, desired ); __sync_lock_release( &atomic->ptr ); return old; #else #error Unknown platform. #endif } void* thread_atomic_ptr_compare_and_swap( thread_atomic_ptr_t* atomic, void* expected, void* desired ) { #if defined( _WIN32 ) return InterlockedCompareExchangePointer( &atomic->ptr, desired, expected ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return __sync_val_compare_and_swap( &atomic->ptr, expected, desired ); #else #error Unknown platform. #endif } #endif // THREAD_HAS_ATOMIC void thread_timer_init( thread_timer_t* timer ) { #if defined( _WIN32 ) // Compile-time size check #pragma warning( push ) #pragma warning( disable: 4214 ) // nonstandard extension used: bit field types other than int struct x { char thread_timer_type_too_small : ( sizeof( thread_mutex_t ) < sizeof( HANDLE ) ? 0 : 1 ); }; #pragma warning( pop ) TIMECAPS tc; if( timeGetDevCaps( &tc, sizeof( TIMECAPS ) ) == TIMERR_NOERROR ) timeBeginPeriod( tc.wPeriodMin ); *(HANDLE*)timer = CreateWaitableTimer( NULL, TRUE, NULL ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems // Nothing #else #error Unknown platform. #endif } void thread_timer_term( thread_timer_t* timer ) { #if defined( _WIN32 ) CloseHandle( *(HANDLE*)timer ); TIMECAPS tc; if( timeGetDevCaps( &tc, sizeof( TIMECAPS ) ) == TIMERR_NOERROR ) timeEndPeriod( tc.wPeriodMin ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems // Nothing #else #error Unknown platform. #endif } void thread_timer_wait( thread_timer_t* timer, THREAD_U64 nanoseconds ) { #if defined( _WIN32 ) LARGE_INTEGER due_time; due_time.QuadPart = - (LONGLONG) ( nanoseconds / 100 ); BOOL b = SetWaitableTimer( *(HANDLE*)timer, &due_time, 0, 0, 0, FALSE ); (void) b; WaitForSingleObject( *(HANDLE*)timer, INFINITE ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems struct timespec rem; struct timespec req; req.tv_sec = nanoseconds / 1000000000ULL; req.tv_nsec = nanoseconds - req.tv_sec * 1000000000ULL; while( nanosleep( &req, &rem ) ) req = rem; #else #error Unknown platform. #endif } thread_tls_t thread_tls_create( void ) { #if defined( _WIN32 ) DWORD tls = TlsAlloc(); if( tls == TLS_OUT_OF_INDEXES ) return NULL; else return (thread_tls_t) (uintptr_t) tls; #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_key_t tls; if( pthread_key_create( &tls, NULL ) == 0 ) return (thread_tls_t) (uintptr_t) tls; //< @r-lyeh: uintptr_t else return NULL; #else #error Unknown platform. #endif } void thread_tls_destroy( thread_tls_t tls ) { #if defined( _WIN32 ) TlsFree( (DWORD) (uintptr_t) tls ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_key_delete( (pthread_key_t) (uintptr_t) tls ); //< @r-lyeh: uintptr_t #else #error Unknown platform. #endif } void thread_tls_set( thread_tls_t tls, void* value ) { #if defined( _WIN32 ) TlsSetValue( (DWORD) (uintptr_t) tls, value ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems pthread_setspecific( (pthread_key_t) (uintptr_t) tls, value ); //< @r-lyeh: uintptr_t #else #error Unknown platform. #endif } void* thread_tls_get( thread_tls_t tls ) { #if defined( _WIN32 ) return TlsGetValue( (DWORD) (uintptr_t) tls ); #elif defined( __linux__ ) || defined( __APPLE__ ) || defined( __ANDROID__ ) || defined( __EMSCRIPTEN__ ) //< @r-lyeh, ems return pthread_getspecific( (pthread_key_t) (uintptr_t) tls ); //< @r-lyeh: uintptr_t #else #error Unknown platform. #endif } #if !THREAD_USE_MCMP void thread_queue_init( thread_queue_t* queue, int size, void** values, int count ) { queue->values = values; thread_signal_init( &queue->data_ready ); thread_signal_init( &queue->space_open ); thread_atomic_int_store( &queue->head, 0 ); thread_atomic_int_store( &queue->tail, count > size ? size : count ); thread_atomic_int_store( &queue->count, count > size ? size : count ); queue->size = size; #ifndef NDEBUG thread_atomic_int_store( &queue->id_produce_is_set, 0 ); thread_atomic_int_store( &queue->id_consume_is_set, 0 ); #endif } void thread_queue_term( thread_queue_t* queue ) { thread_signal_term( &queue->space_open ); thread_signal_term( &queue->data_ready ); } int thread_queue_produce( thread_queue_t* queue, void* value, int timeout_ms ) { #ifndef NDEBUG if( thread_atomic_int_compare_and_swap( &queue->id_produce_is_set, 0, 1 ) == 0 ) queue->id_produce = thread_current_thread_id(); assert( thread_current_thread_id() == queue->id_produce && "thread_queue_produce called from multiple threads" ); #endif while( thread_atomic_int_load( &queue->count ) == queue->size ) // TODO: fix signal so that this can be an "if" instead of "while" { if( timeout_ms == 0 ) return 0; if( thread_signal_wait( &queue->space_open, timeout_ms == THREAD_QUEUE_WAIT_INFINITE ? THREAD_SIGNAL_WAIT_INFINITE : timeout_ms ) == 0 ) return 0; } int tail = thread_atomic_int_inc( &queue->tail ); queue->values[ tail % queue->size ] = value; if( thread_atomic_int_inc( &queue->count ) == 0 ) thread_signal_raise( &queue->data_ready ); return 1; } void* thread_queue_consume( thread_queue_t* queue, int timeout_ms ) { #ifndef NDEBUG if( thread_atomic_int_compare_and_swap( &queue->id_consume_is_set, 0, 1 ) == 0 ) queue->id_consume = thread_current_thread_id(); assert( thread_current_thread_id() == queue->id_consume && "thread_queue_consume called from multiple threads" ); #endif while( thread_atomic_int_load( &queue->count ) == 0 ) // TODO: fix signal so that this can be an "if" instead of "while" { if( timeout_ms == 0 ) return NULL; if( thread_signal_wait( &queue->data_ready, timeout_ms == THREAD_QUEUE_WAIT_INFINITE ? THREAD_SIGNAL_WAIT_INFINITE : timeout_ms ) == 0 ) return NULL; } int head = thread_atomic_int_inc( &queue->head ); void* retval = queue->values[ head % queue->size ]; if( thread_atomic_int_dec( &queue->count ) == queue->size ) thread_signal_raise( &queue->space_open ); return retval; } int thread_queue_count( thread_queue_t* queue ) { return thread_atomic_int_load( &queue->count ); } #else // THREAD_USE_MCMP // # lockfree queues (multiple consumer-multiple producer) ##################### // License: WTFPL. https://github.com/darkautism/lfqueue // Use -O0 flag to compile (needed?). struct mcmp; int mcmp_new(struct mcmp *ctx); int mcmp_del(struct mcmp *ctx); int mcmp_add(struct mcmp *ctx, void *data); void *mcmp_pop(struct mcmp *ctx ); #ifdef _WIN32 # include # define __sync_add_and_fetch(p,x) (_InterlockedExchangeAdd64((__int64 volatile *)(p), (x)) + (x)) # define __sync_bool_compare_and_swap(p, c, s) (_InterlockedCompareExchange64((__int64 volatile *)(p), (__int64)(s), (__int64)(c)) == (__int64)(c)) # define __sync_lock_test_and_set(p,v) (_InterlockedExchange64( (__int64 volatile *)(p), (__int64)(v) )) #endif struct mcmp_node { void * data; struct mcmp_node *next; }; struct mcmp { struct mcmp_node *head; struct mcmp_node *tail; size_t count; // int }; int mcmp_new(struct mcmp *ctx) { struct mcmp_node * tmpnode = memset( (char*)REALLOC(0,sizeof(struct mcmp_node)), 0, sizeof(struct mcmp_node)); if (!tmpnode) return -errno; memset(ctx,0,sizeof(struct mcmp)); ctx->head=ctx->tail=tmpnode; return 1; } int mcmp_del(struct mcmp *ctx){ if ( ctx->tail && ctx->head ) { // if have data in queue struct mcmp_node * walker = ctx->head, *tmp; while ( walker != ctx->tail ) { // while still have node tmp = walker->next; REALLOC(walker, 0); walker=tmp; } REALLOC(ctx->head, 0); // free the empty node memset(ctx,0,sizeof(struct mcmp)); } return 1; } int mcmp_add(struct mcmp *ctx, void * data) { struct mcmp_node * p; struct mcmp_node * tmpnode = memset( (char*)REALLOC(0,sizeof(struct mcmp_node)), 0, sizeof(struct mcmp_node)); tmpnode->data=data; do { p = ctx->tail; if ( __sync_bool_compare_and_swap(&ctx->tail,p,tmpnode)) { p->next=tmpnode; break; } } while(1); __sync_add_and_fetch( &ctx->count, 1); return 1; } void * mcmp_pop(struct mcmp *ctx ) { void * ret=0; struct mcmp_node * p; do { p = ctx->head; } while(p==0 || !__sync_bool_compare_and_swap(&ctx->head,p,0)); if( p->next==0) { ctx->head=p; return 0; } ret=p->next->data; ctx->head=p->next; __sync_add_and_fetch( &ctx->count, -1); REALLOC(p, 0); return ret; } #endif // mcmp.h #endif /* THREAD_IMPLEMENTATION */ /* revision history: 0.31 add THREAD_HAS_ATOMIC (@r-lyeh) add THREAD_USE_MCMP tcc atomics tcc fixes emscripten fix 0.3 set_high_priority API change. Fixed spurious wakeup bug in signal. Added timeout param to queue produce/consume. Various cleanup and trivial fixes. 0.2 first publicly released version */ /* ------------------------------------------------------------------------------ This software is available under 2 licenses - you may choose the one you like. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2015 Mattias Gustavsson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #line 0 #line 1 "3rd_plmpeg.h" /* PL_MPEG - MPEG1 Video decoder, MP2 Audio decoder, MPEG-PS demuxer Dominic Szablewski - https://phoboslab.org -- LICENSE: The MIT License(MIT) Copyright(c) 2019 Dominic Szablewski Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -- Synopsis // Define `PL_MPEG_IMPLEMENTATION` in *one* C/C++ file before including this // library to create the implementation. #define PL_MPEG_IMPLEMENTATION #include "plmpeg.h" // This function gets called for each decoded video frame void my_video_callback(plm_t *plm, plm_frame_t *frame, void *user) { // Do something with frame->y.data, frame->cr.data, frame->cb.data } // This function gets called for each decoded audio frame void my_audio_callback(plm_t *plm, plm_samples_t *frame, void *user) { // Do something with samples->interleaved } // Load a .mpg (MPEG Program Stream) file plm_t *plm = plm_create_with_filename("some-file.mpg"); // Install the video & audio decode callbacks plm_set_video_decode_callback(plm, my_video_callback, my_data); plm_set_audio_decode_callback(plm, my_audio_callback, my_data); // Decode do { plm_decode(plm, time_since_last_call); } while (!plm_has_ended(plm)); // All done plm_destroy(plm); -- Documentation This library provides several interfaces to load, demux and decode MPEG video and audio data. A high-level API combines the demuxer, video & audio decoders in an easy to use wrapper. Lower-level APIs for accessing the demuxer, video decoder and audio decoder, as well as providing different data sources are also available. Interfaces are written in an object orientet style, meaning you create object instances via various different constructor functions (plm_*create()), do some work on them and later dispose them via plm_*destroy(). plm_* ......... the high-level interface, combining demuxer and decoders plm_buffer_* .. the data source used by all interfaces plm_demux_* ... the MPEG-PS demuxer plm_video_* ... the MPEG1 Video ("mpeg1") decoder plm_audio_* ... the MPEG1 Audio Layer II ("mp2") decoder With the high-level interface you have two options to decode video & audio: 1. Use plm_decode() and just hand over the delta time since the last call. It will decode everything needed and call your callbacks (specified through plm_set_{video|audio}_decode_callback()) any number of times. 2. Use plm_decode_video() and plm_decode_audio() to decode exactly one frame of video or audio data at a time. How you handle the synchronization of both streams is up to you. If you only want to decode video *or* audio through these functions, you should disable the other stream (plm_set_{video|audio}_enabled(FALSE)) Video data is decoded into a struct with all 3 planes (Y, Cr, Cb) stored in separate buffers. You can either convert this to RGB on the CPU (slow) via the plm_frame_to_rgb() function or do it on the GPU with the following matrix: mat4 bt601 = mat4( 1.16438, 0.00000, 1.59603, -0.87079, 1.16438, -0.39176, -0.81297, 0.52959, 1.16438, 2.01723, 0.00000, -1.08139, 0, 0, 0, 1 ); gl_FragColor = vec4(y, cb, cr, 1.0) * bt601; Audio data is decoded into a struct with either one single float array with the samples for the left and right channel interleaved, or if the PLM_AUDIO_SEPARATE_CHANNELS is defined *before* including this library, into two separate float arrays - one for each channel. Data can be supplied to the high level interface, the demuxer and the decoders in three different ways: 1. Using plm_create_from_filename() or with a file handle with plm_create_from_file(). 2. Using plm_create_with_memory() and supplying a pointer to memory that contains the whole file. 3. Using plm_create_with_buffer(), supplying your own plm_buffer_t instance and periodically writing to this buffer. When using your own plm_buffer_t instance, you can fill this buffer using plm_buffer_write(). You can either monitor plm_buffer_get_remaining() and push data when appropriate, or install a callback on the buffer with plm_buffer_set_load_callback() that gets called whenever the buffer needs more data. A buffer created with plm_buffer_create_with_capacity() is treated as a ring buffer, meaning that data that has already been read, will be discarded. In contrast, a buffer created with plm_buffer_create_for_appending() will keep all data written to it in memory. This enables seeking in the already loaded data. There should be no need to use the lower level plm_demux_*, plm_video_* and plm_audio_* functions, if all you want to do is read/decode an MPEG-PS file. However, if you get raw mpeg1video data or raw mp2 audio data from a different source, these functions can be used to decode the raw data directly. Similarly, if you only want to analyze an MPEG-PS file or extract raw video or audio packets from it, you can use the plm_demux_* functions. This library uses malloc(), realloc() and free() to manage memory. Typically all allocation happens up-front when creating the interface. However, the default buffer size may be too small for certain inputs. In these cases plmpeg will realloc() the buffer with a larger size whenever needed. You can configure the default buffer size by defining PLM_BUFFER_DEFAULT_SIZE *before* including this library. See below for detailed the API documentation. */ #ifndef PL_MPEG_H #define PL_MPEG_H #include #include #ifdef __cplusplus extern "C" { #endif // ----------------------------------------------------------------------------- // Public Data Types // Object types for the various interfaces typedef struct plm_t plm_t; typedef struct plm_buffer_t plm_buffer_t; typedef struct plm_demux_t plm_demux_t; typedef struct plm_video_t plm_video_t; typedef struct plm_audio_t plm_audio_t; // Demuxed MPEG PS packet // The type maps directly to the various MPEG-PES start codes. PTS is the // presentation time stamp of the packet in seconds. Note that not all packets // have a PTS value, indicated by PLM_PACKET_INVALID_TS. #define PLM_PACKET_INVALID_TS -1 typedef struct { int type; double pts; size_t length; uint8_t *data; } plm_packet_t; // Decoded Video Plane // The byte length of the data is width * height. Note that different planes // have different sizes: the Luma plane (Y) is double the size of each of // the two Chroma planes (Cr, Cb) - i.e. 4 times the byte length. // Also note that the size of the plane does *not* denote the size of the // displayed frame. The sizes of planes are always rounded up to the nearest // macroblock (16px). typedef struct { unsigned int width; unsigned int height; uint8_t *data; } plm_plane_t; // Decoded Video Frame // width and height denote the desired display size of the frame. This may be // different from the internal size of the 3 planes. typedef struct { double time; unsigned int width; unsigned int height; plm_plane_t y; plm_plane_t cr; plm_plane_t cb; } plm_frame_t; // Callback function type for decoded video frames used by the high-level // plm_* interface typedef void(*plm_video_decode_callback) (plm_t *self, plm_frame_t *frame, void *user); // Decoded Audio Samples // Samples are stored as normalized (-1, 1) float either interleaved, or if // PLM_AUDIO_SEPARATE_CHANNELS is defined, in two separate arrays. // The `count` is always PLM_AUDIO_SAMPLES_PER_FRAME and just there for // convenience. #define PLM_AUDIO_SAMPLES_PER_FRAME 1152 typedef struct { double time; unsigned int count; #ifdef PLM_AUDIO_SEPARATE_CHANNELS float left[PLM_AUDIO_SAMPLES_PER_FRAME]; float right[PLM_AUDIO_SAMPLES_PER_FRAME]; #else float interleaved[PLM_AUDIO_SAMPLES_PER_FRAME * 2]; #endif } plm_samples_t; // Callback function type for decoded audio samples used by the high-level // plm_* interface typedef void(*plm_audio_decode_callback) (plm_t *self, plm_samples_t *samples, void *user); // Callback function for plm_buffer when it needs more data typedef void(*plm_buffer_load_callback)(plm_buffer_t *self, void *user); // ----------------------------------------------------------------------------- // plm_* public API // High-Level API for loading/demuxing/decoding MPEG-PS data // Create a plmpeg instance with a filename. Returns NULL if the file could not // be opened. plm_t *plm_create_with_filename(const char *filename); // Create a plmpeg instance with a file handle. Pass TRUE to close_when_done to // let plmpeg call fclose() on the handle when plm_destroy() is called. plm_t *plm_create_with_file(FILE *fh, int close_when_done); // Create a plmpeg instance with a pointer to memory as source. This assumes the // whole file is in memory. The memory is not copied. Pass TRUE to // free_when_done to let plmpeg call free() on the pointer when plm_destroy() // is called. plm_t *plm_create_with_memory(uint8_t *bytes, size_t length, int free_when_done); // Create a plmpeg instance with a plm_buffer as source. Pass TRUE to // destroy_when_done to let plmpeg call plm_buffer_destroy() on the buffer when // plm_destroy() is called. plm_t *plm_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done); // Destroy a plmpeg instance and free all data. void plm_destroy(plm_t *self); // Get whether we have headers on all available streams and we can accurately // report the number of video/audio streams, video dimensions, framerate and // audio samplerate. // This returns FALSE if the file is not an MPEG-PS file or - when not using a // file as source - when not enough data is available yet. int plm_has_headers(plm_t *self); // Get or set whether video decoding is enabled. Default TRUE. int plm_get_video_enabled(plm_t *self); void plm_set_video_enabled(plm_t *self, int enabled); // Get the number of video streams (0--1) reported in the system header. int plm_get_num_video_streams(plm_t *self); // Get the display width/height of the video stream. int plm_get_width(plm_t *self); int plm_get_height(plm_t *self); // Get the framerate of the video stream in frames per second. double plm_get_framerate(plm_t *self); // Get or set whether audio decoding is enabled. Default TRUE. int plm_get_audio_enabled(plm_t *self); void plm_set_audio_enabled(plm_t *self, int enabled); // Get the number of audio streams (0--4) reported in the system header. int plm_get_num_audio_streams(plm_t *self); // Set the desired audio stream (0--3). Default 0. void plm_set_audio_stream(plm_t *self, int stream_index); // Get the samplerate of the audio stream in samples per second. int plm_get_samplerate(plm_t *self); // Get or set the audio lead time in seconds - the time in which audio samples // are decoded in advance (or behind) the video decode time. Typically this // should be set to the duration of the buffer of the audio API that you use // for output. E.g. for SDL2: (SDL_AudioSpec.samples / samplerate) double plm_get_audio_lead_time(plm_t *self); void plm_set_audio_lead_time(plm_t *self, double lead_time); // Get the current internal time in seconds. double plm_get_time(plm_t *self); // Get the video duration of the underlying source in seconds. double plm_get_duration(plm_t *self); // Rewind all buffers back to the beginning. void plm_rewind(plm_t *self); // Get or set looping. Default FALSE. int plm_get_loop(plm_t *self); void plm_set_loop(plm_t *self, int loop); // Get whether the file has ended. If looping is enabled, this will always // return FALSE. int plm_has_ended(plm_t *self); // Set the callback for decoded video frames used with plm_decode(). If no // callback is set, video data will be ignored and not be decoded. The *user // Parameter will be passed to your callback. void plm_set_video_decode_callback(plm_t *self, plm_video_decode_callback fp, void *user); // Set the callback for decoded audio samples used with plm_decode(). If no // callback is set, audio data will be ignored and not be decoded. The *user // Parameter will be passed to your callback. void plm_set_audio_decode_callback(plm_t *self, plm_audio_decode_callback fp, void *user); // Advance the internal timer by seconds and decode video/audio up to this time. // This will call the video_decode_callback and audio_decode_callback any number // of times. A frame-skip is not implemented, i.e. everything up to current time // will be decoded. void plm_decode(plm_t *self, double seconds); // Decode and return one video frame. Returns NULL if no frame could be decoded // (either because the source ended or data is corrupt). If you only want to // decode video, you should disable audio via plm_set_audio_enabled(). // The returned plm_frame_t is valid until the next call to plm_decode_video() // or until plm_destroy() is called. plm_frame_t *plm_decode_video(plm_t *self); // Decode and return one audio frame. Returns NULL if no frame could be decoded // (either because the source ended or data is corrupt). If you only want to // decode audio, you should disable video via plm_set_video_enabled(). // The returned plm_samples_t is valid until the next call to plm_decode_audio() // or until plm_destroy() is called. plm_samples_t *plm_decode_audio(plm_t *self); // Seek to the specified time, clamped between 0 -- duration. This can only be // used when the underlying plm_buffer is seekable, i.e. for files, fixed // memory buffers or _for_appending buffers. // If seek_exact is TRUE this will seek to the exact time, otherwise it will // seek to the last intra frame just before the desired time. Exact seeking can // be slow, because all frames up to the seeked one have to be decoded on top of // the previous intra frame. // If seeking succeeds, this function will call the video_decode_callback // exactly once with the target frame. If audio is enabled, it will also call // the audio_decode_callback any number of times, until the audio_lead_time is // satisfied. // Returns TRUE if seeking succeeded or FALSE if no frame could be found. int plm_seek(plm_t *self, double time, int seek_exact); // Similar to plm_seek(), but will not call the video_decode_callback, // audio_decode_callback or make any attempts to sync audio. // Returns the found frame or NULL if no frame could be found. plm_frame_t *plm_seek_frame(plm_t *self, double time, int seek_exact); // ----------------------------------------------------------------------------- // plm_buffer public API // Provides the data source for all other plm_* interfaces // The default size for buffers created from files or by the high-level API #ifndef PLM_BUFFER_DEFAULT_SIZE #define PLM_BUFFER_DEFAULT_SIZE (128 * 1024) #endif // Create a buffer instance with a filename. Returns NULL if the file could not // be opened. plm_buffer_t *plm_buffer_create_with_filename(const char *filename); // Create a buffer instance with a file handle. Pass TRUE to close_when_done // to let plmpeg call fclose() on the handle when plm_destroy() is called. plm_buffer_t *plm_buffer_create_with_file(FILE *fh, int close_when_done); // Create a buffer instance with a pointer to memory as source. This assumes // the whole file is in memory. The bytes are not copied. Pass 1 to // free_when_done to let plmpeg call free() on the pointer when plm_destroy() // is called. plm_buffer_t *plm_buffer_create_with_memory(uint8_t *bytes, size_t length, int free_when_done); // Create an empty buffer with an initial capacity. The buffer will grow // as needed. Data that has already been read, will be discarded. plm_buffer_t *plm_buffer_create_with_capacity(size_t capacity); // Create an empty buffer with an initial capacity. The buffer will grow // as needed. Decoded data will *not* be discarded. This can be used when // loading a file over the network, without needing to throttle the download. // It also allows for seeking in the already loaded data. plm_buffer_t *plm_buffer_create_for_appending(size_t initial_capacity); // Destroy a buffer instance and free all data void plm_buffer_destroy(plm_buffer_t *self); // Copy data into the buffer. If the data to be written is larger than the // available space, the buffer will realloc() with a larger capacity. // Returns the number of bytes written. This will always be the same as the // passed in length, except when the buffer was created _with_memory() for // which _write() is forbidden. size_t plm_buffer_write(plm_buffer_t *self, uint8_t *bytes, size_t length); // Mark the current byte length as the end of this buffer and signal that no // more data is expected to be written to it. This function should be called // just after the last plm_buffer_write(). // For _with_capacity buffers, this is cleared on a plm_buffer_rewind(). void plm_buffer_signal_end(plm_buffer_t *self); // Set a callback that is called whenever the buffer needs more data void plm_buffer_set_load_callback(plm_buffer_t *self, plm_buffer_load_callback fp, void *user); // Rewind the buffer back to the beginning. When loading from a file handle, // this also seeks to the beginning of the file. void plm_buffer_rewind(plm_buffer_t *self); // Get the total size. For files, this returns the file size. For all other // types it returns the number of bytes currently in the buffer. size_t plm_buffer_get_size(plm_buffer_t *self); // Get the number of remaining (yet unread) bytes in the buffer. This can be // useful to throttle writing. size_t plm_buffer_get_remaining(plm_buffer_t *self); // Get whether the read position of the buffer is at the end and no more data // is expected. int plm_buffer_has_ended(plm_buffer_t *self); // ----------------------------------------------------------------------------- // plm_demux public API // Demux an MPEG Program Stream (PS) data into separate packages // Various Packet Types static const int PLM_DEMUX_PACKET_PRIVATE = 0xBD; static const int PLM_DEMUX_PACKET_AUDIO_1 = 0xC0; static const int PLM_DEMUX_PACKET_AUDIO_2 = 0xC1; static const int PLM_DEMUX_PACKET_AUDIO_3 = 0xC2; static const int PLM_DEMUX_PACKET_AUDIO_4 = 0xC2; static const int PLM_DEMUX_PACKET_VIDEO_1 = 0xE0; // Create a demuxer with a plm_buffer as source. This will also attempt to read // the pack and system headers from the buffer. plm_demux_t *plm_demux_create(plm_buffer_t *buffer, int destroy_when_done); // Destroy a demuxer and free all data. void plm_demux_destroy(plm_demux_t *self); // Returns TRUE/FALSE whether pack and system headers have been found. This will // attempt to read the headers if non are present yet. int plm_demux_has_headers(plm_demux_t *self); // Returns the number of video streams found in the system header. This will // attempt to read the system header if non is present yet. int plm_demux_get_num_video_streams(plm_demux_t *self); // Returns the number of audio streams found in the system header. This will // attempt to read the system header if non is present yet. int plm_demux_get_num_audio_streams(plm_demux_t *self); // Rewind the internal buffer. See plm_buffer_rewind(). void plm_demux_rewind(plm_demux_t *self); // Get whether the file has ended. This will be cleared on seeking or rewind. int plm_demux_has_ended(plm_demux_t *self); // Seek to a packet of the specified type with a PTS just before specified time. // If force_intra is TRUE, only packets containing an intra frame will be // considered - this only makes sense when the type is PLM_DEMUX_PACKET_VIDEO_1. // Note that the specified time is considered 0-based, regardless of the first // PTS in the data source. plm_packet_t *plm_demux_seek(plm_demux_t *self, double time, int type, int force_intra); // Get the PTS of the first packet of this type. Returns PLM_PACKET_INVALID_TS // if not packet of this packet type can be found. double plm_demux_get_start_time(plm_demux_t *self, int type); // Get the duration for the specified packet type - i.e. the span between the // the first PTS and the last PTS in the data source. This only makes sense when // the underlying data source is a file or fixed memory. double plm_demux_get_duration(plm_demux_t *self, int type); // Decode and return the next packet. The returned packet_t is valid until // the next call to plm_demux_decode() or until the demuxer is destroyed. plm_packet_t *plm_demux_decode(plm_demux_t *self); // ----------------------------------------------------------------------------- // plm_video public API // Decode MPEG1 Video ("mpeg1") data into raw YCrCb frames // Create a video decoder with a plm_buffer as source. plm_video_t *plm_video_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done); // Destroy a video decoder and free all data. void plm_video_destroy(plm_video_t *self); // Get whether a sequence header was found and we can accurately report on // dimensions and framerate. int plm_video_has_header(plm_video_t *self); // Get the framerate in frames per second. double plm_video_get_framerate(plm_video_t *self); // Get the display width/height. int plm_video_get_width(plm_video_t *self); int plm_video_get_height(plm_video_t *self); // Set "no delay" mode. When enabled, the decoder assumes that the video does // *not* contain any B-Frames. This is useful for reducing lag when streaming. // The default is FALSE. void plm_video_set_no_delay(plm_video_t *self, int no_delay); // Get the current internal time in seconds. double plm_video_get_time(plm_video_t *self); // Set the current internal time in seconds. This is only useful when you // manipulate the underlying video buffer and want to enforce a correct // timestamps. void plm_video_set_time(plm_video_t *self, double time); // Rewind the internal buffer. See plm_buffer_rewind(). void plm_video_rewind(plm_video_t *self); // Get whether the file has ended. This will be cleared on rewind. int plm_video_has_ended(plm_video_t *self); // Decode and return one frame of video and advance the internal time by // 1/framerate seconds. The returned frame_t is valid until the next call of // plm_video_decode() or until the video decoder is destroyed. plm_frame_t *plm_video_decode(plm_video_t *self); // Convert the YCrCb data of a frame into interleaved R G B data. The stride // specifies the width in bytes of the destination buffer. I.e. the number of // bytes from one line to the next. The stride must be at least // (frame->width * bytes_per_pixel). The buffer pointed to by *dest must have a // size of at least (stride * frame->height). // Note that the alpha component of the dest buffer is always left untouched. void plm_frame_to_rgb(plm_frame_t *frame, uint8_t *dest, int stride); void plm_frame_to_bgr(plm_frame_t *frame, uint8_t *dest, int stride); void plm_frame_to_rgba(plm_frame_t *frame, uint8_t *dest, int stride); void plm_frame_to_bgra(plm_frame_t *frame, uint8_t *dest, int stride); void plm_frame_to_argb(plm_frame_t *frame, uint8_t *dest, int stride); void plm_frame_to_abgr(plm_frame_t *frame, uint8_t *dest, int stride); // ----------------------------------------------------------------------------- // plm_audio public API // Decode MPEG-1 Audio Layer II ("mp2") data into raw samples // Create an audio decoder with a plm_buffer as source. plm_audio_t *plm_audio_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done); // Destroy an audio decoder and free all data. void plm_audio_destroy(plm_audio_t *self); // Get whether a frame header was found and we can accurately report on // samplerate. int plm_audio_has_header(plm_audio_t *self); // Get the samplerate in samples per second. int plm_audio_get_samplerate(plm_audio_t *self); // Get the current internal time in seconds. double plm_audio_get_time(plm_audio_t *self); // Set the current internal time in seconds. This is only useful when you // manipulate the underlying video buffer and want to enforce a correct // timestamps. void plm_audio_set_time(plm_audio_t *self, double time); // Rewind the internal buffer. See plm_buffer_rewind(). void plm_audio_rewind(plm_audio_t *self); // Get whether the file has ended. This will be cleared on rewind. int plm_audio_has_ended(plm_audio_t *self); // Decode and return one "frame" of audio and advance the internal time by // (PLM_AUDIO_SAMPLES_PER_FRAME/samplerate) seconds. The returned samples_t // is valid until the next call of plm_audio_decode() or until the audio // decoder is destroyed. plm_samples_t *plm_audio_decode(plm_audio_t *self); #ifdef __cplusplus } #endif #endif // PL_MPEG_H // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // IMPLEMENTATION #ifdef PL_MPEG_IMPLEMENTATION #include #include #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif #define PLM_UNUSED(expr) (void)(expr) // ----------------------------------------------------------------------------- // plm (high-level interface) implementation typedef struct plm_t { plm_demux_t *demux; double time; int has_ended; int loop; int has_decoders; int video_enabled; int video_packet_type; plm_buffer_t *video_buffer; plm_video_t *video_decoder; int audio_enabled; int audio_stream_index; int audio_packet_type; double audio_lead_time; plm_buffer_t *audio_buffer; plm_audio_t *audio_decoder; plm_video_decode_callback video_decode_callback; void *video_decode_callback_user_data; plm_audio_decode_callback audio_decode_callback; void *audio_decode_callback_user_data; } plm_t; int plm_init_decoders(plm_t *self); void plm_handle_end(plm_t *self); void plm_read_video_packet(plm_buffer_t *buffer, void *user); void plm_read_audio_packet(plm_buffer_t *buffer, void *user); void plm_read_packets(plm_t *self, int requested_type); plm_t *plm_create_with_filename(const char *filename) { plm_buffer_t *buffer = plm_buffer_create_with_filename(filename); if (!buffer) { return NULL; } return plm_create_with_buffer(buffer, TRUE); } plm_t *plm_create_with_file(FILE *fh, int close_when_done) { plm_buffer_t *buffer = plm_buffer_create_with_file(fh, close_when_done); return plm_create_with_buffer(buffer, TRUE); } plm_t *plm_create_with_memory(uint8_t *bytes, size_t length, int free_when_done) { plm_buffer_t *buffer = plm_buffer_create_with_memory(bytes, length, free_when_done); return plm_create_with_buffer(buffer, TRUE); } plm_t *plm_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) { plm_t *self = (plm_t *)malloc(sizeof(plm_t)); memset(self, 0, sizeof(plm_t)); self->demux = plm_demux_create(buffer, destroy_when_done); self->video_enabled = TRUE; self->audio_enabled = TRUE; plm_init_decoders(self); return self; } int plm_init_decoders(plm_t *self) { if (self->has_decoders) { return TRUE; } if (!plm_demux_has_headers(self->demux)) { return FALSE; } if (plm_demux_get_num_video_streams(self->demux) > 0) { if (self->video_enabled) { self->video_packet_type = PLM_DEMUX_PACKET_VIDEO_1; } self->video_buffer = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE); plm_buffer_set_load_callback(self->video_buffer, plm_read_video_packet, self); } if (plm_demux_get_num_audio_streams(self->demux) > 0) { if (self->audio_enabled) { self->audio_packet_type = PLM_DEMUX_PACKET_AUDIO_1 + self->audio_stream_index; } self->audio_buffer = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE); plm_buffer_set_load_callback(self->audio_buffer, plm_read_audio_packet, self); } if (self->video_buffer) { self->video_decoder = plm_video_create_with_buffer(self->video_buffer, TRUE); } if (self->audio_buffer) { self->audio_decoder = plm_audio_create_with_buffer(self->audio_buffer, TRUE); } self->has_decoders = TRUE; return TRUE; } void plm_destroy(plm_t *self) { if (self->video_decoder) { plm_video_destroy(self->video_decoder); } if (self->audio_decoder) { plm_audio_destroy(self->audio_decoder); } plm_demux_destroy(self->demux); free(self); } int plm_get_audio_enabled(plm_t *self) { return self->audio_enabled; } int plm_has_headers(plm_t *self) { if (!plm_demux_has_headers(self->demux)) { return FALSE; } if (!plm_init_decoders(self)) { return FALSE; } if ( (self->video_decoder && !plm_video_has_header(self->video_decoder)) || (self->audio_decoder && !plm_audio_has_header(self->audio_decoder)) ) { return FALSE; } return TRUE; } void plm_set_audio_enabled(plm_t *self, int enabled) { self->audio_enabled = enabled; if (!enabled) { self->audio_packet_type = 0; return; } self->audio_packet_type = (plm_init_decoders(self) && self->audio_decoder) ? PLM_DEMUX_PACKET_AUDIO_1 + self->audio_stream_index : 0; } void plm_set_audio_stream(plm_t *self, int stream_index) { if (stream_index < 0 || stream_index > 3) { return; } self->audio_stream_index = stream_index; // Set the correct audio_packet_type plm_set_audio_enabled(self, self->audio_enabled); } int plm_get_video_enabled(plm_t *self) { return self->video_enabled; } void plm_set_video_enabled(plm_t *self, int enabled) { self->video_enabled = enabled; if (!enabled) { self->video_packet_type = 0; return; } self->video_packet_type = (plm_init_decoders(self) && self->video_decoder) ? PLM_DEMUX_PACKET_VIDEO_1 : 0; } int plm_get_num_video_streams(plm_t *self) { return plm_demux_get_num_video_streams(self->demux); } int plm_get_width(plm_t *self) { return (plm_init_decoders(self) && self->video_decoder) ? plm_video_get_width(self->video_decoder) : 0; } int plm_get_height(plm_t *self) { return (plm_init_decoders(self) && self->video_decoder) ? plm_video_get_height(self->video_decoder) : 0; } double plm_get_framerate(plm_t *self) { return (plm_init_decoders(self) && self->video_decoder) ? plm_video_get_framerate(self->video_decoder) : 0; } int plm_get_num_audio_streams(plm_t *self) { return plm_demux_get_num_audio_streams(self->demux); } int plm_get_samplerate(plm_t *self) { return (plm_init_decoders(self) && self->audio_decoder) ? plm_audio_get_samplerate(self->audio_decoder) : 0; } double plm_get_audio_lead_time(plm_t *self) { return self->audio_lead_time; } void plm_set_audio_lead_time(plm_t *self, double lead_time) { self->audio_lead_time = lead_time; } double plm_get_time(plm_t *self) { return self->time; } double plm_get_duration(plm_t *self) { return plm_demux_get_duration(self->demux, PLM_DEMUX_PACKET_VIDEO_1); } void plm_rewind(plm_t *self) { if (self->video_decoder) { plm_video_rewind(self->video_decoder); } if (self->audio_decoder) { plm_audio_rewind(self->audio_decoder); } plm_demux_rewind(self->demux); self->time = 0; } int plm_get_loop(plm_t *self) { return self->loop; } void plm_set_loop(plm_t *self, int loop) { self->loop = loop; } int plm_has_ended(plm_t *self) { return self->has_ended; } void plm_set_video_decode_callback(plm_t *self, plm_video_decode_callback fp, void *user) { self->video_decode_callback = fp; self->video_decode_callback_user_data = user; } void plm_set_audio_decode_callback(plm_t *self, plm_audio_decode_callback fp, void *user) { self->audio_decode_callback = fp; self->audio_decode_callback_user_data = user; } void plm_decode(plm_t *self, double tick) { if (!plm_init_decoders(self)) { return; } int decode_video = (self->video_decode_callback && self->video_packet_type); int decode_audio = (self->audio_decode_callback && self->audio_packet_type); if (!decode_video && !decode_audio) { // Nothing to do here return; } int did_decode = FALSE; int decode_video_failed = FALSE; int decode_audio_failed = FALSE; double video_target_time = self->time + tick; double audio_target_time = self->time + tick + self->audio_lead_time; do { did_decode = FALSE; if (decode_video && plm_video_get_time(self->video_decoder) < video_target_time) { plm_frame_t *frame = plm_video_decode(self->video_decoder); if (frame) { self->video_decode_callback(self, frame, self->video_decode_callback_user_data); did_decode = TRUE; } else { decode_video_failed = TRUE; } } if (decode_audio && plm_audio_get_time(self->audio_decoder) < audio_target_time) { plm_samples_t *samples = plm_audio_decode(self->audio_decoder); if (samples) { self->audio_decode_callback(self, samples, self->audio_decode_callback_user_data); did_decode = TRUE; } else { decode_audio_failed = TRUE; } } } while (did_decode); // Did all sources we wanted to decode fail and the demuxer is at the end? if ( (!decode_video || decode_video_failed) && (!decode_audio || decode_audio_failed) && plm_demux_has_ended(self->demux) ) { plm_handle_end(self); return; } self->time += tick; } plm_frame_t *plm_decode_video(plm_t *self) { if (!plm_init_decoders(self)) { return NULL; } if (!self->video_packet_type) { return NULL; } plm_frame_t *frame = plm_video_decode(self->video_decoder); if (frame) { self->time = frame->time; } else if (plm_demux_has_ended(self->demux)) { plm_handle_end(self); } return frame; } plm_samples_t *plm_decode_audio(plm_t *self) { if (!plm_init_decoders(self)) { return NULL; } if (!self->audio_packet_type) { return NULL; } plm_samples_t *samples = plm_audio_decode(self->audio_decoder); if (samples) { self->time = samples->time; } else if (plm_demux_has_ended(self->demux)) { plm_handle_end(self); } return samples; } void plm_handle_end(plm_t *self) { if (self->loop) { plm_rewind(self); } else { self->has_ended = TRUE; } } void plm_read_video_packet(plm_buffer_t *buffer, void *user) { PLM_UNUSED(buffer); plm_t *self = (plm_t *)user; plm_read_packets(self, self->video_packet_type); } void plm_read_audio_packet(plm_buffer_t *buffer, void *user) { PLM_UNUSED(buffer); plm_t *self = (plm_t *)user; plm_read_packets(self, self->audio_packet_type); } void plm_read_packets(plm_t *self, int requested_type) { plm_packet_t *packet; while ((packet = plm_demux_decode(self->demux))) { if (packet->type == self->video_packet_type) { plm_buffer_write(self->video_buffer, packet->data, packet->length); } else if (packet->type == self->audio_packet_type) { plm_buffer_write(self->audio_buffer, packet->data, packet->length); } if (packet->type == requested_type) { return; } } if (plm_demux_has_ended(self->demux)) { if (self->video_buffer) { plm_buffer_signal_end(self->video_buffer); } if (self->audio_buffer) { plm_buffer_signal_end(self->audio_buffer); } } } plm_frame_t *plm_seek_frame(plm_t *self, double time, int seek_exact) { if (!plm_init_decoders(self)) { return NULL; } if (!self->video_packet_type) { return NULL; } int type = self->video_packet_type; double start_time = plm_demux_get_start_time(self->demux, type); double duration = plm_demux_get_duration(self->demux, type); if (time < 0) { time = 0; } else if (time > duration) { time = duration; } plm_packet_t *packet = plm_demux_seek(self->demux, time, type, TRUE); if (!packet) { return NULL; } // Disable writing to the audio buffer while decoding video int previous_audio_packet_type = self->audio_packet_type; self->audio_packet_type = 0; // Clear video buffer and decode the found packet plm_video_rewind(self->video_decoder); plm_video_set_time(self->video_decoder, packet->pts - start_time); plm_buffer_write(self->video_buffer, packet->data, packet->length); plm_frame_t *frame = plm_video_decode(self->video_decoder); // If we want to seek to an exact frame, we have to decode all frames // on top of the intra frame we just jumped to. if (seek_exact) { while (frame && frame->time < time) { frame = plm_video_decode(self->video_decoder); } } // Enable writing to the audio buffer again? self->audio_packet_type = previous_audio_packet_type; if (frame) { self->time = frame->time; } self->has_ended = FALSE; return frame; } int plm_seek(plm_t *self, double time, int seek_exact) { plm_frame_t *frame = plm_seek_frame(self, time, seek_exact); if (!frame) { return FALSE; } if (self->video_decode_callback) { self->video_decode_callback(self, frame, self->video_decode_callback_user_data); } // If audio is not enabled we are done here. if (!self->audio_packet_type) { return TRUE; } // Sync up Audio. This demuxes more packets until the first audio packet // with a PTS greater than the current time is found. plm_decode() is then // called to decode enough audio data to satisfy the audio_lead_time. double start_time = plm_demux_get_start_time(self->demux, self->video_packet_type); plm_audio_rewind(self->audio_decoder); plm_packet_t *packet = NULL; while ((packet = plm_demux_decode(self->demux))) { if (packet->type == self->video_packet_type) { plm_buffer_write(self->video_buffer, packet->data, packet->length); } else if ( packet->type == self->audio_packet_type && packet->pts - start_time > self->time ) { plm_audio_set_time(self->audio_decoder, packet->pts - start_time); plm_buffer_write(self->audio_buffer, packet->data, packet->length); plm_decode(self, 0); break; } } return TRUE; } // ----------------------------------------------------------------------------- // plm_buffer implementation enum plm_buffer_mode { PLM_BUFFER_MODE_FILE, PLM_BUFFER_MODE_FIXED_MEM, PLM_BUFFER_MODE_RING, PLM_BUFFER_MODE_APPEND }; typedef struct plm_buffer_t { size_t bit_index; size_t capacity; size_t length; size_t total_size; int discard_read_bytes; int has_ended; int free_when_done; int close_when_done; FILE *fh; plm_buffer_load_callback load_callback; void *load_callback_user_data; uint8_t *bytes; enum plm_buffer_mode mode; } plm_buffer_t; typedef struct { int16_t index; int16_t value; } plm_vlc_t; typedef struct { int16_t index; uint16_t value; } plm_vlc_uint_t; void plm_buffer_seek(plm_buffer_t *self, size_t pos); size_t plm_buffer_tell(plm_buffer_t *self); void plm_buffer_discard_read_bytes(plm_buffer_t *self); void plm_buffer_load_file_callback(plm_buffer_t *self, void *user); int plm_buffer_has(plm_buffer_t *self, size_t count); int plm_buffer_read(plm_buffer_t *self, int count); void plm_buffer_align(plm_buffer_t *self); void plm_buffer_skip(plm_buffer_t *self, size_t count); int plm_buffer_skip_bytes(plm_buffer_t *self, uint8_t v); int plm_buffer_next_start_code(plm_buffer_t *self); int plm_buffer_find_start_code(plm_buffer_t *self, int code); int plm_buffer_no_start_code(plm_buffer_t *self); int16_t plm_buffer_read_vlc(plm_buffer_t *self, const plm_vlc_t *table); uint16_t plm_buffer_read_vlc_uint(plm_buffer_t *self, const plm_vlc_uint_t *table); plm_buffer_t *plm_buffer_create_with_filename(const char *filename) { FILE *fh = fopen(filename, "rb"); if (!fh) { return NULL; } return plm_buffer_create_with_file(fh, TRUE); } plm_buffer_t *plm_buffer_create_with_file(FILE *fh, int close_when_done) { plm_buffer_t *self = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE); self->fh = fh; self->close_when_done = close_when_done; self->mode = PLM_BUFFER_MODE_FILE; self->discard_read_bytes = TRUE; fseek(self->fh, 0, SEEK_END); self->total_size = ftell(self->fh); fseek(self->fh, 0, SEEK_SET); plm_buffer_set_load_callback(self, plm_buffer_load_file_callback, NULL); return self; } plm_buffer_t *plm_buffer_create_with_memory(uint8_t *bytes, size_t length, int free_when_done) { plm_buffer_t *self = (plm_buffer_t *)malloc(sizeof(plm_buffer_t)); memset(self, 0, sizeof(plm_buffer_t)); self->capacity = length; self->length = length; self->total_size = length; self->free_when_done = free_when_done; self->bytes = bytes; self->mode = PLM_BUFFER_MODE_FIXED_MEM; self->discard_read_bytes = FALSE; return self; } plm_buffer_t *plm_buffer_create_with_capacity(size_t capacity) { plm_buffer_t *self = (plm_buffer_t *)malloc(sizeof(plm_buffer_t)); memset(self, 0, sizeof(plm_buffer_t)); self->capacity = capacity; self->free_when_done = TRUE; self->bytes = (uint8_t *)malloc(capacity); self->mode = PLM_BUFFER_MODE_RING; self->discard_read_bytes = TRUE; return self; } plm_buffer_t *plm_buffer_create_for_appending(size_t initial_capacity) { plm_buffer_t *self = plm_buffer_create_with_capacity(initial_capacity); self->mode = PLM_BUFFER_MODE_APPEND; self->discard_read_bytes = FALSE; return self; } void plm_buffer_destroy(plm_buffer_t *self) { if (self->fh && self->close_when_done) { fclose(self->fh); } if (self->free_when_done) { free(self->bytes); } free(self); } size_t plm_buffer_get_size(plm_buffer_t *self) { return (self->mode == PLM_BUFFER_MODE_FILE) ? self->total_size : self->length; } size_t plm_buffer_get_remaining(plm_buffer_t *self) { return self->length - (self->bit_index >> 3); } size_t plm_buffer_write(plm_buffer_t *self, uint8_t *bytes, size_t length) { if (self->mode == PLM_BUFFER_MODE_FIXED_MEM) { return 0; } if (self->discard_read_bytes) { // This should be a ring buffer, but instead it just shifts all unread // data to the beginning of the buffer and appends new data at the end. // Seems to be good enough. plm_buffer_discard_read_bytes(self); if (self->mode == PLM_BUFFER_MODE_RING) { self->total_size = 0; } } // Do we have to resize to fit the new data? size_t bytes_available = self->capacity - self->length; if (bytes_available < length) { size_t new_size = self->capacity; do { new_size *= 2; } while (new_size - self->length < length); self->bytes = (uint8_t *)realloc(self->bytes, new_size); self->capacity = new_size; } memcpy(self->bytes + self->length, bytes, length); self->length += length; self->has_ended = FALSE; return length; } void plm_buffer_signal_end(plm_buffer_t *self) { self->total_size = self->length; } void plm_buffer_set_load_callback(plm_buffer_t *self, plm_buffer_load_callback fp, void *user) { self->load_callback = fp; self->load_callback_user_data = user; } void plm_buffer_rewind(plm_buffer_t *self) { plm_buffer_seek(self, 0); } void plm_buffer_seek(plm_buffer_t *self, size_t pos) { self->has_ended = FALSE; if (self->mode == PLM_BUFFER_MODE_FILE) { fseek(self->fh, pos, SEEK_SET); self->bit_index = 0; self->length = 0; } else if (self->mode == PLM_BUFFER_MODE_RING) { if (pos != 0) { // Seeking to non-0 is forbidden for dynamic-mem buffers return; } self->bit_index = 0; self->length = 0; self->total_size = 0; } else if (pos < self->length) { self->bit_index = pos << 3; } } size_t plm_buffer_tell(plm_buffer_t *self) { return self->mode == PLM_BUFFER_MODE_FILE ? ftell(self->fh) + (self->bit_index >> 3) - self->length : self->bit_index >> 3; } void plm_buffer_discard_read_bytes(plm_buffer_t *self) { size_t byte_pos = self->bit_index >> 3; if (byte_pos == self->length) { self->bit_index = 0; self->length = 0; } else if (byte_pos > 0) { memmove(self->bytes, self->bytes + byte_pos, self->length - byte_pos); self->bit_index -= byte_pos << 3; self->length -= byte_pos; } } void plm_buffer_load_file_callback(plm_buffer_t *self, void *user) { PLM_UNUSED(user); if (self->discard_read_bytes) { plm_buffer_discard_read_bytes(self); } size_t bytes_available = self->capacity - self->length; size_t bytes_read = fread(self->bytes + self->length, 1, bytes_available, self->fh); self->length += bytes_read; if (bytes_read == 0) { self->has_ended = TRUE; } } int plm_buffer_has_ended(plm_buffer_t *self) { return self->has_ended; } int plm_buffer_has(plm_buffer_t *self, size_t count) { if (((self->length << 3) - self->bit_index) >= count) { return TRUE; } if (self->load_callback) { self->load_callback(self, self->load_callback_user_data); } if (((self->length << 3) - self->bit_index) >= count) { return TRUE; } if (self->total_size != 0 && self->length == self->total_size) { self->has_ended = TRUE; } return FALSE; } int plm_buffer_read(plm_buffer_t *self, int count) { if (!plm_buffer_has(self, count)) { return 0; } int value = 0; while (count) { int current_byte = self->bytes[self->bit_index >> 3]; int remaining = 8 - (self->bit_index & 7); // Remaining bits in byte int read = remaining < count ? remaining : count; // Bits in self run int shift = remaining - read; int mask = (0xff >> (8 - read)); value = (value << read) | ((current_byte & (mask << shift)) >> shift); self->bit_index += read; count -= read; } return value; } void plm_buffer_align(plm_buffer_t *self) { self->bit_index = ((self->bit_index + 7) >> 3) << 3; // Align to next byte } void plm_buffer_skip(plm_buffer_t *self, size_t count) { if (plm_buffer_has(self, count)) { self->bit_index += count; } } int plm_buffer_skip_bytes(plm_buffer_t *self, uint8_t v) { plm_buffer_align(self); int skipped = 0; while (plm_buffer_has(self, 8) && self->bytes[self->bit_index >> 3] == v) { self->bit_index += 8; skipped++; } return skipped; } int plm_buffer_next_start_code(plm_buffer_t *self) { plm_buffer_align(self); while (plm_buffer_has(self, (5 << 3))) { size_t byte_index = (self->bit_index) >> 3; if ( self->bytes[byte_index] == 0x00 && self->bytes[byte_index + 1] == 0x00 && self->bytes[byte_index + 2] == 0x01 ) { self->bit_index = (byte_index + 4) << 3; return self->bytes[byte_index + 3]; } self->bit_index += 8; } return -1; } int plm_buffer_find_start_code(plm_buffer_t *self, int code) { int current = 0; while (TRUE) { current = plm_buffer_next_start_code(self); if (current == code || current == -1) { return current; } } return -1; } int plm_buffer_has_start_code(plm_buffer_t *self, int code) { size_t previous_bit_index = self->bit_index; int previous_discard_read_bytes = self->discard_read_bytes; self->discard_read_bytes = FALSE; int current = plm_buffer_find_start_code(self, code); self->bit_index = previous_bit_index; self->discard_read_bytes = previous_discard_read_bytes; return current; } int plm_buffer_no_start_code(plm_buffer_t *self) { if (!plm_buffer_has(self, (5 << 3))) { return FALSE; } size_t byte_index = ((self->bit_index + 7) >> 3); return !( self->bytes[byte_index] == 0x00 && self->bytes[byte_index + 1] == 0x00 && self->bytes[byte_index + 2] == 0x01 ); } int16_t plm_buffer_read_vlc(plm_buffer_t *self, const plm_vlc_t *table) { plm_vlc_t state = {0, 0}; do { state = table[state.index + plm_buffer_read(self, 1)]; } while (state.index > 0); return state.value; } uint16_t plm_buffer_read_vlc_uint(plm_buffer_t *self, const plm_vlc_uint_t *table) { return (uint16_t)plm_buffer_read_vlc(self, (const plm_vlc_t *)table); } // ---------------------------------------------------------------------------- // plm_demux implementation static const int PLM_START_PACK = 0xBA; static const int PLM_START_END = 0xB9; static const int PLM_START_SYSTEM = 0xBB; typedef struct plm_demux_t { plm_buffer_t *buffer; int destroy_buffer_when_done; double system_clock_ref; size_t last_file_size; double last_decoded_pts; double start_time; double duration; int start_code; int has_pack_header; int has_system_header; int has_headers; int num_audio_streams; int num_video_streams; plm_packet_t current_packet; plm_packet_t next_packet; } plm_demux_t; void plm_demux_buffer_seek(plm_demux_t *self, size_t pos); double plm_demux_decode_time(plm_demux_t *self); plm_packet_t *plm_demux_decode_packet(plm_demux_t *self, int type); plm_packet_t *plm_demux_get_packet(plm_demux_t *self); plm_demux_t *plm_demux_create(plm_buffer_t *buffer, int destroy_when_done) { plm_demux_t *self = (plm_demux_t *)malloc(sizeof(plm_demux_t)); memset(self, 0, sizeof(plm_demux_t)); self->buffer = buffer; self->destroy_buffer_when_done = destroy_when_done; self->start_time = PLM_PACKET_INVALID_TS; self->duration = PLM_PACKET_INVALID_TS; self->start_code = -1; plm_demux_has_headers(self); return self; } void plm_demux_destroy(plm_demux_t *self) { if (self->destroy_buffer_when_done) { plm_buffer_destroy(self->buffer); } free(self); } int plm_demux_has_headers(plm_demux_t *self) { if (self->has_headers) { return TRUE; } // Decode pack header if (!self->has_pack_header) { if ( self->start_code != PLM_START_PACK && plm_buffer_find_start_code(self->buffer, PLM_START_PACK) == -1 ) { return FALSE; } self->start_code = PLM_START_PACK; if (!plm_buffer_has(self->buffer, 64)) { return FALSE; } self->start_code = -1; if (plm_buffer_read(self->buffer, 4) != 0x02) { return FALSE; } self->system_clock_ref = plm_demux_decode_time(self); plm_buffer_skip(self->buffer, 1); plm_buffer_skip(self->buffer, 22); // mux_rate * 50 plm_buffer_skip(self->buffer, 1); self->has_pack_header = TRUE; } // Decode system header if (!self->has_system_header) { if ( self->start_code != PLM_START_SYSTEM && plm_buffer_find_start_code(self->buffer, PLM_START_SYSTEM) == -1 ) { return FALSE; } self->start_code = PLM_START_SYSTEM; if (!plm_buffer_has(self->buffer, 56)) { return FALSE; } self->start_code = -1; plm_buffer_skip(self->buffer, 16); // header_length plm_buffer_skip(self->buffer, 24); // rate bound self->num_audio_streams = plm_buffer_read(self->buffer, 6); plm_buffer_skip(self->buffer, 5); // misc flags self->num_video_streams = plm_buffer_read(self->buffer, 5); self->has_system_header = TRUE; } self->has_headers = TRUE; return TRUE; } int plm_demux_get_num_video_streams(plm_demux_t *self) { return plm_demux_has_headers(self) ? self->num_video_streams : 0; } int plm_demux_get_num_audio_streams(plm_demux_t *self) { return plm_demux_has_headers(self) ? self->num_audio_streams : 0; } void plm_demux_rewind(plm_demux_t *self) { plm_buffer_rewind(self->buffer); self->current_packet.length = 0; self->next_packet.length = 0; self->start_code = -1; } int plm_demux_has_ended(plm_demux_t *self) { return plm_buffer_has_ended(self->buffer); } void plm_demux_buffer_seek(plm_demux_t *self, size_t pos) { plm_buffer_seek(self->buffer, pos); self->current_packet.length = 0; self->next_packet.length = 0; self->start_code = -1; } double plm_demux_get_start_time(plm_demux_t *self, int type) { if (self->start_time != PLM_PACKET_INVALID_TS) { return self->start_time; } int previous_pos = plm_buffer_tell(self->buffer); int previous_start_code = self->start_code; // Find first video PTS plm_demux_rewind(self); do { plm_packet_t *packet = plm_demux_decode(self); if (!packet) { break; } if (packet->type == type) { self->start_time = packet->pts; } } while (self->start_time == PLM_PACKET_INVALID_TS); plm_demux_buffer_seek(self, previous_pos); self->start_code = previous_start_code; return self->start_time; } double plm_demux_get_duration(plm_demux_t *self, int type) { size_t file_size = plm_buffer_get_size(self->buffer); if ( self->duration != PLM_PACKET_INVALID_TS && self->last_file_size == file_size ) { return self->duration; } size_t previous_pos = plm_buffer_tell(self->buffer); int previous_start_code = self->start_code; // Find last video PTS. Start searching 64kb from the end and go further // back if needed. long start_range = 64 * 1024; long max_range = 4096 * 1024; for (long range = start_range; range <= max_range; range *= 2) { long seek_pos = file_size - range; if (seek_pos < 0) { seek_pos = 0; range = max_range; // Make sure to bail after this round } plm_demux_buffer_seek(self, seek_pos); self->current_packet.length = 0; double last_pts = PLM_PACKET_INVALID_TS; plm_packet_t *packet = NULL; while ((packet = plm_demux_decode(self))) { if (packet->pts != PLM_PACKET_INVALID_TS && packet->type == type) { last_pts = packet->pts; } } if (last_pts != PLM_PACKET_INVALID_TS) { self->duration = last_pts - plm_demux_get_start_time(self, type); break; } } plm_demux_buffer_seek(self, previous_pos); self->start_code = previous_start_code; self->last_file_size = file_size; return self->duration; } plm_packet_t *plm_demux_seek(plm_demux_t *self, double seek_time, int type, int force_intra) { if (!plm_demux_has_headers(self)) { return NULL; } // Using the current time, current byte position and the average bytes per // second for this file, try to jump to a byte position that hopefully has // packets containing timestamps within one second before to the desired // seek_time. // If we hit close to the seek_time scan through all packets to find the // last one (just before the seek_time) containing an intra frame. // Otherwise we should at least be closer than before. Calculate the bytes // per second for the jumped range and jump again. // The number of retries here is hard-limited to a generous amount. Usually // the correct range is found after 1--5 jumps, even for files with very // variable bitrates. If significantly more jumps are needed, there's // probably something wrong with the file and we just avoid getting into an // infinite loop. 32 retries should be enough for anybody. double duration = plm_demux_get_duration(self, type); long file_size = plm_buffer_get_size(self->buffer); long byterate = file_size / duration; double cur_time = self->last_decoded_pts; double scan_span = 1; if (seek_time > duration) { seek_time = duration; } else if (seek_time < 0) { seek_time = 0; } seek_time += self->start_time; for (int retry = 0; retry < 32; retry++) { int found_packet_with_pts = FALSE; int found_packet_in_range = FALSE; long last_valid_packet_start = -1; double first_packet_time = PLM_PACKET_INVALID_TS; long cur_pos = plm_buffer_tell(self->buffer); // Estimate byte offset and jump to it. long offset = (seek_time - cur_time - scan_span) * byterate; long seek_pos = cur_pos + offset; if (seek_pos < 0) { seek_pos = 0; } else if (seek_pos > file_size - 256) { seek_pos = file_size - 256; } plm_demux_buffer_seek(self, seek_pos); // Scan through all packets up to the seek_time to find the last packet // containing an intra frame. while (plm_buffer_find_start_code(self->buffer, type) != -1) { long packet_start = plm_buffer_tell(self->buffer); plm_packet_t *packet = plm_demux_decode_packet(self, type); // Skip packet if it has no PTS if (!packet || packet->pts == PLM_PACKET_INVALID_TS) { continue; } // Bail scanning through packets if we hit one that is outside // seek_time - scan_span. // We also adjust the cur_time and byterate values here so the next // iteration can be a bit more precise. if (packet->pts > seek_time || packet->pts < seek_time - scan_span) { found_packet_with_pts = TRUE; byterate = (seek_pos - cur_pos) / (packet->pts - cur_time); cur_time = packet->pts; break; } // If we are still here, it means this packet is in close range to // the seek_time. If this is the first packet for this jump position // record the PTS. If we later have to back off, when there was no // intra frame in this range, we can lower the seek_time to not scan // this range again. if (!found_packet_in_range) { found_packet_in_range = TRUE; first_packet_time = packet->pts; } // Check if this is an intra frame packet. If so, record the buffer // position of the start of this packet. We want to jump back to it // later, when we know it's the last intra frame before desired // seek time. if (force_intra) { for (size_t i = 0; i < packet->length - 6; i++) { // Find the START_PICTURE code if ( packet->data[i] == 0x00 && packet->data[i + 1] == 0x00 && packet->data[i + 2] == 0x01 && packet->data[i + 3] == 0x00 ) { // Bits 11--13 in the picture header contain the frame // type, where 1=Intra if ((packet->data[i + 5] & 0x38) == 8) { last_valid_packet_start = packet_start; } break; } } } // If we don't want intra frames, just use the last PTS found. else { last_valid_packet_start = packet_start; } } // If there was at least one intra frame in the range scanned above, // our search is over. Jump back to the packet and decode it again. if (last_valid_packet_start != -1) { plm_demux_buffer_seek(self, last_valid_packet_start); return plm_demux_decode_packet(self, type); } // If we hit the right range, but still found no intra frame, we have // to increases the scan_span. This is done exponentially to also handle // video files with very few intra frames. else if (found_packet_in_range) { scan_span *= 2; seek_time = first_packet_time; } // If we didn't find any packet with a PTS, it probably means we reached // the end of the file. Estimate byterate and cur_time accordingly. else if (!found_packet_with_pts) { byterate = (seek_pos - cur_pos) / (duration - cur_time); cur_time = duration; } } return NULL; } plm_packet_t *plm_demux_decode(plm_demux_t *self) { if (!plm_demux_has_headers(self)) { return NULL; } if (self->current_packet.length) { size_t bits_till_next_packet = self->current_packet.length << 3; if (!plm_buffer_has(self->buffer, bits_till_next_packet)) { return NULL; } plm_buffer_skip(self->buffer, bits_till_next_packet); self->current_packet.length = 0; } // Pending packet waiting for data? if (self->next_packet.length) { return plm_demux_get_packet(self); } // Pending packet waiting for header? if (self->start_code != -1) { return plm_demux_decode_packet(self, self->start_code); } do { self->start_code = plm_buffer_next_start_code(self->buffer); if ( self->start_code == PLM_DEMUX_PACKET_VIDEO_1 || self->start_code == PLM_DEMUX_PACKET_PRIVATE || ( self->start_code >= PLM_DEMUX_PACKET_AUDIO_1 && self->start_code <= PLM_DEMUX_PACKET_AUDIO_4 ) ) { return plm_demux_decode_packet(self, self->start_code); } } while (self->start_code != -1); return NULL; } double plm_demux_decode_time(plm_demux_t *self) { int64_t clock = plm_buffer_read(self->buffer, 3) << 30; plm_buffer_skip(self->buffer, 1); clock |= plm_buffer_read(self->buffer, 15) << 15; plm_buffer_skip(self->buffer, 1); clock |= plm_buffer_read(self->buffer, 15); plm_buffer_skip(self->buffer, 1); return (double)clock / 90000.0; } plm_packet_t *plm_demux_decode_packet(plm_demux_t *self, int type) { if (!plm_buffer_has(self->buffer, 16 << 3)) { return NULL; } self->start_code = -1; self->next_packet.type = type; self->next_packet.length = plm_buffer_read(self->buffer, 16); self->next_packet.length -= plm_buffer_skip_bytes(self->buffer, 0xff); // stuffing // skip P-STD if (plm_buffer_read(self->buffer, 2) == 0x01) { plm_buffer_skip(self->buffer, 16); self->next_packet.length -= 2; } int pts_dts_marker = plm_buffer_read(self->buffer, 2); if (pts_dts_marker == 0x03) { self->next_packet.pts = plm_demux_decode_time(self); self->last_decoded_pts = self->next_packet.pts; plm_buffer_skip(self->buffer, 40); // skip dts self->next_packet.length -= 10; } else if (pts_dts_marker == 0x02) { self->next_packet.pts = plm_demux_decode_time(self); self->last_decoded_pts = self->next_packet.pts; self->next_packet.length -= 5; } else if (pts_dts_marker == 0x00) { self->next_packet.pts = PLM_PACKET_INVALID_TS; plm_buffer_skip(self->buffer, 4); self->next_packet.length -= 1; } else { return NULL; // invalid } return plm_demux_get_packet(self); } plm_packet_t *plm_demux_get_packet(plm_demux_t *self) { if (!plm_buffer_has(self->buffer, self->next_packet.length << 3)) { return NULL; } self->current_packet.data = self->buffer->bytes + (self->buffer->bit_index >> 3); self->current_packet.length = self->next_packet.length; self->current_packet.type = self->next_packet.type; self->current_packet.pts = self->next_packet.pts; self->next_packet.length = 0; return &self->current_packet; } // ----------------------------------------------------------------------------- // plm_video implementation // Inspired by Java MPEG-1 Video Decoder and Player by Zoltan Korandi // https://sourceforge.net/projects/javampeg1video/ static const int PLM_VIDEO_PICTURE_TYPE_INTRA = 1; static const int PLM_VIDEO_PICTURE_TYPE_PREDICTIVE = 2; static const int PLM_VIDEO_PICTURE_TYPE_B = 3; static const int PLM_START_SEQUENCE = 0xB3; static const int PLM_START_SLICE_FIRST = 0x01; static const int PLM_START_SLICE_LAST = 0xAF; static const int PLM_START_PICTURE = 0x00; static const int PLM_START_EXTENSION = 0xB5; static const int PLM_START_USER_DATA = 0xB2; #define PLM_START_IS_SLICE(c) \ (c >= PLM_START_SLICE_FIRST && c <= PLM_START_SLICE_LAST) static const double PLM_VIDEO_PICTURE_RATE[] = { 0.000, 23.976, 24.000, 25.000, 29.970, 30.000, 50.000, 59.940, 60.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 }; static const uint8_t PLM_VIDEO_ZIG_ZAG[] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; static const uint8_t PLM_VIDEO_INTRA_QUANT_MATRIX[] = { 8, 16, 19, 22, 26, 27, 29, 34, 16, 16, 22, 24, 27, 29, 34, 37, 19, 22, 26, 27, 29, 34, 34, 38, 22, 22, 26, 27, 29, 34, 37, 40, 22, 26, 27, 29, 32, 35, 40, 48, 26, 27, 29, 32, 35, 40, 48, 58, 26, 27, 29, 34, 38, 46, 56, 69, 27, 29, 35, 38, 46, 56, 69, 83 }; static const uint8_t PLM_VIDEO_NON_INTRA_QUANT_MATRIX[] = { 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 }; static const uint8_t PLM_VIDEO_PREMULTIPLIER_MATRIX[] = { 32, 44, 42, 38, 32, 25, 17, 9, 44, 62, 58, 52, 44, 35, 24, 12, 42, 58, 55, 49, 42, 33, 23, 12, 38, 52, 49, 44, 38, 30, 20, 10, 32, 44, 42, 38, 32, 25, 17, 9, 25, 35, 33, 30, 25, 20, 14, 7, 17, 24, 23, 20, 17, 14, 9, 5, 9, 12, 12, 10, 9, 7, 5, 2 }; static const plm_vlc_t PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT[] = { { 1 << 1, 0}, { 0, 1}, // 0: x { 2 << 1, 0}, { 3 << 1, 0}, // 1: 0x { 4 << 1, 0}, { 5 << 1, 0}, // 2: 00x { 0, 3}, { 0, 2}, // 3: 01x { 6 << 1, 0}, { 7 << 1, 0}, // 4: 000x { 0, 5}, { 0, 4}, // 5: 001x { 8 << 1, 0}, { 9 << 1, 0}, // 6: 0000x { 0, 7}, { 0, 6}, // 7: 0001x { 10 << 1, 0}, { 11 << 1, 0}, // 8: 0000 0x { 12 << 1, 0}, { 13 << 1, 0}, // 9: 0000 1x { 14 << 1, 0}, { 15 << 1, 0}, // 10: 0000 00x { 16 << 1, 0}, { 17 << 1, 0}, // 11: 0000 01x { 18 << 1, 0}, { 19 << 1, 0}, // 12: 0000 10x { 0, 9}, { 0, 8}, // 13: 0000 11x { -1, 0}, { 20 << 1, 0}, // 14: 0000 000x { -1, 0}, { 21 << 1, 0}, // 15: 0000 001x { 22 << 1, 0}, { 23 << 1, 0}, // 16: 0000 010x { 0, 15}, { 0, 14}, // 17: 0000 011x { 0, 13}, { 0, 12}, // 18: 0000 100x { 0, 11}, { 0, 10}, // 19: 0000 101x { 24 << 1, 0}, { 25 << 1, 0}, // 20: 0000 0001x { 26 << 1, 0}, { 27 << 1, 0}, // 21: 0000 0011x { 28 << 1, 0}, { 29 << 1, 0}, // 22: 0000 0100x { 30 << 1, 0}, { 31 << 1, 0}, // 23: 0000 0101x { 32 << 1, 0}, { -1, 0}, // 24: 0000 0001 0x { -1, 0}, { 33 << 1, 0}, // 25: 0000 0001 1x { 34 << 1, 0}, { 35 << 1, 0}, // 26: 0000 0011 0x { 36 << 1, 0}, { 37 << 1, 0}, // 27: 0000 0011 1x { 38 << 1, 0}, { 39 << 1, 0}, // 28: 0000 0100 0x { 0, 21}, { 0, 20}, // 29: 0000 0100 1x { 0, 19}, { 0, 18}, // 30: 0000 0101 0x { 0, 17}, { 0, 16}, // 31: 0000 0101 1x { 0, 35}, { -1, 0}, // 32: 0000 0001 00x { -1, 0}, { 0, 34}, // 33: 0000 0001 11x { 0, 33}, { 0, 32}, // 34: 0000 0011 00x { 0, 31}, { 0, 30}, // 35: 0000 0011 01x { 0, 29}, { 0, 28}, // 36: 0000 0011 10x { 0, 27}, { 0, 26}, // 37: 0000 0011 11x { 0, 25}, { 0, 24}, // 38: 0000 0100 00x { 0, 23}, { 0, 22}, // 39: 0000 0100 01x }; static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_INTRA[] = { { 1 << 1, 0}, { 0, 0x01}, // 0: x { -1, 0}, { 0, 0x11}, // 1: 0x }; static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_PREDICTIVE[] = { { 1 << 1, 0}, { 0, 0x0a}, // 0: x { 2 << 1, 0}, { 0, 0x02}, // 1: 0x { 3 << 1, 0}, { 0, 0x08}, // 2: 00x { 4 << 1, 0}, { 5 << 1, 0}, // 3: 000x { 6 << 1, 0}, { 0, 0x12}, // 4: 0000x { 0, 0x1a}, { 0, 0x01}, // 5: 0001x { -1, 0}, { 0, 0x11}, // 6: 0000 0x }; static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_B[] = { { 1 << 1, 0}, { 2 << 1, 0}, // 0: x { 3 << 1, 0}, { 4 << 1, 0}, // 1: 0x { 0, 0x0c}, { 0, 0x0e}, // 2: 1x { 5 << 1, 0}, { 6 << 1, 0}, // 3: 00x { 0, 0x04}, { 0, 0x06}, // 4: 01x { 7 << 1, 0}, { 8 << 1, 0}, // 5: 000x { 0, 0x08}, { 0, 0x0a}, // 6: 001x { 9 << 1, 0}, { 10 << 1, 0}, // 7: 0000x { 0, 0x1e}, { 0, 0x01}, // 8: 0001x { -1, 0}, { 0, 0x11}, // 9: 0000 0x { 0, 0x16}, { 0, 0x1a}, // 10: 0000 1x }; static const plm_vlc_t *PLM_VIDEO_MACROBLOCK_TYPE[] = { NULL, PLM_VIDEO_MACROBLOCK_TYPE_INTRA, PLM_VIDEO_MACROBLOCK_TYPE_PREDICTIVE, PLM_VIDEO_MACROBLOCK_TYPE_B }; static const plm_vlc_t PLM_VIDEO_CODE_BLOCK_PATTERN[] = { { 1 << 1, 0}, { 2 << 1, 0}, // 0: x { 3 << 1, 0}, { 4 << 1, 0}, // 1: 0x { 5 << 1, 0}, { 6 << 1, 0}, // 2: 1x { 7 << 1, 0}, { 8 << 1, 0}, // 3: 00x { 9 << 1, 0}, { 10 << 1, 0}, // 4: 01x { 11 << 1, 0}, { 12 << 1, 0}, // 5: 10x { 13 << 1, 0}, { 0, 60}, // 6: 11x { 14 << 1, 0}, { 15 << 1, 0}, // 7: 000x { 16 << 1, 0}, { 17 << 1, 0}, // 8: 001x { 18 << 1, 0}, { 19 << 1, 0}, // 9: 010x { 20 << 1, 0}, { 21 << 1, 0}, // 10: 011x { 22 << 1, 0}, { 23 << 1, 0}, // 11: 100x { 0, 32}, { 0, 16}, // 12: 101x { 0, 8}, { 0, 4}, // 13: 110x { 24 << 1, 0}, { 25 << 1, 0}, // 14: 0000x { 26 << 1, 0}, { 27 << 1, 0}, // 15: 0001x { 28 << 1, 0}, { 29 << 1, 0}, // 16: 0010x { 30 << 1, 0}, { 31 << 1, 0}, // 17: 0011x { 0, 62}, { 0, 2}, // 18: 0100x { 0, 61}, { 0, 1}, // 19: 0101x { 0, 56}, { 0, 52}, // 20: 0110x { 0, 44}, { 0, 28}, // 21: 0111x { 0, 40}, { 0, 20}, // 22: 1000x { 0, 48}, { 0, 12}, // 23: 1001x { 32 << 1, 0}, { 33 << 1, 0}, // 24: 0000 0x { 34 << 1, 0}, { 35 << 1, 0}, // 25: 0000 1x { 36 << 1, 0}, { 37 << 1, 0}, // 26: 0001 0x { 38 << 1, 0}, { 39 << 1, 0}, // 27: 0001 1x { 40 << 1, 0}, { 41 << 1, 0}, // 28: 0010 0x { 42 << 1, 0}, { 43 << 1, 0}, // 29: 0010 1x { 0, 63}, { 0, 3}, // 30: 0011 0x { 0, 36}, { 0, 24}, // 31: 0011 1x { 44 << 1, 0}, { 45 << 1, 0}, // 32: 0000 00x { 46 << 1, 0}, { 47 << 1, 0}, // 33: 0000 01x { 48 << 1, 0}, { 49 << 1, 0}, // 34: 0000 10x { 50 << 1, 0}, { 51 << 1, 0}, // 35: 0000 11x { 52 << 1, 0}, { 53 << 1, 0}, // 36: 0001 00x { 54 << 1, 0}, { 55 << 1, 0}, // 37: 0001 01x { 56 << 1, 0}, { 57 << 1, 0}, // 38: 0001 10x { 58 << 1, 0}, { 59 << 1, 0}, // 39: 0001 11x { 0, 34}, { 0, 18}, // 40: 0010 00x { 0, 10}, { 0, 6}, // 41: 0010 01x { 0, 33}, { 0, 17}, // 42: 0010 10x { 0, 9}, { 0, 5}, // 43: 0010 11x { -1, 0}, { 60 << 1, 0}, // 44: 0000 000x { 61 << 1, 0}, { 62 << 1, 0}, // 45: 0000 001x { 0, 58}, { 0, 54}, // 46: 0000 010x { 0, 46}, { 0, 30}, // 47: 0000 011x { 0, 57}, { 0, 53}, // 48: 0000 100x { 0, 45}, { 0, 29}, // 49: 0000 101x { 0, 38}, { 0, 26}, // 50: 0000 110x { 0, 37}, { 0, 25}, // 51: 0000 111x { 0, 43}, { 0, 23}, // 52: 0001 000x { 0, 51}, { 0, 15}, // 53: 0001 001x { 0, 42}, { 0, 22}, // 54: 0001 010x { 0, 50}, { 0, 14}, // 55: 0001 011x { 0, 41}, { 0, 21}, // 56: 0001 100x { 0, 49}, { 0, 13}, // 57: 0001 101x { 0, 35}, { 0, 19}, // 58: 0001 110x { 0, 11}, { 0, 7}, // 59: 0001 111x { 0, 39}, { 0, 27}, // 60: 0000 0001x { 0, 59}, { 0, 55}, // 61: 0000 0010x { 0, 47}, { 0, 31}, // 62: 0000 0011x }; static const plm_vlc_t PLM_VIDEO_MOTION[] = { { 1 << 1, 0}, { 0, 0}, // 0: x { 2 << 1, 0}, { 3 << 1, 0}, // 1: 0x { 4 << 1, 0}, { 5 << 1, 0}, // 2: 00x { 0, 1}, { 0, -1}, // 3: 01x { 6 << 1, 0}, { 7 << 1, 0}, // 4: 000x { 0, 2}, { 0, -2}, // 5: 001x { 8 << 1, 0}, { 9 << 1, 0}, // 6: 0000x { 0, 3}, { 0, -3}, // 7: 0001x { 10 << 1, 0}, { 11 << 1, 0}, // 8: 0000 0x { 12 << 1, 0}, { 13 << 1, 0}, // 9: 0000 1x { -1, 0}, { 14 << 1, 0}, // 10: 0000 00x { 15 << 1, 0}, { 16 << 1, 0}, // 11: 0000 01x { 17 << 1, 0}, { 18 << 1, 0}, // 12: 0000 10x { 0, 4}, { 0, -4}, // 13: 0000 11x { -1, 0}, { 19 << 1, 0}, // 14: 0000 001x { 20 << 1, 0}, { 21 << 1, 0}, // 15: 0000 010x { 0, 7}, { 0, -7}, // 16: 0000 011x { 0, 6}, { 0, -6}, // 17: 0000 100x { 0, 5}, { 0, -5}, // 18: 0000 101x { 22 << 1, 0}, { 23 << 1, 0}, // 19: 0000 0011x { 24 << 1, 0}, { 25 << 1, 0}, // 20: 0000 0100x { 26 << 1, 0}, { 27 << 1, 0}, // 21: 0000 0101x { 28 << 1, 0}, { 29 << 1, 0}, // 22: 0000 0011 0x { 30 << 1, 0}, { 31 << 1, 0}, // 23: 0000 0011 1x { 32 << 1, 0}, { 33 << 1, 0}, // 24: 0000 0100 0x { 0, 10}, { 0, -10}, // 25: 0000 0100 1x { 0, 9}, { 0, -9}, // 26: 0000 0101 0x { 0, 8}, { 0, -8}, // 27: 0000 0101 1x { 0, 16}, { 0, -16}, // 28: 0000 0011 00x { 0, 15}, { 0, -15}, // 29: 0000 0011 01x { 0, 14}, { 0, -14}, // 30: 0000 0011 10x { 0, 13}, { 0, -13}, // 31: 0000 0011 11x { 0, 12}, { 0, -12}, // 32: 0000 0100 00x { 0, 11}, { 0, -11}, // 33: 0000 0100 01x }; static const plm_vlc_t PLM_VIDEO_DCT_SIZE_LUMINANCE[] = { { 1 << 1, 0}, { 2 << 1, 0}, // 0: x { 0, 1}, { 0, 2}, // 1: 0x { 3 << 1, 0}, { 4 << 1, 0}, // 2: 1x { 0, 0}, { 0, 3}, // 3: 10x { 0, 4}, { 5 << 1, 0}, // 4: 11x { 0, 5}, { 6 << 1, 0}, // 5: 111x { 0, 6}, { 7 << 1, 0}, // 6: 1111x { 0, 7}, { 8 << 1, 0}, // 7: 1111 1x { 0, 8}, { -1, 0}, // 8: 1111 11x }; static const plm_vlc_t PLM_VIDEO_DCT_SIZE_CHROMINANCE[] = { { 1 << 1, 0}, { 2 << 1, 0}, // 0: x { 0, 0}, { 0, 1}, // 1: 0x { 0, 2}, { 3 << 1, 0}, // 2: 1x { 0, 3}, { 4 << 1, 0}, // 3: 11x { 0, 4}, { 5 << 1, 0}, // 4: 111x { 0, 5}, { 6 << 1, 0}, // 5: 1111x { 0, 6}, { 7 << 1, 0}, // 6: 1111 1x { 0, 7}, { 8 << 1, 0}, // 7: 1111 11x { 0, 8}, { -1, 0}, // 8: 1111 111x }; static const plm_vlc_t *PLM_VIDEO_DCT_SIZE[] = { PLM_VIDEO_DCT_SIZE_LUMINANCE, PLM_VIDEO_DCT_SIZE_CHROMINANCE, PLM_VIDEO_DCT_SIZE_CHROMINANCE }; // dct_coeff bitmap: // 0xff00 run // 0x00ff level // Decoded values are unsigned. Sign bit follows in the stream. static const plm_vlc_uint_t PLM_VIDEO_DCT_COEFF[] = { { 1 << 1, 0}, { 0, 0x0001}, // 0: x { 2 << 1, 0}, { 3 << 1, 0}, // 1: 0x { 4 << 1, 0}, { 5 << 1, 0}, // 2: 00x { 6 << 1, 0}, { 0, 0x0101}, // 3: 01x { 7 << 1, 0}, { 8 << 1, 0}, // 4: 000x { 9 << 1, 0}, { 10 << 1, 0}, // 5: 001x { 0, 0x0002}, { 0, 0x0201}, // 6: 010x { 11 << 1, 0}, { 12 << 1, 0}, // 7: 0000x { 13 << 1, 0}, { 14 << 1, 0}, // 8: 0001x { 15 << 1, 0}, { 0, 0x0003}, // 9: 0010x { 0, 0x0401}, { 0, 0x0301}, // 10: 0011x { 16 << 1, 0}, { 0, 0xffff}, // 11: 0000 0x { 17 << 1, 0}, { 18 << 1, 0}, // 12: 0000 1x { 0, 0x0701}, { 0, 0x0601}, // 13: 0001 0x { 0, 0x0102}, { 0, 0x0501}, // 14: 0001 1x { 19 << 1, 0}, { 20 << 1, 0}, // 15: 0010 0x { 21 << 1, 0}, { 22 << 1, 0}, // 16: 0000 00x { 0, 0x0202}, { 0, 0x0901}, // 17: 0000 10x { 0, 0x0004}, { 0, 0x0801}, // 18: 0000 11x { 23 << 1, 0}, { 24 << 1, 0}, // 19: 0010 00x { 25 << 1, 0}, { 26 << 1, 0}, // 20: 0010 01x { 27 << 1, 0}, { 28 << 1, 0}, // 21: 0000 000x { 29 << 1, 0}, { 30 << 1, 0}, // 22: 0000 001x { 0, 0x0d01}, { 0, 0x0006}, // 23: 0010 000x { 0, 0x0c01}, { 0, 0x0b01}, // 24: 0010 001x { 0, 0x0302}, { 0, 0x0103}, // 25: 0010 010x { 0, 0x0005}, { 0, 0x0a01}, // 26: 0010 011x { 31 << 1, 0}, { 32 << 1, 0}, // 27: 0000 0000x { 33 << 1, 0}, { 34 << 1, 0}, // 28: 0000 0001x { 35 << 1, 0}, { 36 << 1, 0}, // 29: 0000 0010x { 37 << 1, 0}, { 38 << 1, 0}, // 30: 0000 0011x { 39 << 1, 0}, { 40 << 1, 0}, // 31: 0000 0000 0x { 41 << 1, 0}, { 42 << 1, 0}, // 32: 0000 0000 1x { 43 << 1, 0}, { 44 << 1, 0}, // 33: 0000 0001 0x { 45 << 1, 0}, { 46 << 1, 0}, // 34: 0000 0001 1x { 0, 0x1001}, { 0, 0x0502}, // 35: 0000 0010 0x { 0, 0x0007}, { 0, 0x0203}, // 36: 0000 0010 1x { 0, 0x0104}, { 0, 0x0f01}, // 37: 0000 0011 0x { 0, 0x0e01}, { 0, 0x0402}, // 38: 0000 0011 1x { 47 << 1, 0}, { 48 << 1, 0}, // 39: 0000 0000 00x { 49 << 1, 0}, { 50 << 1, 0}, // 40: 0000 0000 01x { 51 << 1, 0}, { 52 << 1, 0}, // 41: 0000 0000 10x { 53 << 1, 0}, { 54 << 1, 0}, // 42: 0000 0000 11x { 55 << 1, 0}, { 56 << 1, 0}, // 43: 0000 0001 00x { 57 << 1, 0}, { 58 << 1, 0}, // 44: 0000 0001 01x { 59 << 1, 0}, { 60 << 1, 0}, // 45: 0000 0001 10x { 61 << 1, 0}, { 62 << 1, 0}, // 46: 0000 0001 11x { -1, 0}, { 63 << 1, 0}, // 47: 0000 0000 000x { 64 << 1, 0}, { 65 << 1, 0}, // 48: 0000 0000 001x { 66 << 1, 0}, { 67 << 1, 0}, // 49: 0000 0000 010x { 68 << 1, 0}, { 69 << 1, 0}, // 50: 0000 0000 011x { 70 << 1, 0}, { 71 << 1, 0}, // 51: 0000 0000 100x { 72 << 1, 0}, { 73 << 1, 0}, // 52: 0000 0000 101x { 74 << 1, 0}, { 75 << 1, 0}, // 53: 0000 0000 110x { 76 << 1, 0}, { 77 << 1, 0}, // 54: 0000 0000 111x { 0, 0x000b}, { 0, 0x0802}, // 55: 0000 0001 000x { 0, 0x0403}, { 0, 0x000a}, // 56: 0000 0001 001x { 0, 0x0204}, { 0, 0x0702}, // 57: 0000 0001 010x { 0, 0x1501}, { 0, 0x1401}, // 58: 0000 0001 011x { 0, 0x0009}, { 0, 0x1301}, // 59: 0000 0001 100x { 0, 0x1201}, { 0, 0x0105}, // 60: 0000 0001 101x { 0, 0x0303}, { 0, 0x0008}, // 61: 0000 0001 110x { 0, 0x0602}, { 0, 0x1101}, // 62: 0000 0001 111x { 78 << 1, 0}, { 79 << 1, 0}, // 63: 0000 0000 0001x { 80 << 1, 0}, { 81 << 1, 0}, // 64: 0000 0000 0010x { 82 << 1, 0}, { 83 << 1, 0}, // 65: 0000 0000 0011x { 84 << 1, 0}, { 85 << 1, 0}, // 66: 0000 0000 0100x { 86 << 1, 0}, { 87 << 1, 0}, // 67: 0000 0000 0101x { 88 << 1, 0}, { 89 << 1, 0}, // 68: 0000 0000 0110x { 90 << 1, 0}, { 91 << 1, 0}, // 69: 0000 0000 0111x { 0, 0x0a02}, { 0, 0x0902}, // 70: 0000 0000 1000x { 0, 0x0503}, { 0, 0x0304}, // 71: 0000 0000 1001x { 0, 0x0205}, { 0, 0x0107}, // 72: 0000 0000 1010x { 0, 0x0106}, { 0, 0x000f}, // 73: 0000 0000 1011x { 0, 0x000e}, { 0, 0x000d}, // 74: 0000 0000 1100x { 0, 0x000c}, { 0, 0x1a01}, // 75: 0000 0000 1101x { 0, 0x1901}, { 0, 0x1801}, // 76: 0000 0000 1110x { 0, 0x1701}, { 0, 0x1601}, // 77: 0000 0000 1111x { 92 << 1, 0}, { 93 << 1, 0}, // 78: 0000 0000 0001 0x { 94 << 1, 0}, { 95 << 1, 0}, // 79: 0000 0000 0001 1x { 96 << 1, 0}, { 97 << 1, 0}, // 80: 0000 0000 0010 0x { 98 << 1, 0}, { 99 << 1, 0}, // 81: 0000 0000 0010 1x {100 << 1, 0}, {101 << 1, 0}, // 82: 0000 0000 0011 0x {102 << 1, 0}, {103 << 1, 0}, // 83: 0000 0000 0011 1x { 0, 0x001f}, { 0, 0x001e}, // 84: 0000 0000 0100 0x { 0, 0x001d}, { 0, 0x001c}, // 85: 0000 0000 0100 1x { 0, 0x001b}, { 0, 0x001a}, // 86: 0000 0000 0101 0x { 0, 0x0019}, { 0, 0x0018}, // 87: 0000 0000 0101 1x { 0, 0x0017}, { 0, 0x0016}, // 88: 0000 0000 0110 0x { 0, 0x0015}, { 0, 0x0014}, // 89: 0000 0000 0110 1x { 0, 0x0013}, { 0, 0x0012}, // 90: 0000 0000 0111 0x { 0, 0x0011}, { 0, 0x0010}, // 91: 0000 0000 0111 1x {104 << 1, 0}, {105 << 1, 0}, // 92: 0000 0000 0001 00x {106 << 1, 0}, {107 << 1, 0}, // 93: 0000 0000 0001 01x {108 << 1, 0}, {109 << 1, 0}, // 94: 0000 0000 0001 10x {110 << 1, 0}, {111 << 1, 0}, // 95: 0000 0000 0001 11x { 0, 0x0028}, { 0, 0x0027}, // 96: 0000 0000 0010 00x { 0, 0x0026}, { 0, 0x0025}, // 97: 0000 0000 0010 01x { 0, 0x0024}, { 0, 0x0023}, // 98: 0000 0000 0010 10x { 0, 0x0022}, { 0, 0x0021}, // 99: 0000 0000 0010 11x { 0, 0x0020}, { 0, 0x010e}, // 100: 0000 0000 0011 00x { 0, 0x010d}, { 0, 0x010c}, // 101: 0000 0000 0011 01x { 0, 0x010b}, { 0, 0x010a}, // 102: 0000 0000 0011 10x { 0, 0x0109}, { 0, 0x0108}, // 103: 0000 0000 0011 11x { 0, 0x0112}, { 0, 0x0111}, // 104: 0000 0000 0001 000x { 0, 0x0110}, { 0, 0x010f}, // 105: 0000 0000 0001 001x { 0, 0x0603}, { 0, 0x1002}, // 106: 0000 0000 0001 010x { 0, 0x0f02}, { 0, 0x0e02}, // 107: 0000 0000 0001 011x { 0, 0x0d02}, { 0, 0x0c02}, // 108: 0000 0000 0001 100x { 0, 0x0b02}, { 0, 0x1f01}, // 109: 0000 0000 0001 101x { 0, 0x1e01}, { 0, 0x1d01}, // 110: 0000 0000 0001 110x { 0, 0x1c01}, { 0, 0x1b01}, // 111: 0000 0000 0001 111x }; typedef struct { int full_px; int is_set; int r_size; int h; int v; } plm_video_motion_t; typedef struct plm_video_t { double framerate; double time; int frames_decoded; int width; int height; int mb_width; int mb_height; int mb_size; int luma_width; int luma_height; int chroma_width; int chroma_height; int start_code; int picture_type; plm_video_motion_t motion_forward; plm_video_motion_t motion_backward; int has_sequence_header; int quantizer_scale; int slice_begin; int macroblock_address; int mb_row; int mb_col; int macroblock_type; int macroblock_intra; int dc_predictor[3]; plm_buffer_t *buffer; int destroy_buffer_when_done; plm_frame_t frame_current; plm_frame_t frame_forward; plm_frame_t frame_backward; uint8_t *frames_data; int block_data[64]; uint8_t intra_quant_matrix[64]; uint8_t non_intra_quant_matrix[64]; int has_reference_frame; int assume_no_b_frames; } plm_video_t; static inline uint8_t plm_clamp(int n) { if (n > 255) { n = 255; } else if (n < 0) { n = 0; } return n; } int plm_video_decode_sequence_header(plm_video_t *self); void plm_video_init_frame(plm_video_t *self, plm_frame_t *frame, uint8_t *base); void plm_video_decode_picture(plm_video_t *self); void plm_video_decode_slice(plm_video_t *self, int slice); void plm_video_decode_macroblock(plm_video_t *self); void plm_video_decode_motion_vectors(plm_video_t *self); int plm_video_decode_motion_vector(plm_video_t *self, int r_size, int motion); void plm_video_predict_macroblock(plm_video_t *self); void plm_video_copy_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d); void plm_video_interpolate_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d); void plm_video_process_macroblock(plm_video_t *self, uint8_t *d, uint8_t *s, int mh, int mb, int bs, int interp); void plm_video_decode_block(plm_video_t *self, int block); void plm_video_idct(int *block); plm_video_t * plm_video_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) { plm_video_t *self = (plm_video_t *)malloc(sizeof(plm_video_t)); memset(self, 0, sizeof(plm_video_t)); self->buffer = buffer; self->destroy_buffer_when_done = destroy_when_done; // Attempt to decode the sequence header self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_SEQUENCE); if (self->start_code != -1) { plm_video_decode_sequence_header(self); } return self; } void plm_video_destroy(plm_video_t *self) { if (self->destroy_buffer_when_done) { plm_buffer_destroy(self->buffer); } if (self->has_sequence_header) { free(self->frames_data); } free(self); } double plm_video_get_framerate(plm_video_t *self) { return plm_video_has_header(self) ? self->framerate : 0; } int plm_video_get_width(plm_video_t *self) { return plm_video_has_header(self) ? self->width : 0; } int plm_video_get_height(plm_video_t *self) { return plm_video_has_header(self) ? self->height : 0; } void plm_video_set_no_delay(plm_video_t *self, int no_delay) { self->assume_no_b_frames = no_delay; } double plm_video_get_time(plm_video_t *self) { return self->time; } void plm_video_set_time(plm_video_t *self, double time) { self->frames_decoded = self->framerate * time; self->time = time; } void plm_video_rewind(plm_video_t *self) { plm_buffer_rewind(self->buffer); self->time = 0; self->frames_decoded = 0; self->has_reference_frame = FALSE; self->start_code = -1; } int plm_video_has_ended(plm_video_t *self) { return plm_buffer_has_ended(self->buffer); } plm_frame_t *plm_video_decode(plm_video_t *self) { if (!plm_video_has_header(self)) { return NULL; } plm_frame_t *frame = NULL; do { if (self->start_code != PLM_START_PICTURE) { self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_PICTURE); if (self->start_code == -1) { // If we reached the end of the file and the previously decoded // frame was a reference frame, we still have to return it. if ( self->has_reference_frame && !self->assume_no_b_frames && plm_buffer_has_ended(self->buffer) && ( self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA || self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE ) ) { self->has_reference_frame = FALSE; frame = &self->frame_backward; break; } return NULL; } } // Make sure we have a full picture in the buffer before attempting to // decode it. Sadly, this can only be done by seeking for the start code // of the next picture. Also, if we didn't find the start code for the // next picture, but the source has ended, we assume that this last // picture is in the buffer. if ( plm_buffer_has_start_code(self->buffer, PLM_START_PICTURE) == -1 && !plm_buffer_has_ended(self->buffer) ) { return NULL; } plm_video_decode_picture(self); if (self->assume_no_b_frames) { frame = &self->frame_backward; } else if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) { frame = &self->frame_current; } else if (self->has_reference_frame) { frame = &self->frame_forward; } else { self->has_reference_frame = TRUE; } } while (!frame); frame->time = self->time; self->frames_decoded++; self->time = (double)self->frames_decoded / self->framerate; return frame; } int plm_video_has_header(plm_video_t *self) { if (self->has_sequence_header) { return TRUE; } if (self->start_code != PLM_START_SEQUENCE) { self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_SEQUENCE); } if (self->start_code == -1) { return FALSE; } if (!plm_video_decode_sequence_header(self)) { return FALSE; } return TRUE; } int plm_video_decode_sequence_header(plm_video_t *self) { int max_header_size = 64 + 2 * 64 * 8; // 64 bit header + 2x 64 byte matrix if (!plm_buffer_has(self->buffer, max_header_size)) { return FALSE; } self->width = plm_buffer_read(self->buffer, 12); self->height = plm_buffer_read(self->buffer, 12); if (self->width <= 0 || self->height <= 0) { return FALSE; } // Skip pixel aspect ratio plm_buffer_skip(self->buffer, 4); self->framerate = PLM_VIDEO_PICTURE_RATE[plm_buffer_read(self->buffer, 4)]; // Skip bit_rate, marker, buffer_size and constrained bit plm_buffer_skip(self->buffer, 18 + 1 + 10 + 1); // Load custom intra quant matrix? if (plm_buffer_read(self->buffer, 1)) { for (int i = 0; i < 64; i++) { int idx = PLM_VIDEO_ZIG_ZAG[i]; self->intra_quant_matrix[idx] = plm_buffer_read(self->buffer, 8); } } else { memcpy(self->intra_quant_matrix, PLM_VIDEO_INTRA_QUANT_MATRIX, 64); } // Load custom non intra quant matrix? if (plm_buffer_read(self->buffer, 1)) { for (int i = 0; i < 64; i++) { int idx = PLM_VIDEO_ZIG_ZAG[i]; self->non_intra_quant_matrix[idx] = plm_buffer_read(self->buffer, 8); } } else { memcpy(self->non_intra_quant_matrix, PLM_VIDEO_NON_INTRA_QUANT_MATRIX, 64); } self->mb_width = (self->width + 15) >> 4; self->mb_height = (self->height + 15) >> 4; self->mb_size = self->mb_width * self->mb_height; self->luma_width = self->mb_width << 4; self->luma_height = self->mb_height << 4; self->chroma_width = self->mb_width << 3; self->chroma_height = self->mb_height << 3; // Allocate one big chunk of data for all 3 frames = 9 planes size_t luma_plane_size = self->luma_width * self->luma_height; size_t chroma_plane_size = self->chroma_width * self->chroma_height; size_t frame_data_size = (luma_plane_size + 2 * chroma_plane_size); self->frames_data = (uint8_t*)malloc(frame_data_size * 3); plm_video_init_frame(self, &self->frame_current, self->frames_data + frame_data_size * 0); plm_video_init_frame(self, &self->frame_forward, self->frames_data + frame_data_size * 1); plm_video_init_frame(self, &self->frame_backward, self->frames_data + frame_data_size * 2); self->has_sequence_header = TRUE; return TRUE; } void plm_video_init_frame(plm_video_t *self, plm_frame_t *frame, uint8_t *base) { size_t luma_plane_size = self->luma_width * self->luma_height; size_t chroma_plane_size = self->chroma_width * self->chroma_height; frame->width = self->width; frame->height = self->height; frame->y.width = self->luma_width; frame->y.height = self->luma_height; frame->y.data = base; frame->cr.width = self->chroma_width; frame->cr.height = self->chroma_height; frame->cr.data = base + luma_plane_size; frame->cb.width = self->chroma_width; frame->cb.height = self->chroma_height; frame->cb.data = base + luma_plane_size + chroma_plane_size; } void plm_video_decode_picture(plm_video_t *self) { plm_buffer_skip(self->buffer, 10); // skip temporalReference self->picture_type = plm_buffer_read(self->buffer, 3); plm_buffer_skip(self->buffer, 16); // skip vbv_delay // D frames or unknown coding type if (self->picture_type <= 0 || self->picture_type > PLM_VIDEO_PICTURE_TYPE_B) { return; } // Forward full_px, f_code if ( self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE || self->picture_type == PLM_VIDEO_PICTURE_TYPE_B ) { self->motion_forward.full_px = plm_buffer_read(self->buffer, 1); int f_code = plm_buffer_read(self->buffer, 3); if (f_code == 0) { // Ignore picture with zero f_code return; } self->motion_forward.r_size = f_code - 1; } // Backward full_px, f_code if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) { self->motion_backward.full_px = plm_buffer_read(self->buffer, 1); int f_code = plm_buffer_read(self->buffer, 3); if (f_code == 0) { // Ignore picture with zero f_code return; } self->motion_backward.r_size = f_code - 1; } plm_frame_t frame_temp = self->frame_forward; if ( self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA || self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE ) { self->frame_forward = self->frame_backward; } // Find the first slice; this skips extension and user data do { self->start_code = plm_buffer_next_start_code(self->buffer); } while (!PLM_START_IS_SLICE(self->start_code)); // Decode all slices do { plm_video_decode_slice(self, self->start_code & 0x000000FF); if (self->macroblock_address == self->mb_size - 1) { break; } self->start_code = plm_buffer_next_start_code(self->buffer); } while (PLM_START_IS_SLICE(self->start_code)); // If this is a reference picture rotate the prediction pointers if ( self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA || self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE ) { self->frame_backward = self->frame_current; self->frame_current = frame_temp; } } void plm_video_decode_slice(plm_video_t *self, int slice) { self->slice_begin = TRUE; self->macroblock_address = (slice - 1) * self->mb_width - 1; // Reset motion vectors and DC predictors self->motion_backward.h = self->motion_forward.h = 0; self->motion_backward.v = self->motion_forward.v = 0; self->dc_predictor[0] = 128; self->dc_predictor[1] = 128; self->dc_predictor[2] = 128; self->quantizer_scale = plm_buffer_read(self->buffer, 5); // Skip extra while (plm_buffer_read(self->buffer, 1)) { plm_buffer_skip(self->buffer, 8); } do { plm_video_decode_macroblock(self); } while ( self->macroblock_address < self->mb_size - 1 && plm_buffer_no_start_code(self->buffer) ); } void plm_video_decode_macroblock(plm_video_t *self) { // Decode self->macroblock_address_increment int increment = 0; int t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT); while (t == 34) { // macroblock_stuffing t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT); } while (t == 35) { // macroblock_escape increment += 33; t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT); } increment += t; // Process any skipped macroblocks if (self->slice_begin) { // The first self->macroblock_address_increment of each slice is relative // to beginning of the preverious row, not the preverious macroblock self->slice_begin = FALSE; self->macroblock_address += increment; } else { if (self->macroblock_address + increment >= self->mb_size) { return; // invalid } if (increment > 1) { // Skipped macroblocks reset DC predictors self->dc_predictor[0] = 128; self->dc_predictor[1] = 128; self->dc_predictor[2] = 128; // Skipped macroblocks in P-pictures reset motion vectors if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE) { self->motion_forward.h = 0; self->motion_forward.v = 0; } } // Predict skipped macroblocks while (increment > 1) { self->macroblock_address++; self->mb_row = self->macroblock_address / self->mb_width; self->mb_col = self->macroblock_address % self->mb_width; plm_video_predict_macroblock(self); increment--; } self->macroblock_address++; } self->mb_row = self->macroblock_address / self->mb_width; self->mb_col = self->macroblock_address % self->mb_width; if (self->mb_col >= self->mb_width || self->mb_row >= self->mb_height) { return; // corrupt stream; } // Process the current macroblock const plm_vlc_t *table = PLM_VIDEO_MACROBLOCK_TYPE[self->picture_type]; self->macroblock_type = plm_buffer_read_vlc(self->buffer, table); self->macroblock_intra = (self->macroblock_type & 0x01); self->motion_forward.is_set = (self->macroblock_type & 0x08); self->motion_backward.is_set = (self->macroblock_type & 0x04); // Quantizer scale if ((self->macroblock_type & 0x10) != 0) { self->quantizer_scale = plm_buffer_read(self->buffer, 5); } if (self->macroblock_intra) { // Intra-coded macroblocks reset motion vectors self->motion_backward.h = self->motion_forward.h = 0; self->motion_backward.v = self->motion_forward.v = 0; } else { // Non-intra macroblocks reset DC predictors self->dc_predictor[0] = 128; self->dc_predictor[1] = 128; self->dc_predictor[2] = 128; plm_video_decode_motion_vectors(self); plm_video_predict_macroblock(self); } // Decode blocks int cbp = ((self->macroblock_type & 0x02) != 0) ? plm_buffer_read_vlc(self->buffer, PLM_VIDEO_CODE_BLOCK_PATTERN) : (self->macroblock_intra ? 0x3f : 0); for (int block = 0, mask = 0x20; block < 6; block++) { if ((cbp & mask) != 0) { plm_video_decode_block(self, block); } mask >>= 1; } } void plm_video_decode_motion_vectors(plm_video_t *self) { // Forward if (self->motion_forward.is_set) { int r_size = self->motion_forward.r_size; self->motion_forward.h = plm_video_decode_motion_vector(self, r_size, self->motion_forward.h); self->motion_forward.v = plm_video_decode_motion_vector(self, r_size, self->motion_forward.v); } else if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE) { // No motion information in P-picture, reset vectors self->motion_forward.h = 0; self->motion_forward.v = 0; } if (self->motion_backward.is_set) { int r_size = self->motion_backward.r_size; self->motion_backward.h = plm_video_decode_motion_vector(self, r_size, self->motion_backward.h); self->motion_backward.v = plm_video_decode_motion_vector(self, r_size, self->motion_backward.v); } } int plm_video_decode_motion_vector(plm_video_t *self, int r_size, int motion) { int fscale = 1 << r_size; int m_code = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MOTION); int r = 0; int d; if ((m_code != 0) && (fscale != 1)) { r = plm_buffer_read(self->buffer, r_size); d = ((abs(m_code) - 1) << r_size) + r + 1; if (m_code < 0) { d = -d; } } else { d = m_code; } motion += d; if (motion >(fscale << 4) - 1) { motion -= fscale << 5; } else if (motion < ((-fscale) << 4)) { motion += fscale << 5; } return motion; } void plm_video_predict_macroblock(plm_video_t *self) { int fw_h = self->motion_forward.h; int fw_v = self->motion_forward.v; if (self->motion_forward.full_px) { fw_h <<= 1; fw_v <<= 1; } if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) { int bw_h = self->motion_backward.h; int bw_v = self->motion_backward.v; if (self->motion_backward.full_px) { bw_h <<= 1; bw_v <<= 1; } if (self->motion_forward.is_set) { plm_video_copy_macroblock(self, fw_h, fw_v, &self->frame_forward); if (self->motion_backward.is_set) { plm_video_interpolate_macroblock(self, bw_h, bw_v, &self->frame_backward); } } else { plm_video_copy_macroblock(self, bw_h, bw_v, &self->frame_backward); } } else { plm_video_copy_macroblock(self, fw_h, fw_v, &self->frame_forward); } } void plm_video_copy_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d) { plm_frame_t *s = &self->frame_current; plm_video_process_macroblock(self, s->y.data, d->y.data, motion_h, motion_v, 16, FALSE); plm_video_process_macroblock(self, s->cr.data, d->cr.data, motion_h / 2, motion_v / 2, 8, FALSE); plm_video_process_macroblock(self, s->cb.data, d->cb.data, motion_h / 2, motion_v / 2, 8, FALSE); } void plm_video_interpolate_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d) { plm_frame_t *s = &self->frame_current; plm_video_process_macroblock(self, s->y.data, d->y.data, motion_h, motion_v, 16, TRUE); plm_video_process_macroblock(self, s->cr.data, d->cr.data, motion_h / 2, motion_v / 2, 8, TRUE); plm_video_process_macroblock(self, s->cb.data, d->cb.data, motion_h / 2, motion_v / 2, 8, TRUE); } #define PLM_BLOCK_SET(DEST, DEST_INDEX, DEST_WIDTH, SOURCE_INDEX, SOURCE_WIDTH, BLOCK_SIZE, OP) do { \ int dest_scan = DEST_WIDTH - BLOCK_SIZE; \ int source_scan = SOURCE_WIDTH - BLOCK_SIZE; \ for (int y = 0; y < BLOCK_SIZE; y++) { \ for (int x = 0; x < BLOCK_SIZE; x++) { \ DEST[DEST_INDEX] = OP; \ SOURCE_INDEX++; DEST_INDEX++; \ } \ SOURCE_INDEX += source_scan; \ DEST_INDEX += dest_scan; \ }} while(FALSE) void plm_video_process_macroblock( plm_video_t *self, uint8_t *d, uint8_t *s, int motion_h, int motion_v, int block_size, int interpolate ) { int dw = self->mb_width * block_size; int hp = motion_h >> 1; int vp = motion_v >> 1; int odd_h = (motion_h & 1) == 1; int odd_v = (motion_v & 1) == 1; unsigned int si = ((self->mb_row * block_size) + vp) * dw + (self->mb_col * block_size) + hp; unsigned int di = (self->mb_row * dw + self->mb_col) * block_size; unsigned int max_address = (dw * (self->mb_height * block_size - block_size + 1) - block_size); if (si > max_address || di > max_address) { return; // corrupt video } #define PLM_MB_CASE(INTERPOLATE, ODD_H, ODD_V, OP) \ case ((INTERPOLATE << 2) | (ODD_H << 1) | (ODD_V)): \ PLM_BLOCK_SET(d, di, dw, si, dw, block_size, OP); \ break switch ((interpolate << 2) | (odd_h << 1) | (odd_v)) { PLM_MB_CASE(0, 0, 0, (s[si])); PLM_MB_CASE(0, 0, 1, (s[si] + s[si + dw] + 1) >> 1); PLM_MB_CASE(0, 1, 0, (s[si] + s[si + 1] + 1) >> 1); PLM_MB_CASE(0, 1, 1, (s[si] + s[si + 1] + s[si + dw] + s[si + dw + 1] + 2) >> 2); PLM_MB_CASE(1, 0, 0, (d[di] + (s[si]) + 1) >> 1); PLM_MB_CASE(1, 0, 1, (d[di] + ((s[si] + s[si + dw] + 1) >> 1) + 1) >> 1); PLM_MB_CASE(1, 1, 0, (d[di] + ((s[si] + s[si + 1] + 1) >> 1) + 1) >> 1); PLM_MB_CASE(1, 1, 1, (d[di] + ((s[si] + s[si + 1] + s[si + dw] + s[si + dw + 1] + 2) >> 2) + 1) >> 1); } #undef PLM_MB_CASE } void plm_video_decode_block(plm_video_t *self, int block) { int n = 0; uint8_t *quant_matrix; // Decode DC coefficient of intra-coded blocks if (self->macroblock_intra) { int predictor; int dct_size; // DC prediction int plane_index = block > 3 ? block - 3 : 0; predictor = self->dc_predictor[plane_index]; dct_size = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_DCT_SIZE[plane_index]); // Read DC coeff if (dct_size > 0) { int differential = plm_buffer_read(self->buffer, dct_size); if ((differential & (1 << (dct_size - 1))) != 0) { self->block_data[0] = predictor + differential; } else { self->block_data[0] = predictor + (-(1 << dct_size) | (differential + 1)); } } else { self->block_data[0] = predictor; } // Save predictor value self->dc_predictor[plane_index] = self->block_data[0]; // Dequantize + premultiply self->block_data[0] <<= (3 + 5); quant_matrix = self->intra_quant_matrix; n = 1; } else { quant_matrix = self->non_intra_quant_matrix; } // Decode AC coefficients (+DC for non-intra) int level = 0; while (TRUE) { int run = 0; uint16_t coeff = plm_buffer_read_vlc_uint(self->buffer, PLM_VIDEO_DCT_COEFF); if ((coeff == 0x0001) && (n > 0) && (plm_buffer_read(self->buffer, 1) == 0)) { // end_of_block break; } if (coeff == 0xffff) { // escape run = plm_buffer_read(self->buffer, 6); level = plm_buffer_read(self->buffer, 8); if (level == 0) { level = plm_buffer_read(self->buffer, 8); } else if (level == 128) { level = plm_buffer_read(self->buffer, 8) - 256; } else if (level > 128) { level = level - 256; } } else { run = coeff >> 8; level = coeff & 0xff; if (plm_buffer_read(self->buffer, 1)) { level = -level; } } n += run; if (n < 0 || n >= 64) { return; // invalid } int de_zig_zagged = PLM_VIDEO_ZIG_ZAG[n]; n++; // Dequantize, oddify, clip level <<= 1; if (!self->macroblock_intra) { level += (level < 0 ? -1 : 1); } level = (level * self->quantizer_scale * quant_matrix[de_zig_zagged]) >> 4; if ((level & 1) == 0) { level -= level > 0 ? 1 : -1; } if (level > 2047) { level = 2047; } else if (level < -2048) { level = -2048; } // Save premultiplied coefficient self->block_data[de_zig_zagged] = level * PLM_VIDEO_PREMULTIPLIER_MATRIX[de_zig_zagged]; } // Move block to its place uint8_t *d; int dw; int di; if (block < 4) { d = self->frame_current.y.data; dw = self->luma_width; di = (self->mb_row * self->luma_width + self->mb_col) << 4; if ((block & 1) != 0) { di += 8; } if ((block & 2) != 0) { di += self->luma_width << 3; } } else { d = (block == 4) ? self->frame_current.cb.data : self->frame_current.cr.data; dw = self->chroma_width; di = ((self->mb_row * self->luma_width) << 2) + (self->mb_col << 3); } int *s = self->block_data; int si = 0; if (self->macroblock_intra) { // Overwrite (no prediction) if (n == 1) { int clamped = plm_clamp((s[0] + 128) >> 8); PLM_BLOCK_SET(d, di, dw, si, 8, 8, clamped); s[0] = 0; } else { plm_video_idct(s); PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(s[si])); memset(self->block_data, 0, sizeof(self->block_data)); } } else { // Add data to the predicted macroblock if (n == 1) { int value = (s[0] + 128) >> 8; PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(d[di] + value)); s[0] = 0; } else { plm_video_idct(s); PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(d[di] + s[si])); memset(self->block_data, 0, sizeof(self->block_data)); } } } void plm_video_idct(int *block) { int b1, b3, b4, b6, b7, tmp1, tmp2, m0, x0, x1, x2, x3, x4, y3, y4, y5, y6, y7; // Transform columns for (int i = 0; i < 8; ++i) { b1 = block[4 * 8 + i]; b3 = block[2 * 8 + i] + block[6 * 8 + i]; b4 = block[5 * 8 + i] - block[3 * 8 + i]; tmp1 = block[1 * 8 + i] + block[7 * 8 + i]; tmp2 = block[3 * 8 + i] + block[5 * 8 + i]; b6 = block[1 * 8 + i] - block[7 * 8 + i]; b7 = tmp1 + tmp2; m0 = block[0 * 8 + i]; x4 = ((b6 * 473 - b4 * 196 + 128) >> 8) - b7; x0 = x4 - (((tmp1 - tmp2) * 362 + 128) >> 8); x1 = m0 - b1; x2 = (((block[2 * 8 + i] - block[6 * 8 + i]) * 362 + 128) >> 8) - b3; x3 = m0 + b1; y3 = x1 + x2; y4 = x3 + b3; y5 = x1 - x2; y6 = x3 - b3; y7 = -x0 - ((b4 * 473 + b6 * 196 + 128) >> 8); block[0 * 8 + i] = b7 + y4; block[1 * 8 + i] = x4 + y3; block[2 * 8 + i] = y5 - x0; block[3 * 8 + i] = y6 - y7; block[4 * 8 + i] = y6 + y7; block[5 * 8 + i] = x0 + y5; block[6 * 8 + i] = y3 - x4; block[7 * 8 + i] = y4 - b7; } // Transform rows for (int i = 0; i < 64; i += 8) { b1 = block[4 + i]; b3 = block[2 + i] + block[6 + i]; b4 = block[5 + i] - block[3 + i]; tmp1 = block[1 + i] + block[7 + i]; tmp2 = block[3 + i] + block[5 + i]; b6 = block[1 + i] - block[7 + i]; b7 = tmp1 + tmp2; m0 = block[0 + i]; x4 = ((b6 * 473 - b4 * 196 + 128) >> 8) - b7; x0 = x4 - (((tmp1 - tmp2) * 362 + 128) >> 8); x1 = m0 - b1; x2 = (((block[2 + i] - block[6 + i]) * 362 + 128) >> 8) - b3; x3 = m0 + b1; y3 = x1 + x2; y4 = x3 + b3; y5 = x1 - x2; y6 = x3 - b3; y7 = -x0 - ((b4 * 473 + b6 * 196 + 128) >> 8); block[0 + i] = (b7 + y4 + 128) >> 8; block[1 + i] = (x4 + y3 + 128) >> 8; block[2 + i] = (y5 - x0 + 128) >> 8; block[3 + i] = (y6 - y7 + 128) >> 8; block[4 + i] = (y6 + y7 + 128) >> 8; block[5 + i] = (x0 + y5 + 128) >> 8; block[6 + i] = (y3 - x4 + 128) >> 8; block[7 + i] = (y4 - b7 + 128) >> 8; } } // YCbCr conversion following the BT.601 standard: // https://infogalactic.com/info/YCbCr#ITU-R_BT.601_conversion #define PLM_PUT_PIXEL(RI, GI, BI, Y_OFFSET, DEST_OFFSET) \ y = ((frame->y.data[y_index + Y_OFFSET]-16) * 76309) >> 16; \ dest[d_index + DEST_OFFSET + RI] = plm_clamp(y + r); \ dest[d_index + DEST_OFFSET + GI] = plm_clamp(y - g); \ dest[d_index + DEST_OFFSET + BI] = plm_clamp(y + b); #define PLM_DEFINE_FRAME_CONVERT_FUNCTION(NAME, BYTES_PER_PIXEL, RI, GI, BI) \ void NAME(plm_frame_t *frame, uint8_t *dest, int stride) { \ int cols = frame->width >> 1; \ int rows = frame->height >> 1; \ int yw = frame->y.width; \ int cw = frame->cb.width; \ for (int row = 0; row < rows; row++) { \ int c_index = row * cw; \ int y_index = row * 2 * yw; \ int d_index = row * 2 * stride; \ for (int col = 0; col < cols; col++) { \ int y; \ int cr = frame->cr.data[c_index] - 128; \ int cb = frame->cb.data[c_index] - 128; \ int r = (cr * 104597) >> 16; \ int g = (cb * 25674 + cr * 53278) >> 16; \ int b = (cb * 132201) >> 16; \ PLM_PUT_PIXEL(RI, GI, BI, 0, 0); \ PLM_PUT_PIXEL(RI, GI, BI, 1, BYTES_PER_PIXEL); \ PLM_PUT_PIXEL(RI, GI, BI, yw, stride); \ PLM_PUT_PIXEL(RI, GI, BI, yw + 1, stride + BYTES_PER_PIXEL); \ c_index += 1; \ y_index += 2; \ d_index += 2 * BYTES_PER_PIXEL; \ } \ } \ } PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_rgb, 3, 0, 1, 2) PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_bgr, 3, 2, 1, 0) PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_rgba, 4, 0, 1, 2) PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_bgra, 4, 2, 1, 0) PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_argb, 4, 1, 2, 3) PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_abgr, 4, 3, 2, 1) #undef PLM_PUT_PIXEL #undef PLM_DEFINE_FRAME_CONVERT_FUNCTION // ----------------------------------------------------------------------------- // plm_audio implementation // Based on kjmp2 by Martin J. Fiedler // http://keyj.emphy.de/kjmp2/ static const int PLM_AUDIO_FRAME_SYNC = 0x7ff; static const int PLM_AUDIO_MPEG_2_5 = 0x0; static const int PLM_AUDIO_MPEG_2 = 0x2; static const int PLM_AUDIO_MPEG_1 = 0x3; static const int PLM_AUDIO_LAYER_III = 0x1; static const int PLM_AUDIO_LAYER_II = 0x2; static const int PLM_AUDIO_LAYER_I = 0x3; static const int PLM_AUDIO_MODE_STEREO = 0x0; static const int PLM_AUDIO_MODE_JOINT_STEREO = 0x1; static const int PLM_AUDIO_MODE_DUAL_CHANNEL = 0x2; static const int PLM_AUDIO_MODE_MONO = 0x3; static const unsigned short PLM_AUDIO_SAMPLE_RATE[] = { 44100, 48000, 32000, 0, // MPEG-1 22050, 24000, 16000, 0 // MPEG-2 }; static const short PLM_AUDIO_BIT_RATE[] = { 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, // MPEG-1 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160 // MPEG-2 }; static const int PLM_AUDIO_SCALEFACTOR_BASE[] = { 0x02000000, 0x01965FEA, 0x01428A30 }; static const float PLM_AUDIO_SYNTHESIS_WINDOW[] = { 0.0, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -1.0, -1.0, -1.0, -1.0, -1.5, -1.5, -2.0, -2.0, -2.5, -2.5, -3.0, -3.5, -3.5, -4.0, -4.5, -5.0, -5.5, -6.5, -7.0, -8.0, -8.5, -9.5, -10.5, -12.0, -13.0, -14.5, -15.5, -17.5, -19.0, -20.5, -22.5, -24.5, -26.5, -29.0, -31.5, -34.0, -36.5, -39.5, -42.5, -45.5, -48.5, -52.0, -55.5, -58.5, -62.5, -66.0, -69.5, -73.5, -77.0, -80.5, -84.5, -88.0, -91.5, -95.0, -98.0, -101.0, -104.0, 106.5, 109.0, 111.0, 112.5, 113.5, 114.0, 114.0, 113.5, 112.0, 110.5, 107.5, 104.0, 100.0, 94.5, 88.5, 81.5, 73.0, 63.5, 53.0, 41.5, 28.5, 14.5, -1.0, -18.0, -36.0, -55.5, -76.5, -98.5, -122.0, -147.0, -173.5, -200.5, -229.5, -259.5, -290.5, -322.5, -355.5, -389.5, -424.0, -459.5, -495.5, -532.0, -568.5, -605.0, -641.5, -678.0, -714.0, -749.0, -783.5, -817.0, -849.0, -879.5, -908.5, -935.0, -959.5, -981.0, -1000.5, -1016.0, -1028.5, -1037.5, -1042.5, -1043.5, -1040.0, -1031.5, 1018.5, 1000.0, 976.0, 946.5, 911.0, 869.5, 822.0, 767.5, 707.0, 640.0, 565.5, 485.0, 397.0, 302.5, 201.0, 92.5, -22.5, -144.0, -272.5, -407.0, -547.5, -694.0, -846.0, -1003.0, -1165.0, -1331.5, -1502.0, -1675.5, -1852.5, -2031.5, -2212.5, -2394.0, -2576.5, -2758.5, -2939.5, -3118.5, -3294.5, -3467.5, -3635.5, -3798.5, -3955.0, -4104.5, -4245.5, -4377.5, -4499.0, -4609.5, -4708.0, -4792.5, -4863.5, -4919.0, -4958.0, -4979.5, -4983.0, -4967.5, -4931.5, -4875.0, -4796.0, -4694.5, -4569.5, -4420.0, -4246.0, -4046.0, -3820.0, -3567.0, 3287.0, 2979.5, 2644.0, 2280.5, 1888.0, 1467.5, 1018.5, 541.0, 35.0, -499.0, -1061.0, -1650.0, -2266.5, -2909.0, -3577.0, -4270.0, -4987.5, -5727.5, -6490.0, -7274.0, -8077.5, -8899.5, -9739.0, -10594.5, -11464.5, -12347.0, -13241.0, -14144.5, -15056.0, -15973.5, -16895.5, -17820.0, -18744.5, -19668.0, -20588.0, -21503.0, -22410.5, -23308.5, -24195.0, -25068.5, -25926.5, -26767.0, -27589.0, -28389.0, -29166.5, -29919.0, -30644.5, -31342.0, -32009.5, -32645.0, -33247.0, -33814.5, -34346.0, -34839.5, -35295.0, -35710.0, -36084.5, -36417.5, -36707.5, -36954.0, -37156.5, -37315.0, -37428.0, -37496.0, 37519.0, 37496.0, 37428.0, 37315.0, 37156.5, 36954.0, 36707.5, 36417.5, 36084.5, 35710.0, 35295.0, 34839.5, 34346.0, 33814.5, 33247.0, 32645.0, 32009.5, 31342.0, 30644.5, 29919.0, 29166.5, 28389.0, 27589.0, 26767.0, 25926.5, 25068.5, 24195.0, 23308.5, 22410.5, 21503.0, 20588.0, 19668.0, 18744.5, 17820.0, 16895.5, 15973.5, 15056.0, 14144.5, 13241.0, 12347.0, 11464.5, 10594.5, 9739.0, 8899.5, 8077.5, 7274.0, 6490.0, 5727.5, 4987.5, 4270.0, 3577.0, 2909.0, 2266.5, 1650.0, 1061.0, 499.0, -35.0, -541.0, -1018.5, -1467.5, -1888.0, -2280.5, -2644.0, -2979.5, 3287.0, 3567.0, 3820.0, 4046.0, 4246.0, 4420.0, 4569.5, 4694.5, 4796.0, 4875.0, 4931.5, 4967.5, 4983.0, 4979.5, 4958.0, 4919.0, 4863.5, 4792.5, 4708.0, 4609.5, 4499.0, 4377.5, 4245.5, 4104.5, 3955.0, 3798.5, 3635.5, 3467.5, 3294.5, 3118.5, 2939.5, 2758.5, 2576.5, 2394.0, 2212.5, 2031.5, 1852.5, 1675.5, 1502.0, 1331.5, 1165.0, 1003.0, 846.0, 694.0, 547.5, 407.0, 272.5, 144.0, 22.5, -92.5, -201.0, -302.5, -397.0, -485.0, -565.5, -640.0, -707.0, -767.5, -822.0, -869.5, -911.0, -946.5, -976.0, -1000.0, 1018.5, 1031.5, 1040.0, 1043.5, 1042.5, 1037.5, 1028.5, 1016.0, 1000.5, 981.0, 959.5, 935.0, 908.5, 879.5, 849.0, 817.0, 783.5, 749.0, 714.0, 678.0, 641.5, 605.0, 568.5, 532.0, 495.5, 459.5, 424.0, 389.5, 355.5, 322.5, 290.5, 259.5, 229.5, 200.5, 173.5, 147.0, 122.0, 98.5, 76.5, 55.5, 36.0, 18.0, 1.0, -14.5, -28.5, -41.5, -53.0, -63.5, -73.0, -81.5, -88.5, -94.5, -100.0, -104.0, -107.5, -110.5, -112.0, -113.5, -114.0, -114.0, -113.5, -112.5, -111.0, -109.0, 106.5, 104.0, 101.0, 98.0, 95.0, 91.5, 88.0, 84.5, 80.5, 77.0, 73.5, 69.5, 66.0, 62.5, 58.5, 55.5, 52.0, 48.5, 45.5, 42.5, 39.5, 36.5, 34.0, 31.5, 29.0, 26.5, 24.5, 22.5, 20.5, 19.0, 17.5, 15.5, 14.5, 13.0, 12.0, 10.5, 9.5, 8.5, 8.0, 7.0, 6.5, 5.5, 5.0, 4.5, 4.0, 3.5, 3.5, 3.0, 2.5, 2.5, 2.0, 2.0, 1.5, 1.5, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 }; // Quantizer lookup, step 1: bitrate classes static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_1[2][16] = { // 32, 48, 56, 64, 80, 96,112,128,160,192,224,256,320,384 <- bitrate { 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, // mono // 16, 24, 28, 32, 40, 48, 56, 64, 80, 96,112,128,160,192 <- bitrate / chan { 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2 } // stereo }; // Quantizer lookup, step 2: bitrate class, sample rate -> B2 table idx, sblimit enum { PLM_AUDIO_QUANT_TAB_A = (27 | 64) }; // Table 3-B.2a: high-rate, sblimit = 27 enum { PLM_AUDIO_QUANT_TAB_B = (30 | 64) }; // Table 3-B.2b: high-rate, sblimit = 30 enum { PLM_AUDIO_QUANT_TAB_C = 8 }; // Table 3-B.2c: low-rate, sblimit = 8 enum { PLM_AUDIO_QUANT_TAB_D = 12 }; // Table 3-B.2d: low-rate, sblimit = 12 static const uint8_t QUANT_LUT_STEP_2[3][3] = { //44.1 kHz, 48 kHz, 32 kHz { PLM_AUDIO_QUANT_TAB_C, PLM_AUDIO_QUANT_TAB_C, PLM_AUDIO_QUANT_TAB_D }, // 32 - 48 kbit/sec/ch { PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_A }, // 56 - 80 kbit/sec/ch { PLM_AUDIO_QUANT_TAB_B, PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_B } // 96+ kbit/sec/ch }; // Quantizer lookup, step 3: B2 table, subband -> nbal, row index // (upper 4 bits: nbal, lower 4 bits: row index) static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_3[3][32] = { // Low-rate table (3-B.2c and 3-B.2d) { 0x44,0x44, 0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34 }, // High-rate table (3-B.2a and 3-B.2b) { 0x43,0x43,0x43, 0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x42, 0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31, 0x20,0x20,0x20,0x20,0x20,0x20,0x20 }, // MPEG-2 LSR table (B.2 in ISO 13818-3) { 0x45,0x45,0x45,0x45, 0x34,0x34,0x34,0x34,0x34,0x34,0x34, 0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24, 0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24 } }; // Quantizer lookup, step 4: table row, allocation[] value -> quant table index static const uint8_t PLM_AUDIO_QUANT_LUT_STEP4[6][16] = { { 0, 1, 2, 17 }, { 0, 1, 2, 3, 4, 5, 6, 17 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17 }, { 0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 }, { 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } }; typedef struct plm_quantizer_spec_t { unsigned short levels; unsigned char group; unsigned char bits; } plm_quantizer_spec_t; static const plm_quantizer_spec_t PLM_AUDIO_QUANT_TAB[] = { { 3, 1, 5 }, // 1 { 5, 1, 7 }, // 2 { 7, 0, 3 }, // 3 { 9, 1, 10 }, // 4 { 15, 0, 4 }, // 5 { 31, 0, 5 }, // 6 { 63, 0, 6 }, // 7 { 127, 0, 7 }, // 8 { 255, 0, 8 }, // 9 { 511, 0, 9 }, // 10 { 1023, 0, 10 }, // 11 { 2047, 0, 11 }, // 12 { 4095, 0, 12 }, // 13 { 8191, 0, 13 }, // 14 { 16383, 0, 14 }, // 15 { 32767, 0, 15 }, // 16 { 65535, 0, 16 } // 17 }; typedef struct plm_audio_t { double time; int samples_decoded; int samplerate_index; int bitrate_index; int version; int layer; int mode; int bound; int v_pos; int next_frame_data_size; int has_header; plm_buffer_t *buffer; int destroy_buffer_when_done; const plm_quantizer_spec_t *allocation[2][32]; uint8_t scale_factor_info[2][32]; int scale_factor[2][32][3]; int sample[2][32][3]; plm_samples_t samples; float D[1024]; float V[2][1024]; float U[32]; } plm_audio_t; int plm_audio_find_frame_sync(plm_audio_t *self); int plm_audio_decode_header(plm_audio_t *self); void plm_audio_decode_frame(plm_audio_t *self); const plm_quantizer_spec_t *plm_audio_read_allocation(plm_audio_t *self, int sb, int tab3); void plm_audio_read_samples(plm_audio_t *self, int ch, int sb, int part); void plm_audio_matrix_transform(int s[32][3], int ss, float *d, int dp); plm_audio_t *plm_audio_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) { plm_audio_t *self = (plm_audio_t *)malloc(sizeof(plm_audio_t)); memset(self, 0, sizeof(plm_audio_t)); self->samples.count = PLM_AUDIO_SAMPLES_PER_FRAME; self->buffer = buffer; self->destroy_buffer_when_done = destroy_when_done; self->samplerate_index = 3; // Indicates 0 memcpy(self->D, PLM_AUDIO_SYNTHESIS_WINDOW, 512 * sizeof(float)); memcpy(self->D + 512, PLM_AUDIO_SYNTHESIS_WINDOW, 512 * sizeof(float)); // Attempt to decode first header self->next_frame_data_size = plm_audio_decode_header(self); return self; } void plm_audio_destroy(plm_audio_t *self) { if (self->destroy_buffer_when_done) { plm_buffer_destroy(self->buffer); } free(self); } int plm_audio_has_header(plm_audio_t *self) { if (self->has_header) { return TRUE; } self->next_frame_data_size = plm_audio_decode_header(self); return self->has_header; } int plm_audio_get_samplerate(plm_audio_t *self) { return plm_audio_has_header(self) ? PLM_AUDIO_SAMPLE_RATE[self->samplerate_index] : 0; } double plm_audio_get_time(plm_audio_t *self) { return self->time; } void plm_audio_set_time(plm_audio_t *self, double time) { self->samples_decoded = time * (double)PLM_AUDIO_SAMPLE_RATE[self->samplerate_index]; self->time = time; } void plm_audio_rewind(plm_audio_t *self) { plm_buffer_rewind(self->buffer); self->time = 0; self->samples_decoded = 0; self->next_frame_data_size = 0; } int plm_audio_has_ended(plm_audio_t *self) { return plm_buffer_has_ended(self->buffer); } plm_samples_t *plm_audio_decode(plm_audio_t *self) { // Do we have at least enough information to decode the frame header? if (!self->next_frame_data_size) { if (!plm_buffer_has(self->buffer, 48)) { return NULL; } self->next_frame_data_size = plm_audio_decode_header(self); } if ( self->next_frame_data_size == 0 || !plm_buffer_has(self->buffer, self->next_frame_data_size << 3) ) { return NULL; } plm_audio_decode_frame(self); self->next_frame_data_size = 0; self->samples.time = self->time; self->samples_decoded += PLM_AUDIO_SAMPLES_PER_FRAME; self->time = (double)self->samples_decoded / (double)PLM_AUDIO_SAMPLE_RATE[self->samplerate_index]; return &self->samples; } int plm_audio_find_frame_sync(plm_audio_t *self) { size_t i; for (i = self->buffer->bit_index >> 3; i < self->buffer->length-1; i++) { if ( self->buffer->bytes[i] == 0xFF && (self->buffer->bytes[i+1] & 0xFE) == 0xFC ) { self->buffer->bit_index = ((i+1) << 3) + 3; return TRUE; } } self->buffer->bit_index = (i + 1) << 3; return FALSE; } int plm_audio_decode_header(plm_audio_t *self) { if (!plm_buffer_has(self->buffer, 48)) { return 0; } plm_buffer_skip_bytes(self->buffer, 0x00); int sync = plm_buffer_read(self->buffer, 11); // Attempt to resync if no syncword was found. This sucks balls. The MP2 // stream contains a syncword just before every frame (11 bits set to 1). // However, this syncword is not guaranteed to not occur elswhere in the // stream. So, if we have to resync, we also have to check if the header // (samplerate, bitrate) differs from the one we had before. This all // may still lead to garbage data being decoded :/ if (sync != PLM_AUDIO_FRAME_SYNC && !plm_audio_find_frame_sync(self)) { return 0; } self->version = plm_buffer_read(self->buffer, 2); self->layer = plm_buffer_read(self->buffer, 2); int hasCRC = !plm_buffer_read(self->buffer, 1); if ( self->version != PLM_AUDIO_MPEG_1 || self->layer != PLM_AUDIO_LAYER_II ) { return 0; } int bitrate_index = plm_buffer_read(self->buffer, 4) - 1; if (bitrate_index > 13) { return 0; } int samplerate_index = plm_buffer_read(self->buffer, 2); if (samplerate_index == 3) { return 0; } int padding = plm_buffer_read(self->buffer, 1); plm_buffer_skip(self->buffer, 1); // f_private int mode = plm_buffer_read(self->buffer, 2); // If we already have a header, make sure the samplerate, bitrate and mode // are still the same, otherwise we might have missed sync. if ( self->has_header && ( self->bitrate_index != bitrate_index || self->samplerate_index != samplerate_index || self->mode != mode ) ) { return 0; } self->bitrate_index = bitrate_index; self->samplerate_index = samplerate_index; self->mode = mode; self->has_header = TRUE; // Parse the mode_extension, set up the stereo bound if (mode == PLM_AUDIO_MODE_JOINT_STEREO) { self->bound = (plm_buffer_read(self->buffer, 2) + 1) << 2; } else { plm_buffer_skip(self->buffer, 2); self->bound = (mode == PLM_AUDIO_MODE_MONO) ? 0 : 32; } // Discard the last 4 bits of the header and the CRC value, if present plm_buffer_skip(self->buffer, 4); if (hasCRC) { plm_buffer_skip(self->buffer, 16); } // Compute frame size, check if we have enough data to decode the whole // frame. int bitrate = PLM_AUDIO_BIT_RATE[self->bitrate_index]; int samplerate = PLM_AUDIO_SAMPLE_RATE[self->samplerate_index]; int frame_size = (144000 * bitrate / samplerate) + padding; return frame_size - (hasCRC ? 6 : 4); } void plm_audio_decode_frame(plm_audio_t *self) { // Prepare the quantizer table lookups int tab3 = 0; int sblimit = 0; int tab1 = (self->mode == PLM_AUDIO_MODE_MONO) ? 0 : 1; int tab2 = PLM_AUDIO_QUANT_LUT_STEP_1[tab1][self->bitrate_index]; tab3 = QUANT_LUT_STEP_2[tab2][self->samplerate_index]; sblimit = tab3 & 63; tab3 >>= 6; if (self->bound > sblimit) { self->bound = sblimit; } // Read the allocation information for (int sb = 0; sb < self->bound; sb++) { self->allocation[0][sb] = plm_audio_read_allocation(self, sb, tab3); self->allocation[1][sb] = plm_audio_read_allocation(self, sb, tab3); } for (int sb = self->bound; sb < sblimit; sb++) { self->allocation[0][sb] = self->allocation[1][sb] = plm_audio_read_allocation(self, sb, tab3); } // Read scale factor selector information int channels = (self->mode == PLM_AUDIO_MODE_MONO) ? 1 : 2; for (int sb = 0; sb < sblimit; sb++) { for (int ch = 0; ch < channels; ch++) { if (self->allocation[ch][sb]) { self->scale_factor_info[ch][sb] = plm_buffer_read(self->buffer, 2); } } if (self->mode == PLM_AUDIO_MODE_MONO) { self->scale_factor_info[1][sb] = self->scale_factor_info[0][sb]; } } // Read scale factors for (int sb = 0; sb < sblimit; sb++) { for (int ch = 0; ch < channels; ch++) { if (self->allocation[ch][sb]) { int *sf = self->scale_factor[ch][sb]; switch (self->scale_factor_info[ch][sb]) { case 0: sf[0] = plm_buffer_read(self->buffer, 6); sf[1] = plm_buffer_read(self->buffer, 6); sf[2] = plm_buffer_read(self->buffer, 6); break; case 1: sf[0] = sf[1] = plm_buffer_read(self->buffer, 6); sf[2] = plm_buffer_read(self->buffer, 6); break; case 2: sf[0] = sf[1] = sf[2] = plm_buffer_read(self->buffer, 6); break; case 3: sf[0] = plm_buffer_read(self->buffer, 6); sf[1] = sf[2] = plm_buffer_read(self->buffer, 6); break; } } } if (self->mode == PLM_AUDIO_MODE_MONO) { self->scale_factor[1][sb][0] = self->scale_factor[0][sb][0]; self->scale_factor[1][sb][1] = self->scale_factor[0][sb][1]; self->scale_factor[1][sb][2] = self->scale_factor[0][sb][2]; } } // Coefficient input and reconstruction int out_pos = 0; for (int part = 0; part < 3; part++) { for (int granule = 0; granule < 4; granule++) { // Read the samples for (int sb = 0; sb < self->bound; sb++) { plm_audio_read_samples(self, 0, sb, part); plm_audio_read_samples(self, 1, sb, part); } for (int sb = self->bound; sb < sblimit; sb++) { plm_audio_read_samples(self, 0, sb, part); self->sample[1][sb][0] = self->sample[0][sb][0]; self->sample[1][sb][1] = self->sample[0][sb][1]; self->sample[1][sb][2] = self->sample[0][sb][2]; } for (int sb = sblimit; sb < 32; sb++) { self->sample[0][sb][0] = 0; self->sample[0][sb][1] = 0; self->sample[0][sb][2] = 0; self->sample[1][sb][0] = 0; self->sample[1][sb][1] = 0; self->sample[1][sb][2] = 0; } // Synthesis loop for (int p = 0; p < 3; p++) { // Shifting step self->v_pos = (self->v_pos - 64) & 1023; for (int ch = 0; ch < 2; ch++) { plm_audio_matrix_transform(self->sample[ch], p, self->V[ch], self->v_pos); // Build U, windowing, calculate output memset(self->U, 0, sizeof(self->U)); int d_index = 512 - (self->v_pos >> 1); int v_index = (self->v_pos % 128) >> 1; while (v_index < 1024) { for (int i = 0; i < 32; ++i) { self->U[i] += self->D[d_index++] * self->V[ch][v_index++]; } v_index += 128 - 32; d_index += 64 - 32; } d_index -= (512 - 32); v_index = (128 - 32 + 1024) - v_index; while (v_index < 1024) { for (int i = 0; i < 32; ++i) { self->U[i] += self->D[d_index++] * self->V[ch][v_index++]; } v_index += 128 - 32; d_index += 64 - 32; } // Output samples #ifdef PLM_AUDIO_SEPARATE_CHANNELS float *out_channel = ch == 0 ? self->samples.left : self->samples.right; for (int j = 0; j < 32; j++) { out_channel[out_pos + j] = self->U[j] / 2147418112.0f; } #else for (int j = 0; j < 32; j++) { self->samples.interleaved[((out_pos + j) << 1) + ch] = self->U[j] / 2147418112.0f; } #endif } // End of synthesis channel loop out_pos += 32; } // End of synthesis sub-block loop } // Decoding of the granule finished } plm_buffer_align(self->buffer); } const plm_quantizer_spec_t *plm_audio_read_allocation(plm_audio_t *self, int sb, int tab3) { int tab4 = PLM_AUDIO_QUANT_LUT_STEP_3[tab3][sb]; int qtab = PLM_AUDIO_QUANT_LUT_STEP4[tab4 & 15][plm_buffer_read(self->buffer, tab4 >> 4)]; return qtab ? (&PLM_AUDIO_QUANT_TAB[qtab - 1]) : 0; } void plm_audio_read_samples(plm_audio_t *self, int ch, int sb, int part) { const plm_quantizer_spec_t *q = self->allocation[ch][sb]; int sf = self->scale_factor[ch][sb][part]; int *sample = self->sample[ch][sb]; int val = 0; if (!q) { // No bits allocated for this subband sample[0] = sample[1] = sample[2] = 0; return; } // Resolve scalefactor if (sf == 63) { sf = 0; } else { int shift = (sf / 3) | 0; sf = (PLM_AUDIO_SCALEFACTOR_BASE[sf % 3] + ((1 << shift) >> 1)) >> shift; } // Decode samples int adj = q->levels; if (q->group) { // Decode grouped samples val = plm_buffer_read(self->buffer, q->bits); sample[0] = val % adj; val /= adj; sample[1] = val % adj; sample[2] = val / adj; } else { // Decode direct samples sample[0] = plm_buffer_read(self->buffer, q->bits); sample[1] = plm_buffer_read(self->buffer, q->bits); sample[2] = plm_buffer_read(self->buffer, q->bits); } // Postmultiply samples int scale = 65536 / (adj + 1); adj = ((adj + 1) >> 1) - 1; val = (adj - sample[0]) * scale; sample[0] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12; val = (adj - sample[1]) * scale; sample[1] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12; val = (adj - sample[2]) * scale; sample[2] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12; } void plm_audio_matrix_transform(int s[32][3], int ss, float *d, int dp) { float t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26, t27, t28, t29, t30, t31, t32, t33; t01 = (float)(s[0][ss] + s[31][ss]); t02 = (float)(s[0][ss] - s[31][ss]) * 0.500602998235f; t03 = (float)(s[1][ss] + s[30][ss]); t04 = (float)(s[1][ss] - s[30][ss]) * 0.505470959898f; t05 = (float)(s[2][ss] + s[29][ss]); t06 = (float)(s[2][ss] - s[29][ss]) * 0.515447309923f; t07 = (float)(s[3][ss] + s[28][ss]); t08 = (float)(s[3][ss] - s[28][ss]) * 0.53104259109f; t09 = (float)(s[4][ss] + s[27][ss]); t10 = (float)(s[4][ss] - s[27][ss]) * 0.553103896034f; t11 = (float)(s[5][ss] + s[26][ss]); t12 = (float)(s[5][ss] - s[26][ss]) * 0.582934968206f; t13 = (float)(s[6][ss] + s[25][ss]); t14 = (float)(s[6][ss] - s[25][ss]) * 0.622504123036f; t15 = (float)(s[7][ss] + s[24][ss]); t16 = (float)(s[7][ss] - s[24][ss]) * 0.674808341455f; t17 = (float)(s[8][ss] + s[23][ss]); t18 = (float)(s[8][ss] - s[23][ss]) * 0.744536271002f; t19 = (float)(s[9][ss] + s[22][ss]); t20 = (float)(s[9][ss] - s[22][ss]) * 0.839349645416f; t21 = (float)(s[10][ss] + s[21][ss]); t22 = (float)(s[10][ss] - s[21][ss]) * 0.972568237862f; t23 = (float)(s[11][ss] + s[20][ss]); t24 = (float)(s[11][ss] - s[20][ss]) * 1.16943993343f; t25 = (float)(s[12][ss] + s[19][ss]); t26 = (float)(s[12][ss] - s[19][ss]) * 1.48416461631f; t27 = (float)(s[13][ss] + s[18][ss]); t28 = (float)(s[13][ss] - s[18][ss]) * 2.05778100995f; t29 = (float)(s[14][ss] + s[17][ss]); t30 = (float)(s[14][ss] - s[17][ss]) * 3.40760841847f; t31 = (float)(s[15][ss] + s[16][ss]); t32 = (float)(s[15][ss] - s[16][ss]) * 10.1900081235f; t33 = t01 + t31; t31 = (t01 - t31) * 0.502419286188f; t01 = t03 + t29; t29 = (t03 - t29) * 0.52249861494f; t03 = t05 + t27; t27 = (t05 - t27) * 0.566944034816f; t05 = t07 + t25; t25 = (t07 - t25) * 0.64682178336f; t07 = t09 + t23; t23 = (t09 - t23) * 0.788154623451f; t09 = t11 + t21; t21 = (t11 - t21) * 1.06067768599f; t11 = t13 + t19; t19 = (t13 - t19) * 1.72244709824f; t13 = t15 + t17; t17 = (t15 - t17) * 5.10114861869f; t15 = t33 + t13; t13 = (t33 - t13) * 0.509795579104f; t33 = t01 + t11; t01 = (t01 - t11) * 0.601344886935f; t11 = t03 + t09; t09 = (t03 - t09) * 0.899976223136f; t03 = t05 + t07; t07 = (t05 - t07) * 2.56291544774f; t05 = t15 + t03; t15 = (t15 - t03) * 0.541196100146f; t03 = t33 + t11; t11 = (t33 - t11) * 1.30656296488f; t33 = t05 + t03; t05 = (t05 - t03) * 0.707106781187f; t03 = t15 + t11; t15 = (t15 - t11) * 0.707106781187f; t03 += t15; t11 = t13 + t07; t13 = (t13 - t07) * 0.541196100146f; t07 = t01 + t09; t09 = (t01 - t09) * 1.30656296488f; t01 = t11 + t07; t07 = (t11 - t07) * 0.707106781187f; t11 = t13 + t09; t13 = (t13 - t09) * 0.707106781187f; t11 += t13; t01 += t11; t11 += t07; t07 += t13; t09 = t31 + t17; t31 = (t31 - t17) * 0.509795579104f; t17 = t29 + t19; t29 = (t29 - t19) * 0.601344886935f; t19 = t27 + t21; t21 = (t27 - t21) * 0.899976223136f; t27 = t25 + t23; t23 = (t25 - t23) * 2.56291544774f; t25 = t09 + t27; t09 = (t09 - t27) * 0.541196100146f; t27 = t17 + t19; t19 = (t17 - t19) * 1.30656296488f; t17 = t25 + t27; t27 = (t25 - t27) * 0.707106781187f; t25 = t09 + t19; t19 = (t09 - t19) * 0.707106781187f; t25 += t19; t09 = t31 + t23; t31 = (t31 - t23) * 0.541196100146f; t23 = t29 + t21; t21 = (t29 - t21) * 1.30656296488f; t29 = t09 + t23; t23 = (t09 - t23) * 0.707106781187f; t09 = t31 + t21; t31 = (t31 - t21) * 0.707106781187f; t09 += t31; t29 += t09; t09 += t23; t23 += t31; t17 += t29; t29 += t25; t25 += t09; t09 += t27; t27 += t23; t23 += t19; t19 += t31; t21 = t02 + t32; t02 = (t02 - t32) * 0.502419286188f; t32 = t04 + t30; t04 = (t04 - t30) * 0.52249861494f; t30 = t06 + t28; t28 = (t06 - t28) * 0.566944034816f; t06 = t08 + t26; t08 = (t08 - t26) * 0.64682178336f; t26 = t10 + t24; t10 = (t10 - t24) * 0.788154623451f; t24 = t12 + t22; t22 = (t12 - t22) * 1.06067768599f; t12 = t14 + t20; t20 = (t14 - t20) * 1.72244709824f; t14 = t16 + t18; t16 = (t16 - t18) * 5.10114861869f; t18 = t21 + t14; t14 = (t21 - t14) * 0.509795579104f; t21 = t32 + t12; t32 = (t32 - t12) * 0.601344886935f; t12 = t30 + t24; t24 = (t30 - t24) * 0.899976223136f; t30 = t06 + t26; t26 = (t06 - t26) * 2.56291544774f; t06 = t18 + t30; t18 = (t18 - t30) * 0.541196100146f; t30 = t21 + t12; t12 = (t21 - t12) * 1.30656296488f; t21 = t06 + t30; t30 = (t06 - t30) * 0.707106781187f; t06 = t18 + t12; t12 = (t18 - t12) * 0.707106781187f; t06 += t12; t18 = t14 + t26; t26 = (t14 - t26) * 0.541196100146f; t14 = t32 + t24; t24 = (t32 - t24) * 1.30656296488f; t32 = t18 + t14; t14 = (t18 - t14) * 0.707106781187f; t18 = t26 + t24; t24 = (t26 - t24) * 0.707106781187f; t18 += t24; t32 += t18; t18 += t14; t26 = t14 + t24; t14 = t02 + t16; t02 = (t02 - t16) * 0.509795579104f; t16 = t04 + t20; t04 = (t04 - t20) * 0.601344886935f; t20 = t28 + t22; t22 = (t28 - t22) * 0.899976223136f; t28 = t08 + t10; t10 = (t08 - t10) * 2.56291544774f; t08 = t14 + t28; t14 = (t14 - t28) * 0.541196100146f; t28 = t16 + t20; t20 = (t16 - t20) * 1.30656296488f; t16 = t08 + t28; t28 = (t08 - t28) * 0.707106781187f; t08 = t14 + t20; t20 = (t14 - t20) * 0.707106781187f; t08 += t20; t14 = t02 + t10; t02 = (t02 - t10) * 0.541196100146f; t10 = t04 + t22; t22 = (t04 - t22) * 1.30656296488f; t04 = t14 + t10; t10 = (t14 - t10) * 0.707106781187f; t14 = t02 + t22; t02 = (t02 - t22) * 0.707106781187f; t14 += t02; t04 += t14; t14 += t10; t10 += t02; t16 += t04; t04 += t08; t08 += t14; t14 += t28; t28 += t10; t10 += t20; t20 += t02; t21 += t16; t16 += t32; t32 += t04; t04 += t06; t06 += t08; t08 += t18; t18 += t14; t14 += t30; t30 += t28; t28 += t26; t26 += t10; t10 += t12; t12 += t20; t20 += t24; t24 += t02; d[dp + 48] = -t33; d[dp + 49] = d[dp + 47] = -t21; d[dp + 50] = d[dp + 46] = -t17; d[dp + 51] = d[dp + 45] = -t16; d[dp + 52] = d[dp + 44] = -t01; d[dp + 53] = d[dp + 43] = -t32; d[dp + 54] = d[dp + 42] = -t29; d[dp + 55] = d[dp + 41] = -t04; d[dp + 56] = d[dp + 40] = -t03; d[dp + 57] = d[dp + 39] = -t06; d[dp + 58] = d[dp + 38] = -t25; d[dp + 59] = d[dp + 37] = -t08; d[dp + 60] = d[dp + 36] = -t11; d[dp + 61] = d[dp + 35] = -t18; d[dp + 62] = d[dp + 34] = -t09; d[dp + 63] = d[dp + 33] = -t14; d[dp + 32] = -t05; d[dp + 0] = t05; d[dp + 31] = -t30; d[dp + 1] = t30; d[dp + 30] = -t27; d[dp + 2] = t27; d[dp + 29] = -t28; d[dp + 3] = t28; d[dp + 28] = -t07; d[dp + 4] = t07; d[dp + 27] = -t26; d[dp + 5] = t26; d[dp + 26] = -t23; d[dp + 6] = t23; d[dp + 25] = -t10; d[dp + 7] = t10; d[dp + 24] = -t15; d[dp + 8] = t15; d[dp + 23] = -t12; d[dp + 9] = t12; d[dp + 22] = -t19; d[dp + 10] = t19; d[dp + 21] = -t20; d[dp + 11] = t20; d[dp + 20] = -t13; d[dp + 12] = t13; d[dp + 19] = -t24; d[dp + 13] = t24; d[dp + 18] = -t31; d[dp + 14] = t31; d[dp + 17] = -t02; d[dp + 15] = t02; d[dp + 16] = 0.0; } #endif // PL_MPEG_IMPLEMENTATION #line 0 #line 1 "3rd_jo_mpeg.h" /* public domain Simple, Minimalistic, No Allocations MPEG writer - http://jonolick.com * * Latest revisions: * 1.02c rgbx -> bgrx channel swap && vertical image flip && userdef components (@r-lyeh) * 1.02 (22-03-2017) Fixed AC encoding bug. * Fixed color space bug (thx r- lyeh!) * 1.01 (18-10-2016) warning fixes * 1.00 (25-09-2016) initial release * * Basic usage: * char *frame = new char[width*height*4]; // 4 component. bgrx format, where X is unused * FILE *fp = fopen("foo.mpg", "wb"); * jo_write_mpeg(fp, frame, width, height, 60); // frame 0 * jo_write_mpeg(fp, frame, width, height, 60); // frame 1 * jo_write_mpeg(fp, frame, width, height, 60); // frame 2 * ... * fclose(fp); * * Notes: * Only supports 24, 25, 30, 50, or 60 fps * * I don't know if decoders support changing of fps, or dimensions for each frame. * Movie players *should* support it as the spec allows it, but ... * * MPEG-1/2 currently has no active patents as far as I am aware. * * http://dvd.sourceforge.net/dvdinfo/mpeghdrs.html * http://www.cs.cornell.edu/dali/api/mpegvideo-c.html * */ #ifndef JO_INCLUDE_MPEG_H #define JO_INCLUDE_MPEG_H #include // To get a header file for this, either cut and paste the header, // or create jo_mpeg.h, #define JO_MPEG_HEADER_FILE_ONLY, and // then include jo_mpeg.c from it. // Returns false on failure extern void jo_write_mpeg(FILE *fp, const unsigned char *bgrx, int width, int height, int fps); #endif // JO_INCLUDE_MPEG_H #ifndef JO_MPEG_HEADER_FILE_ONLY #ifndef JO_MPEG_COMPONENTS #define JO_MPEG_COMPONENTS 4 #endif #include #include #include // Huffman tables static const unsigned char s_jo_HTDC_Y[9][2] = {{4,3}, {0,2}, {1,2}, {5,3}, {6,3}, {14,4}, {30,5}, {62,6}, {126,7}}; static const unsigned char s_jo_HTDC_C[9][2] = {{0,2}, {1,2}, {2,2}, {6,3}, {14,4}, {30,5}, {62,6}, {126,7}, {254,8}}; static const unsigned char s_jo_HTAC[32][40][2] = { {{6,3},{8,5},{10,6},{12,8},{76,9},{66,9},{20,11},{58,13},{48,13},{38,13},{32,13},{52,14},{50,14},{48,14},{46,14},{62,15},{62,15},{58,15},{56,15},{54,15},{52,15},{50,15},{48,15},{46,15},{44,15},{42,15},{40,15},{38,15},{36,15},{34,15},{32,15},{48,16},{46,16},{44,16},{42,16},{40,16},{38,16},{36,16},{34,16},{32,16},}, {{6,4},{12,7},{74,9},{24,11},{54,13},{44,14},{42,14},{62,16},{60,16},{58,16},{56,16},{54,16},{52,16},{50,16},{38,17},{36,17},{34,17},{32,17}}, {{10,5},{8,8},{22,11},{40,13},{40,14}}, {{14,6},{72,9},{56,13},{38,14}}, {{12,6},{30,11},{36,13}}, {{14,7},{18,11},{36,14}}, {{10,7},{60,13},{40,17}}, {{8,7},{42,13}}, {{14,8},{34,13}}, {{10,8},{34,14}}, {{78,9},{32,14}}, {{70,9},{52,17}}, {{68,9},{50,17}}, {{64,9},{48,17}}, {{28,11},{46,17}}, {{26,11},{44,17}}, {{16,11},{42,17}}, {{62,13}}, {{52,13}}, {{50,13}}, {{46,13}}, {{44,13}}, {{62,14}}, {{60,14}}, {{58,14}}, {{56,14}}, {{54,14}}, {{62,17}}, {{60,17}}, {{58,17}}, {{56,17}}, {{54,17}}, }; static const float s_jo_quantTbl[64] = { 0.015625f,0.005632f,0.005035f,0.004832f,0.004808f,0.005892f,0.007964f,0.013325f, 0.005632f,0.004061f,0.003135f,0.003193f,0.003338f,0.003955f,0.004898f,0.008828f, 0.005035f,0.003135f,0.002816f,0.003013f,0.003299f,0.003581f,0.005199f,0.009125f, 0.004832f,0.003484f,0.003129f,0.003348f,0.003666f,0.003979f,0.005309f,0.009632f, 0.005682f,0.003466f,0.003543f,0.003666f,0.003906f,0.004546f,0.005774f,0.009439f, 0.006119f,0.004248f,0.004199f,0.004228f,0.004546f,0.005062f,0.006124f,0.009942f, 0.008883f,0.006167f,0.006096f,0.005777f,0.006078f,0.006391f,0.007621f,0.012133f, 0.016780f,0.011263f,0.009907f,0.010139f,0.009849f,0.010297f,0.012133f,0.019785f, }; static const unsigned char s_jo_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18,24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 }; typedef struct { FILE *fp; int buf, cnt; } jo_bits_t; static void jo_writeBits(jo_bits_t *b, int value, int count) { b->cnt += count; b->buf |= value << (24 - b->cnt); while(b->cnt >= 8) { unsigned char c = (b->buf >> 16) & 255; putc(c, b->fp); b->buf <<= 8; b->cnt -= 8; } } static void jo_DCT(float *d0, float *d1, float *d2, float *d3, float *d4, float *d5, float *d6, float *d7) { float tmp0 = *d0 + *d7; float tmp7 = *d0 - *d7; float tmp1 = *d1 + *d6; float tmp6 = *d1 - *d6; float tmp2 = *d2 + *d5; float tmp5 = *d2 - *d5; float tmp3 = *d3 + *d4; float tmp4 = *d3 - *d4; // Even part float tmp10 = tmp0 + tmp3; // phase 2 float tmp13 = tmp0 - tmp3; float tmp11 = tmp1 + tmp2; float tmp12 = tmp1 - tmp2; *d0 = tmp10 + tmp11; // phase 3 *d4 = tmp10 - tmp11; float z1 = (tmp12 + tmp13) * 0.707106781f; // c4 *d2 = tmp13 + z1; // phase 5 *d6 = tmp13 - z1; // Odd part tmp10 = tmp4 + tmp5; // phase 2 tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; // The rotator is modified from fig 4-8 to avoid extra negations. float z5 = (tmp10 - tmp12) * 0.382683433f; // c6 float z2 = tmp10 * 0.541196100f + z5; // c2-c6 float z4 = tmp12 * 1.306562965f + z5; // c2+c6 float z3 = tmp11 * 0.707106781f; // c4 float z11 = tmp7 + z3; // phase 5 float z13 = tmp7 - z3; *d5 = z13 + z2; // phase 6 *d3 = z13 - z2; *d1 = z11 + z4; *d7 = z11 - z4; } static int jo_processDU(jo_bits_t *bits, float A[64], const unsigned char htdc[9][2], int DC) { for(int dataOff=0; dataOff<64; dataOff+=8) { jo_DCT(&A[dataOff], &A[dataOff+1], &A[dataOff+2], &A[dataOff+3], &A[dataOff+4], &A[dataOff+5], &A[dataOff+6], &A[dataOff+7]); } for(int dataOff=0; dataOff<8; ++dataOff) { jo_DCT(&A[dataOff], &A[dataOff+8], &A[dataOff+16], &A[dataOff+24], &A[dataOff+32], &A[dataOff+40], &A[dataOff+48], &A[dataOff+56]); } int Q[64]; for(int i=0; i<64; ++i) { float v = A[i]*s_jo_quantTbl[i]; Q[s_jo_ZigZag[i]] = (int)(v < 0 ? ceilf(v - 0.5f) : floorf(v + 0.5f)); } DC = Q[0] - DC; int aDC = DC < 0 ? -DC : DC; int size = 0; int tempval = aDC; while(tempval) { size++; tempval >>= 1; } jo_writeBits(bits, htdc[size][0], htdc[size][1]); if(DC < 0) aDC ^= (1 << size) - 1; jo_writeBits(bits, aDC, size); int endpos = 63; for(; (endpos>0)&&(Q[endpos]==0); --endpos) { /* do nothing */ } for(int i = 1; i <= endpos;) { int run = 0; while (Q[i]==0 && i 127) { jo_writeBits(bits, 0, 8); } code = AC&255; size = 8; } jo_writeBits(bits, code, size); } jo_writeBits(bits, 2, 2); return Q[0]; } void jo_write_mpeg(FILE *fp, const unsigned char *bgrx, int width, int height, int fps) { int lastDCY = 128, lastDCCR = 128, lastDCCB = 128; jo_bits_t bits = {fp}; // Sequence Header fwrite("\x00\x00\x01\xB3", 4, 1, fp); // 12 bits for width, height putc((width>>4)&0xFF, fp); putc(((width&0xF)<<4) | ((height>>8) & 0xF), fp); putc(height & 0xFF, fp); // aspect ratio, framerate if(fps <= 24) putc(0x12, fp); else if(fps <= 25) putc(0x13, fp); else if(fps <= 30) putc(0x15, fp); else if(fps <= 50) putc(0x16, fp); else putc(0x18, fp); // 60fps fwrite("\xFF\xFF\xE0\xA0", 4, 1, fp); fwrite("\x00\x00\x01\xB8\x80\x08\x00\x40", 8, 1, fp); // GOP header fwrite("\x00\x00\x01\x00\x00\x0C\x00\x00", 8, 1, fp); // PIC header fwrite("\x00\x00\x01\x01", 4, 1, fp); // Slice header jo_writeBits(&bits, 0x10, 6); for (int vblock=0; vblock<(height+15)/16; vblock++) { for (int hblock=0; hblock<(width+15)/16; hblock++) { jo_writeBits(&bits, 3, 2); float Y[256], CBx[256], CRx[256]; for (int i=0; i<256; ++i) { int y = vblock*16+(i/16); int x = hblock*16+(i&15); x = x >= width ? width-1 : x; y = y >= height ? height-1 : y; int _4 = JO_MPEG_COMPONENTS; // const unsigned char *c = bgrx + y*width*_4+x*_4; // original const unsigned char *c = bgrx + ((height-1)-y)*width*_4+x*_4; // flipped float b = c[0], g = c[1], r = c[2]; // channel swap Y[i] = ( 0.299f*r + 0.587f*g + 0.114f*b) * (219.f/255) + 16; CBx[i] = (-0.299f*r - 0.587f*g + 0.886f*b) * (224.f/255) + 128; CRx[i] = ( 0.701f*r - 0.587f*g - 0.114f*b) * (224.f/255) + 128; } // Downsample Cb,Cr (420 format) float CB[64], CR[64]; for (int i=0; i<64; ++i) { int j =(i&7)*2 + (i&56)*4; CB[i] = (CBx[j] + CBx[j+1] + CBx[j+16] + CBx[j+17]) * 0.25f; CR[i] = (CRx[j] + CRx[j+1] + CRx[j+16] + CRx[j+17]) * 0.25f; } for (int k1=0; k1<2; ++k1) { for (int k2=0; k2<2; ++k2) { float block[64]; for (int i=0; i<64; i+=8) { int j = (i&7)+(i&56)*2 + k1*8*16 + k2*8; memcpy(block+i, Y+j, 8*sizeof(Y[0])); } lastDCY = jo_processDU(&bits, block, s_jo_HTDC_Y, lastDCY); } } lastDCCB = jo_processDU(&bits, CB, s_jo_HTDC_C, lastDCCB); lastDCCR = jo_processDU(&bits, CR, s_jo_HTDC_C, lastDCCR); } } jo_writeBits(&bits, 0, 7); fwrite("\x00\x00\x01\xb7", 4, 1, fp); // End of Sequence } #endif #line 0 //#define _RTL_RUN_ONCE _RTL_RUN_ONCE2 // __MINGW64__ #line 1 "3rd_https.h" /* ------------------------------------------------------------------------------ Licensing information can be found at the end of the file. ------------------------------------------------------------------------------ https.h - v0.1 - Basic HTTP/HTTPS protocol implementation over sockets. Do this: #define HTTPS_IMPLEMENTATION before you include this file in *one* C/C++ file to create the implementation. ------------------------------------------------------------------------------ This is a HTTP protocol implementation including the TLSe library for SSL functionality (https://github.com/eduardsui/tlse),and the LibTomCrypt library for crypto functions (https://github.com/libtom/libtomcrypt). Both of these libraries are available under a public domain license, so I'm releasing this library under my usual dual license (MIT and Public Domain). As they are C libraries, I have modified them to compile under C++ as well (mostly fixing automatic casts from void*, which C++ doesn't support). / Mattias Gustavsson ( mattias@mattiasgustavsson.com ) */ #ifndef https_h #define https_h #define _CRT_NONSTDC_NO_DEPRECATE #define _CRT_SECURE_NO_WARNINGS #include // for size_t typedef enum https_status_t { HTTPS_STATUS_PENDING, HTTPS_STATUS_COMPLETED, HTTPS_STATUS_FAILED, } https_status_t; typedef struct https_t { https_status_t status; int status_code; char const* reason_phrase; char const* content_type; size_t response_size; void* response_data; } https_t; https_t* https_get( char const* url, void* memctx ); https_t* https_post( char const* url, void const* data, size_t size, void* memctx ); https_status_t https_process( https_t* https ); void https_release( https_t* https ); #endif /* https_h */ /** Example ======= #define HTTPS_IMPLEMENTATION #include "https.h" int main( int argc, char** argv ) { (void) argc, argv; return 0; } API Documentation ================= https.h is a small library for making https requests from a web server. It only supports GET and POST https commands, and is designed for when you just need a very basic way of communicating over https. https.h is a single-header library, and does not need any .lib files or other binaries, or any build scripts. To use it, you just include https.h to get the API declarations. To get the definitions, you must include https.h from *one* single C or C++ file, and #define the symbol `HTTPS_IMPLEMENTATION` before you do. Customization ------------- ### Custom memory allocators For working memory and to store the retrieved data, https.h needs to do dynamic allocation by calling `malloc`. Programs might want to keep track of allocations done, or use custom defined pools to allocate memory from. https.h allows for specifying custom memory allocation functions for `malloc` and `free`. This is done with the following code: #define HTTPS_IMPLEMENTATION #define HTTPS_MALLOC( ctx, size ) ( my_custom_malloc( ctx, size ) ) #define HTTPS_FREE( ctx, ptr ) ( my_custom_free( ctx, ptr ) ) #include "https.h" where `my_custom_malloc` and `my_custom_free` are your own memory allocation/deallocation functions. The `ctx` parameter is an optional parameter of type `void*`. When `https_get` or `https_post` is called, , you can pass in a `memctx` parameter, which can be a pointer to anything you like, and which will be passed through as the `ctx` parameter to every `HTTPS_MALLOC`/`HTTPS_FREE` call. For example, if you are doing memory tracking, you can pass a pointer to your tracking data as `memctx`, and in your custom allocation/deallocation function, you can cast the `ctx` param back to the right type, and access the tracking data. If no custom allocator is defined, https.h will default to `malloc` and `free` from the C runtime library. https_get --------- https_t* https_get( char const* url, void* memctx ) Initiates a https GET request with the specified url. `url` is a zero terminated string containing the request location, just like you would type it in a browser, for example `https://www.mattiasgustavsson.com:443/http_test.txt`. `memctx` is a pointer to user defined data which will be passed through to the custom HTTPS_MALLOC/HTTPS_FREE calls. It can be NULL if no user defined data is needed. Returns a `https_t` instance, which needs to be passed to `https_process` to process the request. When the request is finished (or have failed), the returned `https_t` instance needs to be released by calling `https_release`. If the request was invalid, `https_get` returns NULL. https_post ---------- https_t* https_post( char const* url, void const* data, size_t size, void* memctx ) Initiates a https POST request with the specified url. `url` is a zero terminated string containing the request location, just like you would type it in a browser, for example `https://www.mattiasgustavsson.com:443/http_test.txt`. `data` is a pointer to the data to be sent along as part of the request, and `size` is the number of bytes to send. `memctx` is a pointer to user defined data which will be passed through to the custom HTTPS_MALLOC/HTTPS_FREE calls. It can be NULL if no user defined data is needed. Returns a `https_t` instance, which needs to be passed to `https_process` to process the request. When the request is finished (or have failed), the returned `https_t` instance needs to be released by calling `https_release`. If the request was invalid, `https_post` returns NULL. https_process ------------- https_status_t https_process( https_t* https ) https.h uses non-blocking sockets, so after a request have been made by calling either `https_get` or `https_post`, you have to keep calling `https_process` for as long as it returns `HTTPS_STATUS_PENDING`. You can call it from a loop which does other work too, for example from inside a game loop or from a loop which calls `https_process` on multiple requests. If the request fails, `https_process` returns `HTTPS_STATUS_FAILED`, and the fields `status_code` and `reason_phrase` may contain more details (for example, status code can be 404 if the requested resource was not found on the server). If the request completes successfully, it returns `HTTPS_STATUS_COMPLETED`. In this case, the `https_t` instance will contain details about the result. `status_code` and `reason_phrase` contains the details about the result, as specified in the HTTPS protocol. `content_type` contains the MIME type for the returns resource, for example `text/html` for a normal web page. `response_data` is the pointer to the received data, and `resonse_size` is the number of bytes it contains. In the case when the response data is in text format, https.h ensures there is a zero terminator placed immediately after the response data block, so it is safe to interpret the resonse data as a `char*`. Note that the data size in this case will be the length of the data without the additional zero terminator. https_release ------------- void https_release( https_t* https ) Releases the resources acquired by `https_get` or `https_post`. Should be call when you are finished with the request. */ /* ---------------------- IMPLEMENTATION ---------------------- */ #ifdef HTTPS_IMPLEMENTATION #undef HTTPS_IMPLEMENTATION #if defined(_MSC_VER) && _MSC_VER < 1600 typedef __int8 int8_t; typedef unsigned __int8 uint8_t; typedef __int16 int16_t; typedef unsigned __int16 uint16_t; typedef __int32 int32_t; typedef unsigned __int32 uint32_t; typedef __int64 int64_t; typedef unsigned __int64 uint64_t; #else #include #endif #ifdef _WIN32 #undef _CRT_NONSTDC_NO_DEPRECATE #define _CRT_NONSTDC_NO_DEPRECATE #undef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #if !defined( _WIN32_WINNT ) || _WIN32_WINNT < 0x0501 #undef _WIN32_WINNT #define _WIN32_WINNT 0x501// requires Windows XP minimum #endif #pragma warning( push ) #pragma warning( disable: 4619 ) // pragma warning : there is no warning number 'number' #pragma warning( disable: 4127 ) // conditional expression is constant #pragma warning( disable: 4255 ) #pragma warning( disable: 4365 ) // 'action' : conversion from 'type_1' to 'type_2', signed/unsigned mismatch #pragma warning( disable: 4574 ) // 'Identifier' is defined to be '0': did you mean to use '#if identifier'? #pragma warning( disable: 4668 ) // 'symbol' is not defined as a preprocessor macro, replacing with '0' for 'directive' #pragma warning( disable: 4706 ) // assignment within conditional expression #include #include #pragma warning( pop ) #pragma comment (lib, "Ws2_32") //< @r-lyeh removed .lib (tcc support) #include #include #define HTTPS_SOCKET SOCKET #define HTTPS_INVALID_SOCKET INVALID_SOCKET #else #include #include #include #include #include #include #include #include #include #include #define HTTPS_SOCKET int #define HTTPS_INVALID_SOCKET -1 #endif static int https_snprintf( char* s, size_t n, char const* format, ... ) { va_list args; va_start( args, format ); #ifdef _WIN32 int r = _vsnprintf( s, n, format, args ); #else int r = vsnprintf( s, n, format, args ); #endif va_end( args ); return r; } #ifndef HTTPS_ASSERT #undef _CRT_NONSTDC_NO_DEPRECATE #define _CRT_NONSTDC_NO_DEPRECATE #undef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #include #define HTTPS_ASSERT( expression, message ) assert( ( expression ) && ( message ) ) #endif #ifndef HTTPS_MALLOC #undef _CRT_NONSTDC_NO_DEPRECATE #define _CRT_NONSTDC_NO_DEPRECATE #undef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #include #define HTTPS_MALLOC( ctx, size ) ( CALLOC( 1, size ) ) //< @r-lyeh: unify #define HTTPS_FREE( ctx, ptr ) ( FREE( ptr ) ) //< @r-lyeh: unify #endif #define XMALLOC https_internal_xmalloc #define XREALLOC https_internal_xrealloc #define XCALLOC https_internal_xcalloc #define XFREE https_internal_xfree void tls_init(); void* https_internal_memctx( void* set ); #define HTTPS_NO_THREADING 0 #if HTTPS_NO_THREADING void* https_internal_memctx( void* set ) { return 0; } #else #if defined( _WIN32 ) #ifdef __cplusplus extern "C" { #endif #ifdef __TINYC__ //#include // PRTL_RUN_ONCE typedef struct _RTL_RUN_ONCE { PVOID Ptr; } RTL_RUN_ONCE, *PRTL_RUN_ONCE; typedef DWORD (WINAPI *PRTL_RUN_ONCE_INIT_FN)(PRTL_RUN_ONCE, PVOID, PVOID *); #endif #if is(tcc) // ndef __MINGW64__ //< @r-lyeh WINBASEAPI BOOL WINAPI InitOnceExecuteOnce( PRTL_RUN_ONCE InitOnce, BOOL (WINAPI*)( PRTL_RUN_ONCE, PVOID, PVOID* ), PVOID Parameter, LPVOID * Context ); #endif #ifdef __cplusplus } #endif static RTL_RUN_ONCE https_internal_one_time_init_instance = { 0 }; static DWORD https_internal_tls = TLS_OUT_OF_INDEXES; BOOL CALLBACK https_internal_one_time_init( PRTL_RUN_ONCE InitOnce, PVOID Parameter, PVOID *lpContext) { (void)InitOnce; (void)Parameter; (void)lpContext; // WSADATA wsa_data; // int result = WSAStartup( MAKEWORD( 1, 0 ), &wsa_data ); // HTTPS_ASSERT( result == 0, "Failed to initialize winsock" ); // (void) result; // do_once { WSADATA data; (void)WSAStartup(MAKEWORD(2,2), &data); // } https_internal_tls = TlsAlloc(); HTTPS_ASSERT( https_internal_tls != TLS_OUT_OF_INDEXES, "Failed to initialize thread local storage" ); tls_init(); return TRUE; } #else static pthread_once_t https_internal_one_time_init_instance = PTHREAD_ONCE_INIT; static pthread_key_t https_internal_tls; void https_internal_one_time_init( void ) { int result = pthread_key_create( &https_internal_tls, NULL ); HTTPS_ASSERT( result == 0, "Failed to initialize thread local storage" ); tls_init(); } #endif // _WIN32 void* https_internal_memctx( void* set ) { if( set ) { #if defined( _WIN32 ) TlsSetValue( https_internal_tls, set ); #else pthread_setspecific( https_internal_tls, set ); #endif return NULL; } else { #if defined( _WIN32 ) return TlsGetValue( https_internal_tls ); #else return pthread_getspecific( https_internal_tls ); #endif } } #endif // if 0 void* https_internal_xmalloc( size_t n ) { uint64_t* ptr = (uint64_t*) HTTPS_MALLOC( https_internal_memctx( NULL ), n + sizeof( uint64_t ) ); *ptr = (uint64_t) n; return (void*)( ptr + 1 ); } void* https_internal_xcalloc( size_t n, size_t s ) { void* ptr = https_internal_xmalloc( n * s ); memset( ptr, 0, n * s ); return ptr; } void https_internal_xfree( void* p ) { if( !p ) return; void* real_ptr = (void*)( ( (uint64_t*) p ) - 1 ); HTTPS_FREE( https_internal_memctx( NULL ), real_ptr ); } void* https_internal_xrealloc( void* p, size_t n ) { if( !p ) return https_internal_xmalloc( n ); void* real_ptr = (void*)( ( (uint64_t*) p ) - 1 ); size_t prev_size = (size_t)( *(uint64_t*) real_ptr ); if( prev_size >= n ) return p; // Never make smaller void* new_ptr = https_internal_xmalloc( n ); memcpy( new_ptr, p, prev_size ); https_internal_xfree( p ); return new_ptr; } #ifdef __cplusplus // MG: As there were hundreds of places where the C code relied on implicit casts from void* to some other pointer // type, I'm using this construct to make it easier to add the casts. It's a simple template which allows you to // to cast, via the template operator, to anything. In the rest of the code, I have just added the AUTO_CAST // macro where needed (which has no effect in C builds). template< typename T > struct void_cast_helper { void_cast_helper( T const& x_ ) : x( x_ ) { } template< typename U > operator U() { return (U)x; } void_cast_helper& operator=( void_cast_helper const& ); // no assignment operator as we're storing a const T const& x; }; template< typename T > void_cast_helper void_cast( T const& x ) { return void_cast_helper( x ); } #define AUTO_CAST( x ) void_cast( x ) #else #define AUTO_CAST( x ) x #endif #pragma warning( disable: 4619 ) #pragma warning( disable: 4005 ) #pragma warning( disable: 4018 ) #pragma warning( disable: 4055 ) #pragma warning( disable: 4047 ) #pragma warning( disable: 4100 ) #pragma warning( disable: 4127 ) #pragma warning( disable: 4242 ) #pragma warning( disable: 4244 ) #pragma warning( disable: 4245 ) #pragma warning( disable: 4255 ) #pragma warning( disable: 4267 ) #pragma warning( disable: 4302 ) #pragma warning( disable: 4311 ) #pragma warning( disable: 4333 ) #pragma warning( disable: 4334 ) #pragma warning( disable: 4365 ) #pragma warning( disable: 4388 ) #pragma warning( disable: 4431 ) #pragma warning( disable: 4668 ) #define LTC_NO_PROTOTYPES #ifndef HTTPS_NO_LIBTOMCRYPT #define HTTPS_NO_LIBTOMCRYPT /* ------------------------------------------------------------------------------ BEGIN libtomcrypt.c ------------------------------------------------------------------------------ */ #ifdef _WIN32 #pragma comment( lib, "Advapi32" ) //< @r-lyeh, tcc support (remove .lib) #endif #ifdef __GNUC__ #define LTC_NO_ASM //< @r-lyeh, gcc support (Error: incorrect register `%eax' used with `q' suffix) #endif #define CRYPT 0x0117 #define LTC_NO_ROLC /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com */ #ifndef BN_H_ #define BN_H_ #include #include #include #if !(defined(LTM1) && defined(LTM2) && defined(LTM3)) #if defined(LTM2) #define LTM3 #endif #if defined(LTM1) #define LTM2 #endif #define LTM1 #if defined(LTM_ALL) #define BN_ERROR_C #define BN_FAST_MP_INVMOD_C #define BN_FAST_MP_MONTGOMERY_REDUCE_C #define BN_FAST_S_MP_MUL_DIGS_C #define BN_FAST_S_MP_MUL_HIGH_DIGS_C #define BN_FAST_S_MP_SQR_C #define BN_MP_2EXPT_C #define BN_MP_ABS_C #define BN_MP_ADD_C #define BN_MP_ADD_D_C #define BN_MP_ADDMOD_C #define BN_MP_AND_C #define BN_MP_CLAMP_C #define BN_MP_CLEAR_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_CMP_C #define BN_MP_CMP_D_C #define BN_MP_CMP_MAG_C #define BN_MP_CNT_LSB_C #define BN_MP_COPY_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_C #define BN_MP_DIV_2_C #define BN_MP_DIV_2D_C #define BN_MP_DIV_3_C #define BN_MP_DIV_D_C #define BN_MP_DR_IS_MODULUS_C #define BN_MP_DR_REDUCE_C #define BN_MP_DR_SETUP_C #define BN_MP_EXCH_C #define BN_MP_EXPORT_C #define BN_MP_EXPT_D_C #define BN_MP_EXPT_D_EX_C #define BN_MP_EXPTMOD_C #define BN_MP_EXPTMOD_FAST_C #define BN_MP_EXTEUCLID_C #define BN_MP_FREAD_C #define BN_MP_FWRITE_C #define BN_MP_GCD_C #define BN_MP_GET_INT_C #define BN_MP_GET_LONG_C #define BN_MP_GET_LONG_LONG_C #define BN_MP_GROW_C #define BN_MP_IMPORT_C #define BN_MP_INIT_C #define BN_MP_INIT_COPY_C #define BN_MP_INIT_MULTI_C #define BN_MP_INIT_SET_C #define BN_MP_INIT_SET_INT_C #define BN_MP_INIT_SIZE_C #define BN_MP_INVMOD_C #define BN_MP_INVMOD_SLOW_C #define BN_MP_IS_SQUARE_C #define BN_MP_JACOBI_C #define BN_MP_KARATSUBA_MUL_C #define BN_MP_KARATSUBA_SQR_C #define BN_MP_LCM_C #define BN_MP_LSHD_C #define BN_MP_MOD_C #define BN_MP_MOD_2D_C #define BN_MP_MOD_D_C #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C #define BN_MP_MONTGOMERY_REDUCE_C #define BN_MP_MONTGOMERY_SETUP_C #define BN_MP_MUL_C #define BN_MP_MUL_2_C #define BN_MP_MUL_2D_C #define BN_MP_MUL_D_C #define BN_MP_MULMOD_C #define BN_MP_N_ROOT_C #define BN_MP_N_ROOT_EX_C #define BN_MP_NEG_C #define BN_MP_OR_C #define BN_MP_PRIME_FERMAT_C #define BN_MP_PRIME_IS_DIVISIBLE_C #define BN_MP_PRIME_IS_PRIME_C #define BN_MP_PRIME_MILLER_RABIN_C #define BN_MP_PRIME_NEXT_PRIME_C #define BN_MP_PRIME_RABIN_MILLER_TRIALS_C #define BN_MP_PRIME_RANDOM_EX_C #define BN_MP_RADIX_SIZE_C #define BN_MP_RADIX_SMAP_C #define BN_MP_RAND_C #define BN_MP_READ_RADIX_C #define BN_MP_READ_SIGNED_BIN_C #define BN_MP_READ_UNSIGNED_BIN_C #define BN_MP_REDUCE_C #define BN_MP_REDUCE_2K_C #define BN_MP_REDUCE_2K_L_C #define BN_MP_REDUCE_2K_SETUP_C #define BN_MP_REDUCE_2K_SETUP_L_C #define BN_MP_REDUCE_IS_2K_C #define BN_MP_REDUCE_IS_2K_L_C #define BN_MP_REDUCE_SETUP_C #define BN_MP_RSHD_C #define BN_MP_SET_C #define BN_MP_SET_INT_C #define BN_MP_SET_LONG_C #define BN_MP_SET_LONG_LONG_C #define BN_MP_SHRINK_C #define BN_MP_SIGNED_BIN_SIZE_C #define BN_MP_SQR_C #define BN_MP_SQRMOD_C #define BN_MP_SQRT_C #define BN_MP_SQRTMOD_PRIME_C #define BN_MP_SUB_C #define BN_MP_SUB_D_C #define BN_MP_SUBMOD_C #define BN_MP_TO_SIGNED_BIN_C #define BN_MP_TO_SIGNED_BIN_N_C #define BN_MP_TO_UNSIGNED_BIN_C #define BN_MP_TO_UNSIGNED_BIN_N_C #define BN_MP_TOOM_MUL_C #define BN_MP_TOOM_SQR_C #define BN_MP_TORADIX_C #define BN_MP_TORADIX_N_C #define BN_MP_UNSIGNED_BIN_SIZE_C #define BN_MP_XOR_C #define BN_MP_ZERO_C #define BN_PRIME_TAB_C #define BN_REVERSE_C #define BN_S_MP_ADD_C #define BN_S_MP_EXPTMOD_C #define BN_S_MP_MUL_DIGS_C #define BN_S_MP_MUL_HIGH_DIGS_C #define BN_S_MP_SQR_C #define BN_S_MP_SUB_C #define BNCORE_C #endif #if defined(BN_ERROR_C) #define BN_MP_ERROR_TO_STRING_C #endif #if defined(BN_FAST_MP_INVMOD_C) #define BN_MP_ISEVEN_C #define BN_MP_INIT_MULTI_C #define BN_MP_COPY_C #define BN_MP_MOD_C #define BN_MP_SET_C #define BN_MP_DIV_2_C #define BN_MP_ISODD_C #define BN_MP_SUB_C #define BN_MP_CMP_C #define BN_MP_ISZERO_C #define BN_MP_CMP_D_C #define BN_MP_ADD_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_FAST_MP_MONTGOMERY_REDUCE_C) #define BN_MP_GROW_C #define BN_MP_RSHD_C #define BN_MP_CLAMP_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_FAST_S_MP_MUL_DIGS_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_FAST_S_MP_SQR_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_2EXPT_C) #define BN_MP_ZERO_C #define BN_MP_GROW_C #endif #if defined(BN_MP_ABS_C) #define BN_MP_COPY_C #endif #if defined(BN_MP_ADD_C) #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_ADD_D_C) #define BN_MP_GROW_C #define BN_MP_SUB_D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_ADDMOD_C) #define BN_MP_INIT_C #define BN_MP_ADD_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_AND_C) #define BN_MP_INIT_COPY_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_CLAMP_C) #endif #if defined(BN_MP_CLEAR_C) #endif #if defined(BN_MP_CLEAR_MULTI_C) #define BN_MP_CLEAR_C #endif #if defined(BN_MP_CMP_C) #define BN_MP_CMP_MAG_C #endif #if defined(BN_MP_CMP_D_C) #endif #if defined(BN_MP_CMP_MAG_C) #endif #if defined(BN_MP_CNT_LSB_C) #define BN_MP_ISZERO_C #endif #if defined(BN_MP_COPY_C) #define BN_MP_GROW_C #endif #if defined(BN_MP_COUNT_BITS_C) #endif #if defined(BN_MP_DIV_C) #define BN_MP_ISZERO_C #define BN_MP_CMP_MAG_C #define BN_MP_COPY_C #define BN_MP_ZERO_C #define BN_MP_INIT_MULTI_C #define BN_MP_SET_C #define BN_MP_COUNT_BITS_C #define BN_MP_ABS_C #define BN_MP_MUL_2D_C #define BN_MP_CMP_C #define BN_MP_SUB_C #define BN_MP_ADD_C #define BN_MP_DIV_2D_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_INIT_SIZE_C #define BN_MP_INIT_C #define BN_MP_INIT_COPY_C #define BN_MP_LSHD_C #define BN_MP_RSHD_C #define BN_MP_MUL_D_C #define BN_MP_CLAMP_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_DIV_2_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_DIV_2D_C) #define BN_MP_COPY_C #define BN_MP_ZERO_C #define BN_MP_INIT_C #define BN_MP_MOD_2D_C #define BN_MP_CLEAR_C #define BN_MP_RSHD_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #endif #if defined(BN_MP_DIV_3_C) #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_DIV_D_C) #define BN_MP_ISZERO_C #define BN_MP_COPY_C #define BN_MP_DIV_2D_C #define BN_MP_DIV_3_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_DR_IS_MODULUS_C) #endif #if defined(BN_MP_DR_REDUCE_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_DR_SETUP_C) #endif #if defined(BN_MP_EXCH_C) #endif #if defined(BN_MP_EXPORT_C) #define BN_MP_INIT_COPY_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_2D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_EXPT_D_C) #define BN_MP_EXPT_D_EX_C #endif #if defined(BN_MP_EXPT_D_EX_C) #define BN_MP_INIT_COPY_C #define BN_MP_SET_C #define BN_MP_MUL_C #define BN_MP_CLEAR_C #define BN_MP_SQR_C #endif #if defined(BN_MP_EXPTMOD_C) #define BN_MP_INIT_C #define BN_MP_INVMOD_C #define BN_MP_CLEAR_C #define BN_MP_ABS_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_REDUCE_IS_2K_L_C #define BN_S_MP_EXPTMOD_C #define BN_MP_DR_IS_MODULUS_C #define BN_MP_REDUCE_IS_2K_C #define BN_MP_ISODD_C #define BN_MP_EXPTMOD_FAST_C #endif #if defined(BN_MP_EXPTMOD_FAST_C) #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_C #define BN_MP_CLEAR_C #define BN_MP_MONTGOMERY_SETUP_C #define BN_FAST_MP_MONTGOMERY_REDUCE_C #define BN_MP_MONTGOMERY_REDUCE_C #define BN_MP_DR_SETUP_C #define BN_MP_DR_REDUCE_C #define BN_MP_REDUCE_2K_SETUP_C #define BN_MP_REDUCE_2K_C #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C #define BN_MP_MULMOD_C #define BN_MP_SET_C #define BN_MP_MOD_C #define BN_MP_COPY_C #define BN_MP_SQR_C #define BN_MP_MUL_C #define BN_MP_EXCH_C #endif #if defined(BN_MP_EXTEUCLID_C) #define BN_MP_INIT_MULTI_C #define BN_MP_SET_C #define BN_MP_COPY_C #define BN_MP_ISZERO_C #define BN_MP_DIV_C #define BN_MP_MUL_C #define BN_MP_SUB_C #define BN_MP_NEG_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_FREAD_C) #define BN_MP_ZERO_C #define BN_MP_S_RMAP_C #define BN_MP_MUL_D_C #define BN_MP_ADD_D_C #define BN_MP_CMP_D_C #endif #if defined(BN_MP_FWRITE_C) #define BN_MP_RADIX_SIZE_C #define BN_MP_TORADIX_C #endif #if defined(BN_MP_GCD_C) #define BN_MP_ISZERO_C #define BN_MP_ABS_C #define BN_MP_INIT_COPY_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C #define BN_MP_CMP_MAG_C #define BN_MP_EXCH_C #define BN_S_MP_SUB_C #define BN_MP_MUL_2D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_GET_INT_C) #endif #if defined(BN_MP_GET_LONG_C) #endif #if defined(BN_MP_GET_LONG_LONG_C) #endif #if defined(BN_MP_GROW_C) #endif #if defined(BN_MP_IMPORT_C) #define BN_MP_ZERO_C #define BN_MP_MUL_2D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_INIT_C) #endif #if defined(BN_MP_INIT_COPY_C) #define BN_MP_INIT_SIZE_C #define BN_MP_COPY_C #endif #if defined(BN_MP_INIT_MULTI_C) #define BN_MP_ERR_C #define BN_MP_INIT_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_INIT_SET_C) #define BN_MP_INIT_C #define BN_MP_SET_C #endif #if defined(BN_MP_INIT_SET_INT_C) #define BN_MP_INIT_C #define BN_MP_SET_INT_C #endif #if defined(BN_MP_INIT_SIZE_C) #define BN_MP_INIT_C #endif #if defined(BN_MP_INVMOD_C) #define BN_MP_ISZERO_C #define BN_MP_ISODD_C #define BN_FAST_MP_INVMOD_C #define BN_MP_INVMOD_SLOW_C #endif #if defined(BN_MP_INVMOD_SLOW_C) #define BN_MP_ISZERO_C #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_C #define BN_MP_COPY_C #define BN_MP_ISEVEN_C #define BN_MP_SET_C #define BN_MP_DIV_2_C #define BN_MP_ISODD_C #define BN_MP_ADD_C #define BN_MP_SUB_C #define BN_MP_CMP_C #define BN_MP_CMP_D_C #define BN_MP_CMP_MAG_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_IS_SQUARE_C) #define BN_MP_MOD_D_C #define BN_MP_INIT_SET_INT_C #define BN_MP_MOD_C #define BN_MP_GET_INT_C #define BN_MP_SQRT_C #define BN_MP_SQR_C #define BN_MP_CMP_MAG_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_JACOBI_C) #define BN_MP_CMP_D_C #define BN_MP_ISZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C #define BN_MP_MOD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_KARATSUBA_MUL_C) #define BN_MP_MUL_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_S_MP_ADD_C #define BN_MP_ADD_C #define BN_S_MP_SUB_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_KARATSUBA_SQR_C) #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_SQR_C #define BN_S_MP_ADD_C #define BN_S_MP_SUB_C #define BN_MP_LSHD_C #define BN_MP_ADD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_LCM_C) #define BN_MP_INIT_MULTI_C #define BN_MP_GCD_C #define BN_MP_CMP_MAG_C #define BN_MP_DIV_C #define BN_MP_MUL_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_LSHD_C) #define BN_MP_GROW_C #define BN_MP_RSHD_C #endif #if defined(BN_MP_MOD_C) #define BN_MP_INIT_C #define BN_MP_DIV_C #define BN_MP_CLEAR_C #define BN_MP_ISZERO_C #define BN_MP_EXCH_C #define BN_MP_ADD_C #endif #if defined(BN_MP_MOD_2D_C) #define BN_MP_ZERO_C #define BN_MP_COPY_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_MOD_D_C) #define BN_MP_DIV_D_C #endif #if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C) #define BN_MP_COUNT_BITS_C #define BN_MP_2EXPT_C #define BN_MP_SET_C #define BN_MP_MUL_2_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_REDUCE_C) #define BN_FAST_MP_MONTGOMERY_REDUCE_C #define BN_MP_GROW_C #define BN_MP_CLAMP_C #define BN_MP_RSHD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_SETUP_C) #endif #if defined(BN_MP_MUL_C) #define BN_MP_TOOM_MUL_C #define BN_MP_KARATSUBA_MUL_C #define BN_FAST_S_MP_MUL_DIGS_C #define BN_S_MP_MUL_C #define BN_S_MP_MUL_DIGS_C #endif #if defined(BN_MP_MUL_2_C) #define BN_MP_GROW_C #endif #if defined(BN_MP_MUL_2D_C) #define BN_MP_COPY_C #define BN_MP_GROW_C #define BN_MP_LSHD_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_MUL_D_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_MULMOD_C) #define BN_MP_INIT_C #define BN_MP_MUL_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_N_ROOT_C) #define BN_MP_N_ROOT_EX_C #endif #if defined(BN_MP_N_ROOT_EX_C) #define BN_MP_INIT_C #define BN_MP_SET_C #define BN_MP_COPY_C #define BN_MP_EXPT_D_EX_C #define BN_MP_MUL_C #define BN_MP_SUB_C #define BN_MP_MUL_D_C #define BN_MP_DIV_C #define BN_MP_CMP_C #define BN_MP_SUB_D_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_NEG_C) #define BN_MP_COPY_C #define BN_MP_ISZERO_C #endif #if defined(BN_MP_OR_C) #define BN_MP_INIT_COPY_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_FERMAT_C) #define BN_MP_CMP_D_C #define BN_MP_INIT_C #define BN_MP_EXPTMOD_C #define BN_MP_CMP_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_IS_DIVISIBLE_C) #define BN_MP_MOD_D_C #endif #if defined(BN_MP_PRIME_IS_PRIME_C) #define BN_MP_CMP_D_C #define BN_MP_PRIME_IS_DIVISIBLE_C #define BN_MP_INIT_C #define BN_MP_SET_C #define BN_MP_PRIME_MILLER_RABIN_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_MILLER_RABIN_C) #define BN_MP_CMP_D_C #define BN_MP_INIT_COPY_C #define BN_MP_SUB_D_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C #define BN_MP_EXPTMOD_C #define BN_MP_CMP_C #define BN_MP_SQRMOD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_NEXT_PRIME_C) #define BN_MP_CMP_D_C #define BN_MP_SET_C #define BN_MP_SUB_D_C #define BN_MP_ISEVEN_C #define BN_MP_MOD_D_C #define BN_MP_INIT_C #define BN_MP_ADD_D_C #define BN_MP_PRIME_MILLER_RABIN_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C) #endif #if defined(BN_MP_PRIME_RANDOM_EX_C) #define BN_MP_READ_UNSIGNED_BIN_C #define BN_MP_PRIME_IS_PRIME_C #define BN_MP_SUB_D_C #define BN_MP_DIV_2_C #define BN_MP_MUL_2_C #define BN_MP_ADD_D_C #endif #if defined(BN_MP_RADIX_SIZE_C) #define BN_MP_ISZERO_C #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_COPY_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_RADIX_SMAP_C) #define BN_MP_S_RMAP_C #endif #if defined(BN_MP_RAND_C) #define BN_MP_ZERO_C #define BN_MP_ADD_D_C #define BN_MP_LSHD_C #endif #if defined(BN_MP_READ_RADIX_C) #define BN_MP_ZERO_C #define BN_MP_S_RMAP_C #define BN_MP_MUL_D_C #define BN_MP_ADD_D_C #define BN_MP_ISZERO_C #endif #if defined(BN_MP_READ_SIGNED_BIN_C) #define BN_MP_READ_UNSIGNED_BIN_C #endif #if defined(BN_MP_READ_UNSIGNED_BIN_C) #define BN_MP_GROW_C #define BN_MP_ZERO_C #define BN_MP_MUL_2D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_REDUCE_C) #define BN_MP_REDUCE_SETUP_C #define BN_MP_INIT_COPY_C #define BN_MP_RSHD_C #define BN_MP_MUL_C #define BN_S_MP_MUL_HIGH_DIGS_C #define BN_FAST_S_MP_MUL_HIGH_DIGS_C #define BN_MP_MOD_2D_C #define BN_S_MP_MUL_DIGS_C #define BN_MP_SUB_C #define BN_MP_CMP_D_C #define BN_MP_SET_C #define BN_MP_LSHD_C #define BN_MP_ADD_C #define BN_MP_CMP_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_C) #define BN_MP_INIT_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_2D_C #define BN_MP_MUL_D_C #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_L_C) #define BN_MP_INIT_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_2D_C #define BN_MP_MUL_C #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_C) #define BN_MP_INIT_C #define BN_MP_COUNT_BITS_C #define BN_MP_2EXPT_C #define BN_MP_CLEAR_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_L_C) #define BN_MP_INIT_C #define BN_MP_2EXPT_C #define BN_MP_COUNT_BITS_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_IS_2K_C) #define BN_MP_REDUCE_2K_C #define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_REDUCE_IS_2K_L_C) #endif #if defined(BN_MP_REDUCE_SETUP_C) #define BN_MP_2EXPT_C #define BN_MP_DIV_C #endif #if defined(BN_MP_RSHD_C) #define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_C) #define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_INT_C) #define BN_MP_ZERO_C #define BN_MP_MUL_2D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_SET_LONG_C) #endif #if defined(BN_MP_SET_LONG_LONG_C) #endif #if defined(BN_MP_SHRINK_C) #endif #if defined(BN_MP_SIGNED_BIN_SIZE_C) #define BN_MP_UNSIGNED_BIN_SIZE_C #endif #if defined(BN_MP_SQR_C) #define BN_MP_TOOM_SQR_C #define BN_MP_KARATSUBA_SQR_C #define BN_FAST_S_MP_SQR_C #define BN_S_MP_SQR_C #endif #if defined(BN_MP_SQRMOD_C) #define BN_MP_INIT_C #define BN_MP_SQR_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_SQRT_C) #define BN_MP_N_ROOT_C #define BN_MP_ISZERO_C #define BN_MP_ZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_RSHD_C #define BN_MP_DIV_C #define BN_MP_ADD_C #define BN_MP_DIV_2_C #define BN_MP_CMP_MAG_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_SQRTMOD_PRIME_C) #define BN_MP_CMP_D_C #define BN_MP_ZERO_C #define BN_MP_JACOBI_C #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_D_C #define BN_MP_ADD_D_C #define BN_MP_DIV_2_C #define BN_MP_EXPTMOD_C #define BN_MP_COPY_C #define BN_MP_SUB_D_C #define BN_MP_ISEVEN_C #define BN_MP_SET_INT_C #define BN_MP_SQRMOD_C #define BN_MP_MULMOD_C #define BN_MP_SET_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_SUB_C) #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_SUB_D_C) #define BN_MP_GROW_C #define BN_MP_ADD_D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_SUBMOD_C) #define BN_MP_INIT_C #define BN_MP_SUB_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_TO_SIGNED_BIN_C) #define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TO_SIGNED_BIN_N_C) #define BN_MP_SIGNED_BIN_SIZE_C #define BN_MP_TO_SIGNED_BIN_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_C) #define BN_MP_INIT_COPY_C #define BN_MP_ISZERO_C #define BN_MP_DIV_2D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_N_C) #define BN_MP_UNSIGNED_BIN_SIZE_C #define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TOOM_MUL_C) #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_2D_C #define BN_MP_COPY_C #define BN_MP_RSHD_C #define BN_MP_MUL_C #define BN_MP_MUL_2_C #define BN_MP_ADD_C #define BN_MP_SUB_C #define BN_MP_DIV_2_C #define BN_MP_MUL_2D_C #define BN_MP_MUL_D_C #define BN_MP_DIV_3_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_TOOM_SQR_C) #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_2D_C #define BN_MP_COPY_C #define BN_MP_RSHD_C #define BN_MP_SQR_C #define BN_MP_MUL_2_C #define BN_MP_ADD_C #define BN_MP_SUB_C #define BN_MP_DIV_2_C #define BN_MP_MUL_2D_C #define BN_MP_MUL_D_C #define BN_MP_DIV_3_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_TORADIX_C) #define BN_MP_ISZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #define BN_MP_S_RMAP_C #endif #if defined(BN_MP_TORADIX_N_C) #define BN_MP_ISZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #define BN_MP_S_RMAP_C #endif #if defined(BN_MP_UNSIGNED_BIN_SIZE_C) #define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_XOR_C) #define BN_MP_INIT_COPY_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_ZERO_C) #endif #if defined(BN_PRIME_TAB_C) #endif #if defined(BN_REVERSE_C) #endif #if defined(BN_S_MP_ADD_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_S_MP_EXPTMOD_C) #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_C #define BN_MP_CLEAR_C #define BN_MP_REDUCE_SETUP_C #define BN_MP_REDUCE_C #define BN_MP_REDUCE_2K_SETUP_L_C #define BN_MP_REDUCE_2K_L_C #define BN_MP_MOD_C #define BN_MP_COPY_C #define BN_MP_SQR_C #define BN_MP_MUL_C #define BN_MP_SET_C #define BN_MP_EXCH_C #endif #if defined(BN_S_MP_MUL_DIGS_C) #define BN_FAST_S_MP_MUL_DIGS_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_MUL_HIGH_DIGS_C) #define BN_FAST_S_MP_MUL_HIGH_DIGS_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_SQR_C) #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_SUB_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BNCORE_C) #endif #ifdef LTM3 #define LTM_LAST #endif /* super class file for PK algos */ /* default ... include all MPI */ #define LTM_ALL /* RSA only (does not support DH/DSA/ECC) */ /* #define SC_RSA_1 */ /* For reference.... On an Athlon64 optimizing for speed... LTM's mpi.o with all functions [striped] is 142KiB in size. */ /* Works for RSA only, mpi.o is 68KiB */ #ifdef SC_RSA_1 #define BN_MP_SHRINK_C #define BN_MP_LCM_C #define BN_MP_PRIME_RANDOM_EX_C #define BN_MP_INVMOD_C #define BN_MP_GCD_C #define BN_MP_MOD_C #define BN_MP_MULMOD_C #define BN_MP_ADDMOD_C #define BN_MP_EXPTMOD_C #define BN_MP_SET_INT_C #define BN_MP_INIT_MULTI_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_UNSIGNED_BIN_SIZE_C #define BN_MP_TO_UNSIGNED_BIN_C #define BN_MP_MOD_D_C #define BN_MP_PRIME_RABIN_MILLER_TRIALS_C #define BN_REVERSE_C #define BN_PRIME_TAB_C /* other modifiers */ #define BN_MP_DIV_SMALL /* Slower division, not critical */ /* here we are on the last pass so we turn things off. The functions classes are still there * but we remove them specifically from the build. This also invokes tweaks in functions * like removing support for even moduli, etc... */ #ifdef LTM_LAST #undef BN_MP_TOOM_MUL_C #undef BN_MP_TOOM_SQR_C #undef BN_MP_KARATSUBA_MUL_C #undef BN_MP_KARATSUBA_SQR_C #undef BN_MP_REDUCE_C #undef BN_MP_REDUCE_SETUP_C #undef BN_MP_DR_IS_MODULUS_C #undef BN_MP_DR_SETUP_C #undef BN_MP_DR_REDUCE_C #undef BN_MP_REDUCE_IS_2K_C #undef BN_MP_REDUCE_2K_SETUP_C #undef BN_MP_REDUCE_2K_C #undef BN_S_MP_EXPTMOD_C #undef BN_MP_DIV_3_C #undef BN_S_MP_MUL_HIGH_DIGS_C #undef BN_FAST_S_MP_MUL_HIGH_DIGS_C #undef BN_FAST_MP_INVMOD_C /* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without * trouble. */ #undef BN_S_MP_MUL_DIGS_C #undef BN_S_MP_SQR_C #undef BN_MP_MONTGOMERY_REDUCE_C #endif #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #if !(defined(LTM1) && defined(LTM2) && defined(LTM3)) #if defined(LTM2) #define LTM3 #endif #if defined(LTM1) #define LTM2 #endif #define LTM1 #if defined(LTM_ALL) #define BN_ERROR_C #define BN_FAST_MP_INVMOD_C #define BN_FAST_MP_MONTGOMERY_REDUCE_C #define BN_FAST_S_MP_MUL_DIGS_C #define BN_FAST_S_MP_MUL_HIGH_DIGS_C #define BN_FAST_S_MP_SQR_C #define BN_MP_2EXPT_C #define BN_MP_ABS_C #define BN_MP_ADD_C #define BN_MP_ADD_D_C #define BN_MP_ADDMOD_C #define BN_MP_AND_C #define BN_MP_CLAMP_C #define BN_MP_CLEAR_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_CMP_C #define BN_MP_CMP_D_C #define BN_MP_CMP_MAG_C #define BN_MP_CNT_LSB_C #define BN_MP_COPY_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_C #define BN_MP_DIV_2_C #define BN_MP_DIV_2D_C #define BN_MP_DIV_3_C #define BN_MP_DIV_D_C #define BN_MP_DR_IS_MODULUS_C #define BN_MP_DR_REDUCE_C #define BN_MP_DR_SETUP_C #define BN_MP_EXCH_C #define BN_MP_EXPORT_C #define BN_MP_EXPT_D_C #define BN_MP_EXPT_D_EX_C #define BN_MP_EXPTMOD_C #define BN_MP_EXPTMOD_FAST_C #define BN_MP_EXTEUCLID_C #define BN_MP_FREAD_C #define BN_MP_FWRITE_C #define BN_MP_GCD_C #define BN_MP_GET_INT_C #define BN_MP_GET_LONG_C #define BN_MP_GET_LONG_LONG_C #define BN_MP_GROW_C #define BN_MP_IMPORT_C #define BN_MP_INIT_C #define BN_MP_INIT_COPY_C #define BN_MP_INIT_MULTI_C #define BN_MP_INIT_SET_C #define BN_MP_INIT_SET_INT_C #define BN_MP_INIT_SIZE_C #define BN_MP_INVMOD_C #define BN_MP_INVMOD_SLOW_C #define BN_MP_IS_SQUARE_C #define BN_MP_JACOBI_C #define BN_MP_KARATSUBA_MUL_C #define BN_MP_KARATSUBA_SQR_C #define BN_MP_LCM_C #define BN_MP_LSHD_C #define BN_MP_MOD_C #define BN_MP_MOD_2D_C #define BN_MP_MOD_D_C #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C #define BN_MP_MONTGOMERY_REDUCE_C #define BN_MP_MONTGOMERY_SETUP_C #define BN_MP_MUL_C #define BN_MP_MUL_2_C #define BN_MP_MUL_2D_C #define BN_MP_MUL_D_C #define BN_MP_MULMOD_C #define BN_MP_N_ROOT_C #define BN_MP_N_ROOT_EX_C #define BN_MP_NEG_C #define BN_MP_OR_C #define BN_MP_PRIME_FERMAT_C #define BN_MP_PRIME_IS_DIVISIBLE_C #define BN_MP_PRIME_IS_PRIME_C #define BN_MP_PRIME_MILLER_RABIN_C #define BN_MP_PRIME_NEXT_PRIME_C #define BN_MP_PRIME_RABIN_MILLER_TRIALS_C #define BN_MP_PRIME_RANDOM_EX_C #define BN_MP_RADIX_SIZE_C #define BN_MP_RADIX_SMAP_C #define BN_MP_RAND_C #define BN_MP_READ_RADIX_C #define BN_MP_READ_SIGNED_BIN_C #define BN_MP_READ_UNSIGNED_BIN_C #define BN_MP_REDUCE_C #define BN_MP_REDUCE_2K_C #define BN_MP_REDUCE_2K_L_C #define BN_MP_REDUCE_2K_SETUP_C #define BN_MP_REDUCE_2K_SETUP_L_C #define BN_MP_REDUCE_IS_2K_C #define BN_MP_REDUCE_IS_2K_L_C #define BN_MP_REDUCE_SETUP_C #define BN_MP_RSHD_C #define BN_MP_SET_C #define BN_MP_SET_INT_C #define BN_MP_SET_LONG_C #define BN_MP_SET_LONG_LONG_C #define BN_MP_SHRINK_C #define BN_MP_SIGNED_BIN_SIZE_C #define BN_MP_SQR_C #define BN_MP_SQRMOD_C #define BN_MP_SQRT_C #define BN_MP_SQRTMOD_PRIME_C #define BN_MP_SUB_C #define BN_MP_SUB_D_C #define BN_MP_SUBMOD_C #define BN_MP_TO_SIGNED_BIN_C #define BN_MP_TO_SIGNED_BIN_N_C #define BN_MP_TO_UNSIGNED_BIN_C #define BN_MP_TO_UNSIGNED_BIN_N_C #define BN_MP_TOOM_MUL_C #define BN_MP_TOOM_SQR_C #define BN_MP_TORADIX_C #define BN_MP_TORADIX_N_C #define BN_MP_UNSIGNED_BIN_SIZE_C #define BN_MP_XOR_C #define BN_MP_ZERO_C #define BN_PRIME_TAB_C #define BN_REVERSE_C #define BN_S_MP_ADD_C #define BN_S_MP_EXPTMOD_C #define BN_S_MP_MUL_DIGS_C #define BN_S_MP_MUL_HIGH_DIGS_C #define BN_S_MP_SQR_C #define BN_S_MP_SUB_C #define BNCORE_C #endif #if defined(BN_ERROR_C) #define BN_MP_ERROR_TO_STRING_C #endif #if defined(BN_FAST_MP_INVMOD_C) #define BN_MP_ISEVEN_C #define BN_MP_INIT_MULTI_C #define BN_MP_COPY_C #define BN_MP_MOD_C #define BN_MP_SET_C #define BN_MP_DIV_2_C #define BN_MP_ISODD_C #define BN_MP_SUB_C #define BN_MP_CMP_C #define BN_MP_ISZERO_C #define BN_MP_CMP_D_C #define BN_MP_ADD_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_FAST_MP_MONTGOMERY_REDUCE_C) #define BN_MP_GROW_C #define BN_MP_RSHD_C #define BN_MP_CLAMP_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_FAST_S_MP_MUL_DIGS_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_FAST_S_MP_SQR_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_2EXPT_C) #define BN_MP_ZERO_C #define BN_MP_GROW_C #endif #if defined(BN_MP_ABS_C) #define BN_MP_COPY_C #endif #if defined(BN_MP_ADD_C) #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_ADD_D_C) #define BN_MP_GROW_C #define BN_MP_SUB_D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_ADDMOD_C) #define BN_MP_INIT_C #define BN_MP_ADD_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_AND_C) #define BN_MP_INIT_COPY_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_CLAMP_C) #endif #if defined(BN_MP_CLEAR_C) #endif #if defined(BN_MP_CLEAR_MULTI_C) #define BN_MP_CLEAR_C #endif #if defined(BN_MP_CMP_C) #define BN_MP_CMP_MAG_C #endif #if defined(BN_MP_CMP_D_C) #endif #if defined(BN_MP_CMP_MAG_C) #endif #if defined(BN_MP_CNT_LSB_C) #define BN_MP_ISZERO_C #endif #if defined(BN_MP_COPY_C) #define BN_MP_GROW_C #endif #if defined(BN_MP_COUNT_BITS_C) #endif #if defined(BN_MP_DIV_C) #define BN_MP_ISZERO_C #define BN_MP_CMP_MAG_C #define BN_MP_COPY_C #define BN_MP_ZERO_C #define BN_MP_INIT_MULTI_C #define BN_MP_SET_C #define BN_MP_COUNT_BITS_C #define BN_MP_ABS_C #define BN_MP_MUL_2D_C #define BN_MP_CMP_C #define BN_MP_SUB_C #define BN_MP_ADD_C #define BN_MP_DIV_2D_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_INIT_SIZE_C #define BN_MP_INIT_C #define BN_MP_INIT_COPY_C #define BN_MP_LSHD_C #define BN_MP_RSHD_C #define BN_MP_MUL_D_C #define BN_MP_CLAMP_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_DIV_2_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_DIV_2D_C) #define BN_MP_COPY_C #define BN_MP_ZERO_C #define BN_MP_INIT_C #define BN_MP_MOD_2D_C #define BN_MP_CLEAR_C #define BN_MP_RSHD_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #endif #if defined(BN_MP_DIV_3_C) #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_DIV_D_C) #define BN_MP_ISZERO_C #define BN_MP_COPY_C #define BN_MP_DIV_2D_C #define BN_MP_DIV_3_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_DR_IS_MODULUS_C) #endif #if defined(BN_MP_DR_REDUCE_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_DR_SETUP_C) #endif #if defined(BN_MP_EXCH_C) #endif #if defined(BN_MP_EXPORT_C) #define BN_MP_INIT_COPY_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_2D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_EXPT_D_C) #define BN_MP_EXPT_D_EX_C #endif #if defined(BN_MP_EXPT_D_EX_C) #define BN_MP_INIT_COPY_C #define BN_MP_SET_C #define BN_MP_MUL_C #define BN_MP_CLEAR_C #define BN_MP_SQR_C #endif #if defined(BN_MP_EXPTMOD_C) #define BN_MP_INIT_C #define BN_MP_INVMOD_C #define BN_MP_CLEAR_C #define BN_MP_ABS_C #define BN_MP_CLEAR_MULTI_C #define BN_MP_REDUCE_IS_2K_L_C #define BN_S_MP_EXPTMOD_C #define BN_MP_DR_IS_MODULUS_C #define BN_MP_REDUCE_IS_2K_C #define BN_MP_ISODD_C #define BN_MP_EXPTMOD_FAST_C #endif #if defined(BN_MP_EXPTMOD_FAST_C) #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_C #define BN_MP_CLEAR_C #define BN_MP_MONTGOMERY_SETUP_C #define BN_FAST_MP_MONTGOMERY_REDUCE_C #define BN_MP_MONTGOMERY_REDUCE_C #define BN_MP_DR_SETUP_C #define BN_MP_DR_REDUCE_C #define BN_MP_REDUCE_2K_SETUP_C #define BN_MP_REDUCE_2K_C #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C #define BN_MP_MULMOD_C #define BN_MP_SET_C #define BN_MP_MOD_C #define BN_MP_COPY_C #define BN_MP_SQR_C #define BN_MP_MUL_C #define BN_MP_EXCH_C #endif #if defined(BN_MP_EXTEUCLID_C) #define BN_MP_INIT_MULTI_C #define BN_MP_SET_C #define BN_MP_COPY_C #define BN_MP_ISZERO_C #define BN_MP_DIV_C #define BN_MP_MUL_C #define BN_MP_SUB_C #define BN_MP_NEG_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_FREAD_C) #define BN_MP_ZERO_C #define BN_MP_S_RMAP_C #define BN_MP_MUL_D_C #define BN_MP_ADD_D_C #define BN_MP_CMP_D_C #endif #if defined(BN_MP_FWRITE_C) #define BN_MP_RADIX_SIZE_C #define BN_MP_TORADIX_C #endif #if defined(BN_MP_GCD_C) #define BN_MP_ISZERO_C #define BN_MP_ABS_C #define BN_MP_INIT_COPY_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C #define BN_MP_CMP_MAG_C #define BN_MP_EXCH_C #define BN_S_MP_SUB_C #define BN_MP_MUL_2D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_GET_INT_C) #endif #if defined(BN_MP_GET_LONG_C) #endif #if defined(BN_MP_GET_LONG_LONG_C) #endif #if defined(BN_MP_GROW_C) #endif #if defined(BN_MP_IMPORT_C) #define BN_MP_ZERO_C #define BN_MP_MUL_2D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_INIT_C) #endif #if defined(BN_MP_INIT_COPY_C) #define BN_MP_INIT_SIZE_C #define BN_MP_COPY_C #endif #if defined(BN_MP_INIT_MULTI_C) #define BN_MP_ERR_C #define BN_MP_INIT_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_INIT_SET_C) #define BN_MP_INIT_C #define BN_MP_SET_C #endif #if defined(BN_MP_INIT_SET_INT_C) #define BN_MP_INIT_C #define BN_MP_SET_INT_C #endif #if defined(BN_MP_INIT_SIZE_C) #define BN_MP_INIT_C #endif #if defined(BN_MP_INVMOD_C) #define BN_MP_ISZERO_C #define BN_MP_ISODD_C #define BN_FAST_MP_INVMOD_C #define BN_MP_INVMOD_SLOW_C #endif #if defined(BN_MP_INVMOD_SLOW_C) #define BN_MP_ISZERO_C #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_C #define BN_MP_COPY_C #define BN_MP_ISEVEN_C #define BN_MP_SET_C #define BN_MP_DIV_2_C #define BN_MP_ISODD_C #define BN_MP_ADD_C #define BN_MP_SUB_C #define BN_MP_CMP_C #define BN_MP_CMP_D_C #define BN_MP_CMP_MAG_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_IS_SQUARE_C) #define BN_MP_MOD_D_C #define BN_MP_INIT_SET_INT_C #define BN_MP_MOD_C #define BN_MP_GET_INT_C #define BN_MP_SQRT_C #define BN_MP_SQR_C #define BN_MP_CMP_MAG_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_JACOBI_C) #define BN_MP_CMP_D_C #define BN_MP_ISZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C #define BN_MP_MOD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_KARATSUBA_MUL_C) #define BN_MP_MUL_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_S_MP_ADD_C #define BN_MP_ADD_C #define BN_S_MP_SUB_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_KARATSUBA_SQR_C) #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_SQR_C #define BN_S_MP_ADD_C #define BN_S_MP_SUB_C #define BN_MP_LSHD_C #define BN_MP_ADD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_LCM_C) #define BN_MP_INIT_MULTI_C #define BN_MP_GCD_C #define BN_MP_CMP_MAG_C #define BN_MP_DIV_C #define BN_MP_MUL_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_LSHD_C) #define BN_MP_GROW_C #define BN_MP_RSHD_C #endif #if defined(BN_MP_MOD_C) #define BN_MP_INIT_C #define BN_MP_DIV_C #define BN_MP_CLEAR_C #define BN_MP_ISZERO_C #define BN_MP_EXCH_C #define BN_MP_ADD_C #endif #if defined(BN_MP_MOD_2D_C) #define BN_MP_ZERO_C #define BN_MP_COPY_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_MOD_D_C) #define BN_MP_DIV_D_C #endif #if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C) #define BN_MP_COUNT_BITS_C #define BN_MP_2EXPT_C #define BN_MP_SET_C #define BN_MP_MUL_2_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_REDUCE_C) #define BN_FAST_MP_MONTGOMERY_REDUCE_C #define BN_MP_GROW_C #define BN_MP_CLAMP_C #define BN_MP_RSHD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_SETUP_C) #endif #if defined(BN_MP_MUL_C) #define BN_MP_TOOM_MUL_C #define BN_MP_KARATSUBA_MUL_C #define BN_FAST_S_MP_MUL_DIGS_C #define BN_S_MP_MUL_C #define BN_S_MP_MUL_DIGS_C #endif #if defined(BN_MP_MUL_2_C) #define BN_MP_GROW_C #endif #if defined(BN_MP_MUL_2D_C) #define BN_MP_COPY_C #define BN_MP_GROW_C #define BN_MP_LSHD_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_MUL_D_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_MULMOD_C) #define BN_MP_INIT_C #define BN_MP_MUL_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_N_ROOT_C) #define BN_MP_N_ROOT_EX_C #endif #if defined(BN_MP_N_ROOT_EX_C) #define BN_MP_INIT_C #define BN_MP_SET_C #define BN_MP_COPY_C #define BN_MP_EXPT_D_EX_C #define BN_MP_MUL_C #define BN_MP_SUB_C #define BN_MP_MUL_D_C #define BN_MP_DIV_C #define BN_MP_CMP_C #define BN_MP_SUB_D_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_NEG_C) #define BN_MP_COPY_C #define BN_MP_ISZERO_C #endif #if defined(BN_MP_OR_C) #define BN_MP_INIT_COPY_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_FERMAT_C) #define BN_MP_CMP_D_C #define BN_MP_INIT_C #define BN_MP_EXPTMOD_C #define BN_MP_CMP_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_IS_DIVISIBLE_C) #define BN_MP_MOD_D_C #endif #if defined(BN_MP_PRIME_IS_PRIME_C) #define BN_MP_CMP_D_C #define BN_MP_PRIME_IS_DIVISIBLE_C #define BN_MP_INIT_C #define BN_MP_SET_C #define BN_MP_PRIME_MILLER_RABIN_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_MILLER_RABIN_C) #define BN_MP_CMP_D_C #define BN_MP_INIT_COPY_C #define BN_MP_SUB_D_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C #define BN_MP_EXPTMOD_C #define BN_MP_CMP_C #define BN_MP_SQRMOD_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_NEXT_PRIME_C) #define BN_MP_CMP_D_C #define BN_MP_SET_C #define BN_MP_SUB_D_C #define BN_MP_ISEVEN_C #define BN_MP_MOD_D_C #define BN_MP_INIT_C #define BN_MP_ADD_D_C #define BN_MP_PRIME_MILLER_RABIN_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C) #endif #if defined(BN_MP_PRIME_RANDOM_EX_C) #define BN_MP_READ_UNSIGNED_BIN_C #define BN_MP_PRIME_IS_PRIME_C #define BN_MP_SUB_D_C #define BN_MP_DIV_2_C #define BN_MP_MUL_2_C #define BN_MP_ADD_D_C #endif #if defined(BN_MP_RADIX_SIZE_C) #define BN_MP_ISZERO_C #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_COPY_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_RADIX_SMAP_C) #define BN_MP_S_RMAP_C #endif #if defined(BN_MP_RAND_C) #define BN_MP_ZERO_C #define BN_MP_ADD_D_C #define BN_MP_LSHD_C #endif #if defined(BN_MP_READ_RADIX_C) #define BN_MP_ZERO_C #define BN_MP_S_RMAP_C #define BN_MP_MUL_D_C #define BN_MP_ADD_D_C #define BN_MP_ISZERO_C #endif #if defined(BN_MP_READ_SIGNED_BIN_C) #define BN_MP_READ_UNSIGNED_BIN_C #endif #if defined(BN_MP_READ_UNSIGNED_BIN_C) #define BN_MP_GROW_C #define BN_MP_ZERO_C #define BN_MP_MUL_2D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_REDUCE_C) #define BN_MP_REDUCE_SETUP_C #define BN_MP_INIT_COPY_C #define BN_MP_RSHD_C #define BN_MP_MUL_C #define BN_S_MP_MUL_HIGH_DIGS_C #define BN_FAST_S_MP_MUL_HIGH_DIGS_C #define BN_MP_MOD_2D_C #define BN_S_MP_MUL_DIGS_C #define BN_MP_SUB_C #define BN_MP_CMP_D_C #define BN_MP_SET_C #define BN_MP_LSHD_C #define BN_MP_ADD_C #define BN_MP_CMP_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_C) #define BN_MP_INIT_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_2D_C #define BN_MP_MUL_D_C #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_L_C) #define BN_MP_INIT_C #define BN_MP_COUNT_BITS_C #define BN_MP_DIV_2D_C #define BN_MP_MUL_C #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_C) #define BN_MP_INIT_C #define BN_MP_COUNT_BITS_C #define BN_MP_2EXPT_C #define BN_MP_CLEAR_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_L_C) #define BN_MP_INIT_C #define BN_MP_2EXPT_C #define BN_MP_COUNT_BITS_C #define BN_S_MP_SUB_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_IS_2K_C) #define BN_MP_REDUCE_2K_C #define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_REDUCE_IS_2K_L_C) #endif #if defined(BN_MP_REDUCE_SETUP_C) #define BN_MP_2EXPT_C #define BN_MP_DIV_C #endif #if defined(BN_MP_RSHD_C) #define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_C) #define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_INT_C) #define BN_MP_ZERO_C #define BN_MP_MUL_2D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_SET_LONG_C) #endif #if defined(BN_MP_SET_LONG_LONG_C) #endif #if defined(BN_MP_SHRINK_C) #endif #if defined(BN_MP_SIGNED_BIN_SIZE_C) #define BN_MP_UNSIGNED_BIN_SIZE_C #endif #if defined(BN_MP_SQR_C) #define BN_MP_TOOM_SQR_C #define BN_MP_KARATSUBA_SQR_C #define BN_FAST_S_MP_SQR_C #define BN_S_MP_SQR_C #endif #if defined(BN_MP_SQRMOD_C) #define BN_MP_INIT_C #define BN_MP_SQR_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_SQRT_C) #define BN_MP_N_ROOT_C #define BN_MP_ISZERO_C #define BN_MP_ZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_RSHD_C #define BN_MP_DIV_C #define BN_MP_ADD_C #define BN_MP_DIV_2_C #define BN_MP_CMP_MAG_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_SQRTMOD_PRIME_C) #define BN_MP_CMP_D_C #define BN_MP_ZERO_C #define BN_MP_JACOBI_C #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_D_C #define BN_MP_ADD_D_C #define BN_MP_DIV_2_C #define BN_MP_EXPTMOD_C #define BN_MP_COPY_C #define BN_MP_SUB_D_C #define BN_MP_ISEVEN_C #define BN_MP_SET_INT_C #define BN_MP_SQRMOD_C #define BN_MP_MULMOD_C #define BN_MP_SET_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_SUB_C) #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C #define BN_S_MP_SUB_C #endif #if defined(BN_MP_SUB_D_C) #define BN_MP_GROW_C #define BN_MP_ADD_D_C #define BN_MP_CLAMP_C #endif #if defined(BN_MP_SUBMOD_C) #define BN_MP_INIT_C #define BN_MP_SUB_C #define BN_MP_CLEAR_C #define BN_MP_MOD_C #endif #if defined(BN_MP_TO_SIGNED_BIN_C) #define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TO_SIGNED_BIN_N_C) #define BN_MP_SIGNED_BIN_SIZE_C #define BN_MP_TO_SIGNED_BIN_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_C) #define BN_MP_INIT_COPY_C #define BN_MP_ISZERO_C #define BN_MP_DIV_2D_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_N_C) #define BN_MP_UNSIGNED_BIN_SIZE_C #define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TOOM_MUL_C) #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_2D_C #define BN_MP_COPY_C #define BN_MP_RSHD_C #define BN_MP_MUL_C #define BN_MP_MUL_2_C #define BN_MP_ADD_C #define BN_MP_SUB_C #define BN_MP_DIV_2_C #define BN_MP_MUL_2D_C #define BN_MP_MUL_D_C #define BN_MP_DIV_3_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_TOOM_SQR_C) #define BN_MP_INIT_MULTI_C #define BN_MP_MOD_2D_C #define BN_MP_COPY_C #define BN_MP_RSHD_C #define BN_MP_SQR_C #define BN_MP_MUL_2_C #define BN_MP_ADD_C #define BN_MP_SUB_C #define BN_MP_DIV_2_C #define BN_MP_MUL_2D_C #define BN_MP_MUL_D_C #define BN_MP_DIV_3_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_TORADIX_C) #define BN_MP_ISZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #define BN_MP_S_RMAP_C #endif #if defined(BN_MP_TORADIX_N_C) #define BN_MP_ISZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #define BN_MP_S_RMAP_C #endif #if defined(BN_MP_UNSIGNED_BIN_SIZE_C) #define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_XOR_C) #define BN_MP_INIT_COPY_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_MP_ZERO_C) #endif #if defined(BN_PRIME_TAB_C) #endif #if defined(BN_REVERSE_C) #endif #if defined(BN_S_MP_ADD_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BN_S_MP_EXPTMOD_C) #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_C #define BN_MP_CLEAR_C #define BN_MP_REDUCE_SETUP_C #define BN_MP_REDUCE_C #define BN_MP_REDUCE_2K_SETUP_L_C #define BN_MP_REDUCE_2K_L_C #define BN_MP_MOD_C #define BN_MP_COPY_C #define BN_MP_SQR_C #define BN_MP_MUL_C #define BN_MP_SET_C #define BN_MP_EXCH_C #endif #if defined(BN_S_MP_MUL_DIGS_C) #define BN_FAST_S_MP_MUL_DIGS_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_MUL_HIGH_DIGS_C) #define BN_FAST_S_MP_MUL_HIGH_DIGS_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_SQR_C) #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_EXCH_C #define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_SUB_C) #define BN_MP_GROW_C #define BN_MP_CLAMP_C #endif #if defined(BNCORE_C) #endif #ifdef LTM3 #define LTM_LAST #endif #else #define LTM_LAST #endif #else #define LTM_LAST #endif /* detect 64-bit mode if possible */ #if defined(__x86_64__) #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) #define MP_64BIT #endif #endif /* some default configurations. * * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits * * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT typedef uint8_t mp_digit; typedef uint16_t mp_word; #define MP_SIZEOF_MP_DIGIT 1 #ifdef DIGIT_BIT #error You must not define DIGIT_BIT when using MP_8BIT #endif #elif defined(MP_16BIT) typedef uint16_t mp_digit; typedef uint32_t mp_word; #define MP_SIZEOF_MP_DIGIT 2 #ifdef DIGIT_BIT #error You must not define DIGIT_BIT when using MP_16BIT #endif #elif defined(MP_64BIT) && !defined(__TINYC__) && !(defined(_WIN32) && defined(__clang__)) //< @r-lyeh bypass __int128 on clang-cl (unresolved external symbol __udivti3 otherwise) /* for GCC only on supported platforms */ #ifndef CRYPT typedef unsigned long long ulong64; typedef signed long long long64; #endif typedef uint64_t mp_digit; #if defined(_WIN32) typedef unsigned __int128 mp_word; #elif defined(__GNUC__) typedef unsigned long mp_word __attribute__ ((mode(TI))); #else /* it seems you have a problem * but we assume you can somewhere define your own uint128_t */ typedef uint128_t mp_word; #endif #define DIGIT_BIT 60 #else /* this is the default case, 28-bit digits */ /* this is to make porting into LibTomCrypt easier :-) */ #ifndef CRYPT typedef unsigned long long ulong64; typedef signed long long long64; #endif typedef uint32_t mp_digit; typedef uint64_t mp_word; #ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ #define DIGIT_BIT 31 #else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ #define DIGIT_BIT 28 #define MP_28BIT #endif #endif /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT #define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ typedef uint_least32_t mp_min_u32; #else typedef mp_digit mp_min_u32; #endif /* platforms that can use a better rand function */ #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) #define MP_USE_ALT_RAND 1 #endif /* use arc4random on platforms that support it */ #ifdef MP_USE_ALT_RAND #define MP_GEN_RANDOM() arc4random() #else #define MP_GEN_RANDOM() rand() #endif #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1) << ((mp_digit)DIGIT_BIT)) - ((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* equalities */ #define MP_LT -1 /* less than */ #define MP_EQ 0 /* equal to */ #define MP_GT 1 /* greater than */ #define MP_ZPOS 0 /* positive integer */ #define MP_NEG 1 /* negative */ #define MP_OKAY 0 /* ok result */ #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ /* Primality generation flags */ #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ typedef int mp_err; /* you'll have to tune these... */ extern int KARATSUBA_MUL_CUTOFF, KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF; /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ /* default precision */ #ifndef MP_PREC #ifndef MP_LOW_MEM #define MP_PREC 32 /* default digits of precision */ #else #define MP_PREC 8 /* default digits of precision */ #endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) /* the infamous mp_int structure */ typedef struct { int used, alloc, sign; mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback (unsigned char *dst, int len, void *dat); #define USED(m) ((m)->used) #define DIGIT(m, k) ((m)->dp[(k)]) #define SIGN(m) ((m)->sign) /* error code to char* string */ const char *mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ int mp_init(mp_int *a); /* free a bignum */ void mp_clear(mp_int *a); /* init a null terminated series of arguments */ int mp_init_multi(mp_int *mp, ...); /* clear a null terminated series of arguments */ void mp_clear_multi(mp_int *mp, ...); /* exchange two ints */ void mp_exch(mp_int *a, mp_int *b); /* shrink ram required for a bignum */ int mp_shrink(mp_int *a); /* grow an int to a given size */ int mp_grow(mp_int *a, int size); /* init to a given number of digits */ int mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) #define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ void mp_zero(mp_int *a); /* set to a digit */ void mp_set(mp_int *a, mp_digit b); /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b); /* set a platform dependent unsigned long value */ int mp_set_long(mp_int *a, unsigned long b); /* set a platform dependent unsigned long long value */ int mp_set_long_long(mp_int *a, unsigned long long b); /* get a 32-bit value */ unsigned long mp_get_int(mp_int *a); /* get a platform dependent unsigned long value */ unsigned long mp_get_long(mp_int *a); /* get a platform dependent unsigned long long value */ unsigned long long mp_get_long_long(mp_int *a); /* initialize and set a digit */ int mp_init_set(mp_int *a, mp_digit b); /* initialize and set 32-bit value */ int mp_init_set_int(mp_int *a, unsigned long b); /* copy, b = a */ int mp_copy(mp_int *a, mp_int *b); /* inits and copies, a = b */ int mp_init_copy(mp_int *a, mp_int *b); /* trim unused digits */ void mp_clamp(mp_int *a); /* import binary data */ int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op); /* export binary data */ int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, mp_int *op); /* ---> digit manipulation <--- */ /* right shift by "b" digits */ void mp_rshd(mp_int *a, int b); /* left shift by "b" digits */ int mp_lshd(mp_int *a, int b); /* c = a / 2**b, implemented as c = a >> b */ int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); /* b = a/2 */ int mp_div_2(mp_int *a, mp_int *b); /* c = a * 2**b, implemented as c = a << b */ int mp_mul_2d(mp_int *a, int b, mp_int *c); /* b = a*2 */ int mp_mul_2(mp_int *a, mp_int *b); /* c = a mod 2**b */ int mp_mod_2d(mp_int *a, int b, mp_int *c); /* computes a = 2**b */ int mp_2expt(mp_int *a, int b); /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(mp_int *a); /* I Love Earth! */ /* makes a pseudo-random int of a given size */ int mp_rand(mp_int *a, int digits); /* ---> binary operations <--- */ /* c = a XOR b */ int mp_xor(mp_int *a, mp_int *b, mp_int *c); /* c = a OR b */ int mp_or(mp_int *a, mp_int *b, mp_int *c); /* c = a AND b */ int mp_and(mp_int *a, mp_int *b, mp_int *c); /* ---> Basic arithmetic <--- */ /* b = -a */ int mp_neg(mp_int *a, mp_int *b); /* b = |a| */ int mp_abs(mp_int *a, mp_int *b); /* compare a to b */ int mp_cmp(mp_int *a, mp_int *b); /* compare |a| to |b| */ int mp_cmp_mag(mp_int *a, mp_int *b); /* c = a + b */ int mp_add(mp_int *a, mp_int *b, mp_int *c); /* c = a - b */ int mp_sub(mp_int *a, mp_int *b, mp_int *c); /* c = a * b */ int mp_mul(mp_int *a, mp_int *b, mp_int *c); /* b = a*a */ int mp_sqr(mp_int *a, mp_int *b); /* a/b => cb + d == a */ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* c = a mod b, 0 <= c < b */ int mp_mod(mp_int *a, mp_int *b, mp_int *c); /* ---> single digit functions <--- */ /* compare against a single digit */ int mp_cmp_d(mp_int *a, mp_digit b); /* c = a + b */ int mp_add_d(mp_int *a, mp_digit b, mp_int *c); /* c = a - b */ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); /* c = a * b */ int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); /* a/b => cb + d == a */ int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); /* a/3 => 3c + d == a */ int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); /* c = a**b */ int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast); /* c = a mod b, 0 <= c < b */ int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); /* ---> number theory <--- */ /* d = a + b (mod c) */ int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* d = a - b (mod c) */ int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* d = a * b (mod c) */ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* c = a * a (mod b) */ int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); /* c = 1/a (mod b) */ int mp_invmod(mp_int *a, mp_int *b, mp_int *c); /* c = (a, b) */ int mp_gcd(mp_int *a, mp_int *b, mp_int *c); /* produces value such that U1*a + U2*b = U3 */ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); /* c = [a, b] or (a*b)/(a, b) */ int mp_lcm(mp_int *a, mp_int *b, mp_int *c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ int mp_n_root(mp_int *a, mp_digit b, mp_int *c); int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast); /* special sqrt algo */ int mp_sqrt(mp_int *arg, mp_int *ret); /* special sqrt (mod prime) */ int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret); /* is number a square? */ int mp_is_square(mp_int *arg, int *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ int mp_jacobi(mp_int *a, mp_int *n, int *c); /* used to setup the Barrett reduction for a given modulus b */ int mp_reduce_setup(mp_int *a, mp_int *b); /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. */ int mp_reduce(mp_int *a, mp_int *b, mp_int *c); /* setups the montgomery reduction */ int mp_montgomery_setup(mp_int *a, mp_digit *mp); /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); /* computes x/R == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); /* returns 1 if a is a valid DR modulus */ int mp_dr_is_modulus(mp_int *a); /* sets the value of "d" required for mp_dr_reduce */ void mp_dr_setup(mp_int *a, mp_digit *d); /* reduces a modulo b using the Diminished Radix method */ int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); /* returns true if a can be reduced with mp_reduce_2k */ int mp_reduce_is_2k(mp_int *a); /* determines k value for 2k reduction */ int mp_reduce_2k_setup(mp_int *a, mp_digit *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); /* returns true if a can be reduced with mp_reduce_2k_l */ int mp_reduce_is_2k_l(mp_int *a); /* determines k value for 2k reduction */ int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); /* d = a**b (mod c) */ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT #define PRIME_SIZE 31 #else #define PRIME_SIZE 256 #endif /* table of first PRIME_SIZE primes */ extern const mp_digit ltm_prime_tab[PRIME_SIZE]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ int mp_prime_is_divisible(mp_int *a, int *result); /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_fermat(mp_int *a, mp_int *b, int *result); /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); /* performs t rounds of Miller-Rabin on "a" using the first * t prime bases. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. * * Sets result to 1 if probably prime, 0 otherwise */ int mp_prime_is_prime(mp_int *a, int t, int *result); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */ #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs == 1) ? LTM_PRIME_BBS : 0, cb, dat) /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); /* ---> radix conversion <--- */ int mp_count_bits(mp_int *a); int mp_unsigned_bin_size(mp_int *a); int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); int mp_to_unsigned_bin(mp_int *a, unsigned char *b); int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen); int mp_signed_bin_size(mp_int *a); int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); int mp_to_signed_bin(mp_int *a, unsigned char *b); int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen); int mp_read_radix(mp_int *a, const char *str, int radix); int mp_toradix(mp_int *a, char *str, int radix); int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen); int mp_radix_size(mp_int *a, int radix, int *size); #ifndef LTM_NO_FILE int mp_fread(mp_int *a, int radix, FILE *stream); int mp_fwrite(mp_int *a, int radix, FILE *stream); #endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) mp_unsigned_bin_size(mp) #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) #define mp_tobinary(M, S) mp_toradix((M), (S), 2) #define mp_tooctal(M, S) mp_toradix((M), (S), 8) #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com */ #ifndef TOMMATH_PRIV_H_ #define TOMMATH_PRIV_H_ #include #ifndef MIN #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #endif #ifndef MAX #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #endif /* C++ compilers don't like assigning void * to mp_digit * */ #define OPT_CAST(x) (x *) /* define heap macros */ #ifndef XMALLOC /* default to libc stuff */ #define XMALLOC malloc #define XFREE free #define XREALLOC realloc #define XCALLOC calloc #elif 0 //< @r-lyeh /* prototypes for our heap functions */ extern void *XMALLOC(size_t n); extern void *XREALLOC(void *p, size_t n); extern void *XCALLOC(size_t n, size_t s); extern void XFREE(void *p); #endif /* lowlevel functions, do not call! */ int s_mp_add(mp_int *a, mp_int *b, mp_int *c); int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); int fast_s_mp_sqr(mp_int *a, mp_int *b); int s_mp_sqr(mp_int *a, mp_int *b); int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); int mp_karatsuba_sqr(mp_int *a, mp_int *b); int mp_toom_sqr(mp_int *a, mp_int *b); int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c); int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho); int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode); int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode); void bn_reverse(unsigned char *s, int len); extern const char *mp_s_rmap; /* Fancy macro to set an MPI from another type. * There are several things assumed: * x is the counter and unsigned * a is the pointer to the MPI * b is the original value that should be set in the MPI. */ #define MP_SET_XLONG(func_name, type) \ int func_name(mp_int * a, type b) \ { \ unsigned int x; \ int res; \ \ mp_zero(a); \ \ /* set four bits at a time */ \ for (x = 0; x < (sizeof(type) * 2u); x++) { \ /* shift the number up four bits */ \ if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) { \ return res; \ } \ \ /* OR in the top four bits of the source */ \ a->dp[0] |= (b >> ((sizeof(type) * 8u) - 4u)) & 15u; \ \ /* shift the source up to the next four bits */ \ b <<= 4; \ \ /* ensure that digits are not clamped off */ \ a->used += 1; \ } \ mp_clamp(a); \ return MP_OKAY; \ } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #define BN_FAST_MP_INVMOD_C #ifdef BN_FAST_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c) { mp_int x, y, u, v, B, D; int res, neg; /* 2. [modified] b must be odd */ if (mp_iseven(b) == MP_YES) { return MP_VAL; } /* init all our temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return res; } /* x == modulus, y == value to invert */ if ((res = mp_copy(b, &x)) != MP_OKAY) { goto LBL_ERR; } /* we need y = |a| */ if ((res = mp_mod(a, b, &y)) != MP_OKAY) { goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&D, 1); top: /* 4. while u is even do */ while (mp_iseven(&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if B is odd then */ if (mp_isodd(&B) == MP_YES) { if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* B = B/2 */ if ((res = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven(&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if D is odd then */ if (mp_isodd(&D) == MP_YES) { /* D = (D-x)/2 */ if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* D = D/2 */ if ((res = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, D = D - B */ if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero(&u) == MP_NO) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((res = mp_add(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } mp_exch(&D, c); c->sign = neg; res = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes xR**-1 == x (mod N) via Montgomery Reduction * * This is an optimized implementation of montgomery_reduce * which uses the comba method to quickly calculate the columns of the * reduction. * * Based on Algorithm 14.32 on pp.601 of HAC. */ int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho) { int ix, res, olduse; mp_word W[MP_WARRAY]; /* get old used count */ olduse = x->used; /* grow a as required */ if (x->alloc < (n->used + 1)) { if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) { return res; } } /* first we have to get the digits of the input into * an array of double precision words W[...] */ { mp_word *_W; mp_digit *tmpx; /* alias for the W[] array */ _W = W; /* alias for the digits of x*/ tmpx = x->dp; /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ for ( ; ix < ((n->used * 2) + 1); ix++) { *_W++ = 0; } } /* now we proceed to zero successive digits * from the least significant upwards */ for (ix = 0; ix < n->used; ix++) { /* mu = ai * m' mod b * * We avoid a double precision multiplication (which isn't required) * by casting the value down to a mp_digit. Note this requires * that W[ix-1] have the carry cleared (see after the inner loop) */ mp_digit mu; mu = (mp_digit)(((W[ix] & MP_MASK) * rho) & MP_MASK); /* a = a + mu * m * b**i * * This is computed in place and on the fly. The multiplication * by b**i is handled by offseting which columns the results * are added to. * * Note the comba method normally doesn't handle carries in the * inner loop In this case we fix the carry from the previous * column since the Montgomery reduction requires digits of the * result (so far) [see above] to work. This is * handled by fixing up one carry after the inner loop. The * carry fixups are done in order so after these loops the * first m->used words of W[] have the carries fixed */ { int iy; mp_digit *tmpn; mp_word *_W; /* alias for the digits of the modulus */ tmpn = n->dp; /* Alias for the columns set by an offset of ix */ _W = W + ix; /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += ((mp_word)mu) * ((mp_word) * tmpn++); } } /* now fix carry for next digit, W[ix+1] */ W[ix + 1] += W[ix] >> ((mp_word)DIGIT_BIT); } /* now we have to propagate the carries and * shift the words downward [all those least * significant digits we zeroed]. */ { mp_digit *tmpx; mp_word *_W, *_W1; /* nox fix rest of carries */ /* alias for current word */ _W1 = W + ix; /* alias for next word, where the carry goes */ _W = W + ++ix; for ( ; ix <= ((n->used * 2) + 1); ix++) { *_W++ += *_W1++ >> ((mp_word)DIGIT_BIT); } /* copy out, A = A/b**n * * The result is A/b**n but instead of converting from an * array of mp_word to mp_digit than calling mp_rshd * we just copy them in the right order */ /* alias for destination word */ tmpx = x->dp; /* alias for shifted double precision result */ _W = W + n->used; for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = (mp_digit)(*_W++ & ((mp_word)MP_MASK)); } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ for ( ; ix < olduse; ix++) { *tmpx++ = 0; } } /* set the max used and clamp */ x->used = n->used + 1; mp_clamp(x); /* if A >= m then A = A - m */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_FAST_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Fast (comba) multiplier * * This is the fast column-array [comba] multiplier. It is * designed to compute the columns of the product first * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * * This has been modified to produce a variable number of * digits of output so if say only a half-product is required * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. * */ int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ if (c->alloc < digs) { if ((res = mp_grow(c, digs)) != MP_OKAY) { return res; } } /* number of output digits to produce */ pa = MIN(digs, a->used + b->used); /* clear the carry */ _W = 0; for (ix = 0; ix < pa; ix++) { int tx, ty; int iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MIN(b->used - 1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used - tx, ty + 1); /* execute loop */ for (iz = 0; iz < iy; ++iz) { _W += ((mp_word) * tmpx++) * ((mp_word) * tmpy--); } /* store term */ W[ix] = ((mp_digit)_W) & MP_MASK; /* make next carry */ _W = _W >> ((mp_word)DIGIT_BIT); } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp; for (ix = 0; ix < (pa + 1); ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ for ( ; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* this is a modified version of fast_s_mul_digs that only produces * output digits *above* digs. See the comments for fast_s_mul_digs * to see how it works. * * This is used in the Barrett reduction since for one of the multiplications * only the higher digits were needed. This essentially halves the work. * * Based on Algorithm 14.12 on pp.595 of HAC. */ int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ pa = a->used + b->used; if (c->alloc < pa) { if ((res = mp_grow(c, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ pa = a->used + b->used; _W = 0; for (ix = digs; ix < pa; ix++) { int tx, ty, iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MIN(b->used - 1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used - tx, ty + 1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += ((mp_word) * tmpx++) * ((mp_word) * tmpy--); } /* store term */ W[ix] = ((mp_digit)_W) & MP_MASK; /* make next carry */ _W = _W >> ((mp_word)DIGIT_BIT); } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp + digs; for (ix = digs; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ for ( ; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_FAST_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* the jist of squaring... * you do like mult except the offset of the tmpx [one that * starts closer to zero] can't equal the offset of tmpy. * So basically you set up iy like before then you min it with * (ty-tx) so that it never happens. You double all those * you add in the inner loop After that loop you do the squares and add them in. */ int fast_s_mp_sqr(mp_int *a, mp_int *b) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY], *tmpx; mp_word W1; /* grow the destination as required */ pa = a->used + a->used; if (b->alloc < pa) { if ((res = mp_grow(b, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ W1 = 0; for (ix = 0; ix < pa; ix++) { int tx, ty, iy; mp_word _W; mp_digit *tmpy; /* clear counter */ _W = 0; /* get offsets into the two bignums */ ty = MIN(a->used - 1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = a->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used - tx, ty + 1); /* now for squaring tx can never equal ty * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ iy = MIN(iy, ((ty - tx) + 1) >> 1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += ((mp_word) * tmpx++) * ((mp_word) * tmpy--); } /* double the inner product and add carry */ _W = _W + _W + W1; /* even columns have the square term in them */ if ((ix & 1) == 0) { _W += ((mp_word)a->dp[ix >> 1]) * ((mp_word)a->dp[ix >> 1]); } /* store it */ W[ix] = (mp_digit)(_W & MP_MASK); /* make next carry */ W1 = _W >> ((mp_word)DIGIT_BIT); } /* setup dest */ olduse = b->used; b->used = a->used + a->used; { mp_digit *tmpb; tmpb = b->dp; for (ix = 0; ix < pa; ix++) { *tmpb++ = W[ix] & MP_MASK; } /* clear unused digits [that existed in the old copy of c] */ for ( ; ix < olduse; ix++) { *tmpb++ = 0; } } mp_clamp(b); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_2EXPT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes a = 2**b * * Simple algorithm which zeroes the int, grows it then just sets one bit * as required. */ int mp_2expt(mp_int *a, int b) { int res; /* zero a as per default */ mp_zero(a); /* grow a to accomodate the single bit */ if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) { return res; } /* set the used count of where the bit will go */ a->used = (b / DIGIT_BIT) + 1; /* put the single bit in its place */ a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_ABS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = |a| * * Simple function copies the input and fixes the sign to positive */ int mp_abs(mp_int *a, mp_int *b) { int res; /* copy a to b */ if (a != b) { if ((res = mp_copy(a, b)) != MP_OKAY) { return res; } } /* force the sign of b to positive */ b->sign = MP_ZPOS; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* high level addition (handles signs) */ int mp_add(mp_int *a, mp_int *b, mp_int *c) { int sa, sb, res; /* get sign of both inputs */ sa = a->sign; sb = b->sign; /* handle two cases, not four */ if (sa == sb) { /* both positive or both negative */ /* add their magnitudes, copy the sign */ c->sign = sa; res = s_mp_add(a, b, c); } else { /* one positive, the other negative */ /* subtract the one with the greater magnitude from */ /* the one of the lesser magnitude. The result gets */ /* the sign of the one with the greater magnitude. */ if (mp_cmp_mag(a, b) == MP_LT) { c->sign = sb; res = s_mp_sub(b, a, c); } else { c->sign = sa; res = s_mp_sub(a, b, c); } } return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_ADD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* single digit addition */ int mp_add_d(mp_int *a, mp_digit b, mp_int *c) { int res, ix, oldused; mp_digit *tmpa, *tmpc, mu; /* grow c as required */ if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative and |a| >= b, call c = |a| - b */ if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) { /* temporarily fix sign of a */ a->sign = MP_ZPOS; /* c = |a| - b */ res = mp_sub_d(a, b, c); /* fix sign */ a->sign = c->sign = MP_NEG; /* clamp */ mp_clamp(c); return res; } /* old number of used digits in c */ oldused = c->used; /* sign always positive */ c->sign = MP_ZPOS; /* source alias */ tmpa = a->dp; /* destination alias */ tmpc = c->dp; /* if a is positive */ if (a->sign == MP_ZPOS) { /* add digit, after this we're propagating * the carry. */ *tmpc = *tmpa++ + b; mu = *tmpc >> DIGIT_BIT; *tmpc++ &= MP_MASK; /* now handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ + mu; mu = *tmpc >> DIGIT_BIT; *tmpc++ &= MP_MASK; } /* set final carry */ ix++; *tmpc++ = mu; /* setup size */ c->used = a->used + 1; } else { /* a was negative and |a| < b */ c->used = 1; /* the result is a single digit */ if (a->used == 1) { *tmpc++ = b - a->dp[0]; } else { *tmpc++ = b; } /* setup count so the clearing of oldused * can fall through correctly */ ix = 1; } /* now zero to oldused */ while (ix++ < oldused) { *tmpc++ = 0; } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_ADDMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* d = a + b (mod c) */ int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_add(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, c, d); mp_clear(&t); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_AND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* AND two ints together */ int mp_and(mp_int *a, mp_int *b, mp_int *c) { int res, ix, px; mp_int t, *x; if (a->used > b->used) { if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } px = b->used; x = b; } else { if ((res = mp_init_copy(&t, b)) != MP_OKAY) { return res; } px = a->used; x = a; } for (ix = 0; ix < px; ix++) { t.dp[ix] &= x->dp[ix]; } /* zero digits above the last from the smallest mp_int */ for ( ; ix < t.used; ix++) { t.dp[ix] = 0; } mp_clamp(&t); mp_exch(c, &t); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CLAMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* trim unused digits * * This is used to ensure that leading zero digits are * trimed and the leading "used" digit will be non-zero * Typically very fast. Also fixes the sign if there * are no more leading digits */ void mp_clamp(mp_int *a) { /* decrease used while the most significant digit is * zero. */ while ((a->used > 0) && (a->dp[a->used - 1] == 0)) { --(a->used); } /* reset the sign flag if used == 0 */ if (a->used == 0) { a->sign = MP_ZPOS; } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CLEAR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* clear one (frees) */ void mp_clear(mp_int *a) { int i; /* only do anything if a hasn't been freed previously */ if (a->dp != NULL) { /* first zero the digits */ for (i = 0; i < a->used; i++) { a->dp[i] = 0; } /* free ram */ XFREE(a->dp); /* reset members to make debugging easier */ a->dp = NULL; a->alloc = a->used = 0; a->sign = MP_ZPOS; } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CLEAR_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #include void mp_clear_multi(mp_int *mp, ...) { mp_int *next_mp = mp; va_list args; va_start(args, mp); while (next_mp != NULL) { mp_clear(next_mp); next_mp = va_arg(args, mp_int *); } va_end(args); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* compare two ints (signed)*/ int mp_cmp(mp_int *a, mp_int *b) { /* compare based on sign */ if (a->sign != b->sign) { if (a->sign == MP_NEG) { return MP_LT; } else { return MP_GT; } } /* compare digits */ if (a->sign == MP_NEG) { /* if negative compare opposite direction */ return mp_cmp_mag(b, a); } else { return mp_cmp_mag(a, b); } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CMP_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* compare a digit */ int mp_cmp_d(mp_int *a, mp_digit b) { /* compare based on sign */ if (a->sign == MP_NEG) { return MP_LT; } /* compare based on magnitude */ if (a->used > 1) { return MP_GT; } /* compare the only digit of a to b */ if (a->dp[0] > b) { return MP_GT; } else if (a->dp[0] < b) { return MP_LT; } else { return MP_EQ; } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CMP_MAG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* compare maginitude of two ints (unsigned) */ int mp_cmp_mag(mp_int *a, mp_int *b) { int n; mp_digit *tmpa, *tmpb; /* compare based on # of non-zero digits */ if (a->used > b->used) { return MP_GT; } if (a->used < b->used) { return MP_LT; } /* alias for a */ tmpa = a->dp + (a->used - 1); /* alias for b */ tmpb = b->dp + (a->used - 1); /* compare based on digits */ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { if (*tmpa > *tmpb) { return MP_GT; } if (*tmpa < *tmpb) { return MP_LT; } } return MP_EQ; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_CNT_LSB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ static const int lnz[16] = { 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(mp_int *a) { int x; mp_digit q, qq; /* easy out */ if (mp_iszero(a) == MP_YES) { return 0; } /* scan lower digits until non-zero */ for (x = 0; (x < a->used) && (a->dp[x] == 0); x++) { } q = a->dp[x]; x *= DIGIT_BIT; /* now scan this digit until a 1 is found */ if ((q & 1) == 0) { do { qq = q & 15; x += lnz[qq]; q >>= 4; } while (qq == 0); } return x; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* copy, b = a */ int mp_copy(mp_int *a, mp_int *b) { int res, n; /* if dst == src do nothing */ if (a == b) { return MP_OKAY; } /* grow dest */ if (b->alloc < a->used) { if ((res = mp_grow(b, a->used)) != MP_OKAY) { return res; } } /* zero b and copy the parameters over */ { mp_digit *tmpa, *tmpb; /* pointer aliases */ /* source */ tmpa = a->dp; /* destination */ tmpb = b->dp; /* copy all the digits */ for (n = 0; n < a->used; n++) { *tmpb++ = *tmpa++; } /* clear high digits */ for ( ; n < b->used; n++) { *tmpb++ = 0; } } /* copy used count and sign */ b->used = a->used; b->sign = a->sign; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_COUNT_BITS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* returns the number of bits in an int */ int mp_count_bits(mp_int *a) { int r; mp_digit q; /* shortcut */ if (a->used == 0) { return 0; } /* get number of digits and add that */ r = (a->used - 1) * DIGIT_BIT; /* take the last digit and count the bits in it */ q = a->dp[a->used - 1]; while (q > ((mp_digit)0)) { ++r; q >>= ((mp_digit)1); } return r; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DIV_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #ifdef BN_MP_DIV_SMALL /* slower bit-bang division... also smaller */ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { mp_int ta, tb, tq, q; int res, n, n2; /* is divisor zero ? */ if (mp_iszero(b) == MP_YES) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { res = mp_copy(a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero(c); } return res; } /* init our temps */ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { return res; } mp_set(&tq, 1); n = mp_count_bits(a) - mp_count_bits(b); if (((res = mp_abs(a, &ta)) != MP_OKAY) || ((res = mp_abs(b, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; } while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { goto LBL_ERR; } } if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { goto LBL_ERR; } } /* now q == quotient and ta == remainder */ n = a->sign; n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); return res; } #else /* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly * incomplete. For example, it doesn't consider * the case where digits are removed from 'x' in * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { mp_int q, x, y, t1, t2; int res, n, t, i, norm, neg; /* is divisor zero ? */ if (mp_iszero(b) == MP_YES) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { res = mp_copy(a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero(c); } return res; } if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) { return res; } q.used = a->used + 2; if ((res = mp_init(&t1)) != MP_OKAY) { goto LBL_Q; } if ((res = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init_copy(&x, a)) != MP_OKAY) { goto LBL_T2; } if ((res = mp_init_copy(&y, b)) != MP_OKAY) { goto LBL_X; } /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ norm = mp_count_bits(&y) % DIGIT_BIT; if (norm < (int)(DIGIT_BIT - 1)) { norm = (DIGIT_BIT - 1) - norm; if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) { goto LBL_Y; } } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ goto LBL_Y; } while (mp_cmp(&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) { goto LBL_Y; } } /* reset y by shifting it back down */ mp_rshd(&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); } else { mp_word tmp; tmp = ((mp_word)x.dp[i]) << ((mp_word)DIGIT_BIT); tmp |= ((mp_word)x.dp[i - 1]); tmp /= ((mp_word)y.dp[t]); if (tmp > (mp_word)MP_MASK) { tmp = MP_MASK; } q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)(MP_MASK)); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK; do { q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK; /* find left hand */ mp_zero(&t1); t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } /* find right hand */ t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2]; t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((res = mp_copy(&y, &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x.sign = (x.used == 0) ? MP_ZPOS : a->sign; if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); c->sign = neg; } if (d != NULL) { if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) { goto LBL_Y; } mp_exch(&x, d); } res = MP_OKAY; LBL_Y: mp_clear(&y); LBL_X: mp_clear(&x); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); LBL_Q: mp_clear(&q); return res; } #endif #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DIV_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = a/2 */ int mp_div_2(mp_int *a, mp_int *b) { int x, res, oldused; /* copy */ if (b->alloc < a->used) { if ((res = mp_grow(b, a->used)) != MP_OKAY) { return res; } } oldused = b->used; b->used = a->used; { mp_digit r, rr, *tmpa, *tmpb; /* source alias */ tmpa = a->dp + b->used - 1; /* dest alias */ tmpb = b->dp + b->used - 1; /* carry */ r = 0; for (x = b->used - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1; /* shift the current digit, add in carry and store */ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); /* forward carry to next iteration */ r = rr; } /* zero excess digits */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; mp_clamp(b); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DIV_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d) { mp_digit D, r, rr; int x, res; mp_int t; /* if the shift count is <= 0 then we do no work */ if (b <= 0) { res = mp_copy(a, c); if (d != NULL) { mp_zero(d); } return res; } if ((res = mp_init(&t)) != MP_OKAY) { return res; } /* get the remainder */ if (d != NULL) { if ((res = mp_mod_2d(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } } /* copy */ if ((res = mp_copy(a, c)) != MP_OKAY) { mp_clear(&t); return res; } /* shift by as many digits in the bit count */ if (b >= (int)DIGIT_BIT) { mp_rshd(c, b / DIGIT_BIT); } /* shift any bit count < DIGIT_BIT */ D = (mp_digit)(b % DIGIT_BIT); if (D != 0) { mp_digit *tmpc, mask, shift; /* mask */ mask = (((mp_digit)1) << D) - 1; /* shift for lsb */ shift = DIGIT_BIT - D; /* alias */ tmpc = c->dp + (c->used - 1); /* carry */ r = 0; for (x = c->used - 1; x >= 0; x--) { /* get the lower bits of this word in a temp */ rr = *tmpc & mask; /* shift the current word and mix in the carry bits from the previous word */ *tmpc = (*tmpc >> D) | (r << shift); --tmpc; /* set the carry to the carry bits of the current word found above */ r = rr; } } mp_clamp(c); if (d != NULL) { mp_exch(&t, d); } mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DIV_3_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* divide by three (based on routine from MPI and the GMP manual) */ int mp_div_3(mp_int *a, mp_int *c, mp_digit *d) { mp_int q; mp_word w, t; mp_digit b; int res, ix; /* b = 2**DIGIT_BIT / 3 */ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3); if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); if (w >= 3) { /* multiply w by [1/3] */ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT); /* now subtract 3 * [w/3] from w, to get the remainder */ w -= t + t + t; /* fixup the remainder as required since * the optimization is not exact. */ while (w >= 3) { t += 1; w -= 3; } } else { t = 0; } q.dp[ix] = (mp_digit)t; } /* [optional] store the remainder */ if (d != NULL) { *d = (mp_digit)w; } /* [optional] store the quotient */ if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DIV_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ static int s_is_power_of_two(mp_digit b, int *p) { int x; /* fast return if no power of two */ if ((b == 0) || ((b & (b - 1)) != 0)) { return 0; } for (x = 0; x < DIGIT_BIT; x++) { if (b == (((mp_digit)1) << x)) { *p = x; return 1; } } return 0; } /* single digit division (based on routine from MPI) */ int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d) { mp_int q; mp_word w; mp_digit t; int res, ix; /* cannot divide by zero */ if (b == 0) { return MP_VAL; } /* quick outs */ if ((b == 1) || (mp_iszero(a) == MP_YES)) { if (d != NULL) { *d = 0; } if (c != NULL) { return mp_copy(a, c); } return MP_OKAY; } /* power of two ? */ if (s_is_power_of_two(b, &ix) == 1) { if (d != NULL) { *d = a->dp[0] & ((((mp_digit)1) << ix) - 1); } if (c != NULL) { return mp_div_2d(a, ix, c, NULL); } return MP_OKAY; } #ifdef BN_MP_DIV_3_C /* three? */ if (b == 3) { return mp_div_3(a, c, d); } #endif /* no easy answer [c'est la vie]. Just division */ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); if (w >= b) { t = (mp_digit)(w / b); w -= ((mp_word)t) * ((mp_word)b); } else { t = 0; } q.dp[ix] = (mp_digit)t; } if (d != NULL) { *d = (mp_digit)w; } if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DR_IS_MODULUS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if a number is a valid DR modulus */ int mp_dr_is_modulus(mp_int *a) { int ix; /* must be at least two digits */ if (a->used < 2) { return 0; } /* must be of the form b**k - a [a <= b] so all * but the first digit must be equal to -1 (mod b). */ for (ix = 1; ix < a->used; ix++) { if (a->dp[ix] != MP_MASK) { return 0; } } return 1; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DR_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. * * Based on algorithm from the paper * * "Generating Efficient Primes for Discrete Log Cryptosystems" * Chae Hoon Lim, Pil Joong Lee, * POSTECH Information Research Laboratories * * The modulus must be of a special format [see manual] * * Has been modified to use algorithm 7.10 from the LTM book instead * * Input x must be in the range 0 <= x <= (n-1)**2 */ int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k) { int err, i, m; mp_word r; mp_digit mu, *tmpx1, *tmpx2; /* m = digits in modulus */ m = n->used; /* ensure that "x" has at least 2m digits */ if (x->alloc < (m + m)) { if ((err = mp_grow(x, m + m)) != MP_OKAY) { return err; } } /* top of loop, this is where the code resumes if * another reduction pass is required. */ top: /* aliases for digits */ /* alias for lower half of x */ tmpx1 = x->dp; /* alias for upper half of x, or x/B**m */ tmpx2 = x->dp + m; /* set carry to zero */ mu = 0; /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { r = (((mp_word) * tmpx2++) * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } /* set final carry */ *tmpx1++ = mu; /* zero words above m */ for (i = m + 1; i < x->used; i++) { *tmpx1++ = 0; } /* clamp, sub and return */ mp_clamp(x); /* if x >= n then subtract and reduce again * Each successive "recursion" makes the input smaller and smaller. */ if (mp_cmp_mag(x, n) != MP_LT) { if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { return err; } goto top; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_DR_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines the setup value */ void mp_dr_setup(mp_int *a, mp_digit *d) { /* the casts are required if DIGIT_BIT is one less than * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] */ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - ((mp_word)a->dp[0])); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXCH_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* swap the elements of two integers, for cases where you can't simply swap the * mp_int pointers around */ void mp_exch(mp_int *a, mp_int *b) { mp_int t; t = *a; *a = *b; *b = t; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXPORT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* based on gmp's mpz_export. * see http://gmplib.org/manual/Integer-Import-and-Export.html */ int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, mp_int *op) { int result; size_t odd_nails, nail_bytes, i, j, bits, count; unsigned char odd_nail_mask; mp_int t; if ((result = mp_init_copy(&t, op)) != MP_OKAY) { return result; } if (endian == 0) { union { unsigned int i; char c[4]; } lint; lint.i = 0x01020304; endian = (lint.c[0] == 4) ? -1 : 1; } odd_nails = (nails % 8); odd_nail_mask = 0xff; for (i = 0; i < odd_nails; ++i) { odd_nail_mask ^= (1 << (7 - i)); } nail_bytes = nails / 8; bits = mp_count_bits(&t); count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0); for (i = 0; i < count; ++i) { for (j = 0; j < size; ++j) { unsigned char *byte = ( (unsigned char *)rop + (((order == -1) ? i : ((count - 1) - i)) * size) + ((endian == -1) ? j : ((size - 1) - j)) ); if (j >= (size - nail_bytes)) { *byte = 0; continue; } *byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF)); if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) { mp_clear(&t); return result; } } } mp_clear(&t); if (countp != NULL) { *countp = count; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXPT_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* wrapper function for mp_expt_d_ex() */ int mp_expt_d(mp_int *a, mp_digit b, mp_int *c) { return mp_expt_d_ex(a, b, c, 0); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXPT_D_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* calculate c = a**b using a square-multiply algorithm */ int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast) { int res; unsigned int x; mp_int g; if ((res = mp_init_copy(&g, a)) != MP_OKAY) { return res; } /* set initial result */ mp_set(c, 1); if (fast != 0) { while (b > 0) { /* if the bit is set multiply */ if ((b & 1) != 0) { if ((res = mp_mul(c, &g, c)) != MP_OKAY) { mp_clear(&g); return res; } } /* square */ if (b > 1) { if ((res = mp_sqr(&g, &g)) != MP_OKAY) { mp_clear(&g); return res; } } /* shift to next bit */ b >>= 1; } } else { for (x = 0; x < DIGIT_BIT; x++) { /* square */ if ((res = mp_sqr(c, c)) != MP_OKAY) { mp_clear(&g); return res; } /* if the bit is set multiply */ if ((b & (mp_digit)(((mp_digit)1) << (DIGIT_BIT - 1))) != 0) { if ((res = mp_mul(c, &g, c)) != MP_OKAY) { mp_clear(&g); return res; } } /* shift to next bit */ b <<= 1; } } /* if ... else */ mp_clear(&g); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y) { int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { #ifdef BN_MP_INVMOD_C mp_int tmpG, tmpX; int err; /* first compute 1/G mod P */ if ((err = mp_init(&tmpG)) != MP_OKAY) { return err; } if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { mp_clear(&tmpG); return err; } /* now get |X| */ if ((err = mp_init(&tmpX)) != MP_OKAY) { mp_clear(&tmpG); return err; } if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { mp_clear_multi(&tmpG, &tmpX, NULL); return err; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); mp_clear_multi(&tmpG, &tmpX, NULL); return err; #else /* no invmod */ return MP_VAL; #endif } /* modified diminished radix reduction */ #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) if (mp_reduce_is_2k_l(P) == MP_YES) { return s_mp_exptmod(G, X, P, Y, 1); } #endif #ifdef BN_MP_DR_IS_MODULUS_C /* is it a DR modulus? */ dr = mp_dr_is_modulus(P); #else /* default to no */ dr = 0; #endif #ifdef BN_MP_REDUCE_IS_2K_C /* if not, is it a unrestricted DR modulus? */ if (dr == 0) { dr = mp_reduce_is_2k(P) << 1; } #endif /* if the modulus is odd or dr != 0 use the montgomery method */ #ifdef BN_MP_EXPTMOD_FAST_C if ((mp_isodd(P) == MP_YES) || (dr != 0)) { return mp_exptmod_fast(G, X, P, Y, dr); } else { #endif #ifdef BN_S_MP_EXPTMOD_C /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); #else /* no exptmod for evens */ return MP_VAL; #endif #ifdef BN_MP_EXPTMOD_FAST_C } #endif } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXPTMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 * * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. * The value of k changes based on the size of the exponent. * * Uses Montgomery or Diminished Radix reduction [whichever appropriate] */ #ifdef MP_LOW_MEM #define TAB_SIZE 32 #else #define TAB_SIZE 256 #endif int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res; mp_digit buf, mp; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; /* use a pointer to the reduction algorithm. This allows us to use * one of many reduction algorithms without modding the guts of * the code with if statements everywhere. */ int (*redux)(mp_int *, mp_int *, mp_digit); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } #ifdef MP_LOW_MEM if (winsize > 5) { winsize = 5; } #endif /* init M array */ /* init first cell */ if ((err = mp_init(&M[1])) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1 << (winsize - 1); x < (1 << winsize); x++) { if ((err = mp_init(&M[x])) != MP_OKAY) { for (y = 1 << (winsize - 1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* determine and setup reduction code */ if (redmode == 0) { #ifdef BN_MP_MONTGOMERY_SETUP_C /* now setup montgomery */ if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) { goto LBL_M; } #else err = MP_VAL; goto LBL_M; #endif /* automatically pick the comba one if available (saves quite a few calls/ifs) */ #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C if ((((P->used * 2) + 1) < MP_WARRAY) && (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { redux = fast_mp_montgomery_reduce; } else #endif { #ifdef BN_MP_MONTGOMERY_REDUCE_C /* use slower baseline Montgomery method */ redux = mp_montgomery_reduce; #else err = MP_VAL; goto LBL_M; #endif } } else if (redmode == 1) { #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) /* setup DR reduction for moduli of the form B**k - b */ mp_dr_setup(P, &mp); redux = mp_dr_reduce; #else err = MP_VAL; goto LBL_M; #endif } else { #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) /* setup DR reduction for moduli of the form 2**k - b */ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { goto LBL_M; } redux = mp_reduce_2k; #else err = MP_VAL; goto LBL_M; #endif } /* setup result */ if ((err = mp_init(&res)) != MP_OKAY) { goto LBL_M; } /* create M table * * * The first half of the table is not computed though accept for M[0] and M[1] */ if (redmode == 0) { #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* now we need R mod m */ if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) { goto LBL_RES; } #else err = MP_VAL; goto LBL_RES; #endif /* now set M[1] to G * R mod m */ if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) { goto LBL_RES; } } else { mp_set(&res, 1); if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { goto LBL_RES; } } /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_RES; } for (x = 0; x < (winsize - 1); x++) { if ((err = mp_sqr(&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { goto LBL_RES; } } /* create upper table */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&M[x], P, mp)) != MP_OKAY) { goto LBL_RES; } } /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for ( ; ; ) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } /* get next bit of the window */ bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } } } if (redmode == 0) { /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } /* swap res with Y */ mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_M: mp_clear(&M[1]); for (x = 1 << (winsize - 1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_EXTEUCLID_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) { mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp; int err; if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { return err; } /* initialize, (u1,u2,u3) = (1,0,a) */ mp_set(&u1, 1); if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; } /* initialize, (v1,v2,v3) = (0,1,b) */ mp_set(&v2, 1); if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; } /* loop while v3 != 0 */ while (mp_iszero(&v3) == MP_NO) { /* q = u3/v3 */ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; } /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; } if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; } if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; } if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; } if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; } if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; } /* (u1,u2,u3) = (v1,v2,v3) */ if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; } if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; } if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; } /* (v1,v2,v3) = (t1,t2,t3) */ if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; } if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; } if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; } } /* make sure U3 >= 0 */ if (u3.sign == MP_NEG) { if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { goto _ERR; } if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { goto _ERR; } if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { goto _ERR; } } /* copy result out */ if (U1 != NULL) { mp_exch(U1, &u1); } if (U2 != NULL) { mp_exch(U2, &u2); } if (U3 != NULL) { mp_exch(U3, &u3); } err = MP_OKAY; _ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_FREAD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* read a bigint from a file stream in ASCII */ int mp_fread(mp_int *a, int radix, FILE *stream) { int err, ch, neg, y; /* clear a */ mp_zero(a); /* if first digit is - then set negative */ ch = fgetc(stream); if (ch == '-') { neg = MP_NEG; ch = fgetc(stream); } else { neg = MP_ZPOS; } for ( ; ; ) { /* find y in the radix map */ for (y = 0; y < radix; y++) { if (mp_s_rmap[y] == ch) { break; } } if (y == radix) { break; } /* shift up and add */ if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) { return err; } if ((err = mp_add_d(a, y, a)) != MP_OKAY) { return err; } ch = fgetc(stream); } if (mp_cmp_d(a, 0) != MP_EQ) { a->sign = neg; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_FWRITE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ int mp_fwrite(mp_int *a, int radix, FILE *stream) { char *buf; int err, len, x; if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { return err; } buf = OPT_CAST(char) XMALLOC(len); if (buf == NULL) { return MP_MEM; } if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { XFREE(buf); return err; } for (x = 0; x < len; x++) { if (fputc(buf[x], stream) == EOF) { XFREE(buf); return MP_VAL; } } XFREE(buf); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_GCD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Greatest Common Divisor using the binary method */ int mp_gcd(mp_int *a, mp_int *b, mp_int *c) { mp_int u, v; int k, u_lsb, v_lsb, res; /* either zero than gcd is the largest */ if (mp_iszero(a) == MP_YES) { return mp_abs(b, c); } if (mp_iszero(b) == MP_YES) { return mp_abs(a, c); } /* get copies of a and b we can modify */ if ((res = mp_init_copy(&u, a)) != MP_OKAY) { return res; } if ((res = mp_init_copy(&v, b)) != MP_OKAY) { goto LBL_U; } /* must be positive for the remainder of the algorithm */ u.sign = v.sign = MP_ZPOS; /* B1. Find the common power of two for u and v */ u_lsb = mp_cnt_lsb(&u); v_lsb = mp_cnt_lsb(&v); k = MIN(u_lsb, v_lsb); if (k > 0) { /* divide the power of two out */ if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { goto LBL_V; } if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* divide any remaining factors of two out */ if (u_lsb != k) { if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { goto LBL_V; } } if (v_lsb != k) { if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } while (mp_iszero(&v) == MP_NO) { /* make sure v is the largest */ if (mp_cmp_mag(&u, &v) == MP_GT) { /* swap u and v to make sure v is >= u */ mp_exch(&u, &v); } /* subtract smallest from largest */ if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_V; } /* Divide out all factors of two */ if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* multiply by 2**k which we divided out at the beginning */ if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) { goto LBL_V; } c->sign = MP_ZPOS; res = MP_OKAY; LBL_V: mp_clear(&u); LBL_U: mp_clear(&v); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_GET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the lower 32-bits of an mp_int */ unsigned long mp_get_int(mp_int *a) { int i; mp_min_u32 res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ i = MIN(a->used, (int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a, i); while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a, i); } /* force result to 32-bits always so it is consistent on non 32-bit platforms */ return res & 0xFFFFFFFFUL; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_GET_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the lower unsigned long of an mp_int, platform dependent */ unsigned long mp_get_long(mp_int *a) { int i; unsigned long res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ i = MIN(a->used, (int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a, i); #if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32) while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a, i); } #endif return res; } #endif #ifdef BN_MP_GET_LONG_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the lower unsigned long long of an mp_int, platform dependent */ unsigned long long mp_get_long_long(mp_int *a) { int i; unsigned long long res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ i = MIN(a->used, (int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a, i); #if DIGIT_BIT < 64 while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a, i); } #endif return res; } #endif #ifdef BN_MP_GROW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* grow as required */ int mp_grow(mp_int *a, int size) { int i; mp_digit *tmp; /* if the alloc size is smaller alloc more ram */ if (a->alloc < size) { /* ensure there are always at least MP_PREC digits extra on top */ size += (MP_PREC * 2) - (size % MP_PREC); /* reallocate the array a->dp * * We store the return in a temporary variable * in case the operation failed we don't want * to overwrite the dp member of a. */ tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * size); if (tmp == NULL) { /* reallocation failed but "a" is still valid [can be freed] */ return MP_MEM; } /* reallocation succeeded so set a->dp */ a->dp = tmp; /* zero excess digits */ i = a->alloc; a->alloc = size; for ( ; i < a->alloc; i++) { a->dp[i] = 0; } } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_IMPORT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* based on gmp's mpz_import. * see http://gmplib.org/manual/Integer-Import-and-Export.html */ int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op) { int result; size_t odd_nails, nail_bytes, i, j; unsigned char odd_nail_mask; mp_zero(rop); if (endian == 0) { union { unsigned int i; char c[4]; } lint; lint.i = 0x01020304; endian = (lint.c[0] == 4) ? -1 : 1; } odd_nails = (nails % 8); odd_nail_mask = 0xff; for (i = 0; i < odd_nails; ++i) { odd_nail_mask ^= (1 << (7 - i)); } nail_bytes = nails / 8; for (i = 0; i < count; ++i) { for (j = 0; j < (size - nail_bytes); ++j) { unsigned char byte = *( (unsigned char *)op + (((order == 1) ? i : ((count - 1) - i)) * size) + ((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes)) ); if ( (result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) { return result; } rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte; rop->used += 1; } } mp_clamp(rop); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INIT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* init a new mp_int */ int mp_init(mp_int *a) { int i; /* allocate memory required and clear it */ a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * MP_PREC); if (a->dp == NULL) { return MP_MEM; } /* set the digits to zero */ for (i = 0; i < MP_PREC; i++) { a->dp[i] = 0; } /* set the used to zero, allocated digits to the default precision * and sign to positive */ a->used = 0; a->alloc = MP_PREC; a->sign = MP_ZPOS; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INIT_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* creates "a" then copies b into it */ int mp_init_copy(mp_int *a, mp_int *b) { int res; if ((res = mp_init_size(a, b->used)) != MP_OKAY) { return res; } return mp_copy(b, a); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INIT_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #include int mp_init_multi(mp_int *mp, ...) { mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ int n = 0; /* Number of ok inits */ mp_int *cur_arg = mp; va_list args; va_start(args, mp); /* init args to next argument from caller */ while (cur_arg != NULL) { if (mp_init(cur_arg) != MP_OKAY) { /* Oops - error! Back-track and mp_clear what we already succeeded in init-ing, then return error. */ va_list clean_args; /* end the current list */ va_end(args); /* now start cleaning up */ cur_arg = mp; va_start(clean_args, mp); while (n-- != 0) { mp_clear(cur_arg); cur_arg = va_arg(clean_args, mp_int *); } va_end(clean_args); res = MP_MEM; break; } n++; cur_arg = va_arg(args, mp_int *); } va_end(args); return res; /* Assumed ok, if error flagged above. */ } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INIT_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* initialize and set a digit */ int mp_init_set(mp_int *a, mp_digit b) { int err; if ((err = mp_init(a)) != MP_OKAY) { return err; } mp_set(a, b); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INIT_SET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* initialize and set a digit */ int mp_init_set_int(mp_int *a, unsigned long b) { int err; if ((err = mp_init(a)) != MP_OKAY) { return err; } return mp_set_int(a, b); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INIT_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* init an mp_init for a given size */ int mp_init_size(mp_int *a, int size) { int x; /* pad size so there are always extra digits */ size += (MP_PREC * 2) - (size % MP_PREC); /* alloc mem */ a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * size); if (a->dp == NULL) { return MP_MEM; } /* set the members */ a->used = 0; a->alloc = size; a->sign = MP_ZPOS; /* zero the digits */ for (x = 0; x < size; x++) { a->dp[x] = 0; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* hac 14.61, pp608 */ int mp_invmod(mp_int *a, mp_int *b, mp_int *c) { /* b cannot be negative */ if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { return MP_VAL; } #ifdef BN_FAST_MP_INVMOD_C /* if the modulus is odd we can use a faster routine instead */ if (mp_isodd(b) == MP_YES) { return fast_mp_invmod(a, b, c); } #endif #ifdef BN_MP_INVMOD_SLOW_C return mp_invmod_slow(a, b, c); #else return MP_VAL; #endif } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_INVMOD_SLOW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* hac 14.61, pp608 */ int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c) { mp_int x, y, u, v, A, B, C, D; int res; /* b cannot be negative */ if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { return MP_VAL; } /* init temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) { return res; } /* x = a, y = b */ if ((res = mp_mod(a, b, &x)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(b, &y)) != MP_OKAY) { goto LBL_ERR; } /* 2. [modified] if x,y are both even then return an error! */ if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) { res = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&A, 1); mp_set(&D, 1); top: /* 4. while u is even do */ while (mp_iseven(&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if A or B is odd then */ if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) { /* A = (A+y)/2, B = (B-x)/2 */ if ((res = mp_add(&A, &y, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* A = A/2, B = B/2 */ if ((res = mp_div_2(&A, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven(&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if C or D is odd then */ if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) { /* C = (C+y)/2, D = (D-x)/2 */ if ((res = mp_add(&C, &y, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* C = C/2, D = D/2 */ if ((res = mp_div_2(&C, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, A = A - C, B = B - D */ if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, C = C - A, D = D - B */ if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero(&u) == MP_NO) goto top; /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* if its too low */ while (mp_cmp_d(&C, 0) == MP_LT) { if ((res = mp_add(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&C, b) != MP_LT) { if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* C is now the inverse */ mp_exch(&C, c); res = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_IS_SQUARE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Check if remainders are possible squares - fast exclude non-squares */ static const char rem_128[128] = { 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 }; static const char rem_105[105] = { 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 }; /* Store non-zero to ret if arg is square, and zero if not */ int mp_is_square(mp_int *arg, int *ret) { int res; mp_digit c; mp_int t; unsigned long r; /* Default to Non-square :) */ *ret = MP_NO; if (arg->sign == MP_NEG) { return MP_VAL; } /* digits used? (TSD) */ if (arg->used == 0) { return MP_OKAY; } /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ if (rem_128[127 & DIGIT(arg, 0)] == 1) { return MP_OKAY; } /* Next check mod 105 (3*5*7) */ if ((res = mp_mod_d(arg, 105, &c)) != MP_OKAY) { return res; } if (rem_105[c] == 1) { return MP_OKAY; } if ((res = mp_init_set_int(&t, 11L * 13L * 17L * 19L * 23L * 29L * 31L)) != MP_OKAY) { return res; } if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) { goto ERR; } r = mp_get_int(&t); /* Check for other prime modules, note it's not an ERROR but we must * free "t" so the easiest way is to goto ERR. We know that res * is already equal to MP_OKAY from the mp_mod call */ if (((1L << (r % 11)) & 0x5C4L) != 0L) goto ERR; if (((1L << (r % 13)) & 0x9E4L) != 0L) goto ERR; if (((1L << (r % 17)) & 0x5CE8L) != 0L) goto ERR; if (((1L << (r % 19)) & 0x4F50CL) != 0L) goto ERR; if (((1L << (r % 23)) & 0x7ACCA0L) != 0L) goto ERR; if (((1L << (r % 29)) & 0xC2EDD0CL) != 0L) goto ERR; if (((1L << (r % 31)) & 0x6DE2B848L) != 0L) goto ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ if ((res = mp_sqrt(arg, &t)) != MP_OKAY) { goto ERR; } if ((res = mp_sqr(&t, &t)) != MP_OKAY) { goto ERR; } *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO; ERR: mp_clear(&t); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_JACOBI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes the jacobi c = (a | n) (or Legendre if n is prime) * HAC pp. 73 Algorithm 2.149 * HAC is wrong here, as the special case of (0 | 1) is not * handled correctly. */ int mp_jacobi(mp_int *a, mp_int *n, int *c) { mp_int a1, p1; int k, s, r, res; mp_digit residue; /* if n <= 0 return MP_VAL */ if (mp_cmp_d(n, 0) != MP_GT) { return MP_VAL; } /* step 1. handle case of a == 0 */ if (mp_iszero(a) == MP_YES) { /* special case of a == 0 and n == 1 */ if (mp_cmp_d(n, 1) == MP_EQ) { *c = 1; } else { *c = 0; } return MP_OKAY; } /* step 2. if a == 1, return 1 */ if (mp_cmp_d(a, 1) == MP_EQ) { *c = 1; return MP_OKAY; } /* default */ s = 0; /* step 3. write a = a1 * 2**k */ if ((res = mp_init_copy(&a1, a)) != MP_OKAY) { return res; } if ((res = mp_init(&p1)) != MP_OKAY) { goto LBL_A1; } /* divide out larger power of two */ k = mp_cnt_lsb(&a1); if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { goto LBL_P1; } /* step 4. if e is even set s=1 */ if ((k & 1) == 0) { s = 1; } else { /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ residue = n->dp[0] & 7; if ((residue == 1) || (residue == 7)) { s = 1; } else if ((residue == 3) || (residue == 5)) { s = -1; } } /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ if (((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { s = -s; } /* if a1 == 1 we're done */ if (mp_cmp_d(&a1, 1) == MP_EQ) { *c = s; } else { /* n1 = n mod a1 */ if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) { goto LBL_P1; } if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) { goto LBL_P1; } *c = s * r; } /* done */ res = MP_OKAY; LBL_P1: mp_clear(&p1); LBL_A1: mp_clear(&a1); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_KARATSUBA_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* c = |a| * |b| using Karatsuba Multiplication using * three half size multiplications * * Let B represent the radix [e.g. 2**DIGIT_BIT] and * let n represent half of the number of digits in * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * * Then, a * b => a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 * * Note that a1b1 and a0b0 are used twice and only need to be * computed once. So in total three half size (half # of * digit) multiplications are performed, a0b0, a1b1 and * (a1+b1)(a0+b0) * * Note that a multiplication of half the digits requires * 1/4th the number of single precision multiplications so in * total after one call 25% of the single precision multiplications * are saved. Note also that the call to mp_mul can end up back * in this function if the a0, a1, b0, or b1 are above the threshold. * This is known as divide-and-conquer and leads to the famous * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than * the standard O(N**2) that the baseline/comba methods use. * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c) { mp_int x0, x1, y0, y1, t1, x0y0, x1y1; int B, err; /* default the return code to an error */ err = MP_MEM; /* min # of digits */ B = MIN(a->used, b->used); /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size(&x0, B) != MP_OKAY) goto ERR; if (mp_init_size(&x1, a->used - B) != MP_OKAY) goto X0; if (mp_init_size(&y0, B) != MP_OKAY) goto X1; if (mp_init_size(&y1, b->used - B) != MP_OKAY) goto Y0; /* init temps */ if (mp_init_size(&t1, B * 2) != MP_OKAY) goto Y1; if (mp_init_size(&x0y0, B * 2) != MP_OKAY) goto T1; if (mp_init_size(&x1y1, B * 2) != MP_OKAY) goto X0Y0; /* now shift the digits */ x0.used = y0.used = B; x1.used = a->used - B; y1.used = b->used - B; { int x; mp_digit *tmpa, *tmpb, *tmpx, *tmpy; /* we copy the digits directly instead of using higher level functions * since we also need to shift the digits */ tmpa = a->dp; tmpb = b->dp; tmpx = x0.dp; tmpy = y0.dp; for (x = 0; x < B; x++) { *tmpx++ = *tmpa++; *tmpy++ = *tmpb++; } tmpx = x1.dp; for (x = B; x < a->used; x++) { *tmpx++ = *tmpa++; } tmpy = y1.dp; for (x = B; x < b->used; x++) { *tmpy++ = *tmpb++; } } /* only need to clamp the lower words since by definition the * upper words x1/y1 must have a known number of digits */ mp_clamp(&x0); mp_clamp(&y0); /* now calc the products x0y0 and x1y1 */ /* after this x0 is no longer required, free temp [x0==t2]! */ if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1; /* x0y0 = x0*y0 */ if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) goto X1Y1; /* x1y1 = x1*y1 */ /* now calc x1+x0 and y1+y0 */ if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = x1 - x0 */ if (s_mp_add(&y1, &y0, &x0) != MP_OKAY) goto X1Y1; /* t2 = y1 - y0 */ if (mp_mul(&t1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ /* add x0y0 */ if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY) goto X1Y1; /* t2 = x0y0 + x1y1 */ if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ /* shift by B */ if (mp_lshd(&t1, B) != MP_OKAY) goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<used; /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size(&x0, B) != MP_OKAY) goto ERR; if (mp_init_size(&x1, a->used - B) != MP_OKAY) goto X0; /* init temps */ if (mp_init_size(&t1, a->used * 2) != MP_OKAY) goto X1; if (mp_init_size(&t2, a->used * 2) != MP_OKAY) goto T1; if (mp_init_size(&x0x0, B * 2) != MP_OKAY) goto T2; if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY) goto X0X0; { int x; mp_digit *dst, *src; src = a->dp; /* now shift the digits */ dst = x0.dp; for (x = 0; x < B; x++) { *dst++ = *src++; } dst = x1.dp; for (x = B; x < a->used; x++) { *dst++ = *src++; } } x0.used = B; x1.used = a->used - B; mp_clamp(&x0); /* now calc the products x0*x0 and x1*x1 */ if (mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1; /* x0x0 = x0*x0 */ if (mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1; /* x1x1 = x1*x1 */ /* now calc (x1+x0)**2 */ if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) goto X1X1; /* t1 = x1 - x0 */ if (mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ /* add x0y0 */ if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY) goto X1X1; /* t2 = x0x0 + x1x1 */ if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */ /* shift by B */ if (mp_lshd(&t1, B) != MP_OKAY) goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<sign = MP_ZPOS; LBL_T: mp_clear_multi(&t1, &t2, NULL); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_LSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift left a certain amount of digits */ int mp_lshd(mp_int *a, int b) { int x, res; /* if its less than zero return */ if (b <= 0) { return MP_OKAY; } /* grow to fit the new digits */ if (a->alloc < (a->used + b)) { if ((res = mp_grow(a, a->used + b)) != MP_OKAY) { return res; } } { mp_digit *top, *bottom; /* increment the used by the shift amount then copy upwards */ a->used += b; /* top */ top = a->dp + a->used - 1; /* base */ bottom = (a->dp + a->used - 1) - b; /* much like mp_rshd this is implemented using a sliding window * except the window goes the otherway around. Copying from * the bottom to the top. see bn_mp_rshd.c for more info. */ for (x = a->used - 1; x >= b; x--) { *top-- = *bottom--; } /* zero the lower digits */ top = a->dp; for (x = 0; x < b; x++) { *top++ = 0; } } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */ int mp_mod(mp_int *a, mp_int *b, mp_int *c) { mp_int t; int res; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) { mp_clear(&t); return res; } if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) { res = MP_OKAY; mp_exch(&t, c); } else { res = mp_add(b, &t, c); } mp_clear(&t); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MOD_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* calc a value mod 2**b */ int mp_mod_2d(mp_int *a, int b, mp_int *c) { int x, res; /* if b is <= 0 then zero the int */ if (b <= 0) { mp_zero(c); return MP_OKAY; } /* if the modulus is larger than the value than return */ if (b >= (int)(a->used * DIGIT_BIT)) { res = mp_copy(a, c); return res; } /* copy */ if ((res = mp_copy(a, c)) != MP_OKAY) { return res; } /* zero digits above the last digit of the modulus */ for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) { c->dp[x] = 0; } /* clear the digit that is not completely outside/inside the modulus */ c->dp[b / DIGIT_BIT] &= (mp_digit)((((mp_digit)1) << (((mp_digit)b) % DIGIT_BIT)) - ((mp_digit)1)); mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MOD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c) { return mp_div_d(a, b, NULL, c); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* * shifts with subtractions when the result is greater than b. * * The method is slightly modified to shift B unconditionally upto just under * the leading bit of b. This saves alot of multiple precision shifting. */ int mp_montgomery_calc_normalization(mp_int *a, mp_int *b) { int x, bits, res; /* how many bits of last digit does b use */ bits = mp_count_bits(b) % DIGIT_BIT; if (b->used > 1) { if ((res = mp_2expt(a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) { return res; } } else { mp_set(a, 1); bits = 1; } /* now compute C = A * B mod b */ for (x = bits - 1; x < (int)DIGIT_BIT; x++) { if ((res = mp_mul_2(a, a)) != MP_OKAY) { return res; } if (mp_cmp_mag(a, b) != MP_LT) { if ((res = s_mp_sub(a, b, a)) != MP_OKAY) { return res; } } } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho) { int ix, res, digs; mp_digit mu; /* can the fast reduction [comba] method be used? * * Note that unlike in mul you're safely allowed *less* * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ digs = (n->used * 2) + 1; if ((digs < MP_WARRAY) && (n->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_mp_montgomery_reduce(x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { if ((res = mp_grow(x, digs)) != MP_OKAY) { return res; } } x->used = digs; for (ix = 0; ix < n->used; ix++) { /* mu = ai * rho mod b * * The value of rho must be precalculated via * montgomery_setup() such that * it equals -1/n0 mod b this allows the * following inner loop to reduce the * input one digit at a time */ mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK); /* a = a + mu * m * b**i */ { int iy; mp_digit *tmpn, *tmpx, u; mp_word r; /* alias for digits of the modulus */ tmpn = n->dp; /* alias for the digits of x [the input] */ tmpx = x->dp + ix; /* set the carry to zero */ u = 0; /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu * (mp_word) * tmpn++) + (mp_word)u + (mp_word) * tmpx; /* get carry */ u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); /* fix digit */ *tmpx++ = (mp_digit)(r & ((mp_word)MP_MASK)); } /* At this point the ix'th digit of x should be zero */ /* propagate carries upwards as required*/ while (u != 0) { *tmpx += u; u = *tmpx >> DIGIT_BIT; *tmpx++ &= MP_MASK; } } } /* at this point the n.used'th least * significant digits of x are all zero * which means we can shift x to the * right by n.used digits and the * residue is unchanged. */ /* x = x/b**n.used */ mp_clamp(x); mp_rshd(x, n->used); /* if x >= n then x = x - n */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MONTGOMERY_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* setups the montgomery reduction stuff */ int mp_montgomery_setup(mp_int *n, mp_digit *rho) { mp_digit x, b; /* fast inversion mod 2**k * * Based on the fact that * * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) * => 2*X*A - X*X*A*A = 1 * => 2*(1) - (1) = 1 */ b = n->dp[0]; if ((b & 1) == 0) { return MP_VAL; } x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ x *= 2 - (b * x); /* here x*a==1 mod 2**8 */ #if !defined(MP_8BIT) x *= 2 - (b * x); /* here x*a==1 mod 2**16 */ #endif #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) x *= 2 - (b * x); /* here x*a==1 mod 2**32 */ #endif #ifdef MP_64BIT x *= 2 - (b * x); /* here x*a==1 mod 2**64 */ #endif /* rho = -1/m mod b */ *rho = (mp_digit)(((mp_word)1 << ((mp_word)DIGIT_BIT)) - x) & MP_MASK; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* high level multiplication (handles sign) */ int mp_mul(mp_int *a, mp_int *b, mp_int *c) { int res, neg; neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; /* use Toom-Cook? */ #ifdef BN_MP_TOOM_MUL_C if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) { res = mp_toom_mul(a, b, c); } else #endif #ifdef BN_MP_KARATSUBA_MUL_C /* use Karatsuba? */ if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { res = mp_karatsuba_mul(a, b, c); } else #endif { /* can we use the fast multiplier? * * The fast multiplier can be used if the output will * have less than MP_WARRAY digits and the number of * digits won't affect carry propagation */ int digs = a->used + b->used + 1; #ifdef BN_FAST_S_MP_MUL_DIGS_C if ((digs < MP_WARRAY) && (MIN(a->used, b->used) <= (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { res = fast_s_mp_mul_digs(a, b, c, digs); } else #endif { #ifdef BN_S_MP_MUL_DIGS_C res = s_mp_mul(a, b, c); /* uses s_mp_mul_digs */ #else res = MP_VAL; #endif } } c->sign = (c->used > 0) ? neg : MP_ZPOS; return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MUL_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = a*2 */ int mp_mul_2(mp_int *a, mp_int *b) { int x, res, oldused; /* grow to accomodate result */ if (b->alloc < (a->used + 1)) { if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) { return res; } } oldused = b->used; b->used = a->used; { mp_digit r, rr, *tmpa, *tmpb; /* alias for source */ tmpa = a->dp; /* alias for dest */ tmpb = b->dp; /* carry */ r = 0; for (x = 0; x < a->used; x++) { /* get what will be the *next* carry bit from the * MSB of the current digit */ rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; /* copy the carry that would be from the source * digit into the next iteration */ r = rr; } /* new leading digit? */ if (r != 0) { /* add a MSB which is always 1 at this point */ *tmpb = 1; ++(b->used); } /* now zero any excess digits on the destination * that we didn't write to */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MUL_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift left by a certain bit count */ int mp_mul_2d(mp_int *a, int b, mp_int *c) { mp_digit d; int res; /* copy */ if (a != c) { if ((res = mp_copy(a, c)) != MP_OKAY) { return res; } } if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) { if ((res = mp_grow(c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) { return res; } } /* shift by as many digits in the bit count */ if (b >= (int)DIGIT_BIT) { if ((res = mp_lshd(c, b / DIGIT_BIT)) != MP_OKAY) { return res; } } /* shift any bit count < DIGIT_BIT */ d = (mp_digit)(b % DIGIT_BIT); if (d != 0) { mp_digit *tmpc, shift, mask, r, rr; int x; /* bitmask for carries */ mask = (((mp_digit)1) << d) - 1; /* shift for msbs */ shift = DIGIT_BIT - d; /* alias */ tmpc = c->dp; /* carry */ r = 0; for (x = 0; x < c->used; x++) { /* get the higher bits of the current word */ rr = (*tmpc >> shift) & mask; /* shift the current word and OR in the carry */ *tmpc = ((*tmpc << d) | r) & MP_MASK; ++tmpc; /* set the carry to the carry bits of the current word */ r = rr; } /* set final carry */ if (r != 0) { c->dp[(c->used)++] = r; } } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MUL_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiply by a digit */ int mp_mul_d(mp_int *a, mp_digit b, mp_int *c) { mp_digit u, *tmpa, *tmpc; mp_word r; int ix, res, olduse; /* make sure c is big enough to hold a*b */ if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* get the original destinations used count */ olduse = c->used; /* set the sign */ c->sign = a->sign; /* alias for a->dp [source] */ tmpa = a->dp; /* alias for c->dp [dest] */ tmpc = c->dp; /* zero carry */ u = 0; /* compute columns */ for (ix = 0; ix < a->used; ix++) { /* compute product and carry sum for this term */ r = (mp_word)u + ((mp_word) * tmpa++ *(mp_word)b); /* mask off higher bits to get a single digit */ *tmpc++ = (mp_digit)(r & ((mp_word)MP_MASK)); /* send carry into next iteration */ u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } /* store final carry [if any] and increment ix offset */ *tmpc++ = u; ++ix; /* now zero digits above the top */ while (ix++ < olduse) { *tmpc++ = 0; } /* set used count */ c->used = a->used + 1; mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_MULMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* d = a * b (mod c) */ int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_mul(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, c, d); mp_clear(&t); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_N_ROOT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* wrapper function for mp_n_root_ex() * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a */ int mp_n_root(mp_int *a, mp_digit b, mp_int *c) { return mp_n_root_ex(a, b, c, 0); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_N_ROOT_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* find the n'th root of an integer * * Result found such that (c)**b <= a and (c+1)**b > a * * This algorithm uses Newton's approximation * x[i+1] = x[i] - f(x[i])/f'(x[i]) * which will find the root in log(N) time where * each step involves a fair bit. This is not meant to * find huge roots [square and cube, etc]. */ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast) { mp_int t1, t2, t3; int res, neg; /* input must be positive if b is even */ if (((b & 1) == 0) && (a->sign == MP_NEG)) { return MP_VAL; } if ((res = mp_init(&t1)) != MP_OKAY) { return res; } if ((res = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init(&t3)) != MP_OKAY) { goto LBL_T2; } /* if a is negative fudge the sign but keep track */ neg = a->sign; a->sign = MP_ZPOS; /* t2 = 2 */ mp_set(&t2, 2); do { /* t1 = t2 */ if ((res = mp_copy(&t2, &t1)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ /* t3 = t1**(b-1) */ if ((res = mp_expt_d_ex(&t1, b - 1, &t3, fast)) != MP_OKAY) { goto LBL_T3; } /* numerator */ /* t2 = t1**b */ if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1**b - a */ if ((res = mp_sub(&t2, a, &t2)) != MP_OKAY) { goto LBL_T3; } /* denominator */ /* t3 = t1**(b-1) * b */ if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) { goto LBL_T3; } /* t3 = (t1**b - a)/(b * t1**(b-1)) */ if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) { goto LBL_T3; } if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) { goto LBL_T3; } } while (mp_cmp(&t1, &t2) != MP_EQ); /* result can be off by a few so check */ for ( ; ; ) { if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) { goto LBL_T3; } if (mp_cmp(&t2, a) == MP_GT) { if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) { goto LBL_T3; } } else { break; } } /* reset the sign of a first */ a->sign = neg; /* set the result */ mp_exch(&t1, c); /* set the sign of the result */ c->sign = neg; res = MP_OKAY; LBL_T3: mp_clear(&t3); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_NEG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = -a */ int mp_neg(mp_int *a, mp_int *b) { int res; if (a != b) { if ((res = mp_copy(a, b)) != MP_OKAY) { return res; } } if (mp_iszero(b) != MP_YES) { b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; } else { b->sign = MP_ZPOS; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_OR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* OR two ints together */ int mp_or(mp_int *a, mp_int *b, mp_int *c) { int res, ix, px; mp_int t, *x; if (a->used > b->used) { if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } px = b->used; x = b; } else { if ((res = mp_init_copy(&t, b)) != MP_OKAY) { return res; } px = a->used; x = a; } for (ix = 0; ix < px; ix++) { t.dp[ix] |= x->dp[ix]; } mp_clamp(&t); mp_exch(c, &t); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_FERMAT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* performs one Fermat test. * * If "a" were prime then b**a == b (mod a) since the order of * the multiplicative sub-group would be phi(a) = a-1. That means * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). * * Sets result to 1 if the congruence holds, or zero otherwise. */ int mp_prime_fermat(mp_int *a, mp_int *b, int *result) { mp_int t; int err; /* default to composite */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1) != MP_GT) { return MP_VAL; } /* init t */ if ((err = mp_init(&t)) != MP_OKAY) { return err; } /* compute t = b**a mod a */ if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) { goto LBL_T; } /* is it equal to b? */ if (mp_cmp(&t, b) == MP_EQ) { *result = MP_YES; } err = MP_OKAY; LBL_T: mp_clear(&t); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_IS_DIVISIBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if an integers is divisible by one * of the first PRIME_SIZE primes or not * * sets result to 0 if not, 1 if yes */ int mp_prime_is_divisible(mp_int *a, int *result) { int err, ix; mp_digit res; /* default to not */ *result = MP_NO; for (ix = 0; ix < PRIME_SIZE; ix++) { /* what is a mod LBL_prime_tab[ix] */ if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) { return err; } /* is the residue zero? */ if (res == 0) { *result = MP_YES; return MP_OKAY; } } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_IS_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* performs a variable number of rounds of Miller-Rabin * * Probability of error after t rounds is no more than * * Sets result to 1 if probably prime, 0 otherwise */ int mp_prime_is_prime(mp_int *a, int t, int *result) { mp_int b; int ix, err, res; /* default to no */ *result = MP_NO; /* valid value of t? */ if ((t <= 0) || (t > PRIME_SIZE)) { return MP_VAL; } /* is the input equal to one of the primes in the table? */ for (ix = 0; ix < PRIME_SIZE; ix++) { if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { *result = 1; return MP_OKAY; } } /* first perform trial division */ if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) { return err; } /* return if it was trivially divisible */ if (res == MP_YES) { return MP_OKAY; } /* now perform the miller-rabin rounds */ if ((err = mp_init(&b)) != MP_OKAY) { return err; } for (ix = 0; ix < t; ix++) { /* set the prime */ mp_set(&b, ltm_prime_tab[ix]); if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } } /* passed the test */ *result = MP_YES; LBL_B: mp_clear(&b); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_MILLER_RABIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Miller-Rabin test of "a" to the base of "b" as described in * HAC pp. 139 Algorithm 4.24 * * Sets result to 0 if definitely composite or 1 if probably prime. * Randomly the chance of error is no more than 1/4 and often * very much lower. */ int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result) { mp_int n1, y, r; int s, j, err; /* default */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1) != MP_GT) { return MP_VAL; } /* get n1 = a - 1 */ if ((err = mp_init_copy(&n1, a)) != MP_OKAY) { return err; } if ((err = mp_sub_d(&n1, 1, &n1)) != MP_OKAY) { goto LBL_N1; } /* set 2**s * r = n1 */ if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) { goto LBL_N1; } /* count the number of least significant bits * which are zero */ s = mp_cnt_lsb(&r); /* now divide n - 1 by 2**s */ if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) { goto LBL_R; } /* compute y = b**r mod a */ if ((err = mp_init(&y)) != MP_OKAY) { goto LBL_R; } if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) { goto LBL_Y; } /* if y != 1 and y != n1 do */ if ((mp_cmp_d(&y, 1) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) { j = 1; /* while j <= s-1 and y != n1 */ while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) { if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) { goto LBL_Y; } /* if y == 1 then composite */ if (mp_cmp_d(&y, 1) == MP_EQ) { goto LBL_Y; } ++j; } /* if y != n1 then composite */ if (mp_cmp(&y, &n1) != MP_EQ) { goto LBL_Y; } } /* probably prime now */ *result = MP_YES; LBL_Y: mp_clear(&y); LBL_R: mp_clear(&r); LBL_N1: mp_clear(&n1); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_NEXT_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) { int err, res = MP_NO, x, y; mp_digit res_tab[PRIME_SIZE], step, kstep; mp_int b; /* ensure t is valid */ if ((t <= 0) || (t > PRIME_SIZE)) { return MP_VAL; } /* force positive */ a->sign = MP_ZPOS; /* simple algo if a is less than the largest prime in the table */ if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE - 1]) == MP_LT) { /* find which prime it is bigger than */ for (x = PRIME_SIZE - 2; x >= 0; x--) { if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { if (bbs_style == 1) { /* ok we found a prime smaller or * equal [so the next is larger] * * however, the prime must be * congruent to 3 mod 4 */ if ((ltm_prime_tab[x + 1] & 3) != 3) { /* scan upwards for a prime congruent to 3 mod 4 */ for (y = x + 1; y < PRIME_SIZE; y++) { if ((ltm_prime_tab[y] & 3) == 3) { mp_set(a, ltm_prime_tab[y]); return MP_OKAY; } } } } else { mp_set(a, ltm_prime_tab[x + 1]); return MP_OKAY; } } } /* at this point a maybe 1 */ if (mp_cmp_d(a, 1) == MP_EQ) { mp_set(a, 2); return MP_OKAY; } /* fall through to the sieve */ } /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ if (bbs_style == 1) { kstep = 4; } else { kstep = 2; } /* at this point we will use a combination of a sieve and Miller-Rabin */ if (bbs_style == 1) { /* if a mod 4 != 3 subtract the correct value to make it so */ if ((a->dp[0] & 3) != 3) { if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; } } } else { if (mp_iseven(a) == MP_YES) { /* force odd */ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { return err; } } } /* generate the restable */ for (x = 1; x < PRIME_SIZE; x++) { if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) { return err; } } /* init temp used for Miller-Rabin Testing */ if ((err = mp_init(&b)) != MP_OKAY) { return err; } for ( ; ; ) { /* skip to the next non-trivially divisible candidate */ step = 0; do { /* y == 1 if any residue was zero [e.g. cannot be prime] */ y = 0; /* increase step to next candidate */ step += kstep; /* compute the new residue without using division */ for (x = 1; x < PRIME_SIZE; x++) { /* add the step to each residue */ res_tab[x] += kstep; /* subtract the modulus [instead of using division] */ if (res_tab[x] >= ltm_prime_tab[x]) { res_tab[x] -= ltm_prime_tab[x]; } /* set flag if zero */ if (res_tab[x] == 0) { y = 1; } } } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep))); /* add the step */ if ((err = mp_add_d(a, step, a)) != MP_OKAY) { goto LBL_ERR; } /* if didn't pass sieve and step == MAX then skip test */ if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) { continue; } /* is this prime? */ for (x = 0; x < t; x++) { mp_set(&b, ltm_prime_tab[x]); if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_ERR; } if (res == MP_NO) { break; } } if (res == MP_YES) { break; } } err = MP_OKAY; LBL_ERR: mp_clear(&b); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ static const struct { int k, t; } https_internal_sizes[] = { { 128, 28 }, { 256, 16 }, { 384, 10 }, { 512, 7 }, { 640, 6 }, { 768, 5 }, { 896, 4 }, { 1024, 4 } }; /* returns # of RM trials required for a given bit size */ int mp_prime_rabin_miller_trials(int size) { int x; for (x = 0; x < (int)(sizeof(https_internal_sizes) / (sizeof(https_internal_sizes[0]))); x++) { if (https_internal_sizes[x].k == size) { return https_internal_sizes[x].t; } else if (https_internal_sizes[x].k > size) { return (x == 0) ? https_internal_sizes[0].t : https_internal_sizes[x - 1].t; } } return https_internal_sizes[x - 1].t + 1; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_PRIME_RANDOM_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ /* This is possibly the mother of all prime generation functions, muahahahahaha! */ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) { unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; int res, err, bsize, maskOR_msb_offset; /* sanity check the input */ if ((size <= 1) || (t <= 0)) { return MP_VAL; } /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ if ((flags & LTM_PRIME_SAFE) != 0) { flags |= LTM_PRIME_BBS; } /* calc the byte size */ bsize = (size >> 3) + ((size & 7) ? 1 : 0); /* we need a buffer of bsize bytes */ tmp = OPT_CAST(unsigned char) XMALLOC(bsize); if (tmp == NULL) { return MP_MEM; } /* calc the maskAND value for the MSbyte*/ maskAND = ((size & 7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); /* calc the maskOR_msb */ maskOR_msb = 0; maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; if ((flags & LTM_PRIME_2MSB_ON) != 0) { maskOR_msb |= 0x80 >> ((9 - size) & 7); } /* get the maskOR_lsb */ maskOR_lsb = 1; if ((flags & LTM_PRIME_BBS) != 0) { maskOR_lsb |= 3; } do { /* read the bytes */ if (cb(tmp, bsize, dat) != bsize) { err = MP_VAL; goto error; } /* work over the MSbyte */ tmp[0] &= maskAND; tmp[0] |= 1 << ((size - 1) & 7); /* mix in the maskORs */ tmp[maskOR_msb_offset] |= maskOR_msb; tmp[bsize - 1] |= maskOR_lsb; /* read it in */ if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; } /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } if (res == MP_NO) { continue; } if ((flags & LTM_PRIME_SAFE) != 0) { /* see if (a-1)/2 is prime */ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; } if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } } } while (res == MP_NO); if ((flags & LTM_PRIME_SAFE) != 0) { /* restore a to the original value */ if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; } } err = MP_OKAY; error: XFREE(tmp); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_RADIX_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* returns size of ASCII reprensentation */ int mp_radix_size(mp_int *a, int radix, int *size) { int res, digs; mp_int t; mp_digit d; *size = 0; /* make sure the radix is in range */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } if (mp_iszero(a) == MP_YES) { *size = 2; return MP_OKAY; } /* special case for binary */ if (radix == 2) { *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1; return MP_OKAY; } /* digs is the digit count */ digs = 0; /* if it's negative add one for the sign */ if (a->sign == MP_NEG) { ++digs; } /* init a copy of the input */ if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } /* force temp to positive */ t.sign = MP_ZPOS; /* fetch out all of the digits */ while (mp_iszero(&t) == MP_NO) { if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return res; } ++digs; } mp_clear(&t); /* return digs + 1, the 1 is for the NULL byte that would be required. */ *size = digs + 1; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_RADIX_SMAP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* chars used in radix conversions */ const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_RAND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* makes a pseudo-random int of a given size */ int mp_rand(mp_int *a, int digits) { int res; mp_digit d; mp_zero(a); if (digits <= 0) { return MP_OKAY; } /* first place a random non-zero digit */ do { d = ((mp_digit)abs(MP_GEN_RANDOM())) & MP_MASK; } while (d == 0); if ((res = mp_add_d(a, d, a)) != MP_OKAY) { return res; } while (--digits > 0) { if ((res = mp_lshd(a, 1)) != MP_OKAY) { return res; } if ((res = mp_add_d(a, ((mp_digit)abs(MP_GEN_RANDOM())), a)) != MP_OKAY) { return res; } } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_READ_RADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* read a string [ASCII] in a given radix */ int mp_read_radix(mp_int *a, const char *str, int radix) { int y, res, neg; char ch; /* zero the digit bignum */ mp_zero(a); /* make sure the radix is ok */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } /* if the leading digit is a * minus set the sign to negative. */ if (*str == '-') { ++str; neg = MP_NEG; } else { neg = MP_ZPOS; } /* set the integer to the default of zero */ mp_zero(a); /* process each digit of the string */ while (*str != '\0') { /* if the radix <= 36 the conversion is case insensitive * this allows numbers like 1AB and 1ab to represent the same value * [e.g. in hex] */ ch = (radix <= 36) ? (char)toupper((int)*str) : *str; for (y = 0; y < 64; y++) { if (ch == mp_s_rmap[y]) { break; } } /* if the char was found in the map * and is less than the given radix add it * to the number, otherwise exit the loop. */ if (y < radix) { if ((res = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) { return res; } if ((res = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) { return res; } } else { break; } ++str; } /* set the sign only if a != 0 */ if (mp_iszero(a) != MP_YES) { a->sign = neg; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_READ_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* read signed bin, big endian, first byte is 0==positive or 1==negative */ int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) { int res; /* read magnitude */ if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) { return res; } /* first byte is 0 for positive, non-zero for negative */ if (b[0] == 0) { a->sign = MP_ZPOS; } else { a->sign = MP_NEG; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_READ_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reads a unsigned char array, assumes the msb is stored first [big endian] */ int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) { int res; /* make sure there are at least two digits */ if (a->alloc < 2) { if ((res = mp_grow(a, 2)) != MP_OKAY) { return res; } } /* zero the int */ mp_zero(a); /* read the bytes in */ while (c-- > 0) { if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) { return res; } #ifndef MP_8BIT a->dp[0] |= *b++; a->used += 1; #else a->dp[0] = (*b & MP_MASK); a->dp[1] |= ((*b++ >> 7U) & 1); a->used += 2; #endif } mp_clamp(a); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reduces x mod m, assumes 0 < x < m**2, mu is * precomputed via mp_reduce_setup. * From HAC pp.604 Algorithm 14.42 */ int mp_reduce(mp_int *x, mp_int *m, mp_int *mu) { mp_int q; int res, um = m->used; /* q = x */ if ((res = mp_init_copy(&q, x)) != MP_OKAY) { return res; } /* q1 = x / b**(k-1) */ mp_rshd(&q, um - 1); /* according to HAC this optimization is ok */ if (((mp_digit)um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) { goto CLEANUP; } } else { #ifdef BN_S_MP_MUL_HIGH_DIGS_C if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) if ((res = fast_s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } #else { res = MP_VAL; goto CLEANUP; } #endif } /* q3 = q2 / b**(k+1) */ mp_rshd(&q, um + 1); /* x = x mod b**(k+1), quick (no division) */ if ((res = mp_mod_2d(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { goto CLEANUP; } /* q = q * m mod b**(k+1), quick (no division) */ if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) { goto CLEANUP; } /* x = x - q */ if ((res = mp_sub(x, &q, x)) != MP_OKAY) { goto CLEANUP; } /* If x < 0, add b**(k+1) to it */ if (mp_cmp_d(x, 0) == MP_LT) { mp_set(&q, 1); if ((res = mp_lshd(&q, um + 1)) != MP_OKAY) goto CLEANUP; if ((res = mp_add(x, &q, x)) != MP_OKAY) goto CLEANUP; } /* Back off if it's too big */ while (mp_cmp(x, m) != MP_LT) { if ((res = s_mp_sub(x, m, x)) != MP_OKAY) { goto CLEANUP; } } CLEANUP: mp_clear(&q); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reduces a modulo n where n is of the form 2**p - d */ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) { mp_int q; int p, res; if ((res = mp_init(&q)) != MP_OKAY) { return res; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } if (d != 1) { /* q = q * d */ if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { goto ERR; } } /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { goto ERR; } goto top; } ERR: mp_clear(&q); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reduces a modulo n where n is of the form 2**p - d This differs from reduce_2k since "d" can be larger than a single digit. */ int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) { mp_int q; int p, res; if ((res = mp_init(&q)) != MP_OKAY) { return res; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } /* q = q * d */ if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { goto ERR; } /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { goto ERR; } goto top; } ERR: mp_clear(&q); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_2K_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines the setup value */ int mp_reduce_2k_setup(mp_int *a, mp_digit *d) { int res, p; mp_int tmp; if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } p = mp_count_bits(a); if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { mp_clear(&tmp); return res; } if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { mp_clear(&tmp); return res; } *d = tmp.dp[0]; mp_clear(&tmp); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_2K_SETUP_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines the setup value */ int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) { int res; mp_int tmp; if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { goto ERR; } if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { goto ERR; } ERR: mp_clear(&tmp); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_IS_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if mp_reduce_2k can be used */ int mp_reduce_is_2k(mp_int *a) { int ix, iy, iw; mp_digit iz; if (a->used == 0) { return MP_NO; } else if (a->used == 1) { return MP_YES; } else if (a->used > 1) { iy = mp_count_bits(a); iz = 1; iw = 1; /* Test every bit from the second digit up, must be 1 */ for (ix = DIGIT_BIT; ix < iy; ix++) { if ((a->dp[iw] & iz) == 0) { return MP_NO; } iz <<= 1; if (iz > (mp_digit)MP_MASK) { ++iw; iz = 1; } } } return MP_YES; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_IS_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if reduce_2k_l can be used */ int mp_reduce_is_2k_l(mp_int *a) { int ix, iy; if (a->used == 0) { return MP_NO; } else if (a->used == 1) { return MP_YES; } else if (a->used > 1) { /* if more than half of the digits are -1 we're sold */ for (iy = ix = 0; ix < a->used; ix++) { if (a->dp[ix] == MP_MASK) { ++iy; } } return (iy >= (a->used / 2)) ? MP_YES : MP_NO; } return MP_NO; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_REDUCE_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* pre-calculate the value required for Barrett reduction * For a given modulus "b" it calulates the value required in "a" */ int mp_reduce_setup(mp_int *a, mp_int *b) { int res; if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { return res; } return mp_div(a, b, a, NULL); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_RSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift right a certain amount of digits */ void mp_rshd(mp_int *a, int b) { int x; /* if b <= 0 then ignore it */ if (b <= 0) { return; } /* if b > used then simply zero it and return */ if (a->used <= b) { mp_zero(a); return; } { mp_digit *bottom, *top; /* shift the digits down */ /* bottom */ bottom = a->dp; /* top [offset into digits] */ top = a->dp + b; /* this is implemented as a sliding window where * the window is b-digits long and digits from * the top of the window are copied to the bottom * * e.g. b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> /\ | ----> **\-------------------/ ----> */ for (x = 0; x < (a->used - b); x++) { *bottom++ = *top++; } /* zero the top digits */ for ( ; x < a->used; x++) { *bottom++ = 0; } } /* remove excess digits */ a->used -= b; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set to a digit */ void mp_set(mp_int *a, mp_digit b) { mp_zero(a); a->dp[0] = b & MP_MASK; a->used = (a->dp[0] != 0) ? 1 : 0; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b) { int x, res; mp_zero(a); /* set four bits at a time */ for (x = 0; x < 8; x++) { /* shift the number up four bits */ if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) { return res; } /* OR in the top four bits of the source */ a->dp[0] |= (b >> 28) & 15; /* shift the source up to the next four bits */ b <<= 4; /* ensure that digits are not clamped off */ a->used += 1; } mp_clamp(a); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SET_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set a platform dependent unsigned long int */ MP_SET_XLONG(mp_set_long, unsigned long) #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SET_LONG_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set a platform dependent unsigned long long int */ MP_SET_XLONG(mp_set_long_long, unsigned long long) #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SHRINK_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shrink a bignum */ int mp_shrink(mp_int *a) { mp_digit *tmp; int used = 1; if (a->used > 0) { used = a->used; } if (a->alloc != used) { if ((tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * used)) == NULL) { return MP_MEM; } a->dp = tmp; a->alloc = used; } return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the size for an signed equivalent */ int mp_signed_bin_size(mp_int *a) { return 1 + mp_unsigned_bin_size(a); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes b = a*a */ int mp_sqr(mp_int *a, mp_int *b) { int res; #ifdef BN_MP_TOOM_SQR_C /* use Toom-Cook? */ if (a->used >= TOOM_SQR_CUTOFF) { res = mp_toom_sqr(a, b); /* Karatsuba? */ } else #endif #ifdef BN_MP_KARATSUBA_SQR_C if (a->used >= KARATSUBA_SQR_CUTOFF) { res = mp_karatsuba_sqr(a, b); } else #endif { #ifdef BN_FAST_S_MP_SQR_C /* can we use the fast comba multiplier? */ if ((((a->used * 2) + 1) < MP_WARRAY) && (a->used < (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) { res = fast_s_mp_sqr(a, b); } else #endif { #ifdef BN_S_MP_SQR_C res = s_mp_sqr(a, b); #else res = MP_VAL; #endif } } b->sign = MP_ZPOS; return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SQRMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* c = a * a (mod b) */ int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_sqr(a, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, b, c); mp_clear(&t); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SQRT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* this function is less generic than mp_n_root, simpler and faster */ int mp_sqrt(mp_int *arg, mp_int *ret) { int res; mp_int t1, t2; /* must be positive */ if (arg->sign == MP_NEG) { return MP_VAL; } /* easy out */ if (mp_iszero(arg) == MP_YES) { mp_zero(ret); return MP_OKAY; } if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) { return res; } if ((res = mp_init(&t2)) != MP_OKAY) { goto E2; } /* First approx. (not very bad for large arg) */ mp_rshd(&t1, t1.used / 2); /* t1 > 0 */ if ((res = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) { goto E1; } if ((res = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto E1; } if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) { goto E1; } /* And now t1 > sqrt(arg) */ do { if ((res = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) { goto E1; } if ((res = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto E1; } if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) { goto E1; } /* t1 >= sqrt(arg) >= t2 at this point */ } while (mp_cmp_mag(&t1, &t2) == MP_GT); mp_exch(&t1, ret); E1: mp_clear(&t2); E2: mp_clear(&t1); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library is free for all purposes without any express * guarantee it works. */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html * */ int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) { int res, legendre; mp_int t1, C, Q, S, Z, M, T, R, two; mp_digit i; /* first handle the simple cases */ if (mp_cmp_d(n, 0) == MP_EQ) { mp_zero(ret); return MP_OKAY; } if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { return res; } /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: res = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; if (i == 3) { if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; /* Q = prime - 1 */ mp_zero(&S); /* S = 0 */ while (mp_iseven(&Q) != MP_NO) { if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; /* Q = Q / 2 */ if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; /* Z = 2 */ while (1) { if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; if (legendre == -1) break; if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; /* Z = Z + 1 */ } if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; /* C = Z ^ Q mod prime */ if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; /* t1 = (Q + 1) / 2 */ if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = n ^ ((Q + 1) / 2) mod prime */ if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; /* T = n ^ Q mod prime */ if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; /* M = S */ if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; res = MP_VAL; while (1) { if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; i = 0; while (1) { if (mp_cmp_d(&t1, 1) == MP_EQ) break; if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; i++; } if (i == 0) { if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; } if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = 2 ^ (M - i - 1) */ if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; /* C = (t1 * t1) mod prime */ if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = (R * t1) mod prime */ if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; /* T = (T * C) mod prime */ mp_set(&M, i); /* M = i */ } cleanup: mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); return res; } #endif #ifdef BN_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* high level subtraction (handles signs) */ int mp_sub(mp_int *a, mp_int *b, mp_int *c) { int sa, sb, res; sa = a->sign; sb = b->sign; if (sa != sb) { /* subtract a negative from a positive, OR */ /* subtract a positive from a negative. */ /* In either case, ADD their magnitudes, */ /* and use the sign of the first number. */ c->sign = sa; res = s_mp_add(a, b, c); } else { /* subtract a positive from a positive, OR */ /* subtract a negative from a negative. */ /* First, take the difference between their */ /* magnitudes, then... */ if (mp_cmp_mag(a, b) != MP_LT) { /* Copy the sign from the first */ c->sign = sa; /* The first has a larger or equal magnitude */ res = s_mp_sub(a, b, c); } else { /* The result has the *opposite* sign from */ /* the first number. */ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; /* The second has a larger magnitude */ res = s_mp_sub(b, a, c); } } return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SUB_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* single digit subtraction */ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c) { mp_digit *tmpa, *tmpc, mu; int res, ix, oldused; /* grow c as required */ if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative just do an unsigned * addition [with fudged signs] */ if (a->sign == MP_NEG) { a->sign = MP_ZPOS; res = mp_add_d(a, b, c); a->sign = c->sign = MP_NEG; /* clamp */ mp_clamp(c); return res; } /* setup regs */ oldused = c->used; tmpa = a->dp; tmpc = c->dp; /* if a <= b simply fix the single digit */ if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) { if (a->used == 1) { *tmpc++ = b - *tmpa; } else { *tmpc++ = b; } ix = 1; /* negative/1digit */ c->sign = MP_NEG; c->used = 1; } else { /* positive/size */ c->sign = MP_ZPOS; c->used = a->used; /* subtract first digit */ *tmpc = *tmpa++ - b; mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); *tmpc++ &= MP_MASK; /* handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ - mu; mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); *tmpc++ &= MP_MASK; } } /* zero excess digits */ while (ix++ < oldused) { *tmpc++ = 0; } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_SUBMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* d = a - b (mod c) */ int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_sub(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, c, d); mp_clear(&t); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_TO_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in signed [big endian] format */ int mp_to_signed_bin(mp_int *a, unsigned char *b) { int res; if ((res = mp_to_unsigned_bin(a, b + 1)) != MP_OKAY) { return res; } b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1; return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_TO_SIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in signed [big endian] format */ int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen) { if (*outlen < (unsigned long)mp_signed_bin_size(a)) { return MP_VAL; } *outlen = mp_signed_bin_size(a); return mp_to_signed_bin(a, b); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_TO_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in unsigned [big endian] format */ int mp_to_unsigned_bin(mp_int *a, unsigned char *b) { int x, res; mp_int t; if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } x = 0; while (mp_iszero(&t) == MP_NO) { #ifndef MP_8BIT b[x++] = (unsigned char)(t.dp[0] & 255); #else b[x++] = (unsigned char)(t.dp[0] | ((t.dp[1] & 0x01) << 7)); #endif if ((res = mp_div_2d(&t, 8, &t, NULL)) != MP_OKAY) { mp_clear(&t); return res; } } bn_reverse(b, x); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_TOOM_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiplication using the Toom-Cook 3-way algorithm * * Much more complicated than Karatsuba but has a lower * asymptotic running time of O(N**1.464). This algorithm is * only particularly useful on VERY large inputs * (we're talking 1000s of digits here...). */ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) { mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; int res, B; /* init temps */ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { return res; } /* B */ B = MIN(a->used, b->used) / 3; /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto ERR; } if ((res = mp_copy(a, &a1)) != MP_OKAY) { goto ERR; } mp_rshd(&a1, B); if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { goto ERR; } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto ERR; } mp_rshd(&a2, B * 2); /* b = b2 * B**2 + b1 * B + b0 */ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { goto ERR; } if ((res = mp_copy(b, &b1)) != MP_OKAY) { goto ERR; } mp_rshd(&b1, B); (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1); if ((res = mp_copy(b, &b2)) != MP_OKAY) { goto ERR; } mp_rshd(&b2, B * 2); /* w0 = a0*b0 */ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { goto ERR; } /* w4 = a2 * b2 */ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { goto ERR; } /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { goto ERR; } /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { goto ERR; } /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { goto ERR; } /* now solve the matrix 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication */ /* r1 - r4 */ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { goto ERR; } /* r3 - r0 */ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { goto ERR; } /* r1/2 */ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { goto ERR; } /* r3/2 */ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { goto ERR; } /* r2 - r0 - r4 */ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { goto ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto ERR; } /* r1 - 8r0 */ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { goto ERR; } /* r3 - 8r4 */ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { goto ERR; } /* 3r2 - r1 - r3 */ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { goto ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto ERR; } /* r1/3 */ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { goto ERR; } /* r3/3 */ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { goto ERR; } /* at this point shift W[n] by B*n */ if ((res = mp_lshd(&w1, 1 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_lshd(&w2, 2 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_lshd(&w3, 3 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_lshd(&w4, 4 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { goto ERR; } ERR: mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_TOOM_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* squaring using Toom-Cook 3-way algorithm */ int mp_toom_sqr(mp_int *a, mp_int *b) { mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; int res, B; /* init temps */ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { return res; } /* B */ B = a->used / 3; /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto ERR; } if ((res = mp_copy(a, &a1)) != MP_OKAY) { goto ERR; } mp_rshd(&a1, B); if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { goto ERR; } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto ERR; } mp_rshd(&a2, B * 2); /* w0 = a0*a0 */ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { goto ERR; } /* w4 = a2 * a2 */ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { goto ERR; } /* w1 = (a2 + 2(a1 + 2a0))**2 */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { goto ERR; } /* w3 = (a0 + 2(a1 + 2a2))**2 */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { goto ERR; } /* w2 = (a2 + a1 + a0)**2 */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { goto ERR; } /* now solve the matrix 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. */ /* r1 - r4 */ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { goto ERR; } /* r3 - r0 */ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { goto ERR; } /* r1/2 */ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { goto ERR; } /* r3/2 */ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { goto ERR; } /* r2 - r0 - r4 */ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { goto ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto ERR; } /* r1 - 8r0 */ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { goto ERR; } /* r3 - 8r4 */ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { goto ERR; } /* 3r2 - r1 - r3 */ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { goto ERR; } if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { goto ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto ERR; } /* r1/3 */ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { goto ERR; } /* r3/3 */ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { goto ERR; } /* at this point shift W[n] by B*n */ if ((res = mp_lshd(&w1, 1 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_lshd(&w2, 2 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_lshd(&w3, 3 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_lshd(&w4, 4 * B)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { goto ERR; } if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { goto ERR; } ERR: mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); return res; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_TORADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* stores a bignum as a ASCII string in a given radix (2..64) */ int mp_toradix(mp_int *a, char *str, int radix) { int res, digs; mp_int t; mp_digit d; char *_s = str; /* check range of the radix */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } /* quick out if its zero */ if (mp_iszero(a) == MP_YES) { *str++ = '0'; *str = '\0'; return MP_OKAY; } if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } /* if it is negative output a - */ if (t.sign == MP_NEG) { ++_s; *str++ = '-'; t.sign = MP_ZPOS; } digs = 0; while (mp_iszero(&t) == MP_NO) { if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return res; } *str++ = mp_s_rmap[d]; ++digs; } /* reverse the digits of the string. In this case _s points * to the first digit [exluding the sign] of the number] */ bn_reverse((unsigned char *)_s, digs); /* append a NULL so the string is properly terminated */ *str = '\0'; mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_UNSIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the size for an unsigned equivalent */ int mp_unsigned_bin_size(mp_int *a) { int size = mp_count_bits(a); return (size / 8) + (((size & 7) != 0) ? 1 : 0); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_XOR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* XOR two ints together */ int mp_xor(mp_int *a, mp_int *b, mp_int *c) { int res, ix, px; mp_int t, *x; if (a->used > b->used) { if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } px = b->used; x = b; } else { if ((res = mp_init_copy(&t, b)) != MP_OKAY) { return res; } px = a->used; x = a; } for (ix = 0; ix < px; ix++) { t.dp[ix] ^= x->dp[ix]; } mp_clamp(&t); mp_exch(c, &t); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_MP_ZERO_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set to zero */ void mp_zero(mp_int *a) { int n; mp_digit *tmp; a->sign = MP_ZPOS; a->used = 0; tmp = a->dp; for (n = 0; n < a->alloc; n++) { *tmp++ = 0; } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_PRIME_TAB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ const mp_digit ltm_prime_tab[] = { 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, #ifndef MP_8BIT 0x0083, 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 #endif }; #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_REVERSE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reverse an array, used for radix code */ void bn_reverse(unsigned char *s, int len) { int ix, iy; unsigned char t; ix = 0; iy = len - 1; while (ix < iy) { t = s[ix]; s[ix] = s[iy]; s[iy] = t; ++ix; --iy; } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_S_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* low level addition, based on HAC pp.594, Algorithm 14.7 */ int s_mp_add(mp_int *a, mp_int *b, mp_int *c) { mp_int *x; int olduse, res, min, max; /* find sizes, we let |a| <= |b| which means we have to sort * them. "x" will point to the input with the most digits */ if (a->used > b->used) { min = b->used; max = a->used; x = a; } else { min = a->used; max = b->used; x = b; } /* init result */ if (c->alloc < (max + 1)) { if ((res = mp_grow(c, max + 1)) != MP_OKAY) { return res; } } /* get old used digit count and set new one */ olduse = c->used; c->used = max + 1; { mp_digit u, *tmpa, *tmpb, *tmpc; int i; /* alias for digit pointers */ /* first input */ tmpa = a->dp; /* second input */ tmpb = b->dp; /* destination */ tmpc = c->dp; /* zero the carry */ u = 0; for (i = 0; i < min; i++) { /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ *tmpc = *tmpa++ + *tmpb++ + u; /* U = carry bit of T[i] */ u = *tmpc >> ((mp_digit)DIGIT_BIT); /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, that is in A+B * if A or B has more digits add those in */ if (min != max) { for ( ; i < max; i++) { /* T[i] = X[i] + U */ *tmpc = x->dp[i] + u; /* U = carry bit of T[i] */ u = *tmpc >> ((mp_digit)DIGIT_BIT); /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } } /* add carry */ *tmpc++ = u; /* clear digits above oldused */ for (i = c->used; i < olduse; i++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_S_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res, mu; mp_digit buf; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; int (*redux)(mp_int *, mp_int *, mp_int *); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } #ifdef MP_LOW_MEM if (winsize > 5) { winsize = 5; } #endif /* init M array */ /* init first cell */ if ((err = mp_init(&M[1])) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1 << (winsize - 1); x < (1 << winsize); x++) { if ((err = mp_init(&M[x])) != MP_OKAY) { for (y = 1 << (winsize - 1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* create mu, used for Barrett reduction */ if ((err = mp_init(&mu)) != MP_OKAY) { goto LBL_M; } if (redmode == 0) { if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) { goto LBL_MU; } redux = mp_reduce; } else { if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) { goto LBL_MU; } redux = mp_reduce_2k_l; } /* create M table * * The M table contains powers of the base, * e.g. M[x] = G**x mod P * * The first half of the table is not * computed though accept for M[0] and M[1] */ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { goto LBL_MU; } /* compute the value at M[1<<(winsize-1)] by squaring * M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } for (x = 0; x < (winsize - 1); x++) { /* square it */ if ((err = mp_sqr(&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } /* reduce modulo P */ if ((err = redux(&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { goto LBL_MU; } } /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) { goto LBL_MU; } if ((err = redux(&M[x], P, &mu)) != MP_OKAY) { goto LBL_MU; } } /* setup result */ if ((err = mp_init(&res)) != MP_OKAY) { goto LBL_MU; } mp_set(&res, 1); /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for ( ; ; ) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits */ if (digidx == -1) { break; } /* read next digit and reset the bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } } } } mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_MU: mp_clear(&mu); LBL_M: mp_clear(&M[1]); for (x = 1 << (winsize - 1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiplies |a| * |b| and only computes upto digs digits of result * HAC pp. 595, Algorithm 14.12 Modified so you can control how * many digits of output are created. */ int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs) { mp_int t; int res, pa, pb, ix, iy; mp_digit u; mp_word r; mp_digit tmpx, *tmpt, *tmpy; /* can we use the fast multiplier? */ if (((digs) < MP_WARRAY) && (MIN(a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_s_mp_mul_digs(a, b, c, digs); } if ((res = mp_init_size(&t, digs)) != MP_OKAY) { return res; } t.used = digs; /* compute the digits of the product directly */ pa = a->used; for (ix = 0; ix < pa; ix++) { /* set the carry to zero */ u = 0; /* limit ourselves to making digs digits of output */ pb = MIN(b->used, digs - ix); /* setup some aliases */ /* copy of the digit from a used within the nested loop */ tmpx = a->dp[ix]; /* an alias for the destination shifted ix places */ tmpt = t.dp + ix; /* an alias for the digits of b */ tmpy = b->dp; /* compute the columns of the output and propagate the carry */ for (iy = 0; iy < pb; iy++) { /* compute the column as a mp_word */ r = (mp_word) * tmpt + ((mp_word)tmpx * (mp_word) * tmpy++) + (mp_word)u; /* the new column is the lower part of the result */ *tmpt++ = (mp_digit)(r & ((mp_word)MP_MASK)); /* get the carry word from the result */ u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } /* set carry if it is placed below digs */ if ((ix + iy) < digs) { *tmpt = u; } } mp_clamp(&t); mp_exch(&t, c); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiplies |a| * |b| and does not compute the lower digs digits * [meant to get the higher part of the product] */ int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs) { mp_int t; int res, pa, pb, ix, iy; mp_digit u; mp_word r; mp_digit tmpx, *tmpt, *tmpy; /* can we use the fast multiplier? */ #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C if (((a->used + b->used + 1) < MP_WARRAY) && (MIN(a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_s_mp_mul_high_digs(a, b, c, digs); } #endif if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) { return res; } t.used = a->used + b->used + 1; pa = a->used; pb = b->used; for (ix = 0; ix < pa; ix++) { /* clear the carry */ u = 0; /* left hand side of A[ix] * B[iy] */ tmpx = a->dp[ix]; /* alias to the address of where the digits will be stored */ tmpt = &(t.dp[digs]); /* alias for where to read the right hand side from */ tmpy = b->dp + (digs - ix); for (iy = digs - ix; iy < pb; iy++) { /* calculate the double precision result */ r = (mp_word) * tmpt + ((mp_word)tmpx * (mp_word) * tmpy++) + (mp_word)u; /* get the lower part */ *tmpt++ = (mp_digit)(r & ((mp_word)MP_MASK)); /* carry the carry */ u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } *tmpt = u; } mp_clamp(&t); mp_exch(&t, c); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ int s_mp_sqr(mp_int *a, mp_int *b) { mp_int t; int res, ix, iy, pa; mp_word r; mp_digit u, tmpx, *tmpt; pa = a->used; if ((res = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) { return res; } /* default used is maximum possible size */ t.used = (2 * pa) + 1; for (ix = 0; ix < pa; ix++) { /* first calculate the digit at 2*ix */ /* calculate double precision result */ r = (mp_word)t.dp[2 * ix] + ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); /* store lower part in result */ t.dp[ix + ix] = (mp_digit)(r & ((mp_word)MP_MASK)); /* get the carry */ u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); /* left hand side of A[ix] * A[iy] */ tmpx = a->dp[ix]; /* alias for where to store the results */ tmpt = t.dp + ((2 * ix) + 1); for (iy = ix + 1; iy < pa; iy++) { /* first calculate the product */ r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); /* now calculate the double precision result, note we use * addition instead of *2 since it's easier to optimize */ r = ((mp_word) * tmpt) + r + r + ((mp_word)u); /* store lower part */ *tmpt++ = (mp_digit)(r & ((mp_word)MP_MASK)); /* get carry */ u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } /* propagate upwards */ while (u != ((mp_digit)0)) { r = ((mp_word) * tmpt) + ((mp_word)u); *tmpt++ = (mp_digit)(r & ((mp_word)MP_MASK)); u = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } } mp_clamp(&t); mp_exch(&t, b); mp_clear(&t); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BN_S_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ int s_mp_sub(mp_int *a, mp_int *b, mp_int *c) { int olduse, res, min, max; /* find sizes */ min = b->used; max = a->used; /* init result */ if (c->alloc < max) { if ((res = mp_grow(c, max)) != MP_OKAY) { return res; } } olduse = c->used; c->used = max; { mp_digit u, *tmpa, *tmpb, *tmpc; int i; /* alias for digit pointers */ tmpa = a->dp; tmpb = b->dp; tmpc = c->dp; /* set carry to zero */ u = 0; for (i = 0; i < min; i++) { /* T[i] = A[i] - B[i] - U */ *tmpc = (*tmpa++ - *tmpb++) - u; /* U = carry bit of T[i] * Note this saves performing an AND operation since * if a carry does occur it will propagate all the way to the * MSB. As a result a single shift is enough to get the carry */ u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1)); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, e.g. if A has more digits than B */ for ( ; i < max; i++) { /* T[i] = A[i] - U */ *tmpc = *tmpa++ - u; /* U = carry bit of T[i] */ u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1)); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* clear digits above used (since we may not have grown result above) */ for (i = c->used; i < olduse; i++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #ifdef BNCORE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Known optimal configurations CPU /Compiler /MUL CUTOFF/SQR CUTOFF ------------------------------------------------------------- Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-) AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35 */ int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */ KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */ TOOM_SQR_CUTOFF = 400; #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt.c Build strings, Tom St Denis */ const char *crypt_build_settings = "LibTomCrypt ""1.17"" (Tom St Denis, tomstdenis@gmail.com)\n" "LibTomCrypt is public domain software.\n" "Built on " __DATE__ " at " __TIME__ "\n\n\n" "Endianess: " #if defined(ENDIAN_NEUTRAL) "neutral\n" #elif defined(ENDIAN_LITTLE) "little" #if defined(ENDIAN_32BITWORD) " (32-bit words)\n" #else " (64-bit words)\n" #endif #elif defined(ENDIAN_BIG) "big" #if defined(ENDIAN_32BITWORD) " (32-bit words)\n" #else " (64-bit words)\n" #endif #endif "Clean stack: " #if defined(LTC_CLEAN_STACK) "enabled\n" #else "disabled\n" #endif "Ciphers built-in:\n" #if defined(LTC_BLOWFISH) " Blowfish\n" #endif #if defined(LTC_RC2) " LTC_RC2\n" #endif #if defined(LTC_RC5) " LTC_RC5\n" #endif #if defined(LTC_RC6) " LTC_RC6\n" #endif #if defined(LTC_SAFERP) " Safer+\n" #endif #if defined(LTC_SAFER) " Safer\n" #endif #if defined(LTC_RIJNDAEL) " Rijndael\n" #endif #if defined(LTC_XTEA) " LTC_XTEA\n" #endif #if defined(LTC_TWOFISH) " Twofish " #if defined(LTC_TWOFISH_SMALL) && defined(LTC_TWOFISH_TABLES) && defined(LTC_TWOFISH_ALL_TABLES) "(small, tables, all_tables)\n" #elif defined(LTC_TWOFISH_SMALL) && defined(LTC_TWOFISH_TABLES) "(small, tables)\n" #elif defined(LTC_TWOFISH_SMALL) && defined(LTC_TWOFISH_ALL_TABLES) "(small, all_tables)\n" #elif defined(LTC_TWOFISH_TABLES) && defined(LTC_TWOFISH_ALL_TABLES) "(tables, all_tables)\n" #elif defined(LTC_TWOFISH_SMALL) "(small)\n" #elif defined(LTC_TWOFISH_TABLES) "(tables)\n" #elif defined(LTC_TWOFISH_ALL_TABLES) "(all_tables)\n" #else "\n" #endif #endif #if defined(LTC_DES) " LTC_DES\n" #endif #if defined(LTC_CAST5) " LTC_CAST5\n" #endif #if defined(LTC_NOEKEON) " Noekeon\n" #endif #if defined(LTC_SKIPJACK) " Skipjack\n" #endif #if defined(LTC_KHAZAD) " Khazad\n" #endif #if defined(LTC_ANUBIS) " Anubis " #endif #if defined(LTC_ANUBIS_TWEAK) " (tweaked)" #endif "\n" #if defined(LTC_KSEED) " LTC_KSEED\n" #endif #if defined(LTC_KASUMI) " KASUMI\n" #endif "\nHashes built-in:\n" #if defined(LTC_SHA512) " LTC_SHA-512\n" #endif #if defined(LTC_SHA384) " LTC_SHA-384\n" #endif #if defined(LTC_SHA256) " LTC_SHA-256\n" #endif #if defined(LTC_SHA224) " LTC_SHA-224\n" #endif #if defined(LTC_TIGER) " LTC_TIGER\n" #endif #if defined(LTC_SHA1) " LTC_SHA1\n" #endif #if defined(LTC_MD5) " LTC_MD5\n" #endif #if defined(LTC_MD4) " LTC_MD4\n" #endif #if defined(LTC_MD2) " LTC_MD2\n" #endif #if defined(LTC_RIPEMD128) " LTC_RIPEMD128\n" #endif #if defined(LTC_RIPEMD160) " LTC_RIPEMD160\n" #endif #if defined(LTC_RIPEMD256) " LTC_RIPEMD256\n" #endif #if defined(LTC_RIPEMD320) " LTC_RIPEMD320\n" #endif #if defined(LTC_WHIRLPOOL) " LTC_WHIRLPOOL\n" #endif #if defined(LTC_CHC_HASH) " LTC_CHC_HASH \n" #endif "\nBlock Chaining Modes:\n" #if defined(LTC_CFB_MODE) " CFB\n" #endif #if defined(LTC_OFB_MODE) " OFB\n" #endif #if defined(LTC_ECB_MODE) " ECB\n" #endif #if defined(LTC_CBC_MODE) " CBC\n" #endif #if defined(LTC_CTR_MODE) " CTR " #endif #if defined(LTC_CTR_OLD) " (CTR_OLD) " #endif "\n" #if defined(LRW_MODE) " LRW_MODE" #if defined(LRW_TABLES) " (LRW_TABLES) " #endif "\n" #endif #if defined(LTC_F8_MODE) " F8 MODE\n" #endif #if defined(LTC_XTS_MODE) " LTC_XTS_MODE\n" #endif "\nMACs:\n" #if defined(LTC_HMAC) " LTC_HMAC\n" #endif #if defined(LTC_OMAC) " LTC_OMAC\n" #endif #if defined(LTC_PMAC) " PMAC\n" #endif #if defined(LTC_PELICAN) " LTC_PELICAN\n" #endif #if defined(LTC_XCBC) " XCBC-MAC\n" #endif #if defined(LTC_F9_MODE) " F9-MAC\n" #endif "\nENC + AUTH modes:\n" #if defined(LTC_EAX_MODE) " LTC_EAX_MODE\n" #endif #if defined(LTC_OCB_MODE) " LTC_OCB_MODE\n" #endif #if defined(LTC_CCM_MODE) " LTC_CCM_MODE\n" #endif #if defined(LTC_GCM_MODE) " LTC_GCM_MODE " #endif #if defined(LTC_GCM_TABLES) " (LTC_GCM_TABLES) " #endif "\n" "\nPRNG:\n" #if defined(LTC_YARROW) " Yarrow\n" #endif #if defined(LTC_SPRNG) " LTC_SPRNG\n" #endif #if defined(LTC_RC4) " LTC_RC4\n" #endif #if defined(LTC_FORTUNA) " Fortuna\n" #endif #if defined(LTC_SOBER128) " LTC_SOBER128\n" #endif "\nPK Algs:\n" #if defined(LTC_MRSA) " RSA \n" #endif #if defined(LTC_MECC) " ECC\n" #endif #if defined(LTC_MDSA) " DSA\n" #endif #if defined(MKAT) " Katja\n" #endif "\nCompiler:\n" #if defined(WIN32) " WIN32 platform detected.\n" #endif #if defined(__CYGWIN__) " CYGWIN Detected.\n" #endif #if defined(__DJGPP__) " DJGPP Detected.\n" #endif #if defined(_MSC_VER) " MSVC compiler detected.\n" #endif #if defined(__GNUC__) " GCC compiler detected.\n" #endif #if defined(INTEL_CC) " Intel C Compiler detected.\n" #endif #if defined(__x86_64__) " x86-64 detected.\n" #endif #if defined(LTC_PPC32) " LTC_PPC32 defined \n" #endif "\nVarious others: " #if defined(LTC_BASE64) " LTC_BASE64 " #endif #if defined(MPI) " MPI " #endif #if defined(TRY_UNRANDOM_FIRST) " TRY_UNRANDOM_FIRST " #endif #if defined(LTC_TEST) " LTC_TEST " #endif #if defined(LTC_PKCS_1) " LTC_PKCS#1 " #endif #if defined(LTC_PKCS_5) " LTC_PKCS#5 " #endif #if defined(LTC_SMALL_CODE) " LTC_SMALL_CODE " #endif #if defined(LTC_NO_FILE) " LTC_NO_FILE " #endif #if defined(LTC_DER) " LTC_DER " #endif #if defined(LTC_FAST) " LTC_FAST " #endif #if defined(LTC_NO_FAST) " LTC_NO_FAST " #endif #if defined(LTC_NO_BSWAP) " LTC_NO_BSWAP " #endif #if defined(LTC_NO_ASM) " LTC_NO_ASM " #endif #if defined(LTC_NO_TEST) " LTC_NO_TEST " #endif #if defined(LTC_NO_TABLES) " LTC_NO_TABLES " #endif #if defined(LTC_PTHREAD) " LTC_PTHREAD " #endif #if defined(LTM_LTC_DESC) " LTM_DESC " #endif #if defined(TFM_LTC_DESC) " TFM_DESC " #endif #if defined(LTC_MECC_ACCEL) " LTC_MECC_ACCEL " #endif #if defined(GMP_LTC_DESC) " GMP_DESC " #endif #if defined(LTC_EASY) " (easy) " #endif #if defined(LTC_MECC_FP) " LTC_MECC_FP " #endif #if defined(LTC_ECC_SHAMIR) " LTC_ECC_SHAMIR " #endif "\n" "\n\n\n" ; /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt.c,v $ */ /* $Revision: 1.36 $ */ /* $Date: 2007/05/12 14:46:12 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file crypt_argchk.c Perform argument checking, Tom St Denis */ #if (ARGTYPE == 0) void crypt_argchk(char *v, char *s, int d) { fprintf(stderr, "LTC_ARGCHK '%s' failure on line %d of file %s\n", v, d, s); (void)raise(SIGABRT); } #endif #ifndef TOMCRYPT_H_ #define TOMCRYPT_H_ #define USE_LTM #define LTM_DESC #define LTC_SHA1 //#include #include #include #include #include #include #include /* use configuration data */ #ifndef TOMCRYPT_CUSTOM_H_ #define TOMCRYPT_CUSTOM_H_ /* macros for various libc functions you can change for embedded targets */ #ifndef XMALLOC #ifdef malloc #define LTC_NO_PROTOTYPES #endif #define XMALLOC malloc #endif #ifndef XREALLOC #ifdef realloc #define LTC_NO_PROTOTYPES #endif #define XREALLOC realloc #endif #ifndef XCALLOC #ifdef calloc #define LTC_NO_PROTOTYPES #endif #define XCALLOC calloc #endif #ifndef XFREE #ifdef free #define LTC_NO_PROTOTYPES #endif #define XFREE free #endif #ifndef XMEMSET #ifdef memset #define LTC_NO_PROTOTYPES #endif #define XMEMSET memset #endif #ifndef XMEMCPY #ifdef memcpy #define LTC_NO_PROTOTYPES #endif #define XMEMCPY memcpy #endif #ifndef XMEMCMP #ifdef memcmp #define LTC_NO_PROTOTYPES #endif #define XMEMCMP memcmp #endif #ifndef XSTRCMP #ifdef strcmp #define LTC_NO_PROTOTYPES #endif #define XSTRCMP strcmp #endif #ifndef XCLOCK #define XCLOCK clock #endif #ifndef XCLOCKS_PER_SEC #define XCLOCKS_PER_SEC CLOCKS_PER_SEC #endif #ifndef XQSORT #ifdef qsort #define LTC_NO_PROTOTYPES #endif #define XQSORT qsort #endif /* Easy button? */ #ifdef LTC_EASY #define LTC_NO_CIPHERS #define LTC_RIJNDAEL #define LTC_BLOWFISH #define LTC_DES #define LTC_CAST5 #define LTC_NO_MODES #define LTC_ECB_MODE #define LTC_CBC_MODE #define LTC_CTR_MODE #define LTC_NO_HASHES #define LTC_SHA1 #define LTC_SHA512 #define LTC_SHA384 #define LTC_SHA256 #define LTC_SHA224 #define LTC_NO_MACS #define LTC_HMAC #define LTC_OMAC #define LTC_CCM_MODE #define LTC_NO_PRNGS #define LTC_SPRNG #define LTC_YARROW #define LTC_DEVRANDOM #define TRY_URANDOM_FIRST #define LTC_NO_PK #define LTC_MRSA #define LTC_MECC #endif /* Use small code where possible */ /* #define LTC_SMALL_CODE */ /* Enable self-test test vector checking */ #ifndef LTC_NO_TEST #define LTC_TEST #endif /* clean the stack of functions which put private information on stack */ /* #define LTC_CLEAN_STACK */ /* disable all file related functions */ /* #define LTC_NO_FILE */ /* disable all forms of ASM */ /* #define LTC_NO_ASM */ /* disable FAST mode */ /* #define LTC_NO_FAST */ /* disable BSWAP on x86 */ /* #define LTC_NO_BSWAP */ /* ---> Symmetric Block Ciphers <--- */ #ifndef LTC_NO_CIPHERS #define LTC_BLOWFISH #define LTC_RC2 #define LTC_RC5 #define LTC_RC6 #define LTC_SAFERP #define LTC_RIJNDAEL #define LTC_XTEA /* _TABLES tells it to use tables during setup, _SMALL means to use the smaller scheduled key format * (saves 4KB of ram), _ALL_TABLES enables all tables during setup */ #define LTC_TWOFISH #ifndef LTC_NO_TABLES #define LTC_TWOFISH_TABLES /* #define LTC_TWOFISH_ALL_TABLES */ #else #define LTC_TWOFISH_SMALL #endif /* #define LTC_TWOFISH_SMALL */ /* LTC_DES includes EDE triple-LTC_DES */ #define LTC_DES #define LTC_CAST5 #define LTC_NOEKEON #define LTC_SKIPJACK #define LTC_SAFER #define LTC_KHAZAD #define LTC_ANUBIS #define LTC_ANUBIS_TWEAK #define LTC_KSEED #define LTC_KASUMI #endif /* LTC_NO_CIPHERS */ /* ---> Block Cipher Modes of Operation <--- */ #ifndef LTC_NO_MODES #define LTC_CFB_MODE #define LTC_OFB_MODE #define LTC_ECB_MODE #define LTC_CBC_MODE #define LTC_CTR_MODE /* F8 chaining mode */ #define LTC_F8_MODE /* LRW mode */ #define LTC_LRW_MODE #ifndef LTC_NO_TABLES /* like GCM mode this will enable 16 8x128 tables [64KB] that make * seeking very fast. */ #define LRW_TABLES #endif /* XTS mode */ #define LTC_XTS_MODE #endif /* LTC_NO_MODES */ /* ---> One-Way Hash Functions <--- */ #ifndef LTC_NO_HASHES #define LTC_CHC_HASH #define LTC_WHIRLPOOL #define LTC_SHA512 #define LTC_SHA384 #define LTC_SHA256 #define LTC_SHA224 #define LTC_TIGER #define LTC_SHA1 #define LTC_MD5 #define LTC_MD4 #define LTC_MD2 #define LTC_RIPEMD128 #define LTC_RIPEMD160 #define LTC_RIPEMD256 #define LTC_RIPEMD320 #endif /* LTC_NO_HASHES */ /* ---> MAC functions <--- */ #ifndef LTC_NO_MACS #define LTC_HMAC #define LTC_OMAC #define LTC_PMAC #define LTC_XCBC #define LTC_F9_MODE #define LTC_PELICAN #if defined(LTC_PELICAN) && !defined(LTC_RIJNDAEL) #error Pelican-MAC requires LTC_RIJNDAEL #endif /* ---> Encrypt + Authenticate Modes <--- */ #define LTC_EAX_MODE #if defined(LTC_EAX_MODE) && !(defined(LTC_CTR_MODE) && defined(LTC_OMAC)) #error LTC_EAX_MODE requires CTR and LTC_OMAC mode #endif #define LTC_OCB_MODE #define LTC_CCM_MODE #define LTC_GCM_MODE /* Use 64KiB tables */ #ifndef LTC_NO_TABLES #define LTC_GCM_TABLES #endif /* USE SSE2? requires GCC works on x86_32 and x86_64*/ #ifdef LTC_GCM_TABLES /* #define LTC_GCM_TABLES_SSE2 */ #endif #endif /* LTC_NO_MACS */ /* Various tidbits of modern neatoness */ #define LTC_BASE64 /* --> Pseudo Random Number Generators <--- */ #ifndef LTC_NO_PRNGS /* Yarrow */ #define LTC_YARROW /* which descriptor of AES to use? */ /* 0 = rijndael_enc 1 = aes_enc, 2 = rijndael [full], 3 = aes [full] */ #define LTC_YARROW_AES 0 #if defined(LTC_YARROW) && !defined(LTC_CTR_MODE) #error LTC_YARROW requires LTC_CTR_MODE chaining mode to be defined! #endif /* a PRNG that simply reads from an available system source */ #define LTC_SPRNG /* The LTC_RC4 stream cipher */ #define LTC_RC4 /* Fortuna PRNG */ #define LTC_FORTUNA /* reseed every N calls to the read function */ #define LTC_FORTUNA_WD 10 /* number of pools (4..32) can save a bit of ram by lowering the count */ #define LTC_FORTUNA_POOLS 32 /* Greg's LTC_SOBER128 PRNG ;-0 */ #define LTC_SOBER128 /* the *nix style /dev/random device */ #define LTC_DEVRANDOM /* try /dev/urandom before trying /dev/random */ #define TRY_URANDOM_FIRST #endif /* LTC_NO_PRNGS */ /* ---> math provider? <--- */ #ifndef LTC_NO_MATH /* LibTomMath */ /* #define LTM_LTC_DESC */ /* TomsFastMath */ /* #define TFM_LTC_DESC */ #endif /* LTC_NO_MATH */ /* ---> Public Key Crypto <--- */ #ifndef LTC_NO_PK /* Include RSA support */ #define LTC_MRSA /* Include Katja (a Rabin variant like RSA) */ /* #define MKAT */ /* Digital Signature Algorithm */ #define LTC_MDSA /* ECC */ #define LTC_MECC /* use Shamir's trick for point mul (speeds up signature verification) */ #define LTC_ECC_SHAMIR #if defined(TFM_LTC_DESC) && defined(LTC_MECC) #define LTC_MECC_ACCEL #endif /* do we want fixed point ECC */ /* #define LTC_MECC_FP */ /* Timing Resistant? */ /* #define LTC_ECC_TIMING_RESISTANT */ #endif /* LTC_NO_PK */ /* LTC_PKCS #1 (RSA) and #5 (Password Handling) stuff */ #ifndef LTC_NO_PKCS #define LTC_PKCS_1 #define LTC_PKCS_5 /* Include ASN.1 DER (required by DSA/RSA) */ #define LTC_DER #endif /* LTC_NO_PKCS */ /* cleanup */ #ifdef LTC_MECC /* Supported ECC Key Sizes */ #ifndef LTC_NO_CURVES #define ECC112 #define ECC128 #define ECC160 #define ECC192 #define ECC224 #define ECC256 #define ECC384 #define ECC521 #endif #endif #if defined(LTC_MECC) || defined(LTC_MRSA) || defined(LTC_MDSA) || defined(MKATJA) /* Include the MPI functionality? (required by the PK algorithms) */ #define MPI #endif #ifdef LTC_MRSA #define LTC_PKCS_1 #endif #if defined(LTC_DER) && !defined(MPI) #error ASN.1 DER requires MPI functionality #endif #if (defined(LTC_MDSA) || defined(LTC_MRSA) || defined(LTC_MECC) || defined(MKATJA)) && !defined(LTC_DER) #error PK requires ASN.1 DER functionality, make sure LTC_DER is enabled #endif /* THREAD management */ #ifdef LTC_PTHREAD #include #define LTC_MUTEX_GLOBAL(x) pthread_mutex_t x = PTHREAD_MUTEX_INITIALIZER; #define LTC_MUTEX_PROTO(x) extern pthread_mutex_t x; #define LTC_MUTEX_TYPE(x) pthread_mutex_t x; #define LTC_MUTEX_INIT(x) pthread_mutex_init(x, NULL); #define LTC_MUTEX_LOCK(x) pthread_mutex_lock(x); #define LTC_MUTEX_UNLOCK(x) pthread_mutex_unlock(x); #else /* default no functions */ #define LTC_MUTEX_GLOBAL(x) #define LTC_MUTEX_PROTO(x) #define LTC_MUTEX_TYPE(x) #define LTC_MUTEX_INIT(x) #define LTC_MUTEX_LOCK(x) #define LTC_MUTEX_UNLOCK(x) #endif /* Debuggers */ /* define this if you use Valgrind, note: it CHANGES the way SOBER-128 and LTC_RC4 work (see the code) */ /* #define LTC_VALGRIND */ #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_custom.h,v $ */ /* $Revision: 1.73 $ */ /* $Date: 2007/05/12 14:37:41 $ */ /* version */ #define CRYPT 0x0117 #define SCRYPT "1.17" /* max size of either a cipher/hash block or symmetric key [largest of the two] */ #define MAXBLOCKSIZE 128 /* descriptor table size */ /* error codes [will be expanded in future releases] */ enum { CRYPT_OK=0, /* Result OK */ CRYPT_ERROR, /* Generic Error */ CRYPT_NOP, /* Not a failure but no operation was performed */ CRYPT_INVALID_KEYSIZE, /* Invalid key size given */ CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */ CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */ CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */ CRYPT_INVALID_PACKET, /* Invalid input packet given */ CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */ CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */ CRYPT_INVALID_CIPHER, /* Invalid cipher specified */ CRYPT_INVALID_HASH, /* Invalid hash specified */ CRYPT_INVALID_PRNG, /* Invalid PRNG specified */ CRYPT_MEM, /* Out of memory */ CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */ CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */ CRYPT_INVALID_ARG, /* Generic invalid argument */ CRYPT_FILE_NOTFOUND, /* File Not Found */ CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */ CRYPT_PK_INVALID_SYSTEM, /* Invalid PK system specified */ CRYPT_PK_DUP, /* Duplicate key already in key ring */ CRYPT_PK_NOT_FOUND, /* Key not found in keyring */ CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */ CRYPT_INVALID_PRIME_SIZE, /* Invalid size of prime requested */ CRYPT_PK_INVALID_PADDING /* Invalid padding on input */ }; /* This is the build config file. * * With this you can setup what to inlcude/exclude automatically during any build. Just comment * out the line that #define's the word for the thing you want to remove. phew! */ #ifndef TOMCRYPT_CFG_H #define TOMCRYPT_CFG_H #if defined(_WIN32) || defined(_MSC_VER) #define LTC_CALL __cdecl #else #ifndef LTC_CALL #define LTC_CALL #endif #endif #ifndef LTC_EXPORT #define LTC_EXPORT #endif /* certain platforms use macros for these, making the prototypes broken */ #ifndef LTC_NO_PROTOTYPES /* you can change how memory allocation works ... */ LTC_EXPORT void *LTC_CALL XMALLOC(size_t n); LTC_EXPORT void *LTC_CALL XREALLOC(void *p, size_t n); LTC_EXPORT void *LTC_CALL XCALLOC(size_t n, size_t s); LTC_EXPORT void LTC_CALL XFREE(void *p); LTC_EXPORT void LTC_CALL XQSORT(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *)); /* change the clock function too */ LTC_EXPORT clock_t LTC_CALL XCLOCK(void); /* various other functions */ LTC_EXPORT void *LTC_CALL XMEMCPY(void *dest, const void *src, size_t n); LTC_EXPORT int LTC_CALL XMEMCMP(const void *s1, const void *s2, size_t n); LTC_EXPORT void *LTC_CALL XMEMSET(void *s, int c, size_t n); LTC_EXPORT int LTC_CALL XSTRCMP(const char *s1, const char *s2); #endif /* type of argument checking, 0=default, 1=fatal and 2=error+continue, 3=nothing */ #ifndef ARGTYPE #define ARGTYPE 0 #endif /* Controls endianess and size of registers. Leave uncommented to get platform neutral [slower] code * * Note: in order to use the optimized macros your platform must support unaligned 32 and 64 bit read/writes. * The x86 platforms allow this but some others [ARM for instance] do not. On those platforms you **MUST** * use the portable [slower] macros. */ /* detect x86-32 machines somewhat */ #if !defined(__STRICT_ANSI__) && (defined(INTEL_CC) || (defined(_MSC_VER) && defined(WIN32)) || (defined(__GNUC__) && (defined(__DJGPP__) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__i386__)))) #define ENDIAN_LITTLE #define ENDIAN_32BITWORD #define LTC_FAST #define LTC_FAST_TYPE unsigned long #endif /* detects MIPS R5900 processors (PS2) */ #if (defined(__R5900) || defined(R5900) || defined(__R5900__)) && (defined(_mips) || defined(__mips__) || defined(mips)) #define ENDIAN_LITTLE #define ENDIAN_64BITWORD #endif /* detect amd64 */ #if !defined(__STRICT_ANSI__) && defined(__x86_64__) #define ENDIAN_LITTLE #define ENDIAN_64BITWORD #define LTC_FAST #define LTC_FAST_TYPE unsigned long #endif /* detect PPC32 */ #if !defined(__STRICT_ANSI__) && defined(LTC_PPC32) #define ENDIAN_BIG #define ENDIAN_32BITWORD #define LTC_FAST #define LTC_FAST_TYPE unsigned long #endif /* detect sparc and sparc64 */ #if defined(__sparc__) #define ENDIAN_BIG #if defined(__arch64__) #define ENDIAN_64BITWORD #else #define ENDIAN_32BITWORD #endif #endif #ifdef LTC_NO_FAST #ifdef LTC_FAST #undef LTC_FAST #endif #endif /* No asm is a quick way to disable anything "not portable" */ #ifdef LTC_NO_ASM #undef ENDIAN_LITTLE #undef ENDIAN_BIG #undef ENDIAN_32BITWORD #undef ENDIAN_64BITWORD #undef LTC_FAST #undef LTC_FAST_TYPE #define LTC_NO_ROLC #define LTC_NO_BSWAP #endif /* #define ENDIAN_LITTLE */ /* #define ENDIAN_BIG */ /* #define ENDIAN_32BITWORD */ /* #define ENDIAN_64BITWORD */ #if (defined(ENDIAN_BIG) || defined(ENDIAN_LITTLE)) && !(defined(ENDIAN_32BITWORD) || defined(ENDIAN_64BITWORD)) #error You must specify a word size as well as endianess in tomcrypt_cfg.h #endif #if !(defined(ENDIAN_BIG) || defined(ENDIAN_LITTLE)) #define ENDIAN_NEUTRAL #endif #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_cfg.h,v $ */ /* $Revision: 1.19 $ */ /* $Date: 2006/12/04 02:19:48 $ */ /* fix for MSVC ...evil! */ #ifdef _MSC_VER #define CONST64(n) n ## ui64 typedef unsigned __int64 ulong64; #else #define CONST64(n) n ## ULL typedef unsigned long long ulong64; #endif /* this is the "32-bit at least" data type * Re-define it to suit your platform but it must be at least 32-bits */ #if defined(__x86_64__) || (defined(__sparc__) && defined(__arch64__)) typedef unsigned ulong32; #else typedef unsigned long ulong32; #endif /* ---- HELPER MACROS ---- */ #ifdef ENDIAN_NEUTRAL #define STORE32L(x, y) \ { (y)[3] = (unsigned char)(((x) >> 24) & 255); (y)[2] = (unsigned char)(((x) >> 16) & 255); \ (y)[1] = (unsigned char)(((x) >> 8) & 255); (y)[0] = (unsigned char)((x) & 255); } #define LOAD32L(x, y) \ { x = ((unsigned long)((y)[3] & 255) << 24) | \ ((unsigned long)((y)[2] & 255) << 16) | \ ((unsigned long)((y)[1] & 255) << 8) | \ ((unsigned long)((y)[0] & 255)); } #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x) >> 56) & 255); (y)[6] = (unsigned char)(((x) >> 48) & 255); \ (y)[5] = (unsigned char)(((x) >> 40) & 255); (y)[4] = (unsigned char)(((x) >> 32) & 255); \ (y)[3] = (unsigned char)(((x) >> 24) & 255); (y)[2] = (unsigned char)(((x) >> 16) & 255); \ (y)[1] = (unsigned char)(((x) >> 8) & 255); (y)[0] = (unsigned char)((x) & 255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255)) << 56) | (((ulong64)((y)[6] & 255)) << 48) | \ (((ulong64)((y)[5] & 255)) << 40) | (((ulong64)((y)[4] & 255)) << 32) | \ (((ulong64)((y)[3] & 255)) << 24) | (((ulong64)((y)[2] & 255)) << 16) | \ (((ulong64)((y)[1] & 255)) << 8) | (((ulong64)((y)[0] & 255))); } #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x) >> 24) & 255); (y)[1] = (unsigned char)(((x) >> 16) & 255); \ (y)[2] = (unsigned char)(((x) >> 8) & 255); (y)[3] = (unsigned char)((x) & 255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255) << 24) | \ ((unsigned long)((y)[1] & 255) << 16) | \ ((unsigned long)((y)[2] & 255) << 8) | \ ((unsigned long)((y)[3] & 255)); } #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x) >> 56) & 255); (y)[1] = (unsigned char)(((x) >> 48) & 255); \ (y)[2] = (unsigned char)(((x) >> 40) & 255); (y)[3] = (unsigned char)(((x) >> 32) & 255); \ (y)[4] = (unsigned char)(((x) >> 24) & 255); (y)[5] = (unsigned char)(((x) >> 16) & 255); \ (y)[6] = (unsigned char)(((x) >> 8) & 255); (y)[7] = (unsigned char)((x) & 255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255)) << 56) | (((ulong64)((y)[1] & 255)) << 48) | \ (((ulong64)((y)[2] & 255)) << 40) | (((ulong64)((y)[3] & 255)) << 32) | \ (((ulong64)((y)[4] & 255)) << 24) | (((ulong64)((y)[5] & 255)) << 16) | \ (((ulong64)((y)[6] & 255)) << 8) | (((ulong64)((y)[7] & 255))); } #endif /* ENDIAN_NEUTRAL */ #ifdef ENDIAN_LITTLE #if !defined(LTC_NO_BSWAP) && (defined(INTEL_CC) || (defined(__GNUC__) && (defined(__DJGPP__) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__i386__) || defined(__x86_64__)))) #define STORE32H(x, y) \ asm __volatile__ ( \ "bswapl %0 \n\t" \ "movl %0,(%1)\n\t" \ "bswapl %0 \n\t" \ ::"r" (x), "r" (y)); #define LOAD32H(x, y) \ asm __volatile__ ( \ "movl (%1),%0\n\t" \ "bswapl %0\n\t" \ : "=r" (x) : "r" (y)); #else #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x) >> 24) & 255); (y)[1] = (unsigned char)(((x) >> 16) & 255); \ (y)[2] = (unsigned char)(((x) >> 8) & 255); (y)[3] = (unsigned char)((x) & 255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255) << 24) | \ ((unsigned long)((y)[1] & 255) << 16) | \ ((unsigned long)((y)[2] & 255) << 8) | \ ((unsigned long)((y)[3] & 255)); } #endif /* x86_64 processor */ #if !defined(LTC_NO_BSWAP) && (defined(__GNUC__) && defined(__x86_64__)) #define STORE64H(x, y) \ asm __volatile__ ( \ "bswapq %0 \n\t" \ "movq %0,(%1)\n\t" \ "bswapq %0 \n\t" \ ::"r" (x), "r" (y)); #define LOAD64H(x, y) \ asm __volatile__ ( \ "movq (%1),%0\n\t" \ "bswapq %0\n\t" \ : "=r" (x) : "r" (y)); #else #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x) >> 56) & 255); (y)[1] = (unsigned char)(((x) >> 48) & 255); \ (y)[2] = (unsigned char)(((x) >> 40) & 255); (y)[3] = (unsigned char)(((x) >> 32) & 255); \ (y)[4] = (unsigned char)(((x) >> 24) & 255); (y)[5] = (unsigned char)(((x) >> 16) & 255); \ (y)[6] = (unsigned char)(((x) >> 8) & 255); (y)[7] = (unsigned char)((x) & 255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255)) << 56) | (((ulong64)((y)[1] & 255)) << 48) | \ (((ulong64)((y)[2] & 255)) << 40) | (((ulong64)((y)[3] & 255)) << 32) | \ (((ulong64)((y)[4] & 255)) << 24) | (((ulong64)((y)[5] & 255)) << 16) | \ (((ulong64)((y)[6] & 255)) << 8) | (((ulong64)((y)[7] & 255))); } #endif #ifdef ENDIAN_32BITWORD #define STORE32L(x, y) \ { ulong32 __t = (x); XMEMCPY(y, &__t, 4); } #define LOAD32L(x, y) \ XMEMCPY(&(x), y, 4); #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x) >> 56) & 255); (y)[6] = (unsigned char)(((x) >> 48) & 255); \ (y)[5] = (unsigned char)(((x) >> 40) & 255); (y)[4] = (unsigned char)(((x) >> 32) & 255); \ (y)[3] = (unsigned char)(((x) >> 24) & 255); (y)[2] = (unsigned char)(((x) >> 16) & 255); \ (y)[1] = (unsigned char)(((x) >> 8) & 255); (y)[0] = (unsigned char)((x) & 255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255)) << 56) | (((ulong64)((y)[6] & 255)) << 48) | \ (((ulong64)((y)[5] & 255)) << 40) | (((ulong64)((y)[4] & 255)) << 32) | \ (((ulong64)((y)[3] & 255)) << 24) | (((ulong64)((y)[2] & 255)) << 16) | \ (((ulong64)((y)[1] & 255)) << 8) | (((ulong64)((y)[0] & 255))); } #else /* 64-bit words then */ #define STORE32L(x, y) \ { ulong32 __t = (x); XMEMCPY(y, &__t, 4); } #define LOAD32L(x, y) \ { XMEMCPY(&(x), y, 4); x &= 0xFFFFFFFF; } #define STORE64L(x, y) \ { ulong64 __t = (x); XMEMCPY(y, &__t, 8); } #define LOAD64L(x, y) \ { XMEMCPY(&(x), y, 8); } #endif /* ENDIAN_64BITWORD */ #endif /* ENDIAN_LITTLE */ #ifdef ENDIAN_BIG #define STORE32L(x, y) \ { (y)[3] = (unsigned char)(((x) >> 24) & 255); (y)[2] = (unsigned char)(((x) >> 16) & 255); \ (y)[1] = (unsigned char)(((x) >> 8) & 255); (y)[0] = (unsigned char)((x) & 255); } #define LOAD32L(x, y) \ { x = ((unsigned long)((y)[3] & 255) << 24) | \ ((unsigned long)((y)[2] & 255) << 16) | \ ((unsigned long)((y)[1] & 255) << 8) | \ ((unsigned long)((y)[0] & 255)); } #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x) >> 56) & 255); (y)[6] = (unsigned char)(((x) >> 48) & 255); \ (y)[5] = (unsigned char)(((x) >> 40) & 255); (y)[4] = (unsigned char)(((x) >> 32) & 255); \ (y)[3] = (unsigned char)(((x) >> 24) & 255); (y)[2] = (unsigned char)(((x) >> 16) & 255); \ (y)[1] = (unsigned char)(((x) >> 8) & 255); (y)[0] = (unsigned char)((x) & 255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255)) << 56) | (((ulong64)((y)[6] & 255)) << 48) | \ (((ulong64)((y)[5] & 255)) << 40) | (((ulong64)((y)[4] & 255)) << 32) | \ (((ulong64)((y)[3] & 255)) << 24) | (((ulong64)((y)[2] & 255)) << 16) | \ (((ulong64)((y)[1] & 255)) << 8) | (((ulong64)((y)[0] & 255))); } #ifdef ENDIAN_32BITWORD #define STORE32H(x, y) \ { ulong32 __t = (x); XMEMCPY(y, &__t, 4); } #define LOAD32H(x, y) \ XMEMCPY(&(x), y, 4); #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x) >> 56) & 255); (y)[1] = (unsigned char)(((x) >> 48) & 255); \ (y)[2] = (unsigned char)(((x) >> 40) & 255); (y)[3] = (unsigned char)(((x) >> 32) & 255); \ (y)[4] = (unsigned char)(((x) >> 24) & 255); (y)[5] = (unsigned char)(((x) >> 16) & 255); \ (y)[6] = (unsigned char)(((x) >> 8) & 255); (y)[7] = (unsigned char)((x) & 255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255)) << 56) | (((ulong64)((y)[1] & 255)) << 48) | \ (((ulong64)((y)[2] & 255)) << 40) | (((ulong64)((y)[3] & 255)) << 32) | \ (((ulong64)((y)[4] & 255)) << 24) | (((ulong64)((y)[5] & 255)) << 16) | \ (((ulong64)((y)[6] & 255)) << 8) | (((ulong64)((y)[7] & 255))); } #else /* 64-bit words then */ #define STORE32H(x, y) \ { ulong32 __t = (x); XMEMCPY(y, &__t, 4); } #define LOAD32H(x, y) \ { XMEMCPY(&(x), y, 4); x &= 0xFFFFFFFF; } #define STORE64H(x, y) \ { ulong64 __t = (x); XMEMCPY(y, &__t, 8); } #define LOAD64H(x, y) \ { XMEMCPY(&(x), y, 8); } #endif /* ENDIAN_64BITWORD */ #endif /* ENDIAN_BIG */ #define BSWAP(x) \ (((x >> 24) & 0x000000FFUL) | ((x << 24) & 0xFF000000UL) | \ ((x >> 8) & 0x0000FF00UL) | ((x << 8) & 0x00FF0000UL)) /* 32-bit Rotates */ #if defined(_MSC_VER) /* instrinsic rotate */ #include #pragma intrinsic(_lrotr,_lrotl) #define ROR(x, n) _lrotr(x, n) #define ROL(x, n) _lrotl(x, n) #define RORc(x, n) _lrotr(x, n) #define ROLc(x, n) _lrotl(x, n) #elif !defined(__STRICT_ANSI__) && defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC) && !defined(LTC_NO_ASM) static inline unsigned ROL(unsigned word, int i) { asm ("roll %%cl,%0" : "=r" (word) : "0" (word), "c" (i)); return word; } static inline unsigned ROR(unsigned word, int i) { asm ("rorl %%cl,%0" : "=r" (word) : "0" (word), "c" (i)); return word; } #ifndef LTC_NO_ROLC static inline unsigned ROLc(unsigned word, const int i) { asm ("roll %2,%0" : "=r" (word) : "0" (word), "I" (i)); return word; } static inline unsigned RORc(unsigned word, const int i) { asm ("rorl %2,%0" : "=r" (word) : "0" (word), "I" (i)); return word; } #else #define ROLc ROL #define RORc ROR #endif #elif !defined(__STRICT_ANSI__) && defined(LTC_PPC32) static inline unsigned ROL(unsigned word, int i) { asm ("rotlw %0,%0,%2" : "=r" (word) : "0" (word), "r" (i)); return word; } static inline unsigned ROR(unsigned word, int i) { asm ("rotlw %0,%0,%2" : "=r" (word) : "0" (word), "r" (32 - i)); return word; } #ifndef LTC_NO_ROLC static inline unsigned ROLc(unsigned word, const int i) { asm ("rotlwi %0,%0,%2" : "=r" (word) : "0" (word), "I" (i)); return word; } static inline unsigned RORc(unsigned word, const int i) { asm ("rotrwi %0,%0,%2" : "=r" (word) : "0" (word), "I" (i)); return word; } #else #define ROLc ROL #define RORc ROR #endif #else /* rotates the hard way */ #define ROL(x, y) ((((unsigned long)(x) << (unsigned long)((y) & 31)) | (((unsigned long)(x) & 0xFFFFFFFFUL) >> (unsigned long)(32 - ((y) & 31)))) & 0xFFFFFFFFUL) #define ROR(x, y) (((((unsigned long)(x) & 0xFFFFFFFFUL) >> (unsigned long)((y) & 31)) | ((unsigned long)(x) << (unsigned long)(32 - ((y) & 31)))) & 0xFFFFFFFFUL) #define ROLc(x, y) ((((unsigned long)(x) << (unsigned long)((y) & 31)) | (((unsigned long)(x) & 0xFFFFFFFFUL) >> (unsigned long)(32 - ((y) & 31)))) & 0xFFFFFFFFUL) #define RORc(x, y) (((((unsigned long)(x) & 0xFFFFFFFFUL) >> (unsigned long)((y) & 31)) | ((unsigned long)(x) << (unsigned long)(32 - ((y) & 31)))) & 0xFFFFFFFFUL) #endif /* 64-bit Rotates */ #if !defined(__STRICT_ANSI__) && defined(__GNUC__) && defined(__x86_64__) && !defined(LTC_NO_ASM) static inline unsigned long ROL64(unsigned long word, int i) { asm ("rolq %%cl,%0" : "=r" (word) : "0" (word), "c" (i)); return word; } static inline unsigned long ROR64(unsigned long word, int i) { asm ("rorq %%cl,%0" : "=r" (word) : "0" (word), "c" (i)); return word; } #ifndef LTC_NO_ROLC static inline unsigned long ROL64c(unsigned long word, const int i) { asm ("rolq %2,%0" : "=r" (word) : "0" (word), "J" (i)); return word; } static inline unsigned long ROR64c(unsigned long word, const int i) { asm ("rorq %2,%0" : "=r" (word) : "0" (word), "J" (i)); return word; } #else /* LTC_NO_ROLC */ #define ROL64c ROL64 #define ROR64c ROR64 #endif #else /* Not x86_64 */ #define ROL64(x, y) \ ((((x) << ((ulong64)(y) & 63)) | \ (((x) & CONST64(0xFFFFFFFFFFFFFFFF)) >> ((ulong64)64 - ((y) & 63)))) & CONST64(0xFFFFFFFFFFFFFFFF)) #define ROR64(x, y) \ (((((x) & CONST64(0xFFFFFFFFFFFFFFFF)) >> ((ulong64)(y) & CONST64(63))) | \ ((x) << ((ulong64)(64 - ((y) & CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF)) #define ROL64c(x, y) \ ((((x) << ((ulong64)(y) & 63)) | \ (((x) & CONST64(0xFFFFFFFFFFFFFFFF)) >> ((ulong64)64 - ((y) & 63)))) & CONST64(0xFFFFFFFFFFFFFFFF)) #define ROR64c(x, y) \ (((((x) & CONST64(0xFFFFFFFFFFFFFFFF)) >> ((ulong64)(y) & CONST64(63))) | \ ((x) << ((ulong64)(64 - ((y) & CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF)) #endif #ifndef MAX #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #endif #ifndef MIN #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #endif /* extract a byte portably */ #ifdef _MSC_VER #define byte(x, n) ((unsigned char)((x) >> (8 * (n)))) #else #define byte(x, n) (((x) >> (8 * (n))) & 255) #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_macros.h,v $ */ /* $Revision: 1.15 $ */ /* $Date: 2006/11/29 23:43:57 $ */ /* ---- SYMMETRIC KEY STUFF ----- * * We put each of the ciphers scheduled keys in their own structs then we put all of * the key formats in one union. This makes the function prototypes easier to use. */ #ifdef LTC_BLOWFISH struct blowfish_key { ulong32 S[4][256]; ulong32 K[18]; }; #endif #ifdef LTC_RC5 struct rc5_key { int rounds; ulong32 K[50]; }; #endif #ifdef LTC_RC6 struct rc6_key { ulong32 K[44]; }; #endif #ifdef LTC_SAFERP struct saferp_key { unsigned char K[33][16]; long rounds; }; #endif #ifdef LTC_RIJNDAEL struct rijndael_key { ulong32 eK[60], dK[60]; int Nr; }; #endif #ifdef LTC_KSEED struct kseed_key { ulong32 K[32], dK[32]; }; #endif #ifdef LTC_KASUMI struct kasumi_key { ulong32 KLi1[8], KLi2[8], KOi1[8], KOi2[8], KOi3[8], KIi1[8], KIi2[8], KIi3[8]; }; #endif #ifdef LTC_XTEA struct xtea_key { unsigned long A[32], B[32]; }; #endif #ifdef LTC_TWOFISH #ifndef LTC_TWOFISH_SMALL struct twofish_key { ulong32 S[4][256], K[40]; }; #else struct twofish_key { ulong32 K[40]; unsigned char S[32], start; }; #endif #endif #ifdef LTC_SAFER #define LTC_SAFER_K64_DEFAULT_NOF_ROUNDS 6 #define LTC_SAFER_K128_DEFAULT_NOF_ROUNDS 10 #define LTC_SAFER_SK64_DEFAULT_NOF_ROUNDS 8 #define LTC_SAFER_SK128_DEFAULT_NOF_ROUNDS 10 #define LTC_SAFER_MAX_NOF_ROUNDS 13 #define LTC_SAFER_BLOCK_LEN 8 #define LTC_SAFER_KEY_LEN (1 + LTC_SAFER_BLOCK_LEN * (1 + 2 * LTC_SAFER_MAX_NOF_ROUNDS)) typedef unsigned char safer_block_t[LTC_SAFER_BLOCK_LEN]; typedef unsigned char safer_key_t[LTC_SAFER_KEY_LEN]; struct safer_key { safer_key_t key; }; #endif #ifdef LTC_RC2 struct rc2_key { unsigned xkey[64]; }; #endif #ifdef LTC_DES struct des_key { ulong32 ek[32], dk[32]; }; struct des3_key { ulong32 ek[3][32], dk[3][32]; }; #endif #ifdef LTC_CAST5 struct cast5_key { ulong32 K[32], keylen; }; #endif #ifdef LTC_NOEKEON struct noekeon_key { ulong32 K[4], dK[4]; }; #endif #ifdef LTC_SKIPJACK struct skipjack_key { unsigned char key[10]; }; #endif #ifdef LTC_KHAZAD struct khazad_key { ulong64 roundKeyEnc[8 + 1]; ulong64 roundKeyDec[8 + 1]; }; #endif #ifdef LTC_ANUBIS struct anubis_key { int keyBits; int R; ulong32 roundKeyEnc[18 + 1][4]; ulong32 roundKeyDec[18 + 1][4]; }; #endif #ifdef LTC_MULTI2 struct multi2_key { int N; ulong32 uk[8]; }; #endif typedef union Symmetric_key { #ifdef LTC_DES struct des_key des; struct des3_key des3; #endif #ifdef LTC_RC2 struct rc2_key rc2; #endif #ifdef LTC_SAFER struct safer_key safer; #endif #ifdef LTC_TWOFISH struct twofish_key twofish; #endif #ifdef LTC_BLOWFISH struct blowfish_key blowfish; #endif #ifdef LTC_RC5 struct rc5_key rc5; #endif #ifdef LTC_RC6 struct rc6_key rc6; #endif #ifdef LTC_SAFERP struct saferp_key saferp; #endif #ifdef LTC_RIJNDAEL struct rijndael_key rijndael; #endif #ifdef LTC_XTEA struct xtea_key xtea; #endif #ifdef LTC_CAST5 struct cast5_key cast5; #endif #ifdef LTC_NOEKEON struct noekeon_key noekeon; #endif #ifdef LTC_SKIPJACK struct skipjack_key skipjack; #endif #ifdef LTC_KHAZAD struct khazad_key khazad; #endif #ifdef LTC_ANUBIS struct anubis_key anubis; #endif #ifdef LTC_KSEED struct kseed_key kseed; #endif #ifdef LTC_KASUMI struct kasumi_key kasumi; #endif #ifdef LTC_MULTI2 struct multi2_key multi2; #endif void *data; } symmetric_key; #ifdef LTC_ECB_MODE /** A block cipher ECB structure */ typedef struct { /** The index of the cipher chosen */ int cipher, /** The block size of the given cipher */ blocklen; /** The scheduled key */ symmetric_key key; } symmetric_ECB; #endif #ifdef LTC_CFB_MODE /** A block cipher CFB structure */ typedef struct { /** The index of the cipher chosen */ int cipher, /** The block size of the given cipher */ blocklen, /** The padding offset */ padlen; /** The current IV */ unsigned char IV[MAXBLOCKSIZE], /** The pad used to encrypt/decrypt */ pad[MAXBLOCKSIZE]; /** The scheduled key */ symmetric_key key; } symmetric_CFB; #endif #ifdef LTC_OFB_MODE /** A block cipher OFB structure */ typedef struct { /** The index of the cipher chosen */ int cipher, /** The block size of the given cipher */ blocklen, /** The padding offset */ padlen; /** The current IV */ unsigned char IV[MAXBLOCKSIZE]; /** The scheduled key */ symmetric_key key; } symmetric_OFB; #endif #ifdef LTC_CBC_MODE /** A block cipher CBC structure */ typedef struct { /** The index of the cipher chosen */ int cipher, /** The block size of the given cipher */ blocklen; /** The current IV */ unsigned char IV[MAXBLOCKSIZE]; /** The scheduled key */ symmetric_key key; } symmetric_CBC; #endif #ifdef LTC_CTR_MODE /** A block cipher CTR structure */ typedef struct { /** The index of the cipher chosen */ int cipher, /** The block size of the given cipher */ blocklen, /** The padding offset */ padlen, /** The mode (endianess) of the CTR, 0==little, 1==big */ mode, /** counter width */ ctrlen; /** The counter */ unsigned char ctr[MAXBLOCKSIZE], /** The pad used to encrypt/decrypt */ pad[MAXBLOCKSIZE]; /** The scheduled key */ symmetric_key key; } symmetric_CTR; #endif #ifdef LTC_LRW_MODE /** A LRW structure */ typedef struct { /** The index of the cipher chosen (must be a 128-bit block cipher) */ int cipher; /** The current IV */ unsigned char IV[16], /** the tweak key */ tweak[16], /** The current pad, it's the product of the first 15 bytes against the tweak key */ pad[16]; /** The scheduled symmetric key */ symmetric_key key; #ifdef LRW_TABLES /** The pre-computed multiplication table */ unsigned char PC[16][256][16]; #endif } symmetric_LRW; #endif #ifdef LTC_F8_MODE /** A block cipher F8 structure */ typedef struct { /** The index of the cipher chosen */ int cipher, /** The block size of the given cipher */ blocklen, /** The padding offset */ padlen; /** The current IV */ unsigned char IV[MAXBLOCKSIZE], MIV[MAXBLOCKSIZE]; /** Current block count */ ulong32 blockcnt; /** The scheduled key */ symmetric_key key; } symmetric_F8; #endif /** cipher descriptor table, last entry has "name == NULL" to mark the end of table */ extern struct ltc_cipher_descriptor { /** name of cipher */ char *name; /** internal ID */ unsigned char ID; /** min keysize (octets) */ int min_key_length, /** max keysize (octets) */ max_key_length, /** block size (octets) */ block_length, /** default number of rounds */ default_rounds; /** Setup the cipher @param key The input symmetric key @param keylen The length of the input key (octets) @param num_rounds The requested number of rounds (0==default) @param skey [out] The destination of the scheduled key @return CRYPT_OK if successful */ int (*setup)(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); /** Encrypt a block @param pt The plaintext @param ct [out] The ciphertext @param skey The scheduled key @return CRYPT_OK if successful */ int (*ecb_encrypt)(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); /** Decrypt a block @param ct The ciphertext @param pt [out] The plaintext @param skey The scheduled key @return CRYPT_OK if successful */ int (*ecb_decrypt)(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); /** Test the block cipher @return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled */ int (*test)(void); /** Terminate the context @param skey The scheduled key */ void (*done)(symmetric_key *skey); /** Determine a key size @param keysize [in/out] The size of the key desired and the suggested size @return CRYPT_OK if successful */ int (*keysize)(int *keysize); /** Accelerators **/ /** Accelerated ECB encryption @param pt Plaintext @param ct Ciphertext @param blocks The number of complete blocks to process @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_ecb_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, symmetric_key *skey); /** Accelerated ECB decryption @param pt Plaintext @param ct Ciphertext @param blocks The number of complete blocks to process @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_ecb_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, symmetric_key *skey); /** Accelerated CBC encryption @param pt Plaintext @param ct Ciphertext @param blocks The number of complete blocks to process @param IV The initial value (input/output) @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_cbc_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, symmetric_key *skey); /** Accelerated CBC decryption @param pt Plaintext @param ct Ciphertext @param blocks The number of complete blocks to process @param IV The initial value (input/output) @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_cbc_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, unsigned char *IV, symmetric_key *skey); /** Accelerated CTR encryption @param pt Plaintext @param ct Ciphertext @param blocks The number of complete blocks to process @param IV The initial value (input/output) @param mode little or big endian counter (mode=0 or mode=1) @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_ctr_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, int mode, symmetric_key *skey); /** Accelerated LRW @param pt Plaintext @param ct Ciphertext @param blocks The number of complete blocks to process @param IV The initial value (input/output) @param tweak The LRW tweak @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_lrw_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, const unsigned char *tweak, symmetric_key *skey); /** Accelerated LRW @param ct Ciphertext @param pt Plaintext @param blocks The number of complete blocks to process @param IV The initial value (input/output) @param tweak The LRW tweak @param skey The scheduled key context @return CRYPT_OK if successful */ int (*accel_lrw_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, unsigned char *IV, const unsigned char *tweak, symmetric_key *skey); /** Accelerated CCM packet (one-shot) @param key The secret key to use @param keylen The length of the secret key (octets) @param uskey A previously scheduled key [optional can be NULL] @param nonce The session nonce [use once] @param noncelen The length of the nonce @param header The header for the session @param headerlen The length of the header (octets) @param pt [out] The plaintext @param ptlen The length of the plaintext (octets) @param ct [out] The ciphertext @param tag [out] The destination tag @param taglen [in/out] The max size and resulting size of the authentication tag @param direction Encrypt or Decrypt direction (0 or 1) @return CRYPT_OK if successful */ int (*accel_ccm_memory)( const unsigned char *key, unsigned long keylen, symmetric_key *uskey, const unsigned char *nonce, unsigned long noncelen, const unsigned char *header, unsigned long headerlen, unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int direction); /** Accelerated GCM packet (one shot) @param key The secret key @param keylen The length of the secret key @param IV The initial vector @param IVlen The length of the initial vector @param adata The additional authentication data (header) @param adatalen The length of the adata @param pt The plaintext @param ptlen The length of the plaintext (ciphertext length is the same) @param ct The ciphertext @param tag [out] The MAC tag @param taglen [in/out] The MAC tag length @param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT) @return CRYPT_OK on success */ int (*accel_gcm_memory)( const unsigned char *key, unsigned long keylen, const unsigned char *IV, unsigned long IVlen, const unsigned char *adata, unsigned long adatalen, unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int direction); /** Accelerated one shot LTC_OMAC @param key The secret key @param keylen The key length (octets) @param in The message @param inlen Length of message (octets) @param out [out] Destination for tag @param outlen [in/out] Initial and final size of out @return CRYPT_OK on success */ int (*omac_memory)( const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); /** Accelerated one shot XCBC @param key The secret key @param keylen The key length (octets) @param in The message @param inlen Length of message (octets) @param out [out] Destination for tag @param outlen [in/out] Initial and final size of out @return CRYPT_OK on success */ int (*xcbc_memory)( const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); /** Accelerated one shot F9 @param key The secret key @param keylen The key length (octets) @param in The message @param inlen Length of message (octets) @param out [out] Destination for tag @param outlen [in/out] Initial and final size of out @return CRYPT_OK on success @remark Requires manual padding */ int (*f9_memory)( const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); } cipher_descriptor[]; #ifdef LTC_BLOWFISH int blowfish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int blowfish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int blowfish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int blowfish_test(void); void blowfish_done(symmetric_key *skey); int blowfish_keysize(int *keysize); extern const struct ltc_cipher_descriptor blowfish_desc; #endif #ifdef LTC_RC5 int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int rc5_test(void); void rc5_done(symmetric_key *skey); int rc5_keysize(int *keysize); extern const struct ltc_cipher_descriptor rc5_desc; #endif #ifdef LTC_RC6 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int rc6_test(void); void rc6_done(symmetric_key *skey); int rc6_keysize(int *keysize); extern const struct ltc_cipher_descriptor rc6_desc; #endif #ifdef LTC_RC2 int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int rc2_test(void); void rc2_done(symmetric_key *skey); int rc2_keysize(int *keysize); extern const struct ltc_cipher_descriptor rc2_desc; #endif #ifdef LTC_SAFERP int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int saferp_test(void); void saferp_done(symmetric_key *skey); int saferp_keysize(int *keysize); extern const struct ltc_cipher_descriptor saferp_desc; #endif #ifdef LTC_SAFER int safer_k64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int safer_sk64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int safer_k128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int safer_sk128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int safer_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key); int safer_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key); int safer_k64_test(void); int safer_sk64_test(void); int safer_sk128_test(void); void safer_done(symmetric_key *skey); int safer_64_keysize(int *keysize); int safer_128_keysize(int *keysize); extern const struct ltc_cipher_descriptor safer_k64_desc, safer_k128_desc, safer_sk64_desc, safer_sk128_desc; #endif #ifdef LTC_RIJNDAEL /* make aes an alias */ #define aes_setup rijndael_setup #define aes_ecb_encrypt rijndael_ecb_encrypt #define aes_ecb_decrypt rijndael_ecb_decrypt #define aes_test rijndael_test #define aes_done rijndael_done #define aes_keysize rijndael_keysize #define aes_enc_setup rijndael_enc_setup #define aes_enc_ecb_encrypt rijndael_enc_ecb_encrypt #define aes_enc_keysize rijndael_enc_keysize int rijndael_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int rijndael_test(void); void rijndael_done(symmetric_key *skey); int rijndael_keysize(int *keysize); int rijndael_enc_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int rijndael_enc_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); void rijndael_enc_done(symmetric_key *skey); int rijndael_enc_keysize(int *keysize); extern const struct ltc_cipher_descriptor rijndael_desc, aes_desc; extern const struct ltc_cipher_descriptor rijndael_enc_desc, aes_enc_desc; #endif #ifdef LTC_XTEA int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int xtea_test(void); void xtea_done(symmetric_key *skey); int xtea_keysize(int *keysize); extern const struct ltc_cipher_descriptor xtea_desc; #endif #ifdef LTC_TWOFISH int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int twofish_test(void); void twofish_done(symmetric_key *skey); int twofish_keysize(int *keysize); extern const struct ltc_cipher_descriptor twofish_desc; #endif #ifdef LTC_DES int des_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int des_test(void); void des_done(symmetric_key *skey); int des_keysize(int *keysize); int des3_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int des3_test(void); void des3_done(symmetric_key *skey); int des3_keysize(int *keysize); extern const struct ltc_cipher_descriptor des_desc, des3_desc; #endif #ifdef LTC_CAST5 int cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int cast5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int cast5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int cast5_test(void); void cast5_done(symmetric_key *skey); int cast5_keysize(int *keysize); extern const struct ltc_cipher_descriptor cast5_desc; #endif #ifdef LTC_NOEKEON int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int noekeon_test(void); void noekeon_done(symmetric_key *skey); int noekeon_keysize(int *keysize); extern const struct ltc_cipher_descriptor noekeon_desc; #endif #ifdef LTC_SKIPJACK int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int skipjack_test(void); void skipjack_done(symmetric_key *skey); int skipjack_keysize(int *keysize); extern const struct ltc_cipher_descriptor skipjack_desc; #endif #ifdef LTC_KHAZAD int khazad_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int khazad_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int khazad_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int khazad_test(void); void khazad_done(symmetric_key *skey); int khazad_keysize(int *keysize); extern const struct ltc_cipher_descriptor khazad_desc; #endif #ifdef LTC_ANUBIS int anubis_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int anubis_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int anubis_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int anubis_test(void); void anubis_done(symmetric_key *skey); int anubis_keysize(int *keysize); extern const struct ltc_cipher_descriptor anubis_desc; #endif #ifdef LTC_KSEED int kseed_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int kseed_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int kseed_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int kseed_test(void); void kseed_done(symmetric_key *skey); int kseed_keysize(int *keysize); extern const struct ltc_cipher_descriptor kseed_desc; #endif #ifdef LTC_KASUMI int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int kasumi_test(void); void kasumi_done(symmetric_key *skey); int kasumi_keysize(int *keysize); extern const struct ltc_cipher_descriptor kasumi_desc; #endif #ifdef LTC_MULTI2 int multi2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey); int multi2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey); int multi2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey); int multi2_test(void); void multi2_done(symmetric_key *skey); int multi2_keysize(int *keysize); extern const struct ltc_cipher_descriptor multi2_desc; #endif #ifdef LTC_ECB_MODE int ecb_start(int cipher, const unsigned char *key, int keylen, int num_rounds, symmetric_ECB *ecb); int ecb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_ECB *ecb); int ecb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_ECB *ecb); int ecb_done(symmetric_ECB *ecb); #endif #ifdef LTC_CFB_MODE int cfb_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, int num_rounds, symmetric_CFB *cfb); int cfb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CFB *cfb); int cfb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CFB *cfb); int cfb_getiv(unsigned char *IV, unsigned long *len, symmetric_CFB *cfb); int cfb_setiv(const unsigned char *IV, unsigned long len, symmetric_CFB *cfb); int cfb_done(symmetric_CFB *cfb); #endif #ifdef LTC_OFB_MODE int ofb_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, int num_rounds, symmetric_OFB *ofb); int ofb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_OFB *ofb); int ofb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_OFB *ofb); int ofb_getiv(unsigned char *IV, unsigned long *len, symmetric_OFB *ofb); int ofb_setiv(const unsigned char *IV, unsigned long len, symmetric_OFB *ofb); int ofb_done(symmetric_OFB *ofb); #endif #ifdef LTC_CBC_MODE int cbc_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, int num_rounds, symmetric_CBC *cbc); int cbc_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CBC *cbc); int cbc_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CBC *cbc); int cbc_getiv(unsigned char *IV, unsigned long *len, symmetric_CBC *cbc); int cbc_setiv(const unsigned char *IV, unsigned long len, symmetric_CBC *cbc); int cbc_done(symmetric_CBC *cbc); #endif #ifdef LTC_CTR_MODE #define CTR_COUNTER_LITTLE_ENDIAN 0x0000 #define CTR_COUNTER_BIG_ENDIAN 0x1000 #define LTC_CTR_RFC3686 0x2000 int ctr_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, int num_rounds, int ctr_mode, symmetric_CTR *ctr); int ctr_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CTR *ctr); int ctr_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CTR *ctr); int ctr_getiv(unsigned char *IV, unsigned long *len, symmetric_CTR *ctr); int ctr_setiv(const unsigned char *IV, unsigned long len, symmetric_CTR *ctr); int ctr_done(symmetric_CTR *ctr); int ctr_test(void); #endif #ifdef LTC_LRW_MODE #define LRW_ENCRYPT 0 #define LRW_DECRYPT 1 int lrw_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, const unsigned char *tweak, int num_rounds, symmetric_LRW *lrw); int lrw_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_LRW *lrw); int lrw_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_LRW *lrw); int lrw_getiv(unsigned char *IV, unsigned long *len, symmetric_LRW *lrw); int lrw_setiv(const unsigned char *IV, unsigned long len, symmetric_LRW *lrw); int lrw_done(symmetric_LRW *lrw); int lrw_test(void); /* don't call */ int lrw_process(const unsigned char *pt, unsigned char *ct, unsigned long len, int mode, symmetric_LRW *lrw); #endif #ifdef LTC_F8_MODE int f8_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, const unsigned char *salt_key, int skeylen, int num_rounds, symmetric_F8 *f8); int f8_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_F8 *f8); int f8_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_F8 *f8); int f8_getiv(unsigned char *IV, unsigned long *len, symmetric_F8 *f8); int f8_setiv(const unsigned char *IV, unsigned long len, symmetric_F8 *f8); int f8_done(symmetric_F8 *f8); int f8_test_mode(void); #endif #ifdef LTC_XTS_MODE typedef struct { symmetric_key key1, key2; int cipher; } symmetric_xts; int xts_start(int cipher, const unsigned char *key1, const unsigned char *key2, unsigned long keylen, int num_rounds, symmetric_xts *xts); int xts_encrypt( const unsigned char *pt, unsigned long ptlen, unsigned char *ct, const unsigned char *tweak, symmetric_xts *xts); int xts_decrypt( const unsigned char *ct, unsigned long ptlen, unsigned char *pt, const unsigned char *tweak, symmetric_xts *xts); void xts_done(symmetric_xts *xts); int xts_test(void); void xts_mult_x(unsigned char *I); #endif int find_cipher(const char *name); int find_cipher_any(const char *name, int blocklen, int keylen); int find_cipher_id(unsigned char ID); int register_cipher(const struct ltc_cipher_descriptor *cipher); int unregister_cipher(const struct ltc_cipher_descriptor *cipher); int cipher_is_valid(int idx); LTC_MUTEX_PROTO(ltc_cipher_mutex) /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_cipher.h,v $ */ /* $Revision: 1.54 $ */ /* $Date: 2007/05/12 14:37:41 $ */ #define LTC_SHA1 /* ---- HASH FUNCTIONS ---- */ #ifdef LTC_SHA512 struct sha512_state { ulong64 length, state[8]; unsigned long curlen; unsigned char buf[128]; }; #endif #ifdef LTC_SHA256 struct sha256_state { ulong64 length; ulong32 state[8], curlen; unsigned char buf[64]; }; #endif #ifdef LTC_SHA1 struct sha1_state { ulong64 length; ulong32 state[5], curlen; unsigned char buf[64]; }; #endif #ifdef LTC_MD5 struct md5_state { ulong64 length; ulong32 state[4], curlen; unsigned char buf[64]; }; #endif #ifdef LTC_MD4 struct md4_state { ulong64 length; ulong32 state[4], curlen; unsigned char buf[64]; }; #endif #ifdef LTC_TIGER struct tiger_state { ulong64 state[3], length; unsigned long curlen; unsigned char buf[64]; }; #endif #ifdef LTC_MD2 struct md2_state { unsigned char chksum[16], X[48], buf[16]; unsigned long curlen; }; #endif #ifdef LTC_RIPEMD128 struct rmd128_state { ulong64 length; unsigned char buf[64]; ulong32 curlen, state[4]; }; #endif #ifdef LTC_RIPEMD160 struct rmd160_state { ulong64 length; unsigned char buf[64]; ulong32 curlen, state[5]; }; #endif #ifdef LTC_RIPEMD256 struct rmd256_state { ulong64 length; unsigned char buf[64]; ulong32 curlen, state[8]; }; #endif #ifdef LTC_RIPEMD320 struct rmd320_state { ulong64 length; unsigned char buf[64]; ulong32 curlen, state[10]; }; #endif #ifdef LTC_WHIRLPOOL struct whirlpool_state { ulong64 length, state[8]; unsigned char buf[64]; ulong32 curlen; }; #endif #ifdef LTC_CHC_HASH struct chc_state { ulong64 length; unsigned char state[MAXBLOCKSIZE], buf[MAXBLOCKSIZE]; ulong32 curlen; }; #endif typedef union Hash_state { char dummy[1]; #ifdef LTC_CHC_HASH struct chc_state chc; #endif #ifdef LTC_WHIRLPOOL struct whirlpool_state whirlpool; #endif #ifdef LTC_SHA512 struct sha512_state sha512; #endif #ifdef LTC_SHA256 struct sha256_state sha256; #endif #ifdef LTC_SHA1 struct sha1_state sha1; #endif #ifdef LTC_MD5 struct md5_state md5; #endif #ifdef LTC_MD4 struct md4_state md4; #endif #ifdef LTC_MD2 struct md2_state md2; #endif #ifdef LTC_TIGER struct tiger_state tiger; #endif #ifdef LTC_RIPEMD128 struct rmd128_state rmd128; #endif #ifdef LTC_RIPEMD160 struct rmd160_state rmd160; #endif #ifdef LTC_RIPEMD256 struct rmd256_state rmd256; #endif #ifdef LTC_RIPEMD320 struct rmd320_state rmd320; #endif void *data; } hash_state; /** hash descriptor */ extern struct ltc_hash_descriptor { /** name of hash */ char *name; /** internal ID */ unsigned char ID; /** Size of digest in octets */ unsigned long hashsize; /** Input block size in octets */ unsigned long blocksize; /** ASN.1 OID */ unsigned long OID[16]; /** Length of DER encoding */ unsigned long OIDlen; /** Init a hash state @param hash The hash to initialize @return CRYPT_OK if successful */ int (*init)(hash_state *hash); /** Process a block of data @param hash The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ int (*process)(hash_state *hash, const unsigned char *in, unsigned long inlen); /** Produce the digest and store it @param hash The hash state @param out [out] The destination of the digest @return CRYPT_OK if successful */ int (*done)(hash_state *hash, unsigned char *out); /** Self-test @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int (*test)(void); /* accelerated hmac callback: if you need to-do multiple packets just use the generic hmac_memory and provide a hash callback */ int (*hmac_block)(const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); } hash_descriptor[]; #ifdef LTC_CHC_HASH int chc_register(int cipher); int chc_init(hash_state *md); int chc_process(hash_state *md, const unsigned char *in, unsigned long inlen); int chc_done(hash_state *md, unsigned char *hash); int chc_test(void); extern const struct ltc_hash_descriptor chc_desc; #endif #ifdef LTC_WHIRLPOOL int whirlpool_init(hash_state *md); int whirlpool_process(hash_state *md, const unsigned char *in, unsigned long inlen); int whirlpool_done(hash_state *md, unsigned char *hash); int whirlpool_test(void); extern const struct ltc_hash_descriptor whirlpool_desc; #endif #ifdef LTC_SHA512 int sha512_init(hash_state *md); int sha512_process(hash_state *md, const unsigned char *in, unsigned long inlen); int sha512_done(hash_state *md, unsigned char *hash); int sha512_test(void); extern const struct ltc_hash_descriptor sha512_desc; #endif #ifdef LTC_SHA384 #ifndef LTC_SHA512 #error LTC_SHA512 is required for LTC_SHA384 #endif int sha384_init(hash_state *md); #define sha384_process sha512_process int sha384_done(hash_state *md, unsigned char *hash); int sha384_test(void); extern const struct ltc_hash_descriptor sha384_desc; #endif #ifdef LTC_SHA256 int sha256_init(hash_state *md); int sha256_process(hash_state *md, const unsigned char *in, unsigned long inlen); int sha256_done(hash_state *md, unsigned char *hash); int sha256_test(void); extern const struct ltc_hash_descriptor sha256_desc; #ifdef LTC_SHA224 #ifndef LTC_SHA256 #error LTC_SHA256 is required for LTC_SHA224 #endif int sha224_init(hash_state *md); #define sha224_process sha256_process int sha224_done(hash_state *md, unsigned char *hash); int sha224_test(void); extern const struct ltc_hash_descriptor sha224_desc; #endif #endif #ifdef LTC_SHA1 int sha1_init(hash_state *md); int sha1_process(hash_state *md, const unsigned char *in, unsigned long inlen); int sha1_done(hash_state *md, unsigned char *hash); int sha1_test(void); extern const struct ltc_hash_descriptor sha1_desc; #endif #ifdef LTC_MD5 int md5_init(hash_state *md); int md5_process(hash_state *md, const unsigned char *in, unsigned long inlen); int md5_done(hash_state *md, unsigned char *hash); int md5_test(void); extern const struct ltc_hash_descriptor md5_desc; #endif #ifdef LTC_MD4 int md4_init(hash_state *md); int md4_process(hash_state *md, const unsigned char *in, unsigned long inlen); int md4_done(hash_state *md, unsigned char *hash); int md4_test(void); extern const struct ltc_hash_descriptor md4_desc; #endif #ifdef LTC_MD2 int md2_init(hash_state *md); int md2_process(hash_state *md, const unsigned char *in, unsigned long inlen); int md2_done(hash_state *md, unsigned char *hash); int md2_test(void); extern const struct ltc_hash_descriptor md2_desc; #endif #ifdef LTC_TIGER int tiger_init(hash_state *md); int tiger_process(hash_state *md, const unsigned char *in, unsigned long inlen); int tiger_done(hash_state *md, unsigned char *hash); int tiger_test(void); extern const struct ltc_hash_descriptor tiger_desc; #endif #ifdef LTC_RIPEMD128 int rmd128_init(hash_state *md); int rmd128_process(hash_state *md, const unsigned char *in, unsigned long inlen); int rmd128_done(hash_state *md, unsigned char *hash); int rmd128_test(void); extern const struct ltc_hash_descriptor rmd128_desc; #endif #ifdef LTC_RIPEMD160 int rmd160_init(hash_state *md); int rmd160_process(hash_state *md, const unsigned char *in, unsigned long inlen); int rmd160_done(hash_state *md, unsigned char *hash); int rmd160_test(void); extern const struct ltc_hash_descriptor rmd160_desc; #endif #ifdef LTC_RIPEMD256 int rmd256_init(hash_state *md); int rmd256_process(hash_state *md, const unsigned char *in, unsigned long inlen); int rmd256_done(hash_state *md, unsigned char *hash); int rmd256_test(void); extern const struct ltc_hash_descriptor rmd256_desc; #endif #ifdef LTC_RIPEMD320 int rmd320_init(hash_state *md); int rmd320_process(hash_state *md, const unsigned char *in, unsigned long inlen); int rmd320_done(hash_state *md, unsigned char *hash); int rmd320_test(void); extern const struct ltc_hash_descriptor rmd320_desc; #endif int find_hash(const char *name); int find_hash_id(unsigned char ID); int find_hash_oid(const unsigned long *ID, unsigned long IDlen); int find_hash_any(const char *name, int digestlen); int register_hash(const struct ltc_hash_descriptor *hash); int unregister_hash(const struct ltc_hash_descriptor *hash); int hash_is_valid(int idx); LTC_MUTEX_PROTO(ltc_hash_mutex) int hash_memory(int hash, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int hash_memory_multi(int hash, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...); int hash_filehandle(int hash, FILE *in, unsigned char *out, unsigned long *outlen); int hash_file(int hash, const char *fname, unsigned char *out, unsigned long *outlen); /* a simple macro for making hash "process" functions */ #define HASH_PROCESS(func_name, compress_name, state_var, block_size) \ int func_name(hash_state * md, const unsigned char *in, unsigned long inlen) \ { \ unsigned long n; \ int err; \ LTC_ARGCHK(md != NULL); \ LTC_ARGCHK(in != NULL); \ if (md->state_var.curlen > sizeof(md->state_var.buf)) { \ return CRYPT_INVALID_ARG; \ } \ while (inlen > 0) { \ if (md->state_var.curlen == 0 && inlen >= block_size) { \ if ((err = compress_name(md, (unsigned char *)in)) != CRYPT_OK) { \ return err; \ } \ md->state_var.length += block_size * 8; \ in += block_size; \ inlen -= block_size; \ } else { \ n = MIN(inlen, (block_size - md->state_var.curlen)); \ memcpy(md->state_var.buf + md->state_var.curlen, in, (size_t)n); \ md->state_var.curlen += n; \ in += n; \ inlen -= n; \ if (md->state_var.curlen == block_size) { \ if ((err = compress_name(md, md->state_var.buf)) != CRYPT_OK) { \ return err; \ } \ md->state_var.length += 8 * block_size; \ md->state_var.curlen = 0; \ } \ } \ } \ return CRYPT_OK; \ } /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_hash.h,v $ */ /* $Revision: 1.22 $ */ /* $Date: 2007/05/12 14:32:35 $ */ #ifdef LTC_HMAC typedef struct Hmac_state { hash_state md; int hash; hash_state hashstate; unsigned char *key; } hmac_state; int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen); int hmac_process(hmac_state *hmac, const unsigned char *in, unsigned long inlen); int hmac_done(hmac_state *hmac, unsigned char *out, unsigned long *outlen); int hmac_test(void); int hmac_memory(int hash, const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int hmac_memory_multi(int hash, const unsigned char *key, unsigned long keylen, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...); int hmac_file(int hash, const char *fname, const unsigned char *key, unsigned long keylen, unsigned char *dst, unsigned long *dstlen); #endif #ifdef LTC_OMAC typedef struct { int cipher_idx, buflen, blklen; unsigned char block[MAXBLOCKSIZE], prev[MAXBLOCKSIZE], Lu[2][MAXBLOCKSIZE]; symmetric_key key; } omac_state; int omac_init(omac_state *omac, int cipher, const unsigned char *key, unsigned long keylen); int omac_process(omac_state *omac, const unsigned char *in, unsigned long inlen); int omac_done(omac_state *omac, unsigned char *out, unsigned long *outlen); int omac_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int omac_memory_multi(int cipher, const unsigned char *key, unsigned long keylen, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...); int omac_file(int cipher, const unsigned char *key, unsigned long keylen, const char *filename, unsigned char *out, unsigned long *outlen); int omac_test(void); #endif /* LTC_OMAC */ #ifdef LTC_PMAC typedef struct { unsigned char Ls[32][MAXBLOCKSIZE], /* L shifted by i bits to the left */ Li[MAXBLOCKSIZE], /* value of Li [current value, we calc from previous recall] */ Lr[MAXBLOCKSIZE], /* L * x^-1 */ block[MAXBLOCKSIZE], /* currently accumulated block */ checksum[MAXBLOCKSIZE]; /* current checksum */ symmetric_key key; /* scheduled key for cipher */ unsigned long block_index; /* index # for current block */ int cipher_idx, /* cipher idx */ block_len, /* length of block */ buflen; /* number of bytes in the buffer */ } pmac_state; int pmac_init(pmac_state *pmac, int cipher, const unsigned char *key, unsigned long keylen); int pmac_process(pmac_state *pmac, const unsigned char *in, unsigned long inlen); int pmac_done(pmac_state *pmac, unsigned char *out, unsigned long *outlen); int pmac_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *msg, unsigned long msglen, unsigned char *out, unsigned long *outlen); int pmac_memory_multi(int cipher, const unsigned char *key, unsigned long keylen, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...); int pmac_file(int cipher, const unsigned char *key, unsigned long keylen, const char *filename, unsigned char *out, unsigned long *outlen); int pmac_test(void); /* internal functions */ int pmac_ntz(unsigned long x); void pmac_shift_xor(pmac_state *pmac); #endif /* PMAC */ #ifdef LTC_EAX_MODE #if !(defined(LTC_OMAC) && defined(LTC_CTR_MODE)) #error LTC_EAX_MODE requires LTC_OMAC and CTR #endif typedef struct { unsigned char N[MAXBLOCKSIZE]; symmetric_CTR ctr; omac_state headeromac, ctomac; } eax_state; int eax_init(eax_state *eax, int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce, unsigned long noncelen, const unsigned char *header, unsigned long headerlen); int eax_encrypt(eax_state *eax, const unsigned char *pt, unsigned char *ct, unsigned long length); int eax_decrypt(eax_state *eax, const unsigned char *ct, unsigned char *pt, unsigned long length); int eax_addheader(eax_state *eax, const unsigned char *header, unsigned long length); int eax_done(eax_state *eax, unsigned char *tag, unsigned long *taglen); int eax_encrypt_authenticate_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce, unsigned long noncelen, const unsigned char *header, unsigned long headerlen, const unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen); int eax_decrypt_verify_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce, unsigned long noncelen, const unsigned char *header, unsigned long headerlen, const unsigned char *ct, unsigned long ctlen, unsigned char *pt, unsigned char *tag, unsigned long taglen, int *stat); int eax_test(void); #endif /* EAX MODE */ #ifdef LTC_OCB_MODE typedef struct { unsigned char L[MAXBLOCKSIZE], /* L value */ Ls[32][MAXBLOCKSIZE], /* L shifted by i bits to the left */ Li[MAXBLOCKSIZE], /* value of Li [current value, we calc from previous recall] */ Lr[MAXBLOCKSIZE], /* L * x^-1 */ R[MAXBLOCKSIZE], /* R value */ checksum[MAXBLOCKSIZE]; /* current checksum */ symmetric_key key; /* scheduled key for cipher */ unsigned long block_index; /* index # for current block */ int cipher, /* cipher idx */ block_len; /* length of block */ } ocb_state; int ocb_init(ocb_state *ocb, int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce); int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct); int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt); int ocb_done_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen); int ocb_done_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned long ctlen, unsigned char *pt, const unsigned char *tag, unsigned long taglen, int *stat); int ocb_encrypt_authenticate_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce, const unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen); int ocb_decrypt_verify_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *nonce, const unsigned char *ct, unsigned long ctlen, unsigned char *pt, const unsigned char *tag, unsigned long taglen, int *stat); int ocb_test(void); /* internal functions */ void ocb_shift_xor(ocb_state *ocb, unsigned char *Z); int ocb_ntz(unsigned long x); int s_ocb_done(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int mode); #endif /* LTC_OCB_MODE */ #ifdef LTC_CCM_MODE #define CCM_ENCRYPT 0 #define CCM_DECRYPT 1 int ccm_memory(int cipher, const unsigned char *key, unsigned long keylen, symmetric_key *uskey, const unsigned char *nonce, unsigned long noncelen, const unsigned char *header, unsigned long headerlen, unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int direction); int ccm_test(void); #endif /* LTC_CCM_MODE */ #if defined(LRW_MODE) || defined(LTC_GCM_MODE) void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c); #endif /* table shared between GCM and LRW */ #if defined(LTC_GCM_TABLES) || defined(LRW_TABLES) || ((defined(LTC_GCM_MODE) || defined(LTC_GCM_MODE)) && defined(LTC_FAST)) extern const unsigned char gcm_shift_table[]; #endif #ifdef LTC_GCM_MODE #define GCM_ENCRYPT 0 #define GCM_DECRYPT 1 #define LTC_GCM_MODE_IV 0 #define LTC_GCM_MODE_AAD 1 #define LTC_GCM_MODE_TEXT 2 typedef struct { symmetric_key K; unsigned char H[16], /* multiplier */ X[16], /* accumulator */ Y[16], /* counter */ Y_0[16], /* initial counter */ buf[16]; /* buffer for stuff */ int cipher, /* which cipher */ ivmode, /* Which mode is the IV in? */ mode, /* mode the GCM code is in */ buflen; /* length of data in buf */ ulong64 totlen, /* 64-bit counter used for IV and AAD */ pttotlen; /* 64-bit counter for the PT */ #ifdef LTC_GCM_TABLES unsigned char PC[16][256][16] /* 16 tables of 8x128 */ #ifdef LTC_GCM_TABLES_SSE2 __attribute__ ((aligned(16))) #endif ; #endif } gcm_state; void gcm_mult_h(gcm_state *gcm, unsigned char *I); int gcm_init(gcm_state *gcm, int cipher, const unsigned char *key, int keylen); int gcm_reset(gcm_state *gcm); int gcm_add_iv(gcm_state *gcm, const unsigned char *IV, unsigned long IVlen); int gcm_add_aad(gcm_state *gcm, const unsigned char *adata, unsigned long adatalen); int gcm_process(gcm_state *gcm, unsigned char *pt, unsigned long ptlen, unsigned char *ct, int direction); int gcm_done(gcm_state *gcm, unsigned char *tag, unsigned long *taglen); int gcm_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *IV, unsigned long IVlen, const unsigned char *adata, unsigned long adatalen, unsigned char *pt, unsigned long ptlen, unsigned char *ct, unsigned char *tag, unsigned long *taglen, int direction); int gcm_test(void); #endif /* LTC_GCM_MODE */ #ifdef LTC_PELICAN typedef struct pelican_state { symmetric_key K; unsigned char state[16]; int buflen; } pelican_state; int pelican_init(pelican_state *pelmac, const unsigned char *key, unsigned long keylen); int pelican_process(pelican_state *pelmac, const unsigned char *in, unsigned long inlen); int pelican_done(pelican_state *pelmac, unsigned char *out); int pelican_test(void); int pelican_memory(const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out); #endif #ifdef LTC_XCBC /* add this to "keylen" to xcbc_init to use a pure three-key XCBC MAC */ #define LTC_XCBC_PURE 0x8000UL typedef struct { unsigned char K[3][MAXBLOCKSIZE], IV[MAXBLOCKSIZE]; symmetric_key key; int cipher, buflen, blocksize; } xcbc_state; int xcbc_init(xcbc_state *xcbc, int cipher, const unsigned char *key, unsigned long keylen); int xcbc_process(xcbc_state *xcbc, const unsigned char *in, unsigned long inlen); int xcbc_done(xcbc_state *xcbc, unsigned char *out, unsigned long *outlen); int xcbc_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int xcbc_memory_multi(int cipher, const unsigned char *key, unsigned long keylen, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...); int xcbc_file(int cipher, const unsigned char *key, unsigned long keylen, const char *filename, unsigned char *out, unsigned long *outlen); int xcbc_test(void); #endif #ifdef LTC_F9_MODE typedef struct { unsigned char akey[MAXBLOCKSIZE], ACC[MAXBLOCKSIZE], IV[MAXBLOCKSIZE]; symmetric_key key; int cipher, buflen, keylen, blocksize; } f9_state; int f9_init(f9_state *f9, int cipher, const unsigned char *key, unsigned long keylen); int f9_process(f9_state *f9, const unsigned char *in, unsigned long inlen); int f9_done(f9_state *f9, unsigned char *out, unsigned long *outlen); int f9_memory(int cipher, const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int f9_memory_multi(int cipher, const unsigned char *key, unsigned long keylen, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...); int f9_file(int cipher, const unsigned char *key, unsigned long keylen, const char *filename, unsigned char *out, unsigned long *outlen); int f9_test(void); #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_mac.h,v $ */ /* $Revision: 1.23 $ */ /* $Date: 2007/05/12 14:37:41 $ */ /* ---- PRNG Stuff ---- */ #ifdef LTC_YARROW struct yarrow_prng { int cipher, hash; unsigned char pool[MAXBLOCKSIZE]; symmetric_CTR ctr; LTC_MUTEX_TYPE(prng_lock) }; #endif #ifdef LTC_RC4 struct rc4_prng { int x, y; unsigned char buf[256]; }; #endif #ifdef LTC_FORTUNA struct fortuna_prng { hash_state pool[LTC_FORTUNA_POOLS]; /* the pools */ symmetric_key skey; unsigned char K[32], /* the current key */ IV[16]; /* IV for CTR mode */ unsigned long pool_idx, /* current pool we will add to */ pool0_len, /* length of 0'th pool */ wd; ulong64 reset_cnt; /* number of times we have reset */ LTC_MUTEX_TYPE(prng_lock) }; #endif #ifdef LTC_SOBER128 struct sober128_prng { ulong32 R[17], /* Working storage for the shift register */ initR[17], /* saved register contents */ konst, /* key dependent constant */ sbuf; /* partial word encryption buffer */ int nbuf, /* number of part-word stream bits buffered */ flag, /* first add_entropy call or not? */ set; /* did we call add_entropy to set key? */ }; #endif typedef union Prng_state { char dummy[1]; #ifdef LTC_YARROW struct yarrow_prng yarrow; #endif #ifdef LTC_RC4 struct rc4_prng rc4; #endif #ifdef LTC_FORTUNA struct fortuna_prng fortuna; #endif #ifdef LTC_SOBER128 struct sober128_prng sober128; #endif } prng_state; /** PRNG descriptor */ extern struct ltc_prng_descriptor { /** Name of the PRNG */ char *name; /** size in bytes of exported state */ int export_size; /** Start a PRNG state @param prng [out] The state to initialize @return CRYPT_OK if successful */ int (*start)(prng_state *prng); /** Add entropy to the PRNG @param in The entropy @param inlen Length of the entropy (octets)\ @param prng The PRNG state @return CRYPT_OK if successful */ int (*add_entropy)(const unsigned char *in, unsigned long inlen, prng_state *prng); /** Ready a PRNG state to read from @param prng The PRNG state to ready @return CRYPT_OK if successful */ int (*ready)(prng_state *prng); /** Read from the PRNG @param out [out] Where to store the data @param outlen Length of data desired (octets) @param prng The PRNG state to read from @return Number of octets read */ unsigned long (*read)(unsigned char *out, unsigned long outlen, prng_state *prng); /** Terminate a PRNG state @param prng The PRNG state to terminate @return CRYPT_OK if successful */ int (*done)(prng_state *prng); /** Export a PRNG state @param out [out] The destination for the state @param outlen [in/out] The max size and resulting size of the PRNG state @param prng The PRNG to export @return CRYPT_OK if successful */ int (*pexport)(unsigned char *out, unsigned long *outlen, prng_state *prng); /** Import a PRNG state @param in The data to import @param inlen The length of the data to import (octets) @param prng The PRNG to initialize/import @return CRYPT_OK if successful */ int (*pimport)(const unsigned char *in, unsigned long inlen, prng_state *prng); /** Self-test the PRNG @return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled */ int (*test)(void); } prng_descriptor[]; #ifdef LTC_YARROW int yarrow_start(prng_state *prng); int yarrow_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng); int yarrow_ready(prng_state *prng); unsigned long yarrow_read(unsigned char *out, unsigned long outlen, prng_state *prng); int yarrow_done(prng_state *prng); int yarrow_export(unsigned char *out, unsigned long *outlen, prng_state *prng); int yarrow_import(const unsigned char *in, unsigned long inlen, prng_state *prng); int yarrow_test(void); extern const struct ltc_prng_descriptor yarrow_desc; #endif #ifdef LTC_FORTUNA int fortuna_start(prng_state *prng); int fortuna_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng); int fortuna_ready(prng_state *prng); unsigned long fortuna_read(unsigned char *out, unsigned long outlen, prng_state *prng); int fortuna_done(prng_state *prng); int fortuna_export(unsigned char *out, unsigned long *outlen, prng_state *prng); int fortuna_import(const unsigned char *in, unsigned long inlen, prng_state *prng); int fortuna_test(void); extern const struct ltc_prng_descriptor fortuna_desc; #endif #ifdef LTC_RC4 int rc4_start(prng_state *prng); int rc4_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng); int rc4_ready(prng_state *prng); unsigned long rc4_read(unsigned char *out, unsigned long outlen, prng_state *prng); int rc4_done(prng_state *prng); int rc4_export(unsigned char *out, unsigned long *outlen, prng_state *prng); int rc4_import(const unsigned char *in, unsigned long inlen, prng_state *prng); int rc4_test(void); extern const struct ltc_prng_descriptor rc4_desc; #endif #ifdef LTC_SPRNG int sprng_start(prng_state *prng); int sprng_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng); int sprng_ready(prng_state *prng); unsigned long sprng_read(unsigned char *out, unsigned long outlen, prng_state *prng); int sprng_done(prng_state *prng); int sprng_export(unsigned char *out, unsigned long *outlen, prng_state *prng); int sprng_import(const unsigned char *in, unsigned long inlen, prng_state *prng); int sprng_test(void); extern const struct ltc_prng_descriptor sprng_desc; #endif #ifdef LTC_SOBER128 int sober128_start(prng_state *prng); int sober128_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng); int sober128_ready(prng_state *prng); unsigned long sober128_read(unsigned char *out, unsigned long outlen, prng_state *prng); int sober128_done(prng_state *prng); int sober128_export(unsigned char *out, unsigned long *outlen, prng_state *prng); int sober128_import(const unsigned char *in, unsigned long inlen, prng_state *prng); int sober128_test(void); extern const struct ltc_prng_descriptor sober128_desc; #endif int find_prng(const char *name); int register_prng(const struct ltc_prng_descriptor *prng); int unregister_prng(const struct ltc_prng_descriptor *prng); int prng_is_valid(int idx); LTC_MUTEX_PROTO(ltc_prng_mutex) /* Slow RNG you **might** be able to use to seed a PRNG with. Be careful as this * might not work on all platforms as planned */ unsigned long rng_get_bytes(unsigned char *out, unsigned long outlen, void ( *callback)(void)); int rng_make_prng(int bits, int wprng, prng_state *prng, void (*callback)(void)); /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_prng.h,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* ---- NUMBER THEORY ---- */ enum { PK_PUBLIC =0, PK_PRIVATE=1 }; int rand_prime(void *N, long len, prng_state *prng, int wprng); /* ---- RSA ---- */ #ifdef LTC_MRSA /* Min and Max RSA key sizes (in bits) */ #define MIN_RSA_SIZE 1024 #define MAX_RSA_SIZE 4096 /** RSA LTC_PKCS style key */ typedef struct Rsa_key { /** Type of key, PK_PRIVATE or PK_PUBLIC */ int type; /** The public exponent */ void *e; /** The private exponent */ void *d; /** The modulus */ void *N; /** The p factor of N */ void *p; /** The q factor of N */ void *q; /** The 1/q mod p CRT param */ void *qP; /** The d mod (p - 1) CRT param */ void *dP; /** The d mod (q - 1) CRT param */ void *dQ; } rsa_key; int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key); int rsa_exptmod(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key); void rsa_free(rsa_key *key); /* These use LTC_PKCS #1 v2.0 padding */ #define rsa_encrypt_key(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _prng, _prng_idx, _hash_idx, _key) \ rsa_encrypt_key_ex(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _prng, _prng_idx, _hash_idx, LTC_LTC_PKCS_1_OAEP, _key) #define rsa_decrypt_key(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _hash_idx, _stat, _key) \ rsa_decrypt_key_ex(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _hash_idx, LTC_LTC_PKCS_1_OAEP, _stat, _key) #define rsa_sign_hash(_in, _inlen, _out, _outlen, _prng, _prng_idx, _hash_idx, _saltlen, _key) \ rsa_sign_hash_ex(_in, _inlen, _out, _outlen, LTC_LTC_PKCS_1_PSS, _prng, _prng_idx, _hash_idx, _saltlen, _key) #define rsa_verify_hash(_sig, _siglen, _hash, _hashlen, _hash_idx, _saltlen, _stat, _key) \ rsa_verify_hash_ex(_sig, _siglen, _hash, _hashlen, LTC_LTC_PKCS_1_PSS, _hash_idx, _saltlen, _stat, _key) /* These can be switched between LTC_PKCS #1 v2.x and LTC_PKCS #1 v1.5 paddings */ int rsa_encrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, prng_state *prng, int prng_idx, int hash_idx, int padding, rsa_key *key); int rsa_decrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, int hash_idx, int padding, int *stat, rsa_key *key); int rsa_sign_hash_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int padding, prng_state *prng, int prng_idx, int hash_idx, unsigned long saltlen, rsa_key *key); int rsa_verify_hash_ex(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int padding, int hash_idx, unsigned long saltlen, int *stat, rsa_key *key); /* LTC_PKCS #1 import/export */ int rsa_export(unsigned char *out, unsigned long *outlen, int type, rsa_key *key); int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key); #endif /* ---- Katja ---- */ #ifdef MKAT /* Min and Max KAT key sizes (in bits) */ #define MIN_KAT_SIZE 1024 #define MAX_KAT_SIZE 4096 /** Katja LTC_PKCS style key */ typedef struct KAT_key { /** Type of key, PK_PRIVATE or PK_PUBLIC */ int type; /** The private exponent */ void *d; /** The modulus */ void *N; /** The p factor of N */ void *p; /** The q factor of N */ void *q; /** The 1/q mod p CRT param */ void *qP; /** The d mod (p - 1) CRT param */ void *dP; /** The d mod (q - 1) CRT param */ void *dQ; /** The pq param */ void *pq; } katja_key; int katja_make_key(prng_state *prng, int wprng, int size, katja_key *key); int katja_exptmod(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, katja_key *key); void katja_free(katja_key *key); /* These use LTC_PKCS #1 v2.0 padding */ int katja_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, prng_state *prng, int prng_idx, int hash_idx, katja_key *key); int katja_decrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, int hash_idx, int *stat, katja_key *key); /* LTC_PKCS #1 import/export */ int katja_export(unsigned char *out, unsigned long *outlen, int type, katja_key *key); int katja_import(const unsigned char *in, unsigned long inlen, katja_key *key); #endif /* ---- ECC Routines ---- */ #ifdef LTC_MECC /* size of our temp buffers for exported keys */ #define ECC_BUF_SIZE 256 /* max private key size */ #define ECC_MAXSIZE 66 /** Structure defines a NIST GF(p) curve */ typedef struct { /** The size of the curve in octets */ int size; /** name of curve */ char *name; /** The prime that defines the field the curve is in (encoded in hex) */ char *prime; /** The fields B param (hex) */ char *B; /** The order of the curve (hex) */ char *order; /** The x co-ordinate of the base point on the curve (hex) */ char *Gx; /** The y co-ordinate of the base point on the curve (hex) */ char *Gy; } ltc_ecc_set_type; /** A point on a ECC curve, stored in Jacbobian format such that (x,y,z) => (x/z^2, y/z^3, 1) when interpretted as affine */ typedef struct { /** The x co-ordinate */ void *x; /** The y co-ordinate */ void *y; /** The z co-ordinate */ void *z; } ecc_point; /** An ECC key */ typedef struct { /** Type of key, PK_PRIVATE or PK_PUBLIC */ int type; /** Index into the ltc_ecc_sets[] for the parameters of this curve; if -1, then this key is using user supplied curve in dp */ int idx; /** pointer to domain parameters; either points to NIST curves (identified by idx >= 0) or user supplied curve */ const ltc_ecc_set_type *dp; /** The public key */ ecc_point pubkey; /** The private key */ void *k; } ecc_key; /** the ECC params provided */ extern const ltc_ecc_set_type ltc_ecc_sets[]; int ecc_test(void); void ecc_sizes(int *low, int *high); int ecc_get_size(ecc_key *key); int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key); int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp); void ecc_free(ecc_key *key); int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key); int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key); int ecc_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_set_type *dp); int ecc_ansi_x963_export(ecc_key *key, unsigned char *out, unsigned long *outlen); int ecc_ansi_x963_import(const unsigned char *in, unsigned long inlen, ecc_key *key); int ecc_ansi_x963_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, ltc_ecc_set_type *dp); int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key, unsigned char *out, unsigned long *outlen); int ecc_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash, ecc_key *key); int ecc_decrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, ecc_key *key); int ecc_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, ecc_key *key); int ecc_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, ecc_key *key); /* low level functions */ ecc_point *ltc_ecc_new_point(void); void ltc_ecc_del_point(ecc_point *p); int ltc_ecc_is_valid_idx(int n); /* point ops (mp == montgomery digit) */ #if !defined(LTC_MECC_ACCEL) || defined(LTM_LTC_DESC) || defined(GMP_LTC_DESC) /* R = 2P */ int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp); /* R = P + Q */ int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp); #endif #if defined(LTC_MECC_FP) /* optimized point multiplication using fixed point cache (HAC algorithm 14.117) */ int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map); /* functions for saving/loading/freeing/adding to fixed point cache */ int ltc_ecc_fp_save_state(unsigned char **out, unsigned long *outlen); int ltc_ecc_fp_restore_state(unsigned char *in, unsigned long inlen); void ltc_ecc_fp_free(void); int ltc_ecc_fp_add_point(ecc_point *g, void *modulus, int lock); /* lock/unlock all points currently in fixed point cache */ void ltc_ecc_fp_tablelock(int lock); #endif /* R = kG */ int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map); #ifdef LTC_ECC_SHAMIR /* kA*A + kB*B = C */ int ltc_ecc_mul2add(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus); #ifdef LTC_MECC_FP /* Shamir's trick with optimized point multiplication using fixed point cache */ int ltc_ecc_fp_mul2add(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus); #endif #endif /* map P to affine from projective */ int ltc_ecc_map(ecc_point *P, void *modulus, void *mp); #endif #ifdef LTC_MDSA /* Max diff between group and modulus size in bytes */ #define LTC_MDSA_DELTA 512 /* Max DSA group size in bytes (default allows 4k-bit groups) */ #define LTC_MDSA_MAX_GROUP 512 /** DSA key structure */ typedef struct { /** The key type, PK_PRIVATE or PK_PUBLIC */ int type; /** The order of the sub-group used in octets */ int qord; /** The generator */ void *g; /** The prime used to generate the sub-group */ void *q; /** The large prime that generats the field the contains the sub-group */ void *p; /** The private key */ void *x; /** The public key */ void *y; } dsa_key; int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key); void dsa_free(dsa_key *key); int dsa_sign_hash_raw(const unsigned char *in, unsigned long inlen, void *r, void *s, prng_state *prng, int wprng, dsa_key *key); int dsa_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, dsa_key *key); int dsa_verify_hash_raw(void *r, void *s, const unsigned char *hash, unsigned long hashlen, int *stat, dsa_key *key); int dsa_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, dsa_key *key); int dsa_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash, dsa_key *key); int dsa_decrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, dsa_key *key); int dsa_import(const unsigned char *in, unsigned long inlen, dsa_key *key); int dsa_export(unsigned char *out, unsigned long *outlen, int type, dsa_key *key); int dsa_verify_key(dsa_key *key, int *stat); int dsa_shared_secret(void *private_key, void *base, dsa_key *public_key, unsigned char *out, unsigned long *outlen); #endif #ifdef LTC_DER /* DER handling */ enum { LTC_ASN1_EOL, LTC_ASN1_BOOLEAN, LTC_ASN1_INTEGER, LTC_ASN1_SHORT_INTEGER, LTC_ASN1_BIT_STRING, LTC_ASN1_OCTET_STRING, LTC_ASN1_NULL, LTC_ASN1_OBJECT_IDENTIFIER, LTC_ASN1_IA5_STRING, LTC_ASN1_PRINTABLE_STRING, LTC_ASN1_UTF8_STRING, LTC_ASN1_UTCTIME, LTC_ASN1_CHOICE, LTC_ASN1_SEQUENCE, LTC_ASN1_SET, LTC_ASN1_SETOF }; /** A LTC ASN.1 list type */ typedef struct ltc_asn1_list_ { /** The LTC ASN.1 enumerated type identifier */ int type; /** The data to encode or place for decoding */ void *data; /** The size of the input or resulting output */ unsigned long size; /** The used flag, this is used by the CHOICE ASN.1 type to indicate which choice was made */ int used; /** prev/next entry in the list */ struct ltc_asn1_list_ *prev, *next, *child, *parent; } ltc_asn1_list; #define LTC_SET_ASN1(list, index, Type, Data, Size) \ do { \ int LTC_MACRO_temp = (index); \ ltc_asn1_list *LTC_MACRO_list = (list); \ LTC_MACRO_list[LTC_MACRO_temp].type = (Type); \ LTC_MACRO_list[LTC_MACRO_temp].data = (void *)(Data); \ LTC_MACRO_list[LTC_MACRO_temp].size = (Size); \ LTC_MACRO_list[LTC_MACRO_temp].used = 0; \ } while (0); /* SEQUENCE */ int der_encode_sequence_ex(ltc_asn1_list *list, unsigned long inlen, unsigned char *out, unsigned long *outlen, int type_of); #define der_encode_sequence(list, inlen, out, outlen) der_encode_sequence_ex(list, inlen, out, outlen, LTC_ASN1_SEQUENCE) int der_decode_sequence_ex(const unsigned char *in, unsigned long inlen, ltc_asn1_list *list, unsigned long outlen, int ordered); #define der_decode_sequence(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, 1) int der_length_sequence(ltc_asn1_list *list, unsigned long inlen, unsigned long *outlen); /* SET */ #define der_decode_set(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, 0) #define der_length_set der_length_sequence int der_encode_set(ltc_asn1_list *list, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_encode_setof(ltc_asn1_list *list, unsigned long inlen, unsigned char *out, unsigned long *outlen); /* VA list handy helpers with triplets of */ int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...); int der_decode_sequence_multi(const unsigned char *in, unsigned long inlen, ...); /* FLEXI DECODER handle unknown list decoder */ int der_decode_sequence_flexi(const unsigned char *in, unsigned long *inlen, ltc_asn1_list **out); void der_free_sequence_flexi(ltc_asn1_list *list); void der_sequence_free(ltc_asn1_list *in); /* BOOLEAN */ int der_length_boolean(unsigned long *outlen); int der_encode_boolean(int in, unsigned char *out, unsigned long *outlen); int der_decode_boolean(const unsigned char *in, unsigned long inlen, int *out); /* INTEGER */ int der_encode_integer(void *num, unsigned char *out, unsigned long *outlen); int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num); int der_length_integer(void *num, unsigned long *len); /* INTEGER -- handy for 0..2^32-1 values */ int der_decode_short_integer(const unsigned char *in, unsigned long inlen, unsigned long *num); int der_encode_short_integer(unsigned long num, unsigned char *out, unsigned long *outlen); int der_length_short_integer(unsigned long num, unsigned long *outlen); /* BIT STRING */ int der_encode_bit_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_decode_bit_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_length_bit_string(unsigned long nbits, unsigned long *outlen); /* OCTET STRING */ int der_encode_octet_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_decode_octet_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_length_octet_string(unsigned long noctets, unsigned long *outlen); /* OBJECT IDENTIFIER */ int der_encode_object_identifier(unsigned long *words, unsigned long nwords, unsigned char *out, unsigned long *outlen); int der_decode_object_identifier(const unsigned char *in, unsigned long inlen, unsigned long *words, unsigned long *outlen); int der_length_object_identifier(unsigned long *words, unsigned long nwords, unsigned long *outlen); unsigned long der_object_identifier_bits(unsigned long x); /* IA5 STRING */ int der_encode_ia5_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_decode_ia5_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_length_ia5_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen); int der_ia5_char_encode(int c); int der_ia5_value_decode(int v); /* Printable STRING */ int der_encode_printable_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_decode_printable_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_length_printable_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen); int der_printable_char_encode(int c); int der_printable_value_decode(int v); /* UTF-8 */ #if (defined(SIZE_MAX) || __STDC_VERSION__ >= 199901L || defined(WCHAR_MAX) || defined(_WCHAR_T) || defined(_WCHAR_T_DEFINED) || defined (__WCHAR_TYPE__)) && !defined(LTC_NO_WCHAR) #include #else typedef ulong32 wchar_t; #endif int der_encode_utf8_string(const wchar_t *in, unsigned long inlen, unsigned char *out, unsigned long *outlen); int der_decode_utf8_string(const unsigned char *in, unsigned long inlen, wchar_t *out, unsigned long *outlen); unsigned long der_utf8_charsize(const wchar_t c); int der_length_utf8_string(const wchar_t *in, unsigned long noctets, unsigned long *outlen); /* CHOICE */ int der_decode_choice(const unsigned char *in, unsigned long *inlen, ltc_asn1_list *list, unsigned long outlen); /* UTCTime */ typedef struct { unsigned YY, /* year */ MM, /* month */ DD, /* day */ hh, /* hour */ mm, /* minute */ ss, /* second */ off_dir, /* timezone offset direction 0 == +, 1 == - */ off_hh, /* timezone offset hours */ off_mm; /* timezone offset minutes */ } ltc_utctime; int der_encode_utctime(ltc_utctime *utctime, unsigned char *out, unsigned long *outlen); int der_decode_utctime(const unsigned char *in, unsigned long *inlen, ltc_utctime *out); int der_length_utctime(ltc_utctime *utctime, unsigned long *outlen); #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_pk.h,v $ */ /* $Revision: 1.81 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /** math functions **/ #define LTC_SOURCE #define LTC_MP_LT -1 #define LTC_MP_EQ 0 #define LTC_MP_GT 1 #define LTC_MP_NO 0 #define LTC_MP_YES 1 #ifndef LTC_MECC typedef void ecc_point; #endif #ifndef LTC_MRSA typedef void rsa_key; #endif /** math descriptor */ typedef struct { /** Name of the math provider */ char *name; /** Bits per digit, amount of bits must fit in an unsigned long */ int bits_per_digit; /* ---- init/deinit functions ---- */ /** initialize a bignum @param a The number to initialize @return CRYPT_OK on success */ int (*init)(void **a); /** init copy @param dst The number to initialize and write to @param src The number to copy from @return CRYPT_OK on success */ int (*init_copy)(void **dst, void *src); /** deinit @param a The number to free @return CRYPT_OK on success */ void (*deinit)(void *a); /* ---- data movement ---- */ /** negate @param src The number to negate @param dst The destination @return CRYPT_OK on success */ int (*neg)(void *src, void *dst); /** copy @param src The number to copy from @param dst The number to write to @return CRYPT_OK on success */ int (*copy)(void *src, void *dst); /* ---- trivial low level functions ---- */ /** set small constant @param a Number to write to @param n Source upto bits_per_digit (actually meant for very small constants) @return CRYPT_OK on succcess */ int (*set_int)(void *a, unsigned long n); /** get small constant @param a Number to read, only fetches upto bits_per_digit from the number @return The lower bits_per_digit of the integer (unsigned) */ unsigned long (*get_int)(void *a); /** get digit n @param a The number to read from @param n The number of the digit to fetch @return The bits_per_digit sized n'th digit of a */ unsigned long (*get_digit)(void *a, int n); /** Get the number of digits that represent the number @param a The number to count @return The number of digits used to represent the number */ int (*get_digit_count)(void *a); /** compare two integers @param a The left side integer @param b The right side integer @return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison) */ int (*compare)(void *a, void *b); /** compare against int @param a The left side integer @param b The right side integer (upto bits_per_digit) @return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison) */ int (*compare_d)(void *a, unsigned long n); /** Count the number of bits used to represent the integer @param a The integer to count @return The number of bits required to represent the integer */ int (*count_bits)(void *a); /** Count the number of LSB bits which are zero @param a The integer to count @return The number of contiguous zero LSB bits */ int (*count_lsb_bits)(void *a); /** Compute a power of two @param a The integer to store the power in @param n The power of two you want to store (a = 2^n) @return CRYPT_OK on success */ int (*twoexpt)(void *a, int n); /* ---- radix conversions ---- */ /** read ascii string @param a The integer to store into @param str The string to read @param radix The radix the integer has been represented in (2-64) @return CRYPT_OK on success */ int (*read_radix)(void *a, const char *str, int radix); /** write number to string @param a The integer to store @param str The destination for the string @param radix The radix the integer is to be represented in (2-64) @return CRYPT_OK on success */ int (*write_radix)(void *a, char *str, int radix); /** get size as unsigned char string @param a The integer to get the size (when stored in array of octets) @return The length of the integer */ unsigned long (*unsigned_size)(void *a); /** store an integer as an array of octets @param src The integer to store @param dst The buffer to store the integer in @return CRYPT_OK on success */ int (*unsigned_write)(void *src, unsigned char *dst); /** read an array of octets and store as integer @param dst The integer to load @param src The array of octets @param len The number of octets @return CRYPT_OK on success */ int (*unsigned_read)(void *dst, unsigned char *src, unsigned long len); /* ---- basic math ---- */ /** add two integers @param a The first source integer @param b The second source integer @param c The destination of "a + b" @return CRYPT_OK on success */ int (*add)(void *a, void *b, void *c); /** add two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a + b" @return CRYPT_OK on success */ int (*addi)(void *a, unsigned long b, void *c); /** subtract two integers @param a The first source integer @param b The second source integer @param c The destination of "a - b" @return CRYPT_OK on success */ int (*sub)(void *a, void *b, void *c); /** subtract two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a - b" @return CRYPT_OK on success */ int (*subi)(void *a, unsigned long b, void *c); /** multiply two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a * b" @return CRYPT_OK on success */ int (*mul)(void *a, void *b, void *c); /** multiply two integers @param a The first source integer @param b The second source integer (single digit of upto bits_per_digit in length) @param c The destination of "a * b" @return CRYPT_OK on success */ int (*muli)(void *a, unsigned long b, void *c); /** Square an integer @param a The integer to square @param b The destination @return CRYPT_OK on success */ int (*sqr)(void *a, void *b); /** Divide an integer @param a The dividend @param b The divisor @param c The quotient (can be NULL to signify don't care) @param d The remainder (can be NULL to signify don't care) @return CRYPT_OK on success */ int (*mpdiv)(void *a, void *b, void *c, void *d); /** divide by two @param a The integer to divide (shift right) @param b The destination @return CRYPT_OK on success */ int (*div_2)(void *a, void *b); /** Get remainder (small value) @param a The integer to reduce @param b The modulus (upto bits_per_digit in length) @param c The destination for the residue @return CRYPT_OK on success */ int (*modi)(void *a, unsigned long b, unsigned long *c); /** gcd @param a The first integer @param b The second integer @param c The destination for (a, b) @return CRYPT_OK on success */ int (*gcd)(void *a, void *b, void *c); /** lcm @param a The first integer @param b The second integer @param c The destination for [a, b] @return CRYPT_OK on success */ int (*lcm)(void *a, void *b, void *c); /** Modular multiplication @param a The first source @param b The second source @param c The modulus @param d The destination (a*b mod c) @return CRYPT_OK on success */ int (*mulmod)(void *a, void *b, void *c, void *d); /** Modular squaring @param a The first source @param b The modulus @param c The destination (a*a mod b) @return CRYPT_OK on success */ int (*sqrmod)(void *a, void *b, void *c); /** Modular inversion @param a The value to invert @param b The modulus @param c The destination (1/a mod b) @return CRYPT_OK on success */ int (*invmod)(void *, void *, void *); /* ---- reduction ---- */ /** setup montgomery @param a The modulus @param b The destination for the reduction digit @return CRYPT_OK on success */ int (*montgomery_setup)(void *a, void **b); /** get normalization value @param a The destination for the normalization value @param b The modulus @return CRYPT_OK on success */ int (*montgomery_normalization)(void *a, void *b); /** reduce a number @param a The number [and dest] to reduce @param b The modulus @param c The value "b" from montgomery_setup() @return CRYPT_OK on success */ int (*montgomery_reduce)(void *a, void *b, void *c); /** clean up (frees memory) @param a The value "b" from montgomery_setup() @return CRYPT_OK on success */ void (*montgomery_deinit)(void *a); /* ---- exponentiation ---- */ /** Modular exponentiation @param a The base integer @param b The power (can be negative) integer @param c The modulus integer @param d The destination @return CRYPT_OK on success */ int (*exptmod)(void *a, void *b, void *c, void *d); /** Primality testing @param a The integer to test @param b The destination of the result (FP_YES if prime) @return CRYPT_OK on success */ int (*isprime)(void *a, int *b); /* ---- (optional) ecc point math ---- */ /** ECC GF(p) point multiplication (from the NIST curves) @param k The integer to multiply the point by @param G The point to multiply @param R The destination for kG @param modulus The modulus for the field @param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only) @return CRYPT_OK on success */ int (*ecc_ptmul)(void *k, ecc_point *G, ecc_point *R, void *modulus, int map); /** ECC GF(p) point addition @param P The first point @param Q The second point @param R The destination of P + Q @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int (*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp); /** ECC GF(p) point double @param P The first point @param R The destination of 2P @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int (*ecc_ptdbl)(ecc_point *P, ecc_point *R, void *modulus, void *mp); /** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1) @param P The point to map @param modulus The modulus @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success @remark The mapping can be different but keep in mind a ecc_point only has three integers (x,y,z) so if you use a different mapping you have to make it fit. */ int (*ecc_map)(ecc_point *P, void *modulus, void *mp); /** Computes kA*A + kB*B = C using Shamir's Trick @param A First point to multiply @param kA What to multiple A by @param B Second point to multiply @param kB What to multiple B by @param C [out] Destination point (can overlap with A or B @param modulus Modulus for curve @return CRYPT_OK on success */ int (*ecc_mul2add)(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus); /* ---- (optional) rsa optimized math (for internal CRT) ---- */ /** RSA Key Generation @param prng An active PRNG state @param wprng The index of the PRNG desired @param size The size of the modulus (key size) desired (octets) @param e The "e" value (public key). e==65537 is a good choice @param key [out] Destination of a newly created private key pair @return CRYPT_OK if successful, upon error all allocated ram is freed */ int (*rsa_keygen)(prng_state *prng, int wprng, int size, long e, rsa_key *key); /** RSA exponentiation @param in The octet array representing the base @param inlen The length of the input @param out The destination (to be stored in an octet array format) @param outlen The length of the output buffer and the resulting size (zero padded to the size of the modulus) @param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA @param key The RSA key to use @return CRYPT_OK on success */ int (*rsa_me)(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key); } ltc_math_descriptor; extern ltc_math_descriptor ltc_mp; int ltc_init_multi(void **a, ...); void ltc_deinit_multi(void *a, ...); #ifdef LTM_DESC extern const ltc_math_descriptor ltm_desc; #endif #ifdef TFM_DESC extern const ltc_math_descriptor tfm_desc; #endif #ifdef GMP_DESC extern const ltc_math_descriptor gmp_desc; #endif #if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE) #undef MP_DIGIT_BIT #undef mp_iszero #undef mp_isodd #undef mp_tohex #define MP_DIGIT_BIT ltc_mp.bits_per_digit /* some handy macros */ #define mp_init(a) ltc_mp.init(a) #define mp_init_multi ltc_init_multi #define mp_clear(a) ltc_mp.deinit(a) #define mp_clear_multi ltc_deinit_multi #define mp_init_copy(a, b) ltc_mp.init_copy(a, b) #define mp_neg(a, b) ltc_mp.neg(a, b) #define mp_copy(a, b) ltc_mp.copy(a, b) #define mp_set(a, b) ltc_mp.set_int(a, b) #define mp_set_int(a, b) ltc_mp.set_int(a, b) #define mp_get_int(a) ltc_mp.get_int(a) #define mp_get_digit(a, n) ltc_mp.get_digit(a, n) #define mp_get_digit_count(a) ltc_mp.get_digit_count(a) #define mp_cmp(a, b) ltc_mp.compare(a, b) #define mp_cmp_d(a, b) ltc_mp.compare_d(a, b) #define mp_count_bits(a) ltc_mp.count_bits(a) #define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a) #define mp_2expt(a, b) ltc_mp.twoexpt(a, b) #define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c) #define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c) #define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a) #define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b) #define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c) #define mp_add(a, b, c) ltc_mp.add(a, b, c) #define mp_add_d(a, b, c) ltc_mp.addi(a, b, c) #define mp_sub(a, b, c) ltc_mp.sub(a, b, c) #define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c) #define mp_mul(a, b, c) ltc_mp.mul(a, b, c) #define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c) #define mp_sqr(a, b) ltc_mp.sqr(a, b) #define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d) #define mp_div_2(a, b) ltc_mp.div_2(a, b) #define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c) #define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c) #define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c) #define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c) #define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d) #define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c) #define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c) #define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b) #define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b) #define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c) #define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a) #define mp_exptmod(a, b, c, d) ltc_mp.exptmod(a, b, c, d) #define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, c) #define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO) #define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO) #define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while (0); #define mp_tohex(a, b) mp_toradix(a, b, 16) #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_math.h,v $ */ /* $Revision: 1.44 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* ---- LTC_BASE64 Routines ---- */ #ifdef LTC_BASE64 int base64_encode(const unsigned char *in, unsigned long len, unsigned char *out, unsigned long *outlen); int base64_decode(const unsigned char *in, unsigned long len, unsigned char *out, unsigned long *outlen); #endif /* ---- MEM routines ---- */ void zeromem(void *dst, size_t len); void burn_stack(unsigned long len); const char *error_to_string(int err); extern const char *crypt_build_settings; /* ---- HMM ---- */ int crypt_fsa(void *mp, ...); /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_misc.h,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* Defines the LTC_ARGCHK macro used within the library */ /* ARGTYPE is defined in mycrypt_cfg.h */ #if ARGTYPE == 0 #include /* this is the default LibTomCrypt macro */ void crypt_argchk(char *v, char *s, int d); #define LTC_ARGCHK(x) if (!(x)) { crypt_argchk(#x, __FILE__, __LINE__); } #define LTC_ARGCHKVD(x) LTC_ARGCHK(x) #elif ARGTYPE == 1 /* fatal type of error */ #define LTC_ARGCHK(x) HTTPS_ASSERT((x, "LibTomCrypt LTC_ARGCHK error")) #define LTC_ARGCHKVD(x) LTC_ARGCHK(x) #elif ARGTYPE == 2 #define LTC_ARGCHK(x) if (!(x)) { fprintf(stderr, "\nwarning: ARGCHK failed at %s:%d\n", __FILE__, __LINE__); } #define LTC_ARGCHKVD(x) LTC_ARGCHK(x) #elif ARGTYPE == 3 #define LTC_ARGCHK(x) #define LTC_ARGCHKVD(x) LTC_ARGCHK(x) #elif ARGTYPE == 4 #define LTC_ARGCHK(x) if (!(x)) return CRYPT_INVALID_ARG; #define LTC_ARGCHKVD(x) if (!(x)) return; #endif /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_argchk.h,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/08/27 20:50:21 $ */ /* LTC_PKCS Header Info */ /* ===> LTC_PKCS #1 -- RSA Cryptography <=== */ #ifdef LTC_PKCS_1 enum ltc_pkcs_1_v1_5_blocks { LTC_LTC_PKCS_1_EMSA = 1, /* Block type 1 (LTC_PKCS #1 v1.5 signature padding) */ LTC_LTC_PKCS_1_EME = 2 /* Block type 2 (LTC_PKCS #1 v1.5 encryption padding) */ }; enum ltc_pkcs_1_paddings { LTC_LTC_PKCS_1_V1_5 = 1, /* LTC_PKCS #1 v1.5 padding (\sa ltc_pkcs_1_v1_5_blocks) */ LTC_LTC_PKCS_1_OAEP = 2, /* LTC_PKCS #1 v2.0 encryption padding */ LTC_LTC_PKCS_1_PSS = 3 /* LTC_PKCS #1 v2.1 signature padding */ }; int pkcs_1_mgf1(int hash_idx, const unsigned char *seed, unsigned long seedlen, unsigned char *mask, unsigned long masklen); int pkcs_1_i2osp(void *n, unsigned long modulus_len, unsigned char *out); int pkcs_1_os2ip(void *n, unsigned char *in, unsigned long inlen); /* *** v1.5 padding */ int pkcs_1_v1_5_encode(const unsigned char *msg, unsigned long msglen, int block_type, unsigned long modulus_bitlen, prng_state *prng, int prng_idx, unsigned char *out, unsigned long *outlen); int pkcs_1_v1_5_decode(const unsigned char *msg, unsigned long msglen, int block_type, unsigned long modulus_bitlen, unsigned char *out, unsigned long *outlen, int *is_valid); /* *** v2.1 padding */ int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen, const unsigned char *lparam, unsigned long lparamlen, unsigned long modulus_bitlen, prng_state *prng, int prng_idx, int hash_idx, unsigned char *out, unsigned long *outlen); int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen, const unsigned char *lparam, unsigned long lparamlen, unsigned long modulus_bitlen, int hash_idx, unsigned char *out, unsigned long *outlen, int *res); int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen, unsigned long saltlen, prng_state *prng, int prng_idx, int hash_idx, unsigned long modulus_bitlen, unsigned char *out, unsigned long *outlen); int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen, const unsigned char *sig, unsigned long siglen, unsigned long saltlen, int hash_idx, unsigned long modulus_bitlen, int *res); #endif /* LTC_PKCS_1 */ /* ===> LTC_PKCS #5 -- Password Based Cryptography <=== */ #ifdef LTC_PKCS_5 /* Algorithm #1 (old) */ int pkcs_5_alg1(const unsigned char *password, unsigned long password_len, const unsigned char *salt, int iteration_count, int hash_idx, unsigned char *out, unsigned long *outlen); /* Algorithm #2 (new) */ int pkcs_5_alg2(const unsigned char *password, unsigned long password_len, const unsigned char *salt, unsigned long salt_len, int iteration_count, int hash_idx, unsigned char *out, unsigned long *outlen); #endif /* LTC_PKCS_5 */ /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_pkcs.h,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2007/05/12 14:32:35 $ */ #endif /* TOMCRYPT_H_ */ /* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt.h,v $ */ /* $Revision: 1.21 $ */ /* $Date: 2006/12/16 19:34:05 $ */ /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_argchk.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_cipher_descriptor.c Stores the cipher descriptor table, Tom St Denis */ struct ltc_cipher_descriptor cipher_descriptor[TAB_SIZE] = { { NULL, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL } }; LTC_MUTEX_GLOBAL(ltc_cipher_mutex) /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_cipher_descriptor.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_cipher_is_valid.c Determine if cipher is valid, Tom St Denis */ /* Test if a cipher index is valid @param idx The index of the cipher to search for @return CRYPT_OK if valid */ int cipher_is_valid(int idx) { LTC_MUTEX_LOCK(<c_cipher_mutex); if ((idx < 0) || (idx >= TAB_SIZE) || (cipher_descriptor[idx].name == NULL)) { LTC_MUTEX_UNLOCK(<c_cipher_mutex); return CRYPT_INVALID_CIPHER; } LTC_MUTEX_UNLOCK(<c_cipher_mutex); return CRYPT_OK; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_cipher_is_valid.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_cipher.c Find a cipher in the descriptor tables, Tom St Denis */ /** Find a registered cipher by name @param name The name of the cipher to look for @return >= 0 if found, -1 if not present */ int find_cipher(const char *name) { int x; LTC_ARGCHK(name != NULL); LTC_MUTEX_LOCK(<c_cipher_mutex); for (x = 0; x < TAB_SIZE; x++) { if ((cipher_descriptor[x].name != NULL) && !XSTRCMP(cipher_descriptor[x].name, name)) { LTC_MUTEX_UNLOCK(<c_cipher_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_cipher_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_cipher.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_cipher_any.c Find a cipher in the descriptor tables, Tom St Denis */ /** Find a cipher flexibly. First by name then if not present by block and key size @param name The name of the cipher desired @param blocklen The minimum length of the block cipher desired (octets) @param keylen The minimum length of the key size desired (octets) @return >= 0 if found, -1 if not present */ int find_cipher_any(const char *name, int blocklen, int keylen) { int x; LTC_ARGCHK(name != NULL); x = find_cipher(name); if (x != -1) return x; LTC_MUTEX_LOCK(<c_cipher_mutex); for (x = 0; x < TAB_SIZE; x++) { if (cipher_descriptor[x].name == NULL) { continue; } if ((blocklen <= (int)cipher_descriptor[x].block_length) && (keylen <= (int)cipher_descriptor[x].max_key_length)) { LTC_MUTEX_UNLOCK(<c_cipher_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_cipher_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_cipher_any.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_cipher_id.c Find cipher by ID, Tom St Denis */ /** Find a cipher by ID number @param ID The ID (not same as index) of the cipher to find @return >= 0 if found, -1 if not present */ int find_cipher_id(unsigned char ID) { int x; LTC_MUTEX_LOCK(<c_cipher_mutex); for (x = 0; x < TAB_SIZE; x++) { if (cipher_descriptor[x].ID == ID) { x = (cipher_descriptor[x].name == NULL) ? -1 : x; LTC_MUTEX_UNLOCK(<c_cipher_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_cipher_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_cipher_id.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_hash.c Find a hash, Tom St Denis */ /** Find a registered hash by name @param name The name of the hash to look for @return >= 0 if found, -1 if not present */ int find_hash(const char *name) { int x; LTC_ARGCHK(name != NULL); LTC_MUTEX_LOCK(<c_hash_mutex); for (x = 0; x < TAB_SIZE; x++) { if ((hash_descriptor[x].name != NULL) && (XSTRCMP(hash_descriptor[x].name, name) == 0)) { LTC_MUTEX_UNLOCK(<c_hash_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_hash_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_hash.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_hash_any.c Find a hash, Tom St Denis */ /** Find a hash flexibly. First by name then if not present by digest size @param name The name of the hash desired @param digestlen The minimum length of the digest size (octets) @return >= 0 if found, -1 if not present */int find_hash_any(const char *name, int digestlen) { int x, y, z; LTC_ARGCHK(name != NULL); x = find_hash(name); if (x != -1) return x; LTC_MUTEX_LOCK(<c_hash_mutex); y = MAXBLOCKSIZE + 1; z = -1; for (x = 0; x < TAB_SIZE; x++) { if (hash_descriptor[x].name == NULL) { continue; } if (((int)hash_descriptor[x].hashsize >= digestlen) && ((int)hash_descriptor[x].hashsize < y)) { z = x; y = hash_descriptor[x].hashsize; } } LTC_MUTEX_UNLOCK(<c_hash_mutex); return z; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_hash_any.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_hash_id.c Find hash by ID, Tom St Denis */ /** Find a hash by ID number @param ID The ID (not same as index) of the hash to find @return >= 0 if found, -1 if not present */ int find_hash_id(unsigned char ID) { int x; LTC_MUTEX_LOCK(<c_hash_mutex); for (x = 0; x < TAB_SIZE; x++) { if (hash_descriptor[x].ID == ID) { x = (hash_descriptor[x].name == NULL) ? -1 : x; LTC_MUTEX_UNLOCK(<c_hash_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_hash_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_hash_id.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_hash_oid.c Find a hash, Tom St Denis */ int find_hash_oid(const unsigned long *ID, unsigned long IDlen) { int x; LTC_ARGCHK(ID != NULL); LTC_MUTEX_LOCK(<c_hash_mutex); for (x = 0; x < TAB_SIZE; x++) { if ((hash_descriptor[x].name != NULL) && (hash_descriptor[x].OIDlen == IDlen) && !XMEMCMP(hash_descriptor[x].OID, ID, sizeof(unsigned long) * IDlen)) { LTC_MUTEX_UNLOCK(<c_hash_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_hash_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_hash_oid.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_find_prng.c Find a PRNG, Tom St Denis */ /** Find a registered PRNG by name @param name The name of the PRNG to look for @return >= 0 if found, -1 if not present */ int find_prng(const char *name) { int x; LTC_ARGCHK(name != NULL); LTC_MUTEX_LOCK(<c_prng_mutex); for (x = 0; x < TAB_SIZE; x++) { if ((prng_descriptor[x].name != NULL) && (XSTRCMP(prng_descriptor[x].name, name) == 0)) { LTC_MUTEX_UNLOCK(<c_prng_mutex); return x; } } LTC_MUTEX_UNLOCK(<c_prng_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_prng.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file crypt_fsa.c LibTomCrypt FULL SPEED AHEAD!, Tom St Denis */ /* format is ltc_mp, cipher_desc, [cipher_desc], NULL, hash_desc, [hash_desc], NULL, prng_desc, [prng_desc], NULL */ int crypt_fsa(void *mp, ...) { int err; va_list args; void *p; va_start(args, mp); if (mp != NULL) { XMEMCPY(<c_mp, mp, sizeof(ltc_mp)); } while ((p = va_arg(args, void *)) != NULL) { if ((err = register_cipher(AUTO_CAST(p))) != CRYPT_OK) { va_end(args); return err; } } while ((p = va_arg(args, void *)) != NULL) { if ((err = register_hash(AUTO_CAST(p))) != CRYPT_OK) { va_end(args); return err; } } while ((p = va_arg(args, void *)) != NULL) { if ((err = register_prng(AUTO_CAST(p))) != CRYPT_OK) { va_end(args); return err; } } va_end(args); return CRYPT_OK; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_fsa.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_hash_descriptor.c Stores the hash descriptor table, Tom St Denis */ struct ltc_hash_descriptor hash_descriptor[TAB_SIZE] = { { NULL, 0, 0, 0, { 0 }, 0, NULL, NULL, NULL, NULL, NULL } }; LTC_MUTEX_GLOBAL(ltc_hash_mutex) /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_hash_descriptor.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_hash_is_valid.c Determine if hash is valid, Tom St Denis */ /* Test if a hash index is valid @param idx The index of the hash to search for @return CRYPT_OK if valid */ int hash_is_valid(int idx) { LTC_MUTEX_LOCK(<c_hash_mutex); if ((idx < 0) || (idx >= TAB_SIZE) || (hash_descriptor[idx].name == NULL)) { LTC_MUTEX_UNLOCK(<c_hash_mutex); return CRYPT_INVALID_HASH; } LTC_MUTEX_UNLOCK(<c_hash_mutex); return CRYPT_OK; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_hash_is_valid.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ ltc_math_descriptor ltc_mp; /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_prng_descriptor.c Stores the PRNG descriptors, Tom St Denis */ struct ltc_prng_descriptor prng_descriptor[TAB_SIZE] = { { NULL, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL } }; LTC_MUTEX_GLOBAL(ltc_prng_mutex) /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_prng_descriptor.c,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_prng_is_valid.c Determine if PRNG is valid, Tom St Denis */ /* Test if a PRNG index is valid @param idx The index of the PRNG to search for @return CRYPT_OK if valid */ int prng_is_valid(int idx) { LTC_MUTEX_LOCK(<c_prng_mutex); if ((idx < 0) || (idx >= TAB_SIZE) || (prng_descriptor[idx].name == NULL)) { LTC_MUTEX_UNLOCK(<c_prng_mutex); return CRYPT_INVALID_PRNG; } LTC_MUTEX_UNLOCK(<c_prng_mutex); return CRYPT_OK; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_prng_is_valid.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_register_cipher.c Register a cipher, Tom St Denis */ /** Register a cipher with the descriptor table @param cipher The cipher you wish to register @return value >= 0 if successfully added (or already present), -1 if unsuccessful */ int register_cipher(const struct ltc_cipher_descriptor *cipher) { int x; LTC_ARGCHK(cipher != NULL); /* is it already registered? */ LTC_MUTEX_LOCK(<c_cipher_mutex); for (x = 0; x < TAB_SIZE; x++) { if ((cipher_descriptor[x].name != NULL) && (cipher_descriptor[x].ID == cipher->ID)) { LTC_MUTEX_UNLOCK(<c_cipher_mutex); return x; } } /* find a blank spot */ for (x = 0; x < TAB_SIZE; x++) { if (cipher_descriptor[x].name == NULL) { XMEMCPY(&cipher_descriptor[x], cipher, sizeof(struct ltc_cipher_descriptor)); LTC_MUTEX_UNLOCK(<c_cipher_mutex); return x; } } /* no spot */ LTC_MUTEX_UNLOCK(<c_cipher_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_register_cipher.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_register_hash.c Register a HASH, Tom St Denis */ /** Register a hash with the descriptor table @param hash The hash you wish to register @return value >= 0 if successfully added (or already present), -1 if unsuccessful */ int register_hash(const struct ltc_hash_descriptor *hash) { int x; LTC_ARGCHK(hash != NULL); /* is it already registered? */ LTC_MUTEX_LOCK(<c_hash_mutex); for (x = 0; x < TAB_SIZE; x++) { if (XMEMCMP(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor)) == 0) { LTC_MUTEX_UNLOCK(<c_hash_mutex); return x; } } /* find a blank spot */ for (x = 0; x < TAB_SIZE; x++) { if (hash_descriptor[x].name == NULL) { XMEMCPY(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor)); LTC_MUTEX_UNLOCK(<c_hash_mutex); return x; } } /* no spot */ LTC_MUTEX_UNLOCK(<c_hash_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_register_hash.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_register_prng.c Register a PRNG, Tom St Denis */ /** Register a PRNG with the descriptor table @param prng The PRNG you wish to register @return value >= 0 if successfully added (or already present), -1 if unsuccessful */ int register_prng(const struct ltc_prng_descriptor *prng) { int x; LTC_ARGCHK(prng != NULL); /* is it already registered? */ LTC_MUTEX_LOCK(<c_prng_mutex); for (x = 0; x < TAB_SIZE; x++) { if (XMEMCMP(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor)) == 0) { LTC_MUTEX_UNLOCK(<c_prng_mutex); return x; } } /* find a blank spot */ for (x = 0; x < TAB_SIZE; x++) { if (prng_descriptor[x].name == NULL) { XMEMCPY(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor)); LTC_MUTEX_UNLOCK(<c_prng_mutex); return x; } } /* no spot */ LTC_MUTEX_UNLOCK(<c_prng_mutex); return -1; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_register_prng.c,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_unregister_cipher.c Unregister a cipher, Tom St Denis */ /** Unregister a cipher from the descriptor table @param cipher The cipher descriptor to remove @return CRYPT_OK on success */ int unregister_cipher(const struct ltc_cipher_descriptor *cipher) { int x; LTC_ARGCHK(cipher != NULL); /* is it already registered? */ LTC_MUTEX_LOCK(<c_cipher_mutex); for (x = 0; x < TAB_SIZE; x++) { if (XMEMCMP(&cipher_descriptor[x], cipher, sizeof(struct ltc_cipher_descriptor)) == 0) { cipher_descriptor[x].name = NULL; cipher_descriptor[x].ID = 255; LTC_MUTEX_UNLOCK(<c_cipher_mutex); return CRYPT_OK; } } LTC_MUTEX_UNLOCK(<c_cipher_mutex); return CRYPT_ERROR; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_unregister_cipher.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_unregister_hash.c Unregister a hash, Tom St Denis */ /** Unregister a hash from the descriptor table @param hash The hash descriptor to remove @return CRYPT_OK on success */ int unregister_hash(const struct ltc_hash_descriptor *hash) { int x; LTC_ARGCHK(hash != NULL); /* is it already registered? */ LTC_MUTEX_LOCK(<c_hash_mutex); for (x = 0; x < TAB_SIZE; x++) { if (XMEMCMP(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor)) == 0) { hash_descriptor[x].name = NULL; LTC_MUTEX_UNLOCK(<c_hash_mutex); return CRYPT_OK; } } LTC_MUTEX_UNLOCK(<c_hash_mutex); return CRYPT_ERROR; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_unregister_hash.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file crypt_unregister_prng.c Unregister a PRNG, Tom St Denis */ /** Unregister a PRNG from the descriptor table @param prng The PRNG descriptor to remove @return CRYPT_OK on success */ int unregister_prng(const struct ltc_prng_descriptor *prng) { int x; LTC_ARGCHK(prng != NULL); /* is it already registered? */ LTC_MUTEX_LOCK(<c_prng_mutex); for (x = 0; x < TAB_SIZE; x++) { if (XMEMCMP(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor)) != 0) { prng_descriptor[x].name = NULL; LTC_MUTEX_UNLOCK(<c_prng_mutex); return CRYPT_OK; } } LTC_MUTEX_UNLOCK(<c_prng_mutex); return CRYPT_ERROR; } /* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_unregister_prng.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_bit_string.c ASN.1 DER, encode a BIT STRING, Tom St Denis */ #ifdef LTC_DER /** Store a BIT STRING @param in The DER encoded BIT STRING @param inlen The size of the DER BIT STRING @param out [out] The array of bits stored (one per char) @param outlen [in/out] The number of bits stored @return CRYPT_OK if successful */ int der_decode_bit_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long dlen, blen, x, y; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* packet must be at least 4 bytes */ if (inlen < 4) { return CRYPT_INVALID_ARG; } /* check for 0x03 */ if ((in[0] & 0x1F) != 0x03) { return CRYPT_INVALID_PACKET; } /* offset in the data */ x = 1; /* get the length of the data */ if (in[x] & 0x80) { /* long format get number of length bytes */ y = in[x++] & 0x7F; /* invalid if 0 or > 2 */ if ((y == 0) || (y > 2)) { return CRYPT_INVALID_PACKET; } /* read the data len */ dlen = 0; while (y--) { dlen = (dlen << 8) | (unsigned long)in[x++]; } } else { /* short format */ dlen = in[x++] & 0x7F; } /* is the data len too long or too short? */ if ((dlen == 0) || (dlen + x > inlen)) { return CRYPT_INVALID_PACKET; } /* get padding count */ blen = ((dlen - 1) << 3) - (in[x++] & 7); /* too many bits? */ if (blen > *outlen) { *outlen = blen; return CRYPT_BUFFER_OVERFLOW; } /* decode/store the bits */ for (y = 0; y < blen; y++) { out[y] = (in[x] & (1 << (7 - (y & 7)))) ? 1 : 0; if ((y & 7) == 7) { ++x; } } /* we done */ *outlen = blen; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/bit/der_decode_bit_string.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_boolean.c ASN.1 DER, decode a BOOLEAN, Tom St Denis */ #ifdef LTC_DER /** Read a BOOLEAN @param in The destination for the DER encoded BOOLEAN @param inlen The size of the DER BOOLEAN @param out [out] The boolean to decode @return CRYPT_OK if successful */ int der_decode_boolean(const unsigned char *in, unsigned long inlen, int *out) { LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); if ((inlen != 3) || (in[0] != 0x01) || (in[1] != 0x01) || ((in[2] != 0x00) && (in[2] != 0xFF))) { return CRYPT_INVALID_ARG; } *out = (in[2] == 0xFF) ? 1 : 0; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/boolean/der_decode_boolean.c,v $ */ /* $Revision: 1.2 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_choice.c ASN.1 DER, decode a CHOICE, Tom St Denis */ #ifdef LTC_DER /** Decode a CHOICE @param in The DER encoded input @param inlen [in/out] The size of the input and resulting size of read type @param list The list of items to decode @param outlen The number of items in the list @return CRYPT_OK on success */ int der_decode_choice(const unsigned char *in, unsigned long *inlen, ltc_asn1_list *list, unsigned long outlen) { unsigned long size, x, z; void *data; LTC_ARGCHK(in != NULL); LTC_ARGCHK(inlen != NULL); LTC_ARGCHK(list != NULL); /* get blk size */ if (*inlen < 2) { return CRYPT_INVALID_PACKET; } /* set all of the "used" flags to zero */ for (x = 0; x < outlen; x++) { list[x].used = 0; } /* now scan until we have a winner */ for (x = 0; x < outlen; x++) { size = list[x].size; data = list[x].data; switch (list[x].type) { case LTC_ASN1_INTEGER: if (der_decode_integer(in, *inlen, data) == CRYPT_OK) { if (der_length_integer(data, &z) == CRYPT_OK) { list[x].used = 1; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_SHORT_INTEGER: if (der_decode_short_integer(in, *inlen, (unsigned long *)data) == CRYPT_OK) { if (der_length_short_integer(size, &z) == CRYPT_OK) { list[x].used = 1; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_BIT_STRING: if (der_decode_bit_string(in, *inlen, (unsigned char *)data, &size) == CRYPT_OK) { if (der_length_bit_string(size, &z) == CRYPT_OK) { list[x].used = 1; list[x].size = size; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_OCTET_STRING: if (der_decode_octet_string(in, *inlen, AUTO_CAST(data), &size) == CRYPT_OK) { if (der_length_octet_string(size, &z) == CRYPT_OK) { list[x].used = 1; list[x].size = size; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_NULL: if ((*inlen == 2) && (in[x] == 0x05) && (in[x + 1] == 0x00)) { *inlen = 2; list[x].used = 1; return CRYPT_OK; } break; case LTC_ASN1_OBJECT_IDENTIFIER: if (der_decode_object_identifier(in, *inlen, AUTO_CAST(data), &size) == CRYPT_OK) { if (der_length_object_identifier(AUTO_CAST(data), size, &z) == CRYPT_OK) { list[x].used = 1; list[x].size = size; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_IA5_STRING: if (der_decode_ia5_string(in, *inlen, AUTO_CAST(data), &size) == CRYPT_OK) { if (der_length_ia5_string(AUTO_CAST(data), size, &z) == CRYPT_OK) { list[x].used = 1; list[x].size = size; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_PRINTABLE_STRING: if (der_decode_printable_string(in, *inlen, AUTO_CAST(data), &size) == CRYPT_OK) { if (der_length_printable_string(AUTO_CAST(data), size, &z) == CRYPT_OK) { list[x].used = 1; list[x].size = size; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_UTF8_STRING: if (der_decode_utf8_string(in, *inlen, AUTO_CAST(data), &size) == CRYPT_OK) { if (der_length_utf8_string(AUTO_CAST(data), size, &z) == CRYPT_OK) { list[x].used = 1; list[x].size = size; *inlen = z; return CRYPT_OK; } } break; case LTC_ASN1_UTCTIME: z = *inlen; if (der_decode_utctime(in, &z, AUTO_CAST(data)) == CRYPT_OK) { list[x].used = 1; *inlen = z; return CRYPT_OK; } break; case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: if (der_decode_sequence(in, *inlen, AUTO_CAST(data), size) == CRYPT_OK) { if (der_length_sequence(AUTO_CAST(data), size, &z) == CRYPT_OK) { list[x].used = 1; *inlen = z; return CRYPT_OK; } } break; default: return CRYPT_INVALID_ARG; } } return CRYPT_INVALID_PACKET; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/choice/der_decode_choice.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_ia5_string.c ASN.1 DER, encode a IA5 STRING, Tom St Denis */ #ifdef LTC_DER /** Store a IA5 STRING @param in The DER encoded IA5 STRING @param inlen The size of the DER IA5 STRING @param out [out] The array of octets stored (one per char) @param outlen [in/out] The number of octets stored @return CRYPT_OK if successful */ int der_decode_ia5_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; int t; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* must have header at least */ if (inlen < 2) { return CRYPT_INVALID_PACKET; } /* check for 0x16 */ if ((in[0] & 0x1F) != 0x16) { return CRYPT_INVALID_PACKET; } x = 1; /* decode the length */ if (in[x] & 0x80) { /* valid # of bytes in length are 1,2,3 */ y = in[x] & 0x7F; if ((y == 0) || (y > 3) || ((x + y) > inlen)) { return CRYPT_INVALID_PACKET; } /* read the length in */ len = 0; ++x; while (y--) { len = (len << 8) | in[x++]; } } else { len = in[x++] & 0x7F; } /* is it too long? */ if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } if (len + x > inlen) { return CRYPT_INVALID_PACKET; } /* read the data */ for (y = 0; y < len; y++) { t = der_ia5_value_decode(in[x++]); if (t == -1) { return CRYPT_INVALID_ARG; } out[y] = t; } *outlen = y; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/ia5/der_decode_ia5_string.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_integer.c ASN.1 DER, decode an integer, Tom St Denis */ #ifdef LTC_DER /** Read a mp_int integer @param in The DER encoded data @param inlen Size of DER encoded data @param num The first mp_int to decode @return CRYPT_OK if successful */ int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num) { unsigned long x, y, z; int err; LTC_ARGCHK(num != NULL); LTC_ARGCHK(in != NULL); /* min DER INTEGER is 0x02 01 00 == 0 */ if (inlen < (1 + 1 + 1)) { return CRYPT_INVALID_PACKET; } /* ok expect 0x02 when we AND with 0001 1111 [1F] */ x = 0; if ((in[x++] & 0x1F) != 0x02) { return CRYPT_INVALID_PACKET; } /* now decode the len stuff */ z = in[x++]; if ((z & 0x80) == 0x00) { /* short form */ /* will it overflow? */ if (x + z > inlen) { return CRYPT_INVALID_PACKET; } /* no so read it */ if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, z)) != CRYPT_OK) { return err; } } else { /* long form */ z &= 0x7F; /* will number of length bytes overflow? (or > 4) */ if (((x + z) > inlen) || (z > 4) || (z == 0)) { return CRYPT_INVALID_PACKET; } /* now read it in */ y = 0; while (z--) { y = ((unsigned long)(in[x++])) | (y << 8); } /* now will reading y bytes overrun? */ if ((x + y) > inlen) { return CRYPT_INVALID_PACKET; } /* no so read it */ if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, y)) != CRYPT_OK) { return err; } } /* see if it's negative */ if (in[x] & 0x80) { void *tmp; if (mp_init(&tmp) != CRYPT_OK) { return CRYPT_MEM; } if ((mp_2expt(tmp, mp_count_bits(num)) != CRYPT_OK) || (mp_sub(num, tmp, num) != CRYPT_OK)) { mp_clear(tmp); return CRYPT_MEM; } mp_clear(tmp); } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/integer/der_decode_integer.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_object_identifier.c ASN.1 DER, Decode Object Identifier, Tom St Denis */ #ifdef LTC_DER /** Decode OID data and store the array of integers in words @param in The OID DER encoded data @param inlen The length of the OID data @param words [out] The destination of the OID words @param outlen [in/out] The number of OID words @return CRYPT_OK if successful */ int der_decode_object_identifier(const unsigned char *in, unsigned long inlen, unsigned long *words, unsigned long *outlen) { unsigned long x, y, t, len; LTC_ARGCHK(in != NULL); LTC_ARGCHK(words != NULL); LTC_ARGCHK(outlen != NULL); /* header is at least 3 bytes */ if (inlen < 3) { return CRYPT_INVALID_PACKET; } /* must be room for at least two words */ if (*outlen < 2) { return CRYPT_BUFFER_OVERFLOW; } /* decode the packet header */ x = 0; if ((in[x++] & 0x1F) != 0x06) { return CRYPT_INVALID_PACKET; } /* get the length */ if (in[x] < 128) { len = in[x++]; } else { if ((in[x] < 0x81) || (in[x] > 0x82)) { return CRYPT_INVALID_PACKET; } y = in[x++] & 0x7F; len = 0; while (y--) { len = (len << 8) | (unsigned long)in[x++]; } } if ((len < 1) || ((len + x) > inlen)) { return CRYPT_INVALID_PACKET; } /* decode words */ y = 0; t = 0; while (len--) { t = (t << 7) | (in[x] & 0x7F); if (!(in[x++] & 0x80)) { /* store t */ if (y >= *outlen) { return CRYPT_BUFFER_OVERFLOW; } if (y == 0) { words[0] = t / 40; words[1] = t % 40; y = 2; } else { words[y++] = t; } t = 0; } } *outlen = y; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/object_identifier/der_decode_object_identifier.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_octet_string.c ASN.1 DER, encode a OCTET STRING, Tom St Denis */ #ifdef LTC_DER /** Store a OCTET STRING @param in The DER encoded OCTET STRING @param inlen The size of the DER OCTET STRING @param out [out] The array of octets stored (one per char) @param outlen [in/out] The number of octets stored @return CRYPT_OK if successful */ int der_decode_octet_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* must have header at least */ if (inlen < 2) { return CRYPT_INVALID_PACKET; } /* check for 0x04 */ if ((in[0] & 0x1F) != 0x04) { return CRYPT_INVALID_PACKET; } x = 1; /* decode the length */ if (in[x] & 0x80) { /* valid # of bytes in length are 1,2,3 */ y = in[x] & 0x7F; if ((y == 0) || (y > 3) || ((x + y) > inlen)) { return CRYPT_INVALID_PACKET; } /* read the length in */ len = 0; ++x; while (y--) { len = (len << 8) | in[x++]; } } else { len = in[x++] & 0x7F; } /* is it too long? */ if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } if (len + x > inlen) { return CRYPT_INVALID_PACKET; } /* read the data */ for (y = 0; y < len; y++) { out[y] = in[x++]; } *outlen = y; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/octet/der_decode_octet_string.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_printable_string.c ASN.1 DER, encode a printable STRING, Tom St Denis */ #ifdef LTC_DER /** Store a printable STRING @param in The DER encoded printable STRING @param inlen The size of the DER printable STRING @param out [out] The array of octets stored (one per char) @param outlen [in/out] The number of octets stored @return CRYPT_OK if successful */ int der_decode_printable_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; int t; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* must have header at least */ if (inlen < 2) { return CRYPT_INVALID_PACKET; } /* check for 0x13 */ if ((in[0] & 0x1F) != 0x13) { return CRYPT_INVALID_PACKET; } x = 1; /* decode the length */ if (in[x] & 0x80) { /* valid # of bytes in length are 1,2,3 */ y = in[x] & 0x7F; if ((y == 0) || (y > 3) || ((x + y) > inlen)) { return CRYPT_INVALID_PACKET; } /* read the length in */ len = 0; ++x; while (y--) { len = (len << 8) | in[x++]; } } else { len = in[x++] & 0x7F; } /* is it too long? */ if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } if (len + x > inlen) { return CRYPT_INVALID_PACKET; } /* read the data */ for (y = 0; y < len; y++) { t = der_printable_value_decode(in[x++]); if (t == -1) { return CRYPT_INVALID_ARG; } out[y] = t; } *outlen = y; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/printable_string/der_decode_printable_string.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file der_decode_sequence_ex.c ASN.1 DER, decode a SEQUENCE, Tom St Denis */ #ifdef LTC_DER /** Decode a SEQUENCE @param in The DER encoded input @param inlen The size of the input @param list The list of items to decode @param outlen The number of items in the list @param ordered Search an unordeded or ordered list @return CRYPT_OK on success */ int der_decode_sequence_ex(const unsigned char *in, unsigned long inlen, ltc_asn1_list *list, unsigned long outlen, int ordered) { int err, type; unsigned long size, x, y, z, i, blksize; void *data; LTC_ARGCHK(in != NULL); LTC_ARGCHK(list != NULL); /* get blk size */ if (inlen < 2) { return CRYPT_INVALID_PACKET; } blksize = 0; /* sequence type? We allow 0x30 SEQUENCE and 0x31 SET since fundamentally they're the same structure */ x = 0; if ((in[x] != 0x30) && (in[x] != 0x31)) { return CRYPT_INVALID_PACKET; } ++x; if (in[x] < 128) { blksize = in[x++]; } else if (in[x] & 0x80) { if ((in[x] < 0x81) || (in[x] > 0x83)) { return CRYPT_INVALID_PACKET; } y = in[x++] & 0x7F; /* would reading the len bytes overrun? */ if (x + y > inlen) { return CRYPT_INVALID_PACKET; } /* read len */ blksize = 0; while (y--) { blksize = (blksize << 8) | (unsigned long)in[x++]; } } /* would this blksize overflow? */ if (x + blksize > inlen) { return CRYPT_INVALID_PACKET; } /* mark all as unused */ for (i = 0; i < outlen; i++) { list[i].used = 0; } /* ok read data */ inlen = blksize; for (i = 0; i < outlen; i++) { z = 0; type = list[i].type; size = list[i].size; data = list[i].data; if (!ordered && (list[i].used == 1)) { continue; } if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: z = inlen; if ((err = der_decode_boolean(in + x, z, ((int *)data))) != CRYPT_OK) { goto LBL_ERR; } if ((err = der_length_boolean(&z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_INTEGER: z = inlen; if ((err = der_decode_integer(in + x, z, data)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } if ((err = der_length_integer(data, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_SHORT_INTEGER: z = inlen; if ((err = der_decode_short_integer(in + x, z, AUTO_CAST(data))) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } if ((err = der_length_short_integer(((unsigned long *)data)[0], &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_BIT_STRING: z = inlen; if ((err = der_decode_bit_string(in + x, z, AUTO_CAST(data), &size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } list[i].size = size; if ((err = der_length_bit_string(size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_OCTET_STRING: z = inlen; if ((err = der_decode_octet_string(in + x, z, AUTO_CAST(data), &size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } list[i].size = size; if ((err = der_length_octet_string(size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_NULL: if ((inlen < 2) || (in[x] != 0x05) || (in[x + 1] != 0x00)) { if (!ordered) { continue; } err = CRYPT_INVALID_PACKET; goto LBL_ERR; } z = 2; break; case LTC_ASN1_OBJECT_IDENTIFIER: z = inlen; if ((err = der_decode_object_identifier(in + x, z, AUTO_CAST(data), &size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } list[i].size = size; if ((err = der_length_object_identifier(AUTO_CAST(data), size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_IA5_STRING: z = inlen; if ((err = der_decode_ia5_string(in + x, z, AUTO_CAST(data), &size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } list[i].size = size; if ((err = der_length_ia5_string(AUTO_CAST(data), size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_PRINTABLE_STRING: z = inlen; if ((err = der_decode_printable_string(in + x, z, AUTO_CAST(data), &size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } list[i].size = size; if ((err = der_length_printable_string(AUTO_CAST(data), size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_UTF8_STRING: z = inlen; if ((err = der_decode_utf8_string(in + x, z, AUTO_CAST(data), &size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } list[i].size = size; if ((err = der_length_utf8_string(AUTO_CAST(data), size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_UTCTIME: z = inlen; if ((err = der_decode_utctime(in + x, &z, AUTO_CAST(data))) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } break; case LTC_ASN1_SET: z = inlen; if ((err = der_decode_set(in + x, z, AUTO_CAST(data), size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } if ((err = der_length_sequence(AUTO_CAST(data), size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: /* detect if we have the right type */ if (((type == LTC_ASN1_SETOF) && ((in[x] & 0x3F) != 0x31)) || ((type == LTC_ASN1_SEQUENCE) && ((in[x] & 0x3F) != 0x30))) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } z = inlen; if ((err = der_decode_sequence(in + x, z, AUTO_CAST(data), size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } if ((err = der_length_sequence(AUTO_CAST(data), size, &z)) != CRYPT_OK) { goto LBL_ERR; } break; case LTC_ASN1_CHOICE: z = inlen; if ((err = der_decode_choice(in + x, &z, AUTO_CAST(data), size)) != CRYPT_OK) { if (!ordered) { continue; } goto LBL_ERR; } break; default: err = CRYPT_INVALID_ARG; goto LBL_ERR; } x += z; inlen -= z; list[i].used = 1; if (!ordered) { /* restart the decoder */ i = -1; } } for (i = 0; i < outlen; i++) { if (list[i].used == 0) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } } err = CRYPT_OK; LBL_ERR: return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_decode_sequence_ex.c,v $ */ /* $Revision: 1.16 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_sequence_flexi.c ASN.1 DER, decode an array of ASN.1 types with a flexi parser, Tom St Denis */ #ifdef LTC_DER static unsigned long fetch_length(const unsigned char *in, unsigned long inlen) { unsigned long x, y, z; y = 0; /* skip type and read len */ if (inlen < 2) { return 0xFFFFFFFF; } ++in; ++y; /* read len */ x = *in++; ++y; /* <128 means literal */ if (x < 128) { return x + y; } x &= 0x7F; /* the lower 7 bits are the length of the length */ inlen -= 2; /* len means len of len! */ if ((x == 0) || (x > 4) || (x > inlen)) { return 0xFFFFFFFF; } y += x; z = 0; while (x--) { z = (z << 8) | ((unsigned long)*in); ++in; } return z + y; } /** ASN.1 DER Flexi(ble) decoder will decode arbitrary DER packets and create a linked list of the decoded elements. @param in The input buffer @param inlen [in/out] The length of the input buffer and on output the amount of decoded data @param out [out] A pointer to the linked list @return CRYPT_OK on success. */ int der_decode_sequence_flexi(const unsigned char *in, unsigned long *inlen, ltc_asn1_list **out) { ltc_asn1_list *l; unsigned long err, type, len, totlen, x, y; void *realloc_tmp; LTC_ARGCHK(in != NULL); LTC_ARGCHK(inlen != NULL); LTC_ARGCHK(out != NULL); l = NULL; totlen = 0; /* scan the input and and get lengths and what not */ while (*inlen) { /* read the type byte */ type = *in; /* fetch length */ len = fetch_length(in, *inlen); if (len > *inlen) { err = CRYPT_INVALID_PACKET; goto error; } /* alloc new link */ if (l == NULL) { l = AUTO_CAST(XCALLOC(1, sizeof(*l))); if (l == NULL) { err = CRYPT_MEM; goto error; } } else { l->next = AUTO_CAST(XCALLOC(1, sizeof(*l))); if (l->next == NULL) { err = CRYPT_MEM; goto error; } l->next->prev = l; l = l->next; } /* now switch on type */ switch (type) { case 0x01: /* BOOLEAN */ l->type = LTC_ASN1_BOOLEAN; l->size = 1; l->data = XCALLOC(1, sizeof(int)); if ((err = der_decode_boolean(in, *inlen, AUTO_CAST(l->data))) != CRYPT_OK) { goto error; } if ((err = der_length_boolean(&len)) != CRYPT_OK) { goto error; } break; case 0x02: /* INTEGER */ /* init field */ l->type = LTC_ASN1_INTEGER; l->size = 1; if ((err = mp_init(&l->data)) != CRYPT_OK) { goto error; } /* decode field */ if ((err = der_decode_integer(in, *inlen, l->data)) != CRYPT_OK) { goto error; } /* calc length of object */ if ((err = der_length_integer(l->data, &len)) != CRYPT_OK) { goto error; } break; case 0x03: /* BIT */ /* init field */ l->type = LTC_ASN1_BIT_STRING; l->size = len * 8; /* *8 because we store decoded bits one per char and they are encoded 8 per char. */ if ((l->data = XCALLOC(1, l->size)) == NULL) { err = CRYPT_MEM; goto error; } if ((err = der_decode_bit_string(in, *inlen, AUTO_CAST(l->data), &l->size)) != CRYPT_OK) { goto error; } if ((err = der_length_bit_string(l->size, &len)) != CRYPT_OK) { goto error; } break; case 0x04: /* OCTET */ /* init field */ l->type = LTC_ASN1_OCTET_STRING; l->size = len; if ((l->data = XCALLOC(1, l->size)) == NULL) { err = CRYPT_MEM; goto error; } if ((err = der_decode_octet_string(in, *inlen, AUTO_CAST(l->data), &l->size)) != CRYPT_OK) { goto error; } if ((err = der_length_octet_string(l->size, &len)) != CRYPT_OK) { goto error; } break; case 0x05: /* NULL */ /* valid NULL is 0x05 0x00 */ if ((in[0] != 0x05) || (in[1] != 0x00)) { err = CRYPT_INVALID_PACKET; goto error; } /* simple to store ;-) */ l->type = LTC_ASN1_NULL; l->data = NULL; l->size = 0; len = 2; break; case 0x06: /* OID */ /* init field */ l->type = LTC_ASN1_OBJECT_IDENTIFIER; l->size = len; if ((l->data = XCALLOC(len, sizeof(unsigned long))) == NULL) { err = CRYPT_MEM; goto error; } if ((err = der_decode_object_identifier(in, *inlen, AUTO_CAST(l->data), &l->size)) != CRYPT_OK) { goto error; } if ((err = der_length_object_identifier(AUTO_CAST(l->data), l->size, &len)) != CRYPT_OK) { goto error; } /* resize it to save a bunch of mem */ if ((realloc_tmp = XREALLOC(l->data, l->size * sizeof(unsigned long))) == NULL) { /* out of heap but this is not an error */ break; } l->data = realloc_tmp; break; case 0x0C: /* UTF8 */ /* init field */ l->type = LTC_ASN1_UTF8_STRING; l->size = len; if ((l->data = XCALLOC(sizeof(wchar_t), l->size)) == NULL) { err = CRYPT_MEM; goto error; } if ((err = der_decode_utf8_string(in, *inlen, AUTO_CAST(l->data), &l->size)) != CRYPT_OK) { goto error; } if ((err = der_length_utf8_string(AUTO_CAST(l->data), l->size, &len)) != CRYPT_OK) { goto error; } break; case 0x13: /* PRINTABLE */ /* init field */ l->type = LTC_ASN1_PRINTABLE_STRING; l->size = len; if ((l->data = XCALLOC(1, l->size)) == NULL) { err = CRYPT_MEM; goto error; } if ((err = der_decode_printable_string(in, *inlen, AUTO_CAST(l->data), &l->size)) != CRYPT_OK) { goto error; } if ((err = der_length_printable_string(AUTO_CAST(l->data), l->size, &len)) != CRYPT_OK) { goto error; } break; case 0x16: /* IA5 */ /* init field */ l->type = LTC_ASN1_IA5_STRING; l->size = len; if ((l->data = XCALLOC(1, l->size)) == NULL) { err = CRYPT_MEM; goto error; } if ((err = der_decode_ia5_string(in, *inlen, AUTO_CAST(l->data), &l->size)) != CRYPT_OK) { goto error; } if ((err = der_length_ia5_string(AUTO_CAST(l->data), l->size, &len)) != CRYPT_OK) { goto error; } break; case 0x17: /* UTC TIME */ /* init field */ l->type = LTC_ASN1_UTCTIME; l->size = 1; if ((l->data = XCALLOC(1, sizeof(ltc_utctime))) == NULL) { err = CRYPT_MEM; goto error; } len = *inlen; if ((err = der_decode_utctime(in, &len, AUTO_CAST(l->data))) != CRYPT_OK) { goto error; } if ((err = der_length_utctime(AUTO_CAST(l->data), &len)) != CRYPT_OK) { goto error; } break; case 0x30: /* SEQUENCE */ case 0x31: /* SET */ /* init field */ l->type = (type == 0x30) ? LTC_ASN1_SEQUENCE : LTC_ASN1_SET; /* we have to decode the SEQUENCE header and get it's length */ /* move past type */ ++in; --(*inlen); /* read length byte */ x = *in++; --(*inlen); /* smallest SEQUENCE/SET header */ y = 2; /* now if it's > 127 the next bytes are the length of the length */ if (x > 128) { x &= 0x7F; in += x; *inlen -= x; /* update sequence header len */ y += x; } /* Sequence elements go as child */ len = len - y; if ((err = der_decode_sequence_flexi(in, &len, &(l->child))) != CRYPT_OK) { goto error; } /* len update */ totlen += y; /* link them up y0 */ l->child->parent = l; break; default: /* invalid byte ... this is a soft error */ /* remove link */ l = l->prev; XFREE(l->next); l->next = NULL; goto outside; } /* advance pointers */ totlen += len; in += len; *inlen -= len; } outside: /* rewind l please */ while (l->prev != NULL || l->parent != NULL) { if (l->parent != NULL) { l = l->parent; } else { l = l->prev; } } /* return */ *out = l; *inlen = totlen; return CRYPT_OK; error: /* free list */ der_sequence_free(l); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_decode_sequence_flexi.c,v $ */ /* $Revision: 1.26 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file der_decode_sequence_multi.c ASN.1 DER, decode a SEQUENCE, Tom St Denis */ #ifdef LTC_DER /** Decode a SEQUENCE type using a VA list @param in Input buffer @param inlen Length of input in octets @remark <...> is of the form (int, unsigned long, void*) @return CRYPT_OK on success */ int der_decode_sequence_multi(const unsigned char *in, unsigned long inlen, ...) { int err, type; unsigned long size, x; void *data; va_list args; ltc_asn1_list *list; LTC_ARGCHK(in != NULL); /* get size of output that will be required */ va_start(args, inlen); x = 0; for ( ; ; ) { type = va_arg(args, int); size = va_arg(args, unsigned long); data = va_arg(args, void *); if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: case LTC_ASN1_BIT_STRING: case LTC_ASN1_OCTET_STRING: case LTC_ASN1_NULL: case LTC_ASN1_OBJECT_IDENTIFIER: case LTC_ASN1_IA5_STRING: case LTC_ASN1_PRINTABLE_STRING: case LTC_ASN1_UTF8_STRING: case LTC_ASN1_UTCTIME: case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: case LTC_ASN1_CHOICE: ++x; break; default: va_end(args); return CRYPT_INVALID_ARG; } } va_end(args); /* allocate structure for x elements */ if (x == 0) { return CRYPT_NOP; } list = AUTO_CAST(XCALLOC(sizeof(*list), x)); if (list == NULL) { return CRYPT_MEM; } /* fill in the structure */ va_start(args, inlen); x = 0; for ( ; ; ) { type = va_arg(args, int); size = va_arg(args, unsigned long); data = va_arg(args, void *); if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: case LTC_ASN1_BIT_STRING: case LTC_ASN1_OCTET_STRING: case LTC_ASN1_NULL: case LTC_ASN1_OBJECT_IDENTIFIER: case LTC_ASN1_IA5_STRING: case LTC_ASN1_PRINTABLE_STRING: case LTC_ASN1_UTF8_STRING: case LTC_ASN1_UTCTIME: case LTC_ASN1_SEQUENCE: case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_CHOICE: list[x].type = type; list[x].size = size; list[x++].data = data; break; default: va_end(args); err = CRYPT_INVALID_ARG; goto LBL_ERR; } } va_end(args); err = der_decode_sequence(in, inlen, list, x); LBL_ERR: XFREE(list); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_decode_sequence_multi.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_short_integer.c ASN.1 DER, decode an integer, Tom St Denis */ #ifdef LTC_DER /** Read a short integer @param in The DER encoded data @param inlen Size of data @param num [out] The integer to decode @return CRYPT_OK if successful */ int der_decode_short_integer(const unsigned char *in, unsigned long inlen, unsigned long *num) { unsigned long len, x, y; LTC_ARGCHK(num != NULL); LTC_ARGCHK(in != NULL); /* check length */ if (inlen < 2) { return CRYPT_INVALID_PACKET; } /* check header */ x = 0; if ((in[x++] & 0x1F) != 0x02) { return CRYPT_INVALID_PACKET; } /* get the packet len */ len = in[x++]; if (x + len > inlen) { return CRYPT_INVALID_PACKET; } /* read number */ y = 0; while (len--) { y = (y << 8) | (unsigned long)in[x++]; } *num = y; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/short_integer/der_decode_short_integer.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_utctime.c ASN.1 DER, decode a UTCTIME, Tom St Denis */ #ifdef LTC_DER static int char_to_int(unsigned char x) { switch (x) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } return 100; } #define DECODE_V(y, max) \ y = char_to_int(buf[x]) * 10 + char_to_int(buf[x + 1]); \ if (y >= max) return CRYPT_INVALID_PACKET; \ x += 2; /** Decodes a UTC time structure in DER format (reads all 6 valid encoding formats) @param in Input buffer @param inlen Length of input buffer in octets @param out [out] Destination of UTC time structure @return CRYPT_OK if successful */ int der_decode_utctime(const unsigned char *in, unsigned long *inlen, ltc_utctime *out) { unsigned char buf[32]; unsigned long x; int y; LTC_ARGCHK(in != NULL); LTC_ARGCHK(inlen != NULL); LTC_ARGCHK(out != NULL); /* check header */ if ((*inlen < 2UL) || (in[1] >= sizeof(buf)) || ((in[1] + 2UL) > *inlen)) { return CRYPT_INVALID_PACKET; } /* decode the string */ for (x = 0; x < in[1]; x++) { y = der_ia5_value_decode(in[x + 2]); if (y == -1) { return CRYPT_INVALID_PACKET; } buf[x] = y; } *inlen = 2 + x; /* possible encodings are YYMMDDhhmmZ YYMMDDhhmm+hh'mm' YYMMDDhhmm-hh'mm' YYMMDDhhmmssZ YYMMDDhhmmss+hh'mm' YYMMDDhhmmss-hh'mm' So let's do a trivial decode upto [including] mm */ x = 0; DECODE_V(out->YY, 100); DECODE_V(out->MM, 13); DECODE_V(out->DD, 32); DECODE_V(out->hh, 24); DECODE_V(out->mm, 60); /* clear timezone and seconds info */ out->off_dir = out->off_hh = out->off_mm = out->ss = 0; /* now is it Z, +, - or 0-9 */ if (buf[x] == 'Z') { return CRYPT_OK; } else if ((buf[x] == '+') || (buf[x] == '-')) { out->off_dir = (buf[x++] == '+') ? 0 : 1; DECODE_V(out->off_hh, 24); DECODE_V(out->off_mm, 60); return CRYPT_OK; } /* decode seconds */ DECODE_V(out->ss, 60); /* now is it Z, +, - */ if (buf[x] == 'Z') { return CRYPT_OK; } else if ((buf[x] == '+') || (buf[x] == '-')) { out->off_dir = (buf[x++] == '+') ? 0 : 1; DECODE_V(out->off_hh, 24); DECODE_V(out->off_mm, 60); return CRYPT_OK; } else { return CRYPT_INVALID_PACKET; } } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utctime/der_decode_utctime.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_decode_utf8_string.c ASN.1 DER, encode a UTF8 STRING, Tom St Denis */ #ifdef LTC_DER /** Store a UTF8 STRING @param in The DER encoded UTF8 STRING @param inlen The size of the DER UTF8 STRING @param out [out] The array of utf8s stored (one per char) @param outlen [in/out] The number of utf8s stored @return CRYPT_OK if successful */ int der_decode_utf8_string(const unsigned char *in, unsigned long inlen, wchar_t *out, unsigned long *outlen) { wchar_t tmp; unsigned long x, y, z, len; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* must have header at least */ if (inlen < 2) { return CRYPT_INVALID_PACKET; } /* check for 0x0C */ if ((in[0] & 0x1F) != 0x0C) { return CRYPT_INVALID_PACKET; } x = 1; /* decode the length */ if (in[x] & 0x80) { /* valid # of bytes in length are 1,2,3 */ y = in[x] & 0x7F; if ((y == 0) || (y > 3) || ((x + y) > inlen)) { return CRYPT_INVALID_PACKET; } /* read the length in */ len = 0; ++x; while (y--) { len = (len << 8) | in[x++]; } } else { len = in[x++] & 0x7F; } if (len + x > inlen) { return CRYPT_INVALID_PACKET; } /* proceed to decode */ for (y = 0; x < inlen; ) { /* get first byte */ tmp = in[x++]; /* count number of bytes */ for (z = 0; (tmp & 0x80) && (z <= 4); z++, tmp = (tmp << 1) & 0xFF); if ((z > 4) || (x + (z - 1) > inlen)) { return CRYPT_INVALID_PACKET; } /* decode, grab upper bits */ tmp >>= z; /* grab remaining bytes */ if (z > 1) { --z; } while (z-- != 0) { if ((in[x] & 0xC0) != 0x80) { return CRYPT_INVALID_PACKET; } tmp = (tmp << 6) | ((wchar_t)in[x++] & 0x3F); } if (y > *outlen) { *outlen = y; return CRYPT_BUFFER_OVERFLOW; } out[y++] = tmp; } *outlen = y; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utf8/der_decode_utf8_string.c,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_bit_string.c ASN.1 DER, encode a BIT STRING, Tom St Denis */ #ifdef LTC_DER /** Store a BIT STRING @param in The array of bits to store (one per char) @param inlen The number of bits tostore @param out [out] The destination for the DER encoded BIT STRING @param outlen [in/out] The max size and resulting size of the DER BIT STRING @return CRYPT_OK if successful */ int der_encode_bit_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long len, x, y; unsigned char buf; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* avoid overflows */ if ((err = der_length_bit_string(inlen, &len)) != CRYPT_OK) { return err; } if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } /* store header (include bit padding count in length) */ x = 0; y = (inlen >> 3) + ((inlen & 7) ? 1 : 0) + 1; out[x++] = 0x03; if (y < 128) { out[x++] = (unsigned char)y; } else if (y < 256) { out[x++] = 0x81; out[x++] = (unsigned char)y; } else if (y < 65536) { out[x++] = 0x82; out[x++] = (unsigned char)((y >> 8) & 255); out[x++] = (unsigned char)(y & 255); } /* store number of zero padding bits */ out[x++] = (unsigned char)((8 - inlen) & 7); /* store the bits in big endian format */ for (y = buf = 0; y < inlen; y++) { buf |= (in[y] ? 1 : 0) << (7 - (y & 7)); if ((y & 7) == 7) { out[x++] = buf; buf = 0; } } /* store last byte */ if (inlen & 7) { out[x++] = buf; } *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/bit/der_encode_bit_string.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_boolean.c ASN.1 DER, encode a BOOLEAN, Tom St Denis */ #ifdef LTC_DER /** Store a BOOLEAN @param in The boolean to encode @param out [out] The destination for the DER encoded BOOLEAN @param outlen [in/out] The max size and resulting size of the DER BOOLEAN @return CRYPT_OK if successful */ int der_encode_boolean(int in, unsigned char *out, unsigned long *outlen) { LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(out != NULL); if (*outlen < 3) { *outlen = 3; return CRYPT_BUFFER_OVERFLOW; } *outlen = 3; out[0] = 0x01; out[1] = 0x01; out[2] = in ? 0xFF : 0x00; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/boolean/der_encode_boolean.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_ia5_string.c ASN.1 DER, encode a IA5 STRING, Tom St Denis */ #ifdef LTC_DER /** Store an IA5 STRING @param in The array of IA5 to store (one per char) @param inlen The number of IA5 to store @param out [out] The destination for the DER encoded IA5 STRING @param outlen [in/out] The max size and resulting size of the DER IA5 STRING @return CRYPT_OK if successful */ int der_encode_ia5_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get the size */ if ((err = der_length_ia5_string(in, inlen, &len)) != CRYPT_OK) { return err; } /* too big? */ if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } /* encode the header+len */ x = 0; out[x++] = 0x16; if (inlen < 128) { out[x++] = (unsigned char)inlen; } else if (inlen < 256) { out[x++] = 0x81; out[x++] = (unsigned char)inlen; } else if (inlen < 65536UL) { out[x++] = 0x82; out[x++] = (unsigned char)((inlen >> 8) & 255); out[x++] = (unsigned char)(inlen & 255); } else if (inlen < 16777216UL) { out[x++] = 0x83; out[x++] = (unsigned char)((inlen >> 16) & 255); out[x++] = (unsigned char)((inlen >> 8) & 255); out[x++] = (unsigned char)(inlen & 255); } else { return CRYPT_INVALID_ARG; } /* store octets */ for (y = 0; y < inlen; y++) { out[x++] = der_ia5_char_encode(in[y]); } /* retun length */ *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/ia5/der_encode_ia5_string.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_integer.c ASN.1 DER, encode an integer, Tom St Denis */ #ifdef LTC_DER /* Exports a positive bignum as DER format (upto 2^32 bytes in size) */ /** Store a mp_int integer @param num The first mp_int to encode @param out [out] The destination for the DER encoded integers @param outlen [in/out] The max size and resulting size of the DER encoded integers @return CRYPT_OK if successful */ int der_encode_integer(void *num, unsigned char *out, unsigned long *outlen) { unsigned long tmplen, y; int err, leading_zero; LTC_ARGCHK(num != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* find out how big this will be */ if ((err = der_length_integer(num, &tmplen)) != CRYPT_OK) { return err; } if (*outlen < tmplen) { *outlen = tmplen; return CRYPT_BUFFER_OVERFLOW; } if (mp_cmp_d(num, 0) != LTC_MP_LT) { /* we only need a leading zero if the msb of the first byte is one */ if (((mp_count_bits(num) & 7) == 0) || (mp_iszero(num) == LTC_MP_YES)) { leading_zero = 1; } else { leading_zero = 0; } /* get length of num in bytes (plus 1 since we force the msbyte to zero) */ y = mp_unsigned_bin_size(num) + leading_zero; } else { leading_zero = 0; y = mp_count_bits(num); y = y + (8 - (y & 7)); y = y >> 3; if (((mp_cnt_lsb(num) + 1) == mp_count_bits(num)) && ((mp_count_bits(num) & 7) == 0)) --y; } /* now store initial data */ *out++ = 0x02; if (y < 128) { /* short form */ *out++ = (unsigned char)y; } else if (y < 256) { *out++ = 0x81; *out++ = (unsigned char)y; } else if (y < 65536UL) { *out++ = 0x82; *out++ = (unsigned char)((y >> 8) & 255); *out++ = (unsigned char)y; } else if (y < 16777216UL) { *out++ = 0x83; *out++ = (unsigned char)((y >> 16) & 255); *out++ = (unsigned char)((y >> 8) & 255); *out++ = (unsigned char)y; } else { return CRYPT_INVALID_ARG; } /* now store msbyte of zero if num is non-zero */ if (leading_zero) { *out++ = 0x00; } /* if it's not zero store it as big endian */ if (mp_cmp_d(num, 0) == LTC_MP_GT) { /* now store the mpint */ if ((err = mp_to_unsigned_bin(num, out)) != CRYPT_OK) { return err; } } else if (mp_iszero(num) != LTC_MP_YES) { void *tmp; /* negative */ if (mp_init(&tmp) != CRYPT_OK) { return CRYPT_MEM; } /* 2^roundup and subtract */ y = mp_count_bits(num); y = y + (8 - (y & 7)); if (((mp_cnt_lsb(num) + 1) == mp_count_bits(num)) && ((mp_count_bits(num) & 7) == 0)) y -= 8; if ((mp_2expt(tmp, y) != CRYPT_OK) || (mp_add(tmp, num, tmp) != CRYPT_OK)) { mp_clear(tmp); return CRYPT_MEM; } if ((err = mp_to_unsigned_bin(tmp, out)) != CRYPT_OK) { mp_clear(tmp); return err; } mp_clear(tmp); } /* we good */ *outlen = tmplen; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/integer/der_encode_integer.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_object_identifier.c ASN.1 DER, Encode Object Identifier, Tom St Denis */ #ifdef LTC_DER /** Encode an OID @param words The words to encode (upto 32-bits each) @param nwords The number of words in the OID @param out [out] Destination of OID data @param outlen [in/out] The max and resulting size of the OID @return CRYPT_OK if successful */ int der_encode_object_identifier(unsigned long *words, unsigned long nwords, unsigned char *out, unsigned long *outlen) { unsigned long i, x, y, z, t, mask, wordbuf; int err; LTC_ARGCHK(words != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* check length */ if ((err = der_length_object_identifier(words, nwords, &x)) != CRYPT_OK) { return err; } if (x > *outlen) { *outlen = x; return CRYPT_BUFFER_OVERFLOW; } /* compute length to store OID data */ z = 0; wordbuf = words[0] * 40 + words[1]; for (y = 1; y < nwords; y++) { t = der_object_identifier_bits(wordbuf); z += t / 7 + ((t % 7) ? 1 : 0) + (wordbuf == 0 ? 1 : 0); if (y < nwords - 1) { wordbuf = words[y + 1]; } } /* store header + length */ x = 0; out[x++] = 0x06; if (z < 128) { out[x++] = (unsigned char)z; } else if (z < 256) { out[x++] = 0x81; out[x++] = (unsigned char)z; } else if (z < 65536UL) { out[x++] = 0x82; out[x++] = (unsigned char)((z >> 8) & 255); out[x++] = (unsigned char)(z & 255); } else { return CRYPT_INVALID_ARG; } /* store first byte */ wordbuf = words[0] * 40 + words[1]; for (i = 1; i < nwords; i++) { /* store 7 bit words in little endian */ t = wordbuf & 0xFFFFFFFF; if (t) { y = x; mask = 0; while (t) { out[x++] = (unsigned char)((t & 0x7F) | mask); t >>= 7; mask |= 0x80; /* upper bit is set on all but the last byte */ } /* now swap bytes y...x-1 */ z = x - 1; while (y < z) { t = out[y]; out[y] = out[z]; out[z] = (unsigned char)t; ++y; --z; } } else { /* zero word */ out[x++] = 0x00; } if (i < nwords - 1) { wordbuf = words[i + 1]; } } *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/object_identifier/der_encode_object_identifier.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_octet_string.c ASN.1 DER, encode a OCTET STRING, Tom St Denis */ #ifdef LTC_DER /** Store an OCTET STRING @param in The array of OCTETS to store (one per char) @param inlen The number of OCTETS to store @param out [out] The destination for the DER encoded OCTET STRING @param outlen [in/out] The max size and resulting size of the DER OCTET STRING @return CRYPT_OK if successful */ int der_encode_octet_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get the size */ if ((err = der_length_octet_string(inlen, &len)) != CRYPT_OK) { return err; } /* too big? */ if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } /* encode the header+len */ x = 0; out[x++] = 0x04; if (inlen < 128) { out[x++] = (unsigned char)inlen; } else if (inlen < 256) { out[x++] = 0x81; out[x++] = (unsigned char)inlen; } else if (inlen < 65536UL) { out[x++] = 0x82; out[x++] = (unsigned char)((inlen >> 8) & 255); out[x++] = (unsigned char)(inlen & 255); } else if (inlen < 16777216UL) { out[x++] = 0x83; out[x++] = (unsigned char)((inlen >> 16) & 255); out[x++] = (unsigned char)((inlen >> 8) & 255); out[x++] = (unsigned char)(inlen & 255); } else { return CRYPT_INVALID_ARG; } /* store octets */ for (y = 0; y < inlen; y++) { out[x++] = in[y]; } /* retun length */ *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/octet/der_encode_octet_string.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_printable_string.c ASN.1 DER, encode a printable STRING, Tom St Denis */ #ifdef LTC_DER /** Store an printable STRING @param in The array of printable to store (one per char) @param inlen The number of printable to store @param out [out] The destination for the DER encoded printable STRING @param outlen [in/out] The max size and resulting size of the DER printable STRING @return CRYPT_OK if successful */ int der_encode_printable_string(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get the size */ if ((err = der_length_printable_string(in, inlen, &len)) != CRYPT_OK) { return err; } /* too big? */ if (len > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } /* encode the header+len */ x = 0; out[x++] = 0x13; if (inlen < 128) { out[x++] = (unsigned char)inlen; } else if (inlen < 256) { out[x++] = 0x81; out[x++] = (unsigned char)inlen; } else if (inlen < 65536UL) { out[x++] = 0x82; out[x++] = (unsigned char)((inlen >> 8) & 255); out[x++] = (unsigned char)(inlen & 255); } else if (inlen < 16777216UL) { out[x++] = 0x83; out[x++] = (unsigned char)((inlen >> 16) & 255); out[x++] = (unsigned char)((inlen >> 8) & 255); out[x++] = (unsigned char)(inlen & 255); } else { return CRYPT_INVALID_ARG; } /* store octets */ for (y = 0; y < inlen; y++) { out[x++] = der_printable_char_encode(in[y]); } /* retun length */ *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/printable_string/der_encode_printable_string.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file der_encode_sequence_ex.c ASN.1 DER, encode a SEQUENCE, Tom St Denis */ #ifdef LTC_DER /** Encode a SEQUENCE @param list The list of items to encode @param inlen The number of items in the list @param out [out] The destination @param outlen [in/out] The size of the output @param type_of LTC_ASN1_SEQUENCE or LTC_ASN1_SET/LTC_ASN1_SETOF @return CRYPT_OK on success */ int der_encode_sequence_ex(ltc_asn1_list *list, unsigned long inlen, unsigned char *out, unsigned long *outlen, int type_of) { int err, type; unsigned long size, x, y, z, i; void *data; LTC_ARGCHK(list != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get size of output that will be required */ y = 0; for (i = 0; i < inlen; i++) { type = list[i].type; size = list[i].size; data = list[i].data; if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: if ((err = der_length_boolean(&x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_INTEGER: if ((err = der_length_integer(data, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_SHORT_INTEGER: if ((err = der_length_short_integer(*((unsigned long *)data), &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_BIT_STRING: if ((err = der_length_bit_string(size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_OCTET_STRING: if ((err = der_length_octet_string(size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_NULL: y += 2; break; case LTC_ASN1_OBJECT_IDENTIFIER: if ((err = der_length_object_identifier(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_IA5_STRING: if ((err = der_length_ia5_string(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_PRINTABLE_STRING: if ((err = der_length_printable_string(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_UTF8_STRING: if ((err = der_length_utf8_string(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_UTCTIME: if ((err = der_length_utctime(AUTO_CAST(data), &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: if ((err = der_length_sequence(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; default: err = CRYPT_INVALID_ARG; goto LBL_ERR; } } /* calc header size */ z = y; if (y < 128) { y += 2; } else if (y < 256) { /* 0x30 0x81 LL */ y += 3; } else if (y < 65536UL) { /* 0x30 0x82 LL LL */ y += 4; } else if (y < 16777216UL) { /* 0x30 0x83 LL LL LL */ y += 5; } else { err = CRYPT_INVALID_ARG; goto LBL_ERR; } /* too big ? */ if (*outlen < y) { *outlen = y; err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* store header */ x = 0; out[x++] = (type_of == LTC_ASN1_SEQUENCE) ? 0x30 : 0x31; if (z < 128) { out[x++] = (unsigned char)z; } else if (z < 256) { out[x++] = 0x81; out[x++] = (unsigned char)z; } else if (z < 65536UL) { out[x++] = 0x82; out[x++] = (unsigned char)((z >> 8UL) & 255); out[x++] = (unsigned char)(z & 255); } else if (z < 16777216UL) { out[x++] = 0x83; out[x++] = (unsigned char)((z >> 16UL) & 255); out[x++] = (unsigned char)((z >> 8UL) & 255); out[x++] = (unsigned char)(z & 255); } /* store data */ *outlen -= x; for (i = 0; i < inlen; i++) { type = list[i].type; size = list[i].size; data = list[i].data; if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: z = *outlen; if ((err = der_encode_boolean(*((int *)data), out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_INTEGER: z = *outlen; if ((err = der_encode_integer(data, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_SHORT_INTEGER: z = *outlen; if ((err = der_encode_short_integer(*((unsigned long *)data), out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_BIT_STRING: z = *outlen; if ((err = der_encode_bit_string(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_OCTET_STRING: z = *outlen; if ((err = der_encode_octet_string(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_NULL: out[x++] = 0x05; out[x++] = 0x00; *outlen -= 2; break; case LTC_ASN1_OBJECT_IDENTIFIER: z = *outlen; if ((err = der_encode_object_identifier(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_IA5_STRING: z = *outlen; if ((err = der_encode_ia5_string(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_PRINTABLE_STRING: z = *outlen; if ((err = der_encode_printable_string(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_UTF8_STRING: z = *outlen; if ((err = der_encode_utf8_string(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_UTCTIME: z = *outlen; if ((err = der_encode_utctime(AUTO_CAST(data), out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_SET: z = *outlen; if ((err = der_encode_set(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_SETOF: z = *outlen; if ((err = der_encode_setof(AUTO_CAST(data), size, out + x, &z)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; case LTC_ASN1_SEQUENCE: z = *outlen; if ((err = der_encode_sequence_ex(AUTO_CAST(data), size, out + x, &z, type)) != CRYPT_OK) { goto LBL_ERR; } x += z; *outlen -= z; break; default: err = CRYPT_INVALID_ARG; goto LBL_ERR; } } *outlen = x; err = CRYPT_OK; LBL_ERR: return err; } #endif /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file der_encode_sequence_multi.c ASN.1 DER, encode a SEQUENCE, Tom St Denis */ #ifdef LTC_DER /** Encode a SEQUENCE type using a VA list @param out [out] Destination for data @param outlen [in/out] Length of buffer and resulting length of output @remark <...> is of the form (int, unsigned long, void*) @return CRYPT_OK on success */ int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...) { int err, type; unsigned long size, x; void *data; va_list args; ltc_asn1_list *list; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get size of output that will be required */ va_start(args, outlen); x = 0; for ( ; ; ) { type = va_arg(args, int); size = va_arg(args, unsigned long); data = va_arg(args, void *); if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: case LTC_ASN1_BIT_STRING: case LTC_ASN1_OCTET_STRING: case LTC_ASN1_NULL: case LTC_ASN1_OBJECT_IDENTIFIER: case LTC_ASN1_IA5_STRING: case LTC_ASN1_PRINTABLE_STRING: case LTC_ASN1_UTF8_STRING: case LTC_ASN1_UTCTIME: case LTC_ASN1_SEQUENCE: case LTC_ASN1_SET: case LTC_ASN1_SETOF: ++x; break; default: va_end(args); return CRYPT_INVALID_ARG; } } va_end(args); /* allocate structure for x elements */ if (x == 0) { return CRYPT_NOP; } list = AUTO_CAST(XCALLOC(sizeof(*list), x)); if (list == NULL) { return CRYPT_MEM; } /* fill in the structure */ va_start(args, outlen); x = 0; for ( ; ; ) { type = va_arg(args, int); size = va_arg(args, unsigned long); data = va_arg(args, void *); if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: case LTC_ASN1_BIT_STRING: case LTC_ASN1_OCTET_STRING: case LTC_ASN1_NULL: case LTC_ASN1_OBJECT_IDENTIFIER: case LTC_ASN1_IA5_STRING: case LTC_ASN1_PRINTABLE_STRING: case LTC_ASN1_UTF8_STRING: case LTC_ASN1_UTCTIME: case LTC_ASN1_SEQUENCE: case LTC_ASN1_SET: case LTC_ASN1_SETOF: list[x].type = type; list[x].size = size; list[x++].data = data; break; default: va_end(args); err = CRYPT_INVALID_ARG; goto LBL_ERR; } } va_end(args); err = der_encode_sequence(list, x, out, outlen); LBL_ERR: XFREE(list); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_encode_sequence_multi.c,v $ */ /* $Revision: 1.12 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_set.c ASN.1 DER, Encode a SET, Tom St Denis */ #ifdef LTC_DER /* LTC define to ASN.1 TAG */ static int ltc_to_asn1(int v) { switch (v) { case LTC_ASN1_BOOLEAN: return 0x01; case LTC_ASN1_INTEGER: case LTC_ASN1_SHORT_INTEGER: return 0x02; case LTC_ASN1_BIT_STRING: return 0x03; case LTC_ASN1_OCTET_STRING: return 0x04; case LTC_ASN1_NULL: return 0x05; case LTC_ASN1_OBJECT_IDENTIFIER: return 0x06; case LTC_ASN1_UTF8_STRING: return 0x0C; case LTC_ASN1_PRINTABLE_STRING: return 0x13; case LTC_ASN1_IA5_STRING: return 0x16; case LTC_ASN1_UTCTIME: return 0x17; case LTC_ASN1_SEQUENCE: return 0x30; case LTC_ASN1_SET: case LTC_ASN1_SETOF: return 0x31; default: return -1; } } static int qsort_helper_set(const void *a, const void *b) { ltc_asn1_list *A = (ltc_asn1_list *)a, *B = (ltc_asn1_list *)b; int r; r = ltc_to_asn1(A->type) - ltc_to_asn1(B->type); /* for QSORT the order is UNDEFINED if they are "equal" which means it is NOT DETERMINISTIC. So we force it to be :-) */ if (r == 0) { /* their order in the original list now determines the position */ return A->used - B->used; } else { return r; } } /* Encode a SET type @param list The list of items to encode @param inlen The number of items in the list @param out [out] The destination @param outlen [in/out] The size of the output @return CRYPT_OK on success */ int der_encode_set(ltc_asn1_list *list, unsigned long inlen, unsigned char *out, unsigned long *outlen) { ltc_asn1_list *copy; unsigned long x; int err; /* make copy of list */ copy = AUTO_CAST(XCALLOC(inlen, sizeof(*copy))); if (copy == NULL) { return CRYPT_MEM; } /* fill in used member with index so we can fully sort it */ for (x = 0; x < inlen; x++) { copy[x] = list[x]; copy[x].used = x; } /* sort it by the "type" field */ XQSORT(copy, inlen, sizeof(*copy), &qsort_helper_set); /* call der_encode_sequence_ex() */ err = der_encode_sequence_ex(copy, inlen, out, outlen, LTC_ASN1_SET); /* free list */ XFREE(copy); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/set/der_encode_set.c,v $ */ /* $Revision: 1.12 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_setof.c ASN.1 DER, Encode SET OF, Tom St Denis */ #ifdef LTC_DER struct edge { unsigned char *start; unsigned long size; }; static int qsort_helper(const void *a, const void *b) { struct edge *A = (struct edge *)a, *B = (struct edge *)b; int r; unsigned long x; /* compare min length */ r = XMEMCMP(A->start, B->start, MIN(A->size, B->size)); if ((r == 0) && (A->size != B->size)) { if (A->size > B->size) { for (x = B->size; x < A->size; x++) { if (A->start[x]) { return 1; } } } else { for (x = A->size; x < B->size; x++) { if (B->start[x]) { return -1; } } } } return r; } /** Encode a SETOF stucture @param list The list of items to encode @param inlen The number of items in the list @param out [out] The destination @param outlen [in/out] The size of the output @return CRYPT_OK on success */ int der_encode_setof(ltc_asn1_list *list, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, z, hdrlen; int err; struct edge *edges; unsigned char *ptr, *buf; /* check that they're all the same type */ for (x = 1; x < inlen; x++) { if (list[x].type != list[x - 1].type) { return CRYPT_INVALID_ARG; } } /* alloc buffer to store copy of output */ buf = AUTO_CAST(XCALLOC(1, *outlen)); if (buf == NULL) { return CRYPT_MEM; } /* encode list */ if ((err = der_encode_sequence_ex(list, inlen, buf, outlen, LTC_ASN1_SETOF)) != CRYPT_OK) { XFREE(buf); return err; } /* allocate edges */ edges = AUTO_CAST(XCALLOC(inlen, sizeof(*edges))); if (edges == NULL) { XFREE(buf); return CRYPT_MEM; } /* skip header */ ptr = buf + 1; /* now skip length data */ x = *ptr++; if (x >= 0x80) { ptr += (x & 0x7F); } /* get the size of the static header */ hdrlen = ((uintptr_t)ptr) - ((uintptr_t)buf); //<@r-lyeh /* scan for edges */ x = 0; while (ptr < (buf + *outlen)) { /* store start */ edges[x].start = ptr; /* skip type */ z = 1; /* parse length */ y = ptr[z++]; if (y < 128) { edges[x].size = y; } else { y &= 0x7F; edges[x].size = 0; while (y--) { edges[x].size = (edges[x].size << 8) | ((unsigned long)ptr[z++]); } } /* skip content */ edges[x].size += z; ptr += edges[x].size; ++x; } /* sort based on contents (using edges) */ XQSORT(edges, inlen, sizeof(*edges), &qsort_helper); /* copy static header */ XMEMCPY(out, buf, hdrlen); /* copy+sort using edges+indecies to output from buffer */ for (y = hdrlen, x = 0; x < inlen; x++) { XMEMCPY(out + y, edges[x].start, edges[x].size); y += edges[x].size; } #ifdef LTC_CLEAN_STACK zeromem(buf, *outlen); #endif /* free buffers */ XFREE(edges); XFREE(buf); return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/set/der_encode_setof.c,v $ */ /* $Revision: 1.12 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_short_integer.c ASN.1 DER, encode an integer, Tom St Denis */ #ifdef LTC_DER /** Store a short integer in the range (0,2^32-1) @param num The integer to encode @param out [out] The destination for the DER encoded integers @param outlen [in/out] The max size and resulting size of the DER encoded integers @return CRYPT_OK if successful */ int der_encode_short_integer(unsigned long num, unsigned char *out, unsigned long *outlen) { unsigned long len, x, y, z; int err; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* force to 32 bits */ num &= 0xFFFFFFFFUL; /* find out how big this will be */ if ((err = der_length_short_integer(num, &len)) != CRYPT_OK) { return err; } if (*outlen < len) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } /* get len of output */ z = 0; y = num; while (y) { ++z; y >>= 8; } /* handle zero */ if (z == 0) { z = 1; } /* see if msb is set */ z += (num & (1UL << ((z << 3) - 1))) ? 1 : 0; /* adjust the number so the msB is non-zero */ for (x = 0; (z <= 4) && (x < (4 - z)); x++) { num <<= 8; } /* store header */ x = 0; out[x++] = 0x02; out[x++] = (unsigned char)z; /* if 31st bit is set output a leading zero and decrement count */ if (z == 5) { out[x++] = 0; --z; } /* store values */ for (y = 0; y < z; y++) { out[x++] = (unsigned char)((num >> 24) & 0xFF); num <<= 8; } /* we good */ *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/short_integer/der_encode_short_integer.c,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_utctime.c ASN.1 DER, encode a UTCTIME, Tom St Denis */ #ifdef LTC_DER static const char baseten[] = "0123456789"; #define STORE_V(y) \ out[x++] = der_ia5_char_encode(baseten[(y / 10) % 10]); \ out[x++] = der_ia5_char_encode(baseten[y % 10]); /** Encodes a UTC time structure in DER format @param utctime The UTC time structure to encode @param out The destination of the DER encoding of the UTC time structure @param outlen [in/out] The length of the DER encoding @return CRYPT_OK if successful */ int der_encode_utctime(ltc_utctime *utctime, unsigned char *out, unsigned long *outlen) { unsigned long x, tmplen; int err; LTC_ARGCHK(utctime != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); if ((err = der_length_utctime(utctime, &tmplen)) != CRYPT_OK) { return err; } if (tmplen > *outlen) { *outlen = tmplen; return CRYPT_BUFFER_OVERFLOW; } /* store header */ out[0] = 0x17; /* store values */ x = 2; STORE_V(utctime->YY); STORE_V(utctime->MM); STORE_V(utctime->DD); STORE_V(utctime->hh); STORE_V(utctime->mm); STORE_V(utctime->ss); if (utctime->off_mm || utctime->off_hh) { out[x++] = der_ia5_char_encode(utctime->off_dir ? '-' : '+'); STORE_V(utctime->off_hh); STORE_V(utctime->off_mm); } else { out[x++] = der_ia5_char_encode('Z'); } /* store length */ out[1] = (unsigned char)(x - 2); /* all good let's return */ *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utctime/der_encode_utctime.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_encode_utf8_string.c ASN.1 DER, encode a UTF8 STRING, Tom St Denis */ #ifdef LTC_DER /** Store an UTF8 STRING @param in The array of UTF8 to store (one per wchar_t) @param inlen The number of UTF8 to store @param out [out] The destination for the DER encoded UTF8 STRING @param outlen [in/out] The max size and resulting size of the DER UTF8 STRING @return CRYPT_OK if successful */ int der_encode_utf8_string(const wchar_t *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { unsigned long x, y, len; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* get the size */ for (x = len = 0; x < inlen; x++) { if ((in[x] < 0) || (in[x] > 0x1FFFF)) { return CRYPT_INVALID_ARG; } len += der_utf8_charsize(in[x]); } if (len < 128) { y = 2 + len; } else if (len < 256) { y = 3 + len; } else if (len < 65536UL) { y = 4 + len; } else if (len < 16777216UL) { y = 5 + len; } else { return CRYPT_INVALID_ARG; } /* too big? */ if (y > *outlen) { *outlen = len; return CRYPT_BUFFER_OVERFLOW; } /* encode the header+len */ x = 0; out[x++] = 0x0C; if (len < 128) { out[x++] = (unsigned char)len; } else if (len < 256) { out[x++] = 0x81; out[x++] = (unsigned char)len; } else if (len < 65536UL) { out[x++] = 0x82; out[x++] = (unsigned char)((len >> 8) & 255); out[x++] = (unsigned char)(len & 255); } else if (len < 16777216UL) { out[x++] = 0x83; out[x++] = (unsigned char)((len >> 16) & 255); out[x++] = (unsigned char)((len >> 8) & 255); out[x++] = (unsigned char)(len & 255); } else { return CRYPT_INVALID_ARG; } /* store UTF8 */ for (y = 0; y < inlen; y++) { switch (der_utf8_charsize(in[y])) { case 1: out[x++] = (unsigned char)in[y]; break; case 2: out[x++] = 0xC0 | ((in[y] >> 6) & 0x1F); out[x++] = 0x80 | (in[y] & 0x3F); break; case 3: out[x++] = 0xE0 | ((in[y] >> 12) & 0x0F); out[x++] = 0x80 | ((in[y] >> 6) & 0x3F); out[x++] = 0x80 | (in[y] & 0x3F); break; case 4: out[x++] = 0xF0 | ((in[y] >> 18) & 0x07); out[x++] = 0x80 | ((in[y] >> 12) & 0x3F); out[x++] = 0x80 | ((in[y] >> 6) & 0x3F); out[x++] = 0x80 | (in[y] & 0x3F); break; } } /* retun length */ *outlen = x; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utf8/der_encode_utf8_string.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_bit_string.c ASN.1 DER, get length of BIT STRING, Tom St Denis */ #ifdef LTC_DER /** Gets length of DER encoding of BIT STRING @param nbits The number of bits in the string to encode @param outlen [out] The length of the DER encoding for the given string @return CRYPT_OK if successful */ int der_length_bit_string(unsigned long nbits, unsigned long *outlen) { unsigned long nbytes; LTC_ARGCHK(outlen != NULL); /* get the number of the bytes */ nbytes = (nbits >> 3) + ((nbits & 7) ? 1 : 0) + 1; if (nbytes < 128) { /* 03 LL PP DD DD DD ... */ *outlen = 2 + nbytes; } else if (nbytes < 256) { /* 03 81 LL PP DD DD DD ... */ *outlen = 3 + nbytes; } else if (nbytes < 65536) { /* 03 82 LL LL PP DD DD DD ... */ *outlen = 4 + nbytes; } else { return CRYPT_INVALID_ARG; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/bit/der_length_bit_string.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_boolean.c ASN.1 DER, get length of a BOOLEAN, Tom St Denis */ #ifdef LTC_DER /** Gets length of DER encoding of a BOOLEAN @param outlen [out] The length of the DER encoding @return CRYPT_OK if successful */ int der_length_boolean(unsigned long *outlen) { LTC_ARGCHK(outlen != NULL); *outlen = 3; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/boolean/der_length_boolean.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_ia5_string.c ASN.1 DER, get length of IA5 STRING, Tom St Denis */ #ifdef LTC_DER static const struct { int code, value; } ia5_table[] = { { '\0', 0 }, { '\a', 7 }, { '\b', 8 }, { '\t', 9 }, { '\n', 10 }, { '\f', 12 }, { '\r', 13 }, { ' ', 32 }, { '!', 33 }, { '"', 34 }, { '#', 35 }, { '$', 36 }, { '%', 37 }, { '&', 38 }, { '\'', 39 }, { '(', 40 }, { ')', 41 }, { '*', 42 }, { '+', 43 }, { ',', 44 }, { '-', 45 }, { '.', 46 }, { '/', 47 }, { '0', 48 }, { '1', 49 }, { '2', 50 }, { '3', 51 }, { '4', 52 }, { '5', 53 }, { '6', 54 }, { '7', 55 }, { '8', 56 }, { '9', 57 }, { ':', 58 }, { ';', 59 }, { '<', 60 }, { '=', 61 }, { '>', 62 }, { '?', 63 }, { '@', 64 }, { 'A', 65 }, { 'B', 66 }, { 'C', 67 }, { 'D', 68 }, { 'E', 69 }, { 'F', 70 }, { 'G', 71 }, { 'H', 72 }, { 'I', 73 }, { 'J', 74 }, { 'K', 75 }, { 'L', 76 }, { 'M', 77 }, { 'N', 78 }, { 'O', 79 }, { 'P', 80 }, { 'Q', 81 }, { 'R', 82 }, { 'S', 83 }, { 'T', 84 }, { 'U', 85 }, { 'V', 86 }, { 'W', 87 }, { 'X', 88 }, { 'Y', 89 }, { 'Z', 90 }, { '[', 91 }, { '\\', 92 }, { ']', 93 }, { '^', 94 }, { '_', 95 }, { '`', 96 }, { 'a', 97 }, { 'b', 98 }, { 'c', 99 }, { 'd', 100 }, { 'e', 101 }, { 'f', 102 }, { 'g', 103 }, { 'h', 104 }, { 'i', 105 }, { 'j', 106 }, { 'k', 107 }, { 'l', 108 }, { 'm', 109 }, { 'n', 110 }, { 'o', 111 }, { 'p', 112 }, { 'q', 113 }, { 'r', 114 }, { 's', 115 }, { 't', 116 }, { 'u', 117 }, { 'v', 118 }, { 'w', 119 }, { 'x', 120 }, { 'y', 121 }, { 'z', 122 }, { '{', 123 }, { '|', 124 }, { '}', 125 }, { '~', 126 } }; int der_ia5_char_encode(int c) { int x; for (x = 0; x < (int)(sizeof(ia5_table) / sizeof(ia5_table[0])); x++) { if (ia5_table[x].code == c) { return ia5_table[x].value; } } return -1; } int der_ia5_value_decode(int v) { int x; for (x = 0; x < (int)(sizeof(ia5_table) / sizeof(ia5_table[0])); x++) { if (ia5_table[x].value == v) { return ia5_table[x].code; } } return -1; } /** Gets length of DER encoding of IA5 STRING @param octets The values you want to encode @param noctets The number of octets in the string to encode @param outlen [out] The length of the DER encoding for the given string @return CRYPT_OK if successful */ int der_length_ia5_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen) { unsigned long x; LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(octets != NULL); /* scan string for validity */ for (x = 0; x < noctets; x++) { if (der_ia5_char_encode(octets[x]) == -1) { return CRYPT_INVALID_ARG; } } if (noctets < 128) { /* 16 LL DD DD DD ... */ *outlen = 2 + noctets; } else if (noctets < 256) { /* 16 81 LL DD DD DD ... */ *outlen = 3 + noctets; } else if (noctets < 65536UL) { /* 16 82 LL LL DD DD DD ... */ *outlen = 4 + noctets; } else if (noctets < 16777216UL) { /* 16 83 LL LL LL DD DD DD ... */ *outlen = 5 + noctets; } else { return CRYPT_INVALID_ARG; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/ia5/der_length_ia5_string.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_integer.c ASN.1 DER, get length of encoding, Tom St Denis */ #ifdef LTC_DER /** Gets length of DER encoding of num @param num The int to get the size of @param outlen [out] The length of the DER encoding for the given integer @return CRYPT_OK if successful */ int der_length_integer(void *num, unsigned long *outlen) { unsigned long z, len; int leading_zero; LTC_ARGCHK(num != NULL); LTC_ARGCHK(outlen != NULL); if (mp_cmp_d(num, 0) != LTC_MP_LT) { /* positive */ /* we only need a leading zero if the msb of the first byte is one */ if (((mp_count_bits(num) & 7) == 0) || (mp_iszero(num) == LTC_MP_YES)) { leading_zero = 1; } else { leading_zero = 0; } /* size for bignum */ z = len = leading_zero + mp_unsigned_bin_size(num); } else { /* it's negative */ /* find power of 2 that is a multiple of eight and greater than count bits */ leading_zero = 0; z = mp_count_bits(num); z = z + (8 - (z & 7)); if (((mp_cnt_lsb(num) + 1) == mp_count_bits(num)) && ((mp_count_bits(num) & 7) == 0)) --z; len = z = z >> 3; } /* now we need a length */ if (z < 128) { /* short form */ ++len; } else { /* long form (relies on z != 0), assumes length bytes < 128 */ ++len; while (z) { ++len; z >>= 8; } } /* we need a 0x02 to indicate it's INTEGER */ ++len; /* return length */ *outlen = len; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/integer/der_length_integer.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_object_identifier.c ASN.1 DER, get length of Object Identifier, Tom St Denis */ #ifdef LTC_DER unsigned long der_object_identifier_bits(unsigned long x) { unsigned long c; x &= 0xFFFFFFFF; c = 0; while (x) { ++c; x >>= 1; } return c; } /** Gets length of DER encoding of Object Identifier @param nwords The number of OID words @param words The actual OID words to get the size of @param outlen [out] The length of the DER encoding for the given string @return CRYPT_OK if successful */ int der_length_object_identifier(unsigned long *words, unsigned long nwords, unsigned long *outlen) { unsigned long y, z, t, wordbuf; LTC_ARGCHK(words != NULL); LTC_ARGCHK(outlen != NULL); /* must be >= 2 words */ if (nwords < 2) { return CRYPT_INVALID_ARG; } /* word1 = 0,1,2,3 and word2 0..39 */ if ((words[0] > 3) || ((words[0] < 2) && (words[1] > 39))) { return CRYPT_INVALID_ARG; } /* leading word is the first two */ z = 0; wordbuf = words[0] * 40 + words[1]; for (y = 1; y < nwords; y++) { t = der_object_identifier_bits(wordbuf); z += t / 7 + ((t % 7) ? 1 : 0) + (wordbuf == 0 ? 1 : 0); if (y < nwords - 1) { /* grab next word */ wordbuf = words[y + 1]; } } /* now depending on the length our length encoding changes */ if (z < 128) { z += 2; } else if (z < 256) { z += 3; } else if (z < 65536UL) { z += 4; } else { return CRYPT_INVALID_ARG; } *outlen = z; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/object_identifier/der_length_object_identifier.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_octet_string.c ASN.1 DER, get length of OCTET STRING, Tom St Denis */ #ifdef LTC_DER /** Gets length of DER encoding of OCTET STRING @param noctets The number of octets in the string to encode @param outlen [out] The length of the DER encoding for the given string @return CRYPT_OK if successful */ int der_length_octet_string(unsigned long noctets, unsigned long *outlen) { LTC_ARGCHK(outlen != NULL); if (noctets < 128) { /* 04 LL DD DD DD ... */ *outlen = 2 + noctets; } else if (noctets < 256) { /* 04 81 LL DD DD DD ... */ *outlen = 3 + noctets; } else if (noctets < 65536UL) { /* 04 82 LL LL DD DD DD ... */ *outlen = 4 + noctets; } else if (noctets < 16777216UL) { /* 04 83 LL LL LL DD DD DD ... */ *outlen = 5 + noctets; } else { return CRYPT_INVALID_ARG; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/octet/der_length_octet_string.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_printable_string.c ASN.1 DER, get length of Printable STRING, Tom St Denis */ #ifdef LTC_DER static const struct { int code, value; } printable_table[] = { { ' ', 32 }, { '\'', 39 }, { '(', 40 }, { ')', 41 }, { '+', 43 }, { ',', 44 }, { '-', 45 }, { '.', 46 }, { '/', 47 }, { '0', 48 }, { '1', 49 }, { '2', 50 }, { '3', 51 }, { '4', 52 }, { '5', 53 }, { '6', 54 }, { '7', 55 }, { '8', 56 }, { '9', 57 }, { ':', 58 }, { '=', 61 }, { '?', 63 }, { 'A', 65 }, { 'B', 66 }, { 'C', 67 }, { 'D', 68 }, { 'E', 69 }, { 'F', 70 }, { 'G', 71 }, { 'H', 72 }, { 'I', 73 }, { 'J', 74 }, { 'K', 75 }, { 'L', 76 }, { 'M', 77 }, { 'N', 78 }, { 'O', 79 }, { 'P', 80 }, { 'Q', 81 }, { 'R', 82 }, { 'S', 83 }, { 'T', 84 }, { 'U', 85 }, { 'V', 86 }, { 'W', 87 }, { 'X', 88 }, { 'Y', 89 }, { 'Z', 90 }, { 'a', 97 }, { 'b', 98 }, { 'c', 99 }, { 'd', 100 }, { 'e', 101 }, { 'f', 102 }, { 'g', 103 }, { 'h', 104 }, { 'i', 105 }, { 'j', 106 }, { 'k', 107 }, { 'l', 108 }, { 'm', 109 }, { 'n', 110 }, { 'o', 111 }, { 'p', 112 }, { 'q', 113 }, { 'r', 114 }, { 's', 115 }, { 't', 116 }, { 'u', 117 }, { 'v', 118 }, { 'w', 119 }, { 'x', 120 }, { 'y', 121 }, { 'z', 122 }, }; int der_printable_char_encode(int c) { int x; for (x = 0; x < (int)(sizeof(printable_table) / sizeof(printable_table[0])); x++) { if (printable_table[x].code == c) { return printable_table[x].value; } } return -1; } int der_printable_value_decode(int v) { int x; for (x = 0; x < (int)(sizeof(printable_table) / sizeof(printable_table[0])); x++) { if (printable_table[x].value == v) { return printable_table[x].code; } } return -1; } /** Gets length of DER encoding of Printable STRING @param octets The values you want to encode @param noctets The number of octets in the string to encode @param outlen [out] The length of the DER encoding for the given string @return CRYPT_OK if successful */ int der_length_printable_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen) { unsigned long x; LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(octets != NULL); /* scan string for validity */ for (x = 0; x < noctets; x++) { if (der_printable_char_encode(octets[x]) == -1) { return CRYPT_INVALID_ARG; } } if (noctets < 128) { /* 16 LL DD DD DD ... */ *outlen = 2 + noctets; } else if (noctets < 256) { /* 16 81 LL DD DD DD ... */ *outlen = 3 + noctets; } else if (noctets < 65536UL) { /* 16 82 LL LL DD DD DD ... */ *outlen = 4 + noctets; } else if (noctets < 16777216UL) { /* 16 83 LL LL LL DD DD DD ... */ *outlen = 5 + noctets; } else { return CRYPT_INVALID_ARG; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/printable_string/der_length_printable_string.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_sequence.c ASN.1 DER, length a SEQUENCE, Tom St Denis */ #ifdef LTC_DER /** Get the length of a DER sequence @param list The sequences of items in the SEQUENCE @param inlen The number of items @param outlen [out] The length required in octets to store it @return CRYPT_OK on success */ int der_length_sequence(ltc_asn1_list *list, unsigned long inlen, unsigned long *outlen) { int err, type; unsigned long size, x, y, z, i; void *data; LTC_ARGCHK(list != NULL); LTC_ARGCHK(outlen != NULL); /* get size of output that will be required */ y = 0; for (i = 0; i < inlen; i++) { type = list[i].type; size = list[i].size; data = list[i].data; if (type == LTC_ASN1_EOL) { break; } switch (type) { case LTC_ASN1_BOOLEAN: if ((err = der_length_boolean(&x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_INTEGER: if ((err = der_length_integer(data, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_SHORT_INTEGER: if ((err = der_length_short_integer(*((unsigned long *)data), &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_BIT_STRING: if ((err = der_length_bit_string(size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_OCTET_STRING: if ((err = der_length_octet_string(size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_NULL: y += 2; break; case LTC_ASN1_OBJECT_IDENTIFIER: if ((err = der_length_object_identifier(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_IA5_STRING: if ((err = der_length_ia5_string(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_PRINTABLE_STRING: if ((err = der_length_printable_string(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_UTCTIME: if ((err = der_length_utctime(AUTO_CAST(data), &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_UTF8_STRING: if ((err = der_length_utf8_string(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: if ((err = der_length_sequence(AUTO_CAST(data), size, &x)) != CRYPT_OK) { goto LBL_ERR; } y += x; break; default: err = CRYPT_INVALID_ARG; goto LBL_ERR; } } /* calc header size */ z = y; if (y < 128) { y += 2; } else if (y < 256) { /* 0x30 0x81 LL */ y += 3; } else if (y < 65536UL) { /* 0x30 0x82 LL LL */ y += 4; } else if (y < 16777216UL) { /* 0x30 0x83 LL LL LL */ y += 5; } else { err = CRYPT_INVALID_ARG; goto LBL_ERR; } /* store size */ *outlen = y; err = CRYPT_OK; LBL_ERR: return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_length_sequence.c,v $ */ /* $Revision: 1.14 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_short_integer.c ASN.1 DER, get length of encoding, Tom St Denis */ #ifdef LTC_DER /** Gets length of DER encoding of num @param num The integer to get the size of @param outlen [out] The length of the DER encoding for the given integer @return CRYPT_OK if successful */ int der_length_short_integer(unsigned long num, unsigned long *outlen) { unsigned long z, y, len; LTC_ARGCHK(outlen != NULL); /* force to 32 bits */ num &= 0xFFFFFFFFUL; /* get the number of bytes */ z = 0; y = num; while (y) { ++z; y >>= 8; } /* handle zero */ if (z == 0) { z = 1; } /* we need a 0x02 to indicate it's INTEGER */ len = 1; /* length byte */ ++len; /* bytes in value */ len += z; /* see if msb is set */ len += (num & (1UL << ((z << 3) - 1))) ? 1 : 0; /* return length */ *outlen = len; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/short_integer/der_length_short_integer.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_utctime.c ASN.1 DER, get length of UTCTIME, Tom St Denis */ #ifdef LTC_DER /** Gets length of DER encoding of UTCTIME @param utctime The UTC time structure to get the size of @param outlen [out] The length of the DER encoding @return CRYPT_OK if successful */ int der_length_utctime(ltc_utctime *utctime, unsigned long *outlen) { LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(utctime != NULL); if ((utctime->off_hh == 0) && (utctime->off_mm == 0)) { /* we encode as YYMMDDhhmmssZ */ *outlen = 2 + 13; } else { /* we encode as YYMMDDhhmmss{+|-}hh'mm' */ *outlen = 2 + 17; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utctime/der_length_utctime.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_length_utf8_string.c ASN.1 DER, get length of UTF8 STRING, Tom St Denis */ #ifdef LTC_DER /** Return the size in bytes of a UTF-8 character @param c The UTF-8 character to measure @return The size in bytes */ unsigned long der_utf8_charsize(const wchar_t c) { if (c <= 0x7F) { return 1; } else if (c <= 0x7FF) { return 2; } else if (c <= 0xFFFF) { return 3; } else { return 4; } } /** Gets length of DER encoding of UTF8 STRING @param in The characters to measure the length of @param noctets The number of octets in the string to encode @param outlen [out] The length of the DER encoding for the given string @return CRYPT_OK if successful */ int der_length_utf8_string(const wchar_t *in, unsigned long noctets, unsigned long *outlen) { unsigned long x, len; LTC_ARGCHK(in != NULL); LTC_ARGCHK(outlen != NULL); len = 0; for (x = 0; x < noctets; x++) { if ((in[x] < 0) || (in[x] > 0x10FFFF)) { return CRYPT_INVALID_ARG; } len += der_utf8_charsize(in[x]); } if (len < 128) { /* 0C LL DD DD DD ... */ *outlen = 2 + len; } else if (len < 256) { /* 0C 81 LL DD DD DD ... */ *outlen = 3 + len; } else if (len < 65536UL) { /* 0C 82 LL LL DD DD DD ... */ *outlen = 4 + len; } else if (len < 16777216UL) { /* 0C 83 LL LL LL DD DD DD ... */ *outlen = 5 + len; } else { return CRYPT_INVALID_ARG; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utf8/der_length_utf8_string.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file der_sequence_free.c ASN.1 DER, free's a structure allocated by der_decode_sequence_flexi(), Tom St Denis */ #ifdef LTC_DER /** Free memory allocated by der_decode_sequence_flexi() @param in The list to free */ void der_sequence_free(ltc_asn1_list *in) { ltc_asn1_list *l; /* walk to the start of the chain */ while (in->prev != NULL || in->parent != NULL) { if (in->parent != NULL) { in = in->parent; } else { in = in->prev; } } /* now walk the list and free stuff */ while (in != NULL) { /* is there a child? */ if (in->child) { /* disconnect */ in->child->parent = NULL; der_sequence_free(in->child); } switch (in->type) { case LTC_ASN1_SET: case LTC_ASN1_SETOF: case LTC_ASN1_SEQUENCE: break; case LTC_ASN1_INTEGER: if (in->data != NULL) { mp_clear(in->data); } break; default: if (in->data != NULL) { XFREE(in->data); } } /* move to next and free current */ l = in->next; free(in); in = l; } } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_sequence_free.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /* This holds the key settings. ***MUST*** be organized by size from smallest to largest. */ const ltc_ecc_set_type ltc_ecc_sets[] = { #ifdef ECC112 { 14, "SECP112R1", "DB7C2ABF62E35E668076BEAD208B", "659EF8BA043916EEDE8911702B22", "DB7C2ABF62E35E7628DFAC6561C5", "09487239995A5EE76B55F9C2F098", "A89CE5AF8724C0A23E0E0FF77500" }, #endif #ifdef ECC128 { 16, "SECP128R1", "FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF", "E87579C11079F43DD824993C2CEE5ED3", "FFFFFFFE0000000075A30D1B9038A115", "161FF7528B899B2D0C28607CA52C5B86", "CF5AC8395BAFEB13C02DA292DDED7A83", }, #endif #ifdef ECC160 { 20, "SECP160R1", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF", "1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45", "0100000000000000000001F4C8F927AED3CA752257", "4A96B5688EF573284664698968C38BB913CBFC82", "23A628553168947D59DCC912042351377AC5FB32", }, #endif #ifdef ECC192 { 24, "ECC-192", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF", "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1", "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012", "7192B95FFC8DA78631011ED6B24CDD573F977A11E794811", }, #endif #ifdef ECC224 { 28, "ECC-224", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4", "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21", "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34", }, #endif #ifdef ECC256 { 32, "ECC-256", "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", }, #endif #ifdef ECC384 { 48, "ECC-384", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF", "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973", "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7", "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F", }, #endif #ifdef ECC521 { 66, "ECC-521", "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "51953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00", "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409", "C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66", "11839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650", }, #endif { 0, NULL, NULL, NULL, NULL, NULL, NULL } }; #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc.c,v $ */ /* $Revision: 1.40 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_ansi_x963_export.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** ECC X9.63 (Sec. 4.3.6) uncompressed export @param key Key to export @param out [out] destination of export @param outlen [in/out] Length of destination and final output size Return CRYPT_OK on success */ int ecc_ansi_x963_export(ecc_key *key, unsigned char *out, unsigned long *outlen) { unsigned char buf[ECC_BUF_SIZE]; unsigned long numlen; LTC_ARGCHK(key != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); if (ltc_ecc_is_valid_idx(key->idx) == 0) { return CRYPT_INVALID_ARG; } numlen = key->dp->size; if (*outlen < (1 + 2 * numlen)) { *outlen = 1 + 2 * numlen; return CRYPT_BUFFER_OVERFLOW; } /* store byte 0x04 */ out[0] = 0x04; /* pad and store x */ zeromem(buf, sizeof(buf)); mp_to_unsigned_bin(key->pubkey.x, buf + (numlen - mp_unsigned_bin_size(key->pubkey.x))); XMEMCPY(out + 1, buf, numlen); /* pad and store y */ zeromem(buf, sizeof(buf)); mp_to_unsigned_bin(key->pubkey.y, buf + (numlen - mp_unsigned_bin_size(key->pubkey.y))); XMEMCPY(out + 1 + numlen, buf, numlen); *outlen = 1 + 2 * numlen; return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_ansi_x963_export.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_ansi_x963_import.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Import an ANSI X9.63 format public key @param in The input data to read @param inlen The length of the input data @param key [out] destination to store imported key \ */ int ecc_ansi_x963_import(const unsigned char *in, unsigned long inlen, ecc_key *key) { return ecc_ansi_x963_import_ex(in, inlen, key, NULL); } int ecc_ansi_x963_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, ltc_ecc_set_type *dp) { int x, err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(key != NULL); /* must be odd */ if ((inlen & 1) == 0) { return CRYPT_INVALID_ARG; } /* init key */ if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != CRYPT_OK) { return CRYPT_MEM; } /* check for 4, 6 or 7 */ if ((in[0] != 4) && (in[0] != 6) && (in[0] != 7)) { err = CRYPT_INVALID_PACKET; goto error; } /* read data */ if ((err = mp_read_unsigned_bin(key->pubkey.x, (unsigned char *)in + 1, (inlen - 1) >> 1)) != CRYPT_OK) { goto error; } if ((err = mp_read_unsigned_bin(key->pubkey.y, (unsigned char *)in + 1 + ((inlen - 1) >> 1), (inlen - 1) >> 1)) != CRYPT_OK) { goto error; } if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { goto error; } if (dp == NULL) { /* determine the idx */ for (x = 0; ltc_ecc_sets[x].size != 0; x++) { if ((unsigned)ltc_ecc_sets[x].size >= ((inlen - 1) >> 1)) { break; } } if (ltc_ecc_sets[x].size == 0) { err = CRYPT_INVALID_PACKET; goto error; } /* set the idx */ key->idx = x; key->dp = <c_ecc_sets[x]; } else { if (((inlen - 1) >> 1) != (unsigned long)dp->size) { err = CRYPT_INVALID_PACKET; goto error; } key->idx = -1; key->dp = dp; } key->type = PK_PUBLIC; /* we're done */ return CRYPT_OK; error: mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_ansi_x963_import.c,v $ */ /* $Revision: 1.11 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_decrypt_key.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Decrypt an ECC encrypted key @param in The ciphertext @param inlen The length of the ciphertext (octets) @param out [out] The plaintext @param outlen [in/out] The max size and resulting size of the plaintext @param key The corresponding private ECC key @return CRYPT_OK if successful */ int ecc_decrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, ecc_key *key) { unsigned char *ecc_shared, *skey, *pub_expt; unsigned long x, y, hashOID[32]; int hash, err; ecc_key pubkey; ltc_asn1_list decode[3]; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* right key type? */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } /* decode to find out hash */ LTC_SET_ASN1(decode, 0, LTC_ASN1_OBJECT_IDENTIFIER, hashOID, sizeof(hashOID) / sizeof(hashOID[0])); if ((err = der_decode_sequence(in, inlen, decode, 1)) != CRYPT_OK) { return err; } hash = find_hash_oid(hashOID, decode[0].size); if (hash_is_valid(hash) != CRYPT_OK) { return CRYPT_INVALID_PACKET; } /* we now have the hash! */ /* allocate memory */ pub_expt = AUTO_CAST(XMALLOC(ECC_BUF_SIZE)); ecc_shared = AUTO_CAST(XMALLOC(ECC_BUF_SIZE)); skey = AUTO_CAST(XMALLOC(MAXBLOCKSIZE)); if ((pub_expt == NULL) || (ecc_shared == NULL) || (skey == NULL)) { if (pub_expt != NULL) { XFREE(pub_expt); } if (ecc_shared != NULL) { XFREE(ecc_shared); } if (skey != NULL) { XFREE(skey); } return CRYPT_MEM; } LTC_SET_ASN1(decode, 1, LTC_ASN1_OCTET_STRING, pub_expt, ECC_BUF_SIZE); LTC_SET_ASN1(decode, 2, LTC_ASN1_OCTET_STRING, skey, MAXBLOCKSIZE); /* read the structure in now */ if ((err = der_decode_sequence(in, inlen, decode, 3)) != CRYPT_OK) { goto LBL_ERR; } /* import ECC key from packet */ if ((err = ecc_import(AUTO_CAST(decode[1].data), decode[1].size, &pubkey)) != CRYPT_OK) { goto LBL_ERR; } /* make shared key */ x = ECC_BUF_SIZE; if ((err = ecc_shared_secret(key, &pubkey, ecc_shared, &x)) != CRYPT_OK) { ecc_free(&pubkey); goto LBL_ERR; } ecc_free(&pubkey); y = MIN(ECC_BUF_SIZE, MAXBLOCKSIZE); if ((err = hash_memory(hash, ecc_shared, x, ecc_shared, &y)) != CRYPT_OK) { goto LBL_ERR; } /* ensure the hash of the shared secret is at least as big as the encrypt itself */ if (decode[2].size > y) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } /* avoid buffer overflow */ if (*outlen < decode[2].size) { *outlen = decode[2].size; err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* Decrypt the key */ for (x = 0; x < decode[2].size; x++) { out[x] = skey[x] ^ ecc_shared[x]; } *outlen = x; err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(pub_expt, ECC_BUF_SIZE); zeromem(ecc_shared, ECC_BUF_SIZE); zeromem(skey, MAXBLOCKSIZE); #endif XFREE(pub_expt); XFREE(ecc_shared); XFREE(skey); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_decrypt_key.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_encrypt_key.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Encrypt a symmetric key with ECC @param in The symmetric key you want to encrypt @param inlen The length of the key to encrypt (octets) @param out [out] The destination for the ciphertext @param outlen [in/out] The max size and resulting size of the ciphertext @param prng An active PRNG state @param wprng The index of the PRNG you wish to use @param hash The index of the hash you want to use @param key The ECC key you want to encrypt to @return CRYPT_OK if successful */ int ecc_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash, ecc_key *key) { unsigned char *pub_expt, *ecc_shared, *skey; ecc_key pubkey; unsigned long x, y, pubkeysize; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* check that wprng/cipher/hash are not invalid */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (inlen > hash_descriptor[hash].hashsize) { return CRYPT_INVALID_HASH; } /* make a random key and export the public copy */ if ((err = ecc_make_key_ex(prng, wprng, &pubkey, key->dp)) != CRYPT_OK) { return err; } pub_expt = AUTO_CAST(XMALLOC(ECC_BUF_SIZE)); ecc_shared = AUTO_CAST(XMALLOC(ECC_BUF_SIZE)); skey = AUTO_CAST(XMALLOC(MAXBLOCKSIZE)); if ((pub_expt == NULL) || (ecc_shared == NULL) || (skey == NULL)) { if (pub_expt != NULL) { XFREE(pub_expt); } if (ecc_shared != NULL) { XFREE(ecc_shared); } if (skey != NULL) { XFREE(skey); } ecc_free(&pubkey); return CRYPT_MEM; } pubkeysize = ECC_BUF_SIZE; if ((err = ecc_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) { ecc_free(&pubkey); goto LBL_ERR; } /* make random key */ x = ECC_BUF_SIZE; if ((err = ecc_shared_secret(&pubkey, key, ecc_shared, &x)) != CRYPT_OK) { ecc_free(&pubkey); goto LBL_ERR; } ecc_free(&pubkey); y = MAXBLOCKSIZE; if ((err = hash_memory(hash, ecc_shared, x, skey, &y)) != CRYPT_OK) { goto LBL_ERR; } /* Encrypt key */ for (x = 0; x < inlen; x++) { skey[x] ^= in[x]; } err = der_encode_sequence_multi(out, outlen, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash].OIDlen, hash_descriptor[hash].OID, LTC_ASN1_OCTET_STRING, pubkeysize, pub_expt, LTC_ASN1_OCTET_STRING, inlen, skey, LTC_ASN1_EOL, 0UL, NULL); LBL_ERR: #ifdef LTC_CLEAN_STACK /* clean up */ zeromem(pub_expt, ECC_BUF_SIZE); zeromem(ecc_shared, ECC_BUF_SIZE); zeromem(skey, MAXBLOCKSIZE); #endif XFREE(skey); XFREE(ecc_shared); XFREE(pub_expt); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_encrypt_key.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_export.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Export an ECC key as a binary packet @param out [out] Destination for the key @param outlen [in/out] Max size and resulting size of the exported key @param type The type of key you want to export (PK_PRIVATE or PK_PUBLIC) @param key The key to export @return CRYPT_OK if successful */ int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key) { int err; unsigned char flags[1]; unsigned long key_size; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* type valid? */ if ((key->type != PK_PRIVATE) && (type == PK_PRIVATE)) { return CRYPT_PK_TYPE_MISMATCH; } if (ltc_ecc_is_valid_idx(key->idx) == 0) { return CRYPT_INVALID_ARG; } /* we store the NIST byte size */ key_size = key->dp->size; if (type == PK_PRIVATE) { flags[0] = 1; err = der_encode_sequence_multi(out, outlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, key->pubkey.x, LTC_ASN1_INTEGER, 1UL, key->pubkey.y, LTC_ASN1_INTEGER, 1UL, key->k, LTC_ASN1_EOL, 0UL, NULL); } else { flags[0] = 0; err = der_encode_sequence_multi(out, outlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, key->pubkey.x, LTC_ASN1_INTEGER, 1UL, key->pubkey.y, LTC_ASN1_EOL, 0UL, NULL); } return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_export.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_free.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Free an ECC key from memory @param key The key you wish to free */ void ecc_free(ecc_key *key) { LTC_ARGCHKVD(key != NULL); mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_free.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_get_size.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Get the size of an ECC key @param key The key to get the size of @return The size (octets) of the key or INT_MAX on error */ int ecc_get_size(ecc_key *key) { LTC_ARGCHK(key != NULL); if (ltc_ecc_is_valid_idx(key->idx)) return key->dp->size; else return INT_MAX; /* large value known to cause it to fail when passed to ecc_make_key() */ } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_get_size.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_import.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC static int is_point(ecc_key *key) { void *prime, *b, *t1, *t2; int err; if ((err = mp_init_multi(&prime, &b, &t1, &t2, NULL)) != CRYPT_OK) { return err; } /* load prime and b */ if ((err = mp_read_radix(prime, key->dp->prime, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(b, key->dp->B, 16)) != CRYPT_OK) { goto error; } /* compute y^2 */ if ((err = mp_sqr(key->pubkey.y, t1)) != CRYPT_OK) { goto error; } /* compute x^3 */ if ((err = mp_sqr(key->pubkey.x, t2)) != CRYPT_OK) { goto error; } if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK) { goto error; } if ((err = mp_mul(key->pubkey.x, t2, t2)) != CRYPT_OK) { goto error; } /* compute y^2 - x^3 */ if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK) { goto error; } /* compute y^2 - x^3 + 3x */ if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_mod(t1, prime, t1)) != CRYPT_OK) { goto error; } while (mp_cmp_d(t1, 0) == LTC_MP_LT) { if ((err = mp_add(t1, prime, t1)) != CRYPT_OK) { goto error; } } while (mp_cmp(t1, prime) != LTC_MP_LT) { if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK) { goto error; } } /* compare to b */ if (mp_cmp(t1, b) != LTC_MP_EQ) { err = CRYPT_INVALID_PACKET; } else { err = CRYPT_OK; } error: mp_clear_multi(prime, b, t1, t2, NULL); return err; } /** Import an ECC key from a binary packet @param in The packet to import @param inlen The length of the packet @param key [out] The destination of the import @return CRYPT_OK if successful, upon error all allocated memory will be freed */ int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key) { return ecc_import_ex(in, inlen, key, NULL); } /** Import an ECC key from a binary packet, using user supplied domain params rather than one of the NIST ones @param in The packet to import @param inlen The length of the packet @param key [out] The destination of the import @param dp pointer to user supplied params; must be the same as the params used when exporting @return CRYPT_OK if successful, upon error all allocated memory will be freed */ int ecc_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_set_type *dp) { unsigned long key_size; unsigned char flags[1]; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* init key */ if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != CRYPT_OK) { return CRYPT_MEM; } /* find out what type of key it is */ if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, &flags, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto done; } if (flags[0] == 1) { /* private key */ key->type = PK_PRIVATE; if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, key->pubkey.x, LTC_ASN1_INTEGER, 1UL, key->pubkey.y, LTC_ASN1_INTEGER, 1UL, key->k, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto done; } } else { /* public key */ key->type = PK_PUBLIC; if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_size, LTC_ASN1_INTEGER, 1UL, key->pubkey.x, LTC_ASN1_INTEGER, 1UL, key->pubkey.y, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto done; } } if (dp == NULL) { /* find the idx */ for (key->idx = 0; ltc_ecc_sets[key->idx].size && (unsigned long)ltc_ecc_sets[key->idx].size != key_size; ++key->idx); if (ltc_ecc_sets[key->idx].size == 0) { err = CRYPT_INVALID_PACKET; goto done; } key->dp = <c_ecc_sets[key->idx]; } else { key->idx = -1; key->dp = dp; } /* set z */ if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { goto done; } /* is it a point on the curve? */ if ((err = is_point(key)) != CRYPT_OK) { goto done; } /* we're good */ return CRYPT_OK; done: mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_import.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_make_key.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Make a new ECC key @param prng An active PRNG state @param wprng The index of the PRNG you wish to use @param keysize The keysize for the new key (in octets from 20 to 65 bytes) @param key [out] Destination of the newly created key @return CRYPT_OK if successful, upon error all allocated memory will be freed */ int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key) { int x, err; /* find key size */ for (x = 0; (keysize > ltc_ecc_sets[x].size) && (ltc_ecc_sets[x].size != 0); x++); keysize = ltc_ecc_sets[x].size; if ((keysize > ECC_MAXSIZE) || (ltc_ecc_sets[x].size == 0)) { return CRYPT_INVALID_KEYSIZE; } err = ecc_make_key_ex(prng, wprng, key, <c_ecc_sets[x]); key->idx = x; return err; } int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp) { int err; ecc_point *base; void *prime, *order; unsigned char *buf; int keysize; LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); LTC_ARGCHK(dp != NULL); /* good prng? */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } key->idx = -1; key->dp = dp; keysize = dp->size; /* allocate ram */ base = NULL; buf = AUTO_CAST(XMALLOC(ECC_MAXSIZE)); if (buf == NULL) { return CRYPT_MEM; } /* make up random string */ if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) { err = CRYPT_ERROR_READPRNG; goto ERR_BUF; } /* setup the key variables */ if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, &order, NULL)) != CRYPT_OK) { goto ERR_BUF; } base = ltc_ecc_new_point(); if (base == NULL) { err = CRYPT_MEM; goto errkey; } /* read in the specs for this key */ if ((err = mp_read_radix(prime, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(order, (char *)key->dp->order, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(base->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(base->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_set(base->z, 1)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_unsigned_bin(key->k, (unsigned char *)buf, keysize)) != CRYPT_OK) { goto errkey; } /* the key should be smaller than the order of base point */ if (mp_cmp(key->k, order) != LTC_MP_LT) { if ((err = mp_mod(key->k, order, key->k)) != CRYPT_OK) { goto errkey; } } /* make the public key */ if ((err = ltc_mp.ecc_ptmul(key->k, base, &key->pubkey, prime, 1)) != CRYPT_OK) { goto errkey; } key->type = PK_PRIVATE; /* free up ram */ err = CRYPT_OK; goto cleanup; errkey: mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); cleanup: ltc_ecc_del_point(base); mp_clear_multi(prime, order, NULL); ERR_BUF: #ifdef LTC_CLEAN_STACK zeromem(buf, ECC_MAXSIZE); #endif XFREE(buf); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_make_key.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_shared_secret.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Create an ECC shared secret between two keys @param private_key The private ECC key @param public_key The public key @param out [out] Destination of the shared secret (Conforms to EC-DH from ANSI X9.63) @param outlen [in/out] The max size and resulting size of the shared secret @return CRYPT_OK if successful */ int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key, unsigned char *out, unsigned long *outlen) { unsigned long x; ecc_point *result; void *prime; int err; LTC_ARGCHK(private_key != NULL); LTC_ARGCHK(public_key != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* type valid? */ if (private_key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } if ((ltc_ecc_is_valid_idx(private_key->idx) == 0) || (ltc_ecc_is_valid_idx(public_key->idx) == 0)) { return CRYPT_INVALID_ARG; } if (XSTRCMP(private_key->dp->name, public_key->dp->name) != 0) { return CRYPT_PK_TYPE_MISMATCH; } /* make new point */ result = ltc_ecc_new_point(); if (result == NULL) { return CRYPT_MEM; } if ((err = mp_init(&prime)) != CRYPT_OK) { ltc_ecc_del_point(result); return err; } if ((err = mp_read_radix(prime, (char *)private_key->dp->prime, 16)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptmul(private_key->k, &public_key->pubkey, result, prime, 1)) != CRYPT_OK) { goto done; } x = (unsigned long)mp_unsigned_bin_size(prime); if (*outlen < x) { *outlen = x; err = CRYPT_BUFFER_OVERFLOW; goto done; } zeromem(out, x); if ((err = mp_to_unsigned_bin(result->x, out + (x - mp_unsigned_bin_size(result->x)))) != CRYPT_OK) { goto done; } err = CRYPT_OK; *outlen = x; done: mp_clear(prime); ltc_ecc_del_point(result); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_shared_secret.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_sign_hash.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Sign a message digest @param in The message digest to sign @param inlen The length of the digest @param out [out] The destination for the signature @param outlen [in/out] The max size and resulting size of the signature @param prng An active PRNG state @param wprng The index of the PRNG you wish to use @param key A private ECC key @return CRYPT_OK if successful */ int ecc_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, ecc_key *key) { ecc_key pubkey; void *r, *s, *e, *p; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* is this a private key? */ if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } /* is the IDX valid ? */ if (ltc_ecc_is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* get the hash and load it as a bignum into 'e' */ /* init the bignums */ if ((err = mp_init_multi(&r, &s, &p, &e, NULL)) != CRYPT_OK) { return err; } if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto errnokey; } if ((err = mp_read_unsigned_bin(e, (unsigned char *)in, (int)inlen)) != CRYPT_OK) { goto errnokey; } /* make up a key and export the public copy */ for ( ; ; ) { if ((err = ecc_make_key_ex(prng, wprng, &pubkey, key->dp)) != CRYPT_OK) { goto errnokey; } /* find r = x1 mod n */ if ((err = mp_mod(pubkey.pubkey.x, p, r)) != CRYPT_OK) { goto error; } if (mp_iszero(r) == LTC_MP_YES) { ecc_free(&pubkey); } else { /* find s = (e + xr)/k */ if ((err = mp_invmod(pubkey.k, p, pubkey.k)) != CRYPT_OK) { goto error; } /* k = 1/k */ if ((err = mp_mulmod(key->k, r, p, s)) != CRYPT_OK) { goto error; } /* s = xr */ if ((err = mp_add(e, s, s)) != CRYPT_OK) { goto error; } /* s = e + xr */ if ((err = mp_mod(s, p, s)) != CRYPT_OK) { goto error; } /* s = e + xr */ if ((err = mp_mulmod(s, pubkey.k, p, s)) != CRYPT_OK) { goto error; } /* s = (e + xr)/k */ ecc_free(&pubkey); if (mp_iszero(s) == LTC_MP_NO) { break; } } } /* store as SEQUENCE { r, s -- integer } */ err = der_encode_sequence_multi(out, outlen, LTC_ASN1_INTEGER, 1UL, r, LTC_ASN1_INTEGER, 1UL, s, LTC_ASN1_EOL, 0UL, NULL); goto errnokey; error: ecc_free(&pubkey); errnokey: mp_clear_multi(r, s, p, e, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_sign_hash.c,v $ */ /* $Revision: 1.11 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_sizes.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC void ecc_sizes(int *low, int *high) { int i; LTC_ARGCHKVD(low != NULL); LTC_ARGCHKVD(high != NULL); *low = INT_MAX; *high = 0; for (i = 0; ltc_ecc_sets[i].size != 0; i++) { if (ltc_ecc_sets[i].size < *low) { *low = ltc_ecc_sets[i].size; } if (ltc_ecc_sets[i].size > *high) { *high = ltc_ecc_sets[i].size; } } } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_sizes.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_test.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Perform on the ECC system @return CRYPT_OK if successful */ int ecc_test(void) { void *modulus, *order; ecc_point *G, *GG; int i, err, primality; if ((err = mp_init_multi(&modulus, &order, NULL)) != CRYPT_OK) { return err; } G = ltc_ecc_new_point(); GG = ltc_ecc_new_point(); if ((G == NULL) || (GG == NULL)) { mp_clear_multi(modulus, order, NULL); ltc_ecc_del_point(G); ltc_ecc_del_point(GG); return CRYPT_MEM; } for (i = 0; ltc_ecc_sets[i].size; i++) { #if 0 printf("Testing %d\n", ltc_ecc_sets[i].size); #endif if ((err = mp_read_radix(modulus, (char *)ltc_ecc_sets[i].prime, 16)) != CRYPT_OK) { goto done; } if ((err = mp_read_radix(order, (char *)ltc_ecc_sets[i].order, 16)) != CRYPT_OK) { goto done; } /* is prime actually prime? */ if ((err = mp_prime_is_prime(modulus, 8, &primality)) != CRYPT_OK) { goto done; } if (primality == 0) { err = CRYPT_FAIL_TESTVECTOR; goto done; } /* is order prime ? */ if ((err = mp_prime_is_prime(order, 8, &primality)) != CRYPT_OK) { goto done; } if (primality == 0) { err = CRYPT_FAIL_TESTVECTOR; goto done; } if ((err = mp_read_radix(G->x, (char *)ltc_ecc_sets[i].Gx, 16)) != CRYPT_OK) { goto done; } if ((err = mp_read_radix(G->y, (char *)ltc_ecc_sets[i].Gy, 16)) != CRYPT_OK) { goto done; } mp_set(G->z, 1); /* then we should have G == (order + 1)G */ if ((err = mp_add_d(order, 1, order)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptmul(order, G, GG, modulus, 1)) != CRYPT_OK) { goto done; } if ((mp_cmp(G->x, GG->x) != LTC_MP_EQ) || (mp_cmp(G->y, GG->y) != LTC_MP_EQ)) { err = CRYPT_FAIL_TESTVECTOR; goto done; } } err = CRYPT_OK; done: ltc_ecc_del_point(GG); ltc_ecc_del_point(G); mp_clear_multi(order, modulus, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_test.c,v $ */ /* $Revision: 1.12 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ecc_verify_hash.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /* verify * * w = s^-1 mod n * u1 = xw * u2 = rw * X = u1*G + u2*Q * v = X_x1 mod n * accept if v == r */ /** Verify an ECC signature @param sig The signature to verify @param siglen The length of the signature (octets) @param hash The hash (message digest) that was signed @param hashlen The length of the hash (octets) @param stat Result of signature, 1==valid, 0==invalid @param key The corresponding public ECC key @return CRYPT_OK if successful (even if the signature is not valid) */ int ecc_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int *stat, ecc_key *key) { ecc_point *mG, *mQ; void *r, *s, *v, *w, *u1, *u2, *e, *p, *m; void *mp; int err; LTC_ARGCHK(sig != NULL); LTC_ARGCHK(hash != NULL); LTC_ARGCHK(stat != NULL); LTC_ARGCHK(key != NULL); /* default to invalid signature */ *stat = 0; mp = NULL; /* is the IDX valid ? */ if (ltc_ecc_is_valid_idx(key->idx) != 1) { return CRYPT_PK_INVALID_TYPE; } /* allocate ints */ if ((err = mp_init_multi(&r, &s, &v, &w, &u1, &u2, &p, &e, &m, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* allocate points */ mG = ltc_ecc_new_point(); mQ = ltc_ecc_new_point(); if ((mQ == NULL) || (mG == NULL)) { err = CRYPT_MEM; goto error; } /* parse header */ if ((err = der_decode_sequence_multi(sig, siglen, LTC_ASN1_INTEGER, 1UL, r, LTC_ASN1_INTEGER, 1UL, s, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto error; } /* get the order */ if ((err = mp_read_radix(p, (char *)key->dp->order, 16)) != CRYPT_OK) { goto error; } /* get the modulus */ if ((err = mp_read_radix(m, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto error; } /* check for zero */ if (mp_iszero(r) || mp_iszero(s) || (mp_cmp(r, p) != LTC_MP_LT) || (mp_cmp(s, p) != LTC_MP_LT)) { err = CRYPT_INVALID_PACKET; goto error; } /* read hash */ if ((err = mp_read_unsigned_bin(e, (unsigned char *)hash, (int)hashlen)) != CRYPT_OK) { goto error; } /* w = s^-1 mod n */ if ((err = mp_invmod(s, p, w)) != CRYPT_OK) { goto error; } /* u1 = ew */ if ((err = mp_mulmod(e, w, p, u1)) != CRYPT_OK) { goto error; } /* u2 = rw */ if ((err = mp_mulmod(r, w, p, u2)) != CRYPT_OK) { goto error; } /* find mG and mQ */ if ((err = mp_read_radix(mG->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(mG->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto error; } if ((err = mp_set(mG->z, 1)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.x, mQ->x)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.y, mQ->y)) != CRYPT_OK) { goto error; } if ((err = mp_copy(key->pubkey.z, mQ->z)) != CRYPT_OK) { goto error; } /* compute u1*mG + u2*mQ = mG */ if (ltc_mp.ecc_mul2add == NULL) { if ((err = ltc_mp.ecc_ptmul(u1, mG, mG, m, 0)) != CRYPT_OK) { goto error; } if ((err = ltc_mp.ecc_ptmul(u2, mQ, mQ, m, 0)) != CRYPT_OK) { goto error; } /* find the montgomery mp */ if ((err = mp_montgomery_setup(m, &mp)) != CRYPT_OK) { goto error; } /* add them */ if ((err = ltc_mp.ecc_ptadd(mQ, mG, mG, m, mp)) != CRYPT_OK) { goto error; } /* reduce */ if ((err = ltc_mp.ecc_map(mG, m, mp)) != CRYPT_OK) { goto error; } } else { /* use Shamir's trick to compute u1*mG + u2*mQ using half of the doubles */ if ((err = ltc_mp.ecc_mul2add(mG, u1, mQ, u2, mG, m)) != CRYPT_OK) { goto error; } } /* v = X_x1 mod n */ if ((err = mp_mod(mG->x, p, v)) != CRYPT_OK) { goto error; } /* does v == r */ if (mp_cmp(v, r) == LTC_MP_EQ) { *stat = 1; } /* clear up and return */ err = CRYPT_OK; error: ltc_ecc_del_point(mG); ltc_ecc_del_point(mQ); mp_clear_multi(r, s, v, w, u1, u2, p, e, m, NULL); if (mp != NULL) { mp_montgomery_free(mp); } return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ecc_verify_hash.c,v $ */ /* $Revision: 1.14 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file error_to_string.c Convert error codes to ASCII strings, Tom St Denis */ static const char * const err_2_str[] = { "CRYPT_OK", "CRYPT_ERROR", "Non-fatal 'no-operation' requested.", "Invalid keysize for block cipher.", "Invalid number of rounds for block cipher.", "Algorithm failed test vectors.", "Buffer overflow.", "Invalid input packet.", "Invalid number of bits for a PRNG.", "Error reading the PRNG.", "Invalid cipher specified.", "Invalid hash specified.", "Invalid PRNG specified.", "Out of memory.", "Invalid PK key or key type specified for function.", "A private PK key is required.", "Invalid argument provided.", "File Not Found", "Invalid PK type.", "Invalid PK system.", "Duplicate PK key found on keyring.", "Key not found in keyring.", "Invalid sized parameter.", "Invalid size for prime.", }; /** Convert an LTC error code to ASCII @param err The error code @return A pointer to the ASCII NUL terminated string for the error or "Invalid error code." if the err code was not valid. */ const char *error_to_string(int err) { if ((err < 0) || (err >= (int)(sizeof(err_2_str) / sizeof(err_2_str[0])))) { return "Invalid error code."; } else { return err_2_str[err]; } } /* $Source: /cvs/libtom/libtomcrypt/src/misc/error_to_string.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #define DESC_DEF_ONLY /* $Source: /cvs/libtom/libtomcrypt/src/math/gmp_desc.c,v $ */ /* $Revision: 1.16 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file hash_file.c Hash a file, Tom St Denis */ /** @param hash The index of the hash desired @param fname The name of the file you wish to hash @param out [out] The destination of the digest @param outlen [in/out] The max size and resulting size of the message digest @result CRYPT_OK if successful */ int hash_file(int hash, const char *fname, unsigned char *out, unsigned long *outlen) { #ifdef LTC_NO_FILE return CRYPT_NOP; #else FILE *in; int err; LTC_ARGCHK(fname != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } in = fopen(fname, "rb"); if (in == NULL) { return CRYPT_FILE_NOTFOUND; } err = hash_filehandle(hash, in, out, outlen); if (fclose(in) != 0) { return CRYPT_ERROR; } return err; #endif } /* $Source: /cvs/libtom/libtomcrypt/src/hashes/helper/hash_file.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:23 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file hash_filehandle.c Hash open files, Tom St Denis */ /** Hash data from an open file handle. @param hash The index of the hash you want to use @param in The FILE* handle of the file you want to hash @param out [out] The destination of the digest @param outlen [in/out] The max size and resulting size of the digest @result CRYPT_OK if successful */ int hash_filehandle(int hash, FILE *in, unsigned char *out, unsigned long *outlen) { #ifdef LTC_NO_FILE return CRYPT_NOP; #else hash_state md; unsigned char buf[512]; size_t x; int err; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(in != NULL); if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (*outlen < hash_descriptor[hash].hashsize) { *outlen = hash_descriptor[hash].hashsize; return CRYPT_BUFFER_OVERFLOW; } if ((err = hash_descriptor[hash].init(&md)) != CRYPT_OK) { return err; } *outlen = hash_descriptor[hash].hashsize; do { x = fread(buf, 1, sizeof(buf), in); if ((err = hash_descriptor[hash].process(&md, buf, x)) != CRYPT_OK) { return err; } } while (x == sizeof(buf)); err = hash_descriptor[hash].done(&md, out); #ifdef LTC_CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return err; #endif } /* $Source: /cvs/libtom/libtomcrypt/src/hashes/helper/hash_filehandle.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:23 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file hash_memory.c Hash memory helper, Tom St Denis */ /** Hash a block of memory and store the digest. @param hash The index of the hash you wish to use @param in The data you wish to hash @param inlen The length of the data to hash (octets) @param out [out] Where to store the digest @param outlen [in/out] Max size and resulting size of the digest @return CRYPT_OK if successful */ int hash_memory(int hash, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { hash_state *md; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (*outlen < hash_descriptor[hash].hashsize) { *outlen = hash_descriptor[hash].hashsize; return CRYPT_BUFFER_OVERFLOW; } md = AUTO_CAST(XMALLOC(sizeof(hash_state))); if (md == NULL) { return CRYPT_MEM; } if ((err = hash_descriptor[hash].init(md)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].process(md, in, inlen)) != CRYPT_OK) { goto LBL_ERR; } err = hash_descriptor[hash].done(md, out); *outlen = hash_descriptor[hash].hashsize; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif XFREE(md); return err; } /* $Source: /cvs/libtom/libtomcrypt/src/hashes/helper/hash_memory.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:23 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include /** @file hash_memory_multi.c Hash (multiple buffers) memory helper, Tom St Denis */ /** Hash multiple (non-adjacent) blocks of memory at once. @param hash The index of the hash you wish to use @param out [out] Where to store the digest @param outlen [in/out] Max size and resulting size of the digest @param in The data you wish to hash @param inlen The length of the data to hash (octets) @param ... tuples of (data,len) pairs to hash, terminated with a (NULL,x) (x=don't care) @return CRYPT_OK if successful */ int hash_memory_multi(int hash, unsigned char *out, unsigned long *outlen, const unsigned char *in, unsigned long inlen, ...) { hash_state *md; int err; va_list args; const unsigned char *curptr; unsigned long curlen; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (*outlen < hash_descriptor[hash].hashsize) { *outlen = hash_descriptor[hash].hashsize; return CRYPT_BUFFER_OVERFLOW; } md = AUTO_CAST(XMALLOC(sizeof(hash_state))); if (md == NULL) { return CRYPT_MEM; } if ((err = hash_descriptor[hash].init(md)) != CRYPT_OK) { goto LBL_ERR; } va_start(args, inlen); curptr = in; curlen = inlen; for ( ; ; ) { /* process buf */ if ((err = hash_descriptor[hash].process(md, curptr, curlen)) != CRYPT_OK) { goto LBL_ERR; } /* step to next */ curptr = va_arg(args, const unsigned char *); if (curptr == NULL) { break; } curlen = va_arg(args, unsigned long); } err = hash_descriptor[hash].done(md, out); *outlen = hash_descriptor[hash].hashsize; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif XFREE(md); va_end(args); return err; } /* $Source: /cvs/libtom/libtomcrypt/src/hashes/helper/hash_memory_multi.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:23 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_is_valid_idx.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Returns whether an ECC idx is valid or not @param n The idx number to check @return 1 if valid, 0 if not */ int ltc_ecc_is_valid_idx(int n) { int x; for (x = 0; ltc_ecc_sets[x].size != 0; x++); /* -1 is a valid index --- indicating that the domain params were supplied by the user */ if ((n >= -1) && (n < x)) { return 1; } return 0; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_is_valid_idx.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_map.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Map a projective jacbobian point back to affine space @param P [in/out] The point to map @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_map(ecc_point *P, void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* first map z back to normal */ if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK) { goto done; } /* get 1/z */ if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK) { goto done; } /* get 1/z^2 and 1/z^3 */ if ((err = mp_sqr(t1, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK) { goto done; } /* multiply against x/y */ if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_set(P->z, 1)) != CRYPT_OK) { goto done; } err = CRYPT_OK; done: mp_clear_multi(t1, t2, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_map.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_mul2add.c ECC Crypto, Shamir's Trick, Tom St Denis */ #ifdef LTC_MECC #ifdef LTC_ECC_SHAMIR /** Computes kA*A + kB*B = C using Shamir's Trick @param A First point to multiply @param kA What to multiple A by @param B Second point to multiply @param kB What to multiple B by @param C [out] Destination point (can overlap with A or B @param modulus Modulus for curve @return CRYPT_OK on success */ int ltc_ecc_mul2add(ecc_point *A, void *kA, ecc_point *B, void *kB, ecc_point *C, void *modulus) { ecc_point *precomp[16]; unsigned bitbufA, bitbufB, lenA, lenB, len, x, y, nA, nB, nibble; unsigned char *tA, *tB; int err, first; void *mp, *mu; /* argchks */ LTC_ARGCHK(A != NULL); LTC_ARGCHK(B != NULL); LTC_ARGCHK(C != NULL); LTC_ARGCHK(kA != NULL); LTC_ARGCHK(kB != NULL); LTC_ARGCHK(modulus != NULL); /* allocate memory */ tA = AUTO_CAST(XCALLOC(1, ECC_BUF_SIZE)); if (tA == NULL) { return CRYPT_MEM; } tB = AUTO_CAST(XCALLOC(1, ECC_BUF_SIZE)); if (tB == NULL) { XFREE(tA); return CRYPT_MEM; } /* get sizes */ lenA = mp_unsigned_bin_size(kA); lenB = mp_unsigned_bin_size(kB); len = MAX(lenA, lenB); /* sanity check */ if ((lenA > ECC_BUF_SIZE) || (lenB > ECC_BUF_SIZE)) { err = CRYPT_INVALID_ARG; goto ERR_T; } /* extract and justify kA */ mp_to_unsigned_bin(kA, (len - lenA) + tA); /* extract and justify kB */ mp_to_unsigned_bin(kB, (len - lenB) + tB); /* allocate the table */ for (x = 0; x < 16; x++) { precomp[x] = ltc_ecc_new_point(); if (precomp[x] == NULL) { for (y = 0; y < x; ++y) { ltc_ecc_del_point(precomp[y]); } err = CRYPT_MEM; goto ERR_T; } } /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { goto ERR_P; } if ((err = mp_init(&mu)) != CRYPT_OK) { goto ERR_MP; } if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { goto ERR_MU; } /* copy ones ... */ if ((err = mp_mulmod(A->x, mu, modulus, precomp[1]->x)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(A->y, mu, modulus, precomp[1]->y)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(A->z, mu, modulus, precomp[1]->z)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(B->x, mu, modulus, precomp[1 << 2]->x)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(B->y, mu, modulus, precomp[1 << 2]->y)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_mulmod(B->z, mu, modulus, precomp[1 << 2]->z)) != CRYPT_OK) { goto ERR_MU; } /* precomp [i,0](A + B) table */ if ((err = ltc_mp.ecc_ptdbl(precomp[1], precomp[2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } if ((err = ltc_mp.ecc_ptadd(precomp[1], precomp[2], precomp[3], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } /* precomp [0,i](A + B) table */ if ((err = ltc_mp.ecc_ptdbl(precomp[1 << 2], precomp[2 << 2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } if ((err = ltc_mp.ecc_ptadd(precomp[1 << 2], precomp[2 << 2], precomp[3 << 2], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } /* precomp [i,j](A + B) table (i != 0, j != 0) */ for (x = 1; x < 4; x++) { for (y = 1; y < 4; y++) { if ((err = ltc_mp.ecc_ptadd(precomp[x], precomp[(y << 2)], precomp[x + (y << 2)], modulus, mp)) != CRYPT_OK) { goto ERR_MU; } } } nibble = 3; first = 1; bitbufA = tA[0]; bitbufB = tB[0]; /* for every byte of the multiplicands */ for (x = -1; ; ) { /* grab a nibble */ if (++nibble == 4) { ++x; if (x == len) break; bitbufA = tA[x]; bitbufB = tB[x]; nibble = 0; } /* extract two bits from both, shift/update */ nA = (bitbufA >> 6) & 0x03; nB = (bitbufB >> 6) & 0x03; bitbufA = (bitbufA << 2) & 0xFF; bitbufB = (bitbufB << 2) & 0xFF; /* if both zero, if first, continue */ if ((nA == 0) && (nB == 0) && (first == 1)) { continue; } /* double twice, only if this isn't the first */ if (first == 0) { /* double twice */ if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; } if ((err = ltc_mp.ecc_ptdbl(C, C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; } } /* if not both zero */ if ((nA != 0) || (nB != 0)) { if (first == 1) { /* if first, copy from table */ first = 0; if ((err = mp_copy(precomp[nA + (nB << 2)]->x, C->x)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_copy(precomp[nA + (nB << 2)]->y, C->y)) != CRYPT_OK) { goto ERR_MU; } if ((err = mp_copy(precomp[nA + (nB << 2)]->z, C->z)) != CRYPT_OK) { goto ERR_MU; } } else { /* if not first, add from table */ if ((err = ltc_mp.ecc_ptadd(C, precomp[nA + (nB << 2)], C, modulus, mp)) != CRYPT_OK) { goto ERR_MU; } } } } /* reduce to affine */ err = ltc_ecc_map(C, modulus, mp); /* clean up */ ERR_MU: mp_clear(mu); ERR_MP: mp_montgomery_free(mp); ERR_P: for (x = 0; x < 16; x++) { ltc_ecc_del_point(precomp[x]); } ERR_T: #ifdef LTC_CLEAN_STACK zeromem(tA, ECC_BUF_SIZE); zeromem(tB, ECC_BUF_SIZE); #endif XFREE(tA); XFREE(tB); return err; } #endif #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mul2add.c,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_mulmod.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC #ifndef LTC_ECC_TIMING_RESISTANT /* size of sliding window, don't change this! */ #define WINSIZE 4 /** Perform a point multiplication @param k The scalar to multiply by @param G The base point @param R [out] Destination for kG @param modulus The modulus of the field the ECC curve is in @param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective) @return CRYPT_OK on success */ int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map) { ecc_point *tG, *M[8]; int i, j, err; void *mu, *mp; unsigned long buf; int first, bitbuf, bitcpy, bitcnt, mode, digidx; LTC_ARGCHK(k != NULL); LTC_ARGCHK(G != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { return err; } if ((err = mp_init(&mu)) != CRYPT_OK) { mp_montgomery_free(mp); return err; } if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { mp_montgomery_free(mp); mp_clear(mu); return err; } /* alloc ram for window temps */ for (i = 0; i < 8; i++) { M[i] = ltc_ecc_new_point(); if (M[i] == NULL) { for (j = 0; j < i; j++) { ltc_ecc_del_point(M[j]); } mp_montgomery_free(mp); mp_clear(mu); return CRYPT_MEM; } } /* make a copy of G incase R==G */ tG = ltc_ecc_new_point(); if (tG == NULL) { err = CRYPT_MEM; goto done; } /* tG = G and convert to montgomery */ if (mp_cmp_d(mu, 1) == LTC_MP_EQ) { if ((err = mp_copy(G->x, tG->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(G->y, tG->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(G->z, tG->z)) != CRYPT_OK) { goto done; } } else { if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; } } mp_clear(mu); mu = NULL; /* calc the M tab, which holds kG for k==8..15 */ /* M[0] == 8G */ if ((err = ltc_mp.ecc_ptdbl(tG, M[0], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK) { goto done; } /* now find (8+k)G for k=1..7 */ for (j = 9; j < 16; j++) { if ((err = ltc_mp.ecc_ptadd(M[j - 9], tG, M[j - 8], modulus, mp)) != CRYPT_OK) { goto done; } } /* setup sliding window */ mode = 0; bitcnt = 1; buf = 0; digidx = mp_get_digit_count(k) - 1; bitcpy = bitbuf = 0; first = 1; /* perform ops */ for ( ; ; ) { /* grab next digit as required */ if (--bitcnt == 0) { if (digidx == -1) { break; } buf = mp_get_digit(k, digidx); bitcnt = (int)ltc_mp.bits_per_digit; --digidx; } /* grab the next msb from the ltiplicand */ i = (buf >> (ltc_mp.bits_per_digit - 1)) & 1; buf <<= 1; /* skip leading zero bits */ if ((mode == 0) && (i == 0)) { continue; } /* if the bit is zero and mode == 1 then we double */ if ((mode == 1) && (i == 0)) { if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } continue; } /* else we add it to the window */ bitbuf |= (i << (WINSIZE - ++bitcpy)); mode = 2; if (bitcpy == WINSIZE) { /* if this is the first window we do a simple copy */ if (first == 1) { /* R = kG [k = first window] */ if ((err = mp_copy(M[bitbuf - 8]->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[bitbuf - 8]->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[bitbuf - 8]->z, R->z)) != CRYPT_OK) { goto done; } first = 0; } else { /* normal window */ /* ok window is filled so double as required and add */ /* double first */ for (j = 0; j < WINSIZE; j++) { if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } } /* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */ if ((err = ltc_mp.ecc_ptadd(R, M[bitbuf - 8], R, modulus, mp)) != CRYPT_OK) { goto done; } } /* empty window and reset */ bitcpy = bitbuf = 0; mode = 1; } } /* if bits remain then double/add */ if ((mode == 2) && (bitcpy > 0)) { /* double then add */ for (j = 0; j < bitcpy; j++) { /* only double if we have had at least one add first */ if (first == 0) { if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK) { goto done; } } bitbuf <<= 1; if ((bitbuf & (1 << WINSIZE)) != 0) { if (first == 1) { /* first add, so copy */ if ((err = mp_copy(tG->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->z, R->z)) != CRYPT_OK) { goto done; } first = 0; } else { /* then add */ if ((err = ltc_mp.ecc_ptadd(R, tG, R, modulus, mp)) != CRYPT_OK) { goto done; } } } } } /* map R back from projective space */ if (map) { err = ltc_ecc_map(R, modulus, mp); } else { err = CRYPT_OK; } done: if (mu != NULL) { mp_clear(mu); } mp_montgomery_free(mp); ltc_ecc_del_point(tG); for (i = 0; i < 8; i++) { ltc_ecc_del_point(M[i]); } return err; } #endif #undef WINSIZE #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod.c,v $ */ /* $Revision: 1.26 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_mulmod_timing.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC #ifdef LTC_ECC_TIMING_RESISTANT /** Perform a point multiplication (timing resistant) @param k The scalar to multiply by @param G The base point @param R [out] Destination for kG @param modulus The modulus of the field the ECC curve is in @param map Boolean whether to map back to affine or not (1==map, 0 == leave in projective) @return CRYPT_OK on success */ int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map) { ecc_point *tG, *M[3]; int i, j, err; void *mu, *mp; unsigned long buf; int first, bitbuf, bitcpy, bitcnt, mode, digidx; LTC_ARGCHK(k != NULL); LTC_ARGCHK(G != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); /* init montgomery reduction */ if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) { return err; } if ((err = mp_init(&mu)) != CRYPT_OK) { mp_montgomery_free(mp); return err; } if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) { mp_clear(mu); mp_montgomery_free(mp); return err; } /* alloc ram for window temps */ for (i = 0; i < 3; i++) { M[i] = ltc_ecc_new_point(); if (M[i] == NULL) { for (j = 0; j < i; j++) { ltc_ecc_del_point(M[j]); } mp_clear(mu); mp_montgomery_free(mp); return CRYPT_MEM; } } /* make a copy of G incase R==G */ tG = ltc_ecc_new_point(); if (tG == NULL) { err = CRYPT_MEM; goto done; } /* tG = G and convert to montgomery */ if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK) { goto done; } if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK) { goto done; } mp_clear(mu); mu = NULL; /* calc the M tab */ /* M[0] == G */ if ((err = mp_copy(tG->x, M[0]->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->y, M[0]->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(tG->z, M[0]->z)) != CRYPT_OK) { goto done; } /* M[1] == 2G */ if ((err = ltc_mp.ecc_ptdbl(tG, M[1], modulus, mp)) != CRYPT_OK) { goto done; } /* setup sliding window */ mode = 0; bitcnt = 1; buf = 0; digidx = mp_get_digit_count(k) - 1; bitcpy = bitbuf = 0; first = 1; /* perform ops */ for ( ; ; ) { /* grab next digit as required */ if (--bitcnt == 0) { if (digidx == -1) { break; } buf = mp_get_digit(k, digidx); bitcnt = (int)MP_DIGIT_BIT; --digidx; } /* grab the next msb from the ltiplicand */ i = (buf >> (MP_DIGIT_BIT - 1)) & 1; buf <<= 1; if ((mode == 0) && (i == 0)) { /* dummy operations */ if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } continue; } if ((mode == 0) && (i == 1)) { mode = 1; /* dummy operations */ if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK) { goto done; } continue; } if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[i ^ 1], modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp.ecc_ptdbl(M[i], M[i], modulus, mp)) != CRYPT_OK) { goto done; } } /* copy result out */ if ((err = mp_copy(M[0]->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[0]->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(M[0]->z, R->z)) != CRYPT_OK) { goto done; } /* map R back from projective space */ if (map) { err = ltc_ecc_map(R, modulus, mp); } else { err = CRYPT_OK; } done: if (mu != NULL) { mp_clear(mu); } mp_montgomery_free(mp); ltc_ecc_del_point(tG); for (i = 0; i < 3; i++) { ltc_ecc_del_point(M[i]); } return err; } #endif #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod_timing.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_points.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Allocate a new ECC point @return A newly allocated point or NULL on error */ ecc_point *ltc_ecc_new_point(void) { ecc_point *p; p = AUTO_CAST(XCALLOC(1, sizeof(*p))); if (p == NULL) { return NULL; } if (mp_init_multi(&p->x, &p->y, &p->z, NULL) != CRYPT_OK) { XFREE(p); return NULL; } return p; } /** Free an ECC point from memory @param p The point to free */ void ltc_ecc_del_point(ecc_point *p) { /* prevents free'ing null arguments */ if (p != NULL) { mp_clear_multi(p->x, p->y, p->z, NULL); /* note: p->z may be NULL but that's ok with this function anyways */ XFREE(p); } } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_points.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_projective_add_point.c ECC Crypto, Tom St Denis */ #if defined(LTC_MECC) && (!defined(LTC_MECC_ACCEL) || defined(LTM_LTC_DESC)) /** Add two ECC points @param P The point to add @param Q The point to add @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp) { void *t1, *t2, *x, *y, *z; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(Q != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != CRYPT_OK) { return err; } /* should we dbl instead? */ if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK) { goto done; } if ((mp_cmp(P->x, Q->x) == LTC_MP_EQ) && ((Q->z != NULL) && (mp_cmp(P->z, Q->z) == LTC_MP_EQ)) && ((mp_cmp(P->y, Q->y) == LTC_MP_EQ) || (mp_cmp(P->y, t1) == LTC_MP_EQ))) { mp_clear_multi(t1, t2, x, y, z, NULL); return ltc_ecc_projective_dbl_point(P, R, modulus, mp); } if ((err = mp_copy(P->x, x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->y, y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->z, z)) != CRYPT_OK) { goto done; } /* if Z is one then these are no-operations */ if (Q->z != NULL) { /* T1 = Z' * Z' */ if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X * T1 */ if ((err = mp_mul(t1, x, x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = Z' * T1 */ if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y * T1 */ if ((err = mp_mul(t1, y, y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK) { goto done; } } /* T1 = Z*Z */ if ((err = mp_sqr(z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = X' * T1 */ if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = Z * T1 */ if ((err = mp_mul(z, t1, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = Y' * T1 */ if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y - T1 */ if ((err = mp_sub(y, t1, y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(y, 0) == LTC_MP_LT) { if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; } } /* T1 = 2T1 */ if ((err = mp_add(t1, t1, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T1 = Y + T1 */ if ((err = mp_add(t1, y, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* X = X - T2 */ if ((err = mp_sub(x, t2, x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(x, 0) == LTC_MP_LT) { if ((err = mp_add(x, modulus, x)) != CRYPT_OK) { goto done; } } /* T2 = 2T2 */ if ((err = mp_add(t2, t2, t2)) != CRYPT_OK) { goto done; } if (mp_cmp(t2, modulus) != LTC_MP_LT) { if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T2 = X + T2 */ if ((err = mp_add(t2, x, t2)) != CRYPT_OK) { goto done; } if (mp_cmp(t2, modulus) != LTC_MP_LT) { if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* if Z' != 1 */ if (Q->z != NULL) { /* Z = Z * Z' */ if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK) { goto done; } } /* Z = Z * X */ if ((err = mp_mul(z, x, z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = T1 * X */ if ((err = mp_mul(t1, x, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X * X */ if ((err = mp_sqr(x, x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = T2 * x */ if ((err = mp_mul(t2, x, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = T1 * X */ if ((err = mp_mul(t1, x, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* X = Y*Y */ if ((err = mp_sqr(y, x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X - T2 */ if ((err = mp_sub(x, t2, x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(x, 0) == LTC_MP_LT) { if ((err = mp_add(x, modulus, x)) != CRYPT_OK) { goto done; } } /* T2 = T2 - X */ if ((err = mp_sub(t2, x, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T2 = T2 - X */ if ((err = mp_sub(t2, x, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T2 = T2 * Y */ if ((err = mp_mul(t2, y, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = T2 - T1 */ if ((err = mp_sub(t2, t1, y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(y, 0) == LTC_MP_LT) { if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; } } /* Y = Y/2 */ if (mp_isodd(y)) { if ((err = mp_add(y, modulus, y)) != CRYPT_OK) { goto done; } } if ((err = mp_div_2(y, y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(z, R->z)) != CRYPT_OK) { goto done; } err = CRYPT_OK; done: mp_clear_multi(t1, t2, x, y, z, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_projective_add_point.c,v $ */ /* $Revision: 1.16 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ /** @file ltc_ecc_projective_dbl_point.c ECC Crypto, Tom St Denis */ #if defined(LTC_MECC) && (!defined(LTC_MECC_ACCEL) || defined(LTM_LTC_DESC)) /** Double an ECC point @param P The point to double @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return err; } if (P != R) { if ((err = mp_copy(P->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->z, R->z)) != CRYPT_OK) { goto done; } } /* t1 = Z * Z */ if ((err = mp_sqr(R->z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Z = Y * Z */ if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK) { goto done; } /* Z = 2Z */ if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK) { goto done; } if (mp_cmp(R->z, modulus) != LTC_MP_LT) { if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK) { goto done; } } /* T2 = X - T1 */ if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T1 = X + T1 */ if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T2 = T1 * T2 */ if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = 2T2 */ if ((err = mp_add(t2, t2, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T1 = T1 + T2 */ if ((err = mp_add(t1, t2, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* Y = 2Y */ if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp(R->y, modulus) != LTC_MP_LT) { if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } /* Y = Y * Y */ if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = Y * Y */ if ((err = mp_sqr(R->y, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = T2/2 */ if (mp_isodd(t2)) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } if ((err = mp_div_2(t2, t2)) != CRYPT_OK) { goto done; } /* Y = Y * X */ if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* X = T1 * T1 */ if ((err = mp_sqr(t1, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X - Y */ if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } } /* X = X - Y */ if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } } /* Y = Y - X */ if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } /* Y = Y * T1 */ if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y - T2 */ if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } err = CRYPT_OK; done: mp_clear_multi(t1, t2, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_projective_dbl_point.c,v $ */ /* $Revision: 1.11 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #define DESC_DEF_ONLY #ifdef LTM_DESC #undef mp_init #undef mp_init_multi #undef mp_clear #undef mp_clear_multi #undef mp_init_copy #undef mp_neg #undef mp_copy #undef mp_set #undef mp_set_int #undef mp_get_int #undef mp_get_digit #undef mp_get_digit_count #undef mp_cmp #undef mp_cmp_d #undef mp_count_bits #undef mp_cnt_lsb #undef mp_2expt #undef mp_read_radix #undef mp_toradix #undef mp_unsigned_bin_size #undef mp_to_unsigned_bin #undef mp_read_unsigned_bin #undef mp_add #undef mp_add_d #undef mp_sub #undef mp_sub_d #undef mp_mul #undef mp_mul_d #undef mp_sqr #undef mp_div #undef mp_div_2 #undef mp_mod #undef mp_mod_d #undef mp_gcd #undef mp_lcm #undef mp_mulmod #undef mp_sqrmod #undef mp_invmod #undef mp_montgomery_setup #undef mp_montgomery_normalization #undef mp_montgomery_reduce #undef mp_montgomery_free #undef mp_exptmod #undef mp_prime_is_prime #undef mp_iszero #undef mp_isodd #undef mp_exch #undef mp_tohex static const struct { int mpi_code, ltc_code; } mpi_to_ltc_codes[] = { { MP_OKAY, CRYPT_OK }, { MP_MEM, CRYPT_MEM }, { MP_VAL, CRYPT_INVALID_ARG }, }; /** Convert a MPI error to a LTC error (Possibly the most powerful function ever! Oh wait... no) @param err The error to convert @return The equivalent LTC error code or CRYPT_ERROR if none found */ static int mpi_to_ltc_error(int err) { int x; for (x = 0; x < (int)(sizeof(mpi_to_ltc_codes) / sizeof(mpi_to_ltc_codes[0])); x++) { if (err == mpi_to_ltc_codes[x].mpi_code) { return mpi_to_ltc_codes[x].ltc_code; } } return CRYPT_ERROR; } static int init(void **a) { int err; LTC_ARGCHK(a != NULL); *a = XCALLOC(1, sizeof(mp_int)); if (*a == NULL) { return CRYPT_MEM; } if ((err = mpi_to_ltc_error(mp_init(AUTO_CAST(*a)))) != CRYPT_OK) { XFREE(*a); } return err; } static void deinit(void *a) { LTC_ARGCHKVD(a != NULL); mp_clear(AUTO_CAST(a)); XFREE(a); } static int neg(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_neg(AUTO_CAST(a), AUTO_CAST(b))); } static int copy(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_copy(AUTO_CAST(a), AUTO_CAST(b))); } static int init_copy(void **a, void *b) { if (init(a) != CRYPT_OK) { return CRYPT_MEM; } return copy(b, *a); } /* ---- trivial ---- */ static int set_int(void *a, unsigned long b) { LTC_ARGCHK(a != NULL); return mpi_to_ltc_error(mp_set_int(AUTO_CAST(a), AUTO_CAST(b))); } static unsigned long get_int(void *a) { LTC_ARGCHK(a != NULL); return mp_get_int(AUTO_CAST(a)); } static unsigned long get_digit(void *a, int n) { mp_int *A; LTC_ARGCHK(a != NULL); A = AUTO_CAST(a); return (n >= A->used || n < 0) ? 0 : A->dp[n]; } static int get_digit_count(void *a) { mp_int *A; LTC_ARGCHK(a != NULL); A = AUTO_CAST(a); return A->used; } static int compare(void *a, void *b) { int ret; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); ret = mp_cmp(AUTO_CAST(a), AUTO_CAST(b)); switch (ret) { case MP_LT: return LTC_MP_LT; case MP_EQ: return LTC_MP_EQ; case MP_GT: return LTC_MP_GT; } return 0; } static int compare_d(void *a, unsigned long b) { int ret; LTC_ARGCHK(a != NULL); ret = mp_cmp_d(AUTO_CAST(a), AUTO_CAST(b)); switch (ret) { case MP_LT: return LTC_MP_LT; case MP_EQ: return LTC_MP_EQ; case MP_GT: return LTC_MP_GT; } return 0; } static int count_bits(void *a) { LTC_ARGCHK(a != NULL); return mp_count_bits(AUTO_CAST(a)); } static int count_lsb_bits(void *a) { LTC_ARGCHK(a != NULL); return mp_cnt_lsb(AUTO_CAST(a)); } static int twoexpt(void *a, int n) { LTC_ARGCHK(a != NULL); return mpi_to_ltc_error(mp_2expt(AUTO_CAST(a), n)); } /* ---- conversions ---- */ /* read ascii string */ static int read_radix(void *a, const char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_read_radix(AUTO_CAST(a), AUTO_CAST(b), radix)); } /* write one */ static int write_radix(void *a, char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_toradix(AUTO_CAST(a), b, radix)); } /* get size as unsigned char string */ static unsigned long unsigned_size(void *a) { LTC_ARGCHK(a != NULL); return mp_unsigned_bin_size(AUTO_CAST(a)); } /* store */ static int unsigned_write(void *a, unsigned char *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_to_unsigned_bin(AUTO_CAST(a), b)); } /* read */ static int unsigned_read(void *a, unsigned char *b, unsigned long len) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_read_unsigned_bin(AUTO_CAST(a), b, len)); } /* add */ static int add(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_add(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } static int addi(void *a, unsigned long b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_add_d(AUTO_CAST(a), b, AUTO_CAST(c))); } /* sub */ static int sub(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_sub(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } static int subi(void *a, unsigned long b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_sub_d(AUTO_CAST(a), b, AUTO_CAST(c))); } /* mul */ static int mul(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_mul(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } static int muli(void *a, unsigned long b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_mul_d(AUTO_CAST(a), b, AUTO_CAST(c))); } /* sqr */ static int sqr(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_sqr(AUTO_CAST(a), AUTO_CAST(b))); } /* div */ static int divide(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_div(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c), AUTO_CAST(d))); } static int div_2(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_div_2(AUTO_CAST(a), AUTO_CAST(b))); } /* modi */ static int modi(void *a, unsigned long b, unsigned long *c) { mp_digit tmp; int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); if ((err = mpi_to_ltc_error(mp_mod_d(AUTO_CAST(a), b, &tmp))) != CRYPT_OK) { return err; } *c = tmp; return CRYPT_OK; } /* gcd */ static int gcd(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_gcd(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } /* lcm */ static int lcm(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_lcm(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } static int mulmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return mpi_to_ltc_error(mp_mulmod(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c), AUTO_CAST(d))); } static int sqrmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_sqrmod(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } /* invmod */ static int invmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_invmod(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c))); } /* setup */ static int montgomery_setup(void *a, void **b) { int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); *b = XCALLOC(1, sizeof(mp_digit)); if (*b == NULL) { return CRYPT_MEM; } if ((err = mpi_to_ltc_error(mp_montgomery_setup(AUTO_CAST(a), (mp_digit *)*b))) != CRYPT_OK) { XFREE(*b); } return err; } /* get normalization value */ static int montgomery_normalization(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return mpi_to_ltc_error(mp_montgomery_calc_normalization(AUTO_CAST(a), AUTO_CAST(b))); } /* reduce */ static int montgomery_reduce(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return mpi_to_ltc_error(mp_montgomery_reduce(AUTO_CAST(a), AUTO_CAST(b), *((mp_digit *)c))); } /* clean up */ static void montgomery_deinit(void *a) { XFREE(a); } static int exptmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return mpi_to_ltc_error(mp_exptmod(AUTO_CAST(a), AUTO_CAST(b), AUTO_CAST(c), AUTO_CAST(d))); } static int isprime(void *a, int *b) { int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); err = mpi_to_ltc_error(mp_prime_is_prime(AUTO_CAST(a), 8, AUTO_CAST(b))); *b = (*b == MP_YES) ? LTC_MP_YES : LTC_MP_NO; return err; } const ltc_math_descriptor ltm_desc = { "LibTomMath", (int)DIGIT_BIT, &init, &init_copy, &deinit, &neg, ©, &set_int, &get_int, &get_digit, &get_digit_count, &compare, &compare_d, &count_bits, &count_lsb_bits, &twoexpt, &read_radix, &write_radix, &unsigned_size, &unsigned_write, &unsigned_read, &add, &addi, &sub, &subi, &mul, &muli, &sqr, ÷, &div_2, &modi, &gcd, &lcm, &mulmod, &sqrmod, &invmod, &montgomery_setup, &montgomery_normalization, &montgomery_reduce, &montgomery_deinit, &exptmod, &isprime, #ifdef LTC_MECC #ifdef LTC_MECC_FP <c_ecc_fp_mulmod, #else <c_ecc_mulmod, #endif <c_ecc_projective_add_point, <c_ecc_projective_dbl_point, <c_ecc_map, #ifdef LTC_ECC_SHAMIR #ifdef LTC_MECC_FP <c_ecc_fp_mul2add, #else <c_ecc_mul2add, #endif /* LTC_MECC_FP */ #else NULL, #endif /* LTC_ECC_SHAMIR */ #else NULL, NULL,NULL, NULL, NULL, #endif /* LTC_MECC */ #ifdef LTC_MRSA &rsa_make_key, &rsa_exptmod, #else NULL, NULL #endif }; #define mp_init(a) ltc_mp.init(a) #define mp_init_multi ltc_init_multi #define mp_clear(a) ltc_mp.deinit(a) #define mp_clear_multi ltc_deinit_multi #define mp_init_copy(a, b) ltc_mp.init_copy(a, b) #define mp_neg(a, b) ltc_mp.neg(a, b) #define mp_copy(a, b) ltc_mp.copy(a, b) #define mp_set(a, b) ltc_mp.set_int(a, b) #define mp_set_int(a, b) ltc_mp.set_int(a, b) #define mp_get_int(a) ltc_mp.get_int(a) #define mp_get_digit(a, n) ltc_mp.get_digit(a, n) #define mp_get_digit_count(a) ltc_mp.get_digit_count(a) #define mp_cmp(a, b) ltc_mp.compare(a, b) #define mp_cmp_d(a, b) ltc_mp.compare_d(a, b) #define mp_count_bits(a) ltc_mp.count_bits(a) #define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a) #define mp_2expt(a, b) ltc_mp.twoexpt(a, b) #define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c) #define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c) #define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a) #define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b) #define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c) #define mp_add(a, b, c) ltc_mp.add(a, b, c) #define mp_add_d(a, b, c) ltc_mp.addi(a, b, c) #define mp_sub(a, b, c) ltc_mp.sub(a, b, c) #define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c) #define mp_mul(a, b, c) ltc_mp.mul(a, b, c) #define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c) #define mp_sqr(a, b) ltc_mp.sqr(a, b) #define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d) #define mp_div_2(a, b) ltc_mp.div_2(a, b) #define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c) #define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c) #define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c) #define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c) #define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d) #define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c) #define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c) #define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b) #define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b) #define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c) #define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a) #define mp_exptmod(a, b, c, d) ltc_mp.exptmod(a, b, c, d) #define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, c) #define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO) #define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO) #define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while (0); #define mp_tohex(a, b) mp_toradix(a, b, 16) #endif /* $Source: /cvs/libtom/libtomcrypt/src/math/ltm_desc.c,v $ */ /* $Revision: 1.31 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #ifdef MPI #include int ltc_init_multi(void **a, ...) { void **cur = a; int np = 0; va_list args; va_start(args, a); while (cur != NULL) { if (mp_init(cur) != CRYPT_OK) { /* failed */ va_list clean_list; va_start(clean_list, a); cur = a; while (np--) { mp_clear(*cur); cur = va_arg(clean_list, void **); } va_end(clean_list); return CRYPT_MEM; } ++np; cur = va_arg(args, void **); } va_end(args); return CRYPT_OK; } void ltc_deinit_multi(void *a, ...) { void *cur = a; va_list args; va_start(args, a); while (cur != NULL) { mp_clear(cur); cur = va_arg(args, void *); } va_end(args); } #endif /* $Source: /cvs/libtom/libtomcrypt/src/math/multi.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2006/12/28 01:27:23 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_i2osp.c Integer to Octet I2OSP, Tom St Denis */ #ifdef LTC_PKCS_1 /* always stores the same # of bytes, pads with leading zero bytes as required */ /** LTC_PKCS #1 Integer to binary @param n The integer to store @param modulus_len The length of the RSA modulus @param out [out] The destination for the integer @return CRYPT_OK if successful */ int pkcs_1_i2osp(void *n, unsigned long modulus_len, unsigned char *out) { unsigned long size; size = mp_unsigned_bin_size(n); if (size > modulus_len) { return CRYPT_BUFFER_OVERFLOW; } /* store it */ zeromem(out, modulus_len); return mp_to_unsigned_bin(n, out + (modulus_len - size)); } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_i2osp.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_mgf1.c The Mask Generation Function (MGF1) for LTC_PKCS #1, Tom St Denis */ #ifdef LTC_PKCS_1 /** Perform LTC_PKCS #1 MGF1 (internal) @param seed The seed for MGF1 @param seedlen The length of the seed @param hash_idx The index of the hash desired @param mask [out] The destination @param masklen The length of the mask desired @return CRYPT_OK if successful */ int pkcs_1_mgf1(int hash_idx, const unsigned char *seed, unsigned long seedlen, unsigned char *mask, unsigned long masklen) { unsigned long hLen, x; ulong32 counter; int err; hash_state *md; unsigned char *buf; LTC_ARGCHK(seed != NULL); LTC_ARGCHK(mask != NULL); /* ensure valid hash */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } /* get hash output size */ hLen = hash_descriptor[hash_idx].hashsize; /* allocate memory */ md = AUTO_CAST(XMALLOC(sizeof(hash_state))); buf = AUTO_CAST(XMALLOC(hLen)); if ((md == NULL) || (buf == NULL)) { if (md != NULL) { XFREE(md); } if (buf != NULL) { XFREE(buf); } return CRYPT_MEM; } /* start counter */ counter = 0; while (masklen > 0) { /* handle counter */ STORE32H(counter, buf); ++counter; /* get hash of seed || counter */ if ((err = hash_descriptor[hash_idx].init(md)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(md, seed, seedlen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(md, buf, 4)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].done(md, buf)) != CRYPT_OK) { goto LBL_ERR; } /* store it */ for (x = 0; x < hLen && masklen > 0; x++, masklen--) { *mask++ = buf[x]; } } err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(buf, hLen); zeromem(md, sizeof(hash_state)); #endif XFREE(buf); XFREE(md); return err; } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_mgf1.c,v $ */ /* $Revision: 1.8 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_oaep_decode.c OAEP Padding for LTC_PKCS #1, Tom St Denis */ #ifdef LTC_PKCS_1 /** LTC_PKCS #1 v2.00 OAEP decode @param msg The encoded data to decode @param msglen The length of the encoded data (octets) @param lparam The session or system data (can be NULL) @param lparamlen The length of the lparam @param modulus_bitlen The bit length of the RSA modulus @param hash_idx The index of the hash desired @param out [out] Destination of decoding @param outlen [in/out] The max size and resulting size of the decoding @param res [out] Result of decoding, 1==valid, 0==invalid @return CRYPT_OK if successful (even if invalid) */ int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen, const unsigned char *lparam, unsigned long lparamlen, unsigned long modulus_bitlen, int hash_idx, unsigned char *out, unsigned long *outlen, int *res) { unsigned char *DB, *seed, *mask; unsigned long hLen, x, y, modulus_len; int err; LTC_ARGCHK(msg != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(res != NULL); /* default to invalid packet */ *res = 0; /* test valid hash */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } hLen = hash_descriptor[hash_idx].hashsize; modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* test hash/message size */ if ((2 * hLen >= (modulus_len - 2)) || (msglen != modulus_len)) { return CRYPT_PK_INVALID_SIZE; } /* allocate ram for DB/mask/salt of size modulus_len */ DB = AUTO_CAST(XMALLOC(modulus_len)); mask = AUTO_CAST(XMALLOC(modulus_len)); seed = AUTO_CAST(XMALLOC(hLen)); if ((DB == NULL) || (mask == NULL) || (seed == NULL)) { if (DB != NULL) { XFREE(DB); } if (mask != NULL) { XFREE(mask); } if (seed != NULL) { XFREE(seed); } return CRYPT_MEM; } /* ok so it's now in the form 0x00 || maskedseed || maskedDB 1 || hLen || modulus_len - hLen - 1 */ /* must have leading 0x00 byte */ if (msg[0] != 0x00) { err = CRYPT_OK; goto LBL_ERR; } /* now read the masked seed */ x = 1; XMEMCPY(seed, msg + x, hLen); x += hLen; /* now read the masked DB */ XMEMCPY(DB, msg + x, modulus_len - hLen - 1); x += modulus_len - hLen - 1; /* compute MGF1 of maskedDB (hLen) */ if ((err = pkcs_1_mgf1(hash_idx, DB, modulus_len - hLen - 1, mask, hLen)) != CRYPT_OK) { goto LBL_ERR; } /* XOR against seed */ for (y = 0; y < hLen; y++) { seed[y] ^= mask[y]; } /* compute MGF1 of seed (k - hlen - 1) */ if ((err = pkcs_1_mgf1(hash_idx, seed, hLen, mask, modulus_len - hLen - 1)) != CRYPT_OK) { goto LBL_ERR; } /* xor against DB */ for (y = 0; y < (modulus_len - hLen - 1); y++) { DB[y] ^= mask[y]; } /* now DB == lhash || PS || 0x01 || M, PS == k - mlen - 2hlen - 2 zeroes */ /* compute lhash and store it in seed [reuse temps!] */ x = modulus_len; if (lparam != NULL) { if ((err = hash_memory(hash_idx, lparam, lparamlen, seed, &x)) != CRYPT_OK) { goto LBL_ERR; } } else { /* can't pass hash_memory a NULL so use DB with zero length */ if ((err = hash_memory(hash_idx, DB, 0, seed, &x)) != CRYPT_OK) { goto LBL_ERR; } } /* compare the lhash'es */ if (XMEMCMP(seed, DB, hLen) != 0) { err = CRYPT_OK; goto LBL_ERR; } /* now zeroes before a 0x01 */ for (x = hLen; x < (modulus_len - hLen - 1) && DB[x] == 0x00; x++) { /* step... */ } /* error out if wasn't 0x01 */ if ((x == (modulus_len - hLen - 1)) || (DB[x] != 0x01)) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } /* rest is the message (and skip 0x01) */ if ((modulus_len - hLen - 1 - ++x) > *outlen) { *outlen = modulus_len - hLen - 1 - x; err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* copy message */ *outlen = modulus_len - hLen - 1 - x; XMEMCPY(out, DB + x, modulus_len - hLen - 1 - x); x += modulus_len - hLen - 1; /* valid packet */ *res = 1; err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(DB, modulus_len); zeromem(seed, hLen); zeromem(mask, modulus_len); #endif XFREE(seed); XFREE(mask); XFREE(DB); return err; } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_oaep_decode.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_oaep_encode.c OAEP Padding for LTC_PKCS #1, Tom St Denis */ #ifdef LTC_PKCS_1 /** LTC_PKCS #1 v2.00 OAEP encode @param msg The data to encode @param msglen The length of the data to encode (octets) @param lparam A session or system parameter (can be NULL) @param lparamlen The length of the lparam data @param modulus_bitlen The bit length of the RSA modulus @param prng An active PRNG state @param prng_idx The index of the PRNG desired @param hash_idx The index of the hash desired @param out [out] The destination for the encoded data @param outlen [in/out] The max size and resulting size of the encoded data @return CRYPT_OK if successful */ int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen, const unsigned char *lparam, unsigned long lparamlen, unsigned long modulus_bitlen, prng_state *prng, int prng_idx, int hash_idx, unsigned char *out, unsigned long *outlen) { unsigned char *DB, *seed, *mask; unsigned long hLen, x, y, modulus_len; int err; LTC_ARGCHK(msg != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* test valid hash */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } /* valid prng */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } hLen = hash_descriptor[hash_idx].hashsize; modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* test message size */ if ((2 * hLen >= (modulus_len - 2)) || (msglen > (modulus_len - 2 * hLen - 2))) { return CRYPT_PK_INVALID_SIZE; } /* allocate ram for DB/mask/salt of size modulus_len */ DB = AUTO_CAST(XMALLOC(modulus_len)); mask = AUTO_CAST(XMALLOC(modulus_len)); seed = AUTO_CAST(XMALLOC(hLen)); if ((DB == NULL) || (mask == NULL) || (seed == NULL)) { if (DB != NULL) { XFREE(DB); } if (mask != NULL) { XFREE(mask); } if (seed != NULL) { XFREE(seed); } return CRYPT_MEM; } /* get lhash */ /* DB == lhash || PS || 0x01 || M, PS == k - mlen - 2hlen - 2 zeroes */ x = modulus_len; if (lparam != NULL) { if ((err = hash_memory(hash_idx, lparam, lparamlen, DB, &x)) != CRYPT_OK) { goto LBL_ERR; } } else { /* can't pass hash_memory a NULL so use DB with zero length */ if ((err = hash_memory(hash_idx, DB, 0, DB, &x)) != CRYPT_OK) { goto LBL_ERR; } } /* append PS then 0x01 (to lhash) */ x = hLen; y = modulus_len - msglen - 2 * hLen - 2; XMEMSET(DB + x, 0, y); x += y; /* 0x01 byte */ DB[x++] = 0x01; /* message (length = msglen) */ XMEMCPY(DB + x, msg, msglen); x += msglen; /* now choose a random seed */ if (prng_descriptor[prng_idx].read(seed, hLen, prng) != hLen) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } /* compute MGF1 of seed (k - hlen - 1) */ if ((err = pkcs_1_mgf1(hash_idx, seed, hLen, mask, modulus_len - hLen - 1)) != CRYPT_OK) { goto LBL_ERR; } /* xor against DB */ for (y = 0; y < (modulus_len - hLen - 1); y++) { DB[y] ^= mask[y]; } /* compute MGF1 of maskedDB (hLen) */ if ((err = pkcs_1_mgf1(hash_idx, DB, modulus_len - hLen - 1, mask, hLen)) != CRYPT_OK) { goto LBL_ERR; } /* XOR against seed */ for (y = 0; y < hLen; y++) { seed[y] ^= mask[y]; } /* create string of length modulus_len */ if (*outlen < modulus_len) { *outlen = modulus_len; err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* start output which is 0x00 || maskedSeed || maskedDB */ x = 0; out[x++] = 0x00; XMEMCPY(out + x, seed, hLen); x += hLen; XMEMCPY(out + x, DB, modulus_len - hLen - 1); x += modulus_len - hLen - 1; *outlen = x; err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(DB, modulus_len); zeromem(seed, hLen); zeromem(mask, modulus_len); #endif XFREE(seed); XFREE(mask); XFREE(DB); return err; } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_oaep_encode.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_os2ip.c Octet to Integer OS2IP, Tom St Denis */ #ifdef LTC_PKCS_1 /** Read a binary string into an mp_int @param n [out] The mp_int destination @param in The binary string to read @param inlen The length of the binary string @return CRYPT_OK if successful */ int pkcs_1_os2ip(void *n, unsigned char *in, unsigned long inlen) { return mp_read_unsigned_bin(n, in, inlen); } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_os2ip.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_pss_decode.c LTC_PKCS #1 PSS Signature Padding, Tom St Denis */ #ifdef LTC_PKCS_1 /** LTC_PKCS #1 v2.00 PSS decode @param msghash The hash to verify @param msghashlen The length of the hash (octets) @param sig The signature data (encoded data) @param siglen The length of the signature data (octets) @param saltlen The length of the salt used (octets) @param hash_idx The index of the hash desired @param modulus_bitlen The bit length of the RSA modulus @param res [out] The result of the comparison, 1==valid, 0==invalid @return CRYPT_OK if successful (even if the comparison failed) */ int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen, const unsigned char *sig, unsigned long siglen, unsigned long saltlen, int hash_idx, unsigned long modulus_bitlen, int *res) { unsigned char *DB, *mask, *salt, *hash; unsigned long x, y, hLen, modulus_len; int err; hash_state md; LTC_ARGCHK(msghash != NULL); LTC_ARGCHK(res != NULL); /* default to invalid */ *res = 0; /* ensure hash is valid */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } hLen = hash_descriptor[hash_idx].hashsize; modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* check sizes */ if ((saltlen > modulus_len) || (modulus_len < hLen + saltlen + 2) || (siglen != modulus_len)) { return CRYPT_PK_INVALID_SIZE; } /* allocate ram for DB/mask/salt/hash of size modulus_len */ DB = AUTO_CAST(XMALLOC(modulus_len)); mask = AUTO_CAST(XMALLOC(modulus_len)); salt = AUTO_CAST(XMALLOC(modulus_len)); hash = AUTO_CAST(XMALLOC(modulus_len)); if ((DB == NULL) || (mask == NULL) || (salt == NULL) || (hash == NULL)) { if (DB != NULL) { XFREE(DB); } if (mask != NULL) { XFREE(mask); } if (salt != NULL) { XFREE(salt); } if (hash != NULL) { XFREE(hash); } return CRYPT_MEM; } /* ensure the 0xBC byte */ if (sig[siglen - 1] != 0xBC) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } /* copy out the DB */ x = 0; XMEMCPY(DB, sig + x, modulus_len - hLen - 1); x += modulus_len - hLen - 1; /* copy out the hash */ XMEMCPY(hash, sig + x, hLen); x += hLen; /* check the MSB */ if ((sig[0] & ~(0xFF >> ((modulus_len << 3) - (modulus_bitlen - 1)))) != 0) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } /* generate mask of length modulus_len - hLen - 1 from hash */ if ((err = pkcs_1_mgf1(hash_idx, hash, hLen, mask, modulus_len - hLen - 1)) != CRYPT_OK) { goto LBL_ERR; } /* xor against DB */ for (y = 0; y < (modulus_len - hLen - 1); y++) { DB[y] ^= mask[y]; } /* now clear the first byte [make sure smaller than modulus] */ DB[0] &= 0xFF >> ((modulus_len << 3) - (modulus_bitlen - 1)); /* DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */ /* check for zeroes and 0x01 */ for (x = 0; x < modulus_len - saltlen - hLen - 2; x++) { if (DB[x] != 0x00) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } } /* check for the 0x01 */ if (DB[x++] != 0x01) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } /* M = (eight) 0x00 || msghash || salt, mask = H(M) */ if ((err = hash_descriptor[hash_idx].init(&md)) != CRYPT_OK) { goto LBL_ERR; } zeromem(mask, 8); if ((err = hash_descriptor[hash_idx].process(&md, mask, 8)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(&md, DB + x, saltlen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].done(&md, mask)) != CRYPT_OK) { goto LBL_ERR; } /* mask == hash means valid signature */ if (XMEMCMP(mask, hash, hLen) == 0) { *res = 1; } err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(DB, modulus_len); zeromem(mask, modulus_len); zeromem(salt, modulus_len); zeromem(hash, modulus_len); #endif XFREE(hash); XFREE(salt); XFREE(mask); XFREE(DB); return err; } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_pss_decode.c,v $ */ /* $Revision: 1.11 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_pss_encode.c LTC_PKCS #1 PSS Signature Padding, Tom St Denis */ #ifdef LTC_PKCS_1 /** LTC_PKCS #1 v2.00 Signature Encoding @param msghash The hash to encode @param msghashlen The length of the hash (octets) @param saltlen The length of the salt desired (octets) @param prng An active PRNG context @param prng_idx The index of the PRNG desired @param hash_idx The index of the hash desired @param modulus_bitlen The bit length of the RSA modulus @param out [out] The destination of the encoding @param outlen [in/out] The max size and resulting size of the encoded data @return CRYPT_OK if successful */ int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen, unsigned long saltlen, prng_state *prng, int prng_idx, int hash_idx, unsigned long modulus_bitlen, unsigned char *out, unsigned long *outlen) { unsigned char *DB, *mask, *salt, *hash; unsigned long x, y, hLen, modulus_len; int err; hash_state md; LTC_ARGCHK(msghash != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); /* ensure hash and PRNG are valid */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } hLen = hash_descriptor[hash_idx].hashsize; modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* check sizes */ if ((saltlen > modulus_len) || (modulus_len < hLen + saltlen + 2)) { return CRYPT_PK_INVALID_SIZE; } /* allocate ram for DB/mask/salt/hash of size modulus_len */ DB = AUTO_CAST(XMALLOC(modulus_len)); mask = AUTO_CAST(XMALLOC(modulus_len)); salt = AUTO_CAST(XMALLOC(modulus_len)); hash = AUTO_CAST(XMALLOC(modulus_len)); if ((DB == NULL) || (mask == NULL) || (salt == NULL) || (hash == NULL)) { if (DB != NULL) { XFREE(DB); } if (mask != NULL) { XFREE(mask); } if (salt != NULL) { XFREE(salt); } if (hash != NULL) { XFREE(hash); } return CRYPT_MEM; } /* generate random salt */ if (saltlen > 0) { if (prng_descriptor[prng_idx].read(salt, saltlen, prng) != saltlen) { err = CRYPT_ERROR_READPRNG; goto LBL_ERR; } } /* M = (eight) 0x00 || msghash || salt, hash = H(M) */ if ((err = hash_descriptor[hash_idx].init(&md)) != CRYPT_OK) { goto LBL_ERR; } zeromem(DB, 8); if ((err = hash_descriptor[hash_idx].process(&md, DB, 8)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].process(&md, salt, saltlen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash_idx].done(&md, hash)) != CRYPT_OK) { goto LBL_ERR; } /* generate DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */ x = 0; XMEMSET(DB + x, 0, modulus_len - saltlen - hLen - 2); x += modulus_len - saltlen - hLen - 2; DB[x++] = 0x01; XMEMCPY(DB + x, salt, saltlen); x += saltlen; /* generate mask of length modulus_len - hLen - 1 from hash */ if ((err = pkcs_1_mgf1(hash_idx, hash, hLen, mask, modulus_len - hLen - 1)) != CRYPT_OK) { goto LBL_ERR; } /* xor against DB */ for (y = 0; y < (modulus_len - hLen - 1); y++) { DB[y] ^= mask[y]; } /* output is DB || hash || 0xBC */ if (*outlen < modulus_len) { *outlen = modulus_len; err = CRYPT_BUFFER_OVERFLOW; goto LBL_ERR; } /* DB len = modulus_len - hLen - 1 */ y = 0; XMEMCPY(out + y, DB, modulus_len - hLen - 1); y += modulus_len - hLen - 1; /* hash */ XMEMCPY(out + y, hash, hLen); y += hLen; /* 0xBC */ out[y] = 0xBC; /* now clear the 8*modulus_len - modulus_bitlen most significant bits */ out[0] &= 0xFF >> ((modulus_len << 3) - (modulus_bitlen - 1)); /* store output size */ *outlen = modulus_len; err = CRYPT_OK; LBL_ERR: #ifdef LTC_CLEAN_STACK zeromem(DB, modulus_len); zeromem(mask, modulus_len); zeromem(salt, modulus_len); zeromem(hash, modulus_len); #endif XFREE(hash); XFREE(salt); XFREE(mask); XFREE(DB); return err; } #endif /* LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_pss_encode.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file pkcs_1_v1_5_decode.c * * LTC_PKCS #1 v1.5 Padding. (Andreas Lange) */ #ifdef LTC_PKCS_1 /** @brief LTC_PKCS #1 v1.5 decode. * * @param msg The encoded data to decode * @param msglen The length of the encoded data (octets) * @param block_type Block type to use in padding (\sa ltc_pkcs_1_v1_5_blocks) * @param modulus_bitlen The bit length of the RSA modulus * @param out [out] Destination of decoding * @param outlen [in/out] The max size and resulting size of the decoding * @param is_valid [out] Boolean whether the padding was valid * * @return CRYPT_OK if successful (even if invalid) */ int pkcs_1_v1_5_decode(const unsigned char *msg, unsigned long msglen, int block_type, unsigned long modulus_bitlen, unsigned char *out, unsigned long *outlen, int *is_valid) { unsigned long modulus_len, ps_len, i; int result; /* default to invalid packet */ *is_valid = 0; modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* test message size */ if ((msglen > modulus_len) || (modulus_len < 11)) { return CRYPT_PK_INVALID_SIZE; } /* separate encoded message */ if ((msg[0] != 0x00) || (msg[1] != (unsigned char)block_type)) { result = CRYPT_INVALID_PACKET; goto bail; } if (block_type == LTC_LTC_PKCS_1_EME) { for (i = 2; i < modulus_len; i++) { /* separator */ if (msg[i] == 0x00) { break; } } ps_len = i++ - 2; if ((i >= modulus_len) || (ps_len < 8)) { /* There was no octet with hexadecimal value 0x00 to separate ps from m, * or the length of ps is less than 8 octets. */ result = CRYPT_INVALID_PACKET; goto bail; } } else { for (i = 2; i < modulus_len - 1; i++) { if (msg[i] != 0xFF) { break; } } /* separator check */ if (msg[i] != 0) { /* There was no octet with hexadecimal value 0x00 to separate ps from m. */ result = CRYPT_INVALID_PACKET; goto bail; } ps_len = i - 2; } if (*outlen < (msglen - (2 + ps_len + 1))) { *outlen = msglen - (2 + ps_len + 1); result = CRYPT_BUFFER_OVERFLOW; goto bail; } *outlen = (msglen - (2 + ps_len + 1)); XMEMCPY(out, &msg[2 + ps_len + 1], *outlen); /* valid packet */ *is_valid = 1; result = CRYPT_OK; bail: return result; } /* pkcs_1_v1_5_decode */ #endif /* #ifdef LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_v1_5_decode.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /*! \file pkcs_1_v1_5_encode.c * * LTC_PKCS #1 v1.5 Padding (Andreas Lange) */ #ifdef LTC_PKCS_1 /*! \brief LTC_PKCS #1 v1.5 encode. * * \param msg The data to encode * \param msglen The length of the data to encode (octets) * \param block_type Block type to use in padding (\sa ltc_pkcs_1_v1_5_blocks) * \param modulus_bitlen The bit length of the RSA modulus * \param prng An active PRNG state (only for LTC_LTC_PKCS_1_EME) * \param prng_idx The index of the PRNG desired (only for LTC_LTC_PKCS_1_EME) * \param out [out] The destination for the encoded data * \param outlen [in/out] The max size and resulting size of the encoded data * * \return CRYPT_OK if successful */ int pkcs_1_v1_5_encode(const unsigned char *msg, unsigned long msglen, int block_type, unsigned long modulus_bitlen, prng_state *prng, int prng_idx, unsigned char *out, unsigned long *outlen) { unsigned long modulus_len, ps_len, i; unsigned char *ps; int result; /* valid block_type? */ if ((block_type != LTC_LTC_PKCS_1_EMSA) && (block_type != LTC_LTC_PKCS_1_EME)) { return CRYPT_PK_INVALID_PADDING; } if (block_type == LTC_LTC_PKCS_1_EME) { /* encryption padding, we need a valid PRNG */ if ((result = prng_is_valid(prng_idx)) != CRYPT_OK) { return result; } } modulus_len = (modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0); /* test message size */ if ((msglen + 11) > modulus_len) { return CRYPT_PK_INVALID_SIZE; } if (*outlen < modulus_len) { *outlen = modulus_len; result = CRYPT_BUFFER_OVERFLOW; goto bail; } /* generate an octets string PS */ ps = &out[2]; ps_len = modulus_len - msglen - 3; if (block_type == LTC_LTC_PKCS_1_EME) { /* now choose a random ps */ if (prng_descriptor[prng_idx].read(ps, ps_len, prng) != ps_len) { result = CRYPT_ERROR_READPRNG; goto bail; } /* transform zero bytes (if any) to non-zero random bytes */ for (i = 0; i < ps_len; i++) { while (ps[i] == 0) { if (prng_descriptor[prng_idx].read(&ps[i], 1, prng) != 1) { result = CRYPT_ERROR_READPRNG; goto bail; } } } } else { XMEMSET(ps, 0xFF, ps_len); } /* create string of length modulus_len */ out[0] = 0x00; out[1] = (unsigned char)block_type;/* block_type 1 or 2 */ out[2 + ps_len] = 0x00; XMEMCPY(&out[2 + ps_len + 1], msg, msglen); *outlen = modulus_len; result = CRYPT_OK; bail: return result; } /* pkcs_1_v1_5_encode */ #endif /* #ifdef LTC_PKCS_1 */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/pkcs1/pkcs_1_v1_5_encode.c,v $ */ /* $Revision: 1.4 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rand_prime.c Generate a random prime, Tom St Denis */ #define USE_BBS 1 int rand_prime(void *N, long len, prng_state *prng, int wprng) { int err, res, type; unsigned char *buf; LTC_ARGCHK(N != NULL); /* get type */ if (len < 0) { type = USE_BBS; len = -len; } else { type = 0; } /* allow sizes between 2 and 512 bytes for a prime size */ if ((len < 2) || (len > 512)) { return CRYPT_INVALID_PRIME_SIZE; } /* valid PRNG? Better be! */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* allocate buffer to work with */ buf = AUTO_CAST(XCALLOC(1, len)); if (buf == NULL) { return CRYPT_MEM; } do { /* generate value */ if (prng_descriptor[wprng].read(buf, len, prng) != (unsigned long)len) { XFREE(buf); return CRYPT_ERROR_READPRNG; } /* munge bits */ buf[0] |= 0x80 | 0x40; buf[len - 1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00); /* load value */ if ((err = mp_read_unsigned_bin(N, buf, len)) != CRYPT_OK) { XFREE(buf); return err; } /* test */ if ((err = mp_prime_is_prime(N, 8, &res)) != CRYPT_OK) { XFREE(buf); return err; } } while (res == LTC_MP_NO); #ifdef LTC_CLEAN_STACK zeromem(buf, len); #endif XFREE(buf); return CRYPT_OK; } /* $Source: /cvs/libtom/libtomcrypt/src/math/rand_prime.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:23 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rng_get_bytes.c portable way to get secure random bits to feed a PRNG (Tom St Denis) */ #ifdef LTC_DEVRANDOM /* on *NIX read /dev/random */ static unsigned long rng_nix(unsigned char *buf, unsigned long len, void (*callback)(void)) { #ifdef LTC_NO_FILE return 0; #else FILE *f; unsigned long x; #ifdef TRY_URANDOM_FIRST f = fopen("/dev/urandom", "rb"); if (f == NULL) #endif /* TRY_URANDOM_FIRST */ f = fopen("/dev/random", "rb"); if (f == NULL) { return 0; } /* disable buffering */ if (setvbuf(f, NULL, _IONBF, 0) != 0) { fclose(f); return 0; } x = (unsigned long)fread(buf, 1, (size_t)len, f); fclose(f); return x; #endif /* LTC_NO_FILE */ } #endif /* LTC_DEVRANDOM */ /* on ANSI C platforms with 100 < CLOCKS_PER_SEC < 10000 */ #if defined(CLOCKS_PER_SEC) && !defined(WINCE) #define ANSI_RNG static unsigned long rng_ansic(unsigned char *buf, unsigned long len, void (*callback)(void)) { clock_t t1; int l, acc, bits, a, b; if ((XCLOCKS_PER_SEC < 100) || (XCLOCKS_PER_SEC > 10000)) { return 0; } l = len; bits = 8; acc = a = b = 0; while (len--) { if (callback != NULL) callback(); while (bits--) { do { t1 = XCLOCK(); while (t1 == XCLOCK()) a ^= 1; t1 = XCLOCK(); while (t1 == XCLOCK()) b ^= 1; } while (a == b); acc = (acc << 1) | a; } *buf++ = acc; acc = 0; bits = 8; } acc = bits = a = b = 0; return l; } #endif /* Try the Microsoft CSP */ #if defined(WIN32) || defined(WINCE) #if !defined( _WIN32_WINNT ) || _WIN32_WINNT < 0x0501 #undef _WIN32_WINNT #define _WIN32_WINNT 0x0501 // requires Windows XP minimum #endif #ifdef WINCE #define UNDER_CE #define ARM #endif #include #include static unsigned long rng_win32(unsigned char *buf, unsigned long len, void (*callback)(void)) { HCRYPTPROV hProv = 0; if (!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL, (CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) && !CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) return 0; if (CryptGenRandom(hProv, len, buf) == TRUE) { CryptReleaseContext(hProv, 0); return len; } else { CryptReleaseContext(hProv, 0); return 0; } } #endif /* WIN32 */ /** Read the system RNG @param out Destination @param outlen Length desired (octets) @param callback Pointer to void function to act as "callback" when RNG is slow. This can be NULL @return Number of octets read */ unsigned long rng_get_bytes(unsigned char *out, unsigned long outlen, void (*callback)(void)) { unsigned long x; LTC_ARGCHK(out != NULL); #if defined(LTC_DEVRANDOM) x = rng_nix(out, outlen, callback); if (x != 0) { return x; } #endif #ifdef WIN32 x = rng_win32(out, outlen, callback); if (x != 0) { return x; } #endif #ifdef ANSI_RNG x = rng_ansic(out, outlen, callback); if (x != 0) { return x; } #endif return 0; } /* $Source: /cvs/libtom/libtomcrypt/src/prngs/rng_get_bytes.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rng_make_prng.c portable way to get secure random bits to feed a PRNG (Tom St Denis) */ /** Create a PRNG from a RNG @param bits Number of bits of entropy desired (64 ... 1024) @param wprng Index of which PRNG to setup @param prng [out] PRNG state to initialize @param callback A pointer to a void function for when the RNG is slow, this can be NULL @return CRYPT_OK if successful */ int rng_make_prng(int bits, int wprng, prng_state *prng, void (*callback)(void)) { unsigned char buf[256]; int err; LTC_ARGCHK(prng != NULL); /* check parameter */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((bits < 64) || (bits > 1024)) { return CRYPT_INVALID_PRNGSIZE; } if ((err = prng_descriptor[wprng].start(prng)) != CRYPT_OK) { return err; } bits = ((bits / 8) + ((bits & 7) != 0 ? 1 : 0)) * 2; if (rng_get_bytes(buf, (unsigned long)bits, callback) != (unsigned long)bits) { return CRYPT_ERROR_READPRNG; } if ((err = prng_descriptor[wprng].add_entropy(buf, (unsigned long)bits, prng)) != CRYPT_OK) { return err; } if ((err = prng_descriptor[wprng].ready(prng)) != CRYPT_OK) { return err; } #ifdef LTC_CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_OK; } /* $Source: /cvs/libtom/libtomcrypt/src/prngs/rng_make_prng.c,v $ */ /* $Revision: 1.5 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_decrypt_key.c RSA LTC_PKCS #1 Decryption, Tom St Denis and Andreas Lange */ #ifdef LTC_MRSA /** LTC_PKCS #1 decrypt then v1.5 or OAEP depad @param in The ciphertext @param inlen The length of the ciphertext (octets) @param out [out] The plaintext @param outlen [in/out] The max size and resulting size of the plaintext (octets) @param lparam The system "lparam" value @param lparamlen The length of the lparam value (octets) @param hash_idx The index of the hash desired @param padding Type of padding (LTC_LTC_PKCS_1_OAEP or LTC_LTC_PKCS_1_V1_5) @param stat [out] Result of the decryption, 1==valid, 0==invalid @param key The corresponding private RSA key @return CRYPT_OK if succcessul (even if invalid) */ int rsa_decrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, int hash_idx, int padding, int *stat, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; unsigned char *tmp; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* default to invalid */ *stat = 0; /* valid padding? */ if ((padding != LTC_LTC_PKCS_1_V1_5) && (padding != LTC_LTC_PKCS_1_OAEP)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_LTC_PKCS_1_OAEP) { /* valid hash ? */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits((key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen != inlen) { return CRYPT_INVALID_PACKET; } /* allocate ram */ tmp = AUTO_CAST(XMALLOC(inlen)); if (tmp == NULL) { return CRYPT_MEM; } /* rsa decode the packet */ x = inlen; if ((err = ltc_mp.rsa_me(in, inlen, tmp, &x, PK_PRIVATE, key)) != CRYPT_OK) { XFREE(tmp); return err; } if (padding == LTC_LTC_PKCS_1_OAEP) { /* now OAEP decode the packet */ err = pkcs_1_oaep_decode(tmp, x, lparam, lparamlen, modulus_bitlen, hash_idx, out, outlen, stat); } else { /* now LTC_PKCS #1 v1.5 depad the packet */ err = pkcs_1_v1_5_decode(tmp, x, LTC_LTC_PKCS_1_EME, modulus_bitlen, out, outlen, stat); } XFREE(tmp); return err; } #endif /* LTC_MRSA */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_decrypt_key.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_encrypt_key.c RSA LTC_PKCS #1 encryption, Tom St Denis and Andreas Lange */ #ifdef LTC_MRSA /** (LTC_PKCS #1 v2.0) OAEP pad then encrypt @param in The plaintext @param inlen The length of the plaintext (octets) @param out [out] The ciphertext @param outlen [in/out] The max size and resulting size of the ciphertext @param lparam The system "lparam" for the encryption @param lparamlen The length of lparam (octets) @param prng An active PRNG @param prng_idx The index of the desired prng @param hash_idx The index of the desired hash @param padding Type of padding (LTC_LTC_PKCS_1_OAEP or LTC_LTC_PKCS_1_V1_5) @param key The RSA key to encrypt to @return CRYPT_OK if successful */ int rsa_encrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, prng_state *prng, int prng_idx, int hash_idx, int padding, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* valid padding? */ if ((padding != LTC_LTC_PKCS_1_V1_5) && (padding != LTC_LTC_PKCS_1_OAEP)) { return CRYPT_PK_INVALID_PADDING; } /* valid prng? */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } if (padding == LTC_LTC_PKCS_1_OAEP) { /* valid hash? */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits((key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen > *outlen) { *outlen = modulus_bytelen; return CRYPT_BUFFER_OVERFLOW; } if (padding == LTC_LTC_PKCS_1_OAEP) { /* OAEP pad the key */ x = *outlen; if ((err = pkcs_1_oaep_encode(in, inlen, lparam, lparamlen, modulus_bitlen, prng, prng_idx, hash_idx, out, &x)) != CRYPT_OK) { return err; } } else { /* LTC_PKCS #1 v1.5 pad the key */ x = *outlen; if ((err = pkcs_1_v1_5_encode(in, inlen, LTC_LTC_PKCS_1_EME, modulus_bitlen, prng, prng_idx, out, &x)) != CRYPT_OK) { return err; } } /* rsa exptmod the OAEP or LTC_PKCS #1 v1.5 pad */ return ltc_mp.rsa_me(out, x, out, outlen, PK_PUBLIC, key); } #endif /* LTC_MRSA */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_encrypt_key.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_exptmod.c RSA LTC_PKCS exptmod, Tom St Denis */ #ifdef LTC_MRSA /** Compute an RSA modular exponentiation @param in The input data to send into RSA @param inlen The length of the input (octets) @param out [out] The destination @param outlen [in/out] The max size and resulting size of the output @param which Which exponent to use, e.g. PK_PRIVATE or PK_PUBLIC @param key The RSA key to use @return CRYPT_OK if successful */ int rsa_exptmod(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key) { void *tmp, *tmpa, *tmpb; unsigned long x; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* is the key of the right type for the operation? */ if ((which == PK_PRIVATE) && (key->type != PK_PRIVATE)) { return CRYPT_PK_NOT_PRIVATE; } /* must be a private or public operation */ if ((which != PK_PRIVATE) && (which != PK_PUBLIC)) { return CRYPT_PK_INVALID_TYPE; } /* init and copy into tmp */ if ((err = mp_init_multi(&tmp, &tmpa, &tmpb, NULL)) != CRYPT_OK) { return err; } if ((err = mp_read_unsigned_bin(tmp, (unsigned char *)in, (int)inlen)) != CRYPT_OK) { goto error; } /* sanity check on the input */ if (mp_cmp(key->N, tmp) == LTC_MP_LT) { err = CRYPT_PK_INVALID_SIZE; goto error; } /* are we using the private exponent and is the key optimized? */ if (which == PK_PRIVATE) { /* tmpa = tmp^dP mod p */ if ((err = mp_exptmod(tmp, key->dP, key->p, tmpa)) != CRYPT_OK) { goto error; } /* tmpb = tmp^dQ mod q */ if ((err = mp_exptmod(tmp, key->dQ, key->q, tmpb)) != CRYPT_OK) { goto error; } /* tmp = (tmpa - tmpb) * qInv (mod p) */ if ((err = mp_sub(tmpa, tmpb, tmp)) != CRYPT_OK) { goto error; } if ((err = mp_mulmod(tmp, key->qP, key->p, tmp)) != CRYPT_OK) { goto error; } /* tmp = tmpb + q * tmp */ if ((err = mp_mul(tmp, key->q, tmp)) != CRYPT_OK) { goto error; } if ((err = mp_add(tmp, tmpb, tmp)) != CRYPT_OK) { goto error; } } else { /* exptmod it */ if ((err = mp_exptmod(tmp, key->e, key->N, tmp)) != CRYPT_OK) { goto error; } } /* read it back */ x = (unsigned long)mp_unsigned_bin_size(key->N); if (x > *outlen) { *outlen = x; err = CRYPT_BUFFER_OVERFLOW; goto error; } /* this should never happen ... */ if (mp_unsigned_bin_size(tmp) > mp_unsigned_bin_size(key->N)) { err = CRYPT_ERROR; goto error; } *outlen = x; /* convert it */ zeromem(out, x); if ((err = mp_to_unsigned_bin(tmp, out + (x - mp_unsigned_bin_size(tmp)))) != CRYPT_OK) { goto error; } /* clean up and return */ err = CRYPT_OK; error: mp_clear_multi(tmp, tmpa, tmpb, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_exptmod.c,v $ */ /* $Revision: 1.18 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_free.c Free an RSA key, Tom St Denis */ #ifdef LTC_MRSA /** Free an RSA key from memory @param key The RSA key to free */ void rsa_free(rsa_key *key) { LTC_ARGCHKVD(key != NULL); mp_clear_multi(key->e, key->d, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL); } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_free.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_import.c Import a LTC_PKCS RSA key, Tom St Denis */ #ifdef LTC_MRSA /** Import an RSAPublicKey or RSAPrivateKey [two-prime only, only support >= 1024-bit keys, defined in LTC_PKCS #1 v2.1] @param in The packet to import from @param inlen It's length (octets) @param key [out] Destination for newly imported key @return CRYPT_OK if successful, upon error allocated memory is freed */ int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key) { int err; void *zero; unsigned char *tmpbuf; unsigned long t, x, y, z, tmpoid[16]; ltc_asn1_list ssl_pubkey_hashoid[2]; ltc_asn1_list ssl_pubkey[2]; LTC_ARGCHK(in != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* init key */ if ((err = mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, NULL)) != CRYPT_OK) { return err; } /* see if the OpenSSL DER format RSA public key will work */ tmpbuf = AUTO_CAST(XCALLOC(1, MAX_RSA_SIZE * 8)); if (tmpbuf == NULL) { err = CRYPT_MEM; goto LBL_ERR; } /* this includes the internal hash ID and optional params (NULL in this case) */ LTC_SET_ASN1(ssl_pubkey_hashoid, 0, LTC_ASN1_OBJECT_IDENTIFIER, tmpoid, sizeof(tmpoid) / sizeof(tmpoid[0])); LTC_SET_ASN1(ssl_pubkey_hashoid, 1, LTC_ASN1_NULL, NULL, 0); /* the actual format of the SSL DER key is odd, it stores a RSAPublicKey in a **BIT** string ... so we have to extract it then proceed to convert bit to octet */ LTC_SET_ASN1(ssl_pubkey, 0, LTC_ASN1_SEQUENCE, &ssl_pubkey_hashoid, 2); LTC_SET_ASN1(ssl_pubkey, 1, LTC_ASN1_BIT_STRING, tmpbuf, MAX_RSA_SIZE * 8); if (der_decode_sequence(in, inlen, ssl_pubkey, 2UL) == CRYPT_OK) { /* ok now we have to reassemble the BIT STRING to an OCTET STRING. Thanks OpenSSL... */ for (t = y = z = x = 0; x < ssl_pubkey[1].size; x++) { y = (y << 1) | tmpbuf[x]; if (++z == 8) { tmpbuf[t++] = (unsigned char)y; y = 0; z = 0; } } /* now it should be SEQUENCE { INTEGER, INTEGER } */ if ((err = der_decode_sequence_multi(tmpbuf, t, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_INTEGER, 1UL, key->e, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { XFREE(tmpbuf); goto LBL_ERR; } XFREE(tmpbuf); key->type = PK_PUBLIC; return CRYPT_OK; } XFREE(tmpbuf); /* not SSL public key, try to match against LTC_PKCS #1 standards */ if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto LBL_ERR; } if (mp_cmp_d(key->N, 0) == LTC_MP_EQ) { if ((err = mp_init(&zero)) != CRYPT_OK) { goto LBL_ERR; } /* it's a private key */ if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_INTEGER, 1UL, zero, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_INTEGER, 1UL, key->e, LTC_ASN1_INTEGER, 1UL, key->d, LTC_ASN1_INTEGER, 1UL, key->p, LTC_ASN1_INTEGER, 1UL, key->q, LTC_ASN1_INTEGER, 1UL, key->dP, LTC_ASN1_INTEGER, 1UL, key->dQ, LTC_ASN1_INTEGER, 1UL, key->qP, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { mp_clear(zero); goto LBL_ERR; } mp_clear(zero); key->type = PK_PRIVATE; } else if (mp_cmp_d(key->N, 1) == LTC_MP_EQ) { /* we don't support multi-prime RSA */ err = CRYPT_PK_INVALID_TYPE; goto LBL_ERR; } else { /* it's a public key and we lack e */ if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_INTEGER, 1UL, key->e, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto LBL_ERR; } key->type = PK_PUBLIC; } return CRYPT_OK; LBL_ERR: mp_clear_multi(key->d, key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL); return err; } #endif /* LTC_MRSA */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_import.c,v $ */ /* $Revision: 1.23 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_make_key.c RSA key generation, Tom St Denis */ #ifdef LTC_MRSA /** Create an RSA key @param prng An active PRNG state @param wprng The index of the PRNG desired @param size The size of the modulus (key size) desired (octets) @param e The "e" value (public key). e==65537 is a good choice @param key [out] Destination of a newly created private key pair @return CRYPT_OK if successful, upon error all allocated ram is freed */ int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key) { void *p, *q, *tmp1, *tmp2, *tmp3; int err; LTC_ARGCHK(ltc_mp.name != NULL); LTC_ARGCHK(key != NULL); if ((size < (MIN_RSA_SIZE / 8)) || (size > (MAX_RSA_SIZE / 8))) { return CRYPT_INVALID_KEYSIZE; } if ((e < 3) || ((e & 1) == 0)) { return CRYPT_INVALID_ARG; } if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != CRYPT_OK) { return err; } /* make primes p and q (optimization provided by Wayne Scott) */ if ((err = mp_set_int(tmp3, e)) != CRYPT_OK) { goto errkey; } /* tmp3 = e */ /* make prime "p" */ do { if ((err = rand_prime(p, size / 2, prng, wprng)) != CRYPT_OK) { goto errkey; } if ((err = mp_sub_d(p, 1, tmp1)) != CRYPT_OK) { goto errkey; } /* tmp1 = p-1 */ if ((err = mp_gcd(tmp1, tmp3, tmp2)) != CRYPT_OK) { goto errkey; } /* tmp2 = gcd(p-1, e) */ } while (mp_cmp_d(tmp2, 1) != 0); /* while e divides p-1 */ /* make prime "q" */ do { if ((err = rand_prime(q, size / 2, prng, wprng)) != CRYPT_OK) { goto errkey; } if ((err = mp_sub_d(q, 1, tmp1)) != CRYPT_OK) { goto errkey; } /* tmp1 = q-1 */ if ((err = mp_gcd(tmp1, tmp3, tmp2)) != CRYPT_OK) { goto errkey; } /* tmp2 = gcd(q-1, e) */ } while (mp_cmp_d(tmp2, 1) != 0); /* while e divides q-1 */ /* tmp1 = lcm(p-1, q-1) */ if ((err = mp_sub_d(p, 1, tmp2)) != CRYPT_OK) { goto errkey; } /* tmp2 = p-1 */ /* tmp1 = q-1 (previous do/while loop) */ if ((err = mp_lcm(tmp1, tmp2, tmp1)) != CRYPT_OK) { goto errkey; } /* tmp1 = lcm(p-1, q-1) */ /* make key */ if ((err = mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, NULL)) != CRYPT_OK) { goto errkey; } if ((err = mp_set_int(key->e, e)) != CRYPT_OK) { goto errkey; } /* key->e = e */ if ((err = mp_invmod(key->e, tmp1, key->d)) != CRYPT_OK) { goto errkey; } /* key->d = 1/e mod lcm(p-1,q-1) */ if ((err = mp_mul(p, q, key->N)) != CRYPT_OK) { goto errkey; } /* key->N = pq */ /* optimize for CRT now */ /* find d mod q-1 and d mod p-1 */ if ((err = mp_sub_d(p, 1, tmp1)) != CRYPT_OK) { goto errkey; } /* tmp1 = q-1 */ if ((err = mp_sub_d(q, 1, tmp2)) != CRYPT_OK) { goto errkey; } /* tmp2 = p-1 */ if ((err = mp_mod(key->d, tmp1, key->dP)) != CRYPT_OK) { goto errkey; } /* dP = d mod p-1 */ if ((err = mp_mod(key->d, tmp2, key->dQ)) != CRYPT_OK) { goto errkey; } /* dQ = d mod q-1 */ if ((err = mp_invmod(q, p, key->qP)) != CRYPT_OK) { goto errkey; } /* qP = 1/q mod p */ if ((err = mp_copy(p, key->p)) != CRYPT_OK) { goto errkey; } if ((err = mp_copy(q, key->q)) != CRYPT_OK) { goto errkey; } /* set key type (in this case it's CRT optimized) */ key->type = PK_PRIVATE; /* return ok and free temps */ err = CRYPT_OK; goto cleanup; errkey: mp_clear_multi(key->d, key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL); cleanup: mp_clear_multi(tmp3, tmp2, tmp1, p, q, NULL); return err; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_make_key.c,v $ */ /* $Revision: 1.16 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_sign_hash.c RSA LTC_PKCS #1 v1.5 and v2 PSS sign hash, Tom St Denis and Andreas Lange */ #ifdef LTC_MRSA /** LTC_PKCS #1 pad then sign @param in The hash to sign @param inlen The length of the hash to sign (octets) @param out [out] The signature @param outlen [in/out] The max size and resulting size of the signature @param padding Type of padding (LTC_LTC_PKCS_1_PSS or LTC_LTC_PKCS_1_V1_5) @param prng An active PRNG state @param prng_idx The index of the PRNG desired @param hash_idx The index of the hash desired @param saltlen The length of the salt desired (octets) @param key The private RSA key to use @return CRYPT_OK if successful */ int rsa_sign_hash_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int padding, prng_state *prng, int prng_idx, int hash_idx, unsigned long saltlen, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x, y; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* valid padding? */ if ((padding != LTC_LTC_PKCS_1_V1_5) && (padding != LTC_LTC_PKCS_1_PSS)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_LTC_PKCS_1_PSS) { /* valid prng and hash ? */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits((key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen > *outlen) { *outlen = modulus_bytelen; return CRYPT_BUFFER_OVERFLOW; } if (padding == LTC_LTC_PKCS_1_PSS) { /* PSS pad the key */ x = *outlen; if ((err = pkcs_1_pss_encode(in, inlen, saltlen, prng, prng_idx, hash_idx, modulus_bitlen, out, &x)) != CRYPT_OK) { return err; } } else { /* LTC_PKCS #1 v1.5 pad the hash */ unsigned char *tmpin; ltc_asn1_list digestinfo[2], siginfo[2]; /* not all hashes have OIDs... so sad */ if (hash_descriptor[hash_idx].OIDlen == 0) { return CRYPT_INVALID_ARG; } /* construct the SEQUENCE SEQUENCE { SEQUENCE {hashoid OID blah NULL } hash OCTET STRING } */ LTC_SET_ASN1(digestinfo, 0, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash_idx].OID, hash_descriptor[hash_idx].OIDlen); LTC_SET_ASN1(digestinfo, 1, LTC_ASN1_NULL, NULL, 0); LTC_SET_ASN1(siginfo, 0, LTC_ASN1_SEQUENCE, digestinfo, 2); LTC_SET_ASN1(siginfo, 1, LTC_ASN1_OCTET_STRING, in, inlen); /* allocate memory for the encoding */ y = mp_unsigned_bin_size(key->N); tmpin = AUTO_CAST(XMALLOC(y)); if (tmpin == NULL) { return CRYPT_MEM; } if ((err = der_encode_sequence(siginfo, 2, tmpin, &y)) != CRYPT_OK) { XFREE(tmpin); return err; } x = *outlen; if ((err = pkcs_1_v1_5_encode(tmpin, y, LTC_LTC_PKCS_1_EMSA, modulus_bitlen, NULL, 0, out, &x)) != CRYPT_OK) { XFREE(tmpin); return err; } XFREE(tmpin); } /* RSA encode it */ return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key); } #endif /* LTC_MRSA */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_sign_hash.c,v $ */ /* $Revision: 1.11 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file rsa_verify_hash.c RSA LTC_PKCS #1 v1.5 or v2 PSS signature verification, Tom St Denis and Andreas Lange */ #ifdef LTC_MRSA /** LTC_PKCS #1 de-sign then v1.5 or PSS depad @param sig The signature data @param siglen The length of the signature data (octets) @param hash The hash of the message that was signed @param hashlen The length of the hash of the message that was signed (octets) @param padding Type of padding (LTC_LTC_PKCS_1_PSS or LTC_LTC_PKCS_1_V1_5) @param hash_idx The index of the desired hash @param saltlen The length of the salt used during signature @param stat [out] The result of the signature comparison, 1==valid, 0==invalid @param key The public RSA key corresponding to the key that performed the signature @return CRYPT_OK on success (even if the signature is invalid) */ int rsa_verify_hash_ex(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long hashlen, int padding, int hash_idx, unsigned long saltlen, int *stat, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; unsigned char *tmpbuf; LTC_ARGCHK(hash != NULL); LTC_ARGCHK(sig != NULL); LTC_ARGCHK(stat != NULL); LTC_ARGCHK(key != NULL); /* default to invalid */ *stat = 0; /* valid padding? */ if ((padding != LTC_LTC_PKCS_1_V1_5) && (padding != LTC_LTC_PKCS_1_PSS)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_LTC_PKCS_1_PSS) { /* valid hash ? */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits((key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen != siglen) { return CRYPT_INVALID_PACKET; } /* allocate temp buffer for decoded sig */ tmpbuf = AUTO_CAST(XMALLOC(siglen)); if (tmpbuf == NULL) { return CRYPT_MEM; } /* RSA decode it */ x = siglen; if ((err = ltc_mp.rsa_me(sig, siglen, tmpbuf, &x, PK_PUBLIC, key)) != CRYPT_OK) { XFREE(tmpbuf); return err; } /* make sure the output is the right size */ if (x != siglen) { XFREE(tmpbuf); return CRYPT_INVALID_PACKET; } if (padding == LTC_LTC_PKCS_1_PSS) { /* PSS decode and verify it */ err = pkcs_1_pss_decode(hash, hashlen, tmpbuf, x, saltlen, hash_idx, modulus_bitlen, stat); } else { /* LTC_PKCS #1 v1.5 decode it */ unsigned char *out; unsigned long outlen, loid[16]; int decoded; ltc_asn1_list digestinfo[2], siginfo[2]; /* not all hashes have OIDs... so sad */ if (hash_descriptor[hash_idx].OIDlen == 0) { err = CRYPT_INVALID_ARG; goto bail_2; } /* allocate temp buffer for decoded hash */ outlen = ((modulus_bitlen >> 3) + (modulus_bitlen & 7 ? 1 : 0)) - 3; out = AUTO_CAST(XMALLOC(outlen)); if (out == NULL) { err = CRYPT_MEM; goto bail_2; } if ((err = pkcs_1_v1_5_decode(tmpbuf, x, LTC_LTC_PKCS_1_EMSA, modulus_bitlen, out, &outlen, &decoded)) != CRYPT_OK) { XFREE(out); goto bail_2; } /* now we must decode out[0...outlen-1] using ASN.1, test the OID and then test the hash */ /* construct the SEQUENCE SEQUENCE { SEQUENCE {hashoid OID blah NULL } hash OCTET STRING } */ LTC_SET_ASN1(digestinfo, 0, LTC_ASN1_OBJECT_IDENTIFIER, loid, sizeof(loid) / sizeof(loid[0])); LTC_SET_ASN1(digestinfo, 1, LTC_ASN1_NULL, NULL, 0); LTC_SET_ASN1(siginfo, 0, LTC_ASN1_SEQUENCE, digestinfo, 2); LTC_SET_ASN1(siginfo, 1, LTC_ASN1_OCTET_STRING, tmpbuf, siglen); if ((err = der_decode_sequence(out, outlen, siginfo, 2)) != CRYPT_OK) { XFREE(out); goto bail_2; } /* test OID */ if ((digestinfo[0].size == hash_descriptor[hash_idx].OIDlen) && (XMEMCMP(digestinfo[0].data, hash_descriptor[hash_idx].OID, sizeof(unsigned long) * hash_descriptor[hash_idx].OIDlen) == 0) && (siginfo[1].size == hashlen) && (XMEMCMP(siginfo[1].data, hash, hashlen) == 0)) { *stat = 1; } #ifdef LTC_CLEAN_STACK zeromem(out, outlen); #endif XFREE(out); } bail_2: #ifdef LTC_CLEAN_STACK zeromem(tmpbuf, siglen); #endif XFREE(tmpbuf); return err; } #endif /* LTC_MRSA */ /* $Source: /cvs/libtom/libtomcrypt/src/pk/rsa/rsa_verify_hash.c,v $ */ /* $Revision: 1.13 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file sprng.c Secure PRNG, Tom St Denis */ /* A secure PRNG using the RNG functions. Basically this is a * wrapper that allows you to use a secure RNG as a PRNG * in the various other functions. */ #ifdef LTC_SPRNG const struct ltc_prng_descriptor sprng_desc = { "sprng", 0, &sprng_start, &sprng_add_entropy, &sprng_ready, &sprng_read, &sprng_done, &sprng_export, &sprng_import, &sprng_test }; /** Start the PRNG @param prng [out] The PRNG state to initialize @return CRYPT_OK if successful */ int sprng_start(prng_state *prng) { return CRYPT_OK; } /** Add entropy to the PRNG state @param in The data to add @param inlen Length of the data to add @param prng PRNG state to update @return CRYPT_OK if successful */ int sprng_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng) { return CRYPT_OK; } /** Make the PRNG ready to read from @param prng The PRNG to make active @return CRYPT_OK if successful */ int sprng_ready(prng_state *prng) { return CRYPT_OK; } /** Read from the PRNG @param out Destination @param outlen Length of output @param prng The active PRNG to read from @return Number of octets read */ unsigned long sprng_read(unsigned char *out, unsigned long outlen, prng_state *prng) { LTC_ARGCHK(out != NULL); return rng_get_bytes(out, outlen, NULL); } /** Terminate the PRNG @param prng The PRNG to terminate @return CRYPT_OK if successful */ int sprng_done(prng_state *prng) { return CRYPT_OK; } /** Export the PRNG state @param out [out] Destination @param outlen [in/out] Max size and resulting size of the state @param prng The PRNG to export @return CRYPT_OK if successful */ int sprng_export(unsigned char *out, unsigned long *outlen, prng_state *prng) { LTC_ARGCHK(outlen != NULL); *outlen = 0; return CRYPT_OK; } /** Import a PRNG state @param in The PRNG state @param inlen Size of the state @param prng The PRNG to import @return CRYPT_OK if successful */ int sprng_import(const unsigned char *in, unsigned long inlen, prng_state *prng) { return CRYPT_OK; } /** PRNG self-test @return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled */ int sprng_test(void) { return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/prngs/sprng.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file base64_decode.c Compliant base64 code donated by Wayne Scott (wscott@bitmover.com) base64 URL Safe variant (RFC 4648 section 5) by Karel Miko */ #if defined(LTC_BASE64) || defined (LTC_BASE64_URL) #if defined(LTC_BASE64) static const unsigned char map_base64[256] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255, 255, 255, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 254, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255, 255, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }; #endif /* LTC_BASE64 */ #if defined(LTC_BASE64_URL) static const unsigned char map_base64url[] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255, 255, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 254, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255, 63, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }; #endif /* LTC_BASE64_URL */ enum { relaxed = 0, strict = 1 }; static int _base64_decode_internal(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *map, int is_strict) { unsigned long t, x, y, z; unsigned char c; int g; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); g = 0; /* '=' counter */ for (x = y = z = t = 0; x < inlen; x++) { c = map[in[x]&0xFF]; if (c == 254) { g++; continue; } else if (is_strict && g > 0) { /* we only allow '=' to be at the end */ return CRYPT_INVALID_PACKET; } if (c == 255) { if (is_strict) return CRYPT_INVALID_PACKET; else continue; } t = (t<<6)|c; if (++y == 4) { if (z + 3 > *outlen) return CRYPT_BUFFER_OVERFLOW; out[z++] = (unsigned char)((t>>16)&255); out[z++] = (unsigned char)((t>>8)&255); out[z++] = (unsigned char)(t&255); y = t = 0; } } if (y != 0) { int allow_b64url = 0; #ifdef LTC_BASE64_URL if (map == map_base64url) { allow_b64url = 1; } #endif if (y == 1) return CRYPT_INVALID_PACKET; if ((y + g) != 4 && is_strict && !allow_b64url) return CRYPT_INVALID_PACKET; t = t << (6 * (4 - y)); if (z + y - 1 > *outlen) return CRYPT_BUFFER_OVERFLOW; if (y >= 2) out[z++] = (unsigned char) ((t >> 16) & 255); if (y == 3) out[z++] = (unsigned char) ((t >> 8) & 255); } *outlen = z; return CRYPT_OK; } #if defined(LTC_BASE64) /** Relaxed base64 decode a block of memory @param in The base64 data to decode @param inlen The length of the base64 data @param out [out] The destination of the binary decoded data @param outlen [in/out] The max size and resulting size of the decoded data @return CRYPT_OK if successful */ int base64_decode(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { return _base64_decode_internal(in, inlen, out, outlen, map_base64, relaxed); } /** Strict base64 decode a block of memory @param in The base64 data to decode @param inlen The length of the base64 data @param out [out] The destination of the binary decoded data @param outlen [in/out] The max size and resulting size of the decoded data @return CRYPT_OK if successful */ int base64_strict_decode(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { return _base64_decode_internal(in, inlen, out, outlen, map_base64, strict); } #endif /* LTC_BASE64 */ #if defined(LTC_BASE64_URL) /** Relaxed base64 (URL Safe, RFC 4648 section 5) decode a block of memory @param in The base64 data to decode @param inlen The length of the base64 data @param out [out] The destination of the binary decoded data @param outlen [in/out] The max size and resulting size of the decoded data @return CRYPT_OK if successful */ int base64url_decode(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { return _base64_decode_internal(in, inlen, out, outlen, map_base64url, relaxed); } /** Strict base64 (URL Safe, RFC 4648 section 5) decode a block of memory @param in The base64 data to decode @param inlen The length of the base64 data @param out [out] The destination of the binary decoded data @param outlen [in/out] The max size and resulting size of the decoded data @return CRYPT_OK if successful */ int base64url_strict_decode(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen) { return _base64_decode_internal(in, inlen, out, outlen, map_base64url, strict); } #endif /* LTC_BASE64_URL */ #endif /** @file zeromem.c Zero a block of memory, Tom St Denis */ /** Zero a block of memory @param out The destination of the area to zero @param outlen The length of the area to zero (octets) */ void zeromem(void *out, size_t outlen) { unsigned char *mem = AUTO_CAST(out); LTC_ARGCHKVD(out != NULL); while (outlen-- > 0) { *mem++ = 0; } } /* $Source: /cvs/libtom/libtomcrypt/src/misc/zeromem.c,v $ */ /* $Revision: 1.7 $ */ /* $Date: 2006/12/28 01:27:24 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file sha1.c LTC_SHA1 code by Tom St Denis */ #ifdef LTC_SHA1 const struct ltc_hash_descriptor sha1_desc = { "sha1", 2, 20, 64, /* OID */ { 1, 3, 14, 3, 2, 26, }, 6, &sha1_init, &sha1_process, &sha1_done, &sha1_test, NULL }; #define F0(x, y, z) (z ^ (x & (y ^ z))) #define F1(x, y, z) (x ^ y ^ z) #define F2(x, y, z) ((x & y) | (z & (x | y))) #define F3(x, y, z) (x ^ y ^ z) #ifdef LTC_CLEAN_STACK static int _sha1_compress(hash_state *md, unsigned char *buf) #else static int sha1_compress(hash_state *md, unsigned char *buf) #endif { ulong32 a, b, c, d, e, W[80], i; #ifdef LTC_SMALL_CODE ulong32 t; #endif /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32H(W[i], buf + (4 * i)); } /* copy state */ a = md->sha1.state[0]; b = md->sha1.state[1]; c = md->sha1.state[2]; d = md->sha1.state[3]; e = md->sha1.state[4]; /* expand it */ for (i = 16; i < 80; i++) { W[i] = ROL(W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16], 1); } /* compress */ /* round one */ #define FF0(a, b, c, d, e, i) e = (ROLc(a, 5) + F0(b, c, d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30); #define FF1(a, b, c, d, e, i) e = (ROLc(a, 5) + F1(b, c, d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30); #define FF2(a, b, c, d, e, i) e = (ROLc(a, 5) + F2(b, c, d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30); #define FF3(a, b, c, d, e, i) e = (ROLc(a, 5) + F3(b, c, d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30); #ifdef LTC_SMALL_CODE for (i = 0; i < 20; ) { FF0(a, b, c, d, e, i++); t = e; e = d; d = c; c = b; b = a; a = t; } for ( ; i < 40; ) { FF1(a, b, c, d, e, i++); t = e; e = d; d = c; c = b; b = a; a = t; } for ( ; i < 60; ) { FF2(a, b, c, d, e, i++); t = e; e = d; d = c; c = b; b = a; a = t; } for ( ; i < 80; ) { FF3(a, b, c, d, e, i++); t = e; e = d; d = c; c = b; b = a; a = t; } #else for (i = 0; i < 20; ) { FF0(a, b, c, d, e, i++); FF0(e, a, b, c, d, i++); FF0(d, e, a, b, c, i++); FF0(c, d, e, a, b, i++); FF0(b, c, d, e, a, i++); } /* round two */ for ( ; i < 40; ) { FF1(a, b, c, d, e, i++); FF1(e, a, b, c, d, i++); FF1(d, e, a, b, c, i++); FF1(c, d, e, a, b, i++); FF1(b, c, d, e, a, i++); } /* round three */ for ( ; i < 60; ) { FF2(a, b, c, d, e, i++); FF2(e, a, b, c, d, i++); FF2(d, e, a, b, c, i++); FF2(c, d, e, a, b, i++); FF2(b, c, d, e, a, i++); } /* round four */ for ( ; i < 80; ) { FF3(a, b, c, d, e, i++); FF3(e, a, b, c, d, i++); FF3(d, e, a, b, c, i++); FF3(c, d, e, a, b, i++); FF3(b, c, d, e, a, i++); } #endif #undef FF0 #undef FF1 #undef FF2 #undef FF3 /* store */ md->sha1.state[0] = md->sha1.state[0] + a; md->sha1.state[1] = md->sha1.state[1] + b; md->sha1.state[2] = md->sha1.state[2] + c; md->sha1.state[3] = md->sha1.state[3] + d; md->sha1.state[4] = md->sha1.state[4] + e; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int sha1_compress(hash_state *md, unsigned char *buf) { int err; err = _sha1_compress(md, buf); burn_stack(sizeof(ulong32) * 87); return err; } #endif /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int sha1_init(hash_state *md) { LTC_ARGCHK(md != NULL); md->sha1.state[0] = 0x67452301UL; md->sha1.state[1] = 0xefcdab89UL; md->sha1.state[2] = 0x98badcfeUL; md->sha1.state[3] = 0x10325476UL; md->sha1.state[4] = 0xc3d2e1f0UL; md->sha1.curlen = 0; md->sha1.length = 0; return CRYPT_OK; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ HASH_PROCESS(sha1_process, sha1_compress, sha1, 64) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (20 bytes) @return CRYPT_OK if successful */ int sha1_done(hash_state *md, unsigned char *out) { int i; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->sha1.curlen >= sizeof(md->sha1.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->sha1.length += md->sha1.curlen * 8; /* append the '1' bit */ md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->sha1.curlen > 56) { while (md->sha1.curlen < 64) { md->sha1.buf[md->sha1.curlen++] = (unsigned char)0; } sha1_compress(md, md->sha1.buf); md->sha1.curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->sha1.curlen < 56) { md->sha1.buf[md->sha1.curlen++] = (unsigned char)0; } /* store length */ STORE64H(md->sha1.length, md->sha1.buf + 56); sha1_compress(md, md->sha1.buf); /* copy output */ for (i = 0; i < 5; i++) { STORE32H(md->sha1.state[i], out + (4 * i)); } #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int sha1_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { char *msg; unsigned char hash[20]; } tests[] = { { "abc", { 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d } }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 } } }; int i; unsigned char tmp[20]; hash_state md; for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { sha1_init(&md); sha1_process(&md, (unsigned char *)tests[i].msg, (unsigned long)strlen(tests[i].msg)); sha1_done(&md, tmp); if (XMEMCMP(tmp, tests[i].hash, 20) != 0) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* $Source: /cvs/libtom/libtomcrypt/src/hashes/sha1.c,v $ */ /* $Revision: 1.10 $ */ /* $Date: 2007/05/12 14:25:28 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file sha256.c LTC_SHA256 by Tom St Denis */ #ifdef LTC_SHA256 const struct ltc_hash_descriptor sha256_desc = { "sha256", 0, 32, 64, /* OID */ { 2, 16, 840, 1, 101, 3, 4, 2, 1, }, 9, &sha256_init, &sha256_process, &sha256_done, &sha256_test, NULL }; #ifdef LTC_SMALL_CODE /* the K array */ static const ulong32 K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; #endif /* Various logical functions */ #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) RORc((x),(n)) #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) /* compress 512-bits */ #ifdef LTC_CLEAN_STACK static int _sha256_compress(hash_state * md, unsigned char *buf) #else static int sha256_compress(hash_state * md, unsigned char *buf) #endif { ulong32 S[8], W[64], t0, t1; #ifdef LTC_SMALL_CODE ulong32 t; #endif int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = md->sha256.state[i]; } /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32H(W[i], buf + (4*i)); } /* fill W[16..63] */ for (i = 16; i < 64; i++) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } /* Compress */ #ifdef LTC_SMALL_CODE #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; for (i = 0; i < 64; ++i) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; } #else #define RND(a,b,c,d,e,f,g,h,i,ki) \ t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2); #undef RND #endif /* feedback */ for (i = 0; i < 8; i++) { md->sha256.state[i] = md->sha256.state[i] + S[i]; } return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int sha256_compress(hash_state * md, unsigned char *buf) { int err; err = _sha256_compress(md, buf); burn_stack(sizeof(ulong32) * 74); return err; } #endif /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int sha256_init(hash_state * md) { LTC_ARGCHK(md != NULL); md->sha256.curlen = 0; md->sha256.length = 0; md->sha256.state[0] = 0x6A09E667UL; md->sha256.state[1] = 0xBB67AE85UL; md->sha256.state[2] = 0x3C6EF372UL; md->sha256.state[3] = 0xA54FF53AUL; md->sha256.state[4] = 0x510E527FUL; md->sha256.state[5] = 0x9B05688CUL; md->sha256.state[6] = 0x1F83D9ABUL; md->sha256.state[7] = 0x5BE0CD19UL; return CRYPT_OK; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ HASH_PROCESS(sha256_process, sha256_compress, sha256, 64) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (32 bytes) @return CRYPT_OK if successful */ int sha256_done(hash_state * md, unsigned char *out) { int i; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->sha256.curlen >= sizeof(md->sha256.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->sha256.length += md->sha256.curlen * 8; /* append the '1' bit */ md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->sha256.curlen > 56) { while (md->sha256.curlen < 64) { md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; } sha256_compress(md, md->sha256.buf); md->sha256.curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->sha256.curlen < 56) { md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; } /* store length */ STORE64H(md->sha256.length, md->sha256.buf+56); sha256_compress(md, md->sha256.buf); /* copy output */ for (i = 0; i < 8; i++) { STORE32H(md->sha256.state[i], out+(4*i)); } #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int sha256_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { char *msg; unsigned char hash[32]; } tests[] = { { "abc", { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad } }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 } }, }; int i; unsigned char tmp[32]; hash_state md; for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { sha256_init(&md); sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg)); sha256_done(&md, tmp); if (XMEMCMP(tmp, tests[i].hash, 32) != 0) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @param sha384.c LTC_SHA384 hash included in sha512.c, Tom St Denis */ #if defined(LTC_SHA384) && defined(LTC_SHA512) const struct ltc_hash_descriptor sha384_desc = { "sha384", 4, 48, 128, /* OID */ { 2, 16, 840, 1, 101, 3, 4, 2, 2, }, 9, &sha384_init, &sha512_process, &sha384_done, &sha384_test, NULL }; /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int sha384_init(hash_state * md) { LTC_ARGCHK(md != NULL); md->sha512.curlen = 0; md->sha512.length = 0; md->sha512.state[0] = CONST64(0xcbbb9d5dc1059ed8); md->sha512.state[1] = CONST64(0x629a292a367cd507); md->sha512.state[2] = CONST64(0x9159015a3070dd17); md->sha512.state[3] = CONST64(0x152fecd8f70e5939); md->sha512.state[4] = CONST64(0x67332667ffc00b31); md->sha512.state[5] = CONST64(0x8eb44a8768581511); md->sha512.state[6] = CONST64(0xdb0c2e0d64f98fa7); md->sha512.state[7] = CONST64(0x47b5481dbefa4fa4); return CRYPT_OK; } /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (48 bytes) @return CRYPT_OK if successful */ int sha384_done(hash_state * md, unsigned char *out) { unsigned char buf[64]; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->sha512.curlen >= sizeof(md->sha512.buf)) { return CRYPT_INVALID_ARG; } sha512_done(md, buf); XMEMCPY(out, buf, 48); #ifdef LTC_CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int sha384_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { char *msg; unsigned char hash[48]; } tests[] = { { "abc", { 0xcb, 0x00, 0x75, 0x3f, 0x45, 0xa3, 0x5e, 0x8b, 0xb5, 0xa0, 0x3d, 0x69, 0x9a, 0xc6, 0x50, 0x07, 0x27, 0x2c, 0x32, 0xab, 0x0e, 0xde, 0xd1, 0x63, 0x1a, 0x8b, 0x60, 0x5a, 0x43, 0xff, 0x5b, 0xed, 0x80, 0x86, 0x07, 0x2b, 0xa1, 0xe7, 0xcc, 0x23, 0x58, 0xba, 0xec, 0xa1, 0x34, 0xc8, 0x25, 0xa7 } }, { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", { 0x09, 0x33, 0x0c, 0x33, 0xf7, 0x11, 0x47, 0xe8, 0x3d, 0x19, 0x2f, 0xc7, 0x82, 0xcd, 0x1b, 0x47, 0x53, 0x11, 0x1b, 0x17, 0x3b, 0x3b, 0x05, 0xd2, 0x2f, 0xa0, 0x80, 0x86, 0xe3, 0xb0, 0xf7, 0x12, 0xfc, 0xc7, 0xc7, 0x1a, 0x55, 0x7e, 0x2d, 0xb9, 0x66, 0xc3, 0xe9, 0xfa, 0x91, 0x74, 0x60, 0x39 } }, }; int i; unsigned char tmp[48]; hash_state md; for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { sha384_init(&md); sha384_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg)); sha384_done(&md, tmp); if (XMEMCMP(tmp, tests[i].hash, 48) != 0) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* defined(LTC_SHA384) && defined(LTC_SHA512) */ /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @param sha512.c LTC_SHA512 by Tom St Denis */ #ifdef LTC_SHA512 const struct ltc_hash_descriptor sha512_desc = { "sha512", 5, 64, 128, /* OID */ { 2, 16, 840, 1, 101, 3, 4, 2, 3, }, 9, &sha512_init, &sha512_process, &sha512_done, &sha512_test, NULL }; /* the K array */ static const ulong64 K[80] = { CONST64(0x428a2f98d728ae22), CONST64(0x7137449123ef65cd), CONST64(0xb5c0fbcfec4d3b2f), CONST64(0xe9b5dba58189dbbc), CONST64(0x3956c25bf348b538), CONST64(0x59f111f1b605d019), CONST64(0x923f82a4af194f9b), CONST64(0xab1c5ed5da6d8118), CONST64(0xd807aa98a3030242), CONST64(0x12835b0145706fbe), CONST64(0x243185be4ee4b28c), CONST64(0x550c7dc3d5ffb4e2), CONST64(0x72be5d74f27b896f), CONST64(0x80deb1fe3b1696b1), CONST64(0x9bdc06a725c71235), CONST64(0xc19bf174cf692694), CONST64(0xe49b69c19ef14ad2), CONST64(0xefbe4786384f25e3), CONST64(0x0fc19dc68b8cd5b5), CONST64(0x240ca1cc77ac9c65), CONST64(0x2de92c6f592b0275), CONST64(0x4a7484aa6ea6e483), CONST64(0x5cb0a9dcbd41fbd4), CONST64(0x76f988da831153b5), CONST64(0x983e5152ee66dfab), CONST64(0xa831c66d2db43210), CONST64(0xb00327c898fb213f), CONST64(0xbf597fc7beef0ee4), CONST64(0xc6e00bf33da88fc2), CONST64(0xd5a79147930aa725), CONST64(0x06ca6351e003826f), CONST64(0x142929670a0e6e70), CONST64(0x27b70a8546d22ffc), CONST64(0x2e1b21385c26c926), CONST64(0x4d2c6dfc5ac42aed), CONST64(0x53380d139d95b3df), CONST64(0x650a73548baf63de), CONST64(0x766a0abb3c77b2a8), CONST64(0x81c2c92e47edaee6), CONST64(0x92722c851482353b), CONST64(0xa2bfe8a14cf10364), CONST64(0xa81a664bbc423001), CONST64(0xc24b8b70d0f89791), CONST64(0xc76c51a30654be30), CONST64(0xd192e819d6ef5218), CONST64(0xd69906245565a910), CONST64(0xf40e35855771202a), CONST64(0x106aa07032bbd1b8), CONST64(0x19a4c116b8d2d0c8), CONST64(0x1e376c085141ab53), CONST64(0x2748774cdf8eeb99), CONST64(0x34b0bcb5e19b48a8), CONST64(0x391c0cb3c5c95a63), CONST64(0x4ed8aa4ae3418acb), CONST64(0x5b9cca4f7763e373), CONST64(0x682e6ff3d6b2b8a3), CONST64(0x748f82ee5defb2fc), CONST64(0x78a5636f43172f60), CONST64(0x84c87814a1f0ab72), CONST64(0x8cc702081a6439ec), CONST64(0x90befffa23631e28), CONST64(0xa4506cebde82bde9), CONST64(0xbef9a3f7b2c67915), CONST64(0xc67178f2e372532b), CONST64(0xca273eceea26619c), CONST64(0xd186b8c721c0c207), CONST64(0xeada7dd6cde0eb1e), CONST64(0xf57d4f7fee6ed178), CONST64(0x06f067aa72176fba), CONST64(0x0a637dc5a2c898a6), CONST64(0x113f9804bef90dae), CONST64(0x1b710b35131c471b), CONST64(0x28db77f523047d84), CONST64(0x32caab7b40c72493), CONST64(0x3c9ebe0a15c9bebc), CONST64(0x431d67c49c100d4c), CONST64(0x4cc5d4becb3e42b6), CONST64(0x597f299cfc657e2a), CONST64(0x5fcb6fab3ad6faec), CONST64(0x6c44198c4a475817) }; /* Various logical functions */ #undef S #undef R #undef Sigma0 #undef Sigma1 #undef Gamma0 #undef Gamma1 #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) ROR64c(x, n) #define R(x, n) (((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)n)) #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39)) #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41)) #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7)) #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6)) /* compress 1024-bits */ #ifdef LTC_CLEAN_STACK static int _sha512_compress(hash_state * md, unsigned char *buf) #else static int sha512_compress(hash_state * md, unsigned char *buf) #endif { ulong64 S[8], W[80], t0, t1; int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = md->sha512.state[i]; } /* copy the state into 1024-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD64H(W[i], buf + (8*i)); } /* fill W[16..79] */ for (i = 16; i < 80; i++) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } /* Compress */ #ifdef LTC_SMALL_CODE for (i = 0; i < 80; i++) { t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i]; t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]); S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3] + t0; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t0 + t1; } #else #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; for (i = 0; i < 80; i += 8) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7); } #endif /* feedback */ for (i = 0; i < 8; i++) { md->sha512.state[i] = md->sha512.state[i] + S[i]; } return CRYPT_OK; } /* compress 1024-bits */ #ifdef LTC_CLEAN_STACK static int sha512_compress(hash_state * md, unsigned char *buf) { int err; err = _sha512_compress(md, buf); burn_stack(sizeof(ulong64) * 90 + sizeof(int)); return err; } #endif /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int sha512_init(hash_state * md) { LTC_ARGCHK(md != NULL); md->sha512.curlen = 0; md->sha512.length = 0; md->sha512.state[0] = CONST64(0x6a09e667f3bcc908); md->sha512.state[1] = CONST64(0xbb67ae8584caa73b); md->sha512.state[2] = CONST64(0x3c6ef372fe94f82b); md->sha512.state[3] = CONST64(0xa54ff53a5f1d36f1); md->sha512.state[4] = CONST64(0x510e527fade682d1); md->sha512.state[5] = CONST64(0x9b05688c2b3e6c1f); md->sha512.state[6] = CONST64(0x1f83d9abfb41bd6b); md->sha512.state[7] = CONST64(0x5be0cd19137e2179); return CRYPT_OK; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ HASH_PROCESS(sha512_process, sha512_compress, sha512, 128) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (64 bytes) @return CRYPT_OK if successful */ int sha512_done(hash_state * md, unsigned char *out) { int i; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->sha512.curlen >= sizeof(md->sha512.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->sha512.length += md->sha512.curlen * CONST64(8); /* append the '1' bit */ md->sha512.buf[md->sha512.curlen++] = (unsigned char)0x80; /* if the length is currently above 112 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->sha512.curlen > 112) { while (md->sha512.curlen < 128) { md->sha512.buf[md->sha512.curlen++] = (unsigned char)0; } sha512_compress(md, md->sha512.buf); md->sha512.curlen = 0; } /* pad upto 120 bytes of zeroes * note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash * > 2^64 bits of data... :-) */ while (md->sha512.curlen < 120) { md->sha512.buf[md->sha512.curlen++] = (unsigned char)0; } /* store length */ STORE64H(md->sha512.length, md->sha512.buf+120); sha512_compress(md, md->sha512.buf); /* copy output */ for (i = 0; i < 8; i++) { STORE64H(md->sha512.state[i], out+(8*i)); } #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int sha512_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { char *msg; unsigned char hash[64]; } tests[] = { { "abc", { 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba, 0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31, 0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2, 0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a, 0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8, 0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd, 0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e, 0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f } }, { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", { 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda, 0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f, 0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1, 0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18, 0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4, 0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a, 0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54, 0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09 } }, }; int i; unsigned char tmp[64]; hash_state md; for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { sha512_init(&md); sha512_process(&md, (unsigned char *)tests[i].msg, (unsigned long)strlen(tests[i].msg)); sha512_done(&md, tmp); if (XMEMCMP(tmp, tests[i].hash, 64) != 0) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file hmac_init.c HMAC support, initialize state, Tom St Denis/Dobes Vandermeer */ #ifdef LTC_HMAC #define LTC_HMAC_BLOCKSIZE hash_descriptor[hash].blocksize /** Initialize an HMAC context. @param hmac The HMAC state @param hash The index of the hash you want to use @param key The secret key @param keylen The length of the secret key (octets) @return CRYPT_OK if successful */ int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen) { unsigned char *buf; unsigned long hashsize; unsigned long i, z; int err; LTC_ARGCHK(hmac != NULL); LTC_ARGCHK(key != NULL); /* valid hash? */ if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } hmac->hash = hash; hashsize = hash_descriptor[hash].hashsize; /* valid key length? */ if (keylen == 0) { return CRYPT_INVALID_KEYSIZE; } /* allocate ram for buf */ buf = AUTO_CAST(XMALLOC(LTC_HMAC_BLOCKSIZE)); if (buf == NULL) { return CRYPT_MEM; } /* allocate memory for key */ hmac->key = AUTO_CAST(XMALLOC(LTC_HMAC_BLOCKSIZE)); if (hmac->key == NULL) { XFREE(buf); return CRYPT_MEM; } /* (1) make sure we have a large enough key */ if(keylen > LTC_HMAC_BLOCKSIZE) { z = LTC_HMAC_BLOCKSIZE; if ((err = hash_memory(hash, key, keylen, hmac->key, &z)) != CRYPT_OK) { goto LBL_ERR; } keylen = hashsize; } else { XMEMCPY(hmac->key, key, (size_t)keylen); } if(keylen < LTC_HMAC_BLOCKSIZE) { zeromem((hmac->key) + keylen, (size_t)(LTC_HMAC_BLOCKSIZE - keylen)); } /* Create the initial vector for step (3) */ for(i=0; i < LTC_HMAC_BLOCKSIZE; i++) { buf[i] = hmac->key[i] ^ 0x36; } /* Pre-pend that to the hash data */ if ((err = hash_descriptor[hash].init(&hmac->md)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].process(&hmac->md, buf, LTC_HMAC_BLOCKSIZE)) != CRYPT_OK) { goto LBL_ERR; } goto done; LBL_ERR: /* free the key since we failed */ XFREE(hmac->key); done: #ifdef LTC_CLEAN_STACK zeromem(buf, LTC_HMAC_BLOCKSIZE); #endif XFREE(buf); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file hmac_process.c HMAC support, process data, Tom St Denis/Dobes Vandermeer */ #ifdef LTC_HMAC /** Process data through HMAC @param hmac The hmac state @param in The data to send through HMAC @param inlen The length of the data to HMAC (octets) @return CRYPT_OK if successful */ int hmac_process(hmac_state *hmac, const unsigned char *in, unsigned long inlen) { int err; LTC_ARGCHK(hmac != NULL); LTC_ARGCHK(in != NULL); if ((err = hash_is_valid(hmac->hash)) != CRYPT_OK) { return err; } return hash_descriptor[hmac->hash].process(&hmac->md, in, inlen); } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file hmac_done.c HMAC support, terminate stream, Tom St Denis/Dobes Vandermeer */ #ifdef LTC_HMAC #define LTC_HMAC_BLOCKSIZE hash_descriptor[hash].blocksize /** Terminate an HMAC session @param hmac The HMAC state @param out [out] The destination of the HMAC authentication tag @param outlen [in/out] The max size and resulting size of the HMAC authentication tag @return CRYPT_OK if successful */ int hmac_done(hmac_state *hmac, unsigned char *out, unsigned long *outlen) { unsigned char *buf, *isha; unsigned long hashsize, i; int hash, err; LTC_ARGCHK(hmac != NULL); LTC_ARGCHK(out != NULL); /* test hash */ hash = hmac->hash; if((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } /* get the hash message digest size */ hashsize = hash_descriptor[hash].hashsize; /* allocate buffers */ buf = AUTO_CAST(XMALLOC(LTC_HMAC_BLOCKSIZE)); isha = AUTO_CAST(XMALLOC(hashsize)); if (buf == NULL || isha == NULL) { if (buf != NULL) { XFREE(buf); } if (isha != NULL) { XFREE(isha); } return CRYPT_MEM; } /* Get the hash of the first HMAC vector plus the data */ if ((err = hash_descriptor[hash].done(&hmac->md, isha)) != CRYPT_OK) { goto LBL_ERR; } /* Create the second HMAC vector vector for step (3) */ for(i=0; i < LTC_HMAC_BLOCKSIZE; i++) { buf[i] = hmac->key[i] ^ 0x5C; } /* Now calculate the "outer" hash for step (5), (6), and (7) */ if ((err = hash_descriptor[hash].init(&hmac->md)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].process(&hmac->md, buf, LTC_HMAC_BLOCKSIZE)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].process(&hmac->md, isha, hashsize)) != CRYPT_OK) { goto LBL_ERR; } if ((err = hash_descriptor[hash].done(&hmac->md, buf)) != CRYPT_OK) { goto LBL_ERR; } /* copy to output */ for (i = 0; i < hashsize && i < *outlen; i++) { out[i] = buf[i]; } *outlen = i; err = CRYPT_OK; LBL_ERR: XFREE(hmac->key); #ifdef LTC_CLEAN_STACK zeromem(isha, hashsize); zeromem(buf, hashsize); zeromem(hmac, sizeof(*hmac)); #endif XFREE(isha); XFREE(buf); return err; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ #define __LTC_AES_TAB_C__ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* The precomputed tables for AES */ /* Te0[x] = S [x].[02, 01, 01, 03]; Te1[x] = S [x].[03, 02, 01, 01]; Te2[x] = S [x].[01, 03, 02, 01]; Te3[x] = S [x].[01, 01, 03, 02]; Te4[x] = S [x].[01, 01, 01, 01]; Td0[x] = Si[x].[0e, 09, 0d, 0b]; Td1[x] = Si[x].[0b, 0e, 09, 0d]; Td2[x] = Si[x].[0d, 0b, 0e, 09]; Td3[x] = Si[x].[09, 0d, 0b, 0e]; Td4[x] = Si[x].[01, 01, 01, 01]; */ #ifdef __LTC_AES_TAB_C__ /** @file aes_tab.c AES tables */ static const ulong32 TE0[256] = { 0xc66363a5UL, 0xf87c7c84UL, 0xee777799UL, 0xf67b7b8dUL, 0xfff2f20dUL, 0xd66b6bbdUL, 0xde6f6fb1UL, 0x91c5c554UL, 0x60303050UL, 0x02010103UL, 0xce6767a9UL, 0x562b2b7dUL, 0xe7fefe19UL, 0xb5d7d762UL, 0x4dababe6UL, 0xec76769aUL, 0x8fcaca45UL, 0x1f82829dUL, 0x89c9c940UL, 0xfa7d7d87UL, 0xeffafa15UL, 0xb25959ebUL, 0x8e4747c9UL, 0xfbf0f00bUL, 0x41adadecUL, 0xb3d4d467UL, 0x5fa2a2fdUL, 0x45afafeaUL, 0x239c9cbfUL, 0x53a4a4f7UL, 0xe4727296UL, 0x9bc0c05bUL, 0x75b7b7c2UL, 0xe1fdfd1cUL, 0x3d9393aeUL, 0x4c26266aUL, 0x6c36365aUL, 0x7e3f3f41UL, 0xf5f7f702UL, 0x83cccc4fUL, 0x6834345cUL, 0x51a5a5f4UL, 0xd1e5e534UL, 0xf9f1f108UL, 0xe2717193UL, 0xabd8d873UL, 0x62313153UL, 0x2a15153fUL, 0x0804040cUL, 0x95c7c752UL, 0x46232365UL, 0x9dc3c35eUL, 0x30181828UL, 0x379696a1UL, 0x0a05050fUL, 0x2f9a9ab5UL, 0x0e070709UL, 0x24121236UL, 0x1b80809bUL, 0xdfe2e23dUL, 0xcdebeb26UL, 0x4e272769UL, 0x7fb2b2cdUL, 0xea75759fUL, 0x1209091bUL, 0x1d83839eUL, 0x582c2c74UL, 0x341a1a2eUL, 0x361b1b2dUL, 0xdc6e6eb2UL, 0xb45a5aeeUL, 0x5ba0a0fbUL, 0xa45252f6UL, 0x763b3b4dUL, 0xb7d6d661UL, 0x7db3b3ceUL, 0x5229297bUL, 0xdde3e33eUL, 0x5e2f2f71UL, 0x13848497UL, 0xa65353f5UL, 0xb9d1d168UL, 0x00000000UL, 0xc1eded2cUL, 0x40202060UL, 0xe3fcfc1fUL, 0x79b1b1c8UL, 0xb65b5bedUL, 0xd46a6abeUL, 0x8dcbcb46UL, 0x67bebed9UL, 0x7239394bUL, 0x944a4adeUL, 0x984c4cd4UL, 0xb05858e8UL, 0x85cfcf4aUL, 0xbbd0d06bUL, 0xc5efef2aUL, 0x4faaaae5UL, 0xedfbfb16UL, 0x864343c5UL, 0x9a4d4dd7UL, 0x66333355UL, 0x11858594UL, 0x8a4545cfUL, 0xe9f9f910UL, 0x04020206UL, 0xfe7f7f81UL, 0xa05050f0UL, 0x783c3c44UL, 0x259f9fbaUL, 0x4ba8a8e3UL, 0xa25151f3UL, 0x5da3a3feUL, 0x804040c0UL, 0x058f8f8aUL, 0x3f9292adUL, 0x219d9dbcUL, 0x70383848UL, 0xf1f5f504UL, 0x63bcbcdfUL, 0x77b6b6c1UL, 0xafdada75UL, 0x42212163UL, 0x20101030UL, 0xe5ffff1aUL, 0xfdf3f30eUL, 0xbfd2d26dUL, 0x81cdcd4cUL, 0x180c0c14UL, 0x26131335UL, 0xc3ecec2fUL, 0xbe5f5fe1UL, 0x359797a2UL, 0x884444ccUL, 0x2e171739UL, 0x93c4c457UL, 0x55a7a7f2UL, 0xfc7e7e82UL, 0x7a3d3d47UL, 0xc86464acUL, 0xba5d5de7UL, 0x3219192bUL, 0xe6737395UL, 0xc06060a0UL, 0x19818198UL, 0x9e4f4fd1UL, 0xa3dcdc7fUL, 0x44222266UL, 0x542a2a7eUL, 0x3b9090abUL, 0x0b888883UL, 0x8c4646caUL, 0xc7eeee29UL, 0x6bb8b8d3UL, 0x2814143cUL, 0xa7dede79UL, 0xbc5e5ee2UL, 0x160b0b1dUL, 0xaddbdb76UL, 0xdbe0e03bUL, 0x64323256UL, 0x743a3a4eUL, 0x140a0a1eUL, 0x924949dbUL, 0x0c06060aUL, 0x4824246cUL, 0xb85c5ce4UL, 0x9fc2c25dUL, 0xbdd3d36eUL, 0x43acacefUL, 0xc46262a6UL, 0x399191a8UL, 0x319595a4UL, 0xd3e4e437UL, 0xf279798bUL, 0xd5e7e732UL, 0x8bc8c843UL, 0x6e373759UL, 0xda6d6db7UL, 0x018d8d8cUL, 0xb1d5d564UL, 0x9c4e4ed2UL, 0x49a9a9e0UL, 0xd86c6cb4UL, 0xac5656faUL, 0xf3f4f407UL, 0xcfeaea25UL, 0xca6565afUL, 0xf47a7a8eUL, 0x47aeaee9UL, 0x10080818UL, 0x6fbabad5UL, 0xf0787888UL, 0x4a25256fUL, 0x5c2e2e72UL, 0x381c1c24UL, 0x57a6a6f1UL, 0x73b4b4c7UL, 0x97c6c651UL, 0xcbe8e823UL, 0xa1dddd7cUL, 0xe874749cUL, 0x3e1f1f21UL, 0x964b4bddUL, 0x61bdbddcUL, 0x0d8b8b86UL, 0x0f8a8a85UL, 0xe0707090UL, 0x7c3e3e42UL, 0x71b5b5c4UL, 0xcc6666aaUL, 0x904848d8UL, 0x06030305UL, 0xf7f6f601UL, 0x1c0e0e12UL, 0xc26161a3UL, 0x6a35355fUL, 0xae5757f9UL, 0x69b9b9d0UL, 0x17868691UL, 0x99c1c158UL, 0x3a1d1d27UL, 0x279e9eb9UL, 0xd9e1e138UL, 0xebf8f813UL, 0x2b9898b3UL, 0x22111133UL, 0xd26969bbUL, 0xa9d9d970UL, 0x078e8e89UL, 0x339494a7UL, 0x2d9b9bb6UL, 0x3c1e1e22UL, 0x15878792UL, 0xc9e9e920UL, 0x87cece49UL, 0xaa5555ffUL, 0x50282878UL, 0xa5dfdf7aUL, 0x038c8c8fUL, 0x59a1a1f8UL, 0x09898980UL, 0x1a0d0d17UL, 0x65bfbfdaUL, 0xd7e6e631UL, 0x844242c6UL, 0xd06868b8UL, 0x824141c3UL, 0x299999b0UL, 0x5a2d2d77UL, 0x1e0f0f11UL, 0x7bb0b0cbUL, 0xa85454fcUL, 0x6dbbbbd6UL, 0x2c16163aUL, }; #ifndef PELI_TAB static const ulong32 Te4[256] = { 0x63636363UL, 0x7c7c7c7cUL, 0x77777777UL, 0x7b7b7b7bUL, 0xf2f2f2f2UL, 0x6b6b6b6bUL, 0x6f6f6f6fUL, 0xc5c5c5c5UL, 0x30303030UL, 0x01010101UL, 0x67676767UL, 0x2b2b2b2bUL, 0xfefefefeUL, 0xd7d7d7d7UL, 0xababababUL, 0x76767676UL, 0xcacacacaUL, 0x82828282UL, 0xc9c9c9c9UL, 0x7d7d7d7dUL, 0xfafafafaUL, 0x59595959UL, 0x47474747UL, 0xf0f0f0f0UL, 0xadadadadUL, 0xd4d4d4d4UL, 0xa2a2a2a2UL, 0xafafafafUL, 0x9c9c9c9cUL, 0xa4a4a4a4UL, 0x72727272UL, 0xc0c0c0c0UL, 0xb7b7b7b7UL, 0xfdfdfdfdUL, 0x93939393UL, 0x26262626UL, 0x36363636UL, 0x3f3f3f3fUL, 0xf7f7f7f7UL, 0xccccccccUL, 0x34343434UL, 0xa5a5a5a5UL, 0xe5e5e5e5UL, 0xf1f1f1f1UL, 0x71717171UL, 0xd8d8d8d8UL, 0x31313131UL, 0x15151515UL, 0x04040404UL, 0xc7c7c7c7UL, 0x23232323UL, 0xc3c3c3c3UL, 0x18181818UL, 0x96969696UL, 0x05050505UL, 0x9a9a9a9aUL, 0x07070707UL, 0x12121212UL, 0x80808080UL, 0xe2e2e2e2UL, 0xebebebebUL, 0x27272727UL, 0xb2b2b2b2UL, 0x75757575UL, 0x09090909UL, 0x83838383UL, 0x2c2c2c2cUL, 0x1a1a1a1aUL, 0x1b1b1b1bUL, 0x6e6e6e6eUL, 0x5a5a5a5aUL, 0xa0a0a0a0UL, 0x52525252UL, 0x3b3b3b3bUL, 0xd6d6d6d6UL, 0xb3b3b3b3UL, 0x29292929UL, 0xe3e3e3e3UL, 0x2f2f2f2fUL, 0x84848484UL, 0x53535353UL, 0xd1d1d1d1UL, 0x00000000UL, 0xededededUL, 0x20202020UL, 0xfcfcfcfcUL, 0xb1b1b1b1UL, 0x5b5b5b5bUL, 0x6a6a6a6aUL, 0xcbcbcbcbUL, 0xbebebebeUL, 0x39393939UL, 0x4a4a4a4aUL, 0x4c4c4c4cUL, 0x58585858UL, 0xcfcfcfcfUL, 0xd0d0d0d0UL, 0xefefefefUL, 0xaaaaaaaaUL, 0xfbfbfbfbUL, 0x43434343UL, 0x4d4d4d4dUL, 0x33333333UL, 0x85858585UL, 0x45454545UL, 0xf9f9f9f9UL, 0x02020202UL, 0x7f7f7f7fUL, 0x50505050UL, 0x3c3c3c3cUL, 0x9f9f9f9fUL, 0xa8a8a8a8UL, 0x51515151UL, 0xa3a3a3a3UL, 0x40404040UL, 0x8f8f8f8fUL, 0x92929292UL, 0x9d9d9d9dUL, 0x38383838UL, 0xf5f5f5f5UL, 0xbcbcbcbcUL, 0xb6b6b6b6UL, 0xdadadadaUL, 0x21212121UL, 0x10101010UL, 0xffffffffUL, 0xf3f3f3f3UL, 0xd2d2d2d2UL, 0xcdcdcdcdUL, 0x0c0c0c0cUL, 0x13131313UL, 0xececececUL, 0x5f5f5f5fUL, 0x97979797UL, 0x44444444UL, 0x17171717UL, 0xc4c4c4c4UL, 0xa7a7a7a7UL, 0x7e7e7e7eUL, 0x3d3d3d3dUL, 0x64646464UL, 0x5d5d5d5dUL, 0x19191919UL, 0x73737373UL, 0x60606060UL, 0x81818181UL, 0x4f4f4f4fUL, 0xdcdcdcdcUL, 0x22222222UL, 0x2a2a2a2aUL, 0x90909090UL, 0x88888888UL, 0x46464646UL, 0xeeeeeeeeUL, 0xb8b8b8b8UL, 0x14141414UL, 0xdedededeUL, 0x5e5e5e5eUL, 0x0b0b0b0bUL, 0xdbdbdbdbUL, 0xe0e0e0e0UL, 0x32323232UL, 0x3a3a3a3aUL, 0x0a0a0a0aUL, 0x49494949UL, 0x06060606UL, 0x24242424UL, 0x5c5c5c5cUL, 0xc2c2c2c2UL, 0xd3d3d3d3UL, 0xacacacacUL, 0x62626262UL, 0x91919191UL, 0x95959595UL, 0xe4e4e4e4UL, 0x79797979UL, 0xe7e7e7e7UL, 0xc8c8c8c8UL, 0x37373737UL, 0x6d6d6d6dUL, 0x8d8d8d8dUL, 0xd5d5d5d5UL, 0x4e4e4e4eUL, 0xa9a9a9a9UL, 0x6c6c6c6cUL, 0x56565656UL, 0xf4f4f4f4UL, 0xeaeaeaeaUL, 0x65656565UL, 0x7a7a7a7aUL, 0xaeaeaeaeUL, 0x08080808UL, 0xbabababaUL, 0x78787878UL, 0x25252525UL, 0x2e2e2e2eUL, 0x1c1c1c1cUL, 0xa6a6a6a6UL, 0xb4b4b4b4UL, 0xc6c6c6c6UL, 0xe8e8e8e8UL, 0xddddddddUL, 0x74747474UL, 0x1f1f1f1fUL, 0x4b4b4b4bUL, 0xbdbdbdbdUL, 0x8b8b8b8bUL, 0x8a8a8a8aUL, 0x70707070UL, 0x3e3e3e3eUL, 0xb5b5b5b5UL, 0x66666666UL, 0x48484848UL, 0x03030303UL, 0xf6f6f6f6UL, 0x0e0e0e0eUL, 0x61616161UL, 0x35353535UL, 0x57575757UL, 0xb9b9b9b9UL, 0x86868686UL, 0xc1c1c1c1UL, 0x1d1d1d1dUL, 0x9e9e9e9eUL, 0xe1e1e1e1UL, 0xf8f8f8f8UL, 0x98989898UL, 0x11111111UL, 0x69696969UL, 0xd9d9d9d9UL, 0x8e8e8e8eUL, 0x94949494UL, 0x9b9b9b9bUL, 0x1e1e1e1eUL, 0x87878787UL, 0xe9e9e9e9UL, 0xcecececeUL, 0x55555555UL, 0x28282828UL, 0xdfdfdfdfUL, 0x8c8c8c8cUL, 0xa1a1a1a1UL, 0x89898989UL, 0x0d0d0d0dUL, 0xbfbfbfbfUL, 0xe6e6e6e6UL, 0x42424242UL, 0x68686868UL, 0x41414141UL, 0x99999999UL, 0x2d2d2d2dUL, 0x0f0f0f0fUL, 0xb0b0b0b0UL, 0x54545454UL, 0xbbbbbbbbUL, 0x16161616UL, }; #endif #ifndef ENCRYPT_ONLY static const ulong32 TD0[256] = { 0x51f4a750UL, 0x7e416553UL, 0x1a17a4c3UL, 0x3a275e96UL, 0x3bab6bcbUL, 0x1f9d45f1UL, 0xacfa58abUL, 0x4be30393UL, 0x2030fa55UL, 0xad766df6UL, 0x88cc7691UL, 0xf5024c25UL, 0x4fe5d7fcUL, 0xc52acbd7UL, 0x26354480UL, 0xb562a38fUL, 0xdeb15a49UL, 0x25ba1b67UL, 0x45ea0e98UL, 0x5dfec0e1UL, 0xc32f7502UL, 0x814cf012UL, 0x8d4697a3UL, 0x6bd3f9c6UL, 0x038f5fe7UL, 0x15929c95UL, 0xbf6d7aebUL, 0x955259daUL, 0xd4be832dUL, 0x587421d3UL, 0x49e06929UL, 0x8ec9c844UL, 0x75c2896aUL, 0xf48e7978UL, 0x99583e6bUL, 0x27b971ddUL, 0xbee14fb6UL, 0xf088ad17UL, 0xc920ac66UL, 0x7dce3ab4UL, 0x63df4a18UL, 0xe51a3182UL, 0x97513360UL, 0x62537f45UL, 0xb16477e0UL, 0xbb6bae84UL, 0xfe81a01cUL, 0xf9082b94UL, 0x70486858UL, 0x8f45fd19UL, 0x94de6c87UL, 0x527bf8b7UL, 0xab73d323UL, 0x724b02e2UL, 0xe31f8f57UL, 0x6655ab2aUL, 0xb2eb2807UL, 0x2fb5c203UL, 0x86c57b9aUL, 0xd33708a5UL, 0x302887f2UL, 0x23bfa5b2UL, 0x02036abaUL, 0xed16825cUL, 0x8acf1c2bUL, 0xa779b492UL, 0xf307f2f0UL, 0x4e69e2a1UL, 0x65daf4cdUL, 0x0605bed5UL, 0xd134621fUL, 0xc4a6fe8aUL, 0x342e539dUL, 0xa2f355a0UL, 0x058ae132UL, 0xa4f6eb75UL, 0x0b83ec39UL, 0x4060efaaUL, 0x5e719f06UL, 0xbd6e1051UL, 0x3e218af9UL, 0x96dd063dUL, 0xdd3e05aeUL, 0x4de6bd46UL, 0x91548db5UL, 0x71c45d05UL, 0x0406d46fUL, 0x605015ffUL, 0x1998fb24UL, 0xd6bde997UL, 0x894043ccUL, 0x67d99e77UL, 0xb0e842bdUL, 0x07898b88UL, 0xe7195b38UL, 0x79c8eedbUL, 0xa17c0a47UL, 0x7c420fe9UL, 0xf8841ec9UL, 0x00000000UL, 0x09808683UL, 0x322bed48UL, 0x1e1170acUL, 0x6c5a724eUL, 0xfd0efffbUL, 0x0f853856UL, 0x3daed51eUL, 0x362d3927UL, 0x0a0fd964UL, 0x685ca621UL, 0x9b5b54d1UL, 0x24362e3aUL, 0x0c0a67b1UL, 0x9357e70fUL, 0xb4ee96d2UL, 0x1b9b919eUL, 0x80c0c54fUL, 0x61dc20a2UL, 0x5a774b69UL, 0x1c121a16UL, 0xe293ba0aUL, 0xc0a02ae5UL, 0x3c22e043UL, 0x121b171dUL, 0x0e090d0bUL, 0xf28bc7adUL, 0x2db6a8b9UL, 0x141ea9c8UL, 0x57f11985UL, 0xaf75074cUL, 0xee99ddbbUL, 0xa37f60fdUL, 0xf701269fUL, 0x5c72f5bcUL, 0x44663bc5UL, 0x5bfb7e34UL, 0x8b432976UL, 0xcb23c6dcUL, 0xb6edfc68UL, 0xb8e4f163UL, 0xd731dccaUL, 0x42638510UL, 0x13972240UL, 0x84c61120UL, 0x854a247dUL, 0xd2bb3df8UL, 0xaef93211UL, 0xc729a16dUL, 0x1d9e2f4bUL, 0xdcb230f3UL, 0x0d8652ecUL, 0x77c1e3d0UL, 0x2bb3166cUL, 0xa970b999UL, 0x119448faUL, 0x47e96422UL, 0xa8fc8cc4UL, 0xa0f03f1aUL, 0x567d2cd8UL, 0x223390efUL, 0x87494ec7UL, 0xd938d1c1UL, 0x8ccaa2feUL, 0x98d40b36UL, 0xa6f581cfUL, 0xa57ade28UL, 0xdab78e26UL, 0x3fadbfa4UL, 0x2c3a9de4UL, 0x5078920dUL, 0x6a5fcc9bUL, 0x547e4662UL, 0xf68d13c2UL, 0x90d8b8e8UL, 0x2e39f75eUL, 0x82c3aff5UL, 0x9f5d80beUL, 0x69d0937cUL, 0x6fd52da9UL, 0xcf2512b3UL, 0xc8ac993bUL, 0x10187da7UL, 0xe89c636eUL, 0xdb3bbb7bUL, 0xcd267809UL, 0x6e5918f4UL, 0xec9ab701UL, 0x834f9aa8UL, 0xe6956e65UL, 0xaaffe67eUL, 0x21bccf08UL, 0xef15e8e6UL, 0xbae79bd9UL, 0x4a6f36ceUL, 0xea9f09d4UL, 0x29b07cd6UL, 0x31a4b2afUL, 0x2a3f2331UL, 0xc6a59430UL, 0x35a266c0UL, 0x744ebc37UL, 0xfc82caa6UL, 0xe090d0b0UL, 0x33a7d815UL, 0xf104984aUL, 0x41ecdaf7UL, 0x7fcd500eUL, 0x1791f62fUL, 0x764dd68dUL, 0x43efb04dUL, 0xccaa4d54UL, 0xe49604dfUL, 0x9ed1b5e3UL, 0x4c6a881bUL, 0xc12c1fb8UL, 0x4665517fUL, 0x9d5eea04UL, 0x018c355dUL, 0xfa877473UL, 0xfb0b412eUL, 0xb3671d5aUL, 0x92dbd252UL, 0xe9105633UL, 0x6dd64713UL, 0x9ad7618cUL, 0x37a10c7aUL, 0x59f8148eUL, 0xeb133c89UL, 0xcea927eeUL, 0xb761c935UL, 0xe11ce5edUL, 0x7a47b13cUL, 0x9cd2df59UL, 0x55f2733fUL, 0x1814ce79UL, 0x73c737bfUL, 0x53f7cdeaUL, 0x5ffdaa5bUL, 0xdf3d6f14UL, 0x7844db86UL, 0xcaaff381UL, 0xb968c43eUL, 0x3824342cUL, 0xc2a3405fUL, 0x161dc372UL, 0xbce2250cUL, 0x283c498bUL, 0xff0d9541UL, 0x39a80171UL, 0x080cb3deUL, 0xd8b4e49cUL, 0x6456c190UL, 0x7bcb8461UL, 0xd532b670UL, 0x486c5c74UL, 0xd0b85742UL, }; static const ulong32 Td4[256] = { 0x52525252UL, 0x09090909UL, 0x6a6a6a6aUL, 0xd5d5d5d5UL, 0x30303030UL, 0x36363636UL, 0xa5a5a5a5UL, 0x38383838UL, 0xbfbfbfbfUL, 0x40404040UL, 0xa3a3a3a3UL, 0x9e9e9e9eUL, 0x81818181UL, 0xf3f3f3f3UL, 0xd7d7d7d7UL, 0xfbfbfbfbUL, 0x7c7c7c7cUL, 0xe3e3e3e3UL, 0x39393939UL, 0x82828282UL, 0x9b9b9b9bUL, 0x2f2f2f2fUL, 0xffffffffUL, 0x87878787UL, 0x34343434UL, 0x8e8e8e8eUL, 0x43434343UL, 0x44444444UL, 0xc4c4c4c4UL, 0xdedededeUL, 0xe9e9e9e9UL, 0xcbcbcbcbUL, 0x54545454UL, 0x7b7b7b7bUL, 0x94949494UL, 0x32323232UL, 0xa6a6a6a6UL, 0xc2c2c2c2UL, 0x23232323UL, 0x3d3d3d3dUL, 0xeeeeeeeeUL, 0x4c4c4c4cUL, 0x95959595UL, 0x0b0b0b0bUL, 0x42424242UL, 0xfafafafaUL, 0xc3c3c3c3UL, 0x4e4e4e4eUL, 0x08080808UL, 0x2e2e2e2eUL, 0xa1a1a1a1UL, 0x66666666UL, 0x28282828UL, 0xd9d9d9d9UL, 0x24242424UL, 0xb2b2b2b2UL, 0x76767676UL, 0x5b5b5b5bUL, 0xa2a2a2a2UL, 0x49494949UL, 0x6d6d6d6dUL, 0x8b8b8b8bUL, 0xd1d1d1d1UL, 0x25252525UL, 0x72727272UL, 0xf8f8f8f8UL, 0xf6f6f6f6UL, 0x64646464UL, 0x86868686UL, 0x68686868UL, 0x98989898UL, 0x16161616UL, 0xd4d4d4d4UL, 0xa4a4a4a4UL, 0x5c5c5c5cUL, 0xccccccccUL, 0x5d5d5d5dUL, 0x65656565UL, 0xb6b6b6b6UL, 0x92929292UL, 0x6c6c6c6cUL, 0x70707070UL, 0x48484848UL, 0x50505050UL, 0xfdfdfdfdUL, 0xededededUL, 0xb9b9b9b9UL, 0xdadadadaUL, 0x5e5e5e5eUL, 0x15151515UL, 0x46464646UL, 0x57575757UL, 0xa7a7a7a7UL, 0x8d8d8d8dUL, 0x9d9d9d9dUL, 0x84848484UL, 0x90909090UL, 0xd8d8d8d8UL, 0xababababUL, 0x00000000UL, 0x8c8c8c8cUL, 0xbcbcbcbcUL, 0xd3d3d3d3UL, 0x0a0a0a0aUL, 0xf7f7f7f7UL, 0xe4e4e4e4UL, 0x58585858UL, 0x05050505UL, 0xb8b8b8b8UL, 0xb3b3b3b3UL, 0x45454545UL, 0x06060606UL, 0xd0d0d0d0UL, 0x2c2c2c2cUL, 0x1e1e1e1eUL, 0x8f8f8f8fUL, 0xcacacacaUL, 0x3f3f3f3fUL, 0x0f0f0f0fUL, 0x02020202UL, 0xc1c1c1c1UL, 0xafafafafUL, 0xbdbdbdbdUL, 0x03030303UL, 0x01010101UL, 0x13131313UL, 0x8a8a8a8aUL, 0x6b6b6b6bUL, 0x3a3a3a3aUL, 0x91919191UL, 0x11111111UL, 0x41414141UL, 0x4f4f4f4fUL, 0x67676767UL, 0xdcdcdcdcUL, 0xeaeaeaeaUL, 0x97979797UL, 0xf2f2f2f2UL, 0xcfcfcfcfUL, 0xcecececeUL, 0xf0f0f0f0UL, 0xb4b4b4b4UL, 0xe6e6e6e6UL, 0x73737373UL, 0x96969696UL, 0xacacacacUL, 0x74747474UL, 0x22222222UL, 0xe7e7e7e7UL, 0xadadadadUL, 0x35353535UL, 0x85858585UL, 0xe2e2e2e2UL, 0xf9f9f9f9UL, 0x37373737UL, 0xe8e8e8e8UL, 0x1c1c1c1cUL, 0x75757575UL, 0xdfdfdfdfUL, 0x6e6e6e6eUL, 0x47474747UL, 0xf1f1f1f1UL, 0x1a1a1a1aUL, 0x71717171UL, 0x1d1d1d1dUL, 0x29292929UL, 0xc5c5c5c5UL, 0x89898989UL, 0x6f6f6f6fUL, 0xb7b7b7b7UL, 0x62626262UL, 0x0e0e0e0eUL, 0xaaaaaaaaUL, 0x18181818UL, 0xbebebebeUL, 0x1b1b1b1bUL, 0xfcfcfcfcUL, 0x56565656UL, 0x3e3e3e3eUL, 0x4b4b4b4bUL, 0xc6c6c6c6UL, 0xd2d2d2d2UL, 0x79797979UL, 0x20202020UL, 0x9a9a9a9aUL, 0xdbdbdbdbUL, 0xc0c0c0c0UL, 0xfefefefeUL, 0x78787878UL, 0xcdcdcdcdUL, 0x5a5a5a5aUL, 0xf4f4f4f4UL, 0x1f1f1f1fUL, 0xddddddddUL, 0xa8a8a8a8UL, 0x33333333UL, 0x88888888UL, 0x07070707UL, 0xc7c7c7c7UL, 0x31313131UL, 0xb1b1b1b1UL, 0x12121212UL, 0x10101010UL, 0x59595959UL, 0x27272727UL, 0x80808080UL, 0xececececUL, 0x5f5f5f5fUL, 0x60606060UL, 0x51515151UL, 0x7f7f7f7fUL, 0xa9a9a9a9UL, 0x19191919UL, 0xb5b5b5b5UL, 0x4a4a4a4aUL, 0x0d0d0d0dUL, 0x2d2d2d2dUL, 0xe5e5e5e5UL, 0x7a7a7a7aUL, 0x9f9f9f9fUL, 0x93939393UL, 0xc9c9c9c9UL, 0x9c9c9c9cUL, 0xefefefefUL, 0xa0a0a0a0UL, 0xe0e0e0e0UL, 0x3b3b3b3bUL, 0x4d4d4d4dUL, 0xaeaeaeaeUL, 0x2a2a2a2aUL, 0xf5f5f5f5UL, 0xb0b0b0b0UL, 0xc8c8c8c8UL, 0xebebebebUL, 0xbbbbbbbbUL, 0x3c3c3c3cUL, 0x83838383UL, 0x53535353UL, 0x99999999UL, 0x61616161UL, 0x17171717UL, 0x2b2b2b2bUL, 0x04040404UL, 0x7e7e7e7eUL, 0xbabababaUL, 0x77777777UL, 0xd6d6d6d6UL, 0x26262626UL, 0xe1e1e1e1UL, 0x69696969UL, 0x14141414UL, 0x63636363UL, 0x55555555UL, 0x21212121UL, 0x0c0c0c0cUL, 0x7d7d7d7dUL, }; #endif /* ENCRYPT_ONLY */ #ifdef LTC_SMALL_CODE #define Te0(x) TE0[x] #define Te1(x) RORc(TE0[x], 8) #define Te2(x) RORc(TE0[x], 16) #define Te3(x) RORc(TE0[x], 24) #define Td0(x) TD0[x] #define Td1(x) RORc(TD0[x], 8) #define Td2(x) RORc(TD0[x], 16) #define Td3(x) RORc(TD0[x], 24) #define Te4_0 0x000000FF & Te4 #define Te4_1 0x0000FF00 & Te4 #define Te4_2 0x00FF0000 & Te4 #define Te4_3 0xFF000000 & Te4 #else #define Te0(x) TE0[x] #define Te1(x) TE1[x] #define Te2(x) TE2[x] #define Te3(x) TE3[x] #define Td0(x) TD0[x] #define Td1(x) TD1[x] #define Td2(x) TD2[x] #define Td3(x) TD3[x] static const ulong32 TE1[256] = { 0xa5c66363UL, 0x84f87c7cUL, 0x99ee7777UL, 0x8df67b7bUL, 0x0dfff2f2UL, 0xbdd66b6bUL, 0xb1de6f6fUL, 0x5491c5c5UL, 0x50603030UL, 0x03020101UL, 0xa9ce6767UL, 0x7d562b2bUL, 0x19e7fefeUL, 0x62b5d7d7UL, 0xe64dababUL, 0x9aec7676UL, 0x458fcacaUL, 0x9d1f8282UL, 0x4089c9c9UL, 0x87fa7d7dUL, 0x15effafaUL, 0xebb25959UL, 0xc98e4747UL, 0x0bfbf0f0UL, 0xec41adadUL, 0x67b3d4d4UL, 0xfd5fa2a2UL, 0xea45afafUL, 0xbf239c9cUL, 0xf753a4a4UL, 0x96e47272UL, 0x5b9bc0c0UL, 0xc275b7b7UL, 0x1ce1fdfdUL, 0xae3d9393UL, 0x6a4c2626UL, 0x5a6c3636UL, 0x417e3f3fUL, 0x02f5f7f7UL, 0x4f83ccccUL, 0x5c683434UL, 0xf451a5a5UL, 0x34d1e5e5UL, 0x08f9f1f1UL, 0x93e27171UL, 0x73abd8d8UL, 0x53623131UL, 0x3f2a1515UL, 0x0c080404UL, 0x5295c7c7UL, 0x65462323UL, 0x5e9dc3c3UL, 0x28301818UL, 0xa1379696UL, 0x0f0a0505UL, 0xb52f9a9aUL, 0x090e0707UL, 0x36241212UL, 0x9b1b8080UL, 0x3ddfe2e2UL, 0x26cdebebUL, 0x694e2727UL, 0xcd7fb2b2UL, 0x9fea7575UL, 0x1b120909UL, 0x9e1d8383UL, 0x74582c2cUL, 0x2e341a1aUL, 0x2d361b1bUL, 0xb2dc6e6eUL, 0xeeb45a5aUL, 0xfb5ba0a0UL, 0xf6a45252UL, 0x4d763b3bUL, 0x61b7d6d6UL, 0xce7db3b3UL, 0x7b522929UL, 0x3edde3e3UL, 0x715e2f2fUL, 0x97138484UL, 0xf5a65353UL, 0x68b9d1d1UL, 0x00000000UL, 0x2cc1ededUL, 0x60402020UL, 0x1fe3fcfcUL, 0xc879b1b1UL, 0xedb65b5bUL, 0xbed46a6aUL, 0x468dcbcbUL, 0xd967bebeUL, 0x4b723939UL, 0xde944a4aUL, 0xd4984c4cUL, 0xe8b05858UL, 0x4a85cfcfUL, 0x6bbbd0d0UL, 0x2ac5efefUL, 0xe54faaaaUL, 0x16edfbfbUL, 0xc5864343UL, 0xd79a4d4dUL, 0x55663333UL, 0x94118585UL, 0xcf8a4545UL, 0x10e9f9f9UL, 0x06040202UL, 0x81fe7f7fUL, 0xf0a05050UL, 0x44783c3cUL, 0xba259f9fUL, 0xe34ba8a8UL, 0xf3a25151UL, 0xfe5da3a3UL, 0xc0804040UL, 0x8a058f8fUL, 0xad3f9292UL, 0xbc219d9dUL, 0x48703838UL, 0x04f1f5f5UL, 0xdf63bcbcUL, 0xc177b6b6UL, 0x75afdadaUL, 0x63422121UL, 0x30201010UL, 0x1ae5ffffUL, 0x0efdf3f3UL, 0x6dbfd2d2UL, 0x4c81cdcdUL, 0x14180c0cUL, 0x35261313UL, 0x2fc3ececUL, 0xe1be5f5fUL, 0xa2359797UL, 0xcc884444UL, 0x392e1717UL, 0x5793c4c4UL, 0xf255a7a7UL, 0x82fc7e7eUL, 0x477a3d3dUL, 0xacc86464UL, 0xe7ba5d5dUL, 0x2b321919UL, 0x95e67373UL, 0xa0c06060UL, 0x98198181UL, 0xd19e4f4fUL, 0x7fa3dcdcUL, 0x66442222UL, 0x7e542a2aUL, 0xab3b9090UL, 0x830b8888UL, 0xca8c4646UL, 0x29c7eeeeUL, 0xd36bb8b8UL, 0x3c281414UL, 0x79a7dedeUL, 0xe2bc5e5eUL, 0x1d160b0bUL, 0x76addbdbUL, 0x3bdbe0e0UL, 0x56643232UL, 0x4e743a3aUL, 0x1e140a0aUL, 0xdb924949UL, 0x0a0c0606UL, 0x6c482424UL, 0xe4b85c5cUL, 0x5d9fc2c2UL, 0x6ebdd3d3UL, 0xef43acacUL, 0xa6c46262UL, 0xa8399191UL, 0xa4319595UL, 0x37d3e4e4UL, 0x8bf27979UL, 0x32d5e7e7UL, 0x438bc8c8UL, 0x596e3737UL, 0xb7da6d6dUL, 0x8c018d8dUL, 0x64b1d5d5UL, 0xd29c4e4eUL, 0xe049a9a9UL, 0xb4d86c6cUL, 0xfaac5656UL, 0x07f3f4f4UL, 0x25cfeaeaUL, 0xafca6565UL, 0x8ef47a7aUL, 0xe947aeaeUL, 0x18100808UL, 0xd56fbabaUL, 0x88f07878UL, 0x6f4a2525UL, 0x725c2e2eUL, 0x24381c1cUL, 0xf157a6a6UL, 0xc773b4b4UL, 0x5197c6c6UL, 0x23cbe8e8UL, 0x7ca1ddddUL, 0x9ce87474UL, 0x213e1f1fUL, 0xdd964b4bUL, 0xdc61bdbdUL, 0x860d8b8bUL, 0x850f8a8aUL, 0x90e07070UL, 0x427c3e3eUL, 0xc471b5b5UL, 0xaacc6666UL, 0xd8904848UL, 0x05060303UL, 0x01f7f6f6UL, 0x121c0e0eUL, 0xa3c26161UL, 0x5f6a3535UL, 0xf9ae5757UL, 0xd069b9b9UL, 0x91178686UL, 0x5899c1c1UL, 0x273a1d1dUL, 0xb9279e9eUL, 0x38d9e1e1UL, 0x13ebf8f8UL, 0xb32b9898UL, 0x33221111UL, 0xbbd26969UL, 0x70a9d9d9UL, 0x89078e8eUL, 0xa7339494UL, 0xb62d9b9bUL, 0x223c1e1eUL, 0x92158787UL, 0x20c9e9e9UL, 0x4987ceceUL, 0xffaa5555UL, 0x78502828UL, 0x7aa5dfdfUL, 0x8f038c8cUL, 0xf859a1a1UL, 0x80098989UL, 0x171a0d0dUL, 0xda65bfbfUL, 0x31d7e6e6UL, 0xc6844242UL, 0xb8d06868UL, 0xc3824141UL, 0xb0299999UL, 0x775a2d2dUL, 0x111e0f0fUL, 0xcb7bb0b0UL, 0xfca85454UL, 0xd66dbbbbUL, 0x3a2c1616UL, }; static const ulong32 TE2[256] = { 0x63a5c663UL, 0x7c84f87cUL, 0x7799ee77UL, 0x7b8df67bUL, 0xf20dfff2UL, 0x6bbdd66bUL, 0x6fb1de6fUL, 0xc55491c5UL, 0x30506030UL, 0x01030201UL, 0x67a9ce67UL, 0x2b7d562bUL, 0xfe19e7feUL, 0xd762b5d7UL, 0xabe64dabUL, 0x769aec76UL, 0xca458fcaUL, 0x829d1f82UL, 0xc94089c9UL, 0x7d87fa7dUL, 0xfa15effaUL, 0x59ebb259UL, 0x47c98e47UL, 0xf00bfbf0UL, 0xadec41adUL, 0xd467b3d4UL, 0xa2fd5fa2UL, 0xafea45afUL, 0x9cbf239cUL, 0xa4f753a4UL, 0x7296e472UL, 0xc05b9bc0UL, 0xb7c275b7UL, 0xfd1ce1fdUL, 0x93ae3d93UL, 0x266a4c26UL, 0x365a6c36UL, 0x3f417e3fUL, 0xf702f5f7UL, 0xcc4f83ccUL, 0x345c6834UL, 0xa5f451a5UL, 0xe534d1e5UL, 0xf108f9f1UL, 0x7193e271UL, 0xd873abd8UL, 0x31536231UL, 0x153f2a15UL, 0x040c0804UL, 0xc75295c7UL, 0x23654623UL, 0xc35e9dc3UL, 0x18283018UL, 0x96a13796UL, 0x050f0a05UL, 0x9ab52f9aUL, 0x07090e07UL, 0x12362412UL, 0x809b1b80UL, 0xe23ddfe2UL, 0xeb26cdebUL, 0x27694e27UL, 0xb2cd7fb2UL, 0x759fea75UL, 0x091b1209UL, 0x839e1d83UL, 0x2c74582cUL, 0x1a2e341aUL, 0x1b2d361bUL, 0x6eb2dc6eUL, 0x5aeeb45aUL, 0xa0fb5ba0UL, 0x52f6a452UL, 0x3b4d763bUL, 0xd661b7d6UL, 0xb3ce7db3UL, 0x297b5229UL, 0xe33edde3UL, 0x2f715e2fUL, 0x84971384UL, 0x53f5a653UL, 0xd168b9d1UL, 0x00000000UL, 0xed2cc1edUL, 0x20604020UL, 0xfc1fe3fcUL, 0xb1c879b1UL, 0x5bedb65bUL, 0x6abed46aUL, 0xcb468dcbUL, 0xbed967beUL, 0x394b7239UL, 0x4ade944aUL, 0x4cd4984cUL, 0x58e8b058UL, 0xcf4a85cfUL, 0xd06bbbd0UL, 0xef2ac5efUL, 0xaae54faaUL, 0xfb16edfbUL, 0x43c58643UL, 0x4dd79a4dUL, 0x33556633UL, 0x85941185UL, 0x45cf8a45UL, 0xf910e9f9UL, 0x02060402UL, 0x7f81fe7fUL, 0x50f0a050UL, 0x3c44783cUL, 0x9fba259fUL, 0xa8e34ba8UL, 0x51f3a251UL, 0xa3fe5da3UL, 0x40c08040UL, 0x8f8a058fUL, 0x92ad3f92UL, 0x9dbc219dUL, 0x38487038UL, 0xf504f1f5UL, 0xbcdf63bcUL, 0xb6c177b6UL, 0xda75afdaUL, 0x21634221UL, 0x10302010UL, 0xff1ae5ffUL, 0xf30efdf3UL, 0xd26dbfd2UL, 0xcd4c81cdUL, 0x0c14180cUL, 0x13352613UL, 0xec2fc3ecUL, 0x5fe1be5fUL, 0x97a23597UL, 0x44cc8844UL, 0x17392e17UL, 0xc45793c4UL, 0xa7f255a7UL, 0x7e82fc7eUL, 0x3d477a3dUL, 0x64acc864UL, 0x5de7ba5dUL, 0x192b3219UL, 0x7395e673UL, 0x60a0c060UL, 0x81981981UL, 0x4fd19e4fUL, 0xdc7fa3dcUL, 0x22664422UL, 0x2a7e542aUL, 0x90ab3b90UL, 0x88830b88UL, 0x46ca8c46UL, 0xee29c7eeUL, 0xb8d36bb8UL, 0x143c2814UL, 0xde79a7deUL, 0x5ee2bc5eUL, 0x0b1d160bUL, 0xdb76addbUL, 0xe03bdbe0UL, 0x32566432UL, 0x3a4e743aUL, 0x0a1e140aUL, 0x49db9249UL, 0x060a0c06UL, 0x246c4824UL, 0x5ce4b85cUL, 0xc25d9fc2UL, 0xd36ebdd3UL, 0xacef43acUL, 0x62a6c462UL, 0x91a83991UL, 0x95a43195UL, 0xe437d3e4UL, 0x798bf279UL, 0xe732d5e7UL, 0xc8438bc8UL, 0x37596e37UL, 0x6db7da6dUL, 0x8d8c018dUL, 0xd564b1d5UL, 0x4ed29c4eUL, 0xa9e049a9UL, 0x6cb4d86cUL, 0x56faac56UL, 0xf407f3f4UL, 0xea25cfeaUL, 0x65afca65UL, 0x7a8ef47aUL, 0xaee947aeUL, 0x08181008UL, 0xbad56fbaUL, 0x7888f078UL, 0x256f4a25UL, 0x2e725c2eUL, 0x1c24381cUL, 0xa6f157a6UL, 0xb4c773b4UL, 0xc65197c6UL, 0xe823cbe8UL, 0xdd7ca1ddUL, 0x749ce874UL, 0x1f213e1fUL, 0x4bdd964bUL, 0xbddc61bdUL, 0x8b860d8bUL, 0x8a850f8aUL, 0x7090e070UL, 0x3e427c3eUL, 0xb5c471b5UL, 0x66aacc66UL, 0x48d89048UL, 0x03050603UL, 0xf601f7f6UL, 0x0e121c0eUL, 0x61a3c261UL, 0x355f6a35UL, 0x57f9ae57UL, 0xb9d069b9UL, 0x86911786UL, 0xc15899c1UL, 0x1d273a1dUL, 0x9eb9279eUL, 0xe138d9e1UL, 0xf813ebf8UL, 0x98b32b98UL, 0x11332211UL, 0x69bbd269UL, 0xd970a9d9UL, 0x8e89078eUL, 0x94a73394UL, 0x9bb62d9bUL, 0x1e223c1eUL, 0x87921587UL, 0xe920c9e9UL, 0xce4987ceUL, 0x55ffaa55UL, 0x28785028UL, 0xdf7aa5dfUL, 0x8c8f038cUL, 0xa1f859a1UL, 0x89800989UL, 0x0d171a0dUL, 0xbfda65bfUL, 0xe631d7e6UL, 0x42c68442UL, 0x68b8d068UL, 0x41c38241UL, 0x99b02999UL, 0x2d775a2dUL, 0x0f111e0fUL, 0xb0cb7bb0UL, 0x54fca854UL, 0xbbd66dbbUL, 0x163a2c16UL, }; static const ulong32 TE3[256] = { 0x6363a5c6UL, 0x7c7c84f8UL, 0x777799eeUL, 0x7b7b8df6UL, 0xf2f20dffUL, 0x6b6bbdd6UL, 0x6f6fb1deUL, 0xc5c55491UL, 0x30305060UL, 0x01010302UL, 0x6767a9ceUL, 0x2b2b7d56UL, 0xfefe19e7UL, 0xd7d762b5UL, 0xababe64dUL, 0x76769aecUL, 0xcaca458fUL, 0x82829d1fUL, 0xc9c94089UL, 0x7d7d87faUL, 0xfafa15efUL, 0x5959ebb2UL, 0x4747c98eUL, 0xf0f00bfbUL, 0xadadec41UL, 0xd4d467b3UL, 0xa2a2fd5fUL, 0xafafea45UL, 0x9c9cbf23UL, 0xa4a4f753UL, 0x727296e4UL, 0xc0c05b9bUL, 0xb7b7c275UL, 0xfdfd1ce1UL, 0x9393ae3dUL, 0x26266a4cUL, 0x36365a6cUL, 0x3f3f417eUL, 0xf7f702f5UL, 0xcccc4f83UL, 0x34345c68UL, 0xa5a5f451UL, 0xe5e534d1UL, 0xf1f108f9UL, 0x717193e2UL, 0xd8d873abUL, 0x31315362UL, 0x15153f2aUL, 0x04040c08UL, 0xc7c75295UL, 0x23236546UL, 0xc3c35e9dUL, 0x18182830UL, 0x9696a137UL, 0x05050f0aUL, 0x9a9ab52fUL, 0x0707090eUL, 0x12123624UL, 0x80809b1bUL, 0xe2e23ddfUL, 0xebeb26cdUL, 0x2727694eUL, 0xb2b2cd7fUL, 0x75759feaUL, 0x09091b12UL, 0x83839e1dUL, 0x2c2c7458UL, 0x1a1a2e34UL, 0x1b1b2d36UL, 0x6e6eb2dcUL, 0x5a5aeeb4UL, 0xa0a0fb5bUL, 0x5252f6a4UL, 0x3b3b4d76UL, 0xd6d661b7UL, 0xb3b3ce7dUL, 0x29297b52UL, 0xe3e33eddUL, 0x2f2f715eUL, 0x84849713UL, 0x5353f5a6UL, 0xd1d168b9UL, 0x00000000UL, 0xeded2cc1UL, 0x20206040UL, 0xfcfc1fe3UL, 0xb1b1c879UL, 0x5b5bedb6UL, 0x6a6abed4UL, 0xcbcb468dUL, 0xbebed967UL, 0x39394b72UL, 0x4a4ade94UL, 0x4c4cd498UL, 0x5858e8b0UL, 0xcfcf4a85UL, 0xd0d06bbbUL, 0xefef2ac5UL, 0xaaaae54fUL, 0xfbfb16edUL, 0x4343c586UL, 0x4d4dd79aUL, 0x33335566UL, 0x85859411UL, 0x4545cf8aUL, 0xf9f910e9UL, 0x02020604UL, 0x7f7f81feUL, 0x5050f0a0UL, 0x3c3c4478UL, 0x9f9fba25UL, 0xa8a8e34bUL, 0x5151f3a2UL, 0xa3a3fe5dUL, 0x4040c080UL, 0x8f8f8a05UL, 0x9292ad3fUL, 0x9d9dbc21UL, 0x38384870UL, 0xf5f504f1UL, 0xbcbcdf63UL, 0xb6b6c177UL, 0xdada75afUL, 0x21216342UL, 0x10103020UL, 0xffff1ae5UL, 0xf3f30efdUL, 0xd2d26dbfUL, 0xcdcd4c81UL, 0x0c0c1418UL, 0x13133526UL, 0xecec2fc3UL, 0x5f5fe1beUL, 0x9797a235UL, 0x4444cc88UL, 0x1717392eUL, 0xc4c45793UL, 0xa7a7f255UL, 0x7e7e82fcUL, 0x3d3d477aUL, 0x6464acc8UL, 0x5d5de7baUL, 0x19192b32UL, 0x737395e6UL, 0x6060a0c0UL, 0x81819819UL, 0x4f4fd19eUL, 0xdcdc7fa3UL, 0x22226644UL, 0x2a2a7e54UL, 0x9090ab3bUL, 0x8888830bUL, 0x4646ca8cUL, 0xeeee29c7UL, 0xb8b8d36bUL, 0x14143c28UL, 0xdede79a7UL, 0x5e5ee2bcUL, 0x0b0b1d16UL, 0xdbdb76adUL, 0xe0e03bdbUL, 0x32325664UL, 0x3a3a4e74UL, 0x0a0a1e14UL, 0x4949db92UL, 0x06060a0cUL, 0x24246c48UL, 0x5c5ce4b8UL, 0xc2c25d9fUL, 0xd3d36ebdUL, 0xacacef43UL, 0x6262a6c4UL, 0x9191a839UL, 0x9595a431UL, 0xe4e437d3UL, 0x79798bf2UL, 0xe7e732d5UL, 0xc8c8438bUL, 0x3737596eUL, 0x6d6db7daUL, 0x8d8d8c01UL, 0xd5d564b1UL, 0x4e4ed29cUL, 0xa9a9e049UL, 0x6c6cb4d8UL, 0x5656faacUL, 0xf4f407f3UL, 0xeaea25cfUL, 0x6565afcaUL, 0x7a7a8ef4UL, 0xaeaee947UL, 0x08081810UL, 0xbabad56fUL, 0x787888f0UL, 0x25256f4aUL, 0x2e2e725cUL, 0x1c1c2438UL, 0xa6a6f157UL, 0xb4b4c773UL, 0xc6c65197UL, 0xe8e823cbUL, 0xdddd7ca1UL, 0x74749ce8UL, 0x1f1f213eUL, 0x4b4bdd96UL, 0xbdbddc61UL, 0x8b8b860dUL, 0x8a8a850fUL, 0x707090e0UL, 0x3e3e427cUL, 0xb5b5c471UL, 0x6666aaccUL, 0x4848d890UL, 0x03030506UL, 0xf6f601f7UL, 0x0e0e121cUL, 0x6161a3c2UL, 0x35355f6aUL, 0x5757f9aeUL, 0xb9b9d069UL, 0x86869117UL, 0xc1c15899UL, 0x1d1d273aUL, 0x9e9eb927UL, 0xe1e138d9UL, 0xf8f813ebUL, 0x9898b32bUL, 0x11113322UL, 0x6969bbd2UL, 0xd9d970a9UL, 0x8e8e8907UL, 0x9494a733UL, 0x9b9bb62dUL, 0x1e1e223cUL, 0x87879215UL, 0xe9e920c9UL, 0xcece4987UL, 0x5555ffaaUL, 0x28287850UL, 0xdfdf7aa5UL, 0x8c8c8f03UL, 0xa1a1f859UL, 0x89898009UL, 0x0d0d171aUL, 0xbfbfda65UL, 0xe6e631d7UL, 0x4242c684UL, 0x6868b8d0UL, 0x4141c382UL, 0x9999b029UL, 0x2d2d775aUL, 0x0f0f111eUL, 0xb0b0cb7bUL, 0x5454fca8UL, 0xbbbbd66dUL, 0x16163a2cUL, }; #ifndef PELI_TAB static const ulong32 Te4_0[] = { 0x00000063UL, 0x0000007cUL, 0x00000077UL, 0x0000007bUL, 0x000000f2UL, 0x0000006bUL, 0x0000006fUL, 0x000000c5UL, 0x00000030UL, 0x00000001UL, 0x00000067UL, 0x0000002bUL, 0x000000feUL, 0x000000d7UL, 0x000000abUL, 0x00000076UL, 0x000000caUL, 0x00000082UL, 0x000000c9UL, 0x0000007dUL, 0x000000faUL, 0x00000059UL, 0x00000047UL, 0x000000f0UL, 0x000000adUL, 0x000000d4UL, 0x000000a2UL, 0x000000afUL, 0x0000009cUL, 0x000000a4UL, 0x00000072UL, 0x000000c0UL, 0x000000b7UL, 0x000000fdUL, 0x00000093UL, 0x00000026UL, 0x00000036UL, 0x0000003fUL, 0x000000f7UL, 0x000000ccUL, 0x00000034UL, 0x000000a5UL, 0x000000e5UL, 0x000000f1UL, 0x00000071UL, 0x000000d8UL, 0x00000031UL, 0x00000015UL, 0x00000004UL, 0x000000c7UL, 0x00000023UL, 0x000000c3UL, 0x00000018UL, 0x00000096UL, 0x00000005UL, 0x0000009aUL, 0x00000007UL, 0x00000012UL, 0x00000080UL, 0x000000e2UL, 0x000000ebUL, 0x00000027UL, 0x000000b2UL, 0x00000075UL, 0x00000009UL, 0x00000083UL, 0x0000002cUL, 0x0000001aUL, 0x0000001bUL, 0x0000006eUL, 0x0000005aUL, 0x000000a0UL, 0x00000052UL, 0x0000003bUL, 0x000000d6UL, 0x000000b3UL, 0x00000029UL, 0x000000e3UL, 0x0000002fUL, 0x00000084UL, 0x00000053UL, 0x000000d1UL, 0x00000000UL, 0x000000edUL, 0x00000020UL, 0x000000fcUL, 0x000000b1UL, 0x0000005bUL, 0x0000006aUL, 0x000000cbUL, 0x000000beUL, 0x00000039UL, 0x0000004aUL, 0x0000004cUL, 0x00000058UL, 0x000000cfUL, 0x000000d0UL, 0x000000efUL, 0x000000aaUL, 0x000000fbUL, 0x00000043UL, 0x0000004dUL, 0x00000033UL, 0x00000085UL, 0x00000045UL, 0x000000f9UL, 0x00000002UL, 0x0000007fUL, 0x00000050UL, 0x0000003cUL, 0x0000009fUL, 0x000000a8UL, 0x00000051UL, 0x000000a3UL, 0x00000040UL, 0x0000008fUL, 0x00000092UL, 0x0000009dUL, 0x00000038UL, 0x000000f5UL, 0x000000bcUL, 0x000000b6UL, 0x000000daUL, 0x00000021UL, 0x00000010UL, 0x000000ffUL, 0x000000f3UL, 0x000000d2UL, 0x000000cdUL, 0x0000000cUL, 0x00000013UL, 0x000000ecUL, 0x0000005fUL, 0x00000097UL, 0x00000044UL, 0x00000017UL, 0x000000c4UL, 0x000000a7UL, 0x0000007eUL, 0x0000003dUL, 0x00000064UL, 0x0000005dUL, 0x00000019UL, 0x00000073UL, 0x00000060UL, 0x00000081UL, 0x0000004fUL, 0x000000dcUL, 0x00000022UL, 0x0000002aUL, 0x00000090UL, 0x00000088UL, 0x00000046UL, 0x000000eeUL, 0x000000b8UL, 0x00000014UL, 0x000000deUL, 0x0000005eUL, 0x0000000bUL, 0x000000dbUL, 0x000000e0UL, 0x00000032UL, 0x0000003aUL, 0x0000000aUL, 0x00000049UL, 0x00000006UL, 0x00000024UL, 0x0000005cUL, 0x000000c2UL, 0x000000d3UL, 0x000000acUL, 0x00000062UL, 0x00000091UL, 0x00000095UL, 0x000000e4UL, 0x00000079UL, 0x000000e7UL, 0x000000c8UL, 0x00000037UL, 0x0000006dUL, 0x0000008dUL, 0x000000d5UL, 0x0000004eUL, 0x000000a9UL, 0x0000006cUL, 0x00000056UL, 0x000000f4UL, 0x000000eaUL, 0x00000065UL, 0x0000007aUL, 0x000000aeUL, 0x00000008UL, 0x000000baUL, 0x00000078UL, 0x00000025UL, 0x0000002eUL, 0x0000001cUL, 0x000000a6UL, 0x000000b4UL, 0x000000c6UL, 0x000000e8UL, 0x000000ddUL, 0x00000074UL, 0x0000001fUL, 0x0000004bUL, 0x000000bdUL, 0x0000008bUL, 0x0000008aUL, 0x00000070UL, 0x0000003eUL, 0x000000b5UL, 0x00000066UL, 0x00000048UL, 0x00000003UL, 0x000000f6UL, 0x0000000eUL, 0x00000061UL, 0x00000035UL, 0x00000057UL, 0x000000b9UL, 0x00000086UL, 0x000000c1UL, 0x0000001dUL, 0x0000009eUL, 0x000000e1UL, 0x000000f8UL, 0x00000098UL, 0x00000011UL, 0x00000069UL, 0x000000d9UL, 0x0000008eUL, 0x00000094UL, 0x0000009bUL, 0x0000001eUL, 0x00000087UL, 0x000000e9UL, 0x000000ceUL, 0x00000055UL, 0x00000028UL, 0x000000dfUL, 0x0000008cUL, 0x000000a1UL, 0x00000089UL, 0x0000000dUL, 0x000000bfUL, 0x000000e6UL, 0x00000042UL, 0x00000068UL, 0x00000041UL, 0x00000099UL, 0x0000002dUL, 0x0000000fUL, 0x000000b0UL, 0x00000054UL, 0x000000bbUL, 0x00000016UL }; static const ulong32 Te4_1[] = { 0x00006300UL, 0x00007c00UL, 0x00007700UL, 0x00007b00UL, 0x0000f200UL, 0x00006b00UL, 0x00006f00UL, 0x0000c500UL, 0x00003000UL, 0x00000100UL, 0x00006700UL, 0x00002b00UL, 0x0000fe00UL, 0x0000d700UL, 0x0000ab00UL, 0x00007600UL, 0x0000ca00UL, 0x00008200UL, 0x0000c900UL, 0x00007d00UL, 0x0000fa00UL, 0x00005900UL, 0x00004700UL, 0x0000f000UL, 0x0000ad00UL, 0x0000d400UL, 0x0000a200UL, 0x0000af00UL, 0x00009c00UL, 0x0000a400UL, 0x00007200UL, 0x0000c000UL, 0x0000b700UL, 0x0000fd00UL, 0x00009300UL, 0x00002600UL, 0x00003600UL, 0x00003f00UL, 0x0000f700UL, 0x0000cc00UL, 0x00003400UL, 0x0000a500UL, 0x0000e500UL, 0x0000f100UL, 0x00007100UL, 0x0000d800UL, 0x00003100UL, 0x00001500UL, 0x00000400UL, 0x0000c700UL, 0x00002300UL, 0x0000c300UL, 0x00001800UL, 0x00009600UL, 0x00000500UL, 0x00009a00UL, 0x00000700UL, 0x00001200UL, 0x00008000UL, 0x0000e200UL, 0x0000eb00UL, 0x00002700UL, 0x0000b200UL, 0x00007500UL, 0x00000900UL, 0x00008300UL, 0x00002c00UL, 0x00001a00UL, 0x00001b00UL, 0x00006e00UL, 0x00005a00UL, 0x0000a000UL, 0x00005200UL, 0x00003b00UL, 0x0000d600UL, 0x0000b300UL, 0x00002900UL, 0x0000e300UL, 0x00002f00UL, 0x00008400UL, 0x00005300UL, 0x0000d100UL, 0x00000000UL, 0x0000ed00UL, 0x00002000UL, 0x0000fc00UL, 0x0000b100UL, 0x00005b00UL, 0x00006a00UL, 0x0000cb00UL, 0x0000be00UL, 0x00003900UL, 0x00004a00UL, 0x00004c00UL, 0x00005800UL, 0x0000cf00UL, 0x0000d000UL, 0x0000ef00UL, 0x0000aa00UL, 0x0000fb00UL, 0x00004300UL, 0x00004d00UL, 0x00003300UL, 0x00008500UL, 0x00004500UL, 0x0000f900UL, 0x00000200UL, 0x00007f00UL, 0x00005000UL, 0x00003c00UL, 0x00009f00UL, 0x0000a800UL, 0x00005100UL, 0x0000a300UL, 0x00004000UL, 0x00008f00UL, 0x00009200UL, 0x00009d00UL, 0x00003800UL, 0x0000f500UL, 0x0000bc00UL, 0x0000b600UL, 0x0000da00UL, 0x00002100UL, 0x00001000UL, 0x0000ff00UL, 0x0000f300UL, 0x0000d200UL, 0x0000cd00UL, 0x00000c00UL, 0x00001300UL, 0x0000ec00UL, 0x00005f00UL, 0x00009700UL, 0x00004400UL, 0x00001700UL, 0x0000c400UL, 0x0000a700UL, 0x00007e00UL, 0x00003d00UL, 0x00006400UL, 0x00005d00UL, 0x00001900UL, 0x00007300UL, 0x00006000UL, 0x00008100UL, 0x00004f00UL, 0x0000dc00UL, 0x00002200UL, 0x00002a00UL, 0x00009000UL, 0x00008800UL, 0x00004600UL, 0x0000ee00UL, 0x0000b800UL, 0x00001400UL, 0x0000de00UL, 0x00005e00UL, 0x00000b00UL, 0x0000db00UL, 0x0000e000UL, 0x00003200UL, 0x00003a00UL, 0x00000a00UL, 0x00004900UL, 0x00000600UL, 0x00002400UL, 0x00005c00UL, 0x0000c200UL, 0x0000d300UL, 0x0000ac00UL, 0x00006200UL, 0x00009100UL, 0x00009500UL, 0x0000e400UL, 0x00007900UL, 0x0000e700UL, 0x0000c800UL, 0x00003700UL, 0x00006d00UL, 0x00008d00UL, 0x0000d500UL, 0x00004e00UL, 0x0000a900UL, 0x00006c00UL, 0x00005600UL, 0x0000f400UL, 0x0000ea00UL, 0x00006500UL, 0x00007a00UL, 0x0000ae00UL, 0x00000800UL, 0x0000ba00UL, 0x00007800UL, 0x00002500UL, 0x00002e00UL, 0x00001c00UL, 0x0000a600UL, 0x0000b400UL, 0x0000c600UL, 0x0000e800UL, 0x0000dd00UL, 0x00007400UL, 0x00001f00UL, 0x00004b00UL, 0x0000bd00UL, 0x00008b00UL, 0x00008a00UL, 0x00007000UL, 0x00003e00UL, 0x0000b500UL, 0x00006600UL, 0x00004800UL, 0x00000300UL, 0x0000f600UL, 0x00000e00UL, 0x00006100UL, 0x00003500UL, 0x00005700UL, 0x0000b900UL, 0x00008600UL, 0x0000c100UL, 0x00001d00UL, 0x00009e00UL, 0x0000e100UL, 0x0000f800UL, 0x00009800UL, 0x00001100UL, 0x00006900UL, 0x0000d900UL, 0x00008e00UL, 0x00009400UL, 0x00009b00UL, 0x00001e00UL, 0x00008700UL, 0x0000e900UL, 0x0000ce00UL, 0x00005500UL, 0x00002800UL, 0x0000df00UL, 0x00008c00UL, 0x0000a100UL, 0x00008900UL, 0x00000d00UL, 0x0000bf00UL, 0x0000e600UL, 0x00004200UL, 0x00006800UL, 0x00004100UL, 0x00009900UL, 0x00002d00UL, 0x00000f00UL, 0x0000b000UL, 0x00005400UL, 0x0000bb00UL, 0x00001600UL }; static const ulong32 Te4_2[] = { 0x00630000UL, 0x007c0000UL, 0x00770000UL, 0x007b0000UL, 0x00f20000UL, 0x006b0000UL, 0x006f0000UL, 0x00c50000UL, 0x00300000UL, 0x00010000UL, 0x00670000UL, 0x002b0000UL, 0x00fe0000UL, 0x00d70000UL, 0x00ab0000UL, 0x00760000UL, 0x00ca0000UL, 0x00820000UL, 0x00c90000UL, 0x007d0000UL, 0x00fa0000UL, 0x00590000UL, 0x00470000UL, 0x00f00000UL, 0x00ad0000UL, 0x00d40000UL, 0x00a20000UL, 0x00af0000UL, 0x009c0000UL, 0x00a40000UL, 0x00720000UL, 0x00c00000UL, 0x00b70000UL, 0x00fd0000UL, 0x00930000UL, 0x00260000UL, 0x00360000UL, 0x003f0000UL, 0x00f70000UL, 0x00cc0000UL, 0x00340000UL, 0x00a50000UL, 0x00e50000UL, 0x00f10000UL, 0x00710000UL, 0x00d80000UL, 0x00310000UL, 0x00150000UL, 0x00040000UL, 0x00c70000UL, 0x00230000UL, 0x00c30000UL, 0x00180000UL, 0x00960000UL, 0x00050000UL, 0x009a0000UL, 0x00070000UL, 0x00120000UL, 0x00800000UL, 0x00e20000UL, 0x00eb0000UL, 0x00270000UL, 0x00b20000UL, 0x00750000UL, 0x00090000UL, 0x00830000UL, 0x002c0000UL, 0x001a0000UL, 0x001b0000UL, 0x006e0000UL, 0x005a0000UL, 0x00a00000UL, 0x00520000UL, 0x003b0000UL, 0x00d60000UL, 0x00b30000UL, 0x00290000UL, 0x00e30000UL, 0x002f0000UL, 0x00840000UL, 0x00530000UL, 0x00d10000UL, 0x00000000UL, 0x00ed0000UL, 0x00200000UL, 0x00fc0000UL, 0x00b10000UL, 0x005b0000UL, 0x006a0000UL, 0x00cb0000UL, 0x00be0000UL, 0x00390000UL, 0x004a0000UL, 0x004c0000UL, 0x00580000UL, 0x00cf0000UL, 0x00d00000UL, 0x00ef0000UL, 0x00aa0000UL, 0x00fb0000UL, 0x00430000UL, 0x004d0000UL, 0x00330000UL, 0x00850000UL, 0x00450000UL, 0x00f90000UL, 0x00020000UL, 0x007f0000UL, 0x00500000UL, 0x003c0000UL, 0x009f0000UL, 0x00a80000UL, 0x00510000UL, 0x00a30000UL, 0x00400000UL, 0x008f0000UL, 0x00920000UL, 0x009d0000UL, 0x00380000UL, 0x00f50000UL, 0x00bc0000UL, 0x00b60000UL, 0x00da0000UL, 0x00210000UL, 0x00100000UL, 0x00ff0000UL, 0x00f30000UL, 0x00d20000UL, 0x00cd0000UL, 0x000c0000UL, 0x00130000UL, 0x00ec0000UL, 0x005f0000UL, 0x00970000UL, 0x00440000UL, 0x00170000UL, 0x00c40000UL, 0x00a70000UL, 0x007e0000UL, 0x003d0000UL, 0x00640000UL, 0x005d0000UL, 0x00190000UL, 0x00730000UL, 0x00600000UL, 0x00810000UL, 0x004f0000UL, 0x00dc0000UL, 0x00220000UL, 0x002a0000UL, 0x00900000UL, 0x00880000UL, 0x00460000UL, 0x00ee0000UL, 0x00b80000UL, 0x00140000UL, 0x00de0000UL, 0x005e0000UL, 0x000b0000UL, 0x00db0000UL, 0x00e00000UL, 0x00320000UL, 0x003a0000UL, 0x000a0000UL, 0x00490000UL, 0x00060000UL, 0x00240000UL, 0x005c0000UL, 0x00c20000UL, 0x00d30000UL, 0x00ac0000UL, 0x00620000UL, 0x00910000UL, 0x00950000UL, 0x00e40000UL, 0x00790000UL, 0x00e70000UL, 0x00c80000UL, 0x00370000UL, 0x006d0000UL, 0x008d0000UL, 0x00d50000UL, 0x004e0000UL, 0x00a90000UL, 0x006c0000UL, 0x00560000UL, 0x00f40000UL, 0x00ea0000UL, 0x00650000UL, 0x007a0000UL, 0x00ae0000UL, 0x00080000UL, 0x00ba0000UL, 0x00780000UL, 0x00250000UL, 0x002e0000UL, 0x001c0000UL, 0x00a60000UL, 0x00b40000UL, 0x00c60000UL, 0x00e80000UL, 0x00dd0000UL, 0x00740000UL, 0x001f0000UL, 0x004b0000UL, 0x00bd0000UL, 0x008b0000UL, 0x008a0000UL, 0x00700000UL, 0x003e0000UL, 0x00b50000UL, 0x00660000UL, 0x00480000UL, 0x00030000UL, 0x00f60000UL, 0x000e0000UL, 0x00610000UL, 0x00350000UL, 0x00570000UL, 0x00b90000UL, 0x00860000UL, 0x00c10000UL, 0x001d0000UL, 0x009e0000UL, 0x00e10000UL, 0x00f80000UL, 0x00980000UL, 0x00110000UL, 0x00690000UL, 0x00d90000UL, 0x008e0000UL, 0x00940000UL, 0x009b0000UL, 0x001e0000UL, 0x00870000UL, 0x00e90000UL, 0x00ce0000UL, 0x00550000UL, 0x00280000UL, 0x00df0000UL, 0x008c0000UL, 0x00a10000UL, 0x00890000UL, 0x000d0000UL, 0x00bf0000UL, 0x00e60000UL, 0x00420000UL, 0x00680000UL, 0x00410000UL, 0x00990000UL, 0x002d0000UL, 0x000f0000UL, 0x00b00000UL, 0x00540000UL, 0x00bb0000UL, 0x00160000UL }; static const ulong32 Te4_3[] = { 0x63000000UL, 0x7c000000UL, 0x77000000UL, 0x7b000000UL, 0xf2000000UL, 0x6b000000UL, 0x6f000000UL, 0xc5000000UL, 0x30000000UL, 0x01000000UL, 0x67000000UL, 0x2b000000UL, 0xfe000000UL, 0xd7000000UL, 0xab000000UL, 0x76000000UL, 0xca000000UL, 0x82000000UL, 0xc9000000UL, 0x7d000000UL, 0xfa000000UL, 0x59000000UL, 0x47000000UL, 0xf0000000UL, 0xad000000UL, 0xd4000000UL, 0xa2000000UL, 0xaf000000UL, 0x9c000000UL, 0xa4000000UL, 0x72000000UL, 0xc0000000UL, 0xb7000000UL, 0xfd000000UL, 0x93000000UL, 0x26000000UL, 0x36000000UL, 0x3f000000UL, 0xf7000000UL, 0xcc000000UL, 0x34000000UL, 0xa5000000UL, 0xe5000000UL, 0xf1000000UL, 0x71000000UL, 0xd8000000UL, 0x31000000UL, 0x15000000UL, 0x04000000UL, 0xc7000000UL, 0x23000000UL, 0xc3000000UL, 0x18000000UL, 0x96000000UL, 0x05000000UL, 0x9a000000UL, 0x07000000UL, 0x12000000UL, 0x80000000UL, 0xe2000000UL, 0xeb000000UL, 0x27000000UL, 0xb2000000UL, 0x75000000UL, 0x09000000UL, 0x83000000UL, 0x2c000000UL, 0x1a000000UL, 0x1b000000UL, 0x6e000000UL, 0x5a000000UL, 0xa0000000UL, 0x52000000UL, 0x3b000000UL, 0xd6000000UL, 0xb3000000UL, 0x29000000UL, 0xe3000000UL, 0x2f000000UL, 0x84000000UL, 0x53000000UL, 0xd1000000UL, 0x00000000UL, 0xed000000UL, 0x20000000UL, 0xfc000000UL, 0xb1000000UL, 0x5b000000UL, 0x6a000000UL, 0xcb000000UL, 0xbe000000UL, 0x39000000UL, 0x4a000000UL, 0x4c000000UL, 0x58000000UL, 0xcf000000UL, 0xd0000000UL, 0xef000000UL, 0xaa000000UL, 0xfb000000UL, 0x43000000UL, 0x4d000000UL, 0x33000000UL, 0x85000000UL, 0x45000000UL, 0xf9000000UL, 0x02000000UL, 0x7f000000UL, 0x50000000UL, 0x3c000000UL, 0x9f000000UL, 0xa8000000UL, 0x51000000UL, 0xa3000000UL, 0x40000000UL, 0x8f000000UL, 0x92000000UL, 0x9d000000UL, 0x38000000UL, 0xf5000000UL, 0xbc000000UL, 0xb6000000UL, 0xda000000UL, 0x21000000UL, 0x10000000UL, 0xff000000UL, 0xf3000000UL, 0xd2000000UL, 0xcd000000UL, 0x0c000000UL, 0x13000000UL, 0xec000000UL, 0x5f000000UL, 0x97000000UL, 0x44000000UL, 0x17000000UL, 0xc4000000UL, 0xa7000000UL, 0x7e000000UL, 0x3d000000UL, 0x64000000UL, 0x5d000000UL, 0x19000000UL, 0x73000000UL, 0x60000000UL, 0x81000000UL, 0x4f000000UL, 0xdc000000UL, 0x22000000UL, 0x2a000000UL, 0x90000000UL, 0x88000000UL, 0x46000000UL, 0xee000000UL, 0xb8000000UL, 0x14000000UL, 0xde000000UL, 0x5e000000UL, 0x0b000000UL, 0xdb000000UL, 0xe0000000UL, 0x32000000UL, 0x3a000000UL, 0x0a000000UL, 0x49000000UL, 0x06000000UL, 0x24000000UL, 0x5c000000UL, 0xc2000000UL, 0xd3000000UL, 0xac000000UL, 0x62000000UL, 0x91000000UL, 0x95000000UL, 0xe4000000UL, 0x79000000UL, 0xe7000000UL, 0xc8000000UL, 0x37000000UL, 0x6d000000UL, 0x8d000000UL, 0xd5000000UL, 0x4e000000UL, 0xa9000000UL, 0x6c000000UL, 0x56000000UL, 0xf4000000UL, 0xea000000UL, 0x65000000UL, 0x7a000000UL, 0xae000000UL, 0x08000000UL, 0xba000000UL, 0x78000000UL, 0x25000000UL, 0x2e000000UL, 0x1c000000UL, 0xa6000000UL, 0xb4000000UL, 0xc6000000UL, 0xe8000000UL, 0xdd000000UL, 0x74000000UL, 0x1f000000UL, 0x4b000000UL, 0xbd000000UL, 0x8b000000UL, 0x8a000000UL, 0x70000000UL, 0x3e000000UL, 0xb5000000UL, 0x66000000UL, 0x48000000UL, 0x03000000UL, 0xf6000000UL, 0x0e000000UL, 0x61000000UL, 0x35000000UL, 0x57000000UL, 0xb9000000UL, 0x86000000UL, 0xc1000000UL, 0x1d000000UL, 0x9e000000UL, 0xe1000000UL, 0xf8000000UL, 0x98000000UL, 0x11000000UL, 0x69000000UL, 0xd9000000UL, 0x8e000000UL, 0x94000000UL, 0x9b000000UL, 0x1e000000UL, 0x87000000UL, 0xe9000000UL, 0xce000000UL, 0x55000000UL, 0x28000000UL, 0xdf000000UL, 0x8c000000UL, 0xa1000000UL, 0x89000000UL, 0x0d000000UL, 0xbf000000UL, 0xe6000000UL, 0x42000000UL, 0x68000000UL, 0x41000000UL, 0x99000000UL, 0x2d000000UL, 0x0f000000UL, 0xb0000000UL, 0x54000000UL, 0xbb000000UL, 0x16000000UL }; #endif /* pelimac */ #ifndef ENCRYPT_ONLY static const ulong32 TD1[256] = { 0x5051f4a7UL, 0x537e4165UL, 0xc31a17a4UL, 0x963a275eUL, 0xcb3bab6bUL, 0xf11f9d45UL, 0xabacfa58UL, 0x934be303UL, 0x552030faUL, 0xf6ad766dUL, 0x9188cc76UL, 0x25f5024cUL, 0xfc4fe5d7UL, 0xd7c52acbUL, 0x80263544UL, 0x8fb562a3UL, 0x49deb15aUL, 0x6725ba1bUL, 0x9845ea0eUL, 0xe15dfec0UL, 0x02c32f75UL, 0x12814cf0UL, 0xa38d4697UL, 0xc66bd3f9UL, 0xe7038f5fUL, 0x9515929cUL, 0xebbf6d7aUL, 0xda955259UL, 0x2dd4be83UL, 0xd3587421UL, 0x2949e069UL, 0x448ec9c8UL, 0x6a75c289UL, 0x78f48e79UL, 0x6b99583eUL, 0xdd27b971UL, 0xb6bee14fUL, 0x17f088adUL, 0x66c920acUL, 0xb47dce3aUL, 0x1863df4aUL, 0x82e51a31UL, 0x60975133UL, 0x4562537fUL, 0xe0b16477UL, 0x84bb6baeUL, 0x1cfe81a0UL, 0x94f9082bUL, 0x58704868UL, 0x198f45fdUL, 0x8794de6cUL, 0xb7527bf8UL, 0x23ab73d3UL, 0xe2724b02UL, 0x57e31f8fUL, 0x2a6655abUL, 0x07b2eb28UL, 0x032fb5c2UL, 0x9a86c57bUL, 0xa5d33708UL, 0xf2302887UL, 0xb223bfa5UL, 0xba02036aUL, 0x5ced1682UL, 0x2b8acf1cUL, 0x92a779b4UL, 0xf0f307f2UL, 0xa14e69e2UL, 0xcd65daf4UL, 0xd50605beUL, 0x1fd13462UL, 0x8ac4a6feUL, 0x9d342e53UL, 0xa0a2f355UL, 0x32058ae1UL, 0x75a4f6ebUL, 0x390b83ecUL, 0xaa4060efUL, 0x065e719fUL, 0x51bd6e10UL, 0xf93e218aUL, 0x3d96dd06UL, 0xaedd3e05UL, 0x464de6bdUL, 0xb591548dUL, 0x0571c45dUL, 0x6f0406d4UL, 0xff605015UL, 0x241998fbUL, 0x97d6bde9UL, 0xcc894043UL, 0x7767d99eUL, 0xbdb0e842UL, 0x8807898bUL, 0x38e7195bUL, 0xdb79c8eeUL, 0x47a17c0aUL, 0xe97c420fUL, 0xc9f8841eUL, 0x00000000UL, 0x83098086UL, 0x48322bedUL, 0xac1e1170UL, 0x4e6c5a72UL, 0xfbfd0effUL, 0x560f8538UL, 0x1e3daed5UL, 0x27362d39UL, 0x640a0fd9UL, 0x21685ca6UL, 0xd19b5b54UL, 0x3a24362eUL, 0xb10c0a67UL, 0x0f9357e7UL, 0xd2b4ee96UL, 0x9e1b9b91UL, 0x4f80c0c5UL, 0xa261dc20UL, 0x695a774bUL, 0x161c121aUL, 0x0ae293baUL, 0xe5c0a02aUL, 0x433c22e0UL, 0x1d121b17UL, 0x0b0e090dUL, 0xadf28bc7UL, 0xb92db6a8UL, 0xc8141ea9UL, 0x8557f119UL, 0x4caf7507UL, 0xbbee99ddUL, 0xfda37f60UL, 0x9ff70126UL, 0xbc5c72f5UL, 0xc544663bUL, 0x345bfb7eUL, 0x768b4329UL, 0xdccb23c6UL, 0x68b6edfcUL, 0x63b8e4f1UL, 0xcad731dcUL, 0x10426385UL, 0x40139722UL, 0x2084c611UL, 0x7d854a24UL, 0xf8d2bb3dUL, 0x11aef932UL, 0x6dc729a1UL, 0x4b1d9e2fUL, 0xf3dcb230UL, 0xec0d8652UL, 0xd077c1e3UL, 0x6c2bb316UL, 0x99a970b9UL, 0xfa119448UL, 0x2247e964UL, 0xc4a8fc8cUL, 0x1aa0f03fUL, 0xd8567d2cUL, 0xef223390UL, 0xc787494eUL, 0xc1d938d1UL, 0xfe8ccaa2UL, 0x3698d40bUL, 0xcfa6f581UL, 0x28a57adeUL, 0x26dab78eUL, 0xa43fadbfUL, 0xe42c3a9dUL, 0x0d507892UL, 0x9b6a5fccUL, 0x62547e46UL, 0xc2f68d13UL, 0xe890d8b8UL, 0x5e2e39f7UL, 0xf582c3afUL, 0xbe9f5d80UL, 0x7c69d093UL, 0xa96fd52dUL, 0xb3cf2512UL, 0x3bc8ac99UL, 0xa710187dUL, 0x6ee89c63UL, 0x7bdb3bbbUL, 0x09cd2678UL, 0xf46e5918UL, 0x01ec9ab7UL, 0xa8834f9aUL, 0x65e6956eUL, 0x7eaaffe6UL, 0x0821bccfUL, 0xe6ef15e8UL, 0xd9bae79bUL, 0xce4a6f36UL, 0xd4ea9f09UL, 0xd629b07cUL, 0xaf31a4b2UL, 0x312a3f23UL, 0x30c6a594UL, 0xc035a266UL, 0x37744ebcUL, 0xa6fc82caUL, 0xb0e090d0UL, 0x1533a7d8UL, 0x4af10498UL, 0xf741ecdaUL, 0x0e7fcd50UL, 0x2f1791f6UL, 0x8d764dd6UL, 0x4d43efb0UL, 0x54ccaa4dUL, 0xdfe49604UL, 0xe39ed1b5UL, 0x1b4c6a88UL, 0xb8c12c1fUL, 0x7f466551UL, 0x049d5eeaUL, 0x5d018c35UL, 0x73fa8774UL, 0x2efb0b41UL, 0x5ab3671dUL, 0x5292dbd2UL, 0x33e91056UL, 0x136dd647UL, 0x8c9ad761UL, 0x7a37a10cUL, 0x8e59f814UL, 0x89eb133cUL, 0xeecea927UL, 0x35b761c9UL, 0xede11ce5UL, 0x3c7a47b1UL, 0x599cd2dfUL, 0x3f55f273UL, 0x791814ceUL, 0xbf73c737UL, 0xea53f7cdUL, 0x5b5ffdaaUL, 0x14df3d6fUL, 0x867844dbUL, 0x81caaff3UL, 0x3eb968c4UL, 0x2c382434UL, 0x5fc2a340UL, 0x72161dc3UL, 0x0cbce225UL, 0x8b283c49UL, 0x41ff0d95UL, 0x7139a801UL, 0xde080cb3UL, 0x9cd8b4e4UL, 0x906456c1UL, 0x617bcb84UL, 0x70d532b6UL, 0x74486c5cUL, 0x42d0b857UL, }; static const ulong32 TD2[256] = { 0xa75051f4UL, 0x65537e41UL, 0xa4c31a17UL, 0x5e963a27UL, 0x6bcb3babUL, 0x45f11f9dUL, 0x58abacfaUL, 0x03934be3UL, 0xfa552030UL, 0x6df6ad76UL, 0x769188ccUL, 0x4c25f502UL, 0xd7fc4fe5UL, 0xcbd7c52aUL, 0x44802635UL, 0xa38fb562UL, 0x5a49deb1UL, 0x1b6725baUL, 0x0e9845eaUL, 0xc0e15dfeUL, 0x7502c32fUL, 0xf012814cUL, 0x97a38d46UL, 0xf9c66bd3UL, 0x5fe7038fUL, 0x9c951592UL, 0x7aebbf6dUL, 0x59da9552UL, 0x832dd4beUL, 0x21d35874UL, 0x692949e0UL, 0xc8448ec9UL, 0x896a75c2UL, 0x7978f48eUL, 0x3e6b9958UL, 0x71dd27b9UL, 0x4fb6bee1UL, 0xad17f088UL, 0xac66c920UL, 0x3ab47dceUL, 0x4a1863dfUL, 0x3182e51aUL, 0x33609751UL, 0x7f456253UL, 0x77e0b164UL, 0xae84bb6bUL, 0xa01cfe81UL, 0x2b94f908UL, 0x68587048UL, 0xfd198f45UL, 0x6c8794deUL, 0xf8b7527bUL, 0xd323ab73UL, 0x02e2724bUL, 0x8f57e31fUL, 0xab2a6655UL, 0x2807b2ebUL, 0xc2032fb5UL, 0x7b9a86c5UL, 0x08a5d337UL, 0x87f23028UL, 0xa5b223bfUL, 0x6aba0203UL, 0x825ced16UL, 0x1c2b8acfUL, 0xb492a779UL, 0xf2f0f307UL, 0xe2a14e69UL, 0xf4cd65daUL, 0xbed50605UL, 0x621fd134UL, 0xfe8ac4a6UL, 0x539d342eUL, 0x55a0a2f3UL, 0xe132058aUL, 0xeb75a4f6UL, 0xec390b83UL, 0xefaa4060UL, 0x9f065e71UL, 0x1051bd6eUL, 0x8af93e21UL, 0x063d96ddUL, 0x05aedd3eUL, 0xbd464de6UL, 0x8db59154UL, 0x5d0571c4UL, 0xd46f0406UL, 0x15ff6050UL, 0xfb241998UL, 0xe997d6bdUL, 0x43cc8940UL, 0x9e7767d9UL, 0x42bdb0e8UL, 0x8b880789UL, 0x5b38e719UL, 0xeedb79c8UL, 0x0a47a17cUL, 0x0fe97c42UL, 0x1ec9f884UL, 0x00000000UL, 0x86830980UL, 0xed48322bUL, 0x70ac1e11UL, 0x724e6c5aUL, 0xfffbfd0eUL, 0x38560f85UL, 0xd51e3daeUL, 0x3927362dUL, 0xd9640a0fUL, 0xa621685cUL, 0x54d19b5bUL, 0x2e3a2436UL, 0x67b10c0aUL, 0xe70f9357UL, 0x96d2b4eeUL, 0x919e1b9bUL, 0xc54f80c0UL, 0x20a261dcUL, 0x4b695a77UL, 0x1a161c12UL, 0xba0ae293UL, 0x2ae5c0a0UL, 0xe0433c22UL, 0x171d121bUL, 0x0d0b0e09UL, 0xc7adf28bUL, 0xa8b92db6UL, 0xa9c8141eUL, 0x198557f1UL, 0x074caf75UL, 0xddbbee99UL, 0x60fda37fUL, 0x269ff701UL, 0xf5bc5c72UL, 0x3bc54466UL, 0x7e345bfbUL, 0x29768b43UL, 0xc6dccb23UL, 0xfc68b6edUL, 0xf163b8e4UL, 0xdccad731UL, 0x85104263UL, 0x22401397UL, 0x112084c6UL, 0x247d854aUL, 0x3df8d2bbUL, 0x3211aef9UL, 0xa16dc729UL, 0x2f4b1d9eUL, 0x30f3dcb2UL, 0x52ec0d86UL, 0xe3d077c1UL, 0x166c2bb3UL, 0xb999a970UL, 0x48fa1194UL, 0x642247e9UL, 0x8cc4a8fcUL, 0x3f1aa0f0UL, 0x2cd8567dUL, 0x90ef2233UL, 0x4ec78749UL, 0xd1c1d938UL, 0xa2fe8ccaUL, 0x0b3698d4UL, 0x81cfa6f5UL, 0xde28a57aUL, 0x8e26dab7UL, 0xbfa43fadUL, 0x9de42c3aUL, 0x920d5078UL, 0xcc9b6a5fUL, 0x4662547eUL, 0x13c2f68dUL, 0xb8e890d8UL, 0xf75e2e39UL, 0xaff582c3UL, 0x80be9f5dUL, 0x937c69d0UL, 0x2da96fd5UL, 0x12b3cf25UL, 0x993bc8acUL, 0x7da71018UL, 0x636ee89cUL, 0xbb7bdb3bUL, 0x7809cd26UL, 0x18f46e59UL, 0xb701ec9aUL, 0x9aa8834fUL, 0x6e65e695UL, 0xe67eaaffUL, 0xcf0821bcUL, 0xe8e6ef15UL, 0x9bd9bae7UL, 0x36ce4a6fUL, 0x09d4ea9fUL, 0x7cd629b0UL, 0xb2af31a4UL, 0x23312a3fUL, 0x9430c6a5UL, 0x66c035a2UL, 0xbc37744eUL, 0xcaa6fc82UL, 0xd0b0e090UL, 0xd81533a7UL, 0x984af104UL, 0xdaf741ecUL, 0x500e7fcdUL, 0xf62f1791UL, 0xd68d764dUL, 0xb04d43efUL, 0x4d54ccaaUL, 0x04dfe496UL, 0xb5e39ed1UL, 0x881b4c6aUL, 0x1fb8c12cUL, 0x517f4665UL, 0xea049d5eUL, 0x355d018cUL, 0x7473fa87UL, 0x412efb0bUL, 0x1d5ab367UL, 0xd25292dbUL, 0x5633e910UL, 0x47136dd6UL, 0x618c9ad7UL, 0x0c7a37a1UL, 0x148e59f8UL, 0x3c89eb13UL, 0x27eecea9UL, 0xc935b761UL, 0xe5ede11cUL, 0xb13c7a47UL, 0xdf599cd2UL, 0x733f55f2UL, 0xce791814UL, 0x37bf73c7UL, 0xcdea53f7UL, 0xaa5b5ffdUL, 0x6f14df3dUL, 0xdb867844UL, 0xf381caafUL, 0xc43eb968UL, 0x342c3824UL, 0x405fc2a3UL, 0xc372161dUL, 0x250cbce2UL, 0x498b283cUL, 0x9541ff0dUL, 0x017139a8UL, 0xb3de080cUL, 0xe49cd8b4UL, 0xc1906456UL, 0x84617bcbUL, 0xb670d532UL, 0x5c74486cUL, 0x5742d0b8UL, }; static const ulong32 TD3[256] = { 0xf4a75051UL, 0x4165537eUL, 0x17a4c31aUL, 0x275e963aUL, 0xab6bcb3bUL, 0x9d45f11fUL, 0xfa58abacUL, 0xe303934bUL, 0x30fa5520UL, 0x766df6adUL, 0xcc769188UL, 0x024c25f5UL, 0xe5d7fc4fUL, 0x2acbd7c5UL, 0x35448026UL, 0x62a38fb5UL, 0xb15a49deUL, 0xba1b6725UL, 0xea0e9845UL, 0xfec0e15dUL, 0x2f7502c3UL, 0x4cf01281UL, 0x4697a38dUL, 0xd3f9c66bUL, 0x8f5fe703UL, 0x929c9515UL, 0x6d7aebbfUL, 0x5259da95UL, 0xbe832dd4UL, 0x7421d358UL, 0xe0692949UL, 0xc9c8448eUL, 0xc2896a75UL, 0x8e7978f4UL, 0x583e6b99UL, 0xb971dd27UL, 0xe14fb6beUL, 0x88ad17f0UL, 0x20ac66c9UL, 0xce3ab47dUL, 0xdf4a1863UL, 0x1a3182e5UL, 0x51336097UL, 0x537f4562UL, 0x6477e0b1UL, 0x6bae84bbUL, 0x81a01cfeUL, 0x082b94f9UL, 0x48685870UL, 0x45fd198fUL, 0xde6c8794UL, 0x7bf8b752UL, 0x73d323abUL, 0x4b02e272UL, 0x1f8f57e3UL, 0x55ab2a66UL, 0xeb2807b2UL, 0xb5c2032fUL, 0xc57b9a86UL, 0x3708a5d3UL, 0x2887f230UL, 0xbfa5b223UL, 0x036aba02UL, 0x16825cedUL, 0xcf1c2b8aUL, 0x79b492a7UL, 0x07f2f0f3UL, 0x69e2a14eUL, 0xdaf4cd65UL, 0x05bed506UL, 0x34621fd1UL, 0xa6fe8ac4UL, 0x2e539d34UL, 0xf355a0a2UL, 0x8ae13205UL, 0xf6eb75a4UL, 0x83ec390bUL, 0x60efaa40UL, 0x719f065eUL, 0x6e1051bdUL, 0x218af93eUL, 0xdd063d96UL, 0x3e05aeddUL, 0xe6bd464dUL, 0x548db591UL, 0xc45d0571UL, 0x06d46f04UL, 0x5015ff60UL, 0x98fb2419UL, 0xbde997d6UL, 0x4043cc89UL, 0xd99e7767UL, 0xe842bdb0UL, 0x898b8807UL, 0x195b38e7UL, 0xc8eedb79UL, 0x7c0a47a1UL, 0x420fe97cUL, 0x841ec9f8UL, 0x00000000UL, 0x80868309UL, 0x2bed4832UL, 0x1170ac1eUL, 0x5a724e6cUL, 0x0efffbfdUL, 0x8538560fUL, 0xaed51e3dUL, 0x2d392736UL, 0x0fd9640aUL, 0x5ca62168UL, 0x5b54d19bUL, 0x362e3a24UL, 0x0a67b10cUL, 0x57e70f93UL, 0xee96d2b4UL, 0x9b919e1bUL, 0xc0c54f80UL, 0xdc20a261UL, 0x774b695aUL, 0x121a161cUL, 0x93ba0ae2UL, 0xa02ae5c0UL, 0x22e0433cUL, 0x1b171d12UL, 0x090d0b0eUL, 0x8bc7adf2UL, 0xb6a8b92dUL, 0x1ea9c814UL, 0xf1198557UL, 0x75074cafUL, 0x99ddbbeeUL, 0x7f60fda3UL, 0x01269ff7UL, 0x72f5bc5cUL, 0x663bc544UL, 0xfb7e345bUL, 0x4329768bUL, 0x23c6dccbUL, 0xedfc68b6UL, 0xe4f163b8UL, 0x31dccad7UL, 0x63851042UL, 0x97224013UL, 0xc6112084UL, 0x4a247d85UL, 0xbb3df8d2UL, 0xf93211aeUL, 0x29a16dc7UL, 0x9e2f4b1dUL, 0xb230f3dcUL, 0x8652ec0dUL, 0xc1e3d077UL, 0xb3166c2bUL, 0x70b999a9UL, 0x9448fa11UL, 0xe9642247UL, 0xfc8cc4a8UL, 0xf03f1aa0UL, 0x7d2cd856UL, 0x3390ef22UL, 0x494ec787UL, 0x38d1c1d9UL, 0xcaa2fe8cUL, 0xd40b3698UL, 0xf581cfa6UL, 0x7ade28a5UL, 0xb78e26daUL, 0xadbfa43fUL, 0x3a9de42cUL, 0x78920d50UL, 0x5fcc9b6aUL, 0x7e466254UL, 0x8d13c2f6UL, 0xd8b8e890UL, 0x39f75e2eUL, 0xc3aff582UL, 0x5d80be9fUL, 0xd0937c69UL, 0xd52da96fUL, 0x2512b3cfUL, 0xac993bc8UL, 0x187da710UL, 0x9c636ee8UL, 0x3bbb7bdbUL, 0x267809cdUL, 0x5918f46eUL, 0x9ab701ecUL, 0x4f9aa883UL, 0x956e65e6UL, 0xffe67eaaUL, 0xbccf0821UL, 0x15e8e6efUL, 0xe79bd9baUL, 0x6f36ce4aUL, 0x9f09d4eaUL, 0xb07cd629UL, 0xa4b2af31UL, 0x3f23312aUL, 0xa59430c6UL, 0xa266c035UL, 0x4ebc3774UL, 0x82caa6fcUL, 0x90d0b0e0UL, 0xa7d81533UL, 0x04984af1UL, 0xecdaf741UL, 0xcd500e7fUL, 0x91f62f17UL, 0x4dd68d76UL, 0xefb04d43UL, 0xaa4d54ccUL, 0x9604dfe4UL, 0xd1b5e39eUL, 0x6a881b4cUL, 0x2c1fb8c1UL, 0x65517f46UL, 0x5eea049dUL, 0x8c355d01UL, 0x877473faUL, 0x0b412efbUL, 0x671d5ab3UL, 0xdbd25292UL, 0x105633e9UL, 0xd647136dUL, 0xd7618c9aUL, 0xa10c7a37UL, 0xf8148e59UL, 0x133c89ebUL, 0xa927eeceUL, 0x61c935b7UL, 0x1ce5ede1UL, 0x47b13c7aUL, 0xd2df599cUL, 0xf2733f55UL, 0x14ce7918UL, 0xc737bf73UL, 0xf7cdea53UL, 0xfdaa5b5fUL, 0x3d6f14dfUL, 0x44db8678UL, 0xaff381caUL, 0x68c43eb9UL, 0x24342c38UL, 0xa3405fc2UL, 0x1dc37216UL, 0xe2250cbcUL, 0x3c498b28UL, 0x0d9541ffUL, 0xa8017139UL, 0x0cb3de08UL, 0xb4e49cd8UL, 0x56c19064UL, 0xcb84617bUL, 0x32b670d5UL, 0x6c5c7448UL, 0xb85742d0UL, }; static const ulong32 Tks0[] = { 0x00000000UL, 0x0e090d0bUL, 0x1c121a16UL, 0x121b171dUL, 0x3824342cUL, 0x362d3927UL, 0x24362e3aUL, 0x2a3f2331UL, 0x70486858UL, 0x7e416553UL, 0x6c5a724eUL, 0x62537f45UL, 0x486c5c74UL, 0x4665517fUL, 0x547e4662UL, 0x5a774b69UL, 0xe090d0b0UL, 0xee99ddbbUL, 0xfc82caa6UL, 0xf28bc7adUL, 0xd8b4e49cUL, 0xd6bde997UL, 0xc4a6fe8aUL, 0xcaaff381UL, 0x90d8b8e8UL, 0x9ed1b5e3UL, 0x8ccaa2feUL, 0x82c3aff5UL, 0xa8fc8cc4UL, 0xa6f581cfUL, 0xb4ee96d2UL, 0xbae79bd9UL, 0xdb3bbb7bUL, 0xd532b670UL, 0xc729a16dUL, 0xc920ac66UL, 0xe31f8f57UL, 0xed16825cUL, 0xff0d9541UL, 0xf104984aUL, 0xab73d323UL, 0xa57ade28UL, 0xb761c935UL, 0xb968c43eUL, 0x9357e70fUL, 0x9d5eea04UL, 0x8f45fd19UL, 0x814cf012UL, 0x3bab6bcbUL, 0x35a266c0UL, 0x27b971ddUL, 0x29b07cd6UL, 0x038f5fe7UL, 0x0d8652ecUL, 0x1f9d45f1UL, 0x119448faUL, 0x4be30393UL, 0x45ea0e98UL, 0x57f11985UL, 0x59f8148eUL, 0x73c737bfUL, 0x7dce3ab4UL, 0x6fd52da9UL, 0x61dc20a2UL, 0xad766df6UL, 0xa37f60fdUL, 0xb16477e0UL, 0xbf6d7aebUL, 0x955259daUL, 0x9b5b54d1UL, 0x894043ccUL, 0x87494ec7UL, 0xdd3e05aeUL, 0xd33708a5UL, 0xc12c1fb8UL, 0xcf2512b3UL, 0xe51a3182UL, 0xeb133c89UL, 0xf9082b94UL, 0xf701269fUL, 0x4de6bd46UL, 0x43efb04dUL, 0x51f4a750UL, 0x5ffdaa5bUL, 0x75c2896aUL, 0x7bcb8461UL, 0x69d0937cUL, 0x67d99e77UL, 0x3daed51eUL, 0x33a7d815UL, 0x21bccf08UL, 0x2fb5c203UL, 0x058ae132UL, 0x0b83ec39UL, 0x1998fb24UL, 0x1791f62fUL, 0x764dd68dUL, 0x7844db86UL, 0x6a5fcc9bUL, 0x6456c190UL, 0x4e69e2a1UL, 0x4060efaaUL, 0x527bf8b7UL, 0x5c72f5bcUL, 0x0605bed5UL, 0x080cb3deUL, 0x1a17a4c3UL, 0x141ea9c8UL, 0x3e218af9UL, 0x302887f2UL, 0x223390efUL, 0x2c3a9de4UL, 0x96dd063dUL, 0x98d40b36UL, 0x8acf1c2bUL, 0x84c61120UL, 0xaef93211UL, 0xa0f03f1aUL, 0xb2eb2807UL, 0xbce2250cUL, 0xe6956e65UL, 0xe89c636eUL, 0xfa877473UL, 0xf48e7978UL, 0xdeb15a49UL, 0xd0b85742UL, 0xc2a3405fUL, 0xccaa4d54UL, 0x41ecdaf7UL, 0x4fe5d7fcUL, 0x5dfec0e1UL, 0x53f7cdeaUL, 0x79c8eedbUL, 0x77c1e3d0UL, 0x65daf4cdUL, 0x6bd3f9c6UL, 0x31a4b2afUL, 0x3fadbfa4UL, 0x2db6a8b9UL, 0x23bfa5b2UL, 0x09808683UL, 0x07898b88UL, 0x15929c95UL, 0x1b9b919eUL, 0xa17c0a47UL, 0xaf75074cUL, 0xbd6e1051UL, 0xb3671d5aUL, 0x99583e6bUL, 0x97513360UL, 0x854a247dUL, 0x8b432976UL, 0xd134621fUL, 0xdf3d6f14UL, 0xcd267809UL, 0xc32f7502UL, 0xe9105633UL, 0xe7195b38UL, 0xf5024c25UL, 0xfb0b412eUL, 0x9ad7618cUL, 0x94de6c87UL, 0x86c57b9aUL, 0x88cc7691UL, 0xa2f355a0UL, 0xacfa58abUL, 0xbee14fb6UL, 0xb0e842bdUL, 0xea9f09d4UL, 0xe49604dfUL, 0xf68d13c2UL, 0xf8841ec9UL, 0xd2bb3df8UL, 0xdcb230f3UL, 0xcea927eeUL, 0xc0a02ae5UL, 0x7a47b13cUL, 0x744ebc37UL, 0x6655ab2aUL, 0x685ca621UL, 0x42638510UL, 0x4c6a881bUL, 0x5e719f06UL, 0x5078920dUL, 0x0a0fd964UL, 0x0406d46fUL, 0x161dc372UL, 0x1814ce79UL, 0x322bed48UL, 0x3c22e043UL, 0x2e39f75eUL, 0x2030fa55UL, 0xec9ab701UL, 0xe293ba0aUL, 0xf088ad17UL, 0xfe81a01cUL, 0xd4be832dUL, 0xdab78e26UL, 0xc8ac993bUL, 0xc6a59430UL, 0x9cd2df59UL, 0x92dbd252UL, 0x80c0c54fUL, 0x8ec9c844UL, 0xa4f6eb75UL, 0xaaffe67eUL, 0xb8e4f163UL, 0xb6edfc68UL, 0x0c0a67b1UL, 0x02036abaUL, 0x10187da7UL, 0x1e1170acUL, 0x342e539dUL, 0x3a275e96UL, 0x283c498bUL, 0x26354480UL, 0x7c420fe9UL, 0x724b02e2UL, 0x605015ffUL, 0x6e5918f4UL, 0x44663bc5UL, 0x4a6f36ceUL, 0x587421d3UL, 0x567d2cd8UL, 0x37a10c7aUL, 0x39a80171UL, 0x2bb3166cUL, 0x25ba1b67UL, 0x0f853856UL, 0x018c355dUL, 0x13972240UL, 0x1d9e2f4bUL, 0x47e96422UL, 0x49e06929UL, 0x5bfb7e34UL, 0x55f2733fUL, 0x7fcd500eUL, 0x71c45d05UL, 0x63df4a18UL, 0x6dd64713UL, 0xd731dccaUL, 0xd938d1c1UL, 0xcb23c6dcUL, 0xc52acbd7UL, 0xef15e8e6UL, 0xe11ce5edUL, 0xf307f2f0UL, 0xfd0efffbUL, 0xa779b492UL, 0xa970b999UL, 0xbb6bae84UL, 0xb562a38fUL, 0x9f5d80beUL, 0x91548db5UL, 0x834f9aa8UL, 0x8d4697a3UL }; static const ulong32 Tks1[] = { 0x00000000UL, 0x0b0e090dUL, 0x161c121aUL, 0x1d121b17UL, 0x2c382434UL, 0x27362d39UL, 0x3a24362eUL, 0x312a3f23UL, 0x58704868UL, 0x537e4165UL, 0x4e6c5a72UL, 0x4562537fUL, 0x74486c5cUL, 0x7f466551UL, 0x62547e46UL, 0x695a774bUL, 0xb0e090d0UL, 0xbbee99ddUL, 0xa6fc82caUL, 0xadf28bc7UL, 0x9cd8b4e4UL, 0x97d6bde9UL, 0x8ac4a6feUL, 0x81caaff3UL, 0xe890d8b8UL, 0xe39ed1b5UL, 0xfe8ccaa2UL, 0xf582c3afUL, 0xc4a8fc8cUL, 0xcfa6f581UL, 0xd2b4ee96UL, 0xd9bae79bUL, 0x7bdb3bbbUL, 0x70d532b6UL, 0x6dc729a1UL, 0x66c920acUL, 0x57e31f8fUL, 0x5ced1682UL, 0x41ff0d95UL, 0x4af10498UL, 0x23ab73d3UL, 0x28a57adeUL, 0x35b761c9UL, 0x3eb968c4UL, 0x0f9357e7UL, 0x049d5eeaUL, 0x198f45fdUL, 0x12814cf0UL, 0xcb3bab6bUL, 0xc035a266UL, 0xdd27b971UL, 0xd629b07cUL, 0xe7038f5fUL, 0xec0d8652UL, 0xf11f9d45UL, 0xfa119448UL, 0x934be303UL, 0x9845ea0eUL, 0x8557f119UL, 0x8e59f814UL, 0xbf73c737UL, 0xb47dce3aUL, 0xa96fd52dUL, 0xa261dc20UL, 0xf6ad766dUL, 0xfda37f60UL, 0xe0b16477UL, 0xebbf6d7aUL, 0xda955259UL, 0xd19b5b54UL, 0xcc894043UL, 0xc787494eUL, 0xaedd3e05UL, 0xa5d33708UL, 0xb8c12c1fUL, 0xb3cf2512UL, 0x82e51a31UL, 0x89eb133cUL, 0x94f9082bUL, 0x9ff70126UL, 0x464de6bdUL, 0x4d43efb0UL, 0x5051f4a7UL, 0x5b5ffdaaUL, 0x6a75c289UL, 0x617bcb84UL, 0x7c69d093UL, 0x7767d99eUL, 0x1e3daed5UL, 0x1533a7d8UL, 0x0821bccfUL, 0x032fb5c2UL, 0x32058ae1UL, 0x390b83ecUL, 0x241998fbUL, 0x2f1791f6UL, 0x8d764dd6UL, 0x867844dbUL, 0x9b6a5fccUL, 0x906456c1UL, 0xa14e69e2UL, 0xaa4060efUL, 0xb7527bf8UL, 0xbc5c72f5UL, 0xd50605beUL, 0xde080cb3UL, 0xc31a17a4UL, 0xc8141ea9UL, 0xf93e218aUL, 0xf2302887UL, 0xef223390UL, 0xe42c3a9dUL, 0x3d96dd06UL, 0x3698d40bUL, 0x2b8acf1cUL, 0x2084c611UL, 0x11aef932UL, 0x1aa0f03fUL, 0x07b2eb28UL, 0x0cbce225UL, 0x65e6956eUL, 0x6ee89c63UL, 0x73fa8774UL, 0x78f48e79UL, 0x49deb15aUL, 0x42d0b857UL, 0x5fc2a340UL, 0x54ccaa4dUL, 0xf741ecdaUL, 0xfc4fe5d7UL, 0xe15dfec0UL, 0xea53f7cdUL, 0xdb79c8eeUL, 0xd077c1e3UL, 0xcd65daf4UL, 0xc66bd3f9UL, 0xaf31a4b2UL, 0xa43fadbfUL, 0xb92db6a8UL, 0xb223bfa5UL, 0x83098086UL, 0x8807898bUL, 0x9515929cUL, 0x9e1b9b91UL, 0x47a17c0aUL, 0x4caf7507UL, 0x51bd6e10UL, 0x5ab3671dUL, 0x6b99583eUL, 0x60975133UL, 0x7d854a24UL, 0x768b4329UL, 0x1fd13462UL, 0x14df3d6fUL, 0x09cd2678UL, 0x02c32f75UL, 0x33e91056UL, 0x38e7195bUL, 0x25f5024cUL, 0x2efb0b41UL, 0x8c9ad761UL, 0x8794de6cUL, 0x9a86c57bUL, 0x9188cc76UL, 0xa0a2f355UL, 0xabacfa58UL, 0xb6bee14fUL, 0xbdb0e842UL, 0xd4ea9f09UL, 0xdfe49604UL, 0xc2f68d13UL, 0xc9f8841eUL, 0xf8d2bb3dUL, 0xf3dcb230UL, 0xeecea927UL, 0xe5c0a02aUL, 0x3c7a47b1UL, 0x37744ebcUL, 0x2a6655abUL, 0x21685ca6UL, 0x10426385UL, 0x1b4c6a88UL, 0x065e719fUL, 0x0d507892UL, 0x640a0fd9UL, 0x6f0406d4UL, 0x72161dc3UL, 0x791814ceUL, 0x48322bedUL, 0x433c22e0UL, 0x5e2e39f7UL, 0x552030faUL, 0x01ec9ab7UL, 0x0ae293baUL, 0x17f088adUL, 0x1cfe81a0UL, 0x2dd4be83UL, 0x26dab78eUL, 0x3bc8ac99UL, 0x30c6a594UL, 0x599cd2dfUL, 0x5292dbd2UL, 0x4f80c0c5UL, 0x448ec9c8UL, 0x75a4f6ebUL, 0x7eaaffe6UL, 0x63b8e4f1UL, 0x68b6edfcUL, 0xb10c0a67UL, 0xba02036aUL, 0xa710187dUL, 0xac1e1170UL, 0x9d342e53UL, 0x963a275eUL, 0x8b283c49UL, 0x80263544UL, 0xe97c420fUL, 0xe2724b02UL, 0xff605015UL, 0xf46e5918UL, 0xc544663bUL, 0xce4a6f36UL, 0xd3587421UL, 0xd8567d2cUL, 0x7a37a10cUL, 0x7139a801UL, 0x6c2bb316UL, 0x6725ba1bUL, 0x560f8538UL, 0x5d018c35UL, 0x40139722UL, 0x4b1d9e2fUL, 0x2247e964UL, 0x2949e069UL, 0x345bfb7eUL, 0x3f55f273UL, 0x0e7fcd50UL, 0x0571c45dUL, 0x1863df4aUL, 0x136dd647UL, 0xcad731dcUL, 0xc1d938d1UL, 0xdccb23c6UL, 0xd7c52acbUL, 0xe6ef15e8UL, 0xede11ce5UL, 0xf0f307f2UL, 0xfbfd0effUL, 0x92a779b4UL, 0x99a970b9UL, 0x84bb6baeUL, 0x8fb562a3UL, 0xbe9f5d80UL, 0xb591548dUL, 0xa8834f9aUL, 0xa38d4697UL }; static const ulong32 Tks2[] = { 0x00000000UL, 0x0d0b0e09UL, 0x1a161c12UL, 0x171d121bUL, 0x342c3824UL, 0x3927362dUL, 0x2e3a2436UL, 0x23312a3fUL, 0x68587048UL, 0x65537e41UL, 0x724e6c5aUL, 0x7f456253UL, 0x5c74486cUL, 0x517f4665UL, 0x4662547eUL, 0x4b695a77UL, 0xd0b0e090UL, 0xddbbee99UL, 0xcaa6fc82UL, 0xc7adf28bUL, 0xe49cd8b4UL, 0xe997d6bdUL, 0xfe8ac4a6UL, 0xf381caafUL, 0xb8e890d8UL, 0xb5e39ed1UL, 0xa2fe8ccaUL, 0xaff582c3UL, 0x8cc4a8fcUL, 0x81cfa6f5UL, 0x96d2b4eeUL, 0x9bd9bae7UL, 0xbb7bdb3bUL, 0xb670d532UL, 0xa16dc729UL, 0xac66c920UL, 0x8f57e31fUL, 0x825ced16UL, 0x9541ff0dUL, 0x984af104UL, 0xd323ab73UL, 0xde28a57aUL, 0xc935b761UL, 0xc43eb968UL, 0xe70f9357UL, 0xea049d5eUL, 0xfd198f45UL, 0xf012814cUL, 0x6bcb3babUL, 0x66c035a2UL, 0x71dd27b9UL, 0x7cd629b0UL, 0x5fe7038fUL, 0x52ec0d86UL, 0x45f11f9dUL, 0x48fa1194UL, 0x03934be3UL, 0x0e9845eaUL, 0x198557f1UL, 0x148e59f8UL, 0x37bf73c7UL, 0x3ab47dceUL, 0x2da96fd5UL, 0x20a261dcUL, 0x6df6ad76UL, 0x60fda37fUL, 0x77e0b164UL, 0x7aebbf6dUL, 0x59da9552UL, 0x54d19b5bUL, 0x43cc8940UL, 0x4ec78749UL, 0x05aedd3eUL, 0x08a5d337UL, 0x1fb8c12cUL, 0x12b3cf25UL, 0x3182e51aUL, 0x3c89eb13UL, 0x2b94f908UL, 0x269ff701UL, 0xbd464de6UL, 0xb04d43efUL, 0xa75051f4UL, 0xaa5b5ffdUL, 0x896a75c2UL, 0x84617bcbUL, 0x937c69d0UL, 0x9e7767d9UL, 0xd51e3daeUL, 0xd81533a7UL, 0xcf0821bcUL, 0xc2032fb5UL, 0xe132058aUL, 0xec390b83UL, 0xfb241998UL, 0xf62f1791UL, 0xd68d764dUL, 0xdb867844UL, 0xcc9b6a5fUL, 0xc1906456UL, 0xe2a14e69UL, 0xefaa4060UL, 0xf8b7527bUL, 0xf5bc5c72UL, 0xbed50605UL, 0xb3de080cUL, 0xa4c31a17UL, 0xa9c8141eUL, 0x8af93e21UL, 0x87f23028UL, 0x90ef2233UL, 0x9de42c3aUL, 0x063d96ddUL, 0x0b3698d4UL, 0x1c2b8acfUL, 0x112084c6UL, 0x3211aef9UL, 0x3f1aa0f0UL, 0x2807b2ebUL, 0x250cbce2UL, 0x6e65e695UL, 0x636ee89cUL, 0x7473fa87UL, 0x7978f48eUL, 0x5a49deb1UL, 0x5742d0b8UL, 0x405fc2a3UL, 0x4d54ccaaUL, 0xdaf741ecUL, 0xd7fc4fe5UL, 0xc0e15dfeUL, 0xcdea53f7UL, 0xeedb79c8UL, 0xe3d077c1UL, 0xf4cd65daUL, 0xf9c66bd3UL, 0xb2af31a4UL, 0xbfa43fadUL, 0xa8b92db6UL, 0xa5b223bfUL, 0x86830980UL, 0x8b880789UL, 0x9c951592UL, 0x919e1b9bUL, 0x0a47a17cUL, 0x074caf75UL, 0x1051bd6eUL, 0x1d5ab367UL, 0x3e6b9958UL, 0x33609751UL, 0x247d854aUL, 0x29768b43UL, 0x621fd134UL, 0x6f14df3dUL, 0x7809cd26UL, 0x7502c32fUL, 0x5633e910UL, 0x5b38e719UL, 0x4c25f502UL, 0x412efb0bUL, 0x618c9ad7UL, 0x6c8794deUL, 0x7b9a86c5UL, 0x769188ccUL, 0x55a0a2f3UL, 0x58abacfaUL, 0x4fb6bee1UL, 0x42bdb0e8UL, 0x09d4ea9fUL, 0x04dfe496UL, 0x13c2f68dUL, 0x1ec9f884UL, 0x3df8d2bbUL, 0x30f3dcb2UL, 0x27eecea9UL, 0x2ae5c0a0UL, 0xb13c7a47UL, 0xbc37744eUL, 0xab2a6655UL, 0xa621685cUL, 0x85104263UL, 0x881b4c6aUL, 0x9f065e71UL, 0x920d5078UL, 0xd9640a0fUL, 0xd46f0406UL, 0xc372161dUL, 0xce791814UL, 0xed48322bUL, 0xe0433c22UL, 0xf75e2e39UL, 0xfa552030UL, 0xb701ec9aUL, 0xba0ae293UL, 0xad17f088UL, 0xa01cfe81UL, 0x832dd4beUL, 0x8e26dab7UL, 0x993bc8acUL, 0x9430c6a5UL, 0xdf599cd2UL, 0xd25292dbUL, 0xc54f80c0UL, 0xc8448ec9UL, 0xeb75a4f6UL, 0xe67eaaffUL, 0xf163b8e4UL, 0xfc68b6edUL, 0x67b10c0aUL, 0x6aba0203UL, 0x7da71018UL, 0x70ac1e11UL, 0x539d342eUL, 0x5e963a27UL, 0x498b283cUL, 0x44802635UL, 0x0fe97c42UL, 0x02e2724bUL, 0x15ff6050UL, 0x18f46e59UL, 0x3bc54466UL, 0x36ce4a6fUL, 0x21d35874UL, 0x2cd8567dUL, 0x0c7a37a1UL, 0x017139a8UL, 0x166c2bb3UL, 0x1b6725baUL, 0x38560f85UL, 0x355d018cUL, 0x22401397UL, 0x2f4b1d9eUL, 0x642247e9UL, 0x692949e0UL, 0x7e345bfbUL, 0x733f55f2UL, 0x500e7fcdUL, 0x5d0571c4UL, 0x4a1863dfUL, 0x47136dd6UL, 0xdccad731UL, 0xd1c1d938UL, 0xc6dccb23UL, 0xcbd7c52aUL, 0xe8e6ef15UL, 0xe5ede11cUL, 0xf2f0f307UL, 0xfffbfd0eUL, 0xb492a779UL, 0xb999a970UL, 0xae84bb6bUL, 0xa38fb562UL, 0x80be9f5dUL, 0x8db59154UL, 0x9aa8834fUL, 0x97a38d46UL }; static const ulong32 Tks3[] = { 0x00000000UL, 0x090d0b0eUL, 0x121a161cUL, 0x1b171d12UL, 0x24342c38UL, 0x2d392736UL, 0x362e3a24UL, 0x3f23312aUL, 0x48685870UL, 0x4165537eUL, 0x5a724e6cUL, 0x537f4562UL, 0x6c5c7448UL, 0x65517f46UL, 0x7e466254UL, 0x774b695aUL, 0x90d0b0e0UL, 0x99ddbbeeUL, 0x82caa6fcUL, 0x8bc7adf2UL, 0xb4e49cd8UL, 0xbde997d6UL, 0xa6fe8ac4UL, 0xaff381caUL, 0xd8b8e890UL, 0xd1b5e39eUL, 0xcaa2fe8cUL, 0xc3aff582UL, 0xfc8cc4a8UL, 0xf581cfa6UL, 0xee96d2b4UL, 0xe79bd9baUL, 0x3bbb7bdbUL, 0x32b670d5UL, 0x29a16dc7UL, 0x20ac66c9UL, 0x1f8f57e3UL, 0x16825cedUL, 0x0d9541ffUL, 0x04984af1UL, 0x73d323abUL, 0x7ade28a5UL, 0x61c935b7UL, 0x68c43eb9UL, 0x57e70f93UL, 0x5eea049dUL, 0x45fd198fUL, 0x4cf01281UL, 0xab6bcb3bUL, 0xa266c035UL, 0xb971dd27UL, 0xb07cd629UL, 0x8f5fe703UL, 0x8652ec0dUL, 0x9d45f11fUL, 0x9448fa11UL, 0xe303934bUL, 0xea0e9845UL, 0xf1198557UL, 0xf8148e59UL, 0xc737bf73UL, 0xce3ab47dUL, 0xd52da96fUL, 0xdc20a261UL, 0x766df6adUL, 0x7f60fda3UL, 0x6477e0b1UL, 0x6d7aebbfUL, 0x5259da95UL, 0x5b54d19bUL, 0x4043cc89UL, 0x494ec787UL, 0x3e05aeddUL, 0x3708a5d3UL, 0x2c1fb8c1UL, 0x2512b3cfUL, 0x1a3182e5UL, 0x133c89ebUL, 0x082b94f9UL, 0x01269ff7UL, 0xe6bd464dUL, 0xefb04d43UL, 0xf4a75051UL, 0xfdaa5b5fUL, 0xc2896a75UL, 0xcb84617bUL, 0xd0937c69UL, 0xd99e7767UL, 0xaed51e3dUL, 0xa7d81533UL, 0xbccf0821UL, 0xb5c2032fUL, 0x8ae13205UL, 0x83ec390bUL, 0x98fb2419UL, 0x91f62f17UL, 0x4dd68d76UL, 0x44db8678UL, 0x5fcc9b6aUL, 0x56c19064UL, 0x69e2a14eUL, 0x60efaa40UL, 0x7bf8b752UL, 0x72f5bc5cUL, 0x05bed506UL, 0x0cb3de08UL, 0x17a4c31aUL, 0x1ea9c814UL, 0x218af93eUL, 0x2887f230UL, 0x3390ef22UL, 0x3a9de42cUL, 0xdd063d96UL, 0xd40b3698UL, 0xcf1c2b8aUL, 0xc6112084UL, 0xf93211aeUL, 0xf03f1aa0UL, 0xeb2807b2UL, 0xe2250cbcUL, 0x956e65e6UL, 0x9c636ee8UL, 0x877473faUL, 0x8e7978f4UL, 0xb15a49deUL, 0xb85742d0UL, 0xa3405fc2UL, 0xaa4d54ccUL, 0xecdaf741UL, 0xe5d7fc4fUL, 0xfec0e15dUL, 0xf7cdea53UL, 0xc8eedb79UL, 0xc1e3d077UL, 0xdaf4cd65UL, 0xd3f9c66bUL, 0xa4b2af31UL, 0xadbfa43fUL, 0xb6a8b92dUL, 0xbfa5b223UL, 0x80868309UL, 0x898b8807UL, 0x929c9515UL, 0x9b919e1bUL, 0x7c0a47a1UL, 0x75074cafUL, 0x6e1051bdUL, 0x671d5ab3UL, 0x583e6b99UL, 0x51336097UL, 0x4a247d85UL, 0x4329768bUL, 0x34621fd1UL, 0x3d6f14dfUL, 0x267809cdUL, 0x2f7502c3UL, 0x105633e9UL, 0x195b38e7UL, 0x024c25f5UL, 0x0b412efbUL, 0xd7618c9aUL, 0xde6c8794UL, 0xc57b9a86UL, 0xcc769188UL, 0xf355a0a2UL, 0xfa58abacUL, 0xe14fb6beUL, 0xe842bdb0UL, 0x9f09d4eaUL, 0x9604dfe4UL, 0x8d13c2f6UL, 0x841ec9f8UL, 0xbb3df8d2UL, 0xb230f3dcUL, 0xa927eeceUL, 0xa02ae5c0UL, 0x47b13c7aUL, 0x4ebc3774UL, 0x55ab2a66UL, 0x5ca62168UL, 0x63851042UL, 0x6a881b4cUL, 0x719f065eUL, 0x78920d50UL, 0x0fd9640aUL, 0x06d46f04UL, 0x1dc37216UL, 0x14ce7918UL, 0x2bed4832UL, 0x22e0433cUL, 0x39f75e2eUL, 0x30fa5520UL, 0x9ab701ecUL, 0x93ba0ae2UL, 0x88ad17f0UL, 0x81a01cfeUL, 0xbe832dd4UL, 0xb78e26daUL, 0xac993bc8UL, 0xa59430c6UL, 0xd2df599cUL, 0xdbd25292UL, 0xc0c54f80UL, 0xc9c8448eUL, 0xf6eb75a4UL, 0xffe67eaaUL, 0xe4f163b8UL, 0xedfc68b6UL, 0x0a67b10cUL, 0x036aba02UL, 0x187da710UL, 0x1170ac1eUL, 0x2e539d34UL, 0x275e963aUL, 0x3c498b28UL, 0x35448026UL, 0x420fe97cUL, 0x4b02e272UL, 0x5015ff60UL, 0x5918f46eUL, 0x663bc544UL, 0x6f36ce4aUL, 0x7421d358UL, 0x7d2cd856UL, 0xa10c7a37UL, 0xa8017139UL, 0xb3166c2bUL, 0xba1b6725UL, 0x8538560fUL, 0x8c355d01UL, 0x97224013UL, 0x9e2f4b1dUL, 0xe9642247UL, 0xe0692949UL, 0xfb7e345bUL, 0xf2733f55UL, 0xcd500e7fUL, 0xc45d0571UL, 0xdf4a1863UL, 0xd647136dUL, 0x31dccad7UL, 0x38d1c1d9UL, 0x23c6dccbUL, 0x2acbd7c5UL, 0x15e8e6efUL, 0x1ce5ede1UL, 0x07f2f0f3UL, 0x0efffbfdUL, 0x79b492a7UL, 0x70b999a9UL, 0x6bae84bbUL, 0x62a38fb5UL, 0x5d80be9fUL, 0x548db591UL, 0x4f9aa883UL, 0x4697a38dUL }; #endif /* ENCRYPT_ONLY */ #endif /* SMALL CODE */ static const ulong32 rcon[] = { 0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL, 0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; #endif /* __LTC_AES_TAB_C__ */ /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /* AES implementation by Tom St Denis * * Derived from the Public Domain source code by --- * rijndael-alg-fst.c * * @version 3.0 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto --- */ /** @file aes.c Implementation of AES */ #ifdef LTC_RIJNDAEL #ifndef ENCRYPT_ONLY #define SETUP rijndael_setup #define ECB_ENC rijndael_ecb_encrypt #define ECB_DEC rijndael_ecb_decrypt #define ECB_DONE rijndael_done #define ECB_TEST rijndael_test #define ECB_KS rijndael_keysize const struct ltc_cipher_descriptor rijndael_desc = { "rijndael", 6, 16, 32, 16, 10, SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS, // NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; const struct ltc_cipher_descriptor aes_desc = { "aes", 6, 16, 32, 16, 10, SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS, // NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #else #define SETUP rijndael_enc_setup #define ECB_ENC rijndael_enc_ecb_encrypt #define ECB_KS rijndael_enc_keysize #define ECB_DONE rijndael_enc_done const struct ltc_cipher_descriptor rijndael_enc_desc = { "rijndael", 6, 16, 32, 16, 10, SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS, // NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; const struct ltc_cipher_descriptor aes_enc_desc = { "aes", 6, 16, 32, 16, 10, SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS, // NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #endif #define __LTC_AES_TAB_C__ static ulong32 setup_mix(ulong32 temp) { return (Te4_3[byte(temp, 2)]) ^ (Te4_2[byte(temp, 1)]) ^ (Te4_1[byte(temp, 0)]) ^ (Te4_0[byte(temp, 3)]); } #ifndef ENCRYPT_ONLY #ifdef LTC_SMALL_CODE static ulong32 setup_mix2(ulong32 temp) { return Td0(255 & Te4[byte(temp, 3)]) ^ Td1(255 & Te4[byte(temp, 2)]) ^ Td2(255 & Te4[byte(temp, 1)]) ^ Td3(255 & Te4[byte(temp, 0)]); } #endif #endif /** Initialize the AES (Rijndael) block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { int i; ulong32 temp, *rk; #ifndef ENCRYPT_ONLY ulong32 *rrk; #endif LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); if (keylen != 16 && keylen != 24 && keylen != 32) { return CRYPT_INVALID_KEYSIZE; } if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) { return CRYPT_INVALID_ROUNDS; } skey->rijndael.Nr = 10 + ((keylen/8)-2)*2; /* setup the forward key */ i = 0; rk = skey->rijndael.eK; LOAD32H(rk[0], key ); LOAD32H(rk[1], key + 4); LOAD32H(rk[2], key + 8); LOAD32H(rk[3], key + 12); if (keylen == 16) { for (;;) { temp = rk[3]; rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { break; } rk += 4; } } else if (keylen == 24) { LOAD32H(rk[4], key + 16); LOAD32H(rk[5], key + 20); for (;;) { #ifdef _MSC_VER temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5]; #else temp = rk[5]; #endif rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { break; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } else if (keylen == 32) { LOAD32H(rk[4], key + 16); LOAD32H(rk[5], key + 20); LOAD32H(rk[6], key + 24); LOAD32H(rk[7], key + 28); for (;;) { #ifdef _MSC_VER temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7]; #else temp = rk[7]; #endif rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { break; } temp = rk[11]; rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8)); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } else { /* this can't happen */ /* coverity[dead_error_line] */ return CRYPT_ERROR; } #ifndef ENCRYPT_ONLY /* setup the inverse key now */ rk = skey->rijndael.dK; rrk = skey->rijndael.eK + (28 + keylen) - 4; /* apply the inverse MixColumn transform to all round keys but the first and the last: */ /* copy first */ *rk++ = *rrk++; *rk++ = *rrk++; *rk++ = *rrk++; *rk = *rrk; rk -= 3; rrk -= 3; for (i = 1; i < skey->rijndael.Nr; i++) { rrk -= 4; rk += 4; #ifdef LTC_SMALL_CODE temp = rrk[0]; rk[0] = setup_mix2(temp); temp = rrk[1]; rk[1] = setup_mix2(temp); temp = rrk[2]; rk[2] = setup_mix2(temp); temp = rrk[3]; rk[3] = setup_mix2(temp); #else temp = rrk[0]; rk[0] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; temp = rrk[1]; rk[1] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; temp = rrk[2]; rk[2] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; temp = rrk[3]; rk[3] = Tks0[byte(temp, 3)] ^ Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; #endif } /* copy last */ rrk -= 4; rk += 4; *rk++ = *rrk++; *rk++ = *rrk++; *rk++ = *rrk++; *rk = *rrk; #endif /* ENCRYPT_ONLY */ return CRYPT_OK; } /** Encrypts a block of text with AES @param pt The input plaintext (16 bytes) @param ct The output ciphertext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk; int Nr, r; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); Nr = skey->rijndael.Nr; rk = skey->rijndael.eK; /* * map byte array block to cipher state * and add initial round key: */ LOAD32H(s0, pt ); s0 ^= rk[0]; LOAD32H(s1, pt + 4); s1 ^= rk[1]; LOAD32H(s2, pt + 8); s2 ^= rk[2]; LOAD32H(s3, pt + 12); s3 ^= rk[3]; #ifdef LTC_SMALL_CODE for (r = 0; ; r++) { rk += 4; t0 = Te0(byte(s0, 3)) ^ Te1(byte(s1, 2)) ^ Te2(byte(s2, 1)) ^ Te3(byte(s3, 0)) ^ rk[0]; t1 = Te0(byte(s1, 3)) ^ Te1(byte(s2, 2)) ^ Te2(byte(s3, 1)) ^ Te3(byte(s0, 0)) ^ rk[1]; t2 = Te0(byte(s2, 3)) ^ Te1(byte(s3, 2)) ^ Te2(byte(s0, 1)) ^ Te3(byte(s1, 0)) ^ rk[2]; t3 = Te0(byte(s3, 3)) ^ Te1(byte(s0, 2)) ^ Te2(byte(s1, 1)) ^ Te3(byte(s2, 0)) ^ rk[3]; if (r == Nr-2) { break; } s0 = t0; s1 = t1; s2 = t2; s3 = t3; } rk += 4; #else /* * Nr - 1 full rounds: */ r = Nr >> 1; for (;;) { t0 = Te0(byte(s0, 3)) ^ Te1(byte(s1, 2)) ^ Te2(byte(s2, 1)) ^ Te3(byte(s3, 0)) ^ rk[4]; t1 = Te0(byte(s1, 3)) ^ Te1(byte(s2, 2)) ^ Te2(byte(s3, 1)) ^ Te3(byte(s0, 0)) ^ rk[5]; t2 = Te0(byte(s2, 3)) ^ Te1(byte(s3, 2)) ^ Te2(byte(s0, 1)) ^ Te3(byte(s1, 0)) ^ rk[6]; t3 = Te0(byte(s3, 3)) ^ Te1(byte(s0, 2)) ^ Te2(byte(s1, 1)) ^ Te3(byte(s2, 0)) ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Te0(byte(t0, 3)) ^ Te1(byte(t1, 2)) ^ Te2(byte(t2, 1)) ^ Te3(byte(t3, 0)) ^ rk[0]; s1 = Te0(byte(t1, 3)) ^ Te1(byte(t2, 2)) ^ Te2(byte(t3, 1)) ^ Te3(byte(t0, 0)) ^ rk[1]; s2 = Te0(byte(t2, 3)) ^ Te1(byte(t3, 2)) ^ Te2(byte(t0, 1)) ^ Te3(byte(t1, 0)) ^ rk[2]; s3 = Te0(byte(t3, 3)) ^ Te1(byte(t0, 2)) ^ Te2(byte(t1, 1)) ^ Te3(byte(t2, 0)) ^ rk[3]; } #endif /* * apply last round and * map cipher state to byte array block: */ s0 = (Te4_3[byte(t0, 3)]) ^ (Te4_2[byte(t1, 2)]) ^ (Te4_1[byte(t2, 1)]) ^ (Te4_0[byte(t3, 0)]) ^ rk[0]; STORE32H(s0, ct); s1 = (Te4_3[byte(t1, 3)]) ^ (Te4_2[byte(t2, 2)]) ^ (Te4_1[byte(t3, 1)]) ^ (Te4_0[byte(t0, 0)]) ^ rk[1]; STORE32H(s1, ct+4); s2 = (Te4_3[byte(t2, 3)]) ^ (Te4_2[byte(t3, 2)]) ^ (Te4_1[byte(t0, 1)]) ^ (Te4_0[byte(t1, 0)]) ^ rk[2]; STORE32H(s2, ct+8); s3 = (Te4_3[byte(t3, 3)]) ^ (Te4_2[byte(t0, 2)]) ^ (Te4_1[byte(t1, 1)]) ^ (Te4_0[byte(t2, 0)]) ^ rk[3]; STORE32H(s3, ct+12); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _rijndael_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2); return err; } #endif #ifndef ENCRYPT_ONLY /** Decrypts a block of text with AES @param ct The input ciphertext (16 bytes) @param pt The output plaintext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk; int Nr, r; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); Nr = skey->rijndael.Nr; rk = skey->rijndael.dK; /* * map byte array block to cipher state * and add initial round key: */ LOAD32H(s0, ct ); s0 ^= rk[0]; LOAD32H(s1, ct + 4); s1 ^= rk[1]; LOAD32H(s2, ct + 8); s2 ^= rk[2]; LOAD32H(s3, ct + 12); s3 ^= rk[3]; #ifdef LTC_SMALL_CODE for (r = 0; ; r++) { rk += 4; t0 = Td0(byte(s0, 3)) ^ Td1(byte(s3, 2)) ^ Td2(byte(s2, 1)) ^ Td3(byte(s1, 0)) ^ rk[0]; t1 = Td0(byte(s1, 3)) ^ Td1(byte(s0, 2)) ^ Td2(byte(s3, 1)) ^ Td3(byte(s2, 0)) ^ rk[1]; t2 = Td0(byte(s2, 3)) ^ Td1(byte(s1, 2)) ^ Td2(byte(s0, 1)) ^ Td3(byte(s3, 0)) ^ rk[2]; t3 = Td0(byte(s3, 3)) ^ Td1(byte(s2, 2)) ^ Td2(byte(s1, 1)) ^ Td3(byte(s0, 0)) ^ rk[3]; if (r == Nr-2) { break; } s0 = t0; s1 = t1; s2 = t2; s3 = t3; } rk += 4; #else /* * Nr - 1 full rounds: */ r = Nr >> 1; for (;;) { t0 = Td0(byte(s0, 3)) ^ Td1(byte(s3, 2)) ^ Td2(byte(s2, 1)) ^ Td3(byte(s1, 0)) ^ rk[4]; t1 = Td0(byte(s1, 3)) ^ Td1(byte(s0, 2)) ^ Td2(byte(s3, 1)) ^ Td3(byte(s2, 0)) ^ rk[5]; t2 = Td0(byte(s2, 3)) ^ Td1(byte(s1, 2)) ^ Td2(byte(s0, 1)) ^ Td3(byte(s3, 0)) ^ rk[6]; t3 = Td0(byte(s3, 3)) ^ Td1(byte(s2, 2)) ^ Td2(byte(s1, 1)) ^ Td3(byte(s0, 0)) ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Td0(byte(t0, 3)) ^ Td1(byte(t3, 2)) ^ Td2(byte(t2, 1)) ^ Td3(byte(t1, 0)) ^ rk[0]; s1 = Td0(byte(t1, 3)) ^ Td1(byte(t0, 2)) ^ Td2(byte(t3, 1)) ^ Td3(byte(t2, 0)) ^ rk[1]; s2 = Td0(byte(t2, 3)) ^ Td1(byte(t1, 2)) ^ Td2(byte(t0, 1)) ^ Td3(byte(t3, 0)) ^ rk[2]; s3 = Td0(byte(t3, 3)) ^ Td1(byte(t2, 2)) ^ Td2(byte(t1, 1)) ^ Td3(byte(t0, 0)) ^ rk[3]; } #endif /* * apply last round and * map cipher state to byte array block: */ s0 = (Td4[byte(t0, 3)] & 0xff000000) ^ (Td4[byte(t3, 2)] & 0x00ff0000) ^ (Td4[byte(t2, 1)] & 0x0000ff00) ^ (Td4[byte(t1, 0)] & 0x000000ff) ^ rk[0]; STORE32H(s0, pt); s1 = (Td4[byte(t1, 3)] & 0xff000000) ^ (Td4[byte(t0, 2)] & 0x00ff0000) ^ (Td4[byte(t3, 1)] & 0x0000ff00) ^ (Td4[byte(t2, 0)] & 0x000000ff) ^ rk[1]; STORE32H(s1, pt+4); s2 = (Td4[byte(t2, 3)] & 0xff000000) ^ (Td4[byte(t1, 2)] & 0x00ff0000) ^ (Td4[byte(t0, 1)] & 0x0000ff00) ^ (Td4[byte(t3, 0)] & 0x000000ff) ^ rk[2]; STORE32H(s2, pt+8); s3 = (Td4[byte(t3, 3)] & 0xff000000) ^ (Td4[byte(t2, 2)] & 0x00ff0000) ^ (Td4[byte(t1, 1)] & 0x0000ff00) ^ (Td4[byte(t0, 0)] & 0x000000ff) ^ rk[3]; STORE32H(s3, pt+12); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err = _rijndael_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2); return err; } #endif /** Performs a self-test of the AES block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int ECB_TEST(void) { #ifndef LTC_TEST return CRYPT_NOP; #else int err; static const struct { int keylen; unsigned char key[32], pt[16], ct[16]; } tests[] = { { 16, { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a } }, { 24, { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 }, { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0, 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 } }, { 32, { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }, { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf, 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 } } }; symmetric_key key; unsigned char tmp[2][16]; int i, y; for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { zeromem(&key, sizeof(key)); if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { return err; } rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key); rijndael_ecb_decrypt(tmp[0], tmp[1], &key); if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) { #if 0 printf("\n\nTest %d failed\n", i); if (XMEMCMP(tmp[0], tests[i].ct, 16)) { printf("CT: "); for (i = 0; i < 16; i++) { printf("%02x ", tmp[0][i]); } printf("\n"); } else { printf("PT: "); for (i = 0; i < 16; i++) { printf("%02x ", tmp[1][i]); } printf("\n"); } #endif return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 16; y++) tmp[0][y] = 0; for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key); for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key); for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } #endif /* ENCRYPT_ONLY */ /** Terminate the context @param skey The scheduled key */ void ECB_DONE(symmetric_key *skey) { //LTC_UNUSED_PARAM(skey); } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int ECB_KS(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 16) return CRYPT_INVALID_KEYSIZE; if (*keysize < 24) { *keysize = 16; return CRYPT_OK; } else if (*keysize < 32) { *keysize = 24; return CRYPT_OK; } else { *keysize = 32; return CRYPT_OK; } } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file cbc_decrypt.c CBC implementation, encrypt block, Tom St Denis */ #ifdef LTC_CBC_MODE /** CBC decrypt @param ct Ciphertext @param pt [out] Plaintext @param len The number of bytes to process (must be multiple of block length) @param cbc CBC state @return CRYPT_OK if successful */ int cbc_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CBC *cbc) { int x, err; unsigned char tmp[16]; #ifdef LTC_FAST LTC_FAST_TYPE tmpy; #else unsigned char tmpy; #endif LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(cbc != NULL); if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) { return err; } /* is blocklen valid? */ if (cbc->blocklen < 1 || cbc->blocklen > (int)sizeof(cbc->IV)) { return CRYPT_INVALID_ARG; } if (len % cbc->blocklen) { return CRYPT_INVALID_ARG; } #ifdef LTC_FAST if (cbc->blocklen % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif if (cipher_descriptor[cbc->cipher].accel_cbc_decrypt != NULL) { return cipher_descriptor[cbc->cipher].accel_cbc_decrypt(ct, pt, len / cbc->blocklen, cbc->IV, &cbc->key); } else { while (len) { /* decrypt */ if ((err = cipher_descriptor[cbc->cipher].ecb_decrypt(ct, tmp, &cbc->key)) != CRYPT_OK) { return err; } /* xor IV against plaintext */ #if defined(LTC_FAST) for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) { tmpy = *((LTC_FAST_TYPE*)((unsigned char *)cbc->IV + x)) ^ *((LTC_FAST_TYPE*)((unsigned char *)tmp + x)); *((LTC_FAST_TYPE*)((unsigned char *)cbc->IV + x)) = *((LTC_FAST_TYPE*)((unsigned char *)ct + x)); *((LTC_FAST_TYPE*)((unsigned char *)pt + x)) = tmpy; } #else for (x = 0; x < cbc->blocklen; x++) { tmpy = tmp[x] ^ cbc->IV[x]; cbc->IV[x] = ct[x]; pt[x] = tmpy; } #endif ct += cbc->blocklen; pt += cbc->blocklen; len -= cbc->blocklen; } } return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file cbc_done.c CBC implementation, finish chain, Tom St Denis */ #ifdef LTC_CBC_MODE /** Terminate the chain @param cbc The CBC chain to terminate @return CRYPT_OK on success */ int cbc_done(symmetric_CBC *cbc) { int err; LTC_ARGCHK(cbc != NULL); if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) { return err; } cipher_descriptor[cbc->cipher].done(&cbc->key); return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file cbc_encrypt.c CBC implementation, encrypt block, Tom St Denis */ #ifdef LTC_CBC_MODE /** CBC encrypt @param pt Plaintext @param ct [out] Ciphertext @param len The number of bytes to process (must be multiple of block length) @param cbc CBC state @return CRYPT_OK if successful */ int cbc_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CBC *cbc) { int x, err; LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(cbc != NULL); if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) { return err; } /* is blocklen valid? */ if (cbc->blocklen < 1 || cbc->blocklen > (int)sizeof(cbc->IV)) { return CRYPT_INVALID_ARG; } if (len % cbc->blocklen) { return CRYPT_INVALID_ARG; } #ifdef LTC_FAST if (cbc->blocklen % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif if (cipher_descriptor[cbc->cipher].accel_cbc_encrypt != NULL) { return cipher_descriptor[cbc->cipher].accel_cbc_encrypt(pt, ct, len / cbc->blocklen, cbc->IV, &cbc->key); } else { while (len) { /* xor IV against plaintext */ #if defined(LTC_FAST) for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)((unsigned char *)cbc->IV + x)) ^= *((LTC_FAST_TYPE*)((unsigned char *)pt + x)); } #else for (x = 0; x < cbc->blocklen; x++) { cbc->IV[x] ^= pt[x]; } #endif /* encrypt */ if ((err = cipher_descriptor[cbc->cipher].ecb_encrypt(cbc->IV, ct, &cbc->key)) != CRYPT_OK) { return err; } /* store IV [ciphertext] for a future block */ #if defined(LTC_FAST) for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)((unsigned char *)cbc->IV + x)) = *((LTC_FAST_TYPE*)((unsigned char *)ct + x)); } #else for (x = 0; x < cbc->blocklen; x++) { cbc->IV[x] = ct[x]; } #endif ct += cbc->blocklen; pt += cbc->blocklen; len -= cbc->blocklen; } } return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file cbc_getiv.c CBC implementation, get IV, Tom St Denis */ #ifdef LTC_CBC_MODE /** Get the current initial vector @param IV [out] The destination of the initial vector @param len [in/out] The max size and resulting size of the initial vector @param cbc The CBC state @return CRYPT_OK if successful */ int cbc_getiv(unsigned char *IV, unsigned long *len, symmetric_CBC *cbc) { LTC_ARGCHK(IV != NULL); LTC_ARGCHK(len != NULL); LTC_ARGCHK(cbc != NULL); if ((unsigned long)cbc->blocklen > *len) { *len = cbc->blocklen; return CRYPT_BUFFER_OVERFLOW; } XMEMCPY(IV, cbc->IV, cbc->blocklen); *len = cbc->blocklen; return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file cbc_setiv.c CBC implementation, set IV, Tom St Denis */ #ifdef LTC_CBC_MODE /** Set an initial vector @param IV The initial vector @param len The length of the vector (in octets) @param cbc The CBC state @return CRYPT_OK if successful */ int cbc_setiv(const unsigned char *IV, unsigned long len, symmetric_CBC *cbc) { LTC_ARGCHK(IV != NULL); LTC_ARGCHK(cbc != NULL); if (len != (unsigned long)cbc->blocklen) { return CRYPT_INVALID_ARG; } XMEMCPY(cbc->IV, IV, len); return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file cbc_start.c CBC implementation, start chain, Tom St Denis */ #ifdef LTC_CBC_MODE /** Initialize a CBC context @param cipher The index of the cipher desired @param IV The initial vector @param key The secret key @param keylen The length of the secret key (octets) @param num_rounds Number of rounds in the cipher desired (0 for default) @param cbc The CBC state to initialize @return CRYPT_OK if successful */ int cbc_start(int cipher, const unsigned char *IV, const unsigned char *key, int keylen, int num_rounds, symmetric_CBC *cbc) { int x, err; LTC_ARGCHK(IV != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(cbc != NULL); /* bad param? */ if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } /* setup cipher */ if ((err = cipher_descriptor[cipher].setup(key, keylen, num_rounds, &cbc->key)) != CRYPT_OK) { return err; } /* copy IV */ cbc->blocklen = cipher_descriptor[cipher].block_length; cbc->cipher = cipher; for (x = 0; x < cbc->blocklen; x++) { cbc->IV[x] = IV[x]; } return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_add_iv.c GCM implementation, add IV data to the state, by Tom St Denis */ #ifdef LTC_GCM_MODE /** Add IV data to the GCM state @param gcm The GCM state @param IV The initial value data to add @param IVlen The length of the IV @return CRYPT_OK on success */ int gcm_add_iv(gcm_state *gcm, const unsigned char *IV, unsigned long IVlen) { unsigned long x, y; int err; LTC_ARGCHK(gcm != NULL); if (IVlen > 0) { LTC_ARGCHK(IV != NULL); } /* must be in IV mode */ if (gcm->mode != LTC_GCM_MODE_IV) { return CRYPT_INVALID_ARG; } if (gcm->buflen >= 16 || gcm->buflen < 0) { return CRYPT_INVALID_ARG; } if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) { return err; } /* trip the ivmode flag */ if (IVlen + gcm->buflen > 12) { gcm->ivmode |= 1; } x = 0; #ifdef LTC_FAST if (gcm->buflen == 0) { for (x = 0; x < (IVlen & ~15); x += 16) { for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&gcm->X[y])) ^= *((LTC_FAST_TYPE*)(&IV[x + y])); } gcm_mult_h(gcm, gcm->X); gcm->totlen += 128; } IV += x; } #endif /* start adding IV data to the state */ for (; x < IVlen; x++) { gcm->buf[gcm->buflen++] = *IV++; if (gcm->buflen == 16) { /* GF mult it */ for (y = 0; y < 16; y++) { gcm->X[y] ^= gcm->buf[y]; } gcm_mult_h(gcm, gcm->X); gcm->buflen = 0; gcm->totlen += 128; } } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/gcm/gcm_add_iv.c,v $ */ /* $Revision: 1.9 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_done.c GCM implementation, Terminate the stream, by Tom St Denis */ #ifdef LTC_GCM_MODE /** Terminate a GCM stream @param gcm The GCM state @param tag [out] The destination for the MAC tag @param taglen [in/out] The length of the MAC tag @return CRYPT_OK on success */ int gcm_done(gcm_state *gcm, unsigned char *tag, unsigned long *taglen) { unsigned long x; int err; LTC_ARGCHK(gcm != NULL); LTC_ARGCHK(tag != NULL); LTC_ARGCHK(taglen != NULL); if (gcm->buflen > 16 || gcm->buflen < 0) { return CRYPT_INVALID_ARG; } if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) { return err; } if (gcm->mode != LTC_GCM_MODE_TEXT) { return CRYPT_INVALID_ARG; } /* handle remaining ciphertext */ if (gcm->buflen) { gcm->pttotlen += gcm->buflen * CONST64(8); gcm_mult_h(gcm, gcm->X); } /* length */ STORE64H(gcm->totlen, gcm->buf); STORE64H(gcm->pttotlen, gcm->buf+8); for (x = 0; x < 16; x++) { gcm->X[x] ^= gcm->buf[x]; } gcm_mult_h(gcm, gcm->X); /* encrypt original counter */ if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y_0, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } for (x = 0; x < 16 && x < *taglen; x++) { tag[x] = gcm->buf[x] ^ gcm->X[x]; } *taglen = x; cipher_descriptor[gcm->cipher].done(&gcm->K); return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/gcm/gcm_done.c,v $ */ /* $Revision: 1.11 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_init.c GCM implementation, initialize state, by Tom St Denis */ #ifdef LTC_GCM_MODE /** Initialize a GCM state @param gcm The GCM state to initialize @param cipher The index of the cipher to use @param key The secret key @param keylen The length of the secret key @return CRYPT_OK on success */ int gcm_init(gcm_state *gcm, int cipher, const unsigned char *key, int keylen) { int err; unsigned char B[16]; #ifdef LTC_GCM_TABLES int x, y, z, t; #endif LTC_ARGCHK(gcm != NULL); LTC_ARGCHK(key != NULL); #ifdef LTC_FAST if (16 % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif /* is cipher valid? */ if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } if (cipher_descriptor[cipher].block_length != 16) { return CRYPT_INVALID_CIPHER; } /* schedule key */ if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &gcm->K)) != CRYPT_OK) { return err; } /* H = E(0) */ zeromem(B, 16); if ((err = cipher_descriptor[cipher].ecb_encrypt(B, gcm->H, &gcm->K)) != CRYPT_OK) { return err; } /* setup state */ zeromem(gcm->buf, sizeof(gcm->buf)); zeromem(gcm->X, sizeof(gcm->X)); gcm->cipher = cipher; gcm->mode = LTC_GCM_MODE_IV; gcm->ivmode = 0; gcm->buflen = 0; gcm->totlen = 0; gcm->pttotlen = 0; #ifdef LTC_GCM_TABLES /* setup tables */ /* generate the first table as it has no shifting (from which we make the other tables) */ zeromem(B, 16); for (y = 0; y < 256; y++) { B[0] = y; gcm_gf_mult(gcm->H, B, &gcm->PC[0][y][0]); } /* now generate the rest of the tables based the previous table */ for (x = 1; x < 16; x++) { for (y = 0; y < 256; y++) { /* now shift it right by 8 bits */ t = gcm->PC[x-1][y][15]; for (z = 15; z > 0; z--) { gcm->PC[x][y][z] = gcm->PC[x-1][y][z-1]; } gcm->PC[x][y][0] = gcm_shift_table[t<<1]; gcm->PC[x][y][1] ^= gcm_shift_table[(t<<1)+1]; } } #endif return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/gcm/gcm_init.c,v $ */ /* $Revision: 1.20 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_process.c GCM implementation, process message data, by Tom St Denis */ #ifdef LTC_GCM_MODE /** Process plaintext/ciphertext through GCM @param gcm The GCM state @param pt The plaintext @param ptlen The plaintext length (ciphertext length is the same) @param ct The ciphertext @param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT) @return CRYPT_OK on success */ int gcm_process(gcm_state *gcm, unsigned char *pt, unsigned long ptlen, unsigned char *ct, int direction) { unsigned long x; int y, err; unsigned char b; LTC_ARGCHK(gcm != NULL); if (ptlen > 0) { LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); } if (gcm->buflen > 16 || gcm->buflen < 0) { return CRYPT_INVALID_ARG; } if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) { return err; } /* in AAD mode? */ if (gcm->mode == LTC_GCM_MODE_AAD) { /* let's process the AAD */ if (gcm->buflen) { gcm->totlen += gcm->buflen * CONST64(8); gcm_mult_h(gcm, gcm->X); } /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } /* encrypt the counter */ if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } gcm->buflen = 0; gcm->mode = LTC_GCM_MODE_TEXT; } if (gcm->mode != LTC_GCM_MODE_TEXT) { return CRYPT_INVALID_ARG; } x = 0; #ifdef LTC_FAST if (gcm->buflen == 0) { if (direction == GCM_ENCRYPT) { for (x = 0; x < (ptlen & ~15); x += 16) { /* ctr encrypt */ for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&ct[x + y])) = *((LTC_FAST_TYPE*)(&pt[x+y])) ^ *((LTC_FAST_TYPE*)(&gcm->buf[y])); *((LTC_FAST_TYPE*)(&gcm->X[y])) ^= *((LTC_FAST_TYPE*)(&ct[x+y])); } /* GMAC it */ gcm->pttotlen += 128; gcm_mult_h(gcm, gcm->X); /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } } } else { for (x = 0; x < (ptlen & ~15); x += 16) { /* ctr encrypt */ for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&gcm->X[y])) ^= *((LTC_FAST_TYPE*)(&ct[x+y])); *((LTC_FAST_TYPE*)(&pt[x + y])) = *((LTC_FAST_TYPE*)(&ct[x+y])) ^ *((LTC_FAST_TYPE*)(&gcm->buf[y])); } /* GMAC it */ gcm->pttotlen += 128; gcm_mult_h(gcm, gcm->X); /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } } } } #endif /* process text */ for (; x < ptlen; x++) { if (gcm->buflen == 16) { gcm->pttotlen += 128; gcm_mult_h(gcm, gcm->X); /* increment counter */ for (y = 15; y >= 12; y--) { if (++gcm->Y[y] & 255) { break; } } if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) { return err; } gcm->buflen = 0; } if (direction == GCM_ENCRYPT) { b = ct[x] = pt[x] ^ gcm->buf[gcm->buflen]; } else { b = ct[x]; pt[x] = ct[x] ^ gcm->buf[gcm->buflen]; } gcm->X[gcm->buflen++] ^= b; } return CRYPT_OK; } #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/gcm/gcm_process.c,v $ */ /* $Revision: 1.16 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_mult_h.c GCM implementation, do the GF mult, by Tom St Denis */ #if defined(LTC_GCM_MODE) /** GCM multiply by H @param gcm The GCM state which holds the H value @param I The value to multiply H by */ void gcm_mult_h(gcm_state *gcm, unsigned char *I) { unsigned char T[16]; #ifdef LTC_GCM_TABLES int x, y; #ifdef LTC_GCM_TABLES_SSE2 asm("movdqa (%0),%%xmm0"::"r"(&gcm->PC[0][I[0]][0])); for (x = 1; x < 16; x++) { asm("pxor (%0),%%xmm0"::"r"(&gcm->PC[x][I[x]][0])); } asm("movdqa %%xmm0,(%0)"::"r"(&T)); #else XMEMCPY(T, &gcm->PC[0][I[0]][0], 16); for (x = 1; x < 16; x++) { #ifdef LTC_FAST for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE *)(T + y)) ^= *((LTC_FAST_TYPE *)(&gcm->PC[x][I[x]][y])); } #else for (y = 0; y < 16; y++) { T[y] ^= gcm->PC[x][I[x]][y]; } #endif /* LTC_FAST */ } #endif /* LTC_GCM_TABLES_SSE2 */ #else gcm_gf_mult(gcm->H, I, T); #endif XMEMCPY(I, T, 16); } #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/gcm/gcm_mult_h.c,v $ */ /* $Revision: 1.6 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_gf_mult.c GCM implementation, do the GF mult, by Tom St Denis */ #if defined(LTC_GCM_TABLES) || defined(LRW_TABLES) || ((defined(LTC_GCM_MODE) || defined(LTC_GCM_MODE)) && defined(LTC_FAST)) /* this is x*2^128 mod p(x) ... the results are 16 bytes each stored in a packed format. Since only the * lower 16 bits are not zero'ed I removed the upper 14 bytes */ const unsigned char gcm_shift_table[256*2] = { 0x00, 0x00, 0x01, 0xc2, 0x03, 0x84, 0x02, 0x46, 0x07, 0x08, 0x06, 0xca, 0x04, 0x8c, 0x05, 0x4e, 0x0e, 0x10, 0x0f, 0xd2, 0x0d, 0x94, 0x0c, 0x56, 0x09, 0x18, 0x08, 0xda, 0x0a, 0x9c, 0x0b, 0x5e, 0x1c, 0x20, 0x1d, 0xe2, 0x1f, 0xa4, 0x1e, 0x66, 0x1b, 0x28, 0x1a, 0xea, 0x18, 0xac, 0x19, 0x6e, 0x12, 0x30, 0x13, 0xf2, 0x11, 0xb4, 0x10, 0x76, 0x15, 0x38, 0x14, 0xfa, 0x16, 0xbc, 0x17, 0x7e, 0x38, 0x40, 0x39, 0x82, 0x3b, 0xc4, 0x3a, 0x06, 0x3f, 0x48, 0x3e, 0x8a, 0x3c, 0xcc, 0x3d, 0x0e, 0x36, 0x50, 0x37, 0x92, 0x35, 0xd4, 0x34, 0x16, 0x31, 0x58, 0x30, 0x9a, 0x32, 0xdc, 0x33, 0x1e, 0x24, 0x60, 0x25, 0xa2, 0x27, 0xe4, 0x26, 0x26, 0x23, 0x68, 0x22, 0xaa, 0x20, 0xec, 0x21, 0x2e, 0x2a, 0x70, 0x2b, 0xb2, 0x29, 0xf4, 0x28, 0x36, 0x2d, 0x78, 0x2c, 0xba, 0x2e, 0xfc, 0x2f, 0x3e, 0x70, 0x80, 0x71, 0x42, 0x73, 0x04, 0x72, 0xc6, 0x77, 0x88, 0x76, 0x4a, 0x74, 0x0c, 0x75, 0xce, 0x7e, 0x90, 0x7f, 0x52, 0x7d, 0x14, 0x7c, 0xd6, 0x79, 0x98, 0x78, 0x5a, 0x7a, 0x1c, 0x7b, 0xde, 0x6c, 0xa0, 0x6d, 0x62, 0x6f, 0x24, 0x6e, 0xe6, 0x6b, 0xa8, 0x6a, 0x6a, 0x68, 0x2c, 0x69, 0xee, 0x62, 0xb0, 0x63, 0x72, 0x61, 0x34, 0x60, 0xf6, 0x65, 0xb8, 0x64, 0x7a, 0x66, 0x3c, 0x67, 0xfe, 0x48, 0xc0, 0x49, 0x02, 0x4b, 0x44, 0x4a, 0x86, 0x4f, 0xc8, 0x4e, 0x0a, 0x4c, 0x4c, 0x4d, 0x8e, 0x46, 0xd0, 0x47, 0x12, 0x45, 0x54, 0x44, 0x96, 0x41, 0xd8, 0x40, 0x1a, 0x42, 0x5c, 0x43, 0x9e, 0x54, 0xe0, 0x55, 0x22, 0x57, 0x64, 0x56, 0xa6, 0x53, 0xe8, 0x52, 0x2a, 0x50, 0x6c, 0x51, 0xae, 0x5a, 0xf0, 0x5b, 0x32, 0x59, 0x74, 0x58, 0xb6, 0x5d, 0xf8, 0x5c, 0x3a, 0x5e, 0x7c, 0x5f, 0xbe, 0xe1, 0x00, 0xe0, 0xc2, 0xe2, 0x84, 0xe3, 0x46, 0xe6, 0x08, 0xe7, 0xca, 0xe5, 0x8c, 0xe4, 0x4e, 0xef, 0x10, 0xee, 0xd2, 0xec, 0x94, 0xed, 0x56, 0xe8, 0x18, 0xe9, 0xda, 0xeb, 0x9c, 0xea, 0x5e, 0xfd, 0x20, 0xfc, 0xe2, 0xfe, 0xa4, 0xff, 0x66, 0xfa, 0x28, 0xfb, 0xea, 0xf9, 0xac, 0xf8, 0x6e, 0xf3, 0x30, 0xf2, 0xf2, 0xf0, 0xb4, 0xf1, 0x76, 0xf4, 0x38, 0xf5, 0xfa, 0xf7, 0xbc, 0xf6, 0x7e, 0xd9, 0x40, 0xd8, 0x82, 0xda, 0xc4, 0xdb, 0x06, 0xde, 0x48, 0xdf, 0x8a, 0xdd, 0xcc, 0xdc, 0x0e, 0xd7, 0x50, 0xd6, 0x92, 0xd4, 0xd4, 0xd5, 0x16, 0xd0, 0x58, 0xd1, 0x9a, 0xd3, 0xdc, 0xd2, 0x1e, 0xc5, 0x60, 0xc4, 0xa2, 0xc6, 0xe4, 0xc7, 0x26, 0xc2, 0x68, 0xc3, 0xaa, 0xc1, 0xec, 0xc0, 0x2e, 0xcb, 0x70, 0xca, 0xb2, 0xc8, 0xf4, 0xc9, 0x36, 0xcc, 0x78, 0xcd, 0xba, 0xcf, 0xfc, 0xce, 0x3e, 0x91, 0x80, 0x90, 0x42, 0x92, 0x04, 0x93, 0xc6, 0x96, 0x88, 0x97, 0x4a, 0x95, 0x0c, 0x94, 0xce, 0x9f, 0x90, 0x9e, 0x52, 0x9c, 0x14, 0x9d, 0xd6, 0x98, 0x98, 0x99, 0x5a, 0x9b, 0x1c, 0x9a, 0xde, 0x8d, 0xa0, 0x8c, 0x62, 0x8e, 0x24, 0x8f, 0xe6, 0x8a, 0xa8, 0x8b, 0x6a, 0x89, 0x2c, 0x88, 0xee, 0x83, 0xb0, 0x82, 0x72, 0x80, 0x34, 0x81, 0xf6, 0x84, 0xb8, 0x85, 0x7a, 0x87, 0x3c, 0x86, 0xfe, 0xa9, 0xc0, 0xa8, 0x02, 0xaa, 0x44, 0xab, 0x86, 0xae, 0xc8, 0xaf, 0x0a, 0xad, 0x4c, 0xac, 0x8e, 0xa7, 0xd0, 0xa6, 0x12, 0xa4, 0x54, 0xa5, 0x96, 0xa0, 0xd8, 0xa1, 0x1a, 0xa3, 0x5c, 0xa2, 0x9e, 0xb5, 0xe0, 0xb4, 0x22, 0xb6, 0x64, 0xb7, 0xa6, 0xb2, 0xe8, 0xb3, 0x2a, 0xb1, 0x6c, 0xb0, 0xae, 0xbb, 0xf0, 0xba, 0x32, 0xb8, 0x74, 0xb9, 0xb6, 0xbc, 0xf8, 0xbd, 0x3a, 0xbf, 0x7c, 0xbe, 0xbe }; #endif #if defined(LTC_GCM_MODE) || defined(LRW_MODE) #ifndef LTC_FAST /* right shift */ static void gcm_rightshift(unsigned char *a) { int x; for (x = 15; x > 0; x--) { a[x] = (a[x]>>1) | ((a[x-1]<<7)&0x80); } a[0] >>= 1; } /* c = b*a */ static const unsigned char mask[] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static const unsigned char poly_[] = { 0x00, 0xE1 }; /** GCM GF multiplier (internal use only) bitserial @param a First value @param b Second value @param c Destination for a * b */ void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c) { unsigned char Z[16], V[16]; unsigned char x, y, z; zeromem(Z, 16); XMEMCPY(V, a, 16); for (x = 0; x < 128; x++) { if (b[x>>3] & mask[x&7]) { for (y = 0; y < 16; y++) { Z[y] ^= V[y]; } } z = V[15] & 0x01; gcm_rightshift(V); V[0] ^= poly_[z]; } XMEMCPY(c, Z, 16); } #else /* map normal numbers to "ieee" way ... e.g. bit reversed */ #define M(x) ( ((x&8)>>3) | ((x&4)>>1) | ((x&2)<<1) | ((x&1)<<3) ) #define BPD (sizeof(LTC_FAST_TYPE) * 8) #define WPV (1 + (16 / sizeof(LTC_FAST_TYPE))) /** GCM GF multiplier (internal use only) word oriented @param a First value @param b Second value @param c Destination for a * b */ void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c) { int i, j, k, u; LTC_FAST_TYPE B[16][WPV], tmp[32 / sizeof(LTC_FAST_TYPE)], pB[16 / sizeof(LTC_FAST_TYPE)], zz, z; unsigned char pTmp[32]; /* create simple tables */ zeromem(B[0], sizeof(B[0])); zeromem(B[M(1)], sizeof(B[M(1)])); #ifdef ENDIAN_32BITWORD for (i = 0; i < 4; i++) { LOAD32H(B[M(1)][i], a + (i<<2)); LOAD32L(pB[i], b + (i<<2)); } #else for (i = 0; i < 2; i++) { LOAD64H(B[M(1)][i], a + (i<<3)); LOAD64L(pB[i], b + (i<<3)); } #endif /* now create 2, 4 and 8 */ B[M(2)][0] = B[M(1)][0] >> 1; B[M(4)][0] = B[M(1)][0] >> 2; B[M(8)][0] = B[M(1)][0] >> 3; for (i = 1; i < (int)WPV; i++) { B[M(2)][i] = (B[M(1)][i-1] << (BPD-1)) | (B[M(1)][i] >> 1); B[M(4)][i] = (B[M(1)][i-1] << (BPD-2)) | (B[M(1)][i] >> 2); B[M(8)][i] = (B[M(1)][i-1] << (BPD-3)) | (B[M(1)][i] >> 3); } /* now all values with two bits which are 3, 5, 6, 9, 10, 12 */ for (i = 0; i < (int)WPV; i++) { B[M(3)][i] = B[M(1)][i] ^ B[M(2)][i]; B[M(5)][i] = B[M(1)][i] ^ B[M(4)][i]; B[M(6)][i] = B[M(2)][i] ^ B[M(4)][i]; B[M(9)][i] = B[M(1)][i] ^ B[M(8)][i]; B[M(10)][i] = B[M(2)][i] ^ B[M(8)][i]; B[M(12)][i] = B[M(8)][i] ^ B[M(4)][i]; /* now all 3 bit values and the only 4 bit value: 7, 11, 13, 14, 15 */ B[M(7)][i] = B[M(3)][i] ^ B[M(4)][i]; B[M(11)][i] = B[M(3)][i] ^ B[M(8)][i]; B[M(13)][i] = B[M(1)][i] ^ B[M(12)][i]; B[M(14)][i] = B[M(6)][i] ^ B[M(8)][i]; B[M(15)][i] = B[M(7)][i] ^ B[M(8)][i]; } zeromem(tmp, sizeof(tmp)); /* compute product four bits of each word at a time */ /* for each nibble */ for (i = (BPD/4)-1; i >= 0; i--) { /* for each word */ for (j = 0; j < (int)(WPV-1); j++) { /* grab the 4 bits recall the nibbles are backwards so it's a shift by (i^1)*4 */ u = (pB[j] >> ((i^1)<<2)) & 15; /* add offset by the word count the table looked up value to the result */ for (k = 0; k < (int)WPV; k++) { tmp[k+j] ^= B[u][k]; } } /* shift result up by 4 bits */ if (i != 0) { for (z = j = 0; j < (int)(32 / sizeof(LTC_FAST_TYPE)); j++) { zz = tmp[j] << (BPD-4); tmp[j] = (tmp[j] >> 4) | z; z = zz; } } } /* store product */ #ifdef ENDIAN_32BITWORD for (i = 0; i < 8; i++) { STORE32H(tmp[i], pTmp + (i<<2)); } #else for (i = 0; i < 4; i++) { STORE64H(tmp[i], pTmp + (i<<3)); } #endif /* reduce by taking most significant byte and adding the appropriate two byte sequence 16 bytes down */ for (i = 31; i >= 16; i--) { pTmp[i-16] ^= gcm_shift_table[((unsigned)pTmp[i]<<1)]; pTmp[i-15] ^= gcm_shift_table[((unsigned)pTmp[i]<<1)+1]; } for (i = 0; i < 16; i++) { c[i] = pTmp[i]; } } #endif #endif /* $Source: /cvs/libtom/libtomcrypt/src/encauth/gcm/gcm_gf_mult.c,v $ */ /* $Revision: 1.25 $ */ /* $Date: 2007/05/12 14:32:35 $ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_add_aad.c GCM implementation, Add AAD data to the stream, by Tom St Denis */ #ifdef LTC_GCM_MODE /** Add AAD to the GCM state @param gcm The GCM state @param adata The additional authentication data to add to the GCM state @param adatalen The length of the AAD data. @return CRYPT_OK on success */ int gcm_add_aad(gcm_state *gcm, const unsigned char *adata, unsigned long adatalen) { unsigned long x; int err; #ifdef LTC_FAST unsigned long y; #endif LTC_ARGCHK(gcm != NULL); if (adatalen > 0) { LTC_ARGCHK(adata != NULL); } if (gcm->buflen > 16 || gcm->buflen < 0) { return CRYPT_INVALID_ARG; } if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) { return err; } /* in IV mode? */ if (gcm->mode == LTC_GCM_MODE_IV) { /* let's process the IV */ if (gcm->ivmode || gcm->buflen != 12) { for (x = 0; x < (unsigned long)gcm->buflen; x++) { gcm->X[x] ^= gcm->buf[x]; } if (gcm->buflen) { gcm->totlen += gcm->buflen * CONST64(8); gcm_mult_h(gcm, gcm->X); } /* mix in the length */ zeromem(gcm->buf, 8); STORE64H(gcm->totlen, gcm->buf+8); for (x = 0; x < 16; x++) { gcm->X[x] ^= gcm->buf[x]; } gcm_mult_h(gcm, gcm->X); /* copy counter out */ XMEMCPY(gcm->Y, gcm->X, 16); zeromem(gcm->X, 16); } else { XMEMCPY(gcm->Y, gcm->buf, 12); gcm->Y[12] = 0; gcm->Y[13] = 0; gcm->Y[14] = 0; gcm->Y[15] = 1; } XMEMCPY(gcm->Y_0, gcm->Y, 16); zeromem(gcm->buf, 16); gcm->buflen = 0; gcm->totlen = 0; gcm->mode = LTC_GCM_MODE_AAD; } if (gcm->mode != LTC_GCM_MODE_AAD || gcm->buflen >= 16) { return CRYPT_INVALID_ARG; } x = 0; #ifdef LTC_FAST if (gcm->buflen == 0) { for (x = 0; x < (adatalen & ~15); x += 16) { for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) { *((LTC_FAST_TYPE*)(&gcm->X[y])) ^= *((LTC_FAST_TYPE*)(&adata[x + y])); } gcm_mult_h(gcm, gcm->X); gcm->totlen += 128; } adata += x; } #endif /* start adding AAD data to the state */ for (; x < adatalen; x++) { gcm->X[gcm->buflen++] ^= *adata++; if (gcm->buflen == 16) { /* GF mult it */ gcm_mult_h(gcm, gcm->X); gcm->buflen = 0; gcm->totlen += 128; } } return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file gcm_reset.c GCM implementation, reset a used state so it can accept IV data, by Tom St Denis */ #ifdef LTC_GCM_MODE /** Reset a GCM state to as if you just called gcm_init(). This saves the initialization time. @param gcm The GCM state to reset @return CRYPT_OK on success */ int gcm_reset(gcm_state *gcm) { LTC_ARGCHK(gcm != NULL); zeromem(gcm->buf, sizeof(gcm->buf)); zeromem(gcm->X, sizeof(gcm->X)); gcm->mode = LTC_GCM_MODE_IV; gcm->ivmode = 0; gcm->buflen = 0; gcm->totlen = 0; gcm->pttotlen = 0; return CRYPT_OK; } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ /** @file md5.c LTC_MD5 hash function by Tom St Denis */ #ifdef LTC_MD5 const struct ltc_hash_descriptor md5_desc = { "md5", 3, 16, 64, /* OID */ { 1, 2, 840, 113549, 2, 5, }, 6, &md5_init, &md5_process, &md5_done, &md5_test, NULL }; #define F(x,y,z) (z ^ (x & (y ^ z))) #define G(x,y,z) (y ^ (z & (y ^ x))) #define H(x,y,z) (x^y^z) #define I(x,y,z) (y^(x|(~z))) #ifdef LTC_SMALL_CODE #define FF(a,b,c,d,M,s,t) \ a = (a + F(b,c,d) + M + t); a = ROL(a, s) + b; #define GG(a,b,c,d,M,s,t) \ a = (a + G(b,c,d) + M + t); a = ROL(a, s) + b; #define HH(a,b,c,d,M,s,t) \ a = (a + H(b,c,d) + M + t); a = ROL(a, s) + b; #define II(a,b,c,d,M,s,t) \ a = (a + I(b,c,d) + M + t); a = ROL(a, s) + b; static const unsigned char Worder[64] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12, 5,8,11,14,1,4,7,10,13,0,3,6,9,12,15,2, 0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9 }; static const unsigned char Rorder[64] = { 7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22, 5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20, 4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23, 6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21 }; static const ulong32 Korder[64] = { 0xd76aa478UL, 0xe8c7b756UL, 0x242070dbUL, 0xc1bdceeeUL, 0xf57c0fafUL, 0x4787c62aUL, 0xa8304613UL, 0xfd469501UL, 0x698098d8UL, 0x8b44f7afUL, 0xffff5bb1UL, 0x895cd7beUL, 0x6b901122UL, 0xfd987193UL, 0xa679438eUL, 0x49b40821UL, 0xf61e2562UL, 0xc040b340UL, 0x265e5a51UL, 0xe9b6c7aaUL, 0xd62f105dUL, 0x02441453UL, 0xd8a1e681UL, 0xe7d3fbc8UL, 0x21e1cde6UL, 0xc33707d6UL, 0xf4d50d87UL, 0x455a14edUL, 0xa9e3e905UL, 0xfcefa3f8UL, 0x676f02d9UL, 0x8d2a4c8aUL, 0xfffa3942UL, 0x8771f681UL, 0x6d9d6122UL, 0xfde5380cUL, 0xa4beea44UL, 0x4bdecfa9UL, 0xf6bb4b60UL, 0xbebfbc70UL, 0x289b7ec6UL, 0xeaa127faUL, 0xd4ef3085UL, 0x04881d05UL, 0xd9d4d039UL, 0xe6db99e5UL, 0x1fa27cf8UL, 0xc4ac5665UL, 0xf4292244UL, 0x432aff97UL, 0xab9423a7UL, 0xfc93a039UL, 0x655b59c3UL, 0x8f0ccc92UL, 0xffeff47dUL, 0x85845dd1UL, 0x6fa87e4fUL, 0xfe2ce6e0UL, 0xa3014314UL, 0x4e0811a1UL, 0xf7537e82UL, 0xbd3af235UL, 0x2ad7d2bbUL, 0xeb86d391UL }; #else #define FF(a,b,c,d,M,s,t) \ a = (a + F(b,c,d) + M + t); a = ROLc(a, s) + b; #define GG(a,b,c,d,M,s,t) \ a = (a + G(b,c,d) + M + t); a = ROLc(a, s) + b; #define HH(a,b,c,d,M,s,t) \ a = (a + H(b,c,d) + M + t); a = ROLc(a, s) + b; #define II(a,b,c,d,M,s,t) \ a = (a + I(b,c,d) + M + t); a = ROLc(a, s) + b; #endif #ifdef LTC_CLEAN_STACK static int _md5_compress(hash_state *md, unsigned char *buf) #else static int md5_compress(hash_state *md, unsigned char *buf) #endif { ulong32 i, W[16], a, b, c, d; #ifdef LTC_SMALL_CODE ulong32 t; #endif /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32L(W[i], buf + (4*i)); } /* copy state */ a = md->md5.state[0]; b = md->md5.state[1]; c = md->md5.state[2]; d = md->md5.state[3]; #ifdef LTC_SMALL_CODE for (i = 0; i < 16; ++i) { FF(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]); t = d; d = c; c = b; b = a; a = t; } for (; i < 32; ++i) { GG(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]); t = d; d = c; c = b; b = a; a = t; } for (; i < 48; ++i) { HH(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]); t = d; d = c; c = b; b = a; a = t; } for (; i < 64; ++i) { II(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]); t = d; d = c; c = b; b = a; a = t; } #else FF(a,b,c,d,W[0],7,0xd76aa478UL) FF(d,a,b,c,W[1],12,0xe8c7b756UL) FF(c,d,a,b,W[2],17,0x242070dbUL) FF(b,c,d,a,W[3],22,0xc1bdceeeUL) FF(a,b,c,d,W[4],7,0xf57c0fafUL) FF(d,a,b,c,W[5],12,0x4787c62aUL) FF(c,d,a,b,W[6],17,0xa8304613UL) FF(b,c,d,a,W[7],22,0xfd469501UL) FF(a,b,c,d,W[8],7,0x698098d8UL) FF(d,a,b,c,W[9],12,0x8b44f7afUL) FF(c,d,a,b,W[10],17,0xffff5bb1UL) FF(b,c,d,a,W[11],22,0x895cd7beUL) FF(a,b,c,d,W[12],7,0x6b901122UL) FF(d,a,b,c,W[13],12,0xfd987193UL) FF(c,d,a,b,W[14],17,0xa679438eUL) FF(b,c,d,a,W[15],22,0x49b40821UL) GG(a,b,c,d,W[1],5,0xf61e2562UL) GG(d,a,b,c,W[6],9,0xc040b340UL) GG(c,d,a,b,W[11],14,0x265e5a51UL) GG(b,c,d,a,W[0],20,0xe9b6c7aaUL) GG(a,b,c,d,W[5],5,0xd62f105dUL) GG(d,a,b,c,W[10],9,0x02441453UL) GG(c,d,a,b,W[15],14,0xd8a1e681UL) GG(b,c,d,a,W[4],20,0xe7d3fbc8UL) GG(a,b,c,d,W[9],5,0x21e1cde6UL) GG(d,a,b,c,W[14],9,0xc33707d6UL) GG(c,d,a,b,W[3],14,0xf4d50d87UL) GG(b,c,d,a,W[8],20,0x455a14edUL) GG(a,b,c,d,W[13],5,0xa9e3e905UL) GG(d,a,b,c,W[2],9,0xfcefa3f8UL) GG(c,d,a,b,W[7],14,0x676f02d9UL) GG(b,c,d,a,W[12],20,0x8d2a4c8aUL) HH(a,b,c,d,W[5],4,0xfffa3942UL) HH(d,a,b,c,W[8],11,0x8771f681UL) HH(c,d,a,b,W[11],16,0x6d9d6122UL) HH(b,c,d,a,W[14],23,0xfde5380cUL) HH(a,b,c,d,W[1],4,0xa4beea44UL) HH(d,a,b,c,W[4],11,0x4bdecfa9UL) HH(c,d,a,b,W[7],16,0xf6bb4b60UL) HH(b,c,d,a,W[10],23,0xbebfbc70UL) HH(a,b,c,d,W[13],4,0x289b7ec6UL) HH(d,a,b,c,W[0],11,0xeaa127faUL) HH(c,d,a,b,W[3],16,0xd4ef3085UL) HH(b,c,d,a,W[6],23,0x04881d05UL) HH(a,b,c,d,W[9],4,0xd9d4d039UL) HH(d,a,b,c,W[12],11,0xe6db99e5UL) HH(c,d,a,b,W[15],16,0x1fa27cf8UL) HH(b,c,d,a,W[2],23,0xc4ac5665UL) II(a,b,c,d,W[0],6,0xf4292244UL) II(d,a,b,c,W[7],10,0x432aff97UL) II(c,d,a,b,W[14],15,0xab9423a7UL) II(b,c,d,a,W[5],21,0xfc93a039UL) II(a,b,c,d,W[12],6,0x655b59c3UL) II(d,a,b,c,W[3],10,0x8f0ccc92UL) II(c,d,a,b,W[10],15,0xffeff47dUL) II(b,c,d,a,W[1],21,0x85845dd1UL) II(a,b,c,d,W[8],6,0x6fa87e4fUL) II(d,a,b,c,W[15],10,0xfe2ce6e0UL) II(c,d,a,b,W[6],15,0xa3014314UL) II(b,c,d,a,W[13],21,0x4e0811a1UL) II(a,b,c,d,W[4],6,0xf7537e82UL) II(d,a,b,c,W[11],10,0xbd3af235UL) II(c,d,a,b,W[2],15,0x2ad7d2bbUL) II(b,c,d,a,W[9],21,0xeb86d391UL) #endif md->md5.state[0] = md->md5.state[0] + a; md->md5.state[1] = md->md5.state[1] + b; md->md5.state[2] = md->md5.state[2] + c; md->md5.state[3] = md->md5.state[3] + d; return CRYPT_OK; } #ifdef LTC_CLEAN_STACK static int md5_compress(hash_state *md, unsigned char *buf) { int err; err = _md5_compress(md, buf); burn_stack(sizeof(ulong32) * 21); return err; } #endif /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int md5_init(hash_state * md) { LTC_ARGCHK(md != NULL); md->md5.state[0] = 0x67452301UL; md->md5.state[1] = 0xefcdab89UL; md->md5.state[2] = 0x98badcfeUL; md->md5.state[3] = 0x10325476UL; md->md5.curlen = 0; md->md5.length = 0; return CRYPT_OK; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ HASH_PROCESS(md5_process, md5_compress, md5, 64) /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (16 bytes) @return CRYPT_OK if successful */ int md5_done(hash_state * md, unsigned char *out) { int i; LTC_ARGCHK(md != NULL); LTC_ARGCHK(out != NULL); if (md->md5.curlen >= sizeof(md->md5.buf)) { return CRYPT_INVALID_ARG; } /* increase the length of the message */ md->md5.length += md->md5.curlen * 8; /* append the '1' bit */ md->md5.buf[md->md5.curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->md5.curlen > 56) { while (md->md5.curlen < 64) { md->md5.buf[md->md5.curlen++] = (unsigned char)0; } md5_compress(md, md->md5.buf); md->md5.curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->md5.curlen < 56) { md->md5.buf[md->md5.curlen++] = (unsigned char)0; } /* store length */ STORE64L(md->md5.length, md->md5.buf+56); md5_compress(md, md->md5.buf); /* copy output */ for (i = 0; i < 4; i++) { STORE32L(md->md5.state[i], out+(4*i)); } #ifdef LTC_CLEAN_STACK zeromem(md, sizeof(hash_state)); #endif return CRYPT_OK; } /** Self-test the hash @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled */ int md5_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { char *msg; unsigned char hash[16]; } tests[] = { { "", { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e } }, { "a", {0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61 } }, { "abc", { 0x90, 0x01, 0x50, 0x98, 0x3c, 0xd2, 0x4f, 0xb0, 0xd6, 0x96, 0x3f, 0x7d, 0x28, 0xe1, 0x7f, 0x72 } }, { "message digest", { 0xf9, 0x6b, 0x69, 0x7d, 0x7c, 0xb7, 0x93, 0x8d, 0x52, 0x5a, 0x2f, 0x31, 0xaa, 0xf1, 0x61, 0xd0 } }, { "abcdefghijklmnopqrstuvwxyz", { 0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b } }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", { 0xd1, 0x74, 0xab, 0x98, 0xd2, 0x77, 0xd9, 0xf5, 0xa5, 0x61, 0x1c, 0x2c, 0x9f, 0x41, 0x9d, 0x9f } }, { "12345678901234567890123456789012345678901234567890123456789012345678901234567890", { 0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a } }, { NULL, { 0 } } }; int i; unsigned char tmp[16]; hash_state md; for (i = 0; tests[i].msg != NULL; i++) { md5_init(&md); md5_process(&md, (unsigned char *)tests[i].msg, (unsigned long)strlen(tests[i].msg)); md5_done(&md, tmp); if (XMEMCMP(tmp, tests[i].hash, 16) != 0) { return CRYPT_FAIL_TESTVECTOR; } } return CRYPT_OK; #endif } #endif /* $Source$ */ /* $Revision$ */ /* $Date$ */ /* ------------------------------------------------------------------------------ END libtomcrypt.c ------------------------------------------------------------------------------ */ #endif /* HTTPS_NO_LIBTOMCRYPT */ /* ------------------------------------------------------------------------------ BEGIN tlse readme ------------------------------------------------------------------------------ */ /* # TLSe Single C file TLS 1.3, 1.2, 1.1 and 1.0(without the weak ciphers) implementation, using [libtomcrypt](https://github.com/libtom/libtomcrypt "libtomcrypt") as crypto library. It also supports DTLS 1.2 and 1.0. Before using tlse.c you may want to download and compile tomcrypt; alternatively you may use libtomcrypt.c (see Compiling). I'm working at an alternative efficient RSA signing, DH and Curve25519 implementation, to allow the compilation, alternatively, without tomcrypt, on devices where memory and code size is an issue. **Note**: It does not implement 0-RTT. Client-side TLS 1.3 support is experimental. Like this project ? You may donate Bitcoin for this project at 14LqvMzFfaJ82C7wY5iavvTf9HPELYWsax ![](https://raw.githubusercontent.com/eduardsui/edwork/master/bwallet.png) Compiling ---------- Simple TLS client: `$ gcc tlshello.c -o tlshello -ltomcrypt -ltommath -DLTM_DESC` For debuging tls connections, the DEBUG flag must be set (-DDEBUG). Simple TLS server: `$ gcc tlsserverhello.c -o tlsserverhello -ltomcrypt -ltommath -DLTM_DESC` The entire library is a single c file that you just include in your source. The library may also use the libtomcrypt.c amalgamation. In this case, the client may be compiled: `$ gcc tlshello.c -o tlshello -DTLS_AMALGAMATION` and the server: `$ gcc tlsserverhello.c -o tlsserverhello -DTLS_AMALGAMATION` tlse.h is optional (is safe to just include tlse.c). Alternatively, you may include tlse.h and add tlse.c to your makefile (useful when linking against C++). If thread-safety is needed, you need to call `tls_init()` before letting any other threads in, and not use the same object from multiple threads without a mutex. Other than that, TLSe and libtomcrypt are thread-safe. Also, you may want to define LTC_PTHREAD if you're using libtomcrypt. TLSe supports KTLS on linux kernel 4.13 or higher. KTLS is a TLS implementation in the linux kernel. If TLS_RX is not defined, KTLS is send-only (you may use send/sendfile to send data, but you may not use recv). Also, the negotiation must be handled by TLSe. If KTLS support is needed, define WITH_KTLS (compile with -DWITH_KTLS). Note that is not clear which header should be included for linux structure, you may need to check these structures and constants: https://github.com/torvalds/linux/blob/master/Documentation/networking/tls.txt. Usage ---------- You just `#include "tlse.c"` in your code. Everything is a single file. Features ---------- The main feature of this implementation is the ability to serialize TLS context, via tls_export_context and re-import it, via tls_import_context in another pre-forked worker process (socket descriptor may be sent via sendmsg). For now it supports TLS 1.2, TLS 1.1 + 1.0 (when TLS_LEGACY_SUPPORT is defined / default is on), RSA, ECDSA, DHE, ECDHE ciphers: ``TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256` and `TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384``. The following ciphers are supported but disabled by default: ``TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_AES_128_GCM_SHA256, TLS_RSA_WITH_AES_256_GCM_SHA384``. To enable these ciphers, TLSe must be compiled with ``-DNO_TLS_ROBOT_MITIGATION``. ROBOT attack is mitigated by default, but it is recommended to disable RSA encryption to avoid future vulnerabilities. TLSe now supports ChaCha20/Poly1305 ciphers: `TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256`, `TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256` and `TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256`. These ciphers are enabled by default. It has a low level interface, efficient for non-blocking, asynchronous sockets, and a blocking, libssl-style interface. It implements all that is needed for the TLS protocol version 1.2 and a pem/der parser. From tomcrypt it uses RSA, ECDSA and AES(GCM and CBC) encryption/decryption, SHA1, SHA256, SHA384, SHA512 and HMAC functions. Now it supports client certificate. To request a client certificate, call ``tls_request_client_certificate(TLSContext *)`` following ``tls_accept(TLSContext *)``. It implements SNI extension (Server Name Indication). To get the SNI string call ``tls_sni(TLSContext *)``. It also implements SCSV and ALPN (see ``tls_add_alpn(struct TLSContext *, const char *)`` and ``const char *tls_alpn(struct TLSContext *)``. The library supports certificate validation by using ``tls_certificate_chain_is_valid``, ``tls_certificate_chain_is_valid_root``, ``tls_certificate_valid_subject`` and ``tls_certificate_is_valid``(checks not before/not after). Note that certificates fed to ``tls_certificate_chain_is_valid`` must be in correct order (certificate 2 signs certificate 1, certificate 3 signs certificate 2 and so on; also certificate 1 (first) is the certificate to be used in key exchange). This library was written to be used by my other projects [Concept Applications Server](https://github.com/Devronium/ConceptApplicationServer "Concept Application Server") and [Concept Native Client](https://github.com/Devronium/ConceptClientQT "Concept Client QT") Examples ---------- 1. [examples/tlsclienthello.c](https://github.com/eduardsui/tlslayer/blob/master/examples/tlsclienthello.c) simple client example 2. [examples/tlshelloworld.c](https://github.com/eduardsui/tlslayer/blob/master/examples/tlshelloworld.c) simple server example 3. [examples/tlssimple.c](https://github.com/eduardsui/tlslayer/blob/master/examples/tlssimple.c) simple blocking client using libssl-ish API 4. [examples/tlssimpleserver.c](https://github.com/eduardsui/tlslayer/blob/master/examples/tlssimpleserver.c) simple blocking server using libssl-ish API After compiling the examples, in the working directory, you should put fullchain.pem and privkey.pem in a directory called testcert for running the server examples. I've used [letsencrypt](https://github.com/letsencrypt/letsencrypt) for certificate generation (is free!). Important security note ---------- Note that for DTLS, it doesn't implement a state machine, so using this DTLS implementation with UDP (server) may expose your server to DoS attack. License ---------- Public domain, BSD, MIT. Choose one. */ /* ------------------------------------------------------------------------------ END tlse readme ------------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------------ BEGIN tlse.h ------------------------------------------------------------------------------ */ #ifndef TLSE_H #define TLSE_H // #define DEBUG // define TLS_LEGACY_SUPPORT to support TLS 1.1/1.0 (legacy) // legacy support it will use an additional 272 bytes / context #ifndef NO_TLS_LEGACY_SUPPORT #define TLS_LEGACY_SUPPORT #endif // SSL_* style blocking APIs #ifndef NO_SSL_COMPATIBLE_INTERFACE #define SSL_COMPATIBLE_INTERFACE #endif // support ChaCha20/Poly1305 #if !defined(__BIG_ENDIAN__) && ((!defined(__BYTE_ORDER)) || (__BYTE_ORDER == __LITTLE_ENDIAN)) // not working on big endian machines #ifndef NO_TLS_WITH_CHACHA20_POLY1305 #define TLS_WITH_CHACHA20_POLY1305 #endif #endif #ifndef NO_TLS_13 #define WITH_TLS_13 #endif // support forward secrecy (Diffie-Hellman ephemeral) #ifndef NO_TLS_FORWARD_SECRECY #define TLS_FORWARD_SECRECY #endif // support client-side ECDHE #ifndef NO_TLS_CLIENT_ECDHE #define TLS_CLIENT_ECDHE #endif // suport ecdsa #ifndef NO_TLS_ECDSA_SUPPORTED #define TLS_ECDSA_SUPPORTED #endif // suport ecdsa client-side #define TLS_CLIENT_ECDSA // TLS renegotiation is disabled by default (secured or not) // do not uncomment next line! // #define TLS_ACCEPT_SECURE_RENEGOTIATION // basic superficial X509v1 certificate support #ifndef NO_TLS_X509_V1_SUPPORT #define TLS_X509_V1_SUPPORT #endif // disable TLS_RSA_WITH_* ciphers #ifndef NO_TLS_ROBOT_MITIGATION #define TLS_ROBOT_MITIGATION #endif #define SSL_V30 0x0300 #define TLS_V10 0x0301 #define TLS_V11 0x0302 #define TLS_V12 0x0303 #define TLS_V13 0x0304 #define DTLS_V10 0xFEFF #define DTLS_V12 0xFEFD #define DTLS_V13 0xFEFC #define TLS_NEED_MORE_DATA 0 #define TLS_GENERIC_ERROR -1 #define TLS_BROKEN_PACKET -2 #define TLS_NOT_UNDERSTOOD -3 #define TLS_NOT_SAFE -4 #define TLS_NO_COMMON_CIPHER -5 #define TLS_UNEXPECTED_MESSAGE -6 #define TLS_CLOSE_CONNECTION -7 #define TLS_COMPRESSION_NOT_SUPPORTED -8 #define TLS_NO_MEMORY -9 #define TLS_NOT_VERIFIED -10 #define TLS_INTEGRITY_FAILED -11 #define TLS_ERROR_ALERT -12 #define TLS_BROKEN_CONNECTION -13 #define TLS_BAD_CERTIFICATE -14 #define TLS_UNSUPPORTED_CERTIFICATE -15 #define TLS_NO_RENEGOTIATION -16 #define TLS_FEATURE_NOT_SUPPORTED -17 #define TLS_DECRYPTION_FAILED -20 #define TLS_AES_128_GCM_SHA256 0x1301 #define TLS_AES_256_GCM_SHA384 0x1302 #define TLS_CHACHA20_POLY1305_SHA256 0x1303 #define TLS_AES_128_CCM_SHA256 0x1304 #define TLS_AES_128_CCM_8_SHA256 0x1305 #define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F #define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 #define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C #define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D #define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C #define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D // forward secrecy #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 #define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 #define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B #define TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x009E #define TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x009F #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 #define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 #define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 #define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F #define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A #define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 #define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 #define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B #define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C #define TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA8 #define TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 #define TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCAA #define TLS_FALLBACK_SCSV 0x5600 #define TLS_UNSUPPORTED_ALGORITHM 0x00 #define TLS_RSA_SIGN_RSA 0x01 #define TLS_RSA_SIGN_MD5 0x04 #define TLS_RSA_SIGN_SHA1 0x05 #define TLS_RSA_SIGN_SHA256 0x0B #define TLS_RSA_SIGN_SHA384 0x0C #define TLS_RSA_SIGN_SHA512 0x0D #define TLS_ECDSA_SIGN_SHA256 0x0E #define TLS_EC_PUBLIC_KEY 0x11 #define TLS_EC_prime192v1 0x12 #define TLS_EC_prime192v2 0x13 #define TLS_EC_prime192v3 0x14 #define TLS_EC_prime239v1 0x15 #define TLS_EC_prime239v2 0x16 #define TLS_EC_prime239v3 0x17 #define TLS_EC_prime256v1 0x18 #define TLS_EC_secp224r1 21 #define TLS_EC_secp256r1 23 #define TLS_EC_secp384r1 24 #define TLS_EC_secp521r1 25 #define TLS_ALERT_WARNING 0x01 #define TLS_ALERT_CRITICAL 0x02 #ifdef TLS_ROBOT_MITIGATION #define TLS_CIPHERS_SIZE(n, mitigated) n * 2 #else #define TLS_CIPHERS_SIZE(n, mitigated) (n + mitigated) * 2 #endif #ifdef __cplusplus extern "C" { #endif typedef enum { close_notify = 0, unexpected_message = 10, bad_record_mac = 20, decryption_failed_RESERVED = 21, record_overflow = 22, decompression_failure = 30, handshake_failure = 40, no_certificate_RESERVED = 41, bad_certificate = 42, unsupported_certificate = 43, certificate_revoked = 44, certificate_expired = 45, certificate_unknown = 46, illegal_parameter = 47, unknown_ca = 48, access_denied = 49, decode_error = 50, decrypt_error = 51, export_restriction_RESERVED = 60, protocol_version = 70, insufficient_security = 71, internal_error = 80, inappropriate_fallback = 86, user_canceled = 90, no_renegotiation = 100, unsupported_extension = 110, no_error = 255 } TLSAlertDescription; // forward declarations struct TLSPacket; struct TLSCertificate; struct TLSContext; struct ECCCurveParameters; typedef struct TLSContext TLS; typedef struct TLSCertificate Certificate; typedef int (*tls_validation_function)(struct TLSContext *context, struct TLSCertificate **certificate_chain, int len); /* Global initialization. Optional, as it will be called automatically; however, the initialization is not thread-safe, so if you intend to use TLSe from multiple threads, you'll need to call tls_init() once, from a single thread, before using the library. */ void tls_init(); unsigned char *tls_pem_decode(const unsigned char *data_in, unsigned int input_length, int cert_index, unsigned int *output_len); struct TLSCertificate *tls_create_certificate(); int tls_certificate_valid_subject(struct TLSCertificate *cert, const char *subject); int tls_certificate_valid_subject_name(const unsigned char *cert_subject, const char *subject); int tls_certificate_is_valid(struct TLSCertificate *cert); void tls_certificate_set_copy(unsigned char **member, const unsigned char *val, int len); void tls_certificate_set_copy_date(unsigned char **member, const unsigned char *val, int len); void tls_certificate_set_key(struct TLSCertificate *cert, const unsigned char *val, int len); void tls_certificate_set_priv(struct TLSCertificate *cert, const unsigned char *val, int len); void tls_certificate_set_sign_key(struct TLSCertificate *cert, const unsigned char *val, int len); char *tls_certificate_to_string(struct TLSCertificate *cert, char *buffer, int len); void tls_certificate_set_exponent(struct TLSCertificate *cert, const unsigned char *val, int len); void tls_certificate_set_serial(struct TLSCertificate *cert, const unsigned char *val, int len); void tls_certificate_set_algorithm(struct TLSContext *context, unsigned int *algorithm, const unsigned char *val, int len); void tls_destroy_certificate(struct TLSCertificate *cert); struct TLSPacket *tls_create_packet(struct TLSContext *context, unsigned char type, unsigned short version, int payload_size_hint); void tls_destroy_packet(struct TLSPacket *packet); void tls_packet_update(struct TLSPacket *packet); int tls_packet_append(struct TLSPacket *packet, const unsigned char *buf, unsigned int len); int tls_packet_uint8(struct TLSPacket *packet, unsigned char i); int tls_packet_uint16(struct TLSPacket *packet, unsigned short i); int tls_packet_uint32(struct TLSPacket *packet, unsigned int i); int tls_packet_uint24(struct TLSPacket *packet, unsigned int i); int tls_random(unsigned char *key, int len); /* Get encrypted data to write, if any. Once you've sent all of it, call tls_buffer_clear(). */ const unsigned char *tls_get_write_buffer(struct TLSContext *context, unsigned int *outlen); void tls_buffer_clear(struct TLSContext *context); /* Returns 1 for established, 0 for not established yet, and -1 for a critical error. */ int tls_established(struct TLSContext *context); /* Discards any unread decrypted data not consumed by tls_read(). */ void tls_read_clear(struct TLSContext *context); /* Reads any unread decrypted data (see tls_consume_stream). If you don't read all of it, the remainder will be left in the internal buffers for next tls_read(). Returns -1 for fatal error, 0 for no more data, or otherwise the number of bytes copied into the buffer (up to a maximum of the given size). */ int tls_read(struct TLSContext *context, unsigned char *buf, unsigned int size); struct TLSContext *tls_create_context(unsigned char is_server, unsigned short version); const struct ECCCurveParameters *tls_set_curve(struct TLSContext *context, const struct ECCCurveParameters *curve); /* Create a context for a given client, from a server context. Returns NULL on error. */ struct TLSContext *tls_accept(struct TLSContext *context); int tls_set_default_dhe_pg(struct TLSContext *context, const char *p_hex_str, const char *g_hex_str); void tls_destroy_context(struct TLSContext *context); int tls_cipher_supported(struct TLSContext *context, unsigned short cipher); int tls_cipher_is_fs(struct TLSContext *context, unsigned short cipher); int tls_choose_cipher(struct TLSContext *context, const unsigned char *buf, int buf_len, int *scsv_set); int tls_cipher_is_ephemeral(struct TLSContext *context); const char *tls_cipher_name(struct TLSContext *context); int tls_is_ecdsa(struct TLSContext *context); struct TLSPacket *tls_build_client_key_exchange(struct TLSContext *context); struct TLSPacket *tls_build_server_key_exchange(struct TLSContext *context, int method); struct TLSPacket *tls_build_hello(struct TLSContext *context, int tls13_downgrade); struct TLSPacket *tls_certificate_request(struct TLSContext *context); struct TLSPacket *tls_build_verify_request(struct TLSContext *context); int tls_parse_hello(struct TLSContext *context, const unsigned char *buf, int buf_len, unsigned int *write_packets, unsigned int *dtls_verified); int tls_parse_certificate(struct TLSContext *context, const unsigned char *buf, int buf_len, int is_client); int tls_parse_server_key_exchange(struct TLSContext *context, const unsigned char *buf, int buf_len); int tls_parse_client_key_exchange(struct TLSContext *context, const unsigned char *buf, int buf_len); int tls_parse_server_hello_done(struct TLSContext *context, const unsigned char *buf, int buf_len); int tls_parse_finished(struct TLSContext *context, const unsigned char *buf, int buf_len, unsigned int *write_packets); int tls_parse_verify(struct TLSContext *context, const unsigned char *buf, int buf_len); int tls_parse_payload(struct TLSContext *context, const unsigned char *buf, int buf_len, tls_validation_function certificate_verify); int tls_parse_message(struct TLSContext *context, unsigned char *buf, int buf_len, tls_validation_function certificate_verify); int tls_certificate_verify_signature(struct TLSCertificate *cert, struct TLSCertificate *parent); int tls_certificate_chain_is_valid(struct TLSCertificate **certificates, int len); int tls_certificate_chain_is_valid_root(struct TLSContext *context, struct TLSCertificate **certificates, int len); /* Add a certificate or a certificate chain to the given context, in PEM form. Returns a negative value (TLS_GENERIC_ERROR etc.) on error, 0 if there were no certificates in the buffer, or the number of loaded certificates on success. */ int tls_load_certificates(struct TLSContext *context, const unsigned char *pem_buffer, int pem_size); /* Add a private key to the given context, in PEM form. Returns a negative value (TLS_GENERIC_ERROR etc.) on error, 0 if there was no private key in the buffer, or 1 on success. */ int tls_load_private_key(struct TLSContext *context, const unsigned char *pem_buffer, int pem_size); struct TLSPacket *tls_build_certificate(struct TLSContext *context); struct TLSPacket *tls_build_finished(struct TLSContext *context); struct TLSPacket *tls_build_change_cipher_spec(struct TLSContext *context); struct TLSPacket *tls_build_done(struct TLSContext *context); struct TLSPacket *tls_build_message(struct TLSContext *context, const unsigned char *data, unsigned int len); int tls_client_connect(struct TLSContext *context); int tls_write(struct TLSContext *context, const unsigned char *data, unsigned int len); struct TLSPacket *tls_build_alert(struct TLSContext *context, char critical, unsigned char code); /* Process a given number of input bytes from a socket. If the other side just presented a certificate and certificate_verify is not NULL, it will be called. Returns 0 if there's no data ready yet, a negative value (see TLS_GENERIC_ERROR etc.) for an error, or a positive value (the number of bytes used from buf) if one or more complete TLS messages were received. The data is copied into an internal buffer even if not all of it was consumed, so you should not re-send it the next time. Decrypted data, if any, should be read back with tls_read(). Can change the status of tls_established(). If the library has anything to send back on the socket (e.g. as part of the handshake), tls_get_write_buffer() will return non-NULL. */ int tls_consume_stream(struct TLSContext *context, const unsigned char *buf, int buf_len, tls_validation_function certificate_verify); void tls_close_notify(struct TLSContext *context); void tls_alert(struct TLSContext *context, unsigned char critical, int code); /* Whether tls_consume_stream() has data in its buffer that is not processed yet. */ int tls_pending(struct TLSContext *context); /* Set the context as serializable or not. Must be called before negotiation. Exportable contexts use a bit more memory, to be able to hold the keys. Note that imported keys are not reexportable unless TLS_REEXPORTABLE is set. */ void tls_make_exportable(struct TLSContext *context, unsigned char exportable_flag); int tls_export_context(struct TLSContext *context, unsigned char *buffer, unsigned int buf_len, unsigned char small_version); struct TLSContext *tls_import_context(const unsigned char *buffer, unsigned int buf_len); int tls_is_broken(struct TLSContext *context); int tls_request_client_certificate(struct TLSContext *context); int tls_client_verified(struct TLSContext *context); const char *tls_sni(struct TLSContext *context); int tls_sni_set(struct TLSContext *context, const char *sni); int tls_load_root_certificates(struct TLSContext *context, const unsigned char *pem_buffer, int pem_size); int tls_default_verify(struct TLSContext *context, struct TLSCertificate **certificate_chain, int len); void tls_print_certificate(const char *fname); int tls_add_alpn(struct TLSContext *context, const char *alpn); int tls_alpn_contains(struct TLSContext *context, const char *alpn, unsigned char alpn_size); const char *tls_alpn(struct TLSContext *context); // useful when renewing certificates for servers, without the need to restart the server int tls_clear_certificates(struct TLSContext *context); int tls_make_ktls(struct TLSContext *context, int socket); int tls_unmake_ktls(struct TLSContext *context, int socket); /* Creates a new DTLS random cookie secret to be used in HelloVerifyRequest (server-side). It is recommended to call this function from time to time, to protect against some DoS attacks. */ void dtls_reset_cookie_secret(); int tls_remote_error(struct TLSContext *context); #ifdef SSL_COMPATIBLE_INTERFACE #define SSL_SERVER_RSA_CERT 1 #define SSL_SERVER_RSA_KEY 2 typedef struct TLSContext SSL_CTX; typedef struct TLSContext SSL; #define SSL_FILETYPE_PEM 1 #define SSL_VERIFY_NONE 0 #define SSL_VERIFY_PEER 1 #define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 2 #define SSL_VERIFY_CLIENT_ONCE 3 typedef struct { int fd; tls_validation_function certificate_verify; void *recv; void *send; void *user_data; } SSLUserData; int SSL_library_init(); void SSL_load_error_strings(); void OpenSSL_add_all_algorithms(); void OpenSSL_add_all_ciphers(); void OpenSSL_add_all_digests(); void EVP_cleanup(); int SSLv3_server_method(); int SSLv3_client_method(); struct TLSContext *SSL_new(struct TLSContext *context); int SSL_CTX_use_certificate_file(struct TLSContext *context, const char *filename, int dummy); int SSL_CTX_use_PrivateKey_file(struct TLSContext *context, const char *filename, int dummy); int SSL_CTX_check_private_key(struct TLSContext *context); struct TLSContext *SSL_CTX_new(int method); void SSL_free(struct TLSContext *context); void SSL_CTX_free(struct TLSContext *context); int SSL_get_error(struct TLSContext *context, int ret); int SSL_set_fd(struct TLSContext *context, int socket); void *SSL_set_userdata(struct TLSContext *context, void *data); void *SSL_userdata(struct TLSContext *context); int SSL_CTX_root_ca(struct TLSContext *context, const char *pem_filename); void SSL_CTX_set_verify(struct TLSContext *context, int mode, tls_validation_function verify_callback); int SSL_accept(struct TLSContext *context); int SSL_connect(struct TLSContext *context); int SSL_shutdown(struct TLSContext *context); int SSL_write(struct TLSContext *context, const void *buf, unsigned int len); int SSL_read(struct TLSContext *context, void *buf, unsigned int len); int SSL_pending(struct TLSContext *context); int SSL_set_io(struct TLSContext *context, void *recv, void *send); #endif #ifdef TLS_SRTP struct SRTPContext; #define SRTP_NULL 0 #define SRTP_AES_CM 1 #define SRTP_AUTH_NULL 0 #define SRTP_AUTH_HMAC_SHA1 1 struct SRTPContext *srtp_init(unsigned char mode, unsigned char auth_mode); int srtp_key(struct SRTPContext *context, const void *key, int keylen, const void *salt, int saltlen, int tag_bits); int srtp_inline(struct SRTPContext *context, const char *b64, int tag_bits); int srtp_encrypt(struct SRTPContext *context, const unsigned char *pt_header, int pt_len, const unsigned char *payload, unsigned int payload_len, unsigned char *out, int *out_buffer_len); int srtp_decrypt(struct SRTPContext *context, const unsigned char *pt_header, int pt_len, const unsigned char *payload, unsigned int payload_len, unsigned char *out, int *out_buffer_len); void srtp_destroy(struct SRTPContext *context); #endif #ifdef __cplusplus } // extern "C" #endif #endif /* ------------------------------------------------------------------------------ END tlse.h ------------------------------------------------------------------------------ */ #ifndef HTTPS_NO_TLSE /* ------------------------------------------------------------------------------ BEGIN tlse.c ------------------------------------------------------------------------------ */ /******************************************************************************** Copyright (c) 2016-2023, Eduard Suica All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ********************************************************************************/ #ifndef TLSE_C #define TLSE_C #include #include #include #include #include #ifdef _WIN32 #ifdef SSL_COMPATIBLE_INTERFACE #include #endif #include #include #ifndef strcasecmp #define strcasecmp stricmp #endif #else // hton* and ntoh* functions #include #include #include #endif #ifdef TLS_AMALGAMATION #ifdef I #pragma push_macro("I") #define TLS_I_MACRO #undef I #endif //#include "libtomcrypt.c" #ifdef TLS_I_MACRO #pragma pop_macro("I") #undef TLS_I_MACRO #endif #else //#include #endif #if (CRYPT <= 0x0117) #define LTC_PKCS_1_EMSA LTC_LTC_PKCS_1_EMSA #define LTC_PKCS_1_V1_5 LTC_LTC_PKCS_1_V1_5 #define LTC_PKCS_1_PSS LTC_LTC_PKCS_1_PSS #endif #ifdef WITH_KTLS #include #include #include // should get /usr/include/linux/tls.h (linux headers) // rename it to ktls.h and add it to your project #include "ktls.h" // or just include tls.h instead of ktls.h // #include "linux/tls.h" #endif //#include "tlse.h" #ifdef TLS_CURVE25519 #include "curve25519.c" #endif // using ChaCha20 implementation by D. J. Bernstein #ifndef TLS_FORWARD_SECRECY #undef TLS_ECDSA_SUPPORTED #endif #ifndef TLS_ECDSA_SUPPORTED // disable client ECDSA if not supported #undef TLS_CLIENT_ECDSA #endif #define TLS_DH_DEFAULT_P "87A8E61DB4B6663CFFBBD19C651959998CEEF608660DD0F25D2CEED4435E3B00E00DF8F1D61957D4FAF7DF4561B2AA3016C3D91134096FAA3BF4296D830E9A7C209E0C6497517ABD5A8A9D306BCF67ED91F9E6725B4758C022E0B1EF4275BF7B6C5BFC11D45F9088B941F54EB1E59BB8BC39A0BF12307F5C4FDB70C581B23F76B63ACAE1CAA6B7902D52526735488A0EF13C6D9A51BFA4AB3AD8347796524D8EF6A167B5A41825D967E144E5140564251CCACB83E6B486F6B3CA3F7971506026C0B857F689962856DED4010ABD0BE621C3A3960A54E710C375F26375D7014103A4B54330C198AF126116D2276E11715F693877FAD7EF09CADB094AE91E1A1597" #define TLS_DH_DEFAULT_G "3FB32C9B73134D0B2E77506660EDBD484CA7B18F21EF205407F4793A1A0BA12510DBC15077BE463FFF4FED4AAC0BB555BE3A6C1B0C6B47B1BC3773BF7E8C6F62901228F8C28CBB18A55AE31341000A650196F931C77A57F2DDF463E5E9EC144B777DE62AAAB8A8628AC376D282D6ED3864E67982428EBC831D14348F6F2F9193B5045AF2767164E1DFC967C1FB3F2E55A4BD1BFFE83B9C80D052B985D182EA0ADB2A3B7313D3FE14C8484B1E052588B9B7D2BBD2DF016199ECD06E1557CD0915B3353BBB64E0EC377FD028370DF92B52C7891428CDC67EB6184B523D1DB246C32F63078490F00EF8D647D148D47954515E2327CFEF98C582664B4C0F6CC41659" #define TLS_DHE_KEY_SIZE 2048 // you should never use weak DH groups (1024 bits) // but if you have old devices (like grandstream ip phones) // that can't handle 2048bit DHE, uncomment next lines // and define TLS_WEAK_DH_LEGACY_DEVICES // #ifdef TLS_WEAK_DH_LEGACY_DEVICES // #define TLS_DH_DEFAULT_P "B10B8F96A080E01DDE92DE5EAE5D54EC52C99FBCFB06A3C69A6A9DCA52D23B616073E28675A23D189838EF1E2EE652C013ECB4AEA906112324975C3CD49B83BFACCBDD7D90C4BD7098488E9C219A73724EFFD6FAE5644738FAA31A4FF55BCCC0A151AF5F0DC8B4BD45BF37DF365C1A65E68CFDA76D4DA708DF1FB2BC2E4A4371" // #define TLS_DH_DEFAULT_G "A4D1CBD5C3FD34126765A442EFB99905F8104DD258AC507FD6406CFF14266D31266FEA1E5C41564B777E690F5504F213160217B4B01B886A5E91547F9E2749F4D7FBD7D3B9A92EE1909D0D2263F80A76A6A24C087A091F531DBF0A0169B6A28AD662A4D18E73AFA32D779D5918D08BC8858F4DCEF97C2A24855E6EEB22B3B2E5" // #define TLS_DHE_KEY_SIZE 1024 // #endif #ifndef TLS_MALLOC #define TLS_MALLOC MALLOC //< @r-lyeh #endif #ifndef TLS_REALLOC #define TLS_REALLOC REALLOC //< @r-lyeh #endif #ifndef TLS_FREE #define TLS_FREE FREE //< @r-lyeh #endif #define TLS_ERROR(err, statement) if (err) statement; #ifdef DEBUG #define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) #define DEBUG_DUMP_HEX(buf, len) {if (buf) { int _i_; for (_i_ = 0; _i_ < len; _i_++) { DEBUG_PRINT("%02X ", (unsigned int)(buf)[_i_]); } } else { fprintf(stderr, "(null)"); } } #define DEBUG_INDEX(fields) print_index(fields) #define DEBUG_DUMP(buf, length) fwrite(buf, 1, length, stderr); #define DEBUG_DUMP_HEX_LABEL(title, buf, len) {fprintf(stderr, "%s (%i): ", title, (int)len); DEBUG_DUMP_HEX(buf, len); fprintf(stderr, "\n");} #else #define DEBUG_PRINT(...) { } #define DEBUG_DUMP_HEX(buf, len) { } #define DEBUG_INDEX(fields) { } #define DEBUG_DUMP(buf, length) { } #define DEBUG_DUMP_HEX_LABEL(title, buf, len) { } #endif #ifndef htonll #define htonll(x) ((1==htonl(1)) ? (x) : ((uint64_t)htonl((x) & 0xFFFFFFFF) << 32) | htonl((x) >> 32)) #endif #ifndef ntohll #define ntohll(x) ((1==ntohl(1)) ? (x) : ((uint64_t)ntohl((x) & 0xFFFFFFFF) << 32) | ntohl((x) >> 32)) #endif #define TLS_CHANGE_CIPHER 0x14 #define TLS_ALERT 0x15 #define TLS_HANDSHAKE 0x16 #define TLS_APPLICATION_DATA 0x17 #define TLS_SERIALIZED_OBJECT 0xFE #define TLS_CLIENT_HELLO_MINSIZE 41 #define TLS_CLIENT_RANDOM_SIZE 32 #define TLS_SERVER_RANDOM_SIZE 32 #define TLS_MAX_SESSION_ID 32 #define TLS_SHA256_MAC_SIZE 32 #define TLS_SHA1_MAC_SIZE 20 #define TLS_SHA384_MAC_SIZE 48 #define TLS_MAX_MAC_SIZE TLS_SHA384_MAC_SIZE // 160 #define TLS_MAX_KEY_EXPANSION_SIZE 192 // 512bits (sha256) = 64 bytes #define TLS_MAX_HASH_LEN 64 #define TLS_AES_IV_LENGTH 16 #define TLS_AES_BLOCK_SIZE 16 #define TLS_AES_GCM_IV_LENGTH 4 #define TLS_13_AES_GCM_IV_LENGTH 12 #define TLS_GCM_TAG_LEN 16 #define TLS_MAX_TAG_LEN 16 #define TLS_MIN_FINISHED_OPAQUE_LEN 12 #define TLS_BLOB_INCREMENT 0xFFF #define TLS_ASN1_MAXLEVEL 0xFF #define DTLS_COOKIE_SIZE 32 #define TLS_MAX_SHA_SIZE 48 // 16(md5) + 20(sha1) #define TLS_V11_HASH_SIZE 36 #define TLS_MAX_HASH_SIZE TLS_MAX_SHA_SIZE // 16(md5) + 20(sha1) #define TLS_MAX_RSA_KEY 2048 #define TLS_MAXTLS_APP_SIZE 0x4000 // max 1 second sleep #define TLS_MAX_ERROR_SLEEP_uS 1000000 // max 5 seconds context sleep #define TLS_MAX_ERROR_IDLE_S 5 #define TLS_V13_MAX_KEY_SIZE 32 #define TLS_V13_MAX_IV_SIZE 12 #define VERSION_SUPPORTED(version, err) if ((version != TLS_V13) && (version != TLS_V12) && (version != TLS_V11) && (version != TLS_V10) && (version != DTLS_V13) && (version != DTLS_V12) && (version != DTLS_V10)) { if ((version == SSL_V30) && (context->connection_status == 0)) { version = TLS_V12; } else { DEBUG_PRINT("UNSUPPORTED TLS VERSION %x\n", (int)version); return err;} } #define CHECK_SIZE(size, buf_size, err) if (((int)(size) > (int)(buf_size)) || ((int)(buf_size) < 0)) return err; #define TLS_IMPORT_CHECK_SIZE(buf_pos, size, buf_size) if (((int)size > (int)buf_size - buf_pos) || ((int)buf_pos > (int)buf_size)) { DEBUG_PRINT("IMPORT ELEMENT SIZE ERROR\n"); tls_destroy_context(context); return NULL; } #define CHECK_HANDSHAKE_STATE(context, n, limit) { if (context->hs_messages[n] >= limit) { DEBUG_PRINT("* UNEXPECTED MESSAGE (%i)\n", (int)n); payload_res = TLS_UNEXPECTED_MESSAGE; break; } context->hs_messages[n]++; } #if CRYPT > 0x0118 #define TLS_TOMCRYPT_PRIVATE_DP(key) ((key).dp) #define TLS_TOMCRYPT_PRIVATE_SET_INDEX(key, k_idx) #else #define TLS_TOMCRYPT_PRIVATE_DP(key) ((key)->dp) #define TLS_TOMCRYPT_PRIVATE_SET_INDEX(key, k_idx) key->idx = k_idx #endif #ifdef TLS_WITH_CHACHA20_POLY1305 #define TLS_CHACHA20_IV_LENGTH 12 // ChaCha20 implementation by D. J. Bernstein // Public domain. #define CHACHA_MINKEYLEN 16 #define CHACHA_NONCELEN 8 #define CHACHA_NONCELEN_96 12 #define CHACHA_CTRLEN 8 #define CHACHA_CTRLEN_96 4 #define CHACHA_STATELEN (CHACHA_NONCELEN+CHACHA_CTRLEN) #define CHACHA_BLOCKLEN 64 #define POLY1305_MAX_AAD 32 #define POLY1305_KEYLEN 32 #define POLY1305_TAGLEN 16 #define u_int unsigned int #define uint8_t unsigned char #define u_char unsigned char #ifndef NULL #define NULL (void *)0 #endif #if (CRYPT >= 0x0117) && (0) // to do: use ltc chacha/poly1305 implementation (working on big-endian machines) #define chacha_ctx chacha20poly1305_state #define poly1305_context poly1305_state #define _private_tls_poly1305_init(ctx, key, len) poly1305_init(ctx, key, len) #define _private_tls_poly1305_update(ctx, in, len) poly1305_process(ctx, in, len) #define _private_tls_poly1305_finish(ctx, mac) poly1305_done(ctx, mac, 16) #else struct chacha_ctx { u_int input[16]; uint8_t ks[CHACHA_BLOCKLEN]; uint8_t unused; }; static inline void chacha_keysetup(struct chacha_ctx *x, const u_char *k, u_int kbits); static inline void chacha_ivsetup(struct chacha_ctx *x, const u_char *iv, const u_char *ctr); static inline void chacha_ivsetup_96bitnonce(struct chacha_ctx *x, const u_char *iv, const u_char *ctr); static inline void chacha_encrypt_bytes(struct chacha_ctx *x, const u_char *m, u_char *c, u_int bytes); static inline int poly1305_generate_key(unsigned char *key256, unsigned char *nonce, unsigned int noncelen, unsigned char *poly_key, unsigned int counter); #define poly1305_block_size 16 #define poly1305_context poly1305_state_internal_t //========== ChaCha20 from D. J. Bernstein ========= // // Source available at https://cr.yp.to/chacha.html // typedef unsigned char u8; typedef unsigned int u32; typedef struct chacha_ctx chacha_ctx; #define U8C(v) (v##U) #define U32C(v) (v##U) #define U8V(v) ((u8)(v) & U8C(0xFF)) #define U32V(v) ((u32)(v) & U32C(0xFFFFFFFF)) #define ROTL32(v, n) \ (U32V((v) << (n)) | ((v) >> (32 - (n)))) #define _private_tls_U8TO32_LITTLE(p) \ (((u32)((p)[0])) | \ ((u32)((p)[1]) << 8) | \ ((u32)((p)[2]) << 16) | \ ((u32)((p)[3]) << 24)) #define _private_tls_U32TO8_LITTLE(p, v) \ do { \ (p)[0] = U8V((v)); \ (p)[1] = U8V((v) >> 8); \ (p)[2] = U8V((v) >> 16); \ (p)[3] = U8V((v) >> 24); \ } while (0) #define ROTATE(v,c) (ROTL32(v,c)) #define XOR(v,w) ((v) ^ (w)) #define PLUS(v,w) (U32V((v) + (w))) #define PLUSONE(v) (PLUS((v),1)) #define QUARTERROUND(a,b,c,d) \ a = PLUS(a,b); d = ROTATE(XOR(d,a),16); \ c = PLUS(c,d); b = ROTATE(XOR(b,c),12); \ a = PLUS(a,b); d = ROTATE(XOR(d,a), 8); \ c = PLUS(c,d); b = ROTATE(XOR(b,c), 7); static const char sigma[] = "expand 32-byte k"; static const char tau[] = "expand 16-byte k"; static inline void chacha_keysetup(chacha_ctx *x, const u8 *k, u32 kbits) { const char *constants; x->input[4] = _private_tls_U8TO32_LITTLE(k + 0); x->input[5] = _private_tls_U8TO32_LITTLE(k + 4); x->input[6] = _private_tls_U8TO32_LITTLE(k + 8); x->input[7] = _private_tls_U8TO32_LITTLE(k + 12); if (kbits == 256) { /* recommended */ k += 16; constants = sigma; } else { /* kbits == 128 */ constants = tau; } x->input[8] = _private_tls_U8TO32_LITTLE(k + 0); x->input[9] = _private_tls_U8TO32_LITTLE(k + 4); x->input[10] = _private_tls_U8TO32_LITTLE(k + 8); x->input[11] = _private_tls_U8TO32_LITTLE(k + 12); x->input[0] = _private_tls_U8TO32_LITTLE(constants + 0); x->input[1] = _private_tls_U8TO32_LITTLE(constants + 4); x->input[2] = _private_tls_U8TO32_LITTLE(constants + 8); x->input[3] = _private_tls_U8TO32_LITTLE(constants + 12); } static inline void chacha_key(chacha_ctx *x, u8 *k) { _private_tls_U32TO8_LITTLE(k, x->input[4]); _private_tls_U32TO8_LITTLE(k + 4, x->input[5]); _private_tls_U32TO8_LITTLE(k + 8, x->input[6]); _private_tls_U32TO8_LITTLE(k + 12, x->input[7]); _private_tls_U32TO8_LITTLE(k + 16, x->input[8]); _private_tls_U32TO8_LITTLE(k + 20, x->input[9]); _private_tls_U32TO8_LITTLE(k + 24, x->input[10]); _private_tls_U32TO8_LITTLE(k + 28, x->input[11]); } static inline void chacha_nonce(chacha_ctx *x, u8 *nonce) { _private_tls_U32TO8_LITTLE(nonce + 0, x->input[13]); _private_tls_U32TO8_LITTLE(nonce + 4, x->input[14]); _private_tls_U32TO8_LITTLE(nonce + 8, x->input[15]); } static inline void chacha_ivsetup(chacha_ctx *x, const u8 *iv, const u8 *counter) { x->input[12] = counter == NULL ? 0 : _private_tls_U8TO32_LITTLE(counter + 0); x->input[13] = counter == NULL ? 0 : _private_tls_U8TO32_LITTLE(counter + 4); if (iv) { x->input[14] = _private_tls_U8TO32_LITTLE(iv + 0); x->input[15] = _private_tls_U8TO32_LITTLE(iv + 4); } } static inline void chacha_ivsetup_96bitnonce(chacha_ctx *x, const u8 *iv, const u8 *counter) { x->input[12] = counter == NULL ? 0 : _private_tls_U8TO32_LITTLE(counter + 0); if (iv) { x->input[13] = _private_tls_U8TO32_LITTLE(iv + 0); x->input[14] = _private_tls_U8TO32_LITTLE(iv + 4); x->input[15] = _private_tls_U8TO32_LITTLE(iv + 8); } } static inline void chacha_ivupdate(chacha_ctx *x, const u8 *iv, const u8 *aad, const u8 *counter) { x->input[12] = counter == NULL ? 0 : _private_tls_U8TO32_LITTLE(counter + 0); x->input[13] = _private_tls_U8TO32_LITTLE(iv + 0); x->input[14] = _private_tls_U8TO32_LITTLE(iv + 4) ^ _private_tls_U8TO32_LITTLE(aad); x->input[15] = _private_tls_U8TO32_LITTLE(iv + 8) ^ _private_tls_U8TO32_LITTLE(aad + 4); } static inline void chacha_encrypt_bytes(chacha_ctx *x, const u8 *m, u8 *c, u32 bytes) { u32 x0, x1, x2, x3, x4, x5, x6, x7; u32 x8, x9, x10, x11, x12, x13, x14, x15; u32 j0, j1, j2, j3, j4, j5, j6, j7; u32 j8, j9, j10, j11, j12, j13, j14, j15; u8 *ctarget = NULL; u8 tmp[64]; u_int i; if (!bytes) return; j0 = x->input[0]; j1 = x->input[1]; j2 = x->input[2]; j3 = x->input[3]; j4 = x->input[4]; j5 = x->input[5]; j6 = x->input[6]; j7 = x->input[7]; j8 = x->input[8]; j9 = x->input[9]; j10 = x->input[10]; j11 = x->input[11]; j12 = x->input[12]; j13 = x->input[13]; j14 = x->input[14]; j15 = x->input[15]; for (;;) { if (bytes < 64) { for (i = 0; i < bytes; ++i) tmp[i] = m[i]; m = tmp; ctarget = c; c = tmp; } x0 = j0; x1 = j1; x2 = j2; x3 = j3; x4 = j4; x5 = j5; x6 = j6; x7 = j7; x8 = j8; x9 = j9; x10 = j10; x11 = j11; x12 = j12; x13 = j13; x14 = j14; x15 = j15; for (i = 20; i > 0; i -= 2) { QUARTERROUND(x0, x4, x8, x12) QUARTERROUND(x1, x5, x9, x13) QUARTERROUND(x2, x6, x10, x14) QUARTERROUND(x3, x7, x11, x15) QUARTERROUND(x0, x5, x10, x15) QUARTERROUND(x1, x6, x11, x12) QUARTERROUND(x2, x7, x8, x13) QUARTERROUND(x3, x4, x9, x14) } x0 = PLUS(x0, j0); x1 = PLUS(x1, j1); x2 = PLUS(x2, j2); x3 = PLUS(x3, j3); x4 = PLUS(x4, j4); x5 = PLUS(x5, j5); x6 = PLUS(x6, j6); x7 = PLUS(x7, j7); x8 = PLUS(x8, j8); x9 = PLUS(x9, j9); x10 = PLUS(x10, j10); x11 = PLUS(x11, j11); x12 = PLUS(x12, j12); x13 = PLUS(x13, j13); x14 = PLUS(x14, j14); x15 = PLUS(x15, j15); if (bytes < 64) { _private_tls_U32TO8_LITTLE(x->ks + 0, x0); _private_tls_U32TO8_LITTLE(x->ks + 4, x1); _private_tls_U32TO8_LITTLE(x->ks + 8, x2); _private_tls_U32TO8_LITTLE(x->ks + 12, x3); _private_tls_U32TO8_LITTLE(x->ks + 16, x4); _private_tls_U32TO8_LITTLE(x->ks + 20, x5); _private_tls_U32TO8_LITTLE(x->ks + 24, x6); _private_tls_U32TO8_LITTLE(x->ks + 28, x7); _private_tls_U32TO8_LITTLE(x->ks + 32, x8); _private_tls_U32TO8_LITTLE(x->ks + 36, x9); _private_tls_U32TO8_LITTLE(x->ks + 40, x10); _private_tls_U32TO8_LITTLE(x->ks + 44, x11); _private_tls_U32TO8_LITTLE(x->ks + 48, x12); _private_tls_U32TO8_LITTLE(x->ks + 52, x13); _private_tls_U32TO8_LITTLE(x->ks + 56, x14); _private_tls_U32TO8_LITTLE(x->ks + 60, x15); } x0 = XOR(x0, _private_tls_U8TO32_LITTLE(m + 0)); x1 = XOR(x1, _private_tls_U8TO32_LITTLE(m + 4)); x2 = XOR(x2, _private_tls_U8TO32_LITTLE(m + 8)); x3 = XOR(x3, _private_tls_U8TO32_LITTLE(m + 12)); x4 = XOR(x4, _private_tls_U8TO32_LITTLE(m + 16)); x5 = XOR(x5, _private_tls_U8TO32_LITTLE(m + 20)); x6 = XOR(x6, _private_tls_U8TO32_LITTLE(m + 24)); x7 = XOR(x7, _private_tls_U8TO32_LITTLE(m + 28)); x8 = XOR(x8, _private_tls_U8TO32_LITTLE(m + 32)); x9 = XOR(x9, _private_tls_U8TO32_LITTLE(m + 36)); x10 = XOR(x10, _private_tls_U8TO32_LITTLE(m + 40)); x11 = XOR(x11, _private_tls_U8TO32_LITTLE(m + 44)); x12 = XOR(x12, _private_tls_U8TO32_LITTLE(m + 48)); x13 = XOR(x13, _private_tls_U8TO32_LITTLE(m + 52)); x14 = XOR(x14, _private_tls_U8TO32_LITTLE(m + 56)); x15 = XOR(x15, _private_tls_U8TO32_LITTLE(m + 60)); j12 = PLUSONE(j12); if (!j12) { j13 = PLUSONE(j13); /* * Stopping at 2^70 bytes per nonce is the user's * responsibility. */ } _private_tls_U32TO8_LITTLE(c + 0, x0); _private_tls_U32TO8_LITTLE(c + 4, x1); _private_tls_U32TO8_LITTLE(c + 8, x2); _private_tls_U32TO8_LITTLE(c + 12, x3); _private_tls_U32TO8_LITTLE(c + 16, x4); _private_tls_U32TO8_LITTLE(c + 20, x5); _private_tls_U32TO8_LITTLE(c + 24, x6); _private_tls_U32TO8_LITTLE(c + 28, x7); _private_tls_U32TO8_LITTLE(c + 32, x8); _private_tls_U32TO8_LITTLE(c + 36, x9); _private_tls_U32TO8_LITTLE(c + 40, x10); _private_tls_U32TO8_LITTLE(c + 44, x11); _private_tls_U32TO8_LITTLE(c + 48, x12); _private_tls_U32TO8_LITTLE(c + 52, x13); _private_tls_U32TO8_LITTLE(c + 56, x14); _private_tls_U32TO8_LITTLE(c + 60, x15); if (bytes <= 64) { if (bytes < 64) { for (i = 0; i < bytes; ++i) ctarget[i] = c[i]; } x->input[12] = j12; x->input[13] = j13; x->unused = 64 - bytes; return; } bytes -= 64; c += 64; m += 64; } } static inline void chacha20_block(chacha_ctx *x, unsigned char *c, u_int len) { u_int i; unsigned int state[16]; for (i = 0; i < 16; i++) state[i] = x->input[i]; for (i = 20; i > 0; i -= 2) { QUARTERROUND(state[0], state[4], state[8], state[12]) QUARTERROUND(state[1], state[5], state[9], state[13]) QUARTERROUND(state[2], state[6], state[10], state[14]) QUARTERROUND(state[3], state[7], state[11], state[15]) QUARTERROUND(state[0], state[5], state[10], state[15]) QUARTERROUND(state[1], state[6], state[11], state[12]) QUARTERROUND(state[2], state[7], state[8], state[13]) QUARTERROUND(state[3], state[4], state[9], state[14]) } for (i = 0; i < 16; i++) x->input[i] = PLUS(x->input[i], state[i]); for (i = 0; i < len; i += 4) { _private_tls_U32TO8_LITTLE(c + i, x->input[i/4]); } } static inline int poly1305_generate_key(unsigned char *key256, unsigned char *nonce, unsigned int noncelen, unsigned char *poly_key, unsigned int counter) { struct chacha_ctx ctx; uint64_t ctr; memset(&ctx, 0, sizeof(ctx)); chacha_keysetup(&ctx, key256, 256); switch (noncelen) { case 8: ctr = counter; chacha_ivsetup(&ctx, nonce, (unsigned char *)&ctr); break; case 12: chacha_ivsetup_96bitnonce(&ctx, nonce, (unsigned char *)&counter); break; default: return -1; } chacha20_block(&ctx, poly_key, POLY1305_KEYLEN); return 0; } /* 17 + sizeof(size_t) + 14*sizeof(unsigned long) */ typedef struct poly1305_state_internal_t { unsigned long r[5]; unsigned long h[5]; unsigned long pad[4]; size_t leftover; unsigned char buffer[poly1305_block_size]; unsigned char final; } poly1305_state_internal_t; /* interpret four 8 bit unsigned integers as a 32 bit unsigned integer in little endian */ static unsigned long _private_tls_U8TO32(const unsigned char *p) { return (((unsigned long)(p[0] & 0xff) ) | ((unsigned long)(p[1] & 0xff) << 8) | ((unsigned long)(p[2] & 0xff) << 16) | ((unsigned long)(p[3] & 0xff) << 24)); } /* store a 32 bit unsigned integer as four 8 bit unsigned integers in little endian */ static void _private_tls_U32TO8(unsigned char *p, unsigned long v) { p[0] = (v ) & 0xff; p[1] = (v >> 8) & 0xff; p[2] = (v >> 16) & 0xff; p[3] = (v >> 24) & 0xff; } void _private_tls_poly1305_init(poly1305_context *ctx, const unsigned char key[32]) { poly1305_state_internal_t *st = (poly1305_state_internal_t *)ctx; /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ st->r[0] = (_private_tls_U8TO32(&key[ 0]) ) & 0x3ffffff; st->r[1] = (_private_tls_U8TO32(&key[ 3]) >> 2) & 0x3ffff03; st->r[2] = (_private_tls_U8TO32(&key[ 6]) >> 4) & 0x3ffc0ff; st->r[3] = (_private_tls_U8TO32(&key[ 9]) >> 6) & 0x3f03fff; st->r[4] = (_private_tls_U8TO32(&key[12]) >> 8) & 0x00fffff; /* h = 0 */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; st->h[3] = 0; st->h[4] = 0; /* save pad for later */ st->pad[0] = _private_tls_U8TO32(&key[16]); st->pad[1] = _private_tls_U8TO32(&key[20]); st->pad[2] = _private_tls_U8TO32(&key[24]); st->pad[3] = _private_tls_U8TO32(&key[28]); st->leftover = 0; st->final = 0; } static void _private_tls_poly1305_blocks(poly1305_state_internal_t *st, const unsigned char *m, size_t bytes) { const unsigned long hibit = (st->final) ? 0 : (1UL << 24); /* 1 << 128 */ unsigned long r0,r1,r2,r3,r4; unsigned long s1,s2,s3,s4; unsigned long h0,h1,h2,h3,h4; unsigned long long d0,d1,d2,d3,d4; unsigned long c; r0 = st->r[0]; r1 = st->r[1]; r2 = st->r[2]; r3 = st->r[3]; r4 = st->r[4]; s1 = r1 * 5; s2 = r2 * 5; s3 = r3 * 5; s4 = r4 * 5; h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; h3 = st->h[3]; h4 = st->h[4]; while (bytes >= poly1305_block_size) { /* h += m[i] */ h0 += (_private_tls_U8TO32(m+ 0) ) & 0x3ffffff; h1 += (_private_tls_U8TO32(m+ 3) >> 2) & 0x3ffffff; h2 += (_private_tls_U8TO32(m+ 6) >> 4) & 0x3ffffff; h3 += (_private_tls_U8TO32(m+ 9) >> 6) & 0x3ffffff; h4 += (_private_tls_U8TO32(m+12) >> 8) | hibit; /* h *= r */ d0 = ((unsigned long long)h0 * r0) + ((unsigned long long)h1 * s4) + ((unsigned long long)h2 * s3) + ((unsigned long long)h3 * s2) + ((unsigned long long)h4 * s1); d1 = ((unsigned long long)h0 * r1) + ((unsigned long long)h1 * r0) + ((unsigned long long)h2 * s4) + ((unsigned long long)h3 * s3) + ((unsigned long long)h4 * s2); d2 = ((unsigned long long)h0 * r2) + ((unsigned long long)h1 * r1) + ((unsigned long long)h2 * r0) + ((unsigned long long)h3 * s4) + ((unsigned long long)h4 * s3); d3 = ((unsigned long long)h0 * r3) + ((unsigned long long)h1 * r2) + ((unsigned long long)h2 * r1) + ((unsigned long long)h3 * r0) + ((unsigned long long)h4 * s4); d4 = ((unsigned long long)h0 * r4) + ((unsigned long long)h1 * r3) + ((unsigned long long)h2 * r2) + ((unsigned long long)h3 * r1) + ((unsigned long long)h4 * r0); /* (partial) h %= p */ c = (unsigned long)(d0 >> 26); h0 = (unsigned long)d0 & 0x3ffffff; d1 += c; c = (unsigned long)(d1 >> 26); h1 = (unsigned long)d1 & 0x3ffffff; d2 += c; c = (unsigned long)(d2 >> 26); h2 = (unsigned long)d2 & 0x3ffffff; d3 += c; c = (unsigned long)(d3 >> 26); h3 = (unsigned long)d3 & 0x3ffffff; d4 += c; c = (unsigned long)(d4 >> 26); h4 = (unsigned long)d4 & 0x3ffffff; h0 += c * 5; c = (h0 >> 26); h0 = h0 & 0x3ffffff; h1 += c; m += poly1305_block_size; bytes -= poly1305_block_size; } st->h[0] = h0; st->h[1] = h1; st->h[2] = h2; st->h[3] = h3; st->h[4] = h4; } void _private_tls_poly1305_finish(poly1305_context *ctx, unsigned char mac[16]) { poly1305_state_internal_t *st = (poly1305_state_internal_t *)ctx; unsigned long h0,h1,h2,h3,h4,c; unsigned long g0,g1,g2,g3,g4; unsigned long long f; unsigned long mask; /* process the remaining block */ if (st->leftover) { size_t i = st->leftover; st->buffer[i++] = 1; for (; i < poly1305_block_size; i++) st->buffer[i] = 0; st->final = 1; _private_tls_poly1305_blocks(st, st->buffer, poly1305_block_size); } /* fully carry h */ h0 = st->h[0]; h1 = st->h[1]; h2 = st->h[2]; h3 = st->h[3]; h4 = st->h[4]; c = h1 >> 26; h1 = h1 & 0x3ffffff; h2 += c; c = h2 >> 26; h2 = h2 & 0x3ffffff; h3 += c; c = h3 >> 26; h3 = h3 & 0x3ffffff; h4 += c; c = h4 >> 26; h4 = h4 & 0x3ffffff; h0 += c * 5; c = h0 >> 26; h0 = h0 & 0x3ffffff; h1 += c; /* compute h + -p */ g0 = h0 + 5; c = g0 >> 26; g0 &= 0x3ffffff; g1 = h1 + c; c = g1 >> 26; g1 &= 0x3ffffff; g2 = h2 + c; c = g2 >> 26; g2 &= 0x3ffffff; g3 = h3 + c; c = g3 >> 26; g3 &= 0x3ffffff; g4 = h4 + c - (1UL << 26); /* select h if h < p, or h + -p if h >= p */ mask = (g4 >> ((sizeof(unsigned long) * 8) - 1)) - 1; g0 &= mask; g1 &= mask; g2 &= mask; g3 &= mask; g4 &= mask; mask = ~mask; h0 = (h0 & mask) | g0; h1 = (h1 & mask) | g1; h2 = (h2 & mask) | g2; h3 = (h3 & mask) | g3; h4 = (h4 & mask) | g4; /* h = h % (2^128) */ h0 = ((h0 ) | (h1 << 26)) & 0xffffffff; h1 = ((h1 >> 6) | (h2 << 20)) & 0xffffffff; h2 = ((h2 >> 12) | (h3 << 14)) & 0xffffffff; h3 = ((h3 >> 18) | (h4 << 8)) & 0xffffffff; /* mac = (h + pad) % (2^128) */ f = (unsigned long long)h0 + st->pad[0] ; h0 = (unsigned long)f; f = (unsigned long long)h1 + st->pad[1] + (f >> 32); h1 = (unsigned long)f; f = (unsigned long long)h2 + st->pad[2] + (f >> 32); h2 = (unsigned long)f; f = (unsigned long long)h3 + st->pad[3] + (f >> 32); h3 = (unsigned long)f; _private_tls_U32TO8(mac + 0, h0); _private_tls_U32TO8(mac + 4, h1); _private_tls_U32TO8(mac + 8, h2); _private_tls_U32TO8(mac + 12, h3); /* zero out the state */ st->h[0] = 0; st->h[1] = 0; st->h[2] = 0; st->h[3] = 0; st->h[4] = 0; st->r[0] = 0; st->r[1] = 0; st->r[2] = 0; st->r[3] = 0; st->r[4] = 0; st->pad[0] = 0; st->pad[1] = 0; st->pad[2] = 0; st->pad[3] = 0; } void _private_tls_poly1305_update(poly1305_context *ctx, const unsigned char *m, size_t bytes) { poly1305_state_internal_t *st = (poly1305_state_internal_t *)ctx; size_t i; /* handle leftover */ if (st->leftover) { size_t want = (poly1305_block_size - st->leftover); if (want > bytes) want = bytes; for (i = 0; i < want; i++) st->buffer[st->leftover + i] = m[i]; bytes -= want; m += want; st->leftover += want; if (st->leftover < poly1305_block_size) return; _private_tls_poly1305_blocks(st, st->buffer, poly1305_block_size); st->leftover = 0; } /* process full blocks */ if (bytes >= poly1305_block_size) { size_t want = (bytes & ~(poly1305_block_size - 1)); _private_tls_poly1305_blocks(st, m, want); m += want; bytes -= want; } /* store leftover */ if (bytes) { for (i = 0; i < bytes; i++) st->buffer[st->leftover + i] = m[i]; st->leftover += bytes; } } int poly1305_verify(const unsigned char mac1[16], const unsigned char mac2[16]) { size_t i; unsigned int dif = 0; for (i = 0; i < 16; i++) dif |= (mac1[i] ^ mac2[i]); dif = (dif - 1) >> ((sizeof(unsigned int) * 8) - 1); return (dif & 1); } void chacha20_poly1305_key(struct chacha_ctx *ctx, unsigned char *poly1305_key) { unsigned char key[32]; unsigned char nonce[12]; chacha_key(ctx, key); chacha_nonce(ctx, nonce); poly1305_generate_key(key, nonce, sizeof(nonce), poly1305_key, 0); } int chacha20_poly1305_aead(struct chacha_ctx *ctx, unsigned char *pt, unsigned int len, unsigned char *aad, unsigned int aad_len, unsigned char *poly_key, unsigned char *out) { static unsigned char zeropad[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; if (aad_len > POLY1305_MAX_AAD) return -1; unsigned int counter = 1; chacha_ivsetup_96bitnonce(ctx, NULL, (unsigned char *)&counter); chacha_encrypt_bytes(ctx, pt, out, len); poly1305_context aead_ctx; _private_tls_poly1305_init(&aead_ctx, poly_key); _private_tls_poly1305_update(&aead_ctx, aad, aad_len); int rem = aad_len % 16; if (rem) _private_tls_poly1305_update(&aead_ctx, zeropad, 16 - rem); _private_tls_poly1305_update(&aead_ctx, out, len); rem = len % 16; if (rem) _private_tls_poly1305_update(&aead_ctx, zeropad, 16 - rem); unsigned char trail[16]; _private_tls_U32TO8(trail, aad_len); *(int *)(trail + 4) = 0; _private_tls_U32TO8(trail + 8, len); *(int *)(trail + 12) = 0; _private_tls_poly1305_update(&aead_ctx, trail, 16); _private_tls_poly1305_finish(&aead_ctx, out + len); return len + POLY1305_TAGLEN; } #endif #endif typedef enum { KEA_dhe_dss, KEA_dhe_rsa, KEA_dh_anon, KEA_rsa, KEA_dh_dss, KEA_dh_rsa, KEA_ec_diffie_hellman } KeyExchangeAlgorithm; typedef enum { rsa_sign = 1, dss_sign = 2, rsa_fixed_dh = 3, dss_fixed_dh = 4, rsa_ephemeral_dh_RESERVED = 5, dss_ephemeral_dh_RESERVED = 6, fortezza_dms_RESERVED = 20, ecdsa_sign = 64, rsa_fixed_ecdh = 65, ecdsa_fixed_ecdh = 66 } TLSClientCertificateType; typedef enum { none = 0, md5 = 1, sha1 = 2, sha224 = 3, sha256 = 4, sha384 = 5, sha512 = 6, _md5_sha1 = 255 } TLSHashAlgorithm; typedef enum { anonymous = 0, rsa = 1, dsa = 2, ecdsa = 3 } TLSSignatureAlgorithm; struct _private_OID_chain { void *top; unsigned char *oid; }; struct TLSCertificate { unsigned short version; unsigned int algorithm; unsigned int key_algorithm; unsigned int ec_algorithm; unsigned char *exponent; unsigned int exponent_len; unsigned char *pk; unsigned int pk_len; unsigned char *priv; unsigned int priv_len; unsigned char *issuer_country; unsigned char *issuer_state; unsigned char *issuer_location; unsigned char *issuer_entity; unsigned char *issuer_subject; unsigned char *not_before; unsigned char *not_after; unsigned char *country; unsigned char *state; unsigned char *location; unsigned char *entity; unsigned char *subject; unsigned char **san; unsigned short san_length; unsigned char *ocsp; unsigned char *serial_number; unsigned int serial_len; unsigned char *sign_key; unsigned int sign_len; unsigned char *fingerprint; unsigned char *der_bytes; unsigned int der_len; unsigned char *bytes; unsigned int len; }; typedef struct { union { symmetric_CBC aes_local; gcm_state aes_gcm_local; #ifdef TLS_WITH_CHACHA20_POLY1305 chacha_ctx chacha_local; #endif } ctx_local; union { symmetric_CBC aes_remote; gcm_state aes_gcm_remote; #ifdef TLS_WITH_CHACHA20_POLY1305 chacha_ctx chacha_remote; #endif } ctx_remote; union { unsigned char local_mac[TLS_MAX_MAC_SIZE]; unsigned char local_aead_iv[TLS_AES_GCM_IV_LENGTH]; #ifdef WITH_TLS_13 unsigned char local_iv[TLS_13_AES_GCM_IV_LENGTH]; #endif #ifdef TLS_WITH_CHACHA20_POLY1305 unsigned char local_nonce[TLS_CHACHA20_IV_LENGTH]; #endif } ctx_local_mac; union { unsigned char remote_aead_iv[TLS_AES_GCM_IV_LENGTH]; unsigned char remote_mac[TLS_MAX_MAC_SIZE]; #ifdef WITH_TLS_13 unsigned char remote_iv[TLS_13_AES_GCM_IV_LENGTH]; #endif #ifdef TLS_WITH_CHACHA20_POLY1305 unsigned char remote_nonce[TLS_CHACHA20_IV_LENGTH]; #endif } ctx_remote_mac; unsigned char created; } TLSCipher; typedef struct { hash_state hash32; hash_state hash48; #ifdef TLS_LEGACY_SUPPORT hash_state hash2; #endif unsigned char created; } TLSHash; #ifdef TLS_FORWARD_SECRECY #define mp_init(a) ltc_mp.init(a) #define mp_init_multi ltc_init_multi #define mp_clear(a) ltc_mp.deinit(a) #define mp_clear_multi ltc_deinit_multi #define mp_count_bits(a) ltc_mp.count_bits(a) #define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c) #define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a) #define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b) #define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c) #define mp_exptmod(a, b, c, d) ltc_mp.exptmod(a, b, c, d) #define mp_add(a, b, c) ltc_mp.add(a, b, c) #define mp_mul(a, b, c) ltc_mp.mul(a, b, c) #define mp_cmp(a, b) ltc_mp.compare(a, b) #define mp_cmp_d(a, b) ltc_mp.compare_d(a, b) #define mp_sqr(a, b) ltc_mp.sqr(a, b) #define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c) #define mp_sub(a, b, c) ltc_mp.sub(a, b, c) #define mp_set(a, b) ltc_mp.set_int(a, b) typedef struct { int iana; void *x; void *y; void *p; void *g; } DHKey; #ifdef WITH_TLS_13 static DHKey ffdhe2048 = { 0x0100, NULL, NULL, (void *)"FFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B423861285C97FFFFFFFFFFFFFFFF", (void *)"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002" }; static DHKey ffdhe3072 = { 0x0101, NULL, NULL, (void *)"FFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B66C62E37FFFFFFFFFFFFFFFF", (void *)"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002" }; static DHKey ffdhe4096 = { 0x0102, NULL, NULL, (void *)"FFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B669E1EF16E6F52C3164DF4FB7930E9E4E58857B6AC7D5F42D69F6D187763CF1D5503400487F55BA57E31CC7A7135C886EFB4318AED6A1E012D9E6832A907600A918130C46DC778F971AD0038092999A333CB8B7A1A1DB93D7140003C2A4ECEA9F98D0ACC0A8291CDCEC97DCF8EC9B55A7F88A46B4DB5A851F44182E1C68A007E5E655F6AFFFFFFFFFFFFFFFF", (void *)"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002" }; static DHKey ffdhe6144 = { 0x0103, NULL, NULL, (void *)"FFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B669E1EF16E6F52C3164DF4FB7930E9E4E58857B6AC7D5F42D69F6D187763CF1D5503400487F55BA57E31CC7A7135C886EFB4318AED6A1E012D9E6832A907600A918130C46DC778F971AD0038092999A333CB8B7A1A1DB93D7140003C2A4ECEA9F98D0ACC0A8291CDCEC97DCF8EC9B55A7F88A46B4DB5A851F44182E1C68A007E5E0DD9020BFD64B645036C7A4E677D2C38532A3A23BA4442CAF53EA63BB454329B7624C8917BDD64B1C0FD4CB38E8C334C701C3ACDAD0657FCCFEC719B1F5C3E4E46041F388147FB4CFDB477A52471F7A9A96910B855322EDB6340D8A00EF092350511E30ABEC1FFF9E3A26E7FB29F8C183023C3587E38DA0077D9B4763E4E4B94B2BBC194C6651E77CAF992EEAAC0232A281BF6B3A739C1226116820AE8DB5847A67CBEF9C9091B462D538CD72B03746AE77F5E62292C311562A846505DC82DB854338AE49F5235C95B91178CCF2DD5CACEF403EC9D1810C6272B045B3B71F9DC6B80D63FDD4A8E9ADB1E6962A69526D43161C1A41D570D7938DAD4A40E329CD0E40E65FFFFFFFFFFFFFFFF", (void *)"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002" }; static DHKey ffdhe8192 = { 0x0104, NULL, NULL, (void *)"FFFFFFFFFFFFFFFFADF85458A2BB4A9AAFDC5620273D3CF1D8B9C583CE2D3695A9E13641146433FBCC939DCE249B3EF97D2FE363630C75D8F681B202AEC4617AD3DF1ED5D5FD65612433F51F5F066ED0856365553DED1AF3B557135E7F57C935984F0C70E0E68B77E2A689DAF3EFE8721DF158A136ADE73530ACCA4F483A797ABC0AB182B324FB61D108A94BB2C8E3FBB96ADAB760D7F4681D4F42A3DE394DF4AE56EDE76372BB190B07A7C8EE0A6D709E02FCE1CDF7E2ECC03404CD28342F619172FE9CE98583FF8E4F1232EEF28183C3FE3B1B4C6FAD733BB5FCBC2EC22005C58EF1837D1683B2C6F34A26C1B2EFFA886B4238611FCFDCDE355B3B6519035BBC34F4DEF99C023861B46FC9D6E6C9077AD91D2691F7F7EE598CB0FAC186D91CAEFE130985139270B4130C93BC437944F4FD4452E2D74DD364F2E21E71F54BFF5CAE82AB9C9DF69EE86D2BC522363A0DABC521979B0DEADA1DBF9A42D5C4484E0ABCD06BFA53DDEF3C1B20EE3FD59D7C25E41D2B669E1EF16E6F52C3164DF4FB7930E9E4E58857B6AC7D5F42D69F6D187763CF1D5503400487F55BA57E31CC7A7135C886EFB4318AED6A1E012D9E6832A907600A918130C46DC778F971AD0038092999A333CB8B7A1A1DB93D7140003C2A4ECEA9F98D0ACC0A8291CDCEC97DCF8EC9B55A7F88A46B4DB5A851F44182E1C68A007E5E0DD9020BFD64B645036C7A4E677D2C38532A3A23BA4442CAF53EA63BB454329B7624C8917BDD64B1C0FD4CB38E8C334C701C3ACDAD0657FCCFEC719B1F5C3E4E46041F388147FB4CFDB477A52471F7A9A96910B855322EDB6340D8A00EF092350511E30ABEC1FFF9E3A26E7FB29F8C183023C3587E38DA0077D9B4763E4E4B94B2BBC194C6651E77CAF992EEAAC0232A281BF6B3A739C1226116820AE8DB5847A67CBEF9C9091B462D538CD72B03746AE77F5E62292C311562A846505DC82DB854338AE49F5235C95B91178CCF2DD5CACEF403EC9D1810C6272B045B3B71F9DC6B80D63FDD4A8E9ADB1E6962A69526D43161C1A41D570D7938DAD4A40E329CCFF46AAA36AD004CF600C8381E425A31D951AE64FDB23FCEC9509D43687FEB69EDD1CC5E0B8CC3BDF64B10EF86B63142A3AB8829555B2F747C932665CB2C0F1CC01BD70229388839D2AF05E454504AC78B7582822846C0BA35C35F5C59160CC046FD8251541FC68C9C86B022BB7099876A460E7451A8A93109703FEE1C217E6C3826E52C51AA691E0E423CFC99E9E31650C1217B624816CDAD9A95F9D5B8019488D9C0A0A1FE3075A577E23183F81D4A3F2FA4571EFC8CE0BA8A4FE8B6855DFE72B0A66EDED2FBABFBE58A30FAFABE1C5D71A87E2F741EF8C1FE86FEA6BBFDE530677F0D97D11D49F7A8443D0822E506A9F4614E011E2A94838FF88CD68C8BB7C5C6424CFFFFFFFFFFFFFFFF", (void *)"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002" }; #endif struct ECCCurveParameters { int size; int iana; const char *name; const char *P; const char *A; const char *B; const char *Gx; const char *Gy; const char *order; ltc_ecc_set_type dp; }; static struct ECCCurveParameters secp192r1 = { 24, 19, "secp192r1", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF", // P "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC", // A "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1", // B "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012", // Gx "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811", // Gy "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831" // order (n) }; static struct ECCCurveParameters secp224r1 = { 28, 21, "secp224r1", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", // P "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE", // A "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4", // B "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21", // Gx "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34", // Gy "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D" // order (n) }; static struct ECCCurveParameters secp224k1 = { 28, 20, "secp224k1", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", // P "00000000000000000000000000000000000000000000000000000000", // A "00000000000000000000000000000000000000000000000000000005", // B "A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", // Gx "7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", // Gy "0000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7" // order (n) }; static struct ECCCurveParameters secp256r1 = { 32, 23, "secp256r1", "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", // P "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", // A "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", // B "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", // Gx "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", // Gy "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551" // order (n) }; static struct ECCCurveParameters secp256k1 = { 32, 22, "secp256k1", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", // P "0000000000000000000000000000000000000000000000000000000000000000", // A "0000000000000000000000000000000000000000000000000000000000000007", // B "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", // Gx "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", // Gy "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141" // order (n) }; static struct ECCCurveParameters secp384r1 = { 48, 24, "secp384r1", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF", // P "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC", // A "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF", // B "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7", // Gx "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F", // Gy "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973" // order (n) }; static struct ECCCurveParameters secp521r1 = { 66, 25, "secp521r1", "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", // P "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC", // A "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00", // B "00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66", // Gx "011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650", // Gy "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409" // order (n) }; #ifdef TLS_CURVE25519 // dummy static struct ECCCurveParameters x25519 = { 32, 29, "x25519", "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED", // P "0000000000000000000000000000000000000000000000000000000000076D06", // A "0000000000000000000000000000000000000000000000000000000000000000", // B "0000000000000000000000000000000000000000000000000000000000000009", // Gx "20AE19A1B8A086B4E01EDD2C7748D14C923D4D7E6D7C61B229E9C5A27ECED3D9", // Gy "1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED" // order (n) }; #endif static struct ECCCurveParameters * const default_curve = &secp256r1; void init_curve(struct ECCCurveParameters *curve) { curve->dp.size = curve->size; curve->dp.name = (char *)curve->name; curve->dp.B = (char *)curve->B; curve->dp.prime = (char *)curve->P; curve->dp.Gx = (char *)curve->Gx; curve->dp.Gy = (char *)curve->Gy; curve->dp.order = (char *)curve->order; } void init_curves() { init_curve(&secp192r1); init_curve(&secp224r1); init_curve(&secp224k1); init_curve(&secp256r1); init_curve(&secp256k1); init_curve(&secp384r1); init_curve(&secp521r1); } #endif struct TLSContext { unsigned char remote_random[TLS_CLIENT_RANDOM_SIZE]; unsigned char local_random[TLS_SERVER_RANDOM_SIZE]; unsigned char session[TLS_MAX_SESSION_ID]; unsigned char session_size; unsigned short cipher; unsigned short version; unsigned char is_server; struct TLSCertificate **certificates; struct TLSCertificate *private_key; #ifdef TLS_ECDSA_SUPPORTED struct TLSCertificate *ec_private_key; #endif #ifdef TLS_FORWARD_SECRECY DHKey *dhe; ecc_key *ecc_dhe; char *default_dhe_p; char *default_dhe_g; const struct ECCCurveParameters *curve; #endif struct TLSCertificate **client_certificates; unsigned int certificates_count; unsigned int client_certificates_count; unsigned char *master_key; unsigned int master_key_len; unsigned char *premaster_key; unsigned int premaster_key_len; unsigned char cipher_spec_set; TLSCipher crypto; TLSHash *handshake_hash; unsigned char *message_buffer; unsigned int message_buffer_len; uint64_t remote_sequence_number; uint64_t local_sequence_number; unsigned char connection_status; unsigned char critical_error; unsigned char error_code; unsigned char *tls_buffer; unsigned int tls_buffer_len; unsigned char *application_buffer; unsigned int application_buffer_len; unsigned char is_child; unsigned char exportable; unsigned char *exportable_keys; unsigned char exportable_size; char *sni; unsigned char request_client_certificate; unsigned char dtls; unsigned short dtls_epoch_local; unsigned short dtls_epoch_remote; unsigned char *dtls_cookie; unsigned char dtls_cookie_len; unsigned char dtls_seq; unsigned char *cached_handshake; unsigned int cached_handshake_len; unsigned char client_verified; // handshake messages flags unsigned char hs_messages[11]; void *user_data; struct TLSCertificate **root_certificates; unsigned int root_count; #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION unsigned char *verify_data; unsigned char verify_len; #endif #ifdef WITH_TLS_13 unsigned char *finished_key; unsigned char *remote_finished_key; unsigned char *server_finished_hash; #endif #ifdef TLS_CURVE25519 unsigned char *client_secret; #endif char **alpn; unsigned char alpn_count; char *negotiated_alpn; unsigned int sleep_until; unsigned short tls13_version; #ifdef TLS_12_FALSE_START unsigned char false_start; #endif }; struct TLSPacket { unsigned char *buf; unsigned int len; unsigned int size; unsigned char broken; struct TLSContext *context; }; #ifdef SSL_COMPATIBLE_INTERFACE typedef int (*SOCKET_RECV_CALLBACK)(int socket, void *buffer, size_t length, int flags); typedef int (*SOCKET_SEND_CALLBACK)(int socket, const void *buffer, size_t length, int flags); #ifndef _WIN32 #include #endif #endif static const unsigned int version_id[] = {1, 1, 1, 0}; static const unsigned int pk_id[] = {1, 1, 7, 0}; static const unsigned int serial_id[] = {1, 1, 2, 1, 0}; static const unsigned int issurer_id[] = {1, 1, 4, 0}; static const unsigned int owner_id[] = {1, 1, 6, 0}; static const unsigned int validity_id[] = {1, 1, 5, 0}; static const unsigned int algorithm_id[] = {1, 1, 3, 0}; static const unsigned int sign_id[] = {1, 3, 2, 1, 0}; static const unsigned int priv_id[] = {1, 4, 0}; static const unsigned int priv_der_id[] = {1, 3, 1, 0}; static const unsigned int ecc_priv_id[] = {1, 2, 0}; static const unsigned char country_oid[] = {0x55, 0x04, 0x06, 0x00}; static const unsigned char state_oid[] = {0x55, 0x04, 0x08, 0x00}; static const unsigned char location_oid[] = {0x55, 0x04, 0x07, 0x00}; static const unsigned char entity_oid[] = {0x55, 0x04, 0x0A, 0x00}; static const unsigned char subject_oid[] = {0x55, 0x04, 0x03, 0x00}; static const unsigned char san_oid[] = {0x55, 0x1D, 0x11, 0x00}; static const unsigned char ocsp_oid[] = {0x2B, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x00}; static const unsigned char TLS_RSA_SIGN_RSA_OID[] = {0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x00}; static const unsigned char TLS_RSA_SIGN_MD5_OID[] = {0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04, 0x00}; static const unsigned char TLS_RSA_SIGN_SHA1_OID[] = {0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05, 0x00}; static const unsigned char TLS_RSA_SIGN_SHA256_OID[] = {0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0B, 0x00}; static const unsigned char TLS_RSA_SIGN_SHA384_OID[] = {0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0C, 0x00}; static const unsigned char TLS_RSA_SIGN_SHA512_OID[] = {0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0D, 0x00}; // static const unsigned char TLS_ECDSA_SIGN_SHA1_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x01, 0x05, 0x00, 0x00}; // static const unsigned char TLS_ECDSA_SIGN_SHA224_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x01, 0x05, 0x00, 0x00}; static const unsigned char TLS_ECDSA_SIGN_SHA256_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x02, 0x05, 0x00, 0x00}; // static const unsigned char TLS_ECDSA_SIGN_SHA384_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x03, 0x05, 0x00, 0x00}; // static const unsigned char TLS_ECDSA_SIGN_SHA512_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x04, 0x05, 0x00, 0x00}; static const unsigned char TLS_EC_PUBLIC_KEY_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01, 0x00}; static const unsigned char TLS_EC_prime192v1_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x01, 0x00}; static const unsigned char TLS_EC_prime192v2_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x02, 0x00}; static const unsigned char TLS_EC_prime192v3_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x03, 0x00}; static const unsigned char TLS_EC_prime239v1_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x04, 0x00}; static const unsigned char TLS_EC_prime239v2_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x05, 0x00}; static const unsigned char TLS_EC_prime239v3_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x06, 0x00}; static const unsigned char TLS_EC_prime256v1_OID[] = {0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07, 0x00}; #define TLS_EC_secp256r1_OID TLS_EC_prime256v1_OID static const unsigned char TLS_EC_secp224r1_OID[] = {0x2B, 0x81, 0x04, 0x00, 0x21, 0x00}; static const unsigned char TLS_EC_secp384r1_OID[] = {0x2B, 0x81, 0x04, 0x00, 0x22, 0x00}; static const unsigned char TLS_EC_secp521r1_OID[] = {0x2B, 0x81, 0x04, 0x00, 0x23, 0x00}; struct TLSCertificate *asn1_parse(struct TLSContext *context, const unsigned char *buffer, unsigned int size, int client_cert); int _private_tls_update_hash(struct TLSContext *context, const unsigned char *in, unsigned int len); struct TLSPacket *tls_build_finished(struct TLSContext *context); unsigned int _private_tls_hmac_message(unsigned char local, struct TLSContext *context, const unsigned char *buf, int buf_len, const unsigned char *buf2, int buf_len2, unsigned char *out, unsigned int outlen, uint64_t remote_sequence_number); int tls_random(unsigned char *key, int len); void tls_destroy_packet(struct TLSPacket *packet); struct TLSPacket *tls_build_hello(struct TLSContext *context, int tls13_downgrade); struct TLSPacket *tls_build_certificate(struct TLSContext *context); struct TLSPacket *tls_build_done(struct TLSContext *context); struct TLSPacket *tls_build_alert(struct TLSContext *context, char critical, unsigned char code); struct TLSPacket *tls_build_change_cipher_spec(struct TLSContext *context); struct TLSPacket *tls_build_verify_request(struct TLSContext *context); int _private_tls_crypto_create(struct TLSContext *context, int key_length, unsigned char *localkey, unsigned char *localiv, unsigned char *remotekey, unsigned char *remoteiv); int _private_tls_get_hash(struct TLSContext *context, unsigned char *hout); int _private_tls_done_hash(struct TLSContext *context, unsigned char *hout); int _private_tls_get_hash_idx(struct TLSContext *context); int _private_tls_build_random(struct TLSPacket *packet); unsigned int _private_tls_mac_length(struct TLSContext *context); void _private_dtls_handshake_data(struct TLSContext *context, struct TLSPacket *packet, unsigned int dataframe); #ifdef TLS_FORWARD_SECRECY void _private_tls_dhe_free(struct TLSContext *context); void _private_tls_ecc_dhe_free(struct TLSContext *context); void _private_tls_dh_clear_key(DHKey *key); #endif #ifdef WITH_TLS_13 struct TLSPacket *tls_build_encrypted_extensions(struct TLSContext *context); struct TLSPacket *tls_build_certificate_verify(struct TLSContext *context); #endif // dtls base secret static unsigned char dtls_secret[32]; static unsigned char dependecies_loaded = 0; // not supported // static unsigned char TLS_DSA_SIGN_SHA1_OID[] = {0x2A, 0x86, 0x52, 0xCE, 0x38, 0x04, 0x03, 0x00}; // base64 stuff static const char cd64[] = "|$$$}rstuvwxyz{$$$$$$$>?@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\\]^_`abcdefghijklmnopq"; void _private_b64_decodeblock(unsigned char in[4], unsigned char out[3]) { out[0] = (unsigned char )(in[0] << 2 | in[1] >> 4); out[1] = (unsigned char )(in[1] << 4 | in[2] >> 2); out[2] = (unsigned char )(((in[2] << 6) & 0xc0) | in[3]); } int _private_b64_decode(const char *in_buffer, int in_buffer_size, unsigned char *out_buffer) { unsigned char in[4], out[3], v; int i, len; const char *ptr = in_buffer; char *out_ptr = (char *)out_buffer; while (ptr <= in_buffer + in_buffer_size) { for (len = 0, i = 0; i < 4 && (ptr <= in_buffer + in_buffer_size); i++) { v = 0; while ((ptr <= in_buffer + in_buffer_size) && v == 0) { v = (unsigned char)ptr[0]; ptr++; v = (unsigned char)((v < 43 || v > 122) ? 0 : cd64[v - 43]); if (v) v = (unsigned char)((v == '$') ? 0 : v - 61); } if (ptr <= in_buffer + in_buffer_size) { len++; if (v) in[i] = (unsigned char)(v - 1); } else { in[i] = 0; } } if (len) { _private_b64_decodeblock(in, out); for (i = 0; i < len - 1; i++) { out_ptr[0] = out[i]; out_ptr++; } } } return (int)((intptr_t)out_ptr - (intptr_t)out_buffer); } void dtls_reset_cookie_secret() { tls_random(dtls_secret, sizeof(dtls_secret)); } void tls_init() { if (dependecies_loaded) return; DEBUG_PRINT("Initializing dependencies\n"); dependecies_loaded = 1; #ifdef LTM_DESC ltc_mp = ltm_desc; #else #ifdef TFM_DESC ltc_mp = tfm_desc; #else #ifdef GMP_DESC ltc_mp = gmp_desc; #endif #endif #endif register_prng(&sprng_desc); register_hash(&sha256_desc); register_hash(&sha1_desc); register_hash(&sha384_desc); register_hash(&sha512_desc); register_hash(&md5_desc); register_cipher(&aes_desc); #ifdef TLS_FORWARD_SECRECY init_curves(); #endif dtls_reset_cookie_secret(); } #ifdef TLS_FORWARD_SECRECY int _private_tls_dh_shared_secret(DHKey *private_key, DHKey *public_key, unsigned char *out, unsigned long *outlen) { void *tmp; unsigned long x; int err; if ((!private_key) || (!public_key) || (!out) || (!outlen)) return TLS_GENERIC_ERROR; /* compute y^x mod p */ if ((err = mp_init(&tmp)) != CRYPT_OK) return err; if ((err = mp_exptmod(public_key->y, private_key->x, private_key->p, tmp)) != CRYPT_OK) { mp_clear(tmp); return err; } x = (unsigned long)mp_unsigned_bin_size(tmp); if (*outlen < x) { err = CRYPT_BUFFER_OVERFLOW; mp_clear(tmp); return err; } if ((err = mp_to_unsigned_bin(tmp, out)) != CRYPT_OK) { mp_clear(tmp); return err; } *outlen = x; mp_clear(tmp); return 0; } unsigned char *_private_tls_decrypt_dhe(struct TLSContext *context, const unsigned char *buffer, unsigned int len, unsigned int *size, int clear_key) { *size = 0; if ((!len) || (!context) || (!context->dhe)) { DEBUG_PRINT("No private DHE key set\n"); return NULL; } unsigned long out_size = len; void *Yc = NULL; if (mp_init(&Yc)) { DEBUG_PRINT("ERROR CREATING Yc\n"); return NULL; } if (mp_read_unsigned_bin(Yc, (unsigned char *)buffer, len)) { DEBUG_PRINT("ERROR LOADING DHE Yc\n"); mp_clear(Yc); return NULL; } unsigned char *out = (unsigned char *)TLS_MALLOC(len); DHKey client_key; memset(&client_key, 0, sizeof(DHKey)); client_key.p = context->dhe->p; client_key.g = context->dhe->g; client_key.y = Yc; int err = _private_tls_dh_shared_secret(context->dhe, &client_key, out, &out_size); // don't delete p and g client_key.p = NULL; client_key.g = NULL; _private_tls_dh_clear_key(&client_key); // not needing the dhe key anymore if (clear_key) _private_tls_dhe_free(context); if (err) { DEBUG_PRINT("DHE DECRYPT ERROR %i\n", err); TLS_FREE(out); return NULL; } DEBUG_PRINT("OUT_SIZE: %lu\n", out_size); DEBUG_DUMP_HEX_LABEL("DHE", out, out_size); *size = (unsigned int)out_size; return out; } unsigned char *_private_tls_decrypt_ecc_dhe(struct TLSContext *context, const unsigned char *buffer, unsigned int len, unsigned int *size, int clear_key) { *size = 0; if ((!len) || (!context) || (!context->ecc_dhe)) { DEBUG_PRINT("No private ECC DHE key set\n"); return NULL; } const struct ECCCurveParameters *curve; if (context->curve) curve = context->curve; else curve = default_curve; ltc_ecc_set_type *dp = (ltc_ecc_set_type *)&curve->dp; ecc_key client_key; memset(&client_key, 0, sizeof(client_key)); if (ecc_ansi_x963_import_ex(buffer, len, &client_key, dp)) { DEBUG_PRINT("Error importing ECC DHE key\n"); return NULL; } unsigned char *out = (unsigned char *)TLS_MALLOC(len); unsigned long out_size = len; int err = ecc_shared_secret(context->ecc_dhe, &client_key, out, &out_size); ecc_free(&client_key); if (clear_key) _private_tls_ecc_dhe_free(context); if (err) { DEBUG_PRINT("ECC DHE DECRYPT ERROR %i\n", err); TLS_FREE(out); return NULL; } DEBUG_PRINT("OUT_SIZE: %lu\n", out_size); DEBUG_DUMP_HEX_LABEL("ECC DHE", out, out_size); *size = (unsigned int)out_size; return out; } #endif unsigned char *_private_tls_decrypt_rsa(struct TLSContext *context, const unsigned char *buffer, unsigned int len, unsigned int *size) { *size = 0; if ((!len) || (!context) || (!context->private_key) || (!context->private_key->der_bytes) || (!context->private_key->der_len)) { DEBUG_PRINT("No private key set\n"); return NULL; } tls_init(); rsa_key key; int err; err = rsa_import(context->private_key->der_bytes, context->private_key->der_len, &key); if (err) { DEBUG_PRINT("Error importing RSA key (code: %i)\n", err); return NULL; } unsigned char *out = (unsigned char *)TLS_MALLOC(len); unsigned long out_size = len; int res = 0; err = rsa_decrypt_key_ex(buffer, len, out, &out_size, NULL, 0, -1, LTC_PKCS_1_V1_5, &res, &key); rsa_free(&key); if ((err) || (out_size != 48) || (ntohs(*(unsigned short *)out) != context->version)) { // generate a random secret and continue (ROBOT fix) // silently ignore and generate a random secret out_size = 48; tls_random(out, out_size); *(unsigned short *)out = htons(context->version); } *size = (unsigned int)out_size; return out; } unsigned char *_private_tls_encrypt_rsa(struct TLSContext *context, const unsigned char *buffer, unsigned int len, unsigned int *size) { *size = 0; if ((!len) || (!context) || (!context->certificates) || (!context->certificates_count) || (!context->certificates[0]) || (!context->certificates[0]->der_bytes) || (!context->certificates[0]->der_len)) { DEBUG_PRINT("No certificate set\n"); return NULL; } tls_init(); rsa_key key; int err; err = rsa_import(context->certificates[0]->der_bytes, context->certificates[0]->der_len, &key); if (err) { DEBUG_PRINT("Error importing RSA certificate (code: %i)\n", err); return NULL; } unsigned long out_size = TLS_MAX_RSA_KEY; unsigned char *out = (unsigned char *)TLS_MALLOC(out_size); int hash_idx = find_hash("sha256"); int prng_idx = find_prng("sprng"); err = rsa_encrypt_key_ex(buffer, len, out, &out_size, (unsigned char *)"Concept", 7, NULL, prng_idx, hash_idx, LTC_PKCS_1_V1_5, &key); rsa_free(&key); if ((err) || (!out_size)) { TLS_FREE(out); return NULL; } *size = (unsigned int)out_size; return out; } #ifdef TLS_LEGACY_SUPPORT int _private_rsa_verify_hash_md5sha1(const unsigned char *sig, unsigned long siglen, unsigned char *hash, unsigned long hashlen, int *stat, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; unsigned char *tmpbuf = NULL; if ((hash == NULL) || (sig == NULL) || (stat == NULL) || (key == NULL) || (!siglen) || (!hashlen)) return TLS_GENERIC_ERROR; *stat = 0; modulus_bitlen = mp_count_bits((key->N)); modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen != siglen) return TLS_GENERIC_ERROR; tmpbuf = (unsigned char *)TLS_MALLOC(siglen); if (!tmpbuf) return TLS_GENERIC_ERROR; x = siglen; if ((err = ltc_mp.rsa_me(sig, siglen, tmpbuf, &x, PK_PUBLIC, key)) != CRYPT_OK) { TLS_FREE(tmpbuf); return err; } if (x != siglen) { TLS_FREE(tmpbuf); return CRYPT_INVALID_PACKET; } unsigned long out_len = siglen; unsigned char *out = (unsigned char *)TLS_MALLOC(siglen); if (!out) { TLS_FREE(tmpbuf); return TLS_GENERIC_ERROR; } int decoded = 0; err = pkcs_1_v1_5_decode(tmpbuf, x, LTC_PKCS_1_EMSA, modulus_bitlen, out, &out_len, &decoded); if (decoded) { if (out_len == hashlen) { if (!memcmp(out, hash, hashlen)) *stat = 1; } } TLS_FREE(tmpbuf); TLS_FREE(out); return err; } #endif int _private_tls_verify_rsa(struct TLSContext *context, unsigned int hash_type, const unsigned char *buffer, unsigned int len, const unsigned char *message, unsigned int message_len) { tls_init(); rsa_key key; int err; if (context->is_server) { if ((!len) || (!context->client_certificates) || (!context->client_certificates_count) || (!context->client_certificates[0]) || (!context->client_certificates[0]->der_bytes) || (!context->client_certificates[0]->der_len)) { DEBUG_PRINT("No client certificate set\n"); return TLS_GENERIC_ERROR; } err = rsa_import(context->client_certificates[0]->der_bytes, context->client_certificates[0]->der_len, &key); } else { if ((!len) || (!context->certificates) || (!context->certificates_count) || (!context->certificates[0]) || (!context->certificates[0]->der_bytes) || (!context->certificates[0]->der_len)) { DEBUG_PRINT("No server certificate set\n"); return TLS_GENERIC_ERROR; } err = rsa_import(context->certificates[0]->der_bytes, context->certificates[0]->der_len, &key); } if (err) { DEBUG_PRINT("Error importing RSA certificate (code: %i)\n", err); return TLS_GENERIC_ERROR; } int hash_idx = -1; unsigned char hash[TLS_MAX_HASH_LEN]; unsigned int hash_len = 0; hash_state state; switch (hash_type) { case md5: hash_idx = find_hash("md5"); err = md5_init(&state); TLS_ERROR(err, break); err = md5_process(&state, message, message_len); TLS_ERROR(err, break); err = md5_done(&state, hash); TLS_ERROR(err, break); hash_len = 16; break; case sha1: hash_idx = find_hash("sha1"); err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash); TLS_ERROR(err, break) hash_len = 20; break; case sha256: hash_idx = find_hash("sha256"); err = sha256_init(&state); TLS_ERROR(err, break) err = sha256_process(&state, message, message_len); TLS_ERROR(err, break) err = sha256_done(&state, hash); TLS_ERROR(err, break) hash_len = 32; break; case sha384: hash_idx = find_hash("sha384"); err = sha384_init(&state); TLS_ERROR(err, break) err = sha384_process(&state, message, message_len); TLS_ERROR(err, break) err = sha384_done(&state, hash); TLS_ERROR(err, break) hash_len = 48; break; case sha512: hash_idx = find_hash("sha512"); err = sha512_init(&state); TLS_ERROR(err, break) err = sha512_process(&state, message, message_len); TLS_ERROR(err, break) err = sha512_done(&state, hash); TLS_ERROR(err, break) hash_len = 64; break; #ifdef TLS_LEGACY_SUPPORT case _md5_sha1: hash_idx = find_hash("md5"); err = md5_init(&state); TLS_ERROR(err, break) err = md5_process(&state, message, message_len); TLS_ERROR(err, break) err = md5_done(&state, hash); TLS_ERROR(err, break) hash_idx = find_hash("sha1"); err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash + 16); TLS_ERROR(err, break) hash_len = 36; err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash + 16); TLS_ERROR(err, break) hash_len = 36; break; #endif } if ((hash_idx < 0) || (err)) { DEBUG_PRINT("Unsupported hash type: %i\n", hash_type); return TLS_GENERIC_ERROR; } int rsa_stat = 0; #ifdef TLS_LEGACY_SUPPORT if (hash_type == _md5_sha1) err = _private_rsa_verify_hash_md5sha1(buffer, len, hash, hash_len, &rsa_stat, &key); else #endif #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) err = rsa_verify_hash_ex(buffer, len, hash, hash_len, LTC_PKCS_1_PSS, hash_idx, 0, &rsa_stat, &key); else #endif err = rsa_verify_hash_ex(buffer, len, hash, hash_len, LTC_PKCS_1_V1_5, hash_idx, 0, &rsa_stat, &key); rsa_free(&key); if (err) return 0; return rsa_stat; } #ifdef TLS_LEGACY_SUPPORT int _private_rsa_sign_hash_md5sha1(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; if ((in == NULL) || (out == NULL) || (outlen == NULL) || (key == NULL)) return TLS_GENERIC_ERROR; modulus_bitlen = mp_count_bits((key->N)); modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen > *outlen) { *outlen = modulus_bytelen; return CRYPT_BUFFER_OVERFLOW; } x = modulus_bytelen; err = pkcs_1_v1_5_encode(in, inlen, LTC_PKCS_1_EMSA, modulus_bitlen, NULL, 0, out, &x); if (err != CRYPT_OK) return err; return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key); } #endif int _private_tls_sign_rsa(struct TLSContext *context, unsigned int hash_type, const unsigned char *message, unsigned int message_len, unsigned char *out, unsigned long *outlen) { if ((!outlen) || (!context) || (!out) || (!outlen) || (!context->private_key) || (!context->private_key->der_bytes) || (!context->private_key->der_len)) { DEBUG_PRINT("No private key set\n"); return TLS_GENERIC_ERROR; } tls_init(); rsa_key key; int err; err = rsa_import(context->private_key->der_bytes, context->private_key->der_len, &key); if (err) { DEBUG_PRINT("Error importing RSA certificate (code: %i)\n", err); return TLS_GENERIC_ERROR; } int hash_idx = -1; unsigned char hash[TLS_MAX_HASH_LEN]; unsigned int hash_len = 0; hash_state state; switch (hash_type) { case md5: hash_idx = find_hash("md5"); err = md5_init(&state); TLS_ERROR(err, break) err = md5_process(&state, message, message_len); TLS_ERROR(err, break) err = md5_done(&state, hash); TLS_ERROR(err, break) hash_len = 16; break; case sha1: hash_idx = find_hash("sha1"); err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash); TLS_ERROR(err, break) hash_len = 20; break; case sha256: hash_idx = find_hash("sha256"); err = sha256_init(&state); TLS_ERROR(err, break) err = sha256_process(&state, message, message_len); TLS_ERROR(err, break) err = sha256_done(&state, hash); TLS_ERROR(err, break) hash_len = 32; break; case sha384: hash_idx = find_hash("sha384"); err = sha384_init(&state); TLS_ERROR(err, break) err = sha384_process(&state, message, message_len); TLS_ERROR(err, break) err = sha384_done(&state, hash); TLS_ERROR(err, break) hash_len = 48; break; case sha512: hash_idx = find_hash("sha512"); err = sha512_init(&state); TLS_ERROR(err, break) err = sha512_process(&state, message, message_len); TLS_ERROR(err, break) err = sha512_done(&state, hash); TLS_ERROR(err, break) hash_len = 64; break; case _md5_sha1: hash_idx = find_hash("md5"); err = md5_init(&state); TLS_ERROR(err, break) err = md5_process(&state, message, message_len); TLS_ERROR(err, break) err = md5_done(&state, hash); TLS_ERROR(err, break) hash_idx = find_hash("sha1"); err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash + 16); TLS_ERROR(err, break) hash_len = 36; err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash + 16); TLS_ERROR(err, break) hash_len = 36; break; } #ifdef TLS_LEGACY_SUPPORT if (hash_type == _md5_sha1) { if (err) { DEBUG_PRINT("Unsupported hash type: %i\n", hash_type); return TLS_GENERIC_ERROR; } err = _private_rsa_sign_hash_md5sha1(hash, hash_len, out, outlen, &key); } else #endif { if ((hash_idx < 0) || (err)) { DEBUG_PRINT("Unsupported hash type: %i\n", hash_type); return TLS_GENERIC_ERROR; } #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) err = rsa_sign_hash_ex(hash, hash_len, out, outlen, LTC_PKCS_1_PSS, NULL, find_prng("sprng"), hash_idx, hash_type == sha256 ? 32 : 48, &key); else #endif err = rsa_sign_hash_ex(hash, hash_len, out, outlen, LTC_PKCS_1_V1_5, NULL, find_prng("sprng"), hash_idx, 0, &key); } rsa_free(&key); if (err) return 0; return 1; } #ifdef TLS_ECDSA_SUPPORTED static int _private_tls_is_point(ecc_key *key) { void *prime, *b, *t1, *t2; int err; if ((err = mp_init_multi(&prime, &b, &t1, &t2, NULL)) != CRYPT_OK) { return err; } /* load prime and b */ if ((err = mp_read_radix(prime, TLS_TOMCRYPT_PRIVATE_DP(key)->prime, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(b, TLS_TOMCRYPT_PRIVATE_DP(key)->B, 16)) != CRYPT_OK) { goto error; } /* compute y^2 */ if ((err = mp_sqr(key->pubkey.y, t1)) != CRYPT_OK) { goto error; } /* compute x^3 */ if ((err = mp_sqr(key->pubkey.x, t2)) != CRYPT_OK) { goto error; } if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK) { goto error; } if ((err = mp_mul(key->pubkey.x, t2, t2)) != CRYPT_OK) { goto error; } /* compute y^2 - x^3 */ if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK) { goto error; } /* compute y^2 - x^3 + 3x */ if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_mod(t1, prime, t1)) != CRYPT_OK) { goto error; } while (mp_cmp_d(t1, 0) == LTC_MP_LT) { if ((err = mp_add(t1, prime, t1)) != CRYPT_OK) { goto error; } } while (mp_cmp(t1, prime) != LTC_MP_LT) { if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK) { goto error; } } /* compare to b */ if (mp_cmp(t1, b) != LTC_MP_EQ) { err = CRYPT_INVALID_PACKET; } else { err = CRYPT_OK; } error: mp_clear_multi(prime, b, t1, t2, NULL); return err; } int _private_tls_ecc_import_key(const unsigned char *private_key, int private_len, const unsigned char *public_key, int public_len, ecc_key *key, const ltc_ecc_set_type *dp) { int err; if ((!key) || (!ltc_mp.name)) return CRYPT_MEM; key->type = PK_PRIVATE; if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != CRYPT_OK) return CRYPT_MEM; if ((public_len) && (!public_key[0])) { public_key++; public_len--; } if ((err = mp_read_unsigned_bin(key->pubkey.x, (unsigned char *)public_key + 1, (public_len - 1) >> 1)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } if ((err = mp_read_unsigned_bin(key->pubkey.y, (unsigned char *)public_key + 1 + ((public_len - 1) >> 1), (public_len - 1) >> 1)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } if ((err = mp_read_unsigned_bin(key->k, (unsigned char *)private_key, private_len)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } TLS_TOMCRYPT_PRIVATE_SET_INDEX(key, -1); TLS_TOMCRYPT_PRIVATE_DP(key) = dp; /* set z */ if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } /* is it a point on the curve? */ if ((err = _private_tls_is_point(key)) != CRYPT_OK) { DEBUG_PRINT("KEY IS NOT ON CURVE\n"); mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } /* we're good */ return CRYPT_OK; } int _private_tls_sign_ecdsa(struct TLSContext *context, unsigned int hash_type, const unsigned char *message, unsigned int message_len, unsigned char *out, unsigned long *outlen) { if ((!outlen) || (!context) || (!out) || (!outlen) || (!context->ec_private_key) || (!context->ec_private_key->priv) || (!context->ec_private_key->priv_len) || (!context->ec_private_key->pk) || (!context->ec_private_key->pk_len)) { DEBUG_PRINT("No private ECDSA key set\n"); return TLS_GENERIC_ERROR; } const struct ECCCurveParameters *curve = NULL; switch (context->ec_private_key->ec_algorithm) { case 19: curve = &secp192r1; break; case 20: curve = &secp224k1; break; case 21: curve = &secp224r1; break; case 22: curve = &secp256k1; break; case 23: curve = &secp256r1; break; case 24: curve = &secp384r1; break; case 25: curve = &secp521r1; break; default: DEBUG_PRINT("UNSUPPORTED CURVE\n"); } if (!curve) return TLS_GENERIC_ERROR; tls_init(); ecc_key key; int err; ltc_ecc_set_type *dp = (ltc_ecc_set_type *)&curve->dp; // broken ... fix this err = _private_tls_ecc_import_key(context->ec_private_key->priv, context->ec_private_key->priv_len, context->ec_private_key->pk, context->ec_private_key->pk_len, &key, dp); if (err) { DEBUG_PRINT("Error importing ECC certificate (code: %i)\n", (int)err); return TLS_GENERIC_ERROR; } unsigned char hash[TLS_MAX_HASH_LEN]; unsigned int hash_len = 0; hash_state state; switch (hash_type) { case md5: err = md5_init(&state); TLS_ERROR(err, break) err = md5_process(&state, message, message_len); TLS_ERROR(err, break) err = md5_done(&state, hash); TLS_ERROR(err, break) hash_len = 16; break; case sha1: err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash); TLS_ERROR(err, break) hash_len = 20; break; case sha256: err = sha256_init(&state); TLS_ERROR(err, break) err = sha256_process(&state, message, message_len); TLS_ERROR(err, break) err = sha256_done(&state, hash); TLS_ERROR(err, break) hash_len = 32; break; case sha384: err = sha384_init(&state); TLS_ERROR(err, break) err = sha384_process(&state, message, message_len); TLS_ERROR(err, break) err = sha384_done(&state, hash); TLS_ERROR(err, break) hash_len = 48; break; case sha512: err = sha512_init(&state); TLS_ERROR(err, break) err = sha512_process(&state, message, message_len); TLS_ERROR(err, break) err = sha512_done(&state, hash); TLS_ERROR(err, break) hash_len = 64; break; case _md5_sha1: err = md5_init(&state); TLS_ERROR(err, break) err = md5_process(&state, message, message_len); TLS_ERROR(err, break) err = md5_done(&state, hash); TLS_ERROR(err, break) err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash + 16); TLS_ERROR(err, break) hash_len = 36; err = sha1_init(&state); TLS_ERROR(err, break) err = sha1_process(&state, message, message_len); TLS_ERROR(err, break) err = sha1_done(&state, hash + 16); TLS_ERROR(err, break) hash_len = 36; break; } if (err) { DEBUG_PRINT("Unsupported hash type: %i\n", hash_type); return TLS_GENERIC_ERROR; } // "Let z be the Ln leftmost bits of e, where Ln is the bit length of the group order n." if (hash_len > (unsigned int)curve->size) hash_len = (unsigned int)curve->size; err = ecc_sign_hash(hash, hash_len, out, outlen, NULL, find_prng("sprng"), &key); DEBUG_DUMP_HEX_LABEL("ECC SIGNATURE", out, *outlen); ecc_free(&key); if (err) return 0; return 1; } #if defined(TLS_CLIENT_ECDSA) || defined(WITH_TLS_13) int _private_tls_ecc_import_pk(const unsigned char *public_key, int public_len, ecc_key *key, const ltc_ecc_set_type *dp) { int err; if ((!key) || (!ltc_mp.name)) return CRYPT_MEM; key->type = PK_PUBLIC; if (mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, NULL) != CRYPT_OK) return CRYPT_MEM; if ((public_len) && (!public_key[0])) { public_key++; public_len--; } if ((err = mp_read_unsigned_bin(key->pubkey.x, (unsigned char *)public_key + 1, (public_len - 1) >> 1)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } if ((err = mp_read_unsigned_bin(key->pubkey.y, (unsigned char *)public_key + 1 + ((public_len - 1) >> 1), (public_len - 1) >> 1)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } TLS_TOMCRYPT_PRIVATE_SET_INDEX(key, -1); TLS_TOMCRYPT_PRIVATE_DP(key) = dp; /* set z */ if ((err = mp_set(key->pubkey.z, 1)) != CRYPT_OK) { mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } /* is it a point on the curve? */ if ((err = _private_tls_is_point(key)) != CRYPT_OK) { DEBUG_PRINT("KEY IS NOT ON CURVE\n"); mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); return err; } /* we're good */ return CRYPT_OK; } int _private_tls_verify_ecdsa(struct TLSContext *context, unsigned int hash_type, const unsigned char *buffer, unsigned int len, const unsigned char *message, unsigned int message_len, const struct ECCCurveParameters *curve_hint) { tls_init(); ecc_key key; int err; if (!curve_hint) curve_hint = context->curve; if (context->is_server) { if ((!len) || (!context->client_certificates) || (!context->client_certificates_count) || (!context->client_certificates[0]) || (!context->client_certificates[0]->pk) || (!context->client_certificates[0]->pk_len) || (!curve_hint)) { DEBUG_PRINT("No client certificate set\n"); return TLS_GENERIC_ERROR; } err = _private_tls_ecc_import_pk(context->client_certificates[0]->pk, context->client_certificates[0]->pk_len, &key, (ltc_ecc_set_type *)&curve_hint->dp); } else { if ((!len) || (!context->certificates) || (!context->certificates_count) || (!context->certificates[0]) || (!context->certificates[0]->pk) || (!context->certificates[0]->pk_len) || (!curve_hint)) { DEBUG_PRINT("No server certificate set\n"); return TLS_GENERIC_ERROR; } err = _private_tls_ecc_import_pk(context->certificates[0]->pk, context->certificates[0]->pk_len, &key, (ltc_ecc_set_type *)&curve_hint->dp); } if (err) { DEBUG_PRINT("Error importing ECC certificate (code: %i)", err); return TLS_GENERIC_ERROR; } int hash_idx = -1; unsigned char hash[TLS_MAX_HASH_LEN]; unsigned int hash_len = 0; hash_state state; switch (hash_type) { case md5: hash_idx = find_hash("md5"); err = md5_init(&state); if (!err) { err = md5_process(&state, message, message_len); if (!err) err = md5_done(&state, hash); } hash_len = 16; break; case sha1: hash_idx = find_hash("sha1"); err = sha1_init(&state); if (!err) { err = sha1_process(&state, message, message_len); if (!err) err = sha1_done(&state, hash); } hash_len = 20; break; case sha256: hash_idx = find_hash("sha256"); err = sha256_init(&state); if (!err) { err = sha256_process(&state, message, message_len); if (!err) err = sha256_done(&state, hash); } hash_len = 32; break; case sha384: hash_idx = find_hash("sha384"); err = sha384_init(&state); if (!err) { err = sha384_process(&state, message, message_len); if (!err) err = sha384_done(&state, hash); } hash_len = 48; break; case sha512: hash_idx = find_hash("sha512"); err = sha512_init(&state); if (!err) { err = sha512_process(&state, message, message_len); if (!err) err = sha512_done(&state, hash); } hash_len = 64; break; #ifdef TLS_LEGACY_SUPPORT case _md5_sha1: hash_idx = find_hash("md5"); err = md5_init(&state); if (!err) { err = md5_process(&state, message, message_len); if (!err) err = md5_done(&state, hash); } hash_idx = find_hash("sha1"); err = sha1_init(&state); if (!err) { err = sha1_process(&state, message, message_len); if (!err) err = sha1_done(&state, hash + 16); } hash_len = 36; err = sha1_init(&state); if (!err) { err = sha1_process(&state, message, message_len); if (!err) err = sha1_done(&state, hash + 16); } hash_len = 36; break; #endif } if ((hash_idx < 0) || (err)) { DEBUG_PRINT("Unsupported hash type: %i\n", hash_type); return TLS_GENERIC_ERROR; } int ecc_stat = 0; err = ecc_verify_hash(buffer, len, hash, hash_len, &ecc_stat, &key); ecc_free(&key); if (err) return 0; return ecc_stat; } #endif #endif unsigned int _private_tls_random_int(int limit) { unsigned int res = 0; tls_random((unsigned char *)&res, sizeof(int)); if (limit) res %= limit; return res; } void _private_tls_sleep(unsigned int microseconds) { #ifdef _WIN32 Sleep(microseconds/1000); #else struct timespec ts; ts.tv_sec = (unsigned int) (microseconds / 1000000); ts.tv_nsec = (unsigned int) (microseconds % 1000000) * 1000ul; nanosleep(&ts, NULL); #endif } void _private_random_sleep(struct TLSContext *context, int max_microseconds) { if (context) context->sleep_until = (unsigned int)time(NULL) + _private_tls_random_int(max_microseconds/1000000 * TLS_MAX_ERROR_IDLE_S); else _private_tls_sleep(_private_tls_random_int(max_microseconds)); } void _private_tls_prf_helper(int hash_idx, unsigned long dlen, unsigned char *output, unsigned int outlen, const unsigned char *secret, const unsigned int secret_len, const unsigned char *label, unsigned int label_len, unsigned char *seed, unsigned int seed_len, unsigned char *seed_b, unsigned int seed_b_len) { unsigned char digest_out0[TLS_MAX_HASH_LEN]; unsigned char digest_out1[TLS_MAX_HASH_LEN]; unsigned int i; hmac_state hmac; hmac_init(&hmac, hash_idx, secret, secret_len); hmac_process(&hmac, label, label_len); hmac_process(&hmac, seed, seed_len); if ((seed_b) && (seed_b_len)) hmac_process(&hmac, seed_b, seed_b_len); hmac_done(&hmac, digest_out0, &dlen); int idx = 0; while (outlen) { hmac_init(&hmac, hash_idx, secret, secret_len); hmac_process(&hmac, digest_out0, dlen); hmac_process(&hmac, label, label_len); hmac_process(&hmac, seed, seed_len); if ((seed_b) && (seed_b_len)) hmac_process(&hmac, seed_b, seed_b_len); hmac_done(&hmac, digest_out1, &dlen); unsigned int copylen = outlen; if (copylen > dlen) copylen = dlen; for (i = 0; i < copylen; i++) { output[idx++] ^= digest_out1[i]; outlen--; } if (!outlen) break; hmac_init(&hmac, hash_idx, secret, secret_len); hmac_process(&hmac, digest_out0, dlen); hmac_done(&hmac, digest_out0, &dlen); } } #ifdef WITH_TLS_13 int _private_tls_hkdf_label(const char *label, unsigned char label_len, const unsigned char *data, unsigned char data_len, unsigned char *hkdflabel, unsigned short length, const char *prefix) { *(unsigned short *)hkdflabel = htons(length); int prefix_len; if (prefix) { prefix_len = (int)strlen(prefix); memcpy(&hkdflabel[3], prefix, prefix_len); } else { memcpy(&hkdflabel[3], "tls13 ", 6); prefix_len = 6; } hkdflabel[2] = (unsigned char)prefix_len + label_len; memcpy(&hkdflabel[3 + prefix_len], label, label_len); hkdflabel[3 + prefix_len + label_len] = (unsigned char)data_len; if (data_len) memcpy(&hkdflabel[4 + prefix_len + label_len], data, data_len); return 4 + prefix_len + label_len + data_len; } int _private_tls_hkdf_extract(unsigned int mac_length, unsigned char *output, unsigned int outlen, const unsigned char *salt, unsigned int salt_len, const unsigned char *ikm, unsigned char ikm_len) { unsigned long dlen = outlen; static unsigned char dummy_label[1] = { 0 }; if ((!salt) || (salt_len == 0)) { salt_len = 1; salt = dummy_label; } int hash_idx; if (mac_length == TLS_SHA384_MAC_SIZE) { hash_idx = find_hash("sha384"); dlen = mac_length; } else hash_idx = find_hash("sha256"); hmac_state hmac; hmac_init(&hmac, hash_idx, salt, salt_len); hmac_process(&hmac, ikm, ikm_len); hmac_done(&hmac, output, &dlen); DEBUG_DUMP_HEX_LABEL("EXTRACT", output, dlen); return dlen; } void _private_tls_hkdf_expand(unsigned int mac_length, unsigned char *output, unsigned int outlen, const unsigned char *secret, unsigned int secret_len, const unsigned char *info, unsigned char info_len) { unsigned char digest_out[TLS_MAX_HASH_LEN]; unsigned long dlen = 32; int hash_idx; if (mac_length == TLS_SHA384_MAC_SIZE) { hash_idx = find_hash("sha384"); dlen = mac_length; } else hash_idx = find_hash("sha256"); unsigned int i; unsigned int idx = 0; hmac_state hmac; unsigned char i2 = 0; while (outlen) { hmac_init(&hmac, hash_idx, secret, secret_len); if (i2) hmac_process(&hmac, digest_out, dlen); if ((info) && (info_len)) hmac_process(&hmac, info, info_len); i2++; hmac_process(&hmac, &i2, 1); hmac_done(&hmac, digest_out, &dlen); unsigned int copylen = outlen; if (copylen > dlen) copylen = (unsigned int)dlen; for (i = 0; i < copylen; i++) { output[idx++] = digest_out[i]; outlen--; } if (!outlen) break; } } void _private_tls_hkdf_expand_label(unsigned int mac_length, unsigned char *output, unsigned int outlen, const unsigned char *secret, unsigned int secret_len, const char *label, unsigned char label_len, const unsigned char *data, unsigned char data_len) { unsigned char hkdf_label[512]; int len = _private_tls_hkdf_label(label, label_len, data, data_len, hkdf_label, outlen, NULL); DEBUG_DUMP_HEX_LABEL("INFO", hkdf_label, len); _private_tls_hkdf_expand(mac_length, output, outlen, secret, secret_len, hkdf_label, len); } #endif void _private_tls_prf(struct TLSContext *context, unsigned char *output, unsigned int outlen, const unsigned char *secret, const unsigned int secret_len, const unsigned char *label, unsigned int label_len, unsigned char *seed, unsigned int seed_len, unsigned char *seed_b, unsigned int seed_b_len) { if ((!secret) || (!secret_len)) { DEBUG_PRINT("NULL SECRET\n"); return; } if ((context->version != TLS_V12) && (context->version != DTLS_V12)) { int md5_hash_idx = find_hash("md5"); int sha1_hash_idx = find_hash("sha1"); int half_secret = (secret_len + 1) / 2; memset(output, 0, outlen); _private_tls_prf_helper(md5_hash_idx, 16, output, outlen, secret, half_secret, label, label_len, seed, seed_len, seed_b, seed_b_len); _private_tls_prf_helper(sha1_hash_idx, 20, output, outlen, secret + (secret_len - half_secret), secret_len - half_secret, label, label_len, seed, seed_len, seed_b, seed_b_len); } else { // sha256_hmac unsigned char digest_out0[TLS_MAX_HASH_LEN]; unsigned char digest_out1[TLS_MAX_HASH_LEN]; unsigned long dlen = 32; int hash_idx; unsigned int mac_length = _private_tls_mac_length(context); if (mac_length == TLS_SHA384_MAC_SIZE) { hash_idx = find_hash("sha384"); dlen = mac_length; } else hash_idx = find_hash("sha256"); unsigned int i; hmac_state hmac; hmac_init(&hmac, hash_idx, secret, secret_len); hmac_process(&hmac, label, label_len); hmac_process(&hmac, seed, seed_len); if ((seed_b) && (seed_b_len)) hmac_process(&hmac, seed_b, seed_b_len); hmac_done(&hmac, digest_out0, &dlen); int idx = 0; while (outlen) { hmac_init(&hmac, hash_idx, secret, secret_len); hmac_process(&hmac, digest_out0, dlen); hmac_process(&hmac, label, label_len); hmac_process(&hmac, seed, seed_len); if ((seed_b) && (seed_b_len)) hmac_process(&hmac, seed_b, seed_b_len); hmac_done(&hmac, digest_out1, &dlen); unsigned int copylen = outlen; if (copylen > dlen) copylen = (unsigned int)dlen; for (i = 0; i < copylen; i++) { output[idx++] = digest_out1[i]; outlen--; } if (!outlen) break; hmac_init(&hmac, hash_idx, secret, secret_len); hmac_process(&hmac, digest_out0, dlen); hmac_done(&hmac, digest_out0, &dlen); } } } int _private_tls_key_length(struct TLSContext *context) { switch (context->cipher) { case TLS_RSA_WITH_AES_128_CBC_SHA: case TLS_RSA_WITH_AES_128_CBC_SHA256: case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_128_CBC_SHA: case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_AES_128_GCM_SHA256: return 16; case TLS_RSA_WITH_AES_256_CBC_SHA: case TLS_RSA_WITH_AES_256_CBC_SHA256: case TLS_RSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_AES_256_GCM_SHA384: case TLS_CHACHA20_POLY1305_SHA256: return 32; } return 0; } int _private_tls_is_aead(struct TLSContext *context) { switch (context->cipher) { case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_RSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: case TLS_AES_128_GCM_SHA256: case TLS_AES_256_GCM_SHA384: return 1; case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_CHACHA20_POLY1305_SHA256: return 2; } return 0; } unsigned int _private_tls_mac_length(struct TLSContext *context) { switch (context->cipher) { case TLS_RSA_WITH_AES_128_CBC_SHA: case TLS_RSA_WITH_AES_256_CBC_SHA: case TLS_DHE_RSA_WITH_AES_128_CBC_SHA: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: return TLS_SHA1_MAC_SIZE; case TLS_RSA_WITH_AES_128_CBC_SHA256: case TLS_RSA_WITH_AES_256_CBC_SHA256: case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: #ifdef WITH_TLS_13 case TLS_AES_128_GCM_SHA256: case TLS_CHACHA20_POLY1305_SHA256: case TLS_AES_128_CCM_SHA256: case TLS_AES_128_CCM_8_SHA256: #endif return TLS_SHA256_MAC_SIZE; case TLS_RSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: #ifdef WITH_TLS_13 case TLS_AES_256_GCM_SHA384: #endif return TLS_SHA384_MAC_SIZE; } return 0; } #ifdef WITH_TLS_13 int _private_tls13_key(struct TLSContext *context, int handshake) { tls_init(); int key_length = _private_tls_key_length(context); unsigned int mac_length = _private_tls_mac_length(context); if ((!context->premaster_key) || (!context->premaster_key_len)) return 0; if ((!key_length) || (!mac_length)) { DEBUG_PRINT("KEY EXPANSION FAILED, KEY LENGTH: %i, MAC LENGTH: %i\n", key_length, mac_length); return 0; } unsigned char *clientkey = NULL; unsigned char *serverkey = NULL; unsigned char *clientiv = NULL; unsigned char *serveriv = NULL; int is_aead = _private_tls_is_aead(context); unsigned char local_keybuffer[TLS_V13_MAX_KEY_SIZE]; unsigned char local_ivbuffer[TLS_V13_MAX_IV_SIZE]; unsigned char remote_keybuffer[TLS_V13_MAX_KEY_SIZE]; unsigned char remote_ivbuffer[TLS_V13_MAX_IV_SIZE]; unsigned char prk[TLS_MAX_HASH_SIZE]; unsigned char hash[TLS_MAX_HASH_SIZE]; static unsigned char earlysecret[TLS_MAX_HASH_SIZE]; const char *server_key = "s ap traffic"; const char *client_key = "c ap traffic"; if (handshake) { server_key = "s hs traffic"; client_key = "c hs traffic"; } unsigned char salt[TLS_MAX_HASH_SIZE]; hash_state md; if (mac_length == TLS_SHA384_MAC_SIZE) { sha384_init(&md); sha384_done(&md, hash); } else { sha256_init(&md); sha256_done(&md, hash); } // extract secret "early" if ((context->master_key) && (context->master_key_len) && (!handshake)) { DEBUG_DUMP_HEX_LABEL("USING PREVIOUS SECRET", context->master_key, context->master_key_len); _private_tls_hkdf_expand_label(mac_length, salt, mac_length, context->master_key, context->master_key_len, "derived", 7, hash, mac_length); DEBUG_DUMP_HEX_LABEL("salt", salt, mac_length); _private_tls_hkdf_extract(mac_length, prk, mac_length, salt, mac_length, earlysecret, mac_length); } else { _private_tls_hkdf_extract(mac_length, prk, mac_length, NULL, 0, earlysecret, mac_length); // derive secret for handshake "tls13 derived": DEBUG_DUMP_HEX_LABEL("null hash", hash, mac_length); _private_tls_hkdf_expand_label(mac_length, salt, mac_length, prk, mac_length, "derived", 7, hash, mac_length); // extract secret "handshake": DEBUG_DUMP_HEX_LABEL("salt", salt, mac_length); _private_tls_hkdf_extract(mac_length, prk, mac_length, salt, mac_length, context->premaster_key, context->premaster_key_len); } if (!is_aead) { DEBUG_PRINT("KEY EXPANSION FAILED, NON AEAD CIPHER\n"); return 0; } unsigned char secret[TLS_MAX_MAC_SIZE]; unsigned char hs_secret[TLS_MAX_HASH_SIZE]; int hash_size; if (handshake) hash_size = _private_tls_get_hash(context, hash); else hash_size = _private_tls_done_hash(context, hash); DEBUG_DUMP_HEX_LABEL("messages hash", hash, hash_size); if (context->is_server) { _private_tls_hkdf_expand_label(mac_length, hs_secret, mac_length, prk, mac_length, server_key, 12, context->server_finished_hash ? context->server_finished_hash : hash, hash_size); DEBUG_DUMP_HEX_LABEL(server_key, hs_secret, mac_length); serverkey = local_keybuffer; serveriv = local_ivbuffer; clientkey = remote_keybuffer; clientiv = remote_ivbuffer; } else { _private_tls_hkdf_expand_label(mac_length, hs_secret, mac_length, prk, mac_length, client_key, 12, context->server_finished_hash ? context->server_finished_hash : hash, hash_size); DEBUG_DUMP_HEX_LABEL(client_key, hs_secret, mac_length); serverkey = remote_keybuffer; serveriv = remote_ivbuffer; clientkey = local_keybuffer; clientiv = local_ivbuffer; } int iv_length = TLS_13_AES_GCM_IV_LENGTH; #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) iv_length = TLS_CHACHA20_IV_LENGTH; #endif _private_tls_hkdf_expand_label(mac_length, local_keybuffer, key_length, hs_secret, mac_length, "key", 3, NULL, 0); _private_tls_hkdf_expand_label(mac_length, local_ivbuffer, iv_length, hs_secret, mac_length, "iv", 2, NULL, 0); if (context->is_server) _private_tls_hkdf_expand_label(mac_length, secret, mac_length, prk, mac_length, client_key, 12, context->server_finished_hash ? context->server_finished_hash : hash, hash_size); else _private_tls_hkdf_expand_label(mac_length, secret, mac_length, prk, mac_length, server_key, 12, context->server_finished_hash ? context->server_finished_hash : hash, hash_size); _private_tls_hkdf_expand_label(mac_length, remote_keybuffer, key_length, secret, mac_length, "key", 3, NULL, 0); _private_tls_hkdf_expand_label(mac_length, remote_ivbuffer, iv_length, secret, mac_length, "iv", 2, NULL, 0); DEBUG_DUMP_HEX_LABEL("CLIENT KEY", clientkey, key_length) DEBUG_DUMP_HEX_LABEL("CLIENT IV", clientiv, iv_length) DEBUG_DUMP_HEX_LABEL("SERVER KEY", serverkey, key_length) DEBUG_DUMP_HEX_LABEL("SERVER IV", serveriv, iv_length) TLS_FREE(context->finished_key); TLS_FREE(context->remote_finished_key); if (handshake) { context->finished_key = (unsigned char *)TLS_MALLOC(mac_length); context->remote_finished_key = (unsigned char *)TLS_MALLOC(mac_length); if (context->finished_key) { _private_tls_hkdf_expand_label(mac_length, context->finished_key, mac_length, hs_secret, mac_length, "finished", 8, NULL, 0); DEBUG_DUMP_HEX_LABEL("FINISHED", context->finished_key, mac_length) } if (context->remote_finished_key) { _private_tls_hkdf_expand_label(mac_length, context->remote_finished_key, mac_length, secret, mac_length, "finished", 8, NULL, 0); DEBUG_DUMP_HEX_LABEL("REMOTE FINISHED", context->remote_finished_key, mac_length) } } else { context->finished_key = NULL; context->remote_finished_key = NULL; TLS_FREE(context->server_finished_hash); context->server_finished_hash = NULL; } if (context->is_server) { #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { memcpy(context->crypto.ctx_remote_mac.remote_nonce, clientiv, iv_length); memcpy(context->crypto.ctx_local_mac.local_nonce, serveriv, iv_length); } else #endif if (is_aead) { memcpy(context->crypto.ctx_remote_mac.remote_iv, clientiv, iv_length); memcpy(context->crypto.ctx_local_mac.local_iv, serveriv, iv_length); } if (_private_tls_crypto_create(context, key_length, serverkey, serveriv, clientkey, clientiv)) return 0; } else { #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { memcpy(context->crypto.ctx_local_mac.local_nonce, clientiv, iv_length); memcpy(context->crypto.ctx_remote_mac.remote_nonce, serveriv, iv_length); } else #endif if (is_aead) { memcpy(context->crypto.ctx_local_mac.local_iv, clientiv, iv_length); memcpy(context->crypto.ctx_remote_mac.remote_iv, serveriv, iv_length); } if (_private_tls_crypto_create(context, key_length, clientkey, clientiv, serverkey, serveriv)) return 0; } context->crypto.created = 1 + is_aead; if (context->exportable) { TLS_FREE(context->exportable_keys); context->exportable_keys = (unsigned char *)TLS_MALLOC(key_length * 2); if (context->exportable_keys) { if (context->is_server) { memcpy(context->exportable_keys, serverkey, key_length); memcpy(context->exportable_keys + key_length, clientkey, key_length); } else { memcpy(context->exportable_keys, clientkey, key_length); memcpy(context->exportable_keys + key_length, serverkey, key_length); } context->exportable_size = key_length * 2; } } TLS_FREE(context->master_key); context->master_key = (unsigned char *)TLS_MALLOC(mac_length); if (context->master_key) { memcpy(context->master_key, prk, mac_length); context->master_key_len = mac_length; } context->local_sequence_number = 0; context->remote_sequence_number = 0; // extract client_mac_key(mac_key_length) // extract server_mac_key(mac_key_length) // extract client_key(enc_key_length) // extract server_key(enc_key_length) // extract client_iv(fixed_iv_lengh) // extract server_iv(fixed_iv_length) return 1; } #endif int _private_tls_expand_key(struct TLSContext *context) { unsigned char key[TLS_MAX_KEY_EXPANSION_SIZE]; #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) return 0; #endif if ((!context->master_key) || (!context->master_key_len)) return 0; int key_length = _private_tls_key_length(context); int mac_length = _private_tls_mac_length(context); if ((!key_length) || (!mac_length)) { DEBUG_PRINT("KEY EXPANSION FAILED, KEY LENGTH: %i, MAC LENGTH: %i\n", key_length, mac_length); return 0; } unsigned char *clientkey = NULL; unsigned char *serverkey = NULL; unsigned char *clientiv = NULL; unsigned char *serveriv = NULL; int iv_length = TLS_AES_IV_LENGTH; int is_aead = _private_tls_is_aead(context); if (context->is_server) _private_tls_prf(context, key, sizeof(key), context->master_key, context->master_key_len, (unsigned char *)"key expansion", 13, context->local_random, TLS_SERVER_RANDOM_SIZE, context->remote_random, TLS_CLIENT_RANDOM_SIZE); else _private_tls_prf(context, key, sizeof(key), context->master_key, context->master_key_len, (unsigned char *)"key expansion", 13, context->remote_random, TLS_SERVER_RANDOM_SIZE, context->local_random, TLS_CLIENT_RANDOM_SIZE); DEBUG_DUMP_HEX_LABEL("LOCAL RANDOM ", context->local_random, TLS_SERVER_RANDOM_SIZE); DEBUG_DUMP_HEX_LABEL("REMOTE RANDOM", context->remote_random, TLS_CLIENT_RANDOM_SIZE); DEBUG_PRINT("\n=========== EXPANSION ===========\n"); DEBUG_DUMP_HEX(key, TLS_MAX_KEY_EXPANSION_SIZE); DEBUG_PRINT("\n"); int pos = 0; #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { iv_length = TLS_CHACHA20_IV_LENGTH; } else #endif if (is_aead) { iv_length = TLS_AES_GCM_IV_LENGTH; } else { if (context->is_server) { memcpy(context->crypto.ctx_remote_mac.remote_mac, &key[pos], mac_length); pos += mac_length; memcpy(context->crypto.ctx_local_mac.local_mac, &key[pos], mac_length); pos += mac_length; } else { memcpy(context->crypto.ctx_local_mac.local_mac, &key[pos], mac_length); pos += mac_length; memcpy(context->crypto.ctx_remote_mac.remote_mac, &key[pos], mac_length); pos += mac_length; } } clientkey = &key[pos]; pos += key_length; serverkey = &key[pos]; pos += key_length; clientiv = &key[pos]; pos += iv_length; serveriv = &key[pos]; pos += iv_length; DEBUG_PRINT("EXPANSION %i/%i\n", (int)pos, (int)TLS_MAX_KEY_EXPANSION_SIZE); DEBUG_DUMP_HEX_LABEL("CLIENT KEY", clientkey, key_length) DEBUG_DUMP_HEX_LABEL("CLIENT IV", clientiv, iv_length) DEBUG_DUMP_HEX_LABEL("CLIENT MAC KEY", context->is_server ? context->crypto.ctx_remote_mac.remote_mac : context->crypto.ctx_local_mac.local_mac, mac_length) DEBUG_DUMP_HEX_LABEL("SERVER KEY", serverkey, key_length) DEBUG_DUMP_HEX_LABEL("SERVER IV", serveriv, iv_length) DEBUG_DUMP_HEX_LABEL("SERVER MAC KEY", context->is_server ? context->crypto.ctx_local_mac.local_mac : context->crypto.ctx_remote_mac.remote_mac, mac_length) if (context->is_server) { #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { memcpy(context->crypto.ctx_remote_mac.remote_nonce, clientiv, iv_length); memcpy(context->crypto.ctx_local_mac.local_nonce, serveriv, iv_length); } else #endif if (is_aead) { memcpy(context->crypto.ctx_remote_mac.remote_aead_iv, clientiv, iv_length); memcpy(context->crypto.ctx_local_mac.local_aead_iv, serveriv, iv_length); } if (_private_tls_crypto_create(context, key_length, serverkey, serveriv, clientkey, clientiv)) return 0; } else { #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { memcpy(context->crypto.ctx_local_mac.local_nonce, clientiv, iv_length); memcpy(context->crypto.ctx_remote_mac.remote_nonce, serveriv, iv_length); } else #endif if (is_aead) { memcpy(context->crypto.ctx_local_mac.local_aead_iv, clientiv, iv_length); memcpy(context->crypto.ctx_remote_mac.remote_aead_iv, serveriv, iv_length); } if (_private_tls_crypto_create(context, key_length, clientkey, clientiv, serverkey, serveriv)) return 0; } if (context->exportable) { TLS_FREE(context->exportable_keys); context->exportable_keys = (unsigned char *)TLS_MALLOC(key_length * 2); if (context->exportable_keys) { if (context->is_server) { memcpy(context->exportable_keys, serverkey, key_length); memcpy(context->exportable_keys + key_length, clientkey, key_length); } else { memcpy(context->exportable_keys, clientkey, key_length); memcpy(context->exportable_keys + key_length, serverkey, key_length); } context->exportable_size = key_length * 2; } } // extract client_mac_key(mac_key_length) // extract server_mac_key(mac_key_length) // extract client_key(enc_key_length) // extract server_key(enc_key_length) // extract client_iv(fixed_iv_lengh) // extract server_iv(fixed_iv_length) return 1; } int _private_tls_compute_key(struct TLSContext *context, unsigned int key_len) { #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) return 0; #endif if ((!context->premaster_key) || (!context->premaster_key_len) || (key_len < 48)) { DEBUG_PRINT("CANNOT COMPUTE MASTER SECRET\n"); return 0; } unsigned char master_secret_label[] = "master secret"; #ifdef TLS_CHECK_PREMASTER_KEY if (!tls_cipher_is_ephemeral(context)) { unsigned short version = ntohs(*(unsigned short *)context->premaster_key); // this check is not true for DHE/ECDHE ciphers if (context->version > version) { DEBUG_PRINT("Mismatch protocol version 0x(%x)\n", version); return 0; } } #endif TLS_FREE(context->master_key); context->master_key_len = 0; context->master_key = NULL; if ((context->version == TLS_V13) || (context->version == TLS_V12) || (context->version == TLS_V11) || (context->version == TLS_V10) || (context->version == DTLS_V13) || (context->version == DTLS_V12) || (context->version == DTLS_V10)) { context->master_key = (unsigned char *)TLS_MALLOC(key_len); if (!context->master_key) return 0; context->master_key_len = key_len; if (context->is_server) { _private_tls_prf(context, context->master_key, context->master_key_len, context->premaster_key, context->premaster_key_len, master_secret_label, 13, context->remote_random, TLS_CLIENT_RANDOM_SIZE, context->local_random, TLS_SERVER_RANDOM_SIZE ); } else { _private_tls_prf(context, context->master_key, context->master_key_len, context->premaster_key, context->premaster_key_len, master_secret_label, 13, context->local_random, TLS_CLIENT_RANDOM_SIZE, context->remote_random, TLS_SERVER_RANDOM_SIZE ); } TLS_FREE(context->premaster_key); context->premaster_key = NULL; context->premaster_key_len = 0; DEBUG_PRINT("\n=========== Master key ===========\n"); DEBUG_DUMP_HEX(context->master_key, context->master_key_len); DEBUG_PRINT("\n"); _private_tls_expand_key(context); return 1; } return 0; } unsigned char *tls_pem_decode(const unsigned char *data_in, unsigned int input_length, int cert_index, unsigned int *output_len) { unsigned int i; *output_len = 0; int alloc_len = input_length / 4 * 3; unsigned char *output = (unsigned char *)TLS_MALLOC(alloc_len); if (!output) return NULL; unsigned int start_at = 0; unsigned int idx = 0; for (i = 0; i < input_length; i++) { if ((data_in[i] == '\n') || (data_in[i] == '\r')) continue; if (data_in[i] != '-') { // read entire line while ((i < input_length) && (data_in[i] != '\n')) i++; continue; } if (data_in[i] == '-') { unsigned int end_idx = i; //read until end of line while ((i < input_length) && (data_in[i] != '\n')) i++; if (start_at) { if (cert_index > 0) { cert_index--; start_at = 0; } else { idx = _private_b64_decode((const char *)&data_in[start_at], end_idx - start_at, output); break; } } else start_at = i + 1; } } *output_len = idx; if (!idx) { TLS_FREE(output); return NULL; } return output; } int _is_oid(const unsigned char *oid, const unsigned char *compare_to, int compare_to_len) { int i = 0; while ((oid[i]) && (i < compare_to_len)) { if (oid[i] != compare_to[i]) return 0; i++; } return 1; } int _is_oid2(const unsigned char *oid, const unsigned char *compare_to, int compare_to_len, int oid_len) { int i = 0; if (oid_len < compare_to_len) compare_to_len = oid_len; while (i < compare_to_len) { if (oid[i] != compare_to[i]) return 0; i++; } return 1; } struct TLSCertificate *tls_create_certificate() { struct TLSCertificate *cert = (struct TLSCertificate *)TLS_MALLOC(sizeof(struct TLSCertificate)); if (cert) memset(cert, 0, sizeof(struct TLSCertificate)); return cert; } int tls_certificate_valid_subject_name(const unsigned char *cert_subject, const char *subject) { // no subjects ... if (((!cert_subject) || (!cert_subject[0])) && ((!subject) || (!subject[0]))) return 0; if ((!subject) || (!subject[0])) return bad_certificate; if ((!cert_subject) || (!cert_subject[0])) return bad_certificate; // exact match if (!strcmp((const char *)cert_subject, subject)) return 0; const char *wildcard = strchr((const char *)cert_subject, '*'); if (wildcard) { // 6.4.3 (1) The client SHOULD NOT attempt to match a presented identifier in // which the wildcard character comprises a label other than the left-most label if (!wildcard[1]) { // subject is [*] // or // subject is [something*] .. invalid return bad_certificate; } wildcard++; const char *match = strstr(subject, wildcard); if ((!match) && (wildcard[0] == '.')) { // check *.domain.com agains domain.com wildcard++; if (!strcasecmp(subject, wildcard)) return 0; } if (match) { uintptr_t offset = (uintptr_t)match - (uintptr_t)subject; if (offset) { // check for foo.*.domain.com against *.domain.com (invalid) if (memchr(subject, '.', offset)) return bad_certificate; } // check if exact match if (!strcasecmp(match, wildcard)) return 0; } } return bad_certificate; } int tls_certificate_valid_subject(struct TLSCertificate *cert, const char *subject) { int i; if (!cert) return certificate_unknown; int err = tls_certificate_valid_subject_name(cert->subject, subject); if ((err) && (cert->san)) { for (i = 0; i < cert->san_length; i++) { err = tls_certificate_valid_subject_name(cert->san[i], subject); if (!err) return err; } } return err; } int tls_certificate_is_valid(struct TLSCertificate *cert) { if (!cert) return certificate_unknown; if (!cert->not_before) return certificate_unknown; if (!cert->not_after) return certificate_unknown; //20160224182300Z// char current_time[16]; time_t t = time(NULL); struct tm *utct = gmtime(&t); if (utct) { current_time[0] = 0; snprintf(current_time, sizeof(current_time), "%04d%02d%02d%02d%02d%02dZ", 1900 + utct->tm_year, utct->tm_mon + 1, utct->tm_mday, utct->tm_hour, utct->tm_min, utct->tm_sec); if (strcasecmp((char *)cert->not_before, current_time) > 0) { DEBUG_PRINT("Certificate is not yer valid, now: %s (validity: %s - %s)\n", current_time, cert->not_before, cert->not_after); return certificate_expired; } if (strcasecmp((char *)cert->not_after, current_time) < 0) { DEBUG_PRINT("Expired certificate, now: %s (validity: %s - %s)\n", current_time, cert->not_before, cert->not_after); return certificate_expired; } DEBUG_PRINT("Valid certificate, now: %s (validity: %s - %s)\n", current_time, cert->not_before, cert->not_after); } return 0; } void tls_certificate_set_copy(unsigned char **member, const unsigned char *val, int len) { if (!member) return; TLS_FREE(*member); if (len) { *member = (unsigned char *)TLS_MALLOC(len + 1); if (*member) { memcpy(*member, val, len); (*member)[len] = 0; } } else *member = NULL; } void tls_certificate_set_copy_date(unsigned char **member, const unsigned char *val, int len) { if (!member) return; TLS_FREE(*member); if (len > 4) { *member = (unsigned char *)TLS_MALLOC(len + 3); if (*member) { if (val[0] == '9') { (*member)[0]='1'; (*member)[1]='9'; } else { (*member)[0]='2'; (*member)[1]='0'; } memcpy(*member + 2, val, len); (*member)[len] = 0; } } else *member = NULL; } void tls_certificate_set_key(struct TLSCertificate *cert, const unsigned char *val, int len) { if ((!val[0]) && (len % 2)) { val++; len--; } tls_certificate_set_copy(&cert->pk, val, len); if (cert->pk) cert->pk_len = len; } void tls_certificate_set_priv(struct TLSCertificate *cert, const unsigned char *val, int len) { tls_certificate_set_copy(&cert->priv, val, len); if (cert->priv) cert->priv_len = len; } void tls_certificate_set_sign_key(struct TLSCertificate *cert, const unsigned char *val, int len) { if ((!val[0]) && (len % 2)) { val++; len--; } tls_certificate_set_copy(&cert->sign_key, val, len); if (cert->sign_key) cert->sign_len = len; } char *tls_certificate_to_string(struct TLSCertificate *cert, char *buffer, int len) { unsigned int i; if (!buffer) return NULL; buffer[0] = 0; if (cert->version) { int res = snprintf(buffer, len, "X.509v%i certificate\n Issued by: [%s]%s (%s)\n Issued to: [%s]%s (%s, %s)\n Subject: %s\n Validity: %s - %s\n OCSP: %s\n Serial number: ", (int)cert->version, cert->issuer_country, cert->issuer_entity, cert->issuer_subject, cert->country, cert->entity, cert->state, cert->location, cert->subject, cert->not_before, cert->not_after, cert->ocsp ); if (res > 0) { for (i = 0; i < cert->serial_len; i++) res += snprintf(buffer + res, len - res, "%02x", (int)cert->serial_number[i]); } if ((cert->san) && (cert->san_length)) { res += snprintf(buffer + res, len - res, "\n Alternative subjects: "); for (i = 0; i < cert->san_length; i++) { if (i) res += snprintf(buffer + res, len - res, ", %s", cert->san[i]); else res += snprintf(buffer + res, len - res, "%s", cert->san[i]); } } res += snprintf(buffer + res, len - res, "\n Key (%i bits, ", cert->pk_len * 8); if (res > 0) { switch (cert->key_algorithm) { case TLS_RSA_SIGN_RSA: res += snprintf(buffer + res, len - res, "RSA_SIGN_RSA"); break; case TLS_RSA_SIGN_MD5: res += snprintf(buffer + res, len - res, "RSA_SIGN_MD5"); break; case TLS_RSA_SIGN_SHA1: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA1"); break; case TLS_RSA_SIGN_SHA256: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA256"); break; case TLS_RSA_SIGN_SHA384: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA384"); break; case TLS_RSA_SIGN_SHA512: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA512"); break; case TLS_ECDSA_SIGN_SHA256: res += snprintf(buffer + res, len - res, "ECDSA_SIGN_SHA512"); break; case TLS_EC_PUBLIC_KEY: res += snprintf(buffer + res, len - res, "EC_PUBLIC_KEY"); break; default: res += snprintf(buffer + res, len - res, "not supported (%i)", (int)cert->key_algorithm); } } if ((res > 0) && (cert->ec_algorithm)) { switch (cert->ec_algorithm) { case TLS_EC_prime192v1: res += snprintf(buffer + res, len - res, " prime192v1"); break; case TLS_EC_prime192v2: res += snprintf(buffer + res, len - res, " prime192v2"); break; case TLS_EC_prime192v3: res += snprintf(buffer + res, len - res, " prime192v3"); break; case TLS_EC_prime239v2: res += snprintf(buffer + res, len - res, " prime239v2"); break; case TLS_EC_secp256r1: res += snprintf(buffer + res, len - res, " EC_secp256r1"); break; case TLS_EC_secp224r1: res += snprintf(buffer + res, len - res, " EC_secp224r1"); break; case TLS_EC_secp384r1: res += snprintf(buffer + res, len - res, " EC_secp384r1"); break; case TLS_EC_secp521r1: res += snprintf(buffer + res, len - res, " EC_secp521r1"); break; default: res += snprintf(buffer + res, len - res, " unknown(%i)", (int)cert->ec_algorithm); } } res += snprintf(buffer + res, len - res, "):\n"); if (res > 0) { for (i = 0; i < cert->pk_len; i++) res += snprintf(buffer + res, len - res, "%02x", (int)cert->pk[i]); res += snprintf(buffer + res, len - res, "\n Signature (%i bits, ", cert->sign_len * 8); switch (cert->algorithm) { case TLS_RSA_SIGN_RSA: res += snprintf(buffer + res, len - res, "RSA_SIGN_RSA):\n"); break; case TLS_RSA_SIGN_MD5: res += snprintf(buffer + res, len - res, "RSA_SIGN_MD5):\n"); break; case TLS_RSA_SIGN_SHA1: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA1):\n"); break; case TLS_RSA_SIGN_SHA256: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA256):\n"); break; case TLS_RSA_SIGN_SHA384: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA384):\n"); break; case TLS_RSA_SIGN_SHA512: res += snprintf(buffer + res, len - res, "RSA_SIGN_SHA512):\n"); break; case TLS_EC_PUBLIC_KEY: res += snprintf(buffer + res, len - res, "EC_PUBLIC_KEY):\n"); break; default: res += snprintf(buffer + res, len - res, "not supported):\n"); } for (i = 0; i < cert->sign_len; i++) res += snprintf(buffer + res, len - res, "%02x", (int)cert->sign_key[i]); } } else if ((cert->priv) && (cert->priv_len)) { int res = snprintf(buffer, len, "X.509 private key\n"); res += snprintf(buffer + res, len - res, " Private Key: "); if (res > 0) { for (i = 0; i < cert->priv_len; i++) res += snprintf(buffer + res, len - res, "%02x", (int)cert->priv[i]); } } else snprintf(buffer, len, "Empty ASN1 file"); return buffer; } void tls_certificate_set_exponent(struct TLSCertificate *cert, const unsigned char *val, int len) { tls_certificate_set_copy(&cert->exponent, val, len); if (cert->exponent) cert->exponent_len = len; } void tls_certificate_set_serial(struct TLSCertificate *cert, const unsigned char *val, int len) { tls_certificate_set_copy(&cert->serial_number, val, len); if (cert->serial_number) cert->serial_len = len; } void tls_certificate_set_algorithm(struct TLSContext *context, unsigned int *algorithm, const unsigned char *val, int len) { if ((len == 7) && (_is_oid(val, TLS_EC_PUBLIC_KEY_OID, 7))) { *algorithm = TLS_EC_PUBLIC_KEY; return; } if (len == 8) { if (_is_oid(val, TLS_EC_prime192v1_OID, len)) { *algorithm = TLS_EC_prime192v1; return; } if (_is_oid(val, TLS_EC_prime192v2_OID, len)) { *algorithm = TLS_EC_prime192v2; return; } if (_is_oid(val, TLS_EC_prime192v3_OID, len)) { *algorithm = TLS_EC_prime192v3; return; } if (_is_oid(val, TLS_EC_prime239v1_OID, len)) { *algorithm = TLS_EC_prime239v1; return; } if (_is_oid(val, TLS_EC_prime239v2_OID, len)) { *algorithm = TLS_EC_prime239v2; return; } if (_is_oid(val, TLS_EC_prime239v3_OID, len)) { *algorithm = TLS_EC_prime239v3; return; } if (_is_oid(val, TLS_EC_prime256v1_OID, len)) { *algorithm = TLS_EC_prime256v1; return; } } if (len == 5) { if (_is_oid2(val, TLS_EC_secp224r1_OID, len, sizeof(TLS_EC_secp224r1_OID) - 1)) { *algorithm = TLS_EC_secp224r1; return; } if (_is_oid2(val, TLS_EC_secp384r1_OID, len, sizeof(TLS_EC_secp384r1_OID) - 1)) { *algorithm = TLS_EC_secp384r1; return; } if (_is_oid2(val, TLS_EC_secp521r1_OID, len, sizeof(TLS_EC_secp521r1_OID) - 1)) { *algorithm = TLS_EC_secp521r1; return; } } if (len != 9) return; if (_is_oid(val, TLS_RSA_SIGN_SHA256_OID, 9)) { *algorithm = TLS_RSA_SIGN_SHA256; return; } if (_is_oid(val, TLS_RSA_SIGN_RSA_OID, 9)) { *algorithm = TLS_RSA_SIGN_RSA; return; } if (_is_oid(val, TLS_RSA_SIGN_SHA1_OID, 9)) { *algorithm = TLS_RSA_SIGN_SHA1; return; } if (_is_oid(val, TLS_RSA_SIGN_SHA512_OID, 9)) { *algorithm = TLS_RSA_SIGN_SHA512; return; } if (_is_oid(val, TLS_RSA_SIGN_SHA384_OID, 9)) { *algorithm = TLS_RSA_SIGN_SHA384; return; } if (_is_oid(val, TLS_RSA_SIGN_MD5_OID, 9)) { *algorithm = TLS_RSA_SIGN_MD5; return; } if (_is_oid(val, TLS_ECDSA_SIGN_SHA256_OID, 9)) { *algorithm = TLS_ECDSA_SIGN_SHA256; return; } // client should fail on unsupported signature if (!context->is_server) { DEBUG_PRINT("UNSUPPORTED SIGNATURE ALGORITHM\n"); context->critical_error = 1; } } void tls_destroy_certificate(struct TLSCertificate *cert) { if (cert) { int i; TLS_FREE(cert->exponent); TLS_FREE(cert->pk); TLS_FREE(cert->issuer_country); TLS_FREE(cert->issuer_state); TLS_FREE(cert->issuer_location); TLS_FREE(cert->issuer_entity); TLS_FREE(cert->issuer_subject); TLS_FREE(cert->country); TLS_FREE(cert->state); TLS_FREE(cert->location); TLS_FREE(cert->subject); for (i = 0; i < cert->san_length; i++) { TLS_FREE(cert->san[i]); } TLS_FREE(cert->san); TLS_FREE(cert->ocsp); TLS_FREE(cert->serial_number); TLS_FREE(cert->entity); TLS_FREE(cert->not_before); TLS_FREE(cert->not_after); TLS_FREE(cert->sign_key); TLS_FREE(cert->priv); TLS_FREE(cert->der_bytes); TLS_FREE(cert->bytes); TLS_FREE(cert->fingerprint); TLS_FREE(cert); } } struct TLSPacket *tls_create_packet(struct TLSContext *context, unsigned char type, unsigned short version, int payload_size_hint) { struct TLSPacket *packet = (struct TLSPacket *)TLS_MALLOC(sizeof(struct TLSPacket)); if (!packet) return NULL; packet->broken = 0; if (payload_size_hint > 0) packet->size = payload_size_hint + 10; else packet->size = TLS_BLOB_INCREMENT; packet->buf = (unsigned char *)TLS_MALLOC(packet->size); packet->context = context; if (!packet->buf) { TLS_FREE(packet); return NULL; } if ((context) && (context->dtls)) packet->len = 13; else packet->len = 5; packet->buf[0] = type; #ifdef WITH_TLS_13 switch (version) { case TLS_V13: // check if context is not null. If null, is a tls_export_context call if (context) *(unsigned short *)(packet->buf + 1) = 0x0303; // no need to reorder (same bytes) else *(unsigned short *)(packet->buf + 1) = htons(version); break; case DTLS_V13: *(unsigned short *)(packet->buf + 1) = htons(DTLS_V13); break; default: *(unsigned short *)(packet->buf + 1) = htons(version); } #else *(unsigned short *)(packet->buf + 1) = htons(version); #endif return packet; } void tls_destroy_packet(struct TLSPacket *packet) { if (packet) { if (packet->buf) TLS_FREE(packet->buf); TLS_FREE(packet); } } int _private_tls_crypto_create(struct TLSContext *context, int key_length, unsigned char *localkey, unsigned char *localiv, unsigned char *remotekey, unsigned char *remoteiv) { if (context->crypto.created) { if (context->crypto.created == 1) { cbc_done(&context->crypto.ctx_remote.aes_remote); cbc_done(&context->crypto.ctx_local.aes_local); } else { #ifdef TLS_WITH_CHACHA20_POLY1305 if (context->crypto.created == 2) { #endif unsigned char dummy_buffer[32]; unsigned long tag_len = 0; gcm_done(&context->crypto.ctx_remote.aes_gcm_remote, dummy_buffer, &tag_len); gcm_done(&context->crypto.ctx_local.aes_gcm_local, dummy_buffer, &tag_len); #ifdef TLS_WITH_CHACHA20_POLY1305 } #endif } context->crypto.created = 0; } tls_init(); int is_aead = _private_tls_is_aead(context); int cipherID = find_cipher("aes"); DEBUG_PRINT("Using cipher ID: %x\n", (int)context->cipher); #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { unsigned int counter = 1; chacha_keysetup(&context->crypto.ctx_local.chacha_local, localkey, key_length * 8); chacha_ivsetup_96bitnonce(&context->crypto.ctx_local.chacha_local, localiv, (unsigned char *)&counter); chacha_keysetup(&context->crypto.ctx_remote.chacha_remote, remotekey, key_length * 8); chacha_ivsetup_96bitnonce(&context->crypto.ctx_remote.chacha_remote, remoteiv, (unsigned char *)&counter); context->crypto.created = 3; } else #endif if (is_aead) { int res1 = gcm_init(&context->crypto.ctx_local.aes_gcm_local, cipherID, localkey, key_length); int res2 = gcm_init(&context->crypto.ctx_remote.aes_gcm_remote, cipherID, remotekey, key_length); if ((res1) || (res2)) return TLS_GENERIC_ERROR; context->crypto.created = 2; } else { int res1 = cbc_start(cipherID, localiv, localkey, key_length, 0, &context->crypto.ctx_local.aes_local); int res2 = cbc_start(cipherID, remoteiv, remotekey, key_length, 0, &context->crypto.ctx_remote.aes_remote); if ((res1) || (res2)) return TLS_GENERIC_ERROR; context->crypto.created = 1; } return 0; } int _private_tls_crypto_encrypt(struct TLSContext *context, unsigned char *buf, unsigned char *ct, unsigned int len) { if (context->crypto.created == 1) return cbc_encrypt(buf, ct, len, &context->crypto.ctx_local.aes_local); memset(ct, 0, len); return TLS_GENERIC_ERROR; } int _private_tls_crypto_decrypt(struct TLSContext *context, unsigned char *buf, unsigned char *pt, unsigned int len) { if (context->crypto.created == 1) return cbc_decrypt(buf, pt, len, &context->crypto.ctx_remote.aes_remote); memset(pt, 0, len); return TLS_GENERIC_ERROR; } void _private_tls_crypto_done(struct TLSContext *context) { unsigned char dummy_buffer[32]; unsigned long tag_len = 0; switch (context->crypto.created) { case 1: cbc_done(&context->crypto.ctx_remote.aes_remote); cbc_done(&context->crypto.ctx_local.aes_local); break; case 2: gcm_done(&context->crypto.ctx_remote.aes_gcm_remote, dummy_buffer, &tag_len); gcm_done(&context->crypto.ctx_local.aes_gcm_local, dummy_buffer, &tag_len); break; } context->crypto.created = 0; } void tls_packet_update(struct TLSPacket *packet) { if ((packet) && (!packet->broken)) { int footer_size = 0; #ifdef WITH_TLS_13 if ((packet->context) && ((packet->context->version == TLS_V13) || (packet->context->version == DTLS_V13)) && (packet->context->cipher_spec_set) && (packet->context->crypto.created)) { // type tls_packet_uint8(packet, packet->buf[0]); // no padding // tls_packet_uint8(packet, 0); footer_size = 1; } #endif unsigned int header_size = 5; if ((packet->context) && (packet->context->dtls)) { header_size = 13; *(unsigned short *)(packet->buf + 3) = htons(packet->context->dtls_epoch_local); uint64_t sequence_number = packet->context->local_sequence_number; packet->buf[5] = (unsigned char)(sequence_number / 0x10000000000LL); sequence_number %= 0x10000000000LL; packet->buf[6] = (unsigned char)(sequence_number / 0x100000000LL); sequence_number %= 0x100000000LL; packet->buf[7] = (unsigned char)(sequence_number / 0x1000000); sequence_number %= 0x1000000; packet->buf[8] = (unsigned char)(sequence_number / 0x10000); sequence_number %= 0x10000; packet->buf[9] = (unsigned char)(sequence_number / 0x100); sequence_number %= 0x100; packet->buf[10] = (unsigned char)sequence_number; *(unsigned short *)(packet->buf + 11) = htons(packet->len - header_size); } else *(unsigned short *)(packet->buf + 3) = htons(packet->len - header_size); if (packet->context) { if (packet->buf[0] != TLS_CHANGE_CIPHER) { if ((packet->buf[0] == TLS_HANDSHAKE) && (packet->len > header_size)) { unsigned char handshake_type = packet->buf[header_size]; if ((handshake_type != 0x00) && (handshake_type != 0x03)) _private_tls_update_hash(packet->context, packet->buf + header_size, packet->len - header_size - footer_size); } #ifdef TLS_12_FALSE_START if (((packet->context->cipher_spec_set) || (packet->context->false_start)) && (packet->context->crypto.created)) { #else if ((packet->context->cipher_spec_set) && (packet->context->crypto.created)) { #endif int block_size = TLS_AES_BLOCK_SIZE; int mac_size = 0; unsigned int length = 0; unsigned char padding = 0; unsigned int pt_length = packet->len - header_size; if (packet->context->crypto.created == 1) { mac_size = _private_tls_mac_length(packet->context); #ifdef TLS_LEGACY_SUPPORT if (packet->context->version == TLS_V10) length = packet->len - header_size + mac_size; else #endif length = packet->len - header_size + TLS_AES_IV_LENGTH + mac_size; padding = block_size - length % block_size; length += padding; #ifdef TLS_WITH_CHACHA20_POLY1305 } else if (packet->context->crypto.created == 3) { mac_size = POLY1305_TAGLEN; length = packet->len - header_size + mac_size; #endif } else { mac_size = TLS_GCM_TAG_LEN; length = packet->len - header_size + 8 + mac_size; } if (packet->context->crypto.created == 1) { unsigned char *buf = (unsigned char *)TLS_MALLOC(length); if (buf) { unsigned char *ct = (unsigned char *)TLS_MALLOC(length + header_size); if (ct) { unsigned int buf_pos = 0; memcpy(ct, packet->buf, header_size - 2); *(unsigned short *)&ct[header_size - 2] = htons(length); #ifdef TLS_LEGACY_SUPPORT if (packet->context->version != TLS_V10) #endif { tls_random(buf, TLS_AES_IV_LENGTH); buf_pos += TLS_AES_IV_LENGTH; } // copy payload memcpy(buf + buf_pos, packet->buf + header_size, packet->len - header_size); buf_pos += packet->len - header_size; if (packet->context->dtls) { unsigned char temp_buf[5]; memcpy(temp_buf, packet->buf, 3); *(unsigned short *)(temp_buf + 3) = *(unsigned short *)&packet->buf[header_size - 2]; uint64_t dtls_sequence_number = ntohll(*(uint64_t *)&packet->buf[3]); _private_tls_hmac_message(1, packet->context, temp_buf, 5, packet->buf + header_size, packet->len - header_size, buf + buf_pos, mac_size, dtls_sequence_number); } else _private_tls_hmac_message(1, packet->context, packet->buf, packet->len, NULL, 0, buf + buf_pos, mac_size, 0); buf_pos += mac_size; memset(buf + buf_pos, padding - 1, padding); buf_pos += padding; //DEBUG_DUMP_HEX_LABEL("PT BUFFER", buf, length); _private_tls_crypto_encrypt(packet->context, buf, ct + header_size, length); TLS_FREE(packet->buf); packet->buf = ct; packet->len = length + header_size; packet->size = packet->len; } else { // invalidate packet memset(packet->buf, 0, packet->len); } TLS_FREE(buf); } else { // invalidate packet memset(packet->buf, 0, packet->len); } } else #ifdef TLS_WITH_CHACHA20_POLY1305 if (packet->context->crypto.created >= 2) { #else if (packet->context->crypto.created == 2) { #endif // + 1 = type int ct_size = length + header_size + 12 + TLS_MAX_TAG_LEN + 1; unsigned char *ct = (unsigned char *)TLS_MALLOC(ct_size); if (ct) { memset(ct, 0, ct_size); // AEAD // sequence number (8 bytes) // content type (1 byte) // version (2 bytes) // length (2 bytes) unsigned char aad[13]; int aad_size = sizeof(aad); unsigned char *sequence = aad; #ifdef WITH_TLS_13 if ((packet->context->version == TLS_V13) || (packet->context->version == DTLS_V13)) { aad[0] = TLS_APPLICATION_DATA; aad[1] = packet->buf[1]; aad[2] = packet->buf[2]; #ifdef TLS_WITH_CHACHA20_POLY1305 if (packet->context->crypto.created == 3) *((unsigned short *)(aad + 3)) = htons(packet->len + POLY1305_TAGLEN - header_size); else #endif *((unsigned short *)(aad + 3)) = htons(packet->len + TLS_GCM_TAG_LEN - header_size); aad_size = 5; sequence = aad + 5; if (packet->context->dtls) *((uint64_t *)sequence) = *(uint64_t *)&packet->buf[3]; else *((uint64_t *)sequence) = htonll(packet->context->local_sequence_number); } else { #endif if (packet->context->dtls) *((uint64_t *)aad) = *(uint64_t *)&packet->buf[3]; else *((uint64_t *)aad) = htonll(packet->context->local_sequence_number); aad[8] = packet->buf[0]; aad[9] = packet->buf[1]; aad[10] = packet->buf[2]; *((unsigned short *)(aad + 11)) = htons(packet->len - header_size); #ifdef WITH_TLS_13 } #endif int ct_pos = header_size; #ifdef TLS_WITH_CHACHA20_POLY1305 if (packet->context->crypto.created == 3) { unsigned int counter = 1; unsigned char poly1305_key[POLY1305_KEYLEN]; chacha_ivupdate(&packet->context->crypto.ctx_local.chacha_local, packet->context->crypto.ctx_local_mac.local_aead_iv, sequence, (u8 *)&counter); chacha20_poly1305_key(&packet->context->crypto.ctx_local.chacha_local, poly1305_key); ct_pos += chacha20_poly1305_aead(&packet->context->crypto.ctx_local.chacha_local, packet->buf + header_size, pt_length, aad, aad_size, poly1305_key, ct + ct_pos); } else { #endif unsigned char iv[TLS_13_AES_GCM_IV_LENGTH]; #ifdef WITH_TLS_13 if ((packet->context->version == TLS_V13) || (packet->context->version == DTLS_V13)) { memcpy(iv, packet->context->crypto.ctx_local_mac.local_iv, TLS_13_AES_GCM_IV_LENGTH); int i; int offset = TLS_13_AES_GCM_IV_LENGTH - 8; for (i = 0; i < 8; i++) iv[offset + i] = packet->context->crypto.ctx_local_mac.local_iv[offset + i] ^ sequence[i]; } else { #endif memcpy(iv, packet->context->crypto.ctx_local_mac.local_aead_iv, TLS_AES_GCM_IV_LENGTH); tls_random(iv + TLS_AES_GCM_IV_LENGTH, 8); memcpy(ct + ct_pos, iv + TLS_AES_GCM_IV_LENGTH, 8); ct_pos += 8; #ifdef WITH_TLS_13 } #endif gcm_reset(&packet->context->crypto.ctx_local.aes_gcm_local); gcm_add_iv(&packet->context->crypto.ctx_local.aes_gcm_local, iv, 12); gcm_add_aad(&packet->context->crypto.ctx_local.aes_gcm_local, aad, aad_size); gcm_process(&packet->context->crypto.ctx_local.aes_gcm_local, packet->buf + header_size, pt_length, ct + ct_pos, GCM_ENCRYPT); ct_pos += pt_length; unsigned long taglen = TLS_GCM_TAG_LEN; gcm_done(&packet->context->crypto.ctx_local.aes_gcm_local, ct + ct_pos, &taglen); ct_pos += taglen; #ifdef TLS_WITH_CHACHA20_POLY1305 } #endif #ifdef WITH_TLS_13 if ((packet->context->version == TLS_V13) || (packet->context->version == DTLS_V13)) { ct[0] = TLS_APPLICATION_DATA; *(unsigned short *)&ct[1] = htons(packet->context->version == TLS_V13 ? TLS_V12 : DTLS_V12); // is dtls ? if (header_size != 5) memcpy(ct, packet->buf + 3, header_size - 2); } else #endif memcpy(ct, packet->buf, header_size - 2); *(unsigned short *)&ct[header_size - 2] = htons(ct_pos - header_size); TLS_FREE(packet->buf); packet->buf = ct; packet->len = ct_pos; packet->size = ct_pos; } else { // invalidate packet memset(packet->buf, 0, packet->len); } } else { // invalidate packet (never reached) memset(packet->buf, 0, packet->len); } } } else packet->context->dtls_epoch_local++; packet->context->local_sequence_number++; } } } int tls_packet_append(struct TLSPacket *packet, const unsigned char *buf, unsigned int len) { if ((!packet) || (packet->broken)) return -1; if (!len) return 0; unsigned int new_len = packet->len + len; if (new_len > packet->size) { packet->size = (new_len / TLS_BLOB_INCREMENT + 1) * TLS_BLOB_INCREMENT; packet->buf = (unsigned char *)TLS_REALLOC(packet->buf, packet->size); if (!packet->buf) { packet->size = 0; packet->len = 0; packet->broken = 1; return -1; } } memcpy(packet->buf + packet->len, buf, len); packet->len = new_len; return new_len; } int tls_packet_uint8(struct TLSPacket *packet, unsigned char i) { return tls_packet_append(packet, &i, 1); } int tls_packet_uint16(struct TLSPacket *packet, unsigned short i) { unsigned short ni = htons(i); return tls_packet_append(packet, (unsigned char *)&ni, 2); } int tls_packet_uint32(struct TLSPacket *packet, unsigned int i) { unsigned int ni = htonl(i); return tls_packet_append(packet, (unsigned char *)&ni, 4); } int tls_packet_uint24(struct TLSPacket *packet, unsigned int i) { unsigned char buf[3]; buf[0] = i / 0x10000; i %= 0x10000; buf[1] = i / 0x100; i %= 0x100; buf[2] = i; return tls_packet_append(packet, buf, 3); } int tls_random(unsigned char *key, int len) { #ifdef TLS_USE_RANDOM_SOURCE TLS_USE_RANDOM_SOURCE(key, len); #else #ifdef __APPLE__ for (int i = 0; i < len; i++) { unsigned int v = arc4random() % 0x100; key[i] = (char)v; } return 1; #else #ifdef _WIN32 HCRYPTPROV hProvider = 0; if (CryptAcquireContext(&hProvider, 0, 0, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) { if (CryptGenRandom(hProvider, len, (BYTE *)key)) { CryptReleaseContext(hProvider, 0); return 1; } CryptReleaseContext(hProvider, 0); } #else FILE *fp = fopen("/dev/urandom", "r"); if (fp) { int key_len = fread(key, 1, len, fp); fclose(fp); if (key_len == len) return 1; } #endif #endif #endif return 0; } TLSHash *_private_tls_ensure_hash(struct TLSContext *context) { TLSHash *hash = context->handshake_hash; if (!hash) { hash = (TLSHash *)TLS_MALLOC(sizeof(TLSHash)); if (hash) memset(hash, 0, sizeof(TLSHash)); context->handshake_hash = hash; } return hash; } void _private_tls_destroy_hash(struct TLSContext *context) { if (context) { TLS_FREE(context->handshake_hash); context->handshake_hash = NULL; } } void _private_tls_create_hash(struct TLSContext *context) { if (!context) return; TLSHash *hash = _private_tls_ensure_hash(context); if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { int hash_size = _private_tls_mac_length(context); if (hash->created) { unsigned char temp[TLS_MAX_SHA_SIZE]; sha384_done(&hash->hash32, temp); sha256_done(&hash->hash48, temp); } sha384_init(&hash->hash48); sha256_init(&hash->hash32); hash->created = 1; } else { #ifdef TLS_LEGACY_SUPPORT // TLS_V11 if (hash->created) { unsigned char temp[TLS_V11_HASH_SIZE]; md5_done(&hash->hash32, temp); sha1_done(&hash->hash2, temp); } md5_init(&hash->hash32); sha1_init(&hash->hash2); hash->created = 1; #endif } } int _private_tls_update_hash(struct TLSContext *context, const unsigned char *in, unsigned int len) { if (!context) return 0; TLSHash *hash = _private_tls_ensure_hash(context); if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { if (!hash->created) { _private_tls_create_hash(context); #ifdef TLS_LEGACY_SUPPORT // cache first hello in case of protocol downgrade if ((!context->is_server) && (!context->cached_handshake) && (!context->request_client_certificate) && (len)) { context->cached_handshake = (unsigned char *)TLS_MALLOC(len); if (context->cached_handshake) { memcpy(context->cached_handshake, in, len); context->cached_handshake_len = len; } } #endif } int hash_size = _private_tls_mac_length(context); sha256_process(&hash->hash32, in, len); sha384_process(&hash->hash48, in, len); if (!hash_size) hash_size = TLS_SHA256_MAC_SIZE; } else { #ifdef TLS_LEGACY_SUPPORT if (!hash->created) _private_tls_create_hash(context); md5_process(&hash->hash32, in, len); sha1_process(&hash->hash2, in, len); #endif } if ((context->request_client_certificate) && (len)) { // cache all messages for verification int new_len = context->cached_handshake_len + len; context->cached_handshake = (unsigned char *)TLS_REALLOC(context->cached_handshake, new_len); if (context->cached_handshake) { memcpy(context->cached_handshake + context->cached_handshake_len, in, len); context->cached_handshake_len = new_len; } else context->cached_handshake_len = 0; } return 0; } #ifdef TLS_LEGACY_SUPPORT int _private_tls_change_hash_type(struct TLSContext *context) { if (!context) return 0; TLSHash *hash = _private_tls_ensure_hash(context); if ((hash) && (hash->created) && (context->cached_handshake) && (context->cached_handshake_len)) { _private_tls_destroy_hash(context); int res = _private_tls_update_hash(context, context->cached_handshake, context->cached_handshake_len); TLS_FREE(context->cached_handshake); context->cached_handshake = NULL; context->cached_handshake_len = 0; return res; } return 0; } #endif int _private_tls_done_hash(struct TLSContext *context, unsigned char *hout) { if (!context) return 0; TLSHash *hash = _private_tls_ensure_hash(context); if (!hash->created) return 0; int hash_size = 0; if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { unsigned char temp[TLS_MAX_SHA_SIZE]; if (!hout) hout = temp; //TLS_HASH_DONE(&hash->hash, hout); hash_size = _private_tls_mac_length(context); if (hash_size == TLS_SHA384_MAC_SIZE) { sha256_done(&hash->hash32, temp); sha384_done(&hash->hash48, hout); } else { sha256_done(&hash->hash32, hout); sha384_done(&hash->hash48, temp); hash_size = TLS_SHA256_MAC_SIZE; } } else { #ifdef TLS_LEGACY_SUPPORT // TLS_V11 unsigned char temp[TLS_V11_HASH_SIZE]; if (!hout) hout = temp; md5_done(&hash->hash32, hout); sha1_done(&hash->hash2, hout + 16); hash_size = TLS_V11_HASH_SIZE; #endif } hash->created = 0; if (context->cached_handshake) { // not needed anymore TLS_FREE(context->cached_handshake); context->cached_handshake = NULL; context->cached_handshake_len = 0; } return hash_size; } int _private_tls_get_hash_idx(struct TLSContext *context) { if (!context) return -1; switch (_private_tls_mac_length(context)) { case TLS_SHA256_MAC_SIZE: return find_hash("sha256"); case TLS_SHA384_MAC_SIZE: return find_hash("sha384"); case TLS_SHA1_MAC_SIZE: return find_hash("sha1"); } return -1; } int _private_tls_get_hash(struct TLSContext *context, unsigned char *hout) { if (!context) return 0; TLSHash *hash = _private_tls_ensure_hash(context); if (!hash->created) return 0; int hash_size = 0; if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { hash_size = _private_tls_mac_length(context); hash_state prec; if (hash_size == TLS_SHA384_MAC_SIZE) { memcpy(&prec, &hash->hash48, sizeof(hash_state)); sha384_done(&hash->hash48, hout); memcpy(&hash->hash48, &prec, sizeof(hash_state)); } else { memcpy(&prec, &hash->hash32, sizeof(hash_state)); hash_size = TLS_SHA256_MAC_SIZE; sha256_done(&hash->hash32, hout); memcpy(&hash->hash32, &prec, sizeof(hash_state)); } } else { #ifdef TLS_LEGACY_SUPPORT // TLS_V11 hash_state prec; memcpy(&prec, &hash->hash32, sizeof(hash_state)); md5_done(&hash->hash32, hout); memcpy(&hash->hash32, &prec, sizeof(hash_state)); memcpy(&prec, &hash->hash2, sizeof(hash_state)); sha1_done(&hash->hash2, hout + 16); memcpy(&hash->hash2, &prec, sizeof(hash_state)); hash_size = TLS_V11_HASH_SIZE; #endif } return hash_size; } int _private_tls_write_packet(struct TLSPacket *packet) { if (!packet) return -1; struct TLSContext *context = packet->context; if (!context) return -1; if (context->tls_buffer) { int len = context->tls_buffer_len + packet->len; context->tls_buffer = (unsigned char *)TLS_REALLOC(context->tls_buffer, len); if (!context->tls_buffer) { context->tls_buffer_len = 0; return -1; } memcpy(context->tls_buffer + context->tls_buffer_len, packet->buf, packet->len); context->tls_buffer_len = len; int written = packet->len; tls_destroy_packet(packet); return written; } context->tls_buffer_len = packet->len; context->tls_buffer = packet->buf; packet->buf = NULL; packet->len = 0; packet->size = 0; tls_destroy_packet(packet); return context->tls_buffer_len; } int _private_tls_write_app_data(struct TLSContext *context, const unsigned char *buf, unsigned int buf_len) { if (!context) return -1; if ((!buf) || (!buf_len)) return 0; int len = context->application_buffer_len + buf_len; context->application_buffer = (unsigned char *)TLS_REALLOC(context->application_buffer, len); if (!context->application_buffer) { context->application_buffer_len = 0; return -1; } memcpy(context->application_buffer + context->application_buffer_len, buf, buf_len); context->application_buffer_len = len; return buf_len; } const unsigned char *tls_get_write_buffer(struct TLSContext *context, unsigned int *outlen) { if (!outlen) return NULL; if (!context) { *outlen = 0; return NULL; } // check if any error if (context->sleep_until) { if (context->sleep_until < time(NULL)) { *outlen = 0; return NULL; } context->sleep_until = 0; } *outlen = context->tls_buffer_len; return context->tls_buffer; } const unsigned char *tls_get_message(struct TLSContext *context, unsigned int *outlen, unsigned int offset) { if (!outlen) return NULL; if ((!context) || (!context->tls_buffer)) { *outlen = 0; return NULL; } if (offset >= context->tls_buffer_len) { *outlen = 0; return NULL; } // check if any error if (context->sleep_until) { if (context->sleep_until < time(NULL)) { *outlen = 0; return NULL; } context->sleep_until = 0; } unsigned char *tls_buffer = &context->tls_buffer[offset]; unsigned int tls_buffer_len = context->tls_buffer_len - offset; unsigned int len = 0; if (context->dtls) { if (tls_buffer_len < 13) { *outlen = 0; return NULL; } len = ntohs(*(unsigned short *)&tls_buffer[11]) + 13; } else { if (tls_buffer_len < 5) { *outlen = 0; return NULL; } len = ntohs(*(unsigned short *)&tls_buffer[3]) + 5; } if (len > tls_buffer_len) { *outlen = 0; return NULL; } *outlen = len; return tls_buffer; } void tls_buffer_clear(struct TLSContext *context) { if ((context) && (context->tls_buffer)) { TLS_FREE(context->tls_buffer); context->tls_buffer = NULL; context->tls_buffer_len = 0; } } int tls_established(struct TLSContext *context) { if (context) { if (context->critical_error) return -1; if (context->connection_status == 0xFF) return 1; #ifdef TLS_12_FALSE_START // allow false start if ((!context->is_server) && (context->version == TLS_V12) && (context->false_start)) return 1; #endif } return 0; } void tls_read_clear(struct TLSContext *context) { if ((context) && (context->application_buffer)) { TLS_FREE(context->application_buffer); context->application_buffer = NULL; context->application_buffer_len = 0; } } int tls_read(struct TLSContext *context, unsigned char *buf, unsigned int size) { if (!context) return -1; if ((context->application_buffer) && (context->application_buffer_len)) { if (context->application_buffer_len < size) size = context->application_buffer_len; memcpy(buf, context->application_buffer, size); if (context->application_buffer_len == size) { TLS_FREE(context->application_buffer); context->application_buffer = NULL; context->application_buffer_len = 0; return size; } context->application_buffer_len -= size; memmove(context->application_buffer, context->application_buffer + size, context->application_buffer_len); return size; } return 0; } struct TLSContext *tls_create_context(unsigned char is_server, unsigned short version) { struct TLSContext *context = (struct TLSContext *)TLS_MALLOC(sizeof(struct TLSContext)); if (context) { memset(context, 0, sizeof(struct TLSContext)); context->is_server = is_server; if ((version == DTLS_V13) || (version == DTLS_V12) || (version == DTLS_V10)) context->dtls = 1; context->version = version; } return context; } #ifdef TLS_FORWARD_SECRECY const struct ECCCurveParameters *tls_set_curve(struct TLSContext *context, const struct ECCCurveParameters *curve) { if (!context->is_server) return NULL; const struct ECCCurveParameters *old_curve = context->curve; context->curve = curve; return old_curve; } #endif struct TLSContext *tls_accept(struct TLSContext *context) { if ((!context) || (!context->is_server)) return NULL; struct TLSContext *child = (struct TLSContext *)TLS_MALLOC(sizeof(struct TLSContext)); if (child) { memset(child, 0, sizeof(struct TLSContext)); child->is_server = 1; child->is_child = 1; child->dtls = context->dtls; child->version = context->version; child->certificates = context->certificates; child->certificates_count = context->certificates_count; child->private_key = context->private_key; #ifdef TLS_ECDSA_SUPPORTED child->ec_private_key = context->ec_private_key; #endif child->exportable = context->exportable; child->root_certificates = context->root_certificates; child->root_count = context->root_count; #ifdef TLS_FORWARD_SECRECY child->default_dhe_p = context->default_dhe_p; child->default_dhe_g = context->default_dhe_g; child->curve = context->curve; #endif child->alpn = context->alpn; child->alpn_count = context->alpn_count; } return child; } #ifdef TLS_FORWARD_SECRECY void _private_tls_dhe_free(struct TLSContext *context) { if (context->dhe) { _private_tls_dh_clear_key(context->dhe); TLS_FREE(context->dhe); context->dhe = NULL; } } void _private_tls_dhe_create(struct TLSContext *context) { _private_tls_dhe_free(context); context->dhe = (DHKey *)TLS_MALLOC(sizeof(DHKey)); if (context->dhe) memset(context->dhe, 0, sizeof(DHKey)); } void _private_tls_ecc_dhe_free(struct TLSContext *context) { if (context->ecc_dhe) { ecc_free(context->ecc_dhe); TLS_FREE(context->ecc_dhe); context->ecc_dhe = NULL; } } void _private_tls_ecc_dhe_create(struct TLSContext *context) { _private_tls_ecc_dhe_free(context); context->ecc_dhe = (ecc_key *)TLS_MALLOC(sizeof(ecc_key)); memset(context->ecc_dhe, 0, sizeof(ecc_key)); } int tls_set_default_dhe_pg(struct TLSContext *context, const char *p_hex_str, const char *g_hex_str) { if ((!context) || (context->is_child) || (!context->is_server) || (!p_hex_str) || (!g_hex_str)) return 0; TLS_FREE(context->default_dhe_p); TLS_FREE(context->default_dhe_g); context->default_dhe_p = NULL; context->default_dhe_g = NULL; size_t p_len = strlen(p_hex_str); size_t g_len = strlen(g_hex_str); if ((p_len <= 0) || (g_len <= 0)) return 0; context->default_dhe_p = (char *)TLS_MALLOC(p_len + 1); if (!context->default_dhe_p) return 0; context->default_dhe_g = (char *)TLS_MALLOC(g_len + 1); if (!context->default_dhe_g) return 0; memcpy(context->default_dhe_p, p_hex_str, p_len); context->default_dhe_p[p_len] = 0; memcpy(context->default_dhe_g, g_hex_str, g_len); context->default_dhe_g[g_len] = 0; return 1; } #endif const char *tls_alpn(struct TLSContext *context) { if (!context) return NULL; return context->negotiated_alpn; } int tls_add_alpn(struct TLSContext *context, const char *alpn) { if ((!context) || (!alpn) || (!alpn[0]) || ((context->is_server) && (context->is_child))) return TLS_GENERIC_ERROR; int len = strlen(alpn); if (tls_alpn_contains(context, alpn, len)) return 0; context->alpn = (char **)TLS_REALLOC(context->alpn, (context->alpn_count + 1) * sizeof(char *)); if (!context->alpn) { context->alpn_count = 0; return TLS_NO_MEMORY; } char *alpn_ref = (char *)TLS_MALLOC(len+1); context->alpn[context->alpn_count] = alpn_ref; if (alpn_ref) { memcpy(alpn_ref, alpn, len); alpn_ref[len] = 0; context->alpn_count++; } else return TLS_NO_MEMORY; return 0; } int tls_alpn_contains(struct TLSContext *context, const char *alpn, unsigned char alpn_size) { if ((!context) || (!alpn) || (!alpn_size)) return 0; if (context->alpn) { int i; for (i = 0; i < context->alpn_count; i++) { const char *alpn_local = context->alpn[i]; if (alpn_local) { int len = strlen(alpn_local); if (alpn_size == len) { if (!memcmp(alpn_local, alpn, alpn_size)) return 1; } } } } return 0; } void tls_destroy_context(struct TLSContext *context) { unsigned int i; if (!context) return; if (!context->is_child) { if (context->certificates) { for (i = 0; i < context->certificates_count; i++) tls_destroy_certificate(context->certificates[i]); } if (context->root_certificates) { for (i = 0; i < context->root_count; i++) tls_destroy_certificate(context->root_certificates[i]); TLS_FREE(context->root_certificates); context->root_certificates = NULL; } if (context->private_key) tls_destroy_certificate(context->private_key); #ifdef TLS_ECDSA_SUPPORTED if (context->ec_private_key) tls_destroy_certificate(context->ec_private_key); #endif TLS_FREE(context->certificates); #ifdef TLS_FORWARD_SECRECY TLS_FREE(context->default_dhe_p); TLS_FREE(context->default_dhe_g); #endif if (context->alpn) { for (i = 0; i < context->alpn_count; i++) TLS_FREE(context->alpn[i]); TLS_FREE(context->alpn); } } if (context->client_certificates) { for (i = 0; i < context->client_certificates_count; i++) tls_destroy_certificate(context->client_certificates[i]); TLS_FREE(context->client_certificates); } context->client_certificates = NULL; TLS_FREE(context->master_key); TLS_FREE(context->premaster_key); if (context->crypto.created) _private_tls_crypto_done(context); TLS_FREE(context->message_buffer); _private_tls_done_hash(context, NULL); _private_tls_destroy_hash(context); TLS_FREE(context->tls_buffer); TLS_FREE(context->application_buffer); // zero out the keys before free if ((context->exportable_keys) && (context->exportable_size)) memset(context->exportable_keys, 0, context->exportable_size); TLS_FREE(context->exportable_keys); TLS_FREE(context->sni); TLS_FREE(context->dtls_cookie); TLS_FREE(context->cached_handshake); #ifdef TLS_FORWARD_SECRECY _private_tls_dhe_free(context); _private_tls_ecc_dhe_free(context); #endif #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION TLS_FREE(context->verify_data); #endif TLS_FREE(context->negotiated_alpn); #ifdef WITH_TLS_13 TLS_FREE(context->finished_key); TLS_FREE(context->remote_finished_key); TLS_FREE(context->server_finished_hash); #endif #ifdef TLS_CURVE25519 TLS_FREE(context->client_secret); #endif TLS_FREE(context); } #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION void _private_tls_reset_context(struct TLSContext *context) { unsigned int i; if (!context) return; if (!context->is_child) { if (context->certificates) { for (i = 0; i < context->certificates_count; i++) tls_destroy_certificate(context->certificates[i]); } context->certificates = NULL; if (context->private_key) { tls_destroy_certificate(context->private_key); context->private_key = NULL; } #ifdef TLS_ECDSA_SUPPORTED if (context->ec_private_key) { tls_destroy_certificate(context->ec_private_key); context->ec_private_key = NULL; } #endif TLS_FREE(context->certificates); context->certificates = NULL; #ifdef TLS_FORWARD_SECRECY TLS_FREE(context->default_dhe_p); TLS_FREE(context->default_dhe_g); context->default_dhe_p = NULL; context->default_dhe_g = NULL; #endif } if (context->client_certificates) { for (i = 0; i < context->client_certificates_count; i++) tls_destroy_certificate(context->client_certificates[i]); TLS_FREE(context->client_certificates); } context->client_certificates = NULL; TLS_FREE(context->master_key); context->master_key = NULL; TLS_FREE(context->premaster_key); context->premaster_key = NULL; if (context->crypto.created) _private_tls_crypto_done(context); _private_tls_done_hash(context, NULL); _private_tls_destroy_hash(context); TLS_FREE(context->application_buffer); context->application_buffer = NULL; // zero out the keys before free if ((context->exportable_keys) && (context->exportable_size)) memset(context->exportable_keys, 0, context->exportable_size); TLS_FREE(context->exportable_keys); context->exportable_keys = NULL; TLS_FREE(context->sni); context->sni = NULL; TLS_FREE(context->dtls_cookie); context->dtls_cookie = NULL; TLS_FREE(context->cached_handshake); context->cached_handshake = NULL; context->connection_status = 0; #ifdef TLS_FORWARD_SECRECY _private_tls_dhe_free(context); _private_tls_ecc_dhe_free(context); #endif } #endif int tls_cipher_supported(struct TLSContext *context, unsigned short cipher) { if (!context) return 0; switch (cipher) { #ifdef WITH_TLS_13 case TLS_AES_128_GCM_SHA256: case TLS_AES_256_GCM_SHA384: case TLS_CHACHA20_POLY1305_SHA256: if ((context->version == TLS_V13) || (context->version == DTLS_V13)) return 1; return 0; #endif #ifdef TLS_FORWARD_SECRECY #ifdef TLS_ECDSA_SUPPORTED case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: #ifdef TLS_CLIENT_ECDSA if ((context) && (((context->certificates) && (context->certificates_count) && (context->ec_private_key)) || (!context->is_server))) #else if ((context) && (context->certificates) && (context->certificates_count) && (context->ec_private_key)) #endif return 1; return 0; case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: #ifdef TLS_WITH_CHACHA20_POLY1305 case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: #endif if ((context->version == TLS_V12) || (context->version == DTLS_V12)) { #ifdef TLS_CLIENT_ECDSA if ((context) && (((context->certificates) && (context->certificates_count) && (context->ec_private_key)) || (!context->is_server))) #else if ((context) && (context->certificates) && (context->certificates_count) && (context->ec_private_key)) #endif return 1; } return 0; #endif case TLS_DHE_RSA_WITH_AES_128_CBC_SHA: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: #endif case TLS_RSA_WITH_AES_128_CBC_SHA: case TLS_RSA_WITH_AES_256_CBC_SHA: return 1; #ifdef TLS_FORWARD_SECRECY case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: #ifdef TLS_WITH_CHACHA20_POLY1305 case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: #endif #endif case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_RSA_WITH_AES_128_CBC_SHA256: case TLS_RSA_WITH_AES_256_CBC_SHA256: case TLS_RSA_WITH_AES_256_GCM_SHA384: if ((context->version == TLS_V12) || (context->version == DTLS_V12)) return 1; return 0; } return 0; } int tls_cipher_is_fs(struct TLSContext *context, unsigned short cipher) { if (!context) return 0; #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { switch (cipher) { case TLS_AES_128_GCM_SHA256: case TLS_AES_256_GCM_SHA384: case TLS_CHACHA20_POLY1305_SHA256: return 1; } return 0; } #endif switch (cipher) { #ifdef TLS_ECDSA_SUPPORTED case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: #ifdef TLS_WITH_CHACHA20_POLY1305 case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: #endif if ((context) && (context->certificates) && (context->certificates_count) && (context->ec_private_key)) return 1; return 0; case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: if ((context->version == TLS_V12) || (context->version == DTLS_V12)) { if ((context) && (context->certificates) && (context->certificates_count) && (context->ec_private_key)) return 1; } return 0; #endif case TLS_DHE_RSA_WITH_AES_128_CBC_SHA: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: return 1; case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: #ifdef TLS_WITH_CHACHA20_POLY1305 case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: #endif if ((context->version == TLS_V12) || (context->version == DTLS_V12)) return 1; break; } return 0; } #ifdef WITH_KTLS int _private_tls_prefer_ktls(struct TLSContext *context, unsigned short cipher) { if ((context->version == TLS_V13) || (context->version == DTLS_V13) || ((context->version != TLS_V12) && (context->version != DTLS_V12))) return 0; switch (cipher) { case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: if ((context->version == TLS_V13) || (context->version == DTLS_V13) || (context->version == TLS_V12) || (context->version == DTLS_V12)) { if ((context->certificates) && (context->certificates_count) && (context->ec_private_key)) return 1; } break; case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: return 1; } return 0; } #endif int tls_choose_cipher(struct TLSContext *context, const unsigned char *buf, int buf_len, int *scsv_set) { int i; if (scsv_set) *scsv_set = 0; if (!context) return 0; int selected_cipher = TLS_NO_COMMON_CIPHER; #ifdef TLS_FORWARD_SECRECY #ifdef WITH_KTLS for (i = 0; i < buf_len; i+=2) { unsigned short cipher = ntohs(*(unsigned short *)&buf[i]); if (_private_tls_prefer_ktls(context, cipher)) { selected_cipher = cipher; break; } } #endif if (selected_cipher == TLS_NO_COMMON_CIPHER) { for (i = 0; i < buf_len; i+=2) { unsigned short cipher = ntohs(*(unsigned short *)&buf[i]); if (tls_cipher_is_fs(context, cipher)) { selected_cipher = cipher; break; } } } #endif for (i = 0; i < buf_len; i+=2) { unsigned short cipher = ntohs(*(unsigned short *)&buf[i]); if (cipher == TLS_FALLBACK_SCSV) { if (scsv_set) *scsv_set = 1; if (selected_cipher != TLS_NO_COMMON_CIPHER) break; } #ifndef TLS_ROBOT_MITIGATION else if ((selected_cipher == TLS_NO_COMMON_CIPHER) && (tls_cipher_supported(context, cipher))) selected_cipher = cipher; #endif } return selected_cipher; } int tls_cipher_is_ephemeral(struct TLSContext *context) { if (context) { switch (context->cipher) { case TLS_DHE_RSA_WITH_AES_128_CBC_SHA: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA: case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: return 1; case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: return 2; #ifdef WITH_TLS_13 case TLS_AES_128_GCM_SHA256: case TLS_CHACHA20_POLY1305_SHA256: case TLS_AES_128_CCM_SHA256: case TLS_AES_128_CCM_8_SHA256: case TLS_AES_256_GCM_SHA384: if (context->dhe) return 1; return 2; #endif } } return 0; } const char *tls_cipher_name(struct TLSContext *context) { if (context) { switch (context->cipher) { case TLS_RSA_WITH_AES_128_CBC_SHA: return "RSA-AES128CBC-SHA"; case TLS_RSA_WITH_AES_256_CBC_SHA: return "RSA-AES256CBC-SHA"; case TLS_RSA_WITH_AES_128_CBC_SHA256: return "RSA-AES128CBC-SHA256"; case TLS_RSA_WITH_AES_256_CBC_SHA256: return "RSA-AES256CBC-SHA256"; case TLS_RSA_WITH_AES_128_GCM_SHA256: return "RSA-AES128GCM-SHA256"; case TLS_RSA_WITH_AES_256_GCM_SHA384: return "RSA-AES256GCM-SHA384"; case TLS_DHE_RSA_WITH_AES_128_CBC_SHA: return "DHE-RSA-AES128CBC-SHA"; case TLS_DHE_RSA_WITH_AES_256_CBC_SHA: return "DHE-RSA-AES256CBC-SHA"; case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256: return "DHE-RSA-AES128CBC-SHA256"; case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256: return "DHE-RSA-AES256CBC-SHA256"; case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: return "DHE-RSA-AES128GCM-SHA256"; case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: return "DHE-RSA-AES256GCM-SHA384"; case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: return "ECDHE-RSA-AES128CBC-SHA"; case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: return "ECDHE-RSA-AES256CBC-SHA"; case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: return "ECDHE-RSA-AES128CBC-SHA256"; case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: return "ECDHE-RSA-AES128GCM-SHA256"; case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: return "ECDHE-RSA-AES256GCM-SHA384"; case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: return "ECDHE-ECDSA-AES128CBC-SHA"; case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: return "ECDHE-ECDSA-AES256CBC-SHA"; case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: return "ECDHE-ECDSA-AES128CBC-SHA256"; case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: return "ECDHE-ECDSA-AES256CBC-SHA384"; case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: return "ECDHE-ECDSA-AES128GCM-SHA256"; case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: return "ECDHE-ECDSA-AES256GCM-SHA384"; case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: return "ECDHE-RSA-CHACHA20-POLY1305-SHA256"; case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: return "ECDHE-ECDSA-CHACHA20-POLY1305-SHA256"; case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256: return "ECDHE-DHE-CHACHA20-POLY1305-SHA256"; case TLS_AES_128_GCM_SHA256: return "TLS-AES-128-GCM-SHA256"; case TLS_AES_256_GCM_SHA384: return "TLS-AES-256-GCM-SHA384"; case TLS_CHACHA20_POLY1305_SHA256: return "TLS-CHACHA20-POLY1305-SHA256"; case TLS_AES_128_CCM_SHA256: return "TLS-AES-128-CCM-SHA256"; case TLS_AES_128_CCM_8_SHA256: return "TLS-AES-128-CCM-8-SHA256"; } } return "UNKNOWN"; } #ifdef TLS_FORWARD_SECRECY int _private_tls_dh_export_Y(unsigned char *Ybuf, unsigned long *Ylen, DHKey *key) { unsigned long len; if ((Ybuf == NULL) || (Ylen == NULL) || (key == NULL)) return TLS_GENERIC_ERROR; len = mp_unsigned_bin_size(key->y); if (len > *Ylen) return TLS_GENERIC_ERROR; *Ylen = len; return 0; } int _private_tls_dh_export_pqY(unsigned char *pbuf, unsigned long *plen, unsigned char *gbuf, unsigned long *glen, unsigned char *Ybuf, unsigned long *Ylen, DHKey *key) { unsigned long len; int err; if ((pbuf == NULL) || (plen == NULL) || (gbuf == NULL) || (glen == NULL) || (Ybuf == NULL) || (Ylen == NULL) || (key == NULL)) return TLS_GENERIC_ERROR; len = mp_unsigned_bin_size(key->y); if (len > *Ylen) return TLS_GENERIC_ERROR; if ((err = mp_to_unsigned_bin(key->y, Ybuf)) != CRYPT_OK) return err; *Ylen = len; len = mp_unsigned_bin_size(key->p); if (len > *plen) return TLS_GENERIC_ERROR; if ((err = mp_to_unsigned_bin(key->p, pbuf)) != CRYPT_OK) return err; *plen = len; len = mp_unsigned_bin_size(key->g); if (len > *glen) return TLS_GENERIC_ERROR; if ((err = mp_to_unsigned_bin(key->g, gbuf)) != CRYPT_OK) return err; *glen = len; return 0; } void _private_tls_dh_clear_key(DHKey *key) { mp_clear_multi(key->g, key->p, key->x, key->y, NULL); key->g = NULL; key->p = NULL; key->x = NULL; key->y = NULL; } int _private_tls_dh_make_key(int keysize, DHKey *key, const char *pbuf, const char *gbuf, int pbuf_len, int gbuf_len) { unsigned char *buf; int err; if (!key) return TLS_GENERIC_ERROR; static prng_state prng; int wprng = find_prng("sprng"); if ((err = prng_is_valid(wprng)) != CRYPT_OK) return err; buf = (unsigned char *)TLS_MALLOC(keysize); if (!buf) return TLS_NO_MEMORY; if (rng_make_prng(keysize, wprng, &prng, NULL) != CRYPT_OK) { TLS_FREE(buf); return TLS_GENERIC_ERROR; } if (prng_descriptor[wprng].read(buf, keysize, &prng) != (unsigned long)keysize) { TLS_FREE(buf); return TLS_GENERIC_ERROR; } if ((err = mp_init_multi(&key->g, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) { TLS_FREE(buf); return TLS_GENERIC_ERROR; } if (gbuf_len <= 0) { if ((err = mp_read_radix(key->g, gbuf, 16)) != CRYPT_OK) { TLS_FREE(buf); _private_tls_dh_clear_key(key); return TLS_GENERIC_ERROR; } } else { if ((err = mp_read_unsigned_bin(key->g, (unsigned char *)gbuf, gbuf_len)) != CRYPT_OK) { TLS_FREE(buf); _private_tls_dh_clear_key(key); return TLS_GENERIC_ERROR; } } if (pbuf_len <= 0) { if ((err = mp_read_radix(key->p, pbuf, 16)) != CRYPT_OK) { TLS_FREE(buf); _private_tls_dh_clear_key(key); return TLS_GENERIC_ERROR; } } else { if ((err = mp_read_unsigned_bin(key->p, (unsigned char *)pbuf, pbuf_len)) != CRYPT_OK) { TLS_FREE(buf); _private_tls_dh_clear_key(key); return TLS_GENERIC_ERROR; } } if ((err = mp_read_unsigned_bin(key->x, buf, keysize)) != CRYPT_OK) { TLS_FREE(buf); _private_tls_dh_clear_key(key); return TLS_GENERIC_ERROR; } if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { TLS_FREE(buf); _private_tls_dh_clear_key(key); return TLS_GENERIC_ERROR; } TLS_FREE(buf); return 0; } #endif int tls_is_ecdsa(struct TLSContext *context) { if (!context) return 0; switch (context->cipher) { case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: #ifdef TLS_WITH_CHACHA20_POLY1305 case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: #endif return 1; } #ifdef WITH_TLS_13 if (context->ec_private_key) return 1; #endif return 0; } struct TLSPacket *tls_build_client_key_exchange(struct TLSContext *context) { if (context->is_server) { DEBUG_PRINT("CANNOT BUILD CLIENT KEY EXCHANGE MESSAGE FOR SERVERS\n"); return NULL; } struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, 0); tls_packet_uint8(packet, 0x10); #ifdef TLS_FORWARD_SECRECY int ephemeral = tls_cipher_is_ephemeral(context); if ((ephemeral) && (context->premaster_key) && (context->premaster_key_len)) { if (ephemeral == 1) { unsigned char dh_Ys[0xFFF]; unsigned char dh_p[0xFFF]; unsigned char dh_g[0xFFF]; unsigned long dh_p_len = sizeof(dh_p); unsigned long dh_g_len = sizeof(dh_g); unsigned long dh_Ys_len = sizeof(dh_Ys); if (_private_tls_dh_export_pqY(dh_p, &dh_p_len, dh_g, &dh_g_len, dh_Ys, &dh_Ys_len, context->dhe)) { DEBUG_PRINT("ERROR EXPORTING DHE KEY %p\n", context->dhe); TLS_FREE(packet); _private_tls_dhe_free(context); return NULL; } _private_tls_dhe_free(context); DEBUG_DUMP_HEX_LABEL("Yc", dh_Ys, dh_Ys_len); tls_packet_uint24(packet, dh_Ys_len + 2); if (context->dtls) _private_dtls_handshake_data(context, packet, dh_Ys_len + 2); tls_packet_uint16(packet, dh_Ys_len); tls_packet_append(packet, dh_Ys, dh_Ys_len); } else if (context->ecc_dhe) { unsigned char out[TLS_MAX_RSA_KEY]; unsigned long out_len = TLS_MAX_RSA_KEY; if (ecc_ansi_x963_export(context->ecc_dhe, out, &out_len)) { DEBUG_PRINT("Error exporting ECC key\n"); TLS_FREE(packet); return NULL; } _private_tls_ecc_dhe_free(context); tls_packet_uint24(packet, out_len + 1); if (context->dtls) { _private_dtls_handshake_data(context, packet, out_len + 1); context->dtls_seq++; } tls_packet_uint8(packet, out_len); tls_packet_append(packet, out, out_len); } #ifdef TLS_CURVE25519 else if ((context->curve == &x25519) && (context->client_secret)) { static const unsigned char basepoint[32] = {9}; unsigned char shared_key[32]; curve25519(shared_key, context->client_secret, basepoint); tls_packet_uint24(packet, 32 + 1); tls_packet_uint8(packet, 32); tls_packet_append(packet, shared_key, 32); TLS_FREE(context->client_secret); context->client_secret = NULL; } #endif _private_tls_compute_key(context, 48); } else #endif _private_tls_build_random(packet); context->connection_status = 2; tls_packet_update(packet); return packet; } void _private_dtls_handshake_data(struct TLSContext *context, struct TLSPacket *packet, unsigned int framelength) { // message seq tls_packet_uint16(packet, context->dtls_seq); // fragment offset tls_packet_uint24(packet, 0); // fragment length tls_packet_uint24(packet, framelength); } void _private_dtls_handshake_copyframesize(struct TLSPacket *packet) { packet->buf[22] = packet->buf[14]; packet->buf[23] = packet->buf[15]; packet->buf[24] = packet->buf[16]; } struct TLSPacket *tls_build_server_key_exchange(struct TLSContext *context, int method) { if (!context->is_server) { DEBUG_PRINT("CANNOT BUILD SERVER KEY EXCHANGE MESSAGE FOR CLIENTS\n"); return NULL; } struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, 0); tls_packet_uint8(packet, 0x0C); unsigned char dummy[3]; tls_packet_append(packet, dummy, 3); if (context->dtls) _private_dtls_handshake_data(context, packet, 0); int start_len = packet->len; #ifdef TLS_FORWARD_SECRECY if (method == KEA_dhe_rsa) { tls_init(); _private_tls_dhe_create(context); const char *default_dhe_p = context->default_dhe_p; const char *default_dhe_g = context->default_dhe_g; int key_size; if ((!default_dhe_p) || (!default_dhe_g)) { default_dhe_p = TLS_DH_DEFAULT_P; default_dhe_g = TLS_DH_DEFAULT_G; key_size = TLS_DHE_KEY_SIZE / 8; } else { key_size = strlen(default_dhe_p); } if (_private_tls_dh_make_key(key_size, context->dhe, default_dhe_p, default_dhe_g, 0, 0)) { DEBUG_PRINT("ERROR CREATING DHE KEY\n"); TLS_FREE(packet); TLS_FREE(context->dhe); context->dhe = NULL; return NULL; } unsigned char dh_Ys[0xFFF]; unsigned char dh_p[0xFFF]; unsigned char dh_g[0xFFF]; unsigned long dh_p_len = sizeof(dh_p); unsigned long dh_g_len = sizeof(dh_g); unsigned long dh_Ys_len = sizeof(dh_Ys); if (_private_tls_dh_export_pqY(dh_p, &dh_p_len, dh_g, &dh_g_len, dh_Ys, &dh_Ys_len, context->dhe)) { DEBUG_PRINT("ERROR EXPORTING DHE KEY\n"); TLS_FREE(packet); return NULL; } DEBUG_PRINT("LEN: %lu (%lu, %lu)\n", dh_Ys_len, dh_p_len, dh_g_len); DEBUG_DUMP_HEX_LABEL("DHE PK", dh_Ys, dh_Ys_len); DEBUG_DUMP_HEX_LABEL("DHE P", dh_p, dh_p_len); DEBUG_DUMP_HEX_LABEL("DHE G", dh_g, dh_g_len); tls_packet_uint16(packet, dh_p_len); tls_packet_append(packet, dh_p, dh_p_len); tls_packet_uint16(packet, dh_g_len); tls_packet_append(packet, dh_g, dh_g_len); tls_packet_uint16(packet, dh_Ys_len); tls_packet_append(packet, dh_Ys, dh_Ys_len); //dh_p //dh_g //dh_Ys } else if (method == KEA_ec_diffie_hellman) { // 3 = named curve if (!context->curve) context->curve = default_curve; tls_packet_uint8(packet, 3); tls_packet_uint16(packet, context->curve->iana); tls_init(); _private_tls_ecc_dhe_create(context); ltc_ecc_set_type *dp = (ltc_ecc_set_type *)&context->curve->dp; if (ecc_make_key_ex(NULL, find_prng("sprng"), context->ecc_dhe, dp)) { TLS_FREE(context->ecc_dhe); context->ecc_dhe = NULL; DEBUG_PRINT("Error generating ECC key\n"); TLS_FREE(packet); return NULL; } unsigned char out[TLS_MAX_RSA_KEY]; unsigned long out_len = TLS_MAX_RSA_KEY; if (ecc_ansi_x963_export(context->ecc_dhe, out, &out_len)) { DEBUG_PRINT("Error exporting ECC key\n"); TLS_FREE(packet); return NULL; } tls_packet_uint8(packet, out_len); tls_packet_append(packet, out, out_len); } else #endif { TLS_FREE(packet); DEBUG_PRINT("Unsupported ephemeral method: %i\n", method); return NULL; } // signature unsigned int params_len = packet->len - start_len; unsigned int message_len = params_len + TLS_CLIENT_RANDOM_SIZE + TLS_SERVER_RANDOM_SIZE; unsigned char *message = (unsigned char *)TLS_MALLOC(message_len); if (message) { unsigned char out[TLS_MAX_RSA_KEY]; unsigned long out_len = TLS_MAX_RSA_KEY; int hash_algorithm; if ((context->version != TLS_V13) && (context->version != DTLS_V13) && (context->version != TLS_V12) && (context->version != DTLS_V12)) { hash_algorithm = _md5_sha1; } else { if ((context->version == TLS_V13) || (context->version == DTLS_V13) || (context->version == TLS_V12) || (context->version == DTLS_V12)) hash_algorithm = sha256; else hash_algorithm = sha1; #ifdef TLS_ECDSA_SUPPORTED if (tls_is_ecdsa(context)) { if ((context->version == TLS_V13) || (context->version == DTLS_V13) || (context->version == TLS_V12) || (context->version == DTLS_V12)) hash_algorithm = sha512; tls_packet_uint8(packet, hash_algorithm); tls_packet_uint8(packet, ecdsa); } else #endif { tls_packet_uint8(packet, hash_algorithm); tls_packet_uint8(packet, rsa_sign); } } memcpy(message, context->remote_random, TLS_CLIENT_RANDOM_SIZE); memcpy(message + TLS_CLIENT_RANDOM_SIZE, context->local_random, TLS_SERVER_RANDOM_SIZE); memcpy(message + TLS_CLIENT_RANDOM_SIZE + TLS_SERVER_RANDOM_SIZE, packet->buf + start_len, params_len); #ifdef TLS_ECDSA_SUPPORTED if (tls_is_ecdsa(context)) { if (_private_tls_sign_ecdsa(context, hash_algorithm, message, message_len, out, &out_len) == 1) { DEBUG_PRINT("Signing OK! (ECDSA, length %lu)\n", out_len); tls_packet_uint16(packet, out_len); tls_packet_append(packet, out, out_len); } } else #endif if (_private_tls_sign_rsa(context, hash_algorithm, message, message_len, out, &out_len) == 1) { DEBUG_PRINT("Signing OK! (length %lu)\n", out_len); tls_packet_uint16(packet, out_len); tls_packet_append(packet, out, out_len); } TLS_FREE(message); } if ((!packet->broken) && (packet->buf)) { int remaining = packet->len - start_len; int payload_pos = 6; if (context->dtls) payload_pos = 14; packet->buf[payload_pos] = remaining / 0x10000; remaining %= 0x10000; packet->buf[payload_pos + 1] = remaining / 0x100; remaining %= 0x100; packet->buf[payload_pos + 2] = remaining; if (context->dtls) { _private_dtls_handshake_copyframesize(packet); context->dtls_seq++; } } tls_packet_update(packet); return packet; } void _private_tls_set_session_id(struct TLSContext *context) { if (((context->version == TLS_V13) || (context->version == DTLS_V13)) && (context->session_size == TLS_MAX_SESSION_ID)) return; if (tls_random(context->session, TLS_MAX_SESSION_ID)) context->session_size = TLS_MAX_SESSION_ID; else context->session_size = 0; } struct TLSPacket *tls_build_hello(struct TLSContext *context, int tls13_downgrade) { tls_init(); #ifdef WITH_TLS_13 if (context->connection_status == 4) { static unsigned char sha256_helloretryrequest[] = {0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11, 0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91, 0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E, 0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C}; memcpy(context->local_random, sha256_helloretryrequest, 32); unsigned char header[4] = {0xFE, 0, 0, 0}; unsigned char hash[TLS_MAX_SHA_SIZE ]; int hash_len = _private_tls_done_hash(context, hash); header[3] = (unsigned char)hash_len; _private_tls_update_hash(context, header, sizeof(header)); _private_tls_update_hash(context, hash, hash_len); } else if ((!context->is_server) || ((context->version != TLS_V13) && (context->version != DTLS_V13))) #endif if (!tls_random(context->local_random, context->is_server ? TLS_SERVER_RANDOM_SIZE : TLS_CLIENT_RANDOM_SIZE)) return NULL; if (!context->is_server) *(unsigned int *)context->local_random = htonl((unsigned int)time(NULL)); if ((context->is_server) && (tls13_downgrade)) { if ((tls13_downgrade == TLS_V12) || (tls13_downgrade == DTLS_V12)) memcpy(context->local_random + TLS_SERVER_RANDOM_SIZE - 8, "DOWNGRD\x01", 8); else memcpy(context->local_random + TLS_SERVER_RANDOM_SIZE - 8, "DOWNGRD\x00", 8); } unsigned short packet_version = context->version; unsigned short version = context->version; #ifdef WITH_TLS_13 if (context->version == TLS_V13) version = TLS_V12; else if (context->version == DTLS_V13) version = DTLS_V12; #endif struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, version, 0); if (packet) { // hello if (context->is_server) tls_packet_uint8(packet, 0x02); else tls_packet_uint8(packet, 0x01); unsigned char dummy[3]; tls_packet_append(packet, dummy, 3); if (context->dtls) _private_dtls_handshake_data(context, packet, 0); int start_len = packet->len; tls_packet_uint16(packet, version); if (context->is_server) tls_packet_append(packet, context->local_random, TLS_SERVER_RANDOM_SIZE); else tls_packet_append(packet, context->local_random, TLS_CLIENT_RANDOM_SIZE); #ifdef IGNORE_SESSION_ID // session size tls_packet_uint8(packet, 0); #else _private_tls_set_session_id(context); // session size tls_packet_uint8(packet, context->session_size); if (context->session_size) tls_packet_append(packet, context->session, context->session_size); #endif int extension_len = 0; int alpn_len = 0; int alpn_negotiated_len = 0; int i; #ifdef WITH_TLS_13 unsigned char shared_key[TLS_MAX_RSA_KEY]; unsigned long shared_key_len = TLS_MAX_RSA_KEY; unsigned short shared_key_short = 0; int selected_group = 0; if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { if (context->connection_status == 4) { // connection_status == 4 => hello retry request extension_len += 6; } else if (context->is_server) { #ifdef TLS_CURVE25519 if (context->curve == &x25519) { extension_len += 8 + 32; shared_key_short = (unsigned short)32; if (context->finished_key) { memcpy(shared_key, context->finished_key, 32); TLS_FREE(context->finished_key); context->finished_key = NULL; } selected_group = context->curve->iana; // make context->curve NULL (x25519 is a different implementation) context->curve = NULL; } else #endif if (context->ecc_dhe) { if (ecc_ansi_x963_export(context->ecc_dhe, shared_key, &shared_key_len)) { DEBUG_PRINT("Error exporting ECC DHE key\n"); tls_destroy_packet(packet); return tls_build_alert(context, 1, internal_error); } _private_tls_ecc_dhe_free(context); extension_len += 8 + shared_key_len; shared_key_short = (unsigned short)shared_key_len; if (context->curve) selected_group = context->curve->iana; } else if (context->dhe) { selected_group = context->dhe->iana; _private_tls_dh_export_Y(shared_key, &shared_key_len, context->dhe); _private_tls_dhe_free(context); extension_len += 8 + shared_key_len; shared_key_short = (unsigned short)shared_key_len; } } // supported versions if (context->is_server) extension_len += 6; else extension_len += 9; } if ((context->is_server) && (context->negotiated_alpn) && (context->version != TLS_V13) && (context->version != DTLS_V13)) { #else if ((context->is_server) && (context->negotiated_alpn)) { #endif alpn_negotiated_len = strlen(context->negotiated_alpn); alpn_len = alpn_negotiated_len + 1; extension_len += alpn_len + 6; } else if ((!context->is_server) && (context->alpn_count)) { for (i = 0; i < context->alpn_count;i++) { if (context->alpn[i]) { int len = strlen(context->alpn[i]); if (len) alpn_len += len + 1; } } if (alpn_len) extension_len += alpn_len + 6; } // ciphers if (context->is_server) { // fallback ... this should never happen if (!context->cipher) context->cipher = TLS_DHE_RSA_WITH_AES_128_CBC_SHA; tls_packet_uint16(packet, context->cipher); // no compression tls_packet_uint8(packet, 0); #ifndef STRICT_TLS if ((context->version == TLS_V13) || (context->version == DTLS_V13) || (context->version == TLS_V12) || (context->version == DTLS_V12)) { // extensions size #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { tls_packet_uint16(packet, extension_len); } else #endif { tls_packet_uint16(packet, 5 + extension_len); // secure renegotation // advertise it, but refuse renegotiation tls_packet_uint16(packet, 0xff01); #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION // a little defensive if ((context->verify_len) && (!context->verify_data)) context->verify_len = 0; tls_packet_uint16(packet, context->verify_len + 1); tls_packet_uint8(packet, context->verify_len); if (context->verify_len) tls_packet_append(packet, (unsigned char *)context->verify_data, context->verify_len); #else tls_packet_uint16(packet, 1); tls_packet_uint8(packet, 0); #endif } if (alpn_len) { tls_packet_uint16(packet, 0x10); tls_packet_uint16(packet, alpn_len + 2); tls_packet_uint16(packet, alpn_len); tls_packet_uint8(packet, alpn_negotiated_len); tls_packet_append(packet, (unsigned char *)context->negotiated_alpn, alpn_negotiated_len); } } #endif } else { if (context->dtls) { tls_packet_uint8(packet, context->dtls_cookie_len); if (context->dtls_cookie_len) tls_packet_append(packet, context->dtls_cookie, context->dtls_cookie_len); } #ifndef STRICT_TLS #ifdef WITH_TLS_13 #ifdef TLS_FORWARD_SECRECY if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { #ifdef TLS_WITH_CHACHA20_POLY1305 tls_packet_uint16(packet, TLS_CIPHERS_SIZE(9, 0)); tls_packet_uint16(packet, TLS_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_AES_256_GCM_SHA384); tls_packet_uint16(packet, TLS_CHACHA20_POLY1305_SHA256); #else tls_packet_uint16(packet, TLS_CIPHERS_SIZE(8, 0)); tls_packet_uint16(packet, TLS_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_AES_256_GCM_SHA384); #endif #ifdef TLS_PREFER_CHACHA20 tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256); #else tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256); #endif } else #endif #endif if ((context->version == TLS_V12) || (context->version == DTLS_V12)) { #endif #ifdef TLS_FORWARD_SECRECY #ifdef TLS_CLIENT_ECDHE #ifdef TLS_WITH_CHACHA20_POLY1305 #ifdef TLS_CLIENT_ECDSA tls_packet_uint16(packet, TLS_CIPHERS_SIZE(16, 5)); #ifdef TLS_PREFER_CHACHA20 tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256); #endif tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256); #ifndef TLS_PREFER_CHACHA20 tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256); #endif tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA); #else // sizeof ciphers (16 ciphers * 2 bytes) tls_packet_uint16(packet, TLS_CIPHERS_SIZE(11, 5)); #endif #else #ifdef TLS_CLIENT_ECDSA tls_packet_uint16(packet, TLS_CIPHERS_SIZE(13, 5)); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA); #else // sizeof ciphers (14 ciphers * 2 bytes) tls_packet_uint16(packet, TLS_CIPHERS_SIZE(9, 5)); #endif #endif #ifdef TLS_WITH_CHACHA20_POLY1305 #ifdef TLS_PREFER_CHACHA20 tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256); #endif #endif tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256); #ifdef TLS_WITH_CHACHA20_POLY1305 #ifndef TLS_PREFER_CHACHA20 tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256); #endif #endif #else #ifdef TLS_WITH_CHACHA20_POLY1305 // sizeof ciphers (11 ciphers * 2 bytes) tls_packet_uint16(packet, TLS_CIPHERS_SIZE(6, 5)); #else // sizeof ciphers (10 ciphers * 2 bytes) tls_packet_uint16(packet, TLS_CIPHERS_SIZE(5, 5)); #endif #endif // not yet supported, because the first message sent (this one) // is already hashed by the client with sha256 (sha384 not yet supported client-side) // but is fully suported server-side // tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_128_CBC_SHA); #ifdef TLS_WITH_CHACHA20_POLY1305 tls_packet_uint16(packet, TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256); #endif #else tls_packet_uint16(packet, TLS_CIPHERS_SIZE(0, 5)); #endif // tls_packet_uint16(packet, TLS_RSA_WITH_AES_256_GCM_SHA384); #ifndef TLS_ROBOT_MITIGATION tls_packet_uint16(packet, TLS_RSA_WITH_AES_128_GCM_SHA256); tls_packet_uint16(packet, TLS_RSA_WITH_AES_256_CBC_SHA256); tls_packet_uint16(packet, TLS_RSA_WITH_AES_128_CBC_SHA256); tls_packet_uint16(packet, TLS_RSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_RSA_WITH_AES_128_CBC_SHA); #endif #ifndef STRICT_TLS } else { #ifdef TLS_FORWARD_SECRECY #ifdef TLS_CLIENT_ECDHE tls_packet_uint16(packet, TLS_CIPHERS_SIZE(5, 2)); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA); tls_packet_uint16(packet, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA); #else tls_packet_uint16(packet, TLS_CIPHERS_SIZE(3, 2)); #endif tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_DHE_RSA_WITH_AES_128_CBC_SHA); #else tls_packet_uint16(packet, TLS_CIPHERS_SIZE(0, 2)); #endif #ifndef TLS_ROBOT_MITIGATION tls_packet_uint16(packet, TLS_RSA_WITH_AES_256_CBC_SHA); tls_packet_uint16(packet, TLS_RSA_WITH_AES_128_CBC_SHA); #endif } #endif // compression tls_packet_uint8(packet, 1); // no compression tls_packet_uint8(packet, 0); if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { int sni_len = 0; if (context->sni) sni_len = strlen(context->sni); #ifdef TLS_CLIENT_ECDHE extension_len += 12; #endif if (sni_len) extension_len += sni_len + 9; #ifdef WITH_TLS_13 if ((!context->is_server) && ((context->version == TLS_V13) || (context->version == DTLS_V13))) { #ifdef TLS_CURVE25519 extension_len += 70; #else // secp256r1 produces 65 bytes export extension_len += 103; #endif } #endif tls_packet_uint16(packet, extension_len); if (sni_len) { // sni extension tls_packet_uint16(packet, 0x00); // sni extension len tls_packet_uint16(packet, sni_len + 5); // sni len tls_packet_uint16(packet, sni_len + 3); // sni type tls_packet_uint8(packet, 0); // sni host len tls_packet_uint16(packet, sni_len); tls_packet_append(packet, (unsigned char *)context->sni, sni_len); } #ifdef TLS_FORWARD_SECRECY #ifdef TLS_CLIENT_ECDHE // supported groups tls_packet_uint16(packet, 0x0A); tls_packet_uint16(packet, 8); // 3 curves x 2 bytes tls_packet_uint16(packet, 6); tls_packet_uint16(packet, secp256r1.iana); tls_packet_uint16(packet, secp384r1.iana); #ifdef TLS_CURVE25519 tls_packet_uint16(packet, x25519.iana); #else tls_packet_uint16(packet, secp224r1.iana); #endif #endif #endif if (alpn_len) { tls_packet_uint16(packet, 0x10); tls_packet_uint16(packet, alpn_len + 2); tls_packet_uint16(packet, alpn_len); for (i = 0; i < context->alpn_count;i++) { if (context->alpn[i]) { int len = strlen(context->alpn[i]); if (len) { tls_packet_uint8(packet, len); tls_packet_append(packet, (unsigned char *)context->alpn[i], len); } } } } } } #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { // supported versions tls_packet_uint16(packet, 0x2B); if (context->is_server) { tls_packet_uint16(packet, 2); if (context->version == TLS_V13) tls_packet_uint16(packet, context->tls13_version ? context->tls13_version : TLS_V13); else tls_packet_uint16(packet, context->version); } else { tls_packet_uint16(packet, 5); tls_packet_uint8(packet, 4); tls_packet_uint16(packet, TLS_V13); tls_packet_uint16(packet, 0x7F1C); } if (context->connection_status == 4) { // fallback to the mandatory secp256r1 tls_packet_uint16(packet, 0x33); tls_packet_uint16(packet, 2); tls_packet_uint16(packet, (unsigned short)secp256r1.iana); } if (((shared_key_short) && (selected_group)) || (!context->is_server)) { // key share tls_packet_uint16(packet, 0x33); if (context->is_server) { tls_packet_uint16(packet, shared_key_short + 4); tls_packet_uint16(packet, (unsigned short)selected_group); tls_packet_uint16(packet, shared_key_short); tls_packet_append(packet, (unsigned char *)shared_key, shared_key_short); } else { #ifdef TLS_CURVE25519 // make key shared_key_short = 32; tls_packet_uint16(packet, shared_key_short + 6); tls_packet_uint16(packet, shared_key_short + 4); TLS_FREE(context->client_secret); context->client_secret = (unsigned char *)TLS_MALLOC(32); if (!context->client_secret) { DEBUG_PRINT("ERROR IN TLS_MALLOC"); TLS_FREE(packet); return NULL; } static const unsigned char basepoint[32] = {9}; tls_random(context->client_secret, 32); context->client_secret[0] &= 248; context->client_secret[31] &= 127; context->client_secret[31] |= 64; curve25519(shared_key, context->client_secret, basepoint); tls_packet_uint16(packet, (unsigned short)x25519.iana); tls_packet_uint16(packet, shared_key_short); tls_packet_append(packet, (unsigned char *)shared_key, shared_key_short); #else // make key shared_key_short = 65; tls_packet_uint16(packet, shared_key_short + 6); tls_packet_uint16(packet, shared_key_short + 4); _private_tls_ecc_dhe_create(context); ltc_ecc_set_type *dp = (ltc_ecc_set_type *)&secp256r1.dp; if (ecc_make_key_ex(NULL, find_prng("sprng"), context->ecc_dhe, dp)) { TLS_FREE(context->ecc_dhe); context->ecc_dhe = NULL; DEBUG_PRINT("Error generating ECC key\n"); TLS_FREE(packet); return NULL; } unsigned char out[TLS_MAX_RSA_KEY]; unsigned long out_len = shared_key_short; if (ecc_ansi_x963_export(context->ecc_dhe, out, &out_len)) { DEBUG_PRINT("Error exporting ECC key\n"); TLS_FREE(packet); return NULL; } tls_packet_uint16(packet, (unsigned short)secp256r1.iana); tls_packet_uint16(packet, out_len); tls_packet_append(packet, (unsigned char *)out, shared_key_short); #endif } } if (!context->is_server) { // signature algorithms tls_packet_uint16(packet, 0x0D); tls_packet_uint16(packet, 24); tls_packet_uint16(packet, 22); tls_packet_uint16(packet, 0x0403); tls_packet_uint16(packet, 0x0503); tls_packet_uint16(packet, 0x0603); tls_packet_uint16(packet, 0x0804); tls_packet_uint16(packet, 0x0805); tls_packet_uint16(packet, 0x0806); tls_packet_uint16(packet, 0x0401); tls_packet_uint16(packet, 0x0501); tls_packet_uint16(packet, 0x0601); tls_packet_uint16(packet, 0x0203); tls_packet_uint16(packet, 0x0201); } } #endif if ((!packet->broken) && (packet->buf)) { int remaining = packet->len - start_len; int payload_pos = 6; if (context->dtls) payload_pos = 14; packet->buf[payload_pos] = remaining / 0x10000; remaining %= 0x10000; packet->buf[payload_pos + 1] = remaining / 0x100; remaining %= 0x100; packet->buf[payload_pos + 2] = remaining; if (context->dtls) { _private_dtls_handshake_copyframesize(packet); context->dtls_seq++; } } tls_packet_update(packet); } return packet; } struct TLSPacket *tls_certificate_request(struct TLSContext *context) { if ((!context) || (!context->is_server)) return NULL; unsigned short packet_version = context->version; struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, packet_version, 0); if (packet) { // certificate request tls_packet_uint8(packet, 0x0D); unsigned char dummy[3]; tls_packet_append(packet, dummy, 3); if (context->dtls) _private_dtls_handshake_data(context, packet, 0); int start_len = packet->len; #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { // certificate request context tls_packet_uint8(packet, 0); // extensions tls_packet_uint16(packet, 18); // signature algorithms tls_packet_uint16(packet, 0x0D); tls_packet_uint16(packet, 14); tls_packet_uint16(packet, 12); // rsa_pkcs1_sha256 // tls_packet_uint16(packet, 0x0401); // rsa_pkcs1_sha384 // tls_packet_uint16(packet, 0x0501); // rsa_pkcs1_sha512 // tls_packet_uint16(packet, 0x0601); // ecdsa_secp256r1_sha256 tls_packet_uint16(packet, 0x0403); // ecdsa_secp384r1_sha384 tls_packet_uint16(packet, 0x0503); // ecdsa_secp521r1_sha512 tls_packet_uint16(packet, 0x0604); // rsa_pss_rsae_sha256 tls_packet_uint16(packet, 0x0804); // rsa_pss_rsae_sha384 tls_packet_uint16(packet, 0x0805); // rsa_pss_rsae_sha512 tls_packet_uint16(packet, 0x0806); } else #endif { tls_packet_uint8(packet, 1); tls_packet_uint8(packet, rsa_sign); if ((context->version == TLS_V12) || (context->version == DTLS_V12)) { // 10 pairs or 2 bytes tls_packet_uint16(packet, 10); tls_packet_uint8(packet, sha256); tls_packet_uint8(packet, rsa); tls_packet_uint8(packet, sha1); tls_packet_uint8(packet, rsa); tls_packet_uint8(packet, sha384); tls_packet_uint8(packet, rsa); tls_packet_uint8(packet, sha512); tls_packet_uint8(packet, rsa); tls_packet_uint8(packet, md5); tls_packet_uint8(packet, rsa); } // no DistinguishedName yet tls_packet_uint16(packet, 0); } if (!packet->broken) { int remaining = packet->len - start_len; int payload_pos = 6; if (context->dtls) payload_pos = 14; packet->buf[payload_pos] = remaining / 0x10000; remaining %= 0x10000; packet->buf[payload_pos + 1] = remaining / 0x100; remaining %= 0x100; packet->buf[payload_pos + 2] = remaining; if (context->dtls) { _private_dtls_handshake_copyframesize(packet); context->dtls_seq++; } } tls_packet_update(packet); } return packet; } int _private_dtls_build_cookie(struct TLSContext *context) { if ((!context->dtls_cookie) || (!context->dtls_cookie_len)) { context->dtls_cookie = (unsigned char *)TLS_MALLOC(DTLS_COOKIE_SIZE); if (!context->dtls_cookie) return 0; #ifdef WITH_RANDOM_DLTS_COOKIE if (!tls_random(context->dtls_cookie, DTLS_COOKIE_SIZE)) { TLS_FREE(context->dtls_cookie); context->dtls_cookie = NULL; return 0; } context->dtls_cookie_len = DTLS_COOKIE_SIZE; #else hmac_state hmac; hmac_init(&hmac, find_hash("sha256"), dtls_secret, sizeof(dtls_secret)); hmac_process(&hmac, context->remote_random, TLS_CLIENT_RANDOM_SIZE); unsigned long out_size = DTLS_COOKIE_SIZE; hmac_done(&hmac, context->dtls_cookie, &out_size); #endif } return 1; } struct TLSPacket *tls_build_verify_request(struct TLSContext *context) { if ((!context->is_server) || (!context->dtls)) return NULL; if ((!context->dtls_cookie) || (!context->dtls_cookie_len)) { if (!_private_dtls_build_cookie(context)) return NULL; } unsigned short packet_version = context->version; struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, packet_version, 0); if (packet) { // verify request tls_packet_uint8(packet, 0x03); // 24-bit length tls_packet_uint24(packet, context->dtls_cookie_len + 3); // 16-bit message_sequence tls_packet_uint16(packet, 0); // 24-bit fragment_offset tls_packet_uint24(packet, 0); // 24-bit fragment_offset tls_packet_uint24(packet, context->dtls_cookie_len + 3); // server_version tls_packet_uint16(packet, context->version); tls_packet_uint8(packet, context->dtls_cookie_len); tls_packet_append(packet, context->dtls_cookie, context->dtls_cookie_len); tls_packet_update(packet); } return packet; } int _private_dtls_check_packet(const unsigned char *buf, int buf_len) { CHECK_SIZE(11, buf_len, TLS_NEED_MORE_DATA) unsigned int bytes_to_follow = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; // not used: unsigned short message_seq = ntohs(*(unsigned short *)&buf[3]); unsigned int fragment_offset = buf[5] * 0x10000 + buf[6] * 0x100 + buf[7]; unsigned int fragment_length = buf[8] * 0x10000 + buf[9] * 0x100 + buf[10]; if ((fragment_offset) || (fragment_length != bytes_to_follow)) { DEBUG_PRINT("FRAGMENTED PACKETS NOT SUPPORTED\n"); return TLS_FEATURE_NOT_SUPPORTED; } return bytes_to_follow; } void _private_dtls_reset(struct TLSContext *context) { context->dtls_epoch_local = 0; context->dtls_epoch_remote = 0; context->dtls_seq = 0; _private_tls_destroy_hash(context); context->connection_status = 0; } int tls_parse_verify_request(struct TLSContext *context, const unsigned char *buf, int buf_len, unsigned int *write_packets) { *write_packets = 0; if ((context->connection_status != 0) || (!context->dtls)) { DEBUG_PRINT("UNEXPECTED VERIFY REQUEST MESSAGE\n"); return TLS_UNEXPECTED_MESSAGE; } int res = 11; int bytes_to_follow = _private_dtls_check_packet(buf, buf_len); if (bytes_to_follow < 0) return bytes_to_follow; CHECK_SIZE(bytes_to_follow, buf_len - res, TLS_NEED_MORE_DATA) // not used: unsigned short version = ntohs(*(unsigned short *)&buf[res]); res += 2; unsigned char len = buf[res]; res++; TLS_FREE(context->dtls_cookie); context->dtls_cookie_len = 0; if (len) { CHECK_SIZE(len, buf_len - res, TLS_NEED_MORE_DATA) context->dtls_cookie = (unsigned char *)TLS_MALLOC(len); if (!context->dtls_cookie) return TLS_NO_MEMORY; context->dtls_cookie_len = len; memcpy(context->dtls_cookie, &buf[res], len); res += len; *write_packets = 4; } // reset context _private_dtls_reset(context); return res; } void _private_dtls_reset_cookie(struct TLSContext *context) { TLS_FREE(context->dtls_cookie); context->dtls_cookie = NULL; context->dtls_cookie_len = 0; } #ifdef WITH_TLS_13 int _private_tls_parse_key_share(struct TLSContext *context, const unsigned char *buf, int buf_len) { int i = 0; struct ECCCurveParameters *curve = 0; DHKey *dhkey = 0; int dhe_key_size = 0; const unsigned char *buffer = NULL; unsigned char *out2; unsigned long out_size; unsigned short key_size = 0; while (buf_len >= 4) { unsigned short named_group = ntohs(*(unsigned short *)&buf[i]); i += 2; buf_len -= 2; key_size = ntohs(*(unsigned short *)&buf[i]); i += 2; buf_len -= 2; if (key_size > buf_len) return TLS_BROKEN_PACKET; switch (named_group) { case 0x0017: curve = &secp256r1; buffer = &buf[i]; DEBUG_PRINT("KEY SHARE => secp256r1\n"); buf_len = 0; continue; case 0x0018: // secp384r1 curve = &secp384r1; buffer = &buf[i]; DEBUG_PRINT("KEY SHARE => secp384r1\n"); buf_len = 0; continue; case 0x0019: // secp521r1 break; case 0x001D: // x25519 #ifdef TLS_CURVE25519 if (key_size != 32) { DEBUG_PRINT("INVALID x25519 KEY SIZE (%i)\n", key_size); continue; } curve = &x25519; buffer = &buf[i]; DEBUG_PRINT("KEY SHARE => x25519\n"); buf_len = 0; continue; #endif break; case 0x001E: // x448 break; case 0x0100: dhkey = &ffdhe2048; dhe_key_size = 2048; break; case 0x0101: dhkey = &ffdhe3072; dhe_key_size = 3072; break; case 0x0102: dhkey = &ffdhe4096; dhe_key_size = 4096; break; case 0x0103: dhkey = &ffdhe6144; dhe_key_size = 6144; break; case 0x0104: dhkey = &ffdhe8192; dhe_key_size = 8192; break; } i += key_size; buf_len -= key_size; if (!context->is_server) break; } tls_init(); if (curve) { context->curve = curve; #ifdef TLS_CURVE25519 if (curve == &x25519) { if ((context->is_server) && (!tls_random(context->local_random, TLS_SERVER_RANDOM_SIZE))) return TLS_GENERIC_ERROR; unsigned char secret[32]; static const unsigned char basepoint[32] = {9}; if ((context->is_server) || (!context->client_secret)) { tls_random(secret, 32); secret[0] &= 248; secret[31] &= 127; secret[31] |= 64; // use finished key to store public key TLS_FREE(context->finished_key); context->finished_key = (unsigned char *)TLS_MALLOC(32); if (!context->finished_key) return TLS_GENERIC_ERROR; curve25519(context->finished_key, secret, basepoint); TLS_FREE(context->premaster_key); context->premaster_key = (unsigned char *)TLS_MALLOC(32); if (!context->premaster_key) return TLS_GENERIC_ERROR; curve25519(context->premaster_key, secret, buffer); context->premaster_key_len = 32; } else { TLS_FREE(context->premaster_key); context->premaster_key = (unsigned char *)TLS_MALLOC(32); if (!context->premaster_key) return TLS_GENERIC_ERROR; curve25519(context->premaster_key, context->client_secret, buffer); context->premaster_key_len = 32; TLS_FREE(context->client_secret); context->client_secret = NULL; } DEBUG_DUMP_HEX_LABEL("x25519 KEY", context->premaster_key, context->premaster_key_len); return 0; } #endif if (context->is_server) { _private_tls_ecc_dhe_create(context); if (ecc_make_key_ex(NULL, find_prng("sprng"), context->ecc_dhe, (ltc_ecc_set_type *)&context->curve->dp)) { TLS_FREE(context->ecc_dhe); context->ecc_dhe = NULL; DEBUG_PRINT("Error generating ECC DHE key\n"); return TLS_GENERIC_ERROR; } } ltc_ecc_set_type *dp = (ltc_ecc_set_type *)&context->curve->dp; if ((context->is_server) && (!tls_random(context->local_random, TLS_SERVER_RANDOM_SIZE))) return TLS_GENERIC_ERROR; ecc_key client_key; memset(&client_key, 0, sizeof(client_key)); if (ecc_ansi_x963_import_ex(buffer, key_size, &client_key, dp)) { DEBUG_PRINT("Error importing ECC DHE key\n"); return TLS_GENERIC_ERROR; } out2 = (unsigned char *)TLS_MALLOC(key_size); out_size = key_size; int err = ecc_shared_secret(context->ecc_dhe, &client_key, out2, &out_size); ecc_free(&client_key); if (err) { DEBUG_PRINT("ECC DHE DECRYPT ERROR %i\n", err); TLS_FREE(out2); return TLS_GENERIC_ERROR; } DEBUG_PRINT("OUT_SIZE: %lu\n", out_size); DEBUG_DUMP_HEX_LABEL("ECC DHE", out2, out_size); TLS_FREE(context->premaster_key); context->premaster_key = out2; context->premaster_key_len = out_size; return 0; } else if ((dhkey) && (buffer)) { _private_tls_dhe_create(context); if (!tls_random(context->local_random, TLS_SERVER_RANDOM_SIZE)) return TLS_GENERIC_ERROR; if (_private_tls_dh_make_key(dhe_key_size / 8, context->dhe, (const char *)dhkey->p, (const char *)dhkey->g, 0, 0)) { TLS_FREE(context->dhe); context->dhe = NULL; DEBUG_PRINT("Error generating DHE key\n"); return TLS_GENERIC_ERROR; } unsigned int dhe_out_size; out2 = _private_tls_decrypt_dhe(context, buffer, key_size, &dhe_out_size, 0); if (!out2) { DEBUG_PRINT("Error generating DHE shared key\n"); return TLS_GENERIC_ERROR; } TLS_FREE(context->premaster_key); context->premaster_key = out2; context->premaster_key_len = dhe_out_size; if (context->dhe) context->dhe->iana = dhkey->iana; return 0; } DEBUG_PRINT("NO COMMON KEY SHARE SUPPORTED\n"); return TLS_NO_COMMON_CIPHER; } #endif int tls_parse_hello(struct TLSContext *context, const unsigned char *buf, int buf_len, unsigned int *write_packets, unsigned int *dtls_verified) { *write_packets = 0; *dtls_verified = 0; if ((context->connection_status != 0) && (context->connection_status != 4)) { // ignore multiple hello on dtls if (context->dtls) { DEBUG_PRINT("RETRANSMITTED HELLO MESSAGE RECEIVED\n"); return 1; } DEBUG_PRINT("UNEXPECTED HELLO MESSAGE\n"); return TLS_UNEXPECTED_MESSAGE; } int res = 0; int downgraded = 0; int hello_min_size = context->dtls ? TLS_CLIENT_HELLO_MINSIZE + 8 : TLS_CLIENT_HELLO_MINSIZE; CHECK_SIZE(hello_min_size, buf_len, TLS_NEED_MORE_DATA) // big endian unsigned int bytes_to_follow = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; res += 3; if (context->dtls) { int dtls_check = _private_dtls_check_packet(buf, buf_len); if (dtls_check < 0) return dtls_check; // 16 bit message seq + 24 bit fragment offset + 24 bit fragment length res += 8; } CHECK_SIZE(bytes_to_follow, buf_len - res, TLS_NEED_MORE_DATA) CHECK_SIZE(2, buf_len - res, TLS_NEED_MORE_DATA) unsigned short version = ntohs(*(unsigned short *)&buf[res]); unsigned short cipher = 0; res += 2; VERSION_SUPPORTED(version, TLS_NOT_SAFE) DEBUG_PRINT("VERSION REQUIRED BY REMOTE %x, VERSION NOW %x\n", (int)version, (int)context->version); #ifdef TLS_LEGACY_SUPPORT // when no legacy support, don't downgrade #ifndef TLS_FORCE_LOCAL_VERSION // downgrade ? if (context->dtls) { // for dlts, newer version has lower id (1.0 = FEFF, 1.2 = FEFD) if (context->version < version) downgraded = 1; } else { if (context->version > version) downgraded = 1; } if (downgraded) { context->version = version; if (!context->is_server) _private_tls_change_hash_type(context); } #endif #endif memcpy(context->remote_random, &buf[res], TLS_CLIENT_RANDOM_SIZE); res += TLS_CLIENT_RANDOM_SIZE; unsigned char session_len = buf[res++]; CHECK_SIZE(session_len, buf_len - res, TLS_NEED_MORE_DATA) if ((session_len) && (session_len <= TLS_MAX_SESSION_ID)) { memcpy(context->session, &buf[res], session_len); context->session_size = session_len; DEBUG_DUMP_HEX_LABEL("REMOTE SESSION ID: ", context->session, context->session_size); } else context->session_size = 0; res += session_len; const unsigned char *cipher_buffer = NULL; unsigned short cipher_len = 0; int scsv_set = 0; if (context->is_server) { if (context->dtls) { CHECK_SIZE(1, buf_len - res, TLS_NEED_MORE_DATA) unsigned char tls_cookie_len = buf[res++]; if (tls_cookie_len) { CHECK_SIZE(tls_cookie_len, buf_len - res, TLS_NEED_MORE_DATA) if ((!context->dtls_cookie_len) || (!context->dtls_cookie)) _private_dtls_build_cookie(context); if ((context->dtls_cookie_len != tls_cookie_len) || (!context->dtls_cookie)) { *dtls_verified = 2; _private_dtls_reset_cookie(context); DEBUG_PRINT("INVALID DTLS COOKIE\n"); return TLS_BROKEN_PACKET; } if (memcmp(context->dtls_cookie, &buf[res], tls_cookie_len)) { *dtls_verified = 3; _private_dtls_reset_cookie(context); DEBUG_PRINT("MISMATCH DTLS COOKIE\n"); return TLS_BROKEN_PACKET; } _private_dtls_reset_cookie(context); context->dtls_seq++; *dtls_verified = 1; res += tls_cookie_len; } else { *write_packets = 2; return buf_len; } } CHECK_SIZE(2, buf_len - res, TLS_NEED_MORE_DATA) cipher_len = ntohs(*(unsigned short *)&buf[res]); res += 2; CHECK_SIZE(cipher_len, buf_len - res, TLS_NEED_MORE_DATA) // faster than cipher_len % 2 if (cipher_len & 1) return TLS_BROKEN_PACKET; cipher_buffer = &buf[res]; res += cipher_len; CHECK_SIZE(1, buf_len - res, TLS_NEED_MORE_DATA) unsigned char compression_list_size = buf[res++]; CHECK_SIZE(compression_list_size, buf_len - res, TLS_NEED_MORE_DATA) // no compression support res += compression_list_size; } else { CHECK_SIZE(2, buf_len - res, TLS_NEED_MORE_DATA) cipher = ntohs(*(unsigned short *)&buf[res]); res += 2; context->cipher = cipher; #ifndef WITH_TLS_13 if (!tls_cipher_supported(context, cipher)) { context->cipher = 0; DEBUG_PRINT("NO CIPHER SUPPORTED\n"); return TLS_NO_COMMON_CIPHER; } DEBUG_PRINT("CIPHER: %s\n", tls_cipher_name(context)); #endif CHECK_SIZE(1, buf_len - res, TLS_NEED_MORE_DATA) unsigned char compression = buf[res++]; if (compression != 0) { DEBUG_PRINT("COMPRESSION NOT SUPPORTED\n"); return TLS_COMPRESSION_NOT_SUPPORTED; } } if (res > 0) { if (context->is_server) *write_packets = 2; if (context->connection_status != 4) context->connection_status = 1; } if (res > 2) res += 2; #ifdef WITH_TLS_13 const unsigned char *key_share = NULL; unsigned short key_size = 0; #endif while (buf_len - res >= 4) { // have extensions unsigned short extension_type = ntohs(*(unsigned short *)&buf[res]); res += 2; unsigned short extension_len = ntohs(*(unsigned short *)&buf[res]); res += 2; DEBUG_PRINT("Extension: 0x0%x (%i), len: %i\n", (int)extension_type, (int)extension_type, (int)extension_len); if (extension_len) { // SNI extension CHECK_SIZE(extension_len, buf_len - res, TLS_NEED_MORE_DATA) if (extension_type == 0x00) { // unsigned short sni_len = ntohs(*(unsigned short *)&buf[res]); // unsigned char sni_type = buf[res + 2]; unsigned short sni_host_len = ntohs(*(unsigned short *)&buf[res + 3]); CHECK_SIZE(sni_host_len, buf_len - res - 5, TLS_NEED_MORE_DATA) if (sni_host_len) { TLS_FREE(context->sni); context->sni = (char *)TLS_MALLOC(sni_host_len + 1); if (context->sni) { memcpy(context->sni, &buf[res + 5], sni_host_len); context->sni[sni_host_len] = 0; DEBUG_PRINT("SNI HOST INDICATOR: [%s]\n", context->sni); } } } else #ifdef TLS_FORWARD_SECRECY if (extension_type == 0x0A) { // supported groups if (buf_len - res > 2) { unsigned short group_len = ntohs(*(unsigned short *)&buf[res]); if (buf_len - res >= group_len + 2) { DEBUG_DUMP_HEX_LABEL("SUPPORTED GROUPS", &buf[res + 2], group_len); int i; int selected = 0; for (i = 0; i < group_len; i += 2) { unsigned short iana_n = ntohs(*(unsigned short *)&buf[res + 2 + i]); switch (iana_n) { case 23: context->curve = &secp256r1; selected = 1; break; case 24: context->curve = &secp384r1; selected = 1; break; #ifdef WITH_TLS_13 // needs different implementation // case 29: // context->curve = &x25519; // selected = 1; // break; #endif // do not use it anymore // case 25: // context->curve = &secp521r1; // selected = 1; // break; } if (selected) { DEBUG_PRINT("SELECTED CURVE %s\n", context->curve->name); break; } } } } } else #endif if ((extension_type == 0x10) && (context->alpn) && (context->alpn_count)) { if (buf_len - res > 2) { unsigned short alpn_len = ntohs(*(unsigned short *)&buf[res]); if ((alpn_len) && (alpn_len <= extension_len - 2)) { unsigned char *alpn = (unsigned char *)&buf[res + 2]; int alpn_pos = 0; while (alpn_pos < alpn_len) { unsigned char alpn_size = alpn[alpn_pos++]; if (alpn_size + alpn_pos >= extension_len) break; if ((alpn_size) && (tls_alpn_contains(context, (char *)&alpn[alpn_pos], alpn_size))) { TLS_FREE(context->negotiated_alpn); context->negotiated_alpn = (char *)TLS_MALLOC(alpn_size + 1); if (context->negotiated_alpn) { memcpy(context->negotiated_alpn, &alpn[alpn_pos], alpn_size); context->negotiated_alpn[alpn_size] = 0; DEBUG_PRINT("NEGOTIATED ALPN: %s\n", context->negotiated_alpn); } break; } alpn_pos += alpn_size; // ServerHello contains just one alpn if (!context->is_server) break; } } } } else if (extension_type == 0x0D) { // supported signatures DEBUG_DUMP_HEX_LABEL("SUPPORTED SIGNATURES", &buf[res], extension_len); } else if (extension_type == 0x0B) { // supported point formats DEBUG_DUMP_HEX_LABEL("SUPPORTED POINT FORMATS", &buf[res], extension_len); } #ifdef WITH_TLS_13 else if (extension_type == 0x2B) { // supported versions if ((context->is_server) && (buf[res] == extension_len - 1)) { if (extension_len > 2) { DEBUG_DUMP_HEX_LABEL("SUPPORTED VERSIONS", &buf[res], extension_len); int i; int limit = (int)buf[res]; if (limit == extension_len - 1) { for (i = 1; i < limit; i += 2) { if ((ntohs(*(unsigned short *)&buf[res + i]) == TLS_V13) || (ntohs(*(unsigned short *)&buf[res + i]) == 0x7F1C)) { context->version = TLS_V13; context->tls13_version = ntohs(*(unsigned short *)&buf[res + i]); DEBUG_PRINT("TLS 1.3 SUPPORTED\n"); break; } } } } } else if ((!context->is_server) && (extension_len == 2)) { if ((ntohs(*(unsigned short *)&buf[res]) == TLS_V13) || (ntohs(*(unsigned short *)&buf[res]) == 0x7F1C)) { context->version = TLS_V13; context->tls13_version = ntohs(*(unsigned short *)&buf[res]); DEBUG_PRINT("TLS 1.3 SUPPORTED\n"); } } } else if (extension_type == 0x2A) { // early data DEBUG_DUMP_HEX_LABEL("EXTENSION, EARLY DATA", &buf[res], extension_len); } else if (extension_type == 0x29) { // pre shared key DEBUG_DUMP_HEX_LABEL("EXTENSION, PRE SHARED KEY", &buf[res], extension_len); } else if (extension_type == 0x33) { // key share if (context->is_server) { key_size = ntohs(*(unsigned short *)&buf[res]); if ((context->is_server) && (key_size > extension_len - 2)) { DEBUG_PRINT("BROKEN KEY SHARE\n"); return TLS_BROKEN_PACKET; } } else { key_size = extension_len; } DEBUG_DUMP_HEX_LABEL("EXTENSION, KEY SHARE", &buf[res], extension_len); if (context->is_server) key_share = &buf[res + 2]; else key_share = &buf[res]; } else if (extension_type == 0x0D) { // signature algorithms DEBUG_DUMP_HEX_LABEL("EXTENSION, SIGNATURE ALGORITHMS", &buf[res], extension_len); } else if (extension_type == 0x2D) { // psk key exchange modes DEBUG_DUMP_HEX_LABEL("EXTENSION, PSK KEY EXCHANGE MODES", &buf[res], extension_len); } #endif res += extension_len; } } if (buf_len != res) return TLS_NEED_MORE_DATA; if ((context->is_server) && (cipher_buffer) && (cipher_len)) { int cipher = tls_choose_cipher(context, cipher_buffer, cipher_len, &scsv_set); if (cipher < 0) { DEBUG_PRINT("NO COMMON CIPHERS\n"); return cipher; } if ((downgraded) && (scsv_set)) { DEBUG_PRINT("NO DOWNGRADE (SCSV SET)\n"); _private_tls_write_packet(tls_build_alert(context, 1, inappropriate_fallback)); context->critical_error = 1; return TLS_NOT_SAFE; } context->cipher = cipher; } #ifdef WITH_TLS_13 if (!context->is_server) { if (!tls_cipher_supported(context, cipher)) { context->cipher = 0; DEBUG_PRINT("NO CIPHER SUPPORTED\n"); return TLS_NO_COMMON_CIPHER; } DEBUG_PRINT("CIPHER: %s\n", tls_cipher_name(context)); } if ((key_share) && (key_size) && ((context->version == TLS_V13) || (context->version == DTLS_V13))) { int key_share_err = _private_tls_parse_key_share(context, key_share, key_size); if (key_share_err) { // request hello retry if (context->connection_status != 4) { *write_packets = 5; context->hs_messages[1] = 0; context->connection_status = 4; return res; } else return key_share_err; } // we have key share if (context->is_server) context->connection_status = 3; else context->connection_status = 2; } #endif return res; } int tls_parse_certificate(struct TLSContext *context, const unsigned char *buf, int buf_len, int is_client) { int res = 0; CHECK_SIZE(3, buf_len, TLS_NEED_MORE_DATA) unsigned int size_of_all_certificates = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; if (size_of_all_certificates <= 4) return 3 + size_of_all_certificates; res += 3; if (context->dtls) { int dtls_check = _private_dtls_check_packet(buf, buf_len); if (dtls_check < 0) return dtls_check; res += 8; } #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { int context_size = buf[res]; res++; // must be 0 if (context_size) res += context_size; } #endif CHECK_SIZE(size_of_all_certificates, buf_len - res, TLS_NEED_MORE_DATA); int size = size_of_all_certificates; int idx = 0; int valid_certificate = 0; while (size > 0) { idx++; CHECK_SIZE(3, buf_len - res, TLS_NEED_MORE_DATA); unsigned int certificate_size = buf[res] * 0x10000 + buf[res + 1] * 0x100 + buf[res + 2]; res += 3; CHECK_SIZE(certificate_size, buf_len - res, TLS_NEED_MORE_DATA) // load chain int certificates_in_chain = 0; int res2 = res; unsigned int remaining = certificate_size; do { if (remaining <= 3) break; certificates_in_chain++; unsigned int certificate_size2 = buf[res2] * 0x10000 + buf[res2 + 1] * 0x100 + buf[res2 + 2]; res2 += 3; remaining -= 3; if (certificate_size2 > remaining) { DEBUG_PRINT("Invalid certificate size (%i from %i bytes remaining)\n", certificate_size2, remaining); break; } remaining -= certificate_size2; struct TLSCertificate *cert = asn1_parse(context, &buf[res2], certificate_size2, is_client); if (cert) { if (certificate_size2) { cert->bytes = (unsigned char *)TLS_MALLOC(certificate_size2); if (cert->bytes) { cert->len = certificate_size2; memcpy(cert->bytes, &buf[res2], certificate_size2); } } // valid certificate if (is_client) { valid_certificate = 1; context->client_certificates = (struct TLSCertificate **)TLS_REALLOC(context->client_certificates, (context->client_certificates_count + 1) * sizeof(struct TLSCertificate *)); context->client_certificates[context->client_certificates_count] = cert; context->client_certificates_count++; } else { context->certificates = (struct TLSCertificate **)TLS_REALLOC(context->certificates, (context->certificates_count + 1) * sizeof(struct TLSCertificate *)); context->certificates[context->certificates_count] = cert; context->certificates_count++; if ((cert->pk) || (cert->priv)) valid_certificate = 1; else if (!context->is_server) valid_certificate = 1; } } res2 += certificate_size2; #ifdef WITH_TLS_13 // extension if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { if (remaining >= 2) { // ignore extensions remaining -= 2; unsigned short size = ntohs(*(unsigned short *)&buf[res2]); if ((size) && (size >= remaining)) { res2 += size; remaining -= size; } } } #endif } while (remaining > 0); if (remaining) { DEBUG_PRINT("Extra %i bytes after certificate\n", remaining); } size -= certificate_size + 3; res += certificate_size; } if (!valid_certificate) return TLS_UNSUPPORTED_CERTIFICATE; if (res != buf_len) { DEBUG_PRINT("Warning: %i bytes read from %i byte buffer\n", (int)res, (int)buf_len); } return res; } int _private_tls_parse_dh(const unsigned char *buf, int buf_len, const unsigned char **out, int *out_size) { int res = 0; *out = NULL; *out_size = 0; CHECK_SIZE(2, buf_len, TLS_NEED_MORE_DATA) unsigned short size = ntohs(*(unsigned short *)buf); res += 2; CHECK_SIZE(size, buf_len - res, TLS_NEED_MORE_DATA) DEBUG_DUMP_HEX(&buf[res], size); *out = &buf[res]; *out_size = size; res += size; return res; } int _private_tls_parse_random(struct TLSContext *context, const unsigned char *buf, int buf_len) { int res = 0; int ephemeral = tls_cipher_is_ephemeral(context); unsigned short size; if (ephemeral == 2) { CHECK_SIZE(1, buf_len, TLS_NEED_MORE_DATA) size = buf[0]; res += 1; } else { CHECK_SIZE(2, buf_len, TLS_NEED_MORE_DATA) size = ntohs(*(unsigned short *)buf); res += 2; } CHECK_SIZE(size, buf_len - res, TLS_NEED_MORE_DATA) unsigned int out_len = 0; unsigned char *random = NULL; switch (ephemeral) { #ifdef TLS_FORWARD_SECRECY case 1: random = _private_tls_decrypt_dhe(context, &buf[res], size, &out_len, 1); break; case 2: random = _private_tls_decrypt_ecc_dhe(context, &buf[res], size, &out_len, 1); break; #endif default: random = _private_tls_decrypt_rsa(context, &buf[res], size, &out_len); } if ((random) && (out_len > 2)) { DEBUG_DUMP_HEX_LABEL("PRE MASTER KEY", random, out_len); TLS_FREE(context->premaster_key); context->premaster_key = random; context->premaster_key_len = out_len; _private_tls_compute_key(context, 48); } else { TLS_FREE(random); return 0; } res += size; return res; } int _private_tls_build_random(struct TLSPacket *packet) { int res = 0; unsigned char rand_bytes[48]; int bytes = 48; if (!tls_random(rand_bytes, bytes)) return TLS_GENERIC_ERROR; // max supported version if (packet->context->is_server) *(unsigned short *)rand_bytes = htons(packet->context->version); else if (packet->context->dtls) *(unsigned short *)rand_bytes = htons(DTLS_V12); else *(unsigned short *)rand_bytes = htons(TLS_V12); //DEBUG_DUMP_HEX_LABEL("PREMASTER KEY", rand_bytes, bytes); TLS_FREE(packet->context->premaster_key); packet->context->premaster_key = (unsigned char *)TLS_MALLOC(bytes); if (!packet->context->premaster_key) return TLS_NO_MEMORY; packet->context->premaster_key_len = bytes; memcpy(packet->context->premaster_key, rand_bytes, packet->context->premaster_key_len); unsigned int out_len; unsigned char *random = _private_tls_encrypt_rsa(packet->context, packet->context->premaster_key, packet->context->premaster_key_len, &out_len); _private_tls_compute_key(packet->context, bytes); if ((random) && (out_len > 2)) { tls_packet_uint24(packet, out_len + 2); if (packet->context->dtls) _private_dtls_handshake_data(packet->context, packet, out_len + 2); tls_packet_uint16(packet, out_len); tls_packet_append(packet, random, out_len); } else res = TLS_GENERIC_ERROR; TLS_FREE(random); if (res) return res; return out_len + 2; } const unsigned char *_private_tls_parse_signature(struct TLSContext *context, const unsigned char *buf, int buf_len, int *hash_algorithm, int *sign_algorithm, int *sig_size, int *offset) { int res = 0; CHECK_SIZE(2, buf_len, NULL) *hash_algorithm = _md5_sha1; *sign_algorithm = rsa_sign; *sig_size = 0; if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { *hash_algorithm = buf[res]; res++; *sign_algorithm = buf[res]; res++; } unsigned short size = ntohs(*(unsigned short *)&buf[res]); res += 2; CHECK_SIZE(size, buf_len - res, NULL) DEBUG_DUMP_HEX(&buf[res], size); *sig_size = size; *offset = res + size; return &buf[res]; } int tls_parse_server_key_exchange(struct TLSContext *context, const unsigned char *buf, int buf_len) { int res = 0; int dh_res = 0; CHECK_SIZE(3, buf_len, TLS_NEED_MORE_DATA) unsigned int size = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; res += 3; if (context->dtls) { int dtls_check = _private_dtls_check_packet(buf, buf_len); if (dtls_check < 0) return dtls_check; res += 8; } const unsigned char *packet_ref = buf + res; CHECK_SIZE(size, buf_len - res, TLS_NEED_MORE_DATA); if (!size) return res; unsigned char has_ds_params = 0; unsigned int key_size = 0; #ifdef TLS_FORWARD_SECRECY const struct ECCCurveParameters *curve = NULL; const unsigned char *pk_key = NULL; int ephemeral = tls_cipher_is_ephemeral(context); if (ephemeral) { if (ephemeral == 1) { has_ds_params = 1; } else { if (buf[res++] != 3) { // named curve // any other method is not supported return 0; } CHECK_SIZE(3, buf_len - res, TLS_NEED_MORE_DATA); int iana_n = ntohs(*(unsigned short *)&buf[res]); res += 2; key_size = buf[res]; res++; CHECK_SIZE(key_size, buf_len - res, TLS_NEED_MORE_DATA); DEBUG_PRINT("IANA CURVE NUMBER: %i\n", iana_n); switch (iana_n) { case 19: curve = &secp192r1; break; case 20: curve = &secp224k1; break; case 21: curve = &secp224r1; break; case 22: curve = &secp256k1; break; case 23: curve = &secp256r1; break; case 24: curve = &secp384r1; break; case 25: curve = &secp521r1; break; #ifdef TLS_CURVE25519 case 29: curve = &x25519; break; #endif default: DEBUG_PRINT("UNSUPPORTED CURVE\n"); return TLS_GENERIC_ERROR; } pk_key = &buf[res]; res += key_size; context->curve = curve; } } #endif const unsigned char *dh_p = NULL; int dh_p_len = 0; const unsigned char *dh_g = NULL; int dh_g_len = 0; const unsigned char *dh_Ys = NULL; int dh_Ys_len = 0; if (has_ds_params) { DEBUG_PRINT(" dh_p: "); dh_res = _private_tls_parse_dh(&buf[res], buf_len - res, &dh_p, &dh_p_len); if (dh_res <= 0) return TLS_BROKEN_PACKET; res += dh_res; DEBUG_PRINT("\n"); DEBUG_PRINT(" dh_q: "); dh_res = _private_tls_parse_dh(&buf[res], buf_len - res, &dh_g, &dh_g_len); if (dh_res <= 0) return TLS_BROKEN_PACKET; res += dh_res; DEBUG_PRINT("\n"); DEBUG_PRINT(" dh_Ys: "); dh_res = _private_tls_parse_dh(&buf[res], buf_len - res, &dh_Ys, &dh_Ys_len); if (dh_res <= 0) return TLS_BROKEN_PACKET; res += dh_res; DEBUG_PRINT("\n"); } int sign_size; int hash_algorithm; int sign_algorithm; int packet_size = res - 3; if (context->dtls) packet_size -= 8; int offset = 0; DEBUG_PRINT(" SIGNATURE (%i/%i/%i): ", packet_size, dh_res, key_size); const unsigned char *signature = _private_tls_parse_signature(context, &buf[res], buf_len - res, &hash_algorithm, &sign_algorithm, &sign_size, &offset); DEBUG_PRINT("\n"); if ((sign_size <= 0) || (!signature)) return TLS_BROKEN_PACKET; res += offset; // check signature unsigned int message_len = packet_size + TLS_CLIENT_RANDOM_SIZE + TLS_SERVER_RANDOM_SIZE; unsigned char *message = (unsigned char *)TLS_MALLOC(message_len); if (message) { memcpy(message, context->local_random, TLS_CLIENT_RANDOM_SIZE); memcpy(message + TLS_CLIENT_RANDOM_SIZE, context->remote_random, TLS_SERVER_RANDOM_SIZE); memcpy(message + TLS_CLIENT_RANDOM_SIZE + TLS_SERVER_RANDOM_SIZE, packet_ref, packet_size); #ifdef TLS_CLIENT_ECDSA if (tls_is_ecdsa(context)) { if (_private_tls_verify_ecdsa(context, hash_algorithm, signature, sign_size, message, message_len, NULL) != 1) { DEBUG_PRINT("ECC Server signature FAILED!\n"); TLS_FREE(message); return TLS_BROKEN_PACKET; } } else #endif { if (_private_tls_verify_rsa(context, hash_algorithm, signature, sign_size, message, message_len) != 1) { DEBUG_PRINT("Server signature FAILED!\n"); TLS_FREE(message); return TLS_BROKEN_PACKET; } } TLS_FREE(message); } if (buf_len - res) { DEBUG_PRINT("EXTRA %i BYTES AT THE END OF MESSAGE\n", buf_len - res); DEBUG_DUMP_HEX(&buf[res], buf_len - res); DEBUG_PRINT("\n"); } #ifdef TLS_FORWARD_SECRECY if (ephemeral == 1) { _private_tls_dhe_create(context); DEBUG_DUMP_HEX_LABEL("DHP", dh_p, dh_p_len); DEBUG_DUMP_HEX_LABEL("DHG", dh_g, dh_g_len); int dhe_key_size = dh_p_len; if (dh_g_len > dh_p_len) dhe_key_size = dh_g_len; if (_private_tls_dh_make_key(dhe_key_size, context->dhe, (const char *)dh_p, (const char *)dh_g, dh_p_len, dh_g_len)) { DEBUG_PRINT("ERROR CREATING DHE KEY\n"); TLS_FREE(context->dhe); context->dhe = NULL; return TLS_GENERIC_ERROR; } unsigned int dh_key_size = 0; unsigned char *key = _private_tls_decrypt_dhe(context, dh_Ys, dh_Ys_len, &dh_key_size, 0); DEBUG_DUMP_HEX_LABEL("DH COMMON SECRET", key, dh_key_size); if ((key) && (dh_key_size)) { TLS_FREE(context->premaster_key); context->premaster_key = key; context->premaster_key_len = dh_key_size; } } else if ((ephemeral == 2) && (curve) && (pk_key) && (key_size)) { #ifdef TLS_CURVE25519 if (curve == &x25519) { if (key_size != 32) { DEBUG_PRINT("INVALID X25519 PUBLIC SIZE"); return TLS_GENERIC_ERROR; } TLS_FREE(context->client_secret); context->client_secret = (unsigned char *)TLS_MALLOC(32); if (!context->client_secret) { DEBUG_PRINT("ERROR IN TLS_MALLOC"); return TLS_GENERIC_ERROR; } tls_random(context->client_secret, 32); context->client_secret[0] &= 248; context->client_secret[31] &= 127; context->client_secret[31] |= 64; TLS_FREE(context->premaster_key); context->premaster_key = (unsigned char *)TLS_MALLOC(32); if (!context->premaster_key) return TLS_GENERIC_ERROR; curve25519(context->premaster_key, context->client_secret, pk_key); context->premaster_key_len = 32; } else #endif { tls_init(); _private_tls_ecc_dhe_create(context); ltc_ecc_set_type *dp = (ltc_ecc_set_type *)&curve->dp; if (ecc_make_key_ex(NULL, find_prng("sprng"), context->ecc_dhe, dp)) { TLS_FREE(context->ecc_dhe); context->ecc_dhe = NULL; DEBUG_PRINT("Error generating ECC key\n"); return TLS_GENERIC_ERROR; } TLS_FREE(context->premaster_key); context->premaster_key_len = 0; unsigned int out_len = 0; context->premaster_key = _private_tls_decrypt_ecc_dhe(context, pk_key, key_size, &out_len, 0); if (context->premaster_key) context->premaster_key_len = out_len; } } #endif return res; } int tls_parse_client_key_exchange(struct TLSContext *context, const unsigned char *buf, int buf_len) { if (context->connection_status != 1) { DEBUG_PRINT("UNEXPECTED CLIENT KEY EXCHANGE MESSAGE (connections status: %i)\n", (int)context->connection_status); return TLS_UNEXPECTED_MESSAGE; } int res = 0; int dh_res = 0; CHECK_SIZE(3, buf_len, TLS_NEED_MORE_DATA) unsigned int size = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; res += 3; if (context->dtls) { int dtls_check = _private_dtls_check_packet(buf, buf_len); if (dtls_check < 0) return dtls_check; res += 8; } CHECK_SIZE(size, buf_len - res, TLS_NEED_MORE_DATA); if (!size) return res; dh_res = _private_tls_parse_random(context, &buf[res], size); if (dh_res <= 0) { DEBUG_PRINT("broken key\n"); return TLS_BROKEN_PACKET; } DEBUG_PRINT("\n"); res += size; context->connection_status = 2; return res; } int tls_parse_server_hello_done(struct TLSContext *context, const unsigned char *buf, int buf_len) { int res = 0; CHECK_SIZE(3, buf_len, TLS_NEED_MORE_DATA) unsigned int size = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; res += 3; if (context->dtls) { int dtls_check = _private_dtls_check_packet(buf, buf_len); if (dtls_check < 0) return dtls_check; res += 8; } CHECK_SIZE(size, buf_len - res, TLS_NEED_MORE_DATA); res += size; return res; } int tls_parse_finished(struct TLSContext *context, const unsigned char *buf, int buf_len, unsigned int *write_packets) { if ((context->connection_status < 2) || (context->connection_status == 0xFF)) { DEBUG_PRINT("UNEXPECTED FINISHED MESSAGE\n"); return TLS_UNEXPECTED_MESSAGE; } int res = 0; *write_packets = 0; CHECK_SIZE(3, buf_len, TLS_NEED_MORE_DATA) unsigned int size = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; res += 3; if (context->dtls) { int dtls_check = _private_dtls_check_packet(buf, buf_len); if (dtls_check < 0) return dtls_check; res += 8; } if (size < TLS_MIN_FINISHED_OPAQUE_LEN) { DEBUG_PRINT("Invalid finished pachet size: %i\n", size); return TLS_BROKEN_PACKET; } CHECK_SIZE(size, buf_len - res, TLS_NEED_MORE_DATA); unsigned char hash[TLS_MAX_SHA_SIZE]; unsigned int hash_len = _private_tls_get_hash(context, hash); #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { unsigned char hash_out[TLS_MAX_SHA_SIZE]; unsigned long out_size = TLS_MAX_SHA_SIZE; if ((!context->remote_finished_key) || (!hash_len)) { DEBUG_PRINT("NO FINISHED KEY COMPUTED OR NO HANDSHAKE HASH\n"); return TLS_NOT_VERIFIED; } DEBUG_DUMP_HEX_LABEL("HS HASH", hash, hash_len); DEBUG_DUMP_HEX_LABEL("HS FINISH", context->finished_key, hash_len); DEBUG_DUMP_HEX_LABEL("HS REMOTE FINISH", context->remote_finished_key, hash_len); out_size = hash_len; hmac_state hmac; hmac_init(&hmac, _private_tls_get_hash_idx(context), context->remote_finished_key, hash_len); hmac_process(&hmac, hash, hash_len); hmac_done(&hmac, hash_out, &out_size); if ((size != out_size) || (memcmp(hash_out, &buf[res], size))) { DEBUG_PRINT("Finished validation error (sequence number, local: %i, remote: %i)\n", (int)context->local_sequence_number, (int)context->remote_sequence_number); DEBUG_DUMP_HEX_LABEL("FINISHED OPAQUE", &buf[res], size); DEBUG_DUMP_HEX_LABEL("VERIFY", hash_out, out_size); return TLS_NOT_VERIFIED; } if (context->is_server) { context->connection_status = 0xFF; res += size; _private_tls13_key(context, 0); context->local_sequence_number = 0; context->remote_sequence_number = 0; return res; } } else #endif { // verify unsigned char *out = (unsigned char *)TLS_MALLOC(size); if (!out) { DEBUG_PRINT("Error in TLS_MALLOC (%i bytes)\n", (int)size); return TLS_NO_MEMORY; } // server verifies client's message if (context->is_server) _private_tls_prf(context, out, size, context->master_key, context->master_key_len, (unsigned char *)"client finished", 15, hash, hash_len, NULL, 0); else _private_tls_prf(context, out, size, context->master_key, context->master_key_len, (unsigned char *)"server finished", 15, hash, hash_len, NULL, 0); if (memcmp(out, &buf[res], size)) { TLS_FREE(out); DEBUG_PRINT("Finished validation error (sequence number, local: %i, remote: %i)\n", (int)context->local_sequence_number, (int)context->remote_sequence_number); DEBUG_DUMP_HEX_LABEL("FINISHED OPAQUE", &buf[res], size); DEBUG_DUMP_HEX_LABEL("VERIFY", out, size); return TLS_NOT_VERIFIED; } #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION if (size) { if (context->is_server) { TLS_FREE(context->verify_data); context->verify_data = (unsigned char *)TLS_MALLOC(size); if (context->verify_data) { memcpy(context->verify_data, out, size); context->verify_len = size; } } else { // concatenate client verify and server verify context->verify_data = (unsigned char *)TLS_REALLOC(context->verify_data, size); if (context->verify_data) { memcpy(context->verify_data + context->verify_len, out, size); context->verify_len += size; } else context->verify_len = 0; } } #endif TLS_FREE(out); } if (context->is_server) *write_packets = 3; else context->connection_status = 0xFF; res += size; return res; } #ifdef WITH_TLS_13 int tls_parse_verify_tls13(struct TLSContext *context, const unsigned char *buf, int buf_len) { CHECK_SIZE(7, buf_len, TLS_NEED_MORE_DATA) unsigned int size = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; if (size < 2) return buf_len; unsigned char signing_data[TLS_MAX_HASH_SIZE + 98]; int signing_data_len; // first 64 bytes to 0x20 (32) memset(signing_data, 0x20, 64); // context string 33 bytes if (context->is_server) memcpy(signing_data + 64, "TLS 1.3, server CertificateVerify", 33); else memcpy(signing_data + 64, "TLS 1.3, client CertificateVerify", 33); // a single 0 byte separator signing_data[97] = 0; signing_data_len = 98; signing_data_len += _private_tls_get_hash(context, signing_data + 98); DEBUG_DUMP_HEX_LABEL("signature data", signing_data, signing_data_len); unsigned short signature = ntohs(*(unsigned short *)&buf[3]); unsigned short signature_size = ntohs(*(unsigned short *)&buf[5]); int valid = 0; CHECK_SIZE(7 + signature_size, buf_len, TLS_NEED_MORE_DATA) switch (signature) { #ifdef TLS_ECDSA_SUPPORTED case 0x0403: // secp256r1 + sha256 valid = _private_tls_verify_ecdsa(context, sha256, buf + 7, signature_size, signing_data, signing_data_len, &secp256r1); break; case 0x0503: // secp384r1 + sha384 valid = _private_tls_verify_ecdsa(context, sha384, buf + 7, signature_size, signing_data, signing_data_len, &secp384r1); break; case 0x0603: // secp521r1 + sha512 valid = _private_tls_verify_ecdsa(context, sha512, buf + 7, signature_size, signing_data, signing_data_len, &secp521r1); break; #endif case 0x0804: valid = _private_tls_verify_rsa(context, sha256, buf + 7, signature_size, signing_data, signing_data_len); break; default: DEBUG_PRINT("Unsupported signature: %x\n", (int)signature); return TLS_UNSUPPORTED_CERTIFICATE; } if (valid != 1) { DEBUG_PRINT("Signature FAILED!\n"); return TLS_DECRYPTION_FAILED; } return buf_len; } #endif int tls_parse_verify(struct TLSContext *context, const unsigned char *buf, int buf_len) { #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) return tls_parse_verify_tls13(context, buf, buf_len); #endif CHECK_SIZE(7, buf_len, TLS_BAD_CERTIFICATE) unsigned int bytes_to_follow = buf[0] * 0x10000 + buf[1] * 0x100 + buf[2]; CHECK_SIZE(bytes_to_follow, buf_len - 3, TLS_BAD_CERTIFICATE) int res = -1; if ((context->version == TLS_V12) || (context->version == DTLS_V12) || (context->version == TLS_V13) || (context->version == DTLS_V13)) { unsigned int hash = buf[3]; unsigned int algorithm = buf[4]; if (algorithm != rsa) return TLS_UNSUPPORTED_CERTIFICATE; unsigned short size = ntohs(*(unsigned short *)&buf[5]); CHECK_SIZE(size, bytes_to_follow - 4, TLS_BAD_CERTIFICATE) DEBUG_PRINT("ALGORITHM %i/%i (%i)\n", hash, algorithm, (int)size); DEBUG_DUMP_HEX_LABEL("VERIFY", &buf[7], bytes_to_follow - 7); res = _private_tls_verify_rsa(context, hash, &buf[7], size, context->cached_handshake, context->cached_handshake_len); } else { #ifdef TLS_LEGACY_SUPPORT unsigned short size = ntohs(*(unsigned short *)&buf[3]); CHECK_SIZE(size, bytes_to_follow - 2, TLS_BAD_CERTIFICATE) res = _private_tls_verify_rsa(context, md5, &buf[5], size, context->cached_handshake, context->cached_handshake_len); #endif } if (context->cached_handshake) { // not needed anymore TLS_FREE(context->cached_handshake); context->cached_handshake = NULL; context->cached_handshake_len = 0; } if (res == 1) { DEBUG_PRINT("Signature OK\n"); context->client_verified = 1; } else { DEBUG_PRINT("Signature FAILED\n"); context->client_verified = 0; } return 1; } int tls_parse_payload(struct TLSContext *context, const unsigned char *buf, int buf_len, tls_validation_function certificate_verify) { int orig_len = buf_len; if (context->connection_status == 0xFF) { #ifndef TLS_ACCEPT_SECURE_RENEGOTIATION // renegotiation disabled (emit warning alert) _private_tls_write_packet(tls_build_alert(context, 0, no_renegotiation)); return 1; #endif } while ((buf_len >= 4) && (!context->critical_error)) { int payload_res = 0; unsigned char update_hash = 1; CHECK_SIZE(1, buf_len, TLS_NEED_MORE_DATA) unsigned char type = buf[0]; unsigned int write_packets = 0; unsigned int dtls_cookie_verified = 0; int certificate_verify_alert = no_error; unsigned int payload_size = buf[1] * 0x10000 + buf[2] * 0x100 + buf[3] + 3; if (context->dtls) payload_size += 8; CHECK_SIZE(payload_size + 1, buf_len, TLS_NEED_MORE_DATA) switch (type) { // hello request case 0x00: CHECK_HANDSHAKE_STATE(context, 0, 1); DEBUG_PRINT(" => HELLO REQUEST (RENEGOTIATION?)\n"); if (context->dtls) context->dtls_seq = 0; if (context->is_server) payload_res = TLS_UNEXPECTED_MESSAGE; else { if (context->connection_status == 0xFF) { // renegotiation #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION if (context->critical_error) payload_res = TLS_UNEXPECTED_MESSAGE; else { _private_tls_reset_context(context); _private_tls_write_packet(tls_build_hello(context, 0)); return 1; } #else payload_res = TLS_NO_RENEGOTIATION; #endif } else payload_res = TLS_UNEXPECTED_MESSAGE; } // no payload break; // client hello case 0x01: CHECK_HANDSHAKE_STATE(context, 1, (context->dtls ? 2 : 1)); DEBUG_PRINT(" => CLIENT HELLO\n"); if (context->is_server) { payload_res = tls_parse_hello(context, buf + 1, payload_size, &write_packets, &dtls_cookie_verified); DEBUG_PRINT(" => DTLS COOKIE VERIFIED: %i (%i)\n", dtls_cookie_verified, payload_res); if ((context->dtls) && (payload_res > 0) && (!dtls_cookie_verified) && (context->connection_status == 1)) { // wait client hello context->connection_status = 3; update_hash = 0; } } else payload_res = TLS_UNEXPECTED_MESSAGE; break; // server hello case 0x02: CHECK_HANDSHAKE_STATE(context, 2, 1); DEBUG_PRINT(" => SERVER HELLO\n"); if (context->is_server) payload_res = TLS_UNEXPECTED_MESSAGE; else payload_res = tls_parse_hello(context, buf + 1, payload_size, &write_packets, &dtls_cookie_verified); break; // hello verify request case 0x03: DEBUG_PRINT(" => VERIFY REQUEST\n"); CHECK_HANDSHAKE_STATE(context, 3, 1); if ((context->dtls) && (!context->is_server)) { payload_res = tls_parse_verify_request(context, buf + 1, payload_size, &write_packets); update_hash = 0; } else payload_res = TLS_UNEXPECTED_MESSAGE; break; // certificate case 0x0B: CHECK_HANDSHAKE_STATE(context, 4, 1); DEBUG_PRINT(" => CERTIFICATE\n"); #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { if (context->connection_status == 2) { payload_res = tls_parse_certificate(context, buf + 1, payload_size, context->is_server); if (context->is_server) { if ((certificate_verify) && (context->client_certificates_count)) certificate_verify_alert = certificate_verify(context, context->client_certificates, context->client_certificates_count); // empty certificates are permitted for client if (payload_res <= 0) payload_res = 1; } else { if ((certificate_verify) && (context->certificates_count)) certificate_verify_alert = certificate_verify(context, context->certificates, context->certificates_count); } } else payload_res = TLS_UNEXPECTED_MESSAGE; } else #endif if (context->connection_status == 1) { if (context->is_server) { // client certificate payload_res = tls_parse_certificate(context, buf + 1, payload_size, 1); if ((certificate_verify) && (context->client_certificates_count)) certificate_verify_alert = certificate_verify(context, context->client_certificates, context->client_certificates_count); // empty certificates are permitted for client if (payload_res <= 0) payload_res = 1; } else { payload_res = tls_parse_certificate(context, buf + 1, payload_size, 0); if ((certificate_verify) && (context->certificates_count)) certificate_verify_alert = certificate_verify(context, context->certificates, context->certificates_count); } } else payload_res = TLS_UNEXPECTED_MESSAGE; break; // server key exchange case 0x0C: CHECK_HANDSHAKE_STATE(context, 5, 1); DEBUG_PRINT(" => SERVER KEY EXCHANGE\n"); if (context->is_server) payload_res = TLS_UNEXPECTED_MESSAGE; else payload_res = tls_parse_server_key_exchange(context, buf + 1, payload_size); break; // certificate request case 0x0D: CHECK_HANDSHAKE_STATE(context, 6, 1); // server to client if (context->is_server) payload_res = TLS_UNEXPECTED_MESSAGE; else context->client_verified = 2; DEBUG_PRINT(" => CERTIFICATE REQUEST\n"); break; // server hello done case 0x0E: CHECK_HANDSHAKE_STATE(context, 7, 1); DEBUG_PRINT(" => SERVER HELLO DONE\n"); if (context->is_server) { payload_res = TLS_UNEXPECTED_MESSAGE; } else { payload_res = tls_parse_server_hello_done(context, buf + 1, payload_size); if (payload_res > 0) write_packets = 1; } break; // certificate verify case 0x0F: CHECK_HANDSHAKE_STATE(context, 8, 1); DEBUG_PRINT(" => CERTIFICATE VERIFY\n"); if (context->connection_status == 2) payload_res = tls_parse_verify(context, buf + 1, payload_size); else payload_res = TLS_UNEXPECTED_MESSAGE; break; // client key exchange case 0x10: CHECK_HANDSHAKE_STATE(context, 9, 1); DEBUG_PRINT(" => CLIENT KEY EXCHANGE\n"); if (context->is_server) payload_res = tls_parse_client_key_exchange(context, buf + 1, payload_size); else payload_res = TLS_UNEXPECTED_MESSAGE; break; // finished case 0x14: if (context->cached_handshake) { TLS_FREE(context->cached_handshake); context->cached_handshake = NULL; context->cached_handshake_len = 0; } CHECK_HANDSHAKE_STATE(context, 10, 1); DEBUG_PRINT(" => FINISHED\n"); payload_res = tls_parse_finished(context, buf + 1, payload_size, &write_packets); if (payload_res > 0) memset(context->hs_messages, 0, sizeof(context->hs_messages)); #ifdef WITH_TLS_13 if ((!context->is_server) && ((context->version == TLS_V13) || (context->version == DTLS_V13))) { update_hash = 0; DEBUG_PRINT("<= SENDING FINISHED\n"); _private_tls_update_hash(context, buf, payload_size + 1); _private_tls_write_packet(tls_build_finished(context)); _private_tls13_key(context, 0); context->connection_status = 0xFF; context->local_sequence_number = 0; context->remote_sequence_number = 0; } #endif break; #ifdef WITH_TLS_13 case 0x08: // encrypted extensions ... ignore it for now break; #endif default: DEBUG_PRINT(" => NOT UNDERSTOOD PAYLOAD TYPE: %x\n", (int)type); return TLS_NOT_UNDERSTOOD; } if ((type != 0x00) && (update_hash)) _private_tls_update_hash(context, buf, payload_size + 1); if (certificate_verify_alert != no_error) { _private_tls_write_packet(tls_build_alert(context, 1, certificate_verify_alert)); context->critical_error = 1; } if (payload_res < 0) { switch (payload_res) { case TLS_UNEXPECTED_MESSAGE: _private_tls_write_packet(tls_build_alert(context, 1, unexpected_message)); break; case TLS_COMPRESSION_NOT_SUPPORTED: _private_tls_write_packet(tls_build_alert(context, 1, decompression_failure)); break; case TLS_BROKEN_PACKET: _private_tls_write_packet(tls_build_alert(context, 1, decode_error)); break; case TLS_NO_MEMORY: _private_tls_write_packet(tls_build_alert(context, 1, internal_error)); break; case TLS_NOT_VERIFIED: _private_tls_write_packet(tls_build_alert(context, 1, bad_record_mac)); break; case TLS_BAD_CERTIFICATE: if (context->is_server) { // bad client certificate, continue _private_tls_write_packet(tls_build_alert(context, 0, bad_certificate)); payload_res = 0; } else _private_tls_write_packet(tls_build_alert(context, 1, bad_certificate)); break; case TLS_UNSUPPORTED_CERTIFICATE: _private_tls_write_packet(tls_build_alert(context, 1, unsupported_certificate)); break; case TLS_NO_COMMON_CIPHER: _private_tls_write_packet(tls_build_alert(context, 1, insufficient_security)); break; case TLS_NOT_UNDERSTOOD: _private_tls_write_packet(tls_build_alert(context, 1, internal_error)); break; case TLS_NO_RENEGOTIATION: _private_tls_write_packet(tls_build_alert(context, 0, no_renegotiation)); payload_res = 0; break; case TLS_DECRYPTION_FAILED: _private_tls_write_packet(tls_build_alert(context, 1, decryption_failed_RESERVED)); break; } if (payload_res < 0) return payload_res; } if (certificate_verify_alert != no_error) payload_res = TLS_BAD_CERTIFICATE; // except renegotiation switch (write_packets) { case 1: if (context->client_verified == 2) { DEBUG_PRINT("<= Building CERTIFICATE \n"); _private_tls_write_packet(tls_build_certificate(context)); context->client_verified = 0; } // client handshake DEBUG_PRINT("<= Building KEY EXCHANGE\n"); _private_tls_write_packet(tls_build_client_key_exchange(context)); DEBUG_PRINT("<= Building CHANGE CIPHER SPEC\n"); _private_tls_write_packet(tls_build_change_cipher_spec(context)); context->cipher_spec_set = 1; context->local_sequence_number = 0; DEBUG_PRINT("<= Building CLIENT FINISHED\n"); _private_tls_write_packet(tls_build_finished(context)); context->cipher_spec_set = 0; #ifdef TLS_12_FALSE_START if ((!context->is_server) && (context->version == TLS_V12)) { // https://tools.ietf.org/html/rfc7918 // 5.1. Symmetric Cipher // Clients MUST NOT use the False Start protocol modification in a // handshake unless the cipher suite uses a symmetric cipher that is // considered cryptographically strong. switch (context->cipher) { case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384: case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: context->false_start = 1; break; } } #endif break; case 2: // server handshake if ((context->dtls) && (dtls_cookie_verified == 0)) { _private_tls_write_packet(tls_build_verify_request(context)); _private_dtls_reset(context); } else { DEBUG_PRINT("<= SENDING SERVER HELLO\n"); #ifdef WITH_TLS_13 if (context->connection_status == 3) { context->connection_status = 2; _private_tls_write_packet(tls_build_hello(context, 0)); _private_tls_write_packet(tls_build_change_cipher_spec(context)); _private_tls13_key(context, 1); context->cipher_spec_set = 1; DEBUG_PRINT("<= SENDING ENCRYPTED EXTENSIONS\n"); _private_tls_write_packet(tls_build_encrypted_extensions(context)); if (context->request_client_certificate) { DEBUG_PRINT("<= SENDING CERTIFICATE REQUEST\n"); _private_tls_write_packet(tls_certificate_request(context)); } DEBUG_PRINT("<= SENDING CERTIFICATE\n"); _private_tls_write_packet(tls_build_certificate(context)); DEBUG_PRINT("<= SENDING CERTIFICATE VERIFY\n"); _private_tls_write_packet(tls_build_certificate_verify(context)); DEBUG_PRINT("<= SENDING FINISHED\n"); _private_tls_write_packet(tls_build_finished(context)); // new key TLS_FREE(context->server_finished_hash); context->server_finished_hash = (unsigned char *)TLS_MALLOC(_private_tls_mac_length(context)); if (context->server_finished_hash) _private_tls_get_hash(context, context->server_finished_hash); break; } #endif _private_tls_write_packet(tls_build_hello(context, 0)); DEBUG_PRINT("<= SENDING CERTIFICATE\n"); _private_tls_write_packet(tls_build_certificate(context)); int ephemeral_cipher = tls_cipher_is_ephemeral(context); if (ephemeral_cipher) { DEBUG_PRINT("<= SENDING EPHEMERAL DH KEY\n"); _private_tls_write_packet(tls_build_server_key_exchange(context, ephemeral_cipher == 1 ? KEA_dhe_rsa : KEA_ec_diffie_hellman)); } if (context->request_client_certificate) { DEBUG_PRINT("<= SENDING CERTIFICATE REQUEST\n"); _private_tls_write_packet(tls_certificate_request(context)); } DEBUG_PRINT("<= SENDING DONE\n"); _private_tls_write_packet(tls_build_done(context)); } break; case 3: // finished _private_tls_write_packet(tls_build_change_cipher_spec(context)); _private_tls_write_packet(tls_build_finished(context)); context->connection_status = 0xFF; break; case 4: // dtls only context->dtls_seq = 1; _private_tls_write_packet(tls_build_hello(context, 0)); break; #ifdef WITH_TLS_13 case 5: // hello retry request DEBUG_PRINT("<= SENDING HELLO RETRY REQUEST\n"); _private_tls_write_packet(tls_build_hello(context, 0)); break; #endif } payload_size++; buf += payload_size; buf_len -= payload_size; } return orig_len; } unsigned int _private_tls_hmac_message(unsigned char local, struct TLSContext *context, const unsigned char *buf, int buf_len, const unsigned char *buf2, int buf_len2, unsigned char *out, unsigned int outlen, uint64_t remote_sequence_number) { hmac_state hash; int mac_size = outlen; int hash_idx; if (mac_size == TLS_SHA1_MAC_SIZE) hash_idx = find_hash("sha1"); else if (mac_size == TLS_SHA384_MAC_SIZE) hash_idx = find_hash("sha384"); else hash_idx = find_hash("sha256"); if (hmac_init(&hash, hash_idx, local ? context->crypto.ctx_local_mac.local_mac : context->crypto.ctx_remote_mac.remote_mac, mac_size)) return 0; uint64_t squence_number; if (context->dtls) squence_number = htonll(remote_sequence_number); else if (local) squence_number = htonll(context->local_sequence_number); else squence_number = htonll(context->remote_sequence_number); if (hmac_process(&hash, (unsigned char *)&squence_number, sizeof(uint64_t))) return 0; if (hmac_process(&hash, buf, buf_len)) return 0; if ((buf2) && (buf_len2)) { if (hmac_process(&hash, buf2, buf_len2)) return 0; } unsigned long ref_outlen = outlen; if (hmac_done(&hash, out, &ref_outlen)) return 0; return (unsigned int)ref_outlen; } int tls_parse_message(struct TLSContext *context, unsigned char *buf, int buf_len, tls_validation_function certificate_verify) { int res = 5; if (context->dtls) res = 13; int header_size = res; int payload_res = 0; CHECK_SIZE(res, buf_len, TLS_NEED_MORE_DATA) unsigned char type = *buf; int buf_pos = 1; unsigned short version = ntohs(*(unsigned short *)&buf[buf_pos]); buf_pos += 2; uint64_t dtls_sequence_number = 0; if (context->dtls) { CHECK_SIZE(buf_pos + 8, buf_len, TLS_NEED_MORE_DATA) dtls_sequence_number = ntohll(*(uint64_t *)&buf[buf_pos]); buf_pos += 8; } VERSION_SUPPORTED(version, TLS_NOT_SAFE) unsigned short length; length = ntohs(*(unsigned short *)&buf[buf_pos]); buf_pos += 2; unsigned char *pt = NULL; const unsigned char *ptr = buf + buf_pos; CHECK_SIZE(buf_pos + length, buf_len, TLS_NEED_MORE_DATA) DEBUG_PRINT("Message type: %0x, length: %i\n", (int)type, (int)length); if ((context->cipher_spec_set) && (type != TLS_CHANGE_CIPHER)) { DEBUG_DUMP_HEX_LABEL("encrypted", &buf[header_size], length); if (!context->crypto.created) { DEBUG_PRINT("Encryption context not created\n"); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); return TLS_BROKEN_PACKET; } pt = (unsigned char *)TLS_MALLOC(length); if (!pt) { DEBUG_PRINT("Error in TLS_MALLOC (%i bytes)\n", (int)length); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); return TLS_NO_MEMORY; } unsigned char aad[16]; int aad_size = sizeof(aad); unsigned char *sequence = aad; if (context->crypto.created == 2) { int delta = 8; int pt_length; unsigned char iv[TLS_13_AES_GCM_IV_LENGTH]; gcm_reset(&context->crypto.ctx_remote.aes_gcm_remote); #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { aad[0] = TLS_APPLICATION_DATA; aad[1] = 0x03; aad[2] = 0x03; *((unsigned short *)(aad + 3)) = htons(buf_len - header_size); aad_size = 5; sequence = aad + 5; if (context->dtls) *((uint64_t *)sequence) = *(uint64_t *)(buf + 3); else *((uint64_t *)sequence) = htonll(context->remote_sequence_number); memcpy(iv, context->crypto.ctx_remote_mac.remote_iv, TLS_13_AES_GCM_IV_LENGTH); int i; int offset = TLS_13_AES_GCM_IV_LENGTH - 8; for (i = 0; i < 8; i++) iv[offset + i] = context->crypto.ctx_remote_mac.remote_iv[offset + i] ^ sequence[i]; pt_length = buf_len - header_size - TLS_GCM_TAG_LEN; delta = 0; } else { #endif aad_size = 13; pt_length = length - 8 - TLS_GCM_TAG_LEN; // build aad and iv if (context->dtls) *((uint64_t *)aad) = htonll(dtls_sequence_number); else *((uint64_t *)aad) = htonll(context->remote_sequence_number); aad[8] = buf[0]; aad[9] = buf[1]; aad[10] = buf[2]; memcpy(iv, context->crypto.ctx_remote_mac.remote_aead_iv, 4); memcpy(iv + 4, buf + header_size, 8); *((unsigned short *)(aad + 11)) = htons((unsigned short)pt_length); #ifdef WITH_TLS_13 } #endif if (pt_length < 0) { DEBUG_PRINT("Invalid packet length"); TLS_FREE(pt); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); return TLS_BROKEN_PACKET; } DEBUG_DUMP_HEX_LABEL("aad", aad, aad_size); DEBUG_DUMP_HEX_LABEL("aad iv", iv, 12); int res0 = gcm_add_iv(&context->crypto.ctx_remote.aes_gcm_remote, iv, 12); int res1 = gcm_add_aad(&context->crypto.ctx_remote.aes_gcm_remote, aad, aad_size); memset(pt, 0, length); DEBUG_PRINT("PT SIZE: %i\n", pt_length); int res2 = gcm_process(&context->crypto.ctx_remote.aes_gcm_remote, pt, pt_length, buf + header_size + delta, GCM_DECRYPT); unsigned char tag[32]; unsigned long taglen = 32; int res3 = gcm_done(&context->crypto.ctx_remote.aes_gcm_remote, tag, &taglen); if ((res0) || (res1) || (res2) || (res3) || (taglen != TLS_GCM_TAG_LEN)) { DEBUG_PRINT("ERROR: gcm_add_iv: %i, gcm_add_aad: %i, gcm_process: %i, gcm_done: %i\n", res0, res1, res2, res3); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); return TLS_BROKEN_PACKET; } DEBUG_DUMP_HEX_LABEL("decrypted", pt, pt_length); DEBUG_DUMP_HEX_LABEL("tag", tag, taglen); // check tag if (memcmp(buf + header_size + delta + pt_length, tag, taglen)) { DEBUG_PRINT("INTEGRITY CHECK FAILED (msg length %i)\n", pt_length); DEBUG_DUMP_HEX_LABEL("TAG RECEIVED", buf + header_size + delta + pt_length, taglen); DEBUG_DUMP_HEX_LABEL("TAG COMPUTED", tag, taglen); TLS_FREE(pt); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); _private_tls_write_packet(tls_build_alert(context, 1, bad_record_mac)); return TLS_INTEGRITY_FAILED; } ptr = pt; length = (unsigned short)pt_length; #ifdef TLS_WITH_CHACHA20_POLY1305 } else if (context->crypto.created == 3) { int pt_length = length - POLY1305_TAGLEN; unsigned int counter = 1; unsigned char poly1305_key[POLY1305_KEYLEN]; unsigned char trail[16]; unsigned char mac_tag[POLY1305_TAGLEN]; aad_size = 16; if (pt_length < 0) { DEBUG_PRINT("Invalid packet length"); TLS_FREE(pt); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); return TLS_BROKEN_PACKET; } #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { aad[0] = TLS_APPLICATION_DATA; aad[1] = 0x03; aad[2] = 0x03; *((unsigned short *)(aad + 3)) = htons(buf_len - header_size); aad_size = 5; sequence = aad + 5; if (context->dtls) *((uint64_t *)sequence) = *(uint64_t *)(buf + 3); else *((uint64_t *)sequence) = htonll(context->remote_sequence_number); } else { #endif if (context->dtls) *((uint64_t *)aad) = htonll(dtls_sequence_number); else *((uint64_t *)aad) = htonll(context->remote_sequence_number); aad[8] = buf[0]; aad[9] = buf[1]; aad[10] = buf[2]; *((unsigned short *)(aad + 11)) = htons((unsigned short)pt_length); aad[13] = 0; aad[14] = 0; aad[15] = 0; #ifdef WITH_TLS_13 } #endif chacha_ivupdate(&context->crypto.ctx_remote.chacha_remote, context->crypto.ctx_remote_mac.remote_aead_iv, sequence, (unsigned char *)&counter); chacha_encrypt_bytes(&context->crypto.ctx_remote.chacha_remote, buf + header_size, pt, pt_length); DEBUG_DUMP_HEX_LABEL("decrypted", pt, pt_length); ptr = pt; length = (unsigned short)pt_length; chacha20_poly1305_key(&context->crypto.ctx_remote.chacha_remote, poly1305_key); poly1305_context ctx; _private_tls_poly1305_init(&ctx, poly1305_key); _private_tls_poly1305_update(&ctx, aad, aad_size); static unsigned char zeropad[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int rem = aad_size % 16; if (rem) _private_tls_poly1305_update(&ctx, zeropad, 16 - rem); _private_tls_poly1305_update(&ctx, buf + header_size, pt_length); rem = pt_length % 16; if (rem) _private_tls_poly1305_update(&ctx, zeropad, 16 - rem); _private_tls_U32TO8(&trail[0], aad_size == 5 ? 5 : 13); *(int *)&trail[4] = 0; _private_tls_U32TO8(&trail[8], pt_length); *(int *)&trail[12] = 0; _private_tls_poly1305_update(&ctx, trail, 16); _private_tls_poly1305_finish(&ctx, mac_tag); if (memcmp(mac_tag, buf + header_size + pt_length, POLY1305_TAGLEN)) { DEBUG_PRINT("INTEGRITY CHECK FAILED (msg length %i)\n", length); DEBUG_DUMP_HEX_LABEL("POLY1305 TAG RECEIVED", buf + header_size + pt_length, POLY1305_TAGLEN); DEBUG_DUMP_HEX_LABEL("POLY1305 TAG COMPUTED", mac_tag, POLY1305_TAGLEN); TLS_FREE(pt); // silently ignore packet for DTLS if (context->dtls) return header_size + length; _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); _private_tls_write_packet(tls_build_alert(context, 1, bad_record_mac)); return TLS_INTEGRITY_FAILED; } #endif } else { int err = _private_tls_crypto_decrypt(context, buf + header_size, pt, length); if (err) { TLS_FREE(pt); DEBUG_PRINT("Decryption error %i\n", (int)err); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); return TLS_BROKEN_PACKET; } unsigned char padding_byte = pt[length - 1]; unsigned char padding = padding_byte + 1; // poodle check int padding_index = length - padding; if (padding_index > 0) { int i; int limit = length - 1; for (i = length - padding; i < limit; i++) { if (pt[i] != padding_byte) { TLS_FREE(pt); DEBUG_PRINT("BROKEN PACKET (POODLE ?)\n"); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); _private_tls_write_packet(tls_build_alert(context, 1, decrypt_error)); return TLS_BROKEN_PACKET; } } } unsigned int decrypted_length = length; if (padding < decrypted_length) decrypted_length -= padding; DEBUG_DUMP_HEX_LABEL("decrypted", pt, decrypted_length); ptr = pt; #ifdef TLS_LEGACY_SUPPORT if ((context->version != TLS_V10) && (decrypted_length > TLS_AES_IV_LENGTH)) { decrypted_length -= TLS_AES_IV_LENGTH; ptr += TLS_AES_IV_LENGTH; } #else if (decrypted_length > TLS_AES_IV_LENGTH) { decrypted_length -= TLS_AES_IV_LENGTH; ptr += TLS_AES_IV_LENGTH; } #endif length = decrypted_length; unsigned int mac_size = _private_tls_mac_length(context); if ((length < mac_size) || (!mac_size)) { TLS_FREE(pt); DEBUG_PRINT("BROKEN PACKET\n"); _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); _private_tls_write_packet(tls_build_alert(context, 1, decrypt_error)); return TLS_BROKEN_PACKET; } length -= mac_size; const unsigned char *message_hmac = &ptr[length]; unsigned char hmac_out[TLS_MAX_MAC_SIZE]; unsigned char temp_buf[5]; memcpy(temp_buf, buf, 3); *(unsigned short *)(temp_buf + 3) = htons(length); unsigned int hmac_out_len = _private_tls_hmac_message(0, context, temp_buf, 5, ptr, length, hmac_out, mac_size, dtls_sequence_number); if ((hmac_out_len != mac_size) || (memcmp(message_hmac, hmac_out, mac_size))) { DEBUG_PRINT("INTEGRITY CHECK FAILED (msg length %i)\n", length); DEBUG_DUMP_HEX_LABEL("HMAC RECEIVED", message_hmac, mac_size); DEBUG_DUMP_HEX_LABEL("HMAC COMPUTED", hmac_out, hmac_out_len); TLS_FREE(pt); // silently ignore packet for DTLS if (context->dtls) return header_size + length; _private_random_sleep(context, TLS_MAX_ERROR_SLEEP_uS); _private_tls_write_packet(tls_build_alert(context, 1, bad_record_mac)); return TLS_INTEGRITY_FAILED; } } } context->remote_sequence_number++; #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { if (/*(context->connection_status == 2) && */(type == TLS_APPLICATION_DATA) && (context->crypto.created)) { do { length--; type = ptr[length]; } while (!type); } } #endif switch (type) { // application data case TLS_APPLICATION_DATA: if (context->connection_status != 0xFF) { DEBUG_PRINT("UNEXPECTED APPLICATION DATA MESSAGE\n"); payload_res = TLS_UNEXPECTED_MESSAGE; _private_tls_write_packet(tls_build_alert(context, 1, unexpected_message)); } else { DEBUG_PRINT("APPLICATION DATA MESSAGE (TLS VERSION: %x):\n", (int)context->version); DEBUG_DUMP(ptr, length); DEBUG_PRINT("\n"); _private_tls_write_app_data(context, ptr, length); } break; // handshake case TLS_HANDSHAKE: DEBUG_PRINT("HANDSHAKE MESSAGE\n"); payload_res = tls_parse_payload(context, ptr, length, certificate_verify); break; // change cipher spec case TLS_CHANGE_CIPHER: context->dtls_epoch_remote++; if (context->connection_status != 2) { #ifdef WITH_TLS_13 if (context->connection_status == 4) { DEBUG_PRINT("IGNORING CHANGE CIPHER SPEC MESSAGE (HELLO RETRY REQUEST)\n"); break; } #endif DEBUG_PRINT("UNEXPECTED CHANGE CIPHER SPEC MESSAGE (%i)\n", context->connection_status); _private_tls_write_packet(tls_build_alert(context, 1, unexpected_message)); payload_res = TLS_UNEXPECTED_MESSAGE; } else { DEBUG_PRINT("CHANGE CIPHER SPEC MESSAGE\n"); context->cipher_spec_set = 1; // reset sequence numbers context->remote_sequence_number = 0; } #ifdef WITH_TLS_13 if (!context->is_server) _private_tls13_key(context, 1); #endif break; // alert case TLS_ALERT: DEBUG_PRINT("ALERT MESSAGE\n"); if (length >= 2) { DEBUG_DUMP_HEX(ptr, length); int level = ptr[0]; int code = ptr[1]; if (level == TLS_ALERT_CRITICAL) { context->critical_error = 1; res = TLS_ERROR_ALERT; } context->error_code = code; } break; default: DEBUG_PRINT("NOT UNDERSTOOD MESSAGE TYPE: %x\n", (int)type); TLS_FREE(pt); return TLS_NOT_UNDERSTOOD; } TLS_FREE(pt); if (payload_res < 0) return payload_res; if (res > 0) return header_size + length; return res; } unsigned int asn1_get_len(const unsigned char *buffer, int buf_len, unsigned int *octets) { *octets = 0; if (buf_len < 1) return 0; unsigned char size = buffer[0]; int i; if (size & 0x80) { *octets = size & 0x7F; if ((int)*octets > buf_len - 1) return 0; // max 32 bits unsigned int ref_octets = *octets; if (*octets > 4) ref_octets = 4; if ((int)*octets > buf_len -1) return 0; unsigned int long_size = 0; unsigned int coef = 1; for (i = ref_octets; i > 0; i--) { long_size += buffer[i] * coef; coef *= 0x100; } ++*octets; return long_size; } ++*octets; return size; } void print_index(const unsigned int *fields) { int i = 0; while (fields[i]) { if (i) DEBUG_PRINT("."); DEBUG_PRINT("%i", fields[i]); i++; } while (i < 6) { DEBUG_PRINT(" "); i++; } } int _is_field(const unsigned int *fields, const unsigned int *prefix) { int i = 0; while (prefix[i]) { if (fields[i] != prefix[i]) return 0; i++; } return 1; } int _private_tls_hash_len(int algorithm) { switch (algorithm) { case TLS_RSA_SIGN_MD5: return 16; case TLS_RSA_SIGN_SHA1: return 20; case TLS_RSA_SIGN_SHA256: case TLS_ECDSA_SIGN_SHA256: return 32; case TLS_RSA_SIGN_SHA384: return 48; case TLS_RSA_SIGN_SHA512: return 64; } return 0; } unsigned char *_private_tls_compute_hash(int algorithm, const unsigned char *message, unsigned int message_len) { unsigned char *hash = NULL; if ((!message) || (!message_len)) return hash; int err; hash_state state; switch (algorithm) { case TLS_RSA_SIGN_MD5: DEBUG_PRINT("SIGN MD5\n"); hash = (unsigned char *)TLS_MALLOC(16); if (!hash) return NULL; err = md5_init(&state); if (!err) { err = md5_process(&state, message, message_len); if (!err) err = md5_done(&state, hash); } break; case TLS_RSA_SIGN_SHA1: DEBUG_PRINT("SIGN SHA1\n"); hash = (unsigned char *)TLS_MALLOC(20); if (!hash) return NULL; err = sha1_init(&state); if (!err) { err = sha1_process(&state, message, message_len); if (!err) err = sha1_done(&state, hash); } break; case TLS_RSA_SIGN_SHA256: case TLS_ECDSA_SIGN_SHA256: DEBUG_PRINT("SIGN SHA256\n"); hash = (unsigned char *)TLS_MALLOC(32); if (!hash) return NULL; err = sha256_init(&state); if (!err) { err = sha256_process(&state, message, message_len); if (!err) err = sha256_done(&state, hash); } break; case TLS_RSA_SIGN_SHA384: DEBUG_PRINT("SIGN SHA384\n"); hash = (unsigned char *)TLS_MALLOC(48); if (!hash) return NULL; err = sha384_init(&state); if (!err) { err = sha384_process(&state, message, message_len); if (!err) err = sha384_done(&state, hash); } break; case TLS_RSA_SIGN_SHA512: DEBUG_PRINT("SIGN SHA512\n"); hash = (unsigned char *)TLS_MALLOC(64); if (!hash) return NULL; err = sha512_init(&state); if (!err) { err = sha512_process(&state, message, message_len); if (!err) err = sha512_done(&state, hash); } break; default: DEBUG_PRINT("UNKNOWN SIGNATURE ALGORITHM\n"); } return hash; } int tls_certificate_verify_signature(struct TLSCertificate *cert, struct TLSCertificate *parent) { if ((!cert) || (!parent) || (!cert->sign_key) || (!cert->fingerprint) || (!cert->sign_len) || (!parent->der_bytes) || (!parent->der_len)) { DEBUG_PRINT("CANNOT VERIFY SIGNATURE"); return 0; } tls_init(); int hash_len = _private_tls_hash_len(cert->algorithm); if (hash_len <= 0) return 0; int hash_index = -1; switch (cert->algorithm) { case TLS_RSA_SIGN_MD5: hash_index = find_hash("md5"); break; case TLS_RSA_SIGN_SHA1: hash_index = find_hash("sha1"); break; case TLS_RSA_SIGN_SHA256: case TLS_ECDSA_SIGN_SHA256: hash_index = find_hash("sha256"); break; case TLS_RSA_SIGN_SHA384: hash_index = find_hash("sha384"); break; case TLS_RSA_SIGN_SHA512: hash_index = find_hash("sha512"); break; default: DEBUG_PRINT("UNKNOWN SIGNATURE ALGORITHM\n"); return 0; } #ifdef TLS_ECDSA_SUPPORTED if (cert->algorithm == TLS_ECDSA_SIGN_SHA256) { ecc_key key; int err = ecc_import(parent->der_bytes, parent->der_len, &key); if (err) { DEBUG_PRINT("Error importing ECC certificate (code: %i)\n", err); DEBUG_DUMP_HEX_LABEL("CERTIFICATE", parent->der_bytes, parent->der_len); return 0; } int ecc_stat = 0; unsigned char *signature = cert->sign_key; int signature_len = cert->sign_len; if (!signature[0]) { signature++; signature_len--; } err = ecc_verify_hash(signature, signature_len, cert->fingerprint, hash_len, &ecc_stat, &key); ecc_free(&key); if (err) { DEBUG_PRINT("ECC HASH VERIFY ERROR %i\n", err); return 0; } DEBUG_PRINT("ECC CERTIFICATE VALIDATION: %i\n", ecc_stat); return ecc_stat; } #endif rsa_key key; int err = rsa_import(parent->der_bytes, parent->der_len, &key); if (err) { DEBUG_PRINT("Error importing RSA certificate (code: %i)\n", err); DEBUG_DUMP_HEX_LABEL("CERTIFICATE", parent->der_bytes, parent->der_len); return 0; } int rsa_stat = 0; unsigned char *signature = cert->sign_key; int signature_len = cert->sign_len; if (!signature[0]) { signature++; signature_len--; } err = rsa_verify_hash_ex(signature, signature_len, cert->fingerprint, hash_len, LTC_PKCS_1_V1_5, hash_index, 0, &rsa_stat, &key); rsa_free(&key); if (err) { DEBUG_PRINT("HASH VERIFY ERROR %i\n", err); return 0; } DEBUG_PRINT("CERTIFICATE VALIDATION: %i\n", rsa_stat); return rsa_stat; } int tls_certificate_chain_is_valid(struct TLSCertificate **certificates, int len) { if ((!certificates) || (!len)) return bad_certificate; int i; len--; // expired certificate or not yet valid ? if (tls_certificate_is_valid(certificates[0])) return bad_certificate; // check for (i = 0; i < len; i++) { // certificate in chain is expired ? if (tls_certificate_is_valid(certificates[i+1])) return bad_certificate; if (!tls_certificate_verify_signature(certificates[i], certificates[i+1])) return bad_certificate; } return 0; } int tls_certificate_chain_is_valid_root(struct TLSContext *context, struct TLSCertificate **certificates, int len) { if ((!certificates) || (!len) || (!context->root_certificates) || (!context->root_count)) return bad_certificate; int i; unsigned int j; for (i = 0; i < len; i++) { for (j = 0; j < context->root_count; j++) { // check if root certificate expired if (tls_certificate_is_valid(context->root_certificates[j])) continue; // if any root validates any certificate in the chain, then is root validated if (tls_certificate_verify_signature(certificates[i], context->root_certificates[j])) return 0; } } return bad_certificate; } int _private_is_oid(struct _private_OID_chain *ref_chain, const unsigned char *looked_oid, int looked_oid_len) { while (ref_chain) { if (ref_chain->oid) { if (_is_oid2(ref_chain->oid, looked_oid, 16, looked_oid_len)) return 1; } ref_chain = (struct _private_OID_chain *)ref_chain->top; } return 0; } int _private_asn1_parse(struct TLSContext *context, struct TLSCertificate *cert, const unsigned char *buffer, unsigned int size, int level, unsigned int *fields, unsigned char *has_key, int client_cert, unsigned char *top_oid, struct _private_OID_chain *chain) { struct _private_OID_chain local_chain; local_chain.top = chain; unsigned int pos = 0; // X.690 int idx = 0; unsigned char oid[16]; memset(oid, 0, 16); local_chain.oid = oid; if (has_key) *has_key = 0; unsigned char local_has_key = 0; const unsigned char *cert_data = NULL; unsigned int cert_len = 0; while (pos < size) { unsigned int start_pos = pos; CHECK_SIZE(2, size - pos, TLS_NEED_MORE_DATA) unsigned char first = buffer[pos++]; unsigned char type = first & 0x1F; unsigned char constructed = first & 0x20; unsigned char element_class = first >> 6; unsigned int octets = 0; unsigned int temp; idx++; if (level <= TLS_ASN1_MAXLEVEL) fields[level - 1] = idx; unsigned int length = asn1_get_len((unsigned char *)&buffer[pos], size - pos, &octets); if ((octets > 4) || (octets > size - pos)) { DEBUG_PRINT("CANNOT READ CERTIFICATE\n"); return pos; } pos += octets; CHECK_SIZE(length, size - pos, TLS_NEED_MORE_DATA) //DEBUG_PRINT("FIRST: %x => %x (%i)\n", (int)first, (int)type, length); // sequence //DEBUG_PRINT("%2i: ", level); #ifdef DEBUG DEBUG_INDEX(fields); int i1; for (i1 = 1; i1 < level; i1++) DEBUG_PRINT(" "); #endif if ((length) && (constructed)) { switch (type) { case 0x03: DEBUG_PRINT("CONSTRUCTED BITSTREAM\n"); break; case 0x10: DEBUG_PRINT("SEQUENCE\n"); if ((level == 2) && (idx == 1)) { cert_len = length + (pos - start_pos); cert_data = &buffer[start_pos]; } // private key on server or public key on client if ((!cert->version) && (_is_field(fields, priv_der_id))) { TLS_FREE(cert->der_bytes); temp = length + (pos - start_pos); cert->der_bytes = (unsigned char *)TLS_MALLOC(temp); if (cert->der_bytes) { memcpy(cert->der_bytes, &buffer[start_pos], temp); cert->der_len = temp; } else cert->der_len = 0; } break; case 0x11: DEBUG_PRINT("EMBEDDED PDV\n"); break; case 0x00: if (element_class == 0x02) { DEBUG_PRINT("CONTEXT-SPECIFIC\n"); break; } default: DEBUG_PRINT("CONSTRUCT TYPE %02X\n", (int)type); } local_has_key = 0; _private_asn1_parse(context, cert, &buffer[pos], length, level + 1, fields, &local_has_key, client_cert, top_oid, &local_chain); if ((((local_has_key) && (context) && ((!context->is_server) || (client_cert))) || (!context)) && (_is_field(fields, pk_id))) { TLS_FREE(cert->der_bytes); temp = length + (pos - start_pos); cert->der_bytes = (unsigned char *)TLS_MALLOC(temp); if (cert->der_bytes) { memcpy(cert->der_bytes, &buffer[start_pos], temp); cert->der_len = temp; } else cert->der_len = 0; } } else { switch (type) { case 0x00: // end of content DEBUG_PRINT("END OF CONTENT\n"); return pos; break; case 0x01: // boolean temp = buffer[pos]; DEBUG_PRINT("BOOLEAN: %i\n", temp); break; case 0x02: // integer if (_is_field(fields, pk_id)) { if (has_key) *has_key = 1; if (idx == 1) tls_certificate_set_key(cert, &buffer[pos], length); else if (idx == 2) tls_certificate_set_exponent(cert, &buffer[pos], length); } else if (_is_field(fields, serial_id)) tls_certificate_set_serial(cert, &buffer[pos], length); if (_is_field(fields, version_id)) { if (length == 1) cert->version = buffer[pos]; #ifdef TLS_X509_V1_SUPPORT else cert->version = 0; idx++; #endif } if (level >= 2) { unsigned int fields_temp[3]; fields_temp[0] = fields[level - 2]; fields_temp[1] = fields[level - 1]; fields_temp[2] = 0; if (_is_field(fields_temp, priv_id)) tls_certificate_set_priv(cert, &buffer[pos], length); } DEBUG_PRINT("INTEGER(%i): ", length); DEBUG_DUMP_HEX(&buffer[pos], length); if ((chain) && (length > 2)) { if (_private_is_oid(chain, san_oid, sizeof(san_oid) - 1)) { cert->san = (unsigned char **)TLS_REALLOC(cert->san, sizeof(unsigned char *) * (cert->san_length + 1)); if (cert->san) { cert->san[cert->san_length] = NULL; tls_certificate_set_copy(&cert->san[cert->san_length], &buffer[pos], length); DEBUG_PRINT(" => SUBJECT ALTERNATIVE NAME: %s", cert->san[cert->san_length ]); cert->san_length++; } else cert->san_length = 0; } } DEBUG_PRINT("\n"); break; case 0x03: if (_is_field(fields, pk_id)) { if (has_key) *has_key = 1; } // bitstream DEBUG_PRINT("BITSTREAM(%i): ", length); DEBUG_DUMP_HEX(&buffer[pos], length); DEBUG_PRINT("\n"); if (_is_field(fields, sign_id)) { tls_certificate_set_sign_key(cert, &buffer[pos], length); } else if ((cert->ec_algorithm) && (_is_field(fields, pk_id))) { tls_certificate_set_key(cert, &buffer[pos], length); } else { if ((buffer[pos] == 0x00) && (length > 256)) _private_asn1_parse(context, cert, &buffer[pos]+1, length - 1, level + 1, fields, &local_has_key, client_cert, top_oid, &local_chain); else _private_asn1_parse(context, cert, &buffer[pos], length, level + 1, fields, &local_has_key, client_cert, top_oid, &local_chain); #ifdef TLS_FORWARD_SECRECY #ifdef TLS_ECDSA_SUPPORTED if (top_oid) { if (_is_oid2(top_oid, TLS_EC_prime256v1_OID, sizeof(oid), sizeof(TLS_EC_prime256v1) - 1)) { cert->ec_algorithm = secp256r1.iana; } else if (_is_oid2(top_oid, TLS_EC_secp224r1_OID, sizeof(oid), sizeof(TLS_EC_secp224r1_OID) - 1)) { cert->ec_algorithm = secp224r1.iana; } else if (_is_oid2(top_oid, TLS_EC_secp384r1_OID, sizeof(oid), sizeof(TLS_EC_secp384r1_OID) - 1)) { cert->ec_algorithm = secp384r1.iana; } else if (_is_oid2(top_oid, TLS_EC_secp521r1_OID, sizeof(oid), sizeof(TLS_EC_secp521r1_OID) - 1)) { cert->ec_algorithm = secp521r1.iana; } if ((cert->ec_algorithm) && (!cert->pk)) tls_certificate_set_key(cert, &buffer[pos], length); } #endif #endif } break; case 0x04: if ((top_oid) && (_is_field(fields, ecc_priv_id)) && (!cert->priv)) { DEBUG_PRINT("BINARY STRING(%i): ", length); DEBUG_DUMP_HEX(&buffer[pos], length); DEBUG_PRINT("\n"); tls_certificate_set_priv(cert, &buffer[pos], length); } else _private_asn1_parse(context, cert, &buffer[pos], length, level + 1, fields, &local_has_key, client_cert, top_oid, &local_chain); break; case 0x05: DEBUG_PRINT("NULL\n"); break; case 0x06: // object identifier if (_is_field(fields, pk_id)) { #ifdef TLS_ECDSA_SUPPORTED if ((length == 8) || (length == 5)) tls_certificate_set_algorithm(context, &cert->ec_algorithm, &buffer[pos], length); else #endif tls_certificate_set_algorithm(context, &cert->key_algorithm, &buffer[pos], length); } if (_is_field(fields, algorithm_id)) tls_certificate_set_algorithm(context, &cert->algorithm, &buffer[pos], length); DEBUG_PRINT("OBJECT IDENTIFIER(%i): ", length); DEBUG_DUMP_HEX(&buffer[pos], length); DEBUG_PRINT("\n"); // check previous oid if (_is_oid2(oid, ocsp_oid, 16, sizeof(ocsp_oid) - 1)) tls_certificate_set_copy(&cert->ocsp, &buffer[pos], length); if (length < 16) memcpy(oid, &buffer[pos], length); else memcpy(oid, &buffer[pos], 16); if (top_oid) memcpy(top_oid, oid, 16); break; case 0x09: DEBUG_PRINT("REAL NUMBER(%i): ", length); DEBUG_DUMP_HEX(&buffer[pos], length); DEBUG_PRINT("\n"); break; case 0x17: // utc time DEBUG_PRINT("UTC TIME: ["); DEBUG_DUMP(&buffer[pos], length); DEBUG_PRINT("]\n"); if (_is_field(fields, validity_id)) { if (idx == 1) tls_certificate_set_copy_date(&cert->not_before, &buffer[pos], length); else tls_certificate_set_copy_date(&cert->not_after, &buffer[pos], length); } break; case 0x18: // generalized time DEBUG_PRINT("GENERALIZED TIME: ["); DEBUG_DUMP(&buffer[pos], length); DEBUG_PRINT("]\n"); break; case 0x13: // printable string case 0x0C: case 0x14: case 0x15: case 0x16: case 0x19: case 0x1A: case 0x1B: case 0x1C: case 0x1D: case 0x1E: if (_is_field(fields, issurer_id)) { if (_is_oid(oid, country_oid, 3)) tls_certificate_set_copy(&cert->issuer_country, &buffer[pos], length); else if (_is_oid(oid, state_oid, 3)) tls_certificate_set_copy(&cert->issuer_state, &buffer[pos], length); else if (_is_oid(oid, location_oid, 3)) tls_certificate_set_copy(&cert->issuer_location, &buffer[pos], length); else if (_is_oid(oid, entity_oid, 3)) tls_certificate_set_copy(&cert->issuer_entity, &buffer[pos], length); else if (_is_oid(oid, subject_oid, 3)) tls_certificate_set_copy(&cert->issuer_subject, &buffer[pos], length); } else if (_is_field(fields, owner_id)) { if (_is_oid(oid, country_oid, 3)) tls_certificate_set_copy(&cert->country, &buffer[pos], length); else if (_is_oid(oid, state_oid, 3)) tls_certificate_set_copy(&cert->state, &buffer[pos], length); else if (_is_oid(oid, location_oid, 3)) tls_certificate_set_copy(&cert->location, &buffer[pos], length); else if (_is_oid(oid, entity_oid, 3)) tls_certificate_set_copy(&cert->entity, &buffer[pos], length); else if (_is_oid(oid, subject_oid, 3)) tls_certificate_set_copy(&cert->subject, &buffer[pos], length); } DEBUG_PRINT("STR: ["); DEBUG_DUMP(&buffer[pos], length); DEBUG_PRINT("]\n"); break; case 0x10: DEBUG_PRINT("EMPTY SEQUENCE\n"); break; case 0xA: DEBUG_PRINT("ENUMERATED(%i): ", length); DEBUG_DUMP_HEX(&buffer[pos], length); DEBUG_PRINT("\n"); break; default: DEBUG_PRINT("========> NOT SUPPORTED %x\n", (int)type); // not supported / needed break; } } pos += length; } if ((level == 2) && (cert->sign_key) && (cert->sign_len) && (cert_len) && (cert_data)) { TLS_FREE(cert->fingerprint); cert->fingerprint = _private_tls_compute_hash(cert->algorithm, cert_data, cert_len); #ifdef DEBUG if (cert->fingerprint) { DEBUG_DUMP_HEX_LABEL("FINGERPRINT", cert->fingerprint, _private_tls_hash_len(cert->algorithm)); } #endif } return pos; } struct TLSCertificate *asn1_parse(struct TLSContext *context, const unsigned char *buffer, unsigned int size, int client_cert) { unsigned int fields[TLS_ASN1_MAXLEVEL]; memset(fields, 0, sizeof(int) * TLS_ASN1_MAXLEVEL); struct TLSCertificate *cert = tls_create_certificate(); if (cert) { if (client_cert < 0) { client_cert = 0; // private key unsigned char top_oid[16]; memset(top_oid, 0, sizeof(top_oid)); _private_asn1_parse(context, cert, buffer, size, 1, fields, NULL, client_cert, top_oid, NULL); } else _private_asn1_parse(context, cert, buffer, size, 1, fields, NULL, client_cert, NULL, NULL); } return cert; } int tls_load_certificates(struct TLSContext *context, const unsigned char *pem_buffer, int pem_size) { if (!context) return TLS_GENERIC_ERROR; unsigned int len; int idx = 0; do { unsigned char *data = tls_pem_decode(pem_buffer, pem_size, idx++, &len); if ((!data) || (!len)) break; struct TLSCertificate *cert = asn1_parse(context, data, len, 0); if (cert) { if ((cert->version == 2) #ifdef TLS_X509_V1_SUPPORT || (cert->version == 0) #endif ) { TLS_FREE(cert->der_bytes); cert->der_bytes = data; cert->der_len = len; data = NULL; if (cert->priv) { DEBUG_PRINT("WARNING - parse error (private key encountered in certificate)\n"); TLS_FREE(cert->priv); cert->priv = NULL; cert->priv_len = 0; } if (context->is_server) { context->certificates = (struct TLSCertificate **)TLS_REALLOC(context->certificates, (context->certificates_count + 1) * sizeof(struct TLSCertificate *)); context->certificates[context->certificates_count] = cert; context->certificates_count++; DEBUG_PRINT("Loaded certificate: %i\n", (int)context->certificates_count); } else { context->client_certificates = (struct TLSCertificate **)TLS_REALLOC(context->client_certificates, (context->client_certificates_count + 1) * sizeof(struct TLSCertificate *)); context->client_certificates[context->client_certificates_count] = cert; context->client_certificates_count++; DEBUG_PRINT("Loaded client certificate: %i\n", (int)context->client_certificates_count); } } else { DEBUG_PRINT("WARNING - certificate version error (v%i)\n", (int)cert->version); tls_destroy_certificate(cert); } } TLS_FREE(data); } while (1); return context->certificates_count; } int tls_load_private_key(struct TLSContext *context, const unsigned char *pem_buffer, int pem_size) { if (!context) return TLS_GENERIC_ERROR; unsigned int len; int idx = 0; do { unsigned char *data = tls_pem_decode(pem_buffer, pem_size, idx++, &len); if ((!data) || (!len)) break; struct TLSCertificate *cert = asn1_parse(context, data, len, -1); if (cert) { if (!cert->der_len) { TLS_FREE(cert->der_bytes); cert->der_bytes = data; cert->der_len = len; } else TLS_FREE(data); if ((cert) && (cert->priv) && (cert->priv_len)) { #ifdef TLS_ECDSA_SUPPORTED if (cert->ec_algorithm) { DEBUG_PRINT("Loaded ECC private key\n"); if (context->ec_private_key) tls_destroy_certificate(context->ec_private_key); context->ec_private_key = cert; return 1; } else #endif { DEBUG_PRINT("Loaded private key\n"); if (context->private_key) tls_destroy_certificate(context->private_key); context->private_key = cert; return 1; } } tls_destroy_certificate(cert); } else TLS_FREE(data); } while (1); return 0; } int tls_clear_certificates(struct TLSContext *context) { unsigned int i; if ((!context) || (!context->is_server) || (context->is_child)) return TLS_GENERIC_ERROR; if (context->root_certificates) { for (i = 0; i < context->root_count; i++) tls_destroy_certificate(context->root_certificates[i]); } context->root_certificates = NULL; context->root_count = 0; if (context->private_key) tls_destroy_certificate(context->private_key); context->private_key = NULL; #ifdef TLS_ECDSA_SUPPORTED if (context->ec_private_key) tls_destroy_certificate(context->ec_private_key); context->ec_private_key = NULL; #endif TLS_FREE(context->certificates); context->certificates = NULL; context->certificates_count = 0; return 0; } #ifdef WITH_TLS_13 struct TLSPacket *tls_build_certificate_verify(struct TLSContext *context) { struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, 0); //certificate verify tls_packet_uint8(packet, 0x0F); unsigned int size_offset = packet->len; tls_packet_uint24(packet, 0); unsigned char out[TLS_MAX_RSA_KEY]; #ifdef TLS_ECDSA_SUPPORTED unsigned long out_len = TLS_MAX_RSA_KEY; #endif unsigned char signing_data[TLS_MAX_HASH_SIZE + 98]; int signing_data_len; // first 64 bytes to 0x20 (32) memset(signing_data, 0x20, 64); // context string 33 bytes if (context->is_server) memcpy(signing_data + 64, "TLS 1.3, server CertificateVerify", 33); else memcpy(signing_data + 64, "TLS 1.3, client CertificateVerify", 33); // a single 0 byte separator signing_data[97] = 0; signing_data_len = 98; signing_data_len += _private_tls_get_hash(context, signing_data + 98); DEBUG_DUMP_HEX_LABEL("verify data", signing_data, signing_data_len); int hash_algorithm = sha256; #ifdef TLS_ECDSA_SUPPORTED if (tls_is_ecdsa(context)) { switch (context->ec_private_key->ec_algorithm) { case 23: // secp256r1 + sha256 tls_packet_uint16(packet, 0x0403); break; case 24: // secp384r1 + sha384 tls_packet_uint16(packet, 0x0503); hash_algorithm = sha384; break; case 25: // secp521r1 + sha512 tls_packet_uint16(packet, 0x0603); hash_algorithm = sha512; break; default: DEBUG_PRINT("UNSUPPORTED CURVE (SIGNING)\n"); packet->broken = 1; return packet; } } else #endif { tls_packet_uint16(packet, 0x0804); } int packet_size = 2; #ifdef TLS_ECDSA_SUPPORTED if (tls_is_ecdsa(context)) { if (_private_tls_sign_ecdsa(context, hash_algorithm, signing_data, signing_data_len, out, &out_len) == 1) { DEBUG_PRINT("ECDSA signing OK! (ECDSA, length %lu)\n", out_len); tls_packet_uint16(packet, out_len); tls_packet_append(packet, out, out_len); packet_size += out_len + 2; } } else #endif if (_private_tls_sign_rsa(context, hash_algorithm, signing_data, signing_data_len, out, &out_len) == 1) { DEBUG_PRINT("RSA signing OK! (length %lu)\n", out_len); tls_packet_uint16(packet, out_len); tls_packet_append(packet, out, out_len); packet_size += out_len + 2; } packet->buf[size_offset] = packet_size / 0x10000; packet_size %= 0x10000; packet->buf[size_offset + 1] = packet_size / 0x100; packet_size %= 0x100; packet->buf[size_offset + 2] = packet_size; tls_packet_update(packet); return packet; } #endif struct TLSPacket *tls_build_certificate(struct TLSContext *context) { int i; unsigned int all_certificate_size = 0; int certificates_count; struct TLSCertificate **certificates; if (context->is_server) { certificates_count = context->certificates_count; certificates = context->certificates; } else { certificates_count = context->client_certificates_count; certificates = context->client_certificates; } int delta = 3; #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) delta = 5; #endif #ifdef TLS_ECDSA_SUPPORTED int is_ecdsa = tls_is_ecdsa(context); if (is_ecdsa) { for (i = 0; i < certificates_count; i++) { struct TLSCertificate *cert = certificates[i]; if ((cert) && (cert->der_len) && (cert->ec_algorithm)) all_certificate_size += cert->der_len + delta; } } else { for (i = 0; i < certificates_count; i++) { struct TLSCertificate *cert = certificates[i]; if ((cert) && (cert->der_len) && (!cert->ec_algorithm)) all_certificate_size += cert->der_len + delta; } } #else for (i = 0; i < certificates_count; i++) { struct TLSCertificate *cert = certificates[i]; if ((cert) && (cert->der_len)) all_certificate_size += cert->der_len + delta; } #endif if (!all_certificate_size) { DEBUG_PRINT("NO CERTIFICATE SET\n"); } struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, 0); tls_packet_uint8(packet, 0x0B); if (all_certificate_size) { #ifdef WITH_TLS_13 // context if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { tls_packet_uint24(packet, all_certificate_size + 4); tls_packet_uint8(packet, 0); } else #endif tls_packet_uint24(packet, all_certificate_size + 3); if (context->dtls) _private_dtls_handshake_data(context, packet, all_certificate_size + 3); tls_packet_uint24(packet, all_certificate_size); for (i = 0; i < certificates_count; i++) { struct TLSCertificate *cert = certificates[i]; if ((cert) && (cert->der_len)) { #ifdef TLS_ECDSA_SUPPORTED // is RSA certificate ? if ((is_ecdsa) && (!cert->ec_algorithm)) continue; // is ECC certificate ? if ((!is_ecdsa) && (cert->ec_algorithm)) continue; #endif // 2 times -> one certificate tls_packet_uint24(packet, cert->der_len); tls_packet_append(packet, cert->der_bytes, cert->der_len); #ifdef WITH_TLS_13 // extension if ((context->version == TLS_V13) || (context->version == DTLS_V13)) tls_packet_uint16(packet, 0); #endif } } } else { tls_packet_uint24(packet, all_certificate_size); #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) tls_packet_uint8(packet, 0); #endif if (context->dtls) _private_dtls_handshake_data(context, packet, all_certificate_size); } tls_packet_update(packet); if (context->dtls) context->dtls_seq++; return packet; } #ifdef WITH_TLS_13 struct TLSPacket *tls_build_encrypted_extensions(struct TLSContext *context) { struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, 3); tls_packet_uint8(packet, 0x08); if (context->negotiated_alpn) { int alpn_negotiated_len = strlen(context->negotiated_alpn); int alpn_len = alpn_negotiated_len + 1; tls_packet_uint24(packet, alpn_len + 8); tls_packet_uint16(packet, alpn_len + 6); tls_packet_uint16(packet, 0x10); tls_packet_uint16(packet, alpn_len + 2); tls_packet_uint16(packet, alpn_len); tls_packet_uint8(packet, alpn_negotiated_len); tls_packet_append(packet, (unsigned char *)context->negotiated_alpn, alpn_negotiated_len); } else { tls_packet_uint24(packet, 2); tls_packet_uint16(packet, 0); } tls_packet_update(packet); return packet; } #endif struct TLSPacket *tls_build_finished(struct TLSContext *context) { struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, TLS_MIN_FINISHED_OPAQUE_LEN + 64); tls_packet_uint8(packet, 0x14); #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) tls_packet_uint24(packet, _private_tls_mac_length(context)); else #endif tls_packet_uint24(packet, TLS_MIN_FINISHED_OPAQUE_LEN); if (context->dtls) _private_dtls_handshake_data(context, packet, TLS_MIN_FINISHED_OPAQUE_LEN); // verify unsigned char hash[TLS_MAX_HASH_SIZE]; unsigned long out_size = TLS_MIN_FINISHED_OPAQUE_LEN; #ifdef WITH_TLS_13 unsigned char out[TLS_MAX_HASH_SIZE]; #else unsigned char out[TLS_MIN_FINISHED_OPAQUE_LEN]; #endif unsigned int hash_len; // server verifies client's message if (context->is_server) { #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { hash_len = _private_tls_get_hash(context, hash); if ((!context->finished_key) || (!hash_len)) { DEBUG_PRINT("NO FINISHED KEY COMPUTED OR NO HANDSHAKE HASH\n"); packet->broken = 1; return packet; } DEBUG_DUMP_HEX_LABEL("HS HASH", hash, hash_len); DEBUG_DUMP_HEX_LABEL("HS FINISH", context->finished_key, hash_len); DEBUG_DUMP_HEX_LABEL("HS REMOTE FINISH", context->remote_finished_key, hash_len); out_size = hash_len; hmac_state hmac; hmac_init(&hmac, _private_tls_get_hash_idx(context), context->finished_key, hash_len); hmac_process(&hmac, hash, hash_len); hmac_done(&hmac, out, &out_size); } else #endif { hash_len = _private_tls_done_hash(context, hash); _private_tls_prf(context, out, TLS_MIN_FINISHED_OPAQUE_LEN, context->master_key, context->master_key_len, (unsigned char *)"server finished", 15, hash, hash_len, NULL, 0); _private_tls_destroy_hash(context); } } else { #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { hash_len = _private_tls_get_hash(context, hash); if ((!context->finished_key) || (!hash_len)) { DEBUG_PRINT("NO FINISHED KEY COMPUTED OR NO HANDSHAKE HASH\n"); packet->broken = 1; return packet; } DEBUG_DUMP_HEX_LABEL("HS HASH", hash, hash_len); DEBUG_DUMP_HEX_LABEL("HS FINISH", context->finished_key, hash_len); DEBUG_DUMP_HEX_LABEL("HS REMOTE FINISH", context->remote_finished_key, hash_len); TLS_FREE(context->server_finished_hash); context->server_finished_hash = (unsigned char *)TLS_MALLOC(hash_len); if (context->server_finished_hash) memcpy(context->server_finished_hash, hash, hash_len); out_size = hash_len; hmac_state hmac; hmac_init(&hmac, _private_tls_get_hash_idx(context), context->finished_key, hash_len); hmac_process(&hmac, hash, hash_len); hmac_done(&hmac, out, &out_size); } else { #endif hash_len = _private_tls_get_hash(context, hash); _private_tls_prf(context, out, TLS_MIN_FINISHED_OPAQUE_LEN, context->master_key, context->master_key_len, (unsigned char *)"client finished", 15, hash, hash_len, NULL, 0); #ifdef WITH_TLS_13 } #endif } tls_packet_append(packet, out, out_size); tls_packet_update(packet); DEBUG_DUMP_HEX_LABEL("VERIFY DATA", out, out_size); #ifdef TLS_ACCEPT_SECURE_RENEGOTIATION if (context->is_server) { // concatenate client verify and server verify context->verify_data = (unsigned char *)TLS_REALLOC(context->verify_data, out_size); if (context->verify_data) { memcpy(context->verify_data + context->verify_len, out, out_size); context->verify_len += out_size; } else context->verify_len = 0; } else { TLS_FREE(context->verify_data); context->verify_data = (unsigned char *)TLS_MALLOC(out_size); if (context->verify_data) { memcpy(context->verify_data, out, out_size); context->verify_len = out_size; } } #endif return packet; } struct TLSPacket *tls_build_change_cipher_spec(struct TLSContext *context) { struct TLSPacket *packet = tls_create_packet(context, TLS_CHANGE_CIPHER, context->version, 64); tls_packet_uint8(packet, 1); tls_packet_update(packet); context->local_sequence_number = 0; return packet; } struct TLSPacket *tls_build_done(struct TLSContext *context) { struct TLSPacket *packet = tls_create_packet(context, TLS_HANDSHAKE, context->version, 0); tls_packet_uint8(packet, 0x0E); tls_packet_uint24(packet, 0); if (context->dtls) { _private_dtls_handshake_data(context, packet, 0); context->dtls_seq++; } tls_packet_update(packet); return packet; } struct TLSPacket *tls_build_message(struct TLSContext *context, const unsigned char *data, unsigned int len) { if ((!data) || (!len)) return 0; struct TLSPacket *packet = tls_create_packet(context, TLS_APPLICATION_DATA, context->version, len); tls_packet_append(packet, data, len); tls_packet_update(packet); return packet; } int tls_client_connect(struct TLSContext *context) { if ((context->is_server) || (context->critical_error)) return TLS_UNEXPECTED_MESSAGE; return _private_tls_write_packet(tls_build_hello(context, 0)); } int tls_write(struct TLSContext *context, const unsigned char *data, unsigned int len) { if (!context) return TLS_GENERIC_ERROR; #ifdef TLS_12_FALSE_START if ((context->connection_status != 0xFF) && ((context->is_server) || (context->version != TLS_V12) || (context->critical_error) || (!context->false_start))) return TLS_UNEXPECTED_MESSAGE; #else if (context->connection_status != 0xFF) return TLS_UNEXPECTED_MESSAGE; #endif if (len > TLS_MAXTLS_APP_SIZE) len = TLS_MAXTLS_APP_SIZE; int actually_written = _private_tls_write_packet(tls_build_message(context, data, len)); if (actually_written <= 0) return actually_written; return len; } struct TLSPacket *tls_build_alert(struct TLSContext *context, char critical, unsigned char code) { struct TLSPacket *packet = tls_create_packet(context, TLS_ALERT, context->version, 0); tls_packet_uint8(packet, critical ? TLS_ALERT_CRITICAL : TLS_ALERT_WARNING); if (critical) context->critical_error = 1; tls_packet_uint8(packet, code); tls_packet_update(packet); return packet; } int _private_tls_read_from_file(const char *fname, void *buf, int max_len) { FILE *f = fopen(fname, "rb"); if (f) { int size = (int)fread(buf, 1, max_len, f); fclose(f); return size; } return 0; } int tls_consume_stream(struct TLSContext *context, const unsigned char *buf, int buf_len, tls_validation_function certificate_verify) { if (!context) return TLS_GENERIC_ERROR; if (context->critical_error) return TLS_BROKEN_CONNECTION; if (buf_len <= 0) { DEBUG_PRINT("tls_consume_stream called with buf_len %i\n", buf_len); return 0; } if (!buf) { DEBUG_PRINT("tls_consume_stream called NULL buffer\n"); context->critical_error = 1; return TLS_NO_MEMORY; } unsigned int orig_len = context->message_buffer_len; context->message_buffer_len += buf_len; context->message_buffer = (unsigned char *)TLS_REALLOC(context->message_buffer, context->message_buffer_len); if (!context->message_buffer) { context->message_buffer_len = 0; return TLS_NO_MEMORY; } memcpy(context->message_buffer + orig_len, buf, buf_len); unsigned int index = 0; unsigned int tls_buffer_len = context->message_buffer_len; int err_flag = 0; int tls_header_size; int tls_size_offset; if (context->dtls) { tls_size_offset = 11; tls_header_size = 13; } else { tls_size_offset = 3; tls_header_size = 5; } while (tls_buffer_len >= 5) { unsigned int length = ntohs(*(unsigned short *)&context->message_buffer[index + tls_size_offset]) + tls_header_size; if (length > tls_buffer_len) { DEBUG_PRINT("NEED DATA: %i/%i\n", length, tls_buffer_len); break; } int consumed = tls_parse_message(context, &context->message_buffer[index], length, certificate_verify); DEBUG_PRINT("Consumed %i bytes\n", consumed); if (consumed < 0) { if (!context->critical_error) context->critical_error = 1; err_flag = consumed; break; } index += length; tls_buffer_len -= length; if (context->critical_error) { err_flag = TLS_BROKEN_CONNECTION; break; } } if (err_flag) { DEBUG_PRINT("ERROR IN CONSUME: %i\n", err_flag); context->message_buffer_len = 0; TLS_FREE(context->message_buffer); context->message_buffer = NULL; return err_flag; } if (index) { context->message_buffer_len -= index; if (context->message_buffer_len) { // no realloc here memmove(context->message_buffer, context->message_buffer + index, context->message_buffer_len); } else { TLS_FREE(context->message_buffer); context->message_buffer = NULL; } } return index; } void tls_close_notify(struct TLSContext *context) { if ((!context) || (context->critical_error)) return; context->critical_error = 1; DEBUG_PRINT("CLOSE\n"); _private_tls_write_packet(tls_build_alert(context, 0, close_notify)); } void tls_alert(struct TLSContext *context, unsigned char critical, int code) { if (!context) return; if ((!context->critical_error) && (critical)) context->critical_error = 1; DEBUG_PRINT("ALERT\n"); _private_tls_write_packet(tls_build_alert(context, critical, code)); } int tls_pending(struct TLSContext *context) { if (!context->message_buffer) return 0; return context->message_buffer_len; } void tls_make_exportable(struct TLSContext *context, unsigned char exportable_flag) { context->exportable = exportable_flag; if (!exportable_flag) { // zero the memory if ((context->exportable_keys) && (context->exportable_size)) memset(context->exportable_keys, 0, context->exportable_size); // free the memory, if alocated TLS_FREE(context->exportable_keys); context->exportable_size = 0; } } int tls_export_context(struct TLSContext *context, unsigned char *buffer, unsigned int buf_len, unsigned char small_version) { // only negotiated AND exportable connections may be exported if ((!context) || (context->critical_error) || (context->connection_status != 0xFF) || (!context->exportable) || (!context->exportable_keys) || (!context->exportable_size) || (!context->crypto.created)) { DEBUG_PRINT("CANNOT EXPORT CONTEXT %i\n", (int)context->connection_status); return 0; } struct TLSPacket *packet = tls_create_packet(NULL, TLS_SERIALIZED_OBJECT, context->version, 0); // export buffer version tls_packet_uint8(packet, 0x01); tls_packet_uint8(packet, context->connection_status); tls_packet_uint16(packet, context->cipher); if (context->is_child) tls_packet_uint8(packet, 2); else tls_packet_uint8(packet, context->is_server); if (context->crypto.created == 2) { // aead #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { tls_packet_uint8(packet, TLS_13_AES_GCM_IV_LENGTH); tls_packet_append(packet, context->crypto.ctx_local_mac.local_iv, TLS_13_AES_GCM_IV_LENGTH); tls_packet_append(packet, context->crypto.ctx_remote_mac.remote_iv, TLS_13_AES_GCM_IV_LENGTH); } else { #endif tls_packet_uint8(packet, TLS_AES_GCM_IV_LENGTH); tls_packet_append(packet, context->crypto.ctx_local_mac.local_aead_iv, TLS_AES_GCM_IV_LENGTH); tls_packet_append(packet, context->crypto.ctx_remote_mac.remote_aead_iv, TLS_AES_GCM_IV_LENGTH); #ifdef WITH_TLS_13 } #endif #ifdef TLS_WITH_CHACHA20_POLY1305 } else if (context->crypto.created == 3) { // ChaCha20 tls_packet_uint8(packet, TLS_CHACHA20_IV_LENGTH); tls_packet_append(packet, context->crypto.ctx_local_mac.local_nonce, TLS_CHACHA20_IV_LENGTH); tls_packet_append(packet, context->crypto.ctx_remote_mac.remote_nonce, TLS_CHACHA20_IV_LENGTH); #endif } else { unsigned char iv[TLS_AES_IV_LENGTH]; unsigned long len = TLS_AES_IV_LENGTH; memset(iv, 0, TLS_AES_IV_LENGTH); cbc_getiv(iv, &len, &context->crypto.ctx_local.aes_local); tls_packet_uint8(packet, TLS_AES_IV_LENGTH); tls_packet_append(packet, iv, len); memset(iv, 0, TLS_AES_IV_LENGTH); cbc_getiv(iv, &len, &context->crypto.ctx_remote.aes_remote); tls_packet_append(packet, iv, TLS_AES_IV_LENGTH); } tls_packet_uint8(packet, context->exportable_size); tls_packet_append(packet, context->exportable_keys, context->exportable_size); if (context->crypto.created == 2) { tls_packet_uint8(packet, 0); #ifdef TLS_WITH_CHACHA20_POLY1305 } else if (context->crypto.created == 3) { // ChaCha20 tls_packet_uint8(packet, 0); unsigned int i; for (i = 0; i < 16; i++) tls_packet_uint32(packet, context->crypto.ctx_local.chacha_local.input[i]); for (i = 0; i < 16; i++) tls_packet_uint32(packet, context->crypto.ctx_remote.chacha_remote.input[i]); tls_packet_append(packet, context->crypto.ctx_local.chacha_local.ks, CHACHA_BLOCKLEN); tls_packet_append(packet, context->crypto.ctx_remote.chacha_remote.ks, CHACHA_BLOCKLEN); #endif } else { unsigned char mac_length = (unsigned char)_private_tls_mac_length(context); tls_packet_uint8(packet, mac_length); tls_packet_append(packet, context->crypto.ctx_local_mac.local_mac, mac_length); tls_packet_append(packet, context->crypto.ctx_remote_mac.remote_mac, mac_length); } if (small_version) { tls_packet_uint16(packet, 0); } else { tls_packet_uint16(packet, context->master_key_len); tls_packet_append(packet, context->master_key, context->master_key_len); } uint64_t sequence_number = htonll(context->local_sequence_number); tls_packet_append(packet, (unsigned char *)&sequence_number, sizeof(uint64_t)); sequence_number = htonll(context->remote_sequence_number); tls_packet_append(packet, (unsigned char *)&sequence_number, sizeof(uint64_t)); tls_packet_uint32(packet, context->tls_buffer_len); tls_packet_append(packet, context->tls_buffer, context->tls_buffer_len); tls_packet_uint32(packet, context->message_buffer_len); tls_packet_append(packet, context->message_buffer, context->message_buffer_len); tls_packet_uint32(packet, context->application_buffer_len); tls_packet_append(packet, context->application_buffer, context->application_buffer_len); tls_packet_uint8(packet, context->dtls); if (context->dtls) { tls_packet_uint16(packet, context->dtls_epoch_local); tls_packet_uint16(packet, context->dtls_epoch_remote); } tls_packet_update(packet); unsigned int size = packet->len; if ((buffer) && (buf_len)) { if (size > buf_len) { tls_destroy_packet(packet); DEBUG_PRINT("EXPORT BUFFER TO SMALL\n"); return (int)buf_len - (int)size; } memcpy(buffer, packet->buf, size); } tls_destroy_packet(packet); return size; } struct TLSContext *tls_import_context(const unsigned char *buffer, unsigned int buf_len) { if ((!buffer) || (buf_len < 64) || (buffer[0] != TLS_SERIALIZED_OBJECT) || (buffer[5] != 0x01)) { DEBUG_PRINT("CANNOT IMPORT CONTEXT BUFFER\n"); return NULL; } // create a context object struct TLSContext *context = tls_create_context(0, TLS_V12); if (context) { unsigned char temp[0xFF]; context->version = ntohs(*(unsigned short *)&buffer[1]); unsigned short length = ntohs(*(unsigned short *)&buffer[3]); if (length != buf_len - 5) { DEBUG_PRINT("INVALID IMPORT BUFFER SIZE\n"); tls_destroy_context(context); return NULL; } context->connection_status = buffer[6]; context->cipher = ntohs(*(unsigned short *)&buffer[7]); unsigned char server = buffer[9]; if (server == 2) { context->is_server = 1; context->is_child = 1; } else context->is_server = server; unsigned char local_iv[TLS_AES_IV_LENGTH]; unsigned char remote_iv[TLS_AES_IV_LENGTH]; unsigned char iv_len = buffer[10]; if (iv_len > TLS_AES_IV_LENGTH) { DEBUG_PRINT("INVALID IV LENGTH\n"); tls_destroy_context(context); return NULL; } // get the initialization vectors int buf_pos = 11; memcpy(local_iv, &buffer[buf_pos], iv_len); buf_pos += iv_len; memcpy(remote_iv, &buffer[buf_pos], iv_len); buf_pos += iv_len; unsigned char key_lengths = buffer[buf_pos++]; TLS_IMPORT_CHECK_SIZE(buf_pos, key_lengths, buf_len) memcpy(temp, &buffer[buf_pos], key_lengths); buf_pos += key_lengths; #ifdef TLS_REEXPORTABLE context->exportable = 1; context->exportable_keys = (unsigned char *)TLS_MALLOC(key_lengths); memcpy(context->exportable_keys, temp, key_lengths); context->exportable_size = key_lengths; #else context->exportable = 0; #endif int is_aead = _private_tls_is_aead(context); #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { // ChaCha20 if (iv_len > TLS_CHACHA20_IV_LENGTH) iv_len = TLS_CHACHA20_IV_LENGTH; memcpy(context->crypto.ctx_local_mac.local_nonce, local_iv, iv_len); memcpy(context->crypto.ctx_remote_mac.remote_nonce, remote_iv, iv_len); } else #endif if (is_aead) { #ifdef WITH_TLS_13 if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { if (iv_len > TLS_13_AES_GCM_IV_LENGTH) iv_len = TLS_13_AES_GCM_IV_LENGTH; memcpy(context->crypto.ctx_local_mac.local_iv, local_iv, iv_len); memcpy(context->crypto.ctx_remote_mac.remote_iv, remote_iv, iv_len); } else { #endif if (iv_len > TLS_AES_GCM_IV_LENGTH) iv_len = TLS_AES_GCM_IV_LENGTH; memcpy(context->crypto.ctx_local_mac.local_aead_iv, local_iv, iv_len); memcpy(context->crypto.ctx_remote_mac.remote_aead_iv, remote_iv, iv_len); #ifdef WITH_TLS_13 } #endif } if (context->is_server) { if (_private_tls_crypto_create(context, key_lengths / 2, temp, local_iv, temp + key_lengths / 2, remote_iv)) { DEBUG_PRINT("ERROR CREATING KEY CONTEXT\n"); tls_destroy_context(context); return NULL; } } else { if (_private_tls_crypto_create(context, key_lengths / 2, temp + key_lengths / 2, remote_iv, temp, local_iv)) { DEBUG_PRINT("ERROR CREATING KEY CONTEXT (CLIENT)\n"); tls_destroy_context(context); return NULL; } } memset(temp, 0, sizeof(temp)); unsigned char mac_length = buffer[buf_pos++]; if (mac_length > TLS_MAX_MAC_SIZE) { DEBUG_PRINT("INVALID MAC SIZE\n"); tls_destroy_context(context); return NULL; } if (mac_length) { TLS_IMPORT_CHECK_SIZE(buf_pos, mac_length, buf_len) memcpy(context->crypto.ctx_local_mac.local_mac, &buffer[buf_pos], mac_length); buf_pos += mac_length; TLS_IMPORT_CHECK_SIZE(buf_pos, mac_length, buf_len) memcpy(context->crypto.ctx_remote_mac.remote_mac, &buffer[buf_pos], mac_length); buf_pos += mac_length; } else #ifdef TLS_WITH_CHACHA20_POLY1305 if (is_aead == 2) { // ChaCha20 unsigned int i; TLS_IMPORT_CHECK_SIZE(buf_pos, 128 + CHACHA_BLOCKLEN * 2, buf_len) for (i = 0; i < 16; i++) { context->crypto.ctx_local.chacha_local.input[i] = ntohl(*(unsigned int *)(buffer + buf_pos)); buf_pos += sizeof(unsigned int); } for (i = 0; i < 16; i++) { context->crypto.ctx_remote.chacha_remote.input[i] = ntohl(*(unsigned int *)(buffer + buf_pos)); buf_pos += sizeof(unsigned int); } memcpy(context->crypto.ctx_local.chacha_local.ks, buffer + buf_pos, CHACHA_BLOCKLEN); buf_pos += CHACHA_BLOCKLEN; memcpy(context->crypto.ctx_remote.chacha_remote.ks, buffer + buf_pos, CHACHA_BLOCKLEN); buf_pos += CHACHA_BLOCKLEN; } #endif TLS_IMPORT_CHECK_SIZE(buf_pos, 2, buf_len) unsigned short master_key_len = ntohs(*(unsigned short *)(buffer + buf_pos)); buf_pos += 2; if (master_key_len) { TLS_IMPORT_CHECK_SIZE(buf_pos, master_key_len, buf_len) context->master_key = (unsigned char *)TLS_MALLOC(master_key_len); if (context->master_key) { memcpy(context->master_key, &buffer[buf_pos], master_key_len); context->master_key_len = master_key_len; } buf_pos += master_key_len; } TLS_IMPORT_CHECK_SIZE(buf_pos, 16, buf_len) context->local_sequence_number = ntohll(*(uint64_t *)&buffer[buf_pos]); buf_pos += 8; context->remote_sequence_number = ntohll(*(uint64_t *)&buffer[buf_pos]); buf_pos += 8; TLS_IMPORT_CHECK_SIZE(buf_pos, 4, buf_len) unsigned int tls_buffer_len = ntohl(*(unsigned int *)&buffer[buf_pos]); buf_pos += 4; TLS_IMPORT_CHECK_SIZE(buf_pos, tls_buffer_len, buf_len) if (tls_buffer_len) { context->tls_buffer = (unsigned char *)TLS_MALLOC(tls_buffer_len); if (context->tls_buffer) { memcpy(context->tls_buffer, &buffer[buf_pos], tls_buffer_len); context->tls_buffer_len = tls_buffer_len; } buf_pos += tls_buffer_len; } TLS_IMPORT_CHECK_SIZE(buf_pos, 4, buf_len) unsigned int message_buffer_len = ntohl(*(unsigned int *)&buffer[buf_pos]); buf_pos += 4; TLS_IMPORT_CHECK_SIZE(buf_pos, message_buffer_len, buf_len) if (message_buffer_len) { context->message_buffer = (unsigned char *)TLS_MALLOC(message_buffer_len); if (context->message_buffer) { memcpy(context->message_buffer, &buffer[buf_pos], message_buffer_len); context->message_buffer_len = message_buffer_len; } buf_pos += message_buffer_len; } TLS_IMPORT_CHECK_SIZE(buf_pos, 4, buf_len) unsigned int application_buffer_len = ntohl(*(unsigned int *)&buffer[buf_pos]); buf_pos += 4; context->cipher_spec_set = 1; TLS_IMPORT_CHECK_SIZE(buf_pos, application_buffer_len, buf_len) if (application_buffer_len) { context->application_buffer = (unsigned char *)TLS_MALLOC(application_buffer_len); if (context->application_buffer) { memcpy(context->application_buffer, &buffer[buf_pos], application_buffer_len); context->application_buffer_len = application_buffer_len; } buf_pos += application_buffer_len; } TLS_IMPORT_CHECK_SIZE(buf_pos, 1, buf_len) context->dtls = buffer[buf_pos]; buf_pos++; if (context->dtls) { TLS_IMPORT_CHECK_SIZE(buf_pos, 4, buf_len) context->dtls_epoch_local = ntohs(*(unsigned short *)&buffer[buf_pos]); buf_pos += 2; context->dtls_epoch_remote = ntohs(*(unsigned short *)&buffer[buf_pos]); } } return context; } int tls_is_broken(struct TLSContext *context) { if ((!context) || (context->critical_error)) return 1; return 0; } int tls_request_client_certificate(struct TLSContext *context) { if ((!context) || (!context->is_server)) return 0; context->request_client_certificate = 1; return 1; } int tls_client_verified(struct TLSContext *context) { if ((!context) || (context->critical_error)) return 0; return (context->client_verified == 1); } const char *tls_sni(struct TLSContext *context) { if (!context) return NULL; return context->sni; } int tls_sni_set(struct TLSContext *context, const char *sni) { if ((!context) || (context->is_server) || (context->critical_error) || (context->connection_status != 0)) return 0; TLS_FREE(context->sni); context->sni = NULL; if (sni) { size_t len = strlen(sni); if (len > 0) { context->sni = (char *)TLS_MALLOC(len + 1); if (context->sni) { context->sni[len] = 0; memcpy(context->sni, sni, len); return 1; } } } return 0; } int tls_load_root_certificates(struct TLSContext *context, const unsigned char *pem_buffer, int pem_size) { if (!context) return TLS_GENERIC_ERROR; unsigned int len; int idx = 0; do { unsigned char *data = tls_pem_decode(pem_buffer, pem_size, idx++, &len); if ((!data) || (!len)) break; struct TLSCertificate *cert = asn1_parse(NULL, data, len, 0); if (cert) { if ((cert->version == 2) #ifdef TLS_X509_V1_SUPPORT || (cert->version == 0) #endif ) { if (cert->priv) { DEBUG_PRINT("WARNING - parse error (private key encountered in certificate)\n"); TLS_FREE(cert->priv); cert->priv = NULL; cert->priv_len = 0; } context->root_certificates = (struct TLSCertificate **)TLS_REALLOC(context->root_certificates, (context->root_count + 1) * sizeof(struct TLSCertificate *)); if (!context->root_certificates) { context->root_count = 0; return TLS_GENERIC_ERROR; } context->root_certificates[context->root_count] = cert; context->root_count++; DEBUG_PRINT("Loaded certificate: %i\n", (int)context->root_count); } else { DEBUG_PRINT("WARNING - certificate version error (v%i)\n", (int)cert->version); tls_destroy_certificate(cert); } } TLS_FREE(data); } while (1); return context->root_count; } int tls_default_verify(struct TLSContext *context, struct TLSCertificate **certificate_chain, int len) { int i; int err; if (certificate_chain) { for (i = 0; i < len; i++) { struct TLSCertificate *certificate = certificate_chain[i]; // check validity date err = tls_certificate_is_valid(certificate); if (err) return err; } } // check if chain is valid err = tls_certificate_chain_is_valid(certificate_chain, len); if (err) return err; // check certificate subject if ((!context->is_server) && (context->sni) && (len > 0) && (certificate_chain)) { err = tls_certificate_valid_subject(certificate_chain[0], context->sni); if (err) return err; } err = tls_certificate_chain_is_valid_root(context, certificate_chain, len); if (err) return err; DEBUG_PRINT("Certificate OK\n"); return no_error; } int tls_unmake_ktls(struct TLSContext *context, int socket) { #ifdef WITH_KTLS struct tls12_crypto_info_aes_gcm_128 crypto_info; socklen_t crypt_info_size = sizeof(crypto_info); if (getsockopt(socket, SOL_TLS, TLS_TX, &crypto_info, &crypt_info_size)) { DEBUG_PRINT("ERROR IN getsockopt\n"); return TLS_GENERIC_ERROR; } memcpy(crypto_info.rec_seq, &context->local_sequence_number, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); context->local_sequence_number = ntohll(context->local_sequence_number); #ifdef TLS_RX crypt_info_size = sizeof(crypto_info); if (getsockopt(socket, SOL_TLS, TLS_RX, &crypto_info, &crypt_info_size)) { DEBUG_PRINT("ERROR IN getsockopt\n"); return TLS_GENERIC_ERROR; } memcpy(crypto_info.rec_seq, &context->remote_sequence_number, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); context->remote_sequence_number = ntohll(context->remote_sequence_number); #endif return 0; #endif DEBUG_PRINT("TLSe COMPILED WITHOUT kTLS SUPPORT\n"); return TLS_FEATURE_NOT_SUPPORTED; } int tls_make_ktls(struct TLSContext *context, int socket) { if ((!context) || (context->critical_error) || (context->connection_status != 0xFF) || (!context->crypto.created)) { DEBUG_PRINT("CANNOT SWITCH TO kTLS\n"); return TLS_GENERIC_ERROR; } if ((!context->exportable) || (!context->exportable_keys)) { DEBUG_PRINT("KEY MUST BE EXPORTABLE TO BE ABLE TO USE kTLS\n"); return TLS_GENERIC_ERROR; } if ((context->version != TLS_V12) && (context->version != DTLS_V12) && (context->version != TLS_V13) && (context->version != DTLS_V13)) { DEBUG_PRINT("kTLS IS SUPPORTED ONLY FOR TLS >= 1.2 AND DTLS >= 1.2\n"); return TLS_FEATURE_NOT_SUPPORTED; } switch (context->cipher) { case TLS_RSA_WITH_AES_128_GCM_SHA256: case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: case TLS_AES_128_GCM_SHA256: break; default: DEBUG_PRINT("CIPHER UNSUPPORTED: kTLS SUPPORTS ONLY AES 128 GCM CIPHERS\n"); return TLS_FEATURE_NOT_SUPPORTED; } #ifdef WITH_KTLS if (context->exportable_size < TLS_CIPHER_AES_GCM_128_KEY_SIZE * 2) { DEBUG_PRINT("INVALID KEY SIZE\n"); return TLS_GENERIC_ERROR; } int err; struct tls12_crypto_info_aes_gcm_128 crypto_info; crypto_info.info.cipher_type = TLS_CIPHER_AES_GCM_128; uint64_t local_sequence_number = htonll(context->local_sequence_number); if ((context->version == TLS_V12) || (context->version == DTLS_V12)) { crypto_info.info.version = TLS_1_2_VERSION; memcpy(crypto_info.iv, &local_sequence_number, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info.rec_seq, &local_sequence_number, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); memcpy(crypto_info.key, context->exportable_keys, TLS_CIPHER_AES_GCM_128_KEY_SIZE); memcpy(crypto_info.salt, context->crypto.ctx_local_mac.local_aead_iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); } else if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { crypto_info.info.version = TLS_1_3_VERSION; memcpy(crypto_info.iv, context->crypto.ctx_local_mac.local_iv + 4, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info.rec_seq, &local_sequence_number, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); memcpy(crypto_info.key, context->exportable_keys, TLS_CIPHER_AES_GCM_128_KEY_SIZE); memcpy(crypto_info.salt, context->crypto.ctx_local_mac.local_iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); } err = setsockopt(socket, SOL_TCP, TCP_ULP, "tls", sizeof("tls")); if (err) return err; #ifdef TLS_RX // kernel 4.17 adds TLS_RX support struct tls12_crypto_info_aes_gcm_128 crypto_info_read; crypto_info_read.info.cipher_type = TLS_CIPHER_AES_GCM_128; uint64_t remote_sequence_number = htonll(context->remote_sequence_number); if ((context->version == TLS_V12) || (context->version == DTLS_V12)) { crypto_info_read.info.version = TLS_1_2_VERSION; memcpy(crypto_info_read.iv, &remote_sequence_number, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info_read.rec_seq, &remote_sequence_number, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); memcpy(crypto_info_read.key, context->exportable_keys + TLS_CIPHER_AES_GCM_128_KEY_SIZE, TLS_CIPHER_AES_GCM_128_KEY_SIZE); memcpy(crypto_info_read.salt, context->crypto.ctx_remote_mac.remote_aead_iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); } else if ((context->version == TLS_V13) || (context->version == DTLS_V13)) { crypto_info_read.info.version = TLS_1_3_VERSION; memcpy(crypto_info_read.iv, context->crypto.ctx_remote_mac.remote_iv + 4, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info_read.rec_seq, &remote_sequence_number, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); memcpy(crypto_info_read.key, context->exportable_keys + TLS_CIPHER_AES_GCM_128_KEY_SIZE, TLS_CIPHER_AES_GCM_128_KEY_SIZE); memcpy(crypto_info_read.salt, context->crypto.ctx_remote_mac.remote_iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); } err = setsockopt(socket, SOL_TLS, TLS_RX, &crypto_info_read, sizeof(crypto_info_read)); if (err) return err; #endif return setsockopt(socket, SOL_TLS, TLS_TX, &crypto_info, sizeof(crypto_info)); #else DEBUG_PRINT("TLSe COMPILED WITHOUT kTLS SUPPORT\n"); return TLS_FEATURE_NOT_SUPPORTED; #endif } #ifdef DEBUG void tls_print_certificate(const char *fname) { unsigned char buf[0xFFFF]; char out_buf[0xFFFF]; int size = _private_tls_read_from_file(fname, buf, 0xFFFF); if (size > 0) { int idx = 0; unsigned int len; do { unsigned char *data; if (buf[0] == '-') { data = tls_pem_decode(buf, size, idx++, &len); } else { data = buf; len = size; } if ((!data) || (!len)) return; struct TLSCertificate *cert = asn1_parse(NULL, data, len, -1); if (data != buf) TLS_FREE(data); if (cert) { fprintf(stderr, "%s", tls_certificate_to_string(cert, out_buf, 0xFFFF)); tls_destroy_certificate(cert); } if (data == buf) break; } while (1); } } #endif int tls_remote_error(struct TLSContext *context) { if (!context) return TLS_GENERIC_ERROR; return context->error_code; } #ifdef SSL_COMPATIBLE_INTERFACE int SSL_library_init() { // dummy function return 1; } void SSL_load_error_strings() { // dummy function } void OpenSSL_add_all_algorithms() { // dummy function } void OpenSSL_add_all_ciphers() { // dummy function } void OpenSSL_add_all_digests() { // dummy function } void EVP_cleanup() { // dummy function } int _tls_ssl_private_send_pending(int client_sock, struct TLSContext *context) { unsigned int out_buffer_len = 0; const unsigned char *out_buffer = tls_get_write_buffer(context, &out_buffer_len); unsigned int out_buffer_index = 0; int send_res = 0; SOCKET_SEND_CALLBACK write_cb = NULL; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (ssl_data) write_cb = (SOCKET_SEND_CALLBACK)ssl_data->send; while ((out_buffer) && (out_buffer_len > 0)) { int res; if (write_cb) res = write_cb(client_sock, (char *)&out_buffer[out_buffer_index], out_buffer_len, 0); else res = send(client_sock, (char *)&out_buffer[out_buffer_index], out_buffer_len, 0); if (res <= 0) { if ((!write_cb) && (res < 0)) { #ifdef _WIN32 if (WSAGetLastError() == WSAEWOULDBLOCK) { context->tls_buffer_len = out_buffer_len; memmove(context->tls_buffer, out_buffer + out_buffer_index, out_buffer_len); return res; } #else if ((errno == EAGAIN) || (errno == EINTR)) { context->tls_buffer_len = out_buffer_len; memmove(context->tls_buffer, out_buffer + out_buffer_index, out_buffer_len); return res; } #endif } send_res = res; break; } out_buffer_len -= res; out_buffer_index += res; send_res += res; } tls_buffer_clear(context); return send_res; } struct TLSContext *SSL_new(struct TLSContext *context) { return tls_accept(context); } int SSLv3_server_method() { return 1; } int SSLv3_client_method() { return 0; } int SSL_CTX_use_certificate_file(struct TLSContext *context, const char *filename, int dummy) { // max 64k buffer unsigned char buf[0xFFFF]; int size = _private_tls_read_from_file(filename, buf, sizeof(buf)); if (size > 0) return tls_load_certificates(context, buf, size); return size; } int SSL_CTX_use_PrivateKey_file(struct TLSContext *context, const char *filename, int dummy) { unsigned char buf[0xFFFF]; int size = _private_tls_read_from_file(filename, buf, sizeof(buf)); if (size > 0) return tls_load_private_key(context, buf, size); return size; } int SSL_CTX_check_private_key(struct TLSContext *context) { if ((!context) || (((!context->private_key) || (!context->private_key->der_bytes) || (!context->private_key->der_len)) #ifdef TLS_ECDSA_SUPPORTED && ((!context->ec_private_key) || (!context->ec_private_key->der_bytes) || (!context->ec_private_key->der_len)) #endif )) return 0; return 1; } struct TLSContext *SSL_CTX_new(int method) { #ifdef WITH_TLS_13 return tls_create_context(method, TLS_V13); #else return tls_create_context(method, TLS_V12); #endif } void SSL_free(struct TLSContext *context) { if (context) { TLS_FREE(context->user_data); tls_destroy_context(context); } } void SSL_CTX_free(struct TLSContext *context) { SSL_free(context); } int SSL_get_error(struct TLSContext *context, int ret) { if (!context) return TLS_GENERIC_ERROR; return context->critical_error; } int SSL_set_fd(struct TLSContext *context, int socket) { if (!context) return 0; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (!ssl_data) { ssl_data = (SSLUserData *)TLS_MALLOC(sizeof(SSLUserData)); if (!ssl_data) return TLS_NO_MEMORY; memset(ssl_data, 0, sizeof(SSLUserData)); context->user_data = ssl_data; } ssl_data->fd = socket; return 1; } void *SSL_set_userdata(struct TLSContext *context, void *data) { if (!context) return NULL; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (!ssl_data) { ssl_data = (SSLUserData *)TLS_MALLOC(sizeof(SSLUserData)); if (!ssl_data) return NULL; memset(ssl_data, 0, sizeof(SSLUserData)); context->user_data = ssl_data; } void *old_data = ssl_data->user_data; ssl_data->user_data = data; return old_data; } void *SSL_userdata(struct TLSContext *context) { if (!context) return NULL; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (!ssl_data) return NULL; return ssl_data->user_data; } int SSL_CTX_root_ca(struct TLSContext *context, const char *pem_filename) { if (!context) return TLS_GENERIC_ERROR; int count = TLS_GENERIC_ERROR; FILE *f = fopen(pem_filename, "rb"); if (f) { fseek(f, 0, SEEK_END); size_t size = (size_t)ftell(f); fseek(f, 0, SEEK_SET); if (size) { unsigned char *buf = (unsigned char *)TLS_MALLOC(size + 1); if (buf) { buf[size] = 1; if (fread(buf, 1, size, f) == size) { count = tls_load_root_certificates(context, buf, size); if (count > 0) { SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (!ssl_data) { ssl_data = (SSLUserData *)TLS_MALLOC(sizeof(SSLUserData)); if (!ssl_data) { fclose(f); return TLS_NO_MEMORY; } memset(ssl_data, 0, sizeof(SSLUserData)); context->user_data = ssl_data; } if (!ssl_data->certificate_verify) ssl_data->certificate_verify = tls_default_verify; } } TLS_FREE(buf); } } fclose(f); } return count; } void SSL_CTX_set_verify(struct TLSContext *context, int mode, tls_validation_function verify_callback) { if (!context) return; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (!ssl_data) { ssl_data = (SSLUserData *)TLS_MALLOC(sizeof(SSLUserData)); if (!ssl_data) return; memset(ssl_data, 0, sizeof(SSLUserData)); context->user_data = ssl_data; } if (mode == SSL_VERIFY_NONE) ssl_data->certificate_verify = NULL; else ssl_data->certificate_verify = verify_callback; } int _private_tls_safe_read(struct TLSContext *context, void *buffer, int buf_size) { SSLUserData *ssl_data = (SSLUserData *)context->user_data; if ((!ssl_data) || (ssl_data->fd < 0)) return TLS_GENERIC_ERROR; SOCKET_RECV_CALLBACK read_cb = (SOCKET_RECV_CALLBACK)ssl_data->recv; if (read_cb) return read_cb(ssl_data->fd, (char *)buffer, buf_size, 0); return recv(ssl_data->fd, (char *)buffer, buf_size, 0); } int SSL_accept(struct TLSContext *context) { if (!context) return TLS_GENERIC_ERROR; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if ((!ssl_data) || (ssl_data->fd < 0)) return TLS_GENERIC_ERROR; if (tls_established(context)) return 1; unsigned char client_message[0xFFFF]; // accept int read_size = 0; while ((read_size = _private_tls_safe_read(context, (char *)client_message, sizeof(client_message))) > 0) { if (tls_consume_stream(context, client_message, read_size, ssl_data->certificate_verify) >= 0) { int res = _tls_ssl_private_send_pending(ssl_data->fd, context); if (res < 0) return res; } if (tls_established(context)) return 1; } if (read_size <= 0) return TLS_BROKEN_CONNECTION; return 0; } int SSL_connect(struct TLSContext *context) { if (!context) return TLS_GENERIC_ERROR; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if ((!ssl_data) || (ssl_data->fd < 0) || (context->critical_error)) return TLS_GENERIC_ERROR; int res = tls_client_connect(context); if (res < 0) return res; res = _tls_ssl_private_send_pending(ssl_data->fd, context); if (res < 0) return res; int read_size; unsigned char client_message[0xFFFF]; while ((read_size = _private_tls_safe_read(context, (char *)client_message, sizeof(client_message))) > 0) { if (tls_consume_stream(context, client_message, read_size, ssl_data->certificate_verify) >= 0) { res = _tls_ssl_private_send_pending(ssl_data->fd, context); if (res < 0) return res; } if (tls_established(context)) return 1; if (context->critical_error) return TLS_GENERIC_ERROR; } return read_size; } int SSL_shutdown(struct TLSContext *context) { if (!context) return TLS_GENERIC_ERROR; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if ((!ssl_data) || (ssl_data->fd < 0)) return TLS_GENERIC_ERROR; tls_close_notify(context); return 0; } int SSL_write(struct TLSContext *context, const void *buf, unsigned int len) { if (!context) return TLS_GENERIC_ERROR; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if ((!ssl_data) || (ssl_data->fd < 0)) return TLS_GENERIC_ERROR; int written_size = tls_write(context, (const unsigned char *)buf, len); if (written_size > 0) { int res = _tls_ssl_private_send_pending(ssl_data->fd, context); if (res <= 0) return res; } return written_size; } int SSL_read(struct TLSContext *context, void *buf, unsigned int len) { if (!context) return TLS_GENERIC_ERROR; if (context->application_buffer_len) return tls_read(context, (unsigned char *)buf, len); SSLUserData *ssl_data = (SSLUserData *)context->user_data; if ((!ssl_data) || (ssl_data->fd < 0) || (context->critical_error)) return TLS_GENERIC_ERROR; if (tls_established(context) != 1) return TLS_GENERIC_ERROR; unsigned char client_message[0xFFFF]; // accept int read_size; while ((!context->application_buffer_len) && ((read_size = _private_tls_safe_read(context, (char *)client_message, sizeof(client_message))) > 0)) { if (tls_consume_stream(context, client_message, read_size, ssl_data->certificate_verify) > 0) _tls_ssl_private_send_pending(ssl_data->fd, context); if ((context->critical_error) && (!context->application_buffer_len)) return TLS_GENERIC_ERROR; } if ((read_size <= 0) && (!context->application_buffer_len)) return read_size; return tls_read(context, (unsigned char *)buf, len); } int SSL_pending(struct TLSContext *context) { if (!context) return TLS_GENERIC_ERROR; return context->application_buffer_len; } int SSL_set_io(struct TLSContext *context, void *recv_cb, void *send_cb) { if (!context) return TLS_GENERIC_ERROR; SSLUserData *ssl_data = (SSLUserData *)context->user_data; if (!ssl_data) { ssl_data = (SSLUserData *)TLS_MALLOC(sizeof(SSLUserData)); if (!ssl_data) return TLS_NO_MEMORY; memset(ssl_data, 0, sizeof(SSLUserData)); context->user_data = ssl_data; } ssl_data->recv = recv_cb; ssl_data->send = send_cb; return 0; } #endif // SSL_COMPATIBLE_INTERFACE #ifdef TLS_SRTP struct SRTPContext { symmetric_CTR aes; unsigned int salt[4]; unsigned char mac[TLS_SHA1_MAC_SIZE]; unsigned int tag_size; unsigned int roc; unsigned short seq; unsigned char mode; unsigned char auth_mode; }; struct SRTPContext *srtp_init(unsigned char mode, unsigned char auth_mode) { struct SRTPContext *context = NULL; tls_init(); switch (mode) { case SRTP_NULL: break; case SRTP_AES_CM: break; default: return NULL; } switch (auth_mode) { case SRTP_AUTH_NULL: break; case SRTP_AUTH_HMAC_SHA1: break; default: return NULL; } context = (struct SRTPContext *)TLS_MALLOC(sizeof(struct SRTPContext)); if (context) { memset(context, 0, sizeof(struct SRTPContext)); context->mode = mode; context->auth_mode = auth_mode; } return context; } static int _private_tls_srtp_key_derive(const void *key, int keylen, const void *salt, unsigned char label, void *out, int outlen) { unsigned char iv[16]; memcpy(iv, salt, 14); iv[14] = iv[15] = 0; void *in = TLS_MALLOC(outlen); if (!in) return TLS_GENERIC_ERROR; memset(in, 0, outlen); iv[7] ^= label; symmetric_CTR aes; if (ctr_start(find_cipher("aes"), iv, (const unsigned char *)key, keylen, 0, CTR_COUNTER_BIG_ENDIAN, &aes)) return TLS_GENERIC_ERROR; ctr_encrypt((unsigned char *)in, (unsigned char *)out, outlen, &aes); TLS_FREE(in); ctr_done(&aes); return 0; } int srtp_key(struct SRTPContext *context, const void *key, int keylen, const void *salt, int saltlen, int tag_bits) { if (!context) return TLS_GENERIC_ERROR; if (context->mode == SRTP_AES_CM) { if ((saltlen < 14) || (keylen < 16)) return TLS_GENERIC_ERROR; // key unsigned char key_buf[16]; unsigned char iv[16]; memset(iv, 0, sizeof(iv)); if (_private_tls_srtp_key_derive(key, keylen, salt, 0, key_buf, sizeof(key_buf))) return TLS_GENERIC_ERROR; DEBUG_DUMP_HEX_LABEL("KEY", key_buf, 16) if (_private_tls_srtp_key_derive(key, keylen, salt, 1, context->mac, 20)) return TLS_GENERIC_ERROR; DEBUG_DUMP_HEX_LABEL("AUTH", context->mac, 20) memset(context->salt, 0, sizeof(context->salt)); if (_private_tls_srtp_key_derive(key, keylen, salt, 2, context->salt, 14)) return TLS_GENERIC_ERROR; DEBUG_DUMP_HEX_LABEL("SALT", ((unsigned char *)context->salt), 14) if (ctr_start(find_cipher("aes"), iv, key_buf, sizeof(key_buf), 0, CTR_COUNTER_BIG_ENDIAN, &context->aes)) return TLS_GENERIC_ERROR; } if (context->auth_mode) context->tag_size = tag_bits / 8; return 0; } int srtp_inline(struct SRTPContext *context, const char *b64, int tag_bits) { char out_buffer[1024]; if (!b64) return TLS_GENERIC_ERROR; int len = strlen(b64); if (len >= sizeof(out_buffer)) len = sizeof(out_buffer); int size = _private_b64_decode(b64, len, (unsigned char *)out_buffer); if (size <= 0) return TLS_GENERIC_ERROR; switch (context->mode) { case SRTP_AES_CM: if (size < 30) return TLS_BROKEN_PACKET; return srtp_key(context, out_buffer, 16, out_buffer + 16, 14, tag_bits); } return TLS_GENERIC_ERROR; } int srtp_encrypt(struct SRTPContext *context, const unsigned char *pt_header, int pt_len, const unsigned char *payload, unsigned int payload_len, unsigned char *out, int *out_buffer_len) { if ((!context) || (!out) || (!out_buffer_len) || (*out_buffer_len < payload_len)) return TLS_GENERIC_ERROR; int out_len = payload_len; unsigned short seq = 0; unsigned int roc = context->roc; unsigned int ssrc = 0; if ((pt_header) && (pt_len >= 12)) { seq = ntohs(*((unsigned short *)&pt_header[2])); ssrc = ntohl(*((unsigned long *)&pt_header[8])); } if (seq < context->seq) roc++; unsigned int roc_be = htonl(roc); if (context->mode) { if (*out_buffer_len < out_len) return TLS_NO_MEMORY; unsigned int counter[4]; counter[0] = context->salt[0]; counter[1] = context->salt[1] ^ htonl (ssrc); counter[2] = context->salt[2] ^ roc_be; counter[3] = context->salt[3] ^ htonl (seq << 16); ctr_setiv((unsigned char *)&counter, 16, &context->aes); if (ctr_encrypt(payload, out, payload_len, &context->aes)) return TLS_GENERIC_ERROR; } else { memcpy(out, payload, payload_len); } *out_buffer_len = out_len; if (context->auth_mode == SRTP_AUTH_HMAC_SHA1) { unsigned char digest_out[TLS_SHA1_MAC_SIZE]; unsigned long dlen = TLS_SHA1_MAC_SIZE; hmac_state hmac; int err = hmac_init(&hmac, find_hash("sha1"), context->mac, 20); if (!err) { if (pt_len) err = hmac_process(&hmac, pt_header, pt_len); if (out_len) err = hmac_process(&hmac, out, payload_len); err = hmac_process(&hmac, (unsigned char *)&roc_be, 4); if (!err) err = hmac_done(&hmac, digest_out, &dlen); } if (err) return TLS_GENERIC_ERROR; if (dlen > context->tag_size) dlen = context->tag_size; *out_buffer_len += dlen; memcpy(out + out_len, digest_out, dlen); } context->roc = roc; context->seq = seq; return 0; } int srtp_decrypt(struct SRTPContext *context, const unsigned char *pt_header, int pt_len, const unsigned char *payload, unsigned int payload_len, unsigned char *out, int *out_buffer_len) { if ((!context) || (!out) || (!out_buffer_len) || (*out_buffer_len < payload_len) || (payload_len < context->tag_size) || (!pt_header) || (pt_len < 12)) return TLS_GENERIC_ERROR; int out_len = payload_len; unsigned short seq = ntohs(*((unsigned short *)&pt_header[2])); unsigned int roc = context->roc; unsigned int ssrc = ntohl(*((unsigned long *)&pt_header[8])); if (seq < context->seq) roc++; unsigned int roc_be = htonl(roc); if (context->mode) { unsigned int counter[4]; counter[0] = context->salt[0]; counter[1] = context->salt[1] ^ htonl (ssrc); counter[2] = context->salt[2] ^ roc_be; counter[3] = context->salt[3] ^ htonl (seq << 16); ctr_setiv((unsigned char *)&counter, 16, &context->aes); if (ctr_decrypt(payload, out, payload_len - context->tag_size, &context->aes)) return TLS_GENERIC_ERROR; if (context->auth_mode == SRTP_AUTH_HMAC_SHA1) { unsigned char digest_out[TLS_SHA1_MAC_SIZE]; unsigned long dlen = TLS_SHA1_MAC_SIZE; hmac_state hmac; int err = hmac_init(&hmac, find_hash("sha1"), context->mac, 20); if (!err) { if (pt_len) err = hmac_process(&hmac, pt_header, pt_len); if (out_len) err = hmac_process(&hmac, payload, payload_len - context->tag_size); err = hmac_process(&hmac, (unsigned char *)&roc_be, 4); if (!err) err = hmac_done(&hmac, digest_out, &dlen); } if (err) return TLS_GENERIC_ERROR; if (dlen > context->tag_size) dlen = context->tag_size; if (memcmp(digest_out, payload + payload_len - context->tag_size, dlen)) return TLS_INTEGRITY_FAILED; } } else { memcpy(out, payload, payload_len - context->tag_size); } context->seq = seq; context->roc = roc; *out_buffer_len = payload_len - context->tag_size; return 0; } void srtp_destroy(struct SRTPContext *context) { if (context) { if (context->mode) ctr_done(&context->aes); TLS_FREE(context); } } #endif // TLS_SRTP #endif // TLSE_C /* ------------------------------------------------------------------------------ END tlse.c ------------------------------------------------------------------------------ */ #endif /* HTTPS_NO_TLSE */ /* ------------------------------------------------------------------------------ HTTPS IMPLEMENTATION ------------------------------------------------------------------------------ */ typedef struct { /* keep this at the top!*/ https_t https; /* because https_internal_t* can be cast to https_t*. */ void* memctx; struct TLSContext * tls_context; HTTPS_SOCKET socket; int connect_pending; int handshake_pending; int request_sent; char address[ 256 ]; char request_header[ 256 ]; char* request_header_large; void* request_data; size_t request_data_size; char reason_phrase[ 1024 ]; char content_type[ 256 ]; size_t data_size; size_t data_capacity; void* data; } https_internal_t; static int https_internal_parse_url( char const* url, char* address, size_t address_capacity, char* port, size_t port_capacity, char const** resource ) { // make sure url starts with https:// if( strncmp( url, "https://", 8 ) != 0 ) return 0; url += 8; // skip https:// part of url size_t url_len = strlen( url ); // find end of address part of url char const* port_pos = strchr( url, ':' ); char const* rsrc_pos = strchr( url, '/' ); char const* address_end = port_pos ? port_pos : rsrc_pos; if( port_pos && port_pos < address_end ) address_end = port_pos; if( rsrc_pos && rsrc_pos < address_end ) address_end = rsrc_pos; if( !address_end ) address_end = url + url_len; // extract address size_t address_len = (size_t)( address_end - url ); if( address_len >= address_capacity ) return 0; memcpy( address, url, address_len ); address[ address_len ] = 0; // check if there's a port defined char const* port_end = address_end; if( *address_end == ':' ) { ++address_end; port_end = strchr( address_end, '/' ); if( !port_end ) port_end = address_end + strlen( address_end ); size_t port_len = (size_t)( port_end - address_end ); if( port_len >= port_capacity ) return 0; memcpy( port, address_end, port_len ); port[ port_len ] = 0; } else { // use default port number 443 if( port_capacity <= 3 ) return 0; strcpy( port, "443" ); } *resource = port_end; return 1; } HTTPS_SOCKET https_internal_connect( char const* address, char const* port ) { // set up hints for getaddrinfo struct addrinfo hints; memset( &hints, 0, sizeof( hints ) ); hints.ai_family = AF_UNSPEC; // the Internet Protocol version 4 (IPv4) address family. hints.ai_flags = AI_PASSIVE; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; // Use Transmission Control Protocol (TCP). // resolve the server address and port struct addrinfo* addri = 0; int error = getaddrinfo( address, port, &hints, &addri ) ; if( error != 0 ) return HTTPS_INVALID_SOCKET; // create the socket HTTPS_SOCKET sock = socket( addri->ai_family, addri->ai_socktype, addri->ai_protocol ); if( sock == -1) { freeaddrinfo( addri ); return HTTPS_INVALID_SOCKET; } // set socket to nonblocking mode /* u_long nonblocking = 1; #ifdef _WIN32 int res = ioctlsocket( sock, FIONBIO, &nonblocking ); #else int flags = fcntl( sock, F_GETFL, 0 ); int res = fcntl( sock, F_SETFL, flags | O_NONBLOCK ); #endif if( res == -1 ) { freeaddrinfo( addri ); #ifdef _WIN32 closesocket( sock ); #else close( sock ); #endif return HTTPS_INVALID_SOCKET; }*/ // connect to server if( connect( sock, addri->ai_addr, (int)addri->ai_addrlen ) == -1 ) { #ifdef _WIN32 if( WSAGetLastError() != WSAEWOULDBLOCK && WSAGetLastError() != WSAEINPROGRESS ) { freeaddrinfo( addri ); closesocket( sock ); return HTTPS_INVALID_SOCKET; } #else if( errno != EWOULDBLOCK && errno != EINPROGRESS && errno != EAGAIN ) { freeaddrinfo( addri ); close( sock ); return HTTPS_INVALID_SOCKET; } #endif } freeaddrinfo( addri ); return sock; } static https_internal_t* https_internal_create( size_t request_data_size, void* memctx ) { https_internal_t* internal = (https_internal_t*) HTTPS_MALLOC( memctx, sizeof( https_internal_t ) + request_data_size ); internal->https.status = HTTPS_STATUS_PENDING; internal->https.status_code = 0; internal->https.response_size = 0; internal->https.response_data = NULL; internal->memctx = memctx; internal->connect_pending = 1; internal->request_sent = 0; strcpy( internal->reason_phrase, "" ); internal->https.reason_phrase = internal->reason_phrase; strcpy( internal->content_type, "" ); internal->https.content_type = internal->content_type; internal->data_size = 0; internal->data_capacity = 64 * 1024; internal->data = HTTPS_MALLOC( memctx, internal->data_capacity ); internal->request_data = NULL; internal->request_data_size = 0; internal->tls_context = tls_create_context( 0, TLS_V12 ); return internal; } https_t* https_get( char const* url, void* memctx ) { #if !HTTPS_NO_THREADING //< @r-lyeh, add option to disable threading #ifdef _WIN32 #if (defined(_MSC_VER) && _MSC_VER < 1600) typedef BOOL (WINAPI *InitOnceExecuteOnce_t)( PRTL_RUN_ONCE, BOOL (WINAPI*)( PRTL_RUN_ONCE, PVOID, PVOID* ), PVOID, LPVOID* ); HINSTANCE lib = LoadLibraryA( "kernel32.dll" ); InitOnceExecuteOnce_t InitOnceExecuteOnce_func = (InitOnceExecuteOnce_t) (uintptr_t) GetProcAddress( lib, "InitOnceExecuteOnce" ); ASSERT(InitOnceExecuteOnce_func); InitOnceExecuteOnce_func( &https_internal_one_time_init_instance, https_internal_one_time_init, NULL, NULL ); FreeLibrary( lib ); #else InitOnceExecuteOnce( &https_internal_one_time_init_instance, (void*)https_internal_one_time_init, NULL, NULL ); #endif #else pthread_once( &https_internal_one_time_init_instance, https_internal_one_time_init); #endif if( memctx ) https_internal_memctx( memctx ); #endif char address[ 256 ]; char port[ 16 ]; char const* resource; if( https_internal_parse_url( url, address, sizeof( address ), port, sizeof( port ), &resource ) == 0 ) return NULL; HTTPS_SOCKET socket = https_internal_connect( address, port ); if( socket == HTTPS_INVALID_SOCKET ) return NULL; https_internal_t* internal = https_internal_create( 0, memctx ); internal->socket = socket; char* request_header; size_t request_header_len = 256 + strlen( resource ) + strlen( address ) + strlen( port ); if( request_header_len < sizeof( internal->request_header ) ) { internal->request_header_large = NULL; request_header = internal->request_header; } else { internal->request_header_large = (char*) HTTPS_MALLOC( memctx, request_header_len + 1 ); request_header = internal->request_header_large; } sprintf( request_header, "GET %s HTTP/1.0\r\nHost: %s:%s\r\n\r\n", resource, address, port ); return &internal->https; } https_t* https_post( char const* url, void const* data, size_t size, void* memctx ) { #if !HTTPS_NO_THREADING //< @r-lyeh, add option to disable threading #ifdef _WIN32 #if (defined(_MSC_VER) && _MSC_VER < 1600) typedef BOOL (WINAPI *InitOnceExecuteOnce_t)( PRTL_RUN_ONCE, BOOL (WINAPI*)( PRTL_RUN_ONCE, PVOID, PVOID* ), PVOID, LPVOID* ); HINSTANCE lib = LoadLibraryA( "kernel32.dll" ); InitOnceExecuteOnce_t InitOnceExecuteOnce_func = (InitOnceExecuteOnce_t) (uintptr_t) GetProcAddress( lib, "InitOnceExecuteOnce" ); ASSERT(InitOnceExecuteOnce_func); InitOnceExecuteOnce_func( &https_internal_one_time_init_instance, https_internal_one_time_init, NULL, NULL ); FreeLibrary( lib ); #else InitOnceExecuteOnce( &https_internal_one_time_init_instance, (void*)https_internal_one_time_init, NULL, NULL ); #endif #else pthread_once( &https_internal_one_time_init_instance, https_internal_one_time_init); #endif if( memctx ) https_internal_memctx( memctx ); #endif char address[ 256 ]; char port[ 16 ]; char const* resource; if( https_internal_parse_url( url, address, sizeof( address ), port, sizeof( port ), &resource ) == 0 ) return NULL; HTTPS_SOCKET socket = https_internal_connect( address, port ); if( socket == HTTPS_INVALID_SOCKET ) return NULL; https_internal_t* internal = https_internal_create( size, memctx ); internal->socket = socket; char* request_header; size_t request_header_len = 256 + strlen( resource ) + strlen( address ) + strlen( port ); if( request_header_len < sizeof( internal->request_header ) ) { internal->request_header_large = NULL; request_header = internal->request_header; } else { internal->request_header_large = (char*) HTTPS_MALLOC( memctx, request_header_len + 1 ); request_header = internal->request_header_large; } sprintf( request_header, "POST %s HTTP/1.0\r\nHost: %s:%s\r\nContent-Length: %d\r\n\r\n", resource, address, port, (int) size ); internal->request_data_size = size; internal->request_data = ( internal + 1 ); memcpy( internal->request_data, data, size ); return &internal->https; } static int https_internal_send_pending( https_internal_t* internal ) { unsigned int send_size = 0; unsigned char const* send_buffer = tls_get_write_buffer( internal->tls_context, &send_size ); int res = 0; while( send_size > 0 ) { int bytes_sent = send( internal->socket, (char const*) send_buffer, send_size, 0 ); if( bytes_sent <= 0) { res = bytes_sent; break; } send_buffer += bytes_sent; send_size -= bytes_sent; res += bytes_sent; } tls_buffer_clear( internal->tls_context ); return res; } https_status_t https_process( https_t* https ) { https_internal_t* internal = (https_internal_t*) https; if( https->status > HTTPS_STATUS_COMPLETED ) return https->status; // == HTTPS_STATUS_FAILED ) //< @r-lyeh if( internal->connect_pending ) { fd_set sockets_to_check; FD_ZERO( &sockets_to_check ); #pragma warning( push ) #pragma warning( disable: 4548 ) // expression before comma has no effect; expected expression with side-effect FD_SET( internal->socket, &sockets_to_check ); #pragma warning( pop ) struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 0; // check if socket is ready for send if( select( (int)( internal->socket + 1 ), NULL, &sockets_to_check, NULL, &timeout ) == 1 ) { int opt = -1; socklen_t len = sizeof( opt ); if( getsockopt( internal->socket, SOL_SOCKET, SO_ERROR, (char*)( &opt ), &len) >= 0 && opt == 0 ) { internal->connect_pending = 0; // if it is, we're connected // do tls handshake tls_client_connect( internal->tls_context ); int res = https_internal_send_pending( internal ); if( res == -1 ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } internal->handshake_pending = 1; } } } if( internal->connect_pending ) return https->status; if( !internal->handshake_pending && !internal->request_sent ) { char const* request_header = internal->request_header_large ? internal->request_header_large : internal->request_header; tls_write( internal->tls_context, (unsigned char*) request_header, (int) strlen( request_header ) ); if( https_internal_send_pending( internal ) == -1 ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } if( internal->request_data_size ) { tls_write( internal->tls_context, (unsigned char*) internal->request_data, (int) internal->request_data_size ); int res = https_internal_send_pending( internal ); if( res == -1 ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } } internal->request_sent = 1; return https->status; } // check if socket is ready for recv fd_set sockets_to_check; FD_ZERO( &sockets_to_check ); #pragma warning( push ) #pragma warning( disable: 4548 ) // expression before comma has no effect; expected expression with side-effect FD_SET( internal->socket, &sockets_to_check ); #pragma warning( pop ) struct timeval timeout; while( (timeout.tv_sec = 1, timeout.tv_usec = 0), select( (int)( internal->socket + 1 ), &sockets_to_check, NULL, NULL, &timeout ) == 1 ) { enum { buflen = 4 * 1024 }; char buffer[ buflen ]; int size = recv( internal->socket, buffer, buflen, 0 ); if( size == -1 ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } #if is(tcc) && is(win32) // hexdump(buffer, size); //< @r-lyeh // printf(">+=%d,%d/%d\n", size,internal->data_size,internal->data_capacity); #endif tls_consume_stream( internal->tls_context, (unsigned char*) buffer, size, 0 ); int res = https_internal_send_pending( internal ); if( res == -1 ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } if( internal->handshake_pending ) { if( tls_established( internal->tls_context ) ) internal->handshake_pending = 0; else return https->status; continue; } if( size > 0 ) { size_t min_size = internal->data_size + size + 1; if( internal->data_capacity < min_size ) { internal->data_capacity *= 2; if( internal->data_capacity < min_size ) internal->data_capacity = min_size; void* new_data = HTTPS_MALLOC( internal->memctx, internal->data_capacity ); memcpy( new_data, internal->data, internal->data_size ); HTTPS_FREE( internal->memctx, internal->data ); internal->data = new_data; } int read_size = tls_read( internal->tls_context, (unsigned char*)( ( (uintptr_t) internal->data ) + internal->data_size ), size); internal->data_size += read_size; } else if( size == 0 ) { char const* status_line = (char const*) internal->data; int header_size = 0; char const* header_end = strstr( status_line, "\r\n\r\n" ); if( header_end ) { header_end += 4; header_size = (int)( header_end - status_line ); } else { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } char const* content_length = strstr( status_line, "Content-Length: " ); if( content_length && content_length < header_end ) { content_length += strlen( "Content-Length: " ); char const* content_length_end = strstr( content_length, "\r\n" ); if( content_length_end ) { char content_length_extracted[ 32 ]; int len = content_length_end - content_length; memcpy( content_length_extracted, content_length, len ); content_length_extracted[ len ] = '\0'; int content_length_num = atoi( content_length_extracted ); if( content_length_num > internal->data_size ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } } } // skip https version status_line = strchr( status_line, ' ' ); if( !status_line ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } ++status_line; // extract status code char status_code[ 16 ]; char const* status_code_end = strchr( status_line, ' ' ); if( !status_code_end ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } memcpy( status_code, status_line, (size_t)( status_code_end - status_line ) ); status_code[ status_code_end - status_line ] = 0; status_line = status_code_end + 1; https->status_code = atoi( status_code ); // extract reason phrase char const* reason_phrase_end = strstr( status_line, "\r\n" ); if( !reason_phrase_end ) { https->status = __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh return https->status; } size_t reason_phrase_len = (size_t)( reason_phrase_end - status_line ); if( reason_phrase_len >= sizeof( internal->reason_phrase ) ) reason_phrase_len = sizeof( internal->reason_phrase ) - 1; memcpy( internal->reason_phrase, status_line, reason_phrase_len ); internal->reason_phrase[ reason_phrase_len ] = 0; status_line = reason_phrase_end + 1; // extract content type char const* content_type_start = strstr( status_line, "Content-Type: " ); if( content_type_start ) { content_type_start += strlen( "Content-Type: " ); char const* content_type_end = strstr( content_type_start, "\r\n" ); if( content_type_end ) { size_t content_type_len = (size_t)( content_type_end - content_type_start ); if( content_type_len >= sizeof( internal->content_type ) ) content_type_len = sizeof( internal->content_type ) - 1; memcpy( internal->content_type, content_type_start, content_type_len ); internal->content_type[ content_type_len ] = 0; } } https->status = https->status_code < 300 ? HTTPS_STATUS_COMPLETED : __LINE__; // HTTPS_STATUS_FAILED; //< @r-lyeh https->response_data = (void*)( ( (uintptr_t) internal->data ) + header_size ); https->response_size = internal->data_size - header_size; #if 1 //< @r-lyeh // add silently a trailing zero and do not resize response_size. that way, // response remains intact but it can also be used as a ascii C string when needed. ( (char*)https->response_data )[ https->response_size ] = 0; #endif return https->status; } } return https->status; } void https_release( https_t* https ) { https_internal_t* internal = (https_internal_t*) https; #ifdef _WIN32 closesocket( internal->socket ); #else close( internal->socket ); #endif tls_destroy_context( internal->tls_context ); if( internal->request_header_large) HTTPS_FREE( internal->memctx, internal->request_header_large ); HTTPS_FREE( internal->memctx, internal->data ); HTTPS_FREE( internal->memctx, internal ); } #endif /* HTTPS_IMPLEMENTATION */ /* revision history: 0.1 ... */ /* ------------------------------------------------------------------------------ This software is available under 2 licenses - you may choose the one you like. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2018 Mattias Gustavsson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #if 0 #include int main() { https_t *h = https_get("https://www.google.com/", NULL); while (!https_process(h)) { Sleep(0); } printf("%d %s\n", h->status_code, h->content_type); //printf("%.*s\n", (int)h->response_size, (char*)h->response_data); FILE *f = tmpfile(); fwrite(h->response_data, 1, h->response_size, f); printf("%u bytes\n", (unsigned)ftell(f)); fclose(f); https_release(h); } #endif #line 0 #undef F2 #undef F3 #line 1 "3rd_enet.h" /** * include/enet.h - a Single-Header auto-generated variant of enet.h library. * * Usage: * #define ENET_IMPLEMENTATION exactly in ONE source file right BEFORE including the library, like: * * #define ENET_IMPLEMENTATION * #include * * License: * The MIT License (MIT) * * Copyright (c) 2002-2016 Lee Salzman * Copyright (c) 2017-2021 Vladyslav Hrytsenko, Dominik Madarász * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /* ## Disclaimer This is a fork of the original library [lsalzman/enet](https://github.com/lsalzman/enet). While original repo offers a stable, time-tested wonderful library, we are trying to change some things, things, which can't be reflected on the main repo, like: * integrated ipv6 support * added monotonic time * applied project-wide code style change * cleaned up project * single-header style code * NPM package distribution * removed a lot of older methods * and many other various changes */ #ifndef ENET_INCLUDE_H #define ENET_INCLUDE_H #include #include #include #include #define ENET_VERSION_MAJOR 2 #define ENET_VERSION_MINOR 3 #define ENET_VERSION_PATCH 0 #define ENET_VERSION_CREATE(major, minor, patch) (((major)<<16) | ((minor)<<8) | (patch)) #define ENET_VERSION_GET_MAJOR(version) (((version)>>16)&0xFF) #define ENET_VERSION_GET_MINOR(version) (((version)>>8)&0xFF) #define ENET_VERSION_GET_PATCH(version) ((version)&0xFF) #define ENET_VERSION ENET_VERSION_CREATE(ENET_VERSION_MAJOR, ENET_VERSION_MINOR, ENET_VERSION_PATCH) #define ENET_TIME_OVERFLOW 86400000 #define ENET_TIME_LESS(a, b) ((a) - (b) >= ENET_TIME_OVERFLOW) #define ENET_TIME_GREATER(a, b) ((b) - (a) >= ENET_TIME_OVERFLOW) #define ENET_TIME_LESS_EQUAL(a, b) (! ENET_TIME_GREATER (a, b)) #define ENET_TIME_GREATER_EQUAL(a, b) (! ENET_TIME_LESS (a, b)) #define ENET_TIME_DIFFERENCE(a, b) ((a) - (b) >= ENET_TIME_OVERFLOW ? (b) - (a) : (a) - (b)) // =======================================================================// // ! // ! System differences // ! // =======================================================================// #if defined(_WIN32) #if defined(_MSC_VER) && defined(ENET_IMPLEMENTATION) #pragma warning (disable: 4267) // size_t to int conversion #pragma warning (disable: 4244) // 64bit to 32bit int #pragma warning (disable: 4018) // signed/unsigned mismatch #pragma warning (disable: 4146) // unary minus operator applied to unsigned type #endif #ifndef ENET_NO_PRAGMA_LINK #pragma comment(lib, "ws2_32") //< @r-lyeh removed .lib (tcc support) #pragma comment(lib, "winmm") //< @r-lyeh removed .lib (tcc support) #endif #if _MSC_VER >= 1910 /* It looks like there were changes as of Visual Studio 2017 and there are no 32/64 bit versions of _InterlockedExchange[operation], only InterlockedExchange[operation] (without leading underscore), so we have to distinguish between compiler versions */ #define NOT_UNDERSCORED_INTERLOCKED_EXCHANGE #endif #ifdef __GNUC__ #if (_WIN32_WINNT < 0x0501) #undef _WIN32_WINNT #define _WIN32_WINNT 0x0501 #endif #endif #include #include #include #include #if defined(_MSC_VER) && _MSC_VER < 1900 //< @r-lyeh typedef struct timespec { long tv_sec; long tv_nsec; }; #endif #ifndef __MINGW32__ #define CLOCK_MONOTONIC 0 //< @r-lyeh, tcc support #endif typedef SOCKET ENetSocket; #define ENET_SOCKET_NULL INVALID_SOCKET #define ENET_HOST_TO_NET_16(value) (htons(value)) #define ENET_HOST_TO_NET_32(value) (htonl(value)) #define ENET_NET_TO_HOST_16(value) (ntohs(value)) #define ENET_NET_TO_HOST_32(value) (ntohl(value)) typedef struct { size_t dataLength; void * data; } ENetBuffer; #define ENET_CALLBACK __cdecl #ifdef ENET_DLL #ifdef ENET_IMPLEMENTATION #define ENET_API __declspec( dllexport ) #else #define ENET_API __declspec( dllimport ) #endif // ENET_IMPLEMENTATION #else #define ENET_API extern #endif // ENET_DLL typedef fd_set ENetSocketSet; #define ENET_SOCKETSET_EMPTY(sockset) FD_ZERO(&(sockset)) #define ENET_SOCKETSET_ADD(sockset, socket) FD_SET(socket, &(sockset)) #define ENET_SOCKETSET_REMOVE(sockset, socket) FD_CLR(socket, &(sockset)) #define ENET_SOCKETSET_CHECK(sockset, socket) FD_ISSET(socket, &(sockset)) #else #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __APPLE__ #include #include #include #endif #ifndef MSG_NOSIGNAL #define MSG_NOSIGNAL 0 #endif #ifdef MSG_MAXIOVLEN #define ENET_BUFFER_MAXIMUM MSG_MAXIOVLEN #endif typedef int ENetSocket; #define ENET_SOCKET_NULL -1 #define ENET_HOST_TO_NET_16(value) (htons(value)) /**< macro that converts host to net byte-order of a 16-bit value */ #define ENET_HOST_TO_NET_32(value) (htonl(value)) /**< macro that converts host to net byte-order of a 32-bit value */ #define ENET_NET_TO_HOST_16(value) (ntohs(value)) /**< macro that converts net to host byte-order of a 16-bit value */ #define ENET_NET_TO_HOST_32(value) (ntohl(value)) /**< macro that converts net to host byte-order of a 32-bit value */ typedef struct { void * data; size_t dataLength; } ENetBuffer; #define ENET_CALLBACK #define ENET_API extern typedef fd_set ENetSocketSet; #define ENET_SOCKETSET_EMPTY(sockset) FD_ZERO(&(sockset)) #define ENET_SOCKETSET_ADD(sockset, socket) FD_SET(socket, &(sockset)) #define ENET_SOCKETSET_REMOVE(sockset, socket) FD_CLR(socket, &(sockset)) #define ENET_SOCKETSET_CHECK(sockset, socket) FD_ISSET(socket, &(sockset)) #endif #ifdef __GNUC__ #define ENET_DEPRECATED(func) func __attribute__ ((deprecated)) #elif defined(_MSC_VER) #define ENET_DEPRECATED(func) __declspec(deprecated) func #else #pragma message("WARNING: Please ENET_DEPRECATED for this compiler") #define ENET_DEPRECATED(func) func #endif #ifndef ENET_BUFFER_MAXIMUM #define ENET_BUFFER_MAXIMUM (1 + 2 * ENET_PROTOCOL_MAXIMUM_PACKET_COMMANDS) #endif #define ENET_UNUSED(x) (void)x; #define ENET_MAX(x, y) ((x) > (y) ? (x) : (y)) #define ENET_MIN(x, y) ((x) < (y) ? (x) : (y)) #define ENET_IPV6 1 const struct in6_addr enet_v4_anyaddr = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 }}}; const struct in6_addr enet_v4_noaddr = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}; const struct in6_addr enet_v4_localhost = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x01 }}}; const struct in6_addr enet_v6_anyaddr = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}}; const struct in6_addr enet_v6_noaddr = {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}; const struct in6_addr enet_v6_localhost = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }}}; #define ENET_HOST_ANY in6addr_any #define ENET_HOST_BROADCAST 0xFFFFFFFFU #define ENET_PORT_ANY 0 #ifdef __cplusplus extern "C" { #endif // =======================================================================// // ! // ! Basic stuff // ! // =======================================================================// typedef uint8_t enet_uint8; /**< unsigned 8-bit type */ typedef uint16_t enet_uint16; /**< unsigned 16-bit type */ typedef uint32_t enet_uint32; /**< unsigned 32-bit type */ typedef uint64_t enet_uint64; /**< unsigned 64-bit type */ typedef enet_uint32 ENetVersion; typedef struct _ENetPacket ENetPacket; typedef struct _ENetCallbacks { void *(ENET_CALLBACK *malloc) (size_t size); void (ENET_CALLBACK *free) (void *memory); void (ENET_CALLBACK *no_memory) (void); ENetPacket *(ENET_CALLBACK *packet_create) (const void *data, size_t dataLength, enet_uint32 flags); void (ENET_CALLBACK *packet_destroy) (ENetPacket *packet); } ENetCallbacks; extern void *enet_malloc(size_t); extern void enet_free(void *); extern ENetPacket* enet_packet_create(const void*,size_t,enet_uint32); extern ENetPacket* enet_packet_copy(ENetPacket*); extern void enet_packet_destroy(ENetPacket*); // =======================================================================// // ! // ! List // ! // =======================================================================// typedef struct _ENetListNode { struct _ENetListNode *next; struct _ENetListNode *previous; } ENetListNode; typedef ENetListNode *ENetListIterator; typedef struct _ENetList { ENetListNode sentinel; } ENetList; extern ENetListIterator enet_list_insert(ENetListIterator, void *); extern ENetListIterator enet_list_move(ENetListIterator, void *, void *); extern void *enet_list_remove(ENetListIterator); extern void enet_list_clear(ENetList *); extern size_t enet_list_size(ENetList *); #define enet_list_begin(list) ((list)->sentinel.next) #define enet_list_end(list) (&(list)->sentinel) #define enet_list_empty(list) (enet_list_begin(list) == enet_list_end(list)) #define enet_list_next(iterator) ((iterator)->next) #define enet_list_previous(iterator) ((iterator)->previous) #define enet_list_front(list) ((void *)(list)->sentinel.next) #define enet_list_back(list) ((void *)(list)->sentinel.previous) // =======================================================================// // ! // ! Protocol // ! // =======================================================================// enum { ENET_PROTOCOL_MINIMUM_MTU = 576, ENET_PROTOCOL_MAXIMUM_MTU = 4096, ENET_PROTOCOL_MAXIMUM_PACKET_COMMANDS = 32, ENET_PROTOCOL_MINIMUM_WINDOW_SIZE = 4096, ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE = 65536, ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT = 1, ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT = 255, ENET_PROTOCOL_MAXIMUM_PEER_ID = 0xFFF, ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT = 1024 * 1024 }; typedef enum _ENetProtocolCommand { ENET_PROTOCOL_COMMAND_NONE = 0, ENET_PROTOCOL_COMMAND_ACKNOWLEDGE = 1, ENET_PROTOCOL_COMMAND_CONNECT = 2, ENET_PROTOCOL_COMMAND_VERIFY_CONNECT = 3, ENET_PROTOCOL_COMMAND_DISCONNECT = 4, ENET_PROTOCOL_COMMAND_PING = 5, ENET_PROTOCOL_COMMAND_SEND_RELIABLE = 6, ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE = 7, ENET_PROTOCOL_COMMAND_SEND_FRAGMENT = 8, ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED = 9, ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT = 10, ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE = 11, ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT = 12, ENET_PROTOCOL_COMMAND_COUNT = 13, ENET_PROTOCOL_COMMAND_MASK = 0x0F } ENetProtocolCommand; typedef enum _ENetProtocolFlag { ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE = (1 << 7), ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED = (1 << 6), ENET_PROTOCOL_HEADER_FLAG_COMPRESSED = (1 << 14), ENET_PROTOCOL_HEADER_FLAG_SENT_TIME = (1 << 15), ENET_PROTOCOL_HEADER_FLAG_MASK = ENET_PROTOCOL_HEADER_FLAG_COMPRESSED | ENET_PROTOCOL_HEADER_FLAG_SENT_TIME, ENET_PROTOCOL_HEADER_SESSION_MASK = (3 << 12), ENET_PROTOCOL_HEADER_SESSION_SHIFT = 12 } ENetProtocolFlag; #ifdef _MSC_VER #pragma pack(push, 1) #define ENET_PACKED #elif defined(__GNUC__) || defined(__clang__) #define ENET_PACKED __attribute__ ((packed)) #else #define ENET_PACKED #endif typedef struct _ENetProtocolHeader { enet_uint16 peerID; enet_uint16 sentTime; } ENET_PACKED ENetProtocolHeader; typedef struct _ENetProtocolCommandHeader { enet_uint8 command; enet_uint8 channelID; enet_uint16 reliableSequenceNumber; } ENET_PACKED ENetProtocolCommandHeader; typedef struct _ENetProtocolAcknowledge { ENetProtocolCommandHeader header; enet_uint16 receivedReliableSequenceNumber; enet_uint16 receivedSentTime; } ENET_PACKED ENetProtocolAcknowledge; typedef struct _ENetProtocolConnect { ENetProtocolCommandHeader header; enet_uint16 outgoingPeerID; enet_uint8 incomingSessionID; enet_uint8 outgoingSessionID; enet_uint32 mtu; enet_uint32 windowSize; enet_uint32 channelCount; enet_uint32 incomingBandwidth; enet_uint32 outgoingBandwidth; enet_uint32 packetThrottleInterval; enet_uint32 packetThrottleAcceleration; enet_uint32 packetThrottleDeceleration; enet_uint32 connectID; enet_uint32 data; } ENET_PACKED ENetProtocolConnect; typedef struct _ENetProtocolVerifyConnect { ENetProtocolCommandHeader header; enet_uint16 outgoingPeerID; enet_uint8 incomingSessionID; enet_uint8 outgoingSessionID; enet_uint32 mtu; enet_uint32 windowSize; enet_uint32 channelCount; enet_uint32 incomingBandwidth; enet_uint32 outgoingBandwidth; enet_uint32 packetThrottleInterval; enet_uint32 packetThrottleAcceleration; enet_uint32 packetThrottleDeceleration; enet_uint32 connectID; } ENET_PACKED ENetProtocolVerifyConnect; typedef struct _ENetProtocolBandwidthLimit { ENetProtocolCommandHeader header; enet_uint32 incomingBandwidth; enet_uint32 outgoingBandwidth; } ENET_PACKED ENetProtocolBandwidthLimit; typedef struct _ENetProtocolThrottleConfigure { ENetProtocolCommandHeader header; enet_uint32 packetThrottleInterval; enet_uint32 packetThrottleAcceleration; enet_uint32 packetThrottleDeceleration; } ENET_PACKED ENetProtocolThrottleConfigure; typedef struct _ENetProtocolDisconnect { ENetProtocolCommandHeader header; enet_uint32 data; } ENET_PACKED ENetProtocolDisconnect; typedef struct _ENetProtocolPing { ENetProtocolCommandHeader header; } ENET_PACKED ENetProtocolPing; typedef struct _ENetProtocolSendReliable { ENetProtocolCommandHeader header; enet_uint16 dataLength; } ENET_PACKED ENetProtocolSendReliable; typedef struct _ENetProtocolSendUnreliable { ENetProtocolCommandHeader header; enet_uint16 unreliableSequenceNumber; enet_uint16 dataLength; } ENET_PACKED ENetProtocolSendUnreliable; typedef struct _ENetProtocolSendUnsequenced { ENetProtocolCommandHeader header; enet_uint16 unsequencedGroup; enet_uint16 dataLength; } ENET_PACKED ENetProtocolSendUnsequenced; typedef struct _ENetProtocolSendFragment { ENetProtocolCommandHeader header; enet_uint16 startSequenceNumber; enet_uint16 dataLength; enet_uint32 fragmentCount; enet_uint32 fragmentNumber; enet_uint32 totalLength; enet_uint32 fragmentOffset; } ENET_PACKED ENetProtocolSendFragment; typedef union _ENetProtocol { ENetProtocolCommandHeader header; ENetProtocolAcknowledge acknowledge; ENetProtocolConnect connect; ENetProtocolVerifyConnect verifyConnect; ENetProtocolDisconnect disconnect; ENetProtocolPing ping; ENetProtocolSendReliable sendReliable; ENetProtocolSendUnreliable sendUnreliable; ENetProtocolSendUnsequenced sendUnsequenced; ENetProtocolSendFragment sendFragment; ENetProtocolBandwidthLimit bandwidthLimit; ENetProtocolThrottleConfigure throttleConfigure; } ENET_PACKED ENetProtocol; #ifdef _MSC_VER #pragma pack(pop) #endif // =======================================================================// // ! // ! General ENet structs/enums // ! // =======================================================================// typedef enum _ENetSocketType { ENET_SOCKET_TYPE_STREAM = 1, ENET_SOCKET_TYPE_DATAGRAM = 2 } ENetSocketType; typedef enum _ENetSocketWait { ENET_SOCKET_WAIT_NONE = 0, ENET_SOCKET_WAIT_SEND = (1 << 0), ENET_SOCKET_WAIT_RECEIVE = (1 << 1), ENET_SOCKET_WAIT_INTERRUPT = (1 << 2) } ENetSocketWait; typedef enum _ENetSocketOption { ENET_SOCKOPT_NONBLOCK = 1, ENET_SOCKOPT_BROADCAST = 2, ENET_SOCKOPT_RCVBUF = 3, ENET_SOCKOPT_SNDBUF = 4, ENET_SOCKOPT_REUSEADDR = 5, ENET_SOCKOPT_RCVTIMEO = 6, ENET_SOCKOPT_SNDTIMEO = 7, ENET_SOCKOPT_ERROR = 8, ENET_SOCKOPT_NODELAY = 9, ENET_SOCKOPT_IPV6_V6ONLY = 10, } ENetSocketOption; typedef enum _ENetSocketShutdown { ENET_SOCKET_SHUTDOWN_READ = 0, ENET_SOCKET_SHUTDOWN_WRITE = 1, ENET_SOCKET_SHUTDOWN_READ_WRITE = 2 } ENetSocketShutdown; /** * Portable internet address structure. * * The host must be specified in network byte-order, and the port must be in host * byte-order. The constant ENET_HOST_ANY may be used to specify the default * server host. The constant ENET_HOST_BROADCAST may be used to specify the * broadcast address (255.255.255.255). This makes sense for enet_host_connect, * but not for enet_host_create. Once a server responds to a broadcast, the * address is updated from ENET_HOST_BROADCAST to the server's actual IP address. */ typedef struct _ENetAddress { struct in6_addr host; enet_uint16 port; enet_uint16 sin6_scope_id; } ENetAddress; #define in6_equal(in6_addr_a, in6_addr_b) (memcmp(&in6_addr_a, &in6_addr_b, sizeof(struct in6_addr)) == 0) /** * Packet flag bit constants. * * The host must be specified in network byte-order, and the port must be in * host byte-order. The constant ENET_HOST_ANY may be used to specify the * default server host. * * @sa ENetPacket */ typedef enum _ENetPacketFlag { ENET_PACKET_FLAG_RELIABLE = (1 << 0), /** packet must be received by the target peer and resend attempts should be made until the packet is delivered */ ENET_PACKET_FLAG_UNSEQUENCED = (1 << 1), /** packet will not be sequenced with other packets not supported for reliable packets */ ENET_PACKET_FLAG_NO_ALLOCATE = (1 << 2), /** packet will not allocate data, and user must supply it instead */ ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT = (1 << 3), /** packet will be fragmented using unreliable (instead of reliable) sends if it exceeds the MTU */ ENET_PACKET_FLAG_SENT = (1 << 8), /** whether the packet has been sent from all queues it has been entered into */ } ENetPacketFlag; typedef void (ENET_CALLBACK *ENetPacketFreeCallback)(void *); /** * ENet packet structure. * * An ENet data packet that may be sent to or received from a peer. The shown * fields should only be read and never modified. The data field contains the * allocated data for the packet. The dataLength fields specifies the length * of the allocated data. The flags field is either 0 (specifying no flags), * or a bitwise-or of any combination of the following flags: * * ENET_PACKET_FLAG_RELIABLE - packet must be received by the target peer and resend attempts should be made until the packet is delivered * ENET_PACKET_FLAG_UNSEQUENCED - packet will not be sequenced with other packets (not supported for reliable packets) * ENET_PACKET_FLAG_NO_ALLOCATE - packet will not allocate data, and user must supply it instead * ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT - packet will be fragmented using unreliable (instead of reliable) sends if it exceeds the MTU * ENET_PACKET_FLAG_SENT - whether the packet has been sent from all queues it has been entered into * @sa ENetPacketFlag */ typedef struct _ENetPacket { size_t referenceCount; /**< internal use only */ enet_uint32 flags; /**< bitwise-or of ENetPacketFlag constants */ enet_uint8 * data; /**< allocated data for packet */ size_t dataLength; /**< length of data */ ENetPacketFreeCallback freeCallback; /**< function to be called when the packet is no longer in use */ void * userData; /**< application private data, may be freely modified */ } ENetPacket; typedef struct _ENetAcknowledgement { ENetListNode acknowledgementList; enet_uint32 sentTime; ENetProtocol command; } ENetAcknowledgement; typedef struct _ENetOutgoingCommand { ENetListNode outgoingCommandList; enet_uint16 reliableSequenceNumber; enet_uint16 unreliableSequenceNumber; enet_uint32 sentTime; enet_uint32 roundTripTimeout; enet_uint32 roundTripTimeoutLimit; enet_uint32 fragmentOffset; enet_uint16 fragmentLength; enet_uint16 sendAttempts; ENetProtocol command; ENetPacket * packet; } ENetOutgoingCommand; typedef struct _ENetIncomingCommand { ENetListNode incomingCommandList; enet_uint16 reliableSequenceNumber; enet_uint16 unreliableSequenceNumber; ENetProtocol command; enet_uint32 fragmentCount; enet_uint32 fragmentsRemaining; enet_uint32 *fragments; ENetPacket * packet; } ENetIncomingCommand; typedef enum _ENetPeerState { ENET_PEER_STATE_DISCONNECTED = 0, ENET_PEER_STATE_CONNECTING = 1, ENET_PEER_STATE_ACKNOWLEDGING_CONNECT = 2, ENET_PEER_STATE_CONNECTION_PENDING = 3, ENET_PEER_STATE_CONNECTION_SUCCEEDED = 4, ENET_PEER_STATE_CONNECTED = 5, ENET_PEER_STATE_DISCONNECT_LATER = 6, ENET_PEER_STATE_DISCONNECTING = 7, ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT = 8, ENET_PEER_STATE_ZOMBIE = 9 } ENetPeerState; enum { ENET_HOST_RECEIVE_BUFFER_SIZE = 256 * 1024, ENET_HOST_SEND_BUFFER_SIZE = 256 * 1024, ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL = 1000, ENET_HOST_DEFAULT_MTU = 1400, ENET_HOST_DEFAULT_MAXIMUM_PACKET_SIZE = 32 * 1024 * 1024, ENET_HOST_DEFAULT_MAXIMUM_WAITING_DATA = 32 * 1024 * 1024, ENET_PEER_DEFAULT_ROUND_TRIP_TIME = 500, ENET_PEER_DEFAULT_PACKET_THROTTLE = 32, ENET_PEER_PACKET_THROTTLE_SCALE = 32, ENET_PEER_PACKET_THROTTLE_COUNTER = 7, ENET_PEER_PACKET_THROTTLE_ACCELERATION = 2, ENET_PEER_PACKET_THROTTLE_DECELERATION = 2, ENET_PEER_PACKET_THROTTLE_INTERVAL = 5000, ENET_PEER_PACKET_LOSS_SCALE = (1 << 16), ENET_PEER_PACKET_LOSS_INTERVAL = 10000, ENET_PEER_WINDOW_SIZE_SCALE = 64 * 1024, ENET_PEER_TIMEOUT_LIMIT = 32, ENET_PEER_TIMEOUT_MINIMUM = 5000, ENET_PEER_TIMEOUT_MAXIMUM = 30000, ENET_PEER_PING_INTERVAL = 500, ENET_PEER_UNSEQUENCED_WINDOWS = 64, ENET_PEER_UNSEQUENCED_WINDOW_SIZE = 1024, ENET_PEER_FREE_UNSEQUENCED_WINDOWS = 32, ENET_PEER_RELIABLE_WINDOWS = 16, ENET_PEER_RELIABLE_WINDOW_SIZE = 0x1000, ENET_PEER_FREE_RELIABLE_WINDOWS = 8 }; typedef struct _ENetChannel { enet_uint16 outgoingReliableSequenceNumber; enet_uint16 outgoingUnreliableSequenceNumber; enet_uint16 usedReliableWindows; enet_uint16 reliableWindows[ENET_PEER_RELIABLE_WINDOWS]; enet_uint16 incomingReliableSequenceNumber; enet_uint16 incomingUnreliableSequenceNumber; ENetList incomingReliableCommands; ENetList incomingUnreliableCommands; } ENetChannel; /** * An ENet peer which data packets may be sent or received from. * * No fields should be modified unless otherwise specified. */ typedef struct _ENetPeer { ENetListNode dispatchList; struct _ENetHost *host; enet_uint16 outgoingPeerID; enet_uint16 incomingPeerID; enet_uint32 connectID; enet_uint8 outgoingSessionID; enet_uint8 incomingSessionID; ENetAddress address; /**< Internet address of the peer */ void * data; /**< Application private data, may be freely modified */ ENetPeerState state; ENetChannel * channels; size_t channelCount; /**< Number of channels allocated for communication with peer */ enet_uint32 incomingBandwidth; /**< Downstream bandwidth of the client in bytes/second */ enet_uint32 outgoingBandwidth; /**< Upstream bandwidth of the client in bytes/second */ enet_uint32 incomingBandwidthThrottleEpoch; enet_uint32 outgoingBandwidthThrottleEpoch; enet_uint32 incomingDataTotal; enet_uint64 totalDataReceived; enet_uint32 outgoingDataTotal; enet_uint64 totalDataSent; enet_uint32 lastSendTime; enet_uint32 lastReceiveTime; enet_uint32 nextTimeout; enet_uint32 earliestTimeout; enet_uint32 packetLossEpoch; enet_uint32 packetsSent; enet_uint64 totalPacketsSent; /**< total number of packets sent during a session */ enet_uint32 packetsLost; enet_uint32 totalPacketsLost; /**< total number of packets lost during a session */ enet_uint32 packetLoss; /**< mean packet loss of reliable packets as a ratio with respect to the constant ENET_PEER_PACKET_LOSS_SCALE */ enet_uint32 packetLossVariance; enet_uint32 packetThrottle; enet_uint32 packetThrottleLimit; enet_uint32 packetThrottleCounter; enet_uint32 packetThrottleEpoch; enet_uint32 packetThrottleAcceleration; enet_uint32 packetThrottleDeceleration; enet_uint32 packetThrottleInterval; enet_uint32 pingInterval; enet_uint32 timeoutLimit; enet_uint32 timeoutMinimum; enet_uint32 timeoutMaximum; enet_uint32 lastRoundTripTime; enet_uint32 lowestRoundTripTime; enet_uint32 lastRoundTripTimeVariance; enet_uint32 highestRoundTripTimeVariance; enet_uint32 roundTripTime; /**< mean round trip time (RTT), in milliseconds, between sending a reliable packet and receiving its acknowledgement */ enet_uint32 roundTripTimeVariance; enet_uint32 mtu; enet_uint32 windowSize; enet_uint32 reliableDataInTransit; enet_uint16 outgoingReliableSequenceNumber; ENetList acknowledgements; ENetList sentReliableCommands; ENetList sentUnreliableCommands; ENetList outgoingReliableCommands; ENetList outgoingUnreliableCommands; ENetList dispatchedCommands; int needsDispatch; enet_uint16 incomingUnsequencedGroup; enet_uint16 outgoingUnsequencedGroup; enet_uint32 unsequencedWindow[ENET_PEER_UNSEQUENCED_WINDOW_SIZE / 32]; enet_uint32 eventData; size_t totalWaitingData; } ENetPeer; /** An ENet packet compressor for compressing UDP packets before socket sends or receives. */ typedef struct _ENetCompressor { /** Context data for the compressor. Must be non-NULL. */ void *context; /** Compresses from inBuffers[0:inBufferCount-1], containing inLimit bytes, to outData, outputting at most outLimit bytes. Should return 0 on failure. */ size_t(ENET_CALLBACK * compress) (void *context, const ENetBuffer * inBuffers, size_t inBufferCount, size_t inLimit, enet_uint8 * outData, size_t outLimit); /** Decompresses from inData, containing inLimit bytes, to outData, outputting at most outLimit bytes. Should return 0 on failure. */ size_t(ENET_CALLBACK * decompress) (void *context, const enet_uint8 * inData, size_t inLimit, enet_uint8 * outData, size_t outLimit); /** Destroys the context when compression is disabled or the host is destroyed. May be NULL. */ void (ENET_CALLBACK * destroy)(void *context); } ENetCompressor; /** Callback that computes the checksum of the data held in buffers[0:bufferCount-1] */ typedef enet_uint32 (ENET_CALLBACK * ENetChecksumCallback)(const ENetBuffer *buffers, size_t bufferCount); /** Callback for intercepting received raw UDP packets. Should return 1 to intercept, 0 to ignore, or -1 to propagate an error. */ typedef int (ENET_CALLBACK * ENetInterceptCallback)(struct _ENetHost *host, void *event); /** An ENet host for communicating with peers. * * No fields should be modified unless otherwise stated. * * @sa enet_host_create() * @sa enet_host_destroy() * @sa enet_host_connect() * @sa enet_host_service() * @sa enet_host_flush() * @sa enet_host_broadcast() * @sa enet_host_compress() * @sa enet_host_channel_limit() * @sa enet_host_bandwidth_limit() * @sa enet_host_bandwidth_throttle() */ typedef struct _ENetHost { ENetSocket socket; ENetAddress address; /**< Internet address of the host */ enet_uint32 incomingBandwidth; /**< downstream bandwidth of the host */ enet_uint32 outgoingBandwidth; /**< upstream bandwidth of the host */ enet_uint32 bandwidthThrottleEpoch; enet_uint32 mtu; enet_uint32 randomSeed; int recalculateBandwidthLimits; ENetPeer * peers; /**< array of peers allocated for this host */ size_t peerCount; /**< number of peers allocated for this host */ size_t channelLimit; /**< maximum number of channels allowed for connected peers */ enet_uint32 serviceTime; ENetList dispatchQueue; int continueSending; size_t packetSize; enet_uint16 headerFlags; ENetProtocol commands[ENET_PROTOCOL_MAXIMUM_PACKET_COMMANDS]; size_t commandCount; ENetBuffer buffers[ENET_BUFFER_MAXIMUM]; size_t bufferCount; ENetChecksumCallback checksum; /**< callback the user can set to enable packet checksums for this host */ ENetCompressor compressor; enet_uint8 packetData[2][ENET_PROTOCOL_MAXIMUM_MTU]; ENetAddress receivedAddress; enet_uint8 * receivedData; size_t receivedDataLength; enet_uint32 totalSentData; /**< total data sent, user should reset to 0 as needed to prevent overflow */ enet_uint32 totalSentPackets; /**< total UDP packets sent, user should reset to 0 as needed to prevent overflow */ enet_uint32 totalReceivedData; /**< total data received, user should reset to 0 as needed to prevent overflow */ enet_uint32 totalReceivedPackets; /**< total UDP packets received, user should reset to 0 as needed to prevent overflow */ ENetInterceptCallback intercept; /**< callback the user can set to intercept received raw UDP packets */ size_t connectedPeers; size_t bandwidthLimitedPeers; size_t duplicatePeers; /**< optional number of allowed peers from duplicate IPs, defaults to ENET_PROTOCOL_MAXIMUM_PEER_ID */ size_t maximumPacketSize; /**< the maximum allowable packet size that may be sent or received on a peer */ size_t maximumWaitingData; /**< the maximum aggregate amount of buffer space a peer may use waiting for packets to be delivered */ } ENetHost; /** * An ENet event type, as specified in @ref ENetEvent. */ typedef enum _ENetEventType { /** no event occurred within the specified time limit */ ENET_EVENT_TYPE_NONE = 0, /** a connection request initiated by enet_host_connect has completed. * The peer field contains the peer which successfully connected. */ ENET_EVENT_TYPE_CONNECT = 1, /** a peer has disconnected. This event is generated on a successful * completion of a disconnect initiated by enet_peer_disconnect, if * a peer has timed out. The peer field contains the peer * which disconnected. The data field contains user supplied data * describing the disconnection, or 0, if none is available. */ ENET_EVENT_TYPE_DISCONNECT = 2, /** a packet has been received from a peer. The peer field specifies the * peer which sent the packet. The channelID field specifies the channel * number upon which the packet was received. The packet field contains * the packet that was received; this packet must be destroyed with * enet_packet_destroy after use. */ ENET_EVENT_TYPE_RECEIVE = 3, /** a peer is disconnected because the host didn't receive the acknowledgment * packet within certain maximum time out. The reason could be because of bad * network connection or host crashed. */ ENET_EVENT_TYPE_DISCONNECT_TIMEOUT = 4, } ENetEventType; /** * An ENet event as returned by enet_host_service(). * * @sa enet_host_service */ typedef struct _ENetEvent { ENetEventType type; /**< type of the event */ ENetPeer * peer; /**< peer that generated a connect, disconnect or receive event */ enet_uint8 channelID; /**< channel on the peer that generated the event, if appropriate */ enet_uint32 data; /**< data associated with the event, if appropriate */ ENetPacket * packet; /**< packet associated with the event, if appropriate */ } ENetEvent; // =======================================================================// // ! // ! Public API // ! // =======================================================================// /** * Initializes ENet globally. Must be called prior to using any functions in ENet. * @returns 0 on success, < 0 on failure */ ENET_API int enet_initialize(void); /** * Initializes ENet globally and supplies user-overridden callbacks. Must be called prior to using any functions in ENet. Do not use enet_initialize() if you use this variant. Make sure the ENetCallbacks structure is zeroed out so that any additional callbacks added in future versions will be properly ignored. * * @param version the constant ENET_VERSION should be supplied so ENet knows which version of ENetCallbacks struct to use * @param inits user-overridden callbacks where any NULL callbacks will use ENet's defaults * @returns 0 on success, < 0 on failure */ ENET_API int enet_initialize_with_callbacks(ENetVersion version, const ENetCallbacks * inits); /** * Shuts down ENet globally. Should be called when a program that has initialized ENet exits. */ ENET_API void enet_deinitialize(void); /** * Gives the linked version of the ENet library. * @returns the version number */ ENET_API ENetVersion enet_linked_version(void); /** Returns the monotonic time in milliseconds. Its initial value is unspecified unless otherwise set. */ ENET_API enet_uint32 enet_time_get(void); /** ENet socket functions */ ENET_API ENetSocket enet_socket_create(ENetSocketType); ENET_API int enet_socket_bind(ENetSocket, const ENetAddress *); ENET_API int enet_socket_get_address(ENetSocket, ENetAddress *); ENET_API int enet_socket_listen(ENetSocket, int); ENET_API ENetSocket enet_socket_accept(ENetSocket, ENetAddress *); ENET_API int enet_socket_connect(ENetSocket, const ENetAddress *); ENET_API int enet_socket_send(ENetSocket, const ENetAddress *, const ENetBuffer *, size_t); ENET_API int enet_socket_receive(ENetSocket, ENetAddress *, ENetBuffer *, size_t); ENET_API int enet_socket_wait(ENetSocket, enet_uint32 *, enet_uint64); ENET_API int enet_socket_set_option(ENetSocket, ENetSocketOption, int); ENET_API int enet_socket_get_option(ENetSocket, ENetSocketOption, int *); ENET_API int enet_socket_shutdown(ENetSocket, ENetSocketShutdown); ENET_API void enet_socket_destroy(ENetSocket); ENET_API int enet_socketset_select(ENetSocket, ENetSocketSet *, ENetSocketSet *, enet_uint32); /** Attempts to parse the printable form of the IP address in the parameter hostName and sets the host field in the address parameter if successful. @param address destination to store the parsed IP address @param hostName IP address to parse @retval 0 on success @retval < 0 on failure @returns the address of the given hostName in address on success */ ENET_API int enet_address_set_host_ip_old(ENetAddress * address, const char * hostName); /** Attempts to resolve the host named by the parameter hostName and sets the host field in the address parameter if successful. @param address destination to store resolved address @param hostName host name to lookup @retval 0 on success @retval < 0 on failure @returns the address of the given hostName in address on success */ ENET_API int enet_address_set_host_old(ENetAddress * address, const char * hostName); /** Gives the printable form of the IP address specified in the address parameter. @param address address printed @param hostName destination for name, must not be NULL @param nameLength maximum length of hostName. @returns the null-terminated name of the host in hostName on success @retval 0 on success @retval < 0 on failure */ ENET_API int enet_address_get_host_ip_old(const ENetAddress * address, char * hostName, size_t nameLength); /** Attempts to do a reverse lookup of the host field in the address parameter. @param address address used for reverse lookup @param hostName destination for name, must not be NULL @param nameLength maximum length of hostName. @returns the null-terminated name of the host in hostName on success @retval 0 on success @retval < 0 on failure */ ENET_API int enet_address_get_host_old(const ENetAddress * address, char * hostName, size_t nameLength); ENET_API int enet_address_set_host_ip_new(ENetAddress * address, const char * hostName); ENET_API int enet_address_set_host_new(ENetAddress * address, const char * hostName); ENET_API int enet_address_get_host_ip_new(const ENetAddress * address, char * hostName, size_t nameLength); ENET_API int enet_address_get_host_new(const ENetAddress * address, char * hostName, size_t nameLength); #ifdef ENET_FEATURE_ADDRESS_MAPPING #define enet_address_set_host_ip enet_address_set_host_ip_new #define enet_address_set_host enet_address_set_host_new #define enet_address_get_host_ip enet_address_get_host_ip_new #define enet_address_get_host enet_address_get_host_new #else #define enet_address_set_host_ip enet_address_set_host_ip_old #define enet_address_set_host enet_address_set_host_old #define enet_address_get_host_ip enet_address_get_host_ip_old #define enet_address_get_host enet_address_get_host_old #endif ENET_API enet_uint32 enet_host_get_peers_count(ENetHost *); ENET_API enet_uint32 enet_host_get_packets_sent(ENetHost *); ENET_API enet_uint32 enet_host_get_packets_received(ENetHost *); ENET_API enet_uint32 enet_host_get_bytes_sent(ENetHost *); ENET_API enet_uint32 enet_host_get_bytes_received(ENetHost *); ENET_API enet_uint32 enet_host_get_received_data(ENetHost *, enet_uint8** data); ENET_API enet_uint32 enet_host_get_mtu(ENetHost *); ENET_API enet_uint32 enet_peer_get_id(ENetPeer *); ENET_API enet_uint32 enet_peer_get_ip(ENetPeer *, char * ip, size_t ipLength); ENET_API enet_uint16 enet_peer_get_port(ENetPeer *); ENET_API enet_uint32 enet_peer_get_rtt(ENetPeer *); ENET_API enet_uint64 enet_peer_get_packets_sent(ENetPeer *); ENET_API enet_uint32 enet_peer_get_packets_lost(ENetPeer *); ENET_API enet_uint64 enet_peer_get_bytes_sent(ENetPeer *); ENET_API enet_uint64 enet_peer_get_bytes_received(ENetPeer *); ENET_API ENetPeerState enet_peer_get_state(ENetPeer *); ENET_API void * enet_peer_get_data(ENetPeer *); ENET_API void enet_peer_set_data(ENetPeer *, const void *); ENET_API void * enet_packet_get_data(ENetPacket *); ENET_API enet_uint32 enet_packet_get_length(ENetPacket *); ENET_API void enet_packet_set_free_callback(ENetPacket *, void *); ENET_API ENetPacket * enet_packet_create_offset(const void *, size_t, size_t, enet_uint32); ENET_API enet_uint32 enet_crc32(const ENetBuffer *, size_t); ENET_API ENetHost * enet_host_create(const ENetAddress *, size_t, size_t, enet_uint32, enet_uint32); ENET_API void enet_host_destroy(ENetHost *); ENET_API ENetPeer * enet_host_connect(ENetHost *, const ENetAddress *, size_t, enet_uint32); ENET_API int enet_host_check_events(ENetHost *, ENetEvent *); ENET_API int enet_host_service(ENetHost *, ENetEvent *, enet_uint32); ENET_API int enet_host_send_raw(ENetHost *, const ENetAddress *, enet_uint8 *, size_t); ENET_API int enet_host_send_raw_ex(ENetHost *host, const ENetAddress* address, enet_uint8* data, size_t skipBytes, size_t bytesToSend); ENET_API void enet_host_set_intercept(ENetHost *, const ENetInterceptCallback); ENET_API void enet_host_flush(ENetHost *); ENET_API void enet_host_broadcast(ENetHost *, enet_uint8, ENetPacket *); ENET_API void enet_host_compress(ENetHost *, const ENetCompressor *); ENET_API void enet_host_channel_limit(ENetHost *, size_t); ENET_API void enet_host_bandwidth_limit(ENetHost *, enet_uint32, enet_uint32); extern void enet_host_bandwidth_throttle(ENetHost *); extern enet_uint64 enet_host_random_seed(void); ENET_API int enet_peer_send(ENetPeer *, enet_uint8, ENetPacket *); ENET_API ENetPacket * enet_peer_receive(ENetPeer *, enet_uint8 * channelID); ENET_API void enet_peer_ping(ENetPeer *); ENET_API void enet_peer_ping_interval(ENetPeer *, enet_uint32); ENET_API void enet_peer_timeout(ENetPeer *, enet_uint32, enet_uint32, enet_uint32); ENET_API void enet_peer_reset(ENetPeer *); ENET_API void enet_peer_disconnect(ENetPeer *, enet_uint32); ENET_API void enet_peer_disconnect_now(ENetPeer *, enet_uint32); ENET_API void enet_peer_disconnect_later(ENetPeer *, enet_uint32); ENET_API void enet_peer_throttle_configure(ENetPeer *, enet_uint32, enet_uint32, enet_uint32); extern int enet_peer_throttle(ENetPeer *, enet_uint32); extern void enet_peer_reset_queues(ENetPeer *); extern void enet_peer_setup_outgoing_command(ENetPeer *, ENetOutgoingCommand *); extern ENetOutgoingCommand * enet_peer_queue_outgoing_command(ENetPeer *, const ENetProtocol *, ENetPacket *, enet_uint32, enet_uint16); extern ENetIncomingCommand * enet_peer_queue_incoming_command(ENetPeer *, const ENetProtocol *, const void *, size_t, enet_uint32, enet_uint32); extern ENetAcknowledgement * enet_peer_queue_acknowledgement(ENetPeer *, const ENetProtocol *, enet_uint16); extern void enet_peer_dispatch_incoming_unreliable_commands(ENetPeer *, ENetChannel *); extern void enet_peer_dispatch_incoming_reliable_commands(ENetPeer *, ENetChannel *); extern void enet_peer_on_connect(ENetPeer *); extern void enet_peer_on_disconnect(ENetPeer *); extern size_t enet_protocol_command_size (enet_uint8); #ifdef __cplusplus } #endif #if defined(ENET_IMPLEMENTATION) && !defined(ENET_IMPLEMENTATION_DONE) #define ENET_IMPLEMENTATION_DONE 1 #ifdef __cplusplus extern "C" { #endif // =======================================================================// // ! // ! Atomics // ! // =======================================================================// #if defined(_MSC_VER) #define ENET_AT_CASSERT_PRED(predicate) sizeof(char[2 * !!(predicate)-1]) #define ENET_IS_SUPPORTED_ATOMIC(size) ENET_AT_CASSERT_PRED(size == 1 || size == 2 || size == 4 || size == 8) #define ENET_ATOMIC_SIZEOF(variable) (ENET_IS_SUPPORTED_ATOMIC(sizeof(*(variable))), sizeof(*(variable))) __inline int64_t enet_at_atomic_read(char *ptr, size_t size) { switch (size) { case 1: return _InterlockedExchangeAdd8((volatile char *)ptr, 0); case 2: return _InterlockedExchangeAdd16((volatile SHORT *)ptr, 0); case 4: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedExchangeAdd((volatile LONG *)ptr, 0); #else return _InterlockedExchangeAdd((volatile LONG *)ptr, 0); #endif case 8: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedExchangeAdd64((volatile LONGLONG *)ptr, 0); #else return _InterlockedExchangeAdd64((volatile LONGLONG *)ptr, 0); #endif default: return 0xbad13bad; /* never reached */ } } __inline int64_t enet_at_atomic_write(char *ptr, int64_t value, size_t size) { switch (size) { case 1: return _InterlockedExchange8((volatile char *)ptr, (char)value); case 2: return _InterlockedExchange16((volatile SHORT *)ptr, (SHORT)value); case 4: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedExchange((volatile LONG *)ptr, (LONG)value); #else return _InterlockedExchange((volatile LONG *)ptr, (LONG)value); #endif case 8: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedExchange64((volatile LONGLONG *)ptr, (LONGLONG)value); #else return _InterlockedExchange64((volatile LONGLONG *)ptr, (LONGLONG)value); #endif default: return 0xbad13bad; /* never reached */ } } __inline int64_t enet_at_atomic_cas(char *ptr, int64_t new_val, int64_t old_val, size_t size) { switch (size) { case 1: return _InterlockedCompareExchange8((volatile char *)ptr, (char)new_val, (char)old_val); case 2: return _InterlockedCompareExchange16((volatile SHORT *)ptr, (SHORT)new_val, (SHORT)old_val); case 4: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedCompareExchange((volatile LONG *)ptr, (LONG)new_val, (LONG)old_val); #else return _InterlockedCompareExchange((volatile LONG *)ptr, (LONG)new_val, (LONG)old_val); #endif case 8: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedCompareExchange64((volatile LONGLONG *)ptr, (LONGLONG)new_val, (LONGLONG)old_val); #else return _InterlockedCompareExchange64((volatile LONGLONG *)ptr, (LONGLONG)new_val, (LONGLONG)old_val); #endif default: return 0xbad13bad; /* never reached */ } } __inline int64_t enet_at_atomic_inc(char *ptr, int64_t delta, size_t data_size) { switch (data_size) { case 1: return _InterlockedExchangeAdd8((volatile char *)ptr, (char)delta); case 2: return _InterlockedExchangeAdd16((volatile SHORT *)ptr, (SHORT)delta); case 4: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedExchangeAdd((volatile LONG *)ptr, (LONG)delta); #else return _InterlockedExchangeAdd((volatile LONG *)ptr, (LONG)delta); #endif case 8: #ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE return InterlockedExchangeAdd64((volatile LONGLONG *)ptr, (LONGLONG)delta); #else return _InterlockedExchangeAdd64((volatile LONGLONG *)ptr, (LONGLONG)delta); #endif default: return 0xbad13bad; /* never reached */ } } #define ENET_ATOMIC_READ(variable) enet_at_atomic_read((char *)(variable), ENET_ATOMIC_SIZEOF(variable)) #define ENET_ATOMIC_WRITE(variable, new_val) \ enet_at_atomic_write((char *)(variable), (int64_t)(new_val), ENET_ATOMIC_SIZEOF(variable)) #define ENET_ATOMIC_CAS(variable, old_value, new_val) \ enet_at_atomic_cas((char *)(variable), (int64_t)(new_val), (int64_t)(old_value), \ ENET_ATOMIC_SIZEOF(variable)) #define ENET_ATOMIC_INC(variable) enet_at_atomic_inc((char *)(variable), 1, ENET_ATOMIC_SIZEOF(variable)) #define ENET_ATOMIC_DEC(variable) enet_at_atomic_inc((char *)(variable), -1, ENET_ATOMIC_SIZEOF(variable)) #define ENET_ATOMIC_INC_BY(variable, delta) \ enet_at_atomic_inc((char *)(variable), (delta), ENET_ATOMIC_SIZEOF(variable)) #define ENET_ATOMIC_DEC_BY(variable, delta) \ enet_at_atomic_inc((char *)(variable), -(delta), ENET_ATOMIC_SIZEOF(variable)) #elif defined(__GNUC__) || defined(__clang__) #if defined(__clang__) || (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)) #define AT_HAVE_ATOMICS #endif /* We want to use __atomic built-ins if possible because the __sync primitives are deprecated, because the __atomic build-ins allow us to use ENET_ATOMIC_WRITE on uninitialized memory without running into undefined behavior, and because the __atomic versions generate more efficient code since we don't need to rely on CAS when we don't actually want it. Note that we use acquire-release memory order (like mutexes do). We could use sequentially consistent memory order but that has lower performance and is almost always unneeded. */ #ifdef AT_HAVE_ATOMICS #define ENET_ATOMIC_READ(ptr) __atomic_load_n((ptr), __ATOMIC_ACQUIRE) #define ENET_ATOMIC_WRITE(ptr, value) __atomic_store_n((ptr), (value), __ATOMIC_RELEASE) #ifndef typeof #define typeof __typeof__ #endif /* clang_analyzer doesn't know that CAS writes to memory so it complains about potentially lost data. Replace the code with the equivalent non-sync code. */ #ifdef __clang_analyzer__ #define ENET_ATOMIC_CAS(ptr, old_value, new_value) \ ({ \ typeof(*(ptr)) ENET_ATOMIC_CAS_old_actual_ = (*(ptr)); \ if (ATOMIC_CAS_old_actual_ == (old_value)) { \ *(ptr) = new_value; \ } \ ENET_ATOMIC_CAS_old_actual_; \ }) #else /* Could use __auto_type instead of typeof but that shouldn't work in C++. The ({ }) syntax is a GCC extension called statement expression. It lets us return a value out of the macro. TODO We should return bool here instead of the old value to avoid the ABA problem. */ #define ENET_ATOMIC_CAS(ptr, old_value, new_value) \ ({ \ typeof(*(ptr)) ENET_ATOMIC_CAS_expected_ = (old_value); \ __atomic_compare_exchange_n((ptr), &ENET_ATOMIC_CAS_expected_, (new_value), false, \ __ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE); \ ENET_ATOMIC_CAS_expected_; \ }) #endif /* __clang_analyzer__ */ #define ENET_ATOMIC_INC(ptr) __atomic_fetch_add((ptr), 1, __ATOMIC_ACQ_REL) #define ENET_ATOMIC_DEC(ptr) __atomic_fetch_sub((ptr), 1, __ATOMIC_ACQ_REL) #define ENET_ATOMIC_INC_BY(ptr, delta) __atomic_fetch_add((ptr), (delta), __ATOMIC_ACQ_REL) #define ENET_ATOMIC_DEC_BY(ptr, delta) __atomic_fetch_sub((ptr), (delta), __ATOMIC_ACQ_REL) #else #define ENET_ATOMIC_READ(variable) __sync_fetch_and_add(variable, 0) #define ENET_ATOMIC_WRITE(variable, new_val) \ (void) __sync_val_compare_and_swap((variable), *(variable), (new_val)) #define ENET_ATOMIC_CAS(variable, old_value, new_val) \ __sync_val_compare_and_swap((variable), (old_value), (new_val)) #define ENET_ATOMIC_INC(variable) __sync_fetch_and_add((variable), 1) #define ENET_ATOMIC_DEC(variable) __sync_fetch_and_sub((variable), 1) #define ENET_ATOMIC_INC_BY(variable, delta) __sync_fetch_and_add((variable), (delta), 1) #define ENET_ATOMIC_DEC_BY(variable, delta) __sync_fetch_and_sub((variable), (delta), 1) #endif /* AT_HAVE_ATOMICS */ #undef AT_HAVE_ATOMICS #else //< @r-lyeh: add __TINYC__ stubs. not going to work. #define ENET_ATOMIC_READ(variable) (*(int64_t *)(variable)) #define ENET_ATOMIC_WRITE(variable, new_val) (*(int64_t *)(variable) = (int64_t)(new_val)) #define ENET_ATOMIC_CAS(variable, old_value, new_val) (*(int64_t *)(variable) = (int64_t)(new_val)) #define ENET_ATOMIC_INC(variable) ENET_ATOMIC_INC_BY(variable, 1) #define ENET_ATOMIC_DEC(variable) ENET_ATOMIC_DEC_BY(variable, 1) #define ENET_ATOMIC_INC_BY(variable, delta) ( *(int64_t*)(variable) = (int64_t*)(variable) + (delta)) #define ENET_ATOMIC_DEC_BY(variable, delta) ( *(int64_t*)(variable) = (int64_t*)(variable) - (delta)) #endif /* defined(_MSC_VER) */ // =======================================================================// // ! // ! Callbacks // ! // =======================================================================// ENetCallbacks callbacks = { malloc, free, abort, enet_packet_create, enet_packet_destroy }; int enet_initialize_with_callbacks(ENetVersion version, const ENetCallbacks *inits) { if (version < ENET_VERSION_CREATE(1, 3, 0)) { return -1; } if (inits->malloc != NULL || inits->free != NULL) { if (inits->malloc == NULL || inits->free == NULL) { return -1; } callbacks.malloc = inits->malloc; callbacks.free = inits->free; } if (inits->no_memory != NULL) { callbacks.no_memory = inits->no_memory; } if (inits->packet_create != NULL || inits->packet_destroy != NULL) { if (inits->packet_create == NULL || inits->packet_destroy == NULL) { return -1; } callbacks.packet_create = inits->packet_create; callbacks.packet_destroy = inits->packet_destroy; } return enet_initialize(); } ENetVersion enet_linked_version(void) { return ENET_VERSION; } void * enet_malloc(size_t size) { void *memory = callbacks.malloc(size); if (memory == NULL) { callbacks.no_memory(); } return memory; } void enet_free(void *memory) { callbacks.free(memory); } // =======================================================================// // ! // ! List // ! // =======================================================================// void enet_list_clear(ENetList *list) { list->sentinel.next = &list->sentinel; list->sentinel.previous = &list->sentinel; } ENetListIterator enet_list_insert(ENetListIterator position, void *data) { ENetListIterator result = (ENetListIterator)data; result->previous = position->previous; result->next = position; result->previous->next = result; position->previous = result; return result; } void *enet_list_remove(ENetListIterator position) { position->previous->next = position->next; position->next->previous = position->previous; return position; } ENetListIterator enet_list_move(ENetListIterator position, void *dataFirst, void *dataLast) { ENetListIterator first = (ENetListIterator)dataFirst; ENetListIterator last = (ENetListIterator)dataLast; first->previous->next = last->next; last->next->previous = first->previous; first->previous = position->previous; last->next = position; first->previous->next = first; position->previous = last; return first; } size_t enet_list_size(ENetList *list) { size_t size = 0; ENetListIterator position; for (position = enet_list_begin(list); position != enet_list_end(list); position = enet_list_next(position)) { ++size; } return size; } // =======================================================================// // ! // ! Packet // ! // =======================================================================// /** * Creates a packet that may be sent to a peer. * @param data initial contents of the packet's data; the packet's data will remain uninitialized if data is NULL. * @param dataLength size of the data allocated for this packet * @param flags flags for this packet as described for the ENetPacket structure. * @returns the packet on success, NULL on failure */ ENetPacket *enet_packet_create(const void *data, size_t dataLength, enet_uint32 flags) { ENetPacket *packet; if (flags & ENET_PACKET_FLAG_NO_ALLOCATE) { packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket)); if (packet == NULL) { return NULL; } packet->data = (enet_uint8 *)data; } else { packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket) + dataLength); if (packet == NULL) { return NULL; } packet->data = (enet_uint8 *)packet + sizeof(ENetPacket); if (data != NULL) { memcpy(packet->data, data, dataLength); } } packet->referenceCount = 0; packet->flags = flags; packet->dataLength = dataLength; packet->freeCallback = NULL; packet->userData = NULL; return packet; } ENetPacket *enet_packet_create_offset(const void *data, size_t dataLength, size_t dataOffset, enet_uint32 flags) { ENetPacket *packet; if (flags & ENET_PACKET_FLAG_NO_ALLOCATE) { packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket)); if (packet == NULL) { return NULL; } packet->data = (enet_uint8 *)data; } else { packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket) + dataLength + dataOffset); if (packet == NULL) { return NULL; } packet->data = (enet_uint8 *)packet + sizeof(ENetPacket); if (data != NULL) { memcpy(packet->data + dataOffset, data, dataLength); } } packet->referenceCount = 0; packet->flags = flags; packet->dataLength = dataLength + dataOffset; packet->freeCallback = NULL; packet->userData = NULL; return packet; } ENetPacket *enet_packet_copy(ENetPacket *packet) { return enet_packet_create(packet->data, packet->dataLength, packet->flags); } /** * Destroys the packet and deallocates its data. * @param packet packet to be destroyed */ void enet_packet_destroy(ENetPacket *packet) { if (packet == NULL) { return; } if (packet->freeCallback != NULL) { (*packet->freeCallback)((void *)packet); } enet_free(packet); } static int initializedCRC32 = 0; static enet_uint32 crcTable[256]; static enet_uint32 reflect_crc(int val, int bits) { int result = 0, bit; for (bit = 0; bit < bits; bit++) { if (val & 1) { result |= 1 << (bits - 1 - bit); } val >>= 1; } return result; } static void initialize_crc32(void) { int byte; for (byte = 0; byte < 256; ++byte) { enet_uint32 crc = reflect_crc(byte, 8) << 24; int offset; for (offset = 0; offset < 8; ++offset) { if (crc & 0x80000000) { crc = (crc << 1) ^ 0x04c11db7; } else { crc <<= 1; } } crcTable[byte] = reflect_crc(crc, 32); } initializedCRC32 = 1; } enet_uint32 enet_crc32(const ENetBuffer *buffers, size_t bufferCount) { enet_uint32 crc = 0xFFFFFFFF; if (!initializedCRC32) { initialize_crc32(); } while (bufferCount-- > 0) { const enet_uint8 *data = (const enet_uint8 *)buffers->data; const enet_uint8 *dataEnd = &data[buffers->dataLength]; while (data < dataEnd) { crc = (crc >> 8) ^ crcTable[(crc & 0xFF) ^ *data++]; } ++buffers; } return ENET_HOST_TO_NET_32(~crc); } // =======================================================================// // ! // ! Protocol // ! // =======================================================================// static size_t commandSizes[ENET_PROTOCOL_COMMAND_COUNT] = { 0, sizeof(ENetProtocolAcknowledge), sizeof(ENetProtocolConnect), sizeof(ENetProtocolVerifyConnect), sizeof(ENetProtocolDisconnect), sizeof(ENetProtocolPing), sizeof(ENetProtocolSendReliable), sizeof(ENetProtocolSendUnreliable), sizeof(ENetProtocolSendFragment), sizeof(ENetProtocolSendUnsequenced), sizeof(ENetProtocolBandwidthLimit), sizeof(ENetProtocolThrottleConfigure), sizeof(ENetProtocolSendFragment) }; size_t enet_protocol_command_size(enet_uint8 commandNumber) { return commandSizes[commandNumber & ENET_PROTOCOL_COMMAND_MASK]; } static void enet_protocol_change_state(ENetHost *host, ENetPeer *peer, ENetPeerState state) { ENET_UNUSED(host) if (state == ENET_PEER_STATE_CONNECTED || state == ENET_PEER_STATE_DISCONNECT_LATER) { enet_peer_on_connect(peer); } else { enet_peer_on_disconnect(peer); } peer->state = state; } static void enet_protocol_dispatch_state(ENetHost *host, ENetPeer *peer, ENetPeerState state) { enet_protocol_change_state(host, peer, state); if (!peer->needsDispatch) { enet_list_insert(enet_list_end(&host->dispatchQueue), &peer->dispatchList); peer->needsDispatch = 1; } } static int enet_protocol_dispatch_incoming_commands(ENetHost *host, ENetEvent *event) { while (!enet_list_empty(&host->dispatchQueue)) { ENetPeer *peer = (ENetPeer *) enet_list_remove(enet_list_begin(&host->dispatchQueue)); peer->needsDispatch = 0; switch (peer->state) { case ENET_PEER_STATE_CONNECTION_PENDING: case ENET_PEER_STATE_CONNECTION_SUCCEEDED: enet_protocol_change_state(host, peer, ENET_PEER_STATE_CONNECTED); event->type = ENET_EVENT_TYPE_CONNECT; event->peer = peer; event->data = peer->eventData; return 1; case ENET_PEER_STATE_ZOMBIE: host->recalculateBandwidthLimits = 1; event->type = ENET_EVENT_TYPE_DISCONNECT; event->peer = peer; event->data = peer->eventData; enet_peer_reset(peer); return 1; case ENET_PEER_STATE_CONNECTED: if (enet_list_empty(&peer->dispatchedCommands)) { continue; } event->packet = enet_peer_receive(peer, &event->channelID); if (event->packet == NULL) { continue; } event->type = ENET_EVENT_TYPE_RECEIVE; event->peer = peer; if (!enet_list_empty(&peer->dispatchedCommands)) { peer->needsDispatch = 1; enet_list_insert(enet_list_end(&host->dispatchQueue), &peer->dispatchList); } return 1; default: break; } } return 0; } /* enet_protocol_dispatch_incoming_commands */ static void enet_protocol_notify_connect(ENetHost *host, ENetPeer *peer, ENetEvent *event) { host->recalculateBandwidthLimits = 1; if (event != NULL) { enet_protocol_change_state(host, peer, ENET_PEER_STATE_CONNECTED); peer->totalDataSent = 0; peer->totalDataReceived = 0; peer->totalPacketsSent = 0; peer->totalPacketsLost = 0; event->type = ENET_EVENT_TYPE_CONNECT; event->peer = peer; event->data = peer->eventData; } else { enet_protocol_dispatch_state(host, peer, peer->state == ENET_PEER_STATE_CONNECTING ? ENET_PEER_STATE_CONNECTION_SUCCEEDED : ENET_PEER_STATE_CONNECTION_PENDING); } } static void enet_protocol_notify_disconnect(ENetHost *host, ENetPeer *peer, ENetEvent *event) { if (peer->state >= ENET_PEER_STATE_CONNECTION_PENDING) { host->recalculateBandwidthLimits = 1; } if (peer->state != ENET_PEER_STATE_CONNECTING && peer->state < ENET_PEER_STATE_CONNECTION_SUCCEEDED) { enet_peer_reset(peer); } else if (event != NULL) { event->type = ENET_EVENT_TYPE_DISCONNECT; event->peer = peer; event->data = 0; enet_peer_reset(peer); } else { peer->eventData = 0; enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE); } } static void enet_protocol_notify_disconnect_timeout (ENetHost * host, ENetPeer * peer, ENetEvent * event) { if (peer->state >= ENET_PEER_STATE_CONNECTION_PENDING) { host->recalculateBandwidthLimits = 1; } if (peer->state != ENET_PEER_STATE_CONNECTING && peer->state < ENET_PEER_STATE_CONNECTION_SUCCEEDED) { enet_peer_reset (peer); } else if (event != NULL) { event->type = ENET_EVENT_TYPE_DISCONNECT_TIMEOUT; event->peer = peer; event->data = 0; enet_peer_reset(peer); } else { peer->eventData = 0; enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE); } } static void enet_protocol_remove_sent_unreliable_commands(ENetPeer *peer) { ENetOutgoingCommand *outgoingCommand; while (!enet_list_empty(&peer->sentUnreliableCommands)) { outgoingCommand = (ENetOutgoingCommand *) enet_list_front(&peer->sentUnreliableCommands); enet_list_remove(&outgoingCommand->outgoingCommandList); if (outgoingCommand->packet != NULL) { --outgoingCommand->packet->referenceCount; if (outgoingCommand->packet->referenceCount == 0) { outgoingCommand->packet->flags |= ENET_PACKET_FLAG_SENT; callbacks.packet_destroy(outgoingCommand->packet); } } enet_free(outgoingCommand); } } static ENetProtocolCommand enet_protocol_remove_sent_reliable_command(ENetPeer *peer, enet_uint16 reliableSequenceNumber, enet_uint8 channelID) { ENetOutgoingCommand *outgoingCommand = NULL; ENetListIterator currentCommand; ENetProtocolCommand commandNumber; int wasSent = 1; for (currentCommand = enet_list_begin(&peer->sentReliableCommands); currentCommand != enet_list_end(&peer->sentReliableCommands); currentCommand = enet_list_next(currentCommand) ) { outgoingCommand = (ENetOutgoingCommand *) currentCommand; if (outgoingCommand->reliableSequenceNumber == reliableSequenceNumber && outgoingCommand->command.header.channelID == channelID) { break; } } if (currentCommand == enet_list_end(&peer->sentReliableCommands)) { for (currentCommand = enet_list_begin(&peer->outgoingReliableCommands); currentCommand != enet_list_end(&peer->outgoingReliableCommands); currentCommand = enet_list_next(currentCommand) ) { outgoingCommand = (ENetOutgoingCommand *) currentCommand; if (outgoingCommand->sendAttempts < 1) { return ENET_PROTOCOL_COMMAND_NONE; } if (outgoingCommand->reliableSequenceNumber == reliableSequenceNumber && outgoingCommand->command.header.channelID == channelID) { break; } } if (currentCommand == enet_list_end(&peer->outgoingReliableCommands)) { return ENET_PROTOCOL_COMMAND_NONE; } wasSent = 0; } if (outgoingCommand == NULL) { return ENET_PROTOCOL_COMMAND_NONE; } if (channelID < peer->channelCount) { ENetChannel *channel = &peer->channels[channelID]; enet_uint16 reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (channel->reliableWindows[reliableWindow] > 0) { --channel->reliableWindows[reliableWindow]; if (!channel->reliableWindows[reliableWindow]) { channel->usedReliableWindows &= ~(1 << reliableWindow); } } } commandNumber = (ENetProtocolCommand) (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK); enet_list_remove(&outgoingCommand->outgoingCommandList); if (outgoingCommand->packet != NULL) { if (wasSent) { peer->reliableDataInTransit -= outgoingCommand->fragmentLength; } --outgoingCommand->packet->referenceCount; if (outgoingCommand->packet->referenceCount == 0) { outgoingCommand->packet->flags |= ENET_PACKET_FLAG_SENT; callbacks.packet_destroy(outgoingCommand->packet); } } enet_free(outgoingCommand); if (enet_list_empty(&peer->sentReliableCommands)) { return commandNumber; } outgoingCommand = (ENetOutgoingCommand *) enet_list_front(&peer->sentReliableCommands); peer->nextTimeout = outgoingCommand->sentTime + outgoingCommand->roundTripTimeout; return commandNumber; } /* enet_protocol_remove_sent_reliable_command */ static ENetPeer * enet_protocol_handle_connect(ENetHost *host, ENetProtocolHeader *header, ENetProtocol *command) { ENET_UNUSED(header) enet_uint8 incomingSessionID, outgoingSessionID; enet_uint32 mtu, windowSize; ENetChannel *channel; size_t channelCount, duplicatePeers = 0; ENetPeer *currentPeer, *peer = NULL; ENetProtocol verifyCommand; channelCount = ENET_NET_TO_HOST_32(command->connect.channelCount); if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT || channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) { return NULL; } for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) { if (currentPeer->state == ENET_PEER_STATE_DISCONNECTED) { if (peer == NULL) { peer = currentPeer; } } else if (currentPeer->state != ENET_PEER_STATE_CONNECTING && in6_equal(currentPeer->address.host, host->receivedAddress.host)) { if (currentPeer->address.port == host->receivedAddress.port && currentPeer->connectID == command->connect.connectID) { return NULL; } ++duplicatePeers; } } if (peer == NULL || duplicatePeers >= host->duplicatePeers) { return NULL; } if (channelCount > host->channelLimit) { channelCount = host->channelLimit; } peer->channels = (ENetChannel *) enet_malloc(channelCount * sizeof(ENetChannel)); if (peer->channels == NULL) { return NULL; } peer->channelCount = channelCount; peer->state = ENET_PEER_STATE_ACKNOWLEDGING_CONNECT; peer->connectID = command->connect.connectID; peer->address = host->receivedAddress; peer->outgoingPeerID = ENET_NET_TO_HOST_16(command->connect.outgoingPeerID); peer->incomingBandwidth = ENET_NET_TO_HOST_32(command->connect.incomingBandwidth); peer->outgoingBandwidth = ENET_NET_TO_HOST_32(command->connect.outgoingBandwidth); peer->packetThrottleInterval = ENET_NET_TO_HOST_32(command->connect.packetThrottleInterval); peer->packetThrottleAcceleration = ENET_NET_TO_HOST_32(command->connect.packetThrottleAcceleration); peer->packetThrottleDeceleration = ENET_NET_TO_HOST_32(command->connect.packetThrottleDeceleration); peer->eventData = ENET_NET_TO_HOST_32(command->connect.data); incomingSessionID = command->connect.incomingSessionID == 0xFF ? peer->outgoingSessionID : command->connect.incomingSessionID; incomingSessionID = (incomingSessionID + 1) & (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT); if (incomingSessionID == peer->outgoingSessionID) { incomingSessionID = (incomingSessionID + 1) & (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT); } peer->outgoingSessionID = incomingSessionID; outgoingSessionID = command->connect.outgoingSessionID == 0xFF ? peer->incomingSessionID : command->connect.outgoingSessionID; outgoingSessionID = (outgoingSessionID + 1) & (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT); if (outgoingSessionID == peer->incomingSessionID) { outgoingSessionID = (outgoingSessionID + 1) & (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT); } peer->incomingSessionID = outgoingSessionID; for (channel = peer->channels; channel < &peer->channels[channelCount]; ++channel) { channel->outgoingReliableSequenceNumber = 0; channel->outgoingUnreliableSequenceNumber = 0; channel->incomingReliableSequenceNumber = 0; channel->incomingUnreliableSequenceNumber = 0; enet_list_clear(&channel->incomingReliableCommands); enet_list_clear(&channel->incomingUnreliableCommands); channel->usedReliableWindows = 0; memset(channel->reliableWindows, 0, sizeof(channel->reliableWindows)); } mtu = ENET_NET_TO_HOST_32(command->connect.mtu); if (mtu < ENET_PROTOCOL_MINIMUM_MTU) { mtu = ENET_PROTOCOL_MINIMUM_MTU; } else if (mtu > ENET_PROTOCOL_MAXIMUM_MTU) { mtu = ENET_PROTOCOL_MAXIMUM_MTU; } peer->mtu = mtu; if (host->outgoingBandwidth == 0 && peer->incomingBandwidth == 0) { peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } else if (host->outgoingBandwidth == 0 || peer->incomingBandwidth == 0) { peer->windowSize = (ENET_MAX(host->outgoingBandwidth, peer->incomingBandwidth) / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } else { peer->windowSize = (ENET_MIN(host->outgoingBandwidth, peer->incomingBandwidth) / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } if (peer->windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) { peer->windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } else if (peer->windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) { peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } if (host->incomingBandwidth == 0) { windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } else { windowSize = (host->incomingBandwidth / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } if (windowSize > ENET_NET_TO_HOST_32(command->connect.windowSize)) { windowSize = ENET_NET_TO_HOST_32(command->connect.windowSize); } if (windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) { windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } else if (windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) { windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } verifyCommand.header.command = ENET_PROTOCOL_COMMAND_VERIFY_CONNECT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; verifyCommand.header.channelID = 0xFF; verifyCommand.verifyConnect.outgoingPeerID = ENET_HOST_TO_NET_16(peer->incomingPeerID); verifyCommand.verifyConnect.incomingSessionID = incomingSessionID; verifyCommand.verifyConnect.outgoingSessionID = outgoingSessionID; verifyCommand.verifyConnect.mtu = ENET_HOST_TO_NET_32(peer->mtu); verifyCommand.verifyConnect.windowSize = ENET_HOST_TO_NET_32(windowSize); verifyCommand.verifyConnect.channelCount = ENET_HOST_TO_NET_32(channelCount); verifyCommand.verifyConnect.incomingBandwidth = ENET_HOST_TO_NET_32(host->incomingBandwidth); verifyCommand.verifyConnect.outgoingBandwidth = ENET_HOST_TO_NET_32(host->outgoingBandwidth); verifyCommand.verifyConnect.packetThrottleInterval = ENET_HOST_TO_NET_32(peer->packetThrottleInterval); verifyCommand.verifyConnect.packetThrottleAcceleration = ENET_HOST_TO_NET_32(peer->packetThrottleAcceleration); verifyCommand.verifyConnect.packetThrottleDeceleration = ENET_HOST_TO_NET_32(peer->packetThrottleDeceleration); verifyCommand.verifyConnect.connectID = peer->connectID; enet_peer_queue_outgoing_command(peer, &verifyCommand, NULL, 0, 0); return peer; } /* enet_protocol_handle_connect */ static int enet_protocol_handle_send_reliable(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) { size_t dataLength; if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) { return -1; } dataLength = ENET_NET_TO_HOST_16(command->sendReliable.dataLength); *currentData += dataLength; if (dataLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) { return -1; } if (enet_peer_queue_incoming_command(peer, command, (const enet_uint8 *) command + sizeof(ENetProtocolSendReliable), dataLength, ENET_PACKET_FLAG_RELIABLE, 0) == NULL) { return -1; } return 0; } static int enet_protocol_handle_send_unsequenced(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) { enet_uint32 unsequencedGroup, index; size_t dataLength; if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) { return -1; } dataLength = ENET_NET_TO_HOST_16(command->sendUnsequenced.dataLength); *currentData += dataLength; if (dataLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) { return -1; } unsequencedGroup = ENET_NET_TO_HOST_16(command->sendUnsequenced.unsequencedGroup); index = unsequencedGroup % ENET_PEER_UNSEQUENCED_WINDOW_SIZE; if (unsequencedGroup < peer->incomingUnsequencedGroup) { unsequencedGroup += 0x10000; } if (unsequencedGroup >= (enet_uint32) peer->incomingUnsequencedGroup + ENET_PEER_FREE_UNSEQUENCED_WINDOWS * ENET_PEER_UNSEQUENCED_WINDOW_SIZE) { return 0; } unsequencedGroup &= 0xFFFF; if (unsequencedGroup - index != peer->incomingUnsequencedGroup) { peer->incomingUnsequencedGroup = unsequencedGroup - index; memset(peer->unsequencedWindow, 0, sizeof(peer->unsequencedWindow)); } else if (peer->unsequencedWindow[index / 32] & (1 << (index % 32))) { return 0; } if (enet_peer_queue_incoming_command(peer, command, (const enet_uint8 *) command + sizeof(ENetProtocolSendUnsequenced), dataLength, ENET_PACKET_FLAG_UNSEQUENCED,0) == NULL) { return -1; } peer->unsequencedWindow[index / 32] |= 1 << (index % 32); return 0; } /* enet_protocol_handle_send_unsequenced */ static int enet_protocol_handle_send_unreliable(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) { size_t dataLength; if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) { return -1; } dataLength = ENET_NET_TO_HOST_16(command->sendUnreliable.dataLength); *currentData += dataLength; if (dataLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) { return -1; } if (enet_peer_queue_incoming_command(peer, command, (const enet_uint8 *) command + sizeof(ENetProtocolSendUnreliable), dataLength, 0, 0) == NULL) { return -1; } return 0; } static int enet_protocol_handle_send_fragment(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) { enet_uint32 fragmentNumber, fragmentCount, fragmentOffset, fragmentLength, startSequenceNumber, totalLength; ENetChannel *channel; enet_uint16 startWindow, currentWindow; ENetListIterator currentCommand; ENetIncomingCommand *startCommand = NULL; if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) { return -1; } fragmentLength = ENET_NET_TO_HOST_16(command->sendFragment.dataLength); *currentData += fragmentLength; if (fragmentLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) { return -1; } channel = &peer->channels[command->header.channelID]; startSequenceNumber = ENET_NET_TO_HOST_16(command->sendFragment.startSequenceNumber); startWindow = startSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (startSequenceNumber < channel->incomingReliableSequenceNumber) { startWindow += ENET_PEER_RELIABLE_WINDOWS; } if (startWindow < currentWindow || startWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) { return 0; } fragmentNumber = ENET_NET_TO_HOST_32(command->sendFragment.fragmentNumber); fragmentCount = ENET_NET_TO_HOST_32(command->sendFragment.fragmentCount); fragmentOffset = ENET_NET_TO_HOST_32(command->sendFragment.fragmentOffset); totalLength = ENET_NET_TO_HOST_32(command->sendFragment.totalLength); if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT || fragmentNumber >= fragmentCount || totalLength > host->maximumPacketSize || fragmentOffset >= totalLength || fragmentLength > totalLength - fragmentOffset ) { return -1; } for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingReliableCommands)); currentCommand != enet_list_end(&channel->incomingReliableCommands); currentCommand = enet_list_previous(currentCommand) ) { ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand; if (startSequenceNumber >= channel->incomingReliableSequenceNumber) { if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) { continue; } } else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { break; } if (incomingCommand->reliableSequenceNumber <= startSequenceNumber) { if (incomingCommand->reliableSequenceNumber < startSequenceNumber) { break; } if ((incomingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) != ENET_PROTOCOL_COMMAND_SEND_FRAGMENT || totalLength != incomingCommand->packet->dataLength || fragmentCount != incomingCommand->fragmentCount ) { return -1; } startCommand = incomingCommand; break; } } if (startCommand == NULL) { ENetProtocol hostCommand = *command; hostCommand.header.reliableSequenceNumber = startSequenceNumber; startCommand = enet_peer_queue_incoming_command(peer, &hostCommand, NULL, totalLength, ENET_PACKET_FLAG_RELIABLE, fragmentCount); if (startCommand == NULL) { return -1; } } if ((startCommand->fragments[fragmentNumber / 32] & (1 << (fragmentNumber % 32))) == 0) { --startCommand->fragmentsRemaining; startCommand->fragments[fragmentNumber / 32] |= (1 << (fragmentNumber % 32)); if (fragmentOffset + fragmentLength > startCommand->packet->dataLength) { fragmentLength = startCommand->packet->dataLength - fragmentOffset; } memcpy(startCommand->packet->data + fragmentOffset, (enet_uint8 *) command + sizeof(ENetProtocolSendFragment), fragmentLength); if (startCommand->fragmentsRemaining <= 0) { enet_peer_dispatch_incoming_reliable_commands(peer, channel); } } return 0; } /* enet_protocol_handle_send_fragment */ static int enet_protocol_handle_send_unreliable_fragment(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) { enet_uint32 fragmentNumber, fragmentCount, fragmentOffset, fragmentLength, reliableSequenceNumber, startSequenceNumber, totalLength; enet_uint16 reliableWindow, currentWindow; ENetChannel *channel; ENetListIterator currentCommand; ENetIncomingCommand *startCommand = NULL; if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) { return -1; } fragmentLength = ENET_NET_TO_HOST_16(command->sendFragment.dataLength); *currentData += fragmentLength; if (fragmentLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) { return -1; } channel = &peer->channels[command->header.channelID]; reliableSequenceNumber = command->header.reliableSequenceNumber; startSequenceNumber = ENET_NET_TO_HOST_16(command->sendFragment.startSequenceNumber); reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (reliableSequenceNumber < channel->incomingReliableSequenceNumber) { reliableWindow += ENET_PEER_RELIABLE_WINDOWS; } if (reliableWindow < currentWindow || reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) { return 0; } if (reliableSequenceNumber == channel->incomingReliableSequenceNumber && startSequenceNumber <= channel->incomingUnreliableSequenceNumber) { return 0; } fragmentNumber = ENET_NET_TO_HOST_32(command->sendFragment.fragmentNumber); fragmentCount = ENET_NET_TO_HOST_32(command->sendFragment.fragmentCount); fragmentOffset = ENET_NET_TO_HOST_32(command->sendFragment.fragmentOffset); totalLength = ENET_NET_TO_HOST_32(command->sendFragment.totalLength); if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT || fragmentNumber >= fragmentCount || totalLength > host->maximumPacketSize || fragmentOffset >= totalLength || fragmentLength > totalLength - fragmentOffset ) { return -1; } for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingUnreliableCommands)); currentCommand != enet_list_end(&channel->incomingUnreliableCommands); currentCommand = enet_list_previous(currentCommand) ) { ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand; if (reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) { continue; } } else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { break; } if (incomingCommand->reliableSequenceNumber < reliableSequenceNumber) { break; } if (incomingCommand->reliableSequenceNumber > reliableSequenceNumber) { continue; } if (incomingCommand->unreliableSequenceNumber <= startSequenceNumber) { if (incomingCommand->unreliableSequenceNumber < startSequenceNumber) { break; } if ((incomingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) != ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT || totalLength != incomingCommand->packet->dataLength || fragmentCount != incomingCommand->fragmentCount ) { return -1; } startCommand = incomingCommand; break; } } if (startCommand == NULL) { startCommand = enet_peer_queue_incoming_command(peer, command, NULL, totalLength, ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT, fragmentCount); if (startCommand == NULL) { return -1; } } if ((startCommand->fragments[fragmentNumber / 32] & (1 << (fragmentNumber % 32))) == 0) { --startCommand->fragmentsRemaining; startCommand->fragments[fragmentNumber / 32] |= (1 << (fragmentNumber % 32)); if (fragmentOffset + fragmentLength > startCommand->packet->dataLength) { fragmentLength = startCommand->packet->dataLength - fragmentOffset; } memcpy(startCommand->packet->data + fragmentOffset, (enet_uint8 *) command + sizeof(ENetProtocolSendFragment), fragmentLength); if (startCommand->fragmentsRemaining <= 0) { enet_peer_dispatch_incoming_unreliable_commands(peer, channel); } } return 0; } /* enet_protocol_handle_send_unreliable_fragment */ static int enet_protocol_handle_ping(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) { ENET_UNUSED(host) ENET_UNUSED(command) if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { return -1; } return 0; } static int enet_protocol_handle_bandwidth_limit(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) { if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { return -1; } if (peer->incomingBandwidth != 0) { --host->bandwidthLimitedPeers; } peer->incomingBandwidth = ENET_NET_TO_HOST_32(command->bandwidthLimit.incomingBandwidth); peer->outgoingBandwidth = ENET_NET_TO_HOST_32(command->bandwidthLimit.outgoingBandwidth); if (peer->incomingBandwidth != 0) { ++host->bandwidthLimitedPeers; } if (peer->incomingBandwidth == 0 && host->outgoingBandwidth == 0) { peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } else if (peer->incomingBandwidth == 0 || host->outgoingBandwidth == 0) { peer->windowSize = (ENET_MAX(peer->incomingBandwidth, host->outgoingBandwidth) / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } else { peer->windowSize = (ENET_MIN(peer->incomingBandwidth, host->outgoingBandwidth) / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } if (peer->windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) { peer->windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } else if (peer->windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) { peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } return 0; } /* enet_protocol_handle_bandwidth_limit */ static int enet_protocol_handle_throttle_configure(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) { ENET_UNUSED(host) if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { return -1; } peer->packetThrottleInterval = ENET_NET_TO_HOST_32(command->throttleConfigure.packetThrottleInterval); peer->packetThrottleAcceleration = ENET_NET_TO_HOST_32(command->throttleConfigure.packetThrottleAcceleration); peer->packetThrottleDeceleration = ENET_NET_TO_HOST_32(command->throttleConfigure.packetThrottleDeceleration); return 0; } static int enet_protocol_handle_disconnect(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) { if (peer->state == ENET_PEER_STATE_DISCONNECTED || peer->state == ENET_PEER_STATE_ZOMBIE || peer->state == ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT ) { return 0; } enet_peer_reset_queues(peer); if (peer->state == ENET_PEER_STATE_CONNECTION_SUCCEEDED || peer->state == ENET_PEER_STATE_DISCONNECTING || peer->state == ENET_PEER_STATE_CONNECTING) { enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE); } else if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { if (peer->state == ENET_PEER_STATE_CONNECTION_PENDING) { host->recalculateBandwidthLimits = 1; } enet_peer_reset(peer); } else if (command->header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) { enet_protocol_change_state(host, peer, ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT); } else { enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE); } if (peer->state != ENET_PEER_STATE_DISCONNECTED) { peer->eventData = ENET_NET_TO_HOST_32(command->disconnect.data); } return 0; } static int enet_protocol_handle_acknowledge(ENetHost *host, ENetEvent *event, ENetPeer *peer, const ENetProtocol *command) { enet_uint32 roundTripTime, receivedSentTime, receivedReliableSequenceNumber; ENetProtocolCommand commandNumber; if (peer->state == ENET_PEER_STATE_DISCONNECTED || peer->state == ENET_PEER_STATE_ZOMBIE) { return 0; } receivedSentTime = ENET_NET_TO_HOST_16(command->acknowledge.receivedSentTime); receivedSentTime |= host->serviceTime & 0xFFFF0000; if ((receivedSentTime & 0x8000) > (host->serviceTime & 0x8000)) { receivedSentTime -= 0x10000; } if (ENET_TIME_LESS(host->serviceTime, receivedSentTime)) { return 0; } peer->lastReceiveTime = host->serviceTime; peer->earliestTimeout = 0; roundTripTime = ENET_TIME_DIFFERENCE(host->serviceTime, receivedSentTime); enet_peer_throttle(peer, roundTripTime); peer->roundTripTimeVariance -= peer->roundTripTimeVariance / 4; if (roundTripTime >= peer->roundTripTime) { peer->roundTripTime += (roundTripTime - peer->roundTripTime) / 8; peer->roundTripTimeVariance += (roundTripTime - peer->roundTripTime) / 4; } else { peer->roundTripTime -= (peer->roundTripTime - roundTripTime) / 8; peer->roundTripTimeVariance += (peer->roundTripTime - roundTripTime) / 4; } if (peer->roundTripTime < peer->lowestRoundTripTime) { peer->lowestRoundTripTime = peer->roundTripTime; } if (peer->roundTripTimeVariance > peer->highestRoundTripTimeVariance) { peer->highestRoundTripTimeVariance = peer->roundTripTimeVariance; } if (peer->packetThrottleEpoch == 0 || ENET_TIME_DIFFERENCE(host->serviceTime, peer->packetThrottleEpoch) >= peer->packetThrottleInterval ) { peer->lastRoundTripTime = peer->lowestRoundTripTime; peer->lastRoundTripTimeVariance = peer->highestRoundTripTimeVariance; peer->lowestRoundTripTime = peer->roundTripTime; peer->highestRoundTripTimeVariance = peer->roundTripTimeVariance; peer->packetThrottleEpoch = host->serviceTime; } receivedReliableSequenceNumber = ENET_NET_TO_HOST_16(command->acknowledge.receivedReliableSequenceNumber); commandNumber = enet_protocol_remove_sent_reliable_command(peer, receivedReliableSequenceNumber, command->header.channelID); switch (peer->state) { case ENET_PEER_STATE_ACKNOWLEDGING_CONNECT: if (commandNumber != ENET_PROTOCOL_COMMAND_VERIFY_CONNECT) { return -1; } enet_protocol_notify_connect(host, peer, event); break; case ENET_PEER_STATE_DISCONNECTING: if (commandNumber != ENET_PROTOCOL_COMMAND_DISCONNECT) { return -1; } enet_protocol_notify_disconnect(host, peer, event); break; case ENET_PEER_STATE_DISCONNECT_LATER: if (enet_list_empty(&peer->outgoingReliableCommands) && enet_list_empty(&peer->outgoingUnreliableCommands) && enet_list_empty(&peer->sentReliableCommands)) { enet_peer_disconnect(peer, peer->eventData); } break; default: break; } return 0; } /* enet_protocol_handle_acknowledge */ static int enet_protocol_handle_verify_connect(ENetHost *host, ENetEvent *event, ENetPeer *peer, const ENetProtocol *command) { enet_uint32 mtu, windowSize; size_t channelCount; if (peer->state != ENET_PEER_STATE_CONNECTING) { return 0; } channelCount = ENET_NET_TO_HOST_32(command->verifyConnect.channelCount); if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT || channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT || ENET_NET_TO_HOST_32(command->verifyConnect.packetThrottleInterval) != peer->packetThrottleInterval || ENET_NET_TO_HOST_32(command->verifyConnect.packetThrottleAcceleration) != peer->packetThrottleAcceleration || ENET_NET_TO_HOST_32(command->verifyConnect.packetThrottleDeceleration) != peer->packetThrottleDeceleration || command->verifyConnect.connectID != peer->connectID ) { peer->eventData = 0; enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE); return -1; } enet_protocol_remove_sent_reliable_command(peer, 1, 0xFF); if (channelCount < peer->channelCount) { peer->channelCount = channelCount; } peer->outgoingPeerID = ENET_NET_TO_HOST_16(command->verifyConnect.outgoingPeerID); peer->incomingSessionID = command->verifyConnect.incomingSessionID; peer->outgoingSessionID = command->verifyConnect.outgoingSessionID; mtu = ENET_NET_TO_HOST_32(command->verifyConnect.mtu); if (mtu < ENET_PROTOCOL_MINIMUM_MTU) { mtu = ENET_PROTOCOL_MINIMUM_MTU; } else if (mtu > ENET_PROTOCOL_MAXIMUM_MTU) { mtu = ENET_PROTOCOL_MAXIMUM_MTU; } if (mtu < peer->mtu) { peer->mtu = mtu; } windowSize = ENET_NET_TO_HOST_32(command->verifyConnect.windowSize); if (windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) { windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } if (windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) { windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } if (windowSize < peer->windowSize) { peer->windowSize = windowSize; } peer->incomingBandwidth = ENET_NET_TO_HOST_32(command->verifyConnect.incomingBandwidth); peer->outgoingBandwidth = ENET_NET_TO_HOST_32(command->verifyConnect.outgoingBandwidth); enet_protocol_notify_connect(host, peer, event); return 0; } /* enet_protocol_handle_verify_connect */ static int enet_protocol_handle_incoming_commands(ENetHost *host, ENetEvent *event) { ENetProtocolHeader *header; ENetProtocol *command; ENetPeer *peer; enet_uint8 *currentData; size_t headerSize; enet_uint16 peerID, flags; enet_uint8 sessionID; if (host->receivedDataLength < (size_t) &((ENetProtocolHeader *) 0)->sentTime) { return 0; } header = (ENetProtocolHeader *) host->receivedData; peerID = ENET_NET_TO_HOST_16(header->peerID); sessionID = (peerID & ENET_PROTOCOL_HEADER_SESSION_MASK) >> ENET_PROTOCOL_HEADER_SESSION_SHIFT; flags = peerID & ENET_PROTOCOL_HEADER_FLAG_MASK; peerID &= ~(ENET_PROTOCOL_HEADER_FLAG_MASK | ENET_PROTOCOL_HEADER_SESSION_MASK); headerSize = (flags & ENET_PROTOCOL_HEADER_FLAG_SENT_TIME ? sizeof(ENetProtocolHeader) : (size_t) &((ENetProtocolHeader *) 0)->sentTime); if (host->checksum != NULL) { headerSize += sizeof(enet_uint32); } if (peerID == ENET_PROTOCOL_MAXIMUM_PEER_ID) { peer = NULL; } else if (peerID >= host->peerCount) { return 0; } else { peer = &host->peers[peerID]; if (peer->state == ENET_PEER_STATE_DISCONNECTED || peer->state == ENET_PEER_STATE_ZOMBIE || ((!in6_equal(host->receivedAddress.host , peer->address.host) || host->receivedAddress.port != peer->address.port) && 1 /* no broadcast in ipv6 !in6_equal(peer->address.host , ENET_HOST_BROADCAST)*/) || (peer->outgoingPeerID < ENET_PROTOCOL_MAXIMUM_PEER_ID && sessionID != peer->incomingSessionID) ) { return 0; } } if (flags & ENET_PROTOCOL_HEADER_FLAG_COMPRESSED) { size_t originalSize; if (host->compressor.context == NULL || host->compressor.decompress == NULL) { return 0; } originalSize = host->compressor.decompress(host->compressor.context, host->receivedData + headerSize, host->receivedDataLength - headerSize, host->packetData[1] + headerSize, sizeof(host->packetData[1]) - headerSize ); if (originalSize <= 0 || originalSize > sizeof(host->packetData[1]) - headerSize) { return 0; } memcpy(host->packetData[1], header, headerSize); host->receivedData = host->packetData[1]; host->receivedDataLength = headerSize + originalSize; } if (host->checksum != NULL) { enet_uint32 *checksum = (enet_uint32 *) &host->receivedData[headerSize - sizeof(enet_uint32)]; enet_uint32 desiredChecksum = *checksum; ENetBuffer buffer; *checksum = peer != NULL ? peer->connectID : 0; buffer.data = host->receivedData; buffer.dataLength = host->receivedDataLength; if (host->checksum(&buffer, 1) != desiredChecksum) { return 0; } } if (peer != NULL) { peer->address.host = host->receivedAddress.host; peer->address.port = host->receivedAddress.port; peer->incomingDataTotal += host->receivedDataLength; peer->totalDataReceived += host->receivedDataLength; } currentData = host->receivedData + headerSize; while (currentData < &host->receivedData[host->receivedDataLength]) { enet_uint8 commandNumber; size_t commandSize; command = (ENetProtocol *) currentData; if (currentData + sizeof(ENetProtocolCommandHeader) > &host->receivedData[host->receivedDataLength]) { break; } commandNumber = command->header.command & ENET_PROTOCOL_COMMAND_MASK; if (commandNumber >= ENET_PROTOCOL_COMMAND_COUNT) { break; } commandSize = commandSizes[commandNumber]; if (commandSize == 0 || currentData + commandSize > &host->receivedData[host->receivedDataLength]) { break; } currentData += commandSize; if (peer == NULL && (commandNumber != ENET_PROTOCOL_COMMAND_CONNECT || currentData < &host->receivedData[host->receivedDataLength])) { break; } command->header.reliableSequenceNumber = ENET_NET_TO_HOST_16(command->header.reliableSequenceNumber); switch (commandNumber) { case ENET_PROTOCOL_COMMAND_ACKNOWLEDGE: if (enet_protocol_handle_acknowledge(host, event, peer, command)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_CONNECT: if (peer != NULL) { goto commandError; } peer = enet_protocol_handle_connect(host, header, command); if (peer == NULL) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_VERIFY_CONNECT: if (enet_protocol_handle_verify_connect(host, event, peer, command)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_DISCONNECT: if (enet_protocol_handle_disconnect(host, peer, command)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_PING: if (enet_protocol_handle_ping(host, peer, command)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_SEND_RELIABLE: if (enet_protocol_handle_send_reliable(host, peer, command, ¤tData)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE: if (enet_protocol_handle_send_unreliable(host, peer, command, ¤tData)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED: if (enet_protocol_handle_send_unsequenced(host, peer, command, ¤tData)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT: if (enet_protocol_handle_send_fragment(host, peer, command, ¤tData)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT: if (enet_protocol_handle_bandwidth_limit(host, peer, command)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE: if (enet_protocol_handle_throttle_configure(host, peer, command)) { goto commandError; } break; case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT: if (enet_protocol_handle_send_unreliable_fragment(host, peer, command, ¤tData)) { goto commandError; } break; default: goto commandError; } if (peer != NULL && (command->header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) != 0) { enet_uint16 sentTime; if (!(flags & ENET_PROTOCOL_HEADER_FLAG_SENT_TIME)) { break; } sentTime = ENET_NET_TO_HOST_16(header->sentTime); switch (peer->state) { case ENET_PEER_STATE_DISCONNECTING: case ENET_PEER_STATE_ACKNOWLEDGING_CONNECT: case ENET_PEER_STATE_DISCONNECTED: case ENET_PEER_STATE_ZOMBIE: break; case ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT: if ((command->header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_DISCONNECT) { enet_peer_queue_acknowledgement(peer, command, sentTime); } break; default: enet_peer_queue_acknowledgement(peer, command, sentTime); break; } } } commandError: if (event != NULL && event->type != ENET_EVENT_TYPE_NONE) { return 1; } return 0; } /* enet_protocol_handle_incoming_commands */ static int enet_protocol_receive_incoming_commands(ENetHost *host, ENetEvent *event) { int packets; for (packets = 0; packets < 256; ++packets) { int receivedLength; ENetBuffer buffer; buffer.data = host->packetData[0]; // buffer.dataLength = sizeof (host->packetData[0]); buffer.dataLength = host->mtu; receivedLength = enet_socket_receive(host->socket, &host->receivedAddress, &buffer, 1); if (receivedLength == -2) continue; if (receivedLength < 0) { return -1; } if (receivedLength == 0) { return 0; } host->receivedData = host->packetData[0]; host->receivedDataLength = receivedLength; host->totalReceivedData += receivedLength; host->totalReceivedPackets++; if (host->intercept != NULL) { switch (host->intercept(host, (void *)event)) { case 1: if (event != NULL && event->type != ENET_EVENT_TYPE_NONE) { return 1; } continue; case -1: return -1; default: break; } } switch (enet_protocol_handle_incoming_commands(host, event)) { case 1: return 1; case -1: return -1; default: break; } } return -1; } /* enet_protocol_receive_incoming_commands */ static void enet_protocol_send_acknowledgements(ENetHost *host, ENetPeer *peer) { ENetProtocol *command = &host->commands[host->commandCount]; ENetBuffer *buffer = &host->buffers[host->bufferCount]; ENetAcknowledgement *acknowledgement; ENetListIterator currentAcknowledgement; enet_uint16 reliableSequenceNumber; currentAcknowledgement = enet_list_begin(&peer->acknowledgements); while (currentAcknowledgement != enet_list_end(&peer->acknowledgements)) { if (command >= &host->commands[sizeof(host->commands) / sizeof(ENetProtocol)] || buffer >= &host->buffers[sizeof(host->buffers) / sizeof(ENetBuffer)] || peer->mtu - host->packetSize < sizeof(ENetProtocolAcknowledge) ) { host->continueSending = 1; break; } acknowledgement = (ENetAcknowledgement *) currentAcknowledgement; currentAcknowledgement = enet_list_next(currentAcknowledgement); buffer->data = command; buffer->dataLength = sizeof(ENetProtocolAcknowledge); host->packetSize += buffer->dataLength; reliableSequenceNumber = ENET_HOST_TO_NET_16(acknowledgement->command.header.reliableSequenceNumber); command->header.command = ENET_PROTOCOL_COMMAND_ACKNOWLEDGE; command->header.channelID = acknowledgement->command.header.channelID; command->header.reliableSequenceNumber = reliableSequenceNumber; command->acknowledge.receivedReliableSequenceNumber = reliableSequenceNumber; command->acknowledge.receivedSentTime = ENET_HOST_TO_NET_16(acknowledgement->sentTime); if ((acknowledgement->command.header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_DISCONNECT) { enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE); } enet_list_remove(&acknowledgement->acknowledgementList); enet_free(acknowledgement); ++command; ++buffer; } host->commandCount = command - host->commands; host->bufferCount = buffer - host->buffers; } /* enet_protocol_send_acknowledgements */ static void enet_protocol_send_unreliable_outgoing_commands(ENetHost *host, ENetPeer *peer) { ENetProtocol *command = &host->commands[host->commandCount]; ENetBuffer *buffer = &host->buffers[host->bufferCount]; ENetOutgoingCommand *outgoingCommand; ENetListIterator currentCommand; currentCommand = enet_list_begin(&peer->outgoingUnreliableCommands); while (currentCommand != enet_list_end(&peer->outgoingUnreliableCommands)) { size_t commandSize; outgoingCommand = (ENetOutgoingCommand *) currentCommand; commandSize = commandSizes[outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK]; if (command >= &host->commands[sizeof(host->commands) / sizeof(ENetProtocol)] || buffer + 1 >= &host->buffers[sizeof(host->buffers) / sizeof(ENetBuffer)] || peer->mtu - host->packetSize < commandSize || (outgoingCommand->packet != NULL && peer->mtu - host->packetSize < commandSize + outgoingCommand->fragmentLength) ) { host->continueSending = 1; break; } currentCommand = enet_list_next(currentCommand); if (outgoingCommand->packet != NULL && outgoingCommand->fragmentOffset == 0) { peer->packetThrottleCounter += ENET_PEER_PACKET_THROTTLE_COUNTER; peer->packetThrottleCounter %= ENET_PEER_PACKET_THROTTLE_SCALE; if (peer->packetThrottleCounter > peer->packetThrottle) { enet_uint16 reliableSequenceNumber = outgoingCommand->reliableSequenceNumber; enet_uint16 unreliableSequenceNumber = outgoingCommand->unreliableSequenceNumber; for (;;) { --outgoingCommand->packet->referenceCount; if (outgoingCommand->packet->referenceCount == 0) { callbacks.packet_destroy(outgoingCommand->packet); } enet_list_remove(&outgoingCommand->outgoingCommandList); enet_free(outgoingCommand); if (currentCommand == enet_list_end(&peer->outgoingUnreliableCommands)) { break; } outgoingCommand = (ENetOutgoingCommand *) currentCommand; if (outgoingCommand->reliableSequenceNumber != reliableSequenceNumber || outgoingCommand->unreliableSequenceNumber != unreliableSequenceNumber) { break; } currentCommand = enet_list_next(currentCommand); } continue; } } buffer->data = command; buffer->dataLength = commandSize; host->packetSize += buffer->dataLength; *command = outgoingCommand->command; enet_list_remove(&outgoingCommand->outgoingCommandList); if (outgoingCommand->packet != NULL) { ++buffer; buffer->data = outgoingCommand->packet->data + outgoingCommand->fragmentOffset; buffer->dataLength = outgoingCommand->fragmentLength; host->packetSize += buffer->dataLength; enet_list_insert(enet_list_end(&peer->sentUnreliableCommands), outgoingCommand); } else { enet_free(outgoingCommand); } ++command; ++buffer; } host->commandCount = command - host->commands; host->bufferCount = buffer - host->buffers; if (peer->state == ENET_PEER_STATE_DISCONNECT_LATER && enet_list_empty(&peer->outgoingReliableCommands) && enet_list_empty(&peer->outgoingUnreliableCommands) && enet_list_empty(&peer->sentReliableCommands)) { enet_peer_disconnect(peer, peer->eventData); } } /* enet_protocol_send_unreliable_outgoing_commands */ static int enet_protocol_check_timeouts(ENetHost *host, ENetPeer *peer, ENetEvent *event) { ENetOutgoingCommand *outgoingCommand; ENetListIterator currentCommand, insertPosition; currentCommand = enet_list_begin(&peer->sentReliableCommands); insertPosition = enet_list_begin(&peer->outgoingReliableCommands); while (currentCommand != enet_list_end(&peer->sentReliableCommands)) { outgoingCommand = (ENetOutgoingCommand *) currentCommand; currentCommand = enet_list_next(currentCommand); if (ENET_TIME_DIFFERENCE(host->serviceTime, outgoingCommand->sentTime) < outgoingCommand->roundTripTimeout) { continue; } if (peer->earliestTimeout == 0 || ENET_TIME_LESS(outgoingCommand->sentTime, peer->earliestTimeout)) { peer->earliestTimeout = outgoingCommand->sentTime; } if (peer->earliestTimeout != 0 && (ENET_TIME_DIFFERENCE(host->serviceTime, peer->earliestTimeout) >= peer->timeoutMaximum || (outgoingCommand->roundTripTimeout >= outgoingCommand->roundTripTimeoutLimit && ENET_TIME_DIFFERENCE(host->serviceTime, peer->earliestTimeout) >= peer->timeoutMinimum)) ) { enet_protocol_notify_disconnect_timeout(host, peer, event); return 1; } if (outgoingCommand->packet != NULL) { peer->reliableDataInTransit -= outgoingCommand->fragmentLength; } ++peer->packetsLost; ++peer->totalPacketsLost; /* Replaced exponential backoff time with something more linear */ /* Source: http://lists.cubik.org/pipermail/enet-discuss/2014-May/002308.html */ outgoingCommand->roundTripTimeout = peer->roundTripTime + 4 * peer->roundTripTimeVariance; outgoingCommand->roundTripTimeoutLimit = peer->timeoutLimit * outgoingCommand->roundTripTimeout; enet_list_insert(insertPosition, enet_list_remove(&outgoingCommand->outgoingCommandList)); if (currentCommand == enet_list_begin(&peer->sentReliableCommands) && !enet_list_empty(&peer->sentReliableCommands)) { outgoingCommand = (ENetOutgoingCommand *) currentCommand; peer->nextTimeout = outgoingCommand->sentTime + outgoingCommand->roundTripTimeout; } } return 0; } /* enet_protocol_check_timeouts */ static int enet_protocol_send_reliable_outgoing_commands(ENetHost *host, ENetPeer *peer) { ENetProtocol *command = &host->commands[host->commandCount]; ENetBuffer *buffer = &host->buffers[host->bufferCount]; ENetOutgoingCommand *outgoingCommand; ENetListIterator currentCommand; ENetChannel *channel; enet_uint16 reliableWindow; size_t commandSize; int windowExceeded = 0, windowWrap = 0, canPing = 1; currentCommand = enet_list_begin(&peer->outgoingReliableCommands); while (currentCommand != enet_list_end(&peer->outgoingReliableCommands)) { outgoingCommand = (ENetOutgoingCommand *) currentCommand; channel = outgoingCommand->command.header.channelID < peer->channelCount ? &peer->channels[outgoingCommand->command.header.channelID] : NULL; reliableWindow = outgoingCommand->reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (channel != NULL) { if (!windowWrap && outgoingCommand->sendAttempts < 1 && !(outgoingCommand->reliableSequenceNumber % ENET_PEER_RELIABLE_WINDOW_SIZE) && (channel->reliableWindows[(reliableWindow + ENET_PEER_RELIABLE_WINDOWS - 1) % ENET_PEER_RELIABLE_WINDOWS] >= ENET_PEER_RELIABLE_WINDOW_SIZE || channel->usedReliableWindows & ((((1 << ENET_PEER_FREE_RELIABLE_WINDOWS) - 1) << reliableWindow) | (((1 << ENET_PEER_FREE_RELIABLE_WINDOWS) - 1) >> (ENET_PEER_RELIABLE_WINDOWS - reliableWindow)))) ) { windowWrap = 1; } if (windowWrap) { currentCommand = enet_list_next(currentCommand); continue; } } if (outgoingCommand->packet != NULL) { if (!windowExceeded) { enet_uint32 windowSize = (peer->packetThrottle * peer->windowSize) / ENET_PEER_PACKET_THROTTLE_SCALE; if (peer->reliableDataInTransit + outgoingCommand->fragmentLength > ENET_MAX(windowSize, peer->mtu)) { windowExceeded = 1; } } if (windowExceeded) { currentCommand = enet_list_next(currentCommand); continue; } } canPing = 0; commandSize = commandSizes[outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK]; if (command >= &host->commands[sizeof(host->commands) / sizeof(ENetProtocol)] || buffer + 1 >= &host->buffers[sizeof(host->buffers) / sizeof(ENetBuffer)] || peer->mtu - host->packetSize < commandSize || (outgoingCommand->packet != NULL && (enet_uint16) (peer->mtu - host->packetSize) < (enet_uint16) (commandSize + outgoingCommand->fragmentLength)) ) { host->continueSending = 1; break; } currentCommand = enet_list_next(currentCommand); if (channel != NULL && outgoingCommand->sendAttempts < 1) { channel->usedReliableWindows |= 1 << reliableWindow; ++channel->reliableWindows[reliableWindow]; } ++outgoingCommand->sendAttempts; if (outgoingCommand->roundTripTimeout == 0) { outgoingCommand->roundTripTimeout = peer->roundTripTime + 4 * peer->roundTripTimeVariance; outgoingCommand->roundTripTimeoutLimit = peer->timeoutLimit * outgoingCommand->roundTripTimeout; } if (enet_list_empty(&peer->sentReliableCommands)) { peer->nextTimeout = host->serviceTime + outgoingCommand->roundTripTimeout; } enet_list_insert(enet_list_end(&peer->sentReliableCommands), enet_list_remove(&outgoingCommand->outgoingCommandList)); outgoingCommand->sentTime = host->serviceTime; buffer->data = command; buffer->dataLength = commandSize; host->packetSize += buffer->dataLength; host->headerFlags |= ENET_PROTOCOL_HEADER_FLAG_SENT_TIME; *command = outgoingCommand->command; if (outgoingCommand->packet != NULL) { ++buffer; buffer->data = outgoingCommand->packet->data + outgoingCommand->fragmentOffset; buffer->dataLength = outgoingCommand->fragmentLength; host->packetSize += outgoingCommand->fragmentLength; peer->reliableDataInTransit += outgoingCommand->fragmentLength; } ++peer->packetsSent; ++peer->totalPacketsSent; ++command; ++buffer; } host->commandCount = command - host->commands; host->bufferCount = buffer - host->buffers; return canPing; } /* enet_protocol_send_reliable_outgoing_commands */ static int enet_protocol_send_outgoing_commands(ENetHost *host, ENetEvent *event, int checkForTimeouts) { enet_uint8 headerData[sizeof(ENetProtocolHeader) + sizeof(enet_uint32)]; ENetProtocolHeader *header = (ENetProtocolHeader *) headerData; ENetPeer *currentPeer; int sentLength; size_t shouldCompress = 0; host->continueSending = 1; while (host->continueSending) for (host->continueSending = 0, currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) { if (currentPeer->state == ENET_PEER_STATE_DISCONNECTED || currentPeer->state == ENET_PEER_STATE_ZOMBIE) { continue; } host->headerFlags = 0; host->commandCount = 0; host->bufferCount = 1; host->packetSize = sizeof(ENetProtocolHeader); if (!enet_list_empty(¤tPeer->acknowledgements)) { enet_protocol_send_acknowledgements(host, currentPeer); } if (checkForTimeouts != 0 && !enet_list_empty(¤tPeer->sentReliableCommands) && ENET_TIME_GREATER_EQUAL(host->serviceTime, currentPeer->nextTimeout) && enet_protocol_check_timeouts(host, currentPeer, event) == 1 ) { if (event != NULL && event->type != ENET_EVENT_TYPE_NONE) { return 1; } else { continue; } } if ((enet_list_empty(¤tPeer->outgoingReliableCommands) || enet_protocol_send_reliable_outgoing_commands(host, currentPeer)) && enet_list_empty(¤tPeer->sentReliableCommands) && ENET_TIME_DIFFERENCE(host->serviceTime, currentPeer->lastReceiveTime) >= currentPeer->pingInterval && currentPeer->mtu - host->packetSize >= sizeof(ENetProtocolPing) ) { enet_peer_ping(currentPeer); enet_protocol_send_reliable_outgoing_commands(host, currentPeer); } if (!enet_list_empty(¤tPeer->outgoingUnreliableCommands)) { enet_protocol_send_unreliable_outgoing_commands(host, currentPeer); } if (host->commandCount == 0) { continue; } if (currentPeer->packetLossEpoch == 0) { currentPeer->packetLossEpoch = host->serviceTime; } else if (ENET_TIME_DIFFERENCE(host->serviceTime, currentPeer->packetLossEpoch) >= ENET_PEER_PACKET_LOSS_INTERVAL && currentPeer->packetsSent > 0) { enet_uint32 packetLoss = currentPeer->packetsLost * ENET_PEER_PACKET_LOSS_SCALE / currentPeer->packetsSent; #ifdef ENET_DEBUG printf( "peer %u: %f%%+-%f%% packet loss, %u+-%u ms round trip time, %f%% throttle, %u/%u outgoing, %u/%u incoming\n", currentPeer->incomingPeerID, currentPeer->packetLoss / (float) ENET_PEER_PACKET_LOSS_SCALE, currentPeer->packetLossVariance / (float) ENET_PEER_PACKET_LOSS_SCALE, currentPeer->roundTripTime, currentPeer->roundTripTimeVariance, currentPeer->packetThrottle / (float) ENET_PEER_PACKET_THROTTLE_SCALE, enet_list_size(¤tPeer->outgoingReliableCommands), enet_list_size(¤tPeer->outgoingUnreliableCommands), currentPeer->channels != NULL ? enet_list_size( ¤tPeer->channels->incomingReliableCommands) : 0, currentPeer->channels != NULL ? enet_list_size(¤tPeer->channels->incomingUnreliableCommands) : 0 ); #endif currentPeer->packetLossVariance -= currentPeer->packetLossVariance / 4; if (packetLoss >= currentPeer->packetLoss) { currentPeer->packetLoss += (packetLoss - currentPeer->packetLoss) / 8; currentPeer->packetLossVariance += (packetLoss - currentPeer->packetLoss) / 4; } else { currentPeer->packetLoss -= (currentPeer->packetLoss - packetLoss) / 8; currentPeer->packetLossVariance += (currentPeer->packetLoss - packetLoss) / 4; } currentPeer->packetLossEpoch = host->serviceTime; currentPeer->packetsSent = 0; currentPeer->packetsLost = 0; } host->buffers->data = headerData; if (host->headerFlags & ENET_PROTOCOL_HEADER_FLAG_SENT_TIME) { header->sentTime = ENET_HOST_TO_NET_16(host->serviceTime & 0xFFFF); host->buffers->dataLength = sizeof(ENetProtocolHeader); } else { host->buffers->dataLength = (size_t) &((ENetProtocolHeader *) 0)->sentTime; } shouldCompress = 0; if (host->compressor.context != NULL && host->compressor.compress != NULL) { size_t originalSize = host->packetSize - sizeof(ENetProtocolHeader), compressedSize = host->compressor.compress(host->compressor.context, &host->buffers[1], host->bufferCount - 1, originalSize, host->packetData[1], originalSize); if (compressedSize > 0 && compressedSize < originalSize) { host->headerFlags |= ENET_PROTOCOL_HEADER_FLAG_COMPRESSED; shouldCompress = compressedSize; #ifdef ENET_DEBUG_COMPRESS printf("peer %u: compressed %u->%u (%u%%)\n", currentPeer->incomingPeerID, originalSize, compressedSize, (compressedSize * 100) / originalSize); #endif } } if (currentPeer->outgoingPeerID < ENET_PROTOCOL_MAXIMUM_PEER_ID) { host->headerFlags |= currentPeer->outgoingSessionID << ENET_PROTOCOL_HEADER_SESSION_SHIFT; } header->peerID = ENET_HOST_TO_NET_16(currentPeer->outgoingPeerID | host->headerFlags); if (host->checksum != NULL) { enet_uint32 *checksum = (enet_uint32 *) &headerData[host->buffers->dataLength]; *checksum = currentPeer->outgoingPeerID < ENET_PROTOCOL_MAXIMUM_PEER_ID ? currentPeer->connectID : 0; host->buffers->dataLength += sizeof(enet_uint32); *checksum = host->checksum(host->buffers, host->bufferCount); } if (shouldCompress > 0) { host->buffers[1].data = host->packetData[1]; host->buffers[1].dataLength = shouldCompress; host->bufferCount = 2; } currentPeer->lastSendTime = host->serviceTime; sentLength = enet_socket_send(host->socket, ¤tPeer->address, host->buffers, host->bufferCount); enet_protocol_remove_sent_unreliable_commands(currentPeer); if (sentLength < 0) { return -1; } host->totalSentData += sentLength; currentPeer->totalDataSent += sentLength; host->totalSentPackets++; } return 0; } /* enet_protocol_send_outgoing_commands */ /** Sends any queued packets on the host specified to its designated peers. * * @param host host to flush * @remarks this function need only be used in circumstances where one wishes to send queued packets earlier than in a call to enet_host_service(). * @ingroup host */ void enet_host_flush(ENetHost *host) { host->serviceTime = enet_time_get(); enet_protocol_send_outgoing_commands(host, NULL, 0); } /** Checks for any queued events on the host and dispatches one if available. * * @param host host to check for events * @param event an event structure where event details will be placed if available * @retval > 0 if an event was dispatched * @retval 0 if no events are available * @retval < 0 on failure * @ingroup host */ int enet_host_check_events(ENetHost *host, ENetEvent *event) { if (event == NULL) { return -1; } event->type = ENET_EVENT_TYPE_NONE; event->peer = NULL; event->packet = NULL; return enet_protocol_dispatch_incoming_commands(host, event); } /** Waits for events on the host specified and shuttles packets between * the host and its peers. * * @param host host to service * @param event an event structure where event details will be placed if one occurs * if event == NULL then no events will be delivered * @param timeout number of milliseconds that ENet should wait for events * @retval > 0 if an event occurred within the specified time limit * @retval 0 if no event occurred * @retval < 0 on failure * @remarks enet_host_service should be called fairly regularly for adequate performance * @ingroup host */ int enet_host_service(ENetHost *host, ENetEvent *event, enet_uint32 timeout) { enet_uint32 waitCondition; if (event != NULL) { event->type = ENET_EVENT_TYPE_NONE; event->peer = NULL; event->packet = NULL; switch (enet_protocol_dispatch_incoming_commands(host, event)) { case 1: return 1; case -1: #ifdef ENET_DEBUG perror("Error dispatching incoming packets"); #endif return -1; default: break; } } host->serviceTime = enet_time_get(); timeout += host->serviceTime; do { if (ENET_TIME_DIFFERENCE(host->serviceTime, host->bandwidthThrottleEpoch) >= ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL) { enet_host_bandwidth_throttle(host); } switch (enet_protocol_send_outgoing_commands(host, event, 1)) { case 1: return 1; case -1: #ifdef ENET_DEBUG perror("Error sending outgoing packets"); #endif return -1; default: break; } switch (enet_protocol_receive_incoming_commands(host, event)) { case 1: return 1; case -1: #ifdef ENET_DEBUG perror("Error receiving incoming packets"); #endif return -1; default: break; } switch (enet_protocol_send_outgoing_commands(host, event, 1)) { case 1: return 1; case -1: #ifdef ENET_DEBUG perror("Error sending outgoing packets"); #endif return -1; default: break; } if (event != NULL) { switch (enet_protocol_dispatch_incoming_commands(host, event)) { case 1: return 1; case -1: #ifdef ENET_DEBUG perror("Error dispatching incoming packets"); #endif return -1; default: break; } } if (ENET_TIME_GREATER_EQUAL(host->serviceTime, timeout)) { return 0; } do { host->serviceTime = enet_time_get(); if (ENET_TIME_GREATER_EQUAL(host->serviceTime, timeout)) { return 0; } waitCondition = ENET_SOCKET_WAIT_RECEIVE | ENET_SOCKET_WAIT_INTERRUPT; if (enet_socket_wait(host->socket, &waitCondition, ENET_TIME_DIFFERENCE(timeout, host->serviceTime)) != 0) { return -1; } } while (waitCondition & ENET_SOCKET_WAIT_INTERRUPT); host->serviceTime = enet_time_get(); } while (waitCondition & ENET_SOCKET_WAIT_RECEIVE); return 0; } /* enet_host_service */ // =======================================================================// // ! // ! Peer // ! // =======================================================================// /** Configures throttle parameter for a peer. * * Unreliable packets are dropped by ENet in response to the varying conditions * of the Internet connection to the peer. The throttle represents a probability * that an unreliable packet should not be dropped and thus sent by ENet to the peer. * The lowest mean round trip time from the sending of a reliable packet to the * receipt of its acknowledgement is measured over an amount of time specified by * the interval parameter in milliseconds. If a measured round trip time happens to * be significantly less than the mean round trip time measured over the interval, * then the throttle probability is increased to allow more traffic by an amount * specified in the acceleration parameter, which is a ratio to the ENET_PEER_PACKET_THROTTLE_SCALE * constant. If a measured round trip time happens to be significantly greater than * the mean round trip time measured over the interval, then the throttle probability * is decreased to limit traffic by an amount specified in the deceleration parameter, which * is a ratio to the ENET_PEER_PACKET_THROTTLE_SCALE constant. When the throttle has * a value of ENET_PEER_PACKET_THROTTLE_SCALE, no unreliable packets are dropped by * ENet, and so 100% of all unreliable packets will be sent. When the throttle has a * value of 0, all unreliable packets are dropped by ENet, and so 0% of all unreliable * packets will be sent. Intermediate values for the throttle represent intermediate * probabilities between 0% and 100% of unreliable packets being sent. The bandwidth * limits of the local and foreign hosts are taken into account to determine a * sensible limit for the throttle probability above which it should not raise even in * the best of conditions. * * @param peer peer to configure * @param interval interval, in milliseconds, over which to measure lowest mean RTT; the default value is ENET_PEER_PACKET_THROTTLE_INTERVAL. * @param acceleration rate at which to increase the throttle probability as mean RTT declines * @param deceleration rate at which to decrease the throttle probability as mean RTT increases */ void enet_peer_throttle_configure(ENetPeer *peer, enet_uint32 interval, enet_uint32 acceleration, enet_uint32 deceleration) { ENetProtocol command; peer->packetThrottleInterval = interval; peer->packetThrottleAcceleration = acceleration; peer->packetThrottleDeceleration = deceleration; command.header.command = ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; command.header.channelID = 0xFF; command.throttleConfigure.packetThrottleInterval = ENET_HOST_TO_NET_32(interval); command.throttleConfigure.packetThrottleAcceleration = ENET_HOST_TO_NET_32(acceleration); command.throttleConfigure.packetThrottleDeceleration = ENET_HOST_TO_NET_32(deceleration); enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0); } int enet_peer_throttle(ENetPeer *peer, enet_uint32 rtt) { if (peer->lastRoundTripTime <= peer->lastRoundTripTimeVariance) { peer->packetThrottle = peer->packetThrottleLimit; } else if (rtt < peer->lastRoundTripTime) { peer->packetThrottle += peer->packetThrottleAcceleration; if (peer->packetThrottle > peer->packetThrottleLimit) { peer->packetThrottle = peer->packetThrottleLimit; } return 1; } else if (rtt > peer->lastRoundTripTime + 2 * peer->lastRoundTripTimeVariance) { if (peer->packetThrottle > peer->packetThrottleDeceleration) { peer->packetThrottle -= peer->packetThrottleDeceleration; } else { peer->packetThrottle = 0; } return -1; } return 0; } /* Extended functionality for easier binding in other programming languages */ enet_uint32 enet_host_get_peers_count(ENetHost *host) { return host->connectedPeers; } enet_uint32 enet_host_get_packets_sent(ENetHost *host) { return host->totalSentPackets; } enet_uint32 enet_host_get_packets_received(ENetHost *host) { return host->totalReceivedPackets; } enet_uint32 enet_host_get_bytes_sent(ENetHost *host) { return host->totalSentData; } enet_uint32 enet_host_get_bytes_received(ENetHost *host) { return host->totalReceivedData; } /** Gets received data buffer. Returns buffer length. * @param host host to access recevie buffer * @param data ouput parameter for recevied data * @retval buffer length */ enet_uint32 enet_host_get_received_data(ENetHost *host, /*out*/ enet_uint8** data) { *data = host->receivedData; return host->receivedDataLength; } enet_uint32 enet_host_get_mtu(ENetHost *host) { return host->mtu; } enet_uint32 enet_peer_get_id(ENetPeer *peer) { return peer->connectID; } enet_uint32 enet_peer_get_ip(ENetPeer *peer, char *ip, size_t ipLength) { return enet_address_get_host_ip(&peer->address, ip, ipLength); } enet_uint16 enet_peer_get_port(ENetPeer *peer) { return peer->address.port; } ENetPeerState enet_peer_get_state(ENetPeer *peer) { return peer->state; } enet_uint32 enet_peer_get_rtt(ENetPeer *peer) { return peer->roundTripTime; } enet_uint64 enet_peer_get_packets_sent(ENetPeer *peer) { return peer->totalPacketsSent; } enet_uint32 enet_peer_get_packets_lost(ENetPeer *peer) { return peer->totalPacketsLost; } enet_uint64 enet_peer_get_bytes_sent(ENetPeer *peer) { return peer->totalDataSent; } enet_uint64 enet_peer_get_bytes_received(ENetPeer *peer) { return peer->totalDataReceived; } void * enet_peer_get_data(ENetPeer *peer) { return (void *) peer->data; } void enet_peer_set_data(ENetPeer *peer, const void *data) { peer->data = (enet_uint32 *) data; } void * enet_packet_get_data(ENetPacket *packet) { return (void *) packet->data; } enet_uint32 enet_packet_get_length(ENetPacket *packet) { return packet->dataLength; } void enet_packet_set_free_callback(ENetPacket *packet, void *callback) { packet->freeCallback = (ENetPacketFreeCallback)callback; } /** Queues a packet to be sent. * @param peer destination for the packet * @param channelID channel on which to send * @param packet packet to send * @retval 0 on success * @retval < 0 on failure */ int enet_peer_send(ENetPeer *peer, enet_uint8 channelID, ENetPacket *packet) { ENetChannel *channel = &peer->channels[channelID]; ENetProtocol command; size_t fragmentLength; if (peer->state != ENET_PEER_STATE_CONNECTED || channelID >= peer->channelCount || packet->dataLength > peer->host->maximumPacketSize) { return -1; } fragmentLength = peer->mtu - sizeof(ENetProtocolHeader) - sizeof(ENetProtocolSendFragment); if (peer->host->checksum != NULL) { fragmentLength -= sizeof(enet_uint32); } if (packet->dataLength > fragmentLength) { enet_uint32 fragmentCount = (packet->dataLength + fragmentLength - 1) / fragmentLength, fragmentNumber, fragmentOffset; enet_uint8 commandNumber; enet_uint16 startSequenceNumber; ENetList fragments; ENetOutgoingCommand *fragment; if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT) { return -1; } if ((packet->flags & (ENET_PACKET_FLAG_RELIABLE | ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT)) == ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT && channel->outgoingUnreliableSequenceNumber < 0xFFFF) { commandNumber = ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT; startSequenceNumber = ENET_HOST_TO_NET_16(channel->outgoingUnreliableSequenceNumber + 1); } else { commandNumber = ENET_PROTOCOL_COMMAND_SEND_FRAGMENT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; startSequenceNumber = ENET_HOST_TO_NET_16(channel->outgoingReliableSequenceNumber + 1); } enet_list_clear(&fragments); for (fragmentNumber = 0, fragmentOffset = 0; fragmentOffset < packet->dataLength; ++fragmentNumber, fragmentOffset += fragmentLength) { if (packet->dataLength - fragmentOffset < fragmentLength) { fragmentLength = packet->dataLength - fragmentOffset; } fragment = (ENetOutgoingCommand *) enet_malloc(sizeof(ENetOutgoingCommand)); if (fragment == NULL) { while (!enet_list_empty(&fragments)) { fragment = (ENetOutgoingCommand *) enet_list_remove(enet_list_begin(&fragments)); enet_free(fragment); } return -1; } fragment->fragmentOffset = fragmentOffset; fragment->fragmentLength = fragmentLength; fragment->packet = packet; fragment->command.header.command = commandNumber; fragment->command.header.channelID = channelID; fragment->command.sendFragment.startSequenceNumber = startSequenceNumber; fragment->command.sendFragment.dataLength = ENET_HOST_TO_NET_16(fragmentLength); fragment->command.sendFragment.fragmentCount = ENET_HOST_TO_NET_32(fragmentCount); fragment->command.sendFragment.fragmentNumber = ENET_HOST_TO_NET_32(fragmentNumber); fragment->command.sendFragment.totalLength = ENET_HOST_TO_NET_32(packet->dataLength); fragment->command.sendFragment.fragmentOffset = ENET_NET_TO_HOST_32(fragmentOffset); enet_list_insert(enet_list_end(&fragments), fragment); } packet->referenceCount += fragmentNumber; while (!enet_list_empty(&fragments)) { fragment = (ENetOutgoingCommand *) enet_list_remove(enet_list_begin(&fragments)); enet_peer_setup_outgoing_command(peer, fragment); } return 0; } command.header.channelID = channelID; if ((packet->flags & (ENET_PACKET_FLAG_RELIABLE | ENET_PACKET_FLAG_UNSEQUENCED)) == ENET_PACKET_FLAG_UNSEQUENCED) { command.header.command = ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED | ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED; command.sendUnsequenced.dataLength = ENET_HOST_TO_NET_16(packet->dataLength); } else if (packet->flags & ENET_PACKET_FLAG_RELIABLE || channel->outgoingUnreliableSequenceNumber >= 0xFFFF) { command.header.command = ENET_PROTOCOL_COMMAND_SEND_RELIABLE | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; command.sendReliable.dataLength = ENET_HOST_TO_NET_16(packet->dataLength); } else { command.header.command = ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE; command.sendUnreliable.dataLength = ENET_HOST_TO_NET_16(packet->dataLength); } if (enet_peer_queue_outgoing_command(peer, &command, packet, 0, packet->dataLength) == NULL) { return -1; } return 0; } // enet_peer_send /** Attempts to dequeue any incoming queued packet. * @param peer peer to dequeue packets from * @param channelID holds the channel ID of the channel the packet was received on success * @returns a pointer to the packet, or NULL if there are no available incoming queued packets */ ENetPacket * enet_peer_receive(ENetPeer *peer, enet_uint8 *channelID) { ENetIncomingCommand *incomingCommand; ENetPacket *packet; if (enet_list_empty(&peer->dispatchedCommands)) { return NULL; } incomingCommand = (ENetIncomingCommand *) enet_list_remove(enet_list_begin(&peer->dispatchedCommands)); if (channelID != NULL) { *channelID = incomingCommand->command.header.channelID; } packet = incomingCommand->packet; --packet->referenceCount; if (incomingCommand->fragments != NULL) { enet_free(incomingCommand->fragments); } enet_free(incomingCommand); peer->totalWaitingData -= packet->dataLength; return packet; } static void enet_peer_reset_outgoing_commands(ENetList *queue) { ENetOutgoingCommand *outgoingCommand; while (!enet_list_empty(queue)) { outgoingCommand = (ENetOutgoingCommand *) enet_list_remove(enet_list_begin(queue)); if (outgoingCommand->packet != NULL) { --outgoingCommand->packet->referenceCount; if (outgoingCommand->packet->referenceCount == 0) { callbacks.packet_destroy(outgoingCommand->packet); } } enet_free(outgoingCommand); } } static void enet_peer_remove_incoming_commands(ENetList *queue, ENetListIterator startCommand, ENetListIterator endCommand) { ENET_UNUSED(queue) ENetListIterator currentCommand; for (currentCommand = startCommand; currentCommand != endCommand;) { ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand; currentCommand = enet_list_next(currentCommand); enet_list_remove(&incomingCommand->incomingCommandList); if (incomingCommand->packet != NULL) { --incomingCommand->packet->referenceCount; if (incomingCommand->packet->referenceCount == 0) { callbacks.packet_destroy(incomingCommand->packet); } } if (incomingCommand->fragments != NULL) { enet_free(incomingCommand->fragments); } enet_free(incomingCommand); } } static void enet_peer_reset_incoming_commands(ENetList *queue) { enet_peer_remove_incoming_commands(queue, enet_list_begin(queue), enet_list_end(queue)); } void enet_peer_reset_queues(ENetPeer *peer) { ENetChannel *channel; if (peer->needsDispatch) { enet_list_remove(&peer->dispatchList); peer->needsDispatch = 0; } while (!enet_list_empty(&peer->acknowledgements)) { enet_free(enet_list_remove(enet_list_begin(&peer->acknowledgements))); } enet_peer_reset_outgoing_commands(&peer->sentReliableCommands); enet_peer_reset_outgoing_commands(&peer->sentUnreliableCommands); enet_peer_reset_outgoing_commands(&peer->outgoingReliableCommands); enet_peer_reset_outgoing_commands(&peer->outgoingUnreliableCommands); enet_peer_reset_incoming_commands(&peer->dispatchedCommands); if (peer->channels != NULL && peer->channelCount > 0) { for (channel = peer->channels; channel < &peer->channels[peer->channelCount]; ++channel) { enet_peer_reset_incoming_commands(&channel->incomingReliableCommands); enet_peer_reset_incoming_commands(&channel->incomingUnreliableCommands); } enet_free(peer->channels); } peer->channels = NULL; peer->channelCount = 0; } void enet_peer_on_connect(ENetPeer *peer) { if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { if (peer->incomingBandwidth != 0) { ++peer->host->bandwidthLimitedPeers; } ++peer->host->connectedPeers; } } void enet_peer_on_disconnect(ENetPeer *peer) { if (peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) { if (peer->incomingBandwidth != 0) { --peer->host->bandwidthLimitedPeers; } --peer->host->connectedPeers; } } /** Forcefully disconnects a peer. * @param peer peer to forcefully disconnect * @remarks The foreign host represented by the peer is not notified of the disconnection and will timeout * on its connection to the local host. */ void enet_peer_reset(ENetPeer *peer) { enet_peer_on_disconnect(peer); // We don't want to reset connectID here, otherwise, we can't get it in the Disconnect event // peer->connectID = 0; peer->outgoingPeerID = ENET_PROTOCOL_MAXIMUM_PEER_ID; peer->state = ENET_PEER_STATE_DISCONNECTED; peer->incomingBandwidth = 0; peer->outgoingBandwidth = 0; peer->incomingBandwidthThrottleEpoch = 0; peer->outgoingBandwidthThrottleEpoch = 0; peer->incomingDataTotal = 0; peer->totalDataReceived = 0; peer->outgoingDataTotal = 0; peer->totalDataSent = 0; peer->lastSendTime = 0; peer->lastReceiveTime = 0; peer->nextTimeout = 0; peer->earliestTimeout = 0; peer->packetLossEpoch = 0; peer->packetsSent = 0; peer->totalPacketsSent = 0; peer->packetsLost = 0; peer->totalPacketsLost = 0; peer->packetLoss = 0; peer->packetLossVariance = 0; peer->packetThrottle = ENET_PEER_DEFAULT_PACKET_THROTTLE; peer->packetThrottleLimit = ENET_PEER_PACKET_THROTTLE_SCALE; peer->packetThrottleCounter = 0; peer->packetThrottleEpoch = 0; peer->packetThrottleAcceleration = ENET_PEER_PACKET_THROTTLE_ACCELERATION; peer->packetThrottleDeceleration = ENET_PEER_PACKET_THROTTLE_DECELERATION; peer->packetThrottleInterval = ENET_PEER_PACKET_THROTTLE_INTERVAL; peer->pingInterval = ENET_PEER_PING_INTERVAL; peer->timeoutLimit = ENET_PEER_TIMEOUT_LIMIT; peer->timeoutMinimum = ENET_PEER_TIMEOUT_MINIMUM; peer->timeoutMaximum = ENET_PEER_TIMEOUT_MAXIMUM; peer->lastRoundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME; peer->lowestRoundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME; peer->lastRoundTripTimeVariance = 0; peer->highestRoundTripTimeVariance = 0; peer->roundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME; peer->roundTripTimeVariance = 0; peer->mtu = peer->host->mtu; peer->reliableDataInTransit = 0; peer->outgoingReliableSequenceNumber = 0; peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; peer->incomingUnsequencedGroup = 0; peer->outgoingUnsequencedGroup = 0; peer->eventData = 0; peer->totalWaitingData = 0; memset(peer->unsequencedWindow, 0, sizeof(peer->unsequencedWindow)); enet_peer_reset_queues(peer); } /** Sends a ping request to a peer. * @param peer destination for the ping request * @remarks ping requests factor into the mean round trip time as designated by the * roundTripTime field in the ENetPeer structure. ENet automatically pings all connected * peers at regular intervals, however, this function may be called to ensure more * frequent ping requests. */ void enet_peer_ping(ENetPeer *peer) { ENetProtocol command; if (peer->state != ENET_PEER_STATE_CONNECTED) { return; } command.header.command = ENET_PROTOCOL_COMMAND_PING | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; command.header.channelID = 0xFF; enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0); } /** Sets the interval at which pings will be sent to a peer. * * Pings are used both to monitor the liveness of the connection and also to dynamically * adjust the throttle during periods of low traffic so that the throttle has reasonable * responsiveness during traffic spikes. * * @param peer the peer to adjust * @param pingInterval the interval at which to send pings; defaults to ENET_PEER_PING_INTERVAL if 0 */ void enet_peer_ping_interval(ENetPeer *peer, enet_uint32 pingInterval) { peer->pingInterval = pingInterval ? pingInterval : ENET_PEER_PING_INTERVAL; } /** Sets the timeout parameters for a peer. * * The timeout parameter control how and when a peer will timeout from a failure to acknowledge * reliable traffic. Timeout values use an exponential backoff mechanism, where if a reliable * packet is not acknowledge within some multiple of the average RTT plus a variance tolerance, * the timeout will be doubled until it reaches a set limit. If the timeout is thus at this * limit and reliable packets have been sent but not acknowledged within a certain minimum time * period, the peer will be disconnected. Alternatively, if reliable packets have been sent * but not acknowledged for a certain maximum time period, the peer will be disconnected regardless * of the current timeout limit value. * * @param peer the peer to adjust * @param timeoutLimit the timeout limit; defaults to ENET_PEER_TIMEOUT_LIMIT if 0 * @param timeoutMinimum the timeout minimum; defaults to ENET_PEER_TIMEOUT_MINIMUM if 0 * @param timeoutMaximum the timeout maximum; defaults to ENET_PEER_TIMEOUT_MAXIMUM if 0 */ void enet_peer_timeout(ENetPeer *peer, enet_uint32 timeoutLimit, enet_uint32 timeoutMinimum, enet_uint32 timeoutMaximum) { peer->timeoutLimit = timeoutLimit ? timeoutLimit : ENET_PEER_TIMEOUT_LIMIT; peer->timeoutMinimum = timeoutMinimum ? timeoutMinimum : ENET_PEER_TIMEOUT_MINIMUM; peer->timeoutMaximum = timeoutMaximum ? timeoutMaximum : ENET_PEER_TIMEOUT_MAXIMUM; } /** Force an immediate disconnection from a peer. * @param peer peer to disconnect * @param data data describing the disconnection * @remarks No ENET_EVENT_DISCONNECT event will be generated. The foreign peer is not * guaranteed to receive the disconnect notification, and is reset immediately upon * return from this function. */ void enet_peer_disconnect_now(ENetPeer *peer, enet_uint32 data) { ENetProtocol command; if (peer->state == ENET_PEER_STATE_DISCONNECTED) { return; } if (peer->state != ENET_PEER_STATE_ZOMBIE && peer->state != ENET_PEER_STATE_DISCONNECTING) { enet_peer_reset_queues(peer); command.header.command = ENET_PROTOCOL_COMMAND_DISCONNECT | ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED; command.header.channelID = 0xFF; command.disconnect.data = ENET_HOST_TO_NET_32(data); enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0); enet_host_flush(peer->host); } enet_peer_reset(peer); } /** Request a disconnection from a peer. * @param peer peer to request a disconnection * @param data data describing the disconnection * @remarks An ENET_EVENT_DISCONNECT event will be generated by enet_host_service() * once the disconnection is complete. */ void enet_peer_disconnect(ENetPeer *peer, enet_uint32 data) { ENetProtocol command; if (peer->state == ENET_PEER_STATE_DISCONNECTING || peer->state == ENET_PEER_STATE_DISCONNECTED || peer->state == ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT || peer->state == ENET_PEER_STATE_ZOMBIE ) { return; } enet_peer_reset_queues(peer); command.header.command = ENET_PROTOCOL_COMMAND_DISCONNECT; command.header.channelID = 0xFF; command.disconnect.data = ENET_HOST_TO_NET_32(data); if (peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) { command.header.command |= ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; } else { command.header.command |= ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED; } enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0); if (peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) { enet_peer_on_disconnect(peer); peer->state = ENET_PEER_STATE_DISCONNECTING; } else { enet_host_flush(peer->host); enet_peer_reset(peer); } } /** Request a disconnection from a peer, but only after all queued outgoing packets are sent. * @param peer peer to request a disconnection * @param data data describing the disconnection * @remarks An ENET_EVENT_DISCONNECT event will be generated by enet_host_service() * once the disconnection is complete. */ void enet_peer_disconnect_later(ENetPeer *peer, enet_uint32 data) { if ((peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) && !(enet_list_empty(&peer->outgoingReliableCommands) && enet_list_empty(&peer->outgoingUnreliableCommands) && enet_list_empty(&peer->sentReliableCommands)) ) { peer->state = ENET_PEER_STATE_DISCONNECT_LATER; peer->eventData = data; } else { enet_peer_disconnect(peer, data); } } ENetAcknowledgement *enet_peer_queue_acknowledgement(ENetPeer *peer, const ENetProtocol *command, enet_uint16 sentTime) { ENetAcknowledgement *acknowledgement; if (command->header.channelID < peer->channelCount) { ENetChannel *channel = &peer->channels[command->header.channelID]; enet_uint16 reliableWindow = command->header.reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; enet_uint16 currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (command->header.reliableSequenceNumber < channel->incomingReliableSequenceNumber) { reliableWindow += ENET_PEER_RELIABLE_WINDOWS; } if (reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1 && reliableWindow <= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS) { return NULL; } } acknowledgement = (ENetAcknowledgement *) enet_malloc(sizeof(ENetAcknowledgement)); if (acknowledgement == NULL) { return NULL; } peer->outgoingDataTotal += sizeof(ENetProtocolAcknowledge); acknowledgement->sentTime = sentTime; acknowledgement->command = *command; enet_list_insert(enet_list_end(&peer->acknowledgements), acknowledgement); return acknowledgement; } void enet_peer_setup_outgoing_command(ENetPeer *peer, ENetOutgoingCommand *outgoingCommand) { ENetChannel *channel = &peer->channels[outgoingCommand->command.header.channelID]; peer->outgoingDataTotal += enet_protocol_command_size(outgoingCommand->command.header.command) + outgoingCommand->fragmentLength; if (outgoingCommand->command.header.channelID == 0xFF) { ++peer->outgoingReliableSequenceNumber; outgoingCommand->reliableSequenceNumber = peer->outgoingReliableSequenceNumber; outgoingCommand->unreliableSequenceNumber = 0; } else if (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) { ++channel->outgoingReliableSequenceNumber; channel->outgoingUnreliableSequenceNumber = 0; outgoingCommand->reliableSequenceNumber = channel->outgoingReliableSequenceNumber; outgoingCommand->unreliableSequenceNumber = 0; } else if (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED) { ++peer->outgoingUnsequencedGroup; outgoingCommand->reliableSequenceNumber = 0; outgoingCommand->unreliableSequenceNumber = 0; } else { if (outgoingCommand->fragmentOffset == 0) { ++channel->outgoingUnreliableSequenceNumber; } outgoingCommand->reliableSequenceNumber = channel->outgoingReliableSequenceNumber; outgoingCommand->unreliableSequenceNumber = channel->outgoingUnreliableSequenceNumber; } outgoingCommand->sendAttempts = 0; outgoingCommand->sentTime = 0; outgoingCommand->roundTripTimeout = 0; outgoingCommand->roundTripTimeoutLimit = 0; outgoingCommand->command.header.reliableSequenceNumber = ENET_HOST_TO_NET_16(outgoingCommand->reliableSequenceNumber); switch (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) { case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE: outgoingCommand->command.sendUnreliable.unreliableSequenceNumber = ENET_HOST_TO_NET_16(outgoingCommand->unreliableSequenceNumber); break; case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED: outgoingCommand->command.sendUnsequenced.unsequencedGroup = ENET_HOST_TO_NET_16(peer->outgoingUnsequencedGroup); break; default: break; } if (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) { enet_list_insert(enet_list_end(&peer->outgoingReliableCommands), outgoingCommand); } else { enet_list_insert(enet_list_end(&peer->outgoingUnreliableCommands), outgoingCommand); } } ENetOutgoingCommand * enet_peer_queue_outgoing_command(ENetPeer *peer, const ENetProtocol *command, ENetPacket *packet, enet_uint32 offset, enet_uint16 length) { ENetOutgoingCommand *outgoingCommand = (ENetOutgoingCommand *) enet_malloc(sizeof(ENetOutgoingCommand)); if (outgoingCommand == NULL) { return NULL; } outgoingCommand->command = *command; outgoingCommand->fragmentOffset = offset; outgoingCommand->fragmentLength = length; outgoingCommand->packet = packet; if (packet != NULL) { ++packet->referenceCount; } enet_peer_setup_outgoing_command(peer, outgoingCommand); return outgoingCommand; } void enet_peer_dispatch_incoming_unreliable_commands(ENetPeer *peer, ENetChannel *channel) { ENetListIterator droppedCommand, startCommand, currentCommand; for (droppedCommand = startCommand = currentCommand = enet_list_begin(&channel->incomingUnreliableCommands); currentCommand != enet_list_end(&channel->incomingUnreliableCommands); currentCommand = enet_list_next(currentCommand) ) { ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand; if ((incomingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) { continue; } if (incomingCommand->reliableSequenceNumber == channel->incomingReliableSequenceNumber) { if (incomingCommand->fragmentsRemaining <= 0) { channel->incomingUnreliableSequenceNumber = incomingCommand->unreliableSequenceNumber; continue; } if (startCommand != currentCommand) { enet_list_move(enet_list_end(&peer->dispatchedCommands), startCommand, enet_list_previous(currentCommand)); if (!peer->needsDispatch) { enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList); peer->needsDispatch = 1; } droppedCommand = currentCommand; } else if (droppedCommand != currentCommand) { droppedCommand = enet_list_previous(currentCommand); } } else { enet_uint16 reliableWindow = incomingCommand->reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; enet_uint16 currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) { reliableWindow += ENET_PEER_RELIABLE_WINDOWS; } if (reliableWindow >= currentWindow && reliableWindow < currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) { break; } droppedCommand = enet_list_next(currentCommand); if (startCommand != currentCommand) { enet_list_move(enet_list_end(&peer->dispatchedCommands), startCommand, enet_list_previous(currentCommand)); if (!peer->needsDispatch) { enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList); peer->needsDispatch = 1; } } } startCommand = enet_list_next(currentCommand); } if (startCommand != currentCommand) { enet_list_move(enet_list_end(&peer->dispatchedCommands), startCommand, enet_list_previous(currentCommand)); if (!peer->needsDispatch) { enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList); peer->needsDispatch = 1; } droppedCommand = currentCommand; } enet_peer_remove_incoming_commands(&channel->incomingUnreliableCommands,enet_list_begin(&channel->incomingUnreliableCommands), droppedCommand); } void enet_peer_dispatch_incoming_reliable_commands(ENetPeer *peer, ENetChannel *channel) { ENetListIterator currentCommand; for (currentCommand = enet_list_begin(&channel->incomingReliableCommands); currentCommand != enet_list_end(&channel->incomingReliableCommands); currentCommand = enet_list_next(currentCommand) ) { ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand; if (incomingCommand->fragmentsRemaining > 0 || incomingCommand->reliableSequenceNumber != (enet_uint16) (channel->incomingReliableSequenceNumber + 1)) { break; } channel->incomingReliableSequenceNumber = incomingCommand->reliableSequenceNumber; if (incomingCommand->fragmentCount > 0) { channel->incomingReliableSequenceNumber += incomingCommand->fragmentCount - 1; } } if (currentCommand == enet_list_begin(&channel->incomingReliableCommands)) { return; } channel->incomingUnreliableSequenceNumber = 0; enet_list_move(enet_list_end(&peer->dispatchedCommands), enet_list_begin(&channel->incomingReliableCommands), enet_list_previous(currentCommand)); if (!peer->needsDispatch) { enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList); peer->needsDispatch = 1; } if (!enet_list_empty(&channel->incomingUnreliableCommands)) { enet_peer_dispatch_incoming_unreliable_commands(peer, channel); } } ENetIncomingCommand * enet_peer_queue_incoming_command(ENetPeer *peer, const ENetProtocol *command, const void *data, size_t dataLength, enet_uint32 flags, enet_uint32 fragmentCount) { static ENetIncomingCommand dummyCommand; ENetChannel *channel = &peer->channels[command->header.channelID]; enet_uint32 unreliableSequenceNumber = 0, reliableSequenceNumber = 0; enet_uint16 reliableWindow, currentWindow; ENetIncomingCommand *incomingCommand; ENetListIterator currentCommand; ENetPacket *packet = NULL; if (peer->state == ENET_PEER_STATE_DISCONNECT_LATER) { goto discardCommand; } if ((command->header.command & ENET_PROTOCOL_COMMAND_MASK) != ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) { reliableSequenceNumber = command->header.reliableSequenceNumber; reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE; if (reliableSequenceNumber < channel->incomingReliableSequenceNumber) { reliableWindow += ENET_PEER_RELIABLE_WINDOWS; } if (reliableWindow < currentWindow || reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) { goto discardCommand; } } switch (command->header.command & ENET_PROTOCOL_COMMAND_MASK) { case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT: case ENET_PROTOCOL_COMMAND_SEND_RELIABLE: if (reliableSequenceNumber == channel->incomingReliableSequenceNumber) { goto discardCommand; } for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingReliableCommands)); currentCommand != enet_list_end(&channel->incomingReliableCommands); currentCommand = enet_list_previous(currentCommand) ) { incomingCommand = (ENetIncomingCommand *) currentCommand; if (reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) { continue; } } else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { break; } if (incomingCommand->reliableSequenceNumber <= reliableSequenceNumber) { if (incomingCommand->reliableSequenceNumber < reliableSequenceNumber) { break; } goto discardCommand; } } break; case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE: case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT: unreliableSequenceNumber = ENET_NET_TO_HOST_16(command->sendUnreliable.unreliableSequenceNumber); if (reliableSequenceNumber == channel->incomingReliableSequenceNumber && unreliableSequenceNumber <= channel->incomingUnreliableSequenceNumber) { goto discardCommand; } for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingUnreliableCommands)); currentCommand != enet_list_end(&channel->incomingUnreliableCommands); currentCommand = enet_list_previous(currentCommand) ) { incomingCommand = (ENetIncomingCommand *) currentCommand; if ((command->header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) { continue; } if (reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) { continue; } } else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) { break; } if (incomingCommand->reliableSequenceNumber < reliableSequenceNumber) { break; } if (incomingCommand->reliableSequenceNumber > reliableSequenceNumber) { continue; } if (incomingCommand->unreliableSequenceNumber <= unreliableSequenceNumber) { if (incomingCommand->unreliableSequenceNumber < unreliableSequenceNumber) { break; } goto discardCommand; } } break; case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED: currentCommand = enet_list_end(&channel->incomingUnreliableCommands); break; default: goto discardCommand; } if (peer->totalWaitingData >= peer->host->maximumWaitingData) { goto notifyError; } packet = callbacks.packet_create(data, dataLength, flags); if (packet == NULL) { goto notifyError; } incomingCommand = (ENetIncomingCommand *) enet_malloc(sizeof(ENetIncomingCommand)); if (incomingCommand == NULL) { goto notifyError; } incomingCommand->reliableSequenceNumber = command->header.reliableSequenceNumber; incomingCommand->unreliableSequenceNumber = unreliableSequenceNumber & 0xFFFF; incomingCommand->command = *command; incomingCommand->fragmentCount = fragmentCount; incomingCommand->fragmentsRemaining = fragmentCount; incomingCommand->packet = packet; incomingCommand->fragments = NULL; if (fragmentCount > 0) { if (fragmentCount <= ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT) { incomingCommand->fragments = (enet_uint32 *) enet_malloc((fragmentCount + 31) / 32 * sizeof(enet_uint32)); } if (incomingCommand->fragments == NULL) { enet_free(incomingCommand); goto notifyError; } memset(incomingCommand->fragments, 0, (fragmentCount + 31) / 32 * sizeof(enet_uint32)); } if (packet != NULL) { ++packet->referenceCount; peer->totalWaitingData += packet->dataLength; } enet_list_insert(enet_list_next(currentCommand), incomingCommand); switch (command->header.command & ENET_PROTOCOL_COMMAND_MASK) { case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT: case ENET_PROTOCOL_COMMAND_SEND_RELIABLE: enet_peer_dispatch_incoming_reliable_commands(peer, channel); break; default: enet_peer_dispatch_incoming_unreliable_commands(peer, channel); break; } return incomingCommand; discardCommand: if (fragmentCount > 0) { goto notifyError; } if (packet != NULL && packet->referenceCount == 0) { callbacks.packet_destroy(packet); } return &dummyCommand; notifyError: if (packet != NULL && packet->referenceCount == 0) { callbacks.packet_destroy(packet); } return NULL; } /* enet_peer_queue_incoming_command */ // =======================================================================// // ! // ! Host // ! // =======================================================================// /** Creates a host for communicating to peers. * * @param address the address at which other peers may connect to this host. If NULL, then no peers may connect to the host. * @param peerCount the maximum number of peers that should be allocated for the host. * @param channelLimit the maximum number of channels allowed; if 0, then this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT * @param incomingBandwidth downstream bandwidth of the host in bytes/second; if 0, ENet will assume unlimited bandwidth. * @param outgoingBandwidth upstream bandwidth of the host in bytes/second; if 0, ENet will assume unlimited bandwidth. * * @returns the host on success and NULL on failure * * @remarks ENet will strategically drop packets on specific sides of a connection between hosts * to ensure the host's bandwidth is not overwhelmed. The bandwidth parameters also determine * the window size of a connection which limits the amount of reliable packets that may be in transit * at any given time. */ ENetHost * enet_host_create(const ENetAddress *address, size_t peerCount, size_t channelLimit, enet_uint32 incomingBandwidth, enet_uint32 outgoingBandwidth) { ENetHost *host; ENetPeer *currentPeer; if (peerCount > ENET_PROTOCOL_MAXIMUM_PEER_ID) { return NULL; } host = (ENetHost *) enet_malloc(sizeof(ENetHost)); if (host == NULL) { return NULL; } memset(host, 0, sizeof(ENetHost)); host->peers = (ENetPeer *) enet_malloc(peerCount * sizeof(ENetPeer)); if (host->peers == NULL) { enet_free(host); return NULL; } memset(host->peers, 0, peerCount * sizeof(ENetPeer)); host->socket = enet_socket_create(ENET_SOCKET_TYPE_DATAGRAM); if (host->socket != ENET_SOCKET_NULL) { enet_socket_set_option (host->socket, ENET_SOCKOPT_IPV6_V6ONLY, 0); } if (host->socket == ENET_SOCKET_NULL || (address != NULL && enet_socket_bind(host->socket, address) < 0)) { if (host->socket != ENET_SOCKET_NULL) { enet_socket_destroy(host->socket); } enet_free(host->peers); enet_free(host); return NULL; } enet_socket_set_option(host->socket, ENET_SOCKOPT_NONBLOCK, 1); enet_socket_set_option(host->socket, ENET_SOCKOPT_BROADCAST, 1); enet_socket_set_option(host->socket, ENET_SOCKOPT_RCVBUF, ENET_HOST_RECEIVE_BUFFER_SIZE); enet_socket_set_option(host->socket, ENET_SOCKOPT_SNDBUF, ENET_HOST_SEND_BUFFER_SIZE); enet_socket_set_option(host->socket, ENET_SOCKOPT_IPV6_V6ONLY, 0); if (address != NULL && enet_socket_get_address(host->socket, &host->address) < 0) { host->address = *address; } if (!channelLimit || channelLimit > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) { channelLimit = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT; } else if (channelLimit < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT) { channelLimit = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT; } host->randomSeed = (enet_uint32) (size_t) host; host->randomSeed += enet_host_random_seed(); host->randomSeed = (host->randomSeed << 16) | (host->randomSeed >> 16); host->channelLimit = channelLimit; host->incomingBandwidth = incomingBandwidth; host->outgoingBandwidth = outgoingBandwidth; host->bandwidthThrottleEpoch = 0; host->recalculateBandwidthLimits = 0; host->mtu = ENET_HOST_DEFAULT_MTU; host->peerCount = peerCount; host->commandCount = 0; host->bufferCount = 0; host->checksum = NULL; host->receivedAddress.host = ENET_HOST_ANY; host->receivedAddress.port = 0; host->receivedData = NULL; host->receivedDataLength = 0; host->totalSentData = 0; host->totalSentPackets = 0; host->totalReceivedData = 0; host->totalReceivedPackets = 0; host->connectedPeers = 0; host->bandwidthLimitedPeers = 0; host->duplicatePeers = ENET_PROTOCOL_MAXIMUM_PEER_ID; host->maximumPacketSize = ENET_HOST_DEFAULT_MAXIMUM_PACKET_SIZE; host->maximumWaitingData = ENET_HOST_DEFAULT_MAXIMUM_WAITING_DATA; host->compressor.context = NULL; host->compressor.compress = NULL; host->compressor.decompress = NULL; host->compressor.destroy = NULL; host->intercept = NULL; enet_list_clear(&host->dispatchQueue); for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) { currentPeer->host = host; currentPeer->incomingPeerID = currentPeer - host->peers; currentPeer->outgoingSessionID = currentPeer->incomingSessionID = 0xFF; currentPeer->data = NULL; enet_list_clear(¤tPeer->acknowledgements); enet_list_clear(¤tPeer->sentReliableCommands); enet_list_clear(¤tPeer->sentUnreliableCommands); enet_list_clear(¤tPeer->outgoingReliableCommands); enet_list_clear(¤tPeer->outgoingUnreliableCommands); enet_list_clear(¤tPeer->dispatchedCommands); enet_peer_reset(currentPeer); } return host; } /* enet_host_create */ /** Destroys the host and all resources associated with it. * @param host pointer to the host to destroy */ void enet_host_destroy(ENetHost *host) { ENetPeer *currentPeer; if (host == NULL) { return; } enet_socket_destroy(host->socket); for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) { enet_peer_reset(currentPeer); } if (host->compressor.context != NULL && host->compressor.destroy) { (*host->compressor.destroy)(host->compressor.context); } enet_free(host->peers); enet_free(host); } /** Initiates a connection to a foreign host. * @param host host seeking the connection * @param address destination for the connection * @param channelCount number of channels to allocate * @param data user data supplied to the receiving host * @returns a peer representing the foreign host on success, NULL on failure * @remarks The peer returned will have not completed the connection until enet_host_service() * notifies of an ENET_EVENT_TYPE_CONNECT event for the peer. */ ENetPeer * enet_host_connect(ENetHost *host, const ENetAddress *address, size_t channelCount, enet_uint32 data) { ENetPeer *currentPeer; ENetChannel *channel; ENetProtocol command; if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT) { channelCount = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT; } else if (channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) { channelCount = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT; } for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) { if (currentPeer->state == ENET_PEER_STATE_DISCONNECTED) { break; } } if (currentPeer >= &host->peers[host->peerCount]) { return NULL; } currentPeer->channels = (ENetChannel *) enet_malloc(channelCount * sizeof(ENetChannel)); if (currentPeer->channels == NULL) { return NULL; } currentPeer->channelCount = channelCount; currentPeer->state = ENET_PEER_STATE_CONNECTING; currentPeer->address = *address; currentPeer->connectID = ++host->randomSeed; if (host->outgoingBandwidth == 0) { currentPeer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } else { currentPeer->windowSize = (host->outgoingBandwidth / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } if (currentPeer->windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) { currentPeer->windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE; } else if (currentPeer->windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) { currentPeer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE; } for (channel = currentPeer->channels; channel < ¤tPeer->channels[channelCount]; ++channel) { channel->outgoingReliableSequenceNumber = 0; channel->outgoingUnreliableSequenceNumber = 0; channel->incomingReliableSequenceNumber = 0; channel->incomingUnreliableSequenceNumber = 0; enet_list_clear(&channel->incomingReliableCommands); enet_list_clear(&channel->incomingUnreliableCommands); channel->usedReliableWindows = 0; memset(channel->reliableWindows, 0, sizeof(channel->reliableWindows)); } command.header.command = ENET_PROTOCOL_COMMAND_CONNECT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; command.header.channelID = 0xFF; command.connect.outgoingPeerID = ENET_HOST_TO_NET_16(currentPeer->incomingPeerID); command.connect.incomingSessionID = currentPeer->incomingSessionID; command.connect.outgoingSessionID = currentPeer->outgoingSessionID; command.connect.mtu = ENET_HOST_TO_NET_32(currentPeer->mtu); command.connect.windowSize = ENET_HOST_TO_NET_32(currentPeer->windowSize); command.connect.channelCount = ENET_HOST_TO_NET_32(channelCount); command.connect.incomingBandwidth = ENET_HOST_TO_NET_32(host->incomingBandwidth); command.connect.outgoingBandwidth = ENET_HOST_TO_NET_32(host->outgoingBandwidth); command.connect.packetThrottleInterval = ENET_HOST_TO_NET_32(currentPeer->packetThrottleInterval); command.connect.packetThrottleAcceleration = ENET_HOST_TO_NET_32(currentPeer->packetThrottleAcceleration); command.connect.packetThrottleDeceleration = ENET_HOST_TO_NET_32(currentPeer->packetThrottleDeceleration); command.connect.connectID = currentPeer->connectID; command.connect.data = ENET_HOST_TO_NET_32(data); enet_peer_queue_outgoing_command(currentPeer, &command, NULL, 0, 0); return currentPeer; } /* enet_host_connect */ /** Queues a packet to be sent to all peers associated with the host. * @param host host on which to broadcast the packet * @param channelID channel on which to broadcast * @param packet packet to broadcast */ void enet_host_broadcast(ENetHost *host, enet_uint8 channelID, ENetPacket *packet) { ENetPeer *currentPeer; for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) { if (currentPeer->state != ENET_PEER_STATE_CONNECTED) { continue; } enet_peer_send(currentPeer, channelID, packet); } if (packet->referenceCount == 0) { callbacks.packet_destroy(packet); } } /** Sends raw data to specified address. Useful when you want to send unconnected data using host's socket. * @param host host sending data * @param address destination address * @param data data pointer * @param dataLength length of data to send * @retval >=0 bytes sent * @retval <0 error * @sa enet_socket_send */ int enet_host_send_raw(ENetHost *host, const ENetAddress* address, enet_uint8* data, size_t dataLength) { ENetBuffer buffer; buffer.data = data; buffer.dataLength = dataLength; return enet_socket_send(host->socket, address, &buffer, 1); } /** Sends raw data to specified address with extended arguments. Allows to send only part of data, handy for other programming languages. * I.e. if you have data =- { 0, 1, 2, 3 } and call function as enet_host_send_raw_ex(data, 1, 2) then it will skip 1 byte and send 2 bytes { 1, 2 }. * @param host host sending data * @param address destination address * @param data data pointer * @param skipBytes number of bytes to skip from start of data * @param bytesToSend number of bytes to send * @retval >=0 bytes sent * @retval <0 error * @sa enet_socket_send */ int enet_host_send_raw_ex(ENetHost *host, const ENetAddress* address, enet_uint8* data, size_t skipBytes, size_t bytesToSend) { ENetBuffer buffer; buffer.data = data + skipBytes; buffer.dataLength = bytesToSend; return enet_socket_send(host->socket, address, &buffer, 1); } /** Sets intercept callback for the host. * @param host host to set a callback * @param callback intercept callback */ void enet_host_set_intercept(ENetHost *host, const ENetInterceptCallback callback) { host->intercept = callback; } /** Sets the packet compressor the host should use to compress and decompress packets. * @param host host to enable or disable compression for * @param compressor callbacks for for the packet compressor; if NULL, then compression is disabled */ void enet_host_compress(ENetHost *host, const ENetCompressor *compressor) { if (host->compressor.context != NULL && host->compressor.destroy) { (*host->compressor.destroy)(host->compressor.context); } if (compressor) { host->compressor = *compressor; } else { host->compressor.context = NULL; } } /** Limits the maximum allowed channels of future incoming connections. * @param host host to limit * @param channelLimit the maximum number of channels allowed; if 0, then this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT */ void enet_host_channel_limit(ENetHost *host, size_t channelLimit) { if (!channelLimit || channelLimit > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) { channelLimit = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT; } else if (channelLimit < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT) { channelLimit = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT; } host->channelLimit = channelLimit; } /** Adjusts the bandwidth limits of a host. * @param host host to adjust * @param incomingBandwidth new incoming bandwidth * @param outgoingBandwidth new outgoing bandwidth * @remarks the incoming and outgoing bandwidth parameters are identical in function to those * specified in enet_host_create(). */ void enet_host_bandwidth_limit(ENetHost *host, enet_uint32 incomingBandwidth, enet_uint32 outgoingBandwidth) { host->incomingBandwidth = incomingBandwidth; host->outgoingBandwidth = outgoingBandwidth; host->recalculateBandwidthLimits = 1; } void enet_host_bandwidth_throttle(ENetHost *host) { enet_uint32 timeCurrent = enet_time_get(); enet_uint32 elapsedTime = timeCurrent - host->bandwidthThrottleEpoch; enet_uint32 peersRemaining = (enet_uint32) host->connectedPeers; enet_uint32 dataTotal = ~0; enet_uint32 bandwidth = ~0; enet_uint32 throttle = 0; enet_uint32 bandwidthLimit = 0; int needsAdjustment = host->bandwidthLimitedPeers > 0 ? 1 : 0; ENetPeer *peer; ENetProtocol command; if (elapsedTime < ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL) { return; } if (host->outgoingBandwidth == 0 && host->incomingBandwidth == 0) { return; } host->bandwidthThrottleEpoch = timeCurrent; if (peersRemaining == 0) { return; } if (host->outgoingBandwidth != 0) { dataTotal = 0; bandwidth = (host->outgoingBandwidth * elapsedTime) / 1000; for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) { if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { continue; } dataTotal += peer->outgoingDataTotal; } } while (peersRemaining > 0 && needsAdjustment != 0) { needsAdjustment = 0; if (dataTotal <= bandwidth) { throttle = ENET_PEER_PACKET_THROTTLE_SCALE; } else { throttle = (bandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / dataTotal; } for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) { enet_uint32 peerBandwidth; if ((peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) || peer->incomingBandwidth == 0 || peer->outgoingBandwidthThrottleEpoch == timeCurrent ) { continue; } peerBandwidth = (peer->incomingBandwidth * elapsedTime) / 1000; if ((throttle * peer->outgoingDataTotal) / ENET_PEER_PACKET_THROTTLE_SCALE <= peerBandwidth) { continue; } peer->packetThrottleLimit = (peerBandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / peer->outgoingDataTotal; if (peer->packetThrottleLimit == 0) { peer->packetThrottleLimit = 1; } if (peer->packetThrottle > peer->packetThrottleLimit) { peer->packetThrottle = peer->packetThrottleLimit; } peer->outgoingBandwidthThrottleEpoch = timeCurrent; peer->incomingDataTotal = 0; peer->outgoingDataTotal = 0; needsAdjustment = 1; --peersRemaining; bandwidth -= peerBandwidth; dataTotal -= peerBandwidth; } } if (peersRemaining > 0) { if (dataTotal <= bandwidth) { throttle = ENET_PEER_PACKET_THROTTLE_SCALE; } else { throttle = (bandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / dataTotal; } for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) { if ((peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) || peer->outgoingBandwidthThrottleEpoch == timeCurrent) { continue; } peer->packetThrottleLimit = throttle; if (peer->packetThrottle > peer->packetThrottleLimit) { peer->packetThrottle = peer->packetThrottleLimit; } peer->incomingDataTotal = 0; peer->outgoingDataTotal = 0; } } if (host->recalculateBandwidthLimits) { host->recalculateBandwidthLimits = 0; peersRemaining = (enet_uint32) host->connectedPeers; bandwidth = host->incomingBandwidth; needsAdjustment = 1; if (bandwidth == 0) { bandwidthLimit = 0; } else { while (peersRemaining > 0 && needsAdjustment != 0) { needsAdjustment = 0; bandwidthLimit = bandwidth / peersRemaining; for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) { if ((peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) || peer->incomingBandwidthThrottleEpoch == timeCurrent ) { continue; } if (peer->outgoingBandwidth > 0 && peer->outgoingBandwidth >= bandwidthLimit) { continue; } peer->incomingBandwidthThrottleEpoch = timeCurrent; needsAdjustment = 1; --peersRemaining; bandwidth -= peer->outgoingBandwidth; } } } for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) { if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) { continue; } command.header.command = ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE; command.header.channelID = 0xFF; command.bandwidthLimit.outgoingBandwidth = ENET_HOST_TO_NET_32(host->outgoingBandwidth); if (peer->incomingBandwidthThrottleEpoch == timeCurrent) { command.bandwidthLimit.incomingBandwidth = ENET_HOST_TO_NET_32(peer->outgoingBandwidth); } else { command.bandwidthLimit.incomingBandwidth = ENET_HOST_TO_NET_32(bandwidthLimit); } enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0); } } } /* enet_host_bandwidth_throttle */ // =======================================================================// // ! // ! Compat // ! // =======================================================================// #if (defined _MSC_VER && defined _WIN32 && !defined _WIN64) || \ (defined __MINGW32__ || defined __MINGW64__) // (!defined _WIN32 && defined __MINGW32__ && defined ENET_MINGW_COMPAT) //< @r-lyeh #define MUST_DEFINE_NTOP_PTON 1 #else #define MUST_DEFINE_NTOP_PTON 0 #endif #if MUST_DEFINE_NTOP_PTON //< @r-lyeh // #if defined(__MINGW32__) && defined(ENET_MINGW_COMPAT) //< @r-lyeh // inet_ntop/inet_pton for MinGW from http://mingw-users.1079350.n2.nabble.com/IPv6-getaddrinfo-amp-inet-ntop-td5891996.html const char *inet_ntop(int af, const void *src, char *dst, socklen_t cnt) { if (af == AF_INET) { struct sockaddr_in in; memset(&in, 0, sizeof(in)); in.sin_family = AF_INET; memcpy(&in.sin_addr, src, sizeof(struct in_addr)); getnameinfo((struct sockaddr *)&in, sizeof(struct sockaddr_in), dst, cnt, NULL, 0, NI_NUMERICHOST); return dst; } else if (af == AF_INET6) { struct sockaddr_in6 in; memset(&in, 0, sizeof(in)); in.sin6_family = AF_INET6; memcpy(&in.sin6_addr, src, sizeof(struct in_addr6)); getnameinfo((struct sockaddr *)&in, sizeof(struct sockaddr_in6), dst, cnt, NULL, 0, NI_NUMERICHOST); return dst; } return NULL; } #define NS_INADDRSZ 4 #define NS_IN6ADDRSZ 16 #define NS_INT16SZ 2 int inet_pton4(const char *src, char *dst) { uint8_t tmp[NS_INADDRSZ], *tp; int saw_digit = 0; int octets = 0; *(tp = tmp) = 0; int ch; while ((ch = *src++) != '\0') { if (ch >= '0' && ch <= '9') { uint32_t n = *tp * 10 + (ch - '0'); if (saw_digit && *tp == 0) return 0; if (n > 255) return 0; *tp = n; if (!saw_digit) { if (++octets > 4) return 0; saw_digit = 1; } } else if (ch == '.' && saw_digit) { if (octets == 4) return 0; *++tp = 0; saw_digit = 0; } else return 0; } if (octets < 4) return 0; memcpy(dst, tmp, NS_INADDRSZ); return 1; } int inet_pton6(const char *src, char *dst) { static const char xdigits[] = "0123456789abcdef"; uint8_t tmp[NS_IN6ADDRSZ]; uint8_t *tp = (uint8_t*) memset(tmp, '\0', NS_IN6ADDRSZ); uint8_t *endp = tp + NS_IN6ADDRSZ; uint8_t *colonp = NULL; /* Leading :: requires some special handling. */ if (*src == ':') { if (*++src != ':') return 0; } const char *curtok = src; int saw_xdigit = 0; uint32_t val = 0; int ch; while ((ch = tolower(*src++)) != '\0') { const char *pch = strchr(xdigits, ch); if (pch != NULL) { val <<= 4; val |= (pch - xdigits); if (val > 0xffff) return 0; saw_xdigit = 1; continue; } if (ch == ':') { curtok = src; if (!saw_xdigit) { if (colonp) return 0; colonp = tp; continue; } else if (*src == '\0') { return 0; } if (tp + NS_INT16SZ > endp) return 0; *tp++ = (uint8_t) (val >> 8) & 0xff; *tp++ = (uint8_t) val & 0xff; saw_xdigit = 0; val = 0; continue; } if (ch == '.' && ((tp + NS_INADDRSZ) <= endp) && inet_pton4(curtok, (char*) tp) > 0) { tp += NS_INADDRSZ; saw_xdigit = 0; break; /* '\0' was seen by inet_pton4(). */ } return 0; } if (saw_xdigit) { if (tp + NS_INT16SZ > endp) return 0; *tp++ = (uint8_t) (val >> 8) & 0xff; *tp++ = (uint8_t) val & 0xff; } if (colonp != NULL) { /* * Since some memmove()'s erroneously fail to handle * overlapping regions, we'll do the shift by hand. */ const int n = tp - colonp; if (tp == endp) return 0; for (int i = 1; i <= n; i++) { endp[-i] = colonp[n - i]; colonp[n - i] = 0; } tp = endp; } if (tp != endp) return 0; memcpy(dst, tmp, NS_IN6ADDRSZ); return 1; } int inet_pton(int af, const char *src, struct in6_addr *dst) { switch (af) { case AF_INET: return inet_pton4(src, (char *)dst); case AF_INET6: return inet_pton6(src, (char *)dst); default: return -1; } } #endif // MUST_DEFINE_NTOP_PTON //< @r-lyeh // =======================================================================// // ! // ! Time // ! // =======================================================================// #ifdef _WIN32 static LARGE_INTEGER getFILETIMEoffset() { SYSTEMTIME s; FILETIME f; LARGE_INTEGER t; s.wYear = 1970; s.wMonth = 1; s.wDay = 1; s.wHour = 0; s.wMinute = 0; s.wSecond = 0; s.wMilliseconds = 0; SystemTimeToFileTime(&s, &f); t.QuadPart = f.dwHighDateTime; t.QuadPart <<= 32; t.QuadPart |= f.dwLowDateTime; return (t); } #ifdef __MINGW32__ #define clock_gettime clock_gettime2 // symbol defined in pthread_time.h instead. workaround to avoid user linking against -lpthread. #endif // #ifndef CLOCK_MONOTONIC_RAW // #define CLOCK_MONOTONIC_RAW 0 // for zig-cc // #endif int clock_gettime(int X, struct timespec *tv) { LARGE_INTEGER t; FILETIME f; double microseconds; static LARGE_INTEGER offset; static double frequencyToMicroseconds; static int initialized = 0; static BOOL usePerformanceCounter = 0; if (!initialized) { LARGE_INTEGER performanceFrequency; initialized = 1; usePerformanceCounter = QueryPerformanceFrequency(&performanceFrequency); if (usePerformanceCounter) { QueryPerformanceCounter(&offset); frequencyToMicroseconds = (double)performanceFrequency.QuadPart / 1000000.; } else { offset = getFILETIMEoffset(); frequencyToMicroseconds = 10.; } } if (usePerformanceCounter) { QueryPerformanceCounter(&t); } else { GetSystemTimeAsFileTime(&f); t.QuadPart = f.dwHighDateTime; t.QuadPart <<= 32; t.QuadPart |= f.dwLowDateTime; } t.QuadPart -= offset.QuadPart; microseconds = (double)t.QuadPart / frequencyToMicroseconds; t.QuadPart = (LONGLONG)microseconds; tv->tv_sec = (long)(t.QuadPart / 1000000); tv->tv_nsec = t.QuadPart % 1000000 * 1000; return (0); } #elif __APPLE__ && __MAC_OS_X_VERSION_MIN_REQUIRED < 101200 #define CLOCK_MONOTONIC 0 int clock_gettime(int X, struct timespec *ts) { clock_serv_t cclock; mach_timespec_t mts; host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &cclock); clock_get_time(cclock, &mts); mach_port_deallocate(mach_task_self(), cclock); ts->tv_sec = mts.tv_sec; ts->tv_nsec = mts.tv_nsec; return 0; } #endif enet_uint32 enet_time_get() { // TODO enet uses 32 bit timestamps. We should modify it to use // 64 bit timestamps, but this is not trivial since we'd end up // changing half the structs in enet. For now, retain 32 bits, but // use an offset so we don't run out of bits. Basically, the first // call of enet_time_get() will always return 1, and follow-up calls // indicate elapsed time since the first call. // // Note that we don't want to return 0 from the first call, in case // some part of enet uses 0 as a special value (meaning time not set // for example). static uint64_t start_time_ns = 0; struct timespec ts; #if defined(CLOCK_MONOTONIC_RAW) clock_gettime(CLOCK_MONOTONIC_RAW, &ts); #else clock_gettime(CLOCK_MONOTONIC, &ts); #endif static const uint64_t ns_in_s = 1000 * 1000 * 1000; static const uint64_t ns_in_ms = 1000 * 1000; uint64_t current_time_ns = ts.tv_nsec + (uint64_t)ts.tv_sec * ns_in_s; // Most of the time we just want to atomically read the start time. We // could just use a single CAS instruction instead of this if, but it // would be slower in the average case. // // Note that statics are auto-initialized to zero, and starting a thread // implies a memory barrier. So we know that whatever thread calls this, // it correctly sees the start_time_ns as 0 initially. uint64_t offset_ns = ENET_ATOMIC_READ(&start_time_ns); if (offset_ns == 0) { // We still need to CAS, since two different threads can get here // at the same time. // // We assume that current_time_ns is > 1ms. // // Set the value of the start_time_ns, such that the first timestamp // is at 1ms. This ensures 0 remains a special value. uint64_t want_value = current_time_ns - 1 * ns_in_ms; uint64_t old_value = ENET_ATOMIC_CAS(&start_time_ns, 0, want_value); offset_ns = old_value == 0 ? want_value : old_value; } uint64_t result_in_ns = current_time_ns - offset_ns; return (enet_uint32)(result_in_ns / ns_in_ms); } void enet_inaddr_map4to6(struct in_addr in, struct in6_addr *out) { if (in.s_addr == 0x00000000) { /* 0.0.0.0 */ *out = enet_v6_anyaddr; } else if (in.s_addr == 0xFFFFFFFF) { /* 255.255.255.255 */ *out = enet_v6_noaddr; } else { *out = enet_v4_anyaddr; out->s6_addr[10] = 0xFF; out->s6_addr[11] = 0xFF; out->s6_addr[12] = ((uint8_t *)&in.s_addr)[0]; out->s6_addr[13] = ((uint8_t *)&in.s_addr)[1]; out->s6_addr[14] = ((uint8_t *)&in.s_addr)[2]; out->s6_addr[15] = ((uint8_t *)&in.s_addr)[3]; } } void enet_inaddr_map6to4(const struct in6_addr *in, struct in_addr *out) { memset(out, 0, sizeof(struct in_addr)); ((uint8_t *)&out->s_addr)[0] = in->s6_addr[12]; ((uint8_t *)&out->s_addr)[1] = in->s6_addr[13]; ((uint8_t *)&out->s_addr)[2] = in->s6_addr[14]; ((uint8_t *)&out->s_addr)[3] = in->s6_addr[15]; } int enet_in6addr_lookup_host(const char *name, bool nodns, struct in6_addr *out) { struct addrinfo hints, *resultList = NULL, *result = NULL; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; if (nodns) { hints.ai_flags = AI_NUMERICHOST; /* prevent actual DNS lookups! */ } if (getaddrinfo(name, NULL, &hints, &resultList) != 0) { if (resultList != NULL) { freeaddrinfo(resultList); } return -1; } for (result = resultList; result != NULL; result = result->ai_next) { if (result->ai_addr != NULL) { if (result->ai_family == AF_INET || (result->ai_family == AF_UNSPEC && result->ai_addrlen == sizeof(struct sockaddr_in))) { enet_inaddr_map4to6(((struct sockaddr_in*)result->ai_addr)->sin_addr, out); if (resultList != NULL) { freeaddrinfo(resultList); } return 0; } else if (result->ai_family == AF_INET6 || (result->ai_family == AF_UNSPEC && result->ai_addrlen == sizeof(struct sockaddr_in6))) { memcpy(out, &((struct sockaddr_in6*)result->ai_addr)->sin6_addr, sizeof(struct in6_addr)); if (resultList != NULL) { freeaddrinfo(resultList); } return 0; } } } if (resultList != NULL) { freeaddrinfo(resultList); } return -1; } int enet_address_set_host_ip_new(ENetAddress *address, const char *name) { return enet_in6addr_lookup_host(name, true, &address->host); } int enet_address_set_host_new(ENetAddress *address, const char *name) { return enet_in6addr_lookup_host(name, false, &address->host); } int enet_address_get_host_ip_new(const ENetAddress *address, char *name, size_t nameLength) { if (IN6_IS_ADDR_V4MAPPED(&address->host)) { struct in_addr buf; enet_inaddr_map6to4(&address->host, &buf); if (inet_ntop(AF_INET, &buf, name, nameLength) == NULL) { return -1; } } else { if (inet_ntop(AF_INET6, &address->host, name, nameLength) == NULL) { return -1; } } return 0; } /* enet_address_get_host_ip_new */ int enet_address_get_host_new(const ENetAddress *address, char *name, size_t nameLength) { struct sockaddr_in6 sin; memset(&sin, 0, sizeof(struct sockaddr_in6)); int err; sin.sin6_family = AF_INET6; sin.sin6_port = ENET_HOST_TO_NET_16 (address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; err = getnameinfo((struct sockaddr *) &sin, sizeof(sin), name, nameLength, NULL, 0, NI_NAMEREQD); if (!err) { if (name != NULL && nameLength > 0 && !memchr(name, '\0', nameLength)) { return -1; } return 0; } if (err != EAI_NONAME) { return -1; } return enet_address_get_host_ip_new(address, name, nameLength); } /* enet_address_get_host_new */ // =======================================================================// // ! // ! Platform Specific (Unix) // ! // =======================================================================// #ifndef _WIN32 int enet_initialize(void) { return 0; } void enet_deinitialize(void) {} enet_uint64 enet_host_random_seed(void) { return (enet_uint64) time(NULL); } int enet_address_set_host_ip_old(ENetAddress *address, const char *name) { if (!inet_pton(AF_INET6, name, &address->host)) { return -1; } return 0; } int enet_address_set_host_old(ENetAddress *address, const char *name) { struct addrinfo hints, *resultList = NULL, *result = NULL; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; if (getaddrinfo(name, NULL, &hints, &resultList) != 0) { return -1; } for (result = resultList; result != NULL; result = result->ai_next) { if (result->ai_addr != NULL && result->ai_addrlen >= sizeof(struct sockaddr_in)) { if (result->ai_family == AF_INET) { struct sockaddr_in * sin = (struct sockaddr_in *) result->ai_addr; ((uint32_t *)&address->host.s6_addr)[0] = 0; ((uint32_t *)&address->host.s6_addr)[1] = 0; ((uint32_t *)&address->host.s6_addr)[2] = htonl(0xffff); ((uint32_t *)&address->host.s6_addr)[3] = sin->sin_addr.s_addr; freeaddrinfo(resultList); return 0; } else if(result->ai_family == AF_INET6) { struct sockaddr_in6 * sin = (struct sockaddr_in6 *)result->ai_addr; address->host = sin->sin6_addr; address->sin6_scope_id = sin->sin6_scope_id; freeaddrinfo(resultList); return 0; } } } if (resultList != NULL) { freeaddrinfo(resultList); } return enet_address_set_host_ip(address, name); } /* enet_address_set_host_old */ int enet_address_get_host_ip_old(const ENetAddress *address, char *name, size_t nameLength) { if (inet_ntop(AF_INET6, &address->host, name, nameLength) == NULL) { return -1; } return 0; } int enet_address_get_host_old(const ENetAddress *address, char *name, size_t nameLength) { struct sockaddr_in6 sin; int err; memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; sin.sin6_port = ENET_HOST_TO_NET_16 (address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; err = getnameinfo((struct sockaddr *) &sin, sizeof(sin), name, nameLength, NULL, 0, NI_NAMEREQD); if (!err) { if (name != NULL && nameLength > 0 && !memchr(name, '\0', nameLength)) { return -1; } return 0; } if (err != EAI_NONAME) { return -1; } return enet_address_get_host_ip(address, name, nameLength); } /* enet_address_get_host_old */ int enet_socket_bind(ENetSocket socket, const ENetAddress *address) { struct sockaddr_in6 sin; memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; if (address != NULL) { sin.sin6_port = ENET_HOST_TO_NET_16(address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; } else { sin.sin6_port = 0; sin.sin6_addr = ENET_HOST_ANY; sin.sin6_scope_id = 0; } return bind(socket, (struct sockaddr *)&sin, sizeof(struct sockaddr_in6)); } int enet_socket_get_address(ENetSocket socket, ENetAddress *address) { struct sockaddr_in6 sin; socklen_t sinLength = sizeof(struct sockaddr_in6); if (getsockname(socket, (struct sockaddr *) &sin, &sinLength) == -1) { return -1; } address->host = sin.sin6_addr; address->port = ENET_NET_TO_HOST_16(sin.sin6_port); address->sin6_scope_id = sin.sin6_scope_id; return 0; } int enet_socket_listen(ENetSocket socket, int backlog) { return listen(socket, backlog < 0 ? SOMAXCONN : backlog); } ENetSocket enet_socket_create(ENetSocketType type) { return socket(PF_INET6, type == ENET_SOCKET_TYPE_DATAGRAM ? SOCK_DGRAM : SOCK_STREAM, 0); } int enet_socket_set_option(ENetSocket socket, ENetSocketOption option, int value) { int result = -1; switch (option) { case ENET_SOCKOPT_NONBLOCK: result = fcntl(socket, F_SETFL, (value ? O_NONBLOCK : 0) | (fcntl(socket, F_GETFL) & ~O_NONBLOCK)); break; case ENET_SOCKOPT_BROADCAST: result = setsockopt(socket, SOL_SOCKET, SO_BROADCAST, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_REUSEADDR: result = setsockopt(socket, SOL_SOCKET, SO_REUSEADDR, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_RCVBUF: result = setsockopt(socket, SOL_SOCKET, SO_RCVBUF, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_SNDBUF: result = setsockopt(socket, SOL_SOCKET, SO_SNDBUF, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_RCVTIMEO: { struct timeval timeVal; timeVal.tv_sec = value / 1000; timeVal.tv_usec = (value % 1000) * 1000; result = setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeVal, sizeof(struct timeval)); break; } case ENET_SOCKOPT_SNDTIMEO: { struct timeval timeVal; timeVal.tv_sec = value / 1000; timeVal.tv_usec = (value % 1000) * 1000; result = setsockopt(socket, SOL_SOCKET, SO_SNDTIMEO, (char *)&timeVal, sizeof(struct timeval)); break; } case ENET_SOCKOPT_NODELAY: result = setsockopt(socket, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_IPV6_V6ONLY: result = setsockopt(socket, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&value, sizeof(int)); break; default: break; } return result == -1 ? -1 : 0; } /* enet_socket_set_option */ int enet_socket_get_option(ENetSocket socket, ENetSocketOption option, int *value) { int result = -1; socklen_t len; switch (option) { case ENET_SOCKOPT_ERROR: len = sizeof(int); result = getsockopt(socket, SOL_SOCKET, SO_ERROR, value, &len); break; default: break; } return result == -1 ? -1 : 0; } int enet_socket_connect(ENetSocket socket, const ENetAddress *address) { struct sockaddr_in6 sin; int result; memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; sin.sin6_port = ENET_HOST_TO_NET_16(address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; result = connect(socket, (struct sockaddr *)&sin, sizeof(struct sockaddr_in6)); if (result == -1 && errno == EINPROGRESS) { return 0; } return result; } ENetSocket enet_socket_accept(ENetSocket socket, ENetAddress *address) { int result; struct sockaddr_in6 sin; socklen_t sinLength = sizeof(struct sockaddr_in6); result = accept(socket,address != NULL ? (struct sockaddr *) &sin : NULL, address != NULL ? &sinLength : NULL); if (result == -1) { return ENET_SOCKET_NULL; } if (address != NULL) { address->host = sin.sin6_addr; address->port = ENET_NET_TO_HOST_16 (sin.sin6_port); address->sin6_scope_id = sin.sin6_scope_id; } return result; } int enet_socket_shutdown(ENetSocket socket, ENetSocketShutdown how) { return shutdown(socket, (int) how); } void enet_socket_destroy(ENetSocket socket) { if (socket != -1) { close(socket); } } int enet_socket_send(ENetSocket socket, const ENetAddress *address, const ENetBuffer *buffers, size_t bufferCount) { struct msghdr msgHdr; struct sockaddr_in6 sin; int sentLength; memset(&msgHdr, 0, sizeof(struct msghdr)); if (address != NULL) { memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; sin.sin6_port = ENET_HOST_TO_NET_16(address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; msgHdr.msg_name = &sin; msgHdr.msg_namelen = sizeof(struct sockaddr_in6); } msgHdr.msg_iov = (struct iovec *) buffers; msgHdr.msg_iovlen = bufferCount; sentLength = sendmsg(socket, &msgHdr, MSG_NOSIGNAL); if (sentLength == -1) { if (errno == EWOULDBLOCK) { return 0; } return -1; } return sentLength; } /* enet_socket_send */ int enet_socket_receive(ENetSocket socket, ENetAddress *address, ENetBuffer *buffers, size_t bufferCount) { struct msghdr msgHdr; struct sockaddr_in6 sin; int recvLength; memset(&msgHdr, 0, sizeof(struct msghdr)); if (address != NULL) { msgHdr.msg_name = &sin; msgHdr.msg_namelen = sizeof(struct sockaddr_in6); } msgHdr.msg_iov = (struct iovec *) buffers; msgHdr.msg_iovlen = bufferCount; recvLength = recvmsg(socket, &msgHdr, MSG_NOSIGNAL); if (recvLength == -1) { if (errno == EWOULDBLOCK) { return 0; } return -1; } if (msgHdr.msg_flags & MSG_TRUNC) { return -1; } if (address != NULL) { address->host = sin.sin6_addr; address->port = ENET_NET_TO_HOST_16(sin.sin6_port); address->sin6_scope_id = sin.sin6_scope_id; } return recvLength; } /* enet_socket_receive */ int enet_socketset_select(ENetSocket maxSocket, ENetSocketSet *readSet, ENetSocketSet *writeSet, enet_uint32 timeout) { struct timeval timeVal; timeVal.tv_sec = timeout / 1000; timeVal.tv_usec = (timeout % 1000) * 1000; return select(maxSocket + 1, readSet, writeSet, NULL, &timeVal); } int enet_socket_wait(ENetSocket socket, enet_uint32 *condition, enet_uint64 timeout) { struct pollfd pollSocket; int pollCount; pollSocket.fd = socket; pollSocket.events = 0; if (*condition & ENET_SOCKET_WAIT_SEND) { pollSocket.events |= POLLOUT; } if (*condition & ENET_SOCKET_WAIT_RECEIVE) { pollSocket.events |= POLLIN; } pollCount = poll(&pollSocket, 1, timeout); if (pollCount < 0) { if (errno == EINTR && *condition & ENET_SOCKET_WAIT_INTERRUPT) { *condition = ENET_SOCKET_WAIT_INTERRUPT; return 0; } return -1; } *condition = ENET_SOCKET_WAIT_NONE; if (pollCount == 0) { return 0; } if (pollSocket.revents & POLLOUT) { *condition |= ENET_SOCKET_WAIT_SEND; } if (pollSocket.revents & POLLIN) { *condition |= ENET_SOCKET_WAIT_RECEIVE; } return 0; } /* enet_socket_wait */ #endif // !_WIN32 // =======================================================================// // ! // ! Platform Specific (Win) // ! // =======================================================================// #ifdef _WIN32 int enet_initialize(void) { WORD versionRequested = MAKEWORD(1, 1); WSADATA wsaData; if (WSAStartup(versionRequested, &wsaData)) { return -1; } if (LOBYTE(wsaData.wVersion) != 1 || HIBYTE(wsaData.wVersion) != 1) { WSACleanup(); return -1; } timeBeginPeriod(1); return 0; } void enet_deinitialize(void) { timeEndPeriod(1); WSACleanup(); } enet_uint64 enet_host_random_seed(void) { return (enet_uint64) timeGetTime(); } int enet_address_set_host_ip_old(ENetAddress *address, const char *name) { enet_uint8 vals[4] = { 0, 0, 0, 0 }; int i; for (i = 0; i < 4; ++i) { const char *next = name + 1; if (*name != '0') { long val = strtol(name, (char **) &next, 10); if (val < 0 || val > 255 || next == name || next - name > 3) { return -1; } vals[i] = (enet_uint8) val; } if (*next != (i < 3 ? '.' : '\0')) { return -1; } name = next + 1; } memcpy(&address->host, vals, sizeof(enet_uint32)); return 0; } int enet_address_set_host_old(ENetAddress *address, const char *name) { struct hostent *hostEntry = NULL; hostEntry = gethostbyname(name); if (hostEntry == NULL || hostEntry->h_addrtype != AF_INET) { if (!inet_pton(AF_INET6, name, &address->host)) { return -1; } return 0; } ((enet_uint32 *)&address->host.s6_addr)[0] = 0; ((enet_uint32 *)&address->host.s6_addr)[1] = 0; ((enet_uint32 *)&address->host.s6_addr)[2] = htonl(0xffff); ((enet_uint32 *)&address->host.s6_addr)[3] = *(enet_uint32 *)hostEntry->h_addr_list[0]; return 0; } int enet_address_get_host_ip_old(const ENetAddress *address, char *name, size_t nameLength) { if (inet_ntop(AF_INET6, (PVOID)&address->host, name, nameLength) == NULL) { return -1; } return 0; } int enet_address_get_host_old(const ENetAddress *address, char *name, size_t nameLength) { struct in6_addr in; struct hostent *hostEntry = NULL; in = address->host; hostEntry = gethostbyaddr((char *)&in, sizeof(struct in6_addr), AF_INET6); if (hostEntry == NULL) { return enet_address_get_host_ip(address, name, nameLength); } else { size_t hostLen = strlen(hostEntry->h_name); if (hostLen >= nameLength) { return -1; } memcpy(name, hostEntry->h_name, hostLen + 1); } return 0; } int enet_socket_bind(ENetSocket socket, const ENetAddress *address) { struct sockaddr_in6 sin; memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; if (address != NULL) { sin.sin6_port = ENET_HOST_TO_NET_16 (address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; } else { sin.sin6_port = 0; sin.sin6_addr = in6addr_any; sin.sin6_scope_id = 0; } return bind(socket, (struct sockaddr *) &sin, sizeof(struct sockaddr_in6)) == SOCKET_ERROR ? -1 : 0; } int enet_socket_get_address(ENetSocket socket, ENetAddress *address) { struct sockaddr_in6 sin; int sinLength = sizeof(struct sockaddr_in6); if (getsockname(socket, (struct sockaddr *) &sin, &sinLength) == -1) { return -1; } address->host = sin.sin6_addr; address->port = ENET_NET_TO_HOST_16(sin.sin6_port); address->sin6_scope_id = sin.sin6_scope_id; return 0; } int enet_socket_listen(ENetSocket socket, int backlog) { return listen(socket, backlog < 0 ? SOMAXCONN : backlog) == SOCKET_ERROR ? -1 : 0; } ENetSocket enet_socket_create(ENetSocketType type) { return socket(PF_INET6, type == ENET_SOCKET_TYPE_DATAGRAM ? SOCK_DGRAM : SOCK_STREAM, 0); } int enet_socket_set_option(ENetSocket socket, ENetSocketOption option, int value) { int result = SOCKET_ERROR; switch (option) { case ENET_SOCKOPT_NONBLOCK: { u_long nonBlocking = (u_long) value; result = ioctlsocket(socket, FIONBIO, &nonBlocking); break; } case ENET_SOCKOPT_BROADCAST: result = setsockopt(socket, SOL_SOCKET, SO_BROADCAST, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_REUSEADDR: result = setsockopt(socket, SOL_SOCKET, SO_REUSEADDR, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_RCVBUF: result = setsockopt(socket, SOL_SOCKET, SO_RCVBUF, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_SNDBUF: result = setsockopt(socket, SOL_SOCKET, SO_SNDBUF, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_RCVTIMEO: result = setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_SNDTIMEO: result = setsockopt(socket, SOL_SOCKET, SO_SNDTIMEO, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_NODELAY: result = setsockopt(socket, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int)); break; case ENET_SOCKOPT_IPV6_V6ONLY: result = setsockopt(socket, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&value, sizeof(int)); break; default: break; } return result == SOCKET_ERROR ? -1 : 0; } /* enet_socket_set_option */ int enet_socket_get_option(ENetSocket socket, ENetSocketOption option, int *value) { int result = SOCKET_ERROR, len; switch (option) { case ENET_SOCKOPT_ERROR: len = sizeof(int); result = getsockopt(socket, SOL_SOCKET, SO_ERROR, (char *)value, &len); break; default: break; } return result == SOCKET_ERROR ? -1 : 0; } int enet_socket_connect(ENetSocket socket, const ENetAddress *address) { struct sockaddr_in6 sin; int result; memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; sin.sin6_port = ENET_HOST_TO_NET_16(address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; result = connect(socket, (struct sockaddr *) &sin, sizeof(struct sockaddr_in6)); if (result == SOCKET_ERROR && WSAGetLastError() != WSAEWOULDBLOCK) { return -1; } return 0; } ENetSocket enet_socket_accept(ENetSocket socket, ENetAddress *address) { SOCKET result; struct sockaddr_in6 sin; int sinLength = sizeof(struct sockaddr_in6); result = accept(socket, address != NULL ? (struct sockaddr *)&sin : NULL, address != NULL ? &sinLength : NULL); if (result == INVALID_SOCKET) { return ENET_SOCKET_NULL; } if (address != NULL) { address->host = sin.sin6_addr; address->port = ENET_NET_TO_HOST_16(sin.sin6_port); address->sin6_scope_id = sin.sin6_scope_id; } return result; } int enet_socket_shutdown(ENetSocket socket, ENetSocketShutdown how) { return shutdown(socket, (int) how) == SOCKET_ERROR ? -1 : 0; } void enet_socket_destroy(ENetSocket socket) { if (socket != INVALID_SOCKET) { closesocket(socket); } } int enet_socket_send(ENetSocket socket, const ENetAddress *address, const ENetBuffer *buffers, size_t bufferCount) { struct sockaddr_in6 sin; DWORD sentLength; if (address != NULL) { memset(&sin, 0, sizeof(struct sockaddr_in6)); sin.sin6_family = AF_INET6; sin.sin6_port = ENET_HOST_TO_NET_16(address->port); sin.sin6_addr = address->host; sin.sin6_scope_id = address->sin6_scope_id; } if (WSASendTo(socket, (LPWSABUF) buffers, (DWORD) bufferCount, &sentLength, 0, address != NULL ? (struct sockaddr *) &sin : NULL, address != NULL ? sizeof(struct sockaddr_in6) : 0, NULL, NULL) == SOCKET_ERROR ) { return (WSAGetLastError() == WSAEWOULDBLOCK) ? 0 : -1; } return (int) sentLength; } int enet_socket_receive(ENetSocket socket, ENetAddress *address, ENetBuffer *buffers, size_t bufferCount) { INT sinLength = sizeof(struct sockaddr_in6); DWORD flags = 0, recvLength; struct sockaddr_in6 sin; if (WSARecvFrom(socket, (LPWSABUF) buffers, (DWORD) bufferCount, &recvLength, &flags, address != NULL ? (struct sockaddr *) &sin : NULL, address != NULL ? &sinLength : NULL, NULL, NULL) == SOCKET_ERROR ) { switch (WSAGetLastError()) { case WSAEWOULDBLOCK: case WSAECONNRESET: return 0; } return -1; } if (flags & MSG_PARTIAL) { return -1; } if (address != NULL) { address->host = sin.sin6_addr; address->port = ENET_NET_TO_HOST_16(sin.sin6_port); address->sin6_scope_id = sin.sin6_scope_id; } return (int) recvLength; } /* enet_socket_receive */ int enet_socketset_select(ENetSocket maxSocket, ENetSocketSet *readSet, ENetSocketSet *writeSet, enet_uint32 timeout) { struct timeval timeVal; timeVal.tv_sec = timeout / 1000; timeVal.tv_usec = (timeout % 1000) * 1000; return select(maxSocket + 1, readSet, writeSet, NULL, &timeVal); } int enet_socket_wait(ENetSocket socket, enet_uint32 *condition, enet_uint64 timeout) { fd_set readSet, writeSet; struct timeval timeVal; int selectCount; timeVal.tv_sec = timeout / 1000; timeVal.tv_usec = (timeout % 1000) * 1000; FD_ZERO(&readSet); FD_ZERO(&writeSet); if (*condition & ENET_SOCKET_WAIT_SEND) { FD_SET(socket, &writeSet); } if (*condition & ENET_SOCKET_WAIT_RECEIVE) { FD_SET(socket, &readSet); } selectCount = select(socket + 1, &readSet, &writeSet, NULL, &timeVal); if (selectCount < 0) { return -1; } *condition = ENET_SOCKET_WAIT_NONE; if (selectCount == 0) { return 0; } if (FD_ISSET(socket, &writeSet)) { *condition |= ENET_SOCKET_WAIT_SEND; } if (FD_ISSET(socket, &readSet)) { *condition |= ENET_SOCKET_WAIT_RECEIVE; } return 0; } /* enet_socket_wait */ #endif // _WIN32 #ifdef __cplusplus } #endif #endif // ENET_IMPLEMENTATION #endif // ENET_INCLUDE_H #line 0 #define tls_init tls_init2 #line 1 "3rd_bq_websocket.h" /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2020 Samuli Raivio Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ---------------------------------------- */ #ifndef BQ_WEBSOCKET_H_INCLUDED #define BQ_WEBSOCKET_H_INCLUDED #include #include #include #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4200) // warning C4200: nonstandard extension used: zero-sized array in struct/union #endif #ifdef __cplusplus extern "C" { #endif typedef struct bqws_socket bqws_socket; typedef enum bqws_error { BQWS_OK = 0, // Unknown error from non-BQWS peer BQWS_ERR_UNKNOWN, // Rejected with `bqws_server_reject()` BQWS_ERR_SERVER_REJECT, // Data over limits of `bqws_limits` BQWS_ERR_LIMIT_MAX_MEMORY_USED, BQWS_ERR_LIMIT_MAX_RECV_MSG_SIZE, BQWS_ERR_LIMIT_MAX_HANDSHAKE_SIZE, BQWS_ERR_LIMIT_MAX_PARTIAL_MESSAGE_PARTS, // Peer didn't respond to handshake, PING, or CLOSE message in time BQWS_ERR_CONNECT_TIMEOUT, BQWS_ERR_PING_TIMEOUT, BQWS_ERR_CLOSE_TIMEOUT, // Allocator returned NULL BQWS_ERR_ALLOCATOR, // Protocol errors BQWS_ERR_BAD_CONTINUATION, BQWS_ERR_UNFINISHED_PARTIAL, BQWS_ERR_PARTIAL_CONTROL, BQWS_ERR_BAD_OPCODE, BQWS_ERR_RESERVED_BIT, BQWS_ERR_IO_WRITE, BQWS_ERR_IO_READ, BQWS_ERR_BAD_HANDSHAKE, BQWS_ERR_UNSUPPORTED_VERSION, BQWS_ERR_TOO_MANY_HEADERS, BQWS_ERR_TOO_MANY_PROTOCOLS, BQWS_ERR_HEADER_KEY_TOO_LONG, BQWS_ERR_HEADER_BAD_ACCEPT, BQWS_ERR_HEADER_PARSE, } bqws_error; typedef enum bqws_state { BQWS_STATE_INVALID, BQWS_STATE_CONNECTING, BQWS_STATE_OPEN, BQWS_STATE_CLOSING, BQWS_STATE_CLOSED, } bqws_state; typedef enum bqws_close_reason { BQWS_CLOSE_INVALID = 0, BQWS_CLOSE_NORMAL = 1000, BQWS_CLOSE_GOING_AWAY = 1001, BQWS_CLOSE_PROTOCOL_ERROR = 1002, BQWS_CLOSE_UNSUPPORTED_TYPE = 1003, BQWS_CLOSE_NO_REASON = 1005, BQWS_CLOSE_ABNORMAL = 1006, BQWS_CLOSE_BAD_DATA = 1007, BQWS_CLOSE_GENERIC_ERROR = 1008, BQWS_CLOSE_MESSAGE_TOO_BIG = 1009, BQWS_CLOSE_EXTENSION_MISSING = 1010, BQWS_CLOSE_SERVER_ERROR = 1011, } bqws_close_reason; typedef enum bqws_msg_type { BQWS_MSG_INVALID = 0, // Basic full text/binary messages BQWS_MSG_TEXT = 0x0001, BQWS_MSG_BINARY = 0x0002, // Reported only if `bqws_opts.recv_partial_messages` is `true` BQWS_MSG_PARTIAL_TEXT = 0x0011, BQWS_MSG_PARTIAL_BINARY = 0x0012, BQWS_MSG_FINAL_TEXT = 0x0111, BQWS_MSG_FINAL_BINARY = 0x0112, // Reported only if `bqws_opts.recv_control_messages` is `true` BQWS_MSG_CONTROL_CLOSE = 0x1000, BQWS_MSG_CONTROL_PING = 0x2000, BQWS_MSG_CONTROL_PONG = 0x3000, // Masks for inspecting groups of types BQWS_MSG_TYPE_MASK = 0x000f, BQWS_MSG_PARTIAL_BIT = 0x0010, BQWS_MSG_FINAL_BIT = 0x0100, BQWS_MSG_CONTROL_MASK = 0xf000, } bqws_msg_type; // Message buffers managed by bq_websocket. typedef struct bqws_msg { // The socket that originally allocated this message bqws_socket *socket; // Type enum/bitmask bqws_msg_type type; // Size of the message in bytes, may be smaller than the // allocated buffer at `data` size_t size; // Size of `data` in bytes size_t capacity; char data[0]; } bqws_msg; // Message header // -- Allocaiton functions typedef void *bqws_alloc_fn(void *user, size_t size); typedef void *bqws_realloc_fn(void *user, void *ptr, size_t old_size, size_t new_size); typedef void bqws_free_fn(void *user, void *ptr, size_t size); // -- IO functions // Called once before anything else from the updating thread. typedef void bqws_io_init_fn(void *user, bqws_socket *ws); // Send `size` bytes of `data` to its peer. // Return the number of bytes actually sent or `SIZE_MAX` if an IO error occurred. typedef size_t bqws_io_send_fn(void *user, bqws_socket *ws, const void *data, size_t size); // Read up to `max_size` bytes to `data`. It's safe to read `min_bytes` with blocking IO. // Return the number of bytes actually read or `SIZE_MAX` if an IO error occurred. typedef size_t bqws_io_recv_fn(void *user, bqws_socket *ws, void *data, size_t max_size, size_t min_size); // Notification that there is more data to send from the socket. typedef void bqws_io_notify_fn(void *user, bqws_socket *ws); // Flush all buffered data to the peer. typedef bool bqws_io_flush_fn(void *user, bqws_socket *ws); // Close and free all the resources used by the IO typedef void bqws_io_close_fn(void *user, bqws_socket *ws); // -- Miscellaneous callback functions // Called when the socket receives a message. Return `true` to consume/filter the message // preventing it from entering the `bqws_recv()` queue. typedef bool bqws_message_fn(void *user, bqws_socket *ws, bqws_msg *msg); // Send a message directly without IO, for example using native WebSockets on web. // Called repeatedly with the same message until you return `true`. typedef bool bqws_send_message_fn(void *user, bqws_socket *ws, bqws_msg *msg); // Peek at all messages (including control messages). typedef void bqws_peek_fn(void *user, bqws_socket *ws, bqws_msg *msg, bool received); // Log state transitions, errors and optionally sent/received messages. typedef void bqws_log_fn(void *user, bqws_socket *ws, const char *line); // Called when the socket encounters an error. typedef void bqws_error_fn(void *user, bqws_socket *ws, bqws_error error); // Allocator callbacks with user context pointer typedef struct bqws_allocator { void *user; bqws_alloc_fn *alloc_fn; bqws_realloc_fn *realloc_fn; bqws_free_fn *free_fn; } bqws_allocator; // IO callbacks with user context pointer, // see prototypes above for description typedef struct bqws_io { void *user; bqws_io_init_fn *init_fn; bqws_io_send_fn *send_fn; bqws_io_recv_fn *recv_fn; bqws_io_notify_fn *notify_fn; bqws_io_flush_fn *flush_fn; bqws_io_close_fn *close_fn; } bqws_io; typedef struct bqws_limits { // Maximum total memory used // default: 262144 size_t max_memory_used; // Maximum received message length // default: 262144 size_t max_recv_msg_size; // Maximum handshake length // default: 262144 size_t max_handshake_size; // Maximum number of queued received messages // default: 1024 size_t max_recv_queue_messages; // Maximum size of queued received messages in bytes // default: 262144 size_t max_recv_queue_size; // Maximum number of parts in a chunked message // default: 16384 size_t max_partial_message_parts; } bqws_limits; typedef struct bqws_opts { // Name for the socket for debugging const char *name; bqws_io io; bqws_allocator allocator; bqws_limits limits; // Message callback bqws_message_fn *message_fn; void *message_user; // Peek at all control/partial incoming messages even if // `recv_partial_messages` and `recv_control_messages are disabled. bqws_peek_fn *peek_fn; void *peek_user; // Verbose log of all events for this socket bqws_log_fn *log_fn; void *log_user; // Log also send/receive events bool log_send; bool log_recv; // Error callback bqws_error_fn *error_fn; void *error_user; // Send messages from this socket manually without IO bqws_send_message_fn *send_message_fn; void *send_message_user; // User data block, if `user_size > 0` but `user_data == NULL` // the data will be zero-initialized void *user_data; size_t user_size; // How long to wait (milliseconds) for the connecting to succeed before giving up. // Use SIZE_MAX to disable the timeout. // default: 10000 size_t connect_timeout; // How often (milliseconds) to send PING messages if there is no traffic, // use SIZE_MAX to disable automatic PING // default: server: 20000, client: 10000 size_t ping_interval; // How long to wait (milliseconds) for the close response before forcing the // state to be BQWS_STATE_CLOSED. Use SIZE_MAX to disable // the close timeout. // default: 5000 size_t close_timeout; // How long to wait (milliseconds) for a ping response before forcing // the state to be BQWS_STATE_CLOSED. Use SIZE_MAX to disable. // the close timeout. // default: 4 * ping_interval size_t ping_response_timeout; // If set returns `BQWS_MSG_PARTIAL_*` messages from `bqws_recv()` bool recv_partial_messages; // If set returns `BQWS_MSG_CONTROL_*` messages from `bqws_recv()` bool recv_control_messages; // Mask messages sent by the server as well bool mask_server; // Don't mask client messages, violates the spec! bool unsafe_dont_mask_client; // Start the connection in BQWS_STATE_OPEN state bool skip_handshake; } bqws_opts; #define BQWS_MAX_HEADERS 64 #define BQWS_MAX_PROTOCOLS 64 // HTTP header key-value pair. typedef struct bqws_header { const char *name; const char *value; } bqws_header; typedef struct bqws_client_opts { // Standard HTTP headers used by the handshake const char *path; const char *host; const char *origin; // WebSocket protocols to request const char *protocols[BQWS_MAX_PROTOCOLS]; size_t num_protocols; // Extra HTTP headers bqws_header headers[BQWS_MAX_HEADERS]; size_t num_headers; // Random key (optional) bool use_random_key; uint8_t random_key[16]; } bqws_client_opts; // Call `bqws_server_accept()` or `bqws_server_reject()` here to handle the socket typedef void bqws_verify_fn(void *user, bqws_socket *ws, const bqws_client_opts *opts); typedef struct bqws_server_opts { // Automatically verify connections matching these client options. bqws_client_opts *verify_filter; // Verify callback, same as polling `bqws_server_get_client_options()` // and calling `bqws_server_accept()` bqws_verify_fn *verify_fn; void *verify_user; } bqws_server_opts; // [wss://][host.example.com][:12345][/directory] // scehme host port path typedef struct bqws_url { bool secure; uint16_t port; char scheme[16]; char host[256]; const char *path; } bqws_url; typedef struct bqws_io_stats { uint64_t total_messages; uint64_t total_bytes; size_t queued_messages; size_t queued_bytes; } bqws_io_stats; typedef struct bqws_stats { bqws_io_stats recv; bqws_io_stats send; } bqws_stats; // -- WebSocket management // Create a new client/server socket. `opts`, `client_opts`, `server_opts` are all optional. bqws_socket *bqws_new_client(const bqws_opts *opts, const bqws_client_opts *client_opts); bqws_socket *bqws_new_server(const bqws_opts *opts, const bqws_server_opts *server_opts); // Call at any point to destroy the socket and free all used resources. void bqws_free_socket(bqws_socket *ws); // Graceful shutdown: Prepare to close the socket by sending a close message. // `bqws_close()` sends the close message as soon as possible while `bqws_queue_close()` // sends all other queued messages first. void bqws_close(bqws_socket *ws, bqws_close_reason reason, const void *data, size_t size); void bqws_queue_close(bqws_socket *ws, bqws_close_reason reason, const void *data, size_t size); // -- Server connect // Accept or reject connections based on headers. // Valid only until you call `bqws_server_connect()` or `bqws_free_socket()`! bqws_client_opts *bqws_server_get_client_opts(bqws_socket *ws); void bqws_server_accept(bqws_socket *ws, const char *protocol); void bqws_server_reject(bqws_socket *ws); // -- Query state bqws_state bqws_get_state(const bqws_socket *ws); bqws_error bqws_get_error(const bqws_socket *ws); bool bqws_is_connecting(const bqws_socket *ws); bool bqws_is_closed(const bqws_socket *ws); size_t bqws_get_memory_used(const bqws_socket *ws); bool bqws_is_server(const bqws_socket *ws); void *bqws_user_data(const bqws_socket *ws); size_t bqws_user_data_size(const bqws_socket *ws); const char *bqws_get_name(const bqws_socket *ws); bqws_stats bqws_get_stats(const bqws_socket *ws); void *bqws_get_io_user(const bqws_socket *ws); bool bqws_get_io_closed(const bqws_socket *ws); // Get/update limits bqws_limits bqws_get_limits(const bqws_socket *ws); void bqws_set_limits(bqws_socket *ws, const bqws_limits *limits); // Peer closing bqws_close_reason bqws_get_peer_close_reason(const bqws_socket *ws); bqws_error bqws_get_peer_error(const bqws_socket *ws); // Get the chosen protocol, returns "" if none chosen but the connection is open // Returns NULL if the connection is not established const char *bqws_get_protocol(const bqws_socket *ws); // -- Communication // Receive a message, use `bqws_free_msg()` to free the returned pointer bqws_msg *bqws_recv(bqws_socket *ws); void bqws_free_msg(bqws_msg *msg); // Single message void bqws_send(bqws_socket *ws, bqws_msg_type type, const void *data, size_t size); void bqws_send_binary(bqws_socket *ws, const void *data, size_t size); void bqws_send_text(bqws_socket *ws, const char *str); void bqws_send_text_len(bqws_socket *ws, const void *str, size_t len); // Write to socket-provided memory bqws_msg *bqws_allocate_msg(bqws_socket *ws, bqws_msg_type type, size_t size); void bqws_send_msg(bqws_socket *ws, bqws_msg *msg); // Streaming messages void bqws_send_begin(bqws_socket *ws, bqws_msg_type type); void bqws_send_append(bqws_socket *ws, const void *data, size_t size); void bqws_send_append_str(bqws_socket *ws, const char *str); void bqws_send_append_msg(bqws_socket *ws, bqws_msg *msg); void bqws_send_finish(bqws_socket *ws); // Send manual control messages void bqws_send_ping(bqws_socket *ws, const void *data, size_t size); void bqws_send_pong(bqws_socket *ws, const void *data, size_t size); // -- Updating and IO // Keep the socket alive, reads/writes buffered data and responds to pings/pongs // Semantically equivalent to bqws_update_state() and bqws_update_io() void bqws_update(bqws_socket *ws); // Send/respond to PING/PONG, update close timeouts, etc... void bqws_update_state(bqws_socket *ws); // Call user-provided IO callbacks for reading/writing or both. void bqws_update_io(bqws_socket *ws); void bqws_update_io_read(bqws_socket *ws); void bqws_update_io_write(bqws_socket *ws); // Non-callback IO: Read data to send to the peer or write data received from the peer. size_t bqws_read_from(bqws_socket *ws, const void *data, size_t size); size_t bqws_write_to(bqws_socket *ws, void *data, size_t size); // Direct control void bqws_direct_push_msg(bqws_socket *ws, bqws_msg *msg); void bqws_direct_set_override_state(bqws_socket *ws, bqws_state state); void bqws_direct_fail(bqws_socket *ws, bqws_error err); // -- Utility // Parse `str` to `url` returning `true` on success. // `url->path` still refers to `str` and is not a copy! bool bqws_parse_url(bqws_url *url, const char *str); // Enum -> string conversion const char *bqws_error_str(bqws_error error); const char *bqws_msg_type_str(bqws_msg_type type); const char *bqws_state_str(bqws_state state); void *bqws_allocator_alloc(const bqws_allocator *at, size_t size); void *bqws_allocator_realloc(const bqws_allocator *at, void *ptr, size_t old_size, size_t new_size); void bqws_allocator_free(const bqws_allocator *at, void *ptr, size_t size); #ifdef __cplusplus } #endif #ifdef _MSC_VER #pragma warning(push) #endif #endif // BQ_WEBSOCKET_H_INCLUDED // ----------------------------------------------------------------------------- #ifndef BQ_WEBSOCKET_PLATFORM_H_INCLUDED #define BQ_WEBSOCKET_PLATFORM_H_INCLUDED #include #include #ifdef __cplusplus extern "C" { #endif #define BQWS_PT_MAX_ADDRESS_SIZE 16 #define BQWS_PT_MAX_ADDRESS_FORMAT_LENGTH 64 typedef struct bqws_pt_server bqws_pt_server; typedef enum bqws_pt_error_type { BQWS_PT_ERRTYPE_NONE, // bqws_pt_error_code BQWS_PT_ERRTYPE_PT, // Windows Sockets error codes // https://docs.microsoft.com/en-us/windows/win32/winsock/windows-sockets-error-codes-2 BQWS_PT_ERRTYPE_WSA, // POSIX errno codes // https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html BQWS_PT_ERRTYPE_POSIX, // getaddrinfo() error codes // http://man7.org/linux/man-pages/man3/getaddrinfo.3.html BQWS_PT_ERRTYPE_GETADDRINFO, // OpenSSL error codes BQWS_PT_ERRTYPE_OPENSSL, } bqws_pt_error_type; typedef enum bqws_pt_error_code { BQWS_PT_OK, BQWS_PT_ERR_NO_TLS, BQWS_PT_ERR_NO_SERVER_SUPPORT, BQWS_PT_ERR_OUT_OF_MEMORY, BQWS_PT_ERR_BAD_URL, } bqws_pt_error_code; typedef struct bqws_pt_error { const char *function; bqws_pt_error_type type; int64_t data; } bqws_pt_error; typedef enum bqws_pt_address_type { BQWS_PT_ADDRESS_UNKNOWN, BQWS_PT_ADDRESS_WEBSOCKET, BQWS_PT_ADDRESS_IPV4, BQWS_PT_ADDRESS_IPV6, } bqws_pt_address_type; typedef struct bqws_pt_address { bqws_pt_address_type type; uint16_t port; uint8_t address[BQWS_PT_MAX_ADDRESS_SIZE]; } bqws_pt_address; typedef struct bqws_pt_init_opts { // CA certificate file location // For example: https://curl.haxx.se/docs/caextract.html const char *ca_filename; } bqws_pt_init_opts; typedef struct bqws_pt_connect_opts { // Disable host verification for TLS (secure) connections bool insecure_no_verify_host; } bqws_pt_connect_opts; typedef struct bqws_pt_listen_opts { // Use TLS for incoming connections bool secure; // TLS certificate, used only if `secure` const char *certificate_file; // Passed to `SSL_CTX_use_certificate_file()` const char *private_key_file; // Passed to `SSL_CTX_use_PrivateKey_file()` // Port to bind to // default: 80 if `!secure`, 443 if `secure` uint16_t port; // Number of connections to queue for `bqws_pt_accept()` // default: 128 size_t backlog; // Attempt to share a port with other processes ie. `SO_REUSEPORT` bool reuse_port; // Allocator callbacks bqws_allocator allocator; } bqws_pt_listen_opts; // -- Global initialization // Call these before/after any other functions bool bqws_pt_init(const bqws_pt_init_opts *opts); void bqws_pt_shutdown(); // Thread local error void bqws_pt_clear_error(); bool bqws_pt_get_error(bqws_pt_error *err); // -- Platform socket creation // Client bqws_socket *bqws_pt_connect(const char *url, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts); bqws_socket *bqws_pt_connect_url(const bqws_url *url, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts); // Server bqws_pt_server *bqws_pt_listen(const bqws_pt_listen_opts *pt_opts); void bqws_pt_free_server(bqws_pt_server *sv); bqws_socket *bqws_pt_accept(bqws_pt_server *sv, const bqws_opts *opts, const bqws_server_opts *server_opts); // Query bqws_pt_address bqws_pt_get_address(const bqws_socket *ws); // -- Utility void bqws_pt_format_address(char *dst, size_t size, const bqws_pt_address *addr); void bqws_pt_get_error_desc(char *dst, size_t size, const bqws_pt_error *err); void bqws_pt_sleep_ms(uint32_t ms); const char *bqws_pt_error_type_str(bqws_pt_error_type type); const char *bqws_pt_error_code_str(bqws_pt_error_code err); #ifdef __cplusplus } #endif #endif // BQ_WEBSOCKET_PLATFORM_H_INCLUDED // ----------------------------------------------------------------------------- #ifdef BQ_WEBSOCKET_IMPLEMENTATION #include #include #include #include #include // -- Config #if defined(_MSC_VER) #define bqws_forceinline __forceinline #if defined(_M_IX86) || defined(_M_X64) #include #include #define BQWS_USE_SSE 1 #endif #elif defined(__GNUC__) || defined(__clang__) #define bqws_forceinline __attribute__((always_inline)) inline #if defined(__i386__) || defined(__x86_64__) #include #include #define BQWS_USE_SSE 1 #endif #else #define bqws_forceinline #endif #ifndef bqws_assert #include #define bqws_assert(x) assert(x) #endif #ifndef bqws_malloc #define bqws_malloc(size) malloc((size)) #endif #ifndef bqws_realloc #define bqws_realloc(ptr, old_size, new_size) realloc((ptr), (new_size)) #endif #ifndef bqws_free #define bqws_free(ptr, size) free((ptr)) #endif // TODO: QueryPerformanceCounter() or clock_gettime() might be faster typedef clock_t bqws_timestamp; static bqws_timestamp bqws_get_timestamp() { return clock(); } static size_t bqws_timestamp_delta_to_ms(bqws_timestamp begin, bqws_timestamp end) { return (size_t)((double)(end - begin) * 1000.0 / (double)CLOCKS_PER_SEC); } #ifndef BQWS_DEBUG #if defined(NDEBUG) #define BQWS_DEBUG 0 #else #define BQWS_DEBUG 1 #endif #endif #ifndef BQWS_SINGLE_THREAD #define BQWS_SINGLE_THREAD 0 #endif #ifndef bqws_mutex #if defined(_WIN32) && !BQWS_SINGLE_THREAD #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include typedef struct { CRITICAL_SECTION cs; #if BQWS_DEBUG DWORD thread; #endif } bqws_mutex; static void bqws_mutex_init(bqws_mutex *m) { InitializeCriticalSection(&m->cs); #if BQWS_DEBUG m->thread = 0; #endif } static void bqws_mutex_free(bqws_mutex *m) { #if BQWS_DEBUG m->thread = 0; #endif DeleteCriticalSection(&m->cs); } static void bqws_mutex_lock(bqws_mutex *m) { EnterCriticalSection(&m->cs); #if BQWS_DEBUG m->thread = GetCurrentThreadId(); #endif } static void bqws_mutex_unlock(bqws_mutex *m) { #if BQWS_DEBUG m->thread = 0; #endif LeaveCriticalSection(&m->cs); } #if BQWS_DEBUG #define bqws_assert_locked(m) bqws_assert((m)->thread == GetCurrentThreadId()); #else #define bqws_assert_locked(m) (void)0 #endif #elif (defined(__APPLE__) || defined(__linux__) || defined(__unix__)) && (!defined(__EMSCRIPTEN__) || defined(__EMSCRIPTEN_PTHREADS__)) && !BQWS_SINGLE_THREAD #include typedef struct { pthread_mutex_t mutex; #if BQWS_DEBUG bool locked; pthread_t thread; #endif } bqws_mutex; static void bqws_mutex_init(bqws_mutex *m) { pthread_mutex_init(&m->mutex, NULL); #if BQWS_DEBUG m->locked = false; #endif } static void bqws_mutex_free(bqws_mutex *m) { #if BQWS_DEBUG m->locked = false; #endif pthread_mutex_destroy(&m->mutex); } static void bqws_mutex_lock(bqws_mutex *m) { pthread_mutex_lock(&m->mutex); #if BQWS_DEBUG m->locked = true; m->thread = pthread_self(); #endif } static void bqws_mutex_unlock(bqws_mutex *m) { #if BQWS_DEBUG m->locked = false; #endif pthread_mutex_unlock(&m->mutex); } #if BQWS_DEBUG #define bqws_assert_locked(m) ((m)->locked && (m)->thread == pthread_self()) #else #define bqws_assert_locked(m) (void)0 #endif #else typedef struct { bool is_locked; } bqws_mutex; static void bqws_mutex_init(bqws_mutex *m) { m->is_locked = false; } static void bqws_mutex_free(bqws_mutex *m) { bqws_assert(!m->is_locked); } static void bqws_mutex_lock(bqws_mutex *m) { bqws_assert(!m->is_locked); m->is_locked = true; } static void bqws_mutex_unlock(bqws_mutex *m) { bqws_assert(m->is_locked); m->is_locked = false; } #define bqws_assert_locked(m) bqws_assert((m)->is_locked) #endif #else // not defined bqws_mutex #ifndef bqws_assert_locked #define bqws_assert_locked(m) (void)0 #endif #endif // not defined bqws_mutex // -- Magic constants #define BQWS_DELETED_MAGIC 0xbdbdbdbd #define BQWS_SOCKET_MAGIC 0x7773636b #define BQWS_MSG_MAGIC 0x776d7367 #define BQWS_FILTER_MAGIC 0x77666c74 // -- Types // Message implementation struct, message data is always allocated // to follow the struct in memory. typedef struct bqws_msg_imp bqws_msg_imp; struct bqws_msg_imp { uint32_t magic; // = BQWS_MSG_MAGIC // Socket that is responsible of freeing this message // or NULL if it's owned by the user. bqws_socket *owner; // Allocator used to allocate this message bqws_allocator allocator; // Linked list in `bqws_msg_queue` bqws_msg_imp *prev; bqws_msg msg; }; #define msg_imp(msg) (bqws_msg_imp*)((char*)msg - offsetof(bqws_msg_imp, msg)) #define msg_alloc_size(msg) (sizeof(bqws_msg_imp) + (msg)->capacity) typedef struct { bqws_mutex mutex; bqws_msg_imp *first, *last; size_t num_messages; size_t byte_size; uint64_t total_messages; uint64_t total_size; } bqws_msg_queue; typedef struct { bqws_msg_imp *msg; size_t offset; size_t header_offset; size_t header_size; bool finished; bool masked; uint32_t mask_key; bqws_msg_type partial_type; } bqws_msg_buffer; typedef struct { char *data; size_t size; size_t capacity; size_t write_offset; size_t read_offset; } bqws_handshake_buffer; typedef struct { uint32_t magic; const char *path; const char *host; const char *origin; const char *protocols[BQWS_MAX_PROTOCOLS]; size_t num_protocols; bqws_verify_fn *verify_fn; void *verify_user; size_t text_size; char text_data[]; } bqws_verify_filter; // Random entropy source typedef struct { void (*function_pointer)(bqws_socket *ws, const bqws_client_opts *opts); void *stack_pointer; void *heap_pointer; clock_t clock; time_t time; uint32_t mask_key; } bqws_random_entropy; typedef struct { uint8_t code_be[2]; uint8_t magic[4]; uint8_t error_be[4]; } bqws_err_close_data; // Main socket/context type, passed everywhere as the first argument. struct bqws_socket { // -- Constant data uint32_t magic; // = BQWS_SOCKET_MAGIC char *name; // Name high up for debugging bool is_server; // Copied from `opts` bqws_allocator allocator; bqws_io user_io; bqws_limits limits; bool recv_partial_messages; bool recv_control_messages; bool mask_server; bool unsafe_dont_mask_client; bqws_verify_fn *verify_fn; void *verify_user; bqws_message_fn *message_fn; void *message_user; bqws_peek_fn *peek_fn; void *peek_user; bqws_log_fn *log_fn; void *log_user; bool log_send; bool log_recv; bqws_error_fn *error_fn; void *error_user; bqws_send_message_fn *send_message_fn; void *send_message_user; size_t user_size; size_t ping_interval; size_t connect_timeout; size_t close_timeout; size_t ping_response_timeout; // -- Internally synchronized // Current error state, set to the first error that occurs // Error writes are protected by `err_mutex` checking `err` can // be done without a mutex to check for errors from the same thread. bqws_mutex err_mutex; bqws_error err; // Message queues bqws_msg_queue recv_partial_queue; bqws_msg_queue recv_queue; bqws_msg_queue send_queue; // -- State of the socket, errors struct { bqws_mutex mutex; // Connection state bqws_state state; bqws_state override_state; // Pre-allocated error close message storage void *pointer_align; char error_msg_data[sizeof(bqws_msg_imp) + sizeof(bqws_err_close_data)]; bqws_close_reason peer_reason; bqws_error peer_err; bool stop_write; bool stop_read; bool close_sent; bool close_received; bool io_started; bool io_closed; char *chosen_protocol; bqws_timestamp start_closing_ts; // Priority messages bqws_msg_imp *close_to_send; bqws_msg_imp *pong_to_send; } state; // -- Allocation struct { bqws_mutex mutex; // TODO: Make this atomic? // Total memory allocated through `allocator` at the moment size_t memory_used; } alloc; // -- IO struct { bqws_mutex mutex; bqws_timestamp start_connect_ts; bqws_timestamp last_write_ts; bqws_timestamp last_read_ts; bqws_timestamp last_ping_ts; size_t recv_partial_size; // Handshake bqws_handshake_buffer handshake; bqws_handshake_buffer handshake_overflow; bqws_client_opts *opts_from_client; char client_key_base64[32]; bool client_handshake_done; bool client_has_protocol; // Masking random state uint64_t mask_random_state; uint64_t mask_random_stream; // Write/read buffers `recv_header` is also used to buffer // multiple small messages char recv_header[512]; bqws_msg_buffer recv_buf; char send_header[16]; bqws_msg_buffer send_buf; } io; // -- API struct { bqws_mutex mutex; bqws_msg_imp *next_partial_to_send; bqws_msg_type send_partial_type; } partial; // User data follows in memory char user_data[]; }; // -- Utility // Mark the socket as failed with an error. Only updates the // error flag if it's not set. static void null_free(void *user, void *ptr, size_t size) { } static void ws_log(bqws_socket *ws, const char *str) { if (ws->log_fn) ws->log_fn(ws->log_user, ws, str); } static void ws_log2(bqws_socket *ws, const char *a, const char *b) { if (!ws->log_fn) return; char line[256]; size_t len_a = strlen(a); size_t len_b = strlen(b); bqws_assert(len_a + len_b < sizeof(line)); char *ptr = line; memcpy(ptr, a, len_a); ptr += len_a; memcpy(ptr, b, len_b); ptr += len_b; *ptr = '\0'; ws->log_fn(ws->log_user, ws, line); } static void ws_close(bqws_socket *ws) { bqws_assert_locked(&ws->state.mutex); if (ws->state.state != BQWS_STATE_CLOSED) { ws_log(ws, "State: CLOSED"); if (ws->user_io.close_fn && !ws->state.io_closed) { ws->user_io.close_fn(ws->user_io.user, ws); } ws->state.io_closed = true; ws->state.state = BQWS_STATE_CLOSED; ws->state.stop_read = true; ws->state.stop_write = true; } } static void ws_fail(bqws_socket *ws, bqws_error err) { bool should_report = false; bqws_mutex_lock(&ws->state.mutex); bqws_assert(err != BQWS_OK); bqws_mutex_lock(&ws->err_mutex); if (!ws->err) { should_report = true; // vvv Breakpoint here to stop on first error ws->err = err; bqws_mutex_unlock(&ws->err_mutex); ws_log2(ws, "Fail: ", bqws_error_str(err)); // Try to send an error close message if (ws->state.state == BQWS_STATE_OPEN && !ws->state.close_to_send) { bqws_msg_imp *close_msg = (bqws_msg_imp*)ws->state.error_msg_data; close_msg->magic = BQWS_MSG_MAGIC; close_msg->allocator.free_fn = &null_free; close_msg->owner = ws; close_msg->prev = NULL; close_msg->msg.socket = ws; close_msg->msg.capacity = sizeof(bqws_err_close_data); close_msg->msg.size = sizeof(bqws_err_close_data); close_msg->msg.type = BQWS_MSG_CONTROL_CLOSE; bqws_close_reason reason; switch (err) { case BQWS_ERR_LIMIT_MAX_RECV_MSG_SIZE: reason = BQWS_CLOSE_MESSAGE_TOO_BIG; break; case BQWS_ERR_BAD_CONTINUATION: case BQWS_ERR_UNFINISHED_PARTIAL: case BQWS_ERR_PARTIAL_CONTROL: case BQWS_ERR_BAD_OPCODE: case BQWS_ERR_RESERVED_BIT: reason = BQWS_CLOSE_PROTOCOL_ERROR; break; default: reason = BQWS_CLOSE_SERVER_ERROR; break; } bqws_err_close_data *data = (bqws_err_close_data*)close_msg->msg.data; data->code_be[0] = (uint8_t)(reason >> 8); data->code_be[1] = (uint8_t)(reason >> 0); memcpy(data->magic, "BQWS", 4); data->error_be[0] = (uint8_t)(err >> 24); data->error_be[1] = (uint8_t)(err >> 16); data->error_be[2] = (uint8_t)(err >> 8); data->error_be[3] = (uint8_t)(err >> 0); ws->state.close_to_send = close_msg; ws->state.state = BQWS_STATE_CLOSING; ws->state.start_closing_ts = bqws_get_timestamp(); } else if (ws->state.state == BQWS_STATE_CONNECTING) { // If there's an error during connection close // the connection immediately ws_close(ws); } } else { bqws_mutex_unlock(&ws->err_mutex); } // IO errors should close their respective channels if (err == BQWS_ERR_IO_READ) ws->state.stop_read = true; if (err == BQWS_ERR_IO_WRITE) ws->state.stop_write = true; bqws_mutex_unlock(&ws->state.mutex); if (ws->error_fn && should_report) { ws->error_fn(ws->error_user, ws, err); } } static void bqws_sha1(uint8_t digest[20], const void *data, size_t size); // Callback writer typedef struct { char *ptr, *end; } bqws_mem_stream; static size_t mem_stream_send(void *user, bqws_socket *ws, const void *data, size_t size) { // Copy as many bytes as fit in the stream bqws_mem_stream *s = (bqws_mem_stream*)user; size_t left = s->end - s->ptr; size_t to_copy = size; if (to_copy > left) to_copy = left; memcpy(s->ptr, data, to_copy); s->ptr += to_copy; return to_copy; } static size_t mem_stream_recv(void *user, bqws_socket *ws, void *data, size_t max_size, size_t min_size) { // Copy as many bytes as fit in the stream bqws_mem_stream *s = (bqws_mem_stream*)user; size_t left = s->end - s->ptr; size_t to_copy = max_size; if (to_copy > left) to_copy = left; memcpy(data, s->ptr, to_copy); s->ptr += to_copy; return to_copy; } // -- Allocation // Direct allocator functions. Prefer using `ws_alloc()` if there is an `bqws_socket` // avaialable (which there should almost always be). These functions just call the // user callbacks or defaults passing in the user pointer. void *bqws_allocator_alloc(const bqws_allocator *at, size_t size) { if (at->alloc_fn) { // User defined alloc directly return at->alloc_fn(at->user, size); } else if (at->realloc_fn) { // Realloc with zero initial size return at->realloc_fn(at->user, NULL, 0, size); } else { // Default: malloc() return bqws_malloc(size); } } void *bqws_allocator_realloc(const bqws_allocator *at, void *ptr, size_t old_size, size_t new_size) { if (old_size == 0) { // Realloc with `old_size==0` is equivalent to malloc return bqws_allocator_alloc(at, new_size); } else if (new_size == 0) { // Realloc with `new_size==0` is equivalent to free bqws_allocator_free(at, ptr, old_size); return NULL; } if (at->realloc_fn) { // User defined realloc directly return at->realloc_fn(at->user, ptr, old_size, new_size); } else if (at->alloc_fn) { // No realloc, but alloc is defined. Allocate and copy the data // if it succeeded and free the old pointer (if free is defined) void *new_ptr = at->alloc_fn(at->user, new_size); if (!new_ptr) return NULL; memcpy(new_ptr, ptr, old_size); if (at->free_fn) { at->free_fn(at->user, ptr, old_size); } return new_ptr; } else { // Default: realloc() return bqws_realloc(ptr, old_size, new_size); } } void bqws_allocator_free(const bqws_allocator *at, void *ptr, size_t size) { if (size == 0) return; bqws_assert(ptr != NULL); if (at->free_fn) { // Use defined free directly at->free_fn(at->user, ptr, size); } else if (at->realloc_fn) { // Use realloc with zero new size at->realloc_fn(at->user, ptr, size, 0); } else { bqws_assert(at->alloc_fn == NULL); // Default: free(), only if there is no user defined allocator bqws_free(ptr, size); } } // WebSocket allocation functions. These keep track of total used memory and // update the error flag. static bool ws_add_memory_used(bqws_socket *ws, size_t size) { // TODO: Atomics bqws_mutex_lock(&ws->alloc.mutex); bool ok = (size <= ws->limits.max_memory_used - ws->alloc.memory_used); if (ok) { ws->alloc.memory_used += size; } else { ws_fail(ws, BQWS_ERR_LIMIT_MAX_MEMORY_USED); } bqws_mutex_unlock(&ws->alloc.mutex); return ok; } static void ws_remove_memory_used(bqws_socket *ws, size_t size) { if (size == 0) return; // TODO: Atomics bqws_mutex_lock(&ws->alloc.mutex); bqws_assert(ws->alloc.memory_used >= size); ws->alloc.memory_used -= size; bqws_mutex_unlock(&ws->alloc.mutex); } static void *ws_alloc(bqws_socket *ws, size_t size) { if (!ws_add_memory_used(ws, size)) return NULL; void *ptr = bqws_allocator_alloc(&ws->allocator, size); if (!ptr) ws_fail(ws, BQWS_ERR_ALLOCATOR); return ptr; } static void *ws_realloc(bqws_socket *ws, void *ptr, size_t old_size, size_t new_size) { if (!ws_add_memory_used(ws, new_size)) return NULL; ws_remove_memory_used(ws, old_size); void *new_ptr = bqws_allocator_realloc(&ws->allocator, ptr, old_size, new_size); if (!new_ptr) ws_fail(ws, BQWS_ERR_ALLOCATOR); return new_ptr; } static void ws_free(bqws_socket *ws, void *ptr, size_t size) { ws_remove_memory_used(ws, size); bqws_allocator_free(&ws->allocator, ptr, size); } static char *ws_copy_str(bqws_socket *ws, const char *str) { size_t len = strlen(str) + 1; char *dst = (char*)ws_alloc(ws, len); if (!dst) return NULL; memcpy(dst, str, len); return dst; } static void ws_free_str(bqws_socket *ws, char *ptr) { if (!ptr) return; ws_free(ws, ptr, strlen(ptr) + 1); } // Message allocation static bqws_msg_imp *msg_alloc(bqws_socket *ws, bqws_msg_type type, size_t size) { size_t capacity = size; // Space for NULL-terminator if (type & BQWS_MSG_TEXT) capacity += 1; size_t alloc_size = sizeof(bqws_msg_imp) + capacity; bqws_msg_imp *msg = (bqws_msg_imp*)ws_alloc(ws, alloc_size); if (!msg) return NULL; msg->magic = BQWS_MSG_MAGIC; msg->owner = ws; msg->allocator = ws->allocator; msg->prev = NULL; msg->msg.socket = ws; msg->msg.type = type; msg->msg.size = size; msg->msg.capacity = capacity; if (type & BQWS_MSG_TEXT) { msg->msg.data[size] = '\0'; } return msg; } static void msg_release_ownership(bqws_socket *ws, bqws_msg_imp *msg) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(msg && msg->magic == BQWS_MSG_MAGIC); bqws_assert(msg->owner == ws); ws_remove_memory_used(ws, msg_alloc_size(&msg->msg)); msg->owner = NULL; } static bool msg_acquire_ownership(bqws_socket *ws, bqws_msg_imp *msg) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(msg && msg->magic == BQWS_MSG_MAGIC); bqws_assert(msg->owner == NULL); if (!ws_add_memory_used(ws, msg_alloc_size(&msg->msg))) { // We still own the message so need to delete it bqws_free_msg(&msg->msg); return false; } msg->owner = ws; return true; } static void msg_free_owned(bqws_socket *ws, bqws_msg_imp *msg) { if (!msg) return; bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(msg->magic == BQWS_MSG_MAGIC); bqws_assert(msg->owner == ws); msg->magic = BQWS_DELETED_MAGIC; msg->owner = NULL; size_t size = msg_alloc_size(&msg->msg); // no-mutex(state): We are only referring to the address of `error_msg_data` if ((char*)msg != ws->state.error_msg_data) { ws_remove_memory_used(ws, size); bqws_allocator at = msg->allocator; bqws_allocator_free(&at, msg, size); } } static void msg_enqueue(bqws_msg_queue *mq, bqws_msg_imp *msg) { bqws_mutex_lock(&mq->mutex); // Adjust the last message to point to `msg` and replace // it as the last in the queue bqws_assert(msg && msg->magic == BQWS_MSG_MAGIC && msg->prev == NULL); if (mq->last) { bqws_assert(mq->first); bqws_assert(mq->last->magic == BQWS_MSG_MAGIC && mq->last->prev == NULL); mq->last->prev = msg; } else { bqws_assert(!mq->first); mq->first = msg; } mq->last = msg; mq->byte_size += msg->msg.size; mq->num_messages++; mq->total_size += msg->msg.size; mq->total_messages++; bqws_mutex_unlock(&mq->mutex); } static bqws_msg_imp *msg_dequeue(bqws_msg_queue *mq) { bqws_mutex_lock(&mq->mutex); bqws_msg_imp *msg = mq->first; if (msg) { bqws_assert(mq->last); bqws_assert(msg->magic == BQWS_MSG_MAGIC); bqws_msg_imp *prev = msg->prev; msg->prev = NULL; mq->first = prev; if (prev) { bqws_assert(prev->magic == BQWS_MSG_MAGIC); } else { bqws_assert(mq->last == msg); mq->last = NULL; } bqws_assert(mq->byte_size >= msg->msg.size); bqws_assert(mq->num_messages > 0); mq->byte_size -= msg->msg.size; mq->num_messages--; } else { bqws_assert(!mq->last); } bqws_mutex_unlock(&mq->mutex); return msg; } static void msg_init_queue(bqws_socket *ws, bqws_msg_queue *mq) { bqws_mutex_init(&mq->mutex); } static void msg_free_queue(bqws_socket *ws, bqws_msg_queue *mq) { bqws_msg_imp *imp; while ((imp = msg_dequeue(mq)) != 0) { msg_free_owned(ws, imp); } bqws_mutex_free(&mq->mutex); } static void msg_queue_add_to_total(bqws_msg_queue *mq, size_t size) { bqws_mutex_lock(&mq->mutex); mq->total_messages++; mq->total_size += size; bqws_mutex_unlock(&mq->mutex); } static void msg_queue_get_stats(bqws_msg_queue *mq, bqws_io_stats *stats) { bqws_mutex_lock(&mq->mutex); stats->total_bytes = mq->total_size; stats->total_messages = mq->total_messages; stats->queued_bytes = mq->byte_size; stats->queued_messages = mq->num_messages; bqws_mutex_unlock(&mq->mutex); } // Masking static uint32_t mask_make_key(bqws_socket *ws) { bqws_assert_locked(&ws->io.mutex); // PCG Random step const uint64_t c = UINT64_C(6364136223846793005); uint64_t s = ws->io.mask_random_state * c + ws->io.mask_random_stream; uint32_t xs = (uint32_t)(((s >> 18u) ^ s) >> 27u), r = s >> 59u; ws->io.mask_random_state = s; uint32_t rng = (xs >> r) | (xs << (((uint32_t)-(int32_t)r) & 31)); return rng ^ (uint32_t)bqws_get_timestamp(); } static void mask_apply(void *data, size_t size, uint32_t mask) { size_t left = size; // Process SIMD width at a time char *data_simd = (char*)data; #if defined(BQWS_USE_SSE) { __m128i sse_mask = _mm_set1_epi32(mask); while (left >= 16) { __m128i w = _mm_loadu_si128((__m128i*)data_simd); w = _mm_xor_si128(w, sse_mask); _mm_storeu_si128((__m128i*)data_simd, w); data_simd += 16; left -= 16; } } #endif // Process word at a time uint32_t *dst32 = (uint32_t*)data_simd; while (left >= 4) { *dst32++ ^= mask; left -= 4; } // Mask rest if (left > 0) { bqws_assert(left < 4); uint8_t mask_bytes[4]; memcpy(mask_bytes, &mask, 4); uint8_t *dst8 = (uint8_t*)dst32; uint8_t *src = mask_bytes; while (left > 0) { *dst8++ ^= *src++; left--; } } } // -- Handshake static bqws_forceinline bool str_nonempty(const char *s) { return s && *s; } static void hs_push_size(bqws_socket *ws, const char *data, size_t size) { if (ws->err) return; bqws_assert_locked(&ws->io.mutex); if (size > ws->io.handshake.capacity - ws->io.handshake.size) { // Grow the buffer geometrically up to `max_handshake_size` size_t new_cap = ws->io.handshake.capacity * 2; if (new_cap == 0) new_cap = 512; if (new_cap > ws->limits.max_handshake_size) new_cap = ws->limits.max_handshake_size; if (new_cap == ws->io.handshake.capacity) { ws_fail(ws, BQWS_ERR_LIMIT_MAX_HANDSHAKE_SIZE); return; } char *new_data = (char*)ws_realloc(ws, ws->io.handshake.data, ws->io.handshake.capacity, new_cap); if (!new_data) return; ws->io.handshake.data = new_data; ws->io.handshake.capacity = new_cap; } memcpy(ws->io.handshake.data + ws->io.handshake.size, data, size); ws->io.handshake.size += size; } static void hs_push(bqws_socket *ws, const char *a) { hs_push_size(ws, a, strlen(a)); } static void hs_push2(bqws_socket *ws, const char *a, const char *b) { hs_push(ws, a); hs_push(ws, b); } static void hs_push3(bqws_socket *ws, const char *a, const char *b, const char *c) { hs_push(ws, a); hs_push(ws, b); hs_push(ws, c); } static const char *base64_tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static bool hs_to_base64(void *buf, size_t buf_size, const void *data, size_t size) { bqws_assert(size == 0 || data); const uint8_t *b = (const uint8_t*)data; char *dst = (char*)buf, *end = dst + buf_size; ptrdiff_t left = (ptrdiff_t)size; while (left > 0) { if (end - dst < 5) return false; uint32_t a = (uint32_t)b[0] << 16u | (left >= 2 ? (uint32_t)b[1] : 0u) << 8u | (left >= 3 ? (uint32_t)b[2] : 0u); dst[0] = base64_tab[a >> 18]; dst[1] = base64_tab[(a >> 12) & 0x3f]; dst[2] = left >= 2 ? base64_tab[(a >> 6) & 0x3f] : '='; dst[3] = left >= 3 ? base64_tab[a & 0x3f] : '='; dst += 4; b += 3; left -= 3; } *dst = '\0'; return true; } static const char *key_guid = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"; static void hs_solve_challenge(char dst[32], const char *key_base64) { char challenge[128]; size_t base64_len = strlen(key_base64); size_t guid_len = strlen(key_guid); size_t challenge_len = base64_len + guid_len; bqws_assert(challenge_len <= sizeof(challenge)); memcpy(challenge, key_base64, base64_len); memcpy(challenge + base64_len, key_guid, guid_len); uint8_t digest[20]; bqws_sha1(digest, challenge, challenge_len); bool ret = hs_to_base64(dst, 32, digest, sizeof(digest)); bqws_assert(ret == true); // 32 bytes should always be enough } static void hs_client_handshake(bqws_socket *ws, const bqws_client_opts *opts) { bqws_assert_locked(&ws->io.mutex); bqws_assert(!ws->is_server); const char *path = str_nonempty(opts->path) ? opts->path : "/"; hs_push3(ws, "GET ", path, " HTTP/1.1\r\n"); // Static headers hs_push(ws, "Connection: Upgrade\r\n" "Upgrade: websocket\r\n" ); // User headers if (str_nonempty(opts->host)) hs_push3(ws, "Host: ", opts->host, "\r\n"); if (str_nonempty(opts->origin)) hs_push3(ws, "Origin: ", opts->origin, "\r\n"); if (opts->num_protocols > 0) { hs_push(ws, "Sec-WebSocket-Protocol: "); for (size_t i = 0; i < opts->num_protocols; i++) { hs_push2(ws, i > 0 ? ", " : "", opts->protocols[i]); } hs_push(ws, "\r\n"); } // Version (fixed currently, TODO multi-version support) hs_push(ws, "Sec-WebSocket-Version: 13\r\n"); // Random key bqws_random_entropy entropy; entropy.clock = clock(); entropy.time = time(NULL); entropy.function_pointer = &hs_client_handshake; entropy.stack_pointer = &entropy; entropy.heap_pointer = ws; entropy.mask_key = mask_make_key(ws); uint8_t digest[20]; bqws_sha1(digest, &entropy, sizeof(entropy)); const uint8_t *key = digest; if (opts->use_random_key) { key = (const uint8_t*)opts->random_key; } // We need to retain the key until we have parsed the server handshake bool ret = hs_to_base64(ws->io.client_key_base64, sizeof(ws->io.client_key_base64), key, 16); bqws_assert(ret == true); // 32 bytes should always be enough hs_push3(ws, "Sec-WebSocket-Key: ", ws->io.client_key_base64, "\r\n"); // Final CRLF hs_push(ws, "\r\n"); } static void hs_server_handshake(bqws_socket *ws) { bqws_assert_locked(&ws->io.mutex); bqws_assert(ws->is_server); bqws_assert(ws->io.opts_from_client); // Fixed header hs_push(ws, "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" ); // Protocol bqws_mutex_lock(&ws->state.mutex); const char *protocol = ws->state.chosen_protocol; bqws_mutex_unlock(&ws->state.mutex); bqws_assert(protocol); if (*protocol && ws->io.client_has_protocol) { hs_push3(ws, "Sec-WebSocket-Protocol: ", protocol, "\r\n"); } // SHA-1 challenge char accept[32]; hs_solve_challenge(accept, ws->io.client_key_base64); hs_push3(ws, "Sec-WebSocket-Accept: ", accept, "\r\n"); // Final CRLF hs_push(ws, "\r\n"); // Free the handshake state ws_free(ws, ws->io.opts_from_client, sizeof(bqws_client_opts)); ws->io.opts_from_client = NULL; } // -- Handshake parsing static bool hs_parse_literal(bqws_socket *ws, size_t *pos, const char *str) { bqws_assert_locked(&ws->io.mutex); size_t len = strlen(str); if (ws->io.handshake.size - *pos < len) return false; const char *ref = ws->io.handshake.data + *pos; if (memcmp(ref, str, len) != 0) return false; *pos += len; return true; } static char *hs_parse_token(bqws_socket *ws, size_t *pos, char end) { bqws_assert_locked(&ws->io.mutex); size_t begin = *pos, p = begin; while (p != ws->io.handshake.size) { char c = ws->io.handshake.data[p]; if (c == end) { ws->io.handshake.data[p] = '\0'; *pos = p + 1; return ws->io.handshake.data + begin; } if (c == '\r' || c == '\n') return NULL; p++; } return NULL; } static void hs_skip_space(bqws_socket *ws, size_t *pos) { bqws_assert_locked(&ws->io.mutex); while (*pos < ws->io.handshake.size) { char c = ws->io.handshake.data[*pos]; if (c != ' ' && c != '\t') break; ++*pos; } } // Case-insensitive (ASCII) string compare static bool streq_ic(const char *sa, const char *sb) { for (;;) { char a = *sa++, b = *sb++; if ((unsigned)(unsigned char)a < 0x80u) a = (char)tolower(a); if ((unsigned)(unsigned char)b < 0x80u) b = (char)tolower(b); if (a != b) return false; if (a == 0) return true; } } static bool hs_parse_client_handshake(bqws_socket *ws) { bqws_assert_locked(&ws->io.mutex); bqws_assert(ws->is_server); bqws_assert(!ws->io.opts_from_client); size_t pos = 0; bqws_client_opts *opts = (bqws_client_opts*)ws_alloc(ws, sizeof(bqws_client_opts)); if (!opts) return false; memset(opts, 0, sizeof(bqws_client_opts)); ws->io.opts_from_client = opts; // GET /path HTTP/1.1 if (!hs_parse_literal(ws, &pos, "GET")) return false; hs_skip_space(ws, &pos); opts->path = hs_parse_token(ws, &pos, ' '); if (!opts->path) return false; hs_skip_space(ws, &pos); if (!hs_parse_literal(ws, &pos, "HTTP/1.1\r\n")) return false; // Headers while (!hs_parse_literal(ws, &pos, "\r\n")) { if (opts->num_headers >= BQWS_MAX_HEADERS) { ws_fail(ws, BQWS_ERR_TOO_MANY_HEADERS); return false; } bqws_header *header = &opts->headers[opts->num_headers]; header->name = hs_parse_token(ws, &pos, ':'); hs_skip_space(ws, &pos); size_t value_pos = pos; header->value = hs_parse_token(ws, &pos, '\r'); if (!header->name || !header->value) return false; if (!hs_parse_literal(ws, &pos, "\n")) return false; if (streq_ic(header->name, "Host")) { opts->host = header->value; opts->num_headers++; } else if (streq_ic(header->name, "Origin")) { opts->origin = header->value; opts->num_headers++; } else if (streq_ic(header->name, "Sec-Websocket-Protocol")) { size_t cur_pos = pos; ws->io.client_has_protocol = true; // Parse protocols pos = value_pos; while (pos < cur_pos) { // Either token ',' or final token that is zero-terminated // already since it's the last thing in `header->value`. char *protocol = hs_parse_token(ws, &pos, ','); hs_skip_space(ws, &pos); if (!protocol) { protocol = ws->io.handshake.data + pos; pos = cur_pos; } if (opts->num_protocols >= BQWS_MAX_PROTOCOLS) { ws_fail(ws, BQWS_ERR_TOO_MANY_PROTOCOLS); return false; } opts->protocols[opts->num_protocols++] = protocol; } pos = cur_pos; } else if (streq_ic(header->name, "Sec-Websocket-Key")) { size_t len = strlen(header->value) + 1; if (len > sizeof(ws->io.client_key_base64)) { ws_fail(ws, BQWS_ERR_HEADER_KEY_TOO_LONG); return false; } memcpy(ws->io.client_key_base64, header->value, len); } else if (streq_ic(header->name, "Sec-Websocket-Version")) { // TODO: Version negotiatoin if (strcmp(header->value, "13") != 0) { ws_fail(ws, BQWS_ERR_UNSUPPORTED_VERSION); return false; } } else { opts->num_headers++; } } // Store the end of the parsed header in case we read past the // header in the beginning. ws->io.handshake.read_offset = pos; if (!opts->host) opts->host = ""; if (!opts->origin) opts->origin = ""; return true; } static bool hs_parse_server_handshake(bqws_socket *ws) { bqws_assert_locked(&ws->io.mutex); bqws_assert(!ws->is_server); size_t pos = 0; // HTTP/1.1 101 Switching Protocols if (!hs_parse_literal(ws, &pos, "HTTP/1.1 101")) return false; hs_parse_token(ws, &pos, '\r'); // Skip description if (!hs_parse_literal(ws, &pos, "\n")) return false; // Headers while (!hs_parse_literal(ws, &pos, "\r\n")) { // TODO: Keep headers? bqws_header header; header.name = hs_parse_token(ws, &pos, ':'); hs_skip_space(ws, &pos); header.value = hs_parse_token(ws, &pos, '\r'); if (!header.name || !header.value) return false; if (!hs_parse_literal(ws, &pos, "\n")) return false; if (streq_ic(header.name, "Sec-Websocket-Accept")) { // Check the SHA of the challenge char reference[32]; hs_solve_challenge(reference, ws->io.client_key_base64); if (strcmp(header.value, reference) != 0) { ws_fail(ws, BQWS_ERR_HEADER_BAD_ACCEPT); return false; } } else if (streq_ic(header.name, "Sec-Websocket-Protocol")) { // Protocol that the server chose // Keep the first one if there's duplicates bqws_mutex_lock(&ws->state.mutex); if (!ws->state.chosen_protocol) { char *copy = ws_copy_str(ws, header.value); if (!ws->state.chosen_protocol) { ws->state.chosen_protocol = copy; } else { ws_free_str(ws, copy); } } bqws_mutex_unlock(&ws->state.mutex); } } // Store the end of the parsed header in case we read past the // header in the beginning. ws->io.handshake.read_offset = pos; // If the server didn't choose any protocol set it as "" bqws_mutex_lock(&ws->state.mutex); if (!ws->state.chosen_protocol) { char *copy = ws_copy_str(ws, ""); if (!ws->state.chosen_protocol) { ws->state.chosen_protocol = copy; } else { ws_free_str(ws, copy); } } bqws_mutex_unlock(&ws->state.mutex); return true; } static void hs_finish_handshake(bqws_socket *ws) { bqws_assert_locked(&ws->io.mutex); if (ws->err) return; ws_log(ws, "State: OPEN"); bqws_mutex_lock(&ws->state.mutex); ws->state.state = BQWS_STATE_OPEN; bqws_mutex_unlock(&ws->state.mutex); // Free the handshake buffer ws_free(ws, ws->io.handshake.data, ws->io.handshake.capacity); ws->io.handshake.data = NULL; ws->io.handshake.size = 0; ws->io.handshake.capacity = 0; // Notify IO that the connection is open if (ws->user_io.notify_fn) { ws->user_io.notify_fn(ws->user_io.user, ws); } } static void hs_store_handshake_overflow(bqws_socket *ws) { bqws_assert_locked(&ws->io.mutex); size_t offset = ws->io.handshake.read_offset; size_t left = ws->io.handshake.size - offset; if (left == 0) return; ws->io.handshake_overflow.data = (char*)ws_alloc(ws, left); if (!ws->io.handshake_overflow.data) return; memcpy(ws->io.handshake_overflow.data, ws->io.handshake.data + offset, left); ws->io.handshake_overflow.capacity = left; ws->io.handshake_overflow.size = left; } // Control messages static void ws_enqueue_send(bqws_socket *ws, bqws_msg_imp *msg) { msg_enqueue(&ws->send_queue, msg); if (ws->user_io.notify_fn) { ws->user_io.notify_fn(ws->user_io.user, ws); } } static void ws_enqueue_recv(bqws_socket *ws, bqws_msg_imp *msg) { // If the user callback returns true the message won't be // enqueued to the receive queue. if (ws->message_fn) { msg_release_ownership(ws, msg); if (ws->message_fn(ws->message_user, ws, &msg->msg)) { // Message was consumed and won't be processed so add // it to the total count msg_queue_add_to_total(&ws->recv_queue, msg->msg.size); } if (!msg_acquire_ownership(ws, msg)) return; } msg_enqueue(&ws->recv_queue, msg); } static void ws_handle_control(bqws_socket *ws, bqws_msg_imp *msg) { bqws_msg_type type = msg->msg.type; bqws_msg_imp *msg_to_enqueue = msg; if (type == BQWS_MSG_CONTROL_CLOSE) { bqws_mutex_lock(&ws->state.mutex); // Set peer close reason from the message if (msg->msg.size >= 2) { ws->state.peer_reason = (bqws_close_reason)( ((uint32_t)(uint8_t)msg->msg.data[0] << 8) | ((uint32_t)(uint8_t)msg->msg.data[1] << 0) ); } else { ws->state.peer_reason = BQWS_CLOSE_NO_REASON; } // Set unknown error if the connection was closed with an error if (ws->state.peer_reason != BQWS_CLOSE_NORMAL && ws->state.peer_reason != BQWS_CLOSE_GOING_AWAY) { ws->state.peer_err = BQWS_ERR_UNKNOWN; } // Potentially patch bqws-specific info if (msg->msg.size == sizeof(bqws_err_close_data)) { bqws_err_close_data *data = (bqws_err_close_data*)msg->msg.data; if (!memcmp(data->magic, "BQWS", 4)) { ws->state.peer_err = (bqws_error)( ((uint32_t)(uint8_t)data->error_be[0] << 24) | ((uint32_t)(uint8_t)data->error_be[1] << 16) | ((uint32_t)(uint8_t)data->error_be[2] << 8) | ((uint32_t)(uint8_t)data->error_be[3] << 0) ); } } // Echo the close message back if (!ws->state.close_to_send) { ws->state.close_to_send = msg; // Don't free the message as it will be re-sent msg = NULL; } // Peer has closed connection so we go directly to CLOSED if (ws->state.state == BQWS_STATE_OPEN) { ws_log(ws, "State: CLOSING (received Close from peer)"); ws->state.start_closing_ts = bqws_get_timestamp(); ws->state.state = BQWS_STATE_CLOSING; } ws->state.stop_read = true; ws->state.close_received = true; if (ws->state.close_sent) { ws_close(ws); } bqws_mutex_unlock(&ws->state.mutex); } else if (type == BQWS_MSG_CONTROL_PING) { if (ws->recv_control_messages) { // We want to re-use the PING message to send it back // so we need to copy it for receiving bqws_msg_imp *copy = msg_alloc(ws, type, msg->msg.size); if (!copy) return; memcpy(copy->msg.data, msg->msg.data, msg->msg.size); msg_to_enqueue = copy; } // Turn the PING message into a PONG msg->msg.type = BQWS_MSG_CONTROL_PONG; bqws_mutex_lock(&ws->state.mutex); // Only retain the latest PONG to send back if (ws->state.pong_to_send) { msg_free_owned(ws, ws->state.pong_to_send); } ws->state.pong_to_send = msg; bqws_mutex_unlock(&ws->state.mutex); // Don't free the message as it will be re-sent msg = NULL; } else if (type == BQWS_MSG_CONTROL_PONG) { // PONG messages don't require any kind of handling } else { bqws_assert(0 && "Unexpected control message"); } // Receive control messages if (ws->recv_control_messages) { ws_enqueue_recv(ws, msg_to_enqueue); } else if (msg) { msg_free_owned(ws, msg); } } // Input / output // Read data into a buffer, returns amount of bytes used read. // Returns 0 and sets `ws->err` if parsing fails. static size_t ws_recv_from_handshake_overflow(void *user, bqws_socket *ws, void *data, size_t max_size, size_t min_size) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert_locked(&ws->io.mutex); size_t offset = ws->io.handshake_overflow.read_offset; size_t left = ws->io.handshake_overflow.size - offset; size_t to_copy = max_size; if (to_copy > left) to_copy = left; memcpy(data, ws->io.handshake_overflow.data + offset, to_copy); ws->io.handshake_overflow.read_offset += to_copy; return to_copy; } static bool ws_read_handshake(bqws_socket *ws, bqws_io_recv_fn recv_fn, void *user) { bqws_assert_locked(&ws->io.mutex); for (;;) { if (ws->io.handshake.size == ws->io.handshake.capacity) { // Grow the buffer geometrically up to `max_handshake_size` size_t new_cap = ws->io.handshake.capacity * 2; if (new_cap == 0) new_cap = 512; if (new_cap > ws->limits.max_handshake_size) new_cap = ws->limits.max_handshake_size; if (new_cap == ws->io.handshake.capacity) { ws_fail(ws, BQWS_ERR_LIMIT_MAX_HANDSHAKE_SIZE); return false; } char *data = (char*)ws_realloc(ws, ws->io.handshake.data, ws->io.handshake.capacity, new_cap); if (!data) return false; ws->io.handshake.data = data; ws->io.handshake.capacity = new_cap; } // TODO: min_size can be up to 4 depending on the suffix of the buffer // Read some data size_t to_read = ws->io.handshake.capacity - ws->io.handshake.size; size_t num_read = recv_fn(user, ws, ws->io.handshake.data + ws->io.handshake.size, to_read, 1); if (num_read == 0) return false; if (num_read == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_READ); return false; } bqws_assert(num_read <= to_read); ws->io.handshake.size += num_read; // Scan for \r\n\r\n ptrdiff_t begin = (ptrdiff_t)ws->io.handshake.size - num_read - 4; if (begin < 0) begin = 0; char *ptr = ws->io.handshake.data + begin; char *end = ws->io.handshake.data + ws->io.handshake.size; while ((ptr = (char*)memchr(ptr, '\r', end - ptr)) != NULL) { if (end - ptr >= 4 && !memcmp(ptr, "\r\n\r\n", 4)) { return true; } else { ptr++; } } if (num_read != to_read) break; } return false; } static bool ws_read_data(bqws_socket *ws, bqws_io_recv_fn recv_fn, void *user) { bqws_assert_locked(&ws->io.mutex); bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_msg_buffer *buf = &ws->io.recv_buf; bqws_state state; bqws_mutex_lock(&ws->state.mutex); if (ws->state.stop_read) { bqws_mutex_unlock(&ws->state.mutex); return false; } state = ws->state.state; bqws_mutex_unlock(&ws->state.mutex); if (state == BQWS_STATE_CONNECTING) { if (ws->is_server) { // Server: read the client handshake first, after it's done wait for // `ws_write_data()` to set `ws->state == BQWS_STATE_OPEN` if (!ws->io.client_handshake_done) { // Read the client handshake if (ws_read_handshake(ws, recv_fn, user)) { if (!hs_parse_client_handshake(ws)) { ws_fail(ws, BQWS_ERR_HEADER_PARSE); return false; } ws->io.client_handshake_done = true; // Re-use the handshake buffer for the response, but copy // remaining data to be read later hs_store_handshake_overflow(ws); ws->io.handshake.size = 0; // Notify IO that there is a handshake to send if (ws->user_io.notify_fn) { ws->user_io.notify_fn(ws->user_io.user, ws); } } } // Wait that the response is sent return false; } else { // Client: Send the request first before trying to read the response if (!ws->io.client_handshake_done) return false; if (!ws_read_handshake(ws, recv_fn, user)) return false; if (!hs_parse_server_handshake(ws)) { ws_fail(ws, BQWS_ERR_HEADER_PARSE); return false; } // Store remaining data before deleting the handshake hs_store_handshake_overflow(ws); // Client handshake is done! hs_finish_handshake(ws); } } // If there's still data in the handshake buffer empty it before // reading any new data if (ws->io.handshake_overflow.data && recv_fn != &ws_recv_from_handshake_overflow) { // Read from the handshake until we reach the end while (!ws->err && ws->io.handshake_overflow.read_offset < ws->io.handshake_overflow.size) { if (!ws_read_data(ws, &ws_recv_from_handshake_overflow, NULL)) { return false; } } if (ws->err) return false; // Free the handshake ws_free(ws, ws->io.handshake_overflow.data, ws->io.handshake_overflow.capacity); ws->io.handshake_overflow.data = NULL; ws->io.handshake_overflow.size = 0; ws->io.handshake_overflow.capacity = 0; // Continue with reading from the actual data source } // Header has not been parsed yet if (!buf->msg) { // Check if we can fit a new message to the receive queue if (ws->recv_queue.num_messages >= ws->limits.max_recv_queue_messages || ws->recv_queue.byte_size >= ws->limits.max_recv_queue_size) { return false; } // We need to read at least two bytes to determine // the header size if (buf->header_size == 0) { if (buf->header_offset < 2) { size_t to_read = sizeof(ws->io.recv_header) - buf->header_offset; size_t min_read = 2 - buf->header_offset; size_t num_read = recv_fn(user, ws, ws->io.recv_header + buf->header_offset, to_read, min_read); if (num_read == 0) return false; if (num_read == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_READ); return false; } bqws_assert(num_read <= to_read); buf->header_offset += num_read; if (ws->ping_interval != SIZE_MAX) { ws->io.last_read_ts = bqws_get_timestamp(); } } if (buf->header_offset < 2) return false; uint8_t mask_len = ws->io.recv_header[1]; uint32_t len = mask_len & 0x7f; // Minimum header size size_t header_size = 2; // MASK bit set: contains 32-bit mask field if (mask_len & 0x80) header_size += 4; // 16/64-bit message length if (len == 126) header_size += 2; else if (len == 127) header_size += 8; buf->header_size = header_size; bqws_assert(buf->header_size <= sizeof(ws->io.recv_header)); } // Read more header data if we need it if (buf->header_offset < buf->header_size) { size_t to_read = sizeof(ws->io.recv_header) - buf->header_offset; size_t min_read = buf->header_size - buf->header_offset; size_t num_read = recv_fn(user, ws, ws->io.recv_header + buf->header_offset, to_read, min_read); if (num_read == 0) return false; if (num_read == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_READ); return false; } bqws_assert(num_read <= to_read); buf->header_offset += num_read; if (ws->ping_interval != SIZE_MAX) { ws->io.last_read_ts = bqws_get_timestamp(); } return false; } if (buf->header_offset < buf->header_size) return false; // Parse the header and allocate the message const uint8_t *h = (const uint8_t*)ws->io.recv_header; // Static header bits bool fin = (h[0] & 0x80) != 0; if (h[0] & 0x70) { // Reserved bits RSV1-3 ws_fail(ws, BQWS_ERR_RESERVED_BIT); return false; } uint32_t opcode = (uint32_t)(h[0] & 0x0f); uint32_t mask = (uint32_t)(h[1] & 0x80) != 0; uint64_t payload_length = (uint64_t)(h[1] & 0x7f); h += 2; // Extended length: Read 2 or 8 bytes of big // endian payload length. size_t payload_ext = 0; if (payload_length == 126) { payload_ext = 2; payload_length = 0; } else if (payload_length == 127) { payload_ext = 8; payload_length = 0; } for (size_t i = 0; i < payload_ext; i++) { size_t shift = (payload_ext - i - 1) * 8; payload_length |= (uint64_t)h[i] << shift; } h += payload_ext; // Check the payload length and cast to `size_t` if (payload_length > (uint64_t)ws->limits.max_recv_msg_size) { ws_fail(ws, BQWS_ERR_LIMIT_MAX_RECV_MSG_SIZE); return false; } size_t msg_size = (size_t)payload_length; // Masking key buf->masked = mask; if (mask) { memcpy(&buf->mask_key, h, 4); h += 4; } bqws_assert((size_t)((const char*)h - ws->io.recv_header) == buf->header_size); bqws_msg_type type = BQWS_MSG_INVALID; // Resolve the type of the message if (opcode == 0x0) { // Continuation frame if (buf->partial_type == BQWS_MSG_INVALID) { // Continuation frame without a prior partial frame ws_fail(ws, BQWS_ERR_BAD_CONTINUATION); return false; } type = (bqws_msg_type)(buf->partial_type | BQWS_MSG_PARTIAL_BIT); if (fin) { type = (bqws_msg_type)(type | BQWS_MSG_FINAL_BIT); buf->partial_type = BQWS_MSG_INVALID; } } else if (opcode == 0x1 || opcode == 0x2) { // Text or Binary type = opcode == 0x1 ? BQWS_MSG_TEXT : BQWS_MSG_BINARY; if (!fin) { if (buf->partial_type != BQWS_MSG_INVALID) { // New partial message even though one is already // being sent ws_fail(ws, BQWS_ERR_UNFINISHED_PARTIAL); return false; } buf->partial_type = type; type = (bqws_msg_type)(type | BQWS_MSG_PARTIAL_BIT); } } else if (opcode >= 0x8 && opcode <= 0xa) { // Control frames if (opcode == 0x8) type = BQWS_MSG_CONTROL_CLOSE; else if (opcode == 0x9) type = BQWS_MSG_CONTROL_PING; else if (opcode == 0xa) type = BQWS_MSG_CONTROL_PONG; if (!fin) { // Control frames may not be fragmented ws_fail(ws, BQWS_ERR_PARTIAL_CONTROL); return false; } } else { // Unsupported opcode ws_fail(ws, BQWS_ERR_BAD_OPCODE); return false; } bqws_assert(type != BQWS_MSG_INVALID); // All good, allocate the message bqws_msg_imp *imp = msg_alloc(ws, type, msg_size); if (!imp) return false; buf->msg = imp; buf->offset = 0; // Copy rest of the header bytes to the message size_t offset = buf->header_size; size_t left = buf->header_offset - offset; if (left > 0) { size_t to_copy = left; if (to_copy > imp->msg.size) to_copy = imp->msg.size; memcpy(imp->msg.data, ws->io.recv_header + offset, to_copy); buf->offset += to_copy; offset += to_copy; left -= to_copy; } // If there's still some data shift it as the next header if (left > 0) { memmove(ws->io.recv_header, ws->io.recv_header + offset, left); } buf->header_offset = left; } bqws_msg_imp *msg = buf->msg; // Read message data if the message is not empty bqws_assert(buf->offset <= msg->msg.size); if (msg->msg.size > 0 && buf->offset < msg->msg.size) { size_t to_read = msg->msg.size - buf->offset; size_t num_read = recv_fn(user, ws, msg->msg.data + buf->offset, to_read, to_read); if (num_read == 0) return false; if (num_read == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_READ); return false; } bqws_assert(num_read <= to_read); if (ws->ping_interval != SIZE_MAX) { ws->io.last_read_ts = bqws_get_timestamp(); } buf->offset += num_read; if (num_read < to_read) return false; } if (buf->masked) { mask_apply(msg->msg.data, msg->msg.size, buf->mask_key); } bqws_assert(buf->offset == msg->msg.size); // Peek at all incoming messages before processing if (ws->peek_fn) { ws->peek_fn(ws->peek_user, ws, &msg->msg, true); } // If we copied the last bytes of the message we can push it // to the queue and clear the buffer. bqws_msg_type type = msg->msg.type; if (ws->log_recv) { ws_log2(ws, "Received: ", bqws_msg_type_str(buf->msg->msg.type)); } if ((type & BQWS_MSG_PARTIAL_BIT) != 0 && !ws->recv_partial_messages) { // Only allow partial messages that combine up to the maximum message size bqws_assert(msg->msg.size <= ws->limits.max_recv_msg_size); if (ws->io.recv_partial_size >= ws->limits.max_recv_msg_size - msg->msg.size) { ws_fail(ws, BQWS_ERR_LIMIT_MAX_RECV_MSG_SIZE); return false; } ws->io.recv_partial_size += msg->msg.size; // If we dont expose partial messages collect them to `recv_partial_queue`. if (type & BQWS_MSG_FINAL_BIT) { // If this is the final message concatenate all the partial messages // in the queue and enqueue the final one> bqws_msg_type base_type = (bqws_msg_type)(msg->msg.type & BQWS_MSG_TYPE_MASK); bqws_msg_imp *combined = msg_alloc(ws, base_type, ws->io.recv_partial_size); if (!combined) return false; size_t offset = 0; // `recv_queue` with this message as the last part. bqws_msg_imp *part; while ((part = msg_dequeue(&ws->recv_partial_queue)) != NULL) { bqws_assert(part->magic == BQWS_MSG_MAGIC); bqws_assert((part->msg.type & BQWS_MSG_TYPE_MASK) == base_type); memcpy(combined->msg.data + offset, part->msg.data, part->msg.size); offset += part->msg.size; // Delete the part msg_free_owned(ws, part); } // Final part memcpy(combined->msg.data + offset, msg->msg.data, msg->msg.size); offset += msg->msg.size; msg_free_owned(ws, msg); bqws_assert(offset == combined->msg.size); ws_enqueue_recv(ws, combined); // Clear the partial total size ws->io.recv_partial_size = 0; } else { if (ws->recv_partial_queue.num_messages >= ws->limits.max_partial_message_parts) { ws_fail(ws, BQWS_ERR_LIMIT_MAX_PARTIAL_MESSAGE_PARTS); return false; } msg_enqueue(&ws->recv_partial_queue, msg); } } else { if (type & BQWS_MSG_CONTROL_MASK) { // Control message, handle it. `ws_handle_control()` enqueues the // message to `recv_queue` internally if required. ws_handle_control(ws, msg); } else { // Non-partial data message ws_enqueue_recv(ws, msg); } } buf->offset = 0; buf->header_size = 0; buf->msg = NULL; return true; } static bool ws_write_handshake(bqws_socket *ws, bqws_io_send_fn *send_fn, void *user) { bqws_assert_locked(&ws->io.mutex); size_t to_send = ws->io.handshake.size - ws->io.handshake.write_offset; size_t sent = send_fn(user, ws, ws->io.handshake.data + ws->io.handshake.write_offset, to_send); if (sent == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_WRITE); return false; } bqws_assert(sent <= to_send); ws->io.handshake.write_offset += sent; return sent == to_send; } static bool ws_write_data(bqws_socket *ws, bqws_io_send_fn *send_fn, void *user) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert_locked(&ws->io.mutex); bqws_msg_buffer *buf = &ws->io.send_buf; bqws_state state; char *protocol; bqws_mutex_lock(&ws->state.mutex); if (ws->state.stop_write) { bqws_mutex_unlock(&ws->state.mutex); return false; } state = ws->state.state; protocol = ws->state.chosen_protocol; bqws_mutex_unlock(&ws->state.mutex); if (state == BQWS_STATE_CONNECTING) { if (ws->is_server) { // Server: read the client handshake first if (!ws->io.client_handshake_done) return false; // Wait for the user to accept/reject the connection if (!protocol) return false; // Write the server handshake on demand if (ws->io.handshake.size == 0) { hs_server_handshake(ws); if (ws->err) return false; } // Write the server handshake if (!ws_write_handshake(ws, send_fn, user)) return false; // Server handshake is done! hs_finish_handshake(ws); } else { // Client: Send the request and always wait for response if (!ws->io.client_handshake_done) { if (!ws_write_handshake(ws, send_fn, user)) return false; // Re-use the handshake buffer for the response, ws->io.handshake.size = 0; ws->io.client_handshake_done = true; } return false; } } if (!buf->msg) { // No message: Send high priority messages first. bqws_mutex_lock(&ws->state.mutex); if (ws->state.close_to_send && !ws->state.close_sent) { // First priority: Send close message buf->msg = ws->state.close_to_send; ws->state.close_to_send = NULL; bqws_assert(buf->msg->msg.type == BQWS_MSG_CONTROL_CLOSE); } else if (ws->state.state != BQWS_STATE_OPEN) { // Stop sending anything if the state is not open } else if (ws->state.pong_to_send) { // Try to respond to PING messages fast buf->msg = ws->state.pong_to_send; ws->state.pong_to_send = NULL; bqws_assert(buf->msg->msg.type == BQWS_MSG_CONTROL_PONG); } else { // Send user message if there is one buf->msg = msg_dequeue(&ws->send_queue); } bqws_mutex_unlock(&ws->state.mutex); // Did not find any message if (!buf->msg) return false; bqws_assert(buf->msg && buf->msg->magic == BQWS_MSG_MAGIC); } bqws_msg_imp *msg = buf->msg; bqws_assert(msg && msg->magic == BQWS_MSG_MAGIC); // Re-assign the public socket to be this one for the callback msg->msg.socket = ws; // Peek at all outgoing messages before processing if (ws->peek_fn) { ws->peek_fn(ws->peek_user, ws, &msg->msg, false); } if (ws->send_message_fn) { msg_release_ownership(ws, msg); if (ws->send_message_fn(ws->send_message_user, ws, &msg->msg)) { if (ws->log_send) { ws_log2(ws, "Direct send: ", bqws_msg_type_str(msg->msg.type)); } buf->msg = NULL; return true; } else { msg_acquire_ownership(ws, msg); return false; } } if (ws->ping_interval != SIZE_MAX) { ws->io.last_write_ts = bqws_get_timestamp(); } if (buf->header_size == 0) { bqws_msg_type type = msg->msg.type; bool mask = ws->is_server ? ws->mask_server : !ws->unsafe_dont_mask_client; bool fin = true; uint32_t opcode = ~0u; if (type & BQWS_MSG_TYPE_MASK) { bqws_msg_type base_type = (bqws_msg_type)(type & BQWS_MSG_TYPE_MASK); opcode = base_type == BQWS_MSG_TEXT ? 0x1 : 0x2; if (type & BQWS_MSG_PARTIAL_BIT) { if (buf->partial_type != BQWS_MSG_INVALID) { // Partial continuation bqws_assert(buf->partial_type == base_type); opcode = 0x0; } if (type & BQWS_MSG_FINAL_BIT) { // This can be either the end of a partial message // or just a single-part partial message. buf->partial_type = BQWS_MSG_INVALID; } else { // Partial begin or continuation buf->partial_type = base_type; fin = false; } } } else if (type & BQWS_MSG_CONTROL_MASK) { // Control message if (type == BQWS_MSG_CONTROL_CLOSE) opcode = 0x8; else if (type == BQWS_MSG_CONTROL_PING) opcode = 0x9; else if (type == BQWS_MSG_CONTROL_PONG) opcode = 0xa; } else { bqws_assert(0 && "Trying to send non-data non-control message"); } bqws_assert(opcode != ~0u); // Use the smallest payload length representation size_t payload_ext = 0; size_t payload_len = msg->msg.size; if (payload_len > 65535u) { payload_len = 127; payload_ext = 8; } else if (payload_len > 125) { payload_len = 126; payload_ext = 2; } uint8_t *h = (uint8_t*)ws->io.send_header; // Static header bits h[0] = (fin ? 0x80 : 0x0) | (uint8_t)opcode; h[1] = (mask ? 0x80 : 0x0) | (uint8_t)payload_len; h += 2; // Extended length: Read 2 or 8 bytes of big // endian payload length. for (size_t i = 0; i < payload_ext; i++) { size_t shift = (payload_ext - i - 1) * 8; h[i] = (uint8_t)((uint64_t)msg->msg.size >> shift); } h += payload_ext; // Masking key buf->masked = mask; if (mask) { uint32_t mask_key = mask_make_key(ws); buf->mask_key = mask_key; memcpy(h, &buf->mask_key, 4); h += 4; // Apply the mask mask_apply(msg->msg.data, msg->msg.size, mask_key); } buf->header_size = (char*)h - ws->io.send_header; bqws_assert(buf->header_size <= sizeof(ws->io.send_header)); } // Send the header if (buf->header_offset < buf->header_size) { size_t to_send = buf->header_size - buf->header_offset; size_t sent = send_fn(user, ws, ws->io.send_header + buf->header_offset, to_send); if (sent == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_WRITE); return false; } bqws_assert(sent <= to_send); buf->header_offset += sent; if (sent < to_send) return false; } // Send the message { size_t to_send = msg->msg.size - buf->offset; size_t sent = send_fn(user, ws, msg->msg.data + buf->offset, to_send); if (sent == SIZE_MAX) { ws_fail(ws, BQWS_ERR_IO_WRITE); return false; } bqws_assert(sent <= to_send); buf->offset += sent; if (sent < to_send) return false; } if (ws->log_send) { ws_log2(ws, "Sent: ", bqws_msg_type_str(buf->msg->msg.type)); } // Mark close as been sent if (msg->msg.type == BQWS_MSG_CONTROL_CLOSE) { bqws_mutex_lock(&ws->state.mutex); if (ws->state.state == BQWS_STATE_OPEN) { ws_log(ws, "State: CLOSING (queued user close)"); ws->state.state = BQWS_STATE_CLOSING; ws->state.start_closing_ts = bqws_get_timestamp(); } ws->state.close_sent = true; if (ws->state.close_received) { ws_close(ws); } bqws_mutex_unlock(&ws->state.mutex); } // Delete the message msg_free_owned(ws, msg); // Sent everything, clear status buf->offset = 0; buf->header_offset = 0; buf->header_size = 0; buf->msg = NULL; return true; } // WebSocket initialization static char *verify_filter_str(bqws_verify_filter *f, size_t *offset, const char *str) { if (!str) return NULL; size_t len = strlen(str) + 1; char *dst = f->text_data + *offset; memcpy(dst, str, len); *offset += len; return dst; } static void bqws_internal_filter_verify(void *user, bqws_socket *ws, const bqws_client_opts *opts) { bqws_verify_filter *f = (bqws_verify_filter*)user; bool ok = true; // Check common headers ok = ok && (!f->path || !strcmp(f->path, opts->path)); ok = ok && (!f->host || streq_ic(f->host, opts->host)); ok = ok && (!f->origin || streq_ic(f->origin, opts->origin)); const char *protocol = NULL; if (f->num_protocols > 0) { // If the filter has protocols try to find one // O(n^2) but bounded by BQWS_MAX_PROTOCOLS for (size_t ci = 0; ci < opts->num_protocols && !protocol; ci++) { for (size_t fi = 0; fi < f->num_protocols; fi++) { if (!strcmp(f->protocols[fi], opts->protocols[ci])) { protocol = f->protocols[fi]; break; } } } ok = ok && protocol != NULL; } else { // If not don't use any protocol name protocol = ""; } if (ok) { bqws_assert(protocol != NULL); if (f->verify_fn) { f->verify_fn(f->verify_user, ws, opts); } else { bqws_server_accept(ws, protocol); } } else { bqws_server_reject(ws); } } static void ws_expand_default_limits(bqws_limits *limits) { #define WS_DEFAULT(p_name, p_value) if (!limits->p_name) limits->p_name = p_value WS_DEFAULT(max_memory_used, 262144); WS_DEFAULT(max_recv_msg_size, 262144); WS_DEFAULT(max_handshake_size, 262144); WS_DEFAULT(max_recv_queue_messages, 1024); WS_DEFAULT(max_recv_queue_size, 262144); WS_DEFAULT(max_partial_message_parts, 16384); #undef WS_DEFAULT } static bqws_socket *ws_new_socket(const bqws_opts *opts, bool is_server) { bqws_opts null_opts; if (!opts) { memset(&null_opts, 0, sizeof(null_opts)); opts = &null_opts; } bqws_socket *ws = (bqws_socket*)bqws_allocator_alloc(&opts->allocator, sizeof(bqws_socket) + opts->user_size); if (!ws) return NULL; memset(ws, 0, sizeof(bqws_socket)); ws->magic = BQWS_SOCKET_MAGIC; ws->is_server = is_server; ws->allocator = opts->allocator; ws->user_io = opts->io; ws->limits = opts->limits; ws->recv_partial_messages = opts->recv_partial_messages; ws->recv_control_messages = opts->recv_control_messages; ws->mask_server = opts->mask_server; ws->message_fn = opts->message_fn; ws->message_user = opts->message_user; ws->peek_fn = opts->peek_fn; ws->peek_user = opts->peek_user; ws->log_fn = opts->log_fn; ws->log_user = opts->log_user; ws->log_send = opts->log_send; ws->log_recv = opts->log_recv; ws->error_fn = opts->error_fn; ws->error_user = opts->error_user; ws->send_message_fn = opts->send_message_fn; ws->send_message_user = opts->send_message_user; ws->user_size = opts->user_size; ws_expand_default_limits(&ws->limits); bqws_mutex_init(&ws->err_mutex); bqws_mutex_init(&ws->state.mutex); bqws_mutex_init(&ws->io.mutex); bqws_mutex_init(&ws->alloc.mutex); bqws_mutex_init(&ws->partial.mutex); msg_init_queue(ws, &ws->recv_queue); msg_init_queue(ws, &ws->recv_partial_queue); msg_init_queue(ws, &ws->send_queue); if (opts->ping_interval) { ws->ping_interval = opts->ping_interval; } else { ws->ping_interval = is_server ? 20000 : 10000; } ws->connect_timeout = opts->connect_timeout ? opts->connect_timeout : 10000; ws->close_timeout = opts->close_timeout ? opts->close_timeout : 5000; ws->ping_response_timeout = opts->ping_response_timeout ? opts->ping_response_timeout : 4 * ws->ping_interval; bqws_assert(ws->ping_interval > 0); if (ws->ping_interval != SIZE_MAX || ws->connect_timeout != SIZE_MAX) { bqws_timestamp ts = bqws_get_timestamp(); ws->io.start_connect_ts = ts; ws->io.last_write_ts = ts; ws->io.last_read_ts = ts; ws->io.last_ping_ts = ts; } // Copy or zero-init user data if (opts->user_size > 0) { if (opts->user_data) { memcpy(ws->user_data, opts->user_data, opts->user_size); } else { memset(ws->user_data, 0, opts->user_size); } } if (opts->name) ws->name = ws_copy_str(ws, opts->name); if (opts->skip_handshake) { ws_log(ws, "State: OPEN (skip handhake)"); ws->state.state = BQWS_STATE_OPEN; } else { ws_log(ws, "State: CONNECTING"); ws->state.state = BQWS_STATE_CONNECTING; } ws->io.mask_random_state = (uint32_t)(uintptr_t)ws ^ (uint32_t)time(NULL); ws->io.mask_random_stream = (uint32_t)bqws_get_timestamp() | 1u; if (ws->err) { bqws_free_socket(ws); return NULL; } return ws; } // -- API bqws_socket *bqws_new_client(const bqws_opts *opts, const bqws_client_opts *client_opts) { bqws_socket *ws = ws_new_socket(opts, false); if (!ws) return NULL; // Setup client handshake immediately if the socket is not open already if (ws->state.state == BQWS_STATE_CONNECTING) { bqws_client_opts null_opts; if (!client_opts) { memset(&null_opts, 0, sizeof(null_opts)); client_opts = &null_opts; } bqws_mutex_lock(&ws->io.mutex); hs_client_handshake(ws, client_opts); bqws_mutex_unlock(&ws->io.mutex); // Notify IO that there's a client handshake to send if (ws->user_io.notify_fn) { ws->user_io.notify_fn(ws->user_io.user, ws); } } return ws; } bqws_socket *bqws_new_server(const bqws_opts *opts, const bqws_server_opts *server_opts) { bqws_socket *ws = ws_new_socket(opts, true); if (!ws) return NULL; { bqws_server_opts null_opts; if (!server_opts) { memset(&null_opts, 0, sizeof(null_opts)); server_opts = &null_opts; } ws->verify_fn = server_opts->verify_fn; ws->verify_user = server_opts->verify_user; // Setup automatic verify filter if needed if (server_opts->verify_filter) { bqws_client_opts *filter = server_opts->verify_filter; size_t text_size = 0; text_size += filter->path ? strlen(filter->path) + 1 : 0; text_size += filter->host ? strlen(filter->host) + 1 : 0; text_size += filter->origin ? strlen(filter->origin) + 1 : 0; for (size_t i = 0; i < filter->num_protocols; i++) { bqws_assert(filter->protocols[i] && *filter->protocols[i]); text_size += strlen(filter->protocols[i]) + 1; } bqws_verify_filter *copy = (bqws_verify_filter*)ws_alloc(ws, sizeof(bqws_verify_filter) + text_size); if (!copy) { bqws_free_socket(ws); return NULL; } memset(copy, 0, sizeof(bqws_verify_filter)); copy->magic = BQWS_FILTER_MAGIC; copy->text_size = text_size; size_t offset = 0; copy->path = verify_filter_str(copy, &offset, filter->path); copy->host = verify_filter_str(copy, &offset, filter->host); copy->origin = verify_filter_str(copy, &offset, filter->origin); copy->num_protocols = filter->num_protocols; for (size_t i = 0; i < filter->num_protocols; i++) { copy->protocols[i] = verify_filter_str(copy, &offset, filter->protocols[i]); } bqws_assert(offset == text_size); copy->verify_fn = ws->verify_fn; copy->verify_user = ws->verify_user; ws->verify_fn = &bqws_internal_filter_verify; ws->verify_user = copy; } } return ws; } void bqws_close(bqws_socket *ws, bqws_close_reason reason, const void *data, size_t size) { if (ws->err) return; bqws_mutex_lock(&ws->state.mutex); bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(size == 0 || data); if (ws->state.close_to_send || ws->state.state >= BQWS_STATE_CLOSING) { bqws_mutex_unlock(&ws->state.mutex); return; } bqws_msg_imp *imp = msg_alloc(ws, BQWS_MSG_CONTROL_CLOSE, size + 2); if (imp) { imp->msg.data[0] = (uint8_t)(reason >> 8); imp->msg.data[1] = (uint8_t)(reason & 0xff); memcpy(imp->msg.data + 2, data, size); ws->state.close_to_send = imp; ws->state.start_closing_ts = bqws_get_timestamp(); ws->state.state = BQWS_STATE_CLOSING; ws_log(ws, "State: CLOSING (user close)"); } bqws_mutex_unlock(&ws->state.mutex); } void bqws_queue_close(bqws_socket *ws, bqws_close_reason reason, const void *data, size_t size) { if (ws->err) return; bqws_mutex_lock(&ws->state.mutex); bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(size == 0 || data); if (ws->state.close_to_send || ws->state.state >= BQWS_STATE_CLOSING) { bqws_mutex_unlock(&ws->state.mutex); return; } bqws_msg_imp *imp = msg_alloc(ws, BQWS_MSG_CONTROL_CLOSE, size + 2); if (imp) { imp->msg.data[0] = (uint8_t)(reason >> 8); imp->msg.data[1] = (uint8_t)(reason & 0xff); memcpy(imp->msg.data + 2, data, size); ws_enqueue_send(ws, imp); } bqws_mutex_unlock(&ws->state.mutex); } void bqws_free_socket(bqws_socket *ws) { if (!ws) return; bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); ws_log(ws, "Freed"); if (ws->user_io.close_fn && !ws->state.io_closed) { ws->user_io.close_fn(ws->user_io.user, ws); } // Free everything, as the socket may have errored it can // be in almost any state // Pending messages msg_free_queue(ws, &ws->recv_queue); msg_free_queue(ws, &ws->recv_partial_queue); msg_free_queue(ws, &ws->send_queue); if (ws->state.pong_to_send) msg_free_owned(ws, ws->state.pong_to_send); if (ws->state.close_to_send) msg_free_owned(ws, ws->state.close_to_send); // Read/write buffers ws_free(ws, ws->io.handshake.data, ws->io.handshake.capacity); ws_free(ws, ws->io.handshake_overflow.data, ws->io.handshake_overflow.capacity); if (ws->io.recv_buf.msg) msg_free_owned(ws, ws->io.recv_buf.msg); if (ws->io.send_buf.msg) msg_free_owned(ws, ws->io.send_buf.msg); if (ws->partial.next_partial_to_send) msg_free_owned(ws, ws->partial.next_partial_to_send); // Misc buffers if (ws->io.opts_from_client) ws_free(ws, ws->io.opts_from_client, sizeof(bqws_client_opts)); // String copies ws_free_str(ws, ws->state.chosen_protocol); ws_free_str(ws, ws->name); // Verify filter copy if (ws->verify_fn == &bqws_internal_filter_verify) { bqws_verify_filter *filter = (bqws_verify_filter*)ws->verify_user; bqws_assert(filter->magic == BQWS_FILTER_MAGIC); filter->magic = BQWS_DELETED_MAGIC; ws_free(ws, filter, sizeof(bqws_verify_filter) + filter->text_size); } // Mutexes bqws_mutex_free(&ws->err_mutex); bqws_mutex_free(&ws->state.mutex); bqws_mutex_free(&ws->io.mutex); bqws_mutex_free(&ws->alloc.mutex); bqws_mutex_free(&ws->partial.mutex); bqws_assert(ws->alloc.memory_used == 0); ws->magic = BQWS_DELETED_MAGIC; bqws_allocator at = ws->allocator; bqws_allocator_free(&at, ws, sizeof(bqws_socket) + ws->user_size); } bqws_client_opts *bqws_server_get_client_opts(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(ws->is_server); // no-mutex(state): There's an inherent race condition with multiple accepts bqws_assert(ws->state.state == BQWS_STATE_CONNECTING); bqws_mutex_lock(&ws->io.mutex); bqws_client_opts *opts = ws->io.opts_from_client; bqws_mutex_unlock(&ws->io.mutex); return opts; } void bqws_server_accept(bqws_socket *ws, const char *protocol) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(ws->is_server); // no-mutex(state): There's an inherent race condition with multiple accepts bqws_assert(ws->state.state == BQWS_STATE_CONNECTING); if (ws->err) return; // Use emtpy string to differentiate from not set if (!protocol) protocol = ""; bqws_mutex_lock(&ws->state.mutex); if (!ws->state.chosen_protocol) { ws->state.chosen_protocol = ws_copy_str(ws, protocol); } bqws_mutex_unlock(&ws->state.mutex); } void bqws_server_reject(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(ws->is_server); ws_fail(ws, BQWS_ERR_SERVER_REJECT); } bqws_state bqws_get_state(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); // no-mutex(state): We can always underestimate the state bqws_state state = ws->state.state, override_state = ws->state.override_state; if (override_state > state) state = override_state; return state; } bqws_error bqws_get_error(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return ws->err; } bool bqws_is_connecting(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); // no-mutex(state): We can always underestimate the state bqws_state state = ws->state.state, override_state = ws->state.override_state; if (override_state > state) state = override_state; return state == BQWS_STATE_CONNECTING; } bool bqws_is_closed(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); // no-mutex(state): We can always underestimate the state bqws_state state = ws->state.state, override_state = ws->state.override_state; if (override_state > state) state = override_state; return state == BQWS_STATE_CLOSED; } size_t bqws_get_memory_used(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); // no-mutex(alloc): This doesn't need to be accurate return ws->alloc.memory_used; } bool bqws_is_server(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return ws->is_server; } void *bqws_user_data(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return (void*)ws->user_data; } size_t bqws_user_data_size(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return ws->user_size; } const char *bqws_get_name(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return ws->name; } bqws_stats bqws_get_stats(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_stats stats; msg_queue_get_stats((bqws_msg_queue*)&ws->recv_queue, &stats.recv); msg_queue_get_stats((bqws_msg_queue*)&ws->send_queue, &stats.send); return stats; } void *bqws_get_io_user(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return ws->user_io.user; } bool bqws_get_io_closed(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); // no-mutex(state): This can be inaccurate return ws->state.io_closed; } bqws_limits bqws_get_limits(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); return ws->limits; } void bqws_set_limits(bqws_socket *ws, const bqws_limits *limits) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(limits); bqws_limits copy = *limits; ws_expand_default_limits(©); ws->limits = copy; } bqws_close_reason bqws_get_peer_close_reason(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_mutex_lock((bqws_mutex*)&ws->state.mutex); bqws_close_reason reason = ws->state.peer_reason; bqws_mutex_unlock((bqws_mutex*)&ws->state.mutex); return reason; } bqws_error bqws_get_peer_error(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_mutex_lock((bqws_mutex*)&ws->state.mutex); bqws_error err = ws->state.peer_err; bqws_mutex_unlock((bqws_mutex*)&ws->state.mutex); return err; } const char *bqws_get_protocol(const bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); // TODO: Cache this pointer outside of the state mutex bqws_mutex_lock((bqws_mutex*)&ws->state.mutex); const char *protocol = ws->state.chosen_protocol; bqws_mutex_unlock((bqws_mutex*)&ws->state.mutex); return protocol; } bqws_msg *bqws_recv(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); if (ws->err) return NULL; // Messages are re-combined in `recv_queue` if // `recv_partial_messages` is disabled. bqws_msg_imp *imp = msg_dequeue(&ws->recv_queue); if (!imp) return NULL; bqws_assert(imp->magic == BQWS_MSG_MAGIC); msg_release_ownership(ws, imp); return &imp->msg; } void bqws_free_msg(bqws_msg *msg) { if (!msg) return; bqws_msg_imp *imp = msg_imp(msg); bqws_assert(imp->magic == BQWS_MSG_MAGIC); bqws_assert(imp->owner == NULL); imp->magic = BQWS_DELETED_MAGIC; bqws_allocator at = imp->allocator; bqws_allocator_free(&at, imp, msg_alloc_size(msg)); } void bqws_send(bqws_socket *ws, bqws_msg_type type, const void *data, size_t size) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert((type & BQWS_MSG_PARTIAL_BIT) == 0); if (ws->err) return; bqws_assert(size == 0 || data); bqws_msg_imp *imp = msg_alloc(ws, type, size); if (!imp) return; memcpy(imp->msg.data, data, size); ws_enqueue_send(ws, imp); } void bqws_send_binary(bqws_socket *ws, const void *data, size_t size) { bqws_send(ws, BQWS_MSG_BINARY, data, size); } void bqws_send_text(bqws_socket *ws, const char *str) { bqws_assert(str); bqws_send(ws, BQWS_MSG_TEXT, str, strlen(str)); } void bqws_send_text_len(bqws_socket *ws, const void *str, size_t len) { bqws_send(ws, BQWS_MSG_TEXT, str, len); } bqws_msg *bqws_allocate_msg(bqws_socket *ws, bqws_msg_type type, size_t size) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); if (ws->err) return NULL; bqws_msg_imp *imp = msg_alloc(ws, type, size); if (!imp) return NULL; msg_release_ownership(ws, imp); return &imp->msg; } void bqws_send_msg(bqws_socket *ws, bqws_msg *msg) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(msg && (msg->type == BQWS_MSG_TEXT || msg->type == BQWS_MSG_BINARY)); bqws_assert(msg->size <= msg->capacity); bqws_msg_imp *imp = msg_imp(msg); bqws_assert(imp->magic == BQWS_MSG_MAGIC); if (ws->err) return; if (!msg_acquire_ownership(ws, imp)) return; ws_enqueue_send(ws, imp); } void bqws_send_begin(bqws_socket *ws, bqws_msg_type type) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(type == BQWS_MSG_TEXT || type == BQWS_MSG_BINARY); if (ws->err) return; bqws_mutex_lock(&ws->partial.mutex); bqws_assert(ws->partial.send_partial_type == BQWS_MSG_INVALID); bqws_assert(ws->partial.next_partial_to_send == NULL); ws->partial.send_partial_type = type; bqws_mutex_unlock(&ws->partial.mutex); } void bqws_send_append(bqws_socket *ws, const void *data, size_t size) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); if (ws->err) return; bqws_mutex_lock(&ws->partial.mutex); bqws_assert(ws->partial.send_partial_type != BQWS_MSG_INVALID); if (ws->partial.next_partial_to_send) { bqws_assert(ws->partial.next_partial_to_send->magic == BQWS_MSG_MAGIC); ws_enqueue_send(ws, ws->partial.next_partial_to_send); } bqws_msg_type partial_type = (bqws_msg_type)(ws->partial.send_partial_type | BQWS_MSG_PARTIAL_BIT); bqws_msg_imp *imp = msg_alloc(ws, partial_type, size); if (imp) { memcpy(imp->msg.data, data, size); ws->partial.next_partial_to_send = imp; } bqws_mutex_unlock(&ws->partial.mutex); } void bqws_send_append_str(bqws_socket *ws, const char *str) { bqws_send_append(ws, str, strlen(str)); } void bqws_send_append_msg(bqws_socket *ws, bqws_msg *msg) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(msg->type == BQWS_MSG_TEXT || msg->type == BQWS_MSG_BINARY); if (ws->err) return; bqws_mutex_lock(&ws->partial.mutex); bqws_assert(ws->partial.send_partial_type != BQWS_MSG_INVALID); bqws_assert((ws->partial.send_partial_type & BQWS_MSG_TYPE_MASK) == msg->type); if (ws->partial.next_partial_to_send) { bqws_assert(ws->partial.next_partial_to_send->magic == BQWS_MSG_MAGIC); ws_enqueue_send(ws, ws->partial.next_partial_to_send); } bqws_msg_imp *imp = msg_imp(msg); if (!msg_acquire_ownership(ws, imp)) return; msg->type = (bqws_msg_type)(ws->partial.send_partial_type | BQWS_MSG_PARTIAL_BIT); ws->partial.next_partial_to_send = imp; bqws_mutex_unlock(&ws->partial.mutex); } void bqws_send_finish(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); if (ws->err) return; bqws_mutex_lock(&ws->partial.mutex); bqws_assert(ws->partial.send_partial_type != BQWS_MSG_INVALID); if (ws->partial.next_partial_to_send) { bqws_assert(ws->partial.next_partial_to_send->magic == BQWS_MSG_MAGIC); bqws_msg_type type = ws->partial.next_partial_to_send->msg.type; ws->partial.next_partial_to_send->msg.type = (bqws_msg_type)(type | BQWS_MSG_FINAL_BIT); ws_enqueue_send(ws, ws->partial.next_partial_to_send); ws->partial.next_partial_to_send = NULL; } ws->partial.send_partial_type = BQWS_MSG_INVALID; bqws_mutex_unlock(&ws->partial.mutex); } void bqws_send_ping(bqws_socket *ws, const void *data, size_t size) { bqws_send(ws, BQWS_MSG_CONTROL_PING, data, size); } void bqws_send_pong(bqws_socket *ws, const void *data, size_t size) { bqws_send(ws, BQWS_MSG_CONTROL_PONG, data, size); } void bqws_update(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_update_state(ws); bqws_update_io(ws); } void bqws_update_state(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_mutex_lock(&ws->state.mutex); bqws_state state = ws->state.state; char *protocol = ws->state.chosen_protocol; bqws_timestamp start_closing_ts = ws->state.start_closing_ts; bqws_mutex_unlock(&ws->state.mutex); bqws_mutex_lock(&ws->io.mutex); if (state == BQWS_STATE_CONNECTING) { // If we're connecting but haven't set a protocol and the user // has provided a verify function or filter run it here. if (ws->io.client_handshake_done && !protocol && ws->verify_fn) { bqws_assert(ws->is_server); bqws_assert(ws->io.opts_from_client); ws->verify_fn(ws->verify_user, ws, ws->io.opts_from_client); } // Connect timeout if (ws->connect_timeout != SIZE_MAX && state == BQWS_STATE_CONNECTING) { bqws_timestamp time = bqws_get_timestamp(); size_t delta = bqws_timestamp_delta_to_ms(ws->io.start_connect_ts, time); if (delta > ws->connect_timeout) { ws_fail(ws, BQWS_ERR_CONNECT_TIMEOUT); bqws_mutex_lock(&ws->state.mutex); ws_close(ws); bqws_mutex_unlock(&ws->state.mutex); } } } else if (state == BQWS_STATE_OPEN) { // Automatic PING send if (ws->ping_interval != SIZE_MAX) { bqws_timestamp time = bqws_get_timestamp(); size_t delta_read = bqws_timestamp_delta_to_ms(ws->io.last_read_ts, time); size_t delta_ping = bqws_timestamp_delta_to_ms(ws->io.last_ping_ts, time); size_t delta_write = bqws_timestamp_delta_to_ms(ws->io.last_write_ts, time); size_t delta = delta_read >= delta_write ? delta_read : delta_write; size_t delta_from_ping = delta <= delta_ping ? delta : delta_ping; if (delta_from_ping > ws->ping_interval) { ws->io.last_ping_ts = time; // Maybe send PONG only? bqws_send_ping(ws, NULL, 0); } if (ws->ping_response_timeout != SIZE_MAX) { if (delta >= ws->ping_response_timeout) { ws_fail(ws, BQWS_ERR_PING_TIMEOUT); bqws_mutex_lock(&ws->state.mutex); ws_close(ws); bqws_mutex_unlock(&ws->state.mutex); } } } } else if (state == BQWS_STATE_CLOSING) { // Close timeout if (ws->close_timeout != SIZE_MAX) { bqws_timestamp time = bqws_get_timestamp(); size_t delta = bqws_timestamp_delta_to_ms(start_closing_ts, time); if (delta > ws->close_timeout) { ws_fail(ws, BQWS_ERR_CLOSE_TIMEOUT); bqws_mutex_lock(&ws->state.mutex); ws_close(ws); bqws_mutex_unlock(&ws->state.mutex); } } } bqws_mutex_unlock(&ws->io.mutex); } void bqws_update_io(bqws_socket *ws) { bqws_update_io_write(ws); bqws_update_io_read(ws); } void bqws_update_io_read(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bool do_read = true; bqws_mutex_lock(&ws->io.mutex); // If read and write are stopped close the IO bqws_mutex_lock(&ws->state.mutex); if (!ws->state.io_started) { if (ws->user_io.init_fn) { ws->user_io.init_fn(ws->user_io.user, ws); } ws->state.io_started = true; } if (ws->state.stop_read && ws->state.stop_write) { if (ws->user_io.close_fn && !ws->state.io_closed) { ws->user_io.close_fn(ws->user_io.user, ws); } ws->state.io_closed = true; } do_read = !ws->state.stop_read; bqws_mutex_unlock(&ws->state.mutex); // TODO: Throttle reads if (do_read) { if (ws->user_io.recv_fn) { while (ws_read_data(ws, ws->user_io.recv_fn, ws->user_io.user)) { // Keep reading as long as there is space } } } bqws_mutex_unlock(&ws->io.mutex); } void bqws_update_io_write(bqws_socket *ws) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bool do_write = true; bqws_mutex_lock(&ws->io.mutex); // If read and write are stopped close the IO bqws_mutex_lock(&ws->state.mutex); if (!ws->state.io_started) { if (ws->user_io.init_fn) { ws->user_io.init_fn(ws->user_io.user, ws); } ws->state.io_started = true; } if (ws->state.stop_read && ws->state.stop_write) { if (ws->user_io.close_fn && !ws->state.io_closed) { ws->user_io.close_fn(ws->user_io.user, ws); } ws->state.io_closed = true; } do_write = !ws->state.stop_write; bqws_mutex_unlock(&ws->state.mutex); if (do_write) { if (ws->user_io.send_fn) { while (ws_write_data(ws, ws->user_io.send_fn, ws->user_io.user)) { // Keep writing as long as there is space } } // Re-check if we should stop write if the socket got closed bqws_mutex_lock(&ws->state.mutex); do_write = !ws->state.stop_write; bqws_mutex_unlock(&ws->state.mutex); if (ws->user_io.flush_fn && do_write) { if (!ws->user_io.flush_fn(ws->user_io.user, ws)) { ws_fail(ws, BQWS_ERR_IO_WRITE); } } } bqws_mutex_unlock(&ws->io.mutex); } size_t bqws_read_from(bqws_socket *ws, const void *data, size_t size) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(!ws->user_io.recv_fn); bqws_mutex_lock(&ws->io.mutex); bqws_mem_stream s; s.ptr = (char*)data; s.end = s.ptr + size; while (ws_read_data(ws, &mem_stream_recv, &s)) { // Keep reading as long as there is space } bqws_mutex_unlock(&ws->io.mutex); return s.ptr - (char*)data; } size_t bqws_write_to(bqws_socket *ws, void *data, size_t size) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(!ws->user_io.send_fn); bqws_mutex_lock(&ws->io.mutex); bqws_mem_stream s; s.ptr = (char*)data; s.end = s.ptr + size; while (ws_write_data(ws, &mem_stream_send, &s)) { // Keep writing as long as there is space } if (ws->user_io.flush_fn) { if (!ws->user_io.flush_fn(ws->user_io.user, ws)) { ws_fail(ws, BQWS_ERR_IO_WRITE); } } bqws_mutex_unlock(&ws->io.mutex); return s.ptr - (char*)data; } void bqws_direct_push_msg(bqws_socket *ws, bqws_msg *msg) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); bqws_assert(msg && msg->size <= msg->capacity); bqws_msg_imp *imp = msg_imp(msg); bqws_assert(imp->magic == BQWS_MSG_MAGIC); if (ws->err) return; if (!msg_acquire_ownership(ws, imp)) return; if (ws->log_recv) { ws_log2(ws, "Direct recv: ", bqws_msg_type_str(msg->type)); } ws_enqueue_recv(ws, imp); } void bqws_direct_set_override_state(bqws_socket *ws, bqws_state state) { bqws_assert(ws && ws->magic == BQWS_SOCKET_MAGIC); ws_log2(ws, "Override state: ", bqws_state_str(state)); bqws_mutex_lock(&ws->state.mutex); ws->state.override_state = state; bqws_mutex_unlock(&ws->state.mutex); } void bqws_direct_fail(bqws_socket *ws, bqws_error err) { ws_fail(ws, err); } bool bqws_parse_url(bqws_url *url, const char *str) { // Format [wss://][host.example.com][:1234][/path] const char *scheme = str; const char *scheme_end = strstr(scheme, "://"); const char *host = scheme_end ? scheme_end + 3 : scheme; const char *port_start = host; if (*host == '[') { // Skip IPv6 address port_start = strstr(host, "]"); if (!port_start) return false; } const char *port = strstr(port_start, ":"); const char *path = strstr(port_start, "/"); if (!path) path = port_start + strlen(port_start); if (port && port > path) port = NULL; const char *host_end = port ? port : path; size_t scheme_len = scheme_end ? scheme_end - scheme : 0; size_t host_len = host_end - host; if (scheme_len >= sizeof(url->scheme)) return false; if (host_len >= sizeof(url->host)) return false; bool secure = scheme_len == 3 && !memcmp(scheme, "wss", 3); int port_num; if (port) { char *port_end; port_num = (int)strtol(port + 1, &port_end, 10); if (port_end != path) return false; if (port_num < 0 || port_num > UINT16_MAX) return false; port_num = (uint16_t)port_num; } else { port_num = secure ? 443 : 80; } // vv No fails below, no writes above ^^ url->port = (uint16_t)port_num; memcpy(url->scheme, scheme, scheme_len); url->scheme[scheme_len] = '\0'; memcpy(url->host, host, host_len); url->host[host_len] = '\0'; url->path = *path ? path : "/"; url->secure = secure; return true; } const char *bqws_error_str(bqws_error error) { switch (error) { case BQWS_OK: return "OK"; case BQWS_ERR_UNKNOWN: return "UNKNOWN"; case BQWS_ERR_SERVER_REJECT: return "SERVER_REJECT"; case BQWS_ERR_LIMIT_MAX_MEMORY_USED: return "LIMIT_MAX_MEMORY_USED"; case BQWS_ERR_LIMIT_MAX_RECV_MSG_SIZE: return "LIMIT_MAX_RECV_MSG_SIZE"; case BQWS_ERR_LIMIT_MAX_HANDSHAKE_SIZE: return "LIMIT_MAX_HANDSHAKE_SIZE"; case BQWS_ERR_LIMIT_MAX_PARTIAL_MESSAGE_PARTS: return "LIMIT_MAX_PARTIAL_MESSAGE_PARTS"; case BQWS_ERR_CONNECT_TIMEOUT: return "BQWS_ERR_CONNECT_TIMEOUT"; case BQWS_ERR_PING_TIMEOUT: return "BQWS_ERR_PING_TIMEOUT"; case BQWS_ERR_CLOSE_TIMEOUT: return "BQWS_ERR_CLOSE_TIMEOUT"; case BQWS_ERR_ALLOCATOR: return "ALLOCATOR"; case BQWS_ERR_BAD_CONTINUATION: return "BAD_CONTINUATION"; case BQWS_ERR_UNFINISHED_PARTIAL: return "UNFINISHED_PARTIAL"; case BQWS_ERR_PARTIAL_CONTROL: return "PARTIAL_CONTROL"; case BQWS_ERR_BAD_OPCODE: return "BAD_OPCODE"; case BQWS_ERR_RESERVED_BIT: return "RESERVED_BIT"; case BQWS_ERR_IO_WRITE: return "IO_WRITE"; case BQWS_ERR_IO_READ: return "IO_READ"; case BQWS_ERR_BAD_HANDSHAKE: return "BAD_HANDSHAKE"; case BQWS_ERR_UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case BQWS_ERR_TOO_MANY_HEADERS: return "TOO_MANY_HEADERS"; case BQWS_ERR_TOO_MANY_PROTOCOLS: return "TOO_MANY_PROTOCOLS"; case BQWS_ERR_HEADER_KEY_TOO_LONG: return "HEADER_KEY_TOO_LONG"; case BQWS_ERR_HEADER_BAD_ACCEPT: return "HEADER_BAD_ACCEPT"; case BQWS_ERR_HEADER_PARSE: return "HEADER_PARSE"; default: return "(unknown)"; } } const char *bqws_msg_type_str(bqws_msg_type type) { switch (type) { case BQWS_MSG_TEXT: return "TEXT"; case BQWS_MSG_BINARY: return "BINARY"; case BQWS_MSG_PARTIAL_TEXT: return "PARTIAL_TEXT"; case BQWS_MSG_PARTIAL_BINARY: return "PARTIAL_BINARY"; case BQWS_MSG_FINAL_TEXT: return "FINAL_TEXT"; case BQWS_MSG_FINAL_BINARY: return "FINAL_BINARY"; case BQWS_MSG_CONTROL_CLOSE: return "CONTROL_CLOSE"; case BQWS_MSG_CONTROL_PING: return "CONTROL_PING"; case BQWS_MSG_CONTROL_PONG: return "CONTROL_PONG"; default: return "(unknown)"; } } const char *bqws_state_str(bqws_state state) { switch (state) { case BQWS_STATE_INVALID: return "INVALID"; case BQWS_STATE_CONNECTING: return "CONNECTING"; case BQWS_STATE_OPEN: return "OPEN"; case BQWS_STATE_CLOSING: return "CLOSING"; case BQWS_STATE_CLOSED: return "CLOSED"; default: return "(unknown)"; } } // TODO: Add a define for this /* ================ sha1.c ================ */ /* SHA-1 in C By Steve Reid 100% Public Domain Test Vectors (from FIPS PUB 180-1) "abc" A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 A million repetitions of "a" 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */ typedef struct { uint32_t state[5]; uint32_t count[2]; unsigned char buffer[64]; } SHA1_CTX; #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |(rol(block->l[i],8)&0x00FF00FF)) #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ ^block->l[(i+2)&15]^block->l[i&15],1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* Hash a single 512-bit block. This is the core of the algorithm. */ static void SHA1Transform(uint32_t state[5], const void *buffer) { uint32_t a, b, c, d, e; typedef union { unsigned char c[64]; uint32_t l[16]; } CHAR64LONG16; CHAR64LONG16 block_buf, *block = &block_buf; memcpy(block, buffer, 64); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } /* SHA1Init - Initialize new context */ static void SHA1Init(SHA1_CTX* context) { /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } /* Run your data through this. */ static void SHA1Update(SHA1_CTX* context, const void* data, uint32_t len) { uint32_t i, j; const char *bytes = (const char *)data; j = context->count[0]; if ((context->count[0] += len << 3) < j) context->count[1]++; context->count[1] += (len>>29); j = (j >> 3) & 63; if ((j + len) > 63) { memcpy(&context->buffer[j], data, (i = 64-j)); SHA1Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) { SHA1Transform(context->state, &bytes[i]); } j = 0; } else i = 0; memcpy(&context->buffer[j], &bytes[i], len - i); } /* Add padding and return the message digest. */ static void SHA1Final(unsigned char digest[20], SHA1_CTX* context) { unsigned i; unsigned char finalcount[8]; unsigned char c; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } c = 0200; SHA1Update(context, &c, 1); while ((context->count[0] & 504) != 448) { c = 0000; SHA1Update(context, &c, 1); } SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } } /* ================ end of sha1.c ================ */ static void bqws_sha1(uint8_t digest[20], const void *data, size_t size) { SHA1_CTX ctx; SHA1Init(&ctx); SHA1Update(&ctx, data, (uint32_t)size); SHA1Final((unsigned char*)digest, &ctx); } #endif // BQ_WEBSOCKET_IMPLEMENTATION //------------------------------------------------------------------------------ #ifdef BQ_PLATFORM_IMPLEMENTATION #include #include #include // -- Generic #ifndef BQWS_PT_USE_OPENSSL #define BQWS_PT_USE_OPENSSL 0 #endif #if defined(_WIN32) && !defined(__MINGW32__) //<@r-lyeh __declspec(thread) static bqws_pt_error t_err; #else static __thread bqws_pt_error t_err; #endif #define BQWS_PT_DELETED_MAGIC 0xbdbdbdbd #define BQWS_PT_IO_MAGIC 0x77737074 #define BQWS_PT_EM_MAGIC 0x7773656d #define BQWS_PT_SERVER_MAGIC 0x77737376 #ifndef bqws_assert #include #define bqws_assert(x) assert(x) #endif static void pt_fail_pt(const char *func, bqws_pt_error_code code) { t_err.function = func; t_err.type = BQWS_PT_ERRTYPE_PT; t_err.data = code; } #if defined(__EMSCRIPTEN__) #include #if defined(__EMSCRIPTEN_PTHREADS__) #include typedef pthread_mutex_t pt_em_mutex; #define pt_em_mutex_init(m) pthread_mutex_init((m), NULL) #define pt_em_mutex_free(m) pthread_mutex_destroy((m)) #define pt_em_mutex_lock(m) pthread_mutex_lock((m)) #define pt_em_mutex_unlock(m) pthread_mutex_unlock((m)) #else typedef int pt_em_mutex; #define pt_em_mutex_init(m) (void)0 #define pt_em_mutex_free(m) (void)0 #define pt_em_mutex_lock(m) (void)0 #define pt_em_mutex_unlock(m) (void)0 #endif typedef struct pt_em_partial { struct pt_em_partial *next; size_t size; char data[]; } pt_em_partial; typedef struct { uint32_t magic; int handle; pt_em_partial *partial_first; pt_em_partial *partial_last; size_t partial_size; pt_em_mutex ws_mutex; bqws_socket *ws; // Packed zero separated url + protocols size_t num_protocols; size_t connect_data_size; char *connect_data; bqws_allocator allocator; } pt_em_socket; static void pt_sleep_ms(uint32_t ms) { emscripten_sleep(ms); } static void pt_em_free(pt_em_socket *em) { bqws_assert(em->magic == BQWS_PT_EM_MAGIC); em->magic = BQWS_PT_DELETED_MAGIC; bqws_allocator allocator = em->allocator; bqws_allocator_free(&allocator, em, sizeof(pt_em_socket)); } static bool pt_em_try_lock(pt_em_socket *em) { pt_em_mutex_lock(&em->ws_mutex); if (!em->ws) { // TODO: Free the em context here pt_em_mutex_unlock(&em->ws_mutex); pt_em_free(em); return false; } return true; } static void pt_em_unlock(pt_em_socket *em) { pt_em_mutex_unlock(&em->ws_mutex); } EMSCRIPTEN_KEEPALIVE void *pt_em_msg_alloc(pt_em_socket *em, size_t size, int type) { if (!pt_em_try_lock(em)) return em; /* HACK: return the handle on close! */ bqws_msg *msg = bqws_allocate_msg(em->ws, (bqws_msg_type)type, size); pt_em_unlock(em); if (!msg) return NULL; return msg->data; } EMSCRIPTEN_KEEPALIVE int pt_em_msg_recv(pt_em_socket *em, void *ptr) { if (!pt_em_try_lock(em)) return 1; bqws_msg *msg = (bqws_msg*)((char*)ptr - offsetof(bqws_msg, data)); bqws_direct_push_msg(em->ws, msg); pt_em_unlock(em); return 0; } EMSCRIPTEN_KEEPALIVE int pt_em_on_open(pt_em_socket *em) { if (!pt_em_try_lock(em)) return 1; bqws_direct_set_override_state(em->ws, BQWS_STATE_OPEN); pt_em_unlock(em); return 0; } EMSCRIPTEN_KEEPALIVE int pt_em_on_close(pt_em_socket *em) { if (!pt_em_try_lock(em)) return 1; bqws_direct_set_override_state(em->ws, BQWS_STATE_CLOSED); em->handle = -1; pt_em_unlock(em); return 0; } EMSCRIPTEN_KEEPALIVE int pt_em_is_closed(pt_em_socket *em) { return em->ws == NULL; } EM_JS(int, pt_em_connect_websocket, (pt_em_socket *em, const char *url, const char **protocols, size_t num_protocols), { var webSocket = typeof WebSocket !== "undefined" ? WebSocket : require("ws"); var url_str = UTF8ToString(url); var protocols_str = []; for (var i = 0; i < num_protocols; i++) { var protocol = HEAPU32[(protocols >> 2) + i]; protocols_str.push(UTF8ToString(protocol)); } var ws = new webSocket(url_str, protocols_str); ws.binaryType = "arraybuffer"; if (Module.g_bqws_pt_sockets === undefined) { Module.g_bqws_pt_sockets = { sockets: [null], em_sockets: [null], free_list: [], }; } var handle = null; if (Module.g_bqws_pt_sockets.free_list.length > 0) { handle = Module.g_bqws_pt_sockets.free_list.pop(); Module.g_bqws_pt_sockets.sockets[handle] = ws; Module.g_bqws_pt_sockets.em_sockets[handle] = em; } else { handle = Module.g_bqws_pt_sockets.sockets.length; Module.g_bqws_pt_sockets.sockets.push(ws); Module.g_bqws_pt_sockets.em_sockets.push(em); } var interval = setInterval(function() { if (_pt_em_is_closed(em)) { ws.close(); } }, 1000); ws.onopen = function(e) { if (Module.g_bqws_pt_sockets.sockets[handle] !== ws) return; if (_pt_em_on_open(em)) { ws.close(); Module.g_bqws_pt_sockets.sockets[handle] = null; Module.g_bqws_pt_sockets.em_sockets[handle] = null; Module.g_bqws_pt_sockets.free_list.push(handle); } }; ws.onclose = function(e) { if (interval !== null) { clearInterval(interval); interval = null; } if (Module.g_bqws_pt_sockets.sockets[handle] !== ws) return; _pt_em_on_close(em); Module.g_bqws_pt_sockets.sockets[handle] = null; Module.g_bqws_pt_sockets.em_sockets[handle] = null; Module.g_bqws_pt_sockets.free_list.push(handle); }; ws.onerror = function(e) { if (Module.g_bqws_pt_sockets.sockets[handle] !== ws) return; _pt_em_on_close(em); ws.close(); Module.g_bqws_pt_sockets.sockets[handle] = null; Module.g_bqws_pt_sockets.em_sockets[handle] = null; Module.g_bqws_pt_sockets.free_list.push(handle); }; ws.onmessage = function(e) { if (Module.g_bqws_pt_sockets.sockets[handle] !== ws) return; var deleted = 0; if (typeof e.data === "string") { var size = lengthBytesUTF8(e.data); var ptr = _pt_em_msg_alloc(em, size, 1); if (ptr == em) { // HACK: pt_em_msg_alloc() returns `em` if deleted deleted = 1; } else if (ptr != 0) { stringToUTF8(e.data, ptr, size + 1); deleted = _pt_em_msg_recv(em, ptr); } } else { var size = e.data.byteLength; var ptr = _pt_em_msg_alloc(em, size, 2); if (ptr == em) { // HACK: pt_em_msg_alloc() returns `em` if deleted deleted = 1; } else if (ptr != 0) { HEAPU8.set(new Uint8Array(e.data), ptr); deleted = _pt_em_msg_recv(em, ptr); } } if (deleted != 0) { ws.close(); Module.g_bqws_pt_sockets.sockets[handle] = null; Module.g_bqws_pt_sockets.em_sockets[handle] = null; Module.g_bqws_pt_sockets.free_list.push(handle); } }; return handle; }); EM_JS(int, pt_em_websocket_send_binary, (int handle, pt_em_socket *em, const char *data, size_t size), { if (!Module.g_bqws_pt_sockets || em !== Module.g_bqws_pt_sockets.em_sockets[handle]) { console.error("WebSocket '0x" + em.toString(16) + "' not found in thread: Make sure to call bqws_update() only from a single thread per socket in WASM!"); return 0; } var ws = Module.g_bqws_pt_sockets.sockets[handle]; if (ws.readyState == 0) { return 0; } else if (ws.readyState != 1) { return 1; } #if defined(__EMSCRIPTEN_PTHREADS__) ws.send(new Uint8Array(HEAPU8.subarray(data, data + size))); #else ws.send(HEAPU8.subarray(data, data + size)); #endif return 1; }); EM_JS(int, pt_em_websocket_send_text, (int handle, pt_em_socket *em, const char *data, size_t size), { if (!Module.g_bqws_pt_sockets || em !== Module.g_bqws_pt_sockets.em_sockets[handle]) { console.error("WebSocket '0x" + em.toString(16) + "' not found in thread: Make sure to call bqws_update() only from a single thread per socket in WASM!"); return 0; } var ws = Module.g_bqws_pt_sockets.sockets[handle]; if (ws.readyState == 0) { return 0; } else if (ws.readyState != 1) { return 1; } var str = UTF8ToString(data, size); ws.send(str); return 1; }); EM_JS(void, pt_em_websocket_close, (int handle, pt_em_socket *em, int code), { if (!Module.g_bqws_pt_sockets || em !== Module.g_bqws_pt_sockets.em_sockets[handle]) { console.error("WebSocket '0x" + em.toString(16) + "' not found in thread: Make sure to call bqws_update() only from a single thread per socket in WASM!"); return 0; } var ws = Module.g_bqws_pt_sockets.sockets[handle]; if (ws.readyState >= 2) { return 0; } ws.close(code); return 1; }); EM_JS(int, pt_em_try_free_websocket, (int handle, pt_em_socket *em), { if (!Module.g_bqws_pt_sockets || em !== Module.g_bqws_pt_sockets.em_sockets[handle]) { return 0; } var ws = Module.g_bqws_pt_sockets.sockets[handle]; if (ws.readyState < 2) ws.close(); Module.g_bqws_pt_sockets.sockets[handle] = null; Module.g_bqws_pt_sockets.em_sockets[handle] = null; Module.g_bqws_pt_sockets.free_list.push(handle); return 1; }); static bool pt_send_message(void *user, bqws_socket *ws, bqws_msg *msg) { pt_em_socket *em = (pt_em_socket*)user; void *partial_buf = NULL; bqws_msg_type type = msg->type; size_t size = msg->size; void *data = msg->data; if (type & BQWS_MSG_PARTIAL_BIT) { pt_em_partial *part = (pt_em_partial*)bqws_allocator_alloc(&em->allocator, sizeof(pt_em_partial) + size); part->next = NULL; part->size = size; memcpy(part->data, data, size); em->partial_size += size; if (em->partial_last) { em->partial_last->next = part; em->partial_last = part; } else { em->partial_first = part; em->partial_last = part; } if (type & BQWS_MSG_FINAL_BIT) { char *ptr = (char*)bqws_allocator_alloc(&em->allocator, em->partial_size); partial_buf = ptr; data = ptr; size = em->partial_size; type = (bqws_msg_type)(type & BQWS_MSG_TYPE_MASK); pt_em_partial *next = em->partial_first; while (next) { pt_em_partial *part = next; next = part->next; memcpy(ptr, part->data, part->size); ptr += part->size; bqws_allocator_free(&em->allocator, part, sizeof(pt_em_partial) + part->size); } } else { bqws_free_msg(msg); return true; } } bool ret = true; if (type == BQWS_MSG_BINARY) { ret = (bool)pt_em_websocket_send_binary(em->handle, em, (const char *)data, size); } else if (type == BQWS_MSG_TEXT) { ret = (bool)pt_em_websocket_send_text(em->handle, em, (const char *)data, size); } else if (type == BQWS_MSG_CONTROL_CLOSE) { unsigned code = 1000; if (msg->size >= 2) { code = (unsigned)(uint8_t)msg->data[0] << 8 | (unsigned)(uint8_t)msg->data[1]; } pt_em_websocket_close(em->handle, em, (int)code); ret = true; } else { // Don't send control messages } if (partial_buf) { bqws_allocator_free(&em->allocator, partial_buf, size); if (ret) { em->partial_first = NULL; em->partial_last = NULL; em->partial_size = 0; } } if (ret) { bqws_free_msg(msg); } return ret; } static bool pt_init(const bqws_pt_init_opts *opts) { return true; } static void pt_shutdown() { } static size_t pt_io_send(void *user, bqws_socket *ws, const void *data, size_t size) { bqws_assert(0 && "Should never get here"); return SIZE_MAX; } static void pt_io_init(void *user, bqws_socket *ws) { pt_em_socket *em = (pt_em_socket*)user; if (!pt_em_try_lock(em)) return; const char *protocols[BQWS_MAX_PROTOCOLS]; const char *url_str = em->connect_data; const char *ptr = url_str; for (size_t i = 0; i < em->num_protocols; i++) { ptr += strlen(ptr); protocols[i] = ptr; } int handle = pt_em_connect_websocket(em, url_str, protocols, em->num_protocols); em->handle = handle; bqws_allocator_free(&em->allocator, em->connect_data, em->connect_data_size); em->connect_data = NULL; pt_em_unlock(em); } static void pt_io_close(void *user, bqws_socket *ws) { pt_em_socket *em = (pt_em_socket*)user; pt_em_mutex_lock(&em->ws_mutex); pt_em_partial *next = em->partial_first; while (next) { pt_em_partial *part = next; next = part->next; bqws_allocator_free(&em->allocator, part, sizeof(pt_em_partial) + part->size); } if (em->connect_data) { bqws_allocator_free(&em->allocator, em->connect_data, em->connect_data_size); } bool do_free = false; if (em->handle >= 0) { if (pt_em_try_free_websocket(em->handle, em)) { do_free = true; } } else { do_free = true; } em->ws = NULL; pt_em_mutex_unlock(&em->ws_mutex); if (do_free) { pt_em_free(em); } } static bqws_socket *pt_connect(const bqws_url *url, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts) { char url_str[2048]; int len = snprintf(url_str, sizeof(url_str), "%s://%s:%d%s", url->scheme, url->host, url->port, url->path); if (len >= sizeof(url_str)) return NULL; bqws_opts opt; if (opts) { opt = *opts; } else { memset(&opt, 0, sizeof(opt)); } bqws_client_opts copt; if (client_opts) { copt = *client_opts; } else { memset(&copt, 0, sizeof(copt)); } opt.ping_interval = SIZE_MAX; opt.ping_response_timeout = SIZE_MAX; opt.close_timeout = SIZE_MAX; pt_em_socket *em = (pt_em_socket*)bqws_allocator_alloc(&opts->allocator, sizeof(pt_em_socket)); memset(em, 0, sizeof(pt_em_socket)); em->magic = BQWS_PT_EM_MAGIC; em->allocator = opts->allocator; opt.send_message_fn = &pt_send_message; opt.send_message_user = em; opt.io.user = em; opt.io.init_fn = &pt_io_init; opt.io.send_fn = &pt_io_send; opt.io.close_fn = &pt_io_close; opt.skip_handshake = true; bqws_socket *ws = bqws_new_client(&opt, &copt); if (!ws) { bqws_allocator_free(&opts->allocator, em, sizeof(pt_em_socket)); return NULL; } bqws_direct_set_override_state(ws, BQWS_STATE_CONNECTING); // Retain connect data and connect at the first update size_t url_size = strlen(url_str) + 1; size_t protocol_size[BQWS_MAX_PROTOCOLS]; size_t connect_data_size = url_size + 1; for (size_t i = 0; i < copt.num_protocols; i++) { protocol_size[i] = strlen(copt.protocols[i]) + 1; connect_data_size += protocol_size[i]; } em->connect_data = (char*)bqws_allocator_alloc(&em->allocator, connect_data_size); em->num_protocols = copt.num_protocols; { char *ptr = em->connect_data; memcpy(ptr, url_str, url_size); ptr += url_size; for (size_t i = 0; i < copt.num_protocols; i++) { memcpy(ptr, copt.protocols[i], protocol_size[i]); ptr += protocol_size[i]; } } pt_em_mutex_init(&em->ws_mutex); em->ws = ws; em->handle = -1; return ws; } static bqws_pt_server *pt_listen(const bqws_pt_listen_opts *opts) { pt_fail_pt("pt_listen()", BQWS_PT_ERR_NO_SERVER_SUPPORT); return NULL; } static bqws_socket *pt_accept(bqws_pt_server *sv, const bqws_opts *opts, const bqws_server_opts *server_opts) { return NULL; } static void pt_free_server(bqws_pt_server *sv) { } static bqws_pt_address pt_get_address(const bqws_socket *ws) { pt_em_socket *em = (pt_em_socket*)bqws_get_io_user(ws); bqws_assert(em && em->magic == BQWS_PT_EM_MAGIC); bqws_pt_address addr = { BQWS_PT_ADDRESS_WEBSOCKET }; memcpy(addr.address, &em->handle, sizeof(int)); return addr; } #elif (defined(_WIN32) || defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))) // -- Shared for Windows and POSIX static const uint8_t ipv4_mapped_ipv6_prefix[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff, }; static void addr_parse_ipv4(bqws_pt_address *dst, const void *addr, uint16_t port_native) { dst->port = port_native; dst->type = BQWS_PT_ADDRESS_IPV4; memcpy(dst->address, addr, 4); } static void addr_parse_ipv6(bqws_pt_address *dst, const void *addr, uint16_t port_native) { dst->port = port_native; if (!memcmp(addr, ipv4_mapped_ipv6_prefix, sizeof(ipv4_mapped_ipv6_prefix))) { dst->type = BQWS_PT_ADDRESS_IPV4; memcpy(dst->address, (const char*)addr + 12, 4); } else { dst->type = BQWS_PT_ADDRESS_IPV6; memcpy(dst->address, addr, 16); } } #if defined(_WIN32) // -- OS: Windows #include #include #define _WIN32_LEAN_AND_MEAN #include #pragma comment(lib, "ws2_32") //< @r-lyeh removed .lib (tcc support) typedef SOCKET os_socket; #define OS_BAD_SOCKET INVALID_SOCKET static void pt_fail_wsa(const char *func) { t_err.function = func; t_err.type = BQWS_PT_ERRTYPE_WSA; t_err.data = (uint32_t)WSAGetLastError(); } static void pt_sleep_ms(uint32_t ms) { Sleep((DWORD)ms); } static bool os_init(const bqws_pt_init_opts *opts) { WSADATA data; int res = WSAStartup(MAKEWORD(2,2), &data); if (res != 0) { pt_fail_wsa("WSAStartup()"); return false; } return true; } static void os_shutdown() { WSACleanup(); } static bool os_imp_config_data_socket(os_socket s) { int res; // Set the socket to be non-blocking u_long nb_flag = 1; res = ioctlsocket(s, FIONBIO, &nb_flag); if (res != 0) { pt_fail_wsa("ioctlsocket(FIONBIO)"); return false; } // Disable Nagle's algorithm to make writes immediate BOOL nd_flag = 1; res = setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (const char *)&nd_flag, sizeof(nd_flag)); if (res != 0) { pt_fail_wsa("setsockopt(TCP_NODELAY)"); return false; } return true; } static os_socket os_imp_try_connect(ADDRINFOW *info, int family, ADDRINFOW **used) { for (; info; info = info->ai_next) { if (info->ai_family != family) continue; SOCKET s = socket(family, SOCK_STREAM, IPPROTO_TCP); if (s == INVALID_SOCKET) { pt_fail_wsa("socket()"); return s; } int res = connect(s, info->ai_addr, (int)info->ai_addrlen); if (res == 0) { *used = info; return s; } pt_fail_wsa("connect()"); closesocket(s); } return INVALID_SOCKET; } static void os_imp_parse_address(bqws_pt_address *dst, struct sockaddr *addr) { if (addr->sa_family == AF_INET) { struct sockaddr_in *sa = (struct sockaddr_in*)addr; addr_parse_ipv4(dst, &sa->sin_addr, ntohs(sa->sin_port)); } else if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sa = (struct sockaddr_in6*)addr; addr_parse_ipv6(dst, &sa->sin6_addr, ntohs(sa->sin6_port)); } } static os_socket os_socket_connect(const bqws_url *url, bqws_pt_address *addr) { wchar_t whost[256]; char service[32]; wchar_t wservice[32]; snprintf(service, sizeof(service), "%u", url->port); int res = MultiByteToWideChar(CP_UTF8, 0, service, -1, wservice, sizeof(wservice) / sizeof(*wservice)); if (res == 0) return OS_BAD_SOCKET; res = MultiByteToWideChar(CP_UTF8, 0, url->host, -1, whost, sizeof(whost) / sizeof(*whost)); if (res == 0) return OS_BAD_SOCKET; ADDRINFOW hints = { 0 }; hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; ADDRINFOW *info; res = GetAddrInfoW(whost, wservice, &hints, &info); if (res != 0) { pt_fail_wsa("GetAddrInfoW()"); return INVALID_SOCKET; } ADDRINFOW *used_info = NULL; SOCKET s = os_imp_try_connect(info, AF_INET6, &used_info); if (s == INVALID_SOCKET) { s = os_imp_try_connect(info, AF_INET, &used_info); } if (s != INVALID_SOCKET) { os_imp_parse_address(addr, used_info->ai_addr); } FreeAddrInfoW(info); if (!os_imp_config_data_socket(s)) { closesocket(s); return INVALID_SOCKET; } return s; } static os_socket os_socket_listen(const bqws_pt_listen_opts *pt_opts) { os_socket s = OS_BAD_SOCKET; int res; do { s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP); if (s == INVALID_SOCKET) { pt_fail_wsa("socket()"); break; } // Make sure the socket supports both IPv4 and IPv6 DWORD ipv6_flag = 0; res = setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&ipv6_flag, sizeof(ipv6_flag)); if (res != 0) { pt_fail_wsa("setsockopt(IPPROTO_IPV6)"); break; } // Set the socket to be non-blocking u_long nb_flag = 1; res = ioctlsocket(s, FIONBIO, &nb_flag); if (res != 0) { pt_fail_wsa("ioctlsocket(FIONBIO)"); break; } struct sockaddr_in6 addr = { 0 }; addr.sin6_family = AF_INET6; addr.sin6_addr = in6addr_any; addr.sin6_port = htons(pt_opts->port); res = bind(s, (struct sockaddr*)&addr, sizeof(addr)); if (res != 0) { pt_fail_wsa("bind()"); break; } res = listen(s, (int)pt_opts->backlog); if (res != 0) { pt_fail_wsa("listen()"); break; } return s; } while (false); if (s != INVALID_SOCKET) closesocket(s); return INVALID_SOCKET; } static os_socket os_socket_accept(os_socket listen_s, bqws_pt_address *addr) { struct sockaddr_in6 addr_in; int addr_len = sizeof(addr_in); SOCKET s = accept(listen_s, (struct sockaddr*)&addr_in, &addr_len); if (s == INVALID_SOCKET) return INVALID_SOCKET; os_imp_parse_address(addr, (struct sockaddr*)&addr_in); if (!os_imp_config_data_socket(s)) { closesocket(s); return INVALID_SOCKET; } return s; } static size_t os_socket_recv(os_socket s, void *data, size_t size) { if (size > INT_MAX) size = INT_MAX; int res = recv(s, (char*)data, (int)size, 0); if (res < 0) { int err = WSAGetLastError(); if (err == WSAEWOULDBLOCK) return 0; t_err.function = "recv()"; t_err.type = BQWS_PT_ERRTYPE_WSA; t_err.data = err; return SIZE_MAX; } return (size_t)res; } static size_t os_socket_send(os_socket s, const void *data, size_t size) { if (size > INT_MAX) size = INT_MAX; int res = send(s, (const char*)data, (int)size, 0); if (res < 0) { int err = WSAGetLastError(); if (err == WSAEWOULDBLOCK) return 0; t_err.function = "send()"; t_err.type = BQWS_PT_ERRTYPE_WSA; t_err.data = err; return SIZE_MAX; } return (size_t)res; } static void os_socket_close(os_socket s) { shutdown(s, SD_BOTH); closesocket(s); } #else #include #include #include #include #include #include #include // TODO: Guard this with macros? #if 1 #include #define BQWS_HAS_GAI_STRERROR #endif typedef int os_socket; #define OS_BAD_SOCKET -1 static void pt_fail_posix(const char *func) { t_err.function = func; t_err.type = BQWS_PT_ERRTYPE_POSIX; t_err.data = errno; } static void pt_sleep_ms(uint32_t ms) { struct timespec ts; ts.tv_sec = ms / 1000; ts.tv_nsec = (ms % 1000) * 1000000; while (nanosleep(&ts, &ts)) { } } static bool os_init(const bqws_pt_init_opts *opts) { return true; } static void os_shutdown() { } static bool os_imp_config_data_socket(os_socket s) { int res; // Set the socket to be non-blocking int nb_flag = 1; res = ioctl(s, FIONBIO, &nb_flag); if (res != 0) { pt_fail_posix("ioctl(FIONBIO)"); return false; } // Disable Nagle's algorithm to make writes immediate int nd_flag = 1; res = setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &nd_flag, sizeof(nd_flag)); if (res != 0) { pt_fail_posix("setsockopt(TCP_NODELAY)"); return false; } return true; } static os_socket os_imp_try_connect(struct addrinfo *info, int family, struct addrinfo **used) { for (; info; info = info->ai_next) { if (info->ai_family != family) continue; int s = socket(family, SOCK_STREAM, IPPROTO_TCP); if (s == -1) { pt_fail_posix("socket()"); return s; } int res = connect(s, info->ai_addr, (int)info->ai_addrlen); if (res == 0) { *used = info; return s; } pt_fail_posix("connect()"); close(s); } return -1; } static void os_imp_parse_address(bqws_pt_address *dst, struct sockaddr *addr) { if (addr->sa_family == AF_INET) { struct sockaddr_in *sa = (struct sockaddr_in*)addr; addr_parse_ipv4(dst, &sa->sin_addr, ntohs(sa->sin_port)); } else if (addr->sa_family == AF_INET6) { struct sockaddr_in6 *sa = (struct sockaddr_in6*)addr; addr_parse_ipv6(dst, &sa->sin6_addr, ntohs(sa->sin6_port)); } } static os_socket os_socket_connect(const bqws_url *url, bqws_pt_address *addr) { char service[64]; snprintf(service, sizeof(service), "%d", (int)url->port); struct addrinfo hints = { 0 }; hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; struct addrinfo *info; int res = getaddrinfo(url->host, service, &hints, &info); if (res != 0) { t_err.function = "getaddrinfo()"; t_err.type = BQWS_PT_ERRTYPE_GETADDRINFO; t_err.data = res; return -1; } struct addrinfo *used_info = NULL; int s = os_imp_try_connect(info, AF_INET6, &used_info); if (s == -1) { s = os_imp_try_connect(info, AF_INET, &used_info); } if (s != -1) { os_imp_parse_address(addr, used_info->ai_addr); } freeaddrinfo(info); if (!os_imp_config_data_socket(s)) { close(s); return -1; } return s; } static os_socket os_socket_listen(const bqws_pt_listen_opts *pt_opts) { os_socket s = -1; int res; do { s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP); if (s == -1) { pt_fail_posix("socket()"); break; } // Make sure the socket supports both IPv4 and IPv6 int ipv6_flag = 0; res = setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6_flag, sizeof(ipv6_flag)); if (res != 0) { pt_fail_posix("setsockopt(IPPROTO_IPV6)"); break; } if (pt_opts->reuse_port) { int reuse_flag = 1; setsockopt(s, SOL_SOCKET, SO_REUSEPORT, &reuse_flag, sizeof(reuse_flag)); } // Set the socket to be non-blocking int nb_flag = 1; res = ioctl(s, FIONBIO, &nb_flag); if (res != 0) { pt_fail_posix("ioctl(FIONBIO)"); break; } struct sockaddr_in6 addr = { 0 }; addr.sin6_family = AF_INET6; addr.sin6_addr = in6addr_any; addr.sin6_port = htons(pt_opts->port); res = bind(s, (struct sockaddr*)&addr, sizeof(addr)); if (res != 0) { pt_fail_posix("bind()"); break; } res = listen(s, (int)pt_opts->backlog); if (res != 0) { pt_fail_posix("listen()"); break; } return s; } while (false); if (s != -1) close(s); return -1; } static os_socket os_socket_accept(os_socket listen_s, bqws_pt_address *addr) { struct sockaddr_in6 addr_in; socklen_t addr_len = sizeof(addr_in); int s = accept(listen_s, (struct sockaddr*)&addr_in, &addr_len); if (s == -1) return -1; os_imp_parse_address(addr, (struct sockaddr*)&addr_in); if (!os_imp_config_data_socket(s)) { close(s); return -1; } return s; } static size_t os_socket_recv(os_socket s, void *data, size_t size) { int res = read(s, data, size); if (res < 0) { int err = errno; if (err == EAGAIN || err == EWOULDBLOCK) return 0; t_err.function = "read()"; t_err.type = BQWS_PT_ERRTYPE_POSIX; t_err.data = err; return SIZE_MAX; } return (size_t)res; } static size_t os_socket_send(os_socket s, const void *data, size_t size) { int res = write(s, data, size); if (res < 0) { int err = errno; if (err == EAGAIN || err == EWOULDBLOCK) return 0; t_err.function = "write()"; t_err.type = BQWS_PT_ERRTYPE_POSIX; t_err.data = err; return SIZE_MAX; } return (size_t)res; } static void os_socket_close(os_socket s) { shutdown(s, SHUT_RDWR); close(s); } #endif // -- TLS #if BQWS_PT_USE_OPENSSL #include #include #define BQWS_PT_HAS_OPENSSL typedef struct { bool connected; SSL *ssl; } pt_tls; typedef struct { SSL_CTX *ctx; } pt_tls_server; typedef struct { SSL_CTX *client_ctx; } pt_tls_global; static pt_tls_global g_tls; static void pt_fail_ssl(const char *func) { t_err.function = func; t_err.type = BQWS_PT_ERRTYPE_OPENSSL; t_err.data = ERR_get_error(); } static bool tls_init(const bqws_pt_init_opts *opts) { int res; SSL_library_init(); g_tls.client_ctx = SSL_CTX_new(SSLv23_client_method()); if (!g_tls.client_ctx) { pt_fail_ssl("SSL_CTX_new()"); return false; } if (opts->ca_filename) { res = SSL_CTX_load_verify_locations(g_tls.client_ctx, opts->ca_filename, NULL); if (!res) { pt_fail_ssl("SSL_CTX_load_verify_locations()"); return false; } } long flags = SSL_OP_NO_COMPRESSION; SSL_CTX_set_options(g_tls.client_ctx, flags); long mode = SSL_MODE_ENABLE_PARTIAL_WRITE; SSL_CTX_set_mode(g_tls.client_ctx, mode); return true; } static void tls_shutdown() { SSL_CTX_free(g_tls.client_ctx); } static bool tls_init_client(pt_tls *tls, os_socket s, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts) { tls->ssl = SSL_new(g_tls.client_ctx); if (!tls->ssl) return false; BIO *bio = BIO_new_socket((int)s, 0); if (!bio) return false; // SSL_free() will free the BIO internally SSL_set_bio(tls->ssl, bio, bio); if (!pt_opts->insecure_no_verify_host) { const char *host = client_opts->host; if (!host || !*host) return false; X509_VERIFY_PARAM *param = SSL_get0_param(tls->ssl); X509_VERIFY_PARAM_set_hostflags(param, /* X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS */ 0x4); X509_VERIFY_PARAM_set1_host(param, host, 0); SSL_set_verify(tls->ssl, SSL_VERIFY_PEER, NULL); } return true; } static bool tls_init_server(pt_tls_server *tls, const bqws_pt_listen_opts *pt_opts) { tls->ctx = SSL_CTX_new(SSLv23_server_method()); if (!tls->ctx) { pt_fail_ssl("SSL_CTX_new()"); return false; } int res; if (pt_opts->certificate_file) { res = SSL_CTX_use_certificate_file(tls->ctx, pt_opts->certificate_file, SSL_FILETYPE_PEM); if (!res) { pt_fail_ssl("SSL_CTX_use_certificate_file()"); return false; } } if (pt_opts->private_key_file) { res = SSL_CTX_use_PrivateKey_file(tls->ctx, pt_opts->private_key_file, SSL_FILETYPE_PEM); if (!res) { pt_fail_ssl("SSL_CTX_use_PrivateKey_file()"); return false; } } long flags = SSL_OP_NO_COMPRESSION; SSL_CTX_set_options(tls->ctx, flags); long mode = SSL_MODE_ENABLE_PARTIAL_WRITE; SSL_CTX_set_mode(tls->ctx, mode); return true; } static void tls_free_server(pt_tls_server *tls) { if (tls->ctx) { SSL_CTX_free(tls->ctx); } } static bool tls_init_accept(pt_tls *tls, pt_tls_server *tls_server, os_socket s) { tls->ssl = SSL_new(tls_server->ctx); if (!tls->ssl) return false; BIO *bio = BIO_new_socket((int)s, 0); if (!bio) return false; // SSL_free() will free the BIO internally SSL_set_bio(tls->ssl, bio, bio); return true; } static void tls_free(pt_tls *tls) { if (tls->ssl) SSL_free(tls->ssl); } static bool tls_imp_connect(pt_tls *tls) { int res = SSL_connect(tls->ssl); if (res <= 0) { int err = SSL_get_error(tls->ssl, res); if (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) { // Did not fail, just did not connect yet return true; } else { pt_fail_ssl("SSL_connect()"); return false; } } tls->connected = true; return true; } static size_t tls_send(pt_tls *tls, const void *data, size_t size) { if (!tls->connected) { if (!tls_imp_connect(tls)) return SIZE_MAX; if (!tls->connected) return 0; } if (size > INT_MAX) size = INT_MAX; int res = SSL_write(tls->ssl, data, (int)size); if (res <= 0) { int err = SSL_get_error(tls->ssl, res); if (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) { return 0; } else { pt_fail_ssl("SSL_write()"); return SIZE_MAX; } } return (size_t)res; } static size_t tls_recv(pt_tls *tls, void *data, size_t size) { if (!tls->connected) { if (!tls_imp_connect(tls)) return SIZE_MAX; if (!tls->connected) return 0; } if (size > INT_MAX) size = INT_MAX; int res = SSL_read(tls->ssl, data, (int)size); if (res <= 0) { int err = SSL_get_error(tls->ssl, res); if (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) { return 0; } else { pt_fail_ssl("SSL_read()"); return SIZE_MAX; } } return (size_t)res; } #else typedef struct { int unused; } pt_tls; typedef struct { int unused; } pt_tls_server; static bool tls_init(const bqws_pt_init_opts *opts) { return true; } static void tls_shutdown() { } static bool tls_init_client(pt_tls *tls, os_socket s, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts) { pt_fail_pt("tls_init_client()", BQWS_PT_ERR_NO_TLS); return false; } static bool tls_init_server(pt_tls_server *tls, const bqws_pt_listen_opts *pt_opts) { pt_fail_pt("tls_init_client()", BQWS_PT_ERR_NO_TLS); return false; } static void tls_free_server(pt_tls_server *tls) { } static bool tls_init_accept(pt_tls *tls, pt_tls_server *tls_server, os_socket s) { bqws_assert(0 && "Should never get here"); return false; } static void tls_free(pt_tls *tls) { } static size_t tls_send(pt_tls *tls, const void *data, size_t size) { bqws_assert(0 && "Should never get here"); return SIZE_MAX; } static size_t tls_recv(pt_tls *tls, void *data, size_t size) { bqws_assert(0 && "Should never get here"); return SIZE_MAX; } #endif #if defined(__APPLE__) // -- CF socket implementation #include #include #include #include #include #include #include #include #include typedef struct { bool enabled; bool has_address; bool set_nonblocking; CFWriteStreamRef write; CFReadStreamRef read; } pt_cf; static void cf_free(pt_cf *cf) { if (cf->read) CFRelease(cf->read); if (cf->write) CFRelease(cf->write); } static size_t cf_send(pt_cf *cf, const void *data, size_t size) { if (size == 0) return 0; switch (CFWriteStreamGetStatus(cf->write)) { case kCFStreamStatusOpening: return 0; case kCFStreamStatusError: case kCFStreamStatusClosed: return SIZE_MAX; default: if (!CFWriteStreamCanAcceptBytes(cf->write)) return 0; } if (!cf->set_nonblocking) { cf->set_nonblocking = true; CFDataRef socket_data = (CFDataRef)CFWriteStreamCopyProperty(cf->write, kCFStreamPropertySocketNativeHandle); if (socket_data) { CFSocketNativeHandle s = -1; CFDataGetBytes(socket_data, CFRangeMake(0, sizeof(CFSocketNativeHandle)), (UInt8*)&s); if (s >= 0) { int nd_flag = 1; setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &nd_flag, sizeof(nd_flag)); } CFRelease(socket_data); } } CFIndex res = CFWriteStreamWrite(cf->write, (const UInt8*)data, size); if (res < 0) return SIZE_MAX; return (size_t)res; } static size_t cf_recv(pt_cf *cf, void *data, size_t max_size) { if (max_size == 0) return 0; switch (CFReadStreamGetStatus(cf->read)) { case kCFStreamStatusOpening: return 0; case kCFStreamStatusError: case kCFStreamStatusClosed: return SIZE_MAX; default: if (!CFReadStreamHasBytesAvailable(cf->read)) return 0; } CFIndex res = CFReadStreamRead(cf->read, (UInt8*)data, (CFIndex)max_size); if (res < 0) return SIZE_MAX; return (size_t)res; } static bool cf_connect(const bqws_url *url, pt_cf *cf) { CFAllocatorRef ator = kCFAllocatorDefault; do { memset(cf, 0, sizeof(pt_cf)); CFStringRef host_ref = CFStringCreateWithCString(ator, url->host, kCFStringEncodingUTF8); CFStreamCreatePairWithSocketToHost(ator, host_ref, url->port, &cf->read, &cf->write); CFRelease(host_ref); if (!cf->read || !cf->write) { pt_fail_pt("CFStreamCreatePairWithSocketToHost()", BQWS_PT_ERR_OUT_OF_MEMORY); break; } if (url->secure) { CFStringRef keys[] = { kCFStreamPropertySocketSecurityLevel }; CFStringRef values[] = { kCFStreamSocketSecurityLevelTLSv1 }; CFDictionaryRef dict = CFDictionaryCreate(ator, (const void**)keys, (const void**)values, 1, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); CFWriteStreamSetProperty(cf->write, kCFStreamPropertySSLSettings, dict); CFReadStreamSetProperty(cf->read, kCFStreamPropertySSLSettings, dict); CFRelease(dict); } CFWriteStreamOpen(cf->write); CFReadStreamOpen(cf->read); cf->enabled = true; return true; } while (false); if (cf) cf_free(cf); return false; } static void cf_get_address(pt_cf *cf, bqws_pt_address *address) { if (!cf->has_address) { CFDataRef socket_data = (CFDataRef)CFWriteStreamCopyProperty(cf->write, kCFStreamPropertySocketNativeHandle); if (socket_data) { CFSocketNativeHandle s = -1; CFDataGetBytes(socket_data, CFRangeMake(0, sizeof(CFSocketNativeHandle)), (UInt8*)&s); if (s >= 0) { struct sockaddr_in6 addr; socklen_t addr_len = sizeof(addr); if (getsockname(s, (struct sockaddr*)&addr, &addr_len) == 0 && addr_len >= sizeof(struct sockaddr_in)) { os_imp_parse_address(address, (struct sockaddr*)&addr); } } CFRelease(socket_data); } cf->has_address = true; } } #define cf_enabled(cf) ((cf)->enabled) #else typedef struct { int unused; } pt_cf; static void cf_free(pt_cf *cf) { } static size_t cf_send(pt_cf *cf, const void *data, size_t size) { return SIZE_MAX; } static size_t cf_recv(pt_cf *cf, void *data, size_t max_size) { return SIZE_MAX; } static bool cf_connect(const bqws_url *url, pt_cf *cf) { return false; } static void cf_get_address(pt_cf *cf, bqws_pt_address *address) { } #define cf_enabled(cf) (false) #endif // -- POSIX socket implementation typedef struct { uint32_t magic; os_socket s; size_t send_size; char send_buf[512]; bool secure; pt_tls tls; pt_cf cf; bqws_pt_address address; bqws_allocator allocator; } pt_io; struct bqws_pt_server { uint32_t magic; os_socket s; bool secure; pt_tls_server tls; bqws_allocator allocator; }; static size_t io_imp_send(pt_io *io, const void *data, size_t size) { if (size == 0) return 0; if (cf_enabled(&io->cf)) { return cf_send(&io->cf, data, size); } else if (io->secure) { return tls_send(&io->tls, data, size); } else { return os_socket_send(io->s, data, size); } } static bool io_flush_imp(pt_io *io) { size_t size = io->send_size; size_t sent = io_imp_send(io, io->send_buf, size); if (sent == 0) return true; if (sent == SIZE_MAX) return false; size_t left = size - sent; io->send_size = left; if (left > 0) { memmove(io->send_buf, io->send_buf + sent, left); } return true; } static size_t io_push_imp(pt_io *io, const char *ptr, const char *end) { size_t size = end - ptr; size_t offset = io->send_size; size_t to_copy = sizeof(io->send_buf) - offset; if (to_copy > size) to_copy = size; memcpy(io->send_buf + offset, ptr, to_copy); io->send_size += to_copy; return to_copy; } static void io_free(pt_io *io) { if (cf_enabled(&io->cf)) cf_free(&io->cf); if (io->secure) tls_free(&io->tls); if (io->s != OS_BAD_SOCKET) os_socket_close(io->s); io->magic = BQWS_PT_DELETED_MAGIC; bqws_allocator allocator = io->allocator; bqws_allocator_free(&allocator, io, sizeof(pt_io)); } static size_t pt_io_send(void *user, bqws_socket *ws, const void *data, size_t size) { if (size == 0) return 0; pt_io *io = (pt_io*)user; const char *begin = (const char*)data, *end = begin + size; const char *ptr = begin; // TODO: Try 2*sizeof(io->send_buf) - io->send_size if (size <= sizeof(io->send_buf)) { ptr += io_push_imp(io, ptr, end); if (ptr != end) { if (!io_flush_imp(io)) return SIZE_MAX; ptr += io_push_imp(io, ptr, end); } } else { if (io->send_size > 0) { ptr += io_push_imp(io, ptr, end); if (!io_flush_imp(io)) return SIZE_MAX; } size_t sent = io_imp_send(io, ptr, end - ptr); if (sent == SIZE_MAX) return SIZE_MAX; ptr += sent; } return ptr - begin; } static size_t pt_io_recv(void *user, bqws_socket *ws, void *data, size_t max_size, size_t min_size) { if (max_size == 0) return 0; pt_io *io = (pt_io*)user; if (cf_enabled(&io->cf)) { return cf_recv(&io->cf, data, max_size); } else if (io->secure) { return tls_recv(&io->tls, data, max_size); } else { return os_socket_recv(io->s, data, max_size); } } static bool pt_io_flush(void *user, bqws_socket *ws) { pt_io *io = (pt_io*)user; return io_flush_imp(io); } static void pt_io_close(void *user, bqws_socket *ws) { pt_io *io = (pt_io*)user; io_free(io); } static bool pt_init(const bqws_pt_init_opts *opts) { if (!os_init(opts)) return false; if (!tls_init(opts)) { os_shutdown(); return false; } return true; } static void pt_shutdown() { tls_shutdown(); os_shutdown(); } static bqws_socket *pt_connect(const bqws_url *url, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts) { pt_io *io = NULL; do { io = (pt_io*)bqws_allocator_alloc(&opts->allocator, sizeof(pt_io)); if (!io) break; memset(io, 0, sizeof(pt_io)); io->allocator = opts->allocator; io->s = OS_BAD_SOCKET; io->magic = BQWS_PT_IO_MAGIC; if (!cf_connect(url, &io->cf)) { bqws_pt_address addr = { BQWS_PT_ADDRESS_UNKNOWN }; io->s = os_socket_connect(url, &addr); if (io->s == OS_BAD_SOCKET) break; io->address = addr; if (url->secure) { io->secure = true; if (!tls_init_client(&io->tls, io->s, pt_opts, opts, client_opts)) break; } } bqws_opts opt; if (opts) { opt = *opts; } else { memset(&opt, 0, sizeof(opt)); } opt.io.user = io; opt.io.send_fn = &pt_io_send; opt.io.recv_fn = &pt_io_recv; opt.io.flush_fn = &pt_io_flush; opt.io.close_fn = &pt_io_close; bqws_socket *ws = bqws_new_client(&opt, client_opts); if (!ws) break; return ws; } while (false); if (io) io_free(io); return NULL; } static bqws_pt_server *pt_listen(const bqws_pt_listen_opts *pt_opts) { bqws_pt_server *sv = (bqws_pt_server*)bqws_allocator_alloc(&pt_opts->allocator, sizeof(bqws_pt_server)); if (!sv) { pt_fail_pt("pt_listen()", BQWS_PT_ERR_OUT_OF_MEMORY); return NULL; } memset(sv, 0, sizeof(bqws_pt_server)); sv->magic = BQWS_PT_SERVER_MAGIC; sv->allocator = pt_opts->allocator; if (pt_opts->secure) { sv->secure = true; if (!tls_init_server(&sv->tls, pt_opts)) { bqws_allocator_free(&pt_opts->allocator, sv, sizeof(bqws_pt_server)); return NULL; } } sv->s = os_socket_listen(pt_opts); if (sv->s == OS_BAD_SOCKET) { bqws_allocator_free(&pt_opts->allocator, sv, sizeof(bqws_pt_server)); return NULL; } return sv; } static bqws_socket *pt_accept(bqws_pt_server *sv, const bqws_opts *opts, const bqws_server_opts *server_opts) { bqws_assert(sv && sv->magic == BQWS_PT_SERVER_MAGIC); bqws_pt_address addr = { BQWS_PT_ADDRESS_UNKNOWN }; os_socket s = os_socket_accept(sv->s, &addr); if (s == OS_BAD_SOCKET) return NULL; pt_io *io = NULL; do { io = (pt_io*)bqws_allocator_alloc(&opts->allocator, sizeof(pt_io)); if (!io) break; memset(io, 0, sizeof(pt_io)); io->magic = BQWS_PT_IO_MAGIC; io->s = s; io->allocator = opts->allocator; io->address = addr; s = OS_BAD_SOCKET; if (sv->secure) { io->secure = true; if (!tls_init_accept(&io->tls, &sv->tls, s)) break; } bqws_opts opt; if (opts) { opt = *opts; } else { memset(&opt, 0, sizeof(opt)); } opt.io.user = io; opt.io.send_fn = &pt_io_send; opt.io.recv_fn = &pt_io_recv; opt.io.flush_fn = &pt_io_flush; opt.io.close_fn = &pt_io_close; bqws_socket *ws = bqws_new_server(&opt, server_opts); if (!ws) break; return ws; } while (false); if (io) io_free(io); os_socket_close(s); return NULL; } static void pt_free_server(bqws_pt_server *sv) { bqws_assert(sv && sv->magic == BQWS_PT_SERVER_MAGIC); if (sv->secure) { tls_free_server(&sv->tls); } os_socket_close(sv->s); sv->magic = BQWS_PT_DELETED_MAGIC; bqws_allocator allocator = sv->allocator; bqws_allocator_free(&allocator, sv, sizeof(bqws_pt_server)); } static bqws_pt_address pt_get_address(const bqws_socket *ws) { pt_io *io = (pt_io*)bqws_get_io_user(ws); bqws_assert(io && io->magic == BQWS_PT_IO_MAGIC); if (cf_enabled(&io->cf)) cf_get_address(&io->cf, &io->address); return io->address; } #else #error "Unsupported platform" #endif // -- API bool bqws_pt_init(const bqws_pt_init_opts *opts) { bqws_pt_init_opts opt; if (opts) { opt = *opts; } else { memset(&opt, 0, sizeof(opt)); } return pt_init(&opt); } void bqws_pt_shutdown() { pt_shutdown(); } void bqws_pt_clear_error() { t_err.function = NULL; t_err.type = BQWS_PT_ERRTYPE_NONE; t_err.data = 0; } bool bqws_pt_get_error(bqws_pt_error *err) { if (t_err.type == BQWS_PT_ERRTYPE_NONE) return false; if (err) *err = t_err; return true; } bqws_socket *bqws_pt_connect(const char *url, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts) { bqws_pt_clear_error(); bqws_url parsed_url; if (!bqws_parse_url(&parsed_url, url)) { pt_fail_pt("bqws_parse_url()", BQWS_PT_ERR_BAD_URL); return NULL; } return bqws_pt_connect_url(&parsed_url, pt_opts, opts, client_opts); } bqws_socket *bqws_pt_connect_url(const bqws_url *url, const bqws_pt_connect_opts *pt_opts, const bqws_opts *opts, const bqws_client_opts *client_opts) { bqws_pt_clear_error(); bqws_pt_connect_opts popt; if (pt_opts) { popt = *pt_opts; } else { memset(&popt, 0, sizeof(popt)); } bqws_opts opt; if (opts) { opt = *opts; } else { memset(&opt, 0, sizeof(opt)); } bqws_client_opts copt; if (client_opts) { copt = *client_opts; } else { memset(&copt, 0, sizeof(copt)); } if (!copt.host) copt.host = url->host; if (!copt.path) copt.path = url->path; return pt_connect(url, &popt, &opt, &copt); } bqws_pt_server *bqws_pt_listen(const bqws_pt_listen_opts *pt_opts) { bqws_pt_clear_error(); bqws_pt_listen_opts opts; if (pt_opts) { opts = *pt_opts; } else { memset(&opts, 0, sizeof(opts)); } if (!opts.port) { opts.port = opts.secure ? 443 : 80; } if (!opts.backlog) { opts.backlog = 128; } else if (opts.backlog > INT32_MAX) { opts.backlog = INT32_MAX; } return pt_listen(&opts); } void bqws_pt_free_server(bqws_pt_server *sv) { if (!sv) return; pt_free_server(sv); } bqws_socket *bqws_pt_accept(bqws_pt_server *sv, const bqws_opts *opts, const bqws_server_opts *server_opts) { bqws_pt_clear_error(); bqws_opts opt; if (opts) { opt = *opts; } else { memset(&opt, 0, sizeof(opt)); } return pt_accept(sv, &opt, server_opts); } bqws_pt_address bqws_pt_get_address(const bqws_socket *ws) { bqws_assert(ws); if (bqws_get_io_closed(ws)) { bqws_pt_address null_addr = { BQWS_PT_ADDRESS_UNKNOWN }; return null_addr; } return pt_get_address(ws); } void bqws_pt_format_address(char *dst, size_t size, const bqws_pt_address *addr) { if (size == 0) return; switch (addr->type) { case BQWS_PT_ADDRESS_UNKNOWN: snprintf(dst, size, "(unknown)"); break; case BQWS_PT_ADDRESS_WEBSOCKET: snprintf(dst, size, "websocket[%d]", *(int*)addr->address); break; case BQWS_PT_ADDRESS_IPV4: snprintf(dst, size, "%u.%u.%u.%u:%u", (unsigned)addr->address[0], (unsigned)addr->address[1], (unsigned)addr->address[2], (unsigned)addr->address[3], (unsigned)addr->port); break; case BQWS_PT_ADDRESS_IPV6: { const uint8_t *a = addr->address; // Find the leftmost longest run of zeros that's longer than one size_t longest_begin = SIZE_MAX; size_t longest_zeros = 1; { size_t zeros = 0; size_t zero_begin = 0; for (size_t i = 0; i < 16; i += 2) { if (a[i] == 0 && a[i + 1] == 0) { if (zeros == 0) { zero_begin = i; } zeros++; if (zeros > longest_zeros) { longest_begin = zero_begin; longest_zeros = zeros; } } else { zeros = 0; } } } bool need_colon = false; char *ptr = dst, *end = dst + size; ptr += snprintf(ptr, end - ptr, "["); for (size_t i = 0; i < 16; i += 2) { if (i == longest_begin) { ptr += snprintf(ptr, end - ptr, "::"); need_colon = false; i += (longest_zeros - 1) * 2; continue; } unsigned v = (unsigned)a[i] << 8 | (unsigned)a[i + 1]; ptr += snprintf(ptr, end - ptr, need_colon ? ":%x" : "%x", v); need_colon = true; } ptr += snprintf(ptr, end - ptr, "]:%u", (unsigned)addr->port); } break; default: snprintf(dst, size, "(bad type)"); break; } } void bqws_pt_get_error_desc(char *dst, size_t size, const bqws_pt_error *err) { if (size == 0) return; *dst = '\0'; switch (err->type) { case BQWS_PT_ERRTYPE_NONE: // Nop, empty description break; case BQWS_PT_ERRTYPE_PT: { const char *str = bqws_pt_error_code_str((bqws_pt_error_code)err->data); size_t len = strlen(str); if (len > size) len = size; memcpy(dst, str, len); dst[len] = '\0'; } break; case BQWS_PT_ERRTYPE_WSA: #if defined(_WIN32) { wchar_t *buf; FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, (DWORD)err->data, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&buf, 0, NULL); int int_size = size < INT_MAX ? (int)size : INT_MAX; int res = WideCharToMultiByte(CP_UTF8, 0, buf, -1, dst, int_size, NULL, NULL); if (res == 0) { *dst = '\0'; } else if (res >= int_size) { dst[int_size] = '\0'; } } #endif break; case BQWS_PT_ERRTYPE_POSIX: { #if defined(_WIN32) strerror_s(dst, size, (int)err->data); #else const char *ptr = (const char*)(uintptr_t)strerror_r((int)err->data, dst, size); if (dst[0] == '\0' && ptr != dst) { const char *err_str = strerror((int)err->data); size_t len = strlen(err_str); if (len >= size - 1) len = size - 1; memcpy(dst, err_str, len); dst[len] = '\0'; } #endif } break; case BQWS_PT_ERRTYPE_GETADDRINFO: #if defined(BQWS_HAS_GAI_STRERROR) { const char *str = gai_strerror((int)err->data); size_t len = strlen(str); if (len > size) len = size; memcpy(dst, str, len); dst[len] = '\0'; } #endif break; case BQWS_PT_ERRTYPE_OPENSSL: #if defined(BQWS_PT_HAS_OPENSSL) && !defined(__EMSCRIPTEN__) ERR_error_string_n((unsigned long)err->data, dst, size); #endif break; } } void bqws_pt_sleep_ms(uint32_t ms) { pt_sleep_ms(ms); } const char *bqws_pt_error_type_str(bqws_pt_error_type type) { switch (type) { case BQWS_PT_ERRTYPE_NONE: return "NONE"; case BQWS_PT_ERRTYPE_PT: return "PT"; case BQWS_PT_ERRTYPE_WSA: return "WSA"; case BQWS_PT_ERRTYPE_POSIX: return "POSIX"; case BQWS_PT_ERRTYPE_GETADDRINFO: return "GETADDRINFO"; case BQWS_PT_ERRTYPE_OPENSSL: return "OPENSSL"; default: return "(unknown)"; } } const char *bqws_pt_error_code_str(bqws_pt_error_code err) { switch (err) { case BQWS_PT_OK: return "OK"; case BQWS_PT_ERR_NO_TLS: return "NO_TLS: bq_websocket_platform.c was built without TLS support"; case BQWS_PT_ERR_NO_SERVER_SUPPORT: return "NO_SERVER_SUPPORT: The platform doesn't support server sockets"; case BQWS_PT_ERR_OUT_OF_MEMORY: return "OUT_OF_MEMORY: Failed to allocate memory"; case BQWS_PT_ERR_BAD_URL: return "BAD_URL: Could not parse URL"; default: return "(unknown)"; } } /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2020 Samuli Raivio Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ---------------------------------------- */ #endif // BQ_PLATFORM_IMPLEMENTATION #line 0 #line 1 "3rd_simplex.h" /** 1D, 2D, 3D and 4D float Perlin Simplex noise */ /** Original code, stefan gustavson (PD). */ #ifdef SIMPLEX_C /* SimplexNoise1234, Simplex noise with true analytic * derivative in 1D to 4D. * * Author: Stefan Gustavson, 2003-2005 * Contact: stefan.gustavson@liu.se * * This code was GPL licensed until February 2011. * As the original author of this code, I hereby * release it into the public domain. * Please feel free to use it for whatever you want. * Credit is appreciated where appropriate, and I also * appreciate being told where this code finds any use, * but you may do as you like. */ /* * This implementation is "Simplex Noise" as presented by * Ken Perlin at a relatively obscure and not often cited course * session "Real-Time Shading" at Siggraph 2001 (before real * time shading actually took off), under the title "hardware noise". * The 3D function is numerically equivalent to his Java reference * code available in the PDF course notes, although I re-implemented * it from scratch to get more readable code. The 1D, 2D and 4D cases * were implemented from scratch by me from Ken Perlin's text. * * This file has no dependencies on any other file, not even its own * header file. The header file is made for use by external code only. */ // We don't really need to include this, but play nice and do it anyway. //#include "noise.c" #define FASTFLOOR(x) ( ((int)(x)<=(x)) ? ((int)x) : (((int)x)-1) ) //--------------------------------------------------------------------- // Static data /* * Permutation table. This is just a random jumble of all numbers 0-255, * repeated twice to avoid wrapping the index at 255 for each lookup. * This needs to be exactly the same for all instances on all platforms, * so it's easiest to just keep it as static explicit data. * This also removes the need for any initialisation of this class. * * Note that making this an int[] instead of a char[] might make the * code run faster on platforms with a high penalty for unaligned single * byte addressing. Intel x86 is generally single-byte-friendly, but * some other CPUs are faster with 4-aligned reads. * However, a char[] is smaller, which avoids cache trashing, and that * is probably the most important aspect on most architectures. * This array is accessed a *lot* by the noise functions. * A vector-valued noise over 3D accesses it 96 times, and a * float-valued 4D noise 64 times. We want this to fit in the cache! */ unsigned char perm[512] = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; //--------------------------------------------------------------------- /* * Helper functions to compute gradients-dot-residualvectors (1D to 4D) * Note that these generate gradients of more than unit length. To make * a close match with the value range of classic Perlin noise, the final * noise values need to be rescaled to fit nicely within [-1,1]. * (The simplex noise functions as such also have different scaling.) * Note also that these noise functions are the most practical and useful * signed version of Perlin noise. To return values according to the * RenderMan specification from the SL noise() and pnoise() functions, * the noise values need to be scaled and offset to [0,1], like this: * float SLnoise = (noise(x,y,z) + 1.0) * 0.5; */ float grad1( int hash, float x ) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if (h&8) grad = -grad; // Set a random sign for the gradient return ( grad * x ); // Multiply the gradient with the distance } float grad2( int hash, float x, float y ) { int h = hash & 7; // Convert low 3 bits of hash code float u = h<4 ? x : y; // into 8 simple gradient directions, float v = h<4 ? y : x; // and compute the dot product with (x,y). return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v); } float grad3( int hash, float x, float y , float z ) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h<8 ? x : y; // gradient directions, and compute dot product. float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15 return ((h&1)? -u : u) + ((h&2)? -v : v); } float grad4( int hash, float x, float y, float z, float t ) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h<24 ? x : y; // gradient directions, and compute dot product. float v = h<16 ? y : z; float w = h<8 ? z : t; return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w); } // A lookup table to traverse the simplex around a given point in 4D. // Details can be found where this table is used, in the 4D noise method. /* TODO: This should not be required, backport it from Bill's GLSL code! */ static unsigned char simplex[64][4] = { {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0}, {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0}, {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0}, {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}}; // 1D simplex noise float snoise1(float x) { int i0 = FASTFLOOR(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0*x0; // if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case t0 *= t0; n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0); float t1 = 1.0f - x1*x1; // if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case t1 *= t1; n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 would scale to fit exactly within [-1,1], but // we want to match PRMan's 1D noise, so we scale it down some more. return 0.25f * (n0 + n1); } // 2D simplex noise float snoise2(float x, float y) { #define F2 0.366025403 // F2 = 0.5*(sqrt(3.0)-1.0) #define G2 0.211324865 // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x+y)*F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FASTFLOOR(xs); int j = FASTFLOOR(ys); float t = (float)(i+j)*G2; float X0 = i-t; // Unskew the cell origin back to (x,y) space float Y0 = j-t; float x0 = x-X0; // The x,y distances from the cell origin float y0 = y-Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i & 0xff; int jj = j & 0xff; // Calculate the contribution from the three corners float t0 = 0.5f - x0*x0-y0*y0; if(t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad2(perm[ii+perm[jj]], x0, y0); } float t1 = 0.5f - x1*x1-y1*y1; if(t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad2(perm[ii+i1+perm[jj+j1]], x1, y1); } float t2 = 0.5f - x2*x2-y2*y2; if(t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad2(perm[ii+1+perm[jj+1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } // 3D simplex noise float snoise3(float x, float y, float z) { // Simple skewing factors for the 3D case #define F3 0.333333333 #define G3 0.166666667 float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D float xs = x+s; float ys = y+s; float zs = z+s; int i = FASTFLOOR(xs); int j = FASTFLOOR(ys); int k = FASTFLOOR(zs); float t = (float)(i+j+k)*G3; float X0 = i-t; // Unskew the cell origin back to (x,y,z) space float Y0 = j-t; float Z0 = k-t; float x0 = x-X0; // The x,y,z distances from the cell origin float y0 = y-Y0; float z0 = z-Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if(x0>=y0) { if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order } else { // x0 y0) ? 32 : 0; int c2 = (x0 > z0) ? 16 : 0; int c3 = (y0 > z0) ? 8 : 0; int c4 = (x0 > w0) ? 4 : 0; int c5 = (y0 > w0) ? 2 : 0; int c6 = (z0 > w0) ? 1 : 0; int c = c1 + c2 + c3 + c4 + c5 + c6; int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x=3 ? 1 : 0; j1 = simplex[c][1]>=3 ? 1 : 0; k1 = simplex[c][2]>=3 ? 1 : 0; l1 = simplex[c][3]>=3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate. i2 = simplex[c][0]>=2 ? 1 : 0; j2 = simplex[c][1]>=2 ? 1 : 0; k2 = simplex[c][2]>=2 ? 1 : 0; l2 = simplex[c][3]>=2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate. i3 = simplex[c][0]>=1 ? 1 : 0; j3 = simplex[c][1]>=1 ? 1 : 0; k3 = simplex[c][2]>=1 ? 1 : 0; l3 = simplex[c][3]>=1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords float y1 = y0 - j1 + G4; float z1 = z0 - k1 + G4; float w1 = w0 - l1 + G4; float x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords float y2 = y0 - j2 + 2.0f*G4; float z2 = z0 - k2 + 2.0f*G4; float w2 = w0 - l2 + 2.0f*G4; float x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords float y3 = y0 - j3 + 3.0f*G4; float z3 = z0 - k3 + 3.0f*G4; float w3 = w0 - l3 + 3.0f*G4; float x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords float y4 = y0 - 1.0f + 4.0f*G4; float z4 = z0 - 1.0f + 4.0f*G4; float w4 = w0 - 1.0f + 4.0f*G4; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i & 0xff; int jj = j & 0xff; int kk = k & 0xff; int ll = l & 0xff; // Calculate the contribution from the five corners float t0 = 0.5f - x0*x0 - y0*y0 - z0*z0 - w0*w0; if(t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0); } float t1 = 0.5f - x1*x1 - y1*y1 - z1*z1 - w1*w1; if(t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1); } float t2 = 0.5f - x2*x2 - y2*y2 - z2*z2 - w2*w2; if(t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2); } float t3 = 0.5f - x3*x3 - y3*y3 - z3*z3 - w3*w3; if(t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3); } float t4 = 0.5f - x4*x4 - y4*y4 - z4*z4 - w4*w4; if(t4 < 0.0f) n4 = 0.0f; else { t4 *= t4; n4 = t4 * t4 * grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 62.0f * (n0 + n1 + n2 + n3 + n4); } #undef F2 #undef G2 #undef F3 #undef G3 #undef F4 #undef G4 #endif #line 0 #line 1 "3rd_tfd.h" /* If you are using a C++ compiler to compile tinyfiledialogs.c (maybe renamed with an extension ".cpp") then comment out << extern "C" >> bellow in this header file) */ /*_________ / \ tinyfiledialogs.h v3.8.8 [Apr 22, 2021] zlib licence |tiny file| Unique header file created [November 9, 2014] | dialogs | Copyright (c) 2014 - 2021 Guillaume Vareille http://ysengrin.com \____ ___/ http://tinyfiledialogs.sourceforge.net \| git clone http://git.code.sf.net/p/tinyfiledialogs/code tinyfd ____________________________________________ | | | email: tinyfiledialogs at ysengrin.com | |____________________________________________| ________________________________________________________________________________ | ____________________________________________________________________________ | | | | | | | on windows: | | | | - for UTF-16, use the wchar_t functions at the bottom of the header file | | | | - _wfopen() requires wchar_t | | | | | | | | - in tinyfiledialogs, char is UTF-8 by default (since v3.6) | | | | - but fopen() expects MBCS (not UTF-8) | | | | - if you want char to be MBCS: set tinyfd_winUtf8 to 0 | | | | | | | | - alternatively, tinyfiledialogs provides | | | | functions to convert between UTF-8, UTF-16 and MBCS | | | |____________________________________________________________________________| | |________________________________________________________________________________| If you like tinyfiledialogs, please upvote my stackoverflow answer https://stackoverflow.com/a/47651444 - License - This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef TINYFILEDIALOGS_H #define TINYFILEDIALOGS_H #ifdef __cplusplus /* if tinydialogs.c is compiled as C++ code rather than C code, you may need to comment this out and the corresponding closing bracket near the end of this file. */ extern "C" { #endif /******************************************************************************************************/ /**************************************** UTF-8 on Windows ********************************************/ /******************************************************************************************************/ #ifdef _WIN32 /* On windows, if you want to use UTF-8 ( instead of the UTF-16/wchar_t functions at the end of this file ) Make sure your code is really prepared for UTF-8 (on windows, functions like fopen() expect MBCS and not UTF-8) */ extern int tinyfd_winUtf8; /* on windows char strings can be 1:UTF-8(default) or 0:MBCS */ /* for MBCS change this to 0, in tinyfiledialogs.c or in your code */ /* Here are some functions to help you convert between UTF-16 UTF-8 MBSC */ char * tinyfd_utf8toMbcs(char const * aUtf8string); char * tinyfd_utf16toMbcs(wchar_t const * aUtf16string); wchar_t * tinyfd_mbcsTo16(char const * aMbcsString); char * tinyfd_mbcsTo8(char const * aMbcsString); wchar_t * tinyfd_utf8to16(char const * aUtf8string); char * tinyfd_utf16to8(wchar_t const * aUtf16string); #endif /******************************************************************************************************/ /******************************************************************************************************/ /******************************************************************************************************/ /************* 3 funtions for C# (you don't need this in C or C++) : */ char const * tinyfd_getGlobalChar(char const * aCharVariableName); /* returns NULL on error */ int tinyfd_getGlobalInt(char const * aIntVariableName); /* returns -1 on error */ int tinyfd_setGlobalInt(char const * aIntVariableName, int aValue); /* returns -1 on error */ /* aCharVariableName: "tinyfd_version" "tinyfd_needs" "tinyfd_response" aIntVariableName : "tinyfd_verbose" "tinyfd_silent" "tinyfd_allowCursesDialogs" "tinyfd_forceConsole" "tinyfd_assumeGraphicDisplay" "tinyfd_winUtf8" **************/ extern char tinyfd_version[8]; /* contains tinyfd current version number */ extern char tinyfd_needs[]; /* info about requirements */ extern int tinyfd_verbose; /* 0 (default) or 1 : on unix, prints the command line calls */ extern int tinyfd_silent; /* 1 (default) or 0 : on unix, hide errors and warnings from called dialogs */ /* Curses dialogs are difficult to use, on windows they are only ascii and uses the unix backslah */ extern int tinyfd_allowCursesDialogs; /* 0 (default) or 1 */ extern int tinyfd_forceConsole; /* 0 (default) or 1 */ /* for unix & windows: 0 (graphic mode) or 1 (console mode). 0: try to use a graphic solution, if it fails then it uses console mode. 1: forces all dialogs into console mode even when an X server is present, it can use the package dialog or dialog.exe. on windows it only make sense for console applications */ extern int tinyfd_assumeGraphicDisplay; /* 0 (default) or 1 */ /* some systems don't set the environment variable DISPLAY even when a graphic display is present. set this to 1 to tell tinyfiledialogs to assume the existence of a graphic display */ extern char tinyfd_response[1024]; /* if you pass "tinyfd_query" as aTitle, the functions will not display the dialogs but will return 0 for console mode, 1 for graphic mode. tinyfd_response is then filled with the retain solution. possible values for tinyfd_response are (all lowercase) for graphic mode: windows_wchar windows applescript kdialog zenity zenity3 matedialog shellementary qarma yad python2-tkinter python3-tkinter python-dbus perl-dbus gxmessage gmessage xmessage xdialog gdialog for console mode: dialog whiptail basicinput no_solution */ void tinyfd_beep(void); int tinyfd_notifyPopup( char const * aTitle, /* NULL or "" */ char const * aMessage, /* NULL or "" may contain \n \t */ char const * aIconType); /* "info" "warning" "error" */ /* return has only meaning for tinyfd_query */ int tinyfd_messageBox( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" may contain \n \t */ char const * aDialogType , /* "ok" "okcancel" "yesno" "yesnocancel" */ char const * aIconType , /* "info" "warning" "error" "question" */ int aDefaultButton ) ; /* 0 for cancel/no , 1 for ok/yes , 2 for no in yesnocancel */ char * tinyfd_inputBox( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" (\n and \t have no effect) */ char const * aDefaultInput ) ; /* NULL passwordBox, "" inputbox */ /* returns NULL on cancel */ char * tinyfd_saveFileDialog( char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile , /* NULL or "" */ int aNumOfFilterPatterns , /* 0 (1 in the following example) */ char const * const * aFilterPatterns , /* NULL or char const * lFilterPatterns[1]={"*.txt"} */ char const * aSingleFilterDescription ) ; /* NULL or "text files" */ /* returns NULL on cancel */ char * tinyfd_openFileDialog( char const * aTitle, /* NULL or "" */ char const * aDefaultPathAndFile, /* NULL or "" */ int aNumOfFilterPatterns , /* 0 (2 in the following example) */ char const * const * aFilterPatterns, /* NULL or char const * lFilterPatterns[2]={"*.png","*.jpg"}; */ char const * aSingleFilterDescription, /* NULL or "image files" */ int aAllowMultipleSelects ) ; /* 0 or 1 */ /* in case of multiple files, the separator is | */ /* returns NULL on cancel */ char * tinyfd_selectFolderDialog( char const * aTitle, /* NULL or "" */ char const * aDefaultPath); /* NULL or "" */ /* returns NULL on cancel */ char * tinyfd_colorChooser( char const * aTitle, /* NULL or "" */ char const * aDefaultHexRGB, /* NULL or "#FF0000" */ unsigned char const aDefaultRGB[3] , /* unsigned char lDefaultRGB[3] = { 0 , 128 , 255 }; */ unsigned char aoResultRGB[3] ) ; /* unsigned char lResultRGB[3]; */ /* returns the hexcolor as a string "#FF0000" */ /* aoResultRGB also contains the result */ /* aDefaultRGB is used only if aDefaultHexRGB is NULL */ /* aDefaultRGB and aoResultRGB can be the same array */ /* returns NULL on cancel */ /************ WINDOWS ONLY SECTION ************************/ #ifdef _WIN32 /* windows only - utf-16 version */ int tinyfd_notifyPopupW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aMessage, /* NULL or L"" may contain \n \t */ wchar_t const * aIconType); /* L"info" L"warning" L"error" */ /* windows only - utf-16 version */ int tinyfd_messageBoxW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aMessage, /* NULL or L"" may contain \n \t */ wchar_t const * aDialogType, /* L"ok" L"okcancel" L"yesno" */ wchar_t const * aIconType, /* L"info" L"warning" L"error" L"question" */ int aDefaultButton ); /* 0 for cancel/no , 1 for ok/yes */ /* returns 0 for cancel/no , 1 for ok/yes */ /* windows only - utf-16 version */ wchar_t * tinyfd_inputBoxW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aMessage, /* NULL or L"" (\n nor \t not respected) */ wchar_t const * aDefaultInput); /* NULL passwordBox, L"" inputbox */ /* windows only - utf-16 version */ wchar_t * tinyfd_saveFileDialogW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aDefaultPathAndFile, /* NULL or L"" */ int aNumOfFilterPatterns, /* 0 (1 in the following example) */ wchar_t const * const * aFilterPatterns, /* NULL or wchar_t const * lFilterPatterns[1]={L"*.txt"} */ wchar_t const * aSingleFilterDescription); /* NULL or L"text files" */ /* returns NULL on cancel */ /* windows only - utf-16 version */ wchar_t * tinyfd_openFileDialogW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aDefaultPathAndFile, /* NULL or L"" */ int aNumOfFilterPatterns , /* 0 (2 in the following example) */ wchar_t const * const * aFilterPatterns, /* NULL or wchar_t const * lFilterPatterns[2]={L"*.png","*.jpg"} */ wchar_t const * aSingleFilterDescription, /* NULL or L"image files" */ int aAllowMultipleSelects ) ; /* 0 or 1 */ /* in case of multiple files, the separator is | */ /* returns NULL on cancel */ /* windows only - utf-16 version */ wchar_t * tinyfd_selectFolderDialogW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aDefaultPath); /* NULL or L"" */ /* returns NULL on cancel */ /* windows only - utf-16 version */ wchar_t * tinyfd_colorChooserW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aDefaultHexRGB, /* NULL or L"#FF0000" */ unsigned char const aDefaultRGB[3], /* unsigned char lDefaultRGB[3] = { 0 , 128 , 255 }; */ unsigned char aoResultRGB[3]); /* unsigned char lResultRGB[3]; */ /* returns the hexcolor as a string L"#FF0000" */ /* aoResultRGB also contains the result */ /* aDefaultRGB is used only if aDefaultHexRGB is NULL */ /* aDefaultRGB and aoResultRGB can be the same array */ /* returns NULL on cancel */ #endif /*_WIN32 */ #ifdef __cplusplus } /*extern "C"*/ #endif #endif /* TINYFILEDIALOGS_H */ /* ________________________________________________________________________________ | ____________________________________________________________________________ | | | | | | | on windows: | | | | - for UTF-16, use the wchar_t functions at the bottom of the header file | | | | - _wfopen() requires wchar_t | | | | | | | | - in tinyfiledialogs, char is UTF-8 by default (since v3.6) | | | | - but fopen() expects MBCS (not UTF-8) | | | | - if you want char to be MBCS: set tinyfd_winUtf8 to 0 | | | | | | | | - alternatively, tinyfiledialogs provides | | | | functions to convert between UTF-8, UTF-16 and MBCS | | | |____________________________________________________________________________| | |________________________________________________________________________________| - This is not for ios nor android (it works in termux though). - The files can be renamed with extension ".cpp" as the code is 100% compatible C C++ (just comment out << extern "C" >> in the header file) - Windows is fully supported from XP to 10 (maybe even older versions) - C# & LUA via dll, see files in the folder EXTRAS - OSX supported from 10.4 to latest (maybe even older versions) - Do not use " and ' as the dialogs will be displayed with a warning instead of the title, message, etc... - There's one file filter only, it may contain several patterns. - If no filter description is provided, the list of patterns will become the description. - On windows link against Comdlg32.lib and Ole32.lib (on windows the no linking claim is a lie) - On unix: it tries command line calls, so no such need (NO LINKING). - On unix you need one of the following: applescript, kdialog, zenity, matedialog, shellementary, qarma, yad, python (2 or 3)/tkinter/python-dbus (optional), Xdialog or curses dialogs (opens terminal if running without console). - One of those is already included on most (if not all) desktops. - In the absence of those it will use gdialog, gxmessage or whiptail with a textinputbox. If nothing is found, it switches to basic console input, it opens a console if needed (requires xterm + bash). - for curses dialogs you must set tinyfd_allowCursesDialogs=1 - You can query the type of dialog that will be used (pass "tinyfd_query" as aTitle) - String memory is preallocated statically for all the returned values. - File and path names are tested before return, they should be valid. - tinyfd_forceConsole=1; at run time, forces dialogs into console mode. - On windows, console mode only make sense for console applications. - On windows, console mode is not implemented for wchar_T UTF-16. - Mutiple selects are not possible in console mode. - The package dialog must be installed to run in curses dialogs in console mode. It is already installed on most unix systems. - On osx, the package dialog can be installed via http://macappstore.org/dialog or http://macports.org - On windows, for curses dialogs console mode, dialog.exe should be copied somewhere on your executable path. It can be found at the bottom of the following page: http://andrear.altervista.org/home/cdialog.php */ #ifdef TFD_IMPLEMENTATION /* this file can be renamed with extension ".cpp" and compiled as C++. The code is 100% compatible C C++ (just comment out << extern "C" >> in the header file) */ /*_________ / \ tinyfiledialogs.c v3.8.8 [Apr 22, 2021] zlib licence |tiny file| Unique code file created [November 9, 2014] | dialogs | Copyright (c) 2014 - 2021 Guillaume Vareille http://ysengrin.com \____ ___/ http://tinyfiledialogs.sourceforge.net \| git clone http://git.code.sf.net/p/tinyfiledialogs/code tinyfd ____________________________________________ | | | email: tinyfiledialogs at ysengrin.com | |____________________________________________| _________________________________________________________________________________ | | | the windows only wchar_t UTF-16 prototypes are at the bottom of the header file | |_________________________________________________________________________________| _________________________________________________________ | | | on windows: - since v3.6 char is UTF-8 by default | | - if you want MBCS set tinyfd_winUtf8 to 0 | | - functions like fopen expect MBCS | |_________________________________________________________| If you like tinyfiledialogs, please upvote my stackoverflow answer https://stackoverflow.com/a/47651444 - License - This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. ----------- Thanks for contributions, bug corrections & thorough testing to: - Don Heyse http://ldglite.sf.net for bug corrections & thorough testing! - Paul Rouget */ #ifndef __sun #ifndef _POSIX_C_SOURCE #define _POSIX_C_SOURCE 2 /* to accept POSIX 2 in old ANSI C standards */ #endif #endif #if !defined(_WIN32) && ( defined(__GNUC__) || defined(__clang__) ) #if !defined(_GNU_SOURCE) #define _GNU_SOURCE /* used only to resolve symbolic links. Can be commented out */ #endif #endif #include #include #include #include #include #ifdef _WIN32 #ifdef __BORLANDC__ #define _getch getch #endif #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x0500 #endif #include #include #include #include #include #define TINYFD_NOCCSUNICODE #define SLASH "\\" #else #include #include #include /* on old systems try instead */ #include #include #include /* on old systems try instead */ #define SLASH "/" #endif /* _WIN32 */ //#include "tinyfiledialogs.h" #define MAX_PATH_OR_CMD 1024 /* _MAX_PATH or MAX_PATH */ #ifndef MAX_MULTIPLE_FILES #define MAX_MULTIPLE_FILES 1024 #endif #define LOW_MULTIPLE_FILES 32 char tinyfd_version[8] = "3.8.8"; /******************************************************************************************************/ /**************************************** UTF-8 on Windows ********************************************/ /******************************************************************************************************/ #ifdef _WIN32 /* if you want to use UTF-8 ( instead of the UTF-16/wchar_t functions at the end of tinyfiledialogs.h ) Make sure your code is really prepared for UTF-8 (on windows, functions like fopen() expect MBCS and not UTF-8) */ int tinyfd_winUtf8 = 1; /* on windows char strings can be 1:UTF-8(default) or 0:MBCS */ /* for MBCS change this to 0, here or in your code */ #endif /******************************************************************************************************/ /******************************************************************************************************/ /******************************************************************************************************/ int tinyfd_verbose = 0 ; /* on unix: prints the command line calls */ int tinyfd_silent = 1 ; /* 1 (default) or 0 : on unix, hide errors and warnings from called dialogs */ /* Curses dialogs are difficult to use, on windows they are only ascii and uses the unix backslah */ int tinyfd_allowCursesDialogs = 0 ; /* 0 (default) or 1 */ int tinyfd_forceConsole = 0 ; /* 0 (default) or 1 */ /* for unix & windows: 0 (graphic mode) or 1 (console mode). 0: try to use a graphic solution, if it fails then it uses console mode. 1: forces all dialogs into console mode even when the X server is present. it can use the package dialog or dialog.exe. on windows it only make sense for console applications */ int tinyfd_assumeGraphicDisplay = 0; /* 0 (default) or 1 */ /* some systems don't set the environment variable DISPLAY even when a graphic display is present. set this to 1 to tell tinyfiledialogs to assume the existence of a graphic display */ char tinyfd_response[1024]; /* if you pass "tinyfd_query" as aTitle, the functions will not display the dialogs but and return 0 for console mode, 1 for graphic mode. tinyfd_response is then filled with the retain solution. possible values for tinyfd_response are (all lowercase) for graphic mode: windows_wchar windows applescript kdialog zenity zenity3 matedialog shellementary qarma yad python2-tkinter python3-tkinter python-dbus perl-dbus gxmessage gmessage xmessage xdialog gdialog for console mode: dialog whiptail basicinput no_solution */ static int gWarningDisplayed = 0 ; static char gTitle[]="missing software! (we will try basic console input)"; #ifdef _WIN32 char tinyfd_needs[] = "\ ___________\n\ / \\ \n\ | tiny file |\n\ | dialogs |\n\ \\_____ ____/\n\ \\|\ \ntiny file dialogs on Windows needs:\ \n a graphic display\ \nor dialog.exe (curses console mode)\ \nor a console for basic input"; #else char tinyfd_needs[] = "\ ___________\n\ / \\ \n\ | tiny file |\n\ | dialogs |\n\ \\_____ ____/\n\ \\|\ \ntiny file dialogs on UNIX needs:\ \n applescript or kdialog or yad or Xdialog\ \nor zenity (or matedialog or shellementary or qarma)\ \nor python (2 or 3) + tkinter + python-dbus (optional)\ \nor dialog (opens console if needed)\ \nor xterm + bash (opens console for basic input)\ \nor existing console for basic input"; #endif #ifdef _MSC_VER #pragma warning(disable:4996) /* allows usage of strncpy, strcpy, strcat, sprintf, fopen */ #pragma warning(disable:4100) /* allows usage of strncpy, strcpy, strcat, sprintf, fopen */ #pragma warning(disable:4706) /* allows usage of strncpy, strcpy, strcat, sprintf, fopen */ #endif static int getenvDISPLAY(void) { return tinyfd_assumeGraphicDisplay || getenv("DISPLAY"); } static char * getCurDir(void) { static char lCurDir[MAX_PATH_OR_CMD]; return getcwd(lCurDir, sizeof(lCurDir)); } static char * getPathWithoutFinalSlash( char * aoDestination, /* make sure it is allocated, use _MAX_PATH */ char const * aSource) /* aoDestination and aSource can be the same */ { char const * lTmp ; if ( aSource ) { lTmp = strrchr(aSource, '/'); if (!lTmp) { lTmp = strrchr(aSource, '\\'); } if (lTmp) { strncpy(aoDestination, aSource, lTmp - aSource ); aoDestination[lTmp - aSource] = '\0'; } else { * aoDestination = '\0'; } } else { * aoDestination = '\0'; } return aoDestination; } static char * getLastName( char * aoDestination, /* make sure it is allocated */ char const * aSource) { /* copy the last name after '/' or '\' */ char const * lTmp ; if ( aSource ) { lTmp = strrchr(aSource, '/'); if (!lTmp) { lTmp = strrchr(aSource, '\\'); } if (lTmp) { strcpy(aoDestination, lTmp + 1); } else { strcpy(aoDestination, aSource); } } else { * aoDestination = '\0'; } return aoDestination; } static void ensureFinalSlash( char * aioString ) { if ( aioString && strlen( aioString ) ) { char * lastcar = aioString + strlen( aioString ) - 1 ; if ( strncmp( lastcar , SLASH , 1 ) ) { strcat( lastcar , SLASH ) ; } } } static void Hex2RGB( char const aHexRGB[8] , unsigned char aoResultRGB[3] ) { char lColorChannel[8] ; if ( aoResultRGB ) { if ( aHexRGB ) { strcpy(lColorChannel, aHexRGB ) ; aoResultRGB[2] = (unsigned char)strtoul(lColorChannel+5,NULL,16); lColorChannel[5] = '\0'; aoResultRGB[1] = (unsigned char)strtoul(lColorChannel+3,NULL,16); lColorChannel[3] = '\0'; aoResultRGB[0] = (unsigned char)strtoul(lColorChannel+1,NULL,16); /* printf("%d %d %d\n", aoResultRGB[0], aoResultRGB[1], aoResultRGB[2]); */ } else { aoResultRGB[0]=0; aoResultRGB[1]=0; aoResultRGB[2]=0; } } } static void RGB2Hex( unsigned char const aRGB[3], char aoResultHexRGB[8] ) { if ( aoResultHexRGB ) { if ( aRGB ) { #if (defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__) sprintf(aoResultHexRGB, "#%02hhx%02hhx%02hhx", aRGB[0], aRGB[1], aRGB[2]); #else sprintf(aoResultHexRGB, "#%02hx%02hx%02hx", aRGB[0], aRGB[1], aRGB[2]); #endif /*printf("aoResultHexRGB %s\n", aoResultHexRGB);*/ } else { aoResultHexRGB[0]=0; aoResultHexRGB[1]=0; aoResultHexRGB[2]=0; } } } void tfd_replaceSubStr( char const * aSource, char const * aOldSubStr, char const * aNewSubStr, char * aoDestination ) { char const * pOccurence ; char const * p ; char const * lNewSubStr = "" ; size_t lOldSubLen = strlen( aOldSubStr ) ; if ( ! aSource ) { * aoDestination = '\0' ; return ; } if ( ! aOldSubStr ) { strcpy( aoDestination , aSource ) ; return ; } if ( aNewSubStr ) { lNewSubStr = aNewSubStr ; } p = aSource ; * aoDestination = '\0' ; while ( ( pOccurence = strstr( p , aOldSubStr ) ) != NULL ) { strncat( aoDestination , p , pOccurence - p ) ; strcat( aoDestination , lNewSubStr ) ; p = pOccurence + lOldSubLen ; } strcat( aoDestination , p ) ; } static int filenameValid( char const * aFileNameWithoutPath ) { if ( ! aFileNameWithoutPath || ! strlen(aFileNameWithoutPath) || strpbrk(aFileNameWithoutPath , "\\/:*?\"<>|") ) { return 0 ; } return 1 ; } #ifndef _WIN32 static int fileExists( char const * aFilePathAndName ) { FILE * lIn ; if ( ! aFilePathAndName || ! strlen(aFilePathAndName) ) { return 0 ; } lIn = fopen( aFilePathAndName , "r" ) ; if ( ! lIn ) { return 0 ; } fclose( lIn ) ; return 1 ; } #endif static void wipefile(char const * aFilename) { int i; struct stat st; FILE * lIn; if (stat(aFilename, &st) == 0) { if ((lIn = fopen(aFilename, "w"))) { for (i = 0; i < st.st_size; i++) { fputc('A', lIn); } fclose(lIn); } } } int tfd_quoteDetected(char const * aString) { char const * p; if (!aString) return 0; p = aString; while ((p = strchr(p, '\''))) { return 1; } p = aString; while ((p = strchr(p, '\"'))) { return 1; } return 0; } char const * tinyfd_getGlobalChar(char const * aCharVariableName) /* to be called from C# (you don't need this in C or C++) */ { if (!aCharVariableName || !strlen(aCharVariableName)) return NULL; else if (!strcmp(aCharVariableName, "tinyfd_version")) return tinyfd_version; else if (!strcmp(aCharVariableName, "tinyfd_needs")) return tinyfd_needs; else if (!strcmp(aCharVariableName, "tinyfd_response")) return tinyfd_response; else return NULL ; } int tinyfd_getGlobalInt(char const * aIntVariableName) /* to be called from C# (you don't need this in C or C++) */ { if ( !aIntVariableName || !strlen(aIntVariableName) ) return -1 ; else if ( !strcmp(aIntVariableName, "tinyfd_verbose") ) return tinyfd_verbose ; else if ( !strcmp(aIntVariableName, "tinyfd_silent") ) return tinyfd_silent ; else if ( !strcmp(aIntVariableName, "tinyfd_allowCursesDialogs") ) return tinyfd_allowCursesDialogs ; else if ( !strcmp(aIntVariableName, "tinyfd_forceConsole") ) return tinyfd_forceConsole ; else if ( !strcmp(aIntVariableName, "tinyfd_assumeGraphicDisplay") ) return tinyfd_assumeGraphicDisplay ; #ifdef _WIN32 else if ( !strcmp(aIntVariableName, "tinyfd_winUtf8") ) return tinyfd_winUtf8 ; #endif else return -1; } int tinyfd_setGlobalInt(char const * aIntVariableName, int aValue) /* to be called from C# (you don't need this in C or C++) */ { if (!aIntVariableName || !strlen(aIntVariableName)) return -1 ; else if (!strcmp(aIntVariableName, "tinyfd_verbose")) { tinyfd_verbose = aValue; return tinyfd_verbose; } else if (!strcmp(aIntVariableName, "tinyfd_silent")) { tinyfd_silent = aValue; return tinyfd_silent; } else if (!strcmp(aIntVariableName, "tinyfd_allowCursesDialogs")) { tinyfd_allowCursesDialogs = aValue; return tinyfd_allowCursesDialogs; } else if (!strcmp(aIntVariableName, "tinyfd_forceConsole")) { tinyfd_forceConsole = aValue; return tinyfd_forceConsole; } else if (!strcmp(aIntVariableName, "tinyfd_assumeGraphicDisplay")) { tinyfd_assumeGraphicDisplay = aValue; return tinyfd_assumeGraphicDisplay; } #ifdef _WIN32 else if (!strcmp(aIntVariableName, "tinyfd_winUtf8")) { tinyfd_winUtf8 = aValue; return tinyfd_winUtf8; } #endif else return -1; } #ifdef _WIN32 static int powershellPresent(void) { /*only on vista and above (or installed on xp)*/ static int lPowershellPresent = -1; char lBuff[MAX_PATH_OR_CMD]; FILE* lIn; char const* lString = "powershell.exe"; if (lPowershellPresent < 0) { if (!(lIn = _popen("where powershell.exe", "r"))) { lPowershellPresent = 0; return 0; } while (fgets(lBuff, sizeof(lBuff), lIn) != NULL) { } _pclose(lIn); if (lBuff[strlen(lBuff) - 1] == '\n') { lBuff[strlen(lBuff) - 1] = '\0'; } if (strcmp(lBuff + strlen(lBuff) - strlen(lString), lString)) { lPowershellPresent = 0; } else { lPowershellPresent = 1; } } return lPowershellPresent; } static int windowsVersion(void) { #if !defined(__MINGW32__) || defined(__MINGW64_VERSION_MAJOR) typedef LONG NTSTATUS ; typedef NTSTATUS(WINAPI* RtlGetVersionPtr)(PRTL_OSVERSIONINFOW); HMODULE hMod; RtlGetVersionPtr lFxPtr; RTL_OSVERSIONINFOW lRovi = { 0 }; hMod = GetModuleHandleW(L"ntdll.dll"); if (hMod) { lFxPtr = (RtlGetVersionPtr)GetProcAddress(hMod, "RtlGetVersion"); if (lFxPtr) { lRovi.dwOSVersionInfoSize = sizeof(lRovi); if (!lFxPtr(&lRovi)) { return lRovi.dwMajorVersion; } } } #endif if (powershellPresent()) return 6; /*minimum is vista or installed on xp*/ return 0; } static void replaceChr(char * aString, char aOldChr, char aNewChr) { char * p; if (!aString) return; if (aOldChr == aNewChr) return; p = aString; while ((p = strchr(p, aOldChr))) { *p = aNewChr; p++; } return; } #if !defined(WC_ERR_INVALID_CHARS) /* undefined prior to Vista, so not yet in MINGW header file */ #define WC_ERR_INVALID_CHARS 0x00000000 /* 0x00000080 for MINGW maybe ? */ #endif static int sizeUtf16From8(char const * aUtf8string) { return MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, aUtf8string, -1, NULL, 0); } static int sizeUtf16FromMbcs(char const * aMbcsString) { return MultiByteToWideChar(CP_ACP, MB_ERR_INVALID_CHARS, aMbcsString, -1, NULL, 0); } static int sizeUtf8(wchar_t const * aUtf16string) { return WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS, aUtf16string, -1, NULL, 0, NULL, NULL); } static int sizeMbcs(wchar_t const * aMbcsString) { int lRes = WideCharToMultiByte(CP_ACP, 0, aMbcsString, -1, NULL, 0, NULL, NULL); /* DWORD licic = GetLastError(); */ return lRes; } wchar_t* tinyfd_mbcsTo16(char const* aMbcsString) { static wchar_t* lMbcsString = NULL; int lSize; free(lMbcsString); if (!aMbcsString) { lMbcsString = NULL; return NULL; } lSize = sizeUtf16FromMbcs(aMbcsString); if (lSize) { lMbcsString = (wchar_t*)malloc(lSize * sizeof(wchar_t)); lSize = MultiByteToWideChar(CP_ACP, 0, aMbcsString, -1, lMbcsString, lSize); } else wcscpy(lMbcsString, L""); return lMbcsString; } wchar_t * tinyfd_utf8to16(char const * aUtf8string) { static wchar_t * lUtf16string = NULL; int lSize; free(lUtf16string); if (!aUtf8string) {lUtf16string = NULL; return NULL;} lSize = sizeUtf16From8(aUtf8string); if (lSize) { lUtf16string = (wchar_t*)malloc(lSize * sizeof(wchar_t)); lSize = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, aUtf8string, -1, lUtf16string, lSize); return lUtf16string; } else { /* let's try mbcs anyway */ lUtf16string = NULL; return tinyfd_mbcsTo16(aUtf8string); } } char * tinyfd_utf16toMbcs(wchar_t const * aUtf16string) { static char * lMbcsString = NULL; int lSize; free(lMbcsString); if (!aUtf16string) { lMbcsString = NULL; return NULL; } lSize = sizeMbcs(aUtf16string); if (lSize) { lMbcsString = (char*)malloc(lSize); lSize = WideCharToMultiByte(CP_ACP, 0, aUtf16string, -1, lMbcsString, lSize, NULL, NULL); } else strcpy(lMbcsString, ""); return lMbcsString; } char * tinyfd_utf8toMbcs(char const * aUtf8string) { wchar_t const * lUtf16string; lUtf16string = tinyfd_utf8to16(aUtf8string); return tinyfd_utf16toMbcs(lUtf16string); } char * tinyfd_utf16to8(wchar_t const * aUtf16string) { static char * lUtf8string = NULL; int lSize; free(lUtf8string); if (!aUtf16string) { lUtf8string = NULL; return NULL; } lSize = sizeUtf8(aUtf16string); if (lSize) { lUtf8string = (char*)malloc(lSize); lSize = WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS, aUtf16string, -1, lUtf8string, lSize, NULL, NULL); } else strcpy(lUtf8string, ""); return lUtf8string; } char * tinyfd_mbcsTo8(char const * aMbcsString) { wchar_t const * lUtf16string; lUtf16string = tinyfd_mbcsTo16(aMbcsString); return tinyfd_utf16to8(lUtf16string); } void tinyfd_beep(void) { if (windowsVersion() > 5) Beep(440, 300); else MessageBeep(-1); } static void wipefileW(wchar_t const * aFilename) { int i; FILE * lIn; #if defined(__MINGW32_MAJOR_VERSION) && !defined(__MINGW64__) && (__MINGW32_MAJOR_VERSION <= 3) struct _stat st; if (_wstat(aFilename, &st) == 0) #else struct __stat64 st; if (_wstat64(aFilename, &st) == 0) #endif { if ((lIn = _wfopen(aFilename, L"w"))) { for (i = 0; i < st.st_size; i++) { fputc('A', lIn); } fclose(lIn); } } } static wchar_t * getPathWithoutFinalSlashW( wchar_t * aoDestination, /* make sure it is allocated, use _MAX_PATH */ wchar_t const * aSource) /* aoDestination and aSource can be the same */ { wchar_t const * lTmp; if (aSource) { lTmp = wcsrchr(aSource, L'/'); if (!lTmp) { lTmp = wcsrchr(aSource, L'\\'); } if (lTmp) { wcsncpy(aoDestination, aSource, lTmp - aSource); aoDestination[lTmp - aSource] = L'\0'; } else { *aoDestination = L'\0'; } } else { *aoDestination = L'\0'; } return aoDestination; } static wchar_t * getLastNameW( wchar_t * aoDestination, /* make sure it is allocated */ wchar_t const * aSource) { /* copy the last name after '/' or '\' */ wchar_t const * lTmp; if (aSource) { lTmp = wcsrchr(aSource, L'/'); if (!lTmp) { lTmp = wcsrchr(aSource, L'\\'); } if (lTmp) { wcscpy(aoDestination, lTmp + 1); } else { wcscpy(aoDestination, aSource); } } else { *aoDestination = L'\0'; } return aoDestination; } static void Hex2RGBW(wchar_t const aHexRGB[8], unsigned char aoResultRGB[3]) { wchar_t lColorChannel[8]; if (aoResultRGB) { if (aHexRGB) { wcscpy(lColorChannel, aHexRGB); aoResultRGB[2] = (unsigned char)wcstoul(lColorChannel + 5, NULL, 16); lColorChannel[5] = '\0'; aoResultRGB[1] = (unsigned char)wcstoul(lColorChannel + 3, NULL, 16); lColorChannel[3] = '\0'; aoResultRGB[0] = (unsigned char)wcstoul(lColorChannel + 1, NULL, 16); /* printf("%d %d %d\n", aoResultRGB[0], aoResultRGB[1], aoResultRGB[2]); */ } else { aoResultRGB[0] = 0; aoResultRGB[1] = 0; aoResultRGB[2] = 0; } } } static void RGB2HexW( unsigned char const aRGB[3], wchar_t aoResultHexRGB[8]) { #if (defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__) wchar_t const * const lPrintFormat = L"#%02hhx%02hhx%02hhx"; #else wchar_t const * const lPrintFormat = L"#%02hx%02hx%02hx"; #endif if (aoResultHexRGB) { if (aRGB) { /* wprintf(L"aoResultHexRGB %s\n", aoResultHexRGB); */ #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) swprintf(aoResultHexRGB, 8, lPrintFormat, aRGB[0], aRGB[1], aRGB[2]); #else swprintf(aoResultHexRGB, lPrintFormat, aRGB[0], aRGB[1], aRGB[2]); #endif } else { aoResultHexRGB[0] = 0; aoResultHexRGB[1] = 0; aoResultHexRGB[2] = 0; } } } static int dirExists(char const * aDirPath) { #if defined(__MINGW32_MAJOR_VERSION) && !defined(__MINGW64__) && (__MINGW32_MAJOR_VERSION <= 3) struct _stat lInfo; #else struct __stat64 lInfo; #endif wchar_t * lTmpWChar; int lStatRet; size_t lDirLen; if (!aDirPath) return 0; lDirLen = strlen(aDirPath); if (!lDirLen) return 1; if ( (lDirLen == 2) && (aDirPath[1] == ':') ) return 1; if (tinyfd_winUtf8) { lTmpWChar = tinyfd_utf8to16(aDirPath); #if defined(__MINGW32_MAJOR_VERSION) && !defined(__MINGW64__) && (__MINGW32_MAJOR_VERSION <= 3) lStatRet = _wstat(lTmpWChar, &lInfo); #else lStatRet = _wstat64(lTmpWChar, &lInfo); #endif if (lStatRet != 0) return 0; else if (lInfo.st_mode & S_IFDIR) return 1; else return 0; } #if defined(__MINGW32_MAJOR_VERSION) && !defined(__MINGW64__) && (__MINGW32_MAJOR_VERSION <= 3) else if (_stat(aDirPath, &lInfo) != 0) #else else if (_stat64(aDirPath, &lInfo) != 0) #endif return 0; else if (lInfo.st_mode & S_IFDIR) return 1; else return 0; } static int fileExists(char const * aFilePathAndName) { #if defined(__MINGW32_MAJOR_VERSION) && !defined(__MINGW64__) && (__MINGW32_MAJOR_VERSION <= 3) struct _stat lInfo; #else struct __stat64 lInfo; #endif wchar_t * lTmpWChar; int lStatRet; FILE * lIn; if (!aFilePathAndName || !strlen(aFilePathAndName)) { return 0; } if (tinyfd_winUtf8) { lTmpWChar = tinyfd_utf8to16(aFilePathAndName); #if defined(__MINGW32_MAJOR_VERSION) && !defined(__MINGW64__) && (__MINGW32_MAJOR_VERSION <= 3) lStatRet = _wstat(lTmpWChar, &lInfo); #else lStatRet = _wstat64(lTmpWChar, &lInfo); #endif if (lStatRet != 0) return 0; else if (lInfo.st_mode & _S_IFREG) return 1; else return 0; } else { lIn = fopen(aFilePathAndName, "r"); if (!lIn) { return 0; } fclose(lIn); return 1; } } static void replaceWchar(wchar_t * aString, wchar_t aOldChr, wchar_t aNewChr) { wchar_t * p; if (!aString) { return ; } if (aOldChr == aNewChr) { return ; } p = aString; while ((p = wcsrchr(p, aOldChr))) { *p = aNewChr; #ifdef TINYFD_NOCCSUNICODE p++; #endif p++; } return ; } static int quoteDetectedW(wchar_t const * aString) { wchar_t const * p; if (!aString) return 0; p = aString; while ((p = wcsrchr(p, L'\''))) { return 1; } p = aString; while ((p = wcsrchr(p, L'\"'))) { return 1; } return 0; } #endif /* _WIN32 */ /* source and destination can be the same or ovelap*/ static char * ensureFilesExist(char * aDestination, char const * aSourcePathsAndNames) { char * lDestination = aDestination; char const * p; char const * p2; size_t lLen; if (!aSourcePathsAndNames) { return NULL; } lLen = strlen(aSourcePathsAndNames); if (!lLen) { return NULL; } p = aSourcePathsAndNames; while ((p2 = strchr(p, '|')) != NULL) { lLen = p2 - p; memmove(lDestination, p, lLen); lDestination[lLen] = '\0'; if (fileExists(lDestination)) { lDestination += lLen; *lDestination = '|'; lDestination++; } p = p2 + 1; } if (fileExists(p)) { lLen = strlen(p); memmove(lDestination, p, lLen); lDestination[lLen] = '\0'; } else { *(lDestination - 1) = '\0'; } return aDestination; } #ifdef _WIN32 static int __stdcall EnumThreadWndProc(HWND hwnd, LPARAM lParam) { wchar_t lTitleName[MAX_PATH]; GetWindowTextW(hwnd, lTitleName, MAX_PATH); /* wprintf(L"lTitleName %ls \n", lTitleName); */ if (wcscmp(L"tinyfiledialogsTopWindow", lTitleName) == 0) { SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE); return 0; } return 1; } static void hiddenConsoleW(wchar_t const * aString, wchar_t const * aDialogTitle, int aInFront) { STARTUPINFOW StartupInfo; PROCESS_INFORMATION ProcessInfo; if (!aString || !wcslen(aString) ) return; memset(&StartupInfo, 0, sizeof(StartupInfo)); StartupInfo.cb = sizeof(STARTUPINFOW); StartupInfo.dwFlags = STARTF_USESHOWWINDOW; StartupInfo.wShowWindow = SW_HIDE; if (!CreateProcessW(NULL, (LPWSTR)aString, NULL, NULL, FALSE, CREATE_NEW_CONSOLE, NULL, NULL, &StartupInfo, &ProcessInfo)) { return; /* GetLastError(); */ } WaitForInputIdle(ProcessInfo.hProcess, INFINITE); if (aInFront) { while (EnumWindows(EnumThreadWndProc, (LPARAM)NULL)) {} SetWindowTextW(GetForegroundWindow(), aDialogTitle); } WaitForSingleObject(ProcessInfo.hProcess, INFINITE); CloseHandle(ProcessInfo.hThread); CloseHandle(ProcessInfo.hProcess); } int tinyfd_messageBoxW( wchar_t const * aTitle, /* NULL or "" */ wchar_t const * aMessage, /* NULL or "" may contain \n and \t */ wchar_t const * aDialogType, /* "ok" "okcancel" "yesno" "yesnocancel" */ wchar_t const * aIconType, /* "info" "warning" "error" "question" */ int aDefaultButton) /* 0 for cancel/no , 1 for ok/yes , 2 for no in yesnocancel */ { int lBoxReturnValue; UINT aCode; if (aTitle&&!wcscmp(aTitle, L"tinyfd_query")){ strcpy(tinyfd_response, "windows_wchar"); return 1; } if (quoteDetectedW(aTitle)) return tinyfd_messageBoxW(L"INVALID TITLE WITH QUOTES", aMessage, aDialogType, aIconType, aDefaultButton); if (quoteDetectedW(aMessage)) return tinyfd_messageBoxW(aTitle, L"INVALID MESSAGE WITH QUOTES", aDialogType, aIconType, aDefaultButton); if (aIconType && !wcscmp(L"warning", aIconType)) { aCode = MB_ICONWARNING; } else if (aIconType && !wcscmp(L"error", aIconType)) { aCode = MB_ICONERROR; } else if (aIconType && !wcscmp(L"question", aIconType)) { aCode = MB_ICONQUESTION; } else { aCode = MB_ICONINFORMATION; } if (aDialogType && !wcscmp(L"okcancel", aDialogType)) { aCode += MB_OKCANCEL; if (!aDefaultButton) { aCode += MB_DEFBUTTON2; } } else if (aDialogType && !wcscmp(L"yesno", aDialogType)) { aCode += MB_YESNO; if (!aDefaultButton) { aCode += MB_DEFBUTTON2; } } else { aCode += MB_OK; } aCode += MB_TOPMOST; lBoxReturnValue = MessageBoxW(GetForegroundWindow(), aMessage, aTitle, aCode); if (((aDialogType && wcscmp(L"okcancel", aDialogType) && wcscmp(L"yesno", aDialogType))) || (lBoxReturnValue == IDOK) || (lBoxReturnValue == IDYES)) { return 1; } else { return 0; } } /* return has only meaning for tinyfd_query */ int tinyfd_notifyPopupW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aMessage, /* NULL or L"" may contain \n \t */ wchar_t const * aIconType) /* L"info" L"warning" L"error" */ { wchar_t * lDialogString; size_t lTitleLen; size_t lMessageLen; size_t lDialogStringLen; if (aTitle && !wcscmp(aTitle, L"tinyfd_query")) { strcpy(tinyfd_response, "windows_wchar"); return 1; } if (quoteDetectedW(aTitle)) return tinyfd_notifyPopupW(L"INVALID TITLE WITH QUOTES", aMessage, aIconType); if (quoteDetectedW(aMessage)) return tinyfd_notifyPopupW(aTitle, L"INVALID MESSAGE WITH QUOTES", aIconType); lTitleLen = aTitle ? wcslen(aTitle) : 0; lMessageLen = aMessage ? wcslen(aMessage) : 0; lDialogStringLen = 3 * MAX_PATH_OR_CMD + lTitleLen + lMessageLen; lDialogString = (wchar_t *)malloc(2 * lDialogStringLen); if (!lDialogString) return 0; wcscpy(lDialogString, L"powershell.exe -command \"\ function Show-BalloonTip {\ [cmdletbinding()] \ param( \ [string]$Title = ' ', \ [string]$Message = ' ', \ [ValidateSet('info', 'warning', 'error')] \ [string]$IconType = 'info');\ [system.Reflection.Assembly]::LoadWithPartialName('System.Windows.Forms') | Out-Null ; \ $balloon = New-Object System.Windows.Forms.NotifyIcon ; \ $path = Get-Process -id $pid | Select-Object -ExpandProperty Path ; \ $icon = [System.Drawing.Icon]::ExtractAssociatedIcon($path) ;"); wcscat(lDialogString, L"\ $balloon.Icon = $icon ; \ $balloon.BalloonTipIcon = $IconType ; \ $balloon.BalloonTipText = $Message ; \ $balloon.BalloonTipTitle = $Title ; \ $balloon.Text = 'tinyfiledialogs' ; \ $balloon.Visible = $true ; \ $balloon.ShowBalloonTip(5000)};\ Show-BalloonTip"); if (aTitle && wcslen(aTitle)) { wcscat(lDialogString, L" -Title '"); wcscat(lDialogString, aTitle); wcscat(lDialogString, L"'"); } if (aMessage && wcslen(aMessage)) { wcscat(lDialogString, L" -Message '"); wcscat(lDialogString, aMessage); wcscat(lDialogString, L"'"); } if (aMessage && wcslen(aIconType)) { wcscat(lDialogString, L" -IconType '"); wcscat(lDialogString, aIconType); wcscat(lDialogString, L"'"); } wcscat(lDialogString, L"\""); /* wprintf ( L"lDialogString: %ls\n" , lDialogString ) ; */ hiddenConsoleW(lDialogString, aTitle, 0); free(lDialogString); return 1; } wchar_t * tinyfd_inputBoxW( wchar_t const * aTitle, /* NULL or L"" */ wchar_t const * aMessage, /* NULL or L"" (\n and \t have no effect) */ wchar_t const * aDefaultInput) /* L"" , if NULL it's a passwordBox */ { static wchar_t lBuff[MAX_PATH_OR_CMD]; wchar_t * lDialogString; FILE * lIn; FILE * lFile; int lResult; size_t lTitleLen; size_t lMessageLen; size_t lDialogStringLen; if (aTitle&&!wcscmp(aTitle, L"tinyfd_query")){ strcpy(tinyfd_response, "windows_wchar"); return (wchar_t *)1; } if (quoteDetectedW(aTitle)) return tinyfd_inputBoxW(L"INVALID TITLE WITH QUOTES", aMessage, aDefaultInput); if (quoteDetectedW(aMessage)) return tinyfd_inputBoxW(aTitle, L"INVALID MESSAGE WITH QUOTES", aDefaultInput); if (quoteDetectedW(aDefaultInput)) return tinyfd_inputBoxW(aTitle, aMessage, L"INVALID DEFAULT_INPUT WITH QUOTES"); lTitleLen = aTitle ? wcslen(aTitle) : 0 ; lMessageLen = aMessage ? wcslen(aMessage) : 0 ; lDialogStringLen = 3 * MAX_PATH_OR_CMD + lTitleLen + lMessageLen; lDialogString = (wchar_t *)malloc(2 * lDialogStringLen); if (aDefaultInput) { swprintf(lDialogString, #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) lDialogStringLen, #endif L"%ls\\tinyfd.vbs", _wgetenv(L"TEMP")); } else { swprintf(lDialogString, #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) lDialogStringLen, #endif L"%ls\\tinyfd.hta", _wgetenv(L"TEMP")); } lIn = _wfopen(lDialogString, L"w"); if (!lIn) { free(lDialogString); return NULL; } if ( aDefaultInput ) { wcscpy(lDialogString, L"Dim result:result=InputBox(\""); if (aMessage && wcslen(aMessage)) { wcscpy(lBuff, aMessage); replaceWchar(lBuff, L'\n', L' '); wcscat(lDialogString, lBuff); } wcscat(lDialogString, L"\",\"tinyfiledialogsTopWindow\",\""); if (aDefaultInput && wcslen(aDefaultInput)) { wcscpy(lBuff, aDefaultInput); replaceWchar(lBuff, L'\n', L' '); wcscat(lDialogString, lBuff); } wcscat(lDialogString, L"\"):If IsEmpty(result) then:WScript.Echo 0"); wcscat(lDialogString, L":Else: WScript.Echo \"1\" & result : End If"); } else { wcscpy(lDialogString, L"\n\ \n\ \n\ "); wcscat(lDialogString, L"tinyfiledialogsTopWindow"); wcscat(lDialogString, L"\n\ \n\ \n\ \n\ \n\ \n\ \n\ \n\ \n\ \n\ \n\
\n"); wcscat(lDialogString, aMessage ? aMessage : L""); wcscat(lDialogString, L"\n\ \n\ \n\ \n\
\n\

\n\ \n\
\n\
\n"); wcscat(lDialogString, L"\n\ \n\ \n\ \n\
\n\
\n\
\n\ \n\ \n\ " ) ; } fputws(lDialogString, lIn); fclose(lIn); if (aDefaultInput) { swprintf(lDialogString, #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) lDialogStringLen, #endif L"%ls\\tinyfd.txt",_wgetenv(L"TEMP")); #ifdef TINYFD_NOCCSUNICODE lFile = _wfopen(lDialogString, L"w"); fputc(0xFF, lFile); fputc(0xFE, lFile); #else lFile = _wfopen(lDialogString, L"wt, ccs=UNICODE"); /*or ccs=UTF-16LE*/ #endif fclose(lFile); wcscpy(lDialogString, L"cmd.exe /c cscript.exe //U //Nologo "); wcscat(lDialogString, L"\"%TEMP%\\tinyfd.vbs\" "); wcscat(lDialogString, L">> \"%TEMP%\\tinyfd.txt\""); } else { wcscpy(lDialogString, L"cmd.exe /c mshta.exe \"%TEMP%\\tinyfd.hta\""); } /* wprintf ( "lDialogString: %ls\n" , lDialogString ) ; */ hiddenConsoleW(lDialogString, aTitle, 1); swprintf(lDialogString, #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) lDialogStringLen, #endif L"%ls\\tinyfd.txt", _wgetenv(L"TEMP")); /* wprintf(L"lDialogString: %ls\n", lDialogString); */ #ifdef TINYFD_NOCCSUNICODE if (!(lIn = _wfopen(lDialogString, L"r"))) #else if (!(lIn = _wfopen(lDialogString, L"rt, ccs=UNICODE"))) /*or ccs=UTF-16LE*/ #endif { _wremove(lDialogString); free(lDialogString); return NULL; } memset(lBuff, 0, MAX_PATH_OR_CMD * sizeof(wchar_t) ); #ifdef TINYFD_NOCCSUNICODE fgets((char *)lBuff, 2*MAX_PATH_OR_CMD, lIn); #else fgetws(lBuff, MAX_PATH_OR_CMD, lIn); #endif fclose(lIn); wipefileW(lDialogString); _wremove(lDialogString); if (aDefaultInput) { swprintf(lDialogString, #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) lDialogStringLen, #endif L"%ls\\tinyfd.vbs", _wgetenv(L"TEMP")); } else { swprintf(lDialogString, #if !defined(__BORLANDC__) && !defined(__TINYC__) && !(defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) lDialogStringLen, #endif L"%ls\\tinyfd.hta", _wgetenv(L"TEMP")); } _wremove(lDialogString); free(lDialogString); /* wprintf( L"lBuff: %ls\n" , lBuff ) ; */ #ifdef TINYFD_NOCCSUNICODE lResult = !wcsncmp(lBuff+1, L"1", 1); #else lResult = !wcsncmp(lBuff, L"1", 1); #endif /* printf( "lResult: %d \n" , lResult ) ; */ if (!lResult) { return NULL ; } /* wprintf( "lBuff+1: %ls\n" , lBuff+1 ) ; */ #ifdef TINYFD_NOCCSUNICODE if (aDefaultInput) { lDialogStringLen = wcslen(lBuff) ; lBuff[lDialogStringLen - 1] = L'\0'; lBuff[lDialogStringLen - 2] = L'\0'; } return lBuff + 2; #else if (aDefaultInput) lBuff[wcslen(lBuff) - 1] = L'\0'; return lBuff + 1; #endif } wchar_t * tinyfd_saveFileDialogW( wchar_t const * aTitle, /* NULL or "" */ wchar_t const * aDefaultPathAndFile, /* NULL or "" */ int aNumOfFilterPatterns, /* 0 */ wchar_t const * const * aFilterPatterns, /* NULL or {"*.jpg","*.png"} */ wchar_t const * aSingleFilterDescription) /* NULL or "image files" */ { static wchar_t lBuff[MAX_PATH_OR_CMD]; wchar_t lDirname[MAX_PATH_OR_CMD]; wchar_t lDialogString[MAX_PATH_OR_CMD]; wchar_t lFilterPatterns[MAX_PATH_OR_CMD] = L""; wchar_t * p; wchar_t * lRetval; wchar_t const * ldefExt = NULL; int i; HRESULT lHResult; OPENFILENAMEW ofn = {0}; if (aTitle&&!wcscmp(aTitle, L"tinyfd_query")){ strcpy(tinyfd_response, "windows_wchar"); return (wchar_t *)1; } if (quoteDetectedW(aTitle)) return tinyfd_saveFileDialogW(L"INVALID TITLE WITH QUOTES", aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription); if (quoteDetectedW(aDefaultPathAndFile)) return tinyfd_saveFileDialogW(aTitle, L"INVALID DEFAULT_PATH WITH QUOTES", aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription); if (quoteDetectedW(aSingleFilterDescription)) return tinyfd_saveFileDialogW(aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, L"INVALID FILTER_DESCRIPTION WITH QUOTES"); for (i = 0; i < aNumOfFilterPatterns; i++) { if (quoteDetectedW(aFilterPatterns[i])) return tinyfd_saveFileDialogW(L"INVALID FILTER_PATTERN WITH QUOTES", aDefaultPathAndFile, 0, NULL, NULL); } lHResult = CoInitializeEx(NULL, 0); getPathWithoutFinalSlashW(lDirname, aDefaultPathAndFile); getLastNameW(lBuff, aDefaultPathAndFile); if (aNumOfFilterPatterns > 0) { ldefExt = aFilterPatterns[0]; if (aSingleFilterDescription && wcslen(aSingleFilterDescription)) { wcscpy(lFilterPatterns, aSingleFilterDescription); wcscat(lFilterPatterns, L"\n"); } wcscat(lFilterPatterns, aFilterPatterns[0]); for (i = 1; i < aNumOfFilterPatterns; i++) { wcscat(lFilterPatterns, L";"); wcscat(lFilterPatterns, aFilterPatterns[i]); } wcscat(lFilterPatterns, L"\n"); if (!(aSingleFilterDescription && wcslen(aSingleFilterDescription))) { wcscpy(lDialogString, lFilterPatterns); wcscat(lFilterPatterns, lDialogString); } wcscat(lFilterPatterns, L"All Files\n*.*\n"); p = lFilterPatterns; while ((p = wcschr(p, L'\n')) != NULL) { *p = L'\0'; p++; } } ofn.lStructSize = sizeof(OPENFILENAMEW); ofn.hwndOwner = GetForegroundWindow(); ofn.hInstance = 0; ofn.lpstrFilter = wcslen(lFilterPatterns) ? lFilterPatterns : NULL; ofn.lpstrCustomFilter = NULL; ofn.nMaxCustFilter = 0; ofn.nFilterIndex = 1; ofn.lpstrFile = lBuff; ofn.nMaxFile = MAX_PATH_OR_CMD; ofn.lpstrFileTitle = NULL; ofn.nMaxFileTitle = MAX_PATH_OR_CMD/2; ofn.lpstrInitialDir = wcslen(lDirname) ? lDirname : NULL; ofn.lpstrTitle = aTitle && wcslen(aTitle) ? aTitle : NULL; ofn.Flags = OFN_OVERWRITEPROMPT | OFN_NOCHANGEDIR | OFN_PATHMUSTEXIST ; ofn.nFileOffset = 0; ofn.nFileExtension = 0; ofn.lpstrDefExt = ldefExt; ofn.lCustData = 0L; ofn.lpfnHook = NULL; ofn.lpTemplateName = NULL; if (GetSaveFileNameW(&ofn) == 0) { lRetval = NULL; } else { lRetval = lBuff; } if (lHResult == S_OK || lHResult == S_FALSE) { CoUninitialize(); } return lRetval; } wchar_t * tinyfd_openFileDialogW( wchar_t const * aTitle, /* NULL or "" */ wchar_t const * aDefaultPathAndFile, /* NULL or "" */ int aNumOfFilterPatterns, /* 0 */ wchar_t const * const * aFilterPatterns, /* NULL or {"*.jpg","*.png"} */ wchar_t const * aSingleFilterDescription, /* NULL or "image files" */ int aAllowMultipleSelects) /* 0 or 1 ; -1 to free allocated memory and return */ { size_t lLengths[MAX_MULTIPLE_FILES]; wchar_t lDirname[MAX_PATH_OR_CMD]; wchar_t lFilterPatterns[MAX_PATH_OR_CMD] = L""; wchar_t lDialogString[MAX_PATH_OR_CMD]; wchar_t * lPointers[MAX_MULTIPLE_FILES+1]; wchar_t * p; int i, j; size_t lBuffLen; DWORD lFullBuffLen; HRESULT lHResult; OPENFILENAMEW ofn = { 0 }; static wchar_t * lBuff = NULL; free(lBuff); lBuff = NULL; if (aAllowMultipleSelects < 0) return (wchar_t *)0; if (aTitle&&!wcscmp(aTitle, L"tinyfd_query")){ strcpy(tinyfd_response, "windows_wchar"); return (wchar_t *)1; } if (quoteDetectedW(aTitle)) return tinyfd_openFileDialogW(L"INVALID TITLE WITH QUOTES", aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); if (quoteDetectedW(aDefaultPathAndFile)) return tinyfd_openFileDialogW(aTitle, L"INVALID DEFAULT_PATH WITH QUOTES", aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); if (quoteDetectedW(aSingleFilterDescription)) return tinyfd_openFileDialogW(aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, L"INVALID FILTER_DESCRIPTION WITH QUOTES", aAllowMultipleSelects); for (i = 0; i < aNumOfFilterPatterns; i++) { if (quoteDetectedW(aFilterPatterns[i])) return tinyfd_openFileDialogW(L"INVALID FILTER_PATTERN WITH QUOTES", aDefaultPathAndFile, 0, NULL, NULL, aAllowMultipleSelects); } if (aAllowMultipleSelects) { lFullBuffLen = MAX_MULTIPLE_FILES * MAX_PATH_OR_CMD + 1; lBuff = (wchar_t*)(malloc(lFullBuffLen * sizeof(wchar_t))); if (!lBuff) { lFullBuffLen = LOW_MULTIPLE_FILES * MAX_PATH_OR_CMD + 1; lBuff = (wchar_t*)( malloc( lFullBuffLen * sizeof(wchar_t))); } } else { lFullBuffLen = MAX_PATH_OR_CMD + 1; lBuff = (wchar_t*)(malloc(lFullBuffLen * sizeof(wchar_t))); } if (!lBuff) return NULL; lHResult = CoInitializeEx(NULL, 0); getPathWithoutFinalSlashW(lDirname, aDefaultPathAndFile); getLastNameW(lBuff, aDefaultPathAndFile); if (aNumOfFilterPatterns > 0) { if (aSingleFilterDescription && wcslen(aSingleFilterDescription)) { wcscpy(lFilterPatterns, aSingleFilterDescription); wcscat(lFilterPatterns, L"\n"); } wcscat(lFilterPatterns, aFilterPatterns[0]); for (i = 1; i < aNumOfFilterPatterns; i++) { wcscat(lFilterPatterns, L";"); wcscat(lFilterPatterns, aFilterPatterns[i]); } wcscat(lFilterPatterns, L"\n"); if (!(aSingleFilterDescription && wcslen(aSingleFilterDescription))) { wcscpy(lDialogString, lFilterPatterns); wcscat(lFilterPatterns, lDialogString); } wcscat(lFilterPatterns, L"All Files\n*.*\n"); p = lFilterPatterns; while ((p = wcschr(p, L'\n')) != NULL) { *p = L'\0'; p++; } } ofn.lStructSize = sizeof(OPENFILENAME); ofn.hwndOwner = GetForegroundWindow(); ofn.hInstance = 0; ofn.lpstrFilter = wcslen(lFilterPatterns) ? lFilterPatterns : NULL; ofn.lpstrCustomFilter = NULL; ofn.nMaxCustFilter = 0; ofn.nFilterIndex = 1; ofn.lpstrFile = lBuff; ofn.nMaxFile = lFullBuffLen; ofn.lpstrFileTitle = NULL; ofn.nMaxFileTitle = MAX_PATH_OR_CMD / 2; ofn.lpstrInitialDir = wcslen(lDirname) ? lDirname : NULL; ofn.lpstrTitle = aTitle && wcslen(aTitle) ? aTitle : NULL; ofn.Flags = OFN_EXPLORER | OFN_NOCHANGEDIR | OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST; ofn.nFileOffset = 0; ofn.nFileExtension = 0; ofn.lpstrDefExt = NULL; ofn.lCustData = 0L; ofn.lpfnHook = NULL; ofn.lpTemplateName = NULL; if (aAllowMultipleSelects) { ofn.Flags |= OFN_ALLOWMULTISELECT; } if (GetOpenFileNameW(&ofn) == 0) { free(lBuff); lBuff = NULL; } else { lBuffLen = wcslen(lBuff); lPointers[0] = lBuff + lBuffLen + 1; if (aAllowMultipleSelects && (lPointers[0][0] != L'\0')) { i = 0; do { lLengths[i] = wcslen(lPointers[i]); lPointers[i + 1] = lPointers[i] + lLengths[i] + 1; i++; } while (lPointers[i][0] != L'\0' && i < MAX_MULTIPLE_FILES ); if (i > MAX_MULTIPLE_FILES) { free(lBuff); lBuff = NULL; } else { i--; p = lBuff + lFullBuffLen - 1; *p = L'\0'; for (j = i; j >= 0; j--) { p -= lLengths[j]; memmove(p, lPointers[j], lLengths[j] * sizeof(wchar_t)); p--; *p = L'\\'; p -= lBuffLen; memmove(p, lBuff, lBuffLen*sizeof(wchar_t)); p--; *p = L'|'; } p++; wcscpy(lBuff, p); lBuffLen = wcslen(lBuff); } } if (lBuff) lBuff = (wchar_t*)(realloc(lBuff, (lBuffLen + 1) * sizeof(wchar_t))); } if (lHResult == S_OK || lHResult == S_FALSE) { CoUninitialize(); } return lBuff; } BOOL CALLBACK BrowseCallbackProcW_enum(HWND hWndChild, LPARAM lParam) { wchar_t buf[255]; GetClassNameW(hWndChild, buf, sizeof(buf)); if (wcscmp(buf, L"SysTreeView32") == 0) { HTREEITEM hNode = TreeView_GetSelection(hWndChild); TreeView_EnsureVisible(hWndChild, hNode); return FALSE; } return TRUE; } static int __stdcall BrowseCallbackProcW(HWND hwnd, UINT uMsg, LPARAM lp, LPARAM pData) { switch (uMsg) { case BFFM_INITIALIZED: SendMessage(hwnd, BFFM_SETSELECTIONW, TRUE, (LPARAM)pData); break; case BFFM_SELCHANGED: EnumChildWindows(hwnd, BrowseCallbackProcW_enum, 0); } return 0; } wchar_t * tinyfd_selectFolderDialogW( wchar_t const * aTitle, /* NULL or "" */ wchar_t const * aDefaultPath) /* NULL or "" */ { static wchar_t lBuff[MAX_PATH_OR_CMD]; wchar_t * lRetval; BROWSEINFOW bInfo; LPITEMIDLIST lpItem; HRESULT lHResult; if (aTitle&&!wcscmp(aTitle, L"tinyfd_query")){ strcpy(tinyfd_response, "windows_wchar"); return (wchar_t *)1; } if (quoteDetectedW(aTitle)) return tinyfd_selectFolderDialogW(L"INVALID TITLE WITH QUOTES", aDefaultPath); if (quoteDetectedW(aDefaultPath)) return tinyfd_selectFolderDialogW(aTitle, L"INVALID DEFAULT_PATH WITH QUOTES"); lHResult = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED); bInfo.hwndOwner = GetForegroundWindow(); bInfo.pidlRoot = NULL; bInfo.pszDisplayName = lBuff; bInfo.lpszTitle = aTitle && wcslen(aTitle) ? aTitle : NULL; if (lHResult == S_OK || lHResult == S_FALSE) { bInfo.ulFlags = BIF_USENEWUI; } bInfo.lpfn = BrowseCallbackProcW; bInfo.lParam = (LPARAM)aDefaultPath; bInfo.iImage = -1; lpItem = SHBrowseForFolderW(&bInfo); if (!lpItem) { lRetval = NULL; } else { SHGetPathFromIDListW(lpItem, lBuff); lRetval = lBuff ; } if (lHResult == S_OK || lHResult == S_FALSE) { CoUninitialize(); } return lRetval; } wchar_t * tinyfd_colorChooserW( wchar_t const * aTitle, /* NULL or "" */ wchar_t const * aDefaultHexRGB, /* NULL or "#FF0000"*/ unsigned char const aDefaultRGB[3], /* { 0 , 255 , 255 } */ unsigned char aoResultRGB[3]) /* { 0 , 0 , 0 } */ { static wchar_t lResultHexRGB[8]; CHOOSECOLORW cc; COLORREF crCustColors[16]; unsigned char lDefaultRGB[3]; int lRet; HRESULT lHResult; if (aTitle&&!wcscmp(aTitle, L"tinyfd_query")){ strcpy(tinyfd_response, "windows_wchar"); return (wchar_t *)1; } if (quoteDetectedW(aTitle)) return tinyfd_colorChooserW(L"INVALID TITLE WITH QUOTES", aDefaultHexRGB, aDefaultRGB, aoResultRGB); if (quoteDetectedW(aDefaultHexRGB)) return tinyfd_colorChooserW(aTitle, L"INVALID DEFAULT_HEX_RGB WITH QUOTES", aDefaultRGB, aoResultRGB); lHResult = CoInitializeEx(NULL, 0); if ( aDefaultHexRGB ) { Hex2RGBW(aDefaultHexRGB, lDefaultRGB); } else { lDefaultRGB[0] = aDefaultRGB[0]; lDefaultRGB[1] = aDefaultRGB[1]; lDefaultRGB[2] = aDefaultRGB[2]; } /* we can't use aTitle */ cc.lStructSize = sizeof(CHOOSECOLOR); cc.hwndOwner = GetForegroundWindow(); cc.hInstance = NULL; cc.rgbResult = RGB(lDefaultRGB[0], lDefaultRGB[1], lDefaultRGB[2]); cc.lpCustColors = crCustColors; cc.Flags = CC_RGBINIT | CC_FULLOPEN | CC_ANYCOLOR ; cc.lCustData = 0; cc.lpfnHook = NULL; cc.lpTemplateName = NULL; lRet = ChooseColorW(&cc); if (!lRet) { return NULL; } aoResultRGB[0] = GetRValue(cc.rgbResult); aoResultRGB[1] = GetGValue(cc.rgbResult); aoResultRGB[2] = GetBValue(cc.rgbResult); RGB2HexW(aoResultRGB, lResultHexRGB); if (lHResult == S_OK || lHResult == S_FALSE) { CoUninitialize(); } return lResultHexRGB; } static int messageBoxWinGui( char const * aTitle, /* NULL or "" */ char const * aMessage, /* NULL or "" may contain \n and \t */ char const * aDialogType, /* "ok" "okcancel" "yesno" "yesnocancel" */ char const * aIconType, /* "info" "warning" "error" "question" */ int aDefaultButton) /* 0 for cancel/no , 1 for ok/yes , 2 for no in yesnocancel */ { int lIntRetVal; wchar_t lTitle[128] = L""; wchar_t * lMessage = NULL; wchar_t lDialogType[16] = L""; wchar_t lIconType[16] = L""; wchar_t * lTmpWChar; if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aMessage) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aMessage); else lTmpWChar = tinyfd_mbcsTo16(aMessage); lMessage = (wchar_t *) malloc((wcslen(lTmpWChar) + 1)* sizeof(wchar_t)); if (lMessage) wcscpy(lMessage, lTmpWChar); } if (aDialogType) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aDialogType); else lTmpWChar = tinyfd_mbcsTo16(aDialogType); wcscpy(lDialogType, lTmpWChar); } if (aIconType) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aIconType); else lTmpWChar = tinyfd_mbcsTo16(aIconType); wcscpy(lIconType, lTmpWChar); } lIntRetVal = tinyfd_messageBoxW(lTitle, lMessage, lDialogType, lIconType, aDefaultButton); free(lMessage); return lIntRetVal; } static int notifyWinGui( char const * aTitle, /* NULL or "" */ char const * aMessage, /* NULL or "" may NOT contain \n nor \t */ char const * aIconType) { wchar_t lTitle[128] = L""; wchar_t * lMessage = NULL; wchar_t lIconType[16] = L""; wchar_t * lTmpWChar; if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aMessage) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aMessage); else lTmpWChar = tinyfd_mbcsTo16(aMessage); lMessage = (wchar_t *) malloc((wcslen(lTmpWChar) + 1)* sizeof(wchar_t)); if (lMessage) wcscpy(lMessage, lTmpWChar); } if (aIconType) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aIconType); else lTmpWChar = tinyfd_mbcsTo16(aIconType); wcscpy(lIconType, lTmpWChar); } tinyfd_notifyPopupW(lTitle, lMessage, lIconType); free(lMessage); return 1; } static int inputBoxWinGui( char * aoBuff, char const * aTitle, /* NULL or "" */ char const * aMessage, /* NULL or "" may NOT contain \n nor \t */ char const * aDefaultInput) /* "" , if NULL it's a passwordBox */ { wchar_t lTitle[128] = L""; wchar_t * lMessage = NULL; wchar_t lDefaultInput[MAX_PATH_OR_CMD] = L""; wchar_t * lTmpWChar; char * lTmpChar; if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aMessage) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aMessage); else lTmpWChar = tinyfd_mbcsTo16(aMessage); lMessage = (wchar_t *) malloc((wcslen(lTmpWChar) + 1)* sizeof(wchar_t)); if (lMessage) wcscpy(lMessage, lTmpWChar); } if (aDefaultInput) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aDefaultInput); else lTmpWChar = tinyfd_mbcsTo16(aDefaultInput); wcscpy(lDefaultInput, lTmpWChar); lTmpWChar = tinyfd_inputBoxW(lTitle, lMessage, lDefaultInput); } else lTmpWChar = tinyfd_inputBoxW(lTitle, lMessage, NULL); free(lMessage); if (!lTmpWChar) { aoBuff[0] = '\0'; return 0; } if (tinyfd_winUtf8) lTmpChar = tinyfd_utf16to8(lTmpWChar); else lTmpChar = tinyfd_utf16toMbcs(lTmpWChar); strcpy(aoBuff, lTmpChar); return 1; } static char * saveFileDialogWinGui( char * aoBuff, char const * aTitle, /* NULL or "" */ char const * aDefaultPathAndFile, /* NULL or "" */ int aNumOfFilterPatterns, /* 0 */ char const * const * aFilterPatterns, /* NULL or {"*.jpg","*.png"} */ char const * aSingleFilterDescription) /* NULL or "image files" */ { wchar_t lTitle[128] = L""; wchar_t lDefaultPathAndFile[MAX_PATH_OR_CMD] = L""; wchar_t lSingleFilterDescription[128] = L""; wchar_t * * lFilterPatterns; wchar_t * lTmpWChar; char * lTmpChar; int i; lFilterPatterns = (wchar_t **)malloc(aNumOfFilterPatterns*sizeof(wchar_t *)); for (i = 0; i < aNumOfFilterPatterns; i++) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aFilterPatterns[i]); else lTmpWChar = tinyfd_mbcsTo16(aFilterPatterns[i]); lFilterPatterns[i] = (wchar_t *)malloc((wcslen(lTmpWChar) + 1) * sizeof(wchar_t *)); if (lFilterPatterns[i]) wcscpy(lFilterPatterns[i], lTmpWChar); } if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aDefaultPathAndFile) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aDefaultPathAndFile); else lTmpWChar = tinyfd_mbcsTo16(aDefaultPathAndFile); wcscpy(lDefaultPathAndFile, lTmpWChar); } if (aSingleFilterDescription) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aSingleFilterDescription); else lTmpWChar = tinyfd_mbcsTo16(aSingleFilterDescription); wcscpy(lSingleFilterDescription, lTmpWChar); } lTmpWChar = tinyfd_saveFileDialogW( lTitle, lDefaultPathAndFile, aNumOfFilterPatterns, (wchar_t const**) lFilterPatterns, /*stupid cast for gcc*/ lSingleFilterDescription); for (i = 0; i < aNumOfFilterPatterns; i++) { free(lFilterPatterns[i]); } free(lFilterPatterns); if (!lTmpWChar) { return NULL; } if (tinyfd_winUtf8) lTmpChar = tinyfd_utf16to8(lTmpWChar); else lTmpChar = tinyfd_utf16toMbcs(lTmpWChar); strcpy(aoBuff, lTmpChar); if (tinyfd_winUtf8) (void)tinyfd_utf16to8(NULL); else (void)tinyfd_utf16toMbcs(NULL); return aoBuff; } static char * openFileDialogWinGui( char const * aTitle, /* NULL or "" */ char const * aDefaultPathAndFile, /* NULL or "" */ int aNumOfFilterPatterns, /* 0 */ char const * const * aFilterPatterns, /* NULL or {"*.jpg","*.png"} */ char const * aSingleFilterDescription, /* NULL or "image files" */ int aAllowMultipleSelects) /* 0 or 1 */ { wchar_t lTitle[128] = L""; wchar_t lDefaultPathAndFile[MAX_PATH_OR_CMD] = L""; wchar_t lSingleFilterDescription[128] = L""; wchar_t * * lFilterPatterns; wchar_t * lTmpWChar; char * lTmpChar; int i; lFilterPatterns = (wchar_t * *)malloc(aNumOfFilterPatterns*sizeof(wchar_t *)); for (i = 0; i < aNumOfFilterPatterns; i++) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aFilterPatterns[i]); else lTmpWChar = tinyfd_mbcsTo16(aFilterPatterns[i]); lFilterPatterns[i] = (wchar_t *)malloc((wcslen(lTmpWChar) + 1)*sizeof(wchar_t *)); if (lFilterPatterns[i]) wcscpy(lFilterPatterns[i], lTmpWChar); } if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aDefaultPathAndFile) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aDefaultPathAndFile); else lTmpWChar = tinyfd_mbcsTo16(aDefaultPathAndFile); wcscpy(lDefaultPathAndFile, lTmpWChar); } if (aSingleFilterDescription) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aSingleFilterDescription); else lTmpWChar = tinyfd_mbcsTo16(aSingleFilterDescription); wcscpy(lSingleFilterDescription, lTmpWChar); } lTmpWChar = tinyfd_openFileDialogW( lTitle, lDefaultPathAndFile, aNumOfFilterPatterns, (wchar_t const**) lFilterPatterns, /*stupid cast for gcc*/ lSingleFilterDescription, aAllowMultipleSelects); for (i = 0; i < aNumOfFilterPatterns; i++) { free(lFilterPatterns[i]); } free(lFilterPatterns); if (!lTmpWChar) return NULL; if (tinyfd_winUtf8) lTmpChar = tinyfd_utf16to8(lTmpWChar); else lTmpChar = tinyfd_utf16toMbcs(lTmpWChar); (void)tinyfd_openFileDialogW(NULL, NULL, 0, NULL, NULL, -1); return lTmpChar; } static char * selectFolderDialogWinGui( char * aoBuff, char const * aTitle, /* NULL or "" */ char const * aDefaultPath) /* NULL or "" */ { wchar_t lTitle[128] = L""; wchar_t lDefaultPath[MAX_PATH_OR_CMD] = L""; wchar_t * lTmpWChar; char * lTmpChar; if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aDefaultPath) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aDefaultPath); else lTmpWChar = tinyfd_mbcsTo16(aDefaultPath); wcscpy(lDefaultPath, lTmpWChar); } lTmpWChar = tinyfd_selectFolderDialogW( lTitle, lDefaultPath); if (!lTmpWChar) { return NULL; } if (tinyfd_winUtf8) lTmpChar = tinyfd_utf16to8(lTmpWChar); else lTmpChar = tinyfd_utf16toMbcs(lTmpWChar); strcpy(aoBuff, lTmpChar); return aoBuff; } static char * colorChooserWinGui( char const * aTitle, /* NULL or "" */ char const * aDefaultHexRGB, /* NULL or "#FF0000"*/ unsigned char const aDefaultRGB[3], /* { 0 , 255 , 255 } */ unsigned char aoResultRGB[3]) /* { 0 , 0 , 0 } */ { static char lResultHexRGB[8]; wchar_t lTitle[128]; wchar_t lDefaultHexRGB[16]; wchar_t * lTmpWChar; char * lTmpChar; if (aTitle) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aTitle); else lTmpWChar = tinyfd_mbcsTo16(aTitle); wcscpy(lTitle, lTmpWChar); } if (aDefaultHexRGB) { if (tinyfd_winUtf8) lTmpWChar = tinyfd_utf8to16(aDefaultHexRGB); else lTmpWChar = tinyfd_mbcsTo16(aDefaultHexRGB); wcscpy(lDefaultHexRGB, lTmpWChar); } lTmpWChar = tinyfd_colorChooserW( lTitle, lDefaultHexRGB, aDefaultRGB, aoResultRGB ); if (!lTmpWChar) { return NULL; } if (tinyfd_winUtf8) lTmpChar = tinyfd_utf16to8(lTmpWChar); else lTmpChar = tinyfd_utf16toMbcs(lTmpWChar); strcpy(lResultHexRGB, lTmpChar); return lResultHexRGB; } static int dialogPresent(void) { static int lDialogPresent = -1 ; char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; char const * lString = "dialog.exe"; if (!tinyfd_allowCursesDialogs) return 0; if (lDialogPresent < 0) { if (!(lIn = _popen("where dialog.exe","r"))) { lDialogPresent = 0 ; return 0 ; } while ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) {} _pclose( lIn ) ; if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } if ( strcmp(lBuff+strlen(lBuff)-strlen(lString),lString) ) { lDialogPresent = 0 ; } else { lDialogPresent = 1 ; } } return lDialogPresent; } static int messageBoxWinConsole( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" may contain \n and \t */ char const * aDialogType , /* "ok" "okcancel" "yesno" "yesnocancel" */ char const * aIconType , /* "info" "warning" "error" "question" */ int aDefaultButton ) /* 0 for cancel/no , 1 for ok/yes , 2 for no in yesnocancel */ { char lDialogString[MAX_PATH_OR_CMD]; char lDialogFile[MAX_PATH_OR_CMD]; FILE * lIn; char lBuff[MAX_PATH_OR_CMD] = ""; strcpy(lDialogString, "dialog "); if (aTitle && strlen(aTitle)) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( aDialogType && ( !strcmp( "okcancel" , aDialogType ) || !strcmp("yesno", aDialogType) || !strcmp("yesnocancel", aDialogType) ) ) { strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: move focus") ; strcat(lDialogString, "\" ") ; } if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { if ( ! aDefaultButton ) { strcat( lDialogString , "--defaultno " ) ; } strcat( lDialogString , "--yes-label \"Ok\" --no-label \"Cancel\" --yesno " ) ; } else if ( aDialogType && ! strcmp( "yesno" , aDialogType ) ) { if ( ! aDefaultButton ) { strcat( lDialogString , "--defaultno " ) ; } strcat( lDialogString , "--yesno " ) ; } else if (aDialogType && !strcmp("yesnocancel", aDialogType)) { if (!aDefaultButton) { strcat(lDialogString, "--defaultno "); } strcat(lDialogString, "--menu "); } else { strcat( lDialogString , "--msgbox " ) ; } strcat( lDialogString , "\"" ) ; if ( aMessage && strlen(aMessage) ) { tfd_replaceSubStr( aMessage , "\n" , "\\n" , lBuff ) ; strcat(lDialogString, lBuff) ; lBuff[0]='\0'; } strcat(lDialogString, "\" "); if (aDialogType && !strcmp("yesnocancel", aDialogType)) { strcat(lDialogString, "0 60 0 Yes \"\" No \"\""); strcat(lDialogString, "2>>"); } else { strcat(lDialogString, "10 60"); strcat(lDialogString, " && echo 1 > "); } strcpy(lDialogFile, getenv("TEMP")); strcat(lDialogFile, "\\tinyfd.txt"); strcat(lDialogString, lDialogFile); /*if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ;*/ system( lDialogString ) ; if (!(lIn = fopen(lDialogFile, "r"))) { remove(lDialogFile); return 0 ; } while (fgets(lBuff, sizeof(lBuff), lIn) != NULL) {} fclose(lIn); remove(lDialogFile); if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } /* if (tinyfd_verbose) printf("lBuff: %s\n", lBuff); */ if ( ! strlen(lBuff) ) { return 0; } if (aDialogType && !strcmp("yesnocancel", aDialogType)) { if (lBuff[0] == 'Y') return 1; else return 2; } return 1; } static int inputBoxWinConsole( char * aoBuff , char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" may NOT contain \n nor \t */ char const * aDefaultInput ) /* "" , if NULL it's a passwordBox */ { char lDialogString[MAX_PATH_OR_CMD]; char lDialogFile[MAX_PATH_OR_CMD]; FILE * lIn; int lResult; strcpy(lDialogFile, getenv("TEMP")); strcat(lDialogFile, "\\tinyfd.txt"); strcpy(lDialogString , "echo|set /p=1 >" ) ; strcat(lDialogString, lDialogFile); strcat( lDialogString , " & " ) ; strcat( lDialogString , "dialog " ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: move focus") ; if ( ! aDefaultInput ) { strcat(lDialogString, " (sometimes nothing, no blink nor star, is shown in text field)") ; } strcat(lDialogString, "\" ") ; if ( ! aDefaultInput ) { strcat( lDialogString , "--insecure --passwordbox" ) ; } else { strcat( lDialogString , "--inputbox" ) ; } strcat( lDialogString , " \"" ) ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage) ; } strcat(lDialogString,"\" 10 60 ") ; if ( aDefaultInput && strlen(aDefaultInput) ) { strcat(lDialogString, "\"") ; strcat(lDialogString, aDefaultInput) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "2>>"); strcpy(lDialogFile, getenv("TEMP")); strcat(lDialogFile, "\\tinyfd.txt"); strcat(lDialogString, lDialogFile); strcat(lDialogString, " || echo 0 > "); strcat(lDialogString, lDialogFile); /* printf( "lDialogString: %s\n" , lDialogString ) ; */ system( lDialogString ) ; if (!(lIn = fopen(lDialogFile, "r"))) { remove(lDialogFile); aoBuff[0] = '\0'; return 0; } while (fgets(aoBuff, MAX_PATH_OR_CMD, lIn) != NULL) {} fclose(lIn); wipefile(lDialogFile); remove(lDialogFile); if ( aoBuff[strlen( aoBuff ) -1] == '\n' ) { aoBuff[strlen( aoBuff ) -1] = '\0' ; } /* printf( "aoBuff: %s\n" , aoBuff ) ; */ /* printf( "aoBuff: %s len: %lu \n" , aoBuff , strlen(aoBuff) ) ; */ lResult = strncmp( aoBuff , "1" , 1) ? 0 : 1 ; /* printf( "lResult: %d \n" , lResult ) ; */ if ( ! lResult ) { aoBuff[0] = '\0'; return 0 ; } /* printf( "aoBuff+1: %s\n" , aoBuff+1 ) ; */ strcpy(aoBuff, aoBuff+3); return 1; } static char * saveFileDialogWinConsole( char * aoBuff , char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile ) /* NULL or "" */ { char lDialogString[MAX_PATH_OR_CMD]; char lPathAndFile[MAX_PATH_OR_CMD] = ""; FILE * lIn; strcpy( lDialogString , "dialog " ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: focus | /: populate | spacebar: fill text field | ok: TEXT FIELD ONLY") ; strcat(lDialogString, "\" ") ; strcat( lDialogString , "--fselect \"" ) ; if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { /* dialog.exe uses unix separators even on windows */ strcpy(lPathAndFile, aDefaultPathAndFile); replaceChr( lPathAndFile , '\\' , '/' ) ; } /* dialog.exe needs at least one separator */ if ( ! strchr(lPathAndFile, '/') ) { strcat(lDialogString, "./") ; } strcat(lDialogString, lPathAndFile) ; strcat(lDialogString, "\" 0 60 2>"); strcpy(lPathAndFile, getenv("TEMP")); strcat(lPathAndFile, "\\tinyfd.txt"); strcat(lDialogString, lPathAndFile); /* printf( "lDialogString: %s\n" , lDialogString ) ; */ system( lDialogString ) ; if (!(lIn = fopen(lPathAndFile, "r"))) { remove(lPathAndFile); return NULL; } while (fgets(aoBuff, MAX_PATH_OR_CMD, lIn) != NULL) {} fclose(lIn); remove(lPathAndFile); replaceChr( aoBuff , '/' , '\\' ) ; /* printf( "aoBuff: %s\n" , aoBuff ) ; */ getLastName(lDialogString,aoBuff); if ( ! strlen(lDialogString) ) { return NULL; } return aoBuff; } static char * openFileDialogWinConsole( char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile ) /* NULL or "" */ { char lFilterPatterns[MAX_PATH_OR_CMD] = ""; char lDialogString[MAX_PATH_OR_CMD] ; FILE * lIn; static char aoBuff[MAX_PATH_OR_CMD]; strcpy( lDialogString , "dialog " ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: focus | /: populate | spacebar: fill text field | ok: TEXT FIELD ONLY") ; strcat(lDialogString, "\" ") ; strcat( lDialogString , "--fselect \"" ) ; if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { /* dialog.exe uses unix separators even on windows */ strcpy(lFilterPatterns, aDefaultPathAndFile); replaceChr( lFilterPatterns , '\\' , '/' ) ; } /* dialog.exe needs at least one separator */ if ( ! strchr(lFilterPatterns, '/') ) { strcat(lDialogString, "./") ; } strcat(lDialogString, lFilterPatterns) ; strcat(lDialogString, "\" 0 60 2>"); strcpy(lFilterPatterns, getenv("TEMP")); strcat(lFilterPatterns, "\\tinyfd.txt"); strcat(lDialogString, lFilterPatterns); /* printf( "lDialogString: %s\n" , lDialogString ) ; */ system( lDialogString ) ; if (!(lIn = fopen(lFilterPatterns, "r"))) { remove(lFilterPatterns); return NULL; } while (fgets(aoBuff, MAX_PATH_OR_CMD, lIn) != NULL) {} fclose(lIn); remove(lFilterPatterns); replaceChr( aoBuff , '/' , '\\' ) ; /* printf( "aoBuff: %s\n" , aoBuff ) ; */ return aoBuff; } static char * selectFolderDialogWinConsole( char * aoBuff , char const * aTitle , /* NULL or "" */ char const * aDefaultPath ) /* NULL or "" */ { char lDialogString[MAX_PATH_OR_CMD] ; char lString[MAX_PATH_OR_CMD] ; FILE * lIn ; strcpy( lDialogString , "dialog " ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: focus | /: populate | spacebar: fill text field | ok: TEXT FIELD ONLY") ; strcat(lDialogString, "\" ") ; strcat( lDialogString , "--dselect \"" ) ; if ( aDefaultPath && strlen(aDefaultPath) ) { /* dialog.exe uses unix separators even on windows */ strcpy(lString, aDefaultPath) ; ensureFinalSlash(lString); replaceChr( lString , '\\' , '/' ) ; strcat(lDialogString, lString) ; } else { /* dialog.exe needs at least one separator */ strcat(lDialogString, "./") ; } strcat(lDialogString, "\" 0 60 2>"); strcpy(lString, getenv("TEMP")); strcat(lString, "\\tinyfd.txt"); strcat(lDialogString, lString); /* printf( "lDialogString: %s\n" , lDialogString ) ; */ system( lDialogString ) ; if (!(lIn = fopen(lString, "r"))) { remove(lString); return NULL; } while (fgets(aoBuff, MAX_PATH_OR_CMD, lIn) != NULL) {} fclose(lIn); remove(lString); replaceChr( aoBuff , '/' , '\\' ) ; /* printf( "aoBuff: %s\n" , aoBuff ) ; */ return aoBuff; } static void writeUtf8( char const * aUtf8String ) { unsigned long lNum; void * lConsoleHandle; wchar_t * lTmpWChar; lConsoleHandle = GetStdHandle(STD_OUTPUT_HANDLE); lTmpWChar = tinyfd_utf8to16(aUtf8String); (void)WriteConsoleW(lConsoleHandle, lTmpWChar, (DWORD) wcslen(lTmpWChar), &lNum, NULL); } int tinyfd_messageBox( char const * aTitle, /* NULL or "" */ char const * aMessage, /* NULL or "" may contain \n and \t */ char const * aDialogType, /* "ok" "okcancel" "yesno" "yesnocancel" */ char const * aIconType, /* "info" "warning" "error" "question" */ int aDefaultButton) /* 0 for cancel/no , 1 for ok/yes , 2 for no in yesnocancel */ { char lChar; UINT lOriginalCP = 0; UINT lOriginalOutputCP = 0; if (tfd_quoteDetected(aTitle)) return tinyfd_messageBox("INVALID TITLE WITH QUOTES", aMessage, aDialogType, aIconType, aDefaultButton); if (tfd_quoteDetected(aMessage)) return tinyfd_messageBox(aTitle, "INVALID MESSAGE WITH QUOTES", aDialogType, aIconType, aDefaultButton); if ((!tinyfd_forceConsole || !(GetConsoleWindow() || dialogPresent())) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "windows"); return 1; } return messageBoxWinGui(aTitle, aMessage, aDialogType, aIconType, aDefaultButton); } else if (dialogPresent()) { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "dialog"); return 0; } return messageBoxWinConsole( aTitle, aMessage, aDialogType, aIconType, aDefaultButton); } else { if (!tinyfd_winUtf8) { lOriginalCP = GetConsoleCP(); lOriginalOutputCP = GetConsoleOutputCP(); (void)SetConsoleCP(GetACP()); (void)SetConsoleOutputCP(GetACP()); } if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "basicinput"); return 0; } if (!gWarningDisplayed && !tinyfd_forceConsole) { gWarningDisplayed = 1; printf("\n\n%s\n", gTitle); printf("%s\n\n", tinyfd_needs); } if (aTitle && strlen(aTitle)) { printf("\n"); if (tinyfd_winUtf8) writeUtf8(aTitle); else printf("%s", aTitle); printf("\n\n"); } if (aDialogType && !strcmp("yesno", aDialogType)) { do { if (aMessage && strlen(aMessage)) { if (tinyfd_winUtf8) writeUtf8(aMessage); else printf("%s", aMessage); printf("\n"); } printf("y/n: "); lChar = (char)tolower(_getch()); printf("\n\n"); } while (lChar != 'y' && lChar != 'n'); if (!tinyfd_winUtf8) { (void)SetConsoleCP(lOriginalCP); (void)SetConsoleOutputCP(lOriginalOutputCP); } return lChar == 'y' ? 1 : 0; } else if (aDialogType && !strcmp("okcancel", aDialogType)) { do { if (aMessage && strlen(aMessage)) { if (tinyfd_winUtf8) writeUtf8(aMessage); else printf("%s", aMessage); printf("\n"); } printf("[O]kay/[C]ancel: "); lChar = (char)tolower(_getch()); printf("\n\n"); } while (lChar != 'o' && lChar != 'c'); if (!tinyfd_winUtf8) { (void)SetConsoleCP(lOriginalCP); (void)SetConsoleOutputCP(lOriginalOutputCP); } return lChar == 'o' ? 1 : 0; } else if (aDialogType && !strcmp("yesnocancel", aDialogType)) { do { if (aMessage && strlen(aMessage)) { if (tinyfd_winUtf8) writeUtf8(aMessage); else printf("%s", aMessage); printf("\n"); } printf("[Y]es/[N]o/[C]ancel: "); lChar = (char)tolower(_getch()); printf("\n\n"); } while (lChar != 'y' && lChar != 'n' && lChar != 'c'); if (!tinyfd_winUtf8) { (void)SetConsoleCP(lOriginalCP); (void)SetConsoleOutputCP(lOriginalOutputCP); } return (lChar == 'y') ? 1 : (lChar == 'n') ? 2 : 0; } else { if (aMessage && strlen(aMessage)) { if (tinyfd_winUtf8) writeUtf8(aMessage); else printf("%s", aMessage); printf("\n\n"); } printf("press enter to continue "); lChar = (char)_getch(); printf("\n\n"); if (!tinyfd_winUtf8) { (void)SetConsoleCP(lOriginalCP); (void)SetConsoleOutputCP(lOriginalOutputCP); } return 1; } } } /* return has only meaning for tinyfd_query */ int tinyfd_notifyPopup( char const * aTitle, /* NULL or "" */ char const * aMessage , /* NULL or "" may contain \n \t */ char const * aIconType ) /* "info" "warning" "error" */ { if (tfd_quoteDetected(aTitle)) return tinyfd_notifyPopup("INVALID TITLE WITH QUOTES", aMessage, aIconType); if (tfd_quoteDetected(aMessage)) return tinyfd_notifyPopup(aTitle, "INVALID MESSAGE WITH QUOTES", aIconType); if ( powershellPresent() && (!tinyfd_forceConsole || !( GetConsoleWindow() || dialogPresent())) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"windows");return 1;} return notifyWinGui(aTitle, aMessage, aIconType); } else return tinyfd_messageBox(aTitle, aMessage, "ok" , aIconType, 0); } /* returns NULL on cancel */ char * tinyfd_inputBox( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" (\n and \t have no effect) */ char const * aDefaultInput ) /* "" , if NULL it's a passwordBox */ { static char lBuff[MAX_PATH_OR_CMD] = ""; char * lEOF; DWORD mode = 0; HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE); unsigned long lNum; void * lConsoleHandle; char * lTmpChar; wchar_t lBuffW[1024]; UINT lOriginalCP = 0; UINT lOriginalOutputCP = 0; if (!aTitle && !aMessage && !aDefaultInput) return lBuff; /* now I can fill lBuff from outside */ if (tfd_quoteDetected(aTitle)) return tinyfd_inputBox("INVALID TITLE WITH QUOTES", aMessage, aDefaultInput); if (tfd_quoteDetected(aMessage)) return tinyfd_inputBox(aTitle, "INVALID MESSAGE WITH QUOTES", aDefaultInput); if (tfd_quoteDetected(aDefaultInput)) return tinyfd_inputBox(aTitle, aMessage, "INVALID DEFAULT_INPUT WITH QUOTES"); mode = 0; hStdin = GetStdHandle(STD_INPUT_HANDLE); if ((!tinyfd_forceConsole || !( GetConsoleWindow() || dialogPresent())) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"windows");return (char *)1;} lBuff[0]='\0'; if (inputBoxWinGui(lBuff, aTitle, aMessage, aDefaultInput)) return lBuff; else return NULL; } else if ( dialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} lBuff[0]='\0'; if (inputBoxWinConsole(lBuff, aTitle, aMessage, aDefaultInput) ) return lBuff; else return NULL; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"basicinput");return (char *)0;} lBuff[0]='\0'; if (!gWarningDisplayed && !tinyfd_forceConsole) { gWarningDisplayed = 1 ; printf("\n\n%s\n", gTitle); printf("%s\n\n", tinyfd_needs); } if (!tinyfd_winUtf8) { lOriginalCP = GetConsoleCP(); lOriginalOutputCP = GetConsoleOutputCP(); (void)SetConsoleCP(GetACP()); (void)SetConsoleOutputCP(GetACP()); } if (aTitle && strlen(aTitle)) { printf("\n"); if (tinyfd_winUtf8) writeUtf8(aTitle); else printf("%s", aTitle); printf("\n\n"); } if ( aMessage && strlen(aMessage) ) { if (tinyfd_winUtf8) writeUtf8(aMessage); else printf("%s", aMessage); printf("\n"); } printf("(ctrl-Z + enter to cancel): "); if ( ! aDefaultInput ) { (void) GetConsoleMode(hStdin, &mode); (void) SetConsoleMode(hStdin, mode & (~ENABLE_ECHO_INPUT)); } if (tinyfd_winUtf8) { lConsoleHandle = GetStdHandle(STD_INPUT_HANDLE); (void) ReadConsoleW(lConsoleHandle, lBuffW, MAX_PATH_OR_CMD, &lNum, NULL); if (!aDefaultInput) { (void)SetConsoleMode(hStdin, mode); printf("\n"); } lBuffW[lNum] = '\0'; if (lBuffW[wcslen(lBuffW) - 1] == '\n') lBuffW[wcslen(lBuffW) - 1] = '\0'; if (lBuffW[wcslen(lBuffW) - 1] == '\r') lBuffW[wcslen(lBuffW) - 1] = '\0'; lTmpChar = tinyfd_utf16to8(lBuffW); if (lTmpChar) { strcpy(lBuff, lTmpChar); return lBuff; } else return NULL; } else { lEOF = fgets(lBuff, MAX_PATH_OR_CMD, stdin); if (!aDefaultInput) { (void)SetConsoleMode(hStdin, mode); printf("\n"); } if (!tinyfd_winUtf8) { (void)SetConsoleCP(lOriginalCP); (void)SetConsoleOutputCP(lOriginalOutputCP); } if (!lEOF) { return NULL; } printf("\n"); if (strchr(lBuff, 27)) { return NULL; } if (lBuff[strlen(lBuff) - 1] == '\n') { lBuff[strlen(lBuff) - 1] = '\0'; } return lBuff; } } } char * tinyfd_saveFileDialog( char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile , /* NULL or "" */ int aNumOfFilterPatterns , /* 0 */ char const * const * aFilterPatterns , /* NULL or {"*.jpg","*.png"} */ char const * aSingleFilterDescription ) /* NULL or "image files" */ { static char lBuff[MAX_PATH_OR_CMD] ; char lString[MAX_PATH_OR_CMD] ; char * p ; char * lPointerInputBox; int i; lBuff[0]='\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_saveFileDialog("INVALID TITLE WITH QUOTES", aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription); if (tfd_quoteDetected(aDefaultPathAndFile)) return tinyfd_saveFileDialog(aTitle, "INVALID DEFAULT_PATH WITH QUOTES", aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription); if (tfd_quoteDetected(aSingleFilterDescription)) return tinyfd_saveFileDialog(aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, "INVALID FILTER_DESCRIPTION WITH QUOTES"); for (i = 0; i < aNumOfFilterPatterns; i++) { if (tfd_quoteDetected(aFilterPatterns[i])) return tinyfd_saveFileDialog("INVALID FILTER_PATTERN WITH QUOTES", aDefaultPathAndFile, 0, NULL, NULL); } if ( ( !tinyfd_forceConsole || !( GetConsoleWindow() || dialogPresent() ) ) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"windows");return (char *)1;} p = saveFileDialogWinGui(lBuff, aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, (char const * const *)aFilterPatterns, aSingleFilterDescription); } else if (dialogPresent()) { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "dialog"); return (char *)0; } p = saveFileDialogWinConsole(lBuff, aTitle, aDefaultPathAndFile); } else { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "basicinput"); return (char *)0; } strcpy(lBuff, "Save file in "); strcat(lBuff, getCurDir()); lPointerInputBox = tinyfd_inputBox(NULL,NULL,NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, lBuff, ""); if (p) strcpy(lBuff, p); else lBuff[0] = '\0'; if (lPointerInputBox) strcpy(lPointerInputBox, lString); /* restore its previous content to tinyfd_inputBox */ p = lBuff; } if ( ! p || ! strlen( p ) ) { return NULL; } getPathWithoutFinalSlash( lString , p ) ; if ( strlen( lString ) && ! dirExists( lString ) ) { return NULL ; } getLastName(lString,p); if ( ! filenameValid(lString) ) { return NULL; } return p ; } /* in case of multiple files, the separator is | */ char * tinyfd_openFileDialog( char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile, /* NULL or "" */ int aNumOfFilterPatterns , /* 0 */ char const * const * aFilterPatterns, /* NULL or {"*.jpg","*.png"} */ char const * aSingleFilterDescription, /* NULL or "image files" */ int aAllowMultipleSelects ) /* 0 or 1 */ { char lString[MAX_PATH_OR_CMD]; char lBuff[MAX_PATH_OR_CMD]; char * p; char * lPointerInputBox; int i; if (tfd_quoteDetected(aTitle)) return tinyfd_openFileDialog("INVALID TITLE WITH QUOTES", aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); if (tfd_quoteDetected(aDefaultPathAndFile)) return tinyfd_openFileDialog(aTitle, "INVALID DEFAULT_PATH WITH QUOTES", aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); if (tfd_quoteDetected(aSingleFilterDescription)) return tinyfd_openFileDialog(aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, "INVALID FILTER_DESCRIPTION WITH QUOTES", aAllowMultipleSelects); for (i = 0; i < aNumOfFilterPatterns; i++) { if (tfd_quoteDetected(aFilterPatterns[i])) return tinyfd_openFileDialog("INVALID FILTER_PATTERN WITH QUOTES", aDefaultPathAndFile, 0, NULL, NULL, aAllowMultipleSelects); } if ( ( !tinyfd_forceConsole || !( GetConsoleWindow() || dialogPresent() ) ) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"windows");return (char *)1;} p = openFileDialogWinGui( aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, (char const * const *)aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); } else if (dialogPresent()) { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "dialog"); return (char *)0; } p = openFileDialogWinConsole(aTitle, aDefaultPathAndFile); } else { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "basicinput"); return (char *)0; } strcpy(lBuff, "Open file from "); strcat(lBuff, getCurDir()); lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, lBuff, ""); if (p) strcpy(lBuff, p); else lBuff[0] = '\0'; if (lPointerInputBox) strcpy(lPointerInputBox, lString); /* restore its previous content to tinyfd_inputBox */ p = lBuff; } if ( ! p || ! strlen( p ) ) { return NULL; } if ( aAllowMultipleSelects && strchr(p, '|') ) { p = ensureFilesExist( (char *) p , p ) ; } else if ( ! fileExists(p) ) { return NULL ; } /* printf( "lBuff3: %s\n" , p ) ; */ return p ; } char * tinyfd_selectFolderDialog( char const * aTitle , /* NULL or "" */ char const * aDefaultPath ) /* NULL or "" */ { static char lBuff[MAX_PATH_OR_CMD]; char * p; char * lPointerInputBox; char lString[MAX_PATH_OR_CMD]; if (tfd_quoteDetected(aTitle)) return tinyfd_selectFolderDialog("INVALID TITLE WITH QUOTES", aDefaultPath); if (tfd_quoteDetected(aDefaultPath)) return tinyfd_selectFolderDialog(aTitle, "INVALID DEFAULT_PATH WITH QUOTES"); if ( ( !tinyfd_forceConsole || !( GetConsoleWindow() || dialogPresent() ) ) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"windows");return (char *)1;} p = selectFolderDialogWinGui(lBuff, aTitle, aDefaultPath); } else if (dialogPresent()) { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "dialog"); return (char *)0; } p = selectFolderDialogWinConsole(lBuff, aTitle, aDefaultPath); } else { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "basicinput"); return (char *)0; } strcpy(lBuff, "Select folder from "); strcat(lBuff, getCurDir()); lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, lBuff, ""); if (p) strcpy(lBuff, p); else lBuff[0] = '\0'; if (lPointerInputBox) strcpy(lPointerInputBox, lString); /* restore its previous content to tinyfd_inputBox */ p = lBuff; } if ( ! p || ! strlen( p ) || ! dirExists( p ) ) { return NULL ; } return p ; } /* returns the hexcolor as a string "#FF0000" */ /* aoResultRGB also contains the result */ /* aDefaultRGB is used only if aDefaultHexRGB is NULL */ /* aDefaultRGB and aoResultRGB can be the same array */ char * tinyfd_colorChooser( char const * aTitle, /* NULL or "" */ char const * aDefaultHexRGB, /* NULL or "#FF0000"*/ unsigned char const aDefaultRGB[3], /* { 0 , 255 , 255 } */ unsigned char aoResultRGB[3]) /* { 0 , 0 , 0 } */ { static char lDefaultHexRGB[16]; int i; char * p ; char * lPointerInputBox; char lString[MAX_PATH_OR_CMD]; lDefaultHexRGB[0] = '\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_colorChooser("INVALID TITLE WITH QUOTES", aDefaultHexRGB, aDefaultRGB, aoResultRGB); if (tfd_quoteDetected(aDefaultHexRGB)) return tinyfd_colorChooser(aTitle, "INVALID DEFAULT_HEX_RGB WITH QUOTES", aDefaultRGB, aoResultRGB); if ( (!tinyfd_forceConsole || !( GetConsoleWindow() || dialogPresent()) ) && (!getenv("SSH_CLIENT") || getenvDISPLAY())) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"windows");return (char *)1;} p = colorChooserWinGui(aTitle, aDefaultHexRGB, aDefaultRGB, aoResultRGB); if (p) { strcpy(lDefaultHexRGB, p); return lDefaultHexRGB; } return NULL; } else if (dialogPresent()) { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "dialog"); return (char *)0; } } else { if (aTitle&&!strcmp(aTitle, "tinyfd_query")){ strcpy(tinyfd_response, "basicinput"); return (char *)0; } } if (aDefaultHexRGB) { strncpy(lDefaultHexRGB, aDefaultHexRGB,7); lDefaultHexRGB[7]='\0'; } else { RGB2Hex(aDefaultRGB, lDefaultHexRGB); } lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, "Enter hex rgb color (i.e. #f5ca20)", lDefaultHexRGB); if ( !p || (strlen(p) != 7) || (p[0] != '#') ) { return NULL ; } for ( i = 1 ; i < 7 ; i ++ ) { if ( ! isxdigit( (int) p[i] ) ) { return NULL ; } } Hex2RGB(p,aoResultRGB); strcpy(lDefaultHexRGB, p); if (lPointerInputBox) strcpy(lPointerInputBox, lString); /* restore its previous content to tinyfd_inputBox */ return lDefaultHexRGB; } #else /* unix */ static char gPython2Name[16]; static char gPython3Name[16]; static char gPythonName[16]; int tfd_isDarwin(void) { static int lsIsDarwin = -1 ; struct utsname lUtsname ; if ( lsIsDarwin < 0 ) { lsIsDarwin = !uname(&lUtsname) && !strcmp(lUtsname.sysname,"Darwin") ; } return lsIsDarwin ; } static int dirExists( char const * aDirPath ) { DIR * lDir ; if ( ! aDirPath || ! strlen( aDirPath ) ) return 0 ; lDir = opendir( aDirPath ) ; if ( ! lDir ) { return 0 ; } closedir( lDir ) ; return 1 ; } static int detectPresence( char const * aExecutable ) { char lBuff[MAX_PATH_OR_CMD] ; char lTestedString[MAX_PATH_OR_CMD] = "which " ; FILE * lIn ; #ifdef _GNU_SOURCE char* lAllocatedCharString; int lSubstringUndetected; #endif strcat( lTestedString , aExecutable ) ; strcat( lTestedString, " 2>/dev/null "); lIn = popen( lTestedString , "r" ) ; if ( ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) && ( ! strchr( lBuff , ':' ) ) && ( strncmp(lBuff, "no ", 3) ) ) { /* present */ pclose( lIn ) ; #ifdef _GNU_SOURCE /*to bypass this, just comment out "#define _GNU_SOURCE" at the top of the file*/ if ( lBuff[strlen( lBuff ) -1] == '\n' ) lBuff[strlen( lBuff ) -1] = '\0' ; lAllocatedCharString = realpath(lBuff,NULL); /*same as canonicalize_file_name*/ lSubstringUndetected = ! strstr(lAllocatedCharString, aExecutable); free(lAllocatedCharString); if (lSubstringUndetected) { if (tinyfd_verbose) printf("detectPresence %s %d\n", aExecutable, 0); return 0; } #endif /*_GNU_SOURCE*/ if (tinyfd_verbose) printf("detectPresence %s %d\n", aExecutable, 1); return 1 ; } else { pclose( lIn ) ; if (tinyfd_verbose) printf("detectPresence %s %d\n", aExecutable, 0); return 0 ; } } static char * getVersion( char const * aExecutable ) /*version must be first numeral*/ { static char lBuff[MAX_PATH_OR_CMD] ; char lTestedString[MAX_PATH_OR_CMD] ; FILE * lIn ; char * lTmp ; strcpy( lTestedString , aExecutable ) ; strcat( lTestedString , " --version" ) ; lIn = popen( lTestedString , "r" ) ; lTmp = fgets( lBuff , sizeof( lBuff ) , lIn ) ; pclose( lIn ) ; lTmp += strcspn(lTmp,"0123456789"); /* printf("lTmp:%s\n", lTmp); */ return lTmp ; } static int * getMajorMinorPatch( char const * aExecutable ) { static int lArray[3] ; char * lTmp ; lTmp = (char *) getVersion(aExecutable); lArray[0] = atoi( strtok(lTmp," ,.-") ) ; /* printf("lArray0 %d\n", lArray[0]); */ lArray[1] = atoi( strtok(0," ,.-") ) ; /* printf("lArray1 %d\n", lArray[1]); */ lArray[2] = atoi( strtok(0," ,.-") ) ; /* printf("lArray2 %d\n", lArray[2]); */ if ( !lArray[0] && !lArray[1] && !lArray[2] ) return NULL; return lArray ; } static int tryCommand( char const * aCommand ) { char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; lIn = popen( aCommand , "r" ) ; if ( fgets( lBuff , sizeof( lBuff ) , lIn ) == NULL ) { /* present */ pclose( lIn ) ; return 1 ; } else { pclose( lIn ) ; return 0 ; } } static int isTerminalRunning(void) { static int lIsTerminalRunning = -1 ; if ( lIsTerminalRunning < 0 ) { lIsTerminalRunning = isatty(1); if (tinyfd_verbose) printf("isTerminalRunning %d\n", lIsTerminalRunning ); } return lIsTerminalRunning; } static char * dialogNameOnly(void) { static char lDialogName[128] = "*" ; if ( lDialogName[0] == '*' ) { if (!tinyfd_allowCursesDialogs) { strcpy(lDialogName , "" ); } else if ( tfd_isDarwin() && * strcpy(lDialogName , "/opt/local/bin/dialog" ) && detectPresence( lDialogName ) ) {} else if ( * strcpy(lDialogName , "dialog" ) && detectPresence( lDialogName ) ) {} else { strcpy(lDialogName , "" ); } } return lDialogName ; } int isDialogVersionBetter09b(void) { char const * lDialogName ; char * lVersion ; int lMajor ; int lMinor ; int lDate ; int lResult ; char * lMinorP ; char * lLetter ; char lBuff[128] ; /*char lTest[128] = " 0.9b-20031126" ;*/ lDialogName = dialogNameOnly() ; if ( ! strlen(lDialogName) || !(lVersion = (char *) getVersion(lDialogName)) ) return 0 ; /*lVersion = lTest ;*/ /*printf("lVersion %s\n", lVersion);*/ strcpy(lBuff,lVersion); lMajor = atoi( strtok(lVersion," ,.-") ) ; /*printf("lMajor %d\n", lMajor);*/ lMinorP = strtok(0," ,.-abcdefghijklmnopqrstuvxyz"); lMinor = atoi( lMinorP ) ; /*printf("lMinor %d\n", lMinor );*/ lDate = atoi( strtok(0," ,.-") ) ; if (lDate<0) lDate = - lDate; /*printf("lDate %d\n", lDate);*/ lLetter = lMinorP + strlen(lMinorP) ; strcpy(lVersion,lBuff); strtok(lLetter," ,.-"); /*printf("lLetter %s\n", lLetter);*/ lResult = (lMajor > 0) || ( ( lMinor == 9 ) && (*lLetter == 'b') && (lDate >= 20031126) ); /*printf("lResult %d\n", lResult);*/ return lResult; } static int whiptailPresentOnly(void) { static int lWhiptailPresent = -1 ; if (!tinyfd_allowCursesDialogs) return 0; if ( lWhiptailPresent < 0 ) { lWhiptailPresent = detectPresence( "whiptail" ) ; } return lWhiptailPresent ; } static char * terminalName(void) { static char lTerminalName[128] = "*" ; char lShellName[64] = "*" ; int * lArray; if ( lTerminalName[0] == '*' ) { if ( detectPresence( "bash" ) ) { strcpy(lShellName , "bash -c " ) ; /*good for basic input*/ } else if ( strlen(dialogNameOnly()) || whiptailPresentOnly() ) { strcpy(lShellName , "sh -c " ) ; /*good enough for dialog & whiptail*/ } else { strcpy(lTerminalName , "" ) ; return NULL ; } if ( tfd_isDarwin() ) { if ( * strcpy(lTerminalName , "/opt/X11/bin/xterm" ) && detectPresence( lTerminalName ) ) { strcat(lTerminalName , " -fa 'DejaVu Sans Mono' -fs 10 -title tinyfiledialogs -e " ) ; strcat(lTerminalName , lShellName ) ; } else { strcpy(lTerminalName , "" ) ; } } else if ( * strcpy(lTerminalName,"xterm") /*good (small without parameters)*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -fa 'DejaVu Sans Mono' -fs 10 -title tinyfiledialogs -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"terminator") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -x " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"lxterminal") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"konsole") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"kterm") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"tilix") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"xfce4-terminal") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -x " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"mate-terminal") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -x " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"Eterm") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"evilvte") /*good*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"pterm") /*good (only letters)*/ && detectPresence(lTerminalName) ) { strcat(lTerminalName , " -e " ) ; strcat(lTerminalName , lShellName ) ; } else if ( * strcpy(lTerminalName,"gnome-terminal") && detectPresence(lTerminalName) && (lArray = getMajorMinorPatch(lTerminalName)) && ((lArray[0]<3) || (lArray[0]==3 && lArray[1]<=6)) ) { strcat(lTerminalName , " --disable-factory -x " ) ; strcat(lTerminalName , lShellName ) ; } else { strcpy(lTerminalName , "" ) ; } /* bad: koi rxterm guake tilda vala-terminal qterminal aterm Terminal terminology sakura lilyterm weston-terminal roxterm termit xvt rxvt mrxvt urxvt */ } if ( strlen(lTerminalName) ) { return lTerminalName ; } else { return NULL ; } } static char * dialogName(void) { char * lDialogName ; lDialogName = dialogNameOnly( ) ; if ( strlen(lDialogName) && ( isTerminalRunning() || terminalName() ) ) { return lDialogName ; } else { return NULL ; } } static int whiptailPresent(void) { int lWhiptailPresent ; lWhiptailPresent = whiptailPresentOnly( ) ; if ( lWhiptailPresent && ( isTerminalRunning() || terminalName() ) ) { return lWhiptailPresent ; } else { return 0 ; } } static int graphicMode(void) { return !( tinyfd_forceConsole && (isTerminalRunning() || terminalName()) ) && ( getenvDISPLAY() || (tfd_isDarwin() && (!getenv("SSH_TTY") || getenvDISPLAY() ) ) ) ; } static int pactlPresent(void) { static int lPactlPresent = -1 ; if ( lPactlPresent < 0 ) { lPactlPresent = detectPresence("pactl") ; } return lPactlPresent ; } static int speakertestPresent(void) { static int lSpeakertestPresent = -1 ; if ( lSpeakertestPresent < 0 ) { lSpeakertestPresent = detectPresence("speaker-test") ; } return lSpeakertestPresent ; } static int playPresent() { static int lPlayPresent = -1; if (lPlayPresent < 0) { lPlayPresent = detectPresence("sox"); /*if sox is present, play is ready*/ } return lPlayPresent; } static int beepexePresent() { static int lBeepexePresent = -1; if (lBeepexePresent < 0) { lBeepexePresent = detectPresence("beep.exe"); } return lBeepexePresent; } static int beepPresent(void) { static int lBeepPresent = -1 ; if ( lBeepPresent < 0 ) { lBeepPresent = detectPresence("beep") ; } return lBeepPresent ; } static int xmessagePresent(void) { static int lXmessagePresent = -1 ; if ( lXmessagePresent < 0 ) { lXmessagePresent = detectPresence("xmessage");/*if not tty,not on osxpath*/ } return lXmessagePresent && graphicMode( ) ; } static int gxmessagePresent(void) { static int lGxmessagePresent = -1 ; if ( lGxmessagePresent < 0 ) { lGxmessagePresent = detectPresence("gxmessage") ; } return lGxmessagePresent && graphicMode( ) ; } static int gmessagePresent(void) { static int lGmessagePresent = -1 ; if ( lGmessagePresent < 0 ) { lGmessagePresent = detectPresence("gmessage") ; } return lGmessagePresent && graphicMode( ) ; } static int notifysendPresent(void) { static int lNotifysendPresent = -1 ; if ( lNotifysendPresent < 0 ) { lNotifysendPresent = detectPresence("notify-send") ; } return lNotifysendPresent && graphicMode( ) ; } static int perlPresent(void) { static int lPerlPresent = -1 ; char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; if ( lPerlPresent < 0 ) { lPerlPresent = detectPresence("perl") ; if (lPerlPresent) { lIn = popen("perl -MNet::DBus -e \"Net::DBus->session->get_service('org.freedesktop.Notifications')\" 2>&1", "r"); if (fgets(lBuff, sizeof(lBuff), lIn) == NULL) { lPerlPresent = 2; } pclose(lIn); if (tinyfd_verbose) printf("perl-dbus %d\n", lPerlPresent); } } return graphicMode() ? lPerlPresent : 0 ; } static int afplayPresent(void) { static int lAfplayPresent = -1 ; char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; if ( lAfplayPresent < 0 ) { lAfplayPresent = detectPresence("afplay") ; if ( lAfplayPresent ) { lIn = popen( "test -e /System/Library/Sounds/Ping.aiff || echo Ping" , "r" ) ; if ( fgets( lBuff , sizeof( lBuff ) , lIn ) == NULL ) { lAfplayPresent = 2 ; } pclose( lIn ) ; if (tinyfd_verbose) printf("afplay %d\n", lAfplayPresent); } } return graphicMode() ? lAfplayPresent : 0 ; } static int xdialogPresent(void) { static int lXdialogPresent = -1 ; if ( lXdialogPresent < 0 ) { lXdialogPresent = detectPresence("Xdialog") ; } return lXdialogPresent && graphicMode( ) ; } static int gdialogPresent(void) { static int lGdialoglPresent = -1 ; if ( lGdialoglPresent < 0 ) { lGdialoglPresent = detectPresence( "gdialog" ) ; } return lGdialoglPresent && graphicMode( ) ; } static int osascriptPresent(void) { static int lOsascriptPresent = -1 ; if ( lOsascriptPresent < 0 ) { gWarningDisplayed |= !!getenv("SSH_TTY"); lOsascriptPresent = detectPresence( "osascript" ) ; } return lOsascriptPresent && graphicMode() && !getenv("SSH_TTY") ; } int tfd_qarmaPresent(void) { static int lQarmaPresent = -1 ; if ( lQarmaPresent < 0 ) { lQarmaPresent = detectPresence("qarma") ; } return lQarmaPresent && graphicMode( ) ; } int tfd_matedialogPresent(void) { static int lMatedialogPresent = -1 ; if ( lMatedialogPresent < 0 ) { lMatedialogPresent = detectPresence("matedialog") ; } return lMatedialogPresent && graphicMode( ) ; } int tfd_shellementaryPresent(void) { static int lShellementaryPresent = -1 ; if ( lShellementaryPresent < 0 ) { lShellementaryPresent = 0 ; /*detectPresence("shellementary"); shellementary is not ready yet */ } return lShellementaryPresent && graphicMode( ) ; } int tfd_xpropPresent(void) { static int lXpropPresent = -1 ; if ( lXpropPresent < 0 ) { lXpropPresent = detectPresence("xprop") ; } return lXpropPresent && graphicMode( ) ; } int tfd_zenityPresent(void) { static int lZenityPresent = -1 ; if ( lZenityPresent < 0 ) { lZenityPresent = detectPresence("zenity") ; } return lZenityPresent && graphicMode( ) ; } int tfd_yadPresent(void) { static int lYadPresent = -1; if (lYadPresent < 0) { lYadPresent = detectPresence("yad"); } return lYadPresent && graphicMode(); } int tfd_zenity3Present(void) { static int lZenity3Present = -1 ; char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; int lIntTmp ; if ( lZenity3Present < 0 ) { lZenity3Present = 0 ; if ( tfd_zenityPresent() ) { lIn = popen( "zenity --version" , "r" ) ; if ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) { if ( atoi(lBuff) >= 3 ) { lZenity3Present = 3 ; lIntTmp = atoi(strtok(lBuff,".")+2 ) ; if ( lIntTmp >= 18 ) { lZenity3Present = 5 ; } else if ( lIntTmp >= 10 ) { lZenity3Present = 4 ; } } else if ( ( atoi(lBuff) == 2 ) && ( atoi(strtok(lBuff,".")+2 ) >= 32 ) ) { lZenity3Present = 2 ; } if (tinyfd_verbose) printf("zenity type %d\n", lZenity3Present); } pclose( lIn ) ; } } return graphicMode() ? lZenity3Present : 0 ; } int tfd_kdialogPresent(void) { static int lKdialogPresent = -1 ; char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; char * lDesktop; if ( lKdialogPresent < 0 ) { if ( tfd_zenityPresent() ) { lDesktop = getenv("XDG_SESSION_DESKTOP"); if ( !lDesktop || ( strcmp(lDesktop, "KDE") && strcmp(lDesktop, "lxqt") ) ) { lKdialogPresent = 0 ; return lKdialogPresent ; } } lKdialogPresent = detectPresence("kdialog") ; if ( lKdialogPresent && !getenv("SSH_TTY") ) { lIn = popen( "kdialog --attach 2>&1" , "r" ) ; if ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) { if ( ! strstr( "Unknown" , lBuff ) ) { lKdialogPresent = 2 ; if (tinyfd_verbose) printf("kdialog-attach %d\n", lKdialogPresent); } } pclose( lIn ) ; if (lKdialogPresent == 2) { lKdialogPresent = 1 ; lIn = popen( "kdialog --passivepopup 2>&1" , "r" ) ; if ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) { if ( ! strstr( "Unknown" , lBuff ) ) { lKdialogPresent = 2 ; if (tinyfd_verbose) printf("kdialog-popup %d\n", lKdialogPresent); } } pclose( lIn ) ; } } } return graphicMode() ? lKdialogPresent : 0 ; } static int osx9orBetter(void) { static int lOsx9orBetter = -1 ; char lBuff[MAX_PATH_OR_CMD] ; FILE * lIn ; int V,v; if ( lOsx9orBetter < 0 ) { lOsx9orBetter = 0 ; lIn = popen( "osascript -e 'set osver to system version of (system info)'" , "r" ) ; if ( ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) && ( 2 == sscanf(lBuff, "%d.%d", &V, &v) ) ) { V = V * 100 + v; if ( V >= 1009 ) { lOsx9orBetter = 1 ; } } pclose( lIn ) ; if (tinyfd_verbose) printf("Osx10 = %d, %d = %s\n", lOsx9orBetter, V, lBuff) ; } return lOsx9orBetter ; } static int python3Present(void) { static int lPython3Present = -1 ; int i; if ( lPython3Present < 0 ) { lPython3Present = 0 ; strcpy(gPython3Name , "python3" ) ; if ( detectPresence(gPython3Name) ) lPython3Present = 1; else { for ( i = 9 ; i >= 0 ; i -- ) { sprintf( gPython3Name , "python3.%d" , i ) ; if ( detectPresence(gPython3Name) ) { lPython3Present = 1; break; } } } if (tinyfd_verbose) printf("lPython3Present %d\n", lPython3Present) ; if (tinyfd_verbose) printf("gPython3Name %s\n", gPython3Name) ; } return lPython3Present ; } static int python2Present(void) { static int lPython2Present = -1 ; int i; if ( lPython2Present < 0 ) { lPython2Present = 0 ; strcpy(gPython2Name , "python2" ) ; if ( detectPresence(gPython2Name) ) lPython2Present = 1; else { for ( i = 9 ; i >= 0 ; i -- ) { sprintf( gPython2Name , "python2.%d" , i ) ; if ( detectPresence(gPython2Name) ) { lPython2Present = 1; break; } } } if (tinyfd_verbose) printf("lPython2Present %d\n", lPython2Present) ; if (tinyfd_verbose) printf("gPython2Name %s\n", gPython2Name) ; } return lPython2Present ; } static int tkinter3Present(void) { static int lTkinter3Present = -1 ; char lPythonCommand[256]; char lPythonParams[128] = "-S -c \"try:\n\timport tkinter;\nexcept:\n\tprint(0);\""; if ( lTkinter3Present < 0 ) { lTkinter3Present = 0 ; if ( python3Present() ) { sprintf( lPythonCommand , "%s %s" , gPython3Name , lPythonParams ) ; lTkinter3Present = tryCommand(lPythonCommand) ; } if (tinyfd_verbose) printf("lTkinter3Present %d\n", lTkinter3Present) ; } return lTkinter3Present && graphicMode() && !(tfd_isDarwin() && getenv("SSH_TTY") ); } static int tkinter2Present(void) { static int lTkinter2Present = -1 ; char lPythonCommand[256]; char lPythonParams[128] = "-S -c \"try:\n\timport Tkinter;\nexcept:\n\tprint 0;\""; if ( lTkinter2Present < 0 ) { lTkinter2Present = 0 ; if ( python2Present() ) { sprintf( lPythonCommand , "%s %s" , gPython2Name , lPythonParams ) ; lTkinter2Present = tryCommand(lPythonCommand) ; } if (tinyfd_verbose) printf("lTkinter2Present %d\n", lTkinter2Present) ; } return lTkinter2Present && graphicMode() && !(tfd_isDarwin() && getenv("SSH_TTY") ); } static int pythonDbusPresent(void) { static int lPythonDbusPresent = -1 ; char lPythonCommand[384]; char lPythonParams[256] = "-c \"try:\n\timport dbus;bus=dbus.SessionBus();\ notif=bus.get_object('org.freedesktop.Notifications','/org/freedesktop/Notifications');\ notify=dbus.Interface(notif,'org.freedesktop.Notifications');\nexcept:\n\tprint(0);\""; if (lPythonDbusPresent < 0 ) { lPythonDbusPresent = 0 ; if ( python2Present() ) { strcpy(gPythonName , gPython2Name ) ; sprintf( lPythonCommand , "%s %s" , gPythonName , lPythonParams ) ; lPythonDbusPresent = tryCommand(lPythonCommand) ; } if ( !lPythonDbusPresent && python3Present() ) { strcpy(gPythonName , gPython3Name ) ; sprintf( lPythonCommand , "%s %s" , gPythonName , lPythonParams ) ; lPythonDbusPresent = tryCommand(lPythonCommand) ; } if (tinyfd_verbose) printf("lPythonDbusPresent %d\n", lPythonDbusPresent) ; if (tinyfd_verbose) printf("gPythonName %s\n", gPythonName) ; } return lPythonDbusPresent && graphicMode() && !(tfd_isDarwin() && getenv("SSH_TTY") ); } static void sigHandler(int signum) { FILE * lIn ; if ( ( lIn = popen( "pactl unload-module module-sine" , "r" ) ) ) { pclose( lIn ) ; } if (tinyfd_verbose) printf("tinyfiledialogs caught signal %d\n", signum); } void tinyfd_beep(void) { char lDialogString[256] ; FILE * lIn ; if ( osascriptPresent() ) { if ( afplayPresent() >= 2 ) { strcpy( lDialogString , "afplay /System/Library/Sounds/Ping.aiff") ; } else { strcpy( lDialogString , "osascript -e 'tell application \"System Events\" to beep'") ; } } else if ( pactlPresent() ) { signal(SIGINT, sigHandler); /*strcpy( lDialogString , "pactl load-module module-sine frequency=440;sleep .3;pactl unload-module module-sine" ) ;*/ strcpy( lDialogString , "thnum=$(pactl load-module module-sine frequency=440);sleep .3;pactl unload-module $thnum" ) ; } else if ( speakertestPresent() ) { /*strcpy( lDialogString , "timeout -k .3 .3 speaker-test --frequency 440 --test sine > /dev/tty" ) ;*/ strcpy( lDialogString , "( speaker-test -t sine -f 440 > /dev/tty )& pid=$!;sleep .4; kill -9 $pid" ) ; /*.3 was too short for mac g3*/ } else if (beepexePresent()) { strcpy(lDialogString, "beep.exe 440 300"); } else if (playPresent()) /* play is part of sox */ { strcpy(lDialogString, "play -q -n synth .3 sine 440"); } else if ( beepPresent() ) { strcpy( lDialogString , "beep -f 440 -l 300" ) ; } else { strcpy( lDialogString , "printf '\a' > /dev/tty" ) ; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ( lIn = popen( lDialogString , "r" ) ) ) { pclose( lIn ) ; } if ( pactlPresent() ) { signal(SIGINT, SIG_DFL); } } int tinyfd_messageBox( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" may contain \n and \t */ char const * aDialogType , /* "ok" "okcancel" "yesno" "yesnocancel" */ char const * aIconType , /* "info" "warning" "error" "question" */ int aDefaultButton ) /* 0 for cancel/no , 1 for ok/yes , 2 for no in yesnocancel */ { char lBuff[MAX_PATH_OR_CMD] ; char * lDialogString = NULL ; char * lpDialogString; FILE * lIn ; int lWasGraphicDialog = 0 ; int lWasXterm = 0 ; int lResult ; char lChar ; struct termios infoOri; struct termios info; size_t lTitleLen ; size_t lMessageLen ; lBuff[0]='\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_messageBox("INVALID TITLE WITH QUOTES", aMessage, aDialogType, aIconType, aDefaultButton); if (tfd_quoteDetected(aMessage)) return tinyfd_messageBox(aTitle, "INVALID MESSAGE WITH QUOTES", aDialogType, aIconType, aDefaultButton); lTitleLen = aTitle ? strlen(aTitle) : 0 ; lMessageLen = aMessage ? strlen(aMessage) : 0 ; if ( !aTitle || strcmp(aTitle,"tinyfd_query") ) { lDialogString = (char *) malloc( MAX_PATH_OR_CMD + lTitleLen + lMessageLen ); } if ( osascriptPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return 1;} strcpy( lDialogString , "osascript "); if ( ! osx9orBetter() ) strcat( lDialogString , " -e 'tell application \"System Events\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e 'set {vButton} to {button returned} of ( display dialog \"") ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage) ; } strcat(lDialogString, "\" ") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "with title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "with icon ") ; if ( aIconType && ! strcmp( "error" , aIconType ) ) { strcat(lDialogString, "stop " ) ; } else if ( aIconType && ! strcmp( "warning" , aIconType ) ) { strcat(lDialogString, "caution " ) ; } else /* question or info */ { strcat(lDialogString, "note " ) ; } if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { if ( ! aDefaultButton ) { strcat( lDialogString ,"default button \"Cancel\" " ) ; } } else if ( aDialogType && ! strcmp( "yesno" , aDialogType ) ) { strcat( lDialogString ,"buttons {\"No\", \"Yes\"} " ) ; if (aDefaultButton) { strcat( lDialogString ,"default button \"Yes\" " ) ; } else { strcat( lDialogString ,"default button \"No\" " ) ; } strcat( lDialogString ,"cancel button \"No\"" ) ; } else if ( aDialogType && ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString ,"buttons {\"No\", \"Yes\", \"Cancel\"} " ) ; switch (aDefaultButton) { case 1: strcat( lDialogString ,"default button \"Yes\" " ) ; break; case 2: strcat( lDialogString ,"default button \"No\" " ) ; break; case 0: strcat( lDialogString ,"default button \"Cancel\" " ) ; break; } strcat( lDialogString ,"cancel button \"Cancel\"" ) ; } else { strcat( lDialogString ,"buttons {\"OK\"} " ) ; strcat( lDialogString ,"default button \"OK\" " ) ; } strcat( lDialogString, ")' ") ; strcat( lDialogString, "-e 'if vButton is \"Yes\" then' -e 'return 1'\ -e 'else if vButton is \"OK\" then' -e 'return 1'\ -e 'else if vButton is \"No\" then' -e 'return 2'\ -e 'else' -e 'return 0' -e 'end if' " ); strcat( lDialogString, "-e 'on error number -128' " ) ; strcat( lDialogString, "-e '0' " ); strcat( lDialogString, "-e 'end try'") ; if ( ! osx9orBetter() ) strcat( lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return 1;} strcpy( lDialogString , "kdialog" ) ; if ( (tfd_kdialogPresent() == 2) && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } strcat( lDialogString , " --" ) ; if ( aDialogType && ( ! strcmp( "okcancel" , aDialogType ) || ! strcmp( "yesno" , aDialogType ) || ! strcmp( "yesnocancel" , aDialogType ) ) ) { if ( aIconType && ( ! strcmp( "warning" , aIconType ) || ! strcmp( "error" , aIconType ) ) ) { strcat( lDialogString , "warning" ) ; } if ( ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString , "yesnocancel" ) ; } else { strcat( lDialogString , "yesno" ) ; } } else if ( aIconType && ! strcmp( "error" , aIconType ) ) { strcat( lDialogString , "error" ) ; } else if ( aIconType && ! strcmp( "warning" , aIconType ) ) { strcat( lDialogString , "sorry" ) ; } else { strcat( lDialogString , "msgbox" ) ; } strcat( lDialogString , " \"" ) ; if ( aMessage ) { strcat( lDialogString , aMessage ) ; } strcat( lDialogString , "\"" ) ; if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { strcat( lDialogString , " --yes-label Ok --no-label Cancel" ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if ( ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString , "; x=$? ;if [ $x = 0 ] ;then echo 1;elif [ $x = 1 ] ;then echo 2;else echo 0;fi"); } else { strcat( lDialogString , ";if [ $? = 0 ];then echo 1;else echo 0;fi"); } } else if ( tfd_zenityPresent() || tfd_matedialogPresent() || tfd_shellementaryPresent() || tfd_qarmaPresent() ) { if ( tfd_zenityPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity");return 1;} strcpy( lDialogString , "szAnswer=$(zenity" ) ; if ( (tfd_zenity3Present() >= 4) && !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(sleep .01;xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } else if ( tfd_matedialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"matedialog");return 1;} strcpy( lDialogString , "szAnswer=$(matedialog" ) ; } else if ( tfd_shellementaryPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"shellementary");return 1;} strcpy( lDialogString , "szAnswer=$(shellementary" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"qarma");return 1;} strcpy( lDialogString , "szAnswer=$(qarma" ) ; if ( !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } strcat(lDialogString, " --"); if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { strcat( lDialogString , "question --ok-label=Ok --cancel-label=Cancel" ) ; } else if ( aDialogType && ! strcmp( "yesno" , aDialogType ) ) { strcat( lDialogString , "question" ) ; } else if ( aDialogType && ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString , "list --column \"\" --hide-header \"Yes\" \"No\"" ) ; } else if ( aIconType && ! strcmp( "error" , aIconType ) ) { strcat( lDialogString , "error" ) ; } else if ( aIconType && ! strcmp( "warning" , aIconType ) ) { strcat( lDialogString , "warning" ) ; } else { strcat( lDialogString , "info" ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title=\"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if ( aMessage && strlen(aMessage) ) { if (strcmp("yesnocancel", aDialogType)) strcat(lDialogString, " --no-wrap"); strcat(lDialogString, " --text=\"") ; strcat(lDialogString, aMessage) ; strcat(lDialogString, "\"") ; } if ( (tfd_zenity3Present() >= 3) || (!tfd_zenityPresent() && (tfd_shellementaryPresent() || tfd_qarmaPresent()) ) ) { strcat( lDialogString , " --icon-name=dialog-" ) ; if ( aIconType && (! strcmp( "question" , aIconType ) || ! strcmp( "error" , aIconType ) || ! strcmp( "warning" , aIconType ) ) ) { strcat( lDialogString , aIconType ) ; } else { strcat( lDialogString , "information" ) ; } } if (tinyfd_silent) strcat( lDialogString , " 2>/dev/null "); if ( ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString , ");if [ $? = 1 ];then echo 0;elif [ $szAnswer = \"No\" ];then echo 2;else echo 1;fi"); } else { strcat( lDialogString , ");if [ $? = 0 ];then echo 1;else echo 0;fi"); } } else if (tfd_yadPresent()) { if (aTitle && !strcmp(aTitle, "tinyfd_query")) { strcpy(tinyfd_response, "yad"); return 1; } strcpy(lDialogString, "szAnswer=$(yad --"); if (aDialogType && !strcmp("ok", aDialogType)) { strcat(lDialogString,"button=Ok:1"); } else if (aDialogType && !strcmp("okcancel", aDialogType)) { strcat(lDialogString,"button=Ok:1 --button=Cancel:0"); } else if (aDialogType && !strcmp("yesno", aDialogType)) { strcat(lDialogString, "button=Yes:1 --button=No:0"); } else if (aDialogType && !strcmp("yesnocancel", aDialogType)) { strcat(lDialogString, "button=Yes:1 --button=No:2 --button=Cancel:0"); } else if (aIconType && !strcmp("error", aIconType)) { strcat(lDialogString, "error"); } else if (aIconType && !strcmp("warning", aIconType)) { strcat(lDialogString, "warning"); } else { strcat(lDialogString, "info"); } if (aTitle && strlen(aTitle)) { strcat(lDialogString, " --title=\""); strcat(lDialogString, aTitle); strcat(lDialogString, "\""); } if (aMessage && strlen(aMessage)) { strcat(lDialogString, " --text=\""); strcat(lDialogString, aMessage); strcat(lDialogString, "\""); } strcat(lDialogString, " --icon-name=dialog-"); if (aIconType && (!strcmp("question", aIconType) || !strcmp("error", aIconType) || !strcmp("warning", aIconType))) { strcat(lDialogString, aIconType); } else { strcat(lDialogString, "information"); } if (tinyfd_silent) strcat(lDialogString, " 2>/dev/null "); strcat(lDialogString,");echo $?"); } else if ( !gxmessagePresent() && !gmessagePresent() && !gdialogPresent() && !xdialogPresent() && tkinter3Present() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python3-tkinter");return 1;} strcpy( lDialogString , gPython3Name ) ; strcat( lDialogString , " -S -c \"import tkinter;from tkinter import messagebox;root=tkinter.Tk();root.withdraw();"); strcat( lDialogString ,"res=messagebox." ) ; if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { strcat( lDialogString , "askokcancel(" ) ; if ( aDefaultButton ) { strcat( lDialogString , "default=messagebox.OK," ) ; } else { strcat( lDialogString , "default=messagebox.CANCEL," ) ; } } else if ( aDialogType && ! strcmp( "yesno" , aDialogType ) ) { strcat( lDialogString , "askyesno(" ) ; if ( aDefaultButton ) { strcat( lDialogString , "default=messagebox.YES," ) ; } else { strcat( lDialogString , "default=messagebox.NO," ) ; } } else if ( aDialogType && ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString , "askyesnocancel(" ) ; switch ( aDefaultButton ) { case 1: strcat( lDialogString , "default=messagebox.YES," ); break; case 2: strcat( lDialogString , "default=messagebox.NO," ); break; case 0: strcat( lDialogString , "default=messagebox.CANCEL," ); break; } } else { strcat( lDialogString , "showinfo(" ) ; } strcat( lDialogString , "icon='" ) ; if ( aIconType && (! strcmp( "question" , aIconType ) || ! strcmp( "error" , aIconType ) || ! strcmp( "warning" , aIconType ) ) ) { strcat( lDialogString , aIconType ) ; } else { strcat( lDialogString , "info" ) ; } strcat(lDialogString, "',") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, "message='") ; lpDialogString = lDialogString + strlen(lDialogString); tfd_replaceSubStr( aMessage , "\n" , "\\n" , lpDialogString ) ; strcat(lDialogString, "'") ; } if ( aDialogType && ! strcmp( "yesnocancel" , aDialogType ) ) { strcat(lDialogString, ");\n\ if res is None :\n\tprint(0)\n\ elif res is False :\n\tprint(2)\n\ else :\n\tprint (1)\n\"" ) ; } else { strcat(lDialogString, ");\n\ if res is False :\n\tprint(0)\n\ else :\n\tprint(1)\n\"" ) ; } } else if ( !gxmessagePresent() && !gmessagePresent() && !gdialogPresent() && !xdialogPresent() && tkinter2Present() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python2-tkinter");return 1;} strcpy( lDialogString , "export PYTHONIOENCODING=utf-8;" ) ; strcat( lDialogString , gPython2Name ) ; if ( ! isTerminalRunning( ) && tfd_isDarwin( ) ) { strcat( lDialogString , " -i" ) ; /* for osx without console */ } strcat( lDialogString , " -S -c \"import Tkinter,tkMessageBox;root=Tkinter.Tk();root.withdraw();"); if ( tfd_isDarwin( ) ) { strcat( lDialogString , "import os;os.system('''/usr/bin/osascript -e 'tell app \\\"Finder\\\" to set \ frontmost of process \\\"Python\\\" to true' ''');"); } strcat( lDialogString ,"res=tkMessageBox." ) ; if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { strcat( lDialogString , "askokcancel(" ) ; if ( aDefaultButton ) { strcat( lDialogString , "default=tkMessageBox.OK," ) ; } else { strcat( lDialogString , "default=tkMessageBox.CANCEL," ) ; } } else if ( aDialogType && ! strcmp( "yesno" , aDialogType ) ) { strcat( lDialogString , "askyesno(" ) ; if ( aDefaultButton ) { strcat( lDialogString , "default=tkMessageBox.YES," ) ; } else { strcat( lDialogString , "default=tkMessageBox.NO," ) ; } } else if ( aDialogType && ! strcmp( "yesnocancel" , aDialogType ) ) { strcat( lDialogString , "askyesnocancel(" ) ; switch ( aDefaultButton ) { case 1: strcat( lDialogString , "default=tkMessageBox.YES," ); break; case 2: strcat( lDialogString , "default=tkMessageBox.NO," ); break; case 0: strcat( lDialogString , "default=tkMessageBox.CANCEL," ); break; } } else { strcat( lDialogString , "showinfo(" ) ; } strcat( lDialogString , "icon='" ) ; if ( aIconType && (! strcmp( "question" , aIconType ) || ! strcmp( "error" , aIconType ) || ! strcmp( "warning" , aIconType ) ) ) { strcat( lDialogString , aIconType ) ; } else { strcat( lDialogString , "info" ) ; } strcat(lDialogString, "',") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, "message='") ; lpDialogString = lDialogString + strlen(lDialogString); tfd_replaceSubStr( aMessage , "\n" , "\\n" , lpDialogString ) ; strcat(lDialogString, "'") ; } if ( aDialogType && ! strcmp( "yesnocancel" , aDialogType ) ) { strcat(lDialogString, ");\n\ if res is None :\n\tprint 0\n\ elif res is False :\n\tprint 2\n\ else :\n\tprint 1\n\"" ) ; } else { strcat(lDialogString, ");\n\ if res is False :\n\tprint 0\n\ else :\n\tprint 1\n\"" ) ; } } else if ( gxmessagePresent() || gmessagePresent() || (!gdialogPresent() && !xdialogPresent() && xmessagePresent()) ) { if ( gxmessagePresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"gxmessage");return 1;} strcpy( lDialogString , "gxmessage"); } else if ( gmessagePresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"gmessage");return 1;} strcpy( lDialogString , "gmessage"); } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xmessage");return 1;} strcpy( lDialogString , "xmessage"); } if ( aDialogType && ! strcmp("okcancel" , aDialogType) ) { strcat( lDialogString , " -buttons Ok:1,Cancel:0"); switch ( aDefaultButton ) { case 1: strcat( lDialogString , " -default Ok"); break; case 0: strcat( lDialogString , " -default Cancel"); break; } } else if ( aDialogType && ! strcmp("yesno" , aDialogType) ) { strcat( lDialogString , " -buttons Yes:1,No:0"); switch ( aDefaultButton ) { case 1: strcat( lDialogString , " -default Yes"); break; case 0: strcat( lDialogString , " -default No"); break; } } else if ( aDialogType && ! strcmp("yesnocancel" , aDialogType) ) { strcat( lDialogString , " -buttons Yes:1,No:2,Cancel:0"); switch ( aDefaultButton ) { case 1: strcat( lDialogString , " -default Yes"); break; case 2: strcat( lDialogString , " -default No"); break; case 0: strcat( lDialogString , " -default Cancel"); break; } } else { strcat( lDialogString , " -buttons Ok:1"); strcat( lDialogString , " -default Ok"); } strcat( lDialogString , " -center \""); if ( aMessage && strlen(aMessage) ) { strcat( lDialogString , aMessage ) ; } strcat(lDialogString, "\"" ) ; if ( aTitle && strlen(aTitle) ) { strcat( lDialogString , " -title \""); strcat( lDialogString , aTitle ) ; strcat( lDialogString, "\"" ) ; } strcat( lDialogString , " ; echo $? "); } else if ( xdialogPresent() || gdialogPresent() || dialogName() || whiptailPresent() ) { if ( gdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"gdialog");return 1;} lWasGraphicDialog = 1 ; strcpy( lDialogString , "(gdialog " ) ; } else if ( xdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xdialog");return 1;} lWasGraphicDialog = 1 ; strcpy( lDialogString , "(Xdialog " ) ; } else if ( dialogName( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return 0;} if ( isTerminalRunning( ) ) { strcpy( lDialogString , "(dialog " ) ; } else { lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(" ) ; strcat( lDialogString , dialogName() ) ; strcat( lDialogString , " " ) ; } } else if ( isTerminalRunning( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"whiptail");return 0;} strcpy( lDialogString , "(whiptail " ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"whiptail");return 0;} lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(whiptail " ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( !xdialogPresent() && !gdialogPresent() ) { if ( aDialogType && ( !strcmp( "okcancel" , aDialogType ) || !strcmp( "yesno" , aDialogType ) || !strcmp( "yesnocancel" , aDialogType ) ) ) { strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: move focus") ; strcat(lDialogString, "\" ") ; } } if ( aDialogType && ! strcmp( "okcancel" , aDialogType ) ) { if ( ! aDefaultButton ) { strcat( lDialogString , "--defaultno " ) ; } strcat( lDialogString , "--yes-label \"Ok\" --no-label \"Cancel\" --yesno " ) ; } else if ( aDialogType && ! strcmp( "yesno" , aDialogType ) ) { if ( ! aDefaultButton ) { strcat( lDialogString , "--defaultno " ) ; } strcat( lDialogString , "--yesno " ) ; } else if (aDialogType && !strcmp("yesnocancel", aDialogType)) { if (!aDefaultButton) { strcat(lDialogString, "--defaultno "); } strcat(lDialogString, "--menu "); } else { strcat( lDialogString , "--msgbox " ) ; } strcat( lDialogString , "\"" ) ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage) ; } strcat(lDialogString, "\" "); if ( lWasGraphicDialog ) { if (aDialogType && !strcmp("yesnocancel", aDialogType)) { strcat(lDialogString,"0 60 0 Yes \"\" No \"\") 2>/tmp/tinyfd.txt;\ if [ $? = 0 ];then tinyfdBool=1;else tinyfdBool=0;fi;\ tinyfdRes=$(cat /tmp/tinyfd.txt);echo $tinyfdBool$tinyfdRes") ; } else { strcat(lDialogString, "10 60 ) 2>&1;if [ $? = 0 ];then echo 1;else echo 0;fi"); } } else { if (aDialogType && !strcmp("yesnocancel", aDialogType)) { strcat(lDialogString,"0 60 0 Yes \"\" No \"\" >/dev/tty ) 2>/tmp/tinyfd.txt;\ if [ $? = 0 ];then tinyfdBool=1;else tinyfdBool=0;fi;\ tinyfdRes=$(cat /tmp/tinyfd.txt);echo $tinyfdBool$tinyfdRes") ; if ( lWasXterm ) { strcat(lDialogString," >/tmp/tinyfd0.txt';cat /tmp/tinyfd0.txt"); } else { strcat(lDialogString, "; clear >/dev/tty") ; } } else { strcat(lDialogString, "10 60 >/dev/tty) 2>&1;if [ $? = 0 ];"); if ( lWasXterm ) { strcat( lDialogString , "then\n\techo 1\nelse\n\techo 0\nfi >/tmp/tinyfd.txt';cat /tmp/tinyfd.txt;rm /tmp/tinyfd.txt"); } else { strcat(lDialogString, "then echo 1;else echo 0;fi;clear >/dev/tty"); } } } } else if ( !isTerminalRunning() && terminalName() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"basicinput");return 0;} strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'" ) ; if ( !gWarningDisplayed && !tinyfd_forceConsole) { gWarningDisplayed = 1 ; strcat( lDialogString , "echo \"" ) ; strcat( lDialogString, gTitle) ; strcat( lDialogString , "\";" ) ; strcat( lDialogString , "echo \"" ) ; strcat( lDialogString, tinyfd_needs) ; strcat( lDialogString , "\";echo;echo;" ) ; } if ( aTitle && strlen(aTitle) ) { strcat( lDialogString , "echo \"" ) ; strcat( lDialogString, aTitle) ; strcat( lDialogString , "\";echo;" ) ; } if ( aMessage && strlen(aMessage) ) { strcat( lDialogString , "echo \"" ) ; strcat( lDialogString, aMessage) ; strcat( lDialogString , "\"; " ) ; } if ( aDialogType && !strcmp("yesno",aDialogType) ) { strcat( lDialogString , "echo -n \"y/n: \"; " ) ; strcat( lDialogString , "stty sane -echo;" ) ; strcat( lDialogString , "answer=$( while ! head -c 1 | grep -i [ny];do true ;done);"); strcat( lDialogString , "if echo \"$answer\" | grep -iq \"^y\";then\n"); strcat( lDialogString , "\techo 1\nelse\n\techo 0\nfi" ) ; } else if ( aDialogType && !strcmp("okcancel",aDialogType) ) { strcat( lDialogString , "echo -n \"[O]kay/[C]ancel: \"; " ) ; strcat( lDialogString , "stty sane -echo;" ) ; strcat( lDialogString , "answer=$( while ! head -c 1 | grep -i [oc];do true ;done);"); strcat( lDialogString , "if echo \"$answer\" | grep -iq \"^o\";then\n"); strcat( lDialogString , "\techo 1\nelse\n\techo 0\nfi" ) ; } else if ( aDialogType && !strcmp("yesnocancel",aDialogType) ) { strcat( lDialogString , "echo -n \"[Y]es/[N]o/[C]ancel: \"; " ) ; strcat( lDialogString , "stty sane -echo;" ) ; strcat( lDialogString , "answer=$( while ! head -c 1 | grep -i [nyc];do true ;done);"); strcat( lDialogString , "if echo \"$answer\" | grep -iq \"^y\";then\n\techo 1\n"); strcat( lDialogString , "elif echo \"$answer\" | grep -iq \"^n\";then\n\techo 2\n" ) ; strcat( lDialogString , "else\n\techo 0\nfi" ) ; } else { strcat(lDialogString , "echo -n \"press enter to continue \"; "); strcat( lDialogString , "stty sane -echo;" ) ; strcat( lDialogString , "answer=$( while ! head -c 1;do true ;done);echo 1"); } strcat( lDialogString , " >/tmp/tinyfd.txt';cat /tmp/tinyfd.txt;rm /tmp/tinyfd.txt"); } else if ( !isTerminalRunning() && pythonDbusPresent() && !strcmp("ok" , aDialogType) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python-dbus");return 1;} strcpy( lDialogString , gPythonName ) ; strcat( lDialogString ," -c \"import dbus;bus=dbus.SessionBus();"); strcat( lDialogString ,"notif=bus.get_object('org.freedesktop.Notifications','/org/freedesktop/Notifications');" ) ; strcat( lDialogString ,"notify=dbus.Interface(notif,'org.freedesktop.Notifications');" ) ; strcat( lDialogString ,"notify.Notify('',0,'" ) ; if ( aIconType && strlen(aIconType) ) { strcat( lDialogString , aIconType ) ; } strcat(lDialogString, "','") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, aTitle) ; } strcat(lDialogString, "','") ; if ( aMessage && strlen(aMessage) ) { lpDialogString = lDialogString + strlen(lDialogString); tfd_replaceSubStr( aMessage , "\n" , "\\n" , lpDialogString ) ; } strcat(lDialogString, "','','',5000)\"") ; } else if ( !isTerminalRunning() && (perlPresent() >= 2) && !strcmp("ok" , aDialogType) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"perl-dbus");return 1;} strcpy( lDialogString , "perl -e \"use Net::DBus;\ my \\$sessionBus = Net::DBus->session;\ my \\$notificationsService = \\$sessionBus->get_service('org.freedesktop.Notifications');\ my \\$notificationsObject = \\$notificationsService->get_object('/org/freedesktop/Notifications',\ 'org.freedesktop.Notifications');"); sprintf( lDialogString + strlen(lDialogString), "my \\$notificationId;\\$notificationId = \\$notificationsObject->Notify(shift, 0, '%s', '%s', '%s', [], {}, -1);\" ", aIconType?aIconType:"", aTitle?aTitle:"", aMessage?aMessage:"" ) ; } else if ( !isTerminalRunning() && notifysendPresent() && !strcmp("ok" , aDialogType) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"notifysend");return 1;} strcpy( lDialogString , "notify-send" ) ; if ( aIconType && strlen(aIconType) ) { strcat( lDialogString , " -i '" ) ; strcat( lDialogString , aIconType ) ; strcat( lDialogString , "'" ) ; } strcat( lDialogString , " \"" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, aTitle) ; strcat( lDialogString , " | " ) ; } if ( aMessage && strlen(aMessage) ) { tfd_replaceSubStr( aMessage , "\n\t" , " | " , lBuff ) ; tfd_replaceSubStr( aMessage , "\n" , " | " , lBuff ) ; tfd_replaceSubStr( aMessage , "\t" , " " , lBuff ) ; strcat(lDialogString, lBuff) ; } strcat( lDialogString , "\"" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"basicinput");return 0;} if ( !gWarningDisplayed && !tinyfd_forceConsole) { gWarningDisplayed = 1 ; printf("\n\n%s\n", gTitle); printf("%s\n\n", tinyfd_needs); } if ( aTitle && strlen(aTitle) ) { printf("\n%s\n", aTitle); } tcgetattr(0, &infoOri); tcgetattr(0, &info); info.c_lflag &= ~ICANON; info.c_cc[VMIN] = 1; info.c_cc[VTIME] = 0; tcsetattr(0, TCSANOW, &info); if ( aDialogType && !strcmp("yesno",aDialogType) ) { do { if ( aMessage && strlen(aMessage) ) { printf("\n%s\n",aMessage); } printf("y/n: "); fflush(stdout); lChar = tolower( getchar() ) ; printf("\n\n"); } while ( lChar != 'y' && lChar != 'n' ); lResult = lChar == 'y' ? 1 : 0 ; } else if ( aDialogType && !strcmp("okcancel",aDialogType) ) { do { if ( aMessage && strlen(aMessage) ) { printf("\n%s\n",aMessage); } printf("[O]kay/[C]ancel: "); fflush(stdout); lChar = tolower( getchar() ) ; printf("\n\n"); } while ( lChar != 'o' && lChar != 'c' ); lResult = lChar == 'o' ? 1 : 0 ; } else if ( aDialogType && !strcmp("yesnocancel",aDialogType) ) { do { if ( aMessage && strlen(aMessage) ) { printf("\n%s\n",aMessage); } printf("[Y]es/[N]o/[C]ancel: "); fflush(stdout); lChar = tolower( getchar() ) ; printf("\n\n"); } while ( lChar != 'y' && lChar != 'n' && lChar != 'c' ); lResult = (lChar == 'y') ? 1 : (lChar == 'n') ? 2 : 0 ; } else { if ( aMessage && strlen(aMessage) ) { printf("\n%s\n\n",aMessage); } printf("press enter to continue "); fflush(stdout); getchar() ; printf("\n\n"); lResult = 1 ; } tcsetattr(0, TCSANOW, &infoOri); free(lDialogString); return lResult ; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ! ( lIn = popen( lDialogString , "r" ) ) ) { free(lDialogString); return 0 ; } while ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) {} pclose( lIn ) ; /* printf( "lBuff: %s len: %lu \n" , lBuff , strlen(lBuff) ) ; */ if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } /* printf( "lBuff1: %s len: %lu \n" , lBuff , strlen(lBuff) ) ; */ if (aDialogType && !strcmp("yesnocancel", aDialogType)) { if ( lBuff[0]=='1' ) { if ( !strcmp( lBuff+1 , "Yes" )) strcpy(lBuff,"1"); else if ( !strcmp( lBuff+1 , "No" )) strcpy(lBuff,"2"); } } /* printf( "lBuff2: %s len: %lu \n" , lBuff , strlen(lBuff) ) ; */ lResult = !strcmp( lBuff , "2" ) ? 2 : !strcmp( lBuff , "1" ) ? 1 : 0; /* printf( "lResult: %d\n" , lResult ) ; */ free(lDialogString); return lResult ; } /* return has only meaning for tinyfd_query */ int tinyfd_notifyPopup( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" may contain \n and \t */ char const * aIconType ) /* "info" "warning" "error" */ { char lBuff[MAX_PATH_OR_CMD]; char * lDialogString = NULL ; char * lpDialogString ; FILE * lIn ; size_t lTitleLen ; size_t lMessageLen ; if (tfd_quoteDetected(aTitle)) return tinyfd_notifyPopup("INVALID TITLE WITH QUOTES", aMessage, aIconType); if (tfd_quoteDetected(aMessage)) return tinyfd_notifyPopup(aTitle, "INVALID MESSAGE WITH QUOTES", aIconType); if ( getenv("SSH_TTY") ) { return tinyfd_messageBox(aTitle, aMessage, "ok", aIconType, 0); } lTitleLen = aTitle ? strlen(aTitle) : 0 ; lMessageLen = aMessage ? strlen(aMessage) : 0 ; if ( !aTitle || strcmp(aTitle,"tinyfd_query") ) { lDialogString = (char *) malloc( MAX_PATH_OR_CMD + lTitleLen + lMessageLen ); } if ( osascriptPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return 1;} strcpy( lDialogString , "osascript "); if ( ! osx9orBetter() ) strcat( lDialogString , " -e 'tell application \"System Events\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e 'display notification \"") ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage) ; } strcat(lDialogString, " \" ") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "with title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat( lDialogString, "' -e 'end try'") ; if ( ! osx9orBetter() ) strcat( lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return 1;} strcpy( lDialogString , "kdialog" ) ; if ( aIconType && strlen(aIconType) ) { strcat( lDialogString , " --icon '" ) ; strcat( lDialogString , aIconType ) ; strcat( lDialogString , "'" ) ; } if ( aTitle && strlen(aTitle) ) { strcat( lDialogString , " --title \"" ) ; strcat( lDialogString , aTitle ) ; strcat( lDialogString , "\"" ) ; } strcat( lDialogString , " --passivepopup" ) ; strcat( lDialogString , " \"" ) ; if ( aMessage ) { strcat( lDialogString , aMessage ) ; } strcat( lDialogString , " \" 5" ) ; } else if ( (tfd_zenity3Present()>=5) ) { /* zenity 2.32 & 3.14 has the notification but with a bug: it doesnt return from it */ /* zenity 3.8 show the notification as an alert ok cancel box */ if ( tfd_zenity3Present()>=5 ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity");return 1;} strcpy( lDialogString , "zenity" ) ; } strcat( lDialogString , " --notification"); if ( aIconType && strlen( aIconType ) ) { strcat( lDialogString , " --window-icon '"); strcat( lDialogString , aIconType ) ; strcat( lDialogString , "'" ) ; } strcat( lDialogString , " --text \"" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, aTitle) ; strcat(lDialogString, "\n") ; } if ( aMessage && strlen( aMessage ) ) { strcat( lDialogString , aMessage ) ; } strcat( lDialogString , " \"" ) ; } else if ( perlPresent() >= 2 ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"perl-dbus");return 1;} strcpy( lDialogString , "perl -e \"use Net::DBus;\ my \\$sessionBus = Net::DBus->session;\ my \\$notificationsService = \\$sessionBus->get_service('org.freedesktop.Notifications');\ my \\$notificationsObject = \\$notificationsService->get_object('/org/freedesktop/Notifications',\ 'org.freedesktop.Notifications');"); sprintf( lDialogString + strlen(lDialogString) , "my \\$notificationId;\\$notificationId = \\$notificationsObject->Notify(shift, 0, '%s', '%s', '%s', [], {}, -1);\" ", aIconType?aIconType:"", aTitle?aTitle:"", aMessage?aMessage:"" ) ; } else if ( pythonDbusPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python-dbus");return 1;} strcpy( lDialogString , gPythonName ) ; strcat( lDialogString ," -c \"import dbus;bus=dbus.SessionBus();"); strcat( lDialogString ,"notif=bus.get_object('org.freedesktop.Notifications','/org/freedesktop/Notifications');" ) ; strcat( lDialogString ,"notify=dbus.Interface(notif,'org.freedesktop.Notifications');" ) ; strcat( lDialogString ,"notify.Notify('',0,'" ) ; if ( aIconType && strlen(aIconType) ) { strcat( lDialogString , aIconType ) ; } strcat(lDialogString, "','") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, aTitle) ; } strcat(lDialogString, "','") ; if ( aMessage && strlen(aMessage) ) { lpDialogString = lDialogString + strlen(lDialogString); tfd_replaceSubStr( aMessage , "\n" , "\\n" , lpDialogString ) ; } strcat(lDialogString, "','','',5000)\"") ; } else if ( notifysendPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"notifysend");return 1;} strcpy( lDialogString , "notify-send" ) ; if ( aIconType && strlen(aIconType) ) { strcat( lDialogString , " -i '" ) ; strcat( lDialogString , aIconType ) ; strcat( lDialogString , "'" ) ; } strcat( lDialogString , " \"" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, aTitle) ; strcat( lDialogString , " | " ) ; } if ( aMessage && strlen(aMessage) ) { tfd_replaceSubStr( aMessage , "\n\t" , " | " , lBuff ) ; tfd_replaceSubStr( aMessage , "\n" , " | " , lBuff ) ; tfd_replaceSubStr( aMessage , "\t" , " " , lBuff ) ; strcat(lDialogString, lBuff) ; } strcat( lDialogString , "\"" ) ; } else { return tinyfd_messageBox(aTitle, aMessage, "ok", aIconType, 0); } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ! ( lIn = popen( lDialogString , "r" ) ) ) { free(lDialogString); return 0 ; } pclose( lIn ) ; free(lDialogString); return 1; } /* returns NULL on cancel */ char * tinyfd_inputBox( char const * aTitle , /* NULL or "" */ char const * aMessage , /* NULL or "" (\n and \t have no effect) */ char const * aDefaultInput ) /* "" , if NULL it's a passwordBox */ { static char lBuff[MAX_PATH_OR_CMD]; char * lDialogString = NULL; char * lpDialogString; FILE * lIn ; int lResult ; int lWasGdialog = 0 ; int lWasGraphicDialog = 0 ; int lWasXterm = 0 ; int lWasBasicXterm = 0 ; struct termios oldt ; struct termios newt ; char * lEOF; size_t lTitleLen ; size_t lMessageLen ; if (!aTitle && !aMessage && !aDefaultInput) return lBuff; /* now I can fill lBuff from outside */ lBuff[0]='\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_inputBox("INVALID TITLE WITH QUOTES", aMessage, aDefaultInput); if (tfd_quoteDetected(aMessage)) return tinyfd_inputBox(aTitle, "INVALID MESSAGE WITH QUOTES", aDefaultInput); if (tfd_quoteDetected(aDefaultInput)) return tinyfd_inputBox(aTitle, aMessage, "INVALID DEFAULT_INPUT WITH QUOTES"); lTitleLen = aTitle ? strlen(aTitle) : 0 ; lMessageLen = aMessage ? strlen(aMessage) : 0 ; if ( !aTitle || strcmp(aTitle,"tinyfd_query") ) { lDialogString = (char *) malloc( MAX_PATH_OR_CMD + lTitleLen + lMessageLen ); } if ( osascriptPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return (char *)1;} strcpy( lDialogString , "osascript "); if ( ! osx9orBetter() ) strcat( lDialogString , " -e 'tell application \"System Events\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e 'display dialog \"") ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage) ; } strcat(lDialogString, "\" ") ; strcat(lDialogString, "default answer \"") ; if ( aDefaultInput && strlen(aDefaultInput) ) { strcat(lDialogString, aDefaultInput) ; } strcat(lDialogString, "\" ") ; if ( ! aDefaultInput ) { strcat(lDialogString, "hidden answer true ") ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "with title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } strcat(lDialogString, "with icon note' ") ; strcat(lDialogString, "-e '\"1\" & text returned of result' " ); strcat(lDialogString, "-e 'on error number -128' " ) ; strcat(lDialogString, "-e '0' " ); strcat(lDialogString, "-e 'end try'") ; if ( ! osx9orBetter() ) strcat(lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return (char *)1;} strcpy( lDialogString , "szAnswer=$(kdialog" ) ; if ( (tfd_kdialogPresent() == 2) && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } if ( ! aDefaultInput ) { strcat(lDialogString, " --password ") ; } else { strcat(lDialogString, " --inputbox ") ; } strcat(lDialogString, "\"") ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage ) ; } strcat(lDialogString , "\" \"" ) ; if ( aDefaultInput && strlen(aDefaultInput) ) { strcat(lDialogString, aDefaultInput ) ; } strcat(lDialogString , "\"" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } strcat( lDialogString , ");if [ $? = 0 ];then echo 1$szAnswer;else echo 0$szAnswer;fi"); } else if ( tfd_zenityPresent() || tfd_matedialogPresent() || tfd_shellementaryPresent() || tfd_qarmaPresent() ) { if ( tfd_zenityPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity");return (char *)1;} strcpy( lDialogString , "szAnswer=$(zenity" ) ; if ( (tfd_zenity3Present() >= 4) && !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat( lDialogString, " --attach=$(sleep .01;xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } else if ( tfd_matedialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"matedialog");return (char *)1;} strcpy( lDialogString , "szAnswer=$(matedialog" ) ; } else if ( tfd_shellementaryPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"shellementary");return (char *)1;} strcpy( lDialogString , "szAnswer=$(shellementary" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"qarma");return (char *)1;} strcpy( lDialogString , "szAnswer=$(qarma" ) ; if ( !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } strcat( lDialogString ," --entry" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title=\"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, " --text=\"") ; strcat(lDialogString, aMessage) ; strcat(lDialogString, "\"") ; } if ( aDefaultInput && strlen(aDefaultInput) ) { strcat(lDialogString, " --entry-text=\"") ; strcat(lDialogString, aDefaultInput) ; strcat(lDialogString, "\"") ; } else { strcat(lDialogString, " --hide-text") ; } if (tinyfd_silent) strcat( lDialogString , " 2>/dev/null "); strcat( lDialogString , ");if [ $? = 0 ];then echo 1$szAnswer;else echo 0$szAnswer;fi"); } else if (tfd_yadPresent()) { if (aTitle && !strcmp(aTitle, "tinyfd_query")) { strcpy(tinyfd_response, "yad"); return (char*)1; } strcpy(lDialogString, "szAnswer=$(yad --entry"); if (aTitle && strlen(aTitle)) { strcat(lDialogString, " --title=\""); strcat(lDialogString, aTitle); strcat(lDialogString, "\""); } if (aMessage && strlen(aMessage)) { strcat(lDialogString, " --text=\""); strcat(lDialogString, aMessage); strcat(lDialogString, "\""); } if (aDefaultInput && strlen(aDefaultInput)) { strcat(lDialogString, " --entry-text=\""); strcat(lDialogString, aDefaultInput); strcat(lDialogString, "\""); } else { strcat(lDialogString, " --hide-text"); } if (tinyfd_silent) strcat(lDialogString, " 2>/dev/null "); strcat(lDialogString, ");if [ $? = 0 ];then echo 1$szAnswer;else echo 0$szAnswer;fi"); } else if ( gxmessagePresent() || gmessagePresent() ) { if ( gxmessagePresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"gxmessage");return (char *)1;} strcpy( lDialogString , "szAnswer=$(gxmessage -buttons Ok:1,Cancel:0 -center \""); } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"gmessage");return (char *)1;} strcpy( lDialogString , "szAnswer=$(gmessage -buttons Ok:1,Cancel:0 -center \""); } if ( aMessage && strlen(aMessage) ) { strcat( lDialogString , aMessage ) ; } strcat(lDialogString, "\"" ) ; if ( aTitle && strlen(aTitle) ) { strcat( lDialogString , " -title \""); strcat( lDialogString , aTitle ) ; strcat(lDialogString, "\" " ) ; } strcat(lDialogString, " -entrytext \"" ) ; if ( aDefaultInput && strlen(aDefaultInput) ) { strcat( lDialogString , aDefaultInput ) ; } strcat(lDialogString, "\"" ) ; strcat( lDialogString , ");echo $?$szAnswer"); } else if ( !gdialogPresent() && !xdialogPresent() && tkinter3Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python3-tkinter");return (char *)1;} strcpy( lDialogString , gPython3Name ) ; strcat( lDialogString , " -S -c \"import tkinter; from tkinter import simpledialog;root=tkinter.Tk();root.withdraw();"); strcat( lDialogString ,"res=simpledialog.askstring(" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, "prompt='") ; lpDialogString = lDialogString + strlen(lDialogString); tfd_replaceSubStr( aMessage , "\n" , "\\n" , lpDialogString ) ; strcat(lDialogString, "',") ; } if ( aDefaultInput ) { if ( strlen(aDefaultInput) ) { strcat(lDialogString, "initialvalue='") ; strcat(lDialogString, aDefaultInput) ; strcat(lDialogString, "',") ; } } else { strcat(lDialogString, "show='*'") ; } strcat(lDialogString, ");\nif res is None :\n\tprint(0)"); strcat(lDialogString, "\nelse :\n\tprint('1'+res)\n\"" ) ; } else if ( !gdialogPresent() && !xdialogPresent() && tkinter2Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python2-tkinter");return (char *)1;} strcpy( lDialogString , "export PYTHONIOENCODING=utf-8;" ) ; strcat( lDialogString , gPython2Name ) ; if ( ! isTerminalRunning( ) && tfd_isDarwin( ) ) { strcat( lDialogString , " -i" ) ; /* for osx without console */ } strcat( lDialogString , " -S -c \"import Tkinter,tkSimpleDialog;root=Tkinter.Tk();root.withdraw();"); if ( tfd_isDarwin( ) ) { strcat( lDialogString , "import os;os.system('''/usr/bin/osascript -e 'tell app \\\"Finder\\\" to set \ frontmost of process \\\"Python\\\" to true' ''');"); } strcat( lDialogString ,"res=tkSimpleDialog.askstring(" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, "prompt='") ; lpDialogString = lDialogString + strlen(lDialogString); tfd_replaceSubStr( aMessage , "\n" , "\\n" , lpDialogString ) ; strcat(lDialogString, "',") ; } if ( aDefaultInput ) { if ( strlen(aDefaultInput) ) { strcat(lDialogString, "initialvalue='") ; strcat(lDialogString, aDefaultInput) ; strcat(lDialogString, "',") ; } } else { strcat(lDialogString, "show='*'") ; } strcat(lDialogString, ");\nif res is None :\n\tprint 0"); strcat(lDialogString, "\nelse :\n\tprint '1'+res\n\"" ) ; } else if ( gdialogPresent() || xdialogPresent() || dialogName() || whiptailPresent() ) { if ( gdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"gdialog");return (char *)1;} lWasGraphicDialog = 1 ; lWasGdialog = 1 ; strcpy( lDialogString , "(gdialog " ) ; } else if ( xdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xdialog");return (char *)1;} lWasGraphicDialog = 1 ; strcpy( lDialogString , "(Xdialog " ) ; } else if ( dialogName( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} if ( isTerminalRunning( ) ) { strcpy( lDialogString , "(dialog " ) ; } else { lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(" ) ; strcat( lDialogString , dialogName() ) ; strcat( lDialogString , " " ) ; } } else if ( isTerminalRunning( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"whiptail");return (char *)0;} strcpy( lDialogString , "(whiptail " ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"whiptail");return (char *)0;} lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(whiptail " ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( !xdialogPresent() && !gdialogPresent() ) { strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: move focus") ; if ( ! aDefaultInput && !lWasGdialog ) { strcat(lDialogString, " (sometimes nothing, no blink nor star, is shown in text field)") ; } strcat(lDialogString, "\" ") ; } if ( aDefaultInput || lWasGdialog ) { strcat( lDialogString , "--inputbox" ) ; } else { if ( !lWasGraphicDialog && dialogName() && isDialogVersionBetter09b() ) { strcat( lDialogString , "--insecure " ) ; } strcat( lDialogString , "--passwordbox" ) ; } strcat( lDialogString , " \"" ) ; if ( aMessage && strlen(aMessage) ) { strcat(lDialogString, aMessage) ; } strcat(lDialogString,"\" 10 60 ") ; if ( aDefaultInput && strlen(aDefaultInput) ) { strcat(lDialogString, "\"") ; strcat(lDialogString, aDefaultInput) ; strcat(lDialogString, "\" ") ; } if ( lWasGraphicDialog ) { strcat(lDialogString,") 2>/tmp/tinyfd.txt;\ if [ $? = 0 ];then tinyfdBool=1;else tinyfdBool=0;fi;\ tinyfdRes=$(cat /tmp/tinyfd.txt);echo $tinyfdBool$tinyfdRes") ; } else { strcat(lDialogString,">/dev/tty ) 2>/tmp/tinyfd.txt;\ if [ $? = 0 ];then tinyfdBool=1;else tinyfdBool=0;fi;\ tinyfdRes=$(cat /tmp/tinyfd.txt);echo $tinyfdBool$tinyfdRes") ; if ( lWasXterm ) { strcat(lDialogString," >/tmp/tinyfd0.txt';cat /tmp/tinyfd0.txt"); } else { strcat(lDialogString, "; clear >/dev/tty") ; } } } else if ( ! isTerminalRunning( ) && terminalName() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"basicinput");return (char *)0;} lWasBasicXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'" ) ; if ( !gWarningDisplayed && !tinyfd_forceConsole) { gWarningDisplayed = 1 ; tinyfd_messageBox(gTitle,tinyfd_needs,"ok","warning",0); } if ( aTitle && strlen(aTitle) && !tinyfd_forceConsole) { strcat( lDialogString , "echo \"" ) ; strcat( lDialogString, aTitle) ; strcat( lDialogString , "\";echo;" ) ; } strcat( lDialogString , "echo \"" ) ; if ( aMessage && strlen(aMessage) ) { strcat( lDialogString, aMessage) ; } strcat( lDialogString , "\";read " ) ; if ( ! aDefaultInput ) { strcat( lDialogString , "-s " ) ; } strcat( lDialogString , "-p \"" ) ; strcat( lDialogString , "(esc+enter to cancel): \" ANSWER " ) ; strcat( lDialogString , ";echo 1$ANSWER >/tmp/tinyfd.txt';" ) ; strcat( lDialogString , "cat -v /tmp/tinyfd.txt"); } else if ( !gWarningDisplayed && ! isTerminalRunning( ) && ! terminalName() ) { gWarningDisplayed = 1 ; tinyfd_messageBox(gTitle,tinyfd_needs,"ok","warning",0); if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"no_solution");return (char *)0;} free(lDialogString); return NULL; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"basicinput");return (char *)0;} if ( !gWarningDisplayed && !tinyfd_forceConsole) { gWarningDisplayed = 1 ; tinyfd_messageBox(gTitle,tinyfd_needs,"ok","warning",0); } if ( aTitle && strlen(aTitle) ) { printf("\n%s\n", aTitle); } if ( aMessage && strlen(aMessage) ) { printf("\n%s\n",aMessage); } printf("(esc+enter to cancel): "); fflush(stdout); if ( ! aDefaultInput ) { tcgetattr(STDIN_FILENO, & oldt) ; newt = oldt ; newt.c_lflag &= ~ECHO ; tcsetattr(STDIN_FILENO, TCSANOW, & newt); } lEOF = fgets(lBuff, MAX_PATH_OR_CMD, stdin); /* printf("lbuff<%c><%d>\n",lBuff[0],lBuff[0]); */ if ( ! lEOF || (lBuff[0] == '\0') ) { free(lDialogString); return NULL; } if ( lBuff[0] == '\n' ) { lEOF = fgets(lBuff, MAX_PATH_OR_CMD, stdin); /* printf("lbuff<%c><%d>\n",lBuff[0],lBuff[0]); */ if ( ! lEOF || (lBuff[0] == '\0') ) { free(lDialogString); return NULL; } } if ( ! aDefaultInput ) { tcsetattr(STDIN_FILENO, TCSANOW, & oldt); printf("\n"); } printf("\n"); if ( strchr(lBuff,27) ) { free(lDialogString); return NULL ; } if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } free(lDialogString); return lBuff ; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; lIn = popen( lDialogString , "r" ); if ( ! lIn ) { if ( fileExists("/tmp/tinyfd.txt") ) { wipefile("/tmp/tinyfd.txt"); remove("/tmp/tinyfd.txt"); } if ( fileExists("/tmp/tinyfd0.txt") ) { wipefile("/tmp/tinyfd0.txt"); remove("/tmp/tinyfd0.txt"); } free(lDialogString); return NULL ; } while ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) {} pclose( lIn ) ; if ( fileExists("/tmp/tinyfd.txt") ) { wipefile("/tmp/tinyfd.txt"); remove("/tmp/tinyfd.txt"); } if ( fileExists("/tmp/tinyfd0.txt") ) { wipefile("/tmp/tinyfd0.txt"); remove("/tmp/tinyfd0.txt"); } /* printf( "len Buff: %lu\n" , strlen(lBuff) ) ; */ /* printf( "lBuff0: %s\n" , lBuff ) ; */ if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } /* printf( "lBuff1: %s len: %lu \n" , lBuff , strlen(lBuff) ) ; */ if ( lWasBasicXterm ) { if ( strstr(lBuff,"^[") ) /* esc was pressed */ { free(lDialogString); return NULL ; } } lResult = strncmp( lBuff , "1" , 1) ? 0 : 1 ; /* printf( "lResult: %d \n" , lResult ) ; */ if ( ! lResult ) { free(lDialogString); return NULL ; } /* printf( "lBuff+1: %s\n" , lBuff+1 ) ; */ free(lDialogString); return lBuff+1 ; } char * tinyfd_saveFileDialog( char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile , /* NULL or "" */ int aNumOfFilterPatterns , /* 0 */ char const * const * aFilterPatterns , /* NULL or {"*.jpg","*.png"} */ char const * aSingleFilterDescription ) /* NULL or "image files" */ { static char lBuff[MAX_PATH_OR_CMD] ; char lDialogString[MAX_PATH_OR_CMD] ; char lString[MAX_PATH_OR_CMD] ; int i ; int lWasGraphicDialog = 0 ; int lWasXterm = 0 ; char * p ; char * lPointerInputBox ; FILE * lIn ; lBuff[0]='\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_saveFileDialog("INVALID TITLE WITH QUOTES", aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription); if (tfd_quoteDetected(aDefaultPathAndFile)) return tinyfd_saveFileDialog(aTitle, "INVALID DEFAULT_PATH WITH QUOTES", aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription); if (tfd_quoteDetected(aSingleFilterDescription)) return tinyfd_saveFileDialog(aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, "INVALID FILTER_DESCRIPTION WITH QUOTES"); for (i = 0; i < aNumOfFilterPatterns; i++) { if (tfd_quoteDetected(aFilterPatterns[i])) return tinyfd_saveFileDialog("INVALID FILTER_PATTERN WITH QUOTES", aDefaultPathAndFile, 0, NULL, NULL); } if ( osascriptPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return (char *)1;} strcpy( lDialogString , "osascript "); if ( ! osx9orBetter() ) strcat( lDialogString , " -e 'tell application \"Finder\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e 'POSIX path of ( choose file name " ); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "with prompt \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } getPathWithoutFinalSlash( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "default location \"") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "\" " ) ; } getLastName( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "default name \"") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "\" " ) ; } strcat( lDialogString , ")' " ) ; strcat(lDialogString, "-e 'on error number -128' " ) ; strcat(lDialogString, "-e 'end try'") ; if ( ! osx9orBetter() ) strcat( lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return (char *)1;} strcpy( lDialogString , "kdialog" ) ; if ( (tfd_kdialogPresent() == 2) && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } strcat( lDialogString , " --getsavefilename " ) ; if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { if ( aDefaultPathAndFile[0] != '/' ) { strcat(lDialogString, "$PWD/") ; } strcat(lDialogString, "\"") ; strcat(lDialogString, aDefaultPathAndFile ) ; strcat(lDialogString , "\"" ) ; } else { strcat(lDialogString, "$PWD/") ; } if ( aNumOfFilterPatterns > 0 ) { strcat(lDialogString , " \"" ) ; strcat( lDialogString , aFilterPatterns[0] ) ; for ( i = 1 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , " " ) ; strcat( lDialogString , aFilterPatterns[i] ) ; } if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , " | " ) ; strcat( lDialogString , aSingleFilterDescription ) ; } strcat( lDialogString , "\"" ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } } else if ( tfd_zenityPresent() || tfd_matedialogPresent() || tfd_shellementaryPresent() || tfd_qarmaPresent() ) { if ( tfd_zenityPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity");return (char *)1;} strcpy( lDialogString , "zenity" ) ; if ( (tfd_zenity3Present() >= 4) && !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat( lDialogString, " --attach=$(sleep .01;xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } else if ( tfd_matedialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"matedialog");return (char *)1;} strcpy( lDialogString , "matedialog" ) ; } else if ( tfd_shellementaryPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"shellementary");return (char *)1;} strcpy( lDialogString , "shellementary" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"qarma");return (char *)1;} strcpy( lDialogString , "qarma" ) ; if ( !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } strcat(lDialogString, " --file-selection --save --confirm-overwrite" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title=\"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { strcat(lDialogString, " --filename=\"") ; strcat(lDialogString, aDefaultPathAndFile) ; strcat(lDialogString, "\"") ; } if ( aNumOfFilterPatterns > 0 ) { strcat( lDialogString , " --file-filter='" ) ; if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , aSingleFilterDescription ) ; strcat( lDialogString , " |" ) ; } for ( i = 0 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , " " ) ; strcat( lDialogString , aFilterPatterns[i] ) ; } strcat( lDialogString , "' --file-filter='All files | *'" ) ; } if (tinyfd_silent) strcat( lDialogString , " 2>/dev/null "); } else if (tfd_yadPresent()) { if (aTitle && !strcmp(aTitle, "tinyfd_query")) { strcpy(tinyfd_response, "yad"); return (char*)1; } strcpy(lDialogString, "yad --file-selection --save --confirm-overwrite"); if (aTitle && strlen(aTitle)) { strcat(lDialogString, " --title=\""); strcat(lDialogString, aTitle); strcat(lDialogString, "\""); } if (aDefaultPathAndFile && strlen(aDefaultPathAndFile)) { strcat(lDialogString, " --filename=\""); strcat(lDialogString, aDefaultPathAndFile); strcat(lDialogString, "\""); } if (aNumOfFilterPatterns > 0) { strcat(lDialogString, " --file-filter='"); if (aSingleFilterDescription && strlen(aSingleFilterDescription)) { strcat(lDialogString, aSingleFilterDescription); strcat(lDialogString, " |"); } for (i = 0; i < aNumOfFilterPatterns; i++) { strcat(lDialogString, " "); strcat(lDialogString, aFilterPatterns[i]); } strcat(lDialogString, "' --file-filter='All files | *'"); } if (tinyfd_silent) strcat(lDialogString, " 2>/dev/null "); } else if ( !xdialogPresent() && tkinter3Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python3-tkinter");return (char *)1;} strcpy( lDialogString , gPython3Name ) ; strcat( lDialogString , " -S -c \"import tkinter;from tkinter import filedialog;root=tkinter.Tk();root.withdraw();"); strcat( lDialogString , "res=filedialog.asksaveasfilename("); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { getPathWithoutFinalSlash( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialdir='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } getLastName( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialfile='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } } if ( ( aNumOfFilterPatterns > 1 ) || ( (aNumOfFilterPatterns == 1) /* test because poor osx behaviour */ && ( aFilterPatterns[0][strlen(aFilterPatterns[0])-1] != '*' ) ) ) { strcat(lDialogString , "filetypes=(" ) ; strcat( lDialogString , "('" ) ; if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , aSingleFilterDescription ) ; } strcat( lDialogString , "',(" ) ; for ( i = 0 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , "'" ) ; strcat( lDialogString , aFilterPatterns[i] ) ; strcat( lDialogString , "'," ) ; } strcat( lDialogString , "))," ) ; strcat( lDialogString , "('All files','*'))" ) ; } strcat( lDialogString, ");\nif not isinstance(res, tuple):\n\tprint(res)\n\"" ) ; } else if ( !xdialogPresent() && tkinter2Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python2-tkinter");return (char *)1;} strcpy( lDialogString , "export PYTHONIOENCODING=utf-8;" ) ; strcat( lDialogString , gPython2Name ) ; if ( ! isTerminalRunning( ) && tfd_isDarwin( )) { strcat( lDialogString , " -i" ) ; /* for osx without console */ } strcat( lDialogString , " -S -c \"import Tkinter,tkFileDialog;root=Tkinter.Tk();root.withdraw();"); if ( tfd_isDarwin( ) ) { strcat( lDialogString , "import os;os.system('''/usr/bin/osascript -e 'tell app \\\"Finder\\\" to set\ frontmost of process \\\"Python\\\" to true' ''');"); } strcat( lDialogString , "res=tkFileDialog.asksaveasfilename("); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { getPathWithoutFinalSlash( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialdir='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } getLastName( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialfile='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } } if ( ( aNumOfFilterPatterns > 1 ) || ( (aNumOfFilterPatterns == 1) /* test because poor osx behaviour */ && ( aFilterPatterns[0][strlen(aFilterPatterns[0])-1] != '*' ) ) ) { strcat(lDialogString , "filetypes=(" ) ; strcat( lDialogString , "('" ) ; if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , aSingleFilterDescription ) ; } strcat( lDialogString , "',(" ) ; for ( i = 0 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , "'" ) ; strcat( lDialogString , aFilterPatterns[i] ) ; strcat( lDialogString , "'," ) ; } strcat( lDialogString , "))," ) ; strcat( lDialogString , "('All files','*'))" ) ; } strcat( lDialogString, ");\nif not isinstance(res, tuple):\n\tprint res \n\"" ) ; } else if ( xdialogPresent() || dialogName() ) { if ( xdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xdialog");return (char *)1;} lWasGraphicDialog = 1 ; strcpy( lDialogString , "(Xdialog " ) ; } else if ( isTerminalRunning( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} strcpy( lDialogString , "(dialog " ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(" ) ; strcat( lDialogString , dialogName() ) ; strcat( lDialogString , " " ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( !xdialogPresent() && !gdialogPresent() ) { strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: focus | /: populate | spacebar: fill text field | ok: TEXT FIELD ONLY") ; strcat(lDialogString, "\" ") ; } strcat( lDialogString , "--fselect \"" ) ; if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { if ( ! strchr(aDefaultPathAndFile, '/') ) { strcat(lDialogString, "./") ; } strcat(lDialogString, aDefaultPathAndFile) ; } else if ( ! isTerminalRunning( ) && !lWasGraphicDialog ) { strcat(lDialogString, getenv("HOME")) ; strcat(lDialogString, "/") ; } else { strcat(lDialogString, "./") ; } if ( lWasGraphicDialog ) { strcat(lDialogString, "\" 0 60 ) 2>&1 ") ; } else { strcat(lDialogString, "\" 0 60 >/dev/tty) ") ; if ( lWasXterm ) { strcat( lDialogString , "2>/tmp/tinyfd.txt';cat /tmp/tinyfd.txt;rm /tmp/tinyfd.txt"); } else { strcat(lDialogString, "2>&1 ; clear >/dev/tty") ; } } } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){return tinyfd_inputBox(aTitle,NULL,NULL);} strcpy(lBuff, "Save file in "); strcat(lBuff, getCurDir()); lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, lBuff, ""); if (p) strcpy(lBuff, p); else lBuff[0] = '\0'; if (lPointerInputBox) strcpy(lPointerInputBox, lString); /* restore its previous content to tinyfd_inputBox */ p = lBuff; getPathWithoutFinalSlash( lString , p ) ; if ( strlen( lString ) && ! dirExists( lString ) ) { return NULL ; } getLastName(lString,p); if ( ! strlen(lString) ) { return NULL; } return p ; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ! ( lIn = popen( lDialogString , "r" ) ) ) { return NULL ; } while ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) {} pclose( lIn ) ; if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } /* printf( "lBuff: %s\n" , lBuff ) ; */ if ( ! strlen(lBuff) ) { return NULL; } getPathWithoutFinalSlash( lString , lBuff ) ; if ( strlen( lString ) && ! dirExists( lString ) ) { return NULL ; } getLastName(lString,lBuff); if ( ! filenameValid(lString) ) { return NULL; } return lBuff ; } /* in case of multiple files, the separator is | */ char * tinyfd_openFileDialog( char const * aTitle , /* NULL or "" */ char const * aDefaultPathAndFile , /* NULL or "" */ int aNumOfFilterPatterns , /* 0 */ char const * const * aFilterPatterns , /* NULL or {"*.jpg","*.png"} */ char const * aSingleFilterDescription , /* NULL or "image files" */ int aAllowMultipleSelects ) /* 0 or 1 */ { char lDialogString[MAX_PATH_OR_CMD] ; char lString[MAX_PATH_OR_CMD] ; int i ; FILE * lIn ; char * p ; char * lPointerInputBox ; int lWasKdialog = 0 ; int lWasGraphicDialog = 0 ; int lWasXterm = 0 ; size_t lFullBuffLen ; static char * lBuff = NULL; if (tfd_quoteDetected(aTitle)) return tinyfd_openFileDialog("INVALID TITLE WITH QUOTES", aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); if (tfd_quoteDetected(aDefaultPathAndFile)) return tinyfd_openFileDialog(aTitle, "INVALID DEFAULT_PATH WITH QUOTES", aNumOfFilterPatterns, aFilterPatterns, aSingleFilterDescription, aAllowMultipleSelects); if (tfd_quoteDetected(aSingleFilterDescription)) return tinyfd_openFileDialog(aTitle, aDefaultPathAndFile, aNumOfFilterPatterns, aFilterPatterns, "INVALID FILTER_DESCRIPTION WITH QUOTES", aAllowMultipleSelects); for (i = 0; i < aNumOfFilterPatterns; i++) { if (tfd_quoteDetected(aFilterPatterns[i])) return tinyfd_openFileDialog("INVALID FILTER_PATTERN WITH QUOTES", aDefaultPathAndFile, 0, NULL, NULL, aAllowMultipleSelects); } free(lBuff); if (aTitle&&!strcmp(aTitle,"tinyfd_query")) { lBuff = NULL; } else { if (aAllowMultipleSelects) { lFullBuffLen = MAX_MULTIPLE_FILES * MAX_PATH_OR_CMD + 1; lBuff = (char *)(malloc(lFullBuffLen * sizeof(char))); if (!lBuff) { lFullBuffLen = LOW_MULTIPLE_FILES * MAX_PATH_OR_CMD + 1; lBuff = (char *)( malloc( lFullBuffLen * sizeof(char))); } } else { lFullBuffLen = MAX_PATH_OR_CMD + 1; lBuff = (char *)(malloc(lFullBuffLen * sizeof(char))); } if (!lBuff) return NULL; lBuff[0]='\0'; } if ( osascriptPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return (char *)1;} strcpy( lDialogString , "osascript "); if ( ! osx9orBetter() ) strcat( lDialogString , " -e 'tell application \"System Events\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e '" ); if ( ! aAllowMultipleSelects ) { strcat( lDialogString , "POSIX path of ( " ); } else { strcat( lDialogString , "set mylist to " ); } strcat( lDialogString , "choose file " ); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "with prompt \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } getPathWithoutFinalSlash( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "default location \"") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "\" " ) ; } if ( aNumOfFilterPatterns > 0 ) { strcat(lDialogString , "of type {\"" ); strcat( lDialogString , aFilterPatterns[0] + 2 ) ; strcat( lDialogString , "\"" ) ; for ( i = 1 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , ",\"" ) ; strcat( lDialogString , aFilterPatterns[i] + 2) ; strcat( lDialogString , "\"" ) ; } strcat( lDialogString , "} " ) ; } if ( aAllowMultipleSelects ) { strcat( lDialogString , "multiple selections allowed true ' " ) ; strcat( lDialogString , "-e 'set mystring to POSIX path of item 1 of mylist' " ); strcat( lDialogString , "-e 'repeat with i from 2 to the count of mylist' " ); strcat( lDialogString , "-e 'set mystring to mystring & \"|\"' " ); strcat( lDialogString , "-e 'set mystring to mystring & POSIX path of item i of mylist' " ); strcat( lDialogString , "-e 'end repeat' " ); strcat( lDialogString , "-e 'mystring' " ); } else { strcat( lDialogString , ")' " ) ; } strcat(lDialogString, "-e 'on error number -128' " ) ; strcat(lDialogString, "-e 'end try'") ; if ( ! osx9orBetter() ) strcat( lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return (char *)1;} lWasKdialog = 1 ; strcpy( lDialogString , "kdialog" ) ; if ( (tfd_kdialogPresent() == 2) && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } strcat( lDialogString , " --getopenfilename " ) ; if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { if ( aDefaultPathAndFile[0] != '/' ) { strcat(lDialogString, "$PWD/") ; } strcat(lDialogString, "\"") ; strcat(lDialogString, aDefaultPathAndFile ) ; strcat(lDialogString , "\"" ) ; } else { strcat(lDialogString, "$PWD/") ; } if ( aNumOfFilterPatterns > 0 ) { strcat(lDialogString , " \"" ) ; strcat( lDialogString , aFilterPatterns[0] ) ; for ( i = 1 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , " " ) ; strcat( lDialogString , aFilterPatterns[i] ) ; } if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , " | " ) ; strcat( lDialogString , aSingleFilterDescription ) ; } strcat( lDialogString , "\"" ) ; } if ( aAllowMultipleSelects ) { strcat( lDialogString , " --multiple --separate-output" ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } } else if ( tfd_zenityPresent() || tfd_matedialogPresent() || tfd_shellementaryPresent() || tfd_qarmaPresent() ) { if ( tfd_zenityPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity");return (char *)1;} strcpy( lDialogString , "zenity" ) ; if ( (tfd_zenity3Present() >= 4) && !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat( lDialogString, " --attach=$(sleep .01;xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } else if ( tfd_matedialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"matedialog");return (char *)1;} strcpy( lDialogString , "matedialog" ) ; } else if ( tfd_shellementaryPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"shellementary");return (char *)1;} strcpy( lDialogString , "shellementary" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"qarma");return (char *)1;} strcpy( lDialogString , "qarma" ) ; if ( !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } strcat( lDialogString , " --file-selection" ) ; if ( aAllowMultipleSelects ) { strcat( lDialogString , " --multiple" ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title=\"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { strcat(lDialogString, " --filename=\"") ; strcat(lDialogString, aDefaultPathAndFile) ; strcat(lDialogString, "\"") ; } if ( aNumOfFilterPatterns > 0 ) { strcat( lDialogString , " --file-filter='" ) ; if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , aSingleFilterDescription ) ; strcat( lDialogString , " |" ) ; } for ( i = 0 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , " " ) ; strcat( lDialogString , aFilterPatterns[i] ) ; } strcat( lDialogString , "' --file-filter='All files | *'" ) ; } if (tinyfd_silent) strcat( lDialogString , " 2>/dev/null "); } else if (tfd_yadPresent()) { if (aTitle && !strcmp(aTitle, "tinyfd_query")) { strcpy(tinyfd_response, "yad"); return (char*)1; } strcpy(lDialogString, "yad --file-selection"); if (aAllowMultipleSelects) { strcat(lDialogString, " --multiple"); } if (aTitle && strlen(aTitle)) { strcat(lDialogString, " --title=\""); strcat(lDialogString, aTitle); strcat(lDialogString, "\""); } if (aDefaultPathAndFile && strlen(aDefaultPathAndFile)) { strcat(lDialogString, " --filename=\""); strcat(lDialogString, aDefaultPathAndFile); strcat(lDialogString, "\""); } if (aNumOfFilterPatterns > 0) { strcat(lDialogString, " --file-filter='"); if (aSingleFilterDescription && strlen(aSingleFilterDescription)) { strcat(lDialogString, aSingleFilterDescription); strcat(lDialogString, " |"); } for (i = 0; i < aNumOfFilterPatterns; i++) { strcat(lDialogString, " "); strcat(lDialogString, aFilterPatterns[i]); } strcat(lDialogString, "' --file-filter='All files | *'"); } if (tinyfd_silent) strcat(lDialogString, " 2>/dev/null "); } else if ( tkinter3Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python3-tkinter");return (char *)1;} strcpy( lDialogString , gPython3Name ) ; strcat( lDialogString , " -S -c \"import tkinter;from tkinter import filedialog;root=tkinter.Tk();root.withdraw();"); strcat( lDialogString , "lFiles=filedialog.askopenfilename("); if ( aAllowMultipleSelects ) { strcat( lDialogString , "multiple=1," ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { getPathWithoutFinalSlash( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialdir='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } getLastName( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialfile='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } } if ( ( aNumOfFilterPatterns > 1 ) || ( ( aNumOfFilterPatterns == 1 ) /*test because poor osx behaviour*/ && ( aFilterPatterns[0][strlen(aFilterPatterns[0])-1] != '*' ) ) ) { strcat(lDialogString , "filetypes=(" ) ; strcat( lDialogString , "('" ) ; if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , aSingleFilterDescription ) ; } strcat( lDialogString , "',(" ) ; for ( i = 0 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , "'" ) ; strcat( lDialogString , aFilterPatterns[i] ) ; strcat( lDialogString , "'," ) ; } strcat( lDialogString , "))," ) ; strcat( lDialogString , "('All files','*'))" ) ; } strcat( lDialogString , ");\ \nif not isinstance(lFiles, tuple):\n\tprint(lFiles)\nelse:\ \n\tlFilesString=''\n\tfor lFile in lFiles:\n\t\tlFilesString+=str(lFile)+'|'\ \n\tprint(lFilesString[:-1])\n\"" ) ; } else if ( tkinter2Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python2-tkinter");return (char *)1;} strcpy( lDialogString , "export PYTHONIOENCODING=utf-8;" ) ; strcat( lDialogString , gPython2Name ) ; if ( ! isTerminalRunning( ) && tfd_isDarwin( ) ) { strcat( lDialogString , " -i" ) ; /* for osx without console */ } strcat( lDialogString , " -S -c \"import Tkinter,tkFileDialog;root=Tkinter.Tk();root.withdraw();"); if ( tfd_isDarwin( ) ) { strcat( lDialogString , "import os;os.system('''/usr/bin/osascript -e 'tell app \\\"Finder\\\" to set \ frontmost of process \\\"Python\\\" to true' ''');"); } strcat( lDialogString , "lFiles=tkFileDialog.askopenfilename("); if ( aAllowMultipleSelects ) { strcat( lDialogString , "multiple=1," ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { getPathWithoutFinalSlash( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialdir='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } getLastName( lString , aDefaultPathAndFile ) ; if ( strlen(lString) ) { strcat(lDialogString, "initialfile='") ; strcat(lDialogString, lString ) ; strcat(lDialogString , "'," ) ; } } if ( ( aNumOfFilterPatterns > 1 ) || ( ( aNumOfFilterPatterns == 1 ) /*test because poor osx behaviour*/ && ( aFilterPatterns[0][strlen(aFilterPatterns[0])-1] != '*' ) ) ) { strcat(lDialogString , "filetypes=(" ) ; strcat( lDialogString , "('" ) ; if ( aSingleFilterDescription && strlen(aSingleFilterDescription) ) { strcat( lDialogString , aSingleFilterDescription ) ; } strcat( lDialogString , "',(" ) ; for ( i = 0 ; i < aNumOfFilterPatterns ; i ++ ) { strcat( lDialogString , "'" ) ; strcat( lDialogString , aFilterPatterns[i] ) ; strcat( lDialogString , "'," ) ; } strcat( lDialogString , "))," ) ; strcat( lDialogString , "('All files','*'))" ) ; } strcat( lDialogString , ");\ \nif not isinstance(lFiles, tuple):\n\tprint lFiles\nelse:\ \n\tlFilesString=''\n\tfor lFile in lFiles:\n\t\tlFilesString+=str(lFile)+'|'\ \n\tprint lFilesString[:-1]\n\"" ) ; } else if ( xdialogPresent() || dialogName() ) { if ( xdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xdialog");return (char *)1;} lWasGraphicDialog = 1 ; strcpy( lDialogString , "(Xdialog " ) ; } else if ( isTerminalRunning( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} strcpy( lDialogString , "(dialog " ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(" ) ; strcat( lDialogString , dialogName() ) ; strcat( lDialogString , " " ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( !xdialogPresent() && !gdialogPresent() ) { strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: focus | /: populate | spacebar: fill text field | ok: TEXT FIELD ONLY") ; strcat(lDialogString, "\" ") ; } strcat( lDialogString , "--fselect \"" ) ; if ( aDefaultPathAndFile && strlen(aDefaultPathAndFile) ) { if ( ! strchr(aDefaultPathAndFile, '/') ) { strcat(lDialogString, "./") ; } strcat(lDialogString, aDefaultPathAndFile) ; } else if ( ! isTerminalRunning( ) && !lWasGraphicDialog ) { strcat(lDialogString, getenv("HOME")) ; strcat(lDialogString, "/"); } else { strcat(lDialogString, "./") ; } if ( lWasGraphicDialog ) { strcat(lDialogString, "\" 0 60 ) 2>&1 ") ; } else { strcat(lDialogString, "\" 0 60 >/dev/tty) ") ; if ( lWasXterm ) { strcat( lDialogString , "2>/tmp/tinyfd.txt';cat /tmp/tinyfd.txt;rm /tmp/tinyfd.txt"); } else { strcat(lDialogString, "2>&1 ; clear >/dev/tty") ; } } } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){return tinyfd_inputBox(aTitle,NULL,NULL);} strcpy(lBuff, "Open file from "); strcat(lBuff, getCurDir()); lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lDialogString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, lBuff, ""); if ( p ) strcpy(lBuff, p); else lBuff[0] = '\0'; if (lPointerInputBox) strcpy(lPointerInputBox, lDialogString); /* restore its previous content to tinyfd_inputBox */ if ( ! fileExists(lBuff) ) { free(lBuff); lBuff = NULL; } else { lBuff = (char *)( realloc( lBuff, (strlen(lBuff)+1) * sizeof(char))); } return lBuff ; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ! ( lIn = popen( lDialogString , "r" ) ) ) { free(lBuff); lBuff = NULL; return NULL ; } lBuff[0]='\0'; p = lBuff; while ( fgets( p , sizeof( lBuff ) , lIn ) != NULL ) { p += strlen( p ); } pclose( lIn ) ; if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } /* printf( "lBuff: %s\n" , lBuff ) ; */ if ( lWasKdialog && aAllowMultipleSelects ) { p = lBuff ; while ( ( p = strchr( p , '\n' ) ) ) * p = '|' ; } /* printf( "lBuff2: %s\n" , lBuff ) ; */ if ( ! strlen( lBuff ) ) { free(lBuff); lBuff = NULL; return NULL; } if ( aAllowMultipleSelects && strchr(lBuff, '|') ) { if( ! ensureFilesExist( lBuff , lBuff ) ) { free(lBuff); lBuff = NULL; return NULL; } } else if ( !fileExists(lBuff) ) { free(lBuff); lBuff = NULL; return NULL; } lBuff = (char *)( realloc( lBuff, (strlen(lBuff)+1) * sizeof(char))); /*printf( "lBuff3: %s\n" , lBuff ) ; */ return lBuff ; } char * tinyfd_selectFolderDialog( char const * aTitle , /* "" */ char const * aDefaultPath ) /* "" */ { static char lBuff[MAX_PATH_OR_CMD] ; char lDialogString[MAX_PATH_OR_CMD] ; FILE * lIn ; char * p ; char * lPointerInputBox ; int lWasGraphicDialog = 0 ; int lWasXterm = 0 ; lBuff[0]='\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_selectFolderDialog("INVALID TITLE WITH QUOTES", aDefaultPath); if (tfd_quoteDetected(aDefaultPath)) return tinyfd_selectFolderDialog(aTitle, "INVALID DEFAULT_PATH WITH QUOTES"); if ( osascriptPresent( )) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return (char *)1;} strcpy( lDialogString , "osascript "); if ( ! osx9orBetter() ) strcat( lDialogString , " -e 'tell application \"System Events\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e 'POSIX path of ( choose folder "); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "with prompt \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( aDefaultPath && strlen(aDefaultPath) ) { strcat(lDialogString, "default location \"") ; strcat(lDialogString, aDefaultPath ) ; strcat(lDialogString , "\" " ) ; } strcat( lDialogString , ")' " ) ; strcat(lDialogString, "-e 'on error number -128' " ) ; strcat(lDialogString, "-e 'end try'") ; if ( ! osx9orBetter() ) strcat( lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return (char *)1;} strcpy( lDialogString , "kdialog" ) ; if ( (tfd_kdialogPresent() == 2) && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } strcat( lDialogString , " --getexistingdirectory " ) ; if ( aDefaultPath && strlen(aDefaultPath) ) { if ( aDefaultPath[0] != '/' ) { strcat(lDialogString, "$PWD/") ; } strcat(lDialogString, "\"") ; strcat(lDialogString, aDefaultPath ) ; strcat(lDialogString , "\"" ) ; } else { strcat(lDialogString, "$PWD/") ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } } else if ( tfd_zenityPresent() || tfd_matedialogPresent() || tfd_shellementaryPresent() || tfd_qarmaPresent() ) { if ( tfd_zenityPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity");return (char *)1;} strcpy( lDialogString , "zenity" ) ; if ( (tfd_zenity3Present() >= 4) && !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat( lDialogString, " --attach=$(sleep .01;xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } else if ( tfd_matedialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"matedialog");return (char *)1;} strcpy( lDialogString , "matedialog" ) ; } else if ( tfd_shellementaryPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"shellementary");return (char *)1;} strcpy( lDialogString , "shellementary" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"qarma");return (char *)1;} strcpy( lDialogString , "qarma" ) ; if ( !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } strcat( lDialogString , " --file-selection --directory" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title=\"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if ( aDefaultPath && strlen(aDefaultPath) ) { strcat(lDialogString, " --filename=\"") ; strcat(lDialogString, aDefaultPath) ; strcat(lDialogString, "\"") ; } if (tinyfd_silent) strcat( lDialogString , " 2>/dev/null "); } else if (tfd_yadPresent()) { if (aTitle && !strcmp(aTitle, "tinyfd_query")) { strcpy(tinyfd_response, "yad"); return (char*)1; } strcpy(lDialogString, "yad --file-selection --directory"); if (aTitle && strlen(aTitle)) { strcat(lDialogString, " --title=\""); strcat(lDialogString, aTitle); strcat(lDialogString, "\""); } if (aDefaultPath && strlen(aDefaultPath)) { strcat(lDialogString, " --filename=\""); strcat(lDialogString, aDefaultPath); strcat(lDialogString, "\""); } if (tinyfd_silent) strcat(lDialogString, " 2>/dev/null "); } else if ( !xdialogPresent() && tkinter3Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python3-tkinter");return (char *)1;} strcpy( lDialogString , gPython3Name ) ; strcat( lDialogString , " -S -c \"import tkinter;from tkinter import filedialog;root=tkinter.Tk();root.withdraw();"); strcat( lDialogString , "res=filedialog.askdirectory("); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aDefaultPath && strlen(aDefaultPath) ) { strcat(lDialogString, "initialdir='") ; strcat(lDialogString, aDefaultPath ) ; strcat(lDialogString , "'" ) ; } strcat( lDialogString, ");\nif not isinstance(res, tuple):\n\tprint(res)\n\"" ) ; } else if ( !xdialogPresent() && tkinter2Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python2-tkinter");return (char *)1;} strcpy( lDialogString , "export PYTHONIOENCODING=utf-8;" ) ; strcat( lDialogString , gPython2Name ) ; if ( ! isTerminalRunning( ) && tfd_isDarwin( ) ) { strcat( lDialogString , " -i" ) ; /* for osx without console */ } strcat( lDialogString , " -S -c \"import Tkinter,tkFileDialog;root=Tkinter.Tk();root.withdraw();"); if ( tfd_isDarwin( ) ) { strcat( lDialogString , "import os;os.system('''/usr/bin/osascript -e 'tell app \\\"Finder\\\" to set \ frontmost of process \\\"Python\\\" to true' ''');"); } strcat( lDialogString , "print tkFileDialog.askdirectory("); if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "',") ; } if ( aDefaultPath && strlen(aDefaultPath) ) { strcat(lDialogString, "initialdir='") ; strcat(lDialogString, aDefaultPath ) ; strcat(lDialogString , "'" ) ; } strcat( lDialogString , ")\"" ) ; } else if ( xdialogPresent() || dialogName() ) { if ( xdialogPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xdialog");return (char *)1;} lWasGraphicDialog = 1 ; strcpy( lDialogString , "(Xdialog " ) ; } else if ( isTerminalRunning( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} strcpy( lDialogString , "(dialog " ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"dialog");return (char *)0;} lWasXterm = 1 ; strcpy( lDialogString , terminalName() ) ; strcat( lDialogString , "'(" ) ; strcat( lDialogString , dialogName() ) ; strcat( lDialogString , " " ) ; } if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, "--title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\" ") ; } if ( !xdialogPresent() && !gdialogPresent() ) { strcat(lDialogString, "--backtitle \"") ; strcat(lDialogString, "tab: focus | /: populate | spacebar: fill text field | ok: TEXT FIELD ONLY") ; strcat(lDialogString, "\" ") ; } strcat( lDialogString , "--dselect \"" ) ; if ( aDefaultPath && strlen(aDefaultPath) ) { strcat(lDialogString, aDefaultPath) ; ensureFinalSlash(lDialogString); } else if ( ! isTerminalRunning( ) && !lWasGraphicDialog ) { strcat(lDialogString, getenv("HOME")) ; strcat(lDialogString, "/"); } else { strcat(lDialogString, "./") ; } if ( lWasGraphicDialog ) { strcat(lDialogString, "\" 0 60 ) 2>&1 ") ; } else { strcat(lDialogString, "\" 0 60 >/dev/tty) ") ; if ( lWasXterm ) { strcat( lDialogString , "2>/tmp/tinyfd.txt';cat /tmp/tinyfd.txt;rm /tmp/tinyfd.txt"); } else { strcat(lDialogString, "2>&1 ; clear >/dev/tty") ; } } } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){return tinyfd_inputBox(aTitle,NULL,NULL);} strcpy(lBuff, "Select folder from "); strcat(lBuff, getCurDir()); lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lDialogString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, lBuff, ""); if (p) strcpy(lBuff, p); else lBuff[0] = '\0'; if (lPointerInputBox) strcpy(lPointerInputBox, lDialogString); /* restore its previous content to tinyfd_inputBox */ p = lBuff; if ( !p || ! strlen( p ) || ! dirExists( p ) ) { return NULL ; } return p ; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ! ( lIn = popen( lDialogString , "r" ) ) ) { return NULL ; } while ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) {} pclose( lIn ) ; if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } /* printf( "lBuff: %s\n" , lBuff ) ; */ if ( ! strlen( lBuff ) || ! dirExists( lBuff ) ) { return NULL ; } return lBuff ; } /* returns the hexcolor as a string "#FF0000" */ /* aoResultRGB also contains the result */ /* aDefaultRGB is used only if aDefaultHexRGB is NULL */ /* aDefaultRGB and aoResultRGB can be the same array */ char * tinyfd_colorChooser( char const * aTitle , /* NULL or "" */ char const * aDefaultHexRGB , /* NULL or "#FF0000"*/ unsigned char const aDefaultRGB[3] , /* { 0 , 255 , 255 } */ unsigned char aoResultRGB[3] ) /* { 0 , 0 , 0 } */ { static char lDefaultHexRGB[16]; char lBuff[128] ; char lTmp[128] ; #if !((defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__)) char * lTmp2 ; #endif char lDialogString[MAX_PATH_OR_CMD] ; unsigned char lDefaultRGB[3]; char * p; char * lPointerInputBox; FILE * lIn ; int i ; int lWasZenity3 = 0 ; int lWasOsascript = 0 ; int lWasXdialog = 0 ; lBuff[0]='\0'; if (tfd_quoteDetected(aTitle)) return tinyfd_colorChooser("INVALID TITLE WITH QUOTES", aDefaultHexRGB, aDefaultRGB, aoResultRGB); if (tfd_quoteDetected(aDefaultHexRGB)) return tinyfd_colorChooser(aTitle, "INVALID DEFAULT_HEX_RGB WITH QUOTES", aDefaultRGB, aoResultRGB); if (aDefaultHexRGB) { Hex2RGB(aDefaultHexRGB, lDefaultRGB); strcpy(lDefaultHexRGB, aDefaultHexRGB); } else { lDefaultRGB[0] = aDefaultRGB[0]; lDefaultRGB[1] = aDefaultRGB[1]; lDefaultRGB[2] = aDefaultRGB[2]; RGB2Hex(aDefaultRGB, lDefaultHexRGB); } if ( osascriptPresent( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"applescript");return (char *)1;} lWasOsascript = 1 ; strcpy( lDialogString , "osascript"); if ( ! osx9orBetter() ) { strcat( lDialogString , " -e 'tell application \"System Events\"' -e 'Activate'"); strcat( lDialogString , " -e 'try' -e 'set mycolor to choose color default color {"); } else { strcat( lDialogString , " -e 'try' -e 'tell app (path to frontmost application as Unicode text) \ to set mycolor to choose color default color {"); } sprintf(lTmp, "%d", 256 * lDefaultRGB[0] ) ; strcat(lDialogString, lTmp ) ; strcat(lDialogString, "," ) ; sprintf(lTmp, "%d", 256 * lDefaultRGB[1] ) ; strcat(lDialogString, lTmp ) ; strcat(lDialogString, "," ) ; sprintf(lTmp, "%d", 256 * lDefaultRGB[2] ) ; strcat(lDialogString, lTmp ) ; strcat(lDialogString, "}' " ) ; strcat( lDialogString , "-e 'set mystring to ((item 1 of mycolor) div 256 as integer) as string' " ); strcat( lDialogString , "-e 'repeat with i from 2 to the count of mycolor' " ); strcat( lDialogString , "-e 'set mystring to mystring & \" \" & ((item i of mycolor) div 256 as integer) as string' " ); strcat( lDialogString , "-e 'end repeat' " ); strcat( lDialogString , "-e 'mystring' "); strcat(lDialogString, "-e 'on error number -128' " ) ; strcat(lDialogString, "-e 'end try'") ; if ( ! osx9orBetter() ) strcat( lDialogString, " -e 'end tell'") ; } else if ( tfd_kdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"kdialog");return (char *)1;} strcpy( lDialogString , "kdialog" ) ; if ( (tfd_kdialogPresent() == 2) && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } sprintf( lDialogString + strlen(lDialogString) , " --getcolor --default '%s'" , lDefaultHexRGB ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title \"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } } else if ( tfd_zenity3Present() || tfd_matedialogPresent() || tfd_shellementaryPresent() || tfd_qarmaPresent() ) { lWasZenity3 = 1 ; if ( tfd_zenity3Present() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"zenity3");return (char *)1;} strcpy( lDialogString , "zenity" ); if ( (tfd_zenity3Present() >= 4) && !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat( lDialogString, " --attach=$(sleep .01;xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } else if ( tfd_matedialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"matedialog");return (char *)1;} strcpy( lDialogString , "matedialog" ) ; } else if ( tfd_shellementaryPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"shellementary");return (char *)1;} strcpy( lDialogString , "shellementary" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"qarma");return (char *)1;} strcpy( lDialogString , "qarma" ) ; if ( !getenv("SSH_TTY") && tfd_xpropPresent() ) { strcat(lDialogString, " --attach=$(xprop -root 32x '\t$0' _NET_ACTIVE_WINDOW | cut -f 2)"); /* contribution: Paul Rouget */ } } strcat( lDialogString , " --color-selection --show-palette" ) ; sprintf( lDialogString + strlen(lDialogString), " --color=%s" , lDefaultHexRGB ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, " --title=\"") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "\"") ; } if (tinyfd_silent) strcat( lDialogString , " 2>/dev/null "); } else if (tfd_yadPresent()) { if (aTitle && !strcmp(aTitle, "tinyfd_query")) { strcpy(tinyfd_response, "yad"); return (char*)1; } strcpy(lDialogString, "yad --color"); sprintf(lDialogString + strlen(lDialogString), " --init-color=%s", lDefaultHexRGB); if (aTitle && strlen(aTitle)) { strcat(lDialogString, " --title=\""); strcat(lDialogString, aTitle); strcat(lDialogString, "\""); } if (tinyfd_silent) strcat(lDialogString, " 2>/dev/null "); } else if ( xdialogPresent() ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"xdialog");return (char *)1;} lWasXdialog = 1 ; strcpy( lDialogString , "Xdialog --colorsel \"" ) ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, aTitle) ; } strcat(lDialogString, "\" 0 60 ") ; #if (defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__) sprintf(lTmp,"%hhu %hhu %hhu",lDefaultRGB[0],lDefaultRGB[1],lDefaultRGB[2]); #else sprintf(lTmp,"%hu %hu %hu",lDefaultRGB[0],lDefaultRGB[1],lDefaultRGB[2]); #endif strcat(lDialogString, lTmp) ; strcat(lDialogString, " 2>&1"); } else if ( tkinter3Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python3-tkinter");return (char *)1;} strcpy( lDialogString , gPython3Name ) ; strcat( lDialogString , " -S -c \"import tkinter;from tkinter import colorchooser;root=tkinter.Tk();root.withdraw();"); strcat( lDialogString , "res=colorchooser.askcolor(color='" ) ; strcat(lDialogString, lDefaultHexRGB ) ; strcat(lDialogString, "'") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, ",title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "'") ; } strcat( lDialogString , ");\ \nif res[1] is not None:\n\tprint(res[1])\"" ) ; } else if ( tkinter2Present( ) ) { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){strcpy(tinyfd_response,"python2-tkinter");return (char *)1;} strcpy( lDialogString , "export PYTHONIOENCODING=utf-8;" ) ; strcat( lDialogString , gPython2Name ) ; if ( ! isTerminalRunning( ) && tfd_isDarwin( ) ) { strcat( lDialogString , " -i" ) ; /* for osx without console */ } strcat( lDialogString , " -S -c \"import Tkinter,tkColorChooser;root=Tkinter.Tk();root.withdraw();"); if ( tfd_isDarwin( ) ) { strcat( lDialogString , "import os;os.system('''osascript -e 'tell app \\\"Finder\\\" to set \ frontmost of process \\\"Python\\\" to true' ''');"); } strcat( lDialogString , "res=tkColorChooser.askcolor(color='" ) ; strcat(lDialogString, lDefaultHexRGB ) ; strcat(lDialogString, "'") ; if ( aTitle && strlen(aTitle) ) { strcat(lDialogString, ",title='") ; strcat(lDialogString, aTitle) ; strcat(lDialogString, "'") ; } strcat( lDialogString , ");\ \nif res[1] is not None:\n\tprint res[1]\"" ) ; } else { if (aTitle&&!strcmp(aTitle,"tinyfd_query")){return tinyfd_inputBox(aTitle,NULL,NULL);} lPointerInputBox = tinyfd_inputBox(NULL, NULL, NULL); /* obtain a pointer on the current content of tinyfd_inputBox */ if (lPointerInputBox) strcpy(lDialogString, lPointerInputBox); /* preserve the current content of tinyfd_inputBox */ p = tinyfd_inputBox(aTitle, "Enter hex rgb color (i.e. #f5ca20)", lDefaultHexRGB); if ( !p || (strlen(p) != 7) || (p[0] != '#') ) { return NULL ; } for ( i = 1 ; i < 7 ; i ++ ) { if ( ! isxdigit( (int) p[i] ) ) { return NULL ; } } Hex2RGB(p,aoResultRGB); strcpy(lDefaultHexRGB, p); if (lPointerInputBox) strcpy(lPointerInputBox, lDialogString); /* restore its previous content to tinyfd_inputBox */ return lDefaultHexRGB; } if (tinyfd_verbose) printf( "lDialogString: %s\n" , lDialogString ) ; if ( ! ( lIn = popen( lDialogString , "r" ) ) ) { return NULL ; } while ( fgets( lBuff , sizeof( lBuff ) , lIn ) != NULL ) { } pclose( lIn ) ; if ( ! strlen( lBuff ) ) { return NULL ; } /* printf( "len Buff: %lu\n" , strlen(lBuff) ) ; */ /* printf( "lBuff0: %s\n" , lBuff ) ; */ if ( lBuff[strlen( lBuff ) -1] == '\n' ) { lBuff[strlen( lBuff ) -1] = '\0' ; } if ( lWasZenity3 ) { if ( lBuff[0] == '#' ) { if ( strlen(lBuff)>7 ) { lBuff[3]=lBuff[5]; lBuff[4]=lBuff[6]; lBuff[5]=lBuff[9]; lBuff[6]=lBuff[10]; lBuff[7]='\0'; } Hex2RGB(lBuff,aoResultRGB); } else if ( lBuff[3] == '(' ) { #if (defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__) sscanf(lBuff,"rgb(%hhu,%hhu,%hhu", & aoResultRGB[0], & aoResultRGB[1],& aoResultRGB[2]); #else aoResultRGB[0] = strtol(lBuff+4, & lTmp2, 10 ); aoResultRGB[1] = strtol(lTmp2+1, & lTmp2, 10 ); aoResultRGB[2] = strtol(lTmp2+1, NULL, 10 ); #endif RGB2Hex(aoResultRGB,lBuff); } else if ( lBuff[4] == '(' ) { #if (defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__) sscanf(lBuff,"rgba(%hhu,%hhu,%hhu", & aoResultRGB[0], & aoResultRGB[1],& aoResultRGB[2]); #else aoResultRGB[0] = strtol(lBuff+5, & lTmp2, 10 ); aoResultRGB[1] = strtol(lTmp2+1, & lTmp2, 10 ); aoResultRGB[2] = strtol(lTmp2+1, NULL, 10 ); #endif RGB2Hex(aoResultRGB,lBuff); } } else if ( lWasOsascript || lWasXdialog ) { /* printf( "lBuff: %s\n" , lBuff ) ; */ #if (defined(__cplusplus ) && __cplusplus >= 201103L) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__clang__) sscanf(lBuff,"%hhu %hhu %hhu", & aoResultRGB[0], & aoResultRGB[1],& aoResultRGB[2]); #else aoResultRGB[0] = strtol(lBuff, & lTmp2, 10 ); aoResultRGB[1] = strtol(lTmp2+1, & lTmp2, 10 ); aoResultRGB[2] = strtol(lTmp2+1, NULL, 10 ); #endif RGB2Hex(aoResultRGB,lBuff); } else { Hex2RGB(lBuff,aoResultRGB); } /* printf("%d %d %d\n", aoResultRGB[0],aoResultRGB[1],aoResultRGB[2]); */ /* printf( "lBuff: %s\n" , lBuff ) ; */ strcpy(lDefaultHexRGB,lBuff); return lDefaultHexRGB ; } #endif /* _WIN32 */ /* int main( int argc , char * argv[] ) { char const * lTmp; char const * lTheSaveFileName; char const * lTheOpenFileName; char const * lTheSelectFolderName; char const * lTheHexColor; char const * lWillBeGraphicMode; unsigned char lRgbColor[3]; FILE * lIn; char lBuffer[1024]; char lString[1024]; char const * lFilterPatterns[2] = { "*.txt", "*.text" }; tinyfd_verbose = argc - 1; tinyfd_silent = 1; lWillBeGraphicMode = tinyfd_inputBox("tinyfd_query", NULL, NULL); strcpy(lBuffer, "v"); strcat(lBuffer, tinyfd_version); if (lWillBeGraphicMode) { strcat(lBuffer, "\ngraphic mode: "); } else { strcat(lBuffer, "\nconsole mode: "); } strcat(lBuffer, tinyfd_response); strcat(lBuffer, "\n"); strcat(lBuffer, tinyfd_needs+78); strcpy(lString, "tinyfiledialogs"); tinyfd_messageBox(lString, lBuffer, "ok", "info", 0); tinyfd_notifyPopup("the title", "the message\n\tfrom outer-space", "info"); if (lWillBeGraphicMode && !tinyfd_forceConsole) { tinyfd_forceConsole = ! tinyfd_messageBox("Hello World", "graphic dialogs [yes] / console mode [no]?", "yesno", "question", 1); } lTmp = tinyfd_inputBox( "a password box", "your password will be revealed", NULL); if (!lTmp) return 1; strcpy(lString, lTmp); lTheSaveFileName = tinyfd_saveFileDialog( "let us save this password", "passwordFile.txt", 2, lFilterPatterns, NULL); if (!lTheSaveFileName) { tinyfd_messageBox( "Error", "Save file name is NULL", "ok", "error", 1); return 1; } lIn = fopen(lTheSaveFileName, "w"); if (!lIn) { tinyfd_messageBox( "Error", "Can not open this file in write mode", "ok", "error", 1); return 1; } fputs(lString, lIn); fclose(lIn); lTheOpenFileName = tinyfd_openFileDialog( "let us read the password back", "", 2, lFilterPatterns, NULL, 0); if (!lTheOpenFileName) { tinyfd_messageBox( "Error", "Open file name is NULL", "ok", "error", 1); return 1; } lIn = fopen(lTheOpenFileName, "r"); if (!lIn) { tinyfd_messageBox( "Error", "Can not open this file in read mode", "ok", "error", 1); return(1); } lBuffer[0] = '\0'; fgets(lBuffer, sizeof(lBuffer), lIn); fclose(lIn); tinyfd_messageBox("your password is", lBuffer, "ok", "info", 1); lTheSelectFolderName = tinyfd_selectFolderDialog( "let us just select a directory", NULL); if (!lTheSelectFolderName) { tinyfd_messageBox( "Error", "Select folder name is NULL", "ok", "error", 1); return 1; } tinyfd_messageBox("The selected folder is", lTheSelectFolderName, "ok", "info", 1); lTheHexColor = tinyfd_colorChooser( "choose a nice color", "#FF0077", lRgbColor, lRgbColor); if (!lTheHexColor) { tinyfd_messageBox( "Error", "hexcolor is NULL", "ok", "error", 1); return 1; } tinyfd_messageBox("The selected hexcolor is", lTheHexColor, "ok", "info", 1); tinyfd_beep(); return 0; } */ #ifdef _MSC_VER #pragma warning(default:4996) #pragma warning(default:4100) #pragma warning(default:4706) #endif #endif // TFD_IMPLEMENTATION #line 0 #line 1 "3rd_stb_sprintf.h" // stb_sprintf - v1.10 - public domain snprintf() implementation // originally by Jeff Roberts / RAD Game Tools, 2015/10/20 // http://github.com/nothings/stb // // allowed types: sc uidBboXx p AaGgEef n // lengths : hh h ll j z t I64 I32 I // // Contributors: // Fabian "ryg" Giesen (reformatting) // github:aganm (attribute format) // // Contributors (bugfixes): // github:d26435 // github:trex78 // github:account-login // Jari Komppa (SI suffixes) // Rohit Nirmal // Marcin Wojdyr // Leonard Ritter // Stefano Zanotti // Adam Allison // Arvid Gerstmann // Markus Kolb // // LICENSE: // // See end of file for license information. #ifndef STB_SPRINTF_H_INCLUDE #define STB_SPRINTF_H_INCLUDE /* Single file sprintf replacement. Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20. Hereby placed in public domain. This is a full sprintf replacement that supports everything that the C runtime sprintfs support, including float/double, 64-bit integers, hex floats, field parameters (%*.*d stuff), length reads backs, etc. Why would you need this if sprintf already exists? Well, first off, it's *much* faster (see below). It's also much smaller than the CRT versions code-space-wise. We've also added some simple improvements that are super handy (commas in thousands, callbacks at buffer full, for example). Finally, the format strings for MSVC and GCC differ for 64-bit integers (among other small things), so this lets you use the same format strings in cross platform code. It uses the standard single file trick of being both the header file and the source itself. If you just include it normally, you just get the header file function definitions. To get the code, you include it from a C or C++ file and define STB_SPRINTF_IMPLEMENTATION first. It only uses va_args macros from the C runtime to do it's work. It does cast doubles to S64s and shifts and divides U64s, which does drag in CRT code on most platforms. It compiles to roughly 8K with float support, and 4K without. As a comparison, when using MSVC static libs, calling sprintf drags in 16K. API: ==== int stbsp_sprintf( char * buf, char const * fmt, ... ) int stbsp_snprintf( char * buf, int count, char const * fmt, ... ) Convert an arg list into a buffer. stbsp_snprintf always returns a zero-terminated string (unlike regular snprintf). int stbsp_vsprintf( char * buf, char const * fmt, va_list va ) int stbsp_vsnprintf( char * buf, int count, char const * fmt, va_list va ) Convert a va_list arg list into a buffer. stbsp_vsnprintf always returns a zero-terminated string (unlike regular snprintf). int stbsp_vsprintfcb( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) typedef char * STBSP_SPRINTFCB( char const * buf, void * user, int len ); Convert into a buffer, calling back every STB_SPRINTF_MIN chars. Your callback can then copy the chars out, print them or whatever. This function is actually the workhorse for everything else. The buffer you pass in must hold at least STB_SPRINTF_MIN characters. // you return the next buffer to use or 0 to stop converting void stbsp_set_separators( char comma, char period ) Set the comma and period characters to use. FLOATS/DOUBLES: =============== This code uses a internal float->ascii conversion method that uses doubles with error correction (double-doubles, for ~105 bits of precision). This conversion is round-trip perfect - that is, an atof of the values output here will give you the bit-exact double back. One difference is that our insignificant digits will be different than with MSVC or GCC (but they don't match each other either). We also don't attempt to find the minimum length matching float (pre-MSVC15 doesn't either). If you don't need float or doubles at all, define STB_SPRINTF_NOFLOAT and you'll save 4K of code space. 64-BIT INTS: ============ This library also supports 64-bit integers and you can use MSVC style or GCC style indicators (%I64d or %lld). It supports the C99 specifiers for size_t and ptr_diff_t (%jd %zd) as well. EXTRAS: ======= Like some GCCs, for integers and floats, you can use a ' (single quote) specifier and commas will be inserted on the thousands: "%'d" on 12345 would print 12,345. For integers and floats, you can use a "$" specifier and the number will be converted to float and then divided to get kilo, mega, giga or tera and then printed, so "%$d" 1000 is "1.0 k", "%$.2d" 2536000 is "2.53 M", etc. For byte values, use two $:s, like "%$$d" to turn 2536000 to "2.42 Mi". If you prefer JEDEC suffixes to SI ones, use three $:s: "%$$$d" -> "2.42 M". To remove the space between the number and the suffix, add "_" specifier: "%_$d" -> "2.53M". In addition to octal and hexadecimal conversions, you can print integers in binary: "%b" for 256 would print 100. PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC): =================================================================== "%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC) "%24d" across all 32-bit ints (4.5x/4.2x faster) "%x" across all 32-bit ints (4.5x/3.8x faster) "%08x" across all 32-bit ints (4.3x/3.8x faster) "%f" across e-10 to e+10 floats (7.3x/6.0x faster) "%e" across e-10 to e+10 floats (8.1x/6.0x faster) "%g" across e-10 to e+10 floats (10.0x/7.1x faster) "%f" for values near e-300 (7.9x/6.5x faster) "%f" for values near e+300 (10.0x/9.1x faster) "%e" for values near e-300 (10.1x/7.0x faster) "%e" for values near e+300 (9.2x/6.0x faster) "%.320f" for values near e-300 (12.6x/11.2x faster) "%a" for random values (8.6x/4.3x faster) "%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster) "%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster) "%s%s%s" for 64 char strings (7.1x/7.3x faster) "...512 char string..." ( 35.0x/32.5x faster!) */ #if defined(__clang__) #if defined(__has_feature) && defined(__has_attribute) #if __has_feature(address_sanitizer) #if __has_attribute(__no_sanitize__) #define STBSP__ASAN __attribute__((__no_sanitize__("address"))) #elif __has_attribute(__no_sanitize_address__) #define STBSP__ASAN __attribute__((__no_sanitize_address__)) #elif __has_attribute(__no_address_safety_analysis__) #define STBSP__ASAN __attribute__((__no_address_safety_analysis__)) #endif #endif #endif #elif defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) #if defined(__SANITIZE_ADDRESS__) && __SANITIZE_ADDRESS__ #define STBSP__ASAN __attribute__((__no_sanitize_address__)) #endif #endif #ifndef STBSP__ASAN #define STBSP__ASAN #endif #ifdef STB_SPRINTF_STATIC #define STBSP__PUBLICDEC static #define STBSP__PUBLICDEF static STBSP__ASAN #else #ifdef __cplusplus #define STBSP__PUBLICDEC extern "C" #define STBSP__PUBLICDEF extern "C" STBSP__ASAN #else #define STBSP__PUBLICDEC extern #define STBSP__PUBLICDEF STBSP__ASAN #endif #endif #if defined(__has_attribute) #if __has_attribute(format) #define STBSP__ATTRIBUTE_FORMAT(fmt,va) __attribute__((format(printf,fmt,va))) #endif #endif #ifndef STBSP__ATTRIBUTE_FORMAT #define STBSP__ATTRIBUTE_FORMAT(fmt,va) #endif #ifdef _MSC_VER #define STBSP__NOTUSED(v) (void)(v) #else #define STBSP__NOTUSED(v) (void)sizeof(v) #endif #include // for va_arg(), va_list() #include // size_t, ptrdiff_t #ifndef STB_SPRINTF_MIN #define STB_SPRINTF_MIN 512 // how many characters per callback #endif typedef char *STBSP_SPRINTFCB(const char *buf, void *user, int len); #ifndef STB_SPRINTF_DECORATE #define STB_SPRINTF_DECORATE(name) stbsp_##name // define this before including if you want to change the names #endif STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va); STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsnprintf)(char *buf, int count, char const *fmt, va_list va); STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(2,3); STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(3,4); STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va); STBSP__PUBLICDEC void STB_SPRINTF_DECORATE(set_separators)(char comma, char period); #endif // STB_SPRINTF_H_INCLUDE #ifdef STB_SPRINTF_IMPLEMENTATION #define stbsp__uint32 unsigned int #define stbsp__int32 signed int #ifdef _MSC_VER #define stbsp__uint64 unsigned __int64 #define stbsp__int64 signed __int64 #else #define stbsp__uint64 unsigned long long #define stbsp__int64 signed long long #endif #define stbsp__uint16 unsigned short #ifndef stbsp__uintptr #if defined(__ppc64__) || defined(__powerpc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) || defined(__s390x__) #define stbsp__uintptr stbsp__uint64 #else #define stbsp__uintptr stbsp__uint32 #endif #endif #ifndef STB_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC) #if defined(_MSC_VER) && (_MSC_VER < 1900) #define STB_SPRINTF_MSVC_MODE #endif #endif #ifdef STB_SPRINTF_NOUNALIGNED // define this before inclusion to force stbsp_sprintf to always use aligned accesses #define STBSP__UNALIGNED(code) #else #define STBSP__UNALIGNED(code) code #endif #ifndef STB_SPRINTF_NOFLOAT // internal float utility functions static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits); static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value); #define STBSP__SPECIAL 0x7000 #endif static char stbsp__period = '.'; static char stbsp__comma = ','; static struct { short temp; // force next field to be 2-byte aligned char pair[201]; } stbsp__digitpair = { 0, "00010203040506070809101112131415161718192021222324" "25262728293031323334353637383940414243444546474849" "50515253545556575859606162636465666768697071727374" "75767778798081828384858687888990919293949596979899" }; STBSP__PUBLICDEF void STB_SPRINTF_DECORATE(set_separators)(char pcomma, char pperiod) { stbsp__period = pperiod; stbsp__comma = pcomma; } #define STBSP__LEFTJUST 1 #define STBSP__LEADINGPLUS 2 #define STBSP__LEADINGSPACE 4 #define STBSP__LEADING_0X 8 #define STBSP__LEADINGZERO 16 #define STBSP__INTMAX 32 #define STBSP__TRIPLET_COMMA 64 #define STBSP__NEGATIVE 128 #define STBSP__METRIC_SUFFIX 256 #define STBSP__HALFWIDTH 512 #define STBSP__METRIC_NOSPACE 1024 #define STBSP__METRIC_1024 2048 #define STBSP__METRIC_JEDEC 4096 static void stbsp__lead_sign(stbsp__uint32 fl, char *sign) { sign[0] = 0; if (fl & STBSP__NEGATIVE) { sign[0] = 1; sign[1] = '-'; } else if (fl & STBSP__LEADINGSPACE) { sign[0] = 1; sign[1] = ' '; } else if (fl & STBSP__LEADINGPLUS) { sign[0] = 1; sign[1] = '+'; } } static STBSP__ASAN stbsp__uint32 stbsp__strlen_limited(char const *s, stbsp__uint32 limit) { char const * sn = s; // get up to 4-byte alignment for (;;) { if (((stbsp__uintptr)sn & 3) == 0) break; if (!limit || *sn == 0) return (stbsp__uint32)(sn - s); ++sn; --limit; } // scan over 4 bytes at a time to find terminating 0 // this will intentionally scan up to 3 bytes past the end of buffers, // but becase it works 4B aligned, it will never cross page boundaries // (hence the STBSP__ASAN markup; the over-read here is intentional // and harmless) while (limit >= 4) { stbsp__uint32 v = *(stbsp__uint32 *)sn; // bit hack to find if there's a 0 byte in there if ((v - 0x01010101) & (~v) & 0x80808080UL) break; sn += 4; limit -= 4; } // handle the last few characters to find actual size while (limit && *sn) { ++sn; --limit; } return (stbsp__uint32)(sn - s); } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va) { static char hex[] = "0123456789abcdefxp"; static char hexu[] = "0123456789ABCDEFXP"; char *bf; char const *f; int tlen = 0; bf = buf; f = fmt; for (;;) { stbsp__int32 fw, pr, tz; stbsp__uint32 fl; // macros for the callback buffer stuff #define stbsp__chk_cb_bufL(bytes) \ { \ int len = (int)(bf - buf); \ if ((len + (bytes)) >= STB_SPRINTF_MIN) { \ tlen += len; \ if (0 == (bf = buf = callback(buf, user, len))) \ goto done; \ } \ } #define stbsp__chk_cb_buf(bytes) \ { \ if (callback) { \ stbsp__chk_cb_bufL(bytes); \ } \ } #define stbsp__flush_cb() \ { \ stbsp__chk_cb_bufL(STB_SPRINTF_MIN - 1); \ } // flush if there is even one byte in the buffer #define stbsp__cb_buf_clamp(cl, v) \ cl = v; \ if (callback) { \ int lg = STB_SPRINTF_MIN - (int)(bf - buf); \ if (cl > lg) \ cl = lg; \ } // fast copy everything up to the next % (or end of string) for (;;) { while (((stbsp__uintptr)f) & 3) { schk1: if (f[0] == '%') goto scandd; schk2: if (f[0] == 0) goto endfmt; stbsp__chk_cb_buf(1); *bf++ = f[0]; ++f; } for (;;) { // Check if the next 4 bytes contain %(0x25) or end of string. // Using the 'hasless' trick: // https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord stbsp__uint32 v, c; v = *(stbsp__uint32 *)f; c = (~v) & 0x80808080; if (((v ^ 0x25252525) - 0x01010101) & c) goto schk1; if ((v - 0x01010101) & c) goto schk2; if (callback) if ((STB_SPRINTF_MIN - (int)(bf - buf)) < 4) goto schk1; #ifdef STB_SPRINTF_NOUNALIGNED if(((stbsp__uintptr)bf) & 3) { bf[0] = f[0]; bf[1] = f[1]; bf[2] = f[2]; bf[3] = f[3]; } else #endif { *(stbsp__uint32 *)bf = v; } bf += 4; f += 4; } } scandd: ++f; // ok, we have a percent, read the modifiers first fw = 0; pr = -1; fl = 0; tz = 0; // flags for (;;) { switch (f[0]) { // if we have left justify case '-': fl |= STBSP__LEFTJUST; ++f; continue; // if we have leading plus case '+': fl |= STBSP__LEADINGPLUS; ++f; continue; // if we have leading space case ' ': fl |= STBSP__LEADINGSPACE; ++f; continue; // if we have leading 0x case '#': fl |= STBSP__LEADING_0X; ++f; continue; // if we have thousand commas case '\'': fl |= STBSP__TRIPLET_COMMA; ++f; continue; // if we have kilo marker (none->kilo->kibi->jedec) case '$': if (fl & STBSP__METRIC_SUFFIX) { if (fl & STBSP__METRIC_1024) { fl |= STBSP__METRIC_JEDEC; } else { fl |= STBSP__METRIC_1024; } } else { fl |= STBSP__METRIC_SUFFIX; } ++f; continue; // if we don't want space between metric suffix and number case '_': fl |= STBSP__METRIC_NOSPACE; ++f; continue; // if we have leading zero case '0': fl |= STBSP__LEADINGZERO; ++f; goto flags_done; default: goto flags_done; } } flags_done: // get the field width if (f[0] == '*') { fw = va_arg(va, stbsp__uint32); ++f; } else { while ((f[0] >= '0') && (f[0] <= '9')) { fw = fw * 10 + f[0] - '0'; f++; } } // get the precision if (f[0] == '.') { ++f; if (f[0] == '*') { pr = va_arg(va, stbsp__uint32); ++f; } else { pr = 0; while ((f[0] >= '0') && (f[0] <= '9')) { pr = pr * 10 + f[0] - '0'; f++; } } } // handle integer size overrides switch (f[0]) { // are we halfwidth? case 'h': fl |= STBSP__HALFWIDTH; ++f; if (f[0] == 'h') ++f; // QUARTERWIDTH break; // are we 64-bit (unix style) case 'l': fl |= ((sizeof(long) == 8) ? STBSP__INTMAX : 0); ++f; if (f[0] == 'l') { fl |= STBSP__INTMAX; ++f; } break; // are we 64-bit on intmax? (c99) case 'j': fl |= (sizeof(size_t) == 8) ? STBSP__INTMAX : 0; ++f; break; // are we 64-bit on size_t or ptrdiff_t? (c99) case 'z': fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0; ++f; break; case 't': fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0; ++f; break; // are we 64-bit (msft style) case 'I': if ((f[1] == '6') && (f[2] == '4')) { fl |= STBSP__INTMAX; f += 3; } else if ((f[1] == '3') && (f[2] == '2')) { f += 3; } else { fl |= ((sizeof(void *) == 8) ? STBSP__INTMAX : 0); ++f; } break; default: break; } // handle each replacement switch (f[0]) { #define STBSP__NUMSZ 512 // big enough for e308 (with commas) or e-307 char num[STBSP__NUMSZ]; char lead[8]; char tail[8]; char *s; char const *h; stbsp__uint32 l, n, cs; stbsp__uint64 n64; #ifndef STB_SPRINTF_NOFLOAT double fv; #endif stbsp__int32 dp; char const *sn; case 's': // get the string s = va_arg(va, char *); if (s == 0) s = (char *)"null"; // get the length, limited to desired precision // always limit to ~0u chars since our counts are 32b l = stbsp__strlen_limited(s, (pr >= 0) ? pr : ~0u); lead[0] = 0; tail[0] = 0; pr = 0; dp = 0; cs = 0; // copy the string in goto scopy; case 'c': // char // get the character s = num + STBSP__NUMSZ - 1; *s = (char)va_arg(va, int); l = 1; lead[0] = 0; tail[0] = 0; pr = 0; dp = 0; cs = 0; goto scopy; case 'n': // weird write-bytes specifier { int *d = va_arg(va, int *); *d = tlen + (int)(bf - buf); } break; #ifdef STB_SPRINTF_NOFLOAT case 'A': // float case 'a': // hex float case 'G': // float case 'g': // float case 'E': // float case 'e': // float case 'f': // float va_arg(va, double); // eat it s = (char *)"No float"; l = 8; lead[0] = 0; tail[0] = 0; pr = 0; cs = 0; STBSP__NOTUSED(dp); goto scopy; #else case 'A': // hex float case 'a': // hex float h = (f[0] == 'A') ? hexu : hex; fv = va_arg(va, double); if (pr == -1) pr = 6; // default is 6 // read the double into a string if (stbsp__real_to_parts((stbsp__int64 *)&n64, &dp, fv)) fl |= STBSP__NEGATIVE; s = num + 64; stbsp__lead_sign(fl, lead); if (dp == -1023) dp = (n64) ? -1022 : 0; else n64 |= (((stbsp__uint64)1) << 52); n64 <<= (64 - 56); if (pr < 15) n64 += ((((stbsp__uint64)8) << 56) >> (pr * 4)); // add leading chars #ifdef STB_SPRINTF_MSVC_MODE *s++ = '0'; *s++ = 'x'; #else lead[1 + lead[0]] = '0'; lead[2 + lead[0]] = 'x'; lead[0] += 2; #endif *s++ = h[(n64 >> 60) & 15]; n64 <<= 4; if (pr) *s++ = stbsp__period; sn = s; // print the bits n = pr; if (n > 13) n = 13; if (pr > (stbsp__int32)n) tz = pr - n; pr = 0; while (n--) { *s++ = h[(n64 >> 60) & 15]; n64 <<= 4; } // print the expo tail[1] = h[17]; if (dp < 0) { tail[2] = '-'; dp = -dp; } else tail[2] = '+'; n = (dp >= 1000) ? 6 : ((dp >= 100) ? 5 : ((dp >= 10) ? 4 : 3)); tail[0] = (char)n; for (;;) { tail[n] = '0' + dp % 10; if (n <= 3) break; --n; dp /= 10; } dp = (int)(s - sn); l = (int)(s - (num + 64)); s = num + 64; cs = 1 + (3 << 24); goto scopy; case 'G': // float case 'g': // float h = (f[0] == 'G') ? hexu : hex; fv = va_arg(va, double); if (pr == -1) pr = 6; else if (pr == 0) pr = 1; // default is 6 // read the double into a string if (stbsp__real_to_str(&sn, &l, num, &dp, fv, (pr - 1) | 0x80000000)) fl |= STBSP__NEGATIVE; // clamp the precision and delete extra zeros after clamp n = pr; if (l > (stbsp__uint32)pr) l = pr; while ((l > 1) && (pr) && (sn[l - 1] == '0')) { --pr; --l; } // should we use %e if ((dp <= -4) || (dp > (stbsp__int32)n)) { if (pr > (stbsp__int32)l) pr = l - 1; else if (pr) --pr; // when using %e, there is one digit before the decimal goto doexpfromg; } // this is the insane action to get the pr to match %g semantics for %f if (dp > 0) { pr = (dp < (stbsp__int32)l) ? l - dp : 0; } else { pr = -dp + ((pr > (stbsp__int32)l) ? (stbsp__int32) l : pr); } goto dofloatfromg; case 'E': // float case 'e': // float h = (f[0] == 'E') ? hexu : hex; fv = va_arg(va, double); if (pr == -1) pr = 6; // default is 6 // read the double into a string if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr | 0x80000000)) fl |= STBSP__NEGATIVE; doexpfromg: tail[0] = 0; stbsp__lead_sign(fl, lead); if (dp == STBSP__SPECIAL) { s = (char *)sn; cs = 0; pr = 0; goto scopy; } s = num + 64; // handle leading chars *s++ = sn[0]; if (pr) *s++ = stbsp__period; // handle after decimal if ((l - 1) > (stbsp__uint32)pr) l = pr + 1; for (n = 1; n < l; n++) *s++ = sn[n]; // trailing zeros tz = pr - (l - 1); pr = 0; // dump expo tail[1] = h[0xe]; dp -= 1; if (dp < 0) { tail[2] = '-'; dp = -dp; } else tail[2] = '+'; #ifdef STB_SPRINTF_MSVC_MODE n = 5; #else n = (dp >= 100) ? 5 : 4; #endif tail[0] = (char)n; for (;;) { tail[n] = '0' + dp % 10; if (n <= 3) break; --n; dp /= 10; } cs = 1 + (3 << 24); // how many tens goto flt_lead; case 'f': // float fv = va_arg(va, double); doafloat: // do kilos if (fl & STBSP__METRIC_SUFFIX) { double divisor; divisor = 1000.0f; if (fl & STBSP__METRIC_1024) divisor = 1024.0; while (fl < 0x4000000) { if ((fv < divisor) && (fv > -divisor)) break; fv /= divisor; fl += 0x1000000; } } if (pr == -1) pr = 6; // default is 6 // read the double into a string if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr)) fl |= STBSP__NEGATIVE; dofloatfromg: tail[0] = 0; stbsp__lead_sign(fl, lead); if (dp == STBSP__SPECIAL) { s = (char *)sn; cs = 0; pr = 0; goto scopy; } s = num + 64; // handle the three decimal varieties if (dp <= 0) { stbsp__int32 i; // handle 0.000*000xxxx *s++ = '0'; if (pr) *s++ = stbsp__period; n = -dp; if ((stbsp__int32)n > pr) n = pr; i = n; while (i) { if ((((stbsp__uintptr)s) & 3) == 0) break; *s++ = '0'; --i; } while (i >= 4) { *(stbsp__uint32 *)s = 0x30303030; s += 4; i -= 4; } while (i) { *s++ = '0'; --i; } if ((stbsp__int32)(l + n) > pr) l = pr - n; i = l; while (i) { *s++ = *sn++; --i; } tz = pr - (n + l); cs = 1 + (3 << 24); // how many tens did we write (for commas below) } else { cs = (fl & STBSP__TRIPLET_COMMA) ? ((600 - (stbsp__uint32)dp) % 3) : 0; if ((stbsp__uint32)dp >= l) { // handle xxxx000*000.0 n = 0; for (;;) { if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) { cs = 0; *s++ = stbsp__comma; } else { *s++ = sn[n]; ++n; if (n >= l) break; } } if (n < (stbsp__uint32)dp) { n = dp - n; if ((fl & STBSP__TRIPLET_COMMA) == 0) { while (n) { if ((((stbsp__uintptr)s) & 3) == 0) break; *s++ = '0'; --n; } while (n >= 4) { *(stbsp__uint32 *)s = 0x30303030; s += 4; n -= 4; } } while (n) { if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) { cs = 0; *s++ = stbsp__comma; } else { *s++ = '0'; --n; } } } cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens if (pr) { *s++ = stbsp__period; tz = pr; } } else { // handle xxxxx.xxxx000*000 n = 0; for (;;) { if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) { cs = 0; *s++ = stbsp__comma; } else { *s++ = sn[n]; ++n; if (n >= (stbsp__uint32)dp) break; } } cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens if (pr) *s++ = stbsp__period; if ((l - dp) > (stbsp__uint32)pr) l = pr + dp; while (n < l) { *s++ = sn[n]; ++n; } tz = pr - (l - dp); } } pr = 0; // handle k,m,g,t if (fl & STBSP__METRIC_SUFFIX) { char idx; idx = 1; if (fl & STBSP__METRIC_NOSPACE) idx = 0; tail[0] = idx; tail[1] = ' '; { if (fl >> 24) { // SI kilo is 'k', JEDEC and SI kibits are 'K'. if (fl & STBSP__METRIC_1024) tail[idx + 1] = "_KMGT"[fl >> 24]; else tail[idx + 1] = "_kMGT"[fl >> 24]; idx++; // If printing kibits and not in jedec, add the 'i'. if (fl & STBSP__METRIC_1024 && !(fl & STBSP__METRIC_JEDEC)) { tail[idx + 1] = 'i'; idx++; } tail[0] = idx; } } }; flt_lead: // get the length that we copied l = (stbsp__uint32)(s - (num + 64)); s = num + 64; goto scopy; #endif case 'B': // upper binary case 'b': // lower binary h = (f[0] == 'B') ? hexu : hex; lead[0] = 0; if (fl & STBSP__LEADING_0X) { lead[0] = 2; lead[1] = '0'; lead[2] = h[0xb]; } l = (8 << 4) | (1 << 8); goto radixnum; case 'o': // octal h = hexu; lead[0] = 0; if (fl & STBSP__LEADING_0X) { lead[0] = 1; lead[1] = '0'; } l = (3 << 4) | (3 << 8); goto radixnum; case 'p': // pointer fl |= (sizeof(void *) == 8) ? STBSP__INTMAX : 0; pr = sizeof(void *) * 2; fl &= ~STBSP__LEADINGZERO; // 'p' only prints the pointer with zeros // fall through - to X case 'X': // upper hex case 'x': // lower hex h = (f[0] == 'X') ? hexu : hex; l = (4 << 4) | (4 << 8); lead[0] = 0; if (fl & STBSP__LEADING_0X) { lead[0] = 2; lead[1] = '0'; lead[2] = h[16]; } radixnum: // get the number if (fl & STBSP__INTMAX) n64 = va_arg(va, stbsp__uint64); else n64 = va_arg(va, stbsp__uint32); s = num + STBSP__NUMSZ; dp = 0; // clear tail, and clear leading if value is zero tail[0] = 0; if (n64 == 0) { lead[0] = 0; if (pr == 0) { l = 0; cs = 0; goto scopy; } } // convert to string for (;;) { *--s = h[n64 & ((1 << (l >> 8)) - 1)]; n64 >>= (l >> 8); if (!((n64) || ((stbsp__int32)((num + STBSP__NUMSZ) - s) < pr))) break; if (fl & STBSP__TRIPLET_COMMA) { ++l; if ((l & 15) == ((l >> 4) & 15)) { l &= ~15; *--s = stbsp__comma; } } }; // get the tens and the comma pos cs = (stbsp__uint32)((num + STBSP__NUMSZ) - s) + ((((l >> 4) & 15)) << 24); // get the length that we copied l = (stbsp__uint32)((num + STBSP__NUMSZ) - s); // copy it goto scopy; case 'u': // unsigned case 'i': case 'd': // integer // get the integer and abs it if (fl & STBSP__INTMAX) { stbsp__int64 i64 = va_arg(va, stbsp__int64); n64 = (stbsp__uint64)i64; if ((f[0] != 'u') && (i64 < 0)) { n64 = (stbsp__uint64)-i64; fl |= STBSP__NEGATIVE; } } else { stbsp__int32 i = va_arg(va, stbsp__int32); n64 = (stbsp__uint32)i; if ((f[0] != 'u') && (i < 0)) { n64 = (stbsp__uint32)-i; fl |= STBSP__NEGATIVE; } } #ifndef STB_SPRINTF_NOFLOAT if (fl & STBSP__METRIC_SUFFIX) { if (n64 < 1024) pr = 0; else if (pr == -1) pr = 1; fv = (double)(stbsp__int64)n64; goto doafloat; } #endif // convert to string s = num + STBSP__NUMSZ; l = 0; for (;;) { // do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators) char *o = s - 8; if (n64 >= 100000000) { n = (stbsp__uint32)(n64 % 100000000); n64 /= 100000000; } else { n = (stbsp__uint32)n64; n64 = 0; } if ((fl & STBSP__TRIPLET_COMMA) == 0) { do { s -= 2; *(stbsp__uint16 *)s = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2]; n /= 100; } while (n); } while (n) { if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) { l = 0; *--s = stbsp__comma; --o; } else { *--s = (char)(n % 10) + '0'; n /= 10; } } if (n64 == 0) { if ((s[0] == '0') && (s != (num + STBSP__NUMSZ))) ++s; break; } while (s != o) if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) { l = 0; *--s = stbsp__comma; --o; } else { *--s = '0'; } } tail[0] = 0; stbsp__lead_sign(fl, lead); // get the length that we copied l = (stbsp__uint32)((num + STBSP__NUMSZ) - s); if (l == 0) { *--s = '0'; l = 1; } cs = l + (3 << 24); if (pr < 0) pr = 0; scopy: // get fw=leading/trailing space, pr=leading zeros if (pr < (stbsp__int32)l) pr = l; n = pr + lead[0] + tail[0] + tz; if (fw < (stbsp__int32)n) fw = n; fw -= n; pr -= l; // handle right justify and leading zeros if ((fl & STBSP__LEFTJUST) == 0) { if (fl & STBSP__LEADINGZERO) // if leading zeros, everything is in pr { pr = (fw > pr) ? fw : pr; fw = 0; } else { fl &= ~STBSP__TRIPLET_COMMA; // if no leading zeros, then no commas } } // copy the spaces and/or zeros if (fw + pr) { stbsp__int32 i; stbsp__uint32 c; // copy leading spaces (or when doing %8.4d stuff) if ((fl & STBSP__LEFTJUST) == 0) while (fw > 0) { stbsp__cb_buf_clamp(i, fw); fw -= i; while (i) { if ((((stbsp__uintptr)bf) & 3) == 0) break; *bf++ = ' '; --i; } while (i >= 4) { *(stbsp__uint32 *)bf = 0x20202020; bf += 4; i -= 4; } while (i) { *bf++ = ' '; --i; } stbsp__chk_cb_buf(1); } // copy leader sn = lead + 1; while (lead[0]) { stbsp__cb_buf_clamp(i, lead[0]); lead[0] -= (char)i; while (i) { *bf++ = *sn++; --i; } stbsp__chk_cb_buf(1); } // copy leading zeros c = cs >> 24; cs &= 0xffffff; cs = (fl & STBSP__TRIPLET_COMMA) ? ((stbsp__uint32)(c - ((pr + cs) % (c + 1)))) : 0; while (pr > 0) { stbsp__cb_buf_clamp(i, pr); pr -= i; if ((fl & STBSP__TRIPLET_COMMA) == 0) { while (i) { if ((((stbsp__uintptr)bf) & 3) == 0) break; *bf++ = '0'; --i; } while (i >= 4) { *(stbsp__uint32 *)bf = 0x30303030; bf += 4; i -= 4; } } while (i) { if ((fl & STBSP__TRIPLET_COMMA) && (cs++ == c)) { cs = 0; *bf++ = stbsp__comma; } else *bf++ = '0'; --i; } stbsp__chk_cb_buf(1); } } // copy leader if there is still one sn = lead + 1; while (lead[0]) { stbsp__int32 i; stbsp__cb_buf_clamp(i, lead[0]); lead[0] -= (char)i; while (i) { *bf++ = *sn++; --i; } stbsp__chk_cb_buf(1); } // copy the string n = l; while (n) { stbsp__int32 i; stbsp__cb_buf_clamp(i, n); n -= i; STBSP__UNALIGNED(while (i >= 4) { *(stbsp__uint32 volatile *)bf = *(stbsp__uint32 volatile *)s; bf += 4; s += 4; i -= 4; }) while (i) { *bf++ = *s++; --i; } stbsp__chk_cb_buf(1); } // copy trailing zeros while (tz) { stbsp__int32 i; stbsp__cb_buf_clamp(i, tz); tz -= i; while (i) { if ((((stbsp__uintptr)bf) & 3) == 0) break; *bf++ = '0'; --i; } while (i >= 4) { *(stbsp__uint32 *)bf = 0x30303030; bf += 4; i -= 4; } while (i) { *bf++ = '0'; --i; } stbsp__chk_cb_buf(1); } // copy tail if there is one sn = tail + 1; while (tail[0]) { stbsp__int32 i; stbsp__cb_buf_clamp(i, tail[0]); tail[0] -= (char)i; while (i) { *bf++ = *sn++; --i; } stbsp__chk_cb_buf(1); } // handle the left justify if (fl & STBSP__LEFTJUST) if (fw > 0) { while (fw) { stbsp__int32 i; stbsp__cb_buf_clamp(i, fw); fw -= i; while (i) { if ((((stbsp__uintptr)bf) & 3) == 0) break; *bf++ = ' '; --i; } while (i >= 4) { *(stbsp__uint32 *)bf = 0x20202020; bf += 4; i -= 4; } while (i--) *bf++ = ' '; stbsp__chk_cb_buf(1); } } break; default: // unknown, just copy code s = num + STBSP__NUMSZ - 1; *s = f[0]; l = 1; fw = fl = 0; lead[0] = 0; tail[0] = 0; pr = 0; dp = 0; cs = 0; goto scopy; } ++f; } endfmt: if (!callback) *bf = 0; else stbsp__flush_cb(); done: return tlen + (int)(bf - buf); } // cleanup #undef STBSP__LEFTJUST #undef STBSP__LEADINGPLUS #undef STBSP__LEADINGSPACE #undef STBSP__LEADING_0X #undef STBSP__LEADINGZERO #undef STBSP__INTMAX #undef STBSP__TRIPLET_COMMA #undef STBSP__NEGATIVE #undef STBSP__METRIC_SUFFIX #undef STBSP__NUMSZ #undef stbsp__chk_cb_bufL #undef stbsp__chk_cb_buf #undef stbsp__flush_cb #undef stbsp__cb_buf_clamp // ============================================================================ // wrapper functions STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...) { int result; va_list va; va_start(va, fmt); result = STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va); va_end(va); return result; } typedef struct stbsp__context { char *buf; int count; int length; char tmp[STB_SPRINTF_MIN]; } stbsp__context; static char *stbsp__clamp_callback(const char *buf, void *user, int len) { stbsp__context *c = (stbsp__context *)user; c->length += len; if (len > c->count) len = c->count; if (len) { if (buf != c->buf) { const char *s, *se; char *d; d = c->buf; s = buf; se = buf + len; do { *d++ = *s++; } while (s < se); } c->buf += len; c->count -= len; } if (c->count <= 0) return c->tmp; return (c->count >= STB_SPRINTF_MIN) ? c->buf : c->tmp; // go direct into buffer if you can } static char * stbsp__count_clamp_callback( const char * buf, void * user, int len ) { stbsp__context * c = (stbsp__context*)user; (void) sizeof(buf); c->length += len; return c->tmp; // go direct into buffer if you can } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ) { stbsp__context c; if ( (count == 0) && !buf ) { c.length = 0; STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__count_clamp_callback, &c, c.tmp, fmt, va ); } else { int l; c.buf = buf; c.count = count; c.length = 0; STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__clamp_callback, &c, stbsp__clamp_callback(0,&c,0), fmt, va ); // zero-terminate l = (int)( c.buf - buf ); if ( l >= count ) // should never be greater, only equal (or less) than count l = count - 1; buf[l] = 0; } return c.length; } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...) { int result; va_list va; va_start(va, fmt); result = STB_SPRINTF_DECORATE(vsnprintf)(buf, count, fmt, va); va_end(va); return result; } STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va) { return STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va); } // ======================================================================= // low level float utility functions #ifndef STB_SPRINTF_NOFLOAT // copies d to bits w/ strict aliasing (this compiles to nothing on /Ox) #define STBSP__COPYFP(dest, src) \ { \ int cn; \ for (cn = 0; cn < 8; cn++) \ ((char *)&dest)[cn] = ((char *)&src)[cn]; \ } // get float info static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value) { double d; stbsp__int64 b = 0; // load value and round at the frac_digits d = value; STBSP__COPYFP(b, d); *bits = b & ((((stbsp__uint64)1) << 52) - 1); *expo = (stbsp__int32)(((b >> 52) & 2047) - 1023); return (stbsp__int32)((stbsp__uint64) b >> 63); } static double const stbsp__bot[23] = { 1e+000, 1e+001, 1e+002, 1e+003, 1e+004, 1e+005, 1e+006, 1e+007, 1e+008, 1e+009, 1e+010, 1e+011, 1e+012, 1e+013, 1e+014, 1e+015, 1e+016, 1e+017, 1e+018, 1e+019, 1e+020, 1e+021, 1e+022 }; static double const stbsp__negbot[22] = { 1e-001, 1e-002, 1e-003, 1e-004, 1e-005, 1e-006, 1e-007, 1e-008, 1e-009, 1e-010, 1e-011, 1e-012, 1e-013, 1e-014, 1e-015, 1e-016, 1e-017, 1e-018, 1e-019, 1e-020, 1e-021, 1e-022 }; static double const stbsp__negboterr[22] = { -5.551115123125783e-018, -2.0816681711721684e-019, -2.0816681711721686e-020, -4.7921736023859299e-021, -8.1803053914031305e-022, 4.5251888174113741e-023, 4.5251888174113739e-024, -2.0922560830128471e-025, -6.2281591457779853e-026, -3.6432197315497743e-027, 6.0503030718060191e-028, 2.0113352370744385e-029, -3.0373745563400371e-030, 1.1806906454401013e-032, -7.7705399876661076e-032, 2.0902213275965398e-033, -7.1542424054621921e-034, -7.1542424054621926e-035, 2.4754073164739869e-036, 5.4846728545790429e-037, 9.2462547772103625e-038, -4.8596774326570872e-039 }; static double const stbsp__top[13] = { 1e+023, 1e+046, 1e+069, 1e+092, 1e+115, 1e+138, 1e+161, 1e+184, 1e+207, 1e+230, 1e+253, 1e+276, 1e+299 }; static double const stbsp__negtop[13] = { 1e-023, 1e-046, 1e-069, 1e-092, 1e-115, 1e-138, 1e-161, 1e-184, 1e-207, 1e-230, 1e-253, 1e-276, 1e-299 }; static double const stbsp__toperr[13] = { 8388608, 6.8601809640529717e+028, -7.253143638152921e+052, -4.3377296974619174e+075, -1.5559416129466825e+098, -3.2841562489204913e+121, -3.7745893248228135e+144, -1.7356668416969134e+167, -3.8893577551088374e+190, -9.9566444326005119e+213, 6.3641293062232429e+236, -5.2069140800249813e+259, -5.2504760255204387e+282 }; static double const stbsp__negtoperr[13] = { 3.9565301985100693e-040, -2.299904345391321e-063, 3.6506201437945798e-086, 1.1875228833981544e-109, -5.0644902316928607e-132, -6.7156837247865426e-155, -2.812077463003139e-178, -5.7778912386589953e-201, 7.4997100559334532e-224, -4.6439668915134491e-247, -6.3691100762962136e-270, -9.436808465446358e-293, 8.0970921678014997e-317 }; #if defined(_MSC_VER) && (_MSC_VER <= 1200) static stbsp__uint64 const stbsp__powten[20] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000U }; #define stbsp__tento19th ((stbsp__uint64)1000000000000000000) #else static stbsp__uint64 const stbsp__powten[20] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000ULL, 100000000000ULL, 1000000000000ULL, 10000000000000ULL, 100000000000000ULL, 1000000000000000ULL, 10000000000000000ULL, 100000000000000000ULL, 1000000000000000000ULL, 10000000000000000000ULL }; #define stbsp__tento19th (1000000000000000000ULL) #endif #define stbsp__ddmulthi(oh, ol, xh, yh) \ { \ double ahi = 0, alo, bhi = 0, blo; \ stbsp__int64 bt; \ oh = xh * yh; \ STBSP__COPYFP(bt, xh); \ bt &= ((~(stbsp__uint64)0) << 27); \ STBSP__COPYFP(ahi, bt); \ alo = xh - ahi; \ STBSP__COPYFP(bt, yh); \ bt &= ((~(stbsp__uint64)0) << 27); \ STBSP__COPYFP(bhi, bt); \ blo = yh - bhi; \ ol = ((ahi * bhi - oh) + ahi * blo + alo * bhi) + alo * blo; \ } #define stbsp__ddtoS64(ob, xh, xl) \ { \ double ahi = 0, alo, vh, t; \ ob = (stbsp__int64)xh; \ vh = (double)ob; \ ahi = (xh - vh); \ t = (ahi - xh); \ alo = (xh - (ahi - t)) - (vh + t); \ ob += (stbsp__int64)(ahi + alo + xl); \ } #define stbsp__ddrenorm(oh, ol) \ { \ double s; \ s = oh + ol; \ ol = ol - (s - oh); \ oh = s; \ } #define stbsp__ddmultlo(oh, ol, xh, xl, yh, yl) ol = ol + (xh * yl + xl * yh); #define stbsp__ddmultlos(oh, ol, xh, yl) ol = ol + (xh * yl); static void stbsp__raise_to_power10(double *ohi, double *olo, double d, stbsp__int32 power) // power can be -323 to +350 { double ph, pl; if ((power >= 0) && (power <= 22)) { stbsp__ddmulthi(ph, pl, d, stbsp__bot[power]); } else { stbsp__int32 e, et, eb; double p2h, p2l; e = power; if (power < 0) e = -e; et = (e * 0x2c9) >> 14; /* %23 */ if (et > 13) et = 13; eb = e - (et * 23); ph = d; pl = 0.0; if (power < 0) { if (eb) { --eb; stbsp__ddmulthi(ph, pl, d, stbsp__negbot[eb]); stbsp__ddmultlos(ph, pl, d, stbsp__negboterr[eb]); } if (et) { stbsp__ddrenorm(ph, pl); --et; stbsp__ddmulthi(p2h, p2l, ph, stbsp__negtop[et]); stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__negtop[et], stbsp__negtoperr[et]); ph = p2h; pl = p2l; } } else { if (eb) { e = eb; if (eb > 22) eb = 22; e -= eb; stbsp__ddmulthi(ph, pl, d, stbsp__bot[eb]); if (e) { stbsp__ddrenorm(ph, pl); stbsp__ddmulthi(p2h, p2l, ph, stbsp__bot[e]); stbsp__ddmultlos(p2h, p2l, stbsp__bot[e], pl); ph = p2h; pl = p2l; } } if (et) { stbsp__ddrenorm(ph, pl); --et; stbsp__ddmulthi(p2h, p2l, ph, stbsp__top[et]); stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__top[et], stbsp__toperr[et]); ph = p2h; pl = p2l; } } } stbsp__ddrenorm(ph, pl); *ohi = ph; *olo = pl; } // given a float value, returns the significant bits in bits, and the position of the // decimal point in decimal_pos. +/-INF and NAN are specified by special values // returned in the decimal_pos parameter. // frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000 static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits) { double d; stbsp__int64 bits = 0; stbsp__int32 expo, e, ng, tens; d = value; STBSP__COPYFP(bits, d); expo = (stbsp__int32)((bits >> 52) & 2047); ng = (stbsp__int32)((stbsp__uint64) bits >> 63); if (ng) d = -d; if (expo == 2047) // is nan or inf? { *start = (bits & ((((stbsp__uint64)1) << 52) - 1)) ? "NaN" : "Inf"; *decimal_pos = STBSP__SPECIAL; *len = 3; return ng; } if (expo == 0) // is zero or denormal { if (((stbsp__uint64) bits << 1) == 0) // do zero { *decimal_pos = 1; *start = out; out[0] = '0'; *len = 1; return ng; } // find the right expo for denormals { stbsp__int64 v = ((stbsp__uint64)1) << 51; while ((bits & v) == 0) { --expo; v >>= 1; } } } // find the decimal exponent as well as the decimal bits of the value { double ph, pl; // log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046 tens = expo - 1023; tens = (tens < 0) ? ((tens * 617) / 2048) : (((tens * 1233) / 4096) + 1); // move the significant bits into position and stick them into an int stbsp__raise_to_power10(&ph, &pl, d, 18 - tens); // get full as much precision from double-double as possible stbsp__ddtoS64(bits, ph, pl); // check if we undershot if (((stbsp__uint64)bits) >= stbsp__tento19th) ++tens; } // now do the rounding in integer land frac_digits = (frac_digits & 0x80000000) ? ((frac_digits & 0x7ffffff) + 1) : (tens + frac_digits); if ((frac_digits < 24)) { stbsp__uint32 dg = 1; if ((stbsp__uint64)bits >= stbsp__powten[9]) dg = 10; while ((stbsp__uint64)bits >= stbsp__powten[dg]) { ++dg; if (dg == 20) goto noround; } if (frac_digits < dg) { stbsp__uint64 r; // add 0.5 at the right position and round e = dg - frac_digits; if ((stbsp__uint32)e >= 24) goto noround; r = stbsp__powten[e]; bits = bits + (r / 2); if ((stbsp__uint64)bits >= stbsp__powten[dg]) ++tens; bits /= r; } noround:; } // kill long trailing runs of zeros if (bits) { stbsp__uint32 n; for (;;) { if (bits <= 0xffffffff) break; if (bits % 1000) goto donez; bits /= 1000; } n = (stbsp__uint32)bits; while ((n % 1000) == 0) n /= 1000; bits = n; donez:; } // convert to string out += 64; e = 0; for (;;) { stbsp__uint32 n; char *o = out - 8; // do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned) if (bits >= 100000000) { n = (stbsp__uint32)(bits % 100000000); bits /= 100000000; } else { n = (stbsp__uint32)bits; bits = 0; } while (n) { out -= 2; *(stbsp__uint16 *)out = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2]; n /= 100; e += 2; } if (bits == 0) { if ((e) && (out[0] == '0')) { ++out; --e; } break; } while (out != o) { *--out = '0'; ++e; } } *decimal_pos = tens; *start = out; *len = e; return ng; } #undef stbsp__ddmulthi #undef stbsp__ddrenorm #undef stbsp__ddmultlo #undef stbsp__ddmultlos #undef STBSP__SPECIAL #undef STBSP__COPYFP #endif // STB_SPRINTF_NOFLOAT // clean up #undef stbsp__uint16 #undef stbsp__uint32 #undef stbsp__int32 #undef stbsp__uint64 #undef stbsp__int64 #undef STBSP__UNALIGNED #endif // STB_SPRINTF_IMPLEMENTATION /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. ------------------------------------------------------------------------------ ALTERNATIVE A - MIT License Copyright (c) 2017 Sean Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ ALTERNATIVE B - Public Domain (www.unlicense.org) This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ */ #line 0 #define g g2 #line 1 "3rd_xml.h" // original xml.h/xml.c files by tor andersson, public domain #ifndef xml_h #define xml_h /* Parse UTF-8 string and return the XML root node, or NULL if there is a parse error. */ struct xml *xml_parse(char *buf, int preserve_white, char **error); /* Free an XML node and all its children and siblings. */ void xml_free(struct xml *item); /* Navigate the XML tree. */ struct xml *xml_prev(struct xml *item); struct xml *xml_next(struct xml *item); struct xml *xml_up(struct xml *item); struct xml *xml_down(struct xml *item); /* Return true if the tag name matches. */ int xml_is_tag(struct xml *item, const char *name); /* Return tag name of XML node, or NULL if it's a text node. */ char *xml_tag(struct xml *item); /* Return the value of an attribute of an XML node, or NULL if the attribute doesn't exist. */ char *xml_att(struct xml *item, const char *att); /* Return the name of an attribute of an XML node, or NULL if the attribute doesn't exist. */ char *xml_att_name(struct xml *item, int index); //< @r-lyeh: new function /* Return the text content of an XML node, or NULL if the node is a tag. */ char *xml_text(struct xml *item); /* Find the first sibling with the given tag name (may be the same node). */ struct xml *xml_find(struct xml *item, const char *tag); /* Find the next sibling with the given tag name (never the same node). */ struct xml *xml_find_next(struct xml *item, const char *tag); /* Find the first child with the given tag name. */ struct xml *xml_find_down(struct xml *item, const char *tag); #endif #ifdef XML_C #include /* malloc, free, strtol */ #include /* memmove, strcmp */ static int runetochar(char *s, int c) { if (c < 0x80) { s[0] = c; return 1; } if (c < 0x800) { s[0] = 0xC0 | (c >> 6); s[1] = 0x80 | (c & 0x3F); return 2; } if (c > 0x10FFFF) c = 0xFFFD; if (c < 0x1000) { s[0] = 0xE0 | (c >> 12); s[1] = 0x80 | ((c >> 6) & 0x3F); s[2] = 0x80 | (c & 0x3F); return 3; } s[0] = 0xf0 | (c >> 18); s[1] = 0x80 | ((c >> 12) & 0x3F); s[2] = 0x80 | ((c >> 6) & 0x3F); s[3] = 0x80 | (c & 0x3F); return 4; } struct { struct xml *head; int preserve_white; int depth; } g; struct xmlatt { char name[40]; char *value; struct xmlatt *next; }; struct xml { char name[40]; char *text; struct xmlatt *atts; struct xml *up, *down, *tail, *prev, *next; }; struct xml *xml_prev(struct xml *item) { return item ? item->prev : NULL; } struct xml *xml_next(struct xml *item) { return item ? item->next : NULL; } struct xml *xml_up(struct xml *item) { return item ? item->up : NULL; } struct xml *xml_down(struct xml *item) { return item ? item->down : NULL; } char *xml_text(struct xml *item) { return item ? item->text : NULL; } char *xml_tag(struct xml *item) { return item && item->name[0] ? item->name : NULL; } int xml_is_tag(struct xml *item, const char *name) { if (!item) return 0; return !strcmp(item->name, name); } char *xml_att(struct xml *item, const char *name) { struct xmlatt *att; if (!item) return NULL; for (att = item->atts; att; att = att->next) if (!strcmp(att->name, name)) return att->value; return NULL; } char *xml_att_name(struct xml *item, int index) //< @r-lyeh: new function { int i; struct xmlatt *att; if (!item) return NULL; for (att = item->atts, i = 0; att && i < index; att = att->next, ++i) {} return att ? att->name : NULL; } struct xml *xml_find(struct xml *item, const char *tag) { while (item) { if (!strcmp(item->name, tag)) return item; item = item->next; } return NULL; } struct xml *xml_find_next(struct xml *item, const char *tag) { if (item) item = item->next; return xml_find(item, tag); } struct xml *xml_find_down(struct xml *item, const char *tag) { if (item) item = item->down; return xml_find(item, tag); } static void xml_free_att(struct xmlatt *att) { while (att) { struct xmlatt *next = att->next; if (att->value) free(att->value); free(att); att = next; } } void xml_free(struct xml *item) { while (item) { struct xml *next = item->next; if (item->text) free(item->text); if (item->atts) xml_free_att(item->atts); if (item->down) xml_free(item->down); free(item); item = next; } } static int xml_parse_entity(int *c, char *a) { char *b; if (a[1] == '#') { if (a[2] == 'x') *c = strtol(a + 3, &b, 16); else *c = strtol(a + 2, &b, 10); if (*b == ';') return b - a + 1; } else if (a[1] == 'l' && a[2] == 't' && a[3] == ';') { *c = '<'; return 4; } else if (a[1] == 'g' && a[2] == 't' && a[3] == ';') { *c = '>'; return 4; } else if (a[1] == 'a' && a[2] == 'm' && a[3] == 'p' && a[4] == ';') { *c = '&'; return 5; } else if (a[1] == 'a' && a[2] == 'p' && a[3] == 'o' && a[4] == 's' && a[5] == ';') { *c = '\''; return 6; } else if (a[1] == 'q' && a[2] == 'u' && a[3] == 'o' && a[4] == 't' && a[5] == ';') { *c = '"'; return 6; } *c = *a; return 1; } static int isname(int c) { return c == '.' || c == '-' || c == '_' || c == ':' || (c >= '0' && c <= '9') || (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'); } static int is_white(int c) { return c == ' ' || c == '\r' || c == '\n' || c == '\t'; } static void xml_emit_open_tag(char *a, char *b) { struct xml *head, *tail; char *ns; /* skip namespace prefix */ for (ns = a; ns < b; ++ns) if (*ns == ':') a = ns + 1; head = malloc(sizeof *head); if (b - a > (int)sizeof(head->name) - 1) b = a + sizeof(head->name) - 1; memmove(head->name, a, b - a); head->name[b - a] = 0; head->atts = NULL; head->text = NULL; head->up = g.head; head->down = NULL; head->prev = NULL; head->next = NULL; if (!g.head->down) { g.head->down = head; g.head->tail = head; } else { tail = g.head->tail; tail->next = head; head->prev = tail; g.head->tail = head; } g.head = head; g.depth++; } static void xml_emit_att_name(char *a, char *b) { struct xml *head = g.head; struct xmlatt *att; att = malloc(sizeof *att); if (b - a > (int)sizeof(att->name) - 1) b = a + sizeof(att->name) - 1; memmove(att->name, a, b - a); att->name[b - a] = 0; att->value = NULL; att->next = head->atts; head->atts = att; } static void xml_emit_att_value(char *a, char *b) { struct xml *head = g.head; struct xmlatt *att = head->atts; char *s; int c; /* entities are all longer than UTFmax so runetochar is safe */ s = att->value = malloc(b - a + 1); while (a < b) { if (*a == '&') { a += xml_parse_entity(&c, a); s += runetochar(s, c); } else { *s++ = *a++; } } *s = 0; } static void xml_emit_close_tag(void) { g.depth--; if (g.head->up) g.head = g.head->up; } static void xml_emit_text(char *a, char *b) { static char *empty = ""; struct xml *head; char *s; int c; /* Skip text outside the root tag */ if (g.depth == 0) return; /* Skip all-whitespace text nodes */ if (!g.preserve_white) { for (s = a; s < b; s++) if (!is_white(*s)) break; if (s == b) return; } xml_emit_open_tag(empty, empty); head = g.head; /* entities are all longer than UTFmax so runetochar is safe */ s = head->text = malloc(b - a + 1); while (a < b) { if (*a == '&') { a += xml_parse_entity(&c, a); s += runetochar(s, c); } else { *s++ = *a++; } } *s = 0; xml_emit_close_tag(); } static void xml_emit_cdata(char *a, char *b) { static char *empty = ""; struct xml *head; char *s; xml_emit_open_tag(empty, empty); head = g.head; s = head->text = malloc(b - a + 1); while (a < b) *s++ = *a++; *s = 0; xml_emit_close_tag(); } static char *xml_parse_imp(char *p) { char *mark; int quote; parse_text: mark = p; while (*p && *p != '<') ++p; if (mark != p) xml_emit_text(mark, p); if (*p == '<') { ++p; goto parse_element; } return NULL; parse_element: if (*p == '/') { ++p; goto parse_closing_element; } if (*p == '!') { ++p; goto parse_comment; } if (*p == '?') { ++p; goto parse_processing_instruction; } while (is_white(*p)) ++p; if (isname(*p)) goto parse_element_name; return "syntax error in element"; parse_comment: if (*p == '[') goto parse_cdata; if (*p == 'D' && !memcmp(p, "DOCTYPE", 7)) goto parse_declaration; if (*p == 'E' && !memcmp(p, "ENTITY", 6)) goto parse_declaration; if (*p++ != '-') return "syntax error in comment (') { p += 3; goto parse_text; } ++p; } return "end of data in comment"; parse_declaration: while (*p) if (*p++ == '>') goto parse_text; return "end of data in declaration"; parse_cdata: if (p[1] != 'C' || p[2] != 'D' || p[3] != 'A' || p[4] != 'T' || p[5] != 'A' || p[6] != '[') return "syntax error in CDATA section"; p += 7; mark = p; while (*p) { if (p[0] == ']' && p[1] == ']' && p[2] == '>') { xml_emit_cdata(mark, p); p += 3; goto parse_text; } ++p; } return "end of data in CDATA section"; parse_processing_instruction: while (*p) { if (p[0] == '?' && p[1] == '>') { p += 2; goto parse_text; } ++p; } return "end of data in processing instruction"; parse_closing_element: while (is_white(*p)) ++p; while (isname(*p)) ++p; while (is_white(*p)) ++p; if (*p != '>') return "syntax error in closing element"; xml_emit_close_tag(); ++p; goto parse_text; parse_element_name: mark = p; while (isname(*p)) ++p; xml_emit_open_tag(mark, p); if (*p == '>') { ++p; goto parse_text; } if (p[0] == '/' && p[1] == '>') { xml_emit_close_tag(); p += 2; goto parse_text; } if (is_white(*p)) goto parse_attributes; return "syntax error after element name"; parse_attributes: while (is_white(*p)) ++p; if (isname(*p)) goto parse_attribute_name; if (*p == '>') { ++p; goto parse_text; } if (p[0] == '/' && p[1] == '>') { xml_emit_close_tag(); p += 2; goto parse_text; } return "syntax error in attributes"; parse_attribute_name: mark = p; while (isname(*p)) ++p; xml_emit_att_name(mark, p); while (is_white(*p)) ++p; if (*p == '=') { ++p; goto parse_attribute_value; } return "syntax error after attribute name"; parse_attribute_value: while (is_white(*p)) ++p; quote = *p++; if (quote != '"' && quote != '\'') return "missing quote character"; mark = p; while (*p && *p != quote) ++p; if (*p == quote) { xml_emit_att_value(mark, p++); goto parse_attributes; } return "end of data in attribute value"; } struct xml *xml_parse(char *s, int preserve_white, char **errorp) { struct xml root, *node; char *error; memset(&root, 0, sizeof root); g.head = &root; g.preserve_white = preserve_white; g.depth = 0; error = xml_parse_imp(s); if (error) { if (errorp) *errorp = error; xml_free(root.down); return NULL; } for (node = root.down; node; node = node->next) node->up = NULL; if (errorp) *errorp = NULL; return root.down; } #endif #line 0 #undef g #line 1 "3rd_polychop.h" /* Progressive Mesh type Polygon Reduction Algorithm * * 1998: Original version by Stan Melax (c) 1998 * Permission to use any of this code wherever you want is granted.. * Although, please do acknowledge authorship if appropriate. * * 2014: Code style upgraded to be more consistent with graphics/gamedev conventions. Relicensed as MIT/PD. * Stan Melax: "Yes, this code can be licensed with the same license as the original. That should be fine." * * 2020: C version by Cloud Wu (c) 2020. Licensed as MIT/PD. */ static inline void array_find_and_remove(array(int) arr, int v) { for( int i = 0, end = array_count(arr); i < end; i++ ) if( arr[i] == v ) { array_erase(arr, i); --end; break; } } #include #include #include struct triangle_n { int vertex[3]; // the 3 points (id) that make this tri vec3 normal; // unit vector othogonal to this face }; struct vertex { vec3 position; // location of point in euclidean space array(int) neighbor; // adjacent vertices array(int) face; // adjacent triangles int id; // place of vertex in original Array int collapse; // candidate vertex (id) for collapse float objdist; // cached cost of collapsing edge }; struct mesh { struct vertex *v; struct triangle_n *t; int n_face; int n_vertex; }; // array static inline struct vertex *Vertex(struct mesh *M, int id) { return M->v + id; } static inline struct triangle_n *Triangle(struct mesh *M, int id) { return M->t + id; } static inline struct triangle_n *Face(struct mesh *M, struct vertex *v, int idx) { return M->t + v->face[idx]; } static void AddVertex(struct mesh *M, const float *v) { int id = M->n_vertex++; struct vertex * tmp = Vertex(M, id); tmp->position = ptr3(v); tmp->neighbor = NULL; tmp->face = NULL; tmp->id = id; tmp->collapse = -1; tmp->objdist = 0; } static void RemoveVertex(struct mesh *M, int id) { struct vertex * v = Vertex(M, id); ASSERT(v->id == id); ASSERT(array_count(v->face) == 0); for (int i=0;iface);i++) { struct vertex * nv = Vertex(M, v->face[i]); array_find_and_remove(nv->neighbor, id); } v->id = -1; // invalid vertex id array_free(v->neighbor); array_free(v->face); } static void ComputeNormal(struct mesh *M, struct triangle_n *t) { struct vertex * v0 = Vertex(M, t->vertex[0]); struct vertex * v1 = Vertex(M, t->vertex[1]); struct vertex * v2 = Vertex(M, t->vertex[2]); vec3 a = sub3(v1->position, v0->position); vec3 b = sub3(v2->position, v1->position); t->normal = norm3(cross3(a,b)); } static void AddNeighbor(struct mesh *M, int vid, int id) { struct vertex *v = Vertex(M, vid); for (int i=0;ineighbor);i++) { if (v->neighbor[i] == id) return; } array_push(v->neighbor, id); } static void AddTriangle(struct mesh *M, const int v[3]) { if (v[0] == v[1] || v[0] == v[2] || v[1] == v[2]) return; ASSERT(v[0] < M->n_vertex); ASSERT(v[1] < M->n_vertex); ASSERT(v[2] < M->n_vertex); int id = M->n_face++; struct triangle_n * tmp = Triangle(M, id); tmp->vertex[0] = v[0]; tmp->vertex[1] = v[1]; tmp->vertex[2] = v[2]; ComputeNormal(M, tmp); for(int i=0;i<3;i++) { struct vertex *obj = Vertex(M, v[i]); array_push(obj->face, id); } AddNeighbor(M, v[0], v[1]); AddNeighbor(M, v[0], v[2]); AddNeighbor(M, v[1], v[0]); AddNeighbor(M, v[1], v[2]); AddNeighbor(M, v[2], v[0]); AddNeighbor(M, v[2], v[1]); } static int HasVertex(struct triangle_n * t, int vid) { return (t->vertex[0] == vid || t->vertex[1] == vid || t->vertex[2] == vid); } static void RemoveIfNonNeighbor_(struct mesh *M, struct vertex *v, int id) { for (int i=0;ineighbor);i++) { if (v->neighbor[i] == id) { for (int j=0;jface);j++) { if (HasVertex(Face(M, v, j), id)) return; } // remove from neighbors array_erase(v->neighbor, i); return; } } } static void RemoveIfNonNeighbor(struct mesh *M, struct vertex *v0, struct vertex *v1) { if (v0 == NULL || v1 == NULL) return; RemoveIfNonNeighbor_(M, v0, v1->id); RemoveIfNonNeighbor_(M, v1, v0->id); } static void RemoveTriangle(struct mesh *M, int id) { struct triangle_n * face = Triangle(M, id); struct vertex * v[3]; for (int i=0;i<3;i++) { v[i] = Vertex(M, face->vertex[i]); if (v[i]->id < 0) v[i] = NULL; else { array_find_and_remove(v[i]->face, id); } } RemoveIfNonNeighbor(M, v[0], v[1]); RemoveIfNonNeighbor(M, v[1], v[2]); RemoveIfNonNeighbor(M, v[2], v[0]); } static void ReplaceVertex(struct mesh *M, int faceid, int oldid, int newid) { struct triangle_n * face = Triangle(M, faceid); ASSERT(oldid >=0 && newid >= 0); ASSERT(HasVertex(face, oldid)); ASSERT(!HasVertex(face, newid)); if(oldid==face->vertex[0]){ face->vertex[0]=newid; } else if(oldid==face->vertex[1]){ face->vertex[1]=newid; } else { face->vertex[2]=newid; } struct vertex *vold = Vertex(M, oldid); struct vertex *vnew = Vertex(M, newid); array_find_and_remove(vold->face, faceid); array_push(vnew->face, faceid); RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[0])); RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[1])); RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[2])); AddNeighbor(M, face->vertex[0], face->vertex[1]); AddNeighbor(M, face->vertex[0], face->vertex[2]); AddNeighbor(M, face->vertex[1], face->vertex[0]); AddNeighbor(M, face->vertex[1], face->vertex[2]); AddNeighbor(M, face->vertex[2], face->vertex[0]); AddNeighbor(M, face->vertex[2], face->vertex[1]); ComputeNormal(M, face); } static void MeshInit(struct mesh *M, int vert_n, int tri_n) { M->n_face = 0; M->n_vertex = 0; M->v = (struct vertex *)MALLOC(vert_n * sizeof(struct vertex)); M->t = (struct triangle_n *)MALLOC(tri_n * sizeof(struct triangle)); } static void MeshFree(struct mesh *M) { FREE(M->v); FREE(M->t); } static float ComputeEdgeCollapseCost(struct mesh *M, struct vertex *u, int vid) { // if we collapse edge uv by moving u to v then how // much different will the model change, i.e. how much "error". // Texture, vertex normal, and border vertex code was removed // to keep this demo as simple as possible. // The method of determining cost was designed in order // to exploit small and coplanar regions for // effective polygon reduction. // Is is possible to add some checks here to see if "folds" // would be generated. i.e. normal of a remaining face gets // flipped. I never seemed to run into this problem and // therefore never added code to detect this case. struct vertex *v = Vertex(M, vid); vec3 tmp = sub3(v->position, u->position); float edgelength = len3(tmp); float curvature=0; // find the "sides" triangles that are on the edge uv array(int) sides = 0; for (int i = 0; iface); i++) { if (HasVertex(Face(M, u, i), vid)) { array_push(sides, u->face[i]); } } // use the triangle facing most away from the sides // to determine our curvature term for (int i = 0; iface); i++) { float mincurv=1; // curve for face i and closer side to it for (int j = 0; jface[i])->normal, Triangle(M, sides[j])->normal); // use dot product of face normals. float t = (1-dotprod)/2.0f; if (t < mincurv) { mincurv = t; } } if (mincurv > curvature) curvature = mincurv; } array_free(sides); // the more coplanar the lower the curvature term return edgelength * curvature; } static void ComputeEdgeCostAtVertex(struct mesh *M, struct vertex *v) { // compute the edge collapse cost for all edges that start // from vertex v. Since we are only interested in reducing // the object by selecting the min cost edge at each step, we // only cache the cost of the least cost edge at this vertex // (in member variable collapse) as well as the value of the // cost (in member variable objdist). if (array_count(v->neighbor) == 0) { // v doesn't have neighbors so it costs nothing to collapse v->collapse=-1; v->objdist=-0.01f; return; } v->objdist = 1000000; v->collapse=-1; // search all neighboring edges for "least cost" edge for (int i = 0; ineighbor); i++) { float dist = ComputeEdgeCollapseCost(M, v, v->neighbor[i]); if(distobjdist) { v->collapse=v->neighbor[i]; // candidate for edge collapse v->objdist=dist; // cost of the collapse } } } static void ComputeAllEdgeCollapseCosts(struct mesh *M) { // For all the edges, compute the difference it would make // to the model if it was collapsed. The least of these // per vertex is cached in each vertex object. for (int i = 0; in_vertex; i++) { ComputeEdgeCostAtVertex(M, Vertex(M, i)); } } static void Collapse(struct mesh *M, int uid, int vid) { // Collapse the edge uv by moving vertex u onto v // Actually remove tris on uv, then update tris that // have u to have v, and then remove u. struct vertex *u = Vertex(M, uid); if(vid < 0) { // u is a vertex all by itself so just delete it RemoveVertex(M, uid); return; } array(int) tmp = 0; // make tmp a Array of all the neighbors of u for (int i = 0; ineighbor); i++) { array_push(tmp, u->neighbor[i]); } // delete triangles on edge uv: for( int i = array_count(u->face); i--; ) { if (HasVertex(Face(M, u, i), vid)) { RemoveTriangle(M, u->face[i]); } } // update remaining triangles to have v instead of u for( int i = array_count(u->face); i--; ) { ReplaceVertex(M, u->face[i], uid, vid); } RemoveVertex(M, uid); // recompute the edge collapse costs for neighboring vertices for (int i = 0; in_vertex; i++) { struct vertex *v = Vertex(M, i); if (v->id >=0) { if (mn == NULL || v->objdist < mn->objdist) { mn = v; } } } return mn; } /* * The function ProgressiveMesh() takes a model in an "indexed face * set" sort of way. i.e. Array of vertices and Array of triangles. * The function then does the polygon reduction algorithm * internally and reduces the model all the way down to 0 * vertices and then returns the order in which the * vertices are collapsed and to which neighbor each vertex * is collapsed to. More specifically the returned "permutation" * indicates how to reorder your vertices so you can render * an object by using the first n vertices (for the n * vertex version). After permuting your vertices, the * map Array indicates to which vertex each vertex is collapsed to. */ API void ProgressiveMesh(int vert_n, int vert_stride, const float *v, int tri_n, const int *tri, int *map, int *permutation) { struct mesh M; MeshInit(&M, vert_n, tri_n); // put input data into our data structures M const char * tmp = (const char *)v; for (int i=0;i=0; i--) { // get the next vertex to collapse struct vertex *mn = MinimumCostEdge(&M); // keep track of this vertex, i.e. the collapse ordering permutation[mn->id] = i; // keep track of vertex to which we collapse to map[i] = mn->collapse; // Collapse this edge Collapse(&M, mn->id, mn->collapse); } // reorder the map Array based on the collapse ordering for (int i = 0; i #include /* amalgamator: dontcache */ #define OS_VXWORKS 1 #define SQLITE_OS_OTHER 0 #define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1 #define SQLITE_OMIT_LOAD_EXTENSION 1 #define SQLITE_ENABLE_LOCKING_STYLE 0 #define HAVE_UTIME 1 #else /* This is not VxWorks. */ #define OS_VXWORKS 0 #define HAVE_FCHOWN 1 #define HAVE_READLINK 1 #define HAVE_LSTAT 1 #endif /* defined(_WRS_KERNEL) */ /************** End of vxworks.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any ** system #includes. Hence, this block of code must be the very first ** code in all source files. ** ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch ** on the compiler command line. This is necessary if you are compiling ** on a recent machine (ex: Red Hat 7.2) but you want your code to work ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 ** without this option, LFS is enable. But LFS does not exist in the kernel ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary ** portability you should omit LFS. ** ** The previous paragraph was written in 2005. (This paragraph is written ** on 2008-11-28.) These days, all Linux kernels support large files, so ** you should probably leave LFS enabled. But some embedded platforms might ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. ** ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* The GCC_VERSION and MSVC_VERSION macros are used to ** conditionally include optimizations for each of these compilers. A ** value of 0 means that compiler is not being used. The ** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific ** optimizations, and hence set all compiler macros to 0 ** ** There was once also a CLANG_VERSION macro. However, we learn that the ** version numbers in clang are for "marketing" only and are inconsistent ** and unreliable. Fortunately, all versions of clang also recognize the ** gcc version numbers and have reasonable settings for gcc version numbers, ** so the GCC_VERSION macro will be set to a correct non-zero value even ** when compiling with clang. */ #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif /* ** Some C99 functions in "math.h" are only present for MSVC when its version ** is associated with Visual Studio 2013 or higher. */ #ifndef SQLITE_HAVE_C99_MATH_FUNCS # if MSVC_VERSION==0 || MSVC_VERSION>=1800 # define SQLITE_HAVE_C99_MATH_FUNCS (1) # else # define SQLITE_HAVE_C99_MATH_FUNCS (0) # endif #endif /* Needed for various definitions... */ #if defined(__GNUC__) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) # define _BSD_SOURCE #endif /* ** Macro to disable warnings about missing "break" at the end of a "case". */ #if GCC_VERSION>=7000000 # define deliberate_fall_through __attribute__((fallthrough)); #else # define deliberate_fall_through #endif /* ** For MinGW, check to see if we can include the header file containing its ** version information, among other things. Normally, this internal MinGW ** header file would [only] be included automatically by other MinGW header ** files; however, the contained version information is now required by this ** header file to work around binary compatibility issues (see below) and ** this is the only known way to reliably obtain it. This entire #if block ** would be completely unnecessary if there was any other way of detecting ** MinGW via their preprocessor (e.g. if they customized their GCC to define ** some MinGW-specific macros). When compiling for MinGW, either the ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be ** defined; otherwise, detection of conditions specific to MinGW will be ** disabled. */ #if defined(_HAVE_MINGW_H) # include "mingw.h" #elif defined(_HAVE__MINGW_H) # include "_mingw.h" #endif /* ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T ** define is required to maintain binary compatibility with the MSVC runtime ** library in use (e.g. for Windows XP). */ #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ defined(_WIN32) && !defined(_WIN64) && \ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ defined(__MSVCRT__) # define _USE_32BIT_TIME_T #endif /* Optionally #include a user-defined header, whereby compilation options ** may be set prior to where they take effect, but after platform setup. ** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include ** file. */ #ifdef SQLITE_CUSTOM_INCLUDE # define INC_STRINGIFY_(f) #f # define INC_STRINGIFY(f) INC_STRINGIFY_(f) # include INC_STRINGIFY(SQLITE_CUSTOM_INCLUDE) #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for ** MinGW. */ /************** Include sqlite3.h in the middle of sqliteInt.h ***************/ /************** Begin file sqlite3.h *****************************************/ /* ** 2001-09-15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. If a C-function, structure, datatype, ** or constant definition does not appear in this file, then it is ** not a published API of SQLite, is subject to change without ** notice, and should not be referenced by programs that use SQLite. ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source ** on how SQLite interfaces are supposed to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ #ifndef SQLITE3_H #define SQLITE3_H #include /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. */ #if 0 extern "C" { #endif /* ** Facilitate override of interface linkage and calling conventions. ** Be aware that these macros may not be used within this particular ** translation of the amalgamation and its associated header file. ** ** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the ** compiler that the target identifier should have external linkage. ** ** The SQLITE_CDECL macro is used to set the calling convention for ** public functions that accept a variable number of arguments. ** ** The SQLITE_APICALL macro is used to set the calling convention for ** public functions that accept a fixed number of arguments. ** ** The SQLITE_STDCALL macro is no longer used and is now deprecated. ** ** The SQLITE_CALLBACK macro is used to set the calling convention for ** function pointers. ** ** The SQLITE_SYSAPI macro is used to set the calling convention for ** functions provided by the operating system. ** ** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and ** SQLITE_SYSAPI macros are used only when building for environments ** that require non-default calling conventions. */ #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif #ifndef SQLITE_API # define SQLITE_API #endif #ifndef SQLITE_CDECL # define SQLITE_CDECL #endif #ifndef SQLITE_APICALL # define SQLITE_APICALL #endif #ifndef SQLITE_STDCALL # define SQLITE_STDCALL SQLITE_APICALL #endif #ifndef SQLITE_CALLBACK # define SQLITE_CALLBACK #endif #ifndef SQLITE_SYSAPI # define SQLITE_SYSAPI #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications ** should not use deprecated interfaces - they are supported for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** ** These macros used to resolve to various kinds of compiler magic that ** would generate warning messages when they were used. But that ** compiler magic ended up generating such a flurry of bug reports ** that we have taken it all out and gone back to using simple ** noop macros. */ #define SQLITE_DEPRECATED #define SQLITE_EXPERIMENTAL /* ** Ensure these symbols were not defined by some previous header file. */ #ifdef SQLITE_VERSION # undef SQLITE_VERSION #endif #ifdef SQLITE_VERSION_NUMBER # undef SQLITE_VERSION_NUMBER #endif /* ** CAPI3REF: Compile-Time Library Version Numbers ** ** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header ** evaluates to a string literal that is the SQLite version in the ** format "X.Y.Z" where X is the major version number (always 3 for ** SQLite3) and Y is the minor version number and Z is the release number.)^ ** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer ** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same ** numbers used in [SQLITE_VERSION].)^ ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also ** be larger than the release from which it is derived. Either Y will ** be held constant and Z will be incremented or else Y will be incremented ** and Z will be reset to zero. ** ** Since [version 3.6.18] ([dateof:3.6.18]), ** SQLite source code has been stored in the **
Fossil configuration management ** system. ^The SQLITE_SOURCE_ID macro evaluates to ** a string which identifies a particular check-in of SQLite ** within its configuration management system. ^The SQLITE_SOURCE_ID ** string contains the date and time of the check-in (UTC) and a SHA1 ** or SHA3-256 hash of the entire source tree. If the source code has ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.43.0" #define SQLITE_VERSION_NUMBER 3043000 #define SQLITE_SOURCE_ID "2023-08-24 12:36:59 0f80b798b3f4b81a7bb4233c58294edd0f1156f36b6ecf5ab8e83631d468778c" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros ** but are associated with the library instead of the header file. ^(Cautious ** programmers might include assert() statements in their application to ** verify that values returned by these interfaces match the macros in ** the header, and thus ensure that the application is ** compiled with matching library and header files. ** **
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
** 
)^ ** ** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION] ** macro. ^The sqlite3_libversion() function returns a pointer to the ** to the sqlite3_version[] string constant. The sqlite3_libversion() ** function is provided for use in DLLs since DLL users usually do not have ** direct access to string constants within the DLL. ^The ** sqlite3_libversion_number() function returns an integer equal to ** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns ** a pointer to a string constant whose value is the same as the ** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built ** using an edited copy of [the amalgamation], then the last four characters ** of the hash might be different from [SQLITE_SOURCE_ID].)^ ** ** See also: [sqlite_version()] and [sqlite_source_id()]. */ SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; SQLITE_API const char *sqlite3_libversion(void); SQLITE_API const char *sqlite3_sourceid(void); SQLITE_API int sqlite3_libversion_number(void); /* ** CAPI3REF: Run-Time Library Compilation Options Diagnostics ** ** ^The sqlite3_compileoption_used() function returns 0 or 1 ** indicating whether the specified option was defined at ** compile time. ^The SQLITE_ prefix may be omitted from the ** option name passed to sqlite3_compileoption_used(). ** ** ^The sqlite3_compileoption_get() function allows iterating ** over the list of options that were defined at compile time by ** returning the N-th compile time option string. ^If N is out of range, ** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ ** prefix is omitted from any strings returned by ** sqlite3_compileoption_get(). ** ** ^Support for the diagnostic functions sqlite3_compileoption_used() ** and sqlite3_compileoption_get() may be omitted by specifying the ** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. ** ** See also: SQL functions [sqlite_compileoption_used()] and ** [sqlite_compileoption_get()] and the [compile_options pragma]. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS SQLITE_API int sqlite3_compileoption_used(const char *zOptName); SQLITE_API const char *sqlite3_compileoption_get(int N); #else # define sqlite3_compileoption_used(X) 0 # define sqlite3_compileoption_get(X) ((void*)0) #endif /* ** CAPI3REF: Test To See If The Library Is Threadsafe ** ** ^The sqlite3_threadsafe() function returns zero if and only if ** SQLite was compiled with mutexing code omitted due to the ** [SQLITE_THREADSAFE] compile-time option being set to 0. ** ** SQLite can be compiled with or without mutexes. When ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes ** are enabled and SQLite is threadsafe. When the ** [SQLITE_THREADSAFE] macro is 0, ** the mutexes are omitted. Without the mutexes, it is not safe ** to use SQLite concurrently from more than one thread. ** ** Enabling mutexes incurs a measurable performance penalty. ** So if speed is of utmost importance, it makes sense to disable ** the mutexes. But for maximum safety, mutexes should be enabled. ** ^The default behavior is for mutexes to be enabled. ** ** This interface can be used by an application to make sure that the ** version of SQLite that it is linking against was compiled with ** the desired setting of the [SQLITE_THREADSAFE] macro. ** ** This interface only reports on the compile-time mutex setting ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with ** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but ** can be fully or partially disabled using a call to [sqlite3_config()] ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], ** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the ** sqlite3_threadsafe() function shows only the compile-time setting of ** thread safety, not any run-time changes to that setting made by ** sqlite3_config(). In other words, the return value from sqlite3_threadsafe() ** is unchanged by calls to sqlite3_config().)^ ** ** See the [threading mode] documentation for additional information. */ SQLITE_API int sqlite3_threadsafe(void); /* ** CAPI3REF: Database Connection Handle ** KEYWORDS: {database connection} {database connections} ** ** Each open SQLite database is represented by a pointer to an instance of ** the opaque structure named "sqlite3". It is useful to think of an sqlite3 ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] ** and [sqlite3_close_v2()] are its destructors. There are many other ** interfaces (such as ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and ** [sqlite3_busy_timeout()] to name but three) that are methods on an ** sqlite3 object. */ typedef struct sqlite3 sqlite3; /* ** CAPI3REF: 64-Bit Integer Types ** KEYWORDS: sqlite_int64 sqlite_uint64 ** ** Because there is no cross-platform way to specify 64-bit integer types ** SQLite includes typedefs for 64-bit signed and unsigned integers. ** ** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions. ** The sqlite_int64 and sqlite_uint64 types are supported for backwards ** compatibility only. ** ** ^The sqlite3_int64 and sqlite_int64 types can store integer values ** between -9223372036854775808 and +9223372036854775807 inclusive. ^The ** sqlite3_uint64 and sqlite_uint64 types can store integer values ** between 0 and +18446744073709551615 inclusive. */ #ifdef SQLITE_INT64_TYPE typedef SQLITE_INT64_TYPE sqlite_int64; # ifdef SQLITE_UINT64_TYPE typedef SQLITE_UINT64_TYPE sqlite_uint64; # else typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; # endif #elif defined(_MSC_VER) || defined(__BORLANDC__) typedef __int64 sqlite_int64; typedef unsigned __int64 sqlite_uint64; #else typedef long long int sqlite_int64; typedef unsigned long long int sqlite_uint64; #endif typedef sqlite_int64 sqlite3_int64; typedef sqlite_uint64 sqlite3_uint64; /* ** If compiling for a processor that lacks floating point support, ** substitute integer for floating-point. */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* ** CAPI3REF: Closing A Database Connection ** DESTRUCTOR: sqlite3 ** ** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors ** for the [sqlite3] object. ** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if ** the [sqlite3] object is successfully destroyed and all associated ** resources are deallocated. ** ** Ideally, applications should [sqlite3_finalize | finalize] all ** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and ** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated ** with the [sqlite3] object prior to attempting to close the object. ** ^If the database connection is associated with unfinalized prepared ** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then ** sqlite3_close() will leave the database connection open and return ** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared ** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups, ** it returns [SQLITE_OK] regardless, but instead of deallocating the database ** connection immediately, it marks the database connection as an unusable ** "zombie" and makes arrangements to automatically deallocate the database ** connection after all prepared statements are finalized, all BLOB handles ** are closed, and all backups have finished. The sqlite3_close_v2() interface ** is intended for use with host languages that are garbage collected, and ** where the order in which destructors are called is arbitrary. ** ** ^If an [sqlite3] object is destroyed while a transaction is open, ** the transaction is automatically rolled back. ** ** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)] ** must be either a NULL ** pointer or an [sqlite3] object pointer obtained ** from [sqlite3_open()], [sqlite3_open16()], or ** [sqlite3_open_v2()], and not previously closed. ** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer ** argument is a harmless no-op. */ SQLITE_API int sqlite3_close(sqlite3*); SQLITE_API int sqlite3_close_v2(sqlite3*); /* ** The type for a callback function. ** This is legacy and deprecated. It is included for historical ** compatibility and is not documented. */ typedef int (*sqlite3_callback)(void*,int,char**, char**); /* ** CAPI3REF: One-Step Query Execution Interface ** METHOD: sqlite3 ** ** The sqlite3_exec() interface is a convenience wrapper around ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], ** that allows an application to run multiple statements of SQL ** without having to use a lot of C code. ** ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, ** semicolon-separate SQL statements passed into its 2nd argument, ** in the context of the [database connection] passed in as its 1st ** argument. ^If the callback function of the 3rd argument to ** sqlite3_exec() is not NULL, then it is invoked for each result row ** coming out of the evaluated SQL statements. ^The 4th argument to ** sqlite3_exec() is relayed through to the 1st argument of each ** callback invocation. ^If the callback pointer to sqlite3_exec() ** is NULL, then no callback is ever invoked and result rows are ** ignored. ** ** ^If an error occurs while evaluating the SQL statements passed into ** sqlite3_exec(), then execution of the current statement stops and ** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec() ** is not NULL then any error message is written into memory obtained ** from [sqlite3_malloc()] and passed back through the 5th parameter. ** To avoid memory leaks, the application should invoke [sqlite3_free()] ** on error message strings returned through the 5th parameter of ** sqlite3_exec() after the error message string is no longer needed. ** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors ** occur, then sqlite3_exec() sets the pointer in its 5th parameter to ** NULL before returning. ** ** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec() ** routine returns SQLITE_ABORT without invoking the callback again and ** without running any subsequent SQL statements. ** ** ^The 2nd argument to the sqlite3_exec() callback function is the ** number of columns in the result. ^The 3rd argument to the sqlite3_exec() ** callback is an array of pointers to strings obtained as if from ** [sqlite3_column_text()], one for each column. ^If an element of a ** result row is NULL then the corresponding string pointer for the ** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the ** sqlite3_exec() callback is an array of pointers to strings where each ** entry represents the name of corresponding result column as obtained ** from [sqlite3_column_name()]. ** ** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer ** to an empty string, or a pointer that contains only whitespace and/or ** SQL comments, then no SQL statements are evaluated and the database ** is not changed. ** ** Restrictions: ** **
    **
  • The application must ensure that the 1st parameter to sqlite3_exec() ** is a valid and open [database connection]. **
  • The application must not close the [database connection] specified by ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. **
  • The application must not modify the SQL statement text passed into ** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. **
*/ SQLITE_API int sqlite3_exec( sqlite3*, /* An open database */ const char *sql, /* SQL to be evaluated */ int (*callback)(void*,int,char**,char**), /* Callback function */ void *, /* 1st argument to callback */ char **errmsg /* Error msg written here */ ); /* ** CAPI3REF: Result Codes ** KEYWORDS: {result code definitions} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicate success or failure. ** ** New error codes may be added in future versions of SQLite. ** ** See also: [extended result code definitions] */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ #define SQLITE_ERROR 1 /* Generic error */ #define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ #define SQLITE_PERM 3 /* Access permission denied */ #define SQLITE_ABORT 4 /* Callback routine requested an abort */ #define SQLITE_BUSY 5 /* The database file is locked */ #define SQLITE_LOCKED 6 /* A table in the database is locked */ #define SQLITE_NOMEM 7 /* A malloc() failed */ #define SQLITE_READONLY 8 /* Attempt to write a readonly database */ #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ #define SQLITE_CORRUPT 11 /* The database disk image is malformed */ #define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ #define SQLITE_FULL 13 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 14 /* Unable to open the database file */ #define SQLITE_PROTOCOL 15 /* Database lock protocol error */ #define SQLITE_EMPTY 16 /* Internal use only */ #define SQLITE_SCHEMA 17 /* The database schema changed */ #define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ #define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ #define SQLITE_MISMATCH 20 /* Data type mismatch */ #define SQLITE_MISUSE 21 /* Library used incorrectly */ #define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ #define SQLITE_AUTH 23 /* Authorization denied */ #define SQLITE_FORMAT 24 /* Not used */ #define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ #define SQLITE_NOTADB 26 /* File opened that is not a database file */ #define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */ #define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */ #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ /* end-of-error-codes */ /* ** CAPI3REF: Extended Result Codes ** KEYWORDS: {extended result code definitions} ** ** In its default configuration, SQLite API routines return one of 30 integer ** [result codes]. However, experience has shown that many of ** these result codes are too coarse-grained. They do not provide as ** much information about problems as programmers might like. In an effort to ** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8] ** and later) include ** support for additional result codes that provide more detailed information ** about errors. These [extended result codes] are enabled or disabled ** on a per database connection basis using the ** [sqlite3_extended_result_codes()] API. Or, the extended code for ** the most recent error can be obtained using ** [sqlite3_extended_errcode()]. */ #define SQLITE_ERROR_MISSING_COLLSEQ (SQLITE_ERROR | (1<<8)) #define SQLITE_ERROR_RETRY (SQLITE_ERROR | (2<<8)) #define SQLITE_ERROR_SNAPSHOT (SQLITE_ERROR | (3<<8)) #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) #define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) #define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) #define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) #define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) #define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) #define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) #define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) #define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) #define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) #define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) #define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) #define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8)) #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) #define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8)) #define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) #define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8)) #define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8)) #define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8)) #define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8)) #define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8)) #define SQLITE_IOERR_IN_PAGE (SQLITE_IOERR | (34<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) /* Not Used */ #define SQLITE_CANTOPEN_SYMLINK (SQLITE_CANTOPEN | (6<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8)) #define SQLITE_CORRUPT_INDEX (SQLITE_CORRUPT | (3<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) #define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8)) #define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) #define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8)) #define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) #define SQLITE_NOTICE_RBU (SQLITE_NOTICE | (3<<8)) #define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) #define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8)) #define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8)) #define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */ /* ** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. ** ** Only those flags marked as "Ok for sqlite3_open_v2()" may be ** used as the third argument to the [sqlite3_open_v2()] interface. ** The other flags have historically been ignored by sqlite3_open_v2(), ** though future versions of SQLite might change so that an error is ** raised if any of the disallowed bits are passed into sqlite3_open_v2(). ** Applications should not depend on the historical behavior. ** ** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into ** [sqlite3_open_v2()] does *not* cause the underlying database file ** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into ** [sqlite3_open_v2()] has historically be a no-op and might become an ** error in future versions of SQLite. */ #define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */ #define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ #define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ #define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ #define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ #define SQLITE_OPEN_SUPER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ #define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */ /* Reserved: 0x00F00000 */ /* Legacy compatibility: */ #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ /* ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] ** object returns an integer which is a vector of these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] ** refers to. ** ** The SQLITE_IOCAP_ATOMIC property means that all writes of ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that ** after reboot following a crash or power loss, the only bytes in a ** file that were written at the application level might have changed ** and that adjacent bytes, even bytes within the same sector are ** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN ** flag indicates that a file cannot be deleted when open. The ** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on ** read-only media and cannot be changed even by processes with ** elevated privileges. ** ** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying ** filesystem supports doing multiple write operations atomically when those ** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and ** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. */ #define SQLITE_IOCAP_ATOMIC 0x00000001 #define SQLITE_IOCAP_ATOMIC512 0x00000002 #define SQLITE_IOCAP_ATOMIC1K 0x00000004 #define SQLITE_IOCAP_ATOMIC2K 0x00000008 #define SQLITE_IOCAP_ATOMIC4K 0x00000010 #define SQLITE_IOCAP_ATOMIC8K 0x00000020 #define SQLITE_IOCAP_ATOMIC16K 0x00000040 #define SQLITE_IOCAP_ATOMIC32K 0x00000080 #define SQLITE_IOCAP_ATOMIC64K 0x00000100 #define SQLITE_IOCAP_SAFE_APPEND 0x00000200 #define SQLITE_IOCAP_SEQUENTIAL 0x00000400 #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 #define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000 #define SQLITE_IOCAP_IMMUTABLE 0x00002000 #define SQLITE_IOCAP_BATCH_ATOMIC 0x00004000 /* ** CAPI3REF: File Locking Levels ** ** SQLite uses one of these integer values as the second ** argument to calls it makes to the xLock() and xUnlock() methods ** of an [sqlite3_io_methods] object. These values are ordered from ** lest restrictive to most restrictive. ** ** The argument to xLock() is always SHARED or higher. The argument to ** xUnlock is either SHARED or NONE. */ #define SQLITE_LOCK_NONE 0 /* xUnlock() only */ #define SQLITE_LOCK_SHARED 1 /* xLock() or xUnlock() */ #define SQLITE_LOCK_RESERVED 2 /* xLock() only */ #define SQLITE_LOCK_PENDING 3 /* xLock() only */ #define SQLITE_LOCK_EXCLUSIVE 4 /* xLock() only */ /* ** CAPI3REF: Synchronization Type Flags ** ** When SQLite invokes the xSync() method of an ** [sqlite3_io_methods] object it uses a combination of ** these integer values as the second argument. ** ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the ** sync operation only needs to flush data to mass storage. Inode ** information need not be flushed. If the lower four bits of the flag ** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics. ** If the lower four bits equal SQLITE_SYNC_FULL, that means ** to use Mac OS X style fullsync instead of fsync(). ** ** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags ** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL ** settings. The [synchronous pragma] determines when calls to the ** xSync VFS method occur and applies uniformly across all platforms. ** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how ** energetic or rigorous or forceful the sync operations are and ** only make a difference on Mac OSX for the default SQLite code. ** (Third-party VFS implementations might also make the distinction ** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the ** operating systems natively supported by SQLite, only Mac OSX ** cares about the difference.) */ #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* ** CAPI3REF: OS Interface Open File Handle ** ** An [sqlite3_file] object represents an open file in the ** [sqlite3_vfs | OS interface layer]. Individual OS interface ** implementations will ** want to subclass this object by appending additional fields ** for their own use. The pMethods entry is a pointer to an ** [sqlite3_io_methods] object that defines methods for performing ** I/O operations on the open file. */ typedef struct sqlite3_file sqlite3_file; struct sqlite3_file { const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ }; /* ** CAPI3REF: OS Interface File Virtual Methods Object ** ** Every file opened by the [sqlite3_vfs.xOpen] method populates an ** [sqlite3_file] object (or, more commonly, a subclass of the ** [sqlite3_file] object) with a pointer to an instance of this object. ** This object defines the methods used to perform various operations ** against the open file represented by the [sqlite3_file] object. ** ** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element ** to a non-NULL pointer, then the sqlite3_io_methods.xClose method ** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The ** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen] ** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element ** to NULL. ** ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or ** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). ** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY] ** flag may be ORed in to indicate that only the data of the file ** and not its inode needs to be synced. ** ** The integer values to xLock() and xUnlock() are one of **
    **
  • [SQLITE_LOCK_NONE], **
  • [SQLITE_LOCK_SHARED], **
  • [SQLITE_LOCK_RESERVED], **
  • [SQLITE_LOCK_PENDING], or **
  • [SQLITE_LOCK_EXCLUSIVE]. **
** xLock() upgrades the database file lock. In other words, xLock() moves the ** database file lock in the direction NONE toward EXCLUSIVE. The argument to ** xLock() is always on of SHARED, RESERVED, PENDING, or EXCLUSIVE, never ** SQLITE_LOCK_NONE. If the database file lock is already at or above the ** requested lock, then the call to xLock() is a no-op. ** xUnlock() downgrades the database file lock to either SHARED or NONE. * If the lock is already at or below the requested lock state, then the call ** to xUnlock() is a no-op. ** The xCheckReservedLock() method checks whether any database connection, ** either in this process or in some other process, is holding a RESERVED, ** PENDING, or EXCLUSIVE lock on the file. It returns true ** if such a lock exists and false otherwise. ** ** The xFileControl() method is a generic interface that allows custom ** VFS implementations to directly control an open file using the ** [sqlite3_file_control()] interface. The second "op" argument is an ** integer opcode. The third argument is a generic pointer intended to ** point to a structure that may contain arguments or space in which to ** write return values. Potential uses for xFileControl() might be ** functions to enable blocking locks with timeouts, to change the ** locking strategy (for example to use dot-file locks), to inquire ** about the status of a lock, or to break stale locks. The SQLite ** core reserves all opcodes less than 100 for its own use. ** A [file control opcodes | list of opcodes] less than 100 is available. ** Applications that define a custom xFileControl method should use opcodes ** greater than 100 to avoid conflicts. VFS implementations should ** return [SQLITE_NOTFOUND] for file control opcodes that they do not ** recognize. ** ** The xSectorSize() method returns the sector size of the ** device that underlies the file. The sector size is the ** minimum write that can be performed without disturbing ** other bytes in the file. The xDeviceCharacteristics() ** method returns a bit vector describing behaviors of the ** underlying device: ** **
    **
  • [SQLITE_IOCAP_ATOMIC] **
  • [SQLITE_IOCAP_ATOMIC512] **
  • [SQLITE_IOCAP_ATOMIC1K] **
  • [SQLITE_IOCAP_ATOMIC2K] **
  • [SQLITE_IOCAP_ATOMIC4K] **
  • [SQLITE_IOCAP_ATOMIC8K] **
  • [SQLITE_IOCAP_ATOMIC16K] **
  • [SQLITE_IOCAP_ATOMIC32K] **
  • [SQLITE_IOCAP_ATOMIC64K] **
  • [SQLITE_IOCAP_SAFE_APPEND] **
  • [SQLITE_IOCAP_SEQUENTIAL] **
  • [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN] **
  • [SQLITE_IOCAP_POWERSAFE_OVERWRITE] **
  • [SQLITE_IOCAP_IMMUTABLE] **
  • [SQLITE_IOCAP_BATCH_ATOMIC] **
** ** The SQLITE_IOCAP_ATOMIC property means that all writes of ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). ** ** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill ** in the unread portions of the buffer with zeros. A VFS that ** fails to zero-fill short reads might seem to work. However, ** failure to zero-fill short reads will eventually lead to ** database corruption. */ typedef struct sqlite3_io_methods sqlite3_io_methods; struct sqlite3_io_methods { int iVersion; int (*xClose)(sqlite3_file*); int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); int (*xSync)(sqlite3_file*, int flags); int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); int (*xLock)(sqlite3_file*, int); int (*xUnlock)(sqlite3_file*, int); int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); int (*xFileControl)(sqlite3_file*, int op, void *pArg); int (*xSectorSize)(sqlite3_file*); int (*xDeviceCharacteristics)(sqlite3_file*); /* Methods above are valid for version 1 */ int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**); int (*xShmLock)(sqlite3_file*, int offset, int n, int flags); void (*xShmBarrier)(sqlite3_file*); int (*xShmUnmap)(sqlite3_file*, int deleteFlag); /* Methods above are valid for version 2 */ int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p); /* Methods above are valid for version 3 */ /* Additional methods may be added in future releases */ }; /* ** CAPI3REF: Standard File Control Opcodes ** KEYWORDS: {file control opcodes} {file control opcode} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] ** interface. ** **
    **
  • [[SQLITE_FCNTL_LOCKSTATE]] ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This ** opcode causes the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) ** into an integer that the pArg argument points to. ** This capability is only available if SQLite is compiled with [SQLITE_DEBUG]. ** **
  • [[SQLITE_FCNTL_SIZE_HINT]] ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS ** layer a hint of how large the database file will grow to be during the ** current transaction. This hint is not guaranteed to be accurate but it ** is often close. The underlying VFS might choose to preallocate database ** file space based on this hint in order to help writes to the database ** file run faster. ** **
  • [[SQLITE_FCNTL_SIZE_LIMIT]] ** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that ** implements [sqlite3_deserialize()] to set an upper bound on the size ** of the in-memory database. The argument is a pointer to a [sqlite3_int64]. ** If the integer pointed to is negative, then it is filled in with the ** current limit. Otherwise the limit is set to the larger of the value ** of the integer pointed to and the current database size. The integer ** pointed to is set to the new limit. ** **
  • [[SQLITE_FCNTL_CHUNK_SIZE]] ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS ** extends and truncates the database file in chunks of a size specified ** by the user. The fourth argument to [sqlite3_file_control()] should ** point to an integer (type int) containing the new chunk-size to use ** for the nominated database. Allocating database file space in large ** chunks (say 1MB at a time), may reduce file-system fragmentation and ** improve performance on some systems. ** **
  • [[SQLITE_FCNTL_FILE_POINTER]] ** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer ** to the [sqlite3_file] object associated with a particular database ** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER]. ** **
  • [[SQLITE_FCNTL_JOURNAL_POINTER]] ** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer ** to the [sqlite3_file] object associated with the journal file (either ** the [rollback journal] or the [write-ahead log]) for a particular database ** connection. See also [SQLITE_FCNTL_FILE_POINTER]. ** **
  • [[SQLITE_FCNTL_SYNC_OMITTED]] ** No longer in use. ** **
  • [[SQLITE_FCNTL_SYNC]] ** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and ** sent to the VFS immediately before the xSync method is invoked on a ** database file descriptor. Or, if the xSync method is not invoked ** because the user has configured SQLite with ** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place ** of the xSync method. In most cases, the pointer argument passed with ** this file-control is NULL. However, if the database file is being synced ** as part of a multi-database commit, the argument points to a nul-terminated ** string containing the transactions super-journal file name. VFSes that ** do not need this signal should silently ignore this opcode. Applications ** should not call [sqlite3_file_control()] with this opcode as doing so may ** disrupt the operation of the specialized VFSes that do require it. ** **
  • [[SQLITE_FCNTL_COMMIT_PHASETWO]] ** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite ** and sent to the VFS after a transaction has been committed immediately ** but before the database is unlocked. VFSes that do not need this signal ** should silently ignore this opcode. Applications should not call ** [sqlite3_file_control()] with this opcode as doing so may disrupt the ** operation of the specialized VFSes that do require it. ** **
  • [[SQLITE_FCNTL_WIN32_AV_RETRY]] ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic ** retry counts and intervals for certain disk I/O operations for the ** windows [VFS] in order to provide robustness in the presence of ** anti-virus programs. By default, the windows VFS will retry file read, ** file write, and file delete operations up to 10 times, with a delay ** of 25 milliseconds before the first retry and with the delay increasing ** by an additional 25 milliseconds with each subsequent retry. This ** opcode allows these two values (10 retries and 25 milliseconds of delay) ** to be adjusted. The values are changed for all database connections ** within the same process. The argument is a pointer to an array of two ** integers where the first integer is the new retry count and the second ** integer is the delay. If either integer is negative, then the setting ** is not changed but instead the prior value of that setting is written ** into the array entry, allowing the current retry settings to be ** interrogated. The zDbName parameter is ignored. ** **
  • [[SQLITE_FCNTL_PERSIST_WAL]] ** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the ** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary ** write ahead log ([WAL file]) and shared memory ** files used for transaction control ** are automatically deleted when the latest connection to the database ** closes. Setting persistent WAL mode causes those files to persist after ** close. Persisting the files is useful when other processes that do not ** have write permission on the directory containing the database file want ** to read the database file, as the WAL and shared memory files must exist ** in order for the database to be readable. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent ** WAL mode. If the integer is -1, then it is overwritten with the current ** WAL persistence setting. ** **
  • [[SQLITE_FCNTL_POWERSAFE_OVERWRITE]] ** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the ** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting ** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the ** xDeviceCharacteristics methods. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage ** mode. If the integer is -1, then it is overwritten with the current ** zero-damage mode setting. ** **
  • [[SQLITE_FCNTL_OVERWRITE]] ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening ** a write transaction to indicate that, unless it is rolled back for some ** reason, the entire database file will be overwritten by the current ** transaction. This is used by VACUUM operations. ** **
  • [[SQLITE_FCNTL_VFSNAME]] ** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of ** all [VFSes] in the VFS stack. The names are of all VFS shims and the ** final bottom-level VFS are written into memory obtained from ** [sqlite3_malloc()] and the result is stored in the char* variable ** that the fourth parameter of [sqlite3_file_control()] points to. ** The caller is responsible for freeing the memory when done. As with ** all file-control actions, there is no guarantee that this will actually ** do anything. Callers should initialize the char* variable to a NULL ** pointer in case this file-control is not implemented. This file-control ** is intended for diagnostic use only. ** **
  • [[SQLITE_FCNTL_VFS_POINTER]] ** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level ** [VFSes] currently in use. ^(The argument X in ** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be ** of type "[sqlite3_vfs] **". This opcodes will set *X ** to a pointer to the top-level VFS.)^ ** ^When there are multiple VFS shims in the stack, this opcode finds the ** upper-most shim only. ** **
  • [[SQLITE_FCNTL_PRAGMA]] ** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] ** file control is sent to the open [sqlite3_file] object corresponding ** to the database file to which the pragma statement refers. ^The argument ** to the [SQLITE_FCNTL_PRAGMA] file control is an array of ** pointers to strings (char**) in which the second element of the array ** is the name of the pragma and the third element is the argument to the ** pragma or NULL if the pragma has no argument. ^The handler for an ** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element ** of the char** argument point to a string obtained from [sqlite3_mprintf()] ** or the equivalent and that string will become the result of the pragma or ** the error message if the pragma fails. ^If the ** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal ** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] ** file control returns [SQLITE_OK], then the parser assumes that the ** VFS has handled the PRAGMA itself and the parser generates a no-op ** prepared statement if result string is NULL, or that returns a copy ** of the result string if the string is non-NULL. ** ^If the [SQLITE_FCNTL_PRAGMA] file control returns ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means ** that the VFS encountered an error while handling the [PRAGMA] and the ** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] ** file control occurs at the beginning of pragma statement analysis and so ** it is able to override built-in [PRAGMA] statements. ** **
  • [[SQLITE_FCNTL_BUSYHANDLER]] ** ^The [SQLITE_FCNTL_BUSYHANDLER] ** file-control may be invoked by SQLite on the database file handle ** shortly after it is opened in order to provide a custom VFS with access ** to the connection's busy-handler callback. The argument is of type (void**) ** - an array of two (void *) values. The first (void *) actually points ** to a function of type (int (*)(void *)). In order to invoke the connection's ** busy-handler, this function should be invoked with the second (void *) in ** the array as the only argument. If it returns non-zero, then the operation ** should be retried. If it returns zero, the custom VFS should abandon the ** current operation. ** **
  • [[SQLITE_FCNTL_TEMPFILENAME]] ** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control ** to have SQLite generate a ** temporary filename using the same algorithm that is followed to generate ** temporary filenames for TEMP tables and other internal uses. The ** argument should be a char** which will be filled with the filename ** written into memory obtained from [sqlite3_malloc()]. The caller should ** invoke [sqlite3_free()] on the result to avoid a memory leak. ** **
  • [[SQLITE_FCNTL_MMAP_SIZE]] ** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the ** maximum number of bytes that will be used for memory-mapped I/O. ** The argument is a pointer to a value of type sqlite3_int64 that ** is an advisory maximum number of bytes in the file to memory map. The ** pointer is overwritten with the old value. The limit is not changed if ** the value originally pointed to is negative, and so the current limit ** can be queried by passing in a pointer to a negative number. This ** file-control is used internally to implement [PRAGMA mmap_size]. ** **
  • [[SQLITE_FCNTL_TRACE]] ** The [SQLITE_FCNTL_TRACE] file control provides advisory information ** to the VFS about what the higher layers of the SQLite stack are doing. ** This file control is used by some VFS activity tracing [shims]. ** The argument is a zero-terminated string. Higher layers in the ** SQLite stack may generate instances of this file control if ** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled. ** **
  • [[SQLITE_FCNTL_HAS_MOVED]] ** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a ** pointer to an integer and it writes a boolean into that integer depending ** on whether or not the file has been renamed, moved, or deleted since it ** was first opened. ** **
  • [[SQLITE_FCNTL_WIN32_GET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the ** underlying native file handle associated with a file handle. This file ** control interprets its argument as a pointer to a native file handle and ** writes the resulting value there. ** **
  • [[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** **
  • [[SQLITE_FCNTL_WAL_BLOCK]] ** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might ** be advantageous to block on the next WAL lock if the lock is not immediately ** available. The WAL subsystem issues this signal during rare ** circumstances in order to fix a problem with priority inversion. ** Applications should not use this file-control. ** **
  • [[SQLITE_FCNTL_ZIPVFS]] ** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other ** VFS should return SQLITE_NOTFOUND for this opcode. ** **
  • [[SQLITE_FCNTL_RBU]] ** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by ** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for ** this opcode. ** **
  • [[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]] ** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then ** the file descriptor is placed in "batch write mode", which ** means all subsequent write operations will be deferred and done ** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems ** that do not support batch atomic writes will return SQLITE_NOTFOUND. ** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to ** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or ** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make ** no VFS interface calls on the same [sqlite3_file] file descriptor ** except for calls to the xWrite method and the xFileControl method ** with [SQLITE_FCNTL_SIZE_HINT]. ** **
  • [[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]] ** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write ** operations since the previous successful call to ** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically. ** This file control returns [SQLITE_OK] if and only if the writes were ** all performed successfully and have been committed to persistent storage. ** ^Regardless of whether or not it is successful, this file control takes ** the file descriptor out of batch write mode so that all subsequent ** write operations are independent. ** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without ** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]. ** **
  • [[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]] ** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write ** operations since the previous successful call to ** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back. ** ^This file control takes the file descriptor out of batch write mode ** so that all subsequent write operations are independent. ** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without ** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]. ** **
  • [[SQLITE_FCNTL_LOCK_TIMEOUT]] ** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS ** to block for up to M milliseconds before failing when attempting to ** obtain a file lock using the xLock or xShmLock methods of the VFS. ** The parameter is a pointer to a 32-bit signed integer that contains ** the value that M is to be set to. Before returning, the 32-bit signed ** integer is overwritten with the previous value of M. ** **
  • [[SQLITE_FCNTL_DATA_VERSION]] ** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to ** a database file. The argument is a pointer to a 32-bit unsigned integer. ** The "data version" for the pager is written into the pointer. The ** "data version" changes whenever any change occurs to the corresponding ** database file, either through SQL statements on the same database ** connection or through transactions committed by separate database ** connections possibly in other processes. The [sqlite3_total_changes()] ** interface can be used to find if any database on the connection has changed, ** but that interface responds to changes on TEMP as well as MAIN and does ** not provide a mechanism to detect changes to MAIN only. Also, the ** [sqlite3_total_changes()] interface responds to internal changes only and ** omits changes made by other database connections. The ** [PRAGMA data_version] command provides a mechanism to detect changes to ** a single attached database that occur due to other database connections, ** but omits changes implemented by the database connection on which it is ** called. This file control is the only mechanism to detect changes that ** happen either internally or externally and that are associated with ** a particular attached database. ** **
  • [[SQLITE_FCNTL_CKPT_START]] ** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint ** in wal mode before the client starts to copy pages from the wal ** file to the database file. ** **
  • [[SQLITE_FCNTL_CKPT_DONE]] ** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint ** in wal mode after the client has finished copying pages from the wal ** file to the database file, but before the *-shm file is updated to ** record the fact that the pages have been checkpointed. ** **
  • [[SQLITE_FCNTL_EXTERNAL_READER]] ** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect ** whether or not there is a database client in another process with a wal-mode ** transaction open on the database or not. It is only available on unix.The ** (void*) argument passed with this file-control should be a pointer to a ** value of type (int). The integer value is set to 1 if the database is a wal ** mode database and there exists at least one client in another process that ** currently has an SQL transaction open on the database. It is set to 0 if ** the database is not a wal-mode db, or if there is no such connection in any ** other process. This opcode cannot be used to detect transactions opened ** by clients within the current process, only within other processes. ** **
  • [[SQLITE_FCNTL_CKSM_FILE]] ** The [SQLITE_FCNTL_CKSM_FILE] opcode is for use internally by the ** [checksum VFS shim] only. ** **
  • [[SQLITE_FCNTL_RESET_CACHE]] ** If there is currently no transaction open on the database, and the ** database is not a temp db, then the [SQLITE_FCNTL_RESET_CACHE] file-control ** purges the contents of the in-memory page cache. If there is an open ** transaction, or if the db is a temp-db, this opcode is a no-op, not an error. **
*/ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 #define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 #define SQLITE_FCNTL_SYNC_OMITTED 8 #define SQLITE_FCNTL_WIN32_AV_RETRY 9 #define SQLITE_FCNTL_PERSIST_WAL 10 #define SQLITE_FCNTL_OVERWRITE 11 #define SQLITE_FCNTL_VFSNAME 12 #define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 #define SQLITE_FCNTL_PRAGMA 14 #define SQLITE_FCNTL_BUSYHANDLER 15 #define SQLITE_FCNTL_TEMPFILENAME 16 #define SQLITE_FCNTL_MMAP_SIZE 18 #define SQLITE_FCNTL_TRACE 19 #define SQLITE_FCNTL_HAS_MOVED 20 #define SQLITE_FCNTL_SYNC 21 #define SQLITE_FCNTL_COMMIT_PHASETWO 22 #define SQLITE_FCNTL_WIN32_SET_HANDLE 23 #define SQLITE_FCNTL_WAL_BLOCK 24 #define SQLITE_FCNTL_ZIPVFS 25 #define SQLITE_FCNTL_RBU 26 #define SQLITE_FCNTL_VFS_POINTER 27 #define SQLITE_FCNTL_JOURNAL_POINTER 28 #define SQLITE_FCNTL_WIN32_GET_HANDLE 29 #define SQLITE_FCNTL_PDB 30 #define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE 31 #define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE 32 #define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE 33 #define SQLITE_FCNTL_LOCK_TIMEOUT 34 #define SQLITE_FCNTL_DATA_VERSION 35 #define SQLITE_FCNTL_SIZE_LIMIT 36 #define SQLITE_FCNTL_CKPT_DONE 37 #define SQLITE_FCNTL_RESERVE_BYTES 38 #define SQLITE_FCNTL_CKPT_START 39 #define SQLITE_FCNTL_EXTERNAL_READER 40 #define SQLITE_FCNTL_CKSM_FILE 41 #define SQLITE_FCNTL_RESET_CACHE 42 /* deprecated names */ #define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE #define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE #define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only ** deals with pointers to the [sqlite3_mutex] object. ** ** Mutexes are created using [sqlite3_mutex_alloc()]. */ typedef struct sqlite3_mutex sqlite3_mutex; /* ** CAPI3REF: Loadable Extension Thunk ** ** A pointer to the opaque sqlite3_api_routines structure is passed as ** the third parameter to entry points of [loadable extensions]. This ** structure must be typedefed in order to work around compiler warnings ** on some platforms. */ typedef struct sqlite3_api_routines sqlite3_api_routines; /* ** CAPI3REF: File Name ** ** Type [sqlite3_filename] is used by SQLite to pass filenames to the ** xOpen method of a [VFS]. It may be cast to (const char*) and treated ** as a normal, nul-terminated, UTF-8 buffer containing the filename, but ** may also be passed to special APIs such as: ** **
    **
  • sqlite3_filename_database() **
  • sqlite3_filename_journal() **
  • sqlite3_filename_wal() **
  • sqlite3_uri_parameter() **
  • sqlite3_uri_boolean() **
  • sqlite3_uri_int64() **
  • sqlite3_uri_key() **
*/ typedef const char *sqlite3_filename; /* ** CAPI3REF: OS Interface Object ** ** An instance of the sqlite3_vfs object defines the interface between ** the SQLite core and the underlying operating system. The "vfs" ** in the name of the object stands for "virtual file system". See ** the [VFS | VFS documentation] for further information. ** ** The VFS interface is sometimes extended by adding new methods onto ** the end. Each time such an extension occurs, the iVersion field ** is incremented. The iVersion value started out as 1 in ** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2 ** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased ** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields ** may be appended to the sqlite3_vfs object and the iVersion value ** may increase again in future versions of SQLite. ** Note that due to an oversight, the structure ** of the sqlite3_vfs object changed in the transition from ** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0] ** and yet the iVersion field was not increased. ** ** The szOsFile field is the size of the subclassed [sqlite3_file] ** structure used by this VFS. mxPathname is the maximum length of ** a pathname in this VFS. ** ** Registered sqlite3_vfs objects are kept on a linked list formed by ** the pNext pointer. The [sqlite3_vfs_register()] ** and [sqlite3_vfs_unregister()] interfaces manage this list ** in a thread-safe way. The [sqlite3_vfs_find()] interface ** searches the list. Neither the application code nor the VFS ** implementation should use the pNext pointer. ** ** The pNext field is the only field in the sqlite3_vfs ** structure that SQLite will ever modify. SQLite will only access ** or modify this field while holding a particular static mutex. ** The application should never modify anything within the sqlite3_vfs ** object once the object has been registered. ** ** The zName field holds the name of the VFS module. The name must ** be unique across all VFS modules. ** ** [[sqlite3_vfs.xOpen]] ** ^SQLite guarantees that the zFilename parameter to xOpen ** is either a NULL pointer or string obtained ** from xFullPathname() with an optional suffix added. ** ^If a suffix is added to the zFilename parameter, it will ** consist of a single "-" character followed by no more than ** 11 alphanumeric and/or "-" characters. ** ^SQLite further guarantees that ** the string will be valid and unchanged until xClose() is ** called. Because of the previous sentence, ** the [sqlite3_file] can safely store a pointer to the ** filename if it needs to remember the filename for some reason. ** If the zFilename parameter to xOpen is a NULL pointer then xOpen ** must invent its own temporary name for the file. ^Whenever the ** xFilename parameter is NULL it will also be the case that the ** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. ** ** The flags argument to xOpen() includes all bits set in ** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] ** or [sqlite3_open16()] is used, then flags includes at least ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. ** If xOpen() opens a file read-only then it sets *pOutFlags to ** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. ** ** ^(SQLite will also add one of the following flags to the xOpen() ** call, depending on the object being opened: ** **
    **
  • [SQLITE_OPEN_MAIN_DB] **
  • [SQLITE_OPEN_MAIN_JOURNAL] **
  • [SQLITE_OPEN_TEMP_DB] **
  • [SQLITE_OPEN_TEMP_JOURNAL] **
  • [SQLITE_OPEN_TRANSIENT_DB] **
  • [SQLITE_OPEN_SUBJOURNAL] **
  • [SQLITE_OPEN_SUPER_JOURNAL] **
  • [SQLITE_OPEN_WAL] **
)^ ** ** The file I/O implementation can use the object type flags to ** change the way it deals with files. For example, an application ** that does not care about crash recovery or rollback might make ** the open of a journal file a no-op. Writes to this journal would ** also be no-ops, and any attempt to read the journal would return ** SQLITE_IOERR. Or the implementation might recognize that a database ** file will be doing page-aligned sector reads and writes in a random ** order and set up its I/O subsystem accordingly. ** ** SQLite might also add one of the following flags to the xOpen method: ** **
    **
  • [SQLITE_OPEN_DELETEONCLOSE] **
  • [SQLITE_OPEN_EXCLUSIVE] **
** ** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be ** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE] ** will be set for TEMP databases and their journals, transient ** databases, and subjournals. ** ** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction ** with the [SQLITE_OPEN_CREATE] flag, which are both directly ** analogous to the O_EXCL and O_CREAT flags of the POSIX open() ** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the ** SQLITE_OPEN_CREATE, is used to indicate that file should always ** be created, and that it is an error if it already exists. ** It is not used to indicate the file should be opened ** for exclusive access. ** ** ^At least szOsFile bytes of memory are allocated by SQLite ** to hold the [sqlite3_file] structure passed as the third ** argument to xOpen. The xOpen method does not have to ** allocate the structure; it should just fill it in. Note that ** the xOpen method must set the sqlite3_file.pMethods to either ** a valid [sqlite3_io_methods] object or to NULL. xOpen must do ** this even if the open fails. SQLite expects that the sqlite3_file.pMethods ** element will be valid after xOpen returns regardless of the success ** or failure of the xOpen call. ** ** [[sqlite3_vfs.xAccess]] ** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] ** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to ** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] ** to test whether a file is at least readable. The SQLITE_ACCESS_READ ** flag is never actually used and is not implemented in the built-in ** VFSes of SQLite. The file is named by the second argument and can be a ** directory. The xAccess method returns [SQLITE_OK] on success or some ** non-zero error code if there is an I/O error or if the name of ** the file given in the second argument is illegal. If SQLITE_OK ** is returned, then non-zero or zero is written into *pResOut to indicate ** whether or not the file is accessible. ** ** ^SQLite will always allocate at least mxPathname+1 bytes for the ** output buffer xFullPathname. The exact size of the output buffer ** is also passed as a parameter to both methods. If the output buffer ** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is ** handled as a fatal error by SQLite, vfs implementations should endeavor ** to prevent this by setting mxPathname to a sufficiently large value. ** ** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64() ** interfaces are not strictly a part of the filesystem, but they are ** included in the VFS structure for completeness. ** The xRandomness() function attempts to return nBytes bytes ** of good-quality randomness into zOut. The return value is ** the actual number of bytes of randomness obtained. ** The xSleep() method causes the calling thread to sleep for at ** least the number of microseconds given. ^The xCurrentTime() ** method returns a Julian Day Number for the current date and time as ** a floating point value. ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian ** Day Number multiplied by 86400000 (the number of milliseconds in ** a 24-hour day). ** ^SQLite will use the xCurrentTimeInt64() method to get the current ** date and time if that method is available (if iVersion is 2 or ** greater and the function pointer is not NULL) and will fall back ** to xCurrentTime() if xCurrentTimeInt64() is unavailable. ** ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces ** are not used by the SQLite core. These optional interfaces are provided ** by some VFSes to facilitate testing of the VFS code. By overriding ** system calls with functions under its control, a test program can ** simulate faults and error conditions that would otherwise be difficult ** or impossible to induce. The set of system calls that can be overridden ** varies from one VFS to another, and from one version of the same VFS to the ** next. Applications that use these interfaces must be prepared for any ** or all of these interfaces to be NULL or for their behavior to change ** from one release to the next. Applications must not attempt to access ** any of these methods if the iVersion of the VFS is less than 3. */ typedef struct sqlite3_vfs sqlite3_vfs; typedef void (*sqlite3_syscall_ptr)(void); struct sqlite3_vfs { int iVersion; /* Structure version number (currently 3) */ int szOsFile; /* Size of subclassed sqlite3_file */ int mxPathname; /* Maximum file pathname length */ sqlite3_vfs *pNext; /* Next registered VFS */ const char *zName; /* Name of this virtual file system */ void *pAppData; /* Pointer to application-specific data */ int (*xOpen)(sqlite3_vfs*, sqlite3_filename zName, sqlite3_file*, int flags, int *pOutFlags); int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut); int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void); void (*xDlClose)(sqlite3_vfs*, void*); int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); int (*xSleep)(sqlite3_vfs*, int microseconds); int (*xCurrentTime)(sqlite3_vfs*, double*); int (*xGetLastError)(sqlite3_vfs*, int, char *); /* ** The methods above are in version 1 of the sqlite_vfs object ** definition. Those that follow are added in version 2 or later */ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); /* ** The methods above are in versions 1 and 2 of the sqlite_vfs object. ** Those below are for version 3 and greater. */ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); /* ** The methods above are in versions 1 through 3 of the sqlite_vfs object. ** New fields may be appended in future versions. The iVersion ** value will increment whenever this happens. */ }; /* ** CAPI3REF: Flags for the xAccess VFS method ** ** These integer constants can be used as the third parameter to ** the xAccess method of an [sqlite3_vfs] object. They determine ** what kind of permissions the xAccess method is looking for. ** With SQLITE_ACCESS_EXISTS, the xAccess method ** simply checks whether the file exists. ** With SQLITE_ACCESS_READWRITE, the xAccess method ** checks whether the named directory is both readable and writable ** (in other words, if files can be added, removed, and renamed within ** the directory). ** The SQLITE_ACCESS_READWRITE constant is currently used only by the ** [temp_store_directory pragma], though this could change in a future ** release of SQLite. ** With SQLITE_ACCESS_READ, the xAccess method ** checks whether the file is readable. The SQLITE_ACCESS_READ constant is ** currently unused, though it might be used in a future release of ** SQLite. */ #define SQLITE_ACCESS_EXISTS 0 #define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */ #define SQLITE_ACCESS_READ 2 /* Unused */ /* ** CAPI3REF: Flags for the xShmLock VFS method ** ** These integer constants define the various locking operations ** allowed by the xShmLock method of [sqlite3_io_methods]. The ** following are the only legal combinations of flags to the ** xShmLock method: ** **
    **
  • SQLITE_SHM_LOCK | SQLITE_SHM_SHARED **
  • SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE **
  • SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED **
  • SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE **
** ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as ** was given on the corresponding lock. ** ** The xShmLock method can transition between unlocked and SHARED or ** between unlocked and EXCLUSIVE. It cannot transition between SHARED ** and EXCLUSIVE. */ #define SQLITE_SHM_UNLOCK 1 #define SQLITE_SHM_LOCK 2 #define SQLITE_SHM_SHARED 4 #define SQLITE_SHM_EXCLUSIVE 8 /* ** CAPI3REF: Maximum xShmLock index ** ** The xShmLock method on [sqlite3_io_methods] may use values ** between 0 and this upper bound as its "offset" argument. ** The SQLite core will never attempt to acquire or release a ** lock outside of this range */ #define SQLITE_SHM_NLOCK 8 /* ** CAPI3REF: Initialize The SQLite Library ** ** ^The sqlite3_initialize() routine initializes the ** SQLite library. ^The sqlite3_shutdown() routine ** deallocates any resources that were allocated by sqlite3_initialize(). ** These routines are designed to aid in process initialization and ** shutdown on embedded systems. Workstation applications using ** SQLite normally do not need to invoke either of these routines. ** ** A call to sqlite3_initialize() is an "effective" call if it is ** the first time sqlite3_initialize() is invoked during the lifetime of ** the process, or if it is the first time sqlite3_initialize() is invoked ** following a call to sqlite3_shutdown(). ^(Only an effective call ** of sqlite3_initialize() does any initialization. All other calls ** are harmless no-ops.)^ ** ** A call to sqlite3_shutdown() is an "effective" call if it is the first ** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only ** an effective call to sqlite3_shutdown() does any deinitialization. ** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^ ** ** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown() ** is not. The sqlite3_shutdown() interface must only be called from a ** single thread. All open [database connections] must be closed and all ** other SQLite resources must be deallocated prior to invoking ** sqlite3_shutdown(). ** ** Among other things, ^sqlite3_initialize() will invoke ** sqlite3_os_init(). Similarly, ^sqlite3_shutdown() ** will invoke sqlite3_os_end(). ** ** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success. ** ^If for some reason, sqlite3_initialize() is unable to initialize ** the library (perhaps it is unable to allocate a needed resource such ** as a mutex) it returns an [error code] other than [SQLITE_OK]. ** ** ^The sqlite3_initialize() routine is called internally by many other ** SQLite interfaces so that an application usually does not need to ** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] ** calls sqlite3_initialize() so the SQLite library will be automatically ** initialized when [sqlite3_open()] is called if it has not be initialized ** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] ** compile-time option, then the automatic calls to sqlite3_initialize() ** are omitted and the application must call sqlite3_initialize() directly ** prior to using any other SQLite interface. For maximum portability, ** it is recommended that applications always invoke sqlite3_initialize() ** directly prior to using any other SQLite interface. Future releases ** of SQLite may require this. In other words, the behavior exhibited ** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the ** default behavior in some future release of SQLite. ** ** The sqlite3_os_init() routine does operating-system specific ** initialization of the SQLite library. The sqlite3_os_end() ** routine undoes the effect of sqlite3_os_init(). Typical tasks ** performed by these routines include allocation or deallocation ** of static resources, initialization of global variables, ** setting up a default [sqlite3_vfs] module, or setting up ** a default configuration using [sqlite3_config()]. ** ** The application should never invoke either sqlite3_os_init() ** or sqlite3_os_end() directly. The application should only invoke ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() ** are built into SQLite when it is compiled for Unix, Windows, or OS/2. ** When [custom builds | built for other platforms] ** (using the [SQLITE_OS_OTHER=1] compile-time ** option) the application must supply a suitable implementation for ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied ** implementation of sqlite3_os_init() or sqlite3_os_end() ** must return [SQLITE_OK] on success and some other [error code] upon ** failure. */ SQLITE_API int sqlite3_initialize(void); SQLITE_API int sqlite3_shutdown(void); SQLITE_API int sqlite3_os_init(void); SQLITE_API int sqlite3_os_end(void); /* ** CAPI3REF: Configuring The SQLite Library ** ** The sqlite3_config() interface is used to make global configuration ** changes to SQLite in order to tune SQLite to the specific needs of ** the application. The default configuration is recommended for most ** applications and so this routine is usually not necessary. It is ** provided to support rare applications with unusual needs. ** ** The sqlite3_config() interface is not threadsafe. The application ** must ensure that no other SQLite interfaces are invoked by other ** threads while sqlite3_config() is running. ** ** The first argument to sqlite3_config() is an integer ** [configuration option] that determines ** what property of SQLite is to be configured. Subsequent arguments ** vary depending on the [configuration option] ** in the first argument. ** ** For most configuration options, the sqlite3_config() interface ** may only be invoked prior to library initialization using ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. ** The exceptional configuration options that may be invoked at any time ** are called "anytime configuration options". ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before ** [sqlite3_shutdown()] with a first argument that is not an anytime ** configuration option, then the sqlite3_config() call will return SQLITE_MISUSE. ** Note, however, that ^sqlite3_config() can be called as part of the ** implementation of an application-defined [sqlite3_os_init()]. ** ** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. ** ^If the option is unknown or SQLite is unable to set the option ** then this routine returns a non-zero [error code]. */ SQLITE_API int sqlite3_config(int, ...); /* ** CAPI3REF: Configure database connections ** METHOD: sqlite3 ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single ** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code ** that indicates what aspect of the [database connection] is being configured. ** Subsequent arguments vary depending on the configuration verb. ** ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if ** the call is considered successful. */ SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...); /* ** CAPI3REF: Memory Allocation Routines ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. ** ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. ** By creating an instance of this object ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) ** during configuration, an application can specify an alternative ** memory allocation subsystem for SQLite to use for all of its ** dynamic memory needs. ** ** Note that SQLite comes with several [built-in memory allocators] ** that are perfectly adequate for the overwhelming majority of applications ** and that this object is only useful to a tiny minority of applications ** with specialized memory allocation requirements. This object is ** also used during testing of SQLite in order to specify an alternative ** memory allocator that simulates memory out-of-memory conditions in ** order to verify that SQLite recovers gracefully from such ** conditions. ** ** The xMalloc, xRealloc, and xFree methods must work like the ** malloc(), realloc() and free() functions from the standard C library. ** ^SQLite guarantees that the second argument to ** xRealloc is always a value returned by a prior call to xRoundup. ** ** xSize should return the allocated size of a memory allocation ** previously obtained from xMalloc or xRealloc. The allocated size ** is always at least as big as the requested size but may be larger. ** ** The xRoundup method returns what would be the allocated size of ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. ** Every memory allocation request coming in through [sqlite3_malloc()] ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** ** The xInit method initializes the memory allocator. For example, ** it might allocate any required mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired ** by xInit. The pAppData pointer is used as the only parameter to ** xInit and xShutdown. ** ** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes ** the xInit method, so the xInit method need not be threadsafe. The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. For all other methods, SQLite ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which ** it is by default) and so the methods are automatically serialized. ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other ** methods must be threadsafe or else make their own arrangements for ** serialization. ** ** SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). */ typedef struct sqlite3_mem_methods sqlite3_mem_methods; struct sqlite3_mem_methods { void *(*xMalloc)(int); /* Memory allocation function */ void (*xFree)(void*); /* Free a prior allocation */ void *(*xRealloc)(void*,int); /* Resize an allocation */ int (*xSize)(void*); /* Return the size of an allocation */ int (*xRoundup)(int); /* Round up request size to allocation size */ int (*xInit)(void*); /* Initialize the memory allocator */ void (*xShutdown)(void*); /* Deinitialize the memory allocator */ void *pAppData; /* Argument to xInit() and xShutdown() */ }; /* ** CAPI3REF: Configuration Options ** KEYWORDS: {configuration option} ** ** These constants are the available integer configuration options that ** can be passed as the first argument to the [sqlite3_config()] interface. ** ** Most of the configuration options for sqlite3_config() ** will only work if invoked prior to [sqlite3_initialize()] or after ** [sqlite3_shutdown()]. The few exceptions to this rule are called ** "anytime configuration options". ** ^Calling [sqlite3_config()] with a first argument that is not an ** anytime configuration option in between calls to [sqlite3_initialize()] and ** [sqlite3_shutdown()] is a no-op that returns SQLITE_MISUSE. ** ** The set of anytime configuration options can change (by insertions ** and/or deletions) from one release of SQLite to the next. ** As of SQLite version 3.42.0, the complete set of anytime configuration ** options is: **
    **
  • SQLITE_CONFIG_LOG **
  • SQLITE_CONFIG_PCACHE_HDRSZ **
** ** New configuration options may be added in future releases of SQLite. ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_config()] to make sure that ** the call worked. The [sqlite3_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** **
** [[SQLITE_CONFIG_SINGLETHREAD]]
SQLITE_CONFIG_SINGLETHREAD
**
There are no arguments to this option. ^This option sets the ** [threading mode] to Single-thread. In other words, it disables ** all mutexing and puts SQLite into a mode where it can only be used ** by a single thread. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to change the [threading mode] from its default ** value of Single-thread and so [sqlite3_config()] will return ** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD ** configuration option.
** ** [[SQLITE_CONFIG_MULTITHREAD]]
SQLITE_CONFIG_MULTITHREAD
**
There are no arguments to this option. ^This option sets the ** [threading mode] to Multi-thread. In other words, it disables ** mutexing on [database connection] and [prepared statement] objects. ** The application is responsible for serializing access to ** [database connections] and [prepared statements]. But other mutexes ** are enabled so that SQLite will be safe to use in a multi-threaded ** environment as long as no two threads attempt to use the same ** [database connection] at the same time. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to set the Multi-thread [threading mode] and ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the ** SQLITE_CONFIG_MULTITHREAD configuration option.
** ** [[SQLITE_CONFIG_SERIALIZED]]
SQLITE_CONFIG_SERIALIZED
**
There are no arguments to this option. ^This option sets the ** [threading mode] to Serialized. In other words, this option enables ** all mutexes including the recursive ** mutexes on [database connection] and [prepared statement] objects. ** In this mode (which is the default when SQLite is compiled with ** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access ** to [database connections] and [prepared statements] so that the ** application is free to use the same [database connection] or the ** same [prepared statement] in different threads at the same time. ** ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to set the Serialized [threading mode] and ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the ** SQLITE_CONFIG_SERIALIZED configuration option.
** ** [[SQLITE_CONFIG_MALLOC]]
SQLITE_CONFIG_MALLOC
**
^(The SQLITE_CONFIG_MALLOC option takes a single argument which is ** a pointer to an instance of the [sqlite3_mem_methods] structure. ** The argument specifies ** alternative low-level memory allocation routines to be used in place of ** the memory allocation routines built into SQLite.)^ ^SQLite makes ** its own private copy of the content of the [sqlite3_mem_methods] structure ** before the [sqlite3_config()] call returns.
** ** [[SQLITE_CONFIG_GETMALLOC]]
SQLITE_CONFIG_GETMALLOC
**
^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which ** is a pointer to an instance of the [sqlite3_mem_methods] structure. ** The [sqlite3_mem_methods] ** structure is filled with the currently defined memory allocation routines.)^ ** This option can be used to overload the default memory allocation ** routines with a wrapper that simulations memory allocation failure or ** tracks memory usage, for example.
** ** [[SQLITE_CONFIG_SMALL_MALLOC]]
SQLITE_CONFIG_SMALL_MALLOC
**
^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of ** type int, interpreted as a boolean, which if true provides a hint to ** SQLite that it should avoid large memory allocations if possible. ** SQLite will run faster if it is free to make large memory allocations, ** but some application might prefer to run slower in exchange for ** guarantees about memory fragmentation that are possible if large ** allocations are avoided. This hint is normally off. **
** ** [[SQLITE_CONFIG_MEMSTATUS]]
SQLITE_CONFIG_MEMSTATUS
**
^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int, ** interpreted as a boolean, which enables or disables the collection of ** memory allocation statistics. ^(When memory allocation statistics are ** disabled, the following SQLite interfaces become non-operational: **
    **
  • [sqlite3_hard_heap_limit64()] **
  • [sqlite3_memory_used()] **
  • [sqlite3_memory_highwater()] **
  • [sqlite3_soft_heap_limit64()] **
  • [sqlite3_status64()] **
)^ ** ^Memory allocation statistics are enabled by default unless SQLite is ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. **
** ** [[SQLITE_CONFIG_SCRATCH]]
SQLITE_CONFIG_SCRATCH
**
The SQLITE_CONFIG_SCRATCH option is no longer used. **
** ** [[SQLITE_CONFIG_PAGECACHE]]
SQLITE_CONFIG_PAGECACHE
**
^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool ** that SQLite can use for the database page cache with the default page ** cache implementation. ** This configuration option is a no-op if an application-defined page ** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]. ** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to ** 8-byte aligned memory (pMem), the size of each page cache line (sz), ** and the number of cache lines (N). ** The sz argument should be the size of the largest database page ** (a power of two between 512 and 65536) plus some extra bytes for each ** page header. ^The number of extra bytes needed by the page header ** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ]. ** ^It is harmless, apart from the wasted memory, ** for the sz parameter to be larger than necessary. The pMem ** argument must be either a NULL pointer or a pointer to an 8-byte ** aligned block of memory of at least sz*N bytes, otherwise ** subsequent behavior is undefined. ** ^When pMem is not NULL, SQLite will strive to use the memory provided ** to satisfy page cache needs, falling back to [sqlite3_malloc()] if ** a page cache line is larger than sz bytes or if all of the pMem buffer ** is exhausted. ** ^If pMem is NULL and N is non-zero, then each database connection ** does an initial bulk allocation for page cache memory ** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or ** of -1024*N bytes if N is negative, . ^If additional ** page cache memory is needed beyond what is provided by the initial ** allocation, then SQLite goes to [sqlite3_malloc()] separately for each ** additional cache line.
** ** [[SQLITE_CONFIG_HEAP]]
SQLITE_CONFIG_HEAP
**
^The SQLITE_CONFIG_HEAP option specifies a static memory buffer ** that SQLite will use for all of its dynamic memory allocation needs ** beyond those provided for by [SQLITE_CONFIG_PAGECACHE]. ** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled ** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns ** [SQLITE_ERROR] if invoked otherwise. ** ^There are three arguments to SQLITE_CONFIG_HEAP: ** An 8-byte aligned pointer to the memory, ** the number of bytes in the memory buffer, and the minimum allocation size. ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte ** boundary or subsequent behavior of SQLite will be undefined. ** The minimum allocation size is capped at 2**12. Reasonable values ** for the minimum allocation size are 2**5 through 2**8.
** ** [[SQLITE_CONFIG_MUTEX]]
SQLITE_CONFIG_MUTEX
**
^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a ** pointer to an instance of the [sqlite3_mutex_methods] structure. ** The argument specifies alternative low-level mutex routines to be used ** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of ** the content of the [sqlite3_mutex_methods] structure before the call to ** [sqlite3_config()] returns. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to ** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will ** return [SQLITE_ERROR].
** ** [[SQLITE_CONFIG_GETMUTEX]]
SQLITE_CONFIG_GETMUTEX
**
^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which ** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The ** [sqlite3_mutex_methods] ** structure is filled with the currently defined mutex routines.)^ ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to ** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will ** return [SQLITE_ERROR].
** ** [[SQLITE_CONFIG_LOOKASIDE]]
SQLITE_CONFIG_LOOKASIDE
**
^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine ** the default size of lookaside memory on each [database connection]. ** The first argument is the ** size of each lookaside buffer slot and the second is the number of ** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE ** sets the default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] ** option to [sqlite3_db_config()] can be used to change the lookaside ** configuration on individual connections.)^
** ** [[SQLITE_CONFIG_PCACHE2]]
SQLITE_CONFIG_PCACHE2
**
^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is ** a pointer to an [sqlite3_pcache_methods2] object. This object specifies ** the interface to a custom page cache implementation.)^ ** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.
** ** [[SQLITE_CONFIG_GETPCACHE2]]
SQLITE_CONFIG_GETPCACHE2
**
^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which ** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of ** the current page cache implementation into that object.)^
** ** [[SQLITE_CONFIG_LOG]]
SQLITE_CONFIG_LOG
**
The SQLITE_CONFIG_LOG option is used to configure the SQLite ** global [error log]. ** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a ** function with a call signature of void(*)(void*,int,const char*), ** and a pointer to void. ^If the function pointer is not NULL, it is ** invoked by [sqlite3_log()] to process each logging event. ^If the ** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op. ** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is ** passed through as the first parameter to the application-defined logger ** function whenever that function is invoked. ^The second parameter to ** the logger function is a copy of the first parameter to the corresponding ** [sqlite3_log()] call and is intended to be a [result code] or an ** [extended result code]. ^The third parameter passed to the logger is ** log message after formatting via [sqlite3_snprintf()]. ** The SQLite logging interface is not reentrant; the logger function ** supplied by the application must not invoke any SQLite interface. ** In a multi-threaded application, the application-defined logger ** function must be threadsafe.
** ** [[SQLITE_CONFIG_URI]]
SQLITE_CONFIG_URI **
^(The SQLITE_CONFIG_URI option takes a single argument of type int. ** If non-zero, then URI handling is globally enabled. If the parameter is zero, ** then URI handling is globally disabled.)^ ^If URI handling is globally ** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], ** [sqlite3_open16()] or ** specified as part of [ATTACH] commands are interpreted as URIs, regardless ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database ** connection is opened. ^If it is globally disabled, filenames are ** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the ** database connection is opened. ^(By default, URI handling is globally ** disabled. The default value may be changed by compiling with the ** [SQLITE_USE_URI] symbol defined.)^ ** ** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]]
SQLITE_CONFIG_COVERING_INDEX_SCAN **
^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer ** argument which is interpreted as a boolean in order to enable or disable ** the use of covering indices for full table scans in the query optimizer. ** ^The default setting is determined ** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on" ** if that compile-time option is omitted. ** The ability to disable the use of covering indices for full table scans ** is because some incorrectly coded legacy applications might malfunction ** when the optimization is enabled. Providing the ability to ** disable the optimization allows the older, buggy application code to work ** without change even with newer versions of SQLite. ** ** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]] **
SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE **
These options are obsolete and should not be used by new code. ** They are retained for backwards compatibility but are now no-ops. **
** ** [[SQLITE_CONFIG_SQLLOG]] **
SQLITE_CONFIG_SQLLOG **
This option is only available if sqlite is compiled with the ** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should ** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int). ** The second should be of type (void*). The callback is invoked by the library ** in three separate circumstances, identified by the value passed as the ** fourth parameter. If the fourth parameter is 0, then the database connection ** passed as the second argument has just been opened. The third argument ** points to a buffer containing the name of the main database file. If the ** fourth parameter is 1, then the SQL statement that the third parameter ** points to has just been executed. Or, if the fourth parameter is 2, then ** the connection being passed as the second parameter is being closed. The ** third parameter is passed NULL In this case. An example of using this ** configuration option can be seen in the "test_sqllog.c" source file in ** the canonical SQLite source tree.
** ** [[SQLITE_CONFIG_MMAP_SIZE]] **
SQLITE_CONFIG_MMAP_SIZE **
^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values ** that are the default mmap size limit (the default setting for ** [PRAGMA mmap_size]) and the maximum allowed mmap size limit. ** ^The default setting can be overridden by each database connection using ** either the [PRAGMA mmap_size] command, or by using the ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size ** will be silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ ** ^If either argument to this option is negative, then that argument is ** changed to its compile-time default. ** ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] **
SQLITE_CONFIG_WIN32_HEAPSIZE **
^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is ** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro ** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. ** ** [[SQLITE_CONFIG_PCACHE_HDRSZ]] **
SQLITE_CONFIG_PCACHE_HDRSZ **
^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which ** is a pointer to an integer and writes into that integer the number of extra ** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. ** The amount of extra space required can change depending on the compiler, ** target platform, and SQLite version. ** ** [[SQLITE_CONFIG_PMASZ]] **
SQLITE_CONFIG_PMASZ **
^The SQLITE_CONFIG_PMASZ option takes a single parameter which ** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded ** sorter to that integer. The default minimum PMA Size is set by the ** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched ** to help with sort operations when multithreaded sorting ** is enabled (using the [PRAGMA threads] command) and the amount of content ** to be sorted exceeds the page size times the minimum of the ** [PRAGMA cache_size] setting and this value. ** ** [[SQLITE_CONFIG_STMTJRNL_SPILL]] **
SQLITE_CONFIG_STMTJRNL_SPILL **
^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which ** becomes the [statement journal] spill-to-disk threshold. ** [Statement journals] are held in memory until their size (in bytes) ** exceeds this threshold, at which point they are written to disk. ** Or if the threshold is -1, statement journals are always held ** exclusively in memory. ** Since many statement journals never become large, setting the spill ** threshold to a value such as 64KiB can greatly reduce the amount of ** I/O required to support statement rollback. ** The default value for this setting is controlled by the ** [SQLITE_STMTJRNL_SPILL] compile-time option. ** ** [[SQLITE_CONFIG_SORTERREF_SIZE]] **
SQLITE_CONFIG_SORTERREF_SIZE **
The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter ** of type (int) - the new value of the sorter-reference size threshold. ** Usually, when SQLite uses an external sort to order records according ** to an ORDER BY clause, all fields required by the caller are present in the ** sorted records. However, if SQLite determines based on the declared type ** of a table column that its values are likely to be very large - larger ** than the configured sorter-reference size threshold - then a reference ** is stored in each sorted record and the required column values loaded ** from the database as records are returned in sorted order. The default ** value for this option is to never use this optimization. Specifying a ** negative value for this option restores the default behaviour. ** This option is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option. ** ** [[SQLITE_CONFIG_MEMDB_MAXSIZE]] **
SQLITE_CONFIG_MEMDB_MAXSIZE **
The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter ** [sqlite3_int64] parameter which is the default maximum size for an in-memory ** database created using [sqlite3_deserialize()]. This default maximum ** size can be adjusted up or down for individual databases using the ** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this ** configuration setting is never used, then the default maximum is determined ** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that ** compile-time option is not set, then the default maximum is 1073741824. **
*/ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_SCRATCH 6 /* No longer used */ #define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */ #define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */ #define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */ #define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */ #define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ /* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ #define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ #define SQLITE_CONFIG_PCACHE 14 /* no-op */ #define SQLITE_CONFIG_GETPCACHE 15 /* no-op */ #define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ #define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */ #define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */ #define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */ #define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */ #define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */ #define SQLITE_CONFIG_MEMDB_MAXSIZE 29 /* sqlite3_int64 */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** ** New configuration options may be added in future releases of SQLite. ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that ** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** **
** [[SQLITE_DBCONFIG_LOOKASIDE]] **
SQLITE_DBCONFIG_LOOKASIDE
**
^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the ** size of each lookaside buffer slot. ^The third argument is the number of ** slots. The size of the buffer in the first argument must be greater than ** or equal to the product of the second and third arguments. The buffer ** must be aligned to an 8-byte boundary. ^If the second argument to ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally ** rounded down to the next smaller multiple of 8. ^(The lookaside memory ** configuration for a database connection can only be changed when that ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_DBSTATUS_LOOKASIDE_USED],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^
** ** [[SQLITE_DBCONFIG_ENABLE_FKEY]] **
SQLITE_DBCONFIG_ENABLE_FKEY
**
^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back.
** ** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]] **
SQLITE_DBCONFIG_ENABLE_TRIGGER
**
^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. ** **

Originally this option disabled all triggers. ^(However, since ** SQLite version 3.35.0, TEMP triggers are still allowed even if ** this option is off. So, in other words, this option now only disables ** triggers in the main database schema or in the schemas of ATTACH-ed ** databases.)^

** ** [[SQLITE_DBCONFIG_ENABLE_VIEW]] **
SQLITE_DBCONFIG_ENABLE_VIEW
**
^This option is used to enable or disable [CREATE VIEW | views]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable views, ** positive to enable views or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether views are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the view setting is not reported back. ** **

Originally this option disabled all views. ^(However, since ** SQLite version 3.35.0, TEMP views are still allowed even if ** this option is off. So, in other words, this option now only disables ** views in the main database schema or in the schemas of ATTACH-ed ** databases.)^

** ** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]] **
SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER
**
^This option is used to enable or disable the ** [fts3_tokenizer()] function which is part of the ** [FTS3] full-text search engine extension. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable fts3_tokenizer() or ** positive to enable fts3_tokenizer() or negative to leave the setting ** unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the new setting is not reported back.
** ** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]] **
SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION
**
^This option is used to enable or disable the [sqlite3_load_extension()] ** interface independently of the [load_extension()] SQL function. ** The [sqlite3_enable_load_extension()] API enables or disables both the ** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. ** There should be two additional arguments. ** When the first argument to this interface is 1, then only the C-API is ** enabled and the SQL function remains disabled. If the first argument to ** this interface is 0, then both the C-API and the SQL function are disabled. ** If the first argument is -1, then no changes are made to state of either the ** C-API or the SQL function. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface ** is disabled or enabled following this call. The second parameter may ** be a NULL pointer, in which case the new setting is not reported back. **
** ** [[SQLITE_DBCONFIG_MAINDBNAME]]
SQLITE_DBCONFIG_MAINDBNAME
**
^This option is used to change the name of the "main" database ** schema. ^The sole argument is a pointer to a constant UTF8 string ** which will become the new schema name in place of "main". ^SQLite ** does not make a copy of the new main schema name string, so the application ** must ensure that the argument passed into this DBCONFIG option is unchanged ** until after the database connection closes. **
** ** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] **
SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE
**
Usually, when a database in wal mode is closed or detached from a ** database handle, SQLite checks if this will mean that there are now no ** connections at all to the database. If so, it performs a checkpoint ** operation before closing the connection. This option may be used to ** override this behaviour. The first parameter passed to this operation ** is an integer - positive to disable checkpoints-on-close, or zero (the ** default) to enable them, and negative to leave the setting unchanged. ** The second parameter is a pointer to an integer ** into which is written 0 or 1 to indicate whether checkpoints-on-close ** have been disabled - 0 if they are not disabled, 1 if they are. **
** ** [[SQLITE_DBCONFIG_ENABLE_QPSG]]
SQLITE_DBCONFIG_ENABLE_QPSG
**
^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates ** the [query planner stability guarantee] (QPSG). When the QPSG is active, ** a single SQL query statement will always use the same algorithm regardless ** of values of [bound parameters].)^ The QPSG disables some query optimizations ** that look at the values of bound parameters, which can make some queries ** slower. But the QPSG has the advantage of more predictable behavior. With ** the QPSG active, SQLite will always use the same query plan in the field as ** was used during testing in the lab. ** The first argument to this setting is an integer which is 0 to disable ** the QPSG, positive to enable QPSG, or negative to leave the setting ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether the QPSG is disabled or enabled ** following this call. **
** ** [[SQLITE_DBCONFIG_TRIGGER_EQP]]
SQLITE_DBCONFIG_TRIGGER_EQP
**
By default, the output of EXPLAIN QUERY PLAN commands does not ** include output for any operations performed by trigger programs. This ** option is used to set or clear (the default) a flag that governs this ** behavior. The first parameter passed to this operation is an integer - ** positive to enable output for trigger programs, or zero to disable it, ** or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which is written ** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if ** it is not disabled, 1 if it is. **
** ** [[SQLITE_DBCONFIG_RESET_DATABASE]]
SQLITE_DBCONFIG_RESET_DATABASE
**
Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run ** [VACUUM] in order to reset a database back to an empty database ** with no schema and no content. The following process works even for ** a badly corrupted database file: **
    **
  1. If the database connection is newly opened, make sure it has read the ** database schema by preparing then discarding some query against the ** database, or calling sqlite3_table_column_metadata(), ignoring any ** errors. This step is only necessary if the application desires to keep ** the database in WAL mode after the reset if it was in WAL mode before ** the reset. **
  2. sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0); **
  3. [sqlite3_exec](db, "[VACUUM]", 0, 0, 0); **
  4. sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0); **
** Because resetting a database is destructive and irreversible, the ** process requires the use of this obscure API and multiple steps to ** help ensure that it does not happen by accident. Because this ** feature must be capable of resetting corrupt databases, and ** shutting down virtual tables may require access to that corrupt ** storage, the library must abandon any installed virtual tables ** without calling their xDestroy() methods. ** ** [[SQLITE_DBCONFIG_DEFENSIVE]]
SQLITE_DBCONFIG_DEFENSIVE
**
The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the ** "defensive" flag for a database connection. When the defensive ** flag is enabled, language features that allow ordinary SQL to ** deliberately corrupt the database file are disabled. The disabled ** features include but are not limited to the following: **
    **
  • The [PRAGMA writable_schema=ON] statement. **
  • The [PRAGMA journal_mode=OFF] statement. **
  • The [PRAGMA schema_version=N] statement. **
  • Writes to the [sqlite_dbpage] virtual table. **
  • Direct writes to [shadow tables]. **
**
** ** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]]
SQLITE_DBCONFIG_WRITABLE_SCHEMA
**
The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the ** "writable_schema" flag. This has the same effect and is logically equivalent ** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF]. ** The first argument to this setting is an integer which is 0 to disable ** the writable_schema, positive to enable writable_schema, or negative to ** leave the setting unchanged. The second parameter is a pointer to an ** integer into which is written 0 or 1 to indicate whether the writable_schema ** is enabled or disabled following this call. **
** ** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]] **
SQLITE_DBCONFIG_LEGACY_ALTER_TABLE
**
The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates ** the legacy behavior of the [ALTER TABLE RENAME] command such it ** behaves as it did prior to [version 3.24.0] (2018-06-04). See the ** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for ** additional information. This feature can also be turned on and off ** using the [PRAGMA legacy_alter_table] statement. **
** ** [[SQLITE_DBCONFIG_DQS_DML]] **
SQLITE_DBCONFIG_DQS_DML
**
The SQLITE_DBCONFIG_DQS_DML option activates or deactivates ** the legacy [double-quoted string literal] misfeature for DML statements ** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The ** default value of this setting is determined by the [-DSQLITE_DQS] ** compile-time option. **
** ** [[SQLITE_DBCONFIG_DQS_DDL]] **
SQLITE_DBCONFIG_DQS_DDL
**
The SQLITE_DBCONFIG_DQS option activates or deactivates ** the legacy [double-quoted string literal] misfeature for DDL statements, ** such as CREATE TABLE and CREATE INDEX. The ** default value of this setting is determined by the [-DSQLITE_DQS] ** compile-time option. **
** ** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]] **
SQLITE_DBCONFIG_TRUSTED_SCHEMA
**
The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to ** assume that database schemas are untainted by malicious content. ** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite ** takes additional defensive steps to protect the application from harm ** including: **
    **
  • Prohibit the use of SQL functions inside triggers, views, ** CHECK constraints, DEFAULT clauses, expression indexes, ** partial indexes, or generated columns ** unless those functions are tagged with [SQLITE_INNOCUOUS]. **
  • Prohibit the use of virtual tables inside of triggers or views ** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS]. **
** This setting defaults to "on" for legacy compatibility, however ** all applications are advised to turn it off if possible. This setting ** can also be controlled using the [PRAGMA trusted_schema] statement. **
** ** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]] **
SQLITE_DBCONFIG_LEGACY_FILE_FORMAT
**
The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates ** the legacy file format flag. When activated, this flag causes all newly ** created database file to have a schema format version number (the 4-byte ** integer found at offset 44 into the database header) of 1. This in turn ** means that the resulting database file will be readable and writable by ** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting, ** newly created databases are generally not understandable by SQLite versions ** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there ** is now scarcely any need to generate database files that are compatible ** all the way back to version 3.0.0, and so this setting is of little ** practical use, but is provided so that SQLite can continue to claim the ** ability to generate new database files that are compatible with version ** 3.0.0. **

Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on, ** the [VACUUM] command will fail with an obscure error when attempting to ** process a table with generated columns and a descending index. This is ** not considered a bug since SQLite versions 3.3.0 and earlier do not support ** either generated columns or descending indexes. **

** ** [[SQLITE_DBCONFIG_STMT_SCANSTATUS]] **
SQLITE_DBCONFIG_STMT_SCANSTATUS
**
The SQLITE_DBCONFIG_STMT_SCANSTATUS option is only useful in ** SQLITE_ENABLE_STMT_SCANSTATUS builds. In this case, it sets or clears ** a flag that enables collection of the sqlite3_stmt_scanstatus_v2() ** statistics. For statistics to be collected, the flag must be set on ** the database handle both when the SQL statement is prepared and when it ** is stepped. The flag is set (collection of statistics is enabled) ** by default. This option takes two arguments: an integer and a pointer to ** an integer.. The first argument is 1, 0, or -1 to enable, disable, or ** leave unchanged the statement scanstatus option. If the second argument ** is not NULL, then the value of the statement scanstatus setting after ** processing the first argument is written into the integer that the second ** argument points to. **
** ** [[SQLITE_DBCONFIG_REVERSE_SCANORDER]] **
SQLITE_DBCONFIG_REVERSE_SCANORDER
**
The SQLITE_DBCONFIG_REVERSE_SCANORDER option changes the default order ** in which tables and indexes are scanned so that the scans start at the end ** and work toward the beginning rather than starting at the beginning and ** working toward the end. Setting SQLITE_DBCONFIG_REVERSE_SCANORDER is the ** same as setting [PRAGMA reverse_unordered_selects]. This option takes ** two arguments which are an integer and a pointer to an integer. The first ** argument is 1, 0, or -1 to enable, disable, or leave unchanged the ** reverse scan order flag, respectively. If the second argument is not NULL, ** then 0 or 1 is written into the integer that the second argument points to ** depending on if the reverse scan order flag is set after processing the ** first argument. **
** **
*/ #define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ #define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */ #define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */ #define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */ #define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */ #define SQLITE_DBCONFIG_WRITABLE_SCHEMA 1011 /* int int* */ #define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE 1012 /* int int* */ #define SQLITE_DBCONFIG_DQS_DML 1013 /* int int* */ #define SQLITE_DBCONFIG_DQS_DDL 1014 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_VIEW 1015 /* int int* */ #define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT 1016 /* int int* */ #define SQLITE_DBCONFIG_TRUSTED_SCHEMA 1017 /* int int* */ #define SQLITE_DBCONFIG_STMT_SCANSTATUS 1018 /* int int* */ #define SQLITE_DBCONFIG_REVERSE_SCANORDER 1019 /* int int* */ #define SQLITE_DBCONFIG_MAX 1019 /* Largest DBCONFIG */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result ** codes are disabled by default for historical compatibility. */ SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); /* ** CAPI3REF: Last Insert Rowid ** METHOD: sqlite3 ** ** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables) ** has a unique 64-bit signed ** integer key called the [ROWID | "rowid"]. ^The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those ** names are not also used by explicitly declared columns. ^If ** the table has a column of type [INTEGER PRIMARY KEY] then that column ** is another alias for the rowid. ** ** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of ** the most recent successful [INSERT] into a rowid table or [virtual table] ** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not ** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred ** on the database connection D, then sqlite3_last_insert_rowid(D) returns ** zero. ** ** As well as being set automatically as rows are inserted into database ** tables, the value returned by this function may be set explicitly by ** [sqlite3_set_last_insert_rowid()] ** ** Some virtual table implementations may INSERT rows into rowid tables as ** part of committing a transaction (e.g. to flush data accumulated in memory ** to disk). In this case subsequent calls to this function return the rowid ** associated with these internal INSERT operations, which leads to ** unintuitive results. Virtual table implementations that do write to rowid ** tables in this way can avoid this problem by restoring the original ** rowid value using [sqlite3_set_last_insert_rowid()] before returning ** control to the user. ** ** ^(If an [INSERT] occurs within a trigger then this routine will ** return the [rowid] of the inserted row as long as the trigger is ** running. Once the trigger program ends, the value returned ** by this routine reverts to what it was before the trigger was fired.)^ ** ** ^An [INSERT] that fails due to a constraint violation is not a ** successful [INSERT] and does not change the value returned by this ** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, ** and INSERT OR ABORT make no changes to the return value of this ** routine when their insertion fails. ^(When INSERT OR REPLACE ** encounters a constraint violation, it does not fail. The ** INSERT continues to completion after deleting rows that caused ** the constraint problem so INSERT OR REPLACE will always change ** the return value of this interface.)^ ** ** ^For the purposes of this routine, an [INSERT] is considered to ** be successful even if it is subsequently rolled back. ** ** This function is accessible to SQL statements via the ** [last_insert_rowid() SQL function]. ** ** If a separate thread performs a new [INSERT] on the same ** database connection while the [sqlite3_last_insert_rowid()] ** function is running and thus changes the last insert [rowid], ** then the value returned by [sqlite3_last_insert_rowid()] is ** unpredictable and might not equal either the old or the new ** last insert [rowid]. */ SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Set the Last Insert Rowid value. ** METHOD: sqlite3 ** ** The sqlite3_set_last_insert_rowid(D, R) method allows the application to ** set the value returned by calling sqlite3_last_insert_rowid(D) to R ** without inserting a row into the database. */ SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64); /* ** CAPI3REF: Count The Number Of Rows Modified ** METHOD: sqlite3 ** ** ^These functions return the number of rows modified, inserted or ** deleted by the most recently completed INSERT, UPDATE or DELETE ** statement on the database connection specified by the only parameter. ** The two functions are identical except for the type of the return value ** and that if the number of rows modified by the most recent INSERT, UPDATE ** or DELETE is greater than the maximum value supported by type "int", then ** the return value of sqlite3_changes() is undefined. ^Executing any other ** type of SQL statement does not modify the value returned by these functions. ** ** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are ** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], ** [foreign key actions] or [REPLACE] constraint resolution are not counted. ** ** Changes to a view that are intercepted by ** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value ** returned by sqlite3_changes() immediately after an INSERT, UPDATE or ** DELETE statement run on a view is always zero. Only changes made to real ** tables are counted. ** ** Things are more complicated if the sqlite3_changes() function is ** executed while a trigger program is running. This may happen if the ** program uses the [changes() SQL function], or if some other callback ** function invokes sqlite3_changes() directly. Essentially: ** **
    **
  • ^(Before entering a trigger program the value returned by ** sqlite3_changes() function is saved. After the trigger program ** has finished, the original value is restored.)^ ** **
  • ^(Within a trigger program each INSERT, UPDATE and DELETE ** statement sets the value returned by sqlite3_changes() ** upon completion as normal. Of course, this value will not include ** any changes performed by sub-triggers, as the sqlite3_changes() ** value will be saved and restored after each sub-trigger has run.)^ **
** ** ^This means that if the changes() SQL function (or similar) is used ** by the first INSERT, UPDATE or DELETE statement within a trigger, it ** returns the value as set when the calling statement began executing. ** ^If it is used by the second or subsequent such statement within a trigger ** program, the value returned reflects the number of rows modified by the ** previous INSERT, UPDATE or DELETE statement within the same trigger. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_changes()] is running then the value returned ** is unpredictable and not meaningful. ** ** See also: **
    **
  • the [sqlite3_total_changes()] interface **
  • the [count_changes pragma] **
  • the [changes() SQL function] **
  • the [data_version pragma] **
*/ SQLITE_API int sqlite3_changes(sqlite3*); SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified ** METHOD: sqlite3 ** ** ^These functions return the total number of rows inserted, modified or ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed ** since the database connection was opened, including those executed as ** part of trigger programs. The two functions are identical except for the ** type of the return value and that if the number of rows modified by the ** connection exceeds the maximum value supported by type "int", then ** the return value of sqlite3_total_changes() is undefined. ^Executing ** any other type of SQL statement does not affect the value returned by ** sqlite3_total_changes(). ** ** ^Changes made as part of [foreign key actions] are included in the ** count, but those made as part of REPLACE constraint resolution are ** not. ^Changes to a view that are intercepted by INSTEAD OF triggers ** are not counted. ** ** The [sqlite3_total_changes(D)] interface only reports the number ** of rows that changed due to SQL statement run against database ** connection D. Any changes by other database connections are ignored. ** To detect changes against a database file from other database ** connections use the [PRAGMA data_version] command or the ** [SQLITE_FCNTL_DATA_VERSION] [file control]. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_total_changes()] is running then the value ** returned is unpredictable and not meaningful. ** ** See also: **
    **
  • the [sqlite3_changes()] interface **
  • the [count_changes pragma] **
  • the [changes() SQL function] **
  • the [data_version pragma] **
  • the [SQLITE_FCNTL_DATA_VERSION] [file control] **
*/ SQLITE_API int sqlite3_total_changes(sqlite3*); SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query ** METHOD: sqlite3 ** ** ^This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** ** ^It is safe to call this routine from a thread different from the ** thread that is currently running the database operation. But it ** is not safe to call this routine with a [database connection] that ** is closed or might close before sqlite3_interrupt() returns. ** ** ^If an SQL operation is very nearly finished at the time when ** sqlite3_interrupt() is called, then it might not have an opportunity ** to be interrupted and might continue to completion. ** ** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. ** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE ** that is inside an explicit transaction, then the entire transaction ** will be rolled back automatically. ** ** ^The sqlite3_interrupt(D) call is in effect until all currently running ** SQL statements on [database connection] D complete. ^Any new SQL statements ** that are started after the sqlite3_interrupt() call and before the ** running statement count reaches zero are interrupted as if they had been ** running prior to the sqlite3_interrupt() call. ^New SQL statements ** that are started after the running statement count reaches zero are ** not effected by the sqlite3_interrupt(). ** ^A call to sqlite3_interrupt(D) that occurs when there are no running ** SQL statements is a no-op and has no effect on SQL statements ** that are started after the sqlite3_interrupt() call returns. ** ** ^The [sqlite3_is_interrupted(D)] interface can be used to determine whether ** or not an interrupt is currently in effect for [database connection] D. ** It returns 1 if an interrupt is currently in effect, or 0 otherwise. */ SQLITE_API void sqlite3_interrupt(sqlite3*); SQLITE_API int sqlite3_is_interrupted(sqlite3*); /* ** CAPI3REF: Determine If An SQL Statement Is Complete ** ** These routines are useful during command-line input to determine if the ** currently entered text seems to form a complete SQL statement or ** if additional input is needed before sending the text into ** SQLite for parsing. ^These routines return 1 if the input string ** appears to be a complete SQL statement. ^A statement is judged to be ** complete if it ends with a semicolon token and is not a prefix of a ** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within ** string literals or quoted identifier names or comments are not ** independent tokens (they are part of the token in which they are ** embedded) and thus do not count as a statement terminator. ^Whitespace ** and comments that follow the final semicolon are ignored. ** ** ^These routines return 0 if the statement is incomplete. ^If a ** memory allocation fails, then SQLITE_NOMEM is returned. ** ** ^These routines do not parse the SQL statements thus ** will not detect syntactically incorrect SQL. ** ** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior ** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked ** automatically by sqlite3_complete16(). If that initialization fails, ** then the return value from sqlite3_complete16() will be non-zero ** regardless of whether or not the input SQL is complete.)^ ** ** The input to [sqlite3_complete()] must be a zero-terminated ** UTF-8 string. ** ** The input to [sqlite3_complete16()] must be a zero-terminated ** UTF-16 string in native byte order. */ SQLITE_API int sqlite3_complete(const char *sql); SQLITE_API int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors ** KEYWORDS: {busy-handler callback} {busy handler} ** METHOD: sqlite3 ** ** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X ** that might be invoked with argument P whenever ** an attempt is made to access a database table associated with ** [database connection] D when another thread ** or process has the table locked. ** The sqlite3_busy_handler() interface is used to implement ** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout]. ** ** ^If the busy callback is NULL, then [SQLITE_BUSY] ** is returned immediately upon encountering the lock. ^If the busy callback ** is not NULL, then the callback might be invoked with two arguments. ** ** ^The first argument to the busy handler is a copy of the void* pointer which ** is the third argument to sqlite3_busy_handler(). ^The second argument to ** the busy handler callback is the number of times that the busy handler has ** been invoked previously for the same locking event. ^If the ** busy callback returns 0, then no additional attempts are made to ** access the database and [SQLITE_BUSY] is returned ** to the application. ** ^If the callback returns non-zero, then another attempt ** is made to access the database and the cycle repeats. ** ** The presence of a busy handler does not guarantee that it will be invoked ** when there is lock contention. ^If SQLite determines that invoking the busy ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] ** to the application instead of invoking the ** busy handler. ** Consider a scenario where one process is holding a read lock that ** it is trying to promote to a reserved lock and ** a second process is holding a reserved lock that it is trying ** to promote to an exclusive lock. The first process cannot proceed ** because it is blocked by the second and the second process cannot ** proceed because it is blocked by the first. If both processes ** invoke the busy handlers, neither will make any progress. Therefore, ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this ** will induce the first process to release its read lock and allow ** the second process to proceed. ** ** ^The default busy callback is NULL. ** ** ^(There can only be a single busy handler defined for each ** [database connection]. Setting a new busy handler clears any ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] ** or evaluating [PRAGMA busy_timeout=N] will change the ** busy handler and thus clear any previously set busy handler. ** ** The busy callback should not take any actions which modify the ** database connection that invoked the busy handler. In other words, ** the busy handler is not reentrant. Any such actions ** result in undefined behavior. ** ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*); /* ** CAPI3REF: Set A Busy Timeout ** METHOD: sqlite3 ** ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps ** for a specified amount of time when a table is locked. ^The handler ** will sleep multiple times until at least "ms" milliseconds of sleeping ** have accumulated. ^After at least "ms" milliseconds of sleeping, ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY]. ** ** ^Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** ** ^(There can only be a single busy handler for a particular ** [database connection] at any given moment. If another busy handler ** was defined (using [sqlite3_busy_handler()]) prior to calling ** this routine, that other busy handler is cleared.)^ ** ** See also: [PRAGMA busy_timeout] */ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); /* ** CAPI3REF: Convenience Routines For Running Queries ** METHOD: sqlite3 ** ** This is a legacy interface that is preserved for backwards compatibility. ** Use of this interface is not recommended. ** ** Definition: A result table is memory data structure created by the ** [sqlite3_get_table()] interface. A result table records the ** complete query results from one or more queries. ** ** The table conceptually has a number of rows and columns. But ** these numbers are not part of the result table itself. These ** numbers are obtained separately. Let N be the number of rows ** and M be the number of columns. ** ** A result table is an array of pointers to zero-terminated UTF-8 strings. ** There are (N+1)*M elements in the array. The first M pointers point ** to zero-terminated strings that contain the names of the columns. ** The remaining entries all point to query results. NULL values result ** in NULL pointers. All other values are in their UTF-8 zero-terminated ** string representation as returned by [sqlite3_column_text()]. ** ** A result table might consist of one or more memory allocations. ** It is not safe to pass a result table directly to [sqlite3_free()]. ** A result table should be deallocated using [sqlite3_free_table()]. ** ** ^(As an example of the result table format, suppose a query result ** is as follows: ** **
**        Name        | Age
**        -----------------------
**        Alice       | 43
**        Bob         | 28
**        Cindy       | 21
** 
** ** There are two columns (M==2) and three rows (N==3). Thus the ** result table has 8 entries. Suppose the result table is stored ** in an array named azResult. Then azResult holds this content: ** **
**        azResult[0] = "Name";
**        azResult[1] = "Age";
**        azResult[2] = "Alice";
**        azResult[3] = "43";
**        azResult[4] = "Bob";
**        azResult[5] = "28";
**        azResult[6] = "Cindy";
**        azResult[7] = "21";
** 
)^ ** ** ^The sqlite3_get_table() function evaluates one or more ** semicolon-separated SQL statements in the zero-terminated UTF-8 ** string of its 2nd parameter and returns a result table to the ** pointer given in its 3rd parameter. ** ** After the application has finished with the result from sqlite3_get_table(), ** it must pass the result table pointer to sqlite3_free_table() in order to ** release the memory that was malloced. Because of the way the ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling ** function must not try to call [sqlite3_free()] directly. Only ** [sqlite3_free_table()] is able to release the memory properly and safely. ** ** The sqlite3_get_table() interface is implemented as a wrapper around ** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access ** to any internal data structures of SQLite. It uses only the public ** interface defined here. As a consequence, errors that occur in the ** wrapper layer outside of the internal [sqlite3_exec()] call are not ** reflected in subsequent calls to [sqlite3_errcode()] or ** [sqlite3_errmsg()]. */ SQLITE_API int sqlite3_get_table( sqlite3 *db, /* An open database */ const char *zSql, /* SQL to be evaluated */ char ***pazResult, /* Results of the query */ int *pnRow, /* Number of result rows written here */ int *pnColumn, /* Number of result columns written here */ char **pzErrmsg /* Error msg written here */ ); SQLITE_API void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions ** ** These routines are work-alikes of the "printf()" family of functions ** from the standard C library. ** These routines understand most of the common formatting options from ** the standard library printf() ** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]). ** See the [built-in printf()] documentation for details. ** ** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc64()]. ** The strings returned by these two routines should be ** released by [sqlite3_free()]. ^Both routines return a ** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough ** memory to hold the resulting string. ** ** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from ** the standard C library. The result is written into the ** buffer supplied as the second parameter whose size is given by ** the first parameter. Note that the order of the ** first two parameters is reversed from snprintf().)^ This is an ** historical accident that cannot be fixed without breaking ** backwards compatibility. ^(Note also that sqlite3_snprintf() ** returns a pointer to its buffer instead of the number of ** characters actually written into the buffer.)^ We admit that ** the number of characters written would be a more useful return ** value but we cannot change the implementation of sqlite3_snprintf() ** now without breaking compatibility. ** ** ^As long as the buffer size is greater than zero, sqlite3_snprintf() ** guarantees that the buffer is always zero-terminated. ^The first ** parameter "n" is the total size of the buffer, including space for ** the zero terminator. So the longest string that can be completely ** written will be n-1 characters. ** ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). ** ** See also: [built-in printf()], [printf() SQL function] */ SQLITE_API char *sqlite3_mprintf(const char*,...); SQLITE_API char *sqlite3_vmprintf(const char*, va_list); SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...); SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list); /* ** CAPI3REF: Memory Allocation Subsystem ** ** The SQLite core uses these three routines for all of its own ** internal memory allocation needs. "Core" in the previous sentence ** does not include operating-system specific [VFS] implementation. The ** Windows VFS uses native malloc() and free() for some operations. ** ** ^The sqlite3_malloc() routine returns a pointer to a block ** of memory at least N bytes in length, where N is the parameter. ** ^If sqlite3_malloc() is unable to obtain sufficient free ** memory, it returns a NULL pointer. ^If the parameter N to ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns ** a NULL pointer. ** ** ^The sqlite3_malloc64(N) routine works just like ** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead ** of a signed 32-bit integer. ** ** ^Calling sqlite3_free() with a pointer previously returned ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so ** that it might be reused. ^The sqlite3_free() routine is ** a no-op if is called with a NULL pointer. Passing a NULL pointer ** to sqlite3_free() is harmless. After being freed, memory ** should neither be read nor written. Even reading previously freed ** memory might result in a segmentation fault or other severe error. ** Memory corruption, a segmentation fault, or other severe error ** might result if sqlite3_free() is called with a non-NULL pointer that ** was not obtained from sqlite3_malloc() or sqlite3_realloc(). ** ** ^The sqlite3_realloc(X,N) interface attempts to resize a ** prior memory allocation X to be at least N bytes. ** ^If the X parameter to sqlite3_realloc(X,N) ** is a NULL pointer then its behavior is identical to calling ** sqlite3_malloc(N). ** ^If the N parameter to sqlite3_realloc(X,N) is zero or ** negative then the behavior is exactly the same as calling ** sqlite3_free(X). ** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation ** of at least N bytes in size or NULL if insufficient memory is available. ** ^If M is the size of the prior allocation, then min(N,M) bytes ** of the prior allocation are copied into the beginning of buffer returned ** by sqlite3_realloc(X,N) and the prior allocation is freed. ** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the ** prior allocation is not freed. ** ** ^The sqlite3_realloc64(X,N) interfaces works the same as ** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead ** of a 32-bit signed integer. ** ** ^If X is a memory allocation previously obtained from sqlite3_malloc(), ** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then ** sqlite3_msize(X) returns the size of that memory allocation in bytes. ** ^The value returned by sqlite3_msize(X) might be larger than the number ** of bytes requested when X was allocated. ^If X is a NULL pointer then ** sqlite3_msize(X) returns zero. If X points to something that is not ** the beginning of memory allocation, or if it points to a formerly ** valid memory allocation that has now been freed, then the behavior ** of sqlite3_msize(X) is undefined and possibly harmful. ** ** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(), ** sqlite3_malloc64(), and sqlite3_realloc64() ** is always aligned to at least an 8 byte boundary, or to a ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time ** option is used. ** ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] ** must be either NULL or else pointers obtained from a prior ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have ** not yet been released. ** ** The application must not read or write any part of ** a block of memory after it has been released using ** [sqlite3_free()] or [sqlite3_realloc()]. */ SQLITE_API void *sqlite3_malloc(int); SQLITE_API void *sqlite3_malloc64(sqlite3_uint64); SQLITE_API void *sqlite3_realloc(void*, int); SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64); SQLITE_API void sqlite3_free(void*); SQLITE_API sqlite3_uint64 sqlite3_msize(void*); /* ** CAPI3REF: Memory Allocator Statistics ** ** SQLite provides these two interfaces for reporting on the status ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] ** routines, which form the built-in memory allocation subsystem. ** ** ^The [sqlite3_memory_used()] routine returns the number of bytes ** of memory currently outstanding (malloced but not freed). ** ^The [sqlite3_memory_highwater()] routine returns the maximum ** value of [sqlite3_memory_used()] since the high-water mark ** was last reset. ^The values returned by [sqlite3_memory_used()] and ** [sqlite3_memory_highwater()] include any overhead ** added by SQLite in its implementation of [sqlite3_malloc()], ** but not overhead added by the any underlying system library ** routines that [sqlite3_malloc()] may call. ** ** ^The memory high-water mark is reset to the current value of ** [sqlite3_memory_used()] if and only if the parameter to ** [sqlite3_memory_highwater()] is true. ^The value returned ** by [sqlite3_memory_highwater(1)] is the high-water mark ** prior to the reset. */ SQLITE_API sqlite3_int64 sqlite3_memory_used(void); SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag); /* ** CAPI3REF: Pseudo-Random Number Generator ** ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to ** select random [ROWID | ROWIDs] when inserting new records into a table that ** already uses the largest possible [ROWID]. The PRNG is also used for ** the built-in random() and randomblob() SQL functions. This interface allows ** applications to access the same PRNG for other purposes. ** ** ^A call to this routine stores N bytes of randomness into buffer P. ** ^The P parameter can be a NULL pointer. ** ** ^If this routine has not been previously called or if the previous ** call had N less than one or a NULL pointer for P, then the PRNG is ** seeded using randomness obtained from the xRandomness method of ** the default [sqlite3_vfs] object. ** ^If the previous call to this routine had an N of 1 or more and a ** non-NULL P then the pseudo-randomness is generated ** internally and without recourse to the [sqlite3_vfs] xRandomness ** method. */ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** METHOD: sqlite3 ** KEYWORDS: {authorizer callback} ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. ** ^The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()], ** and [sqlite3_prepare16_v3()]. ^At various ** points during the compilation process, as logic is being created ** to perform various actions, the authorizer callback is invoked to ** see if those actions are allowed. ^The authorizer callback should ** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the ** specific action but allow the SQL statement to continue to be ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be ** rejected with an error. ^If the authorizer callback returns ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] ** then the [sqlite3_prepare_v2()] or equivalent call that triggered ** the authorizer will fail with an error message. ** ** When the callback returns [SQLITE_OK], that means the operation ** requested is ok. ^When the callback returns [SQLITE_DENY], the ** [sqlite3_prepare_v2()] or equivalent call that triggered the ** authorizer will fail with an error message explaining that ** access is denied. ** ** ^The first parameter to the authorizer callback is a copy of the third ** parameter to the sqlite3_set_authorizer() interface. ^The second parameter ** to the callback is an integer [SQLITE_COPY | action code] that specifies ** the particular action to be authorized. ^The third through sixth parameters ** to the callback are either NULL pointers or zero-terminated strings ** that contain additional details about the action to be authorized. ** Applications must always be prepared to encounter a NULL pointer in any ** of the third through the sixth parameters of the authorization callback. ** ** ^If the action code is [SQLITE_READ] ** and the callback returns [SQLITE_IGNORE] then the ** [prepared statement] statement is constructed to substitute ** a NULL value in place of the table column that would have ** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] ** return can be used to deny an untrusted user access to individual ** columns of a table. ** ^When a table is referenced by a [SELECT] but no column values are ** extracted from that table (for example in a query like ** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback ** is invoked once for that table with a column name that is an empty string. ** ^If the action code is [SQLITE_DELETE] and the callback returns ** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the ** [truncate optimization] is disabled and all rows are deleted individually. ** ** An authorizer is used when [sqlite3_prepare | preparing] ** SQL statements from an untrusted source, to ensure that the SQL statements ** do not try to access data they are not allowed to see, or that they do not ** try to execute malicious statements that damage the database. For ** example, an application may allow a user to enter arbitrary ** SQL queries for evaluation by a database. But the application does ** not want the user to be able to make arbitrary changes to the ** database. An authorizer could then be put in place while the ** user-entered SQL is being [sqlite3_prepare | prepared] that ** disallows everything except [SELECT] statements. ** ** Applications that need to process SQL from untrusted sources ** might also consider lowering resource limits using [sqlite3_limit()] ** and limiting database size using the [max_page_count] [PRAGMA] ** in addition to using an authorizer. ** ** ^(Only a single authorizer can be in place on a database connection ** at a time. Each call to sqlite3_set_authorizer overrides the ** previous call.)^ ^Disable the authorizer by installing a NULL callback. ** The authorizer is disabled by default. ** ** The authorizer callback must not do anything that will modify ** the database connection that invoked the authorizer callback. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the ** statement might be re-prepared during [sqlite3_step()] due to a ** schema change. Hence, the application should ensure that the ** correct authorizer callback remains in place during the [sqlite3_step()]. ** ** ^Note that the authorizer callback is invoked only during ** [sqlite3_prepare()] or its variants. Authorization is not ** performed during statement evaluation in [sqlite3_step()], unless ** as stated in the previous paragraph, sqlite3_step() invokes ** sqlite3_prepare_v2() to reprepare a statement after a schema change. */ SQLITE_API int sqlite3_set_authorizer( sqlite3*, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pUserData ); /* ** CAPI3REF: Authorizer Return Codes ** ** The [sqlite3_set_authorizer | authorizer callback function] must ** return either [SQLITE_OK] or one of these two constants in order ** to signal SQLite whether or not the action is permitted. See the ** [sqlite3_set_authorizer | authorizer documentation] for additional ** information. ** ** Note that SQLITE_IGNORE is also used as a [conflict resolution mode] ** returned from the [sqlite3_vtab_on_conflict()] interface. */ #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* ** CAPI3REF: Authorizer Action Codes ** ** The [sqlite3_set_authorizer()] interface registers a callback function ** that is invoked to authorize certain SQL statement actions. The ** second parameter to the callback is an integer code that specifies ** what action is being authorized. These are the integer action codes that ** the authorizer callback may be passed. ** ** These action code values signify what kind of operation is to be ** authorized. The 3rd and 4th parameters to the authorization ** callback function will be parameters or NULL depending on which of these ** codes is used as the second parameter. ^(The 5th parameter to the ** authorizer callback is the name of the database ("main", "temp", ** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback ** is the name of the inner-most trigger or view that is responsible for ** the access attempt or NULL if this access attempt is directly from ** top-level SQL code. */ /******************************************* 3rd ************ 4th ***********/ #define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ #define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ #define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ #define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ #define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ #define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ #define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ #define SQLITE_CREATE_VIEW 8 /* View Name NULL */ #define SQLITE_DELETE 9 /* Table Name NULL */ #define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ #define SQLITE_DROP_TABLE 11 /* Table Name NULL */ #define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ #define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ #define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ #define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ #define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ #define SQLITE_DROP_VIEW 17 /* View Name NULL */ #define SQLITE_INSERT 18 /* Table Name NULL */ #define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ #define SQLITE_READ 20 /* Table Name Column Name */ #define SQLITE_SELECT 21 /* NULL NULL */ #define SQLITE_TRANSACTION 22 /* Operation NULL */ #define SQLITE_UPDATE 23 /* Table Name Column Name */ #define SQLITE_ATTACH 24 /* Filename NULL */ #define SQLITE_DETACH 25 /* Database Name NULL */ #define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ #define SQLITE_REINDEX 27 /* Index Name NULL */ #define SQLITE_ANALYZE 28 /* Table Name NULL */ #define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ #define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ #define SQLITE_FUNCTION 31 /* NULL Function Name */ #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ #define SQLITE_COPY 0 /* No longer used */ #define SQLITE_RECURSIVE 33 /* NULL NULL */ /* ** CAPI3REF: Tracing And Profiling Functions ** METHOD: sqlite3 ** ** These routines are deprecated. Use the [sqlite3_trace_v2()] interface ** instead of the routines described here. ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** ** ^The callback function registered by sqlite3_trace() is invoked at ** various times when an SQL statement is being run by [sqlite3_step()]. ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the ** SQL statement text as the statement first begins executing. ** ^(Additional sqlite3_trace() callbacks might occur ** as each triggered subprogram is entered. The callbacks for triggers ** contain a UTF-8 SQL comment that identifies the trigger.)^ ** ** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit ** the length of [bound parameter] expansion in the output of sqlite3_trace(). ** ** ^The callback function registered by sqlite3_profile() is invoked ** as each SQL statement finishes. ^The profile callback contains ** the original statement text and an estimate of wall-clock time ** of how long that statement took to run. ^The profile callback ** time is in units of nanoseconds, however the current implementation ** is only capable of millisecond resolution so the six least significant ** digits in the time are meaningless. Future versions of SQLite ** might provide greater resolution on the profiler callback. Invoking ** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the ** profile callback. */ SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* ** CAPI3REF: SQL Trace Event Codes ** KEYWORDS: SQLITE_TRACE ** ** These constants identify classes of events that can be monitored ** using the [sqlite3_trace_v2()] tracing logic. The M argument ** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of ** the following constants. ^The first argument to the trace callback ** is one of the following constants. ** ** New tracing constants may be added in future releases. ** ** ^A trace callback has four arguments: xCallback(T,C,P,X). ** ^The T argument is one of the integer type codes above. ** ^The C argument is a copy of the context pointer passed in as the ** fourth argument to [sqlite3_trace_v2()]. ** The P and X arguments are pointers whose meanings depend on T. ** **
** [[SQLITE_TRACE_STMT]]
SQLITE_TRACE_STMT
**
^An SQLITE_TRACE_STMT callback is invoked when a prepared statement ** first begins running and possibly at other times during the ** execution of the prepared statement, such as at the start of each ** trigger subprogram. ^The P argument is a pointer to the ** [prepared statement]. ^The X argument is a pointer to a string which ** is the unexpanded SQL text of the prepared statement or an SQL comment ** that indicates the invocation of a trigger. ^The callback can compute ** the same text that would have been returned by the legacy [sqlite3_trace()] ** interface by using the X argument when X begins with "--" and invoking ** [sqlite3_expanded_sql(P)] otherwise. ** ** [[SQLITE_TRACE_PROFILE]]
SQLITE_TRACE_PROFILE
**
^An SQLITE_TRACE_PROFILE callback provides approximately the same ** information as is provided by the [sqlite3_profile()] callback. ** ^The P argument is a pointer to the [prepared statement] and the ** X argument points to a 64-bit integer which is approximately ** the number of nanoseconds that the prepared statement took to run. ** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes. ** ** [[SQLITE_TRACE_ROW]]
SQLITE_TRACE_ROW
**
^An SQLITE_TRACE_ROW callback is invoked whenever a prepared ** statement generates a single row of result. ** ^The P argument is a pointer to the [prepared statement] and the ** X argument is unused. ** ** [[SQLITE_TRACE_CLOSE]]
SQLITE_TRACE_CLOSE
**
^An SQLITE_TRACE_CLOSE callback is invoked when a database ** connection closes. ** ^The P argument is a pointer to the [database connection] object ** and the X argument is unused. **
*/ #define SQLITE_TRACE_STMT 0x01 #define SQLITE_TRACE_PROFILE 0x02 #define SQLITE_TRACE_ROW 0x04 #define SQLITE_TRACE_CLOSE 0x08 /* ** CAPI3REF: SQL Trace Hook ** METHOD: sqlite3 ** ** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback ** function X against [database connection] D, using property mask M ** and context pointer P. ^If the X callback is ** NULL or if the M mask is zero, then tracing is disabled. The ** M argument should be the bitwise OR-ed combination of ** zero or more [SQLITE_TRACE] constants. ** ** ^Each call to either sqlite3_trace(D,X,P) or sqlite3_trace_v2(D,M,X,P) ** overrides (cancels) all prior calls to sqlite3_trace(D,X,P) or ** sqlite3_trace_v2(D,M,X,P) for the [database connection] D. Each ** database connection may have at most one trace callback. ** ** ^The X callback is invoked whenever any of the events identified by ** mask M occur. ^The integer return value from the callback is currently ** ignored, though this may change in future releases. Callback ** implementations should return zero to ensure future compatibility. ** ** ^A trace callback is invoked with four arguments: callback(T,C,P,X). ** ^The T argument is one of the [SQLITE_TRACE] ** constants to indicate why the callback was invoked. ** ^The C argument is a copy of the context pointer. ** The P and X arguments are pointers whose meanings depend on T. ** ** The sqlite3_trace_v2() interface is intended to replace the legacy ** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which ** are deprecated. */ SQLITE_API int sqlite3_trace_v2( sqlite3*, unsigned uMask, int(*xCallback)(unsigned,void*,void*,void*), void *pCtx ); /* ** CAPI3REF: Query Progress Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_step()] and [sqlite3_prepare()] and similar for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the ** callback function X. ^The parameter N is the approximate number of ** [virtual machine instructions] that are evaluated between successive ** invocations of the callback X. ^If N is less than one then the progress ** handler is disabled. ** ** ^Only a single progress handler may be defined at one time per ** [database connection]; setting a new progress handler cancels the ** old one. ^Setting parameter X to NULL disables the progress handler. ** ^The progress handler is also disabled by setting N to a value less ** than 1. ** ** ^If the progress callback returns non-zero, the operation is ** interrupted. This feature can be used to implement a ** "Cancel" button on a GUI progress dialog box. ** ** The progress handler callback must not do anything that will modify ** the database connection that invoked the progress handler. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** The progress handler callback would originally only be invoked from the ** bytecode engine. It still might be invoked during [sqlite3_prepare()] ** and similar because those routines might force a reparse of the schema ** which involves running the bytecode engine. However, beginning with ** SQLite version 3.41.0, the progress handler callback might also be ** invoked directly from [sqlite3_prepare()] while analyzing and generating ** code for complex queries. */ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); /* ** CAPI3REF: Opening A New Database Connection ** CONSTRUCTOR: sqlite3 ** ** ^These routines open an SQLite database file as specified by the ** filename argument. ^The filename argument is interpreted as UTF-8 for ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte ** order for sqlite3_open16(). ^(A [database connection] handle is usually ** returned in *ppDb, even if an error occurs. The only exception is that ** if SQLite is unable to allocate memory to hold the [sqlite3] object, ** a NULL will be written into *ppDb instead of a pointer to the [sqlite3] ** object.)^ ^(If the database is opened (and/or created) successfully, then ** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain ** an English language description of the error following a failure of any ** of the sqlite3_open() routines. ** ** ^The default encoding will be UTF-8 for databases created using ** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases ** created using sqlite3_open16() will be UTF-16 in the native byte order. ** ** Whether or not an error occurs when it is opened, resources ** associated with the [database connection] handle should be released by ** passing it to [sqlite3_close()] when it is no longer required. ** ** The sqlite3_open_v2() interface works like sqlite3_open() ** except that it accepts two additional parameters for additional control ** over the new database connection. ^(The flags parameter to ** sqlite3_open_v2() must include, at a minimum, one of the following ** three flag combinations:)^ ** **
** ^(
[SQLITE_OPEN_READONLY]
**
The database is opened in read-only mode. If the database does ** not already exist, an error is returned.
)^ ** ** ^(
[SQLITE_OPEN_READWRITE]
**
The database is opened for reading and writing if possible, or ** reading only if the file is write protected by the operating ** system. In either case the database must already exist, otherwise ** an error is returned. For historical reasons, if opening in ** read-write mode fails due to OS-level permissions, an attempt is ** made to open it in read-only mode. [sqlite3_db_readonly()] can be ** used to determine whether the database is actually ** read-write.
)^ ** ** ^(
[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
**
The database is opened for reading and writing, and is created if ** it does not already exist. This is the behavior that is always used for ** sqlite3_open() and sqlite3_open16().
)^ **
** ** In addition to the required flags, the following optional flags are ** also supported: ** **
** ^(
[SQLITE_OPEN_URI]
**
The filename can be interpreted as a URI if this flag is set.
)^ ** ** ^(
[SQLITE_OPEN_MEMORY]
**
The database will be opened as an in-memory database. The database ** is named by the "filename" argument for the purposes of cache-sharing, ** if shared cache mode is enabled, but the "filename" is otherwise ignored. **
)^ ** ** ^(
[SQLITE_OPEN_NOMUTEX]
**
The new database connection will use the "multi-thread" ** [threading mode].)^ This means that separate threads are allowed ** to use SQLite at the same time, as long as each thread is using ** a different [database connection]. ** ** ^(
[SQLITE_OPEN_FULLMUTEX]
**
The new database connection will use the "serialized" ** [threading mode].)^ This means the multiple threads can safely ** attempt to use the same database connection at the same time. ** (Mutexes will block any actual concurrency, but in this mode ** there is no harm in trying.) ** ** ^(
[SQLITE_OPEN_SHAREDCACHE]
**
The database is opened [shared cache] enabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** The [use of shared cache mode is discouraged] and hence shared cache ** capabilities may be omitted from many builds of SQLite. In such cases, ** this option is a no-op. ** ** ^(
[SQLITE_OPEN_PRIVATECACHE]
**
The database is opened [shared cache] disabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** ** [[OPEN_EXRESCODE]] ^(
[SQLITE_OPEN_EXRESCODE]
**
The database connection comes up in "extended result code mode". ** In other words, the database behaves has if ** [sqlite3_extended_result_codes(db,1)] where called on the database ** connection as soon as the connection is created. In addition to setting ** the extended result code mode, this flag also causes [sqlite3_open_v2()] ** to return an extended result code.
** ** [[OPEN_NOFOLLOW]] ^(
[SQLITE_OPEN_NOFOLLOW]
**
The database filename is not allowed to contain a symbolic link
**
)^ ** ** If the 3rd parameter to sqlite3_open_v2() is not one of the ** required combinations shown above optionally combined with other ** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits] ** then the behavior is undefined. Historic versions of SQLite ** have silently ignored surplus bits in the flags parameter to ** sqlite3_open_v2(), however that behavior might not be carried through ** into future versions of SQLite and so applications should not rely ** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op ** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause ** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE ** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not ** by sqlite3_open_v2(). ** ** ^The fourth parameter to sqlite3_open_v2() is the name of the ** [sqlite3_vfs] object that defines the operating system interface that ** the new database connection should use. ^If the fourth parameter is ** a NULL pointer then the default [sqlite3_vfs] object is used. ** ** ^If the filename is ":memory:", then a private, temporary in-memory database ** is created for the connection. ^This in-memory database will vanish when ** the database connection is closed. Future versions of SQLite might ** make use of additional special filenames that begin with the ":" character. ** It is recommended that when a database filename actually does begin with ** a ":" character you should prefix the filename with a pathname such as ** "./" to avoid ambiguity. ** ** ^If the filename is an empty string, then a private, temporary ** on-disk database will be created. ^This private database will be ** automatically deleted as soon as the database connection is closed. ** ** [[URI filenames in sqlite3_open()]]

URI Filenames

** ** ^If [URI filename] interpretation is enabled, and the filename argument ** begins with "file:", then the filename is interpreted as a URI. ^URI ** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is ** set in the third argument to sqlite3_open_v2(), or if it has ** been enabled globally using the [SQLITE_CONFIG_URI] option with the ** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option. ** URI filename interpretation is turned off ** by default, but future releases of SQLite might enable URI filename ** interpretation by default. See "[URI filenames]" for additional ** information. ** ** URI filenames are parsed according to RFC 3986. ^If the URI contains an ** authority, then it must be either an empty string or the string ** "localhost". ^If the authority is not an empty string or "localhost", an ** error is returned to the caller. ^The fragment component of a URI, if ** present, is ignored. ** ** ^SQLite uses the path component of the URI as the name of the disk file ** which contains the database. ^If the path begins with a '/' character, ** then it is interpreted as an absolute path. ^If the path does not begin ** with a '/' (meaning that the authority section is omitted from the URI) ** then the path is interpreted as a relative path. ** ^(On windows, the first component of an absolute path ** is a drive specification (e.g. "C:").)^ ** ** [[core URI query parameters]] ** The query component of a URI may contain parameters that are interpreted ** either by SQLite itself, or by a [VFS | custom VFS implementation]. ** SQLite and its built-in [VFSes] interpret the ** following query parameters: ** **
    **
  • vfs: ^The "vfs" parameter may be used to specify the name of ** a VFS object that provides the operating system interface that should ** be used to access the database file on disk. ^If this option is set to ** an empty string the default VFS object is used. ^Specifying an unknown ** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is ** present, then the VFS specified by the option takes precedence over ** the value passed as the fourth parameter to sqlite3_open_v2(). ** **
  • mode: ^(The mode parameter may be set to either "ro", "rw", ** "rwc", or "memory". Attempting to set it to any other value is ** an error)^. ** ^If "ro" is specified, then the database is opened for read-only ** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the ** third argument to sqlite3_open_v2(). ^If the mode option is set to ** "rw", then the database is opened for read-write (but not create) ** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had ** been set. ^Value "rwc" is equivalent to setting both ** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is ** set to "memory" then a pure [in-memory database] that never reads ** or writes from disk is used. ^It is an error to specify a value for ** the mode parameter that is less restrictive than that specified by ** the flags passed in the third parameter to sqlite3_open_v2(). ** **
  • cache: ^The cache parameter may be set to either "shared" or ** "private". ^Setting it to "shared" is equivalent to setting the ** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to ** sqlite3_open_v2(). ^Setting the cache parameter to "private" is ** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit. ** ^If sqlite3_open_v2() is used and the "cache" parameter is present in ** a URI filename, its value overrides any behavior requested by setting ** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag. ** **
  • psow: ^The psow parameter indicates whether or not the ** [powersafe overwrite] property does or does not apply to the ** storage media on which the database file resides. ** **
  • nolock: ^The nolock parameter is a boolean query parameter ** which if set disables file locking in rollback journal modes. This ** is useful for accessing a database on a filesystem that does not ** support locking. Caution: Database corruption might result if two ** or more processes write to the same database and any one of those ** processes uses nolock=1. ** **
  • immutable: ^The immutable parameter is a boolean query ** parameter that indicates that the database file is stored on ** read-only media. ^When immutable is set, SQLite assumes that the ** database file cannot be changed, even by a process with higher ** privilege, and so the database is opened read-only and all locking ** and change detection is disabled. Caution: Setting the immutable ** property on a database file that does in fact change can result ** in incorrect query results and/or [SQLITE_CORRUPT] errors. ** See also: [SQLITE_IOCAP_IMMUTABLE]. ** **
** ** ^Specifying an unknown parameter in the query component of a URI is not an ** error. Future versions of SQLite might understand additional query ** parameters. See "[query parameters with special meaning to SQLite]" for ** additional information. ** ** [[URI filename examples]]

URI filename examples

** ** **
URI filenames Results **
file:data.db ** Open the file "data.db" in the current directory. **
file:/home/fred/data.db
** file:///home/fred/data.db
** file://localhost/home/fred/data.db
** Open the database file "/home/fred/data.db". **
file://darkstar/home/fred/data.db ** An error. "darkstar" is not a recognized authority. **
** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db ** Windows only: Open the file "data.db" on fred's desktop on drive ** C:. Note that the %20 escaping in this example is not strictly ** necessary - space characters can be used literally ** in URI filenames. **
file:data.db?mode=ro&cache=private ** Open file "data.db" in the current directory for read-only access. ** Regardless of whether or not shared-cache mode is enabled by ** default, use a private cache. **
file:/home/fred/data.db?vfs=unix-dotfile ** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile" ** that uses dot-files in place of posix advisory locking. **
file:data.db?mode=readonly ** An error. "readonly" is not a valid option for the "mode" parameter. ** Use "ro" instead: "file:data.db?mode=ro". **
** ** ^URI hexadecimal escape sequences (%HH) are supported within the path and ** query components of a URI. A hexadecimal escape sequence consists of a ** percent sign - "%" - followed by exactly two hexadecimal digits ** specifying an octet value. ^Before the path or query components of a ** URI filename are interpreted, they are encoded using UTF-8 and all ** hexadecimal escape sequences replaced by a single byte containing the ** corresponding octet. If this process generates an invalid UTF-8 encoding, ** the results are undefined. ** ** Note to Windows users: The encoding used for the filename argument ** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever ** codepage is currently defined. Filenames containing international ** characters must be converted to UTF-8 prior to passing them into ** sqlite3_open() or sqlite3_open_v2(). ** ** Note to Windows Runtime users: The temporary directory must be set ** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various ** features that require the use of temporary files may fail. ** ** See also: [sqlite3_temp_directory] */ SQLITE_API int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); SQLITE_API int sqlite3_open16( const void *filename, /* Database filename (UTF-16) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); SQLITE_API int sqlite3_open_v2( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb, /* OUT: SQLite db handle */ int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ); /* ** CAPI3REF: Obtain Values For URI Parameters ** ** These are utility routines, useful to [VFS|custom VFS implementations], ** that check if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of that query parameter. ** ** The first parameter to these interfaces (hereafter referred to ** as F) must be one of: **
    **
  • A database filename pointer created by the SQLite core and ** passed into the xOpen() method of a VFS implementation, or **
  • A filename obtained from [sqlite3_db_filename()], or **
  • A new filename constructed using [sqlite3_create_filename()]. **
** If the F parameter is not one of the above, then the behavior is ** undefined and probably undesirable. Older versions of SQLite were ** more tolerant of invalid F parameters than newer versions. ** ** If F is a suitable filename (as described in the previous paragraph) ** and if P is the name of the query parameter, then ** sqlite3_uri_parameter(F,P) returns the value of the P ** parameter if it exists or a NULL pointer if P does not appear as a ** query parameter on F. If P is a query parameter of F and it ** has no explicit value, then sqlite3_uri_parameter(F,P) returns ** a pointer to an empty string. ** ** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean ** parameter and returns true (1) or false (0) according to the value ** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the ** value of query parameter P is one of "yes", "true", or "on" in any ** case or if the value begins with a non-zero number. The ** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of ** query parameter P is one of "no", "false", or "off" in any case or ** if the value begins with a numeric zero. If P is not a query ** parameter on F or if the value of P does not match any of the ** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0). ** ** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a ** 64-bit signed integer and returns that integer, or D if P does not ** exist. If the value of P is something other than an integer, then ** zero is returned. ** ** The sqlite3_uri_key(F,N) returns a pointer to the name (not ** the value) of the N-th query parameter for filename F, or a NULL ** pointer if N is less than zero or greater than the number of query ** parameters minus 1. The N value is zero-based so N should be 0 to obtain ** the name of the first query parameter, 1 for the second parameter, and ** so forth. ** ** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and ** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and ** is not a database file pathname pointer that the SQLite core passed ** into the xOpen VFS method, then the behavior of this routine is undefined ** and probably undesirable. ** ** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F ** parameter can also be the name of a rollback journal file or WAL file ** in addition to the main database file. Prior to version 3.31.0, these ** routines would only work if F was the name of the main database file. ** When the F parameter is the name of the rollback journal or WAL file, ** it has access to all the same query parameters as were found on the ** main database file. ** ** See the [URI filename] documentation for additional information. */ SQLITE_API const char *sqlite3_uri_parameter(sqlite3_filename z, const char *zParam); SQLITE_API int sqlite3_uri_boolean(sqlite3_filename z, const char *zParam, int bDefault); SQLITE_API sqlite3_int64 sqlite3_uri_int64(sqlite3_filename, const char*, sqlite3_int64); SQLITE_API const char *sqlite3_uri_key(sqlite3_filename z, int N); /* ** CAPI3REF: Translate filenames ** ** These routines are available to [VFS|custom VFS implementations] for ** translating filenames between the main database file, the journal file, ** and the WAL file. ** ** If F is the name of an sqlite database file, journal file, or WAL file ** passed by the SQLite core into the VFS, then sqlite3_filename_database(F) ** returns the name of the corresponding database file. ** ** If F is the name of an sqlite database file, journal file, or WAL file ** passed by the SQLite core into the VFS, or if F is a database filename ** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F) ** returns the name of the corresponding rollback journal file. ** ** If F is the name of an sqlite database file, journal file, or WAL file ** that was passed by the SQLite core into the VFS, or if F is a database ** filename obtained from [sqlite3_db_filename()], then ** sqlite3_filename_wal(F) returns the name of the corresponding ** WAL file. ** ** In all of the above, if F is not the name of a database, journal or WAL ** filename passed into the VFS from the SQLite core and F is not the ** return value from [sqlite3_db_filename()], then the result is ** undefined and is likely a memory access violation. */ SQLITE_API const char *sqlite3_filename_database(sqlite3_filename); SQLITE_API const char *sqlite3_filename_journal(sqlite3_filename); SQLITE_API const char *sqlite3_filename_wal(sqlite3_filename); /* ** CAPI3REF: Database File Corresponding To A Journal ** ** ^If X is the name of a rollback or WAL-mode journal file that is ** passed into the xOpen method of [sqlite3_vfs], then ** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file] ** object that represents the main database file. ** ** This routine is intended for use in custom [VFS] implementations ** only. It is not a general-purpose interface. ** The argument sqlite3_file_object(X) must be a filename pointer that ** has been passed into [sqlite3_vfs].xOpen method where the ** flags parameter to xOpen contains one of the bits ** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use ** of this routine results in undefined and probably undesirable ** behavior. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*); /* ** CAPI3REF: Create and Destroy VFS Filenames ** ** These interfaces are provided for use by [VFS shim] implementations and ** are not useful outside of that context. ** ** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of ** database filename D with corresponding journal file J and WAL file W and ** with N URI parameters key/values pairs in the array P. The result from ** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that ** is safe to pass to routines like: **
    **
  • [sqlite3_uri_parameter()], **
  • [sqlite3_uri_boolean()], **
  • [sqlite3_uri_int64()], **
  • [sqlite3_uri_key()], **
  • [sqlite3_filename_database()], **
  • [sqlite3_filename_journal()], or **
  • [sqlite3_filename_wal()]. **
** If a memory allocation error occurs, sqlite3_create_filename() might ** return a NULL pointer. The memory obtained from sqlite3_create_filename(X) ** must be released by a corresponding call to sqlite3_free_filename(Y). ** ** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array ** of 2*N pointers to strings. Each pair of pointers in this array corresponds ** to a key and value for a query parameter. The P parameter may be a NULL ** pointer if N is zero. None of the 2*N pointers in the P array may be ** NULL pointers and key pointers should not be empty strings. ** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may ** be NULL pointers, though they can be empty strings. ** ** The sqlite3_free_filename(Y) routine releases a memory allocation ** previously obtained from sqlite3_create_filename(). Invoking ** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op. ** ** If the Y parameter to sqlite3_free_filename(Y) is anything other ** than a NULL pointer or a pointer previously acquired from ** sqlite3_create_filename(), then bad things such as heap ** corruption or segfaults may occur. The value Y should not be ** used again after sqlite3_free_filename(Y) has been called. This means ** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y, ** then the corresponding [sqlite3_module.xClose() method should also be ** invoked prior to calling sqlite3_free_filename(Y). */ SQLITE_API sqlite3_filename sqlite3_create_filename( const char *zDatabase, const char *zJournal, const char *zWal, int nParam, const char **azParam ); SQLITE_API void sqlite3_free_filename(sqlite3_filename); /* ** CAPI3REF: Error Codes And Messages ** METHOD: sqlite3 ** ** ^If the most recent sqlite3_* API call associated with ** [database connection] D failed, then the sqlite3_errcode(D) interface ** returns the numeric [result code] or [extended result code] for that ** API call. ** ^The sqlite3_extended_errcode() ** interface is the same except that it always returns the ** [extended result code] even when extended result codes are ** disabled. ** ** The values returned by sqlite3_errcode() and/or ** sqlite3_extended_errcode() might change with each API call. ** Except, there are some interfaces that are guaranteed to never ** change the value of the error code. The error-code preserving ** interfaces include the following: ** **
    **
  • sqlite3_errcode() **
  • sqlite3_extended_errcode() **
  • sqlite3_errmsg() **
  • sqlite3_errmsg16() **
  • sqlite3_error_offset() **
** ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language ** text that describes the error, as either UTF-8 or UTF-16 respectively. ** ^(Memory to hold the error message string is managed internally. ** The application does not need to worry about freeing the result. ** However, the error string might be overwritten or deallocated by ** subsequent calls to other SQLite interface functions.)^ ** ** ^The sqlite3_errstr() interface returns the English-language text ** that describes the [result code], as UTF-8. ** ^(Memory to hold the error message string is managed internally ** and must not be freed by the application)^. ** ** ^If the most recent error references a specific token in the input ** SQL, the sqlite3_error_offset() interface returns the byte offset ** of the start of that token. ^The byte offset returned by ** sqlite3_error_offset() assumes that the input SQL is UTF8. ** ^If the most recent error does not reference a specific token in the input ** SQL, then the sqlite3_error_offset() function returns -1. ** ** When the serialized [threading mode] is in use, it might be the ** case that a second error occurs on a separate thread in between ** the time of the first error and the call to these interfaces. ** When that happens, the second error will be reported since these ** interfaces always report the most recent result. To avoid ** this, each thread can obtain exclusive use of the [database connection] D ** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning ** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after ** all calls to the interfaces listed here are completed. ** ** If an interface fails with SQLITE_MISUSE, that means the interface ** was invoked incorrectly by the application. In that case, the ** error code and message may or may not be set. */ SQLITE_API int sqlite3_errcode(sqlite3 *db); SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); SQLITE_API const char *sqlite3_errmsg(sqlite3*); SQLITE_API const void *sqlite3_errmsg16(sqlite3*); SQLITE_API const char *sqlite3_errstr(int); SQLITE_API int sqlite3_error_offset(sqlite3 *db); /* ** CAPI3REF: Prepared Statement Object ** KEYWORDS: {prepared statement} {prepared statements} ** ** An instance of this object represents a single SQL statement that ** has been compiled into binary form and is ready to be evaluated. ** ** Think of each SQL statement as a separate computer program. The ** original SQL text is source code. A prepared statement object ** is the compiled object code. All SQL must be converted into a ** prepared statement before it can be run. ** ** The life-cycle of a prepared statement object usually goes like this: ** **
    **
  1. Create the prepared statement object using [sqlite3_prepare_v2()]. **
  2. Bind values to [parameters] using the sqlite3_bind_*() ** interfaces. **
  3. Run the SQL by calling [sqlite3_step()] one or more times. **
  4. Reset the prepared statement using [sqlite3_reset()] then go back ** to step 2. Do this zero or more times. **
  5. Destroy the object using [sqlite3_finalize()]. **
*/ typedef struct sqlite3_stmt sqlite3_stmt; /* ** CAPI3REF: Run-time Limits ** METHOD: sqlite3 ** ** ^(This interface allows the size of various constructs to be limited ** on a connection by connection basis. The first parameter is the ** [database connection] whose limit is to be set or queried. The ** second parameter is one of the [limit categories] that define a ** class of constructs to be size limited. The third parameter is the ** new limit for that construct.)^ ** ** ^If the new limit is a negative number, the limit is unchanged. ** ^(For each limit category SQLITE_LIMIT_NAME there is a ** [limits | hard upper bound] ** set at compile-time by a C preprocessor macro called ** [limits | SQLITE_MAX_NAME]. ** (The "_LIMIT_" in the name is changed to "_MAX_".))^ ** ^Attempts to increase a limit above its hard upper bound are ** silently truncated to the hard upper bound. ** ** ^Regardless of whether or not the limit was changed, the ** [sqlite3_limit()] interface returns the prior value of the limit. ** ^Hence, to find the current value of a limit without changing it, ** simply invoke this interface with the third parameter set to -1. ** ** Run-time limits are intended for use in applications that manage ** both their own internal database and also databases that are controlled ** by untrusted external sources. An example application might be a ** web browser that has its own databases for storing history and ** separate databases controlled by JavaScript applications downloaded ** off the Internet. The internal databases can be given the ** large, default limits. Databases managed by external sources can ** be given much smaller limits designed to prevent a denial of service ** attack. Developers might also want to use the [sqlite3_set_authorizer()] ** interface to further control untrusted SQL. The size of the database ** created by an untrusted script can be contained using the ** [max_page_count] [PRAGMA]. ** ** New run-time limit categories may be added in future releases. */ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); /* ** CAPI3REF: Run-Time Limit Categories ** KEYWORDS: {limit category} {*limit categories} ** ** These constants define various performance limits ** that can be lowered at run-time using [sqlite3_limit()]. ** The synopsis of the meanings of the various limits is shown below. ** Additional information is available at [limits | Limits in SQLite]. ** **
** [[SQLITE_LIMIT_LENGTH]] ^(
SQLITE_LIMIT_LENGTH
**
The maximum size of any string or BLOB or table row, in bytes.
)^ ** ** [[SQLITE_LIMIT_SQL_LENGTH]] ^(
SQLITE_LIMIT_SQL_LENGTH
**
The maximum length of an SQL statement, in bytes.
)^ ** ** [[SQLITE_LIMIT_COLUMN]] ^(
SQLITE_LIMIT_COLUMN
**
The maximum number of columns in a table definition or in the ** result set of a [SELECT] or the maximum number of columns in an index ** or in an ORDER BY or GROUP BY clause.
)^ ** ** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(
SQLITE_LIMIT_EXPR_DEPTH
**
The maximum depth of the parse tree on any expression.
)^ ** ** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(
SQLITE_LIMIT_COMPOUND_SELECT
**
The maximum number of terms in a compound SELECT statement.
)^ ** ** [[SQLITE_LIMIT_VDBE_OP]] ^(
SQLITE_LIMIT_VDBE_OP
**
The maximum number of instructions in a virtual machine program ** used to implement an SQL statement. If [sqlite3_prepare_v2()] or ** the equivalent tries to allocate space for more than this many opcodes ** in a single prepared statement, an SQLITE_NOMEM error is returned.
)^ ** ** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(
SQLITE_LIMIT_FUNCTION_ARG
**
The maximum number of arguments on a function.
)^ ** ** [[SQLITE_LIMIT_ATTACHED]] ^(
SQLITE_LIMIT_ATTACHED
**
The maximum number of [ATTACH | attached databases].)^
** ** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]] ** ^(
SQLITE_LIMIT_LIKE_PATTERN_LENGTH
**
The maximum length of the pattern argument to the [LIKE] or ** [GLOB] operators.
)^ ** ** [[SQLITE_LIMIT_VARIABLE_NUMBER]] ** ^(
SQLITE_LIMIT_VARIABLE_NUMBER
**
The maximum index number of any [parameter] in an SQL statement.)^ ** ** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(
SQLITE_LIMIT_TRIGGER_DEPTH
**
The maximum depth of recursion for triggers.
)^ ** ** [[SQLITE_LIMIT_WORKER_THREADS]] ^(
SQLITE_LIMIT_WORKER_THREADS
**
The maximum number of auxiliary worker threads that a single ** [prepared statement] may start.
)^ **
*/ #define SQLITE_LIMIT_LENGTH 0 #define SQLITE_LIMIT_SQL_LENGTH 1 #define SQLITE_LIMIT_COLUMN 2 #define SQLITE_LIMIT_EXPR_DEPTH 3 #define SQLITE_LIMIT_COMPOUND_SELECT 4 #define SQLITE_LIMIT_VDBE_OP 5 #define SQLITE_LIMIT_FUNCTION_ARG 6 #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 #define SQLITE_LIMIT_WORKER_THREADS 11 /* ** CAPI3REF: Prepare Flags ** ** These constants define various flags that can be passed into ** "prepFlags" parameter of the [sqlite3_prepare_v3()] and ** [sqlite3_prepare16_v3()] interfaces. ** ** New flags may be added in future releases of SQLite. ** **
** [[SQLITE_PREPARE_PERSISTENT]] ^(
SQLITE_PREPARE_PERSISTENT
**
The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner ** that the prepared statement will be retained for a long time and ** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()] ** and [sqlite3_prepare16_v3()] assume that the prepared statement will ** be used just once or at most a few times and then destroyed using ** [sqlite3_finalize()] relatively soon. The current implementation acts ** on this hint by avoiding the use of [lookaside memory] so as not to ** deplete the limited store of lookaside memory. Future versions of ** SQLite may act on this hint differently. ** ** [[SQLITE_PREPARE_NORMALIZE]]
SQLITE_PREPARE_NORMALIZE
**
The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used ** to be required for any prepared statement that wanted to use the ** [sqlite3_normalized_sql()] interface. However, the ** [sqlite3_normalized_sql()] interface is now available to all ** prepared statements, regardless of whether or not they use this ** flag. ** ** [[SQLITE_PREPARE_NO_VTAB]]
SQLITE_PREPARE_NO_VTAB
**
The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler ** to return an error (error code SQLITE_ERROR) if the statement uses ** any virtual tables. **
*/ #define SQLITE_PREPARE_PERSISTENT 0x01 #define SQLITE_PREPARE_NORMALIZE 0x02 #define SQLITE_PREPARE_NO_VTAB 0x04 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** ** To execute an SQL statement, it must first be compiled into a byte-code ** program using one of these routines. Or, in other words, these routines ** are constructors for the [prepared statement] object. ** ** The preferred routine to use is [sqlite3_prepare_v2()]. The ** [sqlite3_prepare()] interface is legacy and should be avoided. ** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used ** for special purposes. ** ** The use of the UTF-8 interfaces is preferred, as SQLite currently ** does all parsing using UTF-8. The UTF-16 interfaces are provided ** as a convenience. The UTF-16 interfaces work by converting the ** input text into UTF-8, then invoking the corresponding UTF-8 interface. ** ** The first argument, "db", is a [database connection] obtained from a ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or ** [sqlite3_open16()]. The database connection must not have been closed. ** ** The second argument, "zSql", is the statement to be compiled, encoded ** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(), ** and sqlite3_prepare_v3() ** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(), ** and sqlite3_prepare16_v3() use UTF-16. ** ** ^If the nByte argument is negative, then zSql is read up to the ** first zero terminator. ^If nByte is positive, then it is the ** number of bytes read from zSql. ^If nByte is zero, then no prepared ** statement is generated. ** If the caller knows that the supplied string is nul-terminated, then ** there is a small performance advantage to passing an nByte parameter that ** is the number of bytes in the input string including ** the nul-terminator. ** ** ^If pzTail is not NULL then *pzTail is made to point to the first byte ** past the end of the first SQL statement in zSql. These routines only ** compile the first statement in zSql, so *pzTail is left pointing to ** what remains uncompiled. ** ** ^*ppStmt is left pointing to a compiled [prepared statement] that can be ** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set ** to NULL. ^If the input text contains no SQL (if the input is an empty ** string or a comment) then *ppStmt is set to NULL. ** The calling procedure is responsible for deleting the compiled ** SQL statement using [sqlite3_finalize()] after it has finished with it. ** ppStmt may not be NULL. ** ** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK]; ** otherwise an [error code] is returned. ** ** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(), ** and sqlite3_prepare16_v3() interfaces are recommended for all new programs. ** The older interfaces (sqlite3_prepare() and sqlite3_prepare16()) ** are retained for backwards compatibility, but their use is discouraged. ** ^In the "vX" interfaces, the prepared statement ** that is returned (the [sqlite3_stmt] object) contains a copy of the ** original SQL text. This causes the [sqlite3_step()] interface to ** behave differently in three ways: ** **
    **
  1. ** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it ** always used to do, [sqlite3_step()] will automatically recompile the SQL ** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY] ** retries will occur before sqlite3_step() gives up and returns an error. **
  2. ** **
  3. ** ^When an error occurs, [sqlite3_step()] will return one of the detailed ** [error codes] or [extended error codes]. ^The legacy behavior was that ** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code ** and the application would have to make a second call to [sqlite3_reset()] ** in order to find the underlying cause of the problem. With the "v2" prepare ** interfaces, the underlying reason for the error is returned immediately. **
  4. ** **
  5. ** ^If the specific value bound to a [parameter | host parameter] in the ** WHERE clause might influence the choice of query plan for a statement, ** then the statement will be automatically recompiled, as if there had been ** a schema change, on the first [sqlite3_step()] call following any change ** to the [sqlite3_bind_text | bindings] of that [parameter]. ** ^The specific value of a WHERE-clause [parameter] might influence the ** choice of query plan if the parameter is the left-hand side of a [LIKE] ** or [GLOB] operator or if the parameter is compared to an indexed column ** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled. **
  6. **
** **

^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having ** the extra prepFlags parameter, which is a bit array consisting of zero or ** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The ** sqlite3_prepare_v2() interface works exactly the same as ** sqlite3_prepare_v3() with a zero prepFlags parameter. */ SQLITE_API int sqlite3_prepare( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare_v2( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare_v3( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare16( sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare16_v2( sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare16_v3( sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nByte, /* Maximum length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** CAPI3REF: Retrieving Statement SQL ** METHOD: sqlite3_stmt ** ** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 ** SQL text used to create [prepared statement] P if P was ** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 ** string containing the SQL text of prepared statement P with ** [bound parameters] expanded. ** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8 ** string containing the normalized SQL text of prepared statement P. The ** semantics used to normalize a SQL statement are unspecified and subject ** to change. At a minimum, literal values will be replaced with suitable ** placeholders. ** ** ^(For example, if a prepared statement is created using the SQL ** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 ** and parameter :xyz is unbound, then sqlite3_sql() will return ** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() ** will return "SELECT 2345,NULL".)^ ** ** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory ** is available to hold the result, or if the result would exceed the ** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. ** ** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of ** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time ** option causes sqlite3_expanded_sql() to always return NULL. ** ** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P) ** are managed by SQLite and are automatically freed when the prepared ** statement is finalized. ** ^The string returned by sqlite3_expanded_sql(P), on the other hand, ** is obtained from [sqlite3_malloc()] and must be freed by the application ** by passing it to [sqlite3_free()]. ** ** ^The sqlite3_normalized_sql() interface is only available if ** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt); #endif /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to ** the content of the database file. ** ** Note that [application-defined SQL functions] or ** [virtual tables] might change the database indirectly as a side effect. ** ^(For example, if an application defines a function "eval()" that ** calls [sqlite3_exec()], then the following SQL statement would ** change the database file through side-effects: ** **

**    SELECT eval('DELETE FROM t1') FROM t2;
** 
** ** But because the [SELECT] statement does not change the database file ** directly, sqlite3_stmt_readonly() would still return true.)^ ** ** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK], ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, ** since the statements themselves do not actually modify the database but ** rather they control the timing of when other statements modify the ** database. ^The [ATTACH] and [DETACH] statements also cause ** sqlite3_stmt_readonly() to return true since, while those statements ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. ** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since ** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and ** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so ** sqlite3_stmt_readonly() returns false for those commands. ** ** ^This routine returns false if there is any possibility that the ** statement might change the database file. ^A false return does ** not guarantee that the statement will change the database file. ** ^For example, an UPDATE statement might have a WHERE clause that ** makes it a no-op, but the sqlite3_stmt_readonly() result would still ** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a ** read-only no-op if the table already exists, but ** sqlite3_stmt_readonly() still returns false for such a statement. ** ** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN] ** statement, then sqlite3_stmt_readonly(X) returns the same value as ** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the ** prepared statement S is an EXPLAIN statement, or 2 if the ** statement S is an EXPLAIN QUERY PLAN. ** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is ** an ordinary statement or a NULL pointer. */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt); /* ** CAPI3REF: Change The EXPLAIN Setting For A Prepared Statement ** METHOD: sqlite3_stmt ** ** The sqlite3_stmt_explain(S,E) interface changes the EXPLAIN ** setting for [prepared statement] S. If E is zero, then S becomes ** a normal prepared statement. If E is 1, then S behaves as if ** its SQL text began with "[EXPLAIN]". If E is 2, then S behaves as if ** its SQL text began with "[EXPLAIN QUERY PLAN]". ** ** Calling sqlite3_stmt_explain(S,E) might cause S to be reprepared. ** SQLite tries to avoid a reprepare, but a reprepare might be necessary ** on the first transition into EXPLAIN or EXPLAIN QUERY PLAN mode. ** ** Because of the potential need to reprepare, a call to ** sqlite3_stmt_explain(S,E) will fail with SQLITE_ERROR if S cannot be ** reprepared because it was created using [sqlite3_prepare()] instead of ** the newer [sqlite3_prepare_v2()] or [sqlite3_prepare_v3()] interfaces and ** hence has no saved SQL text with which to reprepare. ** ** Changing the explain setting for a prepared statement does not change ** the original SQL text for the statement. Hence, if the SQL text originally ** began with EXPLAIN or EXPLAIN QUERY PLAN, but sqlite3_stmt_explain(S,0) ** is called to convert the statement into an ordinary statement, the EXPLAIN ** or EXPLAIN QUERY PLAN keywords will still appear in the sqlite3_sql(S) ** output, even though the statement now acts like a normal SQL statement. ** ** This routine returns SQLITE_OK if the explain mode is successfully ** changed, or an error code if the explain mode could not be changed. ** The explain mode cannot be changed while a statement is active. ** Hence, it is good practice to call [sqlite3_reset(S)] ** immediately prior to calling sqlite3_stmt_explain(S,E). */ SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using ** [sqlite3_step(S)] but has neither run to completion (returned ** [SQLITE_DONE] from [sqlite3_step(S)]) nor ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) ** interface returns false if S is a NULL pointer. If S is not a ** NULL pointer and is not a pointer to a valid [prepared statement] ** object, then the behavior is undefined and probably undesirable. ** ** This interface can be used in combination [sqlite3_next_stmt()] ** to locate all prepared statements associated with a database ** connection that are in need of being reset. This can be used, ** for example, in diagnostic routines to search for prepared ** statements that are holding a transaction open. */ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*); /* ** CAPI3REF: Dynamically Typed Value Object ** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} ** ** SQLite uses the sqlite3_value object to represent all values ** that can be stored in a database table. SQLite uses dynamic typing ** for the values it stores. ^Values stored in sqlite3_value objects ** can be integers, floating point values, strings, BLOBs, or NULL. ** ** An sqlite3_value object may be either "protected" or "unprotected". ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies ** whether or not it requires a protected sqlite3_value. The ** [sqlite3_value_dup()] interface can be used to construct a new ** protected sqlite3_value from an unprotected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not ** a mutex is held. An internal mutex is held for a protected ** sqlite3_value object but no mutex is held for an unprotected ** sqlite3_value object. If SQLite is compiled to be single-threaded ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) ** or if SQLite is run in one of reduced mutex modes ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] ** then there is no distinction between protected and unprotected ** sqlite3_value objects and they can be used interchangeably. However, ** for maximum code portability it is recommended that applications ** still make the distinction between protected and unprotected ** sqlite3_value objects even when not strictly required. ** ** ^The sqlite3_value objects that are passed as parameters into the ** implementation of [application-defined SQL functions] are protected. ** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()] ** are protected. ** ^The sqlite3_value object returned by ** [sqlite3_column_value()] is unprotected. ** Unprotected sqlite3_value objects may only be used as arguments ** to [sqlite3_result_value()], [sqlite3_bind_value()], and ** [sqlite3_value_dup()]. ** The [sqlite3_value_blob | sqlite3_value_type()] family of ** interfaces require protected sqlite3_value objects. */ typedef struct sqlite3_value sqlite3_value; /* ** CAPI3REF: SQL Function Context Object ** ** The context in which an SQL function executes is stored in an ** sqlite3_context object. ^A pointer to an sqlite3_context object ** is always first parameter to [application-defined SQL functions]. ** The application-defined SQL function implementation will pass this ** pointer through into calls to [sqlite3_result_int | sqlite3_result()], ** [sqlite3_aggregate_context()], [sqlite3_user_data()], ** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()], ** and/or [sqlite3_set_auxdata()]. */ typedef struct sqlite3_context sqlite3_context; /* ** CAPI3REF: Binding Values To Prepared Statements ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** METHOD: sqlite3_stmt ** ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following ** templates: ** **
    **
  • ? **
  • ?NNN **
  • :VVV **
  • @VVV **
  • $VVV **
** ** In the templates above, NNN represents an integer literal, ** and VVV represents an alphanumeric identifier.)^ ^The values of these ** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** ** ^The first argument to the sqlite3_bind_*() routines is always ** a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. ** ** ^The second argument is the index of the SQL parameter to be set. ** ^The leftmost SQL parameter has an index of 1. ^When the same named ** SQL parameter is used more than once, second and subsequent ** occurrences have the same index as the first occurrence. ** ^The index for named parameters can be looked up using the ** [sqlite3_bind_parameter_index()] API if desired. ^The index ** for "?NNN" parameters is the value of NNN. ** ^The NNN value must be between 1 and the [sqlite3_limit()] ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766). ** ** ^The third argument is the value to bind to the parameter. ** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16() ** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter ** is ignored and the end result is the same as sqlite3_bind_null(). ** ^If the third parameter to sqlite3_bind_text() is not NULL, then ** it should be a pointer to well-formed UTF8 text. ** ^If the third parameter to sqlite3_bind_text16() is not NULL, then ** it should be a pointer to well-formed UTF16 text. ** ^If the third parameter to sqlite3_bind_text64() is not NULL, then ** it should be a pointer to a well-formed unicode string that is ** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16 ** otherwise. ** ** [[byte-order determination rules]] ^The byte-order of ** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF) ** found in first character, which is removed, or in the absence of a BOM ** the byte order is the native byte order of the host ** machine for sqlite3_bind_text16() or the byte order specified in ** the 6th parameter for sqlite3_bind_text64().)^ ** ^If UTF16 input text contains invalid unicode ** characters, then SQLite might change those invalid characters ** into the unicode replacement character: U+FFFD. ** ** ^(In those routines that have a fourth argument, its value is the ** number of bytes in the parameter. To be clear: the value is the ** number of bytes in the value, not the number of characters.)^ ** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() ** is negative, then the length of the string is ** the number of bytes up to the first zero terminator. ** If the fourth parameter to sqlite3_bind_blob() is negative, then ** the behavior is undefined. ** If a non-negative fourth parameter is provided to sqlite3_bind_text() ** or sqlite3_bind_text16() or sqlite3_bind_text64() then ** that parameter must be the byte offset ** where the NUL terminator would occur assuming the string were NUL ** terminated. If any NUL characters occurs at byte offsets less than ** the value of the fourth parameter then the resulting string value will ** contain embedded NULs. The result of expressions involving strings ** with embedded NULs is undefined. ** ** ^The fifth argument to the BLOB and string binding interfaces controls ** or indicates the lifetime of the object referenced by the third parameter. ** These three options exist: ** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished ** with it may be passed. ^It is called to dispose of the BLOB or string even ** if the call to the bind API fails, except the destructor is not called if ** the third parameter is a NULL pointer or the fourth parameter is negative. ** ^ (2) The special constant, [SQLITE_STATIC], may be passed to indicate that ** the application remains responsible for disposing of the object. ^In this ** case, the object and the provided pointer to it must remain valid until ** either the prepared statement is finalized or the same SQL parameter is ** bound to something else, whichever occurs sooner. ** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the ** object is to be copied prior to the return from sqlite3_bind_*(). ^The ** object and pointer to it must remain valid until then. ^SQLite will then ** manage the lifetime of its private copy. ** ** ^The sixth argument to sqlite3_bind_text64() must be one of ** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE] ** to specify the encoding of the text in the third parameter. If ** the sixth argument to sqlite3_bind_text64() is not one of the ** allowed values shown above, or if the text encoding is different ** from the encoding specified by the sixth parameter, then the behavior ** is undefined. ** ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that ** is filled with zeroes. ^A zeroblob uses a fixed amount of memory ** (just an integer to hold its size) while it is being processed. ** Zeroblobs are intended to serve as placeholders for BLOBs whose ** content is later written using ** [sqlite3_blob_open | incremental BLOB I/O] routines. ** ^A negative value for the zeroblob results in a zero-length BLOB. ** ** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in ** [prepared statement] S to have an SQL value of NULL, but to also be ** associated with the pointer P of type T. ^D is either a NULL pointer or ** a pointer to a destructor function for P. ^SQLite will invoke the ** destructor D with a single argument of P when it is finished using ** P. The T parameter should be a static string, preferably a string ** literal. The sqlite3_bind_pointer() routine is part of the ** [pointer passing interface] added for SQLite 3.20.0. ** ** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer ** for the [prepared statement] or with a prepared statement for which ** [sqlite3_step()] has been called more recently than [sqlite3_reset()], ** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_() ** routine is passed a [prepared statement] that has been finalized, the ** result is undefined and probably harmful. ** ** ^Bindings are not cleared by the [sqlite3_reset()] routine. ** ^Unbound parameters are interpreted as NULL. ** ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an ** [error code] if anything goes wrong. ** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB ** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or ** [SQLITE_MAX_LENGTH]. ** ^[SQLITE_RANGE] is returned if the parameter ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. ** ** See also: [sqlite3_bind_parameter_count()], ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. */ SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64, void(*)(void*)); SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int); SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int); SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*)); SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, void(*)(void*), unsigned char encoding); SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*)); SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64); /* ** CAPI3REF: Number Of SQL Parameters ** METHOD: sqlite3_stmt ** ** ^This routine can be used to find the number of [SQL parameters] ** in a [prepared statement]. SQL parameters are tokens of the ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as ** placeholders for values that are [sqlite3_bind_blob | bound] ** to the parameters at a later time. ** ** ^(This routine actually returns the index of the largest (rightmost) ** parameter. For all forms except ?NNN, this will correspond to the ** number of unique parameters. If parameters of the ?NNN form are used, ** there may be gaps in the list.)^ ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. */ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); /* ** CAPI3REF: Name Of A Host Parameter ** METHOD: sqlite3_stmt ** ** ^The sqlite3_bind_parameter_name(P,N) interface returns ** the name of the N-th [SQL parameter] in the [prepared statement] P. ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" ** respectively. ** In other words, the initial ":" or "$" or "@" or "?" ** is included as part of the name.)^ ** ^Parameters of the form "?" without a following integer have no name ** and are referred to as "nameless" or "anonymous parameters". ** ** ^The first host parameter has an index of 1, not 0. ** ** ^If the value N is out of range or if the N-th parameter is ** nameless, then NULL is returned. ^The returned string is ** always in UTF-8 encoding even if the named parameter was ** originally specified as UTF-16 in [sqlite3_prepare16()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. */ SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* ** CAPI3REF: Index Of A Parameter With A Given Name ** METHOD: sqlite3_stmt ** ** ^Return the index of an SQL parameter given its name. ^The ** index value returned is suitable for use as the second ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero ** is returned if no matching parameter is found. ^The parameter ** name must be given in UTF-8 even if the original statement ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or ** [sqlite3_prepare16_v3()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_name()]. */ SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* ** CAPI3REF: Reset All Bindings On A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset ** the [sqlite3_bind_blob | bindings] on a [prepared statement]. ** ^Use this routine to reset all host parameters to NULL. */ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); /* ** CAPI3REF: Number Of Columns In A Result Set ** METHOD: sqlite3_stmt ** ** ^Return the number of columns in the result set returned by the ** [prepared statement]. ^If this routine returns 0, that means the ** [prepared statement] returns no data (for example an [UPDATE]). ** ^However, just because this routine returns a positive number does not ** mean that one or more rows of data will be returned. ^A SELECT statement ** will always have a positive sqlite3_column_count() but depending on the ** WHERE clause constraints and the table content, it might return no rows. ** ** See also: [sqlite3_data_count()] */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Column Names In A Result Set ** METHOD: sqlite3_stmt ** ** ^These routines return the name assigned to a particular column ** in the result set of a [SELECT] statement. ^The sqlite3_column_name() ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the ** column number. ^The leftmost column is number 0. ** ** ^The returned string pointer is valid until either the [prepared statement] ** is destroyed by [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the next call to ** sqlite3_column_name() or sqlite3_column_name16() on the same column. ** ** ^If sqlite3_malloc() fails during the processing of either routine ** (for example during a conversion from UTF-8 to UTF-16) then a ** NULL pointer is returned. ** ** ^The name of a result column is the value of the "AS" clause for ** that column, if there is an AS clause. If there is no AS clause ** then the name of the column is unspecified and may change from ** one release of SQLite to the next. */ SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N); SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* ** CAPI3REF: Source Of Data In A Query Result ** METHOD: sqlite3_stmt ** ** ^These routines provide a means to determine the database, table, and ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** ^The returned string is valid until the [prepared statement] is destroyed ** using [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the same information is requested ** again in a different encoding. ** ** ^The names returned are the original un-aliased names of the ** database, table, and column. ** ** ^The first argument to these interfaces is a [prepared statement]. ** ^These functions return information about the Nth result column returned by ** the statement, where N is the second function argument. ** ^The left-most column is column 0 for these routines. ** ** ^If the Nth column returned by the statement is an expression or ** subquery and is not a column value, then all of these functions return ** NULL. ^These routines might also return NULL if a memory allocation error ** occurs. ^Otherwise, they return the name of the attached database, table, ** or column that query result column was extracted from. ** ** ^As with all other SQLite APIs, those whose names end with "16" return ** UTF-16 encoded strings and the other functions return UTF-8. ** ** ^These APIs are only available if the library was compiled with the ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol. ** ** If two or more threads call one or more ** [sqlite3_column_database_name | column metadata interfaces] ** for the same [prepared statement] and result column ** at the same time then the results are undefined. */ SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int); SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int); SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* ** CAPI3REF: Declared Datatype Of A Query Result ** METHOD: sqlite3_stmt ** ** ^(The first parameter is a [prepared statement]. ** If this statement is a [SELECT] statement and the Nth column of the ** returned result set of that [SELECT] is a table column (not an ** expression or subquery) then the declared type of the table ** column is returned.)^ ^If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. ** ^The returned string is always UTF-8 encoded. ** ** ^(For example, given the database schema: ** ** CREATE TABLE t1(c1 VARIANT); ** ** and the following statement to be compiled: ** ** SELECT c1 + 1, c1 FROM t1; ** ** this routine would return the string "VARIANT" for the second result ** column (i==1), and a NULL pointer for the first result column (i==0).)^ ** ** ^SQLite uses dynamic run-time typing. ^So just because a column ** is declared to contain a particular type does not mean that the ** data stored in that column is of the declared type. SQLite is ** strongly typed, but the typing is dynamic not static. ^Type ** is associated with individual values, not with the containers ** used to hold those values. */ SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); /* ** CAPI3REF: Evaluate An SQL Statement ** METHOD: sqlite3_stmt ** ** After a [prepared statement] has been prepared using any of ** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()], ** or [sqlite3_prepare16_v3()] or one of the legacy ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function ** must be called one or more times to evaluate the statement. ** ** The details of the behavior of the sqlite3_step() interface depend ** on whether the statement was prepared using the newer "vX" interfaces ** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()], ** [sqlite3_prepare16_v2()] or the older legacy ** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the ** new "vX" interface is recommended for new applications but the legacy ** interface will continue to be supported. ** ** ^In the legacy interface, the return value will be either [SQLITE_BUSY], ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. ** ^With the "v2" interface, any of the other [result codes] or ** [extended result codes] might be returned as well. ** ** ^[SQLITE_BUSY] means that the database engine was unable to acquire the ** database locks it needs to do its job. ^If the statement is a [COMMIT] ** or occurs outside of an explicit transaction, then you can retry the ** statement. If the statement is not a [COMMIT] and occurs within an ** explicit transaction then you should rollback the transaction before ** continuing. ** ** ^[SQLITE_DONE] means that the statement has finished executing ** successfully. sqlite3_step() should not be called again on this virtual ** machine without first calling [sqlite3_reset()] to reset the virtual ** machine back to its initial state. ** ** ^If the SQL statement being executed returns any data, then [SQLITE_ROW] ** is returned each time a new row of data is ready for processing by the ** caller. The values may be accessed using the [column access functions]. ** sqlite3_step() is called again to retrieve the next row of data. ** ** ^[SQLITE_ERROR] means that a run-time error (such as a constraint ** violation) has occurred. sqlite3_step() should not be called again on ** the VM. More information may be found by calling [sqlite3_errmsg()]. ** ^With the legacy interface, a more specific error code (for example, ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) ** can be obtained by calling [sqlite3_reset()] on the ** [prepared statement]. ^In the "v2" interface, ** the more specific error code is returned directly by sqlite3_step(). ** ** [SQLITE_MISUSE] means that the this routine was called inappropriately. ** Perhaps it was called on a [prepared statement] that has ** already been [sqlite3_finalize | finalized] or on one that had ** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could ** be the case that the same database connection is being used by two or ** more threads at the same moment in time. ** ** For all versions of SQLite up to and including 3.6.23.1, a call to ** [sqlite3_reset()] was required after sqlite3_step() returned anything ** other than [SQLITE_ROW] before any subsequent invocation of ** sqlite3_step(). Failure to reset the prepared statement using ** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from ** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1], ** sqlite3_step() began ** calling [sqlite3_reset()] automatically in this circumstance rather ** than returning [SQLITE_MISUSE]. This is not considered a compatibility ** break because any application that ever receives an SQLITE_MISUSE error ** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option ** can be used to restore the legacy behavior. ** ** Goofy Interface Alert: In the legacy interface, the sqlite3_step() ** API always returns a generic error code, [SQLITE_ERROR], following any ** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call ** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the ** specific [error codes] that better describes the error. ** We admit that this is a goofy design. The problem has been fixed ** with the "v2" interface. If you prepare all of your SQL statements ** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()] ** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, ** then the more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "vX" interfaces is recommended. */ SQLITE_API int sqlite3_step(sqlite3_stmt*); /* ** CAPI3REF: Number of columns in a result set ** METHOD: sqlite3_stmt ** ** ^The sqlite3_data_count(P) interface returns the number of columns in the ** current row of the result set of [prepared statement] P. ** ^If prepared statement P does not have results ready to return ** (via calls to the [sqlite3_column_int | sqlite3_column()] family of ** interfaces) then sqlite3_data_count(P) returns 0. ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. ** ^The sqlite3_data_count(P) routine returns 0 if the previous call to ** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P) ** will return non-zero if previous call to [sqlite3_step](P) returned ** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum] ** where it always returns zero since each step of that multi-step ** pragma returns 0 columns of data. ** ** See also: [sqlite3_column_count()] */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Fundamental Datatypes ** KEYWORDS: SQLITE_TEXT ** ** ^(Every value in SQLite has one of five fundamental datatypes: ** **
    **
  • 64-bit signed integer **
  • 64-bit IEEE floating point number **
  • string **
  • BLOB **
  • NULL **
)^ ** ** These constants are codes for each of those types. ** ** Note that the SQLITE_TEXT constant was also used in SQLite version 2 ** for a completely different meaning. Software that links against both ** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not ** SQLITE_TEXT. */ #define SQLITE_INTEGER 1 #define SQLITE_FLOAT 2 #define SQLITE_BLOB 4 #define SQLITE_NULL 5 #ifdef SQLITE_TEXT # undef SQLITE_TEXT #else # define SQLITE_TEXT 3 #endif #define SQLITE3_TEXT 3 /* ** CAPI3REF: Result Values From A Query ** KEYWORDS: {column access functions} ** METHOD: sqlite3_stmt ** ** Summary: **
**
sqlite3_column_blobBLOB result **
sqlite3_column_doubleREAL result **
sqlite3_column_int32-bit INTEGER result **
sqlite3_column_int6464-bit INTEGER result **
sqlite3_column_textUTF-8 TEXT result **
sqlite3_column_text16UTF-16 TEXT result **
sqlite3_column_valueThe result as an ** [sqlite3_value|unprotected sqlite3_value] object. **
    **
sqlite3_column_bytesSize of a BLOB ** or a UTF-8 TEXT result in bytes **
sqlite3_column_bytes16   ** →  Size of UTF-16 ** TEXT in bytes **
sqlite3_column_typeDefault ** datatype of the result **
** ** Details: ** ** ^These routines return information about a single column of the current ** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] ** that was returned from [sqlite3_prepare_v2()] or one of its variants) ** and the second argument is the index of the column for which information ** should be returned. ^The leftmost column of the result set has the index 0. ** ^The number of columns in the result can be determined using ** [sqlite3_column_count()]. ** ** If the SQL statement does not currently point to a valid row, or if the ** column index is out of range, the result is undefined. ** These routines may only be called when the most recent call to ** [sqlite3_step()] has returned [SQLITE_ROW] and neither ** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently. ** If any of these routines are called after [sqlite3_reset()] or ** [sqlite3_finalize()] or after [sqlite3_step()] has returned ** something other than [SQLITE_ROW], the results are undefined. ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] ** are called from a different thread while any of these routines ** are pending, then the results are undefined. ** ** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16) ** each return the value of a result column in a specific data format. If ** the result column is not initially in the requested format (for example, ** if the query returns an integer but the sqlite3_column_text() interface ** is used to extract the value) then an automatic type conversion is performed. ** ** ^The sqlite3_column_type() routine returns the ** [SQLITE_INTEGER | datatype code] for the initial data type ** of the result column. ^The returned value is one of [SQLITE_INTEGER], ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. ** The return value of sqlite3_column_type() can be used to decide which ** of the first six interface should be used to extract the column value. ** The value returned by sqlite3_column_type() is only meaningful if no ** automatic type conversions have occurred for the value in question. ** After a type conversion, the result of calling sqlite3_column_type() ** is undefined, though harmless. Future ** versions of SQLite may change the behavior of sqlite3_column_type() ** following a type conversion. ** ** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes() ** or sqlite3_column_bytes16() interfaces can be used to determine the size ** of that BLOB or string. ** ** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() ** routine returns the number of bytes in that BLOB or string. ** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts ** the string to UTF-8 and then returns the number of bytes. ** ^If the result is a numeric value then sqlite3_column_bytes() uses ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns ** the number of bytes in that string. ** ^If the result is NULL, then sqlite3_column_bytes() returns zero. ** ** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16() ** routine returns the number of bytes in that BLOB or string. ** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts ** the string to UTF-16 and then returns the number of bytes. ** ^If the result is a numeric value then sqlite3_column_bytes16() uses ** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns ** the number of bytes in that string. ** ^If the result is NULL, then sqlite3_column_bytes16() returns zero. ** ** ^The values returned by [sqlite3_column_bytes()] and ** [sqlite3_column_bytes16()] do not include the zero terminators at the end ** of the string. ^For clarity: the values returned by ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of ** bytes in the string, not the number of characters. ** ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), ** even empty strings, are always zero-terminated. ^The return ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** ** ^Strings returned by sqlite3_column_text16() always have the endianness ** which is native to the platform, regardless of the text encoding set ** for the database. ** ** Warning: ^The object returned by [sqlite3_column_value()] is an ** [unprotected sqlite3_value] object. In a multithreaded environment, ** an unprotected sqlite3_value object may only be used safely with ** [sqlite3_bind_value()] and [sqlite3_result_value()]. ** If the [unprotected sqlite3_value] object returned by ** [sqlite3_column_value()] is used in any other way, including calls ** to routines like [sqlite3_value_int()], [sqlite3_value_text()], ** or [sqlite3_value_bytes()], the behavior is not threadsafe. ** Hence, the sqlite3_column_value() interface ** is normally only useful within the implementation of ** [application-defined SQL functions] or [virtual tables], not within ** top-level application code. ** ** These routines may attempt to convert the datatype of the result. ** ^For example, if the internal representation is FLOAT and a text result ** is requested, [sqlite3_snprintf()] is used internally to perform the ** conversion automatically. ^(The following table details the conversions ** that are applied: ** **
** **
Internal
Type
Requested
Type
Conversion ** **
NULL INTEGER Result is 0 **
NULL FLOAT Result is 0.0 **
NULL TEXT Result is a NULL pointer **
NULL BLOB Result is a NULL pointer **
INTEGER FLOAT Convert from integer to float **
INTEGER TEXT ASCII rendering of the integer **
INTEGER BLOB Same as INTEGER->TEXT **
FLOAT INTEGER [CAST] to INTEGER **
FLOAT TEXT ASCII rendering of the float **
FLOAT BLOB [CAST] to BLOB **
TEXT INTEGER [CAST] to INTEGER **
TEXT FLOAT [CAST] to REAL **
TEXT BLOB No change **
BLOB INTEGER [CAST] to INTEGER **
BLOB FLOAT [CAST] to REAL **
BLOB TEXT [CAST] to TEXT, ensure zero terminator **
**
)^ ** ** Note that when type conversions occur, pointers returned by prior ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or ** sqlite3_column_text16() may be invalidated. ** Type conversions and pointer invalidations might occur ** in the following cases: ** **
    **
  • The initial content is a BLOB and sqlite3_column_text() or ** sqlite3_column_text16() is called. A zero-terminator might ** need to be added to the string.
  • **
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or ** sqlite3_column_text16() is called. The content must be converted ** to UTF-16.
  • **
  • The initial content is UTF-16 text and sqlite3_column_bytes() or ** sqlite3_column_text() is called. The content must be converted ** to UTF-8.
  • **
** ** ^Conversions between UTF-16be and UTF-16le are always done in place and do ** not invalidate a prior pointer, though of course the content of the buffer ** that the prior pointer references will have been modified. Other kinds ** of conversion are done in place when it is possible, but sometimes they ** are not possible and in those cases prior pointers are invalidated. ** ** The safest policy is to invoke these routines ** in one of the following ways: ** **
    **
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • **
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • **
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • **
** ** In other words, you should call sqlite3_column_text(), ** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result ** into the desired format, then invoke sqlite3_column_bytes() or ** sqlite3_column_bytes16() to find the size of the result. Do not mix calls ** to sqlite3_column_text() or sqlite3_column_blob() with calls to ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() ** with calls to sqlite3_column_bytes(). ** ** ^The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or ** [sqlite3_finalize()] is called. ^The memory space used to hold strings ** and BLOBs is freed automatically. Do not pass the pointers returned ** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into ** [sqlite3_free()]. ** ** As long as the input parameters are correct, these routines will only ** fail if an out-of-memory error occurs during a format conversion. ** Only the following subset of interfaces are subject to out-of-memory ** errors: ** **
    **
  • sqlite3_column_blob() **
  • sqlite3_column_text() **
  • sqlite3_column_text16() **
  • sqlite3_column_bytes() **
  • sqlite3_column_bytes16() **
** ** If an out-of-memory error occurs, then the return value from these ** routines is the same as if the column had contained an SQL NULL value. ** Valid SQL NULL returns can be distinguished from out-of-memory errors ** by invoking the [sqlite3_errcode()] immediately after the suspect ** return value is obtained and before any ** other SQLite interface is called on the same [database connection]. */ SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol); SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol); /* ** CAPI3REF: Destroy A Prepared Statement Object ** DESTRUCTOR: sqlite3_stmt ** ** ^The sqlite3_finalize() function is called to delete a [prepared statement]. ** ^If the most recent evaluation of the statement encountered no errors ** or if the statement is never been evaluated, then sqlite3_finalize() returns ** SQLITE_OK. ^If the most recent evaluation of statement S failed, then ** sqlite3_finalize(S) returns the appropriate [error code] or ** [extended error code]. ** ** ^The sqlite3_finalize(S) routine can be called at any point during ** the life cycle of [prepared statement] S: ** before statement S is ever evaluated, after ** one or more calls to [sqlite3_reset()], or after any call ** to [sqlite3_step()] regardless of whether or not the statement has ** completed execution. ** ** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op. ** ** The application must finalize every [prepared statement] in order to avoid ** resource leaks. It is a grievous error for the application to try to use ** a prepared statement after it has been finalized. Any use of a prepared ** statement after it has been finalized can result in undefined and ** undesirable behavior such as segfaults and heap corruption. */ SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt); /* ** CAPI3REF: Reset A Prepared Statement Object ** METHOD: sqlite3_stmt ** ** The sqlite3_reset() function is called to reset a [prepared statement] ** object back to its initial state, ready to be re-executed. ** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S ** back to the beginning of its program. ** ** ^The return code from [sqlite3_reset(S)] indicates whether or not ** the previous evaluation of prepared statement S completed successfully. ** ^If [sqlite3_step(S)] has never before been called on S or if ** [sqlite3_step(S)] has not been called since the previous call ** to [sqlite3_reset(S)], then [sqlite3_reset(S)] will return ** [SQLITE_OK]. ** ** ^If the most recent call to [sqlite3_step(S)] for the ** [prepared statement] S indicated an error, then ** [sqlite3_reset(S)] returns an appropriate [error code]. ** ^The [sqlite3_reset(S)] interface might also return an [error code] ** if there were no prior errors but the process of resetting ** the prepared statement caused a new error. ^For example, if an ** [INSERT] statement with a [RETURNING] clause is only stepped one time, ** that one call to [sqlite3_step(S)] might return SQLITE_ROW but ** the overall statement might still fail and the [sqlite3_reset(S)] call ** might return SQLITE_BUSY if locking constraints prevent the ** database change from committing. Therefore, it is important that ** applications check the return code from [sqlite3_reset(S)] even if ** no prior call to [sqlite3_step(S)] indicated a problem. ** ** ^The [sqlite3_reset(S)] interface does not change the values ** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. */ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); /* ** CAPI3REF: Create Or Redefine SQL Functions ** KEYWORDS: {function creation routines} ** METHOD: sqlite3 ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** the three "sqlite3_create_function*" routines are the text encoding ** expected for the second parameter (the name of the function being ** created) and the presence or absence of a destructor callback for ** the application data pointer. Function sqlite3_create_window_function() ** is similar, but allows the user to supply the extra callback functions ** needed by [aggregate window functions]. ** ** ^The first parameter is the [database connection] to which the SQL ** function is to be added. ^If an application uses more than one database ** connection then application-defined SQL functions must be added ** to each database connection separately. ** ** ^The second parameter is the name of the SQL function to be created or ** redefined. ^The length of the name is limited to 255 bytes in a UTF-8 ** representation, exclusive of the zero-terminator. ^Note that the name ** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes. ** ^Any attempt to create a function with a longer name ** will result in [SQLITE_MISUSE] being returned. ** ** ^The third parameter (nArg) ** is the number of arguments that the SQL function or ** aggregate takes. ^If this parameter is -1, then the SQL function or ** aggregate may take any number of arguments between 0 and the limit ** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** ** ^The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. The application should set this parameter to ** [SQLITE_UTF16LE] if the function implementation invokes ** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the ** implementation invokes [sqlite3_value_text16be()] on an input, or ** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8] ** otherwise. ^The same SQL function may be registered multiple times using ** different preferred text encodings, with different implementations for ** each encoding. ** ^When multiple implementations of the same function are available, SQLite ** will pick the one that involves the least amount of data conversion. ** ** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC] ** to signal that the function will always return the same result given ** the same inputs within a single SQL statement. Most SQL functions are ** deterministic. The built-in [random()] SQL function is an example of a ** function that is not deterministic. The SQLite query planner is able to ** perform additional optimizations on deterministic functions, so use ** of the [SQLITE_DETERMINISTIC] flag is recommended where possible. ** ** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY] ** flag, which if present prevents the function from being invoked from ** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions, ** index expressions, or the WHERE clause of partial indexes. ** ** For best security, the [SQLITE_DIRECTONLY] flag is recommended for ** all application-defined SQL functions that do not need to be ** used inside of triggers, view, CHECK constraints, or other elements of ** the database schema. This flags is especially recommended for SQL ** functions that have side effects or reveal internal application state. ** Without this flag, an attacker might be able to modify the schema of ** a database file to include invocations of the function with parameters ** chosen by the attacker, which the application will then execute when ** the database file is opened and read. ** ** ^(The fifth parameter is an arbitrary pointer. The implementation of the ** function can gain access to this pointer using [sqlite3_user_data()].)^ ** ** ^The sixth, seventh and eighth parameters passed to the three ** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or ** aggregate. ^A scalar SQL function requires an implementation of the xFunc ** callback only; NULL pointers must be passed as the xStep and xFinal ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue ** and xInverse) passed to sqlite3_create_window_function are pointers to ** C-language callbacks that implement the new function. xStep and xFinal ** must both be non-NULL. xValue and xInverse may either both be NULL, in ** which case a regular aggregate function is created, or must both be ** non-NULL, in which case the new function may be used as either an aggregate ** or aggregate window function. More details regarding the implementation ** of aggregate window functions are ** [user-defined window functions|available here]. ** ** ^(If the final parameter to sqlite3_create_function_v2() or ** sqlite3_create_window_function() is not NULL, then it is destructor for ** the application data pointer. The destructor is invoked when the function ** is deleted, either by being overloaded or when the database connection ** closes.)^ ^The destructor is also invoked if the call to ** sqlite3_create_function_v2() fails. ^When the destructor callback is ** invoked, it is passed a single argument which is a copy of the application ** data pointer which was the fifth parameter to sqlite3_create_function_v2(). ** ** ^It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing preferred text encodings. ^SQLite will use ** the implementation that most closely matches the way in which the ** SQL function is used. ^A function implementation with a non-negative ** nArg parameter is a better match than a function implementation with ** a negative nArg. ^A function where the preferred text encoding ** matches the database encoding is a better ** match than a function where the encoding is different. ** ^A function where the encoding difference is between UTF16le and UTF16be ** is a closer match than a function where the encoding difference is ** between UTF8 and UTF16. ** ** ^Built-in functions may be overloaded by new application-defined functions. ** ** ^An application-defined function is permitted to call other ** SQLite interfaces. However, such calls must not ** close the database connection nor finalize or reset the prepared ** statement in which the function is running. */ SQLITE_API int sqlite3_create_function( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); SQLITE_API int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); SQLITE_API int sqlite3_create_function_v2( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void(*xDestroy)(void*) ); SQLITE_API int sqlite3_create_window_function( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*) ); /* ** CAPI3REF: Text Encodings ** ** These constant define integer codes that represent the various ** text encodings supported by SQLite. */ #define SQLITE_UTF8 1 /* IMP: R-37514-35566 */ #define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */ #define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */ #define SQLITE_UTF16 4 /* Use native byte order */ #define SQLITE_ANY 5 /* Deprecated */ #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ /* ** CAPI3REF: Function Flags ** ** These constants may be ORed together with the ** [SQLITE_UTF8 | preferred text encoding] as the fourth argument ** to [sqlite3_create_function()], [sqlite3_create_function16()], or ** [sqlite3_create_function_v2()]. ** **
** [[SQLITE_DETERMINISTIC]]
SQLITE_DETERMINISTIC
** The SQLITE_DETERMINISTIC flag means that the new function always gives ** the same output when the input parameters are the same. ** The [abs|abs() function] is deterministic, for example, but ** [randomblob|randomblob()] is not. Functions must ** be deterministic in order to be used in certain contexts such as ** with the WHERE clause of [partial indexes] or in [generated columns]. ** SQLite might also optimize deterministic functions by factoring them ** out of inner loops. **
** ** [[SQLITE_DIRECTONLY]]
SQLITE_DIRECTONLY
** The SQLITE_DIRECTONLY flag means that the function may only be invoked ** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in ** schema structures such as [CHECK constraints], [DEFAULT clauses], ** [expression indexes], [partial indexes], or [generated columns]. **

** The SQLITE_DIRECTONLY flag is recommended for any ** [application-defined SQL function] ** that has side-effects or that could potentially leak sensitive information. ** This will prevent attacks in which an application is tricked ** into using a database file that has had its schema surreptitiously ** modified to invoke the application-defined function in ways that are ** harmful. **

** Some people say it is good practice to set SQLITE_DIRECTONLY on all ** [application-defined SQL functions], regardless of whether or not they ** are security sensitive, as doing so prevents those functions from being used ** inside of the database schema, and thus ensures that the database ** can be inspected and modified using generic tools (such as the [CLI]) ** that do not have access to the application-defined functions. **

** ** [[SQLITE_INNOCUOUS]]
SQLITE_INNOCUOUS
** The SQLITE_INNOCUOUS flag means that the function is unlikely ** to cause problems even if misused. An innocuous function should have ** no side effects and should not depend on any values other than its ** input parameters. The [abs|abs() function] is an example of an ** innocuous function. ** The [load_extension() SQL function] is not innocuous because of its ** side effects. **

SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not ** exactly the same. The [random|random() function] is an example of a ** function that is innocuous but not deterministic. **

Some heightened security settings ** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF]) ** disable the use of SQL functions inside views and triggers and in ** schema structures such as [CHECK constraints], [DEFAULT clauses], ** [expression indexes], [partial indexes], and [generated columns] unless ** the function is tagged with SQLITE_INNOCUOUS. Most built-in functions ** are innocuous. Developers are advised to avoid using the ** SQLITE_INNOCUOUS flag for application-defined functions unless the ** function has been carefully audited and found to be free of potentially ** security-adverse side-effects and information-leaks. **

** ** [[SQLITE_SUBTYPE]]
SQLITE_SUBTYPE
** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call ** [sqlite3_value_subtype()] to inspect the sub-types of its arguments. ** Specifying this flag makes no difference for scalar or aggregate user ** functions. However, if it is not specified for a user-defined window ** function, then any sub-types belonging to arguments passed to the window ** function may be discarded before the window function is called (i.e. ** sqlite3_value_subtype() will always return 0). **
**
*/ #define SQLITE_DETERMINISTIC 0x000000800 #define SQLITE_DIRECTONLY 0x000080000 #define SQLITE_SUBTYPE 0x000100000 #define SQLITE_INNOCUOUS 0x000200000 /* ** CAPI3REF: Deprecated Functions ** DEPRECATED ** ** These functions are [deprecated]. In order to maintain ** backwards compatibility with older code, these functions continue ** to be supported. However, new applications should avoid ** the use of these functions. To encourage programmers to avoid ** these functions, we will not explain what they do. */ #ifndef SQLITE_OMIT_DEPRECATED SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*); SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void); SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int), void*,sqlite3_int64); #endif /* ** CAPI3REF: Obtaining SQL Values ** METHOD: sqlite3_value ** ** Summary: **
**
sqlite3_value_blobBLOB value **
sqlite3_value_doubleREAL value **
sqlite3_value_int32-bit INTEGER value **
sqlite3_value_int6464-bit INTEGER value **
sqlite3_value_pointerPointer value **
sqlite3_value_textUTF-8 TEXT value **
sqlite3_value_text16UTF-16 TEXT value in ** the native byteorder **
sqlite3_value_text16beUTF-16be TEXT value **
sqlite3_value_text16leUTF-16le TEXT value **
    **
sqlite3_value_bytesSize of a BLOB ** or a UTF-8 TEXT in bytes **
sqlite3_value_bytes16   ** →  Size of UTF-16 ** TEXT in bytes **
sqlite3_value_typeDefault ** datatype of the value **
sqlite3_value_numeric_type   ** →  Best numeric datatype of the value **
sqlite3_value_nochange   ** →  True if the column is unchanged in an UPDATE ** against a virtual table. **
sqlite3_value_frombind   ** →  True if value originated from a [bound parameter] **
** ** Details: ** ** These routines extract type, size, and content information from ** [protected sqlite3_value] objects. Protected sqlite3_value objects ** are used to pass parameter information into the functions that ** implement [application-defined SQL functions] and [virtual tables]. ** ** These routines work only with [protected sqlite3_value] objects. ** Any attempt to use these routines on an [unprotected sqlite3_value] ** is not threadsafe. ** ** ^These routines work just like the corresponding [column access functions] ** except that these routines take a single [protected sqlite3_value] object ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. ** ** ^The sqlite3_value_text16() interface extracts a UTF-16 string ** in the native byte-order of the host machine. ^The ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces ** extract UTF-16 strings as big-endian and little-endian respectively. ** ** ^If [sqlite3_value] object V was initialized ** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)] ** and if X and Y are strings that compare equal according to strcmp(X,Y), ** then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise, ** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer() ** routine is part of the [pointer passing interface] added for SQLite 3.20.0. ** ** ^(The sqlite3_value_type(V) interface returns the ** [SQLITE_INTEGER | datatype code] for the initial datatype of the ** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER], ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^ ** Other interfaces might change the datatype for an sqlite3_value object. ** For example, if the datatype is initially SQLITE_INTEGER and ** sqlite3_value_text(V) is called to extract a text value for that ** integer, then subsequent calls to sqlite3_value_type(V) might return ** SQLITE_TEXT. Whether or not a persistent internal datatype conversion ** occurs is undefined and may change from one release of SQLite to the next. ** ** ^(The sqlite3_value_numeric_type() interface attempts to apply ** numeric affinity to the value. This means that an attempt is ** made to convert the value to an integer or floating point. If ** such a conversion is possible without loss of information (in other ** words, if the value is a string that looks like a number) ** then the conversion is performed. Otherwise no conversion occurs. ** The [SQLITE_INTEGER | datatype] after conversion is returned.)^ ** ** ^Within the [xUpdate] method of a [virtual table], the ** sqlite3_value_nochange(X) interface returns true if and only if ** the column corresponding to X is unchanged by the UPDATE operation ** that the xUpdate method call was invoked to implement and if ** and the prior [xColumn] method call that was invoked to extracted ** the value for that column returned without setting a result (probably ** because it queried [sqlite3_vtab_nochange()] and found that the column ** was unchanging). ^Within an [xUpdate] method, any value for which ** sqlite3_value_nochange(X) is true will in all other respects appear ** to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other ** than within an [xUpdate] method call for an UPDATE statement, then ** the return value is arbitrary and meaningless. ** ** ^The sqlite3_value_frombind(X) interface returns non-zero if the ** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()] ** interfaces. ^If X comes from an SQL literal value, or a table column, ** or an expression, then sqlite3_value_frombind(X) returns zero. ** ** Please pay particular attention to the fact that the pointer returned ** from [sqlite3_value_blob()], [sqlite3_value_text()], or ** [sqlite3_value_text16()] can be invalidated by a subsequent call to ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], ** or [sqlite3_value_text16()]. ** ** These routines must be called from the same thread as ** the SQL function that supplied the [sqlite3_value*] parameters. ** ** As long as the input parameter is correct, these routines can only ** fail if an out-of-memory error occurs during a format conversion. ** Only the following subset of interfaces are subject to out-of-memory ** errors: ** **
    **
  • sqlite3_value_blob() **
  • sqlite3_value_text() **
  • sqlite3_value_text16() **
  • sqlite3_value_text16le() **
  • sqlite3_value_text16be() **
  • sqlite3_value_bytes() **
  • sqlite3_value_bytes16() **
** ** If an out-of-memory error occurs, then the return value from these ** routines is the same as if the column had contained an SQL NULL value. ** Valid SQL NULL returns can be distinguished from out-of-memory errors ** by invoking the [sqlite3_errcode()] immediately after the suspect ** return value is obtained and before any ** other SQLite interface is called on the same [database connection]. */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value*); SQLITE_API double sqlite3_value_double(sqlite3_value*); SQLITE_API int sqlite3_value_int(sqlite3_value*); SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*); SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*); SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*); SQLITE_API const void *sqlite3_value_text16(sqlite3_value*); SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*); SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*); SQLITE_API int sqlite3_value_bytes(sqlite3_value*); SQLITE_API int sqlite3_value_bytes16(sqlite3_value*); SQLITE_API int sqlite3_value_type(sqlite3_value*); SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*); SQLITE_API int sqlite3_value_nochange(sqlite3_value*); SQLITE_API int sqlite3_value_frombind(sqlite3_value*); /* ** CAPI3REF: Report the internal text encoding state of an sqlite3_value object ** METHOD: sqlite3_value ** ** ^(The sqlite3_value_encoding(X) interface returns one of [SQLITE_UTF8], ** [SQLITE_UTF16BE], or [SQLITE_UTF16LE] according to the current text encoding ** of the value X, assuming that X has type TEXT.)^ If sqlite3_value_type(X) ** returns something other than SQLITE_TEXT, then the return value from ** sqlite3_value_encoding(X) is meaningless. ^Calls to ** [sqlite3_value_text(X)], [sqlite3_value_text16(X)], [sqlite3_value_text16be(X)], ** [sqlite3_value_text16le(X)], [sqlite3_value_bytes(X)], or ** [sqlite3_value_bytes16(X)] might change the encoding of the value X and ** thus change the return from subsequent calls to sqlite3_value_encoding(X). ** ** This routine is intended for used by applications that test and validate ** the SQLite implementation. This routine is inquiring about the opaque ** internal state of an [sqlite3_value] object. Ordinary applications should ** not need to know what the internal state of an sqlite3_value object is and ** hence should not need to use this interface. */ SQLITE_API int sqlite3_value_encoding(sqlite3_value*); /* ** CAPI3REF: Finding The Subtype Of SQL Values ** METHOD: sqlite3_value ** ** The sqlite3_value_subtype(V) function returns the subtype for ** an [application-defined SQL function] argument V. The subtype ** information can be used to pass a limited amount of context from ** one SQL function to another. Use the [sqlite3_result_subtype()] ** routine to set the subtype for the return value of an SQL function. */ SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*); /* ** CAPI3REF: Copy And Free SQL Values ** METHOD: sqlite3_value ** ** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value] ** object D and returns a pointer to that copy. ^The [sqlite3_value] returned ** is a [protected sqlite3_value] object even if the input is not. ** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a ** memory allocation fails. ^If V is a [pointer value], then the result ** of sqlite3_value_dup(V) is a NULL value. ** ** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object ** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer ** then sqlite3_value_free(V) is a harmless no-op. */ SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*); SQLITE_API void sqlite3_value_free(sqlite3_value*); /* ** CAPI3REF: Obtain Aggregate Function Context ** METHOD: sqlite3_context ** ** Implementations of aggregate SQL functions use this ** routine to allocate memory for storing their state. ** ** ^The first time the sqlite3_aggregate_context(C,N) routine is called ** for a particular aggregate function, SQLite allocates ** N bytes of memory, zeroes out that memory, and returns a pointer ** to the new memory. ^On second and subsequent calls to ** sqlite3_aggregate_context() for the same aggregate function instance, ** the same buffer is returned. Sqlite3_aggregate_context() is normally ** called once for each invocation of the xStep callback and then one ** last time when the xFinal callback is invoked. ^(When no rows match ** an aggregate query, the xStep() callback of the aggregate function ** implementation is never called and xFinal() is called exactly once. ** In those cases, sqlite3_aggregate_context() might be called for the ** first time from within xFinal().)^ ** ** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer ** when first called if N is less than or equal to zero or if a memory ** allocation error occurs. ** ** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is ** determined by the N parameter on first successful call. Changing the ** value of N in any subsequent call to sqlite3_aggregate_context() within ** the same aggregate function instance will not resize the memory ** allocation.)^ Within the xFinal callback, it is customary to set ** N=0 in calls to sqlite3_aggregate_context(C,N) so that no ** pointless memory allocations occur. ** ** ^SQLite automatically frees the memory allocated by ** sqlite3_aggregate_context() when the aggregate query concludes. ** ** The first parameter must be a copy of the ** [sqlite3_context | SQL function context] that is the first parameter ** to the xStep or xFinal callback routine that implements the aggregate ** function. ** ** This routine must be called from the same thread in which ** the aggregate SQL function is running. */ SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); /* ** CAPI3REF: User Data For Functions ** METHOD: sqlite3_context ** ** ^The sqlite3_user_data() interface returns a copy of ** the pointer that was the pUserData parameter (the 5th parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. ** ** This routine must be called from the same thread in which ** the application-defined function is running. */ SQLITE_API void *sqlite3_user_data(sqlite3_context*); /* ** CAPI3REF: Database Connection For Functions ** METHOD: sqlite3_context ** ** ^The sqlite3_context_db_handle() interface returns a copy of ** the pointer to the [database connection] (the 1st parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** METHOD: sqlite3_context ** ** These functions may be used by (non-aggregate) SQL functions to ** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under ** some circumstances the associated metadata may be preserved. An example ** of where this might be useful is in a regular-expression matching ** function. The compiled version of the regular expression can be stored as ** metadata associated with the pattern string. ** Then as long as the pattern string remains the same, ** the compiled regular expression can be reused on multiple ** invocations of the same function. ** ** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata ** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument ** value to the application-defined function. ^N is zero for the left-most ** function argument. ^If there is no metadata ** associated with the function argument, the sqlite3_get_auxdata(C,N) interface ** returns a NULL pointer. ** ** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th ** argument of the application-defined function. ^Subsequent ** calls to sqlite3_get_auxdata(C,N) return P from the most recent ** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or ** NULL if the metadata has been discarded. ** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL, ** SQLite will invoke the destructor function X with parameter P exactly ** once, when the metadata is discarded. ** SQLite is free to discard the metadata at any time, including:
    **
  • ^(when the corresponding function parameter changes)^, or **
  • ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the ** SQL statement)^, or **
  • ^(when sqlite3_set_auxdata() is invoked again on the same ** parameter)^, or **
  • ^(during the original sqlite3_set_auxdata() call when a memory ** allocation error occurs.)^
** ** Note the last bullet in particular. The destructor X in ** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the ** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata() ** should be called near the end of the function implementation and the ** function implementation should not make any use of P after ** sqlite3_set_auxdata() has been called. ** ** ^(In practice, metadata is preserved between function calls for ** function parameters that are compile-time constants, including literal ** values and [parameters] and expressions composed from the same.)^ ** ** The value of the N parameter to these interfaces should be non-negative. ** Future enhancements may make use of negative N values to define new ** kinds of function caching behavior. ** ** These routines must be called from the same thread in which ** the SQL function is running. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); /* ** CAPI3REF: Constants Defining Special Destructor Behavior ** ** These are special values for the destructor that is passed in as the ** final argument to routines like [sqlite3_result_blob()]. ^If the destructor ** argument is SQLITE_STATIC, it means that the content pointer is constant ** and will never change. It does not need to be destroyed. ^The ** SQLITE_TRANSIENT value means that the content will likely change in ** the near future and that SQLite should make its own private copy of ** the content before returning. ** ** The typedef is necessary to work around problems in certain ** C++ compilers. */ typedef void (*sqlite3_destructor_type)(void*); #define SQLITE_STATIC ((sqlite3_destructor_type)0) #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) /* ** CAPI3REF: Setting The Result Of An SQL Function ** METHOD: sqlite3_context ** ** These routines are used by the xFunc or xFinal callbacks that ** implement SQL functions and aggregates. See ** [sqlite3_create_function()] and [sqlite3_create_function16()] ** for additional information. ** ** These functions work very much like the [parameter binding] family of ** functions used to bind values to host parameters in prepared statements. ** Refer to the [SQL parameter] documentation for additional information. ** ** ^The sqlite3_result_blob() interface sets the result from ** an application-defined function to be the BLOB whose content is pointed ** to by the second parameter and which is N bytes long where N is the ** third parameter. ** ** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N) ** interfaces set the result of the application-defined function to be ** a BLOB containing all zero bytes and N bytes in size. ** ** ^The sqlite3_result_double() interface sets the result from ** an application-defined function to be a floating point value specified ** by its 2nd argument. ** ** ^The sqlite3_result_error() and sqlite3_result_error16() functions ** cause the implemented SQL function to throw an exception. ** ^SQLite uses the string pointed to by the ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() ** as the text of an error message. ^SQLite interprets the error ** message string from sqlite3_result_error() as UTF-8. ^SQLite ** interprets the string from sqlite3_result_error16() as UTF-16 using ** the same [byte-order determination rules] as [sqlite3_bind_text16()]. ** ^If the third parameter to sqlite3_result_error() ** or sqlite3_result_error16() is negative then SQLite takes as the error ** message all text up through the first zero character. ** ^If the third parameter to sqlite3_result_error() or ** sqlite3_result_error16() is non-negative then SQLite takes that many ** bytes (not characters) from the 2nd parameter as the error message. ** ^The sqlite3_result_error() and sqlite3_result_error16() ** routines make a private copy of the error message text before ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. ** ^The sqlite3_result_error_code() function changes the error code ** returned by SQLite as a result of an error in a function. ^By default, ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** ** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an ** error indicating that a string or BLOB is too long to represent. ** ** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an ** error indicating that a memory allocation failed. ** ** ^The sqlite3_result_int() interface sets the return value ** of the application-defined function to be the 32-bit signed integer ** value given in the 2nd argument. ** ^The sqlite3_result_int64() interface sets the return value ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. ** ** ^The sqlite3_result_null() interface sets the return value ** of the application-defined function to be NULL. ** ** ^The sqlite3_result_text(), sqlite3_result_text16(), ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces ** set the return value of the application-defined function to be ** a text string which is represented as UTF-8, UTF-16 native byte order, ** UTF-16 little endian, or UTF-16 big endian, respectively. ** ^The sqlite3_result_text64() interface sets the return value of an ** application-defined function to be a text string in an encoding ** specified by the fifth (and last) parameter, which must be one ** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]. ** ^SQLite takes the text result from the application from ** the 2nd parameter of the sqlite3_result_text* interfaces. ** ^If the 3rd parameter to any of the sqlite3_result_text* interfaces ** other than sqlite3_result_text64() is negative, then SQLite computes ** the string length itself by searching the 2nd parameter for the first ** zero character. ** ^If the 3rd parameter to the sqlite3_result_text* interfaces ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. If the 3rd parameter is non-negative, then it ** must be the byte offset into the string where the NUL terminator would ** appear if the string where NUL terminated. If any NUL characters occur ** in the string at a byte offset that is less than the value of the 3rd ** parameter, then the resulting string will contain embedded NULs and the ** result of expressions operating on strings with embedded NULs is undefined. ** ^If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. ** ^If the 4th parameter to the sqlite3_result_text* interfaces or to ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite ** assumes that the text or BLOB result is in constant space and does not ** copy the content of the parameter nor call a destructor on the content ** when it has finished using that result. ** ^If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT ** then SQLite makes a copy of the result into space obtained ** from [sqlite3_malloc()] before it returns. ** ** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and ** sqlite3_result_text16be() routines, and for sqlite3_result_text64() ** when the encoding is not UTF8, if the input UTF16 begins with a ** byte-order mark (BOM, U+FEFF) then the BOM is removed from the ** string and the rest of the string is interpreted according to the ** byte-order specified by the BOM. ^The byte-order specified by ** the BOM at the beginning of the text overrides the byte-order ** specified by the interface procedure. ^So, for example, if ** sqlite3_result_text16le() is invoked with text that begins ** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the ** first two bytes of input are skipped and the remaining input ** is interpreted as UTF16BE text. ** ** ^For UTF16 input text to the sqlite3_result_text16(), ** sqlite3_result_text16be(), sqlite3_result_text16le(), and ** sqlite3_result_text64() routines, if the text contains invalid ** UTF16 characters, the invalid characters might be converted ** into the unicode replacement character, U+FFFD. ** ** ^The sqlite3_result_value() interface sets the result of ** the application-defined function to be a copy of the ** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The ** sqlite3_result_value() interface makes a copy of the [sqlite3_value] ** so that the [sqlite3_value] specified in the parameter may change or ** be deallocated after sqlite3_result_value() returns without harm. ** ^A [protected sqlite3_value] object may always be used where an ** [unprotected sqlite3_value] object is required, so either ** kind of [sqlite3_value] object can be used with this interface. ** ** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an ** SQL NULL value, just like [sqlite3_result_null(C)], except that it ** also associates the host-language pointer P or type T with that ** NULL value such that the pointer can be retrieved within an ** [application-defined SQL function] using [sqlite3_value_pointer()]. ** ^If the D parameter is not NULL, then it is a pointer to a destructor ** for the P parameter. ^SQLite invokes D with P as its only argument ** when SQLite is finished with P. The T parameter should be a static ** string and preferably a string literal. The sqlite3_result_pointer() ** routine is part of the [pointer passing interface] added for SQLite 3.20.0. ** ** If these routines are called from within the different thread ** than the one containing the application-defined function that received ** the [sqlite3_context] pointer, the results are undefined. */ SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*, sqlite3_uint64,void(*)(void*)); SQLITE_API void sqlite3_result_double(sqlite3_context*, double); SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int); SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int); SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*); SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*); SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int); SQLITE_API void sqlite3_result_int(sqlite3_context*, int); SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); SQLITE_API void sqlite3_result_null(sqlite3_context*); SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64, void(*)(void*), unsigned char encoding); SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*); SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*)); SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n); SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n); /* ** CAPI3REF: Setting The Subtype Of An SQL Function ** METHOD: sqlite3_context ** ** The sqlite3_result_subtype(C,T) function causes the subtype of ** the result from the [application-defined SQL function] with ** [sqlite3_context] C to be the value T. Only the lower 8 bits ** of the subtype T are preserved in current versions of SQLite; ** higher order bits are discarded. ** The number of subtype bytes preserved by SQLite might increase ** in future releases of SQLite. */ SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int); /* ** CAPI3REF: Define New Collating Sequences ** METHOD: sqlite3 ** ** ^These functions add, remove, or modify a [collation] associated ** with the [database connection] specified as the first argument. ** ** ^The name of the collation is a UTF-8 string ** for sqlite3_create_collation() and sqlite3_create_collation_v2() ** and a UTF-16 string in native byte order for sqlite3_create_collation16(). ** ^Collation names that compare equal according to [sqlite3_strnicmp()] are ** considered to be the same name. ** ** ^(The third argument (eTextRep) must be one of the constants: **
    **
  • [SQLITE_UTF8], **
  • [SQLITE_UTF16LE], **
  • [SQLITE_UTF16BE], **
  • [SQLITE_UTF16], or **
  • [SQLITE_UTF16_ALIGNED]. **
)^ ** ^The eTextRep argument determines the encoding of strings passed ** to the collating function callback, xCompare. ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep ** force strings to be UTF16 with native byte order. ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin ** on an even byte address. ** ** ^The fourth argument, pArg, is an application data pointer that is passed ** through as the first argument to the collating function callback. ** ** ^The fifth argument, xCompare, is a pointer to the collating function. ** ^Multiple collating functions can be registered using the same name but ** with different eTextRep parameters and SQLite will use whichever ** function requires the least amount of data transformation. ** ^If the xCompare argument is NULL then the collating function is ** deleted. ^When all collating functions having the same name are deleted, ** that collation is no longer usable. ** ** ^The collating function callback is invoked with a copy of the pArg ** application data pointer and with two strings in the encoding specified ** by the eTextRep argument. The two integer parameters to the collating ** function callback are the length of the two strings, in bytes. The collating ** function must return an integer that is negative, zero, or positive ** if the first string is less than, equal to, or greater than the second, ** respectively. A collating function must always return the same answer ** given the same inputs. If two or more collating functions are registered ** to the same collation name (using different eTextRep values) then all ** must give an equivalent answer when invoked with equivalent strings. ** The collating function must obey the following properties for all ** strings A, B, and C: ** **
    **
  1. If A==B then B==A. **
  2. If A==B and B==C then A==C. **
  3. If A<B THEN B>A. **
  4. If A<B and B<C then A<C. **
** ** If a collating function fails any of the above constraints and that ** collating function is registered and used, then the behavior of SQLite ** is undefined. ** ** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation() ** with the addition that the xDestroy callback is invoked on pArg when ** the collating function is deleted. ** ^Collating functions are deleted when they are overridden by later ** calls to the collation creation functions or when the ** [database connection] is closed using [sqlite3_close()]. ** ** ^The xDestroy callback is not called if the ** sqlite3_create_collation_v2() function fails. Applications that invoke ** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should ** check the return code and dispose of the application data pointer ** themselves rather than expecting SQLite to deal with it for them. ** This is different from every other SQLite interface. The inconsistency ** is unfortunate but cannot be changed without breaking backwards ** compatibility. ** ** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. */ SQLITE_API int sqlite3_create_collation( sqlite3*, const char *zName, int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); SQLITE_API int sqlite3_create_collation_v2( sqlite3*, const char *zName, int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDestroy)(void*) ); SQLITE_API int sqlite3_create_collation16( sqlite3*, const void *zName, int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); /* ** CAPI3REF: Collation Needed Callbacks ** METHOD: sqlite3 ** ** ^To avoid having to register all collation sequences before a database ** can be used, a single callback function may be registered with the ** [database connection] to be invoked whenever an undefined collation ** sequence is required. ** ** ^If the function is registered using the sqlite3_collation_needed() API, ** then it is passed the names of undefined collation sequences as strings ** encoded in UTF-8. ^If sqlite3_collation_needed16() is used, ** the names are passed as UTF-16 in machine native byte order. ** ^A call to either function replaces the existing collation-needed callback. ** ** ^(When the callback is invoked, the first argument passed is a copy ** of the second argument to sqlite3_collation_needed() or ** sqlite3_collation_needed16(). The second argument is the database ** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], ** or [SQLITE_UTF16LE], indicating the most desirable form of the collation ** sequence function required. The fourth parameter is the name of the ** required collation sequence.)^ ** ** The callback function should register the desired collation using ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or ** [sqlite3_create_collation_v2()]. */ SQLITE_API int sqlite3_collation_needed( sqlite3*, void*, void(*)(void*,sqlite3*,int eTextRep,const char*) ); SQLITE_API int sqlite3_collation_needed16( sqlite3*, void*, void(*)(void*,sqlite3*,int eTextRep,const void*) ); #ifdef SQLITE_ENABLE_CEROD /* ** Specify the activation key for a CEROD database. Unless ** activated, none of the CEROD routines will work. */ SQLITE_API void sqlite3_activate_cerod( const char *zPassPhrase /* Activation phrase */ ); #endif /* ** CAPI3REF: Suspend Execution For A Short Time ** ** The sqlite3_sleep() function causes the current thread to suspend execution ** for at least a number of milliseconds specified in its parameter. ** ** If the operating system does not support sleep requests with ** millisecond time resolution, then the time will be rounded up to ** the nearest second. The number of milliseconds of sleep actually ** requested from the operating system is returned. ** ** ^SQLite implements this interface by calling the xSleep() ** method of the default [sqlite3_vfs] object. If the xSleep() method ** of the default VFS is not implemented correctly, or not implemented at ** all, then the behavior of sqlite3_sleep() may deviate from the description ** in the previous paragraphs. ** ** If a negative argument is passed to sqlite3_sleep() the results vary by ** VFS and operating system. Some system treat a negative argument as an ** instruction to sleep forever. Others understand it to mean do not sleep ** at all. ^In SQLite version 3.42.0 and later, a negative ** argument passed into sqlite3_sleep() is changed to zero before it is relayed ** down into the xSleep method of the VFS. */ SQLITE_API int sqlite3_sleep(int); /* ** CAPI3REF: Name Of The Folder Holding Temporary Files ** ** ^(If this global variable is made to point to a string which is ** the name of a folder (a.k.a. directory), then all temporary files ** created by SQLite when using a built-in [sqlite3_vfs | VFS] ** will be placed in that directory.)^ ^If this variable ** is a NULL pointer, then SQLite performs a search for an appropriate ** temporary file directory. ** ** Applications are strongly discouraged from using this global variable. ** It is required to set a temporary folder on Windows Runtime (WinRT). ** But for all other platforms, it is highly recommended that applications ** neither read nor write this variable. This global variable is a relic ** that exists for backwards compatibility of legacy applications and should ** be avoided in new projects. ** ** It is not safe to read or modify this variable in more than one ** thread at a time. It is not safe to read or modify this variable ** if a [database connection] is being used at the same time in a separate ** thread. ** It is intended that this variable be set once ** as part of process initialization and before any SQLite interface ** routines have been called and that this variable remain unchanged ** thereafter. ** ** ^The [temp_store_directory pragma] may modify this variable and cause ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, ** the [temp_store_directory pragma] always assumes that any string ** that this variable points to is held in memory obtained from ** [sqlite3_malloc] and the pragma may attempt to free that memory ** using [sqlite3_free]. ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [temp_store_directory pragma] should be avoided. ** Except when requested by the [temp_store_directory pragma], SQLite ** does not free the memory that sqlite3_temp_directory points to. If ** the application wants that memory to be freed, it must do ** so itself, taking care to only do so after all [database connection] ** objects have been destroyed. ** ** Note to Windows Runtime users: The temporary directory must be set ** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various ** features that require the use of temporary files may fail. Here is an ** example of how to do this using C++ with the Windows Runtime: ** **
** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
**       TemporaryFolder->Path->Data();
** char zPathBuf[MAX_PATH + 1];
** memset(zPathBuf, 0, sizeof(zPathBuf));
** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
**       NULL, NULL);
** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
** 
*/ SQLITE_API char *sqlite3_temp_directory; /* ** CAPI3REF: Name Of The Folder Holding Database Files ** ** ^(If this global variable is made to point to a string which is ** the name of a folder (a.k.a. directory), then all database files ** specified with a relative pathname and created or accessed by ** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed ** to be relative to that directory.)^ ^If this variable is a NULL ** pointer, then SQLite assumes that all database files specified ** with a relative pathname are relative to the current directory ** for the process. Only the windows VFS makes use of this global ** variable; it is ignored by the unix VFS. ** ** Changing the value of this variable while a database connection is ** open can result in a corrupt database. ** ** It is not safe to read or modify this variable in more than one ** thread at a time. It is not safe to read or modify this variable ** if a [database connection] is being used at the same time in a separate ** thread. ** It is intended that this variable be set once ** as part of process initialization and before any SQLite interface ** routines have been called and that this variable remain unchanged ** thereafter. ** ** ^The [data_store_directory pragma] may modify this variable and cause ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, ** the [data_store_directory pragma] always assumes that any string ** that this variable points to is held in memory obtained from ** [sqlite3_malloc] and the pragma may attempt to free that memory ** using [sqlite3_free]. ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [data_store_directory pragma] should be avoided. */ SQLITE_API char *sqlite3_data_directory; /* ** CAPI3REF: Win32 Specific Interface ** ** These interfaces are available only on Windows. The ** [sqlite3_win32_set_directory] interface is used to set the value associated ** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to ** zValue, depending on the value of the type parameter. The zValue parameter ** should be NULL to cause the previous value to be freed via [sqlite3_free]; ** a non-NULL value will be copied into memory obtained from [sqlite3_malloc] ** prior to being used. The [sqlite3_win32_set_directory] interface returns ** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported, ** or [SQLITE_NOMEM] if memory could not be allocated. The value of the ** [sqlite3_data_directory] variable is intended to act as a replacement for ** the current directory on the sub-platforms of Win32 where that concept is ** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and ** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the ** sqlite3_win32_set_directory interface except the string parameter must be ** UTF-8 or UTF-16, respectively. */ SQLITE_API int sqlite3_win32_set_directory( unsigned long type, /* Identifier for directory being set or reset */ void *zValue /* New value for directory being set or reset */ ); SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue); SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue); /* ** CAPI3REF: Win32 Directory Types ** ** These macros are only available on Windows. They define the allowed values ** for the type argument to the [sqlite3_win32_set_directory] interface. */ #define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1 #define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2 /* ** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** METHOD: sqlite3 ** ** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, ** respectively. ^Autocommit mode is on by default. ** ^Autocommit mode is disabled by a [BEGIN] statement. ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. ** ** If certain kinds of errors occur on a statement within a multi-statement ** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the ** transaction might be rolled back automatically. The only way to ** find out whether SQLite automatically rolled back the transaction after ** an error is to use this function. ** ** If another thread changes the autocommit status of the database ** connection while this routine is running, then the return value ** is undefined. */ SQLITE_API int sqlite3_get_autocommit(sqlite3*); /* ** CAPI3REF: Find The Database Handle Of A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^The sqlite3_db_handle interface returns the [database connection] handle ** to which a [prepared statement] belongs. ^The [database connection] ** returned by sqlite3_db_handle is the same [database connection] ** that was the first argument ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to ** create the statement in the first place. */ SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*); /* ** CAPI3REF: Return The Schema Name For A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_name(D,N) interface returns a pointer to the schema name ** for the N-th database on database connection D, or a NULL pointer of N is ** out of range. An N value of 0 means the main database file. An N of 1 is ** the "temp" schema. Larger values of N correspond to various ATTACH-ed ** databases. ** ** Space to hold the string that is returned by sqlite3_db_name() is managed ** by SQLite itself. The string might be deallocated by any operation that ** changes the schema, including [ATTACH] or [DETACH] or calls to ** [sqlite3_serialize()] or [sqlite3_deserialize()], even operations that ** occur on a different thread. Applications that need to ** remember the string long-term should make their own copy. Applications that ** are accessing the same database connection simultaneously on multiple ** threads should mutex-protect calls to this API and should make their own ** private copy of the result prior to releasing the mutex. */ SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N); /* ** CAPI3REF: Return The Filename For A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename ** associated with database N of connection D. ** ^If there is no attached database N on the database ** connection D, or if database N is a temporary or in-memory database, then ** this function will return either a NULL pointer or an empty string. ** ** ^The string value returned by this routine is owned and managed by ** the database connection. ^The value will be valid until the database N ** is [DETACH]-ed or until the database connection closes. ** ** ^The filename returned by this function is the output of the ** xFullPathname method of the [VFS]. ^In other words, the filename ** will be an absolute pathname, even if the filename used ** to open the database originally was a URI or relative pathname. ** ** If the filename pointer returned by this routine is not NULL, then it ** can be used as the filename input parameter to these routines: **
    **
  • [sqlite3_uri_parameter()] **
  • [sqlite3_uri_boolean()] **
  • [sqlite3_uri_int64()] **
  • [sqlite3_filename_database()] **
  • [sqlite3_filename_journal()] **
  • [sqlite3_filename_wal()] **
*/ SQLITE_API sqlite3_filename sqlite3_db_filename(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Determine if a database is read-only ** METHOD: sqlite3 ** ** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N ** of connection D is read-only, 0 if it is read/write, or -1 if N is not ** the name of a database on connection D. */ SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Determine the transaction state of a database ** METHOD: sqlite3 ** ** ^The sqlite3_txn_state(D,S) interface returns the current ** [transaction state] of schema S in database connection D. ^If S is NULL, ** then the highest transaction state of any schema on database connection D ** is returned. Transaction states are (in order of lowest to highest): **
    **
  1. SQLITE_TXN_NONE **
  2. SQLITE_TXN_READ **
  3. SQLITE_TXN_WRITE **
** ^If the S argument to sqlite3_txn_state(D,S) is not the name of ** a valid schema, then -1 is returned. */ SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema); /* ** CAPI3REF: Allowed return values from [sqlite3_txn_state()] ** KEYWORDS: {transaction state} ** ** These constants define the current transaction state of a database file. ** ^The [sqlite3_txn_state(D,S)] interface returns one of these ** constants in order to describe the transaction state of schema S ** in [database connection] D. ** **
** [[SQLITE_TXN_NONE]]
SQLITE_TXN_NONE
**
The SQLITE_TXN_NONE state means that no transaction is currently ** pending.
** ** [[SQLITE_TXN_READ]]
SQLITE_TXN_READ
**
The SQLITE_TXN_READ state means that the database is currently ** in a read transaction. Content has been read from the database file ** but nothing in the database file has changed. The transaction state ** will advanced to SQLITE_TXN_WRITE if any changes occur and there are ** no other conflicting concurrent write transactions. The transaction ** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or ** [COMMIT].
** ** [[SQLITE_TXN_WRITE]]
SQLITE_TXN_WRITE
**
The SQLITE_TXN_WRITE state means that the database is currently ** in a write transaction. Content has been written to the database file ** but has not yet committed. The transaction state will change to ** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].
*/ #define SQLITE_TXN_NONE 0 #define SQLITE_TXN_READ 1 #define SQLITE_TXN_WRITE 2 /* ** CAPI3REF: Find the next prepared statement ** METHOD: sqlite3 ** ** ^This interface returns a pointer to the next [prepared statement] after ** pStmt associated with the [database connection] pDb. ^If pStmt is NULL ** then this interface returns a pointer to the first prepared statement ** associated with the database connection pDb. ^If no prepared statement ** satisfies the conditions of this routine, it returns NULL. ** ** The [database connection] pointer D in a call to ** [sqlite3_next_stmt(D,S)] must refer to an open database ** connection and in particular must not be a NULL pointer. */ SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); /* ** CAPI3REF: Commit And Rollback Notification Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_commit_hook() interface registers a callback ** function to be invoked whenever a transaction is [COMMIT | committed]. ** ^Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. ** ^The sqlite3_rollback_hook() interface registers a callback ** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. ** ^Any callback set by a previous call to sqlite3_rollback_hook() ** for the same database connection is overridden. ** ^The pArg argument is passed through to the callback. ** ^If the callback on a commit hook function returns non-zero, ** then the commit is converted into a rollback. ** ** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions ** return the P argument from the previous call of the same function ** on the same [database connection] D, or NULL for ** the first call for each function on D. ** ** The commit and rollback hook callbacks are not reentrant. ** The callback implementation must not do anything that will modify ** the database connection that invoked the callback. Any actions ** to modify the database connection must be deferred until after the ** completion of the [sqlite3_step()] call that triggered the commit ** or rollback hook in the first place. ** Note that running any other SQL statements, including SELECT statements, ** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify ** the database connections for the meaning of "modify" in this paragraph. ** ** ^Registering a NULL function disables the callback. ** ** ^When the commit hook callback routine returns zero, the [COMMIT] ** operation is allowed to continue normally. ^If the commit hook ** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK]. ** ^The rollback hook is invoked on a rollback that results from a commit ** hook returning non-zero, just as it would be with any other rollback. ** ** ^For the purposes of this API, a transaction is said to have been ** rolled back if an explicit "ROLLBACK" statement is executed, or ** an error or constraint causes an implicit rollback to occur. ** ^The rollback callback is not invoked if a transaction is ** automatically rolled back because the database connection is closed. ** ** See also the [sqlite3_update_hook()] interface. */ SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* ** CAPI3REF: Autovacuum Compaction Amount Callback ** METHOD: sqlite3 ** ** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback ** function C that is invoked prior to each autovacuum of the database ** file. ^The callback is passed a copy of the generic data pointer (P), ** the schema-name of the attached database that is being autovacuumed, ** the size of the database file in pages, the number of free pages, ** and the number of bytes per page, respectively. The callback should ** return the number of free pages that should be removed by the ** autovacuum. ^If the callback returns zero, then no autovacuum happens. ** ^If the value returned is greater than or equal to the number of ** free pages, then a complete autovacuum happens. ** **

^If there are multiple ATTACH-ed database files that are being ** modified as part of a transaction commit, then the autovacuum pages ** callback is invoked separately for each file. ** **

The callback is not reentrant. The callback function should ** not attempt to invoke any other SQLite interface. If it does, bad ** things may happen, including segmentation faults and corrupt database ** files. The callback function should be a simple function that ** does some arithmetic on its input parameters and returns a result. ** ** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional ** destructor for the P parameter. ^If X is not NULL, then X(P) is ** invoked whenever the database connection closes or when the callback ** is overwritten by another invocation of sqlite3_autovacuum_pages(). ** **

^There is only one autovacuum pages callback per database connection. ** ^Each call to the sqlite3_autovacuum_pages() interface overrides all ** previous invocations for that database connection. ^If the callback ** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer, ** then the autovacuum steps callback is cancelled. The return value ** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might ** be some other error code if something goes wrong. The current ** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other ** return codes might be added in future releases. ** **

If no autovacuum pages callback is specified (the usual case) or ** a NULL pointer is provided for the callback, ** then the default behavior is to vacuum all free pages. So, in other ** words, the default behavior is the same as if the callback function ** were something like this: ** **

**     unsigned int demonstration_autovac_pages_callback(
**       void *pClientData,
**       const char *zSchema,
**       unsigned int nDbPage,
**       unsigned int nFreePage,
**       unsigned int nBytePerPage
**     ){
**       return nFreePage;
**     }
** 
*/ SQLITE_API int sqlite3_autovacuum_pages( sqlite3 *db, unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int), void*, void(*)(void*) ); /* ** CAPI3REF: Data Change Notification Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_update_hook() interface registers a callback function ** with the [database connection] identified by the first argument ** to be invoked whenever a row is updated, inserted or deleted in ** a [rowid table]. ** ^Any callback set by a previous call to this function ** for the same database connection is overridden. ** ** ^The second argument is a pointer to the function to invoke when a ** row is updated, inserted or deleted in a rowid table. ** ^The first argument to the callback is a copy of the third argument ** to sqlite3_update_hook(). ** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], ** or [SQLITE_UPDATE], depending on the operation that caused the callback ** to be invoked. ** ^The third and fourth arguments to the callback contain pointers to the ** database and table name containing the affected row. ** ^The final callback parameter is the [rowid] of the row. ** ^In the case of an update, this is the [rowid] after the update takes place. ** ** ^(The update hook is not invoked when internal system tables are ** modified (i.e. sqlite_sequence).)^ ** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified. ** ** ^In the current implementation, the update hook ** is not invoked when conflicting rows are deleted because of an ** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook ** invoked when rows are deleted using the [truncate optimization]. ** The exceptions defined in this paragraph might change in a future ** release of SQLite. ** ** The update hook implementation must not do anything that will modify ** the database connection that invoked the update hook. Any actions ** to modify the database connection must be deferred until after the ** completion of the [sqlite3_step()] call that triggered the update hook. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** ^The sqlite3_update_hook(D,C,P) function ** returns the P argument from the previous call ** on the same [database connection] D, or NULL for ** the first call on D. ** ** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()], ** and [sqlite3_preupdate_hook()] interfaces. */ SQLITE_API void *sqlite3_update_hook( sqlite3*, void(*)(void *,int ,char const *,char const *,sqlite3_int64), void* ); /* ** CAPI3REF: Enable Or Disable Shared Pager Cache ** ** ^(This routine enables or disables the sharing of the database cache ** and schema data structures between [database connection | connections] ** to the same database. Sharing is enabled if the argument is true ** and disabled if the argument is false.)^ ** ** This interface is omitted if SQLite is compiled with ** [-DSQLITE_OMIT_SHARED_CACHE]. The [-DSQLITE_OMIT_SHARED_CACHE] ** compile-time option is recommended because the ** [use of shared cache mode is discouraged]. ** ** ^Cache sharing is enabled and disabled for an entire process. ** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]). ** In prior versions of SQLite, ** sharing was enabled or disabled for each thread separately. ** ** ^(The cache sharing mode set by this interface effects all subsequent ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. ** Existing database connections continue to use the sharing mode ** that was in effect at the time they were opened.)^ ** ** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled ** successfully. An [error code] is returned otherwise.)^ ** ** ^Shared cache is disabled by default. It is recommended that it stay ** that way. In other words, do not use this routine. This interface ** continues to be provided for historical compatibility, but its use is ** discouraged. Any use of shared cache is discouraged. If shared cache ** must be used, it is recommended that shared cache only be enabled for ** individual database connections using the [sqlite3_open_v2()] interface ** with the [SQLITE_OPEN_SHAREDCACHE] flag. ** ** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0 ** and will always return SQLITE_MISUSE. On those systems, ** shared cache mode should be enabled per-database connection via ** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE]. ** ** This interface is threadsafe on processors where writing a ** 32-bit integer is atomic. ** ** See Also: [SQLite Shared-Cache Mode] */ SQLITE_API int sqlite3_enable_shared_cache(int); /* ** CAPI3REF: Attempt To Free Heap Memory ** ** ^The sqlite3_release_memory() interface attempts to free N bytes ** of heap memory by deallocating non-essential memory allocations ** held by the database library. Memory used to cache database ** pages to improve performance is an example of non-essential memory. ** ^sqlite3_release_memory() returns the number of bytes actually freed, ** which might be more or less than the amount requested. ** ^The sqlite3_release_memory() routine is a no-op returning zero ** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT]. ** ** See also: [sqlite3_db_release_memory()] */ SQLITE_API int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the ** [sqlite3_release_memory()] interface, this interface is in effect even ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is ** omitted. ** ** See also: [sqlite3_release_memory()] */ SQLITE_API int sqlite3_db_release_memory(sqlite3*); /* ** CAPI3REF: Impose A Limit On Heap Size ** ** These interfaces impose limits on the amount of heap memory that will be ** by all database connections within a single process. ** ** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the ** soft limit on the amount of heap memory that may be allocated by SQLite. ** ^SQLite strives to keep heap memory utilization below the soft heap ** limit by reducing the number of pages held in the page cache ** as heap memory usages approaches the limit. ** ^The soft heap limit is "soft" because even though SQLite strives to stay ** below the limit, it will exceed the limit rather than generate ** an [SQLITE_NOMEM] error. In other words, the soft heap limit ** is advisory only. ** ** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of ** N bytes on the amount of memory that will be allocated. ^The ** sqlite3_hard_heap_limit64(N) interface is similar to ** sqlite3_soft_heap_limit64(N) except that memory allocations will fail ** when the hard heap limit is reached. ** ** ^The return value from both sqlite3_soft_heap_limit64() and ** sqlite3_hard_heap_limit64() is the size of ** the heap limit prior to the call, or negative in the case of an ** error. ^If the argument N is negative ** then no change is made to the heap limit. Hence, the current ** size of heap limits can be determined by invoking ** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1). ** ** ^Setting the heap limits to zero disables the heap limiter mechanism. ** ** ^The soft heap limit may not be greater than the hard heap limit. ** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N) ** is invoked with a value of N that is greater than the hard heap limit, ** the soft heap limit is set to the value of the hard heap limit. ** ^The soft heap limit is automatically enabled whenever the hard heap ** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and ** the soft heap limit is outside the range of 1..N, then the soft heap ** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the ** hard heap limit is enabled makes the soft heap limit equal to the ** hard heap limit. ** ** The memory allocation limits can also be adjusted using ** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit]. ** ** ^(The heap limits are not enforced in the current implementation ** if one or more of following conditions are true: ** **
    **
  • The limit value is set to zero. **
  • Memory accounting is disabled using a combination of the ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. **
  • An alternative page cache implementation is specified using ** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...). **
  • The page cache allocates from its own memory pool supplied ** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than ** from the heap. **
)^ ** ** The circumstances under which SQLite will enforce the heap limits may ** changes in future releases of SQLite. */ SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N); SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N); /* ** CAPI3REF: Deprecated Soft Heap Limit Interface ** DEPRECATED ** ** This is a deprecated version of the [sqlite3_soft_heap_limit64()] ** interface. This routine is provided for historical compatibility ** only. All new applications should use the ** [sqlite3_soft_heap_limit64()] interface rather than this one. */ SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); /* ** CAPI3REF: Extract Metadata About A Column Of A Table ** METHOD: sqlite3 ** ** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns ** information about column C of table T in database D ** on [database connection] X.)^ ^The sqlite3_table_column_metadata() ** interface returns SQLITE_OK and fills in the non-NULL pointers in ** the final five arguments with appropriate values if the specified ** column exists. ^The sqlite3_table_column_metadata() interface returns ** SQLITE_ERROR if the specified column does not exist. ** ^If the column-name parameter to sqlite3_table_column_metadata() is a ** NULL pointer, then this routine simply checks for the existence of the ** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it ** does not. If the table name parameter T in a call to ** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is ** undefined behavior. ** ** ^The column is identified by the second, third and fourth parameters to ** this function. ^(The second parameter is either the name of the database ** (i.e. "main", "temp", or an attached database) containing the specified ** table or NULL.)^ ^If it is NULL, then all attached databases are searched ** for the table using the same algorithm used by the database engine to ** resolve unqualified table references. ** ** ^The third and fourth parameters to this function are the table and column ** name of the desired column, respectively. ** ** ^Metadata is returned by writing to the memory locations passed as the 5th ** and subsequent parameters to this function. ^Any of these arguments may be ** NULL, in which case the corresponding element of metadata is omitted. ** ** ^(
** **
Parameter Output
Type
Description ** **
5th const char* Data type **
6th const char* Name of default collation sequence **
7th int True if column has a NOT NULL constraint **
8th int True if column is part of the PRIMARY KEY **
9th int True if column is [AUTOINCREMENT] **
**
)^ ** ** ^The memory pointed to by the character pointers returned for the ** declaration type and collation sequence is valid until the next ** call to any SQLite API function. ** ** ^If the specified table is actually a view, an [error code] is returned. ** ** ^If the specified column is "rowid", "oid" or "_rowid_" and the table ** is not a [WITHOUT ROWID] table and an ** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output ** parameters are set for the explicitly declared column. ^(If there is no ** [INTEGER PRIMARY KEY] column, then the outputs ** for the [rowid] are set as follows: ** **
**     data type: "INTEGER"
**     collation sequence: "BINARY"
**     not null: 0
**     primary key: 1
**     auto increment: 0
** 
)^ ** ** ^This function causes all database schemas to be read from disk and ** parsed, if that has not already been done, and returns an error if ** any errors are encountered while loading the schema. */ SQLITE_API int sqlite3_table_column_metadata( sqlite3 *db, /* Connection handle */ const char *zDbName, /* Database name or NULL */ const char *zTableName, /* Table name */ const char *zColumnName, /* Column name */ char const **pzDataType, /* OUTPUT: Declared data type */ char const **pzCollSeq, /* OUTPUT: Collation sequence name */ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ); /* ** CAPI3REF: Load An Extension ** METHOD: sqlite3 ** ** ^This interface loads an SQLite extension library from the named file. ** ** ^The sqlite3_load_extension() interface attempts to load an ** [SQLite extension] library contained in the file zFile. If ** the file cannot be loaded directly, attempts are made to load ** with various operating-system specific extensions added. ** So for example, if "samplelib" cannot be loaded, then names like ** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might ** be tried also. ** ** ^The entry point is zProc. ** ^(zProc may be 0, in which case SQLite will try to come up with an ** entry point name on its own. It first tries "sqlite3_extension_init". ** If that does not work, it constructs a name "sqlite3_X_init" where the ** X is consists of the lower-case equivalent of all ASCII alphabetic ** characters in the filename from the last "/" to the first following ** "." and omitting any initial "lib".)^ ** ^The sqlite3_load_extension() interface returns ** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. ** ^If an error occurs and pzErrMsg is not 0, then the ** [sqlite3_load_extension()] interface shall attempt to ** fill *pzErrMsg with error message text stored in memory ** obtained from [sqlite3_malloc()]. The calling function ** should free this memory by calling [sqlite3_free()]. ** ** ^Extension loading must be enabled using ** [sqlite3_enable_load_extension()] or ** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL) ** prior to calling this API, ** otherwise an error will be returned. ** ** Security warning: It is recommended that the ** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this ** interface. The use of the [sqlite3_enable_load_extension()] interface ** should be avoided. This will keep the SQL function [load_extension()] ** disabled and prevent SQL injections from giving attackers ** access to extension loading capabilities. ** ** See also the [load_extension() SQL function]. */ SQLITE_API int sqlite3_load_extension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Derived from zFile if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ); /* ** CAPI3REF: Enable Or Disable Extension Loading ** METHOD: sqlite3 ** ** ^So as not to open security holes in older applications that are ** unprepared to deal with [extension loading], and as a means of disabling ** [extension loading] while evaluating user-entered SQL, the following API ** is provided to turn the [sqlite3_load_extension()] mechanism on and off. ** ** ^Extension loading is off by default. ** ^Call the sqlite3_enable_load_extension() routine with onoff==1 ** to turn extension loading on and call it with onoff==0 to turn ** it back off again. ** ** ^This interface enables or disables both the C-API ** [sqlite3_load_extension()] and the SQL function [load_extension()]. ** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..) ** to enable or disable only the C-API.)^ ** ** Security warning: It is recommended that extension loading ** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method ** rather than this interface, so the [load_extension()] SQL function ** remains disabled. This will prevent SQL injections from giving attackers ** access to extension loading capabilities. */ SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff); /* ** CAPI3REF: Automatically Load Statically Linked Extensions ** ** ^This interface causes the xEntryPoint() function to be invoked for ** each new [database connection] that is created. The idea here is that ** xEntryPoint() is the entry point for a statically linked [SQLite extension] ** that is to be automatically loaded into all new database connections. ** ** ^(Even though the function prototype shows that xEntryPoint() takes ** no arguments and returns void, SQLite invokes xEntryPoint() with three ** arguments and expects an integer result as if the signature of the ** entry point where as follows: ** **
**    int xEntryPoint(
**      sqlite3 *db,
**      const char **pzErrMsg,
**      const struct sqlite3_api_routines *pThunk
**    );
** 
)^ ** ** If the xEntryPoint routine encounters an error, it should make *pzErrMsg ** point to an appropriate error message (obtained from [sqlite3_mprintf()]) ** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg ** is NULL before calling the xEntryPoint(). ^SQLite will invoke ** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. ** ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already ** on the list of automatic extensions is a harmless no-op. ^No entry point ** will be called more than once for each database connection that is opened. ** ** See also: [sqlite3_reset_auto_extension()] ** and [sqlite3_cancel_auto_extension()] */ SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void)); /* ** CAPI3REF: Cancel Automatic Extension Loading ** ** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the ** initialization routine X that was registered using a prior call to ** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)] ** routine returns 1 if initialization routine X was successfully ** unregistered and it returns 0 if X was not on the list of initialization ** routines. */ SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void)); /* ** CAPI3REF: Reset Automatic Extension Loading ** ** ^This interface disables all automatic extensions previously ** registered using [sqlite3_auto_extension()]. */ SQLITE_API void sqlite3_reset_auto_extension(void); /* ** Structures used by the virtual table interface */ typedef struct sqlite3_vtab sqlite3_vtab; typedef struct sqlite3_index_info sqlite3_index_info; typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* ** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} ** ** This structure, sometimes called a "virtual table module", ** defines the implementation of a [virtual table]. ** This structure consists mostly of methods for the module. ** ** ^A virtual table module is created by filling in a persistent ** instance of this structure and passing a pointer to that instance ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. ** ^The registration remains valid until it is replaced by a different ** module or until the [database connection] closes. The content ** of this structure must not change while it is registered with ** any database connection. */ struct sqlite3_module { int iVersion; int (*xCreate)(sqlite3*, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char**); int (*xConnect)(sqlite3*, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char**); int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); int (*xDisconnect)(sqlite3_vtab *pVTab); int (*xDestroy)(sqlite3_vtab *pVTab); int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); int (*xClose)(sqlite3_vtab_cursor*); int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, int argc, sqlite3_value **argv); int (*xNext)(sqlite3_vtab_cursor*); int (*xEof)(sqlite3_vtab_cursor*); int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); int (*xBegin)(sqlite3_vtab *pVTab); int (*xSync)(sqlite3_vtab *pVTab); int (*xCommit)(sqlite3_vtab *pVTab); int (*xRollback)(sqlite3_vtab *pVTab); int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 1 of the sqlite_module object. Those ** below are for version 2 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); /* The methods above are in versions 1 and 2 of the sqlite_module object. ** Those below are for version 3 and greater. */ int (*xShadowName)(const char*); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part ** of the [virtual table] interface to ** pass information into and receive the reply from the [xBestIndex] ** method of a [virtual table module]. The fields under **Inputs** are the ** inputs to xBestIndex and are read-only. xBestIndex inserts its ** results into the **Outputs** fields. ** ** ^(The aConstraint[] array records WHERE clause constraints of the form: ** **
column OP expr
** ** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is ** stored in aConstraint[].op using one of the ** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^ ** ^(The index of the column is stored in ** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the ** expr on the right-hand side can be evaluated (and thus the constraint ** is usable) and false if it cannot.)^ ** ** ^The optimizer automatically inverts terms of the form "expr OP column" ** and makes other simplifications to the WHERE clause in an attempt to ** get as many WHERE clause terms into the form shown above as possible. ** ^The aConstraint[] array only reports WHERE clause terms that are ** relevant to the particular virtual table being queried. ** ** ^Information about the ORDER BY clause is stored in aOrderBy[]. ** ^Each term of aOrderBy records a column of the ORDER BY clause. ** ** The colUsed field indicates which columns of the virtual table may be ** required by the current scan. Virtual table columns are numbered from ** zero in the order in which they appear within the CREATE TABLE statement ** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62), ** the corresponding bit is set within the colUsed mask if the column may be ** required by SQLite. If the table has at least 64 columns and any column ** to the right of the first 63 is required, then bit 63 of colUsed is also ** set. In other words, column iCol may be required if the expression ** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to ** non-zero. ** ** The [xBestIndex] method must fill aConstraintUsage[] with information ** about what parameters to pass to xFilter. ^If argvIndex>0 then ** the right-hand side of the corresponding aConstraint[] is evaluated ** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit ** is true, then the constraint is assumed to be fully handled by the ** virtual table and might not be checked again by the byte code.)^ ^(The ** aConstraintUsage[].omit flag is an optimization hint. When the omit flag ** is left in its default setting of false, the constraint will always be ** checked separately in byte code. If the omit flag is change to true, then ** the constraint may or may not be checked in byte code. In other words, ** when the omit flag is true there is no guarantee that the constraint will ** not be checked again using byte code.)^ ** ** ^The idxNum and idxStr values are recorded and passed into the ** [xFilter] method. ** ^[sqlite3_free()] is used to free idxStr if and only if ** needToFreeIdxStr is true. ** ** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in ** the correct order to satisfy the ORDER BY clause so that no separate ** sorting step is required. ** ** ^The estimatedCost value is an estimate of the cost of a particular ** strategy. A cost of N indicates that the cost of the strategy is similar ** to a linear scan of an SQLite table with N rows. A cost of log(N) ** indicates that the expense of the operation is similar to that of a ** binary search on a unique indexed field of an SQLite table with N rows. ** ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** ** The xBestIndex method may optionally populate the idxFlags field with a ** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag - ** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite ** assumes that the strategy may visit at most one row. ** ** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then ** SQLite also assumes that if a call to the xUpdate() method is made as ** part of the same statement to delete or update a virtual table row and the ** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback ** any database changes. In other words, if the xUpdate() returns ** SQLITE_CONSTRAINT, the database contents must be exactly as they were ** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not ** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by ** the xUpdate method are automatically rolled back by SQLite. ** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite [version 3.8.2] ([dateof:3.8.2]). ** If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to include crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a ** value greater than or equal to 3008002. Similarly, the idxFlags field ** was added for [version 3.9.0] ([dateof:3.9.0]). ** It may therefore only be used if ** sqlite3_libversion_number() returns a value greater than or equal to ** 3009000. */ struct sqlite3_index_info { /* Inputs */ int nConstraint; /* Number of entries in aConstraint */ struct sqlite3_index_constraint { int iColumn; /* Column constrained. -1 for ROWID */ unsigned char op; /* Constraint operator */ unsigned char usable; /* True if this constraint is usable */ int iTermOffset; /* Used internally - xBestIndex should ignore */ } *aConstraint; /* Table of WHERE clause constraints */ int nOrderBy; /* Number of terms in the ORDER BY clause */ struct sqlite3_index_orderby { int iColumn; /* Column number */ unsigned char desc; /* True for DESC. False for ASC. */ } *aOrderBy; /* The ORDER BY clause */ /* Outputs */ struct sqlite3_index_constraint_usage { int argvIndex; /* if >0, constraint is part of argv to xFilter */ unsigned char omit; /* Do not code a test for this constraint */ } *aConstraintUsage; int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ /* Fields below are only available in SQLite 3.9.0 and later */ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ /* Fields below are only available in SQLite 3.10.0 and later */ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */ }; /* ** CAPI3REF: Virtual Table Scan Flags ** ** Virtual table implementations are allowed to set the ** [sqlite3_index_info].idxFlags field to some combination of ** these bits. */ #define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros define the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the WHERE clause of ** a query that uses a [virtual table]. ** ** ^The left-hand operand of the operator is given by the corresponding ** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand ** operand is the rowid. ** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET ** operators have no left-hand operand, and so for those operators the ** corresponding aConstraint[].iColumn is meaningless and should not be ** used. ** ** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through ** value 255 are reserved to represent functions that are overloaded ** by the [xFindFunction|xFindFunction method] of the virtual table ** implementation. ** ** The right-hand operands for each constraint might be accessible using ** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand ** operand is only available if it appears as a single constant literal ** in the input SQL. If the right-hand operand is another column or an ** expression (even a constant expression) or a parameter, then the ** sqlite3_vtab_rhs_value() probably will not be able to extract it. ** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and ** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand ** and hence calls to sqlite3_vtab_rhs_value() for those operators will ** always return SQLITE_NOTFOUND. ** ** The collating sequence to be used for comparison can be found using ** the [sqlite3_vtab_collation()] interface. For most real-world virtual ** tables, the collating sequence of constraints does not matter (for example ** because the constraints are numeric) and so the sqlite3_vtab_collation() ** interface is not commonly needed. */ #define SQLITE_INDEX_CONSTRAINT_EQ 2 #define SQLITE_INDEX_CONSTRAINT_GT 4 #define SQLITE_INDEX_CONSTRAINT_LE 8 #define SQLITE_INDEX_CONSTRAINT_LT 16 #define SQLITE_INDEX_CONSTRAINT_GE 32 #define SQLITE_INDEX_CONSTRAINT_MATCH 64 #define SQLITE_INDEX_CONSTRAINT_LIKE 65 #define SQLITE_INDEX_CONSTRAINT_GLOB 66 #define SQLITE_INDEX_CONSTRAINT_REGEXP 67 #define SQLITE_INDEX_CONSTRAINT_NE 68 #define SQLITE_INDEX_CONSTRAINT_ISNOT 69 #define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70 #define SQLITE_INDEX_CONSTRAINT_ISNULL 71 #define SQLITE_INDEX_CONSTRAINT_IS 72 #define SQLITE_INDEX_CONSTRAINT_LIMIT 73 #define SQLITE_INDEX_CONSTRAINT_OFFSET 74 #define SQLITE_INDEX_CONSTRAINT_FUNCTION 150 /* ** CAPI3REF: Register A Virtual Table Implementation ** METHOD: sqlite3 ** ** ^These routines are used to register a new [virtual table module] name. ** ^Module names must be registered before ** creating a new [virtual table] using the module and before using a ** preexisting [virtual table] for the module. ** ** ^The module name is registered on the [database connection] specified ** by the first parameter. ^The name of the module is given by the ** second parameter. ^The third parameter is a pointer to ** the implementation of the [virtual table module]. ^The fourth ** parameter is an arbitrary client data pointer that is passed through ** into the [xCreate] and [xConnect] methods of the virtual table module ** when a new virtual table is be being created or reinitialized. ** ** ^The sqlite3_create_module_v2() interface has a fifth parameter which ** is a pointer to a destructor for the pClientData. ^SQLite will ** invoke the destructor function (if it is not NULL) when SQLite ** no longer needs the pClientData pointer. ^The destructor will also ** be invoked if the call to sqlite3_create_module_v2() fails. ** ^The sqlite3_create_module() ** interface is equivalent to sqlite3_create_module_v2() with a NULL ** destructor. ** ** ^If the third parameter (the pointer to the sqlite3_module object) is ** NULL then no new module is created and any existing modules with the ** same name are dropped. ** ** See also: [sqlite3_drop_modules()] */ SQLITE_API int sqlite3_create_module( sqlite3 *db, /* SQLite connection to register module with */ const char *zName, /* Name of the module */ const sqlite3_module *p, /* Methods for the module */ void *pClientData /* Client data for xCreate/xConnect */ ); SQLITE_API int sqlite3_create_module_v2( sqlite3 *db, /* SQLite connection to register module with */ const char *zName, /* Name of the module */ const sqlite3_module *p, /* Methods for the module */ void *pClientData, /* Client data for xCreate/xConnect */ void(*xDestroy)(void*) /* Module destructor function */ ); /* ** CAPI3REF: Remove Unnecessary Virtual Table Implementations ** METHOD: sqlite3 ** ** ^The sqlite3_drop_modules(D,L) interface removes all virtual ** table modules from database connection D except those named on list L. ** The L parameter must be either NULL or a pointer to an array of pointers ** to strings where the array is terminated by a single NULL pointer. ** ^If the L parameter is NULL, then all virtual table modules are removed. ** ** See also: [sqlite3_create_module()] */ SQLITE_API int sqlite3_drop_modules( sqlite3 *db, /* Remove modules from this connection */ const char **azKeep /* Except, do not remove the ones named here */ ); /* ** CAPI3REF: Virtual Table Instance Object ** KEYWORDS: sqlite3_vtab ** ** Every [virtual table module] implementation uses a subclass ** of this object to describe a particular instance ** of the [virtual table]. Each subclass will ** be tailored to the specific needs of the module implementation. ** The purpose of this superclass is to define certain fields that are ** common to all module implementations. ** ** ^Virtual tables methods can set an error message by assigning a ** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should ** take care that any prior string is freed by a call to [sqlite3_free()] ** prior to assigning a new string to zErrMsg. ^After the error message ** is delivered up to the client application, the string will be automatically ** freed by sqlite3_free() and the zErrMsg field will be zeroed. */ struct sqlite3_vtab { const sqlite3_module *pModule; /* The module for this virtual table */ int nRef; /* Number of open cursors */ char *zErrMsg; /* Error message from sqlite3_mprintf() */ /* Virtual table implementations will typically add additional fields */ }; /* ** CAPI3REF: Virtual Table Cursor Object ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} ** ** Every [virtual table module] implementation uses a subclass of the ** following structure to describe cursors that point into the ** [virtual table] and are used ** to loop through the virtual table. Cursors are created using the ** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed ** by the [sqlite3_module.xClose | xClose] method. Cursors are used ** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods ** of the module. Each module implementation will define ** the content of a cursor structure to suit its own needs. ** ** This superclass exists in order to define fields of the cursor that ** are common to all implementations. */ struct sqlite3_vtab_cursor { sqlite3_vtab *pVtab; /* Virtual table of this cursor */ /* Virtual table implementations will typically add additional fields */ }; /* ** CAPI3REF: Declare The Schema Of A Virtual Table ** ** ^The [xCreate] and [xConnect] methods of a ** [virtual table module] call this interface ** to declare the format (the names and datatypes of the columns) of ** the virtual tables they implement. */ SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL); /* ** CAPI3REF: Overload A Function For A Virtual Table ** METHOD: sqlite3 ** ** ^(Virtual tables can provide alternative implementations of functions ** using the [xFindFunction] method of the [virtual table module]. ** But global versions of those functions ** must exist in order to be overloaded.)^ ** ** ^(This API makes sure a global version of a function with a particular ** name and number of parameters exists. If no such function exists ** before this API is called, a new function is created.)^ ^The implementation ** of the new function always causes an exception to be thrown. So ** the new function is not good for anything by itself. Its only ** purpose is to be a placeholder function that can be overloaded ** by a [virtual table]. */ SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); /* ** CAPI3REF: A Handle To An Open BLOB ** KEYWORDS: {BLOB handle} {BLOB handles} ** ** An instance of this object represents an open BLOB on which ** [sqlite3_blob_open | incremental BLOB I/O] can be performed. ** ^Objects of this type are created by [sqlite3_blob_open()] ** and destroyed by [sqlite3_blob_close()]. ** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces ** can be used to read or write small subsections of the BLOB. ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. */ typedef struct sqlite3_blob sqlite3_blob; /* ** CAPI3REF: Open A BLOB For Incremental I/O ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_blob ** ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** **
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** 
)^ ** ** ^(Parameter zDb is not the filename that contains the database, but ** rather the symbolic name of the database. For attached databases, this is ** the name that appears after the AS keyword in the [ATTACH] statement. ** For the main database file, the database name is "main". For TEMP ** tables, the database name is "temp".)^ ** ** ^If the flags parameter is non-zero, then the BLOB is opened for read ** and write access. ^If the flags parameter is zero, the BLOB is opened for ** read-only access. ** ** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored ** in *ppBlob. Otherwise an [error code] is returned and, unless the error ** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided ** the API is not misused, it is always safe to call [sqlite3_blob_close()] ** on *ppBlob after this function it returns. ** ** This function fails with SQLITE_ERROR if any of the following are true: **
    **
  • ^(Database zDb does not exist)^, **
  • ^(Table zTable does not exist within database zDb)^, **
  • ^(Table zTable is a WITHOUT ROWID table)^, **
  • ^(Column zColumn does not exist)^, **
  • ^(Row iRow is not present in the table)^, **
  • ^(The specified column of row iRow contains a value that is not ** a TEXT or BLOB value)^, **
  • ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE ** constraint and the blob is being opened for read/write access)^, **
  • ^([foreign key constraints | Foreign key constraints] are enabled, ** column zColumn is part of a [child key] definition and the blob is ** being opened for read/write access)^. **
** ** ^Unless it returns SQLITE_MISUSE, this function sets the ** [database connection] error code and message accessible via ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. ** ** A BLOB referenced by sqlite3_blob_open() may be read using the ** [sqlite3_blob_read()] interface and modified by using ** [sqlite3_blob_write()]. The [BLOB handle] can be moved to a ** different row of the same table using the [sqlite3_blob_reopen()] ** interface. However, the column, table, or database of a [BLOB handle] ** cannot be changed after the [BLOB handle] is opened. ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for ** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. ** ^(Changes written into a BLOB prior to the BLOB expiring are not ** rolled back by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion.)^ ** ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. ^The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a ** blob. ** ** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces ** and the built-in [zeroblob] SQL function may be used to create a ** zero-filled blob to read or write using the incremental-blob interface. ** ** To avoid a resource leak, every open [BLOB handle] should eventually ** be released by a call to [sqlite3_blob_close()]. ** ** See also: [sqlite3_blob_close()], ** [sqlite3_blob_reopen()], [sqlite3_blob_read()], ** [sqlite3_blob_bytes()], [sqlite3_blob_write()]. */ SQLITE_API int sqlite3_blob_open( sqlite3*, const char *zDb, const char *zTable, const char *zColumn, sqlite3_int64 iRow, int flags, sqlite3_blob **ppBlob ); /* ** CAPI3REF: Move a BLOB Handle to a New Row ** METHOD: sqlite3_blob ** ** ^This function is used to move an existing [BLOB handle] so that it points ** to a different row of the same database table. ^The new row is identified ** by the rowid value passed as the second argument. Only the row can be ** changed. ^The database, table and column on which the blob handle is open ** remain the same. Moving an existing [BLOB handle] to a new row is ** faster than closing the existing handle and opening a new one. ** ** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] - ** it must exist and there must be either a blob or text value stored in ** the nominated column.)^ ^If the new row is not present in the table, or if ** it does not contain a blob or text value, or if another error occurs, an ** SQLite error code is returned and the blob handle is considered aborted. ** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or ** [sqlite3_blob_reopen()] on an aborted blob handle immediately return ** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle ** always returns zero. ** ** ^This function sets the database handle error code and message. */ SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** DESTRUCTOR: sqlite3_blob ** ** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed ** unconditionally. Even if this routine returns an error code, the ** handle is still closed.)^ ** ** ^If the blob handle being closed was opened for read-write access, and if ** the database is in auto-commit mode and there are no other open read-write ** blob handles or active write statements, the current transaction is ** committed. ^If an error occurs while committing the transaction, an error ** code is returned and the transaction rolled back. ** ** Calling this function with an argument that is not a NULL pointer or an ** open blob handle results in undefined behaviour. ^Calling this routine ** with a null pointer (such as would be returned by a failed call to ** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function ** is passed a valid open blob handle, the values returned by the ** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning. */ SQLITE_API int sqlite3_blob_close(sqlite3_blob *); /* ** CAPI3REF: Return The Size Of An Open BLOB ** METHOD: sqlite3_blob ** ** ^Returns the size in bytes of the BLOB accessible via the ** successfully opened [BLOB handle] in its only argument. ^The ** incremental blob I/O routines can only read or overwriting existing ** blob content; they cannot change the size of a blob. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. */ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); /* ** CAPI3REF: Read Data From A BLOB Incrementally ** METHOD: sqlite3_blob ** ** ^(This function is used to read data from an open [BLOB handle] into a ** caller-supplied buffer. N bytes of data are copied into buffer Z ** from the open BLOB, starting at offset iOffset.)^ ** ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is ** less than zero, [SQLITE_ERROR] is returned and no data is read. ** ^The size of the blob (and hence the maximum value of N+iOffset) ** can be determined using the [sqlite3_blob_bytes()] interface. ** ** ^An attempt to read from an expired [BLOB handle] fails with an ** error code of [SQLITE_ABORT]. ** ** ^(On success, sqlite3_blob_read() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_write()]. */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally ** METHOD: sqlite3_blob ** ** ^(This function is used to write data into an open [BLOB handle] from a ** caller-supplied buffer. N bytes of data are copied from the buffer Z ** into the open BLOB, starting at offset iOffset.)^ ** ** ^(On success, sqlite3_blob_write() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ^Unless SQLITE_MISUSE is returned, this function sets the ** [database connection] error code and message accessible via ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. ** ** ^If the [BLOB handle] passed as the first argument was not opened for ** writing (the flags parameter to [sqlite3_blob_open()] was zero), ** this function returns [SQLITE_READONLY]. ** ** This function may only modify the contents of the BLOB; it is ** not possible to increase the size of a BLOB using this API. ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is written. The size of the ** BLOB (and hence the maximum value of N+iOffset) can be determined ** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less ** than zero [SQLITE_ERROR] is returned and no data is written. ** ** ^An attempt to write to an expired [BLOB handle] fails with an ** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred ** before the [BLOB handle] expired are not rolled back by the ** expiration of the handle, though of course those changes might ** have been overwritten by the statement that expired the BLOB handle ** or by other independent statements. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_read()]. */ SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); /* ** CAPI3REF: Virtual File System Objects ** ** A virtual filesystem (VFS) is an [sqlite3_vfs] object ** that SQLite uses to interact ** with the underlying operating system. Most SQLite builds come with a ** single default VFS that is appropriate for the host computer. ** New VFSes can be registered and existing VFSes can be unregistered. ** The following interfaces are provided. ** ** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. ** ^Names are case sensitive. ** ^Names are zero-terminated UTF-8 strings. ** ^If there is no match, a NULL pointer is returned. ** ^If zVfsName is NULL then the default VFS is returned. ** ** ^New VFSes are registered with sqlite3_vfs_register(). ** ^Each new VFS becomes the default VFS if the makeDflt flag is set. ** ^The same VFS can be registered multiple times without injury. ** ^To make an existing VFS into the default VFS, register it again ** with the makeDflt flag set. If two different VFSes with the ** same name are registered, the behavior is undefined. If a ** VFS is registered with a name that is NULL or an empty string, ** then the behavior is undefined. ** ** ^Unregister a VFS with the sqlite3_vfs_unregister() interface. ** ^(If the default VFS is unregistered, another VFS is chosen as ** the default. The choice for the new VFS is arbitrary.)^ */ SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); /* ** CAPI3REF: Mutexes ** ** The SQLite core uses these routines for thread ** synchronization. Though they are intended for internal ** use by SQLite, code that links against SQLite is ** permitted to use any of these routines. ** ** The SQLite source code contains multiple implementations ** of these mutex routines. An appropriate implementation ** is selected automatically at compile-time. The following ** implementations are available in the SQLite core: ** **
    **
  • SQLITE_MUTEX_PTHREADS **
  • SQLITE_MUTEX_W32 **
  • SQLITE_MUTEX_NOOP **
** ** The SQLITE_MUTEX_NOOP implementation is a set of routines ** that does no real locking and is appropriate for use in ** a single-threaded application. The SQLITE_MUTEX_PTHREADS and ** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix ** and Windows. ** ** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex ** implementation is included with the library. In this case the ** application must supply a custom mutex implementation using the ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function ** before calling sqlite3_initialize() or any other public sqlite3_ ** function that calls sqlite3_initialize(). ** ** ^The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc() ** routine returns NULL if it is unable to allocate the requested ** mutex. The argument to sqlite3_mutex_alloc() must one of these ** integer constants: ** **
    **
  • SQLITE_MUTEX_FAST **
  • SQLITE_MUTEX_RECURSIVE **
  • SQLITE_MUTEX_STATIC_MAIN **
  • SQLITE_MUTEX_STATIC_MEM **
  • SQLITE_MUTEX_STATIC_OPEN **
  • SQLITE_MUTEX_STATIC_PRNG **
  • SQLITE_MUTEX_STATIC_LRU **
  • SQLITE_MUTEX_STATIC_PMEM **
  • SQLITE_MUTEX_STATIC_APP1 **
  • SQLITE_MUTEX_STATIC_APP2 **
  • SQLITE_MUTEX_STATIC_APP3 **
  • SQLITE_MUTEX_STATIC_VFS1 **
  • SQLITE_MUTEX_STATIC_VFS2 **
  • SQLITE_MUTEX_STATIC_VFS3 **
** ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) ** cause sqlite3_mutex_alloc() to create ** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return ** a pointer to a static preexisting mutex. ^Nine static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. ^For the static ** mutex types, the same mutex is returned on every call that has ** the same type number. ** ** ^The sqlite3_mutex_free() routine deallocates a previously ** allocated dynamic mutex. Attempting to deallocate a static ** mutex results in undefined behavior. ** ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. ^If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] ** upon successful entry. ^(Mutexes created using ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. ** In such cases, the ** mutex must be exited an equal number of times before another thread ** can enter.)^ If the same thread tries to enter any mutex other ** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined. ** ** ^(Some systems (for example, Windows 95) do not support the operation ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() ** will always return SQLITE_BUSY. The SQLite core only ever uses ** sqlite3_mutex_try() as an optimization so this is acceptable ** behavior.)^ ** ** ^The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered by the ** calling thread or is not currently allocated. ** ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), ** sqlite3_mutex_leave(), or sqlite3_mutex_free() is a NULL pointer, ** then any of the four routines behaves as a no-op. ** ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int); SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*); SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*); SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); /* ** CAPI3REF: Mutex Methods Object ** ** An instance of this structure defines the low-level routines ** used to allocate and use mutexes. ** ** Usually, the default mutex implementations provided by SQLite are ** sufficient, however the application has the option of substituting a custom ** implementation for specialized deployments or systems for which SQLite ** does not provide a suitable implementation. In this case, the application ** creates and populates an instance of this structure to pass ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. ** Additionally, an instance of this structure can be used as an ** output variable when querying the system for the current mutex ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. ** ** ^The xMutexInit method defined by this structure is invoked as ** part of system initialization by the sqlite3_initialize() function. ** ^The xMutexInit routine is called by SQLite exactly once for each ** effective call to [sqlite3_initialize()]. ** ** ^The xMutexEnd method defined by this structure is invoked as ** part of system shutdown by the sqlite3_shutdown() function. The ** implementation of this method is expected to release all outstanding ** resources obtained by the mutex methods implementation, especially ** those obtained by the xMutexInit method. ^The xMutexEnd() ** interface is invoked exactly once for each call to [sqlite3_shutdown()]. ** ** ^(The remaining seven methods defined by this structure (xMutexAlloc, ** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and ** xMutexNotheld) implement the following interfaces (respectively): ** **
    **
  • [sqlite3_mutex_alloc()]
  • **
  • [sqlite3_mutex_free()]
  • **
  • [sqlite3_mutex_enter()]
  • **
  • [sqlite3_mutex_try()]
  • **
  • [sqlite3_mutex_leave()]
  • **
  • [sqlite3_mutex_held()]
  • **
  • [sqlite3_mutex_notheld()]
  • **
)^ ** ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case. The results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. It must be harmless to ** invoke xMutexInit() multiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** ** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] ** and its associates). Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. ** ** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is ** called, but only if the prior call to xMutexInit returned SQLITE_OK. ** If xMutexInit fails in any way, it is expected to clean up after itself ** prior to returning. */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { int (*xMutexInit)(void); int (*xMutexEnd)(void); sqlite3_mutex *(*xMutexAlloc)(int); void (*xMutexFree)(sqlite3_mutex *); void (*xMutexEnter)(sqlite3_mutex *); int (*xMutexTry)(sqlite3_mutex *); void (*xMutexLeave)(sqlite3_mutex *); int (*xMutexHeld)(sqlite3_mutex *); int (*xMutexNotheld)(sqlite3_mutex *); }; /* ** CAPI3REF: Mutex Verification Routines ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines ** are intended for use inside assert() statements. The SQLite core ** never uses these routines except inside an assert() and applications ** are advised to follow the lead of the core. The SQLite core only ** provides implementations for these routines when it is compiled ** with the SQLITE_DEBUG flag. External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** ** These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** ** The implementation is not required to provide versions of these ** routines that actually work. If the implementation does not provide working ** versions of these routines, it should at least provide stubs that always ** return true so that one does not get spurious assertion failures. ** ** If the argument to sqlite3_mutex_held() is a NULL pointer then ** the routine should return 1. This seems counter-intuitive since ** clearly the mutex cannot be held if it does not exist. But ** the reason the mutex does not exist is because the build is not ** using mutexes. And we do not want the assert() containing the ** call to sqlite3_mutex_held() to fail, so a non-zero return is ** the appropriate thing to do. The sqlite3_mutex_notheld() ** interface should also return 1 when given a NULL pointer. */ #ifndef NDEBUG SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); #endif /* ** CAPI3REF: Mutex Types ** ** The [sqlite3_mutex_alloc()] interface takes a single argument ** which is one of these integer constants. ** ** The set of static mutexes may change from one SQLite release to the ** next. Applications that override the built-in mutex logic must be ** prepared to accommodate additional static mutexes. */ #define SQLITE_MUTEX_FAST 0 #define SQLITE_MUTEX_RECURSIVE 1 #define SQLITE_MUTEX_STATIC_MAIN 2 #define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ #define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */ #define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */ #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_randomness() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ #define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */ #define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */ #define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */ /* Legacy compatibility: */ #define SQLITE_MUTEX_STATIC_MASTER 2 /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument ** when the [threading mode] is Serialized. ** ^If the [threading mode] is Single-thread or Multi-thread then this ** routine returns a NULL pointer. */ SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*); /* ** CAPI3REF: Low-Level Control Of Database Files ** METHOD: sqlite3 ** KEYWORDS: {file control} ** ** ^The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated ** with a particular database identified by the second argument. ^The ** name of the database is "main" for the main database or "temp" for the ** TEMP database, or the name that appears after the AS keyword for ** databases that are added using the [ATTACH] SQL command. ** ^A NULL pointer can be used in place of "main" to refer to the ** main database file. ** ^The third and fourth parameters to this routine ** are passed directly through to the second and third parameters of ** the xFileControl method. ^The return value of the xFileControl ** method becomes the return value of this routine. ** ** A few opcodes for [sqlite3_file_control()] are handled directly ** by the SQLite core and never invoke the ** sqlite3_io_methods.xFileControl method. ** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes ** a pointer to the underlying [sqlite3_file] object to be written into ** the space pointed to by the 4th parameter. The ** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns ** the [sqlite3_file] object associated with the journal file instead of ** the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns ** a pointer to the underlying [sqlite3_vfs] object for the file. ** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter ** from the pager. ** ** ^If the second parameter (zDbName) does not match the name of any ** open database file, then SQLITE_ERROR is returned. ^This error ** code is not remembered and will not be recalled by [sqlite3_errcode()] ** or [sqlite3_errmsg()]. The underlying xFileControl method might ** also return SQLITE_ERROR. There is no way to distinguish between ** an incorrect zDbName and an SQLITE_ERROR return from the underlying ** xFileControl method. ** ** See also: [file control opcodes] */ SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); /* ** CAPI3REF: Testing Interface ** ** ^The sqlite3_test_control() interface is used to read out internal ** state of SQLite and to inject faults into SQLite for testing ** purposes. ^The first parameter is an operation code that determines ** the number, meaning, and operation of all subsequent parameters. ** ** This interface is not for use by applications. It exists solely ** for verifying the correct operation of the SQLite library. Depending ** on how the SQLite library is compiled, this interface might not exist. ** ** The details of the operation codes, their meanings, the parameters ** they take, and what they do are all subject to change without notice. ** Unlike most of the SQLite API, this function is not guaranteed to ** operate consistently from one release to the next. */ SQLITE_API int sqlite3_test_control(int op, ...); /* ** CAPI3REF: Testing Interface Operation Codes ** ** These constants are the valid operation code parameters used ** as the first argument to [sqlite3_test_control()]. ** ** These parameters and their meanings are subject to change ** without notice. These values are for testing purposes only. ** Applications should not use any of these parameters or the ** [sqlite3_test_control()] interface. */ #define SQLITE_TESTCTRL_FIRST 5 #define SQLITE_TESTCTRL_PRNG_SAVE 5 #define SQLITE_TESTCTRL_PRNG_RESTORE 6 #define SQLITE_TESTCTRL_PRNG_RESET 7 /* NOT USED */ #define SQLITE_TESTCTRL_BITVEC_TEST 8 #define SQLITE_TESTCTRL_FAULT_INSTALL 9 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 /* NOT USED */ #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_PARSER_COVERAGE 26 #define SQLITE_TESTCTRL_RESULT_INTREAL 27 #define SQLITE_TESTCTRL_PRNG_SEED 28 #define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29 #define SQLITE_TESTCTRL_SEEK_COUNT 30 #define SQLITE_TESTCTRL_TRACEFLAGS 31 #define SQLITE_TESTCTRL_TUNE 32 #define SQLITE_TESTCTRL_LOGEST 33 #define SQLITE_TESTCTRL_USELONGDOUBLE 34 #define SQLITE_TESTCTRL_LAST 34 /* Largest TESTCTRL */ /* ** CAPI3REF: SQL Keyword Checking ** ** These routines provide access to the set of SQL language keywords ** recognized by SQLite. Applications can uses these routines to determine ** whether or not a specific identifier needs to be escaped (for example, ** by enclosing in double-quotes) so as not to confuse the parser. ** ** The sqlite3_keyword_count() interface returns the number of distinct ** keywords understood by SQLite. ** ** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and ** makes *Z point to that keyword expressed as UTF8 and writes the number ** of bytes in the keyword into *L. The string that *Z points to is not ** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns ** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z ** or L are NULL or invalid pointers then calls to ** sqlite3_keyword_name(N,Z,L) result in undefined behavior. ** ** The sqlite3_keyword_check(Z,L) interface checks to see whether or not ** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero ** if it is and zero if not. ** ** The parser used by SQLite is forgiving. It is often possible to use ** a keyword as an identifier as long as such use does not result in a ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: **
    **
  • Put all identifier names inside double-quotes. This is the official ** SQL way to escape identifier names. **
  • Put identifier names inside [...]. This is not standard SQL, ** but it is what SQL Server does and so lots of programmers use this ** technique. **
  • Begin every identifier with the letter "Z" as no SQL keywords start ** with "Z". **
  • Include a digit somewhere in every identifier name. **
** ** Note that the number of keywords understood by SQLite can depend on ** compile-time options. For example, "VACUUM" is not a keyword if ** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also, ** new keywords may be added to future releases of SQLite. */ SQLITE_API int sqlite3_keyword_count(void); SQLITE_API int sqlite3_keyword_name(int,const char**,int*); SQLITE_API int sqlite3_keyword_check(const char*,int); /* ** CAPI3REF: Dynamic String Object ** KEYWORDS: {dynamic string} ** ** An instance of the sqlite3_str object contains a dynamically-sized ** string under construction. ** ** The lifecycle of an sqlite3_str object is as follows: **
    **
  1. ^The sqlite3_str object is created using [sqlite3_str_new()]. **
  2. ^Text is appended to the sqlite3_str object using various ** methods, such as [sqlite3_str_appendf()]. **
  3. ^The sqlite3_str object is destroyed and the string it created ** is returned using the [sqlite3_str_finish()] interface. **
*/ typedef struct sqlite3_str sqlite3_str; /* ** CAPI3REF: Create A New Dynamic String Object ** CONSTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_new(D)] interface allocates and initializes ** a new [sqlite3_str] object. To avoid memory leaks, the object returned by ** [sqlite3_str_new()] must be freed by a subsequent call to ** [sqlite3_str_finish(X)]. ** ** ^The [sqlite3_str_new(D)] interface always returns a pointer to a ** valid [sqlite3_str] object, though in the event of an out-of-memory ** error the returned object might be a special singleton that will ** silently reject new text, always return SQLITE_NOMEM from ** [sqlite3_str_errcode()], always return 0 for ** [sqlite3_str_length()], and always return NULL from ** [sqlite3_str_finish(X)]. It is always safe to use the value ** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter ** to any of the other [sqlite3_str] methods. ** ** The D parameter to [sqlite3_str_new(D)] may be NULL. If the ** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum ** length of the string contained in the [sqlite3_str] object will be ** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead ** of [SQLITE_MAX_LENGTH]. */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*); /* ** CAPI3REF: Finalize A Dynamic String ** DESTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X ** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()] ** that contains the constructed string. The calling application should ** pass the returned value to [sqlite3_free()] to avoid a memory leak. ** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any ** errors were encountered during construction of the string. ^The ** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the ** string in [sqlite3_str] object X is zero bytes long. */ SQLITE_API char *sqlite3_str_finish(sqlite3_str*); /* ** CAPI3REF: Add Content To A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces add content to an sqlite3_str object previously obtained ** from [sqlite3_str_new()]. ** ** ^The [sqlite3_str_appendf(X,F,...)] and ** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf] ** functionality of SQLite to append formatted text onto the end of ** [sqlite3_str] object X. ** ** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S ** onto the end of the [sqlite3_str] object X. N must be non-negative. ** S must contain at least N non-zero bytes of content. To append a ** zero-terminated string in its entirety, use the [sqlite3_str_appendall()] ** method instead. ** ** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of ** zero-terminated string S onto the end of [sqlite3_str] object X. ** ** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the ** single-byte character C onto the end of [sqlite3_str] object X. ** ^This method can be used, for example, to add whitespace indentation. ** ** ^The [sqlite3_str_reset(X)] method resets the string under construction ** inside [sqlite3_str] object X back to zero bytes in length. ** ** These methods do not return a result code. ^If an error occurs, that fact ** is recorded in the [sqlite3_str] object and can be recovered by a ** subsequent call to [sqlite3_str_errcode(X)]. */ SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...); SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list); SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N); SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn); SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C); SQLITE_API void sqlite3_str_reset(sqlite3_str*); /* ** CAPI3REF: Status Of A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces return the current status of an [sqlite3_str] object. ** ** ^If any prior errors have occurred while constructing the dynamic string ** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return ** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns ** [SQLITE_NOMEM] following any out-of-memory error, or ** [SQLITE_TOOBIG] if the size of the dynamic string exceeds ** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors. ** ** ^The [sqlite3_str_length(X)] method returns the current length, in bytes, ** of the dynamic string under construction in [sqlite3_str] object X. ** ^The length returned by [sqlite3_str_length(X)] does not include the ** zero-termination byte. ** ** ^The [sqlite3_str_value(X)] method returns a pointer to the current ** content of the dynamic string under construction in X. The value ** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X ** and might be freed or altered by any subsequent method on the same ** [sqlite3_str] object. Applications must not used the pointer returned ** [sqlite3_str_value(X)] after any subsequent method call on the same ** object. ^Applications may change the content of the string returned ** by [sqlite3_str_value(X)] as long as they do not write into any bytes ** outside the range of 0 to [sqlite3_str_length(X)] and do not read or ** write any byte after any subsequent sqlite3_str method call. */ SQLITE_API int sqlite3_str_errcode(sqlite3_str*); SQLITE_API int sqlite3_str_length(sqlite3_str*); SQLITE_API char *sqlite3_str_value(sqlite3_str*); /* ** CAPI3REF: SQLite Runtime Status ** ** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes ** are of the form [status parameters | SQLITE_STATUS_...].)^ ** ^The current value of the parameter is returned into *pCurrent. ** ^The highest recorded value is returned in *pHighwater. ^If the ** resetFlag is true, then the highest record value is reset after ** *pHighwater is written. ^(Some parameters do not record the highest ** value. For those parameters ** nothing is written into *pHighwater and the resetFlag is ignored.)^ ** ^(Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent.)^ ** ** ^The sqlite3_status() and sqlite3_status64() routines return ** SQLITE_OK on success and a non-zero [error code] on failure. ** ** If either the current value or the highwater mark is too large to ** be represented by a 32-bit integer, then the values returned by ** sqlite3_status() are undefined. ** ** See also: [sqlite3_db_status()] */ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); SQLITE_API int sqlite3_status64( int op, sqlite3_int64 *pCurrent, sqlite3_int64 *pHighwater, int resetFlag ); /* ** CAPI3REF: Status Parameters ** KEYWORDS: {status parameters} ** ** These integer constants designate various run-time status parameters ** that can be returned by [sqlite3_status()]. ** **
** [[SQLITE_STATUS_MEMORY_USED]] ^(
SQLITE_STATUS_MEMORY_USED
**
This parameter is the current amount of memory checked out ** using [sqlite3_malloc()], either directly or indirectly. The ** figure includes calls made to [sqlite3_malloc()] by the application ** and internal memory usage by the SQLite library. Auxiliary page-cache ** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in ** this parameter. The amount returned is the sum of the allocation ** sizes as reported by the xSize method in [sqlite3_mem_methods].
)^ ** ** [[SQLITE_STATUS_MALLOC_SIZE]] ^(
SQLITE_STATUS_MALLOC_SIZE
**
This parameter records the largest memory allocation request ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their ** internal equivalents). Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. ** The value written into the *pCurrent parameter is undefined.
)^ ** ** [[SQLITE_STATUS_MALLOC_COUNT]] ^(
SQLITE_STATUS_MALLOC_COUNT
**
This parameter records the number of separate memory allocations ** currently checked out.
)^ ** ** [[SQLITE_STATUS_PAGECACHE_USED]] ^(
SQLITE_STATUS_PAGECACHE_USED
**
This parameter returns the number of pages used out of the ** [pagecache memory allocator] that was configured using ** [SQLITE_CONFIG_PAGECACHE]. The ** value returned is in pages, not in bytes.
)^ ** ** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]] ** ^(
SQLITE_STATUS_PAGECACHE_OVERFLOW
**
This parameter returns the number of bytes of page cache ** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE] ** buffer and where forced to overflow to [sqlite3_malloc()]. The ** returned value includes allocations that overflowed because they ** where too large (they were larger than the "sz" parameter to ** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because ** no space was left in the page cache.
)^ ** ** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(
SQLITE_STATUS_PAGECACHE_SIZE
**
This parameter records the largest memory allocation request ** handed to the [pagecache memory allocator]. Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. ** The value written into the *pCurrent parameter is undefined.
)^ ** ** [[SQLITE_STATUS_SCRATCH_USED]]
SQLITE_STATUS_SCRATCH_USED
**
No longer used.
** ** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(
SQLITE_STATUS_SCRATCH_OVERFLOW
**
No longer used.
** ** [[SQLITE_STATUS_SCRATCH_SIZE]]
SQLITE_STATUS_SCRATCH_SIZE
**
No longer used.
** ** [[SQLITE_STATUS_PARSER_STACK]] ^(
SQLITE_STATUS_PARSER_STACK
**
The *pHighwater parameter records the deepest parser stack. ** The *pCurrent value is undefined. The *pHighwater value is only ** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
)^ **
** ** New status parameters may be added from time to time. */ #define SQLITE_STATUS_MEMORY_USED 0 #define SQLITE_STATUS_PAGECACHE_USED 1 #define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 #define SQLITE_STATUS_SCRATCH_USED 3 /* NOT USED */ #define SQLITE_STATUS_SCRATCH_OVERFLOW 4 /* NOT USED */ #define SQLITE_STATUS_MALLOC_SIZE 5 #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 /* NOT USED */ #define SQLITE_STATUS_MALLOC_COUNT 9 /* ** CAPI3REF: Database Connection Status ** METHOD: sqlite3 ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the ** database connection object to be interrogated. ^The second argument ** is an integer constant, taken from the set of ** [SQLITE_DBSTATUS options], that ** determines the parameter to interrogate. The set of ** [SQLITE_DBSTATUS options] is likely ** to grow in future releases of SQLite. ** ** ^The current value of the requested parameter is written into *pCur ** and the highest instantaneous value is written into *pHiwtr. ^If ** the resetFlg is true, then the highest instantaneous value is ** reset back down to the current value. ** ** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a ** non-zero [error code] on failure. ** ** See also: [sqlite3_status()] and [sqlite3_stmt_status()]. */ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* ** CAPI3REF: Status Parameters for database connections ** KEYWORDS: {SQLITE_DBSTATUS options} ** ** These constants are the available integer "verbs" that can be passed as ** the second argument to the [sqlite3_db_status()] interface. ** ** New verbs may be added in future releases of SQLite. Existing verbs ** might be discontinued. Applications should check the return code from ** [sqlite3_db_status()] to make sure that the call worked. ** The [sqlite3_db_status()] interface will return a non-zero error code ** if a discontinued or unsupported verb is invoked. ** **
** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(
SQLITE_DBSTATUS_LOOKASIDE_USED
**
This parameter returns the number of lookaside memory slots currently ** checked out.
)^ ** ** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(
SQLITE_DBSTATUS_LOOKASIDE_HIT
**
This parameter returns the number of malloc attempts that were ** satisfied using lookaside memory. Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]] ** ^(
SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE
**
This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to the amount of ** memory requested being larger than the lookaside slot size. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]] ** ^(
SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL
**
This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to all lookaside ** memory already being in use. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(
SQLITE_DBSTATUS_CACHE_USED
**
This parameter returns the approximate number of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** ** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]] ** ^(
SQLITE_DBSTATUS_CACHE_USED_SHARED
**
This parameter is similar to DBSTATUS_CACHE_USED, except that if a ** pager cache is shared between two or more connections the bytes of heap ** memory used by that pager cache is divided evenly between the attached ** connections.)^ In other words, if none of the pager caches associated ** with the database connection are shared, this request returns the same ** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are ** shared, the value returned by this call will be smaller than that returned ** by DBSTATUS_CACHE_USED. ^The highwater mark associated with ** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0. ** ** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(
SQLITE_DBSTATUS_SCHEMA_USED
**
This parameter returns the approximate number of bytes of heap ** memory used to store the schema for all databases associated ** with the connection - main, temp, and any [ATTACH]-ed databases.)^ ** ^The full amount of memory used by the schemas is reported, even if the ** schema memory is shared with other database connections due to ** [shared cache mode] being enabled. ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. ** ** [[SQLITE_DBSTATUS_STMT_USED]] ^(
SQLITE_DBSTATUS_STMT_USED
**
This parameter returns the approximate number of bytes of heap ** and lookaside memory used by all prepared statements associated with ** the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(
SQLITE_DBSTATUS_CACHE_HIT
**
This parameter returns the number of pager cache hits that have ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT ** is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(
SQLITE_DBSTATUS_CACHE_MISS
**
This parameter returns the number of pager cache misses that have ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS ** is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(
SQLITE_DBSTATUS_CACHE_WRITE
**
This parameter returns the number of dirty cache entries that have ** been written to disk. Specifically, the number of pages written to the ** wal file in wal mode databases, or the number of pages written to the ** database file in rollback mode databases. Any pages written as part of ** transaction rollback or database recovery operations are not included. ** If an IO or other error occurs while writing a page to disk, the effect ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(
SQLITE_DBSTATUS_CACHE_SPILL
**
This parameter returns the number of dirty cache entries that have ** been written to disk in the middle of a transaction due to the page ** cache overflowing. Transactions are more efficient if they are written ** to disk all at once. When pages spill mid-transaction, that introduces ** additional overhead. This parameter can be used help identify ** inefficiencies that can be resolved by increasing the cache size. **
** ** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(
SQLITE_DBSTATUS_DEFERRED_FKS
**
This parameter returns zero for the current value if and only if ** all foreign key constraints (deferred or immediate) have been ** resolved.)^ ^The highwater mark is always 0. **
**
*/ #define SQLITE_DBSTATUS_LOOKASIDE_USED 0 #define SQLITE_DBSTATUS_CACHE_USED 1 #define SQLITE_DBSTATUS_SCHEMA_USED 2 #define SQLITE_DBSTATUS_STMT_USED 3 #define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 #define SQLITE_DBSTATUS_CACHE_HIT 7 #define SQLITE_DBSTATUS_CACHE_MISS 8 #define SQLITE_DBSTATUS_CACHE_WRITE 9 #define SQLITE_DBSTATUS_DEFERRED_FKS 10 #define SQLITE_DBSTATUS_CACHE_USED_SHARED 11 #define SQLITE_DBSTATUS_CACHE_SPILL 12 #define SQLITE_DBSTATUS_MAX 12 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** METHOD: sqlite3_stmt ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number ** of times it has performed specific operations.)^ These counters can ** be used to monitor the performance characteristics of the prepared ** statements. For example, if the number of table steps greatly exceeds ** the number of table searches or result rows, that would tend to indicate ** that the prepared statement is using a full table scan rather than ** an index. ** ** ^(This interface is used to retrieve and reset counter values from ** a [prepared statement]. The first argument is the prepared statement ** object to be interrogated. The second argument ** is an integer code for a specific [SQLITE_STMTSTATUS counter] ** to be interrogated.)^ ** ^The current value of the requested counter is returned. ** ^If the resetFlg is true, then the counter is reset to zero after this ** interface call returns. ** ** See also: [sqlite3_status()] and [sqlite3_db_status()]. */ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); /* ** CAPI3REF: Status Parameters for prepared statements ** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters} ** ** These preprocessor macros define integer codes that name counter ** values associated with the [sqlite3_stmt_status()] interface. ** The meanings of the various counters are as follows: ** **
** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]]
SQLITE_STMTSTATUS_FULLSCAN_STEP
**
^This is the number of times that SQLite has stepped forward in ** a table as part of a full table scan. Large numbers for this counter ** may indicate opportunities for performance improvement through ** careful use of indices.
** ** [[SQLITE_STMTSTATUS_SORT]]
SQLITE_STMTSTATUS_SORT
**
^This is the number of sort operations that have occurred. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance through careful use of indices.
** ** [[SQLITE_STMTSTATUS_AUTOINDEX]]
SQLITE_STMTSTATUS_AUTOINDEX
**
^This is the number of rows inserted into transient indices that ** were created automatically in order to help joins run faster. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run.
** ** [[SQLITE_STMTSTATUS_VM_STEP]]
SQLITE_STMTSTATUS_VM_STEP
**
^This is the number of virtual machine operations executed ** by the prepared statement if that number is less than or equal ** to 2147483647. The number of virtual machine operations can be ** used as a proxy for the total work done by the prepared statement. ** If the number of virtual machine operations exceeds 2147483647 ** then the value returned by this statement status code is undefined. ** ** [[SQLITE_STMTSTATUS_REPREPARE]]
SQLITE_STMTSTATUS_REPREPARE
**
^This is the number of times that the prepare statement has been ** automatically regenerated due to schema changes or changes to ** [bound parameters] that might affect the query plan. ** ** [[SQLITE_STMTSTATUS_RUN]]
SQLITE_STMTSTATUS_RUN
**
^This is the number of times that the prepared statement has ** been run. A single "run" for the purposes of this counter is one ** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()]. ** The counter is incremented on the first [sqlite3_step()] call of each ** cycle. ** ** [[SQLITE_STMTSTATUS_FILTER_MISS]] ** [[SQLITE_STMTSTATUS_FILTER HIT]] **
SQLITE_STMTSTATUS_FILTER_HIT
** SQLITE_STMTSTATUS_FILTER_MISS
**
^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join ** step was bypassed because a Bloom filter returned not-found. The ** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of ** times that the Bloom filter returned a find, and thus the join step ** had to be processed as normal. ** ** [[SQLITE_STMTSTATUS_MEMUSED]]
SQLITE_STMTSTATUS_MEMUSED
**
^This is the approximate number of bytes of heap memory ** used to store the prepared statement. ^This value is not actually ** a counter, and so the resetFlg parameter to sqlite3_stmt_status() ** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED. **
**
*/ #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 #define SQLITE_STMTSTATUS_SORT 2 #define SQLITE_STMTSTATUS_AUTOINDEX 3 #define SQLITE_STMTSTATUS_VM_STEP 4 #define SQLITE_STMTSTATUS_REPREPARE 5 #define SQLITE_STMTSTATUS_RUN 6 #define SQLITE_STMTSTATUS_FILTER_MISS 7 #define SQLITE_STMTSTATUS_FILTER_HIT 8 #define SQLITE_STMTSTATUS_MEMUSED 99 /* ** CAPI3REF: Custom Page Cache Object ** ** The sqlite3_pcache type is opaque. It is implemented by ** the pluggable module. The SQLite core has no knowledge of ** its size or internal structure and never deals with the ** sqlite3_pcache object except by holding and passing pointers ** to the object. ** ** See [sqlite3_pcache_methods2] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; /* ** CAPI3REF: Custom Page Cache Object ** ** The sqlite3_pcache_page object represents a single page in the ** page cache. The page cache will allocate instances of this ** object. Various methods of the page cache use pointers to instances ** of this object as parameters or as their return value. ** ** See [sqlite3_pcache_methods2] for additional information. */ typedef struct sqlite3_pcache_page sqlite3_pcache_page; struct sqlite3_pcache_page { void *pBuf; /* The content of the page */ void *pExtra; /* Extra information associated with the page */ }; /* ** CAPI3REF: Application Defined Page Cache. ** KEYWORDS: {page cache} ** ** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can ** register an alternative page cache implementation by passing in an ** instance of the sqlite3_pcache_methods2 structure.)^ ** In many applications, most of the heap memory allocated by ** SQLite is used for the page cache. ** By implementing a ** custom page cache using this API, an application can better control ** the amount of memory consumed by SQLite, the way in which ** that memory is allocated and released, and the policies used to ** determine exactly which parts of a database file are cached and for ** how long. ** ** The alternative page cache mechanism is an ** extreme measure that is only needed by the most demanding applications. ** The built-in page cache is recommended for most uses. ** ** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an ** internal buffer by SQLite within the call to [sqlite3_config]. Hence ** the application may discard the parameter after the call to ** [sqlite3_config()] returns.)^ ** ** [[the xInit() page cache method]] ** ^(The xInit() method is called once for each effective ** call to [sqlite3_initialize()])^ ** (usually only once during the lifetime of the process). ^(The xInit() ** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^ ** The intent of the xInit() method is to set up global data structures ** required by the custom page cache implementation. ** ^(If the xInit() method is NULL, then the ** built-in default page cache is used instead of the application defined ** page cache.)^ ** ** [[the xShutdown() page cache method]] ** ^The xShutdown() method is called by [sqlite3_shutdown()]. ** It can be used to clean up ** any outstanding resources before process shutdown, if required. ** ^The xShutdown() method may be NULL. ** ** ^SQLite automatically serializes calls to the xInit method, ** so the xInit method need not be threadsafe. ^The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. All other methods must be threadsafe ** in multithreaded applications. ** ** ^SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). ** ** [[the xCreate() page cache methods]] ** ^SQLite invokes the xCreate() method to construct a new cache instance. ** SQLite will typically create one cache instance for each open database file, ** though this is not guaranteed. ^The ** first parameter, szPage, is the size in bytes of the pages that must ** be allocated by the cache. ^szPage will always a power of two. ^The ** second parameter szExtra is a number of bytes of extra storage ** associated with each page cache entry. ^The szExtra parameter will ** a number less than 250. SQLite will use the ** extra szExtra bytes on each page to store metadata about the underlying ** database page on disk. The value passed into szExtra depends ** on the SQLite version, the target platform, and how SQLite was compiled. ** ^The third argument to xCreate(), bPurgeable, is true if the cache being ** created will be used to cache database pages of a file stored on disk, or ** false if it is used for an in-memory database. The cache implementation ** does not have to do anything special based with the value of bPurgeable; ** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will ** never invoke xUnpin() except to deliberately delete a page. ** ^In other words, calls to xUnpin() on a cache with bPurgeable set to ** false will always have the "discard" flag set to true. ** ^Hence, a cache created with bPurgeable false will ** never contain any unpinned pages. ** ** [[the xCachesize() page cache method]] ** ^(The xCachesize() method may be called at any time by SQLite to set the ** suggested maximum cache-size (number of pages stored by) the cache ** instance passed as the first argument. This is the value configured using ** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable ** parameter, the implementation is not required to do anything with this ** value; it is advisory only. ** ** [[the xPagecount() page cache methods]] ** The xPagecount() method must return the number of pages currently ** stored in the cache, both pinned and unpinned. ** ** [[the xFetch() page cache methods]] ** The xFetch() method locates a page in the cache and returns a pointer to ** an sqlite3_pcache_page object associated with that page, or a NULL pointer. ** The pBuf element of the returned sqlite3_pcache_page object will be a ** pointer to a buffer of szPage bytes used to store the content of a ** single database page. The pExtra element of sqlite3_pcache_page will be ** a pointer to the szExtra bytes of extra storage that SQLite has requested ** for each entry in the page cache. ** ** The page to be fetched is determined by the key. ^The minimum key value ** is 1. After it has been retrieved using xFetch, the page is considered ** to be "pinned". ** ** If the requested page is already in the page cache, then the page cache ** implementation must return a pointer to the page buffer with its content ** intact. If the requested page is not already in the cache, then the ** cache implementation should use the value of the createFlag ** parameter to help it determined what action to take: ** ** **
createFlag Behavior when page is not already in cache **
0 Do not allocate a new page. Return NULL. **
1 Allocate a new page if it easy and convenient to do so. ** Otherwise return NULL. **
2 Make every effort to allocate a new page. Only return ** NULL if allocating a new page is effectively impossible. **
** ** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite ** will only use a createFlag of 2 after a prior call with a createFlag of 1 ** failed.)^ In between the xFetch() calls, SQLite may ** attempt to unpin one or more cache pages by spilling the content of ** pinned pages to disk and synching the operating system disk cache. ** ** [[the xUnpin() page cache method]] ** ^xUnpin() is called by SQLite with a pointer to a currently pinned page ** as its second argument. If the third parameter, discard, is non-zero, ** then the page must be evicted from the cache. ** ^If the discard parameter is ** zero, then the page may be discarded or retained at the discretion of ** page cache implementation. ^The page cache implementation ** may choose to evict unpinned pages at any time. ** ** The cache must not perform any reference counting. A single ** call to xUnpin() unpins the page regardless of the number of prior calls ** to xFetch(). ** ** [[the xRekey() page cache methods]] ** The xRekey() method is used to change the key value associated with the ** page passed as the second argument. If the cache ** previously contains an entry associated with newKey, it must be ** discarded. ^Any prior cache entry associated with newKey is guaranteed not ** to be pinned. ** ** When SQLite calls the xTruncate() method, the cache must discard all ** existing cache entries with page numbers (keys) greater than or equal ** to the value of the iLimit parameter passed to xTruncate(). If any ** of these pages are pinned, they are implicitly unpinned, meaning that ** they can be safely discarded. ** ** [[the xDestroy() page cache method]] ** ^The xDestroy() method is used to delete a cache allocated by xCreate(). ** All resources associated with the specified cache should be freed. ^After ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] ** handle invalid, and will not use it with any other sqlite3_pcache_methods2 ** functions. ** ** [[the xShrink() page cache method]] ** ^SQLite invokes the xShrink() method when it wants the page cache to ** free up as much of heap memory as possible. The page cache implementation ** is not obligated to free any memory, but well-behaved implementations should ** do their best. */ typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2; struct sqlite3_pcache_methods2 { int iVersion; void *pArg; int (*xInit)(void*); void (*xShutdown)(void*); sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable); void (*xCachesize)(sqlite3_pcache*, int nCachesize); int (*xPagecount)(sqlite3_pcache*); sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard); void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*, unsigned oldKey, unsigned newKey); void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); void (*xDestroy)(sqlite3_pcache*); void (*xShrink)(sqlite3_pcache*); }; /* ** This is the obsolete pcache_methods object that has now been replaced ** by sqlite3_pcache_methods2. This object is not used by SQLite. It is ** retained in the header file for backwards compatibility only. */ typedef struct sqlite3_pcache_methods sqlite3_pcache_methods; struct sqlite3_pcache_methods { void *pArg; int (*xInit)(void*); void (*xShutdown)(void*); sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable); void (*xCachesize)(sqlite3_pcache*, int nCachesize); int (*xPagecount)(sqlite3_pcache*); void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); void (*xUnpin)(sqlite3_pcache*, void*, int discard); void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey); void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); void (*xDestroy)(sqlite3_pcache*); }; /* ** CAPI3REF: Online Backup Object ** ** The sqlite3_backup object records state information about an ongoing ** online backup operation. ^The sqlite3_backup object is created by ** a call to [sqlite3_backup_init()] and is destroyed by a call to ** [sqlite3_backup_finish()]. ** ** See Also: [Using the SQLite Online Backup API] */ typedef struct sqlite3_backup sqlite3_backup; /* ** CAPI3REF: Online Backup API. ** ** The backup API copies the content of one database into another. ** It is useful either for creating backups of databases or ** for copying in-memory databases to or from persistent files. ** ** See Also: [Using the SQLite Online Backup API] ** ** ^SQLite holds a write transaction open on the destination database file ** for the duration of the backup operation. ** ^The source database is read-locked only while it is being read; ** it is not locked continuously for the entire backup operation. ** ^Thus, the backup may be performed on a live source database without ** preventing other database connections from ** reading or writing to the source database while the backup is underway. ** ** ^(To perform a backup operation: **
    **
  1. sqlite3_backup_init() is called once to initialize the ** backup, **
  2. sqlite3_backup_step() is called one or more times to transfer ** the data between the two databases, and finally **
  3. sqlite3_backup_finish() is called to release all resources ** associated with the backup operation. **
)^ ** There should be exactly one call to sqlite3_backup_finish() for each ** successful call to sqlite3_backup_init(). ** ** [[sqlite3_backup_init()]] sqlite3_backup_init() ** ** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the ** [database connection] associated with the destination database ** and the database name, respectively. ** ^The database name is "main" for the main database, "temp" for the ** temporary database, or the name specified after the AS keyword in ** an [ATTACH] statement for an attached database. ** ^The S and M arguments passed to ** sqlite3_backup_init(D,N,S,M) identify the [database connection] ** and database name of the source database, respectively. ** ^The source and destination [database connections] (parameters S and D) ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with ** an error. ** ** ^A call to sqlite3_backup_init() will fail, returning NULL, if ** there is already a read or read-write transaction open on the ** destination database. ** ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is ** returned and an error code and error message are stored in the ** destination [database connection] D. ** ^The error code and message for the failed call to sqlite3_backup_init() ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or ** [sqlite3_errmsg16()] functions. ** ^A successful call to sqlite3_backup_init() returns a pointer to an ** [sqlite3_backup] object. ** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and ** sqlite3_backup_finish() functions to perform the specified backup ** operation. ** ** [[sqlite3_backup_step()]] sqlite3_backup_step() ** ** ^Function sqlite3_backup_step(B,N) will copy up to N pages between ** the source and destination databases specified by [sqlite3_backup] object B. ** ^If N is negative, all remaining source pages are copied. ** ^If sqlite3_backup_step(B,N) successfully copies N pages and there ** are still more pages to be copied, then the function returns [SQLITE_OK]. ** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages ** from source to destination, then it returns [SQLITE_DONE]. ** ^If an error occurs while running sqlite3_backup_step(B,N), ** then an [error code] is returned. ^As well as [SQLITE_OK] and ** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY], ** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code. ** ** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if **
    **
  1. the destination database was opened read-only, or **
  2. the destination database is using write-ahead-log journaling ** and the destination and source page sizes differ, or **
  3. the destination database is an in-memory database and the ** destination and source page sizes differ. **
)^ ** ** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then ** the [sqlite3_busy_handler | busy-handler function] ** is invoked (if one is specified). ^If the ** busy-handler returns non-zero before the lock is available, then ** [SQLITE_BUSY] is returned to the caller. ^In this case the call to ** sqlite3_backup_step() can be retried later. ^If the source ** [database connection] ** is being used to write to the source database when sqlite3_backup_step() ** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this ** case the call to sqlite3_backup_step() can be retried later on. ^(If ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or ** [SQLITE_READONLY] is returned, then ** there is no point in retrying the call to sqlite3_backup_step(). These ** errors are considered fatal.)^ The application must accept ** that the backup operation has failed and pass the backup operation handle ** to the sqlite3_backup_finish() to release associated resources. ** ** ^The first call to sqlite3_backup_step() obtains an exclusive lock ** on the destination file. ^The exclusive lock is not released until either ** sqlite3_backup_finish() is called or the backup operation is complete ** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to ** sqlite3_backup_step() obtains a [shared lock] on the source database that ** lasts for the duration of the sqlite3_backup_step() call. ** ^Because the source database is not locked between calls to ** sqlite3_backup_step(), the source database may be modified mid-way ** through the backup process. ^If the source database is modified by an ** external process or via a database connection other than the one being ** used by the backup operation, then the backup will be automatically ** restarted by the next call to sqlite3_backup_step(). ^If the source ** database is modified by the using the same database connection as is used ** by the backup operation, then the backup database is automatically ** updated at the same time. ** ** [[sqlite3_backup_finish()]] sqlite3_backup_finish() ** ** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the ** application wishes to abandon the backup operation, the application ** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish(). ** ^The sqlite3_backup_finish() interfaces releases all ** resources associated with the [sqlite3_backup] object. ** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any ** active write-transaction on the destination database is rolled back. ** The [sqlite3_backup] object is invalid ** and may not be used following a call to sqlite3_backup_finish(). ** ** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no ** sqlite3_backup_step() errors occurred, regardless or whether or not ** sqlite3_backup_step() completed. ** ^If an out-of-memory condition or IO error occurred during any prior ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then ** sqlite3_backup_finish() returns the corresponding [error code]. ** ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** ** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]] ** sqlite3_backup_remaining() and sqlite3_backup_pagecount() ** ** ^The sqlite3_backup_remaining() routine returns the number of pages still ** to be backed up at the conclusion of the most recent sqlite3_backup_step(). ** ^The sqlite3_backup_pagecount() routine returns the total number of pages ** in the source database at the conclusion of the most recent ** sqlite3_backup_step(). ** ^(The values returned by these functions are only updated by ** sqlite3_backup_step(). If the source database is modified in a way that ** changes the size of the source database or the number of pages remaining, ** those changes are not reflected in the output of sqlite3_backup_pagecount() ** and sqlite3_backup_remaining() until after the next ** sqlite3_backup_step().)^ ** ** Concurrent Usage of Database Handles ** ** ^The source [database connection] may be used by the application for other ** purposes while a backup operation is underway or being initialized. ** ^If SQLite is compiled and configured to support threadsafe database ** connections, then the source database connection may be used concurrently ** from within other threads. ** ** However, the application must guarantee that the destination ** [database connection] is not passed to any other API (by any thread) after ** sqlite3_backup_init() is called and before the corresponding call to ** sqlite3_backup_finish(). SQLite does not currently check to see ** if the application incorrectly accesses the destination [database connection] ** and so no error code is reported, but the operations may malfunction ** nevertheless. Use of the destination database connection while a ** backup is in progress might also cause a mutex deadlock. ** ** If running in [shared cache mode], the application must ** guarantee that the shared cache used by the destination database ** is not accessed while the backup is running. In practice this means ** that the application must guarantee that the disk file being ** backed up to is not accessed by any connection within the process, ** not just the specific connection that was passed to sqlite3_backup_init(). ** ** The [sqlite3_backup] object itself is partially threadsafe. Multiple ** threads may safely make multiple concurrent calls to sqlite3_backup_step(). ** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount() ** APIs are not strictly speaking threadsafe. If they are invoked at the ** same time as another thread is invoking sqlite3_backup_step() it is ** possible that they return invalid values. */ SQLITE_API sqlite3_backup *sqlite3_backup_init( sqlite3 *pDest, /* Destination database handle */ const char *zDestName, /* Destination database name */ sqlite3 *pSource, /* Source database handle */ const char *zSourceName /* Source database name */ ); SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage); SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p); SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p); SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); /* ** CAPI3REF: Unlock Notification ** METHOD: sqlite3 ** ** ^When running in shared-cache mode, a database operation may fail with ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or ** individual tables within the shared-cache cannot be obtained. See ** [SQLite Shared-Cache Mode] for a description of shared-cache locking. ** ^This API may be used to register a callback that SQLite will invoke ** when the connection currently holding the required lock relinquishes it. ** ^This API is only available if the library was compiled with the ** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined. ** ** See Also: [Using the SQLite Unlock Notification Feature]. ** ** ^Shared-cache locks are released when a database connection concludes ** its current transaction, either by committing it or rolling it back. ** ** ^When a connection (known as the blocked connection) fails to obtain a ** shared-cache lock and SQLITE_LOCKED is returned to the caller, the ** identity of the database connection (the blocking connection) that ** has locked the required resource is stored internally. ^After an ** application receives an SQLITE_LOCKED error, it may call the ** sqlite3_unlock_notify() method with the blocked connection handle as ** the first argument to register for a callback that will be invoked ** when the blocking connections current transaction is concluded. ^The ** callback is invoked from within the [sqlite3_step] or [sqlite3_close] ** call that concludes the blocking connection's transaction. ** ** ^(If sqlite3_unlock_notify() is called in a multi-threaded application, ** there is a chance that the blocking connection will have already ** concluded its transaction by the time sqlite3_unlock_notify() is invoked. ** If this happens, then the specified callback is invoked immediately, ** from within the call to sqlite3_unlock_notify().)^ ** ** ^If the blocked connection is attempting to obtain a write-lock on a ** shared-cache table, and more than one other connection currently holds ** a read-lock on the same table, then SQLite arbitrarily selects one of ** the other connections to use as the blocking connection. ** ** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing ** unlock-notify callback is cancelled. ^The blocked connections ** unlock-notify callback may also be cancelled by closing the blocked ** connection using [sqlite3_close()]. ** ** The unlock-notify callback is not reentrant. If an application invokes ** any sqlite3_xxx API functions from within an unlock-notify callback, a ** crash or deadlock may be the result. ** ** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always ** returns SQLITE_OK. ** ** Callback Invocation Details ** ** When an unlock-notify callback is registered, the application provides a ** single void* pointer that is passed to the callback when it is invoked. ** However, the signature of the callback function allows SQLite to pass ** it an array of void* context pointers. The first argument passed to ** an unlock-notify callback is a pointer to an array of void* pointers, ** and the second is the number of entries in the array. ** ** When a blocking connection's transaction is concluded, there may be ** more than one blocked connection that has registered for an unlock-notify ** callback. ^If two or more such blocked connections have specified the ** same callback function, then instead of invoking the callback function ** multiple times, it is invoked once with the set of void* context pointers ** specified by the blocked connections bundled together into an array. ** This gives the application an opportunity to prioritize any actions ** related to the set of unblocked database connections. ** ** Deadlock Detection ** ** Assuming that after registering for an unlock-notify callback a ** database waits for the callback to be issued before taking any further ** action (a reasonable assumption), then using this API may cause the ** application to deadlock. For example, if connection X is waiting for ** connection Y's transaction to be concluded, and similarly connection ** Y is waiting on connection X's transaction, then neither connection ** will proceed and the system may remain deadlocked indefinitely. ** ** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock ** detection. ^If a given call to sqlite3_unlock_notify() would put the ** system in a deadlocked state, then SQLITE_LOCKED is returned and no ** unlock-notify callback is registered. The system is said to be in ** a deadlocked state if connection A has registered for an unlock-notify ** callback on the conclusion of connection B's transaction, and connection ** B has itself registered for an unlock-notify callback when connection ** A's transaction is concluded. ^Indirect deadlock is also detected, so ** the system is also considered to be deadlocked if connection B has ** registered for an unlock-notify callback on the conclusion of connection ** C's transaction, where connection C is waiting on connection A. ^Any ** number of levels of indirection are allowed. ** ** The "DROP TABLE" Exception ** ** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost ** always appropriate to call sqlite3_unlock_notify(). There is however, ** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement, ** SQLite checks if there are any currently executing SELECT statements ** that belong to the same connection. If there are, SQLITE_LOCKED is ** returned. In this case there is no "blocking connection", so invoking ** sqlite3_unlock_notify() results in the unlock-notify callback being ** invoked immediately. If the application then re-attempts the "DROP TABLE" ** or "DROP INDEX" query, an infinite loop might be the result. ** ** One way around this problem is to check the extended error code returned ** by an sqlite3_step() call. ^(If there is a blocking connection, then the ** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in ** the special "DROP TABLE/INDEX" case, the extended error code is just ** SQLITE_LOCKED.)^ */ SQLITE_API int sqlite3_unlock_notify( sqlite3 *pBlocked, /* Waiting connection */ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */ void *pNotifyArg /* Argument to pass to xNotify */ ); /* ** CAPI3REF: String Comparison ** ** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications ** and extensions to compare the contents of two buffers containing UTF-8 ** strings in a case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ SQLITE_API int sqlite3_stricmp(const char *, const char *); SQLITE_API int sqlite3_strnicmp(const char *, const char *, int); /* ** CAPI3REF: String Globbing * ** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if ** string X matches the [GLOB] pattern P. ** ^The definition of [GLOB] pattern matching used in ** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the ** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function ** is case sensitive. ** ** Note that this routine returns zero on a match and non-zero if the strings ** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. ** ** See also: [sqlite3_strlike()]. */ SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr); /* ** CAPI3REF: String LIKE Matching * ** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if ** string X matches the [LIKE] pattern P with escape character E. ** ^The definition of [LIKE] pattern matching used in ** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E" ** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without ** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0. ** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case ** insensitive - equivalent upper and lower case ASCII characters match ** one another. ** ** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though ** only ASCII characters are case folded. ** ** Note that this routine returns zero on a match and non-zero if the strings ** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. ** ** See also: [sqlite3_strglob()]. */ SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc); /* ** CAPI3REF: Error Logging Interface ** ** ^The [sqlite3_log()] interface writes a message into the [error log] ** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. ** ^If logging is enabled, the zFormat string and subsequent arguments are ** used with [sqlite3_snprintf()] to generate the final output string. ** ** The sqlite3_log() interface is intended for use by extensions such as ** virtual tables, collating functions, and SQL functions. While there is ** nothing to prevent an application from calling sqlite3_log(), doing so ** is considered bad form. ** ** The zFormat string must not be NULL. ** ** To avoid deadlocks and other threading problems, the sqlite3_log() routine ** will not use dynamically allocated memory. The log message is stored in ** a fixed-length buffer on the stack. If the log message is longer than ** a few hundred characters, it will be truncated to the length of the ** buffer. */ SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...); /* ** CAPI3REF: Write-Ahead Log Commit Hook ** METHOD: sqlite3 ** ** ^The [sqlite3_wal_hook()] function is used to register a callback that ** is invoked each time data is committed to a database in wal mode. ** ** ^(The callback is invoked by SQLite after the commit has taken place and ** the associated write-lock on the database released)^, so the implementation ** may read, write or [checkpoint] the database as required. ** ** ^The first parameter passed to the callback function when it is invoked ** is a copy of the third parameter passed to sqlite3_wal_hook() when ** registering the callback. ^The second is a copy of the database handle. ** ^The third parameter is the name of the database that was written to - ** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter ** is the number of pages currently in the write-ahead log file, ** including those that were just committed. ** ** The callback function should normally return [SQLITE_OK]. ^If an error ** code is returned, that error will propagate back up through the ** SQLite code base to cause the statement that provoked the callback ** to report an error, though the commit will have still occurred. If the ** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value ** that does not correspond to any valid SQLite error code, the results ** are undefined. ** ** A single database handle may have at most a single write-ahead log callback ** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any ** previously registered write-ahead log callback. ^The return value is ** a copy of the third parameter from the previous call, if any, or 0. ** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will ** overwrite any prior [sqlite3_wal_hook()] settings. */ SQLITE_API void *sqlite3_wal_hook( sqlite3*, int(*)(void *,sqlite3*,const char*,int), void* ); /* ** CAPI3REF: Configure an auto-checkpoint ** METHOD: sqlite3 ** ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around ** [sqlite3_wal_hook()] that causes any database on [database connection] D ** to automatically [checkpoint] ** after committing a transaction if there are N or ** more frames in the [write-ahead log] file. ^Passing zero or ** a negative value as the nFrame parameter disables automatic ** checkpoints entirely. ** ** ^The callback registered by this function replaces any existing callback ** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback ** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism ** configured by this function. ** ** ^The [wal_autocheckpoint pragma] can be used to invoke this interface ** from SQL. ** ** ^Checkpoints initiated by this mechanism are ** [sqlite3_wal_checkpoint_v2|PASSIVE]. ** ** ^Every new [database connection] defaults to having the auto-checkpoint ** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT] ** pages. The use of this interface ** is only necessary if the default setting is found to be suboptimal ** for a particular application. */ SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); /* ** CAPI3REF: Checkpoint a database ** METHOD: sqlite3 ** ** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to ** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^ ** ** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the ** [write-ahead log] for database X on [database connection] D to be ** transferred into the database file and for the write-ahead log to ** be reset. See the [checkpointing] documentation for addition ** information. ** ** This interface used to be the only way to cause a checkpoint to ** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()] ** interface was added. This interface is retained for backwards ** compatibility and as a convenience for applications that need to manually ** start a callback but which do not need the full power (and corresponding ** complication) of [sqlite3_wal_checkpoint_v2()]. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** METHOD: sqlite3 ** ** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint ** operation on database X of [database connection] D in mode M. Status ** information is written back into integers pointed to by L and C.)^ ** ^(The M parameter must be a valid [checkpoint mode]:)^ ** **
**
SQLITE_CHECKPOINT_PASSIVE
** ^Checkpoint as many frames as possible without waiting for any database ** readers or writers to finish, then sync the database file if all frames ** in the log were checkpointed. ^The [busy-handler callback] ** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode. ** ^On the other hand, passive mode might leave the checkpoint unfinished ** if there are concurrent readers or writers. ** **
SQLITE_CHECKPOINT_FULL
** ^This mode blocks (it invokes the ** [sqlite3_busy_handler|busy-handler callback]) until there is no ** database writer and all readers are reading from the most recent database ** snapshot. ^It then checkpoints all frames in the log file and syncs the ** database file. ^This mode blocks new database writers while it is pending, ** but new database readers are allowed to continue unimpeded. ** **
SQLITE_CHECKPOINT_RESTART
** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition ** that after checkpointing the log file it blocks (calls the ** [busy-handler callback]) ** until all readers are reading from the database file only. ^This ensures ** that the next writer will restart the log file from the beginning. ** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new ** database writer attempts while it is pending, but does not impede readers. ** **
SQLITE_CHECKPOINT_TRUNCATE
** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the ** addition that it also truncates the log file to zero bytes just prior ** to a successful return. **
** ** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in ** the log file or to -1 if the checkpoint could not run because ** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not ** NULL,then *pnCkpt is set to the total number of checkpointed frames in the ** log file (including any that were already checkpointed before the function ** was called) or to -1 if the checkpoint could not run due to an error or ** because the database is not in WAL mode. ^Note that upon successful ** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been ** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero. ** ** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If ** any other process is running a checkpoint operation at the same time, the ** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a ** busy-handler configured, it will not be invoked in this case. ** ** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the ** exclusive "writer" lock on the database file. ^If the writer lock cannot be ** obtained immediately, and a busy-handler is configured, it is invoked and ** the writer lock retried until either the busy-handler returns 0 or the lock ** is successfully obtained. ^The busy-handler is also invoked while waiting for ** database readers as described above. ^If the busy-handler returns 0 before ** the writer lock is obtained or while waiting for database readers, the ** checkpoint operation proceeds from that point in the same way as ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible ** without blocking any further. ^SQLITE_BUSY is returned in this case. ** ** ^If parameter zDb is NULL or points to a zero length string, then the ** specified operation is attempted on all WAL databases [attached] to ** [database connection] db. In this case the ** values written to output parameters *pnLog and *pnCkpt are undefined. ^If ** an SQLITE_BUSY error is encountered when processing one or more of the ** attached WAL databases, the operation is still attempted on any remaining ** attached databases and SQLITE_BUSY is returned at the end. ^If any other ** error occurs while processing an attached database, processing is abandoned ** and the error code is returned to the caller immediately. ^If no error ** (SQLITE_BUSY or otherwise) is encountered while processing the attached ** databases, SQLITE_OK is returned. ** ** ^If database zDb is the name of an attached database that is not in WAL ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If ** zDb is not NULL (or a zero length string) and is not the name of any ** attached database, SQLITE_ERROR is returned to the caller. ** ** ^Unless it returns SQLITE_MISUSE, ** the sqlite3_wal_checkpoint_v2() interface ** sets the error information that is queried by ** [sqlite3_errcode()] and [sqlite3_errmsg()]. ** ** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface ** from SQL. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ); /* ** CAPI3REF: Checkpoint Mode Values ** KEYWORDS: {checkpoint mode} ** ** These constants define all valid values for the "checkpoint mode" passed ** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface. ** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the ** meaning of each of these checkpoint modes. */ #define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */ #define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */ #define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for readers */ #define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */ /* ** CAPI3REF: Virtual Table Interface Configuration ** ** This function may be called by either the [xConnect] or [xCreate] method ** of a [virtual table] implementation to configure ** various facets of the virtual table interface. ** ** If this interface is invoked outside the context of an xConnect or ** xCreate virtual table method then the behavior is undefined. ** ** In the call sqlite3_vtab_config(D,C,...) the D parameter is the ** [database connection] in which the virtual table is being created and ** which is passed in as the first argument to the [xConnect] or [xCreate] ** method that is invoking sqlite3_vtab_config(). The C parameter is one ** of the [virtual table configuration options]. The presence and meaning ** of parameters after C depend on which [virtual table configuration option] ** is used. */ SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...); /* ** CAPI3REF: Virtual Table Configuration Options ** KEYWORDS: {virtual table configuration options} ** KEYWORDS: {virtual table configuration option} ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** **
** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]] **
SQLITE_VTAB_CONSTRAINT_SUPPORT
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, ** where X is an integer. If X is zero, then the [virtual table] whose ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not ** support constraints. In this configuration (which is the default) if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire ** statement is rolled back as if [ON CONFLICT | OR ABORT] had been ** specified as part of the users SQL statement, regardless of the actual ** ON CONFLICT mode specified. ** ** If X is non-zero, then the virtual table implementation guarantees ** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before ** any modifications to internal or persistent data structures have been made. ** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite ** is able to roll back a statement or database transaction, and abandon ** or continue processing the current SQL statement as appropriate. ** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns ** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode ** had been ABORT. ** ** Virtual table implementations that are required to handle OR REPLACE ** must do so within the [xUpdate] method. If a call to the ** [sqlite3_vtab_on_conflict()] function indicates that the current ON ** CONFLICT policy is REPLACE, the virtual table implementation should ** silently replace the appropriate rows within the xUpdate callback and ** return SQLITE_OK. Or, if this is not possible, it may return ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT ** constraint handling. **
** ** [[SQLITE_VTAB_DIRECTONLY]]
SQLITE_VTAB_DIRECTONLY
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** prohibits that virtual table from being used from within triggers and ** views. **
** ** [[SQLITE_VTAB_INNOCUOUS]]
SQLITE_VTAB_INNOCUOUS
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** identify that virtual table as being safe to use from within triggers ** and views. Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the ** virtual table can do no serious harm even if it is controlled by a ** malicious hacker. Developers should avoid setting the SQLITE_VTAB_INNOCUOUS ** flag unless absolutely necessary. **
** ** [[SQLITE_VTAB_USES_ALL_SCHEMAS]]
SQLITE_VTAB_USES_ALL_SCHEMAS
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_USES_ALL_SCHEMA) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** instruct the query planner to begin at least a read transaction on ** all schemas ("main", "temp", and any ATTACH-ed databases) whenever the ** virtual table is used. **
**
*/ #define SQLITE_VTAB_CONSTRAINT_SUPPORT 1 #define SQLITE_VTAB_INNOCUOUS 2 #define SQLITE_VTAB_DIRECTONLY 3 #define SQLITE_VTAB_USES_ALL_SCHEMAS 4 /* ** CAPI3REF: Determine The Virtual Table Conflict Policy ** ** This function may only be called from within a call to the [xUpdate] method ** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The ** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL], ** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode ** of the SQL statement that triggered the call to the [xUpdate] method of the ** [virtual table]. */ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); /* ** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE ** ** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn] ** method of a [virtual table], then it might return true if the ** column is being fetched as part of an UPDATE operation during which the ** column value will not change. The virtual table implementation can use ** this hint as permission to substitute a return value that is less ** expensive to compute and that the corresponding ** [xUpdate] method understands as a "no-change" value. ** ** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that ** the column is not changed by the UPDATE statement, then the xColumn ** method can optionally return without setting a result, without calling ** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces]. ** In that case, [sqlite3_value_nochange(X)] will return true for the ** same column in the [xUpdate] method. ** ** The sqlite3_vtab_nochange() routine is an optimization. Virtual table ** implementations should continue to give a correct answer even if the ** sqlite3_vtab_nochange() interface were to always return false. In the ** current implementation, the sqlite3_vtab_nochange() interface does always ** returns false for the enhanced [UPDATE FROM] statement. */ SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*); /* ** CAPI3REF: Determine The Collation For a Virtual Table Constraint ** METHOD: sqlite3_index_info ** ** This function may only be called from within a call to the [xBestIndex] ** method of a [virtual table]. This function returns a pointer to a string ** that is the name of the appropriate collation sequence to use for text ** comparisons on the constraint identified by its arguments. ** ** The first argument must be the pointer to the [sqlite3_index_info] object ** that is the first parameter to the xBestIndex() method. The second argument ** must be an index into the aConstraint[] array belonging to the ** sqlite3_index_info structure passed to xBestIndex. ** ** Important: ** The first parameter must be the same pointer that is passed into the ** xBestMethod() method. The first parameter may not be a pointer to a ** different [sqlite3_index_info] object, even an exact copy. ** ** The return value is computed as follows: ** **
    **
  1. If the constraint comes from a WHERE clause expression that contains ** a [COLLATE operator], then the name of the collation specified by ** that COLLATE operator is returned. **

  2. If there is no COLLATE operator, but the column that is the subject ** of the constraint specifies an alternative collating sequence via ** a [COLLATE clause] on the column definition within the CREATE TABLE ** statement that was passed into [sqlite3_declare_vtab()], then the ** name of that alternative collating sequence is returned. **

  3. Otherwise, "BINARY" is returned. **

*/ SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info*,int); /* ** CAPI3REF: Determine if a virtual table query is DISTINCT ** METHOD: sqlite3_index_info ** ** This API may only be used from within an [xBestIndex|xBestIndex method] ** of a [virtual table] implementation. The result of calling this ** interface from outside of xBestIndex() is undefined and probably harmful. ** ** ^The sqlite3_vtab_distinct() interface returns an integer between 0 and ** 3. The integer returned by sqlite3_vtab_distinct() ** gives the virtual table additional information about how the query ** planner wants the output to be ordered. As long as the virtual table ** can meet the ordering requirements of the query planner, it may set ** the "orderByConsumed" flag. ** **
  1. ** ^If the sqlite3_vtab_distinct() interface returns 0, that means ** that the query planner needs the virtual table to return all rows in the ** sort order defined by the "nOrderBy" and "aOrderBy" fields of the ** [sqlite3_index_info] object. This is the default expectation. If the ** virtual table outputs all rows in sorted order, then it is always safe for ** the xBestIndex method to set the "orderByConsumed" flag, regardless of ** the return value from sqlite3_vtab_distinct(). **

  2. ** ^(If the sqlite3_vtab_distinct() interface returns 1, that means ** that the query planner does not need the rows to be returned in sorted order ** as long as all rows with the same values in all columns identified by the ** "aOrderBy" field are adjacent.)^ This mode is used when the query planner ** is doing a GROUP BY. **

  3. ** ^(If the sqlite3_vtab_distinct() interface returns 2, that means ** that the query planner does not need the rows returned in any particular ** order, as long as rows with the same values in all "aOrderBy" columns ** are adjacent.)^ ^(Furthermore, only a single row for each particular ** combination of values in the columns identified by the "aOrderBy" field ** needs to be returned.)^ ^It is always ok for two or more rows with the same ** values in all "aOrderBy" columns to be returned, as long as all such rows ** are adjacent. ^The virtual table may, if it chooses, omit extra rows ** that have the same value for all columns identified by "aOrderBy". ** ^However omitting the extra rows is optional. ** This mode is used for a DISTINCT query. **

  4. ** ^(If the sqlite3_vtab_distinct() interface returns 3, that means ** that the query planner needs only distinct rows but it does need the ** rows to be sorted.)^ ^The virtual table implementation is free to omit ** rows that are identical in all aOrderBy columns, if it wants to, but ** it is not required to omit any rows. This mode is used for queries ** that have both DISTINCT and ORDER BY clauses. **

** ** ^For the purposes of comparing virtual table output values to see if the ** values are same value for sorting purposes, two NULL values are considered ** to be the same. In other words, the comparison operator is "IS" ** (or "IS NOT DISTINCT FROM") and not "==". ** ** If a virtual table implementation is unable to meet the requirements ** specified above, then it must not set the "orderByConsumed" flag in the ** [sqlite3_index_info] object or an incorrect answer may result. ** ** ^A virtual table implementation is always free to return rows in any order ** it wants, as long as the "orderByConsumed" flag is not set. ^When the ** the "orderByConsumed" flag is unset, the query planner will add extra ** [bytecode] to ensure that the final results returned by the SQL query are ** ordered correctly. The use of the "orderByConsumed" flag and the ** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful ** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed" ** flag might help queries against a virtual table to run faster. Being ** overly aggressive and setting the "orderByConsumed" flag when it is not ** valid to do so, on the other hand, might cause SQLite to return incorrect ** results. */ SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*); /* ** CAPI3REF: Identify and handle IN constraints in xBestIndex ** ** This interface may only be used from within an ** [xBestIndex|xBestIndex() method] of a [virtual table] implementation. ** The result of invoking this interface from any other context is ** undefined and probably harmful. ** ** ^(A constraint on a virtual table of the form ** "[IN operator|column IN (...)]" is ** communicated to the xBestIndex method as a ** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use ** this constraint, it must set the corresponding ** aConstraintUsage[].argvIndex to a positive integer. ^(Then, under ** the usual mode of handling IN operators, SQLite generates [bytecode] ** that invokes the [xFilter|xFilter() method] once for each value ** on the right-hand side of the IN operator.)^ Thus the virtual table ** only sees a single value from the right-hand side of the IN operator ** at a time. ** ** In some cases, however, it would be advantageous for the virtual ** table to see all values on the right-hand of the IN operator all at ** once. The sqlite3_vtab_in() interfaces facilitates this in two ways: ** **
    **
  1. ** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero) ** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint ** is an [IN operator] that can be processed all at once. ^In other words, ** sqlite3_vtab_in() with -1 in the third argument is a mechanism ** by which the virtual table can ask SQLite if all-at-once processing ** of the IN operator is even possible. ** **

  2. ** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates ** to SQLite that the virtual table does or does not want to process ** the IN operator all-at-once, respectively. ^Thus when the third ** parameter (F) is non-negative, this interface is the mechanism by ** which the virtual table tells SQLite how it wants to process the ** IN operator. **

** ** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times ** within the same xBestIndex method call. ^For any given P,N pair, ** the return value from sqlite3_vtab_in(P,N,F) will always be the same ** within the same xBestIndex call. ^If the interface returns true ** (non-zero), that means that the constraint is an IN operator ** that can be processed all-at-once. ^If the constraint is not an IN ** operator or cannot be processed all-at-once, then the interface returns ** false. ** ** ^(All-at-once processing of the IN operator is selected if both of the ** following conditions are met: ** **
    **
  1. The P->aConstraintUsage[N].argvIndex value is set to a positive ** integer. This is how the virtual table tells SQLite that it wants to ** use the N-th constraint. ** **

  2. The last call to sqlite3_vtab_in(P,N,F) for which F was ** non-negative had F>=1. **

)^ ** ** ^If either or both of the conditions above are false, then SQLite uses ** the traditional one-at-a-time processing strategy for the IN constraint. ** ^If both conditions are true, then the argvIndex-th parameter to the ** xFilter method will be an [sqlite3_value] that appears to be NULL, ** but which can be passed to [sqlite3_vtab_in_first()] and ** [sqlite3_vtab_in_next()] to find all values on the right-hand side ** of the IN constraint. */ SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle); /* ** CAPI3REF: Find all elements on the right-hand side of an IN constraint. ** ** These interfaces are only useful from within the ** [xFilter|xFilter() method] of a [virtual table] implementation. ** The result of invoking these interfaces from any other context ** is undefined and probably harmful. ** ** The X parameter in a call to sqlite3_vtab_in_first(X,P) or ** sqlite3_vtab_in_next(X,P) should be one of the parameters to the ** xFilter method which invokes these routines, and specifically ** a parameter that was previously selected for all-at-once IN constraint ** processing use the [sqlite3_vtab_in()] interface in the ** [xBestIndex|xBestIndex method]. ^(If the X parameter is not ** an xFilter argument that was selected for all-at-once IN constraint ** processing, then these routines return [SQLITE_ERROR].)^ ** ** ^(Use these routines to access all values on the right-hand side ** of the IN constraint using code like the following: ** **
**    for(rc=sqlite3_vtab_in_first(pList, &pVal);
**        rc==SQLITE_OK && pVal;
**        rc=sqlite3_vtab_in_next(pList, &pVal)
**    ){
**      // do something with pVal
**    }
**    if( rc!=SQLITE_OK ){
**      // an error has occurred
**    }
** 
)^ ** ** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P) ** routines return SQLITE_OK and set *P to point to the first or next value ** on the RHS of the IN constraint. ^If there are no more values on the ** right hand side of the IN constraint, then *P is set to NULL and these ** routines return [SQLITE_DONE]. ^The return value might be ** some other value, such as SQLITE_NOMEM, in the event of a malfunction. ** ** The *ppOut values returned by these routines are only valid until the ** next call to either of these routines or until the end of the xFilter ** method from which these routines were called. If the virtual table ** implementation needs to retain the *ppOut values for longer, it must make ** copies. The *ppOut values are [protected sqlite3_value|protected]. */ SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut); SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut); /* ** CAPI3REF: Constraint values in xBestIndex() ** METHOD: sqlite3_index_info ** ** This API may only be used from within the [xBestIndex|xBestIndex method] ** of a [virtual table] implementation. The result of calling this interface ** from outside of an xBestIndex method are undefined and probably harmful. ** ** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within ** the [xBestIndex] method of a [virtual table] implementation, with P being ** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and ** J being a 0-based index into P->aConstraint[], then this routine ** attempts to set *V to the value of the right-hand operand of ** that constraint if the right-hand operand is known. ^If the ** right-hand operand is not known, then *V is set to a NULL pointer. ** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if ** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V) ** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th ** constraint is not available. ^The sqlite3_vtab_rhs_value() interface ** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if ** something goes wrong. ** ** The sqlite3_vtab_rhs_value() interface is usually only successful if ** the right-hand operand of a constraint is a literal value in the original ** SQL statement. If the right-hand operand is an expression or a reference ** to some other column or a [host parameter], then sqlite3_vtab_rhs_value() ** will probably return [SQLITE_NOTFOUND]. ** ** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and ** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such ** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^ ** ** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value ** and remains valid for the duration of the xBestIndex method call. ** ^When xBestIndex returns, the sqlite3_value object returned by ** sqlite3_vtab_rhs_value() is automatically deallocated. ** ** The "_rhs_" in the name of this routine is an abbreviation for ** "Right-Hand Side". */ SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal); /* ** CAPI3REF: Conflict resolution modes ** KEYWORDS: {conflict resolution mode} ** ** These constants are returned by [sqlite3_vtab_on_conflict()] to ** inform a [virtual table] implementation what the [ON CONFLICT] mode ** is for the SQL statement being evaluated. ** ** Note that the [SQLITE_IGNORE] constant is also used as a potential ** return value from the [sqlite3_set_authorizer()] callback and that ** [SQLITE_ABORT] is also a [result code]. */ #define SQLITE_ROLLBACK 1 /* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */ #define SQLITE_FAIL 3 /* #define SQLITE_ABORT 4 // Also an error code */ #define SQLITE_REPLACE 5 /* ** CAPI3REF: Prepared Statement Scan Status Opcodes ** KEYWORDS: {scanstatus options} ** ** The following constants can be used for the T parameter to the ** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a ** different metric for sqlite3_stmt_scanstatus() to return. ** ** When the value returned to V is a string, space to hold that string is ** managed by the prepared statement S and will be automatically freed when ** S is finalized. ** ** Not all values are available for all query elements. When a value is ** not available, the output variable is set to -1 if the value is numeric, ** or to NULL if it is a string (SQLITE_SCANSTAT_NAME). ** **
** [[SQLITE_SCANSTAT_NLOOP]]
SQLITE_SCANSTAT_NLOOP
**
^The [sqlite3_int64] variable pointed to by the V parameter will be ** set to the total number of times that the X-th loop has run.
** ** [[SQLITE_SCANSTAT_NVISIT]]
SQLITE_SCANSTAT_NVISIT
**
^The [sqlite3_int64] variable pointed to by the V parameter will be set ** to the total number of rows examined by all iterations of the X-th loop.
** ** [[SQLITE_SCANSTAT_EST]]
SQLITE_SCANSTAT_EST
**
^The "double" variable pointed to by the V parameter will be set to the ** query planner's estimate for the average number of rows output from each ** iteration of the X-th loop. If the query planner's estimates was accurate, ** then this value will approximate the quotient NVISIT/NLOOP and the ** product of this value for all prior loops with the same SELECTID will ** be the NLOOP value for the current loop. ** ** [[SQLITE_SCANSTAT_NAME]]
SQLITE_SCANSTAT_NAME
**
^The "const char *" variable pointed to by the V parameter will be set ** to a zero-terminated UTF-8 string containing the name of the index or table ** used for the X-th loop. ** ** [[SQLITE_SCANSTAT_EXPLAIN]]
SQLITE_SCANSTAT_EXPLAIN
**
^The "const char *" variable pointed to by the V parameter will be set ** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] ** description for the X-th loop. ** ** [[SQLITE_SCANSTAT_SELECTID]]
SQLITE_SCANSTAT_SELECTID
**
^The "int" variable pointed to by the V parameter will be set to the ** id for the X-th query plan element. The id value is unique within the ** statement. The select-id is the same value as is output in the first ** column of an [EXPLAIN QUERY PLAN] query. ** ** [[SQLITE_SCANSTAT_PARENTID]]
SQLITE_SCANSTAT_PARENTID
**
The "int" variable pointed to by the V parameter will be set to the ** the id of the parent of the current query element, if applicable, or ** to zero if the query element has no parent. This is the same value as ** returned in the second column of an [EXPLAIN QUERY PLAN] query. ** ** [[SQLITE_SCANSTAT_NCYCLE]]
SQLITE_SCANSTAT_NCYCLE
**
The sqlite3_int64 output value is set to the number of cycles, ** according to the processor time-stamp counter, that elapsed while the ** query element was being processed. This value is not available for ** all query elements - if it is unavailable the output variable is ** set to -1. **
*/ #define SQLITE_SCANSTAT_NLOOP 0 #define SQLITE_SCANSTAT_NVISIT 1 #define SQLITE_SCANSTAT_EST 2 #define SQLITE_SCANSTAT_NAME 3 #define SQLITE_SCANSTAT_EXPLAIN 4 #define SQLITE_SCANSTAT_SELECTID 5 #define SQLITE_SCANSTAT_PARENTID 6 #define SQLITE_SCANSTAT_NCYCLE 7 /* ** CAPI3REF: Prepared Statement Scan Status ** METHOD: sqlite3_stmt ** ** These interfaces return information about the predicted and measured ** performance for pStmt. Advanced applications can use this ** interface to compare the predicted and the measured performance and ** issue warnings and/or rerun [ANALYZE] if discrepancies are found. ** ** Since this interface is expected to be rarely used, it is only ** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS] ** compile-time option. ** ** The "iScanStatusOp" parameter determines which status information to return. ** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior ** of this interface is undefined. ^The requested measurement is written into ** a variable pointed to by the "pOut" parameter. ** ** The "flags" parameter must be passed a mask of flags. At present only ** one flag is defined - SQLITE_SCANSTAT_COMPLEX. If SQLITE_SCANSTAT_COMPLEX ** is specified, then status information is available for all elements ** of a query plan that are reported by "EXPLAIN QUERY PLAN" output. If ** SQLITE_SCANSTAT_COMPLEX is not specified, then only query plan elements ** that correspond to query loops (the "SCAN..." and "SEARCH..." elements of ** the EXPLAIN QUERY PLAN output) are available. Invoking API ** sqlite3_stmt_scanstatus() is equivalent to calling ** sqlite3_stmt_scanstatus_v2() with a zeroed flags parameter. ** ** Parameter "idx" identifies the specific query element to retrieve statistics ** for. Query elements are numbered starting from zero. A value of -1 may be ** to query for statistics regarding the entire query. ^If idx is out of range ** - less than -1 or greater than or equal to the total number of query ** elements used to implement the statement - a non-zero value is returned and ** the variable that pOut points to is unchanged. ** ** See also: [sqlite3_stmt_scanstatus_reset()] */ SQLITE_API int sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ void *pOut /* Result written here */ ); SQLITE_API int sqlite3_stmt_scanstatus_v2( sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ int flags, /* Mask of flags defined below */ void *pOut /* Result written here */ ); /* ** CAPI3REF: Prepared Statement Scan Status ** KEYWORDS: {scan status flags} */ #define SQLITE_SCANSTAT_COMPLEX 0x0001 /* ** CAPI3REF: Zero Scan-Status Counters ** METHOD: sqlite3_stmt ** ** ^Zero all [sqlite3_stmt_scanstatus()] related event counters. ** ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. */ SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); /* ** CAPI3REF: Flush caches to disk mid-transaction ** METHOD: sqlite3 ** ** ^If a write-transaction is open on [database connection] D when the ** [sqlite3_db_cacheflush(D)] interface invoked, any dirty ** pages in the pager-cache that are not currently in use are written out ** to disk. A dirty page may be in use if a database cursor created by an ** active SQL statement is reading from it, or if it is page 1 of a database ** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)] ** interface flushes caches for all schemas - "main", "temp", and ** any [attached] databases. ** ** ^If this function needs to obtain extra database locks before dirty pages ** can be flushed to disk, it does so. ^If those locks cannot be obtained ** immediately and there is a busy-handler callback configured, it is invoked ** in the usual manner. ^If the required lock still cannot be obtained, then ** the database is skipped and an attempt made to flush any dirty pages ** belonging to the next (if any) database. ^If any databases are skipped ** because locks cannot be obtained, but no other error occurs, this ** function returns SQLITE_BUSY. ** ** ^If any other error occurs while flushing dirty pages to disk (for ** example an IO error or out-of-memory condition), then processing is ** abandoned and an SQLite [error code] is returned to the caller immediately. ** ** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK. ** ** ^This function does not set the database handle error code or message ** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions. */ SQLITE_API int sqlite3_db_cacheflush(sqlite3*); /* ** CAPI3REF: The pre-update hook. ** METHOD: sqlite3 ** ** ^These interfaces are only available if SQLite is compiled using the ** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option. ** ** ^The [sqlite3_preupdate_hook()] interface registers a callback function ** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation ** on a database table. ** ^At most one preupdate hook may be registered at a time on a single ** [database connection]; each call to [sqlite3_preupdate_hook()] overrides ** the previous setting. ** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()] ** with a NULL pointer as the second parameter. ** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as ** the first parameter to callbacks. ** ** ^The preupdate hook only fires for changes to real database tables; the ** preupdate hook is not invoked for changes to [virtual tables] or to ** system tables like sqlite_sequence or sqlite_stat1. ** ** ^The second parameter to the preupdate callback is a pointer to ** the [database connection] that registered the preupdate hook. ** ^The third parameter to the preupdate callback is one of the constants ** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the ** kind of update operation that is about to occur. ** ^(The fourth parameter to the preupdate callback is the name of the ** database within the database connection that is being modified. This ** will be "main" for the main database or "temp" for TEMP tables or ** the name given after the AS keyword in the [ATTACH] statement for attached ** databases.)^ ** ^The fifth parameter to the preupdate callback is the name of the ** table that is being modified. ** ** For an UPDATE or DELETE operation on a [rowid table], the sixth ** parameter passed to the preupdate callback is the initial [rowid] of the ** row being modified or deleted. For an INSERT operation on a rowid table, ** or any operation on a WITHOUT ROWID table, the value of the sixth ** parameter is undefined. For an INSERT or UPDATE on a rowid table the ** seventh parameter is the final rowid value of the row being inserted ** or updated. The value of the seventh parameter passed to the callback ** function is not defined for operations on WITHOUT ROWID tables, or for ** DELETE operations on rowid tables. ** ** ^The sqlite3_preupdate_hook(D,C,P) function returns the P argument from ** the previous call on the same [database connection] D, or NULL for ** the first call on D. ** ** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()], ** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces ** provide additional information about a preupdate event. These routines ** may only be called from within a preupdate callback. Invoking any of ** these routines from outside of a preupdate callback or with a ** [database connection] pointer that is different from the one supplied ** to the preupdate callback results in undefined and probably undesirable ** behavior. ** ** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns ** in the row that is being inserted, updated, or deleted. ** ** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to ** a [protected sqlite3_value] that contains the value of the Nth column of ** the table row before it is updated. The N parameter must be between 0 ** and one less than the number of columns or the behavior will be ** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE ** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the ** behavior is undefined. The [sqlite3_value] that P points to ** will be destroyed when the preupdate callback returns. ** ** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to ** a [protected sqlite3_value] that contains the value of the Nth column of ** the table row after it is updated. The N parameter must be between 0 ** and one less than the number of columns or the behavior will be ** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE ** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the ** behavior is undefined. The [sqlite3_value] that P points to ** will be destroyed when the preupdate callback returns. ** ** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate ** callback was invoked as a result of a direct insert, update, or delete ** operation; or 1 for inserts, updates, or deletes invoked by top-level ** triggers; or 2 for changes resulting from triggers called by top-level ** triggers; and so forth. ** ** When the [sqlite3_blob_write()] API is used to update a blob column, ** the pre-update hook is invoked with SQLITE_DELETE. This is because the ** in this case the new values are not available. In this case, when a ** callback made with op==SQLITE_DELETE is actually a write using the ** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns ** the index of the column being written. In other cases, where the ** pre-update hook is being invoked for some other reason, including a ** regular DELETE, sqlite3_preupdate_blobwrite() returns -1. ** ** See also: [sqlite3_update_hook()] */ #if defined(SQLITE_ENABLE_PREUPDATE_HOOK) SQLITE_API void *sqlite3_preupdate_hook( sqlite3 *db, void(*xPreUpdate)( void *pCtx, /* Copy of third arg to preupdate_hook() */ sqlite3 *db, /* Database handle */ int op, /* SQLITE_UPDATE, DELETE or INSERT */ char const *zDb, /* Database name */ char const *zName, /* Table name */ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ ), void* ); SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **); SQLITE_API int sqlite3_preupdate_count(sqlite3 *); SQLITE_API int sqlite3_preupdate_depth(sqlite3 *); SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **); SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *); #endif /* ** CAPI3REF: Low-level system error code ** METHOD: sqlite3 ** ** ^Attempt to return the underlying operating system error code or error ** number that caused the most recent I/O error or failure to open a file. ** The return value is OS-dependent. For example, on unix systems, after ** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be ** called to get back the underlying "errno" that caused the problem, such ** as ENOSPC, EAUTH, EISDIR, and so forth. */ SQLITE_API int sqlite3_system_errno(sqlite3*); /* ** CAPI3REF: Database Snapshot ** KEYWORDS: {snapshot} {sqlite3_snapshot} ** ** An instance of the snapshot object records the state of a [WAL mode] ** database for some specific point in history. ** ** In [WAL mode], multiple [database connections] that are open on the ** same database file can each be reading a different historical version ** of the database file. When a [database connection] begins a read ** transaction, that connection sees an unchanging copy of the database ** as it existed for the point in time when the transaction first started. ** Subsequent changes to the database from other connections are not seen ** by the reader until a new read transaction is started. ** ** The sqlite3_snapshot object records state information about an historical ** version of the database file so that it is possible to later open a new read ** transaction that sees that historical version of the database rather than ** the most recent version. */ typedef struct sqlite3_snapshot { unsigned char hidden[48]; } sqlite3_snapshot; /* ** CAPI3REF: Record A Database Snapshot ** CONSTRUCTOR: sqlite3_snapshot ** ** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a ** new [sqlite3_snapshot] object that records the current state of ** schema S in database connection D. ^On success, the ** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly ** created [sqlite3_snapshot] object into *P and returns SQLITE_OK. ** If there is not already a read-transaction open on schema S when ** this function is called, one is opened automatically. ** ** The following must be true for this function to succeed. If any of ** the following statements are false when sqlite3_snapshot_get() is ** called, SQLITE_ERROR is returned. The final value of *P is undefined ** in this case. ** **
    **
  • The database handle must not be in [autocommit mode]. ** **
  • Schema S of [database connection] D must be a [WAL mode] database. ** **
  • There must not be a write transaction open on schema S of database ** connection D. ** **
  • One or more transactions must have been written to the current wal ** file since it was created on disk (by any connection). This means ** that a snapshot cannot be taken on a wal mode database with no wal ** file immediately after it is first opened. At least one transaction ** must be written to it first. **
** ** This function may also return SQLITE_NOMEM. If it is called with the ** database handle in autocommit mode but fails for some other reason, ** whether or not a read transaction is opened on schema S is undefined. ** ** The [sqlite3_snapshot] object returned from a successful call to ** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()] ** to avoid a memory leak. ** ** The [sqlite3_snapshot_get()] interface is only available when the ** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get( sqlite3 *db, const char *zSchema, sqlite3_snapshot **ppSnapshot ); /* ** CAPI3REF: Start a read transaction on an historical snapshot ** METHOD: sqlite3_snapshot ** ** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read ** transaction or upgrades an existing one for schema S of ** [database connection] D such that the read transaction refers to ** historical [snapshot] P, rather than the most recent change to the ** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK ** on success or an appropriate [error code] if it fails. ** ** ^In order to succeed, the database connection must not be in ** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there ** is already a read transaction open on schema S, then the database handle ** must have no active statements (SELECT statements that have been passed ** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()). ** SQLITE_ERROR is returned if either of these conditions is violated, or ** if schema S does not exist, or if the snapshot object is invalid. ** ** ^A call to sqlite3_snapshot_open() will fail to open if the specified ** snapshot has been overwritten by a [checkpoint]. In this case ** SQLITE_ERROR_SNAPSHOT is returned. ** ** If there is already a read transaction open when this function is ** invoked, then the same read transaction remains open (on the same ** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT ** is returned. If another error code - for example SQLITE_PROTOCOL or an ** SQLITE_IOERR error code - is returned, then the final state of the ** read transaction is undefined. If SQLITE_OK is returned, then the ** read transaction is now open on database snapshot P. ** ** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the ** database connection D does not know that the database file for ** schema S is in [WAL mode]. A database connection might not know ** that the database file is in [WAL mode] if there has been no prior ** I/O on that database connection, or if the database entered [WAL mode] ** after the most recent I/O on the database connection.)^ ** (Hint: Run "[PRAGMA application_id]" against a newly opened ** database connection in order to make it ready to use snapshots.) ** ** The [sqlite3_snapshot_open()] interface is only available when the ** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open( sqlite3 *db, const char *zSchema, sqlite3_snapshot *pSnapshot ); /* ** CAPI3REF: Destroy a snapshot ** DESTRUCTOR: sqlite3_snapshot ** ** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P. ** The application must eventually free every [sqlite3_snapshot] object ** using this routine to avoid a memory leak. ** ** The [sqlite3_snapshot_free()] interface is only available when the ** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used. */ SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*); /* ** CAPI3REF: Compare the ages of two snapshot handles. ** METHOD: sqlite3_snapshot ** ** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages ** of two valid snapshot handles. ** ** If the two snapshot handles are not associated with the same database ** file, the result of the comparison is undefined. ** ** Additionally, the result of the comparison is only valid if both of the ** snapshot handles were obtained by calling sqlite3_snapshot_get() since the ** last time the wal file was deleted. The wal file is deleted when the ** database is changed back to rollback mode or when the number of database ** clients drops to zero. If either snapshot handle was obtained before the ** wal file was last deleted, the value returned by this function ** is undefined. ** ** Otherwise, this API returns a negative value if P1 refers to an older ** snapshot than P2, zero if the two handles refer to the same database ** snapshot, and a positive value if P1 is a newer snapshot than P2. ** ** This interface is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SNAPSHOT] option. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( sqlite3_snapshot *p1, sqlite3_snapshot *p2 ); /* ** CAPI3REF: Recover snapshots from a wal file ** METHOD: sqlite3_snapshot ** ** If a [WAL file] remains on disk after all database connections close ** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control] ** or because the last process to have the database opened exited without ** calling [sqlite3_close()]) and a new connection is subsequently opened ** on that database and [WAL file], the [sqlite3_snapshot_open()] interface ** will only be able to open the last transaction added to the WAL file ** even though the WAL file contains other valid transactions. ** ** This function attempts to scan the WAL file associated with database zDb ** of database handle db and make all valid snapshots available to ** sqlite3_snapshot_open(). It is an error if there is already a read ** transaction open on the database, or if the database is not a WAL mode ** database. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. ** ** This interface is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SNAPSHOT] option. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Serialize a database ** ** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory ** that is a serialization of the S database on [database connection] D. ** If P is not a NULL pointer, then the size of the database in bytes ** is written into *P. ** ** For an ordinary on-disk database file, the serialization is just a ** copy of the disk file. For an in-memory database or a "TEMP" database, ** the serialization is the same sequence of bytes which would be written ** to disk if that database where backed up to disk. ** ** The usual case is that sqlite3_serialize() copies the serialization of ** the database into memory obtained from [sqlite3_malloc64()] and returns ** a pointer to that memory. The caller is responsible for freeing the ** returned value to avoid a memory leak. However, if the F argument ** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations ** are made, and the sqlite3_serialize() function will return a pointer ** to the contiguous memory representation of the database that SQLite ** is currently using for that database, or NULL if the no such contiguous ** memory representation of the database exists. A contiguous memory ** representation of the database will usually only exist if there has ** been a prior call to [sqlite3_deserialize(D,S,...)] with the same ** values of D and S. ** The size of the database is written into *P even if the ** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy ** of the database exists. ** ** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the ** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory ** allocation error occurs. ** ** This interface is omitted if SQLite is compiled with the ** [SQLITE_OMIT_DESERIALIZE] option. */ SQLITE_API unsigned char *sqlite3_serialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which DB to serialize. ex: "main", "temp", ... */ sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */ unsigned int mFlags /* Zero or more SQLITE_SERIALIZE_* flags */ ); /* ** CAPI3REF: Flags for sqlite3_serialize ** ** Zero or more of the following constants can be OR-ed together for ** the F argument to [sqlite3_serialize(D,S,P,F)]. ** ** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return ** a pointer to contiguous in-memory database that it is currently using, ** without making a copy of the database. If SQLite is not currently using ** a contiguous in-memory database, then this option causes ** [sqlite3_serialize()] to return a NULL pointer. SQLite will only be ** using a contiguous in-memory database if it has been initialized by a ** prior call to [sqlite3_deserialize()]. */ #define SQLITE_SERIALIZE_NOCOPY 0x001 /* Do no memory allocations */ /* ** CAPI3REF: Deserialize a database ** ** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the ** [database connection] D to disconnect from database S and then ** reopen S as an in-memory database based on the serialization contained ** in P. The serialized database P is N bytes in size. M is the size of ** the buffer P, which might be larger than N. If M is larger than N, and ** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is ** permitted to add content to the in-memory database as long as the total ** size does not exceed M bytes. ** ** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will ** invoke sqlite3_free() on the serialization buffer when the database ** connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then ** SQLite will try to increase the buffer size using sqlite3_realloc64() ** if writes on the database cause it to grow larger than M bytes. ** ** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the ** database is currently in a read transaction or is involved in a backup ** operation. ** ** It is not possible to deserialized into the TEMP database. If the ** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the ** function returns SQLITE_ERROR. ** ** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the ** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then ** [sqlite3_free()] is invoked on argument P prior to returning. ** ** This interface is omitted if SQLite is compiled with the ** [SQLITE_OMIT_DESERIALIZE] option. */ SQLITE_API int sqlite3_deserialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which DB to reopen with the deserialization */ unsigned char *pData, /* The serialized database content */ sqlite3_int64 szDb, /* Number bytes in the deserialization */ sqlite3_int64 szBuf, /* Total size of buffer pData[] */ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */ ); /* ** CAPI3REF: Flags for sqlite3_deserialize() ** ** The following are allowed values for 6th argument (the F argument) to ** the [sqlite3_deserialize(D,S,P,N,M,F)] interface. ** ** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization ** in the P argument is held in memory obtained from [sqlite3_malloc64()] ** and that SQLite should take ownership of this memory and automatically ** free it when it has finished using it. Without this flag, the caller ** is responsible for freeing any dynamically allocated memory. ** ** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to ** grow the size of the database using calls to [sqlite3_realloc64()]. This ** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used. ** Without this flag, the deserialized database cannot increase in size beyond ** the number of bytes specified by the M parameter. ** ** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database ** should be treated as read-only. */ #define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */ #define SQLITE_DESERIALIZE_RESIZEABLE 2 /* Resize using sqlite3_realloc64() */ #define SQLITE_DESERIALIZE_READONLY 4 /* Database is read-only */ /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #if defined(__wasi__) # undef SQLITE_WASI # define SQLITE_WASI 1 # undef SQLITE_OMIT_WAL # define SQLITE_OMIT_WAL 1/* because it requires shared memory APIs */ # ifndef SQLITE_OMIT_LOAD_EXTENSION # define SQLITE_OMIT_LOAD_EXTENSION # endif # ifndef SQLITE_THREADSAFE # define SQLITE_THREADSAFE 0 # endif #endif #if 0 } /* End of the 'extern "C"' block */ #endif #endif /* SQLITE3_H */ /******** Begin file sqlite3rtree.h *********/ /* ** 2010 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ #ifndef _SQLITE3RTREE_H_ #define _SQLITE3RTREE_H_ #if 0 extern "C" { #endif typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry; typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info; /* The double-precision datatype used by RTree depends on the ** SQLITE_RTREE_INT_ONLY compile-time option. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 sqlite3_rtree_dbl; #else typedef double sqlite3_rtree_dbl; #endif /* ** Register a geometry callback named zGeom that can be used as part of an ** R-Tree geometry query as follows: ** ** SELECT ... FROM WHERE MATCH $zGeom(... params ...) */ SQLITE_API int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*), void *pContext ); /* ** A pointer to a structure of the following type is passed as the first ** argument to callbacks registered using rtree_geometry_callback(). */ struct sqlite3_rtree_geometry { void *pContext; /* Copy of pContext passed to s_r_g_c() */ int nParam; /* Size of array aParam[] */ sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */ void *pUser; /* Callback implementation user data */ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */ }; /* ** Register a 2nd-generation geometry callback named zScore that can be ** used as part of an R-Tree geometry query as follows: ** ** SELECT ... FROM WHERE MATCH $zQueryFunc(... params ...) */ SQLITE_API int sqlite3_rtree_query_callback( sqlite3 *db, const char *zQueryFunc, int (*xQueryFunc)(sqlite3_rtree_query_info*), void *pContext, void (*xDestructor)(void*) ); /* ** A pointer to a structure of the following type is passed as the ** argument to scored geometry callback registered using ** sqlite3_rtree_query_callback(). ** ** Note that the first 5 fields of this structure are identical to ** sqlite3_rtree_geometry. This structure is a subclass of ** sqlite3_rtree_geometry. */ struct sqlite3_rtree_query_info { void *pContext; /* pContext from when function registered */ int nParam; /* Number of function parameters */ sqlite3_rtree_dbl *aParam; /* value of function parameters */ void *pUser; /* callback can use this, if desired */ void (*xDelUser)(void*); /* function to free pUser */ sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */ unsigned int *anQueue; /* Number of pending entries in the queue */ int nCoord; /* Number of coordinates */ int iLevel; /* Level of current node or entry */ int mxLevel; /* The largest iLevel value in the tree */ sqlite3_int64 iRowid; /* Rowid for current entry */ sqlite3_rtree_dbl rParentScore; /* Score of parent node */ int eParentWithin; /* Visibility of parent node */ int eWithin; /* OUT: Visibility */ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */ /* The following fields are only available in 3.8.11 and later */ sqlite3_value **apSqlParam; /* Original SQL values of parameters */ }; /* ** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin. */ #define NOT_WITHIN 0 /* Object completely outside of query region */ #define PARTLY_WITHIN 1 /* Object partially overlaps query region */ #define FULLY_WITHIN 2 /* Object fully contained within query region */ #if 0 } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE3RTREE_H_ */ /******** End of sqlite3rtree.h *********/ /******** Begin file sqlite3session.h *********/ #if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) #define __SQLITESESSION_H_ 1 /* ** Make sure we can call this stuff from C++. */ #if 0 extern "C" { #endif /* ** CAPI3REF: Session Object Handle ** ** An instance of this object is a [session] that can be used to ** record changes to a database. */ typedef struct sqlite3_session sqlite3_session; /* ** CAPI3REF: Changeset Iterator Handle ** ** An instance of this object acts as a cursor for iterating ** over the elements of a [changeset] or [patchset]. */ typedef struct sqlite3_changeset_iter sqlite3_changeset_iter; /* ** CAPI3REF: Create A New Session Object ** CONSTRUCTOR: sqlite3_session ** ** Create a new session object attached to database handle db. If successful, ** a pointer to the new object is written to *ppSession and SQLITE_OK is ** returned. If an error occurs, *ppSession is set to NULL and an SQLite ** error code (e.g. SQLITE_NOMEM) is returned. ** ** It is possible to create multiple session objects attached to a single ** database handle. ** ** Session objects created using this function should be deleted using the ** [sqlite3session_delete()] function before the database handle that they ** are attached to is itself closed. If the database handle is closed before ** the session object is deleted, then the results of calling any session ** module function, including [sqlite3session_delete()] on the session object ** are undefined. ** ** Because the session module uses the [sqlite3_preupdate_hook()] API, it ** is not possible for an application to register a pre-update hook on a ** database handle that has one or more session objects attached. Nor is ** it possible to create a session object attached to a database handle for ** which a pre-update hook is already defined. The results of attempting ** either of these things are undefined. ** ** The session object will be used to create changesets for tables in ** database zDb, where zDb is either "main", or "temp", or the name of an ** attached database. It is not an error if database zDb is not attached ** to the database when the session object is created. */ SQLITE_API int sqlite3session_create( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (e.g. "main") */ sqlite3_session **ppSession /* OUT: New session object */ ); /* ** CAPI3REF: Delete A Session Object ** DESTRUCTOR: sqlite3_session ** ** Delete a session object previously allocated using ** [sqlite3session_create()]. Once a session object has been deleted, the ** results of attempting to use pSession with any other session module ** function are undefined. ** ** Session objects must be deleted before the database handle to which they ** are attached is closed. Refer to the documentation for ** [sqlite3session_create()] for details. */ SQLITE_API void sqlite3session_delete(sqlite3_session *pSession); /* ** CAPI3REF: Configure a Session Object ** METHOD: sqlite3_session ** ** This method is used to configure a session object after it has been ** created. At present the only valid values for the second parameter are ** [SQLITE_SESSION_OBJCONFIG_SIZE] and [SQLITE_SESSION_OBJCONFIG_ROWID]. ** */ SQLITE_API int sqlite3session_object_config(sqlite3_session*, int op, void *pArg); /* ** CAPI3REF: Options for sqlite3session_object_config ** ** The following values may passed as the the 2nd parameter to ** sqlite3session_object_config(). ** **
SQLITE_SESSION_OBJCONFIG_SIZE
** This option is used to set, clear or query the flag that enables ** the [sqlite3session_changeset_size()] API. Because it imposes some ** computational overhead, this API is disabled by default. Argument ** pArg must point to a value of type (int). If the value is initially ** 0, then the sqlite3session_changeset_size() API is disabled. If it ** is greater than 0, then the same API is enabled. Or, if the initial ** value is less than zero, no change is made. In all cases the (int) ** variable is set to 1 if the sqlite3session_changeset_size() API is ** enabled following the current call, or 0 otherwise. ** ** It is an error (SQLITE_MISUSE) to attempt to modify this setting after ** the first table has been attached to the session object. ** **
SQLITE_SESSION_OBJCONFIG_ROWID
** This option is used to set, clear or query the flag that enables ** collection of data for tables with no explicit PRIMARY KEY. ** ** Normally, tables with no explicit PRIMARY KEY are simply ignored ** by the sessions module. However, if this flag is set, it behaves ** as if such tables have a column "_rowid_ INTEGER PRIMARY KEY" inserted ** as their leftmost columns. ** ** It is an error (SQLITE_MISUSE) to attempt to modify this setting after ** the first table has been attached to the session object. */ #define SQLITE_SESSION_OBJCONFIG_SIZE 1 #define SQLITE_SESSION_OBJCONFIG_ROWID 2 /* ** CAPI3REF: Enable Or Disable A Session Object ** METHOD: sqlite3_session ** ** Enable or disable the recording of changes by a session object. When ** enabled, a session object records changes made to the database. When ** disabled - it does not. A newly created session object is enabled. ** Refer to the documentation for [sqlite3session_changeset()] for further ** details regarding how enabling and disabling a session object affects ** the eventual changesets. ** ** Passing zero to this function disables the session. Passing a value ** greater than zero enables it. Passing a value less than zero is a ** no-op, and may be used to query the current state of the session. ** ** The return value indicates the final state of the session object: 0 if ** the session is disabled, or 1 if it is enabled. */ SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable); /* ** CAPI3REF: Set Or Clear the Indirect Change Flag ** METHOD: sqlite3_session ** ** Each change recorded by a session object is marked as either direct or ** indirect. A change is marked as indirect if either: ** **
    **
  • The session object "indirect" flag is set when the change is ** made, or **
  • The change is made by an SQL trigger or foreign key action ** instead of directly as a result of a users SQL statement. **
** ** If a single row is affected by more than one operation within a session, ** then the change is considered indirect if all operations meet the criteria ** for an indirect change above, or direct otherwise. ** ** This function is used to set, clear or query the session object indirect ** flag. If the second argument passed to this function is zero, then the ** indirect flag is cleared. If it is greater than zero, the indirect flag ** is set. Passing a value less than zero does not modify the current value ** of the indirect flag, and may be used to query the current state of the ** indirect flag for the specified session object. ** ** The return value indicates the final state of the indirect flag: 0 if ** it is clear, or 1 if it is set. */ SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect); /* ** CAPI3REF: Attach A Table To A Session Object ** METHOD: sqlite3_session ** ** If argument zTab is not NULL, then it is the name of a table to attach ** to the session object passed as the first argument. All subsequent changes ** made to the table while the session object is enabled will be recorded. See ** documentation for [sqlite3session_changeset()] for further details. ** ** Or, if argument zTab is NULL, then changes are recorded for all tables ** in the database. If additional tables are added to the database (by ** executing "CREATE TABLE" statements) after this call is made, changes for ** the new tables are also recorded. ** ** Changes can only be recorded for tables that have a PRIMARY KEY explicitly ** defined as part of their CREATE TABLE statement. It does not matter if the ** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY ** KEY may consist of a single column, or may be a composite key. ** ** It is not an error if the named table does not exist in the database. Nor ** is it an error if the named table does not have a PRIMARY KEY. However, ** no changes will be recorded in either of these scenarios. ** ** Changes are not recorded for individual rows that have NULL values stored ** in one or more of their PRIMARY KEY columns. ** ** SQLITE_OK is returned if the call completes without error. Or, if an error ** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. ** **

Special sqlite_stat1 Handling

** ** As of SQLite version 3.22.0, the "sqlite_stat1" table is an exception to ** some of the rules above. In SQLite, the schema of sqlite_stat1 is: **
**        CREATE TABLE sqlite_stat1(tbl,idx,stat)
**  
** ** Even though sqlite_stat1 does not have a PRIMARY KEY, changes are ** recorded for it as if the PRIMARY KEY is (tbl,idx). Additionally, changes ** are recorded for rows for which (idx IS NULL) is true. However, for such ** rows a zero-length blob (SQL value X'') is stored in the changeset or ** patchset instead of a NULL value. This allows such changesets to be ** manipulated by legacy implementations of sqlite3changeset_invert(), ** concat() and similar. ** ** The sqlite3changeset_apply() function automatically converts the ** zero-length blob back to a NULL value when updating the sqlite_stat1 ** table. However, if the application calls sqlite3changeset_new(), ** sqlite3changeset_old() or sqlite3changeset_conflict on a changeset ** iterator directly (including on a changeset iterator passed to a ** conflict-handler callback) then the X'' value is returned. The application ** must translate X'' to NULL itself if required. ** ** Legacy (older than 3.22.0) versions of the sessions module cannot capture ** changes made to the sqlite_stat1 table. Legacy versions of the ** sqlite3changeset_apply() function silently ignore any modifications to the ** sqlite_stat1 table that are part of a changeset or patchset. */ SQLITE_API int sqlite3session_attach( sqlite3_session *pSession, /* Session object */ const char *zTab /* Table name */ ); /* ** CAPI3REF: Set a table filter on a Session Object. ** METHOD: sqlite3_session ** ** The second argument (xFilter) is the "filter callback". For changes to rows ** in tables that are not attached to the Session object, the filter is called ** to determine whether changes to the table's rows should be tracked or not. ** If xFilter returns 0, changes are not tracked. Note that once a table is ** attached, xFilter will not be called again. */ SQLITE_API void sqlite3session_table_filter( sqlite3_session *pSession, /* Session object */ int(*xFilter)( void *pCtx, /* Copy of third arg to _filter_table() */ const char *zTab /* Table name */ ), void *pCtx /* First argument passed to xFilter */ ); /* ** CAPI3REF: Generate A Changeset From A Session Object ** METHOD: sqlite3_session ** ** Obtain a changeset containing changes to the tables attached to the ** session object passed as the first argument. If successful, ** set *ppChangeset to point to a buffer containing the changeset ** and *pnChangeset to the size of the changeset in bytes before returning ** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to ** zero and return an SQLite error code. ** ** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes, ** each representing a change to a single row of an attached table. An INSERT ** change contains the values of each field of a new database row. A DELETE ** contains the original values of each field of a deleted database row. An ** UPDATE change contains the original values of each field of an updated ** database row along with the updated values for each updated non-primary-key ** column. It is not possible for an UPDATE change to represent a change that ** modifies the values of primary key columns. If such a change is made, it ** is represented in a changeset as a DELETE followed by an INSERT. ** ** Changes are not recorded for rows that have NULL values stored in one or ** more of their PRIMARY KEY columns. If such a row is inserted or deleted, ** no corresponding change is present in the changesets returned by this ** function. If an existing row with one or more NULL values stored in ** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL, ** only an INSERT is appears in the changeset. Similarly, if an existing row ** with non-NULL PRIMARY KEY values is updated so that one or more of its ** PRIMARY KEY columns are set to NULL, the resulting changeset contains a ** DELETE change only. ** ** The contents of a changeset may be traversed using an iterator created ** using the [sqlite3changeset_start()] API. A changeset may be applied to ** a database with a compatible schema using the [sqlite3changeset_apply()] ** API. ** ** Within a changeset generated by this function, all changes related to a ** single table are grouped together. In other words, when iterating through ** a changeset or when applying a changeset to a database, all changes related ** to a single table are processed before moving on to the next table. Tables ** are sorted in the same order in which they were attached (or auto-attached) ** to the sqlite3_session object. The order in which the changes related to ** a single table are stored is undefined. ** ** Following a successful call to this function, it is the responsibility of ** the caller to eventually free the buffer that *ppChangeset points to using ** [sqlite3_free()]. ** **

Changeset Generation

** ** Once a table has been attached to a session object, the session object ** records the primary key values of all new rows inserted into the table. ** It also records the original primary key and other column values of any ** deleted or updated rows. For each unique primary key value, data is only ** recorded once - the first time a row with said primary key is inserted, ** updated or deleted in the lifetime of the session. ** ** There is one exception to the previous paragraph: when a row is inserted, ** updated or deleted, if one or more of its primary key columns contain a ** NULL value, no record of the change is made. ** ** The session object therefore accumulates two types of records - those ** that consist of primary key values only (created when the user inserts ** a new record) and those that consist of the primary key values and the ** original values of other table columns (created when the users deletes ** or updates a record). ** ** When this function is called, the requested changeset is created using ** both the accumulated records and the current contents of the database ** file. Specifically: ** **
    **
  • For each record generated by an insert, the database is queried ** for a row with a matching primary key. If one is found, an INSERT ** change is added to the changeset. If no such row is found, no change ** is added to the changeset. ** **
  • For each record generated by an update or delete, the database is ** queried for a row with a matching primary key. If such a row is ** found and one or more of the non-primary key fields have been ** modified from their original values, an UPDATE change is added to ** the changeset. Or, if no such row is found in the table, a DELETE ** change is added to the changeset. If there is a row with a matching ** primary key in the database, but all fields contain their original ** values, no change is added to the changeset. **
** ** This means, amongst other things, that if a row is inserted and then later ** deleted while a session object is active, neither the insert nor the delete ** will be present in the changeset. Or if a row is deleted and then later a ** row with the same primary key values inserted while a session object is ** active, the resulting changeset will contain an UPDATE change instead of ** a DELETE and an INSERT. ** ** When a session object is disabled (see the [sqlite3session_enable()] API), ** it does not accumulate records when rows are inserted, updated or deleted. ** This may appear to have some counter-intuitive effects if a single row ** is written to more than once during a session. For example, if a row ** is inserted while a session object is enabled, then later deleted while ** the same session object is disabled, no INSERT record will appear in the ** changeset, even though the delete took place while the session was disabled. ** Or, if one field of a row is updated while a session is disabled, and ** another field of the same row is updated while the session is enabled, the ** resulting changeset will contain an UPDATE change that updates both fields. */ SQLITE_API int sqlite3session_changeset( sqlite3_session *pSession, /* Session object */ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ void **ppChangeset /* OUT: Buffer containing changeset */ ); /* ** CAPI3REF: Return An Upper-limit For The Size Of The Changeset ** METHOD: sqlite3_session ** ** By default, this function always returns 0. For it to return ** a useful result, the sqlite3_session object must have been configured ** to enable this API using sqlite3session_object_config() with the ** SQLITE_SESSION_OBJCONFIG_SIZE verb. ** ** When enabled, this function returns an upper limit, in bytes, for the size ** of the changeset that might be produced if sqlite3session_changeset() were ** called. The final changeset size might be equal to or smaller than the ** size in bytes returned by this function. */ SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession); /* ** CAPI3REF: Load The Difference Between Tables Into A Session ** METHOD: sqlite3_session ** ** If it is not already attached to the session object passed as the first ** argument, this function attaches table zTbl in the same manner as the ** [sqlite3session_attach()] function. If zTbl does not exist, or if it ** does not have a primary key, this function is a no-op (but does not return ** an error). ** ** Argument zFromDb must be the name of a database ("main", "temp" etc.) ** attached to the same database handle as the session object that contains ** a table compatible with the table attached to the session by this function. ** A table is considered compatible if it: ** **
    **
  • Has the same name, **
  • Has the same set of columns declared in the same order, and **
  • Has the same PRIMARY KEY definition. **
** ** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables ** are compatible but do not have any PRIMARY KEY columns, it is not an error ** but no changes are added to the session object. As with other session ** APIs, tables without PRIMARY KEYs are simply ignored. ** ** This function adds a set of changes to the session object that could be ** used to update the table in database zFrom (call this the "from-table") ** so that its content is the same as the table attached to the session ** object (call this the "to-table"). Specifically: ** **
    **
  • For each row (primary key) that exists in the to-table but not in ** the from-table, an INSERT record is added to the session object. ** **
  • For each row (primary key) that exists in the to-table but not in ** the from-table, a DELETE record is added to the session object. ** **
  • For each row (primary key) that exists in both tables, but features ** different non-PK values in each, an UPDATE record is added to the ** session. **
** ** To clarify, if this function is called and then a changeset constructed ** using [sqlite3session_changeset()], then after applying that changeset to ** database zFrom the contents of the two compatible tables would be ** identical. ** ** It an error if database zFrom does not exist or does not contain the ** required compatible table. ** ** If the operation is successful, SQLITE_OK is returned. Otherwise, an SQLite ** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg ** may be set to point to a buffer containing an English language error ** message. It is the responsibility of the caller to free this buffer using ** sqlite3_free(). */ SQLITE_API int sqlite3session_diff( sqlite3_session *pSession, const char *zFromDb, const char *zTbl, char **pzErrMsg ); /* ** CAPI3REF: Generate A Patchset From A Session Object ** METHOD: sqlite3_session ** ** The differences between a patchset and a changeset are that: ** **
    **
  • DELETE records consist of the primary key fields only. The ** original values of other fields are omitted. **
  • The original values of any modified fields are omitted from ** UPDATE records. **
** ** A patchset blob may be used with up to date versions of all ** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(), ** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly, ** attempting to use a patchset blob with old versions of the ** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error. ** ** Because the non-primary key "old.*" fields are omitted, no ** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset ** is passed to the sqlite3changeset_apply() API. Other conflict types work ** in the same way as for changesets. ** ** Changes within a patchset are ordered in the same way as for changesets ** generated by the sqlite3session_changeset() function (i.e. all changes for ** a single table are grouped together, tables appear in the order in which ** they were attached to the session object). */ SQLITE_API int sqlite3session_patchset( sqlite3_session *pSession, /* Session object */ int *pnPatchset, /* OUT: Size of buffer at *ppPatchset */ void **ppPatchset /* OUT: Buffer containing patchset */ ); /* ** CAPI3REF: Test if a changeset has recorded any changes. ** ** Return non-zero if no changes to attached tables have been recorded by ** the session object passed as the first argument. Otherwise, if one or ** more changes have been recorded, return zero. ** ** Even if this function returns zero, it is possible that calling ** [sqlite3session_changeset()] on the session handle may still return a ** changeset that contains no changes. This can happen when a row in ** an attached table is modified and then later on the original values ** are restored. However, if this function returns non-zero, then it is ** guaranteed that a call to sqlite3session_changeset() will return a ** changeset containing zero changes. */ SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession); /* ** CAPI3REF: Query for the amount of heap memory used by a session object. ** ** This API returns the total amount of heap memory in bytes currently ** used by the session object passed as the only argument. */ SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession); /* ** CAPI3REF: Create An Iterator To Traverse A Changeset ** CONSTRUCTOR: sqlite3_changeset_iter ** ** Create an iterator used to iterate through the contents of a changeset. ** If successful, *pp is set to point to the iterator handle and SQLITE_OK ** is returned. Otherwise, if an error occurs, *pp is set to zero and an ** SQLite error code is returned. ** ** The following functions can be used to advance and query a changeset ** iterator created by this function: ** **
    **
  • [sqlite3changeset_next()] **
  • [sqlite3changeset_op()] **
  • [sqlite3changeset_new()] **
  • [sqlite3changeset_old()] **
** ** It is the responsibility of the caller to eventually destroy the iterator ** by passing it to [sqlite3changeset_finalize()]. The buffer containing the ** changeset (pChangeset) must remain valid until after the iterator is ** destroyed. ** ** Assuming the changeset blob was created by one of the ** [sqlite3session_changeset()], [sqlite3changeset_concat()] or ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visited ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. ** ** The behavior of sqlite3changeset_start_v2() and its streaming equivalent ** may be modified by passing a combination of ** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter. ** ** Note that the sqlite3changeset_start_v2() API is still experimental ** and therefore subject to change. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); SQLITE_API int sqlite3changeset_start_v2( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset, /* Pointer to blob containing changeset */ int flags /* SESSION_CHANGESETSTART_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_start_v2 ** ** The following flags may passed via the 4th parameter to ** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]: ** **
SQLITE_CHANGESETAPPLY_INVERT
** Invert the changeset while iterating through it. This is equivalent to ** inverting a changeset using sqlite3changeset_invert() before applying it. ** It is an error to specify this flag with a patchset. */ #define SQLITE_CHANGESETSTART_INVERT 0x0002 /* ** CAPI3REF: Advance A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function may only be used with iterators created by the function ** [sqlite3changeset_start()]. If it is called on an iterator passed to ** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE ** is returned and the call has no effect. ** ** Immediately after an iterator is created by sqlite3changeset_start(), it ** does not point to any change in the changeset. Assuming the changeset ** is not empty, the first call to this function advances the iterator to ** point to the first change in the changeset. Each subsequent call advances ** the iterator to point to the next change in the changeset (if any). If ** no error occurs and the iterator points to a valid change after a call ** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned. ** Otherwise, if all changes in the changeset have already been visited, ** SQLITE_DONE is returned. ** ** If an error occurs, an SQLite error code is returned. Possible error ** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or ** SQLITE_NOMEM. */ SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *pIter); /* ** CAPI3REF: Obtain The Current Operation From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this ** is not the case, this function returns [SQLITE_MISUSE]. ** ** Arguments pOp, pnCol and pzTab may not be NULL. Upon return, three ** outputs are set through these pointers: ** ** *pOp is set to one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], ** depending on the type of change that the iterator currently points to; ** ** *pnCol is set to the number of columns in the table affected by the change; and ** ** *pzTab is set to point to a nul-terminated utf-8 encoded string containing ** the name of the table affected by the current change. The buffer remains ** valid until either sqlite3changeset_next() is called on the iterator ** or until the conflict-handler function returns. ** ** If pbIndirect is not NULL, then *pbIndirect is set to true (1) if the change ** is an indirect change, or false (0) otherwise. See the documentation for ** [sqlite3session_indirect()] for a description of direct and indirect ** changes. ** ** If no error occurs, SQLITE_OK is returned. If an error does occur, an ** SQLite error code is returned. The values of the output variables may not ** be trusted in this case. */ SQLITE_API int sqlite3changeset_op( sqlite3_changeset_iter *pIter, /* Iterator object */ const char **pzTab, /* OUT: Pointer to table name */ int *pnCol, /* OUT: Number of columns in table */ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ int *pbIndirect /* OUT: True for an 'indirect' change */ ); /* ** CAPI3REF: Obtain The Primary Key Definition Of A Table ** METHOD: sqlite3_changeset_iter ** ** For each modified table, a changeset includes the following: ** **
    **
  • The number of columns in the table, and **
  • Which of those columns make up the tables PRIMARY KEY. **
** ** This function is used to find which columns comprise the PRIMARY KEY of ** the table modified by the change that iterator pIter currently points to. ** If successful, *pabPK is set to point to an array of nCol entries, where ** nCol is the number of columns in the table. Elements of *pabPK are set to ** 0x01 if the corresponding column is part of the tables primary key, or ** 0x00 if it is not. ** ** If argument pnCol is not NULL, then *pnCol is set to the number of columns ** in the table. ** ** If this function is called when the iterator does not point to a valid ** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise, ** SQLITE_OK is returned and the output variables populated as described ** above. */ SQLITE_API int sqlite3changeset_pk( sqlite3_changeset_iter *pIter, /* Iterator object */ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ int *pnCol /* OUT: Number of entries in output array */ ); /* ** CAPI3REF: Obtain old.* Values From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. ** Furthermore, it may only be called if the type of change that the iterator ** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise, ** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the vector of ** original row values stored as part of the UPDATE or DELETE change and ** returns SQLITE_OK. The name of the function comes from the fact that this ** is similar to the "old.*" columns available to update or delete triggers. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ SQLITE_API int sqlite3changeset_old( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ ); /* ** CAPI3REF: Obtain new.* Values From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. ** Furthermore, it may only be called if the type of change that the iterator ** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise, ** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the vector of ** new row values stored as part of the UPDATE or INSERT change and ** returns SQLITE_OK. If the change is an UPDATE and does not include ** a new value for the requested column, *ppValue is set to NULL and ** SQLITE_OK returned. The name of the function comes from the fact that ** this is similar to the "new.*" columns available to update or delete ** triggers. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ SQLITE_API int sqlite3changeset_new( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ ); /* ** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function should only be used with iterator objects passed to a ** conflict-handler callback by [sqlite3changeset_apply()] with either ** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function ** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue ** is set to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the ** "conflicting row" associated with the current conflict-handler callback ** and returns SQLITE_OK. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ SQLITE_API int sqlite3changeset_conflict( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: Value from conflicting row */ ); /* ** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations ** METHOD: sqlite3_changeset_iter ** ** This function may only be called with an iterator passed to an ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case ** it sets the output variable to the total number of known foreign key ** violations in the destination database and returns SQLITE_OK. ** ** In all other cases this function returns SQLITE_MISUSE. */ SQLITE_API int sqlite3changeset_fk_conflicts( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int *pnOut /* OUT: Number of FK violations */ ); /* ** CAPI3REF: Finalize A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function is used to finalize an iterator allocated with ** [sqlite3changeset_start()]. ** ** This function should only be called on iterators created using the ** [sqlite3changeset_start()] function. If an application calls this ** function with an iterator passed to a conflict-handler by ** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the ** call has no effect. ** ** If an error was encountered within a call to an sqlite3changeset_xxx() ** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an ** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding ** to that error is returned by this function. Otherwise, SQLITE_OK is ** returned. This is to allow the following pattern (pseudo-code): ** **
**   sqlite3changeset_start();
**   while( SQLITE_ROW==sqlite3changeset_next() ){
**     // Do something with change.
**   }
**   rc = sqlite3changeset_finalize();
**   if( rc!=SQLITE_OK ){
**     // An error has occurred
**   }
** 
*/ SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter); /* ** CAPI3REF: Invert A Changeset ** ** This function is used to "invert" a changeset object. Applying an inverted ** changeset to a database reverses the effects of applying the uninverted ** changeset. Specifically: ** **
    **
  • Each DELETE change is changed to an INSERT, and **
  • Each INSERT change is changed to a DELETE, and **
  • For each UPDATE change, the old.* and new.* values are exchanged. **
** ** This function does not change the order in which changes appear within ** the changeset. It merely reverses the sense of each individual change. ** ** If successful, a pointer to a buffer containing the inverted changeset ** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and ** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are ** zeroed and an SQLite error code returned. ** ** It is the responsibility of the caller to eventually call sqlite3_free() ** on the *ppOut pointer to free the buffer allocation following a successful ** call to this function. ** ** WARNING/TODO: This function currently assumes that the input is a valid ** changeset. If it is not, the results are undefined. */ SQLITE_API int sqlite3changeset_invert( int nIn, const void *pIn, /* Input changeset */ int *pnOut, void **ppOut /* OUT: Inverse of input */ ); /* ** CAPI3REF: Concatenate Two Changeset Objects ** ** This function is used to concatenate two changesets, A and B, into a ** single changeset. The result is a changeset equivalent to applying ** changeset A followed by changeset B. ** ** This function combines the two input changesets using an ** sqlite3_changegroup object. Calling it produces similar results as the ** following code fragment: ** **
**   sqlite3_changegroup *pGrp;
**   rc = sqlite3_changegroup_new(&pGrp);
**   if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA);
**   if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB);
**   if( rc==SQLITE_OK ){
**     rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
**   }else{
**     *ppOut = 0;
**     *pnOut = 0;
**   }
** 
** ** Refer to the sqlite3_changegroup documentation below for details. */ SQLITE_API int sqlite3changeset_concat( int nA, /* Number of bytes in buffer pA */ void *pA, /* Pointer to buffer containing changeset A */ int nB, /* Number of bytes in buffer pB */ void *pB, /* Pointer to buffer containing changeset B */ int *pnOut, /* OUT: Number of bytes in output changeset */ void **ppOut /* OUT: Buffer containing output changeset */ ); /* ** CAPI3REF: Changegroup Handle ** ** A changegroup is an object used to combine two or more ** [changesets] or [patchsets] */ typedef struct sqlite3_changegroup sqlite3_changegroup; /* ** CAPI3REF: Create A New Changegroup Object ** CONSTRUCTOR: sqlite3_changegroup ** ** An sqlite3_changegroup object is used to combine two or more changesets ** (or patchsets) into a single changeset (or patchset). A single changegroup ** object may combine changesets or patchsets, but not both. The output is ** always in the same format as the input. ** ** If successful, this function returns SQLITE_OK and populates (*pp) with ** a pointer to a new sqlite3_changegroup object before returning. The caller ** should eventually free the returned object using a call to ** sqlite3changegroup_delete(). If an error occurs, an SQLite error code ** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL. ** ** The usual usage pattern for an sqlite3_changegroup object is as follows: ** **
    **
  • It is created using a call to sqlite3changegroup_new(). ** **
  • Zero or more changesets (or patchsets) are added to the object ** by calling sqlite3changegroup_add(). ** **
  • The result of combining all input changesets together is obtained ** by the application via a call to sqlite3changegroup_output(). ** **
  • The object is deleted using a call to sqlite3changegroup_delete(). **
** ** Any number of calls to add() and output() may be made between the calls to ** new() and delete(), and in any order. ** ** As well as the regular sqlite3changegroup_add() and ** sqlite3changegroup_output() functions, also available are the streaming ** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm(). */ SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp); /* ** CAPI3REF: Add A Changeset To A Changegroup ** METHOD: sqlite3_changegroup ** ** Add all changes within the changeset (or patchset) in buffer pData (size ** nData bytes) to the changegroup. ** ** If the buffer contains a patchset, then all prior calls to this function ** on the same changegroup object must also have specified patchsets. Or, if ** the buffer contains a changeset, so must have the earlier calls to this ** function. Otherwise, SQLITE_ERROR is returned and no changes are added ** to the changegroup. ** ** Rows within the changeset and changegroup are identified by the values in ** their PRIMARY KEY columns. A change in the changeset is considered to ** apply to the same row as a change already present in the changegroup if ** the two rows have the same primary key. ** ** Changes to rows that do not already appear in the changegroup are ** simply copied into it. Or, if both the new changeset and the changegroup ** contain changes that apply to a single row, the final contents of the ** changegroup depends on the type of each change, as follows: ** ** ** ** **
Existing Change New Change Output Change **
INSERT INSERT ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
INSERT UPDATE ** The INSERT change remains in the changegroup. The values in the ** INSERT change are modified as if the row was inserted by the ** existing change and then updated according to the new change. **
INSERT DELETE ** The existing INSERT is removed from the changegroup. The DELETE is ** not added. **
UPDATE INSERT ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
UPDATE UPDATE ** The existing UPDATE remains within the changegroup. It is amended ** so that the accompanying values are as if the row was updated once ** by the existing change and then again by the new change. **
UPDATE DELETE ** The existing UPDATE is replaced by the new DELETE within the ** changegroup. **
DELETE INSERT ** If one or more of the column values in the row inserted by the ** new change differ from those in the row deleted by the existing ** change, the existing DELETE is replaced by an UPDATE within the ** changegroup. Otherwise, if the inserted row is exactly the same ** as the deleted row, the existing DELETE is simply discarded. **
DELETE UPDATE ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
DELETE DELETE ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
** ** If the new changeset contains changes to a table that is already present ** in the changegroup, then the number of columns and the position of the ** primary key columns for the table must be consistent. If this is not the ** case, this function fails with SQLITE_SCHEMA. If the input changeset ** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is ** returned. Or, if an out-of-memory condition occurs during processing, this ** function returns SQLITE_NOMEM. In all cases, if an error occurs the state ** of the final contents of the changegroup is undefined. ** ** If no error occurs, SQLITE_OK is returned. */ SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData); /* ** CAPI3REF: Obtain A Composite Changeset From A Changegroup ** METHOD: sqlite3_changegroup ** ** Obtain a buffer containing a changeset (or patchset) representing the ** current contents of the changegroup. If the inputs to the changegroup ** were themselves changesets, the output is a changeset. Or, if the ** inputs were patchsets, the output is also a patchset. ** ** As with the output of the sqlite3session_changeset() and ** sqlite3session_patchset() functions, all changes related to a single ** table are grouped together in the output of this function. Tables appear ** in the same order as for the very first changeset added to the changegroup. ** If the second or subsequent changesets added to the changegroup contain ** changes for tables that do not appear in the first changeset, they are ** appended onto the end of the output changeset, again in the order in ** which they are first encountered. ** ** If an error occurs, an SQLite error code is returned and the output ** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK ** is returned and the output variables are set to the size of and a ** pointer to the output buffer, respectively. In this case it is the ** responsibility of the caller to eventually free the buffer using a ** call to sqlite3_free(). */ SQLITE_API int sqlite3changegroup_output( sqlite3_changegroup*, int *pnData, /* OUT: Size of output buffer in bytes */ void **ppData /* OUT: Pointer to output buffer */ ); /* ** CAPI3REF: Delete A Changegroup Object ** DESTRUCTOR: sqlite3_changegroup */ SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*); /* ** CAPI3REF: Apply A Changeset To A Database ** ** Apply a changeset or patchset to a database. These functions attempt to ** update the "main" database attached to handle db with the changes found in ** the changeset passed via the second and third arguments. ** ** The fourth argument (xFilter) passed to these functions is the "filter ** callback". If it is not NULL, then for each table affected by at least one ** change in the changeset, the filter callback is invoked with ** the table name as the second argument, and a copy of the context pointer ** passed as the sixth argument as the first. If the "filter callback" ** returns zero, then no attempt is made to apply any changes to the table. ** Otherwise, if the return value is non-zero or the xFilter argument to ** is NULL, all changes related to the table are attempted. ** ** For each table that is not excluded by the filter callback, this function ** tests that the target database contains a compatible table. A table is ** considered compatible if all of the following are true: ** **
    **
  • The table has the same name as the name recorded in the ** changeset, and **
  • The table has at least as many columns as recorded in the ** changeset, and **
  • The table has primary key columns in the same position as ** recorded in the changeset. **
** ** If there is no compatible table, it is not an error, but none of the ** changes associated with the table are applied. A warning message is issued ** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most ** one such warning is issued for each table in the changeset. ** ** For each change for which there is a compatible table, an attempt is made ** to modify the table contents according to the UPDATE, INSERT or DELETE ** change. If a change cannot be applied cleanly, the conflict handler ** function passed as the fifth argument to sqlite3changeset_apply() may be ** invoked. A description of exactly when the conflict handler is invoked for ** each type of change is below. ** ** Unlike the xFilter argument, xConflict may not be passed NULL. The results ** of passing anything other than a valid function pointer as the xConflict ** argument are undefined. ** ** Each time the conflict handler function is invoked, it must return one ** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or ** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned ** if the second argument passed to the conflict handler is either ** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler ** returns an illegal value, any changes already made are rolled back and ** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different ** actions are taken by sqlite3changeset_apply() depending on the value ** returned by each invocation of the conflict-handler function. Refer to ** the documentation for the three ** [SQLITE_CHANGESET_OMIT|available return values] for details. ** **
**
DELETE Changes
** For each DELETE change, the function checks if the target database ** contains a row with the same primary key value (or values) as the ** original row values stored in the changeset. If it does, and the values ** stored in all non-primary key columns also match the values stored in ** the changeset the row is deleted from the target database. ** ** If a row with matching primary key values is found, but one or more of ** the non-primary key fields contains a value different from the original ** row value stored in the changeset, the conflict-handler function is ** invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the ** database table has more columns than are recorded in the changeset, ** only the values of those non-primary key fields are compared against ** the current database contents - any trailing database table columns ** are ignored. ** ** If no row with matching primary key values is found in the database, ** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] ** passed as the second argument. ** ** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT ** (which can only happen if a foreign key constraint is violated), the ** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT] ** passed as the second argument. This includes the case where the DELETE ** operation is attempted because an earlier call to the conflict handler ** function returned [SQLITE_CHANGESET_REPLACE]. ** **
INSERT Changes
** For each INSERT change, an attempt is made to insert the new row into ** the database. If the changeset row contains fewer fields than the ** database table, the trailing fields are populated with their default ** values. ** ** If the attempt to insert the row fails because the database already ** contains a row with the same primary key values, the conflict handler ** function is invoked with the second argument set to ** [SQLITE_CHANGESET_CONFLICT]. ** ** If the attempt to insert the row fails because of some other constraint ** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is ** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT]. ** This includes the case where the INSERT operation is re-attempted because ** an earlier call to the conflict handler function returned ** [SQLITE_CHANGESET_REPLACE]. ** **
UPDATE Changes
** For each UPDATE change, the function checks if the target database ** contains a row with the same primary key value (or values) as the ** original row values stored in the changeset. If it does, and the values ** stored in all modified non-primary key columns also match the values ** stored in the changeset the row is updated within the target database. ** ** If a row with matching primary key values is found, but one or more of ** the modified non-primary key fields contains a value different from an ** original row value stored in the changeset, the conflict-handler function ** is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since ** UPDATE changes only contain values for non-primary key fields that are ** to be modified, only those fields need to match the original values to ** avoid the SQLITE_CHANGESET_DATA conflict-handler callback. ** ** If no row with matching primary key values is found in the database, ** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] ** passed as the second argument. ** ** If the UPDATE operation is attempted, but SQLite returns ** SQLITE_CONSTRAINT, the conflict-handler function is invoked with ** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument. ** This includes the case where the UPDATE operation is attempted after ** an earlier call to the conflict handler function returned ** [SQLITE_CHANGESET_REPLACE]. **
** ** It is safe to execute SQL statements, including those that write to the ** table that the callback related to, from within the xConflict callback. ** This can be used to further customize the application's conflict ** resolution strategy. ** ** All changes made by these functions are enclosed in a savepoint transaction. ** If any other error (aside from a constraint failure when attempting to ** write to the target database) occurs, then the savepoint transaction is ** rolled back, restoring the target database to its original state, and an ** SQLite error code returned. ** ** If the output parameters (ppRebase) and (pnRebase) are non-NULL and ** the input is a changeset (not a patchset), then sqlite3changeset_apply_v2() ** may set (*ppRebase) to point to a "rebase" that may be used with the ** sqlite3_rebaser APIs buffer before returning. In this case (*pnRebase) ** is set to the size of the buffer in bytes. It is the responsibility of the ** caller to eventually free any such buffer using sqlite3_free(). The buffer ** is only allocated and populated if one or more conflicts were encountered ** while applying the patchset. See comments surrounding the sqlite3_rebaser ** APIs for further details. ** ** The behavior of sqlite3changeset_apply_v2() and its streaming equivalent ** may be modified by passing a combination of ** [SQLITE_CHANGESETAPPLY_NOSAVEPOINT | supported flags] as the 9th parameter. ** ** Note that the sqlite3changeset_apply_v2() API is still experimental ** and therefore subject to change. */ SQLITE_API int sqlite3changeset_apply( sqlite3 *db, /* Apply change to "main" db of this handle */ int nChangeset, /* Size of changeset in bytes */ void *pChangeset, /* Changeset blob */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx /* First argument passed to xConflict */ ); SQLITE_API int sqlite3changeset_apply_v2( sqlite3 *db, /* Apply change to "main" db of this handle */ int nChangeset, /* Size of changeset in bytes */ void *pChangeset, /* Changeset blob */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, /* OUT: Rebase data */ int flags /* SESSION_CHANGESETAPPLY_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_apply_v2 ** ** The following flags may passed via the 9th parameter to ** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]: ** **
**
SQLITE_CHANGESETAPPLY_NOSAVEPOINT
** Usually, the sessions module encloses all operations performed by ** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The ** SAVEPOINT is committed if the changeset or patchset is successfully ** applied, or rolled back if an error occurs. Specifying this flag ** causes the sessions module to omit this savepoint. In this case, if the ** caller has an open transaction or savepoint when apply_v2() is called, ** it may revert the partially applied changeset by rolling it back. ** **
SQLITE_CHANGESETAPPLY_INVERT
** Invert the changeset before applying it. This is equivalent to inverting ** a changeset using sqlite3changeset_invert() before applying it. It is ** an error to specify this flag with a patchset. ** **
SQLITE_CHANGESETAPPLY_IGNORENOOP
** Do not invoke the conflict handler callback for any changes that ** would not actually modify the database even if they were applied. ** Specifically, this means that the conflict handler is not invoked ** for: **
    **
  • a delete change if the row being deleted cannot be found, **
  • an update change if the modified fields are already set to ** their new values in the conflicting row, or **
  • an insert change if all fields of the conflicting row match ** the row being inserted. **
*/ #define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001 #define SQLITE_CHANGESETAPPLY_INVERT 0x0002 #define SQLITE_CHANGESETAPPLY_IGNORENOOP 0x0004 /* ** CAPI3REF: Constants Passed To The Conflict Handler ** ** Values that may be passed as the second argument to a conflict-handler. ** **
**
SQLITE_CHANGESET_DATA
** The conflict handler is invoked with CHANGESET_DATA as the second argument ** when processing a DELETE or UPDATE change if a row with the required ** PRIMARY KEY fields is present in the database, but one or more other ** (non primary-key) fields modified by the update do not contain the ** expected "before" values. ** ** The conflicting row, in this case, is the database row with the matching ** primary key. ** **
SQLITE_CHANGESET_NOTFOUND
** The conflict handler is invoked with CHANGESET_NOTFOUND as the second ** argument when processing a DELETE or UPDATE change if a row with the ** required PRIMARY KEY fields is not present in the database. ** ** There is no conflicting row in this case. The results of invoking the ** sqlite3changeset_conflict() API are undefined. ** **
SQLITE_CHANGESET_CONFLICT
** CHANGESET_CONFLICT is passed as the second argument to the conflict ** handler while processing an INSERT change if the operation would result ** in duplicate primary key values. ** ** The conflicting row in this case is the database row with the matching ** primary key. ** **
SQLITE_CHANGESET_FOREIGN_KEY
** If foreign key handling is enabled, and applying a changeset leaves the ** database in a state containing foreign key violations, the conflict ** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument ** exactly once before the changeset is committed. If the conflict handler ** returns CHANGESET_OMIT, the changes, including those that caused the ** foreign key constraint violation, are committed. Or, if it returns ** CHANGESET_ABORT, the changeset is rolled back. ** ** No current or conflicting row information is provided. The only function ** it is possible to call on the supplied sqlite3_changeset_iter handle ** is sqlite3changeset_fk_conflicts(). ** **
SQLITE_CHANGESET_CONSTRAINT
** If any other constraint violation occurs while applying a change (i.e. ** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is ** invoked with CHANGESET_CONSTRAINT as the second argument. ** ** There is no conflicting row in this case. The results of invoking the ** sqlite3changeset_conflict() API are undefined. ** **
*/ #define SQLITE_CHANGESET_DATA 1 #define SQLITE_CHANGESET_NOTFOUND 2 #define SQLITE_CHANGESET_CONFLICT 3 #define SQLITE_CHANGESET_CONSTRAINT 4 #define SQLITE_CHANGESET_FOREIGN_KEY 5 /* ** CAPI3REF: Constants Returned By The Conflict Handler ** ** A conflict handler callback must return one of the following three values. ** **
**
SQLITE_CHANGESET_OMIT
** If a conflict handler returns this value no special action is taken. The ** change that caused the conflict is not applied. The session module ** continues to the next change in the changeset. ** **
SQLITE_CHANGESET_REPLACE
** This value may only be returned if the second argument to the conflict ** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this ** is not the case, any changes applied so far are rolled back and the ** call to sqlite3changeset_apply() returns SQLITE_MISUSE. ** ** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict ** handler, then the conflicting row is either updated or deleted, depending ** on the type of change. ** ** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict ** handler, then the conflicting row is removed from the database and a ** second attempt to apply the change is made. If this second attempt fails, ** the original row is restored to the database before continuing. ** **
SQLITE_CHANGESET_ABORT
** If this value is returned, any changes applied so far are rolled back ** and the call to sqlite3changeset_apply() returns SQLITE_ABORT. **
*/ #define SQLITE_CHANGESET_OMIT 0 #define SQLITE_CHANGESET_REPLACE 1 #define SQLITE_CHANGESET_ABORT 2 /* ** CAPI3REF: Rebasing changesets ** EXPERIMENTAL ** ** Suppose there is a site hosting a database in state S0. And that ** modifications are made that move that database to state S1 and a ** changeset recorded (the "local" changeset). Then, a changeset based ** on S0 is received from another site (the "remote" changeset) and ** applied to the database. The database is then in state ** (S1+"remote"), where the exact state depends on any conflict ** resolution decisions (OMIT or REPLACE) made while applying "remote". ** Rebasing a changeset is to update it to take those conflict ** resolution decisions into account, so that the same conflicts ** do not have to be resolved elsewhere in the network. ** ** For example, if both the local and remote changesets contain an ** INSERT of the same key on "CREATE TABLE t1(a PRIMARY KEY, b)": ** ** local: INSERT INTO t1 VALUES(1, 'v1'); ** remote: INSERT INTO t1 VALUES(1, 'v2'); ** ** and the conflict resolution is REPLACE, then the INSERT change is ** removed from the local changeset (it was overridden). Or, if the ** conflict resolution was "OMIT", then the local changeset is modified ** to instead contain: ** ** UPDATE t1 SET b = 'v2' WHERE a=1; ** ** Changes within the local changeset are rebased as follows: ** **
**
Local INSERT
** This may only conflict with a remote INSERT. If the conflict ** resolution was OMIT, then add an UPDATE change to the rebased ** changeset. Or, if the conflict resolution was REPLACE, add ** nothing to the rebased changeset. ** **
Local DELETE
** This may conflict with a remote UPDATE or DELETE. In both cases the ** only possible resolution is OMIT. If the remote operation was a ** DELETE, then add no change to the rebased changeset. If the remote ** operation was an UPDATE, then the old.* fields of change are updated ** to reflect the new.* values in the UPDATE. ** **
Local UPDATE
** This may conflict with a remote UPDATE or DELETE. If it conflicts ** with a DELETE, and the conflict resolution was OMIT, then the update ** is changed into an INSERT. Any undefined values in the new.* record ** from the update change are filled in using the old.* values from ** the conflicting DELETE. Or, if the conflict resolution was REPLACE, ** the UPDATE change is simply omitted from the rebased changeset. ** ** If conflict is with a remote UPDATE and the resolution is OMIT, then ** the old.* values are rebased using the new.* values in the remote ** change. Or, if the resolution is REPLACE, then the change is copied ** into the rebased changeset with updates to columns also updated by ** the conflicting remote UPDATE removed. If this means no columns would ** be updated, the change is omitted. **
** ** A local change may be rebased against multiple remote changes ** simultaneously. If a single key is modified by multiple remote ** changesets, they are combined as follows before the local changeset ** is rebased: ** **
    **
  • If there has been one or more REPLACE resolutions on a ** key, it is rebased according to a REPLACE. ** **
  • If there have been no REPLACE resolutions on a key, then ** the local changeset is rebased according to the most recent ** of the OMIT resolutions. **
** ** Note that conflict resolutions from multiple remote changesets are ** combined on a per-field basis, not per-row. This means that in the ** case of multiple remote UPDATE operations, some fields of a single ** local change may be rebased for REPLACE while others are rebased for ** OMIT. ** ** In order to rebase a local changeset, the remote changeset must first ** be applied to the local database using sqlite3changeset_apply_v2() and ** the buffer of rebase information captured. Then: ** **
    **
  1. An sqlite3_rebaser object is created by calling ** sqlite3rebaser_create(). **
  2. The new object is configured with the rebase buffer obtained from ** sqlite3changeset_apply_v2() by calling sqlite3rebaser_configure(). ** If the local changeset is to be rebased against multiple remote ** changesets, then sqlite3rebaser_configure() should be called ** multiple times, in the same order that the multiple ** sqlite3changeset_apply_v2() calls were made. **
  3. Each local changeset is rebased by calling sqlite3rebaser_rebase(). **
  4. The sqlite3_rebaser object is deleted by calling ** sqlite3rebaser_delete(). **
*/ typedef struct sqlite3_rebaser sqlite3_rebaser; /* ** CAPI3REF: Create a changeset rebaser object. ** EXPERIMENTAL ** ** Allocate a new changeset rebaser object. If successful, set (*ppNew) to ** point to the new object and return SQLITE_OK. Otherwise, if an error ** occurs, return an SQLite error code (e.g. SQLITE_NOMEM) and set (*ppNew) ** to NULL. */ SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew); /* ** CAPI3REF: Configure a changeset rebaser object. ** EXPERIMENTAL ** ** Configure the changeset rebaser object to rebase changesets according ** to the conflict resolutions described by buffer pRebase (size nRebase ** bytes), which must have been obtained from a previous call to ** sqlite3changeset_apply_v2(). */ SQLITE_API int sqlite3rebaser_configure( sqlite3_rebaser*, int nRebase, const void *pRebase ); /* ** CAPI3REF: Rebase a changeset ** EXPERIMENTAL ** ** Argument pIn must point to a buffer containing a changeset nIn bytes ** in size. This function allocates and populates a buffer with a copy ** of the changeset rebased according to the configuration of the ** rebaser object passed as the first argument. If successful, (*ppOut) ** is set to point to the new buffer containing the rebased changeset and ** (*pnOut) to its size in bytes and SQLITE_OK returned. It is the ** responsibility of the caller to eventually free the new buffer using ** sqlite3_free(). Otherwise, if an error occurs, (*ppOut) and (*pnOut) ** are set to zero and an SQLite error code returned. */ SQLITE_API int sqlite3rebaser_rebase( sqlite3_rebaser*, int nIn, const void *pIn, int *pnOut, void **ppOut ); /* ** CAPI3REF: Delete a changeset rebaser object. ** EXPERIMENTAL ** ** Delete the changeset rebaser object and all associated resources. There ** should be one call to this function for each successful invocation ** of sqlite3rebaser_create(). */ SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p); /* ** CAPI3REF: Streaming Versions of API functions. ** ** The six streaming API xxx_strm() functions serve similar purposes to the ** corresponding non-streaming API functions: ** ** ** **
Streaming functionNon-streaming equivalent
sqlite3changeset_apply_strm[sqlite3changeset_apply] **
sqlite3changeset_apply_strm_v2[sqlite3changeset_apply_v2] **
sqlite3changeset_concat_strm[sqlite3changeset_concat] **
sqlite3changeset_invert_strm[sqlite3changeset_invert] **
sqlite3changeset_start_strm[sqlite3changeset_start] **
sqlite3session_changeset_strm[sqlite3session_changeset] **
sqlite3session_patchset_strm[sqlite3session_patchset] **
** ** Non-streaming functions that accept changesets (or patchsets) as input ** require that the entire changeset be stored in a single buffer in memory. ** Similarly, those that return a changeset or patchset do so by returning ** a pointer to a single large buffer allocated using sqlite3_malloc(). ** Normally this is convenient. However, if an application running in a ** low-memory environment is required to handle very large changesets, the ** large contiguous memory allocations required can become onerous. ** ** In order to avoid this problem, instead of a single large buffer, input ** is passed to a streaming API functions by way of a callback function that ** the sessions module invokes to incrementally request input data as it is ** required. In all cases, a pair of API function parameters such as ** **
**        int nChangeset,
**        void *pChangeset,
**  
** ** Is replaced by: ** **
**        int (*xInput)(void *pIn, void *pData, int *pnData),
**        void *pIn,
**  
** ** Each time the xInput callback is invoked by the sessions module, the first ** argument passed is a copy of the supplied pIn context pointer. The second ** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no ** error occurs the xInput method should copy up to (*pnData) bytes of data ** into the buffer and set (*pnData) to the actual number of bytes copied ** before returning SQLITE_OK. If the input is completely exhausted, (*pnData) ** should be set to zero to indicate this. Or, if an error occurs, an SQLite ** error code should be returned. In all cases, if an xInput callback returns ** an error, all processing is abandoned and the streaming API function ** returns a copy of the error code to the caller. ** ** In the case of sqlite3changeset_start_strm(), the xInput callback may be ** invoked by the sessions module at any point during the lifetime of the ** iterator. If such an xInput callback returns an error, the iterator enters ** an error state, whereby all subsequent calls to iterator functions ** immediately fail with the same error code as returned by xInput. ** ** Similarly, streaming API functions that return changesets (or patchsets) ** return them in chunks by way of a callback function instead of via a ** pointer to a single large buffer. In this case, a pair of parameters such ** as: ** **
**        int *pnChangeset,
**        void **ppChangeset,
**  
** ** Is replaced by: ** **
**        int (*xOutput)(void *pOut, const void *pData, int nData),
**        void *pOut
**  
** ** The xOutput callback is invoked zero or more times to return data to ** the application. The first parameter passed to each call is a copy of the ** pOut pointer supplied by the application. The second parameter, pData, ** points to a buffer nData bytes in size containing the chunk of output ** data being returned. If the xOutput callback successfully processes the ** supplied data, it should return SQLITE_OK to indicate success. Otherwise, ** it should return some other SQLite error code. In this case processing ** is immediately abandoned and the streaming API function returns a copy ** of the xOutput error code to the application. ** ** The sessions module never invokes an xOutput callback with the third ** parameter set to a value less than or equal to zero. Other than this, ** no guarantees are made as to the size of the chunks of data returned. */ SQLITE_API int sqlite3changeset_apply_strm( sqlite3 *db, /* Apply change to "main" db of this handle */ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ void *pIn, /* First arg for xInput */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx /* First argument passed to xConflict */ ); SQLITE_API int sqlite3changeset_apply_v2_strm( sqlite3 *db, /* Apply change to "main" db of this handle */ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ void *pIn, /* First arg for xInput */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, int flags ); SQLITE_API int sqlite3changeset_concat_strm( int (*xInputA)(void *pIn, void *pData, int *pnData), void *pInA, int (*xInputB)(void *pIn, void *pData, int *pnData), void *pInB, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_invert_strm( int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3changeset_start_v2_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int flags ); SQLITE_API int sqlite3session_changeset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3session_patchset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3rebaser_rebase_strm( sqlite3_rebaser *pRebaser, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Configure global parameters ** ** The sqlite3session_config() interface is used to make global configuration ** changes to the sessions module in order to tune it to the specific needs ** of the application. ** ** The sqlite3session_config() interface is not threadsafe. If it is invoked ** while any other thread is inside any other sessions method then the ** results are undefined. Furthermore, if it is invoked after any sessions ** related objects have been created, the results are also undefined. ** ** The first argument to the sqlite3session_config() function must be one ** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The ** interpretation of the (void*) value passed as the second parameter and ** the effect of calling this function depends on the value of the first ** parameter. ** **
**
SQLITE_SESSION_CONFIG_STRMSIZE
** By default, the sessions module streaming interfaces attempt to input ** and output data in approximately 1 KiB chunks. This operand may be used ** to set and query the value of this configuration setting. The pointer ** passed as the second argument must point to a value of type (int). ** If this value is greater than 0, it is used as the new streaming data ** chunk size for both input and output. Before returning, the (int) value ** pointed to by pArg is set to the final value of the streaming interface ** chunk size. **
** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ SQLITE_API int sqlite3session_config(int op, void *pArg); /* ** CAPI3REF: Values for sqlite3session_config(). */ #define SQLITE_SESSION_CONFIG_STRMSIZE 1 /* ** Make sure we can call this stuff from C++. */ #if 0 } #endif #endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */ /******** End of sqlite3session.h *********/ /******** Begin file fts5.h *********/ /* ** 2014 May 31 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Interfaces to extend FTS5. Using the interfaces defined in this file, ** FTS5 may be extended with: ** ** * custom tokenizers, and ** * custom auxiliary functions. */ #ifndef _FTS5_H #define _FTS5_H #if 0 extern "C" { #endif /************************************************************************* ** CUSTOM AUXILIARY FUNCTIONS ** ** Virtual table implementations may overload SQL functions by implementing ** the sqlite3_module.xFindFunction() method. */ typedef struct Fts5ExtensionApi Fts5ExtensionApi; typedef struct Fts5Context Fts5Context; typedef struct Fts5PhraseIter Fts5PhraseIter; typedef void (*fts5_extension_function)( const Fts5ExtensionApi *pApi, /* API offered by current FTS version */ Fts5Context *pFts, /* First arg to pass to pApi functions */ sqlite3_context *pCtx, /* Context for returning result/error */ int nVal, /* Number of values in apVal[] array */ sqlite3_value **apVal /* Array of trailing arguments */ ); struct Fts5PhraseIter { const unsigned char *a; const unsigned char *b; }; /* ** EXTENSION API FUNCTIONS ** ** xUserData(pFts): ** Return a copy of the context pointer the extension function was ** registered with. ** ** xColumnTotalSize(pFts, iCol, pnToken): ** If parameter iCol is less than zero, set output variable *pnToken ** to the total number of tokens in the FTS5 table. Or, if iCol is ** non-negative but less than the number of columns in the table, return ** the total number of tokens in column iCol, considering all rows in ** the FTS5 table. ** ** If parameter iCol is greater than or equal to the number of columns ** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. ** an OOM condition or IO error), an appropriate SQLite error code is ** returned. ** ** xColumnCount(pFts): ** Return the number of columns in the table. ** ** xColumnSize(pFts, iCol, pnToken): ** If parameter iCol is less than zero, set output variable *pnToken ** to the total number of tokens in the current row. Or, if iCol is ** non-negative but less than the number of columns in the table, set ** *pnToken to the number of tokens in column iCol of the current row. ** ** If parameter iCol is greater than or equal to the number of columns ** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. ** an OOM condition or IO error), an appropriate SQLite error code is ** returned. ** ** This function may be quite inefficient if used with an FTS5 table ** created with the "columnsize=0" option. ** ** xColumnText: ** This function attempts to retrieve the text of column iCol of the ** current document. If successful, (*pz) is set to point to a buffer ** containing the text in utf-8 encoding, (*pn) is set to the size in bytes ** (not characters) of the buffer and SQLITE_OK is returned. Otherwise, ** if an error occurs, an SQLite error code is returned and the final values ** of (*pz) and (*pn) are undefined. ** ** xPhraseCount: ** Returns the number of phrases in the current query expression. ** ** xPhraseSize: ** Returns the number of tokens in phrase iPhrase of the query. Phrases ** are numbered starting from zero. ** ** xInstCount: ** Set *pnInst to the total number of occurrences of all phrases within ** the query within the current row. Return SQLITE_OK if successful, or ** an error code (i.e. SQLITE_NOMEM) if an error occurs. ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. If the FTS5 table is created ** with either "detail=none" or "detail=column" and "content=" option ** (i.e. if it is a contentless table), then this API always returns 0. ** ** xInst: ** Query for the details of phrase match iIdx within the current row. ** Phrase matches are numbered starting from zero, so the iIdx argument ** should be greater than or equal to zero and smaller than the value ** output by xInstCount(). ** ** Usually, output parameter *piPhrase is set to the phrase number, *piCol ** to the column in which it occurs and *piOff the token offset of the ** first token of the phrase. Returns SQLITE_OK if successful, or an error ** code (i.e. SQLITE_NOMEM) if an error occurs. ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. ** ** xRowid: ** Returns the rowid of the current row. ** ** xTokenize: ** Tokenize text using the tokenizer belonging to the FTS5 table. ** ** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback): ** This API function is used to query the FTS table for phrase iPhrase ** of the current query. Specifically, a query equivalent to: ** ** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid ** ** with $p set to a phrase equivalent to the phrase iPhrase of the ** current query is executed. Any column filter that applies to ** phrase iPhrase of the current query is included in $p. For each ** row visited, the callback function passed as the fourth argument ** is invoked. The context and API objects passed to the callback ** function may be used to access the properties of each matched row. ** Invoking Api.xUserData() returns a copy of the pointer passed as ** the third argument to pUserData. ** ** If the callback function returns any value other than SQLITE_OK, the ** query is abandoned and the xQueryPhrase function returns immediately. ** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK. ** Otherwise, the error code is propagated upwards. ** ** If the query runs to completion without incident, SQLITE_OK is returned. ** Or, if some error occurs before the query completes or is aborted by ** the callback, an SQLite error code is returned. ** ** ** xSetAuxdata(pFts5, pAux, xDelete) ** ** Save the pointer passed as the second argument as the extension function's ** "auxiliary data". The pointer may then be retrieved by the current or any ** future invocation of the same fts5 extension function made as part of ** the same MATCH query using the xGetAuxdata() API. ** ** Each extension function is allocated a single auxiliary data slot for ** each FTS query (MATCH expression). If the extension function is invoked ** more than once for a single FTS query, then all invocations share a ** single auxiliary data context. ** ** If there is already an auxiliary data pointer when this function is ** invoked, then it is replaced by the new pointer. If an xDelete callback ** was specified along with the original pointer, it is invoked at this ** point. ** ** The xDelete callback, if one is specified, is also invoked on the ** auxiliary data pointer after the FTS5 query has finished. ** ** If an error (e.g. an OOM condition) occurs within this function, ** the auxiliary data is set to NULL and an error code returned. If the ** xDelete parameter was not NULL, it is invoked on the auxiliary data ** pointer before returning. ** ** ** xGetAuxdata(pFts5, bClear) ** ** Returns the current auxiliary data pointer for the fts5 extension ** function. See the xSetAuxdata() method for details. ** ** If the bClear argument is non-zero, then the auxiliary data is cleared ** (set to NULL) before this function returns. In this case the xDelete, ** if any, is not invoked. ** ** ** xRowCount(pFts5, pnRow) ** ** This function is used to retrieve the total number of rows in the table. ** In other words, the same value that would be returned by: ** ** SELECT count(*) FROM ftstable; ** ** xPhraseFirst() ** This function is used, along with type Fts5PhraseIter and the xPhraseNext ** method, to iterate through all instances of a single query phrase within ** the current row. This is the same information as is accessible via the ** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient ** to use, this API may be faster under some circumstances. To iterate ** through instances of phrase iPhrase, use the following code: ** ** Fts5PhraseIter iter; ** int iCol, iOff; ** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff); ** iCol>=0; ** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff) ** ){ ** // An instance of phrase iPhrase at offset iOff of column iCol ** } ** ** The Fts5PhraseIter structure is defined above. Applications should not ** modify this structure directly - it should only be used as shown above ** with the xPhraseFirst() and xPhraseNext() API methods (and by ** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below). ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. If the FTS5 table is created ** with either "detail=none" or "detail=column" and "content=" option ** (i.e. if it is a contentless table), then this API always iterates ** through an empty set (all calls to xPhraseFirst() set iCol to -1). ** ** xPhraseNext() ** See xPhraseFirst above. ** ** xPhraseFirstColumn() ** This function and xPhraseNextColumn() are similar to the xPhraseFirst() ** and xPhraseNext() APIs described above. The difference is that instead ** of iterating through all instances of a phrase in the current row, these ** APIs are used to iterate through the set of columns in the current row ** that contain one or more instances of a specified phrase. For example: ** ** Fts5PhraseIter iter; ** int iCol; ** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol); ** iCol>=0; ** pApi->xPhraseNextColumn(pFts, &iter, &iCol) ** ){ ** // Column iCol contains at least one instance of phrase iPhrase ** } ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" option. If the FTS5 table is created with either ** "detail=none" "content=" option (i.e. if it is a contentless table), ** then this API always iterates through an empty set (all calls to ** xPhraseFirstColumn() set iCol to -1). ** ** The information accessed using this API and its companion ** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext ** (or xInst/xInstCount). The chief advantage of this API is that it is ** significantly more efficient than those alternatives when used with ** "detail=column" tables. ** ** xPhraseNextColumn() ** See xPhraseFirstColumn above. */ struct Fts5ExtensionApi { int iVersion; /* Currently always set to 2 */ void *(*xUserData)(Fts5Context*); int (*xColumnCount)(Fts5Context*); int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow); int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken); int (*xTokenize)(Fts5Context*, const char *pText, int nText, /* Text to tokenize */ void *pCtx, /* Context passed to xToken() */ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */ ); int (*xPhraseCount)(Fts5Context*); int (*xPhraseSize)(Fts5Context*, int iPhrase); int (*xInstCount)(Fts5Context*, int *pnInst); int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff); sqlite3_int64 (*xRowid)(Fts5Context*); int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn); int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken); int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData, int(*)(const Fts5ExtensionApi*,Fts5Context*,void*) ); int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*)); void *(*xGetAuxdata)(Fts5Context*, int bClear); int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*); void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff); int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*); void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol); }; /* ** CUSTOM AUXILIARY FUNCTIONS *************************************************************************/ /************************************************************************* ** CUSTOM TOKENIZERS ** ** Applications may also register custom tokenizer types. A tokenizer ** is registered by providing fts5 with a populated instance of the ** following structure. All structure methods must be defined, setting ** any member of the fts5_tokenizer struct to NULL leads to undefined ** behaviour. The structure methods are expected to function as follows: ** ** xCreate: ** This function is used to allocate and initialize a tokenizer instance. ** A tokenizer instance is required to actually tokenize text. ** ** The first argument passed to this function is a copy of the (void*) ** pointer provided by the application when the fts5_tokenizer object ** was registered with FTS5 (the third argument to xCreateTokenizer()). ** The second and third arguments are an array of nul-terminated strings ** containing the tokenizer arguments, if any, specified following the ** tokenizer name as part of the CREATE VIRTUAL TABLE statement used ** to create the FTS5 table. ** ** The final argument is an output variable. If successful, (*ppOut) ** should be set to point to the new tokenizer handle and SQLITE_OK ** returned. If an error occurs, some value other than SQLITE_OK should ** be returned. In this case, fts5 assumes that the final value of *ppOut ** is undefined. ** ** xDelete: ** This function is invoked to delete a tokenizer handle previously ** allocated using xCreate(). Fts5 guarantees that this function will ** be invoked exactly once for each successful call to xCreate(). ** ** xTokenize: ** This function is expected to tokenize the nText byte string indicated ** by argument pText. pText may or may not be nul-terminated. The first ** argument passed to this function is a pointer to an Fts5Tokenizer object ** returned by an earlier call to xCreate(). ** ** The second argument indicates the reason that FTS5 is requesting ** tokenization of the supplied text. This is always one of the following ** four values: ** **
  • FTS5_TOKENIZE_DOCUMENT - A document is being inserted into ** or removed from the FTS table. The tokenizer is being invoked to ** determine the set of tokens to add to (or delete from) the ** FTS index. ** **
  • FTS5_TOKENIZE_QUERY - A MATCH query is being executed ** against the FTS index. The tokenizer is being called to tokenize ** a bareword or quoted string specified as part of the query. ** **
  • (FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX) - Same as ** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is ** followed by a "*" character, indicating that the last token ** returned by the tokenizer will be treated as a token prefix. ** **
  • FTS5_TOKENIZE_AUX - The tokenizer is being invoked to ** satisfy an fts5_api.xTokenize() request made by an auxiliary ** function. Or an fts5_api.xColumnSize() request made by the same ** on a columnsize=0 database. **
** ** For each token in the input string, the supplied callback xToken() must ** be invoked. The first argument to it should be a copy of the pointer ** passed as the second argument to xTokenize(). The third and fourth ** arguments are a pointer to a buffer containing the token text, and the ** size of the token in bytes. The 4th and 5th arguments are the byte offsets ** of the first byte of and first byte immediately following the text from ** which the token is derived within the input. ** ** The second argument passed to the xToken() callback ("tflags") should ** normally be set to 0. The exception is if the tokenizer supports ** synonyms. In this case see the discussion below for details. ** ** FTS5 assumes the xToken() callback is invoked for each token in the ** order that they occur within the input text. ** ** If an xToken() callback returns any value other than SQLITE_OK, then ** the tokenization should be abandoned and the xTokenize() method should ** immediately return a copy of the xToken() return value. Or, if the ** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally, ** if an error occurs with the xTokenize() implementation itself, it ** may abandon the tokenization and return any error code other than ** SQLITE_OK or SQLITE_DONE. ** ** SYNONYM SUPPORT ** ** Custom tokenizers may also support synonyms. Consider a case in which a ** user wishes to query for a phrase such as "first place". Using the ** built-in tokenizers, the FTS5 query 'first + place' will match instances ** of "first place" within the document set, but not alternative forms ** such as "1st place". In some applications, it would be better to match ** all instances of "first place" or "1st place" regardless of which form ** the user specified in the MATCH query text. ** ** There are several ways to approach this in FTS5: ** **
  1. By mapping all synonyms to a single token. In this case, using ** the above example, this means that the tokenizer returns the ** same token for inputs "first" and "1st". Say that token is in ** fact "first", so that when the user inserts the document "I won ** 1st place" entries are added to the index for tokens "i", "won", ** "first" and "place". If the user then queries for '1st + place', ** the tokenizer substitutes "first" for "1st" and the query works ** as expected. ** **
  2. By querying the index for all synonyms of each query term ** separately. In this case, when tokenizing query text, the ** tokenizer may provide multiple synonyms for a single term ** within the document. FTS5 then queries the index for each ** synonym individually. For example, faced with the query: ** ** ** ... MATCH 'first place' ** ** the tokenizer offers both "1st" and "first" as synonyms for the ** first token in the MATCH query and FTS5 effectively runs a query ** similar to: ** ** ** ... MATCH '(first OR 1st) place' ** ** except that, for the purposes of auxiliary functions, the query ** still appears to contain just two phrases - "(first OR 1st)" ** being treated as a single phrase. ** **
  3. By adding multiple synonyms for a single term to the FTS index. ** Using this method, when tokenizing document text, the tokenizer ** provides multiple synonyms for each token. So that when a ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do so would be ** inefficient), it doesn't matter if the user queries for ** 'first + place' or '1st + place', as there are entries in the ** FTS index corresponding to both forms of the first token. **
** ** Whether it is parsing document or query text, any call to xToken that ** specifies a tflags argument with the FTS5_TOKEN_COLOCATED bit ** is considered to supply a synonym for the previous token. For example, ** when parsing the document "I won first place", a tokenizer that supports ** synonyms would call xToken() 5 times, as follows: ** ** ** xToken(pCtx, 0, "i", 1, 0, 1); ** xToken(pCtx, 0, "won", 3, 2, 5); ** xToken(pCtx, 0, "first", 5, 6, 11); ** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11); ** xToken(pCtx, 0, "place", 5, 12, 17); ** ** ** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time ** xToken() is called. Multiple synonyms may be specified for a single token ** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence. ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the ** token "first" is substituted for "1st" by the tokenizer, then the query: ** ** ** ... MATCH '1s*' ** ** will not match documents that contain the token "1st" (as the tokenizer ** will probably not map "1s" to any prefix of "first"). ** ** For full prefix support, method (3) may be preferred. In this case, ** because the index contains entries for both "first" and "1st", prefix ** queries such as 'fi*' or '1s*' will match correctly. However, because ** extra entries are added to the FTS index, this method uses more space ** within the database. ** ** Method (2) offers a midpoint between (1) and (3). Using this method, ** a query such as '1s*' will match documents that contain the literal ** token "1st", but not "first" (assuming the tokenizer is not able to ** provide synonyms for prefixes). However, a non-prefix query like '1st' ** will match against "1st" and "first". This method does not require ** extra disk space, as no extra entries are added to the FTS index. ** On the other hand, it may require more CPU cycles to run MATCH queries, ** as separate queries of the FTS index are required for each synonym. ** ** When using methods (2) or (3), it is important that the tokenizer only ** provide synonyms when tokenizing document text (method (3)) or query ** text (method (2)), not both. Doing so will not cause any errors, but is ** inefficient. */ typedef struct Fts5Tokenizer Fts5Tokenizer; typedef struct fts5_tokenizer fts5_tokenizer; struct fts5_tokenizer { int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut); void (*xDelete)(Fts5Tokenizer*); int (*xTokenize)(Fts5Tokenizer*, void *pCtx, int flags, /* Mask of FTS5_TOKENIZE_* flags */ const char *pText, int nText, int (*xToken)( void *pCtx, /* Copy of 2nd argument to xTokenize() */ int tflags, /* Mask of FTS5_TOKEN_* flags */ const char *pToken, /* Pointer to buffer containing token */ int nToken, /* Size of token in bytes */ int iStart, /* Byte offset of token within input text */ int iEnd /* Byte offset of end of token within input text */ ) ); }; /* Flags that may be passed as the third argument to xTokenize() */ #define FTS5_TOKENIZE_QUERY 0x0001 #define FTS5_TOKENIZE_PREFIX 0x0002 #define FTS5_TOKENIZE_DOCUMENT 0x0004 #define FTS5_TOKENIZE_AUX 0x0008 /* Flags that may be passed by the tokenizer implementation back to FTS5 ** as the third argument to the supplied xToken callback. */ #define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */ /* ** END OF CUSTOM TOKENIZERS *************************************************************************/ /************************************************************************* ** FTS5 EXTENSION REGISTRATION API */ typedef struct fts5_api fts5_api; struct fts5_api { int iVersion; /* Currently always set to 2 */ /* Create a new tokenizer */ int (*xCreateTokenizer)( fts5_api *pApi, const char *zName, void *pUserData, fts5_tokenizer *pTokenizer, void (*xDestroy)(void*) ); /* Find an existing tokenizer */ int (*xFindTokenizer)( fts5_api *pApi, const char *zName, void **ppUserData, fts5_tokenizer *pTokenizer ); /* Create a new auxiliary function */ int (*xCreateFunction)( fts5_api *pApi, const char *zName, void *pUserData, fts5_extension_function xFunction, void (*xDestroy)(void*) ); }; /* ** END OF REGISTRATION API *************************************************************************/ #if 0 } /* end of the 'extern "C"' block */ #endif #endif /* _FTS5_H */ /******** End of fts5.h *********/ /************** End of sqlite3.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* ** Reuse the STATIC_LRU for mutex access to sqlite3_temp_directory. */ #define SQLITE_MUTEX_STATIC_TEMPDIR SQLITE_MUTEX_STATIC_VFS1 /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H) #include "sqlite_cfg.h" #define SQLITECONFIG_H 1 #endif /************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ /************** Begin file sqliteLimit.h *************************************/ /* ** 2007 May 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file defines various limits of what SQLite can process. */ /* ** The maximum length of a TEXT or BLOB in bytes. This also ** limits the size of a row in a table or index. ** ** The hard limit is the ability of a 32-bit signed integer ** to count the size: 2^31-1 or 2147483647. */ #ifndef SQLITE_MAX_LENGTH # define SQLITE_MAX_LENGTH 1000000000 #endif /* ** This is the maximum number of ** ** * Columns in a table ** * Columns in an index ** * Columns in a view ** * Terms in the SET clause of an UPDATE statement ** * Terms in the result set of a SELECT statement ** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. ** * Terms in the VALUES clause of an INSERT statement ** ** The hard upper limit here is 32676. Most database people will ** tell you that in a well-normalized database, you usually should ** not have more than a dozen or so columns in any table. And if ** that is the case, there is no point in having more than a few ** dozen values in any of the other situations described above. */ #ifndef SQLITE_MAX_COLUMN # define SQLITE_MAX_COLUMN 2000 #endif /* ** The maximum length of a single SQL statement in bytes. ** ** It used to be the case that setting this value to zero would ** turn the limit off. That is no longer true. It is not possible ** to turn this limit off. */ #ifndef SQLITE_MAX_SQL_LENGTH # define SQLITE_MAX_SQL_LENGTH 1000000000 #endif /* ** The maximum depth of an expression tree. This is limited to ** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might ** want to place more severe limits on the complexity of an ** expression. A value of 0 means that there is no limit. */ #ifndef SQLITE_MAX_EXPR_DEPTH # define SQLITE_MAX_EXPR_DEPTH 1000 #endif /* ** The maximum number of terms in a compound SELECT statement. ** The code generator for compound SELECT statements does one ** level of recursion for each term. A stack overflow can result ** if the number of terms is too large. In practice, most SQL ** never has more than 3 or 4 terms. Use a value of 0 to disable ** any limit on the number of terms in a compound SELECT. */ #ifndef SQLITE_MAX_COMPOUND_SELECT # define SQLITE_MAX_COMPOUND_SELECT 500 #endif /* ** The maximum number of opcodes in a VDBE program. ** Not currently enforced. */ #ifndef SQLITE_MAX_VDBE_OP # define SQLITE_MAX_VDBE_OP 250000000 #endif /* ** The maximum number of arguments to an SQL function. */ #ifndef SQLITE_MAX_FUNCTION_ARG # define SQLITE_MAX_FUNCTION_ARG 127 #endif /* ** The suggested maximum number of in-memory pages to use for ** the main database table and for temporary tables. ** ** IMPLEMENTATION-OF: R-30185-15359 The default suggested cache size is -2000, ** which means the cache size is limited to 2048000 bytes of memory. ** IMPLEMENTATION-OF: R-48205-43578 The default suggested cache size can be ** altered using the SQLITE_DEFAULT_CACHE_SIZE compile-time options. */ #ifndef SQLITE_DEFAULT_CACHE_SIZE # define SQLITE_DEFAULT_CACHE_SIZE -2000 #endif /* ** The default number of frames to accumulate in the log file before ** checkpointing the database in WAL mode. */ #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 #endif /* ** The maximum number of attached databases. This must be between 0 ** and 125. The upper bound of 125 is because the attached databases are ** counted using a signed 8-bit integer which has a maximum value of 127 ** and we have to allow 2 extra counts for the "main" and "temp" databases. */ #ifndef SQLITE_MAX_ATTACHED # define SQLITE_MAX_ATTACHED 10 #endif /* ** The maximum value of a ?nnn wildcard that the parser will accept. ** If the value exceeds 32767 then extra space is required for the Expr ** structure. But otherwise, we believe that the number can be as large ** as a signed 32-bit integer can hold. */ #ifndef SQLITE_MAX_VARIABLE_NUMBER # define SQLITE_MAX_VARIABLE_NUMBER 32766 #endif /* Maximum page size. The upper bound on this value is 65536. This a limit ** imposed by the use of 16-bit offsets within each page. ** ** Earlier versions of SQLite allowed the user to change this value at ** compile time. This is no longer permitted, on the grounds that it creates ** a library that is technically incompatible with an SQLite library ** compiled with a different limit. If a process operating on a database ** with a page-size of 65536 bytes crashes, then an instance of SQLite ** compiled with the default page-size limit will not be able to rollback ** the aborted transaction. This could lead to database corruption. */ #ifdef SQLITE_MAX_PAGE_SIZE # undef SQLITE_MAX_PAGE_SIZE #endif #define SQLITE_MAX_PAGE_SIZE 65536 /* ** The default size of a database page. */ #ifndef SQLITE_DEFAULT_PAGE_SIZE # define SQLITE_DEFAULT_PAGE_SIZE 4096 #endif #if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE # undef SQLITE_DEFAULT_PAGE_SIZE # define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE #endif /* ** Ordinarily, if no value is explicitly provided, SQLite creates databases ** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain ** device characteristics (sector-size and atomic write() support), ** SQLite may choose a larger value. This constant is the maximum value ** SQLite will choose on its own. */ #ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE # define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 #endif #if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE # undef SQLITE_MAX_DEFAULT_PAGE_SIZE # define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE #endif /* ** Maximum number of pages in one database file. ** ** This is really just the default value for the max_page_count pragma. ** This value can be lowered (or raised) at run-time using that the ** max_page_count macro. */ #ifndef SQLITE_MAX_PAGE_COUNT # define SQLITE_MAX_PAGE_COUNT 1073741823 #endif /* ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /* ** Maximum depth of recursion for triggers. ** ** A value of 1 means that a trigger program will not be able to itself ** fire any triggers. A value of 0 means that no trigger programs at all ** may be executed. */ #ifndef SQLITE_MAX_TRIGGER_DEPTH # define SQLITE_MAX_TRIGGER_DEPTH 1000 #endif /************** End of sqliteLimit.h *****************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* Disable nuisance warnings on Borland compilers */ #if defined(__BORLANDC__) #pragma warn -rch /* unreachable code */ #pragma warn -ccc /* Condition is always true or false */ #pragma warn -aus /* Assigned value is never used */ #pragma warn -csu /* Comparing signed and unsigned */ #pragma warn -spa /* Suspicious pointer arithmetic */ #endif /* ** A few places in the code require atomic load/store of aligned ** integer values. */ #ifndef __has_extension # define __has_extension(x) 0 /* compatibility with non-clang compilers */ #endif #if GCC_VERSION>=4007000 || __has_extension(c_atomic) # define SQLITE_ATOMIC_INTRINSICS 1 # define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED) # define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED) #else # define SQLITE_ATOMIC_INTRINSICS 0 # define AtomicLoad(PTR) (*(PTR)) # define AtomicStore(PTR,VAL) (*(PTR) = (VAL)) #endif /* ** Include standard header files as necessary */ #ifdef HAVE_STDINT_H #include #endif #ifdef HAVE_INTTYPES_H #include #endif /* ** The following macros are used to cast pointers to integers and ** integers to pointers. The way you do this varies from one compiler ** to the next, so we have developed the following set of #if statements ** to generate appropriate macros for a wide range of compilers. ** ** The correct "ANSI" way to do this is to use the intptr_t type. ** Unfortunately, that typedef is not available on all compilers, or ** if it is available, it requires an #include of specific headers ** that vary from one machine to the next. ** ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). ** So we have to define the macros in different ways depending on the ** compiler. */ #if defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) #elif defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) #else /* Generates a warning - but it always works */ # define SQLITE_INT_TO_PTR(X) ((void*)(X)) # define SQLITE_PTR_TO_INT(X) ((int)(X)) #endif /* ** Macros to hint to the compiler that a function should or should not be ** inlined. */ #if defined(__GNUC__) # define SQLITE_NOINLINE __attribute__((noinline)) # define SQLITE_INLINE __attribute__((always_inline)) inline #elif defined(_MSC_VER) && _MSC_VER>=1310 # define SQLITE_NOINLINE __declspec(noinline) # define SQLITE_INLINE __forceinline #else # define SQLITE_NOINLINE # define SQLITE_INLINE #endif #if defined(SQLITE_COVERAGE_TEST) || defined(__STRICT_ANSI__) # undef SQLITE_INLINE # define SQLITE_INLINE #endif /* ** Make sure that the compiler intrinsics we desire are enabled when ** compiling with an appropriate version of MSVC unless prevented by ** the SQLITE_DISABLE_INTRINSIC define. */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1400 # if !defined(_WIN32_WCE) # include # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_byteswap_uint64) # pragma intrinsic(_ReadWriteBarrier) # else # include # endif # endif #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. ** 0 means mutexes are permanently disable and the library is never ** threadsafe. 1 means the library is serialized which is the highest ** level of threadsafety. 2 means the library is multithreaded - multiple ** threads can use SQLite as long as no two threads try to use the same ** database connection at the same time. ** ** Older versions of SQLite used an optional THREADSAFE macro. ** We support that for legacy. ** ** To ensure that the correct value of "THREADSAFE" is reported when querying ** for compile-time options at runtime (e.g. "PRAGMA compile_options"), this ** logic is partially replicated in ctime.c. If it is updated here, it should ** also be updated there. */ #if !defined(SQLITE_THREADSAFE) # if defined(THREADSAFE) # define SQLITE_THREADSAFE THREADSAFE # else # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ # endif #endif /* ** Powersafe overwrite is on by default. But can be turned off using ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. */ #ifndef SQLITE_POWERSAFE_OVERWRITE # define SQLITE_POWERSAFE_OVERWRITE 1 #endif /* ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in ** which case memory allocation statistics are disabled by default. */ #if !defined(SQLITE_DEFAULT_MEMSTATUS) # define SQLITE_DEFAULT_MEMSTATUS 1 #endif /* ** Exactly one of the following macros must be defined in order to ** specify which memory allocation subsystem to use. ** ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() ** SQLITE_WIN32_MALLOC // Use Win32 native heap API ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails ** SQLITE_MEMDEBUG // Debugging version of system malloc() ** ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the ** assert() macro is enabled, each call into the Win32 native heap subsystem ** will cause HeapValidate to be called. If heap validation should fail, an ** assertion will be triggered. ** ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as ** the default. */ #if defined(SQLITE_SYSTEM_MALLOC) \ + defined(SQLITE_WIN32_MALLOC) \ + defined(SQLITE_ZERO_MALLOC) \ + defined(SQLITE_MEMDEBUG)>1 # error "Two or more of the following compile-time configuration options\ are defined but at most one is allowed:\ SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ SQLITE_ZERO_MALLOC" #endif #if defined(SQLITE_SYSTEM_MALLOC) \ + defined(SQLITE_WIN32_MALLOC) \ + defined(SQLITE_ZERO_MALLOC) \ + defined(SQLITE_MEMDEBUG)==0 # define SQLITE_SYSTEM_MALLOC 1 #endif /* ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the ** sizes of memory allocations below this value where possible. */ #if !defined(SQLITE_MALLOC_SOFT_LIMIT) # define SQLITE_MALLOC_SOFT_LIMIT 1024 #endif /* ** We need to define _XOPEN_SOURCE as follows in order to enable ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit ** it. */ #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) # define _XOPEN_SOURCE 600 #endif /* ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, ** make it true by defining or undefining NDEBUG. ** ** Setting NDEBUG makes the code smaller and faster by disabling the ** assert() statements in the code. So we want the default action ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out ** feature. */ #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif #if defined(NDEBUG) && defined(SQLITE_DEBUG) # undef NDEBUG #endif /* ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. */ #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 #endif /* ** The testcase() macro is used to aid in coverage testing. When ** doing coverage testing, the condition inside the argument to ** testcase() must be evaluated both true and false in order to ** get full branch coverage. The testcase() macro is inserted ** to help ensure adequate test coverage in places where simple ** condition/decision coverage is inadequate. For example, testcase() ** can be used to make sure boundary values are tested. For ** bitmask tests, testcase() can be used to make sure each bit ** is significant and used at least once. On switch statements ** where multiple cases go to the same block of code, testcase() ** can insure that all cases are evaluated. */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) # ifndef SQLITE_AMALGAMATION extern unsigned int sqlite3CoverageCounter; # endif # define testcase(X) if( X ){ sqlite3CoverageCounter += (unsigned)__LINE__; } #else # define testcase(X) #endif /* ** The TESTONLY macro is used to enclose variable declarations or ** other bits of code that are needed to support the arguments ** within testcase() and assert() macros. */ #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) # define TESTONLY(X) X #else # define TESTONLY(X) #endif /* ** Sometimes we need a small amount of code such as a variable initialization ** to setup for a later assert() statement. We do not want this code to ** appear when assert() is disabled. The following macro is therefore ** used to contain that setup code. The "VVA" acronym stands for ** "Verification, Validation, and Accreditation". In other words, the ** code within VVA_ONLY() will only run during verification processes. */ #ifndef NDEBUG # define VVA_ONLY(X) X #else # define VVA_ONLY(X) #endif /* ** Disable ALWAYS() and NEVER() (make them pass-throughs) for coverage ** and mutation testing */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif /* ** The ALWAYS and NEVER macros surround boolean expressions which ** are intended to always be true or false, respectively. Such ** expressions could be omitted from the code completely. But they ** are included in a few cases in order to enhance the resilience ** of SQLite to unexpected behavior - to make the code "self-healing" ** or "ductile" rather than being "brittle" and crashing at the first ** hint of unplanned behavior. ** ** In other words, ALWAYS and NEVER are added for defensive code. ** ** When doing coverage testing ALWAYS and NEVER are hard-coded to ** be true and false so that the unreachable code they specify will ** not be counted as untested code. */ #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif /* ** Some conditionals are optimizations only. In other words, if the ** conditionals are replaced with a constant 1 (true) or 0 (false) then ** the correct answer is still obtained, though perhaps not as quickly. ** ** The following macros mark these optimizations conditionals. */ #if defined(SQLITE_MUTATION_TEST) # define OK_IF_ALWAYS_TRUE(X) (1) # define OK_IF_ALWAYS_FALSE(X) (0) #else # define OK_IF_ALWAYS_TRUE(X) (X) # define OK_IF_ALWAYS_FALSE(X) (X) #endif /* ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is ** defined. We need to defend against those failures when testing with ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches ** during a normal build. The following macro can be used to disable tests ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. */ #if defined(SQLITE_TEST_REALLOC_STRESS) # define ONLY_IF_REALLOC_STRESS(X) (X) #elif !defined(NDEBUG) # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) #else # define ONLY_IF_REALLOC_STRESS(X) (0) #endif /* ** Declarations used for tracing the operating system interfaces. */ #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) extern int sqlite3OSTrace; # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X # define SQLITE_HAVE_OS_TRACE #else # define OSTRACE(X) # undef SQLITE_HAVE_OS_TRACE #endif /* ** Is the sqlite3ErrName() function needed in the build? Currently, ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when ** OSTRACE is enabled), and by several "test*.c" files (which are ** compiled using SQLITE_TEST). */ #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) # define SQLITE_NEED_ERR_NAME #else # undef SQLITE_NEED_ERR_NAME #endif /* ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_OMIT_EXPLAIN # undef SQLITE_ENABLE_EXPLAIN_COMMENTS #endif /* ** SQLITE_OMIT_VIRTUALTABLE implies SQLITE_OMIT_ALTERTABLE */ #if defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_ALTERTABLE) # define SQLITE_OMIT_ALTERTABLE #endif /* ** Return true (non-zero) if the input is an integer that is too large ** to fit in 32-bits. This macro is used inside of various testcase() ** macros to verify that we have tested SQLite for large-file support. */ #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds ** a boolean expression that is usually true. These hints could, ** in theory, be used by the compiler to generate better code, but ** currently they are just comments for human readers. */ #define likely(X) (X) #define unlikely(X) (X) /************** Include hash.h in the middle of sqliteInt.h ******************/ /************** Begin file hash.h ********************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the header file for the generic hash-table implementation ** used in SQLite. */ #ifndef SQLITE_HASH_H #define SQLITE_HASH_H /* Forward declarations of structures. */ typedef struct Hash Hash; typedef struct HashElem HashElem; /* A complete hash table is an instance of the following structure. ** The internals of this structure are intended to be opaque -- client ** code should not attempt to access or modify the fields of this structure ** directly. Change this structure only by using the routines below. ** However, some of the "procedures" and "functions" for modifying and ** accessing this structure are really macros, so we can't really make ** this structure opaque. ** ** All elements of the hash table are on a single doubly-linked list. ** Hash.first points to the head of this list. ** ** There are Hash.htsize buckets. Each bucket points to a spot in ** the global doubly-linked list. The contents of the bucket are the ** element pointed to plus the next _ht.count-1 elements in the list. ** ** Hash.htsize and Hash.ht may be zero. In that case lookup is done ** by a linear search of the global list. For small tables, the ** Hash.ht table is never allocated because if there are few elements ** in the table, it is faster to do a linear search than to manage ** the hash table. */ struct Hash { unsigned int htsize; /* Number of buckets in the hash table */ unsigned int count; /* Number of entries in this table */ HashElem *first; /* The first element of the array */ struct _ht { /* the hash table */ unsigned int count; /* Number of entries with this hash */ HashElem *chain; /* Pointer to first entry with this hash */ } *ht; }; /* Each element in the hash table is an instance of the following ** structure. All elements are stored on a single doubly-linked list. ** ** Again, this structure is intended to be opaque, but it can't really ** be opaque because it is used by macros. */ struct HashElem { HashElem *next, *prev; /* Next and previous elements in the table */ void *data; /* Data associated with this element */ const char *pKey; /* Key associated with this element */ }; /* ** Access routines. To delete, insert a NULL pointer. */ SQLITE_PRIVATE void sqlite3HashInit(Hash*); SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, void *pData); SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey); SQLITE_PRIVATE void sqlite3HashClear(Hash*); /* ** Macros for looping over all elements of a hash table. The idiom is ** like this: ** ** Hash h; ** HashElem *p; ** ... ** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ ** SomeStructure *pData = sqliteHashData(p); ** // do something with pData ** } */ #define sqliteHashFirst(H) ((H)->first) #define sqliteHashNext(E) ((E)->next) #define sqliteHashData(E) ((E)->data) /* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ /* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ /* ** Number of entries in a hash table */ #define sqliteHashCount(H) ((H)->count) #endif /* SQLITE_HASH_H */ /************** End of hash.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include parse.h in the middle of sqliteInt.h *****************/ /************** Begin file parse.h *******************************************/ #define TK_SEMI 1 #define TK_EXPLAIN 2 #define TK_QUERY 3 #define TK_PLAN 4 #define TK_BEGIN 5 #define TK_TRANSACTION 6 #define TK_DEFERRED 7 #define TK_IMMEDIATE 8 #define TK_EXCLUSIVE 9 #define TK_COMMIT 10 #define TK_END 11 #define TK_ROLLBACK 12 #define TK_SAVEPOINT 13 #define TK_RELEASE 14 #define TK_TO 15 #define TK_TABLE 16 #define TK_CREATE 17 #define TK_IF 18 #define TK_NOT 19 #define TK_EXISTS 20 #define TK_TEMP 21 #define TK_LP 22 #define TK_RP 23 #define TK_AS 24 #define TK_COMMA 25 #define TK_WITHOUT 26 #define TK_ABORT 27 #define TK_ACTION 28 #define TK_AFTER 29 #define TK_ANALYZE 30 #define TK_ASC 31 #define TK_ATTACH 32 #define TK_BEFORE 33 #define TK_BY 34 #define TK_CASCADE 35 #define TK_CAST 36 #define TK_CONFLICT 37 #define TK_DATABASE 38 #define TK_DESC 39 #define TK_DETACH 40 #define TK_EACH 41 #define TK_FAIL 42 #define TK_OR 43 #define TK_AND 44 #define TK_IS 45 #define TK_MATCH 46 #define TK_LIKE_KW 47 #define TK_BETWEEN 48 #define TK_IN 49 #define TK_ISNULL 50 #define TK_NOTNULL 51 #define TK_NE 52 #define TK_EQ 53 #define TK_GT 54 #define TK_LE 55 #define TK_LT 56 #define TK_GE 57 #define TK_ESCAPE 58 #define TK_ID 59 #define TK_COLUMNKW 60 #define TK_DO 61 #define TK_FOR 62 #define TK_IGNORE 63 #define TK_INITIALLY 64 #define TK_INSTEAD 65 #define TK_NO 66 #define TK_KEY 67 #define TK_OF 68 #define TK_OFFSET 69 #define TK_PRAGMA 70 #define TK_RAISE 71 #define TK_RECURSIVE 72 #define TK_REPLACE 73 #define TK_RESTRICT 74 #define TK_ROW 75 #define TK_ROWS 76 #define TK_TRIGGER 77 #define TK_VACUUM 78 #define TK_VIEW 79 #define TK_VIRTUAL 80 #define TK_WITH 81 #define TK_NULLS 82 #define TK_FIRST 83 #define TK_LAST 84 #define TK_CURRENT 85 #define TK_FOLLOWING 86 #define TK_PARTITION 87 #define TK_PRECEDING 88 #define TK_RANGE 89 #define TK_UNBOUNDED 90 #define TK_EXCLUDE 91 #define TK_GROUPS 92 #define TK_OTHERS 93 #define TK_TIES 94 #define TK_GENERATED 95 #define TK_ALWAYS 96 #define TK_MATERIALIZED 97 #define TK_REINDEX 98 #define TK_RENAME 99 #define TK_CTIME_KW 100 #define TK_ANY 101 #define TK_BITAND 102 #define TK_BITOR 103 #define TK_LSHIFT 104 #define TK_RSHIFT 105 #define TK_PLUS 106 #define TK_MINUS 107 #define TK_STAR 108 #define TK_SLASH 109 #define TK_REM 110 #define TK_CONCAT 111 #define TK_PTR 112 #define TK_COLLATE 113 #define TK_BITNOT 114 #define TK_ON 115 #define TK_INDEXED 116 #define TK_STRING 117 #define TK_JOIN_KW 118 #define TK_CONSTRAINT 119 #define TK_DEFAULT 120 #define TK_NULL 121 #define TK_PRIMARY 122 #define TK_UNIQUE 123 #define TK_CHECK 124 #define TK_REFERENCES 125 #define TK_AUTOINCR 126 #define TK_INSERT 127 #define TK_DELETE 128 #define TK_UPDATE 129 #define TK_SET 130 #define TK_DEFERRABLE 131 #define TK_FOREIGN 132 #define TK_DROP 133 #define TK_UNION 134 #define TK_ALL 135 #define TK_EXCEPT 136 #define TK_INTERSECT 137 #define TK_SELECT 138 #define TK_VALUES 139 #define TK_DISTINCT 140 #define TK_DOT 141 #define TK_FROM 142 #define TK_JOIN 143 #define TK_USING 144 #define TK_ORDER 145 #define TK_GROUP 146 #define TK_HAVING 147 #define TK_LIMIT 148 #define TK_WHERE 149 #define TK_RETURNING 150 #define TK_INTO 151 #define TK_NOTHING 152 #define TK_FLOAT 153 #define TK_BLOB 154 #define TK_INTEGER 155 #define TK_VARIABLE 156 #define TK_CASE 157 #define TK_WHEN 158 #define TK_THEN 159 #define TK_ELSE 160 #define TK_INDEX 161 #define TK_ALTER 162 #define TK_ADD 163 #define TK_WINDOW 164 #define TK_OVER 165 #define TK_FILTER 166 #define TK_COLUMN 167 #define TK_AGG_FUNCTION 168 #define TK_AGG_COLUMN 169 #define TK_TRUEFALSE 170 #define TK_ISNOT 171 #define TK_FUNCTION 172 #define TK_UMINUS 173 #define TK_UPLUS 174 #define TK_TRUTH 175 #define TK_REGISTER 176 #define TK_VECTOR 177 #define TK_SELECT_COLUMN 178 #define TK_IF_NULL_ROW 179 #define TK_ASTERISK 180 #define TK_SPAN 181 #define TK_ERROR 182 #define TK_SPACE 183 #define TK_ILLEGAL 184 /************** End of parse.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ #include #include #include #include #include /* ** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY. ** This allows better measurements of where memcpy() is used when running ** cachegrind. But this macro version of memcpy() is very slow so it ** should not be used in production. This is a performance measurement ** hack only. */ #ifdef SQLITE_INLINE_MEMCPY # define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\ int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);} #endif /* ** If compiling for a processor that lacks floating point support, ** substitute integer for floating-point */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite_int64 # define float sqlite_int64 # define LONGDOUBLE_TYPE sqlite_int64 # ifndef SQLITE_BIG_DBL # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) # endif # define SQLITE_OMIT_DATETIME_FUNCS 1 # define SQLITE_OMIT_TRACE 1 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT # undef SQLITE_HAVE_ISNAN #endif #ifndef SQLITE_BIG_DBL # define SQLITE_BIG_DBL (1e99) #endif /* ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 ** afterward. Having this macro allows us to cause the C compiler ** to omit code used by TEMP tables without messy #ifndef statements. */ #ifdef SQLITE_OMIT_TEMPDB #define OMIT_TEMPDB 1 #else #define OMIT_TEMPDB 0 #endif /* ** The "file format" number is an integer that is incremented whenever ** the VDBE-level file format changes. The following macros define the ** the default file format for new databases and the maximum file format ** that the library can read. */ #define SQLITE_MAX_FILE_FORMAT 4 #ifndef SQLITE_DEFAULT_FILE_FORMAT # define SQLITE_DEFAULT_FILE_FORMAT 4 #endif /* ** Determine whether triggers are recursive by default. This can be ** changed at run-time using a pragma. */ #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 #endif /* ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified ** on the command-line */ #ifndef SQLITE_TEMP_STORE # define SQLITE_TEMP_STORE 1 #endif /* ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it ** to zero. */ #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 # undef SQLITE_MAX_WORKER_THREADS # define SQLITE_MAX_WORKER_THREADS 0 #endif #ifndef SQLITE_MAX_WORKER_THREADS # define SQLITE_MAX_WORKER_THREADS 8 #endif #ifndef SQLITE_DEFAULT_WORKER_THREADS # define SQLITE_DEFAULT_WORKER_THREADS 0 #endif #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS # undef SQLITE_MAX_WORKER_THREADS # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS #endif /* ** The default initial allocation for the pagecache when using separate ** pagecaches for each database connection. A positive number is the ** number of pages. A negative number N translations means that a buffer ** of -1024*N bytes is allocated and used for as many pages as it will hold. ** ** The default value of "20" was chosen to minimize the run-time of the ** speedtest1 test program with options: --shrink-memory --reprepare */ #ifndef SQLITE_DEFAULT_PCACHE_INITSZ # define SQLITE_DEFAULT_PCACHE_INITSZ 20 #endif /* ** Default value for the SQLITE_CONFIG_SORTERREF_SIZE option. */ #ifndef SQLITE_DEFAULT_SORTERREF_SIZE # define SQLITE_DEFAULT_SORTERREF_SIZE 0x7fffffff #endif /* ** The compile-time options SQLITE_MMAP_READWRITE and ** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another. ** You must choose one or the other (or neither) but not both. */ #if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) #error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE #endif /* ** GCC does not define the offsetof() macro so we'll have to do it ** ourselves. */ #ifndef offsetof #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) #endif /* ** Macros to compute minimum and maximum of two numbers. */ #ifndef MIN # define MIN(A,B) ((A)<(B)?(A):(B)) #endif #ifndef MAX # define MAX(A,B) ((A)>(B)?(A):(B)) #endif /* ** Swap two objects of type TYPE. */ #define SQ__SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Check to see if this machine uses EBCDIC. (Yes, believe it or ** not, there are still machines out there that use EBCDIC.) */ #if 'A' == '\301' # define SQLITE_EBCDIC 1 #else # define SQLITE_ASCII 1 #endif /* ** Integers of known sizes. These typedefs might change for architectures ** where the sizes very. Preprocessor macros are available so that the ** types can be conveniently redefined at compile-type. Like this: ** ** cc '-DUINTPTR_TYPE=long long int' ... */ #ifndef UINT32_TYPE # ifdef HAVE_UINT32_T # define UINT32_TYPE uint32_t # else # define UINT32_TYPE unsigned int # endif #endif #ifndef UINT16_TYPE # ifdef HAVE_UINT16_T # define UINT16_TYPE uint16_t # else # define UINT16_TYPE unsigned short int # endif #endif #ifndef INT16_TYPE # ifdef HAVE_INT16_T # define INT16_TYPE int16_t # else # define INT16_TYPE short int # endif #endif #ifndef UINT8_TYPE # ifdef HAVE_UINT8_T # define UINT8_TYPE uint8_t # else # define UINT8_TYPE unsigned char # endif #endif #ifndef INT8_TYPE # ifdef HAVE_INT8_T # define INT8_TYPE int8_t # else # define INT8_TYPE signed char # endif #endif #ifndef LONGDOUBLE_TYPE # define LONGDOUBLE_TYPE long double #endif typedef sqlite_int64 i64; /* 8-byte signed integer */ typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ typedef INT16_TYPE i16; /* 2-byte signed integer */ typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ typedef INT8_TYPE i8; /* 1-byte signed integer */ /* ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value ** that can be stored in a u32 without loss of data. The value ** is 0x00000000ffffffff. But because of quirks of some compilers, we ** have to specify the value in the less intuitive manner shown: */ #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) /* ** The datatype used to store estimates of the number of rows in a ** table or index. */ typedef u64 tRowcnt; /* ** Estimated quantities used for query planning are stored as 16-bit ** logarithms. For quantity X, the value stored is 10*log2(X). This ** gives a possible range of values of approximately 1.0e986 to 1e-986. ** But the allowed values are "grainy". Not every value is representable. ** For example, quantities 16 and 17 are both represented by a LogEst ** of 40. However, since LogEst quantities are suppose to be estimates, ** not exact values, this imprecision is not a problem. ** ** "LogEst" is short for "Logarithmic Estimate". ** ** Examples: ** 1 -> 0 20 -> 43 10000 -> 132 ** 2 -> 10 25 -> 46 25000 -> 146 ** 3 -> 16 100 -> 66 1000000 -> 199 ** 4 -> 20 1000 -> 99 1048576 -> 200 ** 10 -> 33 1024 -> 100 4294967296 -> 320 ** ** The LogEst can be negative to indicate fractional values. ** Examples: ** ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ typedef INT16_TYPE LogEst; /* ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer */ #ifndef SQLITE_PTRSIZE # if defined(__SIZEOF_POINTER__) # define SQLITE_PTRSIZE __SIZEOF_POINTER__ # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(_M_ARM) || defined(__arm__) || defined(__x86) || \ (defined(__APPLE__) && defined(__POWERPC__)) || \ (defined(__TOS_AIX__) && !defined(__64BIT__)) # define SQLITE_PTRSIZE 4 # else # define SQLITE_PTRSIZE 8 # endif #endif /* The uptr type is an unsigned integer large enough to hold a pointer */ #if defined(HAVE_STDINT_H) typedef uintptr_t uptr; #elif SQLITE_PTRSIZE==4 typedef u32 uptr; #else typedef u64 uptr; #endif /* ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to ** something between S (inclusive) and E (exclusive). ** ** In other words, S is a buffer and E is a pointer to the first byte after ** the end of buffer S. This macro returns true if P points to something ** contained within the buffer S. */ #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) /* ** P is one byte past the end of a large buffer. Return true if a span of bytes ** between S..E crosses the end of that buffer. In other words, return true ** if the sub-buffer S..E-1 overflows the buffer whose last byte is P-1. ** ** S is the start of the span. E is one byte past the end of end of span. ** ** P ** |-----------------| FALSE ** |-------| ** S E ** ** P ** |-----------------| ** |-------| TRUE ** S E ** ** P ** |-----------------| ** |-------| FALSE ** S E */ #define SQLITE_OVERFLOW(P,S,E) (((uptr)(S)<(uptr)(P))&&((uptr)(E)>(uptr)(P))) /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined ** at run-time. */ #ifndef SQLITE_BYTEORDER # if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) # define SQLITE_BYTEORDER 1234 # elif defined(sparc) || defined(__ppc__) || \ defined(__ARMEB__) || defined(__AARCH64EB__) # define SQLITE_BYTEORDER 4321 # else # define SQLITE_BYTEORDER 0 # endif #endif #if SQLITE_BYTEORDER==4321 # define SQLITE_BIGENDIAN 1 # define SQLITE_LITTLEENDIAN 0 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE #elif SQLITE_BYTEORDER==1234 # define SQLITE_BIGENDIAN 0 # define SQLITE_LITTLEENDIAN 1 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE #else # ifdef SQLITE_AMALGAMATION const int sqlite3one = 1; # else extern const int sqlite3one; # endif # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) #endif /* ** Constants for the largest and smallest possible 64-bit signed integers. ** These macros are designed to work correctly on both 32-bit and 64-bit ** compilers. */ #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) #define LARGEST_UINT64 (0xffffffff|(((u64)0xffffffff)<<32)) #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) /* ** Round up a number to the next larger multiple of 8. This is used ** to force 8-byte alignment on 64-bit architectures. ** ** ROUND8() always does the rounding, for any argument. ** ** ROUND8P() assumes that the argument is already an integer number of ** pointers in size, and so it is a no-op on systems where the pointer ** size is 8. */ #define ROUND8(x) (((x)+7)&~7) #if SQLITE_PTRSIZE==8 # define ROUND8P(x) (x) #else # define ROUND8P(x) (((x)+7)&~7) #endif /* ** Round down to the nearest multiple of 8 */ #define ROUNDDOWN8(x) ((x)&~7) /* ** Assert that the pointer X is aligned to an 8-byte boundary. This ** macro is used only within assert() to verify that the code gets ** all alignment restrictions correct. ** ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the ** underlying malloc() implementation might return us 4-byte aligned ** pointers. In that case, only verify 4-byte alignment. */ #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC # define EIGHT_BYTE_ALIGNMENT(X) ((((uptr)(X) - (uptr)0)&3)==0) #else # define EIGHT_BYTE_ALIGNMENT(X) ((((uptr)(X) - (uptr)0)&7)==0) #endif /* ** Disable MMAP on platforms where it is known to not work */ #if defined(__OpenBSD__) || defined(__QNXNTO__) # undef SQLITE_MAX_MMAP_SIZE # define SQLITE_MAX_MMAP_SIZE 0 #endif /* ** Default maximum size of memory used by memory-mapped I/O in the VFS */ #ifdef __APPLE__ # include #endif #ifndef SQLITE_MAX_MMAP_SIZE # if defined(__linux__) \ || defined(_WIN32) \ || (defined(__APPLE__) && defined(__MACH__)) \ || defined(__sun) \ || defined(__FreeBSD__) \ || defined(__DragonFly__) # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ # else # define SQLITE_MAX_MMAP_SIZE 0 # endif #endif /* ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger ** default MMAP_SIZE is specified at compile-time, make sure that it does ** not exceed the maximum mmap size. */ #ifndef SQLITE_DEFAULT_MMAP_SIZE # define SQLITE_DEFAULT_MMAP_SIZE 0 #endif #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE # undef SQLITE_DEFAULT_MMAP_SIZE # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE #endif /* ** TREETRACE_ENABLED will be either 1 or 0 depending on whether or not ** the Abstract Syntax Tree tracing logic is turned on. */ #if !defined(SQLITE_AMALGAMATION) SQLITE_PRIVATE u32 sqlite3TreeTrace; #endif #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_SELECTTRACE) \ || defined(SQLITE_ENABLE_TREETRACE)) # define TREETRACE_ENABLED 1 # define TREETRACE(K,P,S,X) \ if(sqlite3TreeTrace&(K)) \ sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ sqlite3DebugPrintf X #else # define TREETRACE(K,P,S,X) # define TREETRACE_ENABLED 0 #endif /* TREETRACE flag meanings: ** ** 0x00000001 Beginning and end of SELECT processing ** 0x00000002 WHERE clause processing ** 0x00000004 Query flattener ** 0x00000008 Result-set wildcard expansion ** 0x00000010 Query name resolution ** 0x00000020 Aggregate analysis ** 0x00000040 Window functions ** 0x00000080 Generated column names ** 0x00000100 Move HAVING terms into WHERE ** 0x00000200 Count-of-view optimization ** 0x00000400 Compound SELECT processing ** 0x00000800 Drop superfluous ORDER BY ** 0x00001000 LEFT JOIN simplifies to JOIN ** 0x00002000 Constant propagation ** 0x00004000 Push-down optimization ** 0x00008000 After all FROM-clause analysis ** 0x00010000 Beginning of DELETE/INSERT/UPDATE processing ** 0x00020000 Transform DISTINCT into GROUP BY ** 0x00040000 SELECT tree dump after all code has been generated */ /* ** Macros for "wheretrace" */ SQLITE_PRIVATE u32 sqlite3WhereTrace; #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) # define WHERETRACE(K,X) if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X # define WHERETRACE_ENABLED 1 #else # define WHERETRACE(K,X) #endif /* ** Bits for the sqlite3WhereTrace mask: ** ** (---any--) Top-level block structure ** 0x-------F High-level debug messages ** 0x----FFF- More detail ** 0xFFFF---- Low-level debug messages ** ** 0x00000001 Code generation ** 0x00000002 Solver ** 0x00000004 Solver costs ** 0x00000008 WhereLoop inserts ** ** 0x00000010 Display sqlite3_index_info xBestIndex calls ** 0x00000020 Range an equality scan metrics ** 0x00000040 IN operator decisions ** 0x00000080 WhereLoop cost adjustements ** 0x00000100 ** 0x00000200 Covering index decisions ** 0x00000400 OR optimization ** 0x00000800 Index scanner ** 0x00001000 More details associated with code generation ** 0x00002000 ** 0x00004000 Show all WHERE terms at key points ** 0x00008000 Show the full SELECT statement at key places ** ** 0x00010000 Show more detail when printing WHERE terms ** 0x00020000 Show WHERE terms returned from whereScanNext() */ /* ** An instance of the following structure is used to store the busy-handler ** callback for a given sqlite handle. ** ** The sqlite.busyHandler member of the sqlite struct contains the busy ** callback for the database handle. Each pager opened via the sqlite ** handle is passed a pointer to sqlite.busyHandler. The busy-handler ** callback is currently invoked only from within pager.c. */ typedef struct BusyHandler BusyHandler; struct BusyHandler { int (*xBusyHandler)(void *,int); /* The busy callback */ void *pBusyArg; /* First arg to busy callback */ int nBusy; /* Incremented with each busy call */ }; /* ** Name of table that holds the database schema. ** ** The PREFERRED names are used wherever possible. But LEGACY is also ** used for backwards compatibility. ** ** 1. Queries can use either the PREFERRED or the LEGACY names ** 2. The sqlite3_set_authorizer() callback uses the LEGACY name ** 3. The PRAGMA table_list statement uses the PREFERRED name ** ** The LEGACY names are stored in the internal symbol hash table ** in support of (2). Names are translated using sqlite3PreferredTableName() ** for (3). The sqlite3FindTable() function takes care of translating ** names for (1). ** ** Note that "sqlite_temp_schema" can also be called "temp.sqlite_schema". */ #define LEGACY_SCHEMA_TABLE "sqlite_master" #define LEGACY_TEMP_SCHEMA_TABLE "sqlite_temp_master" #define PREFERRED_SCHEMA_TABLE "sqlite_schema" #define PREFERRED_TEMP_SCHEMA_TABLE "sqlite_temp_schema" /* ** The root-page of the schema table. */ #define SCHEMA_ROOT 1 /* ** The name of the schema table. The name is different for TEMP. */ #define SCHEMA_TABLE(x) \ ((!OMIT_TEMPDB)&&(x==1)?LEGACY_TEMP_SCHEMA_TABLE:LEGACY_SCHEMA_TABLE) /* ** A convenience macro that returns the number of elements in ** an array. */ #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) /* ** Determine if the argument is a power of two */ #define IsPowerOfTwo(X) (((X)&((X)-1))==0) /* ** The following value as a destructor means to use sqlite3DbFree(). ** The sqlite3DbFree() routine requires two parameters instead of the ** one parameter that destructors normally want. So we have to introduce ** this magic value that the code knows to handle differently. Any ** pointer will work here as long as it is distinct from SQLITE_STATIC ** and SQLITE_TRANSIENT. */ #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3OomClear) /* ** When SQLITE_OMIT_WSD is defined, it means that the target platform does ** not support Writable Static Data (WSD) such as global and static variables. ** All variables must either be on the stack or dynamically allocated from ** the heap. When WSD is unsupported, the variable declarations scattered ** throughout the SQLite code must become constants instead. The SQLITE_WSD ** macro is used for this purpose. And instead of referencing the variable ** directly, we use its constant as a key to lookup the run-time allocated ** buffer that holds real variable. The constant is also the initializer ** for the run-time allocated buffer. ** ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL ** macros become no-ops and have zero performance impact. */ #ifdef SQLITE_OMIT_WSD #define SQLITE_WSD const #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) SQLITE_API int sqlite3_wsd_init(int N, int J); SQLITE_API void *sqlite3_wsd_find(void *K, int L); #else #define SQLITE_WSD #define GLOBAL(t,v) v #define sqlite3GlobalConfig sqlite3Config #endif /* ** The following macros are used to suppress compiler warnings and to ** make it clear to human readers when a function parameter is deliberately ** left unused within the body of a function. This usually happens when ** a function is called via a function pointer. For example the ** implementation of an SQL aggregate step callback may not use the ** parameter indicating the number of arguments passed to the aggregate, ** if it knows that this is enforced elsewhere. ** ** When a function parameter is not used at all within the body of a function, ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. ** However, these macros may also be used to suppress warnings related to ** parameters that may or may not be used depending on compilation options. ** For example those parameters only used in assert() statements. In these ** cases the parameters are named as per the usual conventions. */ #define UNUSED_PARAMETER(x) (void)(x) #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) /* ** Forward references to structures */ typedef struct AggInfo AggInfo; typedef struct AuthContext AuthContext; typedef struct AutoincInfo AutoincInfo; typedef struct Bitvec Bitvec; typedef struct CollSeq CollSeq; typedef struct Column Column; typedef struct Cte Cte; typedef struct CteUse CteUse; typedef struct Db Db; typedef struct DbFixer DbFixer; typedef struct Schema Schema; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct FKey FKey; typedef struct FpDecode FpDecode; typedef struct FuncDestructor FuncDestructor; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct IndexedExpr IndexedExpr; typedef struct IndexSample IndexSample; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct OnOrUsing OnOrUsing; typedef struct Parse Parse; typedef struct ParseCleanup ParseCleanup; typedef struct PreUpdate PreUpdate; typedef struct PrintfArguments PrintfArguments; typedef struct RCStr RCStr; typedef struct RenameToken RenameToken; typedef struct Returning Returning; typedef struct RowSet RowSet; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SQLiteThread SQLiteThread; typedef struct SelectDest SelectDest; typedef struct SrcItem SrcItem; typedef struct SrcList SrcList; typedef struct sqlite3_str StrAccum; /* Internal alias for sqlite3_str */ typedef struct Table Table; typedef struct TableLock TableLock; typedef struct Token Token; typedef struct TreeView TreeView; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct Upsert Upsert; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WhereInfo WhereInfo; typedef struct Window Window; typedef struct With With; /* ** The bitmask datatype defined below is used for various optimizations. ** ** Changing this from a 64-bit to a 32-bit type limits the number of ** tables in a join to 32 instead of 64. But it also reduces the size ** of the library by 738 bytes on ix86. */ #ifdef SQLITE_BITMASK_TYPE typedef SQLITE_BITMASK_TYPE Bitmask; #else typedef u64 Bitmask; #endif /* ** The number of bits in a Bitmask. "BMS" means "BitMask Size". */ #define BMS ((int)(sizeof(Bitmask)*8)) /* ** A bit in a Bitmask */ #define MASKBIT(n) (((Bitmask)1)<<(n)) #define MASKBIT64(n) (((u64)1)<<(n)) #define MASKBIT32(n) (((unsigned int)1)<<(n)) #define SMASKBIT32(n) ((n)<=31?((unsigned int)1)<<(n):0) #define ALLBITS ((Bitmask)-1) #define TOPBIT (((Bitmask)1)<<(BMS-1)) /* A VList object records a mapping between parameters/variables/wildcards ** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer ** variable number associated with that parameter. See the format description ** on the sqlite3VListAdd() routine for more information. A VList is really ** just an array of integers. */ typedef int VList; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque ** pointer types (i.e. FuncDef) defined above. */ /************** Include os.h in the middle of sqliteInt.h ********************/ /************** Begin file os.h **********************************************/ /* ** 2001 September 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file (together with is companion C source-code file ** "os.c") attempt to abstract the underlying operating system so that ** the SQLite library will work on both POSIX and windows systems. ** ** This header file is #include-ed by sqliteInt.h and thus ends up ** being included by every source file. */ #ifndef _SQLITE_OS_H_ #define _SQLITE_OS_H_ /* ** Attempt to automatically detect the operating system and setup the ** necessary pre-processor macros for it. */ /************** Include os_setup.h in the middle of os.h *********************/ /************** Begin file os_setup.h ****************************************/ /* ** 2013 November 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains pre-processor directives related to operating system ** detection and/or setup. */ #ifndef SQLITE_OS_SETUP_H #define SQLITE_OS_SETUP_H /* ** Figure out if we are dealing with Unix, Windows, or some other operating ** system. ** ** After the following block of preprocess macros, all of ** ** SQLITE_OS_KV ** SQLITE_OS_OTHER ** SQLITE_OS_UNIX ** SQLITE_OS_WIN ** ** will defined to either 1 or 0. One of them will be 1. The others will be 0. ** If none of the macros are initially defined, then select either ** SQLITE_OS_UNIX or SQLITE_OS_WIN depending on the target platform. ** ** If SQLITE_OS_OTHER=1 is specified at compile-time, then the application ** must provide its own VFS implementation together with sqlite3_os_init() ** and sqlite3_os_end() routines. */ #if !defined(SQLITE_OS_KV) && !defined(SQLITE_OS_OTHER) && \ !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_WIN) # if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \ defined(__MINGW32__) || defined(__BORLANDC__) # define SQLITE_OS_WIN 1 # define SQLITE_OS_UNIX 0 # else # define SQLITE_OS_WIN 0 # define SQLITE_OS_UNIX 1 # endif #endif #if SQLITE_OS_OTHER+1>1 # undef SQLITE_OS_KV # define SQLITE_OS_KV 0 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 #endif #if SQLITE_OS_KV+1>1 # undef SQLITE_OS_OTHER # define SQLITE_OS_OTHER 0 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 # define SQLITE_OMIT_LOAD_EXTENSION 1 # define SQLITE_OMIT_WAL 1 # define SQLITE_OMIT_DEPRECATED 1 # undef SQLITE_TEMP_STORE # define SQLITE_TEMP_STORE 3 /* Always use memory for temporary storage */ # define SQLITE_DQS 0 # define SQLITE_OMIT_SHARED_CACHE 1 # define SQLITE_OMIT_AUTOINIT 1 #endif #if SQLITE_OS_UNIX+1>1 # undef SQLITE_OS_KV # define SQLITE_OS_KV 0 # undef SQLITE_OS_OTHER # define SQLITE_OS_OTHER 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 #endif #if SQLITE_OS_WIN+1>1 # undef SQLITE_OS_KV # define SQLITE_OS_KV 0 # undef SQLITE_OS_OTHER # define SQLITE_OS_OTHER 0 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 #endif #endif /* SQLITE_OS_SETUP_H */ /************** End of os_setup.h ********************************************/ /************** Continuing where we left off in os.h *************************/ /* If the SET_FULLSYNC macro is not defined above, then make it ** a no-op */ #ifndef SET_FULLSYNC # define SET_FULLSYNC(x,y) #endif /* Maximum pathname length. Note: FILENAME_MAX defined by stdio.h */ #ifndef SQLITE_MAX_PATHLEN # define SQLITE_MAX_PATHLEN FILENAME_MAX #endif /* Maximum number of symlinks that will be resolved while trying to ** expand a filename in xFullPathname() in the VFS. */ #ifndef SQLITE_MAX_SYMLINK # define SQLITE_MAX_SYMLINK 200 #endif /* ** The default size of a disk sector */ #ifndef SQLITE_DEFAULT_SECTOR_SIZE # define SQLITE_DEFAULT_SECTOR_SIZE 4096 #endif /* ** Temporary files are named starting with this prefix followed by 16 random ** alphanumeric characters, and no file extension. They are stored in the ** OS's standard temporary file directory, and are deleted prior to exit. ** If sqlite is being embedded in another program, you may wish to change the ** prefix to reflect your program's name, so that if your program exits ** prematurely, old temporary files can be easily identified. This can be done ** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. ** ** 2006-10-31: The default prefix used to be "sqlite_". But then ** Mcafee started using SQLite in their anti-virus product and it ** started putting files with the "sqlite" name in the c:/temp folder. ** This annoyed many windows users. Those users would then do a ** Google search for "sqlite", find the telephone numbers of the ** developers and call to wake them up at night and complain. ** For this reason, the default name prefix is changed to be "sqlite" ** spelled backwards. So the temp files are still identified, but ** anybody smart enough to figure out the code is also likely smart ** enough to know that calling the developer will not help get rid ** of the file. */ #ifndef SQLITE_TEMP_FILE_PREFIX # define SQLITE_TEMP_FILE_PREFIX "etilqs_" #endif /* ** The following values may be passed as the second argument to ** sqlite3OsLock(). The various locks exhibit the following semantics: ** ** SHARED: Any number of processes may hold a SHARED lock simultaneously. ** RESERVED: A single process may hold a RESERVED lock on a file at ** any time. Other processes may hold and obtain new SHARED locks. ** PENDING: A single process may hold a PENDING lock on a file at ** any one time. Existing SHARED locks may persist, but no new ** SHARED locks may be obtained by other processes. ** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. ** ** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a ** process that requests an EXCLUSIVE lock may actually obtain a PENDING ** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to ** sqlite3OsLock(). */ #define NO_LOCK 0 #define SHARED_LOCK 1 #define RESERVED_LOCK 2 #define PENDING_LOCK 3 #define EXCLUSIVE_LOCK 4 /* ** File Locking Notes: (Mostly about windows but also some info for Unix) ** ** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because ** those functions are not available. So we use only LockFile() and ** UnlockFile(). ** ** LockFile() prevents not just writing but also reading by other processes. ** A SHARED_LOCK is obtained by locking a single randomly-chosen ** byte out of a specific range of bytes. The lock byte is obtained at ** random so two separate readers can probably access the file at the ** same time, unless they are unlucky and choose the same lock byte. ** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. ** There can only be one writer. A RESERVED_LOCK is obtained by locking ** a single byte of the file that is designated as the reserved lock byte. ** A PENDING_LOCK is obtained by locking a designated byte different from ** the RESERVED_LOCK byte. ** ** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, ** which means we can use reader/writer locks. When reader/writer locks ** are used, the lock is placed on the same range of bytes that is used ** for probabilistic locking in Win95/98/ME. Hence, the locking scheme ** will support two or more Win95 readers or two or more WinNT readers. ** But a single Win95 reader will lock out all WinNT readers and a single ** WinNT reader will lock out all other Win95 readers. ** ** The following #defines specify the range of bytes used for locking. ** SHARED_SIZE is the number of bytes available in the pool from which ** a random byte is selected for a shared lock. The pool of bytes for ** shared locks begins at SHARED_FIRST. ** ** The same locking strategy and ** byte ranges are used for Unix. This leaves open the possibility of having ** clients on win95, winNT, and unix all talking to the same shared file ** and all locking correctly. To do so would require that samba (or whatever ** tool is being used for file sharing) implements locks correctly between ** windows and unix. I'm guessing that isn't likely to happen, but by ** using the same locking range we are at least open to the possibility. ** ** Locking in windows is manditory. For this reason, we cannot store ** actual data in the bytes used for locking. The pager never allocates ** the pages involved in locking therefore. SHARED_SIZE is selected so ** that all locks will fit on a single page even at the minimum page size. ** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE ** is set high so that we don't have to allocate an unused page except ** for very large databases. But one should test the page skipping logic ** by setting PENDING_BYTE low and running the entire regression suite. ** ** Changing the value of PENDING_BYTE results in a subtly incompatible ** file format. Depending on how it is changed, you might not notice ** the incompatibility right away, even running a full regression test. ** The default location of PENDING_BYTE is the first byte past the ** 1GB boundary. ** */ #ifdef SQLITE_OMIT_WSD # define PENDING_BYTE (0x40000000) #else # define PENDING_BYTE sqlite3PendingByte #endif #define RESERVED_BYTE (PENDING_BYTE+1) #define SHARED_FIRST (PENDING_BYTE+2) #define SHARED_SIZE 510 /* ** Wrapper around OS specific sqlite3_os_init() function. */ SQLITE_PRIVATE int sqlite3OsInit(void); /* ** Functions for accessing sqlite3_file methods */ SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file*); SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int); SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int); SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int); SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*); SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file*,int,void*); #define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id); SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **); SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int); SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id); SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int); #endif /* SQLITE_OMIT_WAL */ SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64, int, void **); SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *, i64, void *); /* ** Functions for accessing sqlite3_vfs methods */ SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int); SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); #ifndef SQLITE_OMIT_LOAD_EXTENSION SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *); SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void); SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *); #endif /* SQLITE_OMIT_LOAD_EXTENSION */ SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *); SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int); SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs*); SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*); /* ** Convenience functions for opening and closing files using ** sqlite3_malloc() to obtain space for the file-handle structure. */ SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *); #endif /* _SQLITE_OS_H_ */ /************** End of os.h **************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include pager.h in the middle of sqliteInt.h *****************/ /************** Begin file pager.h *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. */ #ifndef SQLITE_PAGER_H #define SQLITE_PAGER_H /* ** Default maximum size for persistent journal files. A negative ** value means no limit. This value may be overridden using the ** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". */ #ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 #endif /* ** The type used to represent a page number. The first page in a file ** is called page 1. 0 is used to represent "not a page". */ typedef u32 Pgno; /* ** Each open file is managed by a separate instance of the "Pager" structure. */ typedef struct Pager Pager; /* ** Handle type for pages. */ typedef struct PgHdr DbPage; /* ** Page number PAGER_SJ_PGNO is never used in an SQLite database (it is ** reserved for working around a windows/posix incompatibility). It is ** used in the journal to signify that the remainder of the journal file ** is devoted to storing a super-journal name - there are no more pages to ** roll back. See comments for function writeSuperJournal() in pager.c ** for details. */ #define PAGER_SJ_PGNO_COMPUTED(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) #define PAGER_SJ_PGNO(x) ((x)->lckPgno) /* ** Allowed values for the flags parameter to sqlite3PagerOpen(). ** ** NOTE: These values must match the corresponding BTREE_ values in btree.h. */ #define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ #define PAGER_MEMORY 0x0002 /* In-memory database */ /* ** Valid values for the second argument to sqlite3PagerLockingMode(). */ #define PAGER_LOCKINGMODE_QUERY -1 #define PAGER_LOCKINGMODE_NORMAL 0 #define PAGER_LOCKINGMODE_EXCLUSIVE 1 /* ** Numeric constants that encode the journalmode. ** ** The numeric values encoded here (other than PAGER_JOURNALMODE_QUERY) ** are exposed in the API via the "PRAGMA journal_mode" command and ** therefore cannot be changed without a compatibility break. */ #define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ #define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ #define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ #define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ #define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ #define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ #define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ /* ** Flags that make up the mask passed to sqlite3PagerGet(). */ #define PAGER_GET_NOCONTENT 0x01 /* Do not load data from disk */ #define PAGER_GET_READONLY 0x02 /* Read-only page is acceptable */ /* ** Flags for sqlite3PagerSetFlags() ** ** Value constraints (enforced via assert()): ** PAGER_FULLFSYNC == SQLITE_FullFSync ** PAGER_CKPT_FULLFSYNC == SQLITE_CkptFullFSync ** PAGER_CACHE_SPILL == SQLITE_CacheSpill */ #define PAGER_SYNCHRONOUS_OFF 0x01 /* PRAGMA synchronous=OFF */ #define PAGER_SYNCHRONOUS_NORMAL 0x02 /* PRAGMA synchronous=NORMAL */ #define PAGER_SYNCHRONOUS_FULL 0x03 /* PRAGMA synchronous=FULL */ #define PAGER_SYNCHRONOUS_EXTRA 0x04 /* PRAGMA synchronous=EXTRA */ #define PAGER_SYNCHRONOUS_MASK 0x07 /* Mask for four values above */ #define PAGER_FULLFSYNC 0x08 /* PRAGMA fullfsync=ON */ #define PAGER_CKPT_FULLFSYNC 0x10 /* PRAGMA checkpoint_fullfsync=ON */ #define PAGER_CACHESPILL 0x20 /* PRAGMA cache_spill=ON */ #define PAGER_FLAGS_MASK 0x38 /* All above except SYNCHRONOUS */ /* ** The remainder of this file contains the declarations of the functions ** that make up the Pager sub-system API. See source code comments for ** a detailed description of each routine. */ /* Open and close a Pager connection. */ SQLITE_PRIVATE int sqlite3PagerOpen( sqlite3_vfs*, Pager **ppPager, const char*, int, int, int, void(*)(DbPage*) ); SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3*); SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); /* Functions used to configure a Pager object. */ SQLITE_PRIVATE void sqlite3PagerSetBusyHandler(Pager*, int(*)(void *), void *); SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int); SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager*, Pgno); SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager*, int); SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64); SQLITE_PRIVATE void sqlite3PagerShrink(Pager*); SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned); SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int); SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*); SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*); SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); SQLITE_PRIVATE int sqlite3PagerFlush(Pager*); /* Functions used to obtain and release page references. */ SQLITE_PRIVATE int sqlite3PagerGet(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); SQLITE_PRIVATE void sqlite3PagerRef(DbPage*); SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*); SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*); SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage*); /* Operations on page references. */ SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*); SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); /* Functions used to manage pager transactions and savepoints. */ SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*); SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int); SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zSuper, int); SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*); SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper); SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*); SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); # ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager*, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager*, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager); # endif #endif #if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_ENABLE_SETLK_TIMEOUT) SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager*, int); SQLITE_PRIVATE void sqlite3PagerWalDb(Pager*, sqlite3*); #else # define sqlite3PagerWalWriteLock(y,z) SQLITE_OK # define sqlite3PagerWalDb(x,y) #endif #ifdef SQLITE_DIRECT_OVERFLOW_READ SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno); #endif #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); #endif /* Functions used to query pager state and configuration. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); #endif SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*); SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager*, int); SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager*); SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager*); SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*); SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *); SQLITE_PRIVATE void sqlite3PagerClearCache(Pager*); SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *); /* Functions used to truncate the database file. */ SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno); SQLITE_PRIVATE void sqlite3PagerRekey(DbPage*, Pgno, u16); /* Functions to support testing and debugging. */ #if !defined(NDEBUG) || defined(SQLITE_TEST) SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); #endif #ifdef SQLITE_TEST SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); void disable_simulated_io_errors(void); void enable_simulated_io_errors(void); #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL) SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager*); #endif #endif /* SQLITE_PAGER_H */ /************** End of pager.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include btree.h in the middle of sqliteInt.h *****************/ /************** Begin file btree.h *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. */ #ifndef SQLITE_BTREE_H #define SQLITE_BTREE_H /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ #define SQLITE_N_BTREE_META 16 /* ** If defined as non-zero, auto-vacuum is enabled by default. Otherwise ** it must be turned on for each database using "PRAGMA auto_vacuum = 1". */ #ifndef SQLITE_DEFAULT_AUTOVACUUM #define SQLITE_DEFAULT_AUTOVACUUM 0 #endif #define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ #define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ #define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; typedef struct BtShared BtShared; typedef struct BtreePayload BtreePayload; SQLITE_PRIVATE int sqlite3BtreeOpen( sqlite3_vfs *pVfs, /* VFS to use with this b-tree */ const char *zFilename, /* Name of database file to open */ sqlite3 *db, /* Associated database connection */ Btree **ppBtree, /* Return open Btree* here */ int flags, /* Flags */ int vfsFlags /* Flags passed through to VFS open */ ); /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the ** following values. ** ** NOTE: These values must match the corresponding PAGER_ values in ** pager.h. */ #define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */ #define BTREE_MEMORY 2 /* This is an in-memory DB */ #define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ #define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int); #if SQLITE_MAX_MMAP_SIZE>0 SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64); #endif SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned); SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno); SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree*); SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree*); SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p); SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int,int*); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char*); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int); SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int); SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags); SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree*); SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree); #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); #endif /* Savepoints are named, nestable SQL transactions mostly implemented */ /* in vdbe.c and pager.c See https://sqlite.org/lang_savepoint.html */ SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); /* "Checkpoint" only refers to WAL. See https://sqlite.org/wal.html#ckpt */ #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR ** of the flags shown below. ** ** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set. ** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data ** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With ** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored ** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL ** indices.) */ #define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ #define BTREE_BLOBKEY 2 /* Table has keys only - no data */ SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, i64*); SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree*, int, int); SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p); /* ** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta ** should be one of the following values. The integer values are assigned ** to constants so that the offset of the corresponding field in an ** SQLite database header may be found using the following formula: ** ** offset = 36 + (idx * 4) ** ** For example, the free-page-count field is located at byte offset 36 of ** the database file header. The incr-vacuum-flag field is located at ** byte offset 64 (== 36+4*7). ** ** The BTREE_DATA_VERSION value is not really a value stored in the header. ** It is a read-only number computed by the pager. But we merge it with ** the header value access routines since its access pattern is the same. ** Call it a "virtual meta value". */ #define BTREE_FREE_PAGE_COUNT 0 #define BTREE_SCHEMA_VERSION 1 #define BTREE_FILE_FORMAT 2 #define BTREE_DEFAULT_CACHE_SIZE 3 #define BTREE_LARGEST_ROOT_PAGE 4 #define BTREE_TEXT_ENCODING 5 #define BTREE_USER_VERSION 6 #define BTREE_INCR_VACUUM 7 #define BTREE_APPLICATION_ID 8 #define BTREE_DATA_VERSION 15 /* A virtual meta-value */ /* ** Kinds of hints that can be passed into the sqlite3BtreeCursorHint() ** interface. ** ** BTREE_HINT_RANGE (arguments: Expr*, Mem*) ** ** The first argument is an Expr* (which is guaranteed to be constant for ** the lifetime of the cursor) that defines constraints on which rows ** might be fetched with this cursor. The Expr* tree may contain ** TK_REGISTER nodes that refer to values stored in the array of registers ** passed as the second parameter. In other words, if Expr.op==TK_REGISTER ** then the value of the node is the value in Mem[pExpr.iTable]. Any ** TK_COLUMN node in the expression tree refers to the Expr.iColumn-th ** column of the b-tree of the cursor. The Expr tree will not contain ** any function calls nor subqueries nor references to b-trees other than ** the cursor being hinted. ** ** The design of the _RANGE hint is aid b-tree implementations that try ** to prefetch content from remote machines - to provide those ** implementations with limits on what needs to be prefetched and thereby ** reduce network bandwidth. ** ** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by ** standard SQLite. The other hints are provided for extensions that use ** the SQLite parser and code generator but substitute their own storage ** engine. */ #define BTREE_HINT_RANGE 0 /* Range constraints on queries */ /* ** Values that may be OR'd together to form the argument to the ** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint(): ** ** The BTREE_BULKLOAD flag is set on index cursors when the index is going ** to be filled with content that is already in sorted order. ** ** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or ** OP_SeekLE opcodes for a range search, but where the range of entries ** selected will all have the same key. In other words, the cursor will ** be used only for equality key searches. ** */ #define BTREE_BULKLOAD 0x00000001 /* Used to full index in sorted order */ #define BTREE_SEEK_EQ 0x00000002 /* EQ seeks only - no range seeks */ /* ** Flags passed as the third argument to sqlite3BtreeCursor(). ** ** For read-only cursors the wrFlag argument is always zero. For read-write ** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just ** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will ** only be used by SQLite for the following: ** ** * to seek to and then delete specific entries, and/or ** ** * to read values that will be used to create keys that other ** BTREE_FORDELETE cursors will seek to and delete. ** ** The BTREE_FORDELETE flag is an optimization hint. It is not used by ** by this, the native b-tree engine of SQLite, but it is available to ** alternative storage engines that might be substituted in place of this ** b-tree system. For alternative storage engines in which a delete of ** the main table row automatically deletes corresponding index rows, ** the FORDELETE flag hint allows those alternative storage engines to ** skip a lot of work. Namely: FORDELETE cursors may treat all SEEK ** and DELETE operations as no-ops, and any READ operation against a ** FORDELETE cursor may return a null row: 0x01 0x00. */ #define BTREE_WRCSR 0x00000004 /* read-write cursor */ #define BTREE_FORDELETE 0x00000008 /* Cursor is for seek/delete only */ SQLITE_PRIVATE int sqlite3BtreeCursor( Btree*, /* BTree containing table to open */ Pgno iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ struct KeyInfo*, /* First argument to compare function */ BtCursor *pCursor /* Space to write cursor structure */ ); SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void); SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned); #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...); #endif SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeTableMoveto( BtCursor*, i64 intKey, int bias, int *pRes ); SQLITE_PRIVATE int sqlite3BtreeIndexMoveto( BtCursor*, UnpackedRecord *pUnKey, int *pRes ); SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*); SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags); /* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */ #define BTREE_SAVEPOSITION 0x02 /* Leave cursor pointing at NEXT or PREV */ #define BTREE_AUXDELETE 0x04 /* not the primary delete operation */ #define BTREE_APPEND 0x08 /* Insert is likely an append */ #define BTREE_PREFORMAT 0x80 /* Inserted data is a preformated cell */ /* An instance of the BtreePayload object describes the content of a single ** entry in either an index or table btree. ** ** Index btrees (used for indexes and also WITHOUT ROWID tables) contain ** an arbitrary key and no data. These btrees have pKey,nKey set to the ** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem ** fields give an array of Mem objects that are a decomposition of the key. ** The nMem field might be zero, indicating that no decomposition is available. ** ** Table btrees (used for rowid tables) contain an integer rowid used as ** the key and passed in the nKey field. The pKey field is zero. ** pData,nData hold the content of the new entry. nZero extra zero bytes ** are appended to the end of the content when constructing the entry. ** The aMem,nMem fields are uninitialized for table btrees. ** ** Field usage summary: ** ** Table BTrees Index Btrees ** ** pKey always NULL encoded key ** nKey the ROWID length of pKey ** pData data not used ** aMem not used decomposed key value ** nMem not used entries in aMem ** nData length of pData not used ** nZero extra zeros after pData not used ** ** This object is used to pass information into sqlite3BtreeInsert(). The ** same information used to be passed as five separate parameters. But placing ** the information into this object helps to keep the interface more ** organized and understandable, and it also helps the resulting code to ** run a little faster by using fewer registers for parameter passing. */ struct BtreePayload { const void *pKey; /* Key content for indexes. NULL for tables */ sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */ const void *pData; /* Data for tables. */ sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */ u16 nMem; /* Number of aMem[] value. Might be zero */ int nData; /* Size of pData. 0 if none. */ int nZero; /* Extra zero data appended after pData,nData */ }; SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload, int flags, int seekResult); SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*); SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*); SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck( sqlite3 *db, /* Database connection that is running the check */ Btree *p, /* The btree to be checked */ Pgno *aRoot, /* An array of root pages numbers for individual trees */ int nRoot, /* Number of entries in aRoot[] */ int mxErr, /* Stop reporting errors after this many */ int *pnErr, /* OUT: Write number of errors seen to this variable */ char **pzOut /* OUT: Write the error message string here */ ); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor*); #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *); #endif SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask); SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt); SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void); #ifdef SQLITE_DEBUG SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree*); #else # define sqlite3BtreeSeekCount(X) 0 #endif #ifndef NDEBUG SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); #endif SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3*, BtCursor*, i64*); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); #endif #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor*, BtCursor*, i64); SQLITE_PRIVATE void sqlite3BtreeClearCache(Btree*); /* ** If we are not using shared cache, then there is no need to ** use mutexes to access the BtShared structures. So make the ** Enter and Leave procedures no-ops. */ #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree*); #else # define sqlite3BtreeEnter(X) # define sqlite3BtreeEnterAll(X) # define sqlite3BtreeSharable(X) 0 # define sqlite3BtreeEnterCursor(X) # define sqlite3BtreeConnectionCount(X) 1 #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); #ifndef NDEBUG /* These routines are used inside assert() statements only. */ SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); #endif #else # define sqlite3BtreeLeave(X) # define sqlite3BtreeLeaveCursor(X) # define sqlite3BtreeLeaveAll(X) # define sqlite3BtreeHoldsMutex(X) 1 # define sqlite3BtreeHoldsAllMutexes(X) 1 # define sqlite3SchemaMutexHeld(X,Y,Z) 1 #endif #endif /* SQLITE_BTREE_H */ /************** End of btree.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include vdbe.h in the middle of sqliteInt.h ******************/ /************** Begin file vdbe.h ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Header file for the Virtual DataBase Engine (VDBE) ** ** This header defines the interface to the virtual database engine ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. */ #ifndef SQLITE_VDBE_H #define SQLITE_VDBE_H /* #include */ /* ** A single VDBE is an opaque structure named "Vdbe". Only routines ** in the source file sqliteVdbe.c are allowed to see the insides ** of this structure. */ typedef struct Vdbe Vdbe; /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct sqlite3_value Mem; typedef struct SubProgram SubProgram; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: */ struct VdbeOp { u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u16 p5; /* Fifth parameter is an unsigned 16-bit integer */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union p4union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ u32 *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ Table *pTab; /* Used when p4type is P4_TABLE */ #ifdef SQLITE_ENABLE_CURSOR_HINTS Expr *pExpr; /* Used when p4type is P4_EXPR */ #endif } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef SQLITE_VDBE_COVERAGE u32 iSrcLine; /* Source-code line that generated this opcode ** with flags in the upper 8 bits */ #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) u64 nExec; u64 nCycle; #endif }; typedef struct VdbeOp VdbeOp; /* ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ u8 *aOnce; /* Array of OP_Once flags */ void *token; /* id that may be used to recursive triggers */ SubProgram *pNext; /* Next sub-program already visited */ }; /* ** A smaller version of VdbeOp used for the VdbeAddOpList() function because ** it takes up less space. */ struct VdbeOpList { u8 opcode; /* What operation to perform */ signed char p1; /* First operand */ signed char p2; /* Second parameter (often the jump destination) */ signed char p3; /* Third parameter */ }; typedef struct VdbeOpList VdbeOpList; /* ** Allowed values of VdbeOp.p4type */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ #define P4_STATIC (-1) /* Pointer to a static string */ #define P4_COLLSEQ (-2) /* P4 is a pointer to a CollSeq structure */ #define P4_INT32 (-3) /* P4 is a 32-bit signed integer */ #define P4_SUBPROGRAM (-4) /* P4 is a pointer to a SubProgram structure */ #define P4_TABLE (-5) /* P4 is a pointer to a Table structure */ /* Above do not own any resources. Must free those below */ #define P4_FREE_IF_LE (-6) #define P4_DYNAMIC (-6) /* Pointer to memory from sqliteMalloc() */ #define P4_FUNCDEF (-7) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-8) /* P4 is a pointer to a KeyInfo structure */ #define P4_EXPR (-9) /* P4 is a pointer to an Expr tree */ #define P4_MEM (-10) /* P4 is a pointer to a Mem* structure */ #define P4_VTAB (-11) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INTARRAY (-14) /* P4 is a vector of 32-bit integers */ #define P4_FUNCCTX (-15) /* P4 is a pointer to an sqlite3_context object */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 /* ** The Vdbe.aColName array contains 5n Mem structures, where n is the ** number of columns of data returned by the statement. */ #define COLNAME_NAME 0 #define COLNAME_DECLTYPE 1 #define COLNAME_DATABASE 2 #define COLNAME_TABLE 3 #define COLNAME_COLUMN 4 #ifdef SQLITE_ENABLE_COLUMN_METADATA # define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ #else # ifdef SQLITE_OMIT_DECLTYPE # define COLNAME_N 1 /* Store only the name */ # else # define COLNAME_N 2 /* Store the name and decltype */ # endif #endif /* ** The following macro converts a label returned by sqlite3VdbeMakeLabel() ** into an index into the Parse.aLabel[] array that contains the resolved ** address of that label. */ #define ADDR(X) (~(X)) /* ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the tool/mkopcodeh.tcl script for details */ #define OP_Savepoint 0 #define OP_AutoCommit 1 #define OP_Transaction 2 #define OP_Checkpoint 3 #define OP_JournalMode 4 #define OP_Vacuum 5 #define OP_VFilter 6 /* jump, synopsis: iplan=r[P3] zplan='P4' */ #define OP_VUpdate 7 /* synopsis: data=r[P3@P2] */ #define OP_Init 8 /* jump, synopsis: Start at P2 */ #define OP_Goto 9 /* jump */ #define OP_Gosub 10 /* jump */ #define OP_InitCoroutine 11 /* jump */ #define OP_Yield 12 /* jump */ #define OP_MustBeInt 13 /* jump */ #define OP_Jump 14 /* jump */ #define OP_Once 15 /* jump */ #define OP_If 16 /* jump */ #define OP_IfNot 17 /* jump */ #define OP_IsType 18 /* jump, synopsis: if typeof(P1.P3) in P5 goto P2 */ #define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ #define OP_IfNullRow 20 /* jump, synopsis: if P1.nullRow then r[P3]=NULL, goto P2 */ #define OP_SeekLT 21 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekLE 22 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekGE 23 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekGT 24 /* jump, synopsis: key=r[P3@P4] */ #define OP_IfNotOpen 25 /* jump, synopsis: if( !csr[P1] ) goto P2 */ #define OP_IfNoHope 26 /* jump, synopsis: key=r[P3@P4] */ #define OP_NoConflict 27 /* jump, synopsis: key=r[P3@P4] */ #define OP_NotFound 28 /* jump, synopsis: key=r[P3@P4] */ #define OP_Found 29 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekRowid 30 /* jump, synopsis: intkey=r[P3] */ #define OP_NotExists 31 /* jump, synopsis: intkey=r[P3] */ #define OP_Last 32 /* jump */ #define OP_IfSmaller 33 /* jump */ #define OP_SorterSort 34 /* jump */ #define OP_Sort 35 /* jump */ #define OP_Rewind 36 /* jump */ #define OP_SorterNext 37 /* jump */ #define OP_Prev 38 /* jump */ #define OP_Next 39 /* jump */ #define OP_IdxLE 40 /* jump, synopsis: key=r[P3@P4] */ #define OP_IdxGT 41 /* jump, synopsis: key=r[P3@P4] */ #define OP_IdxLT 42 /* jump, synopsis: key=r[P3@P4] */ #define OP_Or 43 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */ #define OP_And 44 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */ #define OP_IdxGE 45 /* jump, synopsis: key=r[P3@P4] */ #define OP_RowSetRead 46 /* jump, synopsis: r[P3]=rowset(P1) */ #define OP_RowSetTest 47 /* jump, synopsis: if r[P3] in rowset(P1) goto P2 */ #define OP_Program 48 /* jump */ #define OP_FkIfZero 49 /* jump, synopsis: if fkctr[P1]==0 goto P2 */ #define OP_IsNull 50 /* jump, same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */ #define OP_NotNull 51 /* jump, same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */ #define OP_Ne 52 /* jump, same as TK_NE, synopsis: IF r[P3]!=r[P1] */ #define OP_Eq 53 /* jump, same as TK_EQ, synopsis: IF r[P3]==r[P1] */ #define OP_Gt 54 /* jump, same as TK_GT, synopsis: IF r[P3]>r[P1] */ #define OP_Le 55 /* jump, same as TK_LE, synopsis: IF r[P3]<=r[P1] */ #define OP_Lt 56 /* jump, same as TK_LT, synopsis: IF r[P3]=r[P1] */ #define OP_ElseEq 58 /* jump, same as TK_ESCAPE */ #define OP_IfPos 59 /* jump, synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */ #define OP_IfNotZero 60 /* jump, synopsis: if r[P1]!=0 then r[P1]--, goto P2 */ #define OP_DecrJumpZero 61 /* jump, synopsis: if (--r[P1])==0 goto P2 */ #define OP_IncrVacuum 62 /* jump */ #define OP_VNext 63 /* jump */ #define OP_Filter 64 /* jump, synopsis: if key(P3@P4) not in filter(P1) goto P2 */ #define OP_PureFunc 65 /* synopsis: r[P3]=func(r[P2@NP]) */ #define OP_Function 66 /* synopsis: r[P3]=func(r[P2@NP]) */ #define OP_Return 67 #define OP_EndCoroutine 68 #define OP_HaltIfNull 69 /* synopsis: if r[P3]=null halt */ #define OP_Halt 70 #define OP_Integer 71 /* synopsis: r[P2]=P1 */ #define OP_Int64 72 /* synopsis: r[P2]=P4 */ #define OP_String 73 /* synopsis: r[P2]='P4' (len=P1) */ #define OP_BeginSubrtn 74 /* synopsis: r[P2]=NULL */ #define OP_Null 75 /* synopsis: r[P2..P3]=NULL */ #define OP_SoftNull 76 /* synopsis: r[P1]=NULL */ #define OP_Blob 77 /* synopsis: r[P2]=P4 (len=P1) */ #define OP_Variable 78 /* synopsis: r[P2]=parameter(P1,P4) */ #define OP_Move 79 /* synopsis: r[P2@P3]=r[P1@P3] */ #define OP_Copy 80 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */ #define OP_SCopy 81 /* synopsis: r[P2]=r[P1] */ #define OP_IntCopy 82 /* synopsis: r[P2]=r[P1] */ #define OP_FkCheck 83 #define OP_ResultRow 84 /* synopsis: output=r[P1@P2] */ #define OP_CollSeq 85 #define OP_AddImm 86 /* synopsis: r[P1]=r[P1]+P2 */ #define OP_RealAffinity 87 #define OP_Cast 88 /* synopsis: affinity(r[P1]) */ #define OP_Permutation 89 #define OP_Compare 90 /* synopsis: r[P1@P3] <-> r[P2@P3] */ #define OP_IsTrue 91 /* synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 */ #define OP_ZeroOrNull 92 /* synopsis: r[P2] = 0 OR NULL */ #define OP_Offset 93 /* synopsis: r[P3] = sqlite_offset(P1) */ #define OP_Column 94 /* synopsis: r[P3]=PX cursor P1 column P2 */ #define OP_TypeCheck 95 /* synopsis: typecheck(r[P1@P2]) */ #define OP_Affinity 96 /* synopsis: affinity(r[P1@P2]) */ #define OP_MakeRecord 97 /* synopsis: r[P3]=mkrec(r[P1@P2]) */ #define OP_Count 98 /* synopsis: r[P2]=count() */ #define OP_ReadCookie 99 #define OP_SetCookie 100 #define OP_ReopenIdx 101 /* synopsis: root=P2 iDb=P3 */ #define OP_BitAnd 102 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */ #define OP_BitOr 103 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */ #define OP_ShiftLeft 104 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<>r[P1] */ #define OP_Add 106 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */ #define OP_Subtract 107 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */ #define OP_Multiply 108 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */ #define OP_Divide 109 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */ #define OP_Remainder 110 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */ #define OP_Concat 111 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */ #define OP_OpenRead 112 /* synopsis: root=P2 iDb=P3 */ #define OP_OpenWrite 113 /* synopsis: root=P2 iDb=P3 */ #define OP_BitNot 114 /* same as TK_BITNOT, synopsis: r[P2]= ~r[P1] */ #define OP_OpenDup 115 #define OP_OpenAutoindex 116 /* synopsis: nColumn=P2 */ #define OP_String8 117 /* same as TK_STRING, synopsis: r[P2]='P4' */ #define OP_OpenEphemeral 118 /* synopsis: nColumn=P2 */ #define OP_SorterOpen 119 #define OP_SequenceTest 120 /* synopsis: if( cursor[P1].ctr++ ) pc = P2 */ #define OP_OpenPseudo 121 /* synopsis: P3 columns in r[P2] */ #define OP_Close 122 #define OP_ColumnsUsed 123 #define OP_SeekScan 124 /* synopsis: Scan-ahead up to P1 rows */ #define OP_SeekHit 125 /* synopsis: set P2<=seekHit<=P3 */ #define OP_Sequence 126 /* synopsis: r[P2]=cursor[P1].ctr++ */ #define OP_NewRowid 127 /* synopsis: r[P2]=rowid */ #define OP_Insert 128 /* synopsis: intkey=r[P3] data=r[P2] */ #define OP_RowCell 129 #define OP_Delete 130 #define OP_ResetCount 131 #define OP_SorterCompare 132 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */ #define OP_SorterData 133 /* synopsis: r[P2]=data */ #define OP_RowData 134 /* synopsis: r[P2]=data */ #define OP_Rowid 135 /* synopsis: r[P2]=PX rowid of P1 */ #define OP_NullRow 136 #define OP_SeekEnd 137 #define OP_IdxInsert 138 /* synopsis: key=r[P2] */ #define OP_SorterInsert 139 /* synopsis: key=r[P2] */ #define OP_IdxDelete 140 /* synopsis: key=r[P2@P3] */ #define OP_DeferredSeek 141 /* synopsis: Move P3 to P1.rowid if needed */ #define OP_IdxRowid 142 /* synopsis: r[P2]=rowid */ #define OP_FinishSeek 143 #define OP_Destroy 144 #define OP_Clear 145 #define OP_ResetSorter 146 #define OP_CreateBtree 147 /* synopsis: r[P2]=root iDb=P1 flags=P3 */ #define OP_SqlExec 148 #define OP_ParseSchema 149 #define OP_LoadAnalysis 150 #define OP_DropTable 151 #define OP_DropIndex 152 #define OP_Real 153 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_DropTrigger 154 #define OP_IntegrityCk 155 #define OP_RowSetAdd 156 /* synopsis: rowset(P1)=r[P2] */ #define OP_Param 157 #define OP_FkCounter 158 /* synopsis: fkctr[P1]+=P2 */ #define OP_MemMax 159 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_OffsetLimit 160 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */ #define OP_AggInverse 161 /* synopsis: accum=r[P3] inverse(r[P2@P5]) */ #define OP_AggStep 162 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggStep1 163 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggValue 164 /* synopsis: r[P3]=value N=P2 */ #define OP_AggFinal 165 /* synopsis: accum=r[P1] N=P2 */ #define OP_Expire 166 #define OP_CursorLock 167 #define OP_CursorUnlock 168 #define OP_TableLock 169 /* synopsis: iDb=P1 root=P2 write=P3 */ #define OP_VBegin 170 #define OP_VCreate 171 #define OP_VDestroy 172 #define OP_VOpen 173 #define OP_VInitIn 174 /* synopsis: r[P2]=ValueList(P1,P3) */ #define OP_VColumn 175 /* synopsis: r[P3]=vcolumn(P2) */ #define OP_VRename 176 #define OP_Pagecount 177 #define OP_MaxPgcnt 178 #define OP_ClrSubtype 179 /* synopsis: r[P1].subtype = 0 */ #define OP_FilterAdd 180 /* synopsis: filter(P1) += key(P3@P4) */ #define OP_Trace 181 #define OP_CursorHint 182 #define OP_ReleaseReg 183 /* synopsis: release r[P1@P2] mask P3 */ #define OP_Noop 184 #define OP_Explain 185 #define OP_Abortable 186 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x01 /* jump: P2 holds jmp target */ #define OPFLG_IN1 0x02 /* in1: P1 is an input */ #define OPFLG_IN2 0x04 /* in2: P2 is an input */ #define OPFLG_IN3 0x08 /* in3: P3 is an input */ #define OPFLG_OUT2 0x10 /* out2: P2 is an output */ #define OPFLG_OUT3 0x20 /* out3: P3 is an output */ #define OPFLG_NCYCLE 0x40 /* ncycle:Cycles count against P1 */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x41, 0x00,\ /* 8 */ 0x01, 0x01, 0x01, 0x01, 0x03, 0x03, 0x01, 0x01,\ /* 16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x49, 0x49, 0x49,\ /* 24 */ 0x49, 0x01, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49,\ /* 32 */ 0x41, 0x01, 0x41, 0x41, 0x41, 0x01, 0x41, 0x41,\ /* 40 */ 0x41, 0x41, 0x41, 0x26, 0x26, 0x41, 0x23, 0x0b,\ /* 48 */ 0x01, 0x01, 0x03, 0x03, 0x0b, 0x0b, 0x0b, 0x0b,\ /* 56 */ 0x0b, 0x0b, 0x01, 0x03, 0x03, 0x03, 0x01, 0x41,\ /* 64 */ 0x01, 0x00, 0x00, 0x02, 0x02, 0x08, 0x00, 0x10,\ /* 72 */ 0x10, 0x10, 0x00, 0x10, 0x00, 0x10, 0x10, 0x00,\ /* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x02, 0x02,\ /* 88 */ 0x02, 0x00, 0x00, 0x12, 0x1e, 0x20, 0x40, 0x00,\ /* 96 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x40, 0x26, 0x26,\ /* 104 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26,\ /* 112 */ 0x40, 0x00, 0x12, 0x40, 0x40, 0x10, 0x40, 0x00,\ /* 120 */ 0x00, 0x00, 0x40, 0x00, 0x40, 0x40, 0x10, 0x10,\ /* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x50,\ /* 136 */ 0x00, 0x40, 0x04, 0x04, 0x00, 0x40, 0x50, 0x40,\ /* 144 */ 0x10, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x10, 0x00, 0x00, 0x06, 0x10, 0x00, 0x04,\ /* 160 */ 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 168 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x50, 0x40,\ /* 176 */ 0x00, 0x10, 0x10, 0x02, 0x00, 0x00, 0x00, 0x00,\ /* 184 */ 0x00, 0x00, 0x00,} /* The resolve3P2Values() routine is able to run faster if it knows ** the value of the largest JUMP opcode. The smaller the maximum ** JUMP opcode the better, so the mkopcodeh.tcl script that ** generated this include file strives to group all JUMP opcodes ** together near the beginning of the list. */ #define SQLITE_MX_JUMP_OPCODE 64 /* Maximum JUMP opcode */ /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* ** Additional non-public SQLITE_PREPARE_* flags */ #define SQLITE_PREPARE_SAVESQL 0x80 /* Preserve SQL text */ #define SQLITE_PREPARE_MASK 0x0f /* Mask of public flags */ /* ** Prototypes for the VDBE interface. See comments on the implementation ** for a description of what each of these routines does. */ SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*); SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe*,int,const char*); SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe*,int,const char*,...); SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall(Parse*,int,int,int,int,const FuncDef*,int); SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe*,int); #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N); SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p); #else # define sqlite3VdbeVerifyNoMallocRequired(A,B) # define sqlite3VdbeVerifyNoResultRow(A) #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int); SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn(Vdbe*,int,int,int); #else # define sqlite3VdbeVerifyAbortable(A,B) # define sqlite3VdbeNoJumpsOutsideSubrtn(A,B,C,D) #endif SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno); #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3VdbeExplain(Parse*,u8,const char*,...); SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse*); SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse*); # define ExplainQueryPlan(P) sqlite3VdbeExplain P # ifdef SQLITE_ENABLE_STMT_SCANSTATUS # define ExplainQueryPlan2(V,P) (V = sqlite3VdbeExplain P) # else # define ExplainQueryPlan2(V,P) ExplainQueryPlan(P) # endif # define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P) # define ExplainQueryPlanParent(P) sqlite3VdbeExplainParent(P) #else # define ExplainQueryPlan(P) # define ExplainQueryPlan2(V,P) # define ExplainQueryPlanPop(P) # define ExplainQueryPlanParent(P) 0 # define sqlite3ExplainBreakpoint(A,B) /*no-op*/ #endif #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_EXPLAIN) SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char*,const char*); #else # define sqlite3ExplainBreakpoint(A,B) /*no-op*/ #endif SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*, int, char*, u16); SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, int addr, u8); SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1); SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2); SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3); SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u16 P5); SQLITE_PRIVATE void sqlite3VdbeTypeofColumn(Vdbe*, int); SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters(Parse*,int addr, int n, u32 mask, int); #else # define sqlite3VdbeReleaseRegisters(P,A,N,M,F) #endif SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type); SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*); SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetLastOp(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse*); SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*); SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int); #endif SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, u8); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3*,Vdbe*,const char*); SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString(Vdbe*,const char*); #endif SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); SQLITE_PRIVATE int sqlite3BlobCompare(const Mem*, const Mem*); SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip(int, const void *, UnpackedRecord *, int); SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo*); typedef int (*RecordCompare)(int,const void*,UnpackedRecord*); SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*); SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe*); SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context*); #ifdef SQLITE_ENABLE_BYTECODE_VTAB SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3*); #endif /* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on ** each VDBE opcode. ** ** Use the SQLITE_ENABLE_MODULE_COMMENTS macro to see some extra no-op ** comments in VDBE programs that show key decision points in the code ** generator. */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); # define VdbeComment(X) sqlite3VdbeComment X SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); # define VdbeNoopComment(X) sqlite3VdbeNoopComment X # ifdef SQLITE_ENABLE_MODULE_COMMENTS # define VdbeModuleComment(X) sqlite3VdbeNoopComment X # else # define VdbeModuleComment(X) # endif #else # define VdbeComment(X) # define VdbeNoopComment(X) # define VdbeModuleComment(X) #endif /* ** The VdbeCoverage macros are used to set a coverage testing point ** for VDBE branch instructions. The coverage testing points are line ** numbers in the sqlite3.c source file. VDBE branch coverage testing ** only works with an amalgamation build. That's ok since a VDBE branch ** coverage build designed for testing the test suite only. No application ** should ever ship with VDBE branch coverage measuring turned on. ** ** VdbeCoverage(v) // Mark the previously coded instruction ** // as a branch ** ** VdbeCoverageIf(v, conditional) // Mark previous if conditional true ** ** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken ** ** VdbeCoverageNeverTaken(v) // Previous branch is never taken ** ** VdbeCoverageNeverNull(v) // Previous three-way branch is only ** // taken on the first two ways. The ** // NULL option is not possible ** ** VdbeCoverageEqNe(v) // Previous OP_Jump is only interested ** // in distinguishing equal and not-equal. ** ** Every VDBE branch operation must be tagged with one of the macros above. ** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and ** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch() ** routine in vdbe.c, alerting the developer to the missed tag. ** ** During testing, the test application will invoke ** sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE,...) to set a callback ** routine that is invoked as each bytecode branch is taken. The callback ** contains the sqlite3.c source line number of the VdbeCoverage macro and ** flags to indicate whether or not the branch was taken. The test application ** is responsible for keeping track of this and reporting byte-code branches ** that are never taken. ** ** See the VdbeBranchTaken() macro and vdbeTakeBranch() function in the ** vdbe.c source file for additional information. */ #ifdef SQLITE_VDBE_COVERAGE SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe*,int); # define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageAlwaysTaken(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x5000000); # define VdbeCoverageNeverTaken(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x6000000); # define VdbeCoverageNeverNull(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000); # define VdbeCoverageNeverNullIf(v,x) \ if(x)sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000); # define VdbeCoverageEqNe(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x8000000); # define VDBE_OFFSET_LINENO(x) (__LINE__+x) #else # define VdbeCoverage(v) # define VdbeCoverageIf(v,x) # define VdbeCoverageAlwaysTaken(v) # define VdbeCoverageNeverTaken(v) # define VdbeCoverageNeverNull(v) # define VdbeCoverageNeverNullIf(v,x) # define VdbeCoverageEqNe(v) # define VDBE_OFFSET_LINENO(x) 0 #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS SQLITE_PRIVATE void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*); SQLITE_PRIVATE void sqlite3VdbeScanStatusRange(Vdbe*, int, int, int); SQLITE_PRIVATE void sqlite3VdbeScanStatusCounters(Vdbe*, int, int, int); #else # define sqlite3VdbeScanStatus(a,b,c,d,e,f) # define sqlite3VdbeScanStatusRange(a,b,c,d) # define sqlite3VdbeScanStatusCounters(a,b,c,d) #endif #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, VdbeOp*); #endif #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr); #endif #endif /* SQLITE_VDBE_H */ /************** End of vdbe.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include pcache.h in the middle of sqliteInt.h ****************/ /************** Begin file pcache.h ******************************************/ /* ** 2008 August 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. */ #ifndef _PCACHE_H_ typedef struct PgHdr PgHdr; typedef struct PCache PCache; /* ** Every page in the cache is controlled by an instance of the following ** structure. */ struct PgHdr { sqlite3_pcache_page *pPage; /* Pcache object page handle */ void *pData; /* Page data */ void *pExtra; /* Extra content */ PCache *pCache; /* PRIVATE: Cache that owns this page */ PgHdr *pDirty; /* Transient list of dirty sorted by pgno */ Pager *pPager; /* The pager this page is part of */ Pgno pgno; /* Page number for this page */ #ifdef SQLITE_CHECK_PAGES u32 pageHash; /* Hash of page content */ #endif u16 flags; /* PGHDR flags defined below */ /********************************************************************** ** Elements above, except pCache, are public. All that follow are ** private to pcache.c and should not be accessed by other modules. ** pCache is grouped with the public elements for efficiency. */ i64 nRef; /* Number of users of this page */ PgHdr *pDirtyNext; /* Next element in list of dirty pages */ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ /* NB: pDirtyNext and pDirtyPrev are undefined if the ** PgHdr object is not dirty */ }; /* Bit values for PgHdr.flags */ #define PGHDR_CLEAN 0x001 /* Page not on the PCache.pDirty list */ #define PGHDR_DIRTY 0x002 /* Page is on the PCache.pDirty list */ #define PGHDR_WRITEABLE 0x004 /* Journaled and ready to modify */ #define PGHDR_NEED_SYNC 0x008 /* Fsync the rollback journal before ** writing this page to the database */ #define PGHDR_DONT_WRITE 0x010 /* Do not write content to disk */ #define PGHDR_MMAP 0x020 /* This is an mmap page object */ #define PGHDR_WAL_APPEND 0x040 /* Appended to wal file */ /* Initialize and shutdown the page cache subsystem */ SQLITE_PRIVATE int sqlite3PcacheInitialize(void); SQLITE_PRIVATE void sqlite3PcacheShutdown(void); /* Page cache buffer management: ** These routines implement SQLITE_CONFIG_PAGECACHE. */ SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n); /* Create a new pager cache. ** Under memory stress, invoke xStress to try to make pages clean. ** Only clean and unpinned pages can be reclaimed. */ SQLITE_PRIVATE int sqlite3PcacheOpen( int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ void *pStress, /* Argument to xStress */ PCache *pToInit /* Preallocated space for the PCache */ ); /* Modify the page-size after the cache has been created. */ SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *, int); /* Return the size in bytes of a PCache object. Used to preallocate ** storage space. */ SQLITE_PRIVATE int sqlite3PcacheSize(void); /* One release per successful fetch. Page is pinned until released. ** Reference counted. */ SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch(PCache*, Pgno, int createFlag); SQLITE_PRIVATE int sqlite3PcacheFetchStress(PCache*, Pgno, sqlite3_pcache_page**); SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(PCache*, Pgno, sqlite3_pcache_page *pPage); SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*); SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache*); /* Change a page number. Used by incr-vacuum. */ SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno); /* Remove all pages with pgno>x. Reset the cache if x==0 */ SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x); /* Get a list of all dirty pages in the cache, sorted by page number */ SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*); /* Reset and close the cache object */ SQLITE_PRIVATE void sqlite3PcacheClose(PCache*); /* Clear flags from pages of the page cache */ SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *); /* Discard the contents of the cache */ SQLITE_PRIVATE void sqlite3PcacheClear(PCache*); /* Return the total number of outstanding page references */ SQLITE_PRIVATE i64 sqlite3PcacheRefCount(PCache*); /* Increment the reference count of an existing page */ SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*); SQLITE_PRIVATE i64 sqlite3PcachePageRefcount(PgHdr*); /* Return the total number of pages stored in the cache */ SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*); #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* Iterate through all dirty pages currently stored in the cache. This ** interface is only available if SQLITE_CHECK_PAGES is defined when the ** library is built. */ SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); #endif #if defined(SQLITE_DEBUG) /* Check invariants on a PgHdr object */ SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr*); #endif /* Set and get the suggested cache-size for the specified pager-cache. ** ** If no global maximum is configured, then the system attempts to limit ** the total number of pages cached by purgeable pager-caches to the sum ** of the suggested cache-sizes. */ SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *); #endif /* Set or get the suggested spill-size for the specified pager-cache. ** ** The spill-size is the minimum number of pages in cache before the cache ** will attempt to spill dirty pages by calling xStress. */ SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *, int); /* Free up as much memory as possible from the page cache */ SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* Try to return memory used by the pcache module to the main memory heap */ SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int); #endif #ifdef SQLITE_TEST SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*); #endif SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); /* Return the header size */ SQLITE_PRIVATE int sqlite3HeaderSizePcache(void); SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void); /* Number of dirty pages as a percentage of the configured cache size */ SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*); #ifdef SQLITE_DIRECT_OVERFLOW_READ SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache); #endif #endif /* _PCACHE_H_ */ /************** End of pcache.h **********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include mutex.h in the middle of sqliteInt.h *****************/ /************** Begin file mutex.h *******************************************/ /* ** 2007 August 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the common header for all mutex implementations. ** The sqliteInt.h header #includes this file so that it is available ** to all source files. We break it out in an effort to keep the code ** better organized. ** ** NOTE: source files should *not* #include this header file directly. ** Source files should #include the sqliteInt.h file and let that file ** include this one indirectly. */ /* ** Figure out what version of the code to use. The choices are ** ** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The ** mutexes implementation cannot be overridden ** at start-time. ** ** SQLITE_MUTEX_NOOP For single-threaded applications. No ** mutual exclusion is provided. But this ** implementation can be overridden at ** start-time. ** ** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. ** ** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. */ #if !SQLITE_THREADSAFE # define SQLITE_MUTEX_OMIT #endif #if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP) # if SQLITE_OS_UNIX # define SQLITE_MUTEX_PTHREADS # elif SQLITE_OS_WIN # define SQLITE_MUTEX_W32 # else # define SQLITE_MUTEX_NOOP # endif #endif #ifdef SQLITE_MUTEX_OMIT /* ** If this is a no-op implementation, implement everything as macros. */ #define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) #define sqlite3_mutex_free(X) #define sqlite3_mutex_enter(X) #define sqlite3_mutex_try(X) SQLITE_OK #define sqlite3_mutex_leave(X) #define sqlite3_mutex_held(X) ((void)(X),1) #define sqlite3_mutex_notheld(X) ((void)(X),1) #define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8) #define sqlite3MutexInit() SQLITE_OK #define sqlite3MutexEnd() #define MUTEX_LOGIC(X) #else #define MUTEX_LOGIC(X) X SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); #endif /* defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default ** synchronous setting to EXTRA. It is no longer supported. */ #ifdef SQLITE_EXTRA_DURABLE # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE # define SQLITE_DEFAULT_SYNCHRONOUS 3 #endif /* ** Default synchronous levels. ** ** Note that (for historical reasons) the PAGER_SYNCHRONOUS_* macros differ ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. ** ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS ** OFF 1 0 ** NORMAL 2 1 ** FULL 3 2 ** EXTRA 4 3 ** ** The "PRAGMA synchronous" statement also uses the zero-based numbers. ** In other words, the zero-based numbers are used for all external interfaces ** and the one-based values are used internally. */ #ifndef SQLITE_DEFAULT_SYNCHRONOUS # define SQLITE_DEFAULT_SYNCHRONOUS 2 #endif #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS #endif /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zDbSName; /* Name of this database. (schema name, not filename) */ Btree *pBt; /* The B*Tree structure for this database file */ u8 safety_level; /* How aggressive at syncing data to disk */ u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** ** Most Schema objects are associated with a Btree. The exception is ** the Schema for the TEMP database (sqlite3.aDb[1]) which is free-standing. ** In shared cache mode, a single Schema object can be shared by multiple ** Btrees that refer to the same underlying BtShared object. ** ** Schema objects are automatically deallocated when the last Btree that ** references them is destroyed. The TEMP Schema is manually freed by ** sqlite3_close(). * ** A thread must be holding a mutex on the corresponding Btree in order ** to access Schema content. This implies that the thread must also be ** holding a mutex on the sqlite3 connection pointer that owns the Btree. ** For a TEMP Schema, only the connection mutex is required. */ struct Schema { int schema_cookie; /* Database schema version number for this file */ int iGeneration; /* Generation counter. Incremented with each change */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ u16 schemaFlags; /* Flags associated with this schema */ int cache_size; /* Number of pages to use in the cache */ }; /* ** These macros can be used to test, set, or clear bits in the ** Db.pSchema->flags field. */ #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) /* ** Allowed values for the DB.pSchema->flags field. ** ** The DB_SchemaLoaded flag is set after the database schema has been ** read into internal hash tables. ** ** DB_UnresetViews means that one or more views have column names that ** have been filled out. If the schema changes, these column names might ** changes and so the view will need to be reset. */ #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ #define DB_UnresetViews 0x0002 /* Some views have defined column names */ #define DB_ResetWanted 0x0008 /* Reset the schema when nSchemaLock==0 */ /* ** The number of different kinds of things that can be limited ** using the sqlite3_limit() interface. */ #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) /* ** Lookaside malloc is a set of fixed-size buffers that can be used ** to satisfy small transient memory allocation requests for objects ** associated with a particular database connection. The use of ** lookaside malloc provides a significant performance enhancement ** (approx 10%) by avoiding numerous malloc/free requests while parsing ** SQL statements. ** ** The Lookaside structure holds configuration information about the ** lookaside malloc subsystem. Each available memory allocation in ** the lookaside subsystem is stored on a linked list of LookasideSlot ** objects. ** ** Lookaside allocations are only allowed for objects that are associated ** with a particular database connection. Hence, schema information cannot ** be stored in lookaside because in shared cache mode the schema information ** is shared by multiple database connections. Therefore, while parsing ** schema information, the Lookaside.bEnabled flag is cleared so that ** lookaside allocations are not used to construct the schema objects. ** ** New lookaside allocations are only allowed if bDisable==0. When ** bDisable is greater than zero, sz is set to zero which effectively ** disables lookaside without adding a new test for the bDisable flag ** in a performance-critical path. sz should be set by to szTrue whenever ** bDisable changes back to zero. ** ** Lookaside buffers are initially held on the pInit list. As they are ** used and freed, they are added back to the pFree list. New allocations ** come off of pFree first, then pInit as a fallback. This dual-list ** allows use to compute a high-water mark - the maximum number of allocations ** outstanding at any point in the past - by subtracting the number of ** allocations on the pInit list from the total number of allocations. ** ** Enhancement on 2019-12-12: Two-size-lookaside ** The default lookaside configuration is 100 slots of 1200 bytes each. ** The larger slot sizes are important for performance, but they waste ** a lot of space, as most lookaside allocations are less than 128 bytes. ** The two-size-lookaside enhancement breaks up the lookaside allocation ** into two pools: One of 128-byte slots and the other of the default size ** (1200-byte) slots. Allocations are filled from the small-pool first, ** failing over to the full-size pool if that does not work. Thus more ** lookaside slots are available while also using less memory. ** This enhancement can be omitted by compiling with ** SQLITE_OMIT_TWOSIZE_LOOKASIDE. */ struct Lookaside { u32 bDisable; /* Only operate the lookaside when zero */ u16 sz; /* Size of each buffer in bytes */ u16 szTrue; /* True value of sz, even if disabled */ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ u32 nSlot; /* Number of lookaside slots allocated */ u32 anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ LookasideSlot *pInit; /* List of buffers not previously used */ LookasideSlot *pFree; /* List of available buffers */ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE LookasideSlot *pSmallInit; /* List of small buffers not previously used */ LookasideSlot *pSmallFree; /* List of available small buffers */ void *pMiddle; /* First byte past end of full-size buffers and ** the first byte of LOOKASIDE_SMALL buffers */ #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ void *pStart; /* First byte of available memory space */ void *pEnd; /* First byte past end of available space */ void *pTrueEnd; /* True value of pEnd, when db->pnBytesFreed!=0 */ }; struct LookasideSlot { LookasideSlot *pNext; /* Next buffer in the list of free buffers */ }; #define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0 #define EnableLookaside db->lookaside.bDisable--;\ db->lookaside.sz=db->lookaside.bDisable?0:db->lookaside.szTrue /* Size of the smaller allocations in two-size lookaside */ #ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE # define LOOKASIDE_SMALL 0 #else # define LOOKASIDE_SMALL 128 #endif /* ** A hash table for built-in function definitions. (Application-defined ** functions use a regular table table from hash.h.) ** ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. ** Collisions are on the FuncDef.u.pHash chain. Use the SQLITE_FUNC_HASH() ** macro to compute a hash on the function name. */ #define SQLITE_FUNC_HASH_SZ 23 struct FuncDefHash { FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ }; #define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ) #ifdef SQLITE_USER_AUTHENTICATION /* ** Information held in the "sqlite3" database connection object and used ** to manage user authentication. */ typedef struct sqlite3_userauth sqlite3_userauth; struct sqlite3_userauth { u8 authLevel; /* Current authentication level */ int nAuthPW; /* Size of the zAuthPW in bytes */ char *zAuthPW; /* Password used to authenticate */ char *zAuthUser; /* User name used to authenticate */ }; /* Allowed values for sqlite3_userauth.authLevel */ #define UAUTH_Unknown 0 /* Authentication not yet checked */ #define UAUTH_Fail 1 /* User authentication failed */ #define UAUTH_User 2 /* Authenticated as a normal user */ #define UAUTH_Admin 3 /* Authenticated as an administrator */ /* Functions used only by user authorization logic */ SQLITE_PRIVATE int sqlite3UserAuthTable(const char*); SQLITE_PRIVATE int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); SQLITE_PRIVATE void sqlite3UserAuthInit(sqlite3*); SQLITE_PRIVATE void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); #endif /* SQLITE_USER_AUTHENTICATION */ /* ** typedef for the authorization callback function. */ #ifdef SQLITE_USER_AUTHENTICATION typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, const char*, const char*); #else typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, const char*); #endif #ifndef SQLITE_OMIT_DEPRECATED /* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing ** in the style of sqlite3_trace() */ #define SQLITE_TRACE_LEGACY 0x40 /* Use the legacy xTrace */ #define SQLITE_TRACE_XPROFILE 0x80 /* Use the legacy xProfile */ #else #define SQLITE_TRACE_LEGACY 0 #define SQLITE_TRACE_XPROFILE 0 #endif /* SQLITE_OMIT_DEPRECATED */ #define SQLITE_TRACE_NONLEGACY_MASK 0x0f /* Normal flags */ /* ** Maximum number of sqlite3.aDb[] entries. This is the number of attached ** databases plus 2 for "main" and "temp". */ #define SQLITE_MAX_DB (SQLITE_MAX_ATTACHED+2) /* ** Each database connection is an instance of the following structure. */ struct sqlite3 { sqlite3_vfs *pVfs; /* OS Interface */ struct Vdbe *pVdbe; /* List of active virtual machines */ CollSeq *pDfltColl; /* BINARY collseq for the database encoding */ sqlite3_mutex *mutex; /* Connection mutex */ Db *aDb; /* All backends */ int nDb; /* Number of backends currently in use */ u32 mDbFlags; /* flags recording internal state */ u64 flags; /* flags settable by pragmas. See below */ i64 lastRowid; /* ROWID of most recent insert (see above) */ i64 szMmap; /* Default mmap_size setting */ u32 nSchemaLock; /* Do not reset the schema when non-zero */ unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ int errCode; /* Most recent error code (SQLITE_*) */ int errByteOffset; /* Byte offset of error in SQL statement */ int errMask; /* & result codes with this before returning */ int iSysErrno; /* Errno value from last system error */ u32 dbOptFlags; /* Flags to enable/disable optimizations */ u8 enc; /* Text encoding */ u8 autoCommit; /* The auto-commit flag. */ u8 temp_store; /* 1: file 2: memory 0: default */ u8 mallocFailed; /* True if we have seen a malloc failure */ u8 bBenignMalloc; /* Do not require OOMs if true */ u8 dfltLockMode; /* Default locking-mode for attached dbs */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ u8 suppressErr; /* Do not issue error messages if true */ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ u8 mTrace; /* zero or more SQLITE_TRACE flags */ u8 noSharedCache; /* True if no shared-cache backends */ u8 nSqlExec; /* Number of pending OP_SqlExec opcodes */ u8 eOpenState; /* Current condition of the connection */ int nextPagesize; /* Pagesize after VACUUM if >0 */ i64 nChange; /* Value returned by sqlite3_changes() */ i64 nTotalChange; /* Value returned by sqlite3_total_changes() */ int aLimit[SQLITE_N_LIMIT]; /* Limits */ int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ struct sqlite3InitInfo { /* Information used during initialization */ Pgno newTnum; /* Rootpage of table being initialized */ u8 iDb; /* Which db file is being initialized */ u8 busy; /* TRUE if currently initializing */ unsigned orphanTrigger : 1; /* Last statement is orphaned TEMP trigger */ unsigned imposterTable : 1; /* Building an imposter table */ unsigned reopenMemdb : 1; /* ATTACH is really a reopen using MemDB */ const char **azInit; /* "type", "name", and "tbl_name" columns */ } init; int nVdbeActive; /* Number of VDBEs currently running */ int nVdbeRead; /* Number of active VDBEs that read or write */ int nVdbeWrite; /* Number of active VDBEs that read and write */ int nVdbeExec; /* Number of nested calls to VdbeExec() */ int nVDestroy; /* Number of active OP_VDestroy operations */ int nExtension; /* Number of loaded extensions */ void **aExtension; /* Array of shared library handles */ union { void (*xLegacy)(void*,const char*); /* mTrace==SQLITE_TRACE_LEGACY */ int (*xV2)(u32,void*,void*,void*); /* All other mTrace values */ } trace; void *pTraceArg; /* Argument to the trace function */ #ifndef SQLITE_OMIT_DEPRECATED void (*xProfile)(void*,const char*,u64); /* Profiling function */ void *pProfileArg; /* Argument to profile function */ #endif void *pCommitArg; /* Argument to xCommitCallback() */ int (*xCommitCallback)(void*); /* Invoked at every commit. */ void *pRollbackArg; /* Argument to xRollbackCallback() */ void (*xRollbackCallback)(void*); /* Invoked at every commit. */ void *pUpdateArg; void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); void *pAutovacPagesArg; /* Client argument to autovac_pages */ void (*xAutovacDestr)(void*); /* Destructor for pAutovacPAgesArg */ unsigned int (*xAutovacPages)(void*,const char*,u32,u32,u32); Parse *pParse; /* Current parse */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK void *pPreUpdateArg; /* First argument to xPreUpdateCallback */ void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64 ); PreUpdate *pPreUpdate; /* Context for active pre-update callback */ #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifndef SQLITE_OMIT_WAL int (*xWalCallback)(void *, sqlite3 *, const char *, int); void *pWalArg; #endif void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); void *pCollNeededArg; sqlite3_value *pErr; /* Most recent error message */ union { volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ double notUsed1; /* Spacer */ } u1; Lookaside lookaside; /* Lookaside malloc configuration */ #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; /* Access authorization function */ void *pAuthArg; /* 1st argument to the access auth function */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ unsigned nProgressOps; /* Number of opcodes for progress callback */ #endif #ifndef SQLITE_OMIT_VIRTUALTABLE int nVTrans; /* Allocated size of aVTrans */ Hash aModule; /* populated by sqlite3_create_module() */ VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ VTable **aVTrans; /* Virtual tables with open transactions */ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ #endif Hash aFunc; /* Hash table of connection functions */ Hash aCollSeq; /* All collating sequences */ BusyHandler busyHandler; /* Busy callback */ Db aDbStatic[2]; /* Static space for the 2 default backends */ Savepoint *pSavepoint; /* List of active savepoints */ int nAnalysisLimit; /* Number of index rows to ANALYZE */ int busyTimeout; /* Busy handler timeout, in msec */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ i64 nDeferredImmCons; /* Net deferred immediate constraints */ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY /* The following variables are all protected by the STATIC_MAIN ** mutex, not by sqlite3.mutex. They are used by code in notify.c. ** ** When X.pUnlockConnection==Y, that means that X is waiting for Y to ** unlock so that it can proceed. ** ** When X.pBlockingConnection==Y, that means that something that X tried ** tried to do recently failed with an SQLITE_LOCKED error due to locks ** held by Y. */ sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ void *pUnlockArg; /* Argument to xUnlockNotify */ void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ #endif #ifdef SQLITE_USER_AUTHENTICATION sqlite3_userauth auth; /* User authentication information */ #endif }; /* ** A macro to discover the encoding of a database. */ #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) #define ENC(db) ((db)->enc) /* ** A u64 constant where the lower 32 bits are all zeros. Only the ** upper 32 bits are included in the argument. Necessary because some ** C-compilers still do not accept LL integer literals. */ #define HI(X) ((u64)(X)<<32) /* ** Possible values for the sqlite3.flags. ** ** Value constraints (enforced via assert()): ** SQLITE_FullFSync == PAGER_FULLFSYNC ** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC ** SQLITE_CacheSpill == PAGER_CACHE_SPILL */ #define SQLITE_WriteSchema 0x00000001 /* OK to update SQLITE_SCHEMA */ #define SQLITE_LegacyFileFmt 0x00000002 /* Create new databases in format 1 */ #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ #define SQLITE_TrustedSchema 0x00000080 /* Allow unsafe functions and ** vtabs in the schema definition */ #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ /* result set is empty */ #define SQLITE_IgnoreChecks 0x00000200 /* Do not enforce check constraints */ #define SQLITE_StmtScanStatus 0x00000400 /* Enable stmt_scanstats() counters */ #define SQLITE_NoCkptOnClose 0x00000800 /* No checkpoint on close()/DETACH */ #define SQLITE_ReverseOrder 0x00001000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x00002000 /* Enable recursive triggers */ #define SQLITE_ForeignKeys 0x00004000 /* Enforce foreign key constraints */ #define SQLITE_AutoIndex 0x00008000 /* Enable automatic indexes */ #define SQLITE_LoadExtension 0x00010000 /* Enable load_extension */ #define SQLITE_LoadExtFunc 0x00020000 /* Enable load_extension() SQL func */ #define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */ #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/ #define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */ #define SQLITE_ResetDatabase 0x02000000 /* Reset the database */ #define SQLITE_LegacyAlter 0x04000000 /* Legacy ALTER TABLE behaviour */ #define SQLITE_NoSchemaError 0x08000000 /* Do not report schema parse errors*/ #define SQLITE_Defensive 0x10000000 /* Input SQL is likely hostile */ #define SQLITE_DqsDDL 0x20000000 /* dbl-quoted strings allowed in DDL*/ #define SQLITE_DqsDML 0x40000000 /* dbl-quoted strings allowed in DML*/ #define SQLITE_EnableView 0x80000000 /* Enable the use of views */ #define SQLITE_CountRows HI(0x00001) /* Count rows changed by INSERT, */ /* DELETE, or UPDATE and return */ /* the count using a callback. */ #define SQLITE_CorruptRdOnly HI(0x00002) /* Prohibit writes due to error */ #define SQLITE_ReadUncommit HI(0x00004) /* READ UNCOMMITTED in shared-cache */ /* Flags used only if debugging */ #ifdef SQLITE_DEBUG #define SQLITE_SqlTrace HI(0x0100000) /* Debug print SQL as it executes */ #define SQLITE_VdbeListing HI(0x0200000) /* Debug listings of VDBE progs */ #define SQLITE_VdbeTrace HI(0x0400000) /* True to trace VDBE execution */ #define SQLITE_VdbeAddopTrace HI(0x0800000) /* Trace sqlite3VdbeAddOp() calls */ #define SQLITE_VdbeEQP HI(0x1000000) /* Debug EXPLAIN QUERY PLAN */ #define SQLITE_ParserTrace HI(0x2000000) /* PRAGMA parser_trace=ON */ #endif /* ** Allowed values for sqlite3.mDbFlags */ #define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */ #define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */ #define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */ #define DBFLAG_VacuumInto 0x0008 /* Currently running VACUUM INTO */ #define DBFLAG_SchemaKnownOk 0x0010 /* Schema is known to be valid */ #define DBFLAG_InternalFunc 0x0020 /* Allow use of internal functions */ #define DBFLAG_EncodingFixed 0x0040 /* No longer possible to change enc. */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ #define SQLITE_QueryFlattener 0x00000001 /* Query flattening */ #define SQLITE_WindowFunc 0x00000002 /* Use xInverse for window functions */ #define SQLITE_GroupByOrder 0x00000004 /* GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x00000008 /* Constant factoring */ #define SQLITE_DistinctOpt 0x00000010 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x00000020 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x00000040 /* ORDER BY of joins via index */ #define SQLITE_Transitive 0x00000080 /* Transitive constraints */ #define SQLITE_OmitNoopJoin 0x00000100 /* Omit unused tables in joins */ #define SQLITE_CountOfView 0x00000200 /* The count-of-view optimization */ #define SQLITE_CursorHints 0x00000400 /* Add OP_CursorHint opcodes */ #define SQLITE_Stat4 0x00000800 /* Use STAT4 data */ /* TH3 expects this value ^^^^^^^^^^ to be 0x0000800. Don't change it */ #define SQLITE_PushDown 0x00001000 /* The push-down optimization */ #define SQLITE_SimplifyJoin 0x00002000 /* Convert LEFT JOIN to JOIN */ #define SQLITE_SkipScan 0x00004000 /* Skip-scans */ #define SQLITE_PropagateConst 0x00008000 /* The constant propagation opt */ #define SQLITE_MinMaxOpt 0x00010000 /* The min/max optimization */ #define SQLITE_SeekScan 0x00020000 /* The OP_SeekScan optimization */ #define SQLITE_OmitOrderBy 0x00040000 /* Omit pointless ORDER BY */ /* TH3 expects this value ^^^^^^^^^^ to be 0x40000. Coordinate any change */ #define SQLITE_BloomFilter 0x00080000 /* Use a Bloom filter on searches */ #define SQLITE_BloomPulldown 0x00100000 /* Run Bloom filters early */ #define SQLITE_BalancedMerge 0x00200000 /* Balance multi-way merges */ #define SQLITE_ReleaseReg 0x00400000 /* Use OP_ReleaseReg for testing */ #define SQLITE_FlttnUnionAll 0x00800000 /* Disable the UNION ALL flattener */ /* TH3 expects this value ^^^^^^^^^^ See flatten04.test */ #define SQLITE_IndexedExpr 0x01000000 /* Pull exprs from index when able */ #define SQLITE_Coroutines 0x02000000 /* Co-routines for subqueries */ #define SQLITE_NullUnusedCols 0x04000000 /* NULL unused columns in subqueries */ #define SQLITE_OnePass 0x08000000 /* Single-pass DELETE and UPDATE */ #define SQLITE_AllOpts 0xffffffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) /* ** Return true if it OK to factor constant expressions into the initialization ** code. The argument is a Parse object for the code generator. */ #define ConstFactorOk(P) ((P)->okConstFactor) /* Possible values for the sqlite3.eOpenState field. ** The numbers are randomly selected such that a minimum of three bits must ** change to convert any number to another or to zero */ #define SQLITE_STATE_OPEN 0x76 /* Database is open */ #define SQLITE_STATE_CLOSED 0xce /* Database is closed */ #define SQLITE_STATE_SICK 0xba /* Error and awaiting close */ #define SQLITE_STATE_BUSY 0x6d /* Database currently in use */ #define SQLITE_STATE_ERROR 0xd5 /* An SQLITE_MISUSE error occurred */ #define SQLITE_STATE_ZOMBIE 0xa7 /* Close with last statement close */ /* ** Each SQL function is defined by an instance of the following ** structure. For global built-in functions (ex: substr(), max(), count()) ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. ** For per-connection application-defined functions, a pointer to this ** structure is held in the db->aHash hash table. ** ** The u.pHash field is used by the global built-ins. The u.pDestructor ** field is used by per-connection app-def functions. */ struct FuncDef { i8 nArg; /* Number of arguments. -1 means unlimited */ u32 funcFlags; /* Some combination of SQLITE_FUNC_* */ void *pUserData; /* User data parameter */ FuncDef *pNext; /* Next function with same name */ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ void (*xValue)(sqlite3_context*); /* Current agg value */ void (*xInverse)(sqlite3_context*,int,sqlite3_value**); /* inverse agg-step */ const char *zName; /* SQL name of the function. */ union { FuncDef *pHash; /* Next with a different name but the same hash */ FuncDestructor *pDestructor; /* Reference counted destructor function */ } u; /* pHash if SQLITE_FUNC_BUILTIN, pDestructor otherwise */ }; /* ** This structure encapsulates a user-function destructor callback (as ** configured using create_function_v2()) and a reference counter. When ** create_function_v2() is called to create a function with a destructor, ** a single object of this type is allocated. FuncDestructor.nRef is set to ** the number of FuncDef objects created (either 1 or 3, depending on whether ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor ** member of each of the new FuncDef objects is set to point to the allocated ** FuncDestructor. ** ** Thereafter, when one of the FuncDef objects is deleted, the reference ** count on this object is decremented. When it reaches 0, the destructor ** is invoked and the FuncDestructor structure freed. */ struct FuncDestructor { int nRef; void (*xDestroy)(void *); void *pUserData; }; /* ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There ** are assert() statements in the code to verify this. ** ** Value constraints (enforced via assert()): ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg ** SQLITE_FUNC_ANYORDER == NC_OrderAgg == SF_OrderByReqd ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG ** SQLITE_FUNC_BYTELEN == OPFLAG_BYTELENARG ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API ** SQLITE_FUNC_DIRECT == SQLITE_DIRECTONLY from the API ** SQLITE_FUNC_UNSAFE == SQLITE_INNOCUOUS -- opposite meanings!!! ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API ** ** Note that even though SQLITE_FUNC_UNSAFE and SQLITE_INNOCUOUS have the ** same bit value, their meanings are inverted. SQLITE_FUNC_UNSAFE is ** used internally and if set means that the function has side effects. ** SQLITE_INNOCUOUS is used by application code and means "not unsafe". ** See multiple instances of tag-20230109-1. */ #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ #define SQLITE_FUNC_BYTELEN 0x00c0 /* Built-in octet_length() function */ #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ /* 0x0200 -- available for reuse */ #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a ** single query - might change over time */ #define SQLITE_FUNC_TEST 0x4000 /* Built-in testing functions */ /* 0x8000 -- available for reuse */ #define SQLITE_FUNC_WINDOW 0x00010000 /* Built-in window-only function */ #define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */ #define SQLITE_FUNC_DIRECT 0x00080000 /* Not for use in TRIGGERs or VIEWs */ #define SQLITE_FUNC_SUBTYPE 0x00100000 /* Result likely to have sub-type */ #define SQLITE_FUNC_UNSAFE 0x00200000 /* Function has side effects */ #define SQLITE_FUNC_INLINE 0x00400000 /* Functions implemented in-line */ #define SQLITE_FUNC_BUILTIN 0x00800000 /* This is a built-in function */ #define SQLITE_FUNC_ANYORDER 0x08000000 /* count/min/max aggregate */ /* Identifier numbers for each in-line function */ #define INLINEFUNC_coalesce 0 #define INLINEFUNC_implies_nonnull_row 1 #define INLINEFUNC_expr_implies_expr 2 #define INLINEFUNC_expr_compare 3 #define INLINEFUNC_affinity 4 #define INLINEFUNC_iif 5 #define INLINEFUNC_sqlite_offset 6 #define INLINEFUNC_unlikely 99 /* Default case */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName ** implemented by C function xFunc that accepts nArg arguments. The ** value passed as iArg is cast to a (void*) and made available ** as the user-data (sqlite3_user_data()) for the function. If ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. ** ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. ** ** SFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and ** adds the SQLITE_DIRECTONLY flag. ** ** INLINE_FUNC(zName, nArg, iFuncId, mFlags) ** zName is the name of a function that is implemented by in-line ** byte code rather than by the usual callbacks. The iFuncId ** parameter determines the function id. The mFlags parameter is ** optional SQLITE_FUNC_ flags for this function. ** ** TEST_FUNC(zName, nArg, iFuncId, mFlags) ** zName is the name of a test-only function implemented by in-line ** byte code rather than by the usual callbacks. The iFuncId ** parameter determines the function id. The mFlags parameter is ** optional SQLITE_FUNC_ flags for this function. ** ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions ** and functions like sqlite_version() that can change, but not during ** a single query. The iArg is ignored. The user-data is always set ** to a NULL pointer. The bNC parameter is not used. ** ** MFUNCTION(zName, nArg, xPtr, xFunc) ** For math-library functions. xPtr is an arbitrary pointer. ** ** PURE_DATE(zName, nArg, iArg, bNC, xFunc) ** Used for "pure" date/time functions, this macro is like DFUNCTION ** except that it does set the SQLITE_FUNC_CONSTANT flags. iArg is ** ignored and the user-data for these functions is set to an ** arbitrary non-NULL pointer. The bNC parameter is not used. ** ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) ** Used to create an aggregate function definition implemented by ** the C functions xStep and xFinal. The first four parameters ** are interpreted in the same way as the first 4 parameters to ** FUNCTION(). ** ** WAGGREGATE(zName, nArg, iArg, xStep, xFinal, xValue, xInverse) ** Used to create an aggregate function definition implemented by ** the C functions xStep and xFinal. The first four parameters ** are interpreted in the same way as the first 4 parameters to ** FUNCTION(). ** ** LIKEFUNC(zName, nArg, pArg, flags) ** Used to create a scalar function definition of a function zName ** that accepts nArg arguments and is implemented by a call to C ** function likeFunc. Argument pArg is cast to a (void *) and made ** available as the function user-data (sqlite3_user_data()). The ** FuncDef.flags variable is set to the value passed as the flags ** parameter. */ #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define SFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_DIRECTONLY|SQLITE_FUNC_UNSAFE, \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define MFUNCTION(zName, nArg, xPtr, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \ xPtr, 0, xFunc, 0, 0, 0, #zName, {0} } #define JFUNCTION(zName, nArg, iArg, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_DETERMINISTIC|\ SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define INLINE_FUNC(zName, nArg, iArg, mFlags) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_UTF8|SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} } #define TEST_FUNC(zName, nArg, iArg, mFlags) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_UTF8|SQLITE_FUNC_INTERNAL|SQLITE_FUNC_TEST| \ SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} } #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_SLOCHNG|SQLITE_UTF8, \ 0, 0, xFunc, 0, 0, 0, #zName, {0} } #define PURE_DATE(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \ (void*)&sqlite3Config, 0, xFunc, 0, 0, 0, #zName, {0} } #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ pArg, 0, xFunc, 0, 0, 0, #zName, } #define LIKEFUNC(zName, nArg, arg, flags) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} } #define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}} #define INTERNAL_FUNCTION(zName, nArg, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_INTERNAL|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \ 0, 0, xFunc, 0, 0, 0, #zName, {0} } /* ** All current savepoints are stored in a linked list starting at ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. */ struct Savepoint { char *zName; /* Savepoint name (nul-terminated) */ i64 nDeferredCons; /* Number of deferred fk violations */ i64 nDeferredImmCons; /* Number of deferred imm fk. */ Savepoint *pNext; /* Parent savepoint (if any) */ }; /* ** The following are used as the second parameter to sqlite3Savepoint(), ** and as the P1 argument to the OP_Savepoint instruction. */ #define SAVEPOINT_BEGIN 0 #define SAVEPOINT_RELEASE 1 #define SAVEPOINT_ROLLBACK 2 /* ** Each SQLite module (virtual table definition) is defined by an ** instance of the following structure, stored in the sqlite3.aModule ** hash table. */ struct Module { const sqlite3_module *pModule; /* Callback pointers */ const char *zName; /* Name passed to create_module() */ int nRefModule; /* Number of pointers to this object */ void *pAux; /* pAux passed to create_module() */ void (*xDestroy)(void *); /* Module destructor function */ Table *pEpoTab; /* Eponymous table for this module */ }; /* ** Information about each column of an SQL table is held in an instance ** of the Column structure, in the Table.aCol[] array. ** ** Definitions: ** ** "table column index" This is the index of the column in the ** Table.aCol[] array, and also the index of ** the column in the original CREATE TABLE stmt. ** ** "storage column index" This is the index of the column in the ** record BLOB generated by the OP_MakeRecord ** opcode. The storage column index is less than ** or equal to the table column index. It is ** equal if and only if there are no VIRTUAL ** columns to the left. ** ** Notes on zCnName: ** The zCnName field stores the name of the column, the datatype of the ** column, and the collating sequence for the column, in that order, all in ** a single allocation. Each string is 0x00 terminated. The datatype ** is only included if the COLFLAG_HASTYPE bit of colFlags is set and the ** collating sequence name is only included if the COLFLAG_HASCOLL bit is ** set. */ struct Column { char *zCnName; /* Name of this column */ unsigned notNull :4; /* An OE_ code for handling a NOT NULL constraint */ unsigned eCType :4; /* One of the standard types */ char affinity; /* One of the SQLITE_AFF_... values */ u8 szEst; /* Est size of value in this column. sizeof(INT)==1 */ u8 hName; /* Column name hash for faster lookup */ u16 iDflt; /* 1-based index of DEFAULT. 0 means "none" */ u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ }; /* Allowed values for Column.eCType. ** ** Values must match entries in the global constant arrays ** sqlite3StdTypeLen[] and sqlite3StdType[]. Each value is one more ** than the offset into these arrays for the corresponding name. ** Adjust the SQLITE_N_STDTYPE value if adding or removing entries. */ #define COLTYPE_CUSTOM 0 /* Type appended to zName */ #define COLTYPE_ANY 1 #define COLTYPE_BLOB 2 #define COLTYPE_INT 3 #define COLTYPE_INTEGER 4 #define COLTYPE_REAL 5 #define COLTYPE_TEXT 6 #define SQLITE_N_STDTYPE 6 /* Number of standard types */ /* Allowed values for Column.colFlags. ** ** Constraints: ** TF_HasVirtual == COLFLAG_VIRTUAL ** TF_HasStored == COLFLAG_STORED ** TF_HasHidden == COLFLAG_HIDDEN */ #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ #define COLFLAG_UNIQUE 0x0008 /* Column def contains "UNIQUE" or "PK" */ #define COLFLAG_SORTERREF 0x0010 /* Use sorter-refs with this column */ #define COLFLAG_VIRTUAL 0x0020 /* GENERATED ALWAYS AS ... VIRTUAL */ #define COLFLAG_STORED 0x0040 /* GENERATED ALWAYS AS ... STORED */ #define COLFLAG_NOTAVAIL 0x0080 /* STORED column not yet calculated */ #define COLFLAG_BUSY 0x0100 /* Blocks recursion on GENERATED columns */ #define COLFLAG_HASCOLL 0x0200 /* Has collating sequence name in zCnName */ #define COLFLAG_NOEXPAND 0x0400 /* Omit this column when expanding "*" */ #define COLFLAG_GENERATED 0x0060 /* Combo: _STORED, _VIRTUAL */ #define COLFLAG_NOINSERT 0x0062 /* Combo: _HIDDEN, _STORED, _VIRTUAL */ /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** ** If CollSeq.xCmp is NULL, it means that the ** collating sequence is undefined. Indices built on an undefined ** collating sequence may not be read or written. */ struct CollSeq { char *zName; /* Name of the collating sequence, UTF-8 encoded */ u8 enc; /* Text encoding handled by xCmp() */ void *pUser; /* First argument to xCmp() */ int (*xCmp)(void*,int, const void*, int, const void*); void (*xDel)(void*); /* Destructor for pUser */ }; /* ** A sort order can be either ASC or DESC. */ #define SQLITE_SO_ASC 0 /* Sort in ascending order */ #define SQLITE_SO_DESC 1 /* Sort in ascending order */ #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ /* ** Column affinity types. ** ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve ** the speed a little by numbering the values consecutively. ** ** But rather than start with 0 or 1, we begin with 'A'. That way, ** when multiple affinity types are concatenated into a string and ** used as the P4 operand, they will be more readable. ** ** Note also that the numeric types are grouped together so that testing ** for a numeric type is a single comparison. And the BLOB type is first. */ #define SQLITE_AFF_NONE 0x40 /* '@' */ #define SQLITE_AFF_BLOB 0x41 /* 'A' */ #define SQLITE_AFF_TEXT 0x42 /* 'B' */ #define SQLITE_AFF_NUMERIC 0x43 /* 'C' */ #define SQLITE_AFF_INTEGER 0x44 /* 'D' */ #define SQLITE_AFF_REAL 0x45 /* 'E' */ #define SQLITE_AFF_FLEXNUM 0x46 /* 'F' */ #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) /* ** The SQLITE_AFF_MASK values masks off the significant bits of an ** affinity value. */ #define SQLITE_AFF_MASK 0x47 /* ** Additional bit values that can be ORed with an affinity without ** changing the affinity. ** ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. ** It causes an assert() to fire if either operand to a comparison ** operator is NULL. It is added to certain comparison operators to ** prove that the operands are always NOT NULL. */ #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ /* ** An object of this type is created for each virtual table present in ** the database schema. ** ** If the database schema is shared, then there is one instance of this ** structure for each database connection (sqlite3*) that uses the shared ** schema. This is because each database connection requires its own unique ** instance of the sqlite3_vtab* handle used to access the virtual table ** implementation. sqlite3_vtab* handles can not be shared between ** database connections, even when the rest of the in-memory database ** schema is shared, as the implementation often stores the database ** connection handle passed to it via the xConnect() or xCreate() method ** during initialization internally. This database connection handle may ** then be used by the virtual table implementation to access real tables ** within the database. So that they appear as part of the callers ** transaction, these accesses need to be made via the same database ** connection as that used to execute SQL operations on the virtual table. ** ** All VTable objects that correspond to a single table in a shared ** database schema are initially stored in a linked-list pointed to by ** the Table.pVTable member variable of the corresponding Table object. ** When an sqlite3_prepare() operation is required to access the virtual ** table, it searches the list for the VTable that corresponds to the ** database connection doing the preparing so as to use the correct ** sqlite3_vtab* handle in the compiled query. ** ** When an in-memory Table object is deleted (for example when the ** schema is being reloaded for some reason), the VTable objects are not ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed ** immediately. Instead, they are moved from the Table.pVTable list to ** another linked list headed by the sqlite3.pDisconnect member of the ** corresponding sqlite3 structure. They are then deleted/xDisconnected ** next time a statement is prepared using said sqlite3*. This is done ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. ** Refer to comments above function sqlite3VtabUnlockList() for an ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect ** list without holding the corresponding sqlite3.mutex mutex. ** ** The memory for objects of this type is always allocated by ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as ** the first argument. */ struct VTable { sqlite3 *db; /* Database connection associated with this table */ Module *pMod; /* Pointer to module implementation */ sqlite3_vtab *pVtab; /* Pointer to vtab instance */ int nRef; /* Number of pointers to this structure */ u8 bConstraint; /* True if constraints are supported */ u8 bAllSchemas; /* True if might use any attached schema */ u8 eVtabRisk; /* Riskiness of allowing hacker access */ int iSavepoint; /* Depth of the SAVEPOINT stack */ VTable *pNext; /* Next in linked list (see above) */ }; /* Allowed values for VTable.eVtabRisk */ #define SQLITE_VTABRISK_Low 0 #define SQLITE_VTABRISK_Normal 1 #define SQLITE_VTABRISK_High 2 /* ** The schema for each SQL table, virtual table, and view is represented ** in memory by an instance of the following structure. */ struct Table { char *zName; /* Name of the table or view */ Column *aCol; /* Information about each column */ Index *pIndex; /* List of SQL indexes on this table. */ char *zColAff; /* String defining the affinity of each column */ ExprList *pCheck; /* All CHECK constraints */ /* ... also used as column name list in a VIEW */ Pgno tnum; /* Root BTree page for this table */ u32 nTabRef; /* Number of pointers to this Table */ u32 tabFlags; /* Mask of TF_* values */ i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ i16 nCol; /* Number of columns in this table */ i16 nNVCol; /* Number of columns that are not VIRTUAL */ LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ LogEst szTabRow; /* Estimated size of each table row in bytes */ #ifdef SQLITE_ENABLE_COSTMULT LogEst costMult; /* Cost multiplier for using this table */ #endif u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ u8 eTabType; /* 0: normal, 1: virtual, 2: view */ union { struct { /* Used by ordinary tables: */ int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ FKey *pFKey; /* Linked list of all foreign keys in this table */ ExprList *pDfltList; /* DEFAULT clauses on various columns. ** Or the AS clause for generated columns. */ } tab; struct { /* Used by views: */ Select *pSelect; /* View definition */ } view; struct { /* Used by virtual tables only: */ int nArg; /* Number of arguments to the module */ char **azArg; /* 0: module 1: schema 2: vtab name 3...: args */ VTable *p; /* List of VTable objects. */ } vtab; } u; Trigger *pTrigger; /* List of triggers on this object */ Schema *pSchema; /* Schema that contains this table */ }; /* ** Allowed values for Table.tabFlags. ** ** TF_OOOHidden applies to tables or view that have hidden columns that are ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, ** the TF_OOOHidden attribute would apply in this case. Such tables require ** special handling during INSERT processing. The "OOO" means "Out Of Order". ** ** Constraints: ** ** TF_HasVirtual == COLFLAG_VIRTUAL ** TF_HasStored == COLFLAG_STORED ** TF_HasHidden == COLFLAG_HIDDEN */ #define TF_Readonly 0x00000001 /* Read-only system table */ #define TF_HasHidden 0x00000002 /* Has one or more hidden columns */ #define TF_HasPrimaryKey 0x00000004 /* Table has a primary key */ #define TF_Autoincrement 0x00000008 /* Integer primary key is autoincrement */ #define TF_HasStat1 0x00000010 /* nRowLogEst set from sqlite_stat1 */ #define TF_HasVirtual 0x00000020 /* Has one or more VIRTUAL columns */ #define TF_HasStored 0x00000040 /* Has one or more STORED columns */ #define TF_HasGenerated 0x00000060 /* Combo: HasVirtual + HasStored */ #define TF_WithoutRowid 0x00000080 /* No rowid. PRIMARY KEY is the key */ #define TF_StatsUsed 0x00000100 /* Query planner decisions affected by ** Index.aiRowLogEst[] values */ #define TF_NoVisibleRowid 0x00000200 /* No user-visible "rowid" column */ #define TF_OOOHidden 0x00000400 /* Out-of-Order hidden columns */ #define TF_HasNotNull 0x00000800 /* Contains NOT NULL constraints */ #define TF_Shadow 0x00001000 /* True for a shadow table */ #define TF_HasStat4 0x00002000 /* STAT4 info available for this table */ #define TF_Ephemeral 0x00004000 /* An ephemeral table */ #define TF_Eponymous 0x00008000 /* An eponymous virtual table */ #define TF_Strict 0x00010000 /* STRICT mode */ /* ** Allowed values for Table.eTabType */ #define TABTYP_NORM 0 /* Ordinary table */ #define TABTYP_VTAB 1 /* Virtual table */ #define TABTYP_VIEW 2 /* A view */ #define IsView(X) ((X)->eTabType==TABTYP_VIEW) #define IsOrdinaryTable(X) ((X)->eTabType==TABTYP_NORM) /* ** Test to see whether or not a table is a virtual table. This is ** done as a macro so that it will be optimized out when virtual ** table support is omitted from the build. */ #ifndef SQLITE_OMIT_VIRTUALTABLE # define IsVirtual(X) ((X)->eTabType==TABTYP_VTAB) # define ExprIsVtab(X) \ ((X)->op==TK_COLUMN && (X)->y.pTab->eTabType==TABTYP_VTAB) #else # define IsVirtual(X) 0 # define ExprIsVtab(X) 0 #endif /* ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() ** only works for non-virtual tables (ordinary tables and views) and is ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The ** IsHiddenColumn() macro is general purpose. */ #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) #elif !defined(SQLITE_OMIT_VIRTUALTABLE) # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) # define IsOrdinaryHiddenColumn(X) 0 #else # define IsHiddenColumn(X) 0 # define IsOrdinaryHiddenColumn(X) 0 #endif /* Does the table have a rowid */ #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) /* ** Each foreign key constraint is an instance of the following structure. ** ** A foreign key is associated with two tables. The "from" table is ** the table that contains the REFERENCES clause that creates the foreign ** key. The "to" table is the table that is named in the REFERENCES clause. ** Consider this example: ** ** CREATE TABLE ex1( ** a INTEGER PRIMARY KEY, ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) ** ); ** ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". ** Equivalent names: ** ** from-table == child-table ** to-table == parent-table ** ** Each REFERENCES clause generates an instance of the following structure ** which is attached to the from-table. The to-table need not exist when ** the from-table is created. The existence of the to-table is not checked. ** ** The list of all parents for child Table X is held at X.pFKey. ** ** A list of all children for a table named Z (which might not even exist) ** is held in Schema.fkeyHash with a hash key of Z. */ struct FKey { Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ char *zTo; /* Name of table that the key points to (aka: Parent) */ FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ FKey *pPrevTo; /* Previous with the same zTo */ int nCol; /* Number of columns in this key */ /* EV: R-30323-21917 */ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ Trigger *apTrigger[2];/* Triggers for aAction[] actions */ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ int iFrom; /* Index of column in pFrom */ char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ } aCol[1]; /* One entry for each of nCol columns */ }; /* ** SQLite supports many different ways to resolve a constraint ** error. ROLLBACK processing means that a constraint violation ** causes the operation in process to fail and for the current transaction ** to be rolled back. ABORT processing means the operation in process ** fails and any prior changes from that one operation are backed out, ** but the transaction is not rolled back. FAIL processing means that ** the operation in progress stops and returns an error code. But prior ** changes due to the same operation are not backed out and no rollback ** occurs. IGNORE means that the particular row that caused the constraint ** error is not inserted or updated. Processing continues and no error ** is returned. REPLACE means that preexisting database rows that caused ** a UNIQUE constraint violation are removed so that the new insert or ** update can proceed. Processing continues and no error is reported. ** UPDATE applies to insert operations only and means that the insert ** is omitted and the DO UPDATE clause of an upsert is run instead. ** ** RESTRICT, SETNULL, SETDFLT, and CASCADE actions apply only to foreign keys. ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign ** key is set to NULL. SETDFLT means that the foreign key is set ** to its default value. CASCADE means that a DELETE or UPDATE of the ** referenced table row is propagated into the row that holds the ** foreign key. ** ** The OE_Default value is a place holder that means to use whatever ** conflict resolution algorithm is required from context. ** ** The following symbolic values are used to record which type ** of conflict resolution action to take. */ #define OE_None 0 /* There is no constraint to check */ #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ #define OE_Abort 2 /* Back out changes but do no rollback transaction */ #define OE_Fail 3 /* Stop the operation but leave all prior changes */ #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ #define OE_Update 6 /* Process as a DO UPDATE in an upsert */ #define OE_Restrict 7 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ #define OE_SetNull 8 /* Set the foreign key value to NULL */ #define OE_SetDflt 9 /* Set the foreign key value to its default */ #define OE_Cascade 10 /* Cascade the changes */ #define OE_Default 11 /* Do whatever the default action is */ /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. ** ** Note that aSortOrder[] and aColl[] have nField+1 slots. There ** are nField slots for the columns of an index then one extra slot ** for the rowid at the end. */ struct KeyInfo { u32 nRef; /* Number of references to this KeyInfo object */ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ u16 nKeyField; /* Number of key columns in the index */ u16 nAllField; /* Total columns, including key plus others */ sqlite3 *db; /* The database connection */ u8 *aSortFlags; /* Sort order for each column. */ CollSeq *aColl[1]; /* Collating sequence for each term of the key */ }; /* ** Allowed bit values for entries in the KeyInfo.aSortFlags[] array. */ #define KEYINFO_ORDER_DESC 0x01 /* DESC sort order */ #define KEYINFO_ORDER_BIGNULL 0x02 /* NULL is larger than any other value */ /* ** This object holds a record which has been parsed out into individual ** fields, for the purposes of doing a comparison. ** ** A record is an object that contains one or more fields of data. ** Records are used to store the content of a table row and to store ** the key of an index. A blob encoding of a record is created by ** the OP_MakeRecord opcode of the VDBE and is disassembled by the ** OP_Column opcode. ** ** An instance of this object serves as a "key" for doing a search on ** an index b+tree. The goal of the search is to find the entry that ** is closed to the key described by this object. This object might hold ** just a prefix of the key. The number of fields is given by ** pKeyInfo->nField. ** ** The r1 and r2 fields are the values to return if this key is less than ** or greater than a key in the btree, respectively. These are normally ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree ** is in DESC order. ** ** The key comparison functions actually return default_rc when they find ** an equals comparison. default_rc can be -1, 0, or +1. If there are ** multiple entries in the b-tree with the same key (when only looking ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to ** cause the search to find the last match, or +1 to cause the search to ** find the first match. ** ** The key comparison functions will set eqSeen to true if they ever ** get and equal results when comparing this structure to a b-tree record. ** When default_rc!=0, the search might end up on the record immediately ** before the first match or immediately after the last match. The ** eqSeen field will indicate whether or not an exact match exists in the ** b-tree. */ struct UnpackedRecord { KeyInfo *pKeyInfo; /* Collation and sort-order information */ Mem *aMem; /* Values */ union { char *z; /* Cache of aMem[0].z for vdbeRecordCompareString() */ i64 i; /* Cache of aMem[0].u.i for vdbeRecordCompareInt() */ } u; int n; /* Cache of aMem[0].n used by vdbeRecordCompareString() */ u16 nField; /* Number of entries in apMem[] */ i8 default_rc; /* Comparison result if keys are equal */ u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ i8 r1; /* Value to return if (lhs < rhs) */ i8 r2; /* Value to return if (lhs > rhs) */ u8 eqSeen; /* True if an equality comparison has been seen */ }; /* ** Each SQL index is represented in memory by an ** instance of the following structure. ** ** The columns of the table that are to be indexed are described ** by the aiColumn[] field of this structure. For example, suppose ** we have the following table and index: ** ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); ** CREATE INDEX Ex2 ON Ex1(c3,c1); ** ** In the Table structure describing Ex1, nCol==3 because there are ** three columns in the table. In the Index structure describing ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. ** The second column to be indexed (c1) has an index of 0 in ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. ** ** The Index.onError field determines whether or not the indexed columns ** must be unique and what to do if they are not. When Index.onError=OE_None, ** it means this is not a unique index. Otherwise it is a unique index ** and the value of Index.onError indicates which conflict resolution ** algorithm to employ when an attempt is made to insert a non-unique ** element. ** ** The colNotIdxed bitmask is used in combination with SrcItem.colUsed ** for a fast test to see if an index can serve as a covering index. ** colNotIdxed has a 1 bit for every column of the original table that ** is *not* available in the index. Thus the expression ** "colUsed & colNotIdxed" will be non-zero if the index is not a ** covering index. The most significant bit of of colNotIdxed will always ** be true (note-20221022-a). If a column beyond the 63rd column of the ** table is used, the "colUsed & colNotIdxed" test will always be non-zero ** and we have to assume either that the index is not covering, or use ** an alternative (slower) algorithm to determine whether or not ** the index is covering. ** ** While parsing a CREATE TABLE or CREATE INDEX statement in order to ** generate VDBE code (as opposed to parsing one read from an sqlite_schema ** table as part of parsing an existing database schema), transient instances ** of this structure may be created. In this case the Index.tnum variable is ** used to store the address of a VDBE instruction, not a database page ** number (it cannot - the database page is not allocated until the VDBE ** program is executed). See convertToWithoutRowidTable() for details. */ struct Index { char *zName; /* Name of this index */ i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ const char **azColl; /* Array of collation sequence names for index */ Expr *pPartIdxWhere; /* WHERE clause for partial indices */ ExprList *aColExpr; /* Column expressions */ Pgno tnum; /* DB Page containing root of this index */ LogEst szIdxRow; /* Estimated average row size in bytes */ u16 nKeyCol; /* Number of columns forming the key */ u16 nColumn; /* Number of columns stored in the index */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ unsigned idxType:2; /* 0:Normal 1:UNIQUE, 2:PRIMARY KEY, 3:IPK */ unsigned bUnordered:1; /* Use this index for == or IN queries only */ unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ unsigned isResized:1; /* True if resizeIndexObject() has been called */ unsigned isCovering:1; /* True if this is a covering index */ unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ unsigned hasStat1:1; /* aiRowLogEst values come from sqlite_stat1 */ unsigned bNoQuery:1; /* Do not use this index to optimize queries */ unsigned bAscKeyBug:1; /* True if the bba7b69f9849b5bf bug applies */ unsigned bHasVCol:1; /* Index references one or more VIRTUAL columns */ unsigned bHasExpr:1; /* Index contains an expression, either a literal ** expression, or a reference to a VIRTUAL column */ #ifdef SQLITE_ENABLE_STAT4 int nSample; /* Number of elements in aSample[] */ int mxSample; /* Number of slots allocated to aSample[] */ int nSampleCol; /* Size of IndexSample.anEq[] and so on */ tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ IndexSample *aSample; /* Samples of the left-most key */ tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ #endif Bitmask colNotIdxed; /* Unindexed columns in pTab */ }; /* ** Allowed values for Index.idxType */ #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ #define SQLITE_IDXTYPE_IPK 3 /* INTEGER PRIMARY KEY index */ /* Return true if index X is a PRIMARY KEY index */ #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) /* Return true if index X is a UNIQUE index */ #define IsUniqueIndex(X) ((X)->onError!=OE_None) /* The Index.aiColumn[] values are normally positive integer. But ** there are some negative values that have special meaning: */ #define XN_ROWID (-1) /* Indexed column is the rowid */ #define XN_EXPR (-2) /* Indexed column is an expression */ /* ** Each sample stored in the sqlite_stat4 table is represented in memory ** using a structure of this type. See documentation at the top of the ** analyze.c source file for additional information. */ struct IndexSample { void *p; /* Pointer to sampled record */ int n; /* Size of record in bytes */ tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ }; /* ** Possible values to use within the flags argument to sqlite3GetToken(). */ #define SQLITE_TOKEN_QUOTED 0x1 /* Token is a quoted identifier. */ #define SQLITE_TOKEN_KEYWORD 0x2 /* Token is a keyword. */ /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** The memory that "z" points to is owned by other objects. Take care ** that the owner of the "z" string does not deallocate the string before ** the Token goes out of scope! Very often, the "z" points to some place ** in the middle of the Parse.zSql text. But it might also point to a ** static string. */ struct Token { const char *z; /* Text of the token. Not NULL-terminated! */ unsigned int n; /* Number of characters in this token */ }; /* ** An instance of this structure contains information needed to generate ** code for a SELECT that contains aggregate functions. ** ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a ** pointer to this structure. The Expr.iAgg field is the index in ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate ** code for that node. ** ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the ** original Select structure that describes the SELECT statement. These ** fields do not need to be freed when deallocating the AggInfo structure. */ struct AggInfo { u8 directMode; /* Direct rendering mode means take data directly ** from source tables rather than from accumulators */ u8 useSortingIdx; /* In direct mode, reference the sorting index rather ** than the source table */ u16 nSortingColumn; /* Number of columns in the sorting index */ int sortingIdx; /* Cursor number of the sorting index */ int sortingIdxPTab; /* Cursor number of pseudo-table */ int iFirstReg; /* First register in range for aCol[] and aFunc[] */ ExprList *pGroupBy; /* The group by clause */ struct AggInfo_col { /* For each column used in source tables */ Table *pTab; /* Source table */ Expr *pCExpr; /* The original expression */ int iTable; /* Cursor number of the source table */ i16 iColumn; /* Column number within the source table */ i16 iSorterColumn; /* Column number in the sorting index */ } *aCol; int nColumn; /* Number of used entries in aCol[] */ int nAccumulator; /* Number of columns that show through to the output. ** Additional columns are used only as parameters to ** aggregate functions */ struct AggInfo_func { /* For each aggregate function */ Expr *pFExpr; /* Expression encoding the function */ FuncDef *pFunc; /* The aggregate function implementation */ int iDistinct; /* Ephemeral table used to enforce DISTINCT */ int iDistAddr; /* Address of OP_OpenEphemeral */ } *aFunc; int nFunc; /* Number of entries in aFunc[] */ u32 selId; /* Select to which this AggInfo belongs */ #ifdef SQLITE_DEBUG Select *pSelect; /* SELECT statement that this AggInfo supports */ #endif }; /* ** Macros to compute aCol[] and aFunc[] register numbers. ** ** These macros should not be used prior to the call to ** assignAggregateRegisters() that computes the value of pAggInfo->iFirstReg. ** The assert()s that are part of this macro verify that constraint. */ #define AggInfoColumnReg(A,I) (assert((A)->iFirstReg),(A)->iFirstReg+(I)) #define AggInfoFuncReg(A,I) \ (assert((A)->iFirstReg),(A)->iFirstReg+(A)->nColumn+(I)) /* ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater ** than 32767 we have to make it 32-bit. 16-bit is preferred because ** it uses less memory in the Expr object, which is a big memory user ** in systems with lots of prepared statements. And few applications ** need more than about 10 or 20 variables. But some extreme users want ** to have prepared statements with over 32766 variables, and for them ** the option is available (at compile-time). */ #if SQLITE_MAX_VARIABLE_NUMBER<32767 typedef i16 ynVar; #else typedef int ynVar; #endif /* ** Each node of an expression in the parse tree is an instance ** of this structure. ** ** Expr.op is the opcode. The integer parser token codes are reused ** as opcodes here. For example, the parser defines TK_GE to be an integer ** code representing the ">=" operator. This same integer code is reused ** to represent the greater-than-or-equal-to operator in the expression ** tree. ** ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, ** or TK_STRING), then Expr.u.zToken contains the text of the SQL literal. If ** the expression is a variable (TK_VARIABLE), then Expr.u.zToken contains the ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), ** then Expr.u.zToken contains the name of the function. ** ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a ** binary operator. Either or both may be NULL. ** ** Expr.x.pList is a list of arguments if the expression is an SQL function, ** a CASE expression or an IN expression of the form " IN (, ...)". ** Expr.x.pSelect is used if the expression is a sub-select or an expression of ** the form " IN (SELECT ...)". If the EP_xIsSelect bit is set in the ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is ** valid. ** ** An expression of the form ID or ID.ID refers to a column in a table. ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is ** the integer cursor number of a VDBE cursor pointing to that table and ** Expr.iColumn is the column number for the specific column. If the ** expression is used as a result in an aggregate SELECT, then the ** value is also stored in the Expr.iAgg column in the aggregate so that ** it can be accessed after all aggregates are computed. ** ** If the expression is an unbound variable marker (a question mark ** character '?' in the original SQL) then the Expr.iTable holds the index ** number for that variable. ** ** If the expression is a subquery then Expr.iColumn holds an integer ** register number containing the result of the subquery. If the ** subquery gives a constant result, then iTable is -1. If the subquery ** gives a different answer at different times during statement processing ** then iTable is the address of a subroutine that computes the subquery. ** ** If the Expr is of type OP_Column, and the table it is selecting from ** is a disk table or the "old.*" pseudo-table, then pTab points to the ** corresponding table definition. ** ** ALLOCATION NOTES: ** ** Expr objects can use a lot of memory space in database schema. To ** help reduce memory requirements, sometimes an Expr object will be ** truncated. And to reduce the number of memory allocations, sometimes ** two or more Expr objects will be stored in a single memory allocation, ** together with Expr.u.zToken strings. ** ** If the EP_Reduced and EP_TokenOnly flags are set when ** an Expr object is truncated. When EP_Reduced is set, then all ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees ** are contained within the same memory allocation. Note, however, that ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately ** allocated, regardless of whether or not EP_Reduced is set. */ struct Expr { u8 op; /* Operation performed by this node */ char affExpr; /* affinity, or RAISE type */ u8 op2; /* TK_REGISTER/TK_TRUTH: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth ** TK_FUNCTION: NC_SelfRef flag if needs OP_PureFunc */ #ifdef SQLITE_DEBUG u8 vvaFlags; /* Verification flags. */ #endif u32 flags; /* Various flags. EP_* See below */ union { char *zToken; /* Token value. Zero terminated and dequoted */ int iValue; /* Non-negative integer value if EP_IntValue */ } u; /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ Expr *pLeft; /* Left subnode */ Expr *pRight; /* Right subnode */ union { ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ } x; /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old ** EP_Unlikely: 134217728 times likelihood ** TK_IN: ephemeral table holding RHS ** TK_SELECT_COLUMN: Number of columns on the LHS ** TK_SELECT: 1st register of result vector */ ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. ** TK_VARIABLE: variable number (always >= 1). ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ union { int iJoin; /* If EP_OuterON or EP_InnerON, the right table */ int iOfst; /* else: start of token from start of statement */ } w; AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ union { Table *pTab; /* TK_COLUMN: Table containing column. Can be NULL ** for a column of an index on an expression */ Window *pWin; /* EP_WinFunc: Window/Filter defn for a function */ struct { /* TK_IN, TK_SELECT, and TK_EXISTS */ int iAddr; /* Subroutine entry address */ int regReturn; /* Register used to hold return address */ } sub; } y; }; /* The following are the meanings of bits in the Expr.flags field. ** Value restrictions: ** ** EP_Agg == NC_HasAgg == SF_HasAgg ** EP_Win == NC_HasWin */ #define EP_OuterON 0x000001 /* Originates in ON/USING clause of outer join */ #define EP_InnerON 0x000002 /* Originates in ON/USING of an inner join */ #define EP_Distinct 0x000004 /* Aggregate function with DISTINCT keyword */ #define EP_HasFunc 0x000008 /* Contains one or more functions of any kind */ #define EP_Agg 0x000010 /* Contains one or more aggregate functions */ #define EP_FixedCol 0x000020 /* TK_Column with a known fixed value */ #define EP_VarSelect 0x000040 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x000080 /* token.z was originally in "..." */ #define EP_InfixFunc 0x000100 /* True for an infix function: LIKE, GLOB, etc */ #define EP_Collate 0x000200 /* Tree contains a TK_COLLATE operator */ #define EP_Commuted 0x000400 /* Comparison operator has been commuted */ #define EP_IntValue 0x000800 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x001000 /* x.pSelect is valid (otherwise x.pList is) */ #define EP_Skip 0x002000 /* Operator does not contribute to affinity */ #define EP_Reduced 0x004000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ #define EP_Win 0x008000 /* Contains window functions */ #define EP_TokenOnly 0x010000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ /* 0x020000 // Available for reuse */ #define EP_IfNullRow 0x040000 /* The TK_IF_NULL_ROW opcode */ #define EP_Unlikely 0x080000 /* unlikely() or likelihood() function */ #define EP_ConstFunc 0x100000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ #define EP_CanBeNull 0x200000 /* Can be null despite NOT NULL constraint */ #define EP_Subquery 0x400000 /* Tree contains a TK_SELECT operator */ #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ #define EP_WinFunc 0x1000000 /* TK_FUNCTION with Expr.y.pWin set */ #define EP_Subrtn 0x2000000 /* Uses Expr.y.sub. TK_IN, _SELECT, or _EXISTS */ #define EP_Quoted 0x4000000 /* TK_ID was originally quoted */ #define EP_Static 0x8000000 /* Held in memory not obtained from malloc() */ #define EP_IsTrue 0x10000000 /* Always has boolean value of TRUE */ #define EP_IsFalse 0x20000000 /* Always has boolean value of FALSE */ #define EP_FromDDL 0x40000000 /* Originates from sqlite_schema */ /* 0x80000000 // Available */ /* The EP_Propagate mask is a set of properties that automatically propagate ** upwards into parent nodes. */ #define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc) /* Macros can be used to test, set, or clear bits in the ** Expr.flags field. */ #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) #define ExprSetProperty(E,P) (E)->flags|=(P) #define ExprClearProperty(E,P) (E)->flags&=~(P) #define ExprAlwaysTrue(E) (((E)->flags&(EP_OuterON|EP_IsTrue))==EP_IsTrue) #define ExprAlwaysFalse(E) (((E)->flags&(EP_OuterON|EP_IsFalse))==EP_IsFalse) /* Macros used to ensure that the correct members of unions are accessed ** in Expr. */ #define ExprUseUToken(E) (((E)->flags&EP_IntValue)==0) #define ExprUseUValue(E) (((E)->flags&EP_IntValue)!=0) #define ExprUseWOfst(E) (((E)->flags&(EP_InnerON|EP_OuterON))==0) #define ExprUseWJoin(E) (((E)->flags&(EP_InnerON|EP_OuterON))!=0) #define ExprUseXList(E) (((E)->flags&EP_xIsSelect)==0) #define ExprUseXSelect(E) (((E)->flags&EP_xIsSelect)!=0) #define ExprUseYTab(E) (((E)->flags&(EP_WinFunc|EP_Subrtn))==0) #define ExprUseYWin(E) (((E)->flags&EP_WinFunc)!=0) #define ExprUseYSub(E) (((E)->flags&EP_Subrtn)!=0) /* Flags for use with Expr.vvaFlags */ #define EP_NoReduce 0x01 /* Cannot EXPRDUP_REDUCE this Expr */ #define EP_Immutable 0x02 /* Do not change this Expr node */ /* The ExprSetVVAProperty() macro is used for Verification, Validation, ** and Accreditation only. It works like ExprSetProperty() during VVA ** processes but is a no-op for delivery. */ #ifdef SQLITE_DEBUG # define ExprSetVVAProperty(E,P) (E)->vvaFlags|=(P) # define ExprHasVVAProperty(E,P) (((E)->vvaFlags&(P))!=0) # define ExprClearVVAProperties(E) (E)->vvaFlags = 0 #else # define ExprSetVVAProperty(E,P) # define ExprHasVVAProperty(E,P) 0 # define ExprClearVVAProperties(E) #endif /* ** Macros to determine the number of bytes required by a normal Expr ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags ** and an Expr struct with the EP_TokenOnly flag set. */ #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ /* ** Flags passed to the sqlite3ExprDup() function. See the header comment ** above sqlite3ExprDup() for details. */ #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ /* ** True if the expression passed as an argument was a function with ** an OVER() clause (a window function). */ #ifdef SQLITE_OMIT_WINDOWFUNC # define IsWindowFunc(p) 0 #else # define IsWindowFunc(p) ( \ ExprHasProperty((p), EP_WinFunc) && p->y.pWin->eFrmType!=TK_FILTER \ ) #endif /* ** A list of expressions. Each expression may optionally have a ** name. An expr/name combination can be used in several ways, such ** as the list of "expr AS ID" fields following a "SELECT" or in the ** list of "ID = expr" items in an UPDATE. A list of expressions can ** also be used as the argument to a function, in which case the a.zName ** field is not used. ** ** In order to try to keep memory usage down, the Expr.a.zEName field ** is used for multiple purposes: ** ** eEName Usage ** ---------- ------------------------- ** ENAME_NAME (1) the AS of result set column ** (2) COLUMN= of an UPDATE ** ** ENAME_TAB DB.TABLE.NAME used to resolve names ** of subqueries ** ** ENAME_SPAN Text of the original result set ** expression. */ struct ExprList { int nExpr; /* Number of expressions on the list */ int nAlloc; /* Number of a[] slots allocated */ struct ExprList_item { /* For each expression in the list */ Expr *pExpr; /* The parse tree for this expression */ char *zEName; /* Token associated with this expression */ struct { u8 sortFlags; /* Mask of KEYINFO_ORDER_* flags */ unsigned eEName :2; /* Meaning of zEName */ unsigned done :1; /* Indicates when processing is finished */ unsigned reusable :1; /* Constant expression is reusable */ unsigned bSorterRef :1; /* Defer evaluation until after sorting */ unsigned bNulls :1; /* True if explicit "NULLS FIRST/LAST" */ unsigned bUsed :1; /* This column used in a SF_NestedFrom subquery */ unsigned bUsingTerm:1; /* Term from the USING clause of a NestedFrom */ unsigned bNoExpand: 1; /* Term is an auxiliary in NestedFrom and should ** not be expanded by "*" in parent queries */ } fg; union { struct { /* Used by any ExprList other than Parse.pConsExpr */ u16 iOrderByCol; /* For ORDER BY, column number in result set */ u16 iAlias; /* Index into Parse.aAlias[] for zName */ } x; int iConstExprReg; /* Register in which Expr value is cached. Used only ** by Parse.pConstExpr */ } u; } a[1]; /* One slot for each expression in the list */ }; /* ** Allowed values for Expr.a.eEName */ #define ENAME_NAME 0 /* The AS clause of a result set */ #define ENAME_SPAN 1 /* Complete text of the result set expression */ #define ENAME_TAB 2 /* "DB.TABLE.NAME" for the result set */ /* ** An instance of this structure can hold a simple list of identifiers, ** such as the list "a,b,c" in the following statements: ** ** INSERT INTO t(a,b,c) VALUES ...; ** CREATE INDEX idx ON t(a,b,c); ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; ** ** The IdList.a.idx field is used when the IdList represents the list of ** column names after a table name in an INSERT statement. In the statement ** ** INSERT INTO t(a,b,c) ... ** ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. */ struct IdList { int nId; /* Number of identifiers on the list */ u8 eU4; /* Which element of a.u4 is valid */ struct IdList_item { char *zName; /* Name of the identifier */ union { int idx; /* Index in some Table.aCol[] of a column named zName */ Expr *pExpr; /* Expr to implement a USING variable -- NOT USED */ } u4; } a[1]; }; /* ** Allowed values for IdList.eType, which determines which value of the a.u4 ** is valid. */ #define EU4_NONE 0 /* Does not use IdList.a.u4 */ #define EU4_IDX 1 /* Uses IdList.a.u4.idx */ #define EU4_EXPR 2 /* Uses IdList.a.u4.pExpr -- NOT CURRENTLY USED */ /* ** The SrcItem object represents a single term in the FROM clause of a query. ** The SrcList object is mostly an array of SrcItems. ** ** The jointype starts out showing the join type between the current table ** and the next table on the list. The parser builds the list this way. ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each ** jointype expresses the join between the table and the previous table. ** ** In the colUsed field, the high-order bit (bit 63) is set if the table ** contains more than 63 columns and the 64-th or later column is used. ** ** Union member validity: ** ** u1.zIndexedBy fg.isIndexedBy && !fg.isTabFunc ** u1.pFuncArg fg.isTabFunc && !fg.isIndexedBy ** u2.pIBIndex fg.isIndexedBy && !fg.isCte ** u2.pCteUse fg.isCte && !fg.isIndexedBy */ struct SrcItem { Schema *pSchema; /* Schema to which this item is fixed */ char *zDatabase; /* Name of database holding this table */ char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ int addrFillSub; /* Address of subroutine to manifest a subquery */ int regReturn; /* Register holding return address of addrFillSub */ int regResult; /* Registers holding results of a co-routine */ struct { u8 jointype; /* Type of join between this table and the previous */ unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ unsigned isTabFunc :1; /* True if table-valued-function syntax */ unsigned isCorrelated :1; /* True if sub-query is correlated */ unsigned isMaterialized:1; /* This is a materialized view */ unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ unsigned fromDDL :1; /* Comes from sqlite_schema */ unsigned isCte :1; /* This is a CTE */ unsigned notCte :1; /* This item may not match a CTE */ unsigned isUsing :1; /* u3.pUsing is valid */ unsigned isOn :1; /* u3.pOn was once valid and non-NULL */ unsigned isSynthUsing :1; /* u3.pUsing is synthesized from NATURAL */ unsigned isNestedFrom :1; /* pSelect is a SF_NestedFrom subquery */ } fg; int iCursor; /* The VDBE cursor number used to access this table */ union { Expr *pOn; /* fg.isUsing==0 => The ON clause of a join */ IdList *pUsing; /* fg.isUsing==1 => The USING clause of a join */ } u3; Bitmask colUsed; /* Bit N set if column N used. Details above for N>62 */ union { char *zIndexedBy; /* Identifier from "INDEXED BY " clause */ ExprList *pFuncArg; /* Arguments to table-valued-function */ } u1; union { Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ CteUse *pCteUse; /* CTE Usage info when fg.isCte is true */ } u2; }; /* ** The OnOrUsing object represents either an ON clause or a USING clause. ** It can never be both at the same time, but it can be neither. */ struct OnOrUsing { Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ }; /* ** This object represents one or more tables that are the source of ** content for an SQL statement. For example, a single SrcList object ** is used to hold the FROM clause of a SELECT statement. SrcList also ** represents the target tables for DELETE, INSERT, and UPDATE statements. ** */ struct SrcList { int nSrc; /* Number of tables or subqueries in the FROM clause */ u32 nAlloc; /* Number of entries allocated in a[] below */ SrcItem a[1]; /* One entry for each identifier on the list */ }; /* ** Permitted values of the SrcList.a.jointype field */ #define JT_INNER 0x01 /* Any kind of inner or cross join */ #define JT_CROSS 0x02 /* Explicit use of the CROSS keyword */ #define JT_NATURAL 0x04 /* True for a "natural" join */ #define JT_LEFT 0x08 /* Left outer join */ #define JT_RIGHT 0x10 /* Right outer join */ #define JT_OUTER 0x20 /* The "OUTER" keyword is present */ #define JT_LTORJ 0x40 /* One of the LEFT operands of a RIGHT JOIN ** Mnemonic: Left Table Of Right Join */ #define JT_ERROR 0x80 /* unknown or unsupported join type */ /* ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() ** and the WhereInfo.wctrlFlags member. ** ** Value constraints (enforced via assert()): ** WHERE_USE_LIMIT == SF_FixedLimit */ #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ #define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */ #define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */ #define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of ** the OR optimization */ #define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */ #define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */ #define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */ #define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */ #define WHERE_AGG_DISTINCT 0x0400 /* Query is "SELECT agg(DISTINCT ...)" */ #define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */ #define WHERE_RIGHT_JOIN 0x1000 /* Processing a RIGHT JOIN */ /* 0x2000 not currently used */ #define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */ /* 0x8000 not currently used */ /* Allowed return values from sqlite3WhereIsDistinct() */ #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ /* ** A NameContext defines a context in which to resolve table and column ** names. The context consists of a list of tables (the pSrcList) field and ** a list of named expression (pEList). The named expression list may ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or ** to the table being operated on by INSERT, UPDATE, or DELETE. The ** pEList corresponds to the result set of a SELECT and is NULL for ** other statements. ** ** NameContexts can be nested. When resolving names, the inner-most ** context is searched first. If no match is found, the next outer ** context is checked. If there is still no match, the next context ** is checked. This process continues until either a match is found ** or all contexts are check. When a match is found, the nRef member of ** the context containing the match is incremented. ** ** Each subquery gets a new NameContext. The pNext field points to the ** NameContext in the parent query. Thus the process of scanning the ** NameContext list corresponds to searching through successively outer ** subqueries looking for a match. */ struct NameContext { Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ union { ExprList *pEList; /* Optional list of result-set columns */ AggInfo *pAggInfo; /* Information about aggregates at this level */ Upsert *pUpsert; /* ON CONFLICT clause information from an upsert */ int iBaseReg; /* For TK_REGISTER when parsing RETURNING */ } uNC; NameContext *pNext; /* Next outer name context. NULL for outermost */ int nRef; /* Number of names resolved by this context */ int nNcErr; /* Number of errors encountered while resolving names */ int ncFlags; /* Zero or more NC_* flags defined below */ Select *pWinSelect; /* SELECT statement for any window functions */ }; /* ** Allowed values for the NameContext, ncFlags field. ** ** Value constraints (all checked via assert()): ** NC_HasAgg == SF_HasAgg == EP_Agg ** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX ** NC_OrderAgg == SF_OrderByReqd == SQLITE_FUNC_ANYORDER ** NC_HasWin == EP_Win ** */ #define NC_AllowAgg 0x000001 /* Aggregate functions are allowed here */ #define NC_PartIdx 0x000002 /* True if resolving a partial index WHERE */ #define NC_IsCheck 0x000004 /* True if resolving a CHECK constraint */ #define NC_GenCol 0x000008 /* True for a GENERATED ALWAYS AS clause */ #define NC_HasAgg 0x000010 /* One or more aggregate functions seen */ #define NC_IdxExpr 0x000020 /* True if resolving columns of CREATE INDEX */ #define NC_SelfRef 0x00002e /* Combo: PartIdx, isCheck, GenCol, and IdxExpr */ #define NC_Subquery 0x000040 /* A subquery has been seen */ #define NC_UEList 0x000080 /* True if uNC.pEList is used */ #define NC_UAggInfo 0x000100 /* True if uNC.pAggInfo is used */ #define NC_UUpsert 0x000200 /* True if uNC.pUpsert is used */ #define NC_UBaseReg 0x000400 /* True if uNC.iBaseReg is used */ #define NC_MinMaxAgg 0x001000 /* min/max aggregates seen. See note above */ #define NC_Complex 0x002000 /* True if a function or subquery seen */ #define NC_AllowWin 0x004000 /* Window functions are allowed here */ #define NC_HasWin 0x008000 /* One or more window functions seen */ #define NC_IsDDL 0x010000 /* Resolving names in a CREATE statement */ #define NC_InAggFunc 0x020000 /* True if analyzing arguments to an agg func */ #define NC_FromDDL 0x040000 /* SQL text comes from sqlite_schema */ #define NC_NoSelect 0x080000 /* Do not descend into sub-selects */ #define NC_OrderAgg 0x8000000 /* Has an aggregate other than count/min/max */ /* ** An instance of the following object describes a single ON CONFLICT ** clause in an upsert. ** ** The pUpsertTarget field is only set if the ON CONFLICT clause includes ** conflict-target clause. (In "ON CONFLICT(a,b)" the "(a,b)" is the ** conflict-target clause.) The pUpsertTargetWhere is the optional ** WHERE clause used to identify partial unique indexes. ** ** pUpsertSet is the list of column=expr terms of the UPDATE statement. ** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING. The ** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the ** WHERE clause is omitted. */ struct Upsert { ExprList *pUpsertTarget; /* Optional description of conflict target */ Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */ ExprList *pUpsertSet; /* The SET clause from an ON CONFLICT UPDATE */ Expr *pUpsertWhere; /* WHERE clause for the ON CONFLICT UPDATE */ Upsert *pNextUpsert; /* Next ON CONFLICT clause in the list */ u8 isDoUpdate; /* True for DO UPDATE. False for DO NOTHING */ /* Above this point is the parse tree for the ON CONFLICT clauses. ** The next group of fields stores intermediate data. */ void *pToFree; /* Free memory when deleting the Upsert object */ /* All fields above are owned by the Upsert object and must be freed ** when the Upsert is destroyed. The fields below are used to transfer ** information from the INSERT processing down into the UPDATE processing ** while generating code. The fields below are owned by the INSERT ** statement and will be freed by INSERT processing. */ Index *pUpsertIdx; /* UNIQUE constraint specified by pUpsertTarget */ SrcList *pUpsertSrc; /* Table to be updated */ int regData; /* First register holding array of VALUES */ int iDataCur; /* Index of the data cursor */ int iIdxCur; /* Index of the first index cursor */ }; /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** ** See the header comment on the computeLimitRegisters() routine for a ** detailed description of the meaning of the iLimit and iOffset fields. ** ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. ** These addresses must be stored so that we can go back and fill in ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor ** the number of columns in P2 can be computed at the same time ** as the OP_OpenEphm instruction is coded because not ** enough information about the compound query is known at that point. ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating ** sequences for the ORDER BY clause. */ struct Select { u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ LogEst nSelectRow; /* Estimated number of result rows */ u32 selFlags; /* Various SF_* values */ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ u32 selId; /* Unique identifier number for this SELECT */ int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ ExprList *pEList; /* The fields of the result */ SrcList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ Select *pPrior; /* Prior select in a compound select statement */ Select *pNext; /* Next select to the left in a compound */ Expr *pLimit; /* LIMIT expression. NULL means not used. */ With *pWith; /* WITH clause attached to this select. Or NULL. */ #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin; /* List of window functions */ Window *pWinDefn; /* List of named window definitions */ #endif }; /* ** Allowed values for Select.selFlags. The "SF" prefix stands for ** "Select Flag". ** ** Value constraints (all checked via assert()) ** SF_HasAgg == NC_HasAgg ** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX ** SF_OrderByReqd == NC_OrderAgg == SQLITE_FUNC_ANYORDER ** SF_FixedLimit == WHERE_USE_LIMIT */ #define SF_Distinct 0x0000001 /* Output should be DISTINCT */ #define SF_All 0x0000002 /* Includes the ALL keyword */ #define SF_Resolved 0x0000004 /* Identifiers have been resolved */ #define SF_Aggregate 0x0000008 /* Contains agg functions or a GROUP BY */ #define SF_HasAgg 0x0000010 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0000020 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0000040 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0000080 /* FROM subqueries have Table metadata */ #define SF_Compound 0x0000100 /* Part of a compound query */ #define SF_Values 0x0000200 /* Synthesized from VALUES clause */ #define SF_MultiValue 0x0000400 /* Single VALUES term with multiple rows */ #define SF_NestedFrom 0x0000800 /* Part of a parenthesized FROM clause */ #define SF_MinMaxAgg 0x0001000 /* Aggregate containing min() or max() */ #define SF_Recursive 0x0002000 /* The recursive part of a recursive CTE */ #define SF_FixedLimit 0x0004000 /* nSelectRow set by a constant LIMIT */ #define SF_MaybeConvert 0x0008000 /* Need convertCompoundSelectToSubquery() */ #define SF_Converted 0x0010000 /* By convertCompoundSelectToSubquery() */ #define SF_IncludeHidden 0x0020000 /* Include hidden columns in output */ #define SF_ComplexResult 0x0040000 /* Result contains subquery or function */ #define SF_WhereBegin 0x0080000 /* Really a WhereBegin() call. Debug Only */ #define SF_WinRewrite 0x0100000 /* Window function rewrite accomplished */ #define SF_View 0x0200000 /* SELECT statement is a view */ #define SF_NoopOrderBy 0x0400000 /* ORDER BY is ignored for this query */ #define SF_UFSrcCheck 0x0800000 /* Check pSrc as required by UPDATE...FROM */ #define SF_PushDown 0x1000000 /* SELECT has be modified by push-down opt */ #define SF_MultiPart 0x2000000 /* Has multiple incompatible PARTITIONs */ #define SF_CopyCte 0x4000000 /* SELECT statement is a copy of a CTE */ #define SF_OrderByReqd 0x8000000 /* The ORDER BY clause may not be omitted */ #define SF_UpdateFrom 0x10000000 /* Query originates with UPDATE FROM */ /* True if S exists and has SF_NestedFrom */ #define IsNestedFrom(S) ((S)!=0 && ((S)->selFlags&SF_NestedFrom)!=0) /* ** The results of a SELECT can be distributed in several ways, as defined ** by one of the following macros. The "SRT" prefix means "SELECT Result ** Type". ** ** SRT_Union Store results as a key in a temporary index ** identified by pDest->iSDParm. ** ** SRT_Except Remove results from the temporary index pDest->iSDParm. ** ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result ** set is not empty. ** ** SRT_Discard Throw the results away. This is used by SELECT ** statements within triggers whose only purpose is ** the side-effects of functions. ** ** SRT_Output Generate a row of output (using the OP_ResultRow ** opcode) for each row in the result set. ** ** SRT_Mem Only valid if the result is a single column. ** Store the first column of the first result row ** in register pDest->iSDParm then abandon the rest ** of the query. This destination implies "LIMIT 1". ** ** SRT_Set The result must be a single column. Store each ** row of result as the key in table pDest->iSDParm. ** Apply the affinity pDest->affSdst before storing ** results. Used to implement "IN (SELECT ...)". ** ** SRT_EphemTab Create an temporary table pDest->iSDParm and store ** the result there. The cursor is left open after ** returning. This is like SRT_Table except that ** this destination uses OP_OpenEphemeral to create ** the table first. ** ** SRT_Coroutine Generate a co-routine that returns a new row of ** results each time it is invoked. The entry point ** of the co-routine is stored in register pDest->iSDParm ** and the result row is stored in pDest->nDest registers ** starting with pDest->iSdst. ** ** SRT_Table Store results in temporary table pDest->iSDParm. ** SRT_Fifo This is like SRT_EphemTab except that the table ** is assumed to already be open. SRT_Fifo has ** the additional property of being able to ignore ** the ORDER BY clause. ** ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. ** But also use temporary table pDest->iSDParm+1 as ** a record of all prior results and ignore any duplicate ** rows. Name means: "Distinct Fifo". ** ** SRT_Queue Store results in priority queue pDest->iSDParm (really ** an index). Append a sequence number so that all entries ** are distinct. ** ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if ** the same record has never been stored before. The ** index at pDest->iSDParm+1 hold all prior stores. ** ** SRT_Upfrom Store results in the temporary table already opened by ** pDest->iSDParm. If (pDest->iSDParm<0), then the temp ** table is an intkey table - in this case the first ** column returned by the SELECT is used as the integer ** key. If (pDest->iSDParm>0), then the table is an index ** table. (pDest->iSDParm) is the number of key columns in ** each index record in this case. */ #define SRT_Union 1 /* Store result as keys in an index */ #define SRT_Except 2 /* Remove result from a UNION index */ #define SRT_Exists 3 /* Store 1 if the result is not empty */ #define SRT_Discard 4 /* Do not save the results anywhere */ #define SRT_DistFifo 5 /* Like SRT_Fifo, but unique results only */ #define SRT_DistQueue 6 /* Like SRT_Queue, but unique results only */ /* The DISTINCT clause is ignored for all of the above. Not that ** IgnorableDistinct() implies IgnorableOrderby() */ #define IgnorableDistinct(X) ((X->eDest)<=SRT_DistQueue) #define SRT_Queue 7 /* Store result in an queue */ #define SRT_Fifo 8 /* Store result as data with an automatic rowid */ /* The ORDER BY clause is ignored for all of the above */ #define IgnorableOrderby(X) ((X->eDest)<=SRT_Fifo) #define SRT_Output 9 /* Output each row of result */ #define SRT_Mem 10 /* Store result in a memory cell */ #define SRT_Set 11 /* Store results as keys in an index */ #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ #define SRT_Coroutine 13 /* Generate a single row of result */ #define SRT_Table 14 /* Store result as data with an automatic rowid */ #define SRT_Upfrom 15 /* Store result as data with rowid */ /* ** An instance of this object describes where to put of the results of ** a SELECT statement. */ struct SelectDest { u8 eDest; /* How to dispose of the results. One of SRT_* above. */ int iSDParm; /* A parameter used by the eDest disposal method */ int iSDParm2; /* A second parameter for the eDest disposal method */ int iSdst; /* Base register where results are written */ int nSdst; /* Number of registers allocated */ char *zAffSdst; /* Affinity used for SRT_Set */ ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ }; /* ** During code generation of statements that do inserts into AUTOINCREMENT ** tables, the following information is attached to the Table.u.autoInc.p ** pointer of each autoincrement table to record some side information that ** the code generator needs. We have to keep per-table autoincrement ** information in case inserts are done within triggers. Triggers do not ** normally coordinate their activities, but we do need to coordinate the ** loading and saving of autoincrement information. */ struct AutoincInfo { AutoincInfo *pNext; /* Next info block in a list of them all */ Table *pTab; /* Table this info block refers to */ int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ int regCtr; /* Memory register holding the rowid counter */ }; /* ** At least one instance of the following structure is created for each ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE ** statement. All such objects are stored in the linked list headed at ** Parse.pTriggerPrg and deleted once statement compilation has been ** completed. ** ** A Vdbe sub-program that implements the body and WHEN clause of trigger ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. ** The Parse.pTriggerPrg list never contains two entries with the same ** values for both pTrigger and orconf. ** ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns ** accessed (or set to 0 for triggers fired as a result of INSERT ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to ** a mask of new.* columns used by the program. */ struct TriggerPrg { Trigger *pTrigger; /* Trigger this program was coded from */ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ SubProgram *pProgram; /* Program implementing pTrigger/orconf */ int orconf; /* Default ON CONFLICT policy */ u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ }; /* ** The yDbMask datatype for the bitmask of all attached databases. */ #if SQLITE_MAX_ATTACHED>30 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) # define DbMaskZero(M) memset((M),0,sizeof(M)) # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) #else typedef unsigned int yDbMask; # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) # define DbMaskZero(M) ((M)=0) # define DbMaskSet(M,I) ((M)|=(((yDbMask)1)<<(I))) # define DbMaskAllZero(M) ((M)==0) # define DbMaskNonZero(M) ((M)!=0) #endif /* ** For each index X that has as one of its arguments either an expression ** or the name of a virtual generated column, and if X is in scope such that ** the value of the expression can simply be read from the index, then ** there is an instance of this object on the Parse.pIdxExpr list. ** ** During code generation, while generating code to evaluate expressions, ** this list is consulted and if a matching expression is found, the value ** is read from the index rather than being recomputed. */ struct IndexedExpr { Expr *pExpr; /* The expression contained in the index */ int iDataCur; /* The data cursor associated with the index */ int iIdxCur; /* The index cursor */ int iIdxCol; /* The index column that contains value of pExpr */ u8 bMaybeNullRow; /* True if we need an OP_IfNullRow check */ u8 aff; /* Affinity of the pExpr expression */ IndexedExpr *pIENext; /* Next in a list of all indexed expressions */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS const char *zIdxName; /* Name of index, used only for bytecode comments */ #endif }; /* ** An instance of the ParseCleanup object specifies an operation that ** should be performed after parsing to deallocation resources obtained ** during the parse and which are no longer needed. */ struct ParseCleanup { ParseCleanup *pNext; /* Next cleanup task */ void *pPtr; /* Pointer to object to deallocate */ void (*xCleanup)(sqlite3*,void*); /* Deallocation routine */ }; /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. ** ** The structure is divided into two parts. When the parser and code ** generate call themselves recursively, the first part of the structure ** is constant but the second part is reset at the beginning and end of ** each recursion. ** ** The nTableLock and aTableLock variables are only used if the shared-cache ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are ** used to store the set of table-locks required by the statement being ** compiled. Function sqlite3TableLock() is used to add entries to the ** list. */ struct Parse { sqlite3 *db; /* The main database structure */ char *zErrMsg; /* An error message */ Vdbe *pVdbe; /* An engine for executing database bytecode */ int rc; /* Return code from execution */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 checkSchema; /* Causes schema cookie check after an error */ u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ u8 okConstFactor; /* OK to factor out constants */ u8 disableLookaside; /* Number of times lookaside has been disabled */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ u8 withinRJSubrtn; /* Nesting level for RIGHT JOIN body subroutines */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) u8 earlyCleanup; /* OOM inside sqlite3ParserAddCleanup() */ #endif #ifdef SQLITE_DEBUG u8 ifNotExists; /* Might be true if IF NOT EXISTS. Assert()s only */ #endif int nRangeReg; /* Size of the temporary register block */ int iRangeReg; /* First register in temporary register block */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ int iSelfTab; /* Table associated with an index on expr, or negative ** of the base register during check-constraint eval */ int nLabel; /* The *negative* of the number of labels used */ int nLabelAlloc; /* Number of slots in aLabel */ int *aLabel; /* Space to hold the labels */ ExprList *pConstExpr;/* Constant expressions */ IndexedExpr *pIdxEpr;/* List of expressions used by active indexes */ Token constraintName;/* Name of the constraint currently being parsed */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ int nSelect; /* Number of SELECT stmts. Counter for Select.selId */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK u32 nProgressSteps; /* xProgress steps taken during sqlite3_prepare() */ #endif #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ ParseCleanup *pCleanup; /* List of cleanup operations to run after parse */ union { int addrCrTab; /* Address of OP_CreateBtree on CREATE TABLE */ Returning *pReturning; /* The RETURNING clause */ } u1; u32 oldmask; /* Mask of old.* columns referenced */ u32 newmask; /* Mask of new.* columns referenced */ LogEst nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ u8 bReturning; /* Coding a RETURNING trigger */ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ u8 disableTriggers; /* True to disable triggers */ /************************************************************************** ** Fields above must be initialized to zero. The fields that follow, ** down to the beginning of the recursive section, do not need to be ** initialized as they will be set before being used. The boundary is ** determined by offsetof(Parse,aTempReg). **************************************************************************/ int aTempReg[8]; /* Holding area for temporary registers */ Parse *pOuterParse; /* Outer Parse object when nested */ Token sNameToken; /* Token with unqualified schema object name */ /************************************************************************ ** Above is constant between recursions. Below is reset before and after ** each recursion. The boundary between these two regions is determined ** using offsetof(Parse,sLastToken) so the sLastToken field must be the ** first field in the recursive region. ************************************************************************/ Token sLastToken; /* The last token parsed */ ynVar nVar; /* Number of '?' variables seen in the SQL so far */ u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ u8 explain; /* True if the EXPLAIN flag is found on the query */ u8 eParseMode; /* PARSE_MODE_XXX constant */ #ifndef SQLITE_OMIT_VIRTUALTABLE int nVtabLock; /* Number of virtual tables to lock */ #endif int nHeight; /* Expression tree height of current sub-select */ #ifndef SQLITE_OMIT_EXPLAIN int addrExplain; /* Address of current OP_Explain opcode */ #endif VList *pVList; /* Mapping between variable names and numbers */ Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Index *pNewIndex; /* An index being constructed by CREATE INDEX. ** Also used to hold redundant UNIQUE constraints ** during a RENAME COLUMN */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ #ifndef SQLITE_OMIT_VIRTUALTABLE Token sArg; /* Complete text of a module argument */ Table **apVtabLock; /* Pointer to virtual tables needing locking */ #endif With *pWith; /* Current WITH clause, or NULL */ #ifndef SQLITE_OMIT_ALTERTABLE RenameToken *pRename; /* Tokens subject to renaming by ALTER TABLE */ #endif }; /* Allowed values for Parse.eParseMode */ #define PARSE_MODE_NORMAL 0 #define PARSE_MODE_DECLARE_VTAB 1 #define PARSE_MODE_RENAME 2 #define PARSE_MODE_UNMAP 3 /* ** Sizes and pointers of various parts of the Parse object. */ #define PARSE_HDR(X) (((char*)(X))+offsetof(Parse,zErrMsg)) #define PARSE_HDR_SZ (offsetof(Parse,aTempReg)-offsetof(Parse,zErrMsg)) /* Recursive part w/o aColCache*/ #define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */ #define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */ #define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */ /* ** Return true if currently inside an sqlite3_declare_vtab() call. */ #ifdef SQLITE_OMIT_VIRTUALTABLE #define IN_DECLARE_VTAB 0 #else #define IN_DECLARE_VTAB (pParse->eParseMode==PARSE_MODE_DECLARE_VTAB) #endif #if defined(SQLITE_OMIT_ALTERTABLE) #define IN_RENAME_OBJECT 0 #else #define IN_RENAME_OBJECT (pParse->eParseMode>=PARSE_MODE_RENAME) #endif #if defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_OMIT_ALTERTABLE) #define IN_SPECIAL_PARSE 0 #else #define IN_SPECIAL_PARSE (pParse->eParseMode!=PARSE_MODE_NORMAL) #endif /* ** An instance of the following structure can be declared on a stack and used ** to save the Parse.zAuthContext value so that it can be restored later. */ struct AuthContext { const char *zAuthContext; /* Put saved Parse.zAuthContext here */ Parse *pParse; /* The Parse structure */ }; /* ** Bitfield flags for P5 value in various opcodes. ** ** Value constraints (enforced via assert()): ** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH ** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF ** OPFLAG_BULKCSR == BTREE_BULKLOAD ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ ** OPFLAG_FORDELETE == BTREE_FORDELETE ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION ** OPFLAG_AUXDELETE == BTREE_AUXDELETE */ #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ /* Also used in P2 (not P5) of OP_Delete */ #define OPFLAG_NOCHNG 0x01 /* OP_VColumn nochange for UPDATE */ #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BYTELENARG 0xc0 /* OP_Column only for octet_length() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */ #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ #define OPFLAG_NOCHNG_MAGIC 0x6d /* OP_MakeRecord: serialtype 10 is ok */ #define OPFLAG_PREFORMAT 0x80 /* OP_Insert uses preformatted cell */ /* ** Each trigger present in the database schema is stored as an instance of ** struct Trigger. ** ** Pointers to instances of struct Trigger are stored in two ways. ** 1. In the "trigHash" hash table (part of the sqlite3* that represents the ** database). This allows Trigger structures to be retrieved by name. ** 2. All triggers associated with a single table form a linked list, using the ** pNext member of struct Trigger. A pointer to the first element of the ** linked list is stored as the "pTrigger" member of the associated ** struct Table. ** ** The "step_list" member points to the first element of a linked list ** containing the SQL statements specified as the trigger program. */ struct Trigger { char *zName; /* The name of the trigger */ char *table; /* The table or view to which the trigger applies */ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ u8 bReturning; /* This trigger implements a RETURNING clause */ Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ IdList *pColumns; /* If this is an UPDATE OF trigger, the is stored here */ Schema *pSchema; /* Schema containing the trigger */ Schema *pTabSchema; /* Schema containing the table */ TriggerStep *step_list; /* Link list of trigger program steps */ Trigger *pNext; /* Next trigger associated with the table */ }; /* ** A trigger is either a BEFORE or an AFTER trigger. The following constants ** determine which. ** ** If there are multiple triggers, you might of some BEFORE and some AFTER. ** In that cases, the constants below can be ORed together. */ #define TRIGGER_BEFORE 1 #define TRIGGER_AFTER 2 /* ** An instance of struct TriggerStep is used to store a single SQL statement ** that is a part of a trigger-program. ** ** Instances of struct TriggerStep are stored in a singly linked list (linked ** using the "pNext" member) referenced by the "step_list" member of the ** associated struct Trigger instance. The first element of the linked list is ** the first step of the trigger-program. ** ** The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or ** "SELECT" statement. The meanings of the other members is determined by the ** value of "op" as follows: ** ** (op == TK_INSERT) ** orconf -> stores the ON CONFLICT algorithm ** pSelect -> The content to be inserted - either a SELECT statement or ** a VALUES clause. ** zTarget -> Dequoted name of the table to insert into. ** pIdList -> If this is an INSERT INTO ... () VALUES ... ** statement, then this stores the column-names to be ** inserted into. ** pUpsert -> The ON CONFLICT clauses for an Upsert ** ** (op == TK_DELETE) ** zTarget -> Dequoted name of the table to delete from. ** pWhere -> The WHERE clause of the DELETE statement if one is specified. ** Otherwise NULL. ** ** (op == TK_UPDATE) ** zTarget -> Dequoted name of the table to update. ** pWhere -> The WHERE clause of the UPDATE statement if one is specified. ** Otherwise NULL. ** pExprList -> A list of the columns to update and the expressions to update ** them to. See sqlite3Update() documentation of "pChanges" ** argument. ** ** (op == TK_SELECT) ** pSelect -> The SELECT statement ** ** (op == TK_RETURNING) ** pExprList -> The list of expressions that follow the RETURNING keyword. ** */ struct TriggerStep { u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT, ** or TK_RETURNING */ u8 orconf; /* OE_Rollback etc. */ Trigger *pTrig; /* The trigger that this step is a part of */ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ SrcList *pFrom; /* FROM clause for UPDATE statement (if any) */ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ ExprList *pExprList; /* SET clause for UPDATE, or RETURNING clause */ IdList *pIdList; /* Column names for INSERT */ Upsert *pUpsert; /* Upsert clauses on an INSERT */ char *zSpan; /* Original SQL text of this command */ TriggerStep *pNext; /* Next in the link-list */ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ }; /* ** Information about a RETURNING clause */ struct Returning { Parse *pParse; /* The parse that includes the RETURNING clause */ ExprList *pReturnEL; /* List of expressions to return */ Trigger retTrig; /* The transient trigger that implements RETURNING */ TriggerStep retTStep; /* The trigger step */ int iRetCur; /* Transient table holding RETURNING results */ int nRetCol; /* Number of in pReturnEL after expansion */ int iRetReg; /* Register array for holding a row of RETURNING */ }; /* ** An objected used to accumulate the text of a string where we ** do not necessarily know how big the string will be in the end. */ struct sqlite3_str { sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zText; /* The string collected so far */ u32 nAlloc; /* Amount of space allocated in zText */ u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ u32 nChar; /* Length of the string so far */ u8 accError; /* SQLITE_NOMEM or SQLITE_TOOBIG */ u8 printfFlags; /* SQLITE_PRINTF flags below */ }; #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) /* ** The following object is the header for an "RCStr" or "reference-counted ** string". An RCStr is passed around and used like any other char* ** that has been dynamically allocated. The important interface ** differences: ** ** 1. RCStr strings are reference counted. They are deallocated ** when the reference count reaches zero. ** ** 2. Use sqlite3RCStrUnref() to free an RCStr string rather than ** sqlite3_free() ** ** 3. Make a (read-only) copy of a read-only RCStr string using ** sqlite3RCStrRef(). */ struct RCStr { u64 nRCRef; /* Number of references */ /* Total structure size should be a multiple of 8 bytes for alignment */ }; /* ** A pointer to this structure is used to communicate information ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. */ typedef struct { sqlite3 *db; /* The database being initialized */ char **pzErrMsg; /* Error message stored here */ int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ int rc; /* Result code stored here */ u32 mInitFlags; /* Flags controlling error messages */ u32 nInitRow; /* Number of rows processed */ Pgno mxPage; /* Maximum page number. 0 for no limit. */ } InitData; /* ** Allowed values for mInitFlags */ #define INITFLAG_AlterMask 0x0003 /* Types of ALTER */ #define INITFLAG_AlterRename 0x0001 /* Reparse after a RENAME */ #define INITFLAG_AlterDrop 0x0002 /* Reparse after a DROP COLUMN */ #define INITFLAG_AlterAdd 0x0003 /* Reparse after an ADD COLUMN */ /* Tuning parameters are set using SQLITE_TESTCTRL_TUNE and are controlled ** on debug-builds of the CLI using ".testctrl tune ID VALUE". Tuning ** parameters are for temporary use during development, to help find ** optimal values for parameters in the query planner. The should not ** be used on trunk check-ins. They are a temporary mechanism available ** for transient development builds only. ** ** Tuning parameters are numbered starting with 1. */ #define SQLITE_NTUNE 6 /* Should be zero for all trunk check-ins */ #ifdef SQLITE_DEBUG # define Tuning(X) (sqlite3Config.aTune[(X)-1]) #else # define Tuning(X) 0 #endif /* ** Structure containing global configuration data for the SQLite library. ** ** This structure also contains some state information. */ struct Sqlite3Config { int bMemstat; /* True to enable memory status */ u8 bCoreMutex; /* True to enable core mutexing */ u8 bFullMutex; /* True to enable full mutexing */ u8 bOpenUri; /* True to interpret filenames as URIs */ u8 bUseCis; /* Use covering indices for full-scans */ u8 bSmallMalloc; /* Avoid large memory allocations if true */ u8 bExtraSchemaChecks; /* Verify type,name,tbl_name in schema */ u8 bUseLongDouble; /* Make use of long double */ int mxStrlen; /* Maximum string length */ int neverCorrupt; /* Database is always well-formed */ int szLookaside; /* Default lookaside buffer size */ int nLookaside; /* Default lookaside buffer count */ int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ sqlite3_mem_methods m; /* Low-level memory allocation interface */ sqlite3_mutex_methods mutex; /* Low-level mutex interface */ sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ void *pHeap; /* Heap storage space */ int nHeap; /* Size of pHeap[] */ int mnReq, mxReq; /* Min and max heap requests sizes */ sqlite3_int64 szMmap; /* mmap() space per open file */ sqlite3_int64 mxMmap; /* Maximum value for szMmap */ void *pPage; /* Page cache memory */ int szPage; /* Size of each page in pPage[] */ int nPage; /* Number of pages in pPage[] */ int mxParserStack; /* maximum depth of the parser stack */ int sharedCacheEnabled; /* true if shared-cache mode enabled */ u32 szPma; /* Maximum Sorter PMA size */ /* The above might be initialized to non-zero. The following need to always ** initially be zero, however. */ int isInit; /* True after initialization has finished */ int inProgress; /* True while initialization in progress */ int isMutexInit; /* True after mutexes are initialized */ int isMallocInit; /* True after malloc is initialized */ int isPCacheInit; /* True after malloc is initialized */ int nRefInitMutex; /* Number of users of pInitMutex */ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ void (*xLog)(void*,int,const char*); /* Function for logging */ void *pLogArg; /* First argument to xLog() */ #ifdef SQLITE_ENABLE_SQLLOG void(*xSqllog)(void*,sqlite3*,const char*, int); void *pSqllogArg; #endif #ifdef SQLITE_VDBE_COVERAGE /* The following callback (if not NULL) is invoked on every VDBE branch ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. */ void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_OMIT_DESERIALIZE sqlite3_int64 mxMemdbSize; /* Default max memdb size */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int (*xAltLocaltime)(const void*,void*); /* Alternative localtime() routine */ int iOnceResetThreshold; /* When to reset OP_Once counters */ u32 szSorterRef; /* Min size in bytes to use sorter-refs */ unsigned int iPrngSeed; /* Alternative fixed seed for the PRNG */ /* vvvv--- must be last ---vvv */ #ifdef SQLITE_DEBUG sqlite3_int64 aTune[SQLITE_NTUNE]; /* Tuning parameters */ #endif }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); ** ** One writes: ** ** assert( X || CORRUPT_DB ); ** ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate ** that the database is definitely corrupt, only that it might be corrupt. ** For most test cases, CORRUPT_DB is set to false using a special ** sqlite3_test_control(). This enables assert() statements to prove ** things that are always true for well-formed databases. */ #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) /* ** Context pointer passed down through the tree-walk. */ struct Walker { Parse *pParse; /* Parser context. */ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ int walkerDepth; /* Number of subqueries */ u16 eCode; /* A small processing code */ u16 mWFlags; /* Use-dependent flags */ union { /* Extra data for callback */ NameContext *pNC; /* Naming context */ int n; /* A counter */ int iCur; /* A cursor number */ SrcList *pSrcList; /* FROM clause */ struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ struct RefSrcList *pRefSrcList; /* sqlite3ReferencesSrcList() */ int *aiCol; /* array of column indexes */ struct IdxCover *pIdxCover; /* Check for index coverage */ ExprList *pGroupBy; /* GROUP BY clause */ Select *pSelect; /* HAVING to WHERE clause ctx */ struct WindowRewrite *pRewrite; /* Window rewrite context */ struct WhereConst *pConst; /* WHERE clause constants */ struct RenameCtx *pRename; /* RENAME COLUMN context */ struct Table *pTab; /* Table of generated column */ struct CoveringIndexCheck *pCovIdxCk; /* Check for covering index */ SrcItem *pSrcItem; /* A single FROM clause item */ DbFixer *pFix; /* See sqlite3FixSelect() */ Mem *aMem; /* See sqlite3BtreeCursorHint() */ } u; }; /* ** The following structure contains information used by the sqliteFix... ** routines as they walk the parse tree to make database references ** explicit. */ struct DbFixer { Parse *pParse; /* The parsing context. Error messages written here */ Walker w; /* Walker object */ Schema *pSchema; /* Fix items to this schema */ u8 bTemp; /* True for TEMP schema entries */ const char *zDb; /* Make sure all objects are contained in this database */ const char *zType; /* Type of the container - used for error messages */ const Token *pName; /* Name of the container - used for error messages */ }; /* Forward declarations */ SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprNN(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*); SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*); SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*); SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker*, Select*); SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker*,Select*); SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker*,Select*); SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker*,Select*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker*, Select*); #endif #ifndef SQLITE_OMIT_CTE SQLITE_PRIVATE void sqlite3SelectPopWith(Walker*, Select*); #else # define sqlite3SelectPopWith 0 #endif /* ** Return code from the parse-tree walking primitives and their ** callbacks. */ #define WRC_Continue 0 /* Continue down into children */ #define WRC_Prune 1 /* Omit children but continue walking siblings */ #define WRC_Abort 2 /* Abandon the tree walk */ /* ** A single common table expression */ struct Cte { char *zName; /* Name of this CTE */ ExprList *pCols; /* List of explicit column names, or NULL */ Select *pSelect; /* The definition of this CTE */ const char *zCteErr; /* Error message for circular references */ CteUse *pUse; /* Usage information for this CTE */ u8 eM10d; /* The MATERIALIZED flag */ }; /* ** Allowed values for the materialized flag (eM10d): */ #define M10d_Yes 0 /* AS MATERIALIZED */ #define M10d_Any 1 /* Not specified. Query planner's choice */ #define M10d_No 2 /* AS NOT MATERIALIZED */ /* ** An instance of the With object represents a WITH clause containing ** one or more CTEs (common table expressions). */ struct With { int nCte; /* Number of CTEs in the WITH clause */ int bView; /* Belongs to the outermost Select of a view */ With *pOuter; /* Containing WITH clause, or NULL */ Cte a[1]; /* For each CTE in the WITH clause.... */ }; /* ** The Cte object is not guaranteed to persist for the entire duration ** of code generation. (The query flattener or other parser tree ** edits might delete it.) The following object records information ** about each Common Table Expression that must be preserved for the ** duration of the parse. ** ** The CteUse objects are freed using sqlite3ParserAddCleanup() rather ** than sqlite3SelectDelete(), which is what enables them to persist ** until the end of code generation. */ struct CteUse { int nUse; /* Number of users of this CTE */ int addrM9e; /* Start of subroutine to compute materialization */ int regRtn; /* Return address register for addrM9e subroutine */ int iCur; /* Ephemeral table holding the materialization */ LogEst nRowEst; /* Estimated number of rows in the table */ u8 eM10d; /* The MATERIALIZED flag */ }; #ifdef SQLITE_DEBUG /* ** An instance of the TreeView object is used for printing the content of ** data structures on sqlite3DebugPrintf() using a tree-like view. */ struct TreeView { int iLevel; /* Which level of the tree we are on */ u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ }; #endif /* SQLITE_DEBUG */ /* ** This object is used in various ways, most (but not all) related to window ** functions. ** ** (1) A single instance of this structure is attached to the ** the Expr.y.pWin field for each window function in an expression tree. ** This object holds the information contained in the OVER clause, ** plus additional fields used during code generation. ** ** (2) All window functions in a single SELECT form a linked-list ** attached to Select.pWin. The Window.pFunc and Window.pExpr ** fields point back to the expression that is the window function. ** ** (3) The terms of the WINDOW clause of a SELECT are instances of this ** object on a linked list attached to Select.pWinDefn. ** ** (4) For an aggregate function with a FILTER clause, an instance ** of this object is stored in Expr.y.pWin with eFrmType set to ** TK_FILTER. In this case the only field used is Window.pFilter. ** ** The uses (1) and (2) are really the same Window object that just happens ** to be accessible in two different ways. Use case (3) are separate objects. */ struct Window { char *zName; /* Name of window (may be NULL) */ char *zBase; /* Name of base window for chaining (may be NULL) */ ExprList *pPartition; /* PARTITION BY clause */ ExprList *pOrderBy; /* ORDER BY clause */ u8 eFrmType; /* TK_RANGE, TK_GROUPS, TK_ROWS, or 0 */ u8 eStart; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */ u8 eEnd; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */ u8 bImplicitFrame; /* True if frame was implicitly specified */ u8 eExclude; /* TK_NO, TK_CURRENT, TK_TIES, TK_GROUP, or 0 */ Expr *pStart; /* Expression for " PRECEDING" */ Expr *pEnd; /* Expression for " FOLLOWING" */ Window **ppThis; /* Pointer to this object in Select.pWin list */ Window *pNextWin; /* Next window function belonging to this SELECT */ Expr *pFilter; /* The FILTER expression */ FuncDef *pWFunc; /* The function */ int iEphCsr; /* Partition buffer or Peer buffer */ int regAccum; /* Accumulator */ int regResult; /* Interim result */ int csrApp; /* Function cursor (used by min/max) */ int regApp; /* Function register (also used by min/max) */ int regPart; /* Array of registers for PARTITION BY values */ Expr *pOwner; /* Expression object this window is attached to */ int nBufferCol; /* Number of columns in buffer table */ int iArgCol; /* Offset of first argument for this function */ int regOne; /* Register containing constant value 1 */ int regStartRowid; int regEndRowid; u8 bExprArgs; /* Defer evaluation of window function arguments ** due to the SQLITE_SUBTYPE flag */ }; #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3*, Window*); SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window*); SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p); SQLITE_PRIVATE Window *sqlite3WindowAlloc(Parse*, int, int, Expr*, int , Expr*, u8); SQLITE_PRIVATE void sqlite3WindowAttach(Parse*, Expr*, Window*); SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin); SQLITE_PRIVATE int sqlite3WindowCompare(const Parse*, const Window*, const Window*, int); SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse*, Select*); SQLITE_PRIVATE void sqlite3WindowCodeStep(Parse*, Select*, WhereInfo*, int, int); SQLITE_PRIVATE int sqlite3WindowRewrite(Parse*, Select*); SQLITE_PRIVATE void sqlite3WindowUpdate(Parse*, Window*, Window*, FuncDef*); SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p); SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p); SQLITE_PRIVATE void sqlite3WindowFunctions(void); SQLITE_PRIVATE void sqlite3WindowChain(Parse*, Window*, Window*); SQLITE_PRIVATE Window *sqlite3WindowAssemble(Parse*, Window*, ExprList*, ExprList*, Token*); #else # define sqlite3WindowDelete(a,b) # define sqlite3WindowFunctions() # define sqlite3WindowAttach(a,b,c) #endif /* ** Assuming zIn points to the first byte of a UTF-8 character, ** advance zIn to point to the first byte of the next UTF-8 character. */ #define SQLITE_SKIP_UTF8(zIn) { \ if( (*(zIn++))>=0xc0 ){ \ while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ } \ } /* ** The SQLITE_*_BKPT macros are substitutes for the error codes with ** the same name but without the _BKPT suffix. These macros invoke ** routines that report the line-number on which the error originated ** using sqlite3_log(). The routines also provide a convenient place ** to set a debugger breakpoint. */ SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType); SQLITE_PRIVATE int sqlite3CorruptError(int); SQLITE_PRIVATE int sqlite3MisuseError(int); SQLITE_PRIVATE int sqlite3CantopenError(int); #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NomemError(int); SQLITE_PRIVATE int sqlite3IoerrnomemError(int); # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) #else # define SQLITE_NOMEM_BKPT SQLITE_NOMEM # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) SQLITE_PRIVATE int sqlite3CorruptPgnoError(int,Pgno); # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptPgnoError(__LINE__,(P)) #else # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptError(__LINE__) #endif /* ** FTS3 and FTS4 both require virtual table support */ #if defined(SQLITE_OMIT_VIRTUALTABLE) # undef SQLITE_ENABLE_FTS3 # undef SQLITE_ENABLE_FTS4 #endif /* ** FTS4 is really an extension for FTS3. It is enabled using the ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 1 #endif /* ** The ctype.h header is needed for non-ASCII systems. It is also ** needed by FTS3 when FTS3 is included in the amalgamation. */ #if !defined(SQLITE_ASCII) || \ (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) # include #endif /* ** The following macros mimic the standard library functions toupper(), ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The ** sqlite versions only work for ASCII characters, regardless of locale. */ #ifdef SQLITE_ASCII # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) # define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80) # define sqlite3JsonId1(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x42) # define sqlite3JsonId2(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x46) #else # define sqlite3Toupper(x) toupper((unsigned char)(x)) # define sqlite3Isspace(x) isspace((unsigned char)(x)) # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) # define sqlite3Tolower(x) tolower((unsigned char)(x)) # define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`') # define sqlite3JsonId1(x) (sqlite3IsIdChar(x)&&(x)<'0') # define sqlite3JsonId2(x) sqlite3IsIdChar(x) #endif SQLITE_PRIVATE int sqlite3IsIdChar(u8); /* ** Internal function prototypes */ SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*); SQLITE_PRIVATE int sqlite3Strlen30(const char*); #define sqlite3Strlen30NN(C) (strlen(C)&0x3fffffff) SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*); #define sqlite3StrNICmp sqlite3_strnicmp SQLITE_PRIVATE int sqlite3MallocInit(void); SQLITE_PRIVATE void sqlite3MallocEnd(void); SQLITE_PRIVATE void *sqlite3Malloc(u64); SQLITE_PRIVATE void *sqlite3MallocZero(u64); SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, u64); SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, u64); SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64); SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*); SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64); SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3*,const char*,const char*); SQLITE_PRIVATE void *sqlite3Realloc(void*, u64); SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64); SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3*, void*); SQLITE_PRIVATE int sqlite3MallocSize(const void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, const void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); #endif SQLITE_PRIVATE int sqlite3HeapNearlyFull(void); /* ** On systems with ample stack space and that support alloca(), make ** use of alloca() to obtain space for large automatic objects. By default, ** obtain space from malloc(). ** ** The alloca() routine never returns NULL. This will cause code paths ** that deal with sqlite3StackAlloc() failures to be unreachable. */ #ifdef SQLITE_USE_ALLOCA # define sqlite3StackAllocRaw(D,N) alloca(N) # define sqlite3StackAllocRawNN(D,N) alloca(N) # define sqlite3StackFree(D,P) # define sqlite3StackFreeNN(D,P) #else # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) # define sqlite3StackAllocRawNN(D,N) sqlite3DbMallocRawNN(D,N) # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) # define sqlite3StackFreeNN(D,P) sqlite3DbFreeNN(D,P) #endif /* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they ** are, disable MEMSYS3 */ #ifdef SQLITE_ENABLE_MEMSYS5 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); #undef SQLITE_ENABLE_MEMSYS3 #endif #ifdef SQLITE_ENABLE_MEMSYS3 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); #endif #ifndef SQLITE_MUTEX_OMIT SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void); SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void); SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int); SQLITE_PRIVATE int sqlite3MutexInit(void); SQLITE_PRIVATE int sqlite3MutexEnd(void); #endif #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) SQLITE_PRIVATE void sqlite3MemoryBarrier(void); #else # define sqlite3MemoryBarrier() #endif SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int); SQLITE_PRIVATE void sqlite3StatusUp(int, int); SQLITE_PRIVATE void sqlite3StatusDown(int, int); SQLITE_PRIVATE void sqlite3StatusHighwater(int, int); SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3*,int*); /* Access to mutexes used by sqlite3_status() */ SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void); SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void); #if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT) SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex*); #else # define sqlite3MutexWarnOnContention(x) #endif #ifndef SQLITE_OMIT_FLOATING_POINT # define EXP754 (((u64)0x7ff)<<52) # define MAN754 ((((u64)1)<<52)-1) # define IsNaN(X) (((X)&EXP754)==EXP754 && ((X)&MAN754)!=0) SQLITE_PRIVATE int sqlite3IsNaN(double); #else # define IsNaN(X) 0 # define sqlite3IsNaN(X) 0 #endif /* ** An instance of the following structure holds information about SQL ** functions arguments that are the parameters to the printf() function. */ struct PrintfArguments { int nArg; /* Total number of arguments */ int nUsed; /* Number of arguments used so far */ sqlite3_value **apArg; /* The argument values */ }; /* ** An instance of this object receives the decoding of a floating point ** value into an approximate decimal representation. */ struct FpDecode { char sign; /* '+' or '-' */ char isSpecial; /* 1: Infinity 2: NaN */ int n; /* Significant digits in the decode */ int iDP; /* Location of the decimal point */ char *z; /* Start of significant digits */ char zBuf[24]; /* Storage for significant digits */ }; SQLITE_PRIVATE void sqlite3FpDecode(FpDecode*,double,int,int); SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView*, const char *zFormat, ...); SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); SQLITE_PRIVATE void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewBareIdList(TreeView*, const IdList*, const char*); SQLITE_PRIVATE void sqlite3TreeViewIdList(TreeView*, const IdList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewColumnList(TreeView*, const Column*, int, u8); SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView*, const SrcList*); SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8); SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView*, const With*, u8); SQLITE_PRIVATE void sqlite3TreeViewUpsert(TreeView*, const Upsert*, u8); #if TREETRACE_ENABLED SQLITE_PRIVATE void sqlite3TreeViewDelete(const With*, const SrcList*, const Expr*, const ExprList*,const Expr*, const Trigger*); SQLITE_PRIVATE void sqlite3TreeViewInsert(const With*, const SrcList*, const IdList*, const Select*, const ExprList*, int, const Upsert*, const Trigger*); SQLITE_PRIVATE void sqlite3TreeViewUpdate(const With*, const SrcList*, const ExprList*, const Expr*, int, const ExprList*, const Expr*, const Upsert*, const Trigger*); #endif #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3TreeViewTriggerStep(TreeView*, const TriggerStep*, u8, u8); SQLITE_PRIVATE void sqlite3TreeViewTrigger(TreeView*, const Trigger*, u8, u8); #endif #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView*, const Window*, u8); SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8); #endif SQLITE_PRIVATE void sqlite3ShowExpr(const Expr*); SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList*); SQLITE_PRIVATE void sqlite3ShowIdList(const IdList*); SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList*); SQLITE_PRIVATE void sqlite3ShowSelect(const Select*); SQLITE_PRIVATE void sqlite3ShowWith(const With*); SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert*); #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep*); SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep*); SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger*); SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger*); #endif #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3ShowWindow(const Window*); SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window*); #endif #endif SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*); SQLITE_PRIVATE void sqlite3ProgressCheck(Parse*); SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...); SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3*,int); SQLITE_PRIVATE void sqlite3Dequote(char*); SQLITE_PRIVATE void sqlite3DequoteExpr(Expr*); SQLITE_PRIVATE void sqlite3DequoteToken(Token*); SQLITE_PRIVATE void sqlite3TokenInit(Token*,char*); SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int); SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*); SQLITE_PRIVATE void sqlite3FinishCoding(Parse*); SQLITE_PRIVATE int sqlite3GetTempReg(Parse*); SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int); SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int); SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int); SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*); SQLITE_PRIVATE void sqlite3TouchRegister(Parse*,int); #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3FirstAvailableRegister(Parse*,int); #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse*,int,int); #endif SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*); SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse*, Expr*, Select*); SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse*,Expr*, Expr*); SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr*); SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, const Token*, int); SQLITE_PRIVATE void sqlite3ExprFunctionUsable(Parse*,const Expr*,const FuncDef*); SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32); SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*); SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse*, Expr*); SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse*, Expr*); SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*); SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse*, int, ExprList*); SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList*,int,int); SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,const Token*,int); SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,const char*,const char*); SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*); SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*); SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index*); SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**); SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**); SQLITE_PRIVATE int sqlite3InitOne(sqlite3*, int, char**, u32); SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); #ifndef SQLITE_OMIT_VIRTUALTABLE SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName); #endif SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*); SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int); SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*); SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*); SQLITE_PRIVATE void sqlite3ColumnSetExpr(Parse*,Table*,Column*,Expr*); SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table*,Column*); SQLITE_PRIVATE void sqlite3ColumnSetColl(sqlite3*,Column*,const char*zColl); SQLITE_PRIVATE const char *sqlite3ColumnColl(Column*); SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*); SQLITE_PRIVATE void sqlite3GenerateColumnNames(Parse *pParse, Select *pSelect); SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); SQLITE_PRIVATE void sqlite3SubqueryColumnTypes(Parse*,Table*,Select*,char); SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*,char); SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *, int); SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*); SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index*, i16); #ifdef SQLITE_OMIT_GENERATED_COLUMNS # define sqlite3TableColumnToStorage(T,X) (X) /* No-op pass-through */ # define sqlite3StorageColumnToTable(T,X) (X) /* No-op pass-through */ #else SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table*, i16); SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table*, i16); #endif SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); #if SQLITE_ENABLE_HIDDEN_COLUMNS SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table*, Column*); #else # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ #endif SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token,Token); SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int); SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*, const char*, const char*); SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*,const char*,const char*); SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*); SQLITE_PRIVATE void sqlite3AddGenerated(Parse*,Expr*,Token*); SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u32,Select*); SQLITE_PRIVATE void sqlite3AddReturning(Parse*,ExprList*); SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*, sqlite3_vfs**,char**,char **); #define sqlite3CodecQueryParameters(A,B,C) 0 SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*); #ifdef SQLITE_UNTESTABLE # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); #endif SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*); SQLITE_PRIVATE void sqlite3RowSetDelete(void*); SQLITE_PRIVATE void sqlite3RowSetClear(void*); SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64); SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64); SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*); SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*); #else # define sqlite3ViewGetColumnNames(A,B) 0 #endif #if SQLITE_MAX_ATTACHED>30 SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask); #endif SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int); SQLITE_PRIVATE void sqlite3CodeDropTable(Parse*, Table*, int, int); SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*); SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3*, Index*); #ifndef SQLITE_OMIT_AUTOINCREMENT SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse); SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int, Upsert*); #ifndef SQLITE_OMIT_GENERATED_COLUMNS SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns(Parse*, int, Table*); #endif SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse*, IdList*, Token*); SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*); SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(Parse*, SrcList*, int, int); SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2); SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(Parse*, SrcList*, Token*, Token*); SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, Select*, OnOrUsing*); SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, SrcItem *); SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse*,SrcList*); SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*); SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*); SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3*, OnOrUsing*); SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*); SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, Expr*, int, int, u8); SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int); SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*); SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, Expr*,ExprList*,u32,Expr*); SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*); SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*); SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, Trigger*); SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*); #endif SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe*,int,const char*); SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*); SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*, Upsert*); SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*, ExprList*,Select*,u16,int); SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*); SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo*); SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe*,WhereInfo*); SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*); #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo*); SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int); #ifndef SQLITE_OMIT_GENERATED_COLUMNS SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn(Parse*, Table*, Column*, int); #endif SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ #define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); #define LOCATE_VIEW 0x01 #define LOCATE_NOERR 0x02 SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*); SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char*); SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,u32 flags,SrcItem *); SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3Vacuum(Parse*,Token*,Expr*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*, int, sqlite3_value*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, const Token*); SQLITE_PRIVATE int sqlite3ExprCompare(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr*,Expr*,int); SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList*,const ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr*,int,int); SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker*,Parse*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse*, Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); #endif SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); SQLITE_PRIVATE void sqlite3EndTransaction(Parse*,int); SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*); SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char*); SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr*); SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8); SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*); SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int); SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint(Expr*,const SrcList*,int); #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*); #endif SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int); SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(Expr*,int*,int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*,int*,Upsert*); #ifdef SQLITE_ENABLE_NULL_TRIM SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe*,Table*); #else # define sqlite3SetMakeRecordP5(A,B) #endif SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); SQLITE_PRIVATE void sqlite3MultiWrite(Parse*); SQLITE_PRIVATE void sqlite3MayAbort(Parse*); SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*); SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*); SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,const Expr*,int); SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,const ExprList*,int); SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,const SrcList*,int); SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,const IdList*); SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,const Select*,int); SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch(int,const char*); SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int); SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum*,sqlite3_value*); SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void); SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void); SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void); SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3*); #endif SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*); SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*); SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int); SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p); #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, ExprList*,Expr*,int); #endif #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, Expr*,int, int); SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int); SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*); SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *); SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, int, int, int); SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*, const char*,const char*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(Parse*,Token*, IdList*, Select*,u8,Upsert*, const char*,const char*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(Parse*,Token*,SrcList*,ExprList*, Expr*, u8, const char*,const char*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(Parse*,Token*, Expr*, const char*,const char*); SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc(Parse*, TriggerStep*); # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) # define sqlite3IsToplevel(p) ((p)->pToplevel==0) #else # define sqlite3TriggersExist(B,C,D,E,F) 0 # define sqlite3DeleteTrigger(A,B) # define sqlite3DropTriggerPtr(A,B) # define sqlite3UnlinkAndDeleteTrigger(A,B,C) # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) # define sqlite3TriggerList(X, Y) 0 # define sqlite3ParseToplevel(p) p # define sqlite3IsToplevel(p) 1 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 # define sqlite3TriggerStepSrc(A,B) 0 #endif SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol); SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem*,int); SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr*,int,u32); SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*); SQLITE_PRIVATE int sqlite3AuthReadCol(Parse*, const char *, const char *, int); #else # define sqlite3AuthRead(a,b,c,d) # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK # define sqlite3AuthContextPush(a,b,c) # define sqlite3AuthContextPop(a) ((void)(a)) #endif SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName); SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64); SQLITE_PRIVATE i64 sqlite3RealToI64(double); SQLITE_PRIVATE int sqlite3Int64ToText(i64,char*); SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*); SQLITE_PRIVATE int sqlite3Atoi(const char*); #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar); #endif SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte); SQLITE_PRIVATE u32 sqlite3Utf8Read(const u8**); SQLITE_PRIVATE LogEst sqlite3LogEst(u64); SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst,LogEst); SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double); SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst); SQLITE_PRIVATE VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int); SQLITE_PRIVATE const char *sqlite3VListNumToName(VList*,int); SQLITE_PRIVATE int sqlite3VListNameToNum(VList*,const char*,int); /* ** Routines to read and write variable-length integers. These used to ** be defined locally, but now we use the varint routines in the util.c ** file. */ SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64); SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *); SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *); SQLITE_PRIVATE int sqlite3VarintLen(u64 v); /* ** The common case is for a varint to be a single byte. They following ** macros handle the common case without a procedure call, but then call ** the procedure for larger varints. */ #define getVarint32(A,B) \ (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) #define getVarint32NR(A,B) \ B=(u32)*(A);if(B>=0x80)sqlite3GetVarint32((A),(u32*)&(B)) #define putVarint32(A,B) \ (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ sqlite3PutVarint((A),(B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3*, Index*); SQLITE_PRIVATE char *sqlite3TableAffinityStr(sqlite3*,const Table*); SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int); SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2); SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity); SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table*,int); SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprDataType(const Expr *pExpr); SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8); SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char*, i64*); SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); SQLITE_PRIVATE void sqlite3Error(sqlite3*,int); SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3*); SQLITE_PRIVATE void sqlite3SystemError(sqlite3*,int); SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n); SQLITE_PRIVATE u8 sqlite3HexToInt(int h); SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); #if defined(SQLITE_NEED_ERR_NAME) SQLITE_PRIVATE const char *sqlite3ErrName(int); #endif #ifndef SQLITE_OMIT_DESERIALIZE SQLITE_PRIVATE int sqlite3MemdbInit(void); SQLITE_PRIVATE int sqlite3IsMemdb(const sqlite3_vfs*); #else # define sqlite3IsMemdb(X) 0 #endif SQLITE_PRIVATE const char *sqlite3ErrStr(int); SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse); SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); SQLITE_PRIVATE int sqlite3IsBinary(const CollSeq*); SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8); SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr); SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,const Expr*,const Expr*); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(const Parse *pParse, Expr*, const Token*, int); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(const Parse*,Expr*,const char*); SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*); SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr*); SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3*); SQLITE_PRIVATE int sqlite3CheckObjectName(Parse*, const char*,const char*,const char*); SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, i64); SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64); SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64); SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64); SQLITE_PRIVATE int sqlite3AbsInt32(int); #ifdef SQLITE_ENABLE_8_3_NAMES SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*); #else # define sqlite3FileSuffix3(X,Y) #endif SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,u8); SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value*, void(*)(void*)); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context*); #endif SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); #endif SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, const Expr *, u8, u8, sqlite3_value **); SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[]; SQLITE_PRIVATE const char sqlite3StrBINARY[]; SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[]; SQLITE_PRIVATE const char sqlite3StdTypeAffinity[]; SQLITE_PRIVATE const char *sqlite3StdType[]; SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[]; SQLITE_PRIVATE const unsigned char *sqlite3aLTb; SQLITE_PRIVATE const unsigned char *sqlite3aEQb; SQLITE_PRIVATE const unsigned char *sqlite3aGTb; SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[]; SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions; #ifndef SQLITE_OMIT_WSD SQLITE_PRIVATE int sqlite3PendingByte; #endif #endif /* SQLITE_AMALGAMATION */ #ifdef VDBE_PROFILE SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt; #endif SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, Pgno, Pgno); SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int); SQLITE_PRIVATE void sqlite3CodeRhsOfIN(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr*); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse*, SrcItem*); SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); SQLITE_PRIVATE int sqlite3MatchEName( const struct ExprList_item*, const char*, const char*, const char* ); SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr*); SQLITE_PRIVATE u8 sqlite3StrIHash(const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE int sqlite3ResolveExprListNames(NameContext*, ExprList*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse*, SrcList*, const Token*); SQLITE_PRIVATE const void *sqlite3RenameTokenMap(Parse*, const void*, const Token*); SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse*, const void *pTo, const void *pFrom); SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse*, Expr*); SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse*, ExprList*); SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); SQLITE_PRIVATE char sqlite3AffinityType(const char*, Column*); SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*); SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*); SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*); SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SQLITE_PRIVATE void sqlite3SchemaClear(void *); SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList(Parse*, ExprList*, int, int); SQLITE_PRIVATE const char *sqlite3SelectOpName(int); SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse*, ExprList*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*); #endif SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), void (*)(sqlite3_context*), void (*)(sqlite3_context*,int,sqlite3_value **), FuncDestructor *pDestructor ); SQLITE_PRIVATE void sqlite3NoopDestructor(void*); SQLITE_PRIVATE void *sqlite3OomFault(sqlite3*); SQLITE_PRIVATE void sqlite3OomClear(sqlite3*); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); SQLITE_PRIVATE char *sqlite3RCStrRef(char*); SQLITE_PRIVATE void sqlite3RCStrUnref(char*); SQLITE_PRIVATE char *sqlite3RCStrNew(u64); SQLITE_PRIVATE char *sqlite3RCStrResize(char*,u64); SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum*, i64); SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum*, u8); SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*); SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3*,const char*); SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3*,const Expr*); SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *); SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse*, Expr*); #else # define sqlite3ExprCheckIN(x,y) SQLITE_OK #endif #ifdef SQLITE_ENABLE_STAT4 SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue( Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*); SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord*); SQLITE_PRIVATE int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); #endif /* ** The interface to the LEMON-generated parser */ #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(u64), Parse*); SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*)); #endif SQLITE_PRIVATE void sqlite3Parser(void*, int, Token); SQLITE_PRIVATE int sqlite3ParserFallback(int); #ifdef YYTRACKMAXSTACKDEPTH SQLITE_PRIVATE int sqlite3ParserStackPeak(void*); #endif SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*); #ifndef SQLITE_OMIT_LOAD_EXTENSION SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*); #else # define sqlite3CloseExtensions(X) #endif #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, Pgno, u8, const char *); #else #define sqlite3TableLock(v,w,x,y,z) #endif #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*); #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3VtabClear(D,T) # define sqlite3VtabSync(X,Y) SQLITE_OK # define sqlite3VtabRollback(X) # define sqlite3VtabCommit(X) # define sqlite3VtabInSync(db) 0 # define sqlite3VtabLock(X) # define sqlite3VtabUnlock(X) # define sqlite3VtabModuleUnref(D,X) # define sqlite3VtabUnlockList(X) # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK # define sqlite3GetVTable(X,Y) ((VTable*)0) #else SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*); SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p); SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe*); SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db); SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db); SQLITE_PRIVATE void sqlite3VtabLock(VTable *); SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *); SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3*,Module*); SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*); SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *, int, int); SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*); SQLITE_PRIVATE Module *sqlite3VtabCreateModule( sqlite3*, const char*, const sqlite3_module*, void*, void(*)(void*) ); # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) #endif SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db); #ifndef SQLITE_OMIT_VIRTUALTABLE SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName); SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3*,Table*,const char*); SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3*, Table*); #else # define sqlite3ShadowTableName(A,B) 0 # define sqlite3IsShadowTableOf(A,B,C) 0 # define sqlite3MarkAllShadowTablesOf(A,B) #endif SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse*,Module*); SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3*,Module*); SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*); SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*); SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*); SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*); SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*); SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *); SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *); SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(Parse*); SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse*,sqlite3*); SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse*); SQLITE_PRIVATE void *sqlite3ParserAddCleanup(Parse*,void(*)(sqlite3*,void*),void*); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE char *sqlite3Normalize(Vdbe*, const char*); #endif SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse*,const Expr*); SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, const Expr*, const Expr*); SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); SQLITE_PRIVATE const char *sqlite3JournalModename(int); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); #endif #ifndef SQLITE_OMIT_CTE SQLITE_PRIVATE Cte *sqlite3CteNew(Parse*,Token*,ExprList*,Select*,u8); SQLITE_PRIVATE void sqlite3CteDelete(sqlite3*,Cte*); SQLITE_PRIVATE With *sqlite3WithAdd(Parse*,With*,Cte*); SQLITE_PRIVATE void sqlite3WithDelete(sqlite3*,With*); SQLITE_PRIVATE With *sqlite3WithPush(Parse*, With*, u8); #else # define sqlite3CteNew(P,T,E,S) ((void*)0) # define sqlite3CteDelete(D,C) # define sqlite3CteWithAdd(P,W,C) ((void*)0) # define sqlite3WithDelete(x,y) # define sqlite3WithPush(x,y,z) ((void*)0) #endif #ifndef SQLITE_OMIT_UPSERT SQLITE_PRIVATE Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*,Upsert*); SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3*,Upsert*); SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3*,Upsert*); SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*); SQLITE_PRIVATE void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int); SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert*,Index*); SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert*); #else #define sqlite3UpsertNew(u,v,w,x,y,z) ((Upsert*)0) #define sqlite3UpsertDelete(x,y) #define sqlite3UpsertDup(x,y) ((Upsert*)0) #define sqlite3UpsertOfIndex(x,y) ((Upsert*)0) #define sqlite3UpsertNextIsIPK(x) 0 #endif /* Declarations for functions in fkey.c. All of these are replaced by ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign ** key functionality is available. If OMIT_TRIGGER is defined but ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In ** this case foreign keys are parsed, but no other functionality is ** provided (enforcement of FK constraints requires the triggers sub-system). */ #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) SQLITE_PRIVATE void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); SQLITE_PRIVATE void sqlite3FkDropTable(Parse*, SrcList *, Table*); SQLITE_PRIVATE void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); SQLITE_PRIVATE int sqlite3FkRequired(Parse*, Table*, int*, int); SQLITE_PRIVATE u32 sqlite3FkOldmask(Parse*, Table*); SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *); SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3*,int); #else #define sqlite3FkActions(a,b,c,d,e,f) #define sqlite3FkCheck(a,b,c,d,e,f) #define sqlite3FkDropTable(a,b,c) #define sqlite3FkOldmask(a,b) 0 #define sqlite3FkRequired(a,b,c,d) 0 #define sqlite3FkReferences(a) 0 #define sqlite3FkClearTriggerCache(a,b) #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*); SQLITE_PRIVATE int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); #else #define sqlite3FkDelete(a,b) #define sqlite3FkLocateIndex(a,b,c,d,e) #endif /* ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 #define SQLITE_FAULTINJECTOR_COUNT 1 /* ** The interface to the code in fault.c used for identifying "benign" ** malloc failures. This is only present if SQLITE_UNTESTABLE ** is not defined. */ #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void); SQLITE_PRIVATE void sqlite3EndBenignMalloc(void); #else #define sqlite3BeginBenignMalloc() #define sqlite3EndBenignMalloc() #endif /* ** Allowed return values from sqlite3FindInIndex() */ #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ /* ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). */ #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*, int*); SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *); #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *); #endif SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p); SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *); SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); #if SQLITE_MAX_EXPR_DEPTH>0 SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *); SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int); #else #define sqlite3SelectExprHeight(x) 0 #define sqlite3ExprCheckHeight(x,y) #endif SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr*,int); SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*); SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32); #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db); SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db); #else #define sqlite3ConnectionBlocked(x,y) #define sqlite3ConnectionUnlocked(x) #define sqlite3ConnectionClosed(x) #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *); #endif #if defined(YYCOVERAGE) SQLITE_PRIVATE int sqlite3ParserCoverage(FILE*); #endif /* ** If the SQLITE_ENABLE IOTRACE exists then the global variable ** sqlite3IoTrace is a pointer to a printf-like routine used to ** print I/O tracing messages. */ #ifdef SQLITE_ENABLE_IOTRACE # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*); SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); #else # define IOTRACE(A) # define sqlite3VdbeIOTraceSql(X) #endif /* ** These routines are available for the mem2.c debugging memory allocator ** only. They are used to verify that different "types" of memory ** allocations are properly tracked by the system. ** ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of ** the MEMTYPE_* macros defined below. The type must be a bitmask with ** a single bit set. ** ** sqlite3MemdebugHasType() returns true if any of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** sqlite3MemdebugHasType() is intended for use inside assert() statements. ** ** sqlite3MemdebugNoType() returns true if none of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** ** Perhaps the most important point is the difference between MEMTYPE_HEAP ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means ** it might have been allocated by lookaside, except the allocation was ** too large or lookaside was already full. It is important to verify ** that allocations that might have been satisfied by lookaside are not ** passed back to non-lookaside free() routines. Asserts such as the ** example above are placed on the non-lookaside free() routines to verify ** this constraint. ** ** All of this is no-op for a production build. It only comes into ** play when the SQLITE_MEMDEBUG compile-time option is used. */ #ifdef SQLITE_MEMDEBUG SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8); SQLITE_PRIVATE int sqlite3MemdebugHasType(const void*,u8); SQLITE_PRIVATE int sqlite3MemdebugNoType(const void*,u8); #else # define sqlite3MemdebugSetType(X,Y) /* no-op */ # define sqlite3MemdebugHasType(X,Y) 1 # define sqlite3MemdebugNoType(X,Y) 1 #endif #define MEMTYPE_HEAP 0x01 /* General heap allocations */ #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ #define MEMTYPE_PCACHE 0x04 /* Page cache allocations */ /* ** Threading interface */ #if SQLITE_MAX_WORKER_THREADS>0 SQLITE_PRIVATE int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread*, void**); #endif #if defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST) SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3*); #endif #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3*); #endif SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr); SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr*, int); SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(Parse*,Expr*,int,int); SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse*, Expr*); #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt); #endif #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) SQLITE_PRIVATE int sqlite3KvvfsInit(void); #endif #if defined(VDBE_PROFILE) \ || defined(SQLITE_PERFORMANCE_TRACE) \ || defined(SQLITE_ENABLE_STMT_SCANSTATUS) SQLITE_PRIVATE sqlite3_uint64 sqlite3Hwtime(void); #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS # define IS_STMT_SCANSTATUS(db) (db->flags & SQLITE_StmtScanStatus) #else # define IS_STMT_SCANSTATUS(db) 0 #endif #endif /* SQLITEINT_H */ /************** End of sqliteInt.h *******************************************/ /************** Begin file os_common.h ***************************************/ /* ** 2004 May 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains macros and a little bit of code that is common to ** all of the platform-specific files (os_*.c) and is #included into those ** files. ** ** This file should be #included by the os_*.c files only. It is not a ** general purpose header file. */ #ifndef _OS_COMMON_H_ #define _OS_COMMON_H_ /* ** At least two bugs have slipped in because we changed the MEMORY_DEBUG ** macro to SQLITE_DEBUG and some older makefiles have not yet made the ** switch. The following code should catch this problem at compile-time. */ #ifdef MEMORY_DEBUG # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." #endif /* ** Macros for performance tracing. Normally turned off. Only works ** on i486 hardware. */ #ifdef SQLITE_PERFORMANCE_TRACE static sqlite_uint64 g_start; static sqlite_uint64 g_elapsed; #define TIMER_START g_start=sqlite3Hwtime() #define TIMER_END g_elapsed=sqlite3Hwtime()-g_start #define TIMER_ELAPSED g_elapsed #else #define TIMER_START #define TIMER_END #define TIMER_ELAPSED ((sqlite_uint64)0) #endif /* ** If we compile with the SQLITE_TEST macro set, then the following block ** of code will give us the ability to simulate a disk I/O error. This ** is used for testing the I/O recovery logic. */ #if defined(SQLITE_TEST) SQLITE_API extern int sqlite3_io_error_hit; SQLITE_API extern int sqlite3_io_error_hardhit; SQLITE_API extern int sqlite3_io_error_pending; SQLITE_API extern int sqlite3_io_error_persist; SQLITE_API extern int sqlite3_io_error_benign; SQLITE_API extern int sqlite3_diskfull_pending; SQLITE_API extern int sqlite3_diskfull; #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) #define SimulateIOError(CODE) \ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ || sqlite3_io_error_pending-- == 1 ) \ { local_ioerr(); CODE; } static void local_ioerr(){ IOTRACE(("IOERR\n")); sqlite3_io_error_hit++; if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; } #define SimulateDiskfullError(CODE) \ if( sqlite3_diskfull_pending ){ \ if( sqlite3_diskfull_pending == 1 ){ \ local_ioerr(); \ sqlite3_diskfull = 1; \ sqlite3_io_error_hit = 1; \ CODE; \ }else{ \ sqlite3_diskfull_pending--; \ } \ } #else #define SimulateIOErrorBenign(X) #define SimulateIOError(A) #define SimulateDiskfullError(A) #endif /* defined(SQLITE_TEST) */ /* ** When testing, keep a count of the number of open files. */ #if defined(SQLITE_TEST) SQLITE_API extern int sqlite3_open_file_count; #define OpenCounter(X) sqlite3_open_file_count+=(X) #else #define OpenCounter(X) #endif /* defined(SQLITE_TEST) */ #endif /* !defined(_OS_COMMON_H_) */ /************** End of os_common.h *******************************************/ /************** Begin file ctime.c *******************************************/ /* DO NOT EDIT! ** This file is automatically generated by the script in the canonical ** SQLite source tree at tool/mkctimec.tcl. ** ** To modify this header, edit any of the various lists in that script ** which specify categories of generated conditionals in this file. */ /* ** 2010 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements routines used to report what compile-time options ** SQLite was built with. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* IMP: R-16824-07538 */ /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H) /* #include "sqlite_cfg.h" */ #define SQLITECONFIG_H 1 #endif /* These macros are provided to "stringify" the value of the define ** for those options in which the value is meaningful. */ #define CTIMEOPT_VAL_(opt) #opt #define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt) /* Like CTIMEOPT_VAL, but especially for SQLITE_DEFAULT_LOOKASIDE. This ** option requires a separate macro because legal values contain a single ** comma. e.g. (-DSQLITE_DEFAULT_LOOKASIDE="100,100") */ #define CTIMEOPT_VAL2_(opt1,opt2) #opt1 "," #opt2 #define CTIMEOPT_VAL2(opt) CTIMEOPT_VAL2_(opt) /* #include "sqliteInt.h" */ /* ** An array of names of all compile-time options. This array should ** be sorted A-Z. ** ** This array looks large, but in a typical installation actually uses ** only a handful of compile-time options, so most times this array is usually ** rather short and uses little memory space. */ static const char * const sqlite3azCompileOpt[] = { #ifdef SQLITE_32BIT_ROWID "32BIT_ROWID", #endif #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC "4_BYTE_ALIGNED_MALLOC", #endif #ifdef SQLITE_ALLOW_COVERING_INDEX_SCAN # if SQLITE_ALLOW_COVERING_INDEX_SCAN != 1 "ALLOW_COVERING_INDEX_SCAN=" CTIMEOPT_VAL(SQLITE_ALLOW_COVERING_INDEX_SCAN), # endif #endif #ifdef SQLITE_ALLOW_URI_AUTHORITY "ALLOW_URI_AUTHORITY", #endif #ifdef SQLITE_ATOMIC_INTRINSICS "ATOMIC_INTRINSICS=" CTIMEOPT_VAL(SQLITE_ATOMIC_INTRINSICS), #endif #ifdef SQLITE_BITMASK_TYPE "BITMASK_TYPE=" CTIMEOPT_VAL(SQLITE_BITMASK_TYPE), #endif #ifdef SQLITE_BUG_COMPATIBLE_20160819 "BUG_COMPATIBLE_20160819", #endif #ifdef SQLITE_CASE_SENSITIVE_LIKE "CASE_SENSITIVE_LIKE", #endif #ifdef SQLITE_CHECK_PAGES "CHECK_PAGES", #endif #if defined(__clang__) && defined(__clang_major__) "COMPILER=clang-" CTIMEOPT_VAL(__clang_major__) "." CTIMEOPT_VAL(__clang_minor__) "." CTIMEOPT_VAL(__clang_patchlevel__), #elif defined(_MSC_VER) "COMPILER=msvc-" CTIMEOPT_VAL(_MSC_VER), #elif defined(__GNUC__) && defined(__VERSION__) "COMPILER=gcc-" __VERSION__, #endif #ifdef SQLITE_COVERAGE_TEST "COVERAGE_TEST", #endif #ifdef SQLITE_DEBUG "DEBUG", #endif #ifdef SQLITE_DEFAULT_AUTOMATIC_INDEX "DEFAULT_AUTOMATIC_INDEX", #endif #ifdef SQLITE_DEFAULT_AUTOVACUUM "DEFAULT_AUTOVACUUM", #endif #ifdef SQLITE_DEFAULT_CACHE_SIZE "DEFAULT_CACHE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_CACHE_SIZE), #endif #ifdef SQLITE_DEFAULT_CKPTFULLFSYNC "DEFAULT_CKPTFULLFSYNC", #endif #ifdef SQLITE_DEFAULT_FILE_FORMAT "DEFAULT_FILE_FORMAT=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_FORMAT), #endif #ifdef SQLITE_DEFAULT_FILE_PERMISSIONS "DEFAULT_FILE_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_PERMISSIONS), #endif #ifdef SQLITE_DEFAULT_FOREIGN_KEYS "DEFAULT_FOREIGN_KEYS", #endif #ifdef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT "DEFAULT_JOURNAL_SIZE_LIMIT=" CTIMEOPT_VAL(SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT), #endif #ifdef SQLITE_DEFAULT_LOCKING_MODE "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE), #endif #ifdef SQLITE_DEFAULT_LOOKASIDE "DEFAULT_LOOKASIDE=" CTIMEOPT_VAL2(SQLITE_DEFAULT_LOOKASIDE), #endif #ifdef SQLITE_DEFAULT_MEMSTATUS # if SQLITE_DEFAULT_MEMSTATUS != 1 "DEFAULT_MEMSTATUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_MEMSTATUS), # endif #endif #ifdef SQLITE_DEFAULT_MMAP_SIZE "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE), #endif #ifdef SQLITE_DEFAULT_PAGE_SIZE "DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_PAGE_SIZE), #endif #ifdef SQLITE_DEFAULT_PCACHE_INITSZ "DEFAULT_PCACHE_INITSZ=" CTIMEOPT_VAL(SQLITE_DEFAULT_PCACHE_INITSZ), #endif #ifdef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS "DEFAULT_PROXYDIR_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_PROXYDIR_PERMISSIONS), #endif #ifdef SQLITE_DEFAULT_RECURSIVE_TRIGGERS "DEFAULT_RECURSIVE_TRIGGERS", #endif #ifdef SQLITE_DEFAULT_ROWEST "DEFAULT_ROWEST=" CTIMEOPT_VAL(SQLITE_DEFAULT_ROWEST), #endif #ifdef SQLITE_DEFAULT_SECTOR_SIZE "DEFAULT_SECTOR_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_SECTOR_SIZE), #endif #ifdef SQLITE_DEFAULT_SYNCHRONOUS "DEFAULT_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_SYNCHRONOUS), #endif #ifdef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT "DEFAULT_WAL_AUTOCHECKPOINT=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_AUTOCHECKPOINT), #endif #ifdef SQLITE_DEFAULT_WAL_SYNCHRONOUS "DEFAULT_WAL_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_SYNCHRONOUS), #endif #ifdef SQLITE_DEFAULT_WORKER_THREADS "DEFAULT_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WORKER_THREADS), #endif #ifdef SQLITE_DIRECT_OVERFLOW_READ "DIRECT_OVERFLOW_READ", #endif #ifdef SQLITE_DISABLE_DIRSYNC "DISABLE_DIRSYNC", #endif #ifdef SQLITE_DISABLE_FTS3_UNICODE "DISABLE_FTS3_UNICODE", #endif #ifdef SQLITE_DISABLE_FTS4_DEFERRED "DISABLE_FTS4_DEFERRED", #endif #ifdef SQLITE_DISABLE_INTRINSIC "DISABLE_INTRINSIC", #endif #ifdef SQLITE_DISABLE_LFS "DISABLE_LFS", #endif #ifdef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS "DISABLE_PAGECACHE_OVERFLOW_STATS", #endif #ifdef SQLITE_DISABLE_SKIPAHEAD_DISTINCT "DISABLE_SKIPAHEAD_DISTINCT", #endif #ifdef SQLITE_DQS "DQS=" CTIMEOPT_VAL(SQLITE_DQS), #endif #ifdef SQLITE_ENABLE_8_3_NAMES "ENABLE_8_3_NAMES=" CTIMEOPT_VAL(SQLITE_ENABLE_8_3_NAMES), #endif #ifdef SQLITE_ENABLE_API_ARMOR "ENABLE_API_ARMOR", #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE "ENABLE_ATOMIC_WRITE", #endif #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE "ENABLE_BATCH_ATOMIC_WRITE", #endif #ifdef SQLITE_ENABLE_BYTECODE_VTAB "ENABLE_BYTECODE_VTAB", #endif #ifdef SQLITE_ENABLE_CEROD "ENABLE_CEROD=" CTIMEOPT_VAL(SQLITE_ENABLE_CEROD), #endif #ifdef SQLITE_ENABLE_COLUMN_METADATA "ENABLE_COLUMN_METADATA", #endif #ifdef SQLITE_ENABLE_COLUMN_USED_MASK "ENABLE_COLUMN_USED_MASK", #endif #ifdef SQLITE_ENABLE_COSTMULT "ENABLE_COSTMULT", #endif #ifdef SQLITE_ENABLE_CURSOR_HINTS "ENABLE_CURSOR_HINTS", #endif #ifdef SQLITE_ENABLE_DBPAGE_VTAB "ENABLE_DBPAGE_VTAB", #endif #ifdef SQLITE_ENABLE_DBSTAT_VTAB "ENABLE_DBSTAT_VTAB", #endif #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT "ENABLE_EXPENSIVE_ASSERT", #endif #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS "ENABLE_EXPLAIN_COMMENTS", #endif #ifdef SQLITE_ENABLE_FTS3 "ENABLE_FTS3", #endif #ifdef SQLITE_ENABLE_FTS3_PARENTHESIS "ENABLE_FTS3_PARENTHESIS", #endif #ifdef SQLITE_ENABLE_FTS3_TOKENIZER "ENABLE_FTS3_TOKENIZER", #endif #ifdef SQLITE_ENABLE_FTS4 "ENABLE_FTS4", #endif #ifdef SQLITE_ENABLE_FTS5 "ENABLE_FTS5", #endif #ifdef SQLITE_ENABLE_GEOPOLY "ENABLE_GEOPOLY", #endif #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS "ENABLE_HIDDEN_COLUMNS", #endif #ifdef SQLITE_ENABLE_ICU "ENABLE_ICU", #endif #ifdef SQLITE_ENABLE_IOTRACE "ENABLE_IOTRACE", #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION "ENABLE_LOAD_EXTENSION", #endif #ifdef SQLITE_ENABLE_LOCKING_STYLE "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE), #endif #ifdef SQLITE_ENABLE_MATH_FUNCTIONS "ENABLE_MATH_FUNCTIONS", #endif #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT "ENABLE_MEMORY_MANAGEMENT", #endif #ifdef SQLITE_ENABLE_MEMSYS3 "ENABLE_MEMSYS3", #endif #ifdef SQLITE_ENABLE_MEMSYS5 "ENABLE_MEMSYS5", #endif #ifdef SQLITE_ENABLE_MULTIPLEX "ENABLE_MULTIPLEX", #endif #ifdef SQLITE_ENABLE_NORMALIZE "ENABLE_NORMALIZE", #endif #ifdef SQLITE_ENABLE_NULL_TRIM "ENABLE_NULL_TRIM", #endif #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC "ENABLE_OFFSET_SQL_FUNC", #endif #ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK "ENABLE_OVERSIZE_CELL_CHECK", #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK "ENABLE_PREUPDATE_HOOK", #endif #ifdef SQLITE_ENABLE_QPSG "ENABLE_QPSG", #endif #ifdef SQLITE_ENABLE_RBU "ENABLE_RBU", #endif #ifdef SQLITE_ENABLE_RTREE "ENABLE_RTREE", #endif #ifdef SQLITE_ENABLE_SESSION "ENABLE_SESSION", #endif #ifdef SQLITE_ENABLE_SNAPSHOT "ENABLE_SNAPSHOT", #endif #ifdef SQLITE_ENABLE_SORTER_REFERENCES "ENABLE_SORTER_REFERENCES", #endif #ifdef SQLITE_ENABLE_SQLLOG "ENABLE_SQLLOG", #endif #ifdef SQLITE_ENABLE_STAT4 "ENABLE_STAT4", #endif #ifdef SQLITE_ENABLE_STMTVTAB "ENABLE_STMTVTAB", #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS "ENABLE_STMT_SCANSTATUS", #endif #ifdef SQLITE_ENABLE_TREETRACE "ENABLE_TREETRACE", #endif #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION "ENABLE_UNKNOWN_SQL_FUNCTION", #endif #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY "ENABLE_UNLOCK_NOTIFY", #endif #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT "ENABLE_UPDATE_DELETE_LIMIT", #endif #ifdef SQLITE_ENABLE_URI_00_ERROR "ENABLE_URI_00_ERROR", #endif #ifdef SQLITE_ENABLE_VFSTRACE "ENABLE_VFSTRACE", #endif #ifdef SQLITE_ENABLE_WHERETRACE "ENABLE_WHERETRACE", #endif #ifdef SQLITE_ENABLE_ZIPVFS "ENABLE_ZIPVFS", #endif #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS "EXPLAIN_ESTIMATED_ROWS", #endif #ifdef SQLITE_EXTRA_IFNULLROW "EXTRA_IFNULLROW", #endif #ifdef SQLITE_EXTRA_INIT "EXTRA_INIT=" CTIMEOPT_VAL(SQLITE_EXTRA_INIT), #endif #ifdef SQLITE_EXTRA_SHUTDOWN "EXTRA_SHUTDOWN=" CTIMEOPT_VAL(SQLITE_EXTRA_SHUTDOWN), #endif #ifdef SQLITE_FTS3_MAX_EXPR_DEPTH "FTS3_MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_FTS3_MAX_EXPR_DEPTH), #endif #ifdef SQLITE_FTS5_ENABLE_TEST_MI "FTS5_ENABLE_TEST_MI", #endif #ifdef SQLITE_FTS5_NO_WITHOUT_ROWID "FTS5_NO_WITHOUT_ROWID", #endif #if HAVE_ISNAN || SQLITE_HAVE_ISNAN "HAVE_ISNAN", #endif #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX # if SQLITE_HOMEGROWN_RECURSIVE_MUTEX != 1 "HOMEGROWN_RECURSIVE_MUTEX=" CTIMEOPT_VAL(SQLITE_HOMEGROWN_RECURSIVE_MUTEX), # endif #endif #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS "IGNORE_AFP_LOCK_ERRORS", #endif #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS "IGNORE_FLOCK_LOCK_ERRORS", #endif #ifdef SQLITE_INLINE_MEMCPY "INLINE_MEMCPY", #endif #ifdef SQLITE_INT64_TYPE "INT64_TYPE", #endif #ifdef SQLITE_INTEGRITY_CHECK_ERROR_MAX "INTEGRITY_CHECK_ERROR_MAX=" CTIMEOPT_VAL(SQLITE_INTEGRITY_CHECK_ERROR_MAX), #endif #ifdef SQLITE_LEGACY_JSON_VALID "LEGACY_JSON_VALID", #endif #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS "LIKE_DOESNT_MATCH_BLOBS", #endif #ifdef SQLITE_LOCK_TRACE "LOCK_TRACE", #endif #ifdef SQLITE_LOG_CACHE_SPILL "LOG_CACHE_SPILL", #endif #ifdef SQLITE_MALLOC_SOFT_LIMIT "MALLOC_SOFT_LIMIT=" CTIMEOPT_VAL(SQLITE_MALLOC_SOFT_LIMIT), #endif #ifdef SQLITE_MAX_ATTACHED "MAX_ATTACHED=" CTIMEOPT_VAL(SQLITE_MAX_ATTACHED), #endif #ifdef SQLITE_MAX_COLUMN "MAX_COLUMN=" CTIMEOPT_VAL(SQLITE_MAX_COLUMN), #endif #ifdef SQLITE_MAX_COMPOUND_SELECT "MAX_COMPOUND_SELECT=" CTIMEOPT_VAL(SQLITE_MAX_COMPOUND_SELECT), #endif #ifdef SQLITE_MAX_DEFAULT_PAGE_SIZE "MAX_DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_DEFAULT_PAGE_SIZE), #endif #ifdef SQLITE_MAX_EXPR_DEPTH "MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_EXPR_DEPTH), #endif #ifdef SQLITE_MAX_FUNCTION_ARG "MAX_FUNCTION_ARG=" CTIMEOPT_VAL(SQLITE_MAX_FUNCTION_ARG), #endif #ifdef SQLITE_MAX_LENGTH "MAX_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LENGTH), #endif #ifdef SQLITE_MAX_LIKE_PATTERN_LENGTH "MAX_LIKE_PATTERN_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LIKE_PATTERN_LENGTH), #endif #ifdef SQLITE_MAX_MEMORY "MAX_MEMORY=" CTIMEOPT_VAL(SQLITE_MAX_MEMORY), #endif #ifdef SQLITE_MAX_MMAP_SIZE "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE), #endif #ifdef SQLITE_MAX_MMAP_SIZE_ "MAX_MMAP_SIZE_=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE_), #endif #ifdef SQLITE_MAX_PAGE_COUNT "MAX_PAGE_COUNT=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_COUNT), #endif #ifdef SQLITE_MAX_PAGE_SIZE "MAX_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_SIZE), #endif #ifdef SQLITE_MAX_SCHEMA_RETRY "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY), #endif #ifdef SQLITE_MAX_SQL_LENGTH "MAX_SQL_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_SQL_LENGTH), #endif #ifdef SQLITE_MAX_TRIGGER_DEPTH "MAX_TRIGGER_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_TRIGGER_DEPTH), #endif #ifdef SQLITE_MAX_VARIABLE_NUMBER "MAX_VARIABLE_NUMBER=" CTIMEOPT_VAL(SQLITE_MAX_VARIABLE_NUMBER), #endif #ifdef SQLITE_MAX_VDBE_OP "MAX_VDBE_OP=" CTIMEOPT_VAL(SQLITE_MAX_VDBE_OP), #endif #ifdef SQLITE_MAX_WORKER_THREADS "MAX_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_MAX_WORKER_THREADS), #endif #ifdef SQLITE_MEMDEBUG "MEMDEBUG", #endif #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT "MIXED_ENDIAN_64BIT_FLOAT", #endif #ifdef SQLITE_MMAP_READWRITE "MMAP_READWRITE", #endif #ifdef SQLITE_MUTEX_NOOP "MUTEX_NOOP", #endif #ifdef SQLITE_MUTEX_OMIT "MUTEX_OMIT", #endif #ifdef SQLITE_MUTEX_PTHREADS "MUTEX_PTHREADS", #endif #ifdef SQLITE_MUTEX_W32 "MUTEX_W32", #endif #ifdef SQLITE_NEED_ERR_NAME "NEED_ERR_NAME", #endif #ifdef SQLITE_NO_SYNC "NO_SYNC", #endif #ifdef SQLITE_OMIT_ALTERTABLE "OMIT_ALTERTABLE", #endif #ifdef SQLITE_OMIT_ANALYZE "OMIT_ANALYZE", #endif #ifdef SQLITE_OMIT_ATTACH "OMIT_ATTACH", #endif #ifdef SQLITE_OMIT_AUTHORIZATION "OMIT_AUTHORIZATION", #endif #ifdef SQLITE_OMIT_AUTOINCREMENT "OMIT_AUTOINCREMENT", #endif #ifdef SQLITE_OMIT_AUTOINIT "OMIT_AUTOINIT", #endif #ifdef SQLITE_OMIT_AUTOMATIC_INDEX "OMIT_AUTOMATIC_INDEX", #endif #ifdef SQLITE_OMIT_AUTORESET "OMIT_AUTORESET", #endif #ifdef SQLITE_OMIT_AUTOVACUUM "OMIT_AUTOVACUUM", #endif #ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION "OMIT_BETWEEN_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_BLOB_LITERAL "OMIT_BLOB_LITERAL", #endif #ifdef SQLITE_OMIT_CAST "OMIT_CAST", #endif #ifdef SQLITE_OMIT_CHECK "OMIT_CHECK", #endif #ifdef SQLITE_OMIT_COMPLETE "OMIT_COMPLETE", #endif #ifdef SQLITE_OMIT_COMPOUND_SELECT "OMIT_COMPOUND_SELECT", #endif #ifdef SQLITE_OMIT_CONFLICT_CLAUSE "OMIT_CONFLICT_CLAUSE", #endif #ifdef SQLITE_OMIT_CTE "OMIT_CTE", #endif #if defined(SQLITE_OMIT_DATETIME_FUNCS) || defined(SQLITE_OMIT_FLOATING_POINT) "OMIT_DATETIME_FUNCS", #endif #ifdef SQLITE_OMIT_DECLTYPE "OMIT_DECLTYPE", #endif #ifdef SQLITE_OMIT_DEPRECATED "OMIT_DEPRECATED", #endif #ifdef SQLITE_OMIT_DESERIALIZE "OMIT_DESERIALIZE", #endif #ifdef SQLITE_OMIT_DISKIO "OMIT_DISKIO", #endif #ifdef SQLITE_OMIT_EXPLAIN "OMIT_EXPLAIN", #endif #ifdef SQLITE_OMIT_FLAG_PRAGMAS "OMIT_FLAG_PRAGMAS", #endif #ifdef SQLITE_OMIT_FLOATING_POINT "OMIT_FLOATING_POINT", #endif #ifdef SQLITE_OMIT_FOREIGN_KEY "OMIT_FOREIGN_KEY", #endif #ifdef SQLITE_OMIT_GET_TABLE "OMIT_GET_TABLE", #endif #ifdef SQLITE_OMIT_HEX_INTEGER "OMIT_HEX_INTEGER", #endif #ifdef SQLITE_OMIT_INCRBLOB "OMIT_INCRBLOB", #endif #ifdef SQLITE_OMIT_INTEGRITY_CHECK "OMIT_INTEGRITY_CHECK", #endif #ifdef SQLITE_OMIT_INTROSPECTION_PRAGMAS "OMIT_INTROSPECTION_PRAGMAS", #endif #ifdef SQLITE_OMIT_JSON "OMIT_JSON", #endif #ifdef SQLITE_OMIT_LIKE_OPTIMIZATION "OMIT_LIKE_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_LOAD_EXTENSION "OMIT_LOAD_EXTENSION", #endif #ifdef SQLITE_OMIT_LOCALTIME "OMIT_LOCALTIME", #endif #ifdef SQLITE_OMIT_LOOKASIDE "OMIT_LOOKASIDE", #endif #ifdef SQLITE_OMIT_MEMORYDB "OMIT_MEMORYDB", #endif #ifdef SQLITE_OMIT_OR_OPTIMIZATION "OMIT_OR_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_PAGER_PRAGMAS "OMIT_PAGER_PRAGMAS", #endif #ifdef SQLITE_OMIT_PARSER_TRACE "OMIT_PARSER_TRACE", #endif #ifdef SQLITE_OMIT_POPEN "OMIT_POPEN", #endif #ifdef SQLITE_OMIT_PRAGMA "OMIT_PRAGMA", #endif #ifdef SQLITE_OMIT_PROGRESS_CALLBACK "OMIT_PROGRESS_CALLBACK", #endif #ifdef SQLITE_OMIT_QUICKBALANCE "OMIT_QUICKBALANCE", #endif #ifdef SQLITE_OMIT_REINDEX "OMIT_REINDEX", #endif #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS "OMIT_SCHEMA_PRAGMAS", #endif #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS "OMIT_SCHEMA_VERSION_PRAGMAS", #endif #ifdef SQLITE_OMIT_SHARED_CACHE "OMIT_SHARED_CACHE", #endif #ifdef SQLITE_OMIT_SHUTDOWN_DIRECTORIES "OMIT_SHUTDOWN_DIRECTORIES", #endif #ifdef SQLITE_OMIT_SUBQUERY "OMIT_SUBQUERY", #endif #ifdef SQLITE_OMIT_TCL_VARIABLE "OMIT_TCL_VARIABLE", #endif #ifdef SQLITE_OMIT_TEMPDB "OMIT_TEMPDB", #endif #ifdef SQLITE_OMIT_TEST_CONTROL "OMIT_TEST_CONTROL", #endif #ifdef SQLITE_OMIT_TRACE # if SQLITE_OMIT_TRACE != 1 "OMIT_TRACE=" CTIMEOPT_VAL(SQLITE_OMIT_TRACE), # endif #endif #ifdef SQLITE_OMIT_TRIGGER "OMIT_TRIGGER", #endif #ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION "OMIT_TRUNCATE_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_UTF16 "OMIT_UTF16", #endif #ifdef SQLITE_OMIT_VACUUM "OMIT_VACUUM", #endif #ifdef SQLITE_OMIT_VIEW "OMIT_VIEW", #endif #ifdef SQLITE_OMIT_VIRTUALTABLE "OMIT_VIRTUALTABLE", #endif #ifdef SQLITE_OMIT_WAL "OMIT_WAL", #endif #ifdef SQLITE_OMIT_WSD "OMIT_WSD", #endif #ifdef SQLITE_OMIT_XFER_OPT "OMIT_XFER_OPT", #endif #ifdef SQLITE_PERFORMANCE_TRACE "PERFORMANCE_TRACE", #endif #ifdef SQLITE_POWERSAFE_OVERWRITE # if SQLITE_POWERSAFE_OVERWRITE != 1 "POWERSAFE_OVERWRITE=" CTIMEOPT_VAL(SQLITE_POWERSAFE_OVERWRITE), # endif #endif #ifdef SQLITE_PREFER_PROXY_LOCKING "PREFER_PROXY_LOCKING", #endif #ifdef SQLITE_PROXY_DEBUG "PROXY_DEBUG", #endif #ifdef SQLITE_REVERSE_UNORDERED_SELECTS "REVERSE_UNORDERED_SELECTS", #endif #ifdef SQLITE_RTREE_INT_ONLY "RTREE_INT_ONLY", #endif #ifdef SQLITE_SECURE_DELETE "SECURE_DELETE", #endif #ifdef SQLITE_SMALL_STACK "SMALL_STACK", #endif #ifdef SQLITE_SORTER_PMASZ "SORTER_PMASZ=" CTIMEOPT_VAL(SQLITE_SORTER_PMASZ), #endif #ifdef SQLITE_SOUNDEX "SOUNDEX", #endif #ifdef SQLITE_STAT4_SAMPLES "STAT4_SAMPLES=" CTIMEOPT_VAL(SQLITE_STAT4_SAMPLES), #endif #ifdef SQLITE_STMTJRNL_SPILL "STMTJRNL_SPILL=" CTIMEOPT_VAL(SQLITE_STMTJRNL_SPILL), #endif #ifdef SQLITE_SUBSTR_COMPATIBILITY "SUBSTR_COMPATIBILITY", #endif #if (!defined(SQLITE_WIN32_MALLOC) \ && !defined(SQLITE_ZERO_MALLOC) \ && !defined(SQLITE_MEMDEBUG) \ ) || defined(SQLITE_SYSTEM_MALLOC) "SYSTEM_MALLOC", #endif #ifdef SQLITE_TCL "TCL", #endif #ifdef SQLITE_TEMP_STORE "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE), #endif #ifdef SQLITE_TEST "TEST", #endif #if defined(SQLITE_THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #elif defined(THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(THREADSAFE), #else "THREADSAFE=1", #endif #ifdef SQLITE_UNLINK_AFTER_CLOSE "UNLINK_AFTER_CLOSE", #endif #ifdef SQLITE_UNTESTABLE "UNTESTABLE", #endif #ifdef SQLITE_USER_AUTHENTICATION "USER_AUTHENTICATION", #endif #ifdef SQLITE_USE_ALLOCA "USE_ALLOCA", #endif #ifdef SQLITE_USE_FCNTL_TRACE "USE_FCNTL_TRACE", #endif #ifdef SQLITE_USE_URI "USE_URI", #endif #ifdef SQLITE_VDBE_COVERAGE "VDBE_COVERAGE", #endif #ifdef SQLITE_WIN32_MALLOC "WIN32_MALLOC", #endif #ifdef SQLITE_ZERO_MALLOC "ZERO_MALLOC", #endif } ; SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt){ *pnOpt = sizeof(sqlite3azCompileOpt) / sizeof(sqlite3azCompileOpt[0]); return (const char**)sqlite3azCompileOpt; } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /************** End of ctime.c ***********************************************/ /************** Begin file global.c ******************************************/ /* ** 2008 June 13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains definitions of global variables and constants. */ /* #include "sqliteInt.h" */ /* An array to map all upper-case characters into their corresponding ** lower-case character. ** ** SQLite only considers US-ASCII (or EBCDIC) characters. We do not ** handle case conversions for the UTF character set since the tables ** involved are nearly as big or bigger than SQLite itself. */ SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = { #ifdef SQLITE_ASCII 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, 252,253,254,255, #endif #ifdef SQLITE_EBCDIC 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ 96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111, /* 6x */ 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, /* 7x */ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, /* 9x */ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ 224,225,162,163,164,165,166,167,168,169,234,235,236,237,238,239, /* Ex */ 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, /* Fx */ #endif /* All of the upper-to-lower conversion data is above. The following ** 18 integers are completely unrelated. They are appended to the ** sqlite3UpperToLower[] array to avoid UBSAN warnings. Here's what is ** going on: ** ** The SQL comparison operators (<>, =, >, <=, <, and >=) are implemented ** by invoking sqlite3MemCompare(A,B) which compares values A and B and ** returns negative, zero, or positive if A is less then, equal to, or ** greater than B, respectively. Then the true false results is found by ** consulting sqlite3aLTb[opcode], sqlite3aEQb[opcode], or ** sqlite3aGTb[opcode] depending on whether the result of compare(A,B) ** is negative, zero, or positive, where opcode is the specific opcode. ** The only works because the comparison opcodes are consecutive and in ** this order: NE EQ GT LE LT GE. Various assert()s throughout the code ** ensure that is the case. ** ** These elements must be appended to another array. Otherwise the ** index (here shown as [256-OP_Ne]) would be out-of-bounds and thus ** be undefined behavior. That's goofy, but the C-standards people thought ** it was a good idea, so here we are. */ /* NE EQ GT LE LT GE */ 1, 0, 0, 1, 1, 0, /* aLTb[]: Use when compare(A,B) less than zero */ 0, 1, 0, 1, 0, 1, /* aEQb[]: Use when compare(A,B) equals zero */ 1, 0, 1, 0, 0, 1 /* aGTb[]: Use when compare(A,B) greater than zero*/ }; SQLITE_PRIVATE const unsigned char *sqlite3aLTb = &sqlite3UpperToLower[256-OP_Ne]; SQLITE_PRIVATE const unsigned char *sqlite3aEQb = &sqlite3UpperToLower[256+6-OP_Ne]; SQLITE_PRIVATE const unsigned char *sqlite3aGTb = &sqlite3UpperToLower[256+12-OP_Ne]; /* ** The following 256 byte lookup table is used to support SQLites built-in ** equivalents to the following standard library functions: ** ** isspace() 0x01 ** isalpha() 0x02 ** isdigit() 0x04 ** isalnum() 0x06 ** isxdigit() 0x08 ** toupper() 0x20 ** SQLite identifier character 0x40 $, _, or non-ascii ** Quote character 0x80 ** ** Bit 0x20 is set if the mapped character requires translation to upper ** case. i.e. if the character is a lower-case ASCII character. ** If x is a lower-case ASCII character, then its upper-case equivalent ** is (x - 0x20). Therefore toupper() can be implemented as: ** ** (x & ~(map[x]&0x20)) ** ** The equivalent of tolower() is implemented using the sqlite3UpperToLower[] ** array. tolower() is used more often than toupper() by SQLite. ** ** Bit 0x40 is set if the character is non-alphanumeric and can be used in an ** SQLite identifier. Identifiers are alphanumerics, "_", "$", and any ** non-ASCII UTF character. Hence the test for whether or not a character is ** part of an identifier is 0x46. */ SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */ 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */ 0x01, 0x00, 0x80, 0x00, 0x40, 0x00, 0x00, 0x80, /* 20..27 !"#$%&' */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */ 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */ 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */ 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */ 0x02, 0x02, 0x02, 0x80, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */ 0x80, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */ 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */ }; /* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards ** compatibility for legacy applications, the URI filename capability is ** disabled by default. ** ** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled ** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options. ** ** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally ** disabled. The default value may be changed by compiling with the ** SQLITE_USE_URI symbol defined. */ #ifndef SQLITE_USE_URI # define SQLITE_USE_URI 0 #endif /* EVIDENCE-OF: R-38720-18127 The default setting is determined by the ** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if ** that compile-time option is omitted. */ #if !defined(SQLITE_ALLOW_COVERING_INDEX_SCAN) # define SQLITE_ALLOW_COVERING_INDEX_SCAN 1 #else # if !SQLITE_ALLOW_COVERING_INDEX_SCAN # error "Compile-time disabling of covering index scan using the\ -DSQLITE_ALLOW_COVERING_INDEX_SCAN=0 option is deprecated.\ Contact SQLite developers if this is a problem for you, and\ delete this #error macro to continue with your build." # endif #endif /* The minimum PMA size is set to this value multiplied by the database ** page size in bytes. */ #ifndef SQLITE_SORTER_PMASZ # define SQLITE_SORTER_PMASZ 250 #endif /* Statement journals spill to disk when their size exceeds the following ** threshold (in bytes). 0 means that statement journals are created and ** written to disk immediately (the default behavior for SQLite versions ** before 3.12.0). -1 means always keep the entire statement journal in ** memory. (The statement journal is also always held entirely in memory ** if journal_mode=MEMORY or if temp_store=MEMORY, regardless of this ** setting.) */ #ifndef SQLITE_STMTJRNL_SPILL # define SQLITE_STMTJRNL_SPILL (64*1024) #endif /* ** The default lookaside-configuration, the format "SZ,N". SZ is the ** number of bytes in each lookaside slot (should be a multiple of 8) ** and N is the number of slots. The lookaside-configuration can be ** changed as start-time using sqlite3_config(SQLITE_CONFIG_LOOKASIDE) ** or at run-time for an individual database connection using ** sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE); ** ** With the two-size-lookaside enhancement, less lookaside is required. ** The default configuration of 1200,40 actually provides 30 1200-byte slots ** and 93 128-byte slots, which is more lookaside than is available ** using the older 1200,100 configuration without two-size-lookaside. */ #ifndef SQLITE_DEFAULT_LOOKASIDE # ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE # define SQLITE_DEFAULT_LOOKASIDE 1200,100 /* 120KB of memory */ # else # define SQLITE_DEFAULT_LOOKASIDE 1200,40 /* 48KB of memory */ # endif #endif /* The default maximum size of an in-memory database created using ** sqlite3_deserialize() */ #ifndef SQLITE_MEMDB_DEFAULT_MAXSIZE # define SQLITE_MEMDB_DEFAULT_MAXSIZE 1073741824 #endif /* ** The following singleton contains the global configuration for ** the SQLite library. */ SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = { SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */ 1, /* bCoreMutex */ SQLITE_THREADSAFE==1, /* bFullMutex */ SQLITE_USE_URI, /* bOpenUri */ SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */ 0, /* bSmallMalloc */ 1, /* bExtraSchemaChecks */ sizeof(LONGDOUBLE_TYPE)>8, /* bUseLongDouble */ 0x7ffffffe, /* mxStrlen */ 0, /* neverCorrupt */ SQLITE_DEFAULT_LOOKASIDE, /* szLookaside, nLookaside */ SQLITE_STMTJRNL_SPILL, /* nStmtSpill */ {0,0,0,0,0,0,0,0}, /* m */ {0,0,0,0,0,0,0,0,0}, /* mutex */ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */ (void*)0, /* pHeap */ 0, /* nHeap */ 0, 0, /* mnHeap, mxHeap */ SQLITE_DEFAULT_MMAP_SIZE, /* szMmap */ SQLITE_MAX_MMAP_SIZE, /* mxMmap */ (void*)0, /* pPage */ 0, /* szPage */ SQLITE_DEFAULT_PCACHE_INITSZ, /* nPage */ 0, /* mxParserStack */ 0, /* sharedCacheEnabled */ SQLITE_SORTER_PMASZ, /* szPma */ /* All the rest should always be initialized to zero */ 0, /* isInit */ 0, /* inProgress */ 0, /* isMutexInit */ 0, /* isMallocInit */ 0, /* isPCacheInit */ 0, /* nRefInitMutex */ 0, /* pInitMutex */ 0, /* xLog */ 0, /* pLogArg */ #ifdef SQLITE_ENABLE_SQLLOG 0, /* xSqllog */ 0, /* pSqllogArg */ #endif #ifdef SQLITE_VDBE_COVERAGE 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_OMIT_DESERIALIZE SQLITE_MEMDB_DEFAULT_MAXSIZE, /* mxMemdbSize */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif 0, /* bLocaltimeFault */ 0, /* xAltLocaltime */ 0x7ffffffe, /* iOnceResetThreshold */ SQLITE_DEFAULT_SORTERREF_SIZE, /* szSorterRef */ 0, /* iPrngSeed */ #ifdef SQLITE_DEBUG {0,0,0,0,0,0}, /* aTune */ #endif }; /* ** Hash table for global functions - functions common to all ** database connections. After initialization, this table is ** read-only. */ SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions; #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) /* ** Counter used for coverage testing. Does not come into play for ** release builds. ** ** Access to this global variable is not mutex protected. This might ** result in TSAN warnings. But as the variable does not exist in ** release builds, that should not be a concern. */ SQLITE_PRIVATE unsigned int sqlite3CoverageCounter; #endif /* SQLITE_COVERAGE_TEST || SQLITE_DEBUG */ #ifdef VDBE_PROFILE /* ** The following performance counter can be used in place of ** sqlite3Hwtime() for profiling. This is a no-op on standard builds. */ SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt = 0; #endif /* ** The value of the "pending" byte must be 0x40000000 (1 byte past the ** 1-gibabyte boundary) in a compatible database. SQLite never uses ** the database page that contains the pending byte. It never attempts ** to read or write that page. The pending byte page is set aside ** for use by the VFS layers as space for managing file locks. ** ** During testing, it is often desirable to move the pending byte to ** a different position in the file. This allows code that has to ** deal with the pending byte to run on files that are much smaller ** than 1 GiB. The sqlite3_test_control() interface can be used to ** move the pending byte. ** ** IMPORTANT: Changing the pending byte to any value other than ** 0x40000000 results in an incompatible database file format! ** Changing the pending byte during operation will result in undefined ** and incorrect behavior. */ #ifndef SQLITE_OMIT_WSD SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000; #endif /* ** Tracing flags set by SQLITE_TESTCTRL_TRACEFLAGS. */ SQLITE_PRIVATE u32 sqlite3TreeTrace = 0; SQLITE_PRIVATE u32 sqlite3WhereTrace = 0; /* #include "opcodes.h" */ /* ** Properties of opcodes. The OPFLG_INITIALIZER macro is ** created by mkopcodeh.awk during compilation. Data is obtained ** from the comments following the "case OP_xxxx:" statements in ** the vdbe.c file. */ SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER; /* ** Name of the default collating sequence */ SQLITE_PRIVATE const char sqlite3StrBINARY[] = "BINARY"; /* ** Standard typenames. These names must match the COLTYPE_* definitions. ** Adjust the SQLITE_N_STDTYPE value if adding or removing entries. ** ** sqlite3StdType[] The actual names of the datatypes. ** ** sqlite3StdTypeLen[] The length (in bytes) of each entry ** in sqlite3StdType[]. ** ** sqlite3StdTypeAffinity[] The affinity associated with each entry ** in sqlite3StdType[]. */ SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[] = { 3, 4, 3, 7, 4, 4 }; SQLITE_PRIVATE const char sqlite3StdTypeAffinity[] = { SQLITE_AFF_NUMERIC, SQLITE_AFF_BLOB, SQLITE_AFF_INTEGER, SQLITE_AFF_INTEGER, SQLITE_AFF_REAL, SQLITE_AFF_TEXT }; SQLITE_PRIVATE const char *sqlite3StdType[] = { "ANY", "BLOB", "INT", "INTEGER", "REAL", "TEXT" }; /************** End of global.c **********************************************/ /************** Begin file status.c ******************************************/ /* ** 2008 June 18 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This module implements the sqlite3_status() interface and related ** functionality. */ /* #include "sqliteInt.h" */ /************** Include vdbeInt.h in the middle of status.c ******************/ /************** Begin file vdbeInt.h *****************************************/ /* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the header file for information that is private to the ** VDBE. This information used to all be at the top of the single ** source code file "vdbe.c". When that file became too big (over ** 6000 lines long) it was split up into several smaller files and ** this header information was factored out. */ #ifndef SQLITE_VDBEINT_H #define SQLITE_VDBEINT_H /* ** The maximum number of times that a statement will try to reparse ** itself before giving up and returning SQLITE_SCHEMA. */ #ifndef SQLITE_MAX_SCHEMA_RETRY # define SQLITE_MAX_SCHEMA_RETRY 50 #endif /* ** VDBE_DISPLAY_P4 is true or false depending on whether or not the ** "explain" P4 display logic is enabled. */ #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) \ || defined(SQLITE_ENABLE_BYTECODE_VTAB) # define VDBE_DISPLAY_P4 1 #else # define VDBE_DISPLAY_P4 0 #endif /* ** SQL is translated into a sequence of instructions to be ** executed by a virtual machine. Each instruction is an instance ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned Bool; /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Elements of the linked list at Vdbe.pAuxData */ typedef struct AuxData AuxData; /* A cache of large TEXT or BLOB values in a VdbeCursor */ typedef struct VdbeTxtBlbCache VdbeTxtBlbCache; /* Types of VDBE cursors */ #define CURTYPE_BTREE 0 #define CURTYPE_SORTER 1 #define CURTYPE_VTAB 2 #define CURTYPE_PSEUDO 3 /* ** A VdbeCursor is an superclass (a wrapper) for various cursor objects: ** ** * A b-tree cursor ** - In the main database or in an ephemeral database ** - On either an index or a table ** * A sorter ** * A virtual table ** * A one-row "pseudotable" stored in a single register */ typedef struct VdbeCursor VdbeCursor; struct VdbeCursor { u8 eCurType; /* One of the CURTYPE_* values above */ i8 iDb; /* Index of cursor database in db->aDb[] */ u8 nullRow; /* True if pointing to a row with no data */ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ u8 isTable; /* True for rowid tables. False for indexes */ #ifdef SQLITE_DEBUG u8 seekOp; /* Most recent seek operation on this cursor */ u8 wrFlag; /* The wrFlag argument to sqlite3BtreeCursor() */ #endif Bool isEphemeral:1; /* True for an ephemeral table */ Bool useRandomRowid:1; /* Generate new record numbers semi-randomly */ Bool isOrdered:1; /* True if the table is not BTREE_UNORDERED */ Bool noReuse:1; /* OpenEphemeral may not reuse this cursor */ Bool colCache:1; /* pCache pointer is initialized and non-NULL */ u16 seekHit; /* See the OP_SeekHit and OP_IfNoHope opcodes */ union { /* pBtx for isEphermeral. pAltMap otherwise */ Btree *pBtx; /* Separate file holding temporary table */ u32 *aAltMap; /* Mapping from table to index column numbers */ } ub; i64 seqCount; /* Sequence counter */ /* Cached OP_Column parse information is only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. */ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ int seekResult; /* Result of previous sqlite3BtreeMoveto() or 0 ** if there have been no prior seeks on the cursor. */ /* seekResult does not distinguish between "no seeks have ever occurred ** on this cursor" and "the most recent seek was an exact match". ** For CURTYPE_PSEUDO, seekResult is the register holding the record */ /* When a new VdbeCursor is allocated, only the fields above are zeroed. ** The fields that follow are uninitialized, and must be individually ** initialized prior to first use. */ VdbeCursor *pAltCursor; /* Associated index cursor from which to read */ union { BtCursor *pCursor; /* CURTYPE_BTREE or _PSEUDO. Btree cursor */ sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB. Vtab cursor */ VdbeSorter *pSorter; /* CURTYPE_SORTER. Sorter object */ } uc; KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ u32 iHdrOffset; /* Offset to next unparsed byte of the header */ Pgno pgnoRoot; /* Root page of the open btree cursor */ i16 nField; /* Number of fields in the header */ u16 nHdrParsed; /* Number of header fields parsed so far */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ u32 *aOffset; /* Pointer to aType[nField] */ const u8 *aRow; /* Data for the current row, if all on one page */ u32 payloadSize; /* Total number of bytes in the record */ u32 szRow; /* Byte available in aRow */ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK u64 maskUsed; /* Mask of columns used by this cursor */ #endif VdbeTxtBlbCache *pCache; /* Cache of large TEXT or BLOB values */ /* 2*nField extra array elements allocated for aType[], beyond the one ** static element declared in the structure. nField total array slots for ** aType[] and nField+1 array slots for aOffset[] */ u32 aType[1]; /* Type values record decode. MUST BE LAST */ }; /* Return true if P is a null-only cursor */ #define IsNullCursor(P) \ ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0) /* ** A value for VdbeCursor.cacheStatus that means the cache is always invalid. */ #define CACHE_STALE 0 /* ** Large TEXT or BLOB values can be slow to load, so we want to avoid ** loading them more than once. For that reason, large TEXT and BLOB values ** can be stored in a cache defined by this object, and attached to the ** VdbeCursor using the pCache field. */ struct VdbeTxtBlbCache { char *pCValue; /* A RCStr buffer to hold the value */ i64 iOffset; /* File offset of the row being cached */ int iCol; /* Column for which the cache is valid */ u32 cacheStatus; /* Vdbe.cacheCtr value */ u32 colCacheCtr; /* Column cache counter */ }; /* ** When a sub-program is executed (OP_Program), a structure of this type ** is allocated to store the current value of the program counter, as ** well as the current memory cell array and various other frame specific ** values stored in the Vdbe struct. When the sub-program is finished, ** these values are copied back to the Vdbe from the VdbeFrame structure, ** restoring the state of the VM to as it was before the sub-program ** began executing. ** ** The memory for a VdbeFrame object is allocated and managed by a memory ** cell in the parent (calling) frame. When the memory cell is deleted or ** overwritten, the VdbeFrame object is not freed immediately. Instead, it ** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame ** list is deleted when the VM is reset in VdbeHalt(). The reason for doing ** this instead of deleting the VdbeFrame immediately is to avoid recursive ** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the ** child frame are released. ** ** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is ** set to NULL if the currently executing frame is the main program. */ typedef struct VdbeFrame VdbeFrame; struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */ Op *aOp; /* Program instructions for parent frame */ Mem *aMem; /* Array of memory cells for parent frame */ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ u8 *aOnce; /* Bitmask used by OP_Once */ void *token; /* Copy of SubProgram.token */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ AuxData *pAuxData; /* Linked list of auxdata allocations */ #if SQLITE_DEBUG u32 iFrameMagic; /* magic number for sanity checking */ #endif int nCursor; /* Number of entries in apCsr */ int pc; /* Program Counter in parent (calling) frame */ int nOp; /* Size of aOp array */ int nMem; /* Number of entries in aMem */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ i64 nChange; /* Statement changes (Vdbe.nChange) */ i64 nDbChange; /* Value of db->nChange */ }; /* Magic number for sanity checking on VdbeFrame objects */ #define SQLITE_FRAME_MAGIC 0x879fb71e /* ** Return a pointer to the array of registers allocated for use ** by a VdbeFrame. */ #define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))]) /* ** Internally, the vdbe manipulates nearly all SQL values as Mem ** structures. Each Mem struct may cache multiple representations (string, ** integer etc.) of the same value. */ struct sqlite3_value { union MemValue { double r; /* Real value used when MEM_Real is set in flags */ i64 i; /* Integer value used when MEM_Int is set in flags */ int nZero; /* Extra zero bytes when MEM_Zero and MEM_Blob set */ const char *zPType; /* Pointer type when MEM_Term|MEM_Subtype|MEM_Null */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ } u; char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ u8 eSubtype; /* Subtype for this value */ /* ShallowCopy only needs to copy the information above */ sqlite3 *db; /* The associated database connection */ int szMalloc; /* Size of the zMalloc allocation */ u32 uTemp; /* Transient storage for serial_type in OP_MakeRecord */ char *zMalloc; /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */ void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */ #ifdef SQLITE_DEBUG Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */ u16 mScopyFlags; /* flags value immediately after the shallow copy */ #endif }; /* ** Size of struct Mem not including the Mem.zMalloc member or anything that ** follows. */ #define MEMCELLSIZE offsetof(Mem,db) /* One or more of the following flags are set to indicate the ** representations of the value stored in the Mem struct. ** ** * MEM_Null An SQL NULL value ** ** * MEM_Null|MEM_Zero An SQL NULL with the virtual table ** UPDATE no-change flag set ** ** * MEM_Null|MEM_Term| An SQL NULL, but also contains a ** MEM_Subtype pointer accessible using ** sqlite3_value_pointer(). ** ** * MEM_Null|MEM_Cleared Special SQL NULL that compares non-equal ** to other NULLs even using the IS operator. ** ** * MEM_Str A string, stored in Mem.z with ** length Mem.n. Zero-terminated if ** MEM_Term is set. This flag is ** incompatible with MEM_Blob and ** MEM_Null, but can appear with MEM_Int, ** MEM_Real, and MEM_IntReal. ** ** * MEM_Blob A blob, stored in Mem.z length Mem.n. ** Incompatible with MEM_Str, MEM_Null, ** MEM_Int, MEM_Real, and MEM_IntReal. ** ** * MEM_Blob|MEM_Zero A blob in Mem.z of length Mem.n plus ** MEM.u.i extra 0x00 bytes at the end. ** ** * MEM_Int Integer stored in Mem.u.i. ** ** * MEM_Real Real stored in Mem.u.r. ** ** * MEM_IntReal Real stored as an integer in Mem.u.i. ** ** If the MEM_Null flag is set, then the value is an SQL NULL value. ** For a pointer type created using sqlite3_bind_pointer() or ** sqlite3_result_pointer() the MEM_Term and MEM_Subtype flags are also set. ** ** If the MEM_Str flag is set then Mem.z points at a string representation. ** Usually this is encoded in the same unicode encoding as the main ** database (see below for exceptions). If the MEM_Term flag is also ** set, then the string is nul terminated. The MEM_Int and MEM_Real ** flags may coexist with the MEM_Str flag. */ #define MEM_Undefined 0x0000 /* Value is undefined */ #define MEM_Null 0x0001 /* Value is NULL (or a pointer) */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_IntReal 0x0020 /* MEM_Int that stringifies like MEM_Real */ #define MEM_AffMask 0x003f /* Mask of affinity bits */ /* Extra bits that modify the meanings of the core datatypes above */ #define MEM_FromBind 0x0040 /* Value originates from sqlite3_bind() */ /* 0x0080 // Available */ #define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */ #define MEM_Term 0x0200 /* String in Mem.z is zero terminated */ #define MEM_Zero 0x0400 /* Mem.i contains count of 0s appended to blob */ #define MEM_Subtype 0x0800 /* Mem.eSubtype is valid */ #define MEM_TypeMask 0x0dbf /* Mask of type bits */ /* Bits that determine the storage for Mem.z for a string or blob or ** aggregate accumulator. */ #define MEM_Dyn 0x1000 /* Need to call Mem.xDel() on Mem.z */ #define MEM_Static 0x2000 /* Mem.z points to a static string */ #define MEM_Ephem 0x4000 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x8000 /* Mem.z points to an agg function context */ /* Return TRUE if Mem X contains dynamically allocated content - anything ** that needs to be deallocated to avoid a leak. */ #define VdbeMemDynamic(X) \ (((X)->flags&(MEM_Agg|MEM_Dyn))!=0) /* ** Clear any existing type flags from a Mem and replace them with f */ #define MemSetTypeFlag(p, f) \ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f) /* ** True if Mem X is a NULL-nochng type. */ #define MemNullNochng(X) \ (((X)->flags&MEM_TypeMask)==(MEM_Null|MEM_Zero) \ && (X)->n==0 && (X)->u.nZero==0) /* ** Return true if a memory cell has been initialized and is valid. ** is for use inside assert() statements only. ** ** A Memory cell is initialized if at least one of the ** MEM_Null, MEM_Str, MEM_Int, MEM_Real, MEM_Blob, or MEM_IntReal bits ** is set. It is "undefined" if all those bits are zero. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_AffMask)!=0 #endif /* ** Each auxiliary data pointer stored by a user defined function ** implementation calling sqlite3_set_auxdata() is stored in an instance ** of this structure. All such structures associated with a single VM ** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed ** when the VM is halted (if not before). */ struct AuxData { int iAuxOp; /* Instruction number of OP_Function opcode */ int iAuxArg; /* Index of function argument. */ void *pAux; /* Aux data pointer */ void (*xDeleteAux)(void*); /* Destructor for the aux data */ AuxData *pNextAux; /* Next element in list */ }; /* ** The "context" argument for an installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, ** even the public interface to SQLite, can use a pointer to this structure. ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { Mem *pOut; /* The return value is stored here */ FuncDef *pFunc; /* Pointer to function information */ Mem *pMem; /* Memory cell used to store aggregate context */ Vdbe *pVdbe; /* The VM that owns this context */ int iOp; /* Instruction number of OP_Function */ int isError; /* Error code returned by the function. */ u8 enc; /* Encoding to use for results */ u8 skipFlag; /* Skip accumulator loading if true */ u8 argc; /* Number of arguments */ sqlite3_value *argv[1]; /* Argument set */ }; /* A bitfield type for use inside of structures. Always follow with :N where ** N is the number of bits. */ typedef unsigned bft; /* Bit Field Type */ /* The ScanStatus object holds a single value for the ** sqlite3_stmt_scanstatus() interface. ** ** aAddrRange[]: ** This array is used by ScanStatus elements associated with EQP ** notes that make an SQLITE_SCANSTAT_NCYCLE value available. It is ** an array of up to 3 ranges of VM addresses for which the Vdbe.anCycle[] ** values should be summed to calculate the NCYCLE value. Each pair of ** integer addresses is a start and end address (both inclusive) for a range ** instructions. A start value of 0 indicates an empty range. */ typedef struct ScanStatus ScanStatus; struct ScanStatus { int addrExplain; /* OP_Explain for loop */ int aAddrRange[6]; int addrLoop; /* Address of "loops" counter */ int addrVisit; /* Address of "rows visited" counter */ int iSelectID; /* The "Select-ID" for this loop */ LogEst nEst; /* Estimated output rows per loop */ char *zName; /* Name of table or index */ }; /* The DblquoteStr object holds the text of a double-quoted ** string for a prepared statement. A linked list of these objects ** is constructed during statement parsing and is held on Vdbe.pDblStr. ** When computing a normalized SQL statement for an SQL statement, that ** list is consulted for each double-quoted identifier to see if the ** identifier should really be a string literal. */ typedef struct DblquoteStr DblquoteStr; struct DblquoteStr { DblquoteStr *pNextStr; /* Next string literal in the list */ char z[8]; /* Dequoted value for the string */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. */ struct Vdbe { sqlite3 *db; /* The database connection that owns this statement */ Vdbe **ppVPrev,*pVNext; /* Linked list of VDBEs with the same Vdbe.db */ Parse *pParse; /* Parsing context used to create this Vdbe */ ynVar nVar; /* Number of entries in aVar[] */ int nMem; /* Number of memory locations currently allocated */ int nCursor; /* Number of slots in apCsr[] */ u32 cacheCtr; /* VdbeCursor row cache generation counter */ int pc; /* The program counter */ int rc; /* Value to return */ i64 nChange; /* Number of db changes made since last reset */ int iStatement; /* Statement number (or 0 if has no opened stmt) */ i64 iCurrentTime; /* Value of julianday('now') for this statement */ i64 nFkConstraint; /* Number of imm. FK constraints this VM */ i64 nStmtDefCons; /* Number of def. constraints when stmt started */ i64 nStmtDefImmCons; /* Number of def. imm constraints when stmt started */ Mem *aMem; /* The memory locations */ Mem **apArg; /* Arguments to currently executing user function */ VdbeCursor **apCsr; /* One element of this array for each open cursor */ Mem *aVar; /* Values for the OP_Variable opcode. */ /* When allocating a new Vdbe object, all of the fields below should be ** initialized to zero or NULL */ Op *aOp; /* Space to hold the virtual machine's program */ int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Slots allocated for aOp[] */ Mem *aColName; /* Column names to return */ Mem *pResultRow; /* Current output row */ char *zErrMsg; /* Error message written here */ VList *pVList; /* Name of variables */ #ifndef SQLITE_OMIT_TRACE i64 startTime; /* Time when query started - used for profiling */ #endif #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ u32 nWrite; /* Number of write operations that have occurred */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u16 nResAlloc; /* Column slots allocated to aColName[] */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ u8 eVdbeState; /* On of the VDBE_*_STATE values */ bft expired:2; /* 1: recompile VM immediately 2: when convenient */ bft explain:2; /* 0: normal, 1: EXPLAIN, 2: EXPLAIN QUERY PLAN */ bft changeCntOn:1; /* True to update the change-counter */ bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for statements that do not write */ bft bIsReader:1; /* True for statements that read */ bft haveEqpOps:1; /* Bytecode supports EXPLAIN QUERY PLAN */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ u32 aCounter[9]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ #ifdef SQLITE_ENABLE_NORMALIZE char *zNormSql; /* Normalization of the associated SQL statement */ DblquoteStr *pDblStr; /* List of double-quoted string literals */ #endif void *pFree; /* Free this when deleting the vdbe */ VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ AuxData *pAuxData; /* Linked list of auxdata allocations */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int nScan; /* Entries in aScan[] */ ScanStatus *aScan; /* Scan definitions for sqlite3_stmt_scanstatus() */ #endif }; /* ** The following are allowed values for Vdbe.eVdbeState */ #define VDBE_INIT_STATE 0 /* Prepared statement under construction */ #define VDBE_READY_STATE 1 /* Ready to run but not yet started */ #define VDBE_RUN_STATE 2 /* Run in progress */ #define VDBE_HALT_STATE 3 /* Finished. Need reset() or finalize() */ /* ** Structure used to store the context required by the ** sqlite3_preupdate_*() API functions. */ struct PreUpdate { Vdbe *v; VdbeCursor *pCsr; /* Cursor to read old values from */ int op; /* One of SQLITE_INSERT, UPDATE, DELETE */ u8 *aRecord; /* old.* database record */ KeyInfo keyinfo; UnpackedRecord *pUnpacked; /* Unpacked version of aRecord[] */ UnpackedRecord *pNewUnpacked; /* Unpacked version of new.* record */ int iNewReg; /* Register for new.* values */ int iBlobWrite; /* Value returned by preupdate_blobwrite() */ i64 iKey1; /* First key value passed to hook */ i64 iKey2; /* Second key value passed to hook */ Mem *aNew; /* Array of new.* values */ Table *pTab; /* Schema object being updated */ Index *pPk; /* PK index if pTab is WITHOUT ROWID */ }; /* ** An instance of this object is used to pass an vector of values into ** OP_VFilter, the xFilter method of a virtual table. The vector is the ** set of values on the right-hand side of an IN constraint. ** ** The value as passed into xFilter is an sqlite3_value with a "pointer" ** type, such as is generated by sqlite3_result_pointer() and read by ** sqlite3_value_pointer. Such values have MEM_Term|MEM_Subtype|MEM_Null ** and a subtype of 'p'. The sqlite3_vtab_in_first() and _next() interfaces ** know how to use this object to step through all the values in the ** right operand of the IN constraint. */ typedef struct ValueList ValueList; struct ValueList { BtCursor *pCsr; /* An ephemeral table holding all values */ sqlite3_value *pOut; /* Register to hold each decoded output value */ }; /* Size of content associated with serial types that fit into a ** single-byte varint. */ #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[]; #endif /* ** Function prototypes */ SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...); SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*); SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe*,VdbeCursor*); void sqliteVdbePopStack(Vdbe*,int); SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p); SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor*); SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*); SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8); #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in); # define swapMixedEndianFloat(X) X = sqlite3FloatSwap(X) #else # define swapMixedEndianFloat(X) #endif SQLITE_PRIVATE void sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*); SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*); SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); #if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB) SQLITE_PRIVATE int sqlite3VdbeNextOpcode(Vdbe*,Mem*,int,int*,int*,Op**); SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3*,Op*); #endif #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) SQLITE_PRIVATE char *sqlite3VdbeDisplayComment(sqlite3*,const Op*,const char*); #endif #if !defined(SQLITE_OMIT_EXPLAIN) SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); #endif SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*); SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, i64, u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64); #ifdef SQLITE_OMIT_FLOATING_POINT # define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64 #else SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double); #endif SQLITE_PRIVATE void sqlite3VdbeMemSetPointer(Mem*, void*, const char*, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem*,sqlite3*,u16); SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*); #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int); #else SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem*,int); #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem*); #endif SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem*); SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, u8, u8); SQLITE_PRIVATE int sqlite3IntFloatCompare(i64,double); SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem*); SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem*, int ifNull); SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem*,u8,u8); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*); SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset(BtCursor*,u32,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem*p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*); #endif #if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB) SQLITE_PRIVATE const char *sqlite3OpcodeName(int); #endif SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*); #endif SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*); /* Destructor on Mem */ SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); /* Actually deletes the Frame */ SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK SQLITE_PRIVATE void sqlite3VdbePreUpdateHook( Vdbe*,VdbeCursor*,int,const char*,Table*,i64,int,int); #endif SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p); SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *); SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *); SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *); SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *, int *); SQLITE_PRIVATE int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *); SQLITE_PRIVATE void sqlite3VdbeValueListFree(void*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe*, VdbeCursor*); SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe*); #else # define sqlite3VdbeIncrWriteCounter(V,C) # define sqlite3VdbeAssertAbortable(V) #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*); #else # define sqlite3VdbeEnter(X) #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeLeave(X) #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*); SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr); #endif #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8); SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem); #endif #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *); #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) #else #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK #define ExpandBlob(P) SQLITE_OK #endif #endif /* !defined(SQLITE_VDBEINT_H) */ /************** End of vdbeInt.h *********************************************/ /************** Continuing where we left off in status.c *********************/ /* ** Variables in which to record status information. */ #if SQLITE_PTRSIZE>4 typedef sqlite3_int64 sqlite3StatValueType; #else typedef u32 sqlite3StatValueType; #endif typedef struct sqlite3StatType sqlite3StatType; static SQLITE_WSD struct sqlite3StatType { sqlite3StatValueType nowValue[10]; /* Current value */ sqlite3StatValueType mxValue[10]; /* Maximum value */ } sqlite3Stat = { {0,}, {0,} }; /* ** Elements of sqlite3Stat[] are protected by either the memory allocator ** mutex, or by the pcache1 mutex. The following array determines which. */ static const char statMutex[] = { 0, /* SQLITE_STATUS_MEMORY_USED */ 1, /* SQLITE_STATUS_PAGECACHE_USED */ 1, /* SQLITE_STATUS_PAGECACHE_OVERFLOW */ 0, /* SQLITE_STATUS_SCRATCH_USED */ 0, /* SQLITE_STATUS_SCRATCH_OVERFLOW */ 0, /* SQLITE_STATUS_MALLOC_SIZE */ 0, /* SQLITE_STATUS_PARSER_STACK */ 1, /* SQLITE_STATUS_PAGECACHE_SIZE */ 0, /* SQLITE_STATUS_SCRATCH_SIZE */ 0, /* SQLITE_STATUS_MALLOC_COUNT */ }; /* The "wsdStat" macro will resolve to the status information ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdStat can refer directly ** to the "sqlite3Stat" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat) # define wsdStat x[0] #else # define wsdStatInit # define wsdStat sqlite3Stat #endif /* ** Return the current value of a status parameter. The caller must ** be holding the appropriate mutex. */ SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int op){ wsdStatInit; assert( op>=0 && op=0 && op=0 && op=0 && opwsdStat.mxValue[op] ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } } SQLITE_PRIVATE void sqlite3StatusDown(int op, int N){ wsdStatInit; assert( N>=0 ); assert( op>=0 && op=0 && op=0 ); newValue = (sqlite3StatValueType)X; assert( op>=0 && op=0 && opwsdStat.mxValue[op] ){ wsdStat.mxValue[op] = newValue; } } /* ** Query status information. */ SQLITE_API int sqlite3_status64( int op, sqlite3_int64 *pCurrent, sqlite3_int64 *pHighwater, int resetFlag ){ sqlite3_mutex *pMutex; wsdStatInit; if( op<0 || op>=ArraySize(wsdStat.nowValue) ){ return SQLITE_MISUSE_BKPT; } #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex(); sqlite3_mutex_enter(pMutex); *pCurrent = wsdStat.nowValue[op]; *pHighwater = wsdStat.mxValue[op]; if( resetFlag ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } sqlite3_mutex_leave(pMutex); (void)pMutex; /* Prevent warning when SQLITE_THREADSAFE=0 */ return SQLITE_OK; } SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){ sqlite3_int64 iCur = 0, iHwtr = 0; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag); if( rc==0 ){ *pCurrent = (int)iCur; *pHighwater = (int)iHwtr; } return rc; } /* ** Return the number of LookasideSlot elements on the linked list */ static u32 countLookasideSlots(LookasideSlot *p){ u32 cnt = 0; while( p ){ p = p->pNext; cnt++; } return cnt; } /* ** Count the number of slots of lookaside memory that are outstanding */ SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3 *db, int *pHighwater){ u32 nInit = countLookasideSlots(db->lookaside.pInit); u32 nFree = countLookasideSlots(db->lookaside.pFree); #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE nInit += countLookasideSlots(db->lookaside.pSmallInit); nFree += countLookasideSlots(db->lookaside.pSmallFree); #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( pHighwater ) *pHighwater = db->lookaside.nSlot - nInit; return db->lookaside.nSlot - (nInit+nFree); } /* ** Query status information for a single database connection */ SQLITE_API int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ int rc = SQLITE_OK; /* Return code */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || pCurrent==0|| pHighwater==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = sqlite3LookasideUsed(db, pHighwater); if( resetFlag ){ LookasideSlot *p = db->lookaside.pFree; if( p ){ while( p->pNext ) p = p->pNext; p->pNext = db->lookaside.pInit; db->lookaside.pInit = db->lookaside.pFree; db->lookaside.pFree = 0; } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE p = db->lookaside.pSmallFree; if( p ){ while( p->pNext ) p = p->pNext; p->pNext = db->lookaside.pSmallInit; db->lookaside.pSmallInit = db->lookaside.pSmallFree; db->lookaside.pSmallFree = 0; } #endif } break; } case SQLITE_DBSTATUS_LOOKASIDE_HIT: case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: { testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT ); testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE ); testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL ); assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 ); assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 ); *pCurrent = 0; *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT]; if( resetFlag ){ db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0; } break; } /* ** Return an approximation for the amount of memory currently used ** by all pagers associated with the given database connection. The ** highwater mark is meaningless and is returned as zero. */ case SQLITE_DBSTATUS_CACHE_USED_SHARED: case SQLITE_DBSTATUS_CACHE_USED: { int totalUsed = 0; int i; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); int nByte = sqlite3PagerMemUsed(pPager); if( op==SQLITE_DBSTATUS_CACHE_USED_SHARED ){ nByte = nByte / sqlite3BtreeConnectionCount(pBt); } totalUsed += nByte; } } sqlite3BtreeLeaveAll(db); *pCurrent = totalUsed; *pHighwater = 0; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store the schema for all databases (main, temp, and any ATTACHed ** databases. *pHighwater is set to zero. */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ sqlite3BtreeEnterAll(db); db->pnBytesFreed = &nByte; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; for(i=0; inDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( pSchema->tblHash.count + pSchema->trigHash.count + pSchema->idxHash.count + pSchema->fkeyHash.count ); nByte += sqlite3_msize(pSchema->tblHash.ht); nByte += sqlite3_msize(pSchema->trigHash.ht); nByte += sqlite3_msize(pSchema->idxHash.ht); nByte += sqlite3_msize(pSchema->fkeyHash.ht); for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p)); } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; db->lookaside.pEnd = db->lookaside.pTrueEnd; sqlite3BtreeLeaveAll(db); *pHighwater = 0; *pCurrent = nByte; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store all prepared statements. ** *pHighwater is set to zero. */ case SQLITE_DBSTATUS_STMT_USED: { struct Vdbe *pVdbe; /* Used to iterate through VMs */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pVNext){ sqlite3VdbeDelete(pVdbe); } db->lookaside.pEnd = db->lookaside.pTrueEnd; db->pnBytesFreed = 0; *pHighwater = 0; /* IMP: R-64479-57858 */ *pCurrent = nByte; break; } /* ** Set *pCurrent to the total cache hits or misses encountered by all ** pagers the database handle is connected to. *pHighwater is always set ** to zero. */ case SQLITE_DBSTATUS_CACHE_SPILL: op = SQLITE_DBSTATUS_CACHE_WRITE+1; /* no break */ deliberate_fall_through case SQLITE_DBSTATUS_CACHE_HIT: case SQLITE_DBSTATUS_CACHE_MISS: case SQLITE_DBSTATUS_CACHE_WRITE:{ int i; int nRet = 0; assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 ); assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 ); for(i=0; inDb; i++){ if( db->aDb[i].pBt ){ Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt); sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet); } } *pHighwater = 0; /* IMP: R-42420-56072 */ /* IMP: R-54100-20147 */ /* IMP: R-29431-39229 */ *pCurrent = nRet; break; } /* Set *pCurrent to non-zero if there are unresolved deferred foreign ** key constraints. Set *pCurrent to zero if all foreign key constraints ** have been satisfied. The *pHighwater is always set to zero. */ case SQLITE_DBSTATUS_DEFERRED_FKS: { *pHighwater = 0; /* IMP: R-11967-56545 */ *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0; break; } default: { rc = SQLITE_ERROR; } } sqlite3_mutex_leave(db->mutex); return rc; } /************** End of status.c **********************************************/ /************** Begin file date.c ********************************************/ /* ** 2003 October 31 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** ** SQLite processes all times and dates as julian day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** ** This implementation requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the julian calendar for dates prior to 1582-10-15 and for some ** dates afterwards, depending on locale. Beware of this difference. ** ** The conversion algorithms are implemented based on descriptions ** in the following text: ** ** Jean Meeus ** Astronomical Algorithms, 2nd Edition, 1998 ** ISBN 0-943396-61-1 ** Willmann-Bell, Inc ** Richmond, Virginia (USA) */ /* #include "sqliteInt.h" */ /* #include */ /* #include */ #include #ifndef SQLITE_OMIT_DATETIME_FUNCS /* ** The MSVC CRT on Windows CE may not have a localtime() function. ** So declare a substitute. The substitute function itself is ** defined in "os_win.c". */ #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) struct tm *__cdecl localtime(const time_t *); #endif /* ** A structure for holding a single date and time. */ typedef struct DateTime DateTime; struct DateTime { sqlite3_int64 iJD; /* The julian day number times 86400000 */ int Y, M, D; /* Year, month, and day */ int h, m; /* Hour and minutes */ int tz; /* Timezone offset in minutes */ double s; /* Seconds */ char validJD; /* True (1) if iJD is valid */ char rawS; /* Raw numeric value stored in s */ char validYMD; /* True (1) if Y,M,D are valid */ char validHMS; /* True (1) if h,m,s are valid */ char validTZ; /* True (1) if tz is valid */ char tzSet; /* Timezone was set explicitly */ char isError; /* An overflow has occurred */ char useSubsec; /* Display subsecond precision */ }; /* ** Convert zDate into one or more integers according to the conversion ** specifier zFormat. ** ** zFormat[] contains 4 characters for each integer converted, except for ** the last integer which is specified by three characters. The meaning ** of a four-character format specifiers ABCD is: ** ** A: number of digits to convert. Always "2" or "4". ** B: minimum value. Always "0" or "1". ** C: maximum value, decoded as: ** a: 12 ** b: 14 ** c: 24 ** d: 31 ** e: 59 ** f: 9999 ** D: the separator character, or \000 to indicate this is the ** last number to convert. ** ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates ** the 2-digit day which is the last integer in the set. ** ** The function returns the number of successful conversions. */ static int getDigits(const char *zDate, const char *zFormat, ...){ /* The aMx[] array translates the 3rd character of each format ** spec into a max size: a b c d e f */ static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 }; va_list ap; int cnt = 0; char nextC; va_start(ap, zFormat); do{ char N = zFormat[0] - '0'; char min = zFormat[1] - '0'; int val = 0; u16 max; assert( zFormat[2]>='a' && zFormat[2]<='f' ); max = aMx[zFormat[2] - 'a']; nextC = zFormat[3]; val = 0; while( N-- ){ if( !sqlite3Isdigit(*zDate) ){ goto end_getDigits; } val = val*10 + *zDate - '0'; zDate++; } if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ goto end_getDigits; } *va_arg(ap,int*) = val; zDate++; cnt++; zFormat += 4; }while( nextC ); end_getDigits: va_end(ap); return cnt; } /* ** Parse a timezone extension on the end of a date-time. ** The extension is of the form: ** ** (+/-)HH:MM ** ** Or the "zulu" notation: ** ** Z ** ** If the parse is successful, write the number of minutes ** of change in p->tz and return 0. If a parser error occurs, ** return non-zero. ** ** A missing specifier is not considered an error. */ static int parseTimezone(const char *zDate, DateTime *p){ int sgn = 0; int nHr, nMn; int c; while( sqlite3Isspace(*zDate) ){ zDate++; } p->tz = 0; c = *zDate; if( c=='-' ){ sgn = -1; }else if( c=='+' ){ sgn = +1; }else if( c=='Z' || c=='z' ){ zDate++; goto zulu_time; }else{ return c!=0; } zDate++; if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ return 1; } zDate += 5; p->tz = sgn*(nMn + nHr*60); zulu_time: while( sqlite3Isspace(*zDate) ){ zDate++; } p->tzSet = 1; return *zDate!=0; } /* ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. ** The HH, MM, and SS must each be exactly 2 digits. The ** fractional seconds FFFF can be one or more digits. ** ** Return 1 if there is a parsing error and 0 on success. */ static int parseHhMmSs(const char *zDate, DateTime *p){ int h, m, s; double ms = 0.0; if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ return 1; } zDate += 5; if( *zDate==':' ){ zDate++; if( getDigits(zDate, "20e", &s)!=1 ){ return 1; } zDate += 2; if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ double rScale = 1.0; zDate++; while( sqlite3Isdigit(*zDate) ){ ms = ms*10.0 + *zDate - '0'; rScale *= 10.0; zDate++; } ms /= rScale; } }else{ s = 0; } p->validJD = 0; p->rawS = 0; p->validHMS = 1; p->h = h; p->m = m; p->s = s + ms; if( parseTimezone(zDate, p) ) return 1; p->validTZ = (p->tz!=0)?1:0; return 0; } /* ** Put the DateTime object into its error state. */ static void datetimeError(DateTime *p){ memset(p, 0, sizeof(*p)); p->isError = 1; } /* ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume ** that the YYYY-MM-DD is according to the Gregorian calendar. ** ** Reference: Meeus page 61 */ static void computeJD(DateTime *p){ int Y, M, D, A, B, X1, X2; if( p->validJD ) return; if( p->validYMD ){ Y = p->Y; M = p->M; D = p->D; }else{ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ M = 1; D = 1; } if( Y<-4713 || Y>9999 || p->rawS ){ datetimeError(p); return; } if( M<=2 ){ Y--; M += 12; } A = Y/100; B = 2 - A + (A/4); X1 = 36525*(Y+4716)/100; X2 = 306001*(M+1)/10000; p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); p->validJD = 1; if( p->validHMS ){ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5); if( p->validTZ ){ p->iJD -= p->tz*60000; p->validYMD = 0; p->validHMS = 0; p->validTZ = 0; } } } /* ** Parse dates of the form ** ** YYYY-MM-DD HH:MM:SS.FFF ** YYYY-MM-DD HH:MM:SS ** YYYY-MM-DD HH:MM ** YYYY-MM-DD ** ** Write the result into the DateTime structure and return 0 ** on success and 1 if the input string is not a well-formed ** date. */ static int parseYyyyMmDd(const char *zDate, DateTime *p){ int Y, M, D, neg; if( zDate[0]=='-' ){ zDate++; neg = 1; }else{ neg = 0; } if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ return 1; } zDate += 10; while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } if( parseHhMmSs(zDate, p)==0 ){ /* We got the time */ }else if( *zDate==0 ){ p->validHMS = 0; }else{ return 1; } p->validJD = 0; p->validYMD = 1; p->Y = neg ? -Y : Y; p->M = M; p->D = D; if( p->validTZ ){ computeJD(p); } return 0; } /* ** Set the time to the current time reported by the VFS. ** ** Return the number of errors. */ static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ p->iJD = sqlite3StmtCurrentTime(context); if( p->iJD>0 ){ p->validJD = 1; return 0; }else{ return 1; } } /* ** Input "r" is a numeric quantity which might be a julian day number, ** or the number of seconds since 1970. If the value if r is within ** range of a julian day number, install it as such and set validJD. ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. */ static void setRawDateNumber(DateTime *p, double r){ p->s = r; p->rawS = 1; if( r>=0.0 && r<5373484.5 ){ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); p->validJD = 1; } } /* ** Attempt to parse the given string into a julian day number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM ** DDDD.DD ** now ** ** In the first form, the +/-HH:MM is always optional. The fractional ** seconds extension (the ".FFF") is optional. The seconds portion ** (":SS.FFF") is option. The year and date can be omitted as long ** as there is a time string. The time string can be omitted as long ** as there is a year and date. */ static int parseDateOrTime( sqlite3_context *context, const char *zDate, DateTime *p ){ double r; if( parseYyyyMmDd(zDate,p)==0 ){ return 0; }else if( parseHhMmSs(zDate, p)==0 ){ return 0; }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ return setDateTimeToCurrent(context, p); }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ setRawDateNumber(p, r); return 0; }else if( (sqlite3StrICmp(zDate,"subsec")==0 || sqlite3StrICmp(zDate,"subsecond")==0) && sqlite3NotPureFunc(context) ){ p->useSubsec = 1; return setDateTimeToCurrent(context, p); } return 1; } /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. ** Multiplying this by 86400000 gives 464269060799999 as the maximum value ** for DateTime.iJD. ** ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with ** such a large integer literal, so we have to encode it. */ #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) /* ** Return TRUE if the given julian day number is within range. ** ** The input is the JulianDay times 86400000. */ static int validJulianDay(sqlite3_int64 iJD){ return iJD>=0 && iJD<=INT_464269060799999; } /* ** Compute the Year, Month, and Day from the julian day number. */ static void computeYMD(DateTime *p){ int Z, A, B, C, D, E, X1; if( p->validYMD ) return; if( !p->validJD ){ p->Y = 2000; p->M = 1; p->D = 1; }else if( !validJulianDay(p->iJD) ){ datetimeError(p); return; }else{ Z = (int)((p->iJD + 43200000)/86400000); A = (int)((Z - 1867216.25)/36524.25); A = Z + 1 + A - (A/4); B = A + 1524; C = (int)((B - 122.1)/365.25); D = (36525*(C&32767))/100; E = (int)((B-D)/30.6001); X1 = (int)(30.6001*E); p->D = B - D - X1; p->M = E<14 ? E-1 : E-13; p->Y = p->M>2 ? C - 4716 : C - 4715; } p->validYMD = 1; } /* ** Compute the Hour, Minute, and Seconds from the julian day number. */ static void computeHMS(DateTime *p){ int day_ms, day_min; /* milliseconds, minutes into the day */ if( p->validHMS ) return; computeJD(p); day_ms = (int)((p->iJD + 43200000) % 86400000); p->s = (day_ms % 60000)/1000.0; day_min = day_ms/60000; p->m = day_min % 60; p->h = day_min / 60; p->rawS = 0; p->validHMS = 1; } /* ** Compute both YMD and HMS */ static void computeYMD_HMS(DateTime *p){ computeYMD(p); computeHMS(p); } /* ** Clear the YMD and HMS and the TZ */ static void clearYMD_HMS_TZ(DateTime *p){ p->validYMD = 0; p->validHMS = 0; p->validTZ = 0; } #ifndef SQLITE_OMIT_LOCALTIME /* ** On recent Windows platforms, the localtime_s() function is available ** as part of the "Secure CRT". It is essentially equivalent to ** localtime_r() available under most POSIX platforms, except that the ** order of the parameters is reversed. ** ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. ** ** If the user has not indicated to use localtime_r() or localtime_s() ** already, check for an MSVC build environment that provides ** localtime_s(). */ #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) #undef HAVE_LOCALTIME_S #define HAVE_LOCALTIME_S 1 #endif /* ** The following routine implements the rough equivalent of localtime_r() ** using whatever operating-system specific localtime facility that ** is available. This routine returns 0 on success and ** non-zero on any kind of error. ** ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this ** routine will always fail. If bLocaltimeFault is nonzero and ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is ** invoked in place of the OS-defined localtime() function. ** ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C ** library function localtime_r() is used to assist in the calculation of ** local time. */ static int osLocaltime(time_t *t, struct tm *pTm){ int rc; #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S struct tm *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif sqlite3_mutex_enter(mutex); pX = localtime(t); #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ){ if( sqlite3GlobalConfig.xAltLocaltime!=0 && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm) ){ pX = pTm; }else{ pX = 0; } } #endif if( pX ) *pTm = *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex_leave(mutex); #endif rc = pX==0; #else #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ){ if( sqlite3GlobalConfig.xAltLocaltime!=0 ){ return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm); }else{ return 1; } } #endif #if HAVE_LOCALTIME_R rc = localtime_r(t, pTm)==0; #else rc = localtime_s(pTm, t); #endif /* HAVE_LOCALTIME_R */ #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ return rc; } #endif /* SQLITE_OMIT_LOCALTIME */ #ifndef SQLITE_OMIT_LOCALTIME /* ** Assuming the input DateTime is UTC, move it to its localtime equivalent. */ static int toLocaltime( DateTime *p, /* Date at which to calculate offset */ sqlite3_context *pCtx /* Write error here if one occurs */ ){ time_t t; struct tm sLocal; int iYearDiff; /* Initialize the contents of sLocal to avoid a compiler warning. */ memset(&sLocal, 0, sizeof(sLocal)); computeJD(p); if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */ || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */ ){ /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only ** works for years between 1970 and 2037. For dates outside this range, ** SQLite attempts to map the year into an equivalent year within this ** range, do the calculation, then map the year back. */ DateTime x = *p; computeYMD_HMS(&x); iYearDiff = (2000 + x.Y%4) - x.Y; x.Y += iYearDiff; x.validJD = 0; computeJD(&x); t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); }else{ iYearDiff = 0; t = (time_t)(p->iJD/1000 - 21086676*(i64)10000); } if( osLocaltime(&t, &sLocal) ){ sqlite3_result_error(pCtx, "local time unavailable", -1); return SQLITE_ERROR; } p->Y = sLocal.tm_year + 1900 - iYearDiff; p->M = sLocal.tm_mon + 1; p->D = sLocal.tm_mday; p->h = sLocal.tm_hour; p->m = sLocal.tm_min; p->s = sLocal.tm_sec + (p->iJD%1000)*0.001; p->validYMD = 1; p->validHMS = 1; p->validJD = 0; p->rawS = 0; p->validTZ = 0; p->isError = 0; return SQLITE_OK; } #endif /* SQLITE_OMIT_LOCALTIME */ /* ** The following table defines various date transformations of the form ** ** 'NNN days' ** ** Where NNN is an arbitrary floating-point number and "days" can be one ** of several units of time. */ static const struct { u8 nName; /* Length of the name */ char zName[7]; /* Name of the transformation */ float rLimit; /* Maximum NNN value for this transform */ float rXform; /* Constant used for this transform */ } aXformType[] = { { 6, "second", 4.6427e+14, 1.0 }, { 6, "minute", 7.7379e+12, 60.0 }, { 4, "hour", 1.2897e+11, 3600.0 }, { 3, "day", 5373485.0, 86400.0 }, { 5, "month", 176546.0, 2592000.0 }, { 4, "year", 14713.0, 31536000.0 }, }; /* ** If the DateTime p is raw number, try to figure out if it is ** a julian day number of a unix timestamp. Set the p value ** appropriately. */ static void autoAdjustDate(DateTime *p){ if( !p->rawS || p->validJD ){ p->rawS = 0; }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */ ){ double r = p->s*1000.0 + 210866760000000.0; clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; } } /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours ** NNN minutes ** NNN.NNNN seconds ** NNN months ** NNN years ** start of month ** start of year ** start of week ** start of day ** weekday N ** unixepoch ** localtime ** utc ** ** Return 0 on success and 1 if there is any kind of error. If the error ** is in a system call (i.e. localtime()), then an error message is written ** to context pCtx. If the error is an unrecognized modifier, no error is ** written to pCtx. */ static int parseModifier( sqlite3_context *pCtx, /* Function context */ const char *z, /* The text of the modifier */ int n, /* Length of zMod in bytes */ DateTime *p, /* The date/time value to be modified */ int idx /* Parameter index of the modifier */ ){ int rc = 1; double r; switch(sqlite3UpperToLower[(u8)z[0]] ){ case 'a': { /* ** auto ** ** If rawS is available, then interpret as a julian day number, or ** a unix timestamp, depending on its magnitude. */ if( sqlite3_stricmp(z, "auto")==0 ){ if( idx>1 ) return 1; /* IMP: R-33611-57934 */ autoAdjustDate(p); rc = 0; } break; } case 'j': { /* ** julianday ** ** Always interpret the prior number as a julian-day value. If this ** is not the first modifier, or if the prior argument is not a numeric ** value in the allowed range of julian day numbers understood by ** SQLite (0..5373484.5) then the result will be NULL. */ if( sqlite3_stricmp(z, "julianday")==0 ){ if( idx>1 ) return 1; /* IMP: R-31176-64601 */ if( p->validJD && p->rawS ){ rc = 0; p->rawS = 0; } } break; } #ifndef SQLITE_OMIT_LOCALTIME case 'l': { /* localtime ** ** Assuming the current time value is UTC (a.k.a. GMT), shift it to ** show local time. */ if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ rc = toLocaltime(p, pCtx); } break; } #endif case 'u': { /* ** unixepoch ** ** Treat the current value of p->s as the number of ** seconds since 1970. Convert to a real julian day number. */ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ if( idx>1 ) return 1; /* IMP: R-49255-55373 */ r = p->s*1000.0 + 210866760000000.0; if( r>=0.0 && r<464269060800000.0 ){ clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; rc = 0; } } #ifndef SQLITE_OMIT_LOCALTIME else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ if( p->tzSet==0 ){ i64 iOrigJD; /* Original localtime */ i64 iGuess; /* Guess at the corresponding utc time */ int cnt = 0; /* Safety to prevent infinite loop */ i64 iErr; /* Guess is off by this much */ computeJD(p); iGuess = iOrigJD = p->iJD; iErr = 0; do{ DateTime new; memset(&new, 0, sizeof(new)); iGuess -= iErr; new.iJD = iGuess; new.validJD = 1; rc = toLocaltime(&new, pCtx); if( rc ) return rc; computeJD(&new); iErr = new.iJD - iOrigJD; }while( iErr && cnt++<3 ); memset(p, 0, sizeof(*p)); p->iJD = iGuess; p->validJD = 1; p->tzSet = 1; } rc = SQLITE_OK; } #endif break; } case 'w': { /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( sqlite3_strnicmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 && r>=0.0 && r<7.0 && (n=(int)r)==r ){ sqlite3_int64 Z; computeYMD_HMS(p); p->validTZ = 0; p->validJD = 0; computeJD(p); Z = ((p->iJD + 129600000)/86400000) % 7; if( Z>n ) Z -= 7; p->iJD += (n - Z)*86400000; clearYMD_HMS_TZ(p); rc = 0; } break; } case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. ** ** subsecond ** subsec ** ** Show subsecond precision in the output of datetime() and ** unixepoch() and strftime('%s'). */ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ){ if( sqlite3_stricmp(z, "subsec")==0 || sqlite3_stricmp(z, "subsecond")==0 ){ p->useSubsec = 1; rc = 0; } break; } if( !p->validJD && !p->validYMD && !p->validHMS ) break; z += 9; computeYMD(p); p->validHMS = 1; p->h = p->m = 0; p->s = 0.0; p->rawS = 0; p->validTZ = 0; p->validJD = 0; if( sqlite3_stricmp(z,"month")==0 ){ p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"year")==0 ){ p->M = 1; p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"day")==0 ){ rc = 0; } break; } case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { double rRounder; int i; int Y,M,D,h,m,x; const char *z2 = z; char z0 = z[0]; for(n=1; z[n]; n++){ if( z[n]==':' ) break; if( sqlite3Isspace(z[n]) ) break; if( z[n]=='-' ){ if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break; if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break; } } if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ assert( rc==1 ); break; } if( z[n]=='-' ){ /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the ** specified number of years, months, and days. MM is limited to ** the range 0-11 and DD is limited to 0-30. */ if( z0!='+' && z0!='-' ) break; /* Must start with +/- */ if( n==5 ){ if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break; }else{ assert( n==6 ); if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break; z++; } if( M>=12 ) break; /* M range 0..11 */ if( D>=31 ) break; /* D range 0..30 */ computeYMD_HMS(p); p->validJD = 0; if( z0=='-' ){ p->Y -= Y; p->M -= M; D = -D; }else{ p->Y += Y; p->M += M; } x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; computeJD(p); p->validHMS = 0; p->validYMD = 0; p->iJD += (i64)D*86400000; if( z[11]==0 ){ rc = 0; break; } if( sqlite3Isspace(z[11]) && getDigits(&z[12], "20c:20e", &h, &m)==2 ){ z2 = &z[12]; n = 2; }else{ break; } } if( z2[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the ** specified number of hours, minutes, seconds, and fractional seconds ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be ** omitted. */ DateTime tx; sqlite3_int64 day; if( !sqlite3Isdigit(*z2) ) z2++; memset(&tx, 0, sizeof(tx)); if( parseHhMmSs(z2, &tx) ) break; computeJD(&tx); tx.iJD -= 43200000; day = tx.iJD/86400000; tx.iJD -= day*86400000; if( z0=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } /* If control reaches this point, it means the transformation is ** one of the forms like "+NNN days". */ z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; computeJD(p); assert( rc==1 ); rRounder = r<0 ? -0.5 : +0.5; for(i=0; i-aXformType[i].rLimit && rM += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; p->validJD = 0; r -= (int)r; break; } case 5: { /* Special processing to add years */ int y = (int)r; assert( strcmp(aXformType[i].zName,"year")==0 ); computeYMD_HMS(p); p->Y += y; p->validJD = 0; r -= (int)r; break; } } computeJD(p); p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); rc = 0; break; } } clearYMD_HMS_TZ(p); break; } default: { break; } } return rc; } /* ** Process time function arguments. argv[0] is a date-time stamp. ** argv[1] and following are modifiers. Parse them all and write ** the resulting time into the DateTime structure p. Return 0 ** on success and 1 if there are any errors. ** ** If there are zero parameters (if even argv[0] is undefined) ** then assume a default value of "now" for argv[0]. */ static int isDate( sqlite3_context *context, int argc, sqlite3_value **argv, DateTime *p ){ int i, n; const unsigned char *z; int eType; memset(p, 0, sizeof(*p)); if( argc==0 ){ if( !sqlite3NotPureFunc(context) ) return 1; return setDateTimeToCurrent(context, p); } if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT || eType==SQLITE_INTEGER ){ setRawDateNumber(p, sqlite3_value_double(argv[0])); }else{ z = sqlite3_value_text(argv[0]); if( !z || parseDateOrTime(context, (char*)z, p) ){ return 1; } } for(i=1; iisError || !validJulianDay(p->iJD) ) return 1; return 0; } /* ** The following routines implement the various date and time functions ** of SQLite. */ /* ** julianday( TIMESTRING, MOD, MOD, ...) ** ** Return the julian day number of the date specified in the arguments */ static void juliandayFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ computeJD(&x); sqlite3_result_double(context, x.iJD/86400000.0); } } /* ** unixepoch( TIMESTRING, MOD, MOD, ...) ** ** Return the number of seconds (including fractional seconds) since ** the unix epoch of 1970-01-01 00:00:00 GMT. */ static void unixepochFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ computeJD(&x); if( x.useSubsec ){ sqlite3_result_double(context, (x.iJD - 21086676*(i64)10000000)/1000.0); }else{ sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); } } } /* ** datetime( TIMESTRING, MOD, MOD, ...) ** ** Return YYYY-MM-DD HH:MM:SS */ static void datetimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int Y, s, n; char zBuf[32]; computeYMD_HMS(&x); Y = x.Y; if( Y<0 ) Y = -Y; zBuf[1] = '0' + (Y/1000)%10; zBuf[2] = '0' + (Y/100)%10; zBuf[3] = '0' + (Y/10)%10; zBuf[4] = '0' + (Y)%10; zBuf[5] = '-'; zBuf[6] = '0' + (x.M/10)%10; zBuf[7] = '0' + (x.M)%10; zBuf[8] = '-'; zBuf[9] = '0' + (x.D/10)%10; zBuf[10] = '0' + (x.D)%10; zBuf[11] = ' '; zBuf[12] = '0' + (x.h/10)%10; zBuf[13] = '0' + (x.h)%10; zBuf[14] = ':'; zBuf[15] = '0' + (x.m/10)%10; zBuf[16] = '0' + (x.m)%10; zBuf[17] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[18] = '0' + (s/10000)%10; zBuf[19] = '0' + (s/1000)%10; zBuf[20] = '.'; zBuf[21] = '0' + (s/100)%10; zBuf[22] = '0' + (s/10)%10; zBuf[23] = '0' + (s)%10; zBuf[24] = 0; n = 24; }else{ s = (int)x.s; zBuf[18] = '0' + (s/10)%10; zBuf[19] = '0' + (s)%10; zBuf[20] = 0; n = 20; } if( x.Y<0 ){ zBuf[0] = '-'; sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, &zBuf[1], n-1, SQLITE_TRANSIENT); } } } /* ** time( TIMESTRING, MOD, MOD, ...) ** ** Return HH:MM:SS */ static void timeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int s, n; char zBuf[16]; computeHMS(&x); zBuf[0] = '0' + (x.h/10)%10; zBuf[1] = '0' + (x.h)%10; zBuf[2] = ':'; zBuf[3] = '0' + (x.m/10)%10; zBuf[4] = '0' + (x.m)%10; zBuf[5] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[6] = '0' + (s/10000)%10; zBuf[7] = '0' + (s/1000)%10; zBuf[8] = '.'; zBuf[9] = '0' + (s/100)%10; zBuf[10] = '0' + (s/10)%10; zBuf[11] = '0' + (s)%10; zBuf[12] = 0; n = 12; }else{ s = (int)x.s; zBuf[6] = '0' + (s/10)%10; zBuf[7] = '0' + (s)%10; zBuf[8] = 0; n = 8; } sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); } } /* ** date( TIMESTRING, MOD, MOD, ...) ** ** Return YYYY-MM-DD */ static void dateFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int Y; char zBuf[16]; computeYMD(&x); Y = x.Y; if( Y<0 ) Y = -Y; zBuf[1] = '0' + (Y/1000)%10; zBuf[2] = '0' + (Y/100)%10; zBuf[3] = '0' + (Y/10)%10; zBuf[4] = '0' + (Y)%10; zBuf[5] = '-'; zBuf[6] = '0' + (x.M/10)%10; zBuf[7] = '0' + (x.M)%10; zBuf[8] = '-'; zBuf[9] = '0' + (x.D/10)%10; zBuf[10] = '0' + (x.D)%10; zBuf[11] = 0; if( x.Y<0 ){ zBuf[0] = '-'; sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT); } } } /* ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) ** ** Return a string described by FORMAT. Conversions as follows: ** ** %d day of month ** %f ** fractional seconds SS.SSS ** %H hour 00-24 ** %j day of year 000-366 ** %J ** julian day number ** %m month 01-12 ** %M minute 00-59 ** %s seconds since 1970-01-01 ** %S seconds 00-59 ** %w day of week 0-6 Sunday==0 ** %W week of year 00-53 ** %Y year 0000-9999 ** %% % */ static void strftimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; size_t i,j; sqlite3 *db; const char *zFmt; sqlite3_str sRes; if( argc==0 ) return; zFmt = (const char*)sqlite3_value_text(argv[0]); if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; db = sqlite3_context_db_handle(context); sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); computeJD(&x); computeYMD_HMS(&x); for(i=j=0; zFmt[i]; i++){ if( zFmt[i]!='%' ) continue; if( j59.999 ) s = 59.999; sqlite3_str_appendf(&sRes, "%06.3f", s); break; } case 'H': { sqlite3_str_appendf(&sRes, "%02d", x.h); break; } case 'W': /* Fall thru */ case 'j': { int nDay; /* Number of days since 1st day of year */ DateTime y = x; y.validJD = 0; y.M = 1; y.D = 1; computeJD(&y); nDay = (int)((x.iJD-y.iJD+43200000)/86400000); if( zFmt[i]=='W' ){ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ wd = (int)(((x.iJD+43200000)/86400000)%7); sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); }else{ sqlite3_str_appendf(&sRes,"%03d",nDay+1); } break; } case 'J': { sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); break; } case 'm': { sqlite3_str_appendf(&sRes,"%02d",x.M); break; } case 'M': { sqlite3_str_appendf(&sRes,"%02d",x.m); break; } case 's': { if( x.useSubsec ){ sqlite3_str_appendf(&sRes,"%.3f", (x.iJD - 21086676*(i64)10000000)/1000.0); }else{ i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); sqlite3_str_appendf(&sRes,"%lld",iS); } break; } case 'S': { sqlite3_str_appendf(&sRes,"%02d",(int)x.s); break; } case 'w': { sqlite3_str_appendchar(&sRes, 1, (char)(((x.iJD+129600000)/86400000) % 7) + '0'); break; } case 'Y': { sqlite3_str_appendf(&sRes,"%04d",x.Y); break; } case '%': { sqlite3_str_appendchar(&sRes, 1, '%'); break; } default: { sqlite3_str_reset(&sRes); return; } } } if( j=d2.iJD ){ sign = '+'; Y = d1.Y - d2.Y; if( Y ){ d2.Y = d1.Y; d2.validJD = 0; computeJD(&d2); } M = d1.M - d2.M; if( M<0 ){ Y--; M += 12; } if( M!=0 ){ d2.M = d1.M; d2.validJD = 0; computeJD(&d2); } while( d1.iJDd2.iJD ){ M--; if( M<0 ){ M = 11; Y--; } d2.M++; if( d2.M>12 ){ d2.M = 1; d2.Y++; } d2.validJD = 0; computeJD(&d2); } d1.iJD = d2.iJD - d1.iJD; d1.iJD += (u64)1486995408 * (u64)100000; } d1.validYMD = 0; d1.validHMS = 0; d1.validTZ = 0; computeYMD_HMS(&d1); sqlite3StrAccumInit(&sRes, 0, 0, 0, 100); sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f", sign, Y, M, d1.D-1, d1.h, d1.m, d1.s); sqlite3ResultStrAccum(context, &sRes); } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); datetimeFunc(context, 0, 0); } #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ #ifdef SQLITE_OMIT_DATETIME_FUNCS /* ** If the library is compiled to omit the full-scale date and time ** handling (to get a smaller binary), the following minimal version ** of the functions current_time(), current_date() and current_timestamp() ** are included instead. This is to support column declarations that ** include "DEFAULT CURRENT_TIME" etc. ** ** This function uses the C-library functions time(), gmtime() ** and strftime(). The format string to pass to strftime() is supplied ** as the user-data for the function. */ static void currentTimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ time_t t; char *zFormat = (char *)sqlite3_user_data(context); sqlite3_int64 iT; struct tm *pTm; struct tm sNow; char zBuf[20]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); iT = sqlite3StmtCurrentTime(context); if( iT<=0 ) return; t = iT/1000 - 10000*(sqlite3_int64)21086676; #if HAVE_GMTIME_R pTm = gmtime_r(&t, &sNow); #else sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); pTm = gmtime(&t); if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); #endif if( pTm ){ strftime(zBuf, 20, zFormat, &sNow); sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } } #endif /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. */ SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){ static FuncDef aDateTimeFuncs[] = { #ifndef SQLITE_OMIT_DATETIME_FUNCS PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), PURE_DATE(date, -1, 0, 0, dateFunc ), PURE_DATE(time, -1, 0, 0, timeFunc ), PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), PURE_DATE(timediff, 2, 0, 0, timediffFunc ), DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), DFUNCTION(current_date, 0, 0, 0, cdateFunc ), #else STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), #endif }; sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); } /************** End of date.c ************************************************/ /************** Begin file os.c **********************************************/ /* ** 2005 November 29 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains OS interface code that is common to all ** architectures. */ /* #include "sqliteInt.h" */ /* ** If we compile with the SQLITE_TEST macro set, then the following block ** of code will give us the ability to simulate a disk I/O error. This ** is used for testing the I/O recovery logic. */ #if defined(SQLITE_TEST) SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ SQLITE_API int sqlite3_diskfull_pending = 0; SQLITE_API int sqlite3_diskfull = 0; #endif /* defined(SQLITE_TEST) */ /* ** When testing, also keep a count of the number of open files. */ #if defined(SQLITE_TEST) SQLITE_API int sqlite3_open_file_count = 0; #endif /* defined(SQLITE_TEST) */ /* ** The default SQLite sqlite3_vfs implementations do not allocate ** memory (actually, os_unix.c allocates a small amount of memory ** from within OsOpen()), but some third-party implementations may. ** So we test the effects of a malloc() failing and the sqlite3OsXXX() ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. ** ** The following functions are instrumented for malloc() failure ** testing: ** ** sqlite3OsRead() ** sqlite3OsWrite() ** sqlite3OsSync() ** sqlite3OsFileSize() ** sqlite3OsLock() ** sqlite3OsCheckReservedLock() ** sqlite3OsFileControl() ** sqlite3OsShmMap() ** sqlite3OsOpen() ** sqlite3OsDelete() ** sqlite3OsAccess() ** sqlite3OsFullPathname() ** */ #if defined(SQLITE_TEST) SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1; #define DO_OS_MALLOC_TEST(x) \ if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \ void *pTstAlloc = sqlite3Malloc(10); \ if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT; \ sqlite3_free(pTstAlloc); \ } #else #define DO_OS_MALLOC_TEST(x) #endif /* ** The following routines are convenience wrappers around methods ** of the sqlite3_file object. This is mostly just syntactic sugar. All ** of this would be completely automatic if SQLite were coded using ** C++ instead of plain old C. */ SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file *pId){ if( pId->pMethods ){ pId->pMethods->xClose(pId); pId->pMethods = 0; } } SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ DO_OS_MALLOC_TEST(id); return id->pMethods->xRead(id, pBuf, amt, offset); } SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ DO_OS_MALLOC_TEST(id); return id->pMethods->xWrite(id, pBuf, amt, offset); } SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){ return id->pMethods->xTruncate(id, size); } SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){ DO_OS_MALLOC_TEST(id); return flags ? id->pMethods->xSync(id, flags) : SQLITE_OK; } SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ DO_OS_MALLOC_TEST(id); return id->pMethods->xFileSize(id, pSize); } SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){ DO_OS_MALLOC_TEST(id); assert( lockType>=SQLITE_LOCK_SHARED && lockType<=SQLITE_LOCK_EXCLUSIVE ); return id->pMethods->xLock(id, lockType); } SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){ assert( lockType==SQLITE_LOCK_NONE || lockType==SQLITE_LOCK_SHARED ); return id->pMethods->xUnlock(id, lockType); } SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ DO_OS_MALLOC_TEST(id); return id->pMethods->xCheckReservedLock(id, pResOut); } /* ** Use sqlite3OsFileControl() when we are doing something that might fail ** and we need to know about the failures. Use sqlite3OsFileControlHint() ** when simply tossing information over the wall to the VFS and we do not ** really care if the VFS receives and understands the information since it ** is only a hint and can be safely ignored. The sqlite3OsFileControlHint() ** routine has no return value since the return value would be meaningless. */ SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ if( id->pMethods==0 ) return SQLITE_NOTFOUND; #ifdef SQLITE_TEST if( op!=SQLITE_FCNTL_COMMIT_PHASETWO && op!=SQLITE_FCNTL_LOCK_TIMEOUT && op!=SQLITE_FCNTL_CKPT_DONE && op!=SQLITE_FCNTL_CKPT_START ){ /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite ** is using a regular VFS, it is called after the corresponding ** transaction has been committed. Injecting a fault at this point ** confuses the test scripts - the COMMIT command returns SQLITE_NOMEM ** but the transaction is committed anyway. ** ** The core must call OsFileControl() though, not OsFileControlHint(), ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably ** means the commit really has failed and an error should be returned ** to the user. ** ** The CKPT_DONE and CKPT_START file-controls are write-only signals ** to the cksumvfs. Their return code is meaningless and is ignored ** by the SQLite core, so there is no point in simulating OOMs for them. */ DO_OS_MALLOC_TEST(id); } #endif return id->pMethods->xFileControl(id, op, pArg); } SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){ if( id->pMethods ) (void)id->pMethods->xFileControl(id, op, pArg); } SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){ int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); } SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ if( NEVER(id->pMethods==0) ) return 0; return id->pMethods->xDeviceCharacteristics(id); } #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ return id->pMethods->xShmLock(id, offset, n, flags); } SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){ id->pMethods->xShmBarrier(id); } SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ return id->pMethods->xShmUnmap(id, deleteFlag); } SQLITE_PRIVATE int sqlite3OsShmMap( sqlite3_file *id, /* Database file handle */ int iPage, int pgsz, int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Pointer to mapping */ ){ DO_OS_MALLOC_TEST(id); return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); } #endif /* SQLITE_OMIT_WAL */ #if SQLITE_MAX_MMAP_SIZE>0 /* The real implementation of xFetch and xUnfetch */ SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ DO_OS_MALLOC_TEST(id); return id->pMethods->xFetch(id, iOff, iAmt, pp); } SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ return id->pMethods->xUnfetch(id, iOff, p); } #else /* No-op stubs to use when memory-mapped I/O is disabled */ SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ *pp = 0; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ return SQLITE_OK; } #endif /* ** The next group of routines are convenience wrappers around the ** VFS methods. */ SQLITE_PRIVATE int sqlite3OsOpen( sqlite3_vfs *pVfs, const char *zPath, sqlite3_file *pFile, int flags, int *pFlagsOut ){ int rc; DO_OS_MALLOC_TEST(0); /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ assert( zPath || (flags & SQLITE_OPEN_EXCLUSIVE) ); rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut); assert( rc==SQLITE_OK || pFile->pMethods==0 ); return rc; } SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ DO_OS_MALLOC_TEST(0); assert( dirSync==0 || dirSync==1 ); return pVfs->xDelete!=0 ? pVfs->xDelete(pVfs, zPath, dirSync) : SQLITE_OK; } SQLITE_PRIVATE int sqlite3OsAccess( sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut ){ DO_OS_MALLOC_TEST(0); return pVfs->xAccess(pVfs, zPath, flags, pResOut); } SQLITE_PRIVATE int sqlite3OsFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nPathOut, char *zPathOut ){ DO_OS_MALLOC_TEST(0); zPathOut[0] = 0; return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); } #ifndef SQLITE_OMIT_LOAD_EXTENSION SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ assert( zPath!=0 ); assert( strlen(zPath)<=SQLITE_MAX_PATHLEN ); /* tag-20210611-1 */ return pVfs->xDlOpen(pVfs, zPath); } SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ pVfs->xDlError(pVfs, nByte, zBufOut); } SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ return pVfs->xDlSym(pVfs, pHdle, zSym); } SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ pVfs->xDlClose(pVfs, pHandle); } #endif /* SQLITE_OMIT_LOAD_EXTENSION */ SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ if( sqlite3Config.iPrngSeed ){ memset(zBufOut, 0, nByte); if( ALWAYS(nByte>(signed)sizeof(unsigned)) ) nByte = sizeof(unsigned int); memcpy(zBufOut, &sqlite3Config.iPrngSeed, nByte); return SQLITE_OK; }else{ return pVfs->xRandomness(pVfs, nByte, zBufOut); } } SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ return pVfs->xSleep(pVfs, nMicro); } SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs *pVfs){ return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0; } SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ int rc; /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() ** method to get the current date and time if that method is available ** (if iVersion is 2 or greater and the function pointer is not NULL) and ** will fall back to xCurrentTime() if xCurrentTimeInt64() is ** unavailable. */ if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); }else{ double r; rc = pVfs->xCurrentTime(pVfs, &r); *pTimeOut = (sqlite3_int64)(r*86400000.0); } return rc; } SQLITE_PRIVATE int sqlite3OsOpenMalloc( sqlite3_vfs *pVfs, const char *zFile, sqlite3_file **ppFile, int flags, int *pOutFlags ){ int rc; sqlite3_file *pFile; pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); if( pFile ){ rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); if( rc!=SQLITE_OK ){ sqlite3_free(pFile); *ppFile = 0; }else{ *ppFile = pFile; } }else{ *ppFile = 0; rc = SQLITE_NOMEM_BKPT; } assert( *ppFile!=0 || rc!=SQLITE_OK ); return rc; } SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *pFile){ assert( pFile ); sqlite3OsClose(pFile); sqlite3_free(pFile); } /* ** This function is a wrapper around the OS specific implementation of ** sqlite3_os_init(). The purpose of the wrapper is to provide the ** ability to simulate a malloc failure, so that the handling of an ** error in sqlite3_os_init() by the upper layers can be tested. */ SQLITE_PRIVATE int sqlite3OsInit(void){ void *p = sqlite3_malloc(10); if( p==0 ) return SQLITE_NOMEM_BKPT; sqlite3_free(p); return sqlite3_os_init(); } /* ** The list of all registered VFS implementations. */ static sqlite3_vfs * SQLITE_WSD vfsList = 0; #define vfsList GLOBAL(sqlite3_vfs *, vfsList) /* ** Locate a VFS by name. If no name is given, simply return the ** first VFS on the list. */ SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ sqlite3_vfs *pVfs = 0; #if SQLITE_THREADSAFE sqlite3_mutex *mutex; #endif #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return 0; #endif #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif sqlite3_mutex_enter(mutex); for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ if( zVfs==0 ) break; if( strcmp(zVfs, pVfs->zName)==0 ) break; } sqlite3_mutex_leave(mutex); return pVfs; } /* ** Unlink a VFS from the linked list */ static void vfsUnlink(sqlite3_vfs *pVfs){ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) ); if( pVfs==0 ){ /* No-op */ }else if( vfsList==pVfs ){ vfsList = pVfs->pNext; }else if( vfsList ){ sqlite3_vfs *p = vfsList; while( p->pNext && p->pNext!=pVfs ){ p = p->pNext; } if( p->pNext==pVfs ){ p->pNext = pVfs->pNext; } } } /* ** Register a VFS with the system. It is harmless to register the same ** VFS multiple times. The new VFS becomes the default if makeDflt is ** true. */ SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ MUTEX_LOGIC(sqlite3_mutex *mutex;) #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif #ifdef SQLITE_ENABLE_API_ARMOR if( pVfs==0 ) return SQLITE_MISUSE_BKPT; #endif MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(mutex); vfsUnlink(pVfs); if( makeDflt || vfsList==0 ){ pVfs->pNext = vfsList; vfsList = pVfs; }else{ pVfs->pNext = vfsList->pNext; vfsList->pNext = pVfs; } assert(vfsList); sqlite3_mutex_leave(mutex); return SQLITE_OK; } /* ** Unregister a VFS so that it is no longer accessible. */ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ MUTEX_LOGIC(sqlite3_mutex *mutex;) #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(mutex); vfsUnlink(pVfs); sqlite3_mutex_leave(mutex); return SQLITE_OK; } /************** End of os.c **************************************************/ /************** Begin file fault.c *******************************************/ /* ** 2008 Jan 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code to support the concept of "benign" ** malloc failures (when the xMalloc() or xRealloc() method of the ** sqlite3_mem_methods structure fails to allocate a block of memory ** and returns 0). ** ** Most malloc failures are non-benign. After they occur, SQLite ** abandons the current operation and returns an error code (usually ** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily ** fatal. For example, if a malloc fails while resizing a hash table, this ** is completely recoverable simply by not carrying out the resize. The ** hash table will continue to function normally. So a malloc failure ** during a hash table resize is a benign fault. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_UNTESTABLE /* ** Global variables. */ typedef struct BenignMallocHooks BenignMallocHooks; static SQLITE_WSD struct BenignMallocHooks { void (*xBenignBegin)(void); void (*xBenignEnd)(void); } sqlite3Hooks = { 0, 0 }; /* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks ** structure. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdHooks can refer directly ** to the "sqlite3Hooks" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdHooksInit \ BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks) # define wsdHooks x[0] #else # define wsdHooksInit # define wsdHooks sqlite3Hooks #endif /* ** Register hooks to call when sqlite3BeginBenignMalloc() and ** sqlite3EndBenignMalloc() are called, respectively. */ SQLITE_PRIVATE void sqlite3BenignMallocHooks( void (*xBenignBegin)(void), void (*xBenignEnd)(void) ){ wsdHooksInit; wsdHooks.xBenignBegin = xBenignBegin; wsdHooks.xBenignEnd = xBenignEnd; } /* ** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that ** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc() ** indicates that subsequent malloc failures are non-benign. */ SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){ wsdHooksInit; if( wsdHooks.xBenignBegin ){ wsdHooks.xBenignBegin(); } } SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){ wsdHooksInit; if( wsdHooks.xBenignEnd ){ wsdHooks.xBenignEnd(); } } #endif /* #ifndef SQLITE_UNTESTABLE */ /************** End of fault.c ***********************************************/ /************** Begin file mem0.c ********************************************/ /* ** 2008 October 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains a no-op memory allocation drivers for use when ** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented ** here always fail. SQLite will not operate with these drivers. These ** are merely placeholders. Real drivers must be substituted using ** sqlite3_config() before SQLite will operate. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is the default. It is ** used when no other memory allocator is specified using compile-time ** macros. */ #ifdef SQLITE_ZERO_MALLOC /* ** No-op versions of all memory allocation routines */ static void *sqlite3MemMalloc(int nByte){ return 0; } static void sqlite3MemFree(void *pPrior){ return; } static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; } static int sqlite3MemSize(void *pPrior){ return 0; } static int sqlite3MemRoundup(int n){ return n; } static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; } static void sqlite3MemShutdown(void *NotUsed){ return; } /* ** This routine is the only routine in this file with external linkage. ** ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. */ SQLITE_PRIVATE void sqlite3MemSetDefault(void){ static const sqlite3_mem_methods defaultMethods = { sqlite3MemMalloc, sqlite3MemFree, sqlite3MemRealloc, sqlite3MemSize, sqlite3MemRoundup, sqlite3MemInit, sqlite3MemShutdown, 0 }; sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); } #endif /* SQLITE_ZERO_MALLOC */ /************** End of mem0.c ************************************************/ /************** Begin file mem1.c ********************************************/ /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains low-level memory allocation drivers for when ** SQLite will use the standard C-library malloc/realloc/free interface ** to obtain the memory it needs. ** ** This file contains implementations of the low-level memory allocation ** routines specified in the sqlite3_mem_methods object. The content of ** this file is only used if SQLITE_SYSTEM_MALLOC is defined. The ** SQLITE_SYSTEM_MALLOC macro is defined automatically if neither the ** SQLITE_MEMDEBUG nor the SQLITE_WIN32_MALLOC macros are defined. The ** default configuration is to use memory allocation routines in this ** file. ** ** C-preprocessor macro summary: ** ** HAVE_MALLOC_USABLE_SIZE The configure script sets this symbol if ** the malloc_usable_size() interface exists ** on the target platform. Or, this symbol ** can be set manually, if desired. ** If an equivalent interface exists by ** a different name, using a separate -D ** option to rename it. ** ** SQLITE_WITHOUT_ZONEMALLOC Some older macs lack support for the zone ** memory allocator. Set this symbol to enable ** building on older macs. ** ** SQLITE_WITHOUT_MSIZE Set this symbol to disable the use of ** _msize() on windows systems. This might ** be necessary when compiling for Delphi, ** for example. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is the default. It is ** used when no other memory allocator is specified using compile-time ** macros. */ #ifdef SQLITE_SYSTEM_MALLOC #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) /* ** Use the zone allocator available on apple products unless the ** SQLITE_WITHOUT_ZONEMALLOC symbol is defined. */ #include #include #ifdef SQLITE_MIGHT_BE_SINGLE_CORE #include #endif /* SQLITE_MIGHT_BE_SINGLE_CORE */ static malloc_zone_t* _sqliteZone_; #define SQLITE_MALLOC(x) malloc_zone_malloc(_sqliteZone_, (x)) #define SQLITE_FREE(x) malloc_zone_free(_sqliteZone_, (x)); #define SQLITE_REALLOC(x,y) malloc_zone_realloc(_sqliteZone_, (x), (y)) #define SQLITE_MALLOCSIZE(x) \ (_sqliteZone_ ? _sqliteZone_->size(_sqliteZone_,x) : malloc_size(x)) #else /* if not __APPLE__ */ /* ** Use standard C library malloc and free on non-Apple systems. ** Also used by Apple systems if SQLITE_WITHOUT_ZONEMALLOC is defined. */ #define SQLITE_MALLOC(x) malloc(x) #define SQLITE_FREE(x) free(x) #define SQLITE_REALLOC(x,y) realloc((x),(y)) /* ** The malloc.h header file is needed for malloc_usable_size() function ** on some systems (e.g. Linux). */ #if HAVE_MALLOC_H && HAVE_MALLOC_USABLE_SIZE # define SQLITE_USE_MALLOC_H 1 # define SQLITE_USE_MALLOC_USABLE_SIZE 1 /* ** The MSVCRT has malloc_usable_size(), but it is called _msize(). The ** use of _msize() is automatic, but can be disabled by compiling with ** -DSQLITE_WITHOUT_MSIZE. Using the _msize() function also requires ** the malloc.h header file. */ #elif defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE) # define SQLITE_USE_MALLOC_H # define SQLITE_USE_MSIZE #endif /* ** Include the malloc.h header file, if necessary. Also set define macro ** SQLITE_MALLOCSIZE to the appropriate function name, which is _msize() ** for MSVC and malloc_usable_size() for most other systems (e.g. Linux). ** The memory size function can always be overridden manually by defining ** the macro SQLITE_MALLOCSIZE to the desired function name. */ #if defined(SQLITE_USE_MALLOC_H) # include # if defined(SQLITE_USE_MALLOC_USABLE_SIZE) # if !defined(SQLITE_MALLOCSIZE) # define SQLITE_MALLOCSIZE(x) malloc_usable_size(x) # endif # elif defined(SQLITE_USE_MSIZE) # if !defined(SQLITE_MALLOCSIZE) # define SQLITE_MALLOCSIZE _msize # endif # endif #endif /* defined(SQLITE_USE_MALLOC_H) */ #endif /* __APPLE__ or not __APPLE__ */ /* ** Like malloc(), but remember the size of the allocation ** so that we can find it later using sqlite3MemSize(). ** ** For this low-level routine, we are guaranteed that nByte>0 because ** cases of nByte<=0 will be intercepted and dealt with by higher level ** routines. */ static void *sqlite3MemMalloc(int nByte){ #ifdef SQLITE_MALLOCSIZE void *p; testcase( ROUND8(nByte)==nByte ); p = SQLITE_MALLOC( nByte ); if( p==0 ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); } return p; #else sqlite3_int64 *p; assert( nByte>0 ); testcase( ROUND8(nByte)!=nByte ); p = SQLITE_MALLOC( nByte+8 ); if( p ){ p[0] = nByte; p++; }else{ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); } return (void *)p; #endif } /* ** Like free() but works for allocations obtained from sqlite3MemMalloc() ** or sqlite3MemRealloc(). ** ** For this low-level routine, we already know that pPrior!=0 since ** cases where pPrior==0 will have been intercepted and dealt with ** by higher-level routines. */ static void sqlite3MemFree(void *pPrior){ #ifdef SQLITE_MALLOCSIZE SQLITE_FREE(pPrior); #else sqlite3_int64 *p = (sqlite3_int64*)pPrior; assert( pPrior!=0 ); p--; SQLITE_FREE(p); #endif } /* ** Report the allocated size of a prior return from xMalloc() ** or xRealloc(). */ static int sqlite3MemSize(void *pPrior){ #ifdef SQLITE_MALLOCSIZE assert( pPrior!=0 ); return (int)SQLITE_MALLOCSIZE(pPrior); #else sqlite3_int64 *p; assert( pPrior!=0 ); p = (sqlite3_int64*)pPrior; p--; return (int)p[0]; #endif } /* ** Like realloc(). Resize an allocation previously obtained from ** sqlite3MemMalloc(). ** ** For this low-level interface, we know that pPrior!=0. Cases where ** pPrior==0 while have been intercepted by higher-level routine and ** redirected to xMalloc. Similarly, we know that nByte>0 because ** cases where nByte<=0 will have been intercepted by higher-level ** routines and redirected to xFree. */ static void *sqlite3MemRealloc(void *pPrior, int nByte){ #ifdef SQLITE_MALLOCSIZE void *p = SQLITE_REALLOC(pPrior, nByte); if( p==0 ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed memory resize %u to %u bytes", SQLITE_MALLOCSIZE(pPrior), nByte); } return p; #else sqlite3_int64 *p = (sqlite3_int64*)pPrior; assert( pPrior!=0 && nByte>0 ); assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */ p--; p = SQLITE_REALLOC(p, nByte+8 ); if( p ){ p[0] = nByte; p++; }else{ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed memory resize %u to %u bytes", sqlite3MemSize(pPrior), nByte); } return (void*)p; #endif } /* ** Round up a request size to the next valid allocation size. */ static int sqlite3MemRoundup(int n){ return ROUND8(n); } /* ** Initialize this module. */ static int sqlite3MemInit(void *NotUsed){ #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) int cpuCount; size_t len; if( _sqliteZone_ ){ return SQLITE_OK; } len = sizeof(cpuCount); /* One usually wants to use hw.activecpu for MT decisions, but not here */ sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0); if( cpuCount>1 ){ /* defer MT decisions to system malloc */ _sqliteZone_ = malloc_default_zone(); }else{ /* only 1 core, use our own zone to contention over global locks, ** e.g. we have our own dedicated locks */ _sqliteZone_ = malloc_create_zone(4096, 0); malloc_set_zone_name(_sqliteZone_, "Sqlite_Heap"); } #endif /* defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) */ UNUSED_PARAMETER(NotUsed); return SQLITE_OK; } /* ** Deinitialize this module. */ static void sqlite3MemShutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); return; } /* ** This routine is the only routine in this file with external linkage. ** ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. */ SQLITE_PRIVATE void sqlite3MemSetDefault(void){ static const sqlite3_mem_methods defaultMethods = { sqlite3MemMalloc, sqlite3MemFree, sqlite3MemRealloc, sqlite3MemSize, sqlite3MemRoundup, sqlite3MemInit, sqlite3MemShutdown, 0 }; sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); } #endif /* SQLITE_SYSTEM_MALLOC */ /************** End of mem1.c ************************************************/ /************** Begin file mem2.c ********************************************/ /* ** 2007 August 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains low-level memory allocation drivers for when ** SQLite will use the standard C-library malloc/realloc/free interface ** to obtain the memory it needs while adding lots of additional debugging ** information to each allocation in order to help detect and fix memory ** leaks and memory usage errors. ** ** This file contains implementations of the low-level memory allocation ** routines specified in the sqlite3_mem_methods object. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is used only if the ** SQLITE_MEMDEBUG macro is defined */ #ifdef SQLITE_MEMDEBUG /* ** The backtrace functionality is only available with GLIBC */ #ifdef __GLIBC__ extern int backtrace(void**,int); extern void backtrace_symbols_fd(void*const*,int,int); #else # define backtrace(A,B) 1 # define backtrace_symbols_fd(A,B,C) #endif /* #include */ /* ** Each memory allocation looks like this: ** ** ------------------------------------------------------------------------ ** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard | ** ------------------------------------------------------------------------ ** ** The application code sees only a pointer to the allocation. We have ** to back up from the allocation pointer to find the MemBlockHdr. The ** MemBlockHdr tells us the size of the allocation and the number of ** backtrace pointers. There is also a guard word at the end of the ** MemBlockHdr. */ struct MemBlockHdr { i64 iSize; /* Size of this allocation */ struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */ char nBacktrace; /* Number of backtraces on this alloc */ char nBacktraceSlots; /* Available backtrace slots */ u8 nTitle; /* Bytes of title; includes '\0' */ u8 eType; /* Allocation type code */ int iForeGuard; /* Guard word for sanity */ }; /* ** Guard words */ #define FOREGUARD 0x80F5E153 #define REARGUARD 0xE4676B53 /* ** Number of malloc size increments to track. */ #define NCSIZE 1000 /* ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Head and tail of a linked list of all outstanding allocations */ struct MemBlockHdr *pFirst; struct MemBlockHdr *pLast; /* ** The number of levels of backtrace to save in new allocations. */ int nBacktrace; void (*xBacktrace)(int, int, void **); /* ** Title text to insert in front of each block */ int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */ char zTitle[100]; /* The title text */ /* ** sqlite3MallocDisallow() increments the following counter. ** sqlite3MallocAllow() decrements it. */ int disallow; /* Do not allow memory allocation */ /* ** Gather statistics on the sizes of memory allocations. ** nAlloc[i] is the number of allocation attempts of i*8 ** bytes. i==NCSIZE is the number of allocation attempts for ** sizes more than NCSIZE*8 bytes. */ int nAlloc[NCSIZE]; /* Total number of allocations */ int nCurrent[NCSIZE]; /* Current number of allocations */ int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */ } mem; /* ** Adjust memory usage statistics */ static void adjustStats(int iSize, int increment){ int i = ROUND8(iSize)/8; if( i>NCSIZE-1 ){ i = NCSIZE - 1; } if( increment>0 ){ mem.nAlloc[i]++; mem.nCurrent[i]++; if( mem.nCurrent[i]>mem.mxCurrent[i] ){ mem.mxCurrent[i] = mem.nCurrent[i]; } }else{ mem.nCurrent[i]--; assert( mem.nCurrent[i]>=0 ); } } /* ** Given an allocation, find the MemBlockHdr for that allocation. ** ** This routine checks the guards at either end of the allocation and ** if they are incorrect it asserts. */ static struct MemBlockHdr *sqlite3MemsysGetHeader(const void *pAllocation){ struct MemBlockHdr *p; int *pInt; u8 *pU8; int nReserve; p = (struct MemBlockHdr*)pAllocation; p--; assert( p->iForeGuard==(int)FOREGUARD ); nReserve = ROUND8(p->iSize); pInt = (int*)pAllocation; pU8 = (u8*)pAllocation; assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD ); /* This checks any of the "extra" bytes allocated due ** to rounding up to an 8 byte boundary to ensure ** they haven't been overwritten. */ while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 ); return p; } /* ** Return the number of bytes currently allocated at address p. */ static int sqlite3MemSize(void *p){ struct MemBlockHdr *pHdr; if( !p ){ return 0; } pHdr = sqlite3MemsysGetHeader(p); return (int)pHdr->iSize; } /* ** Initialize the memory allocation subsystem. */ static int sqlite3MemInit(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( (sizeof(struct MemBlockHdr)&7) == 0 ); if( !sqlite3GlobalConfig.bMemstat ){ /* If memory status is enabled, then the malloc.c wrapper will already ** hold the STATIC_MEM mutex when the routines here are invoked. */ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } return SQLITE_OK; } /* ** Deinitialize the memory allocation subsystem. */ static void sqlite3MemShutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); mem.mutex = 0; } /* ** Round up a request size to the next valid allocation size. */ static int sqlite3MemRoundup(int n){ return ROUND8(n); } /* ** Fill a buffer with pseudo-random bytes. This is used to preset ** the content of a new memory allocation to unpredictable values and ** to clear the content of a freed allocation to unpredictable values. */ static void randomFill(char *pBuf, int nByte){ unsigned int x, y, r; x = SQLITE_PTR_TO_INT(pBuf); y = nByte | 1; while( nByte >= 4 ){ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001); y = y*1103515245 + 12345; r = x ^ y; *(int*)pBuf = r; pBuf += 4; nByte -= 4; } while( nByte-- > 0 ){ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001); y = y*1103515245 + 12345; r = x ^ y; *(pBuf++) = r & 0xff; } } /* ** Allocate nByte bytes of memory. */ static void *sqlite3MemMalloc(int nByte){ struct MemBlockHdr *pHdr; void **pBt; char *z; int *pInt; void *p = 0; int totalSize; int nReserve; sqlite3_mutex_enter(mem.mutex); assert( mem.disallow==0 ); nReserve = ROUND8(nByte); totalSize = nReserve + sizeof(*pHdr) + sizeof(int) + mem.nBacktrace*sizeof(void*) + mem.nTitle; p = malloc(totalSize); if( p ){ z = p; pBt = (void**)&z[mem.nTitle]; pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace]; pHdr->pNext = 0; pHdr->pPrev = mem.pLast; if( mem.pLast ){ mem.pLast->pNext = pHdr; }else{ mem.pFirst = pHdr; } mem.pLast = pHdr; pHdr->iForeGuard = FOREGUARD; pHdr->eType = MEMTYPE_HEAP; pHdr->nBacktraceSlots = mem.nBacktrace; pHdr->nTitle = mem.nTitle; if( mem.nBacktrace ){ void *aAddr[40]; pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1; memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*)); assert(pBt[0]); if( mem.xBacktrace ){ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]); } }else{ pHdr->nBacktrace = 0; } if( mem.nTitle ){ memcpy(z, mem.zTitle, mem.nTitle); } pHdr->iSize = nByte; adjustStats(nByte, +1); pInt = (int*)&pHdr[1]; pInt[nReserve/sizeof(int)] = REARGUARD; randomFill((char*)pInt, nByte); memset(((char*)pInt)+nByte, 0x65, nReserve-nByte); p = (void*)pInt; } sqlite3_mutex_leave(mem.mutex); return p; } /* ** Free memory. */ static void sqlite3MemFree(void *pPrior){ struct MemBlockHdr *pHdr; void **pBt; char *z; assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0 || mem.mutex!=0 ); pHdr = sqlite3MemsysGetHeader(pPrior); pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; sqlite3_mutex_enter(mem.mutex); if( pHdr->pPrev ){ assert( pHdr->pPrev->pNext==pHdr ); pHdr->pPrev->pNext = pHdr->pNext; }else{ assert( mem.pFirst==pHdr ); mem.pFirst = pHdr->pNext; } if( pHdr->pNext ){ assert( pHdr->pNext->pPrev==pHdr ); pHdr->pNext->pPrev = pHdr->pPrev; }else{ assert( mem.pLast==pHdr ); mem.pLast = pHdr->pPrev; } z = (char*)pBt; z -= pHdr->nTitle; adjustStats((int)pHdr->iSize, -1); randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) + (int)pHdr->iSize + sizeof(int) + pHdr->nTitle); free(z); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation. ** ** For this debugging implementation, we *always* make a copy of the ** allocation into a new place in memory. In this way, if the ** higher level code is using pointer to the old allocation, it is ** much more likely to break and we are much more liking to find ** the error. */ static void *sqlite3MemRealloc(void *pPrior, int nByte){ struct MemBlockHdr *pOldHdr; void *pNew; assert( mem.disallow==0 ); assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */ pOldHdr = sqlite3MemsysGetHeader(pPrior); pNew = sqlite3MemMalloc(nByte); if( pNew ){ memcpy(pNew, pPrior, (int)(nByteiSize ? nByte : pOldHdr->iSize)); if( nByte>pOldHdr->iSize ){ randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - (int)pOldHdr->iSize); } sqlite3MemFree(pPrior); } return pNew; } /* ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. */ SQLITE_PRIVATE void sqlite3MemSetDefault(void){ static const sqlite3_mem_methods defaultMethods = { sqlite3MemMalloc, sqlite3MemFree, sqlite3MemRealloc, sqlite3MemSize, sqlite3MemRoundup, sqlite3MemInit, sqlite3MemShutdown, 0 }; sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); } /* ** Set the "type" of an allocation. */ SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); pHdr->eType = eType; } } /* ** Return TRUE if the mask of type in eType matches the type of the ** allocation p. Also return true if p==NULL. ** ** This routine is designed for use within an assert() statement, to ** verify the type of an allocation. For example: ** ** assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); */ SQLITE_PRIVATE int sqlite3MemdebugHasType(const void *p, u8 eType){ int rc = 1; if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)==0 ){ rc = 0; } } return rc; } /* ** Return TRUE if the mask of type in eType matches no bits of the type of the ** allocation p. Also return true if p==NULL. ** ** This routine is designed for use within an assert() statement, to ** verify the type of an allocation. For example: ** ** assert( sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); */ SQLITE_PRIVATE int sqlite3MemdebugNoType(const void *p, u8 eType){ int rc = 1; if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)!=0 ){ rc = 0; } } return rc; } /* ** Set the number of backtrace levels kept for each allocation. ** A value of zero turns off backtracing. The number is always rounded ** up to a multiple of 2. */ SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){ if( depth<0 ){ depth = 0; } if( depth>20 ){ depth = 20; } depth = (depth+1)&0xfe; mem.nBacktrace = depth; } SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){ mem.xBacktrace = xBacktrace; } /* ** Set the title string for subsequent allocations. */ SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){ unsigned int n = sqlite3Strlen30(zTitle) + 1; sqlite3_mutex_enter(mem.mutex); if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1; memcpy(mem.zTitle, zTitle, n); mem.zTitle[n] = 0; mem.nTitle = ROUND8(n); sqlite3_mutex_leave(mem.mutex); } SQLITE_PRIVATE void sqlite3MemdebugSync(){ struct MemBlockHdr *pHdr; for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ void **pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; mem.xBacktrace((int)pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]); } } /* ** Open the file indicated and write a log of all unfreed memory ** allocations into that log. */ SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){ FILE *out; struct MemBlockHdr *pHdr; void **pBt; int i; out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ char *z = (char*)pHdr; z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle; fprintf(out, "**** %lld bytes at %p from %s ****\n", pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???"); if( pHdr->nBacktrace ){ fflush(out); pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out)); fprintf(out, "\n"); } } fprintf(out, "COUNTS:\n"); for(i=0; i=1 ); size = mem3.aPool[i-1].u.hdr.size4x/4; assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); assert( size>=2 ); if( size <= MX_SMALL ){ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); }else{ hash = size % N_HASH; memsys3UnlinkFromList(i, &mem3.aiHash[hash]); } } /* ** Link the chunk at mem3.aPool[i] so that is on the list rooted ** at *pRoot. */ static void memsys3LinkIntoList(u32 i, u32 *pRoot){ assert( sqlite3_mutex_held(mem3.mutex) ); mem3.aPool[i].u.list.next = *pRoot; mem3.aPool[i].u.list.prev = 0; if( *pRoot ){ mem3.aPool[*pRoot].u.list.prev = i; } *pRoot = i; } /* ** Link the chunk at index i into either the appropriate ** small chunk list, or into the large chunk hash table. */ static void memsys3Link(u32 i){ u32 size, hash; assert( sqlite3_mutex_held(mem3.mutex) ); assert( i>=1 ); assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); size = mem3.aPool[i-1].u.hdr.size4x/4; assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); assert( size>=2 ); if( size <= MX_SMALL ){ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); }else{ hash = size % N_HASH; memsys3LinkIntoList(i, &mem3.aiHash[hash]); } } /* ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex ** will already be held (obtained by code in malloc.c) if ** sqlite3GlobalConfig.bMemStat is true. */ static void memsys3Enter(void){ if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } sqlite3_mutex_enter(mem3.mutex); } static void memsys3Leave(void){ sqlite3_mutex_leave(mem3.mutex); } /* ** Called when we are unable to satisfy an allocation of nBytes. */ static void memsys3OutOfMemory(int nByte){ if( !mem3.alarmBusy ){ mem3.alarmBusy = 1; assert( sqlite3_mutex_held(mem3.mutex) ); sqlite3_mutex_leave(mem3.mutex); sqlite3_release_memory(nByte); sqlite3_mutex_enter(mem3.mutex); mem3.alarmBusy = 0; } } /* ** Chunk i is a free chunk that has been unlinked. Adjust its ** size parameters for check-out and return a pointer to the ** user portion of the chunk. */ static void *memsys3Checkout(u32 i, u32 nBlock){ u32 x; assert( sqlite3_mutex_held(mem3.mutex) ); assert( i>=1 ); assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); x = mem3.aPool[i-1].u.hdr.size4x; mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; return &mem3.aPool[i]; } /* ** Carve a piece off of the end of the mem3.iKeyBlk free chunk. ** Return a pointer to the new allocation. Or, if the key chunk ** is not large enough, return 0. */ static void *memsys3FromKeyBlk(u32 nBlock){ assert( sqlite3_mutex_held(mem3.mutex) ); assert( mem3.szKeyBlk>=nBlock ); if( nBlock>=mem3.szKeyBlk-1 ){ /* Use the entire key chunk */ void *p = memsys3Checkout(mem3.iKeyBlk, mem3.szKeyBlk); mem3.iKeyBlk = 0; mem3.szKeyBlk = 0; mem3.mnKeyBlk = 0; return p; }else{ /* Split the key block. Return the tail. */ u32 newi, x; newi = mem3.iKeyBlk + mem3.szKeyBlk - nBlock; assert( newi > mem3.iKeyBlk+1 ); mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = nBlock; mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x |= 2; mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; mem3.szKeyBlk -= nBlock; mem3.aPool[newi-1].u.hdr.prevSize = mem3.szKeyBlk; x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2; mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x; if( mem3.szKeyBlk < mem3.mnKeyBlk ){ mem3.mnKeyBlk = mem3.szKeyBlk; } return (void*)&mem3.aPool[newi]; } } /* ** *pRoot is the head of a list of free chunks of the same size ** or same size hash. In other words, *pRoot is an entry in either ** mem3.aiSmall[] or mem3.aiHash[]. ** ** This routine examines all entries on the given list and tries ** to coalesce each entries with adjacent free chunks. ** ** If it sees a chunk that is larger than mem3.iKeyBlk, it replaces ** the current mem3.iKeyBlk with the new larger chunk. In order for ** this mem3.iKeyBlk replacement to work, the key chunk must be ** linked into the hash tables. That is not the normal state of ** affairs, of course. The calling routine must link the key ** chunk before invoking this routine, then must unlink the (possibly ** changed) key chunk once this routine has finished. */ static void memsys3Merge(u32 *pRoot){ u32 iNext, prev, size, i, x; assert( sqlite3_mutex_held(mem3.mutex) ); for(i=*pRoot; i>0; i=iNext){ iNext = mem3.aPool[i].u.list.next; size = mem3.aPool[i-1].u.hdr.size4x; assert( (size&1)==0 ); if( (size&2)==0 ){ memsys3UnlinkFromList(i, pRoot); assert( i > mem3.aPool[i-1].u.hdr.prevSize ); prev = i - mem3.aPool[i-1].u.hdr.prevSize; if( prev==iNext ){ iNext = mem3.aPool[prev].u.list.next; } memsys3Unlink(prev); size = i + size/4 - prev; x = mem3.aPool[prev-1].u.hdr.size4x & 2; mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; mem3.aPool[prev+size-1].u.hdr.prevSize = size; memsys3Link(prev); i = prev; }else{ size /= 4; } if( size>mem3.szKeyBlk ){ mem3.iKeyBlk = i; mem3.szKeyBlk = size; } } } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. ** ** This function assumes that the necessary mutexes, if any, are ** already held by the caller. Hence "Unsafe". */ static void *memsys3MallocUnsafe(int nByte){ u32 i; u32 nBlock; u32 toFree; assert( sqlite3_mutex_held(mem3.mutex) ); assert( sizeof(Mem3Block)==8 ); if( nByte<=12 ){ nBlock = 2; }else{ nBlock = (nByte + 11)/8; } assert( nBlock>=2 ); /* STEP 1: ** Look for an entry of the correct size in either the small ** chunk table or in the large chunk hash table. This is ** successful most of the time (about 9 times out of 10). */ if( nBlock <= MX_SMALL ){ i = mem3.aiSmall[nBlock-2]; if( i>0 ){ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); return memsys3Checkout(i, nBlock); } }else{ int hash = nBlock % N_HASH; for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ memsys3UnlinkFromList(i, &mem3.aiHash[hash]); return memsys3Checkout(i, nBlock); } } } /* STEP 2: ** Try to satisfy the allocation by carving a piece off of the end ** of the key chunk. This step usually works if step 1 fails. */ if( mem3.szKeyBlk>=nBlock ){ return memsys3FromKeyBlk(nBlock); } /* STEP 3: ** Loop through the entire memory pool. Coalesce adjacent free ** chunks. Recompute the key chunk as the largest free chunk. ** Then try again to satisfy the allocation by carving a piece off ** of the end of the key chunk. This step happens very ** rarely (we hope!) */ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ memsys3OutOfMemory(toFree); if( mem3.iKeyBlk ){ memsys3Link(mem3.iKeyBlk); mem3.iKeyBlk = 0; mem3.szKeyBlk = 0; } for(i=0; i=nBlock ){ return memsys3FromKeyBlk(nBlock); } } } /* If none of the above worked, then we fail. */ return 0; } /* ** Free an outstanding memory allocation. ** ** This function assumes that the necessary mutexes, if any, are ** already held by the caller. Hence "Unsafe". */ static void memsys3FreeUnsafe(void *pOld){ Mem3Block *p = (Mem3Block*)pOld; int i; u32 size, x; assert( sqlite3_mutex_held(mem3.mutex) ); assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); i = p - mem3.aPool; assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); size = mem3.aPool[i-1].u.hdr.size4x/4; assert( i+size<=mem3.nPool+1 ); mem3.aPool[i-1].u.hdr.size4x &= ~1; mem3.aPool[i+size-1].u.hdr.prevSize = size; mem3.aPool[i+size-1].u.hdr.size4x &= ~2; memsys3Link(i); /* Try to expand the key using the newly freed chunk */ if( mem3.iKeyBlk ){ while( (mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x&2)==0 ){ size = mem3.aPool[mem3.iKeyBlk-1].u.hdr.prevSize; mem3.iKeyBlk -= size; mem3.szKeyBlk += size; memsys3Unlink(mem3.iKeyBlk); x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2; mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x; mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk; } x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2; while( (mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x&1)==0 ){ memsys3Unlink(mem3.iKeyBlk+mem3.szKeyBlk); mem3.szKeyBlk += mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x/4; mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x; mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk; } } } /* ** Return the size of an outstanding allocation, in bytes. The ** size returned omits the 8-byte header overhead. This only ** works for chunks that are currently checked out. */ static int memsys3Size(void *p){ Mem3Block *pBlock; assert( p!=0 ); pBlock = (Mem3Block*)p; assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; } /* ** Round up a request size to the next valid allocation size. */ static int memsys3Roundup(int n){ if( n<=12 ){ return 12; }else{ return ((n+11)&~7) - 4; } } /* ** Allocate nBytes of memory. */ static void *memsys3Malloc(int nBytes){ sqlite3_int64 *p; assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ memsys3Enter(); p = memsys3MallocUnsafe(nBytes); memsys3Leave(); return (void*)p; } /* ** Free memory. */ static void memsys3Free(void *pPrior){ assert( pPrior ); memsys3Enter(); memsys3FreeUnsafe(pPrior); memsys3Leave(); } /* ** Change the size of an existing memory allocation */ static void *memsys3Realloc(void *pPrior, int nBytes){ int nOld; void *p; if( pPrior==0 ){ return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); return 0; } nOld = memsys3Size(pPrior); if( nBytes<=nOld && nBytes>=nOld-128 ){ return pPrior; } memsys3Enter(); p = memsys3MallocUnsafe(nBytes); if( p ){ if( nOld>1)!=(size&1) ){ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); assert( 0 ); break; } if( size&1 ){ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); }else{ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, i==mem3.iKeyBlk ? " **key**" : ""); } } for(i=0; i0; j=mem3.aPool[j].u.list.next){ fprintf(out, " %p(%d)", &mem3.aPool[j], (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); } fprintf(out, "\n"); } for(i=0; i0; j=mem3.aPool[j].u.list.next){ fprintf(out, " %p(%d)", &mem3.aPool[j], (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); } fprintf(out, "\n"); } fprintf(out, "key=%d\n", mem3.iKeyBlk); fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szKeyBlk*8); fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnKeyBlk*8); sqlite3_mutex_leave(mem3.mutex); if( out==stdout ){ fflush(stdout); }else{ fclose(out); } #else UNUSED_PARAMETER(zFilename); #endif } /* ** This routine is the only routine in this file with external ** linkage. ** ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. The ** arguments specify the block of memory to manage. ** ** This routine is only called by sqlite3_config(), and therefore ** is not required to be threadsafe (it is not). */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ static const sqlite3_mem_methods mempoolMethods = { memsys3Malloc, memsys3Free, memsys3Realloc, memsys3Size, memsys3Roundup, memsys3Init, memsys3Shutdown, 0 }; return &mempoolMethods; } #endif /* SQLITE_ENABLE_MEMSYS3 */ /************** End of mem3.c ************************************************/ /************** Begin file mem5.c ********************************************/ /* ** 2007 October 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** This version of the memory allocation subsystem omits all ** use of malloc(). The application gives SQLite a block of memory ** before calling sqlite3_initialize() from which allocations ** are made and returned by the xMalloc() and xRealloc() ** implementations. Once sqlite3_initialize() has been called, ** the amount of memory available to SQLite is fixed and cannot ** be changed. ** ** This version of the memory allocation subsystem is included ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. ** ** This memory allocator uses the following algorithm: ** ** 1. All memory allocation sizes are rounded up to a power of 2. ** ** 2. If two adjacent free blocks are the halves of a larger block, ** then the two blocks are coalesced into the single larger block. ** ** 3. New memory is allocated from the first available free block. ** ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions ** Concerning Dynamic Storage Allocation". Journal of the Association for ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. ** ** Let n be the size of the largest allocation divided by the minimum ** allocation size (after rounding all sizes up to a power of 2.) Let M ** be the maximum amount of memory ever outstanding at one time. Let ** N be the total amount of memory available for allocation. Robson ** proved that this memory allocator will never breakdown due to ** fragmentation as long as the following constraint holds: ** ** N >= M*(1 + log2(n)/2) - n + 1 ** ** The sqlite3_status() logic tracks the maximum values of n and M so ** that an application can, at any time, verify this constraint. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is used only when ** SQLITE_ENABLE_MEMSYS5 is defined. */ #ifdef SQLITE_ENABLE_MEMSYS5 /* ** A minimum allocation is an instance of the following structure. ** Larger allocations are an array of these structures where the ** size of the array is a power of 2. ** ** The size of this object must be a power of two. That fact is ** verified in memsys5Init(). */ typedef struct Mem5Link Mem5Link; struct Mem5Link { int next; /* Index of next free chunk */ int prev; /* Index of previous free chunk */ }; /* ** Maximum size of any allocation is ((1<=0 && i=0 && iLogsize<=LOGMAX ); assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); next = MEM5LINK(i)->next; prev = MEM5LINK(i)->prev; if( prev<0 ){ mem5.aiFreelist[iLogsize] = next; }else{ MEM5LINK(prev)->next = next; } if( next>=0 ){ MEM5LINK(next)->prev = prev; } } /* ** Link the chunk at mem5.aPool[i] so that is on the iLogsize ** free list. */ static void memsys5Link(int i, int iLogsize){ int x; assert( sqlite3_mutex_held(mem5.mutex) ); assert( i>=0 && i=0 && iLogsize<=LOGMAX ); assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; MEM5LINK(i)->prev = -1; if( x>=0 ){ assert( xprev = i; } mem5.aiFreelist[iLogsize] = i; } /* ** Obtain or release the mutex needed to access global data structures. */ static void memsys5Enter(void){ sqlite3_mutex_enter(mem5.mutex); } static void memsys5Leave(void){ sqlite3_mutex_leave(mem5.mutex); } /* ** Return the size of an outstanding allocation, in bytes. ** This only works for chunks that are currently checked out. */ static int memsys5Size(void *p){ int iSize, i; assert( p!=0 ); i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); assert( i>=0 && i0 ); /* No more than 1GiB per allocation */ if( nByte > 0x40000000 ) return 0; #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* Keep track of the maximum allocation request. Even unfulfilled ** requests are counted */ if( (u32)nByte>mem5.maxRequest ){ mem5.maxRequest = nByte; } #endif /* Round nByte up to the next valid power of two */ for(iFullSz=mem5.szAtom,iLogsize=0; iFullSzLOGMAX ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); return 0; } i = mem5.aiFreelist[iBin]; memsys5Unlink(i, iBin); while( iBin>iLogsize ){ int newSize; iBin--; newSize = 1 << iBin; mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; memsys5Link(i+newSize, iBin); } mem5.aCtrl[i] = iLogsize; #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* Update allocator performance statistics. */ mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount=0 && iBlock0 ); assert( mem5.currentOut>=(size*mem5.szAtom) ); mem5.currentCount--; mem5.currentOut -= size*mem5.szAtom; assert( mem5.currentOut>0 || mem5.currentCount==0 ); assert( mem5.currentCount>0 || mem5.currentOut==0 ); #endif mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; while( ALWAYS(iLogsize>iLogsize) & 1 ){ iBuddy = iBlock - size; assert( iBuddy>=0 ); }else{ iBuddy = iBlock + size; if( iBuddy>=mem5.nBlock ) break; } if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; memsys5Unlink(iBuddy, iLogsize); iLogsize++; if( iBuddy0 ){ memsys5Enter(); p = memsys5MallocUnsafe(nBytes); memsys5Leave(); } return (void*)p; } /* ** Free memory. ** ** The outer layer memory allocator prevents this routine from ** being called with pPrior==0. */ static void memsys5Free(void *pPrior){ assert( pPrior!=0 ); memsys5Enter(); memsys5FreeUnsafe(pPrior); memsys5Leave(); } /* ** Change the size of an existing memory allocation. ** ** The outer layer memory allocator prevents this routine from ** being called with pPrior==0. ** ** nBytes is always a value obtained from a prior call to ** memsys5Round(). Hence nBytes is always a non-negative power ** of two. If nBytes==0 that means that an oversize allocation ** (an allocation larger than 0x40000000) was requested and this ** routine should return 0 without freeing pPrior. */ static void *memsys5Realloc(void *pPrior, int nBytes){ int nOld; void *p; assert( pPrior!=0 ); assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ assert( nBytes>=0 ); if( nBytes==0 ){ return 0; } nOld = memsys5Size(pPrior); if( nBytes<=nOld ){ return pPrior; } p = memsys5Malloc(nBytes); if( p ){ memcpy(p, pPrior, nOld); memsys5Free(pPrior); } return p; } /* ** Round up a request size to the next valid allocation size. If ** the allocation is too large to be handled by this allocation system, ** return 0. ** ** All allocations must be a power of two and must be expressed by a ** 32-bit signed integer. Hence the largest allocation is 0x40000000 ** or 1073741824 bytes. */ static int memsys5Roundup(int n){ int iFullSz; if( n<=mem5.szAtom*2 ){ if( n<=mem5.szAtom ) return mem5.szAtom; return mem5.szAtom*2; } if( n>0x10000000 ){ if( n>0x40000000 ) return 0; if( n>0x20000000 ) return 0x40000000; return 0x20000000; } for(iFullSz=mem5.szAtom*8; iFullSz=(i64)n ) return iFullSz/2; return iFullSz; } /* ** Return the ceiling of the logarithm base 2 of iValue. ** ** Examples: memsys5Log(1) -> 0 ** memsys5Log(2) -> 1 ** memsys5Log(4) -> 2 ** memsys5Log(5) -> 3 ** memsys5Log(8) -> 3 ** memsys5Log(9) -> 4 */ static int memsys5Log(int iValue){ int iLog; for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<mem5.szAtom ){ mem5.szAtom = mem5.szAtom << 1; } mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); mem5.zPool = zByte; mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; for(ii=0; ii<=LOGMAX; ii++){ mem5.aiFreelist[ii] = -1; } iOffset = 0; for(ii=LOGMAX; ii>=0; ii--){ int nAlloc = (1<mem5.nBlock); } /* If a mutex is required for normal operation, allocate one */ if( sqlite3GlobalConfig.bMemstat==0 ){ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } return SQLITE_OK; } /* ** Deinitialize this module. */ static void memsys5Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); mem5.mutex = 0; return; } #ifdef SQLITE_TEST /* ** Open the file indicated and write a log of all unfreed memory ** allocations into that log. */ SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){ FILE *out; int i, j, n; int nMinLog; if( zFilename==0 || zFilename[0]==0 ){ out = stdout; }else{ out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } } memsys5Enter(); nMinLog = memsys5Log(mem5.szAtom); for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); } fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); memsys5Leave(); if( out==stdout ){ fflush(stdout); }else{ fclose(out); } } #endif /* ** This routine is the only routine in this file with external ** linkage. It returns a pointer to a static sqlite3_mem_methods ** struct populated with the memsys5 methods. */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ static const sqlite3_mem_methods memsys5Methods = { memsys5Malloc, memsys5Free, memsys5Realloc, memsys5Size, memsys5Roundup, memsys5Init, memsys5Shutdown, 0 }; return &memsys5Methods; } #endif /* SQLITE_ENABLE_MEMSYS5 */ /************** End of mem5.c ************************************************/ /************** Begin file mutex.c *******************************************/ /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes. ** ** This file contains code that is common across all mutex implementations. */ /* #include "sqliteInt.h" */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT) /* ** For debugging purposes, record when the mutex subsystem is initialized ** and uninitialized so that we can assert() if there is an attempt to ** allocate a mutex while the system is uninitialized. */ static SQLITE_WSD int mutexIsInit = 0; #endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */ #ifndef SQLITE_MUTEX_OMIT #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS /* ** This block (enclosed by SQLITE_ENABLE_MULTITHREADED_CHECKS) contains ** the implementation of a wrapper around the system default mutex ** implementation (sqlite3DefaultMutex()). ** ** Most calls are passed directly through to the underlying default ** mutex implementation. Except, if a mutex is configured by calling ** sqlite3MutexWarnOnContention() on it, then if contention is ever ** encountered within xMutexEnter() a warning is emitted via sqlite3_log(). ** ** This type of mutex is used as the database handle mutex when testing ** apps that usually use SQLITE_CONFIG_MULTITHREAD mode. */ /* ** Type for all mutexes used when SQLITE_ENABLE_MULTITHREADED_CHECKS ** is defined. Variable CheckMutex.mutex is a pointer to the real mutex ** allocated by the system mutex implementation. Variable iType is usually set ** to the type of mutex requested - SQLITE_MUTEX_RECURSIVE, SQLITE_MUTEX_FAST ** or one of the static mutex identifiers. Or, if this is a recursive mutex ** that has been configured using sqlite3MutexWarnOnContention(), it is ** set to SQLITE_MUTEX_WARNONCONTENTION. */ typedef struct CheckMutex CheckMutex; struct CheckMutex { int iType; sqlite3_mutex *mutex; }; #define SQLITE_MUTEX_WARNONCONTENTION (-1) /* ** Pointer to real mutex methods object used by the CheckMutex ** implementation. Set by checkMutexInit(). */ static SQLITE_WSD const sqlite3_mutex_methods *pGlobalMutexMethods; #ifdef SQLITE_DEBUG static int checkMutexHeld(sqlite3_mutex *p){ return pGlobalMutexMethods->xMutexHeld(((CheckMutex*)p)->mutex); } static int checkMutexNotheld(sqlite3_mutex *p){ return pGlobalMutexMethods->xMutexNotheld(((CheckMutex*)p)->mutex); } #endif /* ** Initialize and deinitialize the mutex subsystem. */ static int checkMutexInit(void){ pGlobalMutexMethods = sqlite3DefaultMutex(); return SQLITE_OK; } static int checkMutexEnd(void){ pGlobalMutexMethods = 0; return SQLITE_OK; } /* ** Allocate a mutex. */ static sqlite3_mutex *checkMutexAlloc(int iType){ static CheckMutex staticMutexes[] = { {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}, {13, 0} }; CheckMutex *p = 0; assert( SQLITE_MUTEX_RECURSIVE==1 && SQLITE_MUTEX_FAST==0 ); if( iType<2 ){ p = sqlite3MallocZero(sizeof(CheckMutex)); if( p==0 ) return 0; p->iType = iType; }else{ #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2>=ArraySize(staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &staticMutexes[iType-2]; } if( p->mutex==0 ){ p->mutex = pGlobalMutexMethods->xMutexAlloc(iType); if( p->mutex==0 ){ if( iType<2 ){ sqlite3_free(p); } p = 0; } } return (sqlite3_mutex*)p; } /* ** Free a mutex. */ static void checkMutexFree(sqlite3_mutex *p){ assert( SQLITE_MUTEX_RECURSIVE<2 ); assert( SQLITE_MUTEX_FAST<2 ); assert( SQLITE_MUTEX_WARNONCONTENTION<2 ); #if SQLITE_ENABLE_API_ARMOR if( ((CheckMutex*)p)->iType<2 ) #endif { CheckMutex *pCheck = (CheckMutex*)p; pGlobalMutexMethods->xMutexFree(pCheck->mutex); sqlite3_free(pCheck); } #ifdef SQLITE_ENABLE_API_ARMOR else{ (void)SQLITE_MISUSE_BKPT; } #endif } /* ** Enter the mutex. */ static void checkMutexEnter(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; if( pCheck->iType==SQLITE_MUTEX_WARNONCONTENTION ){ if( SQLITE_OK==pGlobalMutexMethods->xMutexTry(pCheck->mutex) ){ return; } sqlite3_log(SQLITE_MISUSE, "illegal multi-threaded access to database connection" ); } pGlobalMutexMethods->xMutexEnter(pCheck->mutex); } /* ** Enter the mutex (do not block). */ static int checkMutexTry(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; return pGlobalMutexMethods->xMutexTry(pCheck->mutex); } /* ** Leave the mutex. */ static void checkMutexLeave(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; pGlobalMutexMethods->xMutexLeave(pCheck->mutex); } sqlite3_mutex_methods const *multiThreadedCheckMutex(void){ static const sqlite3_mutex_methods sMutex = { checkMutexInit, checkMutexEnd, checkMutexAlloc, checkMutexFree, checkMutexEnter, checkMutexTry, checkMutexLeave, #ifdef SQLITE_DEBUG checkMutexHeld, checkMutexNotheld #else 0, 0 #endif }; return &sMutex; } /* ** Mark the SQLITE_MUTEX_RECURSIVE mutex passed as the only argument as ** one on which there should be no contention. */ SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex *p){ if( sqlite3GlobalConfig.mutex.xMutexAlloc==checkMutexAlloc ){ CheckMutex *pCheck = (CheckMutex*)p; assert( pCheck->iType==SQLITE_MUTEX_RECURSIVE ); pCheck->iType = SQLITE_MUTEX_WARNONCONTENTION; } } #endif /* ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS */ /* ** Initialize the mutex system. */ SQLITE_PRIVATE int sqlite3MutexInit(void){ int rc = SQLITE_OK; if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){ /* If the xMutexAlloc method has not been set, then the user did not ** install a mutex implementation via sqlite3_config() prior to ** sqlite3_initialize() being called. This block copies pointers to ** the default implementation into the sqlite3GlobalConfig structure. */ sqlite3_mutex_methods const *pFrom; sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; if( sqlite3GlobalConfig.bCoreMutex ){ #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS pFrom = multiThreadedCheckMutex(); #else pFrom = sqlite3DefaultMutex(); #endif }else{ pFrom = sqlite3NoopMutex(); } pTo->xMutexInit = pFrom->xMutexInit; pTo->xMutexEnd = pFrom->xMutexEnd; pTo->xMutexFree = pFrom->xMutexFree; pTo->xMutexEnter = pFrom->xMutexEnter; pTo->xMutexTry = pFrom->xMutexTry; pTo->xMutexLeave = pFrom->xMutexLeave; pTo->xMutexHeld = pFrom->xMutexHeld; pTo->xMutexNotheld = pFrom->xMutexNotheld; sqlite3MemoryBarrier(); pTo->xMutexAlloc = pFrom->xMutexAlloc; } assert( sqlite3GlobalConfig.mutex.xMutexInit ); rc = sqlite3GlobalConfig.mutex.xMutexInit(); #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 1; #endif sqlite3MemoryBarrier(); return rc; } /* ** Shutdown the mutex system. This call frees resources allocated by ** sqlite3MutexInit(). */ SQLITE_PRIVATE int sqlite3MutexEnd(void){ int rc = SQLITE_OK; if( sqlite3GlobalConfig.mutex.xMutexEnd ){ rc = sqlite3GlobalConfig.mutex.xMutexEnd(); } #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 0; #endif return rc; } /* ** Retrieve a pointer to a static mutex or allocate a new dynamic one. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){ #ifndef SQLITE_OMIT_AUTOINIT if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0; if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0; #endif assert( sqlite3GlobalConfig.mutex.xMutexAlloc ); return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){ if( !sqlite3GlobalConfig.bCoreMutex ){ return 0; } assert( GLOBAL(int, mutexIsInit) ); assert( sqlite3GlobalConfig.mutex.xMutexAlloc ); return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } /* ** Free a dynamic mutex. */ SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexFree ); sqlite3GlobalConfig.mutex.xMutexFree(p); } } /* ** Obtain the mutex p. If some other thread already has the mutex, block ** until it can be obtained. */ SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexEnter ); sqlite3GlobalConfig.mutex.xMutexEnter(p); } } /* ** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another ** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY. */ SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ int rc = SQLITE_OK; if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexTry ); return sqlite3GlobalConfig.mutex.xMutexTry(p); } return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was previously ** entered by the same thread. The behavior is undefined if the mutex ** is not currently entered. If a NULL pointer is passed as an argument ** this function is a no-op. */ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexLeave ); sqlite3GlobalConfig.mutex.xMutexLeave(p); } } #ifndef NDEBUG /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use inside assert() statements. */ SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexHeld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p); } SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); } #endif #endif /* !defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex.c ***********************************************/ /************** Begin file mutex_noop.c **************************************/ /* ** 2008 October 07 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes. ** ** This implementation in this file does not provide any mutual ** exclusion and is thus suitable for use only in applications ** that use SQLite in a single thread. The routines defined ** here are place-holders. Applications can substitute working ** mutex routines at start-time using the ** ** sqlite3_config(SQLITE_CONFIG_MUTEX,...) ** ** interface. ** ** If compiled with SQLITE_DEBUG, then additional logic is inserted ** that does error checking on mutexes to make sure they are being ** called correctly. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_MUTEX_OMIT #ifndef SQLITE_DEBUG /* ** Stub routines for all mutex methods. ** ** This routines provide no mutual exclusion or error checking. */ static int noopMutexInit(void){ return SQLITE_OK; } static int noopMutexEnd(void){ return SQLITE_OK; } static sqlite3_mutex *noopMutexAlloc(int id){ UNUSED_PARAMETER(id); return (sqlite3_mutex*)8; } static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } static int noopMutexTry(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return SQLITE_OK; } static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){ static const sqlite3_mutex_methods sMutex = { noopMutexInit, noopMutexEnd, noopMutexAlloc, noopMutexFree, noopMutexEnter, noopMutexTry, noopMutexLeave, 0, 0, }; return &sMutex; } #endif /* !SQLITE_DEBUG */ #ifdef SQLITE_DEBUG /* ** In this implementation, error checking is provided for testing ** and debugging purposes. The mutexes still do not provide any ** mutual exclusion. */ /* ** The mutex object */ typedef struct sqlite3_debug_mutex { int id; /* The mutex type */ int cnt; /* Number of entries without a matching leave */ } sqlite3_debug_mutex; /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use inside assert() statements. */ static int debugMutexHeld(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; return p==0 || p->cnt>0; } static int debugMutexNotheld(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; return p==0 || p->cnt==0; } /* ** Initialize and deinitialize the mutex subsystem. */ static int debugMutexInit(void){ return SQLITE_OK; } static int debugMutexEnd(void){ return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. */ static sqlite3_mutex *debugMutexAlloc(int id){ static sqlite3_debug_mutex aStatic[SQLITE_MUTEX_STATIC_VFS3 - 1]; sqlite3_debug_mutex *pNew = 0; switch( id ){ case SQLITE_MUTEX_FAST: case SQLITE_MUTEX_RECURSIVE: { pNew = sqlite3Malloc(sizeof(*pNew)); if( pNew ){ pNew->id = id; pNew->cnt = 0; } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( id-2<0 || id-2>=ArraySize(aStatic) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif pNew = &aStatic[id-2]; pNew->id = id; break; } } return (sqlite3_mutex*)pNew; } /* ** This routine deallocates a previously allocated mutex. */ static void debugMutexFree(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( p->cnt==0 ); if( p->id==SQLITE_MUTEX_RECURSIVE || p->id==SQLITE_MUTEX_FAST ){ sqlite3_free(p); }else{ #ifdef SQLITE_ENABLE_API_ARMOR (void)SQLITE_MISUSE_BKPT; #endif } } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void debugMutexEnter(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); p->cnt++; } static int debugMutexTry(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); p->cnt++; return SQLITE_OK; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void debugMutexLeave(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( debugMutexHeld(pX) ); p->cnt--; assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){ static const sqlite3_mutex_methods sMutex = { debugMutexInit, debugMutexEnd, debugMutexAlloc, debugMutexFree, debugMutexEnter, debugMutexTry, debugMutexLeave, debugMutexHeld, debugMutexNotheld }; return &sMutex; } #endif /* SQLITE_DEBUG */ /* ** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation ** is used regardless of the run-time threadsafety setting. */ #ifdef SQLITE_MUTEX_NOOP SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ return sqlite3NoopMutex(); } #endif /* defined(SQLITE_MUTEX_NOOP) */ #endif /* !defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex_noop.c ******************************************/ /************** Begin file mutex_unix.c **************************************/ /* ** 2007 August 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes for pthreads */ /* #include "sqliteInt.h" */ /* ** The code in this file is only used if we are compiling threadsafe ** under unix with pthreads. ** ** Note that this implementation requires a version of pthreads that ** supports recursive mutexes. */ #ifdef SQLITE_MUTEX_PTHREADS #include /* ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields ** are necessary under two conditions: (1) Debug builds and (2) using ** home-grown mutexes. Encapsulate these conditions into a single #define. */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX) # define SQLITE_MUTEX_NREF 1 #else # define SQLITE_MUTEX_NREF 0 #endif /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { pthread_mutex_t mutex; /* Mutex controlling the lock */ #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) int id; /* Mutex type */ #endif #if SQLITE_MUTEX_NREF volatile int nRef; /* Number of entrances */ volatile pthread_t owner; /* Thread that is within this mutex */ int trace; /* True to trace changes */ #endif }; #if SQLITE_MUTEX_NREF # define SQLITE3_MUTEX_INITIALIZER(id) \ {PTHREAD_MUTEX_INITIALIZER,id,0,(pthread_t)0,0} #elif defined(SQLITE_ENABLE_API_ARMOR) # define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER, id } #else #define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER } #endif /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use only inside assert() statements. On some platforms, ** there might be race conditions that can cause these routines to ** deliver incorrect results. In particular, if pthread_equal() is ** not an atomic operation, then these routines might delivery ** incorrect results. On most platforms, pthread_equal() is a ** comparison of two integers and is therefore atomic. But we are ** told that HPUX is not such a platform. If so, then these routines ** will not always work correctly on HPUX. ** ** On those platforms where pthread_equal() is not atomic, SQLite ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to ** make sure no assert() statements are evaluated and hence these ** routines are never called. */ #if !defined(NDEBUG) || defined(SQLITE_DEBUG) static int pthreadMutexHeld(sqlite3_mutex *p){ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); } static int pthreadMutexNotheld(sqlite3_mutex *p){ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; } #endif /* ** Try to provide a memory barrier operation, needed for initialization ** and also for the implementation of xShmBarrier in the VFS in cases ** where SQLite is compiled without mutexes. */ SQLITE_PRIVATE void sqlite3MemoryBarrier(void){ #if defined(SQLITE_MEMORY_BARRIER) SQLITE_MEMORY_BARRIER; #elif defined(__GNUC__) && GCC_VERSION>=4001000 __sync_synchronize(); #endif } /* ** Initialize and deinitialize the mutex subsystem. */ static int pthreadMutexInit(void){ return SQLITE_OK; } static int pthreadMutexEnd(void){ return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. SQLite ** will unwind its stack and return an error. The argument ** to sqlite3_mutex_alloc() is one of these integer constants: ** **
    **
  • SQLITE_MUTEX_FAST **
  • SQLITE_MUTEX_RECURSIVE **
  • SQLITE_MUTEX_STATIC_MAIN **
  • SQLITE_MUTEX_STATIC_MEM **
  • SQLITE_MUTEX_STATIC_OPEN **
  • SQLITE_MUTEX_STATIC_PRNG **
  • SQLITE_MUTEX_STATIC_LRU **
  • SQLITE_MUTEX_STATIC_PMEM **
  • SQLITE_MUTEX_STATIC_APP1 **
  • SQLITE_MUTEX_STATIC_APP2 **
  • SQLITE_MUTEX_STATIC_APP3 **
  • SQLITE_MUTEX_STATIC_VFS1 **
  • SQLITE_MUTEX_STATIC_VFS2 **
  • SQLITE_MUTEX_STATIC_VFS3 **
** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *pthreadMutexAlloc(int iType){ static sqlite3_mutex staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER(2), SQLITE3_MUTEX_INITIALIZER(3), SQLITE3_MUTEX_INITIALIZER(4), SQLITE3_MUTEX_INITIALIZER(5), SQLITE3_MUTEX_INITIALIZER(6), SQLITE3_MUTEX_INITIALIZER(7), SQLITE3_MUTEX_INITIALIZER(8), SQLITE3_MUTEX_INITIALIZER(9), SQLITE3_MUTEX_INITIALIZER(10), SQLITE3_MUTEX_INITIALIZER(11), SQLITE3_MUTEX_INITIALIZER(12), SQLITE3_MUTEX_INITIALIZER(13) }; sqlite3_mutex *p; switch( iType ){ case SQLITE_MUTEX_RECURSIVE: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, we will have to ** build our own. See below. */ pthread_mutex_init(&p->mutex, 0); #else /* Use a recursive mutex if it is available */ pthread_mutexattr_t recursiveAttr; pthread_mutexattr_init(&recursiveAttr); pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&p->mutex, &recursiveAttr); pthread_mutexattr_destroy(&recursiveAttr); #endif #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) p->id = SQLITE_MUTEX_RECURSIVE; #endif } break; } case SQLITE_MUTEX_FAST: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ pthread_mutex_init(&p->mutex, 0); #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) p->id = SQLITE_MUTEX_FAST; #endif } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &staticMutexes[iType-2]; break; } } #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) assert( p==0 || p->id==iType ); #endif return p; } /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void pthreadMutexFree(sqlite3_mutex *p){ assert( p->nRef==0 ); #if SQLITE_ENABLE_API_ARMOR if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ) #endif { pthread_mutex_destroy(&p->mutex); sqlite3_free(p); } #ifdef SQLITE_ENABLE_API_ARMOR else{ (void)SQLITE_MISUSE_BKPT; } #endif } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void pthreadMutexEnter(sqlite3_mutex *p){ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, then we have to grow ** our own. This implementation assumes that pthread_equal() ** is atomic - that it cannot be deceived into thinking self ** and p->owner are equal if p->owner changes between two values ** that are not equal to self while the comparison is taking place. ** This implementation also assumes a coherent cache - that ** separate processes cannot read different values from the same ** address at the same time. If either of these two conditions ** are not met, then the mutexes will fail and problems will result. */ { pthread_t self = pthread_self(); if( p->nRef>0 && pthread_equal(p->owner, self) ){ p->nRef++; }else{ pthread_mutex_lock(&p->mutex); assert( p->nRef==0 ); p->owner = self; p->nRef = 1; } } #else /* Use the built-in recursive mutexes if they are available. */ pthread_mutex_lock(&p->mutex); #if SQLITE_MUTEX_NREF assert( p->nRef>0 || p->owner==0 ); p->owner = pthread_self(); p->nRef++; #endif #endif #ifdef SQLITE_DEBUG if( p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif } static int pthreadMutexTry(sqlite3_mutex *p){ int rc; assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, then we have to grow ** our own. This implementation assumes that pthread_equal() ** is atomic - that it cannot be deceived into thinking self ** and p->owner are equal if p->owner changes between two values ** that are not equal to self while the comparison is taking place. ** This implementation also assumes a coherent cache - that ** separate processes cannot read different values from the same ** address at the same time. If either of these two conditions ** are not met, then the mutexes will fail and problems will result. */ { pthread_t self = pthread_self(); if( p->nRef>0 && pthread_equal(p->owner, self) ){ p->nRef++; rc = SQLITE_OK; }else if( pthread_mutex_trylock(&p->mutex)==0 ){ assert( p->nRef==0 ); p->owner = self; p->nRef = 1; rc = SQLITE_OK; }else{ rc = SQLITE_BUSY; } } #else /* Use the built-in recursive mutexes if they are available. */ if( pthread_mutex_trylock(&p->mutex)==0 ){ #if SQLITE_MUTEX_NREF p->owner = pthread_self(); p->nRef++; #endif rc = SQLITE_OK; }else{ rc = SQLITE_BUSY; } #endif #ifdef SQLITE_DEBUG if( rc==SQLITE_OK && p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void pthreadMutexLeave(sqlite3_mutex *p){ assert( pthreadMutexHeld(p) ); #if SQLITE_MUTEX_NREF p->nRef--; if( p->nRef==0 ) p->owner = 0; #endif assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX if( p->nRef==0 ){ pthread_mutex_unlock(&p->mutex); } #else pthread_mutex_unlock(&p->mutex); #endif #ifdef SQLITE_DEBUG if( p->trace ){ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ static const sqlite3_mutex_methods sMutex = { pthreadMutexInit, pthreadMutexEnd, pthreadMutexAlloc, pthreadMutexFree, pthreadMutexEnter, pthreadMutexTry, pthreadMutexLeave, #ifdef SQLITE_DEBUG pthreadMutexHeld, pthreadMutexNotheld #else 0, 0 #endif }; return &sMutex; } #endif /* SQLITE_MUTEX_PTHREADS */ /************** End of mutex_unix.c ******************************************/ /************** Begin file mutex_w32.c ***************************************/ /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes for Win32. */ /* #include "sqliteInt.h" */ #if SQLITE_OS_WIN /* ** Include code that is common to all os_*.c files */ /* #include "os_common.h" */ /* ** Include the header file for the Windows VFS. */ /************** Include os_win.h in the middle of mutex_w32.c ****************/ /************** Begin file os_win.h ******************************************/ /* ** 2013 November 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to Windows. */ #ifndef SQLITE_OS_WIN_H #define SQLITE_OS_WIN_H /* ** Include the primary Windows SDK header file. */ #include "windows.h" #ifdef __CYGWIN__ # include # include /* amalgamator: dontcache */ #endif /* ** Determine if we are dealing with Windows NT. ** ** We ought to be able to determine if we are compiling for Windows 9x or ** Windows NT using the _WIN32_WINNT macro as follows: ** ** #if defined(_WIN32_WINNT) ** # define SQLITE_OS_WINNT 1 ** #else ** # define SQLITE_OS_WINNT 0 ** #endif ** ** However, Visual Studio 2005 does not set _WIN32_WINNT by default, as ** it ought to, so the above test does not work. We'll just assume that ** everything is Windows NT unless the programmer explicitly says otherwise ** by setting SQLITE_OS_WINNT to 0. */ #if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT) # define SQLITE_OS_WINNT 1 #endif /* ** Determine if we are dealing with Windows CE - which has a much reduced ** API. */ #if defined(_WIN32_WCE) # define SQLITE_OS_WINCE 1 #else # define SQLITE_OS_WINCE 0 #endif /* ** Determine if we are dealing with WinRT, which provides only a subset of ** the full Win32 API. */ #if !defined(SQLITE_OS_WINRT) # define SQLITE_OS_WINRT 0 #endif /* ** For WinCE, some API function parameters do not appear to be declared as ** volatile. */ #if SQLITE_OS_WINCE # define SQLITE_WIN32_VOLATILE #else # define SQLITE_WIN32_VOLATILE volatile #endif /* ** For some Windows sub-platforms, the _beginthreadex() / _endthreadex() ** functions are not available (e.g. those not using MSVC, Cygwin, etc). */ #if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \ SQLITE_THREADSAFE>0 && !defined(__CYGWIN__) # define SQLITE_OS_WIN_THREADS 1 #else # define SQLITE_OS_WIN_THREADS 0 #endif #endif /* SQLITE_OS_WIN_H */ /************** End of os_win.h **********************************************/ /************** Continuing where we left off in mutex_w32.c ******************/ #endif /* ** The code in this file is only used if we are compiling multithreaded ** on a Win32 system. */ #ifdef SQLITE_MUTEX_W32 /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { CRITICAL_SECTION mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ #ifdef SQLITE_DEBUG volatile int nRef; /* Number of entrances */ volatile DWORD owner; /* Thread holding this mutex */ volatile LONG trace; /* True to trace changes */ #endif }; /* ** These are the initializer values used when declaring a "static" mutex ** on Win32. It should be noted that all mutexes require initialization ** on the Win32 platform. */ #define SQLITE_W32_MUTEX_INITIALIZER { 0 } #ifdef SQLITE_DEBUG #define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id, \ 0L, (DWORD)0, 0 } #else #define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id } #endif #ifdef SQLITE_DEBUG /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use only inside assert() statements. */ static int winMutexHeld(sqlite3_mutex *p){ return p->nRef!=0 && p->owner==GetCurrentThreadId(); } static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){ return p->nRef==0 || p->owner!=tid; } static int winMutexNotheld(sqlite3_mutex *p){ DWORD tid = GetCurrentThreadId(); return winMutexNotheld2(p, tid); } #endif /* ** Try to provide a memory barrier operation, needed for initialization ** and also for the xShmBarrier method of the VFS in cases when SQLite is ** compiled without mutexes (SQLITE_THREADSAFE=0). */ SQLITE_PRIVATE void sqlite3MemoryBarrier(void){ #if defined(SQLITE_MEMORY_BARRIER) SQLITE_MEMORY_BARRIER; #elif defined(__GNUC__) __sync_synchronize(); #elif MSVC_VERSION>=1300 _ReadWriteBarrier(); #elif defined(MemoryBarrier) MemoryBarrier(); #endif } /* ** Initialize and deinitialize the mutex subsystem. */ static sqlite3_mutex winMutex_staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER(2), SQLITE3_MUTEX_INITIALIZER(3), SQLITE3_MUTEX_INITIALIZER(4), SQLITE3_MUTEX_INITIALIZER(5), SQLITE3_MUTEX_INITIALIZER(6), SQLITE3_MUTEX_INITIALIZER(7), SQLITE3_MUTEX_INITIALIZER(8), SQLITE3_MUTEX_INITIALIZER(9), SQLITE3_MUTEX_INITIALIZER(10), SQLITE3_MUTEX_INITIALIZER(11), SQLITE3_MUTEX_INITIALIZER(12), SQLITE3_MUTEX_INITIALIZER(13) }; static int winMutex_isInit = 0; static int winMutex_isNt = -1; /* <0 means "need to query" */ /* As the winMutexInit() and winMutexEnd() functions are called as part ** of the sqlite3_initialize() and sqlite3_shutdown() processing, the ** "interlocked" magic used here is probably not strictly necessary. */ static LONG SQLITE_WIN32_VOLATILE winMutex_lock = 0; SQLITE_API int sqlite3_win32_is_nt(void); /* os_win.c */ SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */ static int winMutexInit(void){ /* The first to increment to 1 does actual initialization */ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ int i; for(i=0; i **
  • SQLITE_MUTEX_FAST **
  • SQLITE_MUTEX_RECURSIVE **
  • SQLITE_MUTEX_STATIC_MAIN **
  • SQLITE_MUTEX_STATIC_MEM **
  • SQLITE_MUTEX_STATIC_OPEN **
  • SQLITE_MUTEX_STATIC_PRNG **
  • SQLITE_MUTEX_STATIC_LRU **
  • SQLITE_MUTEX_STATIC_PMEM **
  • SQLITE_MUTEX_STATIC_APP1 **
  • SQLITE_MUTEX_STATIC_APP2 **
  • SQLITE_MUTEX_STATIC_APP3 **
  • SQLITE_MUTEX_STATIC_VFS1 **
  • SQLITE_MUTEX_STATIC_VFS2 **
  • SQLITE_MUTEX_STATIC_VFS3 ** ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *winMutexAlloc(int iType){ sqlite3_mutex *p; switch( iType ){ case SQLITE_MUTEX_FAST: case SQLITE_MUTEX_RECURSIVE: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->id = iType; #ifdef SQLITE_DEBUG #ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC p->trace = 1; #endif #endif #if SQLITE_OS_WINRT InitializeCriticalSectionEx(&p->mutex, 0, 0); #else InitializeCriticalSection(&p->mutex); #endif } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &winMutex_staticMutexes[iType-2]; #ifdef SQLITE_DEBUG #ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC InterlockedCompareExchange(&p->trace, 1, 0); #endif #endif break; } } assert( p==0 || p->id==iType ); return p; } /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void winMutexFree(sqlite3_mutex *p){ assert( p ); assert( p->nRef==0 && p->owner==0 ); if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ){ DeleteCriticalSection(&p->mutex); sqlite3_free(p); }else{ #ifdef SQLITE_ENABLE_API_ARMOR (void)SQLITE_MISUSE_BKPT; #endif } } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void winMutexEnter(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif #ifdef SQLITE_DEBUG assert( p ); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); #else assert( p ); #endif assert( winMutex_isInit==1 ); EnterCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG assert( p->nRef>0 || p->owner==0 ); p->owner = tid; p->nRef++; if( p->trace ){ OSTRACE(("ENTER-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n", tid, p->id, p, p->trace, p->nRef)); } #endif } static int winMutexTry(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif int rc = SQLITE_BUSY; assert( p ); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); /* ** The sqlite3_mutex_try() routine is very rarely used, and when it ** is used it is merely an optimization. So it is OK for it to always ** fail. ** ** The TryEnterCriticalSection() interface is only available on WinNT. ** And some windows compilers complain if you try to use it without ** first doing some #defines that prevent SQLite from building on Win98. ** For that reason, we will omit this optimization for now. See ** ticket #2685. */ #if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400 assert( winMutex_isInit==1 ); assert( winMutex_isNt>=-1 && winMutex_isNt<=1 ); if( winMutex_isNt<0 ){ winMutex_isNt = sqlite3_win32_is_nt(); } assert( winMutex_isNt==0 || winMutex_isNt==1 ); if( winMutex_isNt && TryEnterCriticalSection(&p->mutex) ){ #ifdef SQLITE_DEBUG p->owner = tid; p->nRef++; #endif rc = SQLITE_OK; } #else UNUSED_PARAMETER(p); #endif #ifdef SQLITE_DEBUG if( p->trace ){ OSTRACE(("TRY-MUTEX tid=%lu, mutex(%d)=%p (%d), owner=%lu, nRef=%d, rc=%s\n", tid, p->id, p, p->trace, p->owner, p->nRef, sqlite3ErrName(rc))); } #endif return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void winMutexLeave(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif assert( p ); #ifdef SQLITE_DEBUG assert( p->nRef>0 ); assert( p->owner==tid ); p->nRef--; if( p->nRef==0 ) p->owner = 0; assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #endif assert( winMutex_isInit==1 ); LeaveCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG if( p->trace ){ OSTRACE(("LEAVE-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n", tid, p->id, p, p->trace, p->nRef)); } #endif } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ static const sqlite3_mutex_methods sMutex = { winMutexInit, winMutexEnd, winMutexAlloc, winMutexFree, winMutexEnter, winMutexTry, winMutexLeave, #ifdef SQLITE_DEBUG winMutexHeld, winMutexNotheld #else 0, 0 #endif }; return &sMutex; } #endif /* SQLITE_MUTEX_W32 */ /************** End of mutex_w32.c *******************************************/ /************** Begin file malloc.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** Memory allocation functions used throughout sqlite. */ /* #include "sqliteInt.h" */ /* #include */ /* ** Attempt to release up to n bytes of non-essential memory currently ** held by SQLite. An example of non-essential memory is memory used to ** cache database pages that are not currently in use. */ SQLITE_API int sqlite3_release_memory(int n){ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT return sqlite3PcacheReleaseMemory(n); #else /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine ** is a no-op returning zero if SQLite is not compiled with ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ UNUSED_PARAMETER(n); return 0; #endif } /* ** Default value of the hard heap limit. 0 means "no limit". */ #ifndef SQLITE_MAX_MEMORY # define SQLITE_MAX_MEMORY 0 #endif /* ** State information local to the memory allocation subsystem. */ static SQLITE_WSD struct Mem0Global { sqlite3_mutex *mutex; /* Mutex to serialize access */ sqlite3_int64 alarmThreshold; /* The soft heap limit */ sqlite3_int64 hardLimit; /* The hard upper bound on memory */ /* ** True if heap is nearly "full" where "full" is defined by the ** sqlite3_soft_heap_limit() setting. */ int nearlyFull; } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; #define mem0 GLOBAL(struct Mem0Global, mem0) /* ** Return the memory allocator mutex. sqlite3_status() needs it. */ SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void){ return mem0.mutex; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. It used to set an alarm callback ** that was invoked when memory usage grew too large. Now it is a ** no-op. */ SQLITE_API int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ (void)xCallback; (void)pArg; (void)iThreshold; return SQLITE_OK; } #endif /* ** Set the soft heap-size limit for the library. An argument of ** zero disables the limit. A negative argument is a no-op used to ** obtain the return value. ** ** The return value is the value of the heap limit just before this ** interface was called. ** ** If the hard heap limit is enabled, then the soft heap limit cannot ** be disabled nor raised above the hard heap limit. */ SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; sqlite3_int64 excess; sqlite3_int64 nUsed; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.alarmThreshold; if( n<0 ){ sqlite3_mutex_leave(mem0.mutex); return priorLimit; } if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ n = mem0.hardLimit; } mem0.alarmThreshold = n; nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed); sqlite3_mutex_leave(mem0.mutex); excess = sqlite3_memory_used() - n; if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); return priorLimit; } SQLITE_API void sqlite3_soft_heap_limit(int n){ if( n<0 ) n = 0; sqlite3_soft_heap_limit64(n); } /* ** Set the hard heap-size limit for the library. An argument of zero ** disables the hard heap limit. A negative argument is a no-op used ** to obtain the return value without affecting the hard heap limit. ** ** The return value is the value of the hard heap limit just prior to ** calling this interface. ** ** Setting the hard heap limit will also activate the soft heap limit ** and constrain the soft heap limit to be no more than the hard heap ** limit. */ SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.hardLimit; if( n>=0 ){ mem0.hardLimit = n; if( n0 ); /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal ** implementation of malloc_good_size(), which must be called in debug ** mode and specifically when the DMD "Dark Matter Detector" is enabled ** or else a crash results. Hence, do not attempt to optimize out the ** following xRoundup() call. */ nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmThreshold>0 ){ sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.alarmThreshold - nFull ){ AtomicStore(&mem0.nearlyFull, 1); sqlite3MallocAlarm(nFull); if( mem0.hardLimit ){ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.hardLimit - nFull ){ *pp = 0; return; } } }else{ AtomicStore(&mem0.nearlyFull, 0); } } p = sqlite3GlobalConfig.m.xMalloc(nFull); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( p==0 && mem0.alarmThreshold>0 ){ sqlite3MallocAlarm(nFull); p = sqlite3GlobalConfig.m.xMalloc(nFull); } #endif if( p ){ nFull = sqlite3MallocSize(p); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); } *pp = p; } /* ** Maximum size of any single memory allocation. ** ** This is not a limit on the total amount of memory used. This is ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc(). ** ** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391 ** This provides a 256-byte safety margin for defense against 32-bit ** signed integer overflow bugs when computing memory allocation sizes. ** Paranoid applications might want to reduce the maximum allocation size ** further for an even larger safety margin. 0x3fffffff or 0x0fffffff ** or even smaller would be reasonable upper bounds on the size of a memory ** allocations for most applications. */ #ifndef SQLITE_MAX_ALLOCATION_SIZE # define SQLITE_MAX_ALLOCATION_SIZE 2147483391 #endif #if SQLITE_MAX_ALLOCATION_SIZE>2147483391 # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391 #endif /* ** Allocate memory. This routine is like sqlite3_malloc() except that it ** assumes the memory subsystem has already been initialized. */ SQLITE_PRIVATE void *sqlite3Malloc(u64 n){ void *p; if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){ p = 0; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); mallocWithAlarm((int)n, &p); sqlite3_mutex_leave(mem0.mutex); }else{ p = sqlite3GlobalConfig.m.xMalloc((int)n); } assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ return p; } /* ** This version of the memory allocation is for use by the application. ** First make sure the memory subsystem is initialized, then do the ** allocation. */ SQLITE_API void *sqlite3_malloc(int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return n<=0 ? 0 : sqlite3Malloc(n); } SQLITE_API void *sqlite3_malloc64(sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Malloc(n); } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, const void *p){ return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd); } #else #define isLookaside(A,B) 0 #endif /* ** Return the size of a memory allocation previously obtained from ** sqlite3Malloc() or sqlite3_malloc(). */ SQLITE_PRIVATE int sqlite3MallocSize(const void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize((void*)p); } static int lookasideMallocSize(sqlite3 *db, const void *p){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE return plookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL; #else return db->lookaside.szTrue; #endif } SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, const void *p){ assert( p!=0 ); #ifdef SQLITE_DEBUG if( db==0 ){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); }else if( !isLookaside(db,p) ){ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); } #endif if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ assert( sqlite3_mutex_held(db->mutex) ); return LOOKASIDE_SMALL; } #endif if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ assert( sqlite3_mutex_held(db->mutex) ); return db->lookaside.szTrue; } } } return sqlite3GlobalConfig.m.xSize((void*)p); } SQLITE_API sqlite3_uint64 sqlite3_msize(void *p){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return p ? sqlite3GlobalConfig.m.xSize(p) : 0; } /* ** Free memory previously obtained from sqlite3Malloc(). */ SQLITE_API void sqlite3_free(void *p){ if( p==0 ) return; /* IMP: R-49053-54554 */ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } } /* ** Add the size of memory allocation "p" to the count in ** *db->pnBytesFreed. */ static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ *db->pnBytesFreed += sqlite3DbMallocSize(db,p); } /* ** Free memory that might be associated with a particular database ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. */ SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3 *db, void *p){ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( p ) sqlite3DbFreeNN(db, p); } /* ** Change the size of an existing memory allocation */ SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){ int nOld, nNew, nDiff; void *pNew; assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); if( pOld==0 ){ return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ } if( nBytes==0 ){ sqlite3_free(pOld); /* IMP: R-26507-47431 */ return 0; } if( nBytes>=0x7fffff00 ){ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ return 0; } nOld = sqlite3MallocSize(pOld); /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second ** argument to xRealloc is always a value returned by a prior call to ** xRoundup. */ nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_int64 nUsed; sqlite3_mutex_enter(mem0.mutex); sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); nDiff = nNew - nOld; if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= mem0.alarmThreshold-nDiff ){ sqlite3MallocAlarm(nDiff); if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){ sqlite3_mutex_leave(mem0.mutex); return 0; } } pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( pNew==0 && mem0.alarmThreshold>0 ){ sqlite3MallocAlarm((int)nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } #endif if( pNew ){ nNew = sqlite3MallocSize(pNew); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); } sqlite3_mutex_leave(mem0.mutex); }else{ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ return pNew; } /* ** The public interface to sqlite3Realloc. Make sure that the memory ** subsystem is initialized prior to invoking sqliteRealloc. */ SQLITE_API void *sqlite3_realloc(void *pOld, int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif if( n<0 ) n = 0; /* IMP: R-26507-47431 */ return sqlite3Realloc(pOld, n); } SQLITE_API void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Realloc(pOld, n); } /* ** Allocate and zero memory. */ SQLITE_PRIVATE void *sqlite3MallocZero(u64 n){ void *p = sqlite3Malloc(n); if( p ){ memset(p, 0, (size_t)n); } return p; } /* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ void *p; testcase( db==0 ); p = sqlite3DbMallocRaw(db, n); if( p ) memset(p, 0, (size_t)n); return p; } /* Finish the work of sqlite3DbMallocRawNN for the unusual and ** slower case when the allocation cannot be fulfilled using lookaside. */ static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ void *p; assert( db!=0 ); p = sqlite3Malloc(n); if( !p ) sqlite3OomFault(db); sqlite3MemdebugSetType(p, (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); return p; } /* ** Allocate memory, either lookaside (if possible) or heap. ** If the allocation fails, set the mallocFailed flag in ** the connection pointer. ** ** If db!=0 and db->mallocFailed is true (indicating a prior malloc ** failure on the same database connection) then always return 0. ** Hence for a particular database connection, once malloc starts ** failing, it fails consistently until mallocFailed is reset. ** This is an important assumption. There are many places in the ** code that do things like this: ** ** int *a = (int*)sqlite3DbMallocRaw(db, 100); ** int *b = (int*)sqlite3DbMallocRaw(db, 200); ** if( b ) a[10] = 9; ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. ** ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is ** not a NULL pointer. */ SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ void *p; if( db ) return sqlite3DbMallocRawNN(db, n); p = sqlite3Malloc(n); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); return p; } SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ #ifndef SQLITE_OMIT_LOOKASIDE LookasideSlot *pBuf; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( db->pnBytesFreed==0 ); if( n>db->lookaside.sz ){ if( !db->lookaside.bDisable ){ db->lookaside.anStat[1]++; }else if( db->mallocFailed ){ return 0; } return dbMallocRawFinish(db, n); } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( n<=LOOKASIDE_SMALL ){ if( (pBuf = db->lookaside.pSmallFree)!=0 ){ db->lookaside.pSmallFree = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){ db->lookaside.pSmallInit = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; } } #endif if( (pBuf = db->lookaside.pFree)!=0 ){ db->lookaside.pFree = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else if( (pBuf = db->lookaside.pInit)!=0 ){ db->lookaside.pInit = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else{ db->lookaside.anStat[2]++; } #else assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( db->pnBytesFreed==0 ); if( db->mallocFailed ){ return 0; } #endif return dbMallocRawFinish(db, n); } /* Forward declaration */ static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ assert( db!=0 ); if( p==0 ) return sqlite3DbMallocRawNN(db, n); assert( sqlite3_mutex_held(db->mutex) ); if( ((uptr)p)<(uptr)db->lookaside.pEnd ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){ if( n<=LOOKASIDE_SMALL ) return p; }else #endif if( ((uptr)p)>=(uptr)db->lookaside.pStart ){ if( n<=db->lookaside.szTrue ) return p; } } return dbReallocFinish(db, p, n); } static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( p!=0 ); if( db->mallocFailed==0 ){ if( isLookaside(db, p) ){ pNew = sqlite3DbMallocRawNN(db, n); if( pNew ){ memcpy(pNew, p, lookasideMallocSize(db, p)); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3Realloc(p, n); if( !pNew ){ sqlite3OomFault(db); } sqlite3MemdebugSetType(pNew, (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p ** and set the mallocFailed flag in the database connection. */ SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ void *pNew; pNew = sqlite3DbRealloc(db, p, n); if( !pNew ){ sqlite3DbFree(db, p); } return pNew; } /* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** ThreadData structure. */ SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){ char *zNew; size_t n; if( z==0 ){ return 0; } n = strlen(z) + 1; zNew = sqlite3DbMallocRaw(db, n); if( zNew ){ memcpy(zNew, z, n); } return zNew; } SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ char *zNew; assert( db!=0 ); assert( z!=0 || n==0 ); assert( (n&0x7fffffff)==n ); zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0; if( zNew ){ memcpy(zNew, z, (size_t)n); zNew[n] = 0; } return zNew; } /* ** The text between zStart and zEnd represents a phrase within a larger ** SQL statement. Make a copy of this phrase in space obtained form ** sqlite3DbMalloc(). Omit leading and trailing whitespace. */ SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ int n; #ifdef SQLITE_DEBUG /* Because of the way the parser works, the span is guaranteed to contain ** at least one non-space character */ for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]mallocFailed, and also ** temporarily disable the lookaside memory allocator and interrupt ** any running VDBEs. ** ** Always return a NULL pointer so that this routine can be invoked using ** ** return sqlite3OomFault(db); ** ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly ** common case where no OOM occurs. */ SQLITE_PRIVATE void *sqlite3OomFault(sqlite3 *db){ if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ db->mallocFailed = 1; if( db->nVdbeExec>0 ){ AtomicStore(&db->u1.isInterrupted, 1); } DisableLookaside; if( db->pParse ){ Parse *pParse; sqlite3ErrorMsg(db->pParse, "out of memory"); db->pParse->rc = SQLITE_NOMEM_BKPT; for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){ pParse->nErr++; pParse->rc = SQLITE_NOMEM; } } } return 0; } /* ** This routine reactivates the memory allocator and clears the ** db->mallocFailed flag as necessary. ** ** The memory allocator is not restarted if there are running ** VDBEs. */ SQLITE_PRIVATE void sqlite3OomClear(sqlite3 *db){ if( db->mallocFailed && db->nVdbeExec==0 ){ db->mallocFailed = 0; AtomicStore(&db->u1.isInterrupted, 0); assert( db->lookaside.bDisable>0 ); EnableLookaside; } } /* ** Take actions at the end of an API call to deal with error codes. */ static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){ if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomClear(db); sqlite3Error(db, SQLITE_NOMEM); return SQLITE_NOMEM_BKPT; } return rc & db->errMask; } /* ** This function must be called before exiting any API function (i.e. ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** ** If an OOM as occurred, then the connection error-code (the value ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. */ SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){ /* If the db handle must hold the connection handle mutex here. ** Otherwise the read (and possible write) of db->mallocFailed ** is unsafe, as is the call to sqlite3Error(). */ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed || rc ){ return apiHandleError(db, rc); } return rc & db->errMask; } /************** End of malloc.c **********************************************/ /************** Begin file printf.c ******************************************/ /* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. ** ************************************************************************** ** ** This file contains code for a set of "printf"-like routines. These ** routines format strings much like the printf() from the standard C ** library, though the implementation here has enhancements to support ** SQLite. */ /* #include "sqliteInt.h" */ /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ #define etRADIX 0 /* non-decimal integer types. %x %o */ #define etFLOAT 1 /* Floating point. %f */ #define etEXP 2 /* Exponentional notation. %e and %E */ #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ #define etSIZE 4 /* Return number of characters processed so far. %n */ #define etSTRING 5 /* Strings. %s */ #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ #define etPERCENT 7 /* Percent symbol. %% */ #define etCHARX 8 /* Characters. %c */ /* The rest are extensions, not normally found in printf() */ #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', NULL pointers replaced by SQL NULL. %Q */ #define etTOKEN 11 /* a pointer to a Token structure */ #define etSRCITEM 12 /* a pointer to a SrcItem */ #define etPOINTER 13 /* The %p conversion */ #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ #define etDECIMAL 16 /* %d or %u, but not %x, %o */ #define etINVALID 17 /* Any unrecognized conversion type */ /* ** An "etByte" is an 8-bit unsigned value. */ typedef unsigned char etByte; /* ** Each builtin conversion character (ex: the 'd' in "%d") is described ** by an instance of the following structure */ typedef struct et_info { /* Information about each format field */ char fmttype; /* The format field code letter */ etByte base; /* The base for radix conversion */ etByte flags; /* One or more of FLAG_ constants below */ etByte type; /* Conversion paradigm */ etByte charset; /* Offset into aDigits[] of the digits string */ etByte prefix; /* Offset into aPrefix[] of the prefix string */ } et_info; /* ** Allowed values for et_info.flags */ #define FLAG_SIGNED 1 /* True if the value to convert is signed */ #define FLAG_STRING 4 /* Allow infinite precision */ /* ** The following table is searched linearly, so it is good to put the ** most frequently used conversion types first. */ static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; static const char aPrefix[] = "-x0\000X0"; static const et_info fmtinfo[] = { { 'd', 10, 1, etDECIMAL, 0, 0 }, { 's', 0, 4, etSTRING, 0, 0 }, { 'g', 0, 1, etGENERIC, 30, 0 }, { 'z', 0, 4, etDYNSTRING, 0, 0 }, { 'q', 0, 4, etSQLESCAPE, 0, 0 }, { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, { 'c', 0, 0, etCHARX, 0, 0 }, { 'o', 8, 0, etRADIX, 0, 2 }, { 'u', 10, 0, etDECIMAL, 0, 0 }, { 'x', 16, 0, etRADIX, 16, 1 }, { 'X', 16, 0, etRADIX, 0, 4 }, #ifndef SQLITE_OMIT_FLOATING_POINT { 'f', 0, 1, etFLOAT, 0, 0 }, { 'e', 0, 1, etEXP, 30, 0 }, { 'E', 0, 1, etEXP, 14, 0 }, { 'G', 0, 1, etGENERIC, 14, 0 }, #endif { 'i', 10, 1, etDECIMAL, 0, 0 }, { 'n', 0, 0, etSIZE, 0, 0 }, { '%', 0, 0, etPERCENT, 0, 0 }, { 'p', 16, 0, etPOINTER, 0, 1 }, /* All the rest are undocumented and are for internal use only */ { 'T', 0, 0, etTOKEN, 0, 0 }, { 'S', 0, 0, etSRCITEM, 0, 0 }, { 'r', 10, 1, etORDINAL, 0, 0 }, }; /* Notes: ** ** %S Takes a pointer to SrcItem. Shows name or database.name ** %!S Like %S but prefer the zName over the zAlias */ /* ** Set the StrAccum object to an error mode. */ SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum *p, u8 eError){ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); p->accError = eError; if( p->mxAlloc ) sqlite3_str_reset(p); if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError); } /* ** Extra argument values from a PrintfArguments object */ static sqlite3_int64 getIntArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0; return sqlite3_value_int64(p->apArg[p->nUsed++]); } static double getDoubleArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0.0; return sqlite3_value_double(p->apArg[p->nUsed++]); } static char *getTextArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0; return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); } /* ** Allocate memory for a temporary buffer needed for printf rendering. ** ** If the requested size of the temp buffer is larger than the size ** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error. ** Do the size check before the memory allocation to prevent rogue ** SQL from requesting large allocations using the precision or width ** field of the printf() function. */ static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){ char *z; if( pAccum->accError ) return 0; if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){ sqlite3StrAccumSetError(pAccum, SQLITE_TOOBIG); return 0; } z = sqlite3DbMallocRaw(pAccum->db, n); if( z==0 ){ sqlite3StrAccumSetError(pAccum, SQLITE_NOMEM); } return z; } /* ** On machines with a small stack size, you can redefine the ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. */ #ifndef SQLITE_PRINT_BUF_SIZE # define SQLITE_PRINT_BUF_SIZE 70 #endif #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ /* ** Hard limit on the precision of floating-point conversions. */ #ifndef SQLITE_PRINTF_PRECISION_LIMIT # define SQLITE_FP_PRECISION_LIMIT 100000000 #endif /* ** Render a string given by "fmt" into the StrAccum object. */ SQLITE_API void sqlite3_str_vappendf( sqlite3_str *pAccum, /* Accumulate results here */ const char *fmt, /* Format string */ va_list ap /* arguments */ ){ int c; /* Next character in the format string */ char *bufpt; /* Pointer to the conversion buffer */ int precision; /* Precision of the current field */ int length; /* Length of the field */ int idx; /* A general purpose loop counter */ int width; /* Width of the current field */ etByte flag_leftjustify; /* True if "-" flag is present */ etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ etByte flag_alternateform; /* True if "#" flag is present */ etByte flag_altform2; /* True if "!" flag is present */ etByte flag_zeropad; /* True if field width constant starts with zero */ etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ etByte done; /* Loop termination flag */ etByte cThousand; /* Thousands separator for %d and %u */ etByte xtype = etINVALID; /* Conversion paradigm */ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ double realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char *zOut; /* Rendering buffer */ int nOut; /* Size of the rendering buffer */ char *zExtra = 0; /* Malloced memory used by some conversion */ int exp, e2; /* exponent of real numbers */ etByte flag_dp; /* True if decimal point should be shown */ etByte flag_rtz; /* True if trailing zeros should be removed */ PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ char buf[etBUFSIZE]; /* Conversion buffer */ /* pAccum never starts out with an empty buffer that was obtained from ** malloc(). This precondition is required by the mprintf("%z...") ** optimization. */ assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); bufpt = 0; if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ pArgList = va_arg(ap, PrintfArguments*); bArgList = 1; }else{ bArgList = 0; } for(; (c=(*fmt))!=0; ++fmt){ if( c!='%' ){ bufpt = (char *)fmt; #if HAVE_STRCHRNUL fmt = strchrnul(fmt, '%'); #else do{ fmt++; }while( *fmt && *fmt != '%' ); #endif sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); if( *fmt==0 ) break; } if( (c=(*++fmt))==0 ){ sqlite3_str_append(pAccum, "%", 1); break; } /* Find out what flags are present */ flag_leftjustify = flag_prefix = cThousand = flag_alternateform = flag_altform2 = flag_zeropad = 0; done = 0; width = 0; flag_long = 0; precision = -1; do{ switch( c ){ case '-': flag_leftjustify = 1; break; case '+': flag_prefix = '+'; break; case ' ': flag_prefix = ' '; break; case '#': flag_alternateform = 1; break; case '!': flag_altform2 = 1; break; case '0': flag_zeropad = 1; break; case ',': cThousand = ','; break; default: done = 1; break; case 'l': { flag_long = 1; c = *++fmt; if( c=='l' ){ c = *++fmt; flag_long = 2; } done = 1; break; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { unsigned wx = c - '0'; while( (c = *++fmt)>='0' && c<='9' ){ wx = wx*10 + c - '0'; } testcase( wx>0x7fffffff ); width = wx & 0x7fffffff; #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ width = SQLITE_PRINTF_PRECISION_LIMIT; } #endif if( c!='.' && c!='l' ){ done = 1; }else{ fmt--; } break; } case '*': { if( bArgList ){ width = (int)getIntArg(pArgList); }else{ width = va_arg(ap,int); } if( width<0 ){ flag_leftjustify = 1; width = width >= -2147483647 ? -width : 0; } #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ width = SQLITE_PRINTF_PRECISION_LIMIT; } #endif if( (c = fmt[1])!='.' && c!='l' ){ c = *++fmt; done = 1; } break; } case '.': { c = *++fmt; if( c=='*' ){ if( bArgList ){ precision = (int)getIntArg(pArgList); }else{ precision = va_arg(ap,int); } if( precision<0 ){ precision = precision >= -2147483647 ? -precision : -1; } c = *++fmt; }else{ unsigned px = 0; while( c>='0' && c<='9' ){ px = px*10 + c - '0'; c = *++fmt; } testcase( px>0x7fffffff ); precision = px & 0x7fffffff; } #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ precision = SQLITE_PRINTF_PRECISION_LIMIT; } #endif if( c=='l' ){ --fmt; }else{ done = 1; } break; } } }while( !done && (c=(*++fmt))!=0 ); /* Fetch the info entry for the field */ infop = &fmtinfo[0]; xtype = etINVALID; for(idx=0; idxtype; break; } } /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_altform2 TRUE if a '!' is present. ** flag_prefix '+' or ' ' or zero ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long 1 for "l", 2 for "ll" ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ assert( width>=0 ); assert( precision>=(-1) ); switch( xtype ){ case etPOINTER: flag_long = sizeof(char*)==sizeof(i64) ? 2 : sizeof(char*)==sizeof(long int) ? 1 : 0; /* no break */ deliberate_fall_through case etORDINAL: case etRADIX: cThousand = 0; /* no break */ deliberate_fall_through case etDECIMAL: if( infop->flags & FLAG_SIGNED ){ i64 v; if( bArgList ){ v = getIntArg(pArgList); }else if( flag_long ){ if( flag_long==2 ){ v = va_arg(ap,i64) ; }else{ v = va_arg(ap,long int); } }else{ v = va_arg(ap,int); } if( v<0 ){ testcase( v==SMALLEST_INT64 ); testcase( v==(-1) ); longvalue = ~v; longvalue++; prefix = '-'; }else{ longvalue = v; prefix = flag_prefix; } }else{ if( bArgList ){ longvalue = (u64)getIntArg(pArgList); }else if( flag_long ){ if( flag_long==2 ){ longvalue = va_arg(ap,u64); }else{ longvalue = va_arg(ap,unsigned long int); } }else{ longvalue = va_arg(ap,unsigned int); } prefix = 0; } if( longvalue==0 ) flag_alternateform = 0; if( flag_zeropad && precision=4 || (longvalue/10)%10==1 ){ x = 0; } *(--bufpt) = zOrd[x*2+1]; *(--bufpt) = zOrd[x*2]; } { const char *cset = &aDigits[infop->charset]; u8 base = infop->base; do{ /* Convert to ascii */ *(--bufpt) = cset[longvalue%base]; longvalue = longvalue/base; }while( longvalue>0 ); } length = (int)(&zOut[nOut-1]-bufpt); while( precision>length ){ *(--bufpt) = '0'; /* Zero pad */ length++; } if( cThousand ){ int nn = (length - 1)/3; /* Number of "," to insert */ int ix = (length - 1)%3 + 1; bufpt -= nn; for(idx=0; nn>0; idx++){ bufpt[idx] = bufpt[idx+nn]; ix--; if( ix==0 ){ bufpt[++idx] = cThousand; nn--; ix = 3; } } } if( prefix ) *(--bufpt) = prefix; /* Add sign */ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ const char *pre; char x; pre = &aPrefix[infop->prefix]; for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; } length = (int)(&zOut[nOut-1]-bufpt); break; case etFLOAT: case etEXP: case etGENERIC: { FpDecode s; int iRound; int j; if( bArgList ){ realvalue = getDoubleArg(pArgList); }else{ realvalue = va_arg(ap,double); } if( precision<0 ) precision = 6; /* Set default precision */ #ifdef SQLITE_FP_PRECISION_LIMIT if( precision>SQLITE_FP_PRECISION_LIMIT ){ precision = SQLITE_FP_PRECISION_LIMIT; } #endif if( xtype==etFLOAT ){ iRound = -precision; }else if( xtype==etGENERIC ){ iRound = precision; }else{ iRound = precision+1; } sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16); if( s.isSpecial ){ if( s.isSpecial==2 ){ bufpt = flag_zeropad ? "null" : "NaN"; length = sqlite3Strlen30(bufpt); break; }else if( flag_zeropad ){ s.z[0] = '9'; s.iDP = 1000; s.n = 1; }else{ memcpy(buf, "-Inf", 5); bufpt = buf; if( s.sign=='-' ){ /* no-op */ }else if( flag_prefix ){ buf[0] = flag_prefix; }else{ bufpt++; } length = sqlite3Strlen30(bufpt); break; } } if( s.sign=='-' ){ prefix = '-'; }else{ prefix = flag_prefix; } exp = s.iDP-1; if( xtype==etGENERIC && precision>0 ) precision--; /* ** If the field type is etGENERIC, then convert to either etEXP ** or etFLOAT, as appropriate. */ if( xtype==etGENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = etEXP; }else{ precision = precision - exp; xtype = etFLOAT; } }else{ flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = s.iDP - 1; } bufpt = buf; { i64 szBufNeeded; /* Size of a temporary buffer needed */ szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15; if( cThousand && e2>0 ) szBufNeeded += (e2+2)/3; if( szBufNeeded > etBUFSIZE ){ bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded); if( bufpt==0 ) return; } } zOut = bufpt; flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; /* The sign in front of the number */ if( prefix ){ *(bufpt++) = prefix; } /* Digits prior to the decimal point */ j = 0; if( e2<0 ){ *(bufpt++) = '0'; }else{ for(; e2>=0; e2--){ *(bufpt++) = j1 ) *(bufpt++) = ','; } } /* The decimal point */ if( flag_dp ){ *(bufpt++) = '.'; } /* "0" digits after the decimal point but before the first ** significant digit of the number */ for(e2++; e2<0 && precision>0; precision--, e2++){ *(bufpt++) = '0'; } /* Significant digits after the decimal point */ while( (precision--)>0 ){ *(bufpt++) = jzOut ); if( bufpt[-1]=='.' ){ if( flag_altform2 ){ *(bufpt++) = '0'; }else{ *(--bufpt) = 0; } } } /* Add the "eNNN" suffix */ if( xtype==etEXP ){ exp = s.iDP - 1; *(bufpt++) = aDigits[infop->charset]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; }else{ *(bufpt++) = '+'; } if( exp>=100 ){ *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ exp %= 100; } *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ } *bufpt = 0; /* The converted number is in buf[] and zero terminated. Output it. ** Note that the number is in the usual order, not reversed as with ** integer conversions. */ length = (int)(bufpt-zOut); bufpt = zOut; /* Special case: Add leading zeros if the flag_zeropad flag is ** set and we are not left justified */ if( flag_zeropad && !flag_leftjustify && length < width){ int i; int nPad = width - length; for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } break; } case etSIZE: if( !bArgList ){ *(va_arg(ap,int*)) = pAccum->nChar; } length = width = 0; break; case etPERCENT: buf[0] = '%'; bufpt = buf; length = 1; break; case etCHARX: if( bArgList ){ bufpt = getTextArg(pArgList); length = 1; if( bufpt ){ buf[0] = c = *(bufpt++); if( (c&0xc0)==0xc0 ){ while( length<4 && (bufpt[0]&0xc0)==0x80 ){ buf[length++] = *(bufpt++); } } }else{ buf[0] = 0; } }else{ unsigned int ch = va_arg(ap,unsigned int); if( ch<0x00080 ){ buf[0] = ch & 0xff; length = 1; }else if( ch<0x00800 ){ buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); buf[1] = 0x80 + (u8)(ch & 0x3f); length = 2; }else if( ch<0x10000 ){ buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); buf[2] = 0x80 + (u8)(ch & 0x3f); length = 3; }else{ buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); buf[3] = 0x80 + (u8)(ch & 0x3f); length = 4; } } if( precision>1 ){ i64 nPrior = 1; width -= precision-1; if( width>1 && !flag_leftjustify ){ sqlite3_str_appendchar(pAccum, width-1, ' '); width = 0; } sqlite3_str_append(pAccum, buf, length); precision--; while( precision > 1 ){ i64 nCopyBytes; if( nPrior > precision-1 ) nPrior = precision - 1; nCopyBytes = length*nPrior; if( nCopyBytes + pAccum->nChar >= pAccum->nAlloc ){ sqlite3StrAccumEnlarge(pAccum, nCopyBytes); } if( pAccum->accError ) break; sqlite3_str_append(pAccum, &pAccum->zText[pAccum->nChar-nCopyBytes], nCopyBytes); precision -= nPrior; nPrior *= 2; } } bufpt = buf; flag_altform2 = 1; goto adjust_width_for_utf8; case etSTRING: case etDYNSTRING: if( bArgList ){ bufpt = getTextArg(pArgList); xtype = etSTRING; }else{ bufpt = va_arg(ap,char*); } if( bufpt==0 ){ bufpt = ""; }else if( xtype==etDYNSTRING ){ if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 && pAccum->accError==0 ){ /* Special optimization for sqlite3_mprintf("%z..."): ** Extend an existing memory allocation rather than creating ** a new one. */ assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); pAccum->zText = bufpt; pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; length = 0; break; } zExtra = bufpt; } if( precision>=0 ){ if( flag_altform2 ){ /* Set length to the number of bytes needed in order to display ** precision characters */ unsigned char *z = (unsigned char*)bufpt; while( precision-- > 0 && z[0] ){ SQLITE_SKIP_UTF8(z); } length = (int)(z - (unsigned char*)bufpt); }else{ for(length=0; length0 ){ /* Adjust width to account for extra bytes in UTF-8 characters */ int ii = length - 1; while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; } break; case etSQLESCAPE: /* %q: Escape ' characters */ case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ case etSQLESCAPE3: { /* %w: Escape " characters */ i64 i, j, k, n; int needQuote, isnull; char ch; char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ char *escarg; if( bArgList ){ escarg = getTextArg(pArgList); }else{ escarg = va_arg(ap,char*); } isnull = escarg==0; if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); /* For %q, %Q, and %w, the precision is the number of bytes (or ** characters if the ! flags is present) to use from the input. ** Because of the extra quoting characters inserted, the number ** of output characters may be larger than the precision. */ k = precision; for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ if( ch==q ) n++; if( flag_altform2 && (ch&0xc0)==0xc0 ){ while( (escarg[i+1]&0xc0)==0x80 ){ i++; } } } needQuote = !isnull && xtype==etSQLESCAPE2; n += i + 3; if( n>etBUFSIZE ){ bufpt = zExtra = printfTempBuf(pAccum, n); if( bufpt==0 ) return; }else{ bufpt = buf; } j = 0; if( needQuote ) bufpt[j++] = q; k = i; for(i=0; iprintfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; if( flag_alternateform ){ /* %#T means an Expr pointer that uses Expr.u.zToken */ Expr *pExpr = va_arg(ap,Expr*); if( ALWAYS(pExpr) && ALWAYS(!ExprHasProperty(pExpr,EP_IntValue)) ){ sqlite3_str_appendall(pAccum, (const char*)pExpr->u.zToken); sqlite3RecordErrorOffsetOfExpr(pAccum->db, pExpr); } }else{ /* %T means a Token pointer */ Token *pToken = va_arg(ap, Token*); assert( bArgList==0 ); if( pToken && pToken->n ){ sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); sqlite3RecordErrorByteOffset(pAccum->db, pToken->z); } } length = width = 0; break; } case etSRCITEM: { SrcItem *pItem; if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pItem = va_arg(ap, SrcItem*); assert( bArgList==0 ); if( pItem->zAlias && !flag_altform2 ){ sqlite3_str_appendall(pAccum, pItem->zAlias); }else if( pItem->zName ){ if( pItem->zDatabase ){ sqlite3_str_appendall(pAccum, pItem->zDatabase); sqlite3_str_append(pAccum, ".", 1); } sqlite3_str_appendall(pAccum, pItem->zName); }else if( pItem->zAlias ){ sqlite3_str_appendall(pAccum, pItem->zAlias); }else{ Select *pSel = pItem->pSelect; assert( pSel!=0 ); if( pSel->selFlags & SF_NestedFrom ){ sqlite3_str_appendf(pAccum, "(join-%u)", pSel->selId); }else{ sqlite3_str_appendf(pAccum, "(subquery-%u)", pSel->selId); } } length = width = 0; break; } default: { assert( xtype==etINVALID ); return; } }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. Both length and width are in bytes, not characters, ** at this point. If the "!" flag was present on string conversions ** indicating that width and precision should be expressed in characters, ** then the values have been translated prior to reaching this point. */ width -= length; if( width>0 ){ if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); sqlite3_str_append(pAccum, bufpt, length); if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); }else{ sqlite3_str_append(pAccum, bufpt, length); } if( zExtra ){ sqlite3DbFree(pAccum->db, zExtra); zExtra = 0; } }/* End for loop over the format string */ } /* End of function */ /* ** The z string points to the first character of a token that is ** associated with an error. If db does not already have an error ** byte offset recorded, try to compute the error byte offset for ** z and set the error byte offset in db. */ SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3 *db, const char *z){ const Parse *pParse; const char *zText; const char *zEnd; assert( z!=0 ); if( NEVER(db==0) ) return; if( db->errByteOffset!=(-2) ) return; pParse = db->pParse; if( NEVER(pParse==0) ) return; zText =pParse->zTail; if( NEVER(zText==0) ) return; zEnd = &zText[strlen(zText)]; if( SQLITE_WITHIN(z,zText,zEnd) ){ db->errByteOffset = (int)(z-zText); } } /* ** If pExpr has a byte offset for the start of a token, record that as ** as the error offset. */ SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3 *db, const Expr *pExpr){ while( pExpr && (ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) || pExpr->w.iOfst<=0) ){ pExpr = pExpr->pLeft; } if( pExpr==0 ) return; db->errByteOffset = pExpr->w.iOfst; } /* ** Enlarge the memory allocation on a StrAccum object so that it is ** able to accept at least N more bytes of text. ** ** Return the number of bytes of text that StrAccum is able to accept ** after the attempted enlargement. The value returned might be zero. */ SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum *p, i64 N){ char *zNew; assert( p->nChar+N >= p->nAlloc ); /* Only called if really needed */ if( p->accError ){ testcase(p->accError==SQLITE_TOOBIG); testcase(p->accError==SQLITE_NOMEM); return 0; } if( p->mxAlloc==0 ){ sqlite3StrAccumSetError(p, SQLITE_TOOBIG); return p->nAlloc - p->nChar - 1; }else{ char *zOld = isMalloced(p) ? p->zText : 0; i64 szNew = p->nChar + N + 1; if( szNew+p->nChar<=p->mxAlloc ){ /* Force exponential buffer size growth as long as it does not overflow, ** to avoid having to call this routine too often */ szNew += p->nChar; } if( szNew > p->mxAlloc ){ sqlite3_str_reset(p); sqlite3StrAccumSetError(p, SQLITE_TOOBIG); return 0; }else{ p->nAlloc = (int)szNew; } if( p->db ){ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); }else{ zNew = sqlite3Realloc(zOld, p->nAlloc); } if( zNew ){ assert( p->zText!=0 || p->nChar==0 ); if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); p->zText = zNew; p->nAlloc = sqlite3DbMallocSize(p->db, zNew); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ sqlite3_str_reset(p); sqlite3StrAccumSetError(p, SQLITE_NOMEM); return 0; } } assert( N>=0 && N<=0x7fffffff ); return (int)N; } /* ** Append N copies of character c to the given string buffer. */ SQLITE_API void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ testcase( p->nChar + (i64)N > 0x7fffffff ); if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ return; } while( (N--)>0 ) p->zText[p->nChar++] = c; } /* ** The StrAccum "p" is not large enough to accept N new bytes of z[]. ** So enlarge if first, then do the append. ** ** This is a helper routine to sqlite3_str_append() that does special-case ** work (enlarging the buffer) using tail recursion, so that the ** sqlite3_str_append() routine can use fast calling semantics. */ static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ N = sqlite3StrAccumEnlarge(p, N); if( N>0 ){ memcpy(&p->zText[p->nChar], z, N); p->nChar += N; } } /* ** Append N bytes of text from z to the StrAccum object. Increase the ** size of the memory allocation for StrAccum if necessary. */ SQLITE_API void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ assert( z!=0 || N==0 ); assert( p->zText!=0 || p->nChar==0 || p->accError ); assert( N>=0 ); assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 ); if( p->nChar+N >= p->nAlloc ){ enlargeAndAppend(p,z,N); }else if( N ){ assert( p->zText ); p->nChar += N; memcpy(&p->zText[p->nChar-N], z, N); } } /* ** Append the complete text of zero-terminated string z[] to the p string. */ SQLITE_API void sqlite3_str_appendall(sqlite3_str *p, const char *z){ sqlite3_str_append(p, z, sqlite3Strlen30(z)); } /* ** Finish off a string by making sure it is zero-terminated. ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ char *zText; assert( p->mxAlloc>0 && !isMalloced(p) ); zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); if( zText ){ memcpy(zText, p->zText, p->nChar+1); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ sqlite3StrAccumSetError(p, SQLITE_NOMEM); } p->zText = zText; return zText; } SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* ** Use the content of the StrAccum passed as the second argument ** as the result of an SQL function. */ SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context *pCtx, StrAccum *p){ if( p->accError ){ sqlite3_result_error_code(pCtx, p->accError); sqlite3_str_reset(p); }else if( isMalloced(p) ){ sqlite3_result_text(pCtx, p->zText, p->nChar, SQLITE_DYNAMIC); }else{ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); sqlite3_str_reset(p); } } /* ** This singleton is an sqlite3_str object that is returned if ** sqlite3_malloc() fails to provide space for a real one. This ** sqlite3_str object accepts no new text and always returns ** an SQLITE_NOMEM error. */ static sqlite3_str sqlite3OomStr = { 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 }; /* Finalize a string created using sqlite3_str_new(). */ SQLITE_API char *sqlite3_str_finish(sqlite3_str *p){ char *z; if( p!=0 && p!=&sqlite3OomStr ){ z = sqlite3StrAccumFinish(p); sqlite3_free(p); }else{ z = 0; } return z; } /* Return any error code associated with p */ SQLITE_API int sqlite3_str_errcode(sqlite3_str *p){ return p ? p->accError : SQLITE_NOMEM; } /* Return the current length of p in bytes */ SQLITE_API int sqlite3_str_length(sqlite3_str *p){ return p ? p->nChar : 0; } /* Return the current value for p */ SQLITE_API char *sqlite3_str_value(sqlite3_str *p){ if( p==0 || p->nChar==0 ) return 0; p->zText[p->nChar] = 0; return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. */ SQLITE_API void sqlite3_str_reset(StrAccum *p){ if( isMalloced(p) ){ sqlite3DbFree(p->db, p->zText); p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; } p->nAlloc = 0; p->nChar = 0; p->zText = 0; } /* ** Initialize a string accumulator. ** ** p: The accumulator to be initialized. ** db: Pointer to a database connection. May be NULL. Lookaside ** memory is used if not NULL. db->mallocFailed is set appropriately ** when not NULL. ** zBase: An initial buffer. May be NULL in which case the initial buffer ** is malloced. ** n: Size of zBase in bytes. If total space requirements never exceed ** n then no memory allocations ever occur. ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory ** allocations will ever occur. */ SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ p->zText = zBase; p->db = db; p->nAlloc = n; p->mxAlloc = mx; p->nChar = 0; p->accError = 0; p->printfFlags = 0; } /* Allocate and initialize a new dynamic string object */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3 *db){ sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); if( p ){ sqlite3StrAccumInit(p, 0, 0, 0, db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); }else{ p = &sqlite3OomStr; } return p; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; assert( db!=0 ); sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); acc.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); if( acc.accError==SQLITE_NOMEM ){ sqlite3OomFault(db); } return z; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); return z; } /* ** Print into memory obtained from sqlite3_malloc(). Omit the internal ** %-conversion extensions. */ SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifdef SQLITE_ENABLE_API_ARMOR if( zFormat==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal ** %-conversion extensions. */ SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){ va_list ap; char *z; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); return z; } /* ** sqlite3_snprintf() works like snprintf() except that it ignores the ** current locale settings. This is important for SQLite because we ** are not able to use a "," as the decimal point in place of "." as ** specified by some locales. ** ** Oops: The first two arguments of sqlite3_snprintf() are backwards ** from the snprintf() standard. Unfortunately, it is too late to change ** this without breaking compatibility, so we just have to live with the ** mistake. ** ** sqlite3_vsnprintf() is the varargs version. */ SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ StrAccum acc; if( n<=0 ) return zBuf; #ifdef SQLITE_ENABLE_API_ARMOR if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); sqlite3_str_vappendf(&acc, zFormat, ap); zBuf[acc.nChar] = 0; return zBuf; } SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ StrAccum acc; va_list ap; if( n<=0 ) return zBuf; #ifdef SQLITE_ENABLE_API_ARMOR if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); va_start(ap,zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); zBuf[acc.nChar] = 0; return zBuf; } /* ** This is the routine that actually formats the sqlite3_log() message. ** We house it in a separate routine from sqlite3_log() to avoid using ** stack space on small-stack systems when logging is disabled. ** ** sqlite3_log() must render into a static buffer. It cannot dynamically ** allocate memory because it might be called while the memory allocator ** mutex is held. ** ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for ** certain format characters (%q) or for very large precisions or widths. ** Care must be taken that any sqlite3_log() calls that occur while the ** memory mutex is held do not use these mechanisms. */ static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ StrAccum acc; /* String accumulator */ char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); sqlite3_str_vappendf(&acc, zFormat, ap); sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, sqlite3StrAccumFinish(&acc)); } /* ** Format and write a message to the log if logging is enabled. */ SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){ va_list ap; /* Vararg list */ if( sqlite3GlobalConfig.xLog ){ va_start(ap, zFormat); renderLogMsg(iErrCode, zFormat, ap); va_end(ap); } } #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) /* ** A version of printf() that understands %lld. Used for debugging. ** The printf() built into some versions of windows does not understand %lld ** and segfaults if you give it a long long int. */ SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ va_list ap; StrAccum acc; char zBuf[SQLITE_PRINT_BUF_SIZE*10]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); sqlite3StrAccumFinish(&acc); #ifdef SQLITE_OS_TRACE_PROC { extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); } #else fprintf(stdout,"%s", zBuf); fflush(stdout); #endif } #endif /* ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. */ SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3_str_vappendf(p, zFormat, ap); va_end(ap); } /***************************************************************************** ** Reference counted string storage *****************************************************************************/ /* ** Increase the reference count of the string by one. ** ** The input parameter is returned. */ SQLITE_PRIVATE char *sqlite3RCStrRef(char *z){ RCStr *p = (RCStr*)z; assert( p!=0 ); p--; p->nRCRef++; return z; } /* ** Decrease the reference count by one. Free the string when the ** reference count reaches zero. */ SQLITE_PRIVATE void sqlite3RCStrUnref(char *z){ RCStr *p = (RCStr*)z; assert( p!=0 ); p--; assert( p->nRCRef>0 ); if( p->nRCRef>=2 ){ p->nRCRef--; }else{ sqlite3_free(p); } } /* ** Create a new string that is capable of holding N bytes of text, not counting ** the zero byte at the end. The string is uninitialized. ** ** The reference count is initially 1. Call sqlite3RCStrUnref() to free the ** newly allocated string. ** ** This routine returns 0 on an OOM. */ SQLITE_PRIVATE char *sqlite3RCStrNew(u64 N){ RCStr *p = sqlite3_malloc64( N + sizeof(*p) + 1 ); if( p==0 ) return 0; p->nRCRef = 1; return (char*)&p[1]; } /* ** Change the size of the string so that it is able to hold N bytes. ** The string might be reallocated, so return the new allocation. */ SQLITE_PRIVATE char *sqlite3RCStrResize(char *z, u64 N){ RCStr *p = (RCStr*)z; RCStr *pNew; assert( p!=0 ); p--; assert( p->nRCRef==1 ); pNew = sqlite3_realloc64(p, N+sizeof(RCStr)+1); if( pNew==0 ){ sqlite3_free(p); return 0; }else{ return (char*)&pNew[1]; } } /************** End of printf.c **********************************************/ /************** Begin file treeview.c ****************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains C code to implement the TreeView debugging routines. ** These routines print a parse tree to standard output for debugging and ** analysis. ** ** The interfaces in this file is only available when compiling ** with SQLITE_DEBUG. */ /* #include "sqliteInt.h" */ #ifdef SQLITE_DEBUG /* ** Add a new subitem to the tree. The moreToFollow flag indicates that this ** is not the last item in the tree. */ static void sqlite3TreeViewPush(TreeView **pp, u8 moreToFollow){ TreeView *p = *pp; if( p==0 ){ *pp = p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return; memset(p, 0, sizeof(*p)); }else{ p->iLevel++; } assert( moreToFollow==0 || moreToFollow==1 ); if( p->iLevel<(int)sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow; } /* ** Finished with one layer of the tree */ static void sqlite3TreeViewPop(TreeView **pp){ TreeView *p = *pp; if( p==0 ) return; p->iLevel--; if( p->iLevel<0 ){ sqlite3_free(p); *pp = 0; } } /* ** Generate a single line of output for the tree, with a prefix that contains ** all the appropriate tree lines */ SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){ va_list ap; int i; StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; iiLevel && i<(int)sizeof(p->bLine)-1; i++){ sqlite3_str_append(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3_str_append(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } if( zFormat!=0 ){ va_start(ap, zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); assert( acc.nChar>0 || acc.accError ); sqlite3_str_append(&acc, "\n", 1); } sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } /* ** Shorthand for starting a new tree item that consists of a single label */ static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){ sqlite3TreeViewPush(&p, moreFollows); sqlite3TreeViewLine(p, "%s", zLabel); } /* ** Show a list of Column objects in tree format. */ SQLITE_PRIVATE void sqlite3TreeViewColumnList( TreeView *pView, const Column *aCol, int nCol, u8 moreToFollow ){ int i; sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewLine(pView, "COLUMNS"); for(i=0; inCte==0 ) return; if( pWith->pOuter ){ sqlite3TreeViewLine(pView, "WITH (0x%p, pOuter=0x%p)",pWith,pWith->pOuter); }else{ sqlite3TreeViewLine(pView, "WITH (0x%p)", pWith); } if( pWith->nCte>0 ){ sqlite3TreeViewPush(&pView, moreToFollow); for(i=0; inCte; i++){ StrAccum x; char zLine[1000]; const struct Cte *pCte = &pWith->a[i]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3_str_appendf(&x, "%s", pCte->zName); if( pCte->pCols && pCte->pCols->nExpr>0 ){ char cSep = '('; int j; for(j=0; jpCols->nExpr; j++){ sqlite3_str_appendf(&x, "%c%s", cSep, pCte->pCols->a[j].zEName); cSep = ','; } sqlite3_str_appendf(&x, ")"); } if( pCte->eM10d!=M10d_Any ){ sqlite3_str_appendf(&x, " %sMATERIALIZED", pCte->eM10d==M10d_No ? "NOT " : ""); } if( pCte->pUse ){ sqlite3_str_appendf(&x, " (pUse=0x%p, nUse=%d)", pCte->pUse, pCte->pUse->nUse); } sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, inCte-1); sqlite3TreeViewSelect(pView, pCte->pSelect, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); } } /* ** Generate a human-readable description of a SrcList object. */ SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView *pView, const SrcList *pSrc){ int i; if( pSrc==0 ) return; for(i=0; inSrc; i++){ const SrcItem *pItem = &pSrc->a[i]; StrAccum x; int n = 0; char zLine[1000]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); x.printfFlags |= SQLITE_PRINTF_INTERNAL; sqlite3_str_appendf(&x, "{%d:*} %!S", pItem->iCursor, pItem); if( pItem->pTab ){ sqlite3_str_appendf(&x, " tab=%Q nCol=%d ptr=%p used=%llx", pItem->pTab->zName, pItem->pTab->nCol, pItem->pTab, pItem->colUsed); } if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==(JT_LEFT|JT_RIGHT) ){ sqlite3_str_appendf(&x, " FULL-OUTER-JOIN"); }else if( pItem->fg.jointype & JT_LEFT ){ sqlite3_str_appendf(&x, " LEFT-JOIN"); }else if( pItem->fg.jointype & JT_RIGHT ){ sqlite3_str_appendf(&x, " RIGHT-JOIN"); }else if( pItem->fg.jointype & JT_CROSS ){ sqlite3_str_appendf(&x, " CROSS-JOIN"); } if( pItem->fg.jointype & JT_LTORJ ){ sqlite3_str_appendf(&x, " LTORJ"); } if( pItem->fg.fromDDL ){ sqlite3_str_appendf(&x, " DDL"); } if( pItem->fg.isCte ){ sqlite3_str_appendf(&x, " CteUse=0x%p", pItem->u2.pCteUse); } if( pItem->fg.isOn || (pItem->fg.isUsing==0 && pItem->u3.pOn!=0) ){ sqlite3_str_appendf(&x, " ON"); } if( pItem->fg.isTabFunc ) sqlite3_str_appendf(&x, " isTabFunc"); if( pItem->fg.isCorrelated ) sqlite3_str_appendf(&x, " isCorrelated"); if( pItem->fg.isMaterialized ) sqlite3_str_appendf(&x, " isMaterialized"); if( pItem->fg.viaCoroutine ) sqlite3_str_appendf(&x, " viaCoroutine"); if( pItem->fg.notCte ) sqlite3_str_appendf(&x, " notCte"); if( pItem->fg.isNestedFrom ) sqlite3_str_appendf(&x, " isNestedFrom"); sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, inSrc-1); n = 0; if( pItem->pSelect ) n++; if( pItem->fg.isTabFunc ) n++; if( pItem->fg.isUsing ) n++; if( pItem->fg.isUsing ){ sqlite3TreeViewIdList(pView, pItem->u3.pUsing, (--n)>0, "USING"); } if( pItem->pSelect ){ if( pItem->pTab ){ Table *pTab = pItem->pTab; sqlite3TreeViewColumnList(pView, pTab->aCol, pTab->nCol, 1); } assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); sqlite3TreeViewSelect(pView, pItem->pSelect, (--n)>0); } if( pItem->fg.isTabFunc ){ sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:"); } sqlite3TreeViewPop(&pView); } } /* ** Generate a human-readable description of a Select object. */ SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ int n = 0; int cnt = 0; if( p==0 ){ sqlite3TreeViewLine(pView, "nil-SELECT"); return; } sqlite3TreeViewPush(&pView, moreToFollow); if( p->pWith ){ sqlite3TreeViewWith(pView, p->pWith, 1); cnt = 1; sqlite3TreeViewPush(&pView, 1); } do{ if( p->selFlags & SF_WhereBegin ){ sqlite3TreeViewLine(pView, "sqlite3WhereBegin()"); }else{ sqlite3TreeViewLine(pView, "SELECT%s%s (%u/%p) selFlags=0x%x nSelectRow=%d", ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p->selId, p, p->selFlags, (int)p->nSelectRow ); } if( cnt++ ) sqlite3TreeViewPop(&pView); if( p->pPrior ){ n = 1000; }else{ n = 0; if( p->pSrc && p->pSrc->nSrc ) n++; if( p->pWhere ) n++; if( p->pGroupBy ) n++; if( p->pHaving ) n++; if( p->pOrderBy ) n++; if( p->pLimit ) n++; #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ) n++; if( p->pWinDefn ) n++; #endif } if( p->pEList ){ sqlite3TreeViewExprList(pView, p->pEList, n>0, "result-set"); } n--; #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ){ Window *pX; sqlite3TreeViewPush(&pView, (n--)>0); sqlite3TreeViewLine(pView, "window-functions"); for(pX=p->pWin; pX; pX=pX->pNextWin){ sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0); } sqlite3TreeViewPop(&pView); } #endif if( p->pSrc && p->pSrc->nSrc ){ sqlite3TreeViewPush(&pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, p->pSrc); sqlite3TreeViewPop(&pView); } if( p->pWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, p->pWhere, 0); sqlite3TreeViewPop(&pView); } if( p->pGroupBy ){ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); } if( p->pHaving ){ sqlite3TreeViewItem(pView, "HAVING", (n--)>0); sqlite3TreeViewExpr(pView, p->pHaving, 0); sqlite3TreeViewPop(&pView); } #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWinDefn ){ Window *pX; sqlite3TreeViewItem(pView, "WINDOW", (n--)>0); for(pX=p->pWinDefn; pX; pX=pX->pNextWin){ sqlite3TreeViewWindow(pView, pX, pX->pNextWin!=0); } sqlite3TreeViewPop(&pView); } #endif if( p->pOrderBy ){ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); } if( p->pLimit ){ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); sqlite3TreeViewExpr(pView, p->pLimit->pLeft, p->pLimit->pRight!=0); if( p->pLimit->pRight ){ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); sqlite3TreeViewExpr(pView, p->pLimit->pRight, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); } if( p->pPrior ){ const char *zOp = "UNION"; switch( p->op ){ case TK_ALL: zOp = "UNION ALL"; break; case TK_INTERSECT: zOp = "INTERSECT"; break; case TK_EXCEPT: zOp = "EXCEPT"; break; } sqlite3TreeViewItem(pView, zOp, 1); } p = p->pPrior; }while( p!=0 ); sqlite3TreeViewPop(&pView); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Generate a description of starting or stopping bounds */ SQLITE_PRIVATE void sqlite3TreeViewBound( TreeView *pView, /* View context */ u8 eBound, /* UNBOUNDED, CURRENT, PRECEDING, FOLLOWING */ Expr *pExpr, /* Value for PRECEDING or FOLLOWING */ u8 moreToFollow /* True if more to follow */ ){ switch( eBound ){ case TK_UNBOUNDED: { sqlite3TreeViewItem(pView, "UNBOUNDED", moreToFollow); sqlite3TreeViewPop(&pView); break; } case TK_CURRENT: { sqlite3TreeViewItem(pView, "CURRENT", moreToFollow); sqlite3TreeViewPop(&pView); break; } case TK_PRECEDING: { sqlite3TreeViewItem(pView, "PRECEDING", moreToFollow); sqlite3TreeViewExpr(pView, pExpr, 0); sqlite3TreeViewPop(&pView); break; } case TK_FOLLOWING: { sqlite3TreeViewItem(pView, "FOLLOWING", moreToFollow); sqlite3TreeViewExpr(pView, pExpr, 0); sqlite3TreeViewPop(&pView); break; } } } #endif /* SQLITE_OMIT_WINDOWFUNC */ #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Generate a human-readable explanation for a Window object */ SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView *pView, const Window *pWin, u8 more){ int nElement = 0; if( pWin==0 ) return; if( pWin->pFilter ){ sqlite3TreeViewItem(pView, "FILTER", 1); sqlite3TreeViewExpr(pView, pWin->pFilter, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPush(&pView, more); if( pWin->zName ){ sqlite3TreeViewLine(pView, "OVER %s (%p)", pWin->zName, pWin); }else{ sqlite3TreeViewLine(pView, "OVER (%p)", pWin); } if( pWin->zBase ) nElement++; if( pWin->pOrderBy ) nElement++; if( pWin->eFrmType ) nElement++; if( pWin->eExclude ) nElement++; if( pWin->zBase ){ sqlite3TreeViewPush(&pView, (--nElement)>0); sqlite3TreeViewLine(pView, "window: %s", pWin->zBase); sqlite3TreeViewPop(&pView); } if( pWin->pPartition ){ sqlite3TreeViewExprList(pView, pWin->pPartition, nElement>0,"PARTITION-BY"); } if( pWin->pOrderBy ){ sqlite3TreeViewExprList(pView, pWin->pOrderBy, (--nElement)>0, "ORDER-BY"); } if( pWin->eFrmType ){ char zBuf[30]; const char *zFrmType = "ROWS"; if( pWin->eFrmType==TK_RANGE ) zFrmType = "RANGE"; if( pWin->eFrmType==TK_GROUPS ) zFrmType = "GROUPS"; sqlite3_snprintf(sizeof(zBuf),zBuf,"%s%s",zFrmType, pWin->bImplicitFrame ? " (implied)" : ""); sqlite3TreeViewItem(pView, zBuf, (--nElement)>0); sqlite3TreeViewBound(pView, pWin->eStart, pWin->pStart, 1); sqlite3TreeViewBound(pView, pWin->eEnd, pWin->pEnd, 0); sqlite3TreeViewPop(&pView); } if( pWin->eExclude ){ char zBuf[30]; const char *zExclude; switch( pWin->eExclude ){ case TK_NO: zExclude = "NO OTHERS"; break; case TK_CURRENT: zExclude = "CURRENT ROW"; break; case TK_GROUP: zExclude = "GROUP"; break; case TK_TIES: zExclude = "TIES"; break; default: sqlite3_snprintf(sizeof(zBuf),zBuf,"invalid(%d)", pWin->eExclude); zExclude = zBuf; break; } sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, "EXCLUDE %s", zExclude); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); } #endif /* SQLITE_OMIT_WINDOWFUNC */ #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Generate a human-readable explanation for a Window Function object */ SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView *pView, const Window *pWin, u8 more){ if( pWin==0 ) return; sqlite3TreeViewPush(&pView, more); sqlite3TreeViewLine(pView, "WINFUNC %s(%d)", pWin->pWFunc->zName, pWin->pWFunc->nArg); sqlite3TreeViewWindow(pView, pWin, 0); sqlite3TreeViewPop(&pView); } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Generate a human-readable explanation of an expression tree. */ SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ const char *zBinOp = 0; /* Binary operator */ const char *zUniOp = 0; /* Unary operator */ char zFlgs[200]; sqlite3TreeViewPush(&pView, moreToFollow); if( pExpr==0 ){ sqlite3TreeViewLine(pView, "nil"); sqlite3TreeViewPop(&pView); return; } if( pExpr->flags || pExpr->affExpr || pExpr->vvaFlags || pExpr->pAggInfo ){ StrAccum x; sqlite3StrAccumInit(&x, 0, zFlgs, sizeof(zFlgs), 0); sqlite3_str_appendf(&x, " fg.af=%x.%c", pExpr->flags, pExpr->affExpr ? pExpr->affExpr : 'n'); if( ExprHasProperty(pExpr, EP_OuterON) ){ sqlite3_str_appendf(&x, " outer.iJoin=%d", pExpr->w.iJoin); } if( ExprHasProperty(pExpr, EP_InnerON) ){ sqlite3_str_appendf(&x, " inner.iJoin=%d", pExpr->w.iJoin); } if( ExprHasProperty(pExpr, EP_FromDDL) ){ sqlite3_str_appendf(&x, " DDL"); } if( ExprHasVVAProperty(pExpr, EP_Immutable) ){ sqlite3_str_appendf(&x, " IMMUTABLE"); } if( pExpr->pAggInfo!=0 ){ sqlite3_str_appendf(&x, " agg-column[%d]", pExpr->iAgg); } sqlite3StrAccumFinish(&x); }else{ zFlgs[0] = 0; } switch( pExpr->op ){ case TK_AGG_COLUMN: { sqlite3TreeViewLine(pView, "AGG{%d:%d}%s", pExpr->iTable, pExpr->iColumn, zFlgs); break; } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ char zOp2[16]; if( pExpr->op2 ){ sqlite3_snprintf(sizeof(zOp2),zOp2," op2=0x%02x",pExpr->op2); }else{ zOp2[0] = 0; } sqlite3TreeViewLine(pView, "COLUMN(%d)%s%s", pExpr->iColumn, zFlgs, zOp2); }else{ assert( ExprUseYTab(pExpr) ); sqlite3TreeViewLine(pView, "{%d:%d} pTab=%p%s", pExpr->iTable, pExpr->iColumn, pExpr->y.pTab, zFlgs); } if( ExprHasProperty(pExpr, EP_FixedCol) ){ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); } break; } case TK_INTEGER: { if( pExpr->flags & EP_IntValue ){ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); }else{ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); } break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_STRING: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); break; } case TK_NULL: { sqlite3TreeViewLine(pView,"NULL"); break; } case TK_TRUEFALSE: { sqlite3TreeViewLine(pView,"%s%s", sqlite3ExprTruthValue(pExpr) ? "TRUE" : "FALSE", zFlgs); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", pExpr->u.zToken, pExpr->iColumn); break; } case TK_REGISTER: { sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); break; } case TK_ID: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: zBinOp = "LT"; break; case TK_LE: zBinOp = "LE"; break; case TK_GT: zBinOp = "GT"; break; case TK_GE: zBinOp = "GE"; break; case TK_NE: zBinOp = "NE"; break; case TK_EQ: zBinOp = "EQ"; break; case TK_IS: zBinOp = "IS"; break; case TK_ISNOT: zBinOp = "ISNOT"; break; case TK_AND: zBinOp = "AND"; break; case TK_OR: zBinOp = "OR"; break; case TK_PLUS: zBinOp = "ADD"; break; case TK_STAR: zBinOp = "MUL"; break; case TK_MINUS: zBinOp = "SUB"; break; case TK_REM: zBinOp = "REM"; break; case TK_BITAND: zBinOp = "BITAND"; break; case TK_BITOR: zBinOp = "BITOR"; break; case TK_SLASH: zBinOp = "DIV"; break; case TK_LSHIFT: zBinOp = "LSHIFT"; break; case TK_RSHIFT: zBinOp = "RSHIFT"; break; case TK_CONCAT: zBinOp = "CONCAT"; break; case TK_DOT: zBinOp = "DOT"; break; case TK_LIMIT: zBinOp = "LIMIT"; break; case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_TRUTH: { int x; const char *azOp[] = { "IS-FALSE", "IS-TRUE", "IS-NOT-FALSE", "IS-NOT-TRUE" }; assert( pExpr->op2==TK_IS || pExpr->op2==TK_ISNOT ); assert( pExpr->pRight ); assert( sqlite3ExprSkipCollateAndLikely(pExpr->pRight)->op == TK_TRUEFALSE ); x = (pExpr->op2==TK_ISNOT)*2 + sqlite3ExprTruthValue(pExpr->pRight); zUniOp = azOp[x]; break; } case TK_SPAN: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView, "SPAN %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_COLLATE: { /* COLLATE operators without the EP_Collate flag are intended to ** emulate collation associated with a table column. These show ** up in the treeview output as "SOFT-COLLATE". Explicit COLLATE ** operators that appear in the original SQL always have the ** EP_Collate bit set and appear in treeview output as just "COLLATE" */ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView, "%sCOLLATE %Q%s", !ExprHasProperty(pExpr, EP_Collate) ? "SOFT-" : "", pExpr->u.zToken, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_AGG_FUNCTION: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ Window *pWin; if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; pWin = 0; }else{ assert( ExprUseXList(pExpr) ); pFarg = pExpr->x.pList; #ifndef SQLITE_OMIT_WINDOWFUNC pWin = ExprHasProperty(pExpr, EP_WinFunc) ? pExpr->y.pWin : 0; #else pWin = 0; #endif } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->op==TK_AGG_FUNCTION ){ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q%s agg=%d[%d]/%p", pExpr->op2, pExpr->u.zToken, zFlgs, pExpr->pAggInfo ? pExpr->pAggInfo->selId : 0, pExpr->iAgg, pExpr->pAggInfo); }else if( pExpr->op2!=0 ){ const char *zOp2; char zBuf[8]; sqlite3_snprintf(sizeof(zBuf),zBuf,"0x%02x",pExpr->op2); zOp2 = zBuf; if( pExpr->op2==NC_IsCheck ) zOp2 = "NC_IsCheck"; if( pExpr->op2==NC_IdxExpr ) zOp2 = "NC_IdxExpr"; if( pExpr->op2==NC_PartIdx ) zOp2 = "NC_PartIdx"; if( pExpr->op2==NC_GenCol ) zOp2 = "NC_GenCol"; sqlite3TreeViewLine(pView, "FUNCTION %Q%s op2=%s", pExpr->u.zToken, zFlgs, zOp2); }else{ sqlite3TreeViewLine(pView, "FUNCTION %Q%s", pExpr->u.zToken, zFlgs); } if( pFarg ){ sqlite3TreeViewExprList(pView, pFarg, pWin!=0, 0); } #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ sqlite3TreeViewWindow(pView, pWin, 0); } #endif break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: { assert( ExprUseXSelect(pExpr) ); sqlite3TreeViewLine(pView, "EXISTS-expr flags=0x%x", pExpr->flags); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_SELECT: { assert( ExprUseXSelect(pExpr) ); sqlite3TreeViewLine(pView, "subquery-expr flags=0x%x", pExpr->flags); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_IN: { sqlite3_str *pStr = sqlite3_str_new(0); char *z; sqlite3_str_appendf(pStr, "IN flags=0x%x", pExpr->flags); if( pExpr->iTable ) sqlite3_str_appendf(pStr, " iTable=%d",pExpr->iTable); if( ExprHasProperty(pExpr, EP_Subrtn) ){ sqlite3_str_appendf(pStr, " subrtn(%d,%d)", pExpr->y.sub.regReturn, pExpr->y.sub.iAddr); } z = sqlite3_str_finish(pStr); sqlite3TreeViewLine(pView, z); sqlite3_free(z); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); if( ExprUseXSelect(pExpr) ){ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); }else{ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); } break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { const Expr *pX, *pY, *pZ; pX = pExpr->pLeft; assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr==2 ); pY = pExpr->x.pList->a[0].pExpr; pZ = pExpr->x.pList->a[1].pExpr; sqlite3TreeViewLine(pView, "BETWEEN"); sqlite3TreeViewExpr(pView, pX, 1); sqlite3TreeViewExpr(pView, pY, 1); sqlite3TreeViewExpr(pView, pZ, 0); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. */ sqlite3TreeViewLine(pView, "%s(%d)", pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); break; } case TK_CASE: { sqlite3TreeViewLine(pView, "CASE"); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); assert( ExprUseXList(pExpr) ); sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { const char *zType = "unk"; switch( pExpr->affExpr ){ case OE_Rollback: zType = "rollback"; break; case OE_Abort: zType = "abort"; break; case OE_Fail: zType = "fail"; break; case OE_Ignore: zType = "ignore"; break; } assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); break; } #endif case TK_MATCH: { sqlite3TreeViewLine(pView, "MATCH {%d:%d}%s", pExpr->iTable, pExpr->iColumn, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pRight, 0); break; } case TK_VECTOR: { char *z = sqlite3_mprintf("VECTOR%s",zFlgs); assert( ExprUseXList(pExpr) ); sqlite3TreeViewBareExprList(pView, pExpr->x.pList, z); sqlite3_free(z); break; } case TK_SELECT_COLUMN: { sqlite3TreeViewLine(pView, "SELECT-COLUMN %d of [0..%d]%s", pExpr->iColumn, pExpr->iTable-1, pExpr->pRight==pExpr->pLeft ? " (SELECT-owner)" : ""); assert( ExprUseXSelect(pExpr->pLeft) ); sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0); break; } case TK_IF_NULL_ROW: { sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_ERROR: { Expr tmp; sqlite3TreeViewLine(pView, "ERROR"); tmp = *pExpr; tmp.op = pExpr->op2; sqlite3TreeViewExpr(pView, &tmp, 0); break; } case TK_ROW: { if( pExpr->iColumn<=0 ){ sqlite3TreeViewLine(pView, "First FROM table rowid"); }else{ sqlite3TreeViewLine(pView, "First FROM table column %d", pExpr->iColumn-1); } break; } default: { sqlite3TreeViewLine(pView, "op=%d", pExpr->op); break; } } if( zBinOp ){ sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); sqlite3TreeViewExpr(pView, pExpr->pRight, 0); }else if( zUniOp ){ sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); } sqlite3TreeViewPop(&pView); } /* ** Generate a human-readable explanation of an expression list. */ SQLITE_PRIVATE void sqlite3TreeViewBareExprList( TreeView *pView, const ExprList *pList, const char *zLabel ){ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; if( pList==0 ){ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ int i; sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; inExpr; i++){ int j = pList->a[i].u.x.iOrderByCol; char *zName = pList->a[i].zEName; int moreToFollow = inExpr - 1; if( j || zName ){ sqlite3TreeViewPush(&pView, moreToFollow); moreToFollow = 0; sqlite3TreeViewLine(pView, 0); if( zName ){ switch( pList->a[i].fg.eEName ){ default: fprintf(stdout, "AS %s ", zName); break; case ENAME_TAB: fprintf(stdout, "TABLE-ALIAS-NAME(\"%s\") ", zName); if( pList->a[i].fg.bUsed ) fprintf(stdout, "(used) "); if( pList->a[i].fg.bUsingTerm ) fprintf(stdout, "(USING-term) "); if( pList->a[i].fg.bNoExpand ) fprintf(stdout, "(NoExpand) "); break; case ENAME_SPAN: fprintf(stdout, "SPAN(\"%s\") ", zName); break; } } if( j ){ fprintf(stdout, "iOrderByCol=%d", j); } fprintf(stdout, "\n"); fflush(stdout); } sqlite3TreeViewExpr(pView, pList->a[i].pExpr, moreToFollow); if( j || zName ){ sqlite3TreeViewPop(&pView); } } } } SQLITE_PRIVATE void sqlite3TreeViewExprList( TreeView *pView, const ExprList *pList, u8 moreToFollow, const char *zLabel ){ sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewBareExprList(pView, pList, zLabel); sqlite3TreeViewPop(&pView); } /* ** Generate a human-readable explanation of an id-list. */ SQLITE_PRIVATE void sqlite3TreeViewBareIdList( TreeView *pView, const IdList *pList, const char *zLabel ){ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; if( pList==0 ){ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ int i; sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; inId; i++){ char *zName = pList->a[i].zName; int moreToFollow = inId - 1; if( zName==0 ) zName = "(null)"; sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewLine(pView, 0); if( pList->eU4==EU4_NONE ){ fprintf(stdout, "%s\n", zName); }else if( pList->eU4==EU4_IDX ){ fprintf(stdout, "%s (%d)\n", zName, pList->a[i].u4.idx); }else{ assert( pList->eU4==EU4_EXPR ); if( pList->a[i].u4.pExpr==0 ){ fprintf(stdout, "%s (pExpr=NULL)\n", zName); }else{ fprintf(stdout, "%s\n", zName); sqlite3TreeViewPush(&pView, inId-1); sqlite3TreeViewExpr(pView, pList->a[i].u4.pExpr, 0); sqlite3TreeViewPop(&pView); } } sqlite3TreeViewPop(&pView); } } } SQLITE_PRIVATE void sqlite3TreeViewIdList( TreeView *pView, const IdList *pList, u8 moreToFollow, const char *zLabel ){ sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewBareIdList(pView, pList, zLabel); sqlite3TreeViewPop(&pView); } /* ** Generate a human-readable explanation of a list of Upsert objects */ SQLITE_PRIVATE void sqlite3TreeViewUpsert( TreeView *pView, const Upsert *pUpsert, u8 moreToFollow ){ if( pUpsert==0 ) return; sqlite3TreeViewPush(&pView, moreToFollow); while( pUpsert ){ int n; sqlite3TreeViewPush(&pView, pUpsert->pNextUpsert!=0 || moreToFollow); sqlite3TreeViewLine(pView, "ON CONFLICT DO %s", pUpsert->isDoUpdate ? "UPDATE" : "NOTHING"); n = (pUpsert->pUpsertSet!=0) + (pUpsert->pUpsertWhere!=0); sqlite3TreeViewExprList(pView, pUpsert->pUpsertTarget, (n--)>0, "TARGET"); sqlite3TreeViewExprList(pView, pUpsert->pUpsertSet, (n--)>0, "SET"); if( pUpsert->pUpsertWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, pUpsert->pUpsertWhere, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); pUpsert = pUpsert->pNextUpsert; } sqlite3TreeViewPop(&pView); } #if TREETRACE_ENABLED /* ** Generate a human-readable diagram of the data structure that go ** into generating an DELETE statement. */ SQLITE_PRIVATE void sqlite3TreeViewDelete( const With *pWith, const SrcList *pTabList, const Expr *pWhere, const ExprList *pOrderBy, const Expr *pLimit, const Trigger *pTrigger ){ int n = 0; TreeView *pView = 0; sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, "DELETE"); if( pWith ) n++; if( pTabList ) n++; if( pWhere ) n++; if( pOrderBy ) n++; if( pLimit ) n++; if( pTrigger ) n++; if( pWith ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewWith(pView, pWith, 0); sqlite3TreeViewPop(&pView); } if( pTabList ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, pTabList); sqlite3TreeViewPop(&pView); } if( pWhere ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "WHERE"); sqlite3TreeViewExpr(pView, pWhere, 0); sqlite3TreeViewPop(&pView); } if( pOrderBy ){ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY"); } if( pLimit ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "LIMIT"); sqlite3TreeViewExpr(pView, pLimit, 0); sqlite3TreeViewPop(&pView); } if( pTrigger ){ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1); } sqlite3TreeViewPop(&pView); } #endif /* TREETRACE_ENABLED */ #if TREETRACE_ENABLED /* ** Generate a human-readable diagram of the data structure that go ** into generating an INSERT statement. */ SQLITE_PRIVATE void sqlite3TreeViewInsert( const With *pWith, const SrcList *pTabList, const IdList *pColumnList, const Select *pSelect, const ExprList *pExprList, int onError, const Upsert *pUpsert, const Trigger *pTrigger ){ TreeView *pView = 0; int n = 0; const char *zLabel = "INSERT"; switch( onError ){ case OE_Replace: zLabel = "REPLACE"; break; case OE_Ignore: zLabel = "INSERT OR IGNORE"; break; case OE_Rollback: zLabel = "INSERT OR ROLLBACK"; break; case OE_Abort: zLabel = "INSERT OR ABORT"; break; case OE_Fail: zLabel = "INSERT OR FAIL"; break; } sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, zLabel); if( pWith ) n++; if( pTabList ) n++; if( pColumnList ) n++; if( pSelect ) n++; if( pExprList ) n++; if( pUpsert ) n++; if( pTrigger ) n++; if( pWith ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewWith(pView, pWith, 0); sqlite3TreeViewPop(&pView); } if( pTabList ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "INTO"); sqlite3TreeViewSrcList(pView, pTabList); sqlite3TreeViewPop(&pView); } if( pColumnList ){ sqlite3TreeViewIdList(pView, pColumnList, (--n)>0, "COLUMNS"); } if( pSelect ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "DATA-SOURCE"); sqlite3TreeViewSelect(pView, pSelect, 0); sqlite3TreeViewPop(&pView); } if( pExprList ){ sqlite3TreeViewExprList(pView, pExprList, (--n)>0, "VALUES"); } if( pUpsert ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "UPSERT"); sqlite3TreeViewUpsert(pView, pUpsert, 0); sqlite3TreeViewPop(&pView); } if( pTrigger ){ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1); } sqlite3TreeViewPop(&pView); } #endif /* TREETRACE_ENABLED */ #if TREETRACE_ENABLED /* ** Generate a human-readable diagram of the data structure that go ** into generating an UPDATE statement. */ SQLITE_PRIVATE void sqlite3TreeViewUpdate( const With *pWith, const SrcList *pTabList, const ExprList *pChanges, const Expr *pWhere, int onError, const ExprList *pOrderBy, const Expr *pLimit, const Upsert *pUpsert, const Trigger *pTrigger ){ int n = 0; TreeView *pView = 0; const char *zLabel = "UPDATE"; switch( onError ){ case OE_Replace: zLabel = "UPDATE OR REPLACE"; break; case OE_Ignore: zLabel = "UPDATE OR IGNORE"; break; case OE_Rollback: zLabel = "UPDATE OR ROLLBACK"; break; case OE_Abort: zLabel = "UPDATE OR ABORT"; break; case OE_Fail: zLabel = "UPDATE OR FAIL"; break; } sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, zLabel); if( pWith ) n++; if( pTabList ) n++; if( pChanges ) n++; if( pWhere ) n++; if( pOrderBy ) n++; if( pLimit ) n++; if( pUpsert ) n++; if( pTrigger ) n++; if( pWith ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewWith(pView, pWith, 0); sqlite3TreeViewPop(&pView); } if( pTabList ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, pTabList); sqlite3TreeViewPop(&pView); } if( pChanges ){ sqlite3TreeViewExprList(pView, pChanges, (--n)>0, "SET"); } if( pWhere ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "WHERE"); sqlite3TreeViewExpr(pView, pWhere, 0); sqlite3TreeViewPop(&pView); } if( pOrderBy ){ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY"); } if( pLimit ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "LIMIT"); sqlite3TreeViewExpr(pView, pLimit, 0); sqlite3TreeViewPop(&pView); } if( pUpsert ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "UPSERT"); sqlite3TreeViewUpsert(pView, pUpsert, 0); sqlite3TreeViewPop(&pView); } if( pTrigger ){ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1); } sqlite3TreeViewPop(&pView); } #endif /* TREETRACE_ENABLED */ #ifndef SQLITE_OMIT_TRIGGER /* ** Show a human-readable graph of a TriggerStep */ SQLITE_PRIVATE void sqlite3TreeViewTriggerStep( TreeView *pView, const TriggerStep *pStep, u8 moreToFollow, u8 showFullList ){ int cnt = 0; if( pStep==0 ) return; sqlite3TreeViewPush(&pView, moreToFollow || (showFullList && pStep->pNext!=0)); do{ if( cnt++ && pStep->pNext==0 ){ sqlite3TreeViewPop(&pView); sqlite3TreeViewPush(&pView, 0); } sqlite3TreeViewLine(pView, "%s", pStep->zSpan ? pStep->zSpan : "RETURNING"); }while( showFullList && (pStep = pStep->pNext)!=0 ); sqlite3TreeViewPop(&pView); } /* ** Show a human-readable graph of a Trigger */ SQLITE_PRIVATE void sqlite3TreeViewTrigger( TreeView *pView, const Trigger *pTrigger, u8 moreToFollow, u8 showFullList ){ int cnt = 0; if( pTrigger==0 ) return; sqlite3TreeViewPush(&pView, moreToFollow || (showFullList && pTrigger->pNext!=0)); do{ if( cnt++ && pTrigger->pNext==0 ){ sqlite3TreeViewPop(&pView); sqlite3TreeViewPush(&pView, 0); } sqlite3TreeViewLine(pView, "TRIGGER %s", pTrigger->zName); sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewTriggerStep(pView, pTrigger->step_list, 0, 1); sqlite3TreeViewPop(&pView); }while( showFullList && (pTrigger = pTrigger->pNext)!=0 ); sqlite3TreeViewPop(&pView); } #endif /* SQLITE_OMIT_TRIGGER */ /* ** These simplified versions of the tree-view routines omit unnecessary ** parameters. These variants are intended to be used from a symbolic ** debugger, such as "gdb", during interactive debugging sessions. ** ** This routines are given external linkage so that they will always be ** accessible to the debugging, and to avoid warnings about unused ** functions. But these routines only exist in debugging builds, so they ** do not contaminate the interface. */ SQLITE_PRIVATE void sqlite3ShowExpr(const Expr *p){ sqlite3TreeViewExpr(0,p,0); } SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList *p){ sqlite3TreeViewExprList(0,p,0,0);} SQLITE_PRIVATE void sqlite3ShowIdList(const IdList *p){ sqlite3TreeViewIdList(0,p,0,0); } SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList *p){ sqlite3TreeViewSrcList(0,p); } SQLITE_PRIVATE void sqlite3ShowSelect(const Select *p){ sqlite3TreeViewSelect(0,p,0); } SQLITE_PRIVATE void sqlite3ShowWith(const With *p){ sqlite3TreeViewWith(0,p,0); } SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert *p){ sqlite3TreeViewUpsert(0,p,0); } #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep *p){ sqlite3TreeViewTriggerStep(0,p,0,0); } SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep *p){ sqlite3TreeViewTriggerStep(0,p,0,1); } SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,0); } SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,1);} #endif #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3ShowWindow(const Window *p){ sqlite3TreeViewWindow(0,p,0); } SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window *p){ sqlite3TreeViewWinFunc(0,p,0); } #endif #endif /* SQLITE_DEBUG */ /************** End of treeview.c ********************************************/ /************** Begin file random.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code to implement a pseudo-random number ** generator (PRNG) for SQLite. ** ** Random numbers are used by some of the database backends in order ** to generate random integer keys for tables or random filenames. */ /* #include "sqliteInt.h" */ /* All threads share a single random number generator. ** This structure is the current state of the generator. */ static SQLITE_WSD struct sqlite3PrngType { u32 s[16]; /* 64 bytes of chacha20 state */ u8 out[64]; /* Output bytes */ u8 n; /* Output bytes remaining */ } sqlite3Prng; /* The RFC-7539 ChaCha20 block function */ #define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) #define QR(a, b, c, d) ( \ a += b, d ^= a, d = ROTL(d,16), \ c += d, b ^= c, b = ROTL(b,12), \ a += b, d ^= a, d = ROTL(d, 8), \ c += d, b ^= c, b = ROTL(b, 7)) static void chacha_block(u32 *out, const u32 *in){ int i; u32 x[16]; memcpy(x, in, 64); for(i=0; i<10; i++){ QR(x[0], x[4], x[ 8], x[12]); QR(x[1], x[5], x[ 9], x[13]); QR(x[2], x[6], x[10], x[14]); QR(x[3], x[7], x[11], x[15]); QR(x[0], x[5], x[10], x[15]); QR(x[1], x[6], x[11], x[12]); QR(x[2], x[7], x[ 8], x[13]); QR(x[3], x[4], x[ 9], x[14]); } for(i=0; i<16; i++) out[i] = x[i]+in[i]; } /* ** Return N random bytes. */ SQLITE_API void sqlite3_randomness(int N, void *pBuf){ unsigned char *zBuf = pBuf; /* The "wsdPrng" macro will resolve to the pseudo-random number generator ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdPrng can refer directly ** to the "sqlite3Prng" state vector declared above. */ #ifdef SQLITE_OMIT_WSD struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng); # define wsdPrng p[0] #else # define wsdPrng sqlite3Prng #endif #if SQLITE_THREADSAFE sqlite3_mutex *mutex; #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return; #endif #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); #endif sqlite3_mutex_enter(mutex); if( N<=0 || pBuf==0 ){ wsdPrng.s[0] = 0; sqlite3_mutex_leave(mutex); return; } /* Initialize the state of the random number generator once, ** the first time this routine is called. */ if( wsdPrng.s[0]==0 ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(0); static const u32 chacha20_init[] = { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 }; memcpy(&wsdPrng.s[0], chacha20_init, 16); if( NEVER(pVfs==0) ){ memset(&wsdPrng.s[4], 0, 44); }else{ sqlite3OsRandomness(pVfs, 44, (char*)&wsdPrng.s[4]); } wsdPrng.s[15] = wsdPrng.s[12]; wsdPrng.s[12] = 0; wsdPrng.n = 0; } assert( N>0 ); while( 1 /* exit by break */ ){ if( N<=wsdPrng.n ){ memcpy(zBuf, &wsdPrng.out[wsdPrng.n-N], N); wsdPrng.n -= N; break; } if( wsdPrng.n>0 ){ memcpy(zBuf, wsdPrng.out, wsdPrng.n); N -= wsdPrng.n; zBuf += wsdPrng.n; } wsdPrng.s[12]++; chacha_block((u32*)wsdPrng.out, wsdPrng.s); wsdPrng.n = 64; } sqlite3_mutex_leave(mutex); } #ifndef SQLITE_UNTESTABLE /* ** For testing purposes, we sometimes want to preserve the state of ** PRNG and restore the PRNG to its saved state at a later time, or ** to reset the PRNG to its initial state. These routines accomplish ** those tasks. ** ** The sqlite3_test_control() interface calls these routines to ** control the PRNG. */ static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng; SQLITE_PRIVATE void sqlite3PrngSaveState(void){ memcpy( &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), &GLOBAL(struct sqlite3PrngType, sqlite3Prng), sizeof(sqlite3Prng) ); } SQLITE_PRIVATE void sqlite3PrngRestoreState(void){ memcpy( &GLOBAL(struct sqlite3PrngType, sqlite3Prng), &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), sizeof(sqlite3Prng) ); } #endif /* SQLITE_UNTESTABLE */ /************** End of random.c **********************************************/ /************** Begin file threads.c *****************************************/ /* ** 2012 July 21 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file presents a simple cross-platform threading interface for ** use internally by SQLite. ** ** A "thread" can be created using sqlite3ThreadCreate(). This thread ** runs independently of its creator until it is joined using ** sqlite3ThreadJoin(), at which point it terminates. ** ** Threads do not have to be real. It could be that the work of the ** "thread" is done by the main thread at either the sqlite3ThreadCreate() ** or sqlite3ThreadJoin() call. This is, in fact, what happens in ** single threaded systems. Nothing in SQLite requires multiple threads. ** This interface exists so that applications that want to take advantage ** of multiple cores can do so, while also allowing applications to stay ** single-threaded if desired. */ /* #include "sqliteInt.h" */ #if SQLITE_OS_WIN /* # include "os_win.h" */ #endif #if SQLITE_MAX_WORKER_THREADS>0 /********************************* Unix Pthreads ****************************/ #if SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) && SQLITE_THREADSAFE>0 #define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */ /* #include */ /* A running thread */ struct SQLiteThread { pthread_t tid; /* Thread ID */ int done; /* Set to true when thread finishes */ void *pOut; /* Result returned by the thread */ void *(*xTask)(void*); /* The thread routine */ void *pIn; /* Argument to the thread */ }; /* Create a new thread */ SQLITE_PRIVATE int sqlite3ThreadCreate( SQLiteThread **ppThread, /* OUT: Write the thread object here */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ SQLiteThread *p; int rc; assert( ppThread!=0 ); assert( xTask!=0 ); /* This routine is never used in single-threaded mode */ assert( sqlite3GlobalConfig.bCoreMutex!=0 ); *ppThread = 0; p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM_BKPT; memset(p, 0, sizeof(*p)); p->xTask = xTask; p->pIn = pIn; /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a ** function that returns SQLITE_ERROR when passed the argument 200, that ** forces worker threads to run sequentially and deterministically ** for testing purposes. */ if( sqlite3FaultSim(200) ){ rc = 1; }else{ rc = pthread_create(&p->tid, 0, xTask, pIn); } if( rc ){ p->done = 1; p->pOut = xTask(pIn); } *ppThread = p; return SQLITE_OK; } /* Get the results of the thread */ SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){ int rc; assert( ppOut!=0 ); if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT; if( p->done ){ *ppOut = p->pOut; rc = SQLITE_OK; }else{ rc = pthread_join(p->tid, ppOut) ? SQLITE_ERROR : SQLITE_OK; } sqlite3_free(p); return rc; } #endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */ /******************************** End Unix Pthreads *************************/ /********************************* Win32 Threads ****************************/ #if SQLITE_OS_WIN_THREADS #define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */ // #include /* A running thread */ struct SQLiteThread { void *tid; /* The thread handle */ unsigned id; /* The thread identifier */ void *(*xTask)(void*); /* The routine to run as a thread */ void *pIn; /* Argument to xTask */ void *pResult; /* Result of xTask */ }; /* Thread procedure Win32 compatibility shim */ static unsigned __stdcall sqlite3ThreadProc( void *pArg /* IN: Pointer to the SQLiteThread structure */ ){ SQLiteThread *p = (SQLiteThread *)pArg; assert( p!=0 ); #if 0 /* ** This assert appears to trigger spuriously on certain ** versions of Windows, possibly due to _beginthreadex() ** and/or CreateThread() not fully setting their thread ** ID parameter before starting the thread. */ assert( p->id==GetCurrentThreadId() ); #endif assert( p->xTask!=0 ); p->pResult = p->xTask(p->pIn); // _endthreadex(0); return 0; /* NOT REACHED */ } /* Create a new thread */ SQLITE_PRIVATE int sqlite3ThreadCreate( SQLiteThread **ppThread, /* OUT: Write the thread object here */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ SQLiteThread *p; assert( ppThread!=0 ); assert( xTask!=0 ); *ppThread = 0; p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM_BKPT; /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a ** function that returns SQLITE_ERROR when passed the argument 200, that ** forces worker threads to run sequentially and deterministically ** (via the sqlite3FaultSim() term of the conditional) for testing ** purposes. */ if( sqlite3GlobalConfig.bCoreMutex==0 || sqlite3FaultSim(200) ){ memset(p, 0, sizeof(*p)); }else{ p->xTask = xTask; p->pIn = pIn; // p->tid = (void*)_beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id); if( p->tid==0 ){ memset(p, 0, sizeof(*p)); } } if( p->xTask==0 ){ p->id = GetCurrentThreadId(); p->pResult = xTask(pIn); } *ppThread = p; return SQLITE_OK; } SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject); /* os_win.c */ /* Get the results of the thread */ SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){ DWORD rc; BOOL bRc; assert( ppOut!=0 ); if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT; if( p->xTask==0 ){ /* assert( p->id==GetCurrentThreadId() ); */ rc = WAIT_OBJECT_0; assert( p->tid==0 ); }else{ assert( p->id!=0 && p->id!=GetCurrentThreadId() ); rc = sqlite3Win32Wait((HANDLE)p->tid); assert( rc!=WAIT_IO_COMPLETION ); bRc = CloseHandle((HANDLE)p->tid); assert( bRc ); } if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult; sqlite3_free(p); return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR; } #endif /* SQLITE_OS_WIN_THREADS */ /******************************** End Win32 Threads *************************/ /********************************* Single-Threaded **************************/ #ifndef SQLITE_THREADS_IMPLEMENTED /* ** This implementation does not actually create a new thread. It does the ** work of the thread in the main thread, when either the thread is created ** or when it is joined */ /* A running thread */ struct SQLiteThread { void *(*xTask)(void*); /* The routine to run as a thread */ void *pIn; /* Argument to xTask */ void *pResult; /* Result of xTask */ }; /* Create a new thread */ SQLITE_PRIVATE int sqlite3ThreadCreate( SQLiteThread **ppThread, /* OUT: Write the thread object here */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ SQLiteThread *p; assert( ppThread!=0 ); assert( xTask!=0 ); *ppThread = 0; p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM_BKPT; if( (SQLITE_PTR_TO_INT(p)/17)&1 ){ p->xTask = xTask; p->pIn = pIn; }else{ p->xTask = 0; p->pResult = xTask(pIn); } *ppThread = p; return SQLITE_OK; } /* Get the results of the thread */ SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){ assert( ppOut!=0 ); if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT; if( p->xTask ){ *ppOut = p->xTask(p->pIn); }else{ *ppOut = p->pResult; } sqlite3_free(p); #if defined(SQLITE_TEST) { void *pTstAlloc = sqlite3Malloc(10); if (!pTstAlloc) return SQLITE_NOMEM_BKPT; sqlite3_free(pTstAlloc); } #endif return SQLITE_OK; } #endif /* !defined(SQLITE_THREADS_IMPLEMENTED) */ /****************************** End Single-Threaded *************************/ #endif /* SQLITE_MAX_WORKER_THREADS>0 */ /************** End of threads.c *********************************************/ /************** Begin file utf.c *********************************************/ /* ** 2004 April 13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** ** Notes on UTF-8: ** ** Byte-0 Byte-1 Byte-2 Byte-3 Value ** 0xxxxxxx 00000000 00000000 0xxxxxxx ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx ** ** ** Notes on UTF-16: (with wwww+1==uuuuu) ** ** Word-0 Word-1 Value ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx ** ** ** BOM or Byte Order Mark: ** 0xff 0xfe little-endian utf-16 follows ** 0xfe 0xff big-endian utf-16 follows ** */ /* #include "sqliteInt.h" */ /* #include */ /* #include "vdbeInt.h" */ #if !defined(SQLITE_AMALGAMATION) && SQLITE_BYTEORDER==0 /* ** The following constant value is used by the SQLITE_BIGENDIAN and ** SQLITE_LITTLEENDIAN macros. */ SQLITE_PRIVATE const int sqlite3one = 1; #endif /* SQLITE_AMALGAMATION && SQLITE_BYTEORDER==0 */ /* ** This lookup table is used to help decode the first byte of ** a multi-byte UTF8 character. */ static const unsigned char sqlite3Utf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define WRITE_UTF8(zOut, c) { \ if( c<0x00080 ){ \ *zOut++ = (u8)(c&0xFF); \ } \ else if( c<0x00800 ){ \ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ else if( c<0x10000 ){ \ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ }else{ \ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ } #define WRITE_UTF16LE(zOut, c) { \ if( c<=0xFFFF ){ \ *zOut++ = (u8)(c&0x00FF); \ *zOut++ = (u8)((c>>8)&0x00FF); \ }else{ \ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ *zOut++ = (u8)(c&0x00FF); \ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ } \ } #define WRITE_UTF16BE(zOut, c) { \ if( c<=0xFFFF ){ \ *zOut++ = (u8)((c>>8)&0x00FF); \ *zOut++ = (u8)(c&0x00FF); \ }else{ \ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ *zOut++ = (u8)(c&0x00FF); \ } \ } /* ** Translate a single UTF-8 character. Return the unicode value. ** ** During translation, assume that the byte that zTerm points ** is a 0x00. ** ** Write a pointer to the next unread byte back into *pzNext. ** ** Notes On Invalid UTF-8: ** ** * This routine never allows a 7-bit character (0x00 through 0x7f) to ** be encoded as a multi-byte character. Any multi-byte character that ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. ** ** * This routine never allows a UTF16 surrogate value to be encoded. ** If a multi-byte character attempts to encode a value between ** 0xd800 and 0xe000 then it is rendered as 0xfffd. ** ** * Bytes in the range of 0x80 through 0xbf which occur as the first ** byte of a character are interpreted as single-byte characters ** and rendered as themselves even though they are technically ** invalid characters. ** ** * This routine accepts over-length UTF8 encodings ** for unicode values 0x80 and greater. It does not change over-length ** encodings to 0xfffd as some systems recommend. */ #define READ_UTF8(zIn, zTerm, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = sqlite3Utf8Trans1[c-0xc0]; \ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ if( c<0x80 \ || (c&0xFFFFF800)==0xD800 \ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ } SQLITE_PRIVATE u32 sqlite3Utf8Read( const unsigned char **pz /* Pointer to string from which to read char */ ){ unsigned int c; /* Same as READ_UTF8() above but without the zTerm parameter. ** For this routine, we assume the UTF8 string is always zero-terminated. */ c = *((*pz)++); if( c>=0xc0 ){ c = sqlite3Utf8Trans1[c-0xc0]; while( (*(*pz) & 0xc0)==0x80 ){ c = (c<<6) + (0x3f & *((*pz)++)); } if( c<0x80 || (c&0xFFFFF800)==0xD800 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } } return c; } /* ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). */ /* #define TRANSLATE_TRACE 1 */ #ifndef SQLITE_OMIT_UTF16 /* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ sqlite3_int64 len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3VdbeMemPrettyPrint(pMem, &acc); fprintf(stderr, "INPUT: %s\n", sqlite3StrAccumFinish(&acc)); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM_BKPT; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n&~1]; while( zInenc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ pMem->n &= ~1; len = 2 * (sqlite3_int64)pMem->n + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = 2 * (sqlite3_int64)pMem->n + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer, space obtained ** from sqlite3_malloc(). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM_BKPT; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn UTF-16 Big-endian */ while( zInn = (int)(z - zOut); *z++ = 0; }else{ assert( desiredEnc==SQLITE_UTF8 ); if( pMem->enc==SQLITE_UTF16LE ){ /* UTF-16 Little-endian -> UTF-8 */ while( zIn=0xd800 && c<0xe000 ){ #ifdef SQLITE_REPLACE_INVALID_UTF if( c>=0xdc00 || zIn>=zTerm ){ c = 0xfffd; }else{ int c2 = *(zIn++); c2 += (*(zIn++))<<8; if( c2<0xdc00 || c2>=0xe000 ){ zIn -= 2; c = 0xfffd; }else{ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000; } } #else if( zIn UTF-8 */ while( zIn=0xd800 && c<0xe000 ){ #ifdef SQLITE_REPLACE_INVALID_UTF if( c>=0xdc00 || zIn>=zTerm ){ c = 0xfffd; }else{ int c2 = (*(zIn++))<<8; c2 += *(zIn++); if( c2<0xdc00 || c2>=0xe000 ){ zIn -= 2; c = 0xfffd; }else{ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000; } } #else if( zInn = (int)(z - zOut); } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); c = MEM_Str|MEM_Term|(pMem->flags&(MEM_AffMask|MEM_Subtype)); sqlite3VdbeMemRelease(pMem); pMem->flags = c; pMem->enc = desiredEnc; pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z); translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3VdbeMemPrettyPrint(pMem, &acc); fprintf(stderr, "OUTPUT: %s\n", sqlite3StrAccumFinish(&acc)); } #endif return SQLITE_OK; } #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_UTF16 /* ** This routine checks for a byte-order mark at the beginning of the ** UTF-16 string stored in *pMem. If one is present, it is removed and ** the encoding of the Mem adjusted. This routine does not do any ** byte-swapping, it just sets Mem.enc appropriately. ** ** The allocation (static, dynamic etc.) and encoding of the Mem may be ** changed by this function. */ SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){ int rc = SQLITE_OK; u8 bom = 0; assert( pMem->n>=0 ); if( pMem->n>1 ){ u8 b1 = *(u8 *)pMem->z; u8 b2 = *(((u8 *)pMem->z) + 1); if( b1==0xFE && b2==0xFF ){ bom = SQLITE_UTF16BE; } if( b1==0xFF && b2==0xFE ){ bom = SQLITE_UTF16LE; } } if( bom ){ rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc==SQLITE_OK ){ pMem->n -= 2; memmove(pMem->z, &pMem->z[2], pMem->n); pMem->z[pMem->n] = '\0'; pMem->z[pMem->n+1] = '\0'; pMem->flags |= MEM_Term; pMem->enc = bom; } } return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, ** return the number of unicode characters in pZ up to (but not including) ** the first 0x00 byte. If nByte is not less than zero, return the ** number of unicode characters in the first nByte of pZ (or up to ** the first 0x00, whichever comes first). */ SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){ int r = 0; const u8 *z = (const u8*)zIn; const u8 *zTerm; if( nByte>=0 ){ zTerm = &z[nByte]; }else{ zTerm = (const u8*)(-1); } assert( z<=zTerm ); while( *z!=0 && zmallocFailed ){ sqlite3VdbeMemRelease(&m); m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); assert( m.z || db->mallocFailed ); return m.z; } /* ** zIn is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters ** in pZ. nChar must be non-negative. */ SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){ int c; unsigned char const *z = zIn; int n = 0; if( SQLITE_UTF16NATIVE==SQLITE_UTF16LE ) z++; while( n=0xd8 && c<0xdc && z[0]>=0xdc && z[0]<0xe0 ) z += 2; n++; } return (int)(z-(unsigned char const *)zIn) - (SQLITE_UTF16NATIVE==SQLITE_UTF16LE); } #if defined(SQLITE_TEST) /* ** This routine is called from the TCL test function "translate_selftest". ** It checks that the primitives for serializing and deserializing ** characters in each encoding are inverses of each other. */ SQLITE_PRIVATE void sqlite3UtfSelfTest(void){ unsigned int i, t; unsigned char zBuf[20]; unsigned char *z; int n; unsigned int c; for(i=0; i<0x00110000; i++){ z = zBuf; WRITE_UTF8(z, i); n = (int)(z-zBuf); assert( n>0 && n<=4 ); z[0] = 0; z = zBuf; c = sqlite3Utf8Read((const u8**)&z); t = i; if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; assert( c==t ); assert( (z-zBuf)==n ); } } #endif /* SQLITE_TEST */ #endif /* SQLITE_OMIT_UTF16 */ /************** End of utf.c *************************************************/ /************** Begin file util.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** */ /* #include "sqliteInt.h" */ /* #include */ #ifndef SQLITE_OMIT_FLOATING_POINT #include #endif /* ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, ** or to bypass normal error detection during testing in order to let ** execute proceed further downstream. ** ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The ** sqlite3FaultSim() function only returns non-zero during testing. ** ** During testing, if the test harness has set a fault-sim callback using ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then ** each call to sqlite3FaultSim() is relayed to that application-supplied ** callback and the integer return value form the application-supplied ** callback is returned by sqlite3FaultSim(). ** ** The integer argument to sqlite3FaultSim() is a code to identify which ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() ** should have a unique code. To prevent legacy testing applications from ** breaking, the codes should not be changed or reused. */ #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE int sqlite3FaultSim(int iTest){ int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; return xCallback ? xCallback(iTest) : SQLITE_OK; } #endif #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Return true if the floating point value is Not a Number (NaN). ** ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. ** Otherwise, we have our own implementation that works on most systems. */ SQLITE_PRIVATE int sqlite3IsNaN(double x){ int rc; /* The value return */ #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN u64 y; memcpy(&y,&x,sizeof(y)); rc = IsNaN(y); #else rc = isnan(x); #endif /* HAVE_ISNAN */ testcase( rc ); return rc; } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Compute a string length that is limited to what can be stored in ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ if( z==0 ) return 0; return 0x3fffffff & (int)strlen(z); } /* ** Return the declared type of a column. Or return zDflt if the column ** has no declared type. ** ** The column type is an extra string stored after the zero-terminator on ** the column name if and only if the COLFLAG_HASTYPE flag is set. */ SQLITE_PRIVATE char *sqlite3ColumnType(Column *pCol, char *zDflt){ if( pCol->colFlags & COLFLAG_HASTYPE ){ return pCol->zCnName + strlen(pCol->zCnName) + 1; }else if( pCol->eCType ){ assert( pCol->eCType<=SQLITE_N_STDTYPE ); return (char*)sqlite3StdType[pCol->eCType-1]; }else{ return zDflt; } } /* ** Helper function for sqlite3Error() - called rarely. Broken out into ** a separate routine to avoid unnecessary register saves on entry to ** sqlite3Error(). */ static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ if( db->pErr ) sqlite3ValueSetNull(db->pErr); sqlite3SystemError(db, err_code); } /* ** Set the current error code to err_code and clear any prior error message. ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates ** that would be appropriate. */ SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){ assert( db!=0 ); db->errCode = err_code; if( err_code || db->pErr ){ sqlite3ErrorFinish(db, err_code); }else{ db->errByteOffset = -1; } } /* ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state ** and error message. */ SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3 *db){ assert( db!=0 ); db->errCode = SQLITE_OK; db->errByteOffset = -1; if( db->pErr ) sqlite3ValueSetNull(db->pErr); } /* ** Load the sqlite3.iSysErrno field if that is an appropriate thing ** to do based on the SQLite error code in rc. */ SQLITE_PRIVATE void sqlite3SystemError(sqlite3 *db, int rc){ if( rc==SQLITE_IOERR_NOMEM ) return; #ifdef SQLITE_USE_SEH if( rc==SQLITE_IOERR_IN_PAGE ){ int ii; int iErr; sqlite3BtreeEnterAll(db); for(ii=0; iinDb; ii++){ if( db->aDb[ii].pBt ){ iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt)); if( iErr ){ db->iSysErrno = iErr; } } } sqlite3BtreeLeaveAll(db); return; } #endif rc &= 0xff; if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ db->iSysErrno = sqlite3OsGetLastError(db->pVfs); } } /* ** Set the most recent error code and error string for the sqlite ** handle "db". The error code is set to "err_code". ** ** If it is not NULL, string zFormat specifies the format of the ** error string. zFormat and any string tokens that follow it are ** assumed to be encoded in UTF-8. ** ** To clear the most recent error for sqlite handle "db", sqlite3Error ** should be called with err_code set to SQLITE_OK and zFormat set ** to NULL. */ SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ assert( db!=0 ); db->errCode = err_code; sqlite3SystemError(db, err_code); if( zFormat==0 ){ sqlite3Error(db, err_code); }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ char *z; va_list ap; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); } } /* ** Check for interrupts and invoke progress callback. */ SQLITE_PRIVATE void sqlite3ProgressCheck(Parse *p){ sqlite3 *db = p->db; if( AtomicLoad(&db->u1.isInterrupted) ){ p->nErr++; p->rc = SQLITE_INTERRUPT; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress && (++p->nProgressSteps)>=db->nProgressOps ){ if( db->xProgress(db->pProgressArg) ){ p->nErr++; p->rc = SQLITE_INTERRUPT; } p->nProgressSteps = 0; } #endif } /* ** Add an error message to pParse->zErrMsg and increment pParse->nErr. ** ** This function should be used to report any error that occurs while ** compiling an SQL statement (i.e. within sqlite3_prepare()). The ** last thing the sqlite3_prepare() function does is copy the error ** stored by this function into the database handle using sqlite3Error(). ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used ** during statement execution (sqlite3_step() etc.). */ SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ char *zMsg; va_list ap; sqlite3 *db = pParse->db; assert( db!=0 ); assert( db->pParse==pParse || db->pParse->pToplevel==pParse ); db->errByteOffset = -2; va_start(ap, zFormat); zMsg = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); if( db->errByteOffset<-1 ) db->errByteOffset = -1; if( db->suppressErr ){ sqlite3DbFree(db, zMsg); if( db->mallocFailed ){ pParse->nErr++; pParse->rc = SQLITE_NOMEM; } }else{ pParse->nErr++; sqlite3DbFree(db, pParse->zErrMsg); pParse->zErrMsg = zMsg; pParse->rc = SQLITE_ERROR; pParse->pWith = 0; } } /* ** If database connection db is currently parsing SQL, then transfer ** error code errCode to that parser if the parser has not already ** encountered some other kind of error. */ SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3 *db, int errCode){ Parse *pParse; if( db==0 || (pParse = db->pParse)==0 ) return errCode; pParse->rc = errCode; pParse->nErr++; return errCode; } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** The input string must be zero-terminated. A new zero-terminator ** is added to the dequoted string. ** ** The return value is -1 if no dequoting occurs or the length of the ** dequoted string, exclusive of the zero terminator, if dequoting does ** occur. ** ** 2002-02-14: This routine is extended to remove MS-Access style ** brackets from around identifiers. For example: "[a-b-c]" becomes ** "a-b-c". */ SQLITE_PRIVATE void sqlite3Dequote(char *z){ char quote; int i, j; if( z==0 ) return; quote = z[0]; if( !sqlite3Isquote(quote) ) return; if( quote=='[' ) quote = ']'; for(i=1, j=0;; i++){ assert( z[i] ); if( z[i]==quote ){ if( z[i+1]==quote ){ z[j++] = quote; i++; }else{ break; } }else{ z[j++] = z[i]; } } z[j] = 0; } SQLITE_PRIVATE void sqlite3DequoteExpr(Expr *p){ assert( !ExprHasProperty(p, EP_IntValue) ); assert( sqlite3Isquote(p->u.zToken[0]) ); p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; sqlite3Dequote(p->u.zToken); } /* ** If the input token p is quoted, try to adjust the token to remove ** the quotes. This is not always possible: ** ** "abc" -> abc ** "ab""cd" -> (not possible because of the interior "") ** ** Remove the quotes if possible. This is a optimization. The overall ** system should still return the correct answer even if this routine ** is always a no-op. */ SQLITE_PRIVATE void sqlite3DequoteToken(Token *p){ unsigned int i; if( p->n<2 ) return; if( !sqlite3Isquote(p->z[0]) ) return; for(i=1; in-1; i++){ if( sqlite3Isquote(p->z[i]) ) return; } p->n -= 2; p->z++; } /* ** Generate a Token object from a string */ SQLITE_PRIVATE void sqlite3TokenInit(Token *p, char *z){ p->z = z; p->n = sqlite3Strlen30(z); } /* Convenient short-hand */ #define UpperToLower sqlite3UpperToLower /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. ** ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and ** sqlite3_strnicmp() APIs allow applications and extensions to compare ** the contents of two buffers containing UTF-8 strings in a ** case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){ if( zLeft==0 ){ return zRight ? -1 : 0; }else if( zRight==0 ){ return 1; } return sqlite3StrICmp(zLeft, zRight); } SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){ unsigned char *a, *b; int c, x; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; for(;;){ c = *a; x = *b; if( c==x ){ if( c==0 ) break; }else{ c = (int)UpperToLower[c] - (int)UpperToLower[x]; if( c ) break; } a++; b++; } return c; } SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; if( zLeft==0 ){ return zRight ? -1 : 0; }else if( zRight==0 ){ return 1; } a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* ** Compute an 8-bit hash on a string that is insensitive to case differences */ SQLITE_PRIVATE u8 sqlite3StrIHash(const char *z){ u8 h = 0; if( z==0 ) return 0; while( z[0] ){ h += UpperToLower[(unsigned char)z[0]]; z++; } return h; } /* Double-Double multiplication. (x[0],x[1]) *= (y,yy) ** ** Reference: ** T. J. Dekker, "A Floating-Point Technique for Extending the ** Available Precision". 1971-07-26. */ static void dekkerMul2(volatile double *x, double y, double yy){ /* ** The "volatile" keywords on parameter x[] and on local variables ** below are needed force intermediate results to be truncated to ** binary64 rather than be carried around in an extended-precision ** format. The truncation is necessary for the Dekker algorithm to ** work. Intel x86 floating point might omit the truncation without ** the use of volatile. */ volatile double tx, ty, p, q, c, cc; double hx, hy; u64 m; memcpy(&m, (void*)&x[0], 8); m &= 0xfffffffffc000000LL; memcpy(&hx, &m, 8); tx = x[0] - hx; memcpy(&m, &y, 8); m &= 0xfffffffffc000000LL; memcpy(&hy, &m, 8); ty = y - hy; p = hx*hy; q = hx*ty + tx*hy; c = p+q; cc = p - c + q + tx*ty; cc = x[0]*yy + x[1]*y + cc; x[0] = c + cc; x[1] = c - x[0]; x[1] += cc; } /* ** The string z[] is an text representation of a real number. ** Convert this string to a double and write it into *pResult. ** ** The string z[] is length bytes in length (bytes, not characters) and ** uses the encoding enc. The string is not necessarily zero-terminated. ** ** Return TRUE if the result is a valid real number (or integer) and FALSE ** if the string is empty or contains extraneous text. More specifically ** return ** 1 => The input string is a pure integer ** 2 or more => The input has a decimal point or eNNN clause ** 0 or less => The input string is not a valid number ** -1 => Not a valid number, but has a valid prefix which ** includes a decimal point and/or an eNNN clause ** ** Valid numbers are in one of these formats: ** ** [+-]digits[E[+-]digits] ** [+-]digits.[digits][E[+-]digits] ** [+-].digits[E[+-]digits] ** ** Leading and trailing whitespace is ignored for the purpose of determining ** validity. ** ** If some prefix of the input string is a valid number, this routine ** returns FALSE but it still converts the prefix and writes the result ** into *pResult. */ #if defined(_MSC_VER) #pragma warning(disable : 4756) #endif SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr; const char *zEnd; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ u64 s = 0; /* significand */ int d = 0; /* adjust exponent for shifting decimal point */ int esign = 1; /* sign of exponent */ int e = 0; /* exponent */ int eValid = 1; /* True exponent is either not used or is well-formed */ int nDigit = 0; /* Number of digits processed */ int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); *pResult = 0.0; /* Default return value, in case of an error */ if( length==0 ) return 0; if( enc==SQLITE_UTF8 ){ incr = 1; zEnd = z + length; }else{ int i; incr = 2; length &= ~1; assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); testcase( enc==SQLITE_UTF16LE ); testcase( enc==SQLITE_UTF16BE ); for(i=3-enc; i=zEnd ) return 0; /* get sign of significand */ if( *z=='-' ){ sign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* copy max significant digits to significand */ while( z=((LARGEST_UINT64-9)/10) ){ /* skip non-significant significand digits ** (increase exponent by d to shift decimal left) */ while( z=zEnd ) goto do_atof_calc; /* if decimal point is present */ if( *z=='.' ){ z+=incr; eType++; /* copy digits from after decimal to significand ** (decrease exponent by d to shift decimal right) */ while( z=zEnd ) goto do_atof_calc; /* if exponent is present */ if( *z=='e' || *z=='E' ){ z+=incr; eValid = 0; eType++; /* This branch is needed to avoid a (harmless) buffer overread. The ** special comment alerts the mutation tester that the correct answer ** is obtained even if the branch is omitted */ if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ /* get sign of exponent */ if( *z=='-' ){ esign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* copy digits to exponent */ while( z0 && s<(LARGEST_UINT64/10) ){ s *= 10; e--; } while( e<0 && (s%10)==0 ){ s /= 10; e++; } if( e==0 ){ *pResult = s; }else if( sqlite3Config.bUseLongDouble ){ LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s; if( e>0 ){ while( e>=100 ){ e-=100; r *= 1.0e+100L; } while( e>=10 ){ e-=10; r *= 1.0e+10L; } while( e>=1 ){ e-=1; r *= 1.0e+01L; } }else{ while( e<=-100 ){ e+=100; r *= 1.0e-100L; } while( e<=-10 ){ e+=10; r *= 1.0e-10L; } while( e<=-1 ){ e+=1; r *= 1.0e-01L; } } assert( r>=0.0 ); if( r>+1.7976931348623157081452742373e+308L ){ #ifdef INFINITY *pResult = +INFINITY; #else *pResult = 1.0e308*10.0; #endif }else{ *pResult = (double)r; } }else{ double rr[2]; u64 s2; rr[0] = (double)s; s2 = (u64)rr[0]; rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s); if( e>0 ){ while( e>=100 ){ e -= 100; dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83); } while( e>=10 ){ e -= 10; dekkerMul2(rr, 1.0e+10, 0.0); } while( e>=1 ){ e -= 1; dekkerMul2(rr, 1.0e+01, 0.0); } }else{ while( e<=-100 ){ e += 100; dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117); } while( e<=-10 ){ e += 10; dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27); } while( e<=-1 ){ e += 1; dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18); } } *pResult = rr[0]+rr[1]; if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300; } if( sign<0 ) *pResult = -*pResult; assert( !sqlite3IsNaN(*pResult) ); atof_return: /* return true if number and no extra non-whitespace characters after */ if( z==zEnd && nDigit>0 && eValid && eType>0 ){ return eType; }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ return -1; }else{ return 0; } #else return !sqlite3Atoi64(z, pResult, length, enc); #endif /* SQLITE_OMIT_FLOATING_POINT */ } #if defined(_MSC_VER) #pragma warning(default : 4756) #endif /* ** Render an signed 64-bit integer as text. Store the result in zOut[] and ** return the length of the string that was stored, in bytes. The value ** returned does not include the zero terminator at the end of the output ** string. ** ** The caller must ensure that zOut[] is at least 21 bytes in size. */ SQLITE_PRIVATE int sqlite3Int64ToText(i64 v, char *zOut){ int i; u64 x; char zTemp[22]; if( v<0 ){ x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; }else{ x = v; } i = sizeof(zTemp)-2; zTemp[sizeof(zTemp)-1] = 0; while( 1 /*exit-by-break*/ ){ zTemp[i] = (x%10) + '0'; x = x/10; if( x==0 ) break; i--; }; if( v<0 ) zTemp[--i] = '-'; memcpy(zOut, &zTemp[i], sizeof(zTemp)-i); return sizeof(zTemp)-1-i; } /* ** Compare the 19-character string zNum against the text representation ** value 2^63: 9223372036854775808. Return negative, zero, or positive ** if zNum is less than, equal to, or greater than the string. ** Note that zNum must contain exactly 19 characters. ** ** Unlike memcmp() this routine is guaranteed to return the difference ** in the values of the last digit if the only difference is in the ** last digit. So, for example, ** ** compare2pow63("9223372036854775800", 1) ** ** will return -8. */ static int compare2pow63(const char *zNum, int incr){ int c = 0; int i; /* 012345678901234567 */ const char *pow63 = "922337203685477580"; for(i=0; c==0 && i<18; i++){ c = (zNum[i*incr]-pow63[i])*10; } if( c==0 ){ c = zNum[18*incr] - '8'; testcase( c==(-1) ); testcase( c==0 ); testcase( c==(+1) ); } return c; } /* ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This ** routine does *not* accept hexadecimal notation. ** ** Returns: ** ** -1 Not even a prefix of the input text looks like an integer ** 0 Successful transformation. Fits in a 64-bit signed integer. ** 1 Excess non-space text after the integer value ** 2 Integer too large for a 64-bit signed integer or is malformed ** 3 Special case of 9223372036854775808 ** ** length is the number of bytes in the string (bytes, not characters). ** The string is not necessarily zero-terminated. The encoding is ** given by enc. */ SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ int incr; u64 u = 0; int neg = 0; /* assume positive */ int i; int c = 0; int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ int rc; /* Baseline return code */ const char *zStart; const char *zEnd = zNum + length; assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); if( enc==SQLITE_UTF8 ){ incr = 1; }else{ incr = 2; length &= ~1; assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); for(i=3-enc; i='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } testcase( i==18*incr ); testcase( i==19*incr ); testcase( i==20*incr ); if( u>LARGEST_INT64 ){ /* This test and assignment is needed only to suppress UB warnings ** from clang and -fsanitize=undefined. This test and assignment make ** the code a little larger and slower, and no harm comes from omitting ** them, but we must appease the undefined-behavior pharisees. */ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } rc = 0; if( i==0 && zStart==zNum ){ /* No digits */ rc = -1; }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ rc = 1; }else if( &zNum[i]19*incr ? 1 : compare2pow63(zNum, incr); if( c<0 ){ /* zNum is less than 9223372036854775808 so it fits */ assert( u<=LARGEST_INT64 ); return rc; }else{ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 2; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); return neg ? rc : 3; } } } } /* ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, ** into a 64-bit signed integer. This routine accepts hexadecimal literals, ** whereas sqlite3Atoi64() does not. ** ** Returns: ** ** 0 Successful transformation. Fits in a 64-bit signed integer. ** 1 Excess text after the integer value ** 2 Integer too large for a 64-bit signed integer or is malformed ** 3 Special case of 9223372036854775808 */ SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') ){ u64 u = 0; int i, k; for(i=2; z[i]=='0'; i++){} for(k=i; sqlite3Isxdigit(z[k]); k++){ u = u*16 + sqlite3HexToInt(z[k]); } memcpy(pOut, &u, 8); if( k-i>16 ) return 2; if( z[k]!=0 ) return 1; return 0; }else #endif /* SQLITE_OMIT_HEX_INTEGER */ { int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789")); if( z[n] ) n++; return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8); } } /* ** If zNum represents an integer that will fit in 32-bits, then set ** *pValue to that integer and return true. Otherwise return false. ** ** This routine accepts both decimal and hexadecimal notation for integers. ** ** Any non-numeric characters that following zNum are ignored. ** This is different from sqlite3Atoi64() which requires the ** input number to be zero-terminated. */ SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){ sqlite_int64 v = 0; int i, c; int neg = 0; if( zNum[0]=='-' ){ neg = 1; zNum++; }else if( zNum[0]=='+' ){ zNum++; } #ifndef SQLITE_OMIT_HEX_INTEGER else if( zNum[0]=='0' && (zNum[1]=='x' || zNum[1]=='X') && sqlite3Isxdigit(zNum[2]) ){ u32 u = 0; zNum += 2; while( zNum[0]=='0' ) zNum++; for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){ u = u*16 + sqlite3HexToInt(zNum[i]); } if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ memcpy(pValue, &u, 4); return 1; }else{ return 0; } } #endif if( !sqlite3Isdigit(zNum[0]) ) return 0; while( zNum[0]=='0' ) zNum++; for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ v = v*10 + c; } /* The longest decimal representation of a 32 bit integer is 10 digits: ** ** 1234567890 ** 2^31 -> 2147483648 */ testcase( i==10 ); if( i>10 ){ return 0; } testcase( v-neg==2147483647 ); if( v-neg>2147483647 ){ return 0; } if( neg ){ v = -v; } *pValue = (int)v; return 1; } /* ** Return a 32-bit integer value extracted from a string. If the ** string is not an integer, just return 0. */ SQLITE_PRIVATE int sqlite3Atoi(const char *z){ int x = 0; sqlite3GetInt32(z, &x); return x; } /* ** Decode a floating-point value into an approximate decimal ** representation. ** ** Round the decimal representation to n significant digits if ** n is positive. Or round to -n signficant digits after the ** decimal point if n is negative. No rounding is performed if ** n is zero. ** ** The significant digits of the decimal representation are ** stored in p->z[] which is a often (but not always) a pointer ** into the middle of p->zBuf[]. There are p->n significant digits. ** The p->z[] array is *not* zero-terminated. */ SQLITE_PRIVATE void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){ int i; u64 v; int e, exp = 0; p->isSpecial = 0; p->z = p->zBuf; /* Convert negative numbers to positive. Deal with Infinity, 0.0, and ** NaN. */ if( r<0.0 ){ p->sign = '-'; r = -r; }else if( r==0.0 ){ p->sign = '+'; p->n = 1; p->iDP = 1; p->z = "0"; return; }else{ p->sign = '+'; } memcpy(&v,&r,8); e = v>>52; if( (e&0x7ff)==0x7ff ){ p->isSpecial = 1 + (v!=0x7ff0000000000000LL); p->n = 0; p->iDP = 0; return; } /* Multiply r by powers of ten until it lands somewhere in between ** 1.0e+19 and 1.0e+17. */ if( sqlite3Config.bUseLongDouble ){ LONGDOUBLE_TYPE rr = r; if( rr>=1.0e+19 ){ while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; } while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; } while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; } }else{ while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; } while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; } while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; } } v = (u64)rr; }else{ /* If high-precision floating point is not available using "long double", ** then use Dekker-style double-double computation to increase the ** precision. ** ** The error terms on constants like 1.0e+100 computed using the ** decimal extension, for example as follows: ** ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100))); */ double rr[2]; rr[0] = r; rr[1] = 0.0; if( rr[0]>1.84e+19 ){ while( rr[0]>1.84e+119 ){ exp += 100; dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117); } while( rr[0]>1.84e+29 ){ exp += 10; dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27); } while( rr[0]>1.84e+19 ){ exp += 1; dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18); } }else{ while( rr[0]<1.84e-82 ){ exp -= 100; dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83); } while( rr[0]<1.84e+08 ){ exp -= 10; dekkerMul2(rr, 1.0e+10, 0.0); } while( rr[0]<1.84e+18 ){ exp -= 1; dekkerMul2(rr, 1.0e+01, 0.0); } } v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1]; } /* Extract significant digits. */ i = sizeof(p->zBuf)-1; assert( v>0 ); while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; } assert( i>=0 && izBuf)-1 ); p->n = sizeof(p->zBuf) - 1 - i; assert( p->n>0 ); assert( p->nzBuf) ); p->iDP = p->n + exp; if( iRound<0 ){ iRound = p->iDP - iRound; if( iRound==0 && p->zBuf[i+1]>='5' ){ iRound = 1; p->zBuf[i--] = '0'; p->n++; p->iDP++; } } if( iRound>0 && (iRoundn || p->n>mxRound) ){ char *z = &p->zBuf[i+1]; if( iRound>mxRound ) iRound = mxRound; p->n = iRound; if( z[iRound]>='5' ){ int j = iRound-1; while( 1 /*exit-by-break*/ ){ z[j]++; if( z[j]<='9' ) break; z[j] = '0'; if( j==0 ){ p->z[i--] = '1'; p->n++; p->iDP++; break; }else{ j--; } } } } p->z = &p->zBuf[i+1]; assert( i+p->n < sizeof(p->zBuf) ); while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; } } /* ** Try to convert z into an unsigned 32-bit integer. Return true on ** success and false if there is an error. ** ** Only decimal notation is accepted. */ SQLITE_PRIVATE int sqlite3GetUInt32(const char *z, u32 *pI){ u64 v = 0; int i; for(i=0; sqlite3Isdigit(z[i]); i++){ v = v*10 + z[i] - '0'; if( v>4294967296LL ){ *pI = 0; return 0; } } if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } *pI = (u32)v; return 1; } /* ** The variable-length integer encoding is as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** C = xxxxxxxx 8 bits of data ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** 28 bits - BBBA ** 35 bits - BBBBA ** 42 bits - BBBBBA ** 49 bits - BBBBBBA ** 56 bits - BBBBBBBA ** 64 bits - BBBBBBBBC */ /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data write will be between 1 and 9 bytes. The number ** of bytes written is returned. ** ** A variable-length integer consists of the lower 7 bits of each byte ** for all bytes that have the 8th bit set and one byte with the 8th ** bit clear. Except, if we get to the 9th byte, it stores the full ** 8 bits and is the last byte. */ static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ int i, j, n; u8 buf[10]; if( v & (((u64)0xff000000)<<32) ){ p[8] = (u8)v; v >>= 8; for(i=7; i>=0; i--){ p[i] = (u8)((v & 0x7f) | 0x80); v >>= 7; } return 9; } n = 0; do{ buf[n++] = (u8)((v & 0x7f) | 0x80); v >>= 7; }while( v!=0 ); buf[0] &= 0x7f; assert( n<=9 ); for(i=0, j=n-1; j>=0; j--, i++){ p[i] = buf[j]; } return n; } SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){ if( v<=0x7f ){ p[0] = v&0x7f; return 1; } if( v<=0x3fff ){ p[0] = ((v>>7)&0x7f)|0x80; p[1] = v&0x7f; return 2; } return putVarint64(p,v); } /* ** Bitmasks used by sqlite3GetVarint(). These precomputed constants ** are defined here rather than simply putting the constant expressions ** inline in order to work around bugs in the RVT compiler. ** ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f ** ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 */ #define SLOT_2_0 0x001fc07f #define SLOT_4_2_0 0xf01fc07f /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. */ SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ u32 a,b,s; if( ((signed char*)p)[0]>=0 ){ *v = *p; return 1; } if( ((signed char*)p)[1]>=0 ){ *v = ((u32)(p[0]&0x7f)<<7) | p[1]; return 2; } /* Verify that constants are precomputed correctly */ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); a = ((u32)p[0])<<14; b = p[1]; p += 2; a |= *p; /* a: p0<<14 | p2 (unmasked) */ if (!(a&0x80)) { a &= SLOT_2_0; b &= 0x7f; b = b<<7; a |= b; *v = a; return 3; } /* CSE1 from below */ a &= SLOT_2_0; p++; b = b<<14; b |= *p; /* b: p1<<14 | p3 (unmasked) */ if (!(b&0x80)) { b &= SLOT_2_0; /* moved CSE1 up */ /* a &= (0x7f<<14)|(0x7f); */ a = a<<7; a |= b; *v = a; return 4; } /* a: p0<<14 | p2 (masked) */ /* b: p1<<14 | p3 (unmasked) */ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ /* moved CSE1 up */ /* a &= (0x7f<<14)|(0x7f); */ b &= SLOT_2_0; s = a; /* s: p0<<14 | p2 (masked) */ p++; a = a<<14; a |= *p; /* a: p0<<28 | p2<<14 | p4 (unmasked) */ if (!(a&0x80)) { /* we can skip these cause they were (effectively) done above ** while calculating s */ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ /* b &= (0x7f<<14)|(0x7f); */ b = b<<7; a |= b; s = s>>18; *v = ((u64)s)<<32 | a; return 5; } /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ s = s<<7; s |= b; /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ p++; b = b<<14; b |= *p; /* b: p1<<28 | p3<<14 | p5 (unmasked) */ if (!(b&0x80)) { /* we can skip this cause it was (effectively) done above in calc'ing s */ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ a &= SLOT_2_0; a = a<<7; a |= b; s = s>>18; *v = ((u64)s)<<32 | a; return 6; } p++; a = a<<14; a |= *p; /* a: p2<<28 | p4<<14 | p6 (unmasked) */ if (!(a&0x80)) { a &= SLOT_4_2_0; b &= SLOT_2_0; b = b<<7; a |= b; s = s>>11; *v = ((u64)s)<<32 | a; return 7; } /* CSE2 from below */ a &= SLOT_2_0; p++; b = b<<14; b |= *p; /* b: p3<<28 | p5<<14 | p7 (unmasked) */ if (!(b&0x80)) { b &= SLOT_4_2_0; /* moved CSE2 up */ /* a &= (0x7f<<14)|(0x7f); */ a = a<<7; a |= b; s = s>>4; *v = ((u64)s)<<32 | a; return 8; } p++; a = a<<15; a |= *p; /* a: p4<<29 | p6<<15 | p8 (unmasked) */ /* moved CSE2 up */ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ b &= SLOT_2_0; b = b<<8; a |= b; s = s<<4; b = p[-4]; b &= 0x7f; b = b>>3; s |= b; *v = ((u64)s)<<32 | a; return 9; } /* ** Read a 32-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. ** ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned ** integer, then set *v to 0xffffffff. ** ** A MACRO version, getVarint32, is provided which inlines the ** single-byte case. All code should use the MACRO version as ** this function assumes the single-byte case has already been handled. */ SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ u32 a,b; /* The 1-byte case. Overwhelmingly the most common. Handled inline ** by the getVarin32() macro */ a = *p; /* a: p0 (unmasked) */ #ifndef getVarint32 if (!(a&0x80)) { /* Values between 0 and 127 */ *v = a; return 1; } #endif /* The 2-byte case */ p++; b = *p; /* b: p1 (unmasked) */ if (!(b&0x80)) { /* Values between 128 and 16383 */ a &= 0x7f; a = a<<7; *v = a | b; return 2; } /* The 3-byte case */ p++; a = a<<14; a |= *p; /* a: p0<<14 | p2 (unmasked) */ if (!(a&0x80)) { /* Values between 16384 and 2097151 */ a &= (0x7f<<14)|(0x7f); b &= 0x7f; b = b<<7; *v = a | b; return 3; } /* A 32-bit varint is used to store size information in btrees. ** Objects are rarely larger than 2MiB limit of a 3-byte varint. ** A 3-byte varint is sufficient, for example, to record the size ** of a 1048569-byte BLOB or string. ** ** We only unroll the first 1-, 2-, and 3- byte cases. The very ** rare larger cases can be handled by the slower 64-bit varint ** routine. */ #if 1 { u64 v64; u8 n; n = sqlite3GetVarint(p-2, &v64); assert( n>3 && n<=9 ); if( (v64 & SQLITE_MAX_U32)!=v64 ){ *v = 0xffffffff; }else{ *v = (u32)v64; } return n; } #else /* For following code (kept for historical record only) shows an ** unrolling for the 3- and 4-byte varint cases. This code is ** slightly faster, but it is also larger and much harder to test. */ p++; b = b<<14; b |= *p; /* b: p1<<14 | p3 (unmasked) */ if (!(b&0x80)) { /* Values between 2097152 and 268435455 */ b &= (0x7f<<14)|(0x7f); a &= (0x7f<<14)|(0x7f); a = a<<7; *v = a | b; return 4; } p++; a = a<<14; a |= *p; /* a: p0<<28 | p2<<14 | p4 (unmasked) */ if (!(a&0x80)) { /* Values between 268435456 and 34359738367 */ a &= SLOT_4_2_0; b &= SLOT_4_2_0; b = b<<7; *v = a | b; return 5; } /* We can only reach this point when reading a corrupt database ** file. In that case we are not in any hurry. Use the (relatively ** slow) general-purpose sqlite3GetVarint() routine to extract the ** value. */ { u64 v64; u8 n; p -= 4; n = sqlite3GetVarint(p, &v64); assert( n>5 && n<=9 ); *v = (u32)v64; return n; } #endif } /* ** Return the number of bytes that will be needed to store the given ** 64-bit integer. */ SQLITE_PRIVATE int sqlite3VarintLen(u64 v){ int i; for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } return i; } /* ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ #if SQLITE_BYTEORDER==4321 u32 x; memcpy(&x,p,4); return x; #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u32 x; memcpy(&x,p,4); return __builtin_bswap32(x); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u32 x; memcpy(&x,p,4); return _byteswap_ulong(x); #else testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; #endif } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ #if SQLITE_BYTEORDER==4321 memcpy(p,&v,4); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u32 x = __builtin_bswap32(v); memcpy(p,&x,4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u32 x = _byteswap_ulong(v); memcpy(p,&x,4); #else p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; #endif } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ SQLITE_PRIVATE u8 sqlite3HexToInt(int h){ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); #ifdef SQLITE_ASCII h += 9*(1&(h>>6)); #endif #ifdef SQLITE_EBCDIC h += 9*(1&~(h>>4)); #endif return (u8)(h & 0xf); } #if !defined(SQLITE_OMIT_BLOB_LITERAL) /* ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary ** value. Return a pointer to its binary value. Space to hold the ** binary value has been obtained from malloc and must be freed by ** the calling routine. */ SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ char *zBlob; int i; zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); n--; if( zBlob ){ for(i=0; ieOpenState; if( eOpenState!=SQLITE_STATE_OPEN ){ if( sqlite3SafetyCheckSickOrOk(db) ){ testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("unopened"); } return 0; }else{ return 1; } } SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ u8 eOpenState; eOpenState = db->eOpenState; if( eOpenState!=SQLITE_STATE_SICK && eOpenState!=SQLITE_STATE_OPEN && eOpenState!=SQLITE_STATE_BUSY ){ testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("invalid"); return 0; }else{ return 1; } } /* ** Attempt to add, subtract, or multiply the 64-bit signed value iB against ** the other 64-bit signed integer at *pA and store the result in *pA. ** Return 0 on success. Or if the operation would have resulted in an ** overflow, leave *pA unchanged and return 1. */ SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_add_overflow(*pA, iB, pA); #else i64 iA = *pA; testcase( iA==0 ); testcase( iA==1 ); testcase( iB==-1 ); testcase( iB==0 ); if( iB>=0 ){ testcase( iA>0 && LARGEST_INT64 - iA == iB ); testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; }else{ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; } *pA += iB; return 0; #endif } SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_sub_overflow(*pA, iB, pA); #else testcase( iB==SMALLEST_INT64+1 ); if( iB==SMALLEST_INT64 ){ testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); if( (*pA)>=0 ) return 1; *pA -= iB; return 0; }else{ return sqlite3AddInt64(pA, -iB); } #endif } SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_mul_overflow(*pA, iB, pA); #else i64 iA = *pA; if( iB>0 ){ if( iA>LARGEST_INT64/iB ) return 1; if( iA0 ){ if( iBLARGEST_INT64/-iB ) return 1; } } *pA = iA*iB; return 0; #endif } /* ** Compute the absolute value of a 32-bit signed integer, of possible. Or ** if the integer has a value of -2147483648, return +2147483647 */ SQLITE_PRIVATE int sqlite3AbsInt32(int x){ if( x>=0 ) return x; if( x==(int)0x80000000 ) return 0x7fffffff; return -x; } #ifdef SQLITE_ENABLE_8_3_NAMES /* ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm ** test.db-mj7f3319fa => test.9fa */ SQLITE_PRIVATE void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ #if SQLITE_ENABLE_8_3_NAMES<2 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) #endif { int i, sz; sz = sqlite3Strlen30(z); for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); } } #endif /* ** Find (an approximate) sum of two LogEst values. This computation is ** not a simple "+" operator because LogEst is stored as a logarithmic ** value. ** */ SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ static const unsigned char x[] = { 10, 10, /* 0,1 */ 9, 9, /* 2,3 */ 8, 8, /* 4,5 */ 7, 7, 7, /* 6,7,8 */ 6, 6, 6, /* 9,10,11 */ 5, 5, 5, /* 12-14 */ 4, 4, 4, 4, /* 15-18 */ 3, 3, 3, 3, 3, 3, /* 19-24 */ 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ }; if( a>=b ){ if( a>b+49 ) return a; if( a>b+31 ) return a+1; return a+x[a-b]; }else{ if( b>a+49 ) return b; if( b>a+31 ) return b+1; return b+x[b-a]; } } /* ** Convert an integer into a LogEst. In other words, compute an ** approximation for 10*log2(x). */ SQLITE_PRIVATE LogEst sqlite3LogEst(u64 x){ static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; LogEst y = 40; if( x<8 ){ if( x<2 ) return 0; while( x<8 ){ y -= 10; x <<= 1; } }else{ #if GCC_VERSION>=5004000 int i = 60 - __builtin_clzll(x); y += i*10; x >>= i; #else while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ while( x>15 ){ y += 10; x >>= 1; } #endif } return a[x&7] + y - 10; } /* ** Convert a double into a LogEst ** In other words, compute an approximation for 10*log2(x). */ SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double x){ u64 a; LogEst e; assert( sizeof(x)==8 && sizeof(a)==8 ); if( x<=1 ) return 0; if( x<=2000000000 ) return sqlite3LogEst((u64)x); memcpy(&a, &x, 8); e = (a>>52) - 1022; return e*10; } /* ** Convert a LogEst into an integer. */ SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst x){ u64 n; n = x%10; x /= 10; if( n>=5 ) n -= 2; else if( n>=1 ) n -= 1; if( x>60 ) return (u64)LARGEST_INT64; return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); } /* ** Add a new name/number pair to a VList. This might require that the ** VList object be reallocated, so return the new VList. If an OOM ** error occurs, the original VList returned and the ** db->mallocFailed flag is set. ** ** A VList is really just an array of integers. To destroy a VList, ** simply pass it to sqlite3DbFree(). ** ** The first integer is the number of integers allocated for the whole ** VList. The second integer is the number of integers actually used. ** Each name/number pair is encoded by subsequent groups of 3 or more ** integers. ** ** Each name/number pair starts with two integers which are the numeric ** value for the pair and the size of the name/number pair, respectively. ** The text name overlays one or more following integers. The text name ** is always zero-terminated. ** ** Conceptually: ** ** struct VList { ** int nAlloc; // Number of allocated slots ** int nUsed; // Number of used slots ** struct VListEntry { ** int iValue; // Value for this entry ** int nSlot; // Slots used by this entry ** // ... variable name goes here ** } a[0]; ** } ** ** During code generation, pointers to the variable names within the ** VList are taken. When that happens, nAlloc is set to zero as an ** indication that the VList may never again be enlarged, since the ** accompanying realloc() would invalidate the pointers. */ SQLITE_PRIVATE VList *sqlite3VListAdd( sqlite3 *db, /* The database connection used for malloc() */ VList *pIn, /* The input VList. Might be NULL */ const char *zName, /* Name of symbol to add */ int nName, /* Bytes of text in zName */ int iVal /* Value to associate with zName */ ){ int nInt; /* number of sizeof(int) objects needed for zName */ char *z; /* Pointer to where zName will be stored */ int i; /* Index in pIn[] where zName is stored */ nInt = nName/4 + 3; assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ if( pIn==0 || pIn[1]+nInt > pIn[0] ){ /* Enlarge the allocation */ sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); if( pOut==0 ) return pIn; if( pIn==0 ) pOut[1] = 2; pIn = pOut; pIn[0] = nAlloc; } i = pIn[1]; pIn[i] = iVal; pIn[i+1] = nInt; z = (char*)&pIn[i+2]; pIn[1] = i+nInt; assert( pIn[1]<=pIn[0] ); memcpy(z, zName, nName); z[nName] = 0; return pIn; } /* ** Return a pointer to the name of a variable in the given VList that ** has the value iVal. Or return a NULL if there is no such variable in ** the list */ SQLITE_PRIVATE const char *sqlite3VListNumToName(VList *pIn, int iVal){ int i, mx; if( pIn==0 ) return 0; mx = pIn[1]; i = 2; do{ if( pIn[i]==iVal ) return (char*)&pIn[i+2]; i += pIn[i+1]; }while( i */ /* Turn bulk memory into a hash table object by initializing the ** fields of the Hash structure. ** ** "pNew" is a pointer to the hash table that is to be initialized. */ SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){ assert( pNew!=0 ); pNew->first = 0; pNew->count = 0; pNew->htsize = 0; pNew->ht = 0; } /* Remove all entries from a hash table. Reclaim all memory. ** Call this routine to delete a hash table or to reset a hash table ** to the empty state. */ SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){ HashElem *elem; /* For looping over all elements of the table */ assert( pH!=0 ); elem = pH->first; pH->first = 0; sqlite3_free(pH->ht); pH->ht = 0; pH->htsize = 0; while( elem ){ HashElem *next_elem = elem->next; sqlite3_free(elem); elem = next_elem; } pH->count = 0; } /* ** The hashing function. */ static unsigned int strHash(const char *z){ unsigned int h = 0; unsigned char c; while( (c = (unsigned char)*z++)!=0 ){ /*OPTIMIZATION-IF-TRUE*/ /* Knuth multiplicative hashing. (Sorting & Searching, p. 510). ** 0x9e3779b1 is 2654435761 which is the closest prime number to ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */ h += sqlite3UpperToLower[c]; h *= 0x9e3779b1; } return h; } /* Link pNew element into the hash table pH. If pEntry!=0 then also ** insert pNew into the pEntry hash bucket. */ static void insertElement( Hash *pH, /* The complete hash table */ struct _ht *pEntry, /* The entry into which pNew is inserted */ HashElem *pNew /* The element to be inserted */ ){ HashElem *pHead; /* First element already in pEntry */ if( pEntry ){ pHead = pEntry->count ? pEntry->chain : 0; pEntry->count++; pEntry->chain = pNew; }else{ pHead = 0; } if( pHead ){ pNew->next = pHead; pNew->prev = pHead->prev; if( pHead->prev ){ pHead->prev->next = pNew; } else { pH->first = pNew; } pHead->prev = pNew; }else{ pNew->next = pH->first; if( pH->first ){ pH->first->prev = pNew; } pNew->prev = 0; pH->first = pNew; } } /* Resize the hash table so that it contains "new_size" buckets. ** ** The hash table might fail to resize if sqlite3_malloc() fails or ** if the new size is the same as the prior size. ** Return TRUE if the resize occurs and false if not. */ static int rehash(Hash *pH, unsigned int new_size){ struct _ht *new_ht; /* The new hash table */ HashElem *elem, *next_elem; /* For looping over existing elements */ #if SQLITE_MALLOC_SOFT_LIMIT>0 if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); } if( new_size==pH->htsize ) return 0; #endif /* The inability to allocates space for a larger hash table is ** a performance hit but it is not a fatal error. So mark the ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero() ** only zeroes the requested number of bytes whereas this module will ** use the actual amount of space allocated for the hash table (which ** may be larger than the requested amount). */ sqlite3BeginBenignMalloc(); new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); sqlite3EndBenignMalloc(); if( new_ht==0 ) return 0; sqlite3_free(pH->ht); pH->ht = new_ht; pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht); memset(new_ht, 0, new_size*sizeof(struct _ht)); for(elem=pH->first, pH->first=0; elem; elem = next_elem){ unsigned int h = strHash(elem->pKey) % new_size; next_elem = elem->next; insertElement(pH, &new_ht[h], elem); } return 1; } /* This function (for internal use only) locates an element in an ** hash table that matches the given key. If no element is found, ** a pointer to a static null element with HashElem.data==0 is returned. ** If pH is not NULL, then the hash for this key is written to *pH. */ static HashElem *findElementWithHash( const Hash *pH, /* The pH to be searched */ const char *pKey, /* The key we are searching for */ unsigned int *pHash /* Write the hash value here */ ){ HashElem *elem; /* Used to loop thru the element list */ unsigned int count; /* Number of elements left to test */ unsigned int h; /* The computed hash */ static HashElem nullElement = { 0, 0, 0, 0 }; if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/ struct _ht *pEntry; h = strHash(pKey) % pH->htsize; pEntry = &pH->ht[h]; elem = pEntry->chain; count = pEntry->count; }else{ h = 0; elem = pH->first; count = pH->count; } if( pHash ) *pHash = h; while( count ){ assert( elem!=0 ); if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ return elem; } elem = elem->next; count--; } return &nullElement; } /* Remove a single entry from the hash table given a pointer to that ** element and a hash on the element's key. */ static void removeElementGivenHash( Hash *pH, /* The pH containing "elem" */ HashElem* elem, /* The element to be removed from the pH */ unsigned int h /* Hash value for the element */ ){ struct _ht *pEntry; if( elem->prev ){ elem->prev->next = elem->next; }else{ pH->first = elem->next; } if( elem->next ){ elem->next->prev = elem->prev; } if( pH->ht ){ pEntry = &pH->ht[h]; if( pEntry->chain==elem ){ pEntry->chain = elem->next; } assert( pEntry->count>0 ); pEntry->count--; } sqlite3_free( elem ); pH->count--; if( pH->count==0 ){ assert( pH->first==0 ); assert( pH->count==0 ); sqlite3HashClear(pH); } } /* Attempt to locate an element of the hash table pH with a key ** that matches pKey. Return the data for this element if it is ** found, or NULL if there is no match. */ SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){ assert( pH!=0 ); assert( pKey!=0 ); return findElementWithHash(pH, pKey, 0)->data; } /* Insert an element into the hash table pH. The key is pKey ** and the data is "data". ** ** If no element exists with a matching key, then a new ** element is created and NULL is returned. ** ** If another element already exists with the same key, then the ** new data replaces the old data and the old data is returned. ** The key is not copied in this instance. If a malloc fails, then ** the new data is returned and the hash table is unchanged. ** ** If the "data" parameter to this function is NULL, then the ** element corresponding to "key" is removed from the hash table. */ SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){ unsigned int h; /* the hash of the key modulo hash table size */ HashElem *elem; /* Used to loop thru the element list */ HashElem *new_elem; /* New element added to the pH */ assert( pH!=0 ); assert( pKey!=0 ); elem = findElementWithHash(pH,pKey,&h); if( elem->data ){ void *old_data = elem->data; if( data==0 ){ removeElementGivenHash(pH,elem,h); }else{ elem->data = data; elem->pKey = pKey; } return old_data; } if( data==0 ) return 0; new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) ); if( new_elem==0 ) return data; new_elem->pKey = pKey; new_elem->data = data; pH->count++; if( pH->count>=10 && pH->count > 2*pH->htsize ){ if( rehash(pH, pH->count*2) ){ assert( pH->htsize>0 ); h = strHash(pKey) % pH->htsize; } } insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem); return 0; } /************** End of hash.c ************************************************/ /************** Begin file opcodes.c *****************************************/ /* Automatically generated. Do not edit */ /* See the tool/mkopcodec.tcl script for details. */ #if !defined(SQLITE_OMIT_EXPLAIN) \ || defined(VDBE_PROFILE) \ || defined(SQLITE_DEBUG) #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG) # define OpHelp(X) "\0" X #else # define OpHelp(X) #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { /* 0 */ "Savepoint" OpHelp(""), /* 1 */ "AutoCommit" OpHelp(""), /* 2 */ "Transaction" OpHelp(""), /* 3 */ "Checkpoint" OpHelp(""), /* 4 */ "JournalMode" OpHelp(""), /* 5 */ "Vacuum" OpHelp(""), /* 6 */ "VFilter" OpHelp("iplan=r[P3] zplan='P4'"), /* 7 */ "VUpdate" OpHelp("data=r[P3@P2]"), /* 8 */ "Init" OpHelp("Start at P2"), /* 9 */ "Goto" OpHelp(""), /* 10 */ "Gosub" OpHelp(""), /* 11 */ "InitCoroutine" OpHelp(""), /* 12 */ "Yield" OpHelp(""), /* 13 */ "MustBeInt" OpHelp(""), /* 14 */ "Jump" OpHelp(""), /* 15 */ "Once" OpHelp(""), /* 16 */ "If" OpHelp(""), /* 17 */ "IfNot" OpHelp(""), /* 18 */ "IsType" OpHelp("if typeof(P1.P3) in P5 goto P2"), /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"), /* 20 */ "IfNullRow" OpHelp("if P1.nullRow then r[P3]=NULL, goto P2"), /* 21 */ "SeekLT" OpHelp("key=r[P3@P4]"), /* 22 */ "SeekLE" OpHelp("key=r[P3@P4]"), /* 23 */ "SeekGE" OpHelp("key=r[P3@P4]"), /* 24 */ "SeekGT" OpHelp("key=r[P3@P4]"), /* 25 */ "IfNotOpen" OpHelp("if( !csr[P1] ) goto P2"), /* 26 */ "IfNoHope" OpHelp("key=r[P3@P4]"), /* 27 */ "NoConflict" OpHelp("key=r[P3@P4]"), /* 28 */ "NotFound" OpHelp("key=r[P3@P4]"), /* 29 */ "Found" OpHelp("key=r[P3@P4]"), /* 30 */ "SeekRowid" OpHelp("intkey=r[P3]"), /* 31 */ "NotExists" OpHelp("intkey=r[P3]"), /* 32 */ "Last" OpHelp(""), /* 33 */ "IfSmaller" OpHelp(""), /* 34 */ "SorterSort" OpHelp(""), /* 35 */ "Sort" OpHelp(""), /* 36 */ "Rewind" OpHelp(""), /* 37 */ "SorterNext" OpHelp(""), /* 38 */ "Prev" OpHelp(""), /* 39 */ "Next" OpHelp(""), /* 40 */ "IdxLE" OpHelp("key=r[P3@P4]"), /* 41 */ "IdxGT" OpHelp("key=r[P3@P4]"), /* 42 */ "IdxLT" OpHelp("key=r[P3@P4]"), /* 43 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"), /* 44 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"), /* 45 */ "IdxGE" OpHelp("key=r[P3@P4]"), /* 46 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"), /* 47 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"), /* 48 */ "Program" OpHelp(""), /* 49 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 50 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"), /* 51 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"), /* 52 */ "Ne" OpHelp("IF r[P3]!=r[P1]"), /* 53 */ "Eq" OpHelp("IF r[P3]==r[P1]"), /* 54 */ "Gt" OpHelp("IF r[P3]>r[P1]"), /* 55 */ "Le" OpHelp("IF r[P3]<=r[P1]"), /* 56 */ "Lt" OpHelp("IF r[P3]=r[P1]"), /* 58 */ "ElseEq" OpHelp(""), /* 59 */ "IfPos" OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"), /* 60 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]--, goto P2"), /* 61 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"), /* 62 */ "IncrVacuum" OpHelp(""), /* 63 */ "VNext" OpHelp(""), /* 64 */ "Filter" OpHelp("if key(P3@P4) not in filter(P1) goto P2"), /* 65 */ "PureFunc" OpHelp("r[P3]=func(r[P2@NP])"), /* 66 */ "Function" OpHelp("r[P3]=func(r[P2@NP])"), /* 67 */ "Return" OpHelp(""), /* 68 */ "EndCoroutine" OpHelp(""), /* 69 */ "HaltIfNull" OpHelp("if r[P3]=null halt"), /* 70 */ "Halt" OpHelp(""), /* 71 */ "Integer" OpHelp("r[P2]=P1"), /* 72 */ "Int64" OpHelp("r[P2]=P4"), /* 73 */ "String" OpHelp("r[P2]='P4' (len=P1)"), /* 74 */ "BeginSubrtn" OpHelp("r[P2]=NULL"), /* 75 */ "Null" OpHelp("r[P2..P3]=NULL"), /* 76 */ "SoftNull" OpHelp("r[P1]=NULL"), /* 77 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"), /* 78 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"), /* 79 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"), /* 80 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"), /* 81 */ "SCopy" OpHelp("r[P2]=r[P1]"), /* 82 */ "IntCopy" OpHelp("r[P2]=r[P1]"), /* 83 */ "FkCheck" OpHelp(""), /* 84 */ "ResultRow" OpHelp("output=r[P1@P2]"), /* 85 */ "CollSeq" OpHelp(""), /* 86 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"), /* 87 */ "RealAffinity" OpHelp(""), /* 88 */ "Cast" OpHelp("affinity(r[P1])"), /* 89 */ "Permutation" OpHelp(""), /* 90 */ "Compare" OpHelp("r[P1@P3] <-> r[P2@P3]"), /* 91 */ "IsTrue" OpHelp("r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4"), /* 92 */ "ZeroOrNull" OpHelp("r[P2] = 0 OR NULL"), /* 93 */ "Offset" OpHelp("r[P3] = sqlite_offset(P1)"), /* 94 */ "Column" OpHelp("r[P3]=PX cursor P1 column P2"), /* 95 */ "TypeCheck" OpHelp("typecheck(r[P1@P2])"), /* 96 */ "Affinity" OpHelp("affinity(r[P1@P2])"), /* 97 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"), /* 98 */ "Count" OpHelp("r[P2]=count()"), /* 99 */ "ReadCookie" OpHelp(""), /* 100 */ "SetCookie" OpHelp(""), /* 101 */ "ReopenIdx" OpHelp("root=P2 iDb=P3"), /* 102 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"), /* 103 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"), /* 104 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<>r[P1]"), /* 106 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"), /* 107 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"), /* 108 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"), /* 109 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"), /* 110 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"), /* 111 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"), /* 112 */ "OpenRead" OpHelp("root=P2 iDb=P3"), /* 113 */ "OpenWrite" OpHelp("root=P2 iDb=P3"), /* 114 */ "BitNot" OpHelp("r[P2]= ~r[P1]"), /* 115 */ "OpenDup" OpHelp(""), /* 116 */ "OpenAutoindex" OpHelp("nColumn=P2"), /* 117 */ "String8" OpHelp("r[P2]='P4'"), /* 118 */ "OpenEphemeral" OpHelp("nColumn=P2"), /* 119 */ "SorterOpen" OpHelp(""), /* 120 */ "SequenceTest" OpHelp("if( cursor[P1].ctr++ ) pc = P2"), /* 121 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"), /* 122 */ "Close" OpHelp(""), /* 123 */ "ColumnsUsed" OpHelp(""), /* 124 */ "SeekScan" OpHelp("Scan-ahead up to P1 rows"), /* 125 */ "SeekHit" OpHelp("set P2<=seekHit<=P3"), /* 126 */ "Sequence" OpHelp("r[P2]=cursor[P1].ctr++"), /* 127 */ "NewRowid" OpHelp("r[P2]=rowid"), /* 128 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"), /* 129 */ "RowCell" OpHelp(""), /* 130 */ "Delete" OpHelp(""), /* 131 */ "ResetCount" OpHelp(""), /* 132 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"), /* 133 */ "SorterData" OpHelp("r[P2]=data"), /* 134 */ "RowData" OpHelp("r[P2]=data"), /* 135 */ "Rowid" OpHelp("r[P2]=PX rowid of P1"), /* 136 */ "NullRow" OpHelp(""), /* 137 */ "SeekEnd" OpHelp(""), /* 138 */ "IdxInsert" OpHelp("key=r[P2]"), /* 139 */ "SorterInsert" OpHelp("key=r[P2]"), /* 140 */ "IdxDelete" OpHelp("key=r[P2@P3]"), /* 141 */ "DeferredSeek" OpHelp("Move P3 to P1.rowid if needed"), /* 142 */ "IdxRowid" OpHelp("r[P2]=rowid"), /* 143 */ "FinishSeek" OpHelp(""), /* 144 */ "Destroy" OpHelp(""), /* 145 */ "Clear" OpHelp(""), /* 146 */ "ResetSorter" OpHelp(""), /* 147 */ "CreateBtree" OpHelp("r[P2]=root iDb=P1 flags=P3"), /* 148 */ "SqlExec" OpHelp(""), /* 149 */ "ParseSchema" OpHelp(""), /* 150 */ "LoadAnalysis" OpHelp(""), /* 151 */ "DropTable" OpHelp(""), /* 152 */ "DropIndex" OpHelp(""), /* 153 */ "Real" OpHelp("r[P2]=P4"), /* 154 */ "DropTrigger" OpHelp(""), /* 155 */ "IntegrityCk" OpHelp(""), /* 156 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"), /* 157 */ "Param" OpHelp(""), /* 158 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 159 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 160 */ "OffsetLimit" OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"), /* 161 */ "AggInverse" OpHelp("accum=r[P3] inverse(r[P2@P5])"), /* 162 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 163 */ "AggStep1" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 164 */ "AggValue" OpHelp("r[P3]=value N=P2"), /* 165 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 166 */ "Expire" OpHelp(""), /* 167 */ "CursorLock" OpHelp(""), /* 168 */ "CursorUnlock" OpHelp(""), /* 169 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"), /* 170 */ "VBegin" OpHelp(""), /* 171 */ "VCreate" OpHelp(""), /* 172 */ "VDestroy" OpHelp(""), /* 173 */ "VOpen" OpHelp(""), /* 174 */ "VInitIn" OpHelp("r[P2]=ValueList(P1,P3)"), /* 175 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"), /* 176 */ "VRename" OpHelp(""), /* 177 */ "Pagecount" OpHelp(""), /* 178 */ "MaxPgcnt" OpHelp(""), /* 179 */ "ClrSubtype" OpHelp("r[P1].subtype = 0"), /* 180 */ "FilterAdd" OpHelp("filter(P1) += key(P3@P4)"), /* 181 */ "Trace" OpHelp(""), /* 182 */ "CursorHint" OpHelp(""), /* 183 */ "ReleaseReg" OpHelp("release r[P1@P2] mask P3"), /* 184 */ "Noop" OpHelp(""), /* 185 */ "Explain" OpHelp(""), /* 186 */ "Abortable" OpHelp(""), }; return azName[i]; } #endif /************** End of opcodes.c *********************************************/ /************** Begin file os_kv.c *******************************************/ /* ** 2022-09-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains an experimental VFS layer that operates on a ** Key/Value storage engine where both keys and values must be pure ** text. */ /* #include */ #if SQLITE_OS_KV || (SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL)) /***************************************************************************** ** Debugging logic */ /* SQLITE_KV_TRACE() is used for tracing calls to kvstorage routines. */ #if 0 #define SQLITE_KV_TRACE(X) printf X #else #define SQLITE_KV_TRACE(X) #endif /* SQLITE_KV_LOG() is used for tracing calls to the VFS interface */ #if 0 #define SQLITE_KV_LOG(X) printf X #else #define SQLITE_KV_LOG(X) #endif /* ** Forward declaration of objects used by this VFS implementation */ typedef struct KVVfsFile KVVfsFile; /* A single open file. There are only two files represented by this ** VFS - the database and the rollback journal. */ struct KVVfsFile { sqlite3_file base; /* IO methods */ const char *zClass; /* Storage class */ int isJournal; /* True if this is a journal file */ unsigned int nJrnl; /* Space allocated for aJrnl[] */ char *aJrnl; /* Journal content */ int szPage; /* Last known page size */ sqlite3_int64 szDb; /* Database file size. -1 means unknown */ char *aData; /* Buffer to hold page data */ }; #define SQLITE_KVOS_SZ 133073 /* ** Methods for KVVfsFile */ static int kvvfsClose(sqlite3_file*); static int kvvfsReadDb(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int kvvfsReadJrnl(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int kvvfsWriteDb(sqlite3_file*,const void*,int iAmt, sqlite3_int64); static int kvvfsWriteJrnl(sqlite3_file*,const void*,int iAmt, sqlite3_int64); static int kvvfsTruncateDb(sqlite3_file*, sqlite3_int64 size); static int kvvfsTruncateJrnl(sqlite3_file*, sqlite3_int64 size); static int kvvfsSyncDb(sqlite3_file*, int flags); static int kvvfsSyncJrnl(sqlite3_file*, int flags); static int kvvfsFileSizeDb(sqlite3_file*, sqlite3_int64 *pSize); static int kvvfsFileSizeJrnl(sqlite3_file*, sqlite3_int64 *pSize); static int kvvfsLock(sqlite3_file*, int); static int kvvfsUnlock(sqlite3_file*, int); static int kvvfsCheckReservedLock(sqlite3_file*, int *pResOut); static int kvvfsFileControlDb(sqlite3_file*, int op, void *pArg); static int kvvfsFileControlJrnl(sqlite3_file*, int op, void *pArg); static int kvvfsSectorSize(sqlite3_file*); static int kvvfsDeviceCharacteristics(sqlite3_file*); /* ** Methods for sqlite3_vfs */ static int kvvfsOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); static int kvvfsDelete(sqlite3_vfs*, const char *zName, int syncDir); static int kvvfsAccess(sqlite3_vfs*, const char *zName, int flags, int *); static int kvvfsFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut); static void *kvvfsDlOpen(sqlite3_vfs*, const char *zFilename); static int kvvfsRandomness(sqlite3_vfs*, int nByte, char *zOut); static int kvvfsSleep(sqlite3_vfs*, int microseconds); static int kvvfsCurrentTime(sqlite3_vfs*, double*); static int kvvfsCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*); static sqlite3_vfs sqlite3OsKvvfsObject = { 1, /* iVersion */ sizeof(KVVfsFile), /* szOsFile */ 1024, /* mxPathname */ 0, /* pNext */ "kvvfs", /* zName */ 0, /* pAppData */ kvvfsOpen, /* xOpen */ kvvfsDelete, /* xDelete */ kvvfsAccess, /* xAccess */ kvvfsFullPathname, /* xFullPathname */ kvvfsDlOpen, /* xDlOpen */ 0, /* xDlError */ 0, /* xDlSym */ 0, /* xDlClose */ kvvfsRandomness, /* xRandomness */ kvvfsSleep, /* xSleep */ kvvfsCurrentTime, /* xCurrentTime */ 0, /* xGetLastError */ kvvfsCurrentTimeInt64 /* xCurrentTimeInt64 */ }; /* Methods for sqlite3_file objects referencing a database file */ static sqlite3_io_methods kvvfs_db_io_methods = { 1, /* iVersion */ kvvfsClose, /* xClose */ kvvfsReadDb, /* xRead */ kvvfsWriteDb, /* xWrite */ kvvfsTruncateDb, /* xTruncate */ kvvfsSyncDb, /* xSync */ kvvfsFileSizeDb, /* xFileSize */ kvvfsLock, /* xLock */ kvvfsUnlock, /* xUnlock */ kvvfsCheckReservedLock, /* xCheckReservedLock */ kvvfsFileControlDb, /* xFileControl */ kvvfsSectorSize, /* xSectorSize */ kvvfsDeviceCharacteristics, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ 0, /* xFetch */ 0 /* xUnfetch */ }; /* Methods for sqlite3_file objects referencing a rollback journal */ static sqlite3_io_methods kvvfs_jrnl_io_methods = { 1, /* iVersion */ kvvfsClose, /* xClose */ kvvfsReadJrnl, /* xRead */ kvvfsWriteJrnl, /* xWrite */ kvvfsTruncateJrnl, /* xTruncate */ kvvfsSyncJrnl, /* xSync */ kvvfsFileSizeJrnl, /* xFileSize */ kvvfsLock, /* xLock */ kvvfsUnlock, /* xUnlock */ kvvfsCheckReservedLock, /* xCheckReservedLock */ kvvfsFileControlJrnl, /* xFileControl */ kvvfsSectorSize, /* xSectorSize */ kvvfsDeviceCharacteristics, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ 0, /* xFetch */ 0 /* xUnfetch */ }; /****** Storage subsystem **************************************************/ #include #include #include /* Forward declarations for the low-level storage engine */ static int kvstorageWrite(const char*, const char *zKey, const char *zData); static int kvstorageDelete(const char*, const char *zKey); static int kvstorageRead(const char*, const char *zKey, char *zBuf, int nBuf); #define KVSTORAGE_KEY_SZ 32 /* Expand the key name with an appropriate prefix and put the result ** zKeyOut[]. The zKeyOut[] buffer is assumed to hold at least ** KVSTORAGE_KEY_SZ bytes. */ static void kvstorageMakeKey( const char *zClass, const char *zKeyIn, char *zKeyOut ){ sqlite3_snprintf(KVSTORAGE_KEY_SZ, zKeyOut, "kvvfs-%s-%s", zClass, zKeyIn); } /* Write content into a key. zClass is the particular namespace of the ** underlying key/value store to use - either "local" or "session". ** ** Both zKey and zData are zero-terminated pure text strings. ** ** Return the number of errors. */ static int kvstorageWrite( const char *zClass, const char *zKey, const char *zData ){ FILE *fd; char zXKey[KVSTORAGE_KEY_SZ]; kvstorageMakeKey(zClass, zKey, zXKey); fd = fopen(zXKey, "wb"); if( fd ){ SQLITE_KV_TRACE(("KVVFS-WRITE %-15s (%d) %.50s%s\n", zXKey, (int)strlen(zData), zData, strlen(zData)>50 ? "..." : "")); fputs(zData, fd); fclose(fd); return 0; }else{ return 1; } } /* Delete a key (with its corresponding data) from the key/value ** namespace given by zClass. If the key does not previously exist, ** this routine is a no-op. */ static int kvstorageDelete(const char *zClass, const char *zKey){ char zXKey[KVSTORAGE_KEY_SZ]; kvstorageMakeKey(zClass, zKey, zXKey); unlink(zXKey); SQLITE_KV_TRACE(("KVVFS-DELETE %-15s\n", zXKey)); return 0; } /* Read the value associated with a zKey from the key/value namespace given ** by zClass and put the text data associated with that key in the first ** nBuf bytes of zBuf[]. The value might be truncated if zBuf is not large ** enough to hold it all. The value put into zBuf must always be zero ** terminated, even if it gets truncated because nBuf is not large enough. ** ** Return the total number of bytes in the data, without truncation, and ** not counting the final zero terminator. Return -1 if the key does ** not exist. ** ** If nBuf<=0 then this routine simply returns the size of the data without ** actually reading it. */ static int kvstorageRead( const char *zClass, const char *zKey, char *zBuf, int nBuf ){ FILE *fd; struct stat buf; char zXKey[KVSTORAGE_KEY_SZ]; kvstorageMakeKey(zClass, zKey, zXKey); if( access(zXKey, R_OK)!=0 || stat(zXKey, &buf)!=0 || !S_ISREG(buf.st_mode) ){ SQLITE_KV_TRACE(("KVVFS-READ %-15s (-1)\n", zXKey)); return -1; } if( nBuf<=0 ){ return (int)buf.st_size; }else if( nBuf==1 ){ zBuf[0] = 0; SQLITE_KV_TRACE(("KVVFS-READ %-15s (%d)\n", zXKey, (int)buf.st_size)); return (int)buf.st_size; } if( nBuf > buf.st_size + 1 ){ nBuf = buf.st_size + 1; } fd = fopen(zXKey, "rb"); if( fd==0 ){ SQLITE_KV_TRACE(("KVVFS-READ %-15s (-1)\n", zXKey)); return -1; }else{ sqlite3_int64 n = fread(zBuf, 1, nBuf-1, fd); fclose(fd); zBuf[n] = 0; SQLITE_KV_TRACE(("KVVFS-READ %-15s (%lld) %.50s%s\n", zXKey, n, zBuf, n>50 ? "..." : "")); return (int)n; } } /* ** An internal level of indirection which enables us to replace the ** kvvfs i/o methods with JavaScript implementations in WASM builds. ** Maintenance reminder: if this struct changes in any way, the JSON ** rendering of its structure must be updated in ** sqlite3_wasm_enum_json(). There are no binary compatibility ** concerns, so it does not need an iVersion member. This file is ** necessarily always compiled together with sqlite3_wasm_enum_json(), ** and JS code dynamically creates the mapping of members based on ** that JSON description. */ typedef struct sqlite3_kvvfs_methods sqlite3_kvvfs_methods; struct sqlite3_kvvfs_methods { int (*xRead)(const char *zClass, const char *zKey, char *zBuf, int nBuf); int (*xWrite)(const char *zClass, const char *zKey, const char *zData); int (*xDelete)(const char *zClass, const char *zKey); const int nKeySize; }; /* ** This object holds the kvvfs I/O methods which may be swapped out ** for JavaScript-side implementations in WASM builds. In such builds ** it cannot be const, but in native builds it should be so that ** the compiler can hopefully optimize this level of indirection out. ** That said, kvvfs is intended primarily for use in WASM builds. ** ** Note that this is not explicitly flagged as static because the ** amalgamation build will tag it with SQLITE_PRIVATE. */ #ifndef SQLITE_WASM const #endif SQLITE_PRIVATE sqlite3_kvvfs_methods sqlite3KvvfsMethods = { kvstorageRead, kvstorageWrite, kvstorageDelete, KVSTORAGE_KEY_SZ }; /****** Utility subroutines ************************************************/ /* ** Encode binary into the text encoded used to persist on disk. ** The output text is stored in aOut[], which must be at least ** nData+1 bytes in length. ** ** Return the actual length of the encoded text, not counting the ** zero terminator at the end. ** ** Encoding format ** --------------- ** ** * Non-zero bytes are encoded as upper-case hexadecimal ** ** * A sequence of one or more zero-bytes that are not at the ** beginning of the buffer are encoded as a little-endian ** base-26 number using a..z. "a" means 0. "b" means 1, ** "z" means 25. "ab" means 26. "ac" means 52. And so forth. ** ** * Because there is no overlap between the encoding characters ** of hexadecimal and base-26 numbers, it is always clear where ** one stops and the next begins. */ static int kvvfsEncode(const char *aData, int nData, char *aOut){ int i, j; const unsigned char *a = (const unsigned char*)aData; for(i=j=0; i>4]; aOut[j++] = "0123456789ABCDEF"[c&0xf]; }else{ /* A sequence of 1 or more zeros is stored as a little-endian ** base-26 number using a..z as the digits. So one zero is "b". ** Two zeros is "c". 25 zeros is "z", 26 zeros is "ab", 27 is "bb", ** and so forth. */ int k; for(k=1; i+k0 ){ aOut[j++] = 'a'+(k%26); k /= 26; } } } aOut[j] = 0; return j; } static const signed char kvvfsHexValue[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; /* ** Decode the text encoding back to binary. The binary content is ** written into pOut, which must be at least nOut bytes in length. ** ** The return value is the number of bytes actually written into aOut[]. */ static int kvvfsDecode(const char *a, char *aOut, int nOut){ int i, j; int c; const unsigned char *aIn = (const unsigned char*)a; i = 0; j = 0; while( 1 ){ c = kvvfsHexValue[aIn[i]]; if( c<0 ){ int n = 0; int mult = 1; c = aIn[i]; if( c==0 ) break; while( c>='a' && c<='z' ){ n += (c - 'a')*mult; mult *= 26; c = aIn[++i]; } if( j+n>nOut ) return -1; memset(&aOut[j], 0, n); j += n; if( c==0 || mult==1 ) break; /* progress stalled if mult==1 */ }else{ aOut[j] = c<<4; c = kvvfsHexValue[aIn[++i]]; if( c<0 ) break; aOut[j++] += c; i++; } } return j; } /* ** Decode a complete journal file. Allocate space in pFile->aJrnl ** and store the decoding there. Or leave pFile->aJrnl set to NULL ** if an error is encountered. ** ** The first few characters of the text encoding will be a little-endian ** base-26 number (digits a..z) that is the total number of bytes ** in the decoded journal file image. This base-26 number is followed ** by a single space, then the encoding of the journal. The space ** separator is required to act as a terminator for the base-26 number. */ static void kvvfsDecodeJournal( KVVfsFile *pFile, /* Store decoding in pFile->aJrnl */ const char *zTxt, /* Text encoding. Zero-terminated */ int nTxt /* Bytes in zTxt, excluding zero terminator */ ){ unsigned int n = 0; int c, i, mult; i = 0; mult = 1; while( (c = zTxt[i++])>='a' && c<='z' ){ n += (zTxt[i] - 'a')*mult; mult *= 26; } sqlite3_free(pFile->aJrnl); pFile->aJrnl = sqlite3_malloc64( n ); if( pFile->aJrnl==0 ){ pFile->nJrnl = 0; return; } pFile->nJrnl = n; n = kvvfsDecode(zTxt+i, pFile->aJrnl, pFile->nJrnl); if( nnJrnl ){ sqlite3_free(pFile->aJrnl); pFile->aJrnl = 0; pFile->nJrnl = 0; } } /* ** Read or write the "sz" element, containing the database file size. */ static sqlite3_int64 kvvfsReadFileSize(KVVfsFile *pFile){ char zData[50]; zData[0] = 0; sqlite3KvvfsMethods.xRead(pFile->zClass, "sz", zData, sizeof(zData)-1); return strtoll(zData, 0, 0); } static int kvvfsWriteFileSize(KVVfsFile *pFile, sqlite3_int64 sz){ char zData[50]; sqlite3_snprintf(sizeof(zData), zData, "%lld", sz); return sqlite3KvvfsMethods.xWrite(pFile->zClass, "sz", zData); } /****** sqlite3_io_methods methods ******************************************/ /* ** Close an kvvfs-file. */ static int kvvfsClose(sqlite3_file *pProtoFile){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xClose %s %s\n", pFile->zClass, pFile->isJournal ? "journal" : "db")); sqlite3_free(pFile->aJrnl); sqlite3_free(pFile->aData); return SQLITE_OK; } /* ** Read from the -journal file. */ static int kvvfsReadJrnl( sqlite3_file *pProtoFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; assert( pFile->isJournal ); SQLITE_KV_LOG(("xRead('%s-journal',%d,%lld)\n", pFile->zClass, iAmt, iOfst)); if( pFile->aJrnl==0 ){ int szTxt = kvstorageRead(pFile->zClass, "jrnl", 0, 0); char *aTxt; if( szTxt<=4 ){ return SQLITE_IOERR; } aTxt = sqlite3_malloc64( szTxt+1 ); if( aTxt==0 ) return SQLITE_NOMEM; kvstorageRead(pFile->zClass, "jrnl", aTxt, szTxt+1); kvvfsDecodeJournal(pFile, aTxt, szTxt); sqlite3_free(aTxt); if( pFile->aJrnl==0 ) return SQLITE_IOERR; } if( iOfst+iAmt>pFile->nJrnl ){ return SQLITE_IOERR_SHORT_READ; } memcpy(zBuf, pFile->aJrnl+iOfst, iAmt); return SQLITE_OK; } /* ** Read from the database file. */ static int kvvfsReadDb( sqlite3_file *pProtoFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; unsigned int pgno; int got, n; char zKey[30]; char *aData = pFile->aData; assert( iOfst>=0 ); assert( iAmt>=0 ); SQLITE_KV_LOG(("xRead('%s-db',%d,%lld)\n", pFile->zClass, iAmt, iOfst)); if( iOfst+iAmt>=512 ){ if( (iOfst % iAmt)!=0 ){ return SQLITE_IOERR_READ; } if( (iAmt & (iAmt-1))!=0 || iAmt<512 || iAmt>65536 ){ return SQLITE_IOERR_READ; } pFile->szPage = iAmt; pgno = 1 + iOfst/iAmt; }else{ pgno = 1; } sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno); got = sqlite3KvvfsMethods.xRead(pFile->zClass, zKey, aData, SQLITE_KVOS_SZ-1); if( got<0 ){ n = 0; }else{ aData[got] = 0; if( iOfst+iAmt<512 ){ int k = iOfst+iAmt; aData[k*2] = 0; n = kvvfsDecode(aData, &aData[2000], SQLITE_KVOS_SZ-2000); if( n>=iOfst+iAmt ){ memcpy(zBuf, &aData[2000+iOfst], iAmt); n = iAmt; }else{ n = 0; } }else{ n = kvvfsDecode(aData, zBuf, iAmt); } } if( nzClass, iAmt, iOfst)); if( iEnd>=0x10000000 ) return SQLITE_FULL; if( pFile->aJrnl==0 || pFile->nJrnlaJrnl, iEnd); if( aNew==0 ){ return SQLITE_IOERR_NOMEM; } pFile->aJrnl = aNew; if( pFile->nJrnlaJrnl+pFile->nJrnl, 0, iOfst-pFile->nJrnl); } pFile->nJrnl = iEnd; } memcpy(pFile->aJrnl+iOfst, zBuf, iAmt); return SQLITE_OK; } /* ** Write into the database file. */ static int kvvfsWriteDb( sqlite3_file *pProtoFile, const void *zBuf, int iAmt, sqlite_int64 iOfst ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; unsigned int pgno; char zKey[30]; char *aData = pFile->aData; SQLITE_KV_LOG(("xWrite('%s-db',%d,%lld)\n", pFile->zClass, iAmt, iOfst)); assert( iAmt>=512 && iAmt<=65536 ); assert( (iAmt & (iAmt-1))==0 ); assert( pFile->szPage<0 || pFile->szPage==iAmt ); pFile->szPage = iAmt; pgno = 1 + iOfst/iAmt; sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno); kvvfsEncode(zBuf, iAmt, aData); if( sqlite3KvvfsMethods.xWrite(pFile->zClass, zKey, aData) ){ return SQLITE_IOERR; } if( iOfst+iAmt > pFile->szDb ){ pFile->szDb = iOfst + iAmt; } return SQLITE_OK; } /* ** Truncate an kvvfs-file. */ static int kvvfsTruncateJrnl(sqlite3_file *pProtoFile, sqlite_int64 size){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xTruncate('%s-journal',%lld)\n", pFile->zClass, size)); assert( size==0 ); sqlite3KvvfsMethods.xDelete(pFile->zClass, "jrnl"); sqlite3_free(pFile->aJrnl); pFile->aJrnl = 0; pFile->nJrnl = 0; return SQLITE_OK; } static int kvvfsTruncateDb(sqlite3_file *pProtoFile, sqlite_int64 size){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; if( pFile->szDb>size && pFile->szPage>0 && (size % pFile->szPage)==0 ){ char zKey[50]; unsigned int pgno, pgnoMax; SQLITE_KV_LOG(("xTruncate('%s-db',%lld)\n", pFile->zClass, size)); pgno = 1 + size/pFile->szPage; pgnoMax = 2 + pFile->szDb/pFile->szPage; while( pgno<=pgnoMax ){ sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno); sqlite3KvvfsMethods.xDelete(pFile->zClass, zKey); pgno++; } pFile->szDb = size; return kvvfsWriteFileSize(pFile, size) ? SQLITE_IOERR : SQLITE_OK; } return SQLITE_IOERR; } /* ** Sync an kvvfs-file. */ static int kvvfsSyncJrnl(sqlite3_file *pProtoFile, int flags){ int i, n; KVVfsFile *pFile = (KVVfsFile *)pProtoFile; char *zOut; SQLITE_KV_LOG(("xSync('%s-journal')\n", pFile->zClass)); if( pFile->nJrnl<=0 ){ return kvvfsTruncateJrnl(pProtoFile, 0); } zOut = sqlite3_malloc64( pFile->nJrnl*2 + 50 ); if( zOut==0 ){ return SQLITE_IOERR_NOMEM; } n = pFile->nJrnl; i = 0; do{ zOut[i++] = 'a' + (n%26); n /= 26; }while( n>0 ); zOut[i++] = ' '; kvvfsEncode(pFile->aJrnl, pFile->nJrnl, &zOut[i]); i = sqlite3KvvfsMethods.xWrite(pFile->zClass, "jrnl", zOut); sqlite3_free(zOut); return i ? SQLITE_IOERR : SQLITE_OK; } static int kvvfsSyncDb(sqlite3_file *pProtoFile, int flags){ return SQLITE_OK; } /* ** Return the current file-size of an kvvfs-file. */ static int kvvfsFileSizeJrnl(sqlite3_file *pProtoFile, sqlite_int64 *pSize){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xFileSize('%s-journal')\n", pFile->zClass)); *pSize = pFile->nJrnl; return SQLITE_OK; } static int kvvfsFileSizeDb(sqlite3_file *pProtoFile, sqlite_int64 *pSize){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xFileSize('%s-db')\n", pFile->zClass)); if( pFile->szDb>=0 ){ *pSize = pFile->szDb; }else{ *pSize = kvvfsReadFileSize(pFile); } return SQLITE_OK; } /* ** Lock an kvvfs-file. */ static int kvvfsLock(sqlite3_file *pProtoFile, int eLock){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; assert( !pFile->isJournal ); SQLITE_KV_LOG(("xLock(%s,%d)\n", pFile->zClass, eLock)); if( eLock!=SQLITE_LOCK_NONE ){ pFile->szDb = kvvfsReadFileSize(pFile); } return SQLITE_OK; } /* ** Unlock an kvvfs-file. */ static int kvvfsUnlock(sqlite3_file *pProtoFile, int eLock){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; assert( !pFile->isJournal ); SQLITE_KV_LOG(("xUnlock(%s,%d)\n", pFile->zClass, eLock)); if( eLock==SQLITE_LOCK_NONE ){ pFile->szDb = -1; } return SQLITE_OK; } /* ** Check if another file-handle holds a RESERVED lock on an kvvfs-file. */ static int kvvfsCheckReservedLock(sqlite3_file *pProtoFile, int *pResOut){ SQLITE_KV_LOG(("xCheckReservedLock\n")); *pResOut = 0; return SQLITE_OK; } /* ** File control method. For custom operations on an kvvfs-file. */ static int kvvfsFileControlJrnl(sqlite3_file *pProtoFile, int op, void *pArg){ SQLITE_KV_LOG(("xFileControl(%d) on journal\n", op)); return SQLITE_NOTFOUND; } static int kvvfsFileControlDb(sqlite3_file *pProtoFile, int op, void *pArg){ SQLITE_KV_LOG(("xFileControl(%d) on database\n", op)); if( op==SQLITE_FCNTL_SYNC ){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; int rc = SQLITE_OK; SQLITE_KV_LOG(("xSync('%s-db')\n", pFile->zClass)); if( pFile->szDb>0 && 0!=kvvfsWriteFileSize(pFile, pFile->szDb) ){ rc = SQLITE_IOERR; } return rc; } return SQLITE_NOTFOUND; } /* ** Return the sector-size in bytes for an kvvfs-file. */ static int kvvfsSectorSize(sqlite3_file *pFile){ return 512; } /* ** Return the device characteristic flags supported by an kvvfs-file. */ static int kvvfsDeviceCharacteristics(sqlite3_file *pProtoFile){ return 0; } /****** sqlite3_vfs methods *************************************************/ /* ** Open an kvvfs file handle. */ static int kvvfsOpen( sqlite3_vfs *pProtoVfs, const char *zName, sqlite3_file *pProtoFile, int flags, int *pOutFlags ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; if( zName==0 ) zName = ""; SQLITE_KV_LOG(("xOpen(\"%s\")\n", zName)); if( strcmp(zName, "local")==0 || strcmp(zName, "session")==0 ){ pFile->isJournal = 0; pFile->base.pMethods = &kvvfs_db_io_methods; }else if( strcmp(zName, "local-journal")==0 || strcmp(zName, "session-journal")==0 ){ pFile->isJournal = 1; pFile->base.pMethods = &kvvfs_jrnl_io_methods; }else{ return SQLITE_CANTOPEN; } if( zName[0]=='s' ){ pFile->zClass = "session"; }else{ pFile->zClass = "local"; } pFile->aData = sqlite3_malloc64(SQLITE_KVOS_SZ); if( pFile->aData==0 ){ return SQLITE_NOMEM; } pFile->aJrnl = 0; pFile->nJrnl = 0; pFile->szPage = -1; pFile->szDb = -1; return SQLITE_OK; } /* ** Delete the file located at zPath. If the dirSync argument is true, ** ensure the file-system modifications are synced to disk before ** returning. */ static int kvvfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ if( strcmp(zPath, "local-journal")==0 ){ sqlite3KvvfsMethods.xDelete("local", "jrnl"); }else if( strcmp(zPath, "session-journal")==0 ){ sqlite3KvvfsMethods.xDelete("session", "jrnl"); } return SQLITE_OK; } /* ** Test for access permissions. Return true if the requested permission ** is available, or false otherwise. */ static int kvvfsAccess( sqlite3_vfs *pProtoVfs, const char *zPath, int flags, int *pResOut ){ SQLITE_KV_LOG(("xAccess(\"%s\")\n", zPath)); if( strcmp(zPath, "local-journal")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("local", "jrnl", 0, 0)>0; }else if( strcmp(zPath, "session-journal")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("session", "jrnl", 0, 0)>0; }else if( strcmp(zPath, "local")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("local", "sz", 0, 0)>0; }else if( strcmp(zPath, "session")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("session", "sz", 0, 0)>0; }else { *pResOut = 0; } SQLITE_KV_LOG(("xAccess returns %d\n",*pResOut)); return SQLITE_OK; } /* ** Populate buffer zOut with the full canonical pathname corresponding ** to the pathname in zPath. zOut is guaranteed to point to a buffer ** of at least (INST_MAX_PATHNAME+1) bytes. */ static int kvvfsFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nOut, char *zOut ){ size_t nPath; #ifdef SQLITE_OS_KV_ALWAYS_LOCAL zPath = "local"; #endif nPath = strlen(zPath); SQLITE_KV_LOG(("xFullPathname(\"%s\")\n", zPath)); if( nOut static int kvvfsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; struct timeval sNow; (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */ *pTimeOut = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; return SQLITE_OK; } #endif /* SQLITE_OS_KV || SQLITE_OS_UNIX */ #if SQLITE_OS_KV /* ** This routine is called initialize the KV-vfs as the default VFS. */ SQLITE_API int sqlite3_os_init(void){ return sqlite3_vfs_register(&sqlite3OsKvvfsObject, 1); } SQLITE_API int sqlite3_os_end(void){ return SQLITE_OK; } #endif /* SQLITE_OS_KV */ #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) SQLITE_PRIVATE int sqlite3KvvfsInit(void){ return sqlite3_vfs_register(&sqlite3OsKvvfsObject, 0); } #endif /************** End of os_kv.c ***********************************************/ /************** Begin file os_unix.c *****************************************/ /* ** 2004 May 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains the VFS implementation for unix-like operating systems ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. ** ** There are actually several different VFS implementations in this file. ** The differences are in the way that file locking is done. The default ** implementation uses Posix Advisory Locks. Alternative implementations ** use flock(), dot-files, various proprietary locking schemas, or simply ** skip locking all together. ** ** This source file is organized into divisions where the logic for various ** subfunctions is contained within the appropriate division. PLEASE ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed ** in the correct division and should be clearly labelled. ** ** The layout of divisions is as follows: ** ** * General-purpose declarations and utility functions. ** * Unique file ID logic used by VxWorks. ** * Various locking primitive implementations (all except proxy locking): ** + for Posix Advisory Locks ** + for no-op locks ** + for dot-file locks ** + for flock() locking ** + for named semaphore locks (VxWorks only) ** + for AFP filesystem locks (MacOSX only) ** * sqlite3_file methods not associated with locking. ** * Definitions of sqlite3_io_methods objects for all locking ** methods plus "finder" functions for each locking method. ** * sqlite3_vfs method implementations. ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) ** * Definitions of sqlite3_vfs objects for all locking methods ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). */ /* #include "sqliteInt.h" */ #if SQLITE_OS_UNIX /* This file is used on unix only */ /* ** There are various methods for file locking used for concurrency ** control: ** ** 1. POSIX locking (the default), ** 2. No locking, ** 3. Dot-file locking, ** 4. flock() locking, ** 5. AFP locking (OSX only), ** 6. Named POSIX semaphores (VXWorks only), ** 7. proxy locking. (OSX only) ** ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic ** selection of the appropriate locking style based on the filesystem ** where the database is located. */ #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif #endif /* Use pread() and pwrite() if they are available */ #if defined(__APPLE__) || defined(__linux__) # define HAVE_PREAD 1 # define HAVE_PWRITE 1 #endif #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64) # undef USE_PREAD # define USE_PREAD64 1 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE) # undef USE_PREAD64 # define USE_PREAD 1 #endif /* ** standard include files. */ #include /* amalgamator: keep */ #include /* amalgamator: keep */ #include #include #include /* amalgamator: keep */ /* #include */ #include /* amalgamator: keep */ #include #if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \ && !defined(SQLITE_WASI) # include #endif #if SQLITE_ENABLE_LOCKING_STYLE /* # include */ # include # include #endif /* SQLITE_ENABLE_LOCKING_STYLE */ /* ** Try to determine if gethostuuid() is available based on standard ** macros. This might sometimes compute the wrong value for some ** obscure platforms. For those cases, simply compile with one of ** the following: ** ** -DHAVE_GETHOSTUUID=0 ** -DHAVE_GETHOSTUUID=1 ** ** None if this matters except when building on Apple products with ** -DSQLITE_ENABLE_LOCKING_STYLE. */ #ifndef HAVE_GETHOSTUUID # define HAVE_GETHOSTUUID 0 # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \ && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\ && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0)) # undef HAVE_GETHOSTUUID # define HAVE_GETHOSTUUID 1 # else # warning "gethostuuid() is disabled." # endif # endif #endif #if OS_VXWORKS /* # include */ # include # include #endif /* OS_VXWORKS */ #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE # include #endif #ifdef HAVE_UTIME # include #endif /* ** Allowed values of unixFile.fsFlags */ #define SQLITE_FSFLAGS_IS_MSDOS 0x1 /* ** If we are to be thread-safe, include the pthreads header. */ #if SQLITE_THREADSAFE /* # include */ #endif /* ** Default permissions when creating a new file */ #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 #endif /* ** Default permissions when creating auto proxy dir */ #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 #endif /* ** Maximum supported path-length. */ #define MAX_PATHNAME 512 /* ** Maximum supported symbolic links */ #define SQLITE_MAX_SYMLINKS 100 /* ** Remove and stub certain info for WASI (WebAssembly System ** Interface) builds. */ #ifdef SQLITE_WASI # undef HAVE_FCHMOD # undef HAVE_FCHOWN # undef HAVE_MREMAP # define HAVE_MREMAP 0 # ifndef SQLITE_DEFAULT_UNIX_VFS # define SQLITE_DEFAULT_UNIX_VFS "unix-dotfile" /* ^^^ should SQLITE_DEFAULT_UNIX_VFS be "unix-none"? */ # endif # ifndef F_RDLCK # define F_RDLCK 0 # define F_WRLCK 1 # define F_UNLCK 2 # if __LONG_MAX == 0x7fffffffL # define F_GETLK 12 # define F_SETLK 13 # define F_SETLKW 14 # else # define F_GETLK 5 # define F_SETLK 6 # define F_SETLKW 7 # endif # endif #else /* !SQLITE_WASI */ # ifndef HAVE_FCHMOD # define HAVE_FCHMOD # endif #endif /* SQLITE_WASI */ #ifdef SQLITE_WASI # define osGetpid(X) (pid_t)1 #else /* Always cast the getpid() return type for compatibility with ** kernel modules in VxWorks. */ # define osGetpid(X) (pid_t)getpid() #endif /* ** Only set the lastErrno if the error code is a real error and not ** a normal expected return code of SQLITE_BUSY or SQLITE_OK */ #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) /* Forward references */ typedef struct unixShm unixShm; /* Connection shared memory */ typedef struct unixShmNode unixShmNode; /* Shared memory instance */ typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ /* ** Sometimes, after a file handle is closed by SQLite, the file descriptor ** cannot be closed immediately. In these cases, instances of the following ** structure are used to store the file descriptor while waiting for an ** opportunity to either close or reuse it. */ struct UnixUnusedFd { int fd; /* File descriptor to close */ int flags; /* Flags this file descriptor was opened with */ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ }; /* ** The unixFile structure is subclass of sqlite3_file specific to the unix ** VFS implementations. */ typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ unixInodeInfo *pInode; /* Info about locks on this inode */ int h; /* The file descriptor */ unsigned char eFileLock; /* The type of lock held on this fd */ unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */ const char *zPath; /* Name of the file */ unixShm *pShm; /* Shared memory segment information */ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ #if SQLITE_MAX_MMAP_SIZE>0 int nFetchOut; /* Number of outstanding xFetch refs */ sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */ sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ void *pMapRegion; /* Memory mapped region */ #endif int sectorSize; /* Device sector size */ int deviceCharacteristics; /* Precomputed device characteristics */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) unsigned fsFlags; /* cached details from statfs() */ #endif #ifdef SQLITE_ENABLE_SETLK_TIMEOUT unsigned iBusyTimeout; /* Wait this many millisec on locks */ #endif #if OS_VXWORKS struct vxworksFileId *pId; /* Unique file ID */ #endif #ifdef SQLITE_DEBUG /* The next group of variables are used to track whether or not the ** transaction counter in bytes 24-27 of database files are updated ** whenever any part of the database changes. An assertion fault will ** occur if a file is updated without also updating the transaction ** counter. This test is made to avoid new problems similar to the ** one described by ticket #3584. */ unsigned char transCntrChng; /* True if the transaction counter changed */ unsigned char dbUpdate; /* True if any part of database file changed */ unsigned char inNormalWrite; /* True if in a normal write operation */ #endif #ifdef SQLITE_TEST /* In test mode, increase the size of this structure a bit so that ** it is larger than the struct CrashFile defined in test6.c. */ char aPadding[32]; #endif }; /* This variable holds the process id (pid) from when the xRandomness() ** method was called. If xOpen() is called from a different process id, ** indicating that a fork() has occurred, the PRNG will be reset. */ static pid_t randomnessPid = 0; /* ** Allowed values for the unixFile.ctrlFlags bitmask: */ #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #ifndef SQLITE_DISABLE_DIRSYNC # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ #else # define UNIXFILE_DIRSYNC 0x00 #endif #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ #define UNIXFILE_DELETE 0x20 /* Delete on close */ #define UNIXFILE_URI 0x40 /* Filename might have query parameters */ #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ /* ** Include code that is common to all os_*.c files */ /* #include "os_common.h" */ /* ** Define various macros that are missing from some systems. */ #ifndef O_LARGEFILE # define O_LARGEFILE 0 #endif #ifdef SQLITE_DISABLE_LFS # undef O_LARGEFILE # define O_LARGEFILE 0 #endif #ifndef O_NOFOLLOW # define O_NOFOLLOW 0 #endif #ifndef O_BINARY # define O_BINARY 0 #endif /* ** The threadid macro resolves to the thread-id or to 0. Used for ** testing and debugging only. */ #if SQLITE_THREADSAFE #define threadid pthread_self() #else #define threadid 0 #endif /* ** HAVE_MREMAP defaults to true on Linux and false everywhere else. */ #if !defined(HAVE_MREMAP) # if defined(__linux__) && defined(_GNU_SOURCE) # define HAVE_MREMAP 1 # else # define HAVE_MREMAP 0 # endif #endif /* ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. */ #ifdef __ANDROID__ # define lseek lseek64 #endif #ifdef __linux__ /* ** Linux-specific IOCTL magic numbers used for controlling F2FS */ #define F2FS_IOCTL_MAGIC 0xf5 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32) #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 #endif /* __linux__ */ /* ** Different Unix systems declare open() in different ways. Same use ** open(const char*,int,mode_t). Others use open(const char*,int,...). ** The difference is important when using a pointer to the function. ** ** The safest way to deal with the problem is to always use this wrapper ** which always has the same well-defined interface. */ static int posixOpen(const char *zFile, int flags, int mode){ return open(zFile, flags, mode); } /* Forward reference */ static int openDirectory(const char*, int*); static int unixGetpagesize(void); /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct unix_syscall { const char *zName; /* Name of the system call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) { "close", (sqlite3_syscall_ptr)close, 0 }, #define osClose ((int(*)(int))aSyscall[1].pCurrent) { "access", (sqlite3_syscall_ptr)access, 0 }, #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) { "stat", (sqlite3_syscall_ptr)stat, 0 }, #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) /* ** The DJGPP compiler environment looks mostly like Unix, but it ** lacks the fcntl() system call. So redefine fcntl() to be something ** that always succeeds. This means that locking does not occur under ** DJGPP. But it is DOS - what did you expect? */ #ifdef __DJGPP__ { "fstat", 0, 0 }, #define osFstat(a,b,c) 0 #else { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) #endif { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pread", (sqlite3_syscall_ptr)pread, 0 }, #else { "pread", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) #if defined(USE_PREAD64) { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, #else { "pread64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent) { "write", (sqlite3_syscall_ptr)write, 0 }, #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, #else { "pwrite", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ aSyscall[12].pCurrent) #if defined(USE_PREAD64) { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, #else { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\ aSyscall[13].pCurrent) #if defined(HAVE_FCHMOD) { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, #else { "fchmod", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, #else { "fallocate", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) #if defined(HAVE_FCHOWN) { "fchown", (sqlite3_syscall_ptr)fchown, 0 }, #else { "fchown", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) #if defined(HAVE_FCHOWN) { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 }, #else { "geteuid", (sqlite3_syscall_ptr)0, 0 }, #endif #define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent) #if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \ && !defined(SQLITE_WASI) { "mmap", (sqlite3_syscall_ptr)mmap, 0 }, #else { "mmap", (sqlite3_syscall_ptr)0, 0 }, #endif #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent) #if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \ && !defined(SQLITE_WASI) { "munmap", (sqlite3_syscall_ptr)munmap, 0 }, #else { "munmap", (sqlite3_syscall_ptr)0, 0 }, #endif #define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent) #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "mremap", (sqlite3_syscall_ptr)mremap, 0 }, #else { "mremap", (sqlite3_syscall_ptr)0, 0 }, #endif #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent) #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 }, #else { "getpagesize", (sqlite3_syscall_ptr)0, 0 }, #endif #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent) #if defined(HAVE_READLINK) { "readlink", (sqlite3_syscall_ptr)readlink, 0 }, #else { "readlink", (sqlite3_syscall_ptr)0, 0 }, #endif #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent) #if defined(HAVE_LSTAT) { "lstat", (sqlite3_syscall_ptr)lstat, 0 }, #else { "lstat", (sqlite3_syscall_ptr)0, 0 }, #endif #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent) #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) # ifdef __ANDROID__ { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 }, #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent) # else { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 }, #define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent) # endif #else { "ioctl", (sqlite3_syscall_ptr)0, 0 }, #endif }; /* End of the overrideable system calls */ /* ** On some systems, calls to fchown() will trigger a message in a security ** log if they come from non-root processes. So avoid calling fchown() if ** we are not running as root. */ static int robustFchown(int fd, uid_t uid, gid_t gid){ #if defined(HAVE_FCHOWN) return osGeteuid() ? 0 : osFchown(fd,uid,gid); #else return 0; #endif } /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "unix" VFSes. Return SQLITE_OK upon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int unixSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ ){ unsigned int i; int rc = SQLITE_NOTFOUND; UNUSED_PARAMETER(pNotUsed); if( zName==0 ){ /* If no zName is given, restore all system calls to their default ** settings and return NULL */ rc = SQLITE_OK; for(i=0; i=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break; if( (f & (O_EXCL|O_CREAT))==(O_EXCL|O_CREAT) ){ (void)osUnlink(z); } osClose(fd); sqlite3_log(SQLITE_WARNING, "attempt to open \"%s\" as file descriptor %d", z, fd); fd = -1; if( osOpen("/dev/null", O_RDONLY, m)<0 ) break; } if( fd>=0 ){ if( m!=0 ){ struct stat statbuf; if( osFstat(fd, &statbuf)==0 && statbuf.st_size==0 && (statbuf.st_mode&0777)!=m ){ osFchmod(fd, m); } } #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); #endif } return fd; } /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the unixInodeInfo and ** vxworksFileId objects used by this file, all of which may be ** shared by multiple threads. ** ** Function unixMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() ** statements. e.g. ** ** unixEnterMutex() ** assert( unixMutexHeld() ); ** unixEnterLeave() ** ** To prevent deadlock, the global unixBigLock must must be acquired ** before the unixInodeInfo.pLockMutex mutex, if both are held. It is ** OK to get the pLockMutex without holding unixBigLock first, but if ** that happens, the unixBigLock mutex must not be acquired until after ** pLockMutex is released. ** ** OK: enter(unixBigLock), enter(pLockInfo) ** OK: enter(unixBigLock) ** OK: enter(pLockInfo) ** ERROR: enter(pLockInfo), enter(unixBigLock) */ static sqlite3_mutex *unixBigLock = 0; static void unixEnterMutex(void){ assert( sqlite3_mutex_notheld(unixBigLock) ); /* Not a recursive mutex */ sqlite3_mutex_enter(unixBigLock); } static void unixLeaveMutex(void){ assert( sqlite3_mutex_held(unixBigLock) ); sqlite3_mutex_leave(unixBigLock); } #ifdef SQLITE_DEBUG static int unixMutexHeld(void) { return sqlite3_mutex_held(unixBigLock); } #endif #ifdef SQLITE_HAVE_OS_TRACE /* ** Helper function for printing out trace information from debugging ** binaries. This returns the string representation of the supplied ** integer lock-type. */ static const char *azFileLock(int eFileLock){ switch( eFileLock ){ case NO_LOCK: return "NONE"; case SHARED_LOCK: return "SHARED"; case RESERVED_LOCK: return "RESERVED"; case PENDING_LOCK: return "PENDING"; case EXCLUSIVE_LOCK: return "EXCLUSIVE"; } return "ERROR"; } #endif #ifdef SQLITE_LOCK_TRACE /* ** Print out information about all locking operations. ** ** This routine is used for troubleshooting locks on multithreaded ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE ** command-line option on the compiler. This code is normally ** turned off. */ static int lockTrace(int fd, int op, struct flock *p){ char *zOpName, *zType; int s; int savedErrno; if( op==F_GETLK ){ zOpName = "GETLK"; }else if( op==F_SETLK ){ zOpName = "SETLK"; }else{ s = osFcntl(fd, op, p); sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); return s; } if( p->l_type==F_RDLCK ){ zType = "RDLCK"; }else if( p->l_type==F_WRLCK ){ zType = "WRLCK"; }else if( p->l_type==F_UNLCK ){ zType = "UNLCK"; }else{ assert( 0 ); } assert( p->l_whence==SEEK_SET ); s = osFcntl(fd, op, p); savedErrno = errno; sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, (int)p->l_pid, s); if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ struct flock l2; l2 = *p; osFcntl(fd, F_GETLK, &l2); if( l2.l_type==F_RDLCK ){ zType = "RDLCK"; }else if( l2.l_type==F_WRLCK ){ zType = "WRLCK"; }else if( l2.l_type==F_UNLCK ){ zType = "UNLCK"; }else{ assert( 0 ); } sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); } errno = savedErrno; return s; } #undef osFcntl #define osFcntl lockTrace #endif /* SQLITE_LOCK_TRACE */ /* ** Retry ftruncate() calls that fail due to EINTR ** ** All calls to ftruncate() within this file should be made through ** this wrapper. On the Android platform, bypassing the logic below ** could lead to a corrupt database. */ static int robust_ftruncate(int h, sqlite3_int64 sz){ int rc; #ifdef __ANDROID__ /* On Android, ftruncate() always uses 32-bit offsets, even if ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to ** truncate a file to any size larger than 2GiB. Silently ignore any ** such attempts. */ if( sz>(sqlite3_int64)0x7FFFFFFF ){ rc = SQLITE_OK; }else #endif do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); return rc; } /* ** This routine translates a standard POSIX errno code into something ** useful to the clients of the sqlite3 functions. Specifically, it is ** intended to translate a variety of "try again" errors into SQLITE_BUSY ** and a variety of "please close the file descriptor NOW" errors into ** SQLITE_IOERR ** ** Errors during initialization of locks, or file system support for locks, ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. */ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { assert( (sqliteIOErr == SQLITE_IOERR_LOCK) || (sqliteIOErr == SQLITE_IOERR_UNLOCK) || (sqliteIOErr == SQLITE_IOERR_RDLOCK) || (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ); switch (posixError) { case EACCES: case EAGAIN: case ETIMEDOUT: case EBUSY: case EINTR: case ENOLCK: /* random NFS retry error, unless during file system support * introspection, in which it actually means what it says */ return SQLITE_BUSY; case EPERM: return SQLITE_PERM; default: return sqliteIOErr; } } /****************************************************************************** ****************** Begin Unique File ID Utility Used By VxWorks *************** ** ** On most versions of unix, we can get a unique ID for a file by concatenating ** the device number and the inode number. But this does not work on VxWorks. ** On VxWorks, a unique file id must be based on the canonical filename. ** ** A pointer to an instance of the following structure can be used as a ** unique file ID in VxWorks. Each instance of this structure contains ** a copy of the canonical filename. There is also a reference count. ** The structure is reclaimed when the number of pointers to it drops to ** zero. ** ** There are never very many files open at one time and lookups are not ** a performance-critical path, so it is sufficient to put these ** structures on a linked list. */ struct vxworksFileId { struct vxworksFileId *pNext; /* Next in a list of them all */ int nRef; /* Number of references to this one */ int nName; /* Length of the zCanonicalName[] string */ char *zCanonicalName; /* Canonical filename */ }; #if OS_VXWORKS /* ** All unique filenames are held on a linked list headed by this ** variable: */ static struct vxworksFileId *vxworksFileList = 0; /* ** Simplify a filename into its canonical form ** by making the following changes: ** ** * removing any trailing and duplicate / ** * convert /./ into just / ** * convert /A/../ where A is any simple name into just / ** ** Changes are made in-place. Return the new name length. ** ** The original filename is in z[0..n-1]. Return the number of ** characters in the simplified name. */ static int vxworksSimplifyName(char *z, int n){ int i, j; while( n>1 && z[n-1]=='/' ){ n--; } for(i=j=0; i0 && z[j-1]!='/' ){ j--; } if( j>0 ){ j--; } i += 2; continue; } } z[j++] = z[i]; } z[j] = 0; return j; } /* ** Find a unique file ID for the given absolute pathname. Return ** a pointer to the vxworksFileId object. This pointer is the unique ** file ID. ** ** The nRef field of the vxworksFileId object is incremented before ** the object is returned. A new vxworksFileId object is created ** and added to the global list if necessary. ** ** If a memory allocation error occurs, return NULL. */ static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ struct vxworksFileId *pNew; /* search key and new file ID */ struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ int n; /* Length of zAbsoluteName string */ assert( zAbsoluteName[0]=='/' ); n = (int)strlen(zAbsoluteName); pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) ); if( pNew==0 ) return 0; pNew->zCanonicalName = (char*)&pNew[1]; memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); n = vxworksSimplifyName(pNew->zCanonicalName, n); /* Search for an existing entry that matching the canonical name. ** If found, increment the reference count and return a pointer to ** the existing file ID. */ unixEnterMutex(); for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ if( pCandidate->nName==n && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 ){ sqlite3_free(pNew); pCandidate->nRef++; unixLeaveMutex(); return pCandidate; } } /* No match was found. We will make a new file ID */ pNew->nRef = 1; pNew->nName = n; pNew->pNext = vxworksFileList; vxworksFileList = pNew; unixLeaveMutex(); return pNew; } /* ** Decrement the reference count on a vxworksFileId object. Free ** the object when the reference count reaches zero. */ static void vxworksReleaseFileId(struct vxworksFileId *pId){ unixEnterMutex(); assert( pId->nRef>0 ); pId->nRef--; if( pId->nRef==0 ){ struct vxworksFileId **pp; for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} assert( *pp==pId ); *pp = pId->pNext; sqlite3_free(pId); } unixLeaveMutex(); } #endif /* OS_VXWORKS */ /*************** End of Unique File ID Utility Used By VxWorks **************** ******************************************************************************/ /****************************************************************************** *************************** Posix Advisory Locking **************************** ** ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) ** section 6.5.2.2 lines 483 through 490 specify that when a process ** sets or clears a lock, that operation overrides any prior locks set ** by the same process. It does not explicitly say so, but this implies ** that it overrides locks set by the same process using a different ** file descriptor. Consider this test case: ** ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); ** ** Suppose ./file1 and ./file2 are really the same file (because ** one is a hard or symbolic link to the other) then if you set ** an exclusive lock on fd1, then try to get an exclusive lock ** on fd2, it works. I would have expected the second lock to ** fail since there was already a lock on the file due to fd1. ** But not so. Since both locks came from the same process, the ** second overrides the first, even though they were on different ** file descriptors opened on different file names. ** ** This means that we cannot use POSIX locks to synchronize file access ** among competing threads of the same process. POSIX locks will work fine ** to synchronize access for threads in separate processes, but not ** threads within the same process. ** ** To work around the problem, SQLite has to manage file locks internally ** on its own. Whenever a new database is opened, we have to find the ** specific inode of the database file (the inode is determined by the ** st_dev and st_ino fields of the stat structure that fstat() fills in) ** and check for locks already existing on that inode. When locks are ** created or removed, we have to look at our own internal record of the ** locks to see if another thread has previously set a lock on that same ** inode. ** ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. ** For VxWorks, we have to use the alternative unique ID system based on ** canonical filename and implemented in the previous division.) ** ** The sqlite3_file structure for POSIX is no longer just an integer file ** descriptor. It is now a structure that holds the integer file ** descriptor and a pointer to a structure that describes the internal ** locks on the corresponding inode. There is one locking structure ** per inode, so if the same inode is opened twice, both unixFile structures ** point to the same locking structure. The locking structure keeps ** a reference count (so we will know when to delete it) and a "cnt" ** field that tells us its internal lock status. cnt==0 means the ** file is unlocked. cnt==-1 means the file has an exclusive lock. ** cnt>0 means there are cnt shared locks on the file. ** ** Any attempt to lock or unlock a file first checks the locking ** structure. The fcntl() system call is only invoked to set a ** POSIX lock if the internal lock structure transitions between ** a locked and an unlocked state. ** ** But wait: there are yet more problems with POSIX advisory locks. ** ** If you close a file descriptor that points to a file that has locks, ** all locks on that file that are owned by the current process are ** released. To work around this problem, each unixInodeInfo object ** maintains a count of the number of pending locks on the inode. ** When an attempt is made to close an unixFile, if there are ** other unixFile open on the same inode that are holding locks, the call ** to close() the file descriptor is deferred until all of the locks clear. ** The unixInodeInfo structure keeps a list of file descriptors that need to ** be closed and that list is walked (and cleared) when the last lock ** clears. ** ** Yet another problem: LinuxThreads do not play well with posix locks. ** ** Many older versions of linux use the LinuxThreads library which is ** not posix compliant. Under LinuxThreads, a lock created by thread ** A cannot be modified or overridden by a different thread B. ** Only thread A can modify the lock. Locking behavior is correct ** if the application uses the newer Native Posix Thread Library (NPTL) ** on linux - with NPTL a lock created by thread A can override locks ** in thread B. But there is no way to know at compile-time which ** threading library is being used. So there is no way to know at ** compile-time whether or not thread A can override locks on thread B. ** One has to do a run-time check to discover the behavior of the ** current process. ** ** SQLite used to support LinuxThreads. But support for LinuxThreads ** was dropped beginning with version 3.7.0. SQLite will still work with ** LinuxThreads provided that (1) there is no more than one connection ** per database file in the same process and (2) database connections ** do not move across threads. */ /* ** An instance of the following structure serves as the key used ** to locate a particular unixInodeInfo object. */ struct unixFileId { dev_t dev; /* Device number */ #if OS_VXWORKS struct vxworksFileId *pId; /* Unique file ID for vxworks. */ #else /* We are told that some versions of Android contain a bug that ** sizes ino_t at only 32-bits instead of 64-bits. (See ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c) ** To work around this, always allocate 64-bits for the inode number. ** On small machines that only have 32-bit inodes, this wastes 4 bytes, ** but that should not be a big deal. */ /* WAS: ino_t ino; */ u64 ino; /* Inode number */ #endif }; /* ** An instance of the following structure is allocated for each open ** inode. ** ** A single inode can have multiple file descriptors, so each unixFile ** structure contains a pointer to an instance of this object and this ** object keeps a count of the number of unixFile pointing to it. ** ** Mutex rules: ** ** (1) Only the pLockMutex mutex must be held in order to read or write ** any of the locking fields: ** nShared, nLock, eFileLock, bProcessLock, pUnused ** ** (2) When nRef>0, then the following fields are unchanging and can ** be read (but not written) without holding any mutex: ** fileId, pLockMutex ** ** (3) With the exceptions above, all the fields may only be read ** or written while holding the global unixBigLock mutex. ** ** Deadlock prevention: The global unixBigLock mutex may not ** be acquired while holding the pLockMutex mutex. If both unixBigLock ** and pLockMutex are needed, then unixBigLock must be acquired first. */ struct unixInodeInfo { struct unixFileId fileId; /* The lookup key */ sqlite3_mutex *pLockMutex; /* Hold this mutex for... */ int nShared; /* Number of SHARED locks held */ int nLock; /* Number of outstanding file locks */ unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ unsigned char bProcessLock; /* An exclusive process lock is held */ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ int nRef; /* Number of pointers to this structure */ unixShmNode *pShmNode; /* Shared memory associated with this inode */ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ unixInodeInfo *pPrev; /* .... doubly linked */ #if SQLITE_ENABLE_LOCKING_STYLE unsigned long long sharedByte; /* for AFP simulated shared lock */ #endif #if OS_VXWORKS sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif }; /* ** A lists of all unixInodeInfo objects. ** ** Must hold unixBigLock in order to read or write this variable. */ static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */ #ifdef SQLITE_DEBUG /* ** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not. ** This routine is used only within assert() to help verify correct mutex ** usage. */ int unixFileMutexHeld(unixFile *pFile){ assert( pFile->pInode ); return sqlite3_mutex_held(pFile->pInode->pLockMutex); } int unixFileMutexNotheld(unixFile *pFile){ assert( pFile->pInode ); return sqlite3_mutex_notheld(pFile->pInode->pLockMutex); } #endif /* ** ** This function - unixLogErrorAtLine(), is only ever called via the macro ** unixLogError(). ** ** It is invoked after an error occurs in an OS function and errno has been ** set. It logs a message using sqlite3_log() containing the current value of ** errno and, if possible, the human-readable equivalent from strerror() or ** strerror_r(). ** ** The first argument passed to the macro should be the error code that ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). ** The two subsequent arguments should be the name of the OS function that ** failed (e.g. "unlink", "open") and the associated file-system path, ** if any. */ #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) static int unixLogErrorAtLine( int errcode, /* SQLite error code */ const char *zFunc, /* Name of OS function that failed */ const char *zPath, /* File path associated with error */ int iLine /* Source line number where error occurred */ ){ char *zErr; /* Message from strerror() or equivalent */ int iErrno = errno; /* Saved syscall error number */ /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use ** the strerror() function to obtain the human-readable error message ** equivalent to errno. Otherwise, use strerror_r(). */ #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) char aErr[80]; memset(aErr, 0, sizeof(aErr)); zErr = aErr; /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, ** assume that the system provides the GNU version of strerror_r() that ** returns a pointer to a buffer containing the error message. That pointer ** may point to aErr[], or it may point to some static storage somewhere. ** Otherwise, assume that the system provides the POSIX version of ** strerror_r(), which always writes an error message into aErr[]. ** ** If the code incorrectly assumes that it is the POSIX version that is ** available, the error message will often be an empty string. Not a ** huge problem. Incorrectly concluding that the GNU version is available ** could lead to a segfault though. */ #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) zErr = # endif strerror_r(iErrno, aErr, sizeof(aErr)-1); #elif SQLITE_THREADSAFE /* This is a threadsafe build, but strerror_r() is not available. */ zErr = ""; #else /* Non-threadsafe build, use strerror(). */ zErr = strerror(iErrno); #endif if( zPath==0 ) zPath = ""; sqlite3_log(errcode, "os_unix.c:%d: (%d) %s(%s) - %s", iLine, iErrno, zFunc, zPath, zErr ); return errcode; } /* ** Close a file descriptor. ** ** We assume that close() almost always works, since it is only in a ** very sick application or on a very sick platform that it might fail. ** If it does fail, simply leak the file descriptor, but do log the ** error. ** ** Note that it is not safe to retry close() after EINTR since the ** file descriptor might have already been reused by another thread. ** So we don't even try to recover from an EINTR. Just log the error ** and move on. */ static void robust_close(unixFile *pFile, int h, int lineno){ if( osClose(h) ){ unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", pFile ? pFile->zPath : 0, lineno); } } /* ** Set the pFile->lastErrno. Do this in a subroutine as that provides ** a convenient place to set a breakpoint. */ static void storeLastErrno(unixFile *pFile, int error){ pFile->lastErrno = error; } /* ** Close all file descriptors accumulated in the unixInodeInfo->pUnused list. */ static void closePendingFds(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; UnixUnusedFd *p; UnixUnusedFd *pNext; assert( unixFileMutexHeld(pFile) ); for(p=pInode->pUnused; p; p=pNext){ pNext = p->pNext; robust_close(pFile, p->fd, __LINE__); sqlite3_free(p); } pInode->pUnused = 0; } /* ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). ** ** The global mutex must be held when this routine is called, but the mutex ** on the inode being deleted must NOT be held. */ static void releaseInodeInfo(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; assert( unixMutexHeld() ); assert( unixFileMutexNotheld(pFile) ); if( ALWAYS(pInode) ){ pInode->nRef--; if( pInode->nRef==0 ){ assert( pInode->pShmNode==0 ); sqlite3_mutex_enter(pInode->pLockMutex); closePendingFds(pFile); sqlite3_mutex_leave(pInode->pLockMutex); if( pInode->pPrev ){ assert( pInode->pPrev->pNext==pInode ); pInode->pPrev->pNext = pInode->pNext; }else{ assert( inodeList==pInode ); inodeList = pInode->pNext; } if( pInode->pNext ){ assert( pInode->pNext->pPrev==pInode ); pInode->pNext->pPrev = pInode->pPrev; } sqlite3_mutex_free(pInode->pLockMutex); sqlite3_free(pInode); } } } /* ** Given a file descriptor, locate the unixInodeInfo object that ** describes that file descriptor. Create a new one if necessary. The ** return value might be uninitialized if an error occurs. ** ** The global mutex must held when calling this routine. ** ** Return an appropriate error code. */ static int findInodeInfo( unixFile *pFile, /* Unix file with file desc used in the key */ unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ ){ int rc; /* System call return code */ int fd; /* The file descriptor for pFile */ struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ struct stat statbuf; /* Low-level file information */ unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ assert( unixMutexHeld() ); /* Get low-level information about the file that we can used to ** create a unique name for the file. */ fd = pFile->h; rc = osFstat(fd, &statbuf); if( rc!=0 ){ storeLastErrno(pFile, errno); #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS) if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; #endif return SQLITE_IOERR; } #ifdef __APPLE__ /* On OS X on an msdos filesystem, the inode number is reported ** incorrectly for zero-size files. See ticket #3260. To work ** around this problem (we consider it a bug in OS X, not SQLite) ** we always increase the file size to 1 by writing a single byte ** prior to accessing the inode number. The one byte written is ** an ASCII 'S' character which also happens to be the first byte ** in the header of every SQLite database. In this way, if there ** is a race condition such that another thread has already populated ** the first page of the database, no damage is done. */ if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); if( rc!=1 ){ storeLastErrno(pFile, errno); return SQLITE_IOERR; } rc = osFstat(fd, &statbuf); if( rc!=0 ){ storeLastErrno(pFile, errno); return SQLITE_IOERR; } } #endif memset(&fileId, 0, sizeof(fileId)); fileId.dev = statbuf.st_dev; #if OS_VXWORKS fileId.pId = pFile->pId; #else fileId.ino = (u64)statbuf.st_ino; #endif assert( unixMutexHeld() ); pInode = inodeList; while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ pInode = pInode->pNext; } if( pInode==0 ){ pInode = sqlite3_malloc64( sizeof(*pInode) ); if( pInode==0 ){ return SQLITE_NOMEM_BKPT; } memset(pInode, 0, sizeof(*pInode)); memcpy(&pInode->fileId, &fileId, sizeof(fileId)); if( sqlite3GlobalConfig.bCoreMutex ){ pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pInode->pLockMutex==0 ){ sqlite3_free(pInode); return SQLITE_NOMEM_BKPT; } } pInode->nRef = 1; assert( unixMutexHeld() ); pInode->pNext = inodeList; pInode->pPrev = 0; if( inodeList ) inodeList->pPrev = pInode; inodeList = pInode; }else{ pInode->nRef++; } *ppInode = pInode; return SQLITE_OK; } /* ** Return TRUE if pFile has been renamed or unlinked since it was first opened. */ static int fileHasMoved(unixFile *pFile){ #if OS_VXWORKS return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; #else struct stat buf; return pFile->pInode!=0 && (osStat(pFile->zPath, &buf)!=0 || (u64)buf.st_ino!=pFile->pInode->fileId.ino); #endif } /* ** Check a unixFile that is a database. Verify the following: ** ** (1) There is exactly one hard link on the file ** (2) The file is not a symbolic link ** (3) The file has not been renamed or unlinked ** ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right. */ static void verifyDbFile(unixFile *pFile){ struct stat buf; int rc; /* These verifications occurs for the main database only */ if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return; rc = osFstat(pFile->h, &buf); if( rc!=0 ){ sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath); return; } if( buf.st_nlink==0 ){ sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath); return; } if( buf.st_nlink>1 ){ sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath); return; } if( fileHasMoved(pFile) ){ sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath); return; } } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); assert( pFile->eFileLock<=SHARED_LOCK ); sqlite3_mutex_enter(pFile->pInode->pLockMutex); /* Check if a thread in this process holds such a lock */ if( pFile->pInode->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ #ifndef __DJGPP__ if( !reserved && !pFile->pInode->bProcessLock ){ struct flock lock; lock.l_whence = SEEK_SET; lock.l_start = RESERVED_BYTE; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pFile->h, F_GETLK, &lock) ){ rc = SQLITE_IOERR_CHECKRESERVEDLOCK; storeLastErrno(pFile, errno); } else if( lock.l_type!=F_UNLCK ){ reserved = 1; } } #endif sqlite3_mutex_leave(pFile->pInode->pLockMutex); OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* Forward declaration*/ static int unixSleep(sqlite3_vfs*,int); /* ** Set a posix-advisory-lock. ** ** There are two versions of this routine. If compiled with ** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter ** which is a pointer to a unixFile. If the unixFile->iBusyTimeout ** value is set, then it is the number of milliseconds to wait before ** failing the lock. The iBusyTimeout value is always reset back to ** zero on each call. ** ** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking ** attempt to set the lock. */ #ifndef SQLITE_ENABLE_SETLK_TIMEOUT # define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x) #else static int osSetPosixAdvisoryLock( int h, /* The file descriptor on which to take the lock */ struct flock *pLock, /* The description of the lock */ unixFile *pFile /* Structure holding timeout value */ ){ int tm = pFile->iBusyTimeout; int rc = osFcntl(h,F_SETLK,pLock); while( rc<0 && tm>0 ){ /* On systems that support some kind of blocking file lock with a timeout, ** make appropriate changes here to invoke that blocking file lock. On ** generic posix, however, there is no such API. So we simply try the ** lock once every millisecond until either the timeout expires, or until ** the lock is obtained. */ unixSleep(0,1000); rc = osFcntl(h,F_SETLK,pLock); tm--; } return rc; } #endif /* SQLITE_ENABLE_SETLK_TIMEOUT */ /* ** Attempt to set a system-lock on the file pFile. The lock is ** described by pLock. ** ** If the pFile was opened read/write from unix-excl, then the only lock ** ever obtained is an exclusive lock, and it is obtained exactly once ** the first time any lock is attempted. All subsequent system locking ** operations become no-ops. Locking operations still happen internally, ** in order to coordinate access between separate database connections ** within this process, but all of that is handled in memory and the ** operating system does not participate. ** ** This function is a pass-through to fcntl(F_SETLK) if pFile is using ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" ** and is read-only. ** ** Zero is returned if the call completes successfully, or -1 if a call ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). */ static int unixFileLock(unixFile *pFile, struct flock *pLock){ int rc; unixInodeInfo *pInode = pFile->pInode; assert( pInode!=0 ); assert( sqlite3_mutex_held(pInode->pLockMutex) ); if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){ if( pInode->bProcessLock==0 ){ struct flock lock; assert( pInode->nLock==0 ); lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; lock.l_type = F_WRLCK; rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile); if( rc<0 ) return rc; pInode->bProcessLock = 1; pInode->nLock++; }else{ rc = 0; } }else{ rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile); } return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int unixLock(sqlite3_file *id, int eFileLock){ /* The following describes the implementation of the various locks and ** lock transitions in terms of the POSIX advisory shared and exclusive ** lock primitives (called read-locks and write-locks below, to avoid ** confusion with SQLite lock names). The algorithms are complicated ** slightly in order to be compatible with Windows95 systems simultaneously ** accessing the same database file, in case that is ever required. ** ** Symbols defined in os.h identify the 'pending byte' and the 'reserved ** byte', each single bytes at well known offsets, and the 'shared byte ** range', a range of 510 bytes at a well known offset. ** ** To obtain a SHARED lock, a read-lock is obtained on the 'pending ** byte'. If this is successful, 'shared byte range' is read-locked ** and the lock on the 'pending byte' released. (Legacy note: When ** SQLite was first developed, Windows95 systems were still very common, ** and Windows95 lacks a shared-lock capability. So on Windows95, a ** single randomly selected by from the 'shared byte range' is locked. ** Windows95 is now pretty much extinct, but this work-around for the ** lack of shared-locks on Windows95 lives on, for backwards ** compatibility.) ** ** A process may only obtain a RESERVED lock after it has a SHARED lock. ** A RESERVED lock is implemented by grabbing a write-lock on the ** 'reserved byte'. ** ** An EXCLUSIVE lock may only be requested after either a SHARED or ** RESERVED lock is held. An EXCLUSIVE lock is implemented by obtaining ** a write-lock on the entire 'shared byte range'. Since all other locks ** require a read-lock on one of the bytes within this range, this ensures ** that no other locks are held on the database. ** ** If a process that holds a RESERVED lock requests an EXCLUSIVE, then ** a PENDING lock is obtained first. A PENDING lock is implemented by ** obtaining a write-lock on the 'pending byte'. This ensures that no new ** SHARED locks can be obtained, but existing SHARED locks are allowed to ** persist. If the call to this function fails to obtain the EXCLUSIVE ** lock in this case, it holds the PENDING lock instead. The client may ** then re-attempt the EXCLUSIVE lock later on, after existing SHARED ** locks have cleared. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, osGetpid(0))); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct. ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pending lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); assert( eFileLock!=PENDING_LOCK ); assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); /* This mutex is needed because pFile->pInode is shared across threads */ pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); /* If some thread using this PID has a lock via a different unixFile* ** handle that precludes the requested lock, return BUSY. */ if( (pFile->eFileLock!=pInode->eFileLock && (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) ){ rc = SQLITE_BUSY; goto end_lock; } /* If a SHARED lock is requested, and some thread using this PID already ** has a SHARED or RESERVED lock, then increment reference counts and ** return SQLITE_OK. */ if( eFileLock==SHARED_LOCK && (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ assert( eFileLock==SHARED_LOCK ); assert( pFile->eFileLock==0 ); assert( pInode->nShared>0 ); pFile->eFileLock = SHARED_LOCK; pInode->nShared++; pInode->nLock++; goto end_lock; } /* A PENDING lock is needed before acquiring a SHARED lock and before ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will ** be released. */ lock.l_len = 1L; lock.l_whence = SEEK_SET; if( eFileLock==SHARED_LOCK || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock==RESERVED_LOCK) ){ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); lock.l_start = PENDING_BYTE; if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } goto end_lock; }else if( eFileLock==EXCLUSIVE_LOCK ){ pFile->eFileLock = PENDING_LOCK; pInode->eFileLock = PENDING_LOCK; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( eFileLock==SHARED_LOCK ){ assert( pInode->nShared==0 ); assert( pInode->eFileLock==0 ); assert( rc==SQLITE_OK ); /* Now get the read-lock */ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); } /* Drop the temporary PENDING lock */ lock.l_start = PENDING_BYTE; lock.l_len = 1L; lock.l_type = F_UNLCK; if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ /* This could happen with a network mount */ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; } if( rc ){ if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } goto end_lock; }else{ pFile->eFileLock = SHARED_LOCK; pInode->nLock++; pInode->nShared = 1; } }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; }else{ /* The request was for a RESERVED or EXCLUSIVE lock. It is ** assumed that there is a SHARED or greater lock on the file ** already. */ assert( 0!=pFile->eFileLock ); lock.l_type = F_WRLCK; assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); if( eFileLock==RESERVED_LOCK ){ lock.l_start = RESERVED_BYTE; lock.l_len = 1L; }else{ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; } if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } } } #ifdef SQLITE_DEBUG /* Set up the transaction-counter change checking flags when ** transitioning from a SHARED to a RESERVED lock. The change ** from SHARED to RESERVED marks the beginning of a normal ** write operation (not a hot journal rollback). */ if( rc==SQLITE_OK && pFile->eFileLock<=SHARED_LOCK && eFileLock==RESERVED_LOCK ){ pFile->transCntrChng = 0; pFile->dbUpdate = 0; pFile->inNormalWrite = 1; } #endif if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; pInode->eFileLock = eFileLock; } end_lock: sqlite3_mutex_leave(pInode->pLockMutex); OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), rc==SQLITE_OK ? "ok" : "failed")); return rc; } /* ** Add the file descriptor used by file handle pFile to the corresponding ** pUnused list. */ static void setPendingFd(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; UnixUnusedFd *p = pFile->pPreallocatedUnused; assert( unixFileMutexHeld(pFile) ); p->pNext = pInode->pUnused; pInode->pUnused = p; pFile->h = -1; pFile->pPreallocatedUnused = 0; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED ** the byte range is divided into 2 parts and the first part is unlocked then ** set to a read lock, then the other part is simply unlocked. This works ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to ** remove the write lock on a region when a read lock is set. */ static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); assert( pInode->nShared!=0 ); if( pFile->eFileLock>SHARED_LOCK ){ assert( pInode->eFileLock==pFile->eFileLock ); #ifdef SQLITE_DEBUG /* When reducing a lock such that other processes can start ** reading the database file again, make sure that the ** transaction counter was updated if any part of the database ** file changed. If the transaction counter is not updated, ** other connections to the same file might not realize that ** the file has changed and hence might not know to flush their ** cache. The use of a stale cache can lead to database corruption. */ pFile->inNormalWrite = 0; #endif /* downgrading to a shared lock on NFS involves clearing the write lock ** before establishing the readlock - to avoid a race condition we downgrade ** the lock in 2 blocks, so that part of the range will be covered by a ** write lock until the rest is covered by a read lock: ** 1: [WWWWW] ** 2: [....W] ** 3: [RRRRW] ** 4: [RRRR.] */ if( eFileLock==SHARED_LOCK ){ #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE (void)handleNFSUnlock; assert( handleNFSUnlock==0 ); #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE if( handleNFSUnlock ){ int tErrno; /* Error code from system call errors */ off_t divSize = SHARED_SIZE - 1; lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); goto end_unlock; } lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } goto end_unlock; } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST+divSize; lock.l_len = SHARED_SIZE-divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); goto end_unlock; } }else #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ { lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( unixFileLock(pFile, &lock) ){ /* In theory, the call to unixFileLock() cannot fail because another ** process is holding an incompatible lock. If it does, this ** indicates that the other process is not following the locking ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning ** SQLITE_BUSY would confuse the upper layer (in practice it causes ** an assert to fail). */ rc = SQLITE_IOERR_RDLOCK; storeLastErrno(pFile, errno); goto end_unlock; } } } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = PENDING_BYTE; lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); if( unixFileLock(pFile, &lock)==0 ){ pInode->eFileLock = SHARED_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, errno); goto end_unlock; } } if( eFileLock==NO_LOCK ){ /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ pInode->nShared--; if( pInode->nShared==0 ){ lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = lock.l_len = 0L; if( unixFileLock(pFile, &lock)==0 ){ pInode->eFileLock = NO_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, errno); pInode->eFileLock = NO_LOCK; pFile->eFileLock = NO_LOCK; } } /* Decrement the count of locks against this same file. When the ** count reaches zero, close any other file descriptors whose close ** was deferred because of outstanding locks. */ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ) closePendingFds(pFile); } end_unlock: sqlite3_mutex_leave(pInode->pLockMutex); if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; } return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int unixUnlock(sqlite3_file *id, int eFileLock){ #if SQLITE_MAX_MMAP_SIZE>0 assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 ); #endif return posixUnlock(id, eFileLock, 0); } #if SQLITE_MAX_MMAP_SIZE>0 static int unixMapfile(unixFile *pFd, i64 nByte); static void unixUnmapfile(unixFile *pFd); #endif /* ** This function performs the parts of the "close file" operation ** common to all locking schemes. It closes the directory and file ** handles, if they are valid, and sets all fields of the unixFile ** structure to 0. ** ** It is *not* necessary to hold the mutex when this routine is called, ** even on VxWorks. A mutex will be acquired on VxWorks by the ** vxworksReleaseFileId() routine. */ static int closeUnixFile(sqlite3_file *id){ unixFile *pFile = (unixFile*)id; #if SQLITE_MAX_MMAP_SIZE>0 unixUnmapfile(pFile); #endif if( pFile->h>=0 ){ robust_close(pFile, pFile->h, __LINE__); pFile->h = -1; } #if OS_VXWORKS if( pFile->pId ){ if( pFile->ctrlFlags & UNIXFILE_DELETE ){ osUnlink(pFile->pId->zCanonicalName); } vxworksReleaseFileId(pFile->pId); pFile->pId = 0; } #endif #ifdef SQLITE_UNLINK_AFTER_CLOSE if( pFile->ctrlFlags & UNIXFILE_DELETE ){ osUnlink(pFile->zPath); sqlite3_free(*(char**)&pFile->zPath); pFile->zPath = 0; } #endif OSTRACE(("CLOSE %-3d\n", pFile->h)); OpenCounter(-1); sqlite3_free(pFile->pPreallocatedUnused); memset(pFile, 0, sizeof(unixFile)); return SQLITE_OK; } /* ** Close a file. */ static int unixClose(sqlite3_file *id){ int rc = SQLITE_OK; unixFile *pFile = (unixFile *)id; unixInodeInfo *pInode = pFile->pInode; assert( pInode!=0 ); verifyDbFile(pFile); unixUnlock(id, NO_LOCK); assert( unixFileMutexNotheld(pFile) ); unixEnterMutex(); /* unixFile.pInode is always valid here. Otherwise, a different close ** routine (e.g. nolockClose()) would be called instead. */ assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); sqlite3_mutex_enter(pInode->pLockMutex); if( pInode->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pInode->pUnused list. It will be automatically closed ** when the last lock is cleared. */ setPendingFd(pFile); } sqlite3_mutex_leave(pInode->pLockMutex); releaseInodeInfo(pFile); assert( pFile->pShm==0 ); rc = closeUnixFile(id); unixLeaveMutex(); return rc; } /************** End of the posix advisory lock implementation ***************** ******************************************************************************/ /****************************************************************************** ****************************** No-op Locking ********************************** ** ** Of the various locking implementations available, this is by far the ** simplest: locking is ignored. No attempt is made to lock the database ** file for reading or writing. ** ** This locking mode is appropriate for use on read-only databases ** (ex: databases that are burned into CD-ROM, for example.) It can ** also be used if the application employs some external mechanism to ** prevent simultaneous access of the same database by two or more ** database connections. But there is a serious risk of database ** corruption if this locking mode is used in situations where multiple ** database connections are accessing the same database file at the same ** time and one or more of those connections are writing. */ static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ UNUSED_PARAMETER(NotUsed); *pResOut = 0; return SQLITE_OK; } static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return SQLITE_OK; } static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return SQLITE_OK; } /* ** Close the file. */ static int nolockClose(sqlite3_file *id) { return closeUnixFile(id); } /******************* End of the no-op lock implementation ********************* ******************************************************************************/ /****************************************************************************** ************************* Begin dot-file Locking ****************************** ** ** The dotfile locking implementation uses the existence of separate lock ** files (really a directory) to control access to the database. This works ** on just about every filesystem imaginable. But there are serious downsides: ** ** (1) There is zero concurrency. A single reader blocks all other ** connections from reading or writing the database. ** ** (2) An application crash or power loss can leave stale lock files ** sitting around that need to be cleared manually. ** ** Nevertheless, a dotlock is an appropriate locking mode for use if no ** other locking strategy is available. ** ** Dotfile locking works by creating a subdirectory in the same directory as ** the database and with the same name but with a ".lock" extension added. ** The existence of a lock directory implies an EXCLUSIVE lock. All other ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. */ /* ** The file suffix added to the data base filename in order to create the ** lock directory. */ #define DOTLOCK_SUFFIX ".lock" /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. ** ** In dotfile locking, either a lock exists or it does not. So in this ** variation of CheckReservedLock(), *pResOut is set to true if any lock ** is held on the file and false if the file is unlocked. */ static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); reserved = osAccess((const char*)pFile->lockingContext, 0)==0; OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. ** ** With dotfile locking, we really only support state (4): EXCLUSIVE. ** But we track the other locking levels internally. */ static int dotlockLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc = SQLITE_OK; /* If we have any lock, then the lock file already exists. All we have ** to do is adjust our internal record of the lock level. */ if( pFile->eFileLock > NO_LOCK ){ pFile->eFileLock = eFileLock; /* Always update the timestamp on the old file */ #ifdef HAVE_UTIME utime(zLockFile, NULL); #else utimes(zLockFile, NULL); #endif return SQLITE_OK; } /* grab an exclusive lock */ rc = osMkdir(zLockFile, 0777); if( rc<0 ){ /* failed to open/create the lock directory */ int tErrno = errno; if( EEXIST == tErrno ){ rc = SQLITE_BUSY; } else { rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } } return rc; } /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** When the locking level reaches NO_LOCK, delete the lock file. */ static int dotlockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } /* To downgrade to shared, simply update our internal notion of the ** lock state. No need to mess with the file on disk. */ if( eFileLock==SHARED_LOCK ){ pFile->eFileLock = SHARED_LOCK; return SQLITE_OK; } /* To fully unlock the database, delete the lock file */ assert( eFileLock==NO_LOCK ); rc = osRmdir(zLockFile); if( rc<0 ){ int tErrno = errno; if( tErrno==ENOENT ){ rc = SQLITE_OK; }else{ rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); } return rc; } pFile->eFileLock = NO_LOCK; return SQLITE_OK; } /* ** Close a file. Make sure the lock has been released before closing. */ static int dotlockClose(sqlite3_file *id) { unixFile *pFile = (unixFile*)id; assert( id!=0 ); dotlockUnlock(id, NO_LOCK); sqlite3_free(pFile->lockingContext); return closeUnixFile(id); } /****************** End of the dot-file lock implementation ******************* ******************************************************************************/ /****************************************************************************** ************************** Begin flock Locking ******************************** ** ** Use the flock() system call to do file locking. ** ** flock() locking is like dot-file locking in that the various ** fine-grain locking levels supported by SQLite are collapsed into ** a single exclusive lock. In other words, SHARED, RESERVED, and ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite ** still works when you do this, but concurrency is reduced since ** only a single process can be reading the database at a time. ** ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off */ #if SQLITE_ENABLE_LOCKING_STYLE /* ** Retry flock() calls that fail with EINTR */ #ifdef EINTR static int robust_flock(int fd, int op){ int rc; do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); return rc; } #else # define robust_flock(a,b) flock(a,b) #endif /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); /* Check if a thread in this process holds such a lock */ if( pFile->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ /* attempt to get the lock */ int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); if( !lrc ){ /* got the lock, unlock it */ lrc = robust_flock(pFile->h, LOCK_UN); if ( lrc ) { int tErrno = errno; /* unlock failed with an error */ lrc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); rc = lrc; } } else { int tErrno = errno; reserved = 1; /* someone else might have it reserved */ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(lrc) ){ storeLastErrno(pFile, tErrno); rc = lrc; } } } OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS if( (rc & 0xff) == SQLITE_IOERR ){ rc = SQLITE_OK; reserved=1; } #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** flock() only really support EXCLUSIVE locks. We track intermediate ** lock states in the sqlite3_file structure, but all locks SHARED or ** above are really EXCLUSIVE locks and exclude all other processes from ** access the file. ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int flockLock(sqlite3_file *id, int eFileLock) { int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; assert( pFile ); /* if we already have a lock, it is exclusive. ** Just adjust level and punt on outta here. */ if (pFile->eFileLock > NO_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* grab an exclusive lock */ if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { int tErrno = errno; /* didn't get, must be busy */ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } } else { /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; } OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), rc==SQLITE_OK ? "ok" : "failed")); #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS if( (rc & 0xff) == SQLITE_IOERR ){ rc = SQLITE_BUSY; } #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int flockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } /* shared can just be set because we always have an exclusive */ if (eFileLock==SHARED_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* no, really, unlock. */ if( robust_flock(pFile->h, LOCK_UN) ){ #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS return SQLITE_OK; #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ return SQLITE_IOERR_UNLOCK; }else{ pFile->eFileLock = NO_LOCK; return SQLITE_OK; } } /* ** Close a file. */ static int flockClose(sqlite3_file *id) { assert( id!=0 ); flockUnlock(id, NO_LOCK); return closeUnixFile(id); } #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ /******************* End of the flock lock implementation ********************* ******************************************************************************/ /****************************************************************************** ************************ Begin Named Semaphore Locking ************************ ** ** Named semaphore locking is only supported on VxWorks. ** ** Semaphore locking is like dot-lock and flock in that it really only ** supports EXCLUSIVE locking. Only a single process can read or write ** the database file at a time. This reduces potential concurrency, but ** makes the lock implementation much easier. */ #if OS_VXWORKS /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) { int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); /* Check if a thread in this process holds such a lock */ if( pFile->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ sem_t *pSem = pFile->pInode->pSem; if( sem_trywait(pSem)==-1 ){ int tErrno = errno; if( EAGAIN != tErrno ){ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); storeLastErrno(pFile, tErrno); } else { /* someone else has the lock when we are in NO_LOCK */ reserved = (pFile->eFileLock < SHARED_LOCK); } }else{ /* we could have it if we want it */ sem_post(pSem); } } OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate ** lock states in the sqlite3_file structure, but all locks SHARED or ** above are really EXCLUSIVE locks and exclude all other processes from ** access the file. ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int semXLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; int rc = SQLITE_OK; /* if we already have a lock, it is exclusive. ** Just adjust level and punt on outta here. */ if (pFile->eFileLock > NO_LOCK) { pFile->eFileLock = eFileLock; rc = SQLITE_OK; goto sem_end_lock; } /* lock semaphore now but bail out when already locked. */ if( sem_trywait(pSem)==-1 ){ rc = SQLITE_BUSY; goto sem_end_lock; } /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; sem_end_lock: return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int semXUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; assert( pFile ); assert( pSem ); OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } /* shared can just be set because we always have an exclusive */ if (eFileLock==SHARED_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* no, really unlock. */ if ( sem_post(pSem)==-1 ) { int rc, tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } return rc; } pFile->eFileLock = NO_LOCK; return SQLITE_OK; } /* ** Close a file. */ static int semXClose(sqlite3_file *id) { if( id ){ unixFile *pFile = (unixFile*)id; semXUnlock(id, NO_LOCK); assert( pFile ); assert( unixFileMutexNotheld(pFile) ); unixEnterMutex(); releaseInodeInfo(pFile); unixLeaveMutex(); closeUnixFile(id); } return SQLITE_OK; } #endif /* OS_VXWORKS */ /* ** Named semaphore locking is only available on VxWorks. ** *************** End of the named semaphore lock implementation **************** ******************************************************************************/ /****************************************************************************** *************************** Begin AFP Locking ********************************* ** ** AFP is the Apple Filing Protocol. AFP is a network filesystem found ** on Apple Macintosh computers - both OS9 and OSX. ** ** Third-party implementations of AFP are available. But this code here ** only works on OSX. */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** The afpLockingContext structure contains all afp lock specific state */ typedef struct afpLockingContext afpLockingContext; struct afpLockingContext { int reserved; const char *dbPath; /* Name of the open file */ }; struct ByteRangeLockPB2 { unsigned long long offset; /* offset to first byte to lock */ unsigned long long length; /* nbr of bytes to lock */ unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ int fd; /* file desc to assoc this lock with */ }; #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) /* ** This is a utility for setting or clearing a bit-range lock on an ** AFP filesystem. ** ** Return SQLITE_OK on success, SQLITE_BUSY on failure. */ static int afpSetLock( const char *path, /* Name of the file to be locked or unlocked */ unixFile *pFile, /* Open file descriptor on path */ unsigned long long offset, /* First byte to be locked */ unsigned long long length, /* Number of bytes to lock */ int setLockFlag /* True to set lock. False to clear lock */ ){ struct ByteRangeLockPB2 pb; int err; pb.unLockFlag = setLockFlag ? 0 : 1; pb.startEndFlag = 0; pb.offset = offset; pb.length = length; pb.fd = pFile->h; OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), offset, length)); err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); if ( err==-1 ) { int rc; int tErrno = errno; OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", path, tErrno, strerror(tErrno))); #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS rc = SQLITE_BUSY; #else rc = sqliteErrorFromPosixError(tErrno, setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } return rc; } else { return SQLITE_OK; } } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; afpLockingContext *context; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); context = (afpLockingContext *) pFile->lockingContext; if( context->reserved ){ *pResOut = 1; return SQLITE_OK; } sqlite3_mutex_enter(pFile->pInode->pLockMutex); /* Check if a thread in this process holds such a lock */ if( pFile->pInode->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ /* lock the RESERVED byte */ int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); if( SQLITE_OK==lrc ){ /* if we succeeded in taking the reserved lock, unlock it to restore ** the original state */ lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); } else { /* if we failed to get the lock then someone else must have it */ reserved = 1; } if( IS_LOCK_ERROR(lrc) ){ rc=lrc; } } sqlite3_mutex_leave(pFile->pInode->pLockMutex); OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int afpLock(sqlite3_file *id, int eFileLock){ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0))); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pending lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); assert( eFileLock!=PENDING_LOCK ); assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); /* This mutex is needed because pFile->pInode is shared across threads */ pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); /* If some thread using this PID has a lock via a different unixFile* ** handle that precludes the requested lock, return BUSY. */ if( (pFile->eFileLock!=pInode->eFileLock && (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) ){ rc = SQLITE_BUSY; goto afp_end_lock; } /* If a SHARED lock is requested, and some thread using this PID already ** has a SHARED or RESERVED lock, then increment reference counts and ** return SQLITE_OK. */ if( eFileLock==SHARED_LOCK && (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ assert( eFileLock==SHARED_LOCK ); assert( pFile->eFileLock==0 ); assert( pInode->nShared>0 ); pFile->eFileLock = SHARED_LOCK; pInode->nShared++; pInode->nLock++; goto afp_end_lock; } /* A PENDING lock is needed before acquiring a SHARED lock and before ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will ** be released. */ if( eFileLock==SHARED_LOCK || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLockdbPath, pFile, PENDING_BYTE, 1, 1); if (failed) { rc = failed; goto afp_end_lock; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( eFileLock==SHARED_LOCK ){ int lrc1, lrc2, lrc1Errno = 0; long lk, mask; assert( pInode->nShared==0 ); assert( pInode->eFileLock==0 ); mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; /* Now get the read-lock SHARED_LOCK */ /* note that the quality of the randomness doesn't matter that much */ lk = random(); pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); lrc1 = afpSetLock(context->dbPath, pFile, SHARED_FIRST+pInode->sharedByte, 1, 1); if( IS_LOCK_ERROR(lrc1) ){ lrc1Errno = pFile->lastErrno; } /* Drop the temporary PENDING lock */ lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); if( IS_LOCK_ERROR(lrc1) ) { storeLastErrno(pFile, lrc1Errno); rc = lrc1; goto afp_end_lock; } else if( IS_LOCK_ERROR(lrc2) ){ rc = lrc2; goto afp_end_lock; } else if( lrc1 != SQLITE_OK ) { rc = lrc1; } else { pFile->eFileLock = SHARED_LOCK; pInode->nLock++; pInode->nShared = 1; } }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; }else{ /* The request was for a RESERVED or EXCLUSIVE lock. It is ** assumed that there is a SHARED or greater lock on the file ** already. */ int failed = 0; assert( 0!=pFile->eFileLock ); if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { /* Acquire a RESERVED lock */ failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); if( !failed ){ context->reserved = 1; } } if (!failed && eFileLock == EXCLUSIVE_LOCK) { /* Acquire an EXCLUSIVE lock */ /* Remove the shared lock before trying the range. we'll need to ** reestablish the shared lock if we can't get the afpUnlock */ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 0)) ){ int failed2 = SQLITE_OK; /* now attempt to get the exclusive lock range */ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 1); if( failed && (failed2 = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ /* Can't reestablish the shared lock. Sqlite can't deal, this is ** a critical I/O error */ rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 : SQLITE_IOERR_LOCK; goto afp_end_lock; } }else{ rc = failed; } } if( failed ){ rc = failed; } } if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; pInode->eFileLock = eFileLock; }else if( eFileLock==EXCLUSIVE_LOCK ){ pFile->eFileLock = PENDING_LOCK; pInode->eFileLock = PENDING_LOCK; } afp_end_lock: sqlite3_mutex_leave(pInode->pLockMutex); OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), rc==SQLITE_OK ? "ok" : "failed")); return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int afpUnlock(sqlite3_file *id, int eFileLock) { int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; int skipShared = 0; #ifdef SQLITE_TEST int h = pFile->h; #endif assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); assert( pInode->nShared!=0 ); if( pFile->eFileLock>SHARED_LOCK ){ assert( pInode->eFileLock==pFile->eFileLock ); SimulateIOErrorBenign(1); SimulateIOError( h=(-1) ) SimulateIOErrorBenign(0); #ifdef SQLITE_DEBUG /* When reducing a lock such that other processes can start ** reading the database file again, make sure that the ** transaction counter was updated if any part of the database ** file changed. If the transaction counter is not updated, ** other connections to the same file might not realize that ** the file has changed and hence might not know to flush their ** cache. The use of a stale cache can lead to database corruption. */ assert( pFile->inNormalWrite==0 || pFile->dbUpdate==0 || pFile->transCntrChng==1 ); pFile->inNormalWrite = 0; #endif if( pFile->eFileLock==EXCLUSIVE_LOCK ){ rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ /* only re-establish the shared lock if necessary */ int sharedLockByte = SHARED_FIRST+pInode->sharedByte; rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); } else { skipShared = 1; } } if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); } if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); if( !rc ){ context->reserved = 0; } } if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ pInode->eFileLock = SHARED_LOCK; } } if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; pInode->nShared--; if( pInode->nShared==0 ){ SimulateIOErrorBenign(1); SimulateIOError( h=(-1) ) SimulateIOErrorBenign(0); if( !skipShared ){ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); } if( !rc ){ pInode->eFileLock = NO_LOCK; pFile->eFileLock = NO_LOCK; } } if( rc==SQLITE_OK ){ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ) closePendingFds(pFile); } } sqlite3_mutex_leave(pInode->pLockMutex); if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; } return rc; } /* ** Close a file & cleanup AFP specific locking context */ static int afpClose(sqlite3_file *id) { int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; assert( id!=0 ); afpUnlock(id, NO_LOCK); assert( unixFileMutexNotheld(pFile) ); unixEnterMutex(); if( pFile->pInode ){ unixInodeInfo *pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); if( pInode->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pInode->aPending. It will be automatically closed when ** the last lock is cleared. */ setPendingFd(pFile); } sqlite3_mutex_leave(pInode->pLockMutex); } releaseInodeInfo(pFile); sqlite3_free(pFile->lockingContext); rc = closeUnixFile(id); unixLeaveMutex(); return rc; } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The code above is the AFP lock implementation. The code is specific ** to MacOSX and does not work on other unix platforms. No alternative ** is available. If you don't compile for a mac, then the "unix-afp" ** VFS is not available. ** ********************* End of the AFP lock implementation ********************** ******************************************************************************/ /****************************************************************************** *************************** Begin NFS Locking ********************************/ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int nfsUnlock(sqlite3_file *id, int eFileLock){ return posixUnlock(id, eFileLock, 1); } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The code above is the NFS lock implementation. The code is specific ** to MacOSX and does not work on other unix platforms. No alternative ** is available. ** ********************* End of the NFS lock implementation ********************** ******************************************************************************/ /****************************************************************************** **************** Non-locking sqlite3_file methods ***************************** ** ** The next division contains implementations for all methods of the ** sqlite3_file object other than the locking methods. The locking ** methods were defined in divisions above (one locking method per ** division). Those methods that are common to all locking modes ** are gather together into this division. */ /* ** Seek to the offset passed as the second argument, then read cnt ** bytes into pBuf. Return the number of bytes actually read. ** ** To avoid stomping the errno value on a failed read the lastErrno value ** is set before returning. */ static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ int got; int prior = 0; #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) i64 newOffset; #endif TIMER_START; assert( cnt==(cnt&0x1ffff) ); assert( id->h>2 ); do{ #if defined(USE_PREAD) got = osPread(id->h, pBuf, cnt, offset); SimulateIOError( got = -1 ); #elif defined(USE_PREAD64) got = osPread64(id->h, pBuf, cnt, offset); SimulateIOError( got = -1 ); #else newOffset = lseek(id->h, offset, SEEK_SET); SimulateIOError( newOffset = -1 ); if( newOffset<0 ){ storeLastErrno((unixFile*)id, errno); return -1; } got = osRead(id->h, pBuf, cnt); #endif if( got==cnt ) break; if( got<0 ){ if( errno==EINTR ){ got = 1; continue; } prior = 0; storeLastErrno((unixFile*)id, errno); break; }else if( got>0 ){ cnt -= got; offset += got; prior += got; pBuf = (void*)(got + (char*)pBuf); } }while( got>0 ); TIMER_END; OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got+prior, offset-prior, TIMER_ELAPSED)); return got+prior; } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ static int unixRead( sqlite3_file *id, void *pBuf, int amt, sqlite3_int64 offset ){ unixFile *pFile = (unixFile *)id; int got; assert( id ); assert( offset>=0 ); assert( amt>0 ); /* If this is a database file (not a journal, super-journal or temp ** file), the bytes in the locking range should never be read or written. */ #if 0 assert( pFile->pPreallocatedUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #endif #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); return SQLITE_OK; }else{ int nCopy = pFile->mmapSize - offset; memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif got = seekAndRead(pFile, offset, pBuf, amt); if( got==amt ){ return SQLITE_OK; }else if( got<0 ){ /* pFile->lastErrno has been set by seekAndRead(). ** Usually we return SQLITE_IOERR_READ here, though for some ** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT ** prior to returning to the application by the sqlite3ApiExit() ** routine. */ switch( pFile->lastErrno ){ case ERANGE: case EIO: #ifdef ENXIO case ENXIO: #endif #ifdef EDEVERR case EDEVERR: #endif return SQLITE_IOERR_CORRUPTFS; } return SQLITE_IOERR_READ; }else{ storeLastErrno(pFile, 0); /* not a system error */ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[got], 0, amt-got); return SQLITE_IOERR_SHORT_READ; } } /* ** Attempt to seek the file-descriptor passed as the first argument to ** absolute offset iOff, then attempt to write nBuf bytes of data from ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise, ** return the actual number of bytes written (which may be less than ** nBuf). */ static int seekAndWriteFd( int fd, /* File descriptor to write to */ i64 iOff, /* File offset to begin writing at */ const void *pBuf, /* Copy data from this buffer to the file */ int nBuf, /* Size of buffer pBuf in bytes */ int *piErrno /* OUT: Error number if error occurs */ ){ int rc = 0; /* Value returned by system call */ assert( nBuf==(nBuf&0x1ffff) ); assert( fd>2 ); assert( piErrno!=0 ); nBuf &= 0x1ffff; TIMER_START; #if defined(USE_PREAD) do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR ); #elif defined(USE_PREAD64) do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR); #else do{ i64 iSeek = lseek(fd, iOff, SEEK_SET); SimulateIOError( iSeek = -1 ); if( iSeek<0 ){ rc = -1; break; } rc = osWrite(fd, pBuf, nBuf); }while( rc<0 && errno==EINTR ); #endif TIMER_END; OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED)); if( rc<0 ) *piErrno = errno; return rc; } /* ** Seek to the offset in id->offset then read cnt bytes into pBuf. ** Return the number of bytes actually read. Update the offset. ** ** To avoid stomping the errno value on a failed write the lastErrno value ** is set before returning. */ static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno); } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ static int unixWrite( sqlite3_file *id, const void *pBuf, int amt, sqlite3_int64 offset ){ unixFile *pFile = (unixFile*)id; int wrote = 0; assert( id ); assert( amt>0 ); /* If this is a database file (not a journal, super-journal or temp ** file), the bytes in the locking range should never be read or written. */ #if 0 assert( pFile->pPreallocatedUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #endif #ifdef SQLITE_DEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) then record the fact that the database ** has changed. If the transaction counter is modified, record that ** fact too. */ if( pFile->inNormalWrite ){ pFile->dbUpdate = 1; /* The database has been modified */ if( offset<=24 && offset+amt>=27 ){ int rc; char oldCntr[4]; SimulateIOErrorBenign(1); rc = seekAndRead(pFile, 24, oldCntr, 4); SimulateIOErrorBenign(0); if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ pFile->transCntrChng = 1; /* The transaction counter has changed */ } } } #endif #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); return SQLITE_OK; }else{ int nCopy = pFile->mmapSize - offset; memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))0 ){ amt -= wrote; offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>wrote ){ if( wrote<0 && pFile->lastErrno!=ENOSPC ){ /* lastErrno set by seekAndWrite */ return SQLITE_IOERR_WRITE; }else{ storeLastErrno(pFile, 0); /* not a system error */ return SQLITE_FULL; } } return SQLITE_OK; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. */ SQLITE_API int sqlite3_sync_count = 0; SQLITE_API int sqlite3_fullsync_count = 0; #endif /* ** We do not trust systems to provide a working fdatasync(). Some do. ** Others do no. To be safe, we will stick with the (slightly slower) ** fsync(). If you know that your system does support fdatasync() correctly, ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC */ #if !defined(fdatasync) && !HAVE_FDATASYNC # define fdatasync fsync #endif /* ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently ** only available on Mac OS X. But that could change. */ #ifdef F_FULLFSYNC # define HAVE_FULLFSYNC 1 #else # define HAVE_FULLFSYNC 0 #endif /* ** The fsync() system call does not work as advertised on many ** unix systems. The following procedure is an attempt to make ** it work better. ** ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful ** for testing when we want to run through the test suite quickly. ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash ** or power failure will likely corrupt the database file. ** ** SQLite sets the dataOnly flag if the size of the file is unchanged. ** The idea behind dataOnly is that it should only write the file content ** to disk, not the inode. We only set dataOnly if the file size is ** unchanged since the file size is part of the inode. However, ** Ted Ts'o tells us that fdatasync() will also write the inode if the ** file size has changed. The only real difference between fdatasync() ** and fsync(), Ted tells us, is that fdatasync() will not flush the ** inode if the mtime or owner or other inode attributes have changed. ** We only care about the file size, not the other file attributes, so ** as far as SQLite is concerned, an fdatasync() is always adequate. ** So, we always use fdatasync() if it is available, regardless of ** the value of the dataOnly flag. */ static int full_fsync(int fd, int fullSync, int dataOnly){ int rc; /* The following "ifdef/elif/else/" block has the same structure as ** the one below. It is replicated here solely to avoid cluttering ** up the real code with the UNUSED_PARAMETER() macros. */ #ifdef SQLITE_NO_SYNC UNUSED_PARAMETER(fd); UNUSED_PARAMETER(fullSync); UNUSED_PARAMETER(dataOnly); #elif HAVE_FULLFSYNC UNUSED_PARAMETER(dataOnly); #else UNUSED_PARAMETER(fullSync); UNUSED_PARAMETER(dataOnly); #endif /* Record the number of times that we do a normal fsync() and ** FULLSYNC. This is used during testing to verify that this procedure ** gets called with the correct arguments. */ #ifdef SQLITE_TEST if( fullSync ) sqlite3_fullsync_count++; sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op. But go ahead and call fstat() to validate the file ** descriptor as we need a method to provoke a failure during ** coverage testing. */ #ifdef SQLITE_NO_SYNC { struct stat buf; rc = osFstat(fd, &buf); } #elif HAVE_FULLFSYNC if( fullSync ){ rc = osFcntl(fd, F_FULLFSYNC, 0); }else{ rc = 1; } /* If the FULLFSYNC failed, fall back to attempting an fsync(). ** It shouldn't be possible for fullfsync to fail on the local ** file system (on OSX), so failure indicates that FULLFSYNC ** isn't supported for this file system. So, attempt an fsync ** and (for now) ignore the overhead of a superfluous fcntl call. ** It'd be better to detect fullfsync support once and avoid ** the fcntl call every time sync is called. */ if( rc ) rc = fsync(fd); #elif defined(__APPLE__) /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly ** so currently we default to the macro that redefines fdatasync to fsync */ rc = fsync(fd); #else rc = fdatasync(fd); #if OS_VXWORKS if( rc==-1 && errno==ENOTSUP ){ rc = fsync(fd); } #endif /* OS_VXWORKS */ #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ if( OS_VXWORKS && rc!= -1 ){ rc = 0; } return rc; } /* ** Open a file descriptor to the directory containing file zFilename. ** If successful, *pFd is set to the opened file descriptor and ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined ** value. ** ** The directory file descriptor is used for only one thing - to ** fsync() a directory to make sure file creation and deletion events ** are flushed to disk. Such fsyncs are not needed on newer ** journaling filesystems, but are required on older filesystems. ** ** This routine can be overridden using the xSetSysCall interface. ** The ability to override this routine was added in support of the ** chromium sandbox. Opening a directory is a security risk (we are ** told) so making it overrideable allows the chromium sandbox to ** replace this routine with a harmless no-op. To make this routine ** a no-op, replace it with a stub that returns SQLITE_OK but leaves ** *pFd set to a negative number. ** ** If SQLITE_OK is returned, the caller is responsible for closing ** the file descriptor *pFd using close(). */ static int openDirectory(const char *zFilename, int *pFd){ int ii; int fd = -1; char zDirname[MAX_PATHNAME+1]; sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--); if( ii>0 ){ zDirname[ii] = '\0'; }else{ if( zDirname[0]!='/' ) zDirname[0] = '.'; zDirname[1] = 0; } fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); if( fd>=0 ){ OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); } *pFd = fd; if( fd>=0 ) return SQLITE_OK; return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname); } /* ** Make sure all writes to a particular file are committed to disk. ** ** If dataOnly==0 then both the file itself and its metadata (file ** size, access time, etc) are synced. If dataOnly!=0 then only the ** file data is synced. ** ** Under Unix, also make sure that the directory entry for the file ** has been created by fsync-ing the directory that contains the file. ** If we do not do this and we encounter a power failure, the directory ** entry for the journal might not exist after we reboot. The next ** SQLite to access the file will not know that the journal exists (because ** the directory entry for the journal was never created) and the transaction ** will not roll back - possibly leading to database corruption. */ static int unixSync(sqlite3_file *id, int flags){ int rc; unixFile *pFile = (unixFile*)id; int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ assert((flags&0x0F)==SQLITE_SYNC_NORMAL || (flags&0x0F)==SQLITE_SYNC_FULL ); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); assert( pFile ); OSTRACE(("SYNC %-3d\n", pFile->h)); rc = full_fsync(pFile->h, isFullsync, isDataOnly); SimulateIOError( rc=1 ); if( rc ){ storeLastErrno(pFile, errno); return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); } /* Also fsync the directory containing the file if the DIRSYNC flag ** is set. This is a one-time occurrence. Many systems (examples: AIX) ** are unable to fsync a directory, so ignore errors on the fsync. */ if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ int dirfd; OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, HAVE_FULLFSYNC, isFullsync)); rc = osOpenDirectory(pFile->zPath, &dirfd); if( rc==SQLITE_OK ){ full_fsync(dirfd, 0, 0); robust_close(pFile, dirfd, __LINE__); }else{ assert( rc==SQLITE_CANTOPEN ); rc = SQLITE_OK; } pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; } return rc; } /* ** Truncate an open file to a specified size */ static int unixTruncate(sqlite3_file *id, i64 nByte){ unixFile *pFile = (unixFile *)id; int rc; assert( pFile ); SimulateIOError( return SQLITE_IOERR_TRUNCATE ); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } rc = robust_ftruncate(pFile->h, nByte); if( rc ){ storeLastErrno(pFile, errno); return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); }else{ #ifdef SQLITE_DEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) and we truncate the file to zero length, ** that effectively updates the change counter. This might happen ** when restoring a database using the backup API from a zero-length ** source. */ if( pFile->inNormalWrite && nByte==0 ){ pFile->transCntrChng = 1; } #endif #if SQLITE_MAX_MMAP_SIZE>0 /* If the file was just truncated to a size smaller than the currently ** mapped region, reduce the effective mapping size as well. SQLite will ** use read() and write() to access data beyond this point from now on. */ if( nBytemmapSize ){ pFile->mmapSize = nByte; } #endif return SQLITE_OK; } } /* ** Determine the current size of a file in bytes */ static int unixFileSize(sqlite3_file *id, i64 *pSize){ int rc; struct stat buf; assert( id ); rc = osFstat(((unixFile*)id)->h, &buf); SimulateIOError( rc=1 ); if( rc!=0 ){ storeLastErrno((unixFile*)id, errno); return SQLITE_IOERR_FSTAT; } *pSize = buf.st_size; /* When opening a zero-size database, the findInodeInfo() procedure ** writes a single byte into that file in order to work around a bug ** in the OS-X msdos filesystem. In order to avoid problems with upper ** layers, we need to report this file size as zero even though it is ** really 1. Ticket #3260. */ if( *pSize==1 ) *pSize = 0; return SQLITE_OK; } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Handler for proxy-locking file-control verbs. Defined below in the ** proxying locking division. */ static int proxyFileControl(sqlite3_file*,int,void*); #endif /* ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT ** file-control operation. Enlarge the database to nBytes in size ** (rounded up to the next chunk-size). If the database is already ** nBytes or larger, this routine is a no-op. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ if( pFile->szChunk>0 ){ i64 nSize; /* Required file size */ struct stat buf; /* Used to hold return values of fstat() */ if( osFstat(pFile->h, &buf) ){ return SQLITE_IOERR_FSTAT; } nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; if( nSize>(i64)buf.st_size ){ #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE /* The code below is handling the return value of osFallocate() ** correctly. posix_fallocate() is defined to "returns zero on success, ** or an error number on failure". See the manpage for details. */ int err; do{ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); }while( err==EINTR ); if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE; #else /* If the OS does not have posix_fallocate(), fake it. Write a ** single byte to the last byte in each block that falls entirely ** within the extended region. Then, if required, a single byte ** at offset (nSize-1), to set the size of the file correctly. ** This is a similar technique to that used by glibc on systems ** that do not have a real fallocate() call. */ int nBlk = buf.st_blksize; /* File-system block size */ int nWrite = 0; /* Number of bytes written by seekAndWrite */ i64 iWrite; /* Next offset to write to */ iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1; assert( iWrite>=buf.st_size ); assert( ((iWrite+1)%nBlk)==0 ); for(/*no-op*/; iWrite=nSize ) iWrite = nSize - 1; nWrite = seekAndWrite(pFile, iWrite, "", 1); if( nWrite!=1 ) return SQLITE_IOERR_WRITE; } #endif } } #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){ int rc; if( pFile->szChunk<=0 ){ if( robust_ftruncate(pFile->h, nByte) ){ storeLastErrno(pFile, errno); return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); } } rc = unixMapfile(pFile, nByte); return rc; } #endif return SQLITE_OK; } /* ** If *pArg is initially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* Forward declaration */ static int unixGetTempname(int nBuf, char *zBuf); #ifndef SQLITE_OMIT_WAL static int unixFcntlExternalReader(unixFile*, int*); #endif /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: { int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE); return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK; } case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: { int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE); return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK; } case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: { int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE); return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK; } #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->eFileLock; return SQLITE_OK; } case SQLITE_FCNTL_LAST_ERRNO: { *(int*)pArg = pFile->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { pFile->szChunk = *(int *)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { int rc; SimulateIOErrorBenign(1); rc = fcntlSizeHint(pFile, *(i64 *)pArg); SimulateIOErrorBenign(0); return rc; } case SQLITE_FCNTL_PERSIST_WAL: { unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); return SQLITE_OK; } case SQLITE_FCNTL_TEMPFILENAME: { char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname ); if( zTFile ){ unixGetTempname(pFile->pVfs->mxPathname, zTFile); *(char**)pArg = zTFile; } return SQLITE_OK; } case SQLITE_FCNTL_HAS_MOVED: { *(int*)pArg = fileHasMoved(pFile); return SQLITE_OK; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT case SQLITE_FCNTL_LOCK_TIMEOUT: { int iOld = pFile->iBusyTimeout; pFile->iBusyTimeout = *(int*)pArg; *(int*)pArg = iOld; return SQLITE_OK; } #endif #if SQLITE_MAX_MMAP_SIZE>0 case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; int rc = SQLITE_OK; if( newLimit>sqlite3GlobalConfig.mxMmap ){ newLimit = sqlite3GlobalConfig.mxMmap; } /* The value of newLimit may be eventually cast to (size_t) and passed ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a ** 64-bit type. */ if( newLimit>0 && sizeof(size_t)<8 ){ newLimit = (newLimit & 0x7FFFFFFF); } *(i64*)pArg = pFile->mmapSizeMax; if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ pFile->mmapSizeMax = newLimit; if( pFile->mmapSize>0 ){ unixUnmapfile(pFile); rc = unixMapfile(pFile, -1); } } return rc; } #endif #ifdef SQLITE_DEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ case SQLITE_FCNTL_DB_UNCHANGED: { ((unixFile*)id)->dbUpdate = 0; return SQLITE_OK; } #endif #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) case SQLITE_FCNTL_SET_LOCKPROXYFILE: case SQLITE_FCNTL_GET_LOCKPROXYFILE: { return proxyFileControl(id,op,pArg); } #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ case SQLITE_FCNTL_EXTERNAL_READER: { #ifndef SQLITE_OMIT_WAL return unixFcntlExternalReader((unixFile*)id, (int*)pArg); #else *(int*)pArg = 0; return SQLITE_OK; #endif } } return SQLITE_NOTFOUND; } /* ** If pFd->sectorSize is non-zero when this function is called, it is a ** no-op. Otherwise, the values of pFd->sectorSize and ** pFd->deviceCharacteristics are set according to the file-system ** characteristics. ** ** There are two versions of this function. One for QNX and one for all ** other systems. */ #ifndef __QNXNTO__ static void setDeviceCharacteristics(unixFile *pFd){ assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 ); if( pFd->sectorSize==0 ){ #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) int res; u32 f = 0; /* Check for support for F2FS atomic batch writes. */ res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f); if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){ pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC; } #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ /* Set the POWERSAFE_OVERWRITE flag if requested. */ if( pFd->ctrlFlags & UNIXFILE_PSOW ){ pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; } pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; } } #else #include #include static void setDeviceCharacteristics(unixFile *pFile){ if( pFile->sectorSize == 0 ){ struct statvfs fsInfo; /* Set defaults for non-supported filesystems */ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; pFile->deviceCharacteristics = 0; if( fstatvfs(pFile->h, &fsInfo) == -1 ) { return; } if( !strcmp(fsInfo.f_basetype, "tmp") ) { pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( strstr(fsInfo.f_basetype, "etfs") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = /* etfs cluster size writes are atomic */ (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = /* full bitset of atomics from max sector size and smaller */ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( strstr(fsInfo.f_basetype, "dos") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = /* full bitset of atomics from max sector size and smaller */ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else{ pFile->deviceCharacteristics = SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ 0; } } /* Last chance verification. If the sector size isn't a multiple of 512 ** then it isn't valid.*/ if( pFile->sectorSize % 512 != 0 ){ pFile->deviceCharacteristics = 0; pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; } } #endif /* ** Return the sector size in bytes of the underlying block device for ** the specified file. This is almost always 512 bytes, but may be ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int unixSectorSize(sqlite3_file *id){ unixFile *pFd = (unixFile*)id; setDeviceCharacteristics(pFd); return pFd->sectorSize; } /* ** Return the device characteristics for the file. ** ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. ** However, that choice is controversial since technically the underlying ** file system does not always provide powersafe overwrites. (In other ** words, after a power-loss event, parts of the file that were never ** written might end up being altered.) However, non-PSOW behavior is very, ** very rare. And asserting PSOW makes a large reduction in the amount ** of required I/O for journaling, since a lot of padding is eliminated. ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control ** available to turn it off and URI query parameter available to turn it off. */ static int unixDeviceCharacteristics(sqlite3_file *id){ unixFile *pFd = (unixFile*)id; setDeviceCharacteristics(pFd); return pFd->deviceCharacteristics; } #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 /* ** Return the system page size. ** ** This function should not be called directly by other code in this file. ** Instead, it should be called via macro osGetpagesize(). */ static int unixGetpagesize(void){ #if OS_VXWORKS return 1024; #elif defined(_BSD_SOURCE) return getpagesize(); #else return (int)sysconf(_SC_PAGESIZE); #endif } #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ #ifndef SQLITE_OMIT_WAL /* ** Object used to represent an shared memory buffer. ** ** When multiple threads all reference the same wal-index, each thread ** has its own unixShm object, but they all point to a single instance ** of this unixShmNode object. In other words, each wal-index is opened ** only once per process. ** ** Each unixShmNode object is connected to a single unixInodeInfo object. ** We could coalesce this object into unixInodeInfo, but that would mean ** every open file that does not use shared memory (in other words, most ** open files) would have to carry around this extra information. So ** the unixInodeInfo object contains a pointer to this unixShmNode object ** and the unixShmNode object is created only when needed. ** ** unixMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** ** The following fields are read-only after the object is created: ** ** hShm ** zFilename ** ** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and ** unixMutexHeld() is true when reading or writing any other field ** in this structure. */ struct unixShmNode { unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ sqlite3_mutex *pShmMutex; /* Mutex to access this object */ char *zFilename; /* Name of the mmapped file */ int hShm; /* Open file descriptor */ int szRegion; /* Size of shared-memory regions */ u16 nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ char **apRegion; /* Array of mapped shared-memory regions */ int nRef; /* Number of unixShm objects pointing to this */ unixShm *pFirst; /* All unixShm objects pointing to this */ int aLock[SQLITE_SHM_NLOCK]; /* # shared locks on slot, -1==excl lock */ #ifdef SQLITE_DEBUG u8 exclMask; /* Mask of exclusive locks held */ u8 sharedMask; /* Mask of shared locks held */ u8 nextShmId; /* Next available unixShm.id value */ #endif }; /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** ** unixShm.pShmNode ** unixShm.id ** ** All other fields are read/write. The unixShm.pShmNode->pShmMutex must ** be held while accessing any read/write fields. */ struct unixShm { unixShmNode *pShmNode; /* The underlying unixShmNode object */ unixShm *pNext; /* Next unixShm with the same unixShmNode */ u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */ u8 id; /* Id of this connection within its unixShmNode */ u16 sharedMask; /* Mask of shared locks held */ u16 exclMask; /* Mask of exclusive locks held */ }; /* ** Constants used for locking */ #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ /* ** Use F_GETLK to check whether or not there are any readers with open ** wal-mode transactions in other processes on database file pFile. If ** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are ** such transactions, or 0 otherwise. If an error occurs, return an ** SQLite error code. The final value of *piOut is undefined in this ** case. */ static int unixFcntlExternalReader(unixFile *pFile, int *piOut){ int rc = SQLITE_OK; *piOut = 0; if( pFile->pShm){ unixShmNode *pShmNode = pFile->pShm->pShmNode; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = F_WRLCK; f.l_whence = SEEK_SET; f.l_start = UNIX_SHM_BASE + 3; f.l_len = SQLITE_SHM_NLOCK - 3; sqlite3_mutex_enter(pShmNode->pShmMutex); if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){ rc = SQLITE_IOERR_LOCK; }else{ *piOut = (f.l_type!=F_UNLCK); } sqlite3_mutex_leave(pShmNode->pShmMutex); } return rc; } /* ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. ** ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking ** otherwise. */ static int unixShmSystemLock( unixFile *pFile, /* Open connection to the WAL file */ int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ int ofst, /* First byte of the locking range */ int n /* Number of bytes to lock */ ){ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ struct flock f; /* The posix advisory locking structure */ int rc = SQLITE_OK; /* Result code form fcntl() */ /* Access to the unixShmNode object is serialized by the caller */ pShmNode = pFile->pInode->pShmNode; assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) ); assert( pShmNode->nRef>0 || unixMutexHeld() ); /* Shared locks never span more than one byte */ assert( n==1 || lockType!=F_RDLCK ); /* Locks are within range */ assert( n>=1 && n<=SQLITE_SHM_NLOCK ); if( pShmNode->hShm>=0 ){ int res; /* Initialize the locking parameters */ f.l_type = lockType; f.l_whence = SEEK_SET; f.l_start = ofst; f.l_len = n; res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile); if( res==-1 ){ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY); #else rc = SQLITE_BUSY; #endif } } /* Update the global lock state and do debug tracing */ #ifdef SQLITE_DEBUG { u16 mask; OSTRACE(("SHM-LOCK ")); mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<exclMask &= ~mask; pShmNode->sharedMask &= ~mask; }else if( lockType==F_RDLCK ){ OSTRACE(("read-lock %d ok", ofst)); pShmNode->exclMask &= ~mask; pShmNode->sharedMask |= mask; }else{ assert( lockType==F_WRLCK ); OSTRACE(("write-lock %d ok", ofst)); pShmNode->exclMask |= mask; pShmNode->sharedMask &= ~mask; } }else{ if( lockType==F_UNLCK ){ OSTRACE(("unlock %d failed", ofst)); }else if( lockType==F_RDLCK ){ OSTRACE(("read-lock failed")); }else{ assert( lockType==F_WRLCK ); OSTRACE(("write-lock %d failed", ofst)); } } OSTRACE((" - afterwards %03x,%03x\n", pShmNode->sharedMask, pShmNode->exclMask)); } #endif return rc; } /* ** Return the minimum number of 32KB shm regions that should be mapped at ** a time, assuming that each mapping must be an integer multiple of the ** current system page-size. ** ** Usually, this is 1. The exception seems to be systems that are configured ** to use 64KB pages - in this case each mapping must cover at least two ** shm regions. */ static int unixShmRegionPerMap(void){ int shmsz = 32*1024; /* SHM region size */ int pgsz = osGetpagesize(); /* System page size */ assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */ if( pgszpInode->pShmNode; assert( unixMutexHeld() ); if( p && ALWAYS(p->nRef==0) ){ int nShmPerMap = unixShmRegionPerMap(); int i; assert( p->pInode==pFd->pInode ); sqlite3_mutex_free(p->pShmMutex); for(i=0; inRegion; i+=nShmPerMap){ if( p->hShm>=0 ){ osMunmap(p->apRegion[i], p->szRegion); }else{ sqlite3_free(p->apRegion[i]); } } sqlite3_free(p->apRegion); if( p->hShm>=0 ){ robust_close(pFd, p->hShm, __LINE__); p->hShm = -1; } p->pInode->pShmNode = 0; sqlite3_free(p); } } /* ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to ** take it now. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If the DMS cannot be locked because this is a readonly_shm=1 ** connection and no other process already holds a lock, return ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. */ static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){ struct flock lock; int rc = SQLITE_OK; /* Use F_GETLK to determine the locks other processes are holding ** on the DMS byte. If it indicates that another process is holding ** a SHARED lock, then this process may also take a SHARED lock ** and proceed with opening the *-shm file. ** ** Or, if no other process is holding any lock, then this process ** is the first to open it. In this case take an EXCLUSIVE lock on the ** DMS byte and truncate the *-shm file to zero bytes in size. Then ** downgrade to a SHARED lock on the DMS byte. ** ** If another process is holding an EXCLUSIVE lock on the DMS byte, ** return SQLITE_BUSY to the caller (it will try again). An earlier ** version of this code attempted the SHARED lock at this point. But ** this introduced a subtle race condition: if the process holding ** EXCLUSIVE failed just before truncating the *-shm file, then this ** process might open and use the *-shm file without truncating it. ** And if the *-shm file has been corrupted by a power failure or ** system crash, the database itself may also become corrupt. */ lock.l_whence = SEEK_SET; lock.l_start = UNIX_SHM_DMS; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) { rc = SQLITE_IOERR_LOCK; }else if( lock.l_type==F_UNLCK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; rc = SQLITE_READONLY_CANTINIT; }else{ rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1); /* The first connection to attach must truncate the -shm file. We ** truncate to 3 bytes (an arbitrary small number, less than the ** -shm header size) rather than 0 as a system debugging aid, to ** help detect if a -shm file truncation is legitimate or is the work ** or a rogue process. */ if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){ rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename); } } }else if( lock.l_type==F_WRLCK ){ rc = SQLITE_BUSY; } if( rc==SQLITE_OK ){ assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK ); rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1); } return rc; } /* ** Open a shared-memory area associated with open database file pDbFd. ** This particular implementation uses mmapped files. ** ** The file used to implement shared-memory is in the same directory ** as the open database file and has the same name as the open database ** file with the "-shm" suffix added. For example, if the database file ** is "/home/user1/config.db" then the file that is created and mmapped ** for shared memory will be called "/home/user1/config.db-shm". ** ** Another approach to is to use files in /dev/shm or /dev/tmp or an ** some other tmpfs mount. But if a file in a different directory ** from the database file is used, then differing access permissions ** or a chroot() might cause two different processes on the same ** database to end up using different files for shared memory - ** meaning that their memory would not really be shared - resulting ** in database corruption. Nevertheless, this tmpfs file usage ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time ** option results in an incompatible build of SQLite; builds of SQLite ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the ** same database file at the same time, database corruption will likely ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered ** "unsupported" and may go away in a future SQLite release. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. ** ** If the original database file (pDbFd) is using the "unix-excl" VFS ** that means that an exclusive lock is held on the database file and ** that no other processes are able to read or write the database. In ** that case, we do not really need shared memory. No shared memory ** file is created. The shared memory will be simulated with heap memory. */ static int unixOpenSharedMemory(unixFile *pDbFd){ struct unixShm *p = 0; /* The connection to be opened */ struct unixShmNode *pShmNode; /* The underlying mmapped file */ int rc = SQLITE_OK; /* Result code */ unixInodeInfo *pInode; /* The inode of fd */ char *zShm; /* Name of the file used for SHM */ int nShmFilename; /* Size of the SHM filename in bytes */ /* Allocate space for the new unixShm object. */ p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return SQLITE_NOMEM_BKPT; memset(p, 0, sizeof(*p)); assert( pDbFd->pShm==0 ); /* Check to see if a unixShmNode object already exists. Reuse an existing ** one if present. Create a new one if necessary. */ assert( unixFileMutexNotheld(pDbFd) ); unixEnterMutex(); pInode = pDbFd->pInode; pShmNode = pInode->pShmNode; if( pShmNode==0 ){ struct stat sStat; /* fstat() info for database file */ #ifndef SQLITE_SHM_DIRECTORY const char *zBasePath = pDbFd->zPath; #endif /* Call fstat() to figure out the permissions on the database file. If ** a new *-shm file is created, an attempt will be made to create it ** with the same permissions. */ if( osFstat(pDbFd->h, &sStat) ){ rc = SQLITE_IOERR_FSTAT; goto shm_open_err; } #ifdef SQLITE_SHM_DIRECTORY nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; #else nShmFilename = 6 + (int)strlen(zBasePath); #endif pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename ); if( pShmNode==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); zShm = pShmNode->zFilename = (char*)&pShmNode[1]; #ifdef SQLITE_SHM_DIRECTORY sqlite3_snprintf(nShmFilename, zShm, SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", (u32)sStat.st_ino, (u32)sStat.st_dev); #else sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath); sqlite3FileSuffix3(pDbFd->zPath, zShm); #endif pShmNode->hShm = -1; pDbFd->pInode->pShmNode = pShmNode; pShmNode->pInode = pDbFd->pInode; if( sqlite3GlobalConfig.bCoreMutex ){ pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->pShmMutex==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } } if( pInode->bProcessLock==0 ){ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW, (sStat.st_mode&0777)); } if( pShmNode->hShm<0 ){ pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW, (sStat.st_mode&0777)); if( pShmNode->hShm<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm); goto shm_open_err; } pShmNode->isReadonly = 1; } /* If this process is running as root, make sure that the SHM file ** is owned by the same user that owns the original database. Otherwise, ** the original owner will not be able to connect. */ robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid); rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } } /* Make the new connection a child of the unixShmNode */ p->pShmNode = pShmNode; #ifdef SQLITE_DEBUG p->id = pShmNode->nextShmId++; #endif pShmNode->nRef++; pDbFd->pShm = p; unixLeaveMutex(); /* The reference count on pShmNode has already been incremented under ** the cover of the unixEnterMutex() mutex and the pointer from the ** new (struct unixShm) object to the pShmNode has been set. All that is ** left to do is to link the new object into the linked list starting ** at pShmNode->pFirst. This must be done while holding the ** pShmNode->pShmMutex. */ sqlite3_mutex_enter(pShmNode->pShmMutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->pShmMutex); return rc; /* Jump here on any error */ shm_open_err: unixShmPurge(pDbFd); /* This call frees pShmNode if required */ sqlite3_free(p); unixLeaveMutex(); return rc; } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file fd. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** bExtend is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int unixShmMap( sqlite3_file *fd, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ unixFile *pDbFd = (unixFile*)fd; unixShm *p; unixShmNode *pShmNode; int rc = SQLITE_OK; int nShmPerMap = unixShmRegionPerMap(); int nReqRegion; /* If the shared-memory file has not yet been opened, open it now. */ if( pDbFd->pShm==0 ){ rc = unixOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->pShmMutex); if( pShmNode->isUnlocked ){ rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); assert( pShmNode->pInode==pDbFd->pInode ); assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); /* Minimum number of regions required to be mapped. */ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; if( pShmNode->nRegionszRegion = szRegion; if( pShmNode->hShm>=0 ){ /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ if( osFstat(pShmNode->hShm, &sStat) ){ rc = SQLITE_IOERR_SHMSIZE; goto shmpage_out; } if( sStat.st_sizehShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){ const char *zFile = pShmNode->zFilename; rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); goto shmpage_out; } } } } } /* Map the requested memory region into this processes address space. */ apNew = (char **)sqlite3_realloc( pShmNode->apRegion, nReqRegion*sizeof(char *) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shmpage_out; } pShmNode->apRegion = apNew; while( pShmNode->nRegionhShm>=0 ){ pMem = osMmap(0, nMap, pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion ); if( pMem==MAP_FAILED ){ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); goto shmpage_out; } }else{ pMem = sqlite3_malloc64(nMap); if( pMem==0 ){ rc = SQLITE_NOMEM_BKPT; goto shmpage_out; } memset(pMem, 0, nMap); } for(i=0; iapRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; } pShmNode->nRegion += nShmPerMap; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ *pp = pShmNode->apRegion[iRegion]; }else{ *pp = 0; } if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; sqlite3_mutex_leave(pShmNode->pShmMutex); return rc; } /* ** Check that the pShmNode->aLock[] array comports with the locking bitmasks ** held by each client. Return true if it does, or false otherwise. This ** is to be used in an assert(). e.g. ** ** assert( assertLockingArrayOk(pShmNode) ); */ #ifdef SQLITE_DEBUG static int assertLockingArrayOk(unixShmNode *pShmNode){ unixShm *pX; int aLock[SQLITE_SHM_NLOCK]; assert( sqlite3_mutex_held(pShmNode->pShmMutex) ); memset(aLock, 0, sizeof(aLock)); for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ int i; for(i=0; iexclMask & (1<sharedMask & (1<=0 ); aLock[i]++; } } } assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) ); return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0); } #endif /* ** Change the lock state for a shared-memory segment. ** ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little ** different here than in posix. In xShmLock(), one can go from unlocked ** to shared and back or from unlocked to exclusive and back. But one may ** not go from shared to exclusive or from exclusive to shared. */ static int unixShmLock( sqlite3_file *fd, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ unixShm *p; /* The shared memory being locked */ unixShmNode *pShmNode; /* The underlying file iNode */ int rc = SQLITE_OK; /* Result code */ u16 mask; /* Mask of locks to take or release */ int *aLock; p = pDbFd->pShm; if( p==0 ) return SQLITE_IOERR_SHMLOCK; pShmNode = p->pShmNode; if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK; aLock = pShmNode->aLock; assert( pShmNode==pDbFd->pInode->pShmNode ); assert( pShmNode->pInode==pDbFd->pInode ); assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); /* Check that, if this to be a blocking lock, no locks that occur later ** in the following list than the lock being obtained are already held: ** ** 1. Checkpointer lock (ofst==1). ** 2. Write lock (ofst==0). ** 3. Read locks (ofst>=3 && ofstiBusyTimeout==0 || ( (ofst!=2) /* not RECOVER */ && (ofst!=1 || (p->exclMask|p->sharedMask)==0) && (ofst!=0 || (p->exclMask|p->sharedMask)<3) && (ofst<3 || (p->exclMask|p->sharedMask)<(1<1 || mask==(1<pShmMutex); assert( assertLockingArrayOk(pShmNode) ); if( flags & SQLITE_SHM_UNLOCK ){ if( (p->exclMask|p->sharedMask) & mask ){ int ii; int bUnlock = 1; for(ii=ofst; ii((p->sharedMask & (1<sharedMask & (1<1 ); aLock[ofst]--; } /* Undo the local locks */ if( rc==SQLITE_OK ){ p->exclMask &= ~mask; p->sharedMask &= ~mask; } } }else if( flags & SQLITE_SHM_SHARED ){ assert( n==1 ); assert( (p->exclMask & (1<sharedMask & mask)==0 ){ if( aLock[ofst]<0 ){ rc = SQLITE_BUSY; }else if( aLock[ofst]==0 ){ rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n); } /* Get the local shared locks */ if( rc==SQLITE_OK ){ p->sharedMask |= mask; aLock[ofst]++; } } }else{ /* Make sure no sibling connections hold locks that will block this ** lock. If any do, return SQLITE_BUSY right away. */ int ii; for(ii=ofst; iisharedMask & mask)==0 ); if( ALWAYS((p->exclMask & (1<sharedMask & mask)==0 ); p->exclMask |= mask; for(ii=ofst; iipShmMutex); OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", p->id, osGetpid(0), p->sharedMask, p->exclMask)); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void unixShmBarrier( sqlite3_file *fd /* Database file holding the shared memory */ ){ UNUSED_PARAMETER(fd); sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ assert( fd->pMethods->xLock==nolockLock || unixFileMutexNotheld((unixFile*)fd) ); unixEnterMutex(); /* Also mutex, for redundancy */ unixLeaveMutex(); } /* ** Close a connection to shared-memory. Delete the underlying ** storage if deleteFlag is true. ** ** If there is no shared memory associated with the connection then this ** routine is a harmless no-op. */ static int unixShmUnmap( sqlite3_file *fd, /* The underlying database file */ int deleteFlag /* Delete shared-memory if true */ ){ unixShm *p; /* The connection to be closed */ unixShmNode *pShmNode; /* The underlying shared-memory file */ unixShm **pp; /* For looping over sibling connections */ unixFile *pDbFd; /* The underlying database file */ pDbFd = (unixFile*)fd; p = pDbFd->pShm; if( p==0 ) return SQLITE_OK; pShmNode = p->pShmNode; assert( pShmNode==pDbFd->pInode->pShmNode ); assert( pShmNode->pInode==pDbFd->pInode ); /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->pShmMutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ sqlite3_free(p); pDbFd->pShm = 0; sqlite3_mutex_leave(pShmNode->pShmMutex); /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ assert( unixFileMutexNotheld(pDbFd) ); unixEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ if( deleteFlag && pShmNode->hShm>=0 ){ osUnlink(pShmNode->zFilename); } unixShmPurge(pDbFd); } unixLeaveMutex(); return SQLITE_OK; } #else # define unixShmMap 0 # define unixShmLock 0 # define unixShmBarrier 0 # define unixShmUnmap 0 #endif /* #ifndef SQLITE_OMIT_WAL */ #if SQLITE_MAX_MMAP_SIZE>0 /* ** If it is currently memory mapped, unmap file pFd. */ static void unixUnmapfile(unixFile *pFd){ assert( pFd->nFetchOut==0 ); if( pFd->pMapRegion ){ osMunmap(pFd->pMapRegion, pFd->mmapSizeActual); pFd->pMapRegion = 0; pFd->mmapSize = 0; pFd->mmapSizeActual = 0; } } /* ** Attempt to set the size of the memory mapping maintained by file ** descriptor pFd to nNew bytes. Any existing mapping is discarded. ** ** If successful, this function sets the following variables: ** ** unixFile.pMapRegion ** unixFile.mmapSize ** unixFile.mmapSizeActual ** ** If unsuccessful, an error message is logged via sqlite3_log() and ** the three variables above are zeroed. In this case SQLite should ** continue accessing the database using the xRead() and xWrite() ** methods. */ static void unixRemapfile( unixFile *pFd, /* File descriptor object */ i64 nNew /* Required mapping size */ ){ const char *zErr = "mmap"; int h = pFd->h; /* File descriptor open on db file */ u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */ i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */ u8 *pNew = 0; /* Location of new mapping */ int flags = PROT_READ; /* Flags to pass to mmap() */ assert( pFd->nFetchOut==0 ); assert( nNew>pFd->mmapSize ); assert( nNew<=pFd->mmapSizeMax ); assert( nNew>0 ); assert( pFd->mmapSizeActual>=pFd->mmapSize ); assert( MAP_FAILED!=0 ); #ifdef SQLITE_MMAP_READWRITE if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE; #endif if( pOrig ){ #if HAVE_MREMAP i64 nReuse = pFd->mmapSize; #else const int szSyspage = osGetpagesize(); i64 nReuse = (pFd->mmapSize & ~(szSyspage-1)); #endif u8 *pReq = &pOrig[nReuse]; /* Unmap any pages of the existing mapping that cannot be reused. */ if( nReuse!=nOrig ){ osMunmap(pReq, nOrig-nReuse); } #if HAVE_MREMAP pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE); zErr = "mremap"; #else pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse); if( pNew!=MAP_FAILED ){ if( pNew!=pReq ){ osMunmap(pNew, nNew - nReuse); pNew = 0; }else{ pNew = pOrig; } } #endif /* The attempt to extend the existing mapping failed. Free it. */ if( pNew==MAP_FAILED || pNew==0 ){ osMunmap(pOrig, nReuse); } } /* If pNew is still NULL, try to create an entirely new mapping. */ if( pNew==0 ){ pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0); } if( pNew==MAP_FAILED ){ pNew = 0; nNew = 0; unixLogError(SQLITE_OK, zErr, pFd->zPath); /* If the mmap() above failed, assume that all subsequent mmap() calls ** will probably fail too. Fall back to using xRead/xWrite exclusively ** in this case. */ pFd->mmapSizeMax = 0; } pFd->pMapRegion = (void *)pNew; pFd->mmapSize = pFd->mmapSizeActual = nNew; } /* ** Memory map or remap the file opened by file-descriptor pFd (if the file ** is already mapped, the existing mapping is replaced by the new). Or, if ** there already exists a mapping for this file, and there are still ** outstanding xFetch() references to it, this function is a no-op. ** ** If parameter nByte is non-negative, then it is the requested size of ** the mapping to create. Otherwise, if nByte is less than zero, then the ** requested size is the size of the file on disk. The actual size of the ** created mapping is either the requested size or the value configured ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller. ** ** SQLITE_OK is returned if no error occurs (even if the mapping is not ** recreated as a result of outstanding references) or an SQLite error ** code otherwise. */ static int unixMapfile(unixFile *pFd, i64 nMap){ assert( nMap>=0 || pFd->nFetchOut==0 ); assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); if( pFd->nFetchOut>0 ) return SQLITE_OK; if( nMap<0 ){ struct stat statbuf; /* Low-level file information */ if( osFstat(pFd->h, &statbuf) ){ return SQLITE_IOERR_FSTAT; } nMap = statbuf.st_size; } if( nMap>pFd->mmapSizeMax ){ nMap = pFd->mmapSizeMax; } assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); if( nMap!=pFd->mmapSize ){ unixRemapfile(pFd, nMap); } return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* ** If possible, return a pointer to a mapping of file fd starting at offset ** iOff. The mapping must be valid for at least nAmt bytes. ** ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. ** Finally, if an error does occur, return an SQLite error code. The final ** value of *pp is undefined in this case. ** ** If this function does return a pointer, the caller must eventually ** release the reference by calling unixUnfetch(). */ static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ #if SQLITE_MAX_MMAP_SIZE>0 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ #endif *pp = 0; #if SQLITE_MAX_MMAP_SIZE>0 if( pFd->mmapSizeMax>0 ){ if( pFd->pMapRegion==0 ){ int rc = unixMapfile(pFd, -1); if( rc!=SQLITE_OK ) return rc; } if( pFd->mmapSize >= iOff+nAmt ){ *pp = &((u8 *)pFd->pMapRegion)[iOff]; pFd->nFetchOut++; } } #endif return SQLITE_OK; } /* ** If the third argument is non-NULL, then this function releases a ** reference obtained by an earlier call to unixFetch(). The second ** argument passed to this function must be the same as the corresponding ** argument that was passed to the unixFetch() invocation. ** ** Or, if the third argument is NULL, then this function is being called ** to inform the VFS layer that, according to POSIX, any existing mapping ** may now be invalid and should be unmapped. */ static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){ #if SQLITE_MAX_MMAP_SIZE>0 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ UNUSED_PARAMETER(iOff); /* If p==0 (unmap the entire file) then there must be no outstanding ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), ** then there must be at least one outstanding. */ assert( (p==0)==(pFd->nFetchOut==0) ); /* If p!=0, it must match the iOff value. */ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); if( p ){ pFd->nFetchOut--; }else{ unixUnmapfile(pFd); } assert( pFd->nFetchOut>=0 ); #else UNUSED_PARAMETER(fd); UNUSED_PARAMETER(p); UNUSED_PARAMETER(iOff); #endif return SQLITE_OK; } /* ** Here ends the implementation of all sqlite3_file methods. ** ********************** End sqlite3_file Methods ******************************* ******************************************************************************/ /* ** This division contains definitions of sqlite3_io_methods objects that ** implement various file locking strategies. It also contains definitions ** of "finder" functions. A finder-function is used to locate the appropriate ** sqlite3_io_methods object for a particular database file. The pAppData ** field of the sqlite3_vfs VFS objects are initialized to be pointers to ** the correct finder-function for that VFS. ** ** Most finder functions return a pointer to a fixed sqlite3_io_methods ** object. The only interesting finder-function is autolockIoFinder, which ** looks at the filesystem type and tries to guess the best locking ** strategy from that. ** ** For finder-function F, two objects are created: ** ** (1) The real finder-function named "FImpt()". ** ** (2) A constant pointer to this function named just "F". ** ** ** A pointer to the F pointer is used as the pAppData value for VFS ** objects. We have to do this instead of letting pAppData point ** directly at the finder-function since C90 rules prevent a void* ** from be cast into a function pointer. ** ** ** Each instance of this macro generates two objects: ** ** * A constant sqlite3_io_methods object call METHOD that has locking ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. ** ** * An I/O method finder function called FINDER that returns a pointer ** to the METHOD object in the previous bullet. */ #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \ static const sqlite3_io_methods METHOD = { \ VERSION, /* iVersion */ \ CLOSE, /* xClose */ \ unixRead, /* xRead */ \ unixWrite, /* xWrite */ \ unixTruncate, /* xTruncate */ \ unixSync, /* xSync */ \ unixFileSize, /* xFileSize */ \ LOCK, /* xLock */ \ UNLOCK, /* xUnlock */ \ CKLOCK, /* xCheckReservedLock */ \ unixFileControl, /* xFileControl */ \ unixSectorSize, /* xSectorSize */ \ unixDeviceCharacteristics, /* xDeviceCapabilities */ \ SHMMAP, /* xShmMap */ \ unixShmLock, /* xShmLock */ \ unixShmBarrier, /* xShmBarrier */ \ unixShmUnmap, /* xShmUnmap */ \ unixFetch, /* xFetch */ \ unixUnfetch, /* xUnfetch */ \ }; \ static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ return &METHOD; \ } \ static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ = FINDER##Impl; /* ** Here are all of the sqlite3_io_methods objects for each of the ** locking strategies. Functions that return pointers to these methods ** are also created. */ IOMETHODS( posixIoFinder, /* Finder function name */ posixIoMethods, /* sqlite3_io_methods object name */ 3, /* shared memory and mmap are enabled */ unixClose, /* xClose method */ unixLock, /* xLock method */ unixUnlock, /* xUnlock method */ unixCheckReservedLock, /* xCheckReservedLock method */ unixShmMap /* xShmMap method */ ) IOMETHODS( nolockIoFinder, /* Finder function name */ nolockIoMethods, /* sqlite3_io_methods object name */ 3, /* shared memory and mmap are enabled */ nolockClose, /* xClose method */ nolockLock, /* xLock method */ nolockUnlock, /* xUnlock method */ nolockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) IOMETHODS( dotlockIoFinder, /* Finder function name */ dotlockIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ dotlockClose, /* xClose method */ dotlockLock, /* xLock method */ dotlockUnlock, /* xUnlock method */ dotlockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #if SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( flockIoFinder, /* Finder function name */ flockIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ flockClose, /* xClose method */ flockLock, /* xLock method */ flockUnlock, /* xUnlock method */ flockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if OS_VXWORKS IOMETHODS( semIoFinder, /* Finder function name */ semIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ semXClose, /* xClose method */ semXLock, /* xLock method */ semXUnlock, /* xUnlock method */ semXCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( afpIoFinder, /* Finder function name */ afpIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ afpClose, /* xClose method */ afpLock, /* xLock method */ afpUnlock, /* xUnlock method */ afpCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif /* ** The proxy locking method is a "super-method" in the sense that it ** opens secondary file descriptors for the conch and lock files and ** it uses proxy, dot-file, AFP, and flock() locking methods on those ** secondary files. For this reason, the division that implements ** proxy locking is located much further down in the file. But we need ** to go ahead and define the sqlite3_io_methods and finder function ** for proxy locking here. So we forward declare the I/O methods. */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE static int proxyClose(sqlite3_file*); static int proxyLock(sqlite3_file*, int); static int proxyUnlock(sqlite3_file*, int); static int proxyCheckReservedLock(sqlite3_file*, int*); IOMETHODS( proxyIoFinder, /* Finder function name */ proxyIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ proxyClose, /* xClose method */ proxyLock, /* xLock method */ proxyUnlock, /* xUnlock method */ proxyCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( nfsIoFinder, /* Finder function name */ nfsIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ unixClose, /* xClose method */ unixLock, /* xLock method */ nfsUnlock, /* xUnlock method */ unixCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** This "finder" function attempts to determine the best locking strategy ** for the database file "filePath". It then returns the sqlite3_io_methods ** object that implements that strategy. ** ** This is for MacOSX only. */ static const sqlite3_io_methods *autolockIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* open file object for the database file */ ){ static const struct Mapping { const char *zFilesystem; /* Filesystem type name */ const sqlite3_io_methods *pMethods; /* Appropriate locking method */ } aMap[] = { { "hfs", &posixIoMethods }, { "ufs", &posixIoMethods }, { "afpfs", &afpIoMethods }, { "smbfs", &afpIoMethods }, { "webdav", &nolockIoMethods }, { 0, 0 } }; int i; struct statfs fsInfo; struct flock lockInfo; if( !filePath ){ /* If filePath==NULL that means we are dealing with a transient file ** that does not need to be locked. */ return &nolockIoMethods; } if( statfs(filePath, &fsInfo) != -1 ){ if( fsInfo.f_flags & MNT_RDONLY ){ return &nolockIoMethods; } for(i=0; aMap[i].zFilesystem; i++){ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ return aMap[i].pMethods; } } } /* Default case. Handles, amongst others, "nfs". ** Test byte-range lock using fcntl(). If the call succeeds, ** assume that the file-system supports POSIX style locks. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ return &nfsIoMethods; } else { return &posixIoMethods; } }else{ return &dotlockIoMethods; } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ #if OS_VXWORKS /* ** This "finder" function for VxWorks checks to see if posix advisory ** locking works. If it does, then that is what is used. If it does not ** work, then fallback to named semaphore locking. */ static const sqlite3_io_methods *vxworksIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* the open file object */ ){ struct flock lockInfo; if( !filePath ){ /* If filePath==NULL that means we are dealing with a transient file ** that does not need to be locked. */ return &nolockIoMethods; } /* Test if fcntl() is supported and use POSIX style locks. ** Otherwise fall back to the named semaphore method. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { return &posixIoMethods; }else{ return &semIoMethods; } } static const sqlite3_io_methods *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl; #endif /* OS_VXWORKS */ /* ** An abstract type for a pointer to an IO method finder function: */ typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. */ /* ** Initialize the contents of the unixFile structure pointed to by pId. */ static int fillInUnixFile( sqlite3_vfs *pVfs, /* Pointer to vfs object */ int h, /* Open file descriptor of file being opened */ sqlite3_file *pId, /* Write to the unixFile structure here */ const char *zFilename, /* Name of the file being opened */ int ctrlFlags /* Zero or more UNIXFILE_* values */ ){ const sqlite3_io_methods *pLockingStyle; unixFile *pNew = (unixFile *)pId; int rc = SQLITE_OK; assert( pNew->pInode==NULL ); /* No locking occurs in temporary files */ assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->pVfs = pVfs; pNew->zPath = zFilename; pNew->ctrlFlags = (u8)ctrlFlags; #if SQLITE_MAX_MMAP_SIZE>0 pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap; #endif if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pNew->ctrlFlags |= UNIXFILE_PSOW; } if( strcmp(pVfs->zName,"unix-excl")==0 ){ pNew->ctrlFlags |= UNIXFILE_EXCL; } #if OS_VXWORKS pNew->pId = vxworksFindFileId(zFilename); if( pNew->pId==0 ){ ctrlFlags |= UNIXFILE_NOLOCK; rc = SQLITE_NOMEM_BKPT; } #endif if( ctrlFlags & UNIXFILE_NOLOCK ){ pLockingStyle = &nolockIoMethods; }else{ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); #if SQLITE_ENABLE_LOCKING_STYLE /* Cache zFilename in the locking context (AFP and dotlock override) for ** proxyLock activation is possible (remote proxy is based on db name) ** zFilename remains valid until file is closed, to support */ pNew->lockingContext = (void*)zFilename; #endif } if( pLockingStyle == &posixIoMethods #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE || pLockingStyle == &nfsIoMethods #endif ){ unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( rc!=SQLITE_OK ){ /* If an error occurred in findInodeInfo(), close the file descriptor ** immediately, before releasing the mutex. findInodeInfo() may fail ** in two scenarios: ** ** (a) A call to fstat() failed. ** (b) A malloc failed. ** ** Scenario (b) may only occur if the process is holding no other ** file descriptors open on the same file. If there were other file ** descriptors on this file, then no malloc would be required by ** findInodeInfo(). If this is the case, it is quite safe to close ** handle h - as it is guaranteed that no posix locks will be released ** by doing so. ** ** If scenario (a) caused the error then things are not so safe. The ** implicit assumption here is that if fstat() fails, things are in ** such bad shape that dropping a lock or two doesn't matter much. */ robust_close(pNew, h, __LINE__); h = -1; } unixLeaveMutex(); } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) else if( pLockingStyle == &afpIoMethods ){ /* AFP locking uses the file path so it needs to be included in ** the afpLockingContext. */ afpLockingContext *pCtx; pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) ); if( pCtx==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ /* NB: zFilename exists and remains valid until the file is closed ** according to requirement F11141. So we do not need to make a ** copy of the filename. */ pCtx->dbPath = zFilename; pCtx->reserved = 0; srandomdev(); unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( rc!=SQLITE_OK ){ sqlite3_free(pNew->lockingContext); robust_close(pNew, h, __LINE__); h = -1; } unixLeaveMutex(); } } #endif else if( pLockingStyle == &dotlockIoMethods ){ /* Dotfile locking uses the file path so it needs to be included in ** the dotlockLockingContext */ char *zLockFile; int nFilename; assert( zFilename!=0 ); nFilename = (int)strlen(zFilename) + 6; zLockFile = (char *)sqlite3_malloc64(nFilename); if( zLockFile==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); } pNew->lockingContext = zLockFile; } #if OS_VXWORKS else if( pLockingStyle == &semIoMethods ){ /* Named semaphore locking uses the file path so it needs to be ** included in the semLockingContext */ unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ char *zSemName = pNew->pInode->aSemName; int n; sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", pNew->pId->zCanonicalName); for( n=1; zSemName[n]; n++ ) if( zSemName[n]=='/' ) zSemName[n] = '_'; pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); if( pNew->pInode->pSem == SEM_FAILED ){ rc = SQLITE_NOMEM_BKPT; pNew->pInode->aSemName[0] = '\0'; } } unixLeaveMutex(); } #endif storeLastErrno(pNew, 0); #if OS_VXWORKS if( rc!=SQLITE_OK ){ if( h>=0 ) robust_close(pNew, h, __LINE__); h = -1; osUnlink(zFilename); pNew->ctrlFlags |= UNIXFILE_DELETE; } #endif if( rc!=SQLITE_OK ){ if( h>=0 ) robust_close(pNew, h, __LINE__); }else{ pId->pMethods = pLockingStyle; OpenCounter(+1); verifyDbFile(pNew); } return rc; } /* ** Directories to consider for temp files. */ static const char *azTempDirs[] = { 0, 0, "/var/tmp", "/usr/tmp", "/tmp", "." }; /* ** Initialize first two members of azTempDirs[] array. */ static void unixTempFileInit(void){ azTempDirs[0] = getenv("SQLITE_TMPDIR"); azTempDirs[1] = getenv("TMPDIR"); } /* ** Return the name of a directory in which to put temporary files. ** If no suitable temporary file directory can be found, return NULL. */ static const char *unixTempFileDir(void){ unsigned int i = 0; struct stat buf; const char *zDir = sqlite3_temp_directory; while(1){ if( zDir!=0 && osStat(zDir, &buf)==0 && S_ISDIR(buf.st_mode) && osAccess(zDir, 03)==0 ){ return zDir; } if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break; zDir = azTempDirs[i++]; } return 0; } /* ** Create a temporary file name in zBuf. zBuf must be allocated ** by the calling process and must be big enough to hold at least ** pVfs->mxPathname bytes. */ static int unixGetTempname(int nBuf, char *zBuf){ const char *zDir; int iLimit = 0; int rc = SQLITE_OK; /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. */ zBuf[0] = 0; SimulateIOError( return SQLITE_IOERR ); sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); zDir = unixTempFileDir(); if( zDir==0 ){ rc = SQLITE_IOERR_GETTEMPPATH; }else{ do{ u64 r; sqlite3_randomness(sizeof(r), &r); assert( nBuf>2 ); zBuf[nBuf-2] = 0; sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c", zDir, r, 0); if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){ rc = SQLITE_ERROR; break; } }while( osAccess(zBuf,0)==0 ); } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); return rc; } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Routine to transform a unixFile into a proxy-locking unixFile. ** Implementation in the proxy-lock division, but used by unixOpen() ** if SQLITE_PREFER_PROXY_LOCKING is defined. */ static int proxyTransformUnixFile(unixFile*, const char*); #endif /* ** Search for an unused file descriptor that was opened on the database ** file (not a journal or super-journal file) identified by pathname ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second ** argument to this function. ** ** Such a file descriptor may exist if a database connection was closed ** but the associated file descriptor could not be closed because some ** other file descriptor open on the same file is holding a file-lock. ** Refer to comments in the unixClose() function and the lengthy comment ** describing "Posix Advisory Locking" at the start of this file for ** further details. Also, ticket #4018. ** ** If a suitable file descriptor is found, then it is returned. If no ** such file descriptor is located, -1 is returned. */ static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ UnixUnusedFd *pUnused = 0; /* Do not search for an unused file descriptor on vxworks. Not because ** vxworks would not benefit from the change (it might, we're not sure), ** but because no way to test it is currently available. It is better ** not to risk breaking vxworks support for the sake of such an obscure ** feature. */ #if !OS_VXWORKS struct stat sStat; /* Results of stat() call */ unixEnterMutex(); /* A stat() call may fail for various reasons. If this happens, it is ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a reusable file descriptor are not dire. */ if( inodeList!=0 && 0==osStat(zPath, &sStat) ){ unixInodeInfo *pInode; pInode = inodeList; while( pInode && (pInode->fileId.dev!=sStat.st_dev || pInode->fileId.ino!=(u64)sStat.st_ino) ){ pInode = pInode->pNext; } if( pInode ){ UnixUnusedFd **pp; assert( sqlite3_mutex_notheld(pInode->pLockMutex) ); sqlite3_mutex_enter(pInode->pLockMutex); flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE); for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); pUnused = *pp; if( pUnused ){ *pp = pUnused->pNext; } sqlite3_mutex_leave(pInode->pLockMutex); } } unixLeaveMutex(); #endif /* if !OS_VXWORKS */ return pUnused; } /* ** Find the mode, uid and gid of file zFile. */ static int getFileMode( const char *zFile, /* File name */ mode_t *pMode, /* OUT: Permissions of zFile */ uid_t *pUid, /* OUT: uid of zFile. */ gid_t *pGid /* OUT: gid of zFile. */ ){ struct stat sStat; /* Output of stat() on database file */ int rc = SQLITE_OK; if( 0==osStat(zFile, &sStat) ){ *pMode = sStat.st_mode & 0777; *pUid = sStat.st_uid; *pGid = sStat.st_gid; }else{ rc = SQLITE_IOERR_FSTAT; } return rc; } /* ** This function is called by unixOpen() to determine the unix permissions ** to create new files with. If no error occurs, then SQLITE_OK is returned ** and a value suitable for passing as the third argument to open(2) is ** written to *pMode. If an IO error occurs, an SQLite error code is ** returned and the value of *pMode is not modified. ** ** In most cases, this routine sets *pMode to 0, which will become ** an indication to robust_open() to create the file using ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. ** But if the file being opened is a WAL or regular journal file, then ** this function queries the file-system for the permissions on the ** corresponding database file and sets *pMode to this value. Whenever ** possible, WAL and journal files are created using the same permissions ** as the associated database file. ** ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the ** original filename is unavailable. But 8_3_NAMES is only used for ** FAT filesystems and permissions do not matter there, so just use ** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero. */ static int findCreateFileMode( const char *zPath, /* Path of file (possibly) being created */ int flags, /* Flags passed as 4th argument to xOpen() */ mode_t *pMode, /* OUT: Permissions to open file with */ uid_t *pUid, /* OUT: uid to set on the file */ gid_t *pGid /* OUT: gid to set on the file */ ){ int rc = SQLITE_OK; /* Return Code */ *pMode = 0; *pUid = 0; *pGid = 0; if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ char zDb[MAX_PATHNAME+1]; /* Database file path */ int nDb; /* Number of valid bytes in zDb */ /* zPath is a path to a WAL or journal file. The following block derives ** the path to the associated database file from zPath. This block handles ** the following naming conventions: ** ** "-journal" ** "-wal" ** "-journalNN" ** "-walNN" ** ** where NN is a decimal number. The NN naming schemes are ** used by the test_multiplex.c module. ** ** In normal operation, the journal file name will always contain ** a '-' character. However in 8+3 filename mode, or if a corrupt ** rollback journal specifies a super-journal with a goofy name, then ** the '-' might be missing or the '-' might be the first character in ** the filename. In that case, just return SQLITE_OK with *pMode==0. */ nDb = sqlite3Strlen30(zPath) - 1; while( nDb>0 && zPath[nDb]!='.' ){ if( zPath[nDb]=='-' ){ memcpy(zDb, zPath, nDb); zDb[nDb] = '\0'; rc = getFileMode(zDb, pMode, pUid, pGid); break; } nDb--; } }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ *pMode = 0600; }else if( flags & SQLITE_OPEN_URI ){ /* If this is a main database file and the file was opened using a URI ** filename, check for the "modeof" parameter. If present, interpret ** its value as a filename and try to copy the mode, uid and gid from ** that file. */ const char *z = sqlite3_uri_parameter(zPath, "modeof"); if( z ){ rc = getFileMode(z, pMode, pUid, pGid); } } return rc; } /* ** Open the file zPath. ** ** Previously, the SQLite OS layer used three functions in place of this ** one: ** ** sqlite3OsOpenReadWrite(); ** sqlite3OsOpenReadOnly(); ** sqlite3OsOpenExclusive(); ** ** These calls correspond to the following combinations of flags: ** ** ReadWrite() -> (READWRITE | CREATE) ** ReadOnly() -> (READONLY) ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) ** ** The old OpenExclusive() accepted a boolean argument - "delFlag". If ** true, the file was configured to be automatically deleted when the ** file handle closed. To achieve the same effect using this new ** interface, add the DELETEONCLOSE flag to those specified above for ** OpenExclusive(). */ static int unixOpen( sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ const char *zPath, /* Pathname of file to be opened */ sqlite3_file *pFile, /* The file descriptor to be filled in */ int flags, /* Input flags to control the opening */ int *pOutFlags /* Output flags returned to SQLite core */ ){ unixFile *p = (unixFile *)pFile; int fd = -1; /* File descriptor returned by open() */ int openFlags = 0; /* Flags to pass to open() */ int eType = flags&0x0FFF00; /* Type of file to open */ int noLock; /* True to omit locking primitives */ int rc = SQLITE_OK; /* Function Return Code */ int ctrlFlags = 0; /* UNIXFILE_* flags */ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); int isCreate = (flags & SQLITE_OPEN_CREATE); int isReadonly = (flags & SQLITE_OPEN_READONLY); int isReadWrite = (flags & SQLITE_OPEN_READWRITE); #if SQLITE_ENABLE_LOCKING_STYLE int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); #endif #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE struct statfs fsInfo; #endif /* If creating a super- or main-file journal, this function will open ** a file-descriptor on the directory too. The first time unixSync() ** is called the directory file descriptor will be fsync()ed and close()d. */ int isNewJrnl = (isCreate && ( eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_WAL )); /* If argument zPath is a NULL pointer, this function is required to open ** a temporary file. Use this buffer to store the file name in. */ char zTmpname[MAX_PATHNAME+2]; const char *zName = zPath; /* Check the following statements are true: ** ** (a) Exactly one of the READWRITE and READONLY flags must be set, and ** (b) if CREATE is set, then READWRITE must also be set, and ** (c) if EXCLUSIVE is set, then CREATE must also be set. ** (d) if DELETEONCLOSE is set, then CREATE must also be set. */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, WAL file and super-journal are never ** automatically deleted. Nor are they ever temporary files. */ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); /* Assert that the upper layer has set one of the "file-type" flags. */ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL ); /* Detect a pid change and reset the PRNG. There is a race condition ** here such that two or more threads all trying to open databases at ** the same instant might all reset the PRNG. But multiple resets ** are harmless. */ if( randomnessPid!=osGetpid(0) ){ randomnessPid = osGetpid(0); sqlite3_randomness(0,0); } memset(p, 0, sizeof(unixFile)); #ifdef SQLITE_ASSERT_NO_FILES /* Applications that never read or write a persistent disk files */ assert( zName==0 ); #endif if( eType==SQLITE_OPEN_MAIN_DB ){ UnixUnusedFd *pUnused; pUnused = findReusableFd(zName, flags); if( pUnused ){ fd = pUnused->fd; }else{ pUnused = sqlite3_malloc64(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM_BKPT; } } p->pPreallocatedUnused = pUnused; /* Database filenames are double-zero terminated if they are not ** URIs with parameters. Hence, they can always be passed into ** sqlite3_uri_parameter(). */ assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); }else if( !zName ){ /* If zName is NULL, the upper layer is requesting a temp file. */ assert(isDelete && !isNewJrnl); rc = unixGetTempname(pVfs->mxPathname, zTmpname); if( rc!=SQLITE_OK ){ return rc; } zName = zTmpname; /* Generated temporary filenames are always double-zero terminated ** for use by sqlite3_uri_parameter(). */ assert( zName[strlen(zName)+1]==0 ); } /* Determine the value of the flags parameter passed to POSIX function ** open(). These must be calculated even if open() is not called, as ** they may be stored as part of the file handle and used by the ** 'conch file' locking functions later on. */ if( isReadonly ) openFlags |= O_RDONLY; if( isReadWrite ) openFlags |= O_RDWR; if( isCreate ) openFlags |= O_CREAT; if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW); if( fd<0 ){ mode_t openMode; /* Permissions to create file with */ uid_t uid; /* Userid for the file */ gid_t gid; /* Groupid for the file */ rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); if( rc!=SQLITE_OK ){ assert( !p->pPreallocatedUnused ); assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); return rc; } fd = robust_open(zName, openFlags, openMode); OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); assert( !isExclusive || (openFlags & O_CREAT)!=0 ); if( fd<0 ){ if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){ /* If unable to create a journal because the directory is not ** writable, change the error code to indicate that. */ rc = SQLITE_READONLY_DIRECTORY; }else if( errno!=EISDIR && isReadWrite ){ /* Failed to open the file for read/write access. Try read-only. */ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); openFlags &= ~(O_RDWR|O_CREAT); flags |= SQLITE_OPEN_READONLY; openFlags |= O_RDONLY; isReadonly = 1; fd = robust_open(zName, openFlags, openMode); } } if( fd<0 ){ int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); if( rc==SQLITE_OK ) rc = rc2; goto open_finished; } /* The owner of the rollback journal or WAL file should always be the ** same as the owner of the database file. Try to ensure that this is ** the case. The chown() system call will be a no-op if the current ** process lacks root privileges, be we should at least try. Without ** this step, if a root process opens a database file, it can leave ** behinds a journal/WAL that is owned by root and hence make the ** database inaccessible to unprivileged processes. ** ** If openMode==0, then that means uid and gid are not set correctly ** (probably because SQLite is configured to use 8+3 filename mode) and ** in that case we do not want to attempt the chown(). */ if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){ robustFchown(fd, uid, gid); } } assert( fd>=0 ); if( pOutFlags ){ *pOutFlags = flags; } if( p->pPreallocatedUnused ){ p->pPreallocatedUnused->fd = fd; p->pPreallocatedUnused->flags = flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE); } if( isDelete ){ #if OS_VXWORKS zPath = zName; #elif defined(SQLITE_UNLINK_AFTER_CLOSE) zPath = sqlite3_mprintf("%s", zName); if( zPath==0 ){ robust_close(p, fd, __LINE__); return SQLITE_NOMEM_BKPT; } #else osUnlink(zName); #endif } #if SQLITE_ENABLE_LOCKING_STYLE else{ p->openFlags = openFlags; } #endif #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE if( fstatfs(fd, &fsInfo) == -1 ){ storeLastErrno(p, errno); robust_close(p, fd, __LINE__); return SQLITE_IOERR_ACCESS; } if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; } if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) { ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; } #endif /* Set up appropriate ctrlFlags */ if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; noLock = eType!=SQLITE_OPEN_MAIN_DB; if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC; if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; #if SQLITE_ENABLE_LOCKING_STYLE #if SQLITE_PREFER_PROXY_LOCKING isAutoProxy = 1; #endif if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); int useProxy = 0; /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means ** never use proxy, NULL means use proxy for non-local files only. */ if( envforce!=NULL ){ useProxy = atoi(envforce)>0; }else{ useProxy = !(fsInfo.f_flags&MNT_LOCAL); } if( useProxy ){ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); if( rc==SQLITE_OK ){ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); if( rc!=SQLITE_OK ){ /* Use unixClose to clean up the resources added in fillInUnixFile ** and clear all the structure's references. Specifically, ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op */ unixClose(pFile); return rc; } } goto open_finished; } } #endif assert( zPath==0 || zPath[0]=='/' || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); open_finished: if( rc!=SQLITE_OK ){ sqlite3_free(p->pPreallocatedUnused); } return rc; } /* ** Delete the file at zPath. If the dirSync argument is true, fsync() ** the directory after deleting the file. */ static int unixDelete( sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ const char *zPath, /* Name of file to be deleted */ int dirSync /* If true, fsync() directory after deleting file */ ){ int rc = SQLITE_OK; UNUSED_PARAMETER(NotUsed); SimulateIOError(return SQLITE_IOERR_DELETE); if( osUnlink(zPath)==(-1) ){ if( errno==ENOENT #if OS_VXWORKS || osAccess(zPath,0)!=0 #endif ){ rc = SQLITE_IOERR_DELETE_NOENT; }else{ rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); } return rc; } #ifndef SQLITE_DISABLE_DIRSYNC if( (dirSync & 1)!=0 ){ int fd; rc = osOpenDirectory(zPath, &fd); if( rc==SQLITE_OK ){ if( full_fsync(fd,0,0) ){ rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); } robust_close(0, fd, __LINE__); }else{ assert( rc==SQLITE_CANTOPEN ); rc = SQLITE_OK; } } #endif return rc; } /* ** Test the existence of or access permissions of file zPath. The ** test performed depends on the value of flags: ** ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. ** ** Otherwise return 0. */ static int unixAccess( sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ const char *zPath, /* Path of the file to examine */ int flags, /* What do we want to learn about the zPath file? */ int *pResOut /* Write result boolean here */ ){ UNUSED_PARAMETER(NotUsed); SimulateIOError( return SQLITE_IOERR_ACCESS; ); assert( pResOut!=0 ); /* The spec says there are three possible values for flags. But only ** two of them are actually used */ assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE ); if( flags==SQLITE_ACCESS_EXISTS ){ struct stat buf; *pResOut = 0==osStat(zPath, &buf) && (!S_ISREG(buf.st_mode) || buf.st_size>0); }else{ *pResOut = osAccess(zPath, W_OK|R_OK)==0; } return SQLITE_OK; } /* ** A pathname under construction */ typedef struct DbPath DbPath; struct DbPath { int rc; /* Non-zero following any error */ int nSymlink; /* Number of symlinks resolved */ char *zOut; /* Write the pathname here */ int nOut; /* Bytes of space available to zOut[] */ int nUsed; /* Bytes of zOut[] currently being used */ }; /* Forward reference */ static void appendAllPathElements(DbPath*,const char*); /* ** Append a single path element to the DbPath under construction */ static void appendOnePathElement( DbPath *pPath, /* Path under construction, to which to append zName */ const char *zName, /* Name to append to pPath. Not zero-terminated */ int nName /* Number of significant bytes in zName */ ){ assert( nName>0 ); assert( zName!=0 ); if( zName[0]=='.' ){ if( nName==1 ) return; if( zName[1]=='.' && nName==2 ){ if( pPath->nUsed>1 ){ assert( pPath->zOut[0]=='/' ); while( pPath->zOut[--pPath->nUsed]!='/' ){} } return; } } if( pPath->nUsed + nName + 2 >= pPath->nOut ){ pPath->rc = SQLITE_ERROR; return; } pPath->zOut[pPath->nUsed++] = '/'; memcpy(&pPath->zOut[pPath->nUsed], zName, nName); pPath->nUsed += nName; #if defined(HAVE_READLINK) && defined(HAVE_LSTAT) if( pPath->rc==SQLITE_OK ){ const char *zIn; struct stat buf; pPath->zOut[pPath->nUsed] = 0; zIn = pPath->zOut; if( osLstat(zIn, &buf)!=0 ){ if( errno!=ENOENT ){ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn); } }else if( S_ISLNK(buf.st_mode) ){ ssize_t got; char zLnk[SQLITE_MAX_PATHLEN+2]; if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){ pPath->rc = SQLITE_CANTOPEN_BKPT; return; } got = osReadlink(zIn, zLnk, sizeof(zLnk)-2); if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn); return; } zLnk[got] = 0; if( zLnk[0]=='/' ){ pPath->nUsed = 0; }else{ pPath->nUsed -= nName + 1; } appendAllPathElements(pPath, zLnk); } } #endif } /* ** Append all path elements in zPath to the DbPath under construction. */ static void appendAllPathElements( DbPath *pPath, /* Path under construction, to which to append zName */ const char *zPath /* Path to append to pPath. Is zero-terminated */ ){ int i = 0; int j = 0; do{ while( zPath[i] && zPath[i]!='/' ){ i++; } if( i>j ){ appendOnePathElement(pPath, &zPath[j], i-j); } j = i+1; }while( zPath[i++] ); } /* ** Turn a relative pathname into a full pathname. The relative path ** is stored as a nul-terminated string in the buffer pointed to by ** zPath. ** ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes ** (in this case, MAX_PATHNAME bytes). The full-path is written to ** this buffer before returning. */ static int unixFullPathname( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zPath, /* Possibly relative input path */ int nOut, /* Size of output buffer in bytes */ char *zOut /* Output buffer */ ){ DbPath path; UNUSED_PARAMETER(pVfs); path.rc = 0; path.nUsed = 0; path.nSymlink = 0; path.nOut = nOut; path.zOut = zOut; if( zPath[0]!='/' ){ char zPwd[SQLITE_MAX_PATHLEN+2]; if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){ return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); } appendAllPathElements(&path, zPwd); } appendAllPathElements(&path, zPath); zOut[path.nUsed] = 0; if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT; if( path.nSymlink ) return SQLITE_OK_SYMLINK; return SQLITE_OK; } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ #include static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ UNUSED_PARAMETER(NotUsed); return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); } /* ** SQLite calls this function immediately after a call to unixDlSym() or ** unixDlOpen() fails (returns a null pointer). If a more detailed error ** message is available, it is written to zBufOut. If no error message ** is available, zBufOut is left unmodified and SQLite uses a default ** error message. */ static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ const char *zErr; UNUSED_PARAMETER(NotUsed); unixEnterMutex(); zErr = dlerror(); if( zErr ){ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); } unixLeaveMutex(); } static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ /* ** GCC with -pedantic-errors says that C90 does not allow a void* to be ** cast into a pointer to a function. And yet the library dlsym() routine ** returns a void* which is really a pointer to a function. So how do we ** use dlsym() with -pedantic-errors? ** ** Variable x below is defined to be a pointer to a function taking ** parameters void* and const char* and returning a pointer to a function. ** We initialize x by assigning it a pointer to the dlsym() function. ** (That assignment requires a cast.) Then we call the function that ** x points to. ** ** This work-around is unlikely to work correctly on any system where ** you really cannot cast a function pointer into void*. But then, on the ** other hand, dlsym() will not work on such a system either, so we have ** not really lost anything. */ void (*(*x)(void*,const char*))(void); UNUSED_PARAMETER(NotUsed); x = (void(*(*)(void*,const char*))(void))dlsym; return (*x)(p, zSym); } static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ UNUSED_PARAMETER(NotUsed); dlclose(pHandle); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define unixDlOpen 0 #define unixDlError 0 #define unixDlSym 0 #define unixDlClose 0 #endif /* ** Write nBuf bytes of random data to the supplied buffer zBuf. */ static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ UNUSED_PARAMETER(NotUsed); assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); /* We have to initialize zBuf to prevent valgrind from reporting ** errors. The reports issued by valgrind are incorrect - we would ** prefer that the randomness be increased by making use of the ** uninitialized space in zBuf - but valgrind errors tend to worry ** some users. Rather than argue, it seems easier just to initialize ** the whole array and silence valgrind, even if that means less randomness ** in the random seed. ** ** When testing, initializing zBuf[] to zero is all we do. That means ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); randomnessPid = osGetpid(0); #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) { int fd, got; fd = robust_open("/dev/urandom", O_RDONLY, 0); if( fd<0 ){ time_t t; time(&t); memcpy(zBuf, &t, sizeof(t)); memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid)); assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf ); nBuf = sizeof(t) + sizeof(randomnessPid); }else{ do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); robust_close(0, fd, __LINE__); } } #endif return nBuf; } /* ** Sleep for a little while. Return the amount of time slept. ** The argument is the number of microseconds we want to sleep. ** The return value is the number of microseconds of sleep actually ** requested from the underlying operating system, a number which ** might be greater than or equal to the argument, but not less ** than the argument. */ static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ #if !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP+0 struct timespec sp; sp.tv_sec = microseconds / 1000000; sp.tv_nsec = (microseconds % 1000000) * 1000; /* Almost all modern unix systems support nanosleep(). But if you are ** compiling for one of the rare exceptions, you can use ** -DHAVE_NANOSLEEP=0 (perhaps in conjuction with -DHAVE_USLEEP if ** usleep() is available) in order to bypass the use of nanosleep() */ nanosleep(&sp, NULL); UNUSED_PARAMETER(NotUsed); return microseconds; #elif defined(HAVE_USLEEP) && HAVE_USLEEP if( microseconds>=1000000 ) sleep(microseconds/1000000); if( microseconds%1000000 ) usleep(microseconds%1000000); UNUSED_PARAMETER(NotUsed); return microseconds; #else int seconds = (microseconds+999999)/1000000; sleep(seconds); UNUSED_PARAMETER(NotUsed); return seconds*1000000; #endif } /* ** The following variable, if set to a non-zero value, is interpreted as ** the number of seconds since 1970 and is used to set the result of ** sqlite3OsCurrentTime() during testing. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ #endif /* ** Find the current time (in Universal Coordinated Time). Write into *piNow ** the current time and date as a Julian Day number times 86_400_000. In ** other words, write into *piNow the number of milliseconds since the Julian ** epoch of noon in Greenwich on November 24, 4714 B.C according to the ** proleptic Gregorian calendar. ** ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date ** cannot be found. */ static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; int rc = SQLITE_OK; #if defined(NO_GETTOD) time_t t; time(&t); *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; #elif OS_VXWORKS struct timespec sNow; clock_gettime(CLOCK_REALTIME, &sNow); *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; #else struct timeval sNow; (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; #endif #ifdef SQLITE_TEST if( sqlite3_current_time ){ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; } #endif UNUSED_PARAMETER(NotUsed); return rc; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Find the current time (in Universal Coordinated Time). Write the ** current time and date as a Julian Day number into *prNow and ** return 0. Return 1 if the time and date cannot be found. */ static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ sqlite3_int64 i = 0; int rc; UNUSED_PARAMETER(NotUsed); rc = unixCurrentTimeInt64(0, &i); *prNow = i/86400000.0; return rc; } #else # define unixCurrentTime 0 #endif /* ** The xGetLastError() method is designed to return a better ** low-level error message when operating-system problems come up ** during SQLite operation. Only the integer return code is currently ** used. */ static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ UNUSED_PARAMETER(NotUsed); UNUSED_PARAMETER(NotUsed2); UNUSED_PARAMETER(NotUsed3); return errno; } /* ************************ End of sqlite3_vfs methods *************************** ******************************************************************************/ /****************************************************************************** ************************** Begin Proxy Locking ******************************** ** ** Proxy locking is a "uber-locking-method" in this sense: It uses the ** other locking methods on secondary lock files. Proxy locking is a ** meta-layer over top of the primitive locking implemented above. For ** this reason, the division that implements of proxy locking is deferred ** until late in the file (here) after all of the other I/O methods have ** been defined - so that the primitive locking methods are available ** as services to help with the implementation of proxy locking. ** **** ** ** The default locking schemes in SQLite use byte-range locks on the ** database file to coordinate safe, concurrent access by multiple readers ** and writers [http://sqlite.org/lockingv3.html]. The five file locking ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented ** as POSIX read & write locks over fixed set of locations (via fsctl), ** on AFP and SMB only exclusive byte-range locks are available via fsctl ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected ** address in the shared range is taken for a SHARED lock, the entire ** shared range is taken for an EXCLUSIVE lock): ** ** PENDING_BYTE 0x40000000 ** RESERVED_BYTE 0x40000001 ** SHARED_RANGE 0x40000002 -> 0x40000200 ** ** This works well on the local file system, but shows a nearly 100x ** slowdown in read performance on AFP because the AFP client disables ** the read cache when byte-range locks are present. Enabling the read ** cache exposes a cache coherency problem that is present on all OS X ** supported network file systems. NFS and AFP both observe the ** close-to-open semantics for ensuring cache coherency ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively ** address the requirements for concurrent database access by multiple ** readers and writers ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. ** ** To address the performance and cache coherency issues, proxy file locking ** changes the way database access is controlled by limiting access to a ** single host at a time and moving file locks off of the database file ** and onto a proxy file on the local file system. ** ** ** Using proxy locks ** ----------------- ** ** C APIs ** ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE, ** | ":auto:"); ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE, ** &); ** ** ** SQL pragmas ** ** PRAGMA [database.]lock_proxy_file= | :auto: ** PRAGMA [database.]lock_proxy_file ** ** Specifying ":auto:" means that if there is a conch file with a matching ** host ID in it, the proxy path in the conch file will be used, otherwise ** a proxy path based on the user's temp dir ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the ** actual proxy file name is generated from the name and path of the ** database file. For example: ** ** For database path "/Users/me/foo.db" ** The lock path will be "/sqliteplocks/_Users_me_foo.db:auto:") ** ** Once a lock proxy is configured for a database connection, it can not ** be removed, however it may be switched to a different proxy path via ** the above APIs (assuming the conch file is not being held by another ** connection or process). ** ** ** How proxy locking works ** ----------------------- ** ** Proxy file locking relies primarily on two new supporting files: ** ** * conch file to limit access to the database file to a single host ** at a time ** ** * proxy file to act as a proxy for the advisory locks normally ** taken on the database ** ** The conch file - to use a proxy file, sqlite must first "hold the conch" ** by taking an sqlite-style shared lock on the conch file, reading the ** contents and comparing the host's unique host ID (see below) and lock ** proxy path against the values stored in the conch. The conch file is ** stored in the same directory as the database file and the file name ** is patterned after the database file name as ".-conch". ** If the conch file does not exist, or its contents do not match the ** host ID and/or proxy path, then the lock is escalated to an exclusive ** lock and the conch file contents is updated with the host ID and proxy ** path and the lock is downgraded to a shared lock again. If the conch ** is held by another process (with a shared lock), the exclusive lock ** will fail and SQLITE_BUSY is returned. ** ** The proxy file - a single-byte file used for all advisory file locks ** normally taken on the database file. This allows for safe sharing ** of the database file for multiple readers and writers on the same ** host (the conch ensures that they all use the same local lock file). ** ** Requesting the lock proxy does not immediately take the conch, it is ** only taken when the first request to lock database file is made. ** This matches the semantics of the traditional locking behavior, where ** opening a connection to a database file does not take a lock on it. ** The shared lock and an open file descriptor are maintained until ** the connection to the database is closed. ** ** The proxy file and the lock file are never deleted so they only need ** to be created the first time they are used. ** ** Configuration options ** --------------------- ** ** SQLITE_PREFER_PROXY_LOCKING ** ** Database files accessed on non-local file systems are ** automatically configured for proxy locking, lock files are ** named automatically using the same logic as ** PRAGMA lock_proxy_file=":auto:" ** ** SQLITE_PROXY_DEBUG ** ** Enables the logging of error messages during host id file ** retrieval and creation ** ** LOCKPROXYDIR ** ** Overrides the default directory used for lock proxy files that ** are named automatically via the ":auto:" setting ** ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS ** ** Permissions to use when creating a directory for storing the ** lock proxy files, only used when LOCKPROXYDIR is not set. ** ** ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will ** force proxy locking to be used for every database file opened, and 0 ** will force automatic proxy locking to be disabled for all database ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). */ /* ** Proxy locking is only available on MacOSX */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** The proxyLockingContext has the path and file structures for the remote ** and local proxy files in it */ typedef struct proxyLockingContext proxyLockingContext; struct proxyLockingContext { unixFile *conchFile; /* Open conch file */ char *conchFilePath; /* Name of the conch file */ unixFile *lockProxy; /* Open proxy lock file */ char *lockProxyPath; /* Name of the proxy lock file */ char *dbPath; /* Name of the open file */ int conchHeld; /* 1 if the conch is held, -1 if lockless */ int nFails; /* Number of conch taking failures */ void *oldLockingContext; /* Original lockingcontext to restore on close */ sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ }; /* ** The proxy lock file path for the database at dbPath is written into lPath, ** which must point to valid, writable memory large enough for a maxLen length ** file path. */ static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ int len; int dbLen; int i; #ifdef LOCKPROXYDIR len = strlcpy(lPath, LOCKPROXYDIR, maxLen); #else # ifdef _CS_DARWIN_USER_TEMP_DIR { if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", lPath, errno, osGetpid(0))); return SQLITE_IOERR_LOCK; } len = strlcat(lPath, "sqliteplocks", maxLen); } # else len = strlcpy(lPath, "/tmp/", maxLen); # endif #endif if( lPath[len-1]!='/' ){ len = strlcat(lPath, "/", maxLen); } /* transform the db path to a unique cache name */ dbLen = (int)strlen(dbPath); for( i=0; i 0) ){ /* only mkdir if leaf dir != "." or "/" or ".." */ if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ buf[i]='\0'; if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ int err=errno; if( err!=EEXIST ) { OSTRACE(("CREATELOCKPATH FAILED creating %s, " "'%s' proxy lock path=%s pid=%d\n", buf, strerror(err), lockPath, osGetpid(0))); return err; } } } start=i+1; } buf[i] = lockPath[i]; } OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0))); return 0; } /* ** Create a new VFS file descriptor (stored in memory obtained from ** sqlite3_malloc) and open the file named "path" in the file descriptor. ** ** The caller is responsible not only for closing the file descriptor ** but also for freeing the memory associated with the file descriptor. */ static int proxyCreateUnixFile( const char *path, /* path for the new unixFile */ unixFile **ppFile, /* unixFile created and returned by ref */ int islockfile /* if non zero missing dirs will be created */ ) { int fd = -1; unixFile *pNew; int rc = SQLITE_OK; int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW; sqlite3_vfs dummyVfs; int terrno = 0; UnixUnusedFd *pUnused = NULL; /* 1. first try to open/create the file ** 2. if that fails, and this is a lock file (not-conch), try creating ** the parent directories and then try again. ** 3. if that fails, try to open the file read-only ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file */ pUnused = findReusableFd(path, openFlags); if( pUnused ){ fd = pUnused->fd; }else{ pUnused = sqlite3_malloc64(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM_BKPT; } } if( fd<0 ){ fd = robust_open(path, openFlags, 0); terrno = errno; if( fd<0 && errno==ENOENT && islockfile ){ if( proxyCreateLockPath(path) == SQLITE_OK ){ fd = robust_open(path, openFlags, 0); } } } if( fd<0 ){ openFlags = O_RDONLY | O_NOFOLLOW; fd = robust_open(path, openFlags, 0); terrno = errno; } if( fd<0 ){ if( islockfile ){ return SQLITE_BUSY; } switch (terrno) { case EACCES: return SQLITE_PERM; case EIO: return SQLITE_IOERR_LOCK; /* even though it is the conch */ default: return SQLITE_CANTOPEN_BKPT; } } pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew)); if( pNew==NULL ){ rc = SQLITE_NOMEM_BKPT; goto end_create_proxy; } memset(pNew, 0, sizeof(unixFile)); pNew->openFlags = openFlags; memset(&dummyVfs, 0, sizeof(dummyVfs)); dummyVfs.pAppData = (void*)&autolockIoFinder; dummyVfs.zName = "dummy"; pUnused->fd = fd; pUnused->flags = openFlags; pNew->pPreallocatedUnused = pUnused; rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); if( rc==SQLITE_OK ){ *ppFile = pNew; return SQLITE_OK; } end_create_proxy: robust_close(pNew, fd, __LINE__); sqlite3_free(pNew); sqlite3_free(pUnused); return rc; } #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ SQLITE_API int sqlite3_hostid_num = 0; #endif #define PROXY_HOSTIDLEN 16 /* conch file host id length */ #if HAVE_GETHOSTUUID /* Not always defined in the headers as it ought to be */ extern int gethostuuid(uuid_t id, const struct timespec *wait); #endif /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN ** bytes of writable memory. */ static int proxyGetHostID(unsigned char *pHostID, int *pError){ assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); memset(pHostID, 0, PROXY_HOSTIDLEN); #if HAVE_GETHOSTUUID { struct timespec timeout = {1, 0}; /* 1 sec timeout */ if( gethostuuid(pHostID, &timeout) ){ int err = errno; if( pError ){ *pError = err; } return SQLITE_IOERR; } } #else UNUSED_PARAMETER(pError); #endif #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ if( sqlite3_hostid_num != 0){ pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); } #endif return SQLITE_OK; } /* The conch file contains the header, host id and lock file path */ #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ #define PROXY_HEADERLEN 1 /* conch file header length */ #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) /* ** Takes an open conch file, copies the contents to a new path and then moves ** it back. The newly created file's file descriptor is assigned to the ** conch file structure and finally the original conch file descriptor is ** closed. Returns zero if successful. */ static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; unixFile *conchFile = pCtx->conchFile; char tPath[MAXPATHLEN]; char buf[PROXY_MAXCONCHLEN]; char *cPath = pCtx->conchFilePath; size_t readLen = 0; size_t pathLen = 0; char errmsg[64] = ""; int fd = -1; int rc = -1; UNUSED_PARAMETER(myHostID); /* create a new path by replace the trailing '-conch' with '-break' */ pathLen = strlcpy(tPath, cPath, MAXPATHLEN); if( pathLen>MAXPATHLEN || pathLen<6 || (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); goto end_breaklock; } /* read the conch content */ readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); if( readLenh, __LINE__); conchFile->h = fd; conchFile->openFlags = O_RDWR | O_CREAT; end_breaklock: if( rc ){ if( fd>=0 ){ osUnlink(tPath); robust_close(pFile, fd, __LINE__); } fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); } return rc; } /* Take the requested lock on the conch file and break a stale lock if the ** host id matches. */ static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; unixFile *conchFile = pCtx->conchFile; int rc = SQLITE_OK; int nTries = 0; struct timespec conchModTime; memset(&conchModTime, 0, sizeof(conchModTime)); do { rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); nTries ++; if( rc==SQLITE_BUSY ){ /* If the lock failed (busy): * 1st try: get the mod time of the conch, wait 0.5s and try again. * 2nd try: fail if the mod time changed or host id is different, wait * 10 sec and try again * 3rd try: break the lock unless the mod time has changed. */ struct stat buf; if( osFstat(conchFile->h, &buf) ){ storeLastErrno(pFile, errno); return SQLITE_IOERR_LOCK; } if( nTries==1 ){ conchModTime = buf.st_mtimespec; unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/ continue; } assert( nTries>1 ); if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ return SQLITE_BUSY; } if( nTries==2 ){ char tBuf[PROXY_MAXCONCHLEN]; int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); if( len<0 ){ storeLastErrno(pFile, errno); return SQLITE_IOERR_LOCK; } if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ /* don't break the lock if the host id doesn't match */ if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ return SQLITE_BUSY; } }else{ /* don't break the lock on short read or a version mismatch */ return SQLITE_BUSY; } unixSleep(0,10000000); /* wait 10 sec and try the lock again */ continue; } assert( nTries==3 ); if( 0==proxyBreakConchLock(pFile, myHostID) ){ rc = SQLITE_OK; if( lockType==EXCLUSIVE_LOCK ){ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); } if( !rc ){ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); } } } } while( rc==SQLITE_BUSY && nTries<3 ); return rc; } /* Takes the conch by taking a shared lock and read the contents conch, if ** lockPath is non-NULL, the host ID and lock file path must match. A NULL ** lockPath means that the lockPath in the conch file will be used if the ** host IDs match, or a new lock path will be generated automatically ** and written to the conch file. */ static int proxyTakeConch(unixFile *pFile){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld!=0 ){ return SQLITE_OK; }else{ unixFile *conchFile = pCtx->conchFile; uuid_t myHostID; int pError = 0; char readBuf[PROXY_MAXCONCHLEN]; char lockPath[MAXPATHLEN]; char *tempLockPath = NULL; int rc = SQLITE_OK; int createConch = 0; int hostIdMatch = 0; int readLen = 0; int tryOldLockPath = 0; int forceNewLockPath = 0; OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid(0))); rc = proxyGetHostID(myHostID, &pError); if( (rc&0xff)==SQLITE_IOERR ){ storeLastErrno(pFile, pError); goto end_takeconch; } rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); if( rc!=SQLITE_OK ){ goto end_takeconch; } /* read the existing conch file */ readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); if( readLen<0 ){ /* I/O error: lastErrno set by seekAndRead */ storeLastErrno(pFile, conchFile->lastErrno); rc = SQLITE_IOERR_READ; goto end_takeconch; }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || readBuf[0]!=(char)PROXY_CONCHVERSION ){ /* a short read or version format mismatch means we need to create a new ** conch file. */ createConch = 1; } /* if the host id matches and the lock path already exists in the conch ** we'll try to use the path there, if we can't open that path, we'll ** retry with a new auto-generated path */ do { /* in case we need to try again for an :auto: named lock file */ if( !createConch && !forceNewLockPath ){ hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); /* if the conch has data compare the contents */ if( !pCtx->lockProxyPath ){ /* for auto-named local lock file, just check the host ID and we'll ** use the local lock file path that's already in there */ if( hostIdMatch ){ size_t pathLen = (readLen - PROXY_PATHINDEX); if( pathLen>=MAXPATHLEN ){ pathLen=MAXPATHLEN-1; } memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); lockPath[pathLen] = 0; tempLockPath = lockPath; tryOldLockPath = 1; /* create a copy of the lock path if the conch is taken */ goto end_takeconch; } }else if( hostIdMatch && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], readLen-PROXY_PATHINDEX) ){ /* conch host and lock path match */ goto end_takeconch; } } /* if the conch isn't writable and doesn't match, we can't take it */ if( (conchFile->openFlags&O_RDWR) == 0 ){ rc = SQLITE_BUSY; goto end_takeconch; } /* either the conch didn't match or we need to create a new one */ if( !pCtx->lockProxyPath ){ proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); tempLockPath = lockPath; /* create a copy of the lock path _only_ if the conch is taken */ } /* update conch with host and path (this will fail if other process ** has a shared lock already), if the host id matches, use the big ** stick. */ futimes(conchFile->h, NULL); if( hostIdMatch && !createConch ){ if( conchFile->pInode && conchFile->pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; } else { rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); } }else{ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); } if( rc==SQLITE_OK ){ char writeBuffer[PROXY_MAXCONCHLEN]; int writeSize = 0; writeBuffer[0] = (char)PROXY_CONCHVERSION; memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); if( pCtx->lockProxyPath!=NULL ){ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); }else{ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); } writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); robust_ftruncate(conchFile->h, writeSize); rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); full_fsync(conchFile->h,0,0); /* If we created a new conch file (not just updated the contents of a ** valid conch file), try to match the permissions of the database */ if( rc==SQLITE_OK && createConch ){ struct stat buf; int err = osFstat(pFile->h, &buf); if( err==0 ){ mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | S_IROTH|S_IWOTH); /* try to match the database file R/W permissions, ignore failure */ #ifndef SQLITE_PROXY_DEBUG osFchmod(conchFile->h, cmode); #else do{ rc = osFchmod(conchFile->h, cmode); }while( rc==(-1) && errno==EINTR ); if( rc!=0 ){ int code = errno; fprintf(stderr, "fchmod %o FAILED with %d %s\n", cmode, code, strerror(code)); } else { fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); } }else{ int code = errno; fprintf(stderr, "STAT FAILED[%d] with %d %s\n", err, code, strerror(code)); #endif } } } conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); end_takeconch: OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); if( rc==SQLITE_OK && pFile->openFlags ){ int fd; if( pFile->h>=0 ){ robust_close(pFile, pFile->h, __LINE__); } pFile->h = -1; fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); if( fd>=0 ){ pFile->h = fd; }else{ rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called during locking */ } } if( rc==SQLITE_OK && !pCtx->lockProxy ){ char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ /* we couldn't create the proxy lock file with the old lock file path ** so try again via auto-naming */ forceNewLockPath = 1; tryOldLockPath = 0; continue; /* go back to the do {} while start point, try again */ } } if( rc==SQLITE_OK ){ /* Need to make a copy of path if we extracted the value ** from the conch file or the path was allocated on the stack */ if( tempLockPath ){ pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); if( !pCtx->lockProxyPath ){ rc = SQLITE_NOMEM_BKPT; } } } if( rc==SQLITE_OK ){ pCtx->conchHeld = 1; if( pCtx->lockProxy->pMethod == &afpIoMethods ){ afpLockingContext *afpCtx; afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; afpCtx->dbPath = pCtx->lockProxyPath; } } else { conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); } OSTRACE(("TAKECONCH %d %s\n", conchFile->h, rc==SQLITE_OK?"ok":"failed")); return rc; } while (1); /* in case we need to retry the :auto: lock file - ** we should never get here except via the 'continue' call. */ } } /* ** If pFile holds a lock on a conch file, then release that lock. */ static int proxyReleaseConch(unixFile *pFile){ int rc = SQLITE_OK; /* Subroutine return code */ proxyLockingContext *pCtx; /* The locking context for the proxy lock */ unixFile *conchFile; /* Name of the conch file */ pCtx = (proxyLockingContext *)pFile->lockingContext; conchFile = pCtx->conchFile; OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid(0))); if( pCtx->conchHeld>0 ){ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); } pCtx->conchHeld = 0; OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; } /* ** Given the name of a database file, compute the name of its conch file. ** Store the conch filename in memory obtained from sqlite3_malloc64(). ** Make *pConchPath point to the new name. Return SQLITE_OK on success ** or SQLITE_NOMEM if unable to obtain memory. ** ** The caller is responsible for ensuring that the allocated memory ** space is eventually freed. ** ** *pConchPath is set to NULL if a memory allocation error occurs. */ static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ int i; /* Loop counter */ int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ char *conchPath; /* buffer in which to construct conch name */ /* Allocate space for the conch filename and initialize the name to ** the name of the original database file. */ *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8); if( conchPath==0 ){ return SQLITE_NOMEM_BKPT; } memcpy(conchPath, dbPath, len+1); /* now insert a "." before the last / character */ for( i=(len-1); i>=0; i-- ){ if( conchPath[i]=='/' ){ i++; break; } } conchPath[i]='.'; while ( ilockingContext; char *oldPath = pCtx->lockProxyPath; int rc = SQLITE_OK; if( pFile->eFileLock!=NO_LOCK ){ return SQLITE_BUSY; } /* nothing to do if the path is NULL, :auto: or matches the existing path */ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ return SQLITE_OK; }else{ unixFile *lockProxy = pCtx->lockProxy; pCtx->lockProxy=NULL; pCtx->conchHeld = 0; if( lockProxy!=NULL ){ rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); if( rc ) return rc; sqlite3_free(lockProxy); } sqlite3_free(oldPath); pCtx->lockProxyPath = sqlite3DbStrDup(0, path); } return rc; } /* ** pFile is a file that has been opened by a prior xOpen call. dbPath ** is a string buffer at least MAXPATHLEN+1 characters in size. ** ** This routine find the filename associated with pFile and writes it ** int dbPath. */ static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ #if defined(__APPLE__) if( pFile->pMethod == &afpIoMethods ){ /* afp style keeps a reference to the db path in the filePath field ** of the struct */ assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); } else #endif if( pFile->pMethod == &dotlockIoMethods ){ /* dot lock style uses the locking context to store the dot lock ** file path */ int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); memcpy(dbPath, (char *)pFile->lockingContext, len + 1); }else{ /* all other styles use the locking context to store the db file path */ assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); } return SQLITE_OK; } /* ** Takes an already filled in unix file and alters it so all file locking ** will be performed on the local proxy lock file. The following fields ** are preserved in the locking context so that they can be restored and ** the unix structure properly cleaned up at close time: ** ->lockingContext ** ->pMethod */ static int proxyTransformUnixFile(unixFile *pFile, const char *path) { proxyLockingContext *pCtx; char dbPath[MAXPATHLEN+1]; /* Name of the database file */ char *lockPath=NULL; int rc = SQLITE_OK; if( pFile->eFileLock!=NO_LOCK ){ return SQLITE_BUSY; } proxyGetDbPathForUnixFile(pFile, dbPath); if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ lockPath=NULL; }else{ lockPath=(char *)path; } OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, (lockPath ? lockPath : ":auto:"), osGetpid(0))); pCtx = sqlite3_malloc64( sizeof(*pCtx) ); if( pCtx==0 ){ return SQLITE_NOMEM_BKPT; } memset(pCtx, 0, sizeof(*pCtx)); rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); if( rc==SQLITE_OK ){ rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and ** (c) the file system is read-only, then enable no-locking access. ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts ** that openFlags will have only one of O_RDONLY or O_RDWR. */ struct statfs fsInfo; struct stat conchInfo; int goLockless = 0; if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { int err = errno; if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; } } if( goLockless ){ pCtx->conchHeld = -1; /* read only FS/ lockless */ rc = SQLITE_OK; } } } if( rc==SQLITE_OK && lockPath ){ pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); } if( rc==SQLITE_OK ){ pCtx->dbPath = sqlite3DbStrDup(0, dbPath); if( pCtx->dbPath==NULL ){ rc = SQLITE_NOMEM_BKPT; } } if( rc==SQLITE_OK ){ /* all memory is allocated, proxys are created and assigned, ** switch the locking context and pMethod then return. */ pCtx->oldLockingContext = pFile->lockingContext; pFile->lockingContext = pCtx; pCtx->pOldMethod = pFile->pMethod; pFile->pMethod = &proxyIoMethods; }else{ if( pCtx->conchFile ){ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); sqlite3_free(pCtx->conchFile); } sqlite3DbFree(0, pCtx->lockProxyPath); sqlite3_free(pCtx->conchFilePath); sqlite3_free(pCtx); } OSTRACE(("TRANSPROXY %d %s\n", pFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; } /* ** This routine handles sqlite3_file_control() calls that are specific ** to proxy locking. */ static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_GET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; if( pFile->pMethod == &proxyIoMethods ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; proxyTakeConch(pFile); if( pCtx->lockProxyPath ){ *(const char **)pArg = pCtx->lockProxyPath; }else{ *(const char **)pArg = ":auto: (not held)"; } } else { *(const char **)pArg = NULL; } return SQLITE_OK; } case SQLITE_FCNTL_SET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; int rc = SQLITE_OK; int isProxyStyle = (pFile->pMethod == &proxyIoMethods); if( pArg==NULL || (const char *)pArg==0 ){ if( isProxyStyle ){ /* turn off proxy locking - not supported. If support is added for ** switching proxy locking mode off then it will need to fail if ** the journal mode is WAL mode. */ rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; }else{ /* turn off proxy locking - already off - NOOP */ rc = SQLITE_OK; } }else{ const char *proxyPath = (const char *)pArg; if( isProxyStyle ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; if( !strcmp(pArg, ":auto:") || (pCtx->lockProxyPath && !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) ){ rc = SQLITE_OK; }else{ rc = switchLockProxyPath(pFile, proxyPath); } }else{ /* turn on proxy file locking */ rc = proxyTransformUnixFile(pFile, proxyPath); } } return rc; } default: { assert( 0 ); /* The call assures that only valid opcodes are sent */ } } /*NOTREACHED*/ assert(0); return SQLITE_ERROR; } /* ** Within this division (the proxying locking implementation) the procedures ** above this point are all utilities. The lock-related methods of the ** proxy-locking sqlite3_io_method object follow. */ /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { unixFile *pFile = (unixFile*)id; int rc = proxyTakeConch(pFile); if( rc==SQLITE_OK ){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld>0 ){ unixFile *proxy = pCtx->lockProxy; return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); }else{ /* conchHeld < 0 is lockless */ pResOut=0; } } return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int proxyLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; int rc = proxyTakeConch(pFile); if( rc==SQLITE_OK ){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld>0 ){ unixFile *proxy = pCtx->lockProxy; rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); pFile->eFileLock = proxy->eFileLock; }else{ /* conchHeld < 0 is lockless */ } } return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int proxyUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; int rc = proxyTakeConch(pFile); if( rc==SQLITE_OK ){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld>0 ){ unixFile *proxy = pCtx->lockProxy; rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); pFile->eFileLock = proxy->eFileLock; }else{ /* conchHeld < 0 is lockless */ } } return rc; } /* ** Close a file that uses proxy locks. */ static int proxyClose(sqlite3_file *id) { if( ALWAYS(id) ){ unixFile *pFile = (unixFile*)id; proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; unixFile *lockProxy = pCtx->lockProxy; unixFile *conchFile = pCtx->conchFile; int rc = SQLITE_OK; if( lockProxy ){ rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); if( rc ) return rc; rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); if( rc ) return rc; sqlite3_free(lockProxy); pCtx->lockProxy = 0; } if( conchFile ){ if( pCtx->conchHeld ){ rc = proxyReleaseConch(pFile); if( rc ) return rc; } rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); if( rc ) return rc; sqlite3_free(conchFile); } sqlite3DbFree(0, pCtx->lockProxyPath); sqlite3_free(pCtx->conchFilePath); sqlite3DbFree(0, pCtx->dbPath); /* restore the original locking context and pMethod then close it */ pFile->lockingContext = pCtx->oldLockingContext; pFile->pMethod = pCtx->pOldMethod; sqlite3_free(pCtx); return pFile->pMethod->xClose(id); } return SQLITE_OK; } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The proxy locking style is intended for use with AFP filesystems. ** And since AFP is only supported on MacOSX, the proxy locking is also ** restricted to MacOSX. ** ** ******************* End of the proxy lock implementation ********************** ******************************************************************************/ /* ** Initialize the operating system interface. ** ** This routine registers all VFS implementations for unix-like operating ** systems. This routine, and the sqlite3_os_end() routine that follows, ** should be the only routines in this file that are visible from other ** files. ** ** This routine is called once during SQLite initialization and by a ** single thread. The memory allocation and mutex subsystems have not ** necessarily been initialized when this routine is called, and so they ** should not be used. */ SQLITE_API int sqlite3_os_init(void){ /* ** The following macro defines an initializer for an sqlite3_vfs object. ** The name of the VFS is NAME. The pAppData is a pointer to a pointer ** to the "finder" function. (pAppData is a pointer to a pointer because ** silly C90 rules prohibit a void* from being cast to a function pointer ** and so we have to go through the intermediate pointer to avoid problems ** when compiling with -pedantic-errors on GCC.) ** ** The FINDER parameter to this macro is the name of the pointer to the ** finder-function. The finder-function returns a pointer to the ** sqlite_io_methods object that implements the desired locking ** behaviors. See the division above that contains the IOMETHODS ** macro for addition information on finder-functions. ** ** Most finders simply return a pointer to a fixed sqlite3_io_methods ** object. But the "autolockIoFinder" available on MacOSX does a little ** more than that; it looks at the filesystem type that hosts the ** database file and tries to choose an locking method appropriate for ** that filesystem time. */ #define UNIXVFS(VFSNAME, FINDER) { \ 3, /* iVersion */ \ sizeof(unixFile), /* szOsFile */ \ MAX_PATHNAME, /* mxPathname */ \ 0, /* pNext */ \ VFSNAME, /* zName */ \ (void*)&FINDER, /* pAppData */ \ unixOpen, /* xOpen */ \ unixDelete, /* xDelete */ \ unixAccess, /* xAccess */ \ unixFullPathname, /* xFullPathname */ \ unixDlOpen, /* xDlOpen */ \ unixDlError, /* xDlError */ \ unixDlSym, /* xDlSym */ \ unixDlClose, /* xDlClose */ \ unixRandomness, /* xRandomness */ \ unixSleep, /* xSleep */ \ unixCurrentTime, /* xCurrentTime */ \ unixGetLastError, /* xGetLastError */ \ unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ unixSetSystemCall, /* xSetSystemCall */ \ unixGetSystemCall, /* xGetSystemCall */ \ unixNextSystemCall, /* xNextSystemCall */ \ } /* ** All default VFSes for unix are contained in the following array. ** ** Note that the sqlite3_vfs.pNext field of the VFS object is modified ** by the SQLite core when the VFS is registered. So the following ** array cannot be const. */ static sqlite3_vfs aVfs[] = { #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) UNIXVFS("unix", autolockIoFinder ), #elif OS_VXWORKS UNIXVFS("unix", vxworksIoFinder ), #else UNIXVFS("unix", posixIoFinder ), #endif UNIXVFS("unix-none", nolockIoFinder ), UNIXVFS("unix-dotfile", dotlockIoFinder ), UNIXVFS("unix-excl", posixIoFinder ), #if OS_VXWORKS UNIXVFS("unix-namedsem", semIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS UNIXVFS("unix-posix", posixIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE UNIXVFS("unix-flock", flockIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) UNIXVFS("unix-afp", afpIoFinder ), UNIXVFS("unix-nfs", nfsIoFinder ), UNIXVFS("unix-proxy", proxyIoFinder ), #endif }; unsigned int i; /* Loop counter */ /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==29 ); /* Register all VFSes defined in the aVfs[] array */ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ #ifdef SQLITE_DEFAULT_UNIX_VFS sqlite3_vfs_register(&aVfs[i], 0==strcmp(aVfs[i].zName,SQLITE_DEFAULT_UNIX_VFS)); #else sqlite3_vfs_register(&aVfs[i], i==0); #endif } #ifdef SQLITE_OS_KV_OPTIONAL sqlite3KvvfsInit(); #endif unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #ifndef SQLITE_OMIT_WAL /* Validate lock assumptions */ assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */ assert( UNIX_SHM_BASE==120 ); /* Start of locking area */ /* Locks: ** WRITE UNIX_SHM_BASE 120 ** CKPT UNIX_SHM_BASE+1 121 ** RECOVER UNIX_SHM_BASE+2 122 ** READ-0 UNIX_SHM_BASE+3 123 ** READ-1 UNIX_SHM_BASE+4 124 ** READ-2 UNIX_SHM_BASE+5 125 ** READ-3 UNIX_SHM_BASE+6 126 ** READ-4 UNIX_SHM_BASE+7 127 ** DMS UNIX_SHM_BASE+8 128 */ assert( UNIX_SHM_DMS==128 ); /* Byte offset of the deadman-switch */ #endif /* Initialize temp file dir array. */ unixTempFileInit(); return SQLITE_OK; } /* ** Shutdown the operating system interface. ** ** Some operating systems might need to do some cleanup in this routine, ** to release dynamically allocated objects. But not on unix. ** This routine is a no-op for unix. */ SQLITE_API int sqlite3_os_end(void){ unixBigLock = 0; return SQLITE_OK; } #endif /* SQLITE_OS_UNIX */ /************** End of os_unix.c *********************************************/ /************** Begin file os_win.c ******************************************/ /* ** 2004 May 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to Windows. */ /* #include "sqliteInt.h" */ #if SQLITE_OS_WIN /* This file is used for Windows only */ /* ** Include code that is common to all os_*.c files */ /* #include "os_common.h" */ /* ** Include the header file for the Windows VFS. */ /* #include "os_win.h" */ /* ** Compiling and using WAL mode requires several APIs that are only ** available in Windows platforms based on the NT kernel. */ #if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL) # error "WAL mode requires support from the Windows NT kernel, compile\ with SQLITE_OMIT_WAL." #endif #if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0 # error "Memory mapped files require support from the Windows NT kernel,\ compile with SQLITE_MAX_MMAP_SIZE=0." #endif /* ** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions ** based on the sub-platform)? */ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI) # define SQLITE_WIN32_HAS_ANSI #endif /* ** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions ** based on the sub-platform)? */ #if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \ !defined(SQLITE_WIN32_NO_WIDE) # define SQLITE_WIN32_HAS_WIDE #endif /* ** Make sure at least one set of Win32 APIs is available. */ #if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE) # error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\ must be defined." #endif /* ** Define the required Windows SDK version constants if they are not ** already available. */ #ifndef NTDDI_WIN8 # define NTDDI_WIN8 0x06020000 #endif #ifndef NTDDI_WINBLUE # define NTDDI_WINBLUE 0x06030000 #endif #ifndef NTDDI_WINTHRESHOLD # define NTDDI_WINTHRESHOLD 0x06040000 #endif /* ** Check to see if the GetVersionEx[AW] functions are deprecated on the ** target system. GetVersionEx was first deprecated in Win8.1. */ #ifndef SQLITE_WIN32_GETVERSIONEX # if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE # define SQLITE_WIN32_GETVERSIONEX 0 /* GetVersionEx() is deprecated */ # else # define SQLITE_WIN32_GETVERSIONEX 1 /* GetVersionEx() is current */ # endif #endif /* ** Check to see if the CreateFileMappingA function is supported on the ** target system. It is unavailable when using "mincore.lib" on Win10. ** When compiling for Windows 10, always assume "mincore.lib" is in use. */ #ifndef SQLITE_WIN32_CREATEFILEMAPPINGA # if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINTHRESHOLD # define SQLITE_WIN32_CREATEFILEMAPPINGA 0 # else # define SQLITE_WIN32_CREATEFILEMAPPINGA 1 # endif #endif /* ** This constant should already be defined (in the "WinDef.h" SDK file). */ #ifndef MAX_PATH # define MAX_PATH (260) #endif /* ** Maximum pathname length (in chars) for Win32. This should normally be ** MAX_PATH. */ #ifndef SQLITE_WIN32_MAX_PATH_CHARS # define SQLITE_WIN32_MAX_PATH_CHARS (MAX_PATH) #endif /* ** This constant should already be defined (in the "WinNT.h" SDK file). */ #ifndef UNICODE_STRING_MAX_CHARS # define UNICODE_STRING_MAX_CHARS (32767) #endif /* ** Maximum pathname length (in chars) for WinNT. This should normally be ** UNICODE_STRING_MAX_CHARS. */ #ifndef SQLITE_WINNT_MAX_PATH_CHARS # define SQLITE_WINNT_MAX_PATH_CHARS (UNICODE_STRING_MAX_CHARS) #endif /* ** Maximum pathname length (in bytes) for Win32. The MAX_PATH macro is in ** characters, so we allocate 4 bytes per character assuming worst-case of ** 4-bytes-per-character for UTF8. */ #ifndef SQLITE_WIN32_MAX_PATH_BYTES # define SQLITE_WIN32_MAX_PATH_BYTES (SQLITE_WIN32_MAX_PATH_CHARS*4) #endif /* ** Maximum pathname length (in bytes) for WinNT. This should normally be ** UNICODE_STRING_MAX_CHARS * sizeof(WCHAR). */ #ifndef SQLITE_WINNT_MAX_PATH_BYTES # define SQLITE_WINNT_MAX_PATH_BYTES \ (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS) #endif /* ** Maximum error message length (in chars) for WinRT. */ #ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS # define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024) #endif /* ** Returns non-zero if the character should be treated as a directory ** separator. */ #ifndef winIsDirSep # define winIsDirSep(a) (((a) == '/') || ((a) == '\\')) #endif /* ** This macro is used when a local variable is set to a value that is ** [sometimes] not used by the code (e.g. via conditional compilation). */ #ifndef UNUSED_VARIABLE_VALUE # define UNUSED_VARIABLE_VALUE(x) (void)(x) #endif /* ** Returns the character that should be used as the directory separator. */ #ifndef winGetDirSep # define winGetDirSep() '\\' #endif /* ** Do we need to manually define the Win32 file mapping APIs for use with WAL ** mode or memory mapped files (e.g. these APIs are available in the Windows ** CE SDK; however, they are not present in the header file)? */ #if SQLITE_WIN32_FILEMAPPING_API && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) /* ** Two of the file mapping APIs are different under WinRT. Figure out which ** set we need. */ #if SQLITE_OS_WINRT WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \ LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR); WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T); #else #if defined(SQLITE_WIN32_HAS_ANSI) WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \ DWORD, DWORD, DWORD, LPCSTR); #endif /* defined(SQLITE_WIN32_HAS_ANSI) */ #if defined(SQLITE_WIN32_HAS_WIDE) WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \ DWORD, DWORD, DWORD, LPCWSTR); #endif /* defined(SQLITE_WIN32_HAS_WIDE) */ WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); #endif /* SQLITE_OS_WINRT */ /* ** These file mapping APIs are common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T); WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); #endif /* SQLITE_WIN32_FILEMAPPING_API */ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_FILE_ATTRIBUTES # define INVALID_FILE_ATTRIBUTES ((DWORD)-1) #endif #ifndef FILE_FLAG_MASK # define FILE_FLAG_MASK (0xFF3C0000) #endif #ifndef FILE_ATTRIBUTE_MASK # define FILE_ATTRIBUTE_MASK (0x0003FFF7) #endif #ifndef SQLITE_OMIT_WAL /* Forward references to structures used for WAL */ typedef struct winShm winShm; /* A connection to shared-memory */ typedef struct winShmNode winShmNode; /* A region of shared-memory */ #endif /* ** WinCE lacks native support for file locking so we have to fake it ** with some code of our own. */ #if SQLITE_OS_WINCE typedef struct winceLock { int nReaders; /* Number of reader locks obtained */ BOOL bPending; /* Indicates a pending lock has been obtained */ BOOL bReserved; /* Indicates a reserved lock has been obtained */ BOOL bExclusive; /* Indicates an exclusive lock has been obtained */ } winceLock; #endif /* ** The winFile structure is a subclass of sqlite3_file* specific to the win32 ** portability layer. */ typedef struct winFile winFile; struct winFile { const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ u8 ctrlFlags; /* Flags. See WINFILE_* below */ DWORD lastErrno; /* The Windows errno from the last I/O error */ #ifndef SQLITE_OMIT_WAL winShm *pShm; /* Instance of shared memory on this file */ #endif const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE LPWSTR zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif #if SQLITE_MAX_MMAP_SIZE>0 int nFetchOut; /* Number of outstanding xFetch references */ HANDLE hMap; /* Handle for accessing memory mapping */ void *pMapRegion; /* Area memory mapped */ sqlite3_int64 mmapSize; /* Size of mapped region */ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ #endif }; /* ** The winVfsAppData structure is used for the pAppData member for all of the ** Win32 VFS variants. */ typedef struct winVfsAppData winVfsAppData; struct winVfsAppData { const sqlite3_io_methods *pMethod; /* The file I/O methods to use. */ void *pAppData; /* The extra pAppData, if any. */ BOOL bNoLock; /* Non-zero if locking is disabled. */ }; /* ** Allowed values for winFile.ctrlFlags */ #define WINFILE_RDONLY 0x02 /* Connection is read only */ #define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ /* * The size of the buffer used by sqlite3_win32_write_debug(). */ #ifndef SQLITE_WIN32_DBG_BUF_SIZE # define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD))) #endif /* * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the * various Win32 API heap functions instead of our own. */ #ifdef SQLITE_WIN32_MALLOC /* * If this is non-zero, an isolated heap will be created by the native Win32 * allocator subsystem; otherwise, the default process heap will be used. This * setting has no effect when compiling for WinRT. By default, this is enabled * and an isolated heap will be created to store all allocated data. * ****************************************************************************** * WARNING: It is important to note that when this setting is non-zero and the * winMemShutdown function is called (e.g. by the sqlite3_shutdown * function), all data that was allocated using the isolated heap will * be freed immediately and any attempt to access any of that freed * data will almost certainly result in an immediate access violation. ****************************************************************************** */ #ifndef SQLITE_WIN32_HEAP_CREATE # define SQLITE_WIN32_HEAP_CREATE (TRUE) #endif /* * This is the maximum possible initial size of the Win32-specific heap, in * bytes. */ #ifndef SQLITE_WIN32_HEAP_MAX_INIT_SIZE # define SQLITE_WIN32_HEAP_MAX_INIT_SIZE (4294967295U) #endif /* * This is the extra space for the initial size of the Win32-specific heap, * in bytes. This value may be zero. */ #ifndef SQLITE_WIN32_HEAP_INIT_EXTRA # define SQLITE_WIN32_HEAP_INIT_EXTRA (4194304) #endif /* * Calculate the maximum legal cache size, in pages, based on the maximum * possible initial heap size and the default page size, setting aside the * needed extra space. */ #ifndef SQLITE_WIN32_MAX_CACHE_SIZE # define SQLITE_WIN32_MAX_CACHE_SIZE (((SQLITE_WIN32_HEAP_MAX_INIT_SIZE) - \ (SQLITE_WIN32_HEAP_INIT_EXTRA)) / \ (SQLITE_DEFAULT_PAGE_SIZE)) #endif /* * This is cache size used in the calculation of the initial size of the * Win32-specific heap. It cannot be negative. */ #ifndef SQLITE_WIN32_CACHE_SIZE # if SQLITE_DEFAULT_CACHE_SIZE>=0 # define SQLITE_WIN32_CACHE_SIZE (SQLITE_DEFAULT_CACHE_SIZE) # else # define SQLITE_WIN32_CACHE_SIZE (-(SQLITE_DEFAULT_CACHE_SIZE)) # endif #endif /* * Make sure that the calculated cache size, in pages, cannot cause the * initial size of the Win32-specific heap to exceed the maximum amount * of memory that can be specified in the call to HeapCreate. */ #if SQLITE_WIN32_CACHE_SIZE>SQLITE_WIN32_MAX_CACHE_SIZE # undef SQLITE_WIN32_CACHE_SIZE # define SQLITE_WIN32_CACHE_SIZE (2000) #endif /* * The initial size of the Win32-specific heap. This value may be zero. */ #ifndef SQLITE_WIN32_HEAP_INIT_SIZE # define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_WIN32_CACHE_SIZE) * \ (SQLITE_DEFAULT_PAGE_SIZE) + \ (SQLITE_WIN32_HEAP_INIT_EXTRA)) #endif /* * The maximum size of the Win32-specific heap. This value may be zero. */ #ifndef SQLITE_WIN32_HEAP_MAX_SIZE # define SQLITE_WIN32_HEAP_MAX_SIZE (0) #endif /* * The extra flags to use in calls to the Win32 heap APIs. This value may be * zero for the default behavior. */ #ifndef SQLITE_WIN32_HEAP_FLAGS # define SQLITE_WIN32_HEAP_FLAGS (0) #endif /* ** The winMemData structure stores information required by the Win32-specific ** sqlite3_mem_methods implementation. */ typedef struct winMemData winMemData; struct winMemData { #ifndef NDEBUG u32 magic1; /* Magic number to detect structure corruption. */ #endif HANDLE hHeap; /* The handle to our heap. */ BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */ #ifndef NDEBUG u32 magic2; /* Magic number to detect structure corruption. */ #endif }; #ifndef NDEBUG #define WINMEM_MAGIC1 0x42b2830b #define WINMEM_MAGIC2 0xbd4d7cf4 #endif static struct winMemData win_mem_data = { #ifndef NDEBUG WINMEM_MAGIC1, #endif NULL, FALSE #ifndef NDEBUG ,WINMEM_MAGIC2 #endif }; #ifndef NDEBUG #define winMemAssertMagic1() assert( win_mem_data.magic1==WINMEM_MAGIC1 ) #define winMemAssertMagic2() assert( win_mem_data.magic2==WINMEM_MAGIC2 ) #define winMemAssertMagic() winMemAssertMagic1(); winMemAssertMagic2(); #else #define winMemAssertMagic() #endif #define winMemGetDataPtr() &win_mem_data #define winMemGetHeap() win_mem_data.hHeap #define winMemGetOwned() win_mem_data.bOwned static void *winMemMalloc(int nBytes); static void winMemFree(void *pPrior); static void *winMemRealloc(void *pPrior, int nBytes); static int winMemSize(void *p); static int winMemRoundup(int n); static int winMemInit(void *pAppData); static void winMemShutdown(void *pAppData); SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void); #endif /* SQLITE_WIN32_MALLOC */ /* ** The following variable is (normally) set once and never changes ** thereafter. It records whether the operating system is Win9x ** or WinNT. ** ** 0: Operating system unknown. ** 1: Operating system is Win9x. ** 2: Operating system is WinNT. ** ** In order to facilitate testing on a WinNT system, the test fixture ** can manually set this value to 1 to emulate Win98 behavior. */ #ifdef SQLITE_TEST SQLITE_API LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0; #else static LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0; #endif #ifndef SYSCALL # define SYSCALL sqlite3_syscall_ptr #endif /* ** This function is not available on Windows CE or WinRT. */ #if SQLITE_OS_WINCE || SQLITE_OS_WINRT # define osAreFileApisANSI() 1 #endif /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct win_syscall { const char *zName; /* Name of the system call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "AreFileApisANSI", (SYSCALL)AreFileApisANSI, 0 }, #else { "AreFileApisANSI", (SYSCALL)0, 0 }, #endif #ifndef osAreFileApisANSI #define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent) #endif #if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE) { "CharLowerW", (SYSCALL)CharLowerW, 0 }, #else { "CharLowerW", (SYSCALL)0, 0 }, #endif #define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent) #if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE) { "CharUpperW", (SYSCALL)CharUpperW, 0 }, #else { "CharUpperW", (SYSCALL)0, 0 }, #endif #define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent) { "CloseHandle", (SYSCALL)CloseHandle, 0 }, #define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "CreateFileA", (SYSCALL)CreateFileA, 0 }, #else { "CreateFileA", (SYSCALL)0, 0 }, #endif #define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "CreateFileW", (SYSCALL)CreateFileW, 0 }, #else { "CreateFileW", (SYSCALL)0, 0 }, #endif #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) && \ SQLITE_WIN32_CREATEFILEMAPPINGA { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 }, #else { "CreateFileMappingA", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent) #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 }, #else { "CreateFileMappingW", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "CreateMutexW", (SYSCALL)CreateMutexW, 0 }, #else { "CreateMutexW", (SYSCALL)0, 0 }, #endif #define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \ LPCWSTR))aSyscall[8].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "DeleteFileA", (SYSCALL)DeleteFileA, 0 }, #else { "DeleteFileA", (SYSCALL)0, 0 }, #endif #define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "DeleteFileW", (SYSCALL)DeleteFileW, 0 }, #else { "DeleteFileW", (SYSCALL)0, 0 }, #endif #define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent) #if SQLITE_OS_WINCE { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 }, #else { "FileTimeToLocalFileTime", (SYSCALL)0, 0 }, #endif #define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \ LPFILETIME))aSyscall[11].pCurrent) #if SQLITE_OS_WINCE { "FileTimeToSystemTime", (SYSCALL)FileTimeToSystemTime, 0 }, #else { "FileTimeToSystemTime", (SYSCALL)0, 0 }, #endif #define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \ LPSYSTEMTIME))aSyscall[12].pCurrent) { "FlushFileBuffers", (SYSCALL)FlushFileBuffers, 0 }, #define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "FormatMessageA", (SYSCALL)FormatMessageA, 0 }, #else { "FormatMessageA", (SYSCALL)0, 0 }, #endif #define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \ DWORD,va_list*))aSyscall[14].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "FormatMessageW", (SYSCALL)FormatMessageW, 0 }, #else { "FormatMessageW", (SYSCALL)0, 0 }, #endif #define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \ DWORD,va_list*))aSyscall[15].pCurrent) #if !defined(SQLITE_OMIT_LOAD_EXTENSION) { "FreeLibrary", (SYSCALL)FreeLibrary, 0 }, #else { "FreeLibrary", (SYSCALL)0, 0 }, #endif #define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent) { "GetCurrentProcessId", (SYSCALL)GetCurrentProcessId, 0 }, #define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent) #if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI) { "GetDiskFreeSpaceA", (SYSCALL)GetDiskFreeSpaceA, 0 }, #else { "GetDiskFreeSpaceA", (SYSCALL)0, 0 }, #endif #define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \ LPDWORD))aSyscall[18].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetDiskFreeSpaceW", (SYSCALL)GetDiskFreeSpaceW, 0 }, #else { "GetDiskFreeSpaceW", (SYSCALL)0, 0 }, #endif #define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \ LPDWORD))aSyscall[19].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "GetFileAttributesA", (SYSCALL)GetFileAttributesA, 0 }, #else { "GetFileAttributesA", (SYSCALL)0, 0 }, #endif #define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetFileAttributesW", (SYSCALL)GetFileAttributesW, 0 }, #else { "GetFileAttributesW", (SYSCALL)0, 0 }, #endif #define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "GetFileAttributesExW", (SYSCALL)GetFileAttributesExW, 0 }, #else { "GetFileAttributesExW", (SYSCALL)0, 0 }, #endif #define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \ LPVOID))aSyscall[22].pCurrent) #if !SQLITE_OS_WINRT { "GetFileSize", (SYSCALL)GetFileSize, 0 }, #else { "GetFileSize", (SYSCALL)0, 0 }, #endif #define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent) #if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI) { "GetFullPathNameA", (SYSCALL)GetFullPathNameA, 0 }, #else { "GetFullPathNameA", (SYSCALL)0, 0 }, #endif #define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \ LPSTR*))aSyscall[24].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetFullPathNameW", (SYSCALL)GetFullPathNameW, 0 }, #else { "GetFullPathNameW", (SYSCALL)0, 0 }, #endif #define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \ LPWSTR*))aSyscall[25].pCurrent) { "GetLastError", (SYSCALL)GetLastError, 0 }, #define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent) #if !defined(SQLITE_OMIT_LOAD_EXTENSION) #if SQLITE_OS_WINCE /* The GetProcAddressA() routine is only available on Windows CE. */ { "GetProcAddressA", (SYSCALL)GetProcAddressA, 0 }, #else /* All other Windows platforms expect GetProcAddress() to take ** an ANSI string regardless of the _UNICODE setting */ { "GetProcAddressA", (SYSCALL)GetProcAddress, 0 }, #endif #else { "GetProcAddressA", (SYSCALL)0, 0 }, #endif #define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \ LPCSTR))aSyscall[27].pCurrent) #if !SQLITE_OS_WINRT { "GetSystemInfo", (SYSCALL)GetSystemInfo, 0 }, #else { "GetSystemInfo", (SYSCALL)0, 0 }, #endif #define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent) { "GetSystemTime", (SYSCALL)GetSystemTime, 0 }, #define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent) #if !SQLITE_OS_WINCE { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 }, #else { "GetSystemTimeAsFileTime", (SYSCALL)0, 0 }, #endif #define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \ LPFILETIME))aSyscall[30].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "GetTempPathA", (SYSCALL)GetTempPathA, 0 }, #else { "GetTempPathA", (SYSCALL)0, 0 }, #endif #define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetTempPathW", (SYSCALL)GetTempPathW, 0 }, #else { "GetTempPathW", (SYSCALL)0, 0 }, #endif #define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent) #if !SQLITE_OS_WINRT { "GetTickCount", (SYSCALL)GetTickCount, 0 }, #else { "GetTickCount", (SYSCALL)0, 0 }, #endif #define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_GETVERSIONEX { "GetVersionExA", (SYSCALL)GetVersionExA, 0 }, #else { "GetVersionExA", (SYSCALL)0, 0 }, #endif #define osGetVersionExA ((BOOL(WINAPI*)( \ LPOSVERSIONINFOA))aSyscall[34].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ SQLITE_WIN32_GETVERSIONEX { "GetVersionExW", (SYSCALL)GetVersionExW, 0 }, #else { "GetVersionExW", (SYSCALL)0, 0 }, #endif #define osGetVersionExW ((BOOL(WINAPI*)( \ LPOSVERSIONINFOW))aSyscall[35].pCurrent) { "HeapAlloc", (SYSCALL)HeapAlloc, 0 }, #define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \ SIZE_T))aSyscall[36].pCurrent) #if !SQLITE_OS_WINRT { "HeapCreate", (SYSCALL)HeapCreate, 0 }, #else { "HeapCreate", (SYSCALL)0, 0 }, #endif #define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \ SIZE_T))aSyscall[37].pCurrent) #if !SQLITE_OS_WINRT { "HeapDestroy", (SYSCALL)HeapDestroy, 0 }, #else { "HeapDestroy", (SYSCALL)0, 0 }, #endif #define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[38].pCurrent) { "HeapFree", (SYSCALL)HeapFree, 0 }, #define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[39].pCurrent) { "HeapReAlloc", (SYSCALL)HeapReAlloc, 0 }, #define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \ SIZE_T))aSyscall[40].pCurrent) { "HeapSize", (SYSCALL)HeapSize, 0 }, #define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \ LPCVOID))aSyscall[41].pCurrent) #if !SQLITE_OS_WINRT { "HeapValidate", (SYSCALL)HeapValidate, 0 }, #else { "HeapValidate", (SYSCALL)0, 0 }, #endif #define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \ LPCVOID))aSyscall[42].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "HeapCompact", (SYSCALL)HeapCompact, 0 }, #else { "HeapCompact", (SYSCALL)0, 0 }, #endif #define osHeapCompact ((UINT(WINAPI*)(HANDLE,DWORD))aSyscall[43].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION) { "LoadLibraryA", (SYSCALL)LoadLibraryA, 0 }, #else { "LoadLibraryA", (SYSCALL)0, 0 }, #endif #define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[44].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ !defined(SQLITE_OMIT_LOAD_EXTENSION) { "LoadLibraryW", (SYSCALL)LoadLibraryW, 0 }, #else { "LoadLibraryW", (SYSCALL)0, 0 }, #endif #define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[45].pCurrent) #if !SQLITE_OS_WINRT { "LocalFree", (SYSCALL)LocalFree, 0 }, #else { "LocalFree", (SYSCALL)0, 0 }, #endif #define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[46].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "LockFile", (SYSCALL)LockFile, 0 }, #else { "LockFile", (SYSCALL)0, 0 }, #endif #ifndef osLockFile #define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ DWORD))aSyscall[47].pCurrent) #endif #if !SQLITE_OS_WINCE { "LockFileEx", (SYSCALL)LockFileEx, 0 }, #else { "LockFileEx", (SYSCALL)0, 0 }, #endif #ifndef osLockFileEx #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[48].pCurrent) #endif #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 }, #else { "MapViewOfFile", (SYSCALL)0, 0 }, #endif #define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ SIZE_T))aSyscall[49].pCurrent) { "MultiByteToWideChar", (SYSCALL)MultiByteToWideChar, 0 }, #define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \ int))aSyscall[50].pCurrent) { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 }, #define osQueryPerformanceCounter ((BOOL(WINAPI*)( \ LARGE_INTEGER*))aSyscall[51].pCurrent) { "ReadFile", (SYSCALL)ReadFile, 0 }, #define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \ LPOVERLAPPED))aSyscall[52].pCurrent) { "SetEndOfFile", (SYSCALL)SetEndOfFile, 0 }, #define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[53].pCurrent) #if !SQLITE_OS_WINRT { "SetFilePointer", (SYSCALL)SetFilePointer, 0 }, #else { "SetFilePointer", (SYSCALL)0, 0 }, #endif #define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \ DWORD))aSyscall[54].pCurrent) #if !SQLITE_OS_WINRT { "Sleep", (SYSCALL)Sleep, 0 }, #else { "Sleep", (SYSCALL)0, 0 }, #endif #define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[55].pCurrent) { "SystemTimeToFileTime", (SYSCALL)SystemTimeToFileTime, 0 }, #define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \ LPFILETIME))aSyscall[56].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "UnlockFile", (SYSCALL)UnlockFile, 0 }, #else { "UnlockFile", (SYSCALL)0, 0 }, #endif #ifndef osUnlockFile #define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ DWORD))aSyscall[57].pCurrent) #endif #if !SQLITE_OS_WINCE { "UnlockFileEx", (SYSCALL)UnlockFileEx, 0 }, #else { "UnlockFileEx", (SYSCALL)0, 0 }, #endif #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[58].pCurrent) #if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 }, #else { "UnmapViewOfFile", (SYSCALL)0, 0 }, #endif #define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent) { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 }, #define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \ LPCSTR,LPBOOL))aSyscall[60].pCurrent) { "WriteFile", (SYSCALL)WriteFile, 0 }, #define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \ LPOVERLAPPED))aSyscall[61].pCurrent) #if SQLITE_OS_WINRT { "CreateEventExW", (SYSCALL)CreateEventExW, 0 }, #else { "CreateEventExW", (SYSCALL)0, 0 }, #endif #define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \ DWORD,DWORD))aSyscall[62].pCurrent) #if !SQLITE_OS_WINRT { "WaitForSingleObject", (SYSCALL)WaitForSingleObject, 0 }, #else { "WaitForSingleObject", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \ DWORD))aSyscall[63].pCurrent) #if !SQLITE_OS_WINCE { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 }, #else { "WaitForSingleObjectEx", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \ BOOL))aSyscall[64].pCurrent) #if SQLITE_OS_WINRT { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 }, #else { "SetFilePointerEx", (SYSCALL)0, 0 }, #endif #define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \ PLARGE_INTEGER,DWORD))aSyscall[65].pCurrent) #if SQLITE_OS_WINRT { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 }, #else { "GetFileInformationByHandleEx", (SYSCALL)0, 0 }, #endif #define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent) #if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 }, #else { "MapViewOfFileFromApp", (SYSCALL)0, 0 }, #endif #define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \ SIZE_T))aSyscall[67].pCurrent) #if SQLITE_OS_WINRT { "CreateFile2", (SYSCALL)CreateFile2, 0 }, #else { "CreateFile2", (SYSCALL)0, 0 }, #endif #define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \ LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[68].pCurrent) #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION) { "LoadPackagedLibrary", (SYSCALL)LoadPackagedLibrary, 0 }, #else { "LoadPackagedLibrary", (SYSCALL)0, 0 }, #endif #define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \ DWORD))aSyscall[69].pCurrent) #if SQLITE_OS_WINRT { "GetTickCount64", (SYSCALL)GetTickCount64, 0 }, #else { "GetTickCount64", (SYSCALL)0, 0 }, #endif #define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[70].pCurrent) #if SQLITE_OS_WINRT { "GetNativeSystemInfo", (SYSCALL)GetNativeSystemInfo, 0 }, #else { "GetNativeSystemInfo", (SYSCALL)0, 0 }, #endif #define osGetNativeSystemInfo ((VOID(WINAPI*)( \ LPSYSTEM_INFO))aSyscall[71].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "OutputDebugStringA", (SYSCALL)OutputDebugStringA, 0 }, #else { "OutputDebugStringA", (SYSCALL)0, 0 }, #endif #define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[72].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "OutputDebugStringW", (SYSCALL)OutputDebugStringW, 0 }, #else { "OutputDebugStringW", (SYSCALL)0, 0 }, #endif #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent) { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent) #if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, #else { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent) /* ** NOTE: On some sub-platforms, the InterlockedCompareExchange "function" ** is really just a macro that uses a compiler intrinsic (e.g. x64). ** So do not try to make this is into a redefinable interface. */ #if defined(InterlockedCompareExchange) { "InterlockedCompareExchange", (SYSCALL)0, 0 }, #define osInterlockedCompareExchange InterlockedCompareExchange #else { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 }, #define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \ SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent) #endif /* defined(InterlockedCompareExchange) */ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID { "UuidCreate", (SYSCALL)UuidCreate, 0 }, #else { "UuidCreate", (SYSCALL)0, 0 }, #endif #define osUuidCreate ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[77].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID { "UuidCreateSequential", (SYSCALL)UuidCreateSequential, 0 }, #else { "UuidCreateSequential", (SYSCALL)0, 0 }, #endif #define osUuidCreateSequential \ ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent) #if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0 { "FlushViewOfFile", (SYSCALL)FlushViewOfFile, 0 }, #else { "FlushViewOfFile", (SYSCALL)0, 0 }, #endif #define osFlushViewOfFile \ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK upon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int winSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ ){ unsigned int i; int rc = SQLITE_NOTFOUND; UNUSED_PARAMETER(pNotUsed); if( zName==0 ){ /* If no zName is given, restore all system calls to their default ** settings and return NULL */ rc = SQLITE_OK; for(i=0; i0 ){ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); memcpy(zDbgBuf, zBuf, nMin); osOutputDebugStringA(zDbgBuf); }else{ osOutputDebugStringA(zBuf); } #elif defined(SQLITE_WIN32_HAS_WIDE) memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); if ( osMultiByteToWideChar( osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf, nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){ return; } osOutputDebugStringW((LPCWSTR)zDbgBuf); #else if( nMin>0 ){ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); memcpy(zDbgBuf, zBuf, nMin); fprintf(stderr, "%s", zDbgBuf); }else{ fprintf(stderr, "%s", zBuf); } #endif } /* ** The following routine suspends the current thread for at least ms ** milliseconds. This is equivalent to the Win32 Sleep() interface. */ #if SQLITE_OS_WINRT static HANDLE sleepObj = NULL; #endif SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){ #if SQLITE_OS_WINRT if ( sleepObj==NULL ){ sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET, SYNCHRONIZE); } assert( sleepObj!=NULL ); osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE); #else osSleep(milliseconds); #endif } #if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \ SQLITE_THREADSAFE>0 SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject){ DWORD rc; while( (rc = osWaitForSingleObjectEx(hObject, INFINITE, TRUE))==WAIT_IO_COMPLETION ){} return rc; } #endif /* ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, ** or WinCE. Return false (zero) for Win95, Win98, or WinME. ** ** Here is an interesting observation: Win95, Win98, and WinME lack ** the LockFileEx() API. But we can still statically link against that ** API as long as we don't call it when running Win95/98/ME. A call to ** this routine is used to determine if the host is Win95/98/ME or ** WinNT/2K/XP so that we will know whether or not we can safely call ** the LockFileEx() API. */ #if !SQLITE_WIN32_GETVERSIONEX # define osIsNT() (1) #elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI) # define osIsNT() (1) #elif !defined(SQLITE_WIN32_HAS_WIDE) # define osIsNT() (0) #else # define osIsNT() ((sqlite3_os_type==2) || sqlite3_win32_is_nt()) #endif /* ** This function determines if the machine is running a version of Windows ** based on the NT kernel. */ SQLITE_API int sqlite3_win32_is_nt(void){ #if SQLITE_OS_WINRT /* ** NOTE: The WinRT sub-platform is always assumed to be based on the NT ** kernel. */ return 1; #elif SQLITE_WIN32_GETVERSIONEX if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){ #if defined(SQLITE_WIN32_HAS_ANSI) OSVERSIONINFOA sInfo; sInfo.dwOSVersionInfoSize = sizeof(sInfo); osGetVersionExA(&sInfo); osInterlockedCompareExchange(&sqlite3_os_type, (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0); #elif defined(SQLITE_WIN32_HAS_WIDE) OSVERSIONINFOW sInfo; sInfo.dwOSVersionInfoSize = sizeof(sInfo); osGetVersionExW(&sInfo); osInterlockedCompareExchange(&sqlite3_os_type, (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0); #endif } return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2; #elif SQLITE_TEST return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2; #else /* ** NOTE: All sub-platforms where the GetVersionEx[AW] functions are ** deprecated are always assumed to be based on the NT kernel. */ return 1; #endif } #ifdef SQLITE_WIN32_MALLOC /* ** Allocate nBytes of memory. */ static void *winMemMalloc(int nBytes){ HANDLE hHeap; void *p; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); #endif assert( nBytes>=0 ); p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); if( !p ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%lu), heap=%p", nBytes, osGetLastError(), (void*)hHeap); } return p; } /* ** Free memory. */ static void winMemFree(void *pPrior){ HANDLE hHeap; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); #endif if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */ if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%lu), heap=%p", pPrior, osGetLastError(), (void*)hHeap); } } /* ** Change the size of an existing memory allocation */ static void *winMemRealloc(void *pPrior, int nBytes){ HANDLE hHeap; void *p; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); #endif assert( nBytes>=0 ); if( !pPrior ){ p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); }else{ p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes); } if( !p ){ sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%lu), heap=%p", pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(), (void*)hHeap); } return p; } /* ** Return the size of an outstanding allocation, in bytes. */ static int winMemSize(void *p){ HANDLE hHeap; SIZE_T n; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, p) ); #endif if( !p ) return 0; n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p); if( n==(SIZE_T)-1 ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%lu), heap=%p", p, osGetLastError(), (void*)hHeap); return 0; } return (int)n; } /* ** Round up a request size to the next valid allocation size. */ static int winMemRoundup(int n){ return n; } /* ** Initialize this module. */ static int winMemInit(void *pAppData){ winMemData *pWinMemData = (winMemData *)pAppData; if( !pWinMemData ) return SQLITE_ERROR; assert( pWinMemData->magic1==WINMEM_MAGIC1 ); assert( pWinMemData->magic2==WINMEM_MAGIC2 ); #if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE if( !pWinMemData->hHeap ){ DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE; DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap; if( dwMaximumSize==0 ){ dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE; }else if( dwInitialSize>dwMaximumSize ){ dwInitialSize = dwMaximumSize; } pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS, dwInitialSize, dwMaximumSize); if( !pWinMemData->hHeap ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu", osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize, dwMaximumSize); return SQLITE_NOMEM_BKPT; } pWinMemData->bOwned = TRUE; assert( pWinMemData->bOwned ); } #else pWinMemData->hHeap = osGetProcessHeap(); if( !pWinMemData->hHeap ){ sqlite3_log(SQLITE_NOMEM, "failed to GetProcessHeap (%lu)", osGetLastError()); return SQLITE_NOMEM_BKPT; } pWinMemData->bOwned = FALSE; assert( !pWinMemData->bOwned ); #endif assert( pWinMemData->hHeap!=0 ); assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); #endif return SQLITE_OK; } /* ** Deinitialize this module. */ static void winMemShutdown(void *pAppData){ winMemData *pWinMemData = (winMemData *)pAppData; if( !pWinMemData ) return; assert( pWinMemData->magic1==WINMEM_MAGIC1 ); assert( pWinMemData->magic2==WINMEM_MAGIC2 ); if( pWinMemData->hHeap ){ assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); #endif if( pWinMemData->bOwned ){ if( !osHeapDestroy(pWinMemData->hHeap) ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%lu), heap=%p", osGetLastError(), (void*)pWinMemData->hHeap); } pWinMemData->bOwned = FALSE; } pWinMemData->hHeap = NULL; } } /* ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. The ** arguments specify the block of memory to manage. ** ** This routine is only called by sqlite3_config(), and therefore ** is not required to be threadsafe (it is not). */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void){ static const sqlite3_mem_methods winMemMethods = { winMemMalloc, winMemFree, winMemRealloc, winMemSize, winMemRoundup, winMemInit, winMemShutdown, &win_mem_data }; return &winMemMethods; } SQLITE_PRIVATE void sqlite3MemSetDefault(void){ sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32()); } #endif /* SQLITE_WIN32_MALLOC */ /* ** Convert a UTF-8 string to Microsoft Unicode. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static LPWSTR winUtf8ToUnicode(const char *zText){ int nChar; LPWSTR zWideText; nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, NULL, 0); if( nChar==0 ){ return 0; } zWideText = sqlite3MallocZero( nChar*sizeof(WCHAR) ); if( zWideText==0 ){ return 0; } nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, zWideText, nChar); if( nChar==0 ){ sqlite3_free(zWideText); zWideText = 0; } return zWideText; } /* ** Convert a Microsoft Unicode string to UTF-8. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winUnicodeToUtf8(LPCWSTR zWideText){ int nByte; char *zText; nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, 0, 0, 0, 0); if( nByte == 0 ){ return 0; } zText = sqlite3MallocZero( nByte ); if( zText==0 ){ return 0; } nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, zText, nByte, 0, 0); if( nByte == 0 ){ sqlite3_free(zText); zText = 0; } return zText; } /* ** Convert an ANSI string to Microsoft Unicode, using the ANSI or OEM ** code page. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static LPWSTR winMbcsToUnicode(const char *zText, int useAnsi){ int nByte; LPWSTR zMbcsText; int codepage = useAnsi ? CP_ACP : CP_OEMCP; nByte = osMultiByteToWideChar(codepage, 0, zText, -1, NULL, 0)*sizeof(WCHAR); if( nByte==0 ){ return 0; } zMbcsText = sqlite3MallocZero( nByte*sizeof(WCHAR) ); if( zMbcsText==0 ){ return 0; } nByte = osMultiByteToWideChar(codepage, 0, zText, -1, zMbcsText, nByte); if( nByte==0 ){ sqlite3_free(zMbcsText); zMbcsText = 0; } return zMbcsText; } /* ** Convert a Microsoft Unicode string to a multi-byte character string, ** using the ANSI or OEM code page. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winUnicodeToMbcs(LPCWSTR zWideText, int useAnsi){ int nByte; char *zText; int codepage = useAnsi ? CP_ACP : CP_OEMCP; nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, 0, 0, 0, 0); if( nByte == 0 ){ return 0; } zText = sqlite3MallocZero( nByte ); if( zText==0 ){ return 0; } nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, zText, nByte, 0, 0); if( nByte == 0 ){ sqlite3_free(zText); zText = 0; } return zText; } /* ** Convert a multi-byte character string to UTF-8. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winMbcsToUtf8(const char *zText, int useAnsi){ char *zTextUtf8; LPWSTR zTmpWide; zTmpWide = winMbcsToUnicode(zText, useAnsi); if( zTmpWide==0 ){ return 0; } zTextUtf8 = winUnicodeToUtf8(zTmpWide); sqlite3_free(zTmpWide); return zTextUtf8; } /* ** Convert a UTF-8 string to a multi-byte character string. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winUtf8ToMbcs(const char *zText, int useAnsi){ char *zTextMbcs; LPWSTR zTmpWide; zTmpWide = winUtf8ToUnicode(zText); if( zTmpWide==0 ){ return 0; } zTextMbcs = winUnicodeToMbcs(zTmpWide, useAnsi); sqlite3_free(zTmpWide); return zTextMbcs; } /* ** This is a public wrapper for the winUtf8ToUnicode() function. */ SQLITE_API LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToUnicode(zText); } /* ** This is a public wrapper for the winUnicodeToUtf8() function. */ SQLITE_API char *sqlite3_win32_unicode_to_utf8(LPCWSTR zWideText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zWideText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUnicodeToUtf8(zWideText); } /* ** This is a public wrapper for the winMbcsToUtf8() function. */ SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winMbcsToUtf8(zText, osAreFileApisANSI()); } /* ** This is a public wrapper for the winMbcsToUtf8() function. */ SQLITE_API char *sqlite3_win32_mbcs_to_utf8_v2(const char *zText, int useAnsi){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winMbcsToUtf8(zText, useAnsi); } /* ** This is a public wrapper for the winUtf8ToMbcs() function. */ SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToMbcs(zText, osAreFileApisANSI()); } /* ** This is a public wrapper for the winUtf8ToMbcs() function. */ SQLITE_API char *sqlite3_win32_utf8_to_mbcs_v2(const char *zText, int useAnsi){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToMbcs(zText, useAnsi); } /* ** This function is the same as sqlite3_win32_set_directory (below); however, ** it accepts a UTF-8 string. */ SQLITE_API int sqlite3_win32_set_directory8( unsigned long type, /* Identifier for directory being set or reset */ const char *zValue /* New value for directory being set or reset */ ){ char **ppDirectory = 0; int rc; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){ ppDirectory = &sqlite3_data_directory; }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){ ppDirectory = &sqlite3_temp_directory; } assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ); assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) ); if( ppDirectory ){ char *zCopy = 0; if( zValue && zValue[0] ){ zCopy = sqlite3_mprintf("%s", zValue); if ( zCopy==0 ){ rc = SQLITE_NOMEM_BKPT; goto set_directory8_done; } } sqlite3_free(*ppDirectory); *ppDirectory = zCopy; rc = SQLITE_OK; }else{ rc = SQLITE_ERROR; } set_directory8_done: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); return rc; } /* ** This function is the same as sqlite3_win32_set_directory (below); however, ** it accepts a UTF-16 string. */ SQLITE_API int sqlite3_win32_set_directory16( unsigned long type, /* Identifier for directory being set or reset */ const void *zValue /* New value for directory being set or reset */ ){ int rc; char *zUtf8 = 0; if( zValue ){ zUtf8 = sqlite3_win32_unicode_to_utf8(zValue); if( zUtf8==0 ) return SQLITE_NOMEM_BKPT; } rc = sqlite3_win32_set_directory8(type, zUtf8); if( zUtf8 ) sqlite3_free(zUtf8); return rc; } /* ** This function sets the data directory or the temporary directory based on ** the provided arguments. The type argument must be 1 in order to set the ** data directory or 2 in order to set the temporary directory. The zValue ** argument is the name of the directory to use. The return value will be ** SQLITE_OK if successful. */ SQLITE_API int sqlite3_win32_set_directory( unsigned long type, /* Identifier for directory being set or reset */ void *zValue /* New value for directory being set or reset */ ){ return sqlite3_win32_set_directory16(type, zValue); } /* ** The return value of winGetLastErrorMsg ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). */ static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){ /* FormatMessage returns 0 on failure. Otherwise it ** returns the number of TCHARs written to the output ** buffer, excluding the terminating null char. */ DWORD dwLen = 0; char *zOut = 0; if( osIsNT() ){ #if SQLITE_OS_WINRT WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1]; dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, lastErrno, 0, zTempWide, SQLITE_WIN32_MAX_ERRMSG_CHARS, 0); #else LPWSTR zTempWide = NULL; dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, lastErrno, 0, (LPWSTR) &zTempWide, 0, 0); #endif if( dwLen > 0 ){ /* allocate a buffer and convert to UTF8 */ sqlite3BeginBenignMalloc(); zOut = winUnicodeToUtf8(zTempWide); sqlite3EndBenignMalloc(); #if !SQLITE_OS_WINRT /* free the system buffer allocated by FormatMessage */ osLocalFree(zTempWide); #endif } } #ifdef SQLITE_WIN32_HAS_ANSI else{ char *zTemp = NULL; dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, lastErrno, 0, (LPSTR) &zTemp, 0, 0); if( dwLen > 0 ){ /* allocate a buffer and convert to UTF8 */ sqlite3BeginBenignMalloc(); zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI()); sqlite3EndBenignMalloc(); /* free the system buffer allocated by FormatMessage */ osLocalFree(zTemp); } } #endif if( 0 == dwLen ){ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%lx (%lu)", lastErrno, lastErrno); }else{ /* copy a maximum of nBuf chars to output buffer */ sqlite3_snprintf(nBuf, zBuf, "%s", zOut); /* free the UTF8 buffer */ sqlite3_free(zOut); } return 0; } /* ** ** This function - winLogErrorAtLine() - is only ever called via the macro ** winLogError(). ** ** This routine is invoked after an error occurs in an OS function. ** It logs a message using sqlite3_log() containing the current value of ** error code and, if possible, the human-readable equivalent from ** FormatMessage. ** ** The first argument passed to the macro should be the error code that ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). ** The two subsequent arguments should be the name of the OS function that ** failed and the associated file-system path, if any. */ #define winLogError(a,b,c,d) winLogErrorAtLine(a,b,c,d,__LINE__) static int winLogErrorAtLine( int errcode, /* SQLite error code */ DWORD lastErrno, /* Win32 last error */ const char *zFunc, /* Name of OS function that failed */ const char *zPath, /* File path associated with error */ int iLine /* Source line number where error occurred */ ){ char zMsg[500]; /* Human readable error text */ int i; /* Loop counter */ zMsg[0] = 0; winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg); assert( errcode!=SQLITE_OK ); if( zPath==0 ) zPath = ""; for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){} zMsg[i] = 0; sqlite3_log(errcode, "os_win.c:%d: (%lu) %s(%s) - %s", iLine, lastErrno, zFunc, zPath, zMsg ); return errcode; } /* ** The number of times that a ReadFile(), WriteFile(), and DeleteFile() ** will be retried following a locking error - probably caused by ** antivirus software. Also the initial delay before the first retry. ** The delay increases linearly with each retry. */ #ifndef SQLITE_WIN32_IOERR_RETRY # define SQLITE_WIN32_IOERR_RETRY 10 #endif #ifndef SQLITE_WIN32_IOERR_RETRY_DELAY # define SQLITE_WIN32_IOERR_RETRY_DELAY 25 #endif static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY; static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY; /* ** The "winIoerrCanRetry1" macro is used to determine if a particular I/O ** error code obtained via GetLastError() is eligible to be retried. It ** must accept the error code DWORD as its only argument and should return ** non-zero if the error code is transient in nature and the operation ** responsible for generating the original error might succeed upon being ** retried. The argument to this macro should be a variable. ** ** Additionally, a macro named "winIoerrCanRetry2" may be defined. If it ** is defined, it will be consulted only when the macro "winIoerrCanRetry1" ** returns zero. The "winIoerrCanRetry2" macro is completely optional and ** may be used to include additional error codes in the set that should ** result in the failing I/O operation being retried by the caller. If ** defined, the "winIoerrCanRetry2" macro must exhibit external semantics ** identical to those of the "winIoerrCanRetry1" macro. */ #if !defined(winIoerrCanRetry1) #define winIoerrCanRetry1(a) (((a)==ERROR_ACCESS_DENIED) || \ ((a)==ERROR_SHARING_VIOLATION) || \ ((a)==ERROR_LOCK_VIOLATION) || \ ((a)==ERROR_DEV_NOT_EXIST) || \ ((a)==ERROR_NETNAME_DELETED) || \ ((a)==ERROR_SEM_TIMEOUT) || \ ((a)==ERROR_NETWORK_UNREACHABLE)) #endif /* ** If a ReadFile() or WriteFile() error occurs, invoke this routine ** to see if it should be retried. Return TRUE to retry. Return FALSE ** to give up with an error. */ static int winRetryIoerr(int *pnRetry, DWORD *pError){ DWORD e = osGetLastError(); if( *pnRetry>=winIoerrRetry ){ if( pError ){ *pError = e; } return 0; } if( winIoerrCanRetry1(e) ){ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry)); ++*pnRetry; return 1; } #if defined(winIoerrCanRetry2) else if( winIoerrCanRetry2(e) ){ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry)); ++*pnRetry; return 1; } #endif if( pError ){ *pError = e; } return 0; } /* ** Log a I/O error retry episode. */ static void winLogIoerr(int nRetry, int lineno){ if( nRetry ){ sqlite3_log(SQLITE_NOTICE, "delayed %dms for lock/sharing conflict at line %d", winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno ); } } /* ** This #if does not rely on the SQLITE_OS_WINCE define because the ** corresponding section in "date.c" cannot use it. */ #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) /* ** The MSVC CRT on Windows CE may not have a localtime() function. ** So define a substitute. */ /* # include */ struct tm *__cdecl localtime(const time_t *t) { static struct tm y; FILETIME uTm, lTm; SYSTEMTIME pTm; sqlite3_int64 t64; t64 = *t; t64 = (t64 + 11644473600)*10000000; uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF); uTm.dwHighDateTime= (DWORD)(t64 >> 32); osFileTimeToLocalFileTime(&uTm,&lTm); osFileTimeToSystemTime(&lTm,&pTm); y.tm_year = pTm.wYear - 1900; y.tm_mon = pTm.wMonth - 1; y.tm_wday = pTm.wDayOfWeek; y.tm_mday = pTm.wDay; y.tm_hour = pTm.wHour; y.tm_min = pTm.wMinute; y.tm_sec = pTm.wSecond; return &y; } #endif #if SQLITE_OS_WINCE /************************************************************************* ** This section contains code for WinCE only. */ #define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)] /* ** Acquire a lock on the handle h */ static void winceMutexAcquire(HANDLE h){ DWORD dwErr; do { dwErr = osWaitForSingleObject(h, INFINITE); } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED); } /* ** Release a lock acquired by winceMutexAcquire() */ #define winceMutexRelease(h) ReleaseMutex(h) /* ** Create the mutex and shared memory used for locking in the file ** descriptor pFile */ static int winceCreateLock(const char *zFilename, winFile *pFile){ LPWSTR zTok; LPWSTR zName; DWORD lastErrno; BOOL bLogged = FALSE; BOOL bInit = TRUE; zName = winUtf8ToUnicode(zFilename); if( zName==0 ){ /* out of memory */ return SQLITE_IOERR_NOMEM_BKPT; } /* Initialize the local lockdata */ memset(&pFile->local, 0, sizeof(pFile->local)); /* Replace the backslashes from the filename and lowercase it ** to derive a mutex name. */ zTok = osCharLowerW(zName); for (;*zTok;zTok++){ if (*zTok == '\\') *zTok = '_'; } /* Create/open the named mutex */ pFile->hMutex = osCreateMutexW(NULL, FALSE, zName); if (!pFile->hMutex){ pFile->lastErrno = osGetLastError(); sqlite3_free(zName); return winLogError(SQLITE_IOERR, pFile->lastErrno, "winceCreateLock1", zFilename); } /* Acquire the mutex before continuing */ winceMutexAcquire(pFile->hMutex); /* Since the names of named mutexes, semaphores, file mappings etc are ** case-sensitive, take advantage of that by uppercasing the mutex name ** and using that as the shared filemapping name. */ osCharUpperW(zName); pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, sizeof(winceLock), zName); /* Set a flag that indicates we're the first to create the memory so it ** must be zero-initialized */ lastErrno = osGetLastError(); if (lastErrno == ERROR_ALREADY_EXISTS){ bInit = FALSE; } sqlite3_free(zName); /* If we succeeded in making the shared memory handle, map it. */ if( pFile->hShared ){ pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); /* If mapping failed, close the shared memory handle and erase it */ if( !pFile->shared ){ pFile->lastErrno = osGetLastError(); winLogError(SQLITE_IOERR, pFile->lastErrno, "winceCreateLock2", zFilename); bLogged = TRUE; osCloseHandle(pFile->hShared); pFile->hShared = NULL; } } /* If shared memory could not be created, then close the mutex and fail */ if( pFile->hShared==NULL ){ if( !bLogged ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_IOERR, pFile->lastErrno, "winceCreateLock3", zFilename); bLogged = TRUE; } winceMutexRelease(pFile->hMutex); osCloseHandle(pFile->hMutex); pFile->hMutex = NULL; return SQLITE_IOERR; } /* Initialize the shared memory if we're supposed to */ if( bInit ){ memset(pFile->shared, 0, sizeof(winceLock)); } winceMutexRelease(pFile->hMutex); return SQLITE_OK; } /* ** Destroy the part of winFile that deals with wince locks */ static void winceDestroyLock(winFile *pFile){ if (pFile->hMutex){ /* Acquire the mutex */ winceMutexAcquire(pFile->hMutex); /* The following blocks should probably assert in debug mode, but they are to cleanup in case any locks remained open */ if (pFile->local.nReaders){ pFile->shared->nReaders --; } if (pFile->local.bReserved){ pFile->shared->bReserved = FALSE; } if (pFile->local.bPending){ pFile->shared->bPending = FALSE; } if (pFile->local.bExclusive){ pFile->shared->bExclusive = FALSE; } /* De-reference and close our copy of the shared memory handle */ osUnmapViewOfFile(pFile->shared); osCloseHandle(pFile->hShared); /* Done with the mutex */ winceMutexRelease(pFile->hMutex); osCloseHandle(pFile->hMutex); pFile->hMutex = NULL; } } /* ** An implementation of the LockFile() API of Windows for CE */ static BOOL winceLockFile( LPHANDLE phFile, DWORD dwFileOffsetLow, DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; UNUSED_PARAMETER(dwFileOffsetHigh); UNUSED_PARAMETER(nNumberOfBytesToLockHigh); if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Wanting an exclusive lock? */ if (dwFileOffsetLow == (DWORD)SHARED_FIRST && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){ pFile->shared->bExclusive = TRUE; pFile->local.bExclusive = TRUE; bReturn = TRUE; } } /* Want a read-only lock? */ else if (dwFileOffsetLow == (DWORD)SHARED_FIRST && nNumberOfBytesToLockLow == 1){ if (pFile->shared->bExclusive == 0){ pFile->local.nReaders ++; if (pFile->local.nReaders == 1){ pFile->shared->nReaders ++; } bReturn = TRUE; } } /* Want a pending lock? */ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){ /* If no pending lock has been acquired, then acquire it */ if (pFile->shared->bPending == 0) { pFile->shared->bPending = TRUE; pFile->local.bPending = TRUE; bReturn = TRUE; } } /* Want a reserved lock? */ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){ if (pFile->shared->bReserved == 0) { pFile->shared->bReserved = TRUE; pFile->local.bReserved = TRUE; bReturn = TRUE; } } winceMutexRelease(pFile->hMutex); return bReturn; } /* ** An implementation of the UnlockFile API of Windows for CE */ static BOOL winceUnlockFile( LPHANDLE phFile, DWORD dwFileOffsetLow, DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToUnlockLow, DWORD nNumberOfBytesToUnlockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; UNUSED_PARAMETER(dwFileOffsetHigh); UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh); if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Releasing a reader lock or an exclusive lock */ if (dwFileOffsetLow == (DWORD)SHARED_FIRST){ /* Did we have an exclusive lock? */ if (pFile->local.bExclusive){ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE); pFile->local.bExclusive = FALSE; pFile->shared->bExclusive = FALSE; bReturn = TRUE; } /* Did we just have a reader lock? */ else if (pFile->local.nReaders){ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1); pFile->local.nReaders --; if (pFile->local.nReaders == 0) { pFile->shared->nReaders --; } bReturn = TRUE; } } /* Releasing a pending lock */ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){ if (pFile->local.bPending){ pFile->local.bPending = FALSE; pFile->shared->bPending = FALSE; bReturn = TRUE; } } /* Releasing a reserved lock */ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){ if (pFile->local.bReserved) { pFile->local.bReserved = FALSE; pFile->shared->bReserved = FALSE; bReturn = TRUE; } } winceMutexRelease(pFile->hMutex); return bReturn; } /* ** End of the special code for wince *****************************************************************************/ #endif /* SQLITE_OS_WINCE */ /* ** Lock a file region. */ static BOOL winLockFile( LPHANDLE phFile, DWORD flags, DWORD offsetLow, DWORD offsetHigh, DWORD numBytesLow, DWORD numBytesHigh ){ #if SQLITE_OS_WINCE /* ** NOTE: Windows CE is handled differently here due its lack of the Win32 ** API LockFile. */ return winceLockFile(phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); #else if( osIsNT() ){ OVERLAPPED ovlp; memset(&ovlp, 0, sizeof(OVERLAPPED)); ovlp.Offset = offsetLow; ovlp.OffsetHigh = offsetHigh; return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp); }else{ return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); } #endif } /* ** Unlock a file region. */ static BOOL winUnlockFile( LPHANDLE phFile, DWORD offsetLow, DWORD offsetHigh, DWORD numBytesLow, DWORD numBytesHigh ){ #if SQLITE_OS_WINCE /* ** NOTE: Windows CE is handled differently here due its lack of the Win32 ** API UnlockFile. */ return winceUnlockFile(phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); #else if( osIsNT() ){ OVERLAPPED ovlp; memset(&ovlp, 0, sizeof(OVERLAPPED)); ovlp.Offset = offsetLow; ovlp.OffsetHigh = offsetHigh; return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp); }else{ return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); } #endif } /***************************************************************************** ** The next group of routines implement the I/O methods specified ** by the sqlite3_io_methods object. ******************************************************************************/ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_SET_FILE_POINTER # define INVALID_SET_FILE_POINTER ((DWORD)-1) #endif /* ** Move the current position of the file handle passed as the first ** argument to offset iOffset within the file. If successful, return 0. ** Otherwise, set pFile->lastErrno and return non-zero. */ static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){ #if !SQLITE_OS_WINRT LONG upperBits; /* Most sig. 32 bits of new offset */ LONG lowerBits; /* Least sig. 32 bits of new offset */ DWORD dwRet; /* Value returned by SetFilePointer() */ DWORD lastErrno; /* Value returned by GetLastError() */ OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset)); upperBits = (LONG)((iOffset>>32) & 0x7fffffff); lowerBits = (LONG)(iOffset & 0xffffffff); /* API oddity: If successful, SetFilePointer() returns a dword ** containing the lower 32-bits of the new file-offset. Or, if it fails, ** it returns INVALID_SET_FILE_POINTER. However according to MSDN, ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine ** whether an error has actually occurred, it is also necessary to call ** GetLastError(). */ dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); if( (dwRet==INVALID_SET_FILE_POINTER && ((lastErrno = osGetLastError())!=NO_ERROR)) ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno, "winSeekFile", pFile->zPath); OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h)); return 1; } OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h)); return 0; #else /* ** Same as above, except that this implementation works for WinRT. */ LARGE_INTEGER x; /* The new offset */ BOOL bRet; /* Value returned by SetFilePointerEx() */ x.QuadPart = iOffset; bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN); if(!bRet){ pFile->lastErrno = osGetLastError(); winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno, "winSeekFile", pFile->zPath); OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h)); return 1; } OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h)); return 0; #endif } #if SQLITE_MAX_MMAP_SIZE>0 /* Forward references to VFS helper methods used for memory mapped files */ static int winMapfile(winFile*, sqlite3_int64); static int winUnmapfile(winFile*); #endif /* ** Close a file. ** ** It is reported that an attempt to close a handle might sometimes ** fail. This is a very unreasonable result, but Windows is notorious ** for being unreasonable so I do not doubt that it might happen. If ** the close fails, we pause for 100 milliseconds and try again. As ** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before ** giving up and returning an error. */ #define MX_CLOSE_ATTEMPT 3 static int winClose(sqlite3_file *id){ int rc, cnt = 0; winFile *pFile = (winFile*)id; assert( id!=0 ); #ifndef SQLITE_OMIT_WAL assert( pFile->pShm==0 ); #endif assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE ); OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n", osGetCurrentProcessId(), pFile, pFile->h)); #if SQLITE_MAX_MMAP_SIZE>0 winUnmapfile(pFile); #endif do{ rc = osCloseHandle(pFile->h); /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) ); #if SQLITE_OS_WINCE #define WINCE_DELETION_ATTEMPTS 3 { winVfsAppData *pAppData = (winVfsAppData*)pFile->pVfs->pAppData; if( pAppData==NULL || !pAppData->bNoLock ){ winceDestroyLock(pFile); } } if( pFile->zDeleteOnClose ){ int cnt = 0; while( osDeleteFileW(pFile->zDeleteOnClose)==0 && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff && cnt++ < WINCE_DELETION_ATTEMPTS ){ sqlite3_win32_sleep(100); /* Wait a little before trying again */ } sqlite3_free(pFile->zDeleteOnClose); } #endif if( rc ){ pFile->h = NULL; } OpenCounter(-1); OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n", osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed")); return rc ? SQLITE_OK : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(), "winClose", pFile->zPath); } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ static int winRead( sqlite3_file *id, /* File to read from */ void *pBuf, /* Write content into this buffer */ int amt, /* Number of bytes to read */ sqlite3_int64 offset /* Begin reading at this offset */ ){ #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) OVERLAPPED overlapped; /* The offset for ReadFile. */ #endif winFile *pFile = (winFile*)id; /* file handle */ DWORD nRead; /* Number of bytes actually read from file */ int nRetry = 0; /* Number of retrys */ assert( id!=0 ); assert( amt>0 ); assert( offset>=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ int nCopy = (int)(pFile->mmapSize - offset); memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) if( winSeekFile(pFile, offset) ){ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_FULL; } while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ #else memset(&overlapped, 0, sizeof(OVERLAPPED)); overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) && osGetLastError()!=ERROR_HANDLE_EOF ){ #endif DWORD lastErrno; if( winRetryIoerr(&nRetry, &lastErrno) ) continue; pFile->lastErrno = lastErrno; OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_READ, pFile->lastErrno, "winRead", pFile->zPath); } winLogIoerr(nRetry, __LINE__); if( nRead<(DWORD)amt ){ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[nRead], 0, amt-nRead); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_IOERR_SHORT_READ; } OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ static int winWrite( sqlite3_file *id, /* File to write into */ const void *pBuf, /* The bytes to be written */ int amt, /* Number of bytes to write */ sqlite3_int64 offset /* Offset into the file to begin writing at */ ){ int rc = 0; /* True if error has occurred, else false */ winFile *pFile = (winFile*)id; /* File handle */ int nRetry = 0; /* Number of retries */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ int nCopy = (int)(pFile->mmapSize - offset); memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) rc = winSeekFile(pFile, offset); if( rc==0 ){ #else { #endif #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) OVERLAPPED overlapped; /* The offset for WriteFile. */ #endif u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ int nRem = amt; /* Number of bytes yet to be written */ DWORD nWrite; /* Bytes written by each WriteFile() call */ DWORD lastErrno = NO_ERROR; /* Value returned by GetLastError() */ #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) memset(&overlapped, 0, sizeof(OVERLAPPED)); overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); #endif while( nRem>0 ){ #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){ #else if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){ #endif if( winRetryIoerr(&nRetry, &lastErrno) ) continue; break; } assert( nWrite==0 || nWrite<=(DWORD)nRem ); if( nWrite==0 || nWrite>(DWORD)nRem ){ lastErrno = osGetLastError(); break; } #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) offset += nWrite; overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); #endif aRem += nWrite; nRem -= nWrite; } if( nRem>0 ){ pFile->lastErrno = lastErrno; rc = 1; } } if( rc ){ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) || ( pFile->lastErrno==ERROR_DISK_FULL )){ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_FULL, pFile->lastErrno, "winWrite1", pFile->zPath); } OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno, "winWrite2", pFile->zPath); }else{ winLogIoerr(nRetry, __LINE__); } OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; } /* ** Truncate an open file to a specified size */ static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ winFile *pFile = (winFile*)id; /* File handle object */ int rc = SQLITE_OK; /* Return code for this function */ DWORD lastErrno; #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_int64 oldMmapSize; if( pFile->nFetchOut>0 ){ /* File truncation is a no-op if there are outstanding memory mapped ** pages. This is because truncating the file means temporarily unmapping ** the file, and that might delete memory out from under existing cursors. ** ** This can result in incremental vacuum not truncating the file, ** if there is an active read cursor when the incremental vacuum occurs. ** No real harm comes of this - the database file is not corrupted, ** though some folks might complain that the file is bigger than it ** needs to be. ** ** The only feasible work-around is to defer the truncation until after ** all references to memory-mapped content are closed. That is doable, ** but involves adding a few branches in the common write code path which ** could slow down normal operations slightly. Hence, we have decided for ** now to simply make transactions a no-op if there are pending reads. We ** can maybe revisit this decision in the future. */ return SQLITE_OK; } #endif assert( pFile ); SimulateIOError(return SQLITE_IOERR_TRUNCATE); OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype)); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->pMapRegion ){ oldMmapSize = pFile->mmapSize; }else{ oldMmapSize = 0; } winUnmapfile(pFile); #endif /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ if( winSeekFile(pFile, nByte) ){ rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno, "winTruncate1", pFile->zPath); }else if( 0==osSetEndOfFile(pFile->h) && ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){ pFile->lastErrno = lastErrno; rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno, "winTruncate2", pFile->zPath); } #if SQLITE_MAX_MMAP_SIZE>0 if( rc==SQLITE_OK && oldMmapSize>0 ){ if( oldMmapSize>nByte ){ winMapfile(pFile, -1); }else{ winMapfile(pFile, oldMmapSize); } } #endif OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n", osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc))); return rc; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. */ SQLITE_API int sqlite3_sync_count = 0; SQLITE_API int sqlite3_fullsync_count = 0; #endif /* ** Make sure all writes to a particular file are committed to disk. */ static int winSync(sqlite3_file *id, int flags){ #ifndef SQLITE_NO_SYNC /* ** Used only when SQLITE_NO_SYNC is not defined. */ BOOL rc; #endif #if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \ defined(SQLITE_HAVE_OS_TRACE) /* ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or ** OSTRACE() macros. */ winFile *pFile = (winFile*)id; #else UNUSED_PARAMETER(id); #endif assert( pFile ); /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ assert((flags&0x0F)==SQLITE_SYNC_NORMAL || (flags&0x0F)==SQLITE_SYNC_FULL ); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, flags, pFile->locktype)); #ifndef SQLITE_TEST UNUSED_PARAMETER(flags); #else if( (flags&0x0F)==SQLITE_SYNC_FULL ){ sqlite3_fullsync_count++; } sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op */ #ifdef SQLITE_NO_SYNC OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; #else #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->pMapRegion ){ if( osFlushViewOfFile(pFile->pMapRegion, 0) ){ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); }else{ pFile->lastErrno = osGetLastError(); OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winSync1", pFile->zPath); } } #endif rc = osFlushFileBuffers(pFile->h); SimulateIOError( rc=FALSE ); if( rc ){ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ pFile->lastErrno = osGetLastError(); OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno, "winSync2", pFile->zPath); } #endif } /* ** Determine the current size of a file in bytes */ static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){ winFile *pFile = (winFile*)id; int rc = SQLITE_OK; assert( id!=0 ); assert( pSize!=0 ); SimulateIOError(return SQLITE_IOERR_FSTAT); OSTRACE(("SIZE file=%p, pSize=%p\n", pFile->h, pSize)); #if SQLITE_OS_WINRT { FILE_STANDARD_INFO info; if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo, &info, sizeof(info)) ){ *pSize = info.EndOfFile.QuadPart; }else{ pFile->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno, "winFileSize", pFile->zPath); } } #else { DWORD upperBits; DWORD lowerBits; DWORD lastErrno; lowerBits = osGetFileSize(pFile->h, &upperBits); *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits; if( (lowerBits == INVALID_FILE_SIZE) && ((lastErrno = osGetLastError())!=NO_ERROR) ){ pFile->lastErrno = lastErrno; rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno, "winFileSize", pFile->zPath); } } #endif OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n", pFile->h, pSize, *pSize, sqlite3ErrName(rc))); return rc; } /* ** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems. */ #ifndef LOCKFILE_FAIL_IMMEDIATELY # define LOCKFILE_FAIL_IMMEDIATELY 1 #endif #ifndef LOCKFILE_EXCLUSIVE_LOCK # define LOCKFILE_EXCLUSIVE_LOCK 2 #endif /* ** Historically, SQLite has used both the LockFile and LockFileEx functions. ** When the LockFile function was used, it was always expected to fail ** immediately if the lock could not be obtained. Also, it always expected to ** obtain an exclusive lock. These flags are used with the LockFileEx function ** and reflect those expectations; therefore, they should not be changed. */ #ifndef SQLITE_LOCKFILE_FLAGS # define SQLITE_LOCKFILE_FLAGS (LOCKFILE_FAIL_IMMEDIATELY | \ LOCKFILE_EXCLUSIVE_LOCK) #endif /* ** Currently, SQLite never calls the LockFileEx function without wanting the ** call to fail immediately if the lock cannot be obtained. */ #ifndef SQLITE_LOCKFILEEX_FLAGS # define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY) #endif /* ** Acquire a reader lock. ** Different API routines are called depending on whether or not this ** is Win9x or WinNT. */ static int winGetReadLock(winFile *pFile){ int res; OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype)); if( osIsNT() ){ #if SQLITE_OS_WINCE /* ** NOTE: Windows CE is handled differently here due its lack of the Win32 ** API LockFileEx. */ res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0); #else res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0, SHARED_SIZE, 0); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ int lk; sqlite3_randomness(sizeof(lk), &lk); pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1)); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); } #endif if( res == 0 ){ pFile->lastErrno = osGetLastError(); /* No need to log a failure to lock */ } OSTRACE(("READ-LOCK file=%p, result=%d\n", pFile->h, res)); return res; } /* ** Undo a readlock */ static int winUnlockReadLock(winFile *pFile){ int res; DWORD lastErrno; OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype)); if( osIsNT() ){ res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); } #ifdef SQLITE_WIN32_HAS_ANSI else{ res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); } #endif if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno, "winUnlockReadLock", pFile->zPath); } OSTRACE(("READ-UNLOCK file=%p, result=%d\n", pFile->h, res)); return res; } /* ** Lock the file with the lock specified by parameter locktype - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. The winUnlock() routine ** erases all locks at once and returns us immediately to locking level 0. ** It is not possible to lower the locking level one step at a time. You ** must go straight to locking level 0. */ static int winLock(sqlite3_file *id, int locktype){ int rc = SQLITE_OK; /* Return code from subroutines */ int res = 1; /* Result of a Windows lock call */ int newLocktype; /* Set pFile->locktype to this value before exiting */ int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ winFile *pFile = (winFile*)id; DWORD lastErrno = NO_ERROR; assert( id!=0 ); OSTRACE(("LOCK file=%p, oldLock=%d(%d), newLock=%d\n", pFile->h, pFile->locktype, pFile->sharedLockByte, locktype)); /* If there is already a lock of this type or more restrictive on the ** OsFile, do nothing. Don't use the end_lock: exit path, as ** sqlite3OsEnterMutex() hasn't been called yet. */ if( pFile->locktype>=locktype ){ OSTRACE(("LOCK-HELD file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } /* Do not allow any kind of write-lock on a read-only database */ if( (pFile->ctrlFlags & WINFILE_RDONLY)!=0 && locktype>=RESERVED_LOCK ){ return SQLITE_IOERR_LOCK; } /* Make sure the locking sequence is correct */ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); assert( locktype!=PENDING_LOCK ); assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of ** the PENDING_LOCK byte is temporary. */ newLocktype = pFile->locktype; if( pFile->locktype==NO_LOCK || (locktype==EXCLUSIVE_LOCK && pFile->locktype<=RESERVED_LOCK) ){ int cnt = 3; while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, PENDING_BYTE, 0, 1, 0))==0 ){ /* Try 3 times to get the pending lock. This is needed to work ** around problems caused by indexing and/or anti-virus software on ** Windows systems. ** If you are using this code as a model for alternative VFSes, do not ** copy this retry logic. It is a hack intended for Windows only. */ lastErrno = osGetLastError(); OSTRACE(("LOCK-PENDING-FAIL file=%p, count=%d, result=%d\n", pFile->h, cnt, res)); if( lastErrno==ERROR_INVALID_HANDLE ){ pFile->lastErrno = lastErrno; rc = SQLITE_IOERR_LOCK; OSTRACE(("LOCK-FAIL file=%p, count=%d, rc=%s\n", pFile->h, cnt, sqlite3ErrName(rc))); return rc; } if( cnt ) sqlite3_win32_sleep(1); } gotPendingLock = res; if( !res ){ lastErrno = osGetLastError(); } } /* Acquire a shared lock */ if( locktype==SHARED_LOCK && res ){ assert( pFile->locktype==NO_LOCK ); res = winGetReadLock(pFile); if( res ){ newLocktype = SHARED_LOCK; }else{ lastErrno = osGetLastError(); } } /* Acquire a RESERVED lock */ if( locktype==RESERVED_LOCK && res ){ assert( pFile->locktype==SHARED_LOCK ); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0); if( res ){ newLocktype = RESERVED_LOCK; }else{ lastErrno = osGetLastError(); } } /* Acquire a PENDING lock */ if( locktype==EXCLUSIVE_LOCK && res ){ newLocktype = PENDING_LOCK; gotPendingLock = 0; } /* Acquire an EXCLUSIVE lock */ if( locktype==EXCLUSIVE_LOCK && res ){ assert( pFile->locktype>=SHARED_LOCK ); (void)winUnlockReadLock(pFile); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0, SHARED_SIZE, 0); if( res ){ newLocktype = EXCLUSIVE_LOCK; }else{ lastErrno = osGetLastError(); winGetReadLock(pFile); } } /* If we are holding a PENDING lock that ought to be released, then ** release it now. */ if( gotPendingLock && locktype==SHARED_LOCK ){ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0); } /* Update the state of the lock has held in the file descriptor then ** return the appropriate result code. */ if( res ){ rc = SQLITE_OK; }else{ pFile->lastErrno = lastErrno; rc = SQLITE_BUSY; OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n", pFile->h, locktype, newLocktype)); } pFile->locktype = (u8)newLocktype; OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n", pFile->h, pFile->locktype, sqlite3ErrName(rc))); return rc; } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, return ** non-zero, otherwise zero. */ static int winCheckReservedLock(sqlite3_file *id, int *pResOut){ int res; winFile *pFile = (winFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut)); assert( id!=0 ); if( pFile->locktype>=RESERVED_LOCK ){ res = 1; OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res)); }else{ res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE,0,1,0); if( res ){ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0); } res = !res; OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res)); } *pResOut = res; OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n", pFile->h, pResOut, *pResOut)); return SQLITE_OK; } /* ** Lower the locking level on file descriptor id to locktype. locktype ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** It is not possible for this routine to fail if the second argument ** is NO_LOCK. If the second argument is SHARED_LOCK then this routine ** might return SQLITE_IOERR; */ static int winUnlock(sqlite3_file *id, int locktype){ int type; winFile *pFile = (winFile*)id; int rc = SQLITE_OK; assert( pFile!=0 ); assert( locktype<=SHARED_LOCK ); OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n", pFile->h, pFile->locktype, pFile->sharedLockByte, locktype)); type = pFile->locktype; if( type>=EXCLUSIVE_LOCK ){ winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){ /* This should never happen. We should always be able to ** reacquire the read lock */ rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(), "winUnlock", pFile->zPath); } } if( type>=RESERVED_LOCK ){ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0); } if( locktype==NO_LOCK && type>=SHARED_LOCK ){ winUnlockReadLock(pFile); } if( type>=PENDING_LOCK ){ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0); } pFile->locktype = (u8)locktype; OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n", pFile->h, pFile->locktype, sqlite3ErrName(rc))); return rc; } /****************************************************************************** ****************************** No-op Locking ********************************** ** ** Of the various locking implementations available, this is by far the ** simplest: locking is ignored. No attempt is made to lock the database ** file for reading or writing. ** ** This locking mode is appropriate for use on read-only databases ** (ex: databases that are burned into CD-ROM, for example.) It can ** also be used if the application employs some external mechanism to ** prevent simultaneous access of the same database by two or more ** database connections. But there is a serious risk of database ** corruption if this locking mode is used in situations where multiple ** database connections are accessing the same database file at the same ** time and one or more of those connections are writing. */ static int winNolockLock(sqlite3_file *id, int locktype){ UNUSED_PARAMETER(id); UNUSED_PARAMETER(locktype); return SQLITE_OK; } static int winNolockCheckReservedLock(sqlite3_file *id, int *pResOut){ UNUSED_PARAMETER(id); UNUSED_PARAMETER(pResOut); return SQLITE_OK; } static int winNolockUnlock(sqlite3_file *id, int locktype){ UNUSED_PARAMETER(id); UNUSED_PARAMETER(locktype); return SQLITE_OK; } /******************* End of the no-op lock implementation ********************* ******************************************************************************/ /* ** If *pArg is initially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* Forward references to VFS helper methods used for temporary files */ static int winGetTempname(sqlite3_vfs *, char **); static int winIsDir(const void *); static BOOL winIsLongPathPrefix(const char *); static BOOL winIsDriveLetterAndColon(const char *); /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg)); switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->locktype; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_LAST_ERRNO: { *(int*)pArg = (int)pFile->lastErrno; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { pFile->szChunk = *(int *)pArg; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { if( pFile->szChunk>0 ){ sqlite3_int64 oldSz; int rc = winFileSize(id, &oldSz); if( rc==SQLITE_OK ){ sqlite3_int64 newSz = *(sqlite3_int64*)pArg; if( newSz>oldSz ){ SimulateIOErrorBenign(1); rc = winTruncate(id, newSz); SimulateIOErrorBenign(0); } } OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc))); return rc; } OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_PERSIST_WAL: { winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg); OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { winModeBit(pFile, WINFILE_PSOW, (int*)pArg); OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_WIN32_AV_RETRY: { int *a = (int*)pArg; if( a[0]>0 ){ winIoerrRetry = a[0]; }else{ a[0] = winIoerrRetry; } if( a[1]>0 ){ winIoerrRetryDelay = a[1]; }else{ a[1] = winIoerrRetryDelay; } OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_WIN32_GET_HANDLE: { LPHANDLE phFile = (LPHANDLE)pArg; *phFile = pFile->h; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } #ifdef SQLITE_TEST case SQLITE_FCNTL_WIN32_SET_HANDLE: { LPHANDLE phFile = (LPHANDLE)pArg; HANDLE hOldFile = pFile->h; pFile->h = *phFile; *phFile = hOldFile; OSTRACE(("FCNTL oldFile=%p, newFile=%p, rc=SQLITE_OK\n", hOldFile, pFile->h)); return SQLITE_OK; } #endif case SQLITE_FCNTL_TEMPFILENAME: { char *zTFile = 0; int rc = winGetTempname(pFile->pVfs, &zTFile); if( rc==SQLITE_OK ){ *(char**)pArg = zTFile; } OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc))); return rc; } #if SQLITE_MAX_MMAP_SIZE>0 case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; int rc = SQLITE_OK; if( newLimit>sqlite3GlobalConfig.mxMmap ){ newLimit = sqlite3GlobalConfig.mxMmap; } /* The value of newLimit may be eventually cast to (SIZE_T) and passed ** to MapViewOfFile(). Restrict its value to 2GB if (SIZE_T) is not at ** least a 64-bit type. */ if( newLimit>0 && sizeof(SIZE_T)<8 ){ newLimit = (newLimit & 0x7FFFFFFF); } *(i64*)pArg = pFile->mmapSizeMax; if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ pFile->mmapSizeMax = newLimit; if( pFile->mmapSize>0 ){ winUnmapfile(pFile); rc = winMapfile(pFile, -1); } } OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc))); return rc; } #endif } OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h)); return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for ** the specified file. This is almost always 512 bytes, but may be ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int winSectorSize(sqlite3_file *id){ (void)id; return SQLITE_DEFAULT_SECTOR_SIZE; } /* ** Return a vector of device characteristics. */ static int winDeviceCharacteristics(sqlite3_file *id){ winFile *p = (winFile*)id; return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN | ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0); } /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. ** During sqlite3_os_init() we do a GetSystemInfo() ** to get the granularity size. */ static SYSTEM_INFO winSysInfo; #ifndef SQLITE_OMIT_WAL /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the winLockInfo objects used by ** this file, all of which may be shared by multiple threads. ** ** Function winShmMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() ** statements. e.g. ** ** winShmEnterMutex() ** assert( winShmMutexHeld() ); ** winShmLeaveMutex() */ static sqlite3_mutex *winBigLock = 0; static void winShmEnterMutex(void){ sqlite3_mutex_enter(winBigLock); } static void winShmLeaveMutex(void){ sqlite3_mutex_leave(winBigLock); } #ifndef NDEBUG static int winShmMutexHeld(void) { return sqlite3_mutex_held(winBigLock); } #endif /* ** Object used to represent a single file opened and mmapped to provide ** shared memory. When multiple threads all reference the same ** log-summary, each thread has its own winFile object, but they all ** point to a single instance of this object. In other words, each ** log-summary is opened only once per process. ** ** winShmMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** pNext ** ** The following fields are read-only after the object is created: ** ** fid ** zFilename ** ** Either winShmNode.mutex must be held or winShmNode.nRef==0 and ** winShmMutexHeld() is true when reading or writing any other field ** in this structure. ** */ struct winShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the file */ winFile hFile; /* File handle from winOpen */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ struct ShmRegion { HANDLE hMap; /* File handle from CreateFileMapping */ void *pMap; } *aRegion; DWORD lastErrno; /* The Windows errno from the last I/O error */ int nRef; /* Number of winShm objects pointing to this */ winShm *pFirst; /* All winShm objects pointing to this */ winShmNode *pNext; /* Next in list of all winShmNode objects */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) u8 nextShmId; /* Next available winShm.id value */ #endif }; /* ** A global array of all winShmNode objects. ** ** The winShmMutexHeld() must be true while reading or writing this list. */ static winShmNode *winShmNodeList = 0; /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** ** winShm.pShmNode ** winShm.id ** ** All other fields are read/write. The winShm.pShmNode->mutex must be held ** while accessing any read/write fields. */ struct winShm { winShmNode *pShmNode; /* The underlying winShmNode object */ winShm *pNext; /* Next winShm with the same winShmNode */ u8 hasMutex; /* True if holding the winShmNode mutex */ u16 sharedMask; /* Mask of shared locks held */ u16 exclMask; /* Mask of exclusive locks held */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) u8 id; /* Id of this connection with its winShmNode */ #endif }; /* ** Constants used for locking */ #define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ #define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ /* ** Apply advisory locks for all n bytes beginning at ofst. */ #define WINSHM_UNLCK 1 #define WINSHM_RDLCK 2 #define WINSHM_WRLCK 3 static int winShmSystemLock( winShmNode *pFile, /* Apply locks to this open shared-memory segment */ int lockType, /* WINSHM_UNLCK, WINSHM_RDLCK, or WINSHM_WRLCK */ int ofst, /* Offset to first byte to be locked/unlocked */ int nByte /* Number of bytes to lock or unlock */ ){ int rc = 0; /* Result code form Lock/UnlockFileEx() */ /* Access to the winShmNode object is serialized by the caller */ assert( pFile->nRef==0 || sqlite3_mutex_held(pFile->mutex) ); OSTRACE(("SHM-LOCK file=%p, lock=%d, offset=%d, size=%d\n", pFile->hFile.h, lockType, ofst, nByte)); /* Release/Acquire the system-level lock */ if( lockType==WINSHM_UNLCK ){ rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0); }else{ /* Initialize the locking parameters */ DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY; if( lockType == WINSHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK; rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0); } if( rc!= 0 ){ rc = SQLITE_OK; }else{ pFile->lastErrno = osGetLastError(); rc = SQLITE_BUSY; } OSTRACE(("SHM-LOCK file=%p, func=%s, errno=%lu, rc=%s\n", pFile->hFile.h, (lockType == WINSHM_UNLCK) ? "winUnlockFile" : "winLockFile", pFile->lastErrno, sqlite3ErrName(rc))); return rc; } /* Forward references to VFS methods */ static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*); static int winDelete(sqlite3_vfs *,const char*,int); /* ** Purge the winShmNodeList list of all entries with winShmNode.nRef==0. ** ** This is not a VFS shared-memory method; it is a utility function called ** by VFS shared-memory methods. */ static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){ winShmNode **pp; winShmNode *p; assert( winShmMutexHeld() ); OSTRACE(("SHM-PURGE pid=%lu, deleteFlag=%d\n", osGetCurrentProcessId(), deleteFlag)); pp = &winShmNodeList; while( (p = *pp)!=0 ){ if( p->nRef==0 ){ int i; if( p->mutex ){ sqlite3_mutex_free(p->mutex); } for(i=0; inRegion; i++){ BOOL bRc = osUnmapViewOfFile(p->aRegion[i].pMap); OSTRACE(("SHM-PURGE-UNMAP pid=%lu, region=%d, rc=%s\n", osGetCurrentProcessId(), i, bRc ? "ok" : "failed")); UNUSED_VARIABLE_VALUE(bRc); bRc = osCloseHandle(p->aRegion[i].hMap); OSTRACE(("SHM-PURGE-CLOSE pid=%lu, region=%d, rc=%s\n", osGetCurrentProcessId(), i, bRc ? "ok" : "failed")); UNUSED_VARIABLE_VALUE(bRc); } if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){ SimulateIOErrorBenign(1); winClose((sqlite3_file *)&p->hFile); SimulateIOErrorBenign(0); } if( deleteFlag ){ SimulateIOErrorBenign(1); sqlite3BeginBenignMalloc(); winDelete(pVfs, p->zFilename, 0); sqlite3EndBenignMalloc(); SimulateIOErrorBenign(0); } *pp = p->pNext; sqlite3_free(p->aRegion); sqlite3_free(p); }else{ pp = &p->pNext; } } } /* ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to ** take it now. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If the DMS cannot be locked because this is a readonly_shm=1 ** connection and no other process already holds a lock, return ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. */ static int winLockSharedMemory(winShmNode *pShmNode){ int rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, WIN_SHM_DMS, 1); if( rc==SQLITE_OK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); return SQLITE_READONLY_CANTINIT; }else if( winTruncate((sqlite3_file*)&pShmNode->hFile, 0) ){ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); return winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(), "winLockSharedMemory", pShmNode->zFilename); } } if( rc==SQLITE_OK ){ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); } return winShmSystemLock(pShmNode, WINSHM_RDLCK, WIN_SHM_DMS, 1); } /* ** Open the shared-memory area associated with database file pDbFd. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. */ static int winOpenSharedMemory(winFile *pDbFd){ struct winShm *p; /* The connection to be opened */ winShmNode *pShmNode = 0; /* The underlying mmapped file */ int rc = SQLITE_OK; /* Result code */ winShmNode *pNew; /* Newly allocated winShmNode */ int nName; /* Size of zName in bytes */ assert( pDbFd->pShm==0 ); /* Not previously opened */ /* Allocate space for the new sqlite3_shm object. Also speculatively ** allocate space for a new winShmNode and filename. */ p = sqlite3MallocZero( sizeof(*p) ); if( p==0 ) return SQLITE_IOERR_NOMEM_BKPT; nName = sqlite3Strlen30(pDbFd->zPath); pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 ); if( pNew==0 ){ sqlite3_free(p); return SQLITE_IOERR_NOMEM_BKPT; } pNew->zFilename = (char*)&pNew[1]; sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath); sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename); /* Look to see if there is an existing winShmNode that can be used. ** If no matching winShmNode currently exists, create a new one. */ winShmEnterMutex(); for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){ /* TBD need to come up with better match here. Perhaps ** use FILE_ID_BOTH_DIR_INFO Structure. */ if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break; } if( pShmNode ){ sqlite3_free(pNew); }else{ int inFlags = SQLITE_OPEN_WAL; int outFlags = 0; pShmNode = pNew; pNew = 0; ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE; pShmNode->pNext = winShmNodeList; winShmNodeList = pShmNode; if( sqlite3GlobalConfig.bCoreMutex ){ pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shm_open_err; } } if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ inFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE; }else{ inFlags |= SQLITE_OPEN_READONLY; } rc = winOpen(pDbFd->pVfs, pShmNode->zFilename, (sqlite3_file*)&pShmNode->hFile, inFlags, &outFlags); if( rc!=SQLITE_OK ){ rc = winLogError(rc, osGetLastError(), "winOpenShm", pShmNode->zFilename); goto shm_open_err; } if( outFlags==SQLITE_OPEN_READONLY ) pShmNode->isReadonly = 1; rc = winLockSharedMemory(pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } /* Make the new connection a child of the winShmNode */ p->pShmNode = pShmNode; #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) p->id = pShmNode->nextShmId++; #endif pShmNode->nRef++; pDbFd->pShm = p; winShmLeaveMutex(); /* The reference count on pShmNode has already been incremented under ** the cover of the winShmEnterMutex() mutex and the pointer from the ** new (struct winShm) object to the pShmNode has been set. All that is ** left to do is to link the new object into the linked list starting ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex ** mutex. */ sqlite3_mutex_enter(pShmNode->mutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->mutex); return rc; /* Jump here on any error */ shm_open_err: winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */ sqlite3_free(p); sqlite3_free(pNew); winShmLeaveMutex(); return rc; } /* ** Close a connection to shared-memory. Delete the underlying ** storage if deleteFlag is true. */ static int winShmUnmap( sqlite3_file *fd, /* Database holding shared memory */ int deleteFlag /* Delete after closing if true */ ){ winFile *pDbFd; /* Database holding shared-memory */ winShm *p; /* The connection to be closed */ winShmNode *pShmNode; /* The underlying shared-memory file */ winShm **pp; /* For looping over sibling connections */ pDbFd = (winFile*)fd; p = pDbFd->pShm; if( p==0 ) return SQLITE_OK; pShmNode = p->pShmNode; /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->mutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ sqlite3_free(p); pDbFd->pShm = 0; sqlite3_mutex_leave(pShmNode->mutex); /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ winShmEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ winShmPurge(pDbFd->pVfs, deleteFlag); } winShmLeaveMutex(); return SQLITE_OK; } /* ** Change the lock state for a shared-memory segment. */ static int winShmLock( sqlite3_file *fd, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */ winShm *p = pDbFd->pShm; /* The shared memory being locked */ winShm *pX; /* For looping over all siblings */ winShmNode *pShmNode; int rc = SQLITE_OK; /* Result code */ u16 mask; /* Mask of locks to take or release */ if( p==0 ) return SQLITE_IOERR_SHMLOCK; pShmNode = p->pShmNode; if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK; assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); mask = (u16)((1U<<(ofst+n)) - (1U<1 || mask==(1<mutex); if( flags & SQLITE_SHM_UNLOCK ){ u16 allMask = 0; /* Mask of locks held by siblings */ /* See if any siblings hold this same lock */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( pX==p ) continue; assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); allMask |= pX->sharedMask; } /* Unlock the system-level locks */ if( (mask & allMask)==0 ){ rc = winShmSystemLock(pShmNode, WINSHM_UNLCK, ofst+WIN_SHM_BASE, n); }else{ rc = SQLITE_OK; } /* Undo the local locks */ if( rc==SQLITE_OK ){ p->exclMask &= ~mask; p->sharedMask &= ~mask; } }else if( flags & SQLITE_SHM_SHARED ){ u16 allShared = 0; /* Union of locks held by connections other than "p" */ /* Find out which shared locks are already held by sibling connections. ** If any sibling already holds an exclusive lock, go ahead and return ** SQLITE_BUSY. */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( (pX->exclMask & mask)!=0 ){ rc = SQLITE_BUSY; break; } allShared |= pX->sharedMask; } /* Get shared locks at the system level, if necessary */ if( rc==SQLITE_OK ){ if( (allShared & mask)==0 ){ rc = winShmSystemLock(pShmNode, WINSHM_RDLCK, ofst+WIN_SHM_BASE, n); }else{ rc = SQLITE_OK; } } /* Get the local shared locks */ if( rc==SQLITE_OK ){ p->sharedMask |= mask; } }else{ /* Make sure no sibling connections hold locks that will block this ** lock. If any do, return SQLITE_BUSY right away. */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ rc = SQLITE_BUSY; break; } } /* Get the exclusive locks at the system level. Then if successful ** also mark the local connection as being locked. */ if( rc==SQLITE_OK ){ rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, ofst+WIN_SHM_BASE, n); if( rc==SQLITE_OK ){ assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->mutex); OSTRACE(("SHM-LOCK pid=%lu, id=%d, sharedMask=%03x, exclMask=%03x, rc=%s\n", osGetCurrentProcessId(), p->id, p->sharedMask, p->exclMask, sqlite3ErrName(rc))); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void winShmBarrier( sqlite3_file *fd /* Database holding the shared memory */ ){ UNUSED_PARAMETER(fd); sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ winShmEnterMutex(); /* Also mutex, for redundancy */ winShmLeaveMutex(); } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file fd. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the isWrite parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** isWrite is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int winShmMap( sqlite3_file *fd, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ winFile *pDbFd = (winFile*)fd; winShm *pShm = pDbFd->pShm; winShmNode *pShmNode; DWORD protect = PAGE_READWRITE; DWORD flags = FILE_MAP_WRITE | FILE_MAP_READ; int rc = SQLITE_OK; if( !pShm ){ rc = winOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; pShm = pDbFd->pShm; assert( pShm!=0 ); } pShmNode = pShm->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); if( pShmNode->isUnlocked ){ rc = winLockSharedMemory(pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ struct ShmRegion *apNew; /* New aRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ sqlite3_int64 sz; /* Current size of wal-index file */ pShmNode->szRegion = szRegion; /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(), "winShmMap1", pDbFd->zPath); goto shmpage_out; } if( szhFile, nByte); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(), "winShmMap2", pDbFd->zPath); goto shmpage_out; } } /* Map the requested memory region into this processes address space. */ apNew = (struct ShmRegion *)sqlite3_realloc64( pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shmpage_out; } pShmNode->aRegion = apNew; if( pShmNode->isReadonly ){ protect = PAGE_READONLY; flags = FILE_MAP_READ; } while( pShmNode->nRegion<=iRegion ){ HANDLE hMap = NULL; /* file-mapping handle */ void *pMap = 0; /* Mapped memory region */ #if SQLITE_OS_WINRT hMap = osCreateFileMappingFromApp(pShmNode->hFile.h, NULL, protect, nByte, NULL ); #elif defined(SQLITE_WIN32_HAS_WIDE) hMap = osCreateFileMappingW(pShmNode->hFile.h, NULL, protect, 0, nByte, NULL ); #elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA hMap = osCreateFileMappingA(pShmNode->hFile.h, NULL, protect, 0, nByte, NULL ); #endif OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n", osGetCurrentProcessId(), pShmNode->nRegion, nByte, hMap ? "ok" : "failed")); if( hMap ){ int iOffset = pShmNode->nRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; #if SQLITE_OS_WINRT pMap = osMapViewOfFileFromApp(hMap, flags, iOffset - iOffsetShift, szRegion + iOffsetShift ); #else pMap = osMapViewOfFile(hMap, flags, 0, iOffset - iOffsetShift, szRegion + iOffsetShift ); #endif OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n", osGetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion, pMap ? "ok" : "failed")); } if( !pMap ){ pShmNode->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno, "winShmMap3", pDbFd->zPath); if( hMap ) osCloseHandle(hMap); goto shmpage_out; } pShmNode->aRegion[pShmNode->nRegion].pMap = pMap; pShmNode->aRegion[pShmNode->nRegion].hMap = hMap; pShmNode->nRegion++; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ int iOffset = iRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; char *p = (char *)pShmNode->aRegion[iRegion].pMap; *pp = (void *)&p[iOffsetShift]; }else{ *pp = 0; } if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; sqlite3_mutex_leave(pShmNode->mutex); return rc; } #else # define winShmMap 0 # define winShmLock 0 # define winShmBarrier 0 # define winShmUnmap 0 #endif /* #ifndef SQLITE_OMIT_WAL */ /* ** Cleans up the mapped region of the specified file, if any. */ #if SQLITE_MAX_MMAP_SIZE>0 static int winUnmapfile(winFile *pFile){ assert( pFile!=0 ); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, " "mmapSize=%lld, mmapSizeMax=%lld\n", osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion, pFile->mmapSize, pFile->mmapSizeMax)); if( pFile->pMapRegion ){ if( !osUnmapViewOfFile(pFile->pMapRegion) ){ pFile->lastErrno = osGetLastError(); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winUnmapfile1", pFile->zPath); } pFile->pMapRegion = 0; pFile->mmapSize = 0; } if( pFile->hMap!=NULL ){ if( !osCloseHandle(pFile->hMap) ){ pFile->lastErrno = osGetLastError(); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->hMap)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winUnmapfile2", pFile->zPath); } pFile->hMap = NULL; } OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile)); return SQLITE_OK; } /* ** Memory map or remap the file opened by file-descriptor pFd (if the file ** is already mapped, the existing mapping is replaced by the new). Or, if ** there already exists a mapping for this file, and there are still ** outstanding xFetch() references to it, this function is a no-op. ** ** If parameter nByte is non-negative, then it is the requested size of ** the mapping to create. Otherwise, if nByte is less than zero, then the ** requested size is the size of the file on disk. The actual size of the ** created mapping is either the requested size or the value configured ** using SQLITE_FCNTL_MMAP_SIZE, whichever is smaller. ** ** SQLITE_OK is returned if no error occurs (even if the mapping is not ** recreated as a result of outstanding references) or an SQLite error ** code otherwise. */ static int winMapfile(winFile *pFd, sqlite3_int64 nByte){ sqlite3_int64 nMap = nByte; int rc; assert( nMap>=0 || pFd->nFetchOut==0 ); OSTRACE(("MAP-FILE pid=%lu, pFile=%p, size=%lld\n", osGetCurrentProcessId(), pFd, nByte)); if( pFd->nFetchOut>0 ) return SQLITE_OK; if( nMap<0 ){ rc = winFileSize((sqlite3_file*)pFd, &nMap); if( rc ){ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_IOERR_FSTAT\n", osGetCurrentProcessId(), pFd)); return SQLITE_IOERR_FSTAT; } } if( nMap>pFd->mmapSizeMax ){ nMap = pFd->mmapSizeMax; } nMap &= ~(sqlite3_int64)(winSysInfo.dwPageSize - 1); if( nMap==0 && pFd->mmapSize>0 ){ winUnmapfile(pFd); } if( nMap!=pFd->mmapSize ){ void *pNew = 0; DWORD protect = PAGE_READONLY; DWORD flags = FILE_MAP_READ; winUnmapfile(pFd); #ifdef SQLITE_MMAP_READWRITE if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){ protect = PAGE_READWRITE; flags |= FILE_MAP_WRITE; } #endif #if SQLITE_OS_WINRT pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL); #elif defined(SQLITE_WIN32_HAS_WIDE) pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect, (DWORD)((nMap>>32) & 0xffffffff), (DWORD)(nMap & 0xffffffff), NULL); #elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect, (DWORD)((nMap>>32) & 0xffffffff), (DWORD)(nMap & 0xffffffff), NULL); #endif if( pFd->hMap==NULL ){ pFd->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno, "winMapfile1", pFd->zPath); /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return SQLITE_OK; } assert( (nMap % winSysInfo.dwPageSize)==0 ); assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff ); #if SQLITE_OS_WINRT pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap); #else pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap); #endif if( pNew==NULL ){ osCloseHandle(pFd->hMap); pFd->hMap = NULL; pFd->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno, "winMapfile2", pFd->zPath); /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return SQLITE_OK; } pFd->pMapRegion = pNew; pFd->mmapSize = nMap; } OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFd)); return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* ** If possible, return a pointer to a mapping of file fd starting at offset ** iOff. The mapping must be valid for at least nAmt bytes. ** ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. ** Finally, if an error does occur, return an SQLite error code. The final ** value of *pp is undefined in this case. ** ** If this function does return a pointer, the caller must eventually ** release the reference by calling winUnfetch(). */ static int winFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ #if SQLITE_MAX_MMAP_SIZE>0 winFile *pFd = (winFile*)fd; /* The underlying database file */ #endif *pp = 0; OSTRACE(("FETCH pid=%lu, pFile=%p, offset=%lld, amount=%d, pp=%p\n", osGetCurrentProcessId(), fd, iOff, nAmt, pp)); #if SQLITE_MAX_MMAP_SIZE>0 if( pFd->mmapSizeMax>0 ){ if( pFd->pMapRegion==0 ){ int rc = winMapfile(pFd, -1); if( rc!=SQLITE_OK ){ OSTRACE(("FETCH pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return rc; } } if( pFd->mmapSize >= iOff+nAmt ){ assert( pFd->pMapRegion!=0 ); *pp = &((u8 *)pFd->pMapRegion)[iOff]; pFd->nFetchOut++; } } #endif OSTRACE(("FETCH pid=%lu, pFile=%p, pp=%p, *pp=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), fd, pp, *pp)); return SQLITE_OK; } /* ** If the third argument is non-NULL, then this function releases a ** reference obtained by an earlier call to winFetch(). The second ** argument passed to this function must be the same as the corresponding ** argument that was passed to the winFetch() invocation. ** ** Or, if the third argument is NULL, then this function is being called ** to inform the VFS layer that, according to POSIX, any existing mapping ** may now be invalid and should be unmapped. */ static int winUnfetch(sqlite3_file *fd, i64 iOff, void *p){ #if SQLITE_MAX_MMAP_SIZE>0 winFile *pFd = (winFile*)fd; /* The underlying database file */ /* If p==0 (unmap the entire file) then there must be no outstanding ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), ** then there must be at least one outstanding. */ assert( (p==0)==(pFd->nFetchOut==0) ); /* If p!=0, it must match the iOff value. */ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); OSTRACE(("UNFETCH pid=%lu, pFile=%p, offset=%lld, p=%p\n", osGetCurrentProcessId(), pFd, iOff, p)); if( p ){ pFd->nFetchOut--; }else{ /* FIXME: If Windows truly always prevents truncating or deleting a ** file while a mapping is held, then the following winUnmapfile() call ** is unnecessary can be omitted - potentially improving ** performance. */ winUnmapfile(pFd); } assert( pFd->nFetchOut>=0 ); #endif OSTRACE(("UNFETCH pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), fd)); return SQLITE_OK; } /* ** Here ends the implementation of all sqlite3_file methods. ** ********************** End sqlite3_file Methods ******************************* ******************************************************************************/ /* ** This vector defines all the methods that can operate on an ** sqlite3_file for win32. */ static const sqlite3_io_methods winIoMethod = { 3, /* iVersion */ winClose, /* xClose */ winRead, /* xRead */ winWrite, /* xWrite */ winTruncate, /* xTruncate */ winSync, /* xSync */ winFileSize, /* xFileSize */ winLock, /* xLock */ winUnlock, /* xUnlock */ winCheckReservedLock, /* xCheckReservedLock */ winFileControl, /* xFileControl */ winSectorSize, /* xSectorSize */ winDeviceCharacteristics, /* xDeviceCharacteristics */ winShmMap, /* xShmMap */ winShmLock, /* xShmLock */ winShmBarrier, /* xShmBarrier */ winShmUnmap, /* xShmUnmap */ winFetch, /* xFetch */ winUnfetch /* xUnfetch */ }; /* ** This vector defines all the methods that can operate on an ** sqlite3_file for win32 without performing any locking. */ static const sqlite3_io_methods winIoNolockMethod = { 3, /* iVersion */ winClose, /* xClose */ winRead, /* xRead */ winWrite, /* xWrite */ winTruncate, /* xTruncate */ winSync, /* xSync */ winFileSize, /* xFileSize */ winNolockLock, /* xLock */ winNolockUnlock, /* xUnlock */ winNolockCheckReservedLock, /* xCheckReservedLock */ winFileControl, /* xFileControl */ winSectorSize, /* xSectorSize */ winDeviceCharacteristics, /* xDeviceCharacteristics */ winShmMap, /* xShmMap */ winShmLock, /* xShmLock */ winShmBarrier, /* xShmBarrier */ winShmUnmap, /* xShmUnmap */ winFetch, /* xFetch */ winUnfetch /* xUnfetch */ }; static winVfsAppData winAppData = { &winIoMethod, /* pMethod */ 0, /* pAppData */ 0 /* bNoLock */ }; static winVfsAppData winNolockAppData = { &winIoNolockMethod, /* pMethod */ 0, /* pAppData */ 1 /* bNoLock */ }; /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. */ #if defined(__CYGWIN__) /* ** Convert a filename from whatever the underlying operating system ** supports for filenames into UTF-8. Space to hold the result is ** obtained from malloc and must be freed by the calling function. */ static char *winConvertToUtf8Filename(const void *zFilename){ char *zConverted = 0; if( osIsNT() ){ zConverted = winUnicodeToUtf8(zFilename); } #ifdef SQLITE_WIN32_HAS_ANSI else{ zConverted = winMbcsToUtf8(zFilename, osAreFileApisANSI()); } #endif /* caller will handle out of memory */ return zConverted; } #endif /* ** Convert a UTF-8 filename into whatever form the underlying ** operating system wants filenames in. Space to hold the result ** is obtained from malloc and must be freed by the calling ** function. */ static void *winConvertFromUtf8Filename(const char *zFilename){ void *zConverted = 0; if( osIsNT() ){ zConverted = winUtf8ToUnicode(zFilename); } #ifdef SQLITE_WIN32_HAS_ANSI else{ zConverted = winUtf8ToMbcs(zFilename, osAreFileApisANSI()); } #endif /* caller will handle out of memory */ return zConverted; } /* ** This function returns non-zero if the specified UTF-8 string buffer ** ends with a directory separator character or one was successfully ** added to it. */ static int winMakeEndInDirSep(int nBuf, char *zBuf){ if( zBuf ){ int nLen = sqlite3Strlen30(zBuf); if( nLen>0 ){ if( winIsDirSep(zBuf[nLen-1]) ){ return 1; }else if( nLen+1mxPathname; nBuf = nMax + 2; zBuf = sqlite3MallocZero( nBuf ); if( !zBuf ){ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n")); return SQLITE_IOERR_NOMEM_BKPT; } /* Figure out the effective temporary directory. First, check if one ** has been explicitly set by the application; otherwise, use the one ** configured by the operating system. */ nDir = nMax - (nPre + 15); assert( nDir>0 ); if( winTempDirDefined() ){ int nDirLen = sqlite3Strlen30(sqlite3_temp_directory); if( nDirLen>0 ){ if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){ nDirLen++; } if( nDirLen>nDir ){ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); sqlite3_free(zBuf); OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n")); return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0); } sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory); } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); } #if defined(__CYGWIN__) else{ static const char *azDirs[] = { 0, /* getenv("SQLITE_TMPDIR") */ 0, /* getenv("TMPDIR") */ 0, /* getenv("TMP") */ 0, /* getenv("TEMP") */ 0, /* getenv("USERPROFILE") */ "/var/tmp", "/usr/tmp", "/tmp", ".", 0 /* List terminator */ }; unsigned int i; const char *zDir = 0; if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR"); if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); if( !azDirs[2] ) azDirs[2] = getenv("TMP"); if( !azDirs[3] ) azDirs[3] = getenv("TEMP"); if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE"); for(i=0; i/etilqs_XXXXXXXXXXXXXXX\0\0" ** ** If not, return SQLITE_ERROR. The number 17 is used here in order to ** account for the space used by the 15 character random suffix and the ** two trailing NUL characters. The final directory separator character ** has already added if it was not already present. */ nLen = sqlite3Strlen30(zBuf); if( (nLen + nPre + 17) > nBuf ){ sqlite3_free(zBuf); OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n")); return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0); } sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX); j = sqlite3Strlen30(zBuf); sqlite3_randomness(15, &zBuf[j]); pid = osGetCurrentProcessId(); for(i=0; i<15; i++, j++){ zBuf[j] += pid & 0xff; pid >>= 8; zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; zBuf[j+1] = 0; *pzBuf = zBuf; OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf)); return SQLITE_OK; } /* ** Return TRUE if the named file is really a directory. Return false if ** it is something other than a directory, or if there is any kind of memory ** allocation failure. */ static int winIsDir(const void *zConverted){ DWORD attr; int rc = 0; DWORD lastErrno; if( osIsNT() ){ int cnt = 0; WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted, GetFileExInfoStandard, &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){} if( !rc ){ return 0; /* Invalid name? */ } attr = sAttrData.dwFileAttributes; #if SQLITE_OS_WINCE==0 }else{ attr = osGetFileAttributesA((char*)zConverted); #endif } return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY); } /* forward reference */ static int winAccess( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to check */ int flags, /* Type of test to make on this file */ int *pResOut /* OUT: Result */ ); /* ** Open a file. */ static int winOpen( sqlite3_vfs *pVfs, /* Used to get maximum path length and AppData */ const char *zName, /* Name of the file (UTF-8) */ sqlite3_file *id, /* Write the SQLite file handle here */ int flags, /* Open mode flags */ int *pOutFlags /* Status return flags */ ){ HANDLE h; DWORD lastErrno = 0; DWORD dwDesiredAccess; DWORD dwShareMode; DWORD dwCreationDisposition; DWORD dwFlagsAndAttributes = 0; #if SQLITE_OS_WINCE int isTemp = 0; #endif winVfsAppData *pAppData; winFile *pFile = (winFile*)id; void *zConverted; /* Filename in OS encoding */ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */ int cnt = 0; /* If argument zPath is a NULL pointer, this function is required to open ** a temporary file. Use this buffer to store the file name in. */ char *zTmpname = 0; /* For temporary filename, if necessary. */ int rc = SQLITE_OK; /* Function Return Code */ #if !defined(NDEBUG) || SQLITE_OS_WINCE int eType = flags&0xFFFFFF00; /* Type of file to open */ #endif int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); int isCreate = (flags & SQLITE_OPEN_CREATE); int isReadonly = (flags & SQLITE_OPEN_READONLY); int isReadWrite = (flags & SQLITE_OPEN_READWRITE); #ifndef NDEBUG int isOpenJournal = (isCreate && ( eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_WAL )); #endif OSTRACE(("OPEN name=%s, pFile=%p, flags=%x, pOutFlags=%p\n", zUtf8Name, id, flags, pOutFlags)); /* Check the following statements are true: ** ** (a) Exactly one of the READWRITE and READONLY flags must be set, and ** (b) if CREATE is set, then READWRITE must also be set, and ** (c) if EXCLUSIVE is set, then CREATE must also be set. ** (d) if DELETEONCLOSE is set, then CREATE must also be set. */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, WAL file and super-journal are never ** automatically deleted. Nor are they ever temporary files. */ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); /* Assert that the upper layer has set one of the "file-type" flags. */ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL ); assert( pFile!=0 ); memset(pFile, 0, sizeof(winFile)); pFile->h = INVALID_HANDLE_VALUE; #if SQLITE_OS_WINRT if( !zUtf8Name && !sqlite3_temp_directory ){ sqlite3_log(SQLITE_ERROR, "sqlite3_temp_directory variable should be set for WinRT"); } #endif /* If the second argument to this function is NULL, generate a ** temporary file name to use */ if( !zUtf8Name ){ assert( isDelete && !isOpenJournal ); rc = winGetTempname(pVfs, &zTmpname); if( rc!=SQLITE_OK ){ OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc))); return rc; } zUtf8Name = zTmpname; } /* Database filenames are double-zero terminated if they are not ** URIs with parameters. Hence, they can always be passed into ** sqlite3_uri_parameter(). */ assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) || zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 ); /* Convert the filename to the system encoding. */ zConverted = winConvertFromUtf8Filename(zUtf8Name); if( zConverted==0 ){ sqlite3_free(zTmpname); OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name)); return SQLITE_IOERR_NOMEM_BKPT; } if( winIsDir(zConverted) ){ sqlite3_free(zConverted); sqlite3_free(zTmpname); OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name)); return SQLITE_CANTOPEN_ISDIR; } if( isReadWrite ){ dwDesiredAccess = GENERIC_READ | GENERIC_WRITE; }else{ dwDesiredAccess = GENERIC_READ; } /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is ** created. SQLite doesn't use it to indicate "exclusive access" ** as it is usually understood. */ if( isExclusive ){ /* Creates a new file, only if it does not already exist. */ /* If the file exists, it fails. */ dwCreationDisposition = CREATE_NEW; }else if( isCreate ){ /* Open existing file, or create if it doesn't exist */ dwCreationDisposition = OPEN_ALWAYS; }else{ /* Opens a file, only if it exists. */ dwCreationDisposition = OPEN_EXISTING; } if( 0==sqlite3_uri_boolean(zName, "exclusive", 0) ){ dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; }else{ dwShareMode = 0; } if( isDelete ){ #if SQLITE_OS_WINCE dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN; isTemp = 1; #else dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY | FILE_ATTRIBUTE_HIDDEN | FILE_FLAG_DELETE_ON_CLOSE; #endif }else{ dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL; } /* Reports from the internet are that performance is always ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */ #if SQLITE_OS_WINCE dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS; #endif if( osIsNT() ){ #if SQLITE_OS_WINRT CREATEFILE2_EXTENDED_PARAMETERS extendedParameters; extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS); extendedParameters.dwFileAttributes = dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK; extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK; extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS; extendedParameters.lpSecurityAttributes = NULL; extendedParameters.hTemplateFile = NULL; do{ h = osCreateFile2((LPCWSTR)zConverted, dwDesiredAccess, dwShareMode, dwCreationDisposition, &extendedParameters); if( h!=INVALID_HANDLE_VALUE ) break; if( isReadWrite ){ int rc2, isRO = 0; sqlite3BeginBenignMalloc(); rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO); sqlite3EndBenignMalloc(); if( rc2==SQLITE_OK && isRO ) break; } }while( winRetryIoerr(&cnt, &lastErrno) ); #else do{ h = osCreateFileW((LPCWSTR)zConverted, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, dwFlagsAndAttributes, NULL); if( h!=INVALID_HANDLE_VALUE ) break; if( isReadWrite ){ int rc2, isRO = 0; sqlite3BeginBenignMalloc(); rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO); sqlite3EndBenignMalloc(); if( rc2==SQLITE_OK && isRO ) break; } }while( winRetryIoerr(&cnt, &lastErrno) ); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ do{ h = osCreateFileA((LPCSTR)zConverted, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, dwFlagsAndAttributes, NULL); if( h!=INVALID_HANDLE_VALUE ) break; if( isReadWrite ){ int rc2, isRO = 0; sqlite3BeginBenignMalloc(); rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO); sqlite3EndBenignMalloc(); if( rc2==SQLITE_OK && isRO ) break; } }while( winRetryIoerr(&cnt, &lastErrno) ); } #endif winLogIoerr(cnt, __LINE__); OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name, dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok")); if( h==INVALID_HANDLE_VALUE ){ sqlite3_free(zConverted); sqlite3_free(zTmpname); if( isReadWrite && !isExclusive ){ return winOpen(pVfs, zName, id, ((flags|SQLITE_OPEN_READONLY) & ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags); }else{ pFile->lastErrno = lastErrno; winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name); return SQLITE_CANTOPEN_BKPT; } } if( pOutFlags ){ if( isReadWrite ){ *pOutFlags = SQLITE_OPEN_READWRITE; }else{ *pOutFlags = SQLITE_OPEN_READONLY; } } OSTRACE(("OPEN file=%p, name=%s, access=%lx, pOutFlags=%p, *pOutFlags=%d, " "rc=%s\n", h, zUtf8Name, dwDesiredAccess, pOutFlags, pOutFlags ? *pOutFlags : 0, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok")); pAppData = (winVfsAppData*)pVfs->pAppData; #if SQLITE_OS_WINCE { if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB && ((pAppData==NULL) || !pAppData->bNoLock) && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK ){ osCloseHandle(h); sqlite3_free(zConverted); sqlite3_free(zTmpname); OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc))); return rc; } } if( isTemp ){ pFile->zDeleteOnClose = zConverted; }else #endif { sqlite3_free(zConverted); } sqlite3_free(zTmpname); id->pMethods = pAppData ? pAppData->pMethod : &winIoMethod; pFile->pVfs = pVfs; pFile->h = h; if( isReadonly ){ pFile->ctrlFlags |= WINFILE_RDONLY; } if( (flags & SQLITE_OPEN_MAIN_DB) && sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pFile->ctrlFlags |= WINFILE_PSOW; } pFile->lastErrno = NO_ERROR; pFile->zPath = zName; #if SQLITE_MAX_MMAP_SIZE>0 pFile->hMap = NULL; pFile->pMapRegion = 0; pFile->mmapSize = 0; pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap; #endif OpenCounter(+1); return rc; } /* ** Delete the named file. ** ** Note that Windows does not allow a file to be deleted if some other ** process has it open. Sometimes a virus scanner or indexing program ** will open a journal file shortly after it is created in order to do ** whatever it does. While this other process is holding the ** file open, we will be unable to delete it. To work around this ** problem, we delay 100 milliseconds and try to delete again. Up ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving ** up and returning an error. */ static int winDelete( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to delete */ int syncDir /* Not used on win32 */ ){ int cnt = 0; int rc; DWORD attr; DWORD lastErrno = 0; void *zConverted; UNUSED_PARAMETER(pVfs); UNUSED_PARAMETER(syncDir); SimulateIOError(return SQLITE_IOERR_DELETE); OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir)); zConverted = winConvertFromUtf8Filename(zFilename); if( zConverted==0 ){ OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename)); return SQLITE_IOERR_NOMEM_BKPT; } if( osIsNT() ){ do { #if SQLITE_OS_WINRT WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard, &sAttrData) ){ attr = sAttrData.dwFileAttributes; }else{ lastErrno = osGetLastError(); if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ }else{ rc = SQLITE_ERROR; } break; } #else attr = osGetFileAttributesW(zConverted); #endif if ( attr==INVALID_FILE_ATTRIBUTES ){ lastErrno = osGetLastError(); if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ }else{ rc = SQLITE_ERROR; } break; } if ( attr&FILE_ATTRIBUTE_DIRECTORY ){ rc = SQLITE_ERROR; /* Files only. */ break; } if ( osDeleteFileW(zConverted) ){ rc = SQLITE_OK; /* Deleted OK. */ break; } if ( !winRetryIoerr(&cnt, &lastErrno) ){ rc = SQLITE_ERROR; /* No more retries. */ break; } } while(1); } #ifdef SQLITE_WIN32_HAS_ANSI else{ do { attr = osGetFileAttributesA(zConverted); if ( attr==INVALID_FILE_ATTRIBUTES ){ lastErrno = osGetLastError(); if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ }else{ rc = SQLITE_ERROR; } break; } if ( attr&FILE_ATTRIBUTE_DIRECTORY ){ rc = SQLITE_ERROR; /* Files only. */ break; } if ( osDeleteFileA(zConverted) ){ rc = SQLITE_OK; /* Deleted OK. */ break; } if ( !winRetryIoerr(&cnt, &lastErrno) ){ rc = SQLITE_ERROR; /* No more retries. */ break; } } while(1); } #endif if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){ rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename); }else{ winLogIoerr(cnt, __LINE__); } sqlite3_free(zConverted); OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc))); return rc; } /* ** Check the existence and status of a file. */ static int winAccess( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to check */ int flags, /* Type of test to make on this file */ int *pResOut /* OUT: Result */ ){ DWORD attr; int rc = 0; DWORD lastErrno = 0; void *zConverted; UNUSED_PARAMETER(pVfs); SimulateIOError( return SQLITE_IOERR_ACCESS; ); OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n", zFilename, flags, pResOut)); if( zFilename==0 ){ *pResOut = 0; OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n", zFilename, pResOut, *pResOut)); return SQLITE_OK; } zConverted = winConvertFromUtf8Filename(zFilename); if( zConverted==0 ){ OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename)); return SQLITE_IOERR_NOMEM_BKPT; } if( osIsNT() ){ int cnt = 0; WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted, GetFileExInfoStandard, &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){} if( rc ){ /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file ** as if it does not exist. */ if( flags==SQLITE_ACCESS_EXISTS && sAttrData.nFileSizeHigh==0 && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ winLogIoerr(cnt, __LINE__); if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){ sqlite3_free(zConverted); return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess", zFilename); }else{ attr = INVALID_FILE_ATTRIBUTES; } } } #ifdef SQLITE_WIN32_HAS_ANSI else{ attr = osGetFileAttributesA((char*)zConverted); } #endif sqlite3_free(zConverted); switch( flags ){ case SQLITE_ACCESS_READ: case SQLITE_ACCESS_EXISTS: rc = attr!=INVALID_FILE_ATTRIBUTES; break; case SQLITE_ACCESS_READWRITE: rc = attr!=INVALID_FILE_ATTRIBUTES && (attr & FILE_ATTRIBUTE_READONLY)==0; break; default: assert(!"Invalid flags argument"); } *pResOut = rc; OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n", zFilename, pResOut, *pResOut)); return SQLITE_OK; } /* ** Returns non-zero if the specified path name starts with the "long path" ** prefix. */ static BOOL winIsLongPathPrefix( const char *zPathname ){ return ( zPathname[0]=='\\' && zPathname[1]=='\\' && zPathname[2]=='?' && zPathname[3]=='\\' ); } /* ** Returns non-zero if the specified path name starts with a drive letter ** followed by a colon character. */ static BOOL winIsDriveLetterAndColon( const char *zPathname ){ return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' ); } /* ** Returns non-zero if the specified path name should be used verbatim. If ** non-zero is returned from this function, the calling function must simply ** use the provided path name verbatim -OR- resolve it into a full path name ** using the GetFullPathName Win32 API function (if available). */ static BOOL winIsVerbatimPathname( const char *zPathname ){ /* ** If the path name starts with a forward slash or a backslash, it is either ** a legal UNC name, a volume relative path, or an absolute path name in the ** "Unix" format on Windows. There is no easy way to differentiate between ** the final two cases; therefore, we return the safer return value of TRUE ** so that callers of this function will simply use it verbatim. */ if ( winIsDirSep(zPathname[0]) ){ return TRUE; } /* ** If the path name starts with a letter and a colon it is either a volume ** relative path or an absolute path. Callers of this function must not ** attempt to treat it as a relative path name (i.e. they should simply use ** it verbatim). */ if ( winIsDriveLetterAndColon(zPathname) ){ return TRUE; } /* ** If we get to this point, the path name should almost certainly be a purely ** relative one (i.e. not a UNC name, not absolute, and not volume relative). */ return FALSE; } /* ** Turn a relative pathname into a full pathname. Write the full ** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname ** bytes in size. */ static int winFullPathnameNoMutex( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zRelative, /* Possibly relative input path */ int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__) DWORD nByte; void *zConverted; char *zOut; #endif /* If this path name begins with "/X:" or "\\?\", where "X" is any ** alphabetic character, discard the initial "/" from the pathname. */ if( zRelative[0]=='/' && (winIsDriveLetterAndColon(zRelative+1) || winIsLongPathPrefix(zRelative+1)) ){ zRelative++; } #if defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); UNUSED_PARAMETER(nFull); assert( nFull>=pVfs->mxPathname ); if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a slash. */ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM_BKPT; } if( cygwin_conv_path( (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) | CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){ sqlite3_free(zOut); return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno, "winFullPathname1", zRelative); }else{ char *zUtf8 = winConvertToUtf8Filename(zOut); if( !zUtf8 ){ sqlite3_free(zOut); return SQLITE_IOERR_NOMEM_BKPT; } sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zUtf8); sqlite3_free(zUtf8); sqlite3_free(zOut); } }else{ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM_BKPT; } if( cygwin_conv_path( (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A), zRelative, zOut, pVfs->mxPathname+1)<0 ){ sqlite3_free(zOut); return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno, "winFullPathname2", zRelative); }else{ char *zUtf8 = winConvertToUtf8Filename(zOut); if( !zUtf8 ){ sqlite3_free(zOut); return SQLITE_IOERR_NOMEM_BKPT; } sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8); sqlite3_free(zUtf8); sqlite3_free(zOut); } } return SQLITE_OK; #endif #if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); /* WinCE has no concept of a relative pathname, or so I am told. */ /* WinRT has no way to convert a relative path to an absolute one. */ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a backslash. */ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zRelative); }else{ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative); } return SQLITE_OK; #endif #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__) /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. This function could fail if, for example, the ** current working directory has been unlinked. */ SimulateIOError( return SQLITE_ERROR ); if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a backslash. */ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zRelative); return SQLITE_OK; } zConverted = winConvertFromUtf8Filename(zRelative); if( zConverted==0 ){ return SQLITE_IOERR_NOMEM_BKPT; } if( osIsNT() ){ LPWSTR zTemp; nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0); if( nByte==0 ){ sqlite3_free(zConverted); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname1", zRelative); } nByte += 3; zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) ); if( zTemp==0 ){ sqlite3_free(zConverted); return SQLITE_IOERR_NOMEM_BKPT; } nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0); if( nByte==0 ){ sqlite3_free(zConverted); sqlite3_free(zTemp); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname2", zRelative); } sqlite3_free(zConverted); zOut = winUnicodeToUtf8(zTemp); sqlite3_free(zTemp); } #ifdef SQLITE_WIN32_HAS_ANSI else{ char *zTemp; nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0); if( nByte==0 ){ sqlite3_free(zConverted); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname3", zRelative); } nByte += 3; zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) ); if( zTemp==0 ){ sqlite3_free(zConverted); return SQLITE_IOERR_NOMEM_BKPT; } nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0); if( nByte==0 ){ sqlite3_free(zConverted); sqlite3_free(zTemp); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname4", zRelative); } sqlite3_free(zConverted); zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI()); sqlite3_free(zTemp); } #endif if( zOut ){ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut); sqlite3_free(zOut); return SQLITE_OK; }else{ return SQLITE_IOERR_NOMEM_BKPT; } #endif } static int winFullPathname( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zRelative, /* Possibly relative input path */ int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ int rc; MUTEX_LOGIC( sqlite3_mutex *pMutex; ) MUTEX_LOGIC( pMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR); ) sqlite3_mutex_enter(pMutex); rc = winFullPathnameNoMutex(pVfs, zRelative, nFull, zFull); sqlite3_mutex_leave(pMutex); return rc; } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; #if defined(__CYGWIN__) int nFull = pVfs->mxPathname+1; char *zFull = sqlite3MallocZero( nFull ); void *zConverted = 0; if( zFull==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){ sqlite3_free(zFull); OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } zConverted = winConvertFromUtf8Filename(zFull); sqlite3_free(zFull); #else void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); #endif if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); #else h = osLoadLibraryW((LPCWSTR)zConverted); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ h = osLoadLibraryA((char*)zConverted); } #endif OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h)); sqlite3_free(zConverted); return (void*)h; } static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ UNUSED_PARAMETER(pVfs); winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut); } static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){ FARPROC proc; UNUSED_PARAMETER(pVfs); proc = osGetProcAddressA((HANDLE)pH, zSym); OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n", (void*)pH, zSym, (void*)proc)); return (void(*)(void))proc; } static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ UNUSED_PARAMETER(pVfs); osFreeLibrary((HANDLE)pHandle); OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle)); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define winDlOpen 0 #define winDlError 0 #define winDlSym 0 #define winDlClose 0 #endif /* State information for the randomness gatherer. */ typedef struct EntropyGatherer EntropyGatherer; struct EntropyGatherer { unsigned char *a; /* Gather entropy into this buffer */ int na; /* Size of a[] in bytes */ int i; /* XOR next input into a[i] */ int nXor; /* Number of XOR operations done */ }; #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) /* Mix sz bytes of entropy into p. */ static void xorMemory(EntropyGatherer *p, unsigned char *x, int sz){ int j, k; for(j=0, k=p->i; ja[k++] ^= x[j]; if( k>=p->na ) k = 0; } p->i = k; p->nXor += sz; } #endif /* !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) */ /* ** Write up to nBuf bytes of randomness into zBuf. */ static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ #if defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) UNUSED_PARAMETER(pVfs); memset(zBuf, 0, nBuf); return nBuf; #else EntropyGatherer e; UNUSED_PARAMETER(pVfs); memset(zBuf, 0, nBuf); e.a = (unsigned char*)zBuf; e.na = nBuf; e.nXor = 0; e.i = 0; { SYSTEMTIME x; osGetSystemTime(&x); xorMemory(&e, (unsigned char*)&x, sizeof(SYSTEMTIME)); } { DWORD pid = osGetCurrentProcessId(); xorMemory(&e, (unsigned char*)&pid, sizeof(DWORD)); } #if SQLITE_OS_WINRT { ULONGLONG cnt = osGetTickCount64(); xorMemory(&e, (unsigned char*)&cnt, sizeof(ULONGLONG)); } #else { DWORD cnt = osGetTickCount(); xorMemory(&e, (unsigned char*)&cnt, sizeof(DWORD)); } #endif /* SQLITE_OS_WINRT */ { LARGE_INTEGER i; osQueryPerformanceCounter(&i); xorMemory(&e, (unsigned char*)&i, sizeof(LARGE_INTEGER)); } #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID { UUID id; memset(&id, 0, sizeof(UUID)); osUuidCreate(&id); xorMemory(&e, (unsigned char*)&id, sizeof(UUID)); memset(&id, 0, sizeof(UUID)); osUuidCreateSequential(&id); xorMemory(&e, (unsigned char*)&id, sizeof(UUID)); } #endif /* !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID */ return e.nXor>nBuf ? nBuf : e.nXor; #endif /* defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) */ } /* ** Sleep for a little while. Return the amount of time slept. */ static int winSleep(sqlite3_vfs *pVfs, int microsec){ sqlite3_win32_sleep((microsec+999)/1000); UNUSED_PARAMETER(pVfs); return ((microsec+999)/1000)*1000; } /* ** The following variable, if set to a non-zero value, is interpreted as ** the number of seconds since 1970 and is used to set the result of ** sqlite3OsCurrentTime() during testing. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ #endif /* ** Find the current time (in Universal Coordinated Time). Write into *piNow ** the current time and date as a Julian Day number times 86_400_000. In ** other words, write into *piNow the number of milliseconds since the Julian ** epoch of noon in Greenwich on November 24, 4714 B.C according to the ** proleptic Gregorian calendar. ** ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date ** cannot be found. */ static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){ /* FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). */ FILETIME ft; static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000; #ifdef SQLITE_TEST static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; #endif /* 2^32 - to avoid use of LL and warnings in gcc */ static const sqlite3_int64 max32BitValue = (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296; #if SQLITE_OS_WINCE SYSTEMTIME time; osGetSystemTime(&time); /* if SystemTimeToFileTime() fails, it returns zero. */ if (!osSystemTimeToFileTime(&time,&ft)){ return SQLITE_ERROR; } #else osGetSystemTimeAsFileTime( &ft ); #endif *piNow = winFiletimeEpoch + ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) + (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000; #ifdef SQLITE_TEST if( sqlite3_current_time ){ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; } #endif UNUSED_PARAMETER(pVfs); return SQLITE_OK; } /* ** Find the current time (in Universal Coordinated Time). Write the ** current time and date as a Julian Day number into *prNow and ** return 0. Return 1 if the time and date cannot be found. */ static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){ int rc; sqlite3_int64 i; rc = winCurrentTimeInt64(pVfs, &i); if( !rc ){ *prNow = i/86400000.0; } return rc; } /* ** The idea is that this function works like a combination of ** GetLastError() and FormatMessage() on Windows (or errno and ** strerror_r() on Unix). After an error is returned by an OS ** function, SQLite calls this function with zBuf pointing to ** a buffer of nBuf bytes. The OS layer should populate the ** buffer with a nul-terminated UTF-8 encoded error message ** describing the last IO error to have occurred within the calling ** thread. ** ** If the error message is too large for the supplied buffer, ** it should be truncated. The return value of xGetLastError ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). If non-zero is returned, ** then it is not necessary to include the nul-terminator character ** in the output buffer. ** ** Not supplying an error message will have no adverse effect ** on SQLite. It is fine to have an implementation that never ** returns an error message: ** ** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ ** assert(zBuf[0]=='\0'); ** return 0; ** } ** ** However if an error message is supplied, it will be incorporated ** by sqlite into the error message available to the user using ** sqlite3_errmsg(), possibly making IO errors easier to debug. */ static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ DWORD e = osGetLastError(); UNUSED_PARAMETER(pVfs); if( nBuf>0 ) winGetLastErrorMsg(e, nBuf, zBuf); return e; } /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs winVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32", /* zName */ &winAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #if defined(SQLITE_WIN32_HAS_WIDE) static sqlite3_vfs winLongPathVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32-longpath", /* zName */ &winAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif static sqlite3_vfs winNolockVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32-none", /* zName */ &winNolockAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #if defined(SQLITE_WIN32_HAS_WIDE) static sqlite3_vfs winLongPathNolockVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32-longpath-none", /* zName */ &winNolockAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==80 ); /* get memory map allocation granularity */ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); #if SQLITE_OS_WINRT osGetNativeSystemInfo(&winSysInfo); #else osGetSystemInfo(&winSysInfo); #endif assert( winSysInfo.dwAllocationGranularity>0 ); assert( winSysInfo.dwPageSize>0 ); sqlite3_vfs_register(&winVfs, 1); #if defined(SQLITE_WIN32_HAS_WIDE) sqlite3_vfs_register(&winLongPathVfs, 0); #endif sqlite3_vfs_register(&winNolockVfs, 0); #if defined(SQLITE_WIN32_HAS_WIDE) sqlite3_vfs_register(&winLongPathNolockVfs, 0); #endif #ifndef SQLITE_OMIT_WAL winBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #endif return SQLITE_OK; } SQLITE_API int sqlite3_os_end(void){ #if SQLITE_OS_WINRT if( sleepObj!=NULL ){ osCloseHandle(sleepObj); sleepObj = NULL; } #endif #ifndef SQLITE_OMIT_WAL winBigLock = 0; #endif return SQLITE_OK; } #endif /* SQLITE_OS_WIN */ /************** End of os_win.c **********************************************/ /************** Begin file memdb.c *******************************************/ /* ** 2016-09-07 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file implements an in-memory VFS. A database is held as a contiguous ** block of memory. ** ** This file also implements interface sqlite3_serialize() and ** sqlite3_deserialize(). */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_DESERIALIZE /* ** Forward declaration of objects used by this utility */ typedef struct sqlite3_vfs MemVfs; typedef struct MemFile MemFile; typedef struct MemStore MemStore; /* Access to a lower-level VFS that (might) implement dynamic loading, ** access to randomness, etc. */ #define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData)) /* Storage for a memdb file. ** ** An memdb object can be shared or separate. Shared memdb objects can be ** used by more than one database connection. Mutexes are used by shared ** memdb objects to coordinate access. Separate memdb objects are only ** connected to a single database connection and do not require additional ** mutexes. ** ** Shared memdb objects have .zFName!=0 and .pMutex!=0. They are created ** using "file:/name?vfs=memdb". The first character of the name must be ** "/" or else the object will be a separate memdb object. All shared ** memdb objects are stored in memdb_g.apMemStore[] in an arbitrary order. ** ** Separate memdb objects are created using a name that does not begin ** with "/" or using sqlite3_deserialize(). ** ** Access rules for shared MemStore objects: ** ** * .zFName is initialized when the object is created and afterwards ** is unchanged until the object is destroyed. So it can be accessed ** at any time as long as we know the object is not being destroyed, ** which means while either the SQLITE_MUTEX_STATIC_VFS1 or ** .pMutex is held or the object is not part of memdb_g.apMemStore[]. ** ** * Can .pMutex can only be changed while holding the ** SQLITE_MUTEX_STATIC_VFS1 mutex or while the object is not part ** of memdb_g.apMemStore[]. ** ** * Other fields can only be changed while holding the .pMutex mutex ** or when the .nRef is less than zero and the object is not part of ** memdb_g.apMemStore[]. ** ** * The .aData pointer has the added requirement that it can can only ** be changed (for resizing) when nMmap is zero. ** */ struct MemStore { sqlite3_int64 sz; /* Size of the file */ sqlite3_int64 szAlloc; /* Space allocated to aData */ sqlite3_int64 szMax; /* Maximum allowed size of the file */ unsigned char *aData; /* content of the file */ sqlite3_mutex *pMutex; /* Used by shared stores only */ int nMmap; /* Number of memory mapped pages */ unsigned mFlags; /* Flags */ int nRdLock; /* Number of readers */ int nWrLock; /* Number of writers. (Always 0 or 1) */ int nRef; /* Number of users of this MemStore */ char *zFName; /* The filename for shared stores */ }; /* An open file */ struct MemFile { sqlite3_file base; /* IO methods */ MemStore *pStore; /* The storage */ int eLock; /* Most recent lock against this file */ }; /* ** File-scope variables for holding the memdb files that are accessible ** to multiple database connections in separate threads. ** ** Must hold SQLITE_MUTEX_STATIC_VFS1 to access any part of this object. */ static struct MemFS { int nMemStore; /* Number of shared MemStore objects */ MemStore **apMemStore; /* Array of all shared MemStore objects */ } memdb_g; /* ** Methods for MemFile */ static int memdbClose(sqlite3_file*); static int memdbRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int memdbWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst); static int memdbTruncate(sqlite3_file*, sqlite3_int64 size); static int memdbSync(sqlite3_file*, int flags); static int memdbFileSize(sqlite3_file*, sqlite3_int64 *pSize); static int memdbLock(sqlite3_file*, int); static int memdbUnlock(sqlite3_file*, int); /* static int memdbCheckReservedLock(sqlite3_file*, int *pResOut);// not used */ static int memdbFileControl(sqlite3_file*, int op, void *pArg); /* static int memdbSectorSize(sqlite3_file*); // not used */ static int memdbDeviceCharacteristics(sqlite3_file*); static int memdbFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); static int memdbUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p); /* ** Methods for MemVfs */ static int memdbOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); /* static int memdbDelete(sqlite3_vfs*, const char *zName, int syncDir); */ static int memdbAccess(sqlite3_vfs*, const char *zName, int flags, int *); static int memdbFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut); static void *memdbDlOpen(sqlite3_vfs*, const char *zFilename); static void memdbDlError(sqlite3_vfs*, int nByte, char *zErrMsg); static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void); static void memdbDlClose(sqlite3_vfs*, void*); static int memdbRandomness(sqlite3_vfs*, int nByte, char *zOut); static int memdbSleep(sqlite3_vfs*, int microseconds); /* static int memdbCurrentTime(sqlite3_vfs*, double*); */ static int memdbGetLastError(sqlite3_vfs*, int, char *); static int memdbCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*); static sqlite3_vfs memdb_vfs = { 2, /* iVersion */ 0, /* szOsFile (set when registered) */ 1024, /* mxPathname */ 0, /* pNext */ "memdb", /* zName */ 0, /* pAppData (set when registered) */ memdbOpen, /* xOpen */ 0, /* memdbDelete, */ /* xDelete */ memdbAccess, /* xAccess */ memdbFullPathname, /* xFullPathname */ memdbDlOpen, /* xDlOpen */ memdbDlError, /* xDlError */ memdbDlSym, /* xDlSym */ memdbDlClose, /* xDlClose */ memdbRandomness, /* xRandomness */ memdbSleep, /* xSleep */ 0, /* memdbCurrentTime, */ /* xCurrentTime */ memdbGetLastError, /* xGetLastError */ memdbCurrentTimeInt64, /* xCurrentTimeInt64 */ 0, /* xSetSystemCall */ 0, /* xGetSystemCall */ 0, /* xNextSystemCall */ }; static const sqlite3_io_methods memdb_io_methods = { 3, /* iVersion */ memdbClose, /* xClose */ memdbRead, /* xRead */ memdbWrite, /* xWrite */ memdbTruncate, /* xTruncate */ memdbSync, /* xSync */ memdbFileSize, /* xFileSize */ memdbLock, /* xLock */ memdbUnlock, /* xUnlock */ 0, /* memdbCheckReservedLock, */ /* xCheckReservedLock */ memdbFileControl, /* xFileControl */ 0, /* memdbSectorSize,*/ /* xSectorSize */ memdbDeviceCharacteristics, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ memdbFetch, /* xFetch */ memdbUnfetch /* xUnfetch */ }; /* ** Enter/leave the mutex on a MemStore */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0 static void memdbEnter(MemStore *p){ UNUSED_PARAMETER(p); } static void memdbLeave(MemStore *p){ UNUSED_PARAMETER(p); } #else static void memdbEnter(MemStore *p){ sqlite3_mutex_enter(p->pMutex); } static void memdbLeave(MemStore *p){ sqlite3_mutex_leave(p->pMutex); } #endif /* ** Close an memdb-file. ** Free the underlying MemStore object when its refcount drops to zero ** or less. */ static int memdbClose(sqlite3_file *pFile){ MemStore *p = ((MemFile*)pFile)->pStore; if( p->zFName ){ int i; #ifndef SQLITE_MUTEX_OMIT sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #endif sqlite3_mutex_enter(pVfsMutex); for(i=0; ALWAYS(inRef==1 ){ memdb_g.apMemStore[i] = memdb_g.apMemStore[--memdb_g.nMemStore]; if( memdb_g.nMemStore==0 ){ sqlite3_free(memdb_g.apMemStore); memdb_g.apMemStore = 0; } } break; } } sqlite3_mutex_leave(pVfsMutex); }else{ memdbEnter(p); } p->nRef--; if( p->nRef<=0 ){ if( p->mFlags & SQLITE_DESERIALIZE_FREEONCLOSE ){ sqlite3_free(p->aData); } memdbLeave(p); sqlite3_mutex_free(p->pMutex); sqlite3_free(p); }else{ memdbLeave(p); } return SQLITE_OK; } /* ** Read data from an memdb-file. */ static int memdbRead( sqlite3_file *pFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); if( iOfst+iAmt>p->sz ){ memset(zBuf, 0, iAmt); if( iOfstsz ) memcpy(zBuf, p->aData+iOfst, p->sz - iOfst); memdbLeave(p); return SQLITE_IOERR_SHORT_READ; } memcpy(zBuf, p->aData+iOfst, iAmt); memdbLeave(p); return SQLITE_OK; } /* ** Try to enlarge the memory allocation to hold at least sz bytes */ static int memdbEnlarge(MemStore *p, sqlite3_int64 newSz){ unsigned char *pNew; if( (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)==0 || NEVER(p->nMmap>0) ){ return SQLITE_FULL; } if( newSz>p->szMax ){ return SQLITE_FULL; } newSz *= 2; if( newSz>p->szMax ) newSz = p->szMax; pNew = sqlite3Realloc(p->aData, newSz); if( pNew==0 ) return SQLITE_IOERR_NOMEM; p->aData = pNew; p->szAlloc = newSz; return SQLITE_OK; } /* ** Write data to an memdb-file. */ static int memdbWrite( sqlite3_file *pFile, const void *z, int iAmt, sqlite_int64 iOfst ){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); if( NEVER(p->mFlags & SQLITE_DESERIALIZE_READONLY) ){ /* Can't happen: memdbLock() will return SQLITE_READONLY before ** reaching this point */ memdbLeave(p); return SQLITE_IOERR_WRITE; } if( iOfst+iAmt>p->sz ){ int rc; if( iOfst+iAmt>p->szAlloc && (rc = memdbEnlarge(p, iOfst+iAmt))!=SQLITE_OK ){ memdbLeave(p); return rc; } if( iOfst>p->sz ) memset(p->aData+p->sz, 0, iOfst-p->sz); p->sz = iOfst+iAmt; } memcpy(p->aData+iOfst, z, iAmt); memdbLeave(p); return SQLITE_OK; } /* ** Truncate an memdb-file. ** ** In rollback mode (which is always the case for memdb, as it does not ** support WAL mode) the truncate() method is only used to reduce ** the size of a file, never to increase the size. */ static int memdbTruncate(sqlite3_file *pFile, sqlite_int64 size){ MemStore *p = ((MemFile*)pFile)->pStore; int rc = SQLITE_OK; memdbEnter(p); if( size>p->sz ){ /* This can only happen with a corrupt wal mode db */ rc = SQLITE_CORRUPT; }else{ p->sz = size; } memdbLeave(p); return rc; } /* ** Sync an memdb-file. */ static int memdbSync(sqlite3_file *pFile, int flags){ UNUSED_PARAMETER(pFile); UNUSED_PARAMETER(flags); return SQLITE_OK; } /* ** Return the current file-size of an memdb-file. */ static int memdbFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); *pSize = p->sz; memdbLeave(p); return SQLITE_OK; } /* ** Lock an memdb-file. */ static int memdbLock(sqlite3_file *pFile, int eLock){ MemFile *pThis = (MemFile*)pFile; MemStore *p = pThis->pStore; int rc = SQLITE_OK; if( eLock<=pThis->eLock ) return SQLITE_OK; memdbEnter(p); assert( p->nWrLock==0 || p->nWrLock==1 ); assert( pThis->eLock<=SQLITE_LOCK_SHARED || p->nWrLock==1 ); assert( pThis->eLock==SQLITE_LOCK_NONE || p->nRdLock>=1 ); if( eLock>SQLITE_LOCK_SHARED && (p->mFlags & SQLITE_DESERIALIZE_READONLY) ){ rc = SQLITE_READONLY; }else{ switch( eLock ){ case SQLITE_LOCK_SHARED: { assert( pThis->eLock==SQLITE_LOCK_NONE ); if( p->nWrLock>0 ){ rc = SQLITE_BUSY; }else{ p->nRdLock++; } break; }; case SQLITE_LOCK_RESERVED: case SQLITE_LOCK_PENDING: { assert( pThis->eLock>=SQLITE_LOCK_SHARED ); if( ALWAYS(pThis->eLock==SQLITE_LOCK_SHARED) ){ if( p->nWrLock>0 ){ rc = SQLITE_BUSY; }else{ p->nWrLock = 1; } } break; } default: { assert( eLock==SQLITE_LOCK_EXCLUSIVE ); assert( pThis->eLock>=SQLITE_LOCK_SHARED ); if( p->nRdLock>1 ){ rc = SQLITE_BUSY; }else if( pThis->eLock==SQLITE_LOCK_SHARED ){ p->nWrLock = 1; } break; } } } if( rc==SQLITE_OK ) pThis->eLock = eLock; memdbLeave(p); return rc; } /* ** Unlock an memdb-file. */ static int memdbUnlock(sqlite3_file *pFile, int eLock){ MemFile *pThis = (MemFile*)pFile; MemStore *p = pThis->pStore; if( eLock>=pThis->eLock ) return SQLITE_OK; memdbEnter(p); assert( eLock==SQLITE_LOCK_SHARED || eLock==SQLITE_LOCK_NONE ); if( eLock==SQLITE_LOCK_SHARED ){ if( ALWAYS(pThis->eLock>SQLITE_LOCK_SHARED) ){ p->nWrLock--; } }else{ if( pThis->eLock>SQLITE_LOCK_SHARED ){ p->nWrLock--; } p->nRdLock--; } pThis->eLock = eLock; memdbLeave(p); return SQLITE_OK; } #if 0 /* ** This interface is only used for crash recovery, which does not ** occur on an in-memory database. */ static int memdbCheckReservedLock(sqlite3_file *pFile, int *pResOut){ *pResOut = 0; return SQLITE_OK; } #endif /* ** File control method. For custom operations on an memdb-file. */ static int memdbFileControl(sqlite3_file *pFile, int op, void *pArg){ MemStore *p = ((MemFile*)pFile)->pStore; int rc = SQLITE_NOTFOUND; memdbEnter(p); if( op==SQLITE_FCNTL_VFSNAME ){ *(char**)pArg = sqlite3_mprintf("memdb(%p,%lld)", p->aData, p->sz); rc = SQLITE_OK; } if( op==SQLITE_FCNTL_SIZE_LIMIT ){ sqlite3_int64 iLimit = *(sqlite3_int64*)pArg; if( iLimitsz ){ if( iLimit<0 ){ iLimit = p->szMax; }else{ iLimit = p->sz; } } p->szMax = iLimit; *(sqlite3_int64*)pArg = iLimit; rc = SQLITE_OK; } memdbLeave(p); return rc; } #if 0 /* Not used because of SQLITE_IOCAP_POWERSAFE_OVERWRITE */ /* ** Return the sector-size in bytes for an memdb-file. */ static int memdbSectorSize(sqlite3_file *pFile){ return 1024; } #endif /* ** Return the device characteristic flags supported by an memdb-file. */ static int memdbDeviceCharacteristics(sqlite3_file *pFile){ UNUSED_PARAMETER(pFile); return SQLITE_IOCAP_ATOMIC | SQLITE_IOCAP_POWERSAFE_OVERWRITE | SQLITE_IOCAP_SAFE_APPEND | SQLITE_IOCAP_SEQUENTIAL; } /* Fetch a page of a memory-mapped file */ static int memdbFetch( sqlite3_file *pFile, sqlite3_int64 iOfst, int iAmt, void **pp ){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); if( iOfst+iAmt>p->sz || (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)!=0 ){ *pp = 0; }else{ p->nMmap++; *pp = (void*)(p->aData + iOfst); } memdbLeave(p); return SQLITE_OK; } /* Release a memory-mapped page */ static int memdbUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){ MemStore *p = ((MemFile*)pFile)->pStore; UNUSED_PARAMETER(iOfst); UNUSED_PARAMETER(pPage); memdbEnter(p); p->nMmap--; memdbLeave(p); return SQLITE_OK; } /* ** Open an mem file handle. */ static int memdbOpen( sqlite3_vfs *pVfs, const char *zName, sqlite3_file *pFd, int flags, int *pOutFlags ){ MemFile *pFile = (MemFile*)pFd; MemStore *p = 0; int szName; UNUSED_PARAMETER(pVfs); memset(pFile, 0, sizeof(*pFile)); szName = sqlite3Strlen30(zName); if( szName>1 && (zName[0]=='/' || zName[0]=='\\') ){ int i; #ifndef SQLITE_MUTEX_OMIT sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #endif sqlite3_mutex_enter(pVfsMutex); for(i=0; izFName,zName)==0 ){ p = memdb_g.apMemStore[i]; break; } } if( p==0 ){ MemStore **apNew; p = sqlite3Malloc( sizeof(*p) + szName + 3 ); if( p==0 ){ sqlite3_mutex_leave(pVfsMutex); return SQLITE_NOMEM; } apNew = sqlite3Realloc(memdb_g.apMemStore, sizeof(apNew[0])*(memdb_g.nMemStore+1) ); if( apNew==0 ){ sqlite3_free(p); sqlite3_mutex_leave(pVfsMutex); return SQLITE_NOMEM; } apNew[memdb_g.nMemStore++] = p; memdb_g.apMemStore = apNew; memset(p, 0, sizeof(*p)); p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE|SQLITE_DESERIALIZE_FREEONCLOSE; p->szMax = sqlite3GlobalConfig.mxMemdbSize; p->zFName = (char*)&p[1]; memcpy(p->zFName, zName, szName+1); p->pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( p->pMutex==0 ){ memdb_g.nMemStore--; sqlite3_free(p); sqlite3_mutex_leave(pVfsMutex); return SQLITE_NOMEM; } p->nRef = 1; memdbEnter(p); }else{ memdbEnter(p); p->nRef++; } sqlite3_mutex_leave(pVfsMutex); }else{ p = sqlite3Malloc( sizeof(*p) ); if( p==0 ){ return SQLITE_NOMEM; } memset(p, 0, sizeof(*p)); p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE | SQLITE_DESERIALIZE_FREEONCLOSE; p->szMax = sqlite3GlobalConfig.mxMemdbSize; } pFile->pStore = p; if( pOutFlags!=0 ){ *pOutFlags = flags | SQLITE_OPEN_MEMORY; } pFd->pMethods = &memdb_io_methods; memdbLeave(p); return SQLITE_OK; } #if 0 /* Only used to delete rollback journals, super-journals, and WAL ** files, none of which exist in memdb. So this routine is never used */ /* ** Delete the file located at zPath. If the dirSync argument is true, ** ensure the file-system modifications are synced to disk before ** returning. */ static int memdbDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ return SQLITE_IOERR_DELETE; } #endif /* ** Test for access permissions. Return true if the requested permission ** is available, or false otherwise. ** ** With memdb, no files ever exist on disk. So always return false. */ static int memdbAccess( sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut ){ UNUSED_PARAMETER(pVfs); UNUSED_PARAMETER(zPath); UNUSED_PARAMETER(flags); *pResOut = 0; return SQLITE_OK; } /* ** Populate buffer zOut with the full canonical pathname corresponding ** to the pathname in zPath. zOut is guaranteed to point to a buffer ** of at least (INST_MAX_PATHNAME+1) bytes. */ static int memdbFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nOut, char *zOut ){ UNUSED_PARAMETER(pVfs); sqlite3_snprintf(nOut, zOut, "%s", zPath); return SQLITE_OK; } /* ** Open the dynamic library located at zPath and return a handle. */ static void *memdbDlOpen(sqlite3_vfs *pVfs, const char *zPath){ return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath); } /* ** Populate the buffer zErrMsg (size nByte bytes) with a human readable ** utf-8 string describing the most recent error encountered associated ** with dynamic libraries. */ static void memdbDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){ ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg); } /* ** Return a pointer to the symbol zSymbol in the dynamic library pHandle. */ static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){ return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym); } /* ** Close the dynamic library handle pHandle. */ static void memdbDlClose(sqlite3_vfs *pVfs, void *pHandle){ ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle); } /* ** Populate the buffer pointed to by zBufOut with nByte bytes of ** random data. */ static int memdbRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut); } /* ** Sleep for nMicro microseconds. Return the number of microseconds ** actually slept. */ static int memdbSleep(sqlite3_vfs *pVfs, int nMicro){ return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro); } #if 0 /* Never used. Modern cores only call xCurrentTimeInt64() */ /* ** Return the current time as a Julian Day number in *pTimeOut. */ static int memdbCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut); } #endif static int memdbGetLastError(sqlite3_vfs *pVfs, int a, char *b){ return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b); } static int memdbCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){ return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p); } /* ** Translate a database connection pointer and schema name into a ** MemFile pointer. */ static MemFile *memdbFromDbSchema(sqlite3 *db, const char *zSchema){ MemFile *p = 0; MemStore *pStore; int rc = sqlite3_file_control(db, zSchema, SQLITE_FCNTL_FILE_POINTER, &p); if( rc ) return 0; if( p->base.pMethods!=&memdb_io_methods ) return 0; pStore = p->pStore; memdbEnter(pStore); if( pStore->zFName!=0 ) p = 0; memdbLeave(pStore); return p; } /* ** Return the serialization of a database */ SQLITE_API unsigned char *sqlite3_serialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which database within the connection */ sqlite3_int64 *piSize, /* Write size here, if not NULL */ unsigned int mFlags /* Maybe SQLITE_SERIALIZE_NOCOPY */ ){ MemFile *p; int iDb; Btree *pBt; sqlite3_int64 sz; int szPage = 0; sqlite3_stmt *pStmt = 0; unsigned char *pOut; char *zSql; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( zSchema==0 ) zSchema = db->aDb[0].zDbSName; p = memdbFromDbSchema(db, zSchema); iDb = sqlite3FindDbName(db, zSchema); if( piSize ) *piSize = -1; if( iDb<0 ) return 0; if( p ){ MemStore *pStore = p->pStore; assert( pStore->pMutex==0 ); if( piSize ) *piSize = pStore->sz; if( mFlags & SQLITE_SERIALIZE_NOCOPY ){ pOut = pStore->aData; }else{ pOut = sqlite3_malloc64( pStore->sz ); if( pOut ) memcpy(pOut, pStore->aData, pStore->sz); } return pOut; } pBt = db->aDb[iDb].pBt; if( pBt==0 ) return 0; szPage = sqlite3BtreeGetPageSize(pBt); zSql = sqlite3_mprintf("PRAGMA \"%w\".page_count", zSchema); rc = zSql ? sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) : SQLITE_NOMEM; sqlite3_free(zSql); if( rc ) return 0; rc = sqlite3_step(pStmt); if( rc!=SQLITE_ROW ){ pOut = 0; }else{ sz = sqlite3_column_int64(pStmt, 0)*szPage; if( piSize ) *piSize = sz; if( mFlags & SQLITE_SERIALIZE_NOCOPY ){ pOut = 0; }else{ pOut = sqlite3_malloc64( sz ); if( pOut ){ int nPage = sqlite3_column_int(pStmt, 0); Pager *pPager = sqlite3BtreePager(pBt); int pgno; for(pgno=1; pgno<=nPage; pgno++){ DbPage *pPage = 0; unsigned char *pTo = pOut + szPage*(sqlite3_int64)(pgno-1); rc = sqlite3PagerGet(pPager, pgno, (DbPage**)&pPage, 0); if( rc==SQLITE_OK ){ memcpy(pTo, sqlite3PagerGetData(pPage), szPage); }else{ memset(pTo, 0, szPage); } sqlite3PagerUnref(pPage); } } } } sqlite3_finalize(pStmt); return pOut; } /* Convert zSchema to a MemDB and initialize its content. */ SQLITE_API int sqlite3_deserialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which DB to reopen with the deserialization */ unsigned char *pData, /* The serialized database content */ sqlite3_int64 szDb, /* Number bytes in the deserialization */ sqlite3_int64 szBuf, /* Total size of buffer pData[] */ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */ ){ MemFile *p; char *zSql; sqlite3_stmt *pStmt = 0; int rc; int iDb; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } if( szDb<0 ) return SQLITE_MISUSE_BKPT; if( szBuf<0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); if( zSchema==0 ) zSchema = db->aDb[0].zDbSName; iDb = sqlite3FindDbName(db, zSchema); testcase( iDb==1 ); if( iDb<2 && iDb!=0 ){ rc = SQLITE_ERROR; goto end_deserialize; } zSql = sqlite3_mprintf("ATTACH x AS %Q", zSchema); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } if( rc ) goto end_deserialize; db->init.iDb = (u8)iDb; db->init.reopenMemdb = 1; rc = sqlite3_step(pStmt); db->init.reopenMemdb = 0; if( rc!=SQLITE_DONE ){ rc = SQLITE_ERROR; goto end_deserialize; } p = memdbFromDbSchema(db, zSchema); if( p==0 ){ rc = SQLITE_ERROR; }else{ MemStore *pStore = p->pStore; pStore->aData = pData; pData = 0; pStore->sz = szDb; pStore->szAlloc = szBuf; pStore->szMax = szBuf; if( pStore->szMaxszMax = sqlite3GlobalConfig.mxMemdbSize; } pStore->mFlags = mFlags; rc = SQLITE_OK; } end_deserialize: sqlite3_finalize(pStmt); if( pData && (mFlags & SQLITE_DESERIALIZE_FREEONCLOSE)!=0 ){ sqlite3_free(pData); } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Return true if the VFS is the memvfs. */ SQLITE_PRIVATE int sqlite3IsMemdb(const sqlite3_vfs *pVfs){ return pVfs==&memdb_vfs; } /* ** This routine is called when the extension is loaded. ** Register the new VFS. */ SQLITE_PRIVATE int sqlite3MemdbInit(void){ sqlite3_vfs *pLower = sqlite3_vfs_find(0); unsigned int sz; if( NEVER(pLower==0) ) return SQLITE_ERROR; sz = pLower->szOsFile; memdb_vfs.pAppData = pLower; /* The following conditional can only be true when compiled for ** Windows x86 and SQLITE_MAX_MMAP_SIZE=0. We always leave ** it in, to be safe, but it is marked as NO_TEST since there ** is no way to reach it under most builds. */ if( szBITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is ** a hash table that will hold up to BITVEC_MXHASH distinct values. ** ** Otherwise, the value i is redirected into one of BITVEC_NPTR ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap ** handles up to iDivisor separate values of i. apSub[0] holds ** values between 1 and iDivisor. apSub[1] holds values between ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized ** to hold deal with values between 1 and iDivisor. */ struct Bitvec { u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ u32 nSet; /* Number of bits that are set - only valid for aHash ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, ** this would be 125. */ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ /* Should >=0 for apSub element. */ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ /* For a BITVEC_SZ of 512, this would be 34,359,739. */ union { BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ u32 aHash[BITVEC_NINT]; /* Hash table representation */ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ } u; }; /* ** Create a new bitmap object able to handle bits between 0 and iSize, ** inclusive. Return a pointer to the new object. Return NULL if ** malloc fails. */ SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){ Bitvec *p; assert( sizeof(*p)==BITVEC_SZ ); p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->iSize = iSize; } return p; } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ assert( p!=0 ); i--; if( i>=p->iSize ) return 0; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return 0; } } if( p->iSize<=BITVEC_NBIT ){ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; } else{ u32 h = BITVEC_HASH(i++); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h = (h+1) % BITVEC_NINT; } return 0; } } SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){ return p!=0 && sqlite3BitvecTestNotNull(p,i); } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. ** ** This routine might cause sub-bitmaps to be allocated. Failing ** to get the memory needed to hold the sub-bitmap is the only ** that can go wrong with an insert, assuming p and i are valid. ** ** The calling function must ensure that p is a valid Bitvec object ** and that the value for "i" is within range of the Bitvec object. ** Otherwise the behavior is undefined. */ SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){ u32 h; if( p==0 ) return SQLITE_OK; assert( i>0 ); assert( i<=p->iSize ); i--; while((p->iSize > BITVEC_NBIT) && p->iDivisor) { u32 bin = i/p->iDivisor; i = i%p->iDivisor; if( p->u.apSub[bin]==0 ){ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT; } p = p->u.apSub[bin]; } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); return SQLITE_OK; } h = BITVEC_HASH(i++); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ /* worrying about sub-dividing and re-hashing. */ if( !p->u.aHash[h] ){ if (p->nSet<(BITVEC_NINT-1)) { goto bitvec_set_end; } else { goto bitvec_set_rehash; } } /* there was a collision, check to see if it's already */ /* in hash, if not, try to find a spot for it */ do { if( p->u.aHash[h]==i ) return SQLITE_OK; h++; if( h>=BITVEC_NINT ) h = 0; } while( p->u.aHash[h] ); /* we didn't find it in the hash. h points to the first */ /* available free spot. check to see if this is going to */ /* make our hash too "full". */ bitvec_set_rehash: if( p->nSet>=BITVEC_MXHASH ){ unsigned int j; int rc; u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); if( aiValues==0 ){ return SQLITE_NOMEM_BKPT; }else{ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); memset(p->u.apSub, 0, sizeof(p->u.apSub)); p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; rc = sqlite3BitvecSet(p, i); for(j=0; jnSet++; p->u.aHash[h] = i; return SQLITE_OK; } /* ** Clear the i-th bit. ** ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage ** that BitvecClear can use to rebuilt its hash table. */ SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ if( p==0 ) return; assert( i>0 ); i--; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return; } } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); }else{ unsigned int j; u32 *aiValues = pBuf; memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); memset(p->u.aHash, 0, sizeof(p->u.aHash)); p->nSet = 0; for(j=0; jnSet++; while( p->u.aHash[h] ){ h++; if( h>=BITVEC_NINT ) h = 0; } p->u.aHash[h] = aiValues[j]; } } } } /* ** Destroy a bitmap object. Reclaim all memory used. */ SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){ if( p==0 ) return; if( p->iDivisor ){ unsigned int i; for(i=0; iu.apSub[i]); } } sqlite3_free(p); } /* ** Return the value of the iSize parameter specified when Bitvec *p ** was created. */ SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){ return p->iSize; } #ifndef SQLITE_UNTESTABLE /* ** Let V[] be an array of unsigned characters sufficient to hold ** up to N bits. Let I be an integer between 0 and N. 0<=I>3] |= (1<<(I&7)) #define SQ__CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) #define SQ__TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 /* ** This routine runs an extensive test of the Bitvec code. ** ** The input is an array of integers that acts as a program ** to test the Bitvec. The integers are opcodes followed ** by 0, 1, or 3 operands, depending on the opcode. Another ** opcode follows immediately after the last operand. ** ** There are 6 opcodes numbered from 0 through 5. 0 is the ** "halt" opcode and causes the test to end. ** ** 0 Halt and return the number of errors ** 1 N S X Set N bits beginning with S and incrementing by X ** 2 N S X Clear N bits beginning with S and incrementing by X ** 3 N Set N randomly chosen bits ** 4 N Clear N randomly chosen bits ** 5 N S X Set N bits from S increment X in array only, not in bitvec ** ** The opcodes 1 through 4 perform set and clear operations are performed ** on both a Bitvec object and on a linear array of bits obtained from malloc. ** Opcode 5 works on the linear array only, not on the Bitvec. ** Opcode 5 is used to deliberately induce a fault in order to ** confirm that error detection works. ** ** At the conclusion of the test the linear array is compared ** against the Bitvec object. If there are any differences, ** an error is returned. If they are the same, zero is returned. ** ** If a memory allocation error occurs, return -1. */ SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){ Bitvec *pBitvec = 0; unsigned char *pV = 0; int rc = -1; int i, nx, pc, op; void *pTmpSpace; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); pV = sqlite3MallocZero( (sz+7)/8 + 1 ); pTmpSpace = sqlite3_malloc64(BITVEC_SZ); if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; /* NULL pBitvec tests */ sqlite3BitvecSet(0, 1); sqlite3BitvecClear(0, 1, pTmpSpace); /* Run the program */ pc = i = 0; while( (op = aOp[pc])!=0 ){ switch( op ){ case 1: case 2: case 5: { nx = 4; i = aOp[pc+2] - 1; aOp[pc+2] += aOp[pc+3]; break; } case 3: case 4: default: { nx = 2; sqlite3_randomness(sizeof(i), &i); break; } } if( (--aOp[pc+1]) > 0 ) nx = 0; pc += nx; i = (i & 0x7fffffff)%sz; if( (op & 1)!=0 ){ SQ__SETBIT(pV, (i+1)); if( op!=5 ){ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; } }else{ SQ__CLEARBIT(pV, (i+1)); sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); } } /* Test to make sure the linear array exactly matches the ** Bitvec object. Start with the assumption that they do ** match (rc==0). Change rc to non-zero if a discrepancy ** is found. */ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) + sqlite3BitvecTest(pBitvec, 0) + (sqlite3BitvecSize(pBitvec) - sz); for(i=1; i<=sz; i++){ if( (SQ__TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ rc = i; break; } } /* Free allocated structure */ bitvec_end: sqlite3_free(pTmpSpace); sqlite3_free(pV); sqlite3BitvecDestroy(pBitvec); return rc; } #endif /* SQLITE_UNTESTABLE */ /************** End of bitvec.c **********************************************/ /************** Begin file pcache.c ******************************************/ /* ** 2008 August 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements that page cache. */ /* #include "sqliteInt.h" */ /* ** A complete page cache is an instance of this structure. Every ** entry in the cache holds a single page of the database file. The ** btree layer only operates on the cached copy of the database pages. ** ** A page cache entry is "clean" if it exactly matches what is currently ** on disk. A page is "dirty" if it has been modified and needs to be ** persisted to disk. ** ** pDirty, pDirtyTail, pSynced: ** All dirty pages are linked into the doubly linked list using ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order ** such that p was added to the list more recently than p->pDirtyNext. ** PCache.pDirty points to the first (newest) element in the list and ** pDirtyTail to the last (oldest). ** ** The PCache.pSynced variable is used to optimize searching for a dirty ** page to eject from the cache mid-transaction. It is better to eject ** a page that does not require a journal sync than one that does. ** Therefore, pSynced is maintained so that it *almost* always points ** to either the oldest page in the pDirty/pDirtyTail list that has a ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one ** (so that the right page to eject can be found by following pDirtyPrev ** pointers). */ struct PCache { PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ PgHdr *pSynced; /* Last synced page in dirty page list */ i64 nRefSum; /* Sum of ref counts over all pages */ int szCache; /* Configured cache size */ int szSpill; /* Size before spilling occurs */ int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ u8 bPurgeable; /* True if pages are on backing store */ u8 eCreate; /* eCreate value for for xFetch() */ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ void *pStress; /* Argument to xStress */ sqlite3_pcache *pCache; /* Pluggable cache module */ }; /********************************** Test and Debug Logic **********************/ /* ** Debug tracing macros. Enable by by changing the "0" to "1" and ** recompiling. ** ** When sqlite3PcacheTrace is 1, single line trace messages are issued. ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries ** is displayed for many operations, resulting in a lot of output. */ #if defined(SQLITE_DEBUG) && 0 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){ PgHdr *pPg; unsigned char *a; int j; if( pLower==0 ){ printf("%3d: NULL\n", i); }else{ pPg = (PgHdr*)pLower->pExtra; printf("%3d: nRef %2lld flgs %02x data ", i, pPg->nRef, pPg->flags); a = (unsigned char *)pLower->pBuf; for(j=0; j<12; j++) printf("%02x", a[j]); printf(" ptr %p\n", pPg); } } static void pcacheDump(PCache *pCache){ int N; int i; sqlite3_pcache_page *pLower; if( sqlite3PcacheTrace<2 ) return; if( pCache->pCache==0 ) return; N = sqlite3PcachePagecount(pCache); if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; for(i=1; i<=N; i++){ pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); pcachePageTrace(i, pLower); if( pLower && ((PgHdr*)pLower)->pPage==0 ){ sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); } } } #else # define pcacheTrace(X) # define pcachePageTrace(PGNO, X) # define pcacheDump(X) #endif /* ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not. ** This routine runs inside of assert() statements only. */ #if defined(SQLITE_ENABLE_EXPENSIVE_ASSERT) static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){ PgHdr *p; for(p=pCache->pDirty; p; p=p->pDirtyNext){ if( p==pPg ) return 1; } return 0; } static int pageNotOnDirtyList(PCache *pCache, PgHdr *pPg){ PgHdr *p; for(p=pCache->pDirty; p; p=p->pDirtyNext){ if( p==pPg ) return 0; } return 1; } #else # define pageOnDirtyList(A,B) 1 # define pageNotOnDirtyList(A,B) 1 #endif /* ** Check invariants on a PgHdr entry. Return true if everything is OK. ** Return false if any invariant is violated. ** ** This routine is for use inside of assert() statements only. For ** example: ** ** assert( sqlite3PcachePageSanity(pPg) ); */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr *pPg){ PCache *pCache; assert( pPg!=0 ); assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ pCache = pPg->pCache; assert( pCache!=0 ); /* Every page has an associated PCache */ if( pPg->flags & PGHDR_CLEAN ){ assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ assert( pageNotOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirtylist */ }else{ assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */ assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg ); assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg ); assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg ); assert( pageOnDirtyList(pCache, pPg) ); } /* WRITEABLE pages must also be DIRTY */ if( pPg->flags & PGHDR_WRITEABLE ){ assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ } /* NEED_SYNC can be set independently of WRITEABLE. This can happen, ** for example, when using the sqlite3PagerDontWrite() optimization: ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. ** (2) Page X moved to freelist, WRITEABLE is cleared ** (3) Page X reused, WRITEABLE is set again ** If NEED_SYNC had been cleared in step 2, then it would not be reset ** in step 3, and page might be written into the database without first ** syncing the rollback journal, which might cause corruption on a power ** loss. ** ** Another example is when the database page size is smaller than the ** disk sector size. When any page of a sector is journalled, all pages ** in that sector are marked NEED_SYNC even if they are still CLEAN, just ** in case they are later modified, since all pages in the same sector ** must be journalled and synced before any of those pages can be safely ** written. */ return 1; } #endif /* SQLITE_DEBUG */ /********************************** Linked List Management ********************/ /* Allowed values for second argument to pcacheManageDirtyList() */ #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ /* ** Manage pPage's participation on the dirty list. Bits of the addRemove ** argument determines what operation to do. The 0x01 bit means first ** remove pPage from the dirty list. The 0x02 means add pPage back to ** the dirty list. Doing both moves pPage to the front of the dirty list. */ static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ PCache *p = pPage->pCache; pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", pPage->pgno)); if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); assert( pPage->pDirtyPrev || pPage==p->pDirty ); /* Update the PCache1.pSynced variable if necessary. */ if( p->pSynced==pPage ){ p->pSynced = pPage->pDirtyPrev; } if( pPage->pDirtyNext ){ pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; }else{ assert( pPage==p->pDirtyTail ); p->pDirtyTail = pPage->pDirtyPrev; } if( pPage->pDirtyPrev ){ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; }else{ /* If there are now no dirty pages in the cache, set eCreate to 2. ** This is an optimization that allows sqlite3PcacheFetch() to skip ** searching for a dirty page to eject from the cache when it might ** otherwise have to. */ assert( pPage==p->pDirty ); p->pDirty = pPage->pDirtyNext; assert( p->bPurgeable || p->eCreate==2 ); if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ assert( p->bPurgeable==0 || p->eCreate==1 ); p->eCreate = 2; } } } if( addRemove & PCACHE_DIRTYLIST_ADD ){ pPage->pDirtyPrev = 0; pPage->pDirtyNext = p->pDirty; if( pPage->pDirtyNext ){ assert( pPage->pDirtyNext->pDirtyPrev==0 ); pPage->pDirtyNext->pDirtyPrev = pPage; }else{ p->pDirtyTail = pPage; if( p->bPurgeable ){ assert( p->eCreate==2 ); p->eCreate = 1; } } p->pDirty = pPage; /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set ** pSynced to point to it. Checking the NEED_SYNC flag is an ** optimization, as if pSynced points to a page with the NEED_SYNC ** flag set sqlite3PcacheFetchStress() searches through all newer ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ ){ p->pSynced = pPage; } } pcacheDump(p); } /* ** Wrapper around the pluggable caches xUnpin method. If the cache is ** being used for an in-memory database, this function is a no-op. */ static void pcacheUnpin(PgHdr *p){ if( p->pCache->bPurgeable ){ pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); pcacheDump(p->pCache); } } /* ** Compute the number of pages of cache requested. p->szCache is the ** cache size requested by the "PRAGMA cache_size" statement. */ static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the ** suggested cache size is set to N. */ return p->szCache; }else{ i64 n; /* IMPLEMENTATION-OF: R-59858-46238 If the argument N is negative, then the ** number of cache pages is adjusted to be a number of pages that would ** use approximately abs(N*1024) bytes of memory based on the current ** page size. */ n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); if( n>1000000000 ) n = 1000000000; return (int)n; } } /*************************************************** General Interfaces ****** ** ** Initialize and shutdown the page cache subsystem. Neither of these ** functions are threadsafe. */ SQLITE_PRIVATE int sqlite3PcacheInitialize(void){ if( sqlite3GlobalConfig.pcache2.xInit==0 ){ /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the ** built-in default page cache is used instead of the application defined ** page cache. */ sqlite3PCacheSetDefault(); assert( sqlite3GlobalConfig.pcache2.xInit!=0 ); } return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); } SQLITE_PRIVATE void sqlite3PcacheShutdown(void){ if( sqlite3GlobalConfig.pcache2.xShutdown ){ /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); } } /* ** Return the size in bytes of a PCache object. */ SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); } /* ** Create a new PCache object. Storage space to hold the object ** has already been allocated and is passed in as the p pointer. ** The caller discovers how much space needs to be allocated by ** calling sqlite3PcacheSize(). ** ** szExtra is some extra space allocated for each page. The first ** 8 bytes of the extra space will be zeroed as the page is allocated, ** but remaining content will be uninitialized. Though it is opaque ** to this module, the extra space really ends up being the MemPage ** structure in the pager. */ SQLITE_PRIVATE int sqlite3PcacheOpen( int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ void *pStress, /* Argument to xStress */ PCache *p /* Preallocated space for the PCache */ ){ memset(p, 0, sizeof(PCache)); p->szPage = 1; p->szExtra = szExtra; assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ p->bPurgeable = bPurgeable; p->eCreate = 2; p->xStress = xStress; p->pStress = pStress; p->szCache = 100; p->szSpill = 1; pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); return sqlite3PcacheSetPageSize(p, szPage); } /* ** Change the page size for PCache object. The caller must ensure that there ** are no outstanding page references when this function is called. */ SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ assert( pCache->nRefSum==0 && pCache->pDirty==0 ); if( pCache->szPage ){ sqlite3_pcache *pNew; pNew = sqlite3GlobalConfig.pcache2.xCreate( szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), pCache->bPurgeable ); if( pNew==0 ) return SQLITE_NOMEM_BKPT; sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); if( pCache->pCache ){ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } pCache->pCache = pNew; pCache->szPage = szPage; pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); } return SQLITE_OK; } /* ** Try to obtain a page from the cache. ** ** This routine returns a pointer to an sqlite3_pcache_page object if ** such an object is already in cache, or if a new one is created. ** This routine returns a NULL pointer if the object was not in cache ** and could not be created. ** ** The createFlags should be 0 to check for existing pages and should ** be 3 (not 1, but 3) to try to create a new page. ** ** If the createFlag is 0, then NULL is always returned if the page ** is not already in the cache. If createFlag is 1, then a new page ** is created only if that can be done without spilling dirty pages ** and without exceeding the cache size limit. ** ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly ** initialize the sqlite3_pcache_page object and convert it into a ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() ** routines are split this way for performance reasons. When separated ** they can both (usually) operate without having to push values to ** the stack on entry and pop them back off on exit, which saves a ** lot of pushing and popping. */ SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ int createFlag /* If true, create page if it does not exist already */ ){ int eCreate; sqlite3_pcache_page *pRes; assert( pCache!=0 ); assert( pCache->pCache!=0 ); assert( createFlag==3 || createFlag==0 ); assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); /* eCreate defines what to do if the page does not exist. ** 0 Do not allocate a new page. (createFlag==0) ** 1 Allocate a new page if doing so is inexpensive. ** (createFlag==1 AND bPurgeable AND pDirty) ** 2 Allocate a new page even it doing so is difficult. ** (createFlag==1 AND !(bPurgeable AND pDirty) */ eCreate = createFlag & pCache->eCreate; assert( eCreate==0 || eCreate==1 || eCreate==2 ); assert( createFlag==0 || pCache->eCreate==eCreate ); assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno, createFlag?" create":"",pRes)); pcachePageTrace(pgno, pRes); return pRes; } /* ** If the sqlite3PcacheFetch() routine is unable to allocate a new ** page because no clean pages are available for reuse and the cache ** size limit has been reached, then this routine can be invoked to ** try harder to allocate a page. This routine might invoke the stress ** callback to spill dirty pages to the journal. It will then try to ** allocate the new page and will only fail to allocate a new page on ** an OOM error. ** ** This routine should be invoked only after sqlite3PcacheFetch() fails. */ SQLITE_PRIVATE int sqlite3PcacheFetchStress( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ sqlite3_pcache_page **ppPage /* Write result here */ ){ PgHdr *pPg; if( pCache->eCreate==2 ) return 0; if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. ** ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC ** flag is currently referenced, then the following may leave pSynced ** set incorrectly (pointing to other than the LRU page with NEED_SYNC ** cleared). This is Ok, as pSynced is just an optimization. */ for(pPg=pCache->pSynced; pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); pPg=pPg->pDirtyPrev ); pCache->pSynced = pPg; if( !pPg ){ for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); } if( pPg ){ int rc; #ifdef SQLITE_LOG_CACHE_SPILL sqlite3_log(SQLITE_FULL, "spill page %d making room for %d - cache used: %d/%d", pPg->pgno, pgno, sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache), numberOfCachePages(pCache)); #endif pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); rc = pCache->xStress(pCache->pStress, pPg); pcacheDump(pCache); if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ return rc; } } } *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; } /* ** This is a helper routine for sqlite3PcacheFetchFinish() ** ** In the uncommon case where the page being fetched has not been ** initialized, this routine is invoked to do the initialization. ** This routine is broken out into a separate function since it ** requires extra stack manipulation that can be avoided in the common ** case. */ static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr*)pPage->pExtra; assert( pPgHdr->pPage==0 ); memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); pPgHdr->pPage = pPage; pPgHdr->pData = pPage->pBuf; pPgHdr->pExtra = (void *)&pPgHdr[1]; memset(pPgHdr->pExtra, 0, 8); pPgHdr->pCache = pCache; pPgHdr->pgno = pgno; pPgHdr->flags = PGHDR_CLEAN; return sqlite3PcacheFetchFinish(pCache,pgno,pPage); } /* ** This routine converts the sqlite3_pcache_page object returned by ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine ** must be called after sqlite3PcacheFetch() in order to get a usable ** result. */ SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr *)pPage->pExtra; if( !pPgHdr->pPage ){ return pcacheFetchFinishWithInit(pCache, pgno, pPage); } pCache->nRefSum++; pPgHdr->nRef++; assert( sqlite3PcachePageSanity(pPgHdr) ); return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the ** reference count drops to 0, then it is made eligible for recycling. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ assert( p->nRef>0 ); p->pCache->nRefSum--; if( (--p->nRef)==0 ){ if( p->flags&PGHDR_CLEAN ){ pcacheUnpin(p); }else{ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); assert( sqlite3PcachePageSanity(p) ); } } } /* ** Increase the reference count of a supplied page by 1. */ SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){ assert(p->nRef>0); assert( sqlite3PcachePageSanity(p) ); p->nRef++; p->pCache->nRefSum++; } /* ** Drop a page from the cache. There must be exactly one reference to the ** page. This function deletes that reference, so after it returns the ** page pointed to by p is invalid. */ SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){ assert( p->nRef==1 ); assert( sqlite3PcachePageSanity(p) ); if( p->flags&PGHDR_DIRTY ){ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); } p->pCache->nRefSum--; sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); } /* ** Make sure the page is marked as dirty. If it isn't dirty already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){ assert( p->nRef>0 ); assert( sqlite3PcachePageSanity(p) ); if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ p->flags &= ~PGHDR_DONT_WRITE; if( p->flags & PGHDR_CLEAN ){ p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); assert( sqlite3PcachePageSanity(p) ); } assert( sqlite3PcachePageSanity(p) ); } } /* ** Make sure the page is marked as clean. If it isn't clean already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){ assert( sqlite3PcachePageSanity(p) ); assert( (p->flags & PGHDR_DIRTY)!=0 ); assert( (p->flags & PGHDR_CLEAN)==0 ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); p->flags |= PGHDR_CLEAN; pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); assert( sqlite3PcachePageSanity(p) ); if( p->nRef==0 ){ pcacheUnpin(p); } } /* ** Make every page in the cache clean. */ SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){ PgHdr *p; pcacheTrace(("%p.CLEAN-ALL\n",pCache)); while( (p = pCache->pDirty)!=0 ){ sqlite3PcacheMakeClean(p); } } /* ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. */ SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache *pCache){ PgHdr *p; pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); for(p=pCache->pDirty; p; p=p->pDirtyNext){ p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); } pCache->pSynced = pCache->pDirtyTail; } /* ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. */ SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){ PgHdr *p; for(p=pCache->pDirty; p; p=p->pDirtyNext){ p->flags &= ~PGHDR_NEED_SYNC; } pCache->pSynced = pCache->pDirtyTail; } /* ** Change the page number of page p to newPgno. */ SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ PCache *pCache = p->pCache; sqlite3_pcache_page *pOther; assert( p->nRef>0 ); assert( newPgno>0 ); assert( sqlite3PcachePageSanity(p) ); pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0); if( pOther ){ PgHdr *pXPage = (PgHdr*)pOther->pExtra; assert( pXPage->nRef==0 ); pXPage->nRef++; pCache->nRefSum++; sqlite3PcacheDrop(pXPage); } sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); p->pgno = newPgno; if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); assert( sqlite3PcachePageSanity(p) ); } } /* ** Drop every cache entry whose page number is greater than "pgno". The ** caller must ensure that there are no outstanding references to any pages ** other than page 1 with a page number greater than pgno. ** ** If there is a reference to page 1 and the pgno parameter passed to this ** function is 0, then the data area associated with page 1 is zeroed, but ** the page object is not dropped. */ SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ if( pCache->pCache ){ PgHdr *p; PgHdr *pNext; pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); for(p=pCache->pDirty; p; p=pNext){ pNext = p->pDirtyNext; /* This routine never gets call with a positive pgno except right ** after sqlite3PcacheCleanAll(). So if there are dirty pages, ** it must be that pgno==0. */ assert( p->pgno>0 ); if( p->pgno>pgno ){ assert( p->flags&PGHDR_DIRTY ); sqlite3PcacheMakeClean(p); } } if( pgno==0 && pCache->nRefSum ){ sqlite3_pcache_page *pPage1; pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because ** pCache->nRefSum>0 */ memset(pPage1->pBuf, 0, pCache->szPage); pgno = 1; } } sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); } } /* ** Close a cache. */ SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){ assert( pCache->pCache!=0 ); pcacheTrace(("%p.CLOSE\n",pCache)); sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } /* ** Discard the contents of the cache. */ SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){ sqlite3PcacheTruncate(pCache, 0); } /* ** Merge two lists of pages connected by pDirty and in pgno order. ** Do not bother fixing the pDirtyPrev pointers. */ static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ PgHdr result, *pTail; pTail = &result; assert( pA!=0 && pB!=0 ); for(;;){ if( pA->pgnopgno ){ pTail->pDirty = pA; pTail = pA; pA = pA->pDirty; if( pA==0 ){ pTail->pDirty = pB; break; } }else{ pTail->pDirty = pB; pTail = pB; pB = pB->pDirty; if( pB==0 ){ pTail->pDirty = pA; break; } } } return result.pDirty; } /* ** Sort the list of pages in ascending order by pgno. Pages are ** connected by pDirty pointers. The pDirtyPrev pointers are ** corrupted by this sort. ** ** Since there cannot be more than 2^31 distinct pages in a database, ** there cannot be more than 31 buckets required by the merge sorter. ** One extra bucket is added to catch overflow in case something ** ever changes to make the previous sentence incorrect. */ #define N_SORT_BUCKET 32 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ PgHdr *a[N_SORT_BUCKET], *p; int i; memset(a, 0, sizeof(a)); while( pIn ){ p = pIn; pIn = p->pDirty; p->pDirty = 0; for(i=0; ALWAYS(ipDirty; p; p=p->pDirtyNext){ p->pDirty = p->pDirtyNext; } return pcacheSortDirtyList(pCache->pDirty); } /* ** Return the total number of references to all pages held by the cache. ** ** This is not the total number of pages referenced, but the sum of the ** reference count for all pages. */ SQLITE_PRIVATE i64 sqlite3PcacheRefCount(PCache *pCache){ return pCache->nRefSum; } /* ** Return the number of references to the page supplied as an argument. */ SQLITE_PRIVATE i64 sqlite3PcachePageRefcount(PgHdr *p){ return p->nRef; } /* ** Return the total number of pages in the cache. */ SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){ assert( pCache->pCache!=0 ); return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); } #ifdef SQLITE_TEST /* ** Get the suggested cache-size value. */ SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){ return numberOfCachePages(pCache); } #endif /* ** Set the suggested cache-size value. */ SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ assert( pCache->pCache!=0 ); pCache->szCache = mxPage; sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, numberOfCachePages(pCache)); } /* ** Set the suggested cache-spill value. Make no changes if if the ** argument is zero. Return the effective cache-spill size, which will ** be the larger of the szSpill and szCache. */ SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ int res; assert( p->pCache!=0 ); if( mxPage ){ if( mxPage<0 ){ mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); } p->szSpill = mxPage; } res = numberOfCachePages(p); if( resszSpill ) res = p->szSpill; return res; } /* ** Free up as much memory as possible from the page cache. */ SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){ assert( pCache->pCache!=0 ); sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); } /* ** Return the size of the header added by this middleware layer ** in the page-cache hierarchy. */ SQLITE_PRIVATE int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } /* ** Return the number of dirty pages currently in the cache, as a percentage ** of the configured cache size. */ SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){ PgHdr *pDirty; int nDirty = 0; int nCache = numberOfCachePages(pCache); for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if there are one or more dirty pages in the cache. Else false. */ SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache){ return (pCache->pDirty!=0); } #endif #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ PgHdr *pDirty; for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ xIter(pDirty); } } #endif /************** End of pcache.c **********************************************/ /************** Begin file pcache1.c *****************************************/ /* ** 2008 November 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements the default page cache implementation (the ** sqlite3_pcache interface). It also contains part of the implementation ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. ** If the default page cache implementation is overridden, then neither of ** these two features are available. ** ** A Page cache line looks like this: ** ** ------------------------------------------------------------- ** | database page content | PgHdr1 | MemPage | PgHdr | ** ------------------------------------------------------------- ** ** The database page content is up front (so that buffer overreads tend to ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage ** is the extension added by the btree.c module containing information such ** as the database page number and how that database page is used. PgHdr ** is added by the pcache.c layer and contains information used to keep track ** of which pages are "dirty". PgHdr1 is an extension added by this ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. ** PgHdr1 contains information needed to look up a page by its page number. ** The superclass sqlite3_pcache_page.pBuf points to the start of the ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. ** ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this ** size can vary according to architecture, compile-time options, and ** SQLite library version number. ** ** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER ** was defined, then the page content would be held in a separate memory ** allocation from the PgHdr1. This was intended to avoid clownshoe memory ** allocations. However, the btree layer needs a small (16-byte) overrun ** area after the page content buffer. The header serves as that overrun ** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid ** any possibility of a memory error. ** ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates ** with this module. Information is passed back and forth as PgHdr1 pointers. ** ** The pcache.c and pager.c modules deal pointers to PgHdr objects. ** The btree.c module deals with pointers to MemPage objects. ** ** SOURCE OF PAGE CACHE MEMORY: ** ** Memory for a page might come from any of three sources: ** ** (1) The general-purpose memory allocator - sqlite3Malloc() ** (2) Global page-cache memory provided using sqlite3_config() with ** SQLITE_CONFIG_PAGECACHE. ** (3) PCache-local bulk allocation. ** ** The third case is a chunk of heap memory (defaulting to 100 pages worth) ** that is allocated when the page cache is created. The size of the local ** bulk allocation can be adjusted using ** ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). ** ** If N is positive, then N pages worth of memory are allocated using a single ** sqlite3Malloc() call and that memory is used for the first N pages allocated. ** Or if N is negative, then -1024*N bytes of memory are allocated and used ** for as many pages as can be accommodated. ** ** Only one of (2) or (3) can be used. Once the memory available to (2) or ** (3) is exhausted, subsequent allocations fail over to the general-purpose ** memory allocator (1). ** ** Earlier versions of SQLite used only methods (1) and (2). But experiments ** show that method (3) with N==100 provides about a 5% performance boost for ** common workloads. */ /* #include "sqliteInt.h" */ typedef struct PCache1 PCache1; typedef struct PgHdr1 PgHdr1; typedef struct PgFreeslot PgFreeslot; typedef struct PGroup PGroup; /* ** Each cache entry is represented by an instance of the following ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated ** directly before this structure and is used to cache the page content. ** ** When reading a corrupt database file, it is possible that SQLite might ** read a few bytes (no more than 16 bytes) past the end of the page buffer. ** It will only read past the end of the page buffer, never write. This ** object is positioned immediately after the page buffer to serve as an ** overrun area, so that overreads are harmless. ** ** Variables isBulkLocal and isAnchor were once type "u8". That works, ** but causes a 2-byte gap in the structure for most architectures (since ** pointers must be either 4 or 8-byte aligned). As this structure is located ** in memory directly after the associated page data, if the database is ** corrupt, code at the b-tree layer may overread the page buffer and ** read part of this structure before the corruption is detected. This ** can cause a valgrind error if the uninitialized gap is accessed. Using u16 ** ensures there is no such gap, and therefore no bytes of uninitialized ** memory in the structure. ** ** The pLruNext and pLruPrev pointers form a double-linked circular list ** of all pages that are unpinned. The PGroup.lru element (which should be ** the only element on the list with PgHdr1.isAnchor set to 1) forms the ** beginning and the end of the list. */ struct PgHdr1 { sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ unsigned int iKey; /* Key value (page number) */ u16 isBulkLocal; /* This page from bulk local storage */ u16 isAnchor; /* This is the PGroup.lru element */ PgHdr1 *pNext; /* Next in hash table chain */ PCache1 *pCache; /* Cache that currently owns this page */ PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ /* NB: pLruPrev is only valid if pLruNext!=0 */ }; /* ** A page is pinned if it is not on the LRU list. To be "pinned" means ** that the page is in active use and must not be deallocated. */ #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set ** of one or more PCaches that are able to recycle each other's unpinned ** pages when they are under memory pressure. A PGroup is an instance of ** the following object. ** ** This page cache implementation works in one of two modes: ** ** (1) Every PCache is the sole member of its own PGroup. There is ** one PGroup per PCache. ** ** (2) There is a single global PGroup that all PCaches are a member ** of. ** ** Mode 1 uses more memory (since PCache instances are not able to rob ** unused pages from other PCaches) but it also operates without a mutex, ** and is therefore often faster. Mode 2 requires a mutex in order to be ** threadsafe, but recycles pages more efficiently. ** ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single ** PGroup which is the pcache1.grp global variable and its mutex is ** SQLITE_MUTEX_STATIC_LRU. */ struct PGroup { sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ unsigned int nMinPage; /* Sum of nMin for purgeable caches */ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ unsigned int nPurgeable; /* Number of purgeable pages allocated */ PgHdr1 lru; /* The beginning and end of the LRU list */ }; /* Each page cache is an instance of the following object. Every ** open database file (including each in-memory database and each ** temporary or transient database) has a single page cache which ** is an instance of this object. ** ** Pointers to structures of this type are cast and returned as ** opaque sqlite3_pcache* handles. */ struct PCache1 { /* Cache configuration parameters. Page size (szPage) and the purgeable ** flag (bPurgeable) and the pnPurgeable pointer are all set when the ** cache is created and are never changed thereafter. nMax may be ** modified at any time by a call to the pcache1Cachesize() method. ** The PGroup mutex must be held when accessing nMax. */ PGroup *pGroup; /* PGroup this cache belongs to */ unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ int szPage; /* Size of database content section */ int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ int szAlloc; /* Total size of one pcache line */ int bPurgeable; /* True if cache is purgeable */ unsigned int nMin; /* Minimum number of pages reserved */ unsigned int nMax; /* Configured "cache_size" value */ unsigned int n90pct; /* nMax*9/10 */ unsigned int iMaxKey; /* Largest key seen since xTruncate() */ unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/ /* Hash table of all pages. The following variables may only be accessed ** when the accessor is holding the PGroup mutex. */ unsigned int nRecyclable; /* Number of pages in the LRU list */ unsigned int nPage; /* Total number of pages in apHash */ unsigned int nHash; /* Number of slots in apHash[] */ PgHdr1 **apHash; /* Hash table for fast lookup by key */ PgHdr1 *pFree; /* List of unused pcache-local pages */ void *pBulk; /* Bulk memory used by pcache-local */ }; /* ** Free slots in the allocator used to divide up the global page cache ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. */ struct PgFreeslot { PgFreeslot *pNext; /* Next free slot */ }; /* ** Global data used by this cache. */ static SQLITE_WSD struct PCacheGlobal { PGroup grp; /* The global PGroup for mode (2) */ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all ** fixed at sqlite3_initialize() time and do not require mutex protection. ** The nFreeSlot and pFree values do require mutex protection. */ int isInit; /* True if initialized */ int separateCache; /* Use a new PGroup for each PCache */ int nInitPage; /* Initial bulk allocation size */ int szSlot; /* Size of each free slot */ int nSlot; /* The number of pcache slots */ int nReserve; /* Try to keep nFreeSlot above this */ void *pStart, *pEnd; /* Bounds of global page cache memory */ /* Above requires no mutex. Use mutex below for variable that follow. */ sqlite3_mutex *mutex; /* Mutex for accessing the following: */ PgFreeslot *pFree; /* Free page blocks */ int nFreeSlot; /* Number of unused pcache slots */ /* The following value requires a mutex to change. We skip the mutex on ** reading because (1) most platforms read a 32-bit integer atomically and ** (2) even if an incorrect value is read, no great harm is done since this ** is really just an optimization. */ int bUnderPressure; /* True if low on PAGECACHE memory */ } pcache1_g; /* ** All code in this file should access the global structure above via the ** alias "pcache1". This ensures that the WSD emulation is used when ** compiling for systems that do not support real WSD. */ #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) /* ** Macros to enter and leave the PCache LRU mutex. */ #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 # define pcache1EnterMutex(X) assert((X)->mutex==0) # define pcache1LeaveMutex(X) assert((X)->mutex==0) # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 #else # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 #endif /******************************************************************************/ /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ /* ** This function is called during initialization if a static buffer is ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE ** verb to sqlite3_config(). Parameter pBuf points to an allocation large ** enough to contain 'n' buffers of 'sz' bytes each. ** ** This routine is called from sqlite3_initialize() and so it is guaranteed ** to be serialized already. There is no need for further mutexing. */ SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ if( pcache1.isInit ){ PgFreeslot *p; if( pBuf==0 ) sz = n = 0; if( n==0 ) sz = 0; sz = ROUNDDOWN8(sz); pcache1.szSlot = sz; pcache1.nSlot = pcache1.nFreeSlot = n; pcache1.nReserve = n>90 ? 10 : (n/10 + 1); pcache1.pStart = pBuf; pcache1.pFree = 0; pcache1.bUnderPressure = 0; while( n-- ){ p = (PgFreeslot*)pBuf; p->pNext = pcache1.pFree; pcache1.pFree = p; pBuf = (void*)&((char*)pBuf)[sz]; } pcache1.pEnd = pBuf; } } /* ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return ** true if pCache->pFree ends up containing one or more free pages. */ static int pcache1InitBulk(PCache1 *pCache){ i64 szBulk; char *zBulk; if( pcache1.nInitPage==0 ) return 0; /* Do not bother with a bulk allocation if the cache size very small */ if( pCache->nMax<3 ) return 0; sqlite3BeginBenignMalloc(); if( pcache1.nInitPage>0 ){ szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; }else{ szBulk = -1024 * (i64)pcache1.nInitPage; } if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ szBulk = pCache->szAlloc*(i64)pCache->nMax; } zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); sqlite3EndBenignMalloc(); if( zBulk ){ int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; do{ PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; pX->page.pBuf = zBulk; pX->page.pExtra = &pX[1]; pX->isBulkLocal = 1; pX->isAnchor = 0; pX->pNext = pCache->pFree; pX->pLruPrev = 0; /* Initializing this saves a valgrind error */ pCache->pFree = pX; zBulk += pCache->szAlloc; }while( --nBulk ); } return pCache->pFree!=0; } /* ** Malloc function used within this file to allocate space from the buffer ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no ** such buffer exists or there is no space left in it, this function falls ** back to sqlite3Malloc(). ** ** Multiple threads can run this routine at the same time. Global variables ** in pcache1 need to be protected via mutex. */ static void *pcache1Alloc(int nByte){ void *p = 0; assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); if( nByte<=pcache1.szSlot ){ sqlite3_mutex_enter(pcache1.mutex); p = (PgHdr1 *)pcache1.pFree; if( p ){ pcache1.pFree = pcache1.pFree->pNext; pcache1.nFreeSlot--; pcache1.bUnderPressure = pcache1.nFreeSlot=0 ); sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); } sqlite3_mutex_leave(pcache1.mutex); } if( p==0 ){ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get ** it from sqlite3Malloc instead. */ p = sqlite3Malloc(nByte); #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS if( p ){ int sz = sqlite3MallocSize(p); sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); sqlite3_mutex_leave(pcache1.mutex); } #endif sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); } return p; } /* ** Free an allocated buffer obtained from pcache1Alloc(). */ static void pcache1Free(void *p){ if( p==0 ) return; if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ PgFreeslot *pSlot; sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); pSlot = (PgFreeslot*)p; pSlot->pNext = pcache1.pFree; pcache1.pFree = pSlot; pcache1.nFreeSlot++; pcache1.bUnderPressure = pcache1.nFreeSlot=pcache1.pStart && ppGroup->mutex) ); if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ assert( pCache->pFree!=0 ); p = pCache->pFree; pCache->pFree = p->pNext; p->pNext = 0; }else{ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* The group mutex must be released before pcache1Alloc() is called. This ** is because it might call sqlite3_release_memory(), which assumes that ** this mutex is not held. */ assert( pcache1.separateCache==0 ); assert( pCache->pGroup==&pcache1.grp ); pcache1LeaveMutex(pCache->pGroup); #endif if( benignMalloc ){ sqlite3BeginBenignMalloc(); } pPg = pcache1Alloc(pCache->szAlloc); if( benignMalloc ){ sqlite3EndBenignMalloc(); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT pcache1EnterMutex(pCache->pGroup); #endif if( pPg==0 ) return 0; p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; p->page.pBuf = pPg; p->page.pExtra = &p[1]; p->isBulkLocal = 0; p->isAnchor = 0; p->pLruPrev = 0; /* Initializing this saves a valgrind error */ } (*pCache->pnPurgeable)++; return p; } /* ** Free a page object allocated by pcache1AllocPage(). */ static void pcache1FreePage(PgHdr1 *p){ PCache1 *pCache; assert( p!=0 ); pCache = p->pCache; assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); if( p->isBulkLocal ){ p->pNext = pCache->pFree; pCache->pFree = p; }else{ pcache1Free(p->page.pBuf); } (*pCache->pnPurgeable)--; } /* ** Malloc function used by SQLite to obtain space from the buffer configured ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer ** exists, this function falls back to sqlite3Malloc(). */ SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){ assert( sz<=65536+8 ); /* These allocations are never very large */ return pcache1Alloc(sz); } /* ** Free an allocated buffer obtained from sqlite3PageMalloc(). */ SQLITE_PRIVATE void sqlite3PageFree(void *p){ pcache1Free(p); } /* ** Return true if it desirable to avoid allocating a new page cache ** entry. ** ** If memory was allocated specifically to the page cache using ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then ** it is desirable to avoid allocating a new page cache entry because ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient ** for all page cache needs and we should not need to spill the ** allocation onto the heap. ** ** Or, the heap is used for all page cache memory but the heap is ** under memory pressure, then again it is desirable to avoid ** allocating a new page cache entry in order to avoid stressing ** the heap even further. */ static int pcache1UnderMemoryPressure(PCache1 *pCache){ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ return pcache1.bUnderPressure; }else{ return sqlite3HeapNearlyFull(); } } /******************************************************************************/ /******** General Implementation Functions ************************************/ /* ** This function is used to resize the hash table used by the cache passed ** as the first argument. ** ** The PCache mutex must be held when this function is called. */ static void pcache1ResizeHash(PCache1 *p){ PgHdr1 **apNew; unsigned int nNew; unsigned int i; assert( sqlite3_mutex_held(p->pGroup->mutex) ); nNew = p->nHash*2; if( nNew<256 ){ nNew = 256; } pcache1LeaveMutex(p->pGroup); if( p->nHash ){ sqlite3BeginBenignMalloc(); } apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); if( p->nHash ){ sqlite3EndBenignMalloc(); } pcache1EnterMutex(p->pGroup); if( apNew ){ for(i=0; inHash; i++){ PgHdr1 *pPage; PgHdr1 *pNext = p->apHash[i]; while( (pPage = pNext)!=0 ){ unsigned int h = pPage->iKey % nNew; pNext = pPage->pNext; pPage->pNext = apNew[h]; apNew[h] = pPage; } } sqlite3_free(p->apHash); p->apHash = apNew; p->nHash = nNew; } } /* ** This function is used internally to remove the page pPage from the ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup ** LRU list, then this function is a no-op. ** ** The PGroup mutex must be held when this function is called. */ static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ assert( pPage!=0 ); assert( PAGE_IS_UNPINNED(pPage) ); assert( pPage->pLruNext ); assert( pPage->pLruPrev ); assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); pPage->pLruPrev->pLruNext = pPage->pLruNext; pPage->pLruNext->pLruPrev = pPage->pLruPrev; pPage->pLruNext = 0; /* pPage->pLruPrev = 0; ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ assert( pPage->isAnchor==0 ); assert( pPage->pCache->pGroup->lru.isAnchor==1 ); pPage->pCache->nRecyclable--; return pPage; } /* ** Remove the page supplied as an argument from the hash table ** (PCache1.apHash structure) that it is currently stored in. ** Also free the page if freePage is true. ** ** The PGroup mutex must be held when this function is called. */ static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ unsigned int h; PCache1 *pCache = pPage->pCache; PgHdr1 **pp; assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); h = pPage->iKey % pCache->nHash; for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); *pp = (*pp)->pNext; pCache->nPage--; if( freeFlag ) pcache1FreePage(pPage); } /* ** If there are currently more than nMaxPage pages allocated, try ** to recycle pages to reduce the number allocated to nMaxPage. */ static void pcache1EnforceMaxPage(PCache1 *pCache){ PGroup *pGroup = pCache->pGroup; PgHdr1 *p; assert( sqlite3_mutex_held(pGroup->mutex) ); while( pGroup->nPurgeable>pGroup->nMaxPage && (p=pGroup->lru.pLruPrev)->isAnchor==0 ){ assert( p->pCache->pGroup==pGroup ); assert( PAGE_IS_UNPINNED(p) ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } if( pCache->nPage==0 && pCache->pBulk ){ sqlite3_free(pCache->pBulk); pCache->pBulk = pCache->pFree = 0; } } /* ** Discard all pages from cache pCache with a page number (key value) ** greater than or equal to iLimit. Any pinned pages that meet this ** criteria are unpinned before they are discarded. ** ** The PCache mutex must be held when this function is called. */ static void pcache1TruncateUnsafe( PCache1 *pCache, /* The cache to truncate */ unsigned int iLimit /* Drop pages with this pgno or larger */ ){ TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ unsigned int h, iStop; assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); assert( pCache->iMaxKey >= iLimit ); assert( pCache->nHash > 0 ); if( pCache->iMaxKey - iLimit < pCache->nHash ){ /* If we are just shaving the last few pages off the end of the ** cache, then there is no point in scanning the entire hash table. ** Only scan those hash slots that might contain pages that need to ** be removed. */ h = iLimit % pCache->nHash; iStop = pCache->iMaxKey % pCache->nHash; TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ }else{ /* This is the general case where many pages are being removed. ** It is necessary to scan the entire hash table */ h = pCache->nHash/2; iStop = h - 1; } for(;;){ PgHdr1 **pp; PgHdr1 *pPage; assert( hnHash ); pp = &pCache->apHash[h]; while( (pPage = *pp)!=0 ){ if( pPage->iKey>=iLimit ){ pCache->nPage--; *pp = pPage->pNext; if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); pcache1FreePage(pPage); }else{ pp = &pPage->pNext; TESTONLY( if( nPage>=0 ) nPage++; ) } } if( h==iStop ) break; h = (h+1) % pCache->nHash; } assert( nPage<0 || pCache->nPage==(unsigned)nPage ); } /******************************************************************************/ /******** sqlite3_pcache Methods **********************************************/ /* ** Implementation of the sqlite3_pcache.xInit method. */ static int pcache1Init(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit==0 ); memset(&pcache1, 0, sizeof(pcache1)); /* ** The pcache1.separateCache variable is true if each PCache has its own ** private PGroup (mode-1). pcache1.separateCache is false if the single ** PGroup in pcache1.grp is used for all page caches (mode-2). ** ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT ** ** * Use a unified cache in single-threaded applications that have ** configured a start-time buffer for use as page-cache memory using ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL ** pBuf argument. ** ** * Otherwise use separate caches (mode-1) */ #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) pcache1.separateCache = 0; #elif SQLITE_THREADSAFE pcache1.separateCache = sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.bCoreMutex>0; #else pcache1.separateCache = sqlite3GlobalConfig.pPage==0; #endif #if SQLITE_THREADSAFE if( sqlite3GlobalConfig.bCoreMutex ){ pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); } #endif if( pcache1.separateCache && sqlite3GlobalConfig.nPage!=0 && sqlite3GlobalConfig.pPage==0 ){ pcache1.nInitPage = sqlite3GlobalConfig.nPage; }else{ pcache1.nInitPage = 0; } pcache1.grp.mxPinned = 10; pcache1.isInit = 1; return SQLITE_OK; } /* ** Implementation of the sqlite3_pcache.xShutdown method. ** Note that the static mutex allocated in xInit does ** not need to be freed. */ static void pcache1Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit!=0 ); memset(&pcache1, 0, sizeof(pcache1)); } /* forward declaration */ static void pcache1Destroy(sqlite3_pcache *p); /* ** Implementation of the sqlite3_pcache.xCreate method. ** ** Allocate a new cache. */ static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ PCache1 *pCache; /* The newly created page cache */ PGroup *pGroup; /* The group the new page cache will belong to */ int sz; /* Bytes of memory required to allocate the new cache */ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); assert( szExtra < 300 ); sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; pCache = (PCache1 *)sqlite3MallocZero(sz); if( pCache ){ if( pcache1.separateCache ){ pGroup = (PGroup*)&pCache[1]; pGroup->mxPinned = 10; }else{ pGroup = &pcache1.grp; } pcache1EnterMutex(pGroup); if( pGroup->lru.isAnchor==0 ){ pGroup->lru.isAnchor = 1; pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; } pCache->pGroup = pGroup; pCache->szPage = szPage; pCache->szExtra = szExtra; pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); pCache->bPurgeable = (bPurgeable ? 1 : 0); pcache1ResizeHash(pCache); if( bPurgeable ){ pCache->nMin = 10; pGroup->nMinPage += pCache->nMin; pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pCache->pnPurgeable = &pGroup->nPurgeable; }else{ pCache->pnPurgeable = &pCache->nPurgeableDummy; } pcache1LeaveMutex(pGroup); if( pCache->nHash==0 ){ pcache1Destroy((sqlite3_pcache*)pCache); pCache = 0; } } return (sqlite3_pcache *)pCache; } /* ** Implementation of the sqlite3_pcache.xCachesize method. ** ** Configure the cache_size limit for a cache. */ static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ PCache1 *pCache = (PCache1 *)p; u32 n; assert( nMax>=0 ); if( pCache->bPurgeable ){ PGroup *pGroup = pCache->pGroup; pcache1EnterMutex(pGroup); n = (u32)nMax; if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){ n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax; } pGroup->nMaxPage += (n - pCache->nMax); pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pCache->nMax = n; pCache->n90pct = pCache->nMax*9/10; pcache1EnforceMaxPage(pCache); pcache1LeaveMutex(pGroup); } } /* ** Implementation of the sqlite3_pcache.xShrink method. ** ** Free up as much memory as possible. */ static void pcache1Shrink(sqlite3_pcache *p){ PCache1 *pCache = (PCache1*)p; if( pCache->bPurgeable ){ PGroup *pGroup = pCache->pGroup; unsigned int savedMaxPage; pcache1EnterMutex(pGroup); savedMaxPage = pGroup->nMaxPage; pGroup->nMaxPage = 0; pcache1EnforceMaxPage(pCache); pGroup->nMaxPage = savedMaxPage; pcache1LeaveMutex(pGroup); } } /* ** Implementation of the sqlite3_pcache.xPagecount method. */ static int pcache1Pagecount(sqlite3_pcache *p){ int n; PCache1 *pCache = (PCache1*)p; pcache1EnterMutex(pCache->pGroup); n = pCache->nPage; pcache1LeaveMutex(pCache->pGroup); return n; } /* ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described ** in the header of the pcache1Fetch() procedure. ** ** This steps are broken out into a separate procedure because they are ** usually not needed, and by avoiding the stack initialization required ** for these steps, the main pcache1Fetch() procedure can run faster. */ static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( PCache1 *pCache, unsigned int iKey, int createFlag ){ unsigned int nPinned; PGroup *pGroup = pCache->pGroup; PgHdr1 *pPage = 0; /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ assert( pCache->nPage >= pCache->nRecyclable ); nPinned = pCache->nPage - pCache->nRecyclable; assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); assert( pCache->n90pct == pCache->nMax*9/10 ); if( createFlag==1 && ( nPinned>=pGroup->mxPinned || nPinned>=pCache->n90pct || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclablenPage>=pCache->nHash ) pcache1ResizeHash(pCache); assert( pCache->nHash>0 && pCache->apHash ); /* Step 4. Try to recycle a page. */ if( pCache->bPurgeable && !pGroup->lru.pLruPrev->isAnchor && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) ){ PCache1 *pOther; pPage = pGroup->lru.pLruPrev; assert( PAGE_IS_UNPINNED(pPage) ); pcache1RemoveFromHash(pPage, 0); pcache1PinPage(pPage); pOther = pPage->pCache; if( pOther->szAlloc != pCache->szAlloc ){ pcache1FreePage(pPage); pPage = 0; }else{ pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); } } /* Step 5. If a usable page buffer has still not been found, ** attempt to allocate a new one. */ if( !pPage ){ pPage = pcache1AllocPage(pCache, createFlag==1); } if( pPage ){ unsigned int h = iKey % pCache->nHash; pCache->nPage++; pPage->iKey = iKey; pPage->pNext = pCache->apHash[h]; pPage->pCache = pCache; pPage->pLruNext = 0; /* pPage->pLruPrev = 0; ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ *(void **)pPage->page.pExtra = 0; pCache->apHash[h] = pPage; if( iKey>pCache->iMaxKey ){ pCache->iMaxKey = iKey; } } return pPage; } /* ** Implementation of the sqlite3_pcache.xFetch method. ** ** Fetch a page by key value. ** ** Whether or not a new page may be allocated by this function depends on ** the value of the createFlag argument. 0 means do not allocate a new ** page. 1 means allocate a new page if space is easily available. 2 ** means to try really hard to allocate a new page. ** ** For a non-purgeable cache (a cache used as the storage for an in-memory ** database) there is really no difference between createFlag 1 and 2. So ** the calling function (pcache.c) will never have a createFlag of 1 on ** a non-purgeable cache. ** ** There are three different approaches to obtaining space for a page, ** depending on the value of parameter createFlag (which may be 0, 1 or 2). ** ** 1. Regardless of the value of createFlag, the cache is searched for a ** copy of the requested page. If one is found, it is returned. ** ** 2. If createFlag==0 and the page is not already in the cache, NULL is ** returned. ** ** 3. If createFlag is 1, and the page is not already in the cache, then ** return NULL (do not allocate a new page) if any of the following ** conditions are true: ** ** (a) the number of pages pinned by the cache is greater than ** PCache1.nMax, or ** ** (b) the number of pages pinned by the cache is greater than ** the sum of nMax for all purgeable caches, less the sum of ** nMin for all other purgeable caches, or ** ** 4. If none of the first three conditions apply and the cache is marked ** as purgeable, and if one of the following is true: ** ** (a) The number of pages allocated for the cache is already ** PCache1.nMax, or ** ** (b) The number of pages allocated for all purgeable caches is ** already equal to or greater than the sum of nMax for all ** purgeable caches, ** ** (c) The system is under memory pressure and wants to avoid ** unnecessary pages cache entry allocations ** ** then attempt to recycle a page from the LRU list. If it is the right ** size, return the recycled buffer. Otherwise, free the buffer and ** proceed to step 5. ** ** 5. Otherwise, allocate and return a new page buffer. ** ** There are two versions of this routine. pcache1FetchWithMutex() is ** the general case. pcache1FetchNoMutex() is a faster implementation for ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper ** invokes the appropriate routine. */ static PgHdr1 *pcache1FetchNoMutex( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = 0; /* Step 1: Search the hash table for an existing entry. */ pPage = pCache->apHash[iKey % pCache->nHash]; while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } /* Step 2: If the page was found in the hash table, then return it. ** If the page was not in the hash table and createFlag is 0, abort. ** Otherwise (page not in hash and createFlag!=0) continue with ** subsequent steps to try to create the page. */ if( pPage ){ if( PAGE_IS_UNPINNED(pPage) ){ return pcache1PinPage(pPage); }else{ return pPage; } }else if( createFlag ){ /* Steps 3, 4, and 5 implemented by this subroutine */ return pcache1FetchStage2(pCache, iKey, createFlag); }else{ return 0; } } #if PCACHE1_MIGHT_USE_GROUP_MUTEX static PgHdr1 *pcache1FetchWithMutex( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage; pcache1EnterMutex(pCache->pGroup); pPage = pcache1FetchNoMutex(p, iKey, createFlag); assert( pPage==0 || pCache->iMaxKey>=iKey ); pcache1LeaveMutex(pCache->pGroup); return pPage; } #endif static sqlite3_pcache_page *pcache1Fetch( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) PCache1 *pCache = (PCache1 *)p; #endif assert( offsetof(PgHdr1,page)==0 ); assert( pCache->bPurgeable || createFlag!=1 ); assert( pCache->bPurgeable || pCache->nMin==0 ); assert( pCache->bPurgeable==0 || pCache->nMin==10 ); assert( pCache->nMin==0 || pCache->bPurgeable ); assert( pCache->nHash>0 ); #if PCACHE1_MIGHT_USE_GROUP_MUTEX if( pCache->pGroup->mutex ){ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); }else #endif { return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); } } /* ** Implementation of the sqlite3_pcache.xUnpin method. ** ** Mark a page as unpinned (eligible for asynchronous recycling). */ static void pcache1Unpin( sqlite3_pcache *p, sqlite3_pcache_page *pPg, int reuseUnlikely ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = (PgHdr1 *)pPg; PGroup *pGroup = pCache->pGroup; assert( pPage->pCache==pCache ); pcache1EnterMutex(pGroup); /* It is an error to call this function if the page is already ** part of the PGroup LRU list. */ assert( pPage->pLruNext==0 ); assert( PAGE_IS_PINNED(pPage) ); if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ pcache1RemoveFromHash(pPage, 1); }else{ /* Add the page to the PGroup LRU list. */ PgHdr1 **ppFirst = &pGroup->lru.pLruNext; pPage->pLruPrev = &pGroup->lru; (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; *ppFirst = pPage; pCache->nRecyclable++; } pcache1LeaveMutex(pCache->pGroup); } /* ** Implementation of the sqlite3_pcache.xRekey method. */ static void pcache1Rekey( sqlite3_pcache *p, sqlite3_pcache_page *pPg, unsigned int iOld, unsigned int iNew ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = (PgHdr1 *)pPg; PgHdr1 **pp; unsigned int hOld, hNew; assert( pPage->iKey==iOld ); assert( pPage->pCache==pCache ); assert( iOld!=iNew ); /* The page number really is changing */ pcache1EnterMutex(pCache->pGroup); assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */ hOld = iOld%pCache->nHash; pp = &pCache->apHash[hOld]; while( (*pp)!=pPage ){ pp = &(*pp)->pNext; } *pp = pPage->pNext; assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */ hNew = iNew%pCache->nHash; pPage->iKey = iNew; pPage->pNext = pCache->apHash[hNew]; pCache->apHash[hNew] = pPage; if( iNew>pCache->iMaxKey ){ pCache->iMaxKey = iNew; } pcache1LeaveMutex(pCache->pGroup); } /* ** Implementation of the sqlite3_pcache.xTruncate method. ** ** Discard all unpinned pages in the cache with a page number equal to ** or greater than parameter iLimit. Any pinned pages with a page number ** equal to or greater than iLimit are implicitly unpinned. */ static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ PCache1 *pCache = (PCache1 *)p; pcache1EnterMutex(pCache->pGroup); if( iLimit<=pCache->iMaxKey ){ pcache1TruncateUnsafe(pCache, iLimit); pCache->iMaxKey = iLimit-1; } pcache1LeaveMutex(pCache->pGroup); } /* ** Implementation of the sqlite3_pcache.xDestroy method. ** ** Destroy a cache allocated using pcache1Create(). */ static void pcache1Destroy(sqlite3_pcache *p){ PCache1 *pCache = (PCache1 *)p; PGroup *pGroup = pCache->pGroup; assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); pcache1EnterMutex(pGroup); if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); assert( pGroup->nMaxPage >= pCache->nMax ); pGroup->nMaxPage -= pCache->nMax; assert( pGroup->nMinPage >= pCache->nMin ); pGroup->nMinPage -= pCache->nMin; pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pcache1EnforceMaxPage(pCache); pcache1LeaveMutex(pGroup); sqlite3_free(pCache->pBulk); sqlite3_free(pCache->apHash); sqlite3_free(pCache); } /* ** This function is called during initialization (sqlite3_initialize()) to ** install the default pluggable cache module, assuming the user has not ** already provided an alternative. */ SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){ static const sqlite3_pcache_methods2 defaultMethods = { 1, /* iVersion */ 0, /* pArg */ pcache1Init, /* xInit */ pcache1Shutdown, /* xShutdown */ pcache1Create, /* xCreate */ pcache1Cachesize, /* xCachesize */ pcache1Pagecount, /* xPagecount */ pcache1Fetch, /* xFetch */ pcache1Unpin, /* xUnpin */ pcache1Rekey, /* xRekey */ pcache1Truncate, /* xTruncate */ pcache1Destroy, /* xDestroy */ pcache1Shrink /* xShrink */ }; sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); } /* ** Return the size of the header on each page of this PCACHE implementation. */ SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } /* ** Return the global mutex used by this PCACHE implementation. The ** sqlite3_status() routine needs access to this mutex. */ SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void){ return pcache1.mutex; } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** ** nReq is the number of bytes of memory required. Once this much has ** been released, the function returns. The return value is the total number ** of bytes of memory released. */ SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){ int nFree = 0; assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); assert( sqlite3_mutex_notheld(pcache1.mutex) ); if( sqlite3GlobalConfig.pPage==0 ){ PgHdr1 *p; pcache1EnterMutex(&pcache1.grp); while( (nReq<0 || nFreeisAnchor==0 ){ nFree += pcache1MemSize(p->page.pBuf); assert( PAGE_IS_UNPINNED(p) ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } pcache1LeaveMutex(&pcache1.grp); } return nFree; } #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ #ifdef SQLITE_TEST /* ** This function is used by test procedures to inspect the internal state ** of the global cache. */ SQLITE_PRIVATE void sqlite3PcacheStats( int *pnCurrent, /* OUT: Total number of pages cached */ int *pnMax, /* OUT: Global maximum cache size */ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ int *pnRecyclable /* OUT: Total number of pages available for recycling */ ){ PgHdr1 *p; int nRecyclable = 0; for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ assert( PAGE_IS_UNPINNED(p) ); nRecyclable++; } *pnCurrent = pcache1.grp.nPurgeable; *pnMax = (int)pcache1.grp.nMaxPage; *pnMin = (int)pcache1.grp.nMinPage; *pnRecyclable = nRecyclable; } #endif /************** End of pcache1.c *********************************************/ /************** Begin file rowset.c ******************************************/ /* ** 2008 December 3 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This module implements an object we call a "RowSet". ** ** The RowSet object is a collection of rowids. Rowids ** are inserted into the RowSet in an arbitrary order. Inserts ** can be intermixed with tests to see if a given rowid has been ** previously inserted into the RowSet. ** ** After all inserts are finished, it is possible to extract the ** elements of the RowSet in sorted order. Once this extraction ** process has started, no new elements may be inserted. ** ** Hence, the primitive operations for a RowSet are: ** ** CREATE ** INSERT ** TEST ** SMALLEST ** DESTROY ** ** The CREATE and DESTROY primitives are the constructor and destructor, ** obviously. The INSERT primitive adds a new element to the RowSet. ** TEST checks to see if an element is already in the RowSet. SMALLEST ** extracts the least value from the RowSet. ** ** The INSERT primitive might allocate additional memory. Memory is ** allocated in chunks so most INSERTs do no allocation. There is an ** upper bound on the size of allocated memory. No memory is freed ** until DESTROY. ** ** The TEST primitive includes a "batch" number. The TEST primitive ** will only see elements that were inserted before the last change ** in the batch number. In other words, if an INSERT occurs between ** two TESTs where the TESTs have the same batch number, then the ** value added by the INSERT will not be visible to the second TEST. ** The initial batch number is zero, so if the very first TEST contains ** a non-zero batch number, it will see all prior INSERTs. ** ** No INSERTs may occurs after a SMALLEST. An assertion will fail if ** that is attempted. ** ** The cost of an INSERT is roughly constant. (Sometimes new memory ** has to be allocated on an INSERT.) The cost of a TEST with a new ** batch number is O(NlogN) where N is the number of elements in the RowSet. ** The cost of a TEST using the same batch number is O(logN). The cost ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST ** primitives are constant time. The cost of DESTROY is O(N). ** ** TEST and SMALLEST may not be used by the same RowSet. This used to ** be possible, but the feature was not used, so it was removed in order ** to simplify the code. */ /* #include "sqliteInt.h" */ /* ** Target size for allocation chunks. */ #define ROWSET_ALLOCATION_SIZE 1024 /* ** The number of rowset entries per allocation chunk. */ #define ROWSET_ENTRY_PER_CHUNK \ ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) /* ** Each entry in a RowSet is an instance of the following object. ** ** This same object is reused to store a linked list of trees of RowSetEntry ** objects. In that alternative use, pRight points to the next entry ** in the list, pLeft points to the tree, and v is unused. The ** RowSet.pForest value points to the head of this forest list. */ struct RowSetEntry { i64 v; /* ROWID value for this entry */ struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ }; /* ** RowSetEntry objects are allocated in large chunks (instances of the ** following structure) to reduce memory allocation overhead. The ** chunks are kept on a linked list so that they can be deallocated ** when the RowSet is destroyed. */ struct RowSetChunk { struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ }; /* ** A RowSet in an instance of the following structure. ** ** A typedef of this structure if found in sqliteInt.h. */ struct RowSet { struct RowSetChunk *pChunk; /* List of all chunk allocations */ sqlite3 *db; /* The database connection */ struct RowSetEntry *pEntry; /* List of entries using pRight */ struct RowSetEntry *pLast; /* Last entry on the pEntry list */ struct RowSetEntry *pFresh; /* Source of new entry objects */ struct RowSetEntry *pForest; /* List of binary trees of entries */ u16 nFresh; /* Number of objects on pFresh */ u16 rsFlags; /* Various flags */ int iBatch; /* Current insert batch */ }; /* ** Allowed values for RowSet.rsFlags */ #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ /* ** Allocate a RowSet object. Return NULL if a memory allocation ** error occurs. */ SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db){ RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p)); if( p ){ int N = sqlite3DbMallocSize(db, p); p->pChunk = 0; p->db = db; p->pEntry = 0; p->pLast = 0; p->pForest = 0; p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); p->rsFlags = ROWSET_SORTED; p->iBatch = 0; } return p; } /* ** Deallocate all chunks from a RowSet. This frees all memory that ** the RowSet has allocated over its lifetime. This routine is ** the destructor for the RowSet. */ SQLITE_PRIVATE void sqlite3RowSetClear(void *pArg){ RowSet *p = (RowSet*)pArg; struct RowSetChunk *pChunk, *pNextChunk; for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ pNextChunk = pChunk->pNextChunk; sqlite3DbFree(p->db, pChunk); } p->pChunk = 0; p->nFresh = 0; p->pEntry = 0; p->pLast = 0; p->pForest = 0; p->rsFlags = ROWSET_SORTED; } /* ** Deallocate all chunks from a RowSet. This frees all memory that ** the RowSet has allocated over its lifetime. This routine is ** the destructor for the RowSet. */ SQLITE_PRIVATE void sqlite3RowSetDelete(void *pArg){ sqlite3RowSetClear(pArg); sqlite3DbFree(((RowSet*)pArg)->db, pArg); } /* ** Allocate a new RowSetEntry object that is associated with the ** given RowSet. Return a pointer to the new and completely uninitialized ** object. ** ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this ** routine returns NULL. */ static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ assert( p!=0 ); if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/ /* We could allocate a fresh RowSetEntry each time one is needed, but it ** is more efficient to pull a preallocated entry from the pool */ struct RowSetChunk *pNew; pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew)); if( pNew==0 ){ return 0; } pNew->pNextChunk = p->pChunk; p->pChunk = pNew; p->pFresh = pNew->aEntry; p->nFresh = ROWSET_ENTRY_PER_CHUNK; } p->nFresh--; return p->pFresh++; } /* ** Insert a new value into a RowSet. ** ** The mallocFailed flag of the database connection is set if a ** memory allocation fails. */ SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){ struct RowSetEntry *pEntry; /* The new entry */ struct RowSetEntry *pLast; /* The last prior entry */ /* This routine is never called after sqlite3RowSetNext() */ assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); pEntry = rowSetEntryAlloc(p); if( pEntry==0 ) return; pEntry->v = rowid; pEntry->pRight = 0; pLast = p->pLast; if( pLast ){ if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/ /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags ** where possible */ p->rsFlags &= ~ROWSET_SORTED; } pLast->pRight = pEntry; }else{ p->pEntry = pEntry; } p->pLast = pEntry; } /* ** Merge two lists of RowSetEntry objects. Remove duplicates. ** ** The input lists are connected via pRight pointers and are ** assumed to each already be in sorted order. */ static struct RowSetEntry *rowSetEntryMerge( struct RowSetEntry *pA, /* First sorted list to be merged */ struct RowSetEntry *pB /* Second sorted list to be merged */ ){ struct RowSetEntry head; struct RowSetEntry *pTail; pTail = &head; assert( pA!=0 && pB!=0 ); for(;;){ assert( pA->pRight==0 || pA->v<=pA->pRight->v ); assert( pB->pRight==0 || pB->v<=pB->pRight->v ); if( pA->v<=pB->v ){ if( pA->vv ) pTail = pTail->pRight = pA; pA = pA->pRight; if( pA==0 ){ pTail->pRight = pB; break; } }else{ pTail = pTail->pRight = pB; pB = pB->pRight; if( pB==0 ){ pTail->pRight = pA; break; } } } return head.pRight; } /* ** Sort all elements on the list of RowSetEntry objects into order of ** increasing v. */ static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ unsigned int i; struct RowSetEntry *pNext, *aBucket[40]; memset(aBucket, 0, sizeof(aBucket)); while( pIn ){ pNext = pIn->pRight; pIn->pRight = 0; for(i=0; aBucket[i]; i++){ pIn = rowSetEntryMerge(aBucket[i], pIn); aBucket[i] = 0; } aBucket[i] = pIn; pIn = pNext; } pIn = aBucket[0]; for(i=1; ipLeft ){ struct RowSetEntry *p; rowSetTreeToList(pIn->pLeft, ppFirst, &p); p->pRight = pIn; }else{ *ppFirst = pIn; } if( pIn->pRight ){ rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); }else{ *ppLast = pIn; } assert( (*ppLast)->pRight==0 ); } /* ** Convert a sorted list of elements (connected by pRight) into a binary ** tree with depth of iDepth. A depth of 1 means the tree contains a single ** node taken from the head of *ppList. A depth of 2 means a tree with ** three nodes. And so forth. ** ** Use as many entries from the input list as required and update the ** *ppList to point to the unused elements of the list. If the input ** list contains too few elements, then construct an incomplete tree ** and leave *ppList set to NULL. ** ** Return a pointer to the root of the constructed binary tree. */ static struct RowSetEntry *rowSetNDeepTree( struct RowSetEntry **ppList, int iDepth ){ struct RowSetEntry *p; /* Root of the new tree */ struct RowSetEntry *pLeft; /* Left subtree */ if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/ /* Prevent unnecessary deep recursion when we run out of entries */ return 0; } if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/ /* This branch causes a *balanced* tree to be generated. A valid tree ** is still generated without this branch, but the tree is wildly ** unbalanced and inefficient. */ pLeft = rowSetNDeepTree(ppList, iDepth-1); p = *ppList; if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/ /* It is safe to always return here, but the resulting tree ** would be unbalanced */ return pLeft; } p->pLeft = pLeft; *ppList = p->pRight; p->pRight = rowSetNDeepTree(ppList, iDepth-1); }else{ p = *ppList; *ppList = p->pRight; p->pLeft = p->pRight = 0; } return p; } /* ** Convert a sorted list of elements into a binary tree. Make the tree ** as deep as it needs to be in order to contain the entire list. */ static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ int iDepth; /* Depth of the tree so far */ struct RowSetEntry *p; /* Current tree root */ struct RowSetEntry *pLeft; /* Left subtree */ assert( pList!=0 ); p = pList; pList = p->pRight; p->pLeft = p->pRight = 0; for(iDepth=1; pList; iDepth++){ pLeft = p; p = pList; pList = p->pRight; p->pLeft = pLeft; p->pRight = rowSetNDeepTree(&pList, iDepth); } return p; } /* ** Extract the smallest element from the RowSet. ** Write the element into *pRowid. Return 1 on success. Return ** 0 if the RowSet is already empty. ** ** After this routine has been called, the sqlite3RowSetInsert() ** routine may not be called again. ** ** This routine may not be called after sqlite3RowSetTest() has ** been used. Older versions of RowSet allowed that, but as the ** capability was not used by the code generator, it was removed ** for code economy. */ SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ assert( p!=0 ); assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */ /* Merge the forest into a single sorted list on first call */ if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/ if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ p->pEntry = rowSetEntrySort(p->pEntry); } p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT; } /* Return the next entry on the list */ if( p->pEntry ){ *pRowid = p->pEntry->v; p->pEntry = p->pEntry->pRight; if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/ /* Free memory immediately, rather than waiting on sqlite3_finalize() */ sqlite3RowSetClear(p); } return 1; }else{ return 0; } } /* ** Check to see if element iRowid was inserted into the rowset as ** part of any insert batch prior to iBatch. Return 1 or 0. ** ** If this is the first test of a new batch and if there exist entries ** on pRowSet->pEntry, then sort those entries into the forest at ** pRowSet->pForest so that they can be tested. */ SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ struct RowSetEntry *p, *pTree; /* This routine is never called after sqlite3RowSetNext() */ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); /* Sort entries into the forest on the first test of a new batch. ** To save unnecessary work, only do this when the batch number changes. */ if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/ p = pRowSet->pEntry; if( p ){ struct RowSetEntry **ppPrevTree = &pRowSet->pForest; if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ /* Only sort the current set of entries if they need it */ p = rowSetEntrySort(p); } for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ ppPrevTree = &pTree->pRight; if( pTree->pLeft==0 ){ pTree->pLeft = rowSetListToTree(p); break; }else{ struct RowSetEntry *pAux, *pTail; rowSetTreeToList(pTree->pLeft, &pAux, &pTail); pTree->pLeft = 0; p = rowSetEntryMerge(pAux, p); } } if( pTree==0 ){ *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); if( pTree ){ pTree->v = 0; pTree->pRight = 0; pTree->pLeft = rowSetListToTree(p); } } pRowSet->pEntry = 0; pRowSet->pLast = 0; pRowSet->rsFlags |= ROWSET_SORTED; } pRowSet->iBatch = iBatch; } /* Test to see if the iRowid value appears anywhere in the forest. ** Return 1 if it does and 0 if not. */ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ p = pTree->pLeft; while( p ){ if( p->vpRight; }else if( p->v>iRowid ){ p = p->pLeft; }else{ return 1; } } } return 0; } /************** End of rowset.c **********************************************/ /************** Begin file pager.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the implementation of the page cache subsystem or "pager". ** ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. */ #ifndef SQLITE_OMIT_DISKIO /* #include "sqliteInt.h" */ /************** Include wal.h in the middle of pager.c ***********************/ /************** Begin file wal.h *********************************************/ /* ** 2010 February 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface to the write-ahead logging ** system. Refer to the comments below and the header comment attached to ** the implementation of each function in log.c for further details. */ #ifndef SQLITE_WAL_H #define SQLITE_WAL_H /* #include "sqliteInt.h" */ /* Macros for extracting appropriate sync flags for either transaction ** commits (WAL_SYNC_FLAGS(X)) or for checkpoint ops (CKPT_SYNC_FLAGS(X)): */ #define WAL_SYNC_FLAGS(X) ((X)&0x03) #define CKPT_SYNC_FLAGS(X) (((X)>>2)&0x03) #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalLimit(x,y) # define sqlite3WalClose(v,w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalDbsize(y) 0 # define sqlite3WalBeginWriteTransaction(y) 0 # define sqlite3WalEndWriteTransaction(x) 0 # define sqlite3WalUndo(x,y,z) 0 # define sqlite3WalSavepoint(y,z) # define sqlite3WalSavepointUndo(y,z) 0 # define sqlite3WalFrames(u,v,w,x,y,z) 0 # define sqlite3WalCheckpoint(q,r,s,t,u,v,w,x,y,z) 0 # define sqlite3WalCallback(z) 0 # define sqlite3WalExclusiveMode(y,z) 0 # define sqlite3WalHeapMemory(z) 0 # define sqlite3WalFramesize(z) 0 # define sqlite3WalFindFrame(x,y,z) 0 # define sqlite3WalFile(x) 0 # undef SQLITE_USE_SEH #else #define WAL_SAVEPOINT_NDATA 4 /* Connection to a write-ahead log (WAL) file. ** There is one object of this type for each pager. */ typedef struct Wal Wal; /* Open and close a connection to a write-ahead log. */ SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**); SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, sqlite3*, int sync_flags, int, u8 *); /* Set the limiting size of a WAL file. */ SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64); /* Used by readers to open (lock) and close (unlock) a snapshot. A ** snapshot is like a read-transaction. It is the state of the database ** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and ** preserves the current state even if the other threads or processes ** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the ** transaction and releases the lock. */ SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *); SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal); /* Read a page from the write-ahead log, if it is present. */ SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *); SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *); /* If the WAL is not empty, return the size of the database. */ SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal); /* Obtain or release the WRITER lock. */ SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal); SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal); /* Undo any frames written (but not committed) to the log */ SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx); /* Return an integer that records the current (uncommitted) write ** position in the WAL */ SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData); /* Move the write position of the WAL back to iFrame. Called in ** response to a ROLLBACK TO command. */ SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData); /* Write a frame or frames to the log. */ SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int); /* Copy pages from the log to the database file */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Write-ahead log connection */ sqlite3 *db, /* Check this handle's interrupt flag */ int eMode, /* One of PASSIVE, FULL and RESTART */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of buffer nBuf */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ ); /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal); /* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released) ** by the pager layer on the database file. */ SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op); /* Return true if the argument is non-NULL and the WAL module is using ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the ** WAL module is using shared-memory, return false. */ SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal); #ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal); SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal); #endif #ifdef SQLITE_ENABLE_ZIPVFS /* If the WAL file is not empty, return the number of bytes of content ** stored in each frame (i.e. the db page-size when the WAL was created). */ SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal); #endif /* Return the sqlite3_file object for the WAL file */ SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock); SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db); #endif #ifdef SQLITE_USE_SEH SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal*); #endif #endif /* ifndef SQLITE_OMIT_WAL */ #endif /* SQLITE_WAL_H */ /************** End of wal.h *************************************************/ /************** Continuing where we left off in pager.c **********************/ /******************* NOTES ON THE DESIGN OF THE PAGER ************************ ** ** This comment block describes invariants that hold when using a rollback ** journal. These invariants do not apply for journal_mode=WAL, ** journal_mode=MEMORY, or journal_mode=OFF. ** ** Within this comment block, a page is deemed to have been synced ** automatically as soon as it is written when PRAGMA synchronous=OFF. ** Otherwise, the page is not synced until the xSync method of the VFS ** is called successfully on the file containing the page. ** ** Definition: A page of the database file is said to be "overwriteable" if ** one or more of the following are true about the page: ** ** (a) The original content of the page as it was at the beginning of ** the transaction has been written into the rollback journal and ** synced. ** ** (b) The page was a freelist leaf page at the start of the transaction. ** ** (c) The page number is greater than the largest page that existed in ** the database file at the start of the transaction. ** ** (1) A page of the database file is never overwritten unless one of the ** following are true: ** ** (a) The page and all other pages on the same sector are overwriteable. ** ** (b) The atomic page write optimization is enabled, and the entire ** transaction other than the update of the transaction sequence ** number consists of a single page change. ** ** (2) The content of a page written into the rollback journal exactly matches ** both the content in the database when the rollback journal was written ** and the content in the database at the beginning of the current ** transaction. ** ** (3) Writes to the database file are an integer multiple of the page size ** in length and are aligned on a page boundary. ** ** (4) Reads from the database file are either aligned on a page boundary and ** an integer multiple of the page size in length or are taken from the ** first 100 bytes of the database file. ** ** (5) All writes to the database file are synced prior to the rollback journal ** being deleted, truncated, or zeroed. ** ** (6) If a super-journal file is used, then all writes to the database file ** are synced prior to the super-journal being deleted. ** ** Definition: Two databases (or the same database at two points it time) ** are said to be "logically equivalent" if they give the same answer to ** all queries. Note in particular the content of freelist leaf ** pages can be changed arbitrarily without affecting the logical equivalence ** of the database. ** ** (7) At any time, if any subset, including the empty set and the total set, ** of the unsynced changes to a rollback journal are removed and the ** journal is rolled back, the resulting database file will be logically ** equivalent to the database file at the beginning of the transaction. ** ** (8) When a transaction is rolled back, the xTruncate method of the VFS ** is called to restore the database file to the same size it was at ** the beginning of the transaction. (In some VFSes, the xTruncate ** method is a no-op, but that does not change the fact the SQLite will ** invoke it.) ** ** (9) Whenever the database file is modified, at least one bit in the range ** of bytes from 24 through 39 inclusive will be changed prior to releasing ** the EXCLUSIVE lock, thus signaling other connections on the same ** database to flush their caches. ** ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less ** than one billion transactions. ** ** (11) A database file is well-formed at the beginning and at the conclusion ** of every transaction. ** ** (12) An EXCLUSIVE lock is held on the database file when writing to ** the database file. ** ** (13) A SHARED lock is held on the database file while reading any ** content out of the database file. ** ******************************************************************************/ /* ** Macros for troubleshooting. Normally turned off */ #if 0 int sqlite3PagerTrace=1; /* True to enable tracing */ #define sqlite3DebugPrintf printf #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } #else #define PAGERTRACE(X) #endif /* ** The following two macros are used within the PAGERTRACE() macros above ** to print out file-descriptors. ** ** PAGERID() takes a pointer to a Pager struct as its argument. The ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file ** struct as its argument. */ #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) /* ** The Pager.eState variable stores the current 'state' of a pager. A ** pager may be in any one of the seven states shown in the following ** state diagram. ** ** OPEN <------+------+ ** | | | ** V | | ** +---------> READER-------+ | ** | | | ** | V | ** |<-------WRITER_LOCKED------> ERROR ** | | ^ ** | V | ** |<------WRITER_CACHEMOD-------->| ** | | | ** | V | ** |<-------WRITER_DBMOD---------->| ** | | | ** | V | ** +<------WRITER_FINISHED-------->+ ** ** ** List of state transitions and the C [function] that performs each: ** ** OPEN -> READER [sqlite3PagerSharedLock] ** READER -> OPEN [pager_unlock] ** ** READER -> WRITER_LOCKED [sqlite3PagerBegin] ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] ** WRITER_*** -> READER [pager_end_transaction] ** ** WRITER_*** -> ERROR [pager_error] ** ERROR -> OPEN [pager_unlock] ** ** ** OPEN: ** ** The pager starts up in this state. Nothing is guaranteed in this ** state - the file may or may not be locked and the database size is ** unknown. The database may not be read or written. ** ** * No read or write transaction is active. ** * Any lock, or no lock at all, may be held on the database file. ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. ** ** READER: ** ** In this state all the requirements for reading the database in ** rollback (non-WAL) mode are met. Unless the pager is (or recently ** was) in exclusive-locking mode, a user-level read transaction is ** open. The database size is known in this state. ** ** A connection running with locking_mode=normal enters this state when ** it opens a read-transaction on the database and returns to state ** OPEN after the read-transaction is completed. However a connection ** running in locking_mode=exclusive (including temp databases) remains in ** this state even after the read-transaction is closed. The only way ** a locking_mode=exclusive connection can transition from READER to OPEN ** is via the ERROR state (see below). ** ** * A read transaction may be active (but a write-transaction cannot). ** * A SHARED or greater lock is held on the database file. ** * The dbSize variable may be trusted (even if a user-level read ** transaction is not active). The dbOrigSize and dbFileSize variables ** may not be trusted at this point. ** * If the database is a WAL database, then the WAL connection is open. ** * Even if a read-transaction is not open, it is guaranteed that ** there is no hot-journal in the file-system. ** ** WRITER_LOCKED: ** ** The pager moves to this state from READER when a write-transaction ** is first opened on the database. In WRITER_LOCKED state, all locks ** required to start a write-transaction are held, but no actual ** modifications to the cache or database have taken place. ** ** In rollback mode, a RESERVED or (if the transaction was opened with ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when ** moving to this state, but the journal file is not written to or opened ** to in this state. If the transaction is committed or rolled back while ** in WRITER_LOCKED state, all that is required is to unlock the database ** file. ** ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. ** If the connection is running with locking_mode=exclusive, an attempt ** is made to obtain an EXCLUSIVE lock on the database file. ** ** * A write transaction is active. ** * If the connection is open in rollback-mode, a RESERVED or greater ** lock is held on the database file. ** * If the connection is open in WAL-mode, a WAL write transaction ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully ** called). ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. ** * The contents of the pager cache have not been modified. ** * The journal file may or may not be open. ** * Nothing (not even the first header) has been written to the journal. ** ** WRITER_CACHEMOD: ** ** A pager moves from WRITER_LOCKED state to this state when a page is ** first modified by the upper layer. In rollback mode the journal file ** is opened (if it is not already open) and a header written to the ** start of it. The database file on disk has not been modified. ** ** * A write transaction is active. ** * A RESERVED or greater lock is held on the database file. ** * The journal file is open and the first header has been written ** to it, but the header has not been synced to disk. ** * The contents of the page cache have been modified. ** ** WRITER_DBMOD: ** ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state ** when it modifies the contents of the database file. WAL connections ** never enter this state (since they do not modify the database file, ** just the log file). ** ** * A write transaction is active. ** * An EXCLUSIVE or greater lock is held on the database file. ** * The journal file is open and the first header has been written ** and synced to disk. ** * The contents of the page cache have been modified (and possibly ** written to disk). ** ** WRITER_FINISHED: ** ** It is not possible for a WAL connection to enter this state. ** ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD ** state after the entire transaction has been successfully written into the ** database file. In this state the transaction may be committed simply ** by finalizing the journal file. Once in WRITER_FINISHED state, it is ** not possible to modify the database further. At this point, the upper ** layer must either commit or rollback the transaction. ** ** * A write transaction is active. ** * An EXCLUSIVE or greater lock is held on the database file. ** * All writing and syncing of journal and database data has finished. ** If no error occurred, all that remains is to finalize the journal to ** commit the transaction. If an error did occur, the caller will need ** to rollback the transaction. ** ** ERROR: ** ** The ERROR state is entered when an IO or disk-full error (including ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it ** difficult to be sure that the in-memory pager state (cache contents, ** db size etc.) are consistent with the contents of the file-system. ** ** Temporary pager files may enter the ERROR state, but in-memory pagers ** cannot. ** ** For example, if an IO error occurs while performing a rollback, ** the contents of the page-cache may be left in an inconsistent state. ** At this point it would be dangerous to change back to READER state ** (as usually happens after a rollback). Any subsequent readers might ** report database corruption (due to the inconsistent cache), and if ** they upgrade to writers, they may inadvertently corrupt the database ** file. To avoid this hazard, the pager switches into the ERROR state ** instead of READER following such an error. ** ** Once it has entered the ERROR state, any attempt to use the pager ** to read or write data returns an error. Eventually, once all ** outstanding transactions have been abandoned, the pager is able to ** transition back to OPEN state, discarding the contents of the ** page-cache and any other in-memory state at the same time. Everything ** is reloaded from disk (and, if necessary, hot-journal rollback performed) ** when a read-transaction is next opened on the pager (transitioning ** the pager into READER state). At that point the system has recovered ** from the error. ** ** Specifically, the pager jumps into the ERROR state if: ** ** 1. An error occurs while attempting a rollback. This happens in ** function sqlite3PagerRollback(). ** ** 2. An error occurs while attempting to finalize a journal file ** following a commit in function sqlite3PagerCommitPhaseTwo(). ** ** 3. An error occurs while attempting to write to the journal or ** database file in function pagerStress() in order to free up ** memory. ** ** In other cases, the error is returned to the b-tree layer. The b-tree ** layer then attempts a rollback operation. If the error condition ** persists, the pager enters the ERROR state via condition (1) above. ** ** Condition (3) is necessary because it can be triggered by a read-only ** statement executed within a transaction. In this case, if the error ** code were simply returned to the user, the b-tree layer would not ** automatically attempt a rollback, as it assumes that an error in a ** read-only statement cannot leave the pager in an internally inconsistent ** state. ** ** * The Pager.errCode variable is set to something other than SQLITE_OK. ** * There are one or more outstanding references to pages (after the ** last reference is dropped the pager should move back to OPEN state). ** * The pager is not an in-memory pager. ** ** ** Notes: ** ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the ** connection is open in WAL mode. A WAL connection is always in one ** of the first four states. ** ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN ** state. There are two exceptions: immediately after exclusive-mode has ** been turned on (and before any read or write transactions are ** executed), and when the pager is leaving the "error state". ** ** * See also: assert_pager_state(). */ #define PAGER_OPEN 0 #define PAGER_READER 1 #define PAGER_WRITER_LOCKED 2 #define PAGER_WRITER_CACHEMOD 3 #define PAGER_WRITER_DBMOD 4 #define PAGER_WRITER_FINISHED 5 #define PAGER_ERROR 6 /* ** The Pager.eLock variable is almost always set to one of the ** following locking-states, according to the lock currently held on ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. ** This variable is kept up to date as locks are taken and released by ** the pagerLockDb() and pagerUnlockDb() wrappers. ** ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not ** the operation was successful. In these circumstances pagerLockDb() and ** pagerUnlockDb() take a conservative approach - eLock is always updated ** when unlocking the file, and only updated when locking the file if the ** VFS call is successful. This way, the Pager.eLock variable may be set ** to a less exclusive (lower) value than the lock that is actually held ** at the system level, but it is never set to a more exclusive value. ** ** This is usually safe. If an xUnlock fails or appears to fail, there may ** be a few redundant xLock() calls or a lock may be held for longer than ** required, but nothing really goes wrong. ** ** The exception is when the database file is unlocked as the pager moves ** from ERROR to OPEN state. At this point there may be a hot-journal file ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED ** transition, by the same pager or any other). If the call to xUnlock() ** fails at this point and the pager is left holding an EXCLUSIVE lock, this ** can confuse the call to xCheckReservedLock() call made later as part ** of hot-journal detection. ** ** xCheckReservedLock() is defined as returning true "if there is a RESERVED ** lock held by this process or any others". So xCheckReservedLock may ** return true because the caller itself is holding an EXCLUSIVE lock (but ** doesn't know it because of a previous error in xUnlock). If this happens ** a hot-journal may be mistaken for a journal being created by an active ** transaction in another process, causing SQLite to read from the database ** without rolling it back. ** ** To work around this, if a call to xUnlock() fails when unlocking the ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It ** is only changed back to a real locking state after a successful call ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE ** lock on the database file before attempting to roll it back. See function ** PagerSharedLock() for more detail. ** ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in ** PAGER_OPEN state. */ #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) /* ** The maximum allowed sector size. 64KiB. If the xSectorsize() method ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. ** This could conceivably cause corruption following a power failure on ** such a system. This is currently an undocumented limit. */ #define MAX_SECTOR_SIZE 0x10000 /* ** An instance of the following structure is allocated for each active ** savepoint and statement transaction in the system. All such structures ** are stored in the Pager.aSavepoint[] array, which is allocated and ** resized using sqlite3Realloc(). ** ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is ** set to 0. If a journal-header is written into the main journal while ** the savepoint is active, then iHdrOffset is set to the byte offset ** immediately following the last journal record written into the main ** journal before the journal-header. This is required during savepoint ** rollback (see pagerPlaybackSavepoint()). */ typedef struct PagerSavepoint PagerSavepoint; struct PagerSavepoint { i64 iOffset; /* Starting offset in main journal */ i64 iHdrOffset; /* See above */ Bitvec *pInSavepoint; /* Set of pages in this savepoint */ Pgno nOrig; /* Original number of pages in file */ Pgno iSubRec; /* Index of first record in sub-journal */ int bTruncateOnRelease; /* If stmt journal may be truncated on RELEASE */ #ifndef SQLITE_OMIT_WAL u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** Bits of the Pager.doNotSpill flag. See further description below. */ #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ /* ** An open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** ** The current 'state' of the pager object. See the comment and state ** diagram above for a description of the pager state. ** ** eLock ** ** For a real on-disk database, the current lock held on the database file - ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. ** ** For a temporary or in-memory database (neither of which require any ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such ** databases always have Pager.exclusiveMode==1, this tricks the pager ** logic into thinking that it already has all the locks it will ever ** need (and no reason to release them). ** ** In some (obscure) circumstances, this variable may also be set to ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for ** details. ** ** changeCountDone ** ** This boolean variable is used to make sure that the change-counter ** (the 4-byte header field at byte offset 24 of the database file) is ** not updated more often than necessary. ** ** It is set to true when the change-counter field is updated, which ** can only happen if an exclusive lock is held on the database file. ** It is cleared (set to false) whenever an exclusive lock is ** relinquished on the database file. Each time a transaction is committed, ** The changeCountDone flag is inspected. If it is true, the work of ** updating the change-counter is omitted for the current transaction. ** ** This mechanism means that when running in exclusive mode, a connection ** need only update the change-counter once, for the first transaction ** committed. ** ** setSuper ** ** When PagerCommitPhaseOne() is called to commit a transaction, it may ** (or may not) specify a super-journal name to be written into the ** journal file before it is synced to disk. ** ** Whether or not a journal file contains a super-journal pointer affects ** the way in which the journal file is finalized after the transaction is ** committed or rolled back when running in "journal_mode=PERSIST" mode. ** If a journal file does not contain a super-journal pointer, it is ** finalized by overwriting the first journal header with zeroes. If ** it does contain a super-journal pointer the journal file is finalized ** by truncating it to zero bytes, just as if the connection were ** running in "journal_mode=truncate" mode. ** ** Journal files that contain super-journal pointers cannot be finalized ** simply by overwriting the first journal-header with zeroes, as the ** super-journal pointer could interfere with hot-journal rollback of any ** subsequently interrupted transaction that reuses the journal file. ** ** The flag is cleared as soon as the journal file is finalized (either ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the ** journal file from being successfully finalized, the setSuper flag ** is cleared anyway (and the pager will move to ERROR state). ** ** doNotSpill ** ** This variables control the behavior of cache-spills (calls made by ** the pcache module to the pagerStress() routine to write cached data ** to the file-system in order to free up memory). ** ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, ** writing to the database from pagerStress() is disabled altogether. ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF ** case is a user preference. ** ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from ** pagerStress() is permitted, but syncing the journal file is not. ** This flag is set by sqlite3PagerWrite() when the file-system sector-size ** is larger than the database page-size in order to prevent a journal sync ** from happening in between the journalling of two pages on the same sector. ** ** subjInMemory ** ** This is a boolean variable. If true, then any required sub-journal ** is opened as an in-memory journal file. If false, then in-memory ** sub-journals are only used for in-memory pager files. ** ** This variable is updated by the upper layer each time a new ** write-transaction is opened. ** ** dbSize, dbOrigSize, dbFileSize ** ** Variable dbSize is set to the number of pages in the database file. ** It is valid in PAGER_READER and higher states (all states except for ** OPEN and ERROR). ** ** dbSize is set based on the size of the database file, which may be ** larger than the size of the database (the value stored at offset ** 28 of the database header by the btree). If the size of the file ** is not an integer multiple of the page-size, the value stored in ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). ** Except, any file that is greater than 0 bytes in size is considered ** to have at least one page. (i.e. a 1KB file with 2K page-size leads ** to dbSize==1). ** ** During a write-transaction, if pages with page-numbers greater than ** dbSize are modified in the cache, dbSize is updated accordingly. ** Similarly, if the database is truncated using PagerTruncateImage(), ** dbSize is updated. ** ** Variables dbOrigSize and dbFileSize are valid in states ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize ** variable at the start of the transaction. It is used during rollback, ** and to determine whether or not pages need to be journalled before ** being modified. ** ** Throughout a write-transaction, dbFileSize contains the size of ** the file on disk in pages. It is set to a copy of dbSize when the ** write-transaction is first opened, and updated when VFS calls are made ** to write or truncate the database file on disk. ** ** The only reason the dbFileSize variable is required is to suppress ** unnecessary calls to xTruncate() after committing a transaction. If, ** when a transaction is committed, the dbFileSize variable indicates ** that the database file is larger than the database image (Pager.dbSize), ** pager_truncate() is called. The pager_truncate() call uses xFilesize() ** to measure the database file on disk, and then truncates it if required. ** dbFileSize is not used when rolling back a transaction. In this case ** pager_truncate() is called unconditionally (which means there may be ** a call to xFilesize() that is not strictly required). In either case, ** pager_truncate() may cause the file to become smaller or larger. ** ** dbHintSize ** ** The dbHintSize variable is used to limit the number of calls made to ** the VFS xFileControl(FCNTL_SIZE_HINT) method. ** ** dbHintSize is set to a copy of the dbSize variable when a ** write-transaction is opened (at the same time as dbFileSize and ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, ** dbHintSize is increased to the number of pages that correspond to the ** size-hint passed to the method call. See pager_write_pagelist() for ** details. ** ** errCode ** ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX ** sub-codes. ** ** syncFlags, walSyncFlags ** ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode ** and contains the flags used to sync the checkpoint operations in the ** lower two bits, and sync flags used for transaction commits in the WAL ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced ** meaning that the 0x04 and 0x08 bits are both zero. */ struct Pager { sqlite3_vfs *pVfs; /* OS functions to use for IO */ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ u8 useJournal; /* Use a rollback journal on this file */ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 extraSync; /* sync directory after journal delete */ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ u8 walSyncFlags; /* See description above */ u8 tempFile; /* zFilename is a temporary or immutable file */ u8 noLock; /* Do not lock (except in WAL mode) */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ u8 memVfs; /* VFS-implemented memory database */ /************************************************************************** ** The following block contains those class members that change during ** routine operation. Class members not in this block are either fixed ** when the pager is first created or else only change when there is a ** significant mode change (such as changing the page_size, locking_mode, ** or the journal_mode). From another view, these class members describe ** the "state" of the pager, while other class members describe the ** "configuration" of the pager. */ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setSuper; /* Super-jrnl name is written into jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ u8 bUseFetch; /* True to use xFetch() */ u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ u32 cksumInit; /* Quasi-random value added to every checksum */ u32 nSubRec; /* Number of records written to sub-journal */ Bitvec *pInJournal; /* One bit for each page in the database file */ sqlite3_file *fd; /* File descriptor for database */ sqlite3_file *jfd; /* File descriptor for main journal */ sqlite3_file *sjfd; /* File descriptor for sub-journal */ i64 journalOff; /* Current write offset in the journal file */ i64 journalHdr; /* Byte offset to previous journal header */ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ PagerSavepoint *aSavepoint; /* Array of active savepoints */ int nSavepoint; /* Number of elements in aSavepoint[] */ u32 iDataVersion; /* Changes whenever database content changes */ char dbFileVers[16]; /* Changes whenever database file changes */ int nMmapOut; /* Number of mmap pages currently outstanding */ sqlite3_int64 szMmap; /* Desired maximum mmap size */ PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ /* ** End of the routinely-changing class members ***************************************************************************/ u16 nExtra; /* Add this many bytes to each in-memory page */ i16 nReserve; /* Number of unused bytes at end of each page */ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ u32 sectorSize; /* Assumed sector size during rollback */ Pgno mxPgno; /* Maximum allowed size of the database */ Pgno lckPgno; /* Page number for the locking page */ i64 pageSize; /* Number of bytes in a page */ i64 journalSizeLimit; /* Size limit for persistent journal files */ char *zFilename; /* Name of the database file */ char *zJournal; /* Name of the journal file */ int (*xBusyHandler)(void*); /* Function to call when busy */ void *pBusyHandlerArg; /* Context argument for xBusyHandler */ int aStat[4]; /* Total cache hits, misses, writes, spills */ #ifdef SQLITE_TEST int nRead; /* Database pages read */ #endif void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ PCache *pPCache; /* Pointer to page cache object */ #ifndef SQLITE_OMIT_WAL Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ char *zWal; /* File name for write-ahead log */ #endif }; /* ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS ** or CACHE_WRITE to sqlite3_db_status(). */ #define PAGER_STAT_HIT 0 #define PAGER_STAT_MISS 1 #define PAGER_STAT_WRITE 2 #define PAGER_STAT_SPILL 3 /* ** The following global variables hold counters used for ** testing purposes only. These variables do not exist in ** a non-testing build. These variables are not thread-safe. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ # define PAGER_INCR(v) v++ #else # define PAGER_INCR(v) #endif /* ** Journal files begin with the following magic string. The data ** was obtained from /dev/random. It is used only as a sanity check. ** ** Since version 2.8.0, the journal format contains additional sanity ** checking information. If the power fails while the journal is being ** written, semi-random garbage data might appear in the journal ** file after power is restored. If an attempt is then made ** to roll the journal back, the database could be corrupted. The additional ** sanity checking data is an attempt to discover the garbage in the ** journal and ignore it. ** ** The sanity checking information for the new journal format consists ** of a 32-bit checksum on each page of data. The checksum covers both ** the page number and the pPager->pageSize bytes of data for the page. ** This cksum is initialized to a 32-bit random value that appears in the ** journal file right after the header. The random initializer is important, ** because garbage data that appears at the end of a journal is likely ** data that was once in other files that have now been deleted. If the ** garbage data came from an obsolete journal file, the checksums might ** be correct. But by initializing the checksum to random value which ** is different for every journal, we minimize that risk. */ static const unsigned char aJournalMagic[] = { 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, }; /* ** The size of the of each page record in the journal is given by ** the following macro. */ #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) /* ** The journal header size for this pager. This is usually the same ** size as a single disk sector. See also setSectorSize(). */ #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) /* ** The macro MEMDB is true if we are dealing with an in-memory database. ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, ** the value of MEMDB will be a constant and the compiler will optimize ** out code that would never execute. */ #ifdef SQLITE_OMIT_MEMORYDB # define MEMDB 0 #else # define MEMDB pPager->memDb #endif /* ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch ** interfaces to access the database using memory-mapped I/O. */ #if SQLITE_MAX_MMAP_SIZE>0 # define USEFETCH(x) ((x)->bUseFetch) #else # define USEFETCH(x) 0 #endif /* ** The argument to this macro is a file descriptor (type sqlite3_file*). ** Return 0 if it is not open, or non-zero (but not 1) if it is. ** ** This is so that expressions can be written as: ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods!=0) #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if page pgno can be read directly from the database file ** by the b-tree layer. This is the case if: ** ** * the database file is open, ** * there are no dirty pages in the cache, and ** * the desired page is not currently in the wal file. */ SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ if( pPager->fd->pMethods==0 ) return 0; if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; #ifndef SQLITE_OMIT_WAL if( pPager->pWal ){ u32 iRead = 0; int rc; rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); return (rc==SQLITE_OK && iRead==0); } #endif return 1; } #endif #ifndef SQLITE_OMIT_WAL # define pagerUseWal(x) ((x)->pWal!=0) #else # define pagerUseWal(x) 0 # define pagerRollbackWal(x) 0 # define pagerWalFrames(v,w,x,y) 0 # define pagerOpenWalIfPresent(z) SQLITE_OK # define pagerBeginReadTransaction(z) SQLITE_OK #endif #ifndef NDEBUG /* ** Usage: ** ** assert( assert_pager_state(pPager) ); ** ** This function runs many asserts to try to find inconsistencies in ** the internal state of the Pager object. */ static int assert_pager_state(Pager *p){ Pager *pPager = p; /* State must be valid. */ assert( p->eState==PAGER_OPEN || p->eState==PAGER_READER || p->eState==PAGER_WRITER_LOCKED || p->eState==PAGER_WRITER_CACHEMOD || p->eState==PAGER_WRITER_DBMOD || p->eState==PAGER_WRITER_FINISHED || p->eState==PAGER_ERROR ); /* Regardless of the current state, a temp-file connection always behaves ** as if it has an exclusive lock on the database file. It never updates ** the change-counter field, so the changeCountDone flag is always set. */ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); assert( p->tempFile==0 || pPager->changeCountDone ); /* If the useJournal flag is clear, the journal-mode must be "OFF". ** And if the journal-mode is "OFF", the journal file must not be open. */ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); /* Check that MEMDB implies noSync. And an in-memory journal. Since ** this means an in-memory pager performs no IO at all, it cannot encounter ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing ** a journal file. (although the in-memory journal implementation may ** return SQLITE_IOERR_NOMEM while the journal file is being written). It ** is therefore not possible for an in-memory pager to enter the ERROR ** state. */ if( MEMDB ){ assert( !isOpen(p->fd) ); assert( p->noSync ); assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_MEMORY ); assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); assert( pagerUseWal(p)==0 ); } /* If changeCountDone is set, a RESERVED lock or greater must be held ** on the file. */ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); assert( p->eLock!=PENDING_LOCK ); switch( p->eState ){ case PAGER_OPEN: assert( !MEMDB ); assert( pPager->errCode==SQLITE_OK ); assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); break; case PAGER_READER: assert( pPager->errCode==SQLITE_OK ); assert( p->eLock!=UNKNOWN_LOCK ); assert( p->eLock>=SHARED_LOCK ); break; case PAGER_WRITER_LOCKED: assert( p->eLock!=UNKNOWN_LOCK ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) ){ assert( p->eLock>=RESERVED_LOCK ); } assert( pPager->dbSize==pPager->dbOrigSize ); assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); assert( pPager->setSuper==0 ); break; case PAGER_WRITER_CACHEMOD: assert( p->eLock!=UNKNOWN_LOCK ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) ){ /* It is possible that if journal_mode=wal here that neither the ** journal file nor the WAL file are open. This happens during ** a rollback transaction that switches from journal_mode=off ** to journal_mode=wal. */ assert( p->eLock>=RESERVED_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL ); } assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); break; case PAGER_WRITER_DBMOD: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( p->eLock>=EXCLUSIVE_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); assert( pPager->dbOrigSize<=pPager->dbHintSize ); break; case PAGER_WRITER_FINISHED: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); break; case PAGER_ERROR: /* There must be at least one outstanding reference to the pager if ** in ERROR state. Otherwise the pager should have already dropped ** back to OPEN state. */ assert( pPager->errCode!=SQLITE_OK ); assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); break; } return 1; } #endif /* ifndef NDEBUG */ #ifdef SQLITE_DEBUG /* ** Return a pointer to a human readable string in a static buffer ** containing the state of the Pager object passed as an argument. This ** is intended to be used within debuggers. For example, as an alternative ** to "print *pPager" in gdb: ** ** (gdb) printf "%s", print_pager_state(pPager) ** ** This routine has external linkage in order to suppress compiler warnings ** about an unused function. It is enclosed within SQLITE_DEBUG and so does ** not appear in normal builds. */ char *print_pager_state(Pager *p){ static char zRet[1024]; sqlite3_snprintf(1024, zRet, "Filename: %s\n" "State: %s errCode=%d\n" "Lock: %s\n" "Locking mode: locking_mode=%s\n" "Journal mode: journal_mode=%s\n" "Backing store: tempFile=%d memDb=%d useJournal=%d\n" "Journal: journalOff=%lld journalHdr=%lld\n" "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" , p->zFilename , p->eState==PAGER_OPEN ? "OPEN" : p->eState==PAGER_READER ? "READER" : p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : p->eState==PAGER_ERROR ? "ERROR" : "?error?" , (int)p->errCode , p->eLock==NO_LOCK ? "NO_LOCK" : p->eLock==RESERVED_LOCK ? "RESERVED" : p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : p->eLock==SHARED_LOCK ? "SHARED" : p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" , p->exclusiveMode ? "exclusive" : "normal" , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" , (int)p->tempFile, (int)p->memDb, (int)p->useJournal , p->journalOff, p->journalHdr , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize ); return zRet; } #endif /* Forward references to the various page getters */ static int getPageNormal(Pager*,Pgno,DbPage**,int); static int getPageError(Pager*,Pgno,DbPage**,int); #if SQLITE_MAX_MMAP_SIZE>0 static int getPageMMap(Pager*,Pgno,DbPage**,int); #endif /* ** Set the Pager.xGet method for the appropriate routine used to fetch ** content from the pager. */ static void setGetterMethod(Pager *pPager){ if( pPager->errCode ){ pPager->xGet = getPageError; #if SQLITE_MAX_MMAP_SIZE>0 }else if( USEFETCH(pPager) ){ pPager->xGet = getPageMMap; #endif /* SQLITE_MAX_MMAP_SIZE>0 */ }else{ pPager->xGet = getPageNormal; } } /* ** Return true if it is necessary to write page *pPg into the sub-journal. ** A page needs to be written into the sub-journal if there exists one ** or more open savepoints for which: ** ** * The page-number is less than or equal to PagerSavepoint.nOrig, and ** * The bit corresponding to the page-number is not set in ** PagerSavepoint.pInSavepoint. */ static int subjRequiresPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; PagerSavepoint *p; Pgno pgno = pPg->pgno; int i; for(i=0; inSavepoint; i++){ p = &pPager->aSavepoint[i]; if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ for(i=i+1; inSavepoint; i++){ pPager->aSavepoint[i].bTruncateOnRelease = 0; } return 1; } } return 0; } #ifdef SQLITE_DEBUG /* ** Return true if the page is already in the journal file. */ static int pageInJournal(Pager *pPager, PgHdr *pPg){ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); } #endif /* ** Read a 32-bit integer from the given file descriptor. Store the integer ** that is read in *pRes. Return SQLITE_OK if everything worked, or an ** error code is something goes wrong. ** ** All values are stored on disk as big-endian. */ static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ unsigned char ac[4]; int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); if( rc==SQLITE_OK ){ *pRes = sqlite3Get4byte(ac); } return rc; } /* ** Write a 32-bit integer into a string buffer in big-endian byte order. */ #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) /* ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK ** on success or an error code is something goes wrong. */ static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ char ac[4]; put32bits(ac, val); return sqlite3OsWrite(fd, ac, 4, offset); } /* ** Unlock the database file to level eLock, which must be either NO_LOCK ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. ** ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is ** called, do not modify it. See the comment above the #define of ** UNKNOWN_LOCK for an explanation of this. */ static int pagerUnlockDb(Pager *pPager, int eLock){ int rc = SQLITE_OK; assert( !pPager->exclusiveMode || pPager->eLock==eLock ); assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); if( isOpen(pPager->fd) ){ assert( pPager->eLock>=eLock ); rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); if( pPager->eLock!=UNKNOWN_LOCK ){ pPager->eLock = (u8)eLock; } IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) } pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */ return rc; } /* ** Lock the database file to level eLock, which must be either SHARED_LOCK, ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the ** Pager.eLock variable to the new locking state. ** ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. ** See the comment above the #define of UNKNOWN_LOCK for an explanation ** of this. */ static int pagerLockDb(Pager *pPager, int eLock){ int rc = SQLITE_OK; assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); if( pPager->eLockeLock==UNKNOWN_LOCK ){ rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ pPager->eLock = (u8)eLock; IOTRACE(("LOCK %p %d\n", pPager, eLock)) } } return rc; } /* ** This function determines whether or not the atomic-write or ** atomic-batch-write optimizations can be used with this pager. The ** atomic-write optimization can be used if: ** ** (a) the value returned by OsDeviceCharacteristics() indicates that ** a database page may be written atomically, and ** (b) the value returned by OsSectorSize() is less than or equal ** to the page size. ** ** If it can be used, then the value returned is the size of the journal ** file when it contains rollback data for exactly one page. ** ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is ** returned in this case. ** ** If neither optimization can be used, 0 is returned. */ static int jrnlBufferSize(Pager *pPager){ assert( !MEMDB ); #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) int dc; /* Device characteristics */ assert( isOpen(pPager->fd) ); dc = sqlite3OsDeviceCharacteristics(pPager->fd); #else UNUSED_PARAMETER(pPager); #endif #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ return -1; } #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE { int nSector = pPager->sectorSize; int szPage = pPager->pageSize; assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ return 0; } } return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); #endif return 0; } /* ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking ** on the cache using a hash function. This is used for testing ** and debugging only. */ #ifdef SQLITE_CHECK_PAGES /* ** Return a 32-bit hash of the page data for pPage. */ static u32 pager_datahash(int nByte, unsigned char *pData){ u32 hash = 0; int i; for(i=0; ipPager->pageSize, (unsigned char *)pPage->pData); } static void pager_set_pagehash(PgHdr *pPage){ pPage->pageHash = pager_pagehash(pPage); } /* ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES ** is defined, and NDEBUG is not defined, an assert() statement checks ** that the page is either dirty or still matches the calculated page-hash. */ #define CHECK_PAGE(x) checkPage(x) static void checkPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( pPager->eState!=PAGER_ERROR ); assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); } #else #define pager_datahash(X,Y) 0 #define pager_pagehash(X) 0 #define pager_set_pagehash(X) #define CHECK_PAGE(x) #endif /* SQLITE_CHECK_PAGES */ /* ** When this is called the journal file for pager pPager must be open. ** This function attempts to read a super-journal file name from the ** end of the file and, if successful, copies it into memory supplied ** by the caller. See comments above writeSuperJournal() for the format ** used to store a super-journal file name at the end of a journal file. ** ** zSuper must point to a buffer of at least nSuper bytes allocated by ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is ** enough space to write the super-journal name). If the super-journal ** name in the journal is longer than nSuper bytes (including a ** nul-terminator), then this is handled as if no super-journal name ** were present in the journal. ** ** If a super-journal file name is present at the end of the journal ** file, then it is copied into the buffer pointed to by zSuper. A ** nul-terminator byte is appended to the buffer following the ** super-journal file name. ** ** If it is determined that no super-journal file name is present ** zSuper[0] is set to 0 and SQLITE_OK returned. ** ** If an error occurs while reading from the journal file, an SQLite ** error code is returned. */ static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){ int rc; /* Return code */ u32 len; /* Length in bytes of super-journal name */ i64 szJ; /* Total size in bytes of journal file pJrnl */ u32 cksum; /* MJ checksum value read from journal */ u32 u; /* Unsigned loop counter */ unsigned char aMagic[8]; /* A buffer to hold the magic header */ zSuper[0] = '\0'; if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) || szJ<16 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) || len>=nSuper || len>szJ-16 || len==0 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) || memcmp(aMagic, aJournalMagic, 8) || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len)) ){ return rc; } /* See if the checksum matches the super-journal name */ for(u=0; ujournalOff, assuming a sector ** size of pPager->sectorSize bytes. ** ** i.e for a sector size of 512: ** ** Pager.journalOff Return value ** --------------------------------------- ** 0 0 ** 512 512 ** 100 512 ** 2000 2048 ** */ static i64 journalHdrOffset(Pager *pPager){ i64 offset = 0; i64 c = pPager->journalOff; if( c ){ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); } assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); assert( offset>=c ); assert( (offset-c)jfd) ); assert( !sqlite3JournalIsInMemory(pPager->jfd) ); if( pPager->journalOff ){ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ IOTRACE(("JZEROHDR %p\n", pPager)) if( doTruncate || iLimit==0 ){ rc = sqlite3OsTruncate(pPager->jfd, 0); }else{ static const char zeroHdr[28] = {0}; rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); } if( rc==SQLITE_OK && !pPager->noSync ){ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); } /* At this point the transaction is committed but the write lock ** is still held on the file. If there is a size limit configured for ** the persistent journal and the journal file currently consumes more ** space than that limit allows for, truncate it now. There is no need ** to sync the file following this operation. */ if( rc==SQLITE_OK && iLimit>0 ){ i64 sz; rc = sqlite3OsFileSize(pPager->jfd, &sz); if( rc==SQLITE_OK && sz>iLimit ){ rc = sqlite3OsTruncate(pPager->jfd, iLimit); } } } return rc; } /* ** The journal file must be open when this routine is called. A journal ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the ** current location. ** ** The format for the journal header is as follows: ** - 8 bytes: Magic identifying journal format. ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. ** - 4 bytes: Random number used for page hash. ** - 4 bytes: Initial database page count. ** - 4 bytes: Sector size used by the process that wrote this journal. ** - 4 bytes: Database page size. ** ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. */ static int writeJournalHdr(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ u32 nWrite; /* Bytes of header sector written */ int ii; /* Loop counter */ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ if( nHeader>JOURNAL_HDR_SZ(pPager) ){ nHeader = JOURNAL_HDR_SZ(pPager); } /* If there are active savepoints and any of them were created ** since the most recent journal header was written, update the ** PagerSavepoint.iHdrOffset fields now. */ for(ii=0; iinSavepoint; ii++){ if( pPager->aSavepoint[ii].iHdrOffset==0 ){ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; } } pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); /* ** Write the nRec Field - the number of page records that follow this ** journal header. Normally, zero is written to this value at this time. ** After the records are added to the journal (and the journal synced, ** if in full-sync mode), the zero is overwritten with the true number ** of records (see syncJournal()). ** ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When ** reading the journal this value tells SQLite to assume that the ** rest of the journal file contains valid page records. This assumption ** is dangerous, as if a failure occurred whilst writing to the journal ** file it may contain some garbage data. There are two scenarios ** where this risk can be ignored: ** ** * When the pager is in no-sync mode. Corruption can follow a ** power failure in this case anyway. ** ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees ** that garbage data is never appended to the journal file. */ assert( isOpen(pPager->fd) || pPager->noSync ); if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) ){ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); }else{ memset(zHeader, 0, sizeof(aJournalMagic)+4); } /* The random check-hash initializer */ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); /* The initial database size */ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); /* The assumed sector size for this process */ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); /* The page size */ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); /* Initializing the tail of the buffer is not necessary. Everything ** works find if the following memset() is omitted. But initializing ** the memory prevents valgrind from complaining, so we are willing to ** take the performance hit. */ memset(&zHeader[sizeof(aJournalMagic)+20], 0, nHeader-(sizeof(aJournalMagic)+20)); /* In theory, it is only necessary to write the 28 bytes that the ** journal header consumes to the journal file here. Then increment the ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next ** record is written to the following sector (leaving a gap in the file ** that will be implicitly filled in by the OS). ** ** However it has been discovered that on some systems this pattern can ** be significantly slower than contiguously writing data to the file, ** even if that means explicitly writing data to the block of ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what ** is done. ** ** The loop is required here in case the sector-size is larger than the ** database page size. Since the zHeader buffer is only Pager.pageSize ** bytes in size, more than one call to sqlite3OsWrite() may be required ** to populate the entire journal header sector. */ for(nWrite=0; rc==SQLITE_OK&&nWritejournalHdr, nHeader)) rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); assert( pPager->journalHdr <= pPager->journalOff ); pPager->journalOff += nHeader; } return rc; } /* ** The journal file must be open when this is called. A journal header file ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal ** file. The current location in the journal file is given by ** pPager->journalOff. See comments above function writeJournalHdr() for ** a description of the journal header format. ** ** If the header is read successfully, *pNRec is set to the number of ** page records following this header and *pDbSize is set to the size of the ** database before the transaction began, in pages. Also, pPager->cksumInit ** is set to the value read from the journal header. SQLITE_OK is returned ** in this case. ** ** If the journal header file appears to be corrupted, SQLITE_DONE is ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes ** cannot be read from the journal file an error code is returned. */ static int readJournalHdr( Pager *pPager, /* Pager object */ int isHot, i64 journalSize, /* Size of the open journal file in bytes */ u32 *pNRec, /* OUT: Value read from the nRec field */ u32 *pDbSize /* OUT: Value of original database size field */ ){ int rc; /* Return code */ unsigned char aMagic[8]; /* A buffer to hold the magic header */ i64 iHdrOff; /* Offset of journal header being read */ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ /* Advance Pager.journalOff to the start of the next sector. If the ** journal file is too small for there to be a header stored at this ** point, return SQLITE_DONE. */ pPager->journalOff = journalHdrOffset(pPager); if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ return SQLITE_DONE; } iHdrOff = pPager->journalOff; /* Read in the first 8 bytes of the journal header. If they do not match ** the magic string found at the start of each journal header, return ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, ** proceed. */ if( isHot || iHdrOff!=pPager->journalHdr ){ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); if( rc ){ return rc; } if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ return SQLITE_DONE; } } /* Read the first three 32-bit fields of the journal header: The nRec ** field, the checksum-initializer and the database size at the start ** of the transaction. Return an error code if anything goes wrong. */ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) ){ return rc; } if( pPager->journalOff==0 ){ u32 iPageSize; /* Page-size field of journal header */ u32 iSectorSize; /* Sector-size field of journal header */ /* Read the page-size and sector-size journal header fields. */ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) ){ return rc; } /* Versions of SQLite prior to 3.5.8 set the page-size field of the ** journal header to zero. In this case, assume that the Pager.pageSize ** variable is already set to the correct page size. */ if( iPageSize==0 ){ iPageSize = pPager->pageSize; } /* Check that the values read from the page-size and sector-size fields ** are within range. To be 'in range', both values need to be a power ** of two greater than or equal to 512 or 32, and not greater than their ** respective compile time maximum limits. */ if( iPageSize<512 || iSectorSize<32 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 ){ /* If the either the page-size or sector-size in the journal-header is ** invalid, then the process that wrote the journal-header must have ** crashed before the header was synced. In this case stop reading ** the journal file here. */ return SQLITE_DONE; } /* Update the page-size to match the value read from the journal. ** Use a testcase() macro to make sure that malloc failure within ** PagerSetPagesize() is tested. */ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); testcase( rc!=SQLITE_OK ); /* Update the assumed sector-size to match the value used by ** the process that created this journal. If this journal was ** created by a process other than this one, then this routine ** is being called from within pager_playback(). The local value ** of Pager.sectorSize is restored at the end of that routine. */ pPager->sectorSize = iSectorSize; } pPager->journalOff += JOURNAL_HDR_SZ(pPager); return rc; } /* ** Write the supplied super-journal name into the journal file for pager ** pPager at the current location. The super-journal name must be the last ** thing written to a journal file. If the pager is in full-sync mode, the ** journal file descriptor is advanced to the next sector boundary before ** anything is written. The format is: ** ** + 4 bytes: PAGER_SJ_PGNO. ** + N bytes: super-journal filename in utf-8. ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). ** + 4 bytes: super-journal name checksum. ** + 8 bytes: aJournalMagic[]. ** ** The super-journal page checksum is the sum of the bytes in the super-journal ** name, where each byte is interpreted as a signed 8-bit integer. ** ** If zSuper is a NULL pointer (occurs for a single database transaction), ** this call is a no-op. */ static int writeSuperJournal(Pager *pPager, const char *zSuper){ int rc; /* Return code */ int nSuper; /* Length of string zSuper */ i64 iHdrOff; /* Offset of header in journal file */ i64 jrnlSize; /* Size of journal file on disk */ u32 cksum = 0; /* Checksum of string zSuper */ assert( pPager->setSuper==0 ); assert( !pagerUseWal(pPager) ); if( !zSuper || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || !isOpen(pPager->jfd) ){ return SQLITE_OK; } pPager->setSuper = 1; assert( pPager->journalHdr <= pPager->journalOff ); /* Calculate the length in bytes and the checksum of zSuper */ for(nSuper=0; zSuper[nSuper]; nSuper++){ cksum += zSuper[nSuper]; } /* If in full-sync mode, advance to the next disk sector before writing ** the super-journal name. This is in case the previous page written to ** the journal has already been synced. */ if( pPager->fullSync ){ pPager->journalOff = journalHdrOffset(pPager); } iHdrOff = pPager->journalOff; /* Write the super-journal data to the end of the journal file. If ** an error occurs, return the error code to the caller. */ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_SJ_PGNO(pPager)))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nSuper+8))) ){ return rc; } pPager->journalOff += (nSuper+20); /* If the pager is in persistent-journal mode, then the physical ** journal-file may extend past the end of the super-journal name ** and 8 bytes of magic data just written to the file. This is ** dangerous because the code to rollback a hot-journal file ** will not be able to find the super-journal name to determine ** whether or not the journal is hot. ** ** Easiest thing to do in this scenario is to truncate the journal ** file to the required size. */ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) && jrnlSize>pPager->journalOff ){ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); } return rc; } /* ** Discard the entire contents of the in-memory page-cache. */ static void pager_reset(Pager *pPager){ pPager->iDataVersion++; sqlite3BackupRestart(pPager->pBackup); sqlite3PcacheClear(pPager->pPCache); } /* ** Return the pPager->iDataVersion value */ SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){ return pPager->iDataVersion; } /* ** Free all structures in the Pager.aSavepoint[] array and set both ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal ** if it is open and the pager is not in exclusive mode. */ static void releaseAllSavepoints(Pager *pPager){ int ii; /* Iterator for looping through Pager.aSavepoint */ for(ii=0; iinSavepoint; ii++){ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); } if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ sqlite3OsClose(pPager->sjfd); } sqlite3_free(pPager->aSavepoint); pPager->aSavepoint = 0; pPager->nSavepoint = 0; pPager->nSubRec = 0; } /* ** Set the bit number pgno in the PagerSavepoint.pInSavepoint ** bitvecs of all open savepoints. Return SQLITE_OK if successful ** or SQLITE_NOMEM if a malloc failure occurs. */ static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ int ii; /* Loop counter */ int rc = SQLITE_OK; /* Result code */ for(ii=0; iinSavepoint; ii++){ PagerSavepoint *p = &pPager->aSavepoint[ii]; if( pgno<=p->nOrig ){ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); } } return rc; } /* ** This function is a no-op if the pager is in exclusive mode and not ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN ** state. ** ** If the pager is not in exclusive-access mode, the database file is ** completely unlocked. If the file is unlocked and the file-system does ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is ** closed (if it is open). ** ** If the pager is in ERROR state when this function is called, the ** contents of the pager cache are discarded before switching back to ** the OPEN state. Regardless of whether the pager is in exclusive-mode ** or not, any journal file left in the file-system will be treated ** as a hot-journal and rolled back the next time a read-transaction ** is opened (by this or by any other connection). */ static void pager_unlock(Pager *pPager){ assert( pPager->eState==PAGER_READER || pPager->eState==PAGER_OPEN || pPager->eState==PAGER_ERROR ); sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; releaseAllSavepoints(pPager); if( pagerUseWal(pPager) ){ assert( !isOpen(pPager->jfd) ); sqlite3WalEndReadTransaction(pPager->pWal); pPager->eState = PAGER_OPEN; }else if( !pPager->exclusiveMode ){ int rc; /* Error code returned by pagerUnlockDb() */ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; /* If the operating system support deletion of open files, then ** close the journal file when dropping the database lock. Otherwise ** another connection with journal_mode=delete might delete the file ** out from under us. */ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) || 1!=(pPager->journalMode & 5) ){ sqlite3OsClose(pPager->jfd); } /* If the pager is in the ERROR state and the call to unlock the database ** file fails, set the current lock to UNKNOWN_LOCK. See the comment ** above the #define for UNKNOWN_LOCK for an explanation of why this ** is necessary. */ rc = pagerUnlockDb(pPager, NO_LOCK); if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ pPager->eLock = UNKNOWN_LOCK; } /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here ** without clearing the error code. This is intentional - the error ** code is cleared and the cache reset in the block below. */ assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); pPager->eState = PAGER_OPEN; } /* If Pager.errCode is set, the contents of the pager cache cannot be ** trusted. Now that there are no outstanding references to the pager, ** it can safely move back to PAGER_OPEN state. This happens in both ** normal and exclusive-locking mode. */ assert( pPager->errCode==SQLITE_OK || !MEMDB ); if( pPager->errCode ){ if( pPager->tempFile==0 ){ pager_reset(pPager); pPager->changeCountDone = 0; pPager->eState = PAGER_OPEN; }else{ pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); } if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); pPager->errCode = SQLITE_OK; setGetterMethod(pPager); } pPager->journalOff = 0; pPager->journalHdr = 0; pPager->setSuper = 0; } /* ** This function is called whenever an IOERR or FULL error that requires ** the pager to transition into the ERROR state may have occurred. ** The first argument is a pointer to the pager structure, the second ** the error-code about to be returned by a pager API function. The ** value returned is a copy of the second argument to this function. ** ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the ** IOERR sub-codes, the pager enters the ERROR state and the error code ** is stored in Pager.errCode. While the pager remains in the ERROR state, ** all major API calls on the Pager will immediately return Pager.errCode. ** ** The ERROR state indicates that the contents of the pager-cache ** cannot be trusted. This state can be cleared by completely discarding ** the contents of the pager-cache. If a transaction was active when ** the persistent error occurred, then the rollback journal may need ** to be replayed to restore the contents of the database file (as if ** it were a hot-journal). */ static int pager_error(Pager *pPager, int rc){ int rc2 = rc & 0xff; assert( rc==SQLITE_OK || !MEMDB ); assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK || (pPager->errCode & 0xff)==SQLITE_IOERR ); if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ pPager->errCode = rc; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); } return rc; } static int pager_truncate(Pager *pPager, Pgno nPage); /* ** The write transaction open on pPager is being committed (bCommit==1) ** or rolled back (bCommit==0). ** ** Return TRUE if and only if all dirty pages should be flushed to disk. ** ** Rules: ** ** * For non-TEMP databases, always sync to disk. This is necessary ** for transactions to be durable. ** ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing ** file has been created already (via a spill on pagerStress()) and ** when the number of dirty pages in memory exceeds 25% of the total ** cache size. */ static int pagerFlushOnCommit(Pager *pPager, int bCommit){ if( pPager->tempFile==0 ) return 1; if( !bCommit ) return 0; if( !isOpen(pPager->fd) ) return 0; return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); } /* ** This routine ends a transaction. A transaction is usually ended by ** either a COMMIT or a ROLLBACK operation. This routine may be called ** after rollback of a hot-journal, or if an error occurs while opening ** the journal file or writing the very first journal-header of a ** database transaction. ** ** This routine is never called in PAGER_ERROR state. If it is called ** in PAGER_NONE or PAGER_SHARED state and the lock held is less ** exclusive than a RESERVED lock, it is a no-op. ** ** Otherwise, any active savepoints are released. ** ** If the journal file is open, then it is "finalized". Once a journal ** file has been finalized it is not possible to use it to roll back a ** transaction. Nor will it be considered to be a hot-journal by this ** or any other database connection. Exactly how a journal is finalized ** depends on whether or not the pager is running in exclusive mode and ** the current journal-mode (Pager.journalMode value), as follows: ** ** journalMode==MEMORY ** Journal file descriptor is simply closed. This destroys an ** in-memory journal. ** ** journalMode==TRUNCATE ** Journal file is truncated to zero bytes in size. ** ** journalMode==PERSIST ** The first 28 bytes of the journal file are zeroed. This invalidates ** the first journal header in the file, and hence the entire journal ** file. An invalid journal file cannot be rolled back. ** ** journalMode==DELETE ** The journal file is closed and deleted using sqlite3OsDelete(). ** ** If the pager is running in exclusive mode, this method of finalizing ** the journal file is never used. Instead, if the journalMode is ** DELETE and the pager is in exclusive mode, the method described under ** journalMode==PERSIST is used instead. ** ** After the journal is finalized, the pager moves to PAGER_READER state. ** If running in non-exclusive rollback mode, the lock on the file is ** downgraded to a SHARED_LOCK. ** ** SQLITE_OK is returned if no error occurs. If an error occurs during ** any of the IO operations to finalize the journal file or unlock the ** database then the IO error code is returned to the user. If the ** operation to finalize the journal file fails, then the code still ** tries to unlock the database file if not in exclusive mode. If the ** unlock operation fails as well, then the first error code related ** to the first error encountered (the journal finalization one) is ** returned. */ static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){ int rc = SQLITE_OK; /* Error code from journal finalization operation */ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ /* Do nothing if the pager does not have an open write transaction ** or at least a RESERVED lock. This function may be called when there ** is no write-transaction active but a RESERVED or greater lock is ** held under two circumstances: ** ** 1. After a successful hot-journal rollback, it is called with ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. ** ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE ** lock switches back to locking_mode=normal and then executes a ** read-transaction, this function is called with eState==PAGER_READER ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. */ assert( assert_pager_state(pPager) ); assert( pPager->eState!=PAGER_ERROR ); if( pPager->eStateeLockjfd) || pPager->pInJournal==0 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); if( isOpen(pPager->jfd) ){ assert( !pagerUseWal(pPager) ); /* Finalize the journal file. */ if( sqlite3JournalIsInMemory(pPager->jfd) ){ /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ sqlite3OsClose(pPager->jfd); }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ if( pPager->journalOff==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3OsTruncate(pPager->jfd, 0); if( rc==SQLITE_OK && pPager->fullSync ){ /* Make sure the new file size is written into the inode right away. ** Otherwise the journal might resurrect following a power loss and ** cause the last transaction to roll back. See ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 */ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); } } pPager->journalOff = 0; }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) ){ rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile); pPager->journalOff = 0; }else{ /* This branch may be executed with Pager.journalMode==MEMORY if ** a hot-journal was just rolled back. In this case the journal ** file should be closed and deleted. If this connection writes to ** the database file, it will do so using an in-memory journal. */ int bDelete = !pPager->tempFile; assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_WAL ); sqlite3OsClose(pPager->jfd); if( bDelete ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); } } } #ifdef SQLITE_CHECK_PAGES sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ PgHdr *p = sqlite3PagerLookup(pPager, 1); if( p ){ p->pageHash = 0; sqlite3PagerUnrefNotNull(p); } } #endif sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; pPager->nRec = 0; if( rc==SQLITE_OK ){ if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ sqlite3PcacheCleanAll(pPager->pPCache); }else{ sqlite3PcacheClearWritable(pPager->pPCache); } sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); } if( pagerUseWal(pPager) ){ /* Drop the WAL write-lock, if any. Also, if the connection was in ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE ** lock held on the database file. */ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); assert( rc2==SQLITE_OK ); }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ /* This branch is taken when committing a transaction in rollback-journal ** mode if the database file on disk is larger than the database image. ** At this point the journal has been finalized and the transaction ** successfully committed, but the EXCLUSIVE lock is still held on the ** file. So it is safe to truncate the database file to its minimum ** required size. */ assert( pPager->eLock==EXCLUSIVE_LOCK ); rc = pager_truncate(pPager, pPager->dbSize); } if( rc==SQLITE_OK && bCommit ){ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; } if( !pPager->exclusiveMode && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) ){ rc2 = pagerUnlockDb(pPager, SHARED_LOCK); } pPager->eState = PAGER_READER; pPager->setSuper = 0; return (rc==SQLITE_OK?rc2:rc); } /* ** Execute a rollback if a transaction is active and unlock the ** database file. ** ** If the pager has already entered the ERROR state, do not attempt ** the rollback at this time. Instead, pager_unlock() is called. The ** call to pager_unlock() will discard all in-memory pages, unlock ** the database file and move the pager back to OPEN state. If this ** means that there is a hot-journal left in the file-system, the next ** connection to obtain a shared lock on the pager (which may be this one) ** will roll it back. ** ** If the pager has not already entered the ERROR state, but an IO or ** malloc error occurs during a rollback, then this will itself cause ** the pager to enter the ERROR state. Which will be cleared by the ** call to pager_unlock(), as described above. */ static void pagerUnlockAndRollback(Pager *pPager){ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ assert( assert_pager_state(pPager) ); if( pPager->eState>=PAGER_WRITER_LOCKED ){ sqlite3BeginBenignMalloc(); sqlite3PagerRollback(pPager); sqlite3EndBenignMalloc(); }else if( !pPager->exclusiveMode ){ assert( pPager->eState==PAGER_READER ); pager_end_transaction(pPager, 0, 0); } } pager_unlock(pPager); } /* ** Parameter aData must point to a buffer of pPager->pageSize bytes ** of data. Compute and return a checksum based on the contents of the ** page of data and the current value of pPager->cksumInit. ** ** This is not a real checksum. It is really just the sum of the ** random initial value (pPager->cksumInit) and every 200th byte ** of the page data, starting with byte offset (pPager->pageSize%200). ** Each byte is interpreted as an 8-bit unsigned integer. ** ** Changing the formula used to compute this checksum results in an ** incompatible journal file format. ** ** If journal corruption occurs due to a power failure, the most likely ** scenario is that one end or the other of the record will be changed. ** It is much less likely that the two ends of the journal record will be ** correct and the middle be corrupt. Thus, this "checksum" scheme, ** though fast and simple, catches the mostly likely kind of corruption. */ static u32 pager_cksum(Pager *pPager, const u8 *aData){ u32 cksum = pPager->cksumInit; /* Checksum value to return */ int i = pPager->pageSize-200; /* Loop counter */ while( i>0 ){ cksum += aData[i]; i -= 200; } return cksum; } /* ** Read a single page from either the journal file (if isMainJrnl==1) or ** from the sub-journal (if isMainJrnl==0) and playback that page. ** The page begins at offset *pOffset into the file. The *pOffset ** value is increased to the start of the next page in the journal. ** ** The main rollback journal uses checksums - the statement journal does ** not. ** ** If the page number of the page record read from the (sub-)journal file ** is greater than the current value of Pager.dbSize, then playback is ** skipped and SQLITE_OK is returned. ** ** If pDone is not NULL, then it is a record of pages that have already ** been played back. If the page at *pOffset has already been played back ** (if the corresponding pDone bit is set) then skip the playback. ** Make sure the pDone bit corresponding to the *pOffset page is set ** prior to returning. ** ** If the page record is successfully read from the (sub-)journal file ** and played back, then SQLITE_OK is returned. If an IO error occurs ** while reading the record from the (sub-)journal file or while writing ** to the database file, then the IO error code is returned. If data ** is successfully read from the (sub-)journal file but appears to be ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in ** two circumstances: ** ** * If the record page-number is illegal (0 or PAGER_SJ_PGNO), or ** * If the record is being rolled back from the main journal file ** and the checksum field does not match the record content. ** ** Neither of these two scenarios are possible during a savepoint rollback. ** ** If this is a savepoint rollback, then memory may have to be dynamically ** allocated by this function. If this is the case and an allocation fails, ** SQLITE_NOMEM is returned. */ static int pager_playback_one_page( Pager *pPager, /* The pager being played back */ i64 *pOffset, /* Offset of record to playback */ Bitvec *pDone, /* Bitvec of pages already played back */ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ int isSavepnt /* True for a savepoint rollback */ ){ int rc; PgHdr *pPg; /* An existing page in the cache */ Pgno pgno; /* The page number of a page in journal */ u32 cksum; /* Checksum used for sanity checking */ char *aData; /* Temporary storage for the page */ sqlite3_file *jfd; /* The file descriptor for the journal file */ int isSynced; /* True if journal page is synced */ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ aData = pPager->pTmpSpace; assert( aData ); /* Temp storage must have already been allocated */ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction ** or savepoint rollback done at the request of the caller) or this is ** a hot-journal rollback. If it is a hot-journal rollback, the pager ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback ** only reads from the main journal, not the sub-journal. */ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); /* Read the page number and page data from the journal or sub-journal ** file. Return an error code to the caller if an IO error occurs. */ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; rc = read32bits(jfd, *pOffset, &pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); if( rc!=SQLITE_OK ) return rc; *pOffset += pPager->pageSize + 4 + isMainJrnl*4; /* Sanity checking on the page. This is more important that I originally ** thought. If a power failure occurs while the journal is being written, ** it could cause invalid data to be written into the journal. We need to ** detect this invalid data (with high probability) and ignore it. */ if( pgno==0 || pgno==PAGER_SJ_PGNO(pPager) ){ assert( !isSavepnt ); return SQLITE_DONE; } if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ return SQLITE_OK; } if( isMainJrnl ){ rc = read32bits(jfd, (*pOffset)-4, &cksum); if( rc ) return rc; if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ return SQLITE_DONE; } } /* If this page has already been played back before during the current ** rollback, then don't bother to play it back again. */ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ return rc; } /* When playing back page 1, restore the nReserve setting */ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ pPager->nReserve = ((u8*)aData)[20]; } /* If the pager is in CACHEMOD state, then there must be a copy of this ** page in the pager cache. In this case just update the pager cache, ** not the database file. The page is left marked dirty in this case. ** ** An exception to the above rule: If the database is in no-sync mode ** and a page is moved during an incremental vacuum then the page may ** not be in the pager cache. Later: if a malloc() or IO error occurs ** during a Movepage() call, then the page may not be in the cache ** either. So the condition described in the above paragraph is not ** assert()able. ** ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the ** pager cache if it exists and the main file. The page is then marked ** not dirty. Since this code is only executed in PAGER_OPEN state for ** a hot-journal rollback, it is guaranteed that the page-cache is empty ** if the pager is in OPEN state. ** ** Ticket #1171: The statement journal might contain page content that is ** different from the page content at the start of the transaction. ** This occurs when a page is changed prior to the start of a statement ** then changed again within the statement. When rolling back such a ** statement we must not write to the original database unless we know ** for certain that original page contents are synced into the main rollback ** journal. Otherwise, a power loss might leave modified data in the ** database file without an entry in the rollback journal that can ** restore the database to its original form. Two conditions must be ** met before writing to the database files. (1) the database must be ** locked. (2) we know that the original page content is fully synced ** in the main journal either because the page is not in cache or else ** the page is marked as needSync==0. ** ** 2008-04-14: When attempting to vacuum a corrupt database file, it ** is possible to fail a statement on a database that does not yet exist. ** Do not attempt to write if database file has never been opened. */ if( pagerUseWal(pPager) ){ pPg = 0; }else{ pPg = sqlite3PagerLookup(pPager, pgno); } assert( pPg || !MEMDB ); assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), (isMainJrnl?"main-journal":"sub-journal") )); if( isMainJrnl ){ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); }else{ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); } if( isOpen(pPager->fd) && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) && isSynced ){ i64 ofst = (pgno-1)*(i64)pPager->pageSize; testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); assert( !pagerUseWal(pPager) ); /* Write the data read from the journal back into the database file. ** This is usually safe even for an encrypted database - as the data ** was encrypted before it was written to the journal file. The exception ** is if the data was just read from an in-memory sub-journal. In that ** case it must be encrypted here before it is copied into the database ** file. */ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); if( pgno>pPager->dbFileSize ){ pPager->dbFileSize = pgno; } if( pPager->pBackup ){ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); } }else if( !isMainJrnl && pPg==0 ){ /* If this is a rollback of a savepoint and data was not written to ** the database and the page is not in-memory, there is a potential ** problem. When the page is next fetched by the b-tree layer, it ** will be read from the database file, which may or may not be ** current. ** ** There are a couple of different ways this can happen. All are quite ** obscure. When running in synchronous mode, this can only happen ** if the page is on the free-list at the start of the transaction, then ** populated, then moved using sqlite3PagerMovepage(). ** ** The solution is to add an in-memory page to the cache containing ** the data just read from the sub-journal. Mark the page as dirty ** and if the pager requires a journal-sync, then mark the page as ** requiring a journal-sync before it is written. */ assert( isSavepnt ); assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); pPager->doNotSpill |= SPILLFLAG_ROLLBACK; rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; if( rc!=SQLITE_OK ) return rc; sqlite3PcacheMakeDirty(pPg); } if( pPg ){ /* No page should ever be explicitly rolled back that is in use, except ** for page 1 which is held in use in order to keep the lock on the ** database active. However such a page may be rolled back as a result ** of an internal error resulting in an automatic call to ** sqlite3PagerRollback(). */ void *pData; pData = pPg->pData; memcpy(pData, (u8*)aData, pPager->pageSize); pPager->xReiniter(pPg); /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But ** that call was dangerous and had no detectable benefit since the cache ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so ** has been removed. */ pager_set_pagehash(pPg); /* If this was page 1, then restore the value of Pager.dbFileVers. ** Do this before any decoding. */ if( pgno==1 ){ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); } sqlite3PcacheRelease(pPg); } return rc; } /* ** Parameter zSuper is the name of a super-journal file. A single journal ** file that referred to the super-journal file has just been rolled back. ** This routine checks if it is possible to delete the super-journal file, ** and does so if it is. ** ** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not ** available for use within this function. ** ** When a super-journal file is created, it is populated with the names ** of all of its child journals, one after another, formatted as utf-8 ** encoded text. The end of each child journal file is marked with a ** nul-terminator byte (0x00). i.e. the entire contents of a super-journal ** file for a transaction involving two databases might be: ** ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" ** ** A super-journal file may only be deleted once all of its child ** journals have been rolled back. ** ** This function reads the contents of the super-journal file into ** memory and loops through each of the child journal names. For ** each child journal, it checks if: ** ** * if the child journal exists, and if so ** * if the child journal contains a reference to super-journal ** file zSuper ** ** If a child journal can be found that matches both of the criteria ** above, this function returns without doing anything. Otherwise, if ** no such child journal can be found, file zSuper is deleted from ** the file-system using sqlite3OsDelete(). ** ** If an IO error within this function, an error code is returned. This ** function allocates memory by calling sqlite3Malloc(). If an allocation ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors ** occur, SQLITE_OK is returned. ** ** TODO: This function allocates a single block of memory to load ** the entire contents of the super-journal file. This could be ** a couple of kilobytes or so - potentially larger than the page ** size. */ static int pager_delsuper(Pager *pPager, const char *zSuper){ sqlite3_vfs *pVfs = pPager->pVfs; int rc; /* Return code */ sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ char *zSuperJournal = 0; /* Contents of super-journal file */ i64 nSuperJournal; /* Size of super-journal file */ char *zJournal; /* Pointer to one journal within MJ file */ char *zSuperPtr; /* Space to hold super-journal filename */ char *zFree = 0; /* Free this buffer */ int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */ /* Allocate space for both the pJournal and pSuper file descriptors. ** If successful, open the super-journal file for reading. */ pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); if( !pSuper ){ rc = SQLITE_NOMEM_BKPT; pJournal = 0; }else{ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0); pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile); } if( rc!=SQLITE_OK ) goto delsuper_out; /* Load the entire super-journal file into space obtained from ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain ** sufficient space (in zSuperPtr) to hold the names of super-journal ** files extracted from regular rollback-journals. */ rc = sqlite3OsFileSize(pSuper, &nSuperJournal); if( rc!=SQLITE_OK ) goto delsuper_out; nSuperPtr = pVfs->mxPathname+1; zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2); if( !zFree ){ rc = SQLITE_NOMEM_BKPT; goto delsuper_out; } zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0; zSuperJournal = &zFree[4]; zSuperPtr = &zSuperJournal[nSuperJournal+2]; rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0); if( rc!=SQLITE_OK ) goto delsuper_out; zSuperJournal[nSuperJournal] = 0; zSuperJournal[nSuperJournal+1] = 0; zJournal = zSuperJournal; while( (zJournal-zSuperJournal)pageSize bytes). ** If the file on disk is currently larger than nPage pages, then use the VFS ** xTruncate() method to truncate it. ** ** Or, it might be the case that the file on disk is smaller than ** nPage pages. Some operating system implementations can get confused if ** you try to truncate a file to some size that is larger than it ** currently is, so detect this case and write a single zero byte to ** the end of the new file instead. ** ** If successful, return SQLITE_OK. If an IO error occurs while modifying ** the database file, return the error code to the caller. */ static int pager_truncate(Pager *pPager, Pgno nPage){ int rc = SQLITE_OK; assert( pPager->eState!=PAGER_ERROR ); assert( pPager->eState!=PAGER_READER ); PAGERTRACE(("Truncate %d npage %u\n", PAGERID(pPager), nPage)); if( isOpen(pPager->fd) && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) ){ i64 currentSize, newSize; int szPage = pPager->pageSize; assert( pPager->eLock==EXCLUSIVE_LOCK ); /* TODO: Is it safe to use Pager.dbFileSize here? */ rc = sqlite3OsFileSize(pPager->fd, ¤tSize); newSize = szPage*(i64)nPage; if( rc==SQLITE_OK && currentSize!=newSize ){ if( currentSize>newSize ){ rc = sqlite3OsTruncate(pPager->fd, newSize); }else if( (currentSize+szPage)<=newSize ){ char *pTmp = pPager->pTmpSpace; memset(pTmp, 0, szPage); testcase( (newSize-szPage) == currentSize ); testcase( (newSize-szPage) > currentSize ); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &newSize); rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); } if( rc==SQLITE_OK ){ pPager->dbFileSize = nPage; } } } return rc; } /* ** Return a sanitized version of the sector-size of OS file pFile. The ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. */ SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){ int iRet = sqlite3OsSectorSize(pFile); if( iRet<32 ){ iRet = 512; }else if( iRet>MAX_SECTOR_SIZE ){ assert( MAX_SECTOR_SIZE>=512 ); iRet = MAX_SECTOR_SIZE; } return iRet; } /* ** Set the value of the Pager.sectorSize variable for the given ** pager based on the value returned by the xSectorSize method ** of the open database file. The sector size will be used ** to determine the size and alignment of journal header and ** super-journal pointers within created journal files. ** ** For temporary files the effective sector size is always 512 bytes. ** ** Otherwise, for non-temporary files, the effective sector size is ** the value returned by the xSectorSize() method rounded up to 32 if ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it ** is greater than MAX_SECTOR_SIZE. ** ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set ** the effective sector size to its minimum value (512). The purpose of ** pPager->sectorSize is to define the "blast radius" of bytes that ** might change if a crash occurs while writing to a single byte in ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector ** size. For backwards compatibility of the rollback journal file format, ** we cannot reduce the effective sector size below 512. */ static void setSectorSize(Pager *pPager){ assert( isOpen(pPager->fd) || pPager->tempFile ); if( pPager->tempFile || (sqlite3OsDeviceCharacteristics(pPager->fd) & SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 ){ /* Sector size doesn't matter for temporary files. Also, the file ** may not have been opened yet, in which case the OsSectorSize() ** call will segfault. */ pPager->sectorSize = 512; }else{ pPager->sectorSize = sqlite3SectorSize(pPager->fd); } } /* ** Playback the journal and thus restore the database file to ** the state it was in before we started making changes. ** ** The journal file format is as follows: ** ** (1) 8 byte prefix. A copy of aJournalMagic[]. ** (2) 4 byte big-endian integer which is the number of valid page records ** in the journal. If this value is 0xffffffff, then compute the ** number of page records from the journal size. ** (3) 4 byte big-endian integer which is the initial value for the ** sanity checksum. ** (4) 4 byte integer which is the number of pages to truncate the ** database to during a rollback. ** (5) 4 byte big-endian integer which is the sector size. The header ** is this many bytes in size. ** (6) 4 byte big-endian integer which is the page size. ** (7) zero padding out to the next sector size. ** (8) Zero or more pages instances, each as follows: ** + 4 byte page number. ** + pPager->pageSize bytes of data. ** + 4 byte checksum ** ** When we speak of the journal header, we mean the first 7 items above. ** Each entry in the journal is an instance of the 8th item. ** ** Call the value from the second bullet "nRec". nRec is the number of ** valid page entries in the journal. In most cases, you can compute the ** value of nRec from the size of the journal file. But if a power ** failure occurred while the journal was being written, it could be the ** case that the size of the journal file had already been increased but ** the extra entries had not yet made it safely to disk. In such a case, ** the value of nRec computed from the file size would be too large. For ** that reason, we always use the nRec value in the header. ** ** If the nRec value is 0xffffffff it means that nRec should be computed ** from the file size. This value is used when the user selects the ** no-sync option for the journal. A power failure could lead to corruption ** in this case. But for things like temporary table (which will be ** deleted when the power is restored) we don't care. ** ** If the file opened as the journal file is not a well-formed ** journal file then all pages up to the first corrupted page are rolled ** back (or no pages if the journal header is corrupted). The journal file ** is then deleted and SQLITE_OK returned, just as if no corruption had ** been encountered. ** ** If an I/O or malloc() error occurs, the journal-file is not deleted ** and an error code is returned. ** ** The isHot parameter indicates that we are trying to rollback a journal ** that might be a hot journal. Or, it could be that the journal is ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. ** If the journal really is hot, reset the pager cache prior rolling ** back any content. If the journal is merely persistent, no reset is ** needed. */ static int pager_playback(Pager *pPager, int isHot){ sqlite3_vfs *pVfs = pPager->pVfs; i64 szJ; /* Size of the journal file in bytes */ u32 nRec; /* Number of Records in the journal */ u32 u; /* Unsigned loop counter */ Pgno mxPg = 0; /* Size of the original file in pages */ int rc; /* Result code of a subroutine */ int res = 1; /* Value returned by sqlite3OsAccess() */ char *zSuper = 0; /* Name of super-journal file if any */ int needPagerReset; /* True to reset page prior to first page rollback */ int nPlayback = 0; /* Total number of pages restored from journal */ u32 savedPageSize = pPager->pageSize; /* Figure out how many records are in the journal. Abort early if ** the journal is empty. */ assert( isOpen(pPager->jfd) ); rc = sqlite3OsFileSize(pPager->jfd, &szJ); if( rc!=SQLITE_OK ){ goto end_playback; } /* Read the super-journal name from the journal, if it is present. ** If a super-journal file name is specified, but the file is not ** present on disk, then the journal is not hot and does not need to be ** played back. ** ** TODO: Technically the following is an error because it assumes that ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, ** mxPathname is 512, which is the same as the minimum allowable value ** for pageSize. */ zSuper = pPager->pTmpSpace; rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); if( rc==SQLITE_OK && zSuper[0] ){ rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); } zSuper = 0; if( rc!=SQLITE_OK || !res ){ goto end_playback; } pPager->journalOff = 0; needPagerReset = isHot; /* This loop terminates either when a readJournalHdr() or ** pager_playback_one_page() call returns SQLITE_DONE or an IO error ** occurs. */ while( 1 ){ /* Read the next journal header from the journal file. If there are ** not enough bytes left in the journal file for a complete header, or ** it is corrupted, then a process must have failed while writing it. ** This indicates nothing more needs to be rolled back. */ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; } goto end_playback; } /* If nRec is 0xffffffff, then this journal was created by a process ** working in no-sync mode. This means that the rest of the journal ** file consists of pages, there are no more journal headers. Compute ** the value of nRec based on this assumption. */ if( nRec==0xffffffff ){ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); } /* If nRec is 0 and this rollback is of a transaction created by this ** process and if this is the final header in the journal, then it means ** that this part of the journal was being filled but has not yet been ** synced to disk. Compute the number of pages based on the remaining ** size of the file. ** ** The third term of the test was added to fix ticket #2565. ** When rolling back a hot journal, nRec==0 always means that the next ** chunk of the journal contains zero pages to be rolled back. But ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in ** the journal, it means that the journal might contain additional ** pages that need to be rolled back and that the number of pages ** should be computed based on the journal file size. */ if( nRec==0 && !isHot && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); } /* If this is the first header read from the journal, truncate the ** database file back to its original size. */ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ rc = pager_truncate(pPager, mxPg); if( rc!=SQLITE_OK ){ goto end_playback; } pPager->dbSize = mxPg; if( pPager->mxPgnomxPgno = mxPg; } } /* Copy original pages out of the journal and back into the ** database file and/or page cache. */ for(u=0; ujournalOff,0,1,0); if( rc==SQLITE_OK ){ nPlayback++; }else{ if( rc==SQLITE_DONE ){ pPager->journalOff = szJ; break; }else if( rc==SQLITE_IOERR_SHORT_READ ){ /* If the journal has been truncated, simply stop reading and ** processing the journal. This might happen if the journal was ** not completely written and synced prior to a crash. In that ** case, the database should have never been written in the ** first place so it is OK to simply abandon the rollback. */ rc = SQLITE_OK; goto end_playback; }else{ /* If we are unable to rollback, quit and return the error ** code. This will cause the pager to enter the error state ** so that no further harm will be done. Perhaps the next ** process to come along will be able to rollback the database. */ goto end_playback; } } } } /*NOTREACHED*/ assert( 0 ); end_playback: if( rc==SQLITE_OK ){ rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); } /* Following a rollback, the database file should be back in its original ** state prior to the start of the transaction, so invoke the ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the ** assertion that the transaction counter was modified. */ #ifdef SQLITE_DEBUG sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); #endif /* If this playback is happening automatically as a result of an IO or ** malloc error that occurred after the change-counter was updated but ** before the transaction was committed, then the change-counter ** modification may just have been reverted. If this happens in exclusive ** mode, then subsequent transactions performed by the connection will not ** update the change-counter at all. This may lead to cache inconsistency ** problems for other processes at some point in the future. So, just ** in case this has happened, clear the changeCountDone flag now. */ pPager->changeCountDone = pPager->tempFile; if( rc==SQLITE_OK ){ /* Leave 4 bytes of space before the super-journal filename in memory. ** This is because it may end up being passed to sqlite3OsOpen(), in ** which case it requires 4 0x00 bytes in memory immediately before ** the filename. */ zSuper = &pPager->pTmpSpace[4]; rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); testcase( rc!=SQLITE_OK ); } if( rc==SQLITE_OK && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) ){ rc = sqlite3PagerSync(pPager, 0); } if( rc==SQLITE_OK ){ rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0); testcase( rc!=SQLITE_OK ); } if( rc==SQLITE_OK && zSuper[0] && res ){ /* If there was a super-journal and this routine will return success, ** see if it is possible to delete the super-journal. */ assert( zSuper==&pPager->pTmpSpace[4] ); memset(pPager->pTmpSpace, 0, 4); rc = pager_delsuper(pPager, zSuper); testcase( rc!=SQLITE_OK ); } if( isHot && nPlayback ){ sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", nPlayback, pPager->zJournal); } /* The Pager.sectorSize variable may have been updated while rolling ** back a journal created by a process with a different sector size ** value. Reset it to the correct value for this process. */ setSectorSize(pPager); return rc; } /* ** Read the content for page pPg out of the database file (or out of ** the WAL if that is where the most recent copy if found) into ** pPg->pData. A shared lock or greater must be held on the database ** file before this function is called. ** ** If page 1 is read, then the value of Pager.dbFileVers[] is set to ** the value read from the database file. ** ** If an IO error occurs, then the IO error is returned to the caller. ** Otherwise, SQLITE_OK is returned. */ static int readDbPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ int rc = SQLITE_OK; /* Return code */ #ifndef SQLITE_OMIT_WAL u32 iFrame = 0; /* Frame of WAL containing pgno */ assert( pPager->eState>=PAGER_READER && !MEMDB ); assert( isOpen(pPager->fd) ); if( pagerUseWal(pPager) ){ rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); if( rc ) return rc; } if( iFrame ){ rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); }else #endif { i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } } if( pPg->pgno==1 ){ if( rc ){ /* If the read is unsuccessful, set the dbFileVers[] to something ** that will never be a valid file version. dbFileVers[] is a copy ** of bytes 24..39 of the database. Bytes 28..31 should always be ** zero or the size of the database in page. Bytes 32..35 and 35..39 ** should be page numbers which are never 0xffffffff. So filling ** pPager->dbFileVers[] with all 0xff bytes should suffice. ** ** For an encrypted database, the situation is more complex: bytes ** 24..39 of the database are white noise. But the probability of ** white noise equaling 16 bytes of 0xff is vanishingly small so ** we should still be ok. */ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); }else{ u8 *dbFileVers = &((u8*)pPg->pData)[24]; memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); } } PAGER_INCR(sqlite3_pager_readdb_count); PAGER_INCR(pPager->nRead); IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); PAGERTRACE(("FETCH %d page %d hash(%08x)\n", PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); return rc; } /* ** Update the value of the change-counter at offsets 24 and 92 in ** the header and the sqlite version number at offset 96. ** ** This is an unconditional update. See also the pager_incr_changecounter() ** routine which only updates the change-counter if the update is actually ** needed, as determined by the pPager->changeCountDone state variable. */ static void pager_write_changecounter(PgHdr *pPg){ u32 change_counter; if( NEVER(pPg==0) ) return; /* Increment the value just read and write it back to byte 24. */ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; put32bits(((char*)pPg->pData)+24, change_counter); /* Also store the SQLite version number in bytes 96..99 and in ** bytes 92..95 store the change counter for which the version number ** is valid. */ put32bits(((char*)pPg->pData)+92, change_counter); put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); } #ifndef SQLITE_OMIT_WAL /* ** This function is invoked once for each page that has already been ** written into the log file when a WAL transaction is rolled back. ** Parameter iPg is the page number of said page. The pCtx argument ** is actually a pointer to the Pager structure. ** ** If page iPg is present in the cache, and has no outstanding references, ** it is discarded. Otherwise, if there are one or more outstanding ** references, the page content is reloaded from the database. If the ** attempt to reload content from the database is required and fails, ** return an SQLite error code. Otherwise, SQLITE_OK. */ static int pagerUndoCallback(void *pCtx, Pgno iPg){ int rc = SQLITE_OK; Pager *pPager = (Pager *)pCtx; PgHdr *pPg; assert( pagerUseWal(pPager) ); pPg = sqlite3PagerLookup(pPager, iPg); if( pPg ){ if( sqlite3PcachePageRefcount(pPg)==1 ){ sqlite3PcacheDrop(pPg); }else{ rc = readDbPage(pPg); if( rc==SQLITE_OK ){ pPager->xReiniter(pPg); } sqlite3PagerUnrefNotNull(pPg); } } /* Normally, if a transaction is rolled back, any backup processes are ** updated as data is copied out of the rollback journal and into the ** database. This is not generally possible with a WAL database, as ** rollback involves simply truncating the log file. Therefore, if one ** or more frames have already been written to the log (and therefore ** also copied into the backup databases) as part of this transaction, ** the backups must be restarted. */ sqlite3BackupRestart(pPager->pBackup); return rc; } /* ** This function is called to rollback a transaction on a WAL database. */ static int pagerRollbackWal(Pager *pPager){ int rc; /* Return Code */ PgHdr *pList; /* List of dirty pages to revert */ /* For all pages in the cache that are currently dirty or have already ** been written (but not committed) to the log file, do one of the ** following: ** ** + Discard the cached page (if refcount==0), or ** + Reload page content from the database (if refcount>0). */ pPager->dbSize = pPager->dbOrigSize; rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); pList = sqlite3PcacheDirtyList(pPager->pPCache); while( pList && rc==SQLITE_OK ){ PgHdr *pNext = pList->pDirty; rc = pagerUndoCallback((void *)pPager, pList->pgno); pList = pNext; } return rc; } /* ** This function is a wrapper around sqlite3WalFrames(). As well as logging ** the contents of the list of pages headed by pList (connected by pDirty), ** this function notifies any active backup processes that the pages have ** changed. ** ** The list of pages passed into this routine is always sorted by page number. ** Hence, if page 1 appears anywhere on the list, it will be the first page. */ static int pagerWalFrames( Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ Pgno nTruncate, /* Database size after this commit */ int isCommit /* True if this is a commit */ ){ int rc; /* Return code */ int nList; /* Number of pages in pList */ PgHdr *p; /* For looping over pages */ assert( pPager->pWal ); assert( pList ); #ifdef SQLITE_DEBUG /* Verify that the page list is in ascending order */ for(p=pList; p && p->pDirty; p=p->pDirty){ assert( p->pgno < p->pDirty->pgno ); } #endif assert( pList->pDirty==0 || isCommit ); if( isCommit ){ /* If a WAL transaction is being committed, there is no point in writing ** any pages with page numbers greater than nTruncate into the WAL file. ** They will never be read by any client. So remove them from the pDirty ** list here. */ PgHdr **ppNext = &pList; nList = 0; for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ if( p->pgno<=nTruncate ){ ppNext = &p->pDirty; nList++; } } assert( pList ); }else{ nList = 1; } pPager->aStat[PAGER_STAT_WRITE] += nList; if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags ); if( rc==SQLITE_OK && pPager->pBackup ){ for(p=pList; p; p=p->pDirty){ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); } } #ifdef SQLITE_CHECK_PAGES pList = sqlite3PcacheDirtyList(pPager->pPCache); for(p=pList; p; p=p->pDirty){ pager_set_pagehash(p); } #endif return rc; } /* ** Begin a read transaction on the WAL. ** ** This routine used to be called "pagerOpenSnapshot()" because it essentially ** makes a snapshot of the database at the current point in time and preserves ** that snapshot for use by the reader in spite of concurrently changes by ** other writers or checkpointers. */ static int pagerBeginReadTransaction(Pager *pPager){ int rc; /* Return code */ int changed = 0; /* True if cache must be reset */ assert( pagerUseWal(pPager) ); assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); /* sqlite3WalEndReadTransaction() was not called for the previous ** transaction in locking_mode=EXCLUSIVE. So call it now. If we ** are in locking_mode=NORMAL and EndRead() was previously called, ** the duplicate call is harmless. */ sqlite3WalEndReadTransaction(pPager->pWal); rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); if( rc!=SQLITE_OK || changed ){ pager_reset(pPager); if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); } return rc; } #endif /* ** This function is called as part of the transition from PAGER_OPEN ** to PAGER_READER state to determine the size of the database file ** in pages (assuming the page size currently stored in Pager.pageSize). ** ** If no error occurs, SQLITE_OK is returned and the size of the database ** in pages is stored in *pnPage. Otherwise, an error code (perhaps ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. */ static int pagerPagecount(Pager *pPager, Pgno *pnPage){ Pgno nPage; /* Value to return via *pnPage */ /* Query the WAL sub-system for the database size. The WalDbsize() ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or ** if the database size is not available. The database size is not ** available from the WAL sub-system if the log file is empty or ** contains no valid committed transactions. */ assert( pPager->eState==PAGER_OPEN ); assert( pPager->eLock>=SHARED_LOCK ); assert( isOpen(pPager->fd) ); assert( pPager->tempFile==0 ); nPage = sqlite3WalDbsize(pPager->pWal); /* If the number of pages in the database is not available from the ** WAL sub-system, determine the page count based on the size of ** the database file. If the size of the database file is not an ** integer multiple of the page-size, round up the result. */ if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ i64 n = 0; /* Size of db file in bytes */ int rc = sqlite3OsFileSize(pPager->fd, &n); if( rc!=SQLITE_OK ){ return rc; } nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); } /* If the current number of pages in the file is greater than the ** configured maximum pager number, increase the allowed limit so ** that the file can be read. */ if( nPage>pPager->mxPgno ){ pPager->mxPgno = (Pgno)nPage; } *pnPage = nPage; return SQLITE_OK; } #ifndef SQLITE_OMIT_WAL /* ** Check if the *-wal file that corresponds to the database opened by pPager ** exists if the database is not empty, or verify that the *-wal file does ** not exist (by deleting it) if the database file is empty. ** ** If the database is not empty and the *-wal file exists, open the pager ** in WAL mode. If the database is empty or if no *-wal file exists and ** if no error occurs, make sure Pager.journalMode is not set to ** PAGER_JOURNALMODE_WAL. ** ** Return SQLITE_OK or an error code. ** ** The caller must hold a SHARED lock on the database file to call this ** function. Because an EXCLUSIVE lock on the db file is required to delete ** a WAL on a none-empty database, this ensures there is no race condition ** between the xAccess() below and an xDelete() being executed by some ** other connection. */ static int pagerOpenWalIfPresent(Pager *pPager){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_OPEN ); assert( pPager->eLock>=SHARED_LOCK ); if( !pPager->tempFile ){ int isWal; /* True if WAL file exists */ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal ); if( rc==SQLITE_OK ){ if( isWal ){ Pgno nPage; /* Size of the database file */ rc = pagerPagecount(pPager, &nPage); if( rc ) return rc; if( nPage==0 ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); }else{ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); rc = sqlite3PagerOpenWal(pPager, 0); } }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ pPager->journalMode = PAGER_JOURNALMODE_DELETE; } } } return rc; } #endif /* ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback ** the entire super-journal file. The case pSavepoint==NULL occurs when ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction ** savepoint. ** ** When pSavepoint is not NULL (meaning a non-transaction savepoint is ** being rolled back), then the rollback consists of up to three stages, ** performed in the order specified: ** ** * Pages are played back from the main journal starting at byte ** offset PagerSavepoint.iOffset and continuing to ** PagerSavepoint.iHdrOffset, or to the end of the main journal ** file if PagerSavepoint.iHdrOffset is zero. ** ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played ** back starting from the journal header immediately following ** PagerSavepoint.iHdrOffset to the end of the main journal file. ** ** * Pages are then played back from the sub-journal file, starting ** with the PagerSavepoint.iSubRec and continuing to the end of ** the journal file. ** ** Throughout the rollback process, each time a page is rolled back, the ** corresponding bit is set in a bitvec structure (variable pDone in the ** implementation below). This is used to ensure that a page is only ** rolled back the first time it is encountered in either journal. ** ** If pSavepoint is NULL, then pages are only played back from the main ** journal file. There is no need for a bitvec in this case. ** ** In either case, before playback commences the Pager.dbSize variable ** is reset to the value that it held at the start of the savepoint ** (or transaction). No page with a page-number greater than this value ** is played back. If one is encountered it is simply skipped. */ static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ i64 szJ; /* Effective size of the main journal */ i64 iHdrOff; /* End of first segment of main-journal records */ int rc = SQLITE_OK; /* Return code */ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ assert( pPager->eState!=PAGER_ERROR ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); /* Allocate a bitvec to use to store the set of pages rolled back */ if( pSavepoint ){ pDone = sqlite3BitvecCreate(pSavepoint->nOrig); if( !pDone ){ return SQLITE_NOMEM_BKPT; } } /* Set the database size back to the value it was before the savepoint ** being reverted was opened. */ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; pPager->changeCountDone = pPager->tempFile; if( !pSavepoint && pagerUseWal(pPager) ){ return pagerRollbackWal(pPager); } /* Use pPager->journalOff as the effective size of the main rollback ** journal. The actual file might be larger than this in ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything ** past pPager->journalOff is off-limits to us. */ szJ = pPager->journalOff; assert( pagerUseWal(pPager)==0 || szJ==0 ); /* Begin by rolling back records from the main journal starting at ** PagerSavepoint.iOffset and continuing to the next journal header. ** There might be records in the main journal that have a page number ** greater than the current database size (pPager->dbSize) but those ** will be skipped automatically. Pages are added to pDone as they ** are played back. */ if( pSavepoint && !pagerUseWal(pPager) ){ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; pPager->journalOff = pSavepoint->iOffset; while( rc==SQLITE_OK && pPager->journalOffjournalOff, pDone, 1, 1); } assert( rc!=SQLITE_DONE ); }else{ pPager->journalOff = 0; } /* Continue rolling back records out of the main journal starting at ** the first journal header seen and continuing until the effective end ** of the main journal file. Continue to skip out-of-range pages and ** continue adding pages rolled back to pDone. */ while( rc==SQLITE_OK && pPager->journalOffjournalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" ** test is related to ticket #2565. See the discussion in the ** pager_playback() function for additional information. */ if( nJRec==0 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); } for(ii=0; rc==SQLITE_OK && iijournalOffjournalOff, pDone, 1, 1); } assert( rc!=SQLITE_DONE ); } assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); /* Finally, rollback pages from the sub-journal. Page that were ** previously rolled back out of the main journal (and are hence in pDone) ** will be skipped. Out-of-range pages are also skipped. */ if( pSavepoint ){ u32 ii; /* Loop counter */ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); if( pagerUseWal(pPager) ){ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); } for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && iinSubRec; ii++){ assert( offset==(i64)ii*(4+pPager->pageSize) ); rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); } assert( rc!=SQLITE_DONE ); } sqlite3BitvecDestroy(pDone); if( rc==SQLITE_OK ){ pPager->journalOff = szJ; } return rc; } /* ** Change the maximum number of in-memory pages that are allowed ** before attempting to recycle clean and unused pages. */ SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); } /* ** Change the maximum number of in-memory pages that are allowed ** before attempting to spill pages to journal. */ SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); } /* ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. */ static void pagerFixMaplimit(Pager *pPager){ #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_file *fd = pPager->fd; if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ sqlite3_int64 sz; sz = pPager->szMmap; pPager->bUseFetch = (sz>0); setGetterMethod(pPager); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); } #endif } /* ** Change the maximum size of any memory mapping made of the database file. */ SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ pPager->szMmap = szMmap; pagerFixMaplimit(pPager); } /* ** Free as much memory as possible from the pager. */ SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){ sqlite3PcacheShrink(pPager->pPCache); } /* ** Adjust settings of the pager to those specified in the pgFlags parameter. ** ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness ** of the database to damage due to OS crashes or power failures by ** changing the number of syncs()s when writing the journals. ** There are four levels: ** ** OFF sqlite3OsSync() is never called. This is the default ** for temporary and transient files. ** ** NORMAL The journal is synced once before writes begin on the ** database. This is normally adequate protection, but ** it is theoretically possible, though very unlikely, ** that an inopertune power failure could leave the journal ** in a state which would cause damage to the database ** when it is rolled back. ** ** FULL The journal is synced twice before writes begin on the ** database (with some additional information - the nRec field ** of the journal header - being written in between the two ** syncs). If we assume that writing a ** single disk sector is atomic, then this mode provides ** assurance that the journal will not be corrupted to the ** point of causing damage to the database during rollback. ** ** EXTRA This is like FULL except that is also syncs the directory ** that contains the rollback journal after the rollback ** journal is unlinked. ** ** The above is for a rollback-journal mode. For WAL mode, OFF continues ** to mean that no syncs ever occur. NORMAL means that the WAL is synced ** prior to the start of checkpoint and that the database file is synced ** at the conclusion of the checkpoint if the entire content of the WAL ** was written back into the database. But no sync operations occur for ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL ** file is synced following each commit operation, in addition to the ** syncs associated with NORMAL. There is no difference between FULL ** and EXTRA for WAL mode. ** ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the ** synchronous=FULL versus synchronous=NORMAL setting determines when ** the xSync primitive is called and is relevant to all platforms. ** ** Numeric values associated with these states are OFF==1, NORMAL=2, ** and FULL=3. */ SQLITE_PRIVATE void sqlite3PagerSetFlags( Pager *pPager, /* The pager to set safety level for */ unsigned pgFlags /* Various flags */ ){ unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; if( pPager->tempFile ){ pPager->noSync = 1; pPager->fullSync = 0; pPager->extraSync = 0; }else{ pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; } if( pPager->noSync ){ pPager->syncFlags = 0; }else if( pgFlags & PAGER_FULLFSYNC ){ pPager->syncFlags = SQLITE_SYNC_FULL; }else{ pPager->syncFlags = SQLITE_SYNC_NORMAL; } pPager->walSyncFlags = (pPager->syncFlags<<2); if( pPager->fullSync ){ pPager->walSyncFlags |= pPager->syncFlags; } if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); } if( pgFlags & PAGER_CACHESPILL ){ pPager->doNotSpill &= ~SPILLFLAG_OFF; }else{ pPager->doNotSpill |= SPILLFLAG_OFF; } } /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_opentemp_count = 0; #endif /* ** Open a temporary file. ** ** Write the file descriptor into *pFile. Return SQLITE_OK on success ** or some other error code if we fail. The OS will automatically ** delete the temporary file when it is closed. ** ** The flags passed to the VFS layer xOpen() call are those specified ** by parameter vfsFlags ORed with the following: ** ** SQLITE_OPEN_READWRITE ** SQLITE_OPEN_CREATE ** SQLITE_OPEN_EXCLUSIVE ** SQLITE_OPEN_DELETEONCLOSE */ static int pagerOpentemp( Pager *pPager, /* The pager object */ sqlite3_file *pFile, /* Write the file descriptor here */ int vfsFlags /* Flags passed through to the VFS */ ){ int rc; /* Return code */ #ifdef SQLITE_TEST sqlite3_opentemp_count++; /* Used for testing and analysis only */ #endif vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); assert( rc!=SQLITE_OK || isOpen(pFile) ); return rc; } /* ** Set the busy handler function. ** ** The pager invokes the busy-handler if sqlite3OsLock() returns ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE ** lock. It does *not* invoke the busy handler when upgrading from ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE ** (which occurs during hot-journal rollback). Summary: ** ** Transition | Invokes xBusyHandler ** -------------------------------------------------------- ** NO_LOCK -> SHARED_LOCK | Yes ** SHARED_LOCK -> RESERVED_LOCK | No ** SHARED_LOCK -> EXCLUSIVE_LOCK | No ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes ** ** If the busy-handler callback returns non-zero, the lock is ** retried. If it returns zero, then the SQLITE_BUSY error is ** returned to the caller of the pager API function. */ SQLITE_PRIVATE void sqlite3PagerSetBusyHandler( Pager *pPager, /* Pager object */ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ ){ void **ap; pPager->xBusyHandler = xBusyHandler; pPager->pBusyHandlerArg = pBusyHandlerArg; ap = (void **)&pPager->xBusyHandler; assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); assert( ap[1]==pBusyHandlerArg ); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); } /* ** Change the page size used by the Pager object. The new page size ** is passed in *pPageSize. ** ** If the pager is in the error state when this function is called, it ** is a no-op. The value returned is the error state error code (i.e. ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). ** ** Otherwise, if all of the following are true: ** ** * the new page size (value of *pPageSize) is valid (a power ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and ** ** * there are no outstanding page references, and ** ** * the database is either not an in-memory database or it is ** an in-memory database that currently consists of zero pages. ** ** then the pager object page size is set to *pPageSize. ** ** If the page size is changed, then this function uses sqlite3PagerMalloc() ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. ** In all other cases, SQLITE_OK is returned. ** ** If the page size is not changed, either because one of the enumerated ** conditions above is not true, the pager was in error state when this ** function was called, or because the memory allocation attempt failed, ** then *pPageSize is set to the old, retained page size before returning. */ SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ int rc = SQLITE_OK; /* It is not possible to do a full assert_pager_state() here, as this ** function may be called from within PagerOpen(), before the state ** of the Pager object is internally consistent. ** ** At one point this function returned an error if the pager was in ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that ** there is at least one outstanding page reference, this function ** is a no-op for that case anyhow. */ u32 pageSize = *pPageSize; assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); if( (pPager->memDb==0 || pPager->dbSize==0) && sqlite3PcacheRefCount(pPager->pPCache)==0 && pageSize && pageSize!=(u32)pPager->pageSize ){ char *pNew = NULL; /* New temp space */ i64 nByte = 0; if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ rc = sqlite3OsFileSize(pPager->fd, &nByte); } if( rc==SQLITE_OK ){ /* 8 bytes of zeroed overrun space is sufficient so that the b-tree * cell header parser will never run off the end of the allocation */ pNew = (char *)sqlite3PageMalloc(pageSize+8); if( !pNew ){ rc = SQLITE_NOMEM_BKPT; }else{ memset(pNew+pageSize, 0, 8); } } if( rc==SQLITE_OK ){ pager_reset(pPager); rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); } if( rc==SQLITE_OK ){ sqlite3PageFree(pPager->pTmpSpace); pPager->pTmpSpace = pNew; pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); pPager->pageSize = pageSize; pPager->lckPgno = (Pgno)(PENDING_BYTE/pageSize) + 1; }else{ sqlite3PageFree(pNew); } } *pPageSize = pPager->pageSize; if( rc==SQLITE_OK ){ if( nReserve<0 ) nReserve = pPager->nReserve; assert( nReserve>=0 && nReserve<1000 ); pPager->nReserve = (i16)nReserve; pagerFixMaplimit(pPager); } return rc; } /* ** Return a pointer to the "temporary page" buffer held internally ** by the pager. This is a buffer that is big enough to hold the ** entire content of a database page. This buffer is used internally ** during rollback and will be overwritten whenever a rollback ** occurs. But other modules are free to use it too, as long as ** no rollbacks are happening. */ SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){ return pPager->pTmpSpace; } /* ** Attempt to set the maximum database page count if mxPage is positive. ** Make no changes if mxPage is zero or negative. And never reduce the ** maximum page count below the current size of the database. ** ** Regardless of mxPage, return the current maximum page count. */ SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){ if( mxPage>0 ){ pPager->mxPgno = mxPage; } assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ /* assert( pPager->mxPgno>=pPager->dbSize ); */ /* OP_MaxPgcnt ensures that the parameter passed to this function is not ** less than the total number of valid pages in the database. But this ** may be less than Pager.dbSize, and so the assert() above is not valid */ return pPager->mxPgno; } /* ** The following set of routines are used to disable the simulated ** I/O error mechanism. These routines are used to avoid simulated ** errors in places where we do not care about errors. ** ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops ** and generate no code. */ #ifdef SQLITE_TEST SQLITE_API extern int sqlite3_io_error_pending; SQLITE_API extern int sqlite3_io_error_hit; static int saved_cnt; void disable_simulated_io_errors(void){ saved_cnt = sqlite3_io_error_pending; sqlite3_io_error_pending = -1; } void enable_simulated_io_errors(void){ sqlite3_io_error_pending = saved_cnt; } #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif /* ** Read the first N bytes from the beginning of the file into memory ** that pDest points to. ** ** If the pager was opened on a transient file (zFilename==""), or ** opened on a file less than N bytes in size, the output buffer is ** zeroed and SQLITE_OK returned. The rationale for this is that this ** function is used to read database headers, and a new transient or ** zero sized database has a header than consists entirely of zeroes. ** ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, ** the error code is returned to the caller and the contents of the ** output buffer undefined. */ SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ int rc = SQLITE_OK; memset(pDest, 0, N); assert( isOpen(pPager->fd) || pPager->tempFile ); /* This routine is only called by btree immediately after creating ** the Pager object. There has not been an opportunity to transition ** to WAL mode yet. */ assert( !pagerUseWal(pPager) ); if( isOpen(pPager->fd) ){ IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) rc = sqlite3OsRead(pPager->fd, pDest, N, 0); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } } return rc; } /* ** This function may only be called when a read-transaction is open on ** the pager. It returns the total number of pages in the database. ** ** However, if the file is between 1 and bytes in size, then ** this is considered a 1 page file. */ SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ assert( pPager->eState>=PAGER_READER ); assert( pPager->eState!=PAGER_WRITER_FINISHED ); *pnPage = (int)pPager->dbSize; } /* ** Try to obtain a lock of type locktype on the database file. If ** a similar or greater lock is already held, this function is a no-op ** (returning SQLITE_OK immediately). ** ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke ** the busy callback if the lock is currently not available. Repeat ** until the busy callback returns false or until the attempt to ** obtain the lock succeeds. ** ** Return SQLITE_OK on success and an error code if we cannot obtain ** the lock. If the lock is obtained successfully, set the Pager.state ** variable to locktype before returning. */ static int pager_wait_on_lock(Pager *pPager, int locktype){ int rc; /* Return code */ /* Check that this is either a no-op (because the requested lock is ** already held), or one of the transitions that the busy-handler ** may be invoked during, according to the comment above ** sqlite3PagerSetBusyhandler(). */ assert( (pPager->eLock>=locktype) || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) ); do { rc = pagerLockDb(pPager, locktype); }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); return rc; } /* ** Function assertTruncateConstraint(pPager) checks that one of the ** following is true for all dirty pages currently in the page-cache: ** ** a) The page number is less than or equal to the size of the ** current database image, in pages, OR ** ** b) if the page content were written at this time, it would not ** be necessary to write the current content out to the sub-journal. ** ** If the condition asserted by this function were not true, and the ** dirty page were to be discarded from the cache via the pagerStress() ** routine, pagerStress() would not write the current page content to ** the database file. If a savepoint transaction were rolled back after ** this happened, the correct behavior would be to restore the current ** content of the page. However, since this content is not present in either ** the database file or the portion of the rollback journal and ** sub-journal rolled back the content could not be restored and the ** database image would become corrupt. It is therefore fortunate that ** this circumstance cannot arise. */ #if defined(SQLITE_DEBUG) static void assertTruncateConstraintCb(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( pPg->flags&PGHDR_DIRTY ); if( pPg->pgno>pPager->dbSize ){ /* if (a) is false */ Pgno pgno = pPg->pgno; int i; for(i=0; ipPager->nSavepoint; i++){ PagerSavepoint *p = &pPager->aSavepoint[i]; assert( p->nOrigpInSavepoint,pgno) ); } } } static void assertTruncateConstraint(Pager *pPager){ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); } #else # define assertTruncateConstraint(pPager) #endif /* ** Truncate the in-memory database file image to nPage pages. This ** function does not actually modify the database file on disk. It ** just sets the internal state of the pager object so that the ** truncation will be done when the current transaction is committed. ** ** This function is only called right before committing a transaction. ** Once this function has been called, the transaction must either be ** rolled back or committed. It is not safe to call this function and ** then continue writing to the database. */ SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ assert( pPager->dbSize>=nPage || CORRUPT_DB ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); pPager->dbSize = nPage; /* At one point the code here called assertTruncateConstraint() to ** ensure that all pages being truncated away by this operation are, ** if one or more savepoints are open, present in the savepoint ** journal so that they can be restored if the savepoint is rolled ** back. This is no longer necessary as this function is now only ** called right before committing a transaction. So although the ** Pager object may still have open savepoints (Pager.nSavepoint!=0), ** they cannot be rolled back. So the assertTruncateConstraint() call ** is no longer correct. */ } /* ** This function is called before attempting a hot-journal rollback. It ** syncs the journal file to disk, then sets pPager->journalHdr to the ** size of the journal file so that the pager_playback() routine knows ** that the entire journal file has been synced. ** ** Syncing a hot-journal to disk before attempting to roll it back ensures ** that if a power-failure occurs during the rollback, the process that ** attempts rollback following system recovery sees the same journal ** content as this process. ** ** If everything goes as planned, SQLITE_OK is returned. Otherwise, ** an SQLite error code. */ static int pagerSyncHotJournal(Pager *pPager){ int rc = SQLITE_OK; if( !pPager->noSync ){ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); } if( rc==SQLITE_OK ){ rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); } return rc; } #if SQLITE_MAX_MMAP_SIZE>0 /* ** Obtain a reference to a memory mapped page object for page number pgno. ** The new object will use the pointer pData, obtained from xFetch(). ** If successful, set *ppPage to point to the new page reference ** and return SQLITE_OK. Otherwise, return an SQLite error code and set ** *ppPage to zero. ** ** Page references obtained by calling this function should be released ** by calling pagerReleaseMapPage(). */ static int pagerAcquireMapPage( Pager *pPager, /* Pager object */ Pgno pgno, /* Page number */ void *pData, /* xFetch()'d data for this page */ PgHdr **ppPage /* OUT: Acquired page object */ ){ PgHdr *p; /* Memory mapped page to return */ if( pPager->pMmapFreelist ){ *ppPage = p = pPager->pMmapFreelist; pPager->pMmapFreelist = p->pDirty; p->pDirty = 0; assert( pPager->nExtra>=8 ); memset(p->pExtra, 0, 8); }else{ *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); if( p==0 ){ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); return SQLITE_NOMEM_BKPT; } p->pExtra = (void *)&p[1]; p->flags = PGHDR_MMAP; p->nRef = 1; p->pPager = pPager; } assert( p->pExtra==(void *)&p[1] ); assert( p->pPage==0 ); assert( p->flags==PGHDR_MMAP ); assert( p->pPager==pPager ); assert( p->nRef==1 ); p->pgno = pgno; p->pData = pData; pPager->nMmapOut++; return SQLITE_OK; } #endif /* ** Release a reference to page pPg. pPg must have been returned by an ** earlier call to pagerAcquireMapPage(). */ static void pagerReleaseMapPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; pPager->nMmapOut--; pPg->pDirty = pPager->pMmapFreelist; pPager->pMmapFreelist = pPg; assert( pPager->fd->pMethods->iVersion>=3 ); sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); } /* ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. */ static void pagerFreeMapHdrs(Pager *pPager){ PgHdr *p; PgHdr *pNext; for(p=pPager->pMmapFreelist; p; p=pNext){ pNext = p->pDirty; sqlite3_free(p); } } /* Verify that the database file has not be deleted or renamed out from ** under the pager. Return SQLITE_OK if the database is still where it ought ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error ** code from sqlite3OsAccess()) if the database has gone missing. */ static int databaseIsUnmoved(Pager *pPager){ int bHasMoved = 0; int rc; if( pPager->tempFile ) return SQLITE_OK; if( pPager->dbSize==0 ) return SQLITE_OK; assert( pPager->zFilename && pPager->zFilename[0] ); rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); if( rc==SQLITE_NOTFOUND ){ /* If the HAS_MOVED file-control is unimplemented, assume that the file ** has not been moved. That is the historical behavior of SQLite: prior to ** version 3.8.3, it never checked */ rc = SQLITE_OK; }else if( rc==SQLITE_OK && bHasMoved ){ rc = SQLITE_READONLY_DBMOVED; } return rc; } /* ** Shutdown the page cache. Free all memory and close all files. ** ** If a transaction was in progress when this routine is called, that ** transaction is rolled back. All outstanding pages are invalidated ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. ** ** This function always succeeds. If a transaction is active an attempt ** is made to roll it back. If an error occurs during the rollback ** a hot journal may be left in the filesystem but no error is returned ** to the caller. */ SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ u8 *pTmp = (u8*)pPager->pTmpSpace; assert( db || pagerUseWal(pPager)==0 ); assert( assert_pager_state(pPager) ); disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); pagerFreeMapHdrs(pPager); /* pPager->errCode = 0; */ pPager->exclusiveMode = 0; #ifndef SQLITE_OMIT_WAL { u8 *a = 0; assert( db || pPager->pWal==0 ); if( db && 0==(db->flags & SQLITE_NoCkptOnClose) && SQLITE_OK==databaseIsUnmoved(pPager) ){ a = pTmp; } sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); pPager->pWal = 0; } #endif pager_reset(pPager); if( MEMDB ){ pager_unlock(pPager); }else{ /* If it is open, sync the journal file before calling UnlockAndRollback. ** If this is not done, then an unsynced portion of the open journal ** file may be played back into the database. If a power failure occurs ** while this is happening, the database could become corrupt. ** ** If an error occurs while trying to sync the journal, shift the pager ** into the ERROR state. This causes UnlockAndRollback to unlock the ** database and close the journal file without attempting to roll it ** back or finalize it. The next database user will have to do hot-journal ** rollback before accessing the database file. */ if( isOpen(pPager->jfd) ){ pager_error(pPager, pagerSyncHotJournal(pPager)); } pagerUnlockAndRollback(pPager); } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); IOTRACE(("CLOSE %p\n", pPager)) sqlite3OsClose(pPager->jfd); sqlite3OsClose(pPager->fd); sqlite3PageFree(pTmp); sqlite3PcacheClose(pPager->pPCache); assert( !pPager->aSavepoint && !pPager->pInJournal ); assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); sqlite3_free(pPager); return SQLITE_OK; } #if !defined(NDEBUG) || defined(SQLITE_TEST) /* ** Return the page number for page pPg. */ SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){ return pPg->pgno; } #endif /* ** Increment the reference count for page pPg. */ SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){ sqlite3PcacheRef(pPg); } /* ** Sync the journal. In other words, make sure all the pages that have ** been written to the journal have actually reached the surface of the ** disk and can be restored in the event of a hot-journal rollback. ** ** If the Pager.noSync flag is set, then this function is a no-op. ** Otherwise, the actions required depend on the journal-mode and the ** device characteristics of the file-system, as follows: ** ** * If the journal file is an in-memory journal file, no action need ** be taken. ** ** * Otherwise, if the device does not support the SAFE_APPEND property, ** then the nRec field of the most recently written journal header ** is updated to contain the number of journal records that have ** been written following it. If the pager is operating in full-sync ** mode, then the journal file is synced before this field is updated. ** ** * If the device does not support the SEQUENTIAL property, then ** journal file is synced. ** ** Or, in pseudo-code: ** ** if( NOT ){ ** if( NOT SAFE_APPEND ){ ** if( ) xSync(); ** ** } ** if( NOT SEQUENTIAL ) xSync(); ** } ** ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every ** page currently held in memory before returning SQLITE_OK. If an IO ** error is encountered, then the IO error code is returned to the caller. */ static int syncJournal(Pager *pPager, int newHdr){ int rc; /* Return code */ assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( !pagerUseWal(pPager) ); rc = sqlite3PagerExclusiveLock(pPager); if( rc!=SQLITE_OK ) return rc; if( !pPager->noSync ){ assert( !pPager->tempFile ); if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); assert( isOpen(pPager->jfd) ); if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ /* This block deals with an obscure problem. If the last connection ** that wrote to this database was operating in persistent-journal ** mode, then the journal file may at this point actually be larger ** than Pager.journalOff bytes. If the next thing in the journal ** file happens to be a journal-header (written as part of the ** previous connection's transaction), and a crash or power-failure ** occurs after nRec is updated but before this connection writes ** anything else to the journal file (or commits/rolls back its ** transaction), then SQLite may become confused when doing the ** hot-journal rollback following recovery. It may roll back all ** of this connections data, then proceed to rolling back the old, ** out-of-date data that follows it. Database corruption. ** ** To work around this, if the journal file does appear to contain ** a valid header following Pager.journalOff, then write a 0x00 ** byte to the start of it to prevent it from being recognized. ** ** Variable iNextHdrOffset is set to the offset at which this ** problematic header will occur, if it exists. aMagic is used ** as a temporary buffer to inspect the first couple of bytes of ** the potential journal header. */ i64 iNextHdrOffset; u8 aMagic[8]; u8 zHeader[sizeof(aJournalMagic)+4]; memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); iNextHdrOffset = journalHdrOffset(pPager); rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ static const u8 zerobyte = 0; rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); } if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ return rc; } /* Write the nRec value into the journal file header. If in ** full-synchronous mode, sync the journal first. This ensures that ** all data has really hit the disk before nRec is updated to mark ** it as a candidate for rollback. ** ** This is not required if the persistent media supports the ** SAFE_APPEND property. Because in this case it is not possible ** for garbage data to be appended to the file, the nRec field ** is populated with 0xFFFFFFFF when the journal header is written ** and never needs to be updated. */ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); if( rc!=SQLITE_OK ) return rc; } IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); rc = sqlite3OsWrite( pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr ); if( rc!=SQLITE_OK ) return rc; } if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) ); if( rc!=SQLITE_OK ) return rc; } pPager->journalHdr = pPager->journalOff; if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ pPager->nRec = 0; rc = writeJournalHdr(pPager); if( rc!=SQLITE_OK ) return rc; } }else{ pPager->journalHdr = pPager->journalOff; } } /* Unless the pager is in noSync mode, the journal file was just ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on ** all pages. */ sqlite3PcacheClearSyncFlags(pPager->pPCache); pPager->eState = PAGER_WRITER_DBMOD; assert( assert_pager_state(pPager) ); return SQLITE_OK; } /* ** The argument is the first in a linked list of dirty pages connected ** by the PgHdr.pDirty pointer. This function writes each one of the ** in-memory pages in the list to the database file. The argument may ** be NULL, representing an empty list. In this case this function is ** a no-op. ** ** The pager must hold at least a RESERVED lock when this function ** is called. Before writing anything to the database file, this lock ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, ** SQLITE_BUSY is returned and no data is written to the database file. ** ** If the pager is a temp-file pager and the actual file-system file ** is not yet open, it is created and opened before any data is ** written out. ** ** Once the lock has been upgraded and, if necessary, the file opened, ** the pages are written out to the database file in list order. Writing ** a page is skipped if it meets either of the following criteria: ** ** * The page number is greater than Pager.dbSize, or ** * The PGHDR_DONT_WRITE flag is set on the page. ** ** If writing out a page causes the database file to grow, Pager.dbFileSize ** is updated accordingly. If page 1 is written out, then the value cached ** in Pager.dbFileVers[] is updated to match the new value stored in ** the database file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot ** be obtained, SQLITE_BUSY is returned. */ static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ int rc = SQLITE_OK; /* Return code */ /* This function is only called for rollback pagers in WRITER_DBMOD state. */ assert( !pagerUseWal(pPager) ); assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); assert( pPager->eLock==EXCLUSIVE_LOCK ); assert( isOpen(pPager->fd) || pList->pDirty==0 ); /* If the file is a temp-file has not yet been opened, open it now. It ** is not possible for rc to be other than SQLITE_OK if this branch ** is taken, as pager_wait_on_lock() is a no-op for temp-files. */ if( !isOpen(pPager->fd) ){ assert( pPager->tempFile && rc==SQLITE_OK ); rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); } /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK && pPager->dbHintSizedbSize && (pList->pDirty || pList->pgno>pPager->dbHintSize) ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); pPager->dbHintSize = pPager->dbSize; } while( rc==SQLITE_OK && pList ){ Pgno pgno = pList->pgno; /* If there are dirty pages in the page cache with page numbers greater ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to ** make the file smaller (presumably by auto-vacuum code). Do not write ** any such pages to the file. ** ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag ** set (set by sqlite3PagerDontWrite()). */ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ char *pData; /* Data to write */ assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); if( pList->pgno==1 ) pager_write_changecounter(pList); pData = pList->pData; /* Write out the page data. */ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); /* If page 1 was just written, update Pager.dbFileVers to match ** the value now stored in the database file. If writing this ** page caused the database file to grow, update dbFileSize. */ if( pgno==1 ){ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); } if( pgno>pPager->dbFileSize ){ pPager->dbFileSize = pgno; } pPager->aStat[PAGER_STAT_WRITE]++; /* Update any backup objects copying the contents of this pager. */ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); PAGERTRACE(("STORE %d page %d hash(%08x)\n", PAGERID(pPager), pgno, pager_pagehash(pList))); IOTRACE(("PGOUT %p %d\n", pPager, pgno)); PAGER_INCR(sqlite3_pager_writedb_count); }else{ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); } pager_set_pagehash(pList); pList = pList->pDirty; } return rc; } /* ** Ensure that the sub-journal file is open. If it is already open, this ** function is a no-op. ** ** SQLITE_OK is returned if everything goes according to plan. An ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() ** fails. */ static int openSubJournal(Pager *pPager){ int rc = SQLITE_OK; if( !isOpen(pPager->sjfd) ){ const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; int nStmtSpill = sqlite3Config.nStmtSpill; if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ nStmtSpill = -1; } rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); } return rc; } /* ** Append a record of the current state of page pPg to the sub-journal. ** ** If successful, set the bit corresponding to pPg->pgno in the bitvecs ** for all open savepoints before returning. ** ** This function returns SQLITE_OK if everything is successful, an IO ** error code if the attempt to write to the sub-journal fails, or ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint ** bitvec. */ static int subjournalPage(PgHdr *pPg){ int rc = SQLITE_OK; Pager *pPager = pPg->pPager; if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ /* Open the sub-journal, if it has not already been opened */ assert( pPager->useJournal ); assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); assert( pagerUseWal(pPager) || pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); rc = openSubJournal(pPager); /* If the sub-journal was opened successfully (or was already open), ** write the journal record into the file. */ if( rc==SQLITE_OK ){ void *pData = pPg->pData; i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); char *pData2; pData2 = pData; PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); rc = write32bits(pPager->sjfd, offset, pPg->pgno); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); } } } if( rc==SQLITE_OK ){ pPager->nSubRec++; assert( pPager->nSavepoint>0 ); rc = addToSavepointBitvecs(pPager, pPg->pgno); } return rc; } static int subjournalPageIfRequired(PgHdr *pPg){ if( subjRequiresPage(pPg) ){ return subjournalPage(pPg); }else{ return SQLITE_OK; } } /* ** This function is called by the pcache layer when it has reached some ** soft memory limit. The first argument is a pointer to a Pager object ** (cast as a void*). The pager is always 'purgeable' (not an in-memory ** database). The second argument is a reference to a page that is ** currently dirty but has no outstanding references. The page ** is always associated with the Pager object passed as the first ** argument. ** ** The job of this function is to make pPg clean by writing its contents ** out to the database file, if possible. This may involve syncing the ** journal file. ** ** If successful, sqlite3PcacheMakeClean() is called on the page and ** SQLITE_OK returned. If an IO error occurs while trying to make the ** page clean, the IO error code is returned. If the page cannot be ** made clean for some other reason, but no error occurs, then SQLITE_OK ** is returned by sqlite3PcacheMakeClean() is not called. */ static int pagerStress(void *p, PgHdr *pPg){ Pager *pPager = (Pager *)p; int rc = SQLITE_OK; assert( pPg->pPager==pPager ); assert( pPg->flags&PGHDR_DIRTY ); /* The doNotSpill NOSYNC bit is set during times when doing a sync of ** journal (and adding a new header) is not allowed. This occurs ** during calls to sqlite3PagerWrite() while trying to journal multiple ** pages belonging to the same sector. ** ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling ** regardless of whether or not a sync is required. This is set during ** a rollback or by user request, respectively. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementation it ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 ** while in the error state, hence it is impossible for this routine to ** be called in the error state. Nevertheless, we include a NEVER() ** test for the error state as a safeguard against future changes. */ if( NEVER(pPager->errCode) ) return SQLITE_OK; testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); testcase( pPager->doNotSpill & SPILLFLAG_OFF ); testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); if( pPager->doNotSpill && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 || (pPg->flags & PGHDR_NEED_SYNC)!=0) ){ return SQLITE_OK; } pPager->aStat[PAGER_STAT_SPILL]++; pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ rc = subjournalPageIfRequired(pPg); if( rc==SQLITE_OK ){ rc = pagerWalFrames(pPager, pPg, 0, 0); } }else{ #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( pPager->tempFile==0 ){ rc = sqlite3JournalCreate(pPager->jfd); if( rc!=SQLITE_OK ) return pager_error(pPager, rc); } #endif /* Sync the journal file if required. */ if( pPg->flags&PGHDR_NEED_SYNC || pPager->eState==PAGER_WRITER_CACHEMOD ){ rc = syncJournal(pPager, 1); } /* Write the contents of the page out to the database file. */ if( rc==SQLITE_OK ){ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); rc = pager_write_pagelist(pPager, pPg); } } /* Mark the page as clean. */ if( rc==SQLITE_OK ){ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); sqlite3PcacheMakeClean(pPg); } return pager_error(pPager, rc); } /* ** Flush all unreferenced dirty pages to disk. */ SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){ int rc = pPager->errCode; if( !MEMDB ){ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); assert( assert_pager_state(pPager) ); while( rc==SQLITE_OK && pList ){ PgHdr *pNext = pList->pDirty; if( pList->nRef==0 ){ rc = pagerStress((void*)pPager, pList); } pList = pNext; } } return rc; } /* ** Allocate and initialize a new Pager object and put a pointer to it ** in *ppPager. The pager should eventually be freed by passing it ** to sqlite3PagerClose(). ** ** The zFilename argument is the path to the database file to open. ** If zFilename is NULL then a randomly-named temporary file is created ** and used as the file to be cached. Temporary files are be deleted ** automatically when they are closed. If zFilename is ":memory:" then ** all information is held in cache. It is never written to disk. ** This can be used to implement an in-memory database. ** ** The nExtra parameter specifies the number of bytes of space allocated ** along with each page reference. This space is available to the user ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the ** first 8 bytes of this space are zeroed but the remainder is uninitialized. ** (The extra space is used by btree as the MemPage object.) ** ** The flags argument is used to specify properties that affect the ** operation of the pager. It should be passed some bitwise combination ** of the PAGER_* flags. ** ** The vfsFlags parameter is a bitmask to pass to the flags parameter ** of the xOpen() method of the supplied VFS when opening files. ** ** If the pager object is allocated and the specified file opened ** successfully, SQLITE_OK is returned and *ppPager set to point to ** the new pager object. If an error occurs, *ppPager is set to NULL ** and error code returned. This function may return SQLITE_NOMEM ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or ** various SQLITE_IO_XXX errors. */ SQLITE_PRIVATE int sqlite3PagerOpen( sqlite3_vfs *pVfs, /* The virtual file system to use */ Pager **ppPager, /* OUT: Return the Pager structure here */ const char *zFilename, /* Name of the database file to open */ int nExtra, /* Extra bytes append to each in-memory page */ int flags, /* flags controlling this file */ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ void (*xReinit)(DbPage*) /* Function to reinitialize pages */ ){ u8 *pPtr; Pager *pPager = 0; /* Pager object to allocate and return */ int rc = SQLITE_OK; /* Return code */ int tempFile = 0; /* True for temp files (incl. in-memory files) */ int memDb = 0; /* True if this is an in-memory file */ int memJM = 0; /* Memory journal mode */ int readOnly = 0; /* True if this is a read-only file */ int journalFileSize; /* Bytes to allocate for each journal fd */ char *zPathname = 0; /* Full path to database file */ int nPathname = 0; /* Number of bytes in zPathname */ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ const char *zUri = 0; /* URI args to copy */ int nUriByte = 1; /* Number of bytes of URI args at *zUri */ /* Figure out how much space is required for each journal file-handle ** (there are two of them, the main journal and the sub-journal). */ journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); /* Set the output variable to NULL in case an error occurs. */ *ppPager = 0; #ifndef SQLITE_OMIT_MEMORYDB if( flags & PAGER_MEMORY ){ memDb = 1; if( zFilename && zFilename[0] ){ zPathname = sqlite3DbStrDup(0, zFilename); if( zPathname==0 ) return SQLITE_NOMEM_BKPT; nPathname = sqlite3Strlen30(zPathname); zFilename = 0; } } #endif /* Compute and store the full pathname in an allocated buffer pointed ** to by zPathname, length nPathname. Or, if this is a temporary file, ** leave both nPathname and zPathname set to 0. */ if( zFilename && zFilename[0] ){ const char *z; nPathname = pVfs->mxPathname+1; zPathname = sqlite3DbMallocRaw(0, nPathname*2); if( zPathname==0 ){ return SQLITE_NOMEM_BKPT; } zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); if( rc!=SQLITE_OK ){ if( rc==SQLITE_OK_SYMLINK ){ if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){ rc = SQLITE_CANTOPEN_SYMLINK; }else{ rc = SQLITE_OK; } } } nPathname = sqlite3Strlen30(zPathname); z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; while( *z ){ z += strlen(z)+1; z += strlen(z)+1; } nUriByte = (int)(&z[1] - zUri); assert( nUriByte>=1 ); if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ /* This branch is taken when the journal path required by ** the database being opened will be more than pVfs->mxPathname ** bytes in length. This means the database cannot be opened, ** as it will not be possible to open the journal file or even ** check for a hot-journal before reading. */ rc = SQLITE_CANTOPEN_BKPT; } if( rc!=SQLITE_OK ){ sqlite3DbFree(0, zPathname); return rc; } } /* Allocate memory for the Pager structure, PCache object, the ** three file descriptors, the database file name and the journal ** file name. The layout in memory is as follows: ** ** Pager object (sizeof(Pager) bytes) ** PCache object (sqlite3PcacheSize() bytes) ** Database file handle (pVfs->szOsFile bytes) ** Sub-journal file handle (journalFileSize bytes) ** Main journal file handle (journalFileSize bytes) ** Ptr back to the Pager (sizeof(Pager*) bytes) ** \0\0\0\0 database prefix (4 bytes) ** Database file name (nPathname+1 bytes) ** URI query parameters (nUriByte bytes) ** Journal filename (nPathname+8+1 bytes) ** WAL filename (nPathname+4+1 bytes) ** \0\0\0 terminator (3 bytes) ** ** Some 3rd-party software, over which we have no control, depends on ** the specific order of the filenames and the \0 separators between them ** so that it can (for example) find the database filename given the WAL ** filename without using the sqlite3_filename_database() API. This is a ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party ** software is in widespread use, so we try to avoid changing the filename ** order and formatting if possible. In particular, the details of the ** filename format expected by 3rd-party software should be as follows: ** ** - Main Database Path ** - \0 ** - Multiple URI components consisting of: ** - Key ** - \0 ** - Value ** - \0 ** - \0 ** - Journal Path ** - \0 ** - WAL Path (zWALName) ** - \0 ** ** The sqlite3_create_filename() interface and the databaseFilename() utility ** that is used by sqlite3_filename_database() and kin also depend on the ** specific formatting and order of the various filenames, so if the format ** changes here, be sure to change it there as well. */ assert( SQLITE_PTRSIZE==sizeof(Pager*) ); pPtr = (u8 *)sqlite3MallocZero( ROUND8(sizeof(*pPager)) + /* Pager structure */ ROUND8(pcacheSize) + /* PCache object */ ROUND8(pVfs->szOsFile) + /* The main db file */ journalFileSize * 2 + /* The two journal files */ SQLITE_PTRSIZE + /* Space to hold a pointer */ 4 + /* Database prefix */ nPathname + 1 + /* database filename */ nUriByte + /* query parameters */ nPathname + 8 + 1 + /* Journal filename */ #ifndef SQLITE_OMIT_WAL nPathname + 4 + 1 + /* WAL filename */ #endif 3 /* Terminator */ ); assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); if( !pPtr ){ sqlite3DbFree(0, zPathname); return SQLITE_NOMEM_BKPT; } pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); memcpy(pPtr, &pPager, SQLITE_PTRSIZE); pPtr += SQLITE_PTRSIZE; /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ pPtr += 4; /* Skip zero prefix */ pPager->zFilename = (char*)pPtr; if( nPathname>0 ){ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; if( zUri ){ memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte; }else{ pPtr++; } } /* Fill in Pager.zJournal */ if( nPathname>0 ){ pPager->zJournal = (char*)pPtr; memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-journal",8); pPtr += 8 + 1; #ifdef SQLITE_ENABLE_8_3_NAMES sqlite3FileSuffix3(zFilename,pPager->zJournal); pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1); #endif }else{ pPager->zJournal = 0; } #ifndef SQLITE_OMIT_WAL /* Fill in Pager.zWal */ if( nPathname>0 ){ pPager->zWal = (char*)pPtr; memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; #ifdef SQLITE_ENABLE_8_3_NAMES sqlite3FileSuffix3(zFilename, pPager->zWal); pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); #endif }else{ pPager->zWal = 0; } #endif (void)pPtr; /* Suppress warning about unused pPtr value */ if( nPathname ) sqlite3DbFree(0, zPathname); pPager->pVfs = pVfs; pPager->vfsFlags = vfsFlags; /* Open the pager file. */ if( zFilename && zFilename[0] ){ int fout = 0; /* VFS flags returned by xOpen() */ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); assert( !memDb ); pPager->memVfs = memJM = (fout&SQLITE_OPEN_MEMORY)!=0; readOnly = (fout&SQLITE_OPEN_READONLY)!=0; /* If the file was successfully opened for read/write access, ** choose a default page size in case we have to create the ** database file. The default page size is the maximum of: ** ** + SQLITE_DEFAULT_PAGE_SIZE, ** + The value returned by sqlite3OsSectorSize() ** + The largest page size that can be written atomically. */ if( rc==SQLITE_OK ){ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); if( !readOnly ){ setSectorSize(pPager); assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); if( szPageDfltsectorSize ){ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; }else{ szPageDflt = (u32)pPager->sectorSize; } } #ifdef SQLITE_ENABLE_ATOMIC_WRITE { int ii; assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ szPageDflt = ii; } } } #endif } pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0); if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){ vfsFlags |= SQLITE_OPEN_READONLY; goto act_like_temp_file; } } }else{ /* If a temporary file is requested, it is not opened immediately. ** In this case we accept the default page size and delay actually ** opening the file until the first call to OsWrite(). ** ** This branch is also run for an in-memory database. An in-memory ** database is the same as a temp-file that is never written out to ** disk and uses an in-memory rollback journal. ** ** This branch also runs for files marked as immutable. */ act_like_temp_file: tempFile = 1; pPager->eState = PAGER_READER; /* Pretend we already have a lock */ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ pPager->noLock = 1; /* Do no locking */ readOnly = (vfsFlags&SQLITE_OPEN_READONLY); } /* The following call to PagerSetPagesize() serves to set the value of ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. */ if( rc==SQLITE_OK ){ assert( pPager->memDb==0 ); rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); testcase( rc!=SQLITE_OK ); } /* Initialize the PCache object. */ if( rc==SQLITE_OK ){ nExtra = ROUND8(nExtra); assert( nExtra>=8 && nExtra<1000 ); rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); } /* If an error occurred above, free the Pager structure and close the file. */ if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->fd); sqlite3PageFree(pPager->pTmpSpace); sqlite3_free(pPager); return rc; } PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) pPager->useJournal = (u8)useJournal; /* pPager->stmtOpen = 0; */ /* pPager->stmtInUse = 0; */ /* pPager->nRef = 0; */ /* pPager->stmtSize = 0; */ /* pPager->stmtJSize = 0; */ /* pPager->nPage = 0; */ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; /* pPager->state = PAGER_UNLOCK; */ /* pPager->errMask = 0; */ pPager->tempFile = (u8)tempFile; assert( tempFile==PAGER_LOCKINGMODE_NORMAL || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); pPager->exclusiveMode = (u8)tempFile; pPager->changeCountDone = pPager->tempFile; pPager->memDb = (u8)memDb; pPager->readOnly = (u8)readOnly; assert( useJournal || pPager->tempFile ); sqlite3PagerSetFlags(pPager, (SQLITE_DEFAULT_SYNCHRONOUS+1)|PAGER_CACHESPILL); /* pPager->pFirst = 0; */ /* pPager->pFirstSynced = 0; */ /* pPager->pLast = 0; */ pPager->nExtra = (u16)nExtra; pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; assert( isOpen(pPager->fd) || tempFile ); setSectorSize(pPager); if( !useJournal ){ pPager->journalMode = PAGER_JOURNALMODE_OFF; }else if( memDb || memJM ){ pPager->journalMode = PAGER_JOURNALMODE_MEMORY; } /* pPager->xBusyHandler = 0; */ /* pPager->pBusyHandlerArg = 0; */ pPager->xReiniter = xReinit; setGetterMethod(pPager); /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ *ppPager = pPager; return SQLITE_OK; } /* ** Return the sqlite3_file for the main database given the name ** of the corresponding WAL or Journal name as passed into ** xOpen. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char *zName){ Pager *pPager; while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ zName--; } pPager = *(Pager**)(zName - 4 - sizeof(Pager*)); return pPager->fd; } /* ** This function is called after transitioning from PAGER_UNLOCK to ** PAGER_SHARED state. It tests if there is a hot journal present in ** the file-system for the given pager. A hot journal is one that ** needs to be played back. According to this function, a hot-journal ** file exists if the following criteria are met: ** ** * The journal file exists in the file system, and ** * No process holds a RESERVED or greater lock on the database file, and ** * The database file itself is greater than 0 bytes in size, and ** * The first byte of the journal file exists and is not 0x00. ** ** If the current size of the database file is 0 but a journal file ** exists, that is probably an old journal left over from a prior ** database with the same name. In this case the journal file is ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK ** is returned. ** ** This routine does not check if there is a super-journal filename ** at the end of the file. If there is, and that super-journal file ** does not exist, then the journal file is not really hot. In this ** case this routine will return a false-positive. The pager_playback() ** routine will discover that the journal file is not really hot and ** will not roll it back. ** ** If a hot-journal file is found to exist, *pExists is set to 1 and ** SQLITE_OK returned. If no hot-journal file is present, *pExists is ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying ** to determine whether or not a hot-journal file exists, the IO error ** code is returned and the value of *pExists is undefined. */ static int hasHotJournal(Pager *pPager, int *pExists){ sqlite3_vfs * const pVfs = pPager->pVfs; int rc = SQLITE_OK; /* Return code */ int exists = 1; /* True if a journal file is present */ int jrnlOpen = !!isOpen(pPager->jfd); assert( pPager->useJournal ); assert( isOpen(pPager->fd) ); assert( pPager->eState==PAGER_OPEN ); assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN )); *pExists = 0; if( !jrnlOpen ){ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); } if( rc==SQLITE_OK && exists ){ int locked = 0; /* True if some process holds a RESERVED lock */ /* Race condition here: Another process might have been holding the ** the RESERVED lock and have a journal open at the sqlite3OsAccess() ** call above, but then delete the journal and drop the lock before ** we get to the following sqlite3OsCheckReservedLock() call. If that ** is the case, this routine might think there is a hot journal when ** in fact there is none. This results in a false-positive which will ** be dealt with by the playback routine. Ticket #3883. */ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); if( rc==SQLITE_OK && !locked ){ Pgno nPage; /* Number of pages in database file */ assert( pPager->tempFile==0 ); rc = pagerPagecount(pPager, &nPage); if( rc==SQLITE_OK ){ /* If the database is zero pages in size, that means that either (1) the ** journal is a remnant from a prior database with the same name where ** the database file but not the journal was deleted, or (2) the initial ** transaction that populates a new database is being rolled back. ** In either case, the journal file can be deleted. However, take care ** not to delete the journal file if it is already open due to ** journal_mode=PERSIST. */ if( nPage==0 && !jrnlOpen ){ sqlite3BeginBenignMalloc(); if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ sqlite3OsDelete(pVfs, pPager->zJournal, 0); if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); } sqlite3EndBenignMalloc(); }else{ /* The journal file exists and no other connection has a reserved ** or greater lock on the database file. Now check that there is ** at least one non-zero bytes at the start of the journal file. ** If there is, then we consider this journal to be hot. If not, ** it can be ignored. */ if( !jrnlOpen ){ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); } if( rc==SQLITE_OK ){ u8 first = 0; rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } if( !jrnlOpen ){ sqlite3OsClose(pPager->jfd); } *pExists = (first!=0); }else if( rc==SQLITE_CANTOPEN ){ /* If we cannot open the rollback journal file in order to see if ** it has a zero header, that might be due to an I/O error, or ** it might be due to the race condition described above and in ** ticket #3883. Either way, assume that the journal is hot. ** This might be a false positive. But if it is, then the ** automatic journal playback and recovery mechanism will deal ** with it under an EXCLUSIVE lock where we do not need to ** worry so much with race conditions. */ *pExists = 1; rc = SQLITE_OK; } } } } } return rc; } /* ** This function is called to obtain a shared lock on the database file. ** It is illegal to call sqlite3PagerGet() until after this function ** has been successfully called. If a shared-lock is already held when ** this function is called, it is a no-op. ** ** The following operations are also performed by this function. ** ** 1) If the pager is currently in PAGER_OPEN state (no lock held ** on the database file), then an attempt is made to obtain a ** SHARED lock on the database file. Immediately after obtaining ** the SHARED lock, the file-system is checked for a hot-journal, ** which is played back if present. Following any hot-journal ** rollback, the contents of the cache are validated by checking ** the 'change-counter' field of the database file header and ** discarded if they are found to be invalid. ** ** 2) If the pager is running in exclusive-mode, and there are currently ** no outstanding references to any pages, and is in the error state, ** then an attempt is made to clear the error state by discarding ** the contents of the page cache and rolling back any open journal ** file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs while locking the database, checking for a hot-journal file or ** rolling back a journal file, the IO error code is returned. */ SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ /* This routine is only called from b-tree and only when there are no ** outstanding pages. This implies that the pager state should either ** be OPEN or READER. READER is only possible if the pager is or was in ** exclusive access mode. */ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ int bHotJournal = 1; /* True if there exists a hot journal-file */ assert( !MEMDB ); assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); rc = pager_wait_on_lock(pPager, SHARED_LOCK); if( rc!=SQLITE_OK ){ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); goto failed; } /* If a journal file exists, and there is no RESERVED lock on the ** database file, then it either needs to be played back or deleted. */ if( pPager->eLock<=SHARED_LOCK ){ rc = hasHotJournal(pPager, &bHotJournal); } if( rc!=SQLITE_OK ){ goto failed; } if( bHotJournal ){ if( pPager->readOnly ){ rc = SQLITE_READONLY_ROLLBACK; goto failed; } /* Get an EXCLUSIVE lock on the database file. At this point it is ** important that a RESERVED lock is not obtained on the way to the ** EXCLUSIVE lock. If it were, another process might open the ** database file, detect the RESERVED lock, and conclude that the ** database is safe to read while this process is still rolling the ** hot-journal back. ** ** Because the intermediate RESERVED lock is not requested, any ** other process attempting to access the database file will get to ** this point in the code and fail to obtain its own EXCLUSIVE lock ** on the database file. ** ** Unless the pager is in locking_mode=exclusive mode, the lock is ** downgraded to SHARED_LOCK before this function returns. */ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ goto failed; } /* If it is not already open and the file exists on disk, open the ** journal for read/write access. Write access is required because ** in exclusive-access mode the file descriptor will be kept open ** and possibly used for a transaction later on. Also, write-access ** is usually required to finalize the journal in journal_mode=persist ** mode (and also for journal_mode=truncate on some systems). ** ** If the journal does not exist, it usually means that some ** other connection managed to get in and roll it back before ** this connection obtained the exclusive lock above. Or, it ** may mean that the pager was in the error-state when this ** function was called and the journal file does not exist. */ if( !isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ sqlite3_vfs * const pVfs = pPager->pVfs; int bExists; /* True if journal file exists */ rc = sqlite3OsAccess( pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); if( rc==SQLITE_OK && bExists ){ int fout = 0; int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; assert( !pPager->tempFile ); rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ rc = SQLITE_CANTOPEN_BKPT; sqlite3OsClose(pPager->jfd); } } } /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. Purge the cache before ** playing back the hot-journal so that we don't end up with ** an inconsistent cache. Sync the hot journal before playing ** it back since the process that crashed and left the hot journal ** probably did not sync it and we are required to always sync ** the journal before playing it back. */ if( isOpen(pPager->jfd) ){ assert( rc==SQLITE_OK ); rc = pagerSyncHotJournal(pPager); if( rc==SQLITE_OK ){ rc = pager_playback(pPager, !pPager->tempFile); pPager->eState = PAGER_OPEN; } }else if( !pPager->exclusiveMode ){ pagerUnlockDb(pPager, SHARED_LOCK); } if( rc!=SQLITE_OK ){ /* This branch is taken if an error occurs while trying to open ** or roll back a hot-journal while holding an EXCLUSIVE lock. The ** pager_unlock() routine will be called before returning to unlock ** the file. If the unlock attempt fails, then Pager.eLock must be ** set to UNKNOWN_LOCK (see the comment above the #define for ** UNKNOWN_LOCK above for an explanation). ** ** In order to get pager_unlock() to do this, set Pager.eState to ** PAGER_ERROR now. This is not actually counted as a transition ** to ERROR state in the state diagram at the top of this file, ** since we know that the same call to pager_unlock() will very ** shortly transition the pager object to the OPEN state. Calling ** assert_pager_state() would fail now, as it should not be possible ** to be in ERROR state when there are zero outstanding page ** references. */ pager_error(pPager, rc); goto failed; } assert( pPager->eState==PAGER_OPEN ); assert( (pPager->eLock==SHARED_LOCK) || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) ); } if( !pPager->tempFile && pPager->hasHeldSharedLock ){ /* The shared-lock has just been acquired then check to ** see if the database has been modified. If the database has changed, ** flush the cache. The hasHeldSharedLock flag prevents this from ** occurring on the very first access to a file, in order to save a ** single unnecessary sqlite3OsRead() call at the start-up. ** ** Database changes are detected by looking at 15 bytes beginning ** at offset 24 into the file. The first 4 of these 16 bytes are ** a 32-bit counter that is incremented with each change. The ** other bytes change randomly with each file change when ** a codec is in use. ** ** There is a vanishingly small chance that a change will not be ** detected. The chance of an undetected change is so small that ** it can be neglected. */ char dbFileVers[sizeof(pPager->dbFileVers)]; IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); if( rc!=SQLITE_OK ){ if( rc!=SQLITE_IOERR_SHORT_READ ){ goto failed; } memset(dbFileVers, 0, sizeof(dbFileVers)); } if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ pager_reset(pPager); /* Unmap the database file. It is possible that external processes ** may have truncated the database file and then extended it back ** to its original size while this process was not holding a lock. ** In this case there may exist a Pager.pMap mapping that appears ** to be the right size but is not actually valid. Avoid this ** possibility by unmapping the db here. */ if( USEFETCH(pPager) ){ sqlite3OsUnfetch(pPager->fd, 0, 0); } } } /* If there is a WAL file in the file-system, open this database in WAL ** mode. Otherwise, the following function call is a no-op. */ rc = pagerOpenWalIfPresent(pPager); #ifndef SQLITE_OMIT_WAL assert( pPager->pWal==0 || rc==SQLITE_OK ); #endif } if( pagerUseWal(pPager) ){ assert( rc==SQLITE_OK ); rc = pagerBeginReadTransaction(pPager); } if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ rc = pagerPagecount(pPager, &pPager->dbSize); } failed: if( rc!=SQLITE_OK ){ assert( !MEMDB ); pager_unlock(pPager); assert( pPager->eState==PAGER_OPEN ); }else{ pPager->eState = PAGER_READER; pPager->hasHeldSharedLock = 1; } return rc; } /* ** If the reference count has reached zero, rollback any active ** transaction and unlock the pager. ** ** Except, in locking_mode=EXCLUSIVE when there is nothing to in ** the rollback journal, the unlock is not performed and there is ** nothing to rollback, so this routine is a no-op. */ static void pagerUnlockIfUnused(Pager *pPager){ if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ pagerUnlockAndRollback(pPager); } } /* ** The page getter methods each try to acquire a reference to a ** page with page number pgno. If the requested reference is ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. ** ** There are different implementations of the getter method depending ** on the current state of the pager. ** ** getPageNormal() -- The normal getter ** getPageError() -- Used if the pager is in an error state ** getPageMmap() -- Used if memory-mapped I/O is enabled ** ** If the requested page is already in the cache, it is returned. ** Otherwise, a new page object is allocated and populated with data ** read from the database file. In some cases, the pcache module may ** choose not to allocate a new page object and may reuse an existing ** object with no outstanding references. ** ** The extra data appended to a page is always initialized to zeros the ** first time a page is loaded into memory. If the page requested is ** already in the cache when this function is called, then the extra ** data is left as it was when the page object was last used. ** ** If the database image is smaller than the requested page or if ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the ** requested page is not already stored in the cache, then no ** actual disk read occurs. In this case the memory image of the ** page is initialized to all zeros. ** ** If PAGER_GET_NOCONTENT is true, it means that we do not care about ** the contents of the page. This occurs in two scenarios: ** ** a) When reading a free-list leaf page from the database, and ** ** b) When a savepoint is being rolled back and we need to load ** a new page into the cache to be filled with the data read ** from the savepoint journal. ** ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead ** of being read from the database. Additionally, the bits corresponding ** to pgno in Pager.pInJournal (bitvec of pages already written to the ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open ** savepoints are set. This means if the page is made writable at any ** point in the future, using a call to sqlite3PagerWrite(), its contents ** will not be journaled. This saves IO. ** ** The acquisition might fail for several reasons. In all cases, ** an appropriate error code is returned and *ppPage is set to NULL. ** ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt ** to find a page in the in-memory cache first. If the page is not already ** in memory, this routine goes to disk to read it in whereas Lookup() ** just returns 0. This routine acquires a read-lock the first time it ** has to go to disk, and could also playback an old journal if necessary. ** Since Lookup() never goes to disk, it never has to deal with locks ** or journal files. */ static int getPageNormal( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ int rc = SQLITE_OK; PgHdr *pPg; u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ sqlite3_pcache_page *pBase; assert( pPager->errCode==SQLITE_OK ); assert( pPager->eState>=PAGER_READER ); assert( assert_pager_state(pPager) ); assert( pPager->hasHeldSharedLock==1 ); if( pgno==0 ) return SQLITE_CORRUPT_BKPT; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ pPg = 0; rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; if( pBase==0 ){ rc = SQLITE_NOMEM_BKPT; goto pager_acquire_err; } } pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); assert( pPg==(*ppPage) ); assert( pPg->pgno==pgno ); assert( pPg->pPager==pPager || pPg->pPager==0 ); noContent = (flags & PAGER_GET_NOCONTENT)!=0; if( pPg->pPager && !noContent ){ /* In this case the pcache already contains an initialized copy of ** the page. Return without further ado. */ assert( pgno!=PAGER_SJ_PGNO(pPager) ); pPager->aStat[PAGER_STAT_HIT]++; return SQLITE_OK; }else{ /* The pager cache has created a new page. Its content needs to ** be initialized. But first some error checks: ** ** (*) obsolete. Was: maximum page number is 2^31 ** (2) Never try to fetch the locking page */ if( pgno==PAGER_SJ_PGNO(pPager) ){ rc = SQLITE_CORRUPT_BKPT; goto pager_acquire_err; } pPg->pPager = pPager; assert( !isOpen(pPager->fd) || !MEMDB ); if( !isOpen(pPager->fd) || pPager->dbSizepPager->mxPgno ){ rc = SQLITE_FULL; if( pgno<=pPager->dbSize ){ sqlite3PcacheRelease(pPg); pPg = 0; } goto pager_acquire_err; } if( noContent ){ /* Failure to set the bits in the InJournal bit-vectors is benign. ** It merely means that we might do some extra work to journal a ** page that does not need to be journaled. Nevertheless, be sure ** to test the case where a malloc error occurs while trying to set ** a bit in a bit vector. */ sqlite3BeginBenignMalloc(); if( pgno<=pPager->dbOrigSize ){ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); testcase( rc==SQLITE_NOMEM ); } TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); testcase( rc==SQLITE_NOMEM ); sqlite3EndBenignMalloc(); } memset(pPg->pData, 0, pPager->pageSize); IOTRACE(("ZERO %p %d\n", pPager, pgno)); }else{ assert( pPg->pPager==pPager ); pPager->aStat[PAGER_STAT_MISS]++; rc = readDbPage(pPg); if( rc!=SQLITE_OK ){ goto pager_acquire_err; } } pager_set_pagehash(pPg); } return SQLITE_OK; pager_acquire_err: assert( rc!=SQLITE_OK ); if( pPg ){ sqlite3PcacheDrop(pPg); } pagerUnlockIfUnused(pPager); *ppPage = 0; return rc; } #if SQLITE_MAX_MMAP_SIZE>0 /* The page getter for when memory-mapped I/O is enabled */ static int getPageMMap( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ int rc = SQLITE_OK; PgHdr *pPg = 0; u32 iFrame = 0; /* Frame to read from WAL file */ /* It is acceptable to use a read-only (mmap) page for any page except ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY ** flag was specified by the caller. And so long as the db is not a ** temporary or in-memory database. */ const int bMmapOk = (pgno>1 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) ); assert( USEFETCH(pPager) ); /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here ** allows the compiler optimizer to reuse the results of the "pgno>1" ** test in the previous statement, and avoid testing pgno==0 in the ** common case where pgno is large. */ if( pgno<=1 && pgno==0 ){ return SQLITE_CORRUPT_BKPT; } assert( pPager->eState>=PAGER_READER ); assert( assert_pager_state(pPager) ); assert( pPager->hasHeldSharedLock==1 ); assert( pPager->errCode==SQLITE_OK ); if( bMmapOk && pagerUseWal(pPager) ){ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); if( rc!=SQLITE_OK ){ *ppPage = 0; return rc; } } if( bMmapOk && iFrame==0 ){ void *pData = 0; rc = sqlite3OsFetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData ); if( rc==SQLITE_OK && pData ){ if( pPager->eState>PAGER_READER || pPager->tempFile ){ pPg = sqlite3PagerLookup(pPager, pgno); } if( pPg==0 ){ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); }else{ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); } if( pPg ){ assert( rc==SQLITE_OK ); *ppPage = pPg; return SQLITE_OK; } } if( rc!=SQLITE_OK ){ *ppPage = 0; return rc; } } return getPageNormal(pPager, pgno, ppPage, flags); } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* The page getter method for when the pager is an error state */ static int getPageError( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ UNUSED_PARAMETER(pgno); UNUSED_PARAMETER(flags); assert( pPager->errCode!=SQLITE_OK ); *ppPage = 0; return pPager->errCode; } /* Dispatch all page fetch requests to the appropriate getter method. */ SQLITE_PRIVATE int sqlite3PagerGet( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ /* printf("PAGE %u\n", pgno); fflush(stdout); */ return pPager->xGet(pPager, pgno, ppPage, flags); } /* ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, ** or 0 if the page is not in cache. ** ** See also sqlite3PagerGet(). The difference between this routine ** and sqlite3PagerGet() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); assert( pPage==0 || pPager->hasHeldSharedLock ); if( pPage==0 ) return 0; return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be used ** if we know that the page being released is not the last reference to page1. ** The btree layer always holds page1 open until the end, so these first ** two routines can be used to release any page other than BtShared.pPage1. ** The assert() at tag-20230419-2 proves that this constraint is always ** honored. ** ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine ** checks the total number of outstanding pages and if the number of ** pages reaches zero it drops the database lock. */ SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){ TESTONLY( Pager *pPager = pPg->pPager; ) assert( pPg!=0 ); if( pPg->flags & PGHDR_MMAP ){ assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ pagerReleaseMapPage(pPg); }else{ sqlite3PcacheRelease(pPg); } /* Do not use this routine to release the last reference to page1 */ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); /* tag-20230419-2 */ } SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){ if( pPg ) sqlite3PagerUnrefNotNull(pPg); } SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage *pPg){ Pager *pPager; assert( pPg!=0 ); assert( pPg->pgno==1 ); assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ pPager = pPg->pPager; sqlite3PcacheRelease(pPg); pagerUnlockIfUnused(pPager); } /* ** This function is called at the start of every write transaction. ** There must already be a RESERVED or EXCLUSIVE lock on the database ** file when this routine is called. ** ** Open the journal file for pager pPager and write a journal header ** to the start of it. If there are active savepoints, open the sub-journal ** as well. This function is only used when the journal file is being ** opened to write a rollback log for a transaction. It is not used ** when opening a hot journal file to roll it back. ** ** If the journal file is already open (as it may be in exclusive mode), ** then this function just writes a journal header to the start of the ** already open file. ** ** Whether or not the journal file is opened by this function, the ** Pager.pInJournal bitvec structure is allocated. ** ** Return SQLITE_OK if everything is successful. Otherwise, return ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or ** an IO error code if opening or writing the journal file fails. */ static int pager_open_journal(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ assert( pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( pPager->pInJournal==0 ); /* If already in the error state, this function is a no-op. But on ** the other hand, this routine is never called if we are already in ** an error state. */ if( NEVER(pPager->errCode) ) return pPager->errCode; if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); if( pPager->pInJournal==0 ){ return SQLITE_NOMEM_BKPT; } /* Open the journal file if it is not already open. */ if( !isOpen(pPager->jfd) ){ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ sqlite3MemJournalOpen(pPager->jfd); }else{ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; int nSpill; if( pPager->tempFile ){ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); flags |= SQLITE_OPEN_EXCLUSIVE; nSpill = sqlite3Config.nStmtSpill; }else{ flags |= SQLITE_OPEN_MAIN_JOURNAL; nSpill = jrnlBufferSize(pPager); } /* Verify that the database still has the same name as it did when ** it was originally opened. */ rc = databaseIsUnmoved(pPager); if( rc==SQLITE_OK ){ rc = sqlite3JournalOpen ( pVfs, pPager->zJournal, pPager->jfd, flags, nSpill ); } } assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); } /* Write the first journal header to the journal file and open ** the sub-journal if necessary. */ if( rc==SQLITE_OK ){ /* TODO: Check if all of these are really required. */ pPager->nRec = 0; pPager->journalOff = 0; pPager->setSuper = 0; pPager->journalHdr = 0; rc = writeJournalHdr(pPager); } } if( rc!=SQLITE_OK ){ sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; pPager->journalOff = 0; }else{ assert( pPager->eState==PAGER_WRITER_LOCKED ); pPager->eState = PAGER_WRITER_CACHEMOD; } return rc; } /* ** Begin a write-transaction on the specified pager object. If a ** write-transaction has already been opened, this function is a no-op. ** ** If the exFlag argument is false, then acquire at least a RESERVED ** lock on the database file. If exFlag is true, then acquire at least ** an EXCLUSIVE lock. If such a lock is already held, no locking ** functions need be called. ** ** If the subjInMemory argument is non-zero, then any sub-journal opened ** within this transaction will be opened as an in-memory file. This ** has no effect if the sub-journal is already opened (as it may be when ** running in exclusive mode) or if the transaction does not require a ** sub-journal. If the subjInMemory argument is zero, then any required ** sub-journal is implemented in-memory if pPager is an in-memory database, ** or using a temporary file otherwise. */ SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ int rc = SQLITE_OK; if( pPager->errCode ) return pPager->errCode; assert( pPager->eState>=PAGER_READER && pPager->eStatesubjInMemory = (u8)subjInMemory; if( pPager->eState==PAGER_READER ){ assert( pPager->pInJournal==0 ); if( pagerUseWal(pPager) ){ /* If the pager is configured to use locking_mode=exclusive, and an ** exclusive lock on the database is not already held, obtain it now. */ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ return rc; } (void)sqlite3WalExclusiveMode(pPager->pWal, 1); } /* Grab the write lock on the log file. If successful, upgrade to ** PAGER_RESERVED state. Otherwise, return an error code to the caller. ** The busy-handler is not invoked if another connection already ** holds the write-lock. If possible, the upper layer will call it. */ rc = sqlite3WalBeginWriteTransaction(pPager->pWal); }else{ /* Obtain a RESERVED lock on the database file. If the exFlag parameter ** is true, then immediately upgrade this to an EXCLUSIVE lock. The ** busy-handler callback can be used when upgrading to the EXCLUSIVE ** lock, but not when obtaining the RESERVED lock. */ rc = pagerLockDb(pPager, RESERVED_LOCK); if( rc==SQLITE_OK && exFlag ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } } if( rc==SQLITE_OK ){ /* Change to WRITER_LOCKED state. ** ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD ** when it has an open transaction, but never to DBMOD or FINISHED. ** This is because in those states the code to roll back savepoint ** transactions may copy data from the sub-journal into the database ** file as well as into the page cache. Which would be incorrect in ** WAL mode. */ pPager->eState = PAGER_WRITER_LOCKED; pPager->dbHintSize = pPager->dbSize; pPager->dbFileSize = pPager->dbSize; pPager->dbOrigSize = pPager->dbSize; pPager->journalOff = 0; } assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Write page pPg onto the end of the rollback journal. */ static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc; u32 cksum; char *pData2; i64 iOff = pPager->journalOff; /* We should never write to the journal file the page that ** contains the database locks. The following assert verifies ** that we do not. */ assert( pPg->pgno!=PAGER_SJ_PGNO(pPager) ); assert( pPager->journalHdr<=pPager->journalOff ); pData2 = pPg->pData; cksum = pager_cksum(pPager, (u8*)pData2); /* Even if an IO or diskfull error occurs while journalling the ** page in the block above, set the need-sync flag for the page. ** Otherwise, when the transaction is rolled back, the logic in ** playback_one_page() will think that the page needs to be restored ** in the database file. And if an IO error occurs while doing so, ** then corruption may follow. */ pPg->flags |= PGHDR_NEED_SYNC; rc = write32bits(pPager->jfd, iOff, pPg->pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); if( rc!=SQLITE_OK ) return rc; rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); if( rc!=SQLITE_OK ) return rc; IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, pPager->journalOff, pPager->pageSize)); PAGER_INCR(sqlite3_pager_writej_count); PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); pPager->journalOff += 8 + pPager->pageSize; pPager->nRec++; assert( pPager->pInJournal!=0 ); rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); rc |= addToSavepointBitvecs(pPager, pPg->pgno); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; /* This routine is not called unless a write-transaction has already ** been started. The journal file may or may not be open at this point. ** It is never called in the ERROR state. */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( pPager->errCode==0 ); assert( pPager->readOnly==0 ); CHECK_PAGE(pPg); /* The journal file needs to be opened. Higher level routines have already ** obtained the necessary locks to begin the write-transaction, but the ** rollback journal might not yet be open. Open it now if this is the case. ** ** This is done before calling sqlite3PcacheMakeDirty() on the page. ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then ** an error might occur and the pager would end up in WRITER_LOCKED state ** with pages marked as dirty in the cache. */ if( pPager->eState==PAGER_WRITER_LOCKED ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); assert( assert_pager_state(pPager) ); /* Mark the page that is about to be modified as dirty. */ sqlite3PcacheMakeDirty(pPg); /* If a rollback journal is in use, them make sure the page that is about ** to change is in the rollback journal, or if the page is a new page off ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. */ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); if( pPager->pInJournal!=0 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 ){ assert( pagerUseWal(pPager)==0 ); if( pPg->pgno<=pPager->dbOrigSize ){ rc = pagerAddPageToRollbackJournal(pPg); if( rc!=SQLITE_OK ){ return rc; } }else{ if( pPager->eState!=PAGER_WRITER_DBMOD ){ pPg->flags |= PGHDR_NEED_SYNC; } PAGERTRACE(("APPEND %d page %d needSync=%d\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); } } /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list ** and before writing the page into the rollback journal. Wait until now, ** after the page has been successfully journalled, before setting the ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. */ pPg->flags |= PGHDR_WRITEABLE; /* If the statement journal is open and the page is not in it, ** then write the page into the statement journal. */ if( pPager->nSavepoint>0 ){ rc = subjournalPageIfRequired(pPg); } /* Update the database size and return. */ if( pPager->dbSizepgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* ** This is a variant of sqlite3PagerWrite() that runs when the sector size ** is larger than the page size. SQLite makes the (reasonable) assumption that ** all bytes of a sector are written together by hardware. Hence, all bytes of ** a sector need to be journalled in case of a power loss in the middle of ** a write. ** ** Usually, the sector size is less than or equal to the page size, in which ** case pages can be individually written. This routine only runs in the ** exceptional case where the page size is smaller than the sector size. */ static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ int rc = SQLITE_OK; /* Return code */ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ Pager *pPager = pPg->pPager; /* The pager that owns pPg */ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow ** a journal header to be written between the pages journaled by ** this function. */ assert( !MEMDB ); assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); pPager->doNotSpill |= SPILLFLAG_NOSYNC; /* This trick assumes that both the page-size and sector-size are ** an integer power of 2. It sets variable pg1 to the identifier ** of the first page of the sector pPg is located on. */ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; nPageCount = pPager->dbSize; if( pPg->pgno>nPageCount ){ nPage = (pPg->pgno - pg1)+1; }else if( (pg1+nPagePerSector-1)>nPageCount ){ nPage = nPageCount+1-pg1; }else{ nPage = nPagePerSector; } assert(nPage>0); assert(pg1<=pPg->pgno); assert((pg1+nPage)>pPg->pgno); for(ii=0; iipgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ if( pg!=PAGER_SJ_PGNO(pPager) ){ rc = sqlite3PagerGet(pPager, pg, &pPage, 0); if( rc==SQLITE_OK ){ rc = pager_write(pPage); if( pPage->flags&PGHDR_NEED_SYNC ){ needSync = 1; } sqlite3PagerUnrefNotNull(pPage); } } }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ if( pPage->flags&PGHDR_NEED_SYNC ){ needSync = 1; } sqlite3PagerUnrefNotNull(pPage); } } /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages ** starting at pg1, then it needs to be set for all of them. Because ** writing to any of these nPage pages may damage the others, the ** journal file must contain sync()ed copies of all of them ** before any of them can be written out to the database file. */ if( rc==SQLITE_OK && needSync ){ assert( !MEMDB ); for(ii=0; iiflags |= PGHDR_NEED_SYNC; sqlite3PagerUnrefNotNull(pPage); } } } assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; return rc; } /* ** Mark a data page as writeable. This routine must be called before ** making changes to a page. The caller must check the return value ** of this function and be careful not to change any page data unless ** this routine returns SQLITE_OK. ** ** The difference between this function and pager_write() is that this ** function also deals with the special case where 2 or more pages ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. ** ** If an error occurs, SQLITE_NOMEM or an IO error code is returned ** as appropriate. Otherwise, SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( (pPg->flags & PGHDR_MMAP)==0 ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); return SQLITE_OK; }else if( pPager->errCode ){ return pPager->errCode; }else if( pPager->sectorSize > (u32)pPager->pageSize ){ assert( pPager->tempFile==0 ); return pagerWriteLargeSector(pPg); }else{ return pager_write(pPg); } } /* ** Return TRUE if the page given in the argument was previously passed ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok ** to change the content of the page. */ #ifndef NDEBUG SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ return pPg->flags & PGHDR_WRITEABLE; } #endif /* ** A call to this routine tells the pager that it is not necessary to ** write the information on page pPg back to the disk, even though ** that page might be marked as dirty. This happens, for example, when ** the page has been added as a leaf of the freelist and so its ** content no longer matters. ** ** The overlying software layer calls this routine when all of the data ** on the given page is unused. The pager marks the page as clean so ** that it does not get written to disk. ** ** Tests show that this optimization can quadruple the speed of large ** DELETE operations. ** ** This optimization cannot be used with a temp-file, as the page may ** have been dirty at the start of the transaction. In that case, if ** memory pressure forces page pPg out of the cache, the data does need ** to be written out to disk so that it may be read back in if the ** current transaction is rolled back. */ SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) pPg->flags |= PGHDR_DONT_WRITE; pPg->flags &= ~PGHDR_WRITEABLE; testcase( pPg->flags & PGHDR_NEED_SYNC ); pager_set_pagehash(pPg); } } /* ** This routine is called to increment the value of the database file ** change-counter, stored as a 4-byte big-endian integer starting at ** byte offset 24 of the pager file. The secondary change counter at ** 92 is also updated, as is the SQLite version number at offset 96. ** ** But this only happens if the pPager->changeCountDone flag is false. ** To avoid excess churning of page 1, the update only happens once. ** See also the pager_write_changecounter() routine that does an ** unconditional update of the change counters. ** ** If the isDirectMode flag is zero, then this is done by calling ** sqlite3PagerWrite() on page 1, then modifying the contents of the ** page data. In this case the file will be updated when the current ** transaction is committed. ** ** The isDirectMode flag may only be non-zero if the library was compiled ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, ** if isDirect is non-zero, then the database file is updated directly ** by writing an updated version of page 1 using a call to the ** sqlite3OsWrite() function. */ static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* Declare and initialize constant integer 'isDirect'. If the ** atomic-write optimization is enabled in this build, then isDirect ** is initialized to the value passed as the isDirectMode parameter ** to this function. Otherwise, it is always set to zero. ** ** The idea is that if the atomic-write optimization is not ** enabled at compile time, the compiler can omit the tests of ** 'isDirect' below, as well as the block enclosed in the ** "if( isDirect )" condition. */ #ifndef SQLITE_ENABLE_ATOMIC_WRITE # define DIRECT_MODE 0 assert( isDirectMode==0 ); UNUSED_PARAMETER(isDirectMode); #else # define DIRECT_MODE isDirectMode #endif if( !pPager->changeCountDone && pPager->dbSize>0 ){ PgHdr *pPgHdr; /* Reference to page 1 */ assert( !pPager->tempFile && isOpen(pPager->fd) ); /* Open page 1 of the file for writing. */ rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); assert( pPgHdr==0 || rc==SQLITE_OK ); /* If page one was fetched successfully, and this function is not ** operating in direct-mode, make page 1 writable. When not in ** direct mode, page 1 is always held in cache and hence the PagerGet() ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. */ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ rc = sqlite3PagerWrite(pPgHdr); } if( rc==SQLITE_OK ){ /* Actually do the update of the change counter */ pager_write_changecounter(pPgHdr); /* If running in direct mode, write the contents of page 1 to the file. */ if( DIRECT_MODE ){ const void *zBuf; assert( pPager->dbFileSize>0 ); zBuf = pPgHdr->pData; if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); pPager->aStat[PAGER_STAT_WRITE]++; } if( rc==SQLITE_OK ){ /* Update the pager's copy of the change-counter. Otherwise, the ** next time a read transaction is opened the cache will be ** flushed (as the change-counter values will not match). */ const void *pCopy = (const void *)&((const char *)zBuf)[24]; memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); pPager->changeCountDone = 1; } }else{ pPager->changeCountDone = 1; } } /* Release the page reference. */ sqlite3PagerUnref(pPgHdr); } return rc; } /* ** Sync the database file to disk. This is a no-op for in-memory databases ** or pages with the Pager.noSync flag set. ** ** If successful, or if called on a pager for which it is a no-op, this ** function returns SQLITE_OK. Otherwise, an IO error code is returned. */ SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper){ int rc = SQLITE_OK; void *pArg = (void*)zSuper; rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; if( rc==SQLITE_OK && !pPager->noSync ){ assert( !MEMDB ); rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); } return rc; } /* ** This function may only be called while a write-transaction is active in ** rollback. If the connection is in WAL mode, this call is a no-op. ** Otherwise, if the connection does not already have an EXCLUSIVE lock on ** the database file, an attempt is made to obtain one. ** ** If the EXCLUSIVE lock is already held or the attempt to obtain it is ** successful, or the connection is in WAL mode, SQLITE_OK is returned. ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is ** returned. */ SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){ int rc = pPager->errCode; assert( assert_pager_state(pPager) ); if( rc==SQLITE_OK ){ assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( 0==pagerUseWal(pPager) ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } } return rc; } /* ** Sync the database file for the pager pPager. zSuper points to the name ** of a super-journal file that should be written into the individual ** journal file. zSuper may be NULL, which is interpreted as no ** super-journal (a single database transaction). ** ** This routine ensures that: ** ** * The database file change-counter is updated, ** * the journal is synced (unless the atomic-write optimization is used), ** * all dirty pages are written to the database file, ** * the database file is truncated (if required), and ** * the database file synced. ** ** The only thing that remains to commit the transaction is to finalize ** (delete, truncate or zero the first part of) the journal file (or ** delete the super-journal file if specified). ** ** Note that if zSuper==NULL, this does not overwrite a previous value ** passed to an sqlite3PagerCommitPhaseOne() call. ** ** If the final parameter - noSync - is true, then the database file itself ** is not synced. The caller must call sqlite3PagerSync() directly to ** sync the database file before calling CommitPhaseTwo() to delete the ** journal file in this case. */ SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne( Pager *pPager, /* Pager object */ const char *zSuper, /* If not NULL, the super-journal name */ int noSync /* True to omit the xSync on the db file */ ){ int rc = SQLITE_OK; /* Return code */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD || pPager->eState==PAGER_ERROR ); assert( assert_pager_state(pPager) ); /* If a prior error occurred, report that error again. */ if( NEVER(pPager->errCode) ) return pPager->errCode; /* Provide the ability to easily simulate an I/O error during testing */ if( sqlite3FaultSim(400) ) return SQLITE_IOERR; PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n", pPager->zFilename, zSuper, pPager->dbSize)); /* If no database changes have been made, return early. */ if( pPager->eStatetempFile ); assert( isOpen(pPager->fd) || pPager->tempFile ); if( 0==pagerFlushOnCommit(pPager, 1) ){ /* If this is an in-memory db, or no pages have been written to, or this ** function has already been called, it is mostly a no-op. However, any ** backup in progress needs to be restarted. */ sqlite3BackupRestart(pPager->pBackup); }else{ PgHdr *pList; if( pagerUseWal(pPager) ){ PgHdr *pPageOne = 0; pList = sqlite3PcacheDirtyList(pPager->pPCache); if( pList==0 ){ /* Must have at least one page for the WAL commit flag. ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); pList = pPageOne; pList->pDirty = 0; } assert( rc==SQLITE_OK ); if( ALWAYS(pList) ){ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); } sqlite3PagerUnref(pPageOne); if( rc==SQLITE_OK ){ sqlite3PcacheCleanAll(pPager->pPCache); } }else{ /* The bBatch boolean is true if the batch-atomic-write commit method ** should be used. No rollback journal is created if batch-atomic-write ** is enabled. */ #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE sqlite3_file *fd = pPager->fd; int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) && !pPager->noSync && sqlite3JournalIsInMemory(pPager->jfd); #else # define bBatch 0 #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE /* The following block updates the change-counter. Exactly how it ** does this depends on whether or not the atomic-update optimization ** was enabled at compile time, and if this transaction meets the ** runtime criteria to use the operation: ** ** * The file-system supports the atomic-write property for ** blocks of size page-size, and ** * This commit is not part of a multi-file transaction, and ** * Exactly one page has been modified and store in the journal file. ** ** If the optimization was not enabled at compile time, then the ** pager_incr_changecounter() function is called to update the change ** counter in 'indirect-mode'. If the optimization is compiled in but ** is not applicable to this transaction, call sqlite3JournalCreate() ** to make sure the journal file has actually been created, then call ** pager_incr_changecounter() to update the change-counter in indirect ** mode. ** ** Otherwise, if the optimization is both enabled and applicable, ** then call pager_incr_changecounter() to update the change-counter ** in 'direct' mode. In this case the journal file will never be ** created for this transaction. */ if( bBatch==0 ){ PgHdr *pPg; assert( isOpen(pPager->jfd) || pPager->journalMode==PAGER_JOURNALMODE_OFF || pPager->journalMode==PAGER_JOURNALMODE_WAL ); if( !zSuper && isOpen(pPager->jfd) && pPager->journalOff==jrnlBufferSize(pPager) && pPager->dbSize>=pPager->dbOrigSize && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) ){ /* Update the db file change counter via the direct-write method. The ** following call will modify the in-memory representation of page 1 ** to include the updated change counter and then write page 1 ** directly to the database file. Because of the atomic-write ** property of the host file-system, this is safe. */ rc = pager_incr_changecounter(pPager, 1); }else{ rc = sqlite3JournalCreate(pPager->jfd); if( rc==SQLITE_OK ){ rc = pager_incr_changecounter(pPager, 0); } } } #else /* SQLITE_ENABLE_ATOMIC_WRITE */ #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( zSuper ){ rc = sqlite3JournalCreate(pPager->jfd); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; assert( bBatch==0 ); } #endif rc = pager_incr_changecounter(pPager, 0); #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ if( rc!=SQLITE_OK ) goto commit_phase_one_exit; /* Write the super-journal name into the journal file. If a ** super-journal file name has already been written to the journal file, ** or if zSuper is NULL (no super-journal), then this call is a no-op. */ rc = writeSuperJournal(pPager, zSuper); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; /* Sync the journal file and write all dirty pages to the database. ** If the atomic-update optimization is being used, this sync will not ** create the journal file or perform any real IO. ** ** Because the change-counter page was just modified, unless the ** atomic-update optimization is used it is almost certain that the ** journal requires a sync here. However, in locking_mode=exclusive ** on a system under memory pressure it is just possible that this is ** not the case. In this case it is likely enough that the redundant ** xSync() call will be changed to a no-op by the OS anyhow. */ rc = syncJournal(pPager, 0); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; pList = sqlite3PcacheDirtyList(pPager->pPCache); #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( bBatch ){ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); if( rc==SQLITE_OK ){ rc = pager_write_pagelist(pPager, pList); if( rc==SQLITE_OK ){ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); } if( rc!=SQLITE_OK ){ sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); } } if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ rc = sqlite3JournalCreate(pPager->jfd); if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->jfd); goto commit_phase_one_exit; } bBatch = 0; }else{ sqlite3OsClose(pPager->jfd); } } #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ if( bBatch==0 ){ rc = pager_write_pagelist(pPager, pList); } if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_IOERR_BLOCKED ); goto commit_phase_one_exit; } sqlite3PcacheCleanAll(pPager->pPCache); /* If the file on disk is smaller than the database image, use ** pager_truncate to grow the file here. This can happen if the database ** image was extended as part of the current transaction and then the ** last page in the db image moved to the free-list. In this case the ** last page is never written out to disk, leaving the database file ** undersized. Fix this now if it is the case. */ if( pPager->dbSize>pPager->dbFileSize ){ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_SJ_PGNO(pPager)); assert( pPager->eState==PAGER_WRITER_DBMOD ); rc = pager_truncate(pPager, nNew); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; } /* Finally, sync the database file. */ if( !noSync ){ rc = sqlite3PagerSync(pPager, zSuper); } IOTRACE(("DBSYNC %p\n", pPager)) } } commit_phase_one_exit: if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ pPager->eState = PAGER_WRITER_FINISHED; } return rc; } /* ** When this function is called, the database file has been completely ** updated to reflect the changes made by the current transaction and ** synced to disk. The journal file still exists in the file-system ** though, and if a failure occurs at this point it will eventually ** be used as a hot-journal and the current transaction rolled back. ** ** This function finalizes the journal file, either by deleting, ** truncating or partially zeroing it, so that it cannot be used ** for hot-journal rollback. Once this is done the transaction is ** irrevocably committed. ** ** If an error occurs, an IO error code is returned and the pager ** moves into the error state. Otherwise, SQLITE_OK is returned. */ SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ /* This routine should not be called if a prior error has occurred. ** But if (due to a coding error elsewhere in the system) it does get ** called, just return the same error code without doing anything. */ if( NEVER(pPager->errCode) ) return pPager->errCode; pPager->iDataVersion++; assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_FINISHED || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) ); assert( assert_pager_state(pPager) ); /* An optimization. If the database was not actually modified during ** this transaction, the pager is running in exclusive-mode and is ** using persistent journals, then this function is a no-op. ** ** The start of the journal file currently contains a single journal ** header with the nRec field set to 0. If such a journal is used as ** a hot-journal during hot-journal rollback, 0 changes will be made ** to the database file. So there is no need to zero the journal ** header. Since the pager is in exclusive mode, there is no need ** to drop any locks either. */ if( pPager->eState==PAGER_WRITER_LOCKED && pPager->exclusiveMode && pPager->journalMode==PAGER_JOURNALMODE_PERSIST ){ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); pPager->eState = PAGER_READER; return SQLITE_OK; } PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); rc = pager_end_transaction(pPager, pPager->setSuper, 1); return pager_error(pPager, rc); } /* ** If a write transaction is open, then all changes made within the ** transaction are reverted and the current write-transaction is closed. ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR ** state if an error occurs. ** ** If the pager is already in PAGER_ERROR state when this function is called, ** it returns Pager.errCode immediately. No work is performed in this case. ** ** Otherwise, in rollback mode, this function performs two functions: ** ** 1) It rolls back the journal file, restoring all database file and ** in-memory cache pages to the state they were in when the transaction ** was opened, and ** ** 2) It finalizes the journal file, so that it is not used for hot ** rollback at any point in the future. ** ** Finalization of the journal file (task 2) is only performed if the ** rollback is successful. ** ** In WAL mode, all cache-entries containing data modified within the ** current transaction are either expelled from the cache or reverted to ** their pre-transaction state by re-reading data from the database or ** WAL files. The WAL transaction is then closed. */ SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); /* PagerRollback() is a no-op if called in READER or OPEN state. If ** the pager is already in the ERROR state, the rollback is not ** attempted here. Instead, the error code is returned to the caller. */ assert( assert_pager_state(pPager) ); if( pPager->eState==PAGER_ERROR ) return pPager->errCode; if( pPager->eState<=PAGER_READER ) return SQLITE_OK; if( pagerUseWal(pPager) ){ int rc2; rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); rc2 = pager_end_transaction(pPager, pPager->setSuper, 0); if( rc==SQLITE_OK ) rc = rc2; }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ int eState = pPager->eState; rc = pager_end_transaction(pPager, 0, 0); if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ /* This can happen using journal_mode=off. Move the pager to the error ** state to indicate that the contents of the cache may not be trusted. ** Any active readers will get SQLITE_ABORT. */ pPager->errCode = SQLITE_ABORT; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); return rc; } }else{ rc = pager_playback(pPager, 0); } assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR || rc==SQLITE_CANTOPEN ); /* If an error occurs during a ROLLBACK, we can no longer trust the pager ** cache. So call pager_error() on the way out to make any error persistent. */ return pager_error(pPager, rc); } /* ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){ return pPager->readOnly; } #ifdef SQLITE_DEBUG /* ** Return the sum of the reference counts for all pages held by pPager. */ SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ return sqlite3PcacheRefCount(pPager->pPCache); } #endif /* ** Return the approximate number of bytes of memory currently ** used by the pager and its associated cache. */ SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){ int perPageSize = pPager->pageSize + pPager->nExtra + (int)(sizeof(PgHdr) + 5*sizeof(void*)); return perPageSize*sqlite3PcachePagecount(pPager->pPCache) + sqlite3MallocSize(pPager) + pPager->pageSize; } /* ** Return the number of references to the specified page. */ SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){ return sqlite3PcachePageRefcount(pPage); } #ifdef SQLITE_TEST /* ** This routine is used for testing and analysis only. */ SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){ static int a[11]; a[0] = sqlite3PcacheRefCount(pPager->pPCache); a[1] = sqlite3PcachePagecount(pPager->pPCache); a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; a[4] = pPager->eState; a[5] = pPager->errCode; a[6] = pPager->aStat[PAGER_STAT_HIT]; a[7] = pPager->aStat[PAGER_STAT_MISS]; a[8] = 0; /* Used to be pPager->nOvfl */ a[9] = pPager->nRead; a[10] = pPager->aStat[PAGER_STAT_WRITE]; return a; } #endif /* ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because ** it was added later. ** ** Before returning, *pnVal is incremented by the ** current cache hit or miss count, according to the value of eStat. If the ** reset parameter is non-zero, the cache hit or miss count is zeroed before ** returning. */ SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ assert( eStat==SQLITE_DBSTATUS_CACHE_HIT || eStat==SQLITE_DBSTATUS_CACHE_MISS || eStat==SQLITE_DBSTATUS_CACHE_WRITE || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 ); assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); eStat -= SQLITE_DBSTATUS_CACHE_HIT; *pnVal += pPager->aStat[eStat]; if( reset ){ pPager->aStat[eStat] = 0; } } /* ** Return true if this is an in-memory or temp-file backed pager. */ SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){ return pPager->tempFile || pPager->memVfs; } /* ** Check that there are at least nSavepoint savepoints open. If there are ** currently less than nSavepoints open, then open one or more savepoints ** to make up the difference. If the number of savepoints is already ** equal to nSavepoint, then this function is a no-op. ** ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ int rc = SQLITE_OK; /* Return code */ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ int ii; /* Iterator variable */ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( nSavepoint>nCurrent && pPager->useJournal ); /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM ** if the allocation fails. Otherwise, zero the new portion in case a ** malloc failure occurs while populating it in the for(...) loop below. */ aNew = (PagerSavepoint *)sqlite3Realloc( pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint ); if( !aNew ){ return SQLITE_NOMEM_BKPT; } memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); pPager->aSavepoint = aNew; /* Populate the PagerSavepoint structures just allocated. */ for(ii=nCurrent; iidbSize; if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ aNew[ii].iOffset = pPager->journalOff; }else{ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); } aNew[ii].iSubRec = pPager->nSubRec; aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); aNew[ii].bTruncateOnRelease = 1; if( !aNew[ii].pInSavepoint ){ return SQLITE_NOMEM_BKPT; } if( pagerUseWal(pPager) ){ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); } pPager->nSavepoint = ii+1; } assert( pPager->nSavepoint==nSavepoint ); assertTruncateConstraint(pPager); return rc; } SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ return pagerOpenSavepoint(pPager, nSavepoint); }else{ return SQLITE_OK; } } /* ** This function is called to rollback or release (commit) a savepoint. ** The savepoint to release or rollback need not be the most recently ** created savepoint. ** ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes ** that have occurred since the specified savepoint was created. ** ** The savepoint to rollback or release is identified by parameter ** iSavepoint. A value of 0 means to operate on the outermost savepoint ** (the first created). A value of (Pager.nSavepoint-1) means operate ** on the most recently created savepoint. If iSavepoint is greater than ** (Pager.nSavepoint-1), then this function is a no-op. ** ** If a negative value is passed to this function, then the current ** transaction is rolled back. This is different to calling ** sqlite3PagerRollback() because this function does not terminate ** the transaction or unlock the database, it just restores the ** contents of the database to its original state. ** ** In any case, all savepoints with an index greater than iSavepoint ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), ** then savepoint iSavepoint is also destroyed. ** ** This function may return SQLITE_NOMEM if a memory allocation fails, ** or an IO error code if an IO error occurs while rolling back a ** savepoint. If no errors occur, SQLITE_OK is returned. */ SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ int rc = pPager->errCode; #ifdef SQLITE_ENABLE_ZIPVFS if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; #endif assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); if( rc==SQLITE_OK && iSavepointnSavepoint ){ int ii; /* Iterator variable */ int nNew; /* Number of remaining savepoints after this op. */ /* Figure out how many savepoints will still be active after this ** operation. Store this value in nNew. Then free resources associated ** with any savepoints that are destroyed by this operation. */ nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); for(ii=nNew; iinSavepoint; ii++){ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); } pPager->nSavepoint = nNew; /* Truncate the sub-journal so that it only includes the parts ** that are still in use. */ if( op==SAVEPOINT_RELEASE ){ PagerSavepoint *pRel = &pPager->aSavepoint[nNew]; if( pRel->bTruncateOnRelease && isOpen(pPager->sjfd) ){ /* Only truncate if it is an in-memory sub-journal. */ if( sqlite3JournalIsInMemory(pPager->sjfd) ){ i64 sz = (pPager->pageSize+4)*(i64)pRel->iSubRec; rc = sqlite3OsTruncate(pPager->sjfd, sz); assert( rc==SQLITE_OK ); } pPager->nSubRec = pRel->iSubRec; } } /* Else this is a rollback operation, playback the specified savepoint. ** If this is a temp-file, it is possible that the journal file has ** not yet been opened. In this case there have been no changes to ** the database file, so the playback operation can be skipped. */ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; rc = pagerPlaybackSavepoint(pPager, pSavepoint); assert(rc!=SQLITE_DONE); } #ifdef SQLITE_ENABLE_ZIPVFS /* If the cache has been modified but the savepoint cannot be rolled ** back journal_mode=off, put the pager in the error state. This way, ** if the VFS used by this pager includes ZipVFS, the entire transaction ** can be rolled back at the ZipVFS level. */ else if( pPager->journalMode==PAGER_JOURNALMODE_OFF && pPager->eState>=PAGER_WRITER_CACHEMOD ){ pPager->errCode = SQLITE_ABORT; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); } #endif } return rc; } /* ** Return the full pathname of the database file. ** ** Except, if the pager is in-memory only, then return an empty string if ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when ** used to report the filename to the user, for compatibility with legacy ** behavior. But when the Btree needs to know the filename for matching to ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can ** participate in shared-cache. ** ** The return value to this routine is always safe to use with ** sqlite3_uri_parameter() and sqlite3_filename_database() and friends. */ SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){ static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; if( nullIfMemDb && (pPager->memDb || sqlite3IsMemdb(pPager->pVfs)) ){ return &zFake[4]; }else{ return pPager->zFilename; } } /* ** Return the VFS structure for the pager. */ SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ return pPager->pVfs; } /* ** Return the file handle for the database file associated ** with the pager. This might return NULL if the file has ** not yet been opened. */ SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){ return pPager->fd; } /* ** Return the file handle for the journal file (if it exists). ** This will be either the rollback journal or the WAL file. */ SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ #if SQLITE_OMIT_WAL return pPager->jfd; #else return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; #endif } /* ** Return the full pathname of the journal file. */ SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){ return pPager->zJournal; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Move the page pPg to location pgno in the file. ** ** There must be no references to the page previously located at ** pgno (which we call pPgOld) though that page is allowed to be ** in cache. If the page previously located at pgno is not already ** in the rollback journal, it is not put there by by this routine. ** ** References to the page pPg remain valid. Updating any ** meta-data associated with pPg (i.e. data stored in the nExtra bytes ** allocated along with the page) is the responsibility of the caller. ** ** A transaction must be active when this routine is called. It used to be ** required that a statement transaction was not active, but this restriction ** has been removed (CREATE INDEX needs to move a page when a statement ** transaction is active). ** ** If the fourth argument, isCommit, is non-zero, then this page is being ** moved as part of a database reorganization just before the transaction ** is being committed. In this case, it is guaranteed that the database page ** pPg refers to will not be written to again within this transaction. ** ** This function may return SQLITE_NOMEM or an IO error code if an error ** occurs. Otherwise, it returns SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ PgHdr *pPgOld; /* The page being overwritten. */ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ int rc; /* Return code */ Pgno origPgno; /* The original page number */ assert( pPg->nRef>0 ); assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* In order to be able to rollback, an in-memory database must journal ** the page we are moving from. */ assert( pPager->tempFile || !MEMDB ); if( pPager->tempFile ){ rc = sqlite3PagerWrite(pPg); if( rc ) return rc; } /* If the page being moved is dirty and has not been saved by the latest ** savepoint, then save the current contents of the page into the ** sub-journal now. This is required to handle the following scenario: ** ** BEGIN; ** ** SAVEPOINT one; ** ** ROLLBACK TO one; ** ** If page X were not written to the sub-journal here, it would not ** be possible to restore its contents when the "ROLLBACK TO one" ** statement were is processed. ** ** subjournalPage() may need to allocate space to store pPg->pgno into ** one or more savepoint bitvecs. This is the reason this function ** may return SQLITE_NOMEM. */ if( (pPg->flags & PGHDR_DIRTY)!=0 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) ){ return rc; } PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) /* If the journal needs to be sync()ed before page pPg->pgno can ** be written to, store pPg->pgno in local variable needSyncPgno. ** ** If the isCommit flag is set, there is no need to remember that ** the journal needs to be sync()ed before database page pPg->pgno ** can be written to. The caller has already promised not to write to it. */ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ needSyncPgno = pPg->pgno; assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); assert( pPg->flags&PGHDR_DIRTY ); } /* If the cache contains a page with page-number pgno, remove it ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for ** page pgno before the 'move' operation, it needs to be retained ** for the page moved there. */ pPg->flags &= ~PGHDR_NEED_SYNC; pPgOld = sqlite3PagerLookup(pPager, pgno); assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB ); if( pPgOld ){ if( NEVER(pPgOld->nRef>1) ){ sqlite3PagerUnrefNotNull(pPgOld); return SQLITE_CORRUPT_BKPT; } pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); if( pPager->tempFile ){ /* Do not discard pages from an in-memory database since we might ** need to rollback later. Just move the page out of the way. */ sqlite3PcacheMove(pPgOld, pPager->dbSize+1); }else{ sqlite3PcacheDrop(pPgOld); } } origPgno = pPg->pgno; sqlite3PcacheMove(pPg, pgno); sqlite3PcacheMakeDirty(pPg); /* For an in-memory database, make sure the original page continues ** to exist, in case the transaction needs to roll back. Use pPgOld ** as the original page since it has already been allocated. */ if( pPager->tempFile && pPgOld ){ sqlite3PcacheMove(pPgOld, origPgno); sqlite3PagerUnrefNotNull(pPgOld); } if( needSyncPgno ){ /* If needSyncPgno is non-zero, then the journal file needs to be ** sync()ed before any data is written to database file page needSyncPgno. ** Currently, no such page exists in the page-cache and the ** "is journaled" bitvec flag has been set. This needs to be remedied by ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC ** flag. ** ** If the attempt to load the page into the page-cache fails, (due ** to a malloc() or IO failure), clear the bit in the pInJournal[] ** array. Otherwise, if the page is loaded and written again in ** this transaction, it may be written to the database file before ** it is synced into the journal file. This way, it may end up in ** the journal file twice, but that is not a problem. */ PgHdr *pPgHdr; rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); if( rc!=SQLITE_OK ){ if( needSyncPgno<=pPager->dbOrigSize ){ assert( pPager->pTmpSpace!=0 ); sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); } return rc; } pPgHdr->flags |= PGHDR_NEED_SYNC; sqlite3PcacheMakeDirty(pPgHdr); sqlite3PagerUnrefNotNull(pPgHdr); } return SQLITE_OK; } #endif /* ** The page handle passed as the first argument refers to a dirty page ** with a page number other than iNew. This function changes the page's ** page number to iNew and sets the value of the PgHdr.flags field to ** the value passed as the third parameter. */ SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ assert( pPg->pgno!=iNew ); pPg->flags = flags; sqlite3PcacheMove(pPg, iNew); } /* ** Return a pointer to the data for the specified page. */ SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){ assert( pPg->nRef>0 || pPg->pPager->memDb ); return pPg->pData; } /* ** Return a pointer to the Pager.nExtra bytes of "extra" space ** allocated along with the specified page. */ SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){ return pPg->pExtra; } /* ** Get/set the locking-mode for this pager. Parameter eMode must be one ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then ** the locking-mode is set to the value specified. ** ** The returned value is either PAGER_LOCKINGMODE_NORMAL or ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) ** locking-mode. */ SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){ assert( eMode==PAGER_LOCKINGMODE_QUERY || eMode==PAGER_LOCKINGMODE_NORMAL || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_QUERY<0 ); assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ pPager->exclusiveMode = (u8)eMode; } return (int)pPager->exclusiveMode; } /* ** Set the journal-mode for this pager. Parameter eMode must be one of: ** ** PAGER_JOURNALMODE_DELETE ** PAGER_JOURNALMODE_TRUNCATE ** PAGER_JOURNALMODE_PERSIST ** PAGER_JOURNALMODE_OFF ** PAGER_JOURNALMODE_MEMORY ** PAGER_JOURNALMODE_WAL ** ** The journalmode is set to the value specified if the change is allowed. ** The change may be disallowed for the following reasons: ** ** * An in-memory database can only have its journal_mode set to _OFF ** or _MEMORY. ** ** * Temporary databases cannot have _WAL journalmode. ** ** The returned indicate the current (possibly updated) journal-mode. */ SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ u8 eOld = pPager->journalMode; /* Prior journalmode */ /* The eMode parameter is always valid */ assert( eMode==PAGER_JOURNALMODE_DELETE /* 0 */ || eMode==PAGER_JOURNALMODE_PERSIST /* 1 */ || eMode==PAGER_JOURNALMODE_OFF /* 2 */ || eMode==PAGER_JOURNALMODE_TRUNCATE /* 3 */ || eMode==PAGER_JOURNALMODE_MEMORY /* 4 */ || eMode==PAGER_JOURNALMODE_WAL /* 5 */ ); /* This routine is only called from the OP_JournalMode opcode, and ** the logic there will never allow a temporary file to be changed ** to WAL mode. */ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); /* Do allow the journalmode of an in-memory database to be set to ** anything other than MEMORY or OFF */ if( MEMDB ){ assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ eMode = eOld; } } if( eMode!=eOld ){ /* Change the journal mode. */ assert( pPager->eState!=PAGER_ERROR ); pPager->journalMode = (u8)eMode; /* When transitioning from TRUNCATE or PERSIST to any other journal ** mode except WAL, unless the pager is in locking_mode=exclusive mode, ** delete the journal file. */ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); assert( isOpen(pPager->fd) || pPager->exclusiveMode ); if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ /* In this case we would like to delete the journal file. If it is ** not possible, then that is not a problem. Deleting the journal file ** here is an optimization only. ** ** Before deleting the journal file, obtain a RESERVED lock on the ** database file. This ensures that the journal file is not deleted ** while it is in use by some other client. */ sqlite3OsClose(pPager->jfd); if( pPager->eLock>=RESERVED_LOCK ){ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); }else{ int rc = SQLITE_OK; int state = pPager->eState; assert( state==PAGER_OPEN || state==PAGER_READER ); if( state==PAGER_OPEN ){ rc = sqlite3PagerSharedLock(pPager); } if( pPager->eState==PAGER_READER ){ assert( rc==SQLITE_OK ); rc = pagerLockDb(pPager, RESERVED_LOCK); } if( rc==SQLITE_OK ){ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); } if( rc==SQLITE_OK && state==PAGER_READER ){ pagerUnlockDb(pPager, SHARED_LOCK); }else if( state==PAGER_OPEN ){ pager_unlock(pPager); } assert( state==pPager->eState ); } }else if( eMode==PAGER_JOURNALMODE_OFF ){ sqlite3OsClose(pPager->jfd); } } /* Return the new journal mode */ return (int)pPager->journalMode; } /* ** Return the current journal mode. */ SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){ return (int)pPager->journalMode; } /* ** Return TRUE if the pager is in a state where it is OK to change the ** journalmode. Journalmode changes can only happen when the database ** is unmodified. */ SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ assert( assert_pager_state(pPager) ); if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; return 1; } /* ** Get/set the size-limit used for persistent journal files. ** ** Setting the size limit to -1 means no limit is enforced. ** An attempt to set a limit smaller than -1 is a no-op. */ SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ if( iLimit>=-1 ){ pPager->journalSizeLimit = iLimit; sqlite3WalLimit(pPager->pWal, iLimit); } return pPager->journalSizeLimit; } /* ** Return a pointer to the pPager->pBackup variable. The backup module ** in backup.c maintains the content of this variable. This module ** uses it opaquely as an argument to sqlite3BackupRestart() and ** sqlite3BackupUpdate() only. */ SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ return &pPager->pBackup; } #ifndef SQLITE_OMIT_VACUUM /* ** Unless this is an in-memory or temporary database, clear the pager cache. */ SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){ assert( MEMDB==0 || pPager->tempFile ); if( pPager->tempFile==0 ) pager_reset(pPager); } #endif #ifndef SQLITE_OMIT_WAL /* ** This function is called when the user invokes "PRAGMA wal_checkpoint", ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() ** or wal_blocking_checkpoint() API functions. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3PagerCheckpoint( Pager *pPager, /* Checkpoint on this pager */ sqlite3 *db, /* Db handle used to check for interrupts */ int eMode, /* Type of checkpoint */ int *pnLog, /* OUT: Final number of frames in log */ int *pnCkpt /* OUT: Final number of checkpointed frames */ ){ int rc = SQLITE_OK; if( pPager->pWal==0 && pPager->journalMode==PAGER_JOURNALMODE_WAL ){ /* This only happens when a database file is zero bytes in size opened and ** then "PRAGMA journal_mode=WAL" is run and then sqlite3_wal_checkpoint() ** is invoked without any intervening transactions. We need to start ** a transaction to initialize pWal. The PRAGMA table_list statement is ** used for this since it starts transactions on every database file, ** including all ATTACHed databases. This seems expensive for a single ** sqlite3_wal_checkpoint() call, but it happens very rarely. ** https://sqlite.org/forum/forumpost/fd0f19d229156939 */ sqlite3_exec(db, "PRAGMA table_list",0,0,0); } if( pPager->pWal ){ rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), pPager->pBusyHandlerArg, pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, pnLog, pnCkpt ); } return rc; } SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){ return sqlite3WalCallback(pPager->pWal); } /* ** Return true if the underlying VFS for the given pager supports the ** primitives necessary for write-ahead logging. */ SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){ const sqlite3_io_methods *pMethods = pPager->fd->pMethods; if( pPager->noLock ) return 0; return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); } /* ** Attempt to take an exclusive lock on the database file. If a PENDING lock ** is obtained instead, immediately release it. */ static int pagerExclusiveLock(Pager *pPager){ int rc; /* Return code */ u8 eOrigLock; /* Original lock */ assert( pPager->eLock>=SHARED_LOCK ); eOrigLock = pPager->eLock; rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ /* If the attempt to grab the exclusive lock failed, release the ** pending lock that may have been obtained instead. */ pagerUnlockDb(pPager, eOrigLock); } return rc; } /* ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in ** exclusive-locking mode when this function is called, take an EXCLUSIVE ** lock on the database file and use heap-memory to store the wal-index ** in. Otherwise, use the normal shared-memory. */ static int pagerOpenWal(Pager *pPager){ int rc = SQLITE_OK; assert( pPager->pWal==0 && pPager->tempFile==0 ); assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); /* If the pager is already in exclusive-mode, the WAL module will use ** heap-memory for the wal-index instead of the VFS shared-memory ** implementation. Take the exclusive lock now, before opening the WAL ** file, to make sure this is safe. */ if( pPager->exclusiveMode ){ rc = pagerExclusiveLock(pPager); } /* Open the connection to the log file. If this operation fails, ** (e.g. due to malloc() failure), return an error code. */ if( rc==SQLITE_OK ){ rc = sqlite3WalOpen(pPager->pVfs, pPager->fd, pPager->zWal, pPager->exclusiveMode, pPager->journalSizeLimit, &pPager->pWal ); } pagerFixMaplimit(pPager); return rc; } /* ** The caller must be holding a SHARED lock on the database file to call ** this function. ** ** If the pager passed as the first argument is open on a real database ** file (not a temp file or an in-memory database), and the WAL file ** is not already open, make an attempt to open it now. If successful, ** return SQLITE_OK. If an error occurs or the VFS used by the pager does ** not support the xShmXXX() methods, return an error code. *pbOpen is ** not modified in either case. ** ** If the pager is open on a temp-file (or in-memory database), or if ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK ** without doing anything. */ SQLITE_PRIVATE int sqlite3PagerOpenWal( Pager *pPager, /* Pager object */ int *pbOpen /* OUT: Set to true if call is a no-op */ ){ int rc = SQLITE_OK; /* Return code */ assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pbOpen ); assert( pPager->eState==PAGER_READER || !pbOpen ); assert( pbOpen==0 || *pbOpen==0 ); assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); if( !pPager->tempFile && !pPager->pWal ){ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; /* Close any rollback journal previously open */ sqlite3OsClose(pPager->jfd); rc = pagerOpenWal(pPager); if( rc==SQLITE_OK ){ pPager->journalMode = PAGER_JOURNALMODE_WAL; pPager->eState = PAGER_OPEN; } }else{ *pbOpen = 1; } return rc; } /* ** This function is called to close the connection to the log file prior ** to switching from WAL to rollback mode. ** ** Before closing the log file, this function attempts to take an ** EXCLUSIVE lock on the database file. If this cannot be obtained, an ** error (SQLITE_BUSY) is returned and the log connection is not closed. ** If successful, the EXCLUSIVE lock is not released before returning. */ SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ int rc = SQLITE_OK; assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); /* If the log file is not already open, but does exist in the file-system, ** it may need to be checkpointed before the connection can switch to ** rollback mode. Open it now so this can happen. */ if( !pPager->pWal ){ int logexists = 0; rc = pagerLockDb(pPager, SHARED_LOCK); if( rc==SQLITE_OK ){ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists ); } if( rc==SQLITE_OK && logexists ){ rc = pagerOpenWal(pPager); } } /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on ** the database file, the log and log-summary files will be deleted. */ if( rc==SQLITE_OK && pPager->pWal ){ rc = pagerExclusiveLock(pPager); if( rc==SQLITE_OK ){ rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize, (u8*)pPager->pTmpSpace); pPager->pWal = 0; pagerFixMaplimit(pPager); if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); } } return rc; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* ** If pager pPager is a wal-mode database not in exclusive locking mode, ** invoke the sqlite3WalWriteLock() function on the associated Wal object ** with the same db and bLock parameters as were passed to this function. ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. */ SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){ int rc = SQLITE_OK; if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){ rc = sqlite3WalWriteLock(pPager->pWal, bLock); } return rc; } /* ** Set the database handle used by the wal layer to determine if ** blocking locks are required. */ SQLITE_PRIVATE void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){ if( pagerUseWal(pPager) ){ sqlite3WalDb(pPager->pWal, db); } } #endif #ifdef SQLITE_ENABLE_SNAPSHOT /* ** If this is a WAL database, obtain a snapshot handle for the snapshot ** currently open. Otherwise, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_ERROR; if( pPager->pWal ){ rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); } return rc; } /* ** If this is a WAL database, store a pointer to pSnapshot. Next time a ** read transaction is opened, attempt to read from the snapshot it ** identifies. If this is not a WAL database, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotOpen( Pager *pPager, sqlite3_snapshot *pSnapshot ){ int rc = SQLITE_OK; if( pPager->pWal ){ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); }else{ rc = SQLITE_ERROR; } return rc; } /* ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this ** is not a WAL database, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager){ int rc; if( pPager->pWal ){ rc = sqlite3WalSnapshotRecover(pPager->pWal); }else{ rc = SQLITE_ERROR; } return rc; } /* ** The caller currently has a read transaction open on the database. ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, ** this function takes a SHARED lock on the CHECKPOINTER slot and then ** checks if the snapshot passed as the second argument is still ** available. If so, SQLITE_OK is returned. ** ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ int rc; if( pPager->pWal ){ rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); }else{ rc = SQLITE_ERROR; } return rc; } /* ** Release a lock obtained by an earlier successful call to ** sqlite3PagerSnapshotCheck(). */ SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager){ assert( pPager->pWal ); sqlite3WalSnapshotUnlock(pPager->pWal); } #endif /* SQLITE_ENABLE_SNAPSHOT */ #endif /* !SQLITE_OMIT_WAL */ #ifdef SQLITE_ENABLE_ZIPVFS /* ** A read-lock must be held on the pager when this function is called. If ** the pager is in WAL mode and the WAL file currently contains one or more ** frames, return the size in bytes of the page images stored within the ** WAL frames. Otherwise, if this is not a WAL database or the WAL file ** is empty, return 0. */ SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ assert( pPager->eState>=PAGER_READER ); return sqlite3WalFramesize(pPager->pWal); } #endif #ifdef SQLITE_USE_SEH SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager *pPager){ return sqlite3WalSystemErrno(pPager->pWal); } #endif #endif /* SQLITE_OMIT_DISKIO */ /************** End of pager.c ***********************************************/ /************** Begin file wal.c *********************************************/ /* ** 2010 February 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the implementation of a write-ahead log (WAL) used in ** "journal_mode=WAL" mode. ** ** WRITE-AHEAD LOG (WAL) FILE FORMAT ** ** A WAL file consists of a header followed by zero or more "frames". ** Each frame records the revised content of a single page from the ** database file. All changes to the database are recorded by writing ** frames into the WAL. Transactions commit when a frame is written that ** contains a commit marker. A single WAL can and usually does record ** multiple transactions. Periodically, the content of the WAL is ** transferred back into the database file in an operation called a ** "checkpoint". ** ** A single WAL file can be used multiple times. In other words, the ** WAL can fill up with frames and then be checkpointed and then new ** frames can overwrite the old ones. A WAL always grows from beginning ** toward the end. Checksums and counters attached to each frame are ** used to determine which frames within the WAL are valid and which ** are leftovers from prior checkpoints. ** ** The WAL header is 32 bytes in size and consists of the following eight ** big-endian 32-bit unsigned integer values: ** ** 0: Magic number. 0x377f0682 or 0x377f0683 ** 4: File format version. Currently 3007000 ** 8: Database page size. Example: 1024 ** 12: Checkpoint sequence number ** 16: Salt-1, random integer incremented with each checkpoint ** 20: Salt-2, a different random integer changing with each ckpt ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). ** ** Immediately following the wal-header are zero or more frames. Each ** frame consists of a 24-byte frame-header followed by a bytes ** of page data. The frame-header is six big-endian 32-bit unsigned ** integer values, as follows: ** ** 0: Page number. ** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Salt-1 (copied from the header) ** 12: Salt-2 (copied from the header) ** 16: Checksum-1. ** 20: Checksum-2. ** ** A frame is considered valid if and only if the following conditions are ** true: ** ** (1) The salt-1 and salt-2 values in the frame-header match ** salt values in the wal-header ** ** (2) The checksum values in the final 8 bytes of the frame-header ** exactly match the checksum computed consecutively on the ** WAL header and the first 8 bytes and the content of all frames ** up to and including the current frame. ** ** The checksum is computed using 32-bit big-endian integers if the ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it ** is computed using little-endian if the magic number is 0x377f0682. ** The checksum values are always stored in the frame header in a ** big-endian format regardless of which byte order is used to compute ** the checksum. The checksum is computed by interpreting the input as ** an even number of unsigned 32-bit integers: x[0] through x[N]. The ** algorithm used for the checksum is as follows: ** ** for i from 0 to n-1 step 2: ** s0 += x[i] + s1; ** s1 += x[i+1] + s0; ** endfor ** ** Note that s0 and s1 are both weighted checksums using fibonacci weights ** in reverse order (the largest fibonacci weight occurs on the first element ** of the sequence being summed.) The s1 value spans all 32-bit ** terms of the sequence whereas s0 omits the final term. ** ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the ** WAL is transferred into the database, then the database is VFS.xSync-ed. ** The VFS.xSync operations serve as write barriers - all writes launched ** before the xSync must complete before any write that launches after the ** xSync begins. ** ** After each checkpoint, the salt-1 value is incremented and the salt-2 ** value is randomized. This prevents old and new frames in the WAL from ** being considered valid at the same time and being checkpointing together ** following a crash. ** ** READER ALGORITHM ** ** To read a page from the database (call it page number P), a reader ** first checks the WAL to see if it contains page P. If so, then the ** last valid instance of page P that is a followed by a commit frame ** or is a commit frame itself becomes the value read. If the WAL ** contains no copies of page P that are valid and which are a commit ** frame or are followed by a commit frame, then page P is read from ** the database file. ** ** To start a read transaction, the reader records the index of the last ** valid frame in the WAL. The reader uses this recorded "mxFrame" value ** for all subsequent read operations. New transactions can be appended ** to the WAL, but as long as the reader uses its original mxFrame value ** and ignores the newly appended content, it will see a consistent snapshot ** of the database from a single point in time. This technique allows ** multiple concurrent readers to view different versions of the database ** content simultaneously. ** ** The reader algorithm in the previous paragraphs works correctly, but ** because frames for page P can appear anywhere within the WAL, the ** reader has to scan the entire WAL looking for page P frames. If the ** WAL is large (multiple megabytes is typical) that scan can be slow, ** and read performance suffers. To overcome this problem, a separate ** data structure called the wal-index is maintained to expedite the ** search for frames of a particular page. ** ** WAL-INDEX FORMAT ** ** Conceptually, the wal-index is shared memory, though VFS implementations ** might choose to implement the wal-index using a mmapped file. Because ** the wal-index is shared memory, SQLite does not support journal_mode=WAL ** on a network filesystem. All users of the database must be able to ** share memory. ** ** In the default unix and windows implementation, the wal-index is a mmapped ** file whose name is the database name with a "-shm" suffix added. For that ** reason, the wal-index is sometimes called the "shm" file. ** ** The wal-index is transient. After a crash, the wal-index can (and should ** be) reconstructed from the original WAL file. In fact, the VFS is required ** to either truncate or zero the header of the wal-index when the last ** connection to it closes. Because the wal-index is transient, it can ** use an architecture-specific format; it does not have to be cross-platform. ** Hence, unlike the database and WAL file formats which store all values ** as big endian, the wal-index can store multi-byte values in the native ** byte order of the host computer. ** ** The purpose of the wal-index is to answer this question quickly: Given ** a page number P and a maximum frame index M, return the index of the ** last frame in the wal before frame M for page P in the WAL, or return ** NULL if there are no frames for page P in the WAL prior to M. ** ** The wal-index consists of a header region, followed by an one or ** more index blocks. ** ** The wal-index header contains the total number of frames within the WAL ** in the mxFrame field. ** ** Each index block except for the first contains information on ** HASHTABLE_NPAGE frames. The first index block contains information on ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and ** HASHTABLE_NPAGE are selected so that together the wal-index header and ** first index block are the same size as all other index blocks in the ** wal-index. The values are: ** ** HASHTABLE_NPAGE 4096 ** HASHTABLE_NPAGE_ONE 4062 ** ** Each index block contains two sections, a page-mapping that contains the ** database page number associated with each wal frame, and a hash-table ** that allows readers to query an index block for a specific page number. ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE ** for the first index block) 32-bit page numbers. The first entry in the ** first index-block contains the database page number corresponding to the ** first frame in the WAL file. The first entry in the second index block ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in ** the log, and so on. ** ** The last index block in a wal-index usually contains less than the full ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, ** depending on the contents of the WAL file. This does not change the ** allocated size of the page-mapping array - the page-mapping array merely ** contains unused entries. ** ** Even without using the hash table, the last frame for page P ** can be found by scanning the page-mapping sections of each index block ** starting with the last index block and moving toward the first, and ** within each index block, starting at the end and moving toward the ** beginning. The first entry that equals P corresponds to the frame ** holding the content for that page. ** ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the ** hash table for each page number in the mapping section, so the hash ** table is never more than half full. The expected number of collisions ** prior to finding a match is 1. Each entry of the hash table is an ** 1-based index of an entry in the mapping section of the same ** index block. Let K be the 1-based index of the largest entry in ** the mapping section. (For index blocks other than the last, K will ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table ** contain a value of 0. ** ** To look for page P in the hash table, first compute a hash iKey on ** P as follows: ** ** iKey = (P * 383) % HASHTABLE_NSLOT ** ** Then start scanning entries of the hash table, starting with iKey ** (wrapping around to the beginning when the end of the hash table is ** reached) until an unused hash slot is found. Let the first unused slot ** be at index iUnused. (iUnused might be less than iKey if there was ** wrap-around.) Because the hash table is never more than half full, ** the search is guaranteed to eventually hit an unused entry. Let ** iMax be the value between iKey and iUnused, closest to iUnused, ** where aHash[iMax]==P. If there is no iMax entry (if there exists ** no hash slot such that aHash[i]==p) then page P is not in the ** current index block. Otherwise the iMax-th mapping entry of the ** current index block corresponds to the last entry that references ** page P. ** ** A hash search begins with the last index block and moves toward the ** first index block, looking for entries corresponding to page P. On ** average, only two or three slots in each index block need to be ** examined in order to either find the last entry for page P, or to ** establish that no such entry exists in the block. Each index block ** holds over 4000 entries. So two or three index blocks are sufficient ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 ** comparisons (on average) suffice to either locate a frame in the ** WAL or to establish that the frame does not exist in the WAL. This ** is much faster than scanning the entire 10MB WAL. ** ** Note that entries are added in order of increasing K. Hence, one ** reader might be using some value K0 and a second reader that started ** at a later time (after additional transactions were added to the WAL ** and to the wal-index) might be using a different value K1, where K1>K0. ** Both readers can use the same hash table and mapping section to get ** the correct result. There may be entries in the hash table with ** K>K0 but to the first reader, those entries will appear to be unused ** slots in the hash table and so the first reader will get an answer as ** if no values greater than K0 had ever been inserted into the hash table ** in the first place - which is what reader one wants. Meanwhile, the ** second reader using K1 will see additional values that were inserted ** later, which is exactly what reader two wants. ** ** When a rollback occurs, the value of K is decreased. Hash table entries ** that correspond to frames greater than the new K value are removed ** from the hash table at this point. */ #ifndef SQLITE_OMIT_WAL /* #include "wal.h" */ /* ** Trace output macros */ #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3WalTrace = 0; # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X #else # define WALTRACE(X) #endif /* ** The maximum (and only) versions of the wal and wal-index formats ** that may be interpreted by this version of SQLite. ** ** If a client begins recovering a WAL file and finds that (a) the checksum ** values in the wal-header are correct and (b) the version field is not ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. ** ** Similarly, if a client successfully reads a wal-index header (i.e. the ** checksum test is successful) and finds that the version field is not ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite ** returns SQLITE_CANTOPEN. */ #define WAL_MAX_VERSION 3007000 #define WALINDEX_MAX_VERSION 3007000 /* ** Index numbers for various locking bytes. WAL_NREADER is the number ** of available reader locks and should be at least 3. The default ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. ** ** Technically, the various VFSes are free to implement these locks however ** they see fit. However, compatibility is encouraged so that VFSes can ** interoperate. The standard implementation used on both unix and windows ** is for the index number to indicate a byte offset into the ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which ** should be 120) is the location in the shm file for the first locking ** byte. */ #define WAL_WRITE_LOCK 0 #define WAL_ALL_BUT_WRITE 1 #define WAL_CKPT_LOCK 1 #define WAL_RECOVER_LOCK 2 #define WAL_READ_LOCK(I) (3+(I)) #define WAL_NREADER (SQLITE_SHM_NLOCK-3) /* Object declarations */ typedef struct WalIndexHdr WalIndexHdr; typedef struct WalIterator WalIterator; typedef struct WalCkptInfo WalCkptInfo; /* ** The following object holds a copy of the wal-index header content. ** ** The actual header in the wal-index consists of two copies of this ** object followed by one instance of the WalCkptInfo object. ** For all versions of SQLite through 3.10.0 and probably beyond, ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and ** the total header size is 136 bytes. ** ** The szPage value can be any power of 2 between 512 and 32768, inclusive. ** Or it can be 1 to represent a 65536-byte page. The latter case was ** added in 3.7.1 when support for 64K pages was added. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ u32 unused; /* Unused (padding) field */ u32 iChange; /* Counter incremented each transaction */ u8 isInit; /* 1 when initialized */ u8 bigEndCksum; /* True if checksums in WAL are big-endian */ u16 szPage; /* Database page size in bytes. 1==64K */ u32 mxFrame; /* Index of last valid frame in the WAL */ u32 nPage; /* Size of database in pages */ u32 aFrameCksum[2]; /* Checksum of last frame in log */ u32 aSalt[2]; /* Two salt values copied from WAL header */ u32 aCksum[2]; /* Checksum over all prior fields */ }; /* ** A copy of the following object occurs in the wal-index immediately ** following the second copy of the WalIndexHdr. This object stores ** information used by checkpoint. ** ** nBackfill is the number of frames in the WAL that have been written ** back into the database. (We call the act of moving content from WAL to ** database "backfilling".) The nBackfill number is never greater than ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from ** mxFrame back to zero when the WAL is reset. ** ** nBackfillAttempted is the largest value of nBackfill that a checkpoint ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however ** the nBackfillAttempted is set before any backfilling is done and the ** nBackfill is only set after all backfilling completes. So if a checkpoint ** crashes, nBackfillAttempted might be larger than nBackfill. The ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. ** ** The aLock[] field is a set of bytes used for locking. These bytes should ** never be read or written. ** ** There is one entry in aReadMark[] for each reader lock. If a reader ** holds read-lock K, then the value in aReadMark[K] is no greater than ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) ** for any aReadMark[] means that entry is unused. aReadMark[0] is ** a special case; its value is never used and it exists as a place-holder ** to avoid having to offset aReadMark[] indexes by one. Readers holding ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content ** directly from the database. ** ** The value of aReadMark[K] may only be changed by a thread that ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of ** aReadMark[K] cannot changed while there is a reader is using that mark ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). ** ** The checkpointer may only transfer frames from WAL to database where ** the frame numbers are less than or equal to every aReadMark[] that is ** in use (that is, every aReadMark[j] for which there is a corresponding ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the ** largest value and will increase an unused aReadMark[] to mxFrame if there ** is not already an aReadMark[] equal to mxFrame. The exception to the ** previous sentence is when nBackfill equals mxFrame (meaning that everything ** in the WAL has been backfilled into the database) then new readers ** will choose aReadMark[0] which has value 0 and hence such reader will ** get all their all content directly from the database file and ignore ** the WAL. ** ** Writers normally append new frames to the end of the WAL. However, ** if nBackfill equals mxFrame (meaning that all WAL content has been ** written back into the database) and if no readers are using the WAL ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then ** the writer will first "reset" the WAL back to the beginning and start ** writing new content beginning at frame 1. ** ** We assume that 32-bit loads are atomic and so no locks are needed in ** order to read from any aReadMark[] entries. */ struct WalCkptInfo { u32 nBackfill; /* Number of WAL frames backfilled into DB */ u32 aReadMark[WAL_NREADER]; /* Reader marks */ u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ u32 notUsed0; /* Available for future enhancements */ }; #define READMARK_NOT_USED 0xffffffff /* ** This is a schematic view of the complete 136-byte header of the ** wal-index file (also known as the -shm file): ** ** +-----------------------------+ ** 0: | iVersion | \ ** +-----------------------------+ | ** 4: | (unused padding) | | ** +-----------------------------+ | ** 8: | iChange | | ** +-------+-------+-------------+ | ** 12: | bInit | bBig | szPage | | ** +-------+-------+-------------+ | ** 16: | mxFrame | | First copy of the ** +-----------------------------+ | WalIndexHdr object ** 20: | nPage | | ** +-----------------------------+ | ** 24: | aFrameCksum | | ** | | | ** +-----------------------------+ | ** 32: | aSalt | | ** | | | ** +-----------------------------+ | ** 40: | aCksum | | ** | | / ** +-----------------------------+ ** 48: | iVersion | \ ** +-----------------------------+ | ** 52: | (unused padding) | | ** +-----------------------------+ | ** 56: | iChange | | ** +-------+-------+-------------+ | ** 60: | bInit | bBig | szPage | | ** +-------+-------+-------------+ | Second copy of the ** 64: | mxFrame | | WalIndexHdr ** +-----------------------------+ | ** 68: | nPage | | ** +-----------------------------+ | ** 72: | aFrameCksum | | ** | | | ** +-----------------------------+ | ** 80: | aSalt | | ** | | | ** +-----------------------------+ | ** 88: | aCksum | | ** | | / ** +-----------------------------+ ** 96: | nBackfill | ** +-----------------------------+ ** 100: | 5 read marks | ** | | ** | | ** | | ** | | ** +-------+-------+------+------+ ** 120: | Write | Ckpt | Rcvr | Rd0 | \ ** +-------+-------+------+------+ ) 8 lock bytes ** | Read1 | Read2 | Rd3 | Rd4 | / ** +-------+-------+------+------+ ** 128: | nBackfillAttempted | ** +-----------------------------+ ** 132: | (unused padding) | ** +-----------------------------+ */ /* A block of WALINDEX_LOCK_RESERVED bytes beginning at ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems ** only support mandatory file-locks, we do not read or write data ** from the region of the file on which locks are applied. */ #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) /* Size of header before each frame in wal */ #define WAL_FRAME_HDRSIZE 24 /* Size of write ahead log header, including checksum. */ #define WAL_HDRSIZE 32 /* WAL magic value. Either this value, or the same value with the least ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit ** big-endian format in the first 4 bytes of a WAL file. ** ** If the LSB is set, then the checksums for each frame within the WAL ** file are calculated by treating all data as an array of 32-bit ** big-endian words. Otherwise, they are calculated by interpreting ** all data as 32-bit little-endian words. */ #define WAL_MAGIC 0x377f0682 /* ** Return the offset of frame iFrame in the write-ahead log file, ** assuming a database page size of szPage bytes. The offset returned ** is to the start of the write-ahead log frame-header. */ #define walFrameOffset(iFrame, szPage) ( \ WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ ) /* ** An open write-ahead log file is represented by an instance of the ** following object. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ i64 mxWalSize; /* Truncate WAL to this size upon reset */ int nWiData; /* Size of array apWiData */ int szFirstBlock; /* Size of first block written to WAL file */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u32 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 syncFlags; /* Flags to use to sync header writes */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ u8 truncateOnCommit; /* True to truncate WAL file on commit */ u8 syncHeader; /* Fsync the WAL header if true */ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ u8 bShmUnreliable; /* SHM content is read-only and unreliable */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_USE_SEH u32 lockMask; /* Mask of locks held */ void *pFree; /* Pointer to sqlite3_free() if exception thrown */ u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ int iSysErrno; /* System error code following exception */ #endif #ifdef SQLITE_DEBUG int nSehTry; /* Number of nested SEH_TRY{} blocks */ u8 lockError; /* True if a locking error has occurred */ #endif #ifdef SQLITE_ENABLE_SNAPSHOT WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ #endif #ifdef SQLITE_ENABLE_SETLK_TIMEOUT sqlite3 *db; #endif }; /* ** Candidate values for Wal.exclusiveMode. */ #define WAL_NORMAL_MODE 0 #define WAL_EXCLUSIVE_MODE 1 #define WAL_HEAPMEMORY_MODE 2 /* ** Possible values for WAL.readOnly */ #define WAL_RDWR 0 /* Normal read/write connection */ #define WAL_RDONLY 1 /* The WAL file is readonly */ #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ /* ** Each page of the wal-index mapping contains a hash-table made up of ** an array of HASHTABLE_NSLOT elements of the following type. */ typedef u16 ht_slot; /* ** This structure is used to implement an iterator that loops through ** all frames in the WAL in database page order. Where two or more frames ** correspond to the same database page, the iterator visits only the ** frame most recently written to the WAL (in other words, the frame with ** the largest index). ** ** The internals of this structure are only accessed by: ** ** walIteratorInit() - Create a new iterator, ** walIteratorNext() - Step an iterator, ** walIteratorFree() - Free an iterator. ** ** This functionality is used by the checkpoint code (see walCheckpoint()). */ struct WalIterator { u32 iPrior; /* Last result returned from the iterator */ int nSegment; /* Number of entries in aSegment[] */ struct WalSegment { int iNext; /* Next slot in aIndex[] not yet returned */ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ u32 *aPgno; /* Array of page numbers. */ int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ int iZero; /* Frame number associated with aPgno[0] */ } aSegment[1]; /* One for every 32KB page in the wal-index */ }; /* ** Define the parameters of the hash tables in the wal-index file. There ** is a hash-table following every HASHTABLE_NPAGE page numbers in the ** wal-index. ** ** Changing any of these constants will alter the wal-index format and ** create incompatibilities. */ #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ #define HASHTABLE_HASH_1 383 /* Should be prime */ #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ /* ** The block of page numbers associated with the first hash-table in a ** wal-index is smaller than usual. This is so that there is a complete ** hash-table on each aligned 32KB page of the wal-index. */ #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ #define WALINDEX_PGSZ ( \ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Structured Exception Handling (SEH) is a Windows-specific technique ** for catching exceptions raised while accessing memory-mapped files. ** ** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and ** deal with system-level errors that arise during WAL -shm file processing. ** Without this compile-time option, any system-level faults that appear ** while accessing the memory-mapped -shm file will cause a process-wide ** signal to be deliver, which will more than likely cause the entire ** process to exit. */ #ifdef SQLITE_USE_SEH #include /* Beginning of a block of code in which an exception might occur */ # define SEH_TRY __try { \ assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \ VVA_ONLY(pWal->nSehTry++); /* The end of a block of code in which an exception might occur */ # define SEH_EXCEPT(X) \ VVA_ONLY(pWal->nSehTry--); \ assert( pWal->nSehTry==0 ); \ } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X } /* Simulate a memory-mapping fault in the -shm file for testing purposes */ # define SEH_INJECT_FAULT sehInjectFault(pWal) /* ** The second argument is the return value of GetExceptionCode() for the ** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code ** indicates that the exception may have been caused by accessing the *-shm ** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise. */ static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){ VVA_ONLY(pWal->nSehTry--); if( eCode==EXCEPTION_IN_PAGE_ERROR ){ if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){ /* From MSDN: For this type of exception, the first element of the ** ExceptionInformation[] array is a read-write flag - 0 if the exception ** was thrown while reading, 1 if while writing. The second element is ** the virtual address being accessed. The "third array element specifies ** the underlying NTSTATUS code that resulted in the exception". */ pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2]; } return EXCEPTION_EXECUTE_HANDLER; } return EXCEPTION_CONTINUE_SEARCH; } /* ** If one is configured, invoke the xTestCallback callback with 650 as ** the argument. If it returns true, throw the same exception that is ** thrown by the system if the *-shm file mapping is accessed after it ** has been invalidated. */ static void sehInjectFault(Wal *pWal){ int res; assert( pWal->nSehTry>0 ); res = sqlite3FaultSim(650); if( res!=0 ){ ULONG_PTR aArg[3]; aArg[0] = 0; aArg[1] = 0; aArg[2] = (ULONG_PTR)res; RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg); } } /* ** There are two ways to use this macro. To set a pointer to be freed ** if an exception is thrown: ** ** SEH_FREE_ON_ERROR(0, pPtr); ** ** and to cancel the same: ** ** SEH_FREE_ON_ERROR(pPtr, 0); ** ** In the first case, there must not already be a pointer registered to ** be freed. In the second case, pPtr must be the registered pointer. */ #define SEH_FREE_ON_ERROR(X,Y) \ assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y /* ** There are two ways to use this macro. To arrange for pWal->apWiData[iPg] ** to be set to pValue if an exception is thrown: ** ** SEH_SET_ON_ERROR(iPg, pValue); ** ** and to cancel the same: ** ** SEH_SET_ON_ERROR(0, 0); */ #define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y #else # define SEH_TRY VVA_ONLY(pWal->nSehTry++); # define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 ); # define SEH_INJECT_FAULT assert( pWal->nSehTry>0 ); # define SEH_FREE_ON_ERROR(X,Y) # define SEH_SET_ON_ERROR(X,Y) #endif /* ifdef SQLITE_USE_SEH */ /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If the wal-index is currently smaller the iPage pages then the size ** of the wal-index might be increased, but only if it is safe to do ** so. It is safe to enlarge the wal-index if pWal->writeLock is true ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. ** ** Three possible result scenarios: ** ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page ** (2) rc>=SQLITE_ERROR and *ppPage==NULL ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 ** ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 */ static SQLITE_NOINLINE int walIndexPageRealloc( Wal *pWal, /* The WAL context */ int iPage, /* The page we seek */ volatile u32 **ppPage /* Write the page pointer here */ ){ int rc = SQLITE_OK; /* Enlarge the pWal->apWiData[] array if required */ if( pWal->nWiData<=iPage ){ sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); volatile u32 **apNew; apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); if( !apNew ){ *ppPage = 0; return SQLITE_NOMEM_BKPT; } memset((void*)&apNew[pWal->nWiData], 0, sizeof(u32*)*(iPage+1-pWal->nWiData)); pWal->apWiData = apNew; pWal->nWiData = iPage+1; } /* Request a pointer to the required page from the VFS */ assert( pWal->apWiData[iPage]==0 ); if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; }else{ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] ); assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || (pWal->writeLock==0 && iPage==0) ); testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); if( rc==SQLITE_OK ){ if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; }else if( (rc&0xff)==SQLITE_READONLY ){ pWal->readOnly |= WAL_SHM_RDONLY; if( rc==SQLITE_READONLY ){ rc = SQLITE_OK; } } } *ppPage = pWal->apWiData[iPage]; assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); return rc; } static int walIndexPage( Wal *pWal, /* The WAL context */ int iPage, /* The page we seek */ volatile u32 **ppPage /* Write the page pointer here */ ){ SEH_INJECT_FAULT; if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ return walIndexPageRealloc(pWal, iPage, ppPage); } return SQLITE_OK; } /* ** Return a pointer to the WalCkptInfo structure in the wal-index. */ static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); SEH_INJECT_FAULT; return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); SEH_INJECT_FAULT; return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it ** returns the value that would be produced by interpreting the 4 bytes ** of the input value as a little-endian integer. */ #define BYTESWAP32(x) ( \ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ ) /* ** Generate or extend an 8 byte checksum based on the data in ** array aByte[] and the initial values of aIn[0] and aIn[1] (or ** initial values of 0 and 0 if aIn==NULL). ** ** The checksum is written back into aOut[] before returning. ** ** nByte must be a positive multiple of 8. */ static void walChecksumBytes( int nativeCksum, /* True for native byte-order, false for non-native */ u8 *a, /* Content to be checksummed */ int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ const u32 *aIn, /* Initial checksum value input */ u32 *aOut /* OUT: Final checksum value output */ ){ u32 s1, s2; u32 *aData = (u32 *)a; u32 *aEnd = (u32 *)&a[nByte]; if( aIn ){ s1 = aIn[0]; s2 = aIn[1]; }else{ s1 = s2 = 0; } assert( nByte>=8 ); assert( (nByte&0x00000007)==0 ); assert( nByte<=65536 ); assert( nByte%4==0 ); if( !nativeCksum ){ do { s1 += BYTESWAP32(aData[0]) + s2; s2 += BYTESWAP32(aData[1]) + s1; aData += 2; }while( aDataexclusiveMode!=WAL_HEAPMEMORY_MODE ){ sqlite3OsShmBarrier(pWal->pDbFd); } } /* ** Add the SQLITE_NO_TSAN as part of the return-type of a function ** definition as a hint that the function contains constructs that ** might give false-positive TSAN warnings. ** ** See tag-20200519-1. */ #if defined(__clang__) && !defined(SQLITE_NO_TSAN) # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) #else # define SQLITE_NO_TSAN #endif /* ** Write the header information in pWal->hdr into the wal-index. ** ** The checksum on pWal->hdr is updated before it is written. */ static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ volatile WalIndexHdr *aHdr = walIndexHdr(pWal); const int nCksum = offsetof(WalIndexHdr, aCksum); assert( pWal->writeLock ); pWal->hdr.isInit = 1; pWal->hdr.iVersion = WALINDEX_MAX_VERSION; walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); /* Possible TSAN false-positive. See tag-20200519-1 */ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); walShmBarrier(pWal); memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); } /* ** This function encodes a single frame header and writes it to a buffer ** supplied by the caller. A frame-header is made up of a series of ** 4-byte big-endian integers, as follows: ** ** 0: Page number. ** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Salt-1 (copied from the wal-header) ** 12: Salt-2 (copied from the wal-header) ** 16: Checksum-1. ** 20: Checksum-2. */ static void walEncodeFrame( Wal *pWal, /* The write-ahead log */ u32 iPage, /* Database page number for frame */ u32 nTruncate, /* New db size (or 0 for non-commit frames) */ u8 *aData, /* Pointer to page data */ u8 *aFrame /* OUT: Write encoded frame here */ ){ int nativeCksum; /* True for native byte-order checksums */ u32 *aCksum = pWal->hdr.aFrameCksum; assert( WAL_FRAME_HDRSIZE==24 ); sqlite3Put4byte(&aFrame[0], iPage); sqlite3Put4byte(&aFrame[4], nTruncate); if( pWal->iReCksum==0 ){ memcpy(&aFrame[8], pWal->hdr.aSalt, 8); nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); sqlite3Put4byte(&aFrame[16], aCksum[0]); sqlite3Put4byte(&aFrame[20], aCksum[1]); }else{ memset(&aFrame[8], 0, 16); } } /* ** Check to see if the frame with header in aFrame[] and content ** in aData[] is valid. If it is a valid frame, fill *piPage and ** *pnTruncate and return true. Return if the frame is not valid. */ static int walDecodeFrame( Wal *pWal, /* The write-ahead log */ u32 *piPage, /* OUT: Database page number for frame */ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ u8 *aData, /* Pointer to page data (for checksum) */ u8 *aFrame /* Frame data */ ){ int nativeCksum; /* True for native byte-order checksums */ u32 *aCksum = pWal->hdr.aFrameCksum; u32 pgno; /* Page number of the frame */ assert( WAL_FRAME_HDRSIZE==24 ); /* A frame is only valid if the salt values in the frame-header ** match the salt values in the wal-header. */ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ return 0; } /* A frame is only valid if the page number is greater than zero. */ pgno = sqlite3Get4byte(&aFrame[0]); if( pgno==0 ){ return 0; } /* A frame is only valid if a checksum of the WAL header, ** all prior frames, the first 16 bytes of this frame-header, ** and the frame-data matches the checksum in the last 8 ** bytes of this frame-header. */ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) ){ /* Checksum failed. */ return 0; } /* If we reach this point, the frame is valid. Return the page number ** and the new database size. */ *piPage = pgno; *pnTruncate = sqlite3Get4byte(&aFrame[4]); return 1; } #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Names of locks. This routine is used to provide debugging output and is not ** a part of an ordinary build. */ static const char *walLockName(int lockIdx){ if( lockIdx==WAL_WRITE_LOCK ){ return "WRITE-LOCK"; }else if( lockIdx==WAL_CKPT_LOCK ){ return "CKPT-LOCK"; }else if( lockIdx==WAL_RECOVER_LOCK ){ return "RECOVER-LOCK"; }else{ static char zName[15]; sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", lockIdx-WAL_READ_LOCK(0)); return zName; } } #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ /* ** Set or release locks on the WAL. Locks are either shared or exclusive. ** A lock cannot be moved directly between shared and exclusive - it must go ** through the unlocked state first. ** ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. */ static int walLockShared(Wal *pWal, int lockIdx){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, walLockName(lockIdx), rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) #ifdef SQLITE_USE_SEH if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx); #endif return rc; } static void walUnlockShared(Wal *pWal, int lockIdx){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); #ifdef SQLITE_USE_SEH pWal->lockMask &= ~(1 << lockIdx); #endif WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); } static int walLockExclusive(Wal *pWal, int lockIdx, int n){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, walLockName(lockIdx), n, rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) #ifdef SQLITE_USE_SEH if( rc==SQLITE_OK ){ pWal->lockMask |= (((1<exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); #ifdef SQLITE_USE_SEH pWal->lockMask &= ~(((1<0 ); assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); } static int walNextHash(int iPriorHash){ return (iPriorHash+1)&(HASHTABLE_NSLOT-1); } /* ** An instance of the WalHashLoc object is used to describe the location ** of a page hash table in the wal-index. This becomes the return value ** from walHashGet(). */ typedef struct WalHashLoc WalHashLoc; struct WalHashLoc { volatile ht_slot *aHash; /* Start of the wal-index hash table */ volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ u32 iZero; /* One less than the frame number of first indexed*/ }; /* ** Return pointers to the hash table and page number array stored on ** page iHash of the wal-index. The wal-index is broken into 32KB pages ** numbered starting from 0. ** ** Set output variable pLoc->aHash to point to the start of the hash table ** in the wal-index file. Set pLoc->iZero to one less than the frame ** number of the first frame indexed by this hash table. If a ** slot in the hash table is set to N, it refers to frame number ** (pLoc->iZero+N) in the log. ** ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the ** first frame indexed by the hash table, frame (pLoc->iZero). */ static int walHashGet( Wal *pWal, /* WAL handle */ int iHash, /* Find the iHash'th table */ WalHashLoc *pLoc /* OUT: Hash table location */ ){ int rc; /* Return code */ rc = walIndexPage(pWal, iHash, &pLoc->aPgno); assert( rc==SQLITE_OK || iHash>0 ); if( pLoc->aPgno ){ pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; if( iHash==0 ){ pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; pLoc->iZero = 0; }else{ pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; } }else if( NEVER(rc==SQLITE_OK) ){ rc = SQLITE_ERROR; } return rc; } /* ** Return the number of the wal-index page that contains the hash-table ** and page-number array that contain entries corresponding to WAL frame ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages ** are numbered starting from 0. */ static int walFramePage(u32 iFrame){ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) ); assert( iHash>=0 ); return iHash; } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); SEH_INJECT_FAULT; if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } /* ** Remove entries from the hash table that point to WAL slots greater ** than pWal->hdr.mxFrame. ** ** This function is called whenever pWal->hdr.mxFrame is decreased due ** to a rollback or savepoint. ** ** At most only the hash table containing pWal->hdr.mxFrame needs to be ** updated. Any later hash tables will be automatically cleared when ** pWal->hdr.mxFrame advances to the point where those hash tables are ** actually needed. */ static void walCleanupHash(Wal *pWal){ WalHashLoc sLoc; /* Hash table location */ int iLimit = 0; /* Zero values greater than this */ int nByte; /* Number of bytes to zero in aPgno[] */ int i; /* Used to iterate through aHash[] */ assert( pWal->writeLock ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); if( pWal->hdr.mxFrame==0 ) return; /* Obtain pointers to the hash-table and page-number array containing ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed ** that the page said hash-table and array reside on is already mapped.(1) */ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ /* Zero all hash-table entries that correspond to frame numbers greater ** than pWal->hdr.mxFrame. */ iLimit = pWal->hdr.mxFrame - sLoc.iZero; assert( iLimit>0 ); for(i=0; iiLimit ){ sLoc.aHash[i] = 0; } } /* Zero the entries in the aPgno array that correspond to frames with ** frame numbers greater than pWal->hdr.mxFrame. */ nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); assert( nByte>=0 ); memset((void *)&sLoc.aPgno[iLimit], 0, nByte); #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* Verify that the every entry in the mapping region is still reachable ** via the hash table even after the cleanup. */ if( iLimit ){ int j; /* Loop counter */ int iKey; /* Hash key */ for(j=0; j=0 ); memset((void*)sLoc.aPgno, 0, nByte); } /* If the entry in aPgno[] is already set, then the previous writer ** must have exited unexpectedly in the middle of a transaction (after ** writing one or more dirty pages to the WAL to free up memory). ** Remove the remnants of that writers uncommitted transaction from ** the hash-table before writing any new entries. */ if( sLoc.aPgno[idx-1] ){ walCleanupHash(pWal); assert( !sLoc.aPgno[idx-1] ); } /* Write the aPgno[] array entry and the hash-table slot. */ nCollide = idx; for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; } sLoc.aPgno[idx-1] = iPage; AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* Verify that the number of entries in the hash table exactly equals ** the number of entries in the mapping region. */ { int i; /* Loop counter */ int nEntry = 0; /* Number of entries in the hash table */ for(i=0; ickptLock==1 || pWal->ckptLock==0 ); assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); assert( pWal->writeLock ); iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); if( rc ){ return rc; } WALTRACE(("WAL%p: recovery begin...\n", pWal)); memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); if( rc!=SQLITE_OK ){ goto recovery_error; } if( nSize>WAL_HDRSIZE ){ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ int szPage; /* Page size according to the log */ u32 magic; /* Magic value read from WAL header */ u32 version; /* Magic value read from WAL header */ int isValid; /* True if this frame is valid */ u32 iPg; /* Current 32KB wal-index page */ u32 iLastFrame; /* Last frame in wal, based on nSize alone */ /* Read in the WAL header. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto recovery_error; } /* If the database page size is not a power of two, or is greater than ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid ** data. Similarly, if the 'magic' value is invalid, ignore the whole ** WAL file. */ magic = sqlite3Get4byte(&aBuf[0]); szPage = sqlite3Get4byte(&aBuf[8]); if( (magic&0xFFFFFFFE)!=WAL_MAGIC || szPage&(szPage-1) || szPage>SQLITE_MAX_PAGE_SIZE || szPage<512 ){ goto finished; } pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); pWal->szPage = szPage; pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); /* Verify that the WAL header checksum is correct */ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum ); if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) ){ goto finished; } /* Verify that the version number on the WAL format is one that ** are able to understand */ version = sqlite3Get4byte(&aBuf[4]); if( version!=WAL_MAX_VERSION ){ rc = SQLITE_CANTOPEN_BKPT; goto finished; } /* Malloc a buffer to read frames into. */ szFrame = szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); SEH_FREE_ON_ERROR(0, aFrame); if( !aFrame ){ rc = SQLITE_NOMEM_BKPT; goto recovery_error; } aData = &aFrame[WAL_FRAME_HDRSIZE]; aPrivate = (u32*)&aData[szPage]; /* Read all frames from the log file. */ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ u32 *aShare; u32 iFrame; /* Index of last frame read */ u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); u32 nHdr, nHdr32; rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); assert( aShare!=0 || rc!=SQLITE_OK ); if( aShare==0 ) break; SEH_SET_ON_ERROR(iPg, aShare); pWal->apWiData[iPg] = aPrivate; for(iFrame=iFirst; iFrame<=iLast; iFrame++){ i64 iOffset = walFrameOffset(iFrame, szPage); u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); if( !isValid ) break; rc = walIndexAppend(pWal, iFrame, pgno); if( NEVER(rc!=SQLITE_OK) ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ pWal->hdr.mxFrame = iFrame; pWal->hdr.nPage = nTruncate; pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); testcase( szPage>=65536 ); aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; } } pWal->apWiData[iPg] = aShare; SEH_SET_ON_ERROR(0,0); nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); nHdr32 = nHdr / sizeof(u32); #ifndef SQLITE_SAFER_WALINDEX_RECOVERY /* Memcpy() should work fine here, on all reasonable implementations. ** Technically, memcpy() might change the destination to some ** intermediate value before setting to the final value, and that might ** cause a concurrent reader to malfunction. Memcpy() is allowed to ** do that, according to the spec, but no memcpy() implementation that ** we know of actually does that, which is why we say that memcpy() ** is safe for this. Memcpy() is certainly a lot faster. */ memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); #else /* In the event that some platform is found for which memcpy() ** changes the destination to some intermediate value before ** setting the final value, this alternative copy routine is ** provided. */ { int i; for(i=nHdr32; ihdr.aFrameCksum[0] = aFrameCksum[0]; pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; walIndexWriteHdr(pWal); /* Reset the checkpoint-header. This is safe because this thread is ** currently holding locks that exclude all other writers and ** checkpointers. Then set the values of read-mark slots 1 through N. */ pInfo = walCkptInfo(pWal); pInfo->nBackfill = 0; pInfo->nBackfillAttempted = pWal->hdr.mxFrame; pInfo->aReadMark[0] = 0; for(i=1; ihdr.mxFrame ){ pInfo->aReadMark[i] = pWal->hdr.mxFrame; }else{ pInfo->aReadMark[i] = READMARK_NOT_USED; } SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc!=SQLITE_BUSY ){ goto recovery_error; } } /* If more than one frame was recovered from the log file, report an ** event via sqlite3_log(). This is to help with identifying performance ** problems caused by applications routinely shutting down without ** checkpointing the log file. */ if( pWal->hdr.nPage ){ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, "recovered %d frames from WAL file %s", pWal->hdr.mxFrame, pWal->zWalName ); } } recovery_error: WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); return rc; } /* ** Close an open wal-index. */ static void walIndexClose(Wal *pWal, int isDelete){ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ int i; for(i=0; inWiData; i++){ sqlite3_free((void *)pWal->apWiData[i]); pWal->apWiData[i] = 0; } } if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ sqlite3OsShmUnmap(pWal->pDbFd, isDelete); } } /* ** Open a connection to the WAL file zWalName. The database file must ** already be opened on connection pDbFd. The buffer that zWalName points ** to must remain valid for the lifetime of the returned Wal* handle. ** ** A SHARED lock should be held on the database file when this function ** is called. The purpose of this SHARED lock is to prevent any other ** client from unlinking the WAL or wal-index file. If another process ** were to do this just after this client opened one of these files, the ** system would be badly broken. ** ** If the log file is successfully opened, SQLITE_OK is returned and ** *ppWal is set to point to a new WAL handle. If an error occurs, ** an SQLite error code is returned and *ppWal is left unmodified. */ SQLITE_PRIVATE int sqlite3WalOpen( sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ sqlite3_file *pDbFd, /* The open database file */ const char *zWalName, /* Name of the WAL file */ int bNoShm, /* True to run in heap-memory mode */ i64 mxWalSize, /* Truncate WAL to this size on reset */ Wal **ppWal /* OUT: Allocated Wal handle */ ){ int rc; /* Return Code */ Wal *pRet; /* Object to allocate and return */ int flags; /* Flags passed to OsOpen() */ assert( zWalName && zWalName[0] ); assert( pDbFd ); /* Verify the values of various constants. Any changes to the values ** of these constants would result in an incompatible on-disk format ** for the -shm file. Any change that causes one of these asserts to ** fail is a backward compatibility problem, even if the change otherwise ** works. ** ** This table also serves as a helpful cross-reference when trying to ** interpret hex dumps of the -shm file. */ assert( 48 == sizeof(WalIndexHdr) ); assert( 40 == sizeof(WalCkptInfo) ); assert( 120 == WALINDEX_LOCK_OFFSET ); assert( 136 == WALINDEX_HDR_SIZE ); assert( 4096 == HASHTABLE_NPAGE ); assert( 4062 == HASHTABLE_NPAGE_ONE ); assert( 8192 == HASHTABLE_NSLOT ); assert( 383 == HASHTABLE_HASH_1 ); assert( 32768 == WALINDEX_PGSZ ); assert( 8 == SQLITE_SHM_NLOCK ); assert( 5 == WAL_NREADER ); assert( 24 == WAL_FRAME_HDRSIZE ); assert( 32 == WAL_HDRSIZE ); assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); /* In the amalgamation, the os_unix.c and os_win.c source files come before ** this source file. Verify that the #defines of the locking byte offsets ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. ** For that matter, if the lock offset ever changes from its initial design ** value of 120, we need to know that so there is an assert() to check it. */ #ifdef WIN_SHM_BASE assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif #ifdef UNIX_SHM_BASE assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif /* Allocate an instance of struct Wal to return. */ *ppWal = 0; pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); if( !pRet ){ return SQLITE_NOMEM_BKPT; } pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; pRet->readLock = -1; pRet->mxWalSize = mxWalSize; pRet->zWalName = zWalName; pRet->syncHeader = 1; pRet->padToSectorBoundary = 1; pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); /* Open file handle on the write-ahead log file. */ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ pRet->readOnly = WAL_RDONLY; } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ int iDC = sqlite3OsDeviceCharacteristics(pDbFd); if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ pRet->padToSectorBoundary = 0; } *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } return rc; } /* ** Change the size to which the WAL file is truncated on each reset. */ SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){ if( pWal ) pWal->mxWalSize = iLimit; } /* ** Find the smallest page number out of all pages held in the WAL that ** has not been returned by any prior invocation of this method on the ** same WalIterator object. Write into *piFrame the frame index where ** that page was last written into the WAL. Write into *piPage the page ** number. ** ** Return 0 on success. If there are no pages in the WAL with a page ** number larger than *piPage, then return 1. */ static int walIteratorNext( WalIterator *p, /* Iterator */ u32 *piPage, /* OUT: The page number of the next page */ u32 *piFrame /* OUT: Wal frame index of next page */ ){ u32 iMin; /* Result pgno must be greater than iMin */ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ int i; /* For looping through segments */ iMin = p->iPrior; assert( iMin<0xffffffff ); for(i=p->nSegment-1; i>=0; i--){ struct WalSegment *pSegment = &p->aSegment[i]; while( pSegment->iNextnEntry ){ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; if( iPg>iMin ){ if( iPgiZero + pSegment->aIndex[pSegment->iNext]; } break; } pSegment->iNext++; } } *piPage = p->iPrior = iRet; return (iRet==0xFFFFFFFF); } /* ** This function merges two sorted lists into a single sorted list. ** ** aLeft[] and aRight[] are arrays of indices. The sort key is ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following ** is guaranteed for all J0 && nRight>0 ); while( iRight=nRight || aContent[aLeft[iLeft]]=nLeft || aContent[aLeft[iLeft]]>dbpage ); assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); } *paRight = aLeft; *pnRight = iOut; memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); } /* ** Sort the elements in list aList using aContent[] as the sort key. ** Remove elements with duplicate keys, preferring to keep the ** larger aList[] values. ** ** The aList[] entries are indices into aContent[]. The values in ** aList[] are to be sorted so that for all J0 ); assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); for(iList=0; iListaList && p->nList<=(1<aList==&aList[iList&~((2<aList, p->nList, &aMerge, &nMerge, aBuffer); } aSub[iSub].aList = aMerge; aSub[iSub].nList = nMerge; } for(iSub++; iSubnList<=(1<aList==&aList[nList&~((2<aList, p->nList, &aMerge, &nMerge, aBuffer); } } assert( aMerge==aList ); *pnList = nMerge; #ifdef SQLITE_DEBUG { int i; for(i=1; i<*pnList; i++){ assert( aContent[aList[i]] > aContent[aList[i-1]] ); } } #endif } /* ** Free an iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Construct a WalInterator object that can be used to loop over all ** pages in the WAL following frame nBackfill in ascending order. Frames ** nBackfill or earlier may be included - excluding them is an optimization ** only. The caller must hold the checkpoint lock. ** ** On success, make *pp point to the newly allocated WalInterator object ** return SQLITE_OK. Otherwise, return an error code. If this routine ** returns an error, the value of *pp is undefined. ** ** The calling routine should invoke walIteratorFree() to destroy the ** WalIterator object when it has finished with it. */ static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ WalIterator *p; /* Return value */ int nSegment; /* Number of segments to merge */ u32 iLast; /* Last frame in log */ sqlite3_int64 nByte; /* Number of bytes to allocate */ int i; /* Iterator variable */ ht_slot *aTmp; /* Temp space used by merge-sort */ int rc = SQLITE_OK; /* Return Code */ /* This routine only runs while holding the checkpoint lock. And ** it only runs if there is actually content in the log (mxFrame>0). */ assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); p = (WalIterator *)sqlite3_malloc64(nByte + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) ); if( !p ){ return SQLITE_NOMEM_BKPT; } memset(p, 0, nByte); p->nSegment = nSegment; aTmp = (ht_slot*)&(((u8*)p)[nByte]); SEH_FREE_ON_ERROR(0, p); for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && iaSegment[p->nSegment])[sLoc.iZero]; sLoc.iZero++; for(j=0; jaSegment[i].iZero = sLoc.iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aIndex; p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; } } if( rc!=SQLITE_OK ){ SEH_FREE_ON_ERROR(p, 0); walIteratorFree(p); p = 0; } *pp = p; return rc; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) ** they are supported by the VFS, and (b) the database handle is configured ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, ** or 0 otherwise. */ static int walEnableBlocking(Wal *pWal){ int res = 0; if( pWal->db ){ int tmout = pWal->db->busyTimeout; if( tmout ){ int rc; rc = sqlite3OsFileControl( pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout ); res = (rc==SQLITE_OK); } } return res; } /* ** Disable blocking locks. */ static void walDisableBlocking(Wal *pWal){ int tmout = 0; sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); } /* ** If parameter bLock is true, attempt to enable blocking locks, take ** the WRITER lock, and then disable blocking locks. If blocking locks ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not ** an error if blocking locks can not be enabled. ** ** If the bLock parameter is false and the WRITER lock is held, release it. */ SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock){ int rc = SQLITE_OK; assert( pWal->readLock<0 || bLock==0 ); if( bLock ){ assert( pWal->db ); if( walEnableBlocking(pWal) ){ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; } walDisableBlocking(pWal); } }else if( pWal->writeLock ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; } return rc; } /* ** Set the database handle used to determine if blocking locks are required. */ SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db){ pWal->db = db; } /* ** Take an exclusive WRITE lock. Blocking if so configured. */ static int walLockWriter(Wal *pWal){ int rc; walEnableBlocking(pWal); rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); walDisableBlocking(pWal); return rc; } #else # define walEnableBlocking(x) 0 # define walDisableBlocking(x) # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1) # define sqlite3WalDb(pWal, db) #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ /* ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and ** n. If the attempt fails and parameter xBusy is not NULL, then it is a ** busy-handler function. Invoke it and retry the lock until either the ** lock is successfully obtained or the busy-handler returns 0. */ static int walBusyLock( Wal *pWal, /* WAL connection */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int lockIdx, /* Offset of first byte to lock */ int n /* Number of bytes to lock */ ){ int rc; do { rc = walLockExclusive(pWal, lockIdx, n); }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ){ walDisableBlocking(pWal); rc = SQLITE_BUSY; } #endif return rc; } /* ** The cache of the wal-index header must be valid to call this function. ** Return the page-size in bytes used by the database. */ static int walPagesize(Wal *pWal){ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); } /* ** The following is guaranteed when this function is called: ** ** a) the WRITER lock is held, ** b) the entire log file has been checkpointed, and ** c) any existing readers are reading exclusively from the database ** file - there are no readers that may attempt to read a frame from ** the log file. ** ** This function updates the shared-memory structures so that the next ** client to write to the database (which may be this one) does so by ** writing frames into the start of the log file. ** ** The value of parameter salt1 is used as the aSalt[1] value in the ** new wal-index header. It should be passed a pseudo-random value (i.e. ** one obtained from sqlite3_randomness()). */ static void walRestartHdr(Wal *pWal, u32 salt1){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); memcpy(&pWal->hdr.aSalt[1], &salt1, 4); walIndexWriteHdr(pWal); AtomicStore(&pInfo->nBackfill, 0); pInfo->nBackfillAttempted = 0; pInfo->aReadMark[1] = 0; for(i=2; iaReadMark[i] = READMARK_NOT_USED; assert( pInfo->aReadMark[0]==0 ); } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page ** that a concurrent reader might be using. ** ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if ** checkpoints are always run by a background thread or background ** process, foreground threads will never block on a lengthy fsync call. ** ** Fsync is called on the WAL before writing content out of the WAL and ** into the database. This ensures that if the new content is persistent ** in the WAL and can be recovered following a power-loss or hard reset. ** ** Fsync is also called on the database file if (and only if) the entire ** WAL content is copied into the database file. This second fsync makes ** it safe to delete the WAL since the new content will persist in the ** database file. ** ** This routine uses and updates the nBackfill field of the wal-index header. ** This is the only routine that will increase the value of nBackfill. ** (A WAL reset or recovery will revert nBackfill to zero, but not increase ** its value.) ** ** The caller must be holding sufficient locks to ensure that no other ** checkpoint is running (in any other thread or process) at the same ** time. */ static int walCheckpoint( Wal *pWal, /* Wal connection */ sqlite3 *db, /* Check for interrupts on this handle */ int eMode, /* One of PASSIVE, FULL or RESTART */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags for OsSync() (or 0) */ u8 *zBuf /* Temporary buffer to use */ ){ int rc = SQLITE_OK; /* Return code */ int szPage; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ szPage = walPagesize(pWal); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pInfo = walCkptInfo(pWal); if( pInfo->nBackfillhdr.mxFrame ){ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); /* Compute in mxSafeFrame the index of the last frame of the WAL that is ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; iaReadMark+i); SEH_INJECT_FAULT; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc==SQLITE_BUSY ){ mxSafeFrame = y; xBusy = 0; }else{ goto walcheckpoint_out; } } } /* Allocate the iterator */ if( pInfo->nBackfillnBackfill, &pIter); assert( rc==SQLITE_OK || pIter==0 ); } if( pIter && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK ){ u32 nBackfill = pInfo->nBackfill; pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; /* Sync the WAL to disk */ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); /* If the database may grow as a result of this checkpoint, hint ** about the eventual size of the db file to the VFS layer. */ if( rc==SQLITE_OK ){ i64 nReq = ((i64)mxPage * szPage); i64 nSize; /* Current size of database file */ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); if( rc==SQLITE_OK && nSizehdr.mxFrame*szPage)pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); } } } /* Iterate through the contents of the WAL, copying data to the db file */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ i64 iOffset; assert( walFramePgno(pWal, iFrame)==iDbpage ); SEH_INJECT_FAULT; if( AtomicLoad(&db->u1.isInterrupted) ){ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; break; } if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ continue; } iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; iOffset = (iDbpage-1)*(i64)szPage; testcase( IS_BIG_INT(iOffset) ); rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; } sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); /* If work was actually accomplished... */ if( rc==SQLITE_OK ){ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ i64 szDb = pWal->hdr.nPage*(i64)szPage; testcase( IS_BIG_INT(szDb) ); rc = sqlite3OsTruncate(pWal->pDbFd, szDb); if( rc==SQLITE_OK ){ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); } } if( rc==SQLITE_OK ){ AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT; } } /* Release the reader lock held while backfilling */ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); } if( rc==SQLITE_BUSY ){ /* Reset the return code so as not to report a checkpoint failure ** just because there are active readers. */ rc = SQLITE_OK; } } /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the ** entire wal file has been copied into the database file, then block ** until all readers have finished using the wal file. This ensures that ** the next process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); SEH_INJECT_FAULT; if( pInfo->nBackfillhdr.mxFrame ){ rc = SQLITE_BUSY; }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ u32 salt1; sqlite3_randomness(4, &salt1); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as ** SQLITE_CHECKPOINT_RESTART with the addition that it also ** truncates the log file to zero bytes just prior to a ** successful return. ** ** In theory, it might be safe to do this without updating the ** wal-index header in shared memory, as all subsequent reader or ** writer clients should see that the entire log file has been ** checkpointed and behave accordingly. This seems unsafe though, ** as it would leave the system in a state where the contents of ** the wal-index header do not match the contents of the ** file-system. To avoid this, update the wal-index header to ** indicate that the log file contains zero valid frames. */ walRestartHdr(pWal, salt1); rc = sqlite3OsTruncate(pWal->pWalFd, 0); } walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } } walcheckpoint_out: SEH_FREE_ON_ERROR(pIter, 0); walIteratorFree(pIter); return rc; } /* ** If the WAL file is currently larger than nMax bytes in size, truncate ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. */ static void walLimitSize(Wal *pWal, i64 nMax){ i64 sz; int rx; sqlite3BeginBenignMalloc(); rx = sqlite3OsFileSize(pWal->pWalFd, &sz); if( rx==SQLITE_OK && (sz > nMax ) ){ rx = sqlite3OsTruncate(pWal->pWalFd, nMax); } sqlite3EndBenignMalloc(); if( rx ){ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); } } #ifdef SQLITE_USE_SEH /* ** This is the "standard" exception handler used in a few places to handle ** an exception thrown by reading from the *-shm mapping after it has become ** invalid in SQLITE_USE_SEH builds. It is used as follows: ** ** SEH_TRY { ... } ** SEH_EXCEPT( rc = walHandleException(pWal); ) ** ** This function does three things: ** ** 1) Determines the locks that should be held, based on the contents of ** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other ** held locks are assumed to be transient locks that would have been ** released had the exception not been thrown and are dropped. ** ** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free(). ** ** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL ** ** 4) Returns SQLITE_IOERR. */ static int walHandleException(Wal *pWal){ if( pWal->exclusiveMode==0 ){ static const int S = 1; static const int E = (1<lockMask & ~( (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) ); for(ii=0; iipFree); pWal->pFree = 0; if( pWal->pWiValue ){ pWal->apWiData[pWal->iWiPg] = pWal->pWiValue; pWal->pWiValue = 0; } return SQLITE_IOERR_IN_PAGE; } /* ** Assert that the Wal.lockMask mask, which indicates the locks held ** by the connenction, is consistent with the Wal.readLock, Wal.writeLock ** and Wal.ckptLock variables. To be used as: ** ** assert( walAssertLockmask(pWal) ); */ static int walAssertLockmask(Wal *pWal){ if( pWal->exclusiveMode==0 ){ static const int S = 1; static const int E = (1<readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) #ifdef SQLITE_ENABLE_SNAPSHOT | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0) #endif ); assert( mExpect==pWal->lockMask ); } return 1; } /* ** Return and zero the "system error" field set when an ** EXCEPTION_IN_PAGE_ERROR exception is caught. */ SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal *pWal){ int iRet = 0; if( pWal ){ iRet = pWal->iSysErrno; pWal->iSysErrno = 0; } return iRet; } #else # define walAssertLockmask(x) 1 #endif /* ifdef SQLITE_USE_SEH */ /* ** Close a connection to a log file. */ SQLITE_PRIVATE int sqlite3WalClose( Wal *pWal, /* Wal to close */ sqlite3 *db, /* For interrupt flag */ int sync_flags, /* Flags to pass to OsSync() (or 0) */ int nBuf, u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ assert( walAssertLockmask(pWal) ); /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ if( zBuf!=0 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = sqlite3WalCheckpoint(pWal, db, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); if( rc==SQLITE_OK ){ int bPersist = -1; sqlite3OsFileControlHint( pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist ); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal ** mode (!bPersist) */ isDelete = 1; }else if( pWal->mxWalSize>=0 ){ /* Try to truncate the WAL file to zero bytes if the checkpoint ** completed and fsynced (rc==SQLITE_OK) and we are in persistent ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a ** non-negative value (pWal->mxWalSize>=0). Note that we truncate ** to zero bytes as truncating to the journal_size_limit might ** leave a corrupt WAL file on disk. */ walLimitSize(pWal, 0); } } } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); if( isDelete ){ sqlite3BeginBenignMalloc(); sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); sqlite3EndBenignMalloc(); } WALTRACE(("WAL%p: closed\n", pWal)); sqlite3_free((void *)pWal->apWiData); sqlite3_free(pWal); } return rc; } /* ** Try to read the wal-index header. Return 0 on success and 1 if ** there is a problem. ** ** The wal-index is in shared memory. Another thread or process might ** be writing the header at the same time this procedure is trying to ** read it, which might result in inconsistency. A dirty read is detected ** by verifying that both copies of the header are the same and also by ** a checksum on the header. ** ** If and only if the read is consistent and the header is different from ** pWal->hdr, then pWal->hdr is updated to the content of the new header ** and *pChanged is set to 1. ** ** If the checksum cannot be verified return non-zero. If the header ** is read successfully and the checksum verified, return zero. */ static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ u32 aCksum[2]; /* Checksum on the header content */ WalIndexHdr h1, h2; /* Two copies of the header content */ WalIndexHdr volatile *aHdr; /* Header in shared memory */ /* The first page of the wal-index must be mapped at this point. */ assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Read the header. This might happen concurrently with a write to the ** same area of shared memory on a different CPU in a SMP, ** meaning it is possible that an inconsistent snapshot is read ** from the file. If this happens, return non-zero. ** ** tag-20200519-1: ** There are two copies of the header at the beginning of the wal-index. ** When reading, read [0] first then [1]. Writes are in the reverse order. ** Memory barriers are used to prevent the compiler or the hardware from ** reordering the reads and writes. TSAN and similar tools can sometimes ** give false-positive warnings about these accesses because the tools do not ** account for the double-read and the memory barrier. The use of mutexes ** here would be problematic as the memory being accessed is potentially ** shared among multiple processes and not all mutex implementations work ** reliably in that environment. */ aHdr = walIndexHdr(pWal); memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ walShmBarrier(pWal); memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ return 1; /* Dirty read */ } if( h1.isInit==0 ){ return 1; /* Malformed header - probably all zeros */ } walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ return 1; /* Checksum does not match */ } if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ *pChanged = 1; memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); testcase( pWal->szPage<=32768 ); testcase( pWal->szPage>=65536 ); } /* The header was successfully read. Return zero. */ return 0; } /* ** This is the value that walTryBeginRead returns when it needs to ** be retried. */ #define WAL_RETRY (-1) /* ** Read the wal-index header from the wal-index and into pWal->hdr. ** If the wal-header appears to be corrupt, try to reconstruct the ** wal-index from the WAL before returning. ** ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is ** changed by this operation. If pWal->hdr is unchanged, set *pChanged ** to 0. ** ** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int rc; /* Return code */ int badHdr; /* True if a header read failed */ volatile u32 *page0; /* Chunk of wal-index containing header */ /* Ensure that page 0 of the wal-index (the page that contains the ** wal-index header) is mapped. Return early if an error occurs here. */ assert( pChanged ); rc = walIndexPage(pWal, 0, &page0); if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ if( rc==SQLITE_READONLY_CANTINIT ){ /* The SQLITE_READONLY_CANTINIT return means that the shared-memory ** was openable but is not writable, and this thread is unable to ** confirm that another write-capable connection has the shared-memory ** open, and hence the content of the shared-memory is unreliable, ** since the shared-memory might be inconsistent with the WAL file ** and there is no writer on hand to fix it. */ assert( page0==0 ); assert( pWal->writeLock==0 ); assert( pWal->readOnly & WAL_SHM_RDONLY ); pWal->bShmUnreliable = 1; pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; *pChanged = 1; }else{ return rc; /* Any other non-OK return is just an error */ } }else{ /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock ** is zero, which prevents the SHM from growing */ testcase( page0!=0 ); } assert( page0!=0 || pWal->writeLock==0 ); /* If the first page of the wal-index has been mapped, try to read the ** wal-index header immediately, without holding any lock. This usually ** works, but may fail if the wal-index header is corrupt or currently ** being modified by another thread or process. */ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); /* If the first attempt failed, it might have been due to a race ** with a writer. So get a WRITE lock and try again. */ if( badHdr ){ if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ walUnlockShared(pWal, WAL_WRITE_LOCK); rc = SQLITE_READONLY_RECOVERY; } }else{ int bWriteLock = pWal->writeLock; if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){ pWal->writeLock = 1; if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ badHdr = walIndexTryHdr(pWal, pChanged); if( badHdr ){ /* If the wal-index header is still malformed even while holding ** a WRITE lock, it can only mean that the header is corrupted and ** needs to be reconstructed. So run recovery to do exactly that. */ rc = walIndexRecover(pWal); *pChanged = 1; } } if( bWriteLock==0 ){ pWal->writeLock = 0; walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); } } } } /* If the header is read successfully, check the version number to make ** sure the wal-index was not constructed with some future format that ** this version of SQLite cannot understand. */ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ rc = SQLITE_CANTOPEN_BKPT; } if( pWal->bShmUnreliable ){ if( rc!=SQLITE_OK ){ walIndexClose(pWal, 0); pWal->bShmUnreliable = 0; assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); /* walIndexRecover() might have returned SHORT_READ if a concurrent ** writer truncated the WAL out from under it. If that happens, it ** indicates that a writer has fixed the SHM file for us, so retry */ if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; } pWal->exclusiveMode = WAL_NORMAL_MODE; } return rc; } /* ** Open a transaction in a connection where the shared-memory is read-only ** and where we cannot verify that there is a separate write-capable connection ** on hand to keep the shared-memory up-to-date with the WAL file. ** ** This can happen, for example, when the shared-memory is implemented by ** memory-mapping a *-shm file, where a prior writer has shut down and ** left the *-shm file on disk, and now the present connection is trying ** to use that database but lacks write permission on the *-shm file. ** Other scenarios are also possible, depending on the VFS implementation. ** ** Precondition: ** ** The *-wal file has been read and an appropriate wal-index has been ** constructed in pWal->apWiData[] using heap memory instead of shared ** memory. ** ** If this function returns SQLITE_OK, then the read transaction has ** been successfully opened. In this case output variable (*pChanged) ** is set to true before returning if the caller should discard the ** contents of the page cache before proceeding. Or, if it returns ** WAL_RETRY, then the heap memory wal-index has been discarded and ** the caller should retry opening the read transaction from the ** beginning (including attempting to map the *-shm file). ** ** If an error occurs, an SQLite error code is returned. */ static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ i64 szWal; /* Size of wal file on disk in bytes */ i64 iOffset; /* Current offset when reading wal file */ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ volatile void *pDummy; /* Dummy argument for xShmMap */ int rc; /* Return code */ u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ assert( pWal->bShmUnreliable ); assert( pWal->readOnly & WAL_SHM_RDONLY ); assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Take WAL_READ_LOCK(0). This has the effect of preventing any ** writers from running a checkpoint, but does not stop them ** from running recovery. */ rc = walLockShared(pWal, WAL_READ_LOCK(0)); if( rc!=SQLITE_OK ){ if( rc==SQLITE_BUSY ) rc = WAL_RETRY; goto begin_unreliable_shm_out; } pWal->readLock = 0; /* Check to see if a separate writer has attached to the shared-memory area, ** thus making the shared-memory "reliable" again. Do this by invoking ** the xShmMap() routine of the VFS and looking to see if the return ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. ** ** If the shared-memory is now "reliable" return WAL_RETRY, which will ** cause the heap-memory WAL-index to be discarded and the actual ** shared memory to be used in its place. ** ** This step is important because, even though this connection is holding ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might ** have already checkpointed the WAL file and, while the current ** is active, wrap the WAL and start overwriting frames that this ** process wants to use. ** ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, ** even if some external agent does a "chmod" to make the shared-memory ** writable by us, until sqlite3OsShmUnmap() has been called. ** This is a requirement on the VFS implementation. */ rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ if( rc!=SQLITE_READONLY_CANTINIT ){ rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); goto begin_unreliable_shm_out; } /* We reach this point only if the real shared-memory is still unreliable. ** Assume the in-memory WAL-index substitute is correct and load it ** into pWal->hdr. */ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); /* Make sure some writer hasn't come in and changed the WAL file out ** from under us, then disconnected, while we were not looking. */ rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( szWalhdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); goto begin_unreliable_shm_out; } /* Check the salt keys at the start of the wal file still match. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ /* Some writer has wrapped the WAL file while we were not looking. ** Return WAL_RETRY which will cause the in-memory WAL-index to be ** rebuilt. */ rc = WAL_RETRY; goto begin_unreliable_shm_out; } /* Allocate a buffer to read frames into */ assert( (pWal->szPage & (pWal->szPage-1))==0 ); assert( pWal->szPage>=512 && pWal->szPage<=65536 ); szFrame = pWal->szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame); if( aFrame==0 ){ rc = SQLITE_NOMEM_BKPT; goto begin_unreliable_shm_out; } aData = &aFrame[WAL_FRAME_HDRSIZE]; /* Check to see if a complete transaction has been appended to the ** wal file since the heap-memory wal-index was created. If so, the ** heap-memory wal-index is discarded and WAL_RETRY returned to ** the caller. */ aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); iOffset+szFrame<=szWal; iOffset+=szFrame ){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; /* If nTruncate is non-zero, then a complete transaction has been ** appended to this wal file. Set rc to WAL_RETRY and break out of ** the loop. */ if( nTruncate ){ rc = WAL_RETRY; break; } } pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; begin_unreliable_shm_out: sqlite3_free(aFrame); if( rc!=SQLITE_OK ){ int i; for(i=0; inWiData; i++){ sqlite3_free((void*)pWal->apWiData[i]); pWal->apWiData[i] = 0; } pWal->bShmUnreliable = 0; sqlite3WalEndReadTransaction(pWal); *pChanged = 1; } return rc; } /* ** Attempt to start a read transaction. This might fail due to a race or ** other transient condition. When that happens, it returns WAL_RETRY to ** indicate to the caller that it is safe to retry immediately. ** ** On success return SQLITE_OK. On a permanent failure (such an ** I/O error or an SQLITE_BUSY because another process is running ** recovery) return a positive error code. ** ** The useWal parameter is true to force the use of the WAL and disable ** the case where the WAL is bypassed because it has been completely ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() ** to make a copy of the wal-index header into pWal->hdr. If the ** wal-index header has changed, *pChanged is set to 1 (as an indication ** to the caller that the local page cache is obsolete and needs to be ** flushed.) When useWal==1, the wal-index header is assumed to already ** be loaded and the pChanged parameter is unused. ** ** The caller must set the cnt parameter to the number of prior calls to ** this routine during the current read attempt that returned WAL_RETRY. ** This routine will start taking more aggressive measures to clear the ** race conditions after multiple WAL_RETRY returns, and after an excessive ** number of errors will ultimately return SQLITE_PROTOCOL. The ** SQLITE_PROTOCOL return indicates that some other process has gone rogue ** and is not honoring the locking protocol. There is a vanishingly small ** chance that SQLITE_PROTOCOL could be returned because of a run of really ** bad luck when there is lots of contention for the wal-index, but that ** possibility is so small that it can be safely neglected, we believe. ** ** On success, this routine obtains a read lock on ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) ** that means the Wal does not hold any read lock. The reader must not ** access any database page that is modified by a WAL frame up to and ** including frame number aReadMark[pWal->readLock]. The reader will ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 ** Or if pWal->readLock==0, then the reader will ignore the WAL ** completely and get all content directly from the database file. ** If the useWal parameter is 1 then the WAL will never be ignored and ** this routine will always set pWal->readLock>0 on success. ** When the read transaction is completed, the caller must release the ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. ** ** This routine uses the nBackfill and aReadMark[] fields of the header ** to select a particular WAL_READ_LOCK() that strives to let the ** checkpoint process do as much work as possible. This routine might ** update values of the aReadMark[] array in the header, but if it does ** so it takes care to hold an exclusive lock on the corresponding ** WAL_READ_LOCK() while changing values. */ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ u32 mxFrame; /* Wal frame to lock to */ assert( pWal->readLock<0 ); /* Not currently locked */ /* useWal may only be set for read/write connections */ assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); /* Take steps to avoid spinning forever if there is a protocol error. ** ** Circumstances that cause a RETRY should only last for the briefest ** instances of time. No I/O or other system calls are done while the ** locks are held, so the locks should not be held for very long. But ** if we are unlucky, another process that is holding a lock might get ** paged out or take a page-fault that is time-consuming to resolve, ** during the few nanoseconds that it is holding the lock. In that case, ** it might take longer than normal for the lock to free. ** ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this ** is more of a scheduler yield than an actual delay. But on the 10th ** an subsequent retries, the delays start becoming longer and longer, ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. ** The total delay time before giving up is less than 10 seconds. */ if( cnt>5 ){ int nDelay = 1; /* Pause time in microseconds */ if( cnt>100 ){ VVA_ONLY( pWal->lockError = 1; ) return SQLITE_PROTOCOL; } if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; sqlite3OsSleep(pWal->pVfs, nDelay); } if( !useWal ){ assert( rc==SQLITE_OK ); if( pWal->bShmUnreliable==0 ){ rc = walIndexReadHdr(pWal, pChanged); } if( rc==SQLITE_BUSY ){ /* If there is not a recovery running in another thread or process ** then convert BUSY errors to WAL_RETRY. If recovery is known to ** be running, convert BUSY to BUSY_RECOVERY. There is a race here ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY ** would be technically correct. But the race is benign since with ** WAL_RETRY this routine will be called again and will probably be ** right on the second iteration. */ if( pWal->apWiData[0]==0 ){ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. ** We assume this is a transient condition, so return WAL_RETRY. The ** xShmMap() implementation used by the default unix and win32 VFS ** modules may return SQLITE_BUSY due to a race condition in the ** code that determines whether or not the shared-memory region ** must be zeroed before the requested page is returned. */ rc = WAL_RETRY; }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ walUnlockShared(pWal, WAL_RECOVER_LOCK); rc = WAL_RETRY; }else if( rc==SQLITE_BUSY ){ rc = SQLITE_BUSY_RECOVERY; } } if( rc!=SQLITE_OK ){ return rc; } else if( pWal->bShmUnreliable ){ return walBeginShmUnreliable(pWal, pChanged); } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); SEH_INJECT_FAULT; if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame #ifdef SQLITE_ENABLE_SNAPSHOT && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) #endif ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. */ rc = walLockShared(pWal, WAL_READ_LOCK(0)); walShmBarrier(pWal); if( rc==SQLITE_OK ){ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ /* It is not safe to allow the reader to continue here if frames ** may have been appended to the log before READ_LOCK(0) was obtained. ** When holding READ_LOCK(0), the reader ignores the entire log file, ** which implies that the database file contains a trustworthy ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from ** happening, this is usually correct. ** ** However, if frames have been appended to the log (or if the log ** is wrapped and written for that matter) before the READ_LOCK(0) ** is obtained, that is not necessarily true. A checkpointer may ** have started to backfill the appended frames but crashed before ** it finished. Leaving a corrupt image in the database file. */ walUnlockShared(pWal, WAL_READ_LOCK(0)); return WAL_RETRY; } pWal->readLock = 0; return SQLITE_OK; }else if( rc!=SQLITE_BUSY ){ return rc; } } /* If we get this far, it means that the reader will want to use ** the WAL to get at content from recent commits. The job now is ** to select one of the aReadMark[] entries that is closest to ** but not exceeding pWal->hdr.mxFrame and lock that entry. */ mxReadMark = 0; mxI = 0; mxFrame = pWal->hdr.mxFrame; #ifdef SQLITE_ENABLE_SNAPSHOT if( pWal->pSnapshot && pWal->pSnapshot->mxFramepSnapshot->mxFrame; } #endif for(i=1; iaReadMark+i); SEH_INJECT_FAULT; if( mxReadMark<=thisMark && thisMark<=mxFrame ){ assert( thisMark!=READMARK_NOT_USED ); mxReadMark = thisMark; mxI = i; } } if( (pWal->readOnly & WAL_SHM_RDONLY)==0 && (mxReadMarkaReadMark+i,mxFrame); mxReadMark = mxFrame; mxI = i; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); break; }else if( rc!=SQLITE_BUSY ){ return rc; } } } if( mxI==0 ){ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; } rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); if( rc ){ return rc==SQLITE_BUSY ? WAL_RETRY : rc; } /* Now that the read-lock has been obtained, check that neither the ** value in the aReadMark[] array or the contents of the wal-index ** header have changed. ** ** It is necessary to check that the wal-index header did not change ** between the time it was read and when the shared-lock was obtained ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility ** that the log file may have been wrapped by a writer, or that frames ** that occur later in the log than pWal->hdr.mxFrame may have been ** copied into the database by a checkpointer. If either of these things ** happened, then reading the database with the current value of ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry ** instead. ** ** Before checking that the live wal-index header has not changed ** since it was read, set Wal.minFrame to the first frame in the wal ** file that has not yet been checkpointed. This client will not need ** to read any frames earlier than minFrame from the wal file - they ** can be safely read directly from the database file. ** ** Because a ShmBarrier() call is made between taking the copy of ** nBackfill and checking that the wal-header in shared-memory still ** matches the one cached in pWal->hdr, it is guaranteed that the ** checkpointer that set nBackfill was not working with a wal-index ** header newer than that cached in pWal->hdr. If it were, that could ** cause a problem. The checkpointer could omit to checkpoint ** a version of page X that lies before pWal->minFrame (call that version ** A) on the basis that there is a newer version (version B) of the same ** page later in the wal file. But if version B happens to like past ** frame pWal->hdr.mxFrame - then the client would incorrectly assume ** that it can read version A from the database file. However, since ** we can guarantee that the checkpointer that set nBackfill could not ** see any pages past pWal->hdr.mxFrame, this problem does not come up. */ pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT; walShmBarrier(pWal); if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ walUnlockShared(pWal, WAL_READ_LOCK(mxI)); return WAL_RETRY; }else{ assert( mxReadMark<=pWal->hdr.mxFrame ); pWal->readLock = (i16)mxI; } return rc; } #ifdef SQLITE_ENABLE_SNAPSHOT /* ** This function does the work of sqlite3WalSnapshotRecover(). */ static int walSnapshotRecover( Wal *pWal, /* WAL handle */ void *pBuf1, /* Temp buffer pWal->szPage bytes in size */ void *pBuf2 /* Temp buffer pWal->szPage bytes in size */ ){ int szPage = (int)pWal->szPage; int rc; i64 szDb; /* Size of db file in bytes */ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); u32 i = pInfo->nBackfillAttempted; for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ WalHashLoc sLoc; /* Hash table location */ u32 pgno; /* Page number in db file */ i64 iDbOff; /* Offset of db file entry */ i64 iWalOff; /* Offset of wal file entry */ rc = walHashGet(pWal, walFramePage(i), &sLoc); if( rc!=SQLITE_OK ) break; assert( i - sLoc.iZero - 1 >=0 ); pgno = sLoc.aPgno[i-sLoc.iZero-1]; iDbOff = (i64)(pgno-1) * szPage; if( iDbOff+szPage<=szDb ){ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); if( rc==SQLITE_OK ){ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); } if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ break; } } pInfo->nBackfillAttempted = i-1; } } return rc; } /* ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted ** variable so that older snapshots can be accessed. To do this, loop ** through all wal frames from nBackfillAttempted to (nBackfill+1), ** comparing their content to the corresponding page with the database ** file, if any. Set nBackfillAttempted to the frame number of the ** first frame for which the wal file content matches the db file. ** ** This is only really safe if the file-system is such that any page ** writes made by earlier checkpointers were atomic operations, which ** is not always true. It is also possible that nBackfillAttempted ** may be left set to a value larger than expected, if a wal frame ** contains content that duplicate of an earlier version of the same ** page. ** ** SQLITE_OK is returned if successful, or an SQLite error code if an ** error occurs. It is not an error if nBackfillAttempted cannot be ** decreased at all. */ SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ void *pBuf1 = sqlite3_malloc(pWal->szPage); void *pBuf2 = sqlite3_malloc(pWal->szPage); if( pBuf1==0 || pBuf2==0 ){ rc = SQLITE_NOMEM; }else{ pWal->ckptLock = 1; SEH_TRY { rc = walSnapshotRecover(pWal, pBuf1, pBuf2); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) pWal->ckptLock = 0; } sqlite3_free(pBuf1); sqlite3_free(pBuf2); walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); } return rc; } #endif /* SQLITE_ENABLE_SNAPSHOT */ /* ** This function does the work of sqlite3WalBeginReadTransaction() (see ** below). That function simply calls this one inside an SEH_TRY{...} block. */ static int walBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ #ifdef SQLITE_ENABLE_SNAPSHOT int ckptLock = 0; int bChanged = 0; WalIndexHdr *pSnapshot = pWal->pSnapshot; #endif assert( pWal->ckptLock==0 ); assert( pWal->nSehTry>0 ); #ifdef SQLITE_ENABLE_SNAPSHOT if( pSnapshot ){ if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ bChanged = 1; } /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the ** checkpointer has already determined that it will checkpoint ** snapshot X, where X is later in the wal file than pSnapshot, but ** has not yet set the pInfo->nBackfillAttempted variable to indicate ** its intent. To avoid the race condition this leads to, ensure that ** there is no checkpointer process by taking a shared CKPT lock ** before checking pInfo->nBackfillAttempted. */ (void)walEnableBlocking(pWal); rc = walLockShared(pWal, WAL_CKPT_LOCK); walDisableBlocking(pWal); if( rc!=SQLITE_OK ){ return rc; } ckptLock = 1; } #endif do{ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); }while( rc==WAL_RETRY ); testcase( (rc&0xff)==SQLITE_BUSY ); testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); #ifdef SQLITE_ENABLE_SNAPSHOT if( rc==SQLITE_OK ){ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ /* At this point the client has a lock on an aReadMark[] slot holding ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr ** is populated with the wal-index header corresponding to the head ** of the wal file. Verify that pSnapshot is still valid before ** continuing. Reasons why pSnapshot might no longer be valid: ** ** (1) The WAL file has been reset since the snapshot was taken. ** In this case, the salt will have changed. ** ** (2) A checkpoint as been attempted that wrote frames past ** pSnapshot->mxFrame into the database file. Note that the ** checkpoint need not have completed for this to cause problems. */ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); /* Check that the wal file has not been wrapped. Assuming that it has ** not, also check that no checkpointer has attempted to checkpoint any ** frames beyond pSnapshot->mxFrame. If either of these conditions are ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr ** with *pSnapshot and set *pChanged as appropriate for opening the ** snapshot. */ if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) && pSnapshot->mxFrame>=pInfo->nBackfillAttempted ){ assert( pWal->readLock>0 ); memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); *pChanged = bChanged; }else{ rc = SQLITE_ERROR_SNAPSHOT; } /* A client using a non-current snapshot may not ignore any frames ** from the start of the wal file. This is because, for a system ** where (minFrame < iSnapshot < maxFrame), a checkpointer may ** have omitted to checkpoint a frame earlier than minFrame in ** the file because there exists a frame after iSnapshot that ** is the same database page. */ pWal->minFrame = 1; if( rc!=SQLITE_OK ){ sqlite3WalEndReadTransaction(pWal); } } } /* Release the shared CKPT lock obtained above. */ if( ckptLock ){ assert( pSnapshot ); walUnlockShared(pWal, WAL_CKPT_LOCK); } #endif return rc; } /* ** Begin a read transaction on the database. ** ** This routine used to be called sqlite3OpenSnapshot() and with good reason: ** it takes a snapshot of the state of the WAL and wal-index for the current ** instant in time. The current thread will continue to use this snapshot. ** Other threads might append new content to the WAL and wal-index but ** that extra content is ignored by the current thread. ** ** If the database contents have changes since the previous read ** transaction, then *pChanged is set to 1 before returning. The ** Pager layer will use this to know that its cache is stale and ** needs to be flushed. */ SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; SEH_TRY { rc = walBeginReadTransaction(pWal, pChanged); } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){ sqlite3WalEndWriteTransaction(pWal); if( pWal->readLock>=0 ){ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->readLock = -1; } } /* ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. */ static int walFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ u32 iRead = 0; /* If !=0, WAL frame to return data from */ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ int iHash; /* Used to loop through N hash tables */ int iMinHash; /* This routine is only be called from within a read transaction. */ assert( pWal->readLock>=0 || pWal->lockError ); /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early ** in this case as an optimization. Likewise, if pWal->readLock==0, ** then the WAL is ignored by the reader so return early, as if the ** WAL were empty. */ if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ *piRead = 0; return SQLITE_OK; } /* Search the hash table or tables for an entry matching page number ** pgno. Each iteration of the following for() loop searches one ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). ** ** This code might run concurrently to the code in walIndexAppend() ** that adds entries to the wal-index (and possibly to this hash ** table). This means the value just read from the hash ** slot (aHash[iKey]) may have been added before or after the ** current read transaction was opened. Values added after the ** read transaction was opened may have been written incorrectly - ** i.e. these slots may contain garbage data. However, we assume ** that any slots written before the current read transaction was ** opened remain unmodified. ** ** For the reasons above, the if(...) condition featured in the inner ** loop of the following block is more stringent that would be required ** if we had exclusive access to the hash-table: ** ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. */ iMinHash = walFramePage(pWal->minFrame); for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ WalHashLoc sLoc; /* Hash table location */ int iKey; /* Hash slot index */ int nCollide; /* Number of hash collisions remaining */ int rc; /* Error code */ u32 iH; rc = walHashGet(pWal, iHash, &sLoc); if( rc!=SQLITE_OK ){ return rc; } nCollide = HASHTABLE_NSLOT; iKey = walHash(pgno); SEH_INJECT_FAULT; while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ u32 iFrame = iH + sLoc.iZero; if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ assert( iFrame>iRead || CORRUPT_DB ); iRead = iFrame; } if( (nCollide--)==0 ){ return SQLITE_CORRUPT_BKPT; } iKey = walNextHash(iKey); } if( iRead ) break; } #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. */ { u32 iRead2 = 0; u32 iTest; assert( pWal->bShmUnreliable || pWal->minFrame>0 ); for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ if( walFramePgno(pWal, iTest)==pgno ){ iRead2 = iTest; break; } } assert( iRead==iRead2 ); } #endif *piRead = iRead; return SQLITE_OK; } /* ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. ** ** The difference between this function and walFindFrame() is that this ** function wraps walFindFrame() in an SEH_TRY{...} block. */ SQLITE_PRIVATE int sqlite3WalFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ int rc; SEH_TRY { rc = walFindFrame(pWal, pgno, piRead); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) return rc; } /* ** Read the contents of frame iRead from the wal file into buffer pOut ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an ** error code otherwise. */ SQLITE_PRIVATE int sqlite3WalReadFrame( Wal *pWal, /* WAL handle */ u32 iRead, /* Frame to read */ int nOut, /* Size of buffer pOut in bytes */ u8 *pOut /* Buffer to write page data to */ ){ int sz; i64 iOffset; sz = pWal->hdr.szPage; sz = (sz&0xfe00) + ((sz&0x0001)<<16); testcase( sz<=32768 ); testcase( sz>=65536 ); iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); } /* ** Return the size of the database in pages (or zero, if unknown). */ SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){ if( pWal && ALWAYS(pWal->readLock>=0) ){ return pWal->hdr.nPage; } return 0; } /* ** This function starts a write transaction on the WAL. ** ** A read transaction must have already been started by a prior call ** to sqlite3WalBeginReadTransaction(). ** ** If another thread or process has written into the database since ** the read transaction was started, then it is not possible for this ** thread to write as doing so would cause a fork. So this routine ** returns SQLITE_BUSY in that case and no write transaction is started. ** ** There can only be a single writer active at a time. */ SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){ int rc; #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* If the write-lock is already held, then it was obtained before the ** read-transaction was even opened, making this call a no-op. ** Return early. */ if( pWal->writeLock ){ assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); return SQLITE_OK; } #endif /* Cannot start a write transaction without first holding a read ** transaction. */ assert( pWal->readLock>=0 ); assert( pWal->writeLock==0 && pWal->iReCksum==0 ); if( pWal->readOnly ){ return SQLITE_READONLY; } /* Only one writer allowed at a time. Get the write lock. Return ** SQLITE_BUSY if unable. */ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); if( rc ){ return rc; } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ SEH_TRY { if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ rc = SQLITE_BUSY_SNAPSHOT; } } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) if( rc!=SQLITE_OK ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; } return rc; } /* ** End a write transaction. The commit has already been done. This ** routine merely releases the lock. */ SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){ if( pWal->writeLock ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; pWal->iReCksum = 0; pWal->truncateOnCommit = 0; } return SQLITE_OK; } /* ** If any data has been written (but not committed) to the log file, this ** function moves the write-pointer back to the start of the transaction. ** ** Additionally, the callback function is invoked for each frame written ** to the WAL since the start of the transaction. If the callback returns ** other than SQLITE_OK, it is not invoked again and the error code is ** returned to the caller. ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; SEH_TRY { /* Restore the clients cache of the wal-index header to the state it ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); for(iFrame=pWal->hdr.mxFrame+1; ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++ ){ /* This call cannot fail. Unless the page for which the page number ** is passed as the second argument is (a) in the cache and ** (b) has an outstanding reference, then xUndo is either a no-op ** (if (a) is false) or simply expels the page from the cache (if (b) ** is false). ** ** If the upper layer is doing a rollback, it is guaranteed that there ** are no outstanding references to any page other than page 1. And ** page 1 is never written to the log until the transaction is ** committed. As a result, the call to xUndo may not fail. */ assert( walFramePgno(pWal, iFrame)!=1 ); rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); } if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 ** values. This function populates the array with values required to ** "rollback" the write position of the WAL handle back to the current ** point in the event of a savepoint rollback (via WalSavepointUndo()). */ SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ assert( pWal->writeLock ); aWalData[0] = pWal->hdr.mxFrame; aWalData[1] = pWal->hdr.aFrameCksum[0]; aWalData[2] = pWal->hdr.aFrameCksum[1]; aWalData[3] = pWal->nCkpt; } /* ** Move the write position of the WAL back to the point identified by ** the values in the aWalData[] array. aWalData must point to an array ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated ** by a call to WalSavepoint(). */ SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ int rc = SQLITE_OK; assert( pWal->writeLock ); assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); if( aWalData[3]!=pWal->nCkpt ){ /* This savepoint was opened immediately after the write-transaction ** was started. Right after that, the writer decided to wrap around ** to the start of the log. Update the savepoint values to match. */ aWalData[0] = 0; aWalData[3] = pWal->nCkpt; } if( aWalData[0]hdr.mxFrame ){ pWal->hdr.mxFrame = aWalData[0]; pWal->hdr.aFrameCksum[0] = aWalData[1]; pWal->hdr.aFrameCksum[1] = aWalData[2]; SEH_TRY { walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** This function is called just before writing a set of frames to the log ** file (see sqlite3WalFrames()). It checks to see if, instead of appending ** to the current log file, it is possible to overwrite the start of the ** existing log file with the new frames (i.e. "reset" the log). If so, ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left ** unchanged. ** ** SQLITE_OK is returned if no error is encountered (regardless of whether ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned ** if an error occurs. */ static int walRestartLog(Wal *pWal){ int rc = SQLITE_OK; int cnt; if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ u32 salt1; sqlite3_randomness(4, &salt1); rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ /* If all readers are using WAL_READ_LOCK(0) (in other words if no ** readers are currently using the WAL), then the transactions ** frames will overwrite the start of the existing log. Update the ** wal-index header to reflect this. ** ** In theory it would be Ok to update the cache of the header only ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() ** to handle if this transaction is rolled back. */ walRestartHdr(pWal, salt1); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); }else if( rc!=SQLITE_BUSY ){ return rc; } } walUnlockShared(pWal, WAL_READ_LOCK(0)); pWal->readLock = -1; cnt = 0; do{ int notUsed; rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); }while( rc==WAL_RETRY ); assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); } return rc; } /* ** Information about the current state of the WAL file and where ** the next fsync should occur - passed from sqlite3WalFrames() into ** walWriteToLog(). */ typedef struct WalWriter { Wal *pWal; /* The complete WAL information */ sqlite3_file *pFd; /* The WAL file to which we write */ sqlite3_int64 iSyncPoint; /* Fsync at this offset */ int syncFlags; /* Flags for the fsync */ int szPage; /* Size of one page */ } WalWriter; /* ** Write iAmt bytes of content into the WAL file beginning at iOffset. ** Do a sync when crossing the p->iSyncPoint boundary. ** ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, ** first write the part before iSyncPoint, then sync, then write the ** rest. */ static int walWriteToLog( WalWriter *p, /* WAL to write to */ void *pContent, /* Content to be written */ int iAmt, /* Number of bytes to write */ sqlite3_int64 iOffset /* Start writing at this offset */ ){ int rc; if( iOffsetiSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); if( iAmt==0 || rc ) return rc; } rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); return rc; } /* ** Write out a single frame of the WAL */ static int walWriteOneFrame( WalWriter *p, /* Where to write the frame */ PgHdr *pPage, /* The page of the frame to be written */ int nTruncate, /* The commit flag. Usually 0. >0 for commit */ sqlite3_int64 iOffset /* Byte offset at which to write */ ){ int rc; /* Result code from subfunctions */ void *pData; /* Data actually written */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ pData = pPage->pData; walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); if( rc ) return rc; /* Write the page data */ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); return rc; } /* ** This function is called as part of committing a transaction within which ** one or more frames have been overwritten. It updates the checksums for ** all frames written to the wal file by the current transaction starting ** with the earliest to have been overwritten. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int walRewriteChecksums(Wal *pWal, u32 iLast){ const int szPage = pWal->szPage;/* Database page size */ int rc = SQLITE_OK; /* Return code */ u8 *aBuf; /* Buffer to load data from wal file into */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ u32 iRead; /* Next frame to read from wal file */ i64 iCksumOff; aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); if( aBuf==0 ) return SQLITE_NOMEM_BKPT; /* Find the checksum values to use as input for the recalculating the ** first checksum. If the first frame is frame 1 (implying that the current ** transaction restarted the wal file), these values must be read from the ** wal-file header. Otherwise, read them from the frame header of the ** previous frame. */ assert( pWal->iReCksum>0 ); if( pWal->iReCksum==1 ){ iCksumOff = 24; }else{ iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; } rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); iRead = pWal->iReCksum; pWal->iReCksum = 0; for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ i64 iOff = walFrameOffset(iRead, szPage); rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); if( rc==SQLITE_OK ){ u32 iPgno, nDbSize; iPgno = sqlite3Get4byte(aBuf); nDbSize = sqlite3Get4byte(&aBuf[4]); walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); } } sqlite3_free(aBuf); return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ static int walFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; /* Used to catch return codes */ u32 iFrame; /* Next frame address */ PgHdr *p; /* Iterator to run through pList with. */ PgHdr *pLast = 0; /* Last frame in list */ int nExtra = 0; /* Number of extra copies of last page */ int szFrame; /* The size of a single frame */ i64 iOffset; /* Next byte to write in WAL file */ WalWriter w; /* The writer */ u32 iFirst = 0; /* First frame that may be overwritten */ WalIndexHdr *pLive; /* Pointer to shared header */ assert( pList ); assert( pWal->writeLock ); /* If this frame set completes a transaction, then nTruncate>0. If ** nTruncate==0 then this frame set does not complete the transaction. */ assert( (isCommit!=0)==(nTruncate!=0) ); #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); } #endif pLive = (WalIndexHdr*)walIndexHdr(pWal); if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ iFirst = pLive->mxFrame+1; } /* See if it is possible to write these frames into the start of the ** log file, instead of appending to it at pWal->hdr.mxFrame. */ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ return rc; } /* If this is the first frame written into the log, write the WAL ** header to the start of the WAL file. See comments at the top of ** this source file for a description of the WAL header format. */ iFrame = pWal->hdr.mxFrame; if( iFrame==0 ){ u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ u32 aCksum[2]; /* Checksum for wal-header */ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); sqlite3Put4byte(&aWalHdr[8], szPage); sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); pWal->szPage = szPage; pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; pWal->hdr.aFrameCksum[0] = aCksum[0]; pWal->hdr.aFrameCksum[1] = aCksum[1]; pWal->truncateOnCommit = 1; rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); if( rc!=SQLITE_OK ){ return rc; } /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise ** an out-of-order write following a WAL restart could result in ** database corruption. See the ticket: ** ** https://sqlite.org/src/info/ff5be73dee */ if( pWal->syncHeader ){ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); if( rc ) return rc; } } if( (int)pWal->szPage!=szPage ){ return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */ } /* Setup information needed to write frames into the WAL */ w.pWal = pWal; w.pFd = pWal->pWalFd; w.iSyncPoint = 0; w.syncFlags = sync_flags; w.szPage = szPage; iOffset = walFrameOffset(iFrame+1, szPage); szFrame = szPage + WAL_FRAME_HDRSIZE; /* Write all frames into the log file exactly once */ for(p=pList; p; p=p->pDirty){ int nDbSize; /* 0 normally. Positive == commit flag */ /* Check if this page has already been written into the wal file by ** the current transaction. If so, overwrite the existing frame and ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that ** checksums must be recomputed when the transaction is committed. */ if( iFirst && (p->pDirty || isCommit==0) ){ u32 iWrite = 0; VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite); assert( rc==SQLITE_OK || iWrite==0 ); if( iWrite>=iFirst ){ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; void *pData; if( pWal->iReCksum==0 || iWriteiReCksum ){ pWal->iReCksum = iWrite; } pData = p->pData; rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); if( rc ) return rc; p->flags &= ~PGHDR_WAL_APPEND; continue; } } iFrame++; assert( iOffset==walFrameOffset(iFrame, szPage) ); nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; rc = walWriteOneFrame(&w, p, nDbSize, iOffset); if( rc ) return rc; pLast = p; iOffset += szFrame; p->flags |= PGHDR_WAL_APPEND; } /* Recalculate checksums within the wal file if required. */ if( isCommit && pWal->iReCksum ){ rc = walRewriteChecksums(pWal, iFrame); if( rc ) return rc; } /* If this is the end of a transaction, then we might need to pad ** the transaction and/or sync the WAL file. ** ** Padding and syncing only occur if this set of frames complete a ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL ** or synchronous==OFF, then no padding or syncing are needed. ** ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not ** needed and only the sync is done. If padding is needed, then the ** final frame is repeated (with its commit mark) until the next sector ** boundary is crossed. Only the part of the WAL prior to the last ** sector boundary is synced; the part of the last frame that extends ** past the sector boundary is written after the sync. */ if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ int bSync = 1; if( pWal->padToSectorBoundary ){ int sectorSize = sqlite3SectorSize(pWal->pWalFd); w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; bSync = (w.iSyncPoint==iOffset); testcase( bSync ); while( iOffsettruncateOnCommit && pWal->mxWalSize>=0 ){ i64 sz = pWal->mxWalSize; if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ sz = walFrameOffset(iFrame+nExtra+1, szPage); } walLimitSize(pWal, sz); pWal->truncateOnCommit = 0; } /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ iFrame = pWal->hdr.mxFrame; for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; iFrame++; rc = walIndexAppend(pWal, iFrame, p->pgno); } assert( pLast!=0 || nExtra==0 ); while( rc==SQLITE_OK && nExtra>0 ){ iFrame++; nExtra--; rc = walIndexAppend(pWal, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pWal->hdr.mxFrame = iFrame; if( isCommit ){ pWal->hdr.iChange++; pWal->hdr.nPage = nTruncate; } /* If this is a commit, update the wal-index header too. */ if( isCommit ){ walIndexWriteHdr(pWal); pWal->iCallback = iFrame; } } WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). ** ** The difference between this function and walFrames() is that this ** function wraps walFrames() in an SEH_TRY{...} block. */ SQLITE_PRIVATE int sqlite3WalFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; SEH_TRY { rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags); } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. ** ** If parameter xBusy is not NULL, it is a pointer to a busy-handler ** callback. In this case this function runs a blocking checkpoint. */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ sqlite3 *db, /* Check this handle's interrupt flag */ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ ){ int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ assert( pWal->ckptLock==0 ); assert( pWal->writeLock==0 ); /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); if( pWal->readOnly ) return SQLITE_READONLY; WALTRACE(("WAL%p: checkpoint begins\n", pWal)); /* Enable blocking locks, if possible. If blocking locks are successfully ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */ sqlite3WalDb(pWal, db); (void)walEnableBlocking(pWal); /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive ** "checkpoint" lock on the database file. ** EVIDENCE-OF: R-10421-19736 If any other process is running a ** checkpoint operation at the same time, the lock cannot be obtained and ** SQLITE_BUSY is returned. ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, ** it will not be invoked in this case. */ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); testcase( rc==SQLITE_BUSY ); testcase( rc!=SQLITE_OK && xBusy2!=0 ); if( rc==SQLITE_OK ){ pWal->ckptLock = 1; /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and ** TRUNCATE modes also obtain the exclusive "writer" lock on the database ** file. ** ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the ** writer lock retried until either the busy-handler returns 0 or the ** lock is successfully obtained. */ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; }else if( rc==SQLITE_BUSY ){ eMode2 = SQLITE_CHECKPOINT_PASSIVE; xBusy2 = 0; rc = SQLITE_OK; } } } /* Read the wal-index header. */ SEH_TRY { if( rc==SQLITE_OK ){ walDisableBlocking(pWal); rc = walIndexReadHdr(pWal, &isChanged); (void)walEnableBlocking(pWal); if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); } } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); } /* If no error occurred, set the output variables. */ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; SEH_INJECT_FAULT; if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); } } } SEH_EXCEPT( rc = walHandleException(pWal); ) if( isChanged ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } walDisableBlocking(pWal); sqlite3WalDb(pWal, 0); /* Release the locks. */ sqlite3WalEndWriteTransaction(pWal); if( pWal->ckptLock ){ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); pWal->ckptLock = 0; } WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; #endif return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); } /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){ u32 ret = 0; if( pWal ){ ret = pWal->iCallback; pWal->iCallback = 0; } return (int)ret; } /* ** This function is called to change the WAL subsystem into or out ** of locking_mode=EXCLUSIVE. ** ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE ** into locking_mode=NORMAL. This means that we must acquire a lock ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL ** or if the acquisition of the lock fails, then return 0. If the ** transition out of exclusive-mode is successful, return 1. This ** operation must occur while the pager is still holding the exclusive ** lock on the main database file. ** ** If op is one, then change from locking_mode=NORMAL into ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must ** be released. Return 1 if the transition is made and 0 if the ** WAL is already in exclusive-locking mode - meaning that this ** routine is a no-op. The pager must already hold the exclusive lock ** on the main database file before invoking this operation. ** ** If op is negative, then do a dry-run of the op==1 case but do ** not actually change anything. The pager uses this to see if it ** should acquire the database exclusive lock prior to invoking ** the op==1 case. */ SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){ int rc; assert( pWal->writeLock==0 ); assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); /* pWal->readLock is usually set, but might be -1 if there was a ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ #ifndef SQLITE_USE_SEH assert( pWal->readLock>=0 || pWal->lockError ); #endif assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_NORMAL_MODE; if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = pWal->exclusiveMode==WAL_NORMAL_MODE; }else{ /* Already in locking_mode=NORMAL */ rc = 0; } }else if( op>0 ){ assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); assert( pWal->readLock>=0 ); walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; rc = 1; }else{ rc = pWal->exclusiveMode==WAL_NORMAL_MODE; } return rc; } /* ** Return true if the argument is non-NULL and the WAL module is using ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the ** WAL module is using shared-memory, return false. */ SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); } #ifdef SQLITE_ENABLE_SNAPSHOT /* Create a snapshot object. The content of a snapshot is opaque to ** every other subsystem, so the WAL module can put whatever it needs ** in the object. */ SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_OK; WalIndexHdr *pRet; static const u32 aZero[4] = { 0, 0, 0, 0 }; assert( pWal->readLock>=0 && pWal->writeLock==0 ); if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ *ppSnapshot = 0; return SQLITE_ERROR; } pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); if( pRet==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); *ppSnapshot = (sqlite3_snapshot*)pRet; } return rc; } /* Try to open on pSnapshot when the next read-transaction starts */ SQLITE_PRIVATE void sqlite3WalSnapshotOpen( Wal *pWal, sqlite3_snapshot *pSnapshot ){ pWal->pSnapshot = (WalIndexHdr*)pSnapshot; } /* ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. */ SQLITE_API int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; /* aSalt[0] is a copy of the value stored in the wal file header. It ** is incremented each time the wal file is restarted. */ if( pHdr1->aSalt[0]aSalt[0] ) return -1; if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; if( pHdr1->mxFramemxFrame ) return -1; if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; return 0; } /* ** The caller currently has a read transaction open on the database. ** This function takes a SHARED lock on the CHECKPOINTER slot and then ** checks if the snapshot passed as the second argument is still ** available. If so, SQLITE_OK is returned. ** ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ int rc; SEH_TRY { rc = walLockShared(pWal, WAL_CKPT_LOCK); if( rc==SQLITE_OK ){ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) || pNew->mxFramenBackfillAttempted ){ rc = SQLITE_ERROR_SNAPSHOT; walUnlockShared(pWal, WAL_CKPT_LOCK); } } } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** Release a lock obtained by an earlier successful call to ** sqlite3WalSnapshotCheck(). */ SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal){ assert( pWal ); walUnlockShared(pWal, WAL_CKPT_LOCK); } #endif /* SQLITE_ENABLE_SNAPSHOT */ #ifdef SQLITE_ENABLE_ZIPVFS /* ** If the argument is not NULL, it points to a Wal object that holds a ** read-lock. This function returns the database page-size if it is known, ** or zero if it is not (or if pWal is NULL). */ SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){ assert( pWal==0 || pWal->readLock>=0 ); return (pWal ? pWal->szPage : 0); } #endif /* Return the sqlite3_file object for the WAL file */ SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal){ return pWal->pWalFd; } #endif /* #ifndef SQLITE_OMIT_WAL */ /************** End of wal.c *************************************************/ /************** Begin file btmutex.c *****************************************/ /* ** 2007 August 27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement mutexes on Btree objects. ** This code really belongs in btree.c. But btree.c is getting too ** big and we want to break it down some. This packaged seemed like ** a good breakout. */ /************** Include btreeInt.h in the middle of btmutex.c ****************/ /************** Begin file btreeInt.h ****************************************/ /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. ** ** The basic idea is that each page of the file contains N database ** entries and N+1 pointers to subpages. ** ** ---------------------------------------------------------------- ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | ** ---------------------------------------------------------------- ** ** All of the keys on the page that Ptr(0) points to have values less ** than Key(0). All of the keys on page Ptr(1) and its subpages have ** values greater than Key(0) and less than Key(1). All of the keys ** on Ptr(N) and its subpages have values greater than Key(N-1). And ** so forth. ** ** Finding a particular key requires reading O(log(M)) pages from the ** disk where M is the number of entries in the tree. ** ** In this implementation, a single file can hold one or more separate ** BTrees. Each BTree is identified by the index of its root page. The ** key and data for any entry are combined to form the "payload". A ** fixed amount of payload can be carried directly on the database ** page. If the payload is larger than the preset amount then surplus ** bytes are stored on overflow pages. The payload for an entry ** and the preceding pointer are combined to form a "Cell". Each ** page has a small header which contains the Ptr(N) pointer and other ** information such as the size of key and data. ** ** FORMAT DETAILS ** ** The file is divided into pages. The first page is called page 1, ** the second is page 2, and so forth. A page number of zero indicates ** "no such page". The page size can be any power of 2 between 512 and 65536. ** Each page can be either a btree page, a freelist page, an overflow ** page, or a pointer-map page. ** ** The first page is always a btree page. The first 100 bytes of the first ** page contain a special header (the "file header") that describes the file. ** The format of the file header is as follows: ** ** OFFSET SIZE DESCRIPTION ** 0 16 Header string: "SQLite format 3\000" ** 16 2 Page size in bytes. (1 means 65536) ** 18 1 File format write version ** 19 1 File format read version ** 20 1 Bytes of unused space at the end of each page ** 21 1 Max embedded payload fraction (must be 64) ** 22 1 Min embedded payload fraction (must be 32) ** 23 1 Min leaf payload fraction (must be 32) ** 24 4 File change counter ** 28 4 Reserved for future use ** 32 4 First freelist page ** 36 4 Number of freelist pages in the file ** 40 60 15 4-byte meta values passed to higher layers ** ** 40 4 Schema cookie ** 44 4 File format of schema layer ** 48 4 Size of page cache ** 52 4 Largest root-page (auto/incr_vacuum) ** 56 4 1=UTF-8 2=UTF16le 3=UTF16be ** 60 4 User version ** 64 4 Incremental vacuum mode ** 68 4 Application-ID ** 72 20 unused ** 92 4 The version-valid-for number ** 96 4 SQLITE_VERSION_NUMBER ** ** All of the integer values are big-endian (most significant byte first). ** ** The file change counter is incremented when the database is changed ** This counter allows other processes to know when the file has changed ** and thus when they need to flush their cache. ** ** The max embedded payload fraction is the amount of the total usable ** space in a page that can be consumed by a single cell for standard ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default ** is to limit the maximum cell size so that at least 4 cells will fit ** on one page. Thus the default max embedded payload fraction is 64. ** ** If the payload for a cell is larger than the max payload, then extra ** payload is spilled to overflow pages. Once an overflow page is allocated, ** as many bytes as possible are moved into the overflow pages without letting ** the cell size drop below the min embedded payload fraction. ** ** The min leaf payload fraction is like the min embedded payload fraction ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it ** not specified in the header. ** ** Each btree pages is divided into three sections: The header, the ** cell pointer array, and the cell content area. Page 1 also has a 100-byte ** file header that occurs before the page header. ** ** |----------------| ** | file header | 100 bytes. Page 1 only. ** |----------------| ** | page header | 8 bytes for leaves. 12 bytes for interior nodes ** |----------------| ** | cell pointer | | 2 bytes per cell. Sorted order. ** | array | | Grows downward ** | | v ** |----------------| ** | unallocated | ** | space | ** |----------------| ^ Grows upwards ** | cell content | | Arbitrary order interspersed with freeblocks. ** | area | | and free space fragments. ** |----------------| ** ** The page headers looks like this: ** ** OFFSET SIZE DESCRIPTION ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf ** 1 2 byte offset to the first freeblock ** 3 2 number of cells on this page ** 5 2 first byte of the cell content area ** 7 1 number of fragmented free bytes ** 8 4 Right child (the Ptr(N) value). Omitted on leaves. ** ** The flags define the format of this btree page. The leaf flag means that ** this page has no children. The zerodata flag means that this page carries ** only keys and no data. The intkey flag means that the key is an integer ** which is stored in the key size entry of the cell header rather than in ** the payload area. ** ** The cell pointer array begins on the first byte after the page header. ** The cell pointer array contains zero or more 2-byte numbers which are ** offsets from the beginning of the page to the cell content in the cell ** content area. The cell pointers occur in sorted order. The system strives ** to keep free space after the last cell pointer so that new cells can ** be easily added without having to defragment the page. ** ** Cell content is stored at the very end of the page and grows toward the ** beginning of the page. ** ** Unused space within the cell content area is collected into a linked list of ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset ** to the first freeblock is given in the header. Freeblocks occur in ** increasing order. Because a freeblock must be at least 4 bytes in size, ** any group of 3 or fewer unused bytes in the cell content area cannot ** exist on the freeblock chain. A group of 3 or fewer free bytes is called ** a fragment. The total number of bytes in all fragments is recorded. ** in the page header at offset 7. ** ** SIZE DESCRIPTION ** 2 Byte offset of the next freeblock ** 2 Bytes in this freeblock ** ** Cells are of variable length. Cells are stored in the cell content area at ** the end of the page. Pointers to the cells are in the cell pointer array ** that immediately follows the page header. Cells is not necessarily ** contiguous or in order, but cell pointers are contiguous and in order. ** ** Cell content makes use of variable length integers. A variable ** length integer is 1 to 9 bytes where the lower 7 bits of each ** byte are used. The integer consists of all bytes that have bit 8 set and ** the first byte with bit 8 clear. The most significant byte of the integer ** appears first. A variable-length integer may not be more than 9 bytes long. ** As a special case, all 8 bits of the 9th byte are used as data. This ** allows a 64-bit integer to be encoded in 9 bytes. ** ** 0x00 becomes 0x00000000 ** 0x7f becomes 0x0000007f ** 0x81 0x00 becomes 0x00000080 ** 0x82 0x00 becomes 0x00000100 ** 0x80 0x7f becomes 0x0000007f ** 0x81 0x91 0xd1 0xac 0x78 becomes 0x12345678 ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 ** ** Variable length integers are used for rowids and to hold the number of ** bytes of key and data in a btree cell. ** ** The content of a cell looks like this: ** ** SIZE DESCRIPTION ** 4 Page number of the left child. Omitted if leaf flag is set. ** var Number of bytes of data. Omitted if the zerodata flag is set. ** var Number of bytes of key. Or the key itself if intkey flag is set. ** * Payload ** 4 First page of the overflow chain. Omitted if no overflow ** ** Overflow pages form a linked list. Each page except the last is completely ** filled with data (pagesize - 4 bytes). The last page can have as little ** as 1 byte of data. ** ** SIZE DESCRIPTION ** 4 Page number of next overflow page ** * Data ** ** Freelist pages come in two subtypes: trunk pages and leaf pages. The ** file header points to the first in a linked list of trunk page. Each trunk ** page points to multiple leaf pages. The content of a leaf page is ** unspecified. A trunk page looks like this: ** ** SIZE DESCRIPTION ** 4 Page number of next trunk page ** 4 Number of leaf pointers on this page ** * zero or more pages numbers of leaves */ /* #include "sqliteInt.h" */ /* The following value is the maximum cell size assuming a maximum page ** size give above. */ #define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8)) /* The maximum number of cells on a single page of the database. This ** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself ** plus 2 bytes for the index to the cell in the page header). Such ** small cells will be rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/6) /* Forward declarations */ typedef struct MemPage MemPage; typedef struct BtLock BtLock; typedef struct CellInfo CellInfo; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. ** ** You can change this value at compile-time by specifying a ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The ** header must be exactly 16 bytes including the zero-terminator so ** the string itself should be 15 characters long. If you change ** the header, then your custom library will not be able to read ** databases generated by the standard tools and the standard tools ** will not be able to read databases created by your custom library. */ #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ # define SQLITE_FILE_HEADER "SQLite format 3" #endif /* ** Page type flags. An ORed combination of these flags appear as the ** first byte of on-disk image of every BTree page. */ #define PTF_INTKEY 0x01 #define PTF_ZERODATA 0x02 #define PTF_LEAFDATA 0x04 #define PTF_LEAF 0x08 /* ** An instance of this object stores information about each a single database ** page that has been loaded into memory. The information in this object ** is derived from the raw on-disk page content. ** ** As each database page is loaded into memory, the pager allocates an ** instance of this object and zeros the first 8 bytes. (This is the ** "extra" information associated with each page of the pager.) ** ** Access to all fields of this structure is controlled by the mutex ** stored in MemPage.pBt->mutex. */ struct MemPage { u8 isInit; /* True if previously initialized. MUST BE FIRST! */ u8 intKey; /* True if table b-trees. False for index b-trees */ u8 intKeyLeaf; /* True if the leaf of an intKey table */ Pgno pgno; /* Page number for this page */ /* Only the first 8 bytes (above) are zeroed by pager.c when a new page ** is allocated. All fields that follow must be initialized before use */ u8 leaf; /* True if a leaf page */ u8 hdrOffset; /* 100 for page 1. 0 otherwise */ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ u8 max1bytePayload; /* min(maxLocal,127) */ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ u16 cellOffset; /* Index in aData of first cell pointer */ int nFree; /* Number of free bytes on the page. -1 for unknown */ u16 nCell; /* Number of cells on this page, local and ovfl */ u16 maskPage; /* Mask for page offset */ u16 aiOvfl[4]; /* Insert the i-th overflow cell before the aiOvfl-th ** non-overflow cell */ u8 *apOvfl[4]; /* Pointers to the body of overflow cells */ BtShared *pBt; /* Pointer to BtShared that this page is part of */ u8 *aData; /* Pointer to disk image of the page data */ u8 *aDataEnd; /* One byte past the end of the entire page - not just ** the usable space, the entire page. Used to prevent ** corruption-induced buffer overflow. */ u8 *aCellIdx; /* The cell index area */ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */ DbPage *pDbPage; /* Pager page handle */ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */ }; /* ** A linked list of the following structures is stored at BtShared.pLock. ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor ** is opened on the table with root page BtShared.iTable. Locks are removed ** from this list when a transaction is committed or rolled back, or when ** a btree handle is closed. */ struct BtLock { Btree *pBtree; /* Btree handle holding this lock */ Pgno iTable; /* Root page of table */ u8 eLock; /* READ_LOCK or WRITE_LOCK */ BtLock *pNext; /* Next in BtShared.pLock list */ }; /* Candidate values for BtLock.eLock */ #define READ_LOCK 1 #define WRITE_LOCK 2 /* A Btree handle ** ** A database connection contains a pointer to an instance of ** this object for every database file that it has open. This structure ** is opaque to the database connection. The database connection cannot ** see the internals of this structure and only deals with pointers to ** this structure. ** ** For some database files, the same underlying database cache might be ** shared between multiple connections. In that case, each connection ** has it own instance of this object. But each instance of this object ** points to the same BtShared object. The database cache and the ** schema associated with the database file are all contained within ** the BtShared object. ** ** All fields in this structure are accessed under sqlite3.mutex. ** The pBt pointer itself may not be changed while there exists cursors ** in the referenced BtShared that point back to this Btree since those ** cursors have to go through this Btree to find their BtShared and ** they often do so without holding sqlite3.mutex. */ struct Btree { sqlite3 *db; /* The database connection holding this btree */ BtShared *pBt; /* Sharable content of this btree */ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ u8 sharable; /* True if we can share pBt with another db */ u8 locked; /* True if db currently has pBt locked */ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ int nBackup; /* Number of backup operations reading this btree */ u32 iBDataVersion; /* Combines with pBt->pPager->iDataVersion */ Btree *pNext; /* List of other sharable Btrees from the same db */ Btree *pPrev; /* Back pointer of the same list */ #ifdef SQLITE_DEBUG u64 nSeek; /* Calls to sqlite3BtreeMovetoUnpacked() */ #endif #ifndef SQLITE_OMIT_SHARED_CACHE BtLock lock; /* Object used to lock page 1 */ #endif }; /* ** Btree.inTrans may take one of the following values. ** ** If the shared-data extension is enabled, there may be multiple users ** of the Btree structure. At most one of these may open a write transaction, ** but any number may have active read transactions. ** ** These values must match SQLITE_TXN_NONE, SQLITE_TXN_READ, and ** SQLITE_TXN_WRITE */ #define TRANS_NONE 0 #define TRANS_READ 1 #define TRANS_WRITE 2 #if TRANS_NONE!=SQLITE_TXN_NONE # error wrong numeric code for no-transaction #endif #if TRANS_READ!=SQLITE_TXN_READ # error wrong numeric code for read-transaction #endif #if TRANS_WRITE!=SQLITE_TXN_WRITE # error wrong numeric code for write-transaction #endif /* ** An instance of this object represents a single database file. ** ** A single database file can be in use at the same time by two ** or more database connections. When two or more connections are ** sharing the same database file, each connection has it own ** private Btree object for the file and each of those Btrees points ** to this one BtShared object. BtShared.nRef is the number of ** connections currently sharing this database file. ** ** Fields in this structure are accessed under the BtShared.mutex ** mutex, except for nRef and pNext which are accessed under the ** global SQLITE_MUTEX_STATIC_MAIN mutex. The pPager field ** may not be modified once it is initially set as long as nRef>0. ** The pSchema field may be set once under BtShared.mutex and ** thereafter is unchanged as long as nRef>0. ** ** isPending: ** ** If a BtShared client fails to obtain a write-lock on a database ** table (because there exists one or more read-locks on the table), ** the shared-cache enters 'pending-lock' state and isPending is ** set to true. ** ** The shared-cache leaves the 'pending lock' state when either of ** the following occur: ** ** 1) The current writer (BtShared.pWriter) concludes its transaction, OR ** 2) The number of locks held by other connections drops to zero. ** ** while in the 'pending-lock' state, no connection may start a new ** transaction. ** ** This feature is included to help prevent writer-starvation. */ struct BtShared { Pager *pPager; /* The page cache */ sqlite3 *db; /* Database connection currently using this Btree */ BtCursor *pCursor; /* A list of all open cursors */ MemPage *pPage1; /* First page of the database */ u8 openFlags; /* Flags to sqlite3BtreeOpen() */ #ifndef SQLITE_OMIT_AUTOVACUUM u8 autoVacuum; /* True if auto-vacuum is enabled */ u8 incrVacuum; /* True if incr-vacuum is enabled */ u8 bDoTruncate; /* True to truncate db on commit */ #endif u8 inTransaction; /* Transaction state */ u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */ u8 nReserveWanted; /* Desired number of extra bytes per page */ u16 btsFlags; /* Boolean parameters. See BTS_* macros below */ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ u32 pageSize; /* Total number of bytes on a page */ u32 usableSize; /* Number of usable bytes on each page */ int nTransaction; /* Number of open transactions (read + write) */ u32 nPage; /* Number of pages in the database */ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ #ifndef SQLITE_OMIT_SHARED_CACHE int nRef; /* Number of references to this structure */ BtShared *pNext; /* Next on a list of sharable BtShared structs */ BtLock *pLock; /* List of locks held on this shared-btree struct */ Btree *pWriter; /* Btree with currently open write transaction */ #endif u8 *pTmpSpace; /* Temp space sufficient to hold a single cell */ int nPreformatSize; /* Size of last cell written by TransferRow() */ }; /* ** Allowed values for BtShared.btsFlags */ #define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */ #define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */ #define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */ #define BTS_OVERWRITE 0x0008 /* Overwrite deleted content with zeros */ #define BTS_FAST_SECURE 0x000c /* Combination of the previous two */ #define BTS_INITIALLY_EMPTY 0x0010 /* Database was empty at trans start */ #define BTS_NO_WAL 0x0020 /* Do not open write-ahead-log files */ #define BTS_EXCLUSIVE 0x0040 /* pWriter has an exclusive lock */ #define BTS_PENDING 0x0080 /* Waiting for read-locks to clear */ /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ struct CellInfo { i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */ u8 *pPayload; /* Pointer to the start of payload */ u32 nPayload; /* Bytes of payload */ u16 nLocal; /* Amount of payload held locally, not on overflow */ u16 nSize; /* Size of the cell content on the main b-tree page */ }; /* ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than ** this will be declared corrupt. This value is calculated based on a ** maximum database size of 2^31 pages a minimum fanout of 2 for a ** root-node and 3 for all other internal nodes. ** ** If a tree that appears to be taller than this is encountered, it is ** assumed that the database is corrupt. */ #define BTCURSOR_MAX_DEPTH 20 /* ** A cursor is a pointer to a particular entry within a particular ** b-tree within a database file. ** ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. ** ** A single database file can be shared by two more database connections, ** but cursors cannot be shared. Each cursor is associated with a ** particular database connection identified BtCursor.pBtree.db. ** ** Fields in this structure are accessed under the BtShared.mutex ** found at self->pBt->mutex. ** ** skipNext meaning: ** The meaning of skipNext depends on the value of eState: ** ** eState Meaning of skipNext ** VALID skipNext is meaningless and is ignored ** INVALID skipNext is meaningless and is ignored ** SKIPNEXT sqlite3BtreeNext() is a no-op if skipNext>0 and ** sqlite3BtreePrevious() is no-op if skipNext<0. ** REQUIRESEEK restoreCursorPosition() restores the cursor to ** eState=SKIPNEXT if skipNext!=0 ** FAULT skipNext holds the cursor fault error code. */ struct BtCursor { u8 eState; /* One of the CURSOR_XXX constants (see below) */ u8 curFlags; /* zero or more BTCF_* flags defined below */ u8 curPagerFlags; /* Flags to send to sqlite3PagerGet() */ u8 hints; /* As configured by CursorSetHints() */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive. ** Error code if eState==CURSOR_FAULT */ Btree *pBtree; /* The Btree to which this cursor belongs */ Pgno *aOverflow; /* Cache of overflow page locations */ void *pKey; /* Saved key that was cursor last known position */ /* All fields above are zeroed when the cursor is allocated. See ** sqlite3BtreeCursorZero(). Fields that follow must be manually ** initialized. */ #define BTCURSOR_FIRST_UNINIT pBt /* Name of first uninitialized field */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext; /* Forms a linked list of all cursors */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ Pgno pgnoRoot; /* The root page of this tree */ i8 iPage; /* Index of current page in apPage */ u8 curIntKey; /* Value of apPage[0]->intKey */ u16 ix; /* Current index for apPage[iPage] */ u16 aiIdx[BTCURSOR_MAX_DEPTH-1]; /* Current index in apPage[i] */ struct KeyInfo *pKeyInfo; /* Arg passed to comparison function */ MemPage *pPage; /* Current page */ MemPage *apPage[BTCURSOR_MAX_DEPTH-1]; /* Stack of parents of current page */ }; /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ #define BTCF_AtLast 0x08 /* Cursor is pointing to the last entry */ #define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ #define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */ #define BTCF_Pinned 0x40 /* Cursor is busy and cannot be moved */ /* ** Potential values for BtCursor.eState. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been ** called. ** ** CURSOR_VALID: ** Cursor points to a valid entry. getPayload() etc. may be called. ** ** CURSOR_SKIPNEXT: ** Cursor is valid except that the Cursor.skipNext field is non-zero ** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious() ** operation should be a no-op. ** ** CURSOR_REQUIRESEEK: ** The table that this cursor was opened on still exists, but has been ** modified since the cursor was last used. The cursor position is saved ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in ** this state, restoreCursorPosition() can be called to attempt to ** seek the cursor to the saved position. ** ** CURSOR_FAULT: ** An unrecoverable error (an I/O error or a malloc failure) has occurred ** on a different connection that shares the BtShared cache with this ** cursor. The error has left the cache in an inconsistent state. ** Do nothing else with this cursor. Any attempt to use the cursor ** should return the error code stored in BtCursor.skipNext */ #define CURSOR_VALID 0 #define CURSOR_INVALID 1 #define CURSOR_SKIPNEXT 2 #define CURSOR_REQUIRESEEK 3 #define CURSOR_FAULT 4 /* ** The database page the PENDING_BYTE occupies. This page is never used. */ #define PENDING_BYTE_PAGE(pBt) ((Pgno)((PENDING_BYTE/((pBt)->pageSize))+1)) /* ** These macros define the location of the pointer-map entry for a ** database page. The first argument to each is the number of usable ** bytes on each page of the database (often 1024). The second is the ** page number to look up in the pointer map. ** ** PTRMAP_PAGENO returns the database page number of the pointer-map ** page that stores the required pointer. PTRMAP_PTROFFSET returns ** the offset of the requested map entry. ** ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements ** this test. */ #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1)) #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) /* ** The pointer map is a lookup table that identifies the parent page for ** each child page in the database file. The parent page is the page that ** contains a pointer to the child. Every page in the database contains ** 0 or 1 parent pages. (In this context 'database page' refers ** to any page that is not part of the pointer map itself.) Each pointer map ** entry consists of a single byte 'type' and a 4 byte parent page number. ** The PTRMAP_XXX identifiers below are the valid types. ** ** The purpose of the pointer map is to facility moving pages from one ** position in the file to another as part of autovacuum. When a page ** is moved, the pointer in its parent must be updated to point to the ** new location. The pointer map is used to locate the parent page quickly. ** ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not ** used in this case. ** ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number ** is not used in this case. ** ** PTRMAP_OVERFLOW1: The database page is the first page in a list of ** overflow pages. The page number identifies the page that ** contains the cell with a pointer to this overflow page. ** ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of ** overflow pages. The page-number identifies the previous ** page in the overflow page list. ** ** PTRMAP_BTREE: The database page is a non-root btree page. The page number ** identifies the parent page in the btree. */ #define PTRMAP_ROOTPAGE 1 #define PTRMAP_FREEPAGE 2 #define PTRMAP_OVERFLOW1 3 #define PTRMAP_OVERFLOW2 4 #define PTRMAP_BTREE 5 /* A bunch of assert() statements to check the transaction state variables ** of handle p (type Btree*) are internally consistent. */ #define btreeIntegrity(p) \ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ assert( p->pBt->inTransaction>=p->inTrans ); /* ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine ** if the database supports auto-vacuum or not. Because it is used ** within an expression that is an argument to another macro ** (sqliteMallocRaw), it is not possible to use conditional compilation. ** So, this macro is defined instead. */ #ifndef SQLITE_OMIT_AUTOVACUUM #define ISAUTOVACUUM(pBt) (pBt->autoVacuum) #else #define ISAUTOVACUUM(pBt) 0 #endif /* ** This structure is passed around through all the PRAGMA integrity_check ** checking routines in order to keep track of some global state information. ** ** The aRef[] array is allocated so that there is 1 bit for each page in ** the database. As the integrity-check proceeds, for each page used in ** the database the corresponding bit is set. This allows integrity-check to ** detect pages that are used twice and orphaned pages (both of which ** indicate corruption). */ typedef struct IntegrityCk IntegrityCk; struct IntegrityCk { BtShared *pBt; /* The tree being checked out */ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ u8 *aPgRef; /* 1 bit per page in the db (see above) */ Pgno nPage; /* Number of pages in the database */ int mxErr; /* Stop accumulating errors when this reaches zero */ int nErr; /* Number of messages written to zErrMsg so far */ int rc; /* SQLITE_OK, SQLITE_NOMEM, or SQLITE_INTERRUPT */ u32 nStep; /* Number of steps into the integrity_check process */ const char *zPfx; /* Error message prefix */ Pgno v0; /* Value for first %u substitution in zPfx (root page) */ Pgno v1; /* Value for second %u substitution in zPfx (current pg) */ int v2; /* Value for third %d substitution in zPfx */ StrAccum errMsg; /* Accumulate the error message text here */ u32 *heap; /* Min-heap used for analyzing cell coverage */ sqlite3 *db; /* Database connection running the check */ }; /* ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /* ** get2byteAligned(), unlike get2byte(), requires that its argument point to a ** two-byte aligned address. get2byteAligned() is only used for accessing the ** cell addresses in a btree header. */ #if SQLITE_BYTEORDER==4321 # define get2byteAligned(x) (*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000 # define get2byteAligned(x) __builtin_bswap16(*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 # define get2byteAligned(x) _byteswap_ushort(*(u16*)(x)) #else # define get2byteAligned(x) ((x)[0]<<8 | (x)[1]) #endif /************** End of btreeInt.h ********************************************/ /************** Continuing where we left off in btmutex.c ********************/ #ifndef SQLITE_OMIT_SHARED_CACHE #if SQLITE_THREADSAFE /* ** Obtain the BtShared mutex associated with B-Tree handle p. Also, ** set BtShared.db to the database handle associated with p and the ** p->locked boolean to true. */ static void lockBtreeMutex(Btree *p){ assert( p->locked==0 ); assert( sqlite3_mutex_notheld(p->pBt->mutex) ); assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3_mutex_enter(p->pBt->mutex); p->pBt->db = p->db; p->locked = 1; } /* ** Release the BtShared mutex associated with B-Tree handle p and ** clear the p->locked boolean. */ static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){ BtShared *pBt = p->pBt; assert( p->locked==1 ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3_mutex_held(p->db->mutex) ); assert( p->db==pBt->db ); sqlite3_mutex_leave(pBt->mutex); p->locked = 0; } /* Forward reference */ static void SQLITE_NOINLINE btreeLockCarefully(Btree *p); /* ** Enter a mutex on the given BTree object. ** ** If the object is not sharable, then no mutex is ever required ** and this routine is a no-op. The underlying mutex is non-recursive. ** But we keep a reference count in Btree.wantToLock so the behavior ** of this interface is recursive. ** ** To avoid deadlocks, multiple Btrees are locked in the same order ** by all database connections. The p->pNext is a list of other ** Btrees belonging to the same database connection as the p Btree ** which need to be locked after p. If we cannot get a lock on ** p, then first unlock all of the others on p->pNext, then wait ** for the lock to become available on p, then relock all of the ** subsequent Btrees that desire a lock. */ SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ /* Some basic sanity checking on the Btree. The list of Btrees ** connected by pNext and pPrev should be in sorted order by ** Btree.pBt value. All elements of the list should belong to ** the same connection. Only shared Btrees are on the list. */ assert( p->pNext==0 || p->pNext->pBt>p->pBt ); assert( p->pPrev==0 || p->pPrev->pBtpBt ); assert( p->pNext==0 || p->pNext->db==p->db ); assert( p->pPrev==0 || p->pPrev->db==p->db ); assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); /* Check for locking consistency */ assert( !p->locked || p->wantToLock>0 ); assert( p->sharable || p->wantToLock==0 ); /* We should already hold a lock on the database connection */ assert( sqlite3_mutex_held(p->db->mutex) ); /* Unless the database is sharable and unlocked, then BtShared.db ** should already be set correctly. */ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db ); if( !p->sharable ) return; p->wantToLock++; if( p->locked ) return; btreeLockCarefully(p); } /* This is a helper function for sqlite3BtreeLock(). By moving ** complex, but seldom used logic, out of sqlite3BtreeLock() and ** into this routine, we avoid unnecessary stack pointer changes ** and thus help the sqlite3BtreeLock() routine to run much faster ** in the common case. */ static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){ Btree *pLater; /* In most cases, we should be able to acquire the lock we ** want without having to go through the ascending lock ** procedure that follows. Just be sure not to block. */ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ p->pBt->db = p->db; p->locked = 1; return; } /* To avoid deadlock, first release all locks with a larger ** BtShared address. Then acquire our lock. Then reacquire ** the other BtShared locks that we used to hold in ascending ** order. */ for(pLater=p->pNext; pLater; pLater=pLater->pNext){ assert( pLater->sharable ); assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); assert( !pLater->locked || pLater->wantToLock>0 ); if( pLater->locked ){ unlockBtreeMutex(pLater); } } lockBtreeMutex(p); for(pLater=p->pNext; pLater; pLater=pLater->pNext){ if( pLater->wantToLock ){ lockBtreeMutex(pLater); } } } /* ** Exit the recursive mutex on a Btree. */ SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){ assert( sqlite3_mutex_held(p->db->mutex) ); if( p->sharable ){ assert( p->wantToLock>0 ); p->wantToLock--; if( p->wantToLock==0 ){ unlockBtreeMutex(p); } } } #ifndef NDEBUG /* ** Return true if the BtShared mutex is held on the btree, or if the ** B-Tree is not marked as sharable. ** ** This routine is used only from within assert() statements. */ SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 ); assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db ); assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) ); assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) ); return (p->sharable==0 || p->locked); } #endif /* ** Enter the mutex on every Btree associated with a database ** connection. This is needed (for example) prior to parsing ** a statement since we will be comparing table and column names ** against all schemas and we do not want those schemas being ** reset out from under us. ** ** There is a corresponding leave-all procedures. ** ** Enter the mutexes in ascending order by BtShared pointer address ** to avoid the possibility of deadlock when two threads with ** two or more btrees in common both try to lock all their btrees ** at the same instant. */ static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){ int i; int skipOk = 1; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; inDb; i++){ p = db->aDb[i].pBt; if( p && p->sharable ){ sqlite3BtreeEnter(p); skipOk = 0; } } db->noSharedCache = skipOk; } SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ if( db->noSharedCache==0 ) btreeEnterAll(db); } static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){ int i; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; inDb; i++){ p = db->aDb[i].pBt; if( p ) sqlite3BtreeLeave(p); } } SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){ if( db->noSharedCache==0 ) btreeLeaveAll(db); } #ifndef NDEBUG /* ** Return true if the current thread holds the database connection ** mutex and all required BtShared mutexes. ** ** This routine is used inside assert() statements only. */ SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ int i; if( !sqlite3_mutex_held(db->mutex) ){ return 0; } for(i=0; inDb; i++){ Btree *p; p = db->aDb[i].pBt; if( p && p->sharable && (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ return 0; } } return 1; } #endif /* NDEBUG */ #ifndef NDEBUG /* ** Return true if the correct mutexes are held for accessing the ** db->aDb[iDb].pSchema structure. The mutexes required for schema ** access are: ** ** (1) The mutex on db ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. ** ** If pSchema is not NULL, then iDb is computed from pSchema and ** db using sqlite3SchemaToIndex(). */ SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ Btree *p; assert( db!=0 ); if( db->pVfs==0 && db->nDb==0 ) return 1; if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); assert( iDb>=0 && iDbnDb ); if( !sqlite3_mutex_held(db->mutex) ) return 0; if( iDb==1 ) return 1; p = db->aDb[iDb].pBt; assert( p!=0 ); return p->sharable==0 || p->locked==1; } #endif /* NDEBUG */ #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ /* ** The following are special cases for mutex enter routines for use ** in single threaded applications that use shared cache. Except for ** these two routines, all mutex operations are no-ops in that case and ** are null #defines in btree.h. ** ** If shared cache is disabled, then all btree mutex routines, including ** the ones below, are no-ops and are null #defines in btree.h. */ SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ p->pBt->db = p->db; } SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ int i; for(i=0; inDb; i++){ Btree *p = db->aDb[i].pBt; if( p ){ p->pBt->db = p->db; } } } #endif /* if SQLITE_THREADSAFE */ #ifndef SQLITE_OMIT_INCRBLOB /* ** Enter a mutex on a Btree given a cursor owned by that Btree. ** ** These entry points are used by incremental I/O only. Enter() is required ** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not ** the build is threadsafe. Leave() is only required by threadsafe builds. */ SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){ sqlite3BtreeEnter(pCur->pBtree); } # if SQLITE_THREADSAFE SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){ sqlite3BtreeLeave(pCur->pBtree); } # endif #endif /* ifndef SQLITE_OMIT_INCRBLOB */ #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ /************** End of btmutex.c *********************************************/ /************** Begin file btree.c *******************************************/ /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. ** Including a description of file format and an overview of operation. */ /* #include "btreeInt.h" */ /* ** The header string that appears at the beginning of every ** SQLite database. */ static const char zMagicHeader[] = SQLITE_FILE_HEADER; /* ** Set this global variable to 1 to enable tracing using the TRACE ** macro. */ #if 0 int sqlite3BtreeTrace=1; /* True to enable tracing */ # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} #else # define TRACE(X) #endif /* ** Extract a 2-byte big-endian integer from an array of unsigned bytes. ** But if the value is zero, make it 65536. ** ** This routine is used to extract the "offset to cell content area" value ** from the header of a btree page. If the page size is 65536 and the page ** is empty, the offset should be 65536, but the 2-byte value stores zero. ** This routine makes the necessary adjustment to 65536. */ #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) /* ** Values passed as the 5th argument to allocateBtreePage() */ #define BTALLOC_ANY 0 /* Allocate any page */ #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ /* ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not ** defined, or 0 if it is. For example: ** ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); */ #ifndef SQLITE_OMIT_AUTOVACUUM #define IfNotOmitAV(expr) (expr) #else #define IfNotOmitAV(expr) 0 #endif #ifndef SQLITE_OMIT_SHARED_CACHE /* ** A list of BtShared objects that are eligible for participation ** in shared cache. This variable has file scope during normal builds, ** but the test harness needs to access it so we make it global for ** test builds. ** ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. */ #ifdef SQLITE_TEST SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; #else static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; #endif #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Enable or disable the shared pager and schema features. ** ** This routine has no effect on existing database connections. ** The shared cache setting effects only future calls to ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). */ SQLITE_API int sqlite3_enable_shared_cache(int enable){ sqlite3GlobalConfig.sharedCacheEnabled = enable; return SQLITE_OK; } #endif #ifdef SQLITE_OMIT_SHARED_CACHE /* ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), ** and clearAllSharedCacheTableLocks() ** manipulate entries in the BtShared.pLock linked list used to store ** shared-cache table level locks. If the library is compiled with the ** shared-cache feature disabled, then there is only ever one user ** of each BtShared structure and so this locking is not necessary. ** So define the lock related functions as no-ops. */ #define querySharedCacheTableLock(a,b,c) SQLITE_OK #define setSharedCacheTableLock(a,b,c) SQLITE_OK #define clearAllSharedCacheTableLocks(a) #define downgradeAllSharedCacheTableLocks(a) #define hasSharedCacheTableLock(a,b,c,d) 1 #define hasReadConflicts(a, b) 0 #endif #ifdef SQLITE_DEBUG /* ** Return and reset the seek counter for a Btree object. */ SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ u64 n = pBt->nSeek; pBt->nSeek = 0; return n; } #endif /* ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single ** (MemPage*) as an argument. The (MemPage*) must not be NULL. ** ** If SQLITE_DEBUG is not defined, then this macro is equivalent to ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented ** with the page number and filename associated with the (MemPage*). */ #ifdef SQLITE_DEBUG int corruptPageError(int lineno, MemPage *p){ char *zMsg; sqlite3BeginBenignMalloc(); zMsg = sqlite3_mprintf("database corruption page %u of %s", p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) ); sqlite3EndBenignMalloc(); if( zMsg ){ sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); } sqlite3_free(zMsg); return SQLITE_CORRUPT_BKPT; } # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) #else # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) #endif #ifndef SQLITE_OMIT_SHARED_CACHE #ifdef SQLITE_DEBUG /* **** This function is only used as part of an assert() statement. *** ** ** Check to see if pBtree holds the required locks to read or write to the ** table with root page iRoot. Return 1 if it does and 0 if not. ** ** For example, when writing to a table with root-page iRoot via ** Btree connection pBtree: ** ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); ** ** When writing to an index that resides in a sharable database, the ** caller should have first obtained a lock specifying the root page of ** the corresponding table. This makes things a bit more complicated, ** as this module treats each table as a separate structure. To determine ** the table corresponding to the index being written, this ** function has to search through the database schema. ** ** Instead of a lock on the table/index rooted at page iRoot, the caller may ** hold a write-lock on the schema table (root page 1). This is also ** acceptable. */ static int hasSharedCacheTableLock( Btree *pBtree, /* Handle that must hold lock */ Pgno iRoot, /* Root page of b-tree */ int isIndex, /* True if iRoot is the root of an index b-tree */ int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ ){ Schema *pSchema = (Schema *)pBtree->pBt->pSchema; Pgno iTab = 0; BtLock *pLock; /* If this database is not shareable, or if the client is reading ** and has the read-uncommitted flag set, then no lock is required. ** Return true immediately. */ if( (pBtree->sharable==0) || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) ){ return 1; } /* If the client is reading or writing an index and the schema is ** not loaded, then it is too difficult to actually check to see if ** the correct locks are held. So do not bother - just return true. ** This case does not come up very often anyhow. */ if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ return 1; } /* Figure out the root-page that the lock should be held on. For table ** b-trees, this is just the root page of the b-tree being read or ** written. For index b-trees, it is the root page of the associated ** table. */ if( isIndex ){ HashElem *p; int bSeen = 0; for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ Index *pIdx = (Index *)sqliteHashData(p); if( pIdx->tnum==iRoot ){ if( bSeen ){ /* Two or more indexes share the same root page. There must ** be imposter tables. So just return true. The assert is not ** useful in that case. */ return 1; } iTab = pIdx->pTable->tnum; bSeen = 1; } } }else{ iTab = iRoot; } /* Search for the required lock. Either a write-lock on root-page iTab, a ** write-lock on the schema table, or (if the client is reading) a ** read-lock on iTab will suffice. Return 1 if any of these are found. */ for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ if( pLock->pBtree==pBtree && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) && pLock->eLock>=eLockType ){ return 1; } } /* Failed to find the required lock. */ return 0; } #endif /* SQLITE_DEBUG */ #ifdef SQLITE_DEBUG /* **** This function may be used as part of assert() statements only. **** ** ** Return true if it would be illegal for pBtree to write into the ** table or index rooted at iRoot because other shared connections are ** simultaneously reading that same table or index. ** ** It is illegal for pBtree to write if some other Btree object that ** shares the same BtShared object is currently reading or writing ** the iRoot table. Except, if the other Btree object has the ** read-uncommitted flag set, then it is OK for the other object to ** have a read cursor. ** ** For example, before writing to any part of the table or index ** rooted at page iRoot, one should call: ** ** assert( !hasReadConflicts(pBtree, iRoot) ); */ static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ BtCursor *p; for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( p->pgnoRoot==iRoot && p->pBtree!=pBtree && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) ){ return 1; } } return 0; } #endif /* #ifdef SQLITE_DEBUG */ /* ** Query to see if Btree handle p may obtain a lock of type eLock ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return ** SQLITE_OK if the lock may be obtained (by calling ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. */ static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pIter; assert( sqlite3BtreeHoldsMutex(p) ); assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); assert( p->db!=0 ); assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); /* If requesting a write-lock, then the Btree must have an open write ** transaction on this file. And, obviously, for this to be so there ** must be an open write transaction on the file itself. */ assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); /* This routine is a no-op if the shared-cache is not enabled */ if( !p->sharable ){ return SQLITE_OK; } /* If some other connection is holding an exclusive lock, the ** requested lock may not be obtained. */ if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); return SQLITE_LOCKED_SHAREDCACHE; } for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ /* The condition (pIter->eLock!=eLock) in the following if(...) ** statement is a simplification of: ** ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) ** ** since we know that if eLock==WRITE_LOCK, then no other connection ** may hold a WRITE_LOCK on any table in this file (since there can ** only be a single writer). */ assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); if( eLock==WRITE_LOCK ){ assert( p==pBt->pWriter ); pBt->btsFlags |= BTS_PENDING; } return SQLITE_LOCKED_SHAREDCACHE; } } return SQLITE_OK; } #endif /* !SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Add a lock on the table with root-page iTable to the shared-btree used ** by Btree handle p. Parameter eLock must be either READ_LOCK or ** WRITE_LOCK. ** ** This function assumes the following: ** ** (a) The specified Btree object p is connected to a sharable ** database (one with the BtShared.sharable flag set), and ** ** (b) No other Btree objects hold a lock that conflicts ** with the requested lock (i.e. querySharedCacheTableLock() has ** already been called and returned SQLITE_OK). ** ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM ** is returned if a malloc attempt fails. */ static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pLock = 0; BtLock *pIter; assert( sqlite3BtreeHoldsMutex(p) ); assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); assert( p->db!=0 ); /* A connection with the read-uncommitted flag set will never try to ** obtain a read-lock using this function. The only read-lock obtained ** by a connection in read-uncommitted mode is on the sqlite_schema ** table, and that lock is obtained in BtreeBeginTrans(). */ assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); /* This function should only be called on a sharable b-tree after it ** has been determined that no other b-tree holds a conflicting lock. */ assert( p->sharable ); assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); /* First search the list for an existing lock on this table. */ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->iTable==iTable && pIter->pBtree==p ){ pLock = pIter; break; } } /* If the above search did not find a BtLock struct associating Btree p ** with table iTable, allocate one and link it into the list. */ if( !pLock ){ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); if( !pLock ){ return SQLITE_NOMEM_BKPT; } pLock->iTable = iTable; pLock->pBtree = p; pLock->pNext = pBt->pLock; pBt->pLock = pLock; } /* Set the BtLock.eLock variable to the maximum of the current lock ** and the requested lock. This means if a write-lock was already held ** and a read-lock requested, we don't incorrectly downgrade the lock. */ assert( WRITE_LOCK>READ_LOCK ); if( eLock>pLock->eLock ){ pLock->eLock = eLock; } return SQLITE_OK; } #endif /* !SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Release all the table locks (locks obtained via calls to ** the setSharedCacheTableLock() procedure) held by Btree object p. ** ** This function assumes that Btree p has an open read or write ** transaction. If it does not, then the BTS_PENDING flag ** may be incorrectly cleared. */ static void clearAllSharedCacheTableLocks(Btree *p){ BtShared *pBt = p->pBt; BtLock **ppIter = &pBt->pLock; assert( sqlite3BtreeHoldsMutex(p) ); assert( p->sharable || 0==*ppIter ); assert( p->inTrans>0 ); while( *ppIter ){ BtLock *pLock = *ppIter; assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); assert( pLock->pBtree->inTrans>=pLock->eLock ); if( pLock->pBtree==p ){ *ppIter = pLock->pNext; assert( pLock->iTable!=1 || pLock==&p->lock ); if( pLock->iTable!=1 ){ sqlite3_free(pLock); } }else{ ppIter = &pLock->pNext; } } assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); if( pBt->pWriter==p ){ pBt->pWriter = 0; pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); }else if( pBt->nTransaction==2 ){ /* This function is called when Btree p is concluding its ** transaction. If there currently exists a writer, and p is not ** that writer, then the number of locks held by connections other ** than the writer must be about to drop to zero. In this case ** set the BTS_PENDING flag to 0. ** ** If there is not currently a writer, then BTS_PENDING must ** be zero already. So this next line is harmless in that case. */ pBt->btsFlags &= ~BTS_PENDING; } } /* ** This function changes all write-locks held by Btree p into read-locks. */ static void downgradeAllSharedCacheTableLocks(Btree *p){ BtShared *pBt = p->pBt; if( pBt->pWriter==p ){ BtLock *pLock; pBt->pWriter = 0; pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); pLock->eLock = READ_LOCK; } } } #endif /* SQLITE_OMIT_SHARED_CACHE */ static void releasePage(MemPage *pPage); /* Forward reference */ static void releasePageOne(MemPage *pPage); /* Forward reference */ static void releasePageNotNull(MemPage *pPage); /* Forward reference */ /* ***** This routine is used inside of assert() only **** ** ** Verify that the cursor holds the mutex on its BtShared */ #ifdef SQLITE_DEBUG static int cursorHoldsMutex(BtCursor *p){ return sqlite3_mutex_held(p->pBt->mutex); } /* Verify that the cursor and the BtShared agree about what is the current ** database connetion. This is important in shared-cache mode. If the database ** connection pointers get out-of-sync, it is possible for routines like ** btreeInitPage() to reference an stale connection pointer that references a ** a connection that has already closed. This routine is used inside assert() ** statements only and for the purpose of double-checking that the btree code ** does keep the database connection pointers up-to-date. */ static int cursorOwnsBtShared(BtCursor *p){ assert( cursorHoldsMutex(p) ); return (p->pBtree->db==p->pBt->db); } #endif /* ** Invalidate the overflow cache of the cursor passed as the first argument. ** on the shared btree structure pBt. */ #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) /* ** Invalidate the overflow page-list cache for all cursors opened ** on the shared btree structure pBt. */ static void invalidateAllOverflowCache(BtShared *pBt){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); for(p=pBt->pCursor; p; p=p->pNext){ invalidateOverflowCache(p); } } #ifndef SQLITE_OMIT_INCRBLOB /* ** This function is called before modifying the contents of a table ** to invalidate any incrblob cursors that are open on the ** row or one of the rows being modified. ** ** If argument isClearTable is true, then the entire contents of the ** table is about to be deleted. In this case invalidate all incrblob ** cursors open on any row within the table with root-page pgnoRoot. ** ** Otherwise, if argument isClearTable is false, then the row with ** rowid iRow is being replaced or deleted. In this case invalidate ** only those incrblob cursors open on that specific row. */ static void invalidateIncrblobCursors( Btree *pBtree, /* The database file to check */ Pgno pgnoRoot, /* The table that might be changing */ i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; assert( pBtree->hasIncrblobCur ); assert( sqlite3BtreeHoldsMutex(pBtree) ); pBtree->hasIncrblobCur = 0; for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( (p->curFlags & BTCF_Incrblob)!=0 ){ pBtree->hasIncrblobCur = 1; if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ p->eState = CURSOR_INVALID; } } } } #else /* Stub function when INCRBLOB is omitted */ #define invalidateIncrblobCursors(w,x,y,z) #endif /* SQLITE_OMIT_INCRBLOB */ /* ** Set bit pgno of the BtShared.pHasContent bitvec. This is called ** when a page that previously contained data becomes a free-list leaf ** page. ** ** The BtShared.pHasContent bitvec exists to work around an obscure ** bug caused by the interaction of two useful IO optimizations surrounding ** free-list leaf pages: ** ** 1) When all data is deleted from a page and the page becomes ** a free-list leaf page, the page is not written to the database ** (as free-list leaf pages contain no meaningful data). Sometimes ** such a page is not even journalled (as it will not be modified, ** why bother journalling it?). ** ** 2) When a free-list leaf page is reused, its content is not read ** from the database or written to the journal file (why should it ** be, if it is not at all meaningful?). ** ** By themselves, these optimizations work fine and provide a handy ** performance boost to bulk delete or insert operations. However, if ** a page is moved to the free-list and then reused within the same ** transaction, a problem comes up. If the page is not journalled when ** it is moved to the free-list and it is also not journalled when it ** is extracted from the free-list and reused, then the original data ** may be lost. In the event of a rollback, it may not be possible ** to restore the database to its original configuration. ** ** The solution is the BtShared.pHasContent bitvec. Whenever a page is ** moved to become a free-list leaf page, the corresponding bit is ** set in the bitvec. Whenever a leaf page is extracted from the free-list, ** optimization 2 above is omitted if the corresponding bit is already ** set in BtShared.pHasContent. The contents of the bitvec are cleared ** at the end of every transaction. */ static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ int rc = SQLITE_OK; if( !pBt->pHasContent ){ assert( pgno<=pBt->nPage ); pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); if( !pBt->pHasContent ){ rc = SQLITE_NOMEM_BKPT; } } if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ rc = sqlite3BitvecSet(pBt->pHasContent, pgno); } return rc; } /* ** Query the BtShared.pHasContent vector. ** ** This function is called when a free-list leaf page is removed from the ** free-list for reuse. It returns false if it is safe to retrieve the ** page from the pager layer with the 'no-content' flag set. True otherwise. */ static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ Bitvec *p = pBt->pHasContent; return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); } /* ** Clear (destroy) the BtShared.pHasContent bitvec. This should be ** invoked at the conclusion of each write-transaction. */ static void btreeClearHasContent(BtShared *pBt){ sqlite3BitvecDestroy(pBt->pHasContent); pBt->pHasContent = 0; } /* ** Release all of the apPage[] pages for a cursor. */ static void btreeReleaseAllCursorPages(BtCursor *pCur){ int i; if( pCur->iPage>=0 ){ for(i=0; iiPage; i++){ releasePageNotNull(pCur->apPage[i]); } releasePageNotNull(pCur->pPage); pCur->iPage = -1; } } /* ** The cursor passed as the only argument must point to a valid entry ** when this function is called (i.e. have eState==CURSOR_VALID). This ** function saves the current cursor key in variables pCur->nKey and ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error ** code otherwise. ** ** If the cursor is open on an intkey table, then the integer key ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is ** set to point to a malloced buffer pCur->nKey bytes in size containing ** the key. */ static int saveCursorKey(BtCursor *pCur){ int rc = SQLITE_OK; assert( CURSOR_VALID==pCur->eState ); assert( 0==pCur->pKey ); assert( cursorHoldsMutex(pCur) ); if( pCur->curIntKey ){ /* Only the rowid is required for a table btree */ pCur->nKey = sqlite3BtreeIntegerKey(pCur); }else{ /* For an index btree, save the complete key content. It is possible ** that the current key is corrupt. In that case, it is possible that ** the sqlite3VdbeRecordUnpack() function may overread the buffer by ** up to the size of 1 varint plus 1 8-byte value when the cursor ** position is restored. Hence the 17 bytes of padding allocated ** below. */ void *pKey; pCur->nKey = sqlite3BtreePayloadSize(pCur); pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); if( pKey ){ rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); if( rc==SQLITE_OK ){ memset(((u8*)pKey)+pCur->nKey, 0, 9+8); pCur->pKey = pKey; }else{ sqlite3_free(pKey); } }else{ rc = SQLITE_NOMEM_BKPT; } } assert( !pCur->curIntKey || !pCur->pKey ); return rc; } /* ** Save the current cursor position in the variables BtCursor.nKey ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. ** ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) ** prior to calling this routine. */ static int saveCursorPosition(BtCursor *pCur){ int rc; assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); assert( 0==pCur->pKey ); assert( cursorHoldsMutex(pCur) ); if( pCur->curFlags & BTCF_Pinned ){ return SQLITE_CONSTRAINT_PINNED; } if( pCur->eState==CURSOR_SKIPNEXT ){ pCur->eState = CURSOR_VALID; }else{ pCur->skipNext = 0; } rc = saveCursorKey(pCur); if( rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); return rc; } /* Forward reference */ static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); /* ** Save the positions of all cursors (except pExcept) that are open on ** the table with root-page iRoot. "Saving the cursor position" means that ** the location in the btree is remembered in such a way that it can be ** moved back to the same spot after the btree has been modified. This ** routine is called just before cursor pExcept is used to modify the ** table, for example in BtreeDelete() or BtreeInsert(). ** ** If there are two or more cursors on the same btree, then all such ** cursors should have their BTCF_Multiple flag set. The btreeCursor() ** routine enforces that rule. This routine only needs to be called in ** the uncommon case when pExpect has the BTCF_Multiple flag set. ** ** If pExpect!=NULL and if no other cursors are found on the same root-page, ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another ** pointless call to this routine. ** ** Implementation note: This routine merely checks to see if any cursors ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) ** event that cursors are in need to being saved. */ static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pExcept==0 || pExcept->pBt==pBt ); for(p=pBt->pCursor; p; p=p->pNext){ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; } if( p ) return saveCursorsOnList(p, iRoot, pExcept); if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; return SQLITE_OK; } /* This helper routine to saveAllCursors does the actual work of saving ** the cursors if and when a cursor is found that actually requires saving. ** The common case is that no cursors need to be saved, so this routine is ** broken out from its caller to avoid unnecessary stack pointer movement. */ static int SQLITE_NOINLINE saveCursorsOnList( BtCursor *p, /* The first cursor that needs saving */ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ BtCursor *pExcept /* Do not save this cursor */ ){ do{ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ int rc = saveCursorPosition(p); if( SQLITE_OK!=rc ){ return rc; } }else{ testcase( p->iPage>=0 ); btreeReleaseAllCursorPages(p); } } p = p->pNext; }while( p ); return SQLITE_OK; } /* ** Clear the current cursor position. */ SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); sqlite3_free(pCur->pKey); pCur->pKey = 0; pCur->eState = CURSOR_INVALID; } /* ** In this version of BtreeMoveto, pKey is a packed index record ** such as is generated by the OP_MakeRecord opcode. Unpack the ** record and then call sqlite3BtreeIndexMoveto() to do the work. */ static int btreeMoveto( BtCursor *pCur, /* Cursor open on the btree to be searched */ const void *pKey, /* Packed key if the btree is an index */ i64 nKey, /* Integer key for tables. Size of pKey for indices */ int bias, /* Bias search to the high end */ int *pRes /* Write search results here */ ){ int rc; /* Status code */ UnpackedRecord *pIdxKey; /* Unpacked index key */ if( pKey ){ KeyInfo *pKeyInfo = pCur->pKeyInfo; assert( nKey==(i64)(int)nKey ); pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); } sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); }else{ pIdxKey = 0; rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); } return rc; } /* ** Restore the cursor to the position it was in (or as close to as possible) ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). */ static int btreeRestoreCursorPosition(BtCursor *pCur){ int rc; int skipNext = 0; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState>=CURSOR_REQUIRESEEK ); if( pCur->eState==CURSOR_FAULT ){ return pCur->skipNext; } pCur->eState = CURSOR_INVALID; if( sqlite3FaultSim(410) ){ rc = SQLITE_IOERR; }else{ rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); } if( rc==SQLITE_OK ){ sqlite3_free(pCur->pKey); pCur->pKey = 0; assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); if( skipNext ) pCur->skipNext = skipNext; if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ pCur->eState = CURSOR_SKIPNEXT; } } return rc; } #define restoreCursorPosition(p) \ (p->eState>=CURSOR_REQUIRESEEK ? \ btreeRestoreCursorPosition(p) : \ SQLITE_OK) /* ** Determine whether or not a cursor has moved from the position where ** it was last placed, or has been invalidated for any other reason. ** Cursors can move when the row they are pointing at is deleted out ** from under them, for example. Cursor might also move if a btree ** is rebalanced. ** ** Calling this routine with a NULL cursor pointer returns false. ** ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor ** back to where it ought to be if this routine returns true. */ SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ assert( EIGHT_BYTE_ALIGNMENT(pCur) || pCur==sqlite3BtreeFakeValidCursor() ); assert( offsetof(BtCursor, eState)==0 ); assert( sizeof(pCur->eState)==1 ); return CURSOR_VALID != *(u8*)pCur; } /* ** Return a pointer to a fake BtCursor object that will always answer ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake ** cursor returned must not be used with any other Btree interface. */ SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void){ static u8 fakeCursor = CURSOR_VALID; assert( offsetof(BtCursor, eState)==0 ); return (BtCursor*)&fakeCursor; } /* ** This routine restores a cursor back to its original position after it ** has been moved by some outside activity (such as a btree rebalance or ** a row having been deleted out from under the cursor). ** ** On success, the *pDifferentRow parameter is false if the cursor is left ** pointing at exactly the same row. *pDifferntRow is the row the cursor ** was pointing to has been deleted, forcing the cursor to point to some ** nearby row. ** ** This routine should only be called for a cursor that just returned ** TRUE from sqlite3BtreeCursorHasMoved(). */ SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ int rc; assert( pCur!=0 ); assert( pCur->eState!=CURSOR_VALID ); rc = restoreCursorPosition(pCur); if( rc ){ *pDifferentRow = 1; return rc; } if( pCur->eState!=CURSOR_VALID ){ *pDifferentRow = 1; }else{ *pDifferentRow = 0; } return SQLITE_OK; } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* ** Provide hints to the cursor. The particular hint given (and the type ** and number of the varargs parameters) is determined by the eHintType ** parameter. See the definitions of the BTREE_HINT_* macros for details. */ SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ /* Used only by system that substitute their own storage engine */ #ifdef SQLITE_DEBUG if( ALWAYS(eHintType==BTREE_HINT_RANGE) ){ va_list ap; Expr *pExpr; Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = sqlite3CursorRangeHintExprCheck; va_start(ap, eHintType); pExpr = va_arg(ap, Expr*); w.u.aMem = va_arg(ap, Mem*); va_end(ap); assert( pExpr!=0 ); assert( w.u.aMem!=0 ); sqlite3WalkExpr(&w, pExpr); } #endif /* SQLITE_DEBUG */ } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ /* ** Provide flag hints to the cursor. */ SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); pCur->hints = x; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Given a page number of a regular database page, return the page ** number for the pointer-map page that contains the entry for the ** input page number. ** ** Return 0 (not a valid page) for pgno==1 since there is ** no pointer map associated with page 1. The integrity_check logic ** requires that ptrmapPageno(*,1)!=1. */ static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ int nPagesPerMapPage; Pgno iPtrMap, ret; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno<2 ) return 0; nPagesPerMapPage = (pBt->usableSize/5)+1; iPtrMap = (pgno-2)/nPagesPerMapPage; ret = (iPtrMap*nPagesPerMapPage) + 2; if( ret==PENDING_BYTE_PAGE(pBt) ){ ret++; } return ret; } /* ** Write an entry into the pointer map. ** ** This routine updates the pointer map entry for page number 'key' ** so that it maps to type 'eType' and parent page number 'pgno'. ** ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is ** a no-op. If an error occurs, the appropriate error code is written ** into *pRC. */ static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ DbPage *pDbPage; /* The pointer map page */ u8 *pPtrmap; /* The pointer map data */ Pgno iPtrmap; /* The pointer map page number */ int offset; /* Offset in pointer map page */ int rc; /* Return code from subfunctions */ if( *pRC ) return; assert( sqlite3_mutex_held(pBt->mutex) ); /* The super-journal page number must never be used as a pointer map page */ assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); assert( pBt->autoVacuum ); if( key==0 ){ *pRC = SQLITE_CORRUPT_BKPT; return; } iPtrmap = PTRMAP_PAGENO(pBt, key); rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); if( rc!=SQLITE_OK ){ *pRC = rc; return; } if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ /* The first byte of the extra data is the MemPage.isInit byte. ** If that byte is set, it means this page is also being used ** as a btree page. */ *pRC = SQLITE_CORRUPT_BKPT; goto ptrmap_exit; } offset = PTRMAP_PTROFFSET(iPtrmap, key); if( offset<0 ){ *pRC = SQLITE_CORRUPT_BKPT; goto ptrmap_exit; } assert( offset <= (int)pBt->usableSize-5 ); pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key, eType, parent)); *pRC= rc = sqlite3PagerWrite(pDbPage); if( rc==SQLITE_OK ){ pPtrmap[offset] = eType; put4byte(&pPtrmap[offset+1], parent); } } ptrmap_exit: sqlite3PagerUnref(pDbPage); } /* ** Read an entry from the pointer map. ** ** This routine retrieves the pointer map entry for page 'key', writing ** the type and parent page number to *pEType and *pPgno respectively. ** An error code is returned if something goes wrong, otherwise SQLITE_OK. */ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ DbPage *pDbPage; /* The pointer map page */ int iPtrmap; /* Pointer map page index */ u8 *pPtrmap; /* Pointer map page data */ int offset; /* Offset of entry in pointer map */ int rc; assert( sqlite3_mutex_held(pBt->mutex) ); iPtrmap = PTRMAP_PAGENO(pBt, key); rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); if( rc!=0 ){ return rc; } pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); offset = PTRMAP_PTROFFSET(iPtrmap, key); if( offset<0 ){ sqlite3PagerUnref(pDbPage); return SQLITE_CORRUPT_BKPT; } assert( offset <= (int)pBt->usableSize-5 ); assert( pEType!=0 ); *pEType = pPtrmap[offset]; if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); sqlite3PagerUnref(pDbPage); if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); return SQLITE_OK; } #else /* if defined SQLITE_OMIT_AUTOVACUUM */ #define ptrmapPut(w,x,y,z,rc) #define ptrmapGet(w,x,y,z) SQLITE_OK #define ptrmapPutOvflPtr(x, y, z, rc) #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** findCellPastPtr() does the same except it skips past the initial ** 4-byte child pointer found on interior pages, if there is one. ** ** This routine works only for pages that do not contain overflow cells. */ #define findCell(P,I) \ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) #define findCellPastPtr(P,I) \ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) /* ** This is common tail processing for btreeParseCellPtr() and ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely ** on a single B-tree page. Make necessary adjustments to the CellInfo ** structure. */ static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ /* If the payload will not fit completely on the local page, we have ** to decide how much to store locally and how much to spill onto ** overflow pages. The strategy is to minimize the amount of unused ** space on overflow pages while keeping the amount of local storage ** in between minLocal and maxLocal. ** ** Warning: changing the way overflow payload is distributed in any ** way will result in an incompatible file format. */ int minLocal; /* Minimum amount of payload held locally */ int maxLocal; /* Maximum amount of payload held locally */ int surplus; /* Overflow payload available for local storage */ minLocal = pPage->minLocal; maxLocal = pPage->maxLocal; surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); testcase( surplus==maxLocal ); testcase( surplus==maxLocal+1 ); if( surplus <= maxLocal ){ pInfo->nLocal = (u16)surplus; }else{ pInfo->nLocal = (u16)minLocal; } pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; } /* ** Given a record with nPayload bytes of payload stored within btree ** page pPage, return the number of bytes of payload stored locally. */ static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ int maxLocal; /* Maximum amount of payload held locally */ maxLocal = pPage->maxLocal; if( nPayload<=maxLocal ){ return nPayload; }else{ int minLocal; /* Minimum amount of payload held locally */ int surplus; /* Overflow payload available for local storage */ minLocal = pPage->minLocal; surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); return ( surplus <= maxLocal ) ? surplus : minLocal; } } /* ** The following routines are implementations of the MemPage.xParseCell() ** method. ** ** Parse a cell content block and fill in the CellInfo structure. ** ** btreeParseCellPtr() => table btree leaf nodes ** btreeParseCellNoPayload() => table btree internal nodes ** btreeParseCellPtrIndex() => index btree nodes ** ** There is also a wrapper function btreeParseCell() that works for ** all MemPage types and that references the cell by index rather than ** by pointer. */ static void btreeParseCellPtrNoPayload( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 ); assert( pPage->childPtrSize==4 ); #ifndef SQLITE_DEBUG UNUSED_PARAMETER(pPage); #endif pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); pInfo->nPayload = 0; pInfo->nLocal = 0; pInfo->pPayload = 0; return; } static void btreeParseCellPtr( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u8 *pIter; /* For scanning through pCell */ u32 nPayload; /* Number of bytes of cell payload */ u64 iKey; /* Extracted Key value */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 || pPage->leaf==1 ); assert( pPage->intKeyLeaf ); assert( pPage->childPtrSize==0 ); pIter = pCell; /* The next block of code is equivalent to: ** ** pIter += getVarint32(pIter, nPayload); ** ** The code is inlined to avoid a function call. */ nPayload = *pIter; if( nPayload>=0x80 ){ u8 *pEnd = &pIter[8]; nPayload &= 0x7f; do{ nPayload = (nPayload<<7) | (*++pIter & 0x7f); }while( (*pIter)>=0x80 && pIternKey); ** ** The code is inlined and the loop is unrolled for performance. ** This routine is a high-runner. */ iKey = *pIter; if( iKey>=0x80 ){ u8 x; iKey = (iKey<<7) ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x10204000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<8) ^ 0x8000 ^ (*++pIter); } } } } } }else{ iKey ^= 0x204000; } }else{ iKey ^= 0x4000; } } pIter++; pInfo->nKey = *(i64*)&iKey; pInfo->nPayload = nPayload; pInfo->pPayload = pIter; testcase( nPayload==pPage->maxLocal ); testcase( nPayload==(u32)pPage->maxLocal+1 ); if( nPayload<=pPage->maxLocal ){ /* This is the (easy) common case where the entire payload fits ** on the local page. No overflow is required. */ pInfo->nSize = nPayload + (u16)(pIter - pCell); if( pInfo->nSize<4 ) pInfo->nSize = 4; pInfo->nLocal = (u16)nPayload; }else{ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); } } static void btreeParseCellPtrIndex( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u8 *pIter; /* For scanning through pCell */ u32 nPayload; /* Number of bytes of cell payload */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 || pPage->leaf==1 ); assert( pPage->intKeyLeaf==0 ); pIter = pCell + pPage->childPtrSize; nPayload = *pIter; if( nPayload>=0x80 ){ u8 *pEnd = &pIter[8]; nPayload &= 0x7f; do{ nPayload = (nPayload<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pIternKey = nPayload; pInfo->nPayload = nPayload; pInfo->pPayload = pIter; testcase( nPayload==pPage->maxLocal ); testcase( nPayload==(u32)pPage->maxLocal+1 ); if( nPayload<=pPage->maxLocal ){ /* This is the (easy) common case where the entire payload fits ** on the local page. No overflow is required. */ pInfo->nSize = nPayload + (u16)(pIter - pCell); if( pInfo->nSize<4 ) pInfo->nSize = 4; pInfo->nLocal = (u16)nPayload; }else{ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); } } static void btreeParseCell( MemPage *pPage, /* Page containing the cell */ int iCell, /* The cell index. First cell is 0 */ CellInfo *pInfo /* Fill in this structure */ ){ pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); } /* ** The following routines are implementations of the MemPage.xCellSize ** method. ** ** Compute the total number of bytes that a Cell needs in the cell ** data area of the btree-page. The return number includes the cell ** data header and the local payload, but not any overflow page or ** the space used by the cell pointer. ** ** cellSizePtrNoPayload() => table internal nodes ** cellSizePtrTableLeaf() => table leaf nodes ** cellSizePtr() => index internal nodes ** cellSizeIdxLeaf() => index leaf nodes */ static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ u32 nSize; /* Size value to return */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->childPtrSize==4 ); nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pItermaxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize<=pPage->maxLocal ){ nSize += (u32)(pIter - pCell); assert( nSize>4 ); }else{ int minLocal = pPage->minLocal; nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); testcase( nSize==pPage->maxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize>pPage->maxLocal ){ nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } static u16 cellSizePtrIdxLeaf(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ u32 nSize; /* Size value to return */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->childPtrSize==0 ); nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pItermaxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize<=pPage->maxLocal ){ nSize += (u32)(pIter - pCell); if( nSize<4 ) nSize = 4; }else{ int minLocal = pPage->minLocal; nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); testcase( nSize==pPage->maxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize>pPage->maxLocal ){ nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #else UNUSED_PARAMETER(pPage); #endif assert( pPage->childPtrSize==4 ); pEnd = pIter + 9; while( (*pIter++)&0x80 && pIterxParseCell(pPage, pCell, &debuginfo); #endif nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pItermaxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize<=pPage->maxLocal ){ nSize += (u32)(pIter - pCell); if( nSize<4 ) nSize = 4; }else{ int minLocal = pPage->minLocal; nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); testcase( nSize==pPage->maxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize>pPage->maxLocal ){ nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } #ifdef SQLITE_DEBUG /* This variation on cellSizePtr() is used inside of assert() statements ** only. */ static u16 cellSize(MemPage *pPage, int iCell){ return pPage->xCellSize(pPage, findCell(pPage, iCell)); } #endif #ifndef SQLITE_OMIT_AUTOVACUUM /* ** The cell pCell is currently part of page pSrc but will ultimately be part ** of pPage. (pSrc and pPage are often the same.) If pCell contains a ** pointer to an overflow page, insert an entry into the pointer-map for ** the overflow page that will be valid after pCell has been moved to pPage. */ static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ CellInfo info; if( *pRC ) return; assert( pCell!=0 ); pPage->xParseCell(pPage, pCell, &info); if( info.nLocalaDataEnd, pCell, pCell+info.nLocal) ){ testcase( pSrc!=pPage ); *pRC = SQLITE_CORRUPT_BKPT; return; } ovfl = get4byte(&pCell[info.nSize-4]); ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); } } #endif /* ** Defragment the page given. This routine reorganizes cells within the ** page so that there are no free-blocks on the free-block list. ** ** Parameter nMaxFrag is the maximum amount of fragmented space that may be ** present in the page after this routine returns. ** ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a ** b-tree page so that there are no freeblocks or fragment bytes, all ** unused bytes are contained in the unallocated space region, and all ** cells are packed tightly at the end of the page. */ static int defragmentPage(MemPage *pPage, int nMaxFrag){ int i; /* Loop counter */ int pc; /* Address of the i-th cell */ int hdr; /* Offset to the page header */ int size; /* Size of a cell */ int usableSize; /* Number of usable bytes on a page */ int cellOffset; /* Offset to the cell pointer array */ int cbrk; /* Offset to the cell content area */ int nCell; /* Number of cells on the page */ unsigned char *data; /* The page data */ unsigned char *temp; /* Temp area for cell content */ unsigned char *src; /* Source of content */ int iCellFirst; /* First allowable cell index */ int iCellLast; /* Last possible cell index */ int iCellStart; /* First cell offset in input */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt!=0 ); assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); data = pPage->aData; hdr = pPage->hdrOffset; cellOffset = pPage->cellOffset; nCell = pPage->nCell; assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); iCellFirst = cellOffset + 2*nCell; usableSize = pPage->pBt->usableSize; /* This block handles pages with two or fewer free blocks and nMaxFrag ** or fewer fragmented bytes. In this case it is faster to move the ** two (or one) blocks of cells using memmove() and add the required ** offsets to each pointer in the cell-pointer array than it is to ** reconstruct the entire page. */ if( (int)data[hdr+7]<=nMaxFrag ){ int iFree = get2byte(&data[hdr+1]); if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); if( iFree ){ int iFree2 = get2byte(&data[iFree]); if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ u8 *pEnd = &data[cellOffset + nCell*2]; u8 *pAddr; int sz2 = 0; int sz = get2byte(&data[iFree+2]); int top = get2byte(&data[hdr+5]); if( top>=iFree ){ return SQLITE_CORRUPT_PAGE(pPage); } if( iFree2 ){ if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); sz2 = get2byte(&data[iFree2+2]); if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); sz += sz2; }else if( iFree+sz>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } cbrk = top+sz; assert( cbrk+(iFree-top) <= usableSize ); memmove(&data[cbrk], &data[top], iFree-top); for(pAddr=&data[cellOffset]; pAddr0 ){ temp = sqlite3PagerTempSpace(pPage->pBt->pPager); memcpy(temp, data, usableSize); src = temp; for(i=0; iiCellLast ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( pc>=0 && pc<=iCellLast ); size = pPage->xCellSize(pPage, &src[pc]); cbrk -= size; if( cbrkusableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cbrk+size<=usableSize && cbrk>=iCellStart ); testcase( cbrk+size==usableSize ); testcase( pc+size==usableSize ); put2byte(pAddr, cbrk); memcpy(&data[cbrk], &src[pc], size); } } data[hdr+7] = 0; defragment_out: assert( pPage->nFree>=0 ); if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cbrk>=iCellFirst ); put2byte(&data[hdr+5], cbrk); data[hdr+1] = 0; data[hdr+2] = 0; memset(&data[iCellFirst], 0, cbrk-iCellFirst); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); return SQLITE_OK; } /* ** Search the free-list on page pPg for space to store a cell nByte bytes in ** size. If one can be found, return a pointer to the space and remove it ** from the free-list. ** ** If no suitable space can be found on the free-list, return NULL. ** ** This function may detect corruption within pPg. If corruption is ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. ** ** Slots on the free list that are between 1 and 3 bytes larger than nByte ** will be ignored if adding the extra space to the fragmentation count ** causes the fragmentation count to exceed 60. */ static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ const int hdr = pPg->hdrOffset; /* Offset to page header */ u8 * const aData = pPg->aData; /* Page data */ int iAddr = hdr + 1; /* Address of ptr to pc */ u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ int pc = get2byte(pTmp); /* Address of a free slot */ int x; /* Excess size of the slot */ int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ int size; /* Size of the free slot */ assert( pc>0 ); while( pc<=maxPC ){ /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each ** freeblock form a big-endian integer which is the size of the freeblock ** in bytes, including the 4-byte header. */ pTmp = &aData[pc+2]; size = get2byte(pTmp); if( (x = size - nByte)>=0 ){ testcase( x==4 ); testcase( x==3 ); if( x<4 ){ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total ** number of bytes in fragments may not exceed 60. */ if( aData[hdr+7]>57 ) return 0; /* Remove the slot from the free-list. Update the number of ** fragmented bytes within the page. */ memcpy(&aData[iAddr], &aData[pc], 2); aData[hdr+7] += (u8)x; return &aData[pc]; }else if( x+pc > maxPC ){ /* This slot extends off the end of the usable part of the page */ *pRc = SQLITE_CORRUPT_PAGE(pPg); return 0; }else{ /* The slot remains on the free-list. Reduce its size to account ** for the portion used by the new allocation. */ put2byte(&aData[pc+2], x); } return &aData[pc + x]; } iAddr = pc; pTmp = &aData[pc]; pc = get2byte(pTmp); if( pc<=iAddr ){ if( pc ){ /* The next slot in the chain comes before the current slot */ *pRc = SQLITE_CORRUPT_PAGE(pPg); } return 0; } } if( pc>maxPC+nByte-4 ){ /* The free slot chain extends off the end of the page */ *pRc = SQLITE_CORRUPT_PAGE(pPg); } return 0; } /* ** Allocate nByte bytes of space from within the B-Tree page passed ** as the first argument. Write into *pIdx the index into pPage->aData[] ** of the first byte of allocated space. Return either SQLITE_OK or ** an error code (usually SQLITE_CORRUPT). ** ** The caller guarantees that there is sufficient space to make the ** allocation. This routine might need to defragment in order to bring ** all the space together, however. This routine will avoid using ** the first two bytes past the cell pointer area since presumably this ** allocation is being made in order to insert a new cell, so we will ** also end up needing a new cell pointer. */ static SQLITE_INLINE int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ u8 * const data = pPage->aData; /* Local cache of pPage->aData */ int top; /* First byte of cell content area */ int rc = SQLITE_OK; /* Integer return code */ u8 *pTmp; /* Temp ptr into data[] */ int gap; /* First byte of gap between cell pointers and cell content */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nByte>=0 ); /* Minimum cell size is 4 */ assert( pPage->nFree>=nByte ); assert( pPage->nOverflow==0 ); assert( nByte < (int)(pPage->pBt->usableSize-8) ); assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; assert( gap<=65536 ); /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size ** and the reserved space is zero (the usual value for reserved space) ** then the cell content offset of an empty page wants to be 65536. ** However, that integer is too large to be stored in a 2-byte unsigned ** integer, so a value of 0 is used in its place. */ pTmp = &data[hdr+5]; top = get2byte(pTmp); if( gap>top ){ if( top==0 && pPage->pBt->usableSize==65536 ){ top = 65536; }else{ return SQLITE_CORRUPT_PAGE(pPage); } }else if( top>(int)pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } /* If there is enough space between gap and top for one more cell pointer, ** and if the freelist is not empty, then search the ** freelist looking for a slot big enough to satisfy the request. */ testcase( gap+2==top ); testcase( gap+1==top ); testcase( gap==top ); if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ u8 *pSpace = pageFindSlot(pPage, nByte, &rc); if( pSpace ){ int g2; assert( pSpace+nByte<=data+pPage->pBt->usableSize ); *pIdx = g2 = (int)(pSpace-data); if( g2<=gap ){ return SQLITE_CORRUPT_PAGE(pPage); }else{ return SQLITE_OK; } }else if( rc ){ return rc; } } /* The request could not be fulfilled using a freelist slot. Check ** to see if defragmentation is necessary. */ testcase( gap+2+nByte==top ); if( gap+2+nByte>top ){ assert( pPage->nCell>0 || CORRUPT_DB ); assert( pPage->nFree>=0 ); rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); assert( gap+2+nByte<=top ); } /* Allocate memory from the gap in between the cell pointer array ** and the cell content area. The btreeComputeFreeSpace() call has already ** validated the freelist. Given that the freelist is valid, there ** is no way that the allocation can extend off the end of the page. ** The assert() below verifies the previous sentence. */ top -= nByte; put2byte(&data[hdr+5], top); assert( top+nByte <= (int)pPage->pBt->usableSize ); *pIdx = top; return SQLITE_OK; } /* ** Return a section of the pPage->aData to the freelist. ** The first byte of the new free block is pPage->aData[iStart] ** and the size of the block is iSize bytes. ** ** Adjacent freeblocks are coalesced. ** ** Even though the freeblock list was checked by btreeComputeFreeSpace(), ** that routine will not detect overlap between cells or freeblocks. Nor ** does it detect cells or freeblocks that encroach into the reserved bytes ** at the end of the page. So do additional corruption checks inside this ** routine and return SQLITE_CORRUPT if any problems are found. */ static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ u16 iPtr; /* Address of ptr to next freeblock */ u16 iFreeBlk; /* Address of the next freeblock */ u8 hdr; /* Page header size. 0 or 100 */ u8 nFrag = 0; /* Reduction in fragmentation */ u16 iOrigSize = iSize; /* Original value of iSize */ u16 x; /* Offset to cell content area */ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ unsigned char *data = pPage->aData; /* Page content */ u8 *pTmp; /* Temporary ptr into data[] */ assert( pPage->pBt!=0 ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( iSize>=4 ); /* Minimum cell size is 4 */ assert( CORRUPT_DB || iStart<=pPage->pBt->usableSize-4 ); /* The list of freeblocks must be in ascending order. Find the ** spot on the list where iStart should be inserted. */ hdr = pPage->hdrOffset; iPtr = hdr + 1; if( data[iPtr+1]==0 && data[iPtr]==0 ){ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ }else{ while( (iFreeBlk = get2byte(&data[iPtr]))pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ return SQLITE_CORRUPT_PAGE(pPage); } assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); /* At this point: ** iFreeBlk: First freeblock after iStart, or zero if none ** iPtr: The address of a pointer to iFreeBlk ** ** Check to see if iFreeBlk should be coalesced onto the end of iStart. */ if( iFreeBlk && iEnd+3>=iFreeBlk ){ nFrag = iFreeBlk - iEnd; if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); if( iEnd > pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } iSize = iEnd - iStart; iFreeBlk = get2byte(&data[iFreeBlk]); } /* If iPtr is another freeblock (that is, if iPtr is not the freelist ** pointer in the page header) then check to see if iStart should be ** coalesced onto the end of iPtr. */ if( iPtr>hdr+1 ){ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); if( iPtrEnd+3>=iStart ){ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); nFrag += iStart - iPtrEnd; iSize = iEnd - iPtr; iStart = iPtr; } } if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); data[hdr+7] -= nFrag; } pTmp = &data[hdr+5]; x = get2byte(pTmp); if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ /* Overwrite deleted information with zeros when the secure_delete ** option is enabled */ memset(&data[iStart], 0, iSize); } if( iStart<=x ){ /* The new freeblock is at the beginning of the cell content area, ** so just extend the cell content area rather than create another ** freelist entry */ if( iStartnFree += iOrigSize; return SQLITE_OK; } /* ** Decode the flags byte (the first byte of the header) for a page ** and initialize fields of the MemPage structure accordingly. ** ** Only the following combinations are supported. Anything different ** indicates a corrupt database files: ** ** PTF_ZERODATA (0x02, 2) ** PTF_LEAFDATA | PTF_INTKEY (0x05, 5) ** PTF_ZERODATA | PTF_LEAF (0x0a, 10) ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13) */ static int decodeFlags(MemPage *pPage, int flagByte){ BtShared *pBt; /* A copy of pPage->pBt */ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pBt = pPage->pBt; pPage->max1bytePayload = pBt->max1bytePayload; if( flagByte>=(PTF_ZERODATA | PTF_LEAF) ){ pPage->childPtrSize = 0; pPage->leaf = 1; if( flagByte==(PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF) ){ pPage->intKeyLeaf = 1; pPage->xCellSize = cellSizePtrTableLeaf; pPage->xParseCell = btreeParseCellPtr; pPage->intKey = 1; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else if( flagByte==(PTF_ZERODATA | PTF_LEAF) ){ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtrIdxLeaf; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtrIdxLeaf; pPage->xParseCell = btreeParseCellPtrIndex; return SQLITE_CORRUPT_PAGE(pPage); } }else{ pPage->childPtrSize = 4; pPage->leaf = 0; if( flagByte==(PTF_ZERODATA) ){ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtr; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtrNoPayload; pPage->xParseCell = btreeParseCellPtrNoPayload; pPage->intKey = 1; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else{ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtr; pPage->xParseCell = btreeParseCellPtrIndex; return SQLITE_CORRUPT_PAGE(pPage); } } return SQLITE_OK; } /* ** Compute the amount of freespace on the page. In other words, fill ** in the pPage->nFree field. */ static int btreeComputeFreeSpace(MemPage *pPage){ int pc; /* Address of a freeblock within pPage->aData[] */ u8 hdr; /* Offset to beginning of page header */ u8 *data; /* Equal to pPage->aData */ int usableSize; /* Amount of usable space on each page */ int nFree; /* Number of unused bytes on the page */ int top; /* First byte of the cell content area */ int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ assert( pPage->pBt!=0 ); assert( pPage->pBt->db!=0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); assert( pPage->isInit==1 ); assert( pPage->nFree<0 ); usableSize = pPage->pBt->usableSize; hdr = pPage->hdrOffset; data = pPage->aData; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; iCellLast = usableSize - 4; /* Compute the total free space on the page ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the ** start of the first freeblock on the page, or is zero if there are no ** freeblocks. */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ if( pc>0 ){ u32 next, size; if( pciCellLast ){ /* Freeblock off the end of the page */ return SQLITE_CORRUPT_PAGE(pPage); } next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); nFree = nFree + size; if( next<=pc+size+3 ) break; pc = next; } if( next>0 ){ /* Freeblock not in ascending order */ return SQLITE_CORRUPT_PAGE(pPage); } if( pc+size>(unsigned int)usableSize ){ /* Last freeblock extends past page end */ return SQLITE_CORRUPT_PAGE(pPage); } } /* At this point, nFree contains the sum of the offset to the start ** of the cell-content area plus the number of free bytes within ** the cell-content area. If this is greater than the usable-size ** of the page, then the page must be corrupted. This check also ** serves to verify that the offset to the start of the cell-content ** area, according to the page header, lies within the page. */ if( nFree>usableSize || nFreenFree = (u16)(nFree - iCellFirst); return SQLITE_OK; } /* ** Do additional sanity check after btreeInitPage() if ** PRAGMA cell_size_check=ON */ static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ int i; /* Index into the cell pointer array */ int sz; /* Size of a cell */ int pc; /* Address of a freeblock within pPage->aData[] */ u8 *data; /* Equal to pPage->aData */ int usableSize; /* Maximum usable space on the page */ int cellOffset; /* Start of cell content area */ iCellFirst = pPage->cellOffset + 2*pPage->nCell; usableSize = pPage->pBt->usableSize; iCellLast = usableSize - 4; data = pPage->aData; cellOffset = pPage->cellOffset; if( !pPage->leaf ) iCellLast--; for(i=0; inCell; i++){ pc = get2byteAligned(&data[cellOffset+i*2]); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); if( pciCellLast ){ return SQLITE_CORRUPT_PAGE(pPage); } sz = pPage->xCellSize(pPage, &data[pc]); testcase( pc+sz==usableSize ); if( pc+sz>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } } return SQLITE_OK; } /* ** Initialize the auxiliary information for a disk block. ** ** Return SQLITE_OK on success. If we see that the page does ** not contain a well-formed database page, then return ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not ** guarantee that the page is well-formed. It only shows that ** we failed to detect any corruption. */ static int btreeInitPage(MemPage *pPage){ u8 *data; /* Equal to pPage->aData */ BtShared *pBt; /* The main btree structure */ assert( pPage->pBt!=0 ); assert( pPage->pBt->db!=0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); assert( pPage->isInit==0 ); pBt = pPage->pBt; data = pPage->aData + pPage->hdrOffset; /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating ** the b-tree page type. */ if( decodeFlags(pPage, data[0]) ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; pPage->aCellIdx = data + pPage->childPtrSize + 8; pPage->aDataEnd = pPage->aData + pBt->pageSize; pPage->aDataOfst = pPage->aData + pPage->childPtrSize; /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[3]); if( pPage->nCell>MX_CELL(pBt) ){ /* To many cells for a single page. The page must be corrupt */ return SQLITE_CORRUPT_PAGE(pPage); } testcase( pPage->nCell==MX_CELL(pBt) ); /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only ** possible for a root page of a table that contains no rows) then the ** offset to the cell content area will equal the page size minus the ** bytes of reserved space. */ assert( pPage->nCell>0 || get2byteNotZero(&data[5])==(int)pBt->usableSize || CORRUPT_DB ); pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ pPage->isInit = 1; if( pBt->db->flags & SQLITE_CellSizeCk ){ return btreeCellSizeCheck(pPage); } return SQLITE_OK; } /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage, int flags){ unsigned char *data = pPage->aData; BtShared *pBt = pPage->pBt; u8 hdr = pPage->hdrOffset; u16 first; assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage) == data ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->btsFlags & BTS_FAST_SECURE ){ memset(&data[hdr], 0, pBt->usableSize - hdr); } data[hdr] = (char)flags; first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->pageSize]; pPage->aCellIdx = &data[first]; pPage->aDataOfst = &data[pPage->childPtrSize]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by ** the btree layer. */ static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); if( pgno!=pPage->pgno ){ pPage->aData = sqlite3PagerGetData(pDbPage); pPage->pDbPage = pDbPage; pPage->pBt = pBt; pPage->pgno = pgno; pPage->hdrOffset = pgno==1 ? 100 : 0; } assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); return pPage; } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). ** ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care ** about the content of the page at this time. So do not go to the disk ** to fetch the content. Just fill in the content with zeros for now. ** If in the future we call sqlite3PagerWrite() on this page, that ** means we have started to be concerned about content and the disk ** read should occur at that point. */ static int btreeGetPage( BtShared *pBt, /* The btree */ Pgno pgno, /* Number of the page to fetch */ MemPage **ppPage, /* Return the page in this parameter */ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ ){ int rc; DbPage *pDbPage; assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); assert( sqlite3_mutex_held(pBt->mutex) ); rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); if( rc ) return rc; *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); return SQLITE_OK; } /* ** Retrieve a page from the pager cache. If the requested page is not ** already in the pager cache return NULL. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. */ static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ DbPage *pDbPage; assert( sqlite3_mutex_held(pBt->mutex) ); pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); if( pDbPage ){ return btreePageFromDbPage(pDbPage, pgno, pBt); } return 0; } /* ** Return the size of the database file in pages. If there is any kind of ** error, return ((unsigned int)-1). */ static Pgno btreePagecount(BtShared *pBt){ return pBt->nPage; } SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); return btreePagecount(p->pBt); } /* ** Get a page from the pager and initialize it. */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage, /* Write the page pointer here */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; MemPage *pPage; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ *ppPage = 0; return SQLITE_CORRUPT_BKPT; } rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); if( rc ){ *ppPage = 0; return rc; } pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); if( pPage->isInit==0 ){ btreePageFromDbPage(pDbPage, pgno, pBt); rc = btreeInitPage(pPage); if( rc!=SQLITE_OK ){ releasePage(pPage); *ppPage = 0; return rc; } } assert( pPage->pgno==pgno || CORRUPT_DB ); assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); *ppPage = pPage; return SQLITE_OK; } /* ** Release a MemPage. This should be called once for each prior ** call to btreeGetPage. ** ** Page1 is a special case and must be released using releasePageOne(). */ static void releasePageNotNull(MemPage *pPage){ assert( pPage->aData ); assert( pPage->pBt ); assert( pPage->pDbPage!=0 ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sqlite3PagerUnrefNotNull(pPage->pDbPage); } static void releasePage(MemPage *pPage){ if( pPage ) releasePageNotNull(pPage); } static void releasePageOne(MemPage *pPage){ assert( pPage!=0 ); assert( pPage->aData ); assert( pPage->pBt ); assert( pPage->pDbPage!=0 ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sqlite3PagerUnrefPageOne(pPage->pDbPage); } /* ** Get an unused page. ** ** This works just like btreeGetPage() with the addition: ** ** * If the page is already in use for some other purpose, immediately ** release it and return an SQLITE_CURRUPT error. ** * Make sure the isInit flag is clear */ static int btreeGetUnusedPage( BtShared *pBt, /* The btree */ Pgno pgno, /* Number of the page to fetch */ MemPage **ppPage, /* Return the page in this parameter */ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ ){ int rc = btreeGetPage(pBt, pgno, ppPage, flags); if( rc==SQLITE_OK ){ if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ releasePage(*ppPage); *ppPage = 0; return SQLITE_CORRUPT_BKPT; } (*ppPage)->isInit = 0; }else{ *ppPage = 0; } return rc; } /* ** During a rollback, when the pager reloads information into the cache ** so that the cache is restored to its original state at the start of ** the transaction, for each page restored this routine is called. ** ** This routine needs to reset the extra data section at the end of the ** page to agree with the restored data. */ static void pageReinit(DbPage *pData){ MemPage *pPage; pPage = (MemPage *)sqlite3PagerGetExtra(pData); assert( sqlite3PagerPageRefcount(pData)>0 ); if( pPage->isInit ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->isInit = 0; if( sqlite3PagerPageRefcount(pData)>1 ){ /* pPage might not be a btree page; it might be an overflow page ** or ptrmap page or a free page. In those cases, the following ** call to btreeInitPage() will likely return SQLITE_CORRUPT. ** But no harm is done by this. And it is very important that ** btreeInitPage() be called on every btree page so we make ** the call for every page that comes in for re-initializing. */ btreeInitPage(pPage); } } } /* ** Invoke the busy handler for a btree. */ static int btreeInvokeBusyHandler(void *pArg){ BtShared *pBt = (BtShared*)pArg; assert( pBt->db ); assert( sqlite3_mutex_held(pBt->db->mutex) ); return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); } /* ** Open a database file. ** ** zFilename is the name of the database file. If zFilename is NULL ** then an ephemeral database is created. The ephemeral database might ** be exclusively in memory, or it might use a disk-based memory cache. ** Either way, the ephemeral database will be automatically deleted ** when sqlite3BtreeClose() is called. ** ** If zFilename is ":memory:" then an in-memory database is created ** that is automatically destroyed when it is closed. ** ** The "flags" parameter is a bitmask that might contain bits like ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. ** ** If the database is already opened in the same database connection ** and we are in shared cache mode, then the open will fail with an ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared ** objects in the same database connection since doing so will lead ** to problems with locking. */ SQLITE_PRIVATE int sqlite3BtreeOpen( sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ const char *zFilename, /* Name of the file containing the BTree database */ sqlite3 *db, /* Associated database handle */ Btree **ppBtree, /* Pointer to new Btree object written here */ int flags, /* Options */ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ ){ BtShared *pBt = 0; /* Shared part of btree structure */ Btree *p; /* Handle to return */ sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ int rc = SQLITE_OK; /* Result code from this function */ u8 nReserve; /* Byte of unused space on each page */ unsigned char zDbHeader[100]; /* Database header content */ /* True if opening an ephemeral, temporary database */ const int isTempDb = zFilename==0 || zFilename[0]==0; /* Set the variable isMemdb to true for an in-memory database, or ** false for a file-based database. */ #ifdef SQLITE_OMIT_MEMORYDB const int isMemdb = 0; #else const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) || (isTempDb && sqlite3TempInMemory(db)) || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; #endif assert( db!=0 ); assert( pVfs!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ assert( (flags & BTREE_SINGLE)==0 || isTempDb ); if( isMemdb ){ flags |= BTREE_MEMORY; } if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; } p = sqlite3MallocZero(sizeof(Btree)); if( !p ){ return SQLITE_NOMEM_BKPT; } p->inTrans = TRANS_NONE; p->db = db; #ifndef SQLITE_OMIT_SHARED_CACHE p->lock.pBtree = p; p->lock.iTable = 1; #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* ** If this Btree is a candidate for shared cache, try to find an ** existing BtShared object that we can share with */ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ int nFilename = sqlite3Strlen30(zFilename)+1; int nFullPathname = pVfs->mxPathname+1; char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) p->sharable = 1; if( !zFullPathname ){ sqlite3_free(p); return SQLITE_NOMEM_BKPT; } if( isMemdb ){ memcpy(zFullPathname, zFilename, nFilename); }else{ rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); if( rc ){ if( rc==SQLITE_OK_SYMLINK ){ rc = SQLITE_OK; }else{ sqlite3_free(zFullPathname); sqlite3_free(p); return rc; } } } #if SQLITE_THREADSAFE mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); sqlite3_mutex_enter(mutexOpen); mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); sqlite3_mutex_enter(mutexShared); #endif for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ assert( pBt->nRef>0 ); if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) && sqlite3PagerVfs(pBt->pPager)==pVfs ){ int iDb; for(iDb=db->nDb-1; iDb>=0; iDb--){ Btree *pExisting = db->aDb[iDb].pBt; if( pExisting && pExisting->pBt==pBt ){ sqlite3_mutex_leave(mutexShared); sqlite3_mutex_leave(mutexOpen); sqlite3_free(zFullPathname); sqlite3_free(p); return SQLITE_CONSTRAINT; } } p->pBt = pBt; pBt->nRef++; break; } } sqlite3_mutex_leave(mutexShared); sqlite3_free(zFullPathname); } #ifdef SQLITE_DEBUG else{ /* In debug mode, we mark all persistent databases as sharable ** even when they are not. This exercises the locking code and ** gives more opportunity for asserts(sqlite3_mutex_held()) ** statements to find locking problems. */ p->sharable = 1; } #endif } #endif if( pBt==0 ){ /* ** The following asserts make sure that structures used by the btree are ** the right size. This is to guard against size changes that result ** when compiling on a different architecture. */ assert( sizeof(i64)==8 ); assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); /* Suppress false-positive compiler warning from PVS-Studio */ memset(&zDbHeader[16], 0, 8); pBt = sqlite3MallocZero( sizeof(*pBt) ); if( pBt==0 ){ rc = SQLITE_NOMEM_BKPT; goto btree_open_out; } rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, sizeof(MemPage), flags, vfsFlags, pageReinit); if( rc==SQLITE_OK ){ sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); } if( rc!=SQLITE_OK ){ goto btree_open_out; } pBt->openFlags = (u8)flags; pBt->db = db; sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); p->pBt = pBt; pBt->pCursor = 0; pBt->pPage1 = 0; if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; #if defined(SQLITE_SECURE_DELETE) pBt->btsFlags |= BTS_SECURE_DELETE; #elif defined(SQLITE_FAST_SECURE_DELETE) pBt->btsFlags |= BTS_OVERWRITE; #endif /* EVIDENCE-OF: R-51873-39618 The page size for a database file is ** determined by the 2-byte integer located at an offset of 16 bytes from ** the beginning of the database file. */ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ pBt->pageSize = 0; #ifndef SQLITE_OMIT_AUTOVACUUM /* If the magic name ":memory:" will create an in-memory database, then ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a ** regular file-name. In this case the auto-vacuum applies as per normal. */ if( zFilename && !isMemdb ){ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); } #endif nReserve = 0; }else{ /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ nReserve = zDbHeader[20]; pBt->btsFlags |= BTS_PAGESIZE_FIXED; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); #endif } rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); if( rc ) goto btree_open_out; pBt->usableSize = pBt->pageSize - nReserve; assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* Add the new BtShared object to the linked list sharable BtShareds. */ pBt->nRef = 1; if( p->sharable ){ MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); if( pBt->mutex==0 ){ rc = SQLITE_NOMEM_BKPT; goto btree_open_out; } } sqlite3_mutex_enter(mutexShared); pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; sqlite3_mutex_leave(mutexShared); } #endif } #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* If the new Btree uses a sharable pBtShared, then link the new ** Btree into the list of all sharable Btrees for the same connection. ** The list is kept in ascending order by pBt address. */ if( p->sharable ){ int i; Btree *pSib; for(i=0; inDb; i++){ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ while( pSib->pPrev ){ pSib = pSib->pPrev; } if( (uptr)p->pBt<(uptr)pSib->pBt ){ p->pNext = pSib; p->pPrev = 0; pSib->pPrev = p; }else{ while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ pSib = pSib->pNext; } p->pNext = pSib->pNext; p->pPrev = pSib; if( p->pNext ){ p->pNext->pPrev = p; } pSib->pNext = p; } break; } } } #endif *ppBtree = p; btree_open_out: if( rc!=SQLITE_OK ){ if( pBt && pBt->pPager ){ sqlite3PagerClose(pBt->pPager, 0); } sqlite3_free(pBt); sqlite3_free(p); *ppBtree = 0; }else{ sqlite3_file *pFile; /* If the B-Tree was successfully opened, set the pager-cache size to the ** default value. Except, when opening on an existing shared pager-cache, ** do not change the pager-cache size. */ if( sqlite3BtreeSchema(p, 0, 0)==0 ){ sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); } pFile = sqlite3PagerFile(pBt->pPager); if( pFile->pMethods ){ sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); } } if( mutexOpen ){ assert( sqlite3_mutex_held(mutexOpen) ); sqlite3_mutex_leave(mutexOpen); } assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); return rc; } /* ** Decrement the BtShared.nRef counter. When it reaches zero, ** remove the BtShared structure from the sharing list. Return ** true if the BtShared.nRef counter reaches zero and return ** false if it is still positive. */ static int removeFromSharingList(BtShared *pBt){ #ifndef SQLITE_OMIT_SHARED_CACHE MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) BtShared *pList; int removed = 0; assert( sqlite3_mutex_notheld(pBt->mutex) ); MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(pMainMtx); pBt->nRef--; if( pBt->nRef<=0 ){ if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; }else{ pList = GLOBAL(BtShared*,sqlite3SharedCacheList); while( ALWAYS(pList) && pList->pNext!=pBt ){ pList=pList->pNext; } if( ALWAYS(pList) ){ pList->pNext = pBt->pNext; } } if( SQLITE_THREADSAFE ){ sqlite3_mutex_free(pBt->mutex); } removed = 1; } sqlite3_mutex_leave(pMainMtx); return removed; #else return 1; #endif } /* ** Make sure pBt->pTmpSpace points to an allocation of ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child ** pointer. */ static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ assert( pBt!=0 ); assert( pBt->pTmpSpace==0 ); /* This routine is called only by btreeCursor() when allocating the ** first write cursor for the BtShared object */ assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); if( pBt->pTmpSpace==0 ){ BtCursor *pCur = pBt->pCursor; pBt->pCursor = pCur->pNext; /* Unlink the cursor */ memset(pCur, 0, sizeof(*pCur)); return SQLITE_NOMEM_BKPT; } /* One of the uses of pBt->pTmpSpace is to format cells before ** inserting them into a leaf page (function fillInCell()). If ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes ** by the various routines that manipulate binary cells. Which ** can mean that fillInCell() only initializes the first 2 or 3 ** bytes of pTmpSpace, but that the first 4 bytes are copied from ** it into a database page. This is not actually a problem, but it ** does cause a valgrind error when the 1 or 2 bytes of uninitialized ** data is passed to system call write(). So to avoid this error, ** zero the first 4 bytes of temp space here. ** ** Also: Provide four bytes of initialized space before the ** beginning of pTmpSpace as an area available to prepend the ** left-child pointer to the beginning of a cell. */ memset(pBt->pTmpSpace, 0, 8); pBt->pTmpSpace += 4; return SQLITE_OK; } /* ** Free the pBt->pTmpSpace allocation */ static void freeTempSpace(BtShared *pBt){ if( pBt->pTmpSpace ){ pBt->pTmpSpace -= 4; sqlite3PageFree(pBt->pTmpSpace); pBt->pTmpSpace = 0; } } /* ** Close an open database and invalidate all cursors. */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){ BtShared *pBt = p->pBt; /* Close all cursors opened via this handle. */ assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); /* Verify that no other cursors have this Btree open */ #ifdef SQLITE_DEBUG { BtCursor *pCur = pBt->pCursor; while( pCur ){ BtCursor *pTmp = pCur; pCur = pCur->pNext; assert( pTmp->pBtree!=p ); } } #endif /* Rollback any active transaction and free the handle structure. ** The call to sqlite3BtreeRollback() drops any table-locks held by ** this handle. */ sqlite3BtreeRollback(p, SQLITE_OK, 0); sqlite3BtreeLeave(p); /* If there are still other outstanding references to the shared-btree ** structure, return now. The remainder of this procedure cleans ** up the shared-btree. */ assert( p->wantToLock==0 && p->locked==0 ); if( !p->sharable || removeFromSharingList(pBt) ){ /* The pBt is no longer on the sharing list, so we can access ** it without having to hold the mutex. ** ** Clean out and delete the BtShared object. */ assert( !pBt->pCursor ); sqlite3PagerClose(pBt->pPager, p->db); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } sqlite3DbFree(0, pBt->pSchema); freeTempSpace(pBt); sqlite3_free(pBt); } #ifndef SQLITE_OMIT_SHARED_CACHE assert( p->wantToLock==0 ); assert( p->locked==0 ); if( p->pPrev ) p->pPrev->pNext = p->pNext; if( p->pNext ) p->pNext->pPrev = p->pPrev; #endif sqlite3_free(p); return SQLITE_OK; } /* ** Change the "soft" limit on the number of pages in the cache. ** Unused and unmodified pages will be recycled when the number of ** pages in the cache exceeds this soft limit. But the size of the ** cache is allowed to grow larger than this limit if it contains ** dirty pages or pages still in active use. */ SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); sqlite3PagerSetCachesize(pBt->pPager, mxPage); sqlite3BtreeLeave(p); return SQLITE_OK; } /* ** Change the "spill" limit on the number of pages in the cache. ** If the number of pages exceeds this limit during a write transaction, ** the pager might attempt to "spill" pages to the journal early in ** order to free up memory. ** ** The value returned is the current spill size. If zero is passed ** as an argument, no changes are made to the spill size setting, so ** using mxPage of 0 is a way to query the current spill size. */ SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ BtShared *pBt = p->pBt; int res; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); sqlite3BtreeLeave(p); return res; } #if SQLITE_MAX_MMAP_SIZE>0 /* ** Change the limit on the amount of the database file that may be ** memory mapped. */ SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); sqlite3BtreeLeave(p); return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* ** Change the way data is synced to disk in order to increase or decrease ** how well the database resists damage due to OS crashes and power ** failures. Level 1 is the same as asynchronous (no syncs() occur and ** there is a high probability of damage) Level 2 is the default. There ** is a very low but non-zero probability of damage. Level 3 reduces the ** probability of damage to near zero but with a write performance reduction. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags( Btree *p, /* The btree to set the safety level on */ unsigned pgFlags /* Various PAGER_* flags */ ){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); sqlite3PagerSetFlags(pBt->pPager, pgFlags); sqlite3BtreeLeave(p); return SQLITE_OK; } #endif /* ** Change the default pages size and the number of reserved bytes per page. ** Or, if the page size has already been fixed, return SQLITE_READONLY ** without changing anything. ** ** The page size must be a power of 2 between 512 and 65536. If the page ** size supplied does not meet this constraint then the page size is not ** changed. ** ** Page sizes are constrained to be a power of two so that the region ** of the database file used for locking (beginning at PENDING_BYTE, ** the first byte past the 1GB boundary, 0x40000000) needs to occur ** at the beginning of a page. ** ** If parameter nReserve is less than zero, then the number of reserved ** bytes per page is left unchanged. ** ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size ** and autovacuum mode can no longer be changed. */ SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ int rc = SQLITE_OK; int x; BtShared *pBt = p->pBt; assert( nReserve>=0 && nReserve<=255 ); sqlite3BtreeEnter(p); pBt->nReserveWanted = nReserve; x = pBt->pageSize - pBt->usableSize; if( nReservebtsFlags & BTS_PAGESIZE_FIXED ){ sqlite3BtreeLeave(p); return SQLITE_READONLY; } assert( nReserve>=0 && nReserve<=255 ); if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && ((pageSize-1)&pageSize)==0 ){ assert( (pageSize & 7)==0 ); assert( !pBt->pCursor ); if( nReserve>32 && pageSize==512 ) pageSize = 1024; pBt->pageSize = (u32)pageSize; freeTempSpace(pBt); } rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); pBt->usableSize = pBt->pageSize - (u16)nReserve; if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; sqlite3BtreeLeave(p); return rc; } /* ** Return the currently defined page size */ SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ return p->pBt->pageSize; } /* ** This function is similar to sqlite3BtreeGetReserve(), except that it ** may only be called if it is guaranteed that the b-tree mutex is already ** held. ** ** This is useful in one special case in the backup API code where it is ** known that the shared b-tree mutex is held, but the mutex on the ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() ** were to be called, it might collide with some other operation on the ** database handle that owns *p, causing undefined behavior. */ SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){ int n; assert( sqlite3_mutex_held(p->pBt->mutex) ); n = p->pBt->pageSize - p->pBt->usableSize; return n; } /* ** Return the number of bytes of space at the end of every page that ** are intentionally left unused. This is the "reserved" space that is ** sometimes used by extensions. ** ** The value returned is the larger of the current reserve size and ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. ** The amount of reserve can only grow - never shrink. */ SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree *p){ int n1, n2; sqlite3BtreeEnter(p); n1 = (int)p->pBt->nReserveWanted; n2 = sqlite3BtreeGetReserveNoMutex(p); sqlite3BtreeLeave(p); return n1>n2 ? n1 : n2; } /* ** Set the maximum page count for a database if mxPage is positive. ** No changes are made if mxPage is 0 or negative. ** Regardless of the value of mxPage, return the maximum page count. */ SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ Pgno n; sqlite3BtreeEnter(p); n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); sqlite3BtreeLeave(p); return n; } /* ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: ** ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set ** newFlag==(-1) No changes ** ** This routine acts as a query if newFlag is less than zero ** ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but ** freelist leaf pages are not written back to the database. Thus in-page ** deleted content is cleared, but freelist deleted content is not. ** ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition ** that freelist leaf pages are written back into the database, increasing ** the amount of disk I/O. */ SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ int b; if( p==0 ) return 0; sqlite3BtreeEnter(p); assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); if( newFlag>=0 ){ p->pBt->btsFlags &= ~BTS_FAST_SECURE; p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; } b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; sqlite3BtreeLeave(p); return b; } /* ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it ** is disabled. The default value for the auto-vacuum property is ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. */ SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ #ifdef SQLITE_OMIT_AUTOVACUUM return SQLITE_READONLY; #else BtShared *pBt = p->pBt; int rc = SQLITE_OK; u8 av = (u8)autoVacuum; sqlite3BtreeEnter(p); if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ rc = SQLITE_READONLY; }else{ pBt->autoVacuum = av ?1:0; pBt->incrVacuum = av==2 ?1:0; } sqlite3BtreeLeave(p); return rc; #endif } /* ** Return the value of the 'auto-vacuum' property. If auto-vacuum is ** enabled 1 is returned. Otherwise 0. */ SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){ #ifdef SQLITE_OMIT_AUTOVACUUM return BTREE_AUTOVACUUM_NONE; #else int rc; sqlite3BtreeEnter(p); rc = ( (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: BTREE_AUTOVACUUM_INCR ); sqlite3BtreeLeave(p); return rc; #endif } /* ** If the user has not set the safety-level for this database connection ** using "PRAGMA synchronous", and if the safety-level is not already ** set to the value passed to this function as the second parameter, ** set it so. */ #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ && !defined(SQLITE_OMIT_WAL) static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ sqlite3 *db; Db *pDb; if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } if( pDb->bSyncSet==0 && pDb->safety_level!=safety_level && pDb!=&db->aDb[1] ){ pDb->safety_level = safety_level; sqlite3PagerSetFlags(pBt->pPager, pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); } } } #else # define setDefaultSyncFlag(pBt,safety_level) #endif /* Forward declaration */ static int newDatabase(BtShared*); /* ** Get a reference to pPage1 of the database file. This will ** also acquire a readlock on that file. ** ** SQLITE_OK is returned on success. If the file is not a ** well-formed database file, then SQLITE_CORRUPT is returned. ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM ** is returned if we run out of memory. */ static int lockBtree(BtShared *pBt){ int rc; /* Result code from subfunctions */ MemPage *pPage1; /* Page 1 of the database file */ u32 nPage; /* Number of pages in the database */ u32 nPageFile = 0; /* Number of pages in the database file */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( pBt->pPage1==0 ); rc = sqlite3PagerSharedLock(pBt->pPager); if( rc!=SQLITE_OK ) return rc; rc = btreeGetPage(pBt, 1, &pPage1, 0); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ nPage = get4byte(28+(u8*)pPage1->aData); sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ nPage = nPageFile; } if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ nPage = 0; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d ** 61 74 20 33 00. */ if( memcmp(page1, zMagicHeader, 16)!=0 ){ goto page1_init_failed; } #ifdef SQLITE_OMIT_WAL if( page1[18]>1 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>1 ){ goto page1_init_failed; } #else if( page1[18]>2 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>2 ){ goto page1_init_failed; } /* If the read version is set to 2, this database should be accessed ** in WAL mode. If the log is not already open, open it now. Then ** return SQLITE_OK and return without populating BtShared.pPage1. ** The caller detects this and calls this function again. This is ** required as the version of page 1 currently in the page1 buffer ** may not be the latest version - there may be a newer one in the log ** file. */ if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ int isOpen = 0; rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); if( rc!=SQLITE_OK ){ goto page1_init_failed; }else{ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); if( isOpen==0 ){ releasePageOne(pPage1); return SQLITE_OK; } } rc = SQLITE_NOTADB; }else{ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); } #endif /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload ** fractions and the leaf payload fraction values must be 64, 32, and 32. ** ** The original design allowed these amounts to vary, but as of ** version 3.6.0, we require them to be fixed. */ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ goto page1_init_failed; } /* EVIDENCE-OF: R-51873-39618 The page size for a database file is ** determined by the 2-byte integer located at an offset of 16 bytes from ** the beginning of the database file. */ pageSize = (page1[16]<<8) | (page1[17]<<16); /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two ** between 512 and 65536 inclusive. */ if( ((pageSize-1)&pageSize)!=0 || pageSize>SQLITE_MAX_PAGE_SIZE || pageSize<=256 ){ goto page1_init_failed; } assert( (pageSize & 7)==0 ); /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte ** integer at offset 20 is the number of bytes of space at the end of ** each page to reserve for extensions. ** ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ usableSize = pageSize - page1[20]; if( (u32)pageSize!=pBt->pageSize ){ /* After reading the first page of the database assuming a page size ** of BtShared.pageSize, we have discovered that the page-size is ** actually pageSize. Unlock the database, leave pBt->pPage1 at ** zero and return SQLITE_OK. The caller will call this function ** again with the correct page-size. */ releasePageOne(pPage1); pBt->usableSize = usableSize; pBt->pageSize = pageSize; pBt->btsFlags |= BTS_PAGESIZE_FIXED; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( nPage>nPageFile ){ if( sqlite3WritableSchema(pBt->db)==0 ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; }else{ nPage = nPageFile; } } /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to ** be less than 480. In other words, if the page size is 512, then the ** reserved space size cannot exceed 32. */ if( usableSize<480 ){ goto page1_init_failed; } pBt->btsFlags |= BTS_PAGESIZE_FIXED; pBt->pageSize = pageSize; pBt->usableSize = usableSize; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); #endif } /* maxLocal is the maximum amount of payload to store locally for ** a cell. Make sure it is small enough so that at least minFanout ** cells can will fit on one page. We assume a 10-byte page header. ** Besides the payload, the cell must store: ** 2-byte pointer to the cell ** 4-byte child pointer ** 9-byte nKey value ** 4-byte nData value ** 4-byte overflow page pointer ** So a cell consists of a 2-byte pointer, a header which is as much as ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow ** page pointer. */ pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); pBt->maxLeaf = (u16)(pBt->usableSize - 35); pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); if( pBt->maxLocal>127 ){ pBt->max1bytePayload = 127; }else{ pBt->max1bytePayload = (u8)pBt->maxLocal; } assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); pBt->pPage1 = pPage1; pBt->nPage = nPage; return SQLITE_OK; page1_init_failed: releasePageOne(pPage1); pBt->pPage1 = 0; return rc; } #ifndef NDEBUG /* ** Return the number of cursors open on pBt. This is for use ** in assert() expressions, so it is only compiled if NDEBUG is not ** defined. ** ** Only write cursors are counted if wrOnly is true. If wrOnly is ** false then all cursors are counted. ** ** For the purposes of this routine, a cursor is any cursor that ** is capable of reading or writing to the database. Cursors that ** have been tripped into the CURSOR_FAULT state are not counted. */ static int countValidCursors(BtShared *pBt, int wrOnly){ BtCursor *pCur; int r = 0; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) && pCur->eState!=CURSOR_FAULT ) r++; } return r; } #endif /* ** If there are no outstanding cursors and we are not in the middle ** of a transaction but there is a read lock on the database, then ** this routine unrefs the first page of the database file which ** has the effect of releasing the read lock. ** ** If there is a transaction in progress, this routine is a no-op. */ static void unlockBtreeIfUnused(BtShared *pBt){ assert( sqlite3_mutex_held(pBt->mutex) ); assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ MemPage *pPage1 = pBt->pPage1; assert( pPage1->aData ); assert( sqlite3PagerRefcount(pBt->pPager)==1 ); pBt->pPage1 = 0; releasePageOne(pPage1); } } /* ** If pBt points to an empty file then convert that empty file ** into a new empty database by initializing the first page of ** the database. */ static int newDatabase(BtShared *pBt){ MemPage *pP1; unsigned char *data; int rc; assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->nPage>0 ){ return SQLITE_OK; } pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; rc = sqlite3PagerWrite(pP1->pDbPage); if( rc ) return rc; memcpy(data, zMagicHeader, sizeof(zMagicHeader)); assert( sizeof(zMagicHeader)==16 ); data[16] = (u8)((pBt->pageSize>>8)&0xff); data[17] = (u8)((pBt->pageSize>>16)&0xff); data[18] = 1; data[19] = 1; assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); data[20] = (u8)(pBt->pageSize - pBt->usableSize); data[21] = 64; data[22] = 32; data[23] = 32; memset(&data[24], 0, 100-24); zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); pBt->btsFlags |= BTS_PAGESIZE_FIXED; #ifndef SQLITE_OMIT_AUTOVACUUM assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); put4byte(&data[36 + 4*4], pBt->autoVacuum); put4byte(&data[36 + 7*4], pBt->incrVacuum); #endif pBt->nPage = 1; data[31] = 1; return SQLITE_OK; } /* ** Initialize the first page of the database file (creating a database ** consisting of a single page and no schema objects). Return SQLITE_OK ** if successful, or an SQLite error code otherwise. */ SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){ int rc; sqlite3BtreeEnter(p); p->pBt->nPage = 0; rc = newDatabase(p->pBt); sqlite3BtreeLeave(p); return rc; } /* ** Attempt to start a new transaction. A write-transaction ** is started if the second argument is nonzero, otherwise a read- ** transaction. If the second argument is 2 or more and exclusive ** transaction is started, meaning that no other process is allowed ** to access the database. A preexisting transaction may not be ** upgraded to exclusive by calling this routine a second time - the ** exclusivity flag only works for a new transaction. ** ** A write-transaction must be started before attempting any ** changes to the database. None of the following routines ** will work unless a transaction is started first: ** ** sqlite3BtreeCreateTable() ** sqlite3BtreeCreateIndex() ** sqlite3BtreeClearTable() ** sqlite3BtreeDropTable() ** sqlite3BtreeInsert() ** sqlite3BtreeDelete() ** sqlite3BtreeUpdateMeta() ** ** If an initial attempt to acquire the lock fails because of lock contention ** and the database was previously unlocked, then invoke the busy handler ** if there is one. But if there was previously a read-lock, do not ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is ** returned when there is already a read-lock in order to avoid a deadlock. ** ** Suppose there are two processes A and B. A has a read lock and B has ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ static SQLITE_NOINLINE int btreeBeginTrans( Btree *p, /* The btree in which to start the transaction */ int wrflag, /* True to start a write transaction */ int *pSchemaVersion /* Put schema version number here, if not NULL */ ){ BtShared *pBt = p->pBt; Pager *pPager = pBt->pPager; int rc = SQLITE_OK; sqlite3BtreeEnter(p); btreeIntegrity(p); /* If the btree is already in a write-transaction, or it ** is already in a read-transaction and a read-transaction ** is requested, this is a no-op. */ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ goto trans_begun; } assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); if( (p->db->flags & SQLITE_ResetDatabase) && sqlite3PagerIsreadonly(pPager)==0 ){ pBt->btsFlags &= ~BTS_READ_ONLY; } /* Write transactions are not possible on a read-only database */ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ rc = SQLITE_READONLY; goto trans_begun; } #ifndef SQLITE_OMIT_SHARED_CACHE { sqlite3 *pBlock = 0; /* If another database handle has already opened a write transaction ** on this shared-btree structure and a second write transaction is ** requested, return SQLITE_LOCKED. */ if( (wrflag && pBt->inTransaction==TRANS_WRITE) || (pBt->btsFlags & BTS_PENDING)!=0 ){ pBlock = pBt->pWriter->db; }else if( wrflag>1 ){ BtLock *pIter; for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->pBtree!=p ){ pBlock = pIter->pBtree->db; break; } } } if( pBlock ){ sqlite3ConnectionBlocked(p->db, pBlock); rc = SQLITE_LOCKED_SHAREDCACHE; goto trans_begun; } } #endif /* Any read-only or read-write transaction implies a read-lock on ** page 1. So if some other shared-cache client already has a write-lock ** on page 1, the transaction cannot be opened. */ rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); if( SQLITE_OK!=rc ) goto trans_begun; pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; do { sqlite3PagerWalDb(pPager, p->db); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* If transitioning from no transaction directly to a write transaction, ** block for the WRITER lock first if possible. */ if( pBt->pPage1==0 && wrflag ){ assert( pBt->inTransaction==TRANS_NONE ); rc = sqlite3PagerWalWriteLock(pPager, 1); if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; } #endif /* Call lockBtree() until either pBt->pPage1 is populated or ** lockBtree() returns something other than SQLITE_OK. lockBtree() ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after ** reading page 1 it discovers that the page-size of the database ** file is not pBt->pageSize. In this case lockBtree() will update ** pBt->pageSize to the page-size of the file on disk. */ while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); if( rc==SQLITE_OK && wrflag ){ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ rc = SQLITE_READONLY; }else{ rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); if( rc==SQLITE_OK ){ rc = newDatabase(pBt); }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ /* if there was no transaction opened when this function was ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error ** code to SQLITE_BUSY. */ rc = SQLITE_BUSY; } } } if( rc!=SQLITE_OK ){ (void)sqlite3PagerWalWriteLock(pPager, 0); unlockBtreeIfUnused(pBt); } }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && btreeInvokeBusyHandler(pBt) ); sqlite3PagerWalDb(pPager, 0); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; #endif if( rc==SQLITE_OK ){ if( p->inTrans==TRANS_NONE ){ pBt->nTransaction++; #ifndef SQLITE_OMIT_SHARED_CACHE if( p->sharable ){ assert( p->lock.pBtree==p && p->lock.iTable==1 ); p->lock.eLock = READ_LOCK; p->lock.pNext = pBt->pLock; pBt->pLock = &p->lock; } #endif } p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); if( p->inTrans>pBt->inTransaction ){ pBt->inTransaction = p->inTrans; } if( wrflag ){ MemPage *pPage1 = pBt->pPage1; #ifndef SQLITE_OMIT_SHARED_CACHE assert( !pBt->pWriter ); pBt->pWriter = p; pBt->btsFlags &= ~BTS_EXCLUSIVE; if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; #endif /* If the db-size header field is incorrect (as it may be if an old ** client has been writing the database file), update it now. Doing ** this sooner rather than later means the database size can safely ** re-read the database size from page 1 if a savepoint or transaction ** rollback occurs within the transaction. */ if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ rc = sqlite3PagerWrite(pPage1->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pPage1->aData[28], pBt->nPage); } } } } trans_begun: if( rc==SQLITE_OK ){ if( pSchemaVersion ){ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); } if( wrflag ){ /* This call makes sure that the pager has the correct number of ** open savepoints. If the second parameter is greater than 0 and ** the sub-journal is not already open, then it will be opened here. */ rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); } } btreeIntegrity(p); sqlite3BtreeLeave(p); return rc; } SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ BtShared *pBt; if( p->sharable || p->inTrans==TRANS_NONE || (p->inTrans==TRANS_READ && wrflag!=0) ){ return btreeBeginTrans(p,wrflag,pSchemaVersion); } pBt = p->pBt; if( pSchemaVersion ){ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); } if( wrflag ){ /* This call makes sure that the pager has the correct number of ** open savepoints. If the second parameter is greater than 0 and ** the sub-journal is not already open, then it will be opened here. */ return sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); }else{ return SQLITE_OK; } } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Set the pointer-map entries for all children of page pPage. Also, if ** pPage contains cells that point to overflow pages, set the pointer ** map entries for the overflow pages as well. */ static int setChildPtrmaps(MemPage *pPage){ int i; /* Counter variable */ int nCell; /* Number of cells in page pPage */ int rc; /* Return code */ BtShared *pBt = pPage->pBt; Pgno pgno = pPage->pgno; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); if( rc!=SQLITE_OK ) return rc; nCell = pPage->nCell; for(i=0; ileaf ){ Pgno childPgno = get4byte(pCell); ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); } } if( !pPage->leaf ){ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); } return rc; } /* ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so ** that it points to iTo. Parameter eType describes the type of pointer to ** be modified, as follows: ** ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child ** page of pPage. ** ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow ** page pointed to by one of the cells on pPage. ** ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next ** overflow page in the list. */ static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); if( eType==PTRMAP_OVERFLOW2 ){ /* The pointer is always the first 4 bytes of the page in this case. */ if( get4byte(pPage->aData)!=iFrom ){ return SQLITE_CORRUPT_PAGE(pPage); } put4byte(pPage->aData, iTo); }else{ int i; int nCell; int rc; rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); if( rc ) return rc; nCell = pPage->nCell; for(i=0; ixParseCell(pPage, pCell, &info); if( info.nLocal pPage->aData+pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } if( iFrom==get4byte(pCell+info.nSize-4) ){ put4byte(pCell+info.nSize-4, iTo); break; } } }else{ if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } if( get4byte(pCell)==iFrom ){ put4byte(pCell, iTo); break; } } } if( i==nCell ){ if( eType!=PTRMAP_BTREE || get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ return SQLITE_CORRUPT_PAGE(pPage); } put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); } } return SQLITE_OK; } /* ** Move the open database page pDbPage to location iFreePage in the ** database. The pDbPage reference remains valid. ** ** The isCommit flag indicates that there is no need to remember that ** the journal needs to be sync()ed before database page pDbPage->pgno ** can be written to. The caller has already promised not to write to that ** page. */ static int relocatePage( BtShared *pBt, /* Btree */ MemPage *pDbPage, /* Open page to move */ u8 eType, /* Pointer map 'type' entry for pDbPage */ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ Pgno iFreePage, /* The location to move pDbPage to */ int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ ){ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ Pgno iDbPage = pDbPage->pgno; Pager *pPager = pBt->pPager; int rc; assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( pDbPage->pBt==pBt ); if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; /* Move page iDbPage from its current location to page number iFreePage */ TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n", iDbPage, iFreePage, iPtrPage, eType)); rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); if( rc!=SQLITE_OK ){ return rc; } pDbPage->pgno = iFreePage; /* If pDbPage was a btree-page, then it may have child pages and/or cells ** that point to overflow pages. The pointer map entries for all these ** pages need to be changed. ** ** If pDbPage is an overflow page, then the first 4 bytes may store a ** pointer to a subsequent overflow page. If this is the case, then ** the pointer map needs to be updated for the subsequent overflow page. */ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ rc = setChildPtrmaps(pDbPage); if( rc!=SQLITE_OK ){ return rc; } }else{ Pgno nextOvfl = get4byte(pDbPage->aData); if( nextOvfl!=0 ){ ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); if( rc!=SQLITE_OK ){ return rc; } } } /* Fix the database pointer on page iPtrPage that pointed at iDbPage so ** that it points at iFreePage. Also fix the pointer map entry for ** iPtrPage. */ if( eType!=PTRMAP_ROOTPAGE ){ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pPtrPage->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pPtrPage); return rc; } rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); releasePage(pPtrPage); if( rc==SQLITE_OK ){ ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); } } return rc; } /* Forward declaration required by incrVacuumStep(). */ static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); /* ** Perform a single step of an incremental-vacuum. If successful, return ** SQLITE_OK. If there is no work to do (and therefore no point in ** calling this function again), return SQLITE_DONE. Or, if an error ** occurs, return some other error code. ** ** More specifically, this function attempts to re-organize the database so ** that the last page of the file currently in use is no longer in use. ** ** Parameter nFin is the number of pages that this database would contain ** were this function called until it returns SQLITE_DONE. ** ** If the bCommit parameter is non-zero, this function assumes that the ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE ** or an error. bCommit is passed true for an auto-vacuum-on-commit ** operation, or false for an incremental vacuum. */ static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ Pgno nFreeList; /* Number of pages still on the free-list */ int rc; assert( sqlite3_mutex_held(pBt->mutex) ); assert( iLastPg>nFin ); if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ u8 eType; Pgno iPtrPage; nFreeList = get4byte(&pBt->pPage1->aData[36]); if( nFreeList==0 ){ return SQLITE_DONE; } rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); if( rc!=SQLITE_OK ){ return rc; } if( eType==PTRMAP_ROOTPAGE ){ return SQLITE_CORRUPT_BKPT; } if( eType==PTRMAP_FREEPAGE ){ if( bCommit==0 ){ /* Remove the page from the files free-list. This is not required ** if bCommit is non-zero. In that case, the free-list will be ** truncated to zero after this function returns, so it doesn't ** matter if it still contains some garbage entries. */ Pgno iFreePg; MemPage *pFreePg; rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); if( rc!=SQLITE_OK ){ return rc; } assert( iFreePg==iLastPg ); releasePage(pFreePg); } } else { Pgno iFreePg; /* Index of free page to move pLastPg to */ MemPage *pLastPg; u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); if( rc!=SQLITE_OK ){ return rc; } /* If bCommit is zero, this loop runs exactly once and page pLastPg ** is swapped with the first free page pulled off the free list. ** ** On the other hand, if bCommit is greater than zero, then keep ** looping until a free-page located within the first nFin pages ** of the file is found. */ if( bCommit==0 ){ eMode = BTALLOC_LE; iNear = nFin; } do { MemPage *pFreePg; Pgno dbSize = btreePagecount(pBt); rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); if( rc!=SQLITE_OK ){ releasePage(pLastPg); return rc; } releasePage(pFreePg); if( iFreePg>dbSize ){ releasePage(pLastPg); return SQLITE_CORRUPT_BKPT; } }while( bCommit && iFreePg>nFin ); assert( iFreePgbDoTruncate = 1; pBt->nPage = iLastPg; } return SQLITE_OK; } /* ** The database opened by the first argument is an auto-vacuum database ** nOrig pages in size containing nFree free pages. Return the expected ** size of the database in pages following an auto-vacuum operation. */ static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ int nEntry; /* Number of entries on one ptrmap page */ Pgno nPtrmap; /* Number of PtrMap pages to be freed */ Pgno nFin; /* Return value */ nEntry = pBt->usableSize/5; nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; nFin = nOrig - nFree - nPtrmap; if( nOrig>PENDING_BYTE_PAGE(pBt) && nFinpBt; sqlite3BtreeEnter(p); assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); if( !pBt->autoVacuum ){ rc = SQLITE_DONE; }else{ Pgno nOrig = btreePagecount(pBt); Pgno nFree = get4byte(&pBt->pPage1->aData[36]); Pgno nFin = finalDbSize(pBt, nOrig, nFree); if( nOrig=nOrig ){ rc = SQLITE_CORRUPT_BKPT; }else if( nFree>0 ){ rc = saveAllCursors(pBt, 0, 0); if( rc==SQLITE_OK ){ invalidateAllOverflowCache(pBt); rc = incrVacuumStep(pBt, nFin, nOrig, 0); } if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); put4byte(&pBt->pPage1->aData[28], pBt->nPage); } }else{ rc = SQLITE_DONE; } } sqlite3BtreeLeave(p); return rc; } /* ** This routine is called prior to sqlite3PagerCommit when a transaction ** is committed for an auto-vacuum database. */ static int autoVacuumCommit(Btree *p){ int rc = SQLITE_OK; Pager *pPager; BtShared *pBt; sqlite3 *db; VVA_ONLY( int nRef ); assert( p!=0 ); pBt = p->pBt; pPager = pBt->pPager; VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) assert( sqlite3_mutex_held(pBt->mutex) ); invalidateAllOverflowCache(pBt); assert(pBt->autoVacuum); if( !pBt->incrVacuum ){ Pgno nFin; /* Number of pages in database after autovacuuming */ Pgno nFree; /* Number of pages on the freelist initially */ Pgno nVac; /* Number of pages to vacuum */ Pgno iFree; /* The next page to be freed */ Pgno nOrig; /* Database size before freeing */ nOrig = btreePagecount(pBt); if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ /* It is not possible to create a database for which the final page ** is either a pointer-map page or the pending-byte page. If one ** is encountered, this indicates corruption. */ return SQLITE_CORRUPT_BKPT; } nFree = get4byte(&pBt->pPage1->aData[36]); db = p->db; if( db->xAutovacPages ){ int iDb; for(iDb=0; ALWAYS(iDbnDb); iDb++){ if( db->aDb[iDb].pBt==p ) break; } nVac = db->xAutovacPages( db->pAutovacPagesArg, db->aDb[iDb].zDbSName, nOrig, nFree, pBt->pageSize ); if( nVac>nFree ){ nVac = nFree; } if( nVac==0 ){ return SQLITE_OK; } }else{ nVac = nFree; } nFin = finalDbSize(pBt, nOrig, nVac); if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; if( nFinnFin && rc==SQLITE_OK; iFree--){ rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); } if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( nVac==nFree ){ put4byte(&pBt->pPage1->aData[32], 0); put4byte(&pBt->pPage1->aData[36], 0); } put4byte(&pBt->pPage1->aData[28], nFin); pBt->bDoTruncate = 1; pBt->nPage = nFin; } if( rc!=SQLITE_OK ){ sqlite3PagerRollback(pPager); } } assert( nRef>=sqlite3PagerRefcount(pPager) ); return rc; } #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ # define setChildPtrmaps(x) SQLITE_OK #endif /* ** This routine does the first phase of a two-phase commit. This routine ** causes a rollback journal to be created (if it does not already exist) ** and populated with enough information so that if a power loss occurs ** the database can be restored to its original state by playing back ** the journal. Then the contents of the journal are flushed out to ** the disk. After the journal is safely on oxide, the changes to the ** database are written into the database file and flushed to oxide. ** At the end of this call, the rollback journal still exists on the ** disk and we are still holding all locks, so the transaction has not ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the ** commit process. ** ** This call is a no-op if no write-transaction is currently active on pBt. ** ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to ** the name of a super-journal file that should be written into the ** individual journal file, or is NULL, indicating no super-journal file ** (single database transaction). ** ** When this is called, the super-journal should already have been ** created, populated with this journal pointer and synced to disk. ** ** Once this is routine has returned, the only thing required to commit ** the write-transaction for this database file is to delete the journal. */ SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ int rc = SQLITE_OK; if( p->inTrans==TRANS_WRITE ){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ rc = autoVacuumCommit(p); if( rc!=SQLITE_OK ){ sqlite3BtreeLeave(p); return rc; } } if( pBt->bDoTruncate ){ sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); } #endif rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); sqlite3BtreeLeave(p); } return rc; } /* ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() ** at the conclusion of a transaction. */ static void btreeEndTransaction(Btree *p){ BtShared *pBt = p->pBt; sqlite3 *db = p->db; assert( sqlite3BtreeHoldsMutex(p) ); #ifndef SQLITE_OMIT_AUTOVACUUM pBt->bDoTruncate = 0; #endif if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ /* If there are other active statements that belong to this database ** handle, downgrade to a read-only transaction. The other statements ** may still be reading from the database. */ downgradeAllSharedCacheTableLocks(p); p->inTrans = TRANS_READ; }else{ /* If the handle had any kind of transaction open, decrement the ** transaction count of the shared btree. If the transaction count ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() ** call below will unlock the pager. */ if( p->inTrans!=TRANS_NONE ){ clearAllSharedCacheTableLocks(p); pBt->nTransaction--; if( 0==pBt->nTransaction ){ pBt->inTransaction = TRANS_NONE; } } /* Set the current transaction state to TRANS_NONE and unlock the ** pager if this call closed the only read or write transaction. */ p->inTrans = TRANS_NONE; unlockBtreeIfUnused(pBt); } btreeIntegrity(p); } /* ** Commit the transaction currently in progress. ** ** This routine implements the second phase of a 2-phase commit. The ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() ** routine did all the work of writing information out to disk and flushing the ** contents so that they are written onto the disk platter. All this ** routine has to do is delete or truncate or zero the header in the ** the rollback journal (which causes the transaction to commit) and ** drop locks. ** ** Normally, if an error occurs while the pager layer is attempting to ** finalize the underlying journal file, this function returns an error and ** the upper layer will attempt a rollback. However, if the second argument ** is non-zero then this b-tree transaction is part of a multi-file ** transaction. In this case, the transaction has already been committed ** (by deleting a super-journal file) and the caller will ignore this ** functions return code. So, even if an error occurs in the pager layer, ** reset the b-tree objects internal state to indicate that the write ** transaction has been closed. This is quite safe, as the pager will have ** transitioned to the error state. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ if( p->inTrans==TRANS_NONE ) return SQLITE_OK; sqlite3BtreeEnter(p); btreeIntegrity(p); /* If the handle has a write-transaction open, commit the shared-btrees ** transaction and set the shared state to TRANS_READ. */ if( p->inTrans==TRANS_WRITE ){ int rc; BtShared *pBt = p->pBt; assert( pBt->inTransaction==TRANS_WRITE ); assert( pBt->nTransaction>0 ); rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); if( rc!=SQLITE_OK && bCleanup==0 ){ sqlite3BtreeLeave(p); return rc; } p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ pBt->inTransaction = TRANS_READ; btreeClearHasContent(pBt); } btreeEndTransaction(p); sqlite3BtreeLeave(p); return SQLITE_OK; } /* ** Do both phases of a commit. */ SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){ int rc; sqlite3BtreeEnter(p); rc = sqlite3BtreeCommitPhaseOne(p, 0); if( rc==SQLITE_OK ){ rc = sqlite3BtreeCommitPhaseTwo(p, 0); } sqlite3BtreeLeave(p); return rc; } /* ** This routine sets the state to CURSOR_FAULT and the error ** code to errCode for every cursor on any BtShared that pBtree ** references. Or if the writeOnly flag is set to 1, then only ** trip write cursors and leave read cursors unchanged. ** ** Every cursor is a candidate to be tripped, including cursors ** that belong to other database connections that happen to be ** sharing the cache with pBtree. ** ** This routine gets called when a rollback occurs. If the writeOnly ** flag is true, then only write-cursors need be tripped - read-only ** cursors save their current positions so that they may continue ** following the rollback. Or, if writeOnly is false, all cursors are ** tripped. In general, writeOnly is false if the transaction being ** rolled back modified the database schema. In this case b-tree root ** pages may be moved or deleted from the database altogether, making ** it unsafe for read cursors to continue. ** ** If the writeOnly flag is true and an error is encountered while ** saving the current position of a read-only cursor, all cursors, ** including all read-cursors are tripped. ** ** SQLITE_OK is returned if successful, or if an error occurs while ** saving a cursor position, an SQLite error code. */ SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ BtCursor *p; int rc = SQLITE_OK; assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); if( pBtree ){ sqlite3BtreeEnter(pBtree); for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ rc = saveCursorPosition(p); if( rc!=SQLITE_OK ){ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); break; } } }else{ sqlite3BtreeClearCursor(p); p->eState = CURSOR_FAULT; p->skipNext = errCode; } btreeReleaseAllCursorPages(p); } sqlite3BtreeLeave(pBtree); } return rc; } /* ** Set the pBt->nPage field correctly, according to the current ** state of the database. Assume pBt->pPage1 is valid. */ static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ int nPage = get4byte(&pPage1->aData[28]); testcase( nPage==0 ); if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); testcase( pBt->nPage!=(u32)nPage ); pBt->nPage = nPage; } /* ** Rollback the transaction in progress. ** ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). ** Only write cursors are tripped if writeOnly is true but all cursors are ** tripped if writeOnly is false. Any attempt to use ** a tripped cursor will result in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ int rc; BtShared *pBt = p->pBt; MemPage *pPage1; assert( writeOnly==1 || writeOnly==0 ); assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); sqlite3BtreeEnter(p); if( tripCode==SQLITE_OK ){ rc = tripCode = saveAllCursors(pBt, 0, 0); if( rc ) writeOnly = 0; }else{ rc = SQLITE_OK; } if( tripCode ){ int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); if( rc2!=SQLITE_OK ) rc = rc2; } btreeIntegrity(p); if( p->inTrans==TRANS_WRITE ){ int rc2; assert( TRANS_WRITE==pBt->inTransaction ); rc2 = sqlite3PagerRollback(pBt->pPager); if( rc2!=SQLITE_OK ){ rc = rc2; } /* The rollback may have destroyed the pPage1->aData value. So ** call btreeGetPage() on page 1 again to make ** sure pPage1->aData is set correctly. */ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ btreeSetNPage(pBt, pPage1); releasePageOne(pPage1); } assert( countValidCursors(pBt, 1)==0 ); pBt->inTransaction = TRANS_READ; btreeClearHasContent(pBt); } btreeEndTransaction(p); sqlite3BtreeLeave(p); return rc; } /* ** Start a statement subtransaction. The subtransaction can be rolled ** back independently of the main transaction. You must start a transaction ** before starting a subtransaction. The subtransaction is ended automatically ** if the main transaction commits or rolls back. ** ** Statement subtransactions are used around individual SQL statements ** that are contained within a BEGIN...COMMIT block. If a constraint ** error occurs within the statement, the effect of that one statement ** can be rolled back without having to rollback the entire transaction. ** ** A statement sub-transaction is implemented as an anonymous savepoint. The ** value passed as the second parameter is the total number of savepoints, ** including the new anonymous savepoint, open on the B-Tree. i.e. if there ** are no active savepoints and no other statement-transactions open, ** iStatement is 1. This anonymous savepoint can be released or rolled back ** using the sqlite3BtreeSavepoint() function. */ SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ int rc; BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); assert( p->inTrans==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( iStatement>0 ); assert( iStatement>p->db->nSavepoint ); assert( pBt->inTransaction==TRANS_WRITE ); /* At the pager level, a statement transaction is a savepoint with ** an index greater than all savepoints created explicitly using ** SQL statements. It is illegal to open, release or rollback any ** such savepoints while the statement transaction savepoint is active. */ rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); sqlite3BtreeLeave(p); return rc; } /* ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK ** or SAVEPOINT_RELEASE. This function either releases or rolls back the ** savepoint identified by parameter iSavepoint, depending on the value ** of op. ** ** Normally, iSavepoint is greater than or equal to zero. However, if op is ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the ** contents of the entire transaction are rolled back. This is different ** from a normal transaction rollback, as no locks are released and the ** transaction remains open. */ SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ int rc = SQLITE_OK; if( p && p->inTrans==TRANS_WRITE ){ BtShared *pBt = p->pBt; assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); sqlite3BtreeEnter(p); if( op==SAVEPOINT_ROLLBACK ){ rc = saveAllCursors(pBt, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); } if( rc==SQLITE_OK ){ if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ pBt->nPage = 0; } rc = newDatabase(pBt); btreeSetNPage(pBt, pBt->pPage1); /* pBt->nPage might be zero if the database was corrupt when ** the transaction was started. Otherwise, it must be at least 1. */ assert( CORRUPT_DB || pBt->nPage>0 ); } sqlite3BtreeLeave(p); } return rc; } /* ** Create a new cursor for the BTree whose root is on the page ** iTable. If a read-only cursor is requested, it is assumed that ** the caller already has at least a read-only transaction open ** on the database already. If a write-cursor is requested, then ** the caller is assumed to have an open write transaction. ** ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor ** can be used for reading or for writing if other conditions for writing ** are also met. These are the conditions that must be met in order ** for writing to be allowed: ** ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR ** ** 2: Other database connections that share the same pager cache ** but which are not in the READ_UNCOMMITTED state may not have ** cursors open with wrFlag==0 on the same table. Otherwise ** the changes made by this write cursor would be visible to ** the read cursors in the other database connection. ** ** 3: The database must be writable (not on read-only media) ** ** 4: There must be an active transaction. ** ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR ** is set. If FORDELETE is set, that is a hint to the implementation that ** this cursor will only be used to seek to and delete entries of an index ** as part of a larger DELETE statement. The FORDELETE hint is not used by ** this implementation. But in a hypothetical alternative storage engine ** in which index entries are automatically deleted when corresponding table ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE ** operations on this cursor can be no-ops and all READ operations can ** return a null row (2-bytes: 0x01 0x00). ** ** No checking is done to make sure that page iTable really is the ** root page of a b-tree. If it is not, then the cursor acquired ** will not work correctly. ** ** It is assumed that the sqlite3BtreeCursorZero() has been called ** on pCur to initialize the memory space prior to invoking this routine. */ static int btreeCursor( Btree *p, /* The btree */ Pgno iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ BtShared *pBt = p->pBt; /* Shared b-tree handle */ BtCursor *pX; /* Looping over other all cursors */ assert( sqlite3BtreeHoldsMutex(p) ); assert( wrFlag==0 || wrFlag==BTREE_WRCSR || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) ); /* The following assert statements verify that if this is a sharable ** b-tree database, the connection is holding the required table locks, ** and that no other connection has any open cursor that conflicts with ** this lock. The iTable<1 term disables the check for corrupt schemas. */ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) || iTable<1 ); assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); /* Assert that the caller has opened the required transaction. */ assert( p->inTrans>TRANS_NONE ); assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); assert( pBt->pPage1 && pBt->pPage1->aData ); assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); if( iTable<=1 ){ if( iTable<1 ){ return SQLITE_CORRUPT_BKPT; }else if( btreePagecount(pBt)==0 ){ assert( wrFlag==0 ); iTable = 0; } } /* Now that no other errors can occur, finish filling in the BtCursor ** variables and link the cursor into the BtShared list. */ pCur->pgnoRoot = iTable; pCur->iPage = -1; pCur->pKeyInfo = pKeyInfo; pCur->pBtree = p; pCur->pBt = pBt; pCur->curFlags = 0; /* If there are two or more cursors on the same btree, then all such ** cursors *must* have the BTCF_Multiple flag set. */ for(pX=pBt->pCursor; pX; pX=pX->pNext){ if( pX->pgnoRoot==iTable ){ pX->curFlags |= BTCF_Multiple; pCur->curFlags = BTCF_Multiple; } } pCur->eState = CURSOR_INVALID; pCur->pNext = pBt->pCursor; pBt->pCursor = pCur; if( wrFlag ){ pCur->curFlags |= BTCF_WriteFlag; pCur->curPagerFlags = 0; if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); }else{ pCur->curPagerFlags = PAGER_GET_READONLY; } return SQLITE_OK; } static int btreeCursorWithLock( Btree *p, /* The btree */ Pgno iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ int rc; sqlite3BtreeEnter(p); rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); sqlite3BtreeLeave(p); return rc; } SQLITE_PRIVATE int sqlite3BtreeCursor( Btree *p, /* The btree */ Pgno iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ BtCursor *pCur /* Write new cursor here */ ){ if( p->sharable ){ return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); }else{ return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); } } /* ** Return the size of a BtCursor object in bytes. ** ** This interfaces is needed so that users of cursors can preallocate ** sufficient storage to hold a cursor. The BtCursor object is opaque ** to users so they cannot do the sizeof() themselves - they must call ** this routine. */ SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){ return ROUND8(sizeof(BtCursor)); } /* ** Initialize memory that will be converted into a BtCursor object. ** ** The simple approach here would be to memset() the entire object ** to zero. But it turns out that the apPage[] and aiIdx[] arrays ** do not need to be zeroed and they are large, so we can save a lot ** of run-time by skipping the initialization of those elements. */ SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){ memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); } /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); assert( pBt->pCursor!=0 ); if( pBt->pCursor==pCur ){ pBt->pCursor = pCur->pNext; }else{ BtCursor *pPrev = pBt->pCursor; do{ if( pPrev->pNext==pCur ){ pPrev->pNext = pCur->pNext; break; } pPrev = pPrev->pNext; }while( ALWAYS(pPrev) ); } btreeReleaseAllCursorPages(pCur); unlockBtreeIfUnused(pBt); sqlite3_free(pCur->aOverflow); sqlite3_free(pCur->pKey); if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ /* Since the BtShared is not sharable, there is no need to ** worry about the missing sqlite3BtreeLeave() call here. */ assert( pBtree->sharable==0 ); sqlite3BtreeClose(pBtree); }else{ sqlite3BtreeLeave(pBtree); } pCur->pBtree = 0; } return SQLITE_OK; } /* ** Make sure the BtCursor* given in the argument has a valid ** BtCursor.info structure. If it is not already valid, call ** btreeParseCell() to fill it in. ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). */ #ifndef NDEBUG static int cellInfoEqual(CellInfo *a, CellInfo *b){ if( a->nKey!=b->nKey ) return 0; if( a->pPayload!=b->pPayload ) return 0; if( a->nPayload!=b->nPayload ) return 0; if( a->nLocal!=b->nLocal ) return 0; if( a->nSize!=b->nSize ) return 0; return 1; } static void assertCellInfo(BtCursor *pCur){ CellInfo info; memset(&info, 0, sizeof(info)); btreeParseCell(pCur->pPage, pCur->ix, &info); assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); } #else #define assertCellInfo(x) #endif static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ pCur->curFlags |= BTCF_ValidNKey; btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); }else{ assertCellInfo(pCur); } } #ifndef NDEBUG /* The next routine used only within assert() statements */ /* ** Return true if the given BtCursor is valid. A valid cursor is one ** that is currently pointing to a row in a (non-empty) table. ** This is a verification routine is used only within assert() statements. */ SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){ return pCur && pCur->eState==CURSOR_VALID; } #endif /* NDEBUG */ SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ assert( pCur!=0 ); return pCur->eState==CURSOR_VALID; } /* ** Return the value of the integer key or "rowid" for a table btree. ** This routine is only valid for a cursor that is pointing into a ** ordinary table btree. If the cursor points to an index btree or ** is invalid, the result of this routine is undefined. */ SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->curIntKey ); getCellInfo(pCur); return pCur->info.nKey; } /* ** Pin or unpin a cursor. */ SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor *pCur){ assert( (pCur->curFlags & BTCF_Pinned)==0 ); pCur->curFlags |= BTCF_Pinned; } SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor *pCur){ assert( (pCur->curFlags & BTCF_Pinned)!=0 ); pCur->curFlags &= ~BTCF_Pinned; } /* ** Return the offset into the database file for the start of the ** payload to which the cursor is pointing. */ SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); getCellInfo(pCur); return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + (i64)(pCur->info.pPayload - pCur->pPage->aData); } /* ** Return the number of bytes of payload for the entry that pCur is ** currently pointing to. For table btrees, this will be the amount ** of data. For index btrees, this will be the size of the key. ** ** The caller must guarantee that the cursor is pointing to a non-NULL ** valid entry. In other words, the calling procedure must guarantee ** that the cursor has Cursor.eState==CURSOR_VALID. */ SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); getCellInfo(pCur); return pCur->info.nPayload; } /* ** Return an upper bound on the size of any record for the table ** that the cursor is pointing into. ** ** This is an optimization. Everything will still work if this ** routine always returns 2147483647 (which is the largest record ** that SQLite can handle) or more. But returning a smaller value might ** prevent large memory allocations when trying to interpret a ** corrupt database. ** ** The current implementation merely returns the size of the underlying ** database file. */ SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; } /* ** Given the page number of an overflow page in the database (parameter ** ovfl), this function finds the page number of the next page in the ** linked list of overflow pages. If possible, it uses the auto-vacuum ** pointer-map data instead of reading the content of page ovfl to do so. ** ** If an error occurs an SQLite error code is returned. Otherwise: ** ** The page number of the next overflow page in the linked list is ** written to *pPgnoNext. If page ovfl is the last page in its linked ** list, *pPgnoNext is set to zero. ** ** If ppPage is not NULL, and a reference to the MemPage object corresponding ** to page number pOvfl was obtained, then *ppPage is set to point to that ** reference. It is the responsibility of the caller to call releasePage() ** on *ppPage to free the reference. In no reference was obtained (because ** the pointer-map was used to obtain the value for *pPgnoNext), then ** *ppPage is set to zero. */ static int getOverflowPage( BtShared *pBt, /* The database file */ Pgno ovfl, /* Current overflow page number */ MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ Pgno *pPgnoNext /* OUT: Next overflow page number */ ){ Pgno next = 0; MemPage *pPage = 0; int rc = SQLITE_OK; assert( sqlite3_mutex_held(pBt->mutex) ); assert(pPgnoNext); #ifndef SQLITE_OMIT_AUTOVACUUM /* Try to find the next page in the overflow list using the ** autovacuum pointer-map pages. Guess that the next page in ** the overflow list is page number (ovfl+1). If that guess turns ** out to be wrong, fall back to loading the data of page ** number ovfl to determine the next page number. */ if( pBt->autoVacuum ){ Pgno pgno; Pgno iGuess = ovfl+1; u8 eType; while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ iGuess++; } if( iGuess<=btreePagecount(pBt) ){ rc = ptrmapGet(pBt, iGuess, &eType, &pgno); if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ next = iGuess; rc = SQLITE_DONE; } } } #endif assert( next==0 || rc==SQLITE_DONE ); if( rc==SQLITE_OK ){ rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); assert( rc==SQLITE_OK || pPage==0 ); if( rc==SQLITE_OK ){ next = get4byte(pPage->aData); } } *pPgnoNext = next; if( ppPage ){ *ppPage = pPage; }else{ releasePage(pPage); } return (rc==SQLITE_DONE ? SQLITE_OK : rc); } /* ** Copy data from a buffer to a page, or from a page to a buffer. ** ** pPayload is a pointer to data stored on database page pDbPage. ** If argument eOp is false, then nByte bytes of data are copied ** from pPayload to the buffer pointed at by pBuf. If eOp is true, ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes ** of data are copied from the buffer pBuf to pPayload. ** ** SQLITE_OK is returned on success, otherwise an error code. */ static int copyPayload( void *pPayload, /* Pointer to page data */ void *pBuf, /* Pointer to buffer */ int nByte, /* Number of bytes to copy */ int eOp, /* 0 -> copy from page, 1 -> copy to page */ DbPage *pDbPage /* Page containing pPayload */ ){ if( eOp ){ /* Copy data from buffer to page (a write operation) */ int rc = sqlite3PagerWrite(pDbPage); if( rc!=SQLITE_OK ){ return rc; } memcpy(pPayload, pBuf, nByte); }else{ /* Copy data from page to buffer (a read operation) */ memcpy(pBuf, pPayload, nByte); } return SQLITE_OK; } /* ** This function is used to read or overwrite payload information ** for the entry that the pCur cursor is pointing to. The eOp ** argument is interpreted as follows: ** ** 0: The operation is a read. Populate the overflow cache. ** 1: The operation is a write. Populate the overflow cache. ** ** A total of "amt" bytes are read or written beginning at "offset". ** Data is read to or from the buffer pBuf. ** ** The content being read or written might appear on the main page ** or be scattered out on multiple overflow pages. ** ** If the current cursor entry uses one or more overflow pages ** this function may allocate space for and lazily populate ** the overflow page-list cache array (BtCursor.aOverflow). ** Subsequent calls use this cache to make seeking to the supplied offset ** more efficient. ** ** Once an overflow page-list cache has been allocated, it must be ** invalidated if some other cursor writes to the same table, or if ** the cursor is moved to a different row. Additionally, in auto-vacuum ** mode, the following events may invalidate an overflow page-list cache. ** ** * An incremental vacuum, ** * A commit in auto_vacuum="full" mode, ** * Creating a table (may require moving an overflow page). */ static int accessPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 offset, /* Begin reading this far into payload */ u32 amt, /* Read this many bytes */ unsigned char *pBuf, /* Write the bytes into this buffer */ int eOp /* zero to read. non-zero to write. */ ){ unsigned char *aPayload; int rc = SQLITE_OK; int iIdx = 0; MemPage *pPage = pCur->pPage; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ #ifdef SQLITE_DIRECT_OVERFLOW_READ unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ #endif assert( pPage ); assert( eOp==0 || eOp==1 ); assert( pCur->eState==CURSOR_VALID ); if( pCur->ix>=pPage->nCell ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cursorHoldsMutex(pCur) ); getCellInfo(pCur); aPayload = pCur->info.pPayload; assert( offset+amt <= pCur->info.nPayload ); assert( aPayload > pPage->aData ); if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ /* Trying to read or write past the end of the data is an error. The ** conditional above is really: ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ** but is recast into its current form to avoid integer overflow problems */ return SQLITE_CORRUPT_PAGE(pPage); } /* Check if data must be read/written to/from the btree page itself. */ if( offsetinfo.nLocal ){ int a = amt; if( a+offset>pCur->info.nLocal ){ a = pCur->info.nLocal - offset; } rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); offset = 0; pBuf += a; amt -= a; }else{ offset -= pCur->info.nLocal; } if( rc==SQLITE_OK && amt>0 ){ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ Pgno nextPage; nextPage = get4byte(&aPayload[pCur->info.nLocal]); /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. ** ** The aOverflow[] array is sized at one entry for each overflow page ** in the overflow chain. The page number of the first overflow page is ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array ** means "not yet known" (the cache is lazily populated). */ if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; if( pCur->aOverflow==0 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) ){ Pgno *aNew = (Pgno*)sqlite3Realloc( pCur->aOverflow, nOvfl*2*sizeof(Pgno) ); if( aNew==0 ){ return SQLITE_NOMEM_BKPT; }else{ pCur->aOverflow = aNew; } } memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); pCur->curFlags |= BTCF_ValidOvfl; }else{ /* If the overflow page-list cache has been allocated and the ** entry for the first required overflow page is valid, skip ** directly to it. */ if( pCur->aOverflow[offset/ovflSize] ){ iIdx = (offset/ovflSize); nextPage = pCur->aOverflow[iIdx]; offset = (offset%ovflSize); } } assert( rc==SQLITE_OK && amt>0 ); while( nextPage ){ /* If required, populate the overflow page-list cache. */ if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; assert( pCur->aOverflow[iIdx]==0 || pCur->aOverflow[iIdx]==nextPage || CORRUPT_DB ); pCur->aOverflow[iIdx] = nextPage; if( offset>=ovflSize ){ /* The only reason to read this page is to obtain the page ** number for the next page in the overflow chain. The page ** data is not required. So first try to lookup the overflow ** page-list cache, if any, then fall back to the getOverflowPage() ** function. */ assert( pCur->curFlags & BTCF_ValidOvfl ); assert( pCur->pBtree->db==pBt->db ); if( pCur->aOverflow[iIdx+1] ){ nextPage = pCur->aOverflow[iIdx+1]; }else{ rc = getOverflowPage(pBt, nextPage, 0, &nextPage); } offset -= ovflSize; }else{ /* Need to read this page properly. It contains some of the ** range of data that is being read (eOp==0) or written (eOp!=0). */ int a = amt; if( a + offset > ovflSize ){ a = ovflSize - offset; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* If all the following are true: ** ** 1) this is a read operation, and ** 2) data is required from the start of this overflow page, and ** 3) there are no dirty pages in the page-cache ** 4) the database is file-backed, and ** 5) the page is not in the WAL file ** 6) at least 4 bytes have already been read into the output buffer ** ** then data can be read directly from the database file into the ** output buffer, bypassing the page-cache altogether. This speeds ** up loading large records that span many overflow pages. */ if( eOp==0 /* (1) */ && offset==0 /* (2) */ && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ && &pBuf[-4]>=pBufStart /* (6) */ ){ sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); u8 aSave[4]; u8 *aWrite = &pBuf[-4]; assert( aWrite>=pBufStart ); /* due to (6) */ memcpy(aSave, aWrite, 4); rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; nextPage = get4byte(aWrite); memcpy(aWrite, aSave, 4); }else #endif { DbPage *pDbPage; rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, (eOp==0 ? PAGER_GET_READONLY : 0) ); if( rc==SQLITE_OK ){ aPayload = sqlite3PagerGetData(pDbPage); nextPage = get4byte(aPayload); rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); sqlite3PagerUnref(pDbPage); offset = 0; } } amt -= a; if( amt==0 ) return rc; pBuf += a; } if( rc ) break; iIdx++; } } if( rc==SQLITE_OK && amt>0 ){ /* Overflow chain ends prematurely */ return SQLITE_CORRUPT_PAGE(pPage); } return rc; } /* ** Read part of the payload for the row at which that cursor pCur is currently ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer ** begins at "offset". ** ** pCur can be pointing to either a table or an index b-tree. ** If pointing to a table btree, then the content section is read. If ** pCur is pointing to an index b-tree then the key section is read. ** ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the ** cursor might be invalid or might need to be restored before being read. ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>=0 && pCur->pPage ); return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); } /* ** This variant of sqlite3BtreePayload() works even if the cursor has not ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() ** interface. */ #ifndef SQLITE_OMIT_INCRBLOB static SQLITE_NOINLINE int accessPayloadChecked( BtCursor *pCur, u32 offset, u32 amt, void *pBuf ){ int rc; if ( pCur->eState==CURSOR_INVALID ){ return SQLITE_ABORT; } assert( cursorOwnsBtShared(pCur) ); rc = btreeRestoreCursorPosition(pCur); return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); } SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ if( pCur->eState==CURSOR_VALID ){ assert( cursorOwnsBtShared(pCur) ); return accessPayload(pCur, offset, amt, pBuf, 0); }else{ return accessPayloadChecked(pCur, offset, amt, pBuf); } } #endif /* SQLITE_OMIT_INCRBLOB */ /* ** Return a pointer to payload information from the entry that the ** pCur cursor is pointing to. The pointer is to the beginning of ** the key if index btrees (pPage->intKey==0) and is the data for ** table btrees (pPage->intKey==1). The number of bytes of available ** key/data is written into *pAmt. If *pAmt==0, then the value ** returned will not be a valid pointer. ** ** This routine is an optimization. It is common for the entire key ** and data to fit on the local page and for there to be no overflow ** pages. When that is so, this routine can be used to access the ** key and data without making a copy. If the key and/or data spills ** onto overflow pages, then accessPayload() must be used to reassemble ** the key/data and copy it into a preallocated buffer. ** ** The pointer returned by this routine looks directly into the cached ** page of the database. The data might change or move the next time ** any btree routine is called. */ static const void *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt /* Write the number of available bytes here */ ){ int amt; assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); assert( pCur->eState==CURSOR_VALID ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorOwnsBtShared(pCur) ); assert( pCur->ixpPage->nCell || CORRUPT_DB ); assert( pCur->info.nSize>0 ); assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); assert( pCur->info.pPayloadpPage->aDataEnd ||CORRUPT_DB); amt = pCur->info.nLocal; if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ /* There is too little space on the page for the expected amount ** of local content. Database must be corrupt. */ assert( CORRUPT_DB ); amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); } *pAmt = (u32)amt; return (void*)pCur->info.pPayload; } /* ** For the entry that cursor pCur is point to, return as ** many bytes of the key or data as are available on the local ** b-tree page. Write the number of available bytes into *pAmt. ** ** The pointer returned is ephemeral. The key/data may move ** or be destroyed on the next call to any Btree routine, ** including calls from other threads against the same cache. ** Hence, a mutex on the BtShared should be held prior to calling ** this routine. ** ** These routines is used to get quick access to key and data ** in the common case where no overflow pages are used. */ SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ return fetchPayload(pCur, pAmt); } /* ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page to move to. ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPageiPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->aiIdx[pCur->iPage] = pCur->ix; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; rc = getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur->curPagerFlags); assert( pCur->pPage!=0 || rc!=SQLITE_OK ); if( rc==SQLITE_OK && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey) ){ releasePage(pCur->pPage); rc = SQLITE_CORRUPT_PGNO(newPgno); } if( rc ){ pCur->pPage = pCur->apPage[--pCur->iPage]; } return rc; } #ifdef SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of ** cells in pParent, that page number iChild is the right-child of ** the page. */ static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ if( CORRUPT_DB ) return; /* The conditions tested below might not be true ** in a corrupt database */ assert( iIdx<=pParent->nCell ); if( iIdx==pParent->nCell ){ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); }else{ assert( get4byte(findCell(pParent, iIdx))==iChild ); } } #else # define assertParentIndex(x,y,z) #endif /* ** Move the cursor up to the parent page. ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ MemPage *pLeaf; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); assert( pCur->pPage ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->pPage->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->ix = pCur->aiIdx[pCur->iPage-1]; pLeaf = pCur->pPage; pCur->pPage = pCur->apPage[--pCur->iPage]; releasePageNotNull(pLeaf); } /* ** Move the cursor to point to the root page of its b-tree structure. ** ** If the table has a virtual root page, then the cursor is moved to point ** to the virtual root page instead of the actual root page. A table has a ** virtual root page when the actual root page contains no cells and a ** single child page. This can only happen with the table rooted at page 1. ** ** If the b-tree structure is empty, the cursor state is set to ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, ** the cursor is set to point to the first cell located on the root ** (or virtual root) page and the cursor state is set to CURSOR_VALID. ** ** If this function returns successfully, it may be assumed that the ** page-header flags indicate that the [virtual] root-page is the expected ** kind of b-tree page (i.e. if when opening the cursor the caller did not ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, ** indicating a table b-tree, or if the caller did specify a KeyInfo ** structure the flags byte is set to 0x02 or 0x0A, indicating an index ** b-tree). */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc = SQLITE_OK; assert( cursorOwnsBtShared(pCur) ); assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); if( pCur->iPage>=0 ){ if( pCur->iPage ){ releasePageNotNull(pCur->pPage); while( --pCur->iPage ){ releasePageNotNull(pCur->apPage[pCur->iPage]); } pRoot = pCur->pPage = pCur->apPage[0]; goto skip_init; } }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_EMPTY; }else{ assert( pCur->iPage==(-1) ); if( pCur->eState>=CURSOR_REQUIRESEEK ){ if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, pCur->curPagerFlags); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; pCur->curIntKey = pCur->pPage->intKey; } pRoot = pCur->pPage; assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is ** NULL, the caller expects a table b-tree. If this is not the case, ** return an SQLITE_CORRUPT error. ** ** Earlier versions of SQLite assumed that this test could not fail ** if the root page was already loaded when this function was called (i.e. ** if pCur->iPage>=0). But this is not so if the database is corrupted ** in such a way that page pRoot is linked into a second b-tree table ** (or the freelist). */ assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ return SQLITE_CORRUPT_PAGE(pCur->pPage); } skip_init: pCur->ix = 0; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); if( pRoot->nCell>0 ){ pCur->eState = CURSOR_VALID; }else if( !pRoot->leaf ){ Pgno subpage; if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); pCur->eState = CURSOR_VALID; rc = moveToChild(pCur, subpage); }else{ pCur->eState = CURSOR_INVALID; rc = SQLITE_EMPTY; } return rc; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. ** ** The left-most leaf is the one with the smallest key - the first ** in ascending order. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ assert( pCur->ixnCell ); pgno = get4byte(findCell(pPage, pCur->ix)); rc = moveToChild(pCur, pgno); } return rc; } /* ** Move the cursor down to the right-most leaf entry beneath the ** page to which it is currently pointing. Notice the difference ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() ** finds the left-most entry beneath the *entry* whereas moveToRightmost() ** finds the right-most entry beneath the *page*. ** ** The right-most entry is the one with the largest key - the last ** key in ascending order. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage = 0; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->ix = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->ix = pPage->nCell-1; assert( pCur->info.nSize==0 ); assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); return SQLITE_OK; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || (pCur->pPage!=0 && pCur->pPage->nCell==0) ); *pRes = 1; rc = SQLITE_OK; } return rc; } /* Move the cursor to the last entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ static SQLITE_NOINLINE int btreeLast(BtCursor *pCur, int *pRes){ int rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_VALID ); *pRes = 0; rc = moveToRightmost(pCur); if( rc==SQLITE_OK ){ pCur->curFlags |= BTCF_AtLast; }else{ pCur->curFlags &= ~BTCF_AtLast; } }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = 1; rc = SQLITE_OK; } return rc; } SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* If the cursor already points to the last entry, this is a no-op. */ if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ #ifdef SQLITE_DEBUG /* This block serves to assert() that the cursor really does point ** to the last entry in the b-tree. */ int ii; for(ii=0; iiiPage; ii++){ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); } assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); testcase( pCur->ix!=pCur->pPage->nCell-1 ); /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ assert( pCur->pPage->leaf ); #endif *pRes = 0; return SQLITE_OK; } return btreeLast(pCur, pRes); } /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) ** table near the key intKey. Return a success code. ** ** If an exact match is not found, then the cursor is always ** left pointing at a leaf page which would hold the entry if it ** were present. The cursor might point to an entry that comes ** before or after the key. ** ** An integer is written into *pRes which is the result of ** comparing the key with the entry to which the cursor is ** pointing. The meaning of the integer written into ** *pRes is as follows: ** ** *pRes<0 The cursor is left pointing at an entry that ** is smaller than intKey or if the table is empty ** and the cursor is therefore left point to nothing. ** ** *pRes==0 The cursor is left pointing at an entry that ** exactly matches intKey. ** ** *pRes>0 The cursor is left pointing at an entry that ** is larger than intKey. */ SQLITE_PRIVATE int sqlite3BtreeTableMoveto( BtCursor *pCur, /* The cursor to be moved */ i64 intKey, /* The table key */ int biasRight, /* If true, bias the search to the high end */ int *pRes /* Write search results here */ ){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( pCur->pKeyInfo==0 ); assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( pCur->info.nKeycurFlags & BTCF_AtLast)!=0 ){ *pRes = -1; return SQLITE_OK; } /* If the requested key is one more than the previous key, then ** try to get there using sqlite3BtreeNext() rather than a full ** binary search. This is an optimization only. The correct answer ** is still obtained without this case, only a little more slowly. */ if( pCur->info.nKey+1==intKey ){ *pRes = 0; rc = sqlite3BtreeNext(pCur, 0); if( rc==SQLITE_OK ){ getCellInfo(pCur); if( pCur->info.nKey==intKey ){ return SQLITE_OK; } }else if( rc!=SQLITE_DONE ){ return rc; } } } } #ifdef SQLITE_DEBUG pCur->pBtree->nSeek++; /* Performance measurement during testing */ #endif rc = moveToRoot(pCur); if( rc ){ if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = -1; return SQLITE_OK; } return rc; } assert( pCur->pPage ); assert( pCur->pPage->isInit ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage->nCell > 0 ); assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); assert( pCur->curIntKey ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->pPage; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page ** the cursor would have been INVALID above and this for(;;) loop ** not run. If this is not the root-page, then the moveToChild() routine ** would have already detected db corruption. Similarly, pPage must ** be the right kind (index or table) of b-tree page. Otherwise ** a moveToChild() or moveToRoot() call would have detected corruption. */ assert( pPage->nCell>0 ); assert( pPage->intKey ); lwr = 0; upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ for(;;){ i64 nCellKey; pCell = findCellPastPtr(pPage, idx); if( pPage->intKeyLeaf ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ){ return SQLITE_CORRUPT_PAGE(pPage); } } } getVarint(pCell, (u64*)&nCellKey); if( nCellKeyupr ){ c = -1; break; } }else if( nCellKey>intKey ){ upr = idx-1; if( lwr>upr ){ c = +1; break; } }else{ assert( nCellKey==intKey ); pCur->ix = (u16)idx; if( !pPage->leaf ){ lwr = idx; goto moveto_table_next_layer; }else{ pCur->curFlags |= BTCF_ValidNKey; pCur->info.nKey = nCellKey; pCur->info.nSize = 0; *pRes = 0; return SQLITE_OK; } } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } assert( lwr==upr+1 || !pPage->leaf ); assert( pPage->isInit ); if( pPage->leaf ){ assert( pCur->ixpPage->nCell ); pCur->ix = (u16)idx; *pRes = c; rc = SQLITE_OK; goto moveto_table_finish; } moveto_table_next_layer: if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } pCur->ix = (u16)lwr; rc = moveToChild(pCur, chldPg); if( rc ) break; } moveto_table_finish: pCur->info.nSize = 0; assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); return rc; } /* ** Compare the "idx"-th cell on the page the cursor pCur is currently ** pointing to to pIdxKey using xRecordCompare. Return negative or ** zero if the cell is less than or equal pIdxKey. Return positive ** if unknown. ** ** Return value negative: Cell at pCur[idx] less than pIdxKey ** ** Return value is zero: Cell at pCur[idx] equals pIdxKey ** ** Return value positive: Nothing is known about the relationship ** of the cell at pCur[idx] and pIdxKey. ** ** This routine is part of an optimization. It is always safe to return ** a positive value as that will cause the optimization to be skipped. */ static int indexCellCompare( BtCursor *pCur, int idx, UnpackedRecord *pIdxKey, RecordCompare xRecordCompare ){ MemPage *pPage = pCur->pPage; int c; int nCell; /* Size of the pCell cell in bytes */ u8 *pCell = findCellPastPtr(pPage, idx); nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); }else if( !(pCell[1] & 0x80) && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal ){ /* The record-size field is a 2 byte varint and the record ** fits entirely on the main b-tree page. */ testcase( pCell+nCell+2==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); }else{ /* If the record extends into overflow pages, do not attempt ** the optimization. */ c = 99; } return c; } /* ** Return true (non-zero) if pCur is current pointing to the last ** page of a table. */ static int cursorOnLastPage(BtCursor *pCur){ int i; assert( pCur->eState==CURSOR_VALID ); for(i=0; iiPage; i++){ MemPage *pPage = pCur->apPage[i]; if( pCur->aiIdx[i]nCell ) return 0; } return 1; } /* Move the cursor so that it points to an entry in an index table ** near the key pIdxKey. Return a success code. ** ** If an exact match is not found, then the cursor is always ** left pointing at a leaf page which would hold the entry if it ** were present. The cursor might point to an entry that comes ** before or after the key. ** ** An integer is written into *pRes which is the result of ** comparing the key with the entry to which the cursor is ** pointing. The meaning of the integer written into ** *pRes is as follows: ** ** *pRes<0 The cursor is left pointing at an entry that ** is smaller than pIdxKey or if the table is empty ** and the cursor is therefore left point to nothing. ** ** *pRes==0 The cursor is left pointing at an entry that ** exactly matches pIdxKey. ** ** *pRes>0 The cursor is left pointing at an entry that ** is larger than pIdxKey. ** ** The pIdxKey->eqSeen field is set to 1 if there ** exists an entry in the table that exactly matches pIdxKey. */ SQLITE_PRIVATE int sqlite3BtreeIndexMoveto( BtCursor *pCur, /* The cursor to be moved */ UnpackedRecord *pIdxKey, /* Unpacked index key */ int *pRes /* Write search results here */ ){ int rc; RecordCompare xRecordCompare; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( pCur->pKeyInfo!=0 ); #ifdef SQLITE_DEBUG pCur->pBtree->nSeek++; /* Performance measurement during testing */ #endif xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); pIdxKey->errCode = 0; assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); /* Check to see if we can skip a lot of work. Two cases: ** ** (1) If the cursor is already pointing to the very last cell ** in the table and the pIdxKey search key is greater than or ** equal to that last cell, then no movement is required. ** ** (2) If the cursor is on the last page of the table and the first ** cell on that last page is less than or equal to the pIdxKey ** search key, then we can start the search on the current page ** without needing to go back to root. */ if( pCur->eState==CURSOR_VALID && pCur->pPage->leaf && cursorOnLastPage(pCur) ){ int c; if( pCur->ix==pCur->pPage->nCell-1 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 && pIdxKey->errCode==SQLITE_OK ){ *pRes = c; return SQLITE_OK; /* Cursor already pointing at the correct spot */ } if( pCur->iPage>0 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 && pIdxKey->errCode==SQLITE_OK ){ pCur->curFlags &= ~BTCF_ValidOvfl; if( !pCur->pPage->isInit ){ return SQLITE_CORRUPT_BKPT; } goto bypass_moveto_root; /* Start search on the current page */ } pIdxKey->errCode = SQLITE_OK; } rc = moveToRoot(pCur); if( rc ){ if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = -1; return SQLITE_OK; } return rc; } bypass_moveto_root: assert( pCur->pPage ); assert( pCur->pPage->isInit ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage->nCell > 0 ); assert( pCur->curIntKey==0 ); assert( pIdxKey!=0 ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->pPage; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page ** the cursor would have been INVALID above and this for(;;) loop ** not run. If this is not the root-page, then the moveToChild() routine ** would have already detected db corruption. Similarly, pPage must ** be the right kind (index or table) of b-tree page. Otherwise ** a moveToChild() or moveToRoot() call would have detected corruption. */ assert( pPage->nCell>0 ); assert( pPage->intKey==0 ); lwr = 0; upr = pPage->nCell-1; idx = upr>>1; /* idx = (lwr+upr)/2; */ for(;;){ int nCell; /* Size of the pCell cell in bytes */ pCell = findCellPastPtr(pPage, idx); /* The maximum supported page-size is 65536 bytes. This means that ** the maximum number of record bytes stored on an index B-Tree ** page is less than 16384 bytes and may be stored as a 2-byte ** varint. This information is used to attempt to avoid parsing ** the entire cell by checking for the cases where the record is ** stored entirely within the b-tree page by inspecting the first ** 2 bytes of the cell. */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); }else if( !(pCell[1] & 0x80) && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal ){ /* The record-size field is a 2 byte varint and the record ** fits entirely on the main b-tree page. */ testcase( pCell+nCell+2==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); }else{ /* The record flows over onto one or more overflow pages. In ** this case the whole cell needs to be parsed, a buffer allocated ** and accessPayload() used to retrieve the record into the ** buffer before VdbeRecordCompare() can be called. ** ** If the record is corrupt, the xRecordCompare routine may read ** up to two varints past the end of the buffer. An extra 18 ** bytes of padding is allocated at the end of the buffer in ** case this happens. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; const int nOverrun = 18; /* Size of the overrun padding */ pPage->xParseCell(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; testcase( nCell<0 ); /* True if key size is 2^32 or more */ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ testcase( nCell==2 ); /* Minimum legal index key size */ if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ rc = SQLITE_CORRUPT_PAGE(pPage); goto moveto_index_finish; } pCellKey = sqlite3Malloc( nCell+nOverrun ); if( pCellKey==0 ){ rc = SQLITE_NOMEM_BKPT; goto moveto_index_finish; } pCur->ix = (u16)idx; rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ pCur->curFlags &= ~BTCF_ValidOvfl; if( rc ){ sqlite3_free(pCellKey); goto moveto_index_finish; } c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); sqlite3_free(pCellKey); } assert( (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) ); if( c<0 ){ lwr = idx+1; }else if( c>0 ){ upr = idx-1; }else{ assert( c==0 ); *pRes = 0; rc = SQLITE_OK; pCur->ix = (u16)idx; if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; goto moveto_index_finish; } if( lwr>upr ) break; assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ } assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); assert( pPage->isInit ); if( pPage->leaf ){ assert( pCur->ixpPage->nCell || CORRUPT_DB ); pCur->ix = (u16)idx; *pRes = c; rc = SQLITE_OK; goto moveto_index_finish; } if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } /* This block is similar to an in-lined version of: ** ** pCur->ix = (u16)lwr; ** rc = moveToChild(pCur, chldPg); ** if( rc ) break; */ pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->aiIdx[pCur->iPage] = (u16)lwr; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; rc = getAndInitPage(pCur->pBt, chldPg, &pCur->pPage, pCur->curPagerFlags); if( rc==SQLITE_OK && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey) ){ releasePage(pCur->pPage); rc = SQLITE_CORRUPT_PGNO(chldPg); } if( rc ){ pCur->pPage = pCur->apPage[--pCur->iPage]; break; } /* ***** End of in-lined moveToChild() call */ } moveto_index_finish: pCur->info.nSize = 0; assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); return rc; } /* ** Return TRUE if the cursor is not pointing at an entry of the table. ** ** TRUE will be returned after a call to sqlite3BtreeNext() moves ** past the last entry in the table or sqlite3BtreePrev() moves past ** the first entry. TRUE is also returned if the table is empty. */ SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries ** have been deleted? This API will need to change to return an error code ** as well as the boolean result value. */ return (CURSOR_VALID!=pCur->eState); } /* ** Return an estimate for the number of rows in the table that pCur is ** pointing to. Return a negative number if no estimate is currently ** available. */ SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ i64 n; u8 i; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* Currently this interface is only called by the OP_IfSmaller ** opcode, and it that case the cursor will always be valid and ** will always point to a leaf node. */ if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; if( NEVER(pCur->pPage->leaf==0) ) return -1; n = pCur->pPage->nCell; for(i=0; iiPage; i++){ n *= pCur->apPage[i]->nCell; } return n; } /* ** Advance the cursor to the next entry in the database. ** Return value: ** ** SQLITE_OK success ** SQLITE_DONE cursor is already pointing at the last element ** otherwise some kind of error occurred ** ** The main entry point is sqlite3BtreeNext(). That routine is optimized ** for the common case of merely incrementing the cell counter BtCursor.aiIdx ** to the next cell on the current page. The (slower) btreeNext() helper ** routine is called when it is necessary to move to a different page or ** to restore the cursor. ** ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the ** cursor corresponds to an SQL index and this routine could have been ** skipped if the SQL index had been a unique index. The F argument ** is a hint to the implement. SQLite btree implementation does not use ** this hint, but COMDB2 does. */ static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ int rc; int idx; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); if( pCur->eState!=CURSOR_VALID ){ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ return rc; } if( CURSOR_INVALID==pCur->eState ){ return SQLITE_DONE; } if( pCur->eState==CURSOR_SKIPNEXT ){ pCur->eState = CURSOR_VALID; if( pCur->skipNext>0 ) return SQLITE_OK; } } pPage = pCur->pPage; idx = ++pCur->ix; if( sqlite3FaultSim(412) ) pPage->isInit = 0; if( !pPage->isInit ){ return SQLITE_CORRUPT_BKPT; } if( idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); if( rc ) return rc; return moveToLeftmost(pCur); } do{ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); pPage = pCur->pPage; }while( pCur->ix>=pPage->nCell ); if( pPage->intKey ){ return sqlite3BtreeNext(pCur, 0); }else{ return SQLITE_OK; } } if( pPage->leaf ){ return SQLITE_OK; }else{ return moveToLeftmost(pCur); } } SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int flags){ MemPage *pPage; UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); pPage = pCur->pPage; if( (++pCur->ix)>=pPage->nCell ){ pCur->ix--; return btreeNext(pCur); } if( pPage->leaf ){ return SQLITE_OK; }else{ return moveToLeftmost(pCur); } } /* ** Step the cursor to the back to the previous entry in the database. ** Return values: ** ** SQLITE_OK success ** SQLITE_DONE the cursor is already on the first element of the table ** otherwise some kind of error occurred ** ** The main entry point is sqlite3BtreePrevious(). That routine is optimized ** for the common case of merely decrementing the cell counter BtCursor.aiIdx ** to the previous cell on the current page. The (slower) btreePrevious() ** helper routine is called when it is necessary to move to a different page ** or to restore the cursor. ** ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then ** the cursor corresponds to an SQL index and this routine could have been ** skipped if the SQL index had been a unique index. The F argument is a ** hint to the implement. The native SQLite btree implementation does not ** use this hint, but COMDB2 does. */ static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ int rc; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); assert( pCur->info.nSize==0 ); if( pCur->eState!=CURSOR_VALID ){ rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ return rc; } if( CURSOR_INVALID==pCur->eState ){ return SQLITE_DONE; } if( CURSOR_SKIPNEXT==pCur->eState ){ pCur->eState = CURSOR_VALID; if( pCur->skipNext<0 ) return SQLITE_OK; } } pPage = pCur->pPage; assert( pPage->isInit ); if( !pPage->leaf ){ int idx = pCur->ix; rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->ix==0 ){ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); } assert( pCur->info.nSize==0 ); assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); pCur->ix--; pPage = pCur->pPage; if( pPage->intKey && !pPage->leaf ){ rc = sqlite3BtreePrevious(pCur, 0); }else{ rc = SQLITE_OK; } } return rc; } SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int flags){ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); pCur->info.nSize = 0; if( pCur->eState!=CURSOR_VALID || pCur->ix==0 || pCur->pPage->leaf==0 ){ return btreePrevious(pCur); } pCur->ix--; return SQLITE_OK; } /* ** Allocate a new page from the database file. ** ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() ** has already been called on the new page.) The new page has also ** been referenced and the calling routine is responsible for calling ** sqlite3PagerUnref() on the new page when it is done. ** ** SQLITE_OK is returned on success. Any other return value indicates ** an error. *ppPage is set to NULL in the event of an error. ** ** If the "nearby" parameter is not 0, then an effort is made to ** locate a page close to the page number "nearby". This can be used in an ** attempt to keep related pages close to each other in the database file, ** which in turn can make database access faster. ** ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists ** anywhere on the free-list, then it is guaranteed to be returned. If ** eMode is BTALLOC_LT then the page returned will be less than or equal ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there ** are no restrictions on which page is returned. */ static int allocateBtreePage( BtShared *pBt, /* The btree */ MemPage **ppPage, /* Store pointer to the allocated page here */ Pgno *pPgno, /* Store the page number here */ Pgno nearby, /* Search for a page near this one */ u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ ){ MemPage *pPage1; int rc; u32 n; /* Number of pages on the freelist */ u32 k; /* Number of leaves on the trunk of the freelist */ MemPage *pTrunk = 0; MemPage *pPrevTrunk = 0; Pgno mxPage; /* Total size of the database file */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); pPage1 = pBt->pPage1; mxPage = btreePagecount(pBt); /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36 ** stores the total number of pages on the freelist. */ n = get4byte(&pPage1->aData[36]); testcase( n==mxPage-1 ); if( n>=mxPage ){ return SQLITE_CORRUPT_BKPT; } if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ Pgno iTrunk; u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ u32 nSearch = 0; /* Count of the number of search attempts */ /* If eMode==BTALLOC_EXACT and a query of the pointer-map ** shows that the page 'nearby' is somewhere on the free-list, then ** the entire-list will be searched for that page. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( eMode==BTALLOC_EXACT ){ if( nearby<=mxPage ){ u8 eType; assert( nearby>0 ); assert( pBt->autoVacuum ); rc = ptrmapGet(pBt, nearby, &eType, 0); if( rc ) return rc; if( eType==PTRMAP_FREEPAGE ){ searchList = 1; } } }else if( eMode==BTALLOC_LE ){ searchList = 1; } #endif /* Decrement the free-list count by 1. Set iTrunk to the index of the ** first free-list trunk page. iPrevTrunk is initially 1. */ rc = sqlite3PagerWrite(pPage1->pDbPage); if( rc ) return rc; put4byte(&pPage1->aData[36], n-1); /* The code within this loop is run only once if the 'searchList' variable ** is not true. Otherwise, it runs once for each trunk-page on the ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) */ do { pPrevTrunk = pTrunk; if( pPrevTrunk ){ /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page ** is the page number of the next freelist trunk page in the list or ** zero if this is the last freelist trunk page. */ iTrunk = get4byte(&pPrevTrunk->aData[0]); }else{ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 ** stores the page number of the first page of the freelist, or zero if ** the freelist is empty. */ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage || nSearch++ > n ){ rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); }else{ rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } assert( pTrunk!=0 ); assert( pTrunk->aData!=0 ); /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page ** is the number of leaf page pointers to follow. */ k = get4byte(&pTrunk->aData[4]); if( k==0 && !searchList ){ /* The trunk has no leaves and the list is not being searched. ** So extract the trunk page itself and use it as the newly ** allocated page */ assert( pPrevTrunk==0 ); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ){ goto end_allocate_page; } *pPgno = iTrunk; memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); *ppPage = pTrunk; pTrunk = 0; TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1)); }else if( k>(u32)(pBt->usableSize/4 - 2) ){ /* Value of k is out of range. Database corruption */ rc = SQLITE_CORRUPT_PGNO(iTrunk); goto end_allocate_page; #ifndef SQLITE_OMIT_AUTOVACUUM }else if( searchList && (nearby==iTrunk || (iTrunkpDbPage); if( rc ){ goto end_allocate_page; } if( k==0 ){ if( !pPrevTrunk ){ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); }else{ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); if( rc!=SQLITE_OK ){ goto end_allocate_page; } memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); } }else{ /* The trunk page is required by the caller but it contains ** pointers to free-list leaves. The first leaf becomes a trunk ** page in this case. */ MemPage *pNewTrunk; Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); if( iNewTrunk>mxPage ){ rc = SQLITE_CORRUPT_PGNO(iTrunk); goto end_allocate_page; } testcase( iNewTrunk==mxPage ); rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); if( rc!=SQLITE_OK ){ goto end_allocate_page; } rc = sqlite3PagerWrite(pNewTrunk->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pNewTrunk); goto end_allocate_page; } memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); put4byte(&pNewTrunk->aData[4], k-1); memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); releasePage(pNewTrunk); if( !pPrevTrunk ){ assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); put4byte(&pPage1->aData[32], iNewTrunk); }else{ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); if( rc ){ goto end_allocate_page; } put4byte(&pPrevTrunk->aData[0], iNewTrunk); } } pTrunk = 0; TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1)); #endif }else if( k>0 ){ /* Extract a leaf from the trunk */ u32 closest; Pgno iPage; unsigned char *aData = pTrunk->aData; if( nearby>0 ){ u32 i; closest = 0; if( eMode==BTALLOC_LE ){ for(i=0; imxPage || iPage<2 ){ rc = SQLITE_CORRUPT_PGNO(iTrunk); goto end_allocate_page; } testcase( iPage==mxPage ); if( !searchList || (iPage==nearby || (iPagepgno, n-1)); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ) goto end_allocate_page; if( closestpDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); *ppPage = 0; } } searchList = 0; } } releasePage(pPrevTrunk); pPrevTrunk = 0; }while( searchList ); }else{ /* There are no pages on the freelist, so append a new page to the ** database image. ** ** Normally, new pages allocated by this block can be requested from the ** pager layer with the 'no-content' flag set. This prevents the pager ** from trying to read the pages content from disk. However, if the ** current transaction has already run one or more incremental-vacuum ** steps, then the page we are about to allocate may contain content ** that is required in the event of a rollback. In this case, do ** not set the no-content flag. This causes the pager to load and journal ** the current page content before overwriting it. ** ** Note that the pager will not actually attempt to load or journal ** content for any page that really does lie past the end of the database ** file on disk. So the effects of disabling the no-content optimization ** here are confined to those pages that lie between the end of the ** database image and the end of the database file. */ int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc ) return rc; pBt->nPage++; if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ /* If *pPgno refers to a pointer-map page, allocate two new pages ** at the end of the file instead of one. The first allocated page ** becomes a new pointer-map page, the second is used by the caller. */ MemPage *pPg = 0; TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt->nPage)); assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg->pDbPage); releasePage(pPg); } if( rc ) return rc; pBt->nPage++; if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } } #endif put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); *pPgno = pBt->nPage; assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); if( rc ) return rc; rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); *ppPage = 0; } TRACE(("ALLOCATE: %u from end of file\n", *pPgno)); } assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); end_allocate_page: releasePage(pTrunk); releasePage(pPrevTrunk); assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); return rc; } /* ** This function is used to add page iPage to the database file free-list. ** It is assumed that the page is not already a part of the free-list. ** ** The value passed as the second argument to this function is optional. ** If the caller happens to have a pointer to the MemPage object ** corresponding to page iPage handy, it may pass it as the second value. ** Otherwise, it may pass NULL. ** ** If a pointer to a MemPage object is passed as the second argument, ** its reference count is not altered by this function. */ static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ MemPage *pTrunk = 0; /* Free-list trunk page */ Pgno iTrunk = 0; /* Page number of free-list trunk page */ MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ MemPage *pPage; /* Page being freed. May be NULL. */ int rc; /* Return Code */ u32 nFree; /* Initial number of pages on free-list */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( CORRUPT_DB || iPage>1 ); assert( !pMemPage || pMemPage->pgno==iPage ); if( iPage<2 || iPage>pBt->nPage ){ return SQLITE_CORRUPT_BKPT; } if( pMemPage ){ pPage = pMemPage; sqlite3PagerRef(pPage->pDbPage); }else{ pPage = btreePageLookup(pBt, iPage); } /* Increment the free page count on pPage1 */ rc = sqlite3PagerWrite(pPage1->pDbPage); if( rc ) goto freepage_out; nFree = get4byte(&pPage1->aData[36]); put4byte(&pPage1->aData[36], nFree+1); if( pBt->btsFlags & BTS_SECURE_DELETE ){ /* If the secure_delete option is enabled, then ** always fully overwrite deleted information with zeros. */ if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) ){ goto freepage_out; } memset(pPage->aData, 0, pPage->pBt->pageSize); } /* If the database supports auto-vacuum, write an entry in the pointer-map ** to indicate that the page is free. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); if( rc ) goto freepage_out; } /* Now manipulate the actual database free-list structure. There are two ** possibilities. If the free-list is currently empty, or if the first ** trunk page in the free-list is full, then this page will become a ** new free-list trunk page. Otherwise, it will become a leaf of the ** first trunk page in the current free-list. This block tests if it ** is possible to add the page as a new free-list leaf. */ if( nFree!=0 ){ u32 nLeaf; /* Initial number of leaf cells on trunk page */ iTrunk = get4byte(&pPage1->aData[32]); if( iTrunk>btreePagecount(pBt) ){ rc = SQLITE_CORRUPT_BKPT; goto freepage_out; } rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); if( rc!=SQLITE_OK ){ goto freepage_out; } nLeaf = get4byte(&pTrunk->aData[4]); assert( pBt->usableSize>32 ); if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ rc = SQLITE_CORRUPT_BKPT; goto freepage_out; } if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ /* In this case there is room on the trunk page to insert the page ** being freed as a new leaf. ** ** Note that the trunk page is not really full until it contains ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have ** coded. But due to a coding error in versions of SQLite prior to ** 3.6.0, databases with freelist trunk pages holding more than ** usableSize/4 - 8 entries will be reported as corrupt. In order ** to maintain backwards compatibility with older versions of SQLite, ** we will continue to restrict the number of entries to usableSize/4 - 8 ** for now. At some point in the future (once everyone has upgraded ** to 3.6.0 or later) we should consider fixing the conditional above ** to read "usableSize/4-2" instead of "usableSize/4-8". ** ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still ** avoid using the last six entries in the freelist trunk page array in ** order that database files created by newer versions of SQLite can be ** read by older versions of SQLite. */ rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pTrunk->aData[4], nLeaf+1); put4byte(&pTrunk->aData[8+nLeaf*4], iPage); if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ sqlite3PagerDontWrite(pPage->pDbPage); } rc = btreeSetHasContent(pBt, iPage); } TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage->pgno,pTrunk->pgno)); goto freepage_out; } } /* If control flows to this point, then it was not possible to add the ** the page being freed as a leaf page of the first trunk in the free-list. ** Possibly because the free-list is empty, or possibly because the ** first trunk in the free-list is full. Either way, the page being freed ** will become the new first trunk page in the free-list. */ if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ goto freepage_out; } rc = sqlite3PagerWrite(pPage->pDbPage); if( rc!=SQLITE_OK ){ goto freepage_out; } put4byte(pPage->aData, iTrunk); put4byte(&pPage->aData[4], 0); put4byte(&pPage1->aData[32], iPage); TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage->pgno, iTrunk)); freepage_out: if( pPage ){ pPage->isInit = 0; } releasePage(pPage); releasePage(pTrunk); return rc; } static void freePage(MemPage *pPage, int *pRC){ if( (*pRC)==SQLITE_OK ){ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); } } /* ** Free the overflow pages associated with the given Cell. */ static SQLITE_NOINLINE int clearCellOverflow( MemPage *pPage, /* The page that contains the Cell */ unsigned char *pCell, /* First byte of the Cell */ CellInfo *pInfo /* Size information about the cell */ ){ BtShared *pBt; Pgno ovflPgno; int rc; int nOvfl; u32 ovflPageSize; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pInfo->nLocal!=pInfo->nPayload ); testcase( pCell + pInfo->nSize == pPage->aDataEnd ); testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); if( pCell + pInfo->nSize > pPage->aDataEnd ){ /* Cell extends past end of page */ return SQLITE_CORRUPT_PAGE(pPage); } ovflPgno = get4byte(pCell + pInfo->nSize - 4); pBt = pPage->pBt; assert( pBt->usableSize > 4 ); ovflPageSize = pBt->usableSize - 4; nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; assert( nOvfl>0 || (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)btreePagecount(pBt) ){ /* 0 is not a legal page number and page 1 cannot be an ** overflow page. Therefore if ovflPgno<2 or past the end of the ** file the database must be corrupt. */ return SQLITE_CORRUPT_BKPT; } if( nOvfl ){ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); if( rc ) return rc; } if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 ){ /* There is no reason any cursor should have an outstanding reference ** to an overflow page belonging to a cell that is being deleted/updated. ** So if there exists more than one reference to this page, then it ** must not really be an overflow page and the database must be corrupt. ** It is helpful to detect this before calling freePage2(), as ** freePage2() may zero the page contents if secure-delete mode is ** enabled. If this 'overflow' page happens to be a page that the ** caller is iterating through or using in some other way, this ** can be problematic. */ rc = SQLITE_CORRUPT_BKPT; }else{ rc = freePage2(pBt, pOvfl, ovflPgno); } if( pOvfl ){ sqlite3PagerUnref(pOvfl->pDbPage); } if( rc ) return rc; ovflPgno = iNext; } return SQLITE_OK; } /* Call xParseCell to compute the size of a cell. If the cell contains ** overflow, then invoke cellClearOverflow to clear out that overflow. ** Store the result code (SQLITE_OK or some error code) in rc. ** ** Implemented as macro to force inlining for performance. */ #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ pPage->xParseCell(pPage, pCell, &sInfo); \ if( sInfo.nLocal!=sInfo.nPayload ){ \ rc = clearCellOverflow(pPage, pCell, &sInfo); \ }else{ \ rc = SQLITE_OK; \ } /* ** Create the byte sequence used to represent a cell on page pPage ** and write that byte sequence into pCell[]. Overflow pages are ** allocated and filled in as necessary. The calling procedure ** is responsible for making sure sufficient space has been allocated ** for pCell[]. ** ** Note that pCell does not necessary need to point to the pPage->aData ** area. pCell might point to some temporary storage. The cell will ** be constructed in this temporary area then copied into pPage->aData ** later. */ static int fillInCell( MemPage *pPage, /* The page that contains the cell */ unsigned char *pCell, /* Complete text of the cell */ const BtreePayload *pX, /* Payload with which to construct the cell */ int *pnSize /* Write cell size here */ ){ int nPayload; const u8 *pSrc; int nSrc, n, rc, mn; int spaceLeft; MemPage *pToRelease; unsigned char *pPrior; unsigned char *pPayload; BtShared *pBt; Pgno pgnoOvfl; int nHeader; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); /* pPage is not necessarily writeable since pCell might be auxiliary ** buffer space that is separate from the pPage buffer area */ assert( pCellaData || pCell>=&pPage->aData[pPage->pBt->pageSize] || sqlite3PagerIswriteable(pPage->pDbPage) ); /* Fill in the header. */ nHeader = pPage->childPtrSize; if( pPage->intKey ){ nPayload = pX->nData + pX->nZero; pSrc = pX->pData; nSrc = pX->nData; assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ nHeader += putVarint32(&pCell[nHeader], nPayload); nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); }else{ assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); nSrc = nPayload = (int)pX->nKey; pSrc = pX->pKey; nHeader += putVarint32(&pCell[nHeader], nPayload); } /* Fill in the payload */ pPayload = &pCell[nHeader]; if( nPayload<=pPage->maxLocal ){ /* This is the common case where everything fits on the btree page ** and no overflow pages are required. */ n = nHeader + nPayload; testcase( n==3 ); testcase( n==4 ); if( n<4 ) n = 4; *pnSize = n; assert( nSrc<=nPayload ); testcase( nSrcminLocal; n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); testcase( n==pPage->maxLocal ); testcase( n==pPage->maxLocal+1 ); if( n > pPage->maxLocal ) n = mn; spaceLeft = n; *pnSize = n + nHeader + 4; pPrior = &pCell[nHeader+n]; pToRelease = 0; pgnoOvfl = 0; pBt = pPage->pBt; /* At this point variables should be set as follows: ** ** nPayload Total payload size in bytes ** pPayload Begin writing payload here ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, ** that means content must spill into overflow pages. ** *pnSize Size of the local cell (not counting overflow pages) ** pPrior Where to write the pgno of the first overflow page ** ** Use a call to btreeParseCellPtr() to verify that the values above ** were computed correctly. */ #ifdef SQLITE_DEBUG { CellInfo info; pPage->xParseCell(pPage, pCell, &info); assert( nHeader==(int)(info.pPayload - pCell) ); assert( info.nKey==pX->nKey ); assert( *pnSize == info.nSize ); assert( spaceLeft == info.nLocal ); } #endif /* Write the payload into the local Cell and any extra into overflow pages */ while( 1 ){ n = nPayload; if( n>spaceLeft ) n = spaceLeft; /* If pToRelease is not zero than pPayload points into the data area ** of pToRelease. Make sure pToRelease is still writeable. */ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); /* If pPayload is part of the data area of pPage, then make sure pPage ** is still writeable */ assert( pPayloadaData || pPayload>=&pPage->aData[pBt->pageSize] || sqlite3PagerIswriteable(pPage->pDbPage) ); if( nSrc>=n ){ memcpy(pPayload, pSrc, n); }else if( nSrc>0 ){ n = nSrc; memcpy(pPayload, pSrc, n); }else{ memset(pPayload, 0, n); } nPayload -= n; if( nPayload<=0 ) break; pPayload += n; pSrc += n; nSrc -= n; spaceLeft -= n; if( spaceLeft==0 ){ MemPage *pOvfl = 0; #ifndef SQLITE_OMIT_AUTOVACUUM Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ if( pBt->autoVacuum ){ do{ pgnoOvfl++; } while( PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) ); } #endif rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); #ifndef SQLITE_OMIT_AUTOVACUUM /* If the database supports auto-vacuum, and the second or subsequent ** overflow page is being allocated, add an entry to the pointer-map ** for that page now. ** ** If this is the first overflow page, then write a partial entry ** to the pointer-map. If we write nothing to this pointer-map slot, ** then the optimistic overflow chain processing in clearCell() ** may misinterpret the uninitialized values and delete the ** wrong pages from the database. */ if( pBt->autoVacuum && rc==SQLITE_OK ){ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); if( rc ){ releasePage(pOvfl); } } #endif if( rc ){ releasePage(pToRelease); return rc; } /* If pToRelease is not zero than pPrior points into the data area ** of pToRelease. Make sure pToRelease is still writeable. */ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); /* If pPrior is part of the data area of pPage, then make sure pPage ** is still writeable */ assert( pPrioraData || pPrior>=&pPage->aData[pBt->pageSize] || sqlite3PagerIswriteable(pPage->pDbPage) ); put4byte(pPrior, pgnoOvfl); releasePage(pToRelease); pToRelease = pOvfl; pPrior = pOvfl->aData; put4byte(pPrior, 0); pPayload = &pOvfl->aData[4]; spaceLeft = pBt->usableSize - 4; } } releasePage(pToRelease); return SQLITE_OK; } /* ** Remove the i-th cell from pPage. This routine effects pPage only. ** The cell content is not freed or deallocated. It is assumed that ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. */ static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ u32 pc; /* Offset to cell content of cell being deleted */ u8 *data; /* pPage->aData */ u8 *ptr; /* Used to move bytes around within data[] */ int rc; /* The return code */ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ if( *pRC ) return; assert( idx>=0 ); assert( idxnCell ); assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->nFree>=0 ); data = pPage->aData; ptr = &pPage->aCellIdx[2*idx]; assert( pPage->pBt->usableSize > (u32)(ptr-data) ); pc = get2byte(ptr); hdr = pPage->hdrOffset; testcase( pc==(u32)get2byte(&data[hdr+5]) ); testcase( pc+sz==pPage->pBt->usableSize ); if( pc+sz > pPage->pBt->usableSize ){ *pRC = SQLITE_CORRUPT_BKPT; return; } rc = freeSpace(pPage, pc, sz); if( rc ){ *pRC = rc; return; } pPage->nCell--; if( pPage->nCell==0 ){ memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pPage->pBt->usableSize); pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset - pPage->childPtrSize - 8; }else{ memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); put2byte(&data[hdr+3], pPage->nCell); pPage->nFree += 2; } } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** ** If the cell content will fit on the page, then put it there. If it ** will not fit, then make a copy of the cell content into pTemp if ** pTemp is not null. Regardless of pTemp, allocate a new entry ** in pPage->apOvfl[] and make it point to the cell content (either ** in pTemp or the original pCell) and also record its index. ** Allocating a new entry in pPage->aCell[] implies that ** pPage->nOverflow is incremented. ** ** The insertCellFast() routine below works exactly the same as ** insertCell() except that it lacks the pTemp and iChild parameters ** which are assumed zero. Other than that, the two routines are the ** same. ** ** Fixes or enhancements to this routine should be reflected in ** insertCellFast()! */ static int insertCell( MemPage *pPage, /* Page into which we are copying */ int i, /* New cell becomes the i-th cell of the page */ u8 *pCell, /* Content of the new cell */ int sz, /* Bytes of content in pCell */ u8 *pTemp, /* Temp storage space for pCell, if needed */ Pgno iChild /* If non-zero, replace first 4 bytes with this value */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ u8 *data; /* The content of the whole page */ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); assert( pPage->nFree>=0 ); assert( iChild>0 ); if( pPage->nOverflow || sz+2>pPage->nFree ){ if( pTemp ){ memcpy(pTemp, pCell, sz); pCell = pTemp; } put4byte(pCell, iChild); j = pPage->nOverflow++; /* Comparison against ArraySize-1 since we hold back one extra slot ** as a contingency. In other words, never need more than 3 overflow ** slots but 4 are allocated, just to be safe. */ assert( j < ArraySize(pPage->apOvfl)-1 ); pPage->apOvfl[j] = pCell; pPage->aiOvfl[j] = (u16)i; /* When multiple overflows occur, they are always sequential and in ** sorted order. This invariants arise because multiple overflows can ** only occur when inserting divider cells into the parent page during ** balancing, and the dividers are adjacent and sorted. */ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ }else{ int rc = sqlite3PagerWrite(pPage->pDbPage); if( NEVER(rc!=SQLITE_OK) ){ return rc; } assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; assert( &data[pPage->cellOffset]==pPage->aCellIdx ); rc = allocateSpace(pPage, sz, &idx); if( rc ){ return rc; } /* The allocateSpace() routine guarantees the following properties ** if it returns successfully */ assert( idx >= 0 ); assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nFree -= (u16)(2 + sz); /* In a corrupt database where an entry in the cell index section of ** a btree page has a value of 3 or less, the pCell value might point ** as many as 4 bytes in front of the start of the aData buffer for ** the source page. Make sure this does not cause problems by not ** reading the first 4 bytes */ memcpy(&data[idx+4], pCell+4, sz-4); put4byte(&data[idx], iChild); pIns = pPage->aCellIdx + i*2; memmove(pIns+2, pIns, 2*(pPage->nCell - i)); put2byte(pIns, idx); pPage->nCell++; /* increment the cell count */ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); #ifndef SQLITE_OMIT_AUTOVACUUM if( pPage->pBt->autoVacuum ){ int rc2 = SQLITE_OK; /* The cell may contain a pointer to an overflow page. If so, write ** the entry for the overflow page into the pointer map. */ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2); if( rc2 ) return rc2; } #endif } return SQLITE_OK; } /* ** This variant of insertCell() assumes that the pTemp and iChild ** parameters are both zero. Use this variant in sqlite3BtreeInsert() ** for performance improvement, and also so that this variant is only ** called from that one place, and is thus inlined, and thus runs must ** faster. ** ** Fixes or enhancements to this routine should be reflected into ** the insertCell() routine. */ static int insertCellFast( MemPage *pPage, /* Page into which we are copying */ int i, /* New cell becomes the i-th cell of the page */ u8 *pCell, /* Content of the new cell */ int sz /* Bytes of content in pCell */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ u8 *data; /* The content of the whole page */ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); assert( pPage->nFree>=0 ); assert( pPage->nOverflow==0 ); if( sz+2>pPage->nFree ){ j = pPage->nOverflow++; /* Comparison against ArraySize-1 since we hold back one extra slot ** as a contingency. In other words, never need more than 3 overflow ** slots but 4 are allocated, just to be safe. */ assert( j < ArraySize(pPage->apOvfl)-1 ); pPage->apOvfl[j] = pCell; pPage->aiOvfl[j] = (u16)i; /* When multiple overflows occur, they are always sequential and in ** sorted order. This invariants arise because multiple overflows can ** only occur when inserting divider cells into the parent page during ** balancing, and the dividers are adjacent and sorted. */ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ }else{ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc!=SQLITE_OK ){ return rc; } assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; assert( &data[pPage->cellOffset]==pPage->aCellIdx ); rc = allocateSpace(pPage, sz, &idx); if( rc ){ return rc; } /* The allocateSpace() routine guarantees the following properties ** if it returns successfully */ assert( idx >= 0 ); assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nFree -= (u16)(2 + sz); memcpy(&data[idx], pCell, sz); pIns = pPage->aCellIdx + i*2; memmove(pIns+2, pIns, 2*(pPage->nCell - i)); put2byte(pIns, idx); pPage->nCell++; /* increment the cell count */ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); #ifndef SQLITE_OMIT_AUTOVACUUM if( pPage->pBt->autoVacuum ){ int rc2 = SQLITE_OK; /* The cell may contain a pointer to an overflow page. If so, write ** the entry for the overflow page into the pointer map. */ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2); if( rc2 ) return rc2; } #endif } return SQLITE_OK; } /* ** The following parameters determine how many adjacent pages get involved ** in a balancing operation. NN is the number of neighbors on either side ** of the page that participate in the balancing operation. NB is the ** total number of pages that participate, including the target page and ** NN neighbors on either side. ** ** The minimum value of NN is 1 (of course). Increasing NN above 1 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance ** in exchange for a larger degradation in INSERT and UPDATE performance. ** The value of NN appears to give the best results overall. ** ** (Later:) The description above makes it seem as if these values are ** tunable - as if you could change them and recompile and it would all work. ** But that is unlikely. NB has been 3 since the inception of SQLite and ** we have never tested any other value. */ #define NN 1 /* Number of neighbors on either side of pPage */ #define NB 3 /* (NN*2+1): Total pages involved in the balance */ /* ** A CellArray object contains a cache of pointers and sizes for a ** consecutive sequence of cells that might be held on multiple pages. ** ** The cells in this array are the divider cell or cells from the pParent ** page plus up to three child pages. There are a total of nCell cells. ** ** pRef is a pointer to one of the pages that contributes cells. This is ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize ** which should be common to all pages that contribute cells to this array. ** ** apCell[] and szCell[] hold, respectively, pointers to the start of each ** cell and the size of each cell. Some of the apCell[] pointers might refer ** to overflow cells. In other words, some apCel[] pointers might not point ** to content area of the pages. ** ** A szCell[] of zero means the size of that cell has not yet been computed. ** ** The cells come from as many as four different pages: ** ** ----------- ** | Parent | ** ----------- ** / | \ ** / | \ ** --------- --------- --------- ** |Child-1| |Child-2| |Child-3| ** --------- --------- --------- ** ** The order of cells is in the array is for an index btree is: ** ** 1. All cells from Child-1 in order ** 2. The first divider cell from Parent ** 3. All cells from Child-2 in order ** 4. The second divider cell from Parent ** 5. All cells from Child-3 in order ** ** For a table-btree (with rowids) the items 2 and 4 are empty because ** content exists only in leaves and there are no divider cells. ** ** For an index btree, the apEnd[] array holds pointer to the end of page ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, ** respectively. The ixNx[] array holds the number of cells contained in ** each of these 5 stages, and all stages to the left. Hence: ** ** ixNx[0] = Number of cells in Child-1. ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells ** ixNx[4] = Total number of cells. ** ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] ** are used and they point to the leaf pages only, and the ixNx value are: ** ** ixNx[0] = Number of cells in Child-1. ** ixNx[1] = Number of cells in Child-1 and Child-2. ** ixNx[2] = Total number of cells. ** ** Sometimes when deleting, a child page can have zero cells. In those ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] ** entries, shift down. The end result is that each ixNx[] entry should ** be larger than the previous */ typedef struct CellArray CellArray; struct CellArray { int nCell; /* Number of cells in apCell[] */ MemPage *pRef; /* Reference page */ u8 **apCell; /* All cells begin balanced */ u16 *szCell; /* Local size of all cells in apCell[] */ u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ }; /* ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been ** computed. */ static void populateCellCache(CellArray *p, int idx, int N){ MemPage *pRef = p->pRef; u16 *szCell = p->szCell; assert( idx>=0 && idx+N<=p->nCell ); while( N>0 ){ assert( p->apCell[idx]!=0 ); if( szCell[idx]==0 ){ szCell[idx] = pRef->xCellSize(pRef, p->apCell[idx]); }else{ assert( CORRUPT_DB || szCell[idx]==pRef->xCellSize(pRef, p->apCell[idx]) ); } idx++; N--; } } /* ** Return the size of the Nth element of the cell array */ static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ assert( N>=0 && NnCell ); assert( p->szCell[N]==0 ); p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); return p->szCell[N]; } static u16 cachedCellSize(CellArray *p, int N){ assert( N>=0 && NnCell ); if( p->szCell[N] ) return p->szCell[N]; return computeCellSize(p, N); } /* ** Array apCell[] contains pointers to nCell b-tree page cells. The ** szCell[] array contains the size in bytes of each cell. This function ** replaces the current contents of page pPg with the contents of the cell ** array. ** ** Some of the cells in apCell[] may currently be stored in pPg. This ** function works around problems caused by this by making a copy of any ** such cells before overwriting the page data. ** ** The MemPage.nFree field is invalidated by this function. It is the ** responsibility of the caller to set it correctly. */ static int rebuildPage( CellArray *pCArray, /* Content to be added to page pPg */ int iFirst, /* First cell in pCArray to use */ int nCell, /* Final number of cells on page */ MemPage *pPg /* The page to be reconstructed */ ){ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ u8 * const aData = pPg->aData; /* Pointer to data for pPg */ const int usableSize = pPg->pBt->usableSize; u8 * const pEnd = &aData[usableSize]; int i = iFirst; /* Which cell to copy from pCArray*/ u32 j; /* Start of cell content area */ int iEnd = i+nCell; /* Loop terminator */ u8 *pCellptr = pPg->aCellIdx; u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); u8 *pData; int k; /* Current slot in pCArray->apEnd[] */ u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ assert( i(u32)usableSize) ){ j = 0; } memcpy(&pTmp[j], &aData[j], usableSize - j); for(k=0; ALWAYS(kixNx[k]<=i; k++){} pSrcEnd = pCArray->apEnd[k]; pData = pEnd; while( 1/*exit by break*/ ){ u8 *pCell = pCArray->apCell[i]; u16 sz = pCArray->szCell[i]; assert( sz>0 ); if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; pCell = &pTmp[pCell - aData]; }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd && (uptr)(pCell)<(uptr)pSrcEnd ){ return SQLITE_CORRUPT_BKPT; } pData -= sz; put2byte(pCellptr, (pData - aData)); pCellptr += 2; if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; memmove(pData, pCell, sz); assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); i++; if( i>=iEnd ) break; if( pCArray->ixNx[k]<=i ){ k++; pSrcEnd = pCArray->apEnd[k]; } } /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ pPg->nCell = nCell; pPg->nOverflow = 0; put2byte(&aData[hdr+1], 0); put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); aData[hdr+7] = 0x00; return SQLITE_OK; } /* ** The pCArray objects contains pointers to b-tree cells and the cell sizes. ** This function attempts to add the cells stored in the array to page pPg. ** If it cannot (because the page needs to be defragmented before the cells ** will fit), non-zero is returned. Otherwise, if the cells are added ** successfully, zero is returned. ** ** Argument pCellptr points to the first entry in the cell-pointer array ** (part of page pPg) to populate. After cell apCell[0] is written to the ** page body, a 16-bit offset is written to pCellptr. And so on, for each ** cell in the array. It is the responsibility of the caller to ensure ** that it is safe to overwrite this part of the cell-pointer array. ** ** When this function is called, *ppData points to the start of the ** content area on page pPg. If the size of the content area is extended, ** *ppData is updated to point to the new start of the content area ** before returning. ** ** Finally, argument pBegin points to the byte immediately following the ** end of the space required by this page for the cell-pointer area (for ** all cells - not just those inserted by the current call). If the content ** area must be extended to before this point in order to accommodate all ** cells in apCell[], then the cells do not fit and non-zero is returned. */ static int pageInsertArray( MemPage *pPg, /* Page to add cells to */ u8 *pBegin, /* End of cell-pointer array */ u8 **ppData, /* IN/OUT: Page content-area pointer */ u8 *pCellptr, /* Pointer to cell-pointer area */ int iFirst, /* Index of first cell to add */ int nCell, /* Number of cells to add to pPg */ CellArray *pCArray /* Array of cells */ ){ int i = iFirst; /* Loop counter - cell index to insert */ u8 *aData = pPg->aData; /* Complete page */ u8 *pData = *ppData; /* Content area. A subset of aData[] */ int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ int k; /* Current slot in pCArray->apEnd[] */ u8 *pEnd; /* Maximum extent of cell data */ assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ if( iEnd<=iFirst ) return 0; for(k=0; ALWAYS(kixNx[k]<=i ; k++){} pEnd = pCArray->apEnd[k]; while( 1 /*Exit by break*/ ){ int sz, rc; u8 *pSlot; assert( pCArray->szCell[i]!=0 ); sz = pCArray->szCell[i]; if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ if( (pData - pBegin)apCell[i] will never overlap on a well-formed ** database. But they might for a corrupt database. Hence use memmove() ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ assert( (pSlot+sz)<=pCArray->apCell[i] || pSlot>=(pCArray->apCell[i]+sz) || CORRUPT_DB ); if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd && (uptr)(pCArray->apCell[i])<(uptr)pEnd ){ assert( CORRUPT_DB ); (void)SQLITE_CORRUPT_BKPT; return 1; } memmove(pSlot, pCArray->apCell[i], sz); put2byte(pCellptr, (pSlot - aData)); pCellptr += 2; i++; if( i>=iEnd ) break; if( pCArray->ixNx[k]<=i ){ k++; pEnd = pCArray->apEnd[k]; } } *ppData = pData; return 0; } /* ** The pCArray object contains pointers to b-tree cells and their sizes. ** ** This function adds the space associated with each cell in the array ** that is currently stored within the body of pPg to the pPg free-list. ** The cell-pointers and other fields of the page are not updated. ** ** This function returns the total number of cells added to the free-list. */ static int pageFreeArray( MemPage *pPg, /* Page to edit */ int iFirst, /* First cell to delete */ int nCell, /* Cells to delete */ CellArray *pCArray /* Array of cells */ ){ u8 * const aData = pPg->aData; u8 * const pEnd = &aData[pPg->pBt->usableSize]; u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; int nRet = 0; int i, j; int iEnd = iFirst + nCell; int nFree = 0; int aOfst[10]; int aAfter[10]; for(i=iFirst; iapCell[i]; if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ int sz; int iAfter; int iOfst; /* No need to use cachedCellSize() here. The sizes of all cells that ** are to be freed have already been computing while deciding which ** cells need freeing */ sz = pCArray->szCell[i]; assert( sz>0 ); iOfst = (u16)(pCell - aData); iAfter = iOfst+sz; for(j=0; j=nFree ){ if( nFree>=(int)(sizeof(aOfst)/sizeof(aOfst[0])) ){ for(j=0; jpEnd ) return 0; nFree++; } nRet++; } } for(j=0; jnCell cells starting with ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells ** starting at apCell[iNew]. ** ** This routine makes the necessary adjustments to pPg so that it contains ** the correct cells after being balanced. ** ** The pPg->nFree field is invalid when this function returns. It is the ** responsibility of the caller to set it correctly. */ static int editPage( MemPage *pPg, /* Edit this page */ int iOld, /* Index of first cell currently on page */ int iNew, /* Index of new first cell on page */ int nNew, /* Final number of cells on page */ CellArray *pCArray /* Array of cells and sizes */ ){ u8 * const aData = pPg->aData; const int hdr = pPg->hdrOffset; u8 *pBegin = &pPg->aCellIdx[nNew * 2]; int nCell = pPg->nCell; /* Cells stored on pPg */ u8 *pData; u8 *pCellptr; int i; int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; int iNewEnd = iNew + nNew; #ifdef SQLITE_DEBUG u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); memcpy(pTmp, aData, pPg->pBt->usableSize); #endif /* Remove cells from the start and end of the page */ assert( nCell>=0 ); if( iOldnCell) ) return SQLITE_CORRUPT_BKPT; memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); nCell -= nShift; } if( iNewEnd < iOldEnd ){ int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); assert( nCell>=nTail ); nCell -= nTail; } pData = &aData[get2byte(&aData[hdr+5])]; if( pDatapPg->aDataEnd) ) goto editpage_fail; /* Add cells to the start of the page */ if( iNew=0 ); pCellptr = pPg->aCellIdx; memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iNew, nAdd, pCArray ) ) goto editpage_fail; nCell += nAdd; } /* Add any overflow cells */ for(i=0; inOverflow; i++){ int iCell = (iOld + pPg->aiOvfl[i]) - iNew; if( iCell>=0 && iCellaCellIdx[iCell * 2]; if( nCell>iCell ){ memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); } nCell++; cachedCellSize(pCArray, iCell+iNew); if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iCell+iNew, 1, pCArray ) ) goto editpage_fail; } } /* Append cells to the end of the page */ assert( nCell>=0 ); pCellptr = &pPg->aCellIdx[nCell*2]; if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iNew+nCell, nNew-nCell, pCArray ) ) goto editpage_fail; pPg->nCell = nNew; pPg->nOverflow = 0; put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); #ifdef SQLITE_DEBUG for(i=0; iapCell[i+iNew]; int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ pCell = &pTmp[pCell - aData]; } assert( 0==memcmp(pCell, &aData[iOff], pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); } #endif return SQLITE_OK; editpage_fail: /* Unable to edit this page. Rebuild it from scratch instead. */ populateCellCache(pCArray, iNew, nNew); return rebuildPage(pCArray, iNew, nNew, pPg); } #ifndef SQLITE_OMIT_QUICKBALANCE /* ** This version of balance() handles the common special case where ** a new entry is being inserted on the extreme right-end of the ** tree, in other words, when the new entry will become the largest ** entry in the tree. ** ** Instead of trying to balance the 3 right-most leaf pages, just add ** a new page to the right-hand side and put the one new entry in ** that page. This leaves the right side of the tree somewhat ** unbalanced. But odds are that we will be inserting new entries ** at the end soon afterwards so the nearly empty page will quickly ** fill up. On average. ** ** pPage is the leaf page which is the right-most page in the tree. ** pParent is its parent. pPage must have a single overflow entry ** which is also the right-most entry on the page. ** ** The pSpace buffer is used to store a temporary copy of the divider ** cell that will be inserted into pParent. Such a cell consists of a 4 ** byte page number followed by a variable length integer. In other ** words, at most 13 bytes. Hence the pSpace buffer must be at ** least 13 bytes in size. */ static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ BtShared *const pBt = pPage->pBt; /* B-Tree Database */ MemPage *pNew; /* Newly allocated page */ int rc; /* Return Code */ Pgno pgnoNew; /* Page number of pNew */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( pPage->nOverflow==1 ); if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ assert( pPage->nFree>=0 ); assert( pParent->nFree>=0 ); /* Allocate a new page. This page will become the right-sibling of ** pPage. Make the parent page writable, so that the new divider cell ** may be inserted. If both these operations are successful, proceed. */ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); if( rc==SQLITE_OK ){ u8 *pOut = &pSpace[4]; u8 *pCell = pPage->apOvfl[0]; u16 szCell = pPage->xCellSize(pPage, pCell); u8 *pStop; CellArray b; assert( sqlite3PagerIswriteable(pNew->pDbPage) ); assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); b.nCell = 1; b.pRef = pPage; b.apCell = &pCell; b.szCell = &szCell; b.apEnd[0] = pPage->aDataEnd; b.ixNx[0] = 2; rc = rebuildPage(&b, 0, 1, pNew); if( NEVER(rc) ){ releasePage(pNew); return rc; } pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; /* If this is an auto-vacuum database, update the pointer map ** with entries for the new page, and any pointer from the ** cell on the page to an overflow page. If either of these ** operations fails, the return code is set, but the contents ** of the parent page are still manipulated by the code below. ** That is Ok, at this point the parent page is guaranteed to ** be marked as dirty. Returning an error code will cause a ** rollback, undoing any changes made to the parent page. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); if( szCell>pNew->minLocal ){ ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); } } /* Create a divider cell to insert into pParent. The divider cell ** consists of a 4-byte page number (the page number of pPage) and ** a variable length key value (which must be the same value as the ** largest key on pPage). ** ** To find the largest key value on pPage, first find the right-most ** cell on pPage. The first two fields of this cell are the ** record-length (a variable length integer at most 32-bits in size) ** and the key value (a variable length integer, may have any value). ** The first of the while(...) loops below skips over the record-length ** field. The second while(...) loop copies the key value from the ** cell on pPage into the pSpace buffer. */ pCell = findCell(pPage, pPage->nCell-1); pStop = &pCell[9]; while( (*(pCell++)&0x80) && pCellnCell, pSpace, (int)(pOut-pSpace), 0, pPage->pgno); } /* Set the right-child pointer of pParent to point to the new page. */ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); /* Release the reference to the new page. */ releasePage(pNew); } return rc; } #endif /* SQLITE_OMIT_QUICKBALANCE */ #if 0 /* ** This function does not contribute anything to the operation of SQLite. ** it is sometimes activated temporarily while debugging code responsible ** for setting pointer-map entries. */ static int ptrmapCheckPages(MemPage **apPage, int nPage){ int i, j; for(i=0; ipBt; assert( pPage->isInit ); for(j=0; jnCell; j++){ CellInfo info; u8 *z; z = findCell(pPage, j); pPage->xParseCell(pPage, z, &info); if( info.nLocalpgno && e==PTRMAP_OVERFLOW1 ); } if( !pPage->leaf ){ Pgno child = get4byte(z); ptrmapGet(pBt, child, &e, &n); assert( n==pPage->pgno && e==PTRMAP_BTREE ); } } if( !pPage->leaf ){ Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); ptrmapGet(pBt, child, &e, &n); assert( n==pPage->pgno && e==PTRMAP_BTREE ); } } return 1; } #endif /* ** This function is used to copy the contents of the b-tree node stored ** on page pFrom to page pTo. If page pFrom was not a leaf page, then ** the pointer-map entries for each child page are updated so that the ** parent page stored in the pointer map is page pTo. If pFrom contained ** any cells with overflow page pointers, then the corresponding pointer ** map entries are also updated so that the parent page is page pTo. ** ** If pFrom is currently carrying any overflow cells (entries in the ** MemPage.apOvfl[] array), they are not copied to pTo. ** ** Before returning, page pTo is reinitialized using btreeInitPage(). ** ** The performance of this function is not critical. It is only used by ** the balance_shallower() and balance_deeper() procedures, neither of ** which are called often under normal circumstances. */ static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ if( (*pRC)==SQLITE_OK ){ BtShared * const pBt = pFrom->pBt; u8 * const aFrom = pFrom->aData; u8 * const aTo = pTo->aData; int const iFromHdr = pFrom->hdrOffset; int const iToHdr = ((pTo->pgno==1) ? 100 : 0); int rc; int iData; assert( pFrom->isInit ); assert( pFrom->nFree>=iToHdr ); assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); /* Copy the b-tree node content from page pFrom to page pTo. */ iData = get2byte(&aFrom[iFromHdr+5]); memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); /* Reinitialize page pTo so that the contents of the MemPage structure ** match the new data. The initialization of pTo can actually fail under ** fairly obscure circumstances, even though it is a copy of initialized ** page pFrom. */ pTo->isInit = 0; rc = btreeInitPage(pTo); if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); if( rc!=SQLITE_OK ){ *pRC = rc; return; } /* If this is an auto-vacuum database, update the pointer-map entries ** for any b-tree or overflow pages that pTo now contains the pointers to. */ if( ISAUTOVACUUM(pBt) ){ *pRC = setChildPtrmaps(pTo); } } } /* ** This routine redistributes cells on the iParentIdx'th child of pParent ** (hereafter "the page") and up to 2 siblings so that all pages have about the ** same amount of free space. Usually a single sibling on either side of the ** page are used in the balancing, though both siblings might come from one ** side if the page is the first or last child of its parent. If the page ** has fewer than 2 siblings (something which can only happen if the page ** is a root page or a child of a root page) then all available siblings ** participate in the balancing. ** ** The number of siblings of the page might be increased or decreased by ** one or two in an effort to keep pages nearly full but not over full. ** ** Note that when this routine is called, some of the cells on the page ** might not actually be stored in MemPage.aData[]. This can happen ** if the page is overfull. This routine ensures that all cells allocated ** to the page and its siblings fit into MemPage.aData[] before returning. ** ** In the course of balancing the page and its siblings, cells may be ** inserted into or removed from the parent page (pParent). Doing so ** may cause the parent page to become overfull or underfull. If this ** happens, it is the responsibility of the caller to invoke the correct ** balancing routine to fix this problem (see the balance() routine). ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. ** ** The third argument to this function, aOvflSpace, is a pointer to a ** buffer big enough to hold one page. If while inserting cells into the parent ** page (pParent) the parent page becomes overfull, this buffer is ** used to store the parent's overflow cells. Because this function inserts ** a maximum of four divider cells into the parent page, and the maximum ** size of a cell stored within an internal node is always less than 1/4 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large ** enough for all overflow cells. ** ** If aOvflSpace is set to a null pointer, this function returns ** SQLITE_NOMEM. */ static int balance_nonroot( MemPage *pParent, /* Parent page of siblings being balanced */ int iParentIdx, /* Index of "the page" in pParent */ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ int isRoot, /* True if pParent is a root-page */ int bBulk /* True if this call is part of a bulk load */ ){ BtShared *pBt; /* The whole database */ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ int nNew = 0; /* Number of pages in apNew[] */ int nOld; /* Number of pages in apOld[] */ int i, j, k; /* Loop counters */ int nxDiv; /* Next divider slot in pParent->aCell[] */ int rc = SQLITE_OK; /* The return code */ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int iSpace1 = 0; /* First unused byte of aSpace1[] */ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ int szScratch; /* Size of scratch memory requested */ MemPage *apOld[NB]; /* pPage and up to two siblings */ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ u8 *pRight; /* Location in parent of right-sibling pointer */ u8 *apDiv[NB-1]; /* Divider cells in pParent */ int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ int cntOld[NB+2]; /* Old index in b.apCell[] */ int szNew[NB+2]; /* Combined size of cells placed on i-th page */ u8 *aSpace1; /* Space for copies of dividers cells */ Pgno pgno; /* Temp var to store a page number in */ u8 abDone[NB+2]; /* True after i'th new page is populated */ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ CellArray b; /* Parsed information on cells being balanced */ memset(abDone, 0, sizeof(abDone)); memset(&b, 0, sizeof(b)); pBt = pParent->pBt; assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); /* At this point pParent may have at most one overflow cell. And if ** this overflow cell is present, it must be the cell with ** index iParentIdx. This scenario comes about when this function ** is called (indirectly) from sqlite3BtreeDelete(). */ assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); if( !aOvflSpace ){ return SQLITE_NOMEM_BKPT; } assert( pParent->nFree>=0 ); /* Find the sibling pages to balance. Also locate the cells in pParent ** that divide the siblings. An attempt is made to find NN siblings on ** either side of pPage. More siblings are taken from one side, however, ** if there are fewer than NN siblings on the other side. If pParent ** has NB or fewer children then all children of pParent are taken. ** ** This loop also drops the divider cells from the parent page. This ** way, the remainder of the function does not have to deal with any ** overflow cells in the parent page, since if any existed they will ** have already been removed. */ i = pParent->nOverflow + pParent->nCell; if( i<2 ){ nxDiv = 0; }else{ assert( bBulk==0 || bBulk==1 ); if( iParentIdx==0 ){ nxDiv = 0; }else if( iParentIdx==i ){ nxDiv = i-2+bBulk; }else{ nxDiv = iParentIdx-1; } i = 2-bBulk; } nOld = i+1; if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ if( rc==SQLITE_OK ){ rc = getAndInitPage(pBt, pgno, &apOld[i], 0); } if( rc ){ memset(apOld, 0, (i+1)*sizeof(MemPage*)); goto balance_cleanup; } if( apOld[i]->nFree<0 ){ rc = btreeComputeFreeSpace(apOld[i]); if( rc ){ memset(apOld, 0, (i)*sizeof(MemPage*)); goto balance_cleanup; } } nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); if( (i--)==0 ) break; if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ apDiv[i] = pParent->apOvfl[0]; pgno = get4byte(apDiv[i]); szNew[i] = pParent->xCellSize(pParent, apDiv[i]); pParent->nOverflow = 0; }else{ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); pgno = get4byte(apDiv[i]); szNew[i] = pParent->xCellSize(pParent, apDiv[i]); /* Drop the cell from the parent page. apDiv[i] still points to ** the cell within the parent, even though it has been dropped. ** This is safe because dropping a cell only overwrites the first ** four bytes of it, and this function does not need the first ** four bytes of the divider cell. So the pointer is safe to use ** later on. ** ** But not if we are in secure-delete mode. In secure-delete mode, ** the dropCell() routine will overwrite the entire cell with zeroes. ** In this case, temporarily copy the cell into the aOvflSpace[] ** buffer. It will be copied out again as soon as the aSpace[] buffer ** is allocated. */ if( pBt->btsFlags & BTS_FAST_SECURE ){ int iOff; /* If the following if() condition is not true, the db is corrupted. ** The call to dropCell() below will detect this. */ iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); if( (iOff+szNew[i])<=(int)pBt->usableSize ){ memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; } } dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); } } /* Make nMaxCells a multiple of 4 in order to preserve 8-byte ** alignment */ nMaxCells = (nMaxCells + 3)&~3; /* ** Allocate space for memory structures */ szScratch = nMaxCells*sizeof(u8*) /* b.apCell */ + nMaxCells*sizeof(u16) /* b.szCell */ + pBt->pageSize; /* aSpace1 */ assert( szScratch<=7*(int)pBt->pageSize ); b.apCell = sqlite3StackAllocRaw(0, szScratch ); if( b.apCell==0 ){ rc = SQLITE_NOMEM_BKPT; goto balance_cleanup; } b.szCell = (u16*)&b.apCell[nMaxCells]; aSpace1 = (u8*)&b.szCell[nMaxCells]; assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); /* ** Load pointers to all cells on sibling pages and the divider cells ** into the local b.apCell[] array. Make copies of the divider cells ** into space obtained from aSpace1[]. The divider cells have already ** been removed from pParent. ** ** If the siblings are on leaf pages, then the child pointers of the ** divider cells are stripped from the cells before they are copied ** into aSpace1[]. In this way, all cells in b.apCell[] are without ** child pointers. If siblings are not leaves, then all cell in ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] ** are alike. ** ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. ** leafData: 1 if pPage holds key+data and pParent holds only keys. */ b.pRef = apOld[0]; leafCorrection = b.pRef->leaf*4; leafData = b.pRef->intKeyLeaf; for(i=0; inCell; u8 *aData = pOld->aData; u16 maskPage = pOld->maskPage; u8 *piCell = aData + pOld->cellOffset; u8 *piEnd; VVA_ONLY( int nCellAtStart = b.nCell; ) /* Verify that all sibling pages are of the same "type" (table-leaf, ** table-interior, index-leaf, or index-interior). */ if( pOld->aData[0]!=apOld[0]->aData[0] ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } /* Load b.apCell[] with pointers to all cells in pOld. If pOld ** contains overflow cells, include them in the b.apCell[] array ** in the correct spot. ** ** Note that when there are multiple overflow cells, it is always the ** case that they are sequential and adjacent. This invariant arises ** because multiple overflows can only occurs when inserting divider ** cells into a parent on a prior balance, and divider cells are always ** adjacent and are inserted in order. There is an assert() tagged ** with "NOTE 1" in the overflow cell insertion loop to prove this ** invariant. ** ** This must be done in advance. Once the balance starts, the cell ** offset section of the btree page will be overwritten and we will no ** long be able to find the cells if a pointer to each cell is not saved ** first. */ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); if( pOld->nOverflow>0 ){ if( NEVER(limitaiOvfl[0]) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } limit = pOld->aiOvfl[0]; for(j=0; jnOverflow; k++){ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ b.apCell[b.nCell] = pOld->apOvfl[k]; b.nCell++; } } piEnd = aData + pOld->cellOffset + 2*pOld->nCell; while( piCellnCell+pOld->nOverflow) ); cntOld[i] = b.nCell; if( imaxLocal+23 ); assert( iSpace1 <= (int)pBt->pageSize ); memcpy(pTemp, apDiv[i], sz); b.apCell[b.nCell] = pTemp+leafCorrection; assert( leafCorrection==0 || leafCorrection==4 ); b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; if( !pOld->leaf ){ assert( leafCorrection==0 ); assert( pOld->hdrOffset==0 || CORRUPT_DB ); /* The right pointer of the child page pOld becomes the left ** pointer of the divider cell */ memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); }else{ assert( leafCorrection==4 ); while( b.szCell[b.nCell]<4 ){ /* Do not allow any cells smaller than 4 bytes. If a smaller cell ** does exist, pad it with 0x00 bytes. */ assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); aSpace1[iSpace1++] = 0x00; b.szCell[b.nCell]++; } } b.nCell++; } } /* ** Figure out the number of pages needed to hold all b.nCell cells. ** Store this number in "k". Also compute szNew[] which is the total ** size of all cells on the i-th page and cntNew[] which is the index ** in b.apCell[] of the cell that divides page i from page i+1. ** cntNew[k] should equal b.nCell. ** ** Values computed by this block: ** ** k: The total number of sibling pages ** szNew[i]: Spaced used on the i-th sibling page. ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to ** the right of the i-th sibling page. ** usableSpace: Number of bytes of space available on each sibling. ** */ usableSpace = pBt->usableSize - 12 + leafCorrection; for(i=k=0; iaDataEnd; b.ixNx[k] = cntOld[i]; if( k && b.ixNx[k]==b.ixNx[k-1] ){ k--; /* Omit b.ixNx[] entry for child pages with no cells */ } if( !leafData ){ k++; b.apEnd[k] = pParent->aDataEnd; b.ixNx[k] = cntOld[i]+1; } assert( p->nFree>=0 ); szNew[i] = usableSpace - p->nFree; for(j=0; jnOverflow; j++){ szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); } cntNew[i] = cntOld[i]; } k = nOld; for(i=0; iusableSpace ){ if( i+1>=k ){ k = i+2; if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } szNew[k-1] = 0; cntNew[k-1] = b.nCell; } sz = 2 + cachedCellSize(&b, cntNew[i]-1); szNew[i] -= sz; if( !leafData ){ if( cntNew[i]usableSpace ) break; szNew[i] += sz; cntNew[i]++; if( !leafData ){ if( cntNew[i]=b.nCell ){ k = i+1; }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* ** The packing computed by the previous block is biased toward the siblings ** on the left side (siblings with smaller keys). The left siblings are ** always nearly full, while the right-most sibling might be nearly empty. ** The next block of code attempts to adjust the packing of siblings to ** get a better balance. ** ** This adjustment is more than an optimization. The packing above might ** be so out of balance as to be illegal. For example, the right-most ** sibling might be completely empty. This adjustment is not optional. */ for(i=k-1; i>0; i--){ int szRight = szNew[i]; /* Size of sibling on the right */ int szLeft = szNew[i-1]; /* Size of sibling on the left */ int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; (void)cachedCellSize(&b, d); do{ int szR, szD; assert( d szLeft-(szR+(i==k-1?0:2)))){ break; } szRight += szD + 2; szLeft -= szR + 2; cntNew[i-1] = r; r--; d--; }while( r>=0 ); szNew[i] = szRight; szNew[i-1] = szLeft; if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* Sanity check: For a non-corrupt database file one of the following ** must be true: ** (1) We found one or more cells (cntNew[0])>0), or ** (2) pPage is a virtual root page. A virtual root page is when ** the real root page is page 1 and we are the only child of ** that page. */ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n", apOld[0]->pgno, apOld[0]->nCell, nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 )); /* ** Allocate k new pages. Reuse old pages where possible. */ pageFlags = apOld[0]->aData[0]; for(i=0; ipDbPage); nNew++; if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) && rc==SQLITE_OK ){ rc = SQLITE_CORRUPT_BKPT; } if( rc ) goto balance_cleanup; }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; zeroPage(pNew, pageFlags); apNew[i] = pNew; nNew++; cntOld[i] = b.nCell; /* Set the pointer-map entry for the new sibling page. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); if( rc!=SQLITE_OK ){ goto balance_cleanup; } } } } /* ** Reassign page numbers so that the new pages are in ascending order. ** This helps to keep entries in the disk file in order so that a scan ** of the table is closer to a linear scan through the file. That in turn ** helps the operating system to deliver pages from the disk more rapidly. ** ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 ** (5), that is not a performance concern. ** ** When NB==3, this one optimization makes the database about 25% faster ** for large insertions and deletions. */ for(i=0; ipgno; assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); } for(i=0; ipgno < apNew[iB]->pgno ) iB = j; } /* If apNew[i] has a page number that is bigger than any of the ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent ** entry that has the smallest page number (which we know to be ** entry apNew[iB]). */ if( iB!=i ){ Pgno pgnoA = apNew[i]->pgno; Pgno pgnoB = apNew[iB]->pgno; Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; u16 fgA = apNew[i]->pDbPage->flags; u16 fgB = apNew[iB]->pDbPage->flags; sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); apNew[i]->pgno = pgnoB; apNew[iB]->pgno = pgnoA; } } TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) " "%u(%u nc=%u) %u(%u nc=%u)\n", apNew[0]->pgno, szNew[0], cntNew[0], nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 )); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( nNew>=1 && nNew<=ArraySize(apNew) ); assert( apNew[nNew-1]!=0 ); put4byte(pRight, apNew[nNew-1]->pgno); /* If the sibling pages are not leaves, ensure that the right-child pointer ** of the right-most new sibling page is set to the value that was ** originally in the same field of the right-most old sibling page. */ if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); } /* Make any required updates to pointer map entries associated with ** cells stored on sibling pages following the balance operation. Pointer ** map entries associated with divider cells are set by the insertCell() ** routine. The associated pointer map entries are: ** ** a) if the cell contains a reference to an overflow chain, the ** entry associated with the first page in the overflow chain, and ** ** b) if the sibling pages are not leaves, the child page associated ** with the cell. ** ** If the sibling pages are not leaves, then the pointer map entry ** associated with the right-child of each sibling may also need to be ** updated. This happens below, after the sibling pages have been ** populated, not here. */ if( ISAUTOVACUUM(pBt) ){ MemPage *pOld; MemPage *pNew = pOld = apNew[0]; int cntOldNext = pNew->nCell + pNew->nOverflow; int iNew = 0; int iOld = 0; for(i=0; i=0 && iOldnCell + pOld->nOverflow + !leafData; } if( i==cntNew[iNew] ){ pNew = apNew[++iNew]; if( !leafData ) continue; } /* Cell pCell is destined for new sibling page pNew. Originally, it ** was either part of sibling page iOld (possibly an overflow cell), ** or else the divider cell to the left of sibling page iOld. So, ** if sibling page iOld had the same page number as pNew, and if ** pCell really was a part of sibling page iOld (not a divider or ** overflow cell), we can skip updating the pointer map entries. */ if( iOld>=nNew || pNew->pgno!=aPgno[iOld] || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) ){ if( !leafCorrection ){ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); } if( cachedCellSize(&b,i)>pNew->minLocal ){ ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); } if( rc ) goto balance_cleanup; } } } /* Insert new divider cells into pParent. */ for(i=0; ileaf ){ memcpy(&pNew->aData[8], pCell, 4); }else if( leafData ){ /* If the tree is a leaf-data tree, and the siblings are leaves, ** then there is no divider cell in b.apCell[]. Instead, the divider ** cell consists of the integer key for the right-most cell of ** the sibling-page assembled above only. */ CellInfo info; j--; pNew->xParseCell(pNew, b.apCell[j], &info); pCell = pTemp; sz = 4 + putVarint(&pCell[4], info.nKey); pTemp = 0; }else{ pCell -= 4; /* Obscure case for non-leaf-data trees: If the cell at pCell was ** previously stored on a leaf node, and its reported size was 4 ** bytes, then it may actually be smaller than this ** (see btreeParseCellPtr(), 4 bytes is the minimum size of ** any cell). But it is important to pass the correct size to ** insertCell(), so reparse the cell now. ** ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" ** and WITHOUT ROWID tables with exactly one column which is the ** primary key. */ if( b.szCell[j]==4 ){ assert(leafCorrection==4); sz = pParent->xCellSize(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); for(k=0; ALWAYS(kpgno); if( rc!=SQLITE_OK ) goto balance_cleanup; assert( sqlite3PagerIswriteable(pParent->pDbPage) ); } /* Now update the actual sibling pages. The order in which they are updated ** is important, as this code needs to avoid disrupting any page from which ** cells may still to be read. In practice, this means: ** ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) ** then it is not safe to update page apNew[iPg] until after ** the left-hand sibling apNew[iPg-1] has been updated. ** ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) ** then it is not safe to update page apNew[iPg] until after ** the right-hand sibling apNew[iPg+1] has been updated. ** ** If neither of the above apply, the page is safe to update. ** ** The iPg value in the following loop starts at nNew-1 goes down ** to 0, then back up to nNew-1 again, thus making two passes over ** the pages. On the initial downward pass, only condition (1) above ** needs to be tested because (2) will always be true from the previous ** step. On the upward pass, both conditions are always true, so the ** upwards pass simply processes pages that were missed on the downward ** pass. */ for(i=1-nNew; i=0 && iPg=1 || i>=0 ); assert( iPg=0 /* On the upwards pass, or... */ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ ){ int iNew; int iOld; int nNewCell; /* Verify condition (1): If cells are moving left, update iPg ** only after iPg-1 has already been updated. */ assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); /* Verify condition (2): If cells are moving right, update iPg ** only after iPg+1 has already been updated. */ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); if( iPg==0 ){ iNew = iOld = 0; nNewCell = cntNew[0]; }else{ iOld = iPgnFree = usableSpace-szNew[iPg]; assert( apNew[iPg]->nOverflow==0 ); assert( apNew[iPg]->nCell==nNewCell ); } } /* All pages have been processed exactly once */ assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); assert( nOld>0 ); assert( nNew>0 ); if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ /* The root page of the b-tree now contains no cells. The only sibling ** page is the right-child of the parent. Copy the contents of the ** child page into the parent, decreasing the overall height of the ** b-tree structure by one. This is described as the "balance-shallower" ** sub-algorithm in some documentation. ** ** If this is an auto-vacuum database, the call to copyNodeContent() ** sets all pointer-map entries corresponding to database image pages ** for which the pointer is stored within the content being copied. ** ** It is critical that the child page be defragmented before being ** copied into the parent, because if the parent is page 1 then it will ** by smaller than the child due to the database header, and so all the ** free space needs to be up front. */ assert( nNew==1 || CORRUPT_DB ); rc = defragmentPage(apNew[0], -1); testcase( rc!=SQLITE_OK ); assert( apNew[0]->nFree == (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset - apNew[0]->nCell*2) || rc!=SQLITE_OK ); copyNodeContent(apNew[0], pParent, &rc); freePage(apNew[0], &rc); }else if( ISAUTOVACUUM(pBt) && !leafCorrection ){ /* Fix the pointer map entries associated with the right-child of each ** sibling page. All other pointer map entries have already been taken ** care of. */ for(i=0; iaData[8]); ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); } } assert( pParent->isInit ); TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n", nOld, nNew, b.nCell)); /* Free any old pages that were not reused as new pages. */ for(i=nNew; iisInit ){ /* The ptrmapCheckPages() contains assert() statements that verify that ** all pointer map pages are set correctly. This is helpful while ** debugging. This is usually disabled because a corrupt database may ** cause an assert() statement to fail. */ ptrmapCheckPages(apNew, nNew); ptrmapCheckPages(&pParent, 1); } #endif /* ** Cleanup before returning. */ balance_cleanup: sqlite3StackFree(0, b.apCell); for(i=0; ipBt; /* The BTree */ assert( pRoot->nOverflow>0 ); assert( sqlite3_mutex_held(pBt->mutex) ); /* Make pRoot, the root page of the b-tree, writable. Allocate a new ** page that will become the new right-child of pPage. Copy the contents ** of the node stored on pRoot into the new child page. */ rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc==SQLITE_OK ){ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); copyNodeContent(pRoot, pChild, &rc); if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); } } if( rc ){ *ppChild = 0; releasePage(pChild); return rc; } assert( sqlite3PagerIswriteable(pChild->pDbPage) ); assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); TRACE(("BALANCE: copy root %u into %u\n", pRoot->pgno, pChild->pgno)); /* Copy the overflow cells from pRoot to pChild */ memcpy(pChild->aiOvfl, pRoot->aiOvfl, pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); memcpy(pChild->apOvfl, pRoot->apOvfl, pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); pChild->nOverflow = pRoot->nOverflow; /* Zero the contents of pRoot. Then install pChild as the right-child. */ zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); *ppChild = pChild; return SQLITE_OK; } /* ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid ** on the same B-tree as pCur. ** ** This can occur if a database is corrupt with two or more SQL tables ** pointing to the same b-tree. If an insert occurs on one SQL table ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL ** table linked to the same b-tree. If the secondary insert causes a ** rebalance, that can change content out from under the cursor on the ** first SQL table, violating invariants on the first insert. */ static int anotherValidCursor(BtCursor *pCur){ BtCursor *pOther; for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ if( pOther!=pCur && pOther->eState==CURSOR_VALID && pOther->pPage==pCur->pPage ){ return SQLITE_CORRUPT_BKPT; } } return SQLITE_OK; } /* ** The page that pCur currently points to has just been modified in ** some way. This function figures out if this modification means the ** tree needs to be balanced, and if so calls the appropriate balancing ** routine. Balancing routines are: ** ** balance_quick() ** balance_deeper() ** balance_nonroot() */ static int balance(BtCursor *pCur){ int rc = SQLITE_OK; u8 aBalanceQuickSpace[13]; u8 *pFree = 0; VVA_ONLY( int balance_quick_called = 0 ); VVA_ONLY( int balance_deeper_called = 0 ); do { int iPage; MemPage *pPage = pCur->pPage; if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ /* No rebalance required as long as: ** (1) There are no overflow cells ** (2) The amount of free space on the page is less than 2/3rds of ** the total usable space on the page. */ break; }else if( (iPage = pCur->iPage)==0 ){ if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ /* The root page of the b-tree is overfull. In this case call the ** balance_deeper() function to create a new child for the root-page ** and copy the current contents of the root-page to it. The ** next iteration of the do-loop will balance the child page. */ assert( balance_deeper_called==0 ); VVA_ONLY( balance_deeper_called++ ); rc = balance_deeper(pPage, &pCur->apPage[1]); if( rc==SQLITE_OK ){ pCur->iPage = 1; pCur->ix = 0; pCur->aiIdx[0] = 0; pCur->apPage[0] = pPage; pCur->pPage = pCur->apPage[1]; assert( pCur->pPage->nOverflow ); } }else{ break; } }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){ /* The page being written is not a root page, and there is currently ** more than one reference to it. This only happens if the page is one ** of its own ancestor pages. Corruption. */ rc = SQLITE_CORRUPT_BKPT; }else{ MemPage * const pParent = pCur->apPage[iPage-1]; int const iIdx = pCur->aiIdx[iPage-1]; rc = sqlite3PagerWrite(pParent->pDbPage); if( rc==SQLITE_OK && pParent->nFree<0 ){ rc = btreeComputeFreeSpace(pParent); } if( rc==SQLITE_OK ){ #ifndef SQLITE_OMIT_QUICKBALANCE if( pPage->intKeyLeaf && pPage->nOverflow==1 && pPage->aiOvfl[0]==pPage->nCell && pParent->pgno!=1 && pParent->nCell==iIdx ){ /* Call balance_quick() to create a new sibling of pPage on which ** to store the overflow cell. balance_quick() inserts a new cell ** into pParent, which may cause pParent overflow. If this ** happens, the next iteration of the do-loop will balance pParent ** use either balance_nonroot() or balance_deeper(). Until this ** happens, the overflow cell is stored in the aBalanceQuickSpace[] ** buffer. ** ** The purpose of the following assert() is to check that only a ** single call to balance_quick() is made for each call to this ** function. If this were not verified, a subtle bug involving reuse ** of the aBalanceQuickSpace[] might sneak in. */ assert( balance_quick_called==0 ); VVA_ONLY( balance_quick_called++ ); rc = balance_quick(pParent, pPage, aBalanceQuickSpace); }else #endif { /* In this case, call balance_nonroot() to redistribute cells ** between pPage and up to 2 of its sibling pages. This involves ** modifying the contents of pParent, which may cause pParent to ** become overfull or underfull. The next iteration of the do-loop ** will balance the parent page to correct this. ** ** If the parent page becomes overfull, the overflow cell or cells ** are stored in the pSpace buffer allocated immediately below. ** A subsequent iteration of the do-loop will deal with this by ** calling balance_nonroot() (balance_deeper() may be called first, ** but it doesn't deal with overflow cells - just moves them to a ** different page). Once this subsequent call to balance_nonroot() ** has completed, it is safe to release the pSpace buffer used by ** the previous call, as the overflow cell data will have been ** copied either into the body of a database page or into the new ** pSpace buffer passed to the latter call to balance_nonroot(). */ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints&BTREE_BULKLOAD); if( pFree ){ /* If pFree is not NULL, it points to the pSpace buffer used ** by a previous call to balance_nonroot(). Its contents are ** now stored either on real database pages or within the ** new pSpace buffer, so it may be safely freed here. */ sqlite3PageFree(pFree); } /* The pSpace buffer will be freed after the next call to ** balance_nonroot(), or just before this function returns, whichever ** comes first. */ pFree = pSpace; } } pPage->nOverflow = 0; /* The next iteration of the do-loop balances the parent page. */ releasePage(pPage); pCur->iPage--; assert( pCur->iPage>=0 ); pCur->pPage = pCur->apPage[pCur->iPage]; } }while( rc==SQLITE_OK ); if( pFree ){ sqlite3PageFree(pFree); } return rc; } /* Overwrite content from pX into pDest. Only do the write if the ** content is different from what is already there. */ static int btreeOverwriteContent( MemPage *pPage, /* MemPage on which writing will occur */ u8 *pDest, /* Pointer to the place to start writing */ const BtreePayload *pX, /* Source of data to write */ int iOffset, /* Offset of first byte to write */ int iAmt /* Number of bytes to be written */ ){ int nData = pX->nData - iOffset; if( nData<=0 ){ /* Overwriting with zeros */ int i; for(i=0; ipDbPage); if( rc ) return rc; memset(pDest + i, 0, iAmt - i); } }else{ if( nDatapData) + iOffset, iAmt)!=0 ){ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; /* In a corrupt database, it is possible for the source and destination ** buffers to overlap. This is harmless since the database is already ** corrupt but it does cause valgrind and ASAN warnings. So use ** memmove(). */ memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); } } return SQLITE_OK; } /* ** Overwrite the cell that cursor pCur is pointing to with fresh content ** contained in pX. In this variant, pCur is pointing to an overflow ** cell. */ static SQLITE_NOINLINE int btreeOverwriteOverflowCell( BtCursor *pCur, /* Cursor pointing to cell to overwrite */ const BtreePayload *pX /* Content to write into the cell */ ){ int iOffset; /* Next byte of pX->pData to write */ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ int rc; /* Return code */ MemPage *pPage = pCur->pPage; /* Page being written */ BtShared *pBt; /* Btree */ Pgno ovflPgno; /* Next overflow page to write */ u32 ovflPageSize; /* Size to write on overflow page */ assert( pCur->info.nLocalinfo.pPayload, pX, 0, pCur->info.nLocal); if( rc ) return rc; /* Now overwrite the overflow pages */ iOffset = pCur->info.nLocal; assert( nTotal>=0 ); assert( iOffset>=0 ); ovflPgno = get4byte(pCur->info.pPayload + iOffset); pBt = pPage->pBt; ovflPageSize = pBt->usableSize - 4; do{ rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); if( rc ) return rc; if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ rc = SQLITE_CORRUPT_BKPT; }else{ if( iOffset+ovflPageSize<(u32)nTotal ){ ovflPgno = get4byte(pPage->aData); }else{ ovflPageSize = nTotal - iOffset; } rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, iOffset, ovflPageSize); } sqlite3PagerUnref(pPage->pDbPage); if( rc ) return rc; iOffset += ovflPageSize; }while( iOffsetnData + pX->nZero; /* Total bytes of to write */ MemPage *pPage = pCur->pPage; /* Page being written */ if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd || pCur->info.pPayload < pPage->aData + pPage->cellOffset ){ return SQLITE_CORRUPT_BKPT; } if( pCur->info.nLocal==nTotal ){ /* The entire cell is local */ return btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 0, pCur->info.nLocal); }else{ /* The cell contains overflow content */ return btreeOverwriteOverflowCell(pCur, pX); } } /* ** Insert a new record into the BTree. The content of the new record ** is described by the pX object. The pCur cursor is used only to ** define what table the record should be inserted into, and is left ** pointing at a random location. ** ** For a table btree (used for rowid tables), only the pX.nKey value of ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields ** hold the content of the row. ** ** For an index btree (used for indexes and WITHOUT ROWID tables), the ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The ** pX.pData,nData,nZero fields must be zero. ** ** If the seekResult parameter is non-zero, then a successful call to ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already ** been performed. In other words, if seekResult!=0 then the cursor ** is currently pointing to a cell that will be adjacent to the cell ** to be inserted. If seekResult<0 then pCur points to a cell that is ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell ** that is larger than (pKey,nKey). ** ** If seekResult==0, that means pCur is pointing at some unknown location. ** In that case, this routine must seek the cursor to the correct insertion ** point for (pKey,nKey) before doing the insertion. For index btrees, ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked ** key values and pX->aMem can be used instead of pX->pKey to avoid having ** to decode the key. */ SQLITE_PRIVATE int sqlite3BtreeInsert( BtCursor *pCur, /* Insert data into the table of this cursor */ const BtreePayload *pX, /* Content of the row to be inserted */ int flags, /* True if this is likely an append */ int seekResult /* Result of prior IndexMoveto() call */ ){ int rc; int loc = seekResult; /* -1: before desired location +1: after */ int szNew = 0; int idx; MemPage *pPage; Btree *p = pCur->pBtree; unsigned char *oldCell; unsigned char *newCell = 0; assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); /* Save the positions of any other cursors open on this table. ** ** In some cases, the call to btreeMoveto() below is a no-op. For ** example, when inserting data into a table with auto-generated integer ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the ** integer key to use. It then calls this function to actually insert the ** data into the intkey B-Tree. In this case btreeMoveto() recognizes ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(p->pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; if( loc && pCur->iPage<0 ){ /* This can only happen if the schema is corrupt such that there is more ** than one table or index with the same root page as used by the cursor. ** Which can only happen if the SQLITE_NoSchemaError flag was set when ** the schema was loaded. This cannot be asserted though, as a user might ** set the flag, load the schema, and then unset the flag. */ return SQLITE_CORRUPT_BKPT; } } /* Ensure that the cursor is not in the CURSOR_FAULT state and that it ** points to a valid cell. */ if( pCur->eState>=CURSOR_REQUIRESEEK ){ testcase( pCur->eState==CURSOR_REQUIRESEEK ); testcase( pCur->eState==CURSOR_FAULT ); rc = moveToRoot(pCur); if( rc && rc!=SQLITE_EMPTY ) return rc; } assert( cursorOwnsBtShared(pCur) ); assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && p->pBt->inTransaction==TRANS_WRITE && (p->pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); /* Assert that the caller has been consistent. If this cursor was opened ** expecting an index b-tree, then the caller should be inserting blob ** keys with no associated data. If the cursor was opened expecting an ** intkey table, the caller should be inserting integer keys with a ** blob of associated data. */ assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); if( pCur->pKeyInfo==0 ){ assert( pX->pKey==0 ); /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ if( p->hasIncrblobCur ){ invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); } /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing ** to a row with the same key as the new entry being inserted. */ #ifdef SQLITE_DEBUG if( flags & BTREE_SAVEPOSITION ){ assert( pCur->curFlags & BTCF_ValidNKey ); assert( pX->nKey==pCur->info.nKey ); assert( loc==0 ); } #endif /* On the other hand, BTREE_SAVEPOSITION==0 does not imply ** that the cursor is not pointing to a row to be overwritten. ** So do a complete check. */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ /* The cursor is pointing to the entry that is to be ** overwritten */ assert( pX->nData>=0 && pX->nZero>=0 ); if( pCur->info.nSize!=0 && pCur->info.nPayload==(u32)pX->nData+pX->nZero ){ /* New entry is the same size as the old. Do an overwrite */ return btreeOverwriteCell(pCur, pX); } assert( loc==0 ); }else if( loc==0 ){ /* The cursor is *not* pointing to the cell to be overwritten, nor ** to an adjacent cell. Move the cursor so that it is pointing either ** to the cell to be overwritten or an adjacent cell. */ rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, (flags & BTREE_APPEND)!=0, &loc); if( rc ) return rc; } }else{ /* This is an index or a WITHOUT ROWID table */ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing ** to a row with the same key as the new entry being inserted. */ assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); /* If the cursor is not already pointing either to the cell to be ** overwritten, or if a new cell is being inserted, if the cursor is ** not pointing to an immediately adjacent cell, then move the cursor ** so that it does. */ if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ if( pX->nMem ){ UnpackedRecord r; r.pKeyInfo = pCur->pKeyInfo; r.aMem = pX->aMem; r.nField = pX->nMem; r.default_rc = 0; r.eqSeen = 0; rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); }else{ rc = btreeMoveto(pCur, pX->pKey, pX->nKey, (flags & BTREE_APPEND)!=0, &loc); } if( rc ) return rc; } /* If the cursor is currently pointing to an entry to be overwritten ** and the new content is the same as as the old, then use the ** overwrite optimization. */ if( loc==0 ){ getCellInfo(pCur); if( pCur->info.nKey==pX->nKey ){ BtreePayload x2; x2.pData = pX->pKey; x2.nData = pX->nKey; x2.nZero = 0; return btreeOverwriteCell(pCur, &x2); } } } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) || CORRUPT_DB ); pPage = pCur->pPage; assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); assert( pPage->leaf || !pPage->intKey ); if( pPage->nFree<0 ){ if( NEVER(pCur->eState>CURSOR_INVALID) ){ /* ^^^^^--- due to the moveToRoot() call above */ rc = SQLITE_CORRUPT_BKPT; }else{ rc = btreeComputeFreeSpace(pPage); } if( rc ) return rc; } TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n", pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit || CORRUPT_DB ); newCell = p->pBt->pTmpSpace; assert( newCell!=0 ); assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); if( flags & BTREE_PREFORMAT ){ rc = SQLITE_OK; szNew = p->pBt->nPreformatSize; if( szNew<4 ) szNew = 4; if( ISAUTOVACUUM(p->pBt) && szNew>pPage->maxLocal ){ CellInfo info; pPage->xParseCell(pPage, newCell, &info); if( info.nPayload!=info.nLocal ){ Pgno ovfl = get4byte(&newCell[szNew-4]); ptrmapPut(p->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); if( NEVER(rc) ) goto end_insert; } } }else{ rc = fillInCell(pPage, newCell, pX, &szNew); if( rc ) goto end_insert; } assert( szNew==pPage->xCellSize(pPage, newCell) ); assert( szNew <= MX_CELL_SIZE(p->pBt) ); idx = pCur->ix; pCur->info.nSize = 0; if( loc==0 ){ CellInfo info; assert( idx>=0 ); if( idx>=pPage->nCell ){ return SQLITE_CORRUPT_BKPT; } rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ){ goto end_insert; } oldCell = findCell(pPage, idx); if( !pPage->leaf ){ memcpy(newCell, oldCell, 4); } BTREE_CLEAR_CELL(rc, pPage, oldCell, info); testcase( pCur->curFlags & BTCF_ValidOvfl ); invalidateOverflowCache(pCur); if( info.nSize==szNew && info.nLocal==info.nPayload && (!ISAUTOVACUUM(p->pBt) || szNewminLocal) ){ /* Overwrite the old cell with the new if they are the same size. ** We could also try to do this if the old cell is smaller, then add ** the leftover space to the free list. But experiments show that ** doing that is no faster then skipping this optimization and just ** calling dropCell() and insertCell(). ** ** This optimization cannot be used on an autovacuum database if the ** new entry uses overflow pages, as the insertCell() call below is ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ return SQLITE_CORRUPT_BKPT; } if( oldCell+szNew > pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } memcpy(oldCell, newCell, szNew); return SQLITE_OK; } dropCell(pPage, idx, info.nSize, &rc); if( rc ) goto end_insert; }else if( loc<0 && pPage->nCell>0 ){ assert( pPage->leaf ); idx = ++pCur->ix; pCur->curFlags &= ~BTCF_ValidNKey; }else{ assert( pPage->leaf ); } rc = insertCellFast(pPage, idx, newCell, szNew); assert( pPage->nOverflow==0 || rc==SQLITE_OK ); assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); /* If no error has occurred and pPage has an overflow cell, call balance() ** to redistribute the cells within the tree. Since balance() may move ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey ** variables. ** ** Previous versions of SQLite called moveToRoot() to move the cursor ** back to the root page as balance() used to invalidate the contents ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, ** set the cursor state to "invalid". This makes common insert operations ** slightly faster. ** ** There is a subtle but important optimization here too. When inserting ** multiple records into an intkey b-tree using a single cursor (as can ** happen while processing an "INSERT INTO ... SELECT" statement), it ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ if( pPage->nOverflow ){ assert( rc==SQLITE_OK ); pCur->curFlags &= ~(BTCF_ValidNKey); rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ pCur->pPage->nOverflow = 0; pCur->eState = CURSOR_INVALID; if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); if( pCur->pKeyInfo ){ assert( pCur->pKey==0 ); pCur->pKey = sqlite3Malloc( pX->nKey ); if( pCur->pKey==0 ){ rc = SQLITE_NOMEM; }else{ memcpy(pCur->pKey, pX->pKey, pX->nKey); } } pCur->eState = CURSOR_REQUIRESEEK; pCur->nKey = pX->nKey; } } assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); end_insert: return rc; } /* ** This function is used as part of copying the current row from cursor ** pSrc into cursor pDest. If the cursors are open on intkey tables, then ** parameter iKey is used as the rowid value when the record is copied ** into pDest. Otherwise, the record is copied verbatim. ** ** This function does not actually write the new value to cursor pDest. ** Instead, it creates and populates any required overflow pages and ** writes the data for the new cell into the BtShared.pTmpSpace buffer ** for the destination database. The size of the cell, in bytes, is left ** in BtShared.nPreformatSize. The caller completes the insertion by ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ BtShared *pBt = pDest->pBt; u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ const u8 *aIn; /* Pointer to next input buffer */ u32 nIn; /* Size of input buffer aIn[] */ u32 nRem; /* Bytes of data still to copy */ getCellInfo(pSrc); if( pSrc->info.nPayload<0x80 ){ *(aOut++) = pSrc->info.nPayload; }else{ aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); } if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); nIn = pSrc->info.nLocal; aIn = pSrc->info.pPayload; if( aIn+nIn>pSrc->pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } nRem = pSrc->info.nPayload; if( nIn==nRem && nInpPage->maxLocal ){ memcpy(aOut, aIn, nIn); pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); return SQLITE_OK; }else{ int rc = SQLITE_OK; Pager *pSrcPager = pSrc->pBt->pPager; u8 *pPgnoOut = 0; Pgno ovflIn = 0; DbPage *pPageIn = 0; MemPage *pPageOut = 0; u32 nOut; /* Size of output buffer aOut[] */ nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); if( nOutinfo.nPayload ){ pPgnoOut = &aOut[nOut]; pBt->nPreformatSize += 4; } if( nRem>nIn ){ if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } ovflIn = get4byte(&pSrc->info.pPayload[nIn]); } do { nRem -= nOut; do{ assert( nOut>0 ); if( nIn>0 ){ int nCopy = MIN(nOut, nIn); memcpy(aOut, aIn, nCopy); nOut -= nCopy; nIn -= nCopy; aOut += nCopy; aIn += nCopy; } if( nOut>0 ){ sqlite3PagerUnref(pPageIn); pPageIn = 0; rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); if( rc==SQLITE_OK ){ aIn = (const u8*)sqlite3PagerGetData(pPageIn); ovflIn = get4byte(aIn); aIn += 4; nIn = pSrc->pBt->usableSize - 4; } } }while( rc==SQLITE_OK && nOut>0 ); if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ Pgno pgnoNew; MemPage *pNew = 0; rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); put4byte(pPgnoOut, pgnoNew); if( ISAUTOVACUUM(pBt) && pPageOut ){ ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); } releasePage(pPageOut); pPageOut = pNew; if( pPageOut ){ pPgnoOut = pPageOut->aData; put4byte(pPgnoOut, 0); aOut = &pPgnoOut[4]; nOut = MIN(pBt->usableSize - 4, nRem); } } }while( nRem>0 && rc==SQLITE_OK ); releasePage(pPageOut); sqlite3PagerUnref(pPageIn); return rc; } } /* ** Delete the entry that the cursor is pointing to. ** ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then ** the cursor is left pointing at an arbitrary location after the delete. ** But if that bit is set, then the cursor is left in a state such that ** the next call to BtreeNext() or BtreePrev() moves it to the same row ** as it would have been on if the call to BtreeDelete() had been omitted. ** ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes ** associated with a single table entry and its indexes. Only one of those ** deletes is considered the "primary" delete. The primary delete occurs ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, ** but which might be used by alternative storage engines. */ SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ Btree *p = pCur->pBtree; BtShared *pBt = p->pBt; int rc; /* Return code */ MemPage *pPage; /* Page to delete cell from */ unsigned char *pCell; /* Pointer to cell to delete */ int iCellIdx; /* Index of cell to delete */ int iCellDepth; /* Depth of node containing pCell */ CellInfo info; /* Size of the cell being deleted */ u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ assert( cursorOwnsBtShared(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); if( pCur->eState!=CURSOR_VALID ){ if( pCur->eState>=CURSOR_REQUIRESEEK ){ rc = btreeRestoreCursorPosition(pCur); assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); if( rc || pCur->eState!=CURSOR_VALID ) return rc; }else{ return SQLITE_CORRUPT_BKPT; } } assert( pCur->eState==CURSOR_VALID ); iCellDepth = pCur->iPage; iCellIdx = pCur->ix; pPage = pCur->pPage; if( pPage->nCell<=iCellIdx ){ return SQLITE_CORRUPT_BKPT; } pCell = findCell(pPage, iCellIdx); if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ return SQLITE_CORRUPT_BKPT; } if( pCell<&pPage->aCellIdx[pPage->nCell] ){ return SQLITE_CORRUPT_BKPT; } /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must ** be preserved following this delete operation. If the current delete ** will cause a b-tree rebalance, then this is done by saving the cursor ** key and leaving the cursor in CURSOR_REQUIRESEEK state before ** returning. ** ** If the current delete will not cause a rebalance, then the cursor ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately ** before or after the deleted entry. ** ** The bPreserve value records which path is required: ** ** bPreserve==0 Not necessary to save the cursor position ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. */ bPreserve = (flags & BTREE_SAVEPOSITION)!=0; if( bPreserve ){ if( !pPage->leaf || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > (int)(pBt->usableSize*2/3) || pPage->nCell==1 /* See dbfuzz001.test for a test case */ ){ /* A b-tree rebalance will be required after deleting this entry. ** Save the cursor key. */ rc = saveCursorKey(pCur); if( rc ) return rc; }else{ bPreserve = 2; } } /* If the page containing the entry to delete is not a leaf page, move ** the cursor to the largest entry in the tree that is smaller than ** the entry being deleted. This cell will replace the cell being deleted ** from the internal node. The 'previous' entry is used for this instead ** of the 'next' entry, as the previous entry is always a part of the ** sub-tree headed by the child page of the cell being deleted. This makes ** balancing the tree following the delete operation easier. */ if( !pPage->leaf ){ rc = sqlite3BtreePrevious(pCur, 0); assert( rc!=SQLITE_DONE ); if( rc ) return rc; } /* Save the positions of any other cursors open on this table before ** making any modifications. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; } /* If this is a delete operation to remove a row from a table b-tree, ** invalidate any incrblob cursors open on the row being deleted. */ if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); } /* Make the page containing the entry to be deleted writable. Then free any ** overflow pages associated with the entry and finally remove the cell ** itself from within the page. */ rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; BTREE_CLEAR_CELL(rc, pPage, pCell, info); dropCell(pPage, iCellIdx, info.nSize, &rc); if( rc ) return rc; /* If the cell deleted was not located on a leaf page, then the cursor ** is currently pointing to the largest entry in the sub-tree headed ** by the child-page of the cell that was just deleted from an internal ** node. The cell from the leaf node needs to be moved to the internal ** node to replace the deleted cell. */ if( !pPage->leaf ){ MemPage *pLeaf = pCur->pPage; int nCell; Pgno n; unsigned char *pTmp; if( pLeaf->nFree<0 ){ rc = btreeComputeFreeSpace(pLeaf); if( rc ) return rc; } if( iCellDepthiPage-1 ){ n = pCur->apPage[iCellDepth+1]->pgno; }else{ n = pCur->pPage->pgno; } pCell = findCell(pLeaf, pLeaf->nCell-1); if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; nCell = pLeaf->xCellSize(pLeaf, pCell); assert( MX_CELL_SIZE(pBt) >= nCell ); pTmp = pBt->pTmpSpace; assert( pTmp!=0 ); rc = sqlite3PagerWrite(pLeaf->pDbPage); if( rc==SQLITE_OK ){ rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n); } dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); if( rc ) return rc; } /* Balance the tree. If the entry deleted was located on a leaf page, ** then the cursor still points to that page. In this case the first ** call to balance() repairs the tree, and the if(...) condition is ** never true. ** ** Otherwise, if the entry deleted was on an internal node page, then ** pCur is pointing to the leaf page from which a cell was removed to ** replace the cell deleted from the internal node. This is slightly ** tricky as the leaf node may be underfull, and the internal node may ** be either under or overfull. In this case run the balancing algorithm ** on the leaf node first. If the balance proceeds far enough up the ** tree that we can be sure that any problem in the internal node has ** been corrected, so be it. Otherwise, after balancing the leaf node, ** walk the cursor up the tree to the internal node and balance it as ** well. */ assert( pCur->pPage->nOverflow==0 ); assert( pCur->pPage->nFree>=0 ); if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ /* Optimization: If the free space is less than 2/3rds of the page, ** then balance() will always be a no-op. No need to invoke it. */ rc = SQLITE_OK; }else{ rc = balance(pCur); } if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ releasePageNotNull(pCur->pPage); pCur->iPage--; while( pCur->iPage>iCellDepth ){ releasePage(pCur->apPage[pCur->iPage--]); } pCur->pPage = pCur->apPage[pCur->iPage]; rc = balance(pCur); } if( rc==SQLITE_OK ){ if( bPreserve>1 ){ assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); assert( pPage==pCur->pPage || CORRUPT_DB ); assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); pCur->eState = CURSOR_SKIPNEXT; if( iCellIdx>=pPage->nCell ){ pCur->skipNext = -1; pCur->ix = pPage->nCell-1; }else{ pCur->skipNext = 1; } }else{ rc = moveToRoot(pCur); if( bPreserve ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; } } return rc; } /* ** Create a new BTree table. Write into *piTable the page ** number for the root page of the new table. ** ** The type of type is determined by the flags parameter. Only the ** following values of flags are currently in use. Other values for ** flags might not work: ** ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys ** BTREE_ZERODATA Used for SQL indices */ static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ BtShared *pBt = p->pBt; MemPage *pRoot; Pgno pgnoRoot; int rc; int ptfFlags; /* Page-type flags for the root page of new table */ assert( sqlite3BtreeHoldsMutex(p) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); #ifdef SQLITE_OMIT_AUTOVACUUM rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); if( rc ){ return rc; } #else if( pBt->autoVacuum ){ Pgno pgnoMove; /* Move a page here to make room for the root-page */ MemPage *pPageMove; /* The page to move to. */ /* Creating a new table may probably require moving an existing database ** to make room for the new tables root page. In case this page turns ** out to be an overflow page, delete all overflow page-map caches ** held by open cursors. */ invalidateAllOverflowCache(pBt); /* Read the value of meta[3] from the database to determine where the ** root page of the new table should go. meta[3] is the largest root-page ** created so far, so the new root-page is (meta[3]+1). */ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); if( pgnoRoot>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } pgnoRoot++; /* The new root-page may not be allocated on a pointer-map page, or the ** PENDING_BYTE page. */ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ pgnoRoot++; } assert( pgnoRoot>=3 ); /* Allocate a page. The page that currently resides at pgnoRoot will ** be moved to the allocated page (unless the allocated page happens ** to reside at pgnoRoot). */ rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); if( rc!=SQLITE_OK ){ return rc; } if( pgnoMove!=pgnoRoot ){ /* pgnoRoot is the page that will be used for the root-page of ** the new table (assuming an error did not occur). But we were ** allocated pgnoMove. If required (i.e. if it was not allocated ** by extending the file), the current page at position pgnoMove ** is already journaled. */ u8 eType = 0; Pgno iPtrPage = 0; /* Save the positions of any open cursors. This is required in ** case they are holding a reference to an xFetch reference ** corresponding to page pgnoRoot. */ rc = saveAllCursors(pBt, 0, 0); releasePage(pPageMove); if( rc!=SQLITE_OK ){ return rc; } /* Move the page currently at pgnoRoot to pgnoMove. */ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); if( rc!=SQLITE_OK ){ return rc; } rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ rc = SQLITE_CORRUPT_BKPT; } if( rc!=SQLITE_OK ){ releasePage(pRoot); return rc; } assert( eType!=PTRMAP_ROOTPAGE ); assert( eType!=PTRMAP_FREEPAGE ); rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); releasePage(pRoot); /* Obtain the page at pgnoRoot */ if( rc!=SQLITE_OK ){ return rc; } rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pRoot); return rc; } }else{ pRoot = pPageMove; } /* Update the pointer-map and meta-data with the new root-page number. */ ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); if( rc ){ releasePage(pRoot); return rc; } /* When the new root page was allocated, page 1 was made writable in ** order either to increase the database filesize, or to decrement the ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. */ assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); if( NEVER(rc) ){ releasePage(pRoot); return rc; } }else{ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); if( rc ) return rc; } #endif assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); if( createTabFlags & BTREE_INTKEY ){ ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; }else{ ptfFlags = PTF_ZERODATA | PTF_LEAF; } zeroPage(pRoot, ptfFlags); sqlite3PagerUnref(pRoot->pDbPage); assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); *piTable = pgnoRoot; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ int rc; sqlite3BtreeEnter(p); rc = btreeCreateTable(p, piTable, flags); sqlite3BtreeLeave(p); return rc; } /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage( BtShared *pBt, /* The BTree that contains the table */ Pgno pgno, /* Page number to clear */ int freePageFlag, /* Deallocate page if true */ i64 *pnChange /* Add number of Cells freed to this counter */ ){ MemPage *pPage; int rc; unsigned char *pCell; int i; int hdr; CellInfo info; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, pgno, &pPage, 0); if( rc ) return rc; if( (pBt->openFlags & BTREE_SINGLE)==0 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) ){ rc = SQLITE_CORRUPT_BKPT; goto cleardatabasepage_out; } hdr = pPage->hdrOffset; for(i=0; inCell; i++){ pCell = findCell(pPage, i); if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); if( rc ) goto cleardatabasepage_out; } BTREE_CLEAR_CELL(rc, pPage, pCell, info); if( rc ) goto cleardatabasepage_out; } if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); if( rc ) goto cleardatabasepage_out; if( pPage->intKey ) pnChange = 0; } if( pnChange ){ testcase( !pPage->intKey ); *pnChange += pPage->nCell; } if( freePageFlag ){ freePage(pPage, &rc); }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); } cleardatabasepage_out: releasePage(pPage); return rc; } /* ** Delete all information from a single table in the database. iTable is ** the page number of the root of the table. After this routine returns, ** the root page is empty, but still exists. ** ** This routine will fail with SQLITE_LOCKED if there are any open ** read cursors on the table. Open write cursors are moved to the ** root of the table. ** ** If pnChange is not NULL, then the integer value pointed to by pnChange ** is incremented by the number of entries in the table. */ SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ int rc; BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); assert( p->inTrans==TRANS_WRITE ); rc = saveAllCursors(pBt, (Pgno)iTable, 0); if( SQLITE_OK==rc ){ /* Invalidate all incrblob cursors open on table iTable (assuming iTable ** is the root of a table b-tree - if it is not, the following call is ** a no-op). */ if( p->hasIncrblobCur ){ invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); } rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); } sqlite3BtreeLeave(p); return rc; } /* ** Delete all information from the single table that pCur is open on. ** ** This routine only work for pCur on an ephemeral table. */ SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); } /* ** Erase all information in a table and add the root of the table to ** the freelist. Except, the root of the principle table (the one on ** page 1) is never added to the freelist. ** ** This routine will fail with SQLITE_LOCKED if there are any open ** cursors on the table. ** ** If AUTOVACUUM is enabled and the page at iTable is not the last ** root page in the database file, then the last root page ** in the database file is moved into the slot formerly occupied by ** iTable and that last slot formerly occupied by the last root page ** is added to the freelist instead of iTable. In this say, all ** root pages are kept at the beginning of the database file, which ** is necessary for AUTOVACUUM to work right. *piMoved is set to the ** page number that used to be the last root page in the file before ** the move. If no page gets moved, *piMoved is set to 0. ** The last root page is recorded in meta[3] and the value of ** meta[3] is updated by this procedure. */ static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ int rc; MemPage *pPage = 0; BtShared *pBt = p->pBt; assert( sqlite3BtreeHoldsMutex(p) ); assert( p->inTrans==TRANS_WRITE ); assert( iTable>=2 ); if( iTable>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = sqlite3BtreeClearTable(p, iTable, 0); if( rc ) return rc; rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); if( NEVER(rc) ){ releasePage(pPage); return rc; } *piMoved = 0; #ifdef SQLITE_OMIT_AUTOVACUUM freePage(pPage, &rc); releasePage(pPage); #else if( pBt->autoVacuum ){ Pgno maxRootPgno; sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); if( iTable==maxRootPgno ){ /* If the table being dropped is the table with the largest root-page ** number in the database, put the root page on the free list. */ freePage(pPage, &rc); releasePage(pPage); if( rc!=SQLITE_OK ){ return rc; } }else{ /* The table being dropped does not have the largest root-page ** number in the database. So move the page that does into the ** gap left by the deleted root-page. */ MemPage *pMove; releasePage(pPage); rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); if( rc!=SQLITE_OK ){ return rc; } rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } pMove = 0; rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); freePage(pMove, &rc); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } *piMoved = maxRootPgno; } /* Set the new 'max-root-page' value in the database header. This ** is the old value less one, less one more if that happens to ** be a root-page number, less one again if that is the ** PENDING_BYTE_PAGE. */ maxRootPgno--; while( maxRootPgno==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ maxRootPgno--; } assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); }else{ freePage(pPage, &rc); releasePage(pPage); } #endif return rc; } SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ int rc; sqlite3BtreeEnter(p); rc = btreeDropTable(p, iTable, piMoved); sqlite3BtreeLeave(p); return rc; } /* ** This function may only be called if the b-tree connection already ** has a read or write transaction open on the database. ** ** Read the meta-information out of a database file. Meta[0] ** is the number of free pages currently in the database. Meta[1] ** through meta[15] are available for use by higher layers. Meta[0] ** is read-only, the others are read/write. ** ** The schema layer numbers meta values differently. At the schema ** layer (and the SetCookie and ReadCookie opcodes) the number of ** free pages is not visible. So Cookie[0] is the same as Meta[1]. ** ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead ** of reading the value out of the header, it instead loads the "DataVersion" ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the ** database file. It is a number computed by the pager. But its access ** pattern is the same as header meta values, and so it is convenient to ** read it from this routine. */ SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); assert( p->inTrans>TRANS_NONE ); assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); assert( pBt->pPage1 ); assert( idx>=0 && idx<=15 ); if( idx==BTREE_DATA_VERSION ){ *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; }else{ *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); } /* If auto-vacuum is disabled in this build and this is an auto-vacuum ** database, mark the database as read-only. */ #ifdef SQLITE_OMIT_AUTOVACUUM if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ pBt->btsFlags |= BTS_READ_ONLY; } #endif sqlite3BtreeLeave(p); } /* ** Write meta-information back into the database. Meta[0] is ** read-only and may not be written. */ SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ BtShared *pBt = p->pBt; unsigned char *pP1; int rc; assert( idx>=1 && idx<=15 ); sqlite3BtreeEnter(p); assert( p->inTrans==TRANS_WRITE ); assert( pBt->pPage1!=0 ); pP1 = pBt->pPage1->aData; rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pP1[36 + idx*4], iMeta); #ifndef SQLITE_OMIT_AUTOVACUUM if( idx==BTREE_INCR_VACUUM ){ assert( pBt->autoVacuum || iMeta==0 ); assert( iMeta==0 || iMeta==1 ); pBt->incrVacuum = (u8)iMeta; } #endif } sqlite3BtreeLeave(p); return rc; } /* ** The first argument, pCur, is a cursor opened on some b-tree. Count the ** number of entries in the b-tree and write the result to *pnEntry. ** ** SQLITE_OK is returned if the operation is successfully executed. ** Otherwise, if an error is encountered (i.e. an IO error or database ** corruption) an SQLite error code is returned. */ SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ i64 nEntry = 0; /* Value to return in *pnEntry */ int rc; /* Return code */ rc = moveToRoot(pCur); if( rc==SQLITE_EMPTY ){ *pnEntry = 0; return SQLITE_OK; } /* Unless an error occurs, the following loop runs one iteration for each ** page in the B-Tree structure (not including overflow pages). */ while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ int iIdx; /* Index of child node in parent */ MemPage *pPage; /* Current page of the b-tree */ /* If this is a leaf page or the tree is not an int-key tree, then ** this page contains countable entries. Increment the entry counter ** accordingly. */ pPage = pCur->pPage; if( pPage->leaf || !pPage->intKey ){ nEntry += pPage->nCell; } /* pPage is a leaf node. This loop navigates the cursor so that it ** points to the first interior cell that it points to the parent of ** the next page in the tree that has not yet been visited. The ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell ** of the page, or to the number of cells in the page if the next page ** to visit is the right-child of its parent. ** ** If all pages in the tree have been visited, return SQLITE_OK to the ** caller. */ if( pPage->leaf ){ do { if( pCur->iPage==0 ){ /* All pages of the b-tree have been visited. Return successfully. */ *pnEntry = nEntry; return moveToRoot(pCur); } moveToParent(pCur); }while ( pCur->ix>=pCur->pPage->nCell ); pCur->ix++; pPage = pCur->pPage; } /* Descend to the child node of the cell that the cursor currently ** points at. This is the right-child if (iIdx==pPage->nCell). */ iIdx = pCur->ix; if( iIdx==pPage->nCell ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); }else{ rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); } } /* An error has occurred. Return an error code. */ return rc; } /* ** Return the pager associated with a BTree. This routine is used for ** testing and debugging only. */ SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){ return p->pBt->pPager; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** Record an OOM error during integrity_check */ static void checkOom(IntegrityCk *pCheck){ pCheck->rc = SQLITE_NOMEM; pCheck->mxErr = 0; /* Causes integrity_check processing to stop */ if( pCheck->nErr==0 ) pCheck->nErr++; } /* ** Invoke the progress handler, if appropriate. Also check for an ** interrupt. */ static void checkProgress(IntegrityCk *pCheck){ sqlite3 *db = pCheck->db; if( AtomicLoad(&db->u1.isInterrupted) ){ pCheck->rc = SQLITE_INTERRUPT; pCheck->nErr++; pCheck->mxErr = 0; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ assert( db->nProgressOps>0 ); pCheck->nStep++; if( (pCheck->nStep % db->nProgressOps)==0 && db->xProgress(db->pProgressArg) ){ pCheck->rc = SQLITE_INTERRUPT; pCheck->nErr++; pCheck->mxErr = 0; } } #endif } /* ** Append a message to the error message string. */ static void checkAppendMsg( IntegrityCk *pCheck, const char *zFormat, ... ){ va_list ap; checkProgress(pCheck); if( !pCheck->mxErr ) return; pCheck->mxErr--; pCheck->nErr++; va_start(ap, zFormat); if( pCheck->errMsg.nChar ){ sqlite3_str_append(&pCheck->errMsg, "\n", 1); } if( pCheck->zPfx ){ sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v0, pCheck->v1, pCheck->v2); } sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); va_end(ap); if( pCheck->errMsg.accError==SQLITE_NOMEM ){ checkOom(pCheck); } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that ** corresponds to page iPg is already set. */ static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); } /* ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. */ static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); } /* ** Add 1 to the reference count for page iPage. If this is the second ** reference to the page, add an error message to pCheck->zErrMsg. ** Return 1 if there are 2 or more references to the page and 0 if ** if this is the first reference to the page. ** ** Also check that the page number is in bounds. */ static int checkRef(IntegrityCk *pCheck, Pgno iPage){ if( iPage>pCheck->nPage || iPage==0 ){ checkAppendMsg(pCheck, "invalid page number %u", iPage); return 1; } if( getPageReferenced(pCheck, iPage) ){ checkAppendMsg(pCheck, "2nd reference to page %u", iPage); return 1; } setPageReferenced(pCheck, iPage); return 0; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Check that the entry in the pointer-map for page iChild maps to ** page iParent, pointer type ptrType. If not, append an error message ** to pCheck. */ static void checkPtrmap( IntegrityCk *pCheck, /* Integrity check context */ Pgno iChild, /* Child page number */ u8 eType, /* Expected pointer map type */ Pgno iParent /* Expected pointer map parent page number */ ){ int rc; u8 ePtrmapType; Pgno iPtrmapParent; rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) checkOom(pCheck); checkAppendMsg(pCheck, "Failed to read ptrmap key=%u", iChild); return; } if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ checkAppendMsg(pCheck, "Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)", iChild, eType, iParent, ePtrmapType, iPtrmapParent); } } #endif /* ** Check the integrity of the freelist or of an overflow page list. ** Verify that the number of pages on the list is N. */ static void checkList( IntegrityCk *pCheck, /* Integrity checking context */ int isFreeList, /* True for a freelist. False for overflow page list */ Pgno iPage, /* Page number for first page in the list */ u32 N /* Expected number of pages in the list */ ){ int i; u32 expected = N; int nErrAtStart = pCheck->nErr; while( iPage!=0 && pCheck->mxErr ){ DbPage *pOvflPage; unsigned char *pOvflData; if( checkRef(pCheck, iPage) ) break; N--; if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ checkAppendMsg(pCheck, "failed to get page %u", iPage); break; } pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); if( isFreeList ){ u32 n = (u32)get4byte(&pOvflData[4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pCheck->pBt->autoVacuum ){ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); } #endif if( n>pCheck->pBt->usableSize/4-2 ){ checkAppendMsg(pCheck, "freelist leaf count too big on page %u", iPage); N--; }else{ for(i=0; i<(int)n; i++){ Pgno iFreePage = get4byte(&pOvflData[8+i*4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pCheck->pBt->autoVacuum ){ checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); } #endif checkRef(pCheck, iFreePage); } N -= n; } } #ifndef SQLITE_OMIT_AUTOVACUUM else{ /* If this database supports auto-vacuum and iPage is not the last ** page in this overflow list, check that the pointer-map entry for ** the following page matches iPage. */ if( pCheck->pBt->autoVacuum && N>0 ){ i = get4byte(pOvflData); checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); } } #endif iPage = get4byte(pOvflData); sqlite3PagerUnref(pOvflPage); } if( N && nErrAtStart==pCheck->nErr ){ checkAppendMsg(pCheck, "%s is %u but should be %u", isFreeList ? "size" : "overflow list length", expected-N, expected); } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** An implementation of a min-heap. ** ** aHeap[0] is the number of elements on the heap. aHeap[1] is the ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] ** and aHeap[N*2+1]. ** ** The heap property is this: Every node is less than or equal to both ** of its daughter nodes. A consequence of the heap property is that the ** root node aHeap[1] is always the minimum value currently in the heap. ** ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto ** the heap, preserving the heap property. The btreeHeapPull() routine ** removes the root element from the heap (the minimum value in the heap) ** and then moves other nodes around as necessary to preserve the heap ** property. ** ** This heap is used for cell overlap and coverage testing. Each u32 ** entry represents the span of a cell or freeblock on a btree page. ** The upper 16 bits are the index of the first byte of a range and the ** lower 16 bits are the index of the last byte of that range. */ static void btreeHeapInsert(u32 *aHeap, u32 x){ u32 j, i; assert( aHeap!=0 ); i = ++aHeap[0]; aHeap[i] = x; while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ x = aHeap[j]; aHeap[j] = aHeap[i]; aHeap[i] = x; i = j; } } static int btreeHeapPull(u32 *aHeap, u32 *pOut){ u32 j, i, x; if( (x = aHeap[0])==0 ) return 0; *pOut = aHeap[1]; aHeap[1] = aHeap[x]; aHeap[x] = 0xffffffff; aHeap[0]--; i = 1; while( (j = i*2)<=aHeap[0] ){ if( aHeap[j]>aHeap[j+1] ) j++; if( aHeap[i]zPfx; int saved_v1 = pCheck->v1; int saved_v2 = pCheck->v2; u8 savedIsInit = 0; /* Check that the page exists */ checkProgress(pCheck); if( pCheck->mxErr==0 ) goto end_of_check; pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage) ) return 0; pCheck->zPfx = "Tree %u page %u: "; pCheck->v1 = iPage; if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ checkAppendMsg(pCheck, "unable to get the page. error code=%d", rc); goto end_of_check; } /* Clear MemPage.isInit to make sure the corruption detection code in ** btreeInitPage() is executed. */ savedIsInit = pPage->isInit; pPage->isInit = 0; if( (rc = btreeInitPage(pPage))!=0 ){ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ checkAppendMsg(pCheck, "btreeInitPage() returns error code %d", rc); goto end_of_check; } if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ assert( rc==SQLITE_CORRUPT ); checkAppendMsg(pCheck, "free space corruption", rc); goto end_of_check; } data = pPage->aData; hdr = pPage->hdrOffset; /* Set up for cell analysis */ pCheck->zPfx = "Tree %u page %u cell %u: "; contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ nCell = get2byte(&data[hdr+3]); assert( pPage->nCell==nCell ); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; assert( pPage->aCellIdx==&data[cellStart] ); pCellIdx = &data[cellStart + 2*(nCell-1)]; if( !pPage->leaf ){ /* Analyze the right-child page of internal pages */ pgno = get4byte(&data[hdr+8]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ pCheck->zPfx = "Tree %u page %u right child: "; checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); } #endif depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); keyCanBeEqual = 0; }else{ /* For leaf pages, the coverage check will occur in the same loop ** as the other cell checks, so initialize the heap. */ heap = pCheck->heap; heap[0] = 0; } /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ CellInfo info; /* Check cell size */ pCheck->v2 = i; assert( pCellIdx==&data[cellStart + i*2] ); pc = get2byteAligned(pCellIdx); pCellIdx -= 2; if( pcusableSize-4 ){ checkAppendMsg(pCheck, "Offset %u out of range %u..%u", pc, contentOffset, usableSize-4); doCoverageCheck = 0; continue; } pCell = &data[pc]; pPage->xParseCell(pPage, pCell, &info); if( pc+info.nSize>usableSize ){ checkAppendMsg(pCheck, "Extends off end of page"); doCoverageCheck = 0; continue; } /* Check for integer primary key out of range */ if( pPage->intKey ){ if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); } maxKey = info.nKey; keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ } /* Check the content overflow list */ if( info.nPayload>info.nLocal ){ u32 nPage; /* Number of pages on the overflow chain */ Pgno pgnoOvfl; /* First page of the overflow chain */ assert( pc + info.nSize - 4 <= usableSize ); nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); pgnoOvfl = get4byte(&pCell[info.nSize - 4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); } #endif checkList(pCheck, 0, pgnoOvfl, nPage); } if( !pPage->leaf ){ /* Check sanity of left child page for internal pages */ pgno = get4byte(pCell); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); } #endif d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); keyCanBeEqual = 0; if( d2!=depth ){ checkAppendMsg(pCheck, "Child page depth differs"); depth = d2; } }else{ /* Populate the coverage-checking heap for leaf pages */ btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); } } *piMinKey = maxKey; /* Check for complete coverage of the page */ pCheck->zPfx = 0; if( doCoverageCheck && pCheck->mxErr>0 ){ /* For leaf pages, the min-heap has already been initialized and the ** cells have already been inserted. But for internal pages, that has ** not yet been done, so do it now */ if( !pPage->leaf ){ heap = pCheck->heap; heap[0] = 0; for(i=nCell-1; i>=0; i--){ u32 size; pc = get2byteAligned(&data[cellStart+i*2]); size = pPage->xCellSize(pPage, &data[pc]); btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); } } /* Add the freeblocks to the min-heap ** ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header ** is the offset of the first freeblock, or zero if there are no ** freeblocks on the page. */ i = get2byte(&data[hdr+1]); while( i>0 ){ int size, j; assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ size = get2byte(&data[i+2]); assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a ** big-endian integer which is the offset in the b-tree page of the next ** freeblock in the chain, or zero if the freeblock is the last on the ** chain. */ j = get2byte(&data[i]); /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ i = j; } /* Analyze the min-heap looking for overlap between cells and/or ** freeblocks, and counting the number of untracked bytes in nFrag. ** ** Each min-heap entry is of the form: (start_address<<16)|end_address. ** There is an implied first entry the covers the page header, the cell ** pointer index, and the gap between the cell pointer index and the start ** of cell content. ** ** The loop below pulls entries from the min-heap in order and compares ** the start_address against the previous end_address. If there is an ** overlap, that means bytes are used multiple times. If there is a gap, ** that gap is added to the fragmentation count. */ nFrag = 0; prev = contentOffset - 1; /* Implied first min-heap entry */ while( btreeHeapPull(heap,&x) ){ if( (prev&0xffff)>=(x>>16) ){ checkAppendMsg(pCheck, "Multiple uses for byte %u of page %u", x>>16, iPage); break; }else{ nFrag += (x>>16) - (prev&0xffff) - 1; prev = x; } } nFrag += usableSize - (prev&0xffff) - 1; /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments ** is stored in the fifth field of the b-tree page header. ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the ** number of fragmented free bytes within the cell content area. */ if( heap[0]==0 && nFrag!=data[hdr+7] ){ checkAppendMsg(pCheck, "Fragmentation of %u bytes reported as %u on page %u", nFrag, data[hdr+7], iPage); } } end_of_check: if( !doCoverageCheck ) pPage->isInit = savedIsInit; releasePage(pPage); pCheck->zPfx = saved_zPfx; pCheck->v1 = saved_v1; pCheck->v2 = saved_v2; return depth+1; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** This routine does a complete check of the given BTree file. aRoot[] is ** an array of pages numbers were each page number is the root page of ** a table. nRoot is the number of entries in aRoot. ** ** A read-only or read-write transaction must be opened before calling ** this function. ** ** Write the number of error seen in *pnErr. Except for some memory ** allocation errors, an error message held in memory obtained from ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is ** returned. If a memory allocation error occurs, NULL is returned. ** ** If the first entry in aRoot[] is 0, that indicates that the list of ** root pages is incomplete. This is a "partial integrity-check". This ** happens when performing an integrity check on a single table. The ** zero is skipped, of course. But in addition, the freelist checks ** and the checks to make sure every page is referenced are also skipped, ** since obviously it is not possible to know which pages are covered by ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist ** checks are still performed. */ SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck( sqlite3 *db, /* Database connection that is running the check */ Btree *p, /* The btree to be checked */ Pgno *aRoot, /* An array of root pages numbers for individual trees */ int nRoot, /* Number of entries in aRoot[] */ int mxErr, /* Stop reporting errors after this many */ int *pnErr, /* OUT: Write number of errors seen to this variable */ char **pzOut /* OUT: Write the error message string here */ ){ Pgno i; IntegrityCk sCheck; BtShared *pBt = p->pBt; u64 savedDbFlags = pBt->db->flags; char zErr[100]; int bPartial = 0; /* True if not checking all btrees */ int bCkFreelist = 1; /* True to scan the freelist */ VVA_ONLY( int nRef ); assert( nRoot>0 ); /* aRoot[0]==0 means this is a partial check */ if( aRoot[0]==0 ){ assert( nRoot>1 ); bPartial = 1; if( aRoot[1]!=1 ) bCkFreelist = 0; } sqlite3BtreeEnter(p); assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); assert( nRef>=0 ); memset(&sCheck, 0, sizeof(sCheck)); sCheck.db = db; sCheck.pBt = pBt; sCheck.pPager = pBt->pPager; sCheck.nPage = btreePagecount(sCheck.pBt); sCheck.mxErr = mxErr; sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; if( sCheck.nPage==0 ){ goto integrity_ck_cleanup; } sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); if( !sCheck.aPgRef ){ checkOom(&sCheck); goto integrity_ck_cleanup; } sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); if( sCheck.heap==0 ){ checkOom(&sCheck); goto integrity_ck_cleanup; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); /* Check the integrity of the freelist */ if( bCkFreelist ){ sCheck.zPfx = "Freelist: "; checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36])); sCheck.zPfx = 0; } /* Check all the tables. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( !bPartial ){ if( pBt->autoVacuum ){ Pgno mx = 0; Pgno mxInHdr; for(i=0; (int)ipPage1->aData[52]); if( mx!=mxInHdr ){ checkAppendMsg(&sCheck, "max rootpage (%u) disagrees with header (%u)", mx, mxInHdr ); } }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ checkAppendMsg(&sCheck, "incremental_vacuum enabled with a max rootpage of zero" ); } } #endif testcase( pBt->db->flags & SQLITE_CellSizeCk ); pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; for(i=0; (int)iautoVacuum && aRoot[i]>1 && !bPartial ){ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); } #endif sCheck.v0 = aRoot[i]; checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); } pBt->db->flags = savedDbFlags; /* Make sure every page in the file is referenced */ if( !bPartial ){ for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ #ifdef SQLITE_OMIT_AUTOVACUUM if( getPageReferenced(&sCheck, i)==0 ){ checkAppendMsg(&sCheck, "Page %u: never used", i); } #else /* If the database supports auto-vacuum, make sure no tables contain ** references to pointer-map pages. */ if( getPageReferenced(&sCheck, i)==0 && (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ checkAppendMsg(&sCheck, "Page %u: never used", i); } if( getPageReferenced(&sCheck, i)!=0 && (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ checkAppendMsg(&sCheck, "Page %u: pointer map referenced", i); } #endif } } /* Clean up and report errors. */ integrity_ck_cleanup: sqlite3PageFree(sCheck.heap); sqlite3_free(sCheck.aPgRef); *pnErr = sCheck.nErr; if( sCheck.nErr==0 ){ sqlite3_str_reset(&sCheck.errMsg); *pzOut = 0; }else{ *pzOut = sqlite3StrAccumFinish(&sCheck.errMsg); } /* Make sure this analysis did not leave any unref() pages. */ assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); sqlite3BtreeLeave(p); return sCheck.rc; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** Return the full pathname of the underlying database file. Return ** an empty string if the database is in-memory or a TEMP database. ** ** The pager filename is invariant as long as the pager is ** open so it is safe to access without the BtShared mutex. */ SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3PagerFilename(p->pBt->pPager, 1); } /* ** Return the pathname of the journal file for this database. The return ** value of this routine is the same regardless of whether the journal file ** has been created or not. ** ** The pager journal filename is invariant as long as the pager is ** open so it is safe to access without the BtShared mutex. */ SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3PagerJournalname(p->pBt->pPager); } /* ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE ** to describe the current transaction state of Btree p. */ SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree *p){ assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); return p ? p->inTrans : 0; } #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on the Btree passed as the first argument. ** ** Return SQLITE_LOCKED if this or any other connection has an open ** transaction on the shared-cache the argument Btree is connected to. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; if( p ){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( pBt->inTransaction!=TRANS_NONE ){ rc = SQLITE_LOCKED; }else{ rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); } sqlite3BtreeLeave(p); } return rc; } #endif /* ** Return true if there is currently a backup running on Btree p. */ SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){ assert( p ); assert( sqlite3_mutex_held(p->db->mutex) ); return p->nBackup!=0; } /* ** This function returns a pointer to a blob of memory associated with ** a single shared-btree. The memory is used by client code for its own ** purposes (for example, to store a high-level schema associated with ** the shared-btree). The btree layer manages reference counting issues. ** ** The first time this is called on a shared-btree, nBytes bytes of memory ** are allocated, zeroed, and returned to the caller. For each subsequent ** call the nBytes parameter is ignored and a pointer to the same blob ** of memory returned. ** ** If the nBytes parameter is 0 and the blob of memory has not yet been ** allocated, a null pointer is returned. If the blob has already been ** allocated, it is returned as normal. ** ** Just before the shared-btree is closed, the function passed as the ** xFree argument when the memory allocation was made is invoked on the ** blob of allocated memory. The xFree function should not call sqlite3_free() ** on the memory, the btree layer does that. */ SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ pBt->pSchema = sqlite3DbMallocZero(0, nBytes); pBt->xFreeSchema = xFree; } sqlite3BtreeLeave(p); return pBt->pSchema; } /* ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared ** btree as the argument handle holds an exclusive lock on the ** sqlite_schema table. Otherwise SQLITE_OK. */ SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){ int rc; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); sqlite3BtreeLeave(p); return rc; } #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Obtain a lock on the table whose root page is iTab. The ** lock is a write lock if isWritelock is true or a read lock ** if it is false. */ SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ int rc = SQLITE_OK; assert( p->inTrans!=TRANS_NONE ); if( p->sharable ){ u8 lockType = READ_LOCK + isWriteLock; assert( READ_LOCK+1==WRITE_LOCK ); assert( isWriteLock==0 || isWriteLock==1 ); sqlite3BtreeEnter(p); rc = querySharedCacheTableLock(p, iTab, lockType); if( rc==SQLITE_OK ){ rc = setSharedCacheTableLock(p, iTab, lockType); } sqlite3BtreeLeave(p); } return rc; } #endif #ifndef SQLITE_OMIT_INCRBLOB /* ** Argument pCsr must be a cursor opened for writing on an ** INTKEY table currently pointing at a valid table entry. ** This function modifies the data stored as part of that entry. ** ** Only the data content may only be modified, it is not possible to ** change the length of the data stored. If this function is called with ** parameters that attempt to write past the end of the existing data, ** no modifications are made and SQLITE_CORRUPT is returned. */ SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ int rc; assert( cursorOwnsBtShared(pCsr) ); assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); assert( pCsr->curFlags & BTCF_Incrblob ); rc = restoreCursorPosition(pCsr); if( rc!=SQLITE_OK ){ return rc; } assert( pCsr->eState!=CURSOR_REQUIRESEEK ); if( pCsr->eState!=CURSOR_VALID ){ return SQLITE_ABORT; } /* Save the positions of all other cursors open on this table. This is ** required in case any of them are holding references to an xFetch ** version of the b-tree page modified by the accessPayload call below. ** ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence ** saveAllCursors can only return SQLITE_OK. */ VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); assert( rc==SQLITE_OK ); /* Check some assumptions: ** (a) the cursor is open for writing, ** (b) there is a read/write transaction open, ** (c) the connection holds a write-lock on the table (if required), ** (d) there are no conflicting read-locks, and ** (e) the cursor points at a valid row of an intKey table. */ if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ return SQLITE_READONLY; } assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 && pCsr->pBt->inTransaction==TRANS_WRITE ); assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); assert( pCsr->pPage->intKey ); return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); } /* ** Mark this cursor as an incremental blob cursor. */ SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ pCur->curFlags |= BTCF_Incrblob; pCur->pBtree->hasIncrblobCur = 1; } #endif /* ** Set both the "read version" (single byte at byte offset 18) and ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. */ SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ BtShared *pBt = pBtree->pBt; int rc; /* Return code */ assert( iVersion==1 || iVersion==2 ); /* If setting the version fields to 1, do not automatically open the ** WAL connection, even if the version fields are currently set to 2. */ pBt->btsFlags &= ~BTS_NO_WAL; if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); if( rc==SQLITE_OK ){ u8 *aData = pBt->pPage1->aData; if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc==SQLITE_OK ){ aData[18] = (u8)iVersion; aData[19] = (u8)iVersion; } } } } pBt->btsFlags &= ~BTS_NO_WAL; return rc; } /* ** Return true if the cursor has a hint specified. This routine is ** only used from within assert() statements */ SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ return (pCsr->hints & mask)!=0; } /* ** Return true if the given Btree is read-only. */ SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; } /* ** Return the size of the header added to each page by this module. */ SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } /* ** If no transaction is active and the database is not a temp-db, clear ** the in-memory pager cache. */ SQLITE_PRIVATE void sqlite3BtreeClearCache(Btree *p){ BtShared *pBt = p->pBt; if( pBt->inTransaction==TRANS_NONE ){ sqlite3PagerClearCache(pBt->pPager); } } #if !defined(SQLITE_OMIT_SHARED_CACHE) /* ** Return true if the Btree passed as the only argument is sharable. */ SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){ return p->sharable; } /* ** Return the number of connections to the BtShared object accessed by ** the Btree handle passed as the only argument. For private caches ** this is always 1. For shared caches it may be 1 or greater. */ SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree *p){ testcase( p->sharable ); return p->pBt->nRef; } #endif /************** End of btree.c ***********************************************/ /************** Begin file backup.c ******************************************/ /* ** 2009 January 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_backup_XXX() ** API functions and the related features. */ /* #include "sqliteInt.h" */ /* #include "btreeInt.h" */ /* ** Structure allocated for each backup operation. */ struct sqlite3_backup { sqlite3* pDestDb; /* Destination database handle */ Btree *pDest; /* Destination b-tree file */ u32 iDestSchema; /* Original schema cookie in destination */ int bDestLocked; /* True once a write-transaction is open on pDest */ Pgno iNext; /* Page number of the next source page to copy */ sqlite3* pSrcDb; /* Source database handle */ Btree *pSrc; /* Source b-tree file */ int rc; /* Backup process error code */ /* These two variables are set by every call to backup_step(). They are ** read by calls to backup_remaining() and backup_pagecount(). */ Pgno nRemaining; /* Number of pages left to copy */ Pgno nPagecount; /* Total number of pages to copy */ int isAttached; /* True once backup has been registered with pager */ sqlite3_backup *pNext; /* Next backup associated with source pager */ }; /* ** THREAD SAFETY NOTES: ** ** Once it has been created using backup_init(), a single sqlite3_backup ** structure may be accessed via two groups of thread-safe entry points: ** ** * Via the sqlite3_backup_XXX() API function backup_step() and ** backup_finish(). Both these functions obtain the source database ** handle mutex and the mutex associated with the source BtShared ** structure, in that order. ** ** * Via the BackupUpdate() and BackupRestart() functions, which are ** invoked by the pager layer to report various state changes in ** the page cache associated with the source database. The mutex ** associated with the source database BtShared structure will always ** be held when either of these functions are invoked. ** ** The other sqlite3_backup_XXX() API functions, backup_remaining() and ** backup_pagecount() are not thread-safe functions. If they are called ** while some other thread is calling backup_step() or backup_finish(), ** the values returned may be invalid. There is no way for a call to ** BackupUpdate() or BackupRestart() to interfere with backup_remaining() ** or backup_pagecount(). ** ** Depending on the SQLite configuration, the database handles and/or ** the Btree objects may have their own mutexes that require locking. ** Non-sharable Btrees (in-memory databases for example), do not have ** associated mutexes. */ /* ** Return a pointer corresponding to database zDb (i.e. "main", "temp") ** in connection handle pDb. If such a database cannot be found, return ** a NULL pointer and write an error message to pErrorDb. ** ** If the "temp" database is requested, it may need to be opened by this ** function. If an error occurs while doing so, return 0 and write an ** error message to pErrorDb. */ static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){ int i = sqlite3FindDbName(pDb, zDb); if( i==1 ){ Parse sParse; int rc = 0; sqlite3ParseObjectInit(&sParse,pDb); if( sqlite3OpenTempDatabase(&sParse) ){ sqlite3ErrorWithMsg(pErrorDb, sParse.rc, "%s", sParse.zErrMsg); rc = SQLITE_ERROR; } sqlite3DbFree(pErrorDb, sParse.zErrMsg); sqlite3ParseObjectReset(&sParse); if( rc ){ return 0; } } if( i<0 ){ sqlite3ErrorWithMsg(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb); return 0; } return pDb->aDb[i].pBt; } /* ** Attempt to set the page size of the destination to match the page size ** of the source. */ static int setDestPgsz(sqlite3_backup *p){ int rc; rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),0,0); return rc; } /* ** Check that there is no open read-transaction on the b-tree passed as the ** second argument. If there is not, return SQLITE_OK. Otherwise, if there ** is an open read-transaction, return SQLITE_ERROR and leave an error ** message in database handle db. */ static int checkReadTransaction(sqlite3 *db, Btree *p){ if( sqlite3BtreeTxnState(p)!=SQLITE_TXN_NONE ){ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use"); return SQLITE_ERROR; } return SQLITE_OK; } /* ** Create an sqlite3_backup process to copy the contents of zSrcDb from ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return ** a pointer to the new sqlite3_backup object. ** ** If an error occurs, NULL is returned and an error code and error message ** stored in database handle pDestDb. */ SQLITE_API sqlite3_backup *sqlite3_backup_init( sqlite3* pDestDb, /* Database to write to */ const char *zDestDb, /* Name of database within pDestDb */ sqlite3* pSrcDb, /* Database connection to read from */ const char *zSrcDb /* Name of database within pSrcDb */ ){ sqlite3_backup *p; /* Value to return */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif /* Lock the source database handle. The destination database ** handle is not locked in this routine, but it is locked in ** sqlite3_backup_step(). The user is required to ensure that no ** other thread accesses the destination handle for the duration ** of the backup operation. Any attempt to use the destination ** database connection while a backup is in progress may cause ** a malfunction or a deadlock. */ sqlite3_mutex_enter(pSrcDb->mutex); sqlite3_mutex_enter(pDestDb->mutex); if( pSrcDb==pDestDb ){ sqlite3ErrorWithMsg( pDestDb, SQLITE_ERROR, "source and destination must be distinct" ); p = 0; }else { /* Allocate space for a new sqlite3_backup object... ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup)); if( !p ){ sqlite3Error(pDestDb, SQLITE_NOMEM_BKPT); } } /* If the allocation succeeded, populate the new object. */ if( p ){ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; p->iNext = 1; p->isAttached = 0; if( 0==p->pSrc || 0==p->pDest || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK ){ /* One (or both) of the named databases did not exist or an OOM ** error was hit. Or there is a transaction open on the destination ** database. The error has already been written into the pDestDb ** handle. All that is left to do here is free the sqlite3_backup ** structure. */ sqlite3_free(p); p = 0; } } if( p ){ p->pSrc->nBackup++; } sqlite3_mutex_leave(pDestDb->mutex); sqlite3_mutex_leave(pSrcDb->mutex); return p; } /* ** Argument rc is an SQLite error code. Return true if this error is ** considered fatal if encountered during a backup operation. All errors ** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED. */ static int isFatalError(int rc){ return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED)); } /* ** Parameter zSrcData points to a buffer containing the data for ** page iSrcPg from the source database. Copy this data into the ** destination database. */ static int backupOnePage( sqlite3_backup *p, /* Backup handle */ Pgno iSrcPg, /* Source database page to backup */ const u8 *zSrcData, /* Source database page data */ int bUpdate /* True for an update, false otherwise */ ){ Pager * const pDestPager = sqlite3BtreePager(p->pDest); const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); const int nCopy = MIN(nSrcPgsz, nDestPgsz); const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; int rc = SQLITE_OK; i64 iOff; assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 ); assert( p->bDestLocked ); assert( !isFatalError(p->rc) ); assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); assert( zSrcData ); assert( nSrcPgsz==nDestPgsz || sqlite3PagerIsMemdb(pDestPager)==0 ); /* This loop runs once for each destination page spanned by the source ** page. For each iteration, variable iOff is set to the byte offset ** of the destination page. */ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOffpDest->pBt) ) continue; if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg, 0)) && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg)) ){ const u8 *zIn = &zSrcData[iOff%nSrcPgsz]; u8 *zDestData = sqlite3PagerGetData(pDestPg); u8 *zOut = &zDestData[iOff%nDestPgsz]; /* Copy the data from the source page into the destination page. ** Then clear the Btree layer MemPage.isInit flag. Both this module ** and the pager code use this trick (clearing the first byte ** of the page 'extra' space to invalidate the Btree layers ** cached parse of the page). MemPage.isInit is marked ** "MUST BE FIRST" for this purpose. */ memcpy(zOut, zIn, nCopy); ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; if( iOff==0 && bUpdate==0 ){ sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc)); } } sqlite3PagerUnref(pDestPg); } return rc; } /* ** If pFile is currently larger than iSize bytes, then truncate it to ** exactly iSize bytes. If pFile is not larger than iSize bytes, then ** this function is a no-op. ** ** Return SQLITE_OK if everything is successful, or an SQLite error ** code if an error occurs. */ static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){ i64 iCurrent; int rc = sqlite3OsFileSize(pFile, &iCurrent); if( rc==SQLITE_OK && iCurrent>iSize ){ rc = sqlite3OsTruncate(pFile, iSize); } return rc; } /* ** Register this backup object with the associated source pager for ** callbacks when pages are changed or the cache invalidated. */ static void attachBackupObject(sqlite3_backup *p){ sqlite3_backup **pp; assert( sqlite3BtreeHoldsMutex(p->pSrc) ); pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); p->pNext = *pp; *pp = p; p->isAttached = 1; } /* ** Copy nPage pages from the source b-tree to the destination. */ SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){ int rc; int destMode; /* Destination journal mode */ int pgszSrc = 0; /* Source page size */ int pgszDest = 0; /* Destination page size */ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } rc = p->rc; if( !isFatalError(rc) ){ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ int ii; /* Iterator variable */ int nSrcPage = -1; /* Size of source db in pages */ int bCloseTrans = 0; /* True if src db requires unlocking */ /* If the source pager is currently in a write-transaction, return ** SQLITE_BUSY immediately. */ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ rc = SQLITE_BUSY; }else{ rc = SQLITE_OK; } /* If there is no open read-transaction on the source database, open ** one now. If a transaction is opened here, then it will be closed ** before this function exits. */ if( rc==SQLITE_OK && SQLITE_TXN_NONE==sqlite3BtreeTxnState(p->pSrc) ){ rc = sqlite3BtreeBeginTrans(p->pSrc, 0, 0); bCloseTrans = 1; } /* If the destination database has not yet been locked (i.e. if this ** is the first call to backup_step() for the current backup operation), ** try to set its page size to the same as the source database. This ** is especially important on ZipVFS systems, as in that case it is ** not possible to create a database file that uses one page size by ** writing to it with another. */ if( p->bDestLocked==0 && rc==SQLITE_OK && setDestPgsz(p)==SQLITE_NOMEM ){ rc = SQLITE_NOMEM; } /* Lock the destination database, if it is not locked already. */ if( SQLITE_OK==rc && p->bDestLocked==0 && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2, (int*)&p->iDestSchema)) ){ p->bDestLocked = 1; } /* Do not allow backup if the destination database is in WAL mode ** and the page sizes are different between source and destination */ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); pgszDest = sqlite3BtreeGetPageSize(p->pDest); destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); if( SQLITE_OK==rc && (destMode==PAGER_JOURNALMODE_WAL || sqlite3PagerIsMemdb(pDestPager)) && pgszSrc!=pgszDest ){ rc = SQLITE_READONLY; } /* Now that there is a read-lock on the source database, query the ** source pager for the number of pages in the database. */ nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc); assert( nSrcPage>=0 ); for(ii=0; (nPage<0 || iiiNext<=(Pgno)nSrcPage && !rc; ii++){ const Pgno iSrcPg = p->iNext; /* Source page number */ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ DbPage *pSrcPg; /* Source page object */ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY); if( rc==SQLITE_OK ){ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0); sqlite3PagerUnref(pSrcPg); } } p->iNext++; } if( rc==SQLITE_OK ){ p->nPagecount = nSrcPage; p->nRemaining = nSrcPage+1-p->iNext; if( p->iNext>(Pgno)nSrcPage ){ rc = SQLITE_DONE; }else if( !p->isAttached ){ attachBackupObject(p); } } /* Update the schema version field in the destination database. This ** is to make sure that the schema-version really does change in ** the case where the source and destination databases have the ** same schema version. */ if( rc==SQLITE_DONE ){ if( nSrcPage==0 ){ rc = sqlite3BtreeNewDb(p->pDest); nSrcPage = 1; } if( rc==SQLITE_OK || rc==SQLITE_DONE ){ rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1); } if( rc==SQLITE_OK ){ if( p->pDestDb ){ sqlite3ResetAllSchemasOfConnection(p->pDestDb); } if( destMode==PAGER_JOURNALMODE_WAL ){ rc = sqlite3BtreeSetVersion(p->pDest, 2); } } if( rc==SQLITE_OK ){ int nDestTruncate; /* Set nDestTruncate to the final number of pages in the destination ** database. The complication here is that the destination page ** size may be different to the source page size. ** ** If the source page size is smaller than the destination page size, ** round up. In this case the call to sqlite3OsTruncate() below will ** fix the size of the file. However it is important to call ** sqlite3PagerTruncateImage() here so that any pages in the ** destination file that lie beyond the nDestTruncate page mark are ** journalled by PagerCommitPhaseOne() before they are destroyed ** by the file truncation. */ assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) ); assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) ); if( pgszSrcpDest->pBt) ){ nDestTruncate--; } }else{ nDestTruncate = nSrcPage * (pgszSrc/pgszDest); } assert( nDestTruncate>0 ); if( pgszSrc= iSize || ( nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest )); /* This block ensures that all data required to recreate the original ** database has been stored in the journal for pDestPager and the ** journal synced to disk. So at this point we may safely modify ** the database file in any way, knowing that if a power failure ** occurs, the original database will be reconstructed from the ** journal file. */ sqlite3PagerPagecount(pDestPager, &nDstPage); for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){ if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){ DbPage *pPg; rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg); sqlite3PagerUnref(pPg); } } } if( rc==SQLITE_OK ){ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1); } /* Write the extra pages and truncate the database file as required */ iEnd = MIN(PENDING_BYTE + pgszDest, iSize); for( iOff=PENDING_BYTE+pgszSrc; rc==SQLITE_OK && iOffpDest, 0)) ){ rc = SQLITE_DONE; } } } /* If bCloseTrans is true, then this function opened a read transaction ** on the source database. Close the read transaction here. There is ** no need to check the return values of the btree methods here, as ** "committing" a read-only transaction cannot fail. */ if( bCloseTrans ){ TESTONLY( int rc2 ); TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); assert( rc2==SQLITE_OK ); } if( rc==SQLITE_IOERR_NOMEM ){ rc = SQLITE_NOMEM_BKPT; } p->rc = rc; } if( p->pDestDb ){ sqlite3_mutex_leave(p->pDestDb->mutex); } sqlite3BtreeLeave(p->pSrc); sqlite3_mutex_leave(p->pSrcDb->mutex); return rc; } /* ** Release all resources associated with an sqlite3_backup* handle. */ SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){ sqlite3_backup **pp; /* Ptr to head of pagers backup list */ sqlite3 *pSrcDb; /* Source database connection */ int rc; /* Value to return */ /* Enter the mutexes */ if( p==0 ) return SQLITE_OK; pSrcDb = p->pSrcDb; sqlite3_mutex_enter(pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } /* Detach this backup from the source pager. */ if( p->pDestDb ){ p->pSrc->nBackup--; } if( p->isAttached ){ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); assert( pp!=0 ); while( *pp!=p ){ pp = &(*pp)->pNext; assert( pp!=0 ); } *pp = p->pNext; } /* If a transaction is still open on the Btree, roll it back. */ sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0); /* Set the error code of the destination database handle. */ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc; if( p->pDestDb ){ sqlite3Error(p->pDestDb, rc); /* Exit the mutexes and free the backup context structure. */ sqlite3LeaveMutexAndCloseZombie(p->pDestDb); } sqlite3BtreeLeave(p->pSrc); if( p->pDestDb ){ /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ sqlite3_free(p); } sqlite3LeaveMutexAndCloseZombie(pSrcDb); return rc; } /* ** Return the number of pages still to be backed up as of the most recent ** call to sqlite3_backup_step(). */ SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return p->nRemaining; } /* ** Return the total number of pages in the source database as of the most ** recent call to sqlite3_backup_step(). */ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return p->nPagecount; } /* ** This function is called after the contents of page iPage of the ** source database have been modified. If page iPage has already been ** copied into the destination database, then the data written to the ** destination is now invalidated. The destination copy of iPage needs ** to be updated with the new data before the backup operation is ** complete. ** ** It is assumed that the mutex associated with the BtShared object ** corresponding to the source database is held when this function is ** called. */ static SQLITE_NOINLINE void backupUpdate( sqlite3_backup *p, Pgno iPage, const u8 *aData ){ assert( p!=0 ); do{ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); if( !isFatalError(p->rc) && iPageiNext ){ /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ int rc; assert( p->pDestDb ); sqlite3_mutex_enter(p->pDestDb->mutex); rc = backupOnePage(p, iPage, aData, 1); sqlite3_mutex_leave(p->pDestDb->mutex); assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); if( rc!=SQLITE_OK ){ p->rc = rc; } } }while( (p = p->pNext)!=0 ); } SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){ if( pBackup ) backupUpdate(pBackup, iPage, aData); } /* ** Restart the backup process. This is called when the pager layer ** detects that the database has been modified by an external database ** connection. In this case there is no way of knowing which of the ** pages that have been copied into the destination database are still ** valid and which are not, so the entire process needs to be restarted. ** ** It is assumed that the mutex associated with the BtShared object ** corresponding to the source database is held when this function is ** called. */ SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){ sqlite3_backup *p; /* Iterator variable */ for(p=pBackup; p; p=p->pNext){ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); p->iNext = 1; } } #ifndef SQLITE_OMIT_VACUUM /* ** Copy the complete content of pBtFrom into pBtTo. A transaction ** must be active for both files. ** ** The size of file pTo may be reduced by this operation. If anything ** goes wrong, the transaction on pTo is rolled back. If successful, the ** transaction is committed before returning. */ SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ int rc; sqlite3_file *pFd; /* File descriptor for database pTo */ sqlite3_backup b; sqlite3BtreeEnter(pTo); sqlite3BtreeEnter(pFrom); assert( sqlite3BtreeTxnState(pTo)==SQLITE_TXN_WRITE ); pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); if( pFd->pMethods ){ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; if( rc ) goto copy_finished; } /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set ** to 0. This is used by the implementations of sqlite3_backup_step() ** and sqlite3_backup_finish() to detect that they are being called ** from this function, not directly by the user. */ memset(&b, 0, sizeof(b)); b.pSrcDb = pFrom->db; b.pSrc = pFrom; b.pDest = pTo; b.iNext = 1; /* 0x7FFFFFFF is the hard limit for the number of pages in a database ** file. By passing this as the number of pages to copy to ** sqlite3_backup_step(), we can guarantee that the copy finishes ** within a single call (unless an error occurs). The assert() statement ** checks this assumption - (p->rc) should be set to either SQLITE_DONE ** or an error code. */ sqlite3_backup_step(&b, 0x7FFFFFFF); assert( b.rc!=SQLITE_OK ); rc = sqlite3_backup_finish(&b); if( rc==SQLITE_OK ){ pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED; }else{ sqlite3PagerClearCache(sqlite3BtreePager(b.pDest)); } assert( sqlite3BtreeTxnState(pTo)!=SQLITE_TXN_WRITE ); copy_finished: sqlite3BtreeLeave(pFrom); sqlite3BtreeLeave(pTo); return rc; } #endif /* SQLITE_OMIT_VACUUM */ /************** End of backup.c **********************************************/ /************** Begin file vdbemem.c *****************************************/ /* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* True if X is a power of two. 0 is considered a power of two here. ** In other words, return true if X has at most one bit set. */ #define ISPOWEROF2(X) (((X)&((X)-1))==0) #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); if( p->flags & MEM_Null ){ /* Cannot be both MEM_Null and some other type */ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); /* If MEM_Null is set, then either the value is a pure NULL (the usual ** case) or it is a pointer set using sqlite3_bind_pointer() or ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be ** set. */ if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ /* This is a pointer type. There may be a flag to indicate what to ** do with the pointer. */ assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); /* No other bits set */ assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); }else{ /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ } }else{ /* The MEM_Cleared bit is only allowed on NULLs */ assert( (p->flags & MEM_Cleared)==0 ); } /* The szMalloc field holds the correct memory allocation size */ assert( p->szMalloc==0 || (p->flags==MEM_Undefined && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel ** (3) An ephemeral string or blob ** (4) A static string or blob */ if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ assert( ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 ); } return 1; } #endif /* ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal ** into a buffer. */ static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ StrAccum acc; assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); assert( sz>22 ); if( p->flags & MEM_Int ){ #if GCC_VERSION>=7000000 /* Work-around for GCC bug ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ i64 x; assert( (p->flags&MEM_Int)*2==sizeof(x) ); memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); p->n = sqlite3Int64ToText(x, zBuf); #else p->n = sqlite3Int64ToText(p->u.i, zBuf); #endif }else{ sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); sqlite3_str_appendf(&acc, "%!.15g", (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); assert( acc.zText==zBuf && acc.mxAlloc<=0 ); zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ p->n = acc.nChar; } } #ifdef SQLITE_DEBUG /* ** Validity checks on pMem. pMem holds a string. ** ** (1) Check that string value of pMem agrees with its integer or real value. ** (2) Check that the string is correctly zero terminated ** ** A single int or real value always converts to the same strings. But ** many different strings can be converted into the same int or real. ** If a table contains a numeric value and an index is based on the ** corresponding string value, then it is important that the string be ** derived from the numeric value, not the other way around, to ensure ** that the index and table are consistent. See ticket ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for ** an example. ** ** This routine looks at pMem to verify that if it has both a numeric ** representation and a string representation then the string rep has ** been derived from the numeric and not the other way around. It returns ** true if everything is ok and false if there is a problem. ** ** This routine is for use inside of assert() statements only. */ SQLITE_PRIVATE int sqlite3VdbeMemValidStrRep(Mem *p){ Mem tmp; char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; if( p->db && p->db->mallocFailed ) return 1; if( p->flags & MEM_Term ){ /* Insure that the string is properly zero-terminated. Pay particular ** attention to the case where p->n is odd */ if( p->szMalloc>0 && p->z==p->zMalloc ){ assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); } assert( p->z[p->n]==0 ); assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); } if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; memcpy(&tmp, p, sizeof(tmp)); vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp); z = p->z; i = j = 0; incr = 1; if( p->enc!=SQLITE_UTF8 ){ incr = 2; if( p->enc==SQLITE_UTF16BE ) z++; } while( zBuf[j] ){ if( zBuf[j++]!=z[i] ) return 0; i += incr; } return 1; } #endif /* SQLITE_DEBUG */ /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string ** representation is already stored using the requested encoding, then this ** routine is a no-op. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ #ifndef SQLITE_OMIT_UTF16 int rc; #endif assert( pMem!=0 ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE || desiredEnc==SQLITE_UTF16BE ); if( !(pMem->flags&MEM_Str) ){ pMem->enc = desiredEnc; return SQLITE_OK; } if( pMem->enc==desiredEnc ){ return SQLITE_OK; } assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); #ifdef SQLITE_OMIT_UTF16 return SQLITE_ERROR; #else /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, ** then the encoding of the value may not have changed. */ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make sure pMem->z points to a writable allocation of at least n bytes. ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ assert( sqlite3VdbeCheckMemInvariants(pMem) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); testcase( pMem->db==0 ); /* If the bPreserve flag is set to true, then the memory cell must already ** contain a valid string or blob value. */ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); testcase( bPreserve && pMem->z==0 ); assert( pMem->szMalloc==0 || (pMem->flags==MEM_Undefined && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ if( pMem->db ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); }else{ pMem->zMalloc = sqlite3Realloc(pMem->z, n); if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); pMem->z = pMem->zMalloc; } bPreserve = 0; }else{ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } if( pMem->zMalloc==0 ){ sqlite3VdbeMemSetNull(pMem); pMem->z = 0; pMem->szMalloc = 0; return SQLITE_NOMEM_BKPT; }else{ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); } if( bPreserve && pMem->z ){ assert( pMem->z!=pMem->zMalloc ); memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( (pMem->flags&MEM_Dyn)!=0 ){ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); return SQLITE_OK; } /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, ** and MEM_Null values are preserved. ** ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) ** if unable to complete the resizing. */ SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ assert( CORRUPT_DB || szNew>0 ); assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); if( pMem->szMallocflags & MEM_Dyn)==0 ); pMem->z = pMem->zMalloc; pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); return SQLITE_OK; } /* ** If pMem is already a string, detect if it is a zero-terminated ** string, or make it into one if possible, and mark it as such. ** ** This is an optimization. Correct operation continues even if ** this routine is a no-op. */ SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){ if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){ /* pMem must be a string, and it cannot be an ephemeral or static string */ return; } if( pMem->enc!=SQLITE_UTF8 ) return; if( NEVER(pMem->z==0) ) return; if( pMem->flags & MEM_Dyn ){ if( pMem->xDel==sqlite3_free && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1) ){ pMem->z[pMem->n] = 0; pMem->flags |= MEM_Term; return; } if( pMem->xDel==(void(*)(void*))sqlite3RCStrUnref ){ /* Blindly assume that all RCStr objects are zero-terminated */ pMem->flags |= MEM_Term; return; } }else if( pMem->szMalloc >= pMem->n+1 ){ pMem->z[pMem->n] = 0; pMem->flags |= MEM_Term; return; } } /* ** It is already known that pMem contains an unterminated string. ** Add the zero terminator. ** ** Three bytes of zero are added. In this way, there is guaranteed ** to be a double-zero byte at an even byte boundary in order to ** terminate a UTF16 string, even if the initial size of the buffer ** is an odd number of bytes. */ static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ return SQLITE_NOMEM_BKPT; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->z[pMem->n+2] = 0; pMem->flags |= MEM_Term; return SQLITE_OK; } /* ** Change pMem so that its MEM_Str or MEM_Blob value is stored in ** MEM.zMalloc, where it can be safely written. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ if( ExpandBlob(pMem) ) return SQLITE_NOMEM; if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ int rc = vdbeMemAddTerminator(pMem); if( rc ) return rc; } } pMem->flags &= ~MEM_Ephem; #ifdef SQLITE_DEBUG pMem->pScopyFrom = 0; #endif return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){ int nByte; assert( pMem!=0 ); assert( pMem->flags & MEM_Zero ); assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); testcase( sqlite3_value_nochange(pMem) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); /* Set nByte to the number of bytes required to store the expanded blob. */ nByte = pMem->n + pMem->u.nZero; if( nByte<=0 ){ if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; nByte = 1; } if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ return SQLITE_NOMEM_BKPT; } assert( pMem->z!=0 ); assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); memset(&pMem->z[pMem->n], 0, pMem->u.nZero); pMem->n += pMem->u.nZero; pMem->flags &= ~(MEM_Zero|MEM_Term); return SQLITE_OK; } #endif /* ** Make sure the given Mem is \u0000 terminated. */ SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ return SQLITE_OK; /* Nothing to do */ }else{ return vdbeMemAddTerminator(pMem); } } /* ** Add MEM_Str to the set of representations for the given Mem. This ** routine is only called if pMem is a number of some kind, not a NULL ** or a BLOB. ** ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated ** if bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the latter is an internal programming error. */ SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ const int nByte = 32; assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(pMem->flags&MEM_Zero) ); assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ pMem->enc = 0; return SQLITE_NOMEM_BKPT; } vdbeMemRenderNum(nByte, pMem->z, pMem); assert( pMem->z!=0 ); assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) ); pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str|MEM_Term; if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); sqlite3VdbeChangeEncoding(pMem, enc); return SQLITE_OK; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ sqlite3_context ctx; Mem t; assert( pFunc!=0 ); assert( pMem!=0 ); assert( pMem->db!=0 ); assert( pFunc->xFinalize!=0 ); assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( sqlite3_mutex_held(pMem->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); memset(&t, 0, sizeof(t)); t.flags = MEM_Null; t.db = pMem->db; ctx.pOut = &t; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.enc = ENC(t.db); pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ assert( (pMem->flags & MEM_Dyn)==0 ); if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); memcpy(pMem, &t, sizeof(t)); return ctx.isError; } /* ** Memory cell pAccum contains the context of an aggregate function. ** This routine calls the xValue method for that function and stores ** the results in memory cell pMem. ** ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK ** otherwise. */ #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ sqlite3_context ctx; assert( pFunc!=0 ); assert( pFunc->xValue!=0 ); assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); assert( pAccum->db!=0 ); assert( sqlite3_mutex_held(pAccum->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); sqlite3VdbeMemSetNull(pOut); ctx.pOut = pOut; ctx.pMem = pAccum; ctx.pFunc = pFunc; ctx.enc = ENC(pAccum->db); pFunc->xValue(&ctx); return ctx.isError; } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** If the memory cell contains a value that must be freed by ** invoking the external callback in Mem.xDel, then this routine ** will free that value. It also sets Mem.flags to MEM_Null. ** ** This is a helper routine for sqlite3VdbeMemSetNull() and ** for sqlite3VdbeMemRelease(). Use those other routines as the ** entry point for releasing Mem resources. */ static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); assert( VdbeMemDynamic(p) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); testcase( p->flags & MEM_Dyn ); } if( p->flags&MEM_Dyn ){ assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); p->xDel((void *)p->z); } p->flags = MEM_Null; } /* ** Release memory held by the Mem p, both external memory cleared ** by p->xDel and memory in p->zMalloc. ** ** This is a helper routine invoked by sqlite3VdbeMemRelease() in ** the unusual case where there really is memory in p that needs ** to be freed. */ static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ if( VdbeMemDynamic(p) ){ vdbeMemClearExternAndSetNull(p); } if( p->szMalloc ){ sqlite3DbFreeNN(p->db, p->zMalloc); p->szMalloc = 0; } p->z = 0; } /* ** Release any memory resources held by the Mem. Both the memory that is ** free by Mem.xDel and the Mem.zMalloc allocation are freed. ** ** Use this routine prior to clean up prior to abandoning a Mem, or to ** reset a Mem back to its minimum memory utilization. ** ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space ** prior to inserting new content into the Mem. */ SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){ assert( sqlite3VdbeCheckMemInvariants(p) ); if( VdbeMemDynamic(p) || p->szMalloc ){ vdbeMemClear(p); } } /* Like sqlite3VdbeMemRelease() but faster for cases where we ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem *p){ assert( !VdbeMemDynamic(p) ); if( p->szMalloc ) vdbeMemClear(p); } /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into an integer and return that. If pMem represents an ** an SQL-NULL value, return 0. ** ** If pMem represents a string value, its encoding might be changed. */ static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ i64 value = 0; sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); return value; } SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem *pMem){ int flags; assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & (MEM_Int|MEM_IntReal) ){ testcase( flags & MEM_IntReal ); return pMem->u.i; }else if( flags & MEM_Real ){ return sqlite3RealToI64(pMem->u.r); }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ return memIntValue(pMem); }else{ return 0; } } /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ static SQLITE_NOINLINE double memRealValue(Mem *pMem){ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ double val = (double)0; sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); return val; } SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ testcase( pMem->flags & MEM_IntReal ); return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ return memRealValue(pMem); }else{ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return (double)0; } } /* ** Return 1 if pMem represents true, and return 0 if pMem represents false. ** Return the value ifNull if pMem is NULL. */ SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ testcase( pMem->flags & MEM_IntReal ); if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; if( pMem->flags & MEM_Null ) return ifNull; return sqlite3VdbeRealValue(pMem)!=0.0; } /* ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to ** make it a MEM_Int if we can. */ SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){ assert( pMem!=0 ); assert( pMem->flags & (MEM_Real|MEM_IntReal) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_IntReal ){ MemSetTypeFlag(pMem, MEM_Int); }else{ i64 ix = sqlite3RealToI64(pMem->u.r); /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes ** values to wrap around. */ if( pMem->u.r==ix && ix>SMALLEST_INT64 && ixu.i = ix; MemSetTypeFlag(pMem, MEM_Int); } } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.i = sqlite3VdbeIntValue(pMem); MemSetTypeFlag(pMem, MEM_Int); return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.r = sqlite3VdbeRealValue(pMem); MemSetTypeFlag(pMem, MEM_Real); return SQLITE_OK; } /* Compare a floating point value to an integer. Return true if the two ** values are the same within the precision of the floating point value. ** ** This function assumes that i was obtained by assignment from r1. ** ** For some versions of GCC on 32-bit machines, if you do the more obvious ** comparison of "r1==(double)i" you sometimes get an answer of false even ** though the r1 and (double)i values are bit-for-bit the same. */ SQLITE_PRIVATE int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return r1==0.0 || (memcmp(&r1, &r2, sizeof(r1))==0 && i >= -2251799813685248LL && i < 2251799813685248LL); } /* Convert a floating point value to its closest integer. Do so in ** a way that avoids 'outside the range of representable values' warnings ** from UBSAN. */ SQLITE_PRIVATE i64 sqlite3RealToI64(double r){ if( r<-9223372036854774784.0 ) return SMALLEST_INT64; if( r>+9223372036854774784.0 ) return LARGEST_INT64; return (i64)r; } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. */ SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){ assert( pMem!=0 ); testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); testcase( pMem->flags & MEM_Null ); if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ int rc; sqlite3_int64 ix; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r))) ){ pMem->u.i = ix; MemSetTypeFlag(pMem, MEM_Int); }else{ MemSetTypeFlag(pMem, MEM_Real); } } assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); return SQLITE_OK; } /* ** Cast the datatype of the value in pMem according to the affinity ** "aff". Casting is different from applying affinity in that a cast ** is forced. In other words, the value is converted into the desired ** affinity even if that results in loss of data. This routine is ** used (for example) to implement the SQL "cast()" operator. */ SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ if( pMem->flags & MEM_Null ) return SQLITE_OK; switch( aff ){ case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ if( (pMem->flags & MEM_Blob)==0 ){ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); }else{ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); } break; } case SQLITE_AFF_NUMERIC: { sqlite3VdbeMemNumerify(pMem); break; } case SQLITE_AFF_INTEGER: { sqlite3VdbeMemIntegerify(pMem); break; } case SQLITE_AFF_REAL: { sqlite3VdbeMemRealify(pMem); break; } default: { int rc; assert( aff==SQLITE_AFF_TEXT ); assert( MEM_Str==(MEM_Blob>>3) ); pMem->flags |= (pMem->flags&MEM_Blob)>>3; sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1; rc = sqlite3VdbeChangeEncoding(pMem, encoding); if( rc ) return rc; sqlite3VdbeMemZeroTerminateIfAble(pMem); } } return SQLITE_OK; } /* ** Initialize bulk memory to be a consistent Mem object. ** ** The minimum amount of initialization feasible is performed. */ SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ assert( (flags & ~MEM_TypeMask)==0 ); pMem->flags = flags; pMem->db = db; pMem->szMalloc = 0; } /* ** Delete any previous value and set the value stored in *pMem to NULL. ** ** This routine calls the Mem.xDel destructor to dispose of values that ** require the destructor. But it preserves the Mem.zMalloc memory allocation. ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this ** routine to invoke the destructor and deallocates Mem.zMalloc. ** ** Use this routine to reset the Mem prior to insert a new value. ** ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. */ SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){ if( VdbeMemDynamic(pMem) ){ vdbeMemClearExternAndSetNull(pMem); }else{ pMem->flags = MEM_Null; } } SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){ sqlite3VdbeMemSetNull((Mem*)p); } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Blob|MEM_Zero; pMem->n = 0; if( n<0 ) n = 0; pMem->u.nZero = n; pMem->enc = SQLITE_UTF8; pMem->z = 0; } #else SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ int nByte = n>0?n:1; if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ return SQLITE_NOMEM_BKPT; } assert( pMem->z!=0 ); assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); memset(pMem->z, 0, nByte); pMem->n = n>0?n:0; pMem->flags = MEM_Blob; pMem->enc = SQLITE_UTF8; return SQLITE_OK; } #endif /* ** The pMem is known to contain content that needs to be destroyed prior ** to a value change. So invoke the destructor, then set the value to ** a 64-bit integer. */ static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemSetNull(pMem); pMem->u.i = val; pMem->flags = MEM_Int; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ if( VdbeMemDynamic(pMem) ){ vdbeReleaseAndSetInt64(pMem, val); }else{ pMem->u.i = val; pMem->flags = MEM_Int; } } /* A no-op destructor */ SQLITE_PRIVATE void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } /* ** Set the value stored in *pMem should already be a NULL. ** Also store a pointer to go with it. */ SQLITE_PRIVATE void sqlite3VdbeMemSetPointer( Mem *pMem, void *pPtr, const char *zPType, void (*xDestructor)(void*) ){ assert( pMem->flags==MEM_Null ); vdbeMemClear(pMem); pMem->u.zPType = zPType ? zPType : ""; pMem->z = pPtr; pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; pMem->eSubtype = 'p'; pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ sqlite3VdbeMemSetNull(pMem); if( !sqlite3IsNaN(val) ){ pMem->u.r = val; pMem->flags = MEM_Real; } } #endif #ifdef SQLITE_DEBUG /* ** Return true if the Mem holds a RowSet object. This routine is intended ** for use inside of assert() statements. */ SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem *pMem){ return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) && pMem->xDel==sqlite3RowSetDelete; } #endif /* ** Delete any previous value and set the value of pMem to be an ** empty boolean index. ** ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation ** error occurs. */ SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem *pMem){ sqlite3 *db = pMem->db; RowSet *p; assert( db!=0 ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); sqlite3VdbeMemRelease(pMem); p = sqlite3RowSetInit(db); if( p==0 ) return SQLITE_NOMEM; pMem->z = (char*)p; pMem->flags = MEM_Blob|MEM_Dyn; pMem->xDel = sqlite3RowSetDelete; return SQLITE_OK; } /* ** Return true if the Mem object contains a TEXT or BLOB that is ** too large - whose size exceeds SQLITE_MAX_LENGTH. */ SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){ assert( p->db!=0 ); if( p->flags & (MEM_Str|MEM_Blob) ){ int n = p->n; if( p->flags & MEM_Zero ){ n += p->u.nZero; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* ** This routine prepares a memory cell for modification by breaking ** its link to a shallow copy and by marking any current shallow ** copies of this cell as invalid. ** ** This is used for testing and debugging only - to help ensure that shallow ** copies (created by OP_SCopy) are not misused. */ SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=1, pX=pVdbe->aMem+1; inMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ u16 mFlags; if( pVdbe->db->flags & SQLITE_VdbeTrace ){ sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); } /* If pX is marked as a shallow copy of pMem, then try to verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ mFlags = pMem->flags & pX->flags & pX->mScopyFlags; assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); /* pMem is the register that is changing. But also mark pX as ** undefined so that we can quickly detect the shallow-copy error */ pX->flags = MEM_Undefined; pX->pScopyFrom = 0; } } pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ vdbeMemClearExternAndSetNull(pTo); assert( !VdbeMemDynamic(pTo) ); sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); } SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ assert( !sqlite3VdbeMemIsRowSet(pFrom) ); assert( pTo->db==pFrom->db ); if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } memcpy(pTo, pFrom, MEMCELLSIZE); if( (pFrom->flags&MEM_Static)==0 ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( !sqlite3VdbeMemIsRowSet(pFrom) ); if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. */ SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); sqlite3VdbeMemRelease(pTo); memcpy(pTo, pFrom, sizeof(Mem)); pFrom->flags = MEM_Null; pFrom->szMalloc = 0; } /* ** Change the value of a Mem to be a string or a BLOB. ** ** The memory management strategy depends on the value of the xDel ** parameter. If the value passed is SQLITE_TRANSIENT, then the ** string is copied into a (possibly existing) buffer managed by the ** Mem structure. Otherwise, any existing buffer is freed and the ** pointer copied. ** ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH ** size limit) then no memory allocation occurs. If the string can be ** stored without allocating memory, then it is. If a memory allocation ** is required to store the string, then value of pMem is unchanged. In ** either case, SQLITE_TOOBIG is returned. ** ** The "enc" parameter is the text encoding for the string, or zero ** to store a blob. ** ** If n is negative, then the string consists of all bytes up to but ** excluding the first zero character. The n parameter must be ** non-negative for blobs. */ SQLITE_PRIVATE int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ i64 n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ i64 nByte = n; /* New value for pMem->n */ int iLimit; /* Maximum allowed string or blob size */ u16 flags; /* New value for pMem->flags */ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( enc!=0 || n>=0 ); /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ if( !z ){ sqlite3VdbeMemSetNull(pMem); return SQLITE_OK; } if( pMem->db ){ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; }else{ iLimit = SQLITE_MAX_LENGTH; } if( nByte<0 ){ assert( enc!=0 ); if( enc==SQLITE_UTF8 ){ nByte = strlen(z); }else{ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} } flags= MEM_Str|MEM_Term; }else if( enc==0 ){ flags = MEM_Blob; enc = SQLITE_UTF8; }else{ flags = MEM_Str; } if( nByte>iLimit ){ if( xDel && xDel!=SQLITE_TRANSIENT ){ if( xDel==SQLITE_DYNAMIC ){ sqlite3DbFree(pMem->db, (void*)z); }else{ xDel((void*)z); } } sqlite3VdbeMemSetNull(pMem); return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); } /* The following block sets the new values of Mem.z and Mem.xDel. It ** also sets a flag in local variable "flags" to indicate the memory ** management (one of MEM_Dyn or MEM_Static). */ if( xDel==SQLITE_TRANSIENT ){ i64 nAlloc = nByte; if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } testcase( nAlloc==0 ); testcase( nAlloc==31 ); testcase( nAlloc==32 ); if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ return SQLITE_NOMEM_BKPT; } memcpy(pMem->z, z, nAlloc); }else{ sqlite3VdbeMemRelease(pMem); pMem->z = (char *)z; if( xDel==SQLITE_DYNAMIC ){ pMem->zMalloc = pMem->z; pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); }else{ pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } } pMem->n = (int)(nByte & 0x7fffffff); pMem->flags = flags; pMem->enc = enc; #ifndef SQLITE_OMIT_UTF16 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM_BKPT; } #endif return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data is payload from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** The result is written into the pMem element. ** ** The pMem object must have been initialized. This routine will use ** pMem->zMalloc to hold the content from the btree, if possible. New ** pMem->zMalloc space will be allocated if necessary. The calling routine ** is responsible for making sure that the pMem object is eventually ** destroyed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ int rc; pMem->flags = MEM_Null; if( sqlite3BtreeMaxRecordSize(pCur)z); if( rc==SQLITE_OK ){ pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ pMem->flags = MEM_Blob; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ u32 available = 0; /* Number of bytes available on the local btree page */ int rc = SQLITE_OK; /* Return code */ assert( sqlite3BtreeCursorIsValid(pCur) ); assert( !VdbeMemDynamic(pMem) ); /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() ** that both the BtShared and database handle mutexes are held. */ assert( !sqlite3VdbeMemIsRowSet(pMem) ); pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); assert( pMem->z!=0 ); if( amt<=available ){ pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else{ rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); } return rc; } /* ** The pVal argument is known to be a value other than NULL. ** Convert it into a string with encoding enc and return a pointer ** to a zero-terminated version of that string. */ static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ assert( pVal!=0 ); assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( !sqlite3VdbeMemIsRowSet(pVal) ); assert( (pVal->flags & (MEM_Null))==0 ); if( pVal->flags & (MEM_Blob|MEM_Str) ){ if( ExpandBlob(pVal) ) return 0; pVal->flags |= MEM_Str; if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); } if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ }else{ sqlite3VdbeMemStringify(pVal, enc, 0); assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ assert( sqlite3VdbeMemValidStrRep(pVal) ); return pVal->z; }else{ return 0; } } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( !sqlite3VdbeMemIsRowSet(pVal) ); if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ assert( sqlite3VdbeMemValidStrRep(pVal) ); return pVal->z; } if( pVal->flags&MEM_Null ){ return 0; } return valueToText(pVal, enc); } /* Return true if sqlit3_value object pVal is a string or blob value ** that uses the destructor specified in the second argument. ** ** TODO: Maybe someday promote this interface into a published API so ** that third-party extensions can get access to it? */ SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){ if( ALWAYS(pVal!=0) && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0) && (pVal->flags & MEM_Dyn)!=0 && pVal->xDel==xFree ){ return 1; }else{ return 0; } } /* ** Create a new sqlite3_value object. */ SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; p->db = db; } return p; } /* ** Context object passed by sqlite3Stat4ProbeSetValue() through to ** valueNew(). See comments above valueNew() for details. */ struct ValueNewStat4Ctx { Parse *pParse; Index *pIdx; UnpackedRecord **ppRec; int iVal; }; /* ** Allocate and return a pointer to a new sqlite3_value object. If ** the second argument to this function is NULL, the object is allocated ** by calling sqlite3ValueNew(). ** ** Otherwise, if the second argument is non-zero, then this function is ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not ** already been allocated, allocate the UnpackedRecord structure that ** that function will return to its caller here. Then return a pointer to ** an sqlite3_value within the UnpackedRecord.a[] array. */ static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ #ifdef SQLITE_ENABLE_STAT4 if( p ){ UnpackedRecord *pRec = p->ppRec[0]; if( pRec==0 ){ Index *pIdx = p->pIdx; /* Index being probed */ int nByte; /* Bytes of space to allocate */ int i; /* Counter variable */ int nCol = pIdx->nColumn; /* Number of index columns including rowid */ nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nAllField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); for(i=0; iaMem[i].flags = MEM_Null; pRec->aMem[i].db = db; } }else{ sqlite3DbFreeNN(db, pRec); pRec = 0; } } if( pRec==0 ) return 0; p->ppRec[0] = pRec; } pRec->nField = p->iVal+1; sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]); return &pRec->aMem[p->iVal]; } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT4) */ return sqlite3ValueNew(db); } /* ** The expression object indicated by the second argument is guaranteed ** to be a scalar SQL function. If ** ** * all function arguments are SQL literals, ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, ** ** then this routine attempts to invoke the SQL function. Assuming no ** error occurs, output parameter (*ppVal) is set to point to a value ** object containing the result before returning SQLITE_OK. ** ** Affinity aff is applied to the result of the function before returning. ** If the result is a text value, the sqlite3_value object uses encoding ** enc. ** ** If the conditions above are not met, this function returns SQLITE_OK ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to ** NULL and an SQLite error code returned. */ #ifdef SQLITE_ENABLE_STAT4 static int valueFromFunction( sqlite3 *db, /* The database connection */ const Expr *p, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 aff, /* Affinity to use */ sqlite3_value **ppVal, /* Write the new value here */ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ ){ sqlite3_context ctx; /* Context object for function invocation */ sqlite3_value **apVal = 0; /* Function arguments */ int nVal = 0; /* Size of apVal[] array */ FuncDef *pFunc = 0; /* Function definition */ sqlite3_value *pVal = 0; /* New value */ int rc = SQLITE_OK; /* Return code */ ExprList *pList = 0; /* Function arguments */ int i; /* Iterator variable */ assert( pCtx!=0 ); assert( (p->flags & EP_TokenOnly)==0 ); assert( ExprUseXList(p) ); pList = p->x.pList; if( pList ) nVal = pList->nExpr; assert( !ExprHasProperty(p, EP_IntValue) ); pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION if( pFunc==0 ) return SQLITE_OK; #endif assert( pFunc ); if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) ){ return SQLITE_OK; } if( pList ){ apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); if( apVal==0 ){ rc = SQLITE_NOMEM_BKPT; goto value_from_function_out; } for(i=0; ia[i].pExpr, enc, aff, &apVal[i]); if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; } } pVal = valueNew(db, pCtx); if( pVal==0 ){ rc = SQLITE_NOMEM_BKPT; goto value_from_function_out; } memset(&ctx, 0, sizeof(ctx)); ctx.pOut = pVal; ctx.pFunc = pFunc; ctx.enc = ENC(db); pFunc->xSFunc(&ctx, nVal, apVal); if( ctx.isError ){ rc = ctx.isError; sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); }else{ sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); assert( rc==SQLITE_OK ); rc = sqlite3VdbeChangeEncoding(pVal, enc); if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){ rc = SQLITE_TOOBIG; pCtx->pParse->nErr++; } } value_from_function_out: if( rc!=SQLITE_OK ){ pVal = 0; pCtx->pParse->rc = rc; } if( apVal ){ for(i=0; iop)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; if( op==TK_REGISTER ) op = pExpr->op2; /* Compressed expressions only appear when parsing the DEFAULT clause ** on a table column definition, and hence only when pCtx==0. This ** check ensures that an EP_TokenOnly expression is never passed down ** into valueFromFunction(). */ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); if( op==TK_CAST ){ u8 aff; assert( !ExprHasProperty(pExpr, EP_IntValue) ); aff = sqlite3AffinityType(pExpr->u.zToken,0); rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); testcase( rc!=SQLITE_OK ); if( *ppVal ){ #ifdef SQLITE_ENABLE_STAT4 rc = ExpandBlob(*ppVal); #else /* zero-blobs only come from functions, not literal values. And ** functions are only processed under STAT4 */ assert( (ppVal[0][0].flags & MEM_Zero)==0 ); #endif sqlite3VdbeMemCast(*ppVal, aff, enc); sqlite3ValueApplyAffinity(*ppVal, affinity, enc); } return rc; } /* Handle negative integers in a single step. This is needed in the ** case when the value is -9223372036854775808. */ if( op==TK_UMINUS && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ pExpr = pExpr->pLeft; op = pExpr->op; negInt = -1; zNeg = "-"; } if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = valueNew(db, pCtx); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } assert( (pVal->flags & MEM_IntReal)==0 ); if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ testcase( pVal->flags & MEM_Int ); testcase( pVal->flags & MEM_Real ); pVal->flags &= ~MEM_Str; } if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) && pVal!=0 ){ sqlite3VdbeMemNumerify(pVal); if( pVal->flags & MEM_Real ){ pVal->u.r = -pVal->u.r; }else if( pVal->u.i==SMALLEST_INT64 ){ #ifndef SQLITE_OMIT_FLOATING_POINT pVal->u.r = -(double)SMALLEST_INT64; #else pVal->u.r = LARGEST_INT64; #endif MemSetTypeFlag(pVal, MEM_Real); }else{ pVal->u.i = -pVal->u.i; } sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_NULL ){ pVal = valueNew(db, pCtx); if( pVal==0 ) goto no_mem; sqlite3VdbeMemSetNull(pVal); } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); pVal = valueNew(db, pCtx); if( !pVal ) goto no_mem; zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif #ifdef SQLITE_ENABLE_STAT4 else if( op==TK_FUNCTION && pCtx!=0 ){ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); } #endif else if( op==TK_TRUEFALSE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); pVal = valueNew(db, pCtx); if( pVal ){ pVal->flags = MEM_Int; pVal->u.i = pExpr->u.zToken[4]==0; } } *ppVal = pVal; return rc; no_mem: #ifdef SQLITE_ENABLE_STAT4 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) #endif sqlite3OomFault(db); sqlite3DbFree(db, zVal); assert( *ppVal==0 ); #ifdef SQLITE_ENABLE_STAT4 if( pCtx==0 ) sqlite3ValueFree(pVal); #else assert( pCtx==0 ); sqlite3ValueFree(pVal); #endif return SQLITE_NOMEM_BKPT; } /* ** Create a new sqlite3_value object, containing the value of pExpr. ** ** This only works for very simple expressions that consist of one constant ** token (i.e. "5", "5.1", "'a string'"). If the expression can ** be converted directly into a value, then the value is allocated and ** a pointer written to *ppVal. The caller is responsible for deallocating ** the value by passing it to sqlite3ValueFree() later on. If the expression ** cannot be converted to a value, then *ppVal is set to NULL. */ SQLITE_PRIVATE int sqlite3ValueFromExpr( sqlite3 *db, /* The database connection */ const Expr *pExpr, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* Write the new value here */ ){ return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; } #ifdef SQLITE_ENABLE_STAT4 /* ** Attempt to extract a value from pExpr and use it to construct *ppVal. ** ** If pAlloc is not NULL, then an UnpackedRecord object is created for ** pAlloc if one does not exist and the new value is added to the ** UnpackedRecord object. ** ** A value is extracted in the following cases: ** ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, ** ** * The expression is a bound variable, and this is a reprepare, or ** ** * The expression is a literal value. ** ** On success, *ppVal is made to point to the extracted value. The caller ** is responsible for ensuring that the value is eventually freed. */ static int stat4ValueFromExpr( Parse *pParse, /* Parse context */ Expr *pExpr, /* The expression to extract a value from */ u8 affinity, /* Affinity to use */ struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ ){ int rc = SQLITE_OK; sqlite3_value *pVal = 0; sqlite3 *db = pParse->db; /* Skip over any TK_COLLATE nodes */ pExpr = sqlite3ExprSkipCollate(pExpr); assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); if( !pExpr ){ pVal = valueNew(db, pAlloc); if( pVal ){ sqlite3VdbeMemSetNull((Mem*)pVal); } }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ Vdbe *v; int iBindVar = pExpr->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); if( (v = pParse->pReprepare)!=0 ){ pVal = valueNew(db, pAlloc); if( pVal ){ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); pVal->db = pParse->db; } } }else{ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); } assert( pVal==0 || pVal->db==db ); *ppVal = pVal; return rc; } /* ** This function is used to allocate and populate UnpackedRecord ** structures intended to be compared against sample index keys stored ** in the sqlite_stat4 table. ** ** A single call to this function populates zero or more fields of the ** record starting with field iVal (fields are numbered from left to ** right starting with 0). A single field is populated if: ** ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, ** ** * The expression is a bound variable, and this is a reprepare, or ** ** * The sqlite3ValueFromExpr() function is able to extract a value ** from the expression (i.e. the expression is a literal value). ** ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the ** vector components that match either of the two latter criteria listed ** above. ** ** Before any value is appended to the record, the affinity of the ** corresponding column within index pIdx is applied to it. Before ** this function returns, output parameter *pnExtract is set to the ** number of values appended to the record. ** ** When this function is called, *ppRec must either point to an object ** allocated by an earlier call to this function, or must be NULL. If it ** is NULL and a value can be successfully extracted, a new UnpackedRecord ** is allocated (and *ppRec set to point to it) before returning. ** ** Unless an error is encountered, SQLITE_OK is returned. It is not an ** error if a value cannot be extracted from pExpr. If an error does ** occur, an SQLite error code is returned. */ SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue( Parse *pParse, /* Parse context */ Index *pIdx, /* Index being probed */ UnpackedRecord **ppRec, /* IN/OUT: Probe record */ Expr *pExpr, /* The expression to extract a value from */ int nElem, /* Maximum number of values to append */ int iVal, /* Array element to populate */ int *pnExtract /* OUT: Values appended to the record */ ){ int rc = SQLITE_OK; int nExtract = 0; if( pExpr==0 || pExpr->op!=TK_SELECT ){ int i; struct ValueNewStat4Ctx alloc; alloc.pParse = pParse; alloc.pIdx = pIdx; alloc.ppRec = ppRec; for(i=0; idb, pIdx, iVal+i); alloc.iVal = iVal+i; rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); if( !pVal ) break; nExtract++; } } *pnExtract = nExtract; return rc; } /* ** Attempt to extract a value from expression pExpr using the methods ** as described for sqlite3Stat4ProbeSetValue() above. ** ** If successful, set *ppVal to point to a new value object and return ** SQLITE_OK. If no value can be extracted, but no other error occurs ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error ** does occur, return an SQLite error code. The final value of *ppVal ** is undefined in this case. */ SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr( Parse *pParse, /* Parse context */ Expr *pExpr, /* The expression to extract a value from */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ ){ return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); } /* ** Extract the iCol-th column from the nRec-byte record in pRec. Write ** the column value into *ppVal. If *ppVal is initially NULL then a new ** sqlite3_value object is allocated. ** ** If *ppVal is initially NULL then the caller is responsible for ** ensuring that the value written into *ppVal is eventually freed. */ SQLITE_PRIVATE int sqlite3Stat4Column( sqlite3 *db, /* Database handle */ const void *pRec, /* Pointer to buffer containing record */ int nRec, /* Size of buffer pRec in bytes */ int iCol, /* Column to extract */ sqlite3_value **ppVal /* OUT: Extracted value */ ){ u32 t = 0; /* a column type code */ int nHdr; /* Size of the header in the record */ int iHdr; /* Next unread header byte */ int iField; /* Next unread data byte */ int szField = 0; /* Size of the current data field */ int i; /* Column index */ u8 *a = (u8*)pRec; /* Typecast byte array */ Mem *pMem = *ppVal; /* Write result into this Mem object */ assert( iCol>0 ); iHdr = getVarint32(a, nHdr); if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; iField = nHdr; for(i=0; i<=iCol; i++){ iHdr += getVarint32(&a[iHdr], t); testcase( iHdr==nHdr ); testcase( iHdr==nHdr+1 ); if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; szField = sqlite3VdbeSerialTypeLen(t); iField += szField; } testcase( iField==nRec ); testcase( iField==nRec+1 ); if( iField>nRec ) return SQLITE_CORRUPT_BKPT; if( pMem==0 ){ pMem = *ppVal = sqlite3ValueNew(db); if( pMem==0 ) return SQLITE_NOMEM_BKPT; } sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); pMem->enc = ENC(db); return SQLITE_OK; } /* ** Unless it is NULL, the argument must be an UnpackedRecord object returned ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes ** the object. */ SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ if( pRec ){ int i; int nCol = pRec->pKeyInfo->nAllField; Mem *aMem = pRec->aMem; sqlite3 *db = aMem[0].db; for(i=0; ipKeyInfo); sqlite3DbFreeNN(db, pRec); } } #endif /* ifdef SQLITE_ENABLE_STAT4 */ /* ** Change the string value of an sqlite3_value object */ SQLITE_PRIVATE void sqlite3ValueSetStr( sqlite3_value *v, /* Value to be set */ int n, /* Length of string z */ const void *z, /* Text of the new string */ u8 enc, /* Encoding to use */ void (*xDel)(void*) /* Destructor for the string */ ){ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); } /* ** Free an sqlite3_value object */ SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3DbFreeNN(((Mem*)v)->db, v); } /* ** The sqlite3ValueBytes() routine returns the number of bytes in the ** sqlite3_value object assuming that it uses the encoding "enc". ** The valueBytes() routine is a helper function. */ static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ return valueToText(pVal, enc)!=0 ? pVal->n : 0; } SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ return p->n; } if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){ return p->n; } if( (p->flags & MEM_Blob)!=0 ){ if( p->flags & MEM_Zero ){ return p->n + p->u.nZero; }else{ return p->n; } } if( p->flags & MEM_Null ) return 0; return valueBytes(pVal, enc); } /************** End of vdbemem.c *********************************************/ /************** Begin file vdbeaux.c *****************************************/ /* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used for creating, destroying, and populating ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* Forward references */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); static void vdbeFreeOpArray(sqlite3 *, Op *, int); /* ** Create a new virtual database engine. */ SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse *pParse){ sqlite3 *db = pParse->db; Vdbe *p; p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); if( p==0 ) return 0; memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); p->db = db; if( db->pVdbe ){ db->pVdbe->ppVPrev = &p->pVNext; } p->pVNext = db->pVdbe; p->ppVPrev = &db->pVdbe; db->pVdbe = p; assert( p->eVdbeState==VDBE_INIT_STATE ); p->pParse = pParse; pParse->pVdbe = p; assert( pParse->aLabel==0 ); assert( pParse->nLabel==0 ); assert( p->nOpAlloc==0 ); assert( pParse->szOpAlloc==0 ); sqlite3VdbeAddOp2(p, OP_Init, 0, 1); return p; } /* ** Return the Parse object that owns a Vdbe object. */ SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe *p){ return p->pParse; } /* ** Change the error string stored in Vdbe.zErrMsg */ SQLITE_PRIVATE void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ va_list ap; sqlite3DbFree(p->db, p->zErrMsg); va_start(ap, zFormat); p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } /* ** Remember the SQL string for a prepared statement. */ SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ if( p==0 ) return; p->prepFlags = prepFlags; if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ p->expmask = 0; } assert( p->zSql==0 ); p->zSql = sqlite3DbStrNDup(p->db, z, n); } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Add a new element to the Vdbe->pDblStr list. */ SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ if( p ){ int n = sqlite3Strlen30(z); DblquoteStr *pStr = sqlite3DbMallocRawNN(db, sizeof(*pStr)+n+1-sizeof(pStr->z)); if( pStr ){ pStr->pNextStr = p->pDblStr; p->pDblStr = pStr; memcpy(pStr->z, z, n+1); } } } #endif #ifdef SQLITE_ENABLE_NORMALIZE /* ** zId of length nId is a double-quoted identifier. Check to see if ** that identifier is really used as a string literal. */ SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString( Vdbe *pVdbe, /* The prepared statement */ const char *zId /* The double-quoted identifier, already dequoted */ ){ DblquoteStr *pStr; assert( zId!=0 ); if( pVdbe->pDblStr==0 ) return 0; for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ if( strcmp(zId, pStr->z)==0 ) return 1; } return 0; } #endif /* ** Swap byte-code between two VDBE structures. ** ** This happens after pB was previously run and returned ** SQLITE_SCHEMA. The statement was then reprepared in pA. ** This routine transfers the new bytecode in pA over to pB ** so that pB can be run again. The old pB byte code is ** moved back to pA so that it will be cleaned up when pA is ** finalized. */ SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ Vdbe tmp, *pTmp, **ppTmp; char *zTmp; assert( pA->db==pB->db ); tmp = *pA; *pA = *pB; *pB = tmp; pTmp = pA->pVNext; pA->pVNext = pB->pVNext; pB->pVNext = pTmp; ppTmp = pA->ppVPrev; pA->ppVPrev = pB->ppVPrev; pB->ppVPrev = ppTmp; zTmp = pA->zSql; pA->zSql = pB->zSql; pB->zSql = zTmp; #ifdef SQLITE_ENABLE_NORMALIZE zTmp = pA->zNormSql; pA->zNormSql = pB->zNormSql; pB->zNormSql = zTmp; #endif pB->expmask = pA->expmask; pB->prepFlags = pA->prepFlags; memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; } /* ** Resize the Vdbe.aOp array so that it is at least nOp elements larger ** than its current size. nOp is guaranteed to be less than or equal ** to 1024/sizeof(Op). ** ** If an out-of-memory error occurs while resizing the array, return ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain ** unchanged (this is so that any opcodes already allocated can be ** correctly deallocated along with the rest of the Vdbe). */ static int growOpArray(Vdbe *v, int nOp){ VdbeOp *pNew; Parse *p = v->pParse; /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force ** more frequent reallocs and hence provide more opportunities for ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array ** by the minimum* amount required until the size reaches 512. Normal ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current ** size of the op array or add 1KB of space, whichever is smaller. */ #ifdef SQLITE_TEST_REALLOC_STRESS sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc : (sqlite3_int64)v->nOpAlloc+nOp); #else sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc : (sqlite3_int64)(1024/sizeof(Op))); UNUSED_PARAMETER(nOp); #endif /* Ensure that the size of a VDBE does not grow too large */ if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ sqlite3OomFault(p->db); return SQLITE_NOMEM; } assert( nOp<=(int)(1024/sizeof(Op)) ); assert( nNew>=(v->nOpAlloc+nOp) ); pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); if( pNew ){ p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); v->nOpAlloc = p->szOpAlloc/sizeof(Op); v->aOp = pNew; } return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); } #ifdef SQLITE_DEBUG /* This routine is just a convenient place to set a breakpoint that will ** fire after each opcode is inserted and displayed using ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and ** pOp are available to make the breakpoint conditional. ** ** Other useful labels for breakpoints include: ** test_trace_breakpoint(pc,pOp) ** sqlite3CorruptError(lineno) ** sqlite3MisuseError(lineno) ** sqlite3CantopenError(lineno) */ static void test_addop_breakpoint(int pc, Op *pOp){ static int n = 0; (void)pc; (void)pOp; n++; } #endif /* ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the ** unusual case when we need to increase the size of the Vdbe.aOp[] array ** before adding the new opcode. */ static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ assert( p->nOpAlloc<=p->nOp ); if( growOpArray(p, 1) ) return 1; assert( p->nOpAlloc>p->nOp ); return sqlite3VdbeAddOp3(p, op, p1, p2, p3); } static SQLITE_NOINLINE int addOp4IntSlow( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); if( p->db->mallocFailed==0 ){ VdbeOp *pOp = &p->aOp[addr]; pOp->p4type = P4_INT32; pOp->p4.i = p4; } return addr; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2, p3, p4 Operands */ SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ int i; VdbeOp *pOp; i = p->nOp; assert( p->eVdbeState==VDBE_INIT_STATE ); assert( op>=0 && op<0xff ); if( p->nOpAlloc<=i ){ return growOp3(p, op, p1, p2, p3); } assert( p->aOp!=0 ); p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; /* Replicate this logic in sqlite3VdbeAddOp4Int() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp4Int() */ return i; } SQLITE_PRIVATE int sqlite3VdbeAddOp4Int( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int i; VdbeOp *pOp; i = p->nOp; if( p->nOpAlloc<=i ){ return addOp4IntSlow(p, op, p1, p2, p3, p4); } p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.i = p4; pOp->p4type = P4_INT32; /* Replicate this logic in sqlite3VdbeAddOp3() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp3() */ return i; } /* Generate code for an unconditional jump to instruction iDest */ SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe *p, int iDest){ return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); } /* Generate code to cause the string zStr to be loaded into ** register iDest */ SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); } /* ** Generate code that initializes multiple registers to string or integer ** constants. The registers begin with iDest and increase consecutively. ** One register is initialized for each characgter in zTypes[]. For each ** "s" character in zTypes[], the register is a string if the argument is ** not NULL, or OP_Null if the value is a null pointer. For each "i" character ** in zTypes[], the register is initialized to an integer. ** ** If the input string does not end with "X" then an OP_ResultRow instruction ** is generated for the values inserted. */ SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ va_list ap; int i; char c; va_start(ap, zTypes); for(i=0; (c = zTypes[i])!=0; i++){ if( c=='s' ){ const char *z = va_arg(ap, const char*); sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); }else if( c=='i' ){ sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); }else{ goto skip_op_resultrow; } } sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); skip_op_resultrow: va_end(ap); } /* ** Add an opcode that includes the p4 value as a pointer. */ SQLITE_PRIVATE int sqlite3VdbeAddOp4( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const char *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, zP4, p4type); return addr; } /* ** Add an OP_Function or OP_PureFunc opcode. ** ** The eCallCtx argument is information (typically taken from Expr.op2) ** that describes the calling context of the function. 0 means a general ** function call. NC_IsCheck means called by a check constraint, ** NC_IdxExpr means called as part of an index expression. NC_PartIdx ** means in the WHERE clause of a partial index. NC_GenCol means called ** while computing a generated column value. 0 is the usual case. */ SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall( Parse *pParse, /* Parsing context */ int p1, /* Constant argument mask */ int p2, /* First argument register */ int p3, /* Register into which results are written */ int nArg, /* Number of argument */ const FuncDef *pFunc, /* The function to be invoked */ int eCallCtx /* Calling context */ ){ Vdbe *v = pParse->pVdbe; int nByte; int addr; sqlite3_context *pCtx; assert( v ); nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); if( pCtx==0 ){ assert( pParse->db->mallocFailed ); freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); return 0; } pCtx->pOut = 0; pCtx->pFunc = (FuncDef*)pFunc; pCtx->pVdbe = 0; pCtx->isError = 0; pCtx->argc = nArg; pCtx->iOp = sqlite3VdbeCurrentAddr(v); addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, p1, p2, p3, (char*)pCtx, P4_FUNCCTX); sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); sqlite3MayAbort(pParse); return addr; } /* ** Add an opcode that includes the p4 value with a P4_INT64 or ** P4_REAL type. */ SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const u8 *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); if( p4copy ) memcpy(p4copy, zP4, 8); return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Return the address of the current EXPLAIN QUERY PLAN baseline. ** 0 means "none". */ SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse *pParse){ VdbeOp *pOp; if( pParse->addrExplain==0 ) return 0; pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); return pOp->p2; } /* ** Set a debugger breakpoint on the following routine in order to ** monitor the EXPLAIN QUERY PLAN code generation. */ #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ (void)z1; (void)z2; } #endif /* ** Add a new OP_Explain opcode. ** ** If the bPush flag is true, then make this opcode the parent for ** subsequent Explains until sqlite3VdbeExplainPop() is called. */ SQLITE_PRIVATE int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ int addr = 0; #if !defined(SQLITE_DEBUG) /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. ** But omit them (for performance) during production builds */ if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) #endif { char *zMsg; Vdbe *v; va_list ap; int iThis; va_start(ap, zFmt); zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); va_end(ap); v = pParse->pVdbe; iThis = v->nOp; addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, zMsg, P4_DYNAMIC); sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); if( bPush){ pParse->addrExplain = iThis; } sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0); } return addr; } /* ** Pop the EXPLAIN QUERY PLAN stack one level. */ SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse *pParse){ sqlite3ExplainBreakpoint("POP", 0); pParse->addrExplain = sqlite3VdbeExplainParent(pParse); } #endif /* SQLITE_OMIT_EXPLAIN */ /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). ** This routine will take ownership of the allocated memory. */ SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ int j; sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); sqlite3VdbeChangeP5(p, p5); for(j=0; jdb->nDb; j++) sqlite3VdbeUsesBtree(p, j); sqlite3MayAbort(p->pParse); } /* Insert the end of a co-routine */ SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); /* Clear the temporary register cache, thereby ensuring that each ** co-routine has its own independent set of registers, because co-routines ** might expect their registers to be preserved across an OP_Yield, and ** that could cause problems if two or more co-routines are using the same ** temporary register. */ v->pParse->nTempReg = 0; v->pParse->nRangeReg = 0; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. ** (Later:) This is only true for opcodes that have the OPFLG_JUMP ** property. ** ** Variable usage notes: ** ** Parse.aLabel[x] Stores the address that the x-th label resolves ** into. For testing (SQLITE_DEBUG), unresolved ** labels stores -1, but that is not required. ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] ** Parse.nLabel The *negative* of the number of labels that have ** been issued. The negative is stored because ** that gives a performance improvement over storing ** the equivalent positive value. */ SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse *pParse){ return --pParse->nLabel; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ int nNewSize = 10 - p->nLabel; p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, nNewSize*sizeof(p->aLabel[0])); if( p->aLabel==0 ){ p->nLabelAlloc = 0; }else{ #ifdef SQLITE_DEBUG int i; for(i=p->nLabelAlloc; iaLabel[i] = -1; #endif if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){ sqlite3ProgressCheck(p); } p->nLabelAlloc = nNewSize; p->aLabel[j] = v->nOp; } } SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = ADDR(x); assert( v->eVdbeState==VDBE_INIT_STATE ); assert( j<-p->nLabel ); assert( j>=0 ); #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ printf("RESOLVE LABEL %d to %d\n", x, v->nOp); } #endif if( p->nLabelAlloc + p->nLabel < 0 ){ resizeResolveLabel(p,v,j); }else{ assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ p->aLabel[j] = v->nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){ sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); } /* ** Mark the VDBE as one that can be run multiple times. */ SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe *p){ int i; for(i=1; ALWAYS(inOp); i++){ if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ p->aOp[1].opcode = OP_Noop; break; } } } #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ /* ** The following type and function are used to iterate through all opcodes ** in a Vdbe main program and each of the sub-programs (triggers) it may ** invoke directly or indirectly. It should be used as follows: ** ** Op *pOp; ** VdbeOpIter sIter; ** ** memset(&sIter, 0, sizeof(sIter)); ** sIter.v = v; // v is of type Vdbe* ** while( (pOp = opIterNext(&sIter)) ){ ** // Do something with pOp ** } ** sqlite3DbFree(v->db, sIter.apSub); ** */ typedef struct VdbeOpIter VdbeOpIter; struct VdbeOpIter { Vdbe *v; /* Vdbe to iterate through the opcodes of */ SubProgram **apSub; /* Array of subprograms */ int nSub; /* Number of entries in apSub */ int iAddr; /* Address of next instruction to return */ int iSub; /* 0 = main program, 1 = first sub-program etc. */ }; static Op *opIterNext(VdbeOpIter *p){ Vdbe *v = p->v; Op *pRet = 0; Op *aOp; int nOp; if( p->iSub<=p->nSub ){ if( p->iSub==0 ){ aOp = v->aOp; nOp = v->nOp; }else{ aOp = p->apSub[p->iSub-1]->aOp; nOp = p->apSub[p->iSub-1]->nOp; } assert( p->iAddriAddr]; p->iAddr++; if( p->iAddr==nOp ){ p->iSub++; p->iAddr = 0; } if( pRet->p4type==P4_SUBPROGRAM ){ int nByte = (p->nSub+1)*sizeof(SubProgram*); int j; for(j=0; jnSub; j++){ if( p->apSub[j]==pRet->p4.pProgram ) break; } if( j==p->nSub ){ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); if( !p->apSub ){ pRet = 0; }else{ p->apSub[p->nSub++] = pRet->p4.pProgram; } } } } return pRet; } /* ** Check if the program stored in the VM associated with pParse may ** throw an ABORT exception (causing the statement, but not entire transaction ** to be rolled back). This condition is true if the main program or any ** sub-programs contains any of the following: ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VCreate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine ** (for CREATE TABLE AS SELECT ...) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; int hasFkCounter = 0; int hasCreateTable = 0; int hasCreateIndex = 0; int hasInitCoroutine = 0; Op *pOp; VdbeOpIter sIter; if( v==0 ) return 0; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename || opcode==OP_VDestroy || opcode==OP_VCreate || opcode==OP_ParseSchema || opcode==OP_Function || opcode==OP_PureFunc || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; if( mayAbort ){ /* hasCreateIndex may also be set for some DELETE statements that use ** OP_Clear. So this routine may end up returning true in the case ** where a "DELETE FROM tbl" has a statement-journal but does not ** require one. This is not so bad - it is an inefficiency, not a bug. */ if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; if( opcode==OP_Clear ) hasCreateIndex = 1; } if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; #ifndef SQLITE_OMIT_FOREIGN_KEY if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ hasFkCounter = 1; } #endif } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter || (hasCreateTable && hasInitCoroutine) || hasCreateIndex ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ #ifdef SQLITE_DEBUG /* ** Increment the nWrite counter in the VDBE if the cursor is not an ** ephemeral cursor, or if the cursor argument is NULL. */ SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ if( pC==0 || (pC->eCurType!=CURTYPE_SORTER && pC->eCurType!=CURTYPE_PSEUDO && !pC->isEphemeral) ){ p->nWrite++; } } #endif #ifdef SQLITE_DEBUG /* ** Assert if an Abort at this point in time might result in a corrupt ** database. */ SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe *p){ assert( p->nWrite==0 || p->usesStmtJournal ); } #endif /* ** This routine is called after all opcodes have been inserted. It loops ** through all the opcodes and fixes up some details. ** ** (1) For each jump instruction with a negative P2 value (a label) ** resolve the P2 value to an actual address. ** ** (2) Compute the maximum number of arguments used by any SQL function ** and store that value in *pMaxFuncArgs. ** ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately ** indicate what the prepared statement actually does. ** ** (4) (discontinued) ** ** (5) Reclaim the memory allocated for storing labels. ** ** This routine will only function correctly if the mkopcodeh.tcl generator ** script numbers the opcodes correctly. Changes to this routine must be ** coordinated with changes to mkopcodeh.tcl. */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int nMaxArgs = *pMaxFuncArgs; Op *pOp; Parse *pParse = p->pParse; int *aLabel = pParse->aLabel; assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ p->readOnly = 1; p->bIsReader = 0; pOp = &p->aOp[p->nOp-1]; assert( p->aOp[0].opcode==OP_Init ); while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){ /* Only JUMP opcodes and the short list of special opcodes in the switch ** below need to be considered. The mkopcodeh.tcl generator script groups ** all these opcodes together near the front of the opcode list. Skip ** any opcode that does not need processing by virtual of the fact that ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. */ if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing ** cases from this switch! */ switch( pOp->opcode ){ case OP_Transaction: { if( pOp->p2!=0 ) p->readOnly = 0; /* no break */ deliberate_fall_through } case OP_AutoCommit: case OP_Savepoint: { p->bIsReader = 1; break; } #ifndef SQLITE_OMIT_WAL case OP_Checkpoint: #endif case OP_Vacuum: case OP_JournalMode: { p->readOnly = 0; p->bIsReader = 1; break; } case OP_Init: { assert( pOp->p2>=0 ); goto resolve_p2_values_loop_exit; } #ifndef SQLITE_OMIT_VIRTUALTABLE case OP_VUpdate: { if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; break; } case OP_VFilter: { int n; assert( (pOp - p->aOp) >= 3 ); assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; /* Fall through into the default case */ /* no break */ deliberate_fall_through } #endif default: { if( pOp->p2<0 ){ /* The mkopcodeh.tcl script has so arranged things that the only ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to ** have non-negative values for P2. */ assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); assert( ADDR(pOp->p2)<-pParse->nLabel ); assert( aLabel!=0 ); /* True because of tag-20230419-1 */ pOp->p2 = aLabel[ADDR(pOp->p2)]; } break; } } /* The mkopcodeh.tcl script has so arranged things that the only ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to ** have non-negative values for P2. */ assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); } assert( pOp>p->aOp ); pOp--; } resolve_p2_values_loop_exit: if( aLabel ){ sqlite3DbNNFreeNN(p->db, pParse->aLabel); pParse->aLabel = 0; } pParse->nLabel = 0; *pMaxFuncArgs = nMaxArgs; assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); } #ifdef SQLITE_DEBUG /* ** Check to see if a subroutine contains a jump to a location outside of ** the subroutine. If a jump outside the subroutine is detected, add code ** that will cause the program to halt with an error message. ** ** The subroutine consists of opcodes between iFirst and iLast. Jumps to ** locations within the subroutine are acceptable. iRetReg is a register ** that contains the return address. Jumps to outside the range of iFirst ** through iLast are also acceptable as long as the jump destination is ** an OP_Return to iReturnAddr. ** ** A jump to an unresolved label means that the jump destination will be ** beyond the current address. That is normally a jump to an early ** termination and is consider acceptable. ** ** This routine only runs during debug builds. The purpose is (of course) ** to detect invalid escapes out of a subroutine. The OP_Halt opcode ** is generated rather than an assert() or other error, so that ".eqp full" ** will still work to show the original bytecode, to aid in debugging. */ SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn( Vdbe *v, /* The byte-code program under construction */ int iFirst, /* First opcode of the subroutine */ int iLast, /* Last opcode of the subroutine */ int iRetReg /* Subroutine return address register */ ){ VdbeOp *pOp; Parse *pParse; int i; sqlite3_str *pErr = 0; assert( v!=0 ); pParse = v->pParse; assert( pParse!=0 ); if( pParse->nErr ) return; assert( iLast>=iFirst ); assert( iLastnOp ); pOp = &v->aOp[iFirst]; for(i=iFirst; i<=iLast; i++, pOp++){ if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ int iDest = pOp->p2; /* Jump destination */ if( iDest==0 ) continue; if( pOp->opcode==OP_Gosub ) continue; if( iDest<0 ){ int j = ADDR(iDest); assert( j>=0 ); if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ continue; } iDest = pParse->aLabel[j]; } if( iDestiLast ){ int j = iDest; for(; jnOp; j++){ VdbeOp *pX = &v->aOp[j]; if( pX->opcode==OP_Return ){ if( pX->p1==iRetReg ) break; continue; } if( pX->opcode==OP_Noop ) continue; if( pX->opcode==OP_Explain ) continue; if( pErr==0 ){ pErr = sqlite3_str_new(0); }else{ sqlite3_str_appendchar(pErr, 1, '\n'); } sqlite3_str_appendf(pErr, "Opcode at %d jumps to %d which is outside the " "subroutine at %d..%d", i, iDest, iFirst, iLast); break; } } } } if( pErr ){ char *zErr = sqlite3_str_finish(pErr); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); sqlite3_free(zErr); sqlite3MayAbort(pParse); } } #endif /* SQLITE_DEBUG */ /* ** Return the address of the next instruction to be inserted. */ SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){ assert( p->eVdbeState==VDBE_INIT_STATE ); return p->nOp; } /* ** Verify that at least N opcode slots are available in p without ** having to malloc for more space (except when compiled using ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing ** to verify that certain calls to sqlite3VdbeAddOpList() can never ** fail due to a OOM fault and hence that the return value from ** sqlite3VdbeAddOpList() will always be non-NULL. */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ assert( p->nOp + N <= p->nOpAlloc ); } #endif /* ** Verify that the VM passed as the only argument does not contain ** an OP_ResultRow opcode. Fail an assert() if it does. This is used ** by code in pragma.c to ensure that the implementation of certain ** pragmas comports with the flags specified in the mkpragmatab.tcl ** script. */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ int i; for(i=0; inOp; i++){ assert( p->aOp[i].opcode!=OP_ResultRow ); } } #endif /* ** Generate code (a single OP_Abortable opcode) that will ** verify that the VDBE program can safely call Abort in the current ** context. */ #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); } #endif /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned ** array. Also, *pnMaxArg is set to the larger of its current value and ** the number of entries in the Vdbe.apArg[] array required to execute the ** returned program. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ assert( DbMaskAllZero(p->btreeMask) ); resolveP2Values(p, pnMaxArg); *pnOp = p->nOp; p->aOp = 0; return aOp; } /* ** Add a whole list of operations to the operation stack. Return a ** pointer to the first operation inserted. ** ** Non-zero P2 arguments to jump instructions are automatically adjusted ** so that the jump target is relative to the first operation inserted. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList( Vdbe *p, /* Add opcodes to the prepared statement */ int nOp, /* Number of opcodes to add */ VdbeOpList const *aOp, /* The opcodes to be added */ int iLineno /* Source-file line number of first opcode */ ){ int i; VdbeOp *pOut, *pFirst; assert( nOp>0 ); assert( p->eVdbeState==VDBE_INIT_STATE ); if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ return 0; } pFirst = pOut = &p->aOp[p->nOp]; for(i=0; iopcode = aOp->opcode; pOut->p1 = aOp->p1; pOut->p2 = aOp->p2; assert( aOp->p2>=0 ); if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ pOut->p2 += p->nOp; } pOut->p3 = aOp->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOut->iSrcLine = iLineno+i; #else (void)iLineno; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); } #endif } p->nOp += nOp; return pFirst; } #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) /* ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). */ SQLITE_PRIVATE void sqlite3VdbeScanStatus( Vdbe *p, /* VM to add scanstatus() to */ int addrExplain, /* Address of OP_Explain (or 0) */ int addrLoop, /* Address of loop counter */ int addrVisit, /* Address of rows visited counter */ LogEst nEst, /* Estimated number of output rows */ const char *zName /* Name of table or index being scanned */ ){ if( IS_STMT_SCANSTATUS(p->db) ){ sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); ScanStatus *aNew; aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); if( aNew ){ ScanStatus *pNew = &aNew[p->nScan++]; memset(pNew, 0, sizeof(ScanStatus)); pNew->addrExplain = addrExplain; pNew->addrLoop = addrLoop; pNew->addrVisit = addrVisit; pNew->nEst = nEst; pNew->zName = sqlite3DbStrDup(p->db, zName); p->aScan = aNew; } } } /* ** Add the range of instructions from addrStart to addrEnd (inclusive) to ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters ** associated with the OP_Explain instruction at addrExplain. The ** sum of the sqlite3Hwtime() values for each of these instructions ** will be returned for SQLITE_SCANSTAT_NCYCLE requests. */ SQLITE_PRIVATE void sqlite3VdbeScanStatusRange( Vdbe *p, int addrExplain, int addrStart, int addrEnd ){ if( IS_STMT_SCANSTATUS(p->db) ){ ScanStatus *pScan = 0; int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1; for(ii=0; iiaAddrRange); ii+=2){ if( pScan->aAddrRange[ii]==0 ){ pScan->aAddrRange[ii] = addrStart; pScan->aAddrRange[ii+1] = addrEnd; break; } } } } } /* ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW ** counters for the query element associated with the OP_Explain at ** addrExplain. */ SQLITE_PRIVATE void sqlite3VdbeScanStatusCounters( Vdbe *p, int addrExplain, int addrLoop, int addrVisit ){ if( IS_STMT_SCANSTATUS(p->db) ){ ScanStatus *pScan = 0; int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrLoop>0 ) pScan->addrLoop = addrLoop; if( addrVisit>0 ) pScan->addrVisit = addrVisit; } } } #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */ /* ** Change the value of the opcode, or P1, P2, P3, or P5 operands ** for a specific instruction. */ SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; } SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->p1 = val; } SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ assert( addr>=0 || p->db->mallocFailed ); sqlite3VdbeGetOp(p,addr)->p2 = val; } SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->p3 = val; } SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ assert( p->nOp>0 || p->db->mallocFailed ); if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; } /* ** If the previous opcode is an OP_Column that delivers results ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that ** opcode. */ SQLITE_PRIVATE void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ VdbeOp *pOp = sqlite3VdbeGetLastOp(p); if( pOp->p3==iDest && pOp->opcode==OP_Column ){ pOp->p5 |= OPFLAG_TYPEOFARG; } } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** Change the P2 operand of the jump instruction at addr so that ** the jump lands on the next opcode. Or if the jump instruction was ** the previous opcode (and is thus a no-op) then simply back up ** the next instruction counter by one slot so that the jump is ** overwritten by the next inserted opcode. ** ** This routine is an optimization of sqlite3VdbeJumpHere() that ** strives to omit useless byte-code like this: ** ** 7 Once 0 8 0 ** 8 ... */ SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ if( addr==p->nOp-1 ){ assert( p->aOp[addr].opcode==OP_Once || p->aOp[addr].opcode==OP_If || p->aOp[addr].opcode==OP_FkIfZero ); assert( p->aOp[addr].p4type==0 ); #ifdef SQLITE_VDBE_COVERAGE sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ #endif p->nOp--; }else{ sqlite3VdbeChangeP2(p, addr, p->nOp); } } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephemeral, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ assert( db!=0 ); if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbNNFreeNN(db, pDef); } } /* ** Delete a P4 value if necessary. */ static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); sqlite3DbNNFreeNN(db, p); } static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ assert( db!=0 ); freeEphemeralFunction(db, p->pFunc); sqlite3DbNNFreeNN(db, p); } static void freeP4(sqlite3 *db, int p4type, void *p4){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeP4FuncCtx(db, (sqlite3_context*)p4); break; } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { if( p4 ) sqlite3DbNNFreeNN(db, p4); break; } case P4_KEYINFO: { if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { sqlite3ExprDelete(db, (Expr*)p4); break; } #endif case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ sqlite3ValueFree((sqlite3_value*)p4); }else{ freeP4Mem(db, (Mem*)p4); } break; } case P4_VTAB : { if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); break; } } } /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ assert( nOp>=0 ); assert( db!=0 ); if( aOp ){ Op *pOp = &aOp[nOp-1]; while(1){ /* Exit via break */ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS sqlite3DbFree(db, pOp->zComment); #endif if( pOp==aOp ) break; pOp--; } sqlite3DbNNFreeNN(db, aOp); } } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. */ SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ p->pNext = pVdbe->pProgram; pVdbe->pProgram = p; } /* ** Return true if the given Vdbe has any SubPrograms. */ SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ return pVdbe->pProgram!=0; } /* ** Change the opcode at addr into OP_Noop */ SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ VdbeOp *pOp; if( p->db->mallocFailed ) return 0; assert( addr>=0 && addrnOp ); pOp = &p->aOp[addr]; freeP4(p->db, pOp->p4type, pOp->p4.p); pOp->p4type = P4_NOTUSED; pOp->p4.z = 0; pOp->opcode = OP_Noop; return 1; } /* ** If the last opcode is "op" and it is not a jump destination, ** then remove it. Return true if and only if an opcode was removed. */ SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ return sqlite3VdbeChangeToNoop(p, p->nOp-1); }else{ return 0; } } #ifdef SQLITE_DEBUG /* ** Generate an OP_ReleaseReg opcode to indicate that a range of ** registers, except any identified by mask, are no longer in use. */ SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters( Parse *pParse, /* Parsing context */ int iFirst, /* Index of first register to be released */ int N, /* Number of registers to release */ u32 mask, /* Mask of registers to NOT release */ int bUndefine /* If true, mark registers as undefined */ ){ if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; assert( pParse->pVdbe ); assert( iFirst>=1 ); assert( iFirst+N-1<=pParse->nMem ); if( N<=31 && mask!=0 ){ while( N>0 && (mask&1)!=0 ){ mask >>= 1; iFirst++; N--; } while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ mask &= ~MASKBIT32(N-1); N--; } } if( N>0 ){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); } } #endif /* SQLITE_DEBUG */ /* ** Change the value of the P4 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P4 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqlite3_malloc(). ** A value of n==0 means copy bytes of zP4 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP4. ** ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points ** to a string or structure that is guaranteed to exist for the lifetime of ** the Vdbe. In these cases we can just copy the pointer. ** ** If addr<0 then change P4 on the most recently inserted instruction. */ static void SQLITE_NOINLINE vdbeChangeP4Full( Vdbe *p, Op *pOp, const char *zP4, int n ){ if( pOp->p4type ){ freeP4(p->db, pOp->p4type, pOp->p4.p); pOp->p4type = 0; pOp->p4.p = 0; } if( n<0 ){ sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); }else{ if( n==0 ) n = sqlite3Strlen30(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ Op *pOp; sqlite3 *db; assert( p!=0 ); db = p->db; assert( p->eVdbeState==VDBE_INIT_STATE ); assert( p->aOp!=0 || db->mallocFailed ); if( db->mallocFailed ){ if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); return; } assert( p->nOp>0 ); assert( addrnOp ); if( addr<0 ){ addr = p->nOp - 1; } pOp = &p->aOp[addr]; if( n>=0 || pOp->p4type ){ vdbeChangeP4Full(p, pOp, zP4, n); return; } if( n==P4_INT32 ){ /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; }else if( zP4!=0 ){ assert( n<0 ); pOp->p4.p = (void*)zP4; pOp->p4type = (signed char)n; if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); } } /* ** Change the P4 operand of the most recently coded instruction ** to the value defined by the arguments. This is a high-speed ** version of sqlite3VdbeChangeP4(). ** ** The P4 operand must not have been previously defined. And the new ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of ** those cases. */ SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ VdbeOp *pOp; assert( n!=P4_INT32 && n!=P4_VTAB ); assert( n<=0 ); if( p->db->mallocFailed ){ freeP4(p->db, n, pP4); }else{ assert( pP4!=0 || n==P4_DYNAMIC ); assert( p->nOp>0 ); pOp = &p->aOp[p->nOp-1]; assert( pOp->p4type==P4_NOTUSED ); pOp->p4type = n; pOp->p4.p = pP4; } } /* ** Set the P4 on the most recently added opcode to the KeyInfo for the ** index given. */ SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ Vdbe *v = pParse->pVdbe; KeyInfo *pKeyInfo; assert( v!=0 ); assert( pIdx!=0 ); pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** Change the comment on the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); if( p->nOp ){ assert( p->aOp ); sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); } } SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( p ){ va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( p ){ sqlite3VdbeAddOp0(p, OP_Noop); va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ #ifdef SQLITE_VDBE_COVERAGE /* ** Set the value if the iSrcLine field for the previously coded instruction. */ SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; } #endif /* SQLITE_VDBE_COVERAGE */ /* ** Return the opcode for a given address. The address must be non-negative. ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after an OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ assert( p->eVdbeState==VDBE_INIT_STATE ); assert( (addr>=0 && addrnOp) || p->db->mallocFailed ); if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; } } /* Return the most recently added opcode */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){ return sqlite3VdbeGetOp(p, p->nOp - 1); } #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) /* ** Return an integer value for one of the parameters to the opcode pOp ** determined by character c. */ static int translateP(char c, const Op *pOp){ if( c=='1' ) return pOp->p1; if( c=='2' ) return pOp->p2; if( c=='3' ) return pOp->p3; if( c=='4' ) return pOp->p4.i; return pOp->p5; } /* ** Compute a string for the "comment" field of a VDBE opcode listing. ** ** The Synopsis: field in comments in the vdbe.c source file gets converted ** to an extra string that is appended to the sqlite3OpcodeName(). In the ** absence of other comments, this synopsis becomes the comment on the opcode. ** Some translation occurs: ** ** "PX" -> "r[X]" ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x */ SQLITE_PRIVATE char *sqlite3VdbeDisplayComment( sqlite3 *db, /* Optional - Oom error reporting only */ const Op *pOp, /* The opcode to be commented */ const char *zP4 /* Previously obtained value for P4 */ ){ const char *zOpName; const char *zSynopsis; int nOpName; int ii; char zAlt[50]; StrAccum x; sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); zOpName = sqlite3OpcodeName(pOp->opcode); nOpName = sqlite3Strlen30(zOpName); if( zOpName[nOpName+1] ){ int seenCom = 0; char c; zSynopsis = zOpName + nOpName + 1; if( strncmp(zSynopsis,"IF ",3)==0 ){ sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); zSynopsis = zAlt; } for(ii=0; (c = zSynopsis[ii])!=0; ii++){ if( c=='P' ){ c = zSynopsis[++ii]; if( c=='4' ){ sqlite3_str_appendall(&x, zP4); }else if( c=='X' ){ if( pOp->zComment && pOp->zComment[0] ){ sqlite3_str_appendall(&x, pOp->zComment); seenCom = 1; break; } }else{ int v1 = translateP(c, pOp); int v2; if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ ii += 3; v2 = translateP(zSynopsis[ii], pOp); if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ ii += 2; v2++; } if( v2<2 ){ sqlite3_str_appendf(&x, "%d", v1); }else{ sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); } }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ sqlite3_context *pCtx = pOp->p4.pCtx; if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ sqlite3_str_appendf(&x, "%d", v1); }else if( pCtx->argc>1 ){ sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); }else if( x.accError==0 ){ assert( x.nChar>2 ); x.nChar -= 2; ii++; } ii += 3; }else{ sqlite3_str_appendf(&x, "%d", v1); if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ ii += 4; } } } }else{ sqlite3_str_appendchar(&x, 1, c); } } if( !seenCom && pOp->zComment ){ sqlite3_str_appendf(&x, "; %s", pOp->zComment); } }else if( pOp->zComment ){ sqlite3_str_appendall(&x, pOp->zComment); } if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ sqlite3OomFault(db); } return sqlite3StrAccumFinish(&x); } #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) /* ** Translate the P4.pExpr value for an OP_CursorHint opcode into text ** that can be displayed in the P4 column of EXPLAIN output. */ static void displayP4Expr(StrAccum *p, Expr *pExpr){ const char *zOp = 0; switch( pExpr->op ){ case TK_STRING: assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); break; case TK_INTEGER: sqlite3_str_appendf(p, "%d", pExpr->u.iValue); break; case TK_NULL: sqlite3_str_appendf(p, "NULL"); break; case TK_REGISTER: { sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); break; } case TK_COLUMN: { if( pExpr->iColumn<0 ){ sqlite3_str_appendf(p, "rowid"); }else{ sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); } break; } case TK_LT: zOp = "LT"; break; case TK_LE: zOp = "LE"; break; case TK_GT: zOp = "GT"; break; case TK_GE: zOp = "GE"; break; case TK_NE: zOp = "NE"; break; case TK_EQ: zOp = "EQ"; break; case TK_IS: zOp = "IS"; break; case TK_ISNOT: zOp = "ISNOT"; break; case TK_AND: zOp = "AND"; break; case TK_OR: zOp = "OR"; break; case TK_PLUS: zOp = "ADD"; break; case TK_STAR: zOp = "MUL"; break; case TK_MINUS: zOp = "SUB"; break; case TK_REM: zOp = "REM"; break; case TK_BITAND: zOp = "BITAND"; break; case TK_BITOR: zOp = "BITOR"; break; case TK_SLASH: zOp = "DIV"; break; case TK_LSHIFT: zOp = "LSHIFT"; break; case TK_RSHIFT: zOp = "RSHIFT"; break; case TK_CONCAT: zOp = "CONCAT"; break; case TK_UMINUS: zOp = "MINUS"; break; case TK_UPLUS: zOp = "PLUS"; break; case TK_BITNOT: zOp = "BITNOT"; break; case TK_NOT: zOp = "NOT"; break; case TK_ISNULL: zOp = "ISNULL"; break; case TK_NOTNULL: zOp = "NOTNULL"; break; default: sqlite3_str_appendf(p, "%s", "expr"); break; } if( zOp ){ sqlite3_str_appendf(p, "%s(", zOp); displayP4Expr(p, pExpr->pLeft); if( pExpr->pRight ){ sqlite3_str_append(p, ",", 1); displayP4Expr(p, pExpr->pRight); } sqlite3_str_append(p, ")", 1); } } #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ #if VDBE_DISPLAY_P4 /* ** Compute a string that describes the P4 parameter for an opcode. ** Use zTemp for any required temporary buffer space. */ SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ char *zP4 = 0; StrAccum x; sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); switch( pOp->p4type ){ case P4_KEYINFO: { int j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->aSortFlags!=0 ); sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); for(j=0; jnKeyField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; const char *zColl = pColl ? pColl->zName : ""; if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; sqlite3_str_appendf(&x, ",%s%s%s", (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", zColl); } sqlite3_str_append(&x, ")", 1); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { displayP4Expr(&x, pOp->p4.pExpr); break; } #endif case P4_COLLSEQ: { static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; CollSeq *pColl = pOp->p4.pColl; assert( pColl->enc<4 ); sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, encnames[pColl->enc]); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_str_appendf(&x, "%d", pOp->p4.i); break; } case P4_REAL: { sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&x, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_str_appendf(&x, "%.16g", pMem->u.r); }else if( pMem->flags & MEM_Null ){ zP4 = "NULL"; }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_str_appendf(&x, "vtab:%p", pVtab); break; } #endif case P4_INTARRAY: { u32 i; u32 *ai = pOp->p4.ai; u32 n = ai[0]; /* The first element of an INTARRAY is always the ** count of the number of elements to follow */ for(i=1; i<=n; i++){ sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); } sqlite3_str_append(&x, "]", 1); break; } case P4_SUBPROGRAM: { zP4 = "program"; break; } case P4_TABLE: { zP4 = pOp->p4.pTab->zName; break; } default: { zP4 = pOp->p4.z; } } if( zP4 ) sqlite3_str_appendall(&x, zP4); if( (x.accError & SQLITE_NOMEM)!=0 ){ sqlite3OomFault(db); } return sqlite3StrAccumFinish(&x); } #endif /* VDBE_DISPLAY_P4 */ /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** ** The prepared statements need to know in advance the complete set of ** attached databases that will be use. A mask of these databases ** is maintained in p->btreeMask. The p->lockMask value is the subset of ** p->btreeMask of databases that will require a lock. */ SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){ assert( i>=0 && idb->nDb && i<(int)sizeof(yDbMask)*8 ); assert( i<(int)sizeof(p->btreeMask)*8 ); DbMaskSet(p->btreeMask, i); if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ DbMaskSet(p->lockMask, i); } } #if !defined(SQLITE_OMIT_SHARED_CACHE) /* ** If SQLite is compiled to support shared-cache mode and to be threadsafe, ** this routine obtains the mutex associated with each BtShared structure ** that may be accessed by the VM passed as an argument. In doing so it also ** sets the BtShared.db member of each of the BtShared structures, ensuring ** that the correct busy-handler callback is invoked if required. ** ** If SQLite is not threadsafe but does support shared-cache mode, then ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables ** of all of BtShared structures accessible via the database handle ** associated with the VM. ** ** If SQLite is not threadsafe and does not support shared-cache mode, this ** function is a no-op. ** ** The p->btreeMask field is a bitmask of all btrees that the prepared ** statement p will ever use. Let N be the number of bits in p->btreeMask ** corresponding to btrees that use shared cache. Then the runtime of ** this routine is N*N. But as N is rarely more than 1, this should not ** be a problem. */ SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; ilockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeEnter(aDb[i].pBt); } } } #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; ilockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeLeave(aDb[i].pBt); } } } SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ vdbeLeave(p); } #endif #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Print a single opcode. This routine is used for debugging only. */ SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ char *zP4; char *zCom; sqlite3 dummyDb; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; sqlite3BeginBenignMalloc(); dummyDb.mallocFailed = 1; zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); #else zCom = 0; #endif /* NB: The sqlite3OpcodeName() function is implemented by code created ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the ** information from the vdbe.c source text */ fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4 ? zP4 : "", pOp->p5, zCom ? zCom : "" ); fflush(pOut); sqlite3_free(zP4); sqlite3_free(zCom); sqlite3EndBenignMalloc(); } #endif /* ** Initialize an array of N Mem element. ** ** This is a high-runner, so only those fields that really do need to ** be initialized are set. The Mem structure is organized so that ** the fields that get initialized are nearby and hopefully on the same ** cache line. ** ** Mem.flags = flags ** Mem.db = db ** Mem.szMalloc = 0 ** ** All other fields of Mem can safely remain uninitialized for now. They ** will be initialized before use. */ static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ if( N>0 ){ do{ p->flags = flags; p->db = db; p->szMalloc = 0; #ifdef SQLITE_DEBUG p->pScopyFrom = 0; #endif p++; }while( (--N)>0 ); } } /* ** Release auxiliary memory held in an array of N Mem elements. ** ** After this routine returns, all Mem elements in the array will still ** be valid. Those Mem elements that were not holding auxiliary resources ** will be unchanged. Mem elements which had something freed will be ** set to MEM_Undefined. */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ Mem *pEnd = &p[N]; sqlite3 *db = p->db; if( db->pnBytesFreed ){ do{ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); }while( (++p)flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); if( p->flags&(MEM_Agg|MEM_Dyn) ){ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); sqlite3VdbeMemRelease(p); p->flags = MEM_Undefined; }else if( p->szMalloc ){ sqlite3DbNNFreeNN(db, p->zMalloc); p->szMalloc = 0; p->flags = MEM_Undefined; } #ifdef SQLITE_DEBUG else{ p->flags = MEM_Undefined; } #endif }while( (++p)iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; return 1; } #endif /* ** This is a destructor on a Mem object (which is really an sqlite3_value) ** that deletes the Frame object that is attached to it as a blob. ** ** This routine does not delete the Frame right away. It merely adds the ** frame to a list of frames to be deleted when the Vdbe halts. */ SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void *pArg){ VdbeFrame *pFrame = (VdbeFrame*)pArg; assert( sqlite3VdbeFrameIsValid(pFrame) ); pFrame->pParent = pFrame->v->pDelFrame; pFrame->v->pDelFrame = pFrame; } #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) /* ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN ** QUERY PLAN output. ** ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no ** more opcodes to be displayed. */ SQLITE_PRIVATE int sqlite3VdbeNextOpcode( Vdbe *p, /* The statement being explained */ Mem *pSub, /* Storage for keeping track of subprogram nesting */ int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ int *piAddr, /* OUT: Write index into (*paOp)[] here */ Op **paOp /* OUT: Write the opcode array here */ ){ int nRow; /* Stop when row count reaches this */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram **apSub = 0; /* Array of sub-vdbes */ int i; /* Next instruction address */ int rc = SQLITE_OK; /* Result code */ Op *aOp = 0; /* Opcode array */ int iPc; /* Rowid. Copy of value in *piPc */ /* When the number of output rows reaches nRow, that means the ** listing has finished and sqlite3_step() should return SQLITE_DONE. ** nRow is the sum of the number of rows in the main program, plus ** the sum of the number of rows in all trigger subprograms encountered ** so far. The nRow value will increase as new trigger subprograms are ** encountered, but p->pc will eventually catch up to nRow. */ nRow = p->nOp; if( pSub!=0 ){ if( pSub->flags&MEM_Blob ){ /* pSub is initiallly NULL. It is initialized to a BLOB by ** the P4_SUBPROGRAM processing logic below */ nSub = pSub->n/sizeof(Vdbe*); apSub = (SubProgram **)pSub->z; } for(i=0; inOp; } } iPc = *piPc; while(1){ /* Loop exits via break */ i = iPc++; if( i>=nRow ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; break; } if( inOp ){ /* The rowid is small enough that we are still in the ** main program. */ aOp = p->aOp; }else{ /* We are currently listing subprograms. Figure out which one and ** pick up the appropriate opcode. */ int j; i -= p->nOp; assert( apSub!=0 ); assert( nSub>0 ); for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; assert( inOp || j+1aOp; } /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. */ if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; jrc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); if( p->rc!=SQLITE_OK ){ rc = SQLITE_ERROR; break; } apSub = (SubProgram **)pSub->z; apSub[nSub++] = aOp[i].p4.pProgram; MemSetTypeFlag(pSub, MEM_Blob); pSub->n = nSub*sizeof(SubProgram*); nRow += aOp[i].p4.pProgram->nOp; } } if( eMode==0 ) break; #ifdef SQLITE_ENABLE_BYTECODE_VTAB if( eMode==2 ){ Op *pOp = aOp + i; if( pOp->opcode==OP_OpenRead ) break; if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; if( pOp->opcode==OP_ReopenIdx ) break; }else #endif { assert( eMode==1 ); if( aOp[i].opcode==OP_Explain ) break; if( aOp[i].opcode==OP_Init && iPc>1 ) break; } } *piPc = iPc; *piAddr = i; *paOp = aOp; return rc; } #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are ** allocated by the OP_Program opcode in sqlite3VdbeExec(). */ SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){ int i; Mem *aMem = VdbeFrameMem(p); VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; assert( sqlite3VdbeFrameIsValid(p) ); for(i=0; inChildCsr; i++){ if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); } releaseMemArray(aMem, p->nChildMem); sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); sqlite3DbFree(p->v->db, p); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqlite3VdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers ** are also shown, so that the boundaries between the main program and ** each trigger are clear. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ SQLITE_PRIVATE int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ Mem *pSub = 0; /* Memory cell hold array of subprogs */ sqlite3 *db = p->db; /* The database connection */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ Mem *pMem = &p->aMem[1]; /* First Mem of result set */ int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); Op *aOp; /* Array of opcodes */ Op *pOp; /* Current opcode */ assert( p->explain ); assert( p->eVdbeState==VDBE_RUN_STATE ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray(pMem, 8); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ sqlite3OomFault(db); return SQLITE_ERROR; } if( bListSubprogs ){ /* The first 8 memory cells are used for the result set. So we will ** commandeer the 9th cell to use as storage for an array of pointers ** to trigger subprograms. The VDBE is guaranteed to have at least 9 ** cells. */ assert( p->nMem>9 ); pSub = &p->aMem[9]; }else{ pSub = 0; } /* Figure out which opcode is next to display */ rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); if( rc==SQLITE_OK ){ pOp = aOp + i; if( AtomicLoad(&db->u1.isInterrupted) ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); }else{ char *zP4 = sqlite3VdbeDisplayP4(db, pOp); if( p->explain==2 ){ sqlite3VdbeMemSetInt64(pMem, pOp->p1); sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==4 ); }else{ sqlite3VdbeMemSetInt64(pMem+0, i); sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), -1, SQLITE_UTF8, SQLITE_STATIC); sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); /* pMem+5 for p4 is done last */ sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS { char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); } #else sqlite3VdbeMemSetNull(pMem+7); #endif sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==8 ); } p->pResultRow = pMem; if( db->mallocFailed ){ p->rc = SQLITE_NOMEM; rc = SQLITE_ERROR; }else{ p->rc = SQLITE_OK; rc = SQLITE_ROW; } } } return rc; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_DEBUG /* ** Print the SQL that was used to generate a VDBE program. */ SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){ const char *z = 0; if( p->zSql ){ z = p->zSql; }else if( p->nOp>=1 ){ const VdbeOp *pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ z = pOp->p4.z; while( sqlite3Isspace(*z) ) z++; } } if( z ) printf("SQL: [%s]\n", z); } #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** Print an IOTRACE message showing SQL content. */ SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( sqlite3IoTrace==0 ) return; if( nOp<1 ) return; pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ int i, j; char z[1000]; sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); for(i=0; sqlite3Isspace(z[i]); i++){} for(j=0; z[i]; i++){ if( sqlite3Isspace(z[i]) ){ if( z[i-1]!=' ' ){ z[j++] = ' '; } }else{ z[j++] = z[i]; } } z[j] = 0; sqlite3IoTrace("SQL %s\n", z); } } #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ /* An instance of this object describes bulk memory available for use ** by subcomponents of a prepared statement. Space is allocated out ** of a ReusableSpace object by the allocSpace() routine below. */ struct ReusableSpace { u8 *pSpace; /* Available memory */ sqlite3_int64 nFree; /* Bytes of available memory */ sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ }; /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf ** from the ReusableSpace object. Return a pointer to the allocated ** memory on success. If insufficient memory is available in the ** ReusableSpace object, increase the ReusableSpace.nNeeded ** value by the amount needed and return NULL. ** ** If pBuf is not initially NULL, that means that the memory has already ** been allocated by a prior call to this routine, so just return a copy ** of pBuf and leave ReusableSpace unchanged. ** ** This allocator is employed to repurpose unused slots at the end of the ** opcode array of prepared state for other memory needs of the prepared ** statement. */ static void *allocSpace( struct ReusableSpace *p, /* Bulk memory available for allocation */ void *pBuf, /* Pointer to a prior allocation */ sqlite3_int64 nByte /* Bytes of memory needed. */ ){ assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); if( pBuf==0 ){ nByte = ROUND8P(nByte); if( nByte <= p->nFree ){ p->nFree -= nByte; pBuf = &p->pSpace[p->nFree]; }else{ p->nNeeded += nByte; } } assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); return pBuf; } /* ** Rewind the VDBE back to the beginning in preparation for ** running it. */ SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe *p){ #if defined(SQLITE_DEBUG) int i; #endif assert( p!=0 ); assert( p->eVdbeState==VDBE_INIT_STATE || p->eVdbeState==VDBE_READY_STATE || p->eVdbeState==VDBE_HALT_STATE ); /* There should be at least one opcode. */ assert( p->nOp>0 ); p->eVdbeState = VDBE_READY_STATE; #ifdef SQLITE_DEBUG for(i=0; inMem; i++){ assert( p->aMem[i].db==p->db ); } #endif p->pc = -1; p->rc = SQLITE_OK; p->errorAction = OE_Abort; p->nChange = 0; p->cacheCtr = 1; p->minWriteFileFormat = 255; p->iStatement = 0; p->nFkConstraint = 0; #ifdef VDBE_PROFILE for(i=0; inOp; i++){ p->aOp[i].nExec = 0; p->aOp[i].nCycle = 0; } #endif } /* ** Prepare a virtual machine for execution for the first time after ** creating the virtual machine. This involves things such ** as allocating registers and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqlite3VdbeExec(). ** ** This function may be called exactly once on each virtual machine. ** After this routine is called the VM has been "packaged" and is ready ** to run. After this routine is called, further calls to ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects ** the Vdbe from the Parse object that helped generate it so that the ** the Vdbe becomes an independent entity and the Parse object can be ** destroyed. ** ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back ** to its initial state after it has been run. */ SQLITE_PRIVATE void sqlite3VdbeMakeReady( Vdbe *p, /* The VDBE */ Parse *pParse /* Parsing context */ ){ sqlite3 *db; /* The database connection */ int nVar; /* Number of parameters */ int nMem; /* Number of VM memory registers */ int nCursor; /* Number of cursors required */ int nArg; /* Number of arguments in subprograms */ int n; /* Loop counter */ struct ReusableSpace x; /* Reusable bulk memory */ assert( p!=0 ); assert( p->nOp>0 ); assert( pParse!=0 ); assert( p->eVdbeState==VDBE_INIT_STATE ); assert( pParse==p->pParse ); p->pVList = pParse->pVList; pParse->pVList = 0; db = p->db; assert( db->mallocFailed==0 ); nVar = pParse->nVar; nMem = pParse->nMem; nCursor = pParse->nTab; nArg = pParse->nMaxArg; /* Each cursor uses a memory cell. The first cursor (cursor 0) can ** use aMem[0] which is not otherwise used by the VDBE program. Allocate ** space at the end of aMem[] for cursors 1 and greater. ** See also: allocateCursor(). */ nMem += nCursor; if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ /* Figure out how much reusable memory is available at the end of the ** opcode array. This extra memory will be reallocated for other elements ** of the prepared statement. */ n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ assert( x.nFree>=0 ); assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain ){ if( nMem<10 ) nMem = 10; p->explain = pParse->explain; p->nResColumn = 12 - 4*p->explain; } p->expired = 0; /* Memory for registers, parameters, cursor, etc, is allocated in one or two ** passes. On the first pass, we try to reuse unused memory at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the remainder using a fresh memory allocation. ** ** This two-pass approach that reuses as much memory as possible from ** the leftover memory at the end of the opcode array. This can significantly ** reduce the amount of memory held by a prepared statement. */ x.nNeeded = 0; p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); if( x.nNeeded ){ x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); x.nFree = x.nNeeded; if( !db->mallocFailed ){ p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); } } if( db->mallocFailed ){ p->nVar = 0; p->nCursor = 0; p->nMem = 0; }else{ p->nCursor = nCursor; p->nVar = (ynVar)nVar; initMemArray(p->aVar, nVar, db, MEM_Null); p->nMem = nMem; initMemArray(p->aMem, nMem, db, MEM_Undefined); memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); } sqlite3VdbeRewind(p); } /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); } static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){ VdbeTxtBlbCache *pCache = pCx->pCache; assert( pCx->colCache ); pCx->colCache = 0; pCx->pCache = 0; if( pCache->pCValue ){ sqlite3RCStrUnref(pCache->pCValue); pCache->pCValue = 0; } sqlite3DbFree(p->db, pCache); sqlite3VdbeFreeCursorNN(p, pCx); } SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ if( pCx->colCache ){ freeCursorWithCache(p, pCx); return; } switch( pCx->eCurType ){ case CURTYPE_SORTER: { sqlite3VdbeSorterClose(p->db, pCx); break; } case CURTYPE_BTREE: { assert( pCx->uc.pCursor!=0 ); sqlite3BtreeCloseCursor(pCx->uc.pCursor); break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case CURTYPE_VTAB: { sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; const sqlite3_module *pModule = pVCur->pVtab->pModule; assert( pVCur->pVtab->nRef>0 ); pVCur->pVtab->nRef--; pModule->xClose(pVCur); break; } #endif } } /* ** Close all cursors in the current frame. */ static void closeCursorsInFrame(Vdbe *p){ int i; for(i=0; inCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursorNN(p, pC); p->apCsr[i] = 0; } } } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; closeCursorsInFrame(v); v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; v->db->nChange = pFrame->nDbChange; sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); v->pAuxData = pFrame->pAuxData; pFrame->pAuxData = 0; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); p->pFrame = 0; p->nFrame = 0; } assert( p->nFrame==0 ); closeCursorsInFrame(p); releaseMemArray(p->aMem, p->nMem); while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } /* Delete any auxdata allocations made by the VM */ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); assert( p->pAuxData==0 ); } /* ** Set the number of result columns that will be returned by this SQL ** statement. This is now set at compile time, rather than during ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ int n; sqlite3 *db = p->db; if( p->nResAlloc ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbFree(db, p->aColName); } n = nResColumn*COLNAME_N; p->nResColumn = p->nResAlloc = (u16)nResColumn; p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); if( p->aColName==0 ) return; initMemArray(p->aColName, n, db, MEM_Null); } /* ** Set the name of the idx'th column to be returned by the SQL statement. ** zName must be a pointer to a nul terminated string. ** ** This call must be made after a call to sqlite3VdbeSetNumCols(). ** ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. */ SQLITE_PRIVATE int sqlite3VdbeSetColName( Vdbe *p, /* Vdbe being configured */ int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ const char *zName, /* Pointer to buffer containing name */ void (*xDel)(void*) /* Memory management strategy for zName */ ){ int rc; Mem *pColName; assert( idxnResAlloc ); assert( vardb->mallocFailed ){ assert( !zName || xDel!=SQLITE_DYNAMIC ); return SQLITE_NOMEM_BKPT; } assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResAlloc]); rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); return rc; } /* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a ** write-transaction spanning more than one database file, this routine ** takes care of the super-journal trickery. */ static int vdbeCommit(sqlite3 *db, Vdbe *p){ int i; int nTrans = 0; /* Number of databases with an active write-transaction ** that are candidates for a two-phase commit using a ** super-journal */ int rc = SQLITE_OK; int needXcommit = 0; #ifdef SQLITE_OMIT_VIRTUALTABLE /* With this option, sqlite3VtabSync() is defined to be simply ** SQLITE_OK so p is not used. */ UNUSED_PARAMETER(p); #endif /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a super-journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync(db, p); /* This loop determines (a) if the commit hook should be invoked and ** (b) how many database files have open write transactions, not ** including the temp database. (b) is important because if more than ** one database file has an open write transaction, a super-journal ** file is required for an atomic commit. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ /* Whether or not a database might need a super-journal depends upon ** its journal mode (among other things). This matrix determines which ** journal modes use a super-journal and which do not */ static const u8 aMJNeeded[] = { /* DELETE */ 1, /* PERSIST */ 1, /* OFF */ 0, /* TRUNCATE */ 1, /* MEMORY */ 0, /* WAL */ 0 }; Pager *pPager; /* Pager associated with pBt */ needXcommit = 1; sqlite3BtreeEnter(pBt); pPager = sqlite3BtreePager(pBt); if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] && sqlite3PagerIsMemdb(pPager)==0 ){ assert( i!=1 ); nTrans++; } rc = sqlite3PagerExclusiveLock(pPager); sqlite3BtreeLeave(pBt); } } if( rc!=SQLITE_OK ){ return rc; } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ rc = db->xCommitCallback(db->pCommitArg); if( rc ){ return SQLITE_CONSTRAINT_COMMITHOOK; } } /* The simple case - no more than one database file (not counting the ** TEMP database) has a transaction active. There is no need for the ** super-journal. ** ** If the return value of sqlite3BtreeGetFilename() is a zero length ** string, it means the main database is :memory: or a temp file. In ** that case we do not support atomic multi-file commits, so use the ** simple case then too. */ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, 0); } } /* Do the commit only if all databases successfully complete phase 1. ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); } } if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a super-journal file to ensure the transaction is ** committed atomically. */ #ifndef SQLITE_OMIT_DISKIO else{ sqlite3_vfs *pVfs = db->pVfs; char *zSuper = 0; /* File-name for the super-journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sqlite3_file *pSuperJrnl = 0; i64 offset = 0; int res; int retryCount = 0; int nMainFile; /* Select a super-journal file name */ nMainFile = sqlite3Strlen30(zMainFile); zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); if( zSuper==0 ) return SQLITE_NOMEM_BKPT; zSuper += 4; do { u32 iRandom; if( retryCount ){ if( retryCount>100 ){ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); sqlite3OsDelete(pVfs, zSuper, 0); break; }else if( retryCount==1 ){ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); } } retryCount++; sqlite3_randomness(sizeof(iRandom), &iRandom); sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", (iRandom>>8)&0xffffff, iRandom&0xff); /* The antipenultimate character of the super-journal name must ** be "9" to avoid name collisions when using 8+3 filenames. */ assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); sqlite3FileSuffix3(zMainFile, zSuper); rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); }while( rc==SQLITE_OK && res ); if( rc==SQLITE_OK ){ /* Open the super-journal. */ rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 ); } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zSuper-4); return rc; } /* Write the name of each database file in the transaction into the new ** super-journal file. If an error occurs at this point close ** and delete the super-journal file. All the individual journal files ** still have 'null' as the super-journal pointer, so they will roll ** back independently if a failure occurs. */ for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ char const *zFile = sqlite3BtreeGetJournalname(pBt); if( zFile==0 ){ continue; /* Ignore TEMP and :memory: databases */ } assert( zFile[0]!=0 ); rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); offset += sqlite3Strlen30(zFile)+1; if( rc!=SQLITE_OK ){ sqlite3OsCloseFree(pSuperJrnl); sqlite3OsDelete(pVfs, zSuper, 0); sqlite3DbFree(db, zSuper-4); return rc; } } } /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device ** flag is set this is not required. */ if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) ){ sqlite3OsCloseFree(pSuperJrnl); sqlite3OsDelete(pVfs, zSuper, 0); sqlite3DbFree(db, zSuper-4); return rc; } /* Sync all the db files involved in the transaction. The same call ** sets the super-journal pointer in each individual journal. If ** an error occurs here, do not delete the super-journal file. ** ** If the error occurs during the first call to ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the ** super-journal file will be orphaned. But we cannot delete it, ** in case the super-journal file name was written into the journal ** file before the failure occurred. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); } } sqlite3OsCloseFree(pSuperJrnl); assert( rc!=SQLITE_BUSY ); if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zSuper-4); return rc; } /* Delete the super-journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete(pVfs, zSuper, 1); sqlite3DbFree(db, zSuper-4); zSuper = 0; if( rc ){ return rc; } /* All files and directories have already been synced, so the following ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and ** deleting or truncating journals. If something goes wrong while ** this is happening we don't really care. The integrity of the ** transaction is already guaranteed, but some stray 'cold' journals ** may be lying around. Returning an error code won't help matters. */ disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommitPhaseTwo(pBt, 1); } } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); sqlite3VtabCommit(db); } #endif return rc; } /* ** This routine checks that the sqlite3.nVdbeActive count variable ** matches the number of vdbe's in the list sqlite3.pVdbe that are ** currently active. An assertion fails if the two counts do not match. ** This is an internal self-check only - it is not an essential processing ** step. ** ** This is a no-op if NDEBUG is defined. */ #ifndef NDEBUG static void checkActiveVdbeCnt(sqlite3 *db){ Vdbe *p; int cnt = 0; int nWrite = 0; int nRead = 0; p = db->pVdbe; while( p ){ if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ cnt++; if( p->readOnly==0 ) nWrite++; if( p->bIsReader ) nRead++; } p = p->pVNext; } assert( cnt==db->nVdbeActive ); assert( nWrite==db->nVdbeWrite ); assert( nRead==db->nVdbeRead ); } #else #define checkActiveVdbeCnt(x) #endif /* ** If the Vdbe passed as the first argument opened a statement-transaction, ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the ** statement transaction is committed. ** ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. ** Otherwise SQLITE_OK. */ static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ sqlite3 *const db = p->db; int rc = SQLITE_OK; int i; const int iSavepoint = p->iStatement-1; assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); assert( db->nStatement>0 ); assert( p->iStatement==(db->nStatement+db->nSavepoint) ); for(i=0; inDb; i++){ int rc2 = SQLITE_OK; Btree *pBt = db->aDb[i].pBt; if( pBt ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc2==SQLITE_OK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); } if( rc==SQLITE_OK ){ rc = rc2; } } } db->nStatement--; p->iStatement = 0; if( rc==SQLITE_OK ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc==SQLITE_OK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); } } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; db->nDeferredImmCons = p->nStmtDefImmCons; } return rc; } SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ if( p->db->nStatement && p->iStatement ){ return vdbeCloseStatement(p, eOp); } return SQLITE_OK; } /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY ** and write an error message to it. Then return SQLITE_ERROR. */ #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ sqlite3 *db = p->db; if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) || (!deferred && p->nFkConstraint>0) ){ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; p->errorAction = OE_Abort; sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; return SQLITE_CONSTRAINT_FOREIGNKEY; } return SQLITE_OK; } #endif /* ** This routine is called the when a VDBE tries to halt. If the VDBE ** has made changes and is in autocommit mode, then commit those ** changes. If a rollback is needed, then do the rollback. ** ** This routine is the only way to move the sqlite3eOpenState of a VM from ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to ** call this on a VM that is in the SQLITE_STATE_HALT state. ** ** Return an error code. If the commit could not complete because of ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it ** means the close did not happen and needs to be repeated. */ SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){ int rc; /* Used to store transient return codes */ sqlite3 *db = p->db; /* This function contains the logic that determines if a statement or ** transaction will be committed or rolled back as a result of the ** execution of this virtual machine. ** ** If any of the following errors occur: ** ** SQLITE_NOMEM ** SQLITE_IOERR ** SQLITE_FULL ** SQLITE_INTERRUPT ** ** Then the internal cache might have been left in an inconsistent ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ assert( p->eVdbeState==VDBE_RUN_STATE ); if( db->mallocFailed ){ p->rc = SQLITE_NOMEM_BKPT; } closeAllCursors(p); checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started or if the ** SQL statement does not read or write a database file. */ if( p->bIsReader ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeEnter(p); /* Check for one of the special errors */ if( p->rc ){ mrc = p->rc & 0xff; isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; }else{ mrc = isSpecialError = 0; } if( isSpecialError ){ /* If the query was read-only and the error code is SQLITE_INTERRUPT, ** no rollback is necessary. Otherwise, at least a savepoint ** transaction must be rolled back to restore the database to a ** consistent state. ** ** Even if the statement is read-only, it is important to perform ** a statement or transaction rollback operation. If the error ** occurred while writing to the journal, sub-journal or database ** file as part of an effort to free up cache space (see function ** pagerStress() in pager.c), the rollback is required to restore ** the pager to a consistent state. */ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } } /* Check for immediate foreign key violations. */ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ sqlite3VdbeCheckFk(p, 0); } /* If the auto-commit flag is set and this is the only active writer ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->nVdbeWrite==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ rc = sqlite3VdbeCheckFk(p, 1); if( rc!=SQLITE_OK ){ if( NEVER(p->readOnly) ){ sqlite3VdbeLeave(p); return SQLITE_ERROR; } rc = SQLITE_CONSTRAINT_FOREIGNKEY; }else if( db->flags & SQLITE_CorruptRdOnly ){ rc = SQLITE_CORRUPT; db->flags &= ~SQLITE_CorruptRdOnly; }else{ /* The auto-commit flag is true, the vdbe program was successful ** or hit an 'OR FAIL' constraint and there are no deferred foreign ** key constraints to hold up the transaction. This means a commit ** is required. */ rc = vdbeCommit(db, p); } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ sqlite3SystemError(db, rc); p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)SQLITE_DeferFKs; sqlite3CommitInternalChanges(db); } }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){ p->nChange = 0; }else{ sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; } db->nStatement = 0; }else if( eStatementOp==0 ){ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ eStatementOp = SAVEPOINT_RELEASE; }else if( p->errorAction==OE_Abort ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. */ if( eStatementOp ){ rc = sqlite3VdbeCloseStatement(p, eStatementOp); if( rc ){ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ p->rc = rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if( p->changeCntOn ){ if( eStatementOp!=SAVEPOINT_ROLLBACK ){ sqlite3VdbeSetChanges(db, p->nChange); }else{ sqlite3VdbeSetChanges(db, 0); } p->nChange = 0; } /* Release the locks */ sqlite3VdbeLeave(p); } /* We have successfully halted and closed the VM. Record this fact. */ db->nVdbeActive--; if( !p->readOnly ) db->nVdbeWrite--; if( p->bIsReader ) db->nVdbeRead--; assert( db->nVdbeActive>=db->nVdbeRead ); assert( db->nVdbeRead>=db->nVdbeWrite ); assert( db->nVdbeWrite>=0 ); p->eVdbeState = VDBE_HALT_STATE; checkActiveVdbeCnt(db); if( db->mallocFailed ){ p->rc = SQLITE_NOMEM_BKPT; } /* If the auto-commit flag is set to true, then any locks that were held ** by connection db have now been released. Call sqlite3ConnectionUnlocked() ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. */ SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){ p->rc = SQLITE_OK; } /* ** Copy the error code and error message belonging to the VDBE passed ** as the first argument to its database handle (so that they will be ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). ** ** This function does not clear the VDBE error code or message, just ** copies them to the database handle. */ SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){ sqlite3 *db = p->db; int rc = p->rc; if( p->zErrMsg ){ db->bBenignMalloc++; sqlite3BeginBenignMalloc(); if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); sqlite3EndBenignMalloc(); db->bBenignMalloc--; }else if( db->pErr ){ sqlite3ValueSetNull(db->pErr); } db->errCode = rc; db->errByteOffset = -1; return rc; } #ifdef SQLITE_ENABLE_SQLLOG /* ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, ** invoke it. */ static void vdbeInvokeSqllog(Vdbe *v){ if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); assert( v->db->init.busy==0 ); if( zExpanded ){ sqlite3GlobalConfig.xSqllog( sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 ); sqlite3DbFree(v->db, zExpanded); } } } #else # define vdbeInvokeSqllog(x) #endif /* ** Clean up a VDBE after execution but do not delete the VDBE just yet. ** Write any error messages into *pzErrMsg. Return the result code. ** ** After this routine is run, the VDBE should be ready to be executed ** again. ** ** To look at it another way, this routine resets the state of the ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to ** VDBE_READY_STATE. */ SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){ #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) int i; #endif sqlite3 *db; db = p->db; /* If the VM did not run to completion or if it encountered an ** error, then it might not have been halted properly. So halt ** it now. */ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); /* If the VDBE has been run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if( p->pc>=0 ){ vdbeInvokeSqllog(p); if( db->pErr || p->zErrMsg ){ sqlite3VdbeTransferError(p); }else{ db->errCode = p->rc; } } /* Reset register contents and reclaim error message memory. */ #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ if( p->apCsr ) for(i=0; inCursor; i++) assert( p->apCsr[i]==0 ); if( p->aMem ){ for(i=0; inMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); } #endif if( p->zErrMsg ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } p->pResultRow = 0; #ifdef SQLITE_DEBUG p->nWrite = 0; #endif /* Save profiling information from this VDBE run. */ #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ fprintf(out, "---- "); for(i=0; inOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); if( p->zSql ){ char c, pc = 0; fprintf(out, "-- "); for(i=0; (c = p->zSql[i])!=0; i++){ if( pc=='\n' ) fprintf(out, "-- "); putc(c, out); pc = c; } if( pc!='\n' ) fprintf(out, "\n"); } for(i=0; inOp; i++){ char zHdr[100]; i64 cnt = p->aOp[i].nExec; i64 cycles = p->aOp[i].nCycle; sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", cnt, cycles, cnt>0 ? cycles/cnt : 0 ); fprintf(out, "%s", zHdr); sqlite3VdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif return p->rc & db->errMask; } /* ** Clean up and delete a VDBE after execution. Return an integer which is ** the result code. Write any error message text into *pzErrMsg. */ SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){ int rc = SQLITE_OK; assert( VDBE_RUN_STATE>VDBE_READY_STATE ); assert( VDBE_HALT_STATE>VDBE_READY_STATE ); assert( VDBE_INIT_STATEeVdbeState>=VDBE_READY_STATE ){ rc = sqlite3VdbeReset(p); assert( (rc & p->db->errMask)==rc ); } sqlite3VdbeDelete(p); return rc; } /* ** If parameter iOp is less than zero, then invoke the destructor for ** all auxiliary data pointers currently cached by the VM passed as ** the first argument. ** ** Or, if iOp is greater than or equal to zero, then the destructor is ** only invoked for those auxiliary data pointers created by the user ** function invoked by the OP_Function opcode at instruction iOp of ** VM pVdbe, and only then if: ** ** * the associated function parameter is the 32nd or later (counting ** from left to right), or ** ** * the corresponding bit in argument mask is clear (where the first ** function parameter corresponds to bit 0 etc.). */ SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ while( *pp ){ AuxData *pAux = *pp; if( (iOp<0) || (pAux->iAuxOp==iOp && pAux->iAuxArg>=0 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) ){ testcase( pAux->iAuxArg==31 ); if( pAux->xDeleteAux ){ pAux->xDeleteAux(pAux->pAux); } *pp = pAux->pNextAux; sqlite3DbFree(db, pAux); }else{ pp= &pAux->pNextAux; } } } /* ** Free all memory associated with the Vdbe passed as the second argument, ** except for object itself, which is preserved. ** ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( db!=0 ); assert( p->db==0 || p->db==db ); if( p->aColName ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbNNFreeNN(db, p->aColName); } for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } if( p->eVdbeState!=VDBE_INIT_STATE ){ releaseMemArray(p->aVar, p->nVar); if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); } vdbeFreeOpArray(db, p->aOp, p->nOp); if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3DbFree(db, p->zNormSql); { DblquoteStr *pThis, *pNxt; for(pThis=p->pDblStr; pThis; pThis=pNxt){ pNxt = pThis->pNextStr; sqlite3DbFree(db, pThis); } } #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS { int i; for(i=0; inScan; i++){ sqlite3DbFree(db, p->aScan[i].zName); } sqlite3DbFree(db, p->aScan); } #endif } /* ** Delete an entire VDBE. */ SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; assert( p!=0 ); db = p->db; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); sqlite3VdbeClearObject(db, p); if( db->pnBytesFreed==0 ){ assert( p->ppVPrev!=0 ); *p->ppVPrev = p->pVNext; if( p->pVNext ){ p->pVNext->ppVPrev = p->ppVPrev; } } sqlite3DbNNFreeNN(db, p); } /* ** The cursor "p" has a pending seek operation that has not yet been ** carried out. Seek the cursor now. If an error occurs, return ** the appropriate error code. */ SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ int res, rc; #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->deferredMoveto ); assert( p->isTable ); assert( p->eCurType==CURTYPE_BTREE ); rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); if( rc ) return rc; if( res!=0 ) return SQLITE_CORRUPT_BKPT; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; return SQLITE_OK; } /* ** Something has moved cursor "p" out of place. Maybe the row it was ** pointed to was deleted out from under it. Or maybe the btree was ** rebalanced. Whatever the cause, try to restore "p" to the place it ** is supposed to be pointing. If the row was deleted out from under the ** cursor, set the cursor to point to a NULL row. */ SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ int isDifferentRow, rc; assert( p->eCurType==CURTYPE_BTREE ); assert( p->uc.pCursor!=0 ); assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); p->cacheStatus = CACHE_STALE; if( isDifferentRow ) p->nullRow = 1; return rc; } /* ** Check to ensure that the cursor is valid. Restore the cursor ** if need be. Return any I/O error from the restore operation. */ SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor *p){ assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ return sqlite3VdbeHandleMovedCursor(p); } return SQLITE_OK; } /* ** The following functions: ** ** sqlite3VdbeSerialType() ** sqlite3VdbeSerialTypeLen() ** sqlite3VdbeSerialLen() ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 ** sqlite3VdbeSerialGet() ** ** encapsulate the code that serializes values for storage in SQLite ** data and index records. Each serialized value consists of a ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned ** integer, stored as a varint. ** ** In an SQLite index record, the serial type is stored directly before ** the blob of data that it corresponds to. In a table record, all serial ** types are stored at the start of the record, and the blobs of data at ** the end. Hence these functions allow the caller to handle the ** serial-type and data blob separately. ** ** The following table describes the various storage classes for data: ** ** serial type bytes of data type ** -------------- --------------- --------------- ** 0 0 NULL ** 1 1 signed integer ** 2 2 signed integer ** 3 3 signed integer ** 4 4 signed integer ** 5 6 signed integer ** 6 8 signed integer ** 7 8 IEEE float ** 8 0 Integer constant 0 ** 9 0 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even (N-12)/2 BLOB ** N>=13 and odd (N-13)/2 text ** ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions ** of SQLite will not understand those serial types. */ #if 0 /* Inlined into the OP_MakeRecord opcode */ /* ** Return the serial-type for the value stored in pMem. ** ** This routine might convert a large MEM_IntReal value into MEM_Real. ** ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord ** opcode in the byte-code engine. But by moving this routine in-line, we ** can omit some redundant tests and make that opcode a lot faster. So ** this routine is now only used by the STAT3 logic and STAT3 support has ** ended. The code is kept here for historical reference only. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ int flags = pMem->flags; u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } if( flags&(MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; testcase( flags & MEM_Int ); testcase( flags & MEM_IntReal ); if( i<0 ){ u = ~i; }else{ u = i; } if( u<=127 ){ if( (i&1)==i && file_format>=4 ){ *pLen = 0; return 8+(u32)u; }else{ *pLen = 1; return 1; } } if( u<=32767 ){ *pLen = 2; return 2; } if( u<=8388607 ){ *pLen = 3; return 3; } if( u<=2147483647 ){ *pLen = 4; return 4; } if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } *pLen = 8; if( flags&MEM_IntReal ){ /* If the value is IntReal and is going to take up 8 bytes to store ** as an integer, then we might as well make it an 8-byte floating ** point value */ pMem->u.r = (double)pMem->u.i; pMem->flags &= ~MEM_IntReal; pMem->flags |= MEM_Real; return 7; } return 6; } if( flags&MEM_Real ){ *pLen = 8; return 7; } assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); assert( pMem->n>=0 ); n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } *pLen = n; return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } #endif /* inlined into OP_MakeRecord */ /* ** The sizes for serial types less than 128 */ SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[128] = { /* 0 1 2 3 4 5 6 7 8 9 */ /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 }; /* ** Return the length of the data corresponding to the supplied serial-type. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=128 ){ return (serial_type-12)/2; }else{ assert( serial_type<12 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); return sqlite3SmallTypeSizes[serial_type]; } } SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ assert( serial_type<128 ); return sqlite3SmallTypeSizes[serial_type]; } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. ** ** For most architectures, this is a no-op. ** ** (later): It is reported to me that the mixed-endian problem ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems ** that early versions of GCC stored the two words of a 64-bit ** float in the wrong order. And that error has been propagated ** ever since. The blame is not necessarily with GCC, though. ** GCC might have just copying the problem from a prior compiler. ** I am also told that newer versions of GCC that follow a different ** ABI get the byte order right. ** ** Developers using SQLite on an ARM7 should compile and run their ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG ** enabled, some asserts below will ensure that the byte order of ** floating point values is correct. ** ** (2007-08-30) Frank van Vugt has studied this problem closely ** and has send his findings to the SQLite developers. Frank ** writes that some Linux kernels offer floating point hardware ** emulation that uses only 32-bit mantissas instead of a full ** 48-bits as required by the IEEE standard. (This is the ** CONFIG_FPE_FASTFPE option.) On such systems, floating point ** byte swapping becomes very complicated. To avoid problems, ** the necessary byte swapping is carried out using a 64-bit integer ** rather than a 64-bit float. Frank assures us that the code here ** works for him. We, the developers, have no way to independently ** verify this, but Frank seems to know what he is talking about ** so we trust him. */ #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in){ union { u64 r; u32 i[2]; } u; u32 t; u.r = in; t = u.i[0]; u.i[0] = u.i[1]; u.i[1] = t; return u.r; } #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ /* Input "x" is a sequence of unsigned characters that represent a ** big-endian integer. Return the equivalent native integer */ #define ONE_BYTE_INT(x) ((i8)(x)[0]) #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. ** ** This function is implemented as two separate routines for performance. ** The few cases that require local variables are broken out into a separate ** routine so that in most cases the overhead of moving the stack pointer ** is avoided. */ static void serialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; if( serial_type==6 ){ /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit ** twos-complement integer. */ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit ** floating point number. */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->u.r, &x, sizeof(x)); pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; } } SQLITE_PRIVATE void sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: { /* Internal use only: NULL with virtual table ** UPDATE no-change flag set */ pMem->flags = MEM_Null|MEM_Zero; pMem->n = 0; pMem->u.nZero = 0; return; } case 11: /* Reserved for future use */ case 0: { /* Null */ /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ pMem->flags = MEM_Null; return; } case 1: { /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement ** integer. */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 2: { /* 2-byte signed integer */ /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit ** twos-complement integer. */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 3: { /* 3-byte signed integer */ /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit ** twos-complement integer. */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 4: { /* 4-byte signed integer */ /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_INT(buf); #ifdef __HP_cc /* Work around a sign-extension bug in the HP compiler for HP/UX */ if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; #endif pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 5: { /* 6-byte signed integer */ /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ /* These use local variables, so do them in a separate routine ** to avoid having to move the frame pointer in the common case */ serialGet(buf,serial_type,pMem); return; } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return; } default: { /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in ** length. ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and ** (N-13)/2 bytes in length. */ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; pMem->z = (char *)buf; pMem->n = (serial_type-12)/2; pMem->flags = aFlag[serial_type&1]; return; } } return; } /* ** This routine is used to allocate sufficient space for an UnpackedRecord ** structure large enough to be used with sqlite3VdbeRecordUnpack() if ** the first argument is a pointer to KeyInfo structure pKeyInfo. ** ** The space is either allocated using sqlite3DbMallocRaw() or from within ** the unaligned buffer passed via the second and third arguments (presumably ** stack space). If the former, then *ppFree is set to a pointer that should ** be eventually freed by the caller using sqlite3DbFree(). Or, if the ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL ** before returning. ** ** If an OOM error occurs, NULL is returned. */ SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( KeyInfo *pKeyInfo /* Description of the record */ ){ UnpackedRecord *p; /* Unpacked record to return */ int nByte; /* Number of bytes required for *p */ nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); if( !p ) return 0; p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; assert( pKeyInfo->aSortFlags!=0 ); p->pKeyInfo = pKeyInfo; p->nField = pKeyInfo->nKeyField + 1; return p; } /* ** Given the nKey-byte encoding of a record in pKey[], populate the ** UnpackedRecord structure indicated by the fourth argument with the ** contents of the decoded record. */ SQLITE_PRIVATE void sqlite3VdbeRecordUnpack( KeyInfo *pKeyInfo, /* Information about the record format */ int nKey, /* Size of the binary record */ const void *pKey, /* The binary record */ UnpackedRecord *p /* Populate this structure before returning. */ ){ const unsigned char *aKey = (const unsigned char *)pKey; u32 d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; p->default_rc = 0; assert( EIGHT_BYTE_ALIGNMENT(pMem) ); idx = getVarint32(aKey, szHdr); d = szHdr; u = 0; while( idxenc = pKeyInfo->enc; pMem->db = pKeyInfo->db; /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ pMem->szMalloc = 0; pMem->z = 0; sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); d += sqlite3VdbeSerialTypeLen(serial_type); pMem++; if( (++u)>=p->nField ) break; } if( d>(u32)nKey && u ){ assert( CORRUPT_DB ); /* In a corrupt record entry, the last pMem might have been set up using ** uninitialized memory. Overwrite its value with NULL, to prevent ** warnings from MSAN. */ sqlite3VdbeMemSetNull(pMem-1); } assert( u<=pKeyInfo->nKeyField + 1 ); p->nField = u; } #ifdef SQLITE_DEBUG /* ** This function compares two index or table record keys in the same way ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), ** this function deserializes and compares values using the ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used ** in assert() statements to ensure that the optimized code in ** sqlite3VdbeRecordCompare() returns results with these two primitives. ** ** Return true if the result of comparison is equivalent to desiredResult. ** Return false if there is a disagreement. */ static int vdbeRecordCompareDebug( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int desiredResult /* Correct answer */ ){ u32 d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; if( pKeyInfo->db==0 ) return 1; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. ** But in fact, mem1.u.i will never actually be used uninitialized, and doing ** the unnecessary initialization has a measurable negative performance ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); if( szHdr1>98307 ) return SQLITE_CORRUPT; d1 = szHdr1; assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); assert( pKeyInfo->aSortFlags!=0 ); assert( pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += getVarint32( aKey1+idx1, serial_type1 ); /* Verify that there is enough key space remaining to avoid ** a buffer overread. The "d1+serial_type1+2" subexpression will ** always be greater than or equal to the amount of required key space. ** Use that approximation to avoid the more expensive call to ** sqlite3VdbeSerialTypeLen() in the common case. */ if( d1+(u64)serial_type1+2>(u64)nKey1 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 ){ if( serial_type1>=1 && serial_type1<=7 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8 && CORRUPT_DB ){ return 1; /* corrupt record not detected by ** sqlite3VdbeRecordCompareWithSkip(). Return true ** to avoid firing the assert() */ } break; } /* Extract the values to be compared. */ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d1 += sqlite3VdbeSerialTypeLen(serial_type1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); if( rc!=0 ){ assert( mem1.szMalloc==0 ); /* See comment below */ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) ){ rc = -rc; } if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ rc = -rc; /* Invert the result for DESC sort order. */ } goto debugCompareEnd; } i++; }while( idx1nField ); /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.szMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ rc = pPKey2->default_rc; debugCompareEnd: if( desiredResult==0 && rc==0 ) return 1; if( desiredResult<0 && rc<0 ) return 1; if( desiredResult>0 && rc>0 ) return 1; if( CORRUPT_DB ) return 1; if( pKeyInfo->db->mallocFailed ) return 1; return 0; } #endif #ifdef SQLITE_DEBUG /* ** Count the number of fields (a.k.a. columns) in the record given by ** pKey,nKey. The verify that this count is less than or equal to the ** limit given by pKeyInfo->nAllField. ** ** If this constraint is not satisfied, it means that the high-speed ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will ** not work correctly. If this assert() ever fires, it probably means ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed ** incorrectly. */ static void vdbeAssertFieldCountWithinLimits( int nKey, const void *pKey, /* The record to verify */ const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ ){ int nField = 0; u32 szHdr; u32 idx; u32 notUsed; const unsigned char *aKey = (const unsigned char*)pKey; if( CORRUPT_DB ) return; idx = getVarint32(aKey, szHdr); assert( nKey>=0 ); assert( szHdr<=(u32)nKey ); while( idxnAllField ); } #else # define vdbeAssertFieldCountWithinLimits(A,B,C) #endif /* ** Both *pMem1 and *pMem2 contain string values. Compare the two values ** using the collation sequence pColl. As usual, return a negative , zero ** or positive value if *pMem1 is less than, equal to or greater than ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". */ static int vdbeCompareMemString( const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl, u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ int rc; const void *v1, *v2; Mem c1; Mem c2; sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); if( (v1==0 || v2==0) ){ if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; rc = 0; }else{ rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); } sqlite3VdbeMemReleaseMalloc(&c1); sqlite3VdbeMemReleaseMalloc(&c2); return rc; } } /* ** The input pBlob is guaranteed to be a Blob that is not marked ** with MEM_Zero. Return true if it could be a zero-blob. */ static int isAllZero(const char *z, int n){ int i; for(i=0; in; int n2 = pB2->n; /* It is possible to have a Blob value that has some non-zero content ** followed by zero content. But that only comes up for Blobs formed ** by the OP_MakeRecord opcode, and such Blobs never get passed into ** sqlite3MemCompare(). */ assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); if( (pB1->flags|pB2->flags) & MEM_Zero ){ if( pB1->flags & pB2->flags & MEM_Zero ){ return pB1->u.nZero - pB2->u.nZero; }else if( pB1->flags & MEM_Zero ){ if( !isAllZero(pB2->z, pB2->n) ) return -1; return pB1->u.nZero - n2; }else{ if( !isAllZero(pB1->z, pB1->n) ) return +1; return n1 - pB2->u.nZero; } } c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); if( c ) return c; return n1 - n2; } /* ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point ** number. Return negative, zero, or positive if the first (i64) is less than, ** equal to, or greater than the second (double). */ SQLITE_PRIVATE int sqlite3IntFloatCompare(i64 i, double r){ if( sizeof(LONGDOUBLE_TYPE)>8 ){ LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; testcase( xr ); testcase( x==r ); if( xr ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ return 0; /*NO_TEST*/ /* work around bugs in gcov */ }else{ i64 y; double s; if( r<-9223372036854775808.0 ) return +1; if( r>=9223372036854775808.0 ) return -1; y = (i64)r; if( iy ) return +1; s = (double)i; if( sr ) return +1; return 0; } } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int f1, f2; int combined_flags; f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ testcase( combined_flags & MEM_Int ); testcase( combined_flags & MEM_Real ); testcase( combined_flags & MEM_IntReal ); if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & f2 & MEM_Int ); testcase( f1 & f2 & MEM_IntReal ); if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; } if( (f1 & f2 & MEM_Real)!=0 ){ if( pMem1->u.r < pMem2->u.r ) return -1; if( pMem1->u.r > pMem2->u.r ) return +1; return 0; } if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & MEM_Int ); testcase( f1 & MEM_IntReal ); if( (f2&MEM_Real)!=0 ){ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; }else{ return -1; } } if( (f1&MEM_Real)!=0 ){ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f2 & MEM_Int ); testcase( f2 & MEM_IntReal ); return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); }else{ return -1; } } return +1; } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ return vdbeCompareMemString(pMem1, pMem2, pColl, 0); } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ return sqlite3BlobCompare(pMem1, pMem2); } /* ** The first argument passed to this function is a serial-type that ** corresponds to an integer - all values between 1 and 9 inclusive ** except 7. The second points to a buffer containing an integer value ** serialized according to serial_type. This function deserializes ** and returns the value. */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: testcase( aKey[0]&0x80 ); return ONE_BYTE_INT(aKey); case 2: testcase( aKey[0]&0x80 ); return TWO_BYTE_INT(aKey); case 3: testcase( aKey[0]&0x80 ); return THREE_BYTE_INT(aKey); case 4: { testcase( aKey[0]&0x80 ); y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { testcase( aKey[0]&0x80 ); return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); testcase( aKey[0]&0x80 ); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** If argument bSkip is non-zero, it is assumed that the caller has already ** determined that the first fields of the keys are equal. ** ** Key1 and Key2 do not have to contain the same number of fields. If all ** fields that appear in both keys are equal, then pPKey2->default_rc is ** returned. ** ** If database corruption is discovered, set pPKey2->errCode to ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). */ SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2, /* Right key */ int bSkip /* If true, skip the first field */ ){ u32 d1; /* Offset into aKey[] of next data element */ int i; /* Index of next field to compare */ u32 szHdr1; /* Size of record header in bytes */ u32 idx1; /* Offset of first type in header */ int rc = 0; /* Return value */ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ KeyInfo *pKeyInfo; const unsigned char *aKey1 = (const unsigned char *)pKey1; Mem mem1; /* If bSkip is true, then the caller has already determined that the first ** two elements in the keys are equal. Fix the various stack variables so ** that this routine begins comparing at the second field. */ if( bSkip ){ u32 s1 = aKey1[1]; if( s1<0x80 ){ idx1 = 2; }else{ idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); } szHdr1 = aKey1[0]; d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); i = 1; pRhs++; }else{ if( (szHdr1 = aKey1[0])<0x80 ){ idx1 = 1; }else{ idx1 = sqlite3GetVarint32(aKey1, &szHdr1); } d1 = szHdr1; i = 0; } if( d1>(unsigned)nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ } VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); assert( pPKey2->pKeyInfo->aSortFlags!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); while( 1 /*exit-by-break*/ ){ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ testcase( pRhs->flags & MEM_Int ); testcase( pRhs->flags & MEM_IntReal ); serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=10 ){ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); }else{ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); i64 rhs = pRhs->u.i; if( lhsrhs ){ rc = +1; } } } /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=10 ){ /* Serial types 12 or greater are strings and blobs (greater than ** numbers). Types 10 and 11 are currently "reserved for future ** use", so it doesn't really matter what the results of comparing ** them to numeric values are. */ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else{ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); if( serial_type==7 ){ if( mem1.u.ru.r ){ rc = -1; }else if( mem1.u.r>pRhs->u.r ){ rc = +1; } }else{ rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32NR(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; testcase( (d1+mem1.n)==(unsigned)nKey1 ); testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); if( (d1+mem1.n) > (unsigned)nKey1 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString( &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode ); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); getVarint32NR(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; testcase( (d1+nStr)==(unsigned)nKey1 ); testcase( (d1+nStr+1)==(unsigned)nKey1 ); if( (d1+nStr) > (unsigned)nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ }else if( pRhs->flags & MEM_Zero ){ if( !isAllZero((const char*)&aKey1[d1],nStr) ){ rc = 1; }else{ rc = nStr - pRhs->u.nZero; } }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } } } /* RHS is null */ else{ serial_type = aKey1[idx1]; rc = (serial_type!=0 && serial_type!=10); } if( rc!=0 ){ int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; if( sortFlags ){ if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 || ((sortFlags & KEYINFO_ORDER_DESC) !=(serial_type==0 || (pRhs->flags&MEM_Null))) ){ rc = -rc; } } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); assert( mem1.szMalloc==0 ); /* See comment below */ return rc; } i++; if( i==pPKey2->nField ) break; pRhs++; d1 += sqlite3VdbeSerialTypeLen(serial_type); if( d1>(unsigned)nKey1 ) break; idx1 += sqlite3VarintLen(serial_type); if( idx1>=(unsigned)szHdr1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corrupt index */ } } /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.szMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ assert( CORRUPT_DB || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) || pPKey2->pKeyInfo->db->mallocFailed ); pPKey2->eqSeen = 1; return pPKey2->default_rc; } SQLITE_PRIVATE int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is an integer, and (b) the ** size-of-header varint at the start of (pKey1/nKey1) fits in a single ** byte (i.e. is less than 128). ** ** To avoid concerns about buffer overreads, this routine is only used ** on schemas where the maximum valid header size is 63 bytes or less. */ static int vdbeRecordCompareInt( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; int serial_type = ((const u8*)pKey1)[1]; int res; u32 y; u64 x; i64 v; i64 lhs; vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; testcase( lhs<0 ); break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; testcase( lhs<0 ); break; } case 8: lhs = 0; break; case 9: lhs = 1; break; /* This case could be removed without changing the results of running ** this code. Including it causes gcc to generate a faster switch ** statement (since the range of switch targets now starts at zero and ** is contiguous) but does not cause any duplicate code to be generated ** (as gcc is clever enough to combine the two like cases). Other ** compilers might be similar. */ case 0: case 7: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); default: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); } assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); v = pPKey2->u.i; if( v>lhs ){ res = pPKey2->r1; }else if( vr2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ /* The first fields of the two keys are equal and there are no trailing ** fields. Return pPKey2->default_rc in this case. */ res = pPKey2->default_rc; pPKey2->eqSeen = 1; } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); return res; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is a string, that (b) the first field ** uses the collation sequence BINARY and (c) that the size-of-header varint ** at the start of (pKey1/nKey1) fits in a single byte. */ static int vdbeRecordCompareString( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ const u8 *aKey1 = (const u8*)pKey1; int serial_type; int res; assert( pPKey2->aMem[0].flags & MEM_Str ); assert( pPKey2->aMem[0].n == pPKey2->n ); assert( pPKey2->aMem[0].z == pPKey2->u.z ); vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); serial_type = (signed char)(aKey1[1]); vrcs_restart: if( serial_type<12 ){ if( serial_type<0 ){ sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); if( serial_type>=12 ) goto vrcs_restart; assert( CORRUPT_DB ); } res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ }else if( !(serial_type & 0x01) ){ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ }else{ int nCmp; int nStr; int szHdr = aKey1[0]; nStr = (serial_type-12) / 2; if( (szHdr + nStr) > nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ } nCmp = MIN( pPKey2->n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); if( res>0 ){ res = pPKey2->r2; }else if( res<0 ){ res = pPKey2->r1; }else{ res = nStr - pPKey2->n; if( res==0 ){ if( pPKey2->nField>1 ){ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ res = pPKey2->default_rc; pPKey2->eqSeen = 1; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } } } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) || CORRUPT_DB || pPKey2->pKeyInfo->db->mallocFailed ); return res; } /* ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function ** suitable for comparing serialized records to the unpacked record passed ** as the only argument. */ SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ /* varintRecordCompareInt() and varintRecordCompareString() both assume ** that the size-of-header varint that occurs at the start of each record ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() ** also assumes that it is safe to overread a buffer by at least the ** maximum possible legal header size plus 8 bytes. Because there is ** guaranteed to be at least 74 (but not 136) bytes of padding following each ** buffer passed to varintRecordCompareInt() this makes it convenient to ** limit the size of the header to 64 bytes in cases where the first field ** is an integer. ** ** The easiest way to enforce this limit is to consider only records with ** 13 fields or less. If the first field is an integer, the maximum legal ** header size is (12*5 + 1 + 1) bytes. */ if( p->pKeyInfo->nAllField<=13 ){ int flags = p->aMem[0].flags; if( p->pKeyInfo->aSortFlags[0] ){ if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ return sqlite3VdbeRecordCompare; } p->r1 = 1; p->r2 = -1; }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ p->u.i = p->aMem[0].u.i; return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); p->u.z = p->aMem[0].z; p->n = p->aMem[0].n; return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. ** ** pCur might be pointing to text obtained from a corrupt database file. ** So the content cannot be trusted. Do appropriate checks on the content. */ SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ i64 nCellKey = 0; int rc; u32 szHdr; /* Size of the header */ u32 typeRowid; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m, v; /* Get the size of the index entry. Only indices entries of less ** than 2GiB are support - anything large must be database corruption. ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so ** this code can safely assume that nCellKey is 32-bits */ assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ){ return rc; } /* The index entry must begin with a header size */ getVarint32NR((u8*)m.z, szHdr); testcase( szHdr==3 ); testcase( szHdr==(u32)m.n ); testcase( szHdr>0x7fffffff ); assert( m.n>=0 ); if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ goto idx_rowid_corruption; } /* The last field of the index should be an integer - the ROWID. ** Verify that the last entry really is an integer. */ getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); testcase( typeRowid==1 ); testcase( typeRowid==2 ); testcase( typeRowid==3 ); testcase( typeRowid==4 ); testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } lenRowid = sqlite3SmallTypeSizes[typeRowid]; testcase( (u32)m.n==szHdr+lenRowid ); if( unlikely((u32)m.neCurType==CURTYPE_BTREE ); pCur = pC->uc.pCursor; assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ){ return rc; } *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); sqlite3VdbeMemReleaseMalloc(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. */ SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ assert( sqlite3_mutex_held(db->mutex) ); db->nChange = nChange; db->nTotalChange += nChange; } /* ** Set a flag in the vdbe to update the change counter when it is finalised ** or reset. */ SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){ v->changeCntOn = 1; } /* ** Mark every prepared statement associated with a database connection ** as expired. ** ** An expired statement means that recompilation of the statement is ** recommend. Statements expire when things happen that make their ** programs obsolete. Removing user-defined functions or collating ** sequences, or changing an authorization function are the types of ** things that make prepared statements obsolete. ** ** If iCode is 1, then expiration is advisory. The statement should ** be reprepared before being restarted, but if it is already running ** it is allowed to run to completion. ** ** Internally, this function just sets the Vdbe.expired flag on all ** prepared statements. The flag is set to 1 for an immediate expiration ** and set to 2 for an advisory expiration. */ SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ Vdbe *p; for(p = db->pVdbe; p; p=p->pVNext){ p->expired = iCode+1; } } /* ** Return the database associated with the Vdbe. */ SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){ return v->db; } /* ** Return the SQLITE_PREPARE flags for a Vdbe. */ SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe *v){ return v->prepFlags; } /* ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ assert( iVar>0 ); if( v ){ Mem *pMem = &v->aVar[iVar-1]; assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); } return pRet; } } return 0; } /* ** Configure SQL variable iVar so that binding a new value to it signals ** to sqlite3_reoptimize() that re-preparing the statement may result ** in a better query plan. */ SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ assert( iVar>0 ); assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); if( iVar>=32 ){ v->expmask |= 0x80000000; }else{ v->expmask |= ((u32)1 << (iVar-1)); } } /* ** Cause a function to throw an error if it was call from OP_PureFunc ** rather than OP_Function. ** ** OP_PureFunc means that the function must be deterministic, and should ** throw an error if it is given inputs that would make it non-deterministic. ** This routine is invoked by date/time functions that use non-deterministic ** features such as 'now'. */ SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context *pCtx){ const VdbeOp *pOp; #ifdef SQLITE_ENABLE_STAT4 if( pCtx->pVdbe==0 ) return 1; #endif pOp = pCtx->pVdbe->aOp + pCtx->iOp; if( pOp->opcode==OP_PureFunc ){ const char *zContext; char *zMsg; if( pOp->p5 & NC_IsCheck ){ zContext = "a CHECK constraint"; }else if( pOp->p5 & NC_GenCol ){ zContext = "a generated column"; }else{ zContext = "an index"; } zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", pCtx->pFunc->zName, zContext); sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); return 0; } return 1; } #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) /* ** This Walker callback is used to help verify that calls to ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have ** byte-code register values correctly initialized. */ SQLITE_PRIVATE int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_REGISTER ){ assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 ); } return WRC_Continue; } #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored ** in memory obtained from sqlite3DbMalloc). */ SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ if( pVtab->zErrMsg ){ sqlite3 *db = p->db; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** If the second argument is not NULL, release any allocations associated ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord ** structure itself, using sqlite3DbFree(). ** ** This function is used to free UnpackedRecord structures allocated by ** the vdbeUnpackRecord() function found in vdbeapi.c. */ static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ assert( db!=0 ); if( p ){ int i; for(i=0; iaMem[i]; if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); } sqlite3DbNNFreeNN(db, p); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, ** then cursor passed as the second argument should point to the row about ** to be update or deleted. If the application calls sqlite3_preupdate_old(), ** the required value will be read from the row the cursor points to. */ SQLITE_PRIVATE void sqlite3VdbePreUpdateHook( Vdbe *v, /* Vdbe pre-update hook is invoked by */ VdbeCursor *pCsr, /* Cursor to grab old.* values from */ int op, /* SQLITE_INSERT, UPDATE or DELETE */ const char *zDb, /* Database name */ Table *pTab, /* Modified table */ i64 iKey1, /* Initial key value */ int iReg, /* Register for new.* record */ int iBlobWrite ){ sqlite3 *db = v->db; i64 iKey2; PreUpdate preupdate; const char *zTbl = pTab->zName; static const u8 fakeSortOrder = 0; #ifdef SQLITE_DEBUG int nRealCol; if( pTab->tabFlags & TF_WithoutRowid ){ nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn; }else if( pTab->tabFlags & TF_HasVirtual ){ nRealCol = pTab->nNVCol; }else{ nRealCol = pTab->nCol; } #endif assert( db->pPreUpdate==0 ); memset(&preupdate, 0, sizeof(PreUpdate)); if( HasRowid(pTab)==0 ){ iKey1 = iKey2 = 0; preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); }else{ if( op==SQLITE_UPDATE ){ iKey2 = v->aMem[iReg].u.i; }else{ iKey2 = iKey1; } } assert( pCsr!=0 ); assert( pCsr->eCurType==CURTYPE_BTREE ); assert( pCsr->nField==nRealCol || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1) ); preupdate.v = v; preupdate.pCsr = pCsr; preupdate.op = op; preupdate.iNewReg = iReg; preupdate.keyinfo.db = db; preupdate.keyinfo.enc = ENC(db); preupdate.keyinfo.nKeyField = pTab->nCol; preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; preupdate.iKey1 = iKey1; preupdate.iKey2 = iKey2; preupdate.pTab = pTab; preupdate.iBlobWrite = iBlobWrite; db->pPreUpdate = &preupdate; db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); db->pPreUpdate = 0; sqlite3DbFree(db, preupdate.aRecord); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); if( preupdate.aNew ){ int i; for(i=0; inField; i++){ sqlite3VdbeMemRelease(&preupdate.aNew[i]); } sqlite3DbNNFreeNN(db, preupdate.aNew); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ /************** End of vdbeaux.c *********************************************/ /************** Begin file vdbeapi.c *****************************************/ /* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to implement APIs that are part of the ** VDBE. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* #include "opcodes.h" */ #ifndef SQLITE_OMIT_DEPRECATED /* ** Return TRUE (non-zero) of the statement supplied as an argument needs ** to be recompiled. A statement needs to be recompiled whenever the ** execution environment changes in a way that would alter the program ** that sqlite3_prepare() generates. For example, if new functions or ** collating sequences are registered or if an authorizer function is ** added or changed. */ SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p==0 || p->expired; } #endif /* ** Check on a Vdbe to make sure it has not been finalized. Log ** an error and return true if it has been finalized (or is otherwise ** invalid). Return false if it is ok. */ static int vdbeSafety(Vdbe *p){ if( p->db==0 ){ sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); return 1; }else{ return 0; } } static int vdbeSafetyNotNull(Vdbe *p){ if( p==0 ){ sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); return 1; }else{ return vdbeSafety(p); } } #ifndef SQLITE_OMIT_TRACE /* ** Invoke the profile callback. This routine is only called if we already ** know that the profile callback is defined and needs to be invoked. */ static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ sqlite3_int64 iNow; sqlite3_int64 iElapse; assert( p->startTime>0 ); assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); assert( db->init.busy==0 ); assert( p->zSql!=0 ); sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); iElapse = (iNow - p->startTime)*1000000; #ifndef SQLITE_OMIT_DEPRECATED if( db->xProfile ){ db->xProfile(db->pProfileArg, p->zSql, iElapse); } #endif if( db->mTrace & SQLITE_TRACE_PROFILE ){ db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); } p->startTime = 0; } /* ** The checkProfileCallback(DB,P) macro checks to see if a profile callback ** is needed, and it invokes the callback if it is needed. */ # define checkProfileCallback(DB,P) \ if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } #else # define checkProfileCallback(DB,P) /*no-op*/ #endif /* ** The following routine destroys a virtual machine that is created by ** the sqlite3_compile() routine. The integer returned is an SQLITE_ ** success/failure code that describes the result of executing the virtual ** machine. ** ** This routine sets the error code and string returned by ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){ int rc; if( pStmt==0 ){ /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL ** pointer is a harmless no-op. */ rc = SQLITE_OK; }else{ Vdbe *v = (Vdbe*)pStmt; sqlite3 *db = v->db; if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; sqlite3_mutex_enter(db->mutex); checkProfileCallback(db, v); assert( v->eVdbeState>=VDBE_READY_STATE ); rc = sqlite3VdbeReset(v); sqlite3VdbeDelete(v); rc = sqlite3ApiExit(db, rc); sqlite3LeaveMutexAndCloseZombie(db); } return rc; } /* ** Terminate the current execution of an SQL statement and reset it ** back to its starting state so that it can be reused. A success code from ** the prior execution is returned. ** ** This routine sets the error code and string returned by ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){ int rc; if( pStmt==0 ){ rc = SQLITE_OK; }else{ Vdbe *v = (Vdbe*)pStmt; sqlite3 *db = v->db; sqlite3_mutex_enter(db->mutex); checkProfileCallback(db, v); rc = sqlite3VdbeReset(v); sqlite3VdbeRewind(v); assert( (rc & (db->errMask))==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); } return rc; } /* ** Set all the parameters in the compiled SQL statement to NULL. */ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ int i; int rc = SQLITE_OK; Vdbe *p = (Vdbe*)pStmt; #if SQLITE_THREADSAFE sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; #endif sqlite3_mutex_enter(mutex); for(i=0; inVar; i++){ sqlite3VdbeMemRelease(&p->aVar[i]); p->aVar[i].flags = MEM_Null; } assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); if( p->expmask ){ p->expired = 1; } sqlite3_mutex_leave(mutex); return rc; } /**************************** sqlite3_value_ ******************************* ** The following routines extract information from a Mem or sqlite3_value ** structure. */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ if( ExpandBlob(p)!=SQLITE_OK ){ assert( p->flags==MEM_Null && p->z==0 ); return 0; } p->flags |= MEM_Blob; return p->n ? p->z : 0; }else{ return sqlite3_value_text(pVal); } } SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF8); } SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); } SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){ return sqlite3VdbeRealValue((Mem*)pVal); } SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){ return (int)sqlite3VdbeIntValue((Mem*)pVal); } SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ Mem *pMem = (Mem*)pVal; return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); } SQLITE_API void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ Mem *p = (Mem*)pVal; if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == (MEM_Null|MEM_Term|MEM_Subtype) && zPType!=0 && p->eSubtype=='p' && strcmp(p->u.zPType, zPType)==0 ){ return (void*)p->z; }else{ return 0; } } SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); } SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16BE); } SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } #endif /* SQLITE_OMIT_UTF16 */ /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating ** point number string BLOB NULL */ SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){ static const u8 aType[] = { SQLITE_BLOB, /* 0x00 (not possible) */ SQLITE_NULL, /* 0x01 NULL */ SQLITE_TEXT, /* 0x02 TEXT */ SQLITE_NULL, /* 0x03 (not possible) */ SQLITE_INTEGER, /* 0x04 INTEGER */ SQLITE_NULL, /* 0x05 (not possible) */ SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ SQLITE_NULL, /* 0x07 (not possible) */ SQLITE_FLOAT, /* 0x08 FLOAT */ SQLITE_NULL, /* 0x09 (not possible) */ SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ SQLITE_NULL, /* 0x0b (not possible) */ SQLITE_INTEGER, /* 0x0c (not possible) */ SQLITE_NULL, /* 0x0d (not possible) */ SQLITE_INTEGER, /* 0x0e (not possible) */ SQLITE_NULL, /* 0x0f (not possible) */ SQLITE_BLOB, /* 0x10 BLOB */ SQLITE_NULL, /* 0x11 (not possible) */ SQLITE_TEXT, /* 0x12 (not possible) */ SQLITE_NULL, /* 0x13 (not possible) */ SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ SQLITE_NULL, /* 0x15 (not possible) */ SQLITE_INTEGER, /* 0x16 (not possible) */ SQLITE_NULL, /* 0x17 (not possible) */ SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ SQLITE_NULL, /* 0x19 (not possible) */ SQLITE_FLOAT, /* 0x1a (not possible) */ SQLITE_NULL, /* 0x1b (not possible) */ SQLITE_INTEGER, /* 0x1c (not possible) */ SQLITE_NULL, /* 0x1d (not possible) */ SQLITE_INTEGER, /* 0x1e (not possible) */ SQLITE_NULL, /* 0x1f (not possible) */ SQLITE_FLOAT, /* 0x20 INTREAL */ SQLITE_NULL, /* 0x21 (not possible) */ SQLITE_FLOAT, /* 0x22 INTREAL + TEXT */ SQLITE_NULL, /* 0x23 (not possible) */ SQLITE_FLOAT, /* 0x24 (not possible) */ SQLITE_NULL, /* 0x25 (not possible) */ SQLITE_FLOAT, /* 0x26 (not possible) */ SQLITE_NULL, /* 0x27 (not possible) */ SQLITE_FLOAT, /* 0x28 (not possible) */ SQLITE_NULL, /* 0x29 (not possible) */ SQLITE_FLOAT, /* 0x2a (not possible) */ SQLITE_NULL, /* 0x2b (not possible) */ SQLITE_FLOAT, /* 0x2c (not possible) */ SQLITE_NULL, /* 0x2d (not possible) */ SQLITE_FLOAT, /* 0x2e (not possible) */ SQLITE_NULL, /* 0x2f (not possible) */ SQLITE_BLOB, /* 0x30 (not possible) */ SQLITE_NULL, /* 0x31 (not possible) */ SQLITE_TEXT, /* 0x32 (not possible) */ SQLITE_NULL, /* 0x33 (not possible) */ SQLITE_FLOAT, /* 0x34 (not possible) */ SQLITE_NULL, /* 0x35 (not possible) */ SQLITE_FLOAT, /* 0x36 (not possible) */ SQLITE_NULL, /* 0x37 (not possible) */ SQLITE_FLOAT, /* 0x38 (not possible) */ SQLITE_NULL, /* 0x39 (not possible) */ SQLITE_FLOAT, /* 0x3a (not possible) */ SQLITE_NULL, /* 0x3b (not possible) */ SQLITE_FLOAT, /* 0x3c (not possible) */ SQLITE_NULL, /* 0x3d (not possible) */ SQLITE_FLOAT, /* 0x3e (not possible) */ SQLITE_NULL, /* 0x3f (not possible) */ }; #ifdef SQLITE_DEBUG { int eType = SQLITE_BLOB; if( pVal->flags & MEM_Null ){ eType = SQLITE_NULL; }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ eType = SQLITE_FLOAT; }else if( pVal->flags & MEM_Int ){ eType = SQLITE_INTEGER; }else if( pVal->flags & MEM_Str ){ eType = SQLITE_TEXT; } assert( eType == aType[pVal->flags&MEM_AffMask] ); } #endif return aType[pVal->flags&MEM_AffMask]; } SQLITE_API int sqlite3_value_encoding(sqlite3_value *pVal){ return pVal->enc; } /* Return true if a parameter to xUpdate represents an unchanged column */ SQLITE_API int sqlite3_value_nochange(sqlite3_value *pVal){ return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); } /* Return true if a parameter value originated from an sqlite3_bind() */ SQLITE_API int sqlite3_value_frombind(sqlite3_value *pVal){ return (pVal->flags&MEM_FromBind)!=0; } /* Make a copy of an sqlite3_value object */ SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ sqlite3_value *pNew; if( pOrig==0 ) return 0; pNew = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return 0; memset(pNew, 0, sizeof(*pNew)); memcpy(pNew, pOrig, MEMCELLSIZE); pNew->flags &= ~MEM_Dyn; pNew->db = 0; if( pNew->flags&(MEM_Str|MEM_Blob) ){ pNew->flags &= ~(MEM_Static|MEM_Dyn); pNew->flags |= MEM_Ephem; if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ sqlite3ValueFree(pNew); pNew = 0; } }else if( pNew->flags & MEM_Null ){ /* Do not duplicate pointer values */ pNew->flags &= ~(MEM_Term|MEM_Subtype); } return pNew; } /* Destroy an sqlite3_value object previously obtained from ** sqlite3_value_dup(). */ SQLITE_API void sqlite3_value_free(sqlite3_value *pOld){ sqlite3ValueFree(pOld); } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. ** ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the ** result as a string or blob. Appropriate errors are set if the string/blob ** is too big or if an OOM occurs. ** ** The invokeValueDestructor(P,X) routine invokes destructor function X() ** on value P is not going to be used and need to be destroyed. */ static void setResultStrOrError( sqlite3_context *pCtx, /* Function context */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ Mem *pOut = pCtx->pOut; int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); if( rc ){ if( rc==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(pCtx); }else{ /* The only errors possible from sqlite3VdbeMemSetStr are ** SQLITE_TOOBIG and SQLITE_NOMEM */ assert( rc==SQLITE_NOMEM ); sqlite3_result_error_nomem(pCtx); } return; } sqlite3VdbeChangeEncoding(pOut, pCtx->enc); if( sqlite3VdbeMemTooBig(pOut) ){ sqlite3_result_error_toobig(pCtx); } } static int invokeValueDestructor( const void *p, /* Value to destroy */ void (*xDel)(void*), /* The destructor */ sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ ){ assert( xDel!=SQLITE_DYNAMIC ); if( xDel==0 ){ /* noop */ }else if( xDel==SQLITE_TRANSIENT ){ /* noop */ }else{ xDel((void*)p); } sqlite3_result_error_toobig(pCtx); return SQLITE_TOOBIG; } SQLITE_API void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( n>=0 ); assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, 0, xDel); } SQLITE_API void sqlite3_result_blob64( sqlite3_context *pCtx, const void *z, sqlite3_uint64 n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); assert( xDel!=SQLITE_DYNAMIC ); if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, 0, xDel); } } SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); } SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_ERROR; sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_ERROR; sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } #endif SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); } SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); } SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); } SQLITE_API void sqlite3_result_pointer( sqlite3_context *pCtx, void *pPtr, const char *zPType, void (*xDestructor)(void*) ){ Mem *pOut = pCtx->pOut; assert( sqlite3_mutex_held(pOut->db->mutex) ); sqlite3VdbeMemRelease(pOut); pOut->flags = MEM_Null; sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); } SQLITE_API void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ Mem *pOut = pCtx->pOut; assert( sqlite3_mutex_held(pOut->db->mutex) ); pOut->eSubtype = eSubtype & 0xff; pOut->flags |= MEM_Subtype; } SQLITE_API void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); } SQLITE_API void sqlite3_result_text64( sqlite3_context *pCtx, const char *z, sqlite3_uint64 n, void (*xDel)(void *), unsigned char enc ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); assert( xDel!=SQLITE_DYNAMIC ); if( enc!=SQLITE_UTF8 ){ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; n &= ~(u64)1; } if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, enc, xDel); sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut); } } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16NATIVE, xDel); } SQLITE_API void sqlite3_result_text16be( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16BE, xDel); } SQLITE_API void sqlite3_result_text16le( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16LE, xDel); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ Mem *pOut = pCtx->pOut; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemCopy(pOut, pValue); sqlite3VdbeChangeEncoding(pOut, pCtx->enc); if( sqlite3VdbeMemTooBig(pOut) ){ sqlite3_result_error_toobig(pCtx); } } SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); } SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ Mem *pOut = pCtx->pOut; assert( sqlite3_mutex_held(pOut->db->mutex) ); if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(pCtx); return SQLITE_TOOBIG; } #ifndef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); return SQLITE_OK; #else return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); #endif } SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ pCtx->isError = errCode ? errCode : -1; #ifdef SQLITE_DEBUG if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; #endif if( pCtx->pOut->flags & MEM_Null ){ setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, SQLITE_STATIC); } } /* Force an SQLITE_TOOBIG error. */ SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_TOOBIG; sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, SQLITE_UTF8, SQLITE_STATIC); } /* An SQLITE_NOMEM error. */ SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); pCtx->isError = SQLITE_NOMEM_BKPT; sqlite3OomFault(pCtx->pOut->db); } #ifndef SQLITE_UNTESTABLE /* Force the INT64 value currently stored as the result to be ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL ** test-control. */ SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( pCtx->pOut->flags & MEM_Int ){ pCtx->pOut->flags &= ~MEM_Int; pCtx->pOut->flags |= MEM_IntReal; } } #endif /* ** This function is called after a transaction has been committed. It ** invokes callbacks registered with sqlite3_wal_hook() as required. */ static int doWalCallbacks(sqlite3 *db){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_WAL int i; for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ int nEntry; sqlite3BtreeEnter(pBt); nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); sqlite3BtreeLeave(pBt); if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); } } } #endif return rc; } /* ** Execute the statement pStmt, either until a row of data is ready, the ** statement is completely executed or an error occurs. ** ** This routine implements the bulk of the logic behind the sqlite_step() ** API. The only thing omitted is the automatic recompile if a ** schema change has occurred. That detail is handled by the ** outer sqlite3_step() wrapper procedure. */ static int sqlite3Step(Vdbe *p){ sqlite3 *db; int rc; assert(p); db = p->db; if( p->eVdbeState!=VDBE_RUN_STATE ){ restart_step: if( p->eVdbeState==VDBE_READY_STATE ){ if( p->expired ){ p->rc = SQLITE_SCHEMA; rc = SQLITE_ERROR; if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ /* If this statement was prepared using saved SQL and an ** error has occurred, then return the error code in p->rc to the ** caller. Set the error code in the database handle to the same ** value. */ rc = sqlite3VdbeTransferError(p); } goto end_of_step; } /* If there are no other statements currently running, then ** reset the interrupt flag. This prevents a call to sqlite3_interrupt ** from interrupting a statement that has not yet started. */ if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } assert( db->nVdbeWrite>0 || db->autoCommit==0 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) ); #ifndef SQLITE_OMIT_TRACE if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 && !db->init.busy && p->zSql ){ sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); }else{ assert( p->startTime==0 ); } #endif db->nVdbeActive++; if( p->readOnly==0 ) db->nVdbeWrite++; if( p->bIsReader ) db->nVdbeRead++; p->pc = 0; p->eVdbeState = VDBE_RUN_STATE; }else if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){ /* We used to require that sqlite3_reset() be called before retrying ** sqlite3_step() after any error or after SQLITE_DONE. But beginning ** with version 3.7.0, we changed this so that sqlite3_reset() would ** be called automatically instead of throwing the SQLITE_MISUSE error. ** This "automatic-reset" change is not technically an incompatibility, ** since any application that receives an SQLITE_MISUSE is broken by ** definition. ** ** Nevertheless, some published applications that were originally written ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE ** returns, and those were broken by the automatic-reset change. As a ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the ** legacy behavior of returning SQLITE_MISUSE for cases where the ** previous sqlite3_step() returned something other than a SQLITE_LOCKED ** or SQLITE_BUSY error. */ #ifdef SQLITE_OMIT_AUTORESET if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ sqlite3_reset((sqlite3_stmt*)p); }else{ return SQLITE_MISUSE_BKPT; } #else sqlite3_reset((sqlite3_stmt*)p); #endif assert( p->eVdbeState==VDBE_READY_STATE ); goto restart_step; } } #ifdef SQLITE_DEBUG p->rcApp = SQLITE_OK; #endif #ifndef SQLITE_OMIT_EXPLAIN if( p->explain ){ rc = sqlite3VdbeList(p); }else #endif /* SQLITE_OMIT_EXPLAIN */ { db->nVdbeExec++; rc = sqlite3VdbeExec(p); db->nVdbeExec--; } if( rc==SQLITE_ROW ){ assert( p->rc==SQLITE_OK ); assert( db->mallocFailed==0 ); db->errCode = SQLITE_ROW; return SQLITE_ROW; }else{ #ifndef SQLITE_OMIT_TRACE /* If the statement completed successfully, invoke the profile callback */ checkProfileCallback(db, p); #endif p->pResultRow = 0; if( rc==SQLITE_DONE && db->autoCommit ){ assert( p->rc==SQLITE_OK ); p->rc = doWalCallbacks(db); if( p->rc!=SQLITE_OK ){ rc = SQLITE_ERROR; } }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ /* If this statement was prepared using saved SQL and an ** error has occurred, then return the error code in p->rc to the ** caller. Set the error code in the database handle to the same value. */ rc = sqlite3VdbeTransferError(p); } } db->errCode = rc; if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ p->rc = SQLITE_NOMEM_BKPT; if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; } end_of_step: /* There are only a limited number of result codes allowed from the ** statements prepared using the legacy sqlite3_prepare() interface */ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE ); return (rc&db->errMask); } /* ** This is the top-level implementation of sqlite3_step(). Call ** sqlite3Step() to do most of the work. If a schema error occurs, ** call sqlite3Reprepare() and try again. */ SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){ int rc = SQLITE_OK; /* Result from sqlite3Step() */ Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ int cnt = 0; /* Counter to prevent infinite loop of reprepares */ sqlite3 *db; /* The database connection */ if( vdbeSafetyNotNull(v) ){ return SQLITE_MISUSE_BKPT; } db = v->db; sqlite3_mutex_enter(db->mutex); while( (rc = sqlite3Step(v))==SQLITE_SCHEMA && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ int savedPc = v->pc; rc = sqlite3Reprepare(v); if( rc!=SQLITE_OK ){ /* This case occurs after failing to recompile an sql statement. ** The error message from the SQL compiler has already been loaded ** into the database handle. This block copies the error message ** from the database handle into the statement and sets the statement ** program counter to 0 to ensure that when the statement is ** finalized or reset the parser error message is available via ** sqlite3_errmsg() and sqlite3_errcode(). */ const char *zErr = (const char *)sqlite3_value_text(db->pErr); sqlite3DbFree(db, v->zErrMsg); if( !db->mallocFailed ){ v->zErrMsg = sqlite3DbStrDup(db, zErr); v->rc = rc = sqlite3ApiExit(db, rc); } else { v->zErrMsg = 0; v->rc = rc = SQLITE_NOMEM_BKPT; } break; } sqlite3_reset(pStmt); if( savedPc>=0 ){ /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has ** already been done once on a prior invocation that failed due to ** SQLITE_SCHEMA. tag-20220401a */ v->minWriteFileFormat = 254; } assert( v->expired==0 ); } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. */ SQLITE_API void *sqlite3_user_data(sqlite3_context *p){ assert( p && p->pFunc ); return p->pFunc->pUserData; } /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. ** ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface ** returns a copy of the pointer to the database connection (the 1st ** parameter) of the sqlite3_create_function() and ** sqlite3_create_function16() routines that originally registered the ** application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ assert( p && p->pOut ); return p->pOut->db; } /* ** If this routine is invoked from within an xColumn method of a virtual ** table, then it returns true if and only if the the call is during an ** UPDATE operation and the value of the column will not be modified ** by the UPDATE. ** ** If this routine is called from any context other than within the ** xColumn method of a virtual table, then the return value is meaningless ** and arbitrary. ** ** Virtual table implements might use this routine to optimize their ** performance by substituting a NULL result, or some other light-weight ** value, as a signal to the xUpdate routine that the column is unchanged. */ SQLITE_API int sqlite3_vtab_nochange(sqlite3_context *p){ assert( p ); return sqlite3_value_nochange(p->pOut); } /* ** The destructor function for a ValueList object. This needs to be ** a separate function, unknowable to the application, to ensure that ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not ** preceded by activation of IN processing via sqlite3_vtab_int() do not ** try to access a fake ValueList object inserted by a hostile extension. */ SQLITE_PRIVATE void sqlite3VdbeValueListFree(void *pToDelete){ sqlite3_free(pToDelete); } /* ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and ** sqlite3_vtab_in_next() (if bNext!=0). */ static int valueFromValueList( sqlite3_value *pVal, /* Pointer to the ValueList object */ sqlite3_value **ppOut, /* Store the next value from the list here */ int bNext /* 1 for _next(). 0 for _first() */ ){ int rc; ValueList *pRhs; *ppOut = 0; if( pVal==0 ) return SQLITE_MISUSE; if( (pVal->flags & MEM_Dyn)==0 || pVal->xDel!=sqlite3VdbeValueListFree ){ return SQLITE_ERROR; }else{ assert( (pVal->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == (MEM_Null|MEM_Term|MEM_Subtype) ); assert( pVal->eSubtype=='p' ); assert( pVal->u.zPType!=0 && strcmp(pVal->u.zPType,"ValueList")==0 ); pRhs = (ValueList*)pVal->z; } if( bNext ){ rc = sqlite3BtreeNext(pRhs->pCsr, 0); }else{ int dummy = 0; rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; } if( rc==SQLITE_OK ){ u32 sz; /* Size of current row in bytes */ Mem sMem; /* Raw content of current row */ memset(&sMem, 0, sizeof(sMem)); sz = sqlite3BtreePayloadSize(pRhs->pCsr); rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); if( rc==SQLITE_OK ){ u8 *zBuf = (u8*)sMem.z; u32 iSerial; sqlite3_value *pOut = pRhs->pOut; int iOff = 1 + getVarint32(&zBuf[1], iSerial); sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); pOut->enc = ENC(pOut->db); if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ rc = SQLITE_NOMEM; }else{ *ppOut = pOut; } } sqlite3VdbeMemRelease(&sMem); } return rc; } /* ** Set the iterator value pVal to point to the first value in the set. ** Set (*ppOut) to point to this value before returning. */ SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ return valueFromValueList(pVal, ppOut, 0); } /* ** Set the iterator value pVal to point to the next value in the set. ** Set (*ppOut) to point to this value before returning. */ SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ return valueFromValueList(pVal, ppOut, 1); } /* ** Return the current time for a statement. If the current time ** is requested more than once within the same run of a single prepared ** statement, the exact same time is returned for each invocation regardless ** of the amount of time that elapses between invocations. In other words, ** the time returned is always the time of the first call. */ SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ int rc; #ifndef SQLITE_ENABLE_STAT4 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; assert( p->pVdbe!=0 ); #else sqlite3_int64 iTime = 0; sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; #endif if( *piTime==0 ){ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); if( rc ) *piTime = 0; } return *piTime; } /* ** Create a new aggregate context for p and return a pointer to ** its pMem->z element. */ static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ Mem *pMem = p->pMem; assert( (pMem->flags & MEM_Agg)==0 ); if( nByte<=0 ){ sqlite3VdbeMemSetNull(pMem); pMem->z = 0; }else{ sqlite3VdbeMemClearAndResize(pMem, nByte); pMem->flags = MEM_Agg; pMem->u.pDef = p->pFunc; if( pMem->z ){ memset(pMem->z, 0, nByte); } } return (void*)pMem->z; } /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ assert( p && p->pFunc && p->pFunc->xFinalize ); assert( sqlite3_mutex_held(p->pOut->db->mutex) ); testcase( nByte<0 ); if( (p->pMem->flags & MEM_Agg)==0 ){ return createAggContext(p, nByte); }else{ return (void*)p->pMem->z; } } /* ** Return the auxiliary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. ** ** The left-most argument is 0. ** ** Undocumented behavior: If iArg is negative then access a cache of ** auxiliary data pointers that is available to all functions within a ** single prepared statement. The iArg values must match. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ AuxData *pAuxData; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); #if SQLITE_ENABLE_STAT4 if( pCtx->pVdbe==0 ) return 0; #else assert( pCtx->pVdbe!=0 ); #endif for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ return pAuxData->pAux; } } return 0; } /* ** Set the auxiliary data pointer and delete function, for the iArg'th ** argument to the user-function defined by pCtx. Any previous value is ** deleted by calling the delete function specified when it was set. ** ** The left-most argument is 0. ** ** Undocumented behavior: If iArg is negative then make the data available ** to all functions within the current prepared statement using iArg as an ** access code. */ SQLITE_API void sqlite3_set_auxdata( sqlite3_context *pCtx, int iArg, void *pAux, void (*xDelete)(void*) ){ AuxData *pAuxData; Vdbe *pVdbe = pCtx->pVdbe; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); #ifdef SQLITE_ENABLE_STAT4 if( pVdbe==0 ) goto failed; #else assert( pVdbe!=0 ); #endif for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ break; } } if( pAuxData==0 ){ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); if( !pAuxData ) goto failed; pAuxData->iAuxOp = pCtx->iOp; pAuxData->iAuxArg = iArg; pAuxData->pNextAux = pVdbe->pAuxData; pVdbe->pAuxData = pAuxData; if( pCtx->isError==0 ) pCtx->isError = -1; }else if( pAuxData->xDeleteAux ){ pAuxData->xDeleteAux(pAuxData->pAux); } pAuxData->pAux = pAux; pAuxData->xDeleteAux = xDelete; return; failed: if( xDelete ){ xDelete(pAux); } } #ifndef SQLITE_OMIT_DEPRECATED /* ** Return the number of times the Step function of an aggregate has been ** called. ** ** This function is deprecated. Do not use it for new code. It is ** provide only to avoid breaking legacy code. New aggregate function ** implementations should keep their own counts within their aggregate ** context. */ SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){ assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); return p->pMem->n; } #endif /* ** Return the number of columns in the result set for the statement pStmt. */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 ) return 0; return pVm->nResColumn; } /* ** Return the number of values available from the current row of the ** currently executing statement pStmt. */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 || pVm->pResultRow==0 ) return 0; return pVm->nResColumn; } /* ** Return a pointer to static memory containing an SQL NULL value. */ static const Mem *columnNullValue(void){ /* Even though the Mem structure contains an element ** of type i64, on certain architectures (x86) with certain compiler ** switches (-Os), gcc may align this Mem object on a 4-byte boundary ** instead of an 8-byte one. This all works fine, except that when ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s ** that a Mem structure is located on an 8-byte boundary. To prevent ** these assert()s from failing, when building with SQLITE_DEBUG defined ** using gcc, we force nullMem to be 8-byte aligned using the magical ** __attribute__((aligned(8))) macro. */ static const Mem nullMem #if defined(SQLITE_DEBUG) && defined(__GNUC__) __attribute__((aligned(8))) #endif = { /* .u = */ {0}, /* .z = */ (char*)0, /* .n = */ (int)0, /* .flags = */ (u16)MEM_Null, /* .enc = */ (u8)0, /* .eSubtype = */ (u8)0, /* .db = */ (sqlite3*)0, /* .szMalloc = */ (int)0, /* .uTemp = */ (u32)0, /* .zMalloc = */ (char*)0, /* .xDel = */ (void(*)(void*))0, #ifdef SQLITE_DEBUG /* .pScopyFrom = */ (Mem*)0, /* .mScopyFlags= */ 0, #endif }; return &nullMem; } /* ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm; Mem *pOut; pVm = (Vdbe *)pStmt; if( pVm==0 ) return (Mem*)columnNullValue(); assert( pVm->db ); sqlite3_mutex_enter(pVm->db->mutex); if( pVm->pResultRow!=0 && inResColumn && i>=0 ){ pOut = &pVm->pResultRow[i]; }else{ sqlite3Error(pVm->db, SQLITE_RANGE); pOut = (Mem*)columnNullValue(); } return pOut; } /* ** This function is called after invoking an sqlite3_value_XXX function on a ** column value (i.e. a value returned by evaluating an SQL expression in the ** select list of a SELECT statement) that may cause a malloc() failure. If ** malloc() has failed, the threads mallocFailed flag is cleared and the result ** code of statement pStmt set to SQLITE_NOMEM. ** ** Specifically, this is called from within: ** ** sqlite3_column_int() ** sqlite3_column_int64() ** sqlite3_column_text() ** sqlite3_column_text16() ** sqlite3_column_real() ** sqlite3_column_bytes() ** sqlite3_column_bytes16() ** sqlite3_column_blob() */ static void columnMallocFailure(sqlite3_stmt *pStmt) { /* If malloc() failed during an encoding conversion within an ** sqlite3_column_XXX API, then set the return code of the statement to ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR ** and _finalize() will return NOMEM. */ Vdbe *p = (Vdbe *)pStmt; if( p ){ assert( p->db!=0 ); assert( sqlite3_mutex_held(p->db->mutex) ); p->rc = sqlite3ApiExit(p->db, p->rc); sqlite3_mutex_leave(p->db->mutex); } } /**************************** sqlite3_column_ ******************************* ** The following routines are used to access elements of the current row ** in the result set. */ SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ const void *val; val = sqlite3_value_blob( columnMem(pStmt,i) ); /* Even though there is no encoding conversion, value_blob() might ** need to call malloc() to expand the result of a zeroblob() ** expression. */ columnMallocFailure(pStmt); return val; } SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ int val = sqlite3_value_bytes( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ double val = sqlite3_value_double( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ int val = sqlite3_value_int( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ Mem *pOut = columnMem(pStmt, i); if( pOut->flags&MEM_Static ){ pOut->flags &= ~MEM_Static; pOut->flags |= MEM_Ephem; } columnMallocFailure(pStmt); return (sqlite3_value *)pOut; } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ int iType = sqlite3_value_type( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return iType; } /* ** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN. */ static const char * const azExplainColNames8[] = { "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */ "id", "parent", "notused", "detail" /* EQP */ }; static const u16 azExplainColNames16data[] = { /* 0 */ 'a', 'd', 'd', 'r', 0, /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0, /* 12 */ 'p', '1', 0, /* 15 */ 'p', '2', 0, /* 18 */ 'p', '3', 0, /* 21 */ 'p', '4', 0, /* 24 */ 'p', '5', 0, /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0, /* 35 */ 'i', 'd', 0, /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0, /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0, /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0 }; static const u8 iExplainColNames16[] = { 0, 5, 12, 15, 18, 21, 24, 27, 35, 38, 45, 53 }; /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: ** ** 0 The column name as it should be displayed for output ** 1 The datatype name for the column ** 2 The name of the database that the column derives from ** 3 The name of the table that the column derives from ** 4 The name of the table column that the result column derives from ** ** If the result is not a simple column reference (if it is an expression ** or a constant) then useTypes 2, 3, and 4 return NULL. */ static const void *columnName( sqlite3_stmt *pStmt, /* The statement */ int N, /* Which column to get the name for */ int useUtf16, /* True to return the name as UTF16 */ int useType /* What type of name */ ){ const void *ret; Vdbe *p; int n; sqlite3 *db; #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( N<0 ) return 0; ret = 0; p = (Vdbe *)pStmt; db = p->db; assert( db!=0 ); sqlite3_mutex_enter(db->mutex); if( p->explain ){ if( useType>0 ) goto columnName_end; n = p->explain==1 ? 8 : 4; if( N>=n ) goto columnName_end; if( useUtf16 ){ int i = iExplainColNames16[N + 8*p->explain - 8]; ret = (void*)&azExplainColNames16data[i]; }else{ ret = (void*)azExplainColNames8[N + 8*p->explain - 8]; } goto columnName_end; } n = p->nResColumn; if( NmallocFailed; N += useType*n; #ifndef SQLITE_OMIT_UTF16 if( useUtf16 ){ ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); }else #endif { ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); } /* A malloc may have failed inside of the _text() call. If this ** is the case, clear the mallocFailed flag and return NULL. */ assert( db->mallocFailed==0 || db->mallocFailed==1 ); if( db->mallocFailed > prior_mallocFailed ){ sqlite3OomClear(db); ret = 0; } } columnName_end: sqlite3_mutex_leave(db->mutex); return ret; } /* ** Return the name of the Nth column of the result set returned by SQL ** statement pStmt. */ SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_NAME); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_NAME); } #endif /* ** Constraint: If you have ENABLE_COLUMN_METADATA then you must ** not define OMIT_DECLTYPE. */ #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) # error "Must not define both SQLITE_OMIT_DECLTYPE \ and SQLITE_ENABLE_COLUMN_METADATA" #endif #ifndef SQLITE_OMIT_DECLTYPE /* ** Return the column declaration type (if applicable) of the 'i'th column ** of the result set of SQL statement pStmt. */ SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_DECLTYPE); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_DECLTYPE); } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_DECLTYPE */ #ifdef SQLITE_ENABLE_COLUMN_METADATA /* ** Return the name of the database from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_DATABASE); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_DATABASE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_TABLE); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_TABLE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table column from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_COLUMN); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_COLUMN); } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_ENABLE_COLUMN_METADATA */ /******************************* sqlite3_bind_ *************************** ** ** Routines used to attach values to wildcards in a compiled SQL statement. */ /* ** Unbind the value bound to variable i in virtual machine p. This is the ** the same as binding a NULL value to the column. If the "i" parameter is ** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK. ** ** A successful evaluation of this routine acquires the mutex on p. ** the mutex is released if any kind of error occurs. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ static int vdbeUnbind(Vdbe *p, unsigned int i){ Mem *pVar; if( vdbeSafetyNotNull(p) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(p->db->mutex); if( p->eVdbeState!=VDBE_READY_STATE ){ sqlite3Error(p->db, SQLITE_MISUSE); sqlite3_mutex_leave(p->db->mutex); sqlite3_log(SQLITE_MISUSE, "bind on a busy prepared statement: [%s]", p->zSql); return SQLITE_MISUSE_BKPT; } if( i>=(unsigned int)p->nVar ){ sqlite3Error(p->db, SQLITE_RANGE); sqlite3_mutex_leave(p->db->mutex); return SQLITE_RANGE; } pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; p->db->errCode = SQLITE_OK; /* If the bit corresponding to this variable in Vdbe.expmask is set, then ** binding a new value to this variable invalidates the current query plan. ** ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host ** parameter in the WHERE clause might influence the choice of query plan ** for a statement, then the statement will be automatically recompiled, ** as if there had been a schema change, on the first sqlite3_step() call ** following any change to the bindings of that parameter. */ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<expired = 1; } return SQLITE_OK; } /* ** Bind a text or BLOB value. */ static int bindText( sqlite3_stmt *pStmt, /* The statement to bind against */ int i, /* Index of the parameter to bind */ const void *zData, /* Pointer to the data to be bound */ i64 nData, /* Number of bytes of data to be bound */ void (*xDel)(void*), /* Destructor for the data */ u8 encoding /* Encoding for the data */ ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ if( zData!=0 ){ pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); if( rc==SQLITE_OK && encoding!=0 ){ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); } if( rc ){ sqlite3Error(p->db, rc); rc = sqlite3ApiExit(p->db, rc); } } sqlite3_mutex_leave(p->db->mutex); }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ xDel((void*)zData); } return rc; } /* ** Bind a blob value to an SQL statement variable. */ SQLITE_API int sqlite3_bind_blob( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( nData<0 ) return SQLITE_MISUSE_BKPT; #endif return bindText(pStmt, i, zData, nData, xDel, 0); } SQLITE_API int sqlite3_bind_blob64( sqlite3_stmt *pStmt, int i, const void *zData, sqlite3_uint64 nData, void (*xDel)(void*) ){ assert( xDel!=SQLITE_DYNAMIC ); return bindText(pStmt, i, zData, nData, xDel, 0); } SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ return sqlite3_bind_int64(p, i, (i64)iValue); } SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ int rc; Vdbe *p = (Vdbe*)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_pointer( sqlite3_stmt *pStmt, int i, void *pPtr, const char *zPTtype, void (*xDestructor)(void*) ){ int rc; Vdbe *p = (Vdbe*)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); sqlite3_mutex_leave(p->db->mutex); }else if( xDestructor ){ xDestructor(pPtr); } return rc; } SQLITE_API int sqlite3_bind_text( sqlite3_stmt *pStmt, int i, const char *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); } SQLITE_API int sqlite3_bind_text64( sqlite3_stmt *pStmt, int i, const char *zData, sqlite3_uint64 nData, void (*xDel)(void*), unsigned char enc ){ assert( xDel!=SQLITE_DYNAMIC ); if( enc!=SQLITE_UTF8 ){ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; nData &= ~(u16)1; } return bindText(pStmt, i, zData, nData, xDel, enc); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int n, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, n & ~(u64)1, xDel, SQLITE_UTF16NATIVE); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ int rc; switch( sqlite3_value_type((sqlite3_value*)pValue) ){ case SQLITE_INTEGER: { rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); break; } case SQLITE_FLOAT: { assert( pValue->flags & (MEM_Real|MEM_IntReal) ); rc = sqlite3_bind_double(pStmt, i, (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i ); break; } case SQLITE_BLOB: { if( pValue->flags & MEM_Zero ){ rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); }else{ rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); } break; } case SQLITE_TEXT: { rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, pValue->enc); break; } default: { rc = sqlite3_bind_null(pStmt, i); break; } } return rc; } SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ #ifndef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); #else rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); #endif sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ rc = SQLITE_TOOBIG; }else{ assert( (n & 0x7FFFFFFF)==n ); rc = sqlite3_bind_zeroblob(pStmt, i, n); } rc = sqlite3ApiExit(p->db, rc); sqlite3_mutex_leave(p->db->mutex); return rc; } /* ** Return the number of wildcards that can be potentially bound to. ** This routine is added to support DBD::SQLite. */ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p ? p->nVar : 0; } /* ** Return the name of a wildcard parameter. Return NULL if the index ** is out of range or if the wildcard is unnamed. ** ** The result is always UTF-8. */ SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ Vdbe *p = (Vdbe*)pStmt; if( p==0 ) return 0; return sqlite3VListNumToName(p->pVList, i); } /* ** Given a wildcard parameter name, return the index of the variable ** with that name. If there is no variable with the given name, ** return 0. */ SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ if( p==0 || zName==0 ) return 0; return sqlite3VListNameToNum(p->pVList, zName, nName); } SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); } /* ** Transfer all bindings from the first statement over to the second. */ SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ Vdbe *pFrom = (Vdbe*)pFromStmt; Vdbe *pTo = (Vdbe*)pToStmt; int i; assert( pTo->db==pFrom->db ); assert( pTo->nVar==pFrom->nVar ); sqlite3_mutex_enter(pTo->db->mutex); for(i=0; inVar; i++){ sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); } sqlite3_mutex_leave(pTo->db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. Internal/core SQLite code ** should call sqlite3TransferBindings. ** ** It is misuse to call this routine with statements from different ** database connections. But as this is a deprecated interface, we ** will not bother to check for that condition. ** ** If the two statements contain a different number of bindings, then ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise ** SQLITE_OK is returned. */ SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ Vdbe *pFrom = (Vdbe*)pFromStmt; Vdbe *pTo = (Vdbe*)pToStmt; if( pFrom->nVar!=pTo->nVar ){ return SQLITE_ERROR; } assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); if( pTo->expmask ){ pTo->expired = 1; } assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); if( pFrom->expmask ){ pFrom->expired = 1; } return sqlite3TransferBindings(pFromStmt, pToStmt); } #endif /* ** Return the sqlite3* database handle to which the prepared statement given ** in the argument belongs. This is the same database handle that was ** the first argument to the sqlite3_prepare() that was used to create ** the statement in the first place. */ SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->db : 0; } /* ** Return true if the prepared statement is guaranteed to not modify the ** database. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; } /* ** Return 1 if the statement is an EXPLAIN and return 2 if the ** statement is an EXPLAIN QUERY PLAN */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->explain : 0; } /* ** Set the explain mode for a statement. */ SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){ Vdbe *v = (Vdbe*)pStmt; int rc; sqlite3_mutex_enter(v->db->mutex); if( ((int)v->explain)==eMode ){ rc = SQLITE_OK; }else if( eMode<0 || eMode>2 ){ rc = SQLITE_ERROR; }else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ rc = SQLITE_ERROR; }else if( v->eVdbeState!=VDBE_READY_STATE ){ rc = SQLITE_BUSY; }else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){ /* No reprepare necessary */ v->explain = eMode; rc = SQLITE_OK; }else{ v->explain = eMode; rc = sqlite3Reprepare(v); v->haveEqpOps = eMode==2; } if( v->explain ){ v->nResColumn = 12 - 4*v->explain; }else{ v->nResColumn = v->nResAlloc; } sqlite3_mutex_leave(v->db->mutex); return rc; } /* ** Return true if the prepared statement is in need of being reset. */ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ Vdbe *v = (Vdbe*)pStmt; return v!=0 && v->eVdbeState==VDBE_RUN_STATE; } /* ** Return a pointer to the next prepared statement after pStmt associated ** with database connection pDb. If pStmt is NULL, return the first ** prepared statement for the database connection. Return NULL if there ** are no more. */ SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ sqlite3_stmt *pNext; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(pDb->mutex); if( pStmt==0 ){ pNext = (sqlite3_stmt*)pDb->pVdbe; }else{ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext; } sqlite3_mutex_leave(pDb->mutex); return pNext; } /* ** Return the value of a status counter for a prepared statement */ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; u32 v; #ifdef SQLITE_ENABLE_API_ARMOR if( !pStmt || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( op==SQLITE_STMTSTATUS_MEMUSED ){ sqlite3 *db = pVdbe->db; sqlite3_mutex_enter(db->mutex); v = 0; db->pnBytesFreed = (int*)&v; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; sqlite3VdbeDelete(pVdbe); db->pnBytesFreed = 0; db->lookaside.pEnd = db->lookaside.pTrueEnd; sqlite3_mutex_leave(db->mutex); }else{ v = pVdbe->aCounter[op]; if( resetFlag ) pVdbe->aCounter[op] = 0; } return (int)v; } /* ** Return the SQL associated with a prepared statement */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe *)pStmt; return p ? p->zSql : 0; } /* ** Return the SQL associated with a prepared statement with ** bound parameters expanded. Space to hold the returned string is ** obtained from sqlite3_malloc(). The caller is responsible for ** freeing the returned string by passing it to sqlite3_free(). ** ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of ** expanded bound parameters. */ SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ #ifdef SQLITE_OMIT_TRACE return 0; #else char *z = 0; const char *zSql = sqlite3_sql(pStmt); if( zSql ){ Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); z = sqlite3VdbeExpandSql(p, zSql); sqlite3_mutex_leave(p->db->mutex); } return z; #endif } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Return the normalized SQL associated with a prepared statement. */ SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe *)pStmt; if( p==0 ) return 0; if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ sqlite3_mutex_enter(p->db->mutex); p->zNormSql = sqlite3Normalize(p, p->zSql); sqlite3_mutex_leave(p->db->mutex); } return p->zNormSql; } #endif /* SQLITE_ENABLE_NORMALIZE */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Allocate and populate an UnpackedRecord structure based on the serialized ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure ** if successful, or a NULL pointer if an OOM error is encountered. */ static UnpackedRecord *vdbeUnpackRecord( KeyInfo *pKeyInfo, int nKey, const void *pKey ){ UnpackedRecord *pRet; /* Return value */ pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); if( pRet ){ memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); } return pRet; } /* ** This function is called from within a pre-update callback to retrieve ** a field of the row currently being updated or deleted. */ SQLITE_API int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ PreUpdate *p = db->pPreUpdate; Mem *pMem; int rc = SQLITE_OK; /* Test that this call is being made from within an SQLITE_DELETE or ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ if( !p || p->op==SQLITE_INSERT ){ rc = SQLITE_MISUSE_BKPT; goto preupdate_old_out; } if( p->pPk ){ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); } if( iIdx>=p->pCsr->nField || iIdx<0 ){ rc = SQLITE_RANGE; goto preupdate_old_out; } /* If the old.* record has not yet been loaded into memory, do so now. */ if( p->pUnpacked==0 ){ u32 nRec; u8 *aRec; assert( p->pCsr->eCurType==CURTYPE_BTREE ); nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); aRec = sqlite3DbMallocRaw(db, nRec); if( !aRec ) goto preupdate_old_out; rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); if( rc==SQLITE_OK ){ p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); if( !p->pUnpacked ) rc = SQLITE_NOMEM; } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, aRec); goto preupdate_old_out; } p->aRecord = aRec; } pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey1); }else if( iIdx>=p->pUnpacked->nField ){ *ppValue = (sqlite3_value *)columnNullValue(); }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ if( pMem->flags & (MEM_Int|MEM_IntReal) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_IntReal ); sqlite3VdbeMemRealify(pMem); } } preupdate_old_out: sqlite3Error(db, rc); return sqlite3ApiExit(db, rc); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is called from within a pre-update callback to retrieve ** the number of columns in the row being updated, deleted or inserted. */ SQLITE_API int sqlite3_preupdate_count(sqlite3 *db){ PreUpdate *p = db->pPreUpdate; return (p ? p->keyinfo.nKeyField : 0); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is designed to be called from within a pre-update callback ** only. It returns zero if the change that caused the callback was made ** immediately by a user SQL statement. Or, if the change was made by a ** trigger program, it returns the number of trigger programs currently ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a ** top-level trigger etc.). ** ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL ** or SET DEFAULT action is considered a trigger. */ SQLITE_API int sqlite3_preupdate_depth(sqlite3 *db){ PreUpdate *p = db->pPreUpdate; return (p ? p->v->nFrame : 0); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is designed to be called from within a pre-update callback ** only. */ SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *db){ PreUpdate *p = db->pPreUpdate; return (p ? p->iBlobWrite : -1); } #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is called from within a pre-update callback to retrieve ** a field of the row currently being updated or inserted. */ SQLITE_API int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ PreUpdate *p = db->pPreUpdate; int rc = SQLITE_OK; Mem *pMem; if( !p || p->op==SQLITE_DELETE ){ rc = SQLITE_MISUSE_BKPT; goto preupdate_new_out; } if( p->pPk && p->op!=SQLITE_UPDATE ){ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); } if( iIdx>=p->pCsr->nField || iIdx<0 ){ rc = SQLITE_RANGE; goto preupdate_new_out; } if( p->op==SQLITE_INSERT ){ /* For an INSERT, memory cell p->iNewReg contains the serialized record ** that is being inserted. Deserialize it. */ UnpackedRecord *pUnpack = p->pNewUnpacked; if( !pUnpack ){ Mem *pData = &p->v->aMem[p->iNewReg]; rc = ExpandBlob(pData); if( rc!=SQLITE_OK ) goto preupdate_new_out; pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); if( !pUnpack ){ rc = SQLITE_NOMEM; goto preupdate_new_out; } p->pNewUnpacked = pUnpack; } pMem = &pUnpack->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey2); }else if( iIdx>=pUnpack->nField ){ pMem = (sqlite3_value *)columnNullValue(); } }else{ /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required ** value. Make a copy of the cell contents and return a pointer to it. ** It is not safe to return a pointer to the memory cell itself as the ** caller may modify the value text encoding. */ assert( p->op==SQLITE_UPDATE ); if( !p->aNew ){ p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); if( !p->aNew ){ rc = SQLITE_NOMEM; goto preupdate_new_out; } } assert( iIdx>=0 && iIdxpCsr->nField ); pMem = &p->aNew[iIdx]; if( pMem->flags==0 ){ if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey2); }else{ rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); if( rc!=SQLITE_OK ) goto preupdate_new_out; } } } *ppValue = pMem; preupdate_new_out: sqlite3Error(db, rc); return sqlite3ApiExit(db, rc); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Return status data for a single loop within query pStmt. */ SQLITE_API int sqlite3_stmt_scanstatus_v2( sqlite3_stmt *pStmt, /* Prepared statement being queried */ int iScan, /* Index of loop to report on */ int iScanStatusOp, /* Which metric to return */ int flags, void *pOut /* OUT: Write the answer here */ ){ Vdbe *p = (Vdbe*)pStmt; VdbeOp *aOp = p->aOp; int nOp = p->nOp; ScanStatus *pScan = 0; int idx; if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); aOp = pFrame->aOp; nOp = pFrame->nOp; } if( iScan<0 ){ int ii; if( iScanStatusOp==SQLITE_SCANSTAT_NCYCLE ){ i64 res = 0; for(ii=0; iiaScan[idx]; }else{ /* If the COMPLEX flag is clear, then this function must ignore any ** ScanStatus structures with ScanStatus.addrLoop set to 0. */ for(idx=0; idxnScan; idx++){ pScan = &p->aScan[idx]; if( pScan->zName ){ iScan--; if( iScan<0 ) break; } } } if( idx>=p->nScan ) return 1; switch( iScanStatusOp ){ case SQLITE_SCANSTAT_NLOOP: { if( pScan->addrLoop>0 ){ *(sqlite3_int64*)pOut = aOp[pScan->addrLoop].nExec; }else{ *(sqlite3_int64*)pOut = -1; } break; } case SQLITE_SCANSTAT_NVISIT: { if( pScan->addrVisit>0 ){ *(sqlite3_int64*)pOut = aOp[pScan->addrVisit].nExec; }else{ *(sqlite3_int64*)pOut = -1; } break; } case SQLITE_SCANSTAT_EST: { double r = 1.0; LogEst x = pScan->nEst; while( x<100 ){ x += 10; r *= 0.5; } *(double*)pOut = r*sqlite3LogEstToInt(x); break; } case SQLITE_SCANSTAT_NAME: { *(const char**)pOut = pScan->zName; break; } case SQLITE_SCANSTAT_EXPLAIN: { if( pScan->addrExplain ){ *(const char**)pOut = aOp[ pScan->addrExplain ].p4.z; }else{ *(const char**)pOut = 0; } break; } case SQLITE_SCANSTAT_SELECTID: { if( pScan->addrExplain ){ *(int*)pOut = aOp[ pScan->addrExplain ].p1; }else{ *(int*)pOut = -1; } break; } case SQLITE_SCANSTAT_PARENTID: { if( pScan->addrExplain ){ *(int*)pOut = aOp[ pScan->addrExplain ].p2; }else{ *(int*)pOut = -1; } break; } case SQLITE_SCANSTAT_NCYCLE: { i64 res = 0; if( pScan->aAddrRange[0]==0 ){ res = -1; }else{ int ii; for(ii=0; iiaAddrRange); ii+=2){ int iIns = pScan->aAddrRange[ii]; int iEnd = pScan->aAddrRange[ii+1]; if( iIns==0 ) break; if( iIns>0 ){ while( iIns<=iEnd ){ res += aOp[iIns].nCycle; iIns++; } }else{ int iOp; for(iOp=0; iOpp1!=iEnd ) continue; if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_NCYCLE)==0 ){ continue; } res += aOp[iOp].nCycle; } } } } *(i64*)pOut = res; break; } default: { return 1; } } return 0; } /* ** Return status data for a single loop within query pStmt. */ SQLITE_API int sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement being queried */ int iScan, /* Index of loop to report on */ int iScanStatusOp, /* Which metric to return */ void *pOut /* OUT: Write the answer here */ ){ return sqlite3_stmt_scanstatus_v2(pStmt, iScan, iScanStatusOp, 0, pOut); } /* ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. */ SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; int ii; for(ii=0; iinOp; ii++){ Op *pOp = &p->aOp[ii]; pOp->nExec = 0; pOp->nCycle = 0; } } #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ /************** End of vdbeapi.c *********************************************/ /************** Begin file vdbetrace.c ***************************************/ /* ** 2009 November 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to insert the values of host parameters ** (aka "wildcards") into the SQL text output by sqlite3_trace(). ** ** The Vdbe parse-tree explainer is also found here. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ #ifndef SQLITE_OMIT_TRACE /* ** zSql is a zero-terminated string of UTF-8 SQL text. Return the number of ** bytes in this text up to but excluding the first character in ** a host parameter. If the text contains no host parameters, return ** the total number of bytes in the text. */ static int findNextHostParameter(const char *zSql, int *pnToken){ int tokenType; int nTotal = 0; int n; *pnToken = 0; while( zSql[0] ){ n = sqlite3GetToken((u8*)zSql, &tokenType); assert( n>0 && tokenType!=TK_ILLEGAL ); if( tokenType==TK_VARIABLE ){ *pnToken = n; break; } nTotal += n; zSql += n; } return nTotal; } /* ** This function returns a pointer to a nul-terminated string in memory ** obtained from sqlite3DbMalloc(). If sqlite3.nVdbeExec is 1, then the ** string contains a copy of zRawSql but with host parameters expanded to ** their current bindings. Or, if sqlite3.nVdbeExec is greater than 1, ** then the returned string holds a copy of zRawSql with "-- " prepended ** to each line of text. ** ** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then ** then long strings and blobs are truncated to that many bytes. This ** can be used to prevent unreasonably large trace strings when dealing ** with large (multi-megabyte) strings and blobs. ** ** The calling function is responsible for making sure the memory returned ** is eventually freed. ** ** ALGORITHM: Scan the input string looking for host parameters in any of ** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within ** string literals, quoted identifier names, and comments. For text forms, ** the host parameter index is found by scanning the prepared ** statement for the corresponding OP_Variable opcode. Once the host ** parameter index is known, locate the value in p->aVar[]. Then render ** the value as a literal in place of the host parameter name. */ SQLITE_PRIVATE char *sqlite3VdbeExpandSql( Vdbe *p, /* The prepared statement being evaluated */ const char *zRawSql /* Raw text of the SQL statement */ ){ sqlite3 *db; /* The database connection */ int idx = 0; /* Index of a host parameter */ int nextIndex = 1; /* Index of next ? host parameter */ int n; /* Length of a token prefix */ int nToken; /* Length of the parameter token */ int i; /* Loop counter */ Mem *pVar; /* Value of a host parameter */ StrAccum out; /* Accumulate the output here */ #ifndef SQLITE_OMIT_UTF16 Mem utf8; /* Used to convert UTF16 into UTF8 for display */ #endif db = p->db; sqlite3StrAccumInit(&out, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); if( db->nVdbeExec>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3_str_append(&out, "-- ", 3); assert( (zRawSql - zStart) > 0 ); sqlite3_str_append(&out, zStart, (int)(zRawSql-zStart)); } }else if( p->nVar==0 ){ sqlite3_str_append(&out, zRawSql, sqlite3Strlen30(zRawSql)); }else{ while( zRawSql[0] ){ n = findNextHostParameter(zRawSql, &nToken); assert( n>0 ); sqlite3_str_append(&out, zRawSql, n); zRawSql += n; assert( zRawSql[0] || nToken==0 ); if( nToken==0 ) break; if( zRawSql[0]=='?' ){ if( nToken>1 ){ assert( sqlite3Isdigit(zRawSql[1]) ); sqlite3GetInt32(&zRawSql[1], &idx); }else{ idx = nextIndex; } }else{ assert( zRawSql[0]==':' || zRawSql[0]=='$' || zRawSql[0]=='@' || zRawSql[0]=='#' ); testcase( zRawSql[0]==':' ); testcase( zRawSql[0]=='$' ); testcase( zRawSql[0]=='@' ); testcase( zRawSql[0]=='#' ); idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken); assert( idx>0 ); } zRawSql += nToken; nextIndex = MAX(idx + 1, nextIndex); assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); }else if( pVar->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&out, "%lld", pVar->u.i); }else if( pVar->flags & MEM_Real ){ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r); }else if( pVar->flags & MEM_Str ){ int nOut; /* Number of bytes of the string text to include in output */ #ifndef SQLITE_OMIT_UTF16 u8 enc = ENC(db); if( enc!=SQLITE_UTF8 ){ memset(&utf8, 0, sizeof(utf8)); utf8.db = db; sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC); if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){ out.accError = SQLITE_NOMEM; out.nAlloc = 0; } pVar = &utf8; } #endif nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ){ nOut = SQLITE_TRACE_SIZE_LIMIT; while( nOutn && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; } } #endif sqlite3_str_appendf(&out, "'%.*q'", nOut, pVar->z); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOutn ){ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut); } #endif #ifndef SQLITE_OMIT_UTF16 if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8); #endif }else if( pVar->flags & MEM_Zero ){ sqlite3_str_appendf(&out, "zeroblob(%d)", pVar->u.nZero); }else{ int nOut; /* Number of bytes of the blob to include in output */ assert( pVar->flags & MEM_Blob ); sqlite3_str_append(&out, "x'", 2); nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT; #endif for(i=0; iz[i]&0xff); } sqlite3_str_append(&out, "'", 1); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOutn ){ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut); } #endif } } } if( out.accError ) sqlite3_str_reset(&out); return sqlite3StrAccumFinish(&out); } #endif /* #ifndef SQLITE_OMIT_TRACE */ /************** End of vdbetrace.c *******************************************/ /************** Begin file vdbe.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements the function that runs the ** bytecode of a prepared statement. ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing ** like that ever happens. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) #else # define memAboutToChange(P,M) #endif /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_search_count = 0; #endif /* ** When this global variable is positive, it gets decremented once before ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted ** field of the sqlite3 structure is set in order to simulate an interrupt. ** ** This facility is used for testing purposes only. It does not function ** in an ordinary build. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_interrupt_count = 0; #endif /* ** The next global variable is incremented each type the OP_Sort opcode ** is executed. The test procedures use this information to make sure that ** sorting is occurring or not occurring at appropriate times. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_sort_count = 0; #endif /* ** The next global variable records the size of the largest MEM_Blob ** or MEM_Str that has been used by a VDBE opcode. The test procedures ** use this information to make sure that the zero-blob functionality ** is working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_max_blobsize = 0; static void updateMaxBlobsize(Mem *p){ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ sqlite3_max_blobsize = p->n; } } #endif /* ** This macro evaluates to true if either the update hook or the preupdate ** hook are enabled for database connect DB. */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) #else # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) #endif /* ** The next global variable is incremented each time the OP_Found opcode ** is executed. This is used to test whether or not the foreign key ** operation implemented using OP_FkIsZero is working. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_found_count = 0; #endif /* ** Test a register to see if it exceeds the current maximum blob size. ** If it does, record the new maximum blob size. */ #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif #ifdef SQLITE_DEBUG /* This routine provides a convenient place to set a breakpoint during ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after ** each opcode is printed. Variables "pc" (program counter) and pOp are ** available to add conditionals to the breakpoint. GDB example: ** ** break test_trace_breakpoint if pc=22 ** ** Other useful labels for breakpoints include: ** test_addop_breakpoint(pc,pOp) ** sqlite3CorruptError(lineno) ** sqlite3MisuseError(lineno) ** sqlite3CantopenError(lineno) */ static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ static int n = 0; (void)pc; (void)pOp; (void)v; n++; } #endif /* ** Invoke the VDBE coverage callback, if that callback is defined. This ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is the type of branch. I is the direction taken for this instance of ** the branch. ** ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) ** ** In other words, if M is 2, then I is either 0 (for fall-through) or ** 1 (for when the branch is taken). If M is 3, the I is 0 for an ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 ** if the result of comparison is NULL. For M=3, I=2 the jump may or ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 ** depending on if the operands are less than, equal, or greater than. ** ** iSrcLine is the source code line (from the __LINE__ macro) that ** generated the VDBE instruction combined with flag bits. The source ** code line number is in the lower 24 bits of iSrcLine and the upper ** 8 bytes are flags. The lower three bits of the flags indicate ** values for I that should never occur. For example, if the branch is ** always taken, the flags should be 0x05 since the fall-through and ** alternate branch are never taken. If a branch is never taken then ** flags should be 0x06 since only the fall-through approach is allowed. ** ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only ** interested in equal or not-equal. In other words, I==0 and I==2 ** should be treated as equivalent ** ** Since only a line number is retained, not the filename, this macro ** only works for amalgamation builds. But that is ok, since these macros ** should be no-ops except for special builds used to measure test coverage. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ u8 mNever; assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ assert( I> 24; assert( (I & mNever)==0 ); if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ /* Invoke the branch coverage callback with three arguments: ** iSrcLine - the line number of the VdbeCoverage() macro, with ** flags removed. ** I - Mask of bits 0x07 indicating which cases are are ** fulfilled by this instance of the jump. 0x01 means ** fall-thru, 0x02 means taken, 0x04 means NULL. Any ** impossible cases (ex: if the comparison is never NULL) ** are filled in automatically so that the coverage ** measurement logic does not flag those impossible cases ** as missed coverage. ** M - Type of jump. Same as M argument above */ I |= mNever; if( M==2 ) I |= 0x04; if( M==4 ){ I |= 0x08; if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ } sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, iSrcLine&0xffffff, I, M); } #endif /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the register ** does not control the string, it might be deleted without the register ** knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the register itself controls. In other words, it ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 \ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) /* ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL ** if we run out of memory. */ static VdbeCursor *allocateCursor( Vdbe *p, /* The virtual machine */ int iCur, /* Index of the new VdbeCursor */ int nField, /* Number of fields in the table or index */ u8 eCurType /* Type of the new cursor */ ){ /* Find the memory cell that will be used to store the blob of memory ** required for this VdbeCursor structure. It is convenient to use a ** vdbe memory cell to manage the memory allocation required for a ** VdbeCursor structure for the following reasons: ** ** * Sometimes cursor numbers are used for a couple of different ** purposes in a vdbe program. The different uses might require ** different sized allocations. Memory cells provide growable ** allocations. ** ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can ** be freed lazily via the sqlite3_release_memory() API. This ** minimizes the number of malloc calls made by the system. ** ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. ** Cursor 2 is at Mem[p->nMem-2]. And so forth. */ Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; int nByte; VdbeCursor *pCx = 0; nByte = ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); assert( iCur>=0 && iCurnCursor ); if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); p->apCsr[iCur] = 0; } /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure ** the pMem used to hold space for the cursor has enough storage available ** in pMem->zMalloc. But for the special case of the aMem[] entries used ** to hold cursors, it is faster to in-line the logic. */ assert( pMem->flags==MEM_Undefined ); assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); if( pMem->szMallocszMalloc>0 ){ sqlite3DbFreeNN(pMem->db, pMem->zMalloc); } pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); if( pMem->zMalloc==0 ){ pMem->szMalloc = 0; return 0; } pMem->szMalloc = nByte; } p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); pCx->eCurType = eCurType; pCx->nField = nField; pCx->aOffset = &pCx->aType[nField]; if( eCurType==CURTYPE_BTREE ){ pCx->uc.pCursor = (BtCursor*) &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; sqlite3BtreeCursorZero(pCx->uc.pCursor); } return pCx; } /* ** The string in pRec is known to look like an integer and to have a ** floating point value of rValue. Return true and set *piValue to the ** integer value if the string is in range to be an integer. Otherwise, ** return false. */ static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ i64 iValue; iValue = sqlite3RealToI64(rValue); if( sqlite3RealSameAsInt(rValue,iValue) ){ *piValue = iValue; return 1; } return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); } /* ** Try to convert a value into a numeric representation if we can ** do so without loss of information. In other words, if the string ** looks like a number, convert it into a number. If it does not ** look like a number, leave it alone. ** ** If the bTryForInt flag is true, then extra effort is made to give ** an integer representation. Strings that look like floating point ** values but which have no fractional component (example: '48.00') ** will have a MEM_Int representation when bTryForInt is true. ** ** If bTryForInt is false, then if the input string contains a decimal ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; u8 enc = pRec->enc; int rc; assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); if( rc<=0 ) return; if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ pRec->flags |= MEM_Int; }else{ pRec->u.r = rValue; pRec->flags |= MEM_Real; if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); } /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the ** string representation after computing a numeric equivalent, because the ** string representation might not be the canonical representation for the ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ pRec->flags &= ~MEM_Str; } /* ** Processing is determine by the affinity parameter: ** ** SQLITE_AFF_INTEGER: ** SQLITE_AFF_REAL: ** SQLITE_AFF_NUMERIC: ** Try to convert pRec to an integer representation or a ** floating-point representation if an integer representation ** is not possible. Note that the integer representation is ** always preferred, even if the affinity is REAL, because ** an integer representation is more space efficient on disk. ** ** SQLITE_AFF_FLEXNUM: ** If the value is text, then try to convert it into a number of ** some kind (integer or real) but do not make any other changes. ** ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** ** SQLITE_AFF_BLOB: ** SQLITE_AFF_NONE: ** No-op. pRec is unchanged. */ static void applyAffinity( Mem *pRec, /* The value to apply affinity to */ char affinity, /* The affinity to be applied */ u8 enc /* Use this text encoding */ ){ if( affinity>=SQLITE_AFF_NUMERIC ){ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM ); if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){ if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); }else if( affinity<=SQLITE_AFF_REAL ){ sqlite3VdbeIntegerAffinity(pRec); } } }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ testcase( pRec->flags & MEM_Int ); testcase( pRec->flags & MEM_Real ); testcase( pRec->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pRec, enc, 1); } } pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); } } /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without ** loss of information and return the revised type of the argument. */ SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){ int eType = sqlite3_value_type(pVal); if( eType==SQLITE_TEXT ){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem, 0); eType = sqlite3_value_type(pVal); } return eType; } /* ** Exported version of applyAffinity(). This one works on sqlite3_value*, ** not the internal Mem* type. */ SQLITE_PRIVATE void sqlite3ValueApplyAffinity( sqlite3_value *pVal, u8 affinity, u8 enc ){ applyAffinity((Mem *)pVal, affinity, enc); } /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ int rc; sqlite3_int64 ix; assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); if( ExpandBlob(pMem) ){ pMem->u.i = 0; return MEM_Int; } rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( rc<=0 ){ if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ pMem->u.i = ix; return MEM_Int; }else{ return MEM_Real; } }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ pMem->u.i = ix; return MEM_Int; } return MEM_Real; } /* ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ assert( (pMem->flags & MEM_Null)==0 || pMem->db==0 || pMem->db->mallocFailed ); if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); } assert( pMem->flags & (MEM_Str|MEM_Blob) ); testcase( pMem->flags & MEM_Str ); testcase( pMem->flags & MEM_Blob ); return computeNumericType(pMem); return 0; } #ifdef SQLITE_DEBUG /* ** Write a nice string representation of the contents of cell pMem ** into buffer zBuf, length nBuf. */ SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ int f = pMem->flags; static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; if( f&MEM_Blob ){ int i; char c; if( f & MEM_Dyn ){ c = 'z'; assert( (f & (MEM_Static|MEM_Ephem))==0 ); }else if( f & MEM_Static ){ c = 't'; assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); }else if( f & MEM_Ephem ){ c = 'e'; assert( (f & (MEM_Static|MEM_Dyn))==0 ); }else{ c = 's'; } sqlite3_str_appendf(pStr, "%cx[", c); for(i=0; i<25 && in; i++){ sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); } sqlite3_str_appendf(pStr, "|"); for(i=0; i<25 && in; i++){ char z = pMem->z[i]; sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); } sqlite3_str_appendf(pStr,"]"); if( f & MEM_Zero ){ sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); } }else if( f & MEM_Str ){ int j; u8 c; if( f & MEM_Dyn ){ c = 'z'; assert( (f & (MEM_Static|MEM_Ephem))==0 ); }else if( f & MEM_Static ){ c = 't'; assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); }else if( f & MEM_Ephem ){ c = 'e'; assert( (f & (MEM_Static|MEM_Dyn))==0 ); }else{ c = 's'; } sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); for(j=0; j<25 && jn; j++){ c = pMem->z[j]; sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); } sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); if( f & MEM_Term ){ sqlite3_str_appendf(pStr, "(0-term)"); } } } #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); }else if( (p->flags & (MEM_IntReal))!=0 ){ printf(" ir:%lld", p->u.i); }else if( p->flags & MEM_Int ){ printf(" i:%lld", p->u.i); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( p->flags & MEM_Real ){ printf(" r:%.17g", p->u.r); #endif }else if( sqlite3VdbeMemIsRowSet(p) ){ printf(" (rowset)"); }else{ StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3VdbeMemPrettyPrint(p, &acc); printf(" %s", sqlite3StrAccumFinish(&acc)); } if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); } static void registerTrace(int iReg, Mem *p){ printf("R[%d] = ", iReg); memTracePrint(p); if( p->pScopyFrom ){ printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); } printf("\n"); sqlite3VdbeCheckMemInvariants(p); } /**/ void sqlite3PrintMem(Mem *pMem){ memTracePrint(pMem); printf("\n"); fflush(stdout); } #endif #ifdef SQLITE_DEBUG /* ** Show the values of all registers in the virtual machine. Used for ** interactive debugging. */ SQLITE_PRIVATE void sqlite3VdbeRegisterDump(Vdbe *v){ int i; for(i=1; inMem; i++) registerTrace(i, v->aMem+i); } #endif /* SQLITE_DEBUG */ #ifdef SQLITE_DEBUG # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) #else # define REGISTER_TRACE(R,M) #endif #ifndef NDEBUG /* ** This function is only called from within an assert() expression. It ** checks that the sqlite3.nTransaction variable is correctly set to ** the number of non-transaction savepoints currently in the ** linked list starting at sqlite3.pSavepoint. ** ** Usage: ** ** assert( checkSavepointCount(db) ); */ static int checkSavepointCount(sqlite3 *db){ int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Return the register of pOp->p2 after first preparing it to be ** overwritten with an integer value. */ static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ sqlite3VdbeMemSetNull(pOut); pOut->flags = MEM_Int; return pOut; } static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ Mem *pOut; assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); pOut = &p->aMem[pOp->p2]; memAboutToChange(p, pOut); if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ return out2PrereleaseWithClear(pOut); }else{ pOut->flags = MEM_Int; return pOut; } } /* ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning ** with pOp->p3. Return the hash. */ static u64 filterHash(const Mem *aMem, const Op *pOp){ int i, mx; u64 h = 0; assert( pOp->p4type==P4_INT32 ); for(i=pOp->p3, mx=i+pOp->p4.i; iflags & (MEM_Int|MEM_IntReal) ){ h += p->u.i; }else if( p->flags & MEM_Real ){ h += sqlite3VdbeIntValue(p); }else if( p->flags & (MEM_Str|MEM_Blob) ){ /* All strings have the same hash and all blobs have the same hash, ** though, at least, those hashes are different from each other and ** from NULL. */ h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); } } return h; } /* ** For OP_Column, factor out the case where content is loaded from ** overflow pages, so that the code to implement this case is separate ** the common case where all content fits on the page. Factoring out ** the code reduces register pressure and helps the common case ** to run faster. */ static SQLITE_NOINLINE int vdbeColumnFromOverflow( VdbeCursor *pC, /* The BTree cursor from which we are reading */ int iCol, /* The column to read */ int t, /* The serial-type code for the column value */ i64 iOffset, /* Offset to the start of the content value */ u32 cacheStatus, /* Current Vdbe.cacheCtr value */ u32 colCacheCtr, /* Current value of the column cache counter */ Mem *pDest /* Store the value into this register. */ ){ int rc; sqlite3 *db = pDest->db; int encoding = pDest->enc; int len = sqlite3VdbeSerialTypeLen(t); assert( pC->eCurType==CURTYPE_BTREE ); if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG; if( len > 4000 && pC->pKeyInfo==0 ){ /* Cache large column values that are on overflow pages using ** an RCStr (reference counted string) so that if they are reloaded, ** that do not have to be copied a second time. The overhead of ** creating and managing the cache is such that this is only ** profitable for larger TEXT and BLOB values. ** ** Only do this on table-btrees so that writes to index-btrees do not ** need to clear the cache. This buys performance in the common case ** in exchange for generality. */ VdbeTxtBlbCache *pCache; char *pBuf; if( pC->colCache==0 ){ pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) ); if( pC->pCache==0 ) return SQLITE_NOMEM; pC->colCache = 1; } pCache = pC->pCache; if( pCache->pCValue==0 || pCache->iCol!=iCol || pCache->cacheStatus!=cacheStatus || pCache->colCacheCtr!=colCacheCtr || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor) ){ if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue); pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 ); if( pBuf==0 ) return SQLITE_NOMEM; rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf); if( rc ) return rc; pBuf[len] = 0; pBuf[len+1] = 0; pBuf[len+2] = 0; pCache->iCol = iCol; pCache->cacheStatus = cacheStatus; pCache->colCacheCtr = colCacheCtr; pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor); }else{ pBuf = pCache->pCValue; } assert( t>=12 ); sqlite3RCStrRef(pBuf); if( t&1 ){ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding, (void(*)(void*))sqlite3RCStrUnref); pDest->flags |= MEM_Term; }else{ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0, (void(*)(void*))sqlite3RCStrUnref); } }else{ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest); if( rc ) return rc; sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); if( (t&1)!=0 && encoding==SQLITE_UTF8 ){ pDest->z[len] = 0; pDest->flags |= MEM_Term; } } pDest->flags &= ~MEM_Ephem; return rc; } /* ** Return the symbolic name for the data type of a pMem */ static const char *vdbeMemTypeName(Mem *pMem){ static const char *azTypes[] = { /* SQLITE_INTEGER */ "INT", /* SQLITE_FLOAT */ "REAL", /* SQLITE_TEXT */ "TEXT", /* SQLITE_BLOB */ "BLOB", /* SQLITE_NULL */ "NULL" }; return azTypes[sqlite3_value_type(pMem)-1]; } /* ** Execute as much of a VDBE program as we can. ** This is the core of sqlite3_step(). */ SQLITE_PRIVATE int sqlite3VdbeExec( Vdbe *p /* The VDBE */ ){ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp = aOp; /* Current operation */ #ifdef SQLITE_DEBUG Op *pOrigOp; /* Value of pOp at the top of the loop */ int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ u8 iCompareIsInit = 0; /* iCompare is initialized */ #endif int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ int iCompare = 0; /* Result of last comparison */ u64 nVmStep = 0; /* Number of virtual machine steps */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ u32 colCacheCtr = 0; /* Column cache counter */ #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) u64 *pnCycle = 0; int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; #endif /*** INSERT STACK UNION HERE ***/ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ if( DbMaskNonZero(p->lockMask) ){ sqlite3VdbeEnter(p); } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; assert( 0 < db->nProgressOps ); nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); }else{ nProgressLimit = LARGEST_UINT64; } #endif if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); testcase( p->rc!=SQLITE_OK ); p->rc = SQLITE_OK; assert( p->bIsReader || p->readOnly!=0 ); p->iCurrentTime = 0; assert( p->explain==0 ); db->busyHandler.nBusy = 0; if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; sqlite3VdbeIOTraceSql(p); #ifdef SQLITE_DEBUG sqlite3BeginBenignMalloc(); if( p->pc==0 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 ){ int i; int once = 1; sqlite3VdbePrintSql(p); if( p->db->flags & SQLITE_VdbeListing ){ printf("VDBE Program Listing:\n"); for(i=0; inOp; i++){ sqlite3VdbePrintOp(stdout, i, &aOp[i]); } } if( p->db->flags & SQLITE_VdbeEQP ){ for(i=0; inOp; i++){ if( aOp[i].opcode==OP_Explain ){ if( once ) printf("VDBE Query Plan:\n"); printf("%s\n", aOp[i].p4.z); once = 0; } } } if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); } sqlite3EndBenignMalloc(); #endif for(pOp=&aOp[p->pc]; 1; pOp++){ /* Errors are detected by individual opcodes, with an immediate ** jumps to abort_due_to_error. */ assert( rc==SQLITE_OK ); assert( pOp>=aOp && pOp<&aOp[p->nOp]); nVmStep++; #if defined(VDBE_PROFILE) pOp->nExec++; pnCycle = &pOp->nCycle; if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime(); #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( bStmtScanStatus ){ pOp->nExec++; pnCycle = &pOp->nCycle; *pnCycle -= sqlite3Hwtime(); } #endif /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); test_trace_breakpoint((int)(pOp - aOp),pOp,p); } #endif /* Check to see if we need to simulate an interrupt. This only happens ** if we have a special test build. */ #ifdef SQLITE_TEST if( sqlite3_interrupt_count>0 ){ sqlite3_interrupt_count--; if( sqlite3_interrupt_count==0 ){ sqlite3_interrupt(db); } } #endif /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG { u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; if( (opProperty & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (opProperty & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (opProperty & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (opProperty & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } if( (opProperty & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); memAboutToChange(p, &aMem[pOp->p3]); } } #endif #ifdef SQLITE_DEBUG pOrigOp = pOp; #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. ** ** The formatting of each case is important. The makefile for SQLite ** generates two C files "opcodes.h" and "opcodes.c" by scanning this ** file looking for lines that begin with "case OP_". The opcodes.h files ** will be filled with #defines that give unique integer values to each ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. If the ** case statement is followed by a comment of the form "/# same as ... #/" ** that comment is used to determine the particular value of the opcode. ** ** Other keywords in the comment that follows each case are used to ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. ** Keywords include: in1, in2, in3, out2, out3. See ** the mkopcodeh.awk script for additional information. ** ** Documentation about VDBE opcodes is generated by scanning this file ** for lines of that contain "Opcode:". That line and all subsequent ** comment lines are used in the generation of the opcode.html documentation ** file. ** ** SUMMARY: ** ** Formatting is important to scripts that scan this file. ** Do not deviate from the formatting style currently in use. ** *****************************************************************************/ /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ #ifdef SQLITE_DEBUG /* In debugging mode, when the p5 flags is set on an OP_Goto, that ** means we should really jump back to the preceding OP_ReleaseReg ** instruction. */ if( pOp->p5 ){ assert( pOp->p2 < (int)(pOp - aOp) ); assert( pOp->p2 > 1 ); pOp = &aOp[pOp->p2 - 2]; assert( pOp[1].opcode==OP_ReleaseReg ); goto check_for_interrupt; } #endif jump_to_p2_and_check_for_interrupt: pOp = &aOp[pOp->p2 - 1]; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called ** or if the progress callback needs to be invoked. ** ** This code uses unstructured "goto" statements and does not look clean. ** But that is not due to sloppy coding habits. The code is written this ** way for performance, to avoid having to run the interrupt and progress ** checks on every opcode. This helps sqlite3_step() to run about 1.5% ** faster according to "valgrind --tool=cachegrind" */ check_for_interrupt: if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Call the progress callback if it is configured and the required number ** of VDBE ops have been executed (either since this invocation of ** sqlite3VdbeExec() or since last time the progress callback was called). ** If the progress callback returns non-zero, exit the virtual machine with ** a return code SQLITE_ABORT. */ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ assert( db->nProgressOps!=0 ); nProgressLimit += db->nProgressOps; if( db->xProgress(db->pProgressArg) ){ nProgressLimit = LARGEST_UINT64; rc = SQLITE_INTERRUPT; goto abort_due_to_error; } } #endif break; } /* Opcode: Gosub P1 P2 * * * ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = (int)(pOp-aOp); REGISTER_TRACE(pOp->p1, pIn1); goto jump_to_p2_and_check_for_interrupt; } /* Opcode: Return P1 P2 P3 * * ** ** Jump to the address stored in register P1. If P1 is a return address ** register, then this accomplishes a return from a subroutine. ** ** If P3 is 1, then the jump is only taken if register P1 holds an integer ** values, otherwise execution falls through to the next opcode, and the ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an ** integer or else an assert() is raised. P3 should be set to 1 when ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 ** otherwise. ** ** The value in register P1 is unchanged by this opcode. ** ** P2 is not used by the byte-code engine. However, if P2 is positive ** and also less than the current address, then the "EXPLAIN" output ** formatter in the CLI will indent all opcodes from the P2 opcode up ** to be not including the current Return. P2 should be the first opcode ** in the subroutine from which this opcode is returning. Thus the P2 ** value is a byte-code indentation hint. See tag-20220407a in ** wherecode.c and shell.c. */ case OP_Return: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Int ){ if( pOp->p3 ){ VdbeBranchTaken(1, 2); } pOp = &aOp[pIn1->u.i]; }else if( ALWAYS(pOp->p3) ){ VdbeBranchTaken(0, 2); } break; } /* Opcode: InitCoroutine P1 P2 P3 * * ** ** Set up register P1 so that it will Yield to the coroutine ** located at address P3. ** ** If P2!=0 then the coroutine implementation immediately follows ** this opcode. So jump over the coroutine implementation to ** address P2. ** ** See also: EndCoroutine */ case OP_InitCoroutine: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( pOp->p2>=0 && pOp->p2nOp ); assert( pOp->p3>=0 && pOp->p3nOp ); pOut = &aMem[pOp->p1]; assert( !VdbeMemDynamic(pOut) ); pOut->u.i = pOp->p3 - 1; pOut->flags = MEM_Int; if( pOp->p2==0 ) break; /* Most jump operations do a goto to this spot in order to update ** the pOp pointer. */ jump_to_p2: assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ assert( pOp->p2nOp ); /* Jumps must be in range */ pOp = &aOp[pOp->p2 - 1]; break; } /* Opcode: EndCoroutine P1 * * * * ** ** The instruction at the address in register P1 is a Yield. ** Jump to the P2 parameter of that Yield. ** After the jump, register P1 becomes undefined. ** ** See also: InitCoroutine */ case OP_EndCoroutine: { /* in1 */ VdbeOp *pCaller; pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); assert( pIn1->u.i>=0 && pIn1->u.inOp ); pCaller = &aOp[pIn1->u.i]; assert( pCaller->opcode==OP_Yield ); assert( pCaller->p2>=0 && pCaller->p2nOp ); pOp = &aOp[pCaller->p2 - 1]; pIn1->flags = MEM_Undefined; break; } /* Opcode: Yield P1 P2 * * * ** ** Swap the program counter with the value in register P1. This ** has the effect of yielding to a coroutine. ** ** If the coroutine that is launched by this instruction ends with ** Yield or Return then continue to the next instruction. But if ** the coroutine launched by this instruction ends with ** EndCoroutine, then jump to P2 rather than continuing with the ** next instruction. ** ** See also: InitCoroutine */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; pIn1->u.i = (int)(pOp - aOp); REGISTER_TRACE(pOp->p1, pIn1); pOp = &aOp[pcDest]; break; } /* Opcode: HaltIfNull P1 P2 P3 P4 P5 ** Synopsis: if r[P3]=null halt ** ** Check the value in register P3. If it is NULL then Halt using ** parameter P1, P2, and P4 as if this were a Halt instruction. If the ** value in register P3 is not NULL, then this routine is a no-op. ** The P5 parameter should be 1. */ case OP_HaltIfNull: { /* in3 */ pIn3 = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } #endif if( (pIn3->flags & MEM_Null)==0 ) break; /* Fall through into OP_Halt */ /* no break */ deliberate_fall_through } /* Opcode: Halt P1 P2 * P4 P5 ** ** Exit immediately. All open cursors, etc are closed ** automatically. ** ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). ** For errors, it can be some other value. If P1!=0 then P2 will determine ** whether or not to rollback the current transaction. Do not rollback ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, ** then back out all changes that have occurred during this execution of the ** VDBE, but do not rollback the transaction. ** ** If P4 is not null then it is an error message string. ** ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. ** ** 0: (no change) ** 1: NOT NULL constraint failed: P4 ** 2: UNIQUE constraint failed: P4 ** 3: CHECK constraint failed: P4 ** 4: FOREIGN KEY constraint failed: P4 ** ** If P5 is not zero and P4 is NULL, then everything after the ":" is ** omitted. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { VdbeFrame *pFrame; int pcx; #ifdef SQLITE_DEBUG if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } #endif /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates ** something is wrong with the code generator. Raise an assertion in order ** to bring this to the attention of fuzzers and other testing tools. */ assert( pOp->p1!=SQLITE_INTERNAL ); if( p->pFrame && pOp->p1==SQLITE_OK ){ /* Halt the sub-program. Return control to the parent frame. */ pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pcx = sqlite3VdbeFrameRestore(pFrame); if( pOp->p2==OE_Ignore ){ /* Instruction pcx is the OP_Program that invoked the sub-program ** currently being halted. If the p2 instruction of this OP_Halt ** instruction is set to OE_Ignore, then the sub-program is throwing ** an IGNORE exception. In this case jump to the address specified ** as the p2 of the calling OP_Program. */ pcx = p->aOp[pcx].p2-1; } aOp = p->aOp; aMem = p->aMem; pOp = &aOp[pcx]; break; } p->rc = pOp->p1; p->errorAction = (u8)pOp->p2; assert( pOp->p5<=4 ); if( p->rc ){ if( pOp->p5 ){ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", "FOREIGN KEY" }; testcase( pOp->p5==1 ); testcase( pOp->p5==2 ); testcase( pOp->p5==3 ); testcase( pOp->p5==4 ); sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); if( pOp->p4.z ){ p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); } }else{ sqlite3VdbeError(p, "%s", pOp->p4.z); } pcx = (int)(pOp - aOp); sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); if( rc==SQLITE_BUSY ){ p->rc = SQLITE_BUSY; }else{ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; } goto vdbe_return; } /* Opcode: Integer P1 P2 * * * ** Synopsis: r[P2]=P1 ** ** The 32-bit integer value P1 is written into register P2. */ case OP_Integer: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = pOp->p1; break; } /* Opcode: Int64 * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit integer value. ** Write that value into register P2. */ case OP_Int64: { /* out2 */ pOut = out2Prerelease(p, pOp); assert( pOp->p4.pI64!=0 ); pOut->u.i = *pOp->p4.pI64; break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: Real * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit floating point value. ** Write that value into register P2. */ case OP_Real: { /* same as TK_FLOAT, out2 */ pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Real; assert( !sqlite3IsNaN(*pOp->p4.pReal) ); pOut->u.r = *pOp->p4.pReal; break; } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into a String opcode before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOp->p1 = sqlite3Strlen30(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); if( rc ) goto too_big; if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); assert( VdbeMemDynamic(pOut)==0 ); pOut->szMalloc = 0; pOut->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3DbFree(db, pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pOut->z; pOp->p1 = pOut->n; } #endif if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } pOp->opcode = OP_String; assert( rc==SQLITE_OK ); /* Fall through to the next case, OP_String */ /* no break */ deliberate_fall_through } /* Opcode: String P1 P2 P3 P4 P5 ** Synopsis: r[P2]='P4' (len=P1) ** ** The string value P4 of length P1 (bytes) is stored in register P2. ** ** If P3 is not zero and the content of register P3 is equal to P5, then ** the datatype of the register P2 is converted to BLOB. The content is ** the same sequence of bytes, it is merely interpreted as a BLOB instead ** of a string, as if it had been CAST. In other words: ** ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) */ case OP_String: { /* out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( pOp->p3>0 ){ assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pIn3 = &aMem[pOp->p3]; assert( pIn3->flags & MEM_Int ); if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; } #endif break; } /* Opcode: BeginSubrtn * P2 * * * ** Synopsis: r[P2]=NULL ** ** Mark the beginning of a subroutine that can be entered in-line ** or that can be called using OP_Gosub. The subroutine should ** be terminated by an OP_Return instruction that has a P1 operand that ** is the same as the P2 operand to this opcode and that has P3 set to 1. ** If the subroutine is entered in-line, then the OP_Return will simply ** fall through. But if the subroutine is entered using OP_Gosub, then ** the OP_Return will jump back to the first instruction after the OP_Gosub. ** ** This routine works by loading a NULL into the P2 register. When the ** return address register contains a NULL, the OP_Return instruction is ** a no-op that simply falls through to the next instruction (assuming that ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is ** entered in-line, then the OP_Return will cause in-line execution to ** continue. But if the subroutine is entered via OP_Gosub, then the ** OP_Return will cause a return to the address following the OP_Gosub. ** ** This opcode is identical to OP_Null. It has a different name ** only to make the byte code easier to read and verify. */ /* Opcode: Null P1 P2 P3 * * ** Synopsis: r[P2..P3]=NULL ** ** Write a NULL into registers P2. If P3 greater than P2, then also write ** NULL into register P3 and every register in between P2 and P3. If P3 ** is less than P2 (typically P3 is zero) then only register P2 is ** set to NULL. ** ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that ** NULL values will not compare equal even if SQLITE_NULLEQ is set on ** OP_Ne or OP_Eq. */ case OP_BeginSubrtn: case OP_Null: { /* out2 */ int cnt; u16 nullFlag; pOut = out2Prerelease(p, pOp); cnt = pOp->p3-pOp->p2; assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; pOut->n = 0; #ifdef SQLITE_DEBUG pOut->uTemp = 0; #endif while( cnt>0 ){ pOut++; memAboutToChange(p, pOut); sqlite3VdbeMemSetNull(pOut); pOut->flags = nullFlag; pOut->n = 0; cnt--; } break; } /* Opcode: SoftNull P1 * * * * ** Synopsis: r[P1]=NULL ** ** Set register P1 to have the value NULL as seen by the OP_MakeRecord ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pOut = &aMem[pOp->p1]; pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. If P4 is a NULL pointer, then construct ** a zero-filled blob that is P1 bytes long in P2. */ case OP_Blob: { /* out2 */ assert( pOp->p1 <= SQLITE_MAX_LENGTH ); pOut = out2Prerelease(p, pOp); if( pOp->p4.z==0 ){ sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; }else{ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); } pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Variable P1 P2 * P4 * ** Synopsis: r[P2]=parameter(P1,P4) ** ** Transfer the values of bound parameter P1 into register P2 ** ** If the parameter is named, then its name appears in P4. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { /* out2 */ Mem *pVar; /* Value being transferred */ assert( pOp->p1>0 && pOp->p1<=p->nVar ); assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); pVar = &p->aVar[pOp->p1 - 1]; if( sqlite3VdbeMemTooBig(pVar) ){ goto too_big; } pOut = &aMem[pOp->p2]; if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); memcpy(pOut, pVar, MEMCELLSIZE); pOut->flags &= ~(MEM_Dyn|MEM_Ephem); pOut->flags |= MEM_Static|MEM_FromBind; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Move P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] ** ** Move the P3 values in register P1..P1+P3-1 over into ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are ** left holding a NULL. It is an error for register ranges ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error ** for P3 to be less than 1. */ case OP_Move: { int n; /* Number of registers left to copy */ int p1; /* Register to copy from */ int p2; /* Register to copy to */ n = pOp->p3; p1 = pOp->p1; p2 = pOp->p2; assert( n>0 && p1>0 && p2>0 ); assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); sqlite3VdbeMemMove(pOut, pIn1); #ifdef SQLITE_DEBUG pIn1->pScopyFrom = 0; { int i; for(i=1; inMem; i++){ if( aMem[i].pScopyFrom==pIn1 ){ aMem[i].pScopyFrom = pOut; } } } #endif Deephemeralize(pOut); REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; }while( --n ); break; } /* Opcode: Copy P1 P2 P3 * P5 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] ** ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. ** ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot ** be merged. The 0x0001 bit is used by the query planner and does not ** come into play during query execution. ** ** This instruction makes a deep copy of the value. A duplicate ** is made of any string or blob constant. See also OP_SCopy. */ case OP_Copy: { int n; n = pOp->p3; pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); while( 1 ){ memAboutToChange(p, pOut); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); Deephemeralize(pOut); if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ pOut->flags &= ~MEM_Subtype; } #ifdef SQLITE_DEBUG pOut->pScopyFrom = 0; #endif REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); if( (n--)==0 ) break; pOut++; pIn1++; } break; } /* Opcode: SCopy P1 P2 * * * ** Synopsis: r[P2]=r[P1] ** ** Make a shallow copy of register P1 into register P2. ** ** This instruction makes a shallow copy of the value. If the value ** is a string or blob, then the copy is only a pointer to the ** original and hence if the original changes so will the copy. ** Worse, if the original is deallocated, the copy becomes invalid. ** Thus the program must guarantee that the original will not change ** during the lifetime of the copy. Use OP_Copy to make a complete ** copy. */ case OP_SCopy: { /* out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); #ifdef SQLITE_DEBUG pOut->pScopyFrom = pIn1; pOut->mScopyFlags = pIn1->flags; #endif break; } /* Opcode: IntCopy P1 P2 * * * ** Synopsis: r[P2]=r[P1] ** ** Transfer the integer value held in register P1 into register P2. ** ** This is an optimized version of SCopy that works only for integer ** values. */ case OP_IntCopy: { /* out2 */ pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Int)!=0 ); pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); break; } /* Opcode: FkCheck * * * * * ** ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved ** foreign key constraint violations. If there are no foreign key ** constraint violations, this is a no-op. ** ** FK constraint violations are also checked when the prepared statement ** exits. This opcode is used to raise foreign key constraint errors prior ** to returning results such as a row change count or the result of a ** RETURNING clause. */ case OP_FkCheck: { if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ goto abort_due_to_error; } break; } /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt ** structure to provide access to the r(P1)..r(P1+P2-1) values as ** the result row. */ case OP_ResultRow: { assert( p->nResColumn==pOp->p2 ); assert( pOp->p1>0 || CORRUPT_DB ); assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); p->cacheCtr = (p->cacheCtr + 2)|1; p->pResultRow = &aMem[pOp->p1]; #ifdef SQLITE_DEBUG { Mem *pMem = p->pResultRow; int i; for(i=0; ip2; i++){ assert( memIsValid(&pMem[i]) ); REGISTER_TRACE(pOp->p1+i, &pMem[i]); /* The registers in the result will not be used again when the ** prepared statement restarts. This is because sqlite3_column() ** APIs might have caused type conversions of made other changes to ** the register values. Therefore, we can go ahead and break any ** OP_SCopy dependencies. */ pMem[i].pScopyFrom = 0; } } #endif if( db->mallocFailed ) goto no_mem; if( db->mTrace & SQLITE_TRACE_ROW ){ db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); } p->pc = (int)(pOp - aOp) + 1; rc = SQLITE_ROW; goto vdbe_return; } /* Opcode: Concat P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]+r[P1] ** ** Add the text in register P1 onto the end of the text in ** register P2 and store the result in register P3. ** If either the P1 or P2 text are NULL then store NULL in P3. ** ** P3 = P2 || P1 ** ** It is illegal for P1 and P3 to be the same register. Sometimes, ** if P3 is the same register as P2, the implementation is able ** to avoid a memcpy(). */ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ i64 nByte; /* Total size of the output string or blob */ u16 flags1; /* Initial flags for P1 */ u16 flags2; /* Initial flags for P2 */ pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; testcase( pOut==pIn2 ); assert( pIn1!=pOut ); flags1 = pIn1->flags; testcase( flags1 & MEM_Null ); testcase( pIn2->flags & MEM_Null ); if( (flags1 | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; flags1 = pIn1->flags & ~MEM_Str; }else if( (flags1 & MEM_Zero)!=0 ){ if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; flags1 = pIn1->flags & ~MEM_Str; } flags2 = pIn2->flags; if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; flags2 = pIn2->flags & ~MEM_Str; }else if( (flags2 & MEM_Zero)!=0 ){ if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; flags2 = pIn2->flags & ~MEM_Str; } nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ goto no_mem; } MemSetTypeFlag(pOut, MEM_Str); if( pOut!=pIn2 ){ memcpy(pOut->z, pIn2->z, pIn2->n); assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); pIn2->flags = flags2; } memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); pIn1->flags = flags1; if( encoding>SQLITE_UTF8 ) nByte &= ~1; pOut->z[nByte]=0; pOut->z[nByte+1] = 0; pOut->flags |= MEM_Term; pOut->n = (int)nByte; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Add P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]+r[P2] ** ** Add the value in register P1 to the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Multiply P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]*r[P2] ** ** ** Multiply the value in register P1 by the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Subtract P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]-r[P1] ** ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]/r[P1] ** ** Divide the value in register P1 by the value in register P2 ** and store the result in register P3 (P3=P2/P1). If the value in ** register P1 is zero, then the result is NULL. If either input is ** NULL, the result is NULL. */ /* Opcode: Remainder P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]%r[P1] ** ** Compute the remainder after integer register P2 is divided by ** register P1 and store the result in register P3. ** If the value in register P1 is zero the result is NULL. ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ u16 type1; /* Numeric type of left operand */ u16 type2; /* Numeric type of right operand */ i64 iA; /* Integer value of left operand */ i64 iB; /* Integer value of right operand */ double rA; /* Real value of left operand */ double rB; /* Real value of right operand */ pIn1 = &aMem[pOp->p1]; type1 = pIn1->flags; pIn2 = &aMem[pOp->p2]; type2 = pIn2->flags; pOut = &aMem[pOp->p3]; if( (type1 & type2 & MEM_Int)!=0 ){ int_math: iA = pIn1->u.i; iB = pIn2->u.i; switch( pOp->opcode ){ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; case OP_Divide: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; iB /= iA; break; } default: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else if( ((type1 | type2) & MEM_Null)!=0 ){ goto arithmetic_result_is_null; }else{ type1 = numericType(pIn1); type2 = numericType(pIn2); if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; fp_math: rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; case OP_Subtract: rB -= rA; break; case OP_Multiply: rB *= rA; break; case OP_Divide: { /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ if( rA==(double)0 ) goto arithmetic_result_is_null; rB /= rA; break; } default: { iA = sqlite3VdbeIntValue(pIn1); iB = sqlite3VdbeIntValue(pIn2); if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; rB = (double)(iB % iA); break; } } #ifdef SQLITE_OMIT_FLOATING_POINT pOut->u.i = rB; MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); #endif } break; arithmetic_result_is_null: sqlite3VdbeMemSetNull(pOut); break; } /* Opcode: CollSeq P1 * * P4 ** ** P4 is a pointer to a CollSeq object. If the next call to a user function ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will ** be returned. This is used by the built-in min(), max() and nullif() ** functions. ** ** If P1 is not zero, then it is a register that a subsequent min() or ** max() aggregate will set to 1 if the current row is not the minimum or ** maximum. The P1 register is initialized to 0 by this instruction. ** ** The interface used by the implementation of the aforementioned functions ** to retrieve the collation sequence set by this opcode is not available ** publicly. Only built-in functions have access to this feature. */ case OP_CollSeq: { assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and ** store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: BitOr P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]|r[P2] ** ** Take the bit-wise OR of the values in register P1 and P2 and ** store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: ShiftLeft P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]<>r[P1] ** ** Shift the integer value in register P2 to the right by the ** number of bits specified by the integer in register P1. ** Store the result in register P3. ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ i64 iA; u64 uA; i64 iB; u8 op; pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } iA = sqlite3VdbeIntValue(pIn2); iB = sqlite3VdbeIntValue(pIn1); op = pOp->opcode; if( op==OP_BitAnd ){ iA &= iB; }else if( op==OP_BitOr ){ iA |= iB; }else if( iB!=0 ){ assert( op==OP_ShiftRight || op==OP_ShiftLeft ); /* If shifting by a negative amount, shift in the other direction */ if( iB<0 ){ assert( OP_ShiftRight==OP_ShiftLeft+1 ); op = 2*OP_ShiftLeft + 1 - op; iB = iB>(-64) ? -iB : 64; } if( iB>=64 ){ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; }else{ memcpy(&uA, &iA, sizeof(uA)); if( op==OP_ShiftLeft ){ uA <<= iB; }else{ uA >>= iB; /* Sign-extend on a right shift of a negative number */ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); } memcpy(&iA, &uA, sizeof(iA)); } } pOut->u.i = iA; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: AddImm P1 P2 * * * ** Synopsis: r[P1]=r[P1]+P2 ** ** Add the constant P2 to the value in register P1. ** The result is always an integer. ** ** To force any register to be an integer, just add 0. */ case OP_AddImm: { /* in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); sqlite3VdbeMemIntegerify(pIn1); pIn1->u.i += pOp->p2; break; } /* Opcode: MustBeInt P1 P2 * * * ** ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ VdbeBranchTaken(1, 2); if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ goto jump_to_p2; } } } VdbeBranchTaken(0, 2); MemSetTypeFlag(pIn1, MEM_Int); break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: RealAffinity P1 * * * * ** ** If register P1 holds an integer convert it to a real value. ** ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemRealify(pIn1); REGISTER_TRACE(pOp->p1, pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: Cast P1 P2 * * * ** Synopsis: affinity(r[P1]) ** ** Force the value in register P1 to be the type defined by P2. ** **
      **
    • P2=='A' → BLOB **
    • P2=='B' → TEXT **
    • P2=='C' → NUMERIC **
    • P2=='D' → INTEGER **
    • P2=='E' → REAL **
    ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_Cast: { /* in1 */ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); testcase( pOp->p2==SQLITE_AFF_TEXT ); testcase( pOp->p2==SQLITE_AFF_BLOB ); testcase( pOp->p2==SQLITE_AFF_NUMERIC ); testcase( pOp->p2==SQLITE_AFF_INTEGER ); testcase( pOp->p2==SQLITE_AFF_REAL ); pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); rc = ExpandBlob(pIn1); if( rc ) goto abort_due_to_error; rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); if( rc ) goto abort_due_to_error; UPDATE_MAX_BLOBSIZE(pIn1); REGISTER_TRACE(pOp->p1, pIn1); break; } #endif /* SQLITE_OMIT_CAST */ /* Opcode: Eq P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]==r[P1] ** ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then ** jump to address P2. ** ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made ** to coerce both inputs according to this affinity before the ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric ** affinity is used. Note that the affinity conversions are stored ** back into the input registers P1 and P3. So this opcode can cause ** persistent changes to registers P1 and P3. ** ** Once any conversions have taken place, and neither value is NULL, ** the values are compared. If both values are blobs then memcmp() is ** used to determine the results of the comparison. If both values ** are text, then the appropriate collating function specified in ** P4 is used to do the comparison. If P4 is not specified then ** memcmp() is used to compare text string. If both values are ** numeric, then a numeric comparison is used. If the two values ** are of different types, then numbers are considered less than ** strings and strings are considered less than blobs. ** ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either ** true or false and is never NULL. If both operands are NULL then the result ** of comparison is true. If either operand is NULL then the result is false. ** If neither operand is NULL the result is the same as it would be if ** the SQLITE_NULLEQ flag were omitted from P5. ** ** This opcode saves the result of comparison for use by the new ** OP_Jump opcode. */ /* Opcode: Ne P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]!=r[P1] ** ** This works just like the Eq opcode except that the jump is taken if ** the operands in registers P1 and P3 are not equal. See the Eq opcode for ** additional information. */ /* Opcode: Lt P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]r[P1] ** ** This works just like the Lt opcode except that the jump is taken if ** the content of register P3 is greater than the content of ** register P1. See the Lt opcode for additional information. */ /* Opcode: Ge P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]>=r[P1] ** ** This works just like the Lt opcode except that the jump is taken if ** the content of register P3 is greater than or equal to the content of ** register P1. See the Lt opcode for additional information. */ case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ case OP_Ne: /* same as TK_NE, jump, in1, in3 */ case OP_Lt: /* same as TK_LT, jump, in1, in3 */ case OP_Le: /* same as TK_LE, jump, in1, in3 */ case OP_Gt: /* same as TK_GT, jump, in1, in3 */ case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ int res, res2; /* Result of the comparison of pIn1 against pIn3 */ char affinity; /* Affinity to use for comparison */ u16 flags1; /* Copy of initial value of pIn1->flags */ u16 flags3; /* Copy of initial value of pIn3->flags */ pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; flags1 = pIn1->flags; flags3 = pIn3->flags; if( (flags1 & flags3 & MEM_Int)!=0 ){ /* Common case of comparison of two integers */ if( pIn3->u.i > pIn1->u.i ){ if( sqlite3aGTb[pOp->opcode] ){ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); goto jump_to_p2; } iCompare = +1; VVA_ONLY( iCompareIsInit = 1; ) }else if( pIn3->u.i < pIn1->u.i ){ if( sqlite3aLTb[pOp->opcode] ){ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); goto jump_to_p2; } iCompare = -1; VVA_ONLY( iCompareIsInit = 1; ) }else{ if( sqlite3aEQb[pOp->opcode] ){ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); goto jump_to_p2; } iCompare = 0; VVA_ONLY( iCompareIsInit = 1; ) } VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); break; } if( (flags1 | flags3)&MEM_Null ){ /* One or both operands are NULL */ if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( (flags1 & MEM_Cleared)==0 ); assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); if( (flags1&flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Operands are equal */ }else{ res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ goto jump_to_p2; } iCompare = 1; /* Operands are not equal */ VVA_ONLY( iCompareIsInit = 1; ) break; } }else{ /* Neither operand is NULL and we couldn't do the special high-speed ** integer comparison case. So do a general-case comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn1,0); assert( flags3==pIn3->flags || CORRUPT_DB ); flags3 = pIn3->flags; } if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3,0); } } }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){ if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_Real ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn1, encoding, 1); testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; } if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_Real ); testcase( pIn3->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn3, encoding, 1); testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); } } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); } /* At this point, res is negative, zero, or positive if reg[P1] is ** less than, equal to, or greater than reg[P3], respectively. Compute ** the answer to this operator in res2, depending on what the comparison ** operator actually is. The next block of code depends on the fact ** that the 6 comparison operators are consecutive integers in this ** order: NE, EQ, GT, LE, LT, GE */ assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); if( res<0 ){ res2 = sqlite3aLTb[pOp->opcode]; }else if( res==0 ){ res2 = sqlite3aEQb[pOp->opcode]; }else{ res2 = sqlite3aGTb[pOp->opcode]; } iCompare = res; VVA_ONLY( iCompareIsInit = 1; ) /* Undo any changes made by applyAffinity() to the input registers. */ assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); pIn3->flags = flags3; assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); pIn1->flags = flags1; VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res2 ){ goto jump_to_p2; } break; } /* Opcode: ElseEq * P2 * * * ** ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There ** can be zero or more OP_ReleaseReg opcodes intervening, but no other ** opcodes are allowed to occur between this instruction and the previous ** OP_Lt or OP_Gt. ** ** If the result of an OP_Eq comparison on the same two operands as ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If ** the result of an OP_Eq comparison on the two previous operands ** would have been false or NULL, then fall through. */ case OP_ElseEq: { /* same as TK_ESCAPE, jump */ #ifdef SQLITE_DEBUG /* Verify the preconditions of this opcode - that it follows an OP_Lt or ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ int iAddr; for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); break; } #endif /* SQLITE_DEBUG */ assert( iCompareIsInit ); VdbeBranchTaken(iCompare==0, 2); if( iCompare==0 ) goto jump_to_p2; break; } /* Opcode: Permutation * * * P4 * ** ** Set the permutation used by the OP_Compare operator in the next ** instruction. The permutation is stored in the P4 operand. ** ** The permutation is only valid for the next opcode which must be ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. ** ** The first integer in the P4 integer array is the length of the array ** and does not become part of the permutation. */ case OP_Permutation: { assert( pOp->p4type==P4_INTARRAY ); assert( pOp->p4.ai ); assert( pOp[1].opcode==OP_Compare ); assert( pOp[1].p5 & OPFLAG_PERMUTE ); break; } /* Opcode: Compare P1 P2 P3 P4 P5 ** Synopsis: r[P1@P3] <-> r[P2@P3] ** ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of ** the comparison for use by the next OP_Jump instruct. ** ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is ** determined by the most recent OP_Permutation operator. If the ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential ** order. ** ** P4 is a KeyInfo structure that defines collating sequences and sort ** orders for the comparison. The permutation applies to registers ** only. The KeyInfo elements are used sequentially. ** ** The comparison is a sort comparison, so NULLs compare equal, ** NULLs are less than numbers, numbers are less than strings, ** and strings are less than blobs. ** ** This opcode must be immediately followed by an OP_Jump opcode. */ case OP_Compare: { int n; int i; int p1; int p2; const KeyInfo *pKeyInfo; u32 idx; CollSeq *pColl; /* Collating sequence to use on this term */ int bRev; /* True for DESCENDING sort order */ u32 *aPermute; /* The permutation */ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ aPermute = 0; }else{ assert( pOp>aOp ); assert( pOp[-1].opcode==OP_Permutation ); assert( pOp[-1].p4type==P4_INTARRAY ); aPermute = pOp[-1].p4.ai + 1; assert( aPermute!=0 ); } n = pOp->p3; pKeyInfo = pOp->p4.pKeyInfo; assert( n>0 ); assert( pKeyInfo!=0 ); p1 = pOp->p1; p2 = pOp->p2; #ifdef SQLITE_DEBUG if( aPermute ){ int k, mx = 0; for(k=0; k(u32)mx ) mx = aPermute[k]; assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); }else{ assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); } #endif /* SQLITE_DEBUG */ for(i=0; inKeyField ); pColl = pKeyInfo->aColl[i]; bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); VVA_ONLY( iCompareIsInit = 1; ) if( iCompare ){ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) ){ iCompare = -iCompare; } if( bRev ) iCompare = -iCompare; break; } } assert( pOp[1].opcode==OP_Jump ); break; } /* Opcode: Jump P1 P2 P3 * * ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than, ** equal to, or greater than the P2 vector, respectively. ** ** This opcode must immediately follow an OP_Compare opcode. */ case OP_Jump: { /* jump */ assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); assert( iCompareIsInit ); if( iCompare<0 ){ VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; }else if( iCompare==0 ){ VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; }else{ VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; } break; } /* Opcode: And P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] && r[P2]) ** ** Take the logical AND of the values in registers P1 and P2 and ** write the result into register P3. ** ** If either P1 or P2 is 0 (false) then the result is 0 even if ** the other input is NULL. A NULL and true or two NULLs give ** a NULL output. */ /* Opcode: Or P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] || r[P2]) ** ** Take the logical OR of the values in register P1 and P2 and ** store the answer in register P3. ** ** If either P1 or P2 is nonzero (true) then the result is 1 (true) ** even if the other input is NULL. A NULL and false or two NULLs ** give a NULL output. */ case OP_And: /* same as TK_AND, in1, in2, out3 */ case OP_Or: { /* same as TK_OR, in1, in2, out3 */ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = or_logic[v1*3+v2]; } pOut = &aMem[pOp->p3]; if( v1==2 ){ MemSetTypeFlag(pOut, MEM_Null); }else{ pOut->u.i = v1; MemSetTypeFlag(pOut, MEM_Int); } break; } /* Opcode: IsTrue P1 P2 P3 P4 * ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 ** ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and ** IS NOT FALSE operators. ** ** Interpret the value in register P1 as a boolean value. Store that ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is ** NULL, then the P3 is stored in register P2. Invert the answer if P4 ** is 1. ** ** The logic is summarized like this: ** **
      **
    • If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE **
    • If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE **
    • If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE **
    • If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE **
    */ case OP_IsTrue: { /* in1, out2 */ assert( pOp->p4type==P4_INT32 ); assert( pOp->p4.i==0 || pOp->p4.i==1 ); assert( pOp->p3==0 || pOp->p3==1 ); sqlite3VdbeMemSetInt64(&aMem[pOp->p2], sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); break; } /* Opcode: Not P1 P2 * * * ** Synopsis: r[P2]= !r[P1] ** ** Interpret the value in register P1 as a boolean value. Store the ** boolean complement in register P2. If the value in register P1 is ** NULL, then a NULL is stored in P2. */ case OP_Not: { /* same as TK_NOT, in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; if( (pIn1->flags & MEM_Null)==0 ){ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); }else{ sqlite3VdbeMemSetNull(pOut); } break; } /* Opcode: BitNot P1 P2 * * * ** Synopsis: r[P2]= ~r[P1] ** ** Interpret the content of register P1 as an integer. Store the ** ones-complement of the P1 value into register P2. If P1 holds ** a NULL then store a NULL in P2. */ case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetNull(pOut); if( (pIn1->flags & MEM_Null)==0 ){ pOut->flags = MEM_Int; pOut->u.i = ~sqlite3VdbeIntValue(pIn1); } break; } /* Opcode: Once P1 P2 * * * ** ** Fall through to the next instruction the first time this opcode is ** encountered on each invocation of the byte-code program. Jump to P2 ** on the second and all subsequent encounters during the same invocation. ** ** Top-level programs determine first invocation by comparing the P1 ** operand against the P1 operand on the OP_Init opcode at the beginning ** of the program. If the P1 values differ, then fall through and make ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are ** the same then take the jump. ** ** For subprograms, there is a bitmask in the VdbeFrame that determines ** whether or not the jump should be taken. The bitmask is necessary ** because the self-altering code trick does not work for recursive ** triggers. */ case OP_Once: { /* jump */ u32 iAddr; /* Address of this instruction */ assert( p->aOp[0].opcode==OP_Init ); if( p->pFrame ){ iAddr = (int)(pOp - p->aOp); if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ VdbeBranchTaken(1, 2); goto jump_to_p2; } p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); }else{ if( p->aOp[0].p1==pOp->p1 ){ VdbeBranchTaken(1, 2); goto jump_to_p2; } } VdbeBranchTaken(0, 2); pOp->p1 = p->aOp[0].p1; break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value ** is considered true if it is numeric and non-zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ case OP_If: { /* jump, in1 */ int c; c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); VdbeBranchTaken(c!=0, 2); if( c ) goto jump_to_p2; break; } /* Opcode: IfNot P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is False. The value ** is considered false if it has a numeric value of zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ case OP_IfNot: { /* jump, in1 */ int c; c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); VdbeBranchTaken(c!=0, 2); if( c ) goto jump_to_p2; break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); if( (pIn1->flags & MEM_Null)!=0 ){ goto jump_to_p2; } break; } /* Opcode: IsType P1 P2 P3 P4 P5 ** Synopsis: if typeof(P1.P3) in P5 goto P2 ** ** Jump to P2 if the type of a column in a btree is one of the types specified ** by the P5 bitmask. ** ** P1 is normally a cursor on a btree for which the row decode cache is ** valid through at least column P3. In other words, there should have been ** a prior OP_Column for column P3 or greater. If the cursor is not valid, ** then this opcode might give spurious results. ** The the btree row has fewer than P3 columns, then use P4 as the ** datatype. ** ** If P1 is -1, then P3 is a register number and the datatype is taken ** from the value in that register. ** ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04. ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10. ** ** WARNING: This opcode does not reliably distinguish between NULL and REAL ** when P1>=0. If the database contains a NaN value, this opcode will think ** that the datatype is REAL when it should be NULL. When P1<0 and the value ** is already stored in register P3, then this opcode does reliably ** distinguish between NULL and REAL. The problem only arises then P1>=0. ** ** Take the jump to address P2 if and only if the datatype of the ** value determined by P1 and P3 corresponds to one of the bits in the ** P5 bitmask. ** */ case OP_IsType: { /* jump */ VdbeCursor *pC; u16 typeMask; u32 serialType; assert( pOp->p1>=(-1) && pOp->p1nCursor ); assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) ); if( pOp->p1>=0 ){ pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pOp->p3>=0 ); if( pOp->p3nHdrParsed ){ serialType = pC->aType[pOp->p3]; if( serialType>=12 ){ if( serialType&1 ){ typeMask = 0x04; /* SQLITE_TEXT */ }else{ typeMask = 0x08; /* SQLITE_BLOB */ } }else{ static const unsigned char aMask[] = { 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2, 0x01, 0x01, 0x10, 0x10 }; testcase( serialType==0 ); testcase( serialType==1 ); testcase( serialType==2 ); testcase( serialType==3 ); testcase( serialType==4 ); testcase( serialType==5 ); testcase( serialType==6 ); testcase( serialType==7 ); testcase( serialType==8 ); testcase( serialType==9 ); testcase( serialType==10 ); testcase( serialType==11 ); typeMask = aMask[serialType]; } }else{ typeMask = 1 << (pOp->p4.i - 1); testcase( typeMask==0x01 ); testcase( typeMask==0x02 ); testcase( typeMask==0x04 ); testcase( typeMask==0x08 ); testcase( typeMask==0x10 ); } }else{ assert( memIsValid(&aMem[pOp->p3]) ); typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1); testcase( typeMask==0x01 ); testcase( typeMask==0x02 ); testcase( typeMask==0x04 ); testcase( typeMask==0x08 ); testcase( typeMask==0x10 ); } VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2); if( typeMask & pOp->p5 ){ goto jump_to_p2; } break; } /* Opcode: ZeroOrNull P1 P2 P3 * * ** Synopsis: r[P2] = 0 OR NULL ** ** If both registers P1 and P3 are NOT NULL, then store a zero in ** register P2. If either registers P1 or P3 are NULL then put ** a NULL in register P2. */ case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ if( (aMem[pOp->p1].flags & MEM_Null)!=0 || (aMem[pOp->p3].flags & MEM_Null)!=0 ){ sqlite3VdbeMemSetNull(aMem + pOp->p2); }else{ sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ goto jump_to_p2; } break; } /* Opcode: IfNullRow P1 P2 P3 * * ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 ** ** Check the cursor P1 to see if it is currently pointing at a NULL row. ** If it is, then set register P3 to NULL and jump immediately to P2. ** If P1 is not on a NULL row, then fall through without making any ** changes. ** ** If P1 is not an open cursor, then this opcode is a no-op. */ case OP_IfNullRow: { /* jump */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; if( pC && pC->nullRow ){ sqlite3VdbeMemSetNull(aMem + pOp->p3); goto jump_to_p2; } break; } #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC /* Opcode: Offset P1 P2 P3 * * ** Synopsis: r[P3] = sqlite_offset(P1) ** ** Store in register r[P3] the byte offset into the database file that is the ** start of the payload for the record at which that cursor P1 is currently ** pointing. ** ** P2 is the column number for the argument to the sqlite_offset() function. ** This opcode does not use P2 itself, but the P2 value is used by the ** code generator. The P1, P2, and P3 operands to this opcode are the ** same as for OP_Column. ** ** This opcode is only available if SQLite is compiled with the ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. */ case OP_Offset: { /* out3 */ VdbeCursor *pC; /* The VDBE cursor */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; pOut = &p->aMem[pOp->p3]; if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ sqlite3VdbeMemSetNull(pOut); }else{ if( pC->deferredMoveto ){ rc = sqlite3VdbeFinishMoveto(pC); if( rc ) goto abort_due_to_error; } if( sqlite3BtreeEof(pC->uc.pCursor) ){ sqlite3VdbeMemSetNull(pOut); }else{ sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); } } break; } #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ /* Opcode: Column P1 P2 P3 P4 P5 ** Synopsis: r[P3]=PX cursor P1 column P2 ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Extract the P2-th column ** from this record. If there are less than (P2+1) ** values in the record, extract a NULL. ** ** The value extracted is stored in register P3. ** ** If the record contains fewer than P2 fields, then extract a NULL. Or, ** if the P4 argument is a P4_MEM use the value of the P4 argument as ** the result. ** ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed ** to only be used by the length() function or the equivalent. The content ** of large blobs is not loaded, thus saving CPU cycles. If the ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the ** typeof() function or the IS NULL or IS NOT NULL operators or the ** equivalent. In this case, all content loading can be omitted. */ case OP_Column: { /* ncycle */ u32 p2; /* column number to retrieve */ VdbeCursor *pC; /* The VDBE cursor */ BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ const u8 *zData; /* Part of the record being decoded */ const u8 *zHdr; /* Next unparsed byte of the header */ const u8 *zEndHdr; /* Pointer to first byte after the header */ u64 offset64; /* 64-bit offset */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pC = p->apCsr[pOp->p1]; p2 = (u32)pOp->p2; op_column_restart: assert( pC!=0 ); assert( p2<(u32)pC->nField || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); aOffset = pC->aOffset; assert( aOffset==pC->aType+pC->nField ); assert( pC->eCurType!=CURTYPE_VTAB ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); assert( pC->eCurType!=CURTYPE_SORTER ); if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ if( pC->nullRow ){ if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ /* For the special case of as pseudo-cursor, the seekResult field ** identifies the register that holds the record */ pReg = &aMem[pC->seekResult]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = pReg->n; pC->aRow = (u8*)pReg->z; }else{ pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); sqlite3VdbeMemSetNull(pDest); goto op_column_out; } }else{ pCrsr = pC->uc.pCursor; if( pC->deferredMoveto ){ u32 iMap; assert( !pC->isEphemeral ); if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ pC = pC->pAltCursor; p2 = iMap - 1; goto op_column_restart; } rc = sqlite3VdbeFinishMoveto(pC); if( rc ) goto abort_due_to_error; }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ rc = sqlite3VdbeHandleMovedCursor(pC); if( rc ) goto abort_due_to_error; goto op_column_restart; } assert( pC->eCurType==CURTYPE_BTREE ); assert( pCrsr ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); assert( pC->szRow<=pC->payloadSize ); assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ } pC->cacheStatus = p->cacheCtr; if( (aOffset[0] = pC->aRow[0])<0x80 ){ pC->iHdrOffset = 1; }else{ pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); } pC->nHdrParsed = 0; if( pC->szRowaRow does not have to hold the entire row, but it does at least ** need to cover the header of the record. If pC->aRow does not contain ** the complete header, then set it to zero, forcing the header to be ** dynamically allocated. */ pC->aRow = 0; pC->szRow = 0; /* Make sure a corrupt database has not given us an oversize header. ** Do this now to avoid an oversize memory allocation. ** ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte ** types use so much data space that there can only be 4096 and 32 of ** them, respectively. So the maximum header length results from a ** 3-byte type for each of the maximum of 32768 columns plus three ** extra bytes for the header length itself. 32768*3 + 3 = 98307. */ if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ goto op_column_corrupt; } }else{ /* This is an optimization. By skipping over the first few tests ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a ** measurable performance gain. ** ** This branch is taken even if aOffset[0]==0. Such a record is never ** generated by SQLite, and could be considered corruption, but we ** accept it for historical reasons. When aOffset[0]==0, the code this ** branch jumps to reads past the end of the record, but never more ** than a few bytes. Even if the record occurs at the end of the page ** content area, the "page header" comes after the page content and so ** this overread is harmless. Similar overreads can occur for a corrupt ** database file. */ zData = pC->aRow; assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ testcase( aOffset[0]==0 ); goto op_column_read_header; } }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ rc = sqlite3VdbeHandleMovedCursor(pC); if( rc ) goto abort_due_to_error; goto op_column_restart; } /* Make sure at least the first p2+1 entries of the header have been ** parsed and valid information is in aOffset[] and pC->aType[]. */ if( pC->nHdrParsed<=p2 ){ /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ if( pC->iHdrOffsetaRow==0 ){ memset(&sMem, 0, sizeof(sMem)); rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); if( rc!=SQLITE_OK ) goto abort_due_to_error; zData = (u8*)sMem.z; }else{ zData = pC->aRow; } /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ op_column_read_header: i = pC->nHdrParsed; offset64 = aOffset[i]; zHdr = zData + pC->iHdrOffset; zEndHdr = zData + aOffset[0]; testcase( zHdr>=zEndHdr ); do{ if( (pC->aType[i] = t = zHdr[0])<0x80 ){ zHdr++; offset64 += sqlite3VdbeOneByteSerialTypeLen(t); }else{ zHdr += sqlite3GetVarint32(zHdr, &t); pC->aType[i] = t; offset64 += sqlite3VdbeSerialTypeLen(t); } aOffset[++i] = (u32)(offset64 & 0xffffffff); }while( (u32)i<=p2 && zHdr=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) || (offset64 > pC->payloadSize) ){ if( aOffset[0]==0 ){ i = 0; zHdr = zEndHdr; }else{ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); goto op_column_corrupt; } } pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); }else{ t = 0; } /* If after trying to extract new entries from the header, nHdrParsed is ** still not up to p2, that means that the record has fewer than p2 ** columns. So the result will be either the default value or a NULL. */ if( pC->nHdrParsed<=p2 ){ pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ sqlite3VdbeMemSetNull(pDest); } goto op_column_out; } }else{ t = pC->aType[p2]; } /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are ** all valid. */ assert( p2nHdrParsed ); assert( rc==SQLITE_OK ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( sqlite3VdbeCheckMemInvariants(pDest) ); if( VdbeMemDynamic(pDest) ){ sqlite3VdbeMemSetNull(pDest); } assert( t==pC->aType[p2] ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ zData = pC->aRow + aOffset[p2]; if( t<12 ){ sqlite3VdbeSerialGet(zData, t, pDest); }else{ /* If the column value is a string, we need a persistent value, not ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). */ static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; pDest->n = len = (t-12)/2; pDest->enc = encoding; if( pDest->szMalloc < len+2 ){ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; pDest->flags = MEM_Null; if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; }else{ pDest->z = pDest->zMalloc; } memcpy(pDest->z, zData, len); pDest->z[len] = 0; pDest->z[len+1] = 0; pDest->flags = aFlag[t&1]; } }else{ u8 p5; pDest->enc = encoding; assert( pDest->db==db ); /* This branch happens only when content is on overflow pages */ if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0 && (p5==OPFLAG_TYPEOFARG || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG)) ) ) || sqlite3VdbeSerialTypeLen(t)==0 ){ /* Content is irrelevant for ** 1. the typeof() function, ** 2. the length(X) function if X is a blob, and ** 3. if the content length is zero. ** So we might as well use bogus content rather than reading ** content from disk. ** ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the ** buffer passed to it, debugging function VdbeMemPrettyPrint() may ** read more. Use the global constant sqlite3CtypeMap[] as the array, ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) ** and it begins with a bunch of zeros. */ sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); }else{ rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], p->cacheCtr, colCacheCtr, pDest); if( rc ){ if( rc==SQLITE_NOMEM ) goto no_mem; if( rc==SQLITE_TOOBIG ) goto too_big; goto abort_due_to_error; } } } op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; op_column_corrupt: if( aOp[0].p3>0 ){ pOp = &aOp[aOp[0].p3-1]; break; }else{ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } } /* Opcode: TypeCheck P1 P2 P3 P4 * ** Synopsis: typecheck(r[P1@P2]) ** ** Apply affinities to the range of P2 registers beginning with P1. ** Take the affinities from the Table object in P4. If any value ** cannot be coerced into the correct type, then raise an error. ** ** This opcode is similar to OP_Affinity except that this opcode ** forces the register type to the Table column type. This is used ** to implement "strict affinity". ** ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 ** is zero. When P3 is non-zero, no type checking occurs for ** static generated columns. Virtual columns are computed at query time ** and so they are never checked. ** ** Preconditions: ** **
      **
    • P2 should be the number of non-virtual columns in the ** table of P4. **
    • Table P4 should be a STRICT table. **
    ** ** If any precondition is false, an assertion fault occurs. */ case OP_TypeCheck: { Table *pTab; Column *aCol; int i; assert( pOp->p4type==P4_TABLE ); pTab = pOp->p4.pTab; assert( pTab->tabFlags & TF_Strict ); assert( pTab->nNVCol==pOp->p2 ); aCol = pTab->aCol; pIn1 = &aMem[pOp->p1]; for(i=0; inCol; i++){ if( aCol[i].colFlags & COLFLAG_GENERATED ){ if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; if( pOp->p3 ){ pIn1++; continue; } } assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); applyAffinity(pIn1, aCol[i].affinity, encoding); if( (pIn1->flags & MEM_Null)==0 ){ switch( aCol[i].eCType ){ case COLTYPE_BLOB: { if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; break; } case COLTYPE_INTEGER: case COLTYPE_INT: { if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; break; } case COLTYPE_TEXT: { if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; break; } case COLTYPE_REAL: { testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); assert( (pIn1->flags & MEM_IntReal)==0 ); if( pIn1->flags & MEM_Int ){ /* When applying REAL affinity, if the result is still an MEM_Int ** that will fit in 6 bytes, then change the type to MEM_IntReal ** so that we keep the high-resolution integer value but know that ** the type really wants to be REAL. */ testcase( pIn1->u.i==140737488355328LL ); testcase( pIn1->u.i==140737488355327LL ); testcase( pIn1->u.i==-140737488355328LL ); testcase( pIn1->u.i==-140737488355329LL ); if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ pIn1->flags |= MEM_IntReal; pIn1->flags &= ~MEM_Int; }else{ pIn1->u.r = (double)pIn1->u.i; pIn1->flags |= MEM_Real; pIn1->flags &= ~MEM_Int; } }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ goto vdbe_type_error; } break; } default: { /* COLTYPE_ANY. Accept anything. */ break; } } } REGISTER_TRACE((int)(pIn1-aMem), pIn1); pIn1++; } assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); break; vdbe_type_error: sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], pTab->zName, aCol[i].zCnName); rc = SQLITE_CONSTRAINT_DATATYPE; goto abort_due_to_error; } /* Opcode: Affinity P1 P2 * P4 * ** Synopsis: affinity(r[P1@P2]) ** ** Apply affinities to a range of P2 registers starting with P1. ** ** P4 is a string that is P2 characters long. The N-th character of the ** string indicates the column affinity that should be used for the N-th ** memory cell in the range. */ case OP_Affinity: { const char *zAffinity; /* The affinity to be applied */ zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( pOp->p2>0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( 1 /*exit-by-break*/ ){ assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); applyAffinity(pIn1, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ /* When applying REAL affinity, if the result is still an MEM_Int ** that will fit in 6 bytes, then change the type to MEM_IntReal ** so that we keep the high-resolution integer value but know that ** the type really wants to be REAL. */ testcase( pIn1->u.i==140737488355328LL ); testcase( pIn1->u.i==140737488355327LL ); testcase( pIn1->u.i==-140737488355328LL ); testcase( pIn1->u.i==-140737488355329LL ); if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ pIn1->flags |= MEM_IntReal; pIn1->flags &= ~MEM_Int; }else{ pIn1->u.r = (double)pIn1->u.i; pIn1->flags |= MEM_Real; pIn1->flags &= ~(MEM_Int|MEM_Str); } } REGISTER_TRACE((int)(pIn1-aMem), pIn1); zAffinity++; if( zAffinity[0]==0 ) break; pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * ** Synopsis: r[P3]=mkrec(r[P1@P2]) ** ** Convert P2 registers beginning with P1 into the [record format] ** use as a data record in a database table or as a key ** in an index. The OP_Column opcode can decode the record later. ** ** P4 may be a string that is P2 characters long. The N-th character of the ** string indicates the column affinity that should be used for the N-th ** field of the index key. ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** ** If P4 is NULL then all index fields have the affinity BLOB. ** ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM ** compile-time option is enabled: ** ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index ** of the right-most table that can be null-trimmed. ** ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to ** accept no-change records with serial_type 10. This value is ** only used inside an assert() and does not affect the end result. */ case OP_MakeRecord: { Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ i64 nZero; /* Number of zero bytes at the end of the record */ int nVarint; /* Number of bytes in a varint */ u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ u32 len; /* Length of a field */ u8 *zHdr; /* Where to write next byte of the header */ u8 *zPayload; /* Where to write next byte of the payload */ /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 ** and so forth. ** ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ nData = 0; /* Number of bytes of data space */ nHdr = 0; /* Number of bytes of header space */ nZero = 0; /* Number of zero bytes at the end of the record */ nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); pData0 = &aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; /* Identify the output register */ assert( pOp->p3p1 || pOp->p3>=pOp->p1+pOp->p2 ); pOut = &aMem[pOp->p3]; memAboutToChange(p, pOut); /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ applyAffinity(pRec, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ pRec->flags |= MEM_IntReal; pRec->flags &= ~(MEM_Int); } REGISTER_TRACE((int)(pRec-aMem), pRec); zAffinity++; pRec++; assert( zAffinity[0]==0 || pRec<=pLast ); }while( zAffinity[0] ); } #ifdef SQLITE_ENABLE_NULL_TRIM /* NULLs can be safely trimmed from the end of the record, as long as ** as the schema format is 2 or more and none of the omitted columns ** have a non-NULL default value. Also, the record must be left with ** at least one field. If P5>0 then it will be one more than the ** index of the right-most column with a non-NULL default value */ if( pOp->p5 ){ while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ pLast--; nField--; } } #endif /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. After this loop, ** the Mem.uTemp field of each term should hold the serial-type that will ** be used for that term in the generated record: ** ** Mem.uTemp value type ** --------------- --------------- ** 0 NULL ** 1 1-byte signed integer ** 2 2-byte signed integer ** 3 3-byte signed integer ** 4 4-byte signed integer ** 5 6-byte signed integer ** 6 8-byte signed integer ** 7 IEEE float ** 8 Integer constant 0 ** 9 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even BLOB ** N>=13 and odd text ** ** The following additional values are computed: ** nHdr Number of bytes needed for the record header ** nData Number of bytes of data space needed for the record ** nZero Zero bytes at the end of the record */ pRec = pLast; do{ assert( memIsValid(pRec) ); if( pRec->flags & MEM_Null ){ if( pRec->flags & MEM_Zero ){ /* Values with MEM_Null and MEM_Zero are created by xColumn virtual ** table methods that never invoke sqlite3_result_xxxxx() while ** computing an unchanging column value in an UPDATE statement. ** Give such values a special internal-use-only serial-type of 10 ** so that they can be passed through to xUpdate and have ** a true sqlite3_value_nochange(). */ #ifndef SQLITE_ENABLE_NULL_TRIM assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); #endif pRec->uTemp = 10; }else{ pRec->uTemp = 0; } nHdr++; }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ i64 i = pRec->u.i; u64 uu; testcase( pRec->flags & MEM_Int ); testcase( pRec->flags & MEM_IntReal ); if( i<0 ){ uu = ~i; }else{ uu = i; } nHdr++; testcase( uu==127 ); testcase( uu==128 ); testcase( uu==32767 ); testcase( uu==32768 ); testcase( uu==8388607 ); testcase( uu==8388608 ); testcase( uu==2147483647 ); testcase( uu==2147483648LL ); testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); if( uu<=127 ){ if( (i&1)==i && p->minWriteFileFormat>=4 ){ pRec->uTemp = 8+(u32)uu; }else{ nData++; pRec->uTemp = 1; } }else if( uu<=32767 ){ nData += 2; pRec->uTemp = 2; }else if( uu<=8388607 ){ nData += 3; pRec->uTemp = 3; }else if( uu<=2147483647 ){ nData += 4; pRec->uTemp = 4; }else if( uu<=140737488355327LL ){ nData += 6; pRec->uTemp = 5; }else{ nData += 8; if( pRec->flags & MEM_IntReal ){ /* If the value is IntReal and is going to take up 8 bytes to store ** as an integer, then we might as well make it an 8-byte floating ** point value */ pRec->u.r = (double)pRec->u.i; pRec->flags &= ~MEM_IntReal; pRec->flags |= MEM_Real; pRec->uTemp = 7; }else{ pRec->uTemp = 6; } } }else if( pRec->flags & MEM_Real ){ nHdr++; nData += 8; pRec->uTemp = 7; }else{ assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); assert( pRec->n>=0 ); len = (u32)pRec->n; serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); if( pRec->flags & MEM_Zero ){ serial_type += pRec->u.nZero*2; if( nData ){ if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; len += pRec->u.nZero; }else{ nZero += pRec->u.nZero; } } nData += len; nHdr += sqlite3VarintLen(serial_type); pRec->uTemp = serial_type; } if( pRec==pData0 ) break; pRec--; }while(1); /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint ** which determines the total number of bytes in the header. The varint ** value is the size of the header in bytes including the size varint ** itself. */ testcase( nHdr==126 ); testcase( nHdr==127 ); if( nHdr<=126 ){ /* The common case */ nHdr += 1; }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarintp3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). */ if( nByte+nZero<=pOut->szMalloc ){ /* The output register is already large enough to hold the record. ** No error checks or buffer enlargement is required */ pOut->z = pOut->zMalloc; }else{ /* Need to make sure that the output is not too big and then enlarge ** the output register to hold the full result */ if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ goto no_mem; } } pOut->n = (int)nByte; pOut->flags = MEM_Blob; if( nZero ){ pOut->u.nZero = nZero; pOut->flags |= MEM_Zero; } UPDATE_MAX_BLOBSIZE(pOut); zHdr = (u8 *)pOut->z; zPayload = zHdr + nHdr; /* Write the record */ if( nHdr<0x80 ){ *(zHdr++) = nHdr; }else{ zHdr += sqlite3PutVarint(zHdr,nHdr); } assert( pData0<=pLast ); pRec = pData0; while( 1 /*exit-by-break*/ ){ serial_type = pRec->uTemp; /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more ** additional varints, one per column. ** EVIDENCE-OF: R-64536-51728 The values for each column in the record ** immediately follow the header. */ if( serial_type<=7 ){ *(zHdr++) = serial_type; if( serial_type==0 ){ /* NULL value. No change in zPayload */ }else{ u64 v; u32 i; if( serial_type==7 ){ assert( sizeof(v)==sizeof(pRec->u.r) ); memcpy(&v, &pRec->u.r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pRec->u.i; } len = i = sqlite3SmallTypeSizes[serial_type]; assert( i>0 ); while( 1 /*exit-by-break*/ ){ zPayload[--i] = (u8)(v&0xFF); if( i==0 ) break; v >>= 8; } zPayload += len; } }else if( serial_type<0x80 ){ *(zHdr++) = serial_type; if( serial_type>=14 && pRec->n>0 ){ assert( pRec->z!=0 ); memcpy(zPayload, pRec->z, pRec->n); zPayload += pRec->n; } }else{ zHdr += sqlite3PutVarint(zHdr, serial_type); if( pRec->n ){ assert( pRec->z!=0 ); memcpy(zPayload, pRec->z, pRec->n); zPayload += pRec->n; } } if( pRec==pLast ) break; pRec++; } assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); assert( nByte==(int)(zPayload - (u8*)pOut->z) ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); REGISTER_TRACE(pOp->p3, pOut); break; } /* Opcode: Count P1 P2 P3 * * ** Synopsis: r[P2]=count() ** ** Store the number of entries (an integer value) in the table or index ** opened by cursor P1 in register P2. ** ** If P3==0, then an exact count is obtained, which involves visiting ** every btree page of the table. But if P3 is non-zero, an estimate ** is returned based on the current cursor position. */ case OP_Count: { /* out2 */ i64 nEntry; BtCursor *pCrsr; assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); pCrsr = p->apCsr[pOp->p1]->uc.pCursor; assert( pCrsr ); if( pOp->p3 ){ nEntry = sqlite3BtreeRowCountEst(pCrsr); }else{ nEntry = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3BtreeCount(db, pCrsr, &nEntry); if( rc ) goto abort_due_to_error; } pOut = out2Prerelease(p, pOp); pOut->u.i = nEntry; goto check_for_interrupt; } /* Opcode: Savepoint P1 * * P4 * ** ** Open, release or rollback the savepoint named by parameter P4, depending ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). */ case OP_Savepoint: { int p1; /* Value of P1 operand */ char *zName; /* Name of savepoint */ int nName; Savepoint *pNew; Savepoint *pSavepoint; Savepoint *pTmp; int iSavepoint; int ii; p1 = pOp->p1; zName = pOp->p4.z; /* Assert that the p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); assert( p->bIsReader ); if( p1==SAVEPOINT_BEGIN ){ if( db->nVdbeWrite>0 ){ /* A new savepoint cannot be created if there are active write ** statements (i.e. open read/write incremental blob handles). */ sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); rc = SQLITE_BUSY; }else{ nName = sqlite3Strlen30(zName); #ifndef SQLITE_OMIT_VIRTUALTABLE /* This call is Ok even if this savepoint is actually a transaction ** savepoint (and therefore should not prompt xSavepoint()) callbacks. ** If this is a transaction savepoint being opened, it is guaranteed ** that the db->aVTrans[] array is empty. */ assert( db->autoCommit==0 || db->nVTrans==0 ); rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, db->nStatement+db->nSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; #endif /* Create a new savepoint structure. */ pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); if( pNew ){ pNew->zName = (char *)&pNew[1]; memcpy(pNew->zName, zName, nName+1); /* If there is no open transaction, then mark this as a special ** "transaction savepoint". */ if( db->autoCommit ){ db->autoCommit = 0; db->isTransactionSavepoint = 1; }else{ db->nSavepoint++; } /* Link the new savepoint into the database handle's list. */ pNew->pNext = db->pSavepoint; db->pSavepoint = pNew; pNew->nDeferredCons = db->nDeferredCons; pNew->nDeferredImmCons = db->nDeferredImmCons; } } }else{ assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); iSavepoint = 0; /* Find the named savepoint. If there is no such savepoint, then an ** an error is returned to the user. */ for( pSavepoint = db->pSavepoint; pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); pSavepoint = pSavepoint->pNext ){ iSavepoint++; } if( !pSavepoint ){ sqlite3VdbeError(p, "no such savepoint: %s", zName); rc = SQLITE_ERROR; }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ /* It is not possible to release (commit) a savepoint if there are ** active write statements. */ sqlite3VdbeError(p, "cannot release savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ /* Determine whether or not this is a transaction savepoint. If so, ** and this is a RELEASE command, then the current transaction ** is committed. */ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; if( isTransaction && p1==SAVEPOINT_RELEASE ){ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; } db->autoCommit = 1; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } rc = p->rc; if( rc ){ db->autoCommit = 0; }else{ db->isTransactionSavepoint = 0; } }else{ int isSchemaChange; iSavepoint = db->nSavepoint - iSavepoint - 1; if( p1==SAVEPOINT_ROLLBACK ){ isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; for(ii=0; iinDb; ii++){ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT_ROLLBACK, isSchemaChange==0); if( rc!=SQLITE_OK ) goto abort_due_to_error; } }else{ assert( p1==SAVEPOINT_RELEASE ); isSchemaChange = 0; } for(ii=0; iinDb; ii++){ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( isSchemaChange ){ sqlite3ExpirePreparedStatements(db, 0); sqlite3ResetAllSchemasOfConnection(db); db->mDbFlags |= DBFLAG_SchemaChange; } } if( rc ) goto abort_due_to_error; /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all ** savepoints nested inside of the savepoint being operated on. */ while( db->pSavepoint!=pSavepoint ){ pTmp = db->pSavepoint; db->pSavepoint = pTmp->pNext; sqlite3DbFree(db, pTmp); db->nSavepoint--; } /* If it is a RELEASE, then destroy the savepoint being operated on ** too. If it is a ROLLBACK TO, then set the number of deferred ** constraint violations present in the database to the value stored ** when the savepoint was created. */ if( p1==SAVEPOINT_RELEASE ){ assert( pSavepoint==db->pSavepoint ); db->pSavepoint = pSavepoint->pNext; sqlite3DbFree(db, pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ assert( p1==SAVEPOINT_ROLLBACK ); db->nDeferredCons = pSavepoint->nDeferredCons; db->nDeferredImmCons = pSavepoint->nDeferredImmCons; } if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, p1, iSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } } if( rc ) goto abort_due_to_error; if( p->eVdbeState==VDBE_HALT_STATE ){ rc = SQLITE_DONE; goto vdbe_return; } break; } /* Opcode: AutoCommit P1 P2 * * * ** ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if ** there are active writing VMs or active VMs that use shared cache. ** ** This instruction causes the VM to halt. */ case OP_AutoCommit: { int desiredAutoCommit; int iRollback; desiredAutoCommit = pOp->p1; iRollback = pOp->p2; assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); assert( desiredAutoCommit==1 || iRollback==0 ); assert( db->nVdbeActive>0 ); /* At least this one VM is active */ assert( p->bIsReader ); if( desiredAutoCommit!=db->autoCommit ){ if( iRollback ){ assert( desiredAutoCommit==1 ); sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); db->autoCommit = 1; }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ /* If this instruction implements a COMMIT and other VMs are writing ** return an error indicating that the other VMs must complete first. */ sqlite3VdbeError(p, "cannot commit transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; goto abort_due_to_error; }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; }else{ db->autoCommit = (u8)desiredAutoCommit; } if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = (u8)(1-desiredAutoCommit); p->rc = rc = SQLITE_BUSY; goto vdbe_return; } sqlite3CloseSavepoints(db); if( p->rc==SQLITE_OK ){ rc = SQLITE_DONE; }else{ rc = SQLITE_ERROR; } goto vdbe_return; }else{ sqlite3VdbeError(p, (!desiredAutoCommit)?"cannot start a transaction within a transaction":( (iRollback)?"cannot rollback - no transaction is active": "cannot commit - no transaction is active")); rc = SQLITE_ERROR; goto abort_due_to_error; } /*NOTREACHED*/ assert(0); } /* Opcode: Transaction P1 P2 P3 P4 P5 ** ** Begin a transaction on database P1 if a transaction is not already ** active. ** If P2 is non-zero, then a write-transaction is started, or if a ** read-transaction is already active, it is upgraded to a write-transaction. ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more ** then an exclusive transaction is started. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. Indices of 2 or more are used for ** attached databases. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the changes made by this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P5!=0 then this opcode also checks the schema cookie against P3 ** and the schema generation counter against P4. ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. If the schema ** cookie in P3 differs from the schema cookie in the database header or ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; Db *pDb; int iMeta = 0; assert( p->bIsReader ); assert( p->readOnly==0 || pOp->p2==0 ); assert( pOp->p2>=0 && pOp->p2<=2 ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( rc==SQLITE_OK ); if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ if( db->flags & SQLITE_QueryOnly ){ /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ rc = SQLITE_READONLY; }else{ /* Writes prohibited due to a prior SQLITE_CORRUPT in the current ** transaction */ rc = SQLITE_CORRUPT; } goto abort_due_to_error; } pDb = &db->aDb[pOp->p1]; pBt = pDb->pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); testcase( rc==SQLITE_BUSY_SNAPSHOT ); testcase( rc==SQLITE_BUSY_RECOVERY ); if( rc!=SQLITE_OK ){ if( (rc&0xff)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); p->rc = rc; goto vdbe_return; } goto abort_due_to_error; } if( p->usesStmtJournal && pOp->p2 && (db->autoCommit==0 || db->nVdbeRead>1) ){ assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); } /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } } assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); if( rc==SQLITE_OK && pOp->p5 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) ){ /* ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema ** version is checked to ensure that the schema has not changed since the ** SQL statement was prepared. */ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do ** not reload the schema from the database file. ** ** If virtual-tables are in use, this is not just an optimization. ** Often, v-tables store their data in other SQLite tables, which ** are queried from within xNext() and other v-table methods using ** prepared queries. If such a query is out-of-date, we do not want to ** discard the database schema, as the user code implementing the ** v-table would have to be ready for the sqlite3_vtab structure itself ** to be invalidated whenever sqlite3_step() is called from within ** a v-table method. */ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ sqlite3ResetOneSchema(db, pOp->p1); } p->expired = 1; rc = SQLITE_SCHEMA; /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() ** from being modified in sqlite3VdbeHalt(). If this statement is ** reprepared, changeCntOn will be set again. */ p->changeCntOn = 0; } if( rc ) goto abort_due_to_error; break; } /* Opcode: ReadCookie P1 P2 P3 * * ** ** Read cookie number P3 from database P1 and write it into register P2. ** P3==1 is the schema version. P3==2 is the database format. ** P3==3 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2 */ int iMeta; int iDb; int iCookie; assert( p->bIsReader ); iDb = pOp->p1; iCookie = pOp->p3; assert( pOp->p3=0 && iDbnDb ); assert( db->aDb[iDb].pBt!=0 ); assert( DbMaskTest(p->btreeMask, iDb) ); sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); pOut = out2Prerelease(p, pOp); pOut->u.i = iMeta; break; } /* Opcode: SetCookie P1 P2 P3 * P5 ** ** Write the integer value P3 into cookie number P2 of database P1. ** P2==1 is the schema version. P2==2 is the database format. ** P2==3 is the recommended pager cache ** size, and so forth. P1==0 is the main database file and P1==1 is the ** database file used to store temporary tables. ** ** A transaction must be started before executing this opcode. ** ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement ** has P5 set to 1, so that the internal schema version will be different ** from the database schema version, resulting in a schema reset. */ case OP_SetCookie: { Db *pDb; sqlite3VdbeIncrWriteCounter(p, 0); assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); if( pOp->p2==BTREE_SCHEMA_VERSION ){ /* When the schema cookie changes, record the new cookie internally */ *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; db->mDbFlags |= DBFLAG_SchemaChange; sqlite3FkClearTriggerCache(db, pOp->p1); }else if( pOp->p2==BTREE_FILE_FORMAT ){ /* Record changes in the file format */ pDb->pSchema->file_format = pOp->p3; } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db, 0); p->expired = 0; } if( rc ) goto abort_due_to_error; break; } /* Opcode: OpenRead P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read-only cursor for the database table whose root page is ** P2 in a database file. The database file is determined by P3. ** P3==0 means the main database, P3==1 means the database used for ** temporary tables, and P3>1 means used the corresponding attached ** database. Give the new cursor an identifier of P1. The P1 ** values need not be contiguous but all P1 values should be small integers. ** It is an error for P1 to be negative. ** ** Allowed P5 bits: **
      **
    • 0x02 OPFLAG_SEEKEQ: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxLT) **
    ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** object, then table being opened must be an [index b-tree] where the ** KeyInfo object defines the content and collating ** sequence of that index b-tree. Otherwise, if P4 is an integer ** value, then the table being opened must be a [table b-tree] with a ** number of columns no less than the value of P4. ** ** See also: OpenWrite, ReopenIdx */ /* Opcode: ReopenIdx P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** The ReopenIdx opcode works like OP_OpenRead except that it first ** checks to see if the cursor on P1 is already open on the same ** b-tree and if it is this opcode becomes a no-op. In other words, ** if the cursor is already open, do not reopen it. ** ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must ** be the same as every other ReopenIdx or OpenRead for the same cursor ** number. ** ** Allowed P5 bits: **
      **
    • 0x02 OPFLAG_SEEKEQ: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxLT) **
    ** ** See also: OP_OpenRead, OP_OpenWrite */ /* Opcode: OpenWrite P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2 (or whose root page is held in register P2 if the ** OPFLAG_P2ISREG bit is set in P5 - see below). ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** object, then table being opened must be an [index b-tree] where the ** KeyInfo object defines the content and collating ** sequence of that index b-tree. Otherwise, if P4 is an integer ** value, then the table being opened must be a [table b-tree] with a ** number of columns no less than the value of P4. ** ** Allowed P5 bits: **
      **
    • 0x02 OPFLAG_SEEKEQ: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxLT) **
    • 0x08 OPFLAG_FORDELETE: This cursor is used only to seek ** and subsequently delete entries in an index btree. This is a ** hint to the storage engine that the storage engine is allowed to ** ignore. The hint is not used by the official SQLite b*tree storage ** engine, but is used by COMDB2. **
    • 0x10 OPFLAG_P2ISREG: Use the content of register P2 ** as the root page, not the value of P2 itself. **
    ** ** This instruction works like OpenRead except that it opens the cursor ** in read/write mode. ** ** See also: OP_OpenRead, OP_ReopenIdx */ case OP_ReopenIdx: { /* ncycle */ int nField; KeyInfo *pKeyInfo; u32 p2; int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); assert( pOp->p4type==P4_KEYINFO ); pCur = p->apCsr[pOp->p1]; if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ assert( pCur->eCurType==CURTYPE_BTREE ); sqlite3BtreeClearCursor(pCur->uc.pCursor); goto open_cursor_set_hints; } /* If the cursor is not currently open or is open on a different ** index, then fall through into OP_OpenRead to force a reopen */ case OP_OpenRead: /* ncycle */ case OP_OpenWrite: assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); assert( p->bIsReader ); assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx || p->readOnly==0 ); if( p->expired==1 ){ rc = SQLITE_ABORT_ROLLBACK; goto abort_due_to_error; } nField = 0; pKeyInfo = 0; p2 = (u32)pOp->p2; iDb = pOp->p3; assert( iDb>=0 && iDbnDb ); assert( DbMaskTest(p->btreeMask, iDb) ); pDb = &db->aDb[iDb]; pX = pDb->pBt; assert( pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = pDb->pSchema->file_format; } }else{ wrFlag = 0; } if( pOp->p5 & OPFLAG_P2ISREG ){ assert( p2>0 ); assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); assert( pOp->opcode==OP_OpenWrite ); pIn2 = &aMem[p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateBtree opcode and ** that opcode will always set the p2 value to 2 or more or else fail. ** If there were a failure, the prepared statement would have halted ** before reaching this instruction. */ assert( p2>=2 ); } if( pOp->p4type==P4_KEYINFO ){ pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->enc==ENC(db) ); assert( pKeyInfo->db==db ); nField = pKeyInfo->nAllField; }else if( pOp->p4type==P4_INT32 ){ nField = pOp->p4.i; } assert( pOp->p1>=0 ); assert( nField>=0 ); testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); if( pCur==0 ) goto no_mem; pCur->iDb = iDb; pCur->nullRow = 1; pCur->isOrdered = 1; pCur->pgnoRoot = p2; #ifdef SQLITE_DEBUG pCur->wrFlag = wrFlag; #endif rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); pCur->pKeyInfo = pKeyInfo; /* Set the VdbeCursor.isTable variable. Previous versions of ** SQLite used to check if the root-page flags were sane at this point ** and report database corruption if they were not, but this check has ** since moved into the btree layer. */ pCur->isTable = pOp->p4type!=P4_KEYINFO; open_cursor_set_hints: assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); testcase( pOp->p5 & OPFLAG_BULKCSR ); testcase( pOp->p2 & OPFLAG_SEEKEQ ); sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); if( rc ) goto abort_due_to_error; break; } /* Opcode: OpenDup P1 P2 * * * ** ** Open a new cursor P1 that points to the same ephemeral table as ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral ** opcode. Only ephemeral cursors may be duplicated. ** ** Duplicate ephemeral cursors are used for self-joins of materialized views. */ case OP_OpenDup: { /* ncycle */ VdbeCursor *pOrig; /* The original cursor to be duplicated */ VdbeCursor *pCx; /* The new cursor */ pOrig = p->apCsr[pOp->p2]; assert( pOrig ); assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->isEphemeral = 1; pCx->pKeyInfo = pOrig->pKeyInfo; pCx->isTable = pOrig->isTable; pCx->pgnoRoot = pOrig->pgnoRoot; pCx->isOrdered = pOrig->isOrdered; pCx->ub.pBtx = pOrig->ub.pBtx; pCx->noReuse = 1; pOrig->noReuse = 1; rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, pCx->pKeyInfo, pCx->uc.pCursor); /* The sqlite3BtreeCursor() routine can only fail for the first cursor ** opened for a database. Since there is already an open cursor when this ** opcode is run, the sqlite3BtreeCursor() cannot fail */ assert( rc==SQLITE_OK ); break; } /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 ** Synopsis: nColumn=P2 ** ** Open a new cursor P1 to a transient table. ** The cursor is always opened read/write even if ** the main database is read-only. The ephemeral ** table is deleted automatically when the cursor is closed. ** ** If the cursor P1 is already opened on an ephemeral table, the table ** is cleared (all content is erased). ** ** P2 is the number of columns in the ephemeral table. ** The cursor points to a BTree table if P4==0 and to a BTree index ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure ** that defines the format of keys in the index. ** ** The P5 parameter can be a mask of the BTREE_* flags defined ** in btree.h. These flags control aspects of the operation of ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are ** added automatically. ** ** If P3 is positive, then reg[P3] is modified slightly so that it ** can be used as zero-length data for OP_Insert. This is an optimization ** that avoids an extra OP_Blob opcode to initialize that register. */ /* Opcode: OpenAutoindex P1 P2 * P4 * ** Synopsis: nColumn=P2 ** ** This opcode works the same as OP_OpenEphemeral. It has a ** different name to distinguish its use. Tables created using ** by this opcode will be used for automatically created transient ** indices in joins. */ case OP_OpenAutoindex: /* ncycle */ case OP_OpenEphemeral: { /* ncycle */ VdbeCursor *pCx; KeyInfo *pKeyInfo; static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); if( pOp->p3>0 ){ /* Make register reg[P3] into a value that can be used as the data ** form sqlite3BtreeInsert() where the length of the data is zero. */ assert( pOp->p2==0 ); /* Only used when number of columns is zero */ assert( pOp->opcode==OP_OpenEphemeral ); assert( aMem[pOp->p3].flags & MEM_Null ); aMem[pOp->p3].n = 0; aMem[pOp->p3].z = ""; } pCx = p->apCsr[pOp->p1]; if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ /* If the ephemeral table is already open and has no duplicates from ** OP_OpenDup, then erase all existing content so that the table is ** empty again, rather than creating a new table. */ assert( pCx->isEphemeral ); pCx->seqCount = 0; pCx->cacheStatus = CACHE_STALE; rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); }else{ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->isEphemeral = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, BTREE_BLOBKEY | pOp->p5); if( rc==SQLITE_OK ){ assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); assert( pKeyInfo->db==db ); assert( pKeyInfo->enc==ENC(db) ); rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, pKeyInfo, pCx->uc.pCursor); } pCx->isTable = 0; }else{ pCx->pgnoRoot = SCHEMA_ROOT; rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 0, pCx->uc.pCursor); pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); if( rc ){ sqlite3BtreeClose(pCx->ub.pBtx); } } } if( rc ) goto abort_due_to_error; pCx->nullRow = 1; break; } /* Opcode: SorterOpen P1 P2 P3 P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens ** a transient index that is specifically designed to sort large ** tables using an external merge-sort algorithm. ** ** If argument P3 is non-zero, then it indicates that the sorter may ** assume that a stable sort considering the first P3 fields of each ** key is sufficient to produce the required results. */ case OP_SorterOpen: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); if( pCx==0 ) goto no_mem; pCx->pKeyInfo = pOp->p4.pKeyInfo; assert( pCx->pKeyInfo->db==db ); assert( pCx->pKeyInfo->enc==ENC(db) ); rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); if( rc ) goto abort_due_to_error; break; } /* Opcode: SequenceTest P1 P2 * * * ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 ** ** P1 is a sorter cursor. If the sequence counter is currently zero, jump ** to P2. Regardless of whether or not the jump is taken, increment the ** the sequence value. */ case OP_SequenceTest: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); if( (pC->seqCount++)==0 ){ goto jump_to_p2; } break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** Synopsis: P3 columns in r[P2] ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row is the content of memory ** register P2. In other words, cursor P1 becomes an alias for the ** MEM_Blob content contained in register P2. ** ** A pseudo-table created by this opcode is used to hold a single ** row output from the sorter so that the row can be decomposed into ** individual columns using the OP_Column opcode. The OP_Column opcode ** is the only cursor opcode that works with a pseudo-table. ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p3>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->seekResult = pOp->p2; pCx->isTable = 1; /* Give this pseudo-cursor a fake BtCursor pointer so that pCx ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() ** which is a performance optimization */ pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); assert( pOp->p5==0 ); break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { /* ncycle */ assert( pOp->p1>=0 && pOp->p1nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK /* Opcode: ColumnsUsed P1 * * P4 * ** ** This opcode (which only exists if SQLite was compiled with ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the ** table or index for cursor P1 are used. P4 is a 64-bit integer ** (P4_INT64) in which the first 63 bits are one for each of the ** first 63 columns of the table or index that are actually used ** by the cursor. The high-order bit is set if any column after ** the 64th is used. */ case OP_ColumnsUsed: { VdbeCursor *pC; pC = p->apCsr[pOp->p1]; assert( pC->eCurType==CURTYPE_BTREE ); pC->maskUsed = *(u64*)pOp->p4.pI64; break; } #endif /* Opcode: SeekGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as the key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than or equal to the key value. If there are no records ** greater than or equal to the key and P2 is not zero, then jump to P2. ** ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this ** opcode will either land on a record that exactly matches the key, or ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, ** this opcode must be followed by an IdxLE opcode with the same arguments. ** The IdxGT opcode will be skipped if this opcode succeeds, but the ** IdxGT opcode will be used on subsequent loop iterations. The ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this ** is an equality search. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe */ /* Opcode: SeekGT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than the key value. If there are no records greater than ** the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe */ /* Opcode: SeekLT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than the key value. If there are no records less than ** the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe */ /* Opcode: SeekLE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this ** opcode will either land on a record that exactly matches the key, or ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, ** this opcode must be followed by an IdxLE opcode with the same arguments. ** The IdxGE opcode will be skipped if this opcode succeeds, but the ** IdxGE opcode will be used on subsequent loop iterations. The ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this ** is an equality search. ** ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt */ case OP_SeekLT: /* jump, in3, group, ncycle */ case OP_SeekLE: /* jump, in3, group, ncycle */ case OP_SeekGE: /* jump, in3, group, ncycle */ case OP_SeekGT: { /* jump, in3, group, ncycle */ int res; /* Comparison result */ int oc; /* Opcode */ VdbeCursor *pC; /* The cursor to seek */ UnpackedRecord r; /* The key to seek for */ int nField; /* Number of columns or fields in the key */ i64 iKey; /* The rowid we are to seek to */ int eqOnly; /* Only interested in == results */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p2!=0 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( OP_SeekLE == OP_SeekLT+1 ); assert( OP_SeekGE == OP_SeekLT+2 ); assert( OP_SeekGT == OP_SeekLT+3 ); assert( pC->isOrdered ); assert( pC->uc.pCursor!=0 ); oc = pOp->opcode; eqOnly = 0; pC->nullRow = 0; #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pC->isTable ){ u16 flags3, newType; /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; flags3 = pIn3->flags; if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ newType = pIn3->flags; /* Record the type after applying numeric affinity */ pIn3->flags = flags3; /* But convert the type back to its original */ /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (newType & (MEM_Int|MEM_IntReal))==0 ){ int c; if( (newType & MEM_Real)==0 ){ if( (newType & MEM_Null) || oc>=OP_SeekGE ){ VdbeBranchTaken(1,2); goto jump_to_p2; }else{ rc = sqlite3BtreeLast(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; goto seek_not_found; } } c = sqlite3IntFloatCompare(iKey, pIn3->u.r); /* If the approximation iKey is larger than the actual real search ** term, substitute >= for > and < for <=. e.g. if the search term ** is 4.9 and the integer approximation 5: ** ** (x > 4.9) -> (x >= 5) ** (x <= 4.9) -> (x < 5) */ if( c>0 ){ assert( OP_SeekGE==(OP_SeekGT-1) ); assert( OP_SeekLT==(OP_SeekLE-1) ); assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; } /* If the approximation iKey is smaller than the actual real search ** term, substitute <= for < and > for >=. */ else if( c<0 ){ assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ if( rc!=SQLITE_OK ){ goto abort_due_to_error; } }else{ /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, ** with the same key. */ if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ eqOnly = 1; assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); assert( pOp[1].p1==pOp[0].p1 ); assert( pOp[1].p2==pOp[0].p2 ); assert( pOp[1].p3==pOp[0].p3 ); assert( pOp[1].p4.i==pOp[0].p4.i ); } nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; /* The next line of code computes as follows, only faster: ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ ** r.default_rc = -1; ** }else{ ** r.default_rc = +1; ** } */ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); assert( oc!=OP_SeekGT || r.default_rc==-1 ); assert( oc!=OP_SeekLE || r.default_rc==-1 ); assert( oc!=OP_SeekGE || r.default_rc==+1 ); assert( oc!=OP_SeekLT || r.default_rc==+1 ); r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); } } #endif r.eqSeen = 0; rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( eqOnly && r.eqSeen==0 ){ assert( res!=0 ); goto seek_not_found; } } #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); if( res<0 || (res==0 && oc==OP_SeekGT) ){ res = 0; rc = sqlite3BtreeNext(pC->uc.pCursor, 0); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; res = 1; }else{ goto abort_due_to_error; } } }else{ res = 0; } }else{ assert( oc==OP_SeekLT || oc==OP_SeekLE ); if( res>0 || (res==0 && oc==OP_SeekLT) ){ res = 0; rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; res = 1; }else{ goto abort_due_to_error; } } }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ res = sqlite3BtreeEof(pC->uc.pCursor); } } seek_not_found: assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ goto jump_to_p2; }else if( eqOnly ){ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ } break; } /* Opcode: SeekScan P1 P2 * * P5 ** Synopsis: Scan-ahead up to P1 rows ** ** This opcode is a prefix opcode to OP_SeekGE. In other words, this ** opcode must be immediately followed by OP_SeekGE. This constraint is ** checked by assert() statements. ** ** This opcode uses the P1 through P4 operands of the subsequent ** OP_SeekGE. In the text that follows, the operands of the subsequent ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only ** the P1, P2 and P5 operands of this opcode are also used, and are called ** This.P1, This.P2 and This.P5. ** ** This opcode helps to optimize IN operators on a multi-column index ** where the IN operator is on the later terms of the index by avoiding ** unnecessary seeks on the btree, substituting steps to the next row ** of the b-tree instead. A correct answer is obtained if this opcode ** is omitted or is a no-op. ** ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which ** is the desired entry that we want the cursor SeekGE.P1 to be pointing ** to. Call this SeekGE.P3/P4 row the "target". ** ** If the SeekGE.P1 cursor is not currently pointing to a valid row, ** then this opcode is a no-op and control passes through into the OP_SeekGE. ** ** If the SeekGE.P1 cursor is pointing to a valid row, then that row ** might be the target row, or it might be near and slightly before the ** target row, or it might be after the target row. If the cursor is ** currently before the target row, then this opcode attempts to position ** the cursor on or after the target row by invoking sqlite3BtreeStep() ** on the cursor between 1 and This.P1 times. ** ** The This.P5 parameter is a flag that indicates what to do if the ** cursor ends up pointing at a valid row that is past the target ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 ** case occurs when there are no inequality constraints to the right of ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case ** occurs when there are inequality constraints to the right of the IN ** operator. In that case, the This.P2 will point either directly to or ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for ** loop terminate. ** ** Possible outcomes from this opcode:
      ** **
    1. If the cursor is initially not pointed to any valid row, then ** fall through into the subsequent OP_SeekGE opcode. ** **
    2. If the cursor is left pointing to a row that is before the target ** row, even after making as many as This.P1 calls to ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. ** **
    3. If the cursor is left pointing at the target row, either because it ** was at the target row to begin with or because one or more ** sqlite3BtreeNext() calls moved the cursor to the target row, ** then jump to This.P2.., ** **
    4. If the cursor started out before the target row and a call to ** to sqlite3BtreeNext() moved the cursor off the end of the index ** (indicating that the target row definitely does not exist in the ** btree) then jump to SeekGE.P2, ending the loop. ** **
    5. If the cursor ends up on a valid row that is past the target row ** (indicating that the target row does not exist in the btree) then ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0. **
    */ case OP_SeekScan: { /* ncycle */ VdbeCursor *pC; int res; int nStep; UnpackedRecord r; assert( pOp[1].opcode==OP_SeekGE ); /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first ** opcode past the OP_SeekGE itself. */ assert( pOp->p2>=(int)(pOp-aOp)+2 ); #ifdef SQLITE_DEBUG if( pOp->p5==0 ){ /* There are no inequality constraints following the IN constraint. */ assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); }else{ /* There are inequality constraints. */ assert( pOp->p2==(int)(pOp-aOp)+2 ); assert( aOp[pOp->p2-1].opcode==OP_SeekGE ); } #endif assert( pOp->p1>0 ); pC = p->apCsr[pOp[1].p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( !pC->isTable ); if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... cursor not valid - fall through\n"); } #endif break; } nStep = pOp->p1; assert( nStep>=1 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp[1].p4.i; r.default_rc = 0; r.aMem = &aMem[pOp[1].p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i0 && pOp->p5==0 ){ seekscan_search_fail: /* Jump to SeekGE.P2, ending the loop */ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... %d steps and then skip\n", pOp->p1 - nStep); } #endif VdbeBranchTaken(1,3); pOp++; goto jump_to_p2; } if( res>=0 ){ /* Jump to This.P2, bypassing the OP_SeekGE opcode */ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... %d steps and then success\n", pOp->p1 - nStep); } #endif VdbeBranchTaken(2,3); goto jump_to_p2; break; } if( nStep<=0 ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... fall through after %d steps\n", pOp->p1); } #endif VdbeBranchTaken(0,3); break; } nStep--; pC->cacheStatus = CACHE_STALE; rc = sqlite3BtreeNext(pC->uc.pCursor, 0); if( rc ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; goto seekscan_search_fail; }else{ goto abort_due_to_error; } } } break; } /* Opcode: SeekHit P1 P2 P3 * * ** Synopsis: set P2<=seekHit<=P3 ** ** Increase or decrease the seekHit value for cursor P1, if necessary, ** so that it is no less than P2 and no greater than P3. ** ** The seekHit integer represents the maximum of terms in an index for which ** there is known to be at least one match. If the seekHit value is smaller ** than the total number of equality terms in an index lookup, then the ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned ** early, thus saving work. This is part of the IN-early-out optimization. ** ** P1 must be a valid b-tree cursor. */ case OP_SeekHit: { /* ncycle */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pOp->p3>=pOp->p2 ); if( pC->seekHitp2 ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); } #endif pC->seekHit = pOp->p2; }else if( pC->seekHit>pOp->p3 ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); } #endif pC->seekHit = pOp->p3; } break; } /* Opcode: IfNotOpen P1 P2 * * * ** Synopsis: if( !csr[P1] ) goto P2 ** ** If cursor P1 is not open or if P1 is set to a NULL row using the ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. */ case OP_IfNotOpen: { /* jump */ VdbeCursor *pCur; assert( pOp->p1>=0 && pOp->p1nCursor ); pCur = p->apCsr[pOp->p1]; VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); if( pCur==0 || pCur->nullRow ){ goto jump_to_p2_and_check_for_interrupt; } break; } /* Opcode: Found P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is a prefix of any entry in P1 then a jump is made to P2 and ** P1 is left pointing at the matching entry. ** ** This operation leaves the cursor in a state where it can be ** advanced in the forward direction. The Next instruction will work, ** but not the Prev instruction. ** ** See also: NotFound, NoConflict, NotExists. SeekGe */ /* Opcode: NotFound P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 ** does contain an entry whose prefix matches the P3/P4 record then control ** falls through to the next instruction and P1 is left pointing at the ** matching entry. ** ** This operation leaves the cursor in a state where it cannot be ** advanced in either direction. In other words, the Next and Prev ** opcodes do not work after this operation. ** ** See also: Found, NotExists, NoConflict, IfNoHope */ /* Opcode: IfNoHope P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** Register P3 is the first of P4 registers that form an unpacked ** record. Cursor P1 is an index btree. P2 is a jump destination. ** In other words, the operands to this opcode are the same as the ** operands to OP_NotFound and OP_IdxGT. ** ** This opcode is an optimization attempt only. If this opcode always ** falls through, the correct answer is still obtained, but extra work ** is performed. ** ** A value of N in the seekHit flag of cursor P1 means that there exists ** a key P3:N that will match some record in the index. We want to know ** if it is possible for a record P3:P4 to match some record in the ** index. If it is not possible, we can skip some work. So if seekHit ** is less than P4, attempt to find out if a match is possible by running ** OP_NotFound. ** ** This opcode is used in IN clause processing for a multi-column key. ** If an IN clause is attached to an element of the key other than the ** left-most element, and if there are no matches on the most recent ** seek over the whole key, then it might be that one of the key element ** to the left is prohibiting a match, and hence there is "no hope" of ** any match regardless of how many IN clause elements are checked. ** In such a case, we abandon the IN clause search early, using this ** opcode. The opcode name comes from the fact that the ** jump is taken if there is "no hope" of achieving a match. ** ** See also: NotFound, SeekHit */ /* Opcode: NoConflict P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** contains any NULL value, jump immediately to P2. If all terms of the ** record are not-NULL then a check is done to determine if any row in the ** P1 index btree has a matching key prefix. If there are no matches, jump ** immediately to P2. If there is a match, fall through and leave the P1 ** cursor pointing to the matching row. ** ** This opcode is similar to OP_NotFound with the exceptions that the ** branch is always taken if any part of the search key input is NULL. ** ** This operation leaves the cursor in a state where it cannot be ** advanced in either direction. In other words, the Next and Prev ** opcodes do not work after this operation. ** ** See also: NotFound, Found, NotExists */ case OP_IfNoHope: { /* jump, in3, ncycle */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("seekHit is %d\n", pC->seekHit); } #endif if( pC->seekHit>=pOp->p4.i ) break; /* Fall through into OP_NotFound */ /* no break */ deliberate_fall_through } case OP_NoConflict: /* jump, in3, ncycle */ case OP_NotFound: /* jump, in3, ncycle */ case OP_Found: { /* jump, in3, ncycle */ int alreadyExists; int ii; VdbeCursor *pC; UnpackedRecord *pIdxKey; UnpackedRecord r; #ifdef SQLITE_TEST if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; #endif assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p4type==P4_INT32 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif r.aMem = &aMem[pOp->p3]; assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 ); r.nField = (u16)pOp->p4.i; if( r.nField>0 ){ /* Key values in an array of registers */ r.pKeyInfo = pC->pKeyInfo; r.default_rc = 0; #ifdef SQLITE_DEBUG for(ii=0; iip3+ii, &r.aMem[ii]); } #endif rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); }else{ /* Composite key generated by OP_MakeRecord */ assert( r.aMem->flags & MEM_Blob ); assert( pOp->opcode!=OP_NoConflict ); rc = ExpandBlob(r.aMem); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc ) goto no_mem; pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); if( pIdxKey==0 ) goto no_mem; sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); pIdxKey->default_rc = 0; rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); sqlite3DbFreeNN(db, pIdxKey); } if( rc!=SQLITE_OK ){ goto abort_due_to_error; } alreadyExists = (pC->seekResult==0); pC->nullRow = 1-alreadyExists; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pOp->opcode==OP_Found ){ VdbeBranchTaken(alreadyExists!=0,2); if( alreadyExists ) goto jump_to_p2; }else{ if( !alreadyExists ){ VdbeBranchTaken(1,2); goto jump_to_p2; } if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; iiopcode==OP_IfNoHope ){ pC->seekHit = pOp->p4.i; } } break; } /* Opcode: SeekRowid P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** ** P1 is the index of a cursor open on an SQL table btree (with integer ** keys). If register P3 does not contain an integer or if P1 does not ** contain a record with rowid P3 then jump immediately to P2. ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain ** a record with rowid P3 then ** leave the cursor pointing at that record and fall through to the next ** instruction. ** ** The OP_NotExists opcode performs the same operation, but with OP_NotExists ** the P3 register must be guaranteed to contain an integer value. With this ** opcode, register P3 might not contain an integer. ** ** The OP_NotFound opcode performs the same operation on index btrees ** (with arbitrary multi-value keys). ** ** This opcode leaves the cursor in a state where it cannot be advanced ** in either direction. In other words, the Next and Prev opcodes will ** not work following this opcode. ** ** See also: Found, NotFound, NoConflict, SeekRowid */ /* Opcode: NotExists P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** ** P1 is the index of a cursor open on an SQL table btree (with integer ** keys). P3 is an integer rowid. If P1 does not contain a record with ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then ** leave the cursor pointing at that record and fall through to the next ** instruction. ** ** The OP_SeekRowid opcode performs the same operation but also allows the ** P3 register to contain a non-integer value, in which case the jump is ** always taken. This opcode requires that P3 always contain an integer. ** ** The OP_NotFound opcode performs the same operation on index btrees ** (with arbitrary multi-value keys). ** ** This opcode leaves the cursor in a state where it cannot be advanced ** in either direction. In other words, the Next and Prev opcodes will ** not work following this opcode. ** ** See also: Found, NotFound, NoConflict, SeekRowid */ case OP_SeekRowid: { /* jump, in3, ncycle */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_IntReal ); testcase( pIn3->flags & MEM_Real ); testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ /* If pIn3->u.i does not contain an integer, compute iKey as the ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted ** into an integer without loss of information. Take care to avoid ** changing the datatype of pIn3, however, as it is used by other ** parts of the prepared statement. */ Mem x = pIn3[0]; applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; iKey = x.u.i; goto notExistsWithKey; } /* Fall through into OP_NotExists */ /* no break */ deliberate_fall_through case OP_NotExists: /* jump, in3, ncycle */ pIn3 = &aMem[pOp->p3]; assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); assert( pOp->p1>=0 && pOp->p1nCursor ); iKey = pIn3->u.i; notExistsWithKey: pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; #endif assert( pC->isTable ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); res = 0; rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); assert( rc==SQLITE_OK || res==0 ); pC->movetoTarget = iKey; /* Used by OP_Delete */ pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); pC->seekResult = res; if( res!=0 ){ assert( rc==SQLITE_OK ); if( pOp->p2==0 ){ rc = SQLITE_CORRUPT_BKPT; }else{ goto jump_to_p2; } } if( rc ) goto abort_due_to_error; break; } /* Opcode: Sequence P1 P2 * * * ** Synopsis: r[P2]=cursor[P1].ctr++ ** ** Find the next available sequence number for cursor P1. ** Write the sequence number into register P2. ** The sequence number on the cursor is incremented after this ** instruction. */ case OP_Sequence: { /* out2 */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( p->apCsr[pOp->p1]!=0 ); assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); pOut = out2Prerelease(p, pOp); pOut->u.i = p->apCsr[pOp->p1]->seqCount++; break; } /* Opcode: NewRowid P1 P2 P3 * * ** Synopsis: r[P2]=rowid ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is written ** written to register P2. ** ** If P3>0 then P3 is a register in the root frame of this VDBE that holds ** the largest previously generated record number. No new record numbers are ** allowed to be less than this value. When this value reaches its maximum, ** an SQLITE_FULL error is generated. The P3 register is updated with the ' ** generated record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2 */ i64 v; /* The new rowid */ VdbeCursor *pC; /* Cursor of table to get the new rowid */ int res; /* Result of an sqlite3BtreeLast() */ int cnt; /* Counter to limit the number of searches */ #ifndef SQLITE_OMIT_AUTOINCREMENT Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ VdbeFrame *pFrame; /* Root frame of VDBE */ #endif v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isTable ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); { /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 100 times. */ assert( pC->isTable ); #ifdef SQLITE_32BIT_ROWID # define MAX_ROWID 0x7fffffff #else /* Some compilers complain about constants of the form 0x7fffffffffffffff. ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ rc = sqlite3BtreeLast(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ v = 1; /* IMP: R-61914-48074 */ }else{ assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); v = sqlite3BtreeIntegerKey(pC->uc.pCursor); if( v>=MAX_ROWID ){ pC->useRandomRowid = 1; }else{ v++; /* IMP: R-29538-34987 */ } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3>0 ); if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pMem = &aMem[pOp->p3]; memAboutToChange(p, pMem); } assert( memIsValid(pMem) ); REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-17817-00630 */ goto abort_due_to_error; } if( vu.i+1 ){ v = pMem->u.i + 1; } pMem->u.i = v; } #endif if( pC->useRandomRowid ){ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the ** largest possible integer (9223372036854775807) then the database ** engine starts picking positive candidate ROWIDs at random until ** it finds one that is not previously used. */ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ cnt = 0; do{ sqlite3_randomness(sizeof(v), &v); v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 0, &res))==SQLITE_OK) && (res==0) && (++cnt<100)); if( rc ) goto abort_due_to_error; if( res==0 ){ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ goto abort_due_to_error; } assert( v>0 ); /* EV: R-40812-03570 */ } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pOut->u.i = v; break; } /* Opcode: Insert P1 P2 P3 P4 P5 ** Synopsis: intkey=r[P3] data=r[P2] ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value MEM_Blob stored in register ** number P2. The key is stored in register P3. The key must ** be a MEM_Int. ** ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, ** then rowid is stored for subsequent return by the ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might ** run faster by avoiding an unnecessary seek on cursor P1. However, ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior ** seeks on the cursor or if the most recent seek used a key equal to P3. ** ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an ** UPDATE operation. Otherwise (if the flag is clear) then this opcode ** is part of an INSERT operation. The difference is only important to ** the update hook. ** ** Parameter P4 may point to a Table structure, or may be NULL. If it is ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked ** following a successful insert. ** ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically ** allocated, then ownership of P2 is transferred to the pseudo-cursor ** and register P2 becomes ephemeral. If the cursor is changed, the ** value of register P2 will then change. Make sure this does not ** cause any problems.) ** ** This instruction only works on tables. The equivalent instruction ** for indices is OP_IdxInsert. */ case OP_Insert: { Mem *pData; /* MEM cell holding data for the record to be inserted */ Mem *pKey; /* MEM cell holding key for the record */ VdbeCursor *pC; /* Cursor to table into which insert is written */ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ Table *pTab; /* Table structure - used by update and pre-update hooks */ BtreePayload x; /* Payload to be inserted */ pData = &aMem[pOp->p2]; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( memIsValid(pData) ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->deferredMoveto==0 ); assert( pC->uc.pCursor!=0 ); assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); REGISTER_TRACE(pOp->p2, pData); sqlite3VdbeIncrWriteCounter(p, pC); pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); assert( memIsValid(pKey) ); REGISTER_TRACE(pOp->p3, pKey); x.nKey = pKey->u.i; if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ assert( pC->iDb>=0 ); zDb = db->aDb[pC->iDb].zDbSName; pTab = pOp->p4.pTab; assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); }else{ pTab = 0; zDb = 0; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* Invoke the pre-update hook, if any */ if( pTab ){ if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); } if( db->xUpdateCallback==0 || pTab->aCol==0 ){ /* Prevent post-update hook from running in cases when it should not */ pTab = 0; } } if( pOp->p5 & OPFLAG_ISNOOP ) break; #endif assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 ); if( pOp->p5 & OPFLAG_NCHANGE ){ p->nChange++; if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; } assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); x.pData = pData->z; x.nData = pData->n; seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ x.nZero = pData->u.nZero; }else{ x.nZero = 0; } x.pKey = 0; assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), seekResult ); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; colCacheCtr++; /* Invoke the update-hook if required. */ if( rc ) goto abort_due_to_error; if( pTab ){ assert( db->xUpdateCallback!=0 ); assert( pTab->aCol!=0 ); db->xUpdateCallback(db->pUpdateArg, (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, zDb, pTab->zName, x.nKey); } break; } /* Opcode: RowCell P1 P2 P3 * * ** ** P1 and P2 are both open cursors. Both must be opened on the same type ** of table - intkey or index. This opcode is used as part of copying ** the current row from P2 into P1. If the cursors are opened on intkey ** tables, register P3 contains the rowid to use with the new record in ** P1. If they are opened on index tables, P3 is not used. ** ** This opcode must be followed by either an Insert or InsertIdx opcode ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. */ case OP_RowCell: { VdbeCursor *pDest; /* Cursor to write to */ VdbeCursor *pSrc; /* Cursor to read from */ i64 iKey; /* Rowid value to insert with */ assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); assert( pOp[1].p5 & OPFLAG_PREFORMAT ); pDest = p->apCsr[pOp->p1]; pSrc = p->apCsr[pOp->p2]; iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); if( rc!=SQLITE_OK ) goto abort_due_to_error; break; }; /* Opcode: Delete P1 P2 P3 P4 P5 ** ** Delete the record at which the P1 cursor is currently pointing. ** ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then ** the cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. As a result, in this case ** it is ok to delete a record from within a Next loop. If ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be ** left in an undefined state. ** ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this ** delete is one of several associated with deleting a table row and ** all its associated index entries. Exactly one of those deletes is ** the "primary" delete. The others are all on OPFLAG_FORDELETE ** cursors or else are marked with the AUXDELETE flag. ** ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row ** change count is incremented (otherwise not). ** ** P1 must not be pseudo-table. It has to be a real table with ** multiple rows. ** ** If P4 is not NULL then it points to a Table object. In this case either ** the update or pre-update hook, or both, may be invoked. The P1 cursor must ** have been positioned using OP_NotFound prior to invoking this opcode in ** this case. Specifically, if one is configured, the pre-update hook is ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. ** ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address ** of the memory cell that contains the value that the rowid of the row will ** be set to by the update. */ case OP_Delete: { VdbeCursor *pC; const char *zDb; Table *pTab; int opflags; opflags = pOp->p2; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->deferredMoveto==0 ); sqlite3VdbeIncrWriteCounter(p, pC); #ifdef SQLITE_DEBUG if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ /* If p5 is zero, the seek operation that positioned the cursor prior to ** OP_Delete will have also set the pC->movetoTarget field to the rowid of ** the row that is being deleted */ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); assert( CORRUPT_DB || pC->movetoTarget==iKey ); } #endif /* If the update-hook or pre-update-hook will be invoked, set zDb to ** the name of the db to pass as to it. Also set local pTab to a copy ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set ** VdbeCursor.movetoTarget to the current rowid. */ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ assert( pC->iDb>=0 ); assert( pOp->p4.pTab!=0 ); zDb = db->aDb[pC->iDb].zDbSName; pTab = pOp->p4.pTab; if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); } }else{ zDb = 0; pTab = 0; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* Invoke the pre-update-hook if required. */ assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); if( db->xPreUpdateCallback && pTab ){ assert( !(opflags & OPFLAG_ISUPDATE) || HasRowid(pTab)==0 || (aMem[pOp->p3].flags & MEM_Int) ); sqlite3VdbePreUpdateHook(p, pC, (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, zDb, pTab, pC->movetoTarget, pOp->p3, -1 ); } if( opflags & OPFLAG_ISNOOP ) break; #endif /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); #ifdef SQLITE_DEBUG if( p->pFrame==0 ){ if( pC->isEphemeral==0 && (pOp->p5 & OPFLAG_AUXDELETE)==0 && (pC->wrFlag & OPFLAG_FORDELETE)==0 ){ nExtraDelete++; } if( pOp->p2 & OPFLAG_NCHANGE ){ nExtraDelete--; } } #endif rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); pC->cacheStatus = CACHE_STALE; colCacheCtr++; pC->seekResult = 0; if( rc ) goto abort_due_to_error; /* Invoke the update-hook if required. */ if( opflags & OPFLAG_NCHANGE ){ p->nChange++; if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, pC->movetoTarget); assert( pC->iDb>=0 ); } } break; } /* Opcode: ResetCount * * * * * ** ** The value of the change counter is copied to the database handle ** change counter (returned by subsequent calls to sqlite3_changes()). ** Then the VMs internal change counter resets to 0. ** This is used by trigger programs. */ case OP_ResetCount: { sqlite3VdbeSetChanges(db, p->nChange); p->nChange = 0; break; } /* Opcode: SorterCompare P1 P2 P3 P4 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 ** ** P1 is a sorter cursor. This instruction compares a prefix of the ** record blob in register P3 against a prefix of the entry that ** the sorter cursor currently points to. Only the first P4 fields ** of r[P3] and the sorter record are compared. ** ** If either P3 or the sorter contains a NULL in one of their significant ** fields (not counting the P4 fields at the end which are ignored) then ** the comparison is assumed to be equal. ** ** Fall through to next instruction if the two records compare equal to ** each other. Jump to P2 if they are different. */ case OP_SorterCompare: { VdbeCursor *pC; int res; int nKeyCol; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nKeyCol = pOp->p4.i; res = 0; rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); VdbeBranchTaken(res!=0,2); if( rc ) goto abort_due_to_error; if( res ) goto jump_to_p2; break; }; /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. ** Then clear the column header cache on cursor P3. ** ** This opcode is normally used to move a record out of the sorter and into ** a register that is the source for a pseudo-table cursor created using ** OpenPseudo. That pseudo-table cursor is the one that is identified by ** parameter P3. Clearing the P3 column cache as part of this opcode saves ** us from having to issue a separate NullRow instruction to clear that cache. */ case OP_SorterData: { /* ncycle */ VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterRowkey(pC, pOut); assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); assert( pOp->p1>=0 && pOp->p1nCursor ); if( rc ) goto abort_due_to_error; p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; break; } /* Opcode: RowData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the complete row content for the row at ** which cursor P1 is currently pointing. ** There is no interpretation of the data. ** It is just copied onto the P2 register exactly as ** it is found in the database file. ** ** If cursor P1 is an index, then the content is the key of the row. ** If cursor P2 is a table, then the content extracted is the data. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. ** ** If P3!=0 then this opcode is allowed to make an ephemeral pointer ** into the database page. That means that the content of the output ** register will be invalidated as soon as the cursor moves - including ** moves caused by other cursors that "save" the current cursors ** position in order that they can write to the same table. If P3==0 ** then a copy of the data is made into memory. P3!=0 is faster, but ** P3==0 is safer. ** ** If P3!=0 then the content of the P2 register is unsuitable for use ** in OP_Result and any OP_Result will invalidate the P2 register content. ** The P2 register content is invalidated by opcodes like OP_Function or ** by any use of another cursor pointing to the same table. */ case OP_RowData: { VdbeCursor *pC; BtCursor *pCrsr; u32 n; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( isSorter(pC)==0 ); assert( pC->nullRow==0 ); assert( pC->uc.pCursor!=0 ); pCrsr = pC->uc.pCursor; /* The OP_RowData opcodes always follow OP_NotExists or ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions ** that might invalidate the cursor. ** If this where not the case, on of the following assert()s ** would fail. Should this ever change (because of changes in the code ** generator) then the fix would be to insert a call to ** sqlite3VdbeCursorMoveto(). */ assert( pC->deferredMoveto==0 ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); n = sqlite3BtreePayloadSize(pCrsr); if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } testcase( n==0 ); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); if( rc ) goto abort_due_to_error; if( !pOp->p3 ) Deephemeralize(pOut); UPDATE_MAX_BLOBSIZE(pOut); REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: Rowid P1 P2 * * * ** Synopsis: r[P2]=PX rowid of P1 ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2, ncycle */ VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); if( pC->nullRow ){ pOut->flags = MEM_Null; break; }else if( pC->deferredMoveto ){ v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->eCurType==CURTYPE_VTAB ){ assert( pC->uc.pVCur!=0 ); pVtab = pC->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->uc.pVCur, &v); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); rc = sqlite3VdbeCursorRestore(pC); if( rc ) goto abort_due_to_error; if( pC->nullRow ){ pOut->flags = MEM_Null; break; } v = sqlite3BtreeIntegerKey(pC->uc.pCursor); } pOut->u.i = v; break; } /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. ** ** If cursor P1 is not previously opened, open it now to a special ** pseudo-cursor that always returns NULL for every column. */ case OP_NullRow: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; if( pC==0 ){ /* If the cursor is not already open, create a special kind of ** pseudo-cursor that always gives null rows. */ pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); if( pC==0 ) goto no_mem; pC->seekResult = 0; pC->isTable = 1; pC->noReuse = 1; pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); } pC->nullRow = 1; pC->cacheStatus = CACHE_STALE; if( pC->eCurType==CURTYPE_BTREE ){ assert( pC->uc.pCursor!=0 ); sqlite3BtreeClearCursor(pC->uc.pCursor); } #ifdef SQLITE_DEBUG if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; #endif break; } /* Opcode: SeekEnd P1 * * * * ** ** Position cursor P1 at the end of the btree for the purpose of ** appending a new entry onto the btree. ** ** It is assumed that the cursor is used only for appending and so ** if the cursor is valid, then the cursor must already be pointing ** at the end of the btree and so no changes are made to ** the cursor. */ /* Opcode: Last P1 P2 * * * ** ** The next use of the Rowid or Column or Prev instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. */ case OP_SeekEnd: /* ncycle */ case OP_Last: { /* jump, ncycle */ VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; res = 0; assert( pCrsr!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif if( pOp->opcode==OP_SeekEnd ){ assert( pOp->p2==0 ); pC->seekResult = -1; if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ break; } } rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( rc ) goto abort_due_to_error; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; } break; } /* Opcode: IfSmaller P1 P2 P3 * * ** ** Estimate the number of rows in the table P1. Jump to P2 if that ** estimate is less than approximately 2**(0.1*P3). */ case OP_IfSmaller: { /* jump */ VdbeCursor *pC; BtCursor *pCrsr; int res; i64 sz; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->uc.pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); if( rc ) goto abort_due_to_error; if( res==0 ){ sz = sqlite3BtreeRowCountEst(pCrsr); if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)p3 ) res = 1; } VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } /* Opcode: SorterSort P1 P2 * * * ** ** After all records have been inserted into the Sorter object ** identified by P1, invoke this opcode to actually do the sorting. ** Jump to P2 if there are no records to be sorted. ** ** This opcode is an alias for OP_Sort and OP_Rewind that is used ** for Sorter objects. */ /* Opcode: Sort P1 P2 * * * ** ** This opcode does exactly the same thing as OP_Rewind except that ** it increments an undocumented global variable used for testing. ** ** Sorting is accomplished by writing records into a sorting index, ** then rewinding that index and playing it back from beginning to ** end. We use the OP_Sort opcode instead of OP_Rewind to do the ** rewinding so that the global variable will be incremented and ** regression tests can determine whether or not the optimizer is ** correctly optimizing out sorts. */ case OP_SorterSort: /* jump ncycle */ case OP_Sort: { /* jump ncycle */ #ifdef SQLITE_TEST sqlite3_sort_count++; sqlite3_search_count--; #endif p->aCounter[SQLITE_STMTSTATUS_SORT]++; /* Fall through into OP_Rewind */ /* no break */ deliberate_fall_through } /* Opcode: Rewind P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty, jump immediately to P2. ** If the table or index is not empty, fall through to the following ** instruction. ** ** If P2 is zero, that is an assertion that the P1 table is never ** empty and hence the jump will never be taken. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. */ case OP_Rewind: { /* jump, ncycle */ VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5==0 ); assert( pOp->p2>=0 && pOp->p2nOp ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); res = 1; #ifdef SQLITE_DEBUG pC->seekOp = OP_Rewind; #endif if( isSorter(pC) ){ rc = sqlite3VdbeSorterRewind(pC, &res); }else{ assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } if( rc ) goto abort_due_to_error; pC->nullRow = (u8)res; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; } break; } /* Opcode: Next P1 P2 P3 * P5 ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** The Next opcode is only valid following an SeekGT, SeekGE, or ** OP_Rewind opcode used to position the cursor. Next is not allowed ** to follow SeekLT, SeekLE, or OP_Last. ** ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have ** been opened prior to this opcode or the program will segfault. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. ** ** See also: Prev */ /* Opcode: Prev P1 P2 P3 * P5 ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** ** The Prev opcode is only valid following an SeekLT, SeekLE, or ** OP_Last opcode used to position the cursor. Prev is not allowed ** to follow SeekGT, SeekGE, or OP_Rewind. ** ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is ** not open then the behavior is undefined. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. */ /* Opcode: SorterNext P1 P2 * * P5 ** ** This opcode works just like OP_Next except that P1 must be a ** sorter object for which the OP_SorterSort opcode has been ** invoked. This opcode advances the cursor to the next sorted ** record, or jumps to P2 if there are no more sorted records. */ case OP_SorterNext: { /* jump */ VdbeCursor *pC; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterNext(db, pC); goto next_tail; case OP_Prev: /* jump, ncycle */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5==0 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope || pC->seekOp==OP_NullRow); rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); goto next_tail; case OP_Next: /* jump, ncycle */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5==0 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid || pC->seekOp==OP_IfNoHope); rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(rc==SQLITE_OK,2); if( rc==SQLITE_OK ){ pC->nullRow = 0; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif goto jump_to_p2_and_check_for_interrupt; } if( rc!=SQLITE_DONE ) goto abort_due_to_error; rc = SQLITE_OK; pC->nullRow = 1; goto check_for_interrupt; } /* Opcode: IdxInsert P1 P2 P3 P4 P5 ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. ** ** If P4 is not zero, then it is the number of values in the unpacked ** key of reg(P2). In that case, P3 is the index of the first register ** for the unpacked key. The availability of the unpacked key can sometimes ** be an optimization. ** ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer ** that this insert is likely to be an append. ** ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, ** then the change counter is unchanged. ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might ** run faster by avoiding an unnecessary seek on cursor P1. However, ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior ** seeks on the cursor or if the most recent seek used a key equivalent ** to P2. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; BtreePayload x; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; sqlite3VdbeIncrWriteCounter(p, pC); assert( pC!=0 ); assert( !isSorter(pC) ); pIn2 = &aMem[pOp->p2]; assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc ) goto abort_due_to_error; x.nKey = pIn2->n; x.pKey = pIn2->z; x.aMem = aMem + pOp->p3; x.nMem = (u16)pOp->p4.i; rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) ); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; if( rc) goto abort_due_to_error; break; } /* Opcode: SorterInsert P1 P2 * * * ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the sorter P1. Data for the entry is nil. */ case OP_SorterInsert: { /* in2 */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; sqlite3VdbeIncrWriteCounter(p, pC); assert( pC!=0 ); assert( isSorter(pC) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc ) goto abort_due_to_error; rc = sqlite3VdbeSorterWrite(pC, pIn2); if( rc) goto abort_due_to_error; break; } /* Opcode: IdxDelete P1 P2 P3 * P5 ** Synopsis: key=r[P2@P3] ** ** The content of P3 registers starting at register P2 form ** an unpacked index key. This opcode removes that entry from the ** index opened by cursor P1. ** ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error ** if no matching index entry is found. This happens when running ** an UPDATE or DELETE statement and the index entry to be updated ** or deleted is not found. For some uses of IdxDelete ** (example: the EXCEPT operator) it does not matter that no matching ** entry is found. For those cases, P5 is zero. Also, do not raise ** this (self-correcting and non-critical) error if in writable_schema mode. */ case OP_IdxDelete: { VdbeCursor *pC; BtCursor *pCrsr; int res; UnpackedRecord r; assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3VdbeIncrWriteCounter(p, pC); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); if( rc ) goto abort_due_to_error; if( res==0 ){ rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); if( rc ) goto abort_due_to_error; }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); goto abort_due_to_error; } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; break; } /* Opcode: DeferredSeek P1 * P3 P4 * ** Synopsis: Move P3 to P1.rowid if needed ** ** P1 is an open index cursor and P3 is a cursor on the corresponding ** table. This opcode does a deferred seek of the P3 table cursor ** to the row that corresponds to the current row of P1. ** ** This is a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads ** occur, no unnecessary I/O happens. ** ** P4 may be an array of integers (type P4_INTARRAY) containing ** one entry for each column in the P3 table. If array entry a(i) ** is non-zero, then reading column a(i)-1 from cursor P3 is ** equivalent to performing the deferred seek and then reading column i ** from P1. This information is stored in P3 and used to redirect ** reads against P3 over to P1, thus possibly avoiding the need to ** seek and read cursor P3. */ /* Opcode: IdxRowid P1 P2 * * * ** Synopsis: r[P2]=rowid ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_DeferredSeek: /* ncycle */ case OP_IdxRowid: { /* out2, ncycle */ VdbeCursor *pC; /* The P1 index cursor */ VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ i64 rowid; /* Rowid that P1 current points to */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 || IsNullCursor(pC) ); assert( pC->deferredMoveto==0 ); assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); /* The IdxRowid and Seek opcodes are combined because of the commonality ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ rc = sqlite3VdbeCursorRestore(pC); /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed ** since it was last positioned and an error (e.g. OOM or an IO error) ** occurs while trying to reposition it. */ if( rc!=SQLITE_OK ) goto abort_due_to_error; if( !pC->nullRow ){ rowid = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( pOp->opcode==OP_DeferredSeek ){ assert( pOp->p3>=0 && pOp->p3nCursor ); pTabCur = p->apCsr[pOp->p3]; assert( pTabCur!=0 ); assert( pTabCur->eCurType==CURTYPE_BTREE ); assert( pTabCur->uc.pCursor!=0 ); assert( pTabCur->isTable ); pTabCur->nullRow = 0; pTabCur->movetoTarget = rowid; pTabCur->deferredMoveto = 1; pTabCur->cacheStatus = CACHE_STALE; assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); assert( !pTabCur->isEphemeral ); pTabCur->ub.aAltMap = pOp->p4.ai; assert( !pC->isEphemeral ); pTabCur->pAltCursor = pC; }else{ pOut = out2Prerelease(p, pOp); pOut->u.i = rowid; } }else{ assert( pOp->opcode==OP_IdxRowid ); sqlite3VdbeMemSetNull(&aMem[pOp->p2]); } break; } /* Opcode: FinishSeek P1 * * * * ** ** If cursor P1 was previously moved via OP_DeferredSeek, complete that ** seek operation now, without further delay. If the cursor seek has ** already occurred, this instruction is a no-op. */ case OP_FinishSeek: { /* ncycle */ VdbeCursor *pC; /* The P1 index cursor */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; if( pC->deferredMoveto ){ rc = sqlite3VdbeFinishMoveto(pC); if( rc ) goto abort_due_to_error; } break; } /* Opcode: IdxGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than or equal to the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxGT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxLT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. */ /* Opcode: IdxLE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than or equal to the key value then jump ** to P2. Otherwise fall through to the next instruction. */ case OP_IdxLE: /* jump, ncycle */ case OP_IdxGT: /* jump, ncycle */ case OP_IdxLT: /* jump, ncycle */ case OP_IdxGE: { /* jump, ncycle */ VdbeCursor *pC; int res; UnpackedRecord r; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isOrdered ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0); assert( pC->deferredMoveto==0 ); assert( pOp->p4type==P4_INT32 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; if( pOp->opcodeopcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); r.default_rc = -1; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); r.default_rc = 0; } r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; ip3+i, &aMem[pOp->p3+i]); } } #endif /* Inlined version of sqlite3VdbeIdxKeyCompare() */ { i64 nCellKey = 0; BtCursor *pCur; Mem m; assert( pC->eCurType==CURTYPE_BTREE ); pCur = pC->uc.pCursor; assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ) goto abort_due_to_error; res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); sqlite3VdbeMemReleaseMalloc(&m); } /* End of inlined sqlite3VdbeIdxKeyCompare() */ assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); if( (pOp->opcode&1)==(OP_IdxLT&1) ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); assert( rc==SQLITE_OK ); if( res>0 ) goto jump_to_p2; break; } /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P3==0. If ** P3==1 then the table to be destroyed is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If AUTOVACUUM is enabled then it is possible that another root page ** might be moved into the newly deleted root page in order to keep all ** root pages contiguous at the beginning of the database. The former ** value of the root page that moved - its value before the move occurred - ** is stored in register P2. If no page movement was required (because the ** table being dropped was already the last one in the database) then a ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero ** is stored in register P2. ** ** This opcode throws an error if there are any active reader VMs when ** it is invoked. This is done to avoid the difficulty associated with ** updating existing cursors when a root page is moved in an AUTOVACUUM ** database. This error is thrown even if the database is not an AUTOVACUUM ** db in order to avoid introducing an incompatibility between autovacuum ** and non-autovacuum modes. ** ** See also: Clear */ case OP_Destroy: { /* out2 */ int iMoved; int iDb; sqlite3VdbeIncrWriteCounter(p, 0); assert( p->readOnly==0 ); assert( pOp->p1>1 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; if( db->nVdbeRead > db->nVDestroy+1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; goto abort_due_to_error; }else{ iDb = pOp->p3; assert( DbMaskTest(p->btreeMask, iDb) ); iMoved = 0; /* Not needed. Only to silence a warning. */ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); pOut->flags = MEM_Int; pOut->u.i = iMoved; if( rc ) goto abort_due_to_error; #ifndef SQLITE_OMIT_AUTOVACUUM if( iMoved!=0 ){ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); /* All OP_Destroy operations occur on the same btree */ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); resetSchemaOnFault = iDb+1; } #endif } break; } /* Opcode: Clear P1 P2 P3 ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being cleared is in the main database file if P2==0. If ** P2==1 then the table to be cleared is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If the P3 value is non-zero, then the row change count is incremented ** by the number of rows in the table being cleared. If P3 is greater ** than zero, then the value stored in register P3 is also incremented ** by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { i64 nChange; sqlite3VdbeIncrWriteCounter(p, 0); nChange = 0; assert( p->readOnly==0 ); assert( DbMaskTest(p->btreeMask, pOp->p2) ); rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ assert( memIsValid(&aMem[pOp->p3]) ); memAboutToChange(p, &aMem[pOp->p3]); aMem[pOp->p3].u.i += nChange; } } if( rc ) goto abort_due_to_error; break; } /* Opcode: ResetSorter P1 * * * * ** ** Delete all contents from the ephemeral table or sorter ** that is open on cursor P1. ** ** This opcode only works for cursors used for sorting and ** opened with OP_OpenEphemeral or OP_SorterOpen. */ case OP_ResetSorter: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); if( isSorter(pC) ){ sqlite3VdbeSorterReset(db, pC->uc.pSorter); }else{ assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->isEphemeral ); rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); if( rc ) goto abort_due_to_error; } break; } /* Opcode: CreateBtree P1 P2 P3 * * ** Synopsis: r[P2]=root iDb=P1 flags=P3 ** ** Allocate a new b-tree in the main database file if P1==0 or in the ** TEMP database file if P1==1 or in an attached database if ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. ** The root page number of the new b-tree is stored in register P2. */ case OP_CreateBtree: { /* out2 */ Pgno pgno; Db *pDb; sqlite3VdbeIncrWriteCounter(p, 0); pOut = out2Prerelease(p, pOp); pgno = 0; assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); if( rc ) goto abort_due_to_error; pOut->u.i = pgno; break; } /* Opcode: SqlExec * * * P4 * ** ** Run the SQL statement or statements specified in the P4 string. */ case OP_SqlExec: { sqlite3VdbeIncrWriteCounter(p, 0); db->nSqlExec++; rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); db->nSqlExec--; if( rc ) goto abort_due_to_error; break; } /* Opcode: ParseSchema P1 * * P4 * ** ** Read and parse all entries from the schema table of database P1 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the ** entire schema for P1 is reparsed. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { int iDb; const char *zSchema; char *zSql; InitData initData; /* Any prepared statement that invokes this opcode will hold mutexes ** on every btree. This is a prerequisite for invoking ** sqlite3InitCallback(). */ #ifdef SQLITE_DEBUG for(iDb=0; iDbnDb; iDb++){ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); } #endif iDb = pOp->p1; assert( iDb>=0 && iDbnDb ); assert( DbHasProperty(db, iDb, DB_SchemaLoaded) || db->mallocFailed || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); #ifndef SQLITE_OMIT_ALTERTABLE if( pOp->p4.z==0 ){ sqlite3SchemaClear(db->aDb[iDb].pSchema); db->mDbFlags &= ~DBFLAG_SchemaKnownOk; rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); db->mDbFlags |= DBFLAG_SchemaChange; p->expired = 0; }else #endif { zSchema = LEGACY_SCHEMA_TABLE; initData.db = db; initData.iDb = iDb; initData.pzErrMsg = &p->zErrMsg; initData.mInitFlags = 0; initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); if( zSql==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ assert( db->init.busy==0 ); db->init.busy = 1; initData.rc = SQLITE_OK; initData.nInitRow = 0; assert( !db->mallocFailed ); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); if( rc==SQLITE_OK ) rc = initData.rc; if( rc==SQLITE_OK && initData.nInitRow==0 ){ /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse ** at least one SQL statement. Any less than that indicates that ** the sqlite_schema table is corrupt. */ rc = SQLITE_CORRUPT_BKPT; } sqlite3DbFreeNN(db, zSql); db->init.busy = 0; } } if( rc ){ sqlite3ResetAllSchemasOfConnection(db); if( rc==SQLITE_NOMEM ){ goto no_mem; } goto abort_due_to_error; } break; } #if !defined(SQLITE_OMIT_ANALYZE) /* Opcode: LoadAnalysis P1 * * * * ** ** Read the sqlite_stat1 table for database P1 and load the content ** of that table into the internal index hash table. This will cause ** the analysis to be used when preparing all subsequent queries. */ case OP_LoadAnalysis: { assert( pOp->p1>=0 && pOp->p1nDb ); rc = sqlite3AnalysisLoad(db, pOp->p1); if( rc ) goto abort_due_to_error; break; } #endif /* !defined(SQLITE_OMIT_ANALYZE) */ /* Opcode: DropTable P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped from disk (using the Destroy opcode) ** in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 P3 P4 P5 ** ** Do an analysis of the currently open database. Store in ** register P1 the text of an error message describing any problems. ** If no problems are found, store a NULL in register P1. ** ** The register P3 contains one less than the maximum number of allowed errors. ** At most reg(P3) errors will be reported. ** In other words, the analysis stops as soon as reg(P1) errors are ** seen. Reg(P1) is updated with the number of errors remaining. ** ** The root page numbers of all tables in the database are integers ** stored in P4_INTARRAY argument. ** ** If P5 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used to implement the integrity_check pragma. */ case OP_IntegrityCk: { int nRoot; /* Number of tables to check. (Number of root pages.) */ Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ assert( p->bIsReader ); nRoot = pOp->p2; aRoot = pOp->p4.ai; assert( nRoot>0 ); assert( aRoot[0]==(Pgno)nRoot ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pnErr = &aMem[pOp->p3]; assert( (pnErr->flags & MEM_Int)!=0 ); assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &aMem[pOp->p1]; assert( pOp->p5nDb ); assert( DbMaskTest(p->btreeMask, pOp->p5) ); rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, (int)pnErr->u.i+1, &nErr, &z); sqlite3VdbeMemSetNull(pIn1); if( nErr==0 ){ assert( z==0 ); }else if( rc ){ sqlite3_free(z); goto abort_due_to_error; }else{ pnErr->u.i -= nErr-1; sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); } UPDATE_MAX_BLOBSIZE(pIn1); sqlite3VdbeChangeEncoding(pIn1, encoding); goto check_for_interrupt; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* Opcode: RowSetAdd P1 P2 * * * ** Synopsis: rowset(P1)=r[P2] ** ** Insert the integer value held by register P2 into a RowSet object ** held in register P1. ** ** An assertion fails if P2 is not an integer. */ case OP_RowSetAdd: { /* in1, in2 */ pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; assert( (pIn2->flags & MEM_Int)!=0 ); if( (pIn1->flags & MEM_Blob)==0 ){ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; } assert( sqlite3VdbeMemIsRowSet(pIn1) ); sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); break; } /* Opcode: RowSetRead P1 P2 P3 * * ** Synopsis: r[P3]=rowset(P1) ** ** Extract the smallest value from the RowSet object in P1 ** and put that value into register P3. ** Or, if RowSet object P1 is initially empty, leave P3 ** unchanged and jump to instruction P2. */ case OP_RowSetRead: { /* jump, in1, out3 */ i64 val; pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); if( (pIn1->flags & MEM_Blob)==0 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); VdbeBranchTaken(1,2); goto jump_to_p2_and_check_for_interrupt; }else{ /* A value was pulled from the index */ VdbeBranchTaken(0,2); sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** ** Register P3 is assumed to hold a 64-bit integer value. If register P1 ** contains a RowSet object and that RowSet object contains ** the value held in P3, jump to register P2. Otherwise, insert the ** integer in P3 into the RowSet and continue on to the ** next opcode. ** ** The RowSet object is optimized for the case where sets of integers ** are inserted in distinct phases, which each set contains no duplicates. ** Each set is identified by a unique P4 value. The first set ** must have P4==0, the final set must have P4==-1, and for all other sets ** must have P4>0. ** ** This allows optimizations: (a) when P4==0 there is no need to test ** the RowSet object for P3, as it is guaranteed not to contain it, ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ int iSet; int exists; pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; iSet = pOp->p4.i; assert( pIn3->flags&MEM_Int ); /* If there is anything other than a rowset object in memory cell P1, ** delete it now and initialize P1 with an empty rowset */ if( (pIn1->flags & MEM_Blob)==0 ){ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; } assert( sqlite3VdbeMemIsRowSet(pIn1) ); assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ) goto jump_to_p2; } if( iSet>=0 ){ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); } break; } #ifndef SQLITE_OMIT_TRIGGER /* Opcode: Program P1 P2 P3 P4 P5 ** ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). ** ** P1 contains the address of the memory cell that contains the first memory ** cell in an array of values used as arguments to the sub-program. P2 ** contains the address to jump to if the sub-program throws an IGNORE ** exception using the RAISE() function. Register P3 contains the address ** of a memory cell in this (the parent) VM that is used to allocate the ** memory required by the sub-vdbe at runtime. ** ** P4 is a pointer to the VM containing the trigger program. ** ** If P5 is non-zero, then recursive program invocation is enabled. */ case OP_Program: { /* jump */ int nMem; /* Number of memory registers for sub-program */ int nByte; /* Bytes of runtime space required for sub-program */ Mem *pRt; /* Register to allocate runtime space */ Mem *pMem; /* Used to iterate through memory cells */ Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; assert( pProgram->nOp>0 ); /* If the p5 flag is clear, then recursive invocation of triggers is ** disabled for backwards compatibility (p5 is set if this sub-program ** is really a trigger, not a foreign key action, and the flag set ** and cleared by the "PRAGMA recursive_triggers" command is clear). ** ** It is recursive invocation of triggers, at the SQL level, that is ** disabled. In some cases a single trigger may generate more than one ** SubProgram (if the trigger may be executed with more than one different ** ON CONFLICT algorithm). SubProgram structures associated with a ** single trigger all have the same value for the SubProgram.token ** variable. */ if( pOp->p5 ){ t = pProgram->token; for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); if( pFrame ) break; } if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "too many levels of trigger recursion"); goto abort_due_to_error; } /* Register pRt is used to store the memory required to save the state ** of the current program, and the memory required at runtime to execute ** the trigger program. If this trigger has been fired before, then pRt ** is already allocated. Otherwise, it must be initialized. */ if( (pRt->flags&MEM_Blob)==0 ){ /* SubProgram.nMem is set to the number of memory cells used by the ** program stored in SubProgram.aOp. As well as these, one memory ** cell is required for each cursor used by the program. Set local ** variable nMem (and later, VdbeFrame.nChildMem) to this value. */ nMem = pProgram->nMem + pProgram->nCsr; assert( nMem>0 ); if( pProgram->nCsr==0 ) nMem++; nByte = ROUND8(sizeof(VdbeFrame)) + nMem * sizeof(Mem) + pProgram->nCsr * sizeof(VdbeCursor*) + (pProgram->nOp + 7)/8; pFrame = sqlite3DbMallocZero(db, nByte); if( !pFrame ){ goto no_mem; } sqlite3VdbeMemRelease(pRt); pRt->flags = MEM_Blob|MEM_Dyn; pRt->z = (char*)pFrame; pRt->n = nByte; pRt->xDel = sqlite3VdbeFrameMemDel; pFrame->v = p; pFrame->nChildMem = nMem; pFrame->nChildCsr = pProgram->nCsr; pFrame->pc = (int)(pOp - aOp); pFrame->aMem = p->aMem; pFrame->nMem = p->nMem; pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; #ifdef SQLITE_DEBUG pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; #endif pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = (VdbeFrame*)pRt->z; assert( pRt->xDel==sqlite3VdbeFrameMemDel ); assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( (int)(pOp - aOp)==pFrame->pc ); } p->nFrame++; pFrame->pParent = p->pFrame; pFrame->lastRowid = db->lastRowid; pFrame->nChange = p->nChange; pFrame->nDbChange = p->db->nChange; assert( pFrame->pAuxData==0 ); pFrame->pAuxData = p->pAuxData; p->pAuxData = 0; p->nChange = 0; p->pFrame = pFrame; p->aMem = aMem = VdbeFrameMem(pFrame); p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem]; pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; #ifdef SQLITE_DEBUG /* Verify that second and subsequent executions of the same trigger do not ** try to reuse register values from the first use. */ { int i; for(i=0; inMem; i++){ aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ } } #endif pOp = &aOp[-1]; goto check_for_interrupt; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the ** OP_Program instruction. Copy a value currently stored in a memory ** cell of the calling (parent) frame to cell P2 in the current frames ** address space. This is used by trigger programs to access the new.* ** and old.* values. ** ** The address of the cell in the parent frame is determined by adding ** the value of the P1 argument to the value of the P1 argument to the ** calling OP_Program instruction. */ case OP_Param: { /* out2 */ VdbeFrame *pFrame; Mem *pIn; pOut = out2Prerelease(p, pOp); pFrame = p->pFrame; pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_FOREIGN_KEY /* Opcode: FkCounter P1 P2 * * * ** Synopsis: fkctr[P1]+=P2 ** ** Increment a "constraint counter" by P2 (P2 may be negative or positive). ** If P1 is non-zero, the database constraint counter is incremented ** (deferred foreign key constraints). Otherwise, if P1 is zero, the ** statement counter is incremented (immediate foreign key constraints). */ case OP_FkCounter: { if( db->flags & SQLITE_DeferFKs ){ db->nDeferredImmCons += pOp->p2; }else if( pOp->p1 ){ db->nDeferredCons += pOp->p2; }else{ p->nFkConstraint += pOp->p2; } break; } /* Opcode: FkIfZero P1 P2 * * * ** Synopsis: if fkctr[P1]==0 goto P2 ** ** This opcode tests if a foreign key constraint-counter is currently zero. ** If so, jump to instruction P2. Otherwise, fall through to the next ** instruction. ** ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; }else{ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * ** Synopsis: r[P1]=max(r[P1],r[P2]) ** ** P1 is a register in the root frame of this VM (the root frame is ** different from the current frame if this instruction is being executed ** within a sub-program). Set the value of register P1 to the maximum of ** its current value and the value in register P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemMax: { /* in2 */ VdbeFrame *pFrame; if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); pIn1 = &pFrame->aMem[pOp->p1]; }else{ pIn1 = &aMem[pOp->p1]; } assert( memIsValid(pIn1) ); sqlite3VdbeMemIntegerify(pIn1); pIn2 = &aMem[pOp->p2]; sqlite3VdbeMemIntegerify(pIn2); if( pIn1->u.iu.i){ pIn1->u.i = pIn2->u.i; } break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 ** ** Register P1 must contain an integer. ** If the value of register P1 is 1 or greater, subtract P3 from the ** value in P1 and jump to P2. ** ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pIn1->u.i -= pOp->p3; goto jump_to_p2; } break; } /* Opcode: OffsetLimit P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) ** ** This opcode performs a commonly used computation associated with ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] ** holds the offset counter. The opcode computes the combined value ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] ** value computed is the total number of rows that will need to be ** visited in order to complete the query. ** ** If r[P3] is zero or negative, that means there is no OFFSET ** and r[P2] is set to be the value of the LIMIT, r[P1]. ** ** if r[P1] is zero or negative, that means there is no LIMIT ** and r[P2] is set to -1. ** ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. */ case OP_OffsetLimit: { /* in1, out2, in3 */ i64 x; pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; pOut = out2Prerelease(p, pOp); assert( pIn1->flags & MEM_Int ); assert( pIn3->flags & MEM_Int ); x = pIn1->u.i; if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ /* If the LIMIT is less than or equal to zero, loop forever. This ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then ** also loop forever. This is undocumented. In fact, one could argue ** that the loop should terminate. But assuming 1 billion iterations ** per second (far exceeding the capabilities of any current hardware) ** it would take nearly 300 years to actually reach the limit. So ** looping forever is a reasonable approximation. */ pOut->u.i = -1; }else{ pOut->u.i = x; } break; } /* Opcode: IfNotZero P1 P2 * * * ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 ** ** Register P1 must contain an integer. If the content of register P1 is ** initially greater than zero, then decrement the value in register P1. ** If it is non-zero (negative or positive) and then also jump to P2. ** If register P1 is initially zero, leave it unchanged and fall through. */ case OP_IfNotZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i ){ if( pIn1->u.i>0 ) pIn1->u.i--; goto jump_to_p2; } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** ** Register P1 must hold an integer. Decrement the value in P1 ** and jump to P2 if the new value is exactly zero. */ case OP_DecrJumpZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ) goto jump_to_p2; break; } /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the xStep function for an aggregate. ** The function has P5 arguments. P4 is a pointer to the ** FuncDef structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggInverse * P2 P3 P4 P5 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) ** ** Execute the xInverse function for an aggregate. ** The function has P5 arguments. P4 is a pointer to the ** FuncDef structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggStep1 P1 P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an ** aggregate. The function has P5 arguments. P4 is a pointer to the ** FuncDef structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. ** ** This opcode is initially coded as OP_AggStep0. On first evaluation, ** the FuncDef stored in P4 is converted into an sqlite3_context and ** the opcode is changed. In this way, the initialization of the ** sqlite3_context only happens once, instead of on each call to the ** step function. */ case OP_AggInverse: case OP_AggStep: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); assert( pOp->p3p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); if( pCtx==0 ) goto no_mem; pCtx->pMem = 0; pCtx->pOut = (Mem*)&(pCtx->argv[n]); sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->skipFlag = 0; pCtx->isError = 0; pCtx->enc = encoding; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); pOp->opcode = OP_AggStep1; /* Fall through into OP_AggStep */ /* no break */ deliberate_fall_through } case OP_AggStep1: { int i; sqlite3_context *pCtx; Mem *pMem; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; pMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG if( pOp->p1 ){ /* This is an OP_AggInverse call. Verify that xStep has always ** been called at least once prior to any xInverse call. */ assert( pMem->uTemp==0x1122e0e3 ); }else{ /* This is an OP_AggStep call. Mark it as such. */ pMem->uTemp = 0x1122e0e3; } #endif /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relevant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; iargc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif pMem->n++; assert( pCtx->pOut->flags==MEM_Null ); assert( pCtx->isError==0 ); assert( pCtx->skipFlag==0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pOp->p1 ){ (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); }else #endif (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ if( pCtx->isError ){ if( pCtx->isError>0 ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); rc = pCtx->isError; } if( pCtx->skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); pCtx->skipFlag = 0; } sqlite3VdbeMemRelease(pCtx->pOut); pCtx->pOut->flags = MEM_Null; pCtx->isError = 0; if( rc ) goto abort_due_to_error; } assert( pCtx->pOut->flags==MEM_Null ); assert( pCtx->skipFlag==0 ); break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** P1 is the memory location that is the accumulator for an aggregate ** or window function. Execute the finalizer function ** for an aggregate and store the result in P1. ** ** P2 is the number of arguments that the step function takes and ** P4 is a pointer to the FuncDef for this function. The P2 ** argument is not used by this opcode. It is only there to disambiguate ** functions that can take varying numbers of arguments. The ** P4 argument is only needed for the case where ** the step function was not previously called. */ /* Opcode: AggValue * P2 P3 P4 * ** Synopsis: r[P3]=value N=P2 ** ** Invoke the xValue() function and store the result in register P3. ** ** P2 is the number of arguments that the step function takes and ** P4 is a pointer to the FuncDef for this function. The P2 ** argument is not used by this opcode. It is only there to disambiguate ** functions that can take varying numbers of arguments. The ** P4 argument is only needed for the case where ** the step function was not previously called. */ case OP_AggValue: case OP_AggFinal: { Mem *pMem; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); pMem = &aMem[pOp->p1]; assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pOp->p3 ){ memAboutToChange(p, &aMem[pOp->p3]); rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); pMem = &aMem[pOp->p3]; }else #endif { rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); } if( rc ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); goto abort_due_to_error; } sqlite3VdbeChangeEncoding(pMem, encoding); UPDATE_MAX_BLOBSIZE(pMem); REGISTER_TRACE((int)(pMem-aMem), pMem); break; } #ifndef SQLITE_OMIT_WAL /* Opcode: Checkpoint P1 P2 P3 * * ** ** Checkpoint database P1. This is a no-op if P1 is not currently in ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns ** SQLITE_BUSY or not, respectively. Write the number of pages in the ** WAL after the checkpoint into mem[P3+1] and the number of pages ** in the WAL that have been checkpointed after the checkpoint ** completes into mem[P3+2]. However on an error, mem[P3+1] and ** mem[P3+2] are initialized to -1. */ case OP_Checkpoint: { int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ assert( p->readOnly==0 ); aRes[0] = 0; aRes[1] = aRes[2] = -1; assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE || pOp->p2==SQLITE_CHECKPOINT_FULL || pOp->p2==SQLITE_CHECKPOINT_RESTART || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE ); rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); if( rc ){ if( rc!=SQLITE_BUSY ) goto abort_due_to_error; rc = SQLITE_OK; aRes[0] = 1; } for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); } break; }; #endif #ifndef SQLITE_OMIT_PRAGMA /* Opcode: JournalMode P1 P2 P3 * * ** ** Change the journal mode of database P1 to P3. P3 must be one of the ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. ** ** Write a string containing the final journal-mode to register P2. */ case OP_JournalMode: { /* out2 */ Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ #ifndef SQLITE_OMIT_WAL const char *zFilename; /* Name of database file for pPager */ #endif pOut = out2Prerelease(p, pOp); eNew = pOp->p3; assert( eNew==PAGER_JOURNALMODE_DELETE || eNew==PAGER_JOURNALMODE_TRUNCATE || eNew==PAGER_JOURNALMODE_PERSIST || eNew==PAGER_JOURNALMODE_OFF || eNew==PAGER_JOURNALMODE_MEMORY || eNew==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; pPager = sqlite3BtreePager(pBt); eOld = sqlite3PagerGetJournalMode(pPager); if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; assert( sqlite3BtreeHoldsMutex(pBt) ); if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; #ifndef SQLITE_OMIT_WAL zFilename = sqlite3PagerFilename(pPager, 1); /* Do not allow a transition to journal_mode=WAL for a database ** in temporary storage or if the VFS does not support shared memory */ if( eNew==PAGER_JOURNALMODE_WAL && (sqlite3Strlen30(zFilename)==0 /* Temp file */ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ ){ eNew = eOld; } if( (eNew!=eOld) && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) ){ if( !db->autoCommit || db->nVdbeRead>1 ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "cannot change %s wal mode from within a transaction", (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") ); goto abort_due_to_error; }else{ if( eOld==PAGER_JOURNALMODE_WAL ){ /* If leaving WAL mode, close the log file. If successful, the call ** to PagerCloseWal() checkpoints and deletes the write-ahead-log ** file. An EXCLUSIVE lock may still be held on the database file ** after a successful return. */ rc = sqlite3PagerCloseWal(pPager, db); if( rc==SQLITE_OK ){ sqlite3PagerSetJournalMode(pPager, eNew); } }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ /* Cannot transition directly from MEMORY to WAL. Use mode OFF ** as an intermediate */ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); } /* Open a transaction on the database file. Regardless of the journal ** mode, this transaction always uses a rollback journal. */ assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); if( rc==SQLITE_OK ){ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); } } } #endif /* ifndef SQLITE_OMIT_WAL */ if( rc ) eNew = eOld; eNew = sqlite3PagerSetJournalMode(pPager, eNew); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = (char *)sqlite3JournalModename(eNew); pOut->n = sqlite3Strlen30(pOut->z); pOut->enc = SQLITE_UTF8; sqlite3VdbeChangeEncoding(pOut, encoding); if( rc ) goto abort_due_to_error; break; }; #endif /* SQLITE_OMIT_PRAGMA */ #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* Opcode: Vacuum P1 P2 * * * ** ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more ** for an attached database. The "temp" database may not be vacuumed. ** ** If P2 is not zero, then it is a register holding a string which is ** the file into which the result of vacuum should be written. When ** P2 is zero, the vacuum overwrites the original database. */ case OP_Vacuum: { assert( p->readOnly==0 ); rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, pOp->p2 ? &aMem[pOp->p2] : 0); if( rc ) goto abort_due_to_error; break; } #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* jump */ Btree *pBt; assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc ){ if( rc!=SQLITE_DONE ) goto abort_due_to_error; rc = SQLITE_OK; goto jump_to_p2; } break; } #endif /* Opcode: Expire P1 P2 * * * ** ** Cause precompiled statements to expire. When an expired statement ** is executed using sqlite3_step() it will either automatically ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) ** or it will fail with SQLITE_SCHEMA. ** ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, ** then only the currently executing statement is expired. ** ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, ** then running SQL statements are allowed to continue to run to completion. ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens ** that might help the statement run faster but which does not affect the ** correctness of operation. */ case OP_Expire: { assert( pOp->p2==0 || pOp->p2==1 ); if( !pOp->p1 ){ sqlite3ExpirePreparedStatements(db, pOp->p2); }else{ p->expired = pOp->p2+1; } break; } /* Opcode: CursorLock P1 * * * * ** ** Lock the btree to which cursor P1 is pointing so that the btree cannot be ** written by an other cursor. */ case OP_CursorLock: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorPin(pC->uc.pCursor); break; } /* Opcode: CursorUnlock P1 * * * * ** ** Unlock the btree to which cursor P1 is pointing so that it can be ** written by other cursors. */ case OP_CursorUnlock: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorUnpin(pC->uc.pCursor); break; } #ifndef SQLITE_OMIT_SHARED_CACHE /* Opcode: TableLock P1 P2 P3 P4 * ** Synopsis: iDb=P1 root=P2 write=P3 ** ** Obtain a lock on a particular table. This instruction is only used when ** the shared-cache feature is enabled. ** ** P1 is the index of the database in sqlite3.aDb[] of the database ** on which the lock is acquired. A readlock is obtained if P3==0 or ** a write lock if P3==1. ** ** P2 contains the root-page of the table to lock. ** ** P4 contains a pointer to the name of the table being locked. This is only ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { u8 isWriteLock = (u8)pOp->p3; if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ int p1 = pOp->p1; assert( p1>=0 && p1nDb ); assert( DbMaskTest(p->btreeMask, p1) ); assert( isWriteLock==0 || isWriteLock==1 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( rc ){ if( (rc&0xFF)==SQLITE_LOCKED ){ const char *z = pOp->p4.z; sqlite3VdbeError(p, "database table is locked: %s", z); } goto abort_due_to_error; } } break; } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VBegin * * * P4 * ** ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 P2 * * * ** ** P2 is a register that holds the name of a virtual table in database ** P1. Call the xCreate method for that table. */ case OP_VCreate: { Mem sMem; /* For storing the record being decoded */ const char *zTab; /* Name of the virtual table */ memset(&sMem, 0, sizeof(sMem)); sMem.db = db; /* Because P2 is always a static string, it is impossible for the ** sqlite3VdbeMemCopy() to fail */ assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); assert( rc==SQLITE_OK ); zTab = (const char*)sqlite3_value_text(&sMem); assert( zTab || db->mallocFailed ); if( zTab ){ rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); } sqlite3VdbeMemRelease(&sMem); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { db->nVDestroy++; rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); db->nVDestroy--; assert( p->errorAction==OE_Abort && p->usesStmtJournal ); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { /* ncycle */ VdbeCursor *pCur; sqlite3_vtab_cursor *pVCur; sqlite3_vtab *pVtab; const sqlite3_module *pModule; assert( p->bIsReader ); pCur = 0; pVCur = 0; pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; rc = pModule->xOpen(pVtab, &pVCur); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; /* Initialize sqlite3_vtab_cursor base class */ pVCur->pVtab = pVtab; /* Initialize vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); if( pCur ){ pCur->uc.pVCur = pVCur; pVtab->nRef++; }else{ assert( db->mallocFailed ); pModule->xClose(pVCur); goto no_mem; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VInitIn P1 P2 P3 * * ** Synopsis: r[P2]=ValueList(P1,P3) ** ** Set register P2 to be a pointer to a ValueList object for cursor P1 ** with cache register P3 and output register P3+1. This ValueList object ** can be used as the first argument to sqlite3_vtab_in_first() and ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 ** cursor. Register P3 is used to hold the values returned by ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). */ case OP_VInitIn: { /* out2, ncycle */ VdbeCursor *pC; /* The cursor containing the RHS values */ ValueList *pRhs; /* New ValueList object to put in reg[P2] */ pC = p->apCsr[pOp->p1]; pRhs = sqlite3_malloc64( sizeof(*pRhs) ); if( pRhs==0 ) goto no_mem; pRhs->pCsr = pC->uc.pCursor; pRhs->pOut = &aMem[pOp->p3]; pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VFilter P1 P2 P3 P4 * ** Synopsis: iplan=r[P3] zplan='P4' ** ** P1 is a cursor opened using VOpen. P2 is an address to jump to if ** the filtered result set is empty. ** ** P4 is either NULL or a string that was generated by the xBestIndex ** method of the module. The interpretation of the P4 string is left ** to the module implementation. ** ** This opcode invokes the xFilter method on the virtual table specified ** by P1. The integer query plan parameter to xFilter is stored in register ** P3. Register P3+1 stores the argc parameter to be passed to the ** xFilter method. Registers P3+2..P3+1+argc are the argc ** additional parameters which are passed to ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump, ncycle */ int nArg; int iQuery; const sqlite3_module *pModule; Mem *pQuery; Mem *pArgc; sqlite3_vtab_cursor *pVCur; sqlite3_vtab *pVtab; VdbeCursor *pCur; int res; int i; Mem **apArg; pQuery = &aMem[pOp->p3]; pArgc = &pQuery[1]; pCur = p->apCsr[pOp->p1]; assert( memIsValid(pQuery) ); REGISTER_TRACE(pOp->p3, pQuery); assert( pCur!=0 ); assert( pCur->eCurType==CURTYPE_VTAB ); pVCur = pCur->uc.pVCur; pVtab = pVCur->pVtab; pModule = pVtab->pModule; /* Grab the index number and argc parameters */ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); nArg = (int)pArgc->u.i; iQuery = (int)pQuery->u.i; /* Invoke the xFilter method */ apArg = p->apArg; for(i = 0; ixFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; res = pModule->xEof(pVCur); pCur->nullRow = 0; VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * P5 ** Synopsis: r[P3]=vcolumn(P2) ** ** Store in register P3 the value of the P2-th column of ** the current row of the virtual-table of cursor P1. ** ** If the VColumn opcode is being used to fetch the value of ** an unchanging column during an UPDATE operation, then the P5 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() ** function to return true inside the xColumn method of the virtual ** table implementation. The P5 column might also contain other ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are ** unused by OP_VColumn. */ case OP_VColumn: { /* ncycle */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; sqlite3_context sContext; VdbeCursor *pCur = p->apCsr[pOp->p1]; assert( pCur!=0 ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } assert( pCur->eCurType==CURTYPE_VTAB ); pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); sContext.pOut = pDest; sContext.enc = encoding; assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); if( pOp->p5 & OPFLAG_NOCHNG ){ sqlite3VdbeMemSetNull(pDest); pDest->flags = MEM_Null|MEM_Zero; pDest->u.nZero = 0; }else{ MemSetTypeFlag(pDest, MEM_Null); } rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); sqlite3VtabImportErrmsg(p, pVtab); if( sContext.isError>0 ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); rc = sContext.isError; } sqlite3VdbeChangeEncoding(pDest, encoding); REGISTER_TRACE(pOp->p3, pDest); UPDATE_MAX_BLOBSIZE(pDest); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VNext P1 P2 * * * ** ** Advance virtual table P1 to the next row in its result set and ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* jump, ncycle */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res; VdbeCursor *pCur; pCur = p->apCsr[pOp->p1]; assert( pCur!=0 ); assert( pCur->eCurType==CURTYPE_VTAB ); if( pCur->nullRow ){ break; } pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xNext ); /* Invoke the xNext() method of the module. There is no way for the ** underlying implementation to return an error if one occurs during ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ rc = pModule->xNext(pCur->uc.pVCur); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; res = pModule->xEof(pCur->uc.pVCur); VdbeBranchTaken(!res,2); if( !res ){ /* If there is data, jump to P2 */ goto jump_to_p2_and_check_for_interrupt; } goto check_for_interrupt; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; int isLegacy; isLegacy = (db->flags & SQLITE_LegacyAlter); db->flags |= SQLITE_LegacyAlter; pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); assert( memIsValid(pName) ); assert( p->readOnly==0 ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); testcase( pName->enc==SQLITE_UTF8 ); testcase( pName->enc==SQLITE_UTF16BE ); testcase( pName->enc==SQLITE_UTF16LE ); rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); if( rc ) goto abort_due_to_error; rc = pVtab->pModule->xRename(pVtab, pName->z); if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; sqlite3VtabImportErrmsg(p, pVtab); p->expired = 0; if( rc ) goto abort_due_to_error; break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 P5 ** Synopsis: data=r[P3@P2] ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xUpdate method. P2 values ** are contiguous memory cells starting at P3 to pass to the xUpdate ** invocation. The value in register (P3+P2-1) corresponds to the ** p2th element of the argv array passed to xUpdate. ** ** The xUpdate method will do a DELETE or an INSERT or both. ** The argv[0] element (which corresponds to memory cell P3) ** is the rowid of a row to delete. If argv[0] is NULL then no ** deletion occurs. The argv[1] element is the rowid of the new ** row. This can be NULL to have the virtual table select the new ** rowid for itself. The subsequent elements in the array are ** the values of columns in the new row. ** ** If P2==1 then no insert is performed. argv[0] is the rowid of ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. ** ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to ** apply in the case of a constraint failure on an insert or update. */ case OP_VUpdate: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid = 0; Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); assert( p->readOnly==0 ); if( db->mallocFailed ) goto no_mem; sqlite3VdbeIncrWriteCounter(p, 0); pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; ivtabOnConflict = pOp->p5; rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); db->vtabOnConflict = vtabOnConflict; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = rowid; } if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ if( pOp->p5==OE_Ignore ){ rc = SQLITE_OK; }else{ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); } }else{ p->nChange++; } if( rc ) goto abort_due_to_error; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ case OP_Pagecount: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: MaxPgcnt P1 P2 P3 * * ** ** Try to set the maximum page count for database P1 to the value in P3. ** Do not let the maximum page count fall below the current page count and ** do not change the maximum page count value if P3==0. ** ** Store the maximum page count after the change in register P2. */ case OP_MaxPgcnt: { /* out2 */ unsigned int newMax; Btree *pBt; pOut = out2Prerelease(p, pOp); pBt = db->aDb[pOp->p1].pBt; newMax = 0; if( pOp->p3 ){ newMax = sqlite3BtreeLastPage(pBt); if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; } pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); break; } #endif /* Opcode: Function P1 P2 P3 P4 * ** Synopsis: r[P3]=func(r[P2@NP]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with arguments taken ** from register P2 and successors. The number of arguments is in ** the sqlite3_context object that P4 points to. ** The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: AggStep, AggFinal, PureFunc */ /* Opcode: PureFunc P1 P2 P3 P4 * ** Synopsis: r[P3]=func(r[P2@NP]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with arguments taken ** from register P2 and successors. The number of arguments is in ** the sqlite3_context object that P4 points to. ** The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** This opcode works exactly like OP_Function. The only difference is in ** its name. This opcode is used in places where the function must be ** purely non-deterministic. Some built-in date/time functions can be ** either deterministic of non-deterministic, depending on their arguments. ** When those function are used in a non-deterministic way, they will check ** to see if they were called using OP_PureFunc instead of OP_Function, and ** if they were, they throw an error. ** ** See also: AggStep, AggFinal, Function */ case OP_PureFunc: /* group */ case OP_Function: { /* group */ int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relevant parts of the sqlite3_context object */ pOut = &aMem[pOp->p3]; if( pCtx->pOut != pOut ){ pCtx->pVdbe = p; pCtx->pOut = pOut; pCtx->enc = encoding; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } assert( pCtx->pVdbe==p ); memAboutToChange(p, pOut); #ifdef SQLITE_DEBUG for(i=0; iargc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif MemSetTypeFlag(pOut, MEM_Null); assert( pCtx->isError==0 ); (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ /* If the function returned an error, throw an exception */ if( pCtx->isError ){ if( pCtx->isError>0 ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); rc = pCtx->isError; } sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); pCtx->isError = 0; if( rc ) goto abort_due_to_error; } assert( (pOut->flags&MEM_Str)==0 || pOut->enc==encoding || db->mallocFailed ); assert( !sqlite3VdbeMemTooBig(pOut) ); REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: ClrSubtype P1 * * * * ** Synopsis: r[P1].subtype = 0 ** ** Clear the subtype from register P1. */ case OP_ClrSubtype: { /* in1 */ pIn1 = &aMem[pOp->p1]; pIn1->flags &= ~MEM_Subtype; break; } /* Opcode: FilterAdd P1 * P3 P4 * ** Synopsis: filter(P1) += key(P3@P4) ** ** Compute a hash on the P4 registers starting with r[P3] and ** add that hash to the bloom filter contained in r[P1]. */ case OP_FilterAdd: { u64 h; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( pIn1->flags & MEM_Blob ); assert( pIn1->n>0 ); h = filterHash(aMem, pOp); #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ int ii; for(ii=pOp->p3; iip3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif h %= (pIn1->n*8); pIn1->z[h/8] |= 1<<(h&7); break; } /* Opcode: Filter P1 P2 P3 P4 * ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 ** ** Compute a hash on the key contained in the P4 registers starting ** with r[P3]. Check to see if that hash is found in the ** bloom filter hosted by register P1. If it is not present then ** maybe jump to P2. Otherwise fall through. ** ** False negatives are harmless. It is always safe to fall through, ** even if the value is in the bloom filter. A false negative causes ** more CPU cycles to be used, but it should still yield the correct ** answer. However, an incorrect answer may well arise from a ** false positive - if the jump is taken when it should fall through. */ case OP_Filter: { /* jump */ u64 h; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Blob)!=0 ); assert( pIn1->n >= 1 ); h = filterHash(aMem, pOp); #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ int ii; for(ii=pOp->p3; iip3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif h %= (pIn1->n*8); if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ VdbeBranchTaken(1, 2); p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; goto jump_to_p2; }else{ p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; VdbeBranchTaken(0, 2); } break; } /* Opcode: Trace P1 P2 * P4 * ** ** Write P4 on the statement trace output if statement tracing is ** enabled. ** ** Operand P1 must be 0x7fffffff and P2 must positive. */ /* Opcode: Init P1 P2 P3 P4 * ** Synopsis: Start at P2 ** ** Programs contain a single instance of this opcode as the very first ** opcode. ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. ** Or if P4 is blank, use the string returned by sqlite3_sql(). ** ** If P2 is not zero, jump to instruction P2. ** ** Increment the value of P1 so that OP_Once opcodes will jump the ** first time they are evaluated for this run. ** ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT ** error is encountered. */ case OP_Trace: case OP_Init: { /* jump */ int i; #ifndef SQLITE_OMIT_TRACE char *zTrace; #endif /* If the P4 argument is not NULL, then it must be an SQL comment string. ** The "--" string is broken up to prevent false-positives with srcck1.c. ** ** This assert() provides evidence for: ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that ** would have been returned by the legacy sqlite3_trace() interface by ** using the X argument when X begins with "--" and invoking ** sqlite3_expanded_sql(P) otherwise. */ assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); /* OP_Init is always instruction 0 */ assert( pOp==p->aOp || pOp->opcode==OP_Trace ); #ifndef SQLITE_OMIT_TRACE if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 && p->minWriteFileFormat!=254 /* tag-20220401a */ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ #ifndef SQLITE_OMIT_DEPRECATED if( db->mTrace & SQLITE_TRACE_LEGACY ){ char *z = sqlite3VdbeExpandSql(p, zTrace); db->trace.xLegacy(db->pTraceArg, z); sqlite3_free(z); }else #endif if( db->nVdbeExec>1 ){ char *z = sqlite3MPrintf(db, "-- %s", zTrace); (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); sqlite3DbFree(db, z); }else{ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); } } #ifdef SQLITE_USE_FCNTL_TRACE zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( zTrace ){ int j; for(j=0; jnDb; j++){ if( DbMaskTest(p->btreeMask, j)==0 ) continue; sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); } } #endif /* SQLITE_USE_FCNTL_TRACE */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ #endif /* SQLITE_OMIT_TRACE */ assert( pOp->p2>0 ); if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ if( pOp->opcode==OP_Trace ) break; for(i=1; inOp; i++){ if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; } pOp->p1 = 0; } pOp->p1++; p->aCounter[SQLITE_STMTSTATUS_RUN]++; goto jump_to_p2; } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* Opcode: CursorHint P1 * * P4 * ** ** Provide a hint to cursor P1 that it only needs to return rows that ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer ** to values currently held in registers. TK_COLUMN terms in the P4 ** expression refer to columns in the b-tree to which cursor P1 is pointing. */ case OP_CursorHint: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p4type==P4_EXPR ); pC = p->apCsr[pOp->p1]; if( pC ){ assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, pOp->p4.pExpr, aMem); } break; } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ #ifdef SQLITE_DEBUG /* Opcode: Abortable * * * * * ** ** Verify that an Abort can happen. Assert if an Abort at this point ** might cause database corruption. This opcode only appears in debugging ** builds. ** ** An Abort is safe if either there have been no writes, or if there is ** an active statement journal. */ case OP_Abortable: { sqlite3VdbeAssertAbortable(p); break; } #endif #ifdef SQLITE_DEBUG /* Opcode: ReleaseReg P1 P2 P3 * P5 ** Synopsis: release r[P1@P2] mask P3 ** ** Release registers from service. Any content that was in the ** the registers is unreliable after this opcode completes. ** ** The registers released will be the P2 registers starting at P1, ** except if bit ii of P3 set, then do not release register P1+ii. ** In other words, P3 is a mask of registers to preserve. ** ** Releasing a register clears the Mem.pScopyFrom pointer. That means ** that if the content of the released register was set using OP_SCopy, ** a change to the value of the source register for the OP_SCopy will no longer ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). ** ** If P5 is set, then all released registers have their type set ** to MEM_Undefined so that any subsequent attempt to read the released ** register (before it is reinitialized) will generate an assertion fault. ** ** P5 ought to be set on every call to this opcode. ** However, there are places in the code generator will release registers ** before their are used, under the (valid) assumption that the registers ** will not be reallocated for some other purpose before they are used and ** hence are safe to release. ** ** This opcode is only available in testing and debugging builds. It is ** not generated for release builds. The purpose of this opcode is to help ** validate the generated bytecode. This opcode does not actually contribute ** to computing an answer. */ case OP_ReleaseReg: { Mem *pMem; int i; u32 constMask; assert( pOp->p1>0 ); assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); pMem = &aMem[pOp->p1]; constMask = pOp->p3; for(i=0; ip2; i++, pMem++){ if( i>=32 || (constMask & MASKBIT32(i))==0 ){ pMem->pScopyFrom = 0; if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); } } break; } #endif /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ /* ** The magic Explain opcode are only inserted when explain==2 (which ** is to say when the EXPLAIN QUERY PLAN syntax is used.) ** This opcode records information from the optimizer. It is the ** the same as a no-op. This opcodesnever appears in a real VM program. */ default: { /* This is really OP_Noop, OP_Explain */ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } #if defined(VDBE_PROFILE) *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); pnCycle = 0; #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pnCycle ){ *pnCycle += sqlite3Hwtime(); pnCycle = 0; } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; if( rc!=0 ) printf("rc=%d\n",rc); if( opProperty & (OPFLG_OUT2) ){ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); } if( opProperty & OPFLG_OUT3 ){ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); } if( opProperty==0xff ){ /* Never happens. This code exists to avoid a harmless linkage ** warning about sqlite3VdbeRegisterDump() being defined but not ** used. */ sqlite3VdbeRegisterDump(p); } } #endif /* SQLITE_DEBUG */ #endif /* NDEBUG */ } /* The end of the for(;;) loop the loops through opcodes */ /* If we reach this point, it means that execution is finished with ** an error of some kind. */ abort_due_to_error: if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; }else if( rc==SQLITE_IOERR_CORRUPTFS ){ rc = SQLITE_CORRUPT_BKPT; } assert( rc ); #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ const char *zTrace = p->zSql; if( zTrace==0 ){ if( aOp[0].opcode==OP_Trace ){ zTrace = aOp[0].p4.z; } if( zTrace==0 ) zTrace = "???"; } printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); } #endif if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); } p->rc = rc; sqlite3SystemError(db, rc); testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(rc, "statement aborts at %d: [%s] %s", (int)(pOp - aOp), p->zSql, p->zErrMsg); if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ db->flags |= SQLITE_CorruptRdOnly; } rc = SQLITE_ERROR; if( resetSchemaOnFault>0 ){ sqlite3ResetOneSchema(db, resetSchemaOnFault-1); } /* This is the only way out of this procedure. We have to ** release the mutexes on btrees that were acquired at the ** top. */ vdbe_return: #if defined(VDBE_PROFILE) if( pnCycle ){ *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); pnCycle = 0; } #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pnCycle ){ *pnCycle += sqlite3Hwtime(); pnCycle = 0; } #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ nProgressLimit += db->nProgressOps; if( db->xProgress(db->pProgressArg) ){ nProgressLimit = LARGEST_UINT64; rc = SQLITE_INTERRUPT; goto abort_due_to_error; } } #endif p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; if( DbMaskNonZero(p->lockMask) ){ sqlite3VdbeLeave(p); } assert( rc!=SQLITE_OK || nExtraDelete==0 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 ); return rc; /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH ** is encountered. */ too_big: sqlite3VdbeError(p, "string or blob too big"); rc = SQLITE_TOOBIG; goto abort_due_to_error; /* Jump to here if a malloc() fails. */ no_mem: sqlite3OomFault(db); sqlite3VdbeError(p, "out of memory"); rc = SQLITE_NOMEM_BKPT; goto abort_due_to_error; /* Jump to here if the sqlite3_interrupt() API sets the interrupt ** flag. */ abort_due_to_interrupt: assert( AtomicLoad(&db->u1.isInterrupted) ); rc = SQLITE_INTERRUPT; goto abort_due_to_error; } /************** End of vdbe.c ************************************************/ /************** Begin file vdbeblob.c ****************************************/ /* ** 2007 May 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement incremental BLOB I/O. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ #ifndef SQLITE_OMIT_INCRBLOB /* ** Valid sqlite3_blob* handles point to Incrblob structures. */ typedef struct Incrblob Incrblob; struct Incrblob { int nByte; /* Size of open blob, in bytes */ int iOffset; /* Byte offset of blob in cursor data */ u16 iCol; /* Table column this handle is open on */ BtCursor *pCsr; /* Cursor pointing at blob row */ sqlite3_stmt *pStmt; /* Statement holding cursor open */ sqlite3 *db; /* The associated database */ char *zDb; /* Database name */ Table *pTab; /* Table object */ }; /* ** This function is used by both blob_open() and blob_reopen(). It seeks ** the b-tree cursor associated with blob handle p to point to row iRow. ** If successful, SQLITE_OK is returned and subsequent calls to ** sqlite3_blob_read() or sqlite3_blob_write() access the specified row. ** ** If an error occurs, or if the specified row does not exist or does not ** contain a value of type TEXT or BLOB in the column nominated when the ** blob handle was opened, then an error code is returned and *pzErr may ** be set to point to a buffer containing an error message. It is the ** responsibility of the caller to free the error message buffer using ** sqlite3DbFree(). ** ** If an error does occur, then the b-tree cursor is closed. All subsequent ** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will ** immediately return SQLITE_ABORT. */ static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){ int rc; /* Error code */ char *zErr = 0; /* Error message */ Vdbe *v = (Vdbe *)p->pStmt; /* Set the value of register r[1] in the SQL statement to integer iRow. ** This is done directly as a performance optimization */ v->aMem[1].flags = MEM_Int; v->aMem[1].u.i = iRow; /* If the statement has been run before (and is paused at the OP_ResultRow) ** then back it up to the point where it does the OP_NotExists. This could ** have been down with an extra OP_Goto, but simply setting the program ** counter is faster. */ if( v->pc>4 ){ v->pc = 4; assert( v->aOp[v->pc].opcode==OP_NotExists ); rc = sqlite3VdbeExec(v); }else{ rc = sqlite3_step(p->pStmt); } if( rc==SQLITE_ROW ){ VdbeCursor *pC = v->apCsr[0]; u32 type; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); type = pC->nHdrParsed>p->iCol ? pC->aType[p->iCol] : 0; testcase( pC->nHdrParsed==p->iCol ); testcase( pC->nHdrParsed==p->iCol+1 ); if( type<12 ){ zErr = sqlite3MPrintf(p->db, "cannot open value of type %s", type==0?"null": type==7?"real": "integer" ); rc = SQLITE_ERROR; sqlite3_finalize(p->pStmt); p->pStmt = 0; }else{ p->iOffset = pC->aType[p->iCol + pC->nField]; p->nByte = sqlite3VdbeSerialTypeLen(type); p->pCsr = pC->uc.pCursor; sqlite3BtreeIncrblobCursor(p->pCsr); } } if( rc==SQLITE_ROW ){ rc = SQLITE_OK; }else if( p->pStmt ){ rc = sqlite3_finalize(p->pStmt); p->pStmt = 0; if( rc==SQLITE_OK ){ zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow); rc = SQLITE_ERROR; }else{ zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db)); } } assert( rc!=SQLITE_OK || zErr==0 ); assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE ); *pzErr = zErr; return rc; } /* ** Open a blob handle. */ SQLITE_API int sqlite3_blob_open( sqlite3* db, /* The database connection */ const char *zDb, /* The attached database containing the blob */ const char *zTable, /* The table containing the blob */ const char *zColumn, /* The column containing the blob */ sqlite_int64 iRow, /* The row containing the glob */ int wrFlag, /* True -> read/write access, false -> read-only */ sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */ ){ int nAttempt = 0; int iCol; /* Index of zColumn in row-record */ int rc = SQLITE_OK; char *zErr = 0; Table *pTab; Incrblob *pBlob = 0; Parse sParse; #ifdef SQLITE_ENABLE_API_ARMOR if( ppBlob==0 ){ return SQLITE_MISUSE_BKPT; } #endif *ppBlob = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zTable==0 ){ return SQLITE_MISUSE_BKPT; } #endif wrFlag = !!wrFlag; /* wrFlag = (wrFlag ? 1 : 0); */ sqlite3_mutex_enter(db->mutex); pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); while(1){ sqlite3ParseObjectInit(&sParse,db); if( !pBlob ) goto blob_open_out; sqlite3DbFree(db, zErr); zErr = 0; sqlite3BtreeEnterAll(db); pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb); if( pTab && IsVirtual(pTab) ){ pTab = 0; sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable); } if( pTab && !HasRowid(pTab) ){ pTab = 0; sqlite3ErrorMsg(&sParse, "cannot open table without rowid: %s", zTable); } #ifndef SQLITE_OMIT_VIEW if( pTab && IsView(pTab) ){ pTab = 0; sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable); } #endif if( !pTab ){ if( sParse.zErrMsg ){ sqlite3DbFree(db, zErr); zErr = sParse.zErrMsg; sParse.zErrMsg = 0; } rc = SQLITE_ERROR; sqlite3BtreeLeaveAll(db); goto blob_open_out; } pBlob->pTab = pTab; pBlob->zDb = db->aDb[sqlite3SchemaToIndex(db, pTab->pSchema)].zDbSName; /* Now search pTab for the exact column. */ for(iCol=0; iColnCol; iCol++) { if( sqlite3StrICmp(pTab->aCol[iCol].zCnName, zColumn)==0 ){ break; } } if( iCol==pTab->nCol ){ sqlite3DbFree(db, zErr); zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn); rc = SQLITE_ERROR; sqlite3BtreeLeaveAll(db); goto blob_open_out; } /* If the value is being opened for writing, check that the ** column is not indexed, and that it is not part of a foreign key. */ if( wrFlag ){ const char *zFault = 0; Index *pIdx; #ifndef SQLITE_OMIT_FOREIGN_KEY if( db->flags&SQLITE_ForeignKeys ){ /* Check that the column is not part of an FK child key definition. It ** is not necessary to check if it is part of a parent key, as parent ** key columns must be indexed. The check below will pick up this ** case. */ FKey *pFKey; assert( IsOrdinaryTable(pTab) ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ int j; for(j=0; jnCol; j++){ if( pFKey->aCol[j].iFrom==iCol ){ zFault = "foreign key"; } } } } #endif for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int j; for(j=0; jnKeyCol; j++){ /* FIXME: Be smarter about indexes that use expressions */ if( pIdx->aiColumn[j]==iCol || pIdx->aiColumn[j]==XN_EXPR ){ zFault = "indexed"; } } } if( zFault ){ sqlite3DbFree(db, zErr); zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault); rc = SQLITE_ERROR; sqlite3BtreeLeaveAll(db); goto blob_open_out; } } pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(&sParse); assert( pBlob->pStmt || db->mallocFailed ); if( pBlob->pStmt ){ /* This VDBE program seeks a btree cursor to the identified ** db/table/row entry. The reason for using a vdbe program instead ** of writing code to use the b-tree layer directly is that the ** vdbe program will take advantage of the various transaction, ** locking and error handling infrastructure built into the vdbe. ** ** After seeking the cursor, the vdbe executes an OP_ResultRow. ** Code external to the Vdbe then "borrows" the b-tree cursor and ** uses it to implement the blob_read(), blob_write() and ** blob_bytes() functions. ** ** The sqlite3_blob_close() function finalizes the vdbe program, ** which closes the b-tree cursor and (possibly) commits the ** transaction. */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList openBlob[] = { {OP_TableLock, 0, 0, 0}, /* 0: Acquire a read or write lock */ {OP_OpenRead, 0, 0, 0}, /* 1: Open a cursor */ /* blobSeekToRow() will initialize r[1] to the desired rowid */ {OP_NotExists, 0, 5, 1}, /* 2: Seek the cursor to rowid=r[1] */ {OP_Column, 0, 0, 1}, /* 3 */ {OP_ResultRow, 1, 0, 0}, /* 4 */ {OP_Halt, 0, 0, 0}, /* 5 */ }; Vdbe *v = (Vdbe *)pBlob->pStmt; int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); VdbeOp *aOp; sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, wrFlag, pTab->pSchema->schema_cookie, pTab->pSchema->iGeneration); sqlite3VdbeChangeP5(v, 1); assert( sqlite3VdbeCurrentAddr(v)==2 || db->mallocFailed ); aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn); /* Make sure a mutex is held on the table to be accessed */ sqlite3VdbeUsesBtree(v, iDb); if( db->mallocFailed==0 ){ assert( aOp!=0 ); /* Configure the OP_TableLock instruction */ #ifdef SQLITE_OMIT_SHARED_CACHE aOp[0].opcode = OP_Noop; #else aOp[0].p1 = iDb; aOp[0].p2 = pTab->tnum; aOp[0].p3 = wrFlag; sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT); } if( db->mallocFailed==0 ){ #endif /* Remove either the OP_OpenWrite or OpenRead. Set the P2 ** parameter of the other to pTab->tnum. */ if( wrFlag ) aOp[1].opcode = OP_OpenWrite; aOp[1].p2 = pTab->tnum; aOp[1].p3 = iDb; /* Configure the number of columns. Configure the cursor to ** think that the table has one more column than it really ** does. An OP_Column to retrieve this imaginary column will ** always return an SQL NULL. This is useful because it means ** we can invoke OP_Column to fill in the vdbe cursors type ** and offset cache without causing any IO. */ aOp[1].p4type = P4_INT32; aOp[1].p4.i = pTab->nCol+1; aOp[3].p2 = pTab->nCol; sParse.nVar = 0; sParse.nMem = 1; sParse.nTab = 1; sqlite3VdbeMakeReady(v, &sParse); } } pBlob->iCol = iCol; pBlob->db = db; sqlite3BtreeLeaveAll(db); if( db->mallocFailed ){ goto blob_open_out; } rc = blobSeekToRow(pBlob, iRow, &zErr); if( (++nAttempt)>=SQLITE_MAX_SCHEMA_RETRY || rc!=SQLITE_SCHEMA ) break; sqlite3ParseObjectReset(&sParse); } blob_open_out: if( rc==SQLITE_OK && db->mallocFailed==0 ){ *ppBlob = (sqlite3_blob *)pBlob; }else{ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr); sqlite3DbFree(db, zErr); sqlite3ParseObjectReset(&sParse); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Close a blob handle that was previously created using ** sqlite3_blob_open(). */ SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; int rc; sqlite3 *db; if( p ){ sqlite3_stmt *pStmt = p->pStmt; db = p->db; sqlite3_mutex_enter(db->mutex); sqlite3DbFree(db, p); sqlite3_mutex_leave(db->mutex); rc = sqlite3_finalize(pStmt); }else{ rc = SQLITE_OK; } return rc; } /* ** Perform a read or write operation on a blob */ static int blobReadWrite( sqlite3_blob *pBlob, void *z, int n, int iOffset, int (*xCall)(BtCursor*, u32, u32, void*) ){ int rc; Incrblob *p = (Incrblob *)pBlob; Vdbe *v; sqlite3 *db; if( p==0 ) return SQLITE_MISUSE_BKPT; db = p->db; sqlite3_mutex_enter(db->mutex); v = (Vdbe*)p->pStmt; if( n<0 || iOffset<0 || ((sqlite3_int64)iOffset+n)>p->nByte ){ /* Request is out of range. Return a transient error. */ rc = SQLITE_ERROR; }else if( v==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is ** returned, clean-up the statement handle. */ assert( db == v->db ); sqlite3BtreeEnterCursor(p->pCsr); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( xCall==sqlite3BtreePutData && db->xPreUpdateCallback ){ /* If a pre-update hook is registered and this is a write cursor, ** invoke it here. ** ** TODO: The preupdate-hook is passed SQLITE_DELETE, even though this ** operation should really be an SQLITE_UPDATE. This is probably ** incorrect, but is convenient because at this point the new.* values ** are not easily obtainable. And for the sessions module, an ** SQLITE_UPDATE where the PK columns do not change is handled in the ** same way as an SQLITE_DELETE (the SQLITE_DELETE code is actually ** slightly more efficient). Since you cannot write to a PK column ** using the incremental-blob API, this works. For the sessions module ** anyhow. */ sqlite3_int64 iKey; iKey = sqlite3BtreeIntegerKey(p->pCsr); assert( v->apCsr[0]!=0 ); assert( v->apCsr[0]->eCurType==CURTYPE_BTREE ); sqlite3VdbePreUpdateHook( v, v->apCsr[0], SQLITE_DELETE, p->zDb, p->pTab, iKey, -1, p->iCol ); } #endif rc = xCall(p->pCsr, iOffset+p->iOffset, n, z); sqlite3BtreeLeaveCursor(p->pCsr); if( rc==SQLITE_ABORT ){ sqlite3VdbeFinalize(v); p->pStmt = 0; }else{ v->rc = rc; } } sqlite3Error(db, rc); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Read data from a blob handle. */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreePayloadChecked); } /* ** Write data to a blob handle. */ SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData); } /* ** Query a blob handle for the size of the data. ** ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob ** so no mutex is required for access. */ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; return (p && p->pStmt) ? p->nByte : 0; } /* ** Move an existing blob handle to point to a different row of the same ** database table. ** ** If an error occurs, or if the specified row does not exist or does not ** contain a blob or text value, then an error code is returned and the ** database handle error code and message set. If this happens, then all ** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) ** immediately return SQLITE_ABORT. */ SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){ int rc; Incrblob *p = (Incrblob *)pBlob; sqlite3 *db; if( p==0 ) return SQLITE_MISUSE_BKPT; db = p->db; sqlite3_mutex_enter(db->mutex); if( p->pStmt==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ char *zErr; ((Vdbe*)p->pStmt)->rc = SQLITE_OK; rc = blobSeekToRow(p, iRow, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr); sqlite3DbFree(db, zErr); } assert( rc!=SQLITE_SCHEMA ); } rc = sqlite3ApiExit(db, rc); assert( rc==SQLITE_OK || p->pStmt==0 ); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* #ifndef SQLITE_OMIT_INCRBLOB */ /************** End of vdbeblob.c ********************************************/ /************** Begin file vdbesort.c ****************************************/ /* ** 2011-07-09 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for the VdbeSorter object, used in concert with ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements ** or by SELECT statements with ORDER BY clauses that cannot be satisfied ** using indexes and without LIMIT clauses. ** ** The VdbeSorter object implements a multi-threaded external merge sort ** algorithm that is efficient even if the number of elements being sorted ** exceeds the available memory. ** ** Here is the (internal, non-API) interface between this module and the ** rest of the SQLite system: ** ** sqlite3VdbeSorterInit() Create a new VdbeSorter object. ** ** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter ** object. The row is a binary blob in the ** OP_MakeRecord format that contains both ** the ORDER BY key columns and result columns ** in the case of a SELECT w/ ORDER BY, or ** the complete record for an index entry ** in the case of a CREATE INDEX. ** ** sqlite3VdbeSorterRewind() Sort all content previously added. ** Position the read cursor on the ** first sorted element. ** ** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted ** element. ** ** sqlite3VdbeSorterRowkey() Return the complete binary blob for the ** row currently under the read cursor. ** ** sqlite3VdbeSorterCompare() Compare the binary blob for the row ** currently under the read cursor against ** another binary blob X and report if ** X is strictly less than the read cursor. ** Used to enforce uniqueness in a ** CREATE UNIQUE INDEX statement. ** ** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim ** all resources. ** ** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This ** is like Close() followed by Init() only ** much faster. ** ** The interfaces above must be called in a particular order. Write() can ** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e. ** ** Init() ** for each record: Write() ** Rewind() ** Rowkey()/Compare() ** Next() ** Close() ** ** Algorithm: ** ** Records passed to the sorter via calls to Write() are initially held ** unsorted in main memory. Assuming the amount of memory used never exceeds ** a threshold, when Rewind() is called the set of records is sorted using ** an in-memory merge sort. In this case, no temporary files are required ** and subsequent calls to Rowkey(), Next() and Compare() read records ** directly from main memory. ** ** If the amount of space used to store records in main memory exceeds the ** threshold, then the set of records currently in memory are sorted and ** written to a temporary file in "Packed Memory Array" (PMA) format. ** A PMA created at this point is known as a "level-0 PMA". Higher levels ** of PMAs may be created by merging existing PMAs together - for example ** merging two or more level-0 PMAs together creates a level-1 PMA. ** ** The threshold for the amount of main memory to use before flushing ** records to a PMA is roughly the same as the limit configured for the ** page-cache of the main database. Specifically, the threshold is set to ** the value returned by "PRAGMA main.page_size" multiplied by ** that returned by "PRAGMA main.cache_size", in bytes. ** ** If the sorter is running in single-threaded mode, then all PMAs generated ** are appended to a single temporary file. Or, if the sorter is running in ** multi-threaded mode then up to (N+1) temporary files may be opened, where ** N is the configured number of worker threads. In this case, instead of ** sorting the records and writing the PMA to a temporary file itself, the ** calling thread usually launches a worker thread to do so. Except, if ** there are already N worker threads running, the main thread does the work ** itself. ** ** The sorter is running in multi-threaded mode if (a) the library was built ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater ** than zero, and (b) worker threads have been enabled at runtime by calling ** "PRAGMA threads=N" with some value of N greater than 0. ** ** When Rewind() is called, any data remaining in memory is flushed to a ** final PMA. So at this point the data is stored in some number of sorted ** PMAs within temporary files on disk. ** ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the ** sorter is running in single-threaded mode, then these PMAs are merged ** incrementally as keys are retrieved from the sorter by the VDBE. The ** MergeEngine object, described in further detail below, performs this ** merge. ** ** Or, if running in multi-threaded mode, then a background thread is ** launched to merge the existing PMAs. Once the background thread has ** merged T bytes of data into a single sorted PMA, the main thread ** begins reading keys from that PMA while the background thread proceeds ** with merging the next T bytes of data. And so on. ** ** Parameter T is set to half the value of the memory threshold used ** by Write() above to determine when to create a new PMA. ** ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when ** Rewind() is called, then a hierarchy of incremental-merges is used. ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on ** disk are merged together. Then T bytes of data from the second set, and ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT ** PMAs at a time. This done is to improve locality. ** ** If running in multi-threaded mode and there are more than ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more ** than one background thread may be created. Specifically, there may be ** one background thread for each temporary file on disk, and one background ** thread to merge the output of each of the others to a single PMA for ** the main thread to read from. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various ** messages to stderr that may be helpful in understanding the performance ** characteristics of the sorter in multi-threaded mode. */ #if 0 # define SQLITE_DEBUG_SORTER_THREADS 1 #endif /* ** Hard-coded maximum amount of data to accumulate in memory before flushing ** to a level 0 PMA. The purpose of this limit is to prevent various integer ** overflows. 512MiB. */ #define SQLITE_MAX_PMASZ (1<<29) /* ** Private objects used by the sorter */ typedef struct MergeEngine MergeEngine; /* Merge PMAs together */ typedef struct PmaReader PmaReader; /* Incrementally read one PMA */ typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */ typedef struct SorterRecord SorterRecord; /* A record being sorted */ typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */ typedef struct SorterFile SorterFile; /* Temporary file object wrapper */ typedef struct SorterList SorterList; /* In-memory list of records */ typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */ /* ** A container for a temp file handle and the current amount of data ** stored in the file. */ struct SorterFile { sqlite3_file *pFd; /* File handle */ i64 iEof; /* Bytes of data stored in pFd */ }; /* ** An in-memory list of objects to be sorted. ** ** If aMemory==0 then each object is allocated separately and the objects ** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects ** are stored in the aMemory[] bulk memory, one right after the other, and ** are connected using SorterRecord.u.iNext. */ struct SorterList { SorterRecord *pList; /* Linked list of records */ u8 *aMemory; /* If non-NULL, bulk memory to hold pList */ int szPMA; /* Size of pList as PMA in bytes */ }; /* ** The MergeEngine object is used to combine two or more smaller PMAs into ** one big PMA using a merge operation. Separate PMAs all need to be ** combined into one big PMA in order to be able to step through the sorted ** records in order. ** ** The aReadr[] array contains a PmaReader object for each of the PMAs being ** merged. An aReadr[] object either points to a valid key or else is at EOF. ** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.) ** For the purposes of the paragraphs below, we assume that the array is ** actually N elements in size, where N is the smallest power of 2 greater ** to or equal to the number of PMAs being merged. The extra aReadr[] elements ** are treated as if they are empty (always at EOF). ** ** The aTree[] array is also N elements in size. The value of N is stored in ** the MergeEngine.nTree variable. ** ** The final (N/2) elements of aTree[] contain the results of comparing ** pairs of PMA keys together. Element i contains the result of ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the ** aTree element is set to the index of it. ** ** For the purposes of this comparison, EOF is considered greater than any ** other key value. If the keys are equal (only possible with two EOF ** values), it doesn't matter which index is stored. ** ** The (N/4) elements of aTree[] that precede the final (N/2) described ** above contains the index of the smallest of each block of 4 PmaReaders ** And so on. So that aTree[1] contains the index of the PmaReader that ** currently points to the smallest key value. aTree[0] is unused. ** ** Example: ** ** aReadr[0] -> Banana ** aReadr[1] -> Feijoa ** aReadr[2] -> Elderberry ** aReadr[3] -> Currant ** aReadr[4] -> Grapefruit ** aReadr[5] -> Apple ** aReadr[6] -> Durian ** aReadr[7] -> EOF ** ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } ** ** The current element is "Apple" (the value of the key indicated by ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will ** be advanced to the next key in its segment. Say the next key is ** "Eggplant": ** ** aReadr[5] -> Eggplant ** ** The contents of aTree[] are updated first by comparing the new PmaReader ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Bananafile2. And instead of using a ** background thread to prepare data for the PmaReader, with a single ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with ** keys from pMerger by the calling thread whenever the PmaReader runs out ** of data. */ struct IncrMerger { SortSubtask *pTask; /* Task that owns this merger */ MergeEngine *pMerger; /* Merge engine thread reads data from */ i64 iStartOff; /* Offset to start writing file at */ int mxSz; /* Maximum bytes of data to store */ int bEof; /* Set to true when merge is finished */ int bUseThread; /* True to use a bg thread for this object */ SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */ }; /* ** An instance of this object is used for writing a PMA. ** ** The PMA is written one record at a time. Each record is of an arbitrary ** size. But I/O is more efficient if it occurs in page-sized blocks where ** each block is aligned on a page boundary. This object caches writes to ** the PMA so that aligned, page-size blocks are written. */ struct PmaWriter { int eFWErr; /* Non-zero if in an error state */ u8 *aBuffer; /* Pointer to write buffer */ int nBuffer; /* Size of write buffer in bytes */ int iBufStart; /* First byte of buffer to write */ int iBufEnd; /* Last byte of buffer to write */ i64 iWriteOff; /* Offset of start of buffer in file */ sqlite3_file *pFd; /* File handle to write to */ }; /* ** This object is the header on a single record while that record is being ** held in memory and prior to being written out as part of a PMA. ** ** How the linked list is connected depends on how memory is being managed ** by this module. If using a separate allocation for each in-memory record ** (VdbeSorter.list.aMemory==0), then the list is always connected using the ** SorterRecord.u.pNext pointers. ** ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0), ** then while records are being accumulated the list is linked using the ** SorterRecord.u.iNext offset. This is because the aMemory[] array may ** be sqlite3Realloc()ed while records are being accumulated. Once the VM ** has finished passing records to the sorter, or when the in-memory buffer ** is full, the list is sorted. As part of the sorting process, it is ** converted to use the SorterRecord.u.pNext pointers. See function ** vdbeSorterSort() for details. */ struct SorterRecord { int nVal; /* Size of the record in bytes */ union { SorterRecord *pNext; /* Pointer to next record in list */ int iNext; /* Offset within aMemory of next record */ } u; /* The data for the record immediately follows this header */ }; /* Return a pointer to the buffer containing the record data for SorterRecord ** object p. Should be used as if: ** ** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; } */ #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1)) /* Maximum number of PMAs that a single MergeEngine can merge */ #define SORTER_MAX_MERGE_COUNT 16 static int vdbeIncrSwap(IncrMerger*); static void vdbeIncrFree(IncrMerger *); /* ** Free all memory belonging to the PmaReader object passed as the ** argument. All structure fields are set to zero before returning. */ static void vdbePmaReaderClear(PmaReader *pReadr){ sqlite3_free(pReadr->aAlloc); sqlite3_free(pReadr->aBuffer); if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); vdbeIncrFree(pReadr->pIncr); memset(pReadr, 0, sizeof(PmaReader)); } /* ** Read the next nByte bytes of data from the PMA p. ** If successful, set *ppOut to point to a buffer containing the data ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite ** error code. ** ** The buffer returned in *ppOut is only valid until the ** next call to this function. */ static int vdbePmaReadBlob( PmaReader *p, /* PmaReader from which to take the blob */ int nByte, /* Bytes of data to read */ u8 **ppOut /* OUT: Pointer to buffer containing data */ ){ int iBuf; /* Offset within buffer to read from */ int nAvail; /* Bytes of data available in buffer */ if( p->aMap ){ *ppOut = &p->aMap[p->iReadOff]; p->iReadOff += nByte; return SQLITE_OK; } assert( p->aBuffer ); /* If there is no more data to be read from the buffer, read the next ** p->nBuffer bytes of data from the file into it. Or, if there are less ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ iBuf = p->iReadOff % p->nBuffer; if( iBuf==0 ){ int nRead; /* Bytes to read from disk */ int rc; /* sqlite3OsRead() return code */ /* Determine how many bytes of data to read. */ if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ nRead = p->nBuffer; }else{ nRead = (int)(p->iEof - p->iReadOff); } assert( nRead>0 ); /* Readr data from the file. Return early if an error occurs. */ rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff); assert( rc!=SQLITE_IOERR_SHORT_READ ); if( rc!=SQLITE_OK ) return rc; } nAvail = p->nBuffer - iBuf; if( nByte<=nAvail ){ /* The requested data is available in the in-memory buffer. In this ** case there is no need to make a copy of the data, just return a ** pointer into the buffer to the caller. */ *ppOut = &p->aBuffer[iBuf]; p->iReadOff += nByte; }else{ /* The requested data is not all available in the in-memory buffer. ** In this case, allocate space at p->aAlloc[] to copy the requested ** range into. Then return a copy of pointer p->aAlloc to the caller. */ int nRem; /* Bytes remaining to copy */ /* Extend the p->aAlloc[] allocation if required. */ if( p->nAllocnAlloc); while( nByte>nNew ) nNew = nNew*2; aNew = sqlite3Realloc(p->aAlloc, nNew); if( !aNew ) return SQLITE_NOMEM_BKPT; p->nAlloc = nNew; p->aAlloc = aNew; } /* Copy as much data as is available in the buffer into the start of ** p->aAlloc[]. */ memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); p->iReadOff += nAvail; nRem = nByte - nAvail; /* The following loop copies up to p->nBuffer bytes per iteration into ** the p->aAlloc[] buffer. */ while( nRem>0 ){ int rc; /* vdbePmaReadBlob() return code */ int nCopy; /* Number of bytes to copy */ u8 *aNext; /* Pointer to buffer to copy data from */ nCopy = nRem; if( nRem>p->nBuffer ) nCopy = p->nBuffer; rc = vdbePmaReadBlob(p, nCopy, &aNext); if( rc!=SQLITE_OK ) return rc; assert( aNext!=p->aAlloc ); memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); nRem -= nCopy; } *ppOut = p->aAlloc; } return SQLITE_OK; } /* ** Read a varint from the stream of data accessed by p. Set *pnOut to ** the value read. */ static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){ int iBuf; if( p->aMap ){ p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut); }else{ iBuf = p->iReadOff % p->nBuffer; if( iBuf && (p->nBuffer-iBuf)>=9 ){ p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); }else{ u8 aVarint[16], *a; int i = 0, rc; do{ rc = vdbePmaReadBlob(p, 1, &a); if( rc ) return rc; aVarint[(i++)&0xf] = a[0]; }while( (a[0]&0x80)!=0 ); sqlite3GetVarint(aVarint, pnOut); } } return SQLITE_OK; } /* ** Attempt to memory map file pFile. If successful, set *pp to point to the ** new mapping and return SQLITE_OK. If the mapping is not attempted ** (because the file is too large or the VFS layer is configured not to use ** mmap), return SQLITE_OK and set *pp to NULL. ** ** Or, if an error occurs, return an SQLite error code. The final value of ** *pp is undefined in this case. */ static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){ int rc = SQLITE_OK; if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){ sqlite3_file *pFd = pFile->pFd; if( pFd->pMethods->iVersion>=3 ){ rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp); testcase( rc!=SQLITE_OK ); } } return rc; } /* ** Attach PmaReader pReadr to file pFile (if it is not already attached to ** that file) and seek it to offset iOff within the file. Return SQLITE_OK ** if successful, or an SQLite error code if an error occurs. */ static int vdbePmaReaderSeek( SortSubtask *pTask, /* Task context */ PmaReader *pReadr, /* Reader whose cursor is to be moved */ SorterFile *pFile, /* Sorter file to read from */ i64 iOff /* Offset in pFile */ ){ int rc = SQLITE_OK; assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 ); if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ; if( pReadr->aMap ){ sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); pReadr->aMap = 0; } pReadr->iReadOff = iOff; pReadr->iEof = pFile->iEof; pReadr->pFd = pFile->pFd; rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap); if( rc==SQLITE_OK && pReadr->aMap==0 ){ int pgsz = pTask->pSorter->pgsz; int iBuf = pReadr->iReadOff % pgsz; if( pReadr->aBuffer==0 ){ pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz); if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT; pReadr->nBuffer = pgsz; } if( rc==SQLITE_OK && iBuf ){ int nRead = pgsz - iBuf; if( (pReadr->iReadOff + nRead) > pReadr->iEof ){ nRead = (int)(pReadr->iEof - pReadr->iReadOff); } rc = sqlite3OsRead( pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff ); testcase( rc!=SQLITE_OK ); } } return rc; } /* ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if ** no error occurs, or an SQLite error code if one does. */ static int vdbePmaReaderNext(PmaReader *pReadr){ int rc = SQLITE_OK; /* Return Code */ u64 nRec = 0; /* Size of record in bytes */ if( pReadr->iReadOff>=pReadr->iEof ){ IncrMerger *pIncr = pReadr->pIncr; int bEof = 1; if( pIncr ){ rc = vdbeIncrSwap(pIncr); if( rc==SQLITE_OK && pIncr->bEof==0 ){ rc = vdbePmaReaderSeek( pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff ); bEof = 0; } } if( bEof ){ /* This is an EOF condition */ vdbePmaReaderClear(pReadr); testcase( rc!=SQLITE_OK ); return rc; } } if( rc==SQLITE_OK ){ rc = vdbePmaReadVarint(pReadr, &nRec); } if( rc==SQLITE_OK ){ pReadr->nKey = (int)nRec; rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey); testcase( rc!=SQLITE_OK ); } return rc; } /* ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile ** starting at offset iStart and ending at offset iEof-1. This function ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the ** PMA is empty). ** ** If the pnByte parameter is NULL, then it is assumed that the file ** contains a single PMA, and that that PMA omits the initial length varint. */ static int vdbePmaReaderInit( SortSubtask *pTask, /* Task context */ SorterFile *pFile, /* Sorter file to read from */ i64 iStart, /* Start offset in pFile */ PmaReader *pReadr, /* PmaReader to populate */ i64 *pnByte /* IN/OUT: Increment this value by PMA size */ ){ int rc; assert( pFile->iEof>iStart ); assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 ); assert( pReadr->aBuffer==0 ); assert( pReadr->aMap==0 ); rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart); if( rc==SQLITE_OK ){ u64 nByte = 0; /* Size of PMA in bytes */ rc = vdbePmaReadVarint(pReadr, &nByte); pReadr->iEof = pReadr->iReadOff + nByte; *pnByte += nByte; } if( rc==SQLITE_OK ){ rc = vdbePmaReaderNext(pReadr); } return rc; } /* ** A version of vdbeSorterCompare() that assumes that it has already been ** determined that the first field of key1 is equal to the first field of ** key2. */ static int vdbeSorterCompareTail( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ UnpackedRecord *r2 = pTask->pUnpacked; if( *pbKey2Cached==0 ){ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); *pbKey2Cached = 1; } return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); } /* ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences ** used by the comparison. Return the result of the comparison. ** ** If IN/OUT parameter *pbKey2Cached is true when this function is called, ** it is assumed that (pTask->pUnpacked) contains the unpacked version ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked ** version of key2 and *pbKey2Cached set to true before returning. ** ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set ** to SQLITE_NOMEM. */ static int vdbeSorterCompare( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ UnpackedRecord *r2 = pTask->pUnpacked; if( !*pbKey2Cached ){ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); *pbKey2Cached = 1; } return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); } /* ** A specially optimized version of vdbeSorterCompare() that assumes that ** the first field of each key is a TEXT value and that the collation ** sequence to compare them with is BINARY. */ static int vdbeSorterCompareText( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ const u8 * const p1 = (const u8 * const)pKey1; const u8 * const p2 = (const u8 * const)pKey2; const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ int n1; int n2; int res; getVarint32NR(&p1[1], n1); getVarint32NR(&p2[1], n2); res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2); if( res==0 ){ res = n1 - n2; } if( res==0 ){ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ res = vdbeSorterCompareTail( pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 ); } }else{ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ res = res * -1; } } return res; } /* ** A specially optimized version of vdbeSorterCompare() that assumes that ** the first field of each key is an INTEGER value. */ static int vdbeSorterCompareInt( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ const u8 * const p1 = (const u8 * const)pKey1; const u8 * const p2 = (const u8 * const)pKey2; const int s1 = p1[1]; /* Left hand serial type */ const int s2 = p2[1]; /* Right hand serial type */ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ int res; /* Return value */ assert( (s1>0 && s1<7) || s1==8 || s1==9 ); assert( (s2>0 && s2<7) || s2==8 || s2==9 ); if( s1==s2 ){ /* The two values have the same sign. Compare using memcmp(). */ static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 }; const u8 n = aLen[s1]; int i; res = 0; for(i=0; i7 && s2>7 ){ res = s1 - s2; }else{ if( s2>7 ){ res = +1; }else if( s1>7 ){ res = -1; }else{ res = s1 - s2; } assert( res!=0 ); if( res>0 ){ if( *v1 & 0x80 ) res = -1; }else{ if( *v2 & 0x80 ) res = +1; } } if( res==0 ){ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ res = vdbeSorterCompareTail( pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 ); } }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); res = res * -1; } return res; } /* ** Initialize the temporary index cursor just opened as a sorter cursor. ** ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField) ** to determine the number of fields that should be compared from the ** records being sorted. However, if the value passed as argument nField ** is non-zero and the sorter is able to guarantee a stable sort, nField ** is used instead. This is used when sorting records for a CREATE INDEX ** statement. In this case, keys are always delivered to the sorter in ** order of the primary key, which happens to be make up the final part ** of the records being sorted. So if the sort is stable, there is never ** any reason to compare PK fields and they can be ignored for a small ** performance boost. ** ** The sorter can guarantee a stable sort when running in single-threaded ** mode, but not in multi-threaded mode. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_PRIVATE int sqlite3VdbeSorterInit( sqlite3 *db, /* Database connection (for malloc()) */ int nField, /* Number of key fields in each record */ VdbeCursor *pCsr /* Cursor that holds the new sorter */ ){ int pgsz; /* Page size of main database */ int i; /* Used to iterate through aTask[] */ VdbeSorter *pSorter; /* The new sorter */ KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */ int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */ int sz; /* Size of pSorter in bytes */ int rc = SQLITE_OK; #if SQLITE_MAX_WORKER_THREADS==0 # define nWorker 0 #else int nWorker; #endif /* Initialize the upper limit on the number of worker threads */ #if SQLITE_MAX_WORKER_THREADS>0 if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){ nWorker = 0; }else{ nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS]; } #endif /* Do not allow the total number of threads (main thread + all workers) ** to exceed the maximum merge count */ #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT if( nWorker>=SORTER_MAX_MERGE_COUNT ){ nWorker = SORTER_MAX_MERGE_COUNT-1; } #endif assert( pCsr->pKeyInfo ); assert( !pCsr->isEphemeral ); assert( pCsr->eCurType==CURTYPE_SORTER ); szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*); sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask); pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo); pCsr->uc.pSorter = pSorter; if( pSorter==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ Btree *pBt = db->aDb[0].pBt; pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); pKeyInfo->db = 0; if( nField && nWorker==0 ){ pKeyInfo->nKeyField = nField; } sqlite3BtreeEnter(pBt); pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt); sqlite3BtreeLeave(pBt); pSorter->nTask = nWorker + 1; pSorter->iPrev = (u8)(nWorker - 1); pSorter->bUseThreads = (pSorter->nTask>1); pSorter->db = db; for(i=0; inTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; pTask->pSorter = pSorter; } if( !sqlite3TempInMemory(db) ){ i64 mxCache; /* Cache size in bytes*/ u32 szPma = sqlite3GlobalConfig.szPma; pSorter->mnPmaSize = szPma * pgsz; mxCache = db->aDb[0].pSchema->cache_size; if( mxCache<0 ){ /* A negative cache-size value C indicates that the cache is abs(C) ** KiB in size. */ mxCache = mxCache * -1024; }else{ mxCache = mxCache * pgsz; } mxCache = MIN(mxCache, SQLITE_MAX_PMASZ); pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache); /* Avoid large memory allocations if the application has requested ** SQLITE_CONFIG_SMALL_MALLOC. */ if( sqlite3GlobalConfig.bSmallMalloc==0 ){ assert( pSorter->iMemory==0 ); pSorter->nMemory = pgsz; pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT; } } if( pKeyInfo->nAllField<13 && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0 ){ pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; } } return rc; } #undef nWorker /* Defined at the top of this function */ /* ** Free the list of sorted records starting at pRecord. */ static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ SorterRecord *p; SorterRecord *pNext; for(p=pRecord; p; p=pNext){ pNext = p->u.pNext; sqlite3DbFree(db, p); } } /* ** Free all resources owned by the object indicated by argument pTask. All ** fields of *pTask are zeroed before returning. */ static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ sqlite3DbFree(db, pTask->pUnpacked); #if SQLITE_MAX_WORKER_THREADS>0 /* pTask->list.aMemory can only be non-zero if it was handed memory ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ if( pTask->list.aMemory ){ sqlite3_free(pTask->list.aMemory); }else #endif { assert( pTask->list.aMemory==0 ); vdbeSorterRecordFree(0, pTask->list.pList); } if( pTask->file.pFd ){ sqlite3OsCloseFree(pTask->file.pFd); } if( pTask->file2.pFd ){ sqlite3OsCloseFree(pTask->file2.pFd); } memset(pTask, 0, sizeof(SortSubtask)); } #ifdef SQLITE_DEBUG_SORTER_THREADS static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ i64 t; int iTask = (pTask - pTask->pSorter->aTask); sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent); } static void vdbeSorterRewindDebug(const char *zEvent){ i64 t = 0; sqlite3_vfs *pVfs = sqlite3_vfs_find(0); if( ALWAYS(pVfs) ) sqlite3OsCurrentTimeInt64(pVfs, &t); fprintf(stderr, "%lld:X %s\n", t, zEvent); } static void vdbeSorterPopulateDebug( SortSubtask *pTask, const char *zEvent ){ i64 t; int iTask = (pTask - pTask->pSorter->aTask); sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent); } static void vdbeSorterBlockDebug( SortSubtask *pTask, int bBlocked, const char *zEvent ){ if( bBlocked ){ i64 t; sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); fprintf(stderr, "%lld:main %s\n", t, zEvent); } } #else # define vdbeSorterWorkDebug(x,y) # define vdbeSorterRewindDebug(y) # define vdbeSorterPopulateDebug(x,y) # define vdbeSorterBlockDebug(x,y,z) #endif #if SQLITE_MAX_WORKER_THREADS>0 /* ** Join thread pTask->thread. */ static int vdbeSorterJoinThread(SortSubtask *pTask){ int rc = SQLITE_OK; if( pTask->pThread ){ #ifdef SQLITE_DEBUG_SORTER_THREADS int bDone = pTask->bDone; #endif void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR); vdbeSorterBlockDebug(pTask, !bDone, "enter"); (void)sqlite3ThreadJoin(pTask->pThread, &pRet); vdbeSorterBlockDebug(pTask, !bDone, "exit"); rc = SQLITE_PTR_TO_INT(pRet); assert( pTask->bDone==1 ); pTask->bDone = 0; pTask->pThread = 0; } return rc; } /* ** Launch a background thread to run xTask(pIn). */ static int vdbeSorterCreateThread( SortSubtask *pTask, /* Thread will use this task object */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ assert( pTask->pThread==0 && pTask->bDone==0 ); return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn); } /* ** Join all outstanding threads launched by SorterWrite() to create ** level-0 PMAs. */ static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){ int rc = rcin; int i; /* This function is always called by the main user thread. ** ** If this function is being called after SorterRewind() has been called, ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread ** is currently attempt to join one of the other threads. To avoid a race ** condition where this thread also attempts to join the same object, join ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */ for(i=pSorter->nTask-1; i>=0; i--){ SortSubtask *pTask = &pSorter->aTask[i]; int rc2 = vdbeSorterJoinThread(pTask); if( rc==SQLITE_OK ) rc = rc2; } return rc; } #else # define vdbeSorterJoinAll(x,rcin) (rcin) # define vdbeSorterJoinThread(pTask) SQLITE_OK #endif /* ** Allocate a new MergeEngine object capable of handling up to ** nReader PmaReader inputs. ** ** nReader is automatically rounded up to the next power of two. ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up. */ static MergeEngine *vdbeMergeEngineNew(int nReader){ int N = 2; /* Smallest power of two >= nReader */ int nByte; /* Total bytes of space to allocate */ MergeEngine *pNew; /* Pointer to allocated object to return */ assert( nReader<=SORTER_MAX_MERGE_COUNT ); while( NnTree = N; pNew->pTask = 0; pNew->aReadr = (PmaReader*)&pNew[1]; pNew->aTree = (int*)&pNew->aReadr[N]; } return pNew; } /* ** Free the MergeEngine object passed as the only argument. */ static void vdbeMergeEngineFree(MergeEngine *pMerger){ int i; if( pMerger ){ for(i=0; inTree; i++){ vdbePmaReaderClear(&pMerger->aReadr[i]); } } sqlite3_free(pMerger); } /* ** Free all resources associated with the IncrMerger object indicated by ** the first argument. */ static void vdbeIncrFree(IncrMerger *pIncr){ if( pIncr ){ #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ vdbeSorterJoinThread(pIncr->pTask); if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd); if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd); } #endif vdbeMergeEngineFree(pIncr->pMerger); sqlite3_free(pIncr); } } /* ** Reset a sorting cursor back to its original empty state. */ SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){ int i; (void)vdbeSorterJoinAll(pSorter, SQLITE_OK); assert( pSorter->bUseThreads || pSorter->pReader==0 ); #if SQLITE_MAX_WORKER_THREADS>0 if( pSorter->pReader ){ vdbePmaReaderClear(pSorter->pReader); sqlite3DbFree(db, pSorter->pReader); pSorter->pReader = 0; } #endif vdbeMergeEngineFree(pSorter->pMerger); pSorter->pMerger = 0; for(i=0; inTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; vdbeSortSubtaskCleanup(db, pTask); pTask->pSorter = pSorter; } if( pSorter->list.aMemory==0 ){ vdbeSorterRecordFree(0, pSorter->list.pList); } pSorter->list.pList = 0; pSorter->list.szPMA = 0; pSorter->bUsePMA = 0; pSorter->iMemory = 0; pSorter->mxKeysize = 0; sqlite3DbFree(db, pSorter->pUnpacked); pSorter->pUnpacked = 0; } /* ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. */ SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ VdbeSorter *pSorter; assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; if( pSorter ){ sqlite3VdbeSorterReset(db, pSorter); sqlite3_free(pSorter->list.aMemory); sqlite3DbFree(db, pSorter); pCsr->uc.pSorter = 0; } } #if SQLITE_MAX_MMAP_SIZE>0 /* ** The first argument is a file-handle open on a temporary file. The file ** is guaranteed to be nByte bytes or smaller in size. This function ** attempts to extend the file to nByte bytes in size and to ensure that ** the VFS has memory mapped it. ** ** Whether or not the file does end up memory mapped of course depends on ** the specific VFS implementation. */ static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){ if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){ void *p = 0; int chunksize = 4*1024; sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize); sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte); sqlite3OsFetch(pFd, 0, (int)nByte, &p); if( p ) sqlite3OsUnfetch(pFd, 0, p); } } #else # define vdbeSorterExtendFile(x,y,z) #endif /* ** Allocate space for a file-handle and open a temporary file. If successful, ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK. ** Otherwise, set *ppFd to 0 and return an SQLite error code. */ static int vdbeSorterOpenTempFile( sqlite3 *db, /* Database handle doing sort */ i64 nExtend, /* Attempt to extend file to this size */ sqlite3_file **ppFd ){ int rc; if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc ); if( rc==SQLITE_OK ){ i64 max = SQLITE_MAX_MMAP_SIZE; sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max); if( nExtend>0 ){ vdbeSorterExtendFile(db, *ppFd, nExtend); } } return rc; } /* ** If it has not already been allocated, allocate the UnpackedRecord ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or ** if no allocation was required), or SQLITE_NOMEM otherwise. */ static int vdbeSortAllocUnpacked(SortSubtask *pTask){ if( pTask->pUnpacked==0 ){ pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo); if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT; pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField; pTask->pUnpacked->errCode = 0; } return SQLITE_OK; } /* ** Merge the two sorted lists p1 and p2 into a single list. */ static SorterRecord *vdbeSorterMerge( SortSubtask *pTask, /* Calling thread context */ SorterRecord *p1, /* First list to merge */ SorterRecord *p2 /* Second list to merge */ ){ SorterRecord *pFinal = 0; SorterRecord **pp = &pFinal; int bCached = 0; assert( p1!=0 && p2!=0 ); for(;;){ int res; res = pTask->xCompare( pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal ); if( res<=0 ){ *pp = p1; pp = &p1->u.pNext; p1 = p1->u.pNext; if( p1==0 ){ *pp = p2; break; } }else{ *pp = p2; pp = &p2->u.pNext; p2 = p2->u.pNext; bCached = 0; if( p2==0 ){ *pp = p1; break; } } } return pFinal; } /* ** Return the SorterCompare function to compare values collected by the ** sorter object passed as the only argument. */ static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ if( p->typeMask==SORTER_TYPE_INTEGER ){ return vdbeSorterCompareInt; }else if( p->typeMask==SORTER_TYPE_TEXT ){ return vdbeSorterCompareText; } return vdbeSorterCompare; } /* ** Sort the linked list of records headed at pTask->pList. Return ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if ** an error occurs. */ static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ int i; SorterRecord *p; int rc; SorterRecord *aSlot[64]; rc = vdbeSortAllocUnpacked(pTask); if( rc!=SQLITE_OK ) return rc; p = pList->pList; pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); memset(aSlot, 0, sizeof(aSlot)); while( p ){ SorterRecord *pNext; if( pList->aMemory ){ if( (u8*)p==pList->aMemory ){ pNext = 0; }else{ assert( p->u.iNextaMemory) ); pNext = (SorterRecord*)&pList->aMemory[p->u.iNext]; } }else{ pNext = p->u.pNext; } p->u.pNext = 0; for(i=0; aSlot[i]; i++){ p = vdbeSorterMerge(pTask, p, aSlot[i]); aSlot[i] = 0; } aSlot[i] = p; p = pNext; } p = 0; for(i=0; ipList = p; assert( pTask->pUnpacked->errCode==SQLITE_OK || pTask->pUnpacked->errCode==SQLITE_NOMEM ); return pTask->pUnpacked->errCode; } /* ** Initialize a PMA-writer object. */ static void vdbePmaWriterInit( sqlite3_file *pFd, /* File handle to write to */ PmaWriter *p, /* Object to populate */ int nBuf, /* Buffer size */ i64 iStart /* Offset of pFd to begin writing at */ ){ memset(p, 0, sizeof(PmaWriter)); p->aBuffer = (u8*)sqlite3Malloc(nBuf); if( !p->aBuffer ){ p->eFWErr = SQLITE_NOMEM_BKPT; }else{ p->iBufEnd = p->iBufStart = (iStart % nBuf); p->iWriteOff = iStart - p->iBufStart; p->nBuffer = nBuf; p->pFd = pFd; } } /* ** Write nData bytes of data to the PMA. Return SQLITE_OK ** if successful, or an SQLite error code if an error occurs. */ static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){ int nRem = nData; while( nRem>0 && p->eFWErr==0 ){ int nCopy = nRem; if( nCopy>(p->nBuffer - p->iBufEnd) ){ nCopy = p->nBuffer - p->iBufEnd; } memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); p->iBufEnd += nCopy; if( p->iBufEnd==p->nBuffer ){ p->eFWErr = sqlite3OsWrite(p->pFd, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); p->iBufStart = p->iBufEnd = 0; p->iWriteOff += p->nBuffer; } assert( p->iBufEndnBuffer ); nRem -= nCopy; } } /* ** Flush any buffered data to disk and clean up the PMA-writer object. ** The results of using the PMA-writer after this call are undefined. ** Return SQLITE_OK if flushing the buffered data succeeds or is not ** required. Otherwise, return an SQLite error code. ** ** Before returning, set *piEof to the offset immediately following the ** last byte written to the file. */ static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){ int rc; if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ p->eFWErr = sqlite3OsWrite(p->pFd, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); } *piEof = (p->iWriteOff + p->iBufEnd); sqlite3_free(p->aBuffer); rc = p->eFWErr; memset(p, 0, sizeof(PmaWriter)); return rc; } /* ** Write value iVal encoded as a varint to the PMA. Return ** SQLITE_OK if successful, or an SQLite error code if an error occurs. */ static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){ int nByte; u8 aByte[10]; nByte = sqlite3PutVarint(aByte, iVal); vdbePmaWriteBlob(p, aByte, nByte); } /* ** Write the current contents of in-memory linked-list pList to a level-0 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if ** successful, or an SQLite error code otherwise. ** ** The format of a PMA is: ** ** * A varint. This varint contains the total number of bytes of content ** in the PMA (not including the varint itself). ** ** * One or more records packed end-to-end in order of ascending keys. ** Each record consists of a varint followed by a blob of data (the ** key). The varint is the number of bytes in the blob of data. */ static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){ sqlite3 *db = pTask->pSorter->db; int rc = SQLITE_OK; /* Return code */ PmaWriter writer; /* Object used to write to the file */ #ifdef SQLITE_DEBUG /* Set iSz to the expected size of file pTask->file after writing the PMA. ** This is used by an assert() statement at the end of this function. */ i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof; #endif vdbeSorterWorkDebug(pTask, "enter"); memset(&writer, 0, sizeof(PmaWriter)); assert( pList->szPMA>0 ); /* If the first temporary PMA file has not been opened, open it now. */ if( pTask->file.pFd==0 ){ rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd); assert( rc!=SQLITE_OK || pTask->file.pFd ); assert( pTask->file.iEof==0 ); assert( pTask->nPMA==0 ); } /* Try to get the file to memory map */ if( rc==SQLITE_OK ){ vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9); } /* Sort the list */ if( rc==SQLITE_OK ){ rc = vdbeSorterSort(pTask, pList); } if( rc==SQLITE_OK ){ SorterRecord *p; SorterRecord *pNext = 0; vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz, pTask->file.iEof); pTask->nPMA++; vdbePmaWriteVarint(&writer, pList->szPMA); for(p=pList->pList; p; p=pNext){ pNext = p->u.pNext; vdbePmaWriteVarint(&writer, p->nVal); vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal); if( pList->aMemory==0 ) sqlite3_free(p); } pList->pList = p; rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof); } vdbeSorterWorkDebug(pTask, "exit"); assert( rc!=SQLITE_OK || pList->pList==0 ); assert( rc!=SQLITE_OK || pTask->file.iEof==iSz ); return rc; } /* ** Advance the MergeEngine to its next entry. ** Set *pbEof to true there is no next entry because ** the MergeEngine has reached the end of all its inputs. ** ** Return SQLITE_OK if successful or an error code if an error occurs. */ static int vdbeMergeEngineStep( MergeEngine *pMerger, /* The merge engine to advance to the next row */ int *pbEof /* Set TRUE at EOF. Set false for more content */ ){ int rc; int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */ SortSubtask *pTask = pMerger->pTask; /* Advance the current PmaReader */ rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); /* Update contents of aTree[] */ if( rc==SQLITE_OK ){ int i; /* Index of aTree[] to recalculate */ PmaReader *pReadr1; /* First PmaReader to compare */ PmaReader *pReadr2; /* Second PmaReader to compare */ int bCached = 0; /* Find the first two PmaReaders to compare. The one that was just ** advanced (iPrev) and the one next to it in the array. */ pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ int iRes; if( pReadr1->pFd==0 ){ iRes = +1; }else if( pReadr2->pFd==0 ){ iRes = -1; }else{ iRes = pTask->xCompare(pTask, &bCached, pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey ); } /* If pReadr1 contained the smaller value, set aTree[i] to its index. ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this ** case there is no cache of pReadr2 in pTask->pUnpacked, so set ** pKey2 to point to the record belonging to pReadr2. ** ** Alternatively, if pReadr2 contains the smaller of the two values, ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare() ** was actually called above, then pTask->pUnpacked now contains ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent ** vdbeSorterCompare() from decoding pReadr2 again. ** ** If the two values were equal, then the value from the oldest ** PMA should be considered smaller. The VdbeSorter.aReadr[] array ** is sorted from oldest to newest, so pReadr1 contains older values ** than pReadr2 iff (pReadr1aTree[i] = (int)(pReadr1 - pMerger->aReadr); pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; bCached = 0; }else{ if( pReadr1->pFd ) bCached = 0; pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; } } *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); } return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc); } #if SQLITE_MAX_WORKER_THREADS>0 /* ** The main routine for background threads that write level-0 PMAs. */ static void *vdbeSorterFlushThread(void *pCtx){ SortSubtask *pTask = (SortSubtask*)pCtx; int rc; /* Return code */ assert( pTask->bDone==0 ); rc = vdbeSorterListToPMA(pTask, &pTask->list); pTask->bDone = 1; return SQLITE_INT_TO_PTR(rc); } #endif /* SQLITE_MAX_WORKER_THREADS>0 */ /* ** Flush the current contents of VdbeSorter.list to a new PMA, possibly ** using a background thread. */ static int vdbeSorterFlushPMA(VdbeSorter *pSorter){ #if SQLITE_MAX_WORKER_THREADS==0 pSorter->bUsePMA = 1; return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list); #else int rc = SQLITE_OK; int i; SortSubtask *pTask = 0; /* Thread context used to create new PMA */ int nWorker = (pSorter->nTask-1); /* Set the flag to indicate that at least one PMA has been written. ** Or will be, anyhow. */ pSorter->bUsePMA = 1; /* Select a sub-task to sort and flush the current list of in-memory ** records to disk. If the sorter is running in multi-threaded mode, ** round-robin between the first (pSorter->nTask-1) tasks. Except, if ** the background thread from a sub-tasks previous turn is still running, ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, ** fall back to using the final sub-task. The first (pSorter->nTask-1) ** sub-tasks are preferred as they use background threads - the final ** sub-task uses the main thread. */ for(i=0; iiPrev + i + 1) % nWorker; pTask = &pSorter->aTask[iTest]; if( pTask->bDone ){ rc = vdbeSorterJoinThread(pTask); } if( rc!=SQLITE_OK || pTask->pThread==0 ) break; } if( rc==SQLITE_OK ){ if( i==nWorker ){ /* Use the foreground thread for this operation */ rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list); }else{ /* Launch a background thread for this operation */ u8 *aMem; void *pCtx; assert( pTask!=0 ); assert( pTask->pThread==0 && pTask->bDone==0 ); assert( pTask->list.pList==0 ); assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 ); aMem = pTask->list.aMemory; pCtx = (void*)pTask; pSorter->iPrev = (u8)(pTask - pSorter->aTask); pTask->list = pSorter->list; pSorter->list.pList = 0; pSorter->list.szPMA = 0; if( aMem ){ pSorter->list.aMemory = aMem; pSorter->nMemory = sqlite3MallocSize(aMem); }else if( pSorter->list.aMemory ){ pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory); if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT; } rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx); } } return rc; #endif /* SQLITE_MAX_WORKER_THREADS!=0 */ } /* ** Add a record to the sorter. */ SQLITE_PRIVATE int sqlite3VdbeSorterWrite( const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal /* Memory cell containing record */ ){ VdbeSorter *pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ int bFlush; /* True to flush contents of memory to PMA */ int nReq; /* Bytes of memory required */ int nPMA; /* Bytes of PMA space required */ int t; /* serial type of first record field */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; getVarint32NR((const u8*)&pVal->z[1], t); if( t>0 && t<10 && t!=7 ){ pSorter->typeMask &= SORTER_TYPE_INTEGER; }else if( t>10 && (t & 0x01) ){ pSorter->typeMask &= SORTER_TYPE_TEXT; }else{ pSorter->typeMask = 0; } assert( pSorter ); /* Figure out whether or not the current contents of memory should be ** flushed to a PMA before continuing. If so, do so. ** ** If using the single large allocation mode (pSorter->aMemory!=0), then ** flush the contents of memory to a new PMA if (a) at least one value is ** already in memory and (b) the new value will not fit in memory. ** ** Or, if using separate allocations for each record, flush the contents ** of memory to a PMA if either of the following are true: ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * cache-size), or ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. */ nReq = pVal->n + sizeof(SorterRecord); nPMA = pVal->n + sqlite3VarintLen(pVal->n); if( pSorter->mxPmaSize ){ if( pSorter->list.aMemory ){ bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize; }else{ bFlush = ( (pSorter->list.szPMA > pSorter->mxPmaSize) || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull()) ); } if( bFlush ){ rc = vdbeSorterFlushPMA(pSorter); pSorter->list.szPMA = 0; pSorter->iMemory = 0; assert( rc!=SQLITE_OK || pSorter->list.pList==0 ); } } pSorter->list.szPMA += nPMA; if( nPMA>pSorter->mxKeysize ){ pSorter->mxKeysize = nPMA; } if( pSorter->list.aMemory ){ int nMin = pSorter->iMemory + nReq; if( nMin>pSorter->nMemory ){ u8 *aNew; sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory; int iListOff = -1; if( pSorter->list.pList ){ iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory; } while( nNew < nMin ) nNew = nNew*2; if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize; if( nNew < nMin ) nNew = nMin; aNew = sqlite3Realloc(pSorter->list.aMemory, nNew); if( !aNew ) return SQLITE_NOMEM_BKPT; if( iListOff>=0 ){ pSorter->list.pList = (SorterRecord*)&aNew[iListOff]; } pSorter->list.aMemory = aNew; pSorter->nMemory = nNew; } pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory]; pSorter->iMemory += ROUND8(nReq); if( pSorter->list.pList ){ pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory); } }else{ pNew = (SorterRecord *)sqlite3Malloc(nReq); if( pNew==0 ){ return SQLITE_NOMEM_BKPT; } pNew->u.pNext = pSorter->list.pList; } memcpy(SRVAL(pNew), pVal->z, pVal->n); pNew->nVal = pVal->n; pSorter->list.pList = pNew; return rc; } /* ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format ** of the data stored in aFile[1] is the same as that used by regular PMAs, ** except that the number-of-bytes varint is omitted from the start. */ static int vdbeIncrPopulate(IncrMerger *pIncr){ int rc = SQLITE_OK; int rc2; i64 iStart = pIncr->iStartOff; SorterFile *pOut = &pIncr->aFile[1]; SortSubtask *pTask = pIncr->pTask; MergeEngine *pMerger = pIncr->pMerger; PmaWriter writer; assert( pIncr->bEof==0 ); vdbeSorterPopulateDebug(pTask, "enter"); vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart); while( rc==SQLITE_OK ){ int dummy; PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ]; int nKey = pReader->nKey; i64 iEof = writer.iWriteOff + writer.iBufEnd; /* Check if the output file is full or if the input has been exhausted. ** In either case exit the loop. */ if( pReader->pFd==0 ) break; if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break; /* Write the next key to the output. */ vdbePmaWriteVarint(&writer, nKey); vdbePmaWriteBlob(&writer, pReader->aKey, nKey); assert( pIncr->pMerger->pTask==pTask ); rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy); } rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof); if( rc==SQLITE_OK ) rc = rc2; vdbeSorterPopulateDebug(pTask, "exit"); return rc; } #if SQLITE_MAX_WORKER_THREADS>0 /* ** The main routine for background threads that populate aFile[1] of ** multi-threaded IncrMerger objects. */ static void *vdbeIncrPopulateThread(void *pCtx){ IncrMerger *pIncr = (IncrMerger*)pCtx; void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) ); pIncr->pTask->bDone = 1; return pRet; } /* ** Launch a background thread to populate aFile[1] of pIncr. */ static int vdbeIncrBgPopulate(IncrMerger *pIncr){ void *p = (void*)pIncr; assert( pIncr->bUseThread ); return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p); } #endif /* ** This function is called when the PmaReader corresponding to pIncr has ** finished reading the contents of aFile[0]. Its purpose is to "refill" ** aFile[0] such that the PmaReader should start rereading it from the ** beginning. ** ** For single-threaded objects, this is accomplished by literally reading ** keys from pIncr->pMerger and repopulating aFile[0]. ** ** For multi-threaded objects, all that is required is to wait until the ** background thread is finished (if it is not already) and then swap ** aFile[0] and aFile[1] in place. If the contents of pMerger have not ** been exhausted, this function also launches a new background thread ** to populate the new aFile[1]. ** ** SQLITE_OK is returned on success, or an SQLite error code otherwise. */ static int vdbeIncrSwap(IncrMerger *pIncr){ int rc = SQLITE_OK; #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ rc = vdbeSorterJoinThread(pIncr->pTask); if( rc==SQLITE_OK ){ SorterFile f0 = pIncr->aFile[0]; pIncr->aFile[0] = pIncr->aFile[1]; pIncr->aFile[1] = f0; } if( rc==SQLITE_OK ){ if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ pIncr->bEof = 1; }else{ rc = vdbeIncrBgPopulate(pIncr); } } }else #endif { rc = vdbeIncrPopulate(pIncr); pIncr->aFile[0] = pIncr->aFile[1]; if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ pIncr->bEof = 1; } } return rc; } /* ** Allocate and return a new IncrMerger object to read data from pMerger. ** ** If an OOM condition is encountered, return NULL. In this case free the ** pMerger argument before returning. */ static int vdbeIncrMergerNew( SortSubtask *pTask, /* The thread that will be using the new IncrMerger */ MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */ IncrMerger **ppOut /* Write the new IncrMerger here */ ){ int rc = SQLITE_OK; IncrMerger *pIncr = *ppOut = (IncrMerger*) (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr))); if( pIncr ){ pIncr->pMerger = pMerger; pIncr->pTask = pTask; pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2); pTask->file2.iEof += pIncr->mxSz; }else{ vdbeMergeEngineFree(pMerger); rc = SQLITE_NOMEM_BKPT; } assert( *ppOut!=0 || rc!=SQLITE_OK ); return rc; } #if SQLITE_MAX_WORKER_THREADS>0 /* ** Set the "use-threads" flag on object pIncr. */ static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){ pIncr->bUseThread = 1; pIncr->pTask->file2.iEof -= pIncr->mxSz; } #endif /* SQLITE_MAX_WORKER_THREADS>0 */ /* ** Recompute pMerger->aTree[iOut] by comparing the next keys on the ** two PmaReaders that feed that entry. Neither of the PmaReaders ** are advanced. This routine merely does the comparison. */ static void vdbeMergeEngineCompare( MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */ int iOut /* Store the result in pMerger->aTree[iOut] */ ){ int i1; int i2; int iRes; PmaReader *p1; PmaReader *p2; assert( iOutnTree && iOut>0 ); if( iOut>=(pMerger->nTree/2) ){ i1 = (iOut - pMerger->nTree/2) * 2; i2 = i1 + 1; }else{ i1 = pMerger->aTree[iOut*2]; i2 = pMerger->aTree[iOut*2+1]; } p1 = &pMerger->aReadr[i1]; p2 = &pMerger->aReadr[i2]; if( p1->pFd==0 ){ iRes = i2; }else if( p2->pFd==0 ){ iRes = i1; }else{ SortSubtask *pTask = pMerger->pTask; int bCached = 0; int res; assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ res = pTask->xCompare( pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey ); if( res<=0 ){ iRes = i1; }else{ iRes = i2; } } pMerger->aTree[iOut] = iRes; } /* ** Allowed values for the eMode parameter to vdbeMergeEngineInit() ** and vdbePmaReaderIncrMergeInit(). ** ** Only INCRINIT_NORMAL is valid in single-threaded builds (when ** SQLITE_MAX_WORKER_THREADS==0). The other values are only used ** when there exists one or more separate worker threads. */ #define INCRINIT_NORMAL 0 #define INCRINIT_TASK 1 #define INCRINIT_ROOT 2 /* ** Forward reference required as the vdbeIncrMergeInit() and ** vdbePmaReaderIncrInit() routines are called mutually recursively when ** building a merge tree. */ static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode); /* ** Initialize the MergeEngine object passed as the second argument. Once this ** function returns, the first key of merged data may be read from the ** MergeEngine object in the usual fashion. ** ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge ** objects attached to the PmaReader objects that the merger reads from have ** already been populated, but that they have not yet populated aFile[0] and ** set the PmaReader objects up to read from it. In this case all that is ** required is to call vdbePmaReaderNext() on each PmaReader to point it at ** its first key. ** ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data ** to pMerger. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int vdbeMergeEngineInit( SortSubtask *pTask, /* Thread that will run pMerger */ MergeEngine *pMerger, /* MergeEngine to initialize */ int eMode /* One of the INCRINIT_XXX constants */ ){ int rc = SQLITE_OK; /* Return code */ int i; /* For looping over PmaReader objects */ int nTree; /* Number of subtrees to merge */ /* Failure to allocate the merge would have been detected prior to ** invoking this routine */ assert( pMerger!=0 ); /* eMode is always INCRINIT_NORMAL in single-threaded mode */ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); /* Verify that the MergeEngine is assigned to a single thread */ assert( pMerger->pTask==0 ); pMerger->pTask = pTask; nTree = pMerger->nTree; for(i=0; i0 && eMode==INCRINIT_ROOT ){ /* PmaReaders should be normally initialized in order, as if they are ** reading from the same temp file this makes for more linear file IO. ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is ** in use it will block the vdbePmaReaderNext() call while it uses ** the main thread to fill its buffer. So calling PmaReaderNext() ** on this PmaReader before any of the multi-threaded PmaReaders takes ** better advantage of multi-processor hardware. */ rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]); }else{ rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL); } if( rc!=SQLITE_OK ) return rc; } for(i=pMerger->nTree-1; i>0; i--){ vdbeMergeEngineCompare(pMerger, i); } return pTask->pUnpacked->errCode; } /* ** The PmaReader passed as the first argument is guaranteed to be an ** incremental-reader (pReadr->pIncr!=0). This function serves to open ** and/or initialize the temp file related fields of the IncrMerge ** object at (pReadr->pIncr). ** ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders ** in the sub-tree headed by pReadr are also initialized. Data is then ** loaded into the buffers belonging to pReadr and it is set to point to ** the first key in its range. ** ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed ** to be a multi-threaded PmaReader and this function is being called in a ** background thread. In this case all PmaReaders in the sub-tree are ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to ** pReadr is populated. However, pReadr itself is not set up to point ** to its first key. A call to vdbePmaReaderNext() is still required to do ** that. ** ** The reason this function does not call vdbePmaReaderNext() immediately ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has ** to block on thread (pTask->thread) before accessing aFile[1]. But, since ** this entire function is being run by thread (pTask->thread), that will ** lead to the current background thread attempting to join itself. ** ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all ** child-trees have already been initialized using IncrInit(INCRINIT_TASK). ** In this case vdbePmaReaderNext() is called on all child PmaReaders and ** the current PmaReader set to point to the first key in its range. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){ int rc = SQLITE_OK; IncrMerger *pIncr = pReadr->pIncr; SortSubtask *pTask = pIncr->pTask; sqlite3 *db = pTask->pSorter->db; /* eMode is always INCRINIT_NORMAL in single-threaded mode */ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); /* Set up the required files for pIncr. A multi-threaded IncrMerge object ** requires two temp files to itself, whereas a single-threaded object ** only requires a region of pTask->file2. */ if( rc==SQLITE_OK ){ int mxSz = pIncr->mxSz; #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); if( rc==SQLITE_OK ){ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd); } }else #endif /*if( !pIncr->bUseThread )*/{ if( pTask->file2.pFd==0 ){ assert( pTask->file2.iEof>0 ); rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd); pTask->file2.iEof = 0; } if( rc==SQLITE_OK ){ pIncr->aFile[1].pFd = pTask->file2.pFd; pIncr->iStartOff = pTask->file2.iEof; pTask->file2.iEof += mxSz; } } } #if SQLITE_MAX_WORKER_THREADS>0 if( rc==SQLITE_OK && pIncr->bUseThread ){ /* Use the current thread to populate aFile[1], even though this ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object, ** then this function is already running in background thread ** pIncr->pTask->thread. ** ** If this is the INCRINIT_ROOT object, then it is running in the ** main VDBE thread. But that is Ok, as that thread cannot return ** control to the VDBE or proceed with anything useful until the ** first results are ready from this merger object anyway. */ assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK ); rc = vdbeIncrPopulate(pIncr); } #endif if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){ rc = vdbePmaReaderNext(pReadr); } return rc; } #if SQLITE_MAX_WORKER_THREADS>0 /* ** The main routine for vdbePmaReaderIncrMergeInit() operations run in ** background threads. */ static void *vdbePmaReaderBgIncrInit(void *pCtx){ PmaReader *pReader = (PmaReader*)pCtx; void *pRet = SQLITE_INT_TO_PTR( vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK) ); pReader->pIncr->pTask->bDone = 1; return pRet; } #endif /* ** If the PmaReader passed as the first argument is not an incremental-reader ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to ** this routine to initialize the incremental merge. ** ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1), ** then a background thread is launched to call vdbePmaReaderIncrMergeInit(). ** Or, if the IncrMerger is single threaded, the same function is called ** using the current thread. */ static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){ IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */ int rc = SQLITE_OK; /* Return code */ if( pIncr ){ #if SQLITE_MAX_WORKER_THREADS>0 assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK ); if( pIncr->bUseThread ){ void *pCtx = (void*)pReadr; rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx); }else #endif { rc = vdbePmaReaderIncrMergeInit(pReadr, eMode); } } return rc; } /* ** Allocate a new MergeEngine object to merge the contents of nPMA level-0 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut ** to NULL and return an SQLite error code. ** ** When this function is called, *piOffset is set to the offset of the ** first PMA to read from pTask->file. Assuming no error occurs, it is ** set to the offset immediately following the last byte of the last ** PMA before returning. If an error does occur, then the final value of ** *piOffset is undefined. */ static int vdbeMergeEngineLevel0( SortSubtask *pTask, /* Sorter task to read from */ int nPMA, /* Number of PMAs to read */ i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */ MergeEngine **ppOut /* OUT: New merge-engine */ ){ MergeEngine *pNew; /* Merge engine to return */ i64 iOff = *piOffset; int i; int rc = SQLITE_OK; *ppOut = pNew = vdbeMergeEngineNew(nPMA); if( pNew==0 ) rc = SQLITE_NOMEM_BKPT; for(i=0; iaReadr[i]; rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy); iOff = pReadr->iEof; } if( rc!=SQLITE_OK ){ vdbeMergeEngineFree(pNew); *ppOut = 0; } *piOffset = iOff; return rc; } /* ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes. ** ** i.e. ** ** nPMA<=16 -> TreeDepth() == 0 ** nPMA<=256 -> TreeDepth() == 1 ** nPMA<=65536 -> TreeDepth() == 2 */ static int vdbeSorterTreeDepth(int nPMA){ int nDepth = 0; i64 nDiv = SORTER_MAX_MERGE_COUNT; while( nDiv < (i64)nPMA ){ nDiv = nDiv * SORTER_MAX_MERGE_COUNT; nDepth++; } return nDepth; } /* ** pRoot is the root of an incremental merge-tree with depth nDepth (according ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the ** tree, counting from zero. This function adds pLeaf to the tree. ** ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error ** code is returned and pLeaf is freed. */ static int vdbeSorterAddToTree( SortSubtask *pTask, /* Task context */ int nDepth, /* Depth of tree according to TreeDepth() */ int iSeq, /* Sequence number of leaf within tree */ MergeEngine *pRoot, /* Root of tree */ MergeEngine *pLeaf /* Leaf to add to tree */ ){ int rc = SQLITE_OK; int nDiv = 1; int i; MergeEngine *p = pRoot; IncrMerger *pIncr; rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr); for(i=1; iaReadr[iIter]; if( pReadr->pIncr==0 ){ MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); if( pNew==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr); } } if( rc==SQLITE_OK ){ p = pReadr->pIncr->pMerger; nDiv = nDiv / SORTER_MAX_MERGE_COUNT; } } if( rc==SQLITE_OK ){ p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr; }else{ vdbeIncrFree(pIncr); } return rc; } /* ** This function is called as part of a SorterRewind() operation on a sorter ** that has already written two or more level-0 PMAs to one or more temp ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that ** can be used to incrementally merge all PMAs on disk. ** ** If successful, SQLITE_OK is returned and *ppOut set to point to the ** MergeEngine object at the root of the tree before returning. Or, if an ** error occurs, an SQLite error code is returned and the final value ** of *ppOut is undefined. */ static int vdbeSorterMergeTreeBuild( VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */ MergeEngine **ppOut /* Write the MergeEngine here */ ){ MergeEngine *pMain = 0; int rc = SQLITE_OK; int iTask; #if SQLITE_MAX_WORKER_THREADS>0 /* If the sorter uses more than one task, then create the top-level ** MergeEngine here. This MergeEngine will read data from exactly ** one PmaReader per sub-task. */ assert( pSorter->bUseThreads || pSorter->nTask==1 ); if( pSorter->nTask>1 ){ pMain = vdbeMergeEngineNew(pSorter->nTask); if( pMain==0 ) rc = SQLITE_NOMEM_BKPT; } #endif for(iTask=0; rc==SQLITE_OK && iTasknTask; iTask++){ SortSubtask *pTask = &pSorter->aTask[iTask]; assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 ); if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){ MergeEngine *pRoot = 0; /* Root node of tree for this task */ int nDepth = vdbeSorterTreeDepth(pTask->nPMA); i64 iReadOff = 0; if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){ rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot); }else{ int i; int iSeq = 0; pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT; for(i=0; inPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){ MergeEngine *pMerger = 0; /* New level-0 PMA merger */ int nReader; /* Number of level-0 PMAs to merge */ nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT); rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger); if( rc==SQLITE_OK ){ rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger); } } } if( rc==SQLITE_OK ){ #if SQLITE_MAX_WORKER_THREADS>0 if( pMain!=0 ){ rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr); }else #endif { assert( pMain==0 ); pMain = pRoot; } }else{ vdbeMergeEngineFree(pRoot); } } } if( rc!=SQLITE_OK ){ vdbeMergeEngineFree(pMain); pMain = 0; } *ppOut = pMain; return rc; } /* ** This function is called as part of an sqlite3VdbeSorterRewind() operation ** on a sorter that has written two or more PMAs to temporary files. It sets ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader ** (for multi-threaded sorters) so that it can be used to iterate through ** all records stored in the sorter. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ int rc; /* Return code */ SortSubtask *pTask0 = &pSorter->aTask[0]; MergeEngine *pMain = 0; #if SQLITE_MAX_WORKER_THREADS sqlite3 *db = pTask0->pSorter->db; int i; SorterCompare xCompare = vdbeSorterGetCompare(pSorter); for(i=0; inTask; i++){ pSorter->aTask[i].xCompare = xCompare; } #endif rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); if( rc==SQLITE_OK ){ #if SQLITE_MAX_WORKER_THREADS assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); if( pSorter->bUseThreads ){ int iTask; PmaReader *pReadr = 0; SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1]; rc = vdbeSortAllocUnpacked(pLast); if( rc==SQLITE_OK ){ pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader)); pSorter->pReader = pReadr; if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT; } if( rc==SQLITE_OK ){ rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr); if( rc==SQLITE_OK ){ vdbeIncrMergerSetThreads(pReadr->pIncr); for(iTask=0; iTask<(pSorter->nTask-1); iTask++){ IncrMerger *pIncr; if( (pIncr = pMain->aReadr[iTask].pIncr) ){ vdbeIncrMergerSetThreads(pIncr); assert( pIncr->pTask!=pLast ); } } for(iTask=0; rc==SQLITE_OK && iTasknTask; iTask++){ /* Check that: ** ** a) The incremental merge object is configured to use the ** right task, and ** b) If it is using task (nTask-1), it is configured to run ** in single-threaded mode. This is important, as the ** root merge (INCRINIT_ROOT) will be using the same task ** object. */ PmaReader *p = &pMain->aReadr[iTask]; assert( p->pIncr==0 || ( (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */ && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */ )); rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK); } } pMain = 0; } if( rc==SQLITE_OK ){ rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT); } }else #endif { rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL); pSorter->pMerger = pMain; pMain = 0; } } if( rc!=SQLITE_OK ){ vdbeMergeEngineFree(pMain); } return rc; } /* ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite, ** this function is called to prepare for iterating through the records ** in sorted order. */ SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter; int rc = SQLITE_OK; /* Return code */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; assert( pSorter ); /* If no data has been written to disk, then do not do so now. Instead, ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly ** from the in-memory list. */ if( pSorter->bUsePMA==0 ){ if( pSorter->list.pList ){ *pbEof = 0; rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list); }else{ *pbEof = 1; } return rc; } /* Write the current in-memory list to a PMA. When the VdbeSorterWrite() ** function flushes the contents of memory to disk, it immediately always ** creates a new list consisting of a single key immediately afterwards. ** So the list is never empty at this point. */ assert( pSorter->list.pList ); rc = vdbeSorterFlushPMA(pSorter); /* Join all threads */ rc = vdbeSorterJoinAll(pSorter, rc); vdbeSorterRewindDebug("rewind"); /* Assuming no errors have occurred, set up a merger structure to ** incrementally read and merge all remaining PMAs. */ assert( pSorter->pReader==0 ); if( rc==SQLITE_OK ){ rc = vdbeSorterSetupMerge(pSorter); *pbEof = 0; } vdbeSorterRewindDebug("rewinddone"); return rc; } /* ** Advance to the next element in the sorter. Return value: ** ** SQLITE_OK success ** SQLITE_DONE end of data ** otherwise some kind of error. */ SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){ VdbeSorter *pSorter; int rc; /* Return code */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) ); if( pSorter->bUsePMA ){ assert( pSorter->pReader==0 || pSorter->pMerger==0 ); assert( pSorter->bUseThreads==0 || pSorter->pReader ); assert( pSorter->bUseThreads==1 || pSorter->pMerger ); #if SQLITE_MAX_WORKER_THREADS>0 if( pSorter->bUseThreads ){ rc = vdbePmaReaderNext(pSorter->pReader); if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE; }else #endif /*if( !pSorter->bUseThreads )*/ { int res = 0; assert( pSorter->pMerger!=0 ); assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) ); rc = vdbeMergeEngineStep(pSorter->pMerger, &res); if( rc==SQLITE_OK && res ) rc = SQLITE_DONE; } }else{ SorterRecord *pFree = pSorter->list.pList; pSorter->list.pList = pFree->u.pNext; pFree->u.pNext = 0; if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree); rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE; } return rc; } /* ** Return a pointer to a buffer owned by the sorter that contains the ** current key. */ static void *vdbeSorterRowkey( const VdbeSorter *pSorter, /* Sorter object */ int *pnKey /* OUT: Size of current key in bytes */ ){ void *pKey; if( pSorter->bUsePMA ){ PmaReader *pReader; #if SQLITE_MAX_WORKER_THREADS>0 if( pSorter->bUseThreads ){ pReader = pSorter->pReader; }else #endif /*if( !pSorter->bUseThreads )*/{ pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]]; } *pnKey = pReader->nKey; pKey = pReader->aKey; }else{ *pnKey = pSorter->list.pList->nVal; pKey = SRVAL(pSorter->list.pList); } return pKey; } /* ** Copy the current sorter key into the memory cell pOut. */ SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ VdbeSorter *pSorter; void *pKey; int nKey; /* Sorter key to copy into pOut */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; pKey = vdbeSorterRowkey(pSorter, &nKey); if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){ return SQLITE_NOMEM_BKPT; } pOut->n = nKey; MemSetTypeFlag(pOut, MEM_Blob); memcpy(pOut->z, pKey, nKey); return SQLITE_OK; } /* ** Compare the key in memory cell pVal with the key that the sorter cursor ** passed as the first argument currently points to. For the purposes of ** the comparison, ignore the rowid field at the end of each record. ** ** If the sorter cursor key contains any NULL values, consider it to be ** less than pVal. Even if pVal also contains NULL values. ** ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). ** Otherwise, set *pRes to a negative, zero or positive value if the ** key in pVal is smaller than, equal to or larger than the current sorter ** key. ** ** This routine forms the core of the OP_SorterCompare opcode, which in ** turn is used to verify uniqueness when constructing a UNIQUE INDEX. */ SQLITE_PRIVATE int sqlite3VdbeSorterCompare( const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal, /* Value to compare to current sorter key */ int nKeyCol, /* Compare this many columns */ int *pRes /* OUT: Result of comparison */ ){ VdbeSorter *pSorter; UnpackedRecord *r2; KeyInfo *pKeyInfo; int i; void *pKey; int nKey; /* Sorter key to compare pVal with */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; r2 = pSorter->pUnpacked; pKeyInfo = pCsr->pKeyInfo; if( r2==0 ){ r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); if( r2==0 ) return SQLITE_NOMEM_BKPT; r2->nField = nKeyCol; } assert( r2->nField==nKeyCol ); pKey = vdbeSorterRowkey(pSorter, &nKey); sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2); for(i=0; iaMem[i].flags & MEM_Null ){ *pRes = -1; return SQLITE_OK; } } *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2); return SQLITE_OK; } /************** End of vdbesort.c ********************************************/ /************** Begin file vdbevtab.c ****************************************/ /* ** 2020-03-23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements virtual-tables for examining the bytecode content ** of a prepared statement. */ /* #include "sqliteInt.h" */ #if defined(SQLITE_ENABLE_BYTECODE_VTAB) && !defined(SQLITE_OMIT_VIRTUALTABLE) /* #include "vdbeInt.h" */ /* An instance of the bytecode() table-valued function. */ typedef struct bytecodevtab bytecodevtab; struct bytecodevtab { sqlite3_vtab base; /* Base class - must be first */ sqlite3 *db; /* Database connection */ int bTablesUsed; /* 2 for tables_used(). 0 for bytecode(). */ }; /* A cursor for scanning through the bytecode */ typedef struct bytecodevtab_cursor bytecodevtab_cursor; struct bytecodevtab_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3_stmt *pStmt; /* The statement whose bytecode is displayed */ int iRowid; /* The rowid of the output table */ int iAddr; /* Address */ int needFinalize; /* Cursors owns pStmt and must finalize it */ int showSubprograms; /* Provide a listing of subprograms */ Op *aOp; /* Operand array */ char *zP4; /* Rendered P4 value */ const char *zType; /* tables_used.type */ const char *zSchema; /* tables_used.schema */ const char *zName; /* tables_used.name */ Mem sub; /* Subprograms */ }; /* ** Create a new bytecode() table-valued function. */ static int bytecodevtabConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ bytecodevtab *pNew; int rc; int isTabUsed = pAux!=0; const char *azSchema[2] = { /* bytecode() schema */ "CREATE TABLE x(" "addr INT," "opcode TEXT," "p1 INT," "p2 INT," "p3 INT," "p4 TEXT," "p5 INT," "comment TEXT," "subprog TEXT," "nexec INT," "ncycle INT," "stmt HIDDEN" ");", /* Tables_used() schema */ "CREATE TABLE x(" "type TEXT," "schema TEXT," "name TEXT," "wr INT," "subprog TEXT," "stmt HIDDEN" ");" }; (void)argc; (void)argv; (void)pzErr; rc = sqlite3_declare_vtab(db, azSchema[isTabUsed]); if( rc==SQLITE_OK ){ pNew = sqlite3_malloc( sizeof(*pNew) ); *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); pNew->db = db; pNew->bTablesUsed = isTabUsed*2; } return rc; } /* ** This method is the destructor for bytecodevtab objects. */ static int bytecodevtabDisconnect(sqlite3_vtab *pVtab){ bytecodevtab *p = (bytecodevtab*)pVtab; sqlite3_free(p); return SQLITE_OK; } /* ** Constructor for a new bytecodevtab_cursor object. */ static int bytecodevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ bytecodevtab *pVTab = (bytecodevtab*)p; bytecodevtab_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); sqlite3VdbeMemInit(&pCur->sub, pVTab->db, 1); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Clear all internal content from a bytecodevtab cursor. */ static void bytecodevtabCursorClear(bytecodevtab_cursor *pCur){ sqlite3_free(pCur->zP4); pCur->zP4 = 0; sqlite3VdbeMemRelease(&pCur->sub); sqlite3VdbeMemSetNull(&pCur->sub); if( pCur->needFinalize ){ sqlite3_finalize(pCur->pStmt); } pCur->pStmt = 0; pCur->needFinalize = 0; pCur->zType = 0; pCur->zSchema = 0; pCur->zName = 0; } /* ** Destructor for a bytecodevtab_cursor. */ static int bytecodevtabClose(sqlite3_vtab_cursor *cur){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; bytecodevtabCursorClear(pCur); sqlite3_free(pCur); return SQLITE_OK; } /* ** Advance a bytecodevtab_cursor to its next row of output. */ static int bytecodevtabNext(sqlite3_vtab_cursor *cur){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; bytecodevtab *pTab = (bytecodevtab*)cur->pVtab; int rc; if( pCur->zP4 ){ sqlite3_free(pCur->zP4); pCur->zP4 = 0; } if( pCur->zName ){ pCur->zName = 0; pCur->zType = 0; pCur->zSchema = 0; } rc = sqlite3VdbeNextOpcode( (Vdbe*)pCur->pStmt, pCur->showSubprograms ? &pCur->sub : 0, pTab->bTablesUsed, &pCur->iRowid, &pCur->iAddr, &pCur->aOp); if( rc!=SQLITE_OK ){ sqlite3VdbeMemSetNull(&pCur->sub); pCur->aOp = 0; } return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int bytecodevtabEof(sqlite3_vtab_cursor *cur){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; return pCur->aOp==0; } /* ** Return values of columns for the row at which the bytecodevtab_cursor ** is currently pointing. */ static int bytecodevtabColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; bytecodevtab *pVTab = (bytecodevtab*)cur->pVtab; Op *pOp = pCur->aOp + pCur->iAddr; if( pVTab->bTablesUsed ){ if( i==4 ){ i = 8; }else{ if( i<=2 && pCur->zType==0 ){ Schema *pSchema; HashElem *k; int iDb = pOp->p3; Pgno iRoot = (Pgno)pOp->p2; sqlite3 *db = pVTab->db; pSchema = db->aDb[iDb].pSchema; pCur->zSchema = db->aDb[iDb].zDbSName; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); if( !IsVirtual(pTab) && pTab->tnum==iRoot ){ pCur->zName = pTab->zName; pCur->zType = "table"; break; } } if( pCur->zName==0 ){ for(k=sqliteHashFirst(&pSchema->idxHash); k; k=sqliteHashNext(k)){ Index *pIdx = (Index*)sqliteHashData(k); if( pIdx->tnum==iRoot ){ pCur->zName = pIdx->zName; pCur->zType = "index"; } } } } i += 20; } } switch( i ){ case 0: /* addr */ sqlite3_result_int(ctx, pCur->iAddr); break; case 1: /* opcode */ sqlite3_result_text(ctx, (char*)sqlite3OpcodeName(pOp->opcode), -1, SQLITE_STATIC); break; case 2: /* p1 */ sqlite3_result_int(ctx, pOp->p1); break; case 3: /* p2 */ sqlite3_result_int(ctx, pOp->p2); break; case 4: /* p3 */ sqlite3_result_int(ctx, pOp->p3); break; case 5: /* p4 */ case 7: /* comment */ if( pCur->zP4==0 ){ pCur->zP4 = sqlite3VdbeDisplayP4(pVTab->db, pOp); } if( i==5 ){ sqlite3_result_text(ctx, pCur->zP4, -1, SQLITE_STATIC); }else{ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zCom = sqlite3VdbeDisplayComment(pVTab->db, pOp, pCur->zP4); sqlite3_result_text(ctx, zCom, -1, sqlite3_free); #endif } break; case 6: /* p5 */ sqlite3_result_int(ctx, pOp->p5); break; case 8: { /* subprog */ Op *aOp = pCur->aOp; assert( aOp[0].opcode==OP_Init ); assert( aOp[0].p4.z==0 || strncmp(aOp[0].p4.z,"-" "- ",3)==0 ); if( pCur->iRowid==pCur->iAddr+1 ){ break; /* Result is NULL for the main program */ }else if( aOp[0].p4.z!=0 ){ sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC); }else{ sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC); } break; } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS case 9: /* nexec */ sqlite3_result_int(ctx, pOp->nExec); break; case 10: /* ncycle */ sqlite3_result_int(ctx, pOp->nCycle); break; #else case 9: /* nexec */ case 10: /* ncycle */ sqlite3_result_int(ctx, 0); break; #endif case 20: /* tables_used.type */ sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC); break; case 21: /* tables_used.schema */ sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC); break; case 22: /* tables_used.name */ sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC); break; case 23: /* tables_used.wr */ sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite); break; } return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** rowid is the same as the output value. */ static int bytecodevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Initialize a cursor. ** ** idxNum==0 means show all subprograms ** idxNum==1 means show only the main bytecode and omit subprograms. */ static int bytecodevtabFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor *)pVtabCursor; bytecodevtab *pVTab = (bytecodevtab *)pVtabCursor->pVtab; int rc = SQLITE_OK; (void)idxStr; bytecodevtabCursorClear(pCur); pCur->iRowid = 0; pCur->iAddr = 0; pCur->showSubprograms = idxNum==0; assert( argc==1 ); if( sqlite3_value_type(argv[0])==SQLITE_TEXT ){ const char *zSql = (const char*)sqlite3_value_text(argv[0]); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(pVTab->db, zSql, -1, &pCur->pStmt, 0); pCur->needFinalize = 1; } }else{ pCur->pStmt = (sqlite3_stmt*)sqlite3_value_pointer(argv[0],"stmt-pointer"); } if( pCur->pStmt==0 ){ pVTab->base.zErrMsg = sqlite3_mprintf( "argument to %s() is not a valid SQL statement", pVTab->bTablesUsed ? "tables_used" : "bytecode" ); rc = SQLITE_ERROR; }else{ bytecodevtabNext(pVtabCursor); } return rc; } /* ** We must have a single stmt=? constraint that will be passed through ** into the xFilter method. If there is no valid stmt=? constraint, ** then return an SQLITE_CONSTRAINT error. */ static int bytecodevtabBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; int rc = SQLITE_CONSTRAINT; struct sqlite3_index_constraint *p; bytecodevtab *pVTab = (bytecodevtab*)tab; int iBaseCol = pVTab->bTablesUsed ? 4 : 10; pIdxInfo->estimatedCost = (double)100; pIdxInfo->estimatedRows = 100; pIdxInfo->idxNum = 0; for(i=0, p=pIdxInfo->aConstraint; inConstraint; i++, p++){ if( p->usable==0 ) continue; if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){ rc = SQLITE_OK; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->aConstraintUsage[i].argvIndex = 1; } if( p->op==SQLITE_INDEX_CONSTRAINT_ISNULL && p->iColumn==iBaseCol ){ pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->idxNum = 1; } } return rc; } /* ** This following structure defines all the methods for the ** virtual table. */ static sqlite3_module bytecodevtabModule = { /* iVersion */ 0, /* xCreate */ 0, /* xConnect */ bytecodevtabConnect, /* xBestIndex */ bytecodevtabBestIndex, /* xDisconnect */ bytecodevtabDisconnect, /* xDestroy */ 0, /* xOpen */ bytecodevtabOpen, /* xClose */ bytecodevtabClose, /* xFilter */ bytecodevtabFilter, /* xNext */ bytecodevtabNext, /* xEof */ bytecodevtabEof, /* xColumn */ bytecodevtabColumn, /* xRowid */ bytecodevtabRowid, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 }; SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){ int rc; rc = sqlite3_create_module(db, "bytecode", &bytecodevtabModule, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_module(db, "tables_used", &bytecodevtabModule, &db); } return rc; } #elif defined(SQLITE_ENABLE_BYTECODE_VTAB) SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){ return SQLITE_OK; } #endif /* SQLITE_ENABLE_BYTECODE_VTAB */ /************** End of vdbevtab.c ********************************************/ /************** Begin file memjournal.c **************************************/ /* ** 2008 October 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to implement an in-memory rollback journal. ** The in-memory rollback journal is used to journal transactions for ** ":memory:" databases and when the journal_mode=MEMORY pragma is used. ** ** Update: The in-memory journal is also used to temporarily cache ** smaller journals that are not critical for power-loss recovery. ** For example, statement journals that are not too big will be held ** entirely in memory, thus reducing the number of file I/O calls, and ** more importantly, reducing temporary file creation events. If these ** journals become too large for memory, they are spilled to disk. But ** in the common case, they are usually small and no file I/O needs to ** occur. */ /* #include "sqliteInt.h" */ /* Forward references to internal structures */ typedef struct MemJournal MemJournal; typedef struct FilePoint FilePoint; typedef struct FileChunk FileChunk; /* ** The rollback journal is composed of a linked list of these structures. ** ** The zChunk array is always at least 8 bytes in size - usually much more. ** Its actual size is stored in the MemJournal.nChunkSize variable. */ struct FileChunk { FileChunk *pNext; /* Next chunk in the journal */ u8 zChunk[8]; /* Content of this chunk */ }; /* ** By default, allocate this many bytes of memory for each FileChunk object. */ #define MEMJOURNAL_DFLT_FILECHUNKSIZE 1024 /* ** For chunk size nChunkSize, return the number of bytes that should ** be allocated for each FileChunk structure. */ #define fileChunkSize(nChunkSize) (sizeof(FileChunk) + ((nChunkSize)-8)) /* ** An instance of this object serves as a cursor into the rollback journal. ** The cursor can be either for reading or writing. */ struct FilePoint { sqlite3_int64 iOffset; /* Offset from the beginning of the file */ FileChunk *pChunk; /* Specific chunk into which cursor points */ }; /* ** This structure is a subclass of sqlite3_file. Each open memory-journal ** is an instance of this class. */ struct MemJournal { const sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */ int nChunkSize; /* In-memory chunk-size */ int nSpill; /* Bytes of data before flushing */ FileChunk *pFirst; /* Head of in-memory chunk-list */ FilePoint endpoint; /* Pointer to the end of the file */ FilePoint readpoint; /* Pointer to the end of the last xRead() */ int flags; /* xOpen flags */ sqlite3_vfs *pVfs; /* The "real" underlying VFS */ const char *zJournal; /* Name of the journal file */ }; /* ** Read data from the in-memory journal file. This is the implementation ** of the sqlite3_vfs.xRead method. */ static int memjrnlRead( sqlite3_file *pJfd, /* The journal file from which to read */ void *zBuf, /* Put the results here */ int iAmt, /* Number of bytes to read */ sqlite_int64 iOfst /* Begin reading at this offset */ ){ MemJournal *p = (MemJournal *)pJfd; u8 *zOut = zBuf; int nRead = iAmt; int iChunkOffset; FileChunk *pChunk; if( (iAmt+iOfst)>p->endpoint.iOffset ){ return SQLITE_IOERR_SHORT_READ; } assert( p->readpoint.iOffset==0 || p->readpoint.pChunk!=0 ); if( p->readpoint.iOffset!=iOfst || iOfst==0 ){ sqlite3_int64 iOff = 0; for(pChunk=p->pFirst; ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst; pChunk=pChunk->pNext ){ iOff += p->nChunkSize; } }else{ pChunk = p->readpoint.pChunk; assert( pChunk!=0 ); } iChunkOffset = (int)(iOfst%p->nChunkSize); do { int iSpace = p->nChunkSize - iChunkOffset; int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset)); memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy); zOut += nCopy; nRead -= iSpace; iChunkOffset = 0; } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 ); p->readpoint.iOffset = pChunk ? iOfst+iAmt : 0; p->readpoint.pChunk = pChunk; return SQLITE_OK; } /* ** Free the list of FileChunk structures headed at MemJournal.pFirst. */ static void memjrnlFreeChunks(FileChunk *pFirst){ FileChunk *pIter; FileChunk *pNext; for(pIter=pFirst; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_free(pIter); } } /* ** Flush the contents of memory to a real file on disk. */ static int memjrnlCreateFile(MemJournal *p){ int rc; sqlite3_file *pReal = (sqlite3_file*)p; MemJournal copy = *p; memset(p, 0, sizeof(MemJournal)); rc = sqlite3OsOpen(copy.pVfs, copy.zJournal, pReal, copy.flags, 0); if( rc==SQLITE_OK ){ int nChunk = copy.nChunkSize; i64 iOff = 0; FileChunk *pIter; for(pIter=copy.pFirst; pIter; pIter=pIter->pNext){ if( iOff + nChunk > copy.endpoint.iOffset ){ nChunk = copy.endpoint.iOffset - iOff; } rc = sqlite3OsWrite(pReal, (u8*)pIter->zChunk, nChunk, iOff); if( rc ) break; iOff += nChunk; } if( rc==SQLITE_OK ){ /* No error has occurred. Free the in-memory buffers. */ memjrnlFreeChunks(copy.pFirst); } } if( rc!=SQLITE_OK ){ /* If an error occurred while creating or writing to the file, restore ** the original before returning. This way, SQLite uses the in-memory ** journal data to roll back changes made to the internal page-cache ** before this function was called. */ sqlite3OsClose(pReal); *p = copy; } return rc; } /* Forward reference */ static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size); /* ** Write data to the file. */ static int memjrnlWrite( sqlite3_file *pJfd, /* The journal file into which to write */ const void *zBuf, /* Take data to be written from here */ int iAmt, /* Number of bytes to write */ sqlite_int64 iOfst /* Begin writing at this offset into the file */ ){ MemJournal *p = (MemJournal *)pJfd; int nWrite = iAmt; u8 *zWrite = (u8 *)zBuf; /* If the file should be created now, create it and write the new data ** into the file on disk. */ if( p->nSpill>0 && (iAmt+iOfst)>p->nSpill ){ int rc = memjrnlCreateFile(p); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pJfd, zBuf, iAmt, iOfst); } return rc; } /* If the contents of this write should be stored in memory */ else{ /* An in-memory journal file should only ever be appended to. Random ** access writes are not required. The only exception to this is when ** the in-memory journal is being used by a connection using the ** atomic-write optimization. In this case the first 28 bytes of the ** journal file may be written as part of committing the transaction. */ assert( iOfst<=p->endpoint.iOffset ); if( iOfst>0 && iOfst!=p->endpoint.iOffset ){ memjrnlTruncate(pJfd, iOfst); } if( iOfst==0 && p->pFirst ){ assert( p->nChunkSize>iAmt ); memcpy((u8*)p->pFirst->zChunk, zBuf, iAmt); }else{ while( nWrite>0 ){ FileChunk *pChunk = p->endpoint.pChunk; int iChunkOffset = (int)(p->endpoint.iOffset%p->nChunkSize); int iSpace = MIN(nWrite, p->nChunkSize - iChunkOffset); assert( pChunk!=0 || iChunkOffset==0 ); if( iChunkOffset==0 ){ /* New chunk is required to extend the file. */ FileChunk *pNew = sqlite3_malloc(fileChunkSize(p->nChunkSize)); if( !pNew ){ return SQLITE_IOERR_NOMEM_BKPT; } pNew->pNext = 0; if( pChunk ){ assert( p->pFirst ); pChunk->pNext = pNew; }else{ assert( !p->pFirst ); p->pFirst = pNew; } pChunk = p->endpoint.pChunk = pNew; } assert( pChunk!=0 ); memcpy((u8*)pChunk->zChunk + iChunkOffset, zWrite, iSpace); zWrite += iSpace; nWrite -= iSpace; p->endpoint.iOffset += iSpace; } } } return SQLITE_OK; } /* ** Truncate the in-memory file. */ static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ MemJournal *p = (MemJournal *)pJfd; assert( p->endpoint.pChunk==0 || p->endpoint.pChunk->pNext==0 ); if( sizeendpoint.iOffset ){ FileChunk *pIter = 0; if( size==0 ){ memjrnlFreeChunks(p->pFirst); p->pFirst = 0; }else{ i64 iOff = p->nChunkSize; for(pIter=p->pFirst; ALWAYS(pIter) && iOffpNext){ iOff += p->nChunkSize; } if( ALWAYS(pIter) ){ memjrnlFreeChunks(pIter->pNext); pIter->pNext = 0; } } p->endpoint.pChunk = pIter; p->endpoint.iOffset = size; p->readpoint.pChunk = 0; p->readpoint.iOffset = 0; } return SQLITE_OK; } /* ** Close the file. */ static int memjrnlClose(sqlite3_file *pJfd){ MemJournal *p = (MemJournal *)pJfd; memjrnlFreeChunks(p->pFirst); return SQLITE_OK; } /* ** Sync the file. ** ** If the real file has been created, call its xSync method. Otherwise, ** syncing an in-memory journal is a no-op. */ static int memjrnlSync(sqlite3_file *pJfd, int flags){ UNUSED_PARAMETER2(pJfd, flags); return SQLITE_OK; } /* ** Query the size of the file in bytes. */ static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ MemJournal *p = (MemJournal *)pJfd; *pSize = (sqlite_int64) p->endpoint.iOffset; return SQLITE_OK; } /* ** Table of methods for MemJournal sqlite3_file object. */ static const struct sqlite3_io_methods MemJournalMethods = { 1, /* iVersion */ memjrnlClose, /* xClose */ memjrnlRead, /* xRead */ memjrnlWrite, /* xWrite */ memjrnlTruncate, /* xTruncate */ memjrnlSync, /* xSync */ memjrnlFileSize, /* xFileSize */ 0, /* xLock */ 0, /* xUnlock */ 0, /* xCheckReservedLock */ 0, /* xFileControl */ 0, /* xSectorSize */ 0, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ 0, /* xFetch */ 0 /* xUnfetch */ }; /* ** Open a journal file. ** ** The behaviour of the journal file depends on the value of parameter ** nSpill. If nSpill is 0, then the journal file is always create and ** accessed using the underlying VFS. If nSpill is less than zero, then ** all content is always stored in main-memory. Finally, if nSpill is a ** positive value, then the journal file is initially created in-memory ** but may be flushed to disk later on. In this case the journal file is ** flushed to disk either when it grows larger than nSpill bytes in size, ** or when sqlite3JournalCreate() is called. */ SQLITE_PRIVATE int sqlite3JournalOpen( sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ const char *zName, /* Name of the journal file */ sqlite3_file *pJfd, /* Preallocated, blank file handle */ int flags, /* Opening flags */ int nSpill /* Bytes buffered before opening the file */ ){ MemJournal *p = (MemJournal*)pJfd; assert( zName || nSpill<0 || (flags & SQLITE_OPEN_EXCLUSIVE) ); /* Zero the file-handle object. If nSpill was passed zero, initialize ** it using the sqlite3OsOpen() function of the underlying VFS. In this ** case none of the code in this module is executed as a result of calls ** made on the journal file-handle. */ memset(p, 0, sizeof(MemJournal)); if( nSpill==0 ){ return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0); } if( nSpill>0 ){ p->nChunkSize = nSpill; }else{ p->nChunkSize = 8 + MEMJOURNAL_DFLT_FILECHUNKSIZE - sizeof(FileChunk); assert( MEMJOURNAL_DFLT_FILECHUNKSIZE==fileChunkSize(p->nChunkSize) ); } pJfd->pMethods = (const sqlite3_io_methods*)&MemJournalMethods; p->nSpill = nSpill; p->flags = flags; p->zJournal = zName; p->pVfs = pVfs; return SQLITE_OK; } /* ** Open an in-memory journal file. */ SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){ sqlite3JournalOpen(0, 0, pJfd, 0, -1); } #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) /* ** If the argument p points to a MemJournal structure that is not an ** in-memory-only journal file (i.e. is one that was opened with a +ve ** nSpill parameter or as SQLITE_OPEN_MAIN_JOURNAL), and the underlying ** file has not yet been created, create it now. */ SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *pJfd){ int rc = SQLITE_OK; MemJournal *p = (MemJournal*)pJfd; if( pJfd->pMethods==&MemJournalMethods && ( #ifdef SQLITE_ENABLE_ATOMIC_WRITE p->nSpill>0 #else /* While this appears to not be possible without ATOMIC_WRITE, the ** paths are complex, so it seems prudent to leave the test in as ** a NEVER(), in case our analysis is subtly flawed. */ NEVER(p->nSpill>0) #endif #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE || (p->flags & SQLITE_OPEN_MAIN_JOURNAL) #endif )){ rc = memjrnlCreateFile(p); } return rc; } #endif /* ** The file-handle passed as the only argument is open on a journal file. ** Return true if this "journal file" is currently stored in heap memory, ** or false otherwise. */ SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p){ return p->pMethods==&MemJournalMethods; } /* ** Return the number of bytes required to store a JournalFile that uses vfs ** pVfs to create the underlying on-disk files. */ SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){ return MAX(pVfs->szOsFile, (int)sizeof(MemJournal)); } /************** End of memjournal.c ******************************************/ /************** Begin file walker.c ******************************************/ /* ** 2008 August 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for walking the parser tree for ** an SQL statement. */ /* #include "sqliteInt.h" */ /* #include */ /* #include */ #if !defined(SQLITE_OMIT_WINDOWFUNC) /* ** Walk all expressions linked into the list of Window objects passed ** as the second argument. */ static int walkWindowList(Walker *pWalker, Window *pList, int bOneOnly){ Window *pWin; for(pWin=pList; pWin; pWin=pWin->pNextWin){ int rc; rc = sqlite3WalkExprList(pWalker, pWin->pOrderBy); if( rc ) return WRC_Abort; rc = sqlite3WalkExprList(pWalker, pWin->pPartition); if( rc ) return WRC_Abort; rc = sqlite3WalkExpr(pWalker, pWin->pFilter); if( rc ) return WRC_Abort; rc = sqlite3WalkExpr(pWalker, pWin->pStart); if( rc ) return WRC_Abort; rc = sqlite3WalkExpr(pWalker, pWin->pEnd); if( rc ) return WRC_Abort; if( bOneOnly ) break; } return WRC_Continue; } #endif /* ** Walk an expression tree. Invoke the callback once for each node ** of the expression, while descending. (In other words, the callback ** is invoked before visiting children.) ** ** The return value from the callback should be one of the WRC_* ** constants to specify how to proceed with the walk. ** ** WRC_Continue Continue descending down the tree. ** ** WRC_Prune Do not descend into child nodes, but allow ** the walk to continue with sibling nodes. ** ** WRC_Abort Do no more callbacks. Unwind the stack and ** return from the top-level walk call. ** ** The return value from this routine is WRC_Abort to abandon the tree walk ** and WRC_Continue to continue. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3WalkExprNN(Walker *pWalker, Expr *pExpr){ int rc; testcase( ExprHasProperty(pExpr, EP_TokenOnly) ); testcase( ExprHasProperty(pExpr, EP_Reduced) ); while(1){ rc = pWalker->xExprCallback(pWalker, pExpr); if( rc ) return rc & WRC_Abort; if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){ assert( pExpr->x.pList==0 || pExpr->pRight==0 ); if( pExpr->pLeft && sqlite3WalkExprNN(pWalker, pExpr->pLeft) ){ return WRC_Abort; } if( pExpr->pRight ){ assert( !ExprHasProperty(pExpr, EP_WinFunc) ); pExpr = pExpr->pRight; continue; }else if( ExprUseXSelect(pExpr) ){ assert( !ExprHasProperty(pExpr, EP_WinFunc) ); if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort; }else{ if( pExpr->x.pList ){ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort; } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ if( walkWindowList(pWalker, pExpr->y.pWin, 1) ) return WRC_Abort; } #endif } } break; } return WRC_Continue; } SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){ return pExpr ? sqlite3WalkExprNN(pWalker,pExpr) : WRC_Continue; } /* ** Call sqlite3WalkExpr() for every expression in list p or until ** an abort request is seen. */ SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){ int i; struct ExprList_item *pItem; if( p ){ for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort; } } return WRC_Continue; } /* ** This is a no-op callback for Walker->xSelectCallback2. If this ** callback is set, then the Select->pWinDefn list is traversed. */ SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker *pWalker, Select *p){ UNUSED_PARAMETER(pWalker); UNUSED_PARAMETER(p); /* No-op */ } /* ** Walk all expressions associated with SELECT statement p. Do ** not invoke the SELECT callback on p, but do (of course) invoke ** any expr callbacks and SELECT callbacks that come from subqueries. ** Return WRC_Abort or WRC_Continue. */ SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){ if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort; if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort; if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort; #if !defined(SQLITE_OMIT_WINDOWFUNC) if( p->pWinDefn ){ Parse *pParse; if( pWalker->xSelectCallback2==sqlite3WalkWinDefnDummyCallback || ((pParse = pWalker->pParse)!=0 && IN_RENAME_OBJECT) #ifndef SQLITE_OMIT_CTE || pWalker->xSelectCallback2==sqlite3SelectPopWith #endif ){ /* The following may return WRC_Abort if there are unresolvable ** symbols (e.g. a table that does not exist) in a window definition. */ int rc = walkWindowList(pWalker, p->pWinDefn, 0); return rc; } } #endif return WRC_Continue; } /* ** Walk the parse trees associated with all subqueries in the ** FROM clause of SELECT statement p. Do not invoke the select ** callback on p, but do invoke it on each FROM clause subquery ** and on any subqueries further down in the tree. Return ** WRC_Abort or WRC_Continue; */ SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){ SrcList *pSrc; int i; SrcItem *pItem; pSrc = p->pSrc; if( ALWAYS(pSrc) ){ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ if( pItem->pSelect && sqlite3WalkSelect(pWalker, pItem->pSelect) ){ return WRC_Abort; } if( pItem->fg.isTabFunc && sqlite3WalkExprList(pWalker, pItem->u1.pFuncArg) ){ return WRC_Abort; } } } return WRC_Continue; } /* ** Call sqlite3WalkExpr() for every expression in Select statement p. ** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and ** on the compound select chain, p->pPrior. ** ** If it is not NULL, the xSelectCallback() callback is invoked before ** the walk of the expressions and FROM clause. The xSelectCallback2() ** method is invoked following the walk of the expressions and FROM clause, ** but only if both xSelectCallback and xSelectCallback2 are both non-NULL ** and if the expressions and FROM clause both return WRC_Continue; ** ** Return WRC_Continue under normal conditions. Return WRC_Abort if ** there is an abort request. ** ** If the Walker does not have an xSelectCallback() then this routine ** is a no-op returning WRC_Continue. */ SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){ int rc; if( p==0 ) return WRC_Continue; if( pWalker->xSelectCallback==0 ) return WRC_Continue; do{ rc = pWalker->xSelectCallback(pWalker, p); if( rc ) return rc & WRC_Abort; if( sqlite3WalkSelectExpr(pWalker, p) || sqlite3WalkSelectFrom(pWalker, p) ){ return WRC_Abort; } if( pWalker->xSelectCallback2 ){ pWalker->xSelectCallback2(pWalker, p); } p = p->pPrior; }while( p!=0 ); return WRC_Continue; } /* Increase the walkerDepth when entering a subquery, and ** decrease when leaving the subquery. */ SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pSelect); pWalker->walkerDepth++; return WRC_Continue; } SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pSelect); pWalker->walkerDepth--; } /* ** No-op routine for the parse-tree walker. ** ** When this routine is the Walker.xExprCallback then expression trees ** are walked without any actions being taken at each node. Presumably, ** when this routine is used for Walker.xExprCallback then ** Walker.xSelectCallback is set to do something useful for every ** subquery in the parser tree. */ SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return WRC_Continue; } /* ** No-op routine for the parse-tree walker for SELECT statements. ** subquery in the parser tree. */ SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return WRC_Continue; } /************** End of walker.c **********************************************/ /************** Begin file resolve.c *****************************************/ /* ** 2008 August 18 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains routines used for walking the parser tree and ** resolve all identifiers by associating them with a particular ** table and column. */ /* #include "sqliteInt.h" */ /* ** Magic table number to mean the EXCLUDED table in an UPSERT statement. */ #define EXCLUDED_TABLE_NUMBER 2 /* ** Walk the expression tree pExpr and increase the aggregate function ** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node. ** This needs to occur when copying a TK_AGG_FUNCTION node from an ** outer query into an inner subquery. ** ** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) ** is a helper function - a callback for the tree walker. ** ** See also the sqlite3WindowExtraAggFuncDepth() routine in window.c */ static int incrAggDepth(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n; return WRC_Continue; } static void incrAggFunctionDepth(Expr *pExpr, int N){ if( N>0 ){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = incrAggDepth; w.u.n = N; sqlite3WalkExpr(&w, pExpr); } } /* ** Turn the pExpr expression into an alias for the iCol-th column of the ** result set in pEList. ** ** If the reference is followed by a COLLATE operator, then make sure ** the COLLATE operator is preserved. For example: ** ** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; ** ** Should be transformed into: ** ** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase; ** ** The nSubquery parameter specifies how many levels of subquery the ** alias is removed from the original expression. The usual value is ** zero but it might be more if the alias is contained within a subquery ** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION ** structures must be increased by the nSubquery amount. */ static void resolveAlias( Parse *pParse, /* Parsing context */ ExprList *pEList, /* A result set */ int iCol, /* A column in the result set. 0..pEList->nExpr-1 */ Expr *pExpr, /* Transform this into an alias to the result set */ int nSubquery /* Number of subqueries that the label is moving */ ){ Expr *pOrig; /* The iCol-th column of the result set */ Expr *pDup; /* Copy of pOrig */ sqlite3 *db; /* The database connection */ assert( iCol>=0 && iColnExpr ); pOrig = pEList->a[iCol].pExpr; assert( pOrig!=0 ); db = pParse->db; pDup = sqlite3ExprDup(db, pOrig, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); pDup = 0; }else{ Expr temp; incrAggFunctionDepth(pDup, nSubquery); if( pExpr->op==TK_COLLATE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); } memcpy(&temp, pDup, sizeof(Expr)); memcpy(pDup, pExpr, sizeof(Expr)); memcpy(pExpr, &temp, sizeof(Expr)); if( ExprHasProperty(pExpr, EP_WinFunc) ){ if( ALWAYS(pExpr->y.pWin!=0) ){ pExpr->y.pWin->pOwner = pExpr; } } sqlite3ExprDeferredDelete(pParse, pDup); } } /* ** Subqueries stores the original database, table and column names for their ** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN". ** Check to see if the zSpan given to this routine matches the zDb, zTab, ** and zCol. If any of zDb, zTab, and zCol are NULL then those fields will ** match anything. */ SQLITE_PRIVATE int sqlite3MatchEName( const struct ExprList_item *pItem, const char *zCol, const char *zTab, const char *zDb ){ int n; const char *zSpan; if( pItem->fg.eEName!=ENAME_TAB ) return 0; zSpan = pItem->zEName; for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){ return 0; } zSpan += n+1; for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){ return 0; } zSpan += n+1; if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){ return 0; } return 1; } /* ** Return TRUE if the double-quoted string mis-feature should be supported. */ static int areDoubleQuotedStringsEnabled(sqlite3 *db, NameContext *pTopNC){ if( db->init.busy ) return 1; /* Always support for legacy schemas */ if( pTopNC->ncFlags & NC_IsDDL ){ /* Currently parsing a DDL statement */ if( sqlite3WritableSchema(db) && (db->flags & SQLITE_DqsDML)!=0 ){ return 1; } return (db->flags & SQLITE_DqsDDL)!=0; }else{ /* Currently parsing a DML statement */ return (db->flags & SQLITE_DqsDML)!=0; } } /* ** The argument is guaranteed to be a non-NULL Expr node of type TK_COLUMN. ** return the appropriate colUsed mask. */ SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr *pExpr){ int n; Table *pExTab; n = pExpr->iColumn; assert( ExprUseYTab(pExpr) ); pExTab = pExpr->y.pTab; assert( pExTab!=0 ); if( (pExTab->tabFlags & TF_HasGenerated)!=0 && (pExTab->aCol[n].colFlags & COLFLAG_GENERATED)!=0 ){ testcase( pExTab->nCol==BMS-1 ); testcase( pExTab->nCol==BMS ); return pExTab->nCol>=BMS ? ALLBITS : MASKBIT(pExTab->nCol)-1; }else{ testcase( n==BMS-1 ); testcase( n==BMS ); if( n>=BMS ) n = BMS-1; return ((Bitmask)1)<db, TK_COLUMN, 0, 0); if( pNew ){ pNew->iTable = pMatch->iCursor; pNew->iColumn = iColumn; pNew->y.pTab = pMatch->pTab; assert( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 ); ExprSetProperty(pNew, EP_CanBeNull); *ppList = sqlite3ExprListAppend(pParse, *ppList, pNew); } } /* ** Return TRUE (non-zero) if zTab is a valid name for the schema table pTab. */ static SQLITE_NOINLINE int isValidSchemaTableName( const char *zTab, /* Name as it appears in the SQL */ Table *pTab, /* The schema table we are trying to match */ Schema *pSchema /* non-NULL if a database qualifier is present */ ){ const char *zLegacy; assert( pTab!=0 ); assert( pTab->tnum==1 ); if( sqlite3StrNICmp(zTab, "sqlite_", 7)!=0 ) return 0; zLegacy = pTab->zName; if( strcmp(zLegacy+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ if( sqlite3StrICmp(zTab+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ return 1; } if( pSchema==0 ) return 0; if( sqlite3StrICmp(zTab+7, &LEGACY_SCHEMA_TABLE[7])==0 ) return 1; if( sqlite3StrICmp(zTab+7, &PREFERRED_SCHEMA_TABLE[7])==0 ) return 1; }else{ if( sqlite3StrICmp(zTab+7, &PREFERRED_SCHEMA_TABLE[7])==0 ) return 1; } return 0; } /* ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up ** that name in the set of source tables in pSrcList and make the pExpr ** expression node refer back to that source column. The following changes ** are made to pExpr: ** ** pExpr->iDb Set the index in db->aDb[] of the database X ** (even if X is implied). ** pExpr->iTable Set to the cursor number for the table obtained ** from pSrcList. ** pExpr->y.pTab Points to the Table structure of X.Y (even if ** X and/or Y are implied.) ** pExpr->iColumn Set to the column number within the table. ** pExpr->op Set to TK_COLUMN. ** pExpr->pLeft Any expression this points to is deleted ** pExpr->pRight Any expression this points to is deleted. ** ** The zDb variable is the name of the database (the "X"). This value may be ** NULL meaning that name is of the form Y.Z or Z. Any available database ** can be used. The zTable variable is the name of the table (the "Y"). This ** value can be NULL if zDb is also NULL. If zTable is NULL it ** means that the form of the name is Z and that columns from any table ** can be used. ** ** If the name cannot be resolved unambiguously, leave an error message ** in pParse and return WRC_Abort. Return WRC_Prune on success. */ static int lookupName( Parse *pParse, /* The parsing context */ const char *zDb, /* Name of the database containing table, or NULL */ const char *zTab, /* Name of table containing column, or NULL */ const char *zCol, /* Name of the column. */ NameContext *pNC, /* The name context used to resolve the name */ Expr *pExpr /* Make this EXPR node point to the selected column */ ){ int i, j; /* Loop counters */ int cnt = 0; /* Number of matching column names */ int cntTab = 0; /* Number of matching table names */ int nSubquery = 0; /* How many levels of subquery */ sqlite3 *db = pParse->db; /* The database connection */ SrcItem *pItem; /* Use for looping over pSrcList items */ SrcItem *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ int eNewExprOp = TK_COLUMN; /* New value for pExpr->op on success */ Table *pTab = 0; /* Table holding the row */ Column *pCol; /* A column of pTab */ ExprList *pFJMatch = 0; /* Matches for FULL JOIN .. USING */ assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( zDb==0 || zTab!=0 ); assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); /* Initialize the node to no-match */ pExpr->iTable = -1; ExprSetVVAProperty(pExpr, EP_NoReduce); /* Translate the schema name in zDb into a pointer to the corresponding ** schema. If not found, pSchema will remain NULL and nothing will match ** resulting in an appropriate error message toward the end of this routine */ if( zDb ){ testcase( pNC->ncFlags & NC_PartIdx ); testcase( pNC->ncFlags & NC_IsCheck ); if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){ /* Silently ignore database qualifiers inside CHECK constraints and ** partial indices. Do not raise errors because that might break ** legacy and because it does not hurt anything to just ignore the ** database name. */ zDb = 0; }else{ for(i=0; inDb; i++){ assert( db->aDb[i].zDbSName ); if( sqlite3StrICmp(db->aDb[i].zDbSName,zDb)==0 ){ pSchema = db->aDb[i].pSchema; break; } } if( i==db->nDb && sqlite3StrICmp("main", zDb)==0 ){ /* This branch is taken when the main database has been renamed ** using SQLITE_DBCONFIG_MAINDBNAME. */ pSchema = db->aDb[0].pSchema; zDb = db->aDb[0].zDbSName; } } } /* Start at the inner-most context and move outward until a match is found */ assert( pNC && cnt==0 ); do{ ExprList *pEList; SrcList *pSrcList = pNC->pSrcList; if( pSrcList ){ for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){ u8 hCol; pTab = pItem->pTab; assert( pTab!=0 && pTab->zName!=0 ); assert( pTab->nCol>0 || pParse->nErr ); assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); if( pItem->fg.isNestedFrom ){ /* In this case, pItem is a subquery that has been formed from a ** parenthesized subset of the FROM clause terms. Example: ** .... FROM t1 LEFT JOIN (t2 RIGHT JOIN t3 USING(x)) USING(y) ... ** \_________________________/ ** This pItem -------------^ */ int hit = 0; assert( pItem->pSelect!=0 ); pEList = pItem->pSelect->pEList; assert( pEList!=0 ); assert( pEList->nExpr==pTab->nCol ); for(j=0; jnExpr; j++){ if( !sqlite3MatchEName(&pEList->a[j], zCol, zTab, zDb) ){ continue; } if( cnt>0 ){ if( pItem->fg.isUsing==0 || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0 ){ /* Two or more tables have the same column name which is ** not joined by USING. This is an error. Signal as much ** by clearing pFJMatch and letting cnt go above 1. */ sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else if( (pItem->fg.jointype & JT_RIGHT)==0 ){ /* An INNER or LEFT JOIN. Use the left-most table */ continue; }else if( (pItem->fg.jointype & JT_LEFT)==0 ){ /* A RIGHT JOIN. Use the right-most table */ cnt = 0; sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else{ /* For a FULL JOIN, we must construct a coalesce() func */ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn); } } cnt++; cntTab = 2; pMatch = pItem; pExpr->iColumn = j; pEList->a[j].fg.bUsed = 1; hit = 1; if( pEList->a[j].fg.bUsingTerm ) break; } if( hit || zTab==0 ) continue; } assert( zDb==0 || zTab!=0 ); if( zTab ){ if( zDb ){ if( pTab->pSchema!=pSchema ) continue; if( pSchema==0 && strcmp(zDb,"*")!=0 ) continue; } if( pItem->zAlias!=0 ){ if( sqlite3StrICmp(zTab, pItem->zAlias)!=0 ){ continue; } }else if( sqlite3StrICmp(zTab, pTab->zName)!=0 ){ if( pTab->tnum!=1 ) continue; if( !isValidSchemaTableName(zTab, pTab, pSchema) ) continue; } assert( ExprUseYTab(pExpr) ); if( IN_RENAME_OBJECT && pItem->zAlias ){ sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->y.pTab); } } hCol = sqlite3StrIHash(zCol); for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){ if( pCol->hName==hCol && sqlite3StrICmp(pCol->zCnName, zCol)==0 ){ if( cnt>0 ){ if( pItem->fg.isUsing==0 || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0 ){ /* Two or more tables have the same column name which is ** not joined by USING. This is an error. Signal as much ** by clearing pFJMatch and letting cnt go above 1. */ sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else if( (pItem->fg.jointype & JT_RIGHT)==0 ){ /* An INNER or LEFT JOIN. Use the left-most table */ continue; }else if( (pItem->fg.jointype & JT_LEFT)==0 ){ /* A RIGHT JOIN. Use the right-most table */ cnt = 0; sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else{ /* For a FULL JOIN, we must construct a coalesce() func */ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn); } } cnt++; pMatch = pItem; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; if( pItem->fg.isNestedFrom ){ sqlite3SrcItemColumnUsed(pItem, j); } break; } } if( 0==cnt && VisibleRowid(pTab) ){ cntTab++; pMatch = pItem; } } if( pMatch ){ pExpr->iTable = pMatch->iCursor; assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pMatch->pTab; if( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 ){ ExprSetProperty(pExpr, EP_CanBeNull); } pSchema = pExpr->y.pTab->pSchema; } } /* if( pSrcList ) */ #if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference. Or ** maybe it is an excluded.* from an upsert. Or maybe it is ** a reference in the RETURNING clause to a table being modified. */ if( cnt==0 && zDb==0 ){ pTab = 0; #ifndef SQLITE_OMIT_TRIGGER if( pParse->pTriggerTab!=0 ){ int op = pParse->eTriggerOp; assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( pParse->bReturning ){ if( (pNC->ncFlags & NC_UBaseReg)!=0 && ALWAYS(zTab==0 || sqlite3StrICmp(zTab,pParse->pTriggerTab->zName)==0) ){ pExpr->iTable = op!=TK_DELETE; pTab = pParse->pTriggerTab; } }else if( op!=TK_DELETE && zTab && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && zTab && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; } } #endif /* SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_UPSERT if( (pNC->ncFlags & NC_UUpsert)!=0 && zTab!=0 ){ Upsert *pUpsert = pNC->uNC.pUpsert; if( pUpsert && sqlite3StrICmp("excluded",zTab)==0 ){ pTab = pUpsert->pUpsertSrc->a[0].pTab; pExpr->iTable = EXCLUDED_TABLE_NUMBER; } } #endif /* SQLITE_OMIT_UPSERT */ if( pTab ){ int iCol; u8 hCol = sqlite3StrIHash(zCol); pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iColnCol; iCol++, pCol++){ if( pCol->hName==hCol && sqlite3StrICmp(pCol->zCnName, zCol)==0 ){ if( iCol==pTab->iPKey ){ iCol = -1; } break; } } if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){ /* IMP: R-51414-32910 */ iCol = -1; } if( iColnCol ){ cnt++; pMatch = 0; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==EXCLUDED_TABLE_NUMBER ){ testcase( iCol==(-1) ); assert( ExprUseYTab(pExpr) ); if( IN_RENAME_OBJECT ){ pExpr->iColumn = iCol; pExpr->y.pTab = pTab; eNewExprOp = TK_COLUMN; }else{ pExpr->iTable = pNC->uNC.pUpsert->regData + sqlite3TableColumnToStorage(pTab, iCol); eNewExprOp = TK_REGISTER; } }else #endif /* SQLITE_OMIT_UPSERT */ { assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pTab; if( pParse->bReturning ){ eNewExprOp = TK_REGISTER; pExpr->op2 = TK_COLUMN; pExpr->iColumn = iCol; pExpr->iTable = pNC->uNC.iBaseReg + (pTab->nCol+1)*pExpr->iTable + sqlite3TableColumnToStorage(pTab, iCol) + 1; }else{ pExpr->iColumn = (i16)iCol; eNewExprOp = TK_TRIGGER; #ifndef SQLITE_OMIT_TRIGGER if( iCol<0 ){ pExpr->affExpr = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ testcase( iCol==31 ); testcase( iCol==32 ); pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<ncFlags & (NC_IdxExpr|NC_GenCol))==0 && sqlite3IsRowid(zCol) && ALWAYS(VisibleRowid(pMatch->pTab)) ){ cnt = 1; pExpr->iColumn = -1; pExpr->affExpr = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z ** might refer to an result-set alias. This happens, for example, when ** we are resolving names in the WHERE clause of the following command: ** ** SELECT a+b AS x FROM table WHERE x<10; ** ** In cases like this, replace pExpr with a copy of the expression that ** forms the result set entry ("a+b" in the example) and return immediately. ** Note that the expression in the result set should have already been ** resolved by the time the WHERE clause is resolved. ** ** The ability to use an output result-set column in the WHERE, GROUP BY, ** or HAVING clauses, or as part of a larger expression in the ORDER BY ** clause is not standard SQL. This is a (goofy) SQLite extension, that ** is supported for backwards compatibility only. Hence, we issue a warning ** on sqlite3_log() whenever the capability is used. */ if( cnt==0 && (pNC->ncFlags & NC_UEList)!=0 && zTab==0 ){ pEList = pNC->uNC.pEList; assert( pEList!=0 ); for(j=0; jnExpr; j++){ char *zAs = pEList->a[j].zEName; if( pEList->a[j].fg.eEName==ENAME_NAME && sqlite3_stricmp(zAs, zCol)==0 ){ Expr *pOrig; assert( pExpr->pLeft==0 && pExpr->pRight==0 ); assert( ExprUseXList(pExpr)==0 || pExpr->x.pList==0 ); assert( ExprUseXSelect(pExpr)==0 || pExpr->x.pSelect==0 ); pOrig = pEList->a[j].pExpr; if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); return WRC_Abort; } if( ExprHasProperty(pOrig, EP_Win) && ((pNC->ncFlags&NC_AllowWin)==0 || pNC!=pTopNC ) ){ sqlite3ErrorMsg(pParse, "misuse of aliased window function %s",zAs); return WRC_Abort; } if( sqlite3ExprVectorSize(pOrig)!=1 ){ sqlite3ErrorMsg(pParse, "row value misused"); return WRC_Abort; } resolveAlias(pParse, pEList, j, pExpr, nSubquery); cnt = 1; pMatch = 0; assert( zTab==0 && zDb==0 ); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, 0, (void*)pExpr); } goto lookupname_end; } } } /* Advance to the next name context. The loop will exit when either ** we have a match (cnt>0) or when we run out of name contexts. */ if( cnt ) break; pNC = pNC->pNext; nSubquery++; }while( pNC ); /* ** If X and Y are NULL (in other words if only the column name Z is ** supplied) and the value of Z is enclosed in double-quotes, then ** Z is a string literal if it doesn't match any column names. In that ** case, we need to return right away and not make any changes to ** pExpr. ** ** Because no reference was made to outer contexts, the pNC->nRef ** fields are not changed in any context. */ if( cnt==0 && zTab==0 ){ assert( pExpr->op==TK_ID ); if( ExprHasProperty(pExpr,EP_DblQuoted) && areDoubleQuotedStringsEnabled(db, pTopNC) ){ /* If a double-quoted identifier does not match any known column name, ** then treat it as a string. ** ** This hack was added in the early days of SQLite in a misguided attempt ** to be compatible with MySQL 3.x, which used double-quotes for strings. ** I now sorely regret putting in this hack. The effect of this hack is ** that misspelled identifier names are silently converted into strings ** rather than causing an error, to the frustration of countless ** programmers. To all those frustrated programmers, my apologies. ** ** Someday, I hope to get rid of this hack. Unfortunately there is ** a huge amount of legacy SQL that uses it. So for now, we just ** issue a warning. */ sqlite3_log(SQLITE_WARNING, "double-quoted string literal: \"%w\"", zCol); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3VdbeAddDblquoteStr(db, pParse->pVdbe, zCol); #endif pExpr->op = TK_STRING; memset(&pExpr->y, 0, sizeof(pExpr->y)); return WRC_Prune; } if( sqlite3ExprIdToTrueFalse(pExpr) ){ return WRC_Prune; } } /* ** cnt==0 means there was not match. ** cnt>1 means there were two or more matches. ** ** cnt==0 is always an error. cnt>1 is often an error, but might ** be multiple matches for a NATURAL LEFT JOIN or a LEFT JOIN USING. */ assert( pFJMatch==0 || cnt>0 ); assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) ); if( cnt!=1 ){ const char *zErr; if( pFJMatch ){ if( pFJMatch->nExpr==cnt-1 ){ if( ExprHasProperty(pExpr,EP_Leaf) ){ ExprClearProperty(pExpr,EP_Leaf); }else{ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; } extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn); pExpr->op = TK_FUNCTION; pExpr->u.zToken = "coalesce"; pExpr->x.pList = pFJMatch; cnt = 1; goto lookupname_end; }else{ sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; } } zErr = cnt==0 ? "no such column" : "ambiguous column name"; if( zDb ){ sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); }else if( zTab ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); } sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); pParse->checkSchema = 1; pTopNC->nNcErr++; } assert( pFJMatch==0 ); /* Remove all substructure from pExpr */ if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; ExprSetProperty(pExpr, EP_Leaf); } /* If a column from a table in pSrcList is referenced, then record ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes ** bit 0 to be set. Column 1 sets bit 1. And so forth. Bit 63 is ** set if the 63rd or any subsequent column is used. ** ** The colUsed mask is an optimization used to help determine if an ** index is a covering index. The correct answer is still obtained ** if the mask contains extra set bits. However, it is important to ** avoid setting bits beyond the maximum column number of the table. ** (See ticket [b92e5e8ec2cdbaa1]). ** ** If a generated column is referenced, set bits for every column ** of the table. */ if( pExpr->iColumn>=0 && pMatch!=0 ){ pMatch->colUsed |= sqlite3ExprColUsed(pExpr); } pExpr->op = eNewExprOp; lookupname_end: if( cnt==1 ){ assert( pNC!=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( pParse->db->xAuth && (pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER) ){ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); } #endif /* Increment the nRef value on all name contexts from TopNC up to ** the point where the name matched. */ for(;;){ assert( pTopNC!=0 ); pTopNC->nRef++; if( pTopNC==pNC ) break; pTopNC = pTopNC->pNext; } return WRC_Prune; } else { return WRC_Abort; } } /* ** Allocate and return a pointer to an expression to load the column iCol ** from datasource iSrc in SrcList pSrc. */ SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); if( p ){ SrcItem *pItem = &pSrc->a[iSrc]; Table *pTab; assert( ExprUseYTab(p) ); pTab = p->y.pTab = pItem->pTab; p->iTable = pItem->iCursor; if( p->y.pTab->iPKey==iCol ){ p->iColumn = -1; }else{ p->iColumn = (ynVar)iCol; if( (pTab->tabFlags & TF_HasGenerated)!=0 && (pTab->aCol[iCol].colFlags & COLFLAG_GENERATED)!=0 ){ testcase( pTab->nCol==63 ); testcase( pTab->nCol==64 ); pItem->colUsed = pTab->nCol>=64 ? ALLBITS : MASKBIT(pTab->nCol)-1; }else{ testcase( iCol==BMS ); testcase( iCol==BMS-1 ); pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } } } return p; } /* ** Report an error that an expression is not valid for some set of ** pNC->ncFlags values determined by validMask. ** ** static void notValid( ** Parse *pParse, // Leave error message here ** NameContext *pNC, // The name context ** const char *zMsg, // Type of error ** int validMask, // Set of contexts for which prohibited ** Expr *pExpr // Invalidate this expression on error ** ){...} ** ** As an optimization, since the conditional is almost always false ** (because errors are rare), the conditional is moved outside of the ** function call using a macro. */ static void notValidImpl( Parse *pParse, /* Leave error message here */ NameContext *pNC, /* The name context */ const char *zMsg, /* Type of error */ Expr *pExpr, /* Invalidate this expression on error */ Expr *pError /* Associate error with this expression */ ){ const char *zIn = "partial index WHERE clauses"; if( pNC->ncFlags & NC_IdxExpr ) zIn = "index expressions"; #ifndef SQLITE_OMIT_CHECK else if( pNC->ncFlags & NC_IsCheck ) zIn = "CHECK constraints"; #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS else if( pNC->ncFlags & NC_GenCol ) zIn = "generated columns"; #endif sqlite3ErrorMsg(pParse, "%s prohibited in %s", zMsg, zIn); if( pExpr ) pExpr->op = TK_NULL; sqlite3RecordErrorOffsetOfExpr(pParse->db, pError); } #define sqlite3ResolveNotValid(P,N,M,X,E,R) \ assert( ((X)&~(NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol))==0 ); \ if( ((N)->ncFlags & (X))!=0 ) notValidImpl(P,N,M,E,R); /* ** Expression p should encode a floating point value between 1.0 and 0.0. ** Return 1024 times this value. Or return -1 if p is not a floating point ** value between 1.0 and 0.0. */ static int exprProbability(Expr *p){ double r = -1.0; if( p->op!=TK_FLOAT ) return -1; assert( !ExprHasProperty(p, EP_IntValue) ); sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8); assert( r>=0.0 ); if( r>1.0 ) return -1; return (int)(r*134217728.0); } /* ** This routine is callback for sqlite3WalkExpr(). ** ** Resolve symbolic names into TK_COLUMN operators for the current ** node in the expression tree. Return 0 to continue the search down ** the tree or 2 to abort the tree walk. ** ** This routine also does error checking and name resolution for ** function names. The operator for aggregate functions is changed ** to TK_AGG_FUNCTION. */ static int resolveExprStep(Walker *pWalker, Expr *pExpr){ NameContext *pNC; Parse *pParse; pNC = pWalker->u.pNC; assert( pNC!=0 ); pParse = pNC->pParse; assert( pParse==pWalker->pParse ); #ifndef NDEBUG if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ SrcList *pSrcList = pNC->pSrcList; int i; for(i=0; ipSrcList->nSrc; i++){ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab); } } #endif switch( pExpr->op ){ /* The special operator TK_ROW means use the rowid for the first ** column in the FROM clause. This is used by the LIMIT and ORDER BY ** clause processing on UPDATE and DELETE statements, and by ** UPDATE ... FROM statement processing. */ case TK_ROW: { SrcList *pSrcList = pNC->pSrcList; SrcItem *pItem; assert( pSrcList && pSrcList->nSrc>=1 ); pItem = pSrcList->a; pExpr->op = TK_COLUMN; assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pItem->pTab; pExpr->iTable = pItem->iCursor; pExpr->iColumn--; pExpr->affExpr = SQLITE_AFF_INTEGER; break; } /* An optimization: Attempt to convert ** ** "expr IS NOT NULL" --> "TRUE" ** "expr IS NULL" --> "FALSE" ** ** if we can prove that "expr" is never NULL. Call this the ** "NOT NULL strength reduction optimization". ** ** If this optimization occurs, also restore the NameContext ref-counts ** to the state they where in before the "column" LHS expression was ** resolved. This prevents "column" from being counted as having been ** referenced, which might prevent a SELECT from being erroneously ** marked as correlated. */ case TK_NOTNULL: case TK_ISNULL: { int anRef[8]; NameContext *p; int i; for(i=0, p=pNC; p && ipNext, i++){ anRef[i] = p->nRef; } sqlite3WalkExpr(pWalker, pExpr->pLeft); if( 0==sqlite3ExprCanBeNull(pExpr->pLeft) && !IN_RENAME_OBJECT ){ testcase( ExprHasProperty(pExpr, EP_OuterON) ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); pExpr->u.iValue = (pExpr->op==TK_NOTNULL); pExpr->flags |= EP_IntValue; pExpr->op = TK_INTEGER; for(i=0, p=pNC; p && ipNext, i++){ p->nRef = anRef[i]; } sqlite3ExprDelete(pParse->db, pExpr->pLeft); pExpr->pLeft = 0; } return WRC_Prune; } /* A column name: ID ** Or table name and column name: ID.ID ** Or a database, table and column: ID.ID.ID ** ** The TK_ID and TK_OUT cases are combined so that there will only ** be one call to lookupName(). Then the compiler will in-line ** lookupName() for a size reduction and performance increase. */ case TK_ID: case TK_DOT: { const char *zColumn; const char *zTable; const char *zDb; Expr *pRight; if( pExpr->op==TK_ID ){ zDb = 0; zTable = 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zColumn = pExpr->u.zToken; }else{ Expr *pLeft = pExpr->pLeft; testcase( pNC->ncFlags & NC_IdxExpr ); testcase( pNC->ncFlags & NC_GenCol ); sqlite3ResolveNotValid(pParse, pNC, "the \".\" operator", NC_IdxExpr|NC_GenCol, 0, pExpr); pRight = pExpr->pRight; if( pRight->op==TK_ID ){ zDb = 0; }else{ assert( pRight->op==TK_DOT ); assert( !ExprHasProperty(pRight, EP_IntValue) ); zDb = pLeft->u.zToken; pLeft = pRight->pLeft; pRight = pRight->pRight; } assert( ExprUseUToken(pLeft) && ExprUseUToken(pRight) ); zTable = pLeft->u.zToken; zColumn = pRight->u.zToken; assert( ExprUseYTab(pExpr) ); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight); sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft); } } return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); } /* Resolve function names */ case TK_FUNCTION: { ExprList *pList = pExpr->x.pList; /* The argument list */ int n = pList ? pList->nExpr : 0; /* Number of arguments */ int no_such_func = 0; /* True if no such function exists */ int wrong_num_args = 0; /* True if wrong number of arguments */ int is_agg = 0; /* True if is an aggregate function */ const char *zId; /* The function name. */ FuncDef *pDef; /* Information about the function */ u8 enc = ENC(pParse->db); /* The database encoding */ int savedAllowFlags = (pNC->ncFlags & (NC_AllowAgg | NC_AllowWin)); #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin = (IsWindowFunc(pExpr) ? pExpr->y.pWin : 0); #endif assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) ); zId = pExpr->u.zToken; pDef = sqlite3FindFunction(pParse->db, zId, n, enc, 0); if( pDef==0 ){ pDef = sqlite3FindFunction(pParse->db, zId, -2, enc, 0); if( pDef==0 ){ no_such_func = 1; }else{ wrong_num_args = 1; } }else{ is_agg = pDef->xFinalize!=0; if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ ExprSetProperty(pExpr, EP_Unlikely); if( n==2 ){ pExpr->iTable = exprProbability(pList->a[1].pExpr); if( pExpr->iTable<0 ){ sqlite3ErrorMsg(pParse, "second argument to %#T() must be a " "constant between 0.0 and 1.0", pExpr); pNC->nNcErr++; } }else{ /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is ** equivalent to likelihood(X, 0.0625). ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is ** short-hand for likelihood(X,0.0625). ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand ** for likelihood(X,0.9375). ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent ** to likelihood(X,0.9375). */ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0,pDef->zName,0); if( auth!=SQLITE_OK ){ if( auth==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized to use function: %#T", pExpr); pNC->nNcErr++; } pExpr->op = TK_NULL; return WRC_Prune; } } #endif if( pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG) ){ /* For the purposes of the EP_ConstFunc flag, date and time ** functions and other functions that change slowly are considered ** constant because they are constant for the duration of one query. ** This allows them to be factored out of inner loops. */ ExprSetProperty(pExpr,EP_ConstFunc); } if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){ /* Clearly non-deterministic functions like random(), but also ** date/time functions that use 'now', and other functions like ** sqlite_version() that might change over time cannot be used ** in an index or generated column. Curiously, they can be used ** in a CHECK constraint. SQLServer, MySQL, and PostgreSQL all ** all this. */ sqlite3ResolveNotValid(pParse, pNC, "non-deterministic functions", NC_IdxExpr|NC_PartIdx|NC_GenCol, 0, pExpr); }else{ assert( (NC_SelfRef & 0xff)==NC_SelfRef ); /* Must fit in 8 bits */ pExpr->op2 = pNC->ncFlags & NC_SelfRef; if( pNC->ncFlags & NC_FromDDL ) ExprSetProperty(pExpr, EP_FromDDL); } if( (pDef->funcFlags & SQLITE_FUNC_INTERNAL)!=0 && pParse->nested==0 && (pParse->db->mDbFlags & DBFLAG_InternalFunc)==0 ){ /* Internal-use-only functions are disallowed unless the ** SQL is being compiled using sqlite3NestedParse() or ** the SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test-control has be ** used to activate internal functions for testing purposes */ no_such_func = 1; pDef = 0; }else if( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 && !IN_RENAME_OBJECT ){ sqlite3ExprFunctionUsable(pParse, pExpr, pDef); } } if( 0==IN_RENAME_OBJECT ){ #ifndef SQLITE_OMIT_WINDOWFUNC assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX) || (pDef->xValue==0 && pDef->xInverse==0) || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize) ); if( pDef && pDef->xValue==0 && pWin ){ sqlite3ErrorMsg(pParse, "%#T() may not be used as a window function", pExpr ); pNC->nNcErr++; }else if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) || (is_agg && (pDef->funcFlags&SQLITE_FUNC_WINDOW) && !pWin) || (is_agg && pWin && (pNC->ncFlags & NC_AllowWin)==0) ){ const char *zType; if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pWin ){ zType = "window"; }else{ zType = "aggregate"; } sqlite3ErrorMsg(pParse, "misuse of %s function %#T()",zType,pExpr); pNC->nNcErr++; is_agg = 0; } #else if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) ){ sqlite3ErrorMsg(pParse,"misuse of aggregate function %#T()",pExpr); pNC->nNcErr++; is_agg = 0; } #endif else if( no_such_func && pParse->db->init.busy==0 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION && pParse->explain==0 #endif ){ sqlite3ErrorMsg(pParse, "no such function: %#T", pExpr); pNC->nNcErr++; }else if( wrong_num_args ){ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %#T()", pExpr); pNC->nNcErr++; } #ifndef SQLITE_OMIT_WINDOWFUNC else if( is_agg==0 && ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3ErrorMsg(pParse, "FILTER may not be used with non-aggregate %#T()", pExpr ); pNC->nNcErr++; } #endif if( is_agg ){ /* Window functions may not be arguments of aggregate functions. ** Or arguments of other window functions. But aggregate functions ** may be arguments for window functions. */ #ifndef SQLITE_OMIT_WINDOWFUNC pNC->ncFlags &= ~(NC_AllowWin | (!pWin ? NC_AllowAgg : 0)); #else pNC->ncFlags &= ~NC_AllowAgg; #endif } } #ifndef SQLITE_OMIT_WINDOWFUNC else if( ExprHasProperty(pExpr, EP_WinFunc) ){ is_agg = 1; } #endif sqlite3WalkExprList(pWalker, pList); if( is_agg ){ #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ Select *pSel = pNC->pWinSelect; assert( pWin==0 || (ExprUseYWin(pExpr) && pWin==pExpr->y.pWin) ); if( IN_RENAME_OBJECT==0 ){ sqlite3WindowUpdate(pParse, pSel ? pSel->pWinDefn : 0, pWin, pDef); if( pParse->db->mallocFailed ) break; } sqlite3WalkExprList(pWalker, pWin->pPartition); sqlite3WalkExprList(pWalker, pWin->pOrderBy); sqlite3WalkExpr(pWalker, pWin->pFilter); sqlite3WindowLink(pSel, pWin); pNC->ncFlags |= NC_HasWin; }else #endif /* SQLITE_OMIT_WINDOWFUNC */ { NameContext *pNC2; /* For looping up thru outer contexts */ pExpr->op = TK_AGG_FUNCTION; pExpr->op2 = 0; #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3WalkExpr(pWalker, pExpr->y.pWin->pFilter); } #endif pNC2 = pNC; while( pNC2 && sqlite3ReferencesSrcList(pParse, pExpr, pNC2->pSrcList)==0 ){ pExpr->op2++; pNC2 = pNC2->pNext; } assert( pDef!=0 || IN_RENAME_OBJECT ); if( pNC2 && pDef ){ assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg ); assert( SQLITE_FUNC_ANYORDER==NC_OrderAgg ); testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 ); testcase( (pDef->funcFlags & SQLITE_FUNC_ANYORDER)!=0 ); pNC2->ncFlags |= NC_HasAgg | ((pDef->funcFlags^SQLITE_FUNC_ANYORDER) & (SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER)); } } pNC->ncFlags |= savedAllowFlags; } /* FIX ME: Compute pExpr->affinity based on the expected return ** type of the function */ return WRC_Prune; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); #endif case TK_IN: { testcase( pExpr->op==TK_IN ); if( ExprUseXSelect(pExpr) ){ int nRef = pNC->nRef; testcase( pNC->ncFlags & NC_IsCheck ); testcase( pNC->ncFlags & NC_PartIdx ); testcase( pNC->ncFlags & NC_IdxExpr ); testcase( pNC->ncFlags & NC_GenCol ); if( pNC->ncFlags & NC_SelfRef ){ notValidImpl(pParse, pNC, "subqueries", pExpr, pExpr); }else{ sqlite3WalkSelect(pWalker, pExpr->x.pSelect); } assert( pNC->nRef>=nRef ); if( nRef!=pNC->nRef ){ ExprSetProperty(pExpr, EP_VarSelect); } pNC->ncFlags |= NC_Subquery; } break; } case TK_VARIABLE: { testcase( pNC->ncFlags & NC_IsCheck ); testcase( pNC->ncFlags & NC_PartIdx ); testcase( pNC->ncFlags & NC_IdxExpr ); testcase( pNC->ncFlags & NC_GenCol ); sqlite3ResolveNotValid(pParse, pNC, "parameters", NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol, pExpr, pExpr); break; } case TK_IS: case TK_ISNOT: { Expr *pRight = sqlite3ExprSkipCollateAndLikely(pExpr->pRight); assert( !ExprHasProperty(pExpr, EP_Reduced) ); /* Handle special cases of "x IS TRUE", "x IS FALSE", "x IS NOT TRUE", ** and "x IS NOT FALSE". */ if( ALWAYS(pRight) && (pRight->op==TK_ID || pRight->op==TK_TRUEFALSE) ){ int rc = resolveExprStep(pWalker, pRight); if( rc==WRC_Abort ) return WRC_Abort; if( pRight->op==TK_TRUEFALSE ){ pExpr->op2 = pExpr->op; pExpr->op = TK_TRUTH; return WRC_Continue; } } /* no break */ deliberate_fall_through } case TK_BETWEEN: case TK_EQ: case TK_NE: case TK_LT: case TK_LE: case TK_GT: case TK_GE: { int nLeft, nRight; if( pParse->db->mallocFailed ) break; assert( pExpr->pLeft!=0 ); nLeft = sqlite3ExprVectorSize(pExpr->pLeft); if( pExpr->op==TK_BETWEEN ){ assert( ExprUseXList(pExpr) ); nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[0].pExpr); if( nRight==nLeft ){ nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[1].pExpr); } }else{ assert( pExpr->pRight!=0 ); nRight = sqlite3ExprVectorSize(pExpr->pRight); } if( nLeft!=nRight ){ testcase( pExpr->op==TK_EQ ); testcase( pExpr->op==TK_NE ); testcase( pExpr->op==TK_LT ); testcase( pExpr->op==TK_LE ); testcase( pExpr->op==TK_GT ); testcase( pExpr->op==TK_GE ); testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); testcase( pExpr->op==TK_BETWEEN ); sqlite3ErrorMsg(pParse, "row value misused"); sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); } break; } } assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); return pParse->nErr ? WRC_Abort : WRC_Continue; } /* ** pEList is a list of expressions which are really the result set of the ** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. ** This routine checks to see if pE is a simple identifier which corresponds ** to the AS-name of one of the terms of the expression list. If it is, ** this routine return an integer between 1 and N where N is the number of ** elements in pEList, corresponding to the matching entry. If there is ** no match, or if pE is not a simple identifier, then this routine ** return 0. ** ** pEList has been resolved. pE has not. */ static int resolveAsName( Parse *pParse, /* Parsing context for error messages */ ExprList *pEList, /* List of expressions to scan */ Expr *pE /* Expression we are trying to match */ ){ int i; /* Loop counter */ UNUSED_PARAMETER(pParse); if( pE->op==TK_ID ){ const char *zCol; assert( !ExprHasProperty(pE, EP_IntValue) ); zCol = pE->u.zToken; for(i=0; inExpr; i++){ if( pEList->a[i].fg.eEName==ENAME_NAME && sqlite3_stricmp(pEList->a[i].zEName, zCol)==0 ){ return i+1; } } } return 0; } /* ** pE is a pointer to an expression which is a single term in the ** ORDER BY of a compound SELECT. The expression has not been ** name resolved. ** ** At the point this routine is called, we already know that the ** ORDER BY term is not an integer index into the result set. That ** case is handled by the calling routine. ** ** Attempt to match pE against result set columns in the left-most ** SELECT statement. Return the index i of the matching column, ** as an indication to the caller that it should sort by the i-th column. ** The left-most column is 1. In other words, the value returned is the ** same integer value that would be used in the SQL statement to indicate ** the column. ** ** If there is no match, return 0. Return -1 if an error occurs. */ static int resolveOrderByTermToExprList( Parse *pParse, /* Parsing context for error messages */ Select *pSelect, /* The SELECT statement with the ORDER BY clause */ Expr *pE /* The specific ORDER BY term */ ){ int i; /* Loop counter */ ExprList *pEList; /* The columns of the result set */ NameContext nc; /* Name context for resolving pE */ sqlite3 *db; /* Database connection */ int rc; /* Return code from subprocedures */ u8 savedSuppErr; /* Saved value of db->suppressErr */ assert( sqlite3ExprIsInteger(pE, &i)==0 ); pEList = pSelect->pEList; /* Resolve all names in the ORDER BY term expression */ memset(&nc, 0, sizeof(nc)); nc.pParse = pParse; nc.pSrcList = pSelect->pSrc; nc.uNC.pEList = pEList; nc.ncFlags = NC_AllowAgg|NC_UEList|NC_NoSelect; nc.nNcErr = 0; db = pParse->db; savedSuppErr = db->suppressErr; db->suppressErr = 1; rc = sqlite3ResolveExprNames(&nc, pE); db->suppressErr = savedSuppErr; if( rc ) return 0; /* Try to match the ORDER BY expression against an expression ** in the result set. Return an 1-based index of the matching ** result-set entry. */ for(i=0; inExpr; i++){ if( sqlite3ExprCompare(0, pEList->a[i].pExpr, pE, -1)<2 ){ return i+1; } } /* If no match, return 0. */ return 0; } /* ** Generate an ORDER BY or GROUP BY term out-of-range error. */ static void resolveOutOfRangeError( Parse *pParse, /* The error context into which to write the error */ const char *zType, /* "ORDER" or "GROUP" */ int i, /* The index (1-based) of the term out of range */ int mx, /* Largest permissible value of i */ Expr *pError /* Associate the error with the expression */ ){ sqlite3ErrorMsg(pParse, "%r %s BY term out of range - should be " "between 1 and %d", i, zType, mx); sqlite3RecordErrorOffsetOfExpr(pParse->db, pError); } /* ** Analyze the ORDER BY clause in a compound SELECT statement. Modify ** each term of the ORDER BY clause is a constant integer between 1 ** and N where N is the number of columns in the compound SELECT. ** ** ORDER BY terms that are already an integer between 1 and N are ** unmodified. ORDER BY terms that are integers outside the range of ** 1 through N generate an error. ORDER BY terms that are expressions ** are matched against result set expressions of compound SELECT ** beginning with the left-most SELECT and working toward the right. ** At the first match, the ORDER BY expression is transformed into ** the integer column number. ** ** Return the number of errors seen. */ static int resolveCompoundOrderBy( Parse *pParse, /* Parsing context. Leave error messages here */ Select *pSelect /* The SELECT statement containing the ORDER BY */ ){ int i; ExprList *pOrderBy; ExprList *pEList; sqlite3 *db; int moreToDo = 1; pOrderBy = pSelect->pOrderBy; if( pOrderBy==0 ) return 0; db = pParse->db; if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); return 1; } for(i=0; inExpr; i++){ pOrderBy->a[i].fg.done = 0; } pSelect->pNext = 0; while( pSelect->pPrior ){ pSelect->pPrior->pNext = pSelect; pSelect = pSelect->pPrior; } while( pSelect && moreToDo ){ struct ExprList_item *pItem; moreToDo = 0; pEList = pSelect->pEList; assert( pEList!=0 ); for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ int iCol = -1; Expr *pE, *pDup; if( pItem->fg.done ) continue; pE = sqlite3ExprSkipCollateAndLikely(pItem->pExpr); if( NEVER(pE==0) ) continue; if( sqlite3ExprIsInteger(pE, &iCol) ){ if( iCol<=0 || iCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr, pE); return 1; } }else{ iCol = resolveAsName(pParse, pEList, pE); if( iCol==0 ){ /* Now test if expression pE matches one of the values returned ** by pSelect. In the usual case this is done by duplicating the ** expression, resolving any symbols in it, and then comparing ** it against each expression returned by the SELECT statement. ** Once the comparisons are finished, the duplicate expression ** is deleted. ** ** If this is running as part of an ALTER TABLE operation and ** the symbols resolve successfully, also resolve the symbols in the ** actual expression. This allows the code in alter.c to modify ** column references within the ORDER BY expression as required. */ pDup = sqlite3ExprDup(db, pE, 0); if( !db->mallocFailed ){ assert(pDup); iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); if( IN_RENAME_OBJECT && iCol>0 ){ resolveOrderByTermToExprList(pParse, pSelect, pE); } } sqlite3ExprDelete(db, pDup); } } if( iCol>0 ){ /* Convert the ORDER BY term into an integer column number iCol, ** taking care to preserve the COLLATE clause if it exists. */ if( !IN_RENAME_OBJECT ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return 1; pNew->flags |= EP_IntValue; pNew->u.iValue = iCol; if( pItem->pExpr==pE ){ pItem->pExpr = pNew; }else{ Expr *pParent = pItem->pExpr; assert( pParent->op==TK_COLLATE ); while( pParent->pLeft->op==TK_COLLATE ) pParent = pParent->pLeft; assert( pParent->pLeft==pE ); pParent->pLeft = pNew; } sqlite3ExprDelete(db, pE); pItem->u.x.iOrderByCol = (u16)iCol; } pItem->fg.done = 1; }else{ moreToDo = 1; } } pSelect = pSelect->pNext; } for(i=0; inExpr; i++){ if( pOrderBy->a[i].fg.done==0 ){ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " "column in the result set", i+1); return 1; } } return 0; } /* ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of ** the SELECT statement pSelect. If any term is reference to a ** result set expression (as determined by the ExprList.a.u.x.iOrderByCol ** field) then convert that term into a copy of the corresponding result set ** column. ** ** If any errors are detected, add an error message to pParse and ** return non-zero. Return zero if no errors are seen. */ SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy( Parse *pParse, /* Parsing context. Leave error messages here */ Select *pSelect, /* The SELECT statement containing the clause */ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ const char *zType /* "ORDER" or "GROUP" */ ){ int i; sqlite3 *db = pParse->db; ExprList *pEList; struct ExprList_item *pItem; if( pOrderBy==0 || pParse->db->mallocFailed || IN_RENAME_OBJECT ) return 0; if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } pEList = pSelect->pEList; assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ if( pItem->u.x.iOrderByCol ){ if( pItem->u.x.iOrderByCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr, 0); return 1; } resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr,0); } } return 0; } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Walker callback for windowRemoveExprFromSelect(). */ static int resolveRemoveWindowsCb(Walker *pWalker, Expr *pExpr){ UNUSED_PARAMETER(pWalker); if( ExprHasProperty(pExpr, EP_WinFunc) ){ Window *pWin = pExpr->y.pWin; sqlite3WindowUnlinkFromSelect(pWin); } return WRC_Continue; } /* ** Remove any Window objects owned by the expression pExpr from the ** Select.pWin list of Select object pSelect. */ static void windowRemoveExprFromSelect(Select *pSelect, Expr *pExpr){ if( pSelect->pWin ){ Walker sWalker; memset(&sWalker, 0, sizeof(Walker)); sWalker.xExprCallback = resolveRemoveWindowsCb; sWalker.u.pSelect = pSelect; sqlite3WalkExpr(&sWalker, pExpr); } } #else # define windowRemoveExprFromSelect(a, b) #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. ** The Name context of the SELECT statement is pNC. zType is either ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. ** ** This routine resolves each term of the clause into an expression. ** If the order-by term is an integer I between 1 and N (where N is the ** number of columns in the result set of the SELECT) then the expression ** in the resolution is a copy of the I-th result-set expression. If ** the order-by term is an identifier that corresponds to the AS-name of ** a result-set expression, then the term resolves to a copy of the ** result-set expression. Otherwise, the expression is resolved in ** the usual way - using sqlite3ResolveExprNames(). ** ** This routine returns the number of errors. If errors occur, then ** an appropriate error message might be left in pParse. (OOM errors ** excepted.) */ static int resolveOrderGroupBy( NameContext *pNC, /* The name context of the SELECT statement */ Select *pSelect, /* The SELECT statement holding pOrderBy */ ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */ const char *zType /* Either "ORDER" or "GROUP", as appropriate */ ){ int i, j; /* Loop counters */ int iCol; /* Column number */ struct ExprList_item *pItem; /* A term of the ORDER BY clause */ Parse *pParse; /* Parsing context */ int nResult; /* Number of terms in the result set */ assert( pOrderBy!=0 ); nResult = pSelect->pEList->nExpr; pParse = pNC->pParse; for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ Expr *pE = pItem->pExpr; Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pE); if( NEVER(pE2==0) ) continue; if( zType[0]!='G' ){ iCol = resolveAsName(pParse, pSelect->pEList, pE2); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->u.x.iOrderByCol = (u16)iCol; continue; } } if( sqlite3ExprIsInteger(pE2, &iCol) ){ /* The ORDER BY term is an integer constant. Again, set the column ** number so that sqlite3ResolveOrderGroupBy() will convert the ** order-by term to a copy of the result-set expression */ if( iCol<1 || iCol>0xffff ){ resolveOutOfRangeError(pParse, zType, i+1, nResult, pE2); return 1; } pItem->u.x.iOrderByCol = (u16)iCol; continue; } /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; jpEList->nExpr; j++){ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ /* Since this expression is being changed into a reference ** to an identical expression in the result set, remove all Window ** objects belonging to the expression from the Select.pWin list. */ windowRemoveExprFromSelect(pSelect, pE); pItem->u.x.iOrderByCol = j+1; } } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } /* ** Resolve names in the SELECT statement p and all of its descendants. */ static int resolveSelectStep(Walker *pWalker, Select *p){ NameContext *pOuterNC; /* Context that contains this SELECT */ NameContext sNC; /* Name context of this SELECT */ int isCompound; /* True if p is a compound select */ int nCompound; /* Number of compound terms processed so far */ Parse *pParse; /* Parsing context */ int i; /* Loop counter */ ExprList *pGroupBy; /* The GROUP BY clause */ Select *pLeftmost; /* Left-most of SELECT of a compound */ sqlite3 *db; /* Database connection */ assert( p!=0 ); if( p->selFlags & SF_Resolved ){ return WRC_Prune; } pOuterNC = pWalker->u.pNC; pParse = pWalker->pParse; db = pParse->db; /* Normally sqlite3SelectExpand() will be called first and will have ** already expanded this SELECT. However, if this is a subquery within ** an expression, sqlite3ResolveExprNames() will be called without a ** prior call to sqlite3SelectExpand(). When that happens, let ** sqlite3SelectPrep() do all of the processing for this SELECT. ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and ** this routine in the correct order. */ if( (p->selFlags & SF_Expanded)==0 ){ sqlite3SelectPrep(pParse, p, pOuterNC); return pParse->nErr ? WRC_Abort : WRC_Prune; } isCompound = p->pPrior!=0; nCompound = 0; pLeftmost = p; while( p ){ assert( (p->selFlags & SF_Expanded)!=0 ); assert( (p->selFlags & SF_Resolved)==0 ); assert( db->suppressErr==0 ); /* SF_Resolved not set if errors suppressed */ p->selFlags |= SF_Resolved; /* Resolve the expressions in the LIMIT and OFFSET clauses. These ** are not allowed to refer to any names, so pass an empty NameContext. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pWinSelect = p; if( sqlite3ResolveExprNames(&sNC, p->pLimit) ){ return WRC_Abort; } /* If the SF_Converted flags is set, then this Select object was ** was created by the convertCompoundSelectToSubquery() function. ** In this case the ORDER BY clause (p->pOrderBy) should be resolved ** as if it were part of the sub-query, not the parent. This block ** moves the pOrderBy down to the sub-query. It will be moved back ** after the names have been resolved. */ if( p->selFlags & SF_Converted ){ Select *pSub = p->pSrc->a[0].pSelect; assert( p->pSrc->nSrc==1 && p->pOrderBy ); assert( pSub->pPrior && pSub->pOrderBy==0 ); pSub->pOrderBy = p->pOrderBy; p->pOrderBy = 0; } /* Recursively resolve names in all subqueries in the FROM clause */ for(i=0; ipSrc->nSrc; i++){ SrcItem *pItem = &p->pSrc->a[i]; if( pItem->pSelect && (pItem->pSelect->selFlags & SF_Resolved)==0 ){ int nRef = pOuterNC ? pOuterNC->nRef : 0; const char *zSavedContext = pParse->zAuthContext; if( pItem->zName ) pParse->zAuthContext = pItem->zName; sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); pParse->zAuthContext = zSavedContext; if( pParse->nErr ) return WRC_Abort; assert( db->mallocFailed==0 ); /* If the number of references to the outer context changed when ** expressions in the sub-select were resolved, the sub-select ** is correlated. It is not required to check the refcount on any ** but the innermost outer context object, as lookupName() increments ** the refcount on all contexts between the current one and the ** context containing the column when it resolves a name. */ if( pOuterNC ){ assert( pItem->fg.isCorrelated==0 && pOuterNC->nRef>=nRef ); pItem->fg.isCorrelated = (pOuterNC->nRef>nRef); } } } /* Set up the local name-context to pass to sqlite3ResolveExprNames() to ** resolve the result-set expression list. */ sNC.ncFlags = NC_AllowAgg|NC_AllowWin; sNC.pSrcList = p->pSrc; sNC.pNext = pOuterNC; /* Resolve names in the result set. */ if( sqlite3ResolveExprListNames(&sNC, p->pEList) ) return WRC_Abort; sNC.ncFlags &= ~NC_AllowWin; /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( (p->selFlags & SF_Aggregate)==0 ); pGroupBy = p->pGroupBy; if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ assert( NC_MinMaxAgg==SF_MinMaxAgg ); assert( NC_OrderAgg==SF_OrderByReqd ); p->selFlags |= SF_Aggregate | (sNC.ncFlags&(NC_MinMaxAgg|NC_OrderAgg)); }else{ sNC.ncFlags &= ~NC_AllowAgg; } /* Add the output column list to the name-context before parsing the ** other expressions in the SELECT statement. This is so that ** expressions in the WHERE clause (etc.) can refer to expressions by ** aliases in the result set. ** ** Minor point: If this is the case, then the expression will be ** re-evaluated for each reference to it. */ assert( (sNC.ncFlags & (NC_UAggInfo|NC_UUpsert|NC_UBaseReg))==0 ); sNC.uNC.pEList = p->pEList; sNC.ncFlags |= NC_UEList; if( p->pHaving ){ if( (p->selFlags & SF_Aggregate)==0 ){ sqlite3ErrorMsg(pParse, "HAVING clause on a non-aggregate query"); return WRC_Abort; } if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort; } if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; /* Resolve names in table-valued-function arguments */ for(i=0; ipSrc->nSrc; i++){ SrcItem *pItem = &p->pSrc->a[i]; if( pItem->fg.isTabFunc && sqlite3ResolveExprListNames(&sNC, pItem->u1.pFuncArg) ){ return WRC_Abort; } } #ifndef SQLITE_OMIT_WINDOWFUNC if( IN_RENAME_OBJECT ){ Window *pWin; for(pWin=p->pWinDefn; pWin; pWin=pWin->pNextWin){ if( sqlite3ResolveExprListNames(&sNC, pWin->pOrderBy) || sqlite3ResolveExprListNames(&sNC, pWin->pPartition) ){ return WRC_Abort; } } } #endif /* The ORDER BY and GROUP BY clauses may not refer to terms in ** outer queries */ sNC.pNext = 0; sNC.ncFlags |= NC_AllowAgg|NC_AllowWin; /* If this is a converted compound query, move the ORDER BY clause from ** the sub-query back to the parent query. At this point each term ** within the ORDER BY clause has been transformed to an integer value. ** These integers will be replaced by copies of the corresponding result ** set expressions by the call to resolveOrderGroupBy() below. */ if( p->selFlags & SF_Converted ){ Select *pSub = p->pSrc->a[0].pSelect; p->pOrderBy = pSub->pOrderBy; pSub->pOrderBy = 0; } /* Process the ORDER BY clause for singleton SELECT statements. ** The ORDER BY clause for compounds SELECT statements is handled ** below, after all of the result-sets for all of the elements of ** the compound have been resolved. ** ** If there is an ORDER BY clause on a term of a compound-select other ** than the right-most term, then that is a syntax error. But the error ** is not detected until much later, and so we need to go ahead and ** resolve those symbols on the incorrect ORDER BY for consistency. */ if( p->pOrderBy!=0 && isCompound<=nCompound /* Defer right-most ORDER BY of a compound */ && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){ return WRC_Abort; } if( db->mallocFailed ){ return WRC_Abort; } sNC.ncFlags &= ~NC_AllowWin; /* Resolve the GROUP BY clause. At the same time, make sure ** the GROUP BY clause does not contain aggregate functions. */ if( pGroupBy ){ struct ExprList_item *pItem; if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){ return WRC_Abort; } for(i=0, pItem=pGroupBy->a; inExpr; i++, pItem++){ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " "the GROUP BY clause"); return WRC_Abort; } } } /* If this is part of a compound SELECT, check that it has the right ** number of expressions in the select list. */ if( p->pNext && p->pEList->nExpr!=p->pNext->pEList->nExpr ){ sqlite3SelectWrongNumTermsError(pParse, p->pNext); return WRC_Abort; } /* Advance to the next term of the compound */ p = p->pPrior; nCompound++; } /* Resolve the ORDER BY on a compound SELECT after all terms of ** the compound have been resolved. */ if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){ return WRC_Abort; } return WRC_Prune; } /* ** This routine walks an expression tree and resolves references to ** table columns and result-set columns. At the same time, do error ** checking on function usage and set a flag if any aggregate functions ** are seen. ** ** To resolve table columns references we look for nodes (or subtrees) of the ** form X.Y.Z or Y.Z or just Z where ** ** X: The name of a database. Ex: "main" or "temp" or ** the symbolic name assigned to an ATTACH-ed database. ** ** Y: The name of a table in a FROM clause. Or in a trigger ** one of the special names "old" or "new". ** ** Z: The name of a column in table Y. ** ** The node at the root of the subtree is modified as follows: ** ** Expr.op Changed to TK_COLUMN ** Expr.pTab Points to the Table object for X.Y ** Expr.iColumn The column index in X.Y. -1 for the rowid. ** Expr.iTable The VDBE cursor number for X.Y ** ** ** To resolve result-set references, look for expression nodes of the ** form Z (with no X and Y prefix) where the Z matches the right-hand ** size of an AS clause in the result-set of a SELECT. The Z expression ** is replaced by a copy of the left-hand side of the result-set expression. ** Table-name and function resolution occurs on the substituted expression ** tree. For example, in: ** ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x; ** ** The "x" term of the order by is replaced by "a+b" to render: ** ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b; ** ** Function calls are checked to make sure that the function is ** defined and that the correct number of arguments are specified. ** If the function is an aggregate function, then the NC_HasAgg flag is ** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION. ** If an expression contains aggregate functions then the EP_Agg ** property on the expression is set. ** ** An error message is left in pParse if anything is amiss. The number ** if errors is returned. */ SQLITE_PRIVATE int sqlite3ResolveExprNames( NameContext *pNC, /* Namespace to resolve expressions in. */ Expr *pExpr /* The expression to be analyzed. */ ){ int savedHasAgg; Walker w; if( pExpr==0 ) return SQLITE_OK; savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); w.pParse = pNC->pParse; w.xExprCallback = resolveExprStep; w.xSelectCallback = (pNC->ncFlags & NC_NoSelect) ? 0 : resolveSelectStep; w.xSelectCallback2 = 0; w.u.pNC = pNC; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return SQLITE_ERROR; } #endif assert( pExpr!=0 ); sqlite3WalkExprNN(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight -= pExpr->nHeight; #endif assert( EP_Agg==NC_HasAgg ); assert( EP_Win==NC_HasWin ); testcase( pNC->ncFlags & NC_HasAgg ); testcase( pNC->ncFlags & NC_HasWin ); ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) ); pNC->ncFlags |= savedHasAgg; return pNC->nNcErr>0 || w.pParse->nErr>0; } /* ** Resolve all names for all expression in an expression list. This is ** just like sqlite3ResolveExprNames() except that it works for an expression ** list rather than a single expression. */ SQLITE_PRIVATE int sqlite3ResolveExprListNames( NameContext *pNC, /* Namespace to resolve expressions in. */ ExprList *pList /* The expression list to be analyzed. */ ){ int i; int savedHasAgg = 0; Walker w; if( pList==0 ) return WRC_Continue; w.pParse = pNC->pParse; w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.xSelectCallback2 = 0; w.u.pNC = pNC; savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; if( pExpr==0 ) continue; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return WRC_Abort; } #endif sqlite3WalkExprNN(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight -= pExpr->nHeight; #endif assert( EP_Agg==NC_HasAgg ); assert( EP_Win==NC_HasWin ); testcase( pNC->ncFlags & NC_HasAgg ); testcase( pNC->ncFlags & NC_HasWin ); if( pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg) ){ ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) ); savedHasAgg |= pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); } if( w.pParse->nErr>0 ) return WRC_Abort; } pNC->ncFlags |= savedHasAgg; return WRC_Continue; } /* ** Resolve all names in all expressions of a SELECT and in all ** descendants of the SELECT, including compounds off of p->pPrior, ** subqueries in expressions, and subqueries used as FROM clause ** terms. ** ** See sqlite3ResolveExprNames() for a description of the kinds of ** transformations that occur. ** ** All SELECT statements should have been expanded using ** sqlite3SelectExpand() prior to invoking this routine. */ SQLITE_PRIVATE void sqlite3ResolveSelectNames( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ NameContext *pOuterNC /* Name context for parent SELECT statement */ ){ Walker w; assert( p!=0 ); w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.xSelectCallback2 = 0; w.pParse = pParse; w.u.pNC = pOuterNC; sqlite3WalkSelect(&w, p); } /* ** Resolve names in expressions that can only reference a single table ** or which cannot reference any tables at all. Examples: ** ** "type" flag ** ------------ ** (1) CHECK constraints NC_IsCheck ** (2) WHERE clauses on partial indices NC_PartIdx ** (3) Expressions in indexes on expressions NC_IdxExpr ** (4) Expression arguments to VACUUM INTO. 0 ** (5) GENERATED ALWAYS as expressions NC_GenCol ** ** In all cases except (4), the Expr.iTable value for Expr.op==TK_COLUMN ** nodes of the expression is set to -1 and the Expr.iColumn value is ** set to the column number. In case (4), TK_COLUMN nodes cause an error. ** ** Any errors cause an error message to be set in pParse. */ SQLITE_PRIVATE int sqlite3ResolveSelfReference( Parse *pParse, /* Parsing context */ Table *pTab, /* The table being referenced, or NULL */ int type, /* NC_IsCheck, NC_PartIdx, NC_IdxExpr, NC_GenCol, or 0 */ Expr *pExpr, /* Expression to resolve. May be NULL. */ ExprList *pList /* Expression list to resolve. May be NULL. */ ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ int rc; assert( type==0 || pTab!=0 ); assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr || type==NC_GenCol || pTab==0 ); memset(&sNC, 0, sizeof(sNC)); memset(&sSrc, 0, sizeof(sSrc)); if( pTab ){ sSrc.nSrc = 1; sSrc.a[0].zName = pTab->zName; sSrc.a[0].pTab = pTab; sSrc.a[0].iCursor = -1; if( pTab->pSchema!=pParse->db->aDb[1].pSchema ){ /* Cause EP_FromDDL to be set on TK_FUNCTION nodes of non-TEMP ** schema elements */ type |= NC_FromDDL; } } sNC.pParse = pParse; sNC.pSrcList = &sSrc; sNC.ncFlags = type | NC_IsDDL; if( (rc = sqlite3ResolveExprNames(&sNC, pExpr))!=SQLITE_OK ) return rc; if( pList ) rc = sqlite3ResolveExprListNames(&sNC, pList); return rc; } /************** End of resolve.c *********************************************/ /************** Begin file expr.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. */ /* #include "sqliteInt.h" */ /* Forward declarations */ static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); /* ** Return the affinity character for a single column of a table. */ SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; return pTab->aCol[iCol].affinity; } /* ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** ** i.e. the WHERE clause expressions in the following statements all ** have an affinity: ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr){ int op; op = pExpr->op; while( 1 /* exit-by-break */ ){ if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){ assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); } if( op==TK_SELECT ){ assert( ExprUseXSelect(pExpr) ); assert( pExpr->x.pSelect!=0 ); assert( pExpr->x.pSelect->pEList!=0 ); assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); } #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken, 0); } #endif if( op==TK_SELECT_COLUMN ){ assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); assert( pExpr->iColumn < pExpr->iTable ); assert( pExpr->iColumn >= 0 ); assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); return sqlite3ExprAffinity( pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr ); } if( op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); } if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); pExpr = pExpr->pLeft; op = pExpr->op; continue; } if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break; } return pExpr->affExpr; } /* ** Make a guess at all the possible datatypes of the result that could ** be returned by an expression. Return a bitmask indicating the answer: ** ** 0x01 Numeric ** 0x02 Text ** 0x04 Blob ** ** If the expression must return NULL, then 0x00 is returned. */ SQLITE_PRIVATE int sqlite3ExprDataType(const Expr *pExpr){ while( pExpr ){ switch( pExpr->op ){ case TK_COLLATE: case TK_IF_NULL_ROW: case TK_UPLUS: { pExpr = pExpr->pLeft; break; } case TK_NULL: { pExpr = 0; break; } case TK_STRING: { return 0x02; } case TK_BLOB: { return 0x04; } case TK_CONCAT: { return 0x06; } case TK_VARIABLE: case TK_AGG_FUNCTION: case TK_FUNCTION: { return 0x07; } case TK_COLUMN: case TK_AGG_COLUMN: case TK_SELECT: case TK_CAST: case TK_SELECT_COLUMN: case TK_VECTOR: { int aff = sqlite3ExprAffinity(pExpr); if( aff>=SQLITE_AFF_NUMERIC ) return 0x05; if( aff==SQLITE_AFF_TEXT ) return 0x06; return 0x07; } case TK_CASE: { int res = 0; int ii; ExprList *pList = pExpr->x.pList; assert( ExprUseXList(pExpr) && pList!=0 ); assert( pList->nExpr > 0); for(ii=1; iinExpr; ii+=2){ res |= sqlite3ExprDataType(pList->a[ii].pExpr); } if( pList->nExpr % 2 ){ res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr); } return res; } default: { return 0x01; } } /* End of switch(op) */ } /* End of while(pExpr) */ return 0x00; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to a new Expr node that ** implements the COLLATE operator. ** ** If a memory allocation error occurs, that fact is recorded in pParse->db ** and the pExpr parameter is returned unchanged. */ SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken( const Parse *pParse, /* Parsing context */ Expr *pExpr, /* Add the "COLLATE" clause to this expression */ const Token *pCollName, /* Name of collating sequence */ int dequote /* True to dequote pCollName */ ){ if( pCollName->n>0 ){ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); if( pNew ){ pNew->pLeft = pExpr; pNew->flags |= EP_Collate|EP_Skip; pExpr = pNew; } } return pExpr; } SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString( const Parse *pParse, /* Parsing context */ Expr *pExpr, /* Add the "COLLATE" clause to this expression */ const char *zC /* The collating sequence name */ ){ Token s; assert( zC!=0 ); sqlite3TokenInit(&s, (char*)zC); return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); } /* ** Skip over any TK_COLLATE operators. */ SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){ while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ assert( pExpr->op==TK_COLLATE ); pExpr = pExpr->pLeft; } return pExpr; } /* ** Skip over any TK_COLLATE operators and/or any unlikely() ** or likelihood() or likely() functions at the root of an ** expression. */ SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ if( ExprHasProperty(pExpr, EP_Unlikely) ){ assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr>0 ); assert( pExpr->op==TK_FUNCTION ); pExpr = pExpr->x.pList->a[0].pExpr; }else{ assert( pExpr->op==TK_COLLATE ); pExpr = pExpr->pLeft; } } return pExpr; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return NULL. ** ** See also: sqlite3ExprNNCollSeq() ** ** The sqlite3ExprNNCollSeq() works the same exact that it returns the ** default collation if pExpr has no defined collation. ** ** The collating sequence might be determined by a COLLATE operator ** or by the presence of a column with a defined collating sequence. ** COLLATE operators take first precedence. Left operands take ** precedence over right operands. */ SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ sqlite3 *db = pParse->db; CollSeq *pColl = 0; const Expr *p = pExpr; while( p ){ int op = p->op; if( op==TK_REGISTER ) op = p->op2; if( (op==TK_AGG_COLUMN && p->y.pTab!=0) || op==TK_COLUMN || op==TK_TRIGGER ){ int j; assert( ExprUseYTab(p) ); assert( p->y.pTab!=0 ); if( (j = p->iColumn)>=0 ){ const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); } break; } if( op==TK_CAST || op==TK_UPLUS ){ p = p->pLeft; continue; } if( op==TK_VECTOR ){ assert( ExprUseXList(p) ); p = p->x.pList->a[0].pExpr; continue; } if( op==TK_COLLATE ){ assert( !ExprHasProperty(p, EP_IntValue) ); pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); break; } if( p->flags & EP_Collate ){ if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ p = p->pLeft; }else{ Expr *pNext = p->pRight; /* The Expr.x union is never used at the same time as Expr.pRight */ assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 ); if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){ int i; for(i=0; ix.pList->nExpr; i++){ if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ pNext = p->x.pList->a[i].pExpr; break; } } } p = pNext; } }else{ break; } } if( sqlite3CheckCollSeq(pParse, pColl) ){ pColl = 0; } return pColl; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return a pointer to the ** default collation sequence. ** ** See also: sqlite3ExprCollSeq() ** ** The sqlite3ExprCollSeq() routine works the same except that it ** returns NULL if there is no defined collation. */ SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); if( p==0 ) p = pParse->db->pDfltColl; assert( p!=0 ); return p; } /* ** Return TRUE if the two expressions have equivalent collating sequences. */ SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; } /* ** pExpr is an operand of a comparison operator. aff2 is the ** type affinity of the other operand. This routine returns the ** type affinity that should be used for the comparison operator. */ SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ char aff1 = sqlite3ExprAffinity(pExpr); if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ return SQLITE_AFF_BLOB; } }else{ /* One side is a column, the other is not. Use the columns affinity. */ assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; } } /* ** pExpr is a comparison operator. Return the type affinity that should ** be applied to both operands prior to doing the comparison. */ static char comparisonAffinity(const Expr *pExpr){ char aff; assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); }else if( ExprUseXSelect(pExpr) ){ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); }else if( aff==0 ){ aff = SQLITE_AFF_BLOB; } return aff; } /* ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. ** idx_affinity is the affinity of an indexed column. Return true ** if the index with affinity idx_affinity may be used to implement ** the comparison in pExpr. */ SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ char aff = comparisonAffinity(pExpr); if( affflags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pLeft); }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ pColl = sqlite3ExprCollSeq(pParse, pRight); }else{ pColl = sqlite3ExprCollSeq(pParse, pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* Expression p is a comparison operator. Return a collation sequence ** appropriate for the comparison operator. ** ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). ** However, if the OP_Commuted flag is set, then the order of the operands ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the ** correct collating sequence is found. */ SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ if( ExprHasProperty(p, EP_Commuted) ){ return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); }else{ return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); } } /* ** Generate code for a comparison operator. */ static int codeCompare( Parse *pParse, /* The parsing (and code generating) context */ Expr *pLeft, /* The left operand */ Expr *pRight, /* The right operand */ int opcode, /* The comparison opcode */ int in1, int in2, /* Register holding operands */ int dest, /* Jump here if true. */ int jumpIfNull, /* If true, jump if either operand is NULL */ int isCommuted /* The comparison has been commuted */ ){ int p5; int addr; CollSeq *p4; if( pParse->nErr ) return 0; if( isCommuted ){ p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); }else{ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); } p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, (void*)p4, P4_COLLSEQ); sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); return addr; } /* ** Return true if expression pExpr is a vector, or false otherwise. ** ** A vector is defined as any expression that results in two or more ** columns of result. Every TK_VECTOR node is an vector because the ** parser will not generate a TK_VECTOR with fewer than two entries. ** But a TK_SELECT might be either a vector or a scalar. It is only ** considered a vector if it has two or more result columns. */ SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr){ return sqlite3ExprVectorSize(pExpr)>1; } /* ** If the expression passed as the only argument is of type TK_VECTOR ** return the number of expressions in the vector. Or, if the expression ** is a sub-select, return the number of columns in the sub-select. For ** any other type of expression, return 1. */ SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr){ u8 op = pExpr->op; if( op==TK_REGISTER ) op = pExpr->op2; if( op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); return pExpr->x.pList->nExpr; }else if( op==TK_SELECT ){ assert( ExprUseXSelect(pExpr) ); return pExpr->x.pSelect->pEList->nExpr; }else{ return 1; } } /* ** Return a pointer to a subexpression of pVector that is the i-th ** column of the vector (numbered starting with 0). The caller must ** ensure that i is within range. ** ** If pVector is really a scalar (and "scalar" here includes subqueries ** that return a single column!) then return pVector unmodified. ** ** pVector retains ownership of the returned subexpression. ** ** If the vector is a (SELECT ...) then the expression returned is ** just the expression for the i-th term of the result set, and may ** not be ready for evaluation because the table cursor has not yet ** been positioned. */ SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ assert( iop==TK_ERROR ); if( sqlite3ExprIsVector(pVector) ){ assert( pVector->op2==0 || pVector->op==TK_REGISTER ); if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ assert( ExprUseXSelect(pVector) ); return pVector->x.pSelect->pEList->a[i].pExpr; }else{ assert( ExprUseXList(pVector) ); return pVector->x.pList->a[i].pExpr; } } return pVector; } /* ** Compute and return a new Expr object which when passed to ** sqlite3ExprCode() will generate all necessary code to compute ** the iField-th column of the vector expression pVector. ** ** It is ok for pVector to be a scalar (as long as iField==0). ** In that case, this routine works like sqlite3ExprDup(). ** ** The caller owns the returned Expr object and is responsible for ** ensuring that the returned value eventually gets freed. ** ** The caller retains ownership of pVector. If pVector is a TK_SELECT, ** then the returned object will reference pVector and so pVector must remain ** valid for the life of the returned object. If pVector is a TK_VECTOR ** or a scalar expression, then it can be deleted as soon as this routine ** returns. ** ** A trick to cause a TK_SELECT pVector to be deleted together with ** the returned Expr object is to attach the pVector to the pRight field ** of the returned TK_SELECT_COLUMN Expr object. */ SQLITE_PRIVATE Expr *sqlite3ExprForVectorField( Parse *pParse, /* Parsing context */ Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ int iField, /* Which column of the vector to return */ int nField /* Total number of columns in the vector */ ){ Expr *pRet; if( pVector->op==TK_SELECT ){ assert( ExprUseXSelect(pVector) ); /* The TK_SELECT_COLUMN Expr node: ** ** pLeft: pVector containing TK_SELECT. Not deleted. ** pRight: not used. But recursively deleted. ** iColumn: Index of a column in pVector ** iTable: 0 or the number of columns on the LHS of an assignment ** pLeft->iTable: First in an array of register holding result, or 0 ** if the result is not yet computed. ** ** sqlite3ExprDelete() specifically skips the recursive delete of ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector ** can be attached to pRight to cause this node to take ownership of ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes ** with the same pLeft pointer to the pVector, but only one of them ** will own the pVector. */ pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); if( pRet ){ pRet->iTable = nField; pRet->iColumn = iField; pRet->pLeft = pVector; } }else{ if( pVector->op==TK_VECTOR ){ Expr **ppVector; assert( ExprUseXList(pVector) ); ppVector = &pVector->x.pList->a[iField].pExpr; pVector = *ppVector; if( IN_RENAME_OBJECT ){ /* This must be a vector UPDATE inside a trigger */ *ppVector = 0; return pVector; } } pRet = sqlite3ExprDup(pParse->db, pVector, 0); } return pRet; } /* ** If expression pExpr is of type TK_SELECT, generate code to evaluate ** it. Return the register in which the result is stored (or, if the ** sub-select returns more than one column, the first in an array ** of registers in which the result is stored). ** ** If pExpr is not a TK_SELECT expression, return 0. */ static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ int reg = 0; #ifndef SQLITE_OMIT_SUBQUERY if( pExpr->op==TK_SELECT ){ reg = sqlite3CodeSubselect(pParse, pExpr); } #endif return reg; } /* ** Argument pVector points to a vector expression - either a TK_VECTOR ** or TK_SELECT that returns more than one column. This function returns ** the register number of a register that contains the value of ** element iField of the vector. ** ** If pVector is a TK_SELECT expression, then code for it must have ** already been generated using the exprCodeSubselect() routine. In this ** case parameter regSelect should be the first in an array of registers ** containing the results of the sub-select. ** ** If pVector is of type TK_VECTOR, then code for the requested field ** is generated. In this case (*pRegFree) may be set to the number of ** a temporary register to be freed by the caller before returning. ** ** Before returning, output parameter (*ppExpr) is set to point to the ** Expr object corresponding to element iElem of the vector. */ static int exprVectorRegister( Parse *pParse, /* Parse context */ Expr *pVector, /* Vector to extract element from */ int iField, /* Field to extract from pVector */ int regSelect, /* First in array of registers */ Expr **ppExpr, /* OUT: Expression element */ int *pRegFree /* OUT: Temp register to free */ ){ u8 op = pVector->op; assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); if( op==TK_REGISTER ){ *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); return pVector->iTable+iField; } if( op==TK_SELECT ){ assert( ExprUseXSelect(pVector) ); *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; return regSelect+iField; } if( op==TK_VECTOR ){ assert( ExprUseXList(pVector) ); *ppExpr = pVector->x.pList->a[iField].pExpr; return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); } return 0; } /* ** Expression pExpr is a comparison between two vector values. Compute ** the result of the comparison (1, 0, or NULL) and write that ** result into register dest. ** ** The caller must satisfy the following preconditions: ** ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ ** otherwise: op==pExpr->op and p5==0 */ static void codeVectorCompare( Parse *pParse, /* Code generator context */ Expr *pExpr, /* The comparison operation */ int dest, /* Write results into this register */ u8 op, /* Comparison operator */ u8 p5 /* SQLITE_NULLEQ or zero */ ){ Vdbe *v = pParse->pVdbe; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; int nLeft = sqlite3ExprVectorSize(pLeft); int i; int regLeft = 0; int regRight = 0; u8 opx = op; int addrCmp = 0; int addrDone = sqlite3VdbeMakeLabel(pParse); int isCommuted = ExprHasProperty(pExpr,EP_Commuted); assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); if( pParse->nErr ) return; if( nLeft!=sqlite3ExprVectorSize(pRight) ){ sqlite3ErrorMsg(pParse, "row value misused"); return; } assert( pExpr->op==TK_EQ || pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_LE || pExpr->op==TK_GE ); assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) || (pExpr->op==TK_ISNOT && op==TK_NE) ); assert( p5==0 || pExpr->op!=op ); assert( p5==SQLITE_NULLEQ || pExpr->op==op ); if( op==TK_LE ) opx = TK_LT; if( op==TK_GE ) opx = TK_GT; if( op==TK_NE ) opx = TK_EQ; regLeft = exprCodeSubselect(pParse, pLeft); regRight = exprCodeSubselect(pParse, pRight); sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); for(i=0; 1 /*Loop exits by "break"*/; i++){ int regFree1 = 0, regFree2 = 0; Expr *pL = 0, *pR = 0; int r1, r2; assert( i>=0 && i0 /* ** Check that argument nHeight is less than or equal to the maximum ** expression depth allowed. If it is not, leave an error message in ** pParse. */ SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ int rc = SQLITE_OK; int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; if( nHeight>mxHeight ){ sqlite3ErrorMsg(pParse, "Expression tree is too large (maximum depth %d)", mxHeight ); rc = SQLITE_ERROR; } return rc; } /* The following three functions, heightOfExpr(), heightOfExprList() ** and heightOfSelect(), are used to determine the maximum height ** of any expression tree referenced by the structure passed as the ** first argument. ** ** If this maximum height is greater than the current value pointed ** to by pnHeight, the second parameter, then set *pnHeight to that ** value. */ static void heightOfExpr(const Expr *p, int *pnHeight){ if( p ){ if( p->nHeight>*pnHeight ){ *pnHeight = p->nHeight; } } } static void heightOfExprList(const ExprList *p, int *pnHeight){ if( p ){ int i; for(i=0; inExpr; i++){ heightOfExpr(p->a[i].pExpr, pnHeight); } } } static void heightOfSelect(const Select *pSelect, int *pnHeight){ const Select *p; for(p=pSelect; p; p=p->pPrior){ heightOfExpr(p->pWhere, pnHeight); heightOfExpr(p->pHaving, pnHeight); heightOfExpr(p->pLimit, pnHeight); heightOfExprList(p->pEList, pnHeight); heightOfExprList(p->pGroupBy, pnHeight); heightOfExprList(p->pOrderBy, pnHeight); } } /* ** Set the Expr.nHeight variable in the structure passed as an ** argument. An expression with no children, Expr.pList or ** Expr.pSelect member has a height of 1. Any other expression ** has a height equal to the maximum height of any other ** referenced Expr plus one. ** ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, ** if appropriate. */ static void exprSetHeight(Expr *p){ int nHeight = p->pLeft ? p->pLeft->nHeight : 0; if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ nHeight = p->pRight->nHeight; } if( ExprUseXSelect(p) ){ heightOfSelect(p->x.pSelect, &nHeight); }else if( p->x.pList ){ heightOfExprList(p->x.pList, &nHeight); p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); } p->nHeight = nHeight + 1; } /* ** Set the Expr.nHeight variable using the exprSetHeight() function. If ** the height is greater than the maximum allowed expression depth, ** leave an error in pParse. ** ** Also propagate all EP_Propagate flags from the Expr.x.pList into ** Expr.flags. */ SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ if( pParse->nErr ) return; exprSetHeight(p); sqlite3ExprCheckHeight(pParse, p->nHeight); } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. */ SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *p){ int nHeight = 0; heightOfSelect(p, &nHeight); return nHeight; } #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ /* ** Propagate all EP_Propagate flags from the Expr.x.pList into ** Expr.flags. */ SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ if( pParse->nErr ) return; if( p && ExprUseXList(p) && p->x.pList ){ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); } } #define exprSetHeight(y) #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ /* ** Set the error offset for an Expr node, if possible. */ SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){ if( pExpr==0 ) return; if( NEVER(ExprUseWJoin(pExpr)) ) return; pExpr->w.iOfst = iOfst; } /* ** This routine is the core allocator for Expr nodes. ** ** Construct a new expression node and return a pointer to it. Memory ** for this node and for the pToken argument is a single allocation ** obtained from sqlite3DbMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. ** ** If dequote is true, then the token (if it exists) is dequoted. ** If dequote is false, no dequoting is performed. The deQuote ** parameter is ignored if pToken is NULL or if the token does not ** appear to be quoted. If the quotes were of the form "..." (double-quotes) ** then the EP_DblQuoted flag is set on the expression node. ** ** Special case: If op==TK_INTEGER and pToken points to a string that ** can be translated into a 32-bit integer, then the token is not ** stored in u.zToken. Instead, the integer values is written ** into u.iValue and the EP_IntValue flag is set. No extra storage ** is allocated to hold the integer text and the dequote flag is ignored. */ SQLITE_PRIVATE Expr *sqlite3ExprAlloc( sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ int op, /* Expression opcode */ const Token *pToken, /* Token argument. Might be NULL */ int dequote /* True to dequote */ ){ Expr *pNew; int nExtra = 0; int iValue = 0; assert( db!=0 ); if( pToken ){ if( op!=TK_INTEGER || pToken->z==0 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ nExtra = pToken->n+1; assert( iValue>=0 ); } } pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); if( pNew ){ memset(pNew, 0, sizeof(Expr)); pNew->op = (u8)op; pNew->iAgg = -1; if( pToken ){ if( nExtra==0 ){ pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); pNew->u.iValue = iValue; }else{ pNew->u.zToken = (char*)&pNew[1]; assert( pToken->z!=0 || pToken->n==0 ); if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); pNew->u.zToken[pToken->n] = 0; if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ sqlite3DequoteExpr(pNew); } } } #if SQLITE_MAX_EXPR_DEPTH>0 pNew->nHeight = 1; #endif } return pNew; } /* ** Allocate a new expression node from a zero-terminated token that has ** already been dequoted. */ SQLITE_PRIVATE Expr *sqlite3Expr( sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ int op, /* Expression opcode */ const char *zToken /* Token argument. Might be NULL */ ){ Token x; x.z = zToken; x.n = sqlite3Strlen30(zToken); return sqlite3ExprAlloc(db, op, &x, 0); } /* ** Attach subtrees pLeft and pRight to the Expr node pRoot. ** ** If pRoot==NULL that means that a memory allocation error has occurred. ** In that case, delete the subtrees pLeft and pRight. */ SQLITE_PRIVATE void sqlite3ExprAttachSubtrees( sqlite3 *db, Expr *pRoot, Expr *pLeft, Expr *pRight ){ if( pRoot==0 ){ assert( db->mallocFailed ); sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); }else{ assert( ExprUseXList(pRoot) ); assert( pRoot->x.pSelect==0 ); if( pRight ){ pRoot->pRight = pRight; pRoot->flags |= EP_Propagate & pRight->flags; #if SQLITE_MAX_EXPR_DEPTH>0 pRoot->nHeight = pRight->nHeight+1; }else{ pRoot->nHeight = 1; #endif } if( pLeft ){ pRoot->pLeft = pLeft; pRoot->flags |= EP_Propagate & pLeft->flags; #if SQLITE_MAX_EXPR_DEPTH>0 if( pLeft->nHeight>=pRoot->nHeight ){ pRoot->nHeight = pLeft->nHeight+1; } #endif } } } /* ** Allocate an Expr node which joins as many as two subtrees. ** ** One or both of the subtrees can be NULL. Return a pointer to the new ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, ** free the subtrees and return NULL. */ SQLITE_PRIVATE Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight /* Right operand */ ){ Expr *p; p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); if( p ){ memset(p, 0, sizeof(Expr)); p->op = op & 0xff; p->iAgg = -1; sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); sqlite3ExprCheckHeight(pParse, p->nHeight); }else{ sqlite3ExprDelete(pParse->db, pLeft); sqlite3ExprDelete(pParse->db, pRight); } return p; } /* ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due ** do a memory allocation failure) then delete the pSelect object. */ SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ if( pExpr ){ pExpr->x.pSelect = pSelect; ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); sqlite3ExprSetHeightAndFlags(pParse, pExpr); }else{ assert( pParse->db->mallocFailed ); sqlite3SelectDelete(pParse->db, pSelect); } } /* ** Expression list pEList is a list of vector values. This function ** converts the contents of pEList to a VALUES(...) Select statement ** returning 1 row for each element of the list. For example, the ** expression list: ** ** ( (1,2), (3,4) (5,6) ) ** ** is translated to the equivalent of: ** ** VALUES(1,2), (3,4), (5,6) ** ** Each of the vector values in pEList must contain exactly nElem terms. ** If a list element that is not a vector or does not contain nElem terms, ** an error message is left in pParse. ** ** This is used as part of processing IN(...) expressions with a list ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". */ SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ int ii; Select *pRet = 0; assert( nElem>1 ); for(ii=0; iinExpr; ii++){ Select *pSel; Expr *pExpr = pEList->a[ii].pExpr; int nExprElem; if( pExpr->op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); nExprElem = pExpr->x.pList->nExpr; }else{ nExprElem = 1; } if( nExprElem!=nElem ){ sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", nExprElem, nExprElem>1?"s":"", nElem ); break; } assert( ExprUseXList(pExpr) ); pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); pExpr->x.pList = 0; if( pSel ){ if( pRet ){ pSel->op = TK_ALL; pSel->pPrior = pRet; } pRet = pSel; } } if( pRet && pRet->pPrior ){ pRet->selFlags |= SF_MultiValue; } sqlite3ExprListDelete(pParse->db, pEList); return pRet; } /* ** Join two expressions using an AND operator. If either expression is ** NULL, then just return the other expression. ** ** If one side or the other of the AND is known to be false, and neither side ** is part of an ON clause, then instead of returning an AND expression, ** just return a constant expression with a value of false. */ SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ sqlite3 *db = pParse->db; if( pLeft==0 ){ return pRight; }else if( pRight==0 ){ return pLeft; }else{ u32 f = pLeft->flags | pRight->flags; if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse && !IN_RENAME_OBJECT ){ sqlite3ExprDeferredDelete(pParse, pLeft); sqlite3ExprDeferredDelete(pParse, pRight); return sqlite3Expr(db, TK_INTEGER, "0"); }else{ return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); } } } /* ** Construct a new expression node for a function with multiple ** arguments. */ SQLITE_PRIVATE Expr *sqlite3ExprFunction( Parse *pParse, /* Parsing context */ ExprList *pList, /* Argument list */ const Token *pToken, /* Name of the function */ int eDistinct /* SF_Distinct or SF_ALL or 0 */ ){ Expr *pNew; sqlite3 *db = pParse->db; assert( pToken ); pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); if( pNew==0 ){ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ return 0; } assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); pNew->w.iOfst = (int)(pToken->z - pParse->zTail); if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] && !pParse->nested ){ sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); } pNew->x.pList = pList; ExprSetProperty(pNew, EP_HasFunc); assert( ExprUseXList(pNew) ); sqlite3ExprSetHeightAndFlags(pParse, pNew); if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); return pNew; } /* ** Check to see if a function is usable according to current access ** rules: ** ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL ** ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from ** top-level SQL ** ** If the function is not usable, create an error. */ SQLITE_PRIVATE void sqlite3ExprFunctionUsable( Parse *pParse, /* Parsing and code generating context */ const Expr *pExpr, /* The function invocation */ const FuncDef *pDef /* The function being invoked */ ){ assert( !IN_RENAME_OBJECT ); assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); if( ExprHasProperty(pExpr, EP_FromDDL) ){ if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 || (pParse->db->flags & SQLITE_TrustedSchema)==0 ){ /* Functions prohibited in triggers and views if: ** (1) tagged with SQLITE_DIRECTONLY ** (2) not tagged with SQLITE_INNOCUOUS (which means it ** is tagged with SQLITE_FUNC_UNSAFE) and ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning ** that the schema is possibly tainted). */ sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); } } } /* ** Assign a variable number to an expression that encodes a wildcard ** in the original SQL statement. ** ** Wildcards consisting of a single "?" are assigned the next sequential ** variable number. ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too big to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first ** instance of the wildcard, the next sequential variable number is ** assigned. */ SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ sqlite3 *db = pParse->db; const char *z; ynVar x; if( pExpr==0 ) return; assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); z = pExpr->u.zToken; assert( z!=0 ); assert( z[0]!=0 ); assert( n==(u32)sqlite3Strlen30(z) ); if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); x = (ynVar)(++pParse->nVar); }else{ int doAdd = 0; if( z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ i64 i; int bOk; if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ i = z[1]-'0'; /* The common case of ?N for a single digit N */ bOk = 1; }else{ bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); } testcase( i==0 ); testcase( i==1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); return; } x = (ynVar)i; if( x>pParse->nVar ){ pParse->nVar = (int)x; doAdd = 1; }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ doAdd = 1; } }else{ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable ** number as the prior appearance of the same name, or if the name ** has never appeared before, reuse the same variable number */ x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); if( x==0 ){ x = (ynVar)(++pParse->nVar); doAdd = 1; } } if( doAdd ){ pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); } } pExpr->iColumn = x; if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "too many SQL variables"); sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); } } /* ** Recursively delete an expression tree. */ static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ assert( p!=0 ); assert( db!=0 ); assert( !ExprUseUValue(p) || p->u.iValue>=0 ); assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); #ifdef SQLITE_DEBUG if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ assert( p->pLeft==0 ); assert( p->pRight==0 ); assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); assert( !ExprUseXList(p) || p->x.pList==0 ); } #endif if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ /* The Expr.x union is never used at the same time as Expr.pRight */ assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); if( p->pRight ){ assert( !ExprHasProperty(p, EP_WinFunc) ); sqlite3ExprDeleteNN(db, p->pRight); }else if( ExprUseXSelect(p) ){ assert( !ExprHasProperty(p, EP_WinFunc) ); sqlite3SelectDelete(db, p->x.pSelect); }else{ sqlite3ExprListDelete(db, p->x.pList); #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(p, EP_WinFunc) ){ sqlite3WindowDelete(db, p->y.pWin); } #endif } } if( !ExprHasProperty(p, EP_Static) ){ sqlite3DbNNFreeNN(db, p); } } SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p ) sqlite3ExprDeleteNN(db, p); } /* ** Clear both elements of an OnOrUsing object */ SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ if( p==0 ){ /* Nothing to clear */ }else if( p->pOn ){ sqlite3ExprDeleteNN(db, p->pOn); }else if( p->pUsing ){ sqlite3IdListDelete(db, p->pUsing); } } /* ** Arrange to cause pExpr to be deleted when the pParse is deleted. ** This is similar to sqlite3ExprDelete() except that the delete is ** deferred until the pParse is deleted. ** ** The pExpr might be deleted immediately on an OOM error. ** ** The deferred delete is (currently) implemented by adding the ** pExpr to the pParse->pConstExpr list with a register number of 0. */ SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3ExprDelete, pExpr); } /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the ** expression. */ SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ if( p ){ if( IN_RENAME_OBJECT ){ sqlite3RenameExprUnmap(pParse, p); } sqlite3ExprDeleteNN(pParse->db, p); } } /* ** Return the number of bytes allocated for the expression structure ** passed as the first argument. This is always one of EXPR_FULLSIZE, ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. */ static int exprStructSize(const Expr *p){ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; return EXPR_FULLSIZE; } /* ** The dupedExpr*Size() routines each return the number of bytes required ** to store a copy of an expression or expression tree. They differ in ** how much of the tree is measured. ** ** dupedExprStructSize() Size of only the Expr structure ** dupedExprNodeSize() Size of Expr + space for token ** dupedExprSize() Expr + token + subtree components ** *************************************************************************** ** ** The dupedExprStructSize() function returns two values OR-ed together: ** (1) the space required for a copy of the Expr structure only and ** (2) the EP_xxx flags that indicate what the structure size should be. ** The return values is always one of: ** ** EXPR_FULLSIZE ** EXPR_REDUCEDSIZE | EP_Reduced ** EXPR_TOKENONLYSIZE | EP_TokenOnly ** ** The size of the structure can be found by masking the return value ** of this routine with 0xfff. The flags can be found by masking the ** return value with EP_Reduced|EP_TokenOnly. ** ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size ** (unreduced) Expr objects as they or originally constructed by the parser. ** During expression analysis, extra information is computed and moved into ** later parts of the Expr object and that extra information might get chopped ** off if the expression is reduced. Note also that it does not work to ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal ** to reduce a pristine expression tree from the parser. The implementation ** of dupedExprStructSize() contain multiple assert() statements that attempt ** to enforce this constraint. */ static int dupedExprStructSize(const Expr *p, int flags){ int nSize; assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ assert( EXPR_FULLSIZE<=0xfff ); assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); if( 0==flags || p->op==TK_SELECT_COLUMN #ifndef SQLITE_OMIT_WINDOWFUNC || ExprHasProperty(p, EP_WinFunc) #endif ){ nSize = EXPR_FULLSIZE; }else{ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasProperty(p, EP_OuterON) ); assert( !ExprHasVVAProperty(p, EP_NoReduce) ); if( p->pLeft || p->x.pList ){ nSize = EXPR_REDUCEDSIZE | EP_Reduced; }else{ assert( p->pRight==0 ); nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; } } return nSize; } /* ** This function returns the space in bytes required to store the copy ** of the Expr structure and a copy of the Expr.u.zToken string (if that ** string is defined.) */ static int dupedExprNodeSize(const Expr *p, int flags){ int nByte = dupedExprStructSize(p, flags) & 0xfff; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nByte += sqlite3Strlen30NN(p->u.zToken)+1; } return ROUND8(nByte); } /* ** Return the number of bytes required to create a duplicate of the ** expression passed as the first argument. The second argument is a ** mask containing EXPRDUP_XXX flags. ** ** The value returned includes space to create a copy of the Expr struct ** itself and the buffer referred to by Expr.u.zToken, if any. ** ** If the EXPRDUP_REDUCE flag is set, then the return value includes ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft ** and Expr.pRight variables (but not for any structures pointed to or ** descended from the Expr.x.pList or Expr.x.pSelect variables). */ static int dupedExprSize(const Expr *p, int flags){ int nByte = 0; if( p ){ nByte = dupedExprNodeSize(p, flags); if( flags&EXPRDUP_REDUCE ){ nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); } } return nByte; } /* ** This function is similar to sqlite3ExprDup(), except that if pzBuffer ** is not NULL then *pzBuffer is assumed to point to a buffer large enough ** to store the copy of expression p, the copies of p->u.zToken ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, ** if any. Before returning, *pzBuffer is set to the first byte past the ** portion of the buffer copied into by this function. */ static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ Expr *pNew; /* Value to return */ u8 *zAlloc; /* Memory space from which to build Expr object */ u32 staticFlag; /* EP_Static if space not obtained from malloc */ assert( db!=0 ); assert( p ); assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); /* Figure out where to write the new Expr structure. */ if( pzBuffer ){ zAlloc = *pzBuffer; staticFlag = EP_Static; assert( zAlloc!=0 ); }else{ zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); staticFlag = 0; } pNew = (Expr *)zAlloc; if( pNew ){ /* Set nNewSize to the size allocated for the structure pointed to ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed ** by the copy of the p->u.zToken string (if any). */ const unsigned nStructSize = dupedExprStructSize(p, dupFlags); const int nNewSize = nStructSize & 0xfff; int nToken; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nToken = sqlite3Strlen30(p->u.zToken) + 1; }else{ nToken = 0; } if( dupFlags ){ assert( ExprHasProperty(p, EP_Reduced)==0 ); memcpy(zAlloc, p, nNewSize); }else{ u32 nSize = (u32)exprStructSize(p); memcpy(zAlloc, p, nSize); if( nSizeflags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); pNew->flags |= staticFlag; ExprClearVVAProperties(pNew); if( dupFlags ){ ExprSetVVAProperty(pNew, EP_Immutable); } /* Copy the p->u.zToken string, if any. */ if( nToken ){ char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; memcpy(zToken, p->u.zToken, nToken); } if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ if( ExprUseXSelect(p) ){ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); }else{ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); } } /* Fill in pNew->pLeft and pNew->pRight. */ if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ zAlloc += dupedExprNodeSize(p, dupFlags); if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ pNew->pLeft = p->pLeft ? exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; pNew->pRight = p->pRight ? exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(p, EP_WinFunc) ){ pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); assert( ExprHasProperty(pNew, EP_WinFunc) ); } #endif /* SQLITE_OMIT_WINDOWFUNC */ if( pzBuffer ){ *pzBuffer = zAlloc; } }else{ if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ if( pNew->op==TK_SELECT_COLUMN ){ pNew->pLeft = p->pLeft; assert( p->pRight==0 || p->pRight==p->pLeft || ExprHasProperty(p->pLeft, EP_Subquery) ); }else{ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); } pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); } } } return pNew; } /* ** Create and return a deep copy of the object passed as the second ** argument. If an OOM condition is encountered, NULL is returned ** and the db->mallocFailed flag set. */ #ifndef SQLITE_OMIT_CTE SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p){ With *pRet = 0; if( p ){ sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); pRet = sqlite3DbMallocZero(db, nByte); if( pRet ){ int i; pRet->nCte = p->nCte; for(i=0; inCte; i++){ pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); pRet->a[i].eM10d = p->a[i].eM10d; } } } return pRet; } #else # define sqlite3WithDup(x,y) 0 #endif #ifndef SQLITE_OMIT_WINDOWFUNC /* ** The gatherSelectWindows() procedure and its helper routine ** gatherSelectWindowsCallback() are used to scan all the expressions ** an a newly duplicated SELECT statement and gather all of the Window ** objects found there, assembling them onto the linked list at Select->pWin. */ static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ Select *pSelect = pWalker->u.pSelect; Window *pWin = pExpr->y.pWin; assert( pWin ); assert( IsWindowFunc(pExpr) ); assert( pWin->ppThis==0 ); sqlite3WindowLink(pSelect, pWin); } return WRC_Continue; } static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; } static void gatherSelectWindows(Select *p){ Walker w; w.xExprCallback = gatherSelectWindowsCallback; w.xSelectCallback = gatherSelectWindowsSelectCallback; w.xSelectCallback2 = 0; w.pParse = 0; w.u.pSelect = p; sqlite3WalkSelect(&w, p); } #endif /* ** The following group of routines make deep copies of expressions, ** expression lists, ID lists, and select statements. The copies can ** be deleted (by being passed to their respective ...Delete() routines) ** without effecting the originals. ** ** The expression list, ID, and source lists return by sqlite3ExprListDup(), ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded ** by subsequent calls to sqlite*ListAppend() routines. ** ** Any tables that the SrcList might point to are not duplicated. ** ** The flags parameter contains a combination of the EXPRDUP_XXX flags. ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a ** truncated version of the usual Expr structure that will be stored as ** part of the in-memory representation of the database schema. */ SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ assert( flags==0 || flags==EXPRDUP_REDUCE ); return p ? exprDup(db, p, flags, 0) : 0; } SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ ExprList *pNew; struct ExprList_item *pItem; const struct ExprList_item *pOldItem; int i; Expr *pPriorSelectColOld = 0; Expr *pPriorSelectColNew = 0; assert( db!=0 ); if( p==0 ) return 0; pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); if( pNew==0 ) return 0; pNew->nExpr = p->nExpr; pNew->nAlloc = p->nAlloc; pItem = pNew->a; pOldItem = p->a; for(i=0; inExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; Expr *pNewExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); if( pOldExpr && pOldExpr->op==TK_SELECT_COLUMN && (pNewExpr = pItem->pExpr)!=0 ){ if( pNewExpr->pRight ){ pPriorSelectColOld = pOldExpr->pRight; pPriorSelectColNew = pNewExpr->pRight; pNewExpr->pLeft = pNewExpr->pRight; }else{ if( pOldExpr->pLeft!=pPriorSelectColOld ){ pPriorSelectColOld = pOldExpr->pLeft; pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); pNewExpr->pRight = pPriorSelectColNew; } pNewExpr->pLeft = pPriorSelectColNew; } } pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); pItem->fg = pOldItem->fg; pItem->fg.done = 0; pItem->u = pOldItem->u; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from ** the build, then none of the following routines, except for ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes ** called with a NULL argument. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ || !defined(SQLITE_OMIT_SUBQUERY) SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ SrcList *pNew; int i; int nByte; assert( db!=0 ); if( p==0 ) return 0; nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); pNew = sqlite3DbMallocRawNN(db, nByte ); if( pNew==0 ) return 0; pNew->nSrc = pNew->nAlloc = p->nSrc; for(i=0; inSrc; i++){ SrcItem *pNewItem = &pNew->a[i]; const SrcItem *pOldItem = &p->a[i]; Table *pTab; pNewItem->pSchema = pOldItem->pSchema; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->fg = pOldItem->fg; pNewItem->iCursor = pOldItem->iCursor; pNewItem->addrFillSub = pOldItem->addrFillSub; pNewItem->regReturn = pOldItem->regReturn; if( pNewItem->fg.isIndexedBy ){ pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); } pNewItem->u2 = pOldItem->u2; if( pNewItem->fg.isCte ){ pNewItem->u2.pCteUse->nUse++; } if( pNewItem->fg.isTabFunc ){ pNewItem->u1.pFuncArg = sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); } pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nTabRef++; } pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); if( pOldItem->fg.isUsing ){ assert( pNewItem->fg.isUsing ); pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); }else{ pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); } pNewItem->colUsed = pOldItem->colUsed; } return pNew; } SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ IdList *pNew; int i; assert( db!=0 ); if( p==0 ) return 0; assert( p->eU4!=EU4_EXPR ); pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); if( pNew==0 ) return 0; pNew->nId = p->nId; pNew->eU4 = p->eU4; for(i=0; inId; i++){ struct IdList_item *pNewItem = &pNew->a[i]; const struct IdList_item *pOldItem = &p->a[i]; pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->u4 = pOldItem->u4; } return pNew; } SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ Select *pRet = 0; Select *pNext = 0; Select **pp = &pRet; const Select *p; assert( db!=0 ); for(p=pDup; p; p=p->pPrior){ Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); if( pNew==0 ) break; pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); pNew->op = p->op; pNew->pNext = pNext; pNew->pPrior = 0; pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); pNew->iLimit = 0; pNew->iOffset = 0; pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->nSelectRow = p->nSelectRow; pNew->pWith = sqlite3WithDup(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC pNew->pWin = 0; pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); #endif pNew->selId = p->selId; if( db->mallocFailed ){ /* Any prior OOM might have left the Select object incomplete. ** Delete the whole thing rather than allow an incomplete Select ** to be used by the code generator. */ pNew->pNext = 0; sqlite3SelectDelete(db, pNew); break; } *pp = pNew; pp = &pNew->pPrior; pNext = pNew; } return pRet; } #else SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ assert( p==0 ); return 0; } #endif /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. ** ** The pList argument must be either NULL or a pointer to an ExprList ** obtained from a prior call to sqlite3ExprListAppend(). This routine ** may not be used with an ExprList obtained from sqlite3ExprListDup(). ** Reason: This routine assumes that the number of slots in pList->a[] ** is a power of two. That is true for sqlite3ExprListAppend() returns ** but is not necessarily true from the return value of sqlite3ExprListDup(). ** ** If a memory allocation error occurs, the entire list is freed and ** NULL is returned. If non-NULL is returned, then it is guaranteed ** that the new entry was successfully appended. */ static const struct ExprList_item zeroItem = {0}; SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( sqlite3 *db, /* Database handle. Used for memory allocation */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ struct ExprList_item *pItem; ExprList *pList; pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); if( pList==0 ){ sqlite3ExprDelete(db, pExpr); return 0; } pList->nAlloc = 4; pList->nExpr = 1; pItem = &pList->a[0]; *pItem = zeroItem; pItem->pExpr = pExpr; return pList; } SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( sqlite3 *db, /* Database handle. Used for memory allocation */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ struct ExprList_item *pItem; ExprList *pNew; pList->nAlloc *= 2; pNew = sqlite3DbRealloc(db, pList, sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); if( pNew==0 ){ sqlite3ExprListDelete(db, pList); sqlite3ExprDelete(db, pExpr); return 0; }else{ pList = pNew; } pItem = &pList->a[pList->nExpr++]; *pItem = zeroItem; pItem->pExpr = pExpr; return pList; } SQLITE_PRIVATE ExprList *sqlite3ExprListAppend( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ struct ExprList_item *pItem; if( pList==0 ){ return sqlite3ExprListAppendNew(pParse->db,pExpr); } if( pList->nAllocnExpr+1 ){ return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); } pItem = &pList->a[pList->nExpr++]; *pItem = zeroItem; pItem->pExpr = pExpr; return pList; } /* ** pColumns and pExpr form a vector assignment which is part of the SET ** clause of an UPDATE statement. Like this: ** ** (a,b,c) = (expr1,expr2,expr3) ** Or: (a,b,c) = (SELECT x,y,z FROM ....) ** ** For each term of the vector assignment, append new entries to the ** expression list pList. In the case of a subquery on the RHS, append ** TK_SELECT_COLUMN expressions. */ SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ IdList *pColumns, /* List of names of LHS of the assignment */ Expr *pExpr /* Vector expression to be appended. Might be NULL */ ){ sqlite3 *db = pParse->db; int n; int i; int iFirst = pList ? pList->nExpr : 0; /* pColumns can only be NULL due to an OOM but an OOM will cause an ** exit prior to this routine being invoked */ if( NEVER(pColumns==0) ) goto vector_append_error; if( pExpr==0 ) goto vector_append_error; /* If the RHS is a vector, then we can immediately check to see that ** the size of the RHS and LHS match. But if the RHS is a SELECT, ** wildcards ("*") in the result set of the SELECT must be expanded before ** we can do the size check, so defer the size check until code generation. */ if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ sqlite3ErrorMsg(pParse, "%d columns assigned %d values", pColumns->nId, n); goto vector_append_error; } for(i=0; inId; i++){ Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); assert( pSubExpr!=0 || db->mallocFailed ); if( pSubExpr==0 ) continue; pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); if( pList ){ assert( pList->nExpr==iFirst+i+1 ); pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; pColumns->a[i].zName = 0; } } if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ Expr *pFirst = pList->a[iFirst].pExpr; assert( pFirst!=0 ); assert( pFirst->op==TK_SELECT_COLUMN ); /* Store the SELECT statement in pRight so it will be deleted when ** sqlite3ExprListDelete() is called */ pFirst->pRight = pExpr; pExpr = 0; /* Remember the size of the LHS in iTable so that we can check that ** the RHS and LHS sizes match during code generation. */ pFirst->iTable = pColumns->nId; } vector_append_error: sqlite3ExprUnmapAndDelete(pParse, pExpr); sqlite3IdListDelete(db, pColumns); return pList; } /* ** Set the sort order for the last element on the given ExprList. */ SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ struct ExprList_item *pItem; if( p==0 ) return; assert( p->nExpr>0 ); assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); assert( iSortOrder==SQLITE_SO_UNDEFINED || iSortOrder==SQLITE_SO_ASC || iSortOrder==SQLITE_SO_DESC ); assert( eNulls==SQLITE_SO_UNDEFINED || eNulls==SQLITE_SO_ASC || eNulls==SQLITE_SO_DESC ); pItem = &p->a[p->nExpr-1]; assert( pItem->fg.bNulls==0 ); if( iSortOrder==SQLITE_SO_UNDEFINED ){ iSortOrder = SQLITE_SO_ASC; } pItem->fg.sortFlags = (u8)iSortOrder; if( eNulls!=SQLITE_SO_UNDEFINED ){ pItem->fg.bNulls = 1; if( iSortOrder!=eNulls ){ pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; } } } /* ** Set the ExprList.a[].zEName element of the most recently added item ** on the expression list. ** ** pList might be NULL following an OOM error. But pName should never be ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag ** is set. */ SQLITE_PRIVATE void sqlite3ExprListSetName( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to add the span. */ const Token *pName, /* Name to be added */ int dequote /* True to cause the name to be dequoted */ ){ assert( pList!=0 || pParse->db->mallocFailed!=0 ); assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); if( pList ){ struct ExprList_item *pItem; assert( pList->nExpr>0 ); pItem = &pList->a[pList->nExpr-1]; assert( pItem->zEName==0 ); assert( pItem->fg.eEName==ENAME_NAME ); pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); if( dequote ){ /* If dequote==0, then pName->z does not point to part of a DDL ** statement handled by the parser. And so no token need be added ** to the token-map. */ sqlite3Dequote(pItem->zEName); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); } } } } /* ** Set the ExprList.a[].zSpan element of the most recently added item ** on the expression list. ** ** pList might be NULL following an OOM error. But pSpan should never be ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag ** is set. */ SQLITE_PRIVATE void sqlite3ExprListSetSpan( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to add the span. */ const char *zStart, /* Start of the span */ const char *zEnd /* End of the span */ ){ sqlite3 *db = pParse->db; assert( pList!=0 || db->mallocFailed!=0 ); if( pList ){ struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; assert( pList->nExpr>0 ); if( pItem->zEName==0 ){ pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); pItem->fg.eEName = ENAME_SPAN; } } } /* ** If the expression list pEList contains more than iLimit elements, ** leave an error message in pParse. */ SQLITE_PRIVATE void sqlite3ExprListCheckLength( Parse *pParse, ExprList *pEList, const char *zObject ){ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; testcase( pEList && pEList->nExpr==mx ); testcase( pEList && pEList->nExpr==mx+1 ); if( pEList && pEList->nExpr>mx ){ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); } } /* ** Delete an entire expression list. */ static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ int i = pList->nExpr; struct ExprList_item *pItem = pList->a; assert( pList->nExpr>0 ); assert( db!=0 ); do{ sqlite3ExprDelete(db, pItem->pExpr); if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); pItem++; }while( --i>0 ); sqlite3DbNNFreeNN(db, pList); } SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ if( pList ) exprListDeleteNN(db, pList); } /* ** Return the bitwise-OR of all Expr.flags fields in the given ** ExprList. */ SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList *pList){ int i; u32 m = 0; assert( pList!=0 ); for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; assert( pExpr!=0 ); m |= pExpr->flags; } return m; } /* ** This is a SELECT-node callback for the expression walker that ** always "fails". By "fail" in this case, we mean set ** pWalker->eCode to zero and abort. ** ** This callback is used by multiple expression walkers. */ SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ UNUSED_PARAMETER(NotUsed); pWalker->eCode = 0; return WRC_Abort; } /* ** Check the input string to see if it is "true" or "false" (in any case). ** ** If the string is.... Return ** "true" EP_IsTrue ** "false" EP_IsFalse ** anything else 0 */ SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char *zIn){ if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; return 0; } /* ** If the input expression is an ID with the name "true" or "false" ** then convert it into an TK_TRUEFALSE term. Return non-zero if ** the conversion happened, and zero if the expression is unaltered. */ SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr *pExpr){ u32 v; assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 ){ pExpr->op = TK_TRUEFALSE; ExprSetProperty(pExpr, v); return 1; } return 0; } /* ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE ** and 0 if it is FALSE. */ SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr *pExpr){ pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr); assert( pExpr->op==TK_TRUEFALSE ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); return pExpr->u.zToken[4]==0; } /* ** If pExpr is an AND or OR expression, try to simplify it by eliminating ** terms that are always true or false. Return the simplified expression. ** Or return the original expression if no simplification is possible. ** ** Examples: ** ** (x<10) AND true => (x<10) ** (x<10) AND false => false ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) ** (x<10) AND (y=22 OR true) => (x<10) ** (y=22) OR true => true */ SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ assert( pExpr!=0 ); if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ pExpr = pExpr->op==TK_AND ? pRight : pLeft; }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ pExpr = pExpr->op==TK_AND ? pLeft : pRight; } } return pExpr; } /* ** These routines are Walker callbacks used to check expressions to ** see if they are "constant" for some definition of constant. The ** Walker.eCode value determines the type of "constant" we are looking ** for. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() pWalker->eCode==1 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 ** ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression ** is found to not be a constant. ** ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 ** when parsing an existing schema out of the sqlite_schema table and 4 ** when processing a new CREATE TABLE statement. A bound parameter raises ** an error for new statements, but is silently converted ** to NULL for existing schemas. This allows sqlite_schema tables that ** contain a bound parameter because they were generated by older versions ** of SQLite to be parsed by newer versions of SQLite without raising a ** malformed schema error. */ static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ /* If pWalker->eCode is 2 then any term of the expression that comes from ** the ON or USING clauses of an outer join disqualifies the expression ** from being considered constant. */ if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ pWalker->eCode = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and either pWalker->eCode==4 or 5 or the function has the ** SQLITE_FUNC_CONST flag. */ case TK_FUNCTION: if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) && !ExprHasProperty(pExpr, EP_WinFunc) ){ if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); return WRC_Continue; }else{ pWalker->eCode = 0; return WRC_Abort; } case TK_ID: /* Convert "true" or "false" in a DEFAULT clause into the ** appropriate TK_TRUEFALSE operator */ if( sqlite3ExprIdToTrueFalse(pExpr) ){ return WRC_Prune; } /* no break */ deliberate_fall_through case TK_COLUMN: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: testcase( pExpr->op==TK_ID ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ return WRC_Continue; } if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ return WRC_Continue; } /* no break */ deliberate_fall_through case TK_IF_NULL_ROW: case TK_REGISTER: case TK_DOT: testcase( pExpr->op==TK_REGISTER ); testcase( pExpr->op==TK_IF_NULL_ROW ); testcase( pExpr->op==TK_DOT ); pWalker->eCode = 0; return WRC_Abort; case TK_VARIABLE: if( pWalker->eCode==5 ){ /* Silently convert bound parameters that appear inside of CREATE ** statements into a NULL when parsing the CREATE statement text out ** of the sqlite_schema table */ pExpr->op = TK_NULL; }else if( pWalker->eCode==4 ){ /* A bound parameter in a CREATE statement that originates from ** sqlite3_prepare() causes an error */ pWalker->eCode = 0; return WRC_Abort; } /* no break */ deliberate_fall_through default: testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ return WRC_Continue; } } static int exprIsConst(Expr *p, int initFlag, int iCur){ Walker w; w.eCode = initFlag; w.xExprCallback = exprNodeIsConstant; w.xSelectCallback = sqlite3SelectWalkFail; #ifdef SQLITE_DEBUG w.xSelectCallback2 = sqlite3SelectWalkAssert2; #endif w.u.iCur = iCur; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** Walk an expression tree. Return non-zero if the expression is constant ** and 0 if it involves variables or function calls. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){ return exprIsConst(p, 1, 0); } /* ** Walk an expression tree. Return non-zero if ** ** (1) the expression is constant, and ** (2) the expression does originate in the ON or USING clause ** of a LEFT JOIN, and ** (3) the expression does not contain any EP_FixedCol TK_COLUMN ** operands created by the constant propagation optimization. ** ** When this routine returns true, it indicates that the expression ** can be added to the pParse->pConstExpr list and evaluated once when ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). */ SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 2, 0); } /* ** Walk an expression tree. Return non-zero if the expression is constant ** for any single row of the table with cursor iCur. In other words, the ** expression must not refer to any non-deterministic function nor any ** table other than iCur. */ SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){ return exprIsConst(p, 3, iCur); } /* ** Check pExpr to see if it is an constraint on the single data source ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr ** constrains pSrc but does not depend on any other tables or data ** sources anywhere else in the query. Return true (non-zero) if pExpr ** is a constraint on pSrc only. ** ** This is an optimization. False negatives will perhaps cause slower ** queries, but false positives will yield incorrect answers. So when in ** doubt, return 0. ** ** To be an single-source constraint, the following must be true: ** ** (1) pExpr cannot refer to any table other than pSrc->iCursor. ** ** (2) pExpr cannot use subqueries or non-deterministic functions. ** ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. ** (Is there some way to relax this constraint?) ** ** (4) If pSrc is the right operand of a LEFT JOIN, then... ** (4a) pExpr must come from an ON clause.. ** (4b) and specifically the ON clause associated with the LEFT JOIN. ** ** (5) If pSrc is not the right operand of a LEFT JOIN or the left ** operand of a RIGHT JOIN, then pExpr must be from the WHERE ** clause, not an ON clause. ** ** (6) Either: ** ** (6a) pExpr does not originate in an ON or USING clause, or ** ** (6b) The ON or USING clause from which pExpr is derived is ** not to the left of a RIGHT JOIN (or FULL JOIN). ** ** Without this restriction, accepting pExpr as a single-table ** constraint might move the the ON/USING filter expression ** from the left side of a RIGHT JOIN over to the right side, ** which leads to incorrect answers. See also restriction (9) ** on push-down. */ SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint( Expr *pExpr, /* The constraint */ const SrcList *pSrcList, /* Complete FROM clause */ int iSrc /* Which element of pSrcList to use */ ){ const SrcItem *pSrc = &pSrcList->a[iSrc]; if( pSrc->fg.jointype & JT_LTORJ ){ return 0; /* rule (3) */ } if( pSrc->fg.jointype & JT_LEFT ){ if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ }else{ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ } if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */ ){ int jj; for(jj=0; jjw.iJoin==pSrcList->a[jj].iCursor ){ if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* restriction (6) */ } break; } } } return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ } /* ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). */ static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ ExprList *pGroupBy = pWalker->u.pGroupBy; int i; /* Check if pExpr is identical to any GROUP BY term. If so, consider ** it constant. */ for(i=0; inExpr; i++){ Expr *p = pGroupBy->a[i].pExpr; if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); if( sqlite3IsBinary(pColl) ){ return WRC_Prune; } } } /* Check if pExpr is a sub-select. If so, consider it variable. */ if( ExprUseXSelect(pExpr) ){ pWalker->eCode = 0; return WRC_Abort; } return exprNodeIsConstant(pWalker, pExpr); } /* ** Walk the expression tree passed as the first argument. Return non-zero ** if the expression consists entirely of constants or copies of terms ** in pGroupBy that sort with the BINARY collation sequence. ** ** This routine is used to determine if a term of the HAVING clause can ** be promoted into the WHERE clause. In order for such a promotion to work, ** the value of the HAVING clause term must be the same for all members of ** a "group". The requirement that the GROUP BY term must be BINARY ** assumes that no other collating sequence will have a finer-grained ** grouping than binary. In other words (A=B COLLATE binary) implies ** A=B in every other collating sequence. The requirement that the ** GROUP BY be BINARY is stricter than necessary. It would also work ** to promote HAVING clauses that use the same alternative collating ** sequence as the GROUP BY term, but that is much harder to check, ** alternative collating sequences are uncommon, and this is only an ** optimization, so we take the easy way out and simply require the ** GROUP BY to use the BINARY collating sequence. */ SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ Walker w; w.eCode = 1; w.xExprCallback = exprNodeIsConstantOrGroupBy; w.xSelectCallback = 0; w.u.pGroupBy = pGroupBy; w.pParse = pParse; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** Walk an expression tree for the DEFAULT field of a column definition ** in a CREATE TABLE statement. Return non-zero if the expression is ** acceptable for use as a DEFAULT. That is to say, return non-zero if ** the expression is constant or a function call with constant arguments. ** Return and 0 if there are any variables. ** ** isInit is true when parsing from sqlite_schema. isInit is false when ** processing a new CREATE TABLE statement. When isInit is true, parameters ** (such as ? or $abc) in the expression are converted into NULL. When ** isInit is false, parameters raise an error. Parameters should not be ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite ** allowed it, so we need to support it when reading sqlite_schema for ** backwards compatibility. ** ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ assert( isInit==0 || isInit==1 ); return exprIsConst(p, 4+isInit, 0); } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* ** Walk an expression tree. Return 1 if the expression contains a ** subquery of some kind. Return 0 if there are no subqueries. */ SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr *p){ Walker w; w.eCode = 1; w.xExprCallback = sqlite3ExprWalkNoop; w.xSelectCallback = sqlite3SelectWalkFail; #ifdef SQLITE_DEBUG w.xSelectCallback2 = sqlite3SelectWalkAssert2; #endif sqlite3WalkExpr(&w, p); return w.eCode==0; } #endif /* ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr *p, int *pValue){ int rc = 0; if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ /* If an expression is an integer literal that fits in a signed 32-bit ** integer, then the EP_IntValue flag will have already been set */ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); if( p->flags & EP_IntValue ){ *pValue = p->u.iValue; return 1; } switch( p->op ){ case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v = 0; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ assert( ((unsigned int)v)!=0x80000000 ); *pValue = -v; rc = 1; } break; } default: break; } return rc; } /* ** Return FALSE if there is no chance that the expression can be NULL. ** ** If the expression might be NULL or if the expression is too complex ** to tell return TRUE. ** ** This routine is used as an optimization, to skip OP_IsNull opcodes ** when we know that a value cannot be NULL. Hence, a false positive ** (returning TRUE when in fact the expression can never be NULL) might ** be a small performance hit but is otherwise harmless. On the other ** hand, a false negative (returning FALSE when the result could be NULL) ** will likely result in an incorrect answer. So when in doubt, return ** TRUE. */ SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){ u8 op; assert( p!=0 ); while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; assert( p!=0 ); } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: assert( ExprUseYTab(p) ); return ExprHasProperty(p, EP_CanBeNull) || p->y.pTab==0 || /* Reference to column of index on expression */ (p->iColumn>=0 && p->y.pTab->aCol!=0 /* Possible due to prior error */ && p->y.pTab->aCol[p->iColumn].notNull==0); default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be ** unchanged by OP_Affinity with the affinity given in the second ** argument. ** ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative ** is harmless. A false positive, however, can result in the wrong ** answer. */ SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ u8 op; int unaryMinus = 0; if( aff==SQLITE_AFF_BLOB ) return 1; while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ if( p->op==TK_UMINUS ) unaryMinus = 1; p = p->pLeft; } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: { return aff>=SQLITE_AFF_NUMERIC; } case TK_FLOAT: { return aff>=SQLITE_AFF_NUMERIC; } case TK_STRING: { return !unaryMinus && aff==SQLITE_AFF_TEXT; } case TK_BLOB: { return !unaryMinus; } case TK_COLUMN: { assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; } default: { return 0; } } } /* ** Return TRUE if the given string is a row-id column name. */ SQLITE_PRIVATE int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } /* ** pX is the RHS of an IN operator. If pX is a SELECT statement ** that can be simplified to a direct table access, then return ** a pointer to the SELECT statement. If pX is not a SELECT statement, ** or if the SELECT statement needs to be materialized into a transient ** table, then return NULL. */ #ifndef SQLITE_OMIT_SUBQUERY static Select *isCandidateForInOpt(const Expr *pX){ Select *p; SrcList *pSrc; ExprList *pEList; Table *pTab; int i; if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ p = pX->x.pSelect; if( p->pPrior ) return 0; /* Not a compound SELECT */ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); return 0; /* No DISTINCT keyword and no aggregate functions */ } assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ if( p->pLimit ) return 0; /* Has no LIMIT clause */ if( p->pWhere ) return 0; /* Has no WHERE clause */ pSrc = p->pSrc; assert( pSrc!=0 ); if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ pTab = pSrc->a[0].pTab; assert( pTab!=0 ); assert( !IsView(pTab) ); /* FROM clause is not a view */ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ pEList = p->pEList; assert( pEList!=0 ); /* All SELECT results must be columns. */ for(i=0; inExpr; i++){ Expr *pRes = pEList->a[i].pExpr; if( pRes->op!=TK_COLUMN ) return 0; assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ } return p; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code that checks the left-most column of index table iCur to see if ** it contains any NULL entries. Cause the register at regHasNull to be set ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull ** to be set to NULL if iCur contains one or more NULL values. */ static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ int addr1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); VdbeComment((v, "first_entry_in(%d)", iCur)); sqlite3VdbeJumpHere(v, addr1); } #endif #ifndef SQLITE_OMIT_SUBQUERY /* ** The argument is an IN operator with a list (not a subquery) on the ** right-hand side. Return TRUE if that list is constant. */ static int sqlite3InRhsIsConstant(Expr *pIn){ Expr *pLHS; int res; assert( !ExprHasProperty(pIn, EP_xIsSelect) ); pLHS = pIn->pLeft; pIn->pLeft = 0; res = sqlite3ExprIsConstant(pIn); pIn->pLeft = pLHS; return res; } #endif /* ** This function is used by the implementation of the IN (...) operator. ** The pX parameter is the expression on the RHS of the IN operator, which ** might be either a list of expressions or a subquery. ** ** The job of this routine is to find or create a b-tree object that can ** be used either to test for membership in the RHS set or to iterate through ** all members of the RHS set, skipping duplicates. ** ** A cursor is opened on the b-tree object that is the RHS of the IN operator ** and the *piTab parameter is set to the index of that cursor. ** ** The returned value of this function indicates the b-tree type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. ** IN_INDEX_EPH - The cursor was opened on a specially created and ** populated ephemeral table. ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be ** implemented as a sequence of comparisons. ** ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT , ... FROM ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then ** pX->iTable made to point to the ephemeral table instead of an ** existing table. In this case, the creation and initialization of the ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag ** will be set on pX and the pX->y.sub fields will be set to show where ** the subroutine is coded. ** ** The inFlags parameter must contain, at a minimum, one of the bits ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will ** be used to loop over all values of the RHS of the IN operator. ** ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate ** through the set members) then the b-tree must not contain duplicates. ** An ephemeral table will be created unless the selected columns are guaranteed ** to be unique - either because it is an INTEGER PRIMARY KEY or due to ** a UNIQUE constraint or index. ** ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used ** for fast set membership tests) then an ephemeral table must ** be used unless is a single INTEGER PRIMARY KEY column or an ** index can be found with the specified as its left-most. ** ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and ** if the RHS of the IN operator is a list (not a subquery) then this ** routine might decide that creating an ephemeral b-tree for membership ** testing is too expensive and return IN_INDEX_NOOP. In that case, the ** calling routine should implement the IN operator using a sequence ** of Eq or Ne comparison operations. ** ** When the b-tree is being used for membership tests, the calling function ** might need to know whether or not the RHS side of the IN operator ** contains a NULL. If prRhsHasNull is not a NULL pointer and ** if there is any chance that the (...) might contain a NULL value at ** runtime, then a register is allocated and the register number written ** to *prRhsHasNull. If there is no chance that the (...) contains a ** NULL value, then *prRhsHasNull is left unchanged. ** ** If a register is allocated and its location stored in *prRhsHasNull, then ** the value in that register will be NULL if the b-tree contains one or more ** NULL values, and it will be some non-NULL value if the b-tree contains no ** NULL values. ** ** If the aiMap parameter is not NULL, it must point to an array containing ** one element for each column returned by the SELECT statement on the RHS ** of the IN(...) operator. The i'th entry of the array is populated with the ** offset of the index column that matches the i'th column returned by the ** SELECT. For example, if the expression and selected index are: ** ** (?,?,?) IN (SELECT a, b, c FROM t1) ** CREATE INDEX i1 ON t1(b, c, a); ** ** then aiMap[] is populated with {2, 0, 1}. */ #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3FindInIndex( Parse *pParse, /* Parsing context */ Expr *pX, /* The IN expression */ u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ int *prRhsHasNull, /* Register holding NULL status. See notes */ int *aiMap, /* Mapping from Index fields to RHS fields */ int *piTab /* OUT: index to use */ ){ Select *p; /* SELECT to the right of IN operator */ int eType = 0; /* Type of RHS table. IN_INDEX_* */ int iTab; /* Cursor of the RHS table */ int mustBeUnique; /* True if RHS must be unique */ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ assert( pX->op==TK_IN ); mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; iTab = pParse->nTab++; /* If the RHS of this IN(...) operator is a SELECT, and if it matters ** whether or not the SELECT result contains NULL values, check whether ** or not NULL is actually possible (it may not be, for example, due ** to NOT NULL constraints in the schema). If no NULL values are possible, ** set prRhsHasNull to 0 before continuing. */ if( prRhsHasNull && ExprUseXSelect(pX) ){ int i; ExprList *pEList = pX->x.pSelect->pEList; for(i=0; inExpr; i++){ if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; } if( i==pEList->nExpr ){ prRhsHasNull = 0; } } /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table
    . */ int iDb; /* Database idx for pTab */ ExprList *pEList = p->pEList; int nExpr = pEList->nExpr; assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ pTab = p->pSrc->a[0].pTab; /* Code an OP_Transaction and OP_TableLock for
    . */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDbtnum, 0, pTab->zName); assert(v); /* sqlite3GetVdbe() has always been previously called */ if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ /* The "x IN (SELECT rowid FROM table)" case */ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; ExplainQueryPlan((pParse, 0, "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); sqlite3VdbeJumpHere(v, iAddr); }else{ Index *pIdx; /* Iterator variable */ int affinity_ok = 1; int i; /* Check that the affinity that will be used to perform each ** comparison is the same as the affinity of each column in table ** on the RHS of the IN operator. If it not, it is not possible to ** use any index of the RHS table. */ for(i=0; ipLeft, i); int iCol = pEList->a[i].pExpr->iColumn; char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); testcase( cmpaff==SQLITE_AFF_BLOB ); testcase( cmpaff==SQLITE_AFF_TEXT ); switch( cmpaff ){ case SQLITE_AFF_BLOB: break; case SQLITE_AFF_TEXT: /* sqlite3CompareAffinity() only returns TEXT if one side or the ** other has no affinity and the other side is TEXT. Hence, ** the only way for cmpaff to be TEXT is for idxaff to be TEXT ** and for the term on the LHS of the IN to have no affinity. */ assert( idxaff==SQLITE_AFF_TEXT ); break; default: affinity_ok = sqlite3IsNumericAffinity(idxaff); } } if( affinity_ok ){ /* Search for an existing index that will work for this IN operator */ for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ Bitmask colUsed; /* Columns of the index used */ Bitmask mCol; /* Mask for the current column */ if( pIdx->nColumnpPartIdxWhere!=0 ) continue; /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute ** BITMASK(nExpr) without overflowing */ testcase( pIdx->nColumn==BMS-2 ); testcase( pIdx->nColumn==BMS-1 ); if( pIdx->nColumn>=BMS-1 ) continue; if( mustBeUnique ){ if( pIdx->nKeyCol>nExpr ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) ){ continue; /* This index is not unique over the IN RHS columns */ } } colUsed = 0; /* Columns of index used so far */ for(i=0; ipLeft, i); Expr *pRhs = pEList->a[i].pExpr; CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); int j; for(j=0; jaiColumn[j]!=pRhs->iColumn ) continue; assert( pIdx->azColl[j] ); if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ continue; } break; } if( j==nExpr ) break; mCol = MASKBIT(j); if( mCol & colUsed ) break; /* Each column used only once */ colUsed |= mCol; if( aiMap ) aiMap[i] = j; } assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); if( colUsed==(MASKBIT(nExpr)-1) ){ /* If we reach this point, that means the index pIdx is usable */ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); ExplainQueryPlan((pParse, 0, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; if( prRhsHasNull ){ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK i64 mask = (1<nMem; if( nExpr==1 ){ sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); } } sqlite3VdbeJumpHere(v, iAddr); } } /* End loop over indexes */ } /* End if( affinity_ok ) */ } /* End if not an rowid index */ } /* End attempt to optimize using an index */ /* If no preexisting index is available for the IN clause ** and IN_INDEX_NOOP is an allowed reply ** and the RHS of the IN operator is a list, not a subquery ** and the RHS is not constant or has two or fewer terms, ** then it is not worth creating an ephemeral table to evaluate ** the IN operator so return IN_INDEX_NOOP. */ if( eType==0 && (inFlags & IN_INDEX_NOOP_OK) && ExprUseXList(pX) && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) ){ pParse->nTab--; /* Back out the allocation of the unused cursor */ iTab = -1; /* Cursor is not allocated */ eType = IN_INDEX_NOOP; } if( eType==0 ){ /* Could not find an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ u32 savedNQueryLoop = pParse->nQueryLoop; int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( inFlags & IN_INDEX_LOOP ){ pParse->nQueryLoop = 0; }else if( prRhsHasNull ){ *prRhsHasNull = rMayHaveNull = ++pParse->nMem; } assert( pX->op==TK_IN ); sqlite3CodeRhsOfIN(pParse, pX, iTab); if( rMayHaveNull ){ sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); } pParse->nQueryLoop = savedNQueryLoop; } if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ int i, n; n = sqlite3ExprVectorSize(pX->pLeft); for(i=0; ipLeft; int nVal = sqlite3ExprVectorSize(pLeft); Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; char *zRet; assert( pExpr->op==TK_IN ); zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); if( zRet ){ int i; for(i=0; ipEList->a[i].pExpr, a); }else{ zRet[i] = a; } } zRet[nVal] = '\0'; } return zRet; } #endif #ifndef SQLITE_OMIT_SUBQUERY /* ** Load the Parse object passed as the first argument with an error ** message of the form: ** ** "sub-select returns N columns - expected M" */ SQLITE_PRIVATE void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ if( pParse->nErr==0 ){ const char *zFmt = "sub-select returns %d columns - expected %d"; sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); } } #endif /* ** Expression pExpr is a vector that has been used in a context where ** it is not permitted. If pExpr is a sub-select vector, this routine ** loads the Parse object with a message of the form: ** ** "sub-select returns N columns - expected 1" ** ** Or, if it is a regular scalar vector: ** ** "row value misused" */ SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ #ifndef SQLITE_OMIT_SUBQUERY if( ExprUseXSelect(pExpr) ){ sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); }else #endif { sqlite3ErrorMsg(pParse, "row value misused"); } } #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code that will construct an ephemeral table containing all terms ** in the RHS of an IN operator. The IN operator can be in either of two ** forms: ** ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter is the IN operator. The cursor number for the ** constructed ephemeral table is returned. The first time the ephemeral ** table is computed, the cursor number is also stored in pExpr->iTable, ** however the cursor number returned might not be the same, as it might ** have been duplicated using OP_OpenDup. ** ** If the LHS expression ("x" in the examples) is a column value, or ** the SELECT statement returns a column value, then the affinity of that ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ SQLITE_PRIVATE void sqlite3CodeRhsOfIN( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The IN operator */ int iTab /* Use this cursor number */ ){ int addrOnce = 0; /* Address of the OP_Once instruction at top */ int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft; /* the LHS of the IN operator */ KeyInfo *pKeyInfo = 0; /* Key information */ int nVal; /* Size of vector pLeft */ Vdbe *v; /* The prepared statement under construction */ v = pParse->pVdbe; assert( v!=0 ); /* The evaluation of the IN must be repeated every time it ** is encountered if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can compute the RHS just once ** and reuse it many names. */ if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ /* Reuse of the RHS is allowed */ /* If this routine has already been coded, but the previous code ** might not have been invoked yet, so invoke it now as a subroutine. */ if( ExprHasProperty(pExpr, EP_Subrtn) ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); if( ExprUseXSelect(pExpr) ){ ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", pExpr->x.pSelect->selId)); } assert( ExprUseYSub(pExpr) ); sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr); assert( iTab!=pExpr->iTable ); sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); sqlite3VdbeJumpHere(v, addrOnce); return; } /* Begin coding the subroutine */ assert( !ExprUseYWin(pExpr) ); ExprSetProperty(pExpr, EP_Subrtn); assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); pExpr->y.sub.regReturn = ++pParse->nMem; pExpr->y.sub.iAddr = sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } /* Check to see if this is a vector IN operator */ pLeft = pExpr->pLeft; nVal = sqlite3ExprVectorSize(pLeft); /* Construct the ephemeral table that will contain the content of ** RHS of the IN operator. */ pExpr->iTable = iTab; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS if( ExprUseXSelect(pExpr) ){ VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); }else{ VdbeComment((v, "RHS of IN operator")); } #endif pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); if( ExprUseXSelect(pExpr) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ Select *pSelect = pExpr->x.pSelect; ExprList *pEList = pSelect->pEList; ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", addrOnce?"":"CORRELATED ", pSelect->selId )); /* If the LHS and RHS of the IN operator do not match, that ** error will have been caught long before we reach this point. */ if( ALWAYS(pEList->nExpr==nVal) ){ Select *pCopy; SelectDest dest; int i; int rc; sqlite3SelectDestInit(&dest, SRT_Set, iTab); dest.zAffSdst = exprINAffinity(pParse, pExpr); pSelect->iLimit = 0; testcase( pSelect->selFlags & SF_Distinct ); testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); sqlite3SelectDelete(pParse->db, pCopy); sqlite3DbFree(pParse->db, dest.zAffSdst); if( rc ){ sqlite3KeyInfoUnref(pKeyInfo); return; } assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ assert( pEList!=0 ); assert( pEList->nExpr>0 ); assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); for(i=0; iaColl[i] = sqlite3BinaryCompareCollSeq( pParse, p, pEList->a[i].pExpr ); } } }else if( ALWAYS(pExpr->x.pList!=0) ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If is a column, then use ** that columns affinity when building index keys. If is not ** a column, use numeric affinity. */ char affinity; /* Affinity of the LHS of the IN */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2; affinity = sqlite3ExprAffinity(pLeft); if( affinity<=SQLITE_AFF_NONE ){ affinity = SQLITE_AFF_BLOB; }else if( affinity==SQLITE_AFF_REAL ){ affinity = SQLITE_AFF_NUMERIC; } if( pKeyInfo ){ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); } /* Loop through each expression in . */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; /* If the expression is not constant then we will need to ** disable the test that was generated above that makes sure ** this code only executes once. Because for a non-constant ** expression we need to rerun this code each time. */ if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ sqlite3VdbeChangeToNoop(v, addrOnce-1); sqlite3VdbeChangeToNoop(v, addrOnce); ExprClearProperty(pExpr, EP_Subrtn); addrOnce = 0; } /* Evaluate the expression and insert it into the temp table */ sqlite3ExprCode(pParse, pE2, r1); sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); } sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } if( pKeyInfo ){ sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); } if( addrOnce ){ sqlite3VdbeAddOp1(v, OP_NullRow, iTab); sqlite3VdbeJumpHere(v, addrOnce); /* Subroutine return */ assert( ExprUseYSub(pExpr) ); assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn || pParse->nErr ); sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr, 1); VdbeCoverage(v); sqlite3ClearTempRegCache(pParse); } } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Generate code for scalar subqueries used as a subquery expression ** or EXISTS operator: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery ** ** The pExpr parameter is the SELECT or EXISTS operator to be coded. ** ** Return the register that holds the result. For a multi-column SELECT, ** the result is stored in a contiguous array of registers and the ** return value is the register of the left-most result column. ** Return 0 if an error occurs. */ #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ int addrOnce = 0; /* Address of OP_Once at top of subroutine */ int rReg = 0; /* Register storing resulting */ Select *pSel; /* SELECT statement to encode */ SelectDest dest; /* How to deal with SELECT result */ int nReg; /* Registers to allocate */ Expr *pLimit; /* New limit expression */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; /* Address of OP_Explain instruction */ #endif Vdbe *v = pParse->pVdbe; assert( v!=0 ); if( pParse->nErr ) return 0; testcase( pExpr->op==TK_EXISTS ); testcase( pExpr->op==TK_SELECT ); assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprUseXSelect(pExpr) ); pSel = pExpr->x.pSelect; /* If this routine has already been coded, then invoke it as a ** subroutine. */ if( ExprHasProperty(pExpr, EP_Subrtn) ){ ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); assert( ExprUseYSub(pExpr) ); sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr); return pExpr->iTable; } /* Begin coding the subroutine */ assert( !ExprUseYWin(pExpr) ); assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); ExprSetProperty(pExpr, EP_Subrtn); pExpr->y.sub.regReturn = ++pParse->nMem; pExpr->y.sub.iAddr = sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; /* The evaluation of the EXISTS/SELECT must be repeated every time it ** is encountered if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } /* For a SELECT, generate code to put the values for all columns of ** the first row into an array of registers and return the index of ** the first register. ** ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) ** into a register and return that register number. ** ** In both cases, the query is augmented with "LIMIT 1". Any ** preexisting limit is discarded in place of the new LIMIT 1. */ ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d", addrOnce?"":"CORRELATED ", pSel->selId)); sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1); nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); pParse->nMem += nReg; if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; dest.iSdst = dest.iSDParm; dest.nSdst = nReg; sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } if( pSel->pLimit ){ /* The subquery already has a limit. If the pre-existing limit is X ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ sqlite3 *db = pParse->db; pLimit = sqlite3Expr(db, TK_INTEGER, "0"); if( pLimit ){ pLimit->affExpr = SQLITE_AFF_NUMERIC; pLimit = sqlite3PExpr(pParse, TK_NE, sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); } sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); pSel->pLimit->pLeft = pLimit; }else{ /* If there is no pre-existing limit add a limit of 1 */ pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); } pSel->iLimit = 0; if( sqlite3Select(pParse, pSel, &dest) ){ pExpr->op2 = pExpr->op; pExpr->op = TK_ERROR; return 0; } pExpr->iTable = rReg = dest.iSDParm; ExprSetVVAProperty(pExpr, EP_NoReduce); if( addrOnce ){ sqlite3VdbeJumpHere(v, addrOnce); } sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); /* Subroutine return */ assert( ExprUseYSub(pExpr) ); assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn || pParse->nErr ); sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr, 1); VdbeCoverage(v); sqlite3ClearTempRegCache(pParse); return rReg; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* ** Expr pIn is an IN(...) expression. This function checks that the ** sub-select on the RHS of the IN() operator has the same number of ** columns as the vector on the LHS. Or, if the RHS of the IN() is not ** a sub-query, that the LHS is a vector of size 1. */ SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ int nVector = sqlite3ExprVectorSize(pIn->pLeft); if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ if( nVector!=pIn->x.pSelect->pEList->nExpr ){ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); return 1; } }else if( nVector!=1 ){ sqlite3VectorErrorMsg(pParse, pIn->pLeft); return 1; } return 0; } #endif #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code for an IN expression. ** ** x IN (SELECT ...) ** x IN (value, value, ...) ** ** The left-hand side (LHS) is a scalar or vector expression. The ** right-hand side (RHS) is an array of zero or more scalar values, or a ** subquery. If the RHS is a subquery, the number of result columns must ** match the number of columns in the vector on the LHS. If the RHS is ** a list of values, the LHS must be a scalar. ** ** The IN operator is true if the LHS value is contained within the RHS. ** The result is false if the LHS is definitely not in the RHS. The ** result is NULL if the presence of the LHS in the RHS cannot be ** determined due to NULLs. ** ** This routine generates code that jumps to destIfFalse if the LHS is not ** contained within the RHS. If due to NULLs we cannot determine if the LHS ** is contained in the RHS then jump to destIfNull. If the LHS is contained ** within the RHS then fall through. ** ** See the separate in-operator.md documentation file in the canonical ** SQLite source tree for additional information. */ static void sqlite3ExprCodeIN( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The IN expression */ int destIfFalse, /* Jump here if LHS is not contained in the RHS */ int destIfNull /* Jump here if the results are unknown due to NULLs */ ){ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ int eType; /* Type of the RHS */ int rLhs; /* Register(s) holding the LHS values */ int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ Vdbe *v; /* Statement under construction */ int *aiMap = 0; /* Map from vector field to index column */ char *zAff = 0; /* Affinity string for comparisons */ int nVector; /* Size of vectors for this IN operator */ int iDummy; /* Dummy parameter to exprCodeVector() */ Expr *pLeft; /* The LHS of the IN operator */ int i; /* loop counter */ int destStep2; /* Where to jump when NULLs seen in step 2 */ int destStep6 = 0; /* Start of code for Step 6 */ int addrTruthOp; /* Address of opcode that determines the IN is true */ int destNotNull; /* Jump here if a comparison is not true in step 6 */ int addrTop; /* Top of the step-6 loop */ int iTab = 0; /* Index to use */ u8 okConstFactor = pParse->okConstFactor; assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); pLeft = pExpr->pLeft; if( sqlite3ExprCheckIN(pParse, pExpr) ) return; zAff = exprINAffinity(pParse, pExpr); nVector = sqlite3ExprVectorSize(pExpr->pLeft); aiMap = (int*)sqlite3DbMallocZero( pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 ); if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; /* Attempt to compute the RHS. After this step, if anything other than ** IN_INDEX_NOOP is returned, the table opened with cursor iTab ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, ** the RHS has not yet been coded. */ v = pParse->pVdbe; assert( v!=0 ); /* OOM detected prior to this routine */ VdbeNoopComment((v, "begin IN expr")); eType = sqlite3FindInIndex(pParse, pExpr, IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap, &iTab); assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC ); #ifdef SQLITE_DEBUG /* Confirm that aiMap[] contains nVector integer values between 0 and ** nVector-1. */ for(i=0; i from " IN (...)". If the LHS is a ** vector, then it is stored in an array of nVector registers starting ** at r1. ** ** sqlite3FindInIndex() might have reordered the fields of the LHS vector ** so that the fields are in the same order as an existing index. The ** aiMap[] array contains a mapping from the original LHS field order to ** the field order that matches the RHS index. ** ** Avoid factoring the LHS of the IN(...) expression out of the loop, ** even if it is constant, as OP_Affinity may be used on the register ** by code generated below. */ assert( pParse->okConstFactor==okConstFactor ); pParse->okConstFactor = 0; rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); pParse->okConstFactor = okConstFactor; for(i=0; ix.pList; pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); if( destIfNull!=destIfFalse ){ regCkNull = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); } for(ii=0; iinExpr; ii++){ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); } sqlite3ReleaseTempReg(pParse, regToFree); if( iinExpr-1 || destIfNull!=destIfFalse ){ int op = rLhs!=r2 ? OP_Eq : OP_NotNull; sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, (void*)pColl, P4_COLLSEQ); VdbeCoverageIf(v, iinExpr-1 && op==OP_Eq); VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); VdbeCoverageIf(v, iinExpr-1 && op==OP_NotNull); VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); sqlite3VdbeChangeP5(v, zAff[0]); }else{ int op = rLhs!=r2 ? OP_Ne : OP_IsNull; assert( destIfNull==destIfFalse ); sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, (void*)pColl, P4_COLLSEQ); VdbeCoverageIf(v, op==OP_Ne); VdbeCoverageIf(v, op==OP_IsNull); sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); } } if( regCkNull ){ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); sqlite3VdbeGoto(v, destIfFalse); } sqlite3VdbeResolveLabel(v, labelOk); sqlite3ReleaseTempReg(pParse, regCkNull); goto sqlite3ExprCodeIN_finished; } /* Step 2: Check to see if the LHS contains any NULL columns. If the ** LHS does contain NULLs then the result must be either FALSE or NULL. ** We will then skip the binary search of the RHS. */ if( destIfNull==destIfFalse ){ destStep2 = destIfFalse; }else{ destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); } for(i=0; ipLeft, i); if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; if( sqlite3ExprCanBeNull(p) ){ sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); VdbeCoverage(v); } } /* Step 3. The LHS is now known to be non-NULL. Do the binary search ** of the RHS using the LHS as a probe. If found, the result is ** true. */ if( eType==IN_INDEX_ROWID ){ /* In this case, the RHS is the ROWID of table b-tree and so we also ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 ** into a single opcode. */ sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); VdbeCoverage(v); addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ }else{ sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); if( destIfFalse==destIfNull ){ /* Combine Step 3 and Step 5 into a single opcode */ sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, rLhs, nVector); VdbeCoverage(v); goto sqlite3ExprCodeIN_finished; } /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, rLhs, nVector); VdbeCoverage(v); } /* Step 4. If the RHS is known to be non-NULL and we did not find ** an match on the search above, then the result must be FALSE. */ if( rRhsHasNull && nVector==1 ){ sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); VdbeCoverage(v); } /* Step 5. If we do not care about the difference between NULL and ** FALSE, then just return false. */ if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. ** If any comparison is NULL, then the result is NULL. If all ** comparisons are FALSE then the final result is FALSE. ** ** For a scalar LHS, it is sufficient to check just the first row ** of the RHS. */ if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); VdbeCoverage(v); if( nVector>1 ){ destNotNull = sqlite3VdbeMakeLabel(pParse); }else{ /* For nVector==1, combine steps 6 and 7 by immediately returning ** FALSE if the first comparison is not NULL */ destNotNull = destIfFalse; } for(i=0; i1 ){ sqlite3VdbeResolveLabel(v, destNotNull); sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); VdbeCoverage(v); /* Step 7: If we reach this point, we know that the result must ** be false. */ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); } /* Jumps here in order to return true. */ sqlite3VdbeJumpHere(v, addrTruthOp); sqlite3ExprCodeIN_finished: if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); VdbeComment((v, "end IN expr")); sqlite3ExprCodeIN_oom_error: sqlite3DbFree(pParse->db, aiMap); sqlite3DbFree(pParse->db, zAff); } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Generate an instruction that will put the floating point ** value described by z[0..n-1] into register iMem. ** ** The z[] string will probably not be zero-terminated. But the ** z[n] character is guaranteed to be something that does not look ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ if( negateFlag ) value = -value; sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); } } #endif /* ** Generate an instruction that will put the integer describe by ** text z[0..n-1] into register iMem. ** ** Expr.u.zToken is always UTF8 and zero-terminated. */ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ Vdbe *v = pParse->pVdbe; if( pExpr->flags & EP_IntValue ){ int i = pExpr->u.iValue; assert( i>=0 ); if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3DecOrHexToI64(z, &value); if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ #ifdef SQLITE_OMIT_FLOATING_POINT sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); #else #ifndef SQLITE_OMIT_HEX_INTEGER if( sqlite3_strnicmp(z,"0x",2)==0 ){ sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", negFlag?"-":"",pExpr); }else #endif { codeReal(v, z, negFlag, iMem); } #endif }else{ if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); } } } /* Generate code that will load into register regOut a value that is ** appropriate for the iIdxCol-th column of index pIdx. */ SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn( Parse *pParse, /* The parsing context */ Index *pIdx, /* The index whose column is to be loaded */ int iTabCur, /* Cursor pointing to a table row */ int iIdxCol, /* The column of the index to be loaded */ int regOut /* Store the index column value in this register */ ){ i16 iTabCol = pIdx->aiColumn[iIdxCol]; if( iTabCol==XN_EXPR ){ assert( pIdx->aColExpr ); assert( pIdx->aColExpr->nExpr>iIdxCol ); pParse->iSelfTab = iTabCur + 1; sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); pParse->iSelfTab = 0; }else{ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, iTabCol, regOut); } } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* ** Generate code that will compute the value of generated column pCol ** and store the result in register regOut */ SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn( Parse *pParse, /* Parsing context */ Table *pTab, /* Table containing the generated column */ Column *pCol, /* The generated column */ int regOut /* Put the result in this register */ ){ int iAddr; Vdbe *v = pParse->pVdbe; int nErr = pParse->nErr; assert( v!=0 ); assert( pParse->iSelfTab!=0 ); if( pParse->iSelfTab>0 ){ iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); }else{ iAddr = 0; } sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); if( pCol->affinity>=SQLITE_AFF_TEXT ){ sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); } if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1; } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ /* ** Generate code to extract the value of the iCol-th column of a table. */ SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable( Vdbe *v, /* Parsing context */ Table *pTab, /* The table containing the value */ int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ int iCol, /* Index of the column to extract */ int regOut /* Extract the value into this register */ ){ Column *pCol; assert( v!=0 ); assert( pTab!=0 ); assert( iCol!=XN_EXPR ); if( iCol<0 || iCol==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); VdbeComment((v, "%s.rowid", pTab->zName)); }else{ int op; int x; if( IsVirtual(pTab) ){ op = OP_VColumn; x = iCol; #ifndef SQLITE_OMIT_GENERATED_COLUMNS }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ Parse *pParse = sqlite3VdbeParser(v); if( pCol->colFlags & COLFLAG_BUSY ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zCnName); }else{ int savedSelfTab = pParse->iSelfTab; pCol->colFlags |= COLFLAG_BUSY; pParse->iSelfTab = iTabCur+1; sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); pParse->iSelfTab = savedSelfTab; pCol->colFlags &= ~COLFLAG_BUSY; } return; #endif }else if( !HasRowid(pTab) ){ testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); op = OP_Column; }else{ x = sqlite3TableColumnToStorage(pTab,iCol); testcase( x!=iCol ); op = OP_Column; } sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); sqlite3ColumnDefault(v, pTab, iCol, regOut); } } /* ** Generate code that will extract the iColumn-th column from ** table pTab and store the column value in register iReg. ** ** There must be an open cursor to pTab in iTable when this routine ** is called. If iColumn<0 then code is generated that extracts the rowid. */ SQLITE_PRIVATE int sqlite3ExprCodeGetColumn( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg, /* Store results here */ u8 p5 /* P5 value for OP_Column + FLAGS */ ){ assert( pParse->pVdbe!=0 ); assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 ); assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 ); sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); if( p5 ){ VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Column ) pOp->p5 = p5; if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG); } return iReg; } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. */ SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); } /* ** Convert a scalar expression node to a TK_REGISTER referencing ** register iReg. The caller must ensure that iReg already contains ** the correct value for the expression. */ static void exprToRegister(Expr *pExpr, int iReg){ Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); if( NEVER(p==0) ) return; p->op2 = p->op; p->op = TK_REGISTER; p->iTable = iReg; ExprClearProperty(p, EP_Skip); } /* ** Evaluate an expression (either a vector or a scalar expression) and store ** the result in contiguous temporary registers. Return the index of ** the first register used to store the result. ** ** If the returned result register is a temporary scalar, then also write ** that register number into *piFreeable. If the returned result register ** is not a temporary or if the expression is a vector set *piFreeable ** to 0. */ static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ int iResult; int nResult = sqlite3ExprVectorSize(p); if( nResult==1 ){ iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); }else{ *piFreeable = 0; if( p->op==TK_SELECT ){ #if SQLITE_OMIT_SUBQUERY iResult = 0; #else iResult = sqlite3CodeSubselect(pParse, p); #endif }else{ int i; iResult = pParse->nMem+1; pParse->nMem += nResult; assert( ExprUseXList(p) ); for(i=0; ix.pList->a[i].pExpr, i+iResult); } } } return iResult; } /* ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) ** so that a subsequent copy will not be merged into this one. */ static void setDoNotMergeFlagOnCopy(Vdbe *v){ if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */ } } /* ** Generate code to implement special SQL functions that are implemented ** in-line rather than by using the usual callbacks. */ static int exprCodeInlineFunction( Parse *pParse, /* Parsing context */ ExprList *pFarg, /* List of function arguments */ int iFuncId, /* Function ID. One of the INTFUNC_... values */ int target /* Store function result in this register */ ){ int nFarg; Vdbe *v = pParse->pVdbe; assert( v!=0 ); assert( pFarg!=0 ); nFarg = pFarg->nExpr; assert( nFarg>0 ); /* All in-line functions have at least one argument */ switch( iFuncId ){ case INLINEFUNC_coalesce: { /* Attempt a direct implementation of the built-in COALESCE() and ** IFNULL() functions. This avoids unnecessary evaluation of ** arguments past the first non-NULL argument. */ int endCoalesce = sqlite3VdbeMakeLabel(pParse); int i; assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; ia[i].pExpr, target); } setDoNotMergeFlagOnCopy(v); sqlite3VdbeResolveLabel(v, endCoalesce); break; } case INLINEFUNC_iif: { Expr caseExpr; memset(&caseExpr, 0, sizeof(caseExpr)); caseExpr.op = TK_CASE; caseExpr.x.pList = pFarg; return sqlite3ExprCodeTarget(pParse, &caseExpr, target); } #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC case INLINEFUNC_sqlite_offset: { Expr *pArg = pFarg->a[0].pExpr; if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } break; } #endif default: { /* The UNLIKELY() function is a no-op. The result is the value ** of the first argument. */ assert( nFarg==1 || nFarg==2 ); target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); break; } /*********************************************************************** ** Test-only SQL functions that are only usable if enabled ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS */ #if !defined(SQLITE_UNTESTABLE) case INLINEFUNC_expr_compare: { /* Compare two expressions using sqlite3ExprCompare() */ assert( nFarg==2 ); sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), target); break; } case INLINEFUNC_expr_implies_expr: { /* Compare two expressions using sqlite3ExprImpliesExpr() */ assert( nFarg==2 ); sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), target); break; } case INLINEFUNC_implies_nonnull_row: { /* Result of sqlite3ExprImpliesNonNullRow() */ Expr *pA1; assert( nFarg==2 ); pA1 = pFarg->a[1].pExpr; if( pA1->op==TK_COLUMN ){ sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1), target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } break; } case INLINEFUNC_affinity: { /* The AFFINITY() function evaluates to a string that describes ** the type affinity of the argument. This is used for testing of ** the SQLite type logic. */ const char *azAff[] = { "blob", "text", "numeric", "integer", "real", "flexnum" }; char aff; assert( nFarg==1 ); aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); assert( aff<=SQLITE_AFF_NONE || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) ); sqlite3VdbeLoadString(v, target, (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); break; } #endif /* !defined(SQLITE_UNTESTABLE) */ } return target; } /* ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr. ** If it is, then resolve the expression by reading from the index and ** return the register into which the value has been read. If pExpr is ** not an indexed expression, then return negative. */ static SQLITE_NOINLINE int sqlite3IndexedExprLookup( Parse *pParse, /* The parsing context */ Expr *pExpr, /* The expression to potentially bypass */ int target /* Where to store the result of the expression */ ){ IndexedExpr *p; Vdbe *v; for(p=pParse->pIdxEpr; p; p=p->pIENext){ u8 exprAff; int iDataCur = p->iDataCur; if( iDataCur<0 ) continue; if( pParse->iSelfTab ){ if( p->iDataCur!=pParse->iSelfTab-1 ) continue; iDataCur = -1; } if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC ); exprAff = sqlite3ExprAffinity(pExpr); if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB) || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT) || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC) ){ /* Affinity mismatch on a generated column */ continue; } v = pParse->pVdbe; assert( v!=0 ); if( p->bMaybeNullRow ){ /* If the index is on a NULL row due to an outer join, then we ** cannot extract the value from the index. The value must be ** computed using the original expression. */ int addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); sqlite3VdbeGoto(v, 0); p = pParse->pIdxEpr; pParse->pIdxEpr = 0; sqlite3ExprCode(pParse, pExpr, target); pParse->pIdxEpr = p; sqlite3VdbeJumpHere(v, addr+2); }else{ sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); } return target; } return -1; /* Not found */ } /* ** Generate code into the current Vdbe to evaluate the given ** expression. Attempt to store the results in register "target". ** Return the register where results are stored. ** ** With this routine, there is no guarantee that results will ** be stored in target. The result might be stored in some other ** register if it is convenient to do so. The calling function ** must check the return code and move the results to the desired ** register. */ SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; /* The VM under construction */ int op; /* The opcode being coded */ int inReg = target; /* Results stored in register inReg */ int regFree1 = 0; /* If non-zero free this temporary register */ int regFree2 = 0; /* If non-zero free this temporary register */ int r1, r2; /* Various register numbers */ Expr tempX; /* Temporary expression node */ int p5 = 0; assert( target>0 && target<=pParse->nMem ); assert( v!=0 ); expr_code_doover: if( pExpr==0 ){ op = TK_NULL; }else if( pParse->pIdxEpr!=0 && !ExprHasProperty(pExpr, EP_Leaf) && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 ){ return r1; }else{ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); op = pExpr->op; } switch( op ){ case TK_AGG_COLUMN: { AggInfo *pAggInfo = pExpr->pAggInfo; struct AggInfo_col *pCol; assert( pAggInfo!=0 ); assert( pExpr->iAgg>=0 ); if( pExpr->iAgg>=pAggInfo->nColumn ){ /* Happens when the left table of a RIGHT JOIN is null and ** is using an expression index */ sqlite3VdbeAddOp2(v, OP_Null, 0, target); #ifdef SQLITE_VDBE_COVERAGE /* Verify that the OP_Null above is exercised by tests ** tag-20230325-2 */ sqlite3VdbeAddOp2(v, OP_NotNull, target, 1); VdbeCoverageNeverTaken(v); #endif break; } pCol = &pAggInfo->aCol[pExpr->iAgg]; if( !pAggInfo->directMode ){ return AggInfoColumnReg(pAggInfo, pExpr->iAgg); }else if( pAggInfo->useSortingIdx ){ Table *pTab = pCol->pTab; sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pCol->iSorterColumn, target); if( pTab==0 ){ /* No comment added */ }else if( pCol->iColumn<0 ){ VdbeComment((v,"%s.rowid",pTab->zName)); }else{ VdbeComment((v,"%s.%s", pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } } return target; }else if( pExpr->y.pTab==0 ){ /* This case happens when the argument to an aggregate function ** is rewritten by aggregateConvertIndexedExprRefToColumn() */ sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target); return target; } /* Otherwise, fall thru into the TK_COLUMN case */ /* no break */ deliberate_fall_through } case TK_COLUMN: { int iTab = pExpr->iTable; int iReg; if( ExprHasProperty(pExpr, EP_FixedCol) ){ /* This COLUMN expression is really a constant due to WHERE clause ** constraints, and that constant is coded by the pExpr->pLeft ** expression. However, make sure the constant has the correct ** datatype by applying the Affinity of the table column to the ** constant. */ int aff; iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); if( aff>SQLITE_AFF_BLOB ){ static const char zAff[] = "B\000C\000D\000E\000F"; assert( SQLITE_AFF_BLOB=='A' ); assert( SQLITE_AFF_TEXT=='B' ); sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, &zAff[(aff-'B')*2], P4_STATIC); } return iReg; } if( iTab<0 ){ if( pParse->iSelfTab<0 ){ /* Other columns in the same row for CHECK constraints or ** generated columns or for inserting into partial index. ** The row is unpacked into registers beginning at ** 0-(pParse->iSelfTab). The rowid (if any) is in a register ** immediately prior to the first column. */ Column *pCol; Table *pTab; int iSrc; int iCol = pExpr->iColumn; assert( ExprUseYTab(pExpr) ); pTab = pExpr->y.pTab; assert( pTab!=0 ); assert( iCol>=XN_ROWID ); assert( iColnCol ); if( iCol<0 ){ return -1-pParse->iSelfTab; } pCol = pTab->aCol + iCol; testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pCol->colFlags & COLFLAG_GENERATED ){ if( pCol->colFlags & COLFLAG_BUSY ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zCnName); return 0; } pCol->colFlags |= COLFLAG_BUSY; if( pCol->colFlags & COLFLAG_NOTAVAIL ){ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); } pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); return iSrc; }else #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ if( pCol->affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); sqlite3VdbeAddOp1(v, OP_RealAffinity, target); return target; }else{ return iSrc; } }else{ /* Coding an expression that is part of an index where column names ** in the index refer to the table to which the index belongs */ iTab = pParse->iSelfTab - 1; } } assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, pExpr->iColumn, iTab, target, pExpr->op2); return iReg; } case TK_INTEGER: { codeInteger(pParse, pExpr, 0, target); return target; } case TK_TRUEFALSE: { sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); return target; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pExpr->u.zToken, 0, target); return target; } #endif case TK_STRING: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3VdbeLoadString(v, target, pExpr->u.zToken); return target; } default: { /* Make NULL the default case so that if a bug causes an illegal ** Expr node to be passed into this function, it will be handled ** sanely and not crash. But keep the assert() to bring the problem ** to the attention of the developers. */ assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); sqlite3VdbeAddOp2(v, OP_Null, 0, target); return target; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { int n; const char *z; char *zBlob; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); z = &pExpr->u.zToken[2]; n = sqlite3Strlen30(z) - 1; assert( z[n]=='\'' ); zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); return target; } #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); } return target; } case TK_REGISTER: { return pExpr->iTable; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ sqlite3ExprCode(pParse, pExpr->pLeft, target); assert( inReg==target ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3VdbeAddOp2(v, OP_Cast, target, sqlite3AffinityType(pExpr->u.zToken, 0)); return inReg; } #endif /* SQLITE_OMIT_CAST */ case TK_IS: case TK_ISNOT: op = (op==TK_IS) ? TK_EQ : TK_NE; p5 = SQLITE_NULLEQ; /* fall-through */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { Expr *pLeft = pExpr->pLeft; if( sqlite3ExprIsVector(pLeft) ){ codeVectorCompare(pParse, pExpr, target, op, p5); }else{ r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, sqlite3VdbeCurrentAddr(v)+2, p5, ExprHasProperty(pExpr,EP_Commuted)); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); if( p5==SQLITE_NULLEQ ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); }else{ sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); } testcase( regFree1==0 ); testcase( regFree2==0 ); } break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); testcase( op==TK_AND ); assert( TK_OR==OP_Or ); testcase( op==TK_OR ); assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp3(v, op, r2, r1, target); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_UMINUS: { Expr *pLeft = pExpr->pLeft; assert( pLeft ); if( pLeft->op==TK_INTEGER ){ codeInteger(pParse, pLeft, 1, target); return target; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( pLeft->op==TK_FLOAT ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pLeft->u.zToken, 1, target); return target; #endif }else{ tempX.op = TK_INTEGER; tempX.flags = EP_IntValue|EP_TokenOnly; tempX.u.iValue = 0; ExprClearVVAProperties(&tempX); r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); testcase( regFree2==0 ); } break; } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); sqlite3VdbeAddOp2(v, op, r1, inReg); break; } case TK_TRUTH: { int isTrue; /* IS TRUE or IS NOT TRUE */ int bNormal; /* IS TRUE or IS FALSE */ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); isTrue = sqlite3ExprTruthValue(pExpr->pRight); bNormal = pExpr->op2==TK_IS; testcase( isTrue && bNormal); testcase( !isTrue && bNormal); sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); break; } case TK_ISNULL: case TK_NOTNULL: { int addr; assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); sqlite3VdbeAddOp2(v, OP_Integer, 0, target); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 || NEVER(pExpr->iAgg<0) || NEVER(pExpr->iAgg>=pInfo->nFunc) ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); }else{ return AggInfoFuncReg(pInfo, pExpr->iAgg); } break; } case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ int nFarg; /* Number of function arguments */ FuncDef *pDef; /* The function definition object */ const char *zId; /* The function name */ u32 constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* The database connection */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ return pExpr->y.pWin->regResult; } #endif if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ /* SQL functions can be expensive. So try to avoid running them ** multiple times if we know they always give the same result */ return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); } assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); assert( ExprUseXList(pExpr) ); pFarg = pExpr->x.pList; nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION if( pDef==0 && pParse->explain ){ pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); } #endif if( pDef==0 || pDef->xFinalize!=0 ){ sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); break; } if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){ assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); return exprCodeInlineFunction(pParse, pFarg, SQLITE_PTR_TO_INT(pDef->pUserData), target); }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ sqlite3ExprFunctionUsable(pParse, pExpr, pDef); } for(i=0; ia[i].pExpr) ){ testcase( i==31 ); constMask |= MASKBIT32(i); } if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); } } if( pFarg ){ if( constMask ){ r1 = pParse->nMem+1; pParse->nMem += nFarg; }else{ r1 = sqlite3GetTempRange(pParse, nFarg); } /* For length() and typeof() and octet_length() functions, ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid ** unnecessary data loading. */ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ u8 exprOp; assert( nFarg==1 ); assert( pFarg->a[0].pExpr!=0 ); exprOp = pFarg->a[0].pExpr->op; if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG ); assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG); pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG; } } sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR); }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the ** second argument, not the first, as the argument to test to ** see if it is a column in a virtual table. This is done because ** the left operand of infix functions (the operand we want to ** control overloading) ends up as the second argument to the ** function. The expression "A glob B" is equivalent to ** "glob(B,A). We want to use the A in "A glob B" to test ** for function overloading. But we use the B term in "glob(B,A)". */ if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); }else if( nFarg>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, pDef, pExpr->op2); if( nFarg ){ if( constMask==0 ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); }else{ sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); } } return target; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { int nCol; testcase( op==TK_EXISTS ); testcase( op==TK_SELECT ); if( pParse->db->mallocFailed ){ return 0; }else if( op==TK_SELECT && ALWAYS( ExprUseXSelect(pExpr) ) && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ sqlite3SubselectError(pParse, nCol, 1); }else{ return sqlite3CodeSubselect(pParse, pExpr); } break; } case TK_SELECT_COLUMN: { int n; Expr *pLeft = pExpr->pLeft; if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); pLeft->op2 = pParse->withinRJSubrtn; } assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); n = sqlite3ExprVectorSize(pLeft); if( pExpr->iTable!=n ){ sqlite3ErrorMsg(pParse, "%d columns assigned %d values", pExpr->iTable, n); } return pLeft->iTable + pExpr->iColumn; } case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(pParse); int destIfNull = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, target); sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); sqlite3VdbeResolveLabel(v, destIfFalse); sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); sqlite3VdbeResolveLabel(v, destIfNull); return target; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { exprCodeBetween(pParse, pExpr, target, 0, 0); return target; } case TK_COLLATE: { if( !ExprHasProperty(pExpr, EP_Collate) ){ /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called ** "SOFT-COLLATE" that is added to constraints that are pushed down ** from outer queries into sub-queries by the push-down optimization. ** Clear subtypes as subtypes may not cross a subquery boundary. */ assert( pExpr->pLeft ); sqlite3ExprCode(pParse, pExpr->pLeft, target); sqlite3VdbeAddOp1(v, OP_ClrSubtype, target); return target; }else{ pExpr = pExpr->pLeft; goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ } } case TK_SPAN: case TK_UPLUS: { pExpr = pExpr->pLeft; goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. ** ** The expression is implemented using an OP_Param opcode. The p1 ** parameter is set to 0 for an old.rowid reference, or to (i+1) ** to reference another column of the old.* pseudo-table, where ** i is the index of the column. For a new.rowid reference, p1 is ** set to (n+1), where n is the number of columns in each pseudo-table. ** For a reference to any other column in the new.* pseudo-table, p1 ** is set to (n+2+i), where n and i are as defined previously. For ** example, if the table on which triggers are being fired is ** declared as: ** ** CREATE TABLE t1(a, b); ** ** Then p1 is interpreted as follows: ** ** p1==0 -> old.rowid p1==3 -> new.rowid ** p1==1 -> old.a p1==4 -> new.a ** p1==2 -> old.b p1==5 -> new.b */ Table *pTab; int iCol; int p1; assert( ExprUseYTab(pExpr) ); pTab = pExpr->y.pTab; iCol = pExpr->iColumn; p1 = pExpr->iTable * (pTab->nCol+1) + 1 + sqlite3TableColumnToStorage(pTab, iCol); assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( iCol>=-1 && iColnCol ); assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); VdbeComment((v, "r[%d]=%s.%s", target, (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. ** ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to ** floating point when extracting it from the record. */ if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } #endif break; } case TK_VECTOR: { sqlite3ErrorMsg(pParse, "row value misused"); break; } /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions ** that derive from the right-hand table of a LEFT JOIN. The ** Expr.iTable value is the table number for the right-hand table. ** The expression is only evaluated if that table is not currently ** on a LEFT JOIN NULL row. */ case TK_IF_NULL_ROW: { int addrINR; u8 okConstFactor = pParse->okConstFactor; AggInfo *pAggInfo = pExpr->pAggInfo; if( pAggInfo ){ assert( pExpr->iAgg>=0 && pExpr->iAggnColumn ); if( !pAggInfo->directMode ){ inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg); break; } if( pExpr->pAggInfo->useSortingIdx ){ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pAggInfo->aCol[pExpr->iAgg].iSorterColumn, target); inReg = target; break; } } addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target); /* The OP_IfNullRow opcode above can overwrite the result register with ** NULL. So we have to ensure that the result register is not a value ** that is suppose to be a constant. Two defenses are needed: ** (1) Temporarily disable factoring of constant expressions ** (2) Make sure the computed value really is stored in register ** "target" and not someplace else. */ pParse->okConstFactor = 0; /* note (1) above */ sqlite3ExprCode(pParse, pExpr->pLeft, target); assert( target==inReg ); pParse->okConstFactor = okConstFactor; sqlite3VdbeJumpHere(v, addrINR); break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form A is can be transformed into the equivalent form B as follows: ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... ** WHEN x=eN THEN rN ELSE y END ** ** X (if it exists) is in pExpr->pLeft. ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is ** odd. The Y is also optional. If the number of elements in x.pList ** is even, then Y is omitted and the "otherwise" result is NULL. ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. ** ** The result of the expression is the Ri for the first matching Ei, ** or if there is no matching Ei, the ELSE term Y, or if there is ** no ELSE term, NULL. */ case TK_CASE: { int endLabel; /* GOTO label for end of CASE stmt */ int nextCase; /* GOTO label for next WHEN clause */ int nExpr; /* 2x number of WHEN terms */ int i; /* Loop counter */ ExprList *pEList; /* List of WHEN terms */ struct ExprList_item *aListelem; /* Array of WHEN terms */ Expr opCompare; /* The X==Ei expression */ Expr *pX; /* The X expression */ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ Expr *pDel = 0; sqlite3 *db = pParse->db; assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); assert(pExpr->x.pList->nExpr > 0); pEList = pExpr->x.pList; aListelem = pEList->a; nExpr = pEList->nExpr; endLabel = sqlite3VdbeMakeLabel(pParse); if( (pX = pExpr->pLeft)!=0 ){ pDel = sqlite3ExprDup(db, pX, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDel); break; } testcase( pX->op==TK_COLUMN ); exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); testcase( regFree1==0 ); memset(&opCompare, 0, sizeof(opCompare)); opCompare.op = TK_EQ; opCompare.pLeft = pDel; pTest = &opCompare; /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: ** The value in regFree1 might get SCopy-ed into the file result. ** So make sure that the regFree1 register is not reused for other ** purposes and possibly overwritten. */ regFree1 = 0; } for(i=0; iop==TK_COLUMN ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeGoto(v, endLabel); sqlite3VdbeResolveLabel(v, nextCase); } if( (nExpr&1)!=0 ){ sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } sqlite3ExprDelete(db, pDel); setDoNotMergeFlagOnCopy(v); sqlite3VdbeResolveLabel(v, endLabel); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { assert( pExpr->affExpr==OE_Rollback || pExpr->affExpr==OE_Abort || pExpr->affExpr==OE_Fail || pExpr->affExpr==OE_Ignore ); if( !pParse->pTriggerTab && !pParse->nested ){ sqlite3ErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); return 0; } if( pExpr->affExpr==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affExpr==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); VdbeCoverage(v); }else{ sqlite3HaltConstraint(pParse, pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, pExpr->affExpr, pExpr->u.zToken, 0, 0); } break; } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; } /* ** Generate code that will evaluate expression pExpr just one time ** per prepared statement execution. ** ** If the expression uses functions (that might throw an exception) then ** guard them with an OP_Once opcode to ensure that the code is only executed ** once. If no functions are involved, then factor the code out and put it at ** the end of the prepared statement in the initialization section. ** ** If regDest>=0 then the result is always stored in that register and the ** result is not reusable. If regDest<0 then this routine is free to ** store the value wherever it wants. The register where the expression ** is stored is returned. When regDest<0, two identical expressions might ** code to the same register, if they do not contain function calls and hence ** are factored out into the initialization section at the end of the ** prepared statement. */ SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The expression to code when the VDBE initializes */ int regDest /* Store the value in this register */ ){ ExprList *p; assert( ConstFactorOk(pParse) ); p = pParse->pConstExpr; if( regDest<0 && p ){ struct ExprList_item *pItem; int i; for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ if( pItem->fg.reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ return pItem->u.iConstExprReg; } } } pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ Vdbe *v = pParse->pVdbe; int addr; assert( v ); addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); pParse->okConstFactor = 0; if( !pParse->db->mallocFailed ){ if( regDest<0 ) regDest = ++pParse->nMem; sqlite3ExprCode(pParse, pExpr, regDest); } pParse->okConstFactor = 1; sqlite3ExprDelete(pParse->db, pExpr); sqlite3VdbeJumpHere(v, addr); }else{ p = sqlite3ExprListAppend(pParse, p, pExpr); if( p ){ struct ExprList_item *pItem = &p->a[p->nExpr-1]; pItem->fg.reusable = regDest<0; if( regDest<0 ) regDest = ++pParse->nMem; pItem->u.iConstExprReg = regDest; } pParse->pConstExpr = p; } return regDest; } /* ** Generate code to evaluate an expression and store the results ** into a register. Return the register number where the results ** are stored. ** ** If the register is a temporary register that can be deallocated, ** then write its number into *pReg. If the result register is not ** a temporary, then set *pReg to zero. ** ** If pExpr is a constant, then this routine might generate this ** code to fill the register in the initialization section of the ** VDBE program, in order to factor it out of the evaluation loop. */ SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ int r2; pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); if( ConstFactorOk(pParse) && ALWAYS(pExpr!=0) && pExpr->op!=TK_REGISTER && sqlite3ExprIsConstantNotJoin(pExpr) ){ *pReg = 0; r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); }else{ int r1 = sqlite3GetTempReg(pParse); r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( r2==r1 ){ *pReg = r1; }else{ sqlite3ReleaseTempReg(pParse, r1); *pReg = 0; } } return r2; } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); assert( target>0 && target<=pParse->nMem ); assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); if( pParse->pVdbe==0 ) return; inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); if( inReg!=target ){ u8 op; if( ALWAYS(pExpr) && (ExprHasProperty(pExpr,EP_Subquery) || pExpr->op==TK_REGISTER) ){ op = OP_Copy; }else{ op = OP_SCopy; } sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); } } /* ** Make a transient copy of expression pExpr and then code it using ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() ** except that the input expression is guaranteed to be unchanged. */ SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ sqlite3 *db = pParse->db; pExpr = sqlite3ExprDup(db, pExpr, 0); if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); sqlite3ExprDelete(db, pExpr); } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. If the expression is constant, then this routine ** might choose to code the expression at initialization time. */ SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); }else{ sqlite3ExprCodeCopy(pParse, pExpr, target); } } /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. The number returned will ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF ** is defined. ** ** The SQLITE_ECEL_DUP flag prevents the arguments from being ** filled using OP_SCopy. OP_Copy must be used instead. ** ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be ** factored out into initialization code. ** ** The SQLITE_ECEL_REF flag means that expressions in the list with ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored ** in registers at srcReg, and so the value can be copied from there. ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 ** are simply omitted rather than being copied from srcReg. */ SQLITE_PRIVATE int sqlite3ExprCodeExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* The expression list to be coded */ int target, /* Where to write results */ int srcReg, /* Source registers if SQLITE_ECEL_REF */ u8 flags /* SQLITE_ECEL_* flags */ ){ struct ExprList_item *pItem; int i, j, n; u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; Vdbe *v = pParse->pVdbe; assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; for(pItem=pList->a, i=0; ipExpr; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pItem->fg.bSorterRef ){ i--; n--; }else #endif if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ if( flags & SQLITE_ECEL_OMITREF ){ i--; n--; }else{ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); } }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstantNotJoin(pExpr) ){ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); }else{ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); if( inReg!=target+i ){ VdbeOp *pOp; if( copyOp==OP_Copy && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy && pOp->p1+pOp->p3+1==inReg && pOp->p2+pOp->p3+1==target+i && pOp->p5==0 /* The do-not-merge flag must be clear */ ){ pOp->p3++; }else{ sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); } } } } return n; } /* ** Generate code for a BETWEEN operator. ** ** x BETWEEN y AND z ** ** The above is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression ** elimination of x. ** ** The xJumpIf parameter determines details: ** ** NULL: Store the boolean result in reg[dest] ** sqlite3ExprIfTrue: Jump to dest if true ** sqlite3ExprIfFalse: Jump to dest if false ** ** The jumpIfNull parameter is ignored if xJumpIf is NULL. */ static void exprCodeBetween( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The BETWEEN expression */ int dest, /* Jump destination or storage location */ void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ int jumpIfNull /* Take the jump if the BETWEEN is NULL */ ){ Expr exprAnd; /* The AND operator in x>=y AND x<=z */ Expr compLeft; /* The x>=y term */ Expr compRight; /* The x<=z term */ int regFree1 = 0; /* Temporary use register */ Expr *pDel = 0; sqlite3 *db = pParse->db; memset(&compLeft, 0, sizeof(Expr)); memset(&compRight, 0, sizeof(Expr)); memset(&exprAnd, 0, sizeof(Expr)); assert( ExprUseXList(pExpr) ); pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); if( db->mallocFailed==0 ){ exprAnd.op = TK_AND; exprAnd.pLeft = &compLeft; exprAnd.pRight = &compRight; compLeft.op = TK_GE; compLeft.pLeft = pDel; compLeft.pRight = pExpr->x.pList->a[0].pExpr; compRight.op = TK_LE; compRight.pLeft = pDel; compRight.pRight = pExpr->x.pList->a[1].pExpr; exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); if( xJump ){ xJump(pParse, &exprAnd, dest, jumpIfNull); }else{ /* Mark the expression is being from the ON or USING clause of a join ** so that the sqlite3ExprCodeTarget() routine will not attempt to move ** it into the Parse.pConstExpr list. We should use a new bit for this, ** for clarity, but we are out of bits in the Expr.flags field so we ** have to reuse the EP_OuterON bit. Bummer. */ pDel->flags |= EP_OuterON; sqlite3ExprCodeTarget(pParse, &exprAnd, dest); } sqlite3ReleaseTempReg(pParse, regFree1); } sqlite3ExprDelete(db, pDel); /* Ensure adequate test coverage */ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); testcase( xJump==0 ); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is true but execution ** continues straight thru if the expression is false. ** ** If the expression evaluates to NULL (neither true nor false), then ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. ** ** This code depends on the fact that certain token values (ex: TK_EQ) ** are the same as opcode values (ex: OP_Eq) that implement the corresponding ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in ** the make process cause these values to align. Assert()s in the code ** below verify that the numbers are aligned correctly. */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ if( NEVER(pExpr==0) ) return; /* No way this can happen */ assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); op = pExpr->op; switch( op ){ case TK_AND: case TK_OR: { Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); if( pAlt!=pExpr ){ sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); }else if( op==TK_AND ){ int d2 = sqlite3VdbeMakeLabel(pParse); testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); }else{ testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); } break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_TRUTH: { int isNot; /* IS NOT TRUE or IS NOT FALSE */ int isTrue; /* IS TRUE or IS NOT TRUE */ testcase( jumpIfNull==0 ); isNot = pExpr->op2==TK_ISNOT; isTrue = sqlite3ExprTruthValue(pExpr->pRight); testcase( isTrue && isNot ); testcase( !isTrue && isNot ); if( isTrue ^ isNot ){ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, isNot ? SQLITE_JUMPIFNULL : 0); }else{ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, isNot ? SQLITE_JUMPIFNULL : 0); } break; } case TK_IS: case TK_ISNOT: testcase( op==TK_IS ); testcase( op==TK_ISNOT ); op = (op==TK_IS) ? TK_EQ : TK_NE; jumpIfNull = SQLITE_NULLEQ; /* no break */ deliberate_fall_through case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeTypeofColumn(v, r1); sqlite3VdbeAddOp2(v, op, r1, dest); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(pParse); int destIfNull = jumpIfNull ? dest : destIfFalse; sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeGoto(v, dest); sqlite3VdbeResolveLabel(v, destIfFalse); break; } #endif default: { default_expr: if( ExprAlwaysTrue(pExpr) ){ sqlite3VdbeGoto(v, dest); }else if( ExprAlwaysFalse(pExpr) ){ /* No-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is false but execution ** continues straight thru if the expression is true. ** ** If the expression evaluates to NULL (neither true nor false) then ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull ** is 0. */ SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ if( pExpr==0 ) return; assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); /* The value of pExpr->op and op are related as follows: ** ** pExpr->op op ** --------- ---------- ** TK_ISNULL OP_NotNull ** TK_NOTNULL OP_IsNull ** TK_NE OP_Eq ** TK_EQ OP_Ne ** TK_GT OP_Le ** TK_LE OP_Gt ** TK_GE OP_Lt ** TK_LT OP_Ge ** ** For other values of pExpr->op, op is undefined and unused. ** The value of TK_ and OP_ constants are arranged such that we ** can compute the mapping above using the following expression. ** Assert()s verify that the computation is correct. */ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); /* Verify correct alignment of TK_ and OP_ constants */ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); assert( pExpr->op!=TK_NE || op==OP_Eq ); assert( pExpr->op!=TK_EQ || op==OP_Ne ); assert( pExpr->op!=TK_LT || op==OP_Ge ); assert( pExpr->op!=TK_LE || op==OP_Gt ); assert( pExpr->op!=TK_GT || op==OP_Le ); assert( pExpr->op!=TK_GE || op==OP_Lt ); switch( pExpr->op ){ case TK_AND: case TK_OR: { Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); if( pAlt!=pExpr ){ sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); }else if( pExpr->op==TK_AND ){ testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); }else{ int d2 = sqlite3VdbeMakeLabel(pParse); testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); } break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_TRUTH: { int isNot; /* IS NOT TRUE or IS NOT FALSE */ int isTrue; /* IS TRUE or IS NOT TRUE */ testcase( jumpIfNull==0 ); isNot = pExpr->op2==TK_ISNOT; isTrue = sqlite3ExprTruthValue(pExpr->pRight); testcase( isTrue && isNot ); testcase( !isTrue && isNot ); if( isTrue ^ isNot ){ /* IS TRUE and IS NOT FALSE */ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, isNot ? 0 : SQLITE_JUMPIFNULL); }else{ /* IS FALSE and IS NOT TRUE */ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, isNot ? 0 : SQLITE_JUMPIFNULL); } break; } case TK_IS: case TK_ISNOT: testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; jumpIfNull = SQLITE_NULLEQ; /* no break */ deliberate_fall_through case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeTypeofColumn(v, r1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { if( jumpIfNull ){ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); }else{ int destIfNull = sqlite3VdbeMakeLabel(pParse); sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); sqlite3VdbeResolveLabel(v, destIfNull); } break; } #endif default: { default_expr: if( ExprAlwaysFalse(pExpr) ){ sqlite3VdbeGoto(v, dest); }else if( ExprAlwaysTrue(pExpr) ){ /* no-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before ** code generation, and that copy is deleted after code generation. This ** ensures that the original pExpr is unchanged. */ SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ sqlite3 *db = pParse->db; Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed==0 ){ sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); } sqlite3ExprDelete(db, pCopy); } /* ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any ** type of expression. ** ** If pExpr is a simple SQL value - an integer, real, string, blob ** or NULL value - then the VDBE currently being prepared is configured ** to re-prepare each time a new value is bound to variable pVar. ** ** Additionally, if pExpr is a simple SQL value and the value is the ** same as that currently bound to variable pVar, non-zero is returned. ** Otherwise, if the values are not the same or if pExpr is not a simple ** SQL value, zero is returned. */ static int exprCompareVariable( const Parse *pParse, const Expr *pVar, const Expr *pExpr ){ int res = 0; int iVar; sqlite3_value *pL, *pR = 0; sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); if( pR ){ iVar = pVar->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); if( pL ){ if( sqlite3_value_type(pL)==SQLITE_TEXT ){ sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ } res = 0==sqlite3MemCompare(pL, pR, 0); } sqlite3ValueFree(pR); sqlite3ValueFree(pL); } return res; } /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** ** If any subelement of pB has Expr.iTable==(-1) then it is allowed ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. ** ** The pA side might be using TK_REGISTER. If that is the case and pB is ** not using TK_REGISTER but is otherwise equivalent, then still return 0. ** ** Sometimes this routine will return 2 even if the two expressions ** really are equivalent. If we cannot prove that the expressions are ** identical, we return 2 just to be safe. So if this routine ** returns 2, then you do not really know for certain if the two ** expressions are the same. But if you get a 0 or 1 return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra 2 - that ** just might result in some slightly slower code. But returning ** an incorrect 0 or 1 could lead to a malfunction. ** ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in ** pParse->pReprepare can be matched against literals in pB. The ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. ** If pParse is NULL (the normal case) then any TK_VARIABLE term in ** Argument pParse should normally be NULL. If it is not NULL and pA or ** pB causes a return value of 2. */ SQLITE_PRIVATE int sqlite3ExprCompare( const Parse *pParse, const Expr *pA, const Expr *pB, int iTab ){ u32 combinedFlags; if( pA==0 || pB==0 ){ return pB==pA ? 0 : 2; } if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ return 0; } combinedFlags = pA->flags | pB->flags; if( combinedFlags & EP_IntValue ){ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ return 0; } return 2; } if( pA->op!=pB->op || pA->op==TK_RAISE ){ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ return 1; } if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ return 1; } if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN && pB->iTable<0 && pA->iTable==iTab ){ /* fall through */ }else{ return 2; } } assert( !ExprHasProperty(pA, EP_IntValue) ); assert( !ExprHasProperty(pB, EP_IntValue) ); if( pA->u.zToken ){ if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; #ifndef SQLITE_OMIT_WINDOWFUNC assert( pA->op==pB->op ); if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ return 2; } if( ExprHasProperty(pA,EP_WinFunc) ){ if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ return 2; } } #endif }else if( pA->op==TK_NULL ){ return 0; }else if( pA->op==TK_COLLATE ){ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( pB->u.zToken!=0 && pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return 2; } } if( (pA->flags & (EP_Distinct|EP_Commuted)) != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( (combinedFlags & EP_FixedCol)==0 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE && ALWAYS((combinedFlags & EP_Reduced)==0) ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ return 2; } } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical, 1 ** if they are certainly different, or 2 if it is not possible to ** determine if they are identical or not. ** ** If any subelement of pB has Expr.iTable==(-1) then it is allowed ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. ** ** This routine might return non-zero for equivalent ExprLists. The ** only consequence will be disabled optimizations. But this routine ** must never return 0 if the two ExprList objects are different, or ** a malfunction will result. ** ** Two NULL pointers are considered to be the same. But a NULL pointer ** always differs from a non-NULL pointer. */ SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ int i; if( pA==0 && pB==0 ) return 0; if( pA==0 || pB==0 ) return 1; if( pA->nExpr!=pB->nExpr ) return 1; for(i=0; inExpr; i++){ int res; Expr *pExprA = pA->a[i].pExpr; Expr *pExprB = pB->a[i].pExpr; if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; } return 0; } /* ** Like sqlite3ExprCompare() except COLLATE operators at the top-level ** are ignored. */ SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ return sqlite3ExprCompare(0, sqlite3ExprSkipCollateAndLikely(pA), sqlite3ExprSkipCollateAndLikely(pB), iTab); } /* ** Return non-zero if Expr p can only be true if pNN is not NULL. ** ** Or if seenNot is true, return non-zero if Expr p can only be ** non-NULL if pNN is not NULL */ static int exprImpliesNotNull( const Parse *pParse,/* Parsing context */ const Expr *p, /* The expression to be checked */ const Expr *pNN, /* The expression that is NOT NULL */ int iTab, /* Table being evaluated */ int seenNot /* Return true only if p can be any non-NULL value */ ){ assert( p ); assert( pNN ); if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ return pNN->op!=TK_NULL; } switch( p->op ){ case TK_IN: { if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } case TK_BETWEEN: { ExprList *pList; assert( ExprUseXList(p) ); pList = p->x.pList; assert( pList!=0 ); assert( pList->nExpr==2 ); if( seenNot ) return 0; if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) ){ return 1; } return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } case TK_EQ: case TK_NE: case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_PLUS: case TK_MINUS: case TK_BITOR: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: seenNot = 1; /* no break */ deliberate_fall_through case TK_STAR: case TK_REM: case TK_BITAND: case TK_SLASH: { if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; /* no break */ deliberate_fall_through } case TK_SPAN: case TK_COLLATE: case TK_UPLUS: case TK_UMINUS: { return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); } case TK_TRUTH: { if( seenNot ) return 0; if( p->op2!=TK_IS ) return 0; return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } case TK_BITNOT: case TK_NOT: { return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } } return 0; } /* ** Return true if we can prove the pE2 will always be true if pE1 is ** true. Return false if we cannot complete the proof or if pE2 might ** be false. Examples: ** ** pE1: x==5 pE2: x==5 Result: true ** pE1: x>0 pE2: x==5 Result: false ** pE1: x=21 pE2: x=21 OR y=43 Result: true ** pE1: x!=123 pE2: x IS NOT NULL Result: true ** pE1: x!=?1 pE2: x IS NOT NULL Result: true ** pE1: x IS NULL pE2: x IS NOT NULL Result: false ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false ** ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has ** Expr.iTable<0 then assume a table number given by iTab. ** ** If pParse is not NULL, then the values of bound variables in pE1 are ** compared against literal values in pE2 and pParse->pVdbe->expmask is ** modified to record which bound variables are referenced. If pParse ** is NULL, then false will be returned if pE1 contains any bound variables. ** ** When in doubt, return false. Returning true might give a performance ** improvement. Returning false might cause a performance reduction, but ** it will always give the correct answer and is hence always safe. */ SQLITE_PRIVATE int sqlite3ExprImpliesExpr( const Parse *pParse, const Expr *pE1, const Expr *pE2, int iTab ){ if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ return 1; } if( pE2->op==TK_OR && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) ){ return 1; } if( pE2->op==TK_NOTNULL && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) ){ return 1; } return 0; } /* This is a helper function to impliesNotNullRow(). In this routine, ** set pWalker->eCode to one only if *both* of the input expressions ** separately have the implies-not-null-row property. */ static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){ if( pWalker->eCode==0 ){ sqlite3WalkExpr(pWalker, pE1); if( pWalker->eCode ){ pWalker->eCode = 0; sqlite3WalkExpr(pWalker, pE2); } } } /* ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). ** If the expression node requires that the table at pWalker->iCur ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. ** ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when ** evaluating terms in the ON clause of an inner join. ** ** This routine controls an optimization. False positives (setting ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives ** (never setting pWalker->eCode) is a harmless missed optimization. */ static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){ /* If iCur is used in an inner-join ON clause to the left of a ** RIGHT JOIN, that does *not* mean that the table must be non-null. ** But it is difficult to check for that condition precisely. ** To keep things simple, any use of iCur from any inner-join is ** ignored while attempting to simplify a RIGHT JOIN. */ return WRC_Prune; } switch( pExpr->op ){ case TK_ISNOT: case TK_ISNULL: case TK_NOTNULL: case TK_IS: case TK_VECTOR: case TK_FUNCTION: case TK_TRUTH: case TK_CASE: testcase( pExpr->op==TK_ISNOT ); testcase( pExpr->op==TK_ISNULL ); testcase( pExpr->op==TK_NOTNULL ); testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_VECTOR ); testcase( pExpr->op==TK_FUNCTION ); testcase( pExpr->op==TK_TRUTH ); testcase( pExpr->op==TK_CASE ); return WRC_Prune; case TK_COLUMN: if( pWalker->u.iCur==pExpr->iTable ){ pWalker->eCode = 1; return WRC_Abort; } return WRC_Prune; case TK_OR: case TK_AND: /* Both sides of an AND or OR must separately imply non-null-row. ** Consider these cases: ** 1. NOT (x AND y) ** 2. x OR y ** If only one of x or y is non-null-row, then the overall expression ** can be true if the other arm is false (case 1) or true (case 2). */ testcase( pExpr->op==TK_OR ); testcase( pExpr->op==TK_AND ); bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight); return WRC_Prune; case TK_IN: /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)", ** both of which can be true. But apart from these cases, if ** the left-hand side of the IN is NULL then the IN itself will be ** NULL. */ if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){ sqlite3WalkExpr(pWalker, pExpr->pLeft); } return WRC_Prune; case TK_BETWEEN: /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else ** both y and z must be non-null row */ assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr==2 ); sqlite3WalkExpr(pWalker, pExpr->pLeft); bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr, pExpr->x.pList->a[1].pExpr); return WRC_Prune; /* Virtual tables are allowed to use constraints like x=NULL. So ** a term of the form x=y does not prove that y is not null if x ** is the column of a virtual table */ case TK_EQ: case TK_NE: case TK_LT: case TK_LE: case TK_GT: case TK_GE: { Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; testcase( pExpr->op==TK_EQ ); testcase( pExpr->op==TK_NE ); testcase( pExpr->op==TK_LT ); testcase( pExpr->op==TK_LE ); testcase( pExpr->op==TK_GT ); testcase( pExpr->op==TK_GE ); /* The y.pTab=0 assignment in wherecode.c always happens after the ** impliesNotNullRow() test */ assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) && IsVirtual(pLeft->y.pTab)) || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) && IsVirtual(pRight->y.pTab)) ){ return WRC_Prune; } /* no break */ deliberate_fall_through } default: return WRC_Continue; } } /* ** Return true (non-zero) if expression p can only be true if at least ** one column of table iTab is non-null. In other words, return true ** if expression p will always be NULL or false if every column of iTab ** is NULL. ** ** False negatives are acceptable. In other words, it is ok to return ** zero even if expression p will never be true of every column of iTab ** is NULL. A false negative is merely a missed optimization opportunity. ** ** False positives are not allowed, however. A false positive may result ** in an incorrect answer. ** ** Terms of p that are marked with EP_OuterON (and hence that come from ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. ** ** This routine is used to check if a LEFT JOIN can be converted into ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE ** clause requires that some column of the right table of the LEFT JOIN ** be non-NULL, then the LEFT JOIN can be safely converted into an ** ordinary join. */ SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){ Walker w; p = sqlite3ExprSkipCollateAndLikely(p); if( p==0 ) return 0; if( p->op==TK_NOTNULL ){ p = p->pLeft; }else{ while( p->op==TK_AND ){ if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1; p = p->pRight; } } w.xExprCallback = impliesNotNullRow; w.xSelectCallback = 0; w.xSelectCallback2 = 0; w.eCode = 0; w.mWFlags = isRJ!=0; w.u.iCur = iTab; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** An instance of the following structure is used by the tree walker ** to determine if an expression can be evaluated by reference to the ** index only, without having to do a search for the corresponding ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur ** is the cursor for the table. */ struct IdxCover { Index *pIdx; /* The index to be tested for coverage */ int iCur; /* Cursor number for the table corresponding to the index */ }; /* ** Check to see if there are references to columns in table ** pWalker->u.pIdxCover->iCur can be satisfied using the index ** pWalker->u.pIdxCover->pIdx. */ static int exprIdxCover(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN && pExpr->iTable==pWalker->u.pIdxCover->iCur && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 ){ pWalker->eCode = 1; return WRC_Abort; } return WRC_Continue; } /* ** Determine if an index pIdx on table with cursor iCur contains will ** the expression pExpr. Return true if the index does cover the ** expression and false if the pExpr expression references table columns ** that are not found in the index pIdx. ** ** An index covering an expression means that the expression can be ** evaluated using only the index and without having to lookup the ** corresponding table entry. */ SQLITE_PRIVATE int sqlite3ExprCoveredByIndex( Expr *pExpr, /* The index to be tested */ int iCur, /* The cursor number for the corresponding table */ Index *pIdx /* The index that might be used for coverage */ ){ Walker w; struct IdxCover xcov; memset(&w, 0, sizeof(w)); xcov.iCur = iCur; xcov.pIdx = pIdx; w.xExprCallback = exprIdxCover; w.u.pIdxCover = &xcov; sqlite3WalkExpr(&w, pExpr); return !w.eCode; } /* Structure used to pass information throughout the Walker in order to ** implement sqlite3ReferencesSrcList(). */ struct RefSrcList { sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ SrcList *pRef; /* Looking for references to these tables */ i64 nExclude; /* Number of tables to exclude from the search */ int *aiExclude; /* Cursor IDs for tables to exclude from the search */ }; /* ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). ** ** When entering a new subquery on the pExpr argument, add all FROM clause ** entries for that subquery to the exclude list. ** ** When leaving the subquery, remove those entries from the exclude list. */ static int selectRefEnter(Walker *pWalker, Select *pSelect){ struct RefSrcList *p = pWalker->u.pRefSrcList; SrcList *pSrc = pSelect->pSrc; i64 i, j; int *piNew; if( pSrc->nSrc==0 ) return WRC_Continue; j = p->nExclude; p->nExclude += pSrc->nSrc; piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); if( piNew==0 ){ p->nExclude = 0; return WRC_Abort; }else{ p->aiExclude = piNew; } for(i=0; inSrc; i++, j++){ p->aiExclude[j] = pSrc->a[i].iCursor; } return WRC_Continue; } static void selectRefLeave(Walker *pWalker, Select *pSelect){ struct RefSrcList *p = pWalker->u.pRefSrcList; SrcList *pSrc = pSelect->pSrc; if( p->nExclude ){ assert( p->nExclude>=pSrc->nSrc ); p->nExclude -= pSrc->nSrc; } } /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). ** ** Set the 0x01 bit of pWalker->eCode if there is a reference to any ** of the tables shown in RefSrcList.pRef. ** ** Set the 0x02 bit of pWalker->eCode if there is a reference to a ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. */ static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ int i; struct RefSrcList *p = pWalker->u.pRefSrcList; SrcList *pSrc = p->pRef; int nSrc = pSrc ? pSrc->nSrc : 0; for(i=0; iiTable==pSrc->a[i].iCursor ){ pWalker->eCode |= 1; return WRC_Continue; } } for(i=0; inExclude && p->aiExclude[i]!=pExpr->iTable; i++){} if( i>=p->nExclude ){ pWalker->eCode |= 2; } } return WRC_Continue; } /* ** Check to see if pExpr references any tables in pSrcList. ** Possible return values: ** ** 1 pExpr does references a table in pSrcList. ** ** 0 pExpr references some table that is not defined in either ** pSrcList or in subqueries of pExpr itself. ** ** -1 pExpr only references no tables at all, or it only ** references tables defined in subqueries of pExpr itself. ** ** As currently used, pExpr is always an aggregate function call. That ** fact is exploited for efficiency. */ SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ Walker w; struct RefSrcList x; assert( pParse->db!=0 ); memset(&w, 0, sizeof(w)); memset(&x, 0, sizeof(x)); w.xExprCallback = exprRefToSrcList; w.xSelectCallback = selectRefEnter; w.xSelectCallback2 = selectRefLeave; w.u.pRefSrcList = &x; x.db = pParse->db; x.pRef = pSrcList; assert( pExpr->op==TK_AGG_FUNCTION ); assert( ExprUseXList(pExpr) ); sqlite3WalkExprList(&w, pExpr->x.pList); #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); } #endif if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); if( w.eCode & 0x01 ){ return 1; }else if( w.eCode ){ return 0; }else{ return -1; } } /* ** This is a Walker expression node callback. ** ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo ** object that is referenced does not refer directly to the Expr. If ** it does, make a copy. This is done because the pExpr argument is ** subject to change. ** ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete() ** which builds on the sqlite3ParserAddCleanup() mechanism. */ static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) && pExpr->pAggInfo!=0 ){ AggInfo *pAggInfo = pExpr->pAggInfo; int iAgg = pExpr->iAgg; Parse *pParse = pWalker->pParse; sqlite3 *db = pParse->db; assert( iAgg>=0 ); if( pExpr->op!=TK_AGG_FUNCTION ){ if( iAggnColumn && pAggInfo->aCol[iAgg].pCExpr==pExpr ){ pExpr = sqlite3ExprDup(db, pExpr, 0); if( pExpr ){ pAggInfo->aCol[iAgg].pCExpr = pExpr; sqlite3ExprDeferredDelete(pParse, pExpr); } } }else{ assert( pExpr->op==TK_AGG_FUNCTION ); if( ALWAYS(iAggnFunc) && pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ pExpr = sqlite3ExprDup(db, pExpr, 0); if( pExpr ){ pAggInfo->aFunc[iAgg].pFExpr = pExpr; sqlite3ExprDeferredDelete(pParse, pExpr); } } } } return WRC_Continue; } /* ** Initialize a Walker object so that will persist AggInfo entries referenced ** by the tree that is walked. */ SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ memset(pWalker, 0, sizeof(*pWalker)); pWalker->pParse = pParse; pWalker->xExprCallback = agginfoPersistExprCb; pWalker->xSelectCallback = sqlite3SelectWalkNoop; } /* ** Add a new element to the pAggInfo->aCol[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aCol = sqlite3ArrayAllocate( db, pInfo->aCol, sizeof(pInfo->aCol[0]), &pInfo->nColumn, &i ); return i; } /* ** Add a new element to the pAggInfo->aFunc[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aFunc = sqlite3ArrayAllocate( db, pInfo->aFunc, sizeof(pInfo->aFunc[0]), &pInfo->nFunc, &i ); return i; } /* ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn. ** Return the index in aCol[] of the entry that describes that column. ** ** If no prior entry is found, create a new one and return -1. The ** new column will have an index of pAggInfo->nColumn-1. */ static void findOrCreateAggInfoColumn( Parse *pParse, /* Parsing context */ AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */ Expr *pExpr /* Expr describing the column to find or insert */ ){ struct AggInfo_col *pCol; int k; assert( pAggInfo->iFirstReg==0 ); pCol = pAggInfo->aCol; for(k=0; knColumn; k++, pCol++){ if( pCol->pCExpr==pExpr ) return; if( pCol->iTable==pExpr->iTable && pCol->iColumn==pExpr->iColumn && pExpr->op!=TK_IF_NULL_ROW ){ goto fix_up_expr; } } k = addAggInfoColumn(pParse->db, pAggInfo); if( k<0 ){ /* OOM on resize */ assert( pParse->db->mallocFailed ); return; } pCol = &pAggInfo->aCol[k]; assert( ExprUseYTab(pExpr) ); pCol->pTab = pExpr->y.pTab; pCol->iTable = pExpr->iTable; pCol->iColumn = pExpr->iColumn; pCol->iSorterColumn = -1; pCol->pCExpr = pExpr; if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ int j, n; ExprList *pGB = pAggInfo->pGroupBy; struct ExprList_item *pTerm = pGB->a; n = pGB->nExpr; for(j=0; jpExpr; if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && pE->iColumn==pExpr->iColumn ){ pCol->iSorterColumn = j; break; } } } if( pCol->iSorterColumn<0 ){ pCol->iSorterColumn = pAggInfo->nSortingColumn++; } fix_up_expr: ExprSetVVAProperty(pExpr, EP_NoReduce); assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo ); pExpr->pAggInfo = pAggInfo; if( pExpr->op==TK_COLUMN ){ pExpr->op = TK_AGG_COLUMN; } pExpr->iAgg = (i16)k; } /* ** This is the xExprCallback for a tree walker. It is used to ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates ** for additional information. */ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ int i; NameContext *pNC = pWalker->u.pNC; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; AggInfo *pAggInfo = pNC->uNC.pAggInfo; assert( pNC->ncFlags & NC_UAggInfo ); assert( pAggInfo->iFirstReg==0 ); switch( pExpr->op ){ default: { IndexedExpr *pIEpr; Expr tmp; assert( pParse->iSelfTab==0 ); if( (pNC->ncFlags & NC_InAggFunc)==0 ) break; if( pParse->pIdxEpr==0 ) break; for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ int iDataCur = pIEpr->iDataCur; if( iDataCur<0 ) continue; if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break; } if( pIEpr==0 ) break; if( NEVER(!ExprUseYTab(pExpr)) ) break; for(i=0; inSrc; i++){ if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break; } if( i>=pSrcList->nSrc ) break; if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */ if( pParse->nErr ){ return WRC_Abort; } /* If we reach this point, it means that expression pExpr can be ** translated into a reference to an index column as described by ** pIEpr. */ memset(&tmp, 0, sizeof(tmp)); tmp.op = TK_AGG_COLUMN; tmp.iTable = pIEpr->iIdxCur; tmp.iColumn = pIEpr->iIdxCol; findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp); if( pParse->nErr ){ return WRC_Abort; } assert( pAggInfo->aCol!=0 ); assert( tmp.iAggnColumn ); pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr; pExpr->pAggInfo = pAggInfo; pExpr->iAgg = tmp.iAgg; return WRC_Prune; } case TK_IF_NULL_ROW: case TK_AGG_COLUMN: case TK_COLUMN: { testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_IF_NULL_ROW ); /* Check to see if the column is in one of the tables in the FROM ** clause of the aggregate query */ if( ALWAYS(pSrcList!=0) ){ SrcItem *pItem = pSrcList->a; for(i=0; inSrc; i++, pItem++){ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); if( pExpr->iTable==pItem->iCursor ){ findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr); break; } /* endif pExpr->iTable==pItem->iCursor */ } /* end loop over pSrcList */ } return WRC_Continue; } case TK_AGG_FUNCTION: { if( (pNC->ncFlags & NC_InAggFunc)==0 && pWalker->walkerDepth==pExpr->op2 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; inFunc; i++, pItem++){ if( pItem->pFExpr==pExpr ) break; if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ break; } } if( i>=pAggInfo->nFunc ){ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] */ u8 enc = ENC(pParse->db); i = addAggInfoFunc(pParse->db, pAggInfo); if( i>=0 ){ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); pItem = &pAggInfo->aFunc[i]; pItem->pFExpr = pExpr; assert( ExprUseUToken(pExpr) ); pItem->pFunc = sqlite3FindFunction(pParse->db, pExpr->u.zToken, pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); if( pExpr->flags & EP_Distinct ){ pItem->iDistinct = pParse->nTab++; }else{ pItem->iDistinct = -1; } } } /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry */ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(pExpr, EP_NoReduce); pExpr->iAgg = (i16)i; pExpr->pAggInfo = pAggInfo; return WRC_Prune; }else{ return WRC_Continue; } } } return WRC_Continue; } /* ** Analyze the pExpr expression looking for aggregate functions and ** for variables that need to be added to AggInfo object that pNC->pAggInfo ** points to. Additional entries are made on the AggInfo object as ** necessary. ** ** This routine should only be called after the expression has been ** analyzed by sqlite3ResolveExprNames(). */ SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ Walker w; w.xExprCallback = analyzeAggregate; w.xSelectCallback = sqlite3WalkerDepthIncrease; w.xSelectCallback2 = sqlite3WalkerDepthDecrease; w.walkerDepth = 0; w.u.pNC = pNC; w.pParse = 0; assert( pNC->pSrcList!=0 ); sqlite3WalkExpr(&w, pExpr); } /* ** Call sqlite3ExprAnalyzeAggregates() for every expression in an ** expression list. Return the number of errors. ** ** If an error is found, the analysis is cut short. */ SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ struct ExprList_item *pItem; int i; if( pList ){ for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); } } } /* ** Allocate a single new register for use to hold some intermediate result. */ SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){ if( pParse->nTempReg==0 ){ return ++pParse->nMem; } return pParse->aTempReg[--pParse->nTempReg]; } /* ** Deallocate a register, making available for reuse for some other ** purpose. */ SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ if( iReg ){ sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); if( pParse->nTempRegaTempReg) ){ pParse->aTempReg[pParse->nTempReg++] = iReg; } } } /* ** Allocate or deallocate a block of nReg consecutive registers. */ SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){ int i, n; if( nReg==1 ) return sqlite3GetTempReg(pParse); i = pParse->iRangeReg; n = pParse->nRangeReg; if( nReg<=n ){ pParse->iRangeReg += nReg; pParse->nRangeReg -= nReg; }else{ i = pParse->nMem+1; pParse->nMem += nReg; } return i; } SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, iReg); return; } sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); if( nReg>pParse->nRangeReg ){ pParse->nRangeReg = nReg; pParse->iRangeReg = iReg; } } /* ** Mark all temporary registers as being unavailable for reuse. ** ** Always invoke this procedure after coding a subroutine or co-routine ** that might be invoked from other parts of the code, to ensure that ** the sub/co-routine does not use registers in common with the code that ** invokes the sub/co-routine. */ SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){ pParse->nTempReg = 0; pParse->nRangeReg = 0; } /* ** Make sure sufficient registers have been allocated so that ** iReg is a valid register number. */ SQLITE_PRIVATE void sqlite3TouchRegister(Parse *pParse, int iReg){ if( pParse->nMemnMem = iReg; } #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG) /* ** Return the latest reusable register in the set of all registers. ** The value returned is no less than iMin. If any register iMin or ** greater is in permanent use, then return one more than that last ** permanent register. */ SQLITE_PRIVATE int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){ const ExprList *pList = pParse->pConstExpr; if( pList ){ int i; for(i=0; inExpr; i++){ if( pList->a[i].u.iConstExprReg>=iMin ){ iMin = pList->a[i].u.iConstExprReg + 1; } } } pParse->nTempReg = 0; pParse->nRangeReg = 0; return iMin; } #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */ /* ** Validate that no temporary register falls within the range of ** iFirst..iLast, inclusive. This routine is only call from within assert() ** statements. */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ int i; if( pParse->nRangeReg>0 && pParse->iRangeReg+pParse->nRangeReg > iFirst && pParse->iRangeReg <= iLast ){ return 0; } for(i=0; inTempReg; i++){ if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ return 0; } } if( pParse->pConstExpr ){ ExprList *pList = pParse->pConstExpr; for(i=0; inExpr; i++){ int iReg = pList->a[i].u.iConstExprReg; if( iReg==0 ) continue; if( iReg>=iFirst && iReg<=iLast ) return 0; } } return 1; } #endif /* SQLITE_DEBUG */ /************** End of expr.c ************************************************/ /************** Begin file alter.c *******************************************/ /* ** 2005 February 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that used to generate VDBE code ** that implements the ALTER TABLE command. */ /* #include "sqliteInt.h" */ /* ** The code in this file only exists if we are not omitting the ** ALTER TABLE logic from the build. */ #ifndef SQLITE_OMIT_ALTERTABLE /* ** Parameter zName is the name of a table that is about to be altered ** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN). ** If the table is a system table, this function leaves an error message ** in pParse->zErr (system tables may not be altered) and returns non-zero. ** ** Or, if zName is not a system table, zero is returned. */ static int isAlterableTable(Parse *pParse, Table *pTab){ if( 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) #ifndef SQLITE_OMIT_VIRTUALTABLE || (pTab->tabFlags & TF_Eponymous)!=0 || ( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(pParse->db) ) #endif ){ sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName); return 1; } return 0; } /* ** Generate code to verify that the schemas of database zDb and, if ** bTemp is not true, database "temp", can still be parsed. This is ** called at the end of the generation of an ALTER TABLE ... RENAME ... ** statement to ensure that the operation has not rendered any schema ** objects unusable. */ static void renameTestSchema( Parse *pParse, /* Parse context */ const char *zDb, /* Name of db to verify schema of */ int bTemp, /* True if this is the temp db */ const char *zWhen, /* "when" part of error message */ int bNoDQS /* Do not allow DQS in the schema */ ){ pParse->colNamesSet = 1; sqlite3NestedParse(pParse, "SELECT 1 " "FROM \"%w\"." LEGACY_SCHEMA_TABLE " " "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" " AND sqlite_rename_test(%Q, sql, type, name, %d, %Q, %d)=NULL ", zDb, zDb, bTemp, zWhen, bNoDQS ); if( bTemp==0 ){ sqlite3NestedParse(pParse, "SELECT 1 " "FROM temp." LEGACY_SCHEMA_TABLE " " "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" " AND sqlite_rename_test(%Q, sql, type, name, 1, %Q, %d)=NULL ", zDb, zWhen, bNoDQS ); } } /* ** Generate VM code to replace any double-quoted strings (but not double-quoted ** identifiers) within the "sql" column of the sqlite_schema table in ** database zDb with their single-quoted equivalents. If argument bTemp is ** not true, similarly update all SQL statements in the sqlite_schema table ** of the temp db. */ static void renameFixQuotes(Parse *pParse, const char *zDb, int bTemp){ sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET sql = sqlite_rename_quotefix(%Q, sql)" "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" , zDb, zDb ); if( bTemp==0 ){ sqlite3NestedParse(pParse, "UPDATE temp." LEGACY_SCHEMA_TABLE " SET sql = sqlite_rename_quotefix('temp', sql)" "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" ); } } /* ** Generate code to reload the schema for database iDb. And, if iDb!=1, for ** the temp database as well. */ static void renameReloadSchema(Parse *pParse, int iDb, u16 p5){ Vdbe *v = pParse->pVdbe; if( v ){ sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0, p5); if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0, p5); } } /* ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" ** command. */ SQLITE_PRIVATE void sqlite3AlterRenameTable( Parse *pParse, /* Parser context. */ SrcList *pSrc, /* The table to rename. */ Token *pName /* The new table name. */ ){ int iDb; /* Database that contains the table */ char *zDb; /* Name of database iDb */ Table *pTab; /* Table being renamed */ char *zName = 0; /* NULL-terminated version of pName */ sqlite3 *db = pParse->db; /* Database connection */ int nTabName; /* Number of UTF-8 characters in zTabName */ const char *zTabName; /* Original name of the table */ Vdbe *v; VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */ if( NEVER(db->mallocFailed) ) goto exit_rename_table; assert( pSrc->nSrc==1 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_rename_table; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); zDb = db->aDb[iDb].zDbSName; /* Get a NULL terminated version of the new table name. */ zName = sqlite3NameFromToken(db, pName); if( !zName ) goto exit_rename_table; /* Check that a table or index named 'zName' does not already exist ** in database iDb. If so, this is an error. */ if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) || sqlite3IsShadowTableOf(db, pTab, zName) ){ sqlite3ErrorMsg(pParse, "there is already another table or index with this name: %s", zName); goto exit_rename_table; } /* Make sure it is not a system table being altered, or a reserved name ** that the table is being renamed to. */ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){ goto exit_rename_table; } if( SQLITE_OK!=sqlite3CheckObjectName(pParse,zName,"table",zName) ){ goto exit_rename_table; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName); goto exit_rename_table; } #endif #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ goto exit_rename_table; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto exit_rename_table; } if( IsVirtual(pTab) ){ pVTab = sqlite3GetVTable(db, pTab); if( pVTab->pVtab->pModule->xRename==0 ){ pVTab = 0; } } #endif /* Begin a transaction for database iDb. Then modify the schema cookie ** (since the ALTER TABLE modifies the schema). Call sqlite3MayAbort(), ** as the scalar functions (e.g. sqlite_rename_table()) invoked by the ** nested SQL may raise an exception. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto exit_rename_table; } sqlite3MayAbort(pParse); /* figure out how many UTF-8 characters are in zName */ zTabName = pTab->zName; nTabName = sqlite3Utf8CharLen(zTabName, -1); /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in ** the schema to use the new table name. */ sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, %d) " "WHERE (type!='index' OR tbl_name=%Q COLLATE nocase)" "AND name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" , zDb, zDb, zTabName, zName, (iDb==1), zTabName ); /* Update the tbl_name and name columns of the sqlite_schema table ** as required. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET " "tbl_name = %Q, " "name = CASE " "WHEN type='table' THEN %Q " "WHEN name LIKE 'sqliteX_autoindex%%' ESCAPE 'X' " " AND type='index' THEN " "'sqlite_autoindex_' || %Q || substr(name,%d+18) " "ELSE name END " "WHERE tbl_name=%Q COLLATE nocase AND " "(type='table' OR type='index' OR type='trigger');", zDb, zName, zName, zName, nTabName, zTabName ); #ifndef SQLITE_OMIT_AUTOINCREMENT /* If the sqlite_sequence table exists in this database, then update ** it with the new table name. */ if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){ sqlite3NestedParse(pParse, "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q", zDb, zName, pTab->zName); } #endif /* If the table being renamed is not itself part of the temp database, ** edit view and trigger definitions within the temp database ** as required. */ if( iDb!=1 ){ sqlite3NestedParse(pParse, "UPDATE sqlite_temp_schema SET " "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, 1), " "tbl_name = " "CASE WHEN tbl_name=%Q COLLATE nocase AND " " sqlite_rename_test(%Q, sql, type, name, 1, 'after rename', 0) " "THEN %Q ELSE tbl_name END " "WHERE type IN ('view', 'trigger')" , zDb, zTabName, zName, zTabName, zDb, zName); } /* If this is a virtual table, invoke the xRename() function if ** one is defined. The xRename() callback will modify the names ** of any resources used by the v-table implementation (including other ** SQLite tables) that are identified by the name of the virtual table. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( pVTab ){ int i = ++pParse->nMem; sqlite3VdbeLoadString(v, i, zName); sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); } #endif renameReloadSchema(pParse, iDb, INITFLAG_AlterRename); renameTestSchema(pParse, zDb, iDb==1, "after rename", 0); exit_rename_table: sqlite3SrcListDelete(db, pSrc); sqlite3DbFree(db, zName); } /* ** Write code that will raise an error if the table described by ** zDb and zTab is not empty. */ static void sqlite3ErrorIfNotEmpty( Parse *pParse, /* Parsing context */ const char *zDb, /* Schema holding the table */ const char *zTab, /* Table to check for empty */ const char *zErr /* Error message text */ ){ sqlite3NestedParse(pParse, "SELECT raise(ABORT,%Q) FROM \"%w\".\"%w\"", zErr, zDb, zTab ); } /* ** This function is called after an "ALTER TABLE ... ADD" statement ** has been parsed. Argument pColDef contains the text of the new ** column definition. ** ** The Table structure pParse->pNewTable was extended to include ** the new column during parsing. */ SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ Table *pNew; /* Copy of pParse->pNewTable */ Table *pTab; /* Table being altered */ int iDb; /* Database number */ const char *zDb; /* Database name */ const char *zTab; /* Table name */ char *zCol; /* Null-terminated column definition */ Column *pCol; /* The new column */ Expr *pDflt; /* Default value for the new column */ sqlite3 *db; /* The database connection; */ Vdbe *v; /* The prepared statement under construction */ int r1; /* Temporary registers */ db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ) return; assert( db->mallocFailed==0 ); pNew = pParse->pNewTable; assert( pNew ); assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pNew->pSchema); zDb = db->aDb[iDb].zDbSName; zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */ pCol = &pNew->aCol[pNew->nCol-1]; pDflt = sqlite3ColumnExpr(pNew, pCol); pTab = sqlite3FindTable(db, zTab, zDb); assert( pTab ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ return; } #endif /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. ** If there is a NOT NULL constraint, then the default value for the ** column must not be NULL. */ if( pCol->colFlags & COLFLAG_PRIMKEY ){ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); return; } if( pNew->pIndex ){ sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); return; } if( (pCol->colFlags & COLFLAG_GENERATED)==0 ){ /* If the default value for the new column was specified with a ** literal NULL, then set pDflt to 0. This simplifies checking ** for an SQL NULL default below. */ assert( pDflt==0 || pDflt->op==TK_SPAN ); if( pDflt && pDflt->pLeft->op==TK_NULL ){ pDflt = 0; } assert( IsOrdinaryTable(pNew) ); if( (db->flags&SQLITE_ForeignKeys) && pNew->u.tab.pFKey && pDflt ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "Cannot add a REFERENCES column with non-NULL default value"); } if( pCol->notNull && !pDflt ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "Cannot add a NOT NULL column with default value NULL"); } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; int rc; rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc!=SQLITE_OK ){ assert( db->mallocFailed == 1 ); return; } if( !pVal ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "Cannot add a column with non-constant default"); } sqlite3ValueFree(pVal); } }else if( pCol->colFlags & COLFLAG_STORED ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "cannot add a STORED column"); } /* Modify the CREATE TABLE statement. */ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); if( zCol ){ char *zEnd = &zCol[pColDef->n-1]; while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){ *zEnd-- = '\0'; } /* substr() operations on characters, but addColOffset is in bytes. So we ** have to use printf() to translate between these units: */ assert( IsOrdinaryTable(pTab) ); assert( IsOrdinaryTable(pNew) ); sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = printf('%%.%ds, ',sql) || %Q" " || substr(sql,1+length(printf('%%.%ds',sql))) " "WHERE type = 'table' AND name = %Q", zDb, pNew->u.tab.addColOffset, zCol, pNew->u.tab.addColOffset, zTab ); sqlite3DbFree(db, zCol); } v = sqlite3GetVdbe(pParse); if( v ){ /* Make sure the schema version is at least 3. But do not upgrade ** from less than 3 to 4, as that will corrupt any preexisting DESC ** index. */ r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v, OP_AddImm, r1, -2); sqlite3VdbeAddOp2(v, OP_IfPos, r1, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, 3); sqlite3ReleaseTempReg(pParse, r1); /* Reload the table definition */ renameReloadSchema(pParse, iDb, INITFLAG_AlterAdd); /* Verify that constraints are still satisfied */ if( pNew->pCheck!=0 || (pCol->notNull && (pCol->colFlags & COLFLAG_GENERATED)!=0) ){ sqlite3NestedParse(pParse, "SELECT CASE WHEN quick_check GLOB 'CHECK*'" " THEN raise(ABORT,'CHECK constraint failed')" " ELSE raise(ABORT,'NOT NULL constraint failed')" " END" " FROM pragma_quick_check(%Q,%Q)" " WHERE quick_check GLOB 'CHECK*' OR quick_check GLOB 'NULL*'", zTab, zDb ); } } } /* ** This function is called by the parser after the table-name in ** an "ALTER TABLE ADD" statement is parsed. Argument ** pSrc is the full-name of the table being altered. ** ** This routine makes a (partial) copy of the Table structure ** for the table being altered and sets Parse.pNewTable to point ** to it. Routines called by the parser as the column definition ** is parsed (i.e. sqlite3AddColumn()) add the new Column data to ** the copy. The copy of the Table structure is deleted by tokenize.c ** after parsing is finished. ** ** Routine sqlite3AlterFinishAddColumn() will be called to complete ** coding the "ALTER TABLE ... ADD" statement. */ SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){ Table *pNew; Table *pTab; int iDb; int i; int nAlloc; sqlite3 *db = pParse->db; /* Look up the table being altered. */ assert( pParse->pNewTable==0 ); assert( sqlite3BtreeHoldsAllMutexes(db) ); if( db->mallocFailed ) goto exit_begin_add_column; pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_begin_add_column; #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "virtual tables may not be altered"); goto exit_begin_add_column; } #endif /* Make sure this is not an attempt to ALTER a view. */ if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); goto exit_begin_add_column; } if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){ goto exit_begin_add_column; } sqlite3MayAbort(pParse); assert( IsOrdinaryTable(pTab) ); assert( pTab->u.tab.addColOffset>0 ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); /* Put a copy of the Table struct in Parse.pNewTable for the ** sqlite3AddColumn() function and friends to modify. But modify ** the name by adding an "sqlite_altertab_" prefix. By adding this ** prefix, we insure that the name will not collide with an existing ** table because user table are not allowed to have the "sqlite_" ** prefix on their name. */ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); if( !pNew ) goto exit_begin_add_column; pParse->pNewTable = pNew; pNew->nTabRef = 1; pNew->nCol = pTab->nCol; assert( pNew->nCol>0 ); nAlloc = (((pNew->nCol-1)/8)*8)+8; assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 ); pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc); pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName); if( !pNew->aCol || !pNew->zName ){ assert( db->mallocFailed ); goto exit_begin_add_column; } memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); for(i=0; inCol; i++){ Column *pCol = &pNew->aCol[i]; pCol->zCnName = sqlite3DbStrDup(db, pCol->zCnName); pCol->hName = sqlite3StrIHash(pCol->zCnName); } assert( IsOrdinaryTable(pNew) ); pNew->u.tab.pDfltList = sqlite3ExprListDup(db, pTab->u.tab.pDfltList, 0); pNew->pSchema = db->aDb[iDb].pSchema; pNew->u.tab.addColOffset = pTab->u.tab.addColOffset; assert( pNew->nTabRef==1 ); exit_begin_add_column: sqlite3SrcListDelete(db, pSrc); return; } /* ** Parameter pTab is the subject of an ALTER TABLE ... RENAME COLUMN ** command. This function checks if the table is a view or virtual ** table (columns of views or virtual tables may not be renamed). If so, ** it loads an error message into pParse and returns non-zero. ** ** Or, if pTab is not a view or virtual table, zero is returned. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) static int isRealTable(Parse *pParse, Table *pTab, int bDrop){ const char *zType = 0; #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ zType = "view"; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ zType = "virtual table"; } #endif if( zType ){ sqlite3ErrorMsg(pParse, "cannot %s %s \"%s\"", (bDrop ? "drop column from" : "rename columns of"), zType, pTab->zName ); return 1; } return 0; } #else /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ # define isRealTable(x,y,z) (0) #endif /* ** Handles the following parser reduction: ** ** cmd ::= ALTER TABLE pSrc RENAME COLUMN pOld TO pNew */ SQLITE_PRIVATE void sqlite3AlterRenameColumn( Parse *pParse, /* Parsing context */ SrcList *pSrc, /* Table being altered. pSrc->nSrc==1 */ Token *pOld, /* Name of column being changed */ Token *pNew /* New column name */ ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table being updated */ int iCol; /* Index of column being renamed */ char *zOld = 0; /* Old column name */ char *zNew = 0; /* New column name */ const char *zDb; /* Name of schema containing the table */ int iSchema; /* Index of the schema */ int bQuote; /* True to quote the new name */ /* Locate the table to be altered */ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_rename_column; /* Cannot alter a system table */ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_rename_column; if( SQLITE_OK!=isRealTable(pParse, pTab, 0) ) goto exit_rename_column; /* Which schema holds the table to be altered */ iSchema = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iSchema>=0 ); zDb = db->aDb[iSchema].zDbSName; #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ goto exit_rename_column; } #endif /* Make sure the old name really is a column name in the table to be ** altered. Set iCol to be the index of the column being renamed */ zOld = sqlite3NameFromToken(db, pOld); if( !zOld ) goto exit_rename_column; for(iCol=0; iColnCol; iCol++){ if( 0==sqlite3StrICmp(pTab->aCol[iCol].zCnName, zOld) ) break; } if( iCol==pTab->nCol ){ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pOld); goto exit_rename_column; } /* Ensure the schema contains no double-quoted strings */ renameTestSchema(pParse, zDb, iSchema==1, "", 0); renameFixQuotes(pParse, zDb, iSchema==1); /* Do the rename operation using a recursive UPDATE statement that ** uses the sqlite_rename_column() SQL function to compute the new ** CREATE statement text for the sqlite_schema table. */ sqlite3MayAbort(pParse); zNew = sqlite3NameFromToken(db, pNew); if( !zNew ) goto exit_rename_column; assert( pNew->n>0 ); bQuote = sqlite3Isquote(pNew->z[0]); sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, %d) " "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X' " " AND (type != 'index' OR tbl_name = %Q)", zDb, zDb, pTab->zName, iCol, zNew, bQuote, iSchema==1, pTab->zName ); sqlite3NestedParse(pParse, "UPDATE temp." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, 1) " "WHERE type IN ('trigger', 'view')", zDb, pTab->zName, iCol, zNew, bQuote ); /* Drop and reload the database schema. */ renameReloadSchema(pParse, iSchema, INITFLAG_AlterRename); renameTestSchema(pParse, zDb, iSchema==1, "after rename", 1); exit_rename_column: sqlite3SrcListDelete(db, pSrc); sqlite3DbFree(db, zOld); sqlite3DbFree(db, zNew); return; } /* ** Each RenameToken object maps an element of the parse tree into ** the token that generated that element. The parse tree element ** might be one of: ** ** * A pointer to an Expr that represents an ID ** * The name of a table column in Column.zName ** ** A list of RenameToken objects can be constructed during parsing. ** Each new object is created by sqlite3RenameTokenMap(). ** As the parse tree is transformed, the sqlite3RenameTokenRemap() ** routine is used to keep the mapping current. ** ** After the parse finishes, renameTokenFind() routine can be used ** to look up the actual token value that created some element in ** the parse tree. */ struct RenameToken { const void *p; /* Parse tree element created by token t */ Token t; /* The token that created parse tree element p */ RenameToken *pNext; /* Next is a list of all RenameToken objects */ }; /* ** The context of an ALTER TABLE RENAME COLUMN operation that gets passed ** down into the Walker. */ typedef struct RenameCtx RenameCtx; struct RenameCtx { RenameToken *pList; /* List of tokens to overwrite */ int nList; /* Number of tokens in pList */ int iCol; /* Index of column being renamed */ Table *pTab; /* Table being ALTERed */ const char *zOld; /* Old column name */ }; #ifdef SQLITE_DEBUG /* ** This function is only for debugging. It performs two tasks: ** ** 1. Checks that pointer pPtr does not already appear in the ** rename-token list. ** ** 2. Dereferences each pointer in the rename-token list. ** ** The second is most effective when debugging under valgrind or ** address-sanitizer or similar. If any of these pointers no longer ** point to valid objects, an exception is raised by the memory-checking ** tool. ** ** The point of this is to prevent comparisons of invalid pointer values. ** Even though this always seems to work, it is undefined according to the ** C standard. Example of undefined comparison: ** ** sqlite3_free(x); ** if( x==y ) ... ** ** Technically, as x no longer points into a valid object or to the byte ** following a valid object, it may not be used in comparison operations. */ static void renameTokenCheckAll(Parse *pParse, const void *pPtr){ assert( pParse==pParse->db->pParse ); assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); if( pParse->nErr==0 ){ const RenameToken *p; u32 i = 1; for(p=pParse->pRename; p; p=p->pNext){ if( p->p ){ assert( p->p!=pPtr ); i += *(u8*)(p->p) | 1; } } assert( i>0 ); } } #else # define renameTokenCheckAll(x,y) #endif /* ** Remember that the parser tree element pPtr was created using ** the token pToken. ** ** In other words, construct a new RenameToken object and add it ** to the list of RenameToken objects currently being built up ** in pParse->pRename. ** ** The pPtr argument is returned so that this routine can be used ** with tail recursion in tokenExpr() routine, for a small performance ** improvement. */ SQLITE_PRIVATE const void *sqlite3RenameTokenMap( Parse *pParse, const void *pPtr, const Token *pToken ){ RenameToken *pNew; assert( pPtr || pParse->db->mallocFailed ); renameTokenCheckAll(pParse, pPtr); if( ALWAYS(pParse->eParseMode!=PARSE_MODE_UNMAP) ){ pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken)); if( pNew ){ pNew->p = pPtr; pNew->t = *pToken; pNew->pNext = pParse->pRename; pParse->pRename = pNew; } } return pPtr; } /* ** It is assumed that there is already a RenameToken object associated ** with parse tree element pFrom. This function remaps the associated token ** to parse tree element pTo. */ SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse *pParse, const void *pTo, const void *pFrom){ RenameToken *p; renameTokenCheckAll(pParse, pTo); for(p=pParse->pRename; p; p=p->pNext){ if( p->p==pFrom ){ p->p = pTo; break; } } } /* ** Walker callback used by sqlite3RenameExprUnmap(). */ static int renameUnmapExprCb(Walker *pWalker, Expr *pExpr){ Parse *pParse = pWalker->pParse; sqlite3RenameTokenRemap(pParse, 0, (const void*)pExpr); if( ExprUseYTab(pExpr) ){ sqlite3RenameTokenRemap(pParse, 0, (const void*)&pExpr->y.pTab); } return WRC_Continue; } /* ** Iterate through the Select objects that are part of WITH clauses attached ** to select statement pSelect. */ static void renameWalkWith(Walker *pWalker, Select *pSelect){ With *pWith = pSelect->pWith; if( pWith ){ Parse *pParse = pWalker->pParse; int i; With *pCopy = 0; assert( pWith->nCte>0 ); if( (pWith->a[0].pSelect->selFlags & SF_Expanded)==0 ){ /* Push a copy of the With object onto the with-stack. We use a copy ** here as the original will be expanded and resolved (flags SF_Expanded ** and SF_Resolved) below. And the parser code that uses the with-stack ** fails if the Select objects on it have already been expanded and ** resolved. */ pCopy = sqlite3WithDup(pParse->db, pWith); pCopy = sqlite3WithPush(pParse, pCopy, 1); } for(i=0; inCte; i++){ Select *p = pWith->a[i].pSelect; NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; if( pCopy ) sqlite3SelectPrep(sNC.pParse, p, &sNC); if( sNC.pParse->db->mallocFailed ) return; sqlite3WalkSelect(pWalker, p); sqlite3RenameExprlistUnmap(pParse, pWith->a[i].pCols); } if( pCopy && pParse->pWith==pCopy ){ pParse->pWith = pCopy->pOuter; } } } /* ** Unmap all tokens in the IdList object passed as the second argument. */ static void unmapColumnIdlistNames( Parse *pParse, const IdList *pIdList ){ int ii; assert( pIdList!=0 ); for(ii=0; iinId; ii++){ sqlite3RenameTokenRemap(pParse, 0, (const void*)pIdList->a[ii].zName); } } /* ** Walker callback used by sqlite3RenameExprUnmap(). */ static int renameUnmapSelectCb(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; int i; if( pParse->nErr ) return WRC_Abort; testcase( p->selFlags & SF_View ); testcase( p->selFlags & SF_CopyCte ); if( p->selFlags & (SF_View|SF_CopyCte) ){ return WRC_Prune; } if( ALWAYS(p->pEList) ){ ExprList *pList = p->pEList; for(i=0; inExpr; i++){ if( pList->a[i].zEName && pList->a[i].fg.eEName==ENAME_NAME ){ sqlite3RenameTokenRemap(pParse, 0, (void*)pList->a[i].zEName); } } } if( ALWAYS(p->pSrc) ){ /* Every Select as a SrcList, even if it is empty */ SrcList *pSrc = p->pSrc; for(i=0; inSrc; i++){ sqlite3RenameTokenRemap(pParse, 0, (void*)pSrc->a[i].zName); if( pSrc->a[i].fg.isUsing==0 ){ sqlite3WalkExpr(pWalker, pSrc->a[i].u3.pOn); }else{ unmapColumnIdlistNames(pParse, pSrc->a[i].u3.pUsing); } } } renameWalkWith(pWalker, p); return WRC_Continue; } /* ** Remove all nodes that are part of expression pExpr from the rename list. */ SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse *pParse, Expr *pExpr){ u8 eMode = pParse->eParseMode; Walker sWalker; memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = pParse; sWalker.xExprCallback = renameUnmapExprCb; sWalker.xSelectCallback = renameUnmapSelectCb; pParse->eParseMode = PARSE_MODE_UNMAP; sqlite3WalkExpr(&sWalker, pExpr); pParse->eParseMode = eMode; } /* ** Remove all nodes that are part of expression-list pEList from the ** rename list. */ SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse *pParse, ExprList *pEList){ if( pEList ){ int i; Walker sWalker; memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = pParse; sWalker.xExprCallback = renameUnmapExprCb; sqlite3WalkExprList(&sWalker, pEList); for(i=0; inExpr; i++){ if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME) ){ sqlite3RenameTokenRemap(pParse, 0, (void*)pEList->a[i].zEName); } } } } /* ** Free the list of RenameToken objects given in the second argument */ static void renameTokenFree(sqlite3 *db, RenameToken *pToken){ RenameToken *pNext; RenameToken *p; for(p=pToken; p; p=pNext){ pNext = p->pNext; sqlite3DbFree(db, p); } } /* ** Search the Parse object passed as the first argument for a RenameToken ** object associated with parse tree element pPtr. If found, return a pointer ** to it. Otherwise, return NULL. ** ** If the second argument passed to this function is not NULL and a matching ** RenameToken object is found, remove it from the Parse object and add it to ** the list maintained by the RenameCtx object. */ static RenameToken *renameTokenFind( Parse *pParse, struct RenameCtx *pCtx, const void *pPtr ){ RenameToken **pp; if( NEVER(pPtr==0) ){ return 0; } for(pp=&pParse->pRename; (*pp); pp=&(*pp)->pNext){ if( (*pp)->p==pPtr ){ RenameToken *pToken = *pp; if( pCtx ){ *pp = pToken->pNext; pToken->pNext = pCtx->pList; pCtx->pList = pToken; pCtx->nList++; } return pToken; } } return 0; } /* ** This is a Walker select callback. It does nothing. It is only required ** because without a dummy callback, sqlite3WalkExpr() and similar do not ** descend into sub-select statements. */ static int renameColumnSelectCb(Walker *pWalker, Select *p){ if( p->selFlags & (SF_View|SF_CopyCte) ){ testcase( p->selFlags & SF_View ); testcase( p->selFlags & SF_CopyCte ); return WRC_Prune; } renameWalkWith(pWalker, p); return WRC_Continue; } /* ** This is a Walker expression callback. ** ** For every TK_COLUMN node in the expression tree, search to see ** if the column being references is the column being renamed by an ** ALTER TABLE statement. If it is, then attach its associated ** RenameToken object to the list of RenameToken objects being ** constructed in RenameCtx object at pWalker->u.pRename. */ static int renameColumnExprCb(Walker *pWalker, Expr *pExpr){ RenameCtx *p = pWalker->u.pRename; if( pExpr->op==TK_TRIGGER && pExpr->iColumn==p->iCol && pWalker->pParse->pTriggerTab==p->pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); }else if( pExpr->op==TK_COLUMN && pExpr->iColumn==p->iCol && ALWAYS(ExprUseYTab(pExpr)) && p->pTab==pExpr->y.pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); } return WRC_Continue; } /* ** The RenameCtx contains a list of tokens that reference a column that ** is being renamed by an ALTER TABLE statement. Return the "last" ** RenameToken in the RenameCtx and remove that RenameToken from the ** RenameContext. "Last" means the last RenameToken encountered when ** the input SQL is parsed from left to right. Repeated calls to this routine ** return all column name tokens in the order that they are encountered ** in the SQL statement. */ static RenameToken *renameColumnTokenNext(RenameCtx *pCtx){ RenameToken *pBest = pCtx->pList; RenameToken *pToken; RenameToken **pp; for(pToken=pBest->pNext; pToken; pToken=pToken->pNext){ if( pToken->t.z>pBest->t.z ) pBest = pToken; } for(pp=&pCtx->pList; *pp!=pBest; pp=&(*pp)->pNext); *pp = pBest->pNext; return pBest; } /* ** An error occurred while parsing or otherwise processing a database ** object (either pParse->pNewTable, pNewIndex or pNewTrigger) as part of an ** ALTER TABLE RENAME COLUMN program. The error message emitted by the ** sub-routine is currently stored in pParse->zErrMsg. This function ** adds context to the error message and then stores it in pCtx. */ static void renameColumnParseError( sqlite3_context *pCtx, const char *zWhen, sqlite3_value *pType, sqlite3_value *pObject, Parse *pParse ){ const char *zT = (const char*)sqlite3_value_text(pType); const char *zN = (const char*)sqlite3_value_text(pObject); char *zErr; zErr = sqlite3MPrintf(pParse->db, "error in %s %s%s%s: %s", zT, zN, (zWhen[0] ? " " : ""), zWhen, pParse->zErrMsg ); sqlite3_result_error(pCtx, zErr, -1); sqlite3DbFree(pParse->db, zErr); } /* ** For each name in the the expression-list pEList (i.e. each ** pEList->a[i].zName) that matches the string in zOld, extract the ** corresponding rename-token from Parse object pParse and add it ** to the RenameCtx pCtx. */ static void renameColumnElistNames( Parse *pParse, RenameCtx *pCtx, const ExprList *pEList, const char *zOld ){ if( pEList ){ int i; for(i=0; inExpr; i++){ const char *zName = pEList->a[i].zEName; if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME) && ALWAYS(zName!=0) && 0==sqlite3_stricmp(zName, zOld) ){ renameTokenFind(pParse, pCtx, (const void*)zName); } } } } /* ** For each name in the the id-list pIdList (i.e. each pIdList->a[i].zName) ** that matches the string in zOld, extract the corresponding rename-token ** from Parse object pParse and add it to the RenameCtx pCtx. */ static void renameColumnIdlistNames( Parse *pParse, RenameCtx *pCtx, const IdList *pIdList, const char *zOld ){ if( pIdList ){ int i; for(i=0; inId; i++){ const char *zName = pIdList->a[i].zName; if( 0==sqlite3_stricmp(zName, zOld) ){ renameTokenFind(pParse, pCtx, (const void*)zName); } } } } /* ** Parse the SQL statement zSql using Parse object (*p). The Parse object ** is initialized by this function before it is used. */ static int renameParseSql( Parse *p, /* Memory to use for Parse object */ const char *zDb, /* Name of schema SQL belongs to */ sqlite3 *db, /* Database handle */ const char *zSql, /* SQL to parse */ int bTemp /* True if SQL is from temp schema */ ){ int rc; sqlite3ParseObjectInit(p, db); if( zSql==0 ){ return SQLITE_NOMEM; } if( sqlite3StrNICmp(zSql,"CREATE ",7)!=0 ){ return SQLITE_CORRUPT_BKPT; } db->init.iDb = bTemp ? 1 : sqlite3FindDbName(db, zDb); p->eParseMode = PARSE_MODE_RENAME; p->db = db; p->nQueryLoop = 1; rc = sqlite3RunParser(p, zSql); if( db->mallocFailed ) rc = SQLITE_NOMEM; if( rc==SQLITE_OK && NEVER(p->pNewTable==0 && p->pNewIndex==0 && p->pNewTrigger==0) ){ rc = SQLITE_CORRUPT_BKPT; } #ifdef SQLITE_DEBUG /* Ensure that all mappings in the Parse.pRename list really do map to ** a part of the input string. */ if( rc==SQLITE_OK ){ int nSql = sqlite3Strlen30(zSql); RenameToken *pToken; for(pToken=p->pRename; pToken; pToken=pToken->pNext){ assert( pToken->t.z>=zSql && &pToken->t.z[pToken->t.n]<=&zSql[nSql] ); } } #endif db->init.iDb = 0; return rc; } /* ** This function edits SQL statement zSql, replacing each token identified ** by the linked list pRename with the text of zNew. If argument bQuote is ** true, then zNew is always quoted first. If no error occurs, the result ** is loaded into context object pCtx as the result. ** ** Or, if an error occurs (i.e. an OOM condition), an error is left in ** pCtx and an SQLite error code returned. */ static int renameEditSql( sqlite3_context *pCtx, /* Return result here */ RenameCtx *pRename, /* Rename context */ const char *zSql, /* SQL statement to edit */ const char *zNew, /* New token text */ int bQuote /* True to always quote token */ ){ i64 nNew = sqlite3Strlen30(zNew); i64 nSql = sqlite3Strlen30(zSql); sqlite3 *db = sqlite3_context_db_handle(pCtx); int rc = SQLITE_OK; char *zQuot = 0; char *zOut; i64 nQuot = 0; char *zBuf1 = 0; char *zBuf2 = 0; if( zNew ){ /* Set zQuot to point to a buffer containing a quoted copy of the ** identifier zNew. If the corresponding identifier in the original ** ALTER TABLE statement was quoted (bQuote==1), then set zNew to ** point to zQuot so that all substitutions are made using the ** quoted version of the new column name. */ zQuot = sqlite3MPrintf(db, "\"%w\" ", zNew); if( zQuot==0 ){ return SQLITE_NOMEM; }else{ nQuot = sqlite3Strlen30(zQuot)-1; } assert( nQuot>=nNew ); zOut = sqlite3DbMallocZero(db, nSql + pRename->nList*nQuot + 1); }else{ zOut = (char*)sqlite3DbMallocZero(db, (nSql*2+1) * 3); if( zOut ){ zBuf1 = &zOut[nSql*2+1]; zBuf2 = &zOut[nSql*4+2]; } } /* At this point pRename->pList contains a list of RenameToken objects ** corresponding to all tokens in the input SQL that must be replaced ** with the new column name, or with single-quoted versions of themselves. ** All that remains is to construct and return the edited SQL string. */ if( zOut ){ int nOut = nSql; memcpy(zOut, zSql, nSql); while( pRename->pList ){ int iOff; /* Offset of token to replace in zOut */ u32 nReplace; const char *zReplace; RenameToken *pBest = renameColumnTokenNext(pRename); if( zNew ){ if( bQuote==0 && sqlite3IsIdChar(*pBest->t.z) ){ nReplace = nNew; zReplace = zNew; }else{ nReplace = nQuot; zReplace = zQuot; if( pBest->t.z[pBest->t.n]=='"' ) nReplace++; } }else{ /* Dequote the double-quoted token. Then requote it again, this time ** using single quotes. If the character immediately following the ** original token within the input SQL was a single quote ('), then ** add another space after the new, single-quoted version of the ** token. This is so that (SELECT "string"'alias') maps to ** (SELECT 'string' 'alias'), and not (SELECT 'string''alias'). */ memcpy(zBuf1, pBest->t.z, pBest->t.n); zBuf1[pBest->t.n] = 0; sqlite3Dequote(zBuf1); sqlite3_snprintf(nSql*2, zBuf2, "%Q%s", zBuf1, pBest->t.z[pBest->t.n]=='\'' ? " " : "" ); zReplace = zBuf2; nReplace = sqlite3Strlen30(zReplace); } iOff = pBest->t.z - zSql; if( pBest->t.n!=nReplace ){ memmove(&zOut[iOff + nReplace], &zOut[iOff + pBest->t.n], nOut - (iOff + pBest->t.n) ); nOut += nReplace - pBest->t.n; zOut[nOut] = '\0'; } memcpy(&zOut[iOff], zReplace, nReplace); sqlite3DbFree(db, pBest); } sqlite3_result_text(pCtx, zOut, -1, SQLITE_TRANSIENT); sqlite3DbFree(db, zOut); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zQuot); return rc; } /* ** Set all pEList->a[].fg.eEName fields in the expression-list to val. */ static void renameSetENames(ExprList *pEList, int val){ if( pEList ){ int i; for(i=0; inExpr; i++){ assert( val==ENAME_NAME || pEList->a[i].fg.eEName==ENAME_NAME ); pEList->a[i].fg.eEName = val; } } } /* ** Resolve all symbols in the trigger at pParse->pNewTrigger, assuming ** it was read from the schema of database zDb. Return SQLITE_OK if ** successful. Otherwise, return an SQLite error code and leave an error ** message in the Parse object. */ static int renameResolveTrigger(Parse *pParse){ sqlite3 *db = pParse->db; Trigger *pNew = pParse->pNewTrigger; TriggerStep *pStep; NameContext sNC; int rc = SQLITE_OK; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; assert( pNew->pTabSchema ); pParse->pTriggerTab = sqlite3FindTable(db, pNew->table, db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName ); pParse->eTriggerOp = pNew->op; /* ALWAYS() because if the table of the trigger does not exist, the ** error would have been hit before this point */ if( ALWAYS(pParse->pTriggerTab) ){ rc = sqlite3ViewGetColumnNames(pParse, pParse->pTriggerTab); } /* Resolve symbols in WHEN clause */ if( rc==SQLITE_OK && pNew->pWhen ){ rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen); } for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){ if( pStep->pSelect ){ sqlite3SelectPrep(pParse, pStep->pSelect, &sNC); if( pParse->nErr ) rc = pParse->rc; } if( rc==SQLITE_OK && pStep->zTarget ){ SrcList *pSrc = sqlite3TriggerStepSrc(pParse, pStep); if( pSrc ){ Select *pSel = sqlite3SelectNew( pParse, pStep->pExprList, pSrc, 0, 0, 0, 0, 0, 0 ); if( pSel==0 ){ pStep->pExprList = 0; pSrc = 0; rc = SQLITE_NOMEM; }else{ /* pStep->pExprList contains an expression-list used for an UPDATE ** statement. So the a[].zEName values are the RHS of the ** "= " clauses of the UPDATE statement. So, before ** running SelectPrep(), change all the eEName values in ** pStep->pExprList to ENAME_SPAN (from their current value of ** ENAME_NAME). This is to prevent any ids in ON() clauses that are ** part of pSrc from being incorrectly resolved against the ** a[].zEName values as if they were column aliases. */ renameSetENames(pStep->pExprList, ENAME_SPAN); sqlite3SelectPrep(pParse, pSel, 0); renameSetENames(pStep->pExprList, ENAME_NAME); rc = pParse->nErr ? SQLITE_ERROR : SQLITE_OK; assert( pStep->pExprList==0 || pStep->pExprList==pSel->pEList ); assert( pSrc==pSel->pSrc ); if( pStep->pExprList ) pSel->pEList = 0; pSel->pSrc = 0; sqlite3SelectDelete(db, pSel); } if( pStep->pFrom ){ int i; for(i=0; ipFrom->nSrc && rc==SQLITE_OK; i++){ SrcItem *p = &pStep->pFrom->a[i]; if( p->pSelect ){ sqlite3SelectPrep(pParse, p->pSelect, 0); } } } if( db->mallocFailed ){ rc = SQLITE_NOMEM; } sNC.pSrcList = pSrc; if( rc==SQLITE_OK && pStep->pWhere ){ rc = sqlite3ResolveExprNames(&sNC, pStep->pWhere); } if( rc==SQLITE_OK ){ rc = sqlite3ResolveExprListNames(&sNC, pStep->pExprList); } assert( !pStep->pUpsert || (!pStep->pWhere && !pStep->pExprList) ); if( pStep->pUpsert && rc==SQLITE_OK ){ Upsert *pUpsert = pStep->pUpsert; pUpsert->pUpsertSrc = pSrc; sNC.uNC.pUpsert = pUpsert; sNC.ncFlags = NC_UUpsert; rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget); if( rc==SQLITE_OK ){ ExprList *pUpsertSet = pUpsert->pUpsertSet; rc = sqlite3ResolveExprListNames(&sNC, pUpsertSet); } if( rc==SQLITE_OK ){ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertWhere); } if( rc==SQLITE_OK ){ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere); } sNC.ncFlags = 0; } sNC.pSrcList = 0; sqlite3SrcListDelete(db, pSrc); }else{ rc = SQLITE_NOMEM; } } } return rc; } /* ** Invoke sqlite3WalkExpr() or sqlite3WalkSelect() on all Select or Expr ** objects that are part of the trigger passed as the second argument. */ static void renameWalkTrigger(Walker *pWalker, Trigger *pTrigger){ TriggerStep *pStep; /* Find tokens to edit in WHEN clause */ sqlite3WalkExpr(pWalker, pTrigger->pWhen); /* Find tokens to edit in trigger steps */ for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){ sqlite3WalkSelect(pWalker, pStep->pSelect); sqlite3WalkExpr(pWalker, pStep->pWhere); sqlite3WalkExprList(pWalker, pStep->pExprList); if( pStep->pUpsert ){ Upsert *pUpsert = pStep->pUpsert; sqlite3WalkExprList(pWalker, pUpsert->pUpsertTarget); sqlite3WalkExprList(pWalker, pUpsert->pUpsertSet); sqlite3WalkExpr(pWalker, pUpsert->pUpsertWhere); sqlite3WalkExpr(pWalker, pUpsert->pUpsertTargetWhere); } if( pStep->pFrom ){ int i; for(i=0; ipFrom->nSrc; i++){ sqlite3WalkSelect(pWalker, pStep->pFrom->a[i].pSelect); } } } } /* ** Free the contents of Parse object (*pParse). Do not free the memory ** occupied by the Parse object itself. */ static void renameParseCleanup(Parse *pParse){ sqlite3 *db = pParse->db; Index *pIdx; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } sqlite3DeleteTable(db, pParse->pNewTable); while( (pIdx = pParse->pNewIndex)!=0 ){ pParse->pNewIndex = pIdx->pNext; sqlite3FreeIndex(db, pIdx); } sqlite3DeleteTrigger(db, pParse->pNewTrigger); sqlite3DbFree(db, pParse->zErrMsg); renameTokenFree(db, pParse->pRename); sqlite3ParseObjectReset(pParse); } /* ** SQL function: ** ** sqlite_rename_column(SQL,TYPE,OBJ,DB,TABLE,COL,NEWNAME,QUOTE,TEMP) ** ** 0. zSql: SQL statement to rewrite ** 1. type: Type of object ("table", "view" etc.) ** 2. object: Name of object ** 3. Database: Database name (e.g. "main") ** 4. Table: Table name ** 5. iCol: Index of column to rename ** 6. zNew: New column name ** 7. bQuote: Non-zero if the new column name should be quoted. ** 8. bTemp: True if zSql comes from temp schema ** ** Do a column rename operation on the CREATE statement given in zSql. ** The iCol-th column (left-most is 0) of table zTable is renamed from zCol ** into zNew. The name should be quoted if bQuote is true. ** ** This function is used internally by the ALTER TABLE RENAME COLUMN command. ** It is only accessible to SQL created using sqlite3NestedParse(). It is ** not reachable from ordinary SQL passed into sqlite3_prepare() unless the ** SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test setting is enabled. */ static void renameColumnFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); RenameCtx sCtx; const char *zSql = (const char*)sqlite3_value_text(argv[0]); const char *zDb = (const char*)sqlite3_value_text(argv[3]); const char *zTable = (const char*)sqlite3_value_text(argv[4]); int iCol = sqlite3_value_int(argv[5]); const char *zNew = (const char*)sqlite3_value_text(argv[6]); int bQuote = sqlite3_value_int(argv[7]); int bTemp = sqlite3_value_int(argv[8]); const char *zOld; int rc; Parse sParse; Walker sWalker; Index *pIdx; int i; Table *pTab; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; #endif UNUSED_PARAMETER(NotUsed); if( zSql==0 ) return; if( zTable==0 ) return; if( zNew==0 ) return; if( iCol<0 ) return; sqlite3BtreeEnterAll(db); pTab = sqlite3FindTable(db, zTable, zDb); if( pTab==0 || iCol>=pTab->nCol ){ sqlite3BtreeLeaveAll(db); return; } zOld = pTab->aCol[iCol].zCnName; memset(&sCtx, 0, sizeof(sCtx)); sCtx.iCol = ((iCol==pTab->iPKey) ? -1 : iCol); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = 0; #endif rc = renameParseSql(&sParse, zDb, db, zSql, bTemp); /* Find tokens that need to be replaced. */ memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = &sParse; sWalker.xExprCallback = renameColumnExprCb; sWalker.xSelectCallback = renameColumnSelectCb; sWalker.u.pRename = &sCtx; sCtx.pTab = pTab; if( rc!=SQLITE_OK ) goto renameColumnFunc_done; if( sParse.pNewTable ){ if( IsView(sParse.pNewTable) ){ Select *pSelect = sParse.pNewTable->u.view.pSelect; pSelect->selFlags &= ~SF_View; sParse.rc = SQLITE_OK; sqlite3SelectPrep(&sParse, pSelect, 0); rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc); if( rc==SQLITE_OK ){ sqlite3WalkSelect(&sWalker, pSelect); } if( rc!=SQLITE_OK ) goto renameColumnFunc_done; }else if( IsOrdinaryTable(sParse.pNewTable) ){ /* A regular table */ int bFKOnly = sqlite3_stricmp(zTable, sParse.pNewTable->zName); FKey *pFKey; sCtx.pTab = sParse.pNewTable; if( bFKOnly==0 ){ if( iColnCol ){ renameTokenFind( &sParse, &sCtx, (void*)sParse.pNewTable->aCol[iCol].zCnName ); } if( sCtx.iCol<0 ){ renameTokenFind(&sParse, &sCtx, (void*)&sParse.pNewTable->iPKey); } sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck); for(pIdx=sParse.pNewTable->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3WalkExprList(&sWalker, pIdx->aColExpr); } for(pIdx=sParse.pNewIndex; pIdx; pIdx=pIdx->pNext){ sqlite3WalkExprList(&sWalker, pIdx->aColExpr); } #ifndef SQLITE_OMIT_GENERATED_COLUMNS for(i=0; inCol; i++){ Expr *pExpr = sqlite3ColumnExpr(sParse.pNewTable, &sParse.pNewTable->aCol[i]); sqlite3WalkExpr(&sWalker, pExpr); } #endif } assert( IsOrdinaryTable(sParse.pNewTable) ); for(pFKey=sParse.pNewTable->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ for(i=0; inCol; i++){ if( bFKOnly==0 && pFKey->aCol[i].iFrom==iCol ){ renameTokenFind(&sParse, &sCtx, (void*)&pFKey->aCol[i]); } if( 0==sqlite3_stricmp(pFKey->zTo, zTable) && 0==sqlite3_stricmp(pFKey->aCol[i].zCol, zOld) ){ renameTokenFind(&sParse, &sCtx, (void*)pFKey->aCol[i].zCol); } } } } }else if( sParse.pNewIndex ){ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr); sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); }else{ /* A trigger */ TriggerStep *pStep; rc = renameResolveTrigger(&sParse); if( rc!=SQLITE_OK ) goto renameColumnFunc_done; for(pStep=sParse.pNewTrigger->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget ){ Table *pTarget = sqlite3LocateTable(&sParse, 0, pStep->zTarget, zDb); if( pTarget==pTab ){ if( pStep->pUpsert ){ ExprList *pUpsertSet = pStep->pUpsert->pUpsertSet; renameColumnElistNames(&sParse, &sCtx, pUpsertSet, zOld); } renameColumnIdlistNames(&sParse, &sCtx, pStep->pIdList, zOld); renameColumnElistNames(&sParse, &sCtx, pStep->pExprList, zOld); } } } /* Find tokens to edit in UPDATE OF clause */ if( sParse.pTriggerTab==pTab ){ renameColumnIdlistNames(&sParse, &sCtx,sParse.pNewTrigger->pColumns,zOld); } /* Find tokens to edit in various expressions and selects */ renameWalkTrigger(&sWalker, sParse.pNewTrigger); } assert( rc==SQLITE_OK ); rc = renameEditSql(context, &sCtx, zSql, zNew, bQuote); renameColumnFunc_done: if( rc!=SQLITE_OK ){ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){ sqlite3_result_value(context, argv[0]); }else if( sParse.zErrMsg ){ renameColumnParseError(context, "", argv[1], argv[2], &sParse); }else{ sqlite3_result_error_code(context, rc); } } renameParseCleanup(&sParse); renameTokenFree(db, sCtx.pList); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif sqlite3BtreeLeaveAll(db); } /* ** Walker expression callback used by "RENAME TABLE". */ static int renameTableExprCb(Walker *pWalker, Expr *pExpr){ RenameCtx *p = pWalker->u.pRename; if( pExpr->op==TK_COLUMN && ALWAYS(ExprUseYTab(pExpr)) && p->pTab==pExpr->y.pTab ){ renameTokenFind(pWalker->pParse, p, (void*)&pExpr->y.pTab); } return WRC_Continue; } /* ** Walker select callback used by "RENAME TABLE". */ static int renameTableSelectCb(Walker *pWalker, Select *pSelect){ int i; RenameCtx *p = pWalker->u.pRename; SrcList *pSrc = pSelect->pSrc; if( pSelect->selFlags & (SF_View|SF_CopyCte) ){ testcase( pSelect->selFlags & SF_View ); testcase( pSelect->selFlags & SF_CopyCte ); return WRC_Prune; } if( NEVER(pSrc==0) ){ assert( pWalker->pParse->db->mallocFailed ); return WRC_Abort; } for(i=0; inSrc; i++){ SrcItem *pItem = &pSrc->a[i]; if( pItem->pTab==p->pTab ){ renameTokenFind(pWalker->pParse, p, pItem->zName); } } renameWalkWith(pWalker, pSelect); return WRC_Continue; } /* ** This C function implements an SQL user function that is used by SQL code ** generated by the ALTER TABLE ... RENAME command to modify the definition ** of any foreign key constraints that use the table being renamed as the ** parent table. It is passed three arguments: ** ** 0: The database containing the table being renamed. ** 1. type: Type of object ("table", "view" etc.) ** 2. object: Name of object ** 3: The complete text of the schema statement being modified, ** 4: The old name of the table being renamed, and ** 5: The new name of the table being renamed. ** 6: True if the schema statement comes from the temp db. ** ** It returns the new schema statement. For example: ** ** sqlite_rename_table('main', 'CREATE TABLE t1(a REFERENCES t2)','t2','t3',0) ** -> 'CREATE TABLE t1(a REFERENCES t3)' */ static void renameTableFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); const char *zDb = (const char*)sqlite3_value_text(argv[0]); const char *zInput = (const char*)sqlite3_value_text(argv[3]); const char *zOld = (const char*)sqlite3_value_text(argv[4]); const char *zNew = (const char*)sqlite3_value_text(argv[5]); int bTemp = sqlite3_value_int(argv[6]); UNUSED_PARAMETER(NotUsed); if( zInput && zOld && zNew ){ Parse sParse; int rc; int bQuote = 1; RenameCtx sCtx; Walker sWalker; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif sqlite3BtreeEnterAll(db); memset(&sCtx, 0, sizeof(RenameCtx)); sCtx.pTab = sqlite3FindTable(db, zOld, zDb); memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = &sParse; sWalker.xExprCallback = renameTableExprCb; sWalker.xSelectCallback = renameTableSelectCb; sWalker.u.pRename = &sCtx; rc = renameParseSql(&sParse, zDb, db, zInput, bTemp); if( rc==SQLITE_OK ){ int isLegacy = (db->flags & SQLITE_LegacyAlter); if( sParse.pNewTable ){ Table *pTab = sParse.pNewTable; if( IsView(pTab) ){ if( isLegacy==0 ){ Select *pSelect = pTab->u.view.pSelect; NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sParse; assert( pSelect->selFlags & SF_View ); pSelect->selFlags &= ~SF_View; sqlite3SelectPrep(&sParse, pTab->u.view.pSelect, &sNC); if( sParse.nErr ){ rc = sParse.rc; }else{ sqlite3WalkSelect(&sWalker, pTab->u.view.pSelect); } } }else{ /* Modify any FK definitions to point to the new table. */ #ifndef SQLITE_OMIT_FOREIGN_KEY if( (isLegacy==0 || (db->flags & SQLITE_ForeignKeys)) && !IsVirtual(pTab) ){ FKey *pFKey; assert( IsOrdinaryTable(pTab) ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){ renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo); } } } #endif /* If this is the table being altered, fix any table refs in CHECK ** expressions. Also update the name that appears right after the ** "CREATE [VIRTUAL] TABLE" bit. */ if( sqlite3_stricmp(zOld, pTab->zName)==0 ){ sCtx.pTab = pTab; if( isLegacy==0 ){ sqlite3WalkExprList(&sWalker, pTab->pCheck); } renameTokenFind(&sParse, &sCtx, pTab->zName); } } } else if( sParse.pNewIndex ){ renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName); if( isLegacy==0 ){ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); } } #ifndef SQLITE_OMIT_TRIGGER else{ Trigger *pTrigger = sParse.pNewTrigger; TriggerStep *pStep; if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld) && sCtx.pTab->pSchema==pTrigger->pTabSchema ){ renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table); } if( isLegacy==0 ){ rc = renameResolveTrigger(&sParse); if( rc==SQLITE_OK ){ renameWalkTrigger(&sWalker, pTrigger); for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){ renameTokenFind(&sParse, &sCtx, pStep->zTarget); } if( pStep->pFrom ){ int i; for(i=0; ipFrom->nSrc; i++){ SrcItem *pItem = &pStep->pFrom->a[i]; if( 0==sqlite3_stricmp(pItem->zName, zOld) ){ renameTokenFind(&sParse, &sCtx, pItem->zName); } } } } } } } #endif } if( rc==SQLITE_OK ){ rc = renameEditSql(context, &sCtx, zInput, zNew, bQuote); } if( rc!=SQLITE_OK ){ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){ sqlite3_result_value(context, argv[3]); }else if( sParse.zErrMsg ){ renameColumnParseError(context, "", argv[1], argv[2], &sParse); }else{ sqlite3_result_error_code(context, rc); } } renameParseCleanup(&sParse); renameTokenFree(db, sCtx.pList); sqlite3BtreeLeaveAll(db); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif } return; } static int renameQuotefixExprCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_STRING && (pExpr->flags & EP_DblQuoted) ){ renameTokenFind(pWalker->pParse, pWalker->u.pRename, (const void*)pExpr); } return WRC_Continue; } /* SQL function: sqlite_rename_quotefix(DB,SQL) ** ** Rewrite the DDL statement "SQL" so that any string literals that use ** double-quotes use single quotes instead. ** ** Two arguments must be passed: ** ** 0: Database name ("main", "temp" etc.). ** 1: SQL statement to edit. ** ** The returned value is the modified SQL statement. For example, given ** the database schema: ** ** CREATE TABLE t1(a, b, c); ** ** SELECT sqlite_rename_quotefix('main', ** 'CREATE VIEW v1 AS SELECT "a", "string" FROM t1' ** ); ** ** returns the string: ** ** CREATE VIEW v1 AS SELECT "a", 'string' FROM t1 ** ** If there is a error in the input SQL, then raise an error, except ** if PRAGMA writable_schema=ON, then just return the input string ** unmodified following an error. */ static void renameQuotefixFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); char const *zDb = (const char*)sqlite3_value_text(argv[0]); char const *zInput = (const char*)sqlite3_value_text(argv[1]); #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif sqlite3BtreeEnterAll(db); UNUSED_PARAMETER(NotUsed); if( zDb && zInput ){ int rc; Parse sParse; rc = renameParseSql(&sParse, zDb, db, zInput, 0); if( rc==SQLITE_OK ){ RenameCtx sCtx; Walker sWalker; /* Walker to find tokens that need to be replaced. */ memset(&sCtx, 0, sizeof(RenameCtx)); memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = &sParse; sWalker.xExprCallback = renameQuotefixExprCb; sWalker.xSelectCallback = renameColumnSelectCb; sWalker.u.pRename = &sCtx; if( sParse.pNewTable ){ if( IsView(sParse.pNewTable) ){ Select *pSelect = sParse.pNewTable->u.view.pSelect; pSelect->selFlags &= ~SF_View; sParse.rc = SQLITE_OK; sqlite3SelectPrep(&sParse, pSelect, 0); rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc); if( rc==SQLITE_OK ){ sqlite3WalkSelect(&sWalker, pSelect); } }else{ int i; sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck); #ifndef SQLITE_OMIT_GENERATED_COLUMNS for(i=0; inCol; i++){ sqlite3WalkExpr(&sWalker, sqlite3ColumnExpr(sParse.pNewTable, &sParse.pNewTable->aCol[i])); } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ } }else if( sParse.pNewIndex ){ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr); sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); }else{ #ifndef SQLITE_OMIT_TRIGGER rc = renameResolveTrigger(&sParse); if( rc==SQLITE_OK ){ renameWalkTrigger(&sWalker, sParse.pNewTrigger); } #endif /* SQLITE_OMIT_TRIGGER */ } if( rc==SQLITE_OK ){ rc = renameEditSql(context, &sCtx, zInput, 0, 0); } renameTokenFree(db, sCtx.pList); } if( rc!=SQLITE_OK ){ if( sqlite3WritableSchema(db) && rc==SQLITE_ERROR ){ sqlite3_result_value(context, argv[1]); }else{ sqlite3_result_error_code(context, rc); } } renameParseCleanup(&sParse); } #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif sqlite3BtreeLeaveAll(db); } /* Function: sqlite_rename_test(DB,SQL,TYPE,NAME,ISTEMP,WHEN,DQS) ** ** An SQL user function that checks that there are no parse or symbol ** resolution problems in a CREATE TRIGGER|TABLE|VIEW|INDEX statement. ** After an ALTER TABLE .. RENAME operation is performed and the schema ** reloaded, this function is called on each SQL statement in the schema ** to ensure that it is still usable. ** ** 0: Database name ("main", "temp" etc.). ** 1: SQL statement. ** 2: Object type ("view", "table", "trigger" or "index"). ** 3: Object name. ** 4: True if object is from temp schema. ** 5: "when" part of error message. ** 6: True to disable the DQS quirk when parsing SQL. ** ** The return value is computed as follows: ** ** A. If an error is seen and not in PRAGMA writable_schema=ON mode, ** then raise the error. ** B. Else if a trigger is created and the the table that the trigger is ** attached to is in database zDb, then return 1. ** C. Otherwise return NULL. */ static void renameTableTest( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); char const *zDb = (const char*)sqlite3_value_text(argv[0]); char const *zInput = (const char*)sqlite3_value_text(argv[1]); int bTemp = sqlite3_value_int(argv[4]); int isLegacy = (db->flags & SQLITE_LegacyAlter); char const *zWhen = (const char*)sqlite3_value_text(argv[5]); int bNoDQS = sqlite3_value_int(argv[6]); #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif UNUSED_PARAMETER(NotUsed); if( zDb && zInput ){ int rc; Parse sParse; int flags = db->flags; if( bNoDQS ) db->flags &= ~(SQLITE_DqsDML|SQLITE_DqsDDL); rc = renameParseSql(&sParse, zDb, db, zInput, bTemp); db->flags |= (flags & (SQLITE_DqsDML|SQLITE_DqsDDL)); if( rc==SQLITE_OK ){ if( isLegacy==0 && sParse.pNewTable && IsView(sParse.pNewTable) ){ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sParse; sqlite3SelectPrep(&sParse, sParse.pNewTable->u.view.pSelect, &sNC); if( sParse.nErr ) rc = sParse.rc; } else if( sParse.pNewTrigger ){ if( isLegacy==0 ){ rc = renameResolveTrigger(&sParse); } if( rc==SQLITE_OK ){ int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema); int i2 = sqlite3FindDbName(db, zDb); if( i1==i2 ){ /* Handle output case B */ sqlite3_result_int(context, 1); } } } } if( rc!=SQLITE_OK && zWhen && !sqlite3WritableSchema(db) ){ /* Output case A */ renameColumnParseError(context, zWhen, argv[2], argv[3],&sParse); } renameParseCleanup(&sParse); } #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif } /* ** The implementation of internal UDF sqlite_drop_column(). ** ** Arguments: ** ** argv[0]: An integer - the index of the schema containing the table ** argv[1]: CREATE TABLE statement to modify. ** argv[2]: An integer - the index of the column to remove. ** ** The value returned is a string containing the CREATE TABLE statement ** with column argv[2] removed. */ static void dropColumnFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); int iSchema = sqlite3_value_int(argv[0]); const char *zSql = (const char*)sqlite3_value_text(argv[1]); int iCol = sqlite3_value_int(argv[2]); const char *zDb = db->aDb[iSchema].zDbSName; int rc; Parse sParse; RenameToken *pCol; Table *pTab; const char *zEnd; char *zNew = 0; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif UNUSED_PARAMETER(NotUsed); rc = renameParseSql(&sParse, zDb, db, zSql, iSchema==1); if( rc!=SQLITE_OK ) goto drop_column_done; pTab = sParse.pNewTable; if( pTab==0 || pTab->nCol==1 || iCol>=pTab->nCol ){ /* This can happen if the sqlite_schema table is corrupt */ rc = SQLITE_CORRUPT_BKPT; goto drop_column_done; } pCol = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol].zCnName); if( iColnCol-1 ){ RenameToken *pEnd; pEnd = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol+1].zCnName); zEnd = (const char*)pEnd->t.z; }else{ assert( IsOrdinaryTable(pTab) ); zEnd = (const char*)&zSql[pTab->u.tab.addColOffset]; while( ALWAYS(pCol->t.z[0]!=0) && pCol->t.z[0]!=',' ) pCol->t.z--; } zNew = sqlite3MPrintf(db, "%.*s%s", pCol->t.z-zSql, zSql, zEnd); sqlite3_result_text(context, zNew, -1, SQLITE_TRANSIENT); sqlite3_free(zNew); drop_column_done: renameParseCleanup(&sParse); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif if( rc!=SQLITE_OK ){ sqlite3_result_error_code(context, rc); } } /* ** This function is called by the parser upon parsing an ** ** ALTER TABLE pSrc DROP COLUMN pName ** ** statement. Argument pSrc contains the possibly qualified name of the ** table being edited, and token pName the name of the column to drop. */ SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse *pParse, SrcList *pSrc, const Token *pName){ sqlite3 *db = pParse->db; /* Database handle */ Table *pTab; /* Table to modify */ int iDb; /* Index of db containing pTab in aDb[] */ const char *zDb; /* Database containing pTab ("main" etc.) */ char *zCol = 0; /* Name of column to drop */ int iCol; /* Index of column zCol in pTab->aCol[] */ /* Look up the table being altered. */ assert( pParse->pNewTable==0 ); assert( sqlite3BtreeHoldsAllMutexes(db) ); if( NEVER(db->mallocFailed) ) goto exit_drop_column; pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_drop_column; /* Make sure this is not an attempt to ALTER a view, virtual table or ** system table. */ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_drop_column; if( SQLITE_OK!=isRealTable(pParse, pTab, 1) ) goto exit_drop_column; /* Find the index of the column being dropped. */ zCol = sqlite3NameFromToken(db, pName); if( zCol==0 ){ assert( db->mallocFailed ); goto exit_drop_column; } iCol = sqlite3ColumnIndex(pTab, zCol); if( iCol<0 ){ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pName); goto exit_drop_column; } /* Do not allow the user to drop a PRIMARY KEY column or a column ** constrained by a UNIQUE constraint. */ if( pTab->aCol[iCol].colFlags & (COLFLAG_PRIMKEY|COLFLAG_UNIQUE) ){ sqlite3ErrorMsg(pParse, "cannot drop %s column: \"%s\"", (pTab->aCol[iCol].colFlags&COLFLAG_PRIMKEY) ? "PRIMARY KEY" : "UNIQUE", zCol ); goto exit_drop_column; } /* Do not allow the number of columns to go to zero */ if( pTab->nCol<=1 ){ sqlite3ErrorMsg(pParse, "cannot drop column \"%s\": no other columns exist",zCol); goto exit_drop_column; } /* Edit the sqlite_schema table */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); zDb = db->aDb[iDb].zDbSName; #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, zCol) ){ goto exit_drop_column; } #endif renameTestSchema(pParse, zDb, iDb==1, "", 0); renameFixQuotes(pParse, zDb, iDb==1); sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_drop_column(%d, sql, %d) " "WHERE (type=='table' AND tbl_name=%Q COLLATE nocase)" , zDb, iDb, iCol, pTab->zName ); /* Drop and reload the database schema. */ renameReloadSchema(pParse, iDb, INITFLAG_AlterDrop); renameTestSchema(pParse, zDb, iDb==1, "after drop column", 1); /* Edit rows of table on disk */ if( pParse->nErr==0 && (pTab->aCol[iCol].colFlags & COLFLAG_VIRTUAL)==0 ){ int i; int addr; int reg; int regRec; Index *pPk = 0; int nField = 0; /* Number of non-virtual columns after drop */ int iCur; Vdbe *v = sqlite3GetVdbe(pParse); iCur = pParse->nTab++; sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite); addr = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); reg = ++pParse->nMem; if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, reg); pParse->nMem += pTab->nCol; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); pParse->nMem += pPk->nColumn; for(i=0; inKeyCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, reg+i+1); } nField = pPk->nKeyCol; } regRec = ++pParse->nMem; for(i=0; inCol; i++){ if( i!=iCol && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ int regOut; if( pPk ){ int iPos = sqlite3TableColumnToIndex(pPk, i); int iColPos = sqlite3TableColumnToIndex(pPk, iCol); if( iPosnKeyCol ) continue; regOut = reg+1+iPos-(iPos>iColPos); }else{ regOut = reg+1+nField; } if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regOut); }else{ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOut); } nField++; } } if( nField==0 ){ /* dbsqlfuzz 5f09e7bcc78b4954d06bf9f2400d7715f48d1fef */ pParse->nMem++; sqlite3VdbeAddOp2(v, OP_Null, 0, reg+1); nField = 1; } sqlite3VdbeAddOp3(v, OP_MakeRecord, reg+1, nField, regRec); if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iCur, regRec, reg+1, pPk->nKeyCol); }else{ sqlite3VdbeAddOp3(v, OP_Insert, iCur, regRec, reg); } sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); } exit_drop_column: sqlite3DbFree(db, zCol); sqlite3SrcListDelete(db, pSrc); } /* ** Register built-in functions used to help implement ALTER TABLE */ SQLITE_PRIVATE void sqlite3AlterFunctions(void){ static FuncDef aAlterTableFuncs[] = { INTERNAL_FUNCTION(sqlite_rename_column, 9, renameColumnFunc), INTERNAL_FUNCTION(sqlite_rename_table, 7, renameTableFunc), INTERNAL_FUNCTION(sqlite_rename_test, 7, renameTableTest), INTERNAL_FUNCTION(sqlite_drop_column, 3, dropColumnFunc), INTERNAL_FUNCTION(sqlite_rename_quotefix,2, renameQuotefixFunc), }; sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs)); } #endif /* SQLITE_ALTER_TABLE */ /************** End of alter.c ***********************************************/ /************** Begin file analyze.c *****************************************/ /* ** 2005-07-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. ** ** The ANALYZE command gather statistics about the content of tables ** and indices. These statistics are made available to the query planner ** to help it make better decisions about how to perform queries. ** ** The following system tables are or have been supported: ** ** CREATE TABLE sqlite_stat1(tbl, idx, stat); ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); ** ** Additional tables might be added in future releases of SQLite. ** The sqlite_stat2 table is not created or used unless the SQLite version ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only ** created and used by SQLite versions 3.7.9 through 3.29.0 when ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 ** is a superset of sqlite_stat2 and is also now deprecated. The ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite ** versions 3.8.1 and later. STAT4 is the only variant that is still ** supported. ** ** For most applications, sqlite_stat1 provides all the statistics required ** for the query planner to make good choices. ** ** Format of sqlite_stat1: ** ** There is normally one row per index, with the index identified by the ** name in the idx column. The tbl column is the name of the table to ** which the index belongs. In each such row, the stat column will be ** a string consisting of a list of integers. The first integer in this ** list is the number of rows in the index. (This is the same as the ** number of rows in the table, except for partial indices.) The second ** integer is the average number of rows in the index that have the same ** value in the first column of the index. The third integer is the average ** number of rows in the index that have the same value for the first two ** columns. The N-th integer (for N>1) is the average number of rows in ** the index which have the same value for the first N-1 columns. For ** a K-column index, there will be K+1 integers in the stat column. If ** the index is unique, then the last integer will be 1. ** ** The list of integers in the stat column can optionally be followed ** by the keyword "unordered". The "unordered" keyword, if it is present, ** must be separated from the last integer by a single space. If the ** "unordered" keyword is present, then the query planner assumes that ** the index is unordered and will not use the index for a range query. ** ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat ** column contains a single integer which is the (estimated) number of ** rows in the table identified by sqlite_stat1.tbl. ** ** Format of sqlite_stat2: ** ** The sqlite_stat2 is only created and is only used if SQLite is compiled ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between ** 3.6.18 and 3.7.8. The "stat2" table contains additional information ** about the distribution of keys within an index. The index is identified by ** the "idx" column and the "tbl" column is the name of the table to which ** the index belongs. There are usually 10 rows in the sqlite_stat2 ** table for each index. ** ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 ** inclusive are samples of the left-most key value in the index taken at ** evenly spaced points along the index. Let the number of samples be S ** (10 in the standard build) and let C be the number of rows in the index. ** Then the sampled rows are given by: ** ** rownumber = (i*C*2 + C)/(S*2) ** ** For i between 0 and S-1. Conceptually, the index space is divided into ** S uniform buckets and the samples are the middle row from each bucket. ** ** The format for sqlite_stat2 is recorded here for legacy reference. This ** version of SQLite does not support sqlite_stat2. It neither reads nor ** writes the sqlite_stat2 table. This version of SQLite only supports ** sqlite_stat3. ** ** Format for sqlite_stat3: ** ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the ** sqlite_stat4 format will be described first. Further information ** about sqlite_stat3 follows the sqlite_stat4 description. ** ** Format for sqlite_stat4: ** ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data ** to aid the query planner in choosing good indices based on the values ** that indexed columns are compared against in the WHERE clauses of ** queries. ** ** The sqlite_stat4 table contains multiple entries for each index. ** The idx column names the index and the tbl column is the table of the ** index. If the idx and tbl columns are the same, then the sample is ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the ** binary encoding of a key from the index. The nEq column is a ** list of integers. The first integer is the approximate number ** of entries in the index whose left-most column exactly matches ** the left-most column of the sample. The second integer in nEq ** is the approximate number of entries in the index where the ** first two columns match the first two columns of the sample. ** And so forth. nLt is another list of integers that show the approximate ** number of entries that are strictly less than the sample. The first ** integer in nLt contains the number of entries in the index where the ** left-most column is less than the left-most column of the sample. ** The K-th integer in the nLt entry is the number of index entries ** where the first K columns are less than the first K columns of the ** sample. The nDLt column is like nLt except that it contains the ** number of distinct entries in the index that are less than the ** sample. ** ** There can be an arbitrary number of sqlite_stat4 entries per index. ** The ANALYZE command will typically generate sqlite_stat4 tables ** that contain between 10 and 40 samples which are distributed across ** the key space, though not uniformly, and which include samples with ** large nEq values. ** ** Format for sqlite_stat3 redux: ** ** The sqlite_stat3 table is like sqlite_stat4 except that it only ** looks at the left-most column of the index. The sqlite_stat3.sample ** column contains the actual value of the left-most column instead ** of a blob encoding of the complete index key as is found in ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 ** all contain just a single integer which is the same as the first ** integer in the equivalent columns in sqlite_stat4. */ #ifndef SQLITE_OMIT_ANALYZE /* #include "sqliteInt.h" */ #if defined(SQLITE_ENABLE_STAT4) # define IsStat4 1 #else # define IsStat4 0 # undef SQLITE_STAT4_SAMPLES # define SQLITE_STAT4_SAMPLES 1 #endif /* ** This routine generates code that opens the sqlite_statN tables. ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when ** appropriate compile-time options are provided. ** ** If the sqlite_statN tables do not previously exist, it is created. ** ** Argument zWhere may be a pointer to a buffer containing a table name, ** or it may be a NULL pointer. If it is not NULL, then all entries in ** the sqlite_statN tables associated with the named table are deleted. ** If zWhere==0, then code is generated to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ const char *zWhere, /* Delete entries for this table or index */ const char *zWhereType /* Either "tbl" or "idx" */ ){ static const struct { const char *zName; const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, #if defined(SQLITE_ENABLE_STAT4) { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, #else { "sqlite_stat4", 0 }, #endif { "sqlite_stat3", 0 }, }; int i; sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); u32 aRoot[ArraySize(aTable)]; u8 aCreateTbl[ArraySize(aTable)]; #ifdef SQLITE_ENABLE_STAT4 const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1; #else const int nToOpen = 1; #endif if( v==0 ) return; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3VdbeDb(v)==db ); pDb = &db->aDb[iDb]; /* Create new statistic tables if they do not exist, or clear them ** if they do already exist. */ for(i=0; izDbSName))==0 ){ if( iregRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols ); aRoot[i] = (u32)pParse->regRoot; aCreateTbl[i] = OPFLAG_P2ISREG; } }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zDbSName, zTab, zWhereType, zWhere ); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK }else if( db->xPreUpdateCallback ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); #endif }else{ /* The sqlite_stat[134] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb); } } } /* Open the sqlite_stat[134] tables for writing. */ for(i=0; inRowid ){ sqlite3DbFree(db, p->u.aRowid); p->nRowid = 0; } } #endif /* Initialize the BLOB value of a ROWID */ #ifdef SQLITE_ENABLE_STAT4 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){ assert( db!=0 ); if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); p->u.aRowid = sqlite3DbMallocRawNN(db, n); if( p->u.aRowid ){ p->nRowid = n; memcpy(p->u.aRowid, pData, n); }else{ p->nRowid = 0; } } #endif /* Initialize the INTEGER value of a ROWID. */ #ifdef SQLITE_ENABLE_STAT4 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){ assert( db!=0 ); if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); p->nRowid = 0; p->u.iRowid = iRowid; } #endif /* ** Copy the contents of object (*pFrom) into (*pTo). */ #ifdef SQLITE_ENABLE_STAT4 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){ pTo->isPSample = pFrom->isPSample; pTo->iCol = pFrom->iCol; pTo->iHash = pFrom->iHash; memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); if( pFrom->nRowid ){ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); }else{ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); } } #endif /* ** Reclaim all memory of a StatAccum structure. */ static void statAccumDestructor(void *pOld){ StatAccum *p = (StatAccum*)pOld; #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ){ int i; for(i=0; inCol; i++) sampleClear(p->db, p->aBest+i); for(i=0; imxSample; i++) sampleClear(p->db, p->a+i); sampleClear(p->db, &p->current); } #endif sqlite3DbFree(p->db, p); } /* ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters ** are: ** N: The number of columns in the index including the rowid/pk (note 1) ** K: The number of columns in the index excluding the rowid/pk. ** C: Estimated number of rows in the index ** L: A limit on the number of rows to scan, or 0 for no-limit ** ** Note 1: In the special case of the covering index that implements a ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the ** total number of columns in the table. ** ** For indexes on ordinary rowid tables, N==K+1. But for indexes on ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the ** PRIMARY KEY of the table. The covering index that implements the ** original WITHOUT ROWID table as N==K as a special case. ** ** This routine allocates the StatAccum object in heap memory. The return ** value is a pointer to the StatAccum object. The datatype of the ** return value is BLOB, but it is really just a pointer to the StatAccum ** object. */ static void statInit( sqlite3_context *context, int argc, sqlite3_value **argv ){ StatAccum *p; int nCol; /* Number of columns in index being sampled */ int nKeyCol; /* Number of key columns */ int nColUp; /* nCol rounded up for alignment */ int n; /* Bytes of space to allocate */ sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */ #ifdef SQLITE_ENABLE_STAT4 /* Maximum number of samples. 0 if STAT4 data is not collected */ int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0; #endif /* Decode the three function arguments */ UNUSED_PARAMETER(argc); nCol = sqlite3_value_int(argv[0]); assert( nCol>0 ); nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; nKeyCol = sqlite3_value_int(argv[1]); assert( nKeyCol<=nCol ); assert( nKeyCol>0 ); /* Allocate the space required for the StatAccum object */ n = sizeof(*p) + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */ + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */ #ifdef SQLITE_ENABLE_STAT4 if( mxSample ){ n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */ + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample); } #endif p = sqlite3DbMallocZero(db, n); if( p==0 ){ sqlite3_result_error_nomem(context); return; } p->db = db; p->nEst = sqlite3_value_int64(argv[2]); p->nRow = 0; p->nLimit = sqlite3_value_int64(argv[3]); p->nCol = nCol; p->nKeyCol = nKeyCol; p->nSkipAhead = 0; p->current.anDLt = (tRowcnt*)&p[1]; p->current.anEq = &p->current.anDLt[nColUp]; #ifdef SQLITE_ENABLE_STAT4 p->mxSample = p->nLimit==0 ? mxSample : 0; if( mxSample ){ u8 *pSpace; /* Allocated space not yet assigned */ int i; /* Used to iterate through p->aSample[] */ p->iGet = -1; p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1); p->current.anLt = &p->current.anEq[nColUp]; p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); /* Set up the StatAccum.a[] and aBest[] arrays */ p->a = (struct StatSample*)&p->current.anLt[nColUp]; p->aBest = &p->a[mxSample]; pSpace = (u8*)(&p->a[mxSample+nCol]); for(i=0; i<(mxSample+nCol); i++){ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); } assert( (pSpace - (u8*)p)==n ); for(i=0; iaBest[i].iCol = i; } } #endif /* Return a pointer to the allocated object to the caller. Note that ** only the pointer (the 2nd parameter) matters. The size of the object ** (given by the 3rd parameter) is never used and can be any positive ** value. */ sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor); } static const FuncDef statInitFuncdef = { 4, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ statInit, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "stat_init", /* zName */ {0} }; #ifdef SQLITE_ENABLE_STAT4 /* ** pNew and pOld are both candidate non-periodic samples selected for ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and ** considering only any trailing columns and the sample hash value, this ** function returns true if sample pNew is to be preferred over pOld. ** In other words, if we assume that the cardinalities of the selected ** column for pNew and pOld are equal, is pNew to be preferred over pOld. ** ** This function assumes that for each argument sample, the contents of ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. */ static int sampleIsBetterPost( StatAccum *pAccum, StatSample *pNew, StatSample *pOld ){ int nCol = pAccum->nCol; int i; assert( pNew->iCol==pOld->iCol ); for(i=pNew->iCol+1; ianEq[i]>pOld->anEq[i] ) return 1; if( pNew->anEq[i]anEq[i] ) return 0; } if( pNew->iHash>pOld->iHash ) return 1; return 0; } #endif #ifdef SQLITE_ENABLE_STAT4 /* ** Return true if pNew is to be preferred over pOld. ** ** This function assumes that for each argument sample, the contents of ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. */ static int sampleIsBetter( StatAccum *pAccum, StatSample *pNew, StatSample *pOld ){ tRowcnt nEqNew = pNew->anEq[pNew->iCol]; tRowcnt nEqOld = pOld->anEq[pOld->iCol]; assert( pOld->isPSample==0 && pNew->isPSample==0 ); assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); if( (nEqNew>nEqOld) ) return 1; if( nEqNew==nEqOld ){ if( pNew->iColiCol ) return 1; return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); } return 0; } /* ** Copy the contents of sample *pNew into the p->a[] array. If necessary, ** remove the least desirable sample from p->a[] to make room. */ static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){ StatSample *pSample = 0; int i; assert( IsStat4 || nEqZero==0 ); /* StatAccum.nMaxEqZero is set to the maximum number of leading 0 ** values in the anEq[] array of any sample in StatAccum.a[]. In ** other words, if nMaxEqZero is n, then it is guaranteed that there ** are no samples with StatSample.anEq[m]==0 for (m>=n). */ if( nEqZero>p->nMaxEqZero ){ p->nMaxEqZero = nEqZero; } if( pNew->isPSample==0 ){ StatSample *pUpgrade = 0; assert( pNew->anEq[pNew->iCol]>0 ); /* This sample is being added because the prefix that ends in column ** iCol occurs many times in the table. However, if we have already ** added a sample that shares this prefix, there is no need to add ** this one. Instead, upgrade the priority of the highest priority ** existing sample that shares this prefix. */ for(i=p->nSample-1; i>=0; i--){ StatSample *pOld = &p->a[i]; if( pOld->anEq[pNew->iCol]==0 ){ if( pOld->isPSample ) return; assert( pOld->iCol>pNew->iCol ); assert( sampleIsBetter(p, pNew, pOld) ); if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ pUpgrade = pOld; } } } if( pUpgrade ){ pUpgrade->iCol = pNew->iCol; pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; goto find_new_min; } } /* If necessary, remove sample iMin to make room for the new sample. */ if( p->nSample>=p->mxSample ){ StatSample *pMin = &p->a[p->iMin]; tRowcnt *anEq = pMin->anEq; tRowcnt *anLt = pMin->anLt; tRowcnt *anDLt = pMin->anDLt; sampleClear(p->db, pMin); memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); pSample = &p->a[p->nSample-1]; pSample->nRowid = 0; pSample->anEq = anEq; pSample->anDLt = anDLt; pSample->anLt = anLt; p->nSample = p->mxSample-1; } /* The "rows less-than" for the rowid column must be greater than that ** for the last sample in the p->a[] array. Otherwise, the samples would ** be out of order. */ assert( p->nSample==0 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); /* Insert the new sample */ pSample = &p->a[p->nSample]; sampleCopy(p, pSample, pNew); p->nSample++; /* Zero the first nEqZero entries in the anEq[] array. */ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); find_new_min: if( p->nSample>=p->mxSample ){ int iMin = -1; for(i=0; imxSample; i++){ if( p->a[i].isPSample ) continue; if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ iMin = i; } } assert( iMin>=0 ); p->iMin = iMin; } } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef SQLITE_ENABLE_STAT4 /* ** Field iChng of the index being scanned has changed. So at this point ** p->current contains a sample that reflects the previous row of the ** index. The value of anEq[iChng] and subsequent anEq[] elements are ** correct at this point. */ static void samplePushPrevious(StatAccum *p, int iChng){ int i; /* Check if any samples from the aBest[] array should be pushed ** into IndexSample.a[] at this point. */ for(i=(p->nCol-2); i>=iChng; i--){ StatSample *pBest = &p->aBest[i]; pBest->anEq[i] = p->current.anEq[i]; if( p->nSamplemxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ sampleInsert(p, pBest, i); } } /* Check that no sample contains an anEq[] entry with an index of ** p->nMaxEqZero or greater set to zero. */ for(i=p->nSample-1; i>=0; i--){ int j; for(j=p->nMaxEqZero; jnCol; j++) assert( p->a[i].anEq[j]>0 ); } /* Update the anEq[] fields of any samples already collected. */ if( iChngnMaxEqZero ){ for(i=p->nSample-1; i>=0; i--){ int j; for(j=iChng; jnCol; j++){ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; } } p->nMaxEqZero = iChng; } } #endif /* SQLITE_ENABLE_STAT4 */ /* ** Implementation of the stat_push SQL function: stat_push(P,C,R) ** Arguments: ** ** P Pointer to the StatAccum object created by stat_init() ** C Index of left-most column to differ from previous row ** R Rowid for the current row. Might be a key record for ** WITHOUT ROWID tables. ** ** The purpose of this routine is to collect statistical data and/or ** samples from the index being analyzed into the StatAccum object. ** The stat_get() SQL function will be used afterwards to ** retrieve the information gathered. ** ** This SQL function usually returns NULL, but might return an integer ** if it wants the byte-code to do special processing. ** ** The R parameter is only used for STAT4 */ static void statPush( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; /* The three function arguments */ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); int iChng = sqlite3_value_int(argv[1]); UNUSED_PARAMETER( argc ); UNUSED_PARAMETER( context ); assert( p->nCol>0 ); assert( iChngnCol ); if( p->nRow==0 ){ /* This is the first call to this function. Do initialization. */ for(i=0; inCol; i++) p->current.anEq[i] = 1; }else{ /* Second and subsequent calls get processed here */ #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ) samplePushPrevious(p, iChng); #endif /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply ** to the current row of the index. */ for(i=0; icurrent.anEq[i]++; } for(i=iChng; inCol; i++){ p->current.anDLt[i]++; #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i]; #endif p->current.anEq[i] = 1; } } p->nRow++; #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ){ tRowcnt nLt; if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); }else{ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), sqlite3_value_blob(argv[2])); } p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; nLt = p->current.anLt[p->nCol-1]; /* Check if this is to be a periodic sample. If so, add it. */ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ p->current.isPSample = 1; p->current.iCol = 0; sampleInsert(p, &p->current, p->nCol-1); p->current.isPSample = 0; } /* Update the aBest[] array. */ for(i=0; i<(p->nCol-1); i++){ p->current.iCol = i; if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ sampleCopy(p, &p->aBest[i], &p->current); } } }else #endif if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){ p->nSkipAhead++; sqlite3_result_int(context, p->current.anDLt[0]>0); } } static const FuncDef statPushFuncdef = { 2+IsStat4, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ statPush, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "stat_push", /* zName */ {0} }; #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ /* ** Implementation of the stat_get(P,J) SQL function. This routine is ** used to query statistical information that has been gathered into ** the StatAccum object by prior calls to stat_push(). The P parameter ** has type BLOB but it is really just a pointer to the StatAccum object. ** The content to returned is determined by the parameter J ** which is one of the STAT_GET_xxxx values defined above. ** ** The stat_get(P,J) function is not available to generic SQL. It is ** inserted as part of a manually constructed bytecode program. (See ** the callStatGet() routine below.) It is guaranteed that the P ** parameter will always be a pointer to a StatAccum object, never a ** NULL. ** ** If STAT4 is not enabled, then J is always ** STAT_GET_STAT1 and is hence omitted and this routine becomes ** a one-parameter function, stat_get(P), that always returns the ** stat1 table entry information. */ static void statGet( sqlite3_context *context, int argc, sqlite3_value **argv ){ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); #ifdef SQLITE_ENABLE_STAT4 /* STAT4 has a parameter on this routine. */ int eCall = sqlite3_value_int(argv[1]); assert( argc==2 ); assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT || eCall==STAT_GET_NDLT ); assert( eCall==STAT_GET_STAT1 || p->mxSample ); if( eCall==STAT_GET_STAT1 ) #else assert( argc==1 ); #endif { /* Return the value to store in the "stat" column of the sqlite_stat1 ** table for this index. ** ** The value is a string composed of a list of integers describing ** the index. The first integer in the list is the total number of ** entries in the index. There is one additional integer in the list ** for each indexed column. This additional integer is an estimate of ** the number of rows matched by a equality query on the index using ** a key with the corresponding number of fields. In other words, ** if the index is on columns (a,b) and the sqlite_stat1 value is ** "100 10 2", then SQLite estimates that: ** ** * the index contains 100 rows, ** * "WHERE a=?" matches 10 rows, and ** * "WHERE a=? AND b=?" matches 2 rows. ** ** If D is the count of distinct values and K is the total number of ** rows, then each estimate is usually computed as: ** ** I = (K+D-1)/D ** ** In other words, I is K/D rounded up to the next whole integer. ** However, if I is between 1.0 and 1.1 (in other words if I is ** close to 1.0 but just a little larger) then do not round up but ** instead keep the I value at 1.0. */ sqlite3_str sStat; /* Text of the constructed "stat" line */ int i; /* Loop counter */ sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100); sqlite3_str_appendf(&sStat, "%llu", p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow); for(i=0; inKeyCol; i++){ u64 nDistinct = p->current.anDLt[i] + 1; u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1; sqlite3_str_appendf(&sStat, " %llu", iVal); assert( p->current.anEq[i] ); } sqlite3ResultStrAccum(context, &sStat); } #ifdef SQLITE_ENABLE_STAT4 else if( eCall==STAT_GET_ROWID ){ if( p->iGet<0 ){ samplePushPrevious(p, 0); p->iGet = 0; } if( p->iGetnSample ){ StatSample *pS = p->a + p->iGet; if( pS->nRowid==0 ){ sqlite3_result_int64(context, pS->u.iRowid); }else{ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, SQLITE_TRANSIENT); } } }else{ tRowcnt *aCnt = 0; sqlite3_str sStat; int i; assert( p->iGetnSample ); switch( eCall ){ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; default: { aCnt = p->a[p->iGet].anDLt; p->iGet++; break; } } sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100); for(i=0; inCol; i++){ sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]); } if( sStat.nChar ) sStat.nChar--; sqlite3ResultStrAccum(context, &sStat); } #endif /* SQLITE_ENABLE_STAT4 */ #ifndef SQLITE_DEBUG UNUSED_PARAMETER( argc ); #endif } static const FuncDef statGetFuncdef = { 1+IsStat4, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ statGet, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "stat_get", /* zName */ {0} }; static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){ #ifdef SQLITE_ENABLE_STAT4 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif assert( regOut!=regStat && regOut!=regStat+1 ); sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4, &statGetFuncdef, 0); } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* Add a comment to the most recent VDBE opcode that is the name ** of the k-th column of the pIdx index. */ static void analyzeVdbeCommentIndexWithColumnName( Vdbe *v, /* Prepared statement under construction */ Index *pIdx, /* Index whose column is being loaded */ int k /* Which column index */ ){ int i; /* Index of column in the table */ assert( k>=0 && knColumn ); i = pIdx->aiColumn[k]; if( NEVER(i==XN_ROWID) ){ VdbeComment((v,"%s.rowid",pIdx->zName)); }else if( i==XN_EXPR ){ assert( pIdx->bHasExpr ); VdbeComment((v,"%s.expr(%d)",pIdx->zName, k)); }else{ VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName)); } } #else # define analyzeVdbeCommentIndexWithColumnName(a,b,c) #endif /* SQLITE_DEBUG */ /* ** Generate code to do an analysis of all indices associated with ** a single table. */ static void analyzeOneTable( Parse *pParse, /* Parser context */ Table *pTab, /* Table whose indices are to be analyzed */ Index *pOnlyIdx, /* If not NULL, only analyze this one index */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ int iMem, /* Available memory locations begin here */ int iTab /* Next available cursor */ ){ sqlite3 *db = pParse->db; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ int iTabCur; /* Table cursor */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ u8 needTableCnt = 1; /* True to count the table */ int regNewRowid = iMem++; /* Rowid for the inserted record */ int regStat = iMem++; /* Register to hold StatAccum object */ int regChng = iMem++; /* Index of changed index field */ int regRowid = iMem++; /* Rowid argument passed to stat_push() */ int regTemp = iMem++; /* Temporary use register */ int regTemp2 = iMem++; /* Second temporary use register */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ int regPrev = iMem; /* MUST BE LAST (see below) */ #ifdef SQLITE_ENABLE_STAT4 int doOnce = 1; /* Flag for a one-time computation */ #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK Table *pStat1 = 0; #endif sqlite3TouchRegister(pParse, iMem); assert( sqlite3NoTempsInRange(pParse, regNewRowid, iMem) ); v = sqlite3GetVdbe(pParse); if( v==0 || NEVER(pTab==0) ){ return; } if( !IsOrdinaryTable(pTab) ){ /* Do not gather statistics on views or virtual tables */ return; } if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ /* Do not gather statistics on system tables */ return; } assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, db->aDb[iDb].zDbSName ) ){ return; } #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( db->xPreUpdateCallback ){ pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); if( pStat1==0 ) return; pStat1->zName = (char*)&pStat1[1]; memcpy(pStat1->zName, "sqlite_stat1", 13); pStat1->nCol = 3; pStat1->iPKey = -1; sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC); } #endif /* Establish a read-lock on the table at the shared-cache level. ** Open a read-only cursor on the table. Also allocate a cursor number ** to use for scanning indexes (iIdxCur). No index cursor is opened at ** this time though. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iTabCur = iTab++; iIdxCur = iTab++; pParse->nTab = MAX(pParse->nTab, iTab); sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); sqlite3VdbeLoadString(v, regTabname, pTab->zName); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; /* Number of columns in pIdx. "N" */ int addrRewind; /* Address of "OP_Rewind iIdxCur" */ int addrNextRow; /* Address of "next_row:" */ const char *zIdxName; /* Name of the index */ int nColTest; /* Number of columns to test for changes */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ nCol = pIdx->nKeyCol; zIdxName = pTab->zName; nColTest = nCol - 1; }else{ nCol = pIdx->nColumn; zIdxName = pIdx->zName; nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; } /* Populate the register containing the index name. */ sqlite3VdbeLoadString(v, regIdxname, zIdxName); VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); /* ** Pseudo-code for loop that calls stat_push(): ** ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto chng_addr_0; ** ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 ** regChng = 1 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 ** ... ** regChng = N ** goto chng_addr_N ** ** chng_addr_0: ** regPrev(0) = idx(0) ** chng_addr_1: ** regPrev(1) = idx(1) ** ... ** ** endDistinctTest: ** regRowid = idx(rowid) ** stat_push(P, regChng, regRowid) ** Next csr ** if !eof(csr) goto next_row; ** ** end_of_scan: */ /* Make sure there are enough memory cells allocated to accommodate ** the regPrev array and a trailing rowid (the rowid slot is required ** when building a record to insert into the sample column of ** the sqlite_stat4 table. */ sqlite3TouchRegister(pParse, regPrev+nColTest); /* Open a read-only cursor on the index being analyzed. */ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); /* Invoke the stat_init() function. The arguments are: ** ** (1) the number of columns in the index including the rowid ** (or for a WITHOUT ROWID table, the number of PK columns), ** (2) the number of columns in the key without the rowid/pk ** (3) estimated number of rows in the index, */ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1); assert( regRowid==regStat+2 ); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid); #ifdef SQLITE_ENABLE_STAT4 if( OptimizationEnabled(db, SQLITE_Stat4) ){ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp); addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); VdbeCoverage(v); }else #endif { addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1); } assert( regTemp2==regStat+4 ); sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2); sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4, &statInitFuncdef, 0); /* Implementation of the following: ** ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto next_push_0; ** */ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); addrNextRow = sqlite3VdbeCurrentAddr(v); if( nColTest>0 ){ int endDistinctTest = sqlite3VdbeMakeLabel(pParse); int *aGotoChng; /* Array of jump instruction addresses */ aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); if( aGotoChng==0 ) continue; /* ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 ** regChng = 1 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 ** ... ** regChng = N ** goto endDistinctTest */ sqlite3VdbeAddOp0(v, OP_Goto); addrNextRow = sqlite3VdbeCurrentAddr(v); if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ /* For a single-column UNIQUE index, once we have found a non-NULL ** row, we know that all the rest will be distinct, so skip ** subsequent distinctness tests. */ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); VdbeCoverage(v); } for(i=0; iazColl[i]); sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); aGotoChng[i] = sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); sqlite3VdbeGoto(v, endDistinctTest); /* ** chng_addr_0: ** regPrev(0) = idx(0) ** chng_addr_1: ** regPrev(1) = idx(1) ** ... */ sqlite3VdbeJumpHere(v, addrNextRow-1); for(i=0; ipTable); int j, k, regKey; regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; jnKeyCol; j++){ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); assert( k>=0 && knColumn ); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); analyzeVdbeCommentIndexWithColumnName(v,pIdx,k); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } } #endif assert( regChng==(regStat+1) ); { sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4, &statPushFuncdef, 0); if( db->nAnalysisLimit ){ int j1, j2, j3; j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v); j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v); j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); sqlite3VdbeJumpHere(v, j2); sqlite3VdbeJumpHere(v, j3); }else{ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); } } /* Add the entry to the stat1 table. */ callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1); assert( "BBB"[0]==SQLITE_AFF_TEXT ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); #endif sqlite3VdbeChangeP5(v, OPFLAG_APPEND); /* Add the entries to the stat4 table. */ #ifdef SQLITE_ENABLE_STAT4 if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){ int regEq = regStat1; int regLt = regStat1+1; int regDLt = regStat1+2; int regSample = regStat1+3; int regCol = regStat1+4; int regSampleRowid = regCol + nCol; int addrNext; int addrIsNull; u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; if( doOnce ){ int mxCol = nCol; Index *pX; /* Compute the maximum number of columns in any index */ for(pX=pTab->pIndex; pX; pX=pX->pNext){ int nColX; /* Number of columns in pX */ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pX) ){ nColX = pX->nKeyCol; }else{ nColX = pX->nColumn; } if( nColX>mxCol ) mxCol = nColX; } /* Allocate space to compute results for the largest index */ sqlite3TouchRegister(pParse, regCol+mxCol); doOnce = 0; #ifdef SQLITE_DEBUG /* Verify that the call to sqlite3ClearTempRegCache() below ** really is needed. ** https://sqlite.org/forum/forumpost/83cb4a95a0 (2023-03-25) */ testcase( !sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) ); #endif sqlite3ClearTempRegCache(pParse); /* tag-20230325-1 */ assert( sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) ); } assert( sqlite3NoTempsInRange(pParse, regEq, regCol+nCol) ); addrNext = sqlite3VdbeCurrentAddr(v); callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(pParse, regStat, STAT_GET_NEQ, regEq); callStatGet(pParse, regStat, STAT_GET_NLT, regLt); callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); VdbeCoverage(v); for(i=0; izName)); sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); assert( "BBB"[0]==SQLITE_AFF_TEXT ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); #endif sqlite3VdbeJumpHere(v, jZeroRows); } } /* ** Generate code that will cause the most recent index analysis to ** be loaded into internal hash tables where is can be used. */ static void loadAnalysis(Parse *pParse, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); } } /* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; int iTab; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 3; openStatTable(pParse, iDb, iStatCur, 0, 0); iMem = pParse->nMem+1; iTab = pParse->nTab; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); #ifdef SQLITE_ENABLE_STAT4 iMem = sqlite3FirstAvailableRegister(pParse, iMem); #else assert( iMem==sqlite3FirstAvailableRegister(pParse,iMem) ); #endif } loadAnalysis(pParse, iDb); } /* ** Generate code that will do an analysis of a single table in ** a database. If pOnlyIdx is not NULL then it is a single index ** in pTab that should be analyzed. */ static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 3; if( pOnlyIdx ){ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); }else{ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); } analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); loadAnalysis(pParse, iDb); } /* ** Generate code for the ANALYZE command. The parser calls this routine ** when it recognizes an ANALYZE command. ** ** ANALYZE -- 1 ** ANALYZE -- 2 ** ANALYZE ?.? -- 3 ** ** Form 1 causes all indices in all attached databases to be analyzed. ** Form 2 analyzes all indices the single database named. ** Form 3 analyzes all indices associated with the named table. */ SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ sqlite3 *db = pParse->db; int iDb; int i; char *z, *zDb; Table *pTab; Index *pIdx; Token *pTableName; Vdbe *v; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } assert( pName2!=0 || pName1==0 ); if( pName1==0 ){ /* Form 1: Analyze everything */ for(i=0; inDb; i++){ if( i==1 ) continue; /* Do not analyze the TEMP database */ analyzeDatabase(pParse, i); } }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ /* Analyze the schema named as the argument */ analyzeDatabase(pParse, iDb); }else{ /* Form 3: Analyze the table or index named as an argument */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); if( iDb>=0 ){ zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; z = sqlite3NameFromToken(db, pTableName); if( z ){ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ analyzeTable(pParse, pTab, 0); } sqlite3DbFree(db, z); } } } if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ sqlite3VdbeAddOp0(v, OP_Expire); } } /* ** Used to pass information from the analyzer reader through to the ** callback routine. */ typedef struct analysisInfo analysisInfo; struct analysisInfo { sqlite3 *db; const char *zDatabase; }; /* ** The first argument points to a nul-terminated string containing a ** list of space separated integers. Read the first nOut of these into ** the array aOut[]. */ static void decodeIntArray( char *zIntArray, /* String containing int array to decode */ int nOut, /* Number of slots in aOut[] */ tRowcnt *aOut, /* Store integers here */ LogEst *aLog, /* Or, if aOut==0, here */ Index *pIndex /* Handle extra flags for this index, if not NULL */ ){ char *z = zIntArray; int c; int i; tRowcnt v; #ifdef SQLITE_ENABLE_STAT4 if( z==0 ) z = ""; #else assert( z!=0 ); #endif for(i=0; *z && i='0' && c<='9' ){ v = v*10 + c - '0'; z++; } #ifdef SQLITE_ENABLE_STAT4 if( aOut ) aOut[i] = v; if( aLog ) aLog[i] = sqlite3LogEst(v); #else assert( aOut==0 ); UNUSED_PARAMETER(aOut); assert( aLog!=0 ); aLog[i] = sqlite3LogEst(v); #endif if( *z==' ' ) z++; } #ifndef SQLITE_ENABLE_STAT4 assert( pIndex!=0 ); { #else if( pIndex ){ #endif pIndex->bUnordered = 0; pIndex->noSkipScan = 0; while( z[0] ){ if( sqlite3_strglob("unordered*", z)==0 ){ pIndex->bUnordered = 1; }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ int sz = sqlite3Atoi(z+3); if( sz<2 ) sz = 2; pIndex->szIdxRow = sqlite3LogEst(sz); }else if( sqlite3_strglob("noskipscan*", z)==0 ){ pIndex->noSkipScan = 1; } #ifdef SQLITE_ENABLE_COSTMULT else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); } #endif while( z[0]!=0 && z[0]!=' ' ) z++; while( z[0]==' ' ) z++; } } } /* ** This callback is invoked once for each index when reading the ** sqlite_stat1 table. ** ** argv[0] = name of the table ** argv[1] = name of the index (might be NULL) ** argv[2] = results of analysis - on integer for each column ** ** Entries for which argv[1]==NULL simply record the number of rows in ** the table. */ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ analysisInfo *pInfo = (analysisInfo*)pData; Index *pIndex; Table *pTable; const char *z; assert( argc==3 ); UNUSED_PARAMETER2(NotUsed, argc); if( argv==0 || argv[0]==0 || argv[2]==0 ){ return 0; } pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); if( pTable==0 ){ return 0; } if( argv[1]==0 ){ pIndex = 0; }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ pIndex = sqlite3PrimaryKeyIndex(pTable); }else{ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); } z = argv[2]; if( pIndex ){ tRowcnt *aiRowEst = 0; int nCol = pIndex->nKeyCol+1; #ifdef SQLITE_ENABLE_STAT4 /* Index.aiRowEst may already be set here if there are duplicate ** sqlite_stat1 entries for this index. In that case just clobber ** the old data with the new instead of allocating a new array. */ if( pIndex->aiRowEst==0 ){ pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); } aiRowEst = pIndex->aiRowEst; #endif pIndex->bUnordered = 0; decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); pIndex->hasStat1 = 1; if( pIndex->pPartIdxWhere==0 ){ pTable->nRowLogEst = pIndex->aiRowLogEst[0]; pTable->tabFlags |= TF_HasStat1; } }else{ Index fakeIdx; fakeIdx.szIdxRow = pTable->szTabRow; #ifdef SQLITE_ENABLE_COSTMULT fakeIdx.pTable = pTable; #endif decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); pTable->szTabRow = fakeIdx.szIdxRow; pTable->tabFlags |= TF_HasStat1; } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ assert( db!=0 ); assert( pIdx!=0 ); #ifdef SQLITE_ENABLE_STAT4 if( pIdx->aSample ){ int j; for(j=0; jnSample; j++){ IndexSample *p = &pIdx->aSample[j]; sqlite3DbFree(db, p->p); } sqlite3DbFree(db, pIdx->aSample); } if( db->pnBytesFreed==0 ){ pIdx->nSample = 0; pIdx->aSample = 0; } #else UNUSED_PARAMETER(db); UNUSED_PARAMETER(pIdx); #endif /* SQLITE_ENABLE_STAT4 */ } #ifdef SQLITE_ENABLE_STAT4 /* ** Populate the pIdx->aAvgEq[] array based on the samples currently ** stored in pIdx->aSample[]. */ static void initAvgEq(Index *pIdx){ if( pIdx ){ IndexSample *aSample = pIdx->aSample; IndexSample *pFinal = &aSample[pIdx->nSample-1]; int iCol; int nCol = 1; if( pIdx->nSampleCol>1 ){ /* If this is stat4 data, then calculate aAvgEq[] values for all ** sample columns except the last. The last is always set to 1, as ** once the trailing PK fields are considered all index keys are ** unique. */ nCol = pIdx->nSampleCol-1; pIdx->aAvgEq[nCol] = 1; } for(iCol=0; iColnSample; int i; /* Used to iterate through samples */ tRowcnt sumEq = 0; /* Sum of the nEq values */ tRowcnt avgEq = 0; tRowcnt nRow; /* Number of rows in index */ i64 nSum100 = 0; /* Number of terms contributing to sumEq */ i64 nDist100; /* Number of distinct values in index */ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ nRow = pFinal->anLt[iCol]; nDist100 = (i64)100 * pFinal->anDLt[iCol]; nSample--; }else{ nRow = pIdx->aiRowEst[0]; nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; } pIdx->nRowEst0 = nRow; /* Set nSum to the number of distinct (iCol+1) field prefixes that ** occur in the stat4 table for this index. Set sumEq to the sum of ** the nEq values for column iCol for the same set (adding the value ** only once where there exist duplicate prefixes). */ for(i=0; inSample-1) || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ sumEq += aSample[i].anEq[iCol]; nSum100 += 100; } } if( nDist100>nSum100 && sumEqaAvgEq[iCol] = avgEq; } } } /* ** Look up an index by name. Or, if the name of a WITHOUT ROWID table ** is supplied instead, find the PRIMARY KEY index for that table. */ static Index *findIndexOrPrimaryKey( sqlite3 *db, const char *zName, const char *zDb ){ Index *pIdx = sqlite3FindIndex(db, zName, zDb); if( pIdx==0 ){ Table *pTab = sqlite3FindTable(db, zName, zDb); if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); } return pIdx; } /* ** Load the content from either the sqlite_stat4 ** into the relevant Index.aSample[] arrays. ** ** Arguments zSql1 and zSql2 must point to SQL statements that return ** data equivalent to the following: ** ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 ** ** where %Q is replaced with the database name before the SQL is executed. */ static int loadStatTbl( sqlite3 *db, /* Database handle */ const char *zSql1, /* SQL statement 1 (see above) */ const char *zSql2, /* SQL statement 2 (see above) */ const char *zDb /* Database name (e.g. "main") */ ){ int rc; /* Result codes from subroutines */ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ char *zSql; /* Text of the SQL statement */ Index *pPrevIdx = 0; /* Previous index in the loop */ IndexSample *pSample; /* A slot in pIdx->aSample[] */ assert( db->lookaside.bDisable ); zSql = sqlite3MPrintf(db, zSql1, zDb); if( !zSql ){ return SQLITE_NOMEM_BKPT; } rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); sqlite3DbFree(db, zSql); if( rc ) return rc; while( sqlite3_step(pStmt)==SQLITE_ROW ){ int nIdxCol = 1; /* Number of columns in stat4 records */ char *zIndex; /* Index name */ Index *pIdx; /* Pointer to the index object */ int nSample; /* Number of samples */ int nByte; /* Bytes of space required */ int i; /* Bytes of space required */ tRowcnt *pSpace; zIndex = (char *)sqlite3_column_text(pStmt, 0); if( zIndex==0 ) continue; nSample = sqlite3_column_int(pStmt, 1); pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); assert( pIdx==0 || pIdx->nSample==0 ); if( pIdx==0 ) continue; if( pIdx->aSample!=0 ){ /* The same index appears in sqlite_stat4 under multiple names */ continue; } assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ nIdxCol = pIdx->nKeyCol; }else{ nIdxCol = pIdx->nColumn; } pIdx->nSampleCol = nIdxCol; pIdx->mxSample = nSample; nByte = sizeof(IndexSample) * nSample; nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ pIdx->aSample = sqlite3DbMallocZero(db, nByte); if( pIdx->aSample==0 ){ sqlite3_finalize(pStmt); return SQLITE_NOMEM_BKPT; } pSpace = (tRowcnt*)&pIdx->aSample[nSample]; pIdx->aAvgEq = pSpace; pSpace += nIdxCol; pIdx->pTable->tabFlags |= TF_HasStat4; for(i=0; iaSample[i].anEq = pSpace; pSpace += nIdxCol; pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; } assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); } rc = sqlite3_finalize(pStmt); if( rc ) return rc; zSql = sqlite3MPrintf(db, zSql2, zDb); if( !zSql ){ return SQLITE_NOMEM_BKPT; } rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); sqlite3DbFree(db, zSql); if( rc ) return rc; while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex; /* Index name */ Index *pIdx; /* Pointer to the index object */ int nCol = 1; /* Number of columns in index */ zIndex = (char *)sqlite3_column_text(pStmt, 0); if( zIndex==0 ) continue; pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); if( pIdx==0 ) continue; if( pIdx->nSample>=pIdx->mxSample ){ /* Too many slots used because the same index appears in ** sqlite_stat4 using multiple names */ continue; } /* This next condition is true if data has already been loaded from ** the sqlite_stat4 table. */ nCol = pIdx->nSampleCol; if( pIdx!=pPrevIdx ){ initAvgEq(pPrevIdx); pPrevIdx = pIdx; } pSample = &pIdx->aSample[pIdx->nSample]; decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); /* Take a copy of the sample. Add 8 extra 0x00 bytes the end of the buffer. ** This is in case the sample record is corrupted. In that case, the ** sqlite3VdbeRecordCompare() may read up to two varints past the ** end of the allocated buffer before it realizes it is dealing with ** a corrupt record. Or it might try to read a large integer from the ** buffer. In any case, eight 0x00 bytes prevents this from causing ** a buffer overread. */ pSample->n = sqlite3_column_bytes(pStmt, 4); pSample->p = sqlite3DbMallocZero(db, pSample->n + 8); if( pSample->p==0 ){ sqlite3_finalize(pStmt); return SQLITE_NOMEM_BKPT; } if( pSample->n ){ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); } pIdx->nSample++; } rc = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); return rc; } /* ** Load content from the sqlite_stat4 table into ** the Index.aSample[] arrays of all indices. */ static int loadStat4(sqlite3 *db, const char *zDb){ int rc = SQLITE_OK; /* Result codes from subroutines */ const Table *pStat4; assert( db->lookaside.bDisable ); if( OptimizationEnabled(db, SQLITE_Stat4) && (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0 && IsOrdinaryTable(pStat4) ){ rc = loadStatTbl(db, "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx COLLATE nocase", "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", zDb ); } return rc; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] ** arrays. The contents of sqlite_stat4 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined ** during compilation and the sqlite_stat4 table is present, no data is ** read from it. ** ** If SQLITE_ENABLE_STAT4 was defined during compilation and the ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** ** If an OOM error occurs, this function always sets db->mallocFailed. ** This means if the caller does not care about other errors, the return ** code may be ignored. */ SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; int rc = SQLITE_OK; Schema *pSchema = db->aDb[iDb].pSchema; const Table *pStat1; assert( iDb>=0 && iDbnDb ); assert( db->aDb[iDb].pBt!=0 ); /* Clear any prior statistics */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); pTab->tabFlags &= ~TF_HasStat1; } for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); pIdx->hasStat1 = 0; #ifdef SQLITE_ENABLE_STAT4 sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; #endif } /* Load new statistics out of the sqlite_stat1 table */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zDbSName; if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)) && IsOrdinaryTable(pStat1) ){ zSql = sqlite3MPrintf(db, "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); sqlite3DbFree(db, zSql); } } /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); } /* Load the statistics from the sqlite_stat4 table. */ #ifdef SQLITE_ENABLE_STAT4 if( rc==SQLITE_OK ){ DisableLookaside; rc = loadStat4(db, sInfo.zDatabase); EnableLookaside; } for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3_free(pIdx->aiRowEst); pIdx->aiRowEst = 0; } #endif if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } return rc; } #endif /* SQLITE_OMIT_ANALYZE */ /************** End of analyze.c *********************************************/ /************** Begin file attach.c ******************************************/ /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_ATTACH /* ** Resolve an expression that was part of an ATTACH or DETACH statement. This ** is slightly different from resolving a normal SQL expression, because simple ** identifiers are treated as strings, not possible column names or aliases. ** ** i.e. if the parser sees: ** ** ATTACH DATABASE abc AS def ** ** it treats the two expressions as literal strings 'abc' and 'def' instead of ** looking for columns of the same name. ** ** This only applies to the root node of pExpr, so the statement: ** ** ATTACH DATABASE abc||def AS 'db2' ** ** will fail because neither abc or def can be resolved. */ static int resolveAttachExpr(NameContext *pName, Expr *pExpr) { int rc = SQLITE_OK; if( pExpr ){ if( pExpr->op!=TK_ID ){ rc = sqlite3ResolveExprNames(pName, pExpr); }else{ pExpr->op = TK_STRING; } } return rc; } /* ** Return true if zName points to a name that may be used to refer to ** database iDb attached to handle db. */ SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName){ return ( sqlite3StrICmp(db->aDb[iDb].zDbSName, zName)==0 || (iDb==0 && sqlite3StrICmp("main", zName)==0) ); } /* ** An SQL user-function registered to do the work of an ATTACH statement. The ** three arguments to the function come directly from an attach statement: ** ** ATTACH DATABASE x AS y KEY z ** ** SELECT sqlite_attach(x, y, z) ** ** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the ** third argument. ** ** If the db->init.reopenMemdb flags is set, then instead of attaching a ** new database, close the database on db->init.iDb and reopen it as an ** empty MemDB. */ static void attachFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ int i; int rc = 0; sqlite3 *db = sqlite3_context_db_handle(context); const char *zName; const char *zFile; char *zPath = 0; char *zErr = 0; unsigned int flags; Db *aNew; /* New array of Db pointers */ Db *pNew = 0; /* Db object for the newly attached database */ char *zErrDyn = 0; sqlite3_vfs *pVfs; UNUSED_PARAMETER(NotUsed); zFile = (const char *)sqlite3_value_text(argv[0]); zName = (const char *)sqlite3_value_text(argv[1]); if( zFile==0 ) zFile = ""; if( zName==0 ) zName = ""; #ifndef SQLITE_OMIT_DESERIALIZE # define REOPEN_AS_MEMDB(db) (db->init.reopenMemdb) #else # define REOPEN_AS_MEMDB(db) (0) #endif if( REOPEN_AS_MEMDB(db) ){ /* This is not a real ATTACH. Instead, this routine is being called ** from sqlite3_deserialize() to close database db->init.iDb and ** reopen it as a MemDB */ Btree *pNewBt = 0; pVfs = sqlite3_vfs_find("memdb"); if( pVfs==0 ) return; rc = sqlite3BtreeOpen(pVfs, "x\0", db, &pNewBt, 0, SQLITE_OPEN_MAIN_DB); if( rc==SQLITE_OK ){ Schema *pNewSchema = sqlite3SchemaGet(db, pNewBt); if( pNewSchema ){ /* Both the Btree and the new Schema were allocated successfully. ** Close the old db and update the aDb[] slot with the new memdb ** values. */ pNew = &db->aDb[db->init.iDb]; if( ALWAYS(pNew->pBt) ) sqlite3BtreeClose(pNew->pBt); pNew->pBt = pNewBt; pNew->pSchema = pNewSchema; }else{ sqlite3BtreeClose(pNewBt); rc = SQLITE_NOMEM; } } if( rc ) goto attach_error; }else{ /* This is a real ATTACH ** ** Check for the following errors: ** ** * Too many attached databases, ** * Transaction currently open ** * Specified database name already being used. */ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){ zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d", db->aLimit[SQLITE_LIMIT_ATTACHED] ); goto attach_error; } for(i=0; inDb; i++){ assert( zName ); if( sqlite3DbIsNamed(db, i, zName) ){ zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName); goto attach_error; } } /* Allocate the new entry in the db->aDb[] array and initialize the schema ** hash tables. */ if( db->aDb==db->aDbStatic ){ aNew = sqlite3DbMallocRawNN(db, sizeof(db->aDb[0])*3 ); if( aNew==0 ) return; memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); }else{ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); if( aNew==0 ) return; } db->aDb = aNew; pNew = &db->aDb[db->nDb]; memset(pNew, 0, sizeof(*pNew)); /* Open the database file. If the btree is successfully opened, use ** it to obtain the database schema. At this point the schema may ** or may not be initialized. */ flags = db->openFlags; rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); return; } assert( pVfs ); flags |= SQLITE_OPEN_MAIN_DB; rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags); db->nDb++; pNew->zDbSName = sqlite3DbStrDup(db, zName); } db->noSharedCache = 0; if( rc==SQLITE_CONSTRAINT ){ rc = SQLITE_ERROR; zErrDyn = sqlite3MPrintf(db, "database is already attached"); }else if( rc==SQLITE_OK ){ Pager *pPager; pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt); if( !pNew->pSchema ){ rc = SQLITE_NOMEM_BKPT; }else if( pNew->pSchema->file_format && pNew->pSchema->enc!=ENC(db) ){ zErrDyn = sqlite3MPrintf(db, "attached databases must use the same text encoding as main database"); rc = SQLITE_ERROR; } sqlite3BtreeEnter(pNew->pBt); pPager = sqlite3BtreePager(pNew->pBt); sqlite3PagerLockingMode(pPager, db->dfltLockMode); sqlite3BtreeSecureDelete(pNew->pBt, sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) ); #ifndef SQLITE_OMIT_PAGER_PRAGMAS sqlite3BtreeSetPagerFlags(pNew->pBt, PAGER_SYNCHRONOUS_FULL | (db->flags & PAGER_FLAGS_MASK)); #endif sqlite3BtreeLeave(pNew->pBt); } pNew->safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; if( rc==SQLITE_OK && pNew->zDbSName==0 ){ rc = SQLITE_NOMEM_BKPT; } sqlite3_free_filename( zPath ); /* If the file was opened successfully, read the schema for the new database. ** If this fails, or if opening the file failed, then close the file and ** remove the entry from the db->aDb[] array. i.e. put everything back the ** way we found it. */ if( rc==SQLITE_OK ){ sqlite3BtreeEnterAll(db); db->init.iDb = 0; db->mDbFlags &= ~(DBFLAG_SchemaKnownOk); if( !REOPEN_AS_MEMDB(db) ){ rc = sqlite3Init(db, &zErrDyn); } sqlite3BtreeLeaveAll(db); assert( zErrDyn==0 || rc!=SQLITE_OK ); } #ifdef SQLITE_USER_AUTHENTICATION if( rc==SQLITE_OK && !REOPEN_AS_MEMDB(db) ){ u8 newAuth = 0; rc = sqlite3UserAuthCheckLogin(db, zName, &newAuth); if( newAuthauth.authLevel ){ rc = SQLITE_AUTH_USER; } } #endif if( rc ){ if( ALWAYS(!REOPEN_AS_MEMDB(db)) ){ int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; } sqlite3ResetAllSchemasOfConnection(db); db->nDb = iDb; if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); sqlite3DbFree(db, zErrDyn); zErrDyn = sqlite3MPrintf(db, "out of memory"); }else if( zErrDyn==0 ){ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile); } } goto attach_error; } return; attach_error: /* Return an error if we get here */ if( zErrDyn ){ sqlite3_result_error(context, zErrDyn, -1); sqlite3DbFree(db, zErrDyn); } if( rc ) sqlite3_result_error_code(context, rc); } /* ** An SQL user-function registered to do the work of an DETACH statement. The ** three arguments to the function come directly from a detach statement: ** ** DETACH DATABASE x ** ** SELECT sqlite_detach(x) */ static void detachFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ const char *zName = (const char *)sqlite3_value_text(argv[0]); sqlite3 *db = sqlite3_context_db_handle(context); int i; Db *pDb = 0; HashElem *pEntry; char zErr[128]; UNUSED_PARAMETER(NotUsed); if( zName==0 ) zName = ""; for(i=0; inDb; i++){ pDb = &db->aDb[i]; if( pDb->pBt==0 ) continue; if( sqlite3DbIsNamed(db, i, zName) ) break; } if( i>=db->nDb ){ sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName); goto detach_error; } if( i<2 ){ sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName); goto detach_error; } if( sqlite3BtreeTxnState(pDb->pBt)!=SQLITE_TXN_NONE || sqlite3BtreeIsInBackup(pDb->pBt) ){ sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); goto detach_error; } /* If any TEMP triggers reference the schema being detached, move those ** triggers to reference the TEMP schema itself. */ assert( db->aDb[1].pSchema ); pEntry = sqliteHashFirst(&db->aDb[1].pSchema->trigHash); while( pEntry ){ Trigger *pTrig = (Trigger*)sqliteHashData(pEntry); if( pTrig->pTabSchema==pDb->pSchema ){ pTrig->pTabSchema = pTrig->pSchema; } pEntry = sqliteHashNext(pEntry); } sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; sqlite3CollapseDatabaseArray(db); return; detach_error: sqlite3_result_error(context, zErr, -1); } /* ** This procedure generates VDBE code for a single invocation of either the ** sqlite_detach() or sqlite_attach() SQL user functions. */ static void codeAttach( Parse *pParse, /* The parser context */ int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */ FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */ Expr *pAuthArg, /* Expression to pass to authorization callback */ Expr *pFilename, /* Name of database file */ Expr *pDbname, /* Name of the database to use internally */ Expr *pKey /* Database key for encryption extension */ ){ int rc; NameContext sName; Vdbe *v; sqlite3* db = pParse->db; int regArgs; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto attach_end; if( pParse->nErr ) goto attach_end; memset(&sName, 0, sizeof(NameContext)); sName.pParse = pParse; if( SQLITE_OK!=resolveAttachExpr(&sName, pFilename) || SQLITE_OK!=resolveAttachExpr(&sName, pDbname) || SQLITE_OK!=resolveAttachExpr(&sName, pKey) ){ goto attach_end; } #ifndef SQLITE_OMIT_AUTHORIZATION if( ALWAYS(pAuthArg) ){ char *zAuthArg; if( pAuthArg->op==TK_STRING ){ assert( !ExprHasProperty(pAuthArg, EP_IntValue) ); zAuthArg = pAuthArg->u.zToken; }else{ zAuthArg = 0; } rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0); if(rc!=SQLITE_OK ){ goto attach_end; } } #endif /* SQLITE_OMIT_AUTHORIZATION */ v = sqlite3GetVdbe(pParse); regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddFunctionCall(pParse, 0, regArgs+3-pFunc->nArg, regArgs+3, pFunc->nArg, pFunc, 0); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). */ sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH)); } attach_end: sqlite3ExprDelete(db, pFilename); sqlite3ExprDelete(db, pDbname); sqlite3ExprDelete(db, pKey); } /* ** Called by the parser to compile a DETACH statement. ** ** DETACH pDbname */ SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){ static const FuncDef detach_func = { 1, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ detachFunc, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "sqlite_detach", /* zName */ {0} }; codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname); } /* ** Called by the parser to compile an ATTACH statement. ** ** ATTACH p AS pDbname KEY pKey */ SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){ static const FuncDef attach_func = { 3, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ attachFunc, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "sqlite_attach", /* zName */ {0} }; codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey); } #endif /* SQLITE_OMIT_ATTACH */ /* ** Expression callback used by sqlite3FixAAAA() routines. */ static int fixExprCb(Walker *p, Expr *pExpr){ DbFixer *pFix = p->u.pFix; if( !pFix->bTemp ) ExprSetProperty(pExpr, EP_FromDDL); if( pExpr->op==TK_VARIABLE ){ if( pFix->pParse->db->init.busy ){ pExpr->op = TK_NULL; }else{ sqlite3ErrorMsg(pFix->pParse, "%s cannot use variables", pFix->zType); return WRC_Abort; } } return WRC_Continue; } /* ** Select callback used by sqlite3FixAAAA() routines. */ static int fixSelectCb(Walker *p, Select *pSelect){ DbFixer *pFix = p->u.pFix; int i; SrcItem *pItem; sqlite3 *db = pFix->pParse->db; int iDb = sqlite3FindDbName(db, pFix->zDb); SrcList *pList = pSelect->pSrc; if( NEVER(pList==0) ) return WRC_Continue; for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pFix->bTemp==0 ){ if( pItem->zDatabase ){ if( iDb!=sqlite3FindDbName(db, pItem->zDatabase) ){ sqlite3ErrorMsg(pFix->pParse, "%s %T cannot reference objects in database %s", pFix->zType, pFix->pName, pItem->zDatabase); return WRC_Abort; } sqlite3DbFree(db, pItem->zDatabase); pItem->zDatabase = 0; pItem->fg.notCte = 1; } pItem->pSchema = pFix->pSchema; pItem->fg.fromDDL = 1; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) if( pList->a[i].fg.isUsing==0 && sqlite3WalkExpr(&pFix->w, pList->a[i].u3.pOn) ){ return WRC_Abort; } #endif } if( pSelect->pWith ){ for(i=0; ipWith->nCte; i++){ if( sqlite3WalkSelect(p, pSelect->pWith->a[i].pSelect) ){ return WRC_Abort; } } } return WRC_Continue; } /* ** Initialize a DbFixer structure. This routine must be called prior ** to passing the structure to one of the sqliteFixAAAA() routines below. */ SQLITE_PRIVATE void sqlite3FixInit( DbFixer *pFix, /* The fixer to be initialized */ Parse *pParse, /* Error messages will be written here */ int iDb, /* This is the database that must be used */ const char *zType, /* "view", "trigger", or "index" */ const Token *pName /* Name of the view, trigger, or index */ ){ sqlite3 *db = pParse->db; assert( db->nDb>iDb ); pFix->pParse = pParse; pFix->zDb = db->aDb[iDb].zDbSName; pFix->pSchema = db->aDb[iDb].pSchema; pFix->zType = zType; pFix->pName = pName; pFix->bTemp = (iDb==1); pFix->w.pParse = pParse; pFix->w.xExprCallback = fixExprCb; pFix->w.xSelectCallback = fixSelectCb; pFix->w.xSelectCallback2 = sqlite3WalkWinDefnDummyCallback; pFix->w.walkerDepth = 0; pFix->w.eCode = 0; pFix->w.u.pFix = pFix; } /* ** The following set of routines walk through the parse tree and assign ** a specific database to all table references where the database name ** was left unspecified in the original SQL statement. The pFix structure ** must have been initialized by a prior call to sqlite3FixInit(). ** ** These routines are used to make sure that an index, trigger, or ** view in one database does not refer to objects in a different database. ** (Exception: indices, triggers, and views in the TEMP database are ** allowed to refer to anything.) If a reference is explicitly made ** to an object in a different database, an error message is added to ** pParse->zErrMsg and these routines return non-zero. If everything ** checks out, these routines return 0. */ SQLITE_PRIVATE int sqlite3FixSrcList( DbFixer *pFix, /* Context of the fixation */ SrcList *pList /* The Source list to check and modify */ ){ int res = 0; if( pList ){ Select s; memset(&s, 0, sizeof(s)); s.pSrc = pList; res = sqlite3WalkSelect(&pFix->w, &s); } return res; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) SQLITE_PRIVATE int sqlite3FixSelect( DbFixer *pFix, /* Context of the fixation */ Select *pSelect /* The SELECT statement to be fixed to one database */ ){ return sqlite3WalkSelect(&pFix->w, pSelect); } SQLITE_PRIVATE int sqlite3FixExpr( DbFixer *pFix, /* Context of the fixation */ Expr *pExpr /* The expression to be fixed to one database */ ){ return sqlite3WalkExpr(&pFix->w, pExpr); } #endif #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE int sqlite3FixTriggerStep( DbFixer *pFix, /* Context of the fixation */ TriggerStep *pStep /* The trigger step be fixed to one database */ ){ while( pStep ){ if( sqlite3WalkSelect(&pFix->w, pStep->pSelect) || sqlite3WalkExpr(&pFix->w, pStep->pWhere) || sqlite3WalkExprList(&pFix->w, pStep->pExprList) || sqlite3FixSrcList(pFix, pStep->pFrom) ){ return 1; } #ifndef SQLITE_OMIT_UPSERT { Upsert *pUp; for(pUp=pStep->pUpsert; pUp; pUp=pUp->pNextUpsert){ if( sqlite3WalkExprList(&pFix->w, pUp->pUpsertTarget) || sqlite3WalkExpr(&pFix->w, pUp->pUpsertTargetWhere) || sqlite3WalkExprList(&pFix->w, pUp->pUpsertSet) || sqlite3WalkExpr(&pFix->w, pUp->pUpsertWhere) ){ return 1; } } } #endif pStep = pStep->pNext; } return 0; } #endif /************** End of attach.c **********************************************/ /************** Begin file auth.c ********************************************/ /* ** 2003 January 11 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the sqlite3_set_authorizer() ** API. This facility is an optional feature of the library. Embedded ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 */ /* #include "sqliteInt.h" */ /* ** All of the code in this file may be omitted by defining a single ** macro. */ #ifndef SQLITE_OMIT_AUTHORIZATION /* ** Set or clear the access authorization function. ** ** The access authorization function is be called during the compilation ** phase to verify that the user has read and/or write access permission on ** various fields of the database. The first argument to the auth function ** is a copy of the 3rd argument to this routine. The second argument ** to the auth function is one of these constants: ** ** SQLITE_CREATE_INDEX ** SQLITE_CREATE_TABLE ** SQLITE_CREATE_TEMP_INDEX ** SQLITE_CREATE_TEMP_TABLE ** SQLITE_CREATE_TEMP_TRIGGER ** SQLITE_CREATE_TEMP_VIEW ** SQLITE_CREATE_TRIGGER ** SQLITE_CREATE_VIEW ** SQLITE_DELETE ** SQLITE_DROP_INDEX ** SQLITE_DROP_TABLE ** SQLITE_DROP_TEMP_INDEX ** SQLITE_DROP_TEMP_TABLE ** SQLITE_DROP_TEMP_TRIGGER ** SQLITE_DROP_TEMP_VIEW ** SQLITE_DROP_TRIGGER ** SQLITE_DROP_VIEW ** SQLITE_INSERT ** SQLITE_PRAGMA ** SQLITE_READ ** SQLITE_SELECT ** SQLITE_TRANSACTION ** SQLITE_UPDATE ** ** The third and fourth arguments to the auth function are the name of ** the table and the column that are being accessed. The auth function ** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If ** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY ** means that the SQL statement will never-run - the sqlite3_exec() call ** will return with an error. SQLITE_IGNORE means that the SQL statement ** should run but attempts to read the specified column will return NULL ** and attempts to write the column will be ignored. ** ** Setting the auth function to NULL disables this hook. The default ** setting of the auth function is NULL. */ SQLITE_API int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xAuth = (sqlite3_xauth)xAuth; db->pAuthArg = pArg; if( db->xAuth ) sqlite3ExpirePreparedStatements(db, 1); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Write an error message into pParse->zErrMsg that explains that the ** user-supplied authorization function returned an illegal value. */ static void sqliteAuthBadReturnCode(Parse *pParse){ sqlite3ErrorMsg(pParse, "authorizer malfunction"); pParse->rc = SQLITE_ERROR; } /* ** Invoke the authorization callback for permission to read column zCol from ** table zTab in database zDb. This function assumes that an authorization ** callback has been registered (i.e. that sqlite3.xAuth is not NULL). ** ** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed ** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE ** is treated as SQLITE_DENY. In this case an error is left in pParse. */ SQLITE_PRIVATE int sqlite3AuthReadCol( Parse *pParse, /* The parser context */ const char *zTab, /* Table name */ const char *zCol, /* Column name */ int iDb /* Index of containing database. */ ){ sqlite3 *db = pParse->db; /* Database handle */ char *zDb = db->aDb[iDb].zDbSName; /* Schema name of attached database */ int rc; /* Auth callback return code */ if( db->init.busy ) return SQLITE_OK; rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext #ifdef SQLITE_USER_AUTHENTICATION ,db->auth.zAuthUser #endif ); if( rc==SQLITE_DENY ){ char *z = sqlite3_mprintf("%s.%s", zTab, zCol); if( db->nDb>2 || iDb!=0 ) z = sqlite3_mprintf("%s.%z", zDb, z); sqlite3ErrorMsg(pParse, "access to %z is prohibited", z); pParse->rc = SQLITE_AUTH; }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){ sqliteAuthBadReturnCode(pParse); } return rc; } /* ** The pExpr should be a TK_COLUMN expression. The table referred to ** is in pTabList or else it is the NEW or OLD table of a trigger. ** Check to see if it is OK to read this particular column. ** ** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN ** instruction into a TK_NULL. If the auth function returns SQLITE_DENY, ** then generate an error. */ SQLITE_PRIVATE void sqlite3AuthRead( Parse *pParse, /* The parser context */ Expr *pExpr, /* The expression to check authorization on */ Schema *pSchema, /* The schema of the expression */ SrcList *pTabList /* All table that pExpr might refer to */ ){ Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); assert( !IN_RENAME_OBJECT ); assert( pParse->db->xAuth!=0 ); iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } if( pExpr->op==TK_TRIGGER ){ pTab = pParse->pTriggerTab; }else{ assert( pTabList ); for(iSrc=0; iSrcnSrc; iSrc++){ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){ pTab = pTabList->a[iSrc].pTab; break; } } } iCol = pExpr->iColumn; if( pTab==0 ) return; if( iCol>=0 ){ assert( iColnCol ); zCol = pTab->aCol[iCol].zCnName; }else if( pTab->iPKey>=0 ){ assert( pTab->iPKeynCol ); zCol = pTab->aCol[pTab->iPKey].zCnName; }else{ zCol = "ROWID"; } assert( iDb>=0 && iDbdb->nDb ); if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){ pExpr->op = TK_NULL; } } /* ** Do an authorization check using the code and arguments given. Return ** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY ** is returned, then the error count and error message in pParse are ** modified appropriately. */ SQLITE_PRIVATE int sqlite3AuthCheck( Parse *pParse, int code, const char *zArg1, const char *zArg2, const char *zArg3 ){ sqlite3 *db = pParse->db; int rc; /* Don't do any authorization checks if the database is initializing ** or if the parser is being invoked from within sqlite3_declare_vtab. */ assert( !IN_RENAME_OBJECT || db->xAuth==0 ); if( db->xAuth==0 || db->init.busy || IN_SPECIAL_PARSE ){ return SQLITE_OK; } /* EVIDENCE-OF: R-43249-19882 The third through sixth parameters to the ** callback are either NULL pointers or zero-terminated strings that ** contain additional details about the action to be authorized. ** ** The following testcase() macros show that any of the 3rd through 6th ** parameters can be either NULL or a string. */ testcase( zArg1==0 ); testcase( zArg2==0 ); testcase( zArg3==0 ); testcase( pParse->zAuthContext==0 ); rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext #ifdef SQLITE_USER_AUTHENTICATION ,db->auth.zAuthUser #endif ); if( rc==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized"); pParse->rc = SQLITE_AUTH; }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ rc = SQLITE_DENY; sqliteAuthBadReturnCode(pParse); } return rc; } /* ** Push an authorization context. After this routine is called, the ** zArg3 argument to authorization callbacks will be zContext until ** popped. Or if pParse==0, this routine is a no-op. */ SQLITE_PRIVATE void sqlite3AuthContextPush( Parse *pParse, AuthContext *pContext, const char *zContext ){ assert( pParse ); pContext->pParse = pParse; pContext->zAuthContext = pParse->zAuthContext; pParse->zAuthContext = zContext; } /* ** Pop an authorization context that was previously pushed ** by sqlite3AuthContextPush */ SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){ if( pContext->pParse ){ pContext->pParse->zAuthContext = pContext->zAuthContext; pContext->pParse = 0; } } #endif /* SQLITE_OMIT_AUTHORIZATION */ /************** End of auth.c ************************************************/ /************** Begin file build.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the SQLite parser ** when syntax rules are reduced. The routines in this file handle the ** following kinds of SQL syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** The TableLock structure is only used by the sqlite3TableLock() and ** codeTableLocks() functions. */ struct TableLock { int iDb; /* The database containing the table to be locked */ Pgno iTab; /* The root page of the table to be locked */ u8 isWriteLock; /* True for write lock. False for a read lock */ const char *zLockName; /* Name of the table */ }; /* ** Record the fact that we want to lock a table at run-time. ** ** The table to be locked has root page iTab and is found in database iDb. ** A read or a write lock can be taken depending on isWritelock. ** ** This routine just records the fact that the lock is desired. The ** code to make the lock occur is generated by a later call to ** codeTableLocks() which occurs during sqlite3FinishCoding(). */ static SQLITE_NOINLINE void lockTable( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ Pgno iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ Parse *pToplevel; int i; int nBytes; TableLock *p; assert( iDb>=0 ); pToplevel = sqlite3ParseToplevel(pParse); for(i=0; inTableLock; i++){ p = &pToplevel->aTableLock[i]; if( p->iDb==iDb && p->iTab==iTab ){ p->isWriteLock = (p->isWriteLock || isWriteLock); return; } } nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); pToplevel->aTableLock = sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); if( pToplevel->aTableLock ){ p = &pToplevel->aTableLock[pToplevel->nTableLock++]; p->iDb = iDb; p->iTab = iTab; p->isWriteLock = isWriteLock; p->zLockName = zName; }else{ pToplevel->nTableLock = 0; sqlite3OomFault(pToplevel->db); } } SQLITE_PRIVATE void sqlite3TableLock( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ Pgno iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ if( iDb==1 ) return; if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; lockTable(pParse, iDb, iTab, isWriteLock, zName); } /* ** Code an OP_TableLock instruction for each table locked by the ** statement (configured by calls to sqlite3TableLock()). */ static void codeTableLocks(Parse *pParse){ int i; Vdbe *pVdbe = pParse->pVdbe; assert( pVdbe!=0 ); for(i=0; inTableLock; i++){ TableLock *p = &pParse->aTableLock[i]; int p1 = p->iDb; sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, p->zLockName, P4_STATIC); } } #else #define codeTableLocks(x) #endif /* ** Return TRUE if the given yDbMask object is empty - if it contains no ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() ** macros when SQLITE_MAX_ATTACHED is greater than 30. */ #if SQLITE_MAX_ATTACHED>30 SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask m){ int i; for(i=0; ipToplevel==0 ); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nested ) return; if( pParse->nErr ){ if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM; return; } assert( db->mallocFailed==0 ); /* Begin by generating some termination code at the end of the ** vdbe program */ v = pParse->pVdbe; if( v==0 ){ if( db->init.busy ){ pParse->rc = SQLITE_DONE; return; } v = sqlite3GetVdbe(pParse); if( v==0 ) pParse->rc = SQLITE_ERROR; } assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); if( v ){ if( pParse->bReturning ){ Returning *pReturning = pParse->u1.pReturning; int addrRewind; int reg; if( pReturning->nRetCol ){ sqlite3VdbeAddOp0(v, OP_FkCheck); addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); VdbeCoverage(v); reg = pReturning->iRetReg; for(i=0; inRetCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); } sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrRewind); } } sqlite3VdbeAddOp0(v, OP_Halt); #if SQLITE_USER_AUTHENTICATION if( pParse->nTableLock>0 && db->init.busy==0 ){ sqlite3UserAuthInit(db); if( db->auth.authLevelrc = SQLITE_AUTH_USER; return; } } #endif /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); sqlite3VdbeJumpHere(v, 0); assert( db->nDb>0 ); iDb = 0; do{ Schema *pSchema; if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); pSchema = db->aDb[iDb].pSchema; sqlite3VdbeAddOp4Int(v, OP_Transaction, /* Opcode */ iDb, /* P1 */ DbMaskTest(pParse->writeMask,iDb), /* P2 */ pSchema->schema_cookie, /* P3 */ pSchema->iGeneration /* P4 */ ); if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); VdbeComment((v, "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); }while( ++iDbnDb ); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; inVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif #ifndef SQLITE_OMIT_SHARED_CACHE /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ if( pParse->nTableLock ) codeTableLocks(pParse); #endif /* Initialize any AUTOINCREMENT data structures required. */ if( pParse->pAinc ) sqlite3AutoincrementBegin(pParse); /* Code constant expressions that where factored out of inner loops. ** ** The pConstExpr list might also contain expressions that we simply ** want to keep around until the Parse object is deleted. Such ** expressions have iConstExprReg==0. Do not generate code for ** those expressions, of course. */ if( pParse->pConstExpr ){ ExprList *pEL = pParse->pConstExpr; pParse->okConstFactor = 0; for(i=0; inExpr; i++){ int iReg = pEL->a[i].u.iConstExprReg; sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); } } if( pParse->bReturning ){ Returning *pRet = pParse->u1.pReturning; if( pRet->nRetCol ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); } } /* Finally, jump back to the beginning of the executable code. */ sqlite3VdbeGoto(v, 1); } /* Get the VDBE program ready for execution */ assert( v!=0 || pParse->nErr ); assert( db->mallocFailed==0 || pParse->nErr ); if( pParse->nErr==0 ){ /* A minimum of one cursor is required if autoincrement is used * See ticket [a696379c1f08866] */ assert( pParse->pAinc==0 || pParse->nTab>0 ); sqlite3VdbeMakeReady(v, pParse); pParse->rc = SQLITE_DONE; }else{ pParse->rc = SQLITE_ERROR; } } /* ** Run the parser and code generator recursively in order to generate ** code for the SQL statement given onto the end of the pParse context ** currently under construction. Notes: ** ** * The final OP_Halt is not appended and other initialization ** and finalization steps are omitted because those are handling by the ** outermost parser. ** ** * Built-in SQL functions always take precedence over application-defined ** SQL functions. In other words, it is not possible to override a ** built-in function. */ SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ va_list ap; char *zSql; sqlite3 *db = pParse->db; u32 savedDbFlags = db->mDbFlags; char saveBuf[PARSE_TAIL_SZ]; if( pParse->nErr ) return; if( pParse->eParseMode ) return; assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ va_start(ap, zFormat); zSql = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); if( zSql==0 ){ /* This can result either from an OOM or because the formatted string ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set ** an error */ if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; pParse->nErr++; return; } pParse->nested++; memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); db->mDbFlags |= DBFLAG_PreferBuiltin; sqlite3RunParser(pParse, zSql); db->mDbFlags = savedDbFlags; sqlite3DbFree(db, zSql); memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); pParse->nested--; } #if SQLITE_USER_AUTHENTICATION /* ** Return TRUE if zTable is the name of the system table that stores the ** list of users and their access credentials. */ SQLITE_PRIVATE int sqlite3UserAuthTable(const char *zTable){ return sqlite3_stricmp(zTable, "sqlite_user")==0; } #endif /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the table and the ** first matching table is returned. (No checking for duplicate table ** names is done.) The search order is TEMP first, then MAIN, then any ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); #if SQLITE_USER_AUTHENTICATION /* Only the admin user is allowed to know that the sqlite_user table ** exists */ if( db->auth.authLevelnDb; i++){ if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; } if( i>=db->nDb ){ /* No match against the official names. But always match "main" ** to schema 0 as a legacy fallback. */ if( sqlite3StrICmp(zDatabase,"main")==0 ){ i = 0; }else{ return 0; } } p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( i==1 ){ if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, LEGACY_TEMP_SCHEMA_TABLE); } }else{ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, LEGACY_SCHEMA_TABLE); } } } }else{ /* Match against TEMP first */ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); if( p ) return p; /* The main database is second */ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); if( p ) return p; /* Attached databases are in order of attachment */ for(i=2; inDb; i++){ assert( sqlite3SchemaMutexHeld(db, i, 0) ); p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); if( p ) break; } if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, LEGACY_TEMP_SCHEMA_TABLE); } } } return p; } /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. Also leave an ** error message in pParse->zErrMsg. ** ** The difference between this routine and sqlite3FindTable() is that this ** routine leaves an error message in pParse->zErrMsg where ** sqlite3FindTable() does not. */ SQLITE_PRIVATE Table *sqlite3LocateTable( Parse *pParse, /* context in which to report errors */ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ const char *zName, /* Name of the table we are looking for */ const char *zDbase /* Name of the database. Might be NULL */ ){ Table *p; sqlite3 *db = pParse->db; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 && SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return 0; } p = sqlite3FindTable(db, zName, zDbase); if( p==0 ){ #ifndef SQLITE_OMIT_VIRTUALTABLE /* If zName is the not the name of a table in the schema created using ** CREATE, then check to see if it is the name of an virtual table that ** can be an eponymous virtual table. */ if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ pMod = sqlite3PragmaVtabRegister(db, zName); } if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ testcase( pMod->pEpoTab==0 ); return pMod->pEpoTab; } } #endif if( flags & LOCATE_NOERR ) return 0; pParse->checkSchema = 1; }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){ p = 0; } if( p==0 ){ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; if( zDbase ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); } }else{ assert( HasRowid(p) || p->iPKey<0 ); } return p; } /* ** Locate the table identified by *p. ** ** This is a wrapper around sqlite3LocateTable(). The difference between ** sqlite3LocateTable() and this function is that this function restricts ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be ** non-NULL if it is part of a view or trigger program definition. See ** sqlite3FixSrcList() for details. */ SQLITE_PRIVATE Table *sqlite3LocateTableItem( Parse *pParse, u32 flags, SrcItem *p ){ const char *zDb; assert( p->pSchema==0 || p->zDatabase==0 ); if( p->pSchema ){ int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); zDb = pParse->db->aDb[iDb].zDbSName; }else{ zDb = p->zDatabase; } return sqlite3LocateTable(pParse, flags, p->zName, zDb); } /* ** Return the preferred table name for system tables. Translate legacy ** names into the new preferred names, as appropriate. */ SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char *zName){ if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ return PREFERRED_SCHEMA_TABLE; } if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ return PREFERRED_TEMP_SCHEMA_TABLE; } } return zName; } /* ** Locate the in-memory structure that describes ** a particular index given the name of that index ** and the name of the database that contains the index. ** Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the ** table and the first matching index is returned. (No checking ** for duplicate index names is done.) The search order is ** TEMP first, then MAIN, then any auxiliary databases added ** using the ATTACH command. */ SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ Schema *pSchema = db->aDb[j].pSchema; assert( pSchema ); if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&pSchema->idxHash, zName); if( p ) break; } return p; } /* ** Reclaim the memory used by an index */ SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3 *db, Index *p){ #ifndef SQLITE_OMIT_ANALYZE sqlite3DeleteIndexSamples(db, p); #endif sqlite3ExprDelete(db, p->pPartIdxWhere); sqlite3ExprListDelete(db, p->aColExpr); sqlite3DbFree(db, p->zColAff); if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); #ifdef SQLITE_ENABLE_STAT4 sqlite3_free(p->aiRowEst); #endif sqlite3DbFree(db, p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &db->aDb[iDb].pSchema->idxHash; pIndex = sqlite3HashInsert(pHash, zIdxName, 0); if( ALWAYS(pIndex) ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; /* Justification of ALWAYS(); The index must be on the list of ** indices. */ p = pIndex->pTable->pIndex; while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } if( ALWAYS(p && p->pNext==pIndex) ){ p->pNext = pIndex->pNext; } } sqlite3FreeIndex(db, pIndex); } db->mDbFlags |= DBFLAG_SchemaChange; } /* ** Look through the list of open database files in db->aDb[] and if ** any have been closed, remove them from the list. Reallocate the ** db->aDb[] structure to a smaller size, if possible. ** ** Entry 0 (the "main" database) and entry 1 (the "temp" database) ** are never candidates for being collapsed. */ SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3 *db){ int i, j; for(i=j=2; inDb; i++){ struct Db *pDb = &db->aDb[i]; if( pDb->pBt==0 ){ sqlite3DbFree(db, pDb->zDbSName); pDb->zDbSName = 0; continue; } if( jaDb[j] = db->aDb[i]; } j++; } db->nDb = j; if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); sqlite3DbFree(db, db->aDb); db->aDb = db->aDbStatic; } } /* ** Reset the schema for the database at index iDb. Also reset the ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. ** Deferred resets may be run by calling with iDb<0. */ SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ int i; assert( iDbnDb ); if( iDb>=0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); DbSetProperty(db, iDb, DB_ResetWanted); DbSetProperty(db, 1, DB_ResetWanted); db->mDbFlags &= ~DBFLAG_SchemaKnownOk; } if( db->nSchemaLock==0 ){ for(i=0; inDb; i++){ if( DbHasProperty(db, i, DB_ResetWanted) ){ sqlite3SchemaClear(db->aDb[i].pSchema); } } } } /* ** Erase all schema information from all attached databases (including ** "main" and "temp") for a single database connection. */ SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ int i; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ if( db->nSchemaLock==0 ){ sqlite3SchemaClear(pDb->pSchema); }else{ DbSetProperty(db, i, DB_ResetWanted); } } } db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); if( db->nSchemaLock==0 ){ sqlite3CollapseDatabaseArray(db); } } /* ** This routine is called when a commit occurs. */ SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){ db->mDbFlags &= ~DBFLAG_SchemaChange; } /* ** Set the expression associated with a column. This is usually ** the DEFAULT value, but might also be the expression that computes ** the value for a generated column. */ SQLITE_PRIVATE void sqlite3ColumnSetExpr( Parse *pParse, /* Parsing context */ Table *pTab, /* The table containing the column */ Column *pCol, /* The column to receive the new DEFAULT expression */ Expr *pExpr /* The new default expression */ ){ ExprList *pList; assert( IsOrdinaryTable(pTab) ); pList = pTab->u.tab.pDfltList; if( pCol->iDflt==0 || NEVER(pList==0) || NEVER(pList->nExpriDflt) ){ pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); }else{ sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); pList->a[pCol->iDflt-1].pExpr = pExpr; } } /* ** Return the expression associated with a column. The expression might be ** the DEFAULT clause or the AS clause of a generated column. ** Return NULL if the column has no associated expression. */ SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ if( pCol->iDflt==0 ) return 0; if( NEVER(!IsOrdinaryTable(pTab)) ) return 0; if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; if( NEVER(pTab->u.tab.pDfltList->nExpriDflt) ) return 0; return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; } /* ** Set the collating sequence name for a column. */ SQLITE_PRIVATE void sqlite3ColumnSetColl( sqlite3 *db, Column *pCol, const char *zColl ){ i64 nColl; i64 n; char *zNew; assert( zColl!=0 ); n = sqlite3Strlen30(pCol->zCnName) + 1; if( pCol->colFlags & COLFLAG_HASTYPE ){ n += sqlite3Strlen30(pCol->zCnName+n) + 1; } nColl = sqlite3Strlen30(zColl) + 1; zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); if( zNew ){ pCol->zCnName = zNew; memcpy(pCol->zCnName + n, zColl, nColl); pCol->colFlags |= COLFLAG_HASCOLL; } } /* ** Return the collating sequence name for a column */ SQLITE_PRIVATE const char *sqlite3ColumnColl(Column *pCol){ const char *z; if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; z = pCol->zCnName; while( *z ){ z++; } if( pCol->colFlags & COLFLAG_HASTYPE ){ do{ z++; }while( *z ); } return z+1; } /* ** Delete memory allocated for the column names of a table or view (the ** Table.aCol[] array). */ SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); assert( db!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; inCol; i++, pCol++){ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); sqlite3DbFree(db, pCol->zCnName); } sqlite3DbNNFreeNN(db, pTable->aCol); if( IsOrdinaryTable(pTable) ){ sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); } if( db->pnBytesFreed==0 ){ pTable->aCol = 0; pTable->nCol = 0; if( IsOrdinaryTable(pTable) ){ pTable->u.tab.pDfltList = 0; } } } } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy ** memory structures of the indices and foreign keys associated with ** the table. ** ** The db parameter is optional. It is needed if the Table object ** contains lookaside memory. (Table objects in the schema do not use ** lookaside memory, but some ephemeral Table objects do.) Or the ** db parameter can be used with db->pnBytesFreed to measure the memory ** used by the Table object. */ static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ Index *pIndex, *pNext; #ifdef SQLITE_DEBUG /* Record the number of outstanding lookaside allocations in schema Tables ** prior to doing any free() operations. Since schema Tables do not use ** lookaside, this number should not change. ** ** If malloc has already failed, it may be that it failed while allocating ** a Table object that was going to be marked ephemeral. So do not check ** that no lookaside memory is used in this case either. */ int nLookaside = 0; assert( db!=0 ); if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ nLookaside = sqlite3LookasideUsed(db, 0); } #endif /* Delete all indices associated with this table. */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, 0 ); assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); assert( pOld==pIndex || pOld==0 ); } sqlite3FreeIndex(db, pIndex); } if( IsOrdinaryTable(pTable) ){ sqlite3FkDelete(db, pTable); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( IsVirtual(pTable) ){ sqlite3VtabClear(db, pTable); } #endif else{ assert( IsView(pTable) ); sqlite3SelectDelete(db, pTable->u.view.pSelect); } /* Delete the Table structure itself. */ sqlite3DeleteColumnNames(db, pTable); sqlite3DbFree(db, pTable->zName); sqlite3DbFree(db, pTable->zColAff); sqlite3ExprListDelete(db, pTable->pCheck); sqlite3DbFree(db, pTable); /* Verify that no lookaside memory was used by schema tables */ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); } SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ /* Do not delete the table until the reference count reaches zero. */ assert( db!=0 ); if( !pTable ) return; if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return; deleteTable(db, pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDbnDb ); assert( zTabName ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); sqlite3DeleteTable(db, p); db->mDbFlags |= DBFLAG_SchemaChange; } /* ** Given a token, return a string that consists of the text of that ** token. Space to hold the returned string ** is obtained from sqliteMalloc() and must be freed by the calling ** function. ** ** Any quotation marks (ex: "name", 'name', [name], or `name`) that ** surround the body of the token are removed. ** ** Tokens are often just pointers into the original SQL text and so ** are not \000 terminated and are not persistent. The returned string ** is \000 terminated and is persistent. */ SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ char *zName; if( pName ){ zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); sqlite3Dequote(zName); }else{ zName = 0; } return zName; } /* ** Open the sqlite_schema table stored in database number iDb for ** writing. The table is opened using cursor 0. */ SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *p, int iDb){ Vdbe *v = sqlite3GetVdbe(p); sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); if( p->nTab==0 ){ p->nTab = 1; } } /* ** Parameter zName points to a nul-terminated buffer containing the name ** of a database ("main", "temp" or the name of an attached db). This ** function returns the index of the named database in db->aDb[], or ** -1 if the named db cannot be found. */ SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){ int i = -1; /* Database number */ if( zName ){ Db *pDb; for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; /* "main" is always an acceptable alias for the primary database ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; } } return i; } /* ** The token *pName contains the name of a database (either "main" or ** "temp" or the name of an attached db). This routine returns the ** index of the named database in db->aDb[], or -1 if the named db ** does not exist. */ SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){ int i; /* Database number */ char *zName; /* Name we are searching for */ zName = sqlite3NameFromToken(db, pName); i = sqlite3FindDbName(db, zName); sqlite3DbFree(db, zName); return i; } /* The table or view or trigger name is passed to this routine via tokens ** pName1 and pName2. If the table name was fully qualified, for example: ** ** CREATE TABLE xxx.yyy (...); ** ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if ** the table name is not fully qualified, i.e.: ** ** CREATE TABLE yyy(...); ** ** Then pName1 is set to "yyy" and pName2 is "". ** ** This routine sets the *ppUnqual pointer to point at the token (pName1 or ** pName2) that stores the unqualified table name. The index of the ** database "xxx" is returned. */ SQLITE_PRIVATE int sqlite3TwoPartName( Parse *pParse, /* Parsing and code generating context */ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ Token *pName2, /* The "yyy" in the name "xxx.yyy" */ Token **pUnqual /* Write the unqualified object name here */ ){ int iDb; /* Database holding the object */ sqlite3 *db = pParse->db; assert( pName2!=0 ); if( pName2->n>0 ){ if( db->init.busy ) { sqlite3ErrorMsg(pParse, "corrupt database"); return -1; } *pUnqual = pName2; iDb = sqlite3FindDb(db, pName1); if( iDb<0 ){ sqlite3ErrorMsg(pParse, "unknown database %T", pName1); return -1; } }else{ assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE || (db->mDbFlags & DBFLAG_Vacuum)!=0); iDb = db->init.iDb; *pUnqual = pName1; } return iDb; } /* ** True if PRAGMA writable_schema is ON */ SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3 *db){ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_WriteSchema ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_Defensive ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== (SQLITE_WriteSchema|SQLITE_Defensive) ); return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; } /* ** This routine is used to check if the UTF-8 string zName is a legal ** unqualified name for a new schema object (table, index, view or ** trigger). All names are legal except those that begin with the string ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace ** is reserved for internal use. ** ** When parsing the sqlite_schema table, this routine also checks to ** make sure the "type", "name", and "tbl_name" columns are consistent ** with the SQL. */ SQLITE_PRIVATE int sqlite3CheckObjectName( Parse *pParse, /* Parsing context */ const char *zName, /* Name of the object to check */ const char *zType, /* Type of this object */ const char *zTblName /* Parent table name for triggers and indexes */ ){ sqlite3 *db = pParse->db; if( sqlite3WritableSchema(db) || db->init.imposterTable || !sqlite3Config.bExtraSchemaChecks ){ /* Skip these error checks for writable_schema=ON */ return SQLITE_OK; } if( db->init.busy ){ if( sqlite3_stricmp(zType, db->init.azInit[0]) || sqlite3_stricmp(zName, db->init.azInit[1]) || sqlite3_stricmp(zTblName, db->init.azInit[2]) ){ sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ return SQLITE_ERROR; } }else{ if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) ){ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); return SQLITE_ERROR; } } return SQLITE_OK; } /* ** Return the PRIMARY KEY index of a table */ SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table *pTab){ Index *p; for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} return p; } /* ** Convert an table column number into a index column number. That is, ** for the column iCol in the table (as defined by the CREATE TABLE statement) ** find the (first) offset of that column in index pIdx. Or return -1 ** if column iCol is not used in index pIdx. */ SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ int i; for(i=0; inColumn; i++){ if( iCol==pIdx->aiColumn[i] ) return i; } return -1; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Convert a storage column number into a table column number. ** ** The storage column number (0,1,2,....) is the index of the value ** as it appears in the record on disk. The true column number ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. ** ** The storage column number is less than the table column number if ** and only there are VIRTUAL columns to the left. ** ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. */ SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ if( pTab->tabFlags & TF_HasVirtual ){ int i; for(i=0; i<=iCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; } } return iCol; } #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Convert a table column number into a storage column number. ** ** The storage column number (0,1,2,....) is the index of the value ** as it appears in the record on disk. Or, if the input column is ** the N-th virtual column (zero-based) then the storage number is ** the number of non-virtual columns in the table plus N. ** ** The true column number is the index (0,1,2,...) of the column in ** the CREATE TABLE statement. ** ** If the input column is a VIRTUAL column, then it should not appear ** in storage. But the value sometimes is cached in registers that ** follow the range of registers used to construct storage. This ** avoids computing the same VIRTUAL column multiple times, and provides ** values for use by OP_Param opcodes in triggers. Hence, if the ** input column is a VIRTUAL table, put it after all the other columns. ** ** In the following, N means "normal column", S means STORED, and ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: ** ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); ** -- 0 1 2 3 4 5 6 7 8 ** ** Then the mapping from this function is as follows: ** ** INPUTS: 0 1 2 3 4 5 6 7 8 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 ** ** So, in other words, this routine shifts all the virtual columns to ** the end. ** ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and ** this routine is a no-op macro. If the pTab does not have any virtual ** columns, then this routine is no-op that always return iCol. If iCol ** is negative (indicating the ROWID column) then this routine return iCol. */ SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ int i; i16 n; assert( iColnCol ); if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; for(i=0, n=0; iaCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; } if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ /* iCol is a virtual column itself */ return pTab->nNVCol + i - n; }else{ /* iCol is a normal or stored column */ return n; } } #endif /* ** Insert a single OP_JournalMode query opcode in order to force the ** prepared statement to return false for sqlite3_stmt_readonly(). This ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS ** will return false for sqlite3_stmt_readonly() even if that statement ** is a read-only no-op. */ static void sqlite3ForceNotReadOnly(Parse *pParse){ int iReg = ++pParse->nMem; Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); sqlite3VdbeUsesBtree(v, 0); } } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. In particular, this routine is called ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp ** flag is true if the table should be stored in the auxiliary database ** file instead of in the main database file. This is normally the case ** when the "TEMP" or "TEMPORARY" keyword occurs in between ** CREATE and TABLE. ** ** The new table record is initialized and put in pParse->pNewTable. ** As more of the CREATE TABLE statement is parsed, additional action ** routines will be called to add more information to this record. ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine ** is called to complete the construction of the new table record. */ SQLITE_PRIVATE void sqlite3StartTable( Parse *pParse, /* Parser context */ Token *pName1, /* First part of the name of the table or view */ Token *pName2, /* Second part of the name of the table or view */ int isTemp, /* True if this is a TEMP table */ int isView, /* True if this is a VIEW */ int isVirtual, /* True if this is a VIRTUAL table */ int noErr /* Do nothing if table already exists */ ){ Table *pTable; char *zName = 0; /* The name of the new table */ sqlite3 *db = pParse->db; Vdbe *v; int iDb; /* Database number to create the table in */ Token *pName; /* Unqualified name of the table to create */ if( db->init.busy && db->init.newTnum==1 ){ /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ iDb = db->init.iDb; zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); pName = pName1; }else{ /* The common case */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) return; if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ /* If creating a temp table, the name may not be qualified. Unless ** the database name is "temp" anyway. */ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); return; } if( !OMIT_TEMPDB && isTemp ) iDb = 1; zName = sqlite3NameFromToken(db, pName); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (void*)zName, pName); } } pParse->sNameToken = *pName; if( zName==0 ) return; if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ goto begin_table_error; } if( db->init.iDb==1 ) isTemp = 1; #ifndef SQLITE_OMIT_AUTHORIZATION assert( isTemp==0 || isTemp==1 ); assert( isView==0 || isView==1 ); { static const u8 aCode[] = { SQLITE_CREATE_TABLE, SQLITE_CREATE_TEMP_TABLE, SQLITE_CREATE_VIEW, SQLITE_CREATE_TEMP_VIEW }; char *zDb = db->aDb[iDb].zDbSName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ goto begin_table_error; } if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], zName, 0, zDb) ){ goto begin_table_error; } } #endif /* Make sure the new table name does not collide with an existing ** index or table name in the same database. Issue an error message if ** it does. The exception is if the statement being parsed was passed ** to an sqlite3_declare_vtab() call. In that case only the column names ** and types will be used, so there is no need to test for namespace ** collisions. */ if( !IN_SPECIAL_PARSE ){ char *zDb = db->aDb[iDb].zDbSName; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "%s %T already exists", (IsView(pTable)? "view" : "table"), pName); }else{ assert( !db->init.busy || CORRUPT_DB ); sqlite3CodeVerifySchema(pParse, iDb); sqlite3ForceNotReadOnly(pParse); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, zDb)!=0 ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; } } pTable = sqlite3DbMallocZero(db, sizeof(Table)); if( pTable==0 ){ assert( db->mallocFailed ); pParse->rc = SQLITE_NOMEM_BKPT; pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nTabRef = 1; #ifdef SQLITE_DEFAULT_ROWEST pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); #else pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #endif assert( pParse->pNewTable==0 ); pParse->pNewTable = pTable; /* Begin generating the code that will insert the table record into ** the schema table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause ** indices to be created and the table record must come before the ** indices. Hence, the record number for the table must be allocated ** now. */ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ int addr1; int fileFormat; int reg1, reg2, reg3; /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( isVirtual ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif /* If the file format and encoding in the database have not been set, ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1 : SQLITE_MAX_FILE_FORMAT; sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); sqlite3VdbeJumpHere(v, addr1); /* This just creates a place-holder record in the sqlite_schema table. ** The record created does not contain anything yet. It will be replaced ** by the real entry in code generated at sqlite3EndTable(). ** ** The rowid for the new entry is left in register pParse->regRowid. ** The root page number of the new table is left in reg pParse->regRoot. ** The rowid and root page number values are needed by the code that ** sqlite3EndTable will generate. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( isView || isVirtual ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); }else #endif { assert( !pParse->bReturning ); pParse->u1.addrCrTab = sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); } sqlite3OpenSchemaTable(pParse, iDb); sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp0(v, OP_Close); } /* Normal (non-error) return. */ return; /* If an error occurs, we jump here */ begin_table_error: pParse->checkSchema = 1; sqlite3DbFree(db, zName); return; } /* Set properties of a table column based on the (magical) ** name of the column. */ #if SQLITE_ENABLE_HIDDEN_COLUMNS SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ pCol->colFlags |= COLFLAG_HIDDEN; if( pTab ) pTab->tabFlags |= TF_HasHidden; }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ pTab->tabFlags |= TF_OOOHidden; } } #endif /* ** Name of the special TEMP trigger used to implement RETURNING. The ** name begins with "sqlite_" so that it is guaranteed not to collide ** with any application-generated triggers. */ #define RETURNING_TRIGGER_NAME "sqlite_returning" /* ** Clean up the data structures associated with the RETURNING clause. */ static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ Hash *pHash; pHash = &(db->aDb[1].pSchema->trigHash); sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); sqlite3ExprListDelete(db, pRet->pReturnEL); sqlite3DbFree(db, pRet); } /* ** Add the RETURNING clause to the parse currently underway. ** ** This routine creates a special TEMP trigger that will fire for each row ** of the DML statement. That TEMP trigger contains a single SELECT ** statement with a result set that is the argument of the RETURNING clause. ** The trigger has the Trigger.bReturning flag and an opcode of ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator ** knows to handle it specially. The TEMP trigger is automatically ** removed at the end of the parse. ** ** When this routine is called, we do not yet know if the RETURNING clause ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a ** RETURNING trigger instead. It will then be converted into the appropriate ** type on the first call to sqlite3TriggersExist(). */ SQLITE_PRIVATE void sqlite3AddReturning(Parse *pParse, ExprList *pList){ Returning *pRet; Hash *pHash; sqlite3 *db = pParse->db; if( pParse->pNewTrigger ){ sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); }else{ assert( pParse->bReturning==0 || pParse->ifNotExists ); } pParse->bReturning = 1; pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); if( pRet==0 ){ sqlite3ExprListDelete(db, pList); return; } pParse->u1.pReturning = pRet; pRet->pParse = pParse; pRet->pReturnEL = pList; sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); testcase( pParse->earlyCleanup ); if( db->mallocFailed ) return; pRet->retTrig.zName = RETURNING_TRIGGER_NAME; pRet->retTrig.op = TK_RETURNING; pRet->retTrig.tr_tm = TRIGGER_AFTER; pRet->retTrig.bReturning = 1; pRet->retTrig.pSchema = db->aDb[1].pSchema; pRet->retTrig.pTabSchema = db->aDb[1].pSchema; pRet->retTrig.step_list = &pRet->retTStep; pRet->retTStep.op = TK_RETURNING; pRet->retTStep.pTrig = &pRet->retTrig; pRet->retTStep.pExprList = pList; pHash = &(db->aDb[1].pSchema->trigHash); assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr || pParse->ifNotExists ); if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) ==&pRet->retTrig ){ sqlite3OomFault(db); } } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqlite3StartTable() gets called ** first to get things going. Then this routine is called for each ** column. */ SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ Table *p; int i; char *z; char *zType; Column *pCol; sqlite3 *db = pParse->db; u8 hName; Column *aNew; u8 eType = COLTYPE_CUSTOM; u8 szEst = 1; char affinity = SQLITE_AFF_BLOB; if( (p = pParse->pNewTable)==0 ) return; if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); return; } if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); /* Because keywords GENERATE ALWAYS can be converted into identifiers ** by the parser, we can sometimes end up with a typename that ends ** with "generated always". Check for this case and omit the surplus ** text. */ if( sType.n>=16 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 ){ sType.n -= 6; while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; if( sType.n>=9 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 ){ sType.n -= 9; while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; } } /* Check for standard typenames. For standard typenames we will ** set the Column.eType field rather than storing the typename after ** the column name, in order to save space. */ if( sType.n>=3 ){ sqlite3DequoteToken(&sType); for(i=0; i0) ); if( z==0 ) return; if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); memcpy(z, sName.z, sName.n); z[sName.n] = 0; sqlite3Dequote(z); hName = sqlite3StrIHash(z); for(i=0; inCol; i++){ if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); sqlite3DbFree(db, z); return; } } aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); if( aNew==0 ){ sqlite3DbFree(db, z); return; } p->aCol = aNew; pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zCnName = z; pCol->hName = hName; sqlite3ColumnPropertiesFromName(p, pCol); if( sType.n==0 ){ /* If there is no type specified, columns have the default affinity ** 'BLOB' with a default size of 4 bytes. */ pCol->affinity = affinity; pCol->eCType = eType; pCol->szEst = szEst; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( affinity==SQLITE_AFF_BLOB ){ if( 4>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } } #endif }else{ zType = z + sqlite3Strlen30(z) + 1; memcpy(zType, sType.z, sType.n); zType[sType.n] = 0; sqlite3Dequote(zType); pCol->affinity = sqlite3AffinityType(zType, pCol); pCol->colFlags |= COLFLAG_HASTYPE; } p->nCol++; p->nNVCol++; pParse->constraintName.n = 0; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on ** the column currently under construction. */ SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){ Table *p; Column *pCol; p = pParse->pNewTable; if( p==0 || NEVER(p->nCol<1) ) return; pCol = &p->aCol[p->nCol-1]; pCol->notNull = (u8)onError; p->tabFlags |= TF_HasNotNull; /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created ** on this column. */ if( pCol->colFlags & COLFLAG_UNIQUE ){ Index *pIdx; for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); if( pIdx->aiColumn[0]==p->nCol-1 ){ pIdx->uniqNotNull = 1; } } } } /* ** Scan the column type name zType (length nType) and return the ** associated affinity type. ** ** This routine does a case-independent search of zType for the ** substrings in the following table. If one of the substrings is ** found, the corresponding affinity is returned. If zType contains ** more than one of the substrings, entries toward the top of ** the table take priority. For example, if zType is 'BLOBINT', ** SQLITE_AFF_INTEGER is returned. ** ** Substring | Affinity ** -------------------------------- ** 'INT' | SQLITE_AFF_INTEGER ** 'CHAR' | SQLITE_AFF_TEXT ** 'CLOB' | SQLITE_AFF_TEXT ** 'TEXT' | SQLITE_AFF_TEXT ** 'BLOB' | SQLITE_AFF_BLOB ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn, Column *pCol){ u32 h = 0; char aff = SQLITE_AFF_NUMERIC; const char *zChar = 0; assert( zIn!=0 ); while( zIn[0] ){ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; zIn++; if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ aff = SQLITE_AFF_TEXT; zChar = zIn; }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ aff = SQLITE_AFF_TEXT; }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ aff = SQLITE_AFF_TEXT; }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ aff = SQLITE_AFF_BLOB; if( zIn[0]=='(' ) zChar = zIn; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; #endif }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ aff = SQLITE_AFF_INTEGER; break; } } /* If pCol is not NULL, store an estimate of the field size. The ** estimate is scaled so that the size of an integer is 1. */ if( pCol ){ int v = 0; /* default size is approx 4 bytes */ if( aff r=(k/4+1) */ sqlite3GetInt32(zChar, &v); break; } zChar++; } }else{ v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( v>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } #endif v = v/4 + 1; if( v>255 ) v = 255; pCol->szEst = v; } return aff; } /* ** The expression is the default value for the most recently added column ** of the table currently under construction. ** ** Default value expressions must be constant. Raise an exception if this ** is not the case. ** ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ SQLITE_PRIVATE void sqlite3AddDefaultValue( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The parsed expression of the default value */ const char *zStart, /* Start of the default value text */ const char *zEnd /* First character past end of default value text */ ){ Table *p; Column *pCol; sqlite3 *db = pParse->db; p = pParse->pNewTable; if( p!=0 ){ int isInit = db->init.busy && db->init.iDb!=1; pCol = &(p->aCol[p->nCol-1]); if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", pCol->zCnName); #ifndef SQLITE_OMIT_GENERATED_COLUMNS }else if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); #endif }else{ /* A copy of pExpr is used instead of the original, as pExpr contains ** tokens that point to volatile memory. */ Expr x, *pDfltExpr; memset(&x, 0, sizeof(x)); x.op = TK_SPAN; x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); x.pLeft = pExpr; x.flags = EP_Skip; pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); sqlite3DbFree(db, x.u.zToken); sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); } } if( IN_RENAME_OBJECT ){ sqlite3RenameExprUnmap(pParse, pExpr); } sqlite3ExprDelete(db, pExpr); } /* ** Backwards Compatibility Hack: ** ** Historical versions of SQLite accepted strings as column names in ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: ** ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); ** ** This is goofy. But to preserve backwards compatibility we continue to ** accept it. This routine does the necessary conversion. It converts ** the expression given in its argument from a TK_STRING into a TK_ID ** if the expression is just a TK_STRING with an optional COLLATE clause. ** If the expression is anything other than TK_STRING, the expression is ** unchanged. */ static void sqlite3StringToId(Expr *p){ if( p->op==TK_STRING ){ p->op = TK_ID; }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ p->pLeft->op = TK_ID; } } /* ** Tag the given column as being part of the PRIMARY KEY */ static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ pCol->colFlags |= COLFLAG_PRIMKEY; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "generated columns cannot be part of the PRIMARY KEY"); } #endif } /* ** Designate the PRIMARY KEY for the table. pList is a list of names ** of columns that form the primary key. If pList is NULL, then the ** most recently added column of the table is the primary key. ** ** A table can have at most one primary key. If the table already has ** a primary key (and this is the second primary key) then create an ** error. ** ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, ** then we will try to use that column as the rowid. Set the Table.iPKey ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ SQLITE_PRIVATE void sqlite3AddPrimaryKey( Parse *pParse, /* Parsing context */ ExprList *pList, /* List of field names to be indexed */ int onError, /* What to do with a uniqueness conflict */ int autoInc, /* True if the AUTOINCREMENT keyword is present */ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ ){ Table *pTab = pParse->pNewTable; Column *pCol = 0; int iCol = -1, i; int nTerm; if( pTab==0 ) goto primary_key_exit; if( pTab->tabFlags & TF_HasPrimaryKey ){ sqlite3ErrorMsg(pParse, "table \"%s\" has more than one primary key", pTab->zName); goto primary_key_exit; } pTab->tabFlags |= TF_HasPrimaryKey; if( pList==0 ){ iCol = pTab->nCol - 1; pCol = &pTab->aCol[iCol]; makeColumnPartOfPrimaryKey(pParse, pCol); nTerm = 1; }else{ nTerm = pList->nExpr; for(i=0; ia[i].pExpr); assert( pCExpr!=0 ); sqlite3StringToId(pCExpr); if( pCExpr->op==TK_ID ){ const char *zCName; assert( !ExprHasProperty(pCExpr, EP_IntValue) ); zCName = pCExpr->u.zToken; for(iCol=0; iColnCol; iCol++){ if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ pCol = &pTab->aCol[iCol]; makeColumnPartOfPrimaryKey(pParse, pCol); break; } } } } } if( nTerm==1 && pCol && pCol->eCType==COLTYPE_INTEGER && sortOrder!=SQLITE_SO_DESC ){ if( IN_RENAME_OBJECT && pList ){ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); } pTab->iPKey = iCol; pTab->keyConf = (u8)onError; assert( autoInc==0 || autoInc==1 ); pTab->tabFlags |= autoInc*TF_Autoincrement; if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags; (void)sqlite3HasExplicitNulls(pParse, pList); }else if( autoInc ){ #ifndef SQLITE_OMIT_AUTOINCREMENT sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " "INTEGER PRIMARY KEY"); #endif }else{ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); pList = 0; } primary_key_exit: sqlite3ExprListDelete(pParse->db, pList); return; } /* ** Add a new CHECK constraint to the table currently under construction. */ SQLITE_PRIVATE void sqlite3AddCheckConstraint( Parse *pParse, /* Parsing context */ Expr *pCheckExpr, /* The check expression */ const char *zStart, /* Opening "(" */ const char *zEnd /* Closing ")" */ ){ #ifndef SQLITE_OMIT_CHECK Table *pTab = pParse->pNewTable; sqlite3 *db = pParse->db; if( pTab && !IN_DECLARE_VTAB && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) ){ pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); if( pParse->constraintName.n ){ sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); }else{ Token t; for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } t.z = zStart; t.n = (int)(zEnd - t.z); sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); } }else #endif { sqlite3ExprDelete(pParse->db, pCheckExpr); } } /* ** Set the collation function of the most recently parsed table column ** to the CollSeq given. */ SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){ Table *p; int i; char *zColl; /* Dequoted name of collation sequence */ sqlite3 *db; if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; i = p->nCol-1; db = pParse->db; zColl = sqlite3NameFromToken(db, pToken); if( !zColl ) return; if( sqlite3LocateCollSeq(pParse, zColl) ){ Index *pIdx; sqlite3ColumnSetColl(db, &p->aCol[i], zColl); /* If the column is declared as " PRIMARY KEY COLLATE ", ** then an index may have been created on this column before the ** collation type was added. Correct this if it is the case. */ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nKeyCol==1 ); if( pIdx->aiColumn[0]==i ){ pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); } } } sqlite3DbFree(db, zColl); } /* Change the most recently parsed column to be a GENERATED ALWAYS AS ** column. */ SQLITE_PRIVATE void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ #ifndef SQLITE_OMIT_GENERATED_COLUMNS u8 eType = COLFLAG_VIRTUAL; Table *pTab = pParse->pNewTable; Column *pCol; if( pTab==0 ){ /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ goto generated_done; } pCol = &(pTab->aCol[pTab->nCol-1]); if( IN_DECLARE_VTAB ){ sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); goto generated_done; } if( pCol->iDflt>0 ) goto generated_error; if( pType ){ if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ /* no-op */ }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ eType = COLFLAG_STORED; }else{ goto generated_error; } } if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; pCol->colFlags |= eType; assert( TF_HasVirtual==COLFLAG_VIRTUAL ); assert( TF_HasStored==COLFLAG_STORED ); pTab->tabFlags |= eType; if( pCol->colFlags & COLFLAG_PRIMKEY ){ makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ } if( ALWAYS(pExpr) && pExpr->op==TK_ID ){ /* The value of a generated column needs to be a real expression, not ** just a reference to another column, in order for covering index ** optimizations to work correctly. So if the value is not an expression, ** turn it into one by adding a unary "+" operator. */ pExpr = sqlite3PExpr(pParse, TK_UPLUS, pExpr, 0); } if( pExpr && pExpr->op!=TK_RAISE ) pExpr->affExpr = pCol->affinity; sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); pExpr = 0; goto generated_done; generated_error: sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", pCol->zCnName); generated_done: sqlite3ExprDelete(pParse->db, pExpr); #else /* Throw and error for the GENERATED ALWAYS AS clause if the ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ sqlite3ErrorMsg(pParse, "generated columns not supported"); sqlite3ExprDelete(pParse->db, pExpr); #endif } /* ** Generate code that will increment the schema cookie. ** ** The schema cookie is used to determine when the schema for the ** database changes. After each schema change, the cookie value ** changes. When a process first reads the schema it records the ** cookie. Thereafter, whenever it goes to access the database, ** it checks the cookie to make sure the schema has not changed ** since it was last read. ** ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. ** ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments ** the schema-version whenever the schema changes. */ SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); } /* ** Measure the number of characters needed to output the given ** identifier. The number returned includes any quotes used ** but does not include the null terminator. ** ** The estimate is conservative. It might be larger that what is ** really needed. */ static int identLength(const char *z){ int n; for(n=0; *z; n++, z++){ if( *z=='"' ){ n++; } } return n + 2; } /* ** The first parameter is a pointer to an output buffer. The second ** parameter is a pointer to an integer that contains the offset at ** which to write into the output buffer. This function copies the ** nul-terminated string pointed to by the third parameter, zSignedIdent, ** to the specified offset in the buffer and updates *pIdx to refer ** to the first byte after the last byte written before returning. ** ** If the string zSignedIdent consists entirely of alphanumeric ** characters, does not begin with a digit and is not an SQL keyword, ** then it is copied to the output buffer exactly as it is. Otherwise, ** it is quoted using double-quotes. */ static void identPut(char *z, int *pIdx, char *zSignedIdent){ unsigned char *zIdent = (unsigned char*)zSignedIdent; int i, j, needQuote; i = *pIdx; for(j=0; zIdent[j]; j++){ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; } needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID || zIdent[j]!=0 || j==0; if( needQuote ) z[i++] = '"'; for(j=0; zIdent[j]; j++){ z[i++] = zIdent[j]; if( zIdent[j]=='"' ) z[i++] = '"'; } if( needQuote ) z[i++] = '"'; z[i] = 0; *pIdx = i; } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ static char *createTableStmt(sqlite3 *db, Table *p){ int i, k, n; char *zStmt; char *zSep, *zSep2, *zEnd; Column *pCol; n = 0; for(pCol = p->aCol, i=0; inCol; i++, pCol++){ n += identLength(pCol->zCnName) + 5; } n += identLength(p->zName); if( n<50 ){ zSep = ""; zSep2 = ","; zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqlite3DbMallocRaw(0, n); if( zStmt==0 ){ sqlite3OomFault(db); return 0; } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; inCol; i++, pCol++){ static const char * const azType[] = { /* SQLITE_AFF_BLOB */ "", /* SQLITE_AFF_TEXT */ " TEXT", /* SQLITE_AFF_NUMERIC */ " NUM", /* SQLITE_AFF_INTEGER */ " INT", /* SQLITE_AFF_REAL */ " REAL", /* SQLITE_AFF_FLEXNUM */ " NUM", }; int len; const char *zType; sqlite3_snprintf(n-k, &zStmt[k], zSep); k += sqlite3Strlen30(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zCnName); assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); testcase( pCol->affinity==SQLITE_AFF_BLOB ); testcase( pCol->affinity==SQLITE_AFF_TEXT ); testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); testcase( pCol->affinity==SQLITE_AFF_INTEGER ); testcase( pCol->affinity==SQLITE_AFF_REAL ); testcase( pCol->affinity==SQLITE_AFF_FLEXNUM ); zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; len = sqlite3Strlen30(zType); assert( pCol->affinity==SQLITE_AFF_BLOB || pCol->affinity==SQLITE_AFF_FLEXNUM || pCol->affinity==sqlite3AffinityType(zType, 0) ); memcpy(&zStmt[k], zType, len); k += len; assert( k<=n ); } sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); return zStmt; } /* ** Resize an Index object to hold N columns total. Return SQLITE_OK ** on success and SQLITE_NOMEM on an OOM error. */ static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ char *zExtra; int nByte; if( pIdx->nColumn>=N ) return SQLITE_OK; assert( pIdx->isResized==0 ); nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; zExtra = sqlite3DbMallocZero(db, nByte); if( zExtra==0 ) return SQLITE_NOMEM_BKPT; memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); pIdx->azColl = (const char**)zExtra; zExtra += sizeof(char*)*N; memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); pIdx->aiRowLogEst = (LogEst*)zExtra; zExtra += sizeof(LogEst)*N; memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); pIdx->aiColumn = (i16*)zExtra; zExtra += sizeof(i16)*N; memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); pIdx->aSortOrder = (u8*)zExtra; pIdx->nColumn = N; pIdx->isResized = 1; return SQLITE_OK; } /* ** Estimate the total row width for a table. */ static void estimateTableWidth(Table *pTab){ unsigned wTable = 0; const Column *pTabCol; int i; for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ wTable += pTabCol->szEst; } if( pTab->iPKey<0 ) wTable++; pTab->szTabRow = sqlite3LogEst(wTable*4); } /* ** Estimate the average size of a row for an index. */ static void estimateIndexWidth(Index *pIdx){ unsigned wIndex = 0; int i; const Column *aCol = pIdx->pTable->aCol; for(i=0; inColumn; i++){ i16 x = pIdx->aiColumn[i]; assert( xpTable->nCol ); wIndex += x<0 ? 1 : aCol[x].szEst; } pIdx->szIdxRow = sqlite3LogEst(wIndex*4); } /* Return true if column number x is any of the first nCol entries of aiCol[]. ** This is used to determine if the column number x appears in any of the ** first nCol entries of an index. */ static int hasColumn(const i16 *aiCol, int nCol, int x){ while( nCol-- > 0 ){ if( x==*(aiCol++) ){ return 1; } } return 0; } /* ** Return true if any of the first nKey entries of index pIdx exactly ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may ** or may not be the same index as pPk. ** ** The first nKey entries of pIdx are guaranteed to be ordinary columns, ** not a rowid or expression. ** ** This routine differs from hasColumn() in that both the column and the ** collating sequence must match for this routine, but for hasColumn() only ** the column name must match. */ static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ int i, j; assert( nKey<=pIdx->nColumn ); assert( iColnColumn,pPk->nKeyCol) ); assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); assert( pPk->pTable->tabFlags & TF_WithoutRowid ); assert( pPk->pTable==pIdx->pTable ); testcase( pPk==pIdx ); j = pPk->aiColumn[iCol]; assert( j!=XN_ROWID && j!=XN_EXPR ); for(i=0; iaiColumn[i]>=0 || j>=0 ); if( pIdx->aiColumn[i]==j && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 ){ return 1; } } return 0; } /* Recompute the colNotIdxed field of the Index. ** ** colNotIdxed is a bitmask that has a 0 bit representing each indexed ** columns that are within the first 63 columns of the table and a 1 for ** all other bits (all columns that are not in the index). The ** high-order bit of colNotIdxed is always 1. All unindexed columns ** of the table have a 1. ** ** 2019-10-24: For the purpose of this computation, virtual columns are ** not considered to be covered by the index, even if they are in the ** index, because we do not trust the logic in whereIndexExprTrans() to be ** able to find all instances of a reference to the indexed table column ** and convert them into references to the index. Hence we always want ** the actual table at hand in order to recompute the virtual column, if ** necessary. ** ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask ** to determine if the index is covering index. */ static void recomputeColumnsNotIndexed(Index *pIdx){ Bitmask m = 0; int j; Table *pTab = pIdx->pTable; for(j=pIdx->nColumn-1; j>=0; j--){ int x = pIdx->aiColumn[j]; if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ testcase( x==BMS-1 ); testcase( x==BMS-2 ); if( xcolNotIdxed = ~m; assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */ } /* ** This routine runs at the end of parsing a CREATE TABLE statement that ** has a WITHOUT ROWID clause. The job of this routine is to convert both ** internal schema data structures and the generated VDBE code so that they ** are appropriate for a WITHOUT ROWID table instead of a rowid table. ** Changes include: ** ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY ** into BTREE_BLOBKEY. ** (3) Bypass the creation of the sqlite_schema table entry ** for the PRIMARY KEY as the primary key index is now ** identified by the sqlite_schema table entry of the table itself. ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the ** schema to the rootpage from the main table. ** (5) Add all table columns to the PRIMARY KEY Index object ** so that the PRIMARY KEY is a covering index. The surplus ** columns are part of KeyInfo.nAllField and are not used for ** sorting or lookup or uniqueness checks. ** (6) Replace the rowid tail on all automatically generated UNIQUE ** indices with the PRIMARY KEY columns. ** ** For virtual tables, only (1) is performed. */ static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ Index *pIdx; Index *pPk; int nPk; int nExtra; int i, j; sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) */ if( !db->init.imposterTable ){ for(i=0; inCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 && (pTab->aCol[i].notNull==OE_None) ){ pTab->aCol[i].notNull = OE_Abort; } } pTab->tabFlags |= TF_HasNotNull; } /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY ** into BTREE_BLOBKEY. */ assert( !pParse->bReturning ); if( pParse->u1.addrCrTab ){ assert( v ); sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); } /* Locate the PRIMARY KEY index. Or, if this table was originally ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. */ if( pTab->iPKey>=0 ){ ExprList *pList; Token ipkToken; sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); pList = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); if( pList==0 ){ pTab->tabFlags &= ~TF_WithoutRowid; return; } if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); } pList->a[0].fg.sortFlags = pParse->iPkSortOrder; assert( pParse->pNewTable==pTab ); pTab->iPKey = -1; sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, SQLITE_IDXTYPE_PRIMARYKEY); if( pParse->nErr ){ pTab->tabFlags &= ~TF_WithoutRowid; return; } assert( db->mallocFailed==0 ); pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk->nKeyCol==1 ); }else{ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); /* ** Remove all redundant columns from the PRIMARY KEY. For example, change ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later ** code assumes the PRIMARY KEY contains no repeated columns. */ for(i=j=1; inKeyCol; i++){ if( isDupColumn(pPk, j, pPk, i) ){ pPk->nColumn--; }else{ testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); pPk->azColl[j] = pPk->azColl[i]; pPk->aSortOrder[j] = pPk->aSortOrder[i]; pPk->aiColumn[j++] = pPk->aiColumn[i]; } } pPk->nKeyCol = j; } assert( pPk!=0 ); pPk->isCovering = 1; if( !db->init.imposterTable ) pPk->uniqNotNull = 1; nPk = pPk->nColumn = pPk->nKeyCol; /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema ** table entry. This is only required if currently generating VDBE ** code for a CREATE TABLE (not when parsing one as part of reading ** a database schema). */ if( v && pPk->tnum>0 ){ assert( db->init.busy==0 ); sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); } /* The root page of the PRIMARY KEY is the table root page */ pPk->tnum = pTab->tnum; /* Update the in-memory representation of all UNIQUE indices by converting ** the final rowid column into one or more columns of the PRIMARY KEY. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int n; if( IsPrimaryKeyIndex(pIdx) ) continue; for(i=n=0; inKeyCol, pPk, i) ){ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); n++; } } if( n==0 ){ /* This index is a superset of the primary key */ pIdx->nColumn = pIdx->nKeyCol; continue; } if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; for(i=0, j=pIdx->nKeyCol; inKeyCol, pPk, i) ){ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); pIdx->aiColumn[j] = pPk->aiColumn[i]; pIdx->azColl[j] = pPk->azColl[i]; if( pPk->aSortOrder[i] ){ /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ pIdx->bAscKeyBug = 1; } j++; } } assert( pIdx->nColumn>=pIdx->nKeyCol+n ); assert( pIdx->nColumn>=j ); } /* Add all table columns to the PRIMARY KEY index */ nExtra = 0; for(i=0; inCol; i++){ if( !hasColumn(pPk->aiColumn, nPk, i) && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; } if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; for(i=0, j=nPk; inCol; i++){ if( !hasColumn(pPk->aiColumn, j, i) && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ assert( jnColumn ); pPk->aiColumn[j] = i; pPk->azColl[j] = sqlite3StrBINARY; j++; } } assert( pPk->nColumn==j ); assert( pTab->nNVCol<=j ); recomputeColumnsNotIndexed(pPk); } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if pTab is a virtual table and zName is a shadow table name ** for that virtual table. */ SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ int nName; /* Length of zName */ Module *pMod; /* Module for the virtual table */ if( !IsVirtual(pTab) ) return 0; nName = sqlite3Strlen30(pTab->zName); if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; if( zName[nName]!='_' ) return 0; pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); if( pMod==0 ) return 0; if( pMod->pModule->iVersion<3 ) return 0; if( pMod->pModule->xShadowName==0 ) return 0; return pMod->pModule->xShadowName(zName+nName+1); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Table pTab is a virtual table. If it the virtual table implementation ** exists and has an xShadowName method, then loop over all other ordinary ** tables within the same schema looking for shadow tables of pTab, and mark ** any shadow tables seen using the TF_Shadow flag. */ SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ int nName; /* Length of pTab->zName */ Module *pMod; /* Module for the virtual table */ HashElem *k; /* For looping through the symbol table */ assert( IsVirtual(pTab) ); pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); if( pMod==0 ) return; if( NEVER(pMod->pModule==0) ) return; if( pMod->pModule->iVersion<3 ) return; if( pMod->pModule->xShadowName==0 ) return; assert( pTab->zName!=0 ); nName = sqlite3Strlen30(pTab->zName); for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pOther = sqliteHashData(k); assert( pOther->zName!=0 ); if( !IsOrdinaryTable(pOther) ) continue; if( pOther->tabFlags & TF_Shadow ) continue; if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 && pOther->zName[nName]=='_' && pMod->pModule->xShadowName(pOther->zName+nName+1) ){ pOther->tabFlags |= TF_Shadow; } } } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if zName is a shadow table name in the current database ** connection. ** ** zName is temporarily modified while this routine is running, but is ** restored to its original value prior to this routine returning. */ SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ char *zTail; /* Pointer to the last "_" in zName */ Table *pTab; /* Table that zName is a shadow of */ zTail = strrchr(zName, '_'); if( zTail==0 ) return 0; *zTail = 0; pTab = sqlite3FindTable(db, zName, 0); *zTail = '_'; if( pTab==0 ) return 0; if( !IsVirtual(pTab) ) return 0; return sqlite3IsShadowTableOf(db, pTab, zName); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_DEBUG /* ** Mark all nodes of an expression as EP_Immutable, indicating that ** they should not be changed. Expressions attached to a table or ** index definition are tagged this way to help ensure that we do ** not pass them into code generator routines by mistake. */ static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ (void)pWalker; ExprSetVVAProperty(pExpr, EP_Immutable); return WRC_Continue; } static void markExprListImmutable(ExprList *pList){ if( pList ){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = markImmutableExprStep; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = 0; sqlite3WalkExprList(&w, pList); } } #else #define markExprListImmutable(X) /* no-op */ #endif /* SQLITE_DEBUG */ /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have ** occurred. ** ** An entry for the table is made in the schema table on disk, unless ** this is a temporary table or db->init.busy==1. When db->init.busy==1 ** it means we are reading the sqlite_schema table because we just ** connected to the database or because the sqlite_schema table has ** recently changed, so the entry for this table already exists in ** the sqlite_schema table. We do not want to create it again. ** ** If the pSelect argument is not NULL, it means that this routine ** was called to create a table generated from a ** "CREATE TABLE ... AS SELECT ..." statement. The column names of ** the new table will match the result set of the SELECT. */ SQLITE_PRIVATE void sqlite3EndTable( Parse *pParse, /* Parse context */ Token *pCons, /* The ',' token after the last column defn. */ Token *pEnd, /* The ')' before options in the CREATE TABLE */ u32 tabOpts, /* Extra table options. Usually 0. */ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ ){ Table *p; /* The new table */ sqlite3 *db = pParse->db; /* The database connection */ int iDb; /* Database in which the table lives */ Index *pIdx; /* An implied index of the table */ if( pEnd==0 && pSelect==0 ){ return; } p = pParse->pNewTable; if( p==0 ) return; if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ p->tabFlags |= TF_Shadow; } /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) ** ** If the root page number is 1, that means this is the sqlite_schema ** table itself. So mark it read-only. */ if( db->init.busy ){ if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ sqlite3ErrorMsg(pParse, ""); return; } p->tnum = db->init.newTnum; if( p->tnum==1 ) p->tabFlags |= TF_Readonly; } /* Special processing for tables that include the STRICT keyword: ** ** * Do not allow custom column datatypes. Every column must have ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. ** ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, ** then all columns of the PRIMARY KEY must have a NOT NULL ** constraint. */ if( tabOpts & TF_Strict ){ int ii; p->tabFlags |= TF_Strict; for(ii=0; iinCol; ii++){ Column *pCol = &p->aCol[ii]; if( pCol->eCType==COLTYPE_CUSTOM ){ if( pCol->colFlags & COLFLAG_HASTYPE ){ sqlite3ErrorMsg(pParse, "unknown datatype for %s.%s: \"%s\"", p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") ); }else{ sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", p->zName, pCol->zCnName); } return; }else if( pCol->eCType==COLTYPE_ANY ){ pCol->affinity = SQLITE_AFF_BLOB; } if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 && p->iPKey!=ii && pCol->notNull == OE_None ){ pCol->notNull = OE_Abort; p->tabFlags |= TF_HasNotNull; } } } assert( (p->tabFlags & TF_HasPrimaryKey)==0 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); assert( (p->tabFlags & TF_HasPrimaryKey)!=0 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); /* Special processing for WITHOUT ROWID Tables */ if( tabOpts & TF_WithoutRowid ){ if( (p->tabFlags & TF_Autoincrement) ){ sqlite3ErrorMsg(pParse, "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); return; } if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); return; } p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; convertToWithoutRowidTable(pParse, p); } iDb = sqlite3SchemaToIndex(db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); if( pParse->nErr ){ /* If errors are seen, delete the CHECK constraints now, else they might ** actually be used if PRAGMA writable_schema=ON is set. */ sqlite3ExprListDelete(db, p->pCheck); p->pCheck = 0; }else{ markExprListImmutable(p->pCheck); } } #endif /* !defined(SQLITE_OMIT_CHECK) */ #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( p->tabFlags & TF_HasGenerated ){ int ii, nNG = 0; testcase( p->tabFlags & TF_HasVirtual ); testcase( p->tabFlags & TF_HasStored ); for(ii=0; iinCol; ii++){ u32 colFlags = p->aCol[ii].colFlags; if( (colFlags & COLFLAG_GENERATED)!=0 ){ Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); testcase( colFlags & COLFLAG_VIRTUAL ); testcase( colFlags & COLFLAG_STORED ); if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ /* If there are errors in resolving the expression, change the ** expression to a NULL. This prevents code generators that operate ** on the expression from inserting extra parts into the expression ** tree that have been allocated from lookaside memory, which is ** illegal in a schema and will lead to errors or heap corruption ** when the database connection closes. */ sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], sqlite3ExprAlloc(db, TK_NULL, 0, 0)); } }else{ nNG++; } } if( nNG==0 ){ sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); return; } } #endif /* Estimate the average row size for the table and for all implied indices */ estimateTableWidth(p); for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ estimateIndexWidth(pIdx); } /* If not initializing, then create a record for the new table ** in the schema table of the database. ** ** If this is a TEMPORARY table, write the entry into the auxiliary ** file instead of into the main database file. */ if( !db->init.busy ){ int n; Vdbe *v; char *zType; /* "view" or "table" */ char *zType2; /* "VIEW" or "TABLE" */ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ v = sqlite3GetVdbe(pParse); if( NEVER(v==0) ) return; sqlite3VdbeAddOp1(v, OP_Close, 0); /* ** Initialize zType for the new view or table. */ if( IsOrdinaryTable(p) ){ /* A regular table */ zType = "table"; zType2 = "TABLE"; #ifndef SQLITE_OMIT_VIEW }else{ /* A view */ zType = "view"; zType2 = "VIEW"; #endif } /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT ** statement to populate the new table. The root-page number for the ** new table is in register pParse->regRoot. ** ** Once the SELECT has been coded by sqlite3Select(), it is in a ** suitable state to query for the column names and types to be used ** by the new table. ** ** A shared-cache write-lock is not required to write to the new table, ** as a schema-lock must have already been obtained to create it. Since ** a schema-lock excludes all other database users, the write-lock would ** be redundant. */ if( pSelect ){ SelectDest dest; /* Where the SELECT should store results */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int regRec; /* A record to be insert into the new table */ int regRowid; /* Rowid of the next row to insert */ int addrInsLoop; /* Top of the loop for inserting rows */ Table *pSelTab; /* A table that describes the SELECT results */ if( IN_SPECIAL_PARSE ){ pParse->rc = SQLITE_ERROR; pParse->nErr++; return; } regYield = ++pParse->nMem; regRec = ++pParse->nMem; regRowid = ++pParse->nMem; assert(pParse->nTab==1); sqlite3MayAbort(pParse); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); pParse->nTab = 2; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); if( pParse->nErr ) return; pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = p->nNVCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); sqlite3Select(pParse, pSelect, &dest); if( pParse->nErr ) return; sqlite3VdbeEndCoroutine(v, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); sqlite3TableAffinity(v, p, 0); sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); sqlite3VdbeGoto(v, addrInsLoop); sqlite3VdbeJumpHere(v, addrInsLoop); sqlite3VdbeAddOp1(v, OP_Close, 1); } /* Compute the complete text of the CREATE statement */ if( pSelect ){ zStmt = createTableStmt(db, p); }else{ Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; n = (int)(pEnd2->z - pParse->sNameToken.z); if( pEnd2->z[0]!=';' ) n += pEnd2->n; zStmt = sqlite3MPrintf(db, "CREATE %s %.*s", zType2, n, pParse->sNameToken.z ); } /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" " WHERE rowid=#%d", db->aDb[iDb].zDbSName, zType, p->zName, p->zName, pParse->regRoot, zStmt, pParse->regRowid ); sqlite3DbFree(db, zStmt); sqlite3ChangeCookie(pParse, iDb); #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ Db *pDb = &db->aDb[iDb]; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zDbSName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy ){ Table *pOld; Schema *pSchema = p->pSchema; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); assert( HasRowid(p) || p->iPKey<0 ); pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ sqlite3OomFault(db); return; } pParse->pNewTable = 0; db->mDbFlags |= DBFLAG_SchemaChange; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ assert( !pParse->nested ); #ifndef SQLITE_OMIT_AUTOINCREMENT if( strcmp(p->zName, "sqlite_sequence")==0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); p->pSchema->pSeqTab = p; } #endif } #ifndef SQLITE_OMIT_ALTERTABLE if( !pSelect && IsOrdinaryTable(p) ){ assert( pCons && pEnd ); if( pCons->z==0 ){ pCons = pEnd; } p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); } #endif } #ifndef SQLITE_OMIT_VIEW /* ** The parser calls this routine in order to create a new VIEW */ SQLITE_PRIVATE void sqlite3CreateView( Parse *pParse, /* The parsing context */ Token *pBegin, /* The CREATE token that begins the statement */ Token *pName1, /* The token that holds the name of the view */ Token *pName2, /* The token that holds the name of the view */ ExprList *pCNames, /* Optional list of view column names */ Select *pSelect, /* A SELECT statement that will become the new view */ int isTemp, /* TRUE for a TEMPORARY view */ int noErr /* Suppress error messages if VIEW already exists */ ){ Table *p; int n; const char *z; Token sEnd; DbFixer sFix; Token *pName = 0; int iDb; sqlite3 *db = pParse->db; if( pParse->nVar>0 ){ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); goto create_view_fail; } sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); p = pParse->pNewTable; if( p==0 || pParse->nErr ) goto create_view_fail; /* Legacy versions of SQLite allowed the use of the magic "rowid" column ** on a view, even though views do not have rowids. The following flag ** setting fixes this problem. But the fix can be disabled by compiling ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that ** depend upon the old buggy behavior. */ #ifndef SQLITE_ALLOW_ROWID_IN_VIEW p->tabFlags |= TF_NoVisibleRowid; #endif sqlite3TwoPartName(pParse, pName1, pName2, &pName); iDb = sqlite3SchemaToIndex(db, p->pSchema); sqlite3FixInit(&sFix, pParse, iDb, "view", pName); if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; /* Make a copy of the entire SELECT statement that defines the view. ** This will force all the Expr.token.z values to be dynamically ** allocated rather than point to the input string - which means that ** they will persist after the current sqlite3_exec() call returns. */ pSelect->selFlags |= SF_View; if( IN_RENAME_OBJECT ){ p->u.view.pSelect = pSelect; pSelect = 0; }else{ p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); } p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); p->eTabType = TABTYP_VIEW; if( db->mallocFailed ) goto create_view_fail; /* Locate the end of the CREATE VIEW statement. Make sEnd point to ** the end. */ sEnd = pParse->sLastToken; assert( sEnd.z[0]!=0 || sEnd.n==0 ); if( sEnd.z[0]!=';' ){ sEnd.z += sEnd.n; } sEnd.n = 0; n = (int)(sEnd.z - pBegin->z); assert( n>0 ); z = pBegin->z; while( sqlite3Isspace(z[n-1]) ){ n--; } sEnd.z = &z[n-1]; sEnd.n = 1; /* Use sqlite3EndTable() to add the view to the schema table */ sqlite3EndTable(pParse, 0, &sEnd, 0, 0); create_view_fail: sqlite3SelectDelete(db, pSelect); if( IN_RENAME_OBJECT ){ sqlite3RenameExprlistUnmap(pParse, pCNames); } sqlite3ExprListDelete(db, pCNames); return; } #endif /* SQLITE_OMIT_VIEW */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) /* ** The Table structure pTable is really a VIEW. Fill in the names of ** the columns of the view in the pTable structure. Return the number ** of errors. If an error is seen leave an error message in pParse->zErrMsg. */ static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){ Table *pSelTab; /* A fake table from which we get the result set */ Select *pSel; /* Copy of the SELECT that implements the view */ int nErr = 0; /* Number of errors encountered */ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ #ifndef SQLITE_OMIT_VIRTUALTABLE int rc; #endif #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; /* Saved xAuth pointer */ #endif assert( pTable ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTable) ){ db->nSchemaLock++; rc = sqlite3VtabCallConnect(pParse, pTable); db->nSchemaLock--; return rc; } #endif #ifndef SQLITE_OMIT_VIEW /* A positive nCol means the columns names for this view are ** already known. This routine is not called unless either the ** table is virtual or nCol is zero. */ assert( pTable->nCol<=0 ); /* A negative nCol is a special marker meaning that we are currently ** trying to compute the column names. If we enter this routine with ** a negative nCol, it means two or more views form a loop, like this: ** ** CREATE VIEW one AS SELECT * FROM two; ** CREATE VIEW two AS SELECT * FROM one; ** ** Actually, the error above is now caught prior to reaching this point. ** But the following test is still important as it does come up ** in the following: ** ** CREATE TABLE main.ex1(a); ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; ** SELECT * FROM temp.ex1; */ if( pTable->nCol<0 ){ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); return 1; } assert( pTable->nCol>=0 ); /* If we get this far, it means we need to compute the table names. ** Note that the call to sqlite3ResultSetOfSelect() will expand any ** "*" elements in the results set of the view and will assign cursors ** to the elements of the FROM clause. But we do not want these changes ** to be permanent. So the computation is done on a copy of the SELECT ** statement that defines the view. */ assert( IsView(pTable) ); pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); if( pSel ){ u8 eParseMode = pParse->eParseMode; int nTab = pParse->nTab; int nSelect = pParse->nSelect; pParse->eParseMode = PARSE_MODE_NORMAL; sqlite3SrcListAssignCursors(pParse, pSel->pSrc); pTable->nCol = -1; DisableLookaside; #ifndef SQLITE_OMIT_AUTHORIZATION xAuth = db->xAuth; db->xAuth = 0; pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); db->xAuth = xAuth; #else pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); #endif pParse->nTab = nTab; pParse->nSelect = nSelect; if( pSelTab==0 ){ pTable->nCol = 0; nErr++; }else if( pTable->pCheck ){ /* CREATE VIEW name(arglist) AS ... ** The names of the columns in the table are taken from ** arglist which is stored in pTable->pCheck. The pCheck field ** normally holds CHECK constraints on an ordinary table, but for ** a VIEW it holds the list of column names. */ sqlite3ColumnsFromExprList(pParse, pTable->pCheck, &pTable->nCol, &pTable->aCol); if( pParse->nErr==0 && pTable->nCol==pSel->pEList->nExpr ){ assert( db->mallocFailed==0 ); sqlite3SubqueryColumnTypes(pParse, pTable, pSel, SQLITE_AFF_NONE); } }else{ /* CREATE VIEW name AS... without an argument list. Construct ** the column names from the SELECT statement that defines the view. */ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); pSelTab->nCol = 0; pSelTab->aCol = 0; assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); } pTable->nNVCol = pTable->nCol; sqlite3DeleteTable(db, pSelTab); sqlite3SelectDelete(db, pSel); EnableLookaside; pParse->eParseMode = eParseMode; } else { nErr++; } pTable->pSchema->schemaFlags |= DB_UnresetViews; if( db->mallocFailed ){ sqlite3DeleteColumnNames(db, pTable); } #endif /* SQLITE_OMIT_VIEW */ return nErr; } SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ assert( pTable!=0 ); if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0; return viewGetColumnNames(pParse, pTable); } #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; assert( sqlite3SchemaMutexHeld(db, idx, 0) ); if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( IsView(pTab) ){ sqlite3DeleteColumnNames(db, pTab); } } DbClearProperty(db, idx, DB_UnresetViews); } #else # define sqliteViewResetAll(A,B) #endif /* SQLITE_OMIT_VIEW */ /* ** This function is called by the VDBE to adjust the internal schema ** used by SQLite when the btree layer moves a table root page. The ** root-page of a table or index in database iDb has changed from iFrom ** to iTo. ** ** Ticket #1728: The symbol table might still contain information ** on tables and/or indices that are the process of being deleted. ** If you are unlucky, one of those deleted indices or tables might ** have the same rootpage number as the real table or index that is ** being moved. So we cannot stop searching after the first match ** because the first match might be for one of the deleted indices ** or tables and not the table/index that is actually being moved. ** We must continue looping until all tables and indices with ** rootpage==iFrom have been converted to have a rootpage of iTo ** in order to be certain that we got the right one. */ #ifndef SQLITE_OMIT_AUTOVACUUM SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ HashElem *pElem; Hash *pHash; Db *pDb; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb = &db->aDb[iDb]; pHash = &pDb->pSchema->tblHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); if( pTab->tnum==iFrom ){ pTab->tnum = iTo; } } pHash = &pDb->pSchema->idxHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Index *pIdx = sqliteHashData(pElem); if( pIdx->tnum==iFrom ){ pIdx->tnum = iTo; } } } #endif /* ** Write code to erase the table with root-page iTable from database iDb. ** Also write code to modify the sqlite_schema table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); sqlite3MayAbort(pParse); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy stores an in integer r1. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_schema table to ** reflect this. ** ** The "#NNN" in the SQL is a special constant that means whatever value ** is in register NNN. See grammar rules associated with the TK_REGISTER ** token for additional information. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET rootpage=%d WHERE #%d AND rootpage=#%d", pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); #endif sqlite3ReleaseTempReg(pParse, r1); } /* ** Write VDBE code to erase table pTab and all associated indices on disk. ** Code to update the sqlite_schema tables and internal schema definitions ** in case a root-page belonging to another table is moved by the btree layer ** is also added (this can happen with an auto-vacuum database). */ static void destroyTable(Parse *pParse, Table *pTab){ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM ** is not defined), then it is important to call OP_Destroy on the ** table and index root-pages in order, starting with the numerically ** largest root-page number. This guarantees that none of the root-pages ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the ** following were coded: ** ** OP_Destroy 4 0 ** ... ** OP_Destroy 5 0 ** ** and root page 5 happened to be the largest root-page number in the ** database, then root page 5 would be moved to page 4 by the ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit ** a free-list page. */ Pgno iTab = pTab->tnum; Pgno iDestroyed = 0; while( 1 ){ Index *pIdx; Pgno iLargest = 0; if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){ Pgno iIdx = pIdx->tnum; assert( pIdx->pSchema==pTab->pSchema ); if( (iDestroyed==0 || (iIdxiLargest ){ iLargest = iIdx; } } if( iLargest==0 ){ return; }else{ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); assert( iDb>=0 && iDbdb->nDb ); destroyRootPage(pParse, iLargest, iDb); iDestroyed = iLargest; } } } /* ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) ** after a DROP INDEX or DROP TABLE command. */ static void sqlite3ClearStatTables( Parse *pParse, /* The parsing context */ int iDb, /* The database number */ const char *zType, /* "idx" or "tbl" */ const char *zName /* Name of index or table */ ){ int i; const char *zDbName = pParse->db->aDb[iDb].zDbSName; for(i=1; i<=4; i++){ char zTab[24]; sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", zDbName, zTab, zType, zName ); } } } /* ** Generate code to drop a table. */ SQLITE_PRIVATE void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ Vdbe *v; sqlite3 *db = pParse->db; Trigger *pTrigger; Db *pDb = &db->aDb[iDb]; v = sqlite3GetVdbe(pParse); assert( v!=0 ); sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif /* Drop all triggers associated with the table being dropped. Code ** is generated to remove entries from sqlite_schema and/or ** sqlite_temp_schema if required. */ pTrigger = sqlite3TriggerList(pParse, pTab); while( pTrigger ){ assert( pTrigger->pSchema==pTab->pSchema || pTrigger->pSchema==db->aDb[1].pSchema ); sqlite3DropTriggerPtr(pParse, pTrigger); pTrigger = pTrigger->pNext; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* Remove any entries of the sqlite_sequence table associated with ** the table being dropped. This is done before the table is dropped ** at the btree level, in case the sqlite_sequence table needs to ** move as a result of the drop (can happen in auto-vacuum mode). */ if( pTab->tabFlags & TF_Autoincrement ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", pDb->zDbSName, pTab->zName ); } #endif /* Drop all entries in the schema table that refer to the ** table. The program name loops through the schema table and deletes ** every row that refers to a table of the same name as the one being ** dropped. Triggers are handled separately because a trigger can be ** created in the temp database that refers to a table in another ** database. */ sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE tbl_name=%Q and type!='trigger'", pDb->zDbSName, pTab->zName); if( !isView && !IsVirtual(pTab) ){ destroyTable(pParse, pTab); } /* Remove the table entry from SQLite's internal schema and modify ** the schema cookie. */ if( IsVirtual(pTab) ){ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); sqlite3ChangeCookie(pParse, iDb); sqliteViewResetAll(db, iDb); } /* ** Return TRUE if shadow tables should be read-only in the current ** context. */ SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db){ #ifndef SQLITE_OMIT_VIRTUALTABLE if( (db->flags & SQLITE_Defensive)!=0 && db->pVtabCtx==0 && db->nVdbeExec==0 && !sqlite3VtabInSync(db) ){ return 1; } #endif return 0; } /* ** Return true if it is not allowed to drop the given table */ static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; return 1; } if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ return 1; } if( pTab->tabFlags & TF_Eponymous ){ return 1; } return 0; } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. */ SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ Table *pTab; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( db->mallocFailed ){ goto exit_drop_table; } assert( pParse->nErr==0 ); assert( pName->nSrc==1 ); if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; if( noErr ) db->suppressErr++; assert( isView==0 || isView==LOCATE_VIEW ); pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); if( noErr ) db->suppressErr--; if( pTab==0 ){ if( noErr ){ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); sqlite3ForceNotReadOnly(pParse); } goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDbnDb ); /* If pTab is a virtual table, call ViewGetColumnNames() to ensure ** it is initialized. */ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ goto exit_drop_table; } #ifndef SQLITE_OMIT_AUTHORIZATION { int code; const char *zTab = SCHEMA_TABLE(iDb); const char *zDb = db->aDb[iDb].zDbSName; const char *zArg2 = 0; if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ goto exit_drop_table; } if( isView ){ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_VIEW; }else{ code = SQLITE_DROP_VIEW; } #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( IsVirtual(pTab) ){ code = SQLITE_DROP_VTABLE; zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; #endif }else{ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_TABLE; }else{ code = SQLITE_DROP_TABLE; } } if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ goto exit_drop_table; } if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto exit_drop_table; } } #endif if( tableMayNotBeDropped(db, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); goto exit_drop_table; } #ifndef SQLITE_OMIT_VIEW /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used ** on a table. */ if( isView && !IsView(pTab) ){ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); goto exit_drop_table; } if( !isView && IsView(pTab) ){ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); goto exit_drop_table; } #endif /* Generate code to remove the table from the schema table ** on disk. */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3BeginWriteOperation(pParse, 1, iDb); if( !isView ){ sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); sqlite3FkDropTable(pParse, pName, pTab); } sqlite3CodeDropTable(pParse, pTab, iDb, isView); } exit_drop_table: sqlite3SrcListDelete(db, pName); } /* ** This routine is called to create a new foreign key on the table ** currently under construction. pFromCol determines which columns ** in the current table point to the foreign key. If pFromCol==0 then ** connect the key to the last column inserted. pTo is the name of ** the table referred to (a.k.a the "parent" table). pToCol is a list ** of tables in the parent pTo table. flags contains all ** information about the conflict resolution algorithms specified ** in the ON DELETE, ON UPDATE and ON INSERT clauses. ** ** An FKey structure is created and added to the table currently ** under construction in the pParse->pNewTable field. ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqlite3DeferForeignKey() might change this to DEFERRED. */ SQLITE_PRIVATE void sqlite3CreateForeignKey( Parse *pParse, /* Parsing context */ ExprList *pFromCol, /* Columns in this table that point to other table */ Token *pTo, /* Name of the other table */ ExprList *pToCol, /* Columns in the other table */ int flags /* Conflict resolution algorithms. */ ){ sqlite3 *db = pParse->db; #ifndef SQLITE_OMIT_FOREIGN_KEY FKey *pFKey = 0; FKey *pNextTo; Table *p = pParse->pNewTable; i64 nByte; int i; int nCol; char *z; assert( pTo!=0 ); if( p==0 || IN_DECLARE_VTAB ) goto fk_end; if( pFromCol==0 ){ int iCol = p->nCol-1; if( NEVER(iCol<0) ) goto fk_end; if( pToCol && pToCol->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "foreign key on %s" " should reference only one column of table %T", p->aCol[iCol].zCnName, pTo); goto fk_end; } nCol = 1; }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ sqlite3ErrorMsg(pParse, "number of columns in foreign key does not match the number of " "columns in the referenced table"); goto fk_end; }else{ nCol = pFromCol->nExpr; } nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; if( pToCol ){ for(i=0; inExpr; i++){ nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; } } pFKey = sqlite3DbMallocZero(db, nByte ); if( pFKey==0 ){ goto fk_end; } pFKey->pFrom = p; assert( IsOrdinaryTable(p) ); pFKey->pNextFrom = p->u.tab.pFKey; z = (char*)&pFKey->aCol[nCol]; pFKey->zTo = z; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (void*)z, pTo); } memcpy(z, pTo->z, pTo->n); z[pTo->n] = 0; sqlite3Dequote(z); z += pTo->n+1; pFKey->nCol = nCol; if( pFromCol==0 ){ pFKey->aCol[0].iFrom = p->nCol-1; }else{ for(i=0; inCol; j++){ if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ pFKey->aCol[i].iFrom = j; break; } } if( j>=p->nCol ){ sqlite3ErrorMsg(pParse, "unknown column \"%s\" in foreign key definition", pFromCol->a[i].zEName); goto fk_end; } if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); } } } if( pToCol ){ for(i=0; ia[i].zEName); pFKey->aCol[i].zCol = z; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); } memcpy(z, pToCol->a[i].zEName, n); z[n] = 0; z += n+1; } } pFKey->isDeferred = 0; pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, pFKey->zTo, (void *)pFKey ); if( pNextTo==pFKey ){ sqlite3OomFault(db); goto fk_end; } if( pNextTo ){ assert( pNextTo->pPrevTo==0 ); pFKey->pNextTo = pNextTo; pNextTo->pPrevTo = pFKey; } /* Link the foreign key to the table as the last step. */ assert( IsOrdinaryTable(p) ); p->u.tab.pFKey = pFKey; pFKey = 0; fk_end: sqlite3DbFree(db, pFKey); #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ sqlite3ExprListDelete(db, pFromCol); sqlite3ExprListDelete(db, pToCol); } /* ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED ** clause is seen as part of a foreign key definition. The isDeferred ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. ** The behavior of the most recently created foreign key is adjusted ** accordingly. */ SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ #ifndef SQLITE_OMIT_FOREIGN_KEY Table *pTab; FKey *pFKey; if( (pTab = pParse->pNewTable)==0 ) return; if( NEVER(!IsOrdinaryTable(pTab)) ) return; if( (pFKey = pTab->u.tab.pFKey)==0 ) return; assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ pFKey->isDeferred = (u8)isDeferred; #endif } /* ** Generate code that will erase and refill index *pIdx. This is ** used to initialize a newly created index or to recompute the ** content of an index in response to a REINDEX command. ** ** if memRootPage is not negative, it means that the index is newly ** created. The register specified by memRootPage contains the ** root page number of the index. If memRootPage is negative, then ** the index already exists and must be cleared before being refilled and ** the root page number of the index is taken from pIndex->tnum. */ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ Pgno tnum; /* Root page of index */ int iPartIdxLabel; /* Jump to this label to skip a row */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regRecord; /* Register holding assembled index record */ sqlite3 *db = pParse->db; /* The database connection */ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, db->aDb[iDb].zDbSName ) ){ return; } #endif /* Require a write-lock on the table to perform this operation */ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); v = sqlite3GetVdbe(pParse); if( v==0 ) return; if( memRootPage>=0 ){ tnum = (Pgno)memRootPage; }else{ tnum = pIndex->tnum; } pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); assert( pKey!=0 || pParse->nErr ); /* Open the sorter cursor if we are to use one. */ iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3MultiWrite(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); if( IsUniqueIndex(pIndex) ){ int j2 = sqlite3VdbeGoto(v, 1); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); sqlite3VdbeJumpHere(v, j2); }else{ /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not ** abort. The exception is if one of the indexed expressions contains a ** user function that throws an exception when it is evaluated. But the ** overhead of adding a statement journal to a CREATE INDEX statement is ** very small (since most of the pages written do not contain content that ** needs to be restored if the statement aborts), so we call ** sqlite3MayAbort() for all CREATE INDEX statements. */ sqlite3MayAbort(pParse); addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); if( !pIndex->bAscKeyBug ){ /* This OP_SeekEnd opcode makes index insert for a REINDEX go much ** faster by avoiding unnecessary seeks. But the optimization does ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables ** with DESC primary keys, since those indexes have there keys in ** a different order from the main table. ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf */ sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iIdx); sqlite3VdbeAddOp1(v, OP_Close, iSorter); } /* ** Allocate heap space to hold an Index object with nCol columns. ** ** Increase the allocation size to provide an extra nExtra bytes ** of 8-byte aligned space after the Index object and return a ** pointer to this extra space in *ppExtra. */ SQLITE_PRIVATE Index *sqlite3AllocateIndexObject( sqlite3 *db, /* Database connection */ i16 nCol, /* Total number of columns in the index */ int nExtra, /* Number of bytes of extra space to alloc */ char **ppExtra /* Pointer to the "extra" space */ ){ Index *p; /* Allocated index object */ int nByte; /* Bytes of space for Index object + arrays */ nByte = ROUND8(sizeof(Index)) + /* Index structure */ ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ sizeof(i16)*nCol + /* Index.aiColumn */ sizeof(u8)*nCol); /* Index.aSortOrder */ p = sqlite3DbMallocZero(db, nByte + nExtra); if( p ){ char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; p->aSortOrder = (u8*)pExtra; p->nColumn = nCol; p->nKeyCol = nCol - 1; *ppExtra = ((char*)p) + nByte; } return p; } /* ** If expression list pList contains an expression that was parsed with ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in ** pParse and return non-zero. Otherwise, return zero. */ SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ if( pList ){ int i; for(i=0; inExpr; i++){ if( pList->a[i].fg.bNulls ){ u8 sf = pList->a[i].fg.sortFlags; sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", (sf==0 || sf==3) ? "FIRST" : "LAST" ); return 1; } } } return 0; } /* ** Create a new index for an SQL table. pName1.pName2 is the name of the index ** and pTblList is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable ** as the table to be indexed. pParse->pNewTable is a table that is ** currently being constructed by a CREATE TABLE statement. ** ** pList is a list of columns to be indexed. pList will be NULL if this ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ SQLITE_PRIVATE void sqlite3CreateIndex( Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins this statement */ Expr *pPIWhere, /* WHERE clause for partial indices */ int sortOrder, /* Sort order of primary key when pList==NULL */ int ifNotExist, /* Omit error if index already exists */ u8 idxType /* The index type */ ){ Table *pTab = 0; /* Table to be indexed */ Index *pIndex = 0; /* The index to be created */ char *zName = 0; /* Name of the index */ int nName; /* Number of characters in zName */ int i, j; DbFixer sFix; /* For assigning database names to pTable */ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ sqlite3 *db = pParse->db; Db *pDb; /* The specific table containing the indexed database */ int iDb; /* Index of the database that is being written */ Token *pName = 0; /* Unqualified name of the index to create */ struct ExprList_item *pListItem; /* For looping over pList */ int nExtra = 0; /* Space allocated for zExtra[] */ int nExtraCol; /* Number of extra columns needed */ char *zExtra = 0; /* Extra space after the Index object */ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ assert( db->pParse==pParse ); if( pParse->nErr ){ goto exit_create_index; } assert( db->mallocFailed==0 ); if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ goto exit_create_index; } if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_create_index; } if( sqlite3HasExplicitNulls(pParse, pList) ){ goto exit_create_index; } /* ** Find the table that is to be indexed. Return early if not found. */ if( pTblName!=0 ){ /* Use the two-part index name to determine the database ** to search for the table. 'Fix' the table name to this db ** before looking up the table. */ assert( pName1 && pName2 ); iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) goto exit_create_index; assert( pName && pName->z ); #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the table ** is a temp table. If so, set the database to 1. Do not do this ** if initializing a database schema. */ if( !db->init.busy ){ pTab = sqlite3SrcListLookup(pParse, pTblName); if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } } #endif sqlite3FixInit(&sFix, pParse, iDb, "index", pName); if( sqlite3FixSrcList(&sFix, pTblName) ){ /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); assert( db->mallocFailed==0 || pTab==0 ); if( pTab==0 ) goto exit_create_index; if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ sqlite3ErrorMsg(pParse, "cannot create a TEMP index on non-TEMP table \"%s\"", pTab->zName); goto exit_create_index; } if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); }else{ assert( pName==0 ); assert( pStart==0 ); pTab = pParse->pNewTable; if( !pTab ) goto exit_create_index; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; assert( pTab!=0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && db->init.busy==0 && pTblName!=0 #if SQLITE_USER_AUTHENTICATION && sqlite3UserAuthTable(pTab->zName)==0 #endif ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); goto exit_create_index; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); goto exit_create_index; } #endif /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. ** ** Exception: If we are reading the names of permanent indices from the ** sqlite_schema table (because some other process changed the schema) and ** one of the index names collides with the name of a temporary table or ** index, then we will continue to process this index. ** ** If pName==0 it means that we are ** dealing with a primary key or UNIQUE constraint. We have to invent our ** own name. */ if( pName ){ zName = sqlite3NameFromToken(db, pName); if( zName==0 ) goto exit_create_index; assert( pName->z!=0 ); if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ goto exit_create_index; } if( !IN_RENAME_OBJECT ){ if( !db->init.busy ){ if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); sqlite3ForceNotReadOnly(pParse); } goto exit_create_index; } } }else{ int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); if( zName==0 ){ goto exit_create_index; } /* Automatic index names generated from within sqlite3_declare_vtab() ** must have names that are distinct from normal automatic index names. ** The following statement converts "sqlite3_autoindex..." into ** "sqlite3_butoindex..." in order to make the names distinct. ** The "vtab_err.test" test demonstrates the need of this statement. */ if( IN_SPECIAL_PARSE ) zName[7]++; } /* Check for authorization to create an index. */ #ifndef SQLITE_OMIT_AUTHORIZATION if( !IN_RENAME_OBJECT ){ const char *zDb = pDb->zDbSName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ goto exit_create_index; } i = SQLITE_CREATE_INDEX; if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ goto exit_create_index; } } #endif /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ Token prevCol; Column *pCol = &pTab->aCol[pTab->nCol-1]; pCol->colFlags |= COLFLAG_UNIQUE; sqlite3TokenInit(&prevCol, pCol->zCnName); pList = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); if( pList==0 ) goto exit_create_index; assert( pList->nExpr==1 ); sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); }else{ sqlite3ExprListCheckLength(pParse, pList, "index"); if( pParse->nErr ) goto exit_create_index; } /* Figure out how many bytes of space are required to store explicitly ** specified collation sequence names. */ for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; assert( pExpr!=0 ); if( pExpr->op==TK_COLLATE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); } } /* ** Allocate the index structure. */ nName = sqlite3Strlen30(zName); nExtraCol = pPk ? pPk->nKeyCol : 1; assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, nName + nExtra + 1, &zExtra); if( db->mallocFailed ){ goto exit_create_index; } assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); pIndex->zName = zExtra; zExtra += nName + 1; memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->onError = (u8)onError; pIndex->uniqNotNull = onError!=OE_None; pIndex->idxType = idxType; pIndex->pSchema = db->aDb[iDb].pSchema; pIndex->nKeyCol = pList->nExpr; if( pPIWhere ){ sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); pIndex->pPartIdxWhere = pPIWhere; pPIWhere = 0; } assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Analyze the list of expressions that form the terms of the index and ** report any errors. In the common case where the expression is exactly ** a table column, store that column in aiColumn[]. For general expressions, ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. ** ** TODO: Issue a warning if two or more columns of the index are identical. ** TODO: Issue a warning if the table primary key is used as part of the ** index key. */ pListItem = pList->a; if( IN_RENAME_OBJECT ){ pIndex->aColExpr = pList; pList = 0; } for(i=0; inKeyCol; i++, pListItem++){ Expr *pCExpr; /* The i-th index expression */ int requestedSortOrder; /* ASC or DESC on the i-th expression */ const char *zColl; /* Collation sequence name */ sqlite3StringToId(pListItem->pExpr); sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); if( pParse->nErr ) goto exit_create_index; pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); if( pCExpr->op!=TK_COLUMN ){ if( pTab==pParse->pNewTable ){ sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " "UNIQUE constraints"); goto exit_create_index; } if( pIndex->aColExpr==0 ){ pIndex->aColExpr = pList; pList = 0; } j = XN_EXPR; pIndex->aiColumn[i] = XN_EXPR; pIndex->uniqNotNull = 0; pIndex->bHasExpr = 1; }else{ j = pCExpr->iColumn; assert( j<=0x7fff ); if( j<0 ){ j = pTab->iPKey; }else{ if( pTab->aCol[j].notNull==0 ){ pIndex->uniqNotNull = 0; } if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ pIndex->bHasVCol = 1; pIndex->bHasExpr = 1; } } pIndex->aiColumn[i] = (i16)j; } zColl = 0; if( pListItem->pExpr->op==TK_COLLATE ){ int nColl; assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); zColl = pListItem->pExpr->u.zToken; nColl = sqlite3Strlen30(zColl) + 1; assert( nExtra>=nColl ); memcpy(zExtra, zColl, nColl); zColl = zExtra; zExtra += nColl; nExtra -= nColl; }else if( j>=0 ){ zColl = sqlite3ColumnColl(&pTab->aCol[j]); } if( !zColl ) zColl = sqlite3StrBINARY; if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ goto exit_create_index; } pIndex->azColl[i] = zColl; requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask; pIndex->aSortOrder[i] = (u8)requestedSortOrder; } /* Append the table key to the end of the index. For WITHOUT ROWID ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For ** normal tables (when pPk==0) this will be the rowid. */ if( pPk ){ for(j=0; jnKeyCol; j++){ int x = pPk->aiColumn[j]; assert( x>=0 ); if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ pIndex->nColumn--; }else{ testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); pIndex->aiColumn[i] = x; pIndex->azColl[i] = pPk->azColl[j]; pIndex->aSortOrder[i] = pPk->aSortOrder[j]; i++; } } assert( i==pIndex->nColumn ); }else{ pIndex->aiColumn[i] = XN_ROWID; pIndex->azColl[i] = sqlite3StrBINARY; } sqlite3DefaultRowEst(pIndex); if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); /* If this index contains every column of its table, then mark ** it as a covering index */ assert( HasRowid(pTab) || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); recomputeColumnsNotIndexed(pIndex); if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ pIndex->isCovering = 1; for(j=0; jnCol; j++){ if( j==pTab->iPKey ) continue; if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; pIndex->isCovering = 0; break; } } if( pTab==pParse->pNewTable ){ /* This routine has been called to create an automatic index as a ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or ** a PRIMARY KEY or UNIQUE clause following the column definitions. ** i.e. one of: ** ** CREATE TABLE t(x PRIMARY KEY, y); ** CREATE TABLE t(x, y, UNIQUE(x, y)); ** ** Either way, check to see if the table already has such an index. If ** so, don't bother creating this one. This only applies to ** automatically created indices. Users can do as they wish with ** explicit indices. ** ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent ** (and thus suppressing the second one) even if they have different ** sort orders. ** ** If there are different collating sequences or if the columns of ** the constraint occur in different orders, then the constraints are ** considered distinct and both result in separate indices. */ Index *pIdx; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int k; assert( IsUniqueIndex(pIdx) ); assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); assert( IsUniqueIndex(pIndex) ); if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; for(k=0; knKeyCol; k++){ const char *z1; const char *z2; assert( pIdx->aiColumn[k]>=0 ); if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; z1 = pIdx->azColl[k]; z2 = pIndex->azColl[k]; if( sqlite3StrICmp(z1, z2) ) break; } if( k==pIdx->nKeyCol ){ if( pIdx->onError!=pIndex->onError ){ /* This constraint creates the same index as a previous ** constraint specified somewhere in the CREATE TABLE statement. ** However the ON CONFLICT clauses are different. If both this ** constraint and the previous equivalent constraint have explicit ** ON CONFLICT clauses this is an error. Otherwise, use the ** explicitly specified behavior for the index. */ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ sqlite3ErrorMsg(pParse, "conflicting ON CONFLICT clauses specified", 0); } if( pIdx->onError==OE_Default ){ pIdx->onError = pIndex->onError; } } if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; if( IN_RENAME_OBJECT ){ pIndex->pNext = pParse->pNewIndex; pParse->pNewIndex = pIndex; pIndex = 0; } goto exit_create_index; } } } if( !IN_RENAME_OBJECT ){ /* Link the new Index structure to its table and to the other ** in-memory database structures. */ assert( pParse->nErr==0 ); if( db->init.busy ){ Index *p; assert( !IN_SPECIAL_PARSE ); assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); if( pTblName!=0 ){ pIndex->tnum = db->init.newTnum; if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ sqlite3ErrorMsg(pParse, "invalid rootpage"); pParse->rc = SQLITE_CORRUPT_BKPT; goto exit_create_index; } } p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ sqlite3OomFault(db); goto exit_create_index; } db->mDbFlags |= DBFLAG_SchemaChange; } /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then ** emit code to allocate the index rootpage on disk and make an entry for ** the index in the sqlite_schema table and populate the index with ** content. But, do not do this if we are simply reading the sqlite_schema ** table to parse the schema, or if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table. ** ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY ** or UNIQUE index in a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else if( HasRowid(pTab) || pTblName!=0 ){ Vdbe *v; char *zStmt; int iMem = ++pParse->nMem; v = sqlite3GetVdbe(pParse); if( v==0 ) goto exit_create_index; sqlite3BeginWriteOperation(pParse, 1, iDb); /* Create the rootpage for the index using CreateIndex. But before ** doing so, code a Noop instruction and store its address in ** Index.tnum. This is required in case this index is actually a ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In ** that case the convertToWithoutRowidTable() routine will replace ** the Noop with a Goto to jump over the VDBE code generated below. */ pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); /* Gather the complete text of the CREATE INDEX statement into ** the zStmt variable */ assert( pName!=0 || pStart==0 ); if( pStart ){ int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; if( pName->z[n-1]==';' ) n--; /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", n, pName->z); }else{ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ /* zStmt = sqlite3MPrintf(""); */ zStmt = 0; } /* Add an entry in sqlite_schema for this index */ sqlite3NestedParse(pParse, "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", db->aDb[iDb].zDbSName, pIndex->zName, pTab->zName, iMem, zStmt ); sqlite3DbFree(db, zStmt); /* Fill the index with data and reparse the schema. Code an OP_Expire ** to invalidate all pre-compiled statements. */ if( pTblName ){ sqlite3RefillIndex(pParse, pIndex, iMem); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); } sqlite3VdbeJumpHere(v, (int)pIndex->tnum); } } if( db->init.busy || pTblName==0 ){ pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; pIndex = 0; } else if( IN_RENAME_OBJECT ){ assert( pParse->pNewIndex==0 ); pParse->pNewIndex = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ) sqlite3FreeIndex(db, pIndex); if( pTab ){ /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. ** The list was already ordered when this routine was entered, so at this ** point at most a single index (the newly added index) will be out of ** order. So we have to reorder at most one index. */ Index **ppFrom; Index *pThis; for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ Index *pNext; if( pThis->onError!=OE_Replace ) continue; while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ *ppFrom = pNext; pThis->pNext = pNext->pNext; pNext->pNext = pThis; ppFrom = &pNext->pNext; } break; } #ifdef SQLITE_DEBUG /* Verify that all REPLACE indexes really are now at the end ** of the index list. In other words, no other index type ever ** comes after a REPLACE index on the list. */ for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ assert( pThis->onError!=OE_Replace || pThis->pNext==0 || pThis->pNext->onError==OE_Replace ); } #endif } sqlite3ExprDelete(db, pPIWhere); sqlite3ExprListDelete(db, pList); sqlite3SrcListDelete(db, pTblName); sqlite3DbFree(db, zName); } /* ** Fill the Index.aiRowEst[] array with default information - information ** to be used when we have not run the ANALYZE command. ** ** aiRowEst[0] is supposed to contain the number of elements in the index. ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the ** number of rows in the table that match any particular value of the ** first column of the index. aiRowEst[2] is an estimate of the number ** of rows that match any particular combination of the first 2 columns ** of the index. And so forth. It must always be the case that * ** aiRowEst[N]<=aiRowEst[N-1] ** aiRowEst[N]>=1 ** ** Apart from that, we have little to go on besides intuition as to ** how aiRowEst[] should be initialized. The numbers generated here ** are based on typical values found in actual indices. */ SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){ /* 10, 9, 8, 7, 6 */ static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; LogEst *a = pIdx->aiRowLogEst; LogEst x; int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); int i; /* Indexes with default row estimates should not have stat1 data */ assert( !pIdx->hasStat1 ); /* Set the first entry (number of rows in the index) to the estimated ** number of rows in the table, or half the number of rows in the table ** for a partial index. ** ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 ** table but other parts we are having to guess at, then do not let the ** estimated number of rows in the table be less than 1000 (LogEst 99). ** Failure to do this can cause the indexes for which we do not have ** stat1 data to be ignored by the query planner. */ x = pIdx->pTable->nRowLogEst; assert( 99==sqlite3LogEst(1000) ); if( x<99 ){ pIdx->pTable->nRowLogEst = x = 99; } if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } a[0] = x; /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is ** 6 and each subsequent value (if any) is 5. */ memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ a[i] = 23; assert( 23==sqlite3LogEst(5) ); } assert( 0==sqlite3LogEst(1) ); if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; } /* ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ Index *pIndex; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( db->mallocFailed ){ goto exit_drop_index; } assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */ assert( pName->nSrc==1 ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; } pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ if( !ifExists ){ sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); }else{ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); sqlite3ForceNotReadOnly(pParse); } pParse->checkSchema = 1; goto exit_drop_index; } if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; const char *zDb = db->aDb[iDb].zDbSName; const char *zTab = SCHEMA_TABLE(iDb); if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ goto exit_drop_index; } if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ goto exit_drop_index; } } #endif /* Generate code to remove the index and from the schema table */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3BeginWriteOperation(pParse, 1, iDb); sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", db->aDb[iDb].zDbSName, pIndex->zName ); sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); sqlite3ChangeCookie(pParse, iDb); destroyRootPage(pParse, pIndex->tnum, iDb); sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); } exit_drop_index: sqlite3SrcListDelete(db, pName); } /* ** pArray is a pointer to an array of objects. Each object in the ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() ** to extend the array so that there is space for a new object at the end. ** ** When this function is called, *pnEntry contains the current size of ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes ** in total). ** ** If the realloc() is successful (i.e. if no OOM condition occurs), the ** space allocated for the new object is zeroed, *pnEntry updated to ** reflect the new size of the array and a pointer to the new allocation ** returned. *pIdx is set to the index of the new array entry in this case. ** ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains ** unchanged and a copy of pArray returned. */ SQLITE_PRIVATE void *sqlite3ArrayAllocate( sqlite3 *db, /* Connection to notify of malloc failures */ void *pArray, /* Array of objects. Might be reallocated */ int szEntry, /* Size of each object in the array */ int *pnEntry, /* Number of objects currently in use */ int *pIdx /* Write the index of a new slot here */ ){ char *z; sqlite3_int64 n = *pIdx = *pnEntry; if( (n & (n-1))==0 ){ sqlite3_int64 sz = (n==0) ? 1 : 2*n; void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); if( pNew==0 ){ *pIdx = -1; return pArray; } pArray = pNew; } z = (char*)pArray; memset(&z[n * szEntry], 0, szEntry); ++*pnEntry; return pArray; } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. ** ** A new IdList is returned, or NULL if malloc() fails. */ SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ sqlite3 *db = pParse->db; int i; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(IdList) ); if( pList==0 ) return 0; }else{ IdList *pNew; pNew = sqlite3DbRealloc(db, pList, sizeof(IdList) + pList->nId*sizeof(pList->a)); if( pNew==0 ){ sqlite3IdListDelete(db, pList); return 0; } pList = pNew; } i = pList->nId++; pList->a[i].zName = sqlite3NameFromToken(db, pToken); if( IN_RENAME_OBJECT && pList->a[i].zName ){ sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); } return pList; } /* ** Delete an IdList. */ SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ int i; assert( db!=0 ); if( pList==0 ) return; assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */ for(i=0; inId; i++){ sqlite3DbFree(db, pList->a[i].zName); } sqlite3DbNNFreeNN(db, pList); } /* ** Return the index in pList of the identifier named zId. Return -1 ** if not found. */ SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){ int i; assert( pList!=0 ); for(i=0; inId; i++){ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; } return -1; } /* ** Maximum size of a SrcList object. ** The SrcList object is used to represent the FROM clause of a ** SELECT statement, and the query planner cannot deal with more ** than 64 tables in a join. So any value larger than 64 here ** is sufficient for most uses. Smaller values, like say 10, are ** appropriate for small and memory-limited applications. */ #ifndef SQLITE_MAX_SRCLIST # define SQLITE_MAX_SRCLIST 200 #endif /* ** Expand the space allocated for the given SrcList object by ** creating nExtra new slots beginning at iStart. iStart is zero based. ** New slots are zeroed. ** ** For example, suppose a SrcList initially contains two entries: A,B. ** To append 3 new entries onto the end, do this: ** ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); ** ** After the call above it would contain: A, B, nil, nil, nil. ** If the iStart argument had been 1 instead of 2, then the result ** would have been: A, nil, nil, nil, B. To prepend the new slots, ** the iStart value would be 0. The result then would ** be: nil, nil, nil, A, B. ** ** If a memory allocation fails or the SrcList becomes too large, leave ** the original SrcList unchanged, return NULL, and leave an error message ** in pParse. */ SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge( Parse *pParse, /* Parsing context into which errors are reported */ SrcList *pSrc, /* The SrcList to be enlarged */ int nExtra, /* Number of new slots to add to pSrc->a[] */ int iStart /* Index in pSrc->a[] of first new slot */ ){ int i; /* Sanity checking on calling parameters */ assert( iStart>=0 ); assert( nExtra>=1 ); assert( pSrc!=0 ); assert( iStart<=pSrc->nSrc ); /* Allocate additional space if needed */ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ SrcList *pNew; sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; sqlite3 *db = pParse->db; if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", SQLITE_MAX_SRCLIST); return 0; } if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; pNew = sqlite3DbRealloc(db, pSrc, sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); if( pNew==0 ){ assert( db->mallocFailed ); return 0; } pSrc = pNew; pSrc->nAlloc = nAlloc; } /* Move existing slots that come after the newly inserted slots ** out of the way */ for(i=pSrc->nSrc-1; i>=iStart; i--){ pSrc->a[i+nExtra] = pSrc->a[i]; } pSrc->nSrc += nExtra; /* Zero the newly allocated slots */ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); for(i=iStart; ia[i].iCursor = -1; } /* Return a pointer to the enlarged SrcList */ return pSrc; } /* ** Append a new table name to the given SrcList. Create a new SrcList if ** need be. A new entry is created in the SrcList even if pTable is NULL. ** ** A SrcList is returned, or NULL if there is an OOM error or if the ** SrcList grows to large. The returned ** SrcList might be the same as the SrcList that was input or it might be ** a new one. If an OOM error does occurs, then the prior value of pList ** that is input to this routine is automatically freed. ** ** If pDatabase is not null, it means that the table has an optional ** database name prefix. Like this: "database.table". The pDatabase ** points to the table name and the pTable points to the database name. ** The SrcList.a[].zName field is filled with the table name which might ** come from pTable (if pDatabase is NULL) or from pDatabase. ** SrcList.a[].zDatabase is filled with the database name from pTable, ** or with NULL if no database is specified. ** ** In other words, if call like this: ** ** sqlite3SrcListAppend(D,A,B,0); ** ** Then B is a table name and the database name is unspecified. If called ** like this: ** ** sqlite3SrcListAppend(D,A,B,C); ** ** Then C is the table name and B is the database name. If C is defined ** then so is B. In other words, we never have a case where: ** ** sqlite3SrcListAppend(D,A,0,C); ** ** Both pTable and pDatabase are assumed to be quoted. They are dequoted ** before being added to the SrcList. */ SQLITE_PRIVATE SrcList *sqlite3SrcListAppend( Parse *pParse, /* Parsing context, in which errors are reported */ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ Token *pTable, /* Table to append */ Token *pDatabase /* Database of the table */ ){ SrcItem *pItem; sqlite3 *db; assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ assert( pParse!=0 ); assert( pParse->db!=0 ); db = pParse->db; if( pList==0 ){ pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); if( pList==0 ) return 0; pList->nAlloc = 1; pList->nSrc = 1; memset(&pList->a[0], 0, sizeof(pList->a[0])); pList->a[0].iCursor = -1; }else{ SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); if( pNew==0 ){ sqlite3SrcListDelete(db, pList); return 0; }else{ pList = pNew; } } pItem = &pList->a[pList->nSrc-1]; if( pDatabase && pDatabase->z==0 ){ pDatabase = 0; } if( pDatabase ){ pItem->zName = sqlite3NameFromToken(db, pDatabase); pItem->zDatabase = sqlite3NameFromToken(db, pTable); }else{ pItem->zName = sqlite3NameFromToken(db, pTable); pItem->zDatabase = 0; } return pList; } /* ** Assign VdbeCursor index numbers to all tables in a SrcList */ SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ int i; SrcItem *pItem; assert( pList || pParse->db->mallocFailed ); if( ALWAYS(pList) ){ for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pItem->iCursor>=0 ) continue; pItem->iCursor = pParse->nTab++; if( pItem->pSelect ){ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); } } } } /* ** Delete an entire SrcList including all its substructure. */ SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ int i; SrcItem *pItem; assert( db!=0 ); if( pList==0 ) return; for(pItem=pList->a, i=0; inSrc; i++, pItem++){ if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase); if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName); if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias); if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); sqlite3DeleteTable(db, pItem->pTab); if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); if( pItem->fg.isUsing ){ sqlite3IdListDelete(db, pItem->u3.pUsing); }else if( pItem->u3.pOn ){ sqlite3ExprDelete(db, pItem->u3.pOn); } } sqlite3DbNNFreeNN(db, pList); } /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase ** are the name of the table and database named in the FROM clause term. ** pDatabase is NULL if the database name qualifier is missing - the ** usual case. If the term has an alias, then pAlias points to the ** alias token. If the term is a subquery, then pSubquery is the ** SELECT statement that the subquery encodes. The pTable and ** pDatabase parameters are NULL for subqueries. The pOn and pUsing ** parameters are the content of the ON and USING clauses. ** ** Return a new SrcList which encodes is the FROM with the new ** term added. */ SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm( Parse *pParse, /* Parsing context */ SrcList *p, /* The left part of the FROM clause already seen */ Token *pTable, /* Name of the table to add to the FROM clause */ Token *pDatabase, /* Name of the database containing pTable */ Token *pAlias, /* The right-hand side of the AS subexpression */ Select *pSubquery, /* A subquery used in place of a table name */ OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */ ){ SrcItem *pItem; sqlite3 *db = pParse->db; if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", (pOnUsing->pOn ? "ON" : "USING") ); goto append_from_error; } p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); if( p==0 ){ goto append_from_error; } assert( p->nSrc>0 ); pItem = &p->a[p->nSrc-1]; assert( (pTable==0)==(pDatabase==0) ); assert( pItem->zName==0 || pDatabase!=0 ); if( IN_RENAME_OBJECT && pItem->zName ){ Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; sqlite3RenameTokenMap(pParse, pItem->zName, pToken); } assert( pAlias!=0 ); if( pAlias->n ){ pItem->zAlias = sqlite3NameFromToken(db, pAlias); } if( pSubquery ){ pItem->pSelect = pSubquery; if( pSubquery->selFlags & SF_NestedFrom ){ pItem->fg.isNestedFrom = 1; } } assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 ); assert( pItem->fg.isUsing==0 ); if( pOnUsing==0 ){ pItem->u3.pOn = 0; }else if( pOnUsing->pUsing ){ pItem->fg.isUsing = 1; pItem->u3.pUsing = pOnUsing->pUsing; }else{ pItem->u3.pOn = pOnUsing->pOn; } return p; append_from_error: assert( p==0 ); sqlite3ClearOnOrUsing(db, pOnUsing); sqlite3SelectDelete(db, pSubquery); return 0; } /* ** Add an INDEXED BY or NOT INDEXED clause to the most recently added ** element of the source-list passed as the second argument. */ SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ assert( pIndexedBy!=0 ); if( p && pIndexedBy->n>0 ){ SrcItem *pItem; assert( p->nSrc>0 ); pItem = &p->a[p->nSrc-1]; assert( pItem->fg.notIndexed==0 ); assert( pItem->fg.isIndexedBy==0 ); assert( pItem->fg.isTabFunc==0 ); if( pIndexedBy->n==1 && !pIndexedBy->z ){ /* A "NOT INDEXED" clause was supplied. See parse.y ** construct "indexed_opt" for details. */ pItem->fg.notIndexed = 1; }else{ pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); pItem->fg.isIndexedBy = 1; assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ } } } /* ** Append the contents of SrcList p2 to SrcList p1 and return the resulting ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 ** are deleted by this function. */ SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ assert( p1 && p1->nSrc==1 ); if( p2 ){ SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); if( pNew==0 ){ sqlite3SrcListDelete(pParse->db, p2); }else{ p1 = pNew; memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); sqlite3DbFree(pParse->db, p2); p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype); } } return p1; } /* ** Add the list of function arguments to the SrcList entry for a ** table-valued-function. */ SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ if( p ){ SrcItem *pItem = &p->a[p->nSrc-1]; assert( pItem->fg.notIndexed==0 ); assert( pItem->fg.isIndexedBy==0 ); assert( pItem->fg.isTabFunc==0 ); pItem->u1.pFuncArg = pList; pItem->fg.isTabFunc = 1; }else{ sqlite3ExprListDelete(pParse->db, pList); } } /* ** When building up a FROM clause in the parser, the join operator ** is initially attached to the left operand. But the code generator ** expects the join operator to be on the right operand. This routine ** Shifts all join operators from left to right for an entire FROM ** clause. ** ** Example: Suppose the join is like this: ** ** A natural cross join B ** ** The operator is "natural cross join". The A and B operands are stored ** in p->a[0] and p->a[1], respectively. The parser initially stores the ** operator with A. This routine shifts that operator over to B. ** ** Additional changes: ** ** * All tables to the left of the right-most RIGHT JOIN are tagged with ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the ** code generator can easily tell that the table is part of ** the left operand of at least one RIGHT JOIN. */ SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){ (void)pParse; if( p && p->nSrc>1 ){ int i = p->nSrc-1; u8 allFlags = 0; do{ allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype; }while( (--i)>0 ); p->a[0].fg.jointype = 0; /* All terms to the left of a RIGHT JOIN should be tagged with the ** JT_LTORJ flags */ if( allFlags & JT_RIGHT ){ for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){} i--; assert( i>=0 ); do{ p->a[i].fg.jointype |= JT_LTORJ; }while( (--i)>=0 ); } } } /* ** Generate VDBE code for a BEGIN statement. */ SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){ sqlite3 *db; Vdbe *v; int i; assert( pParse!=0 ); db = pParse->db; assert( db!=0 ); if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ return; } v = sqlite3GetVdbe(pParse); if( !v ) return; if( type!=TK_DEFERRED ){ for(i=0; inDb; i++){ int eTxnType; Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeIsReadonly(pBt) ){ eTxnType = 0; /* Read txn */ }else if( type==TK_EXCLUSIVE ){ eTxnType = 2; /* Exclusive txn */ }else{ eTxnType = 1; /* Write txn */ } sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); sqlite3VdbeUsesBtree(v, i); } } sqlite3VdbeAddOp0(v, OP_AutoCommit); } /* ** Generate VDBE code for a COMMIT or ROLLBACK statement. ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise ** code is generated for a COMMIT. */ SQLITE_PRIVATE void sqlite3EndTransaction(Parse *pParse, int eType){ Vdbe *v; int isRollback; assert( pParse!=0 ); assert( pParse->db!=0 ); assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); isRollback = eType==TK_ROLLBACK; if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ return; } v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); } } /* ** This function is called by the parser when it parses a command to create, ** release or rollback an SQL savepoint. */ SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ char *zName = sqlite3NameFromToken(pParse->db, pName); if( zName ){ Vdbe *v = sqlite3GetVdbe(pParse); #ifndef SQLITE_OMIT_AUTHORIZATION static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); #endif if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ sqlite3DbFree(pParse->db, zName); return; } sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); } } /* ** Make sure the TEMP database is open and available for use. Return ** the number of errors. Leave any error messages in the pParse structure. */ SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){ sqlite3 *db = pParse->db; if( db->aDb[1].pBt==0 && !pParse->explain ){ int rc; Btree *pBt; static const int flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TEMP_DB; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } db->aDb[1].pBt = pBt; assert( db->aDb[1].pSchema ); if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ sqlite3OomFault(db); return 1; } } return 0; } /* ** Record the fact that the schema cookie will need to be verified ** for database iDb. The code to actually verify the schema cookie ** will occur at the end of the top-level VDBE and will be generated ** later, by sqlite3FinishCoding(). */ static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ assert( iDb>=0 && iDbdb->nDb ); assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDbdb, iDb, 0) ); if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ DbMaskSet(pToplevel->cookieMask, iDb); if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pToplevel); } } } SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); } /* ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each ** attached database. Otherwise, invoke it for the database named zDb only. */ SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ sqlite3 *db = pParse->db; int i; for(i=0; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ sqlite3CodeVerifySchema(pParse, i); } } } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setStatement parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. */ SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); DbMaskSet(pToplevel->writeMask, iDb); pToplevel->isMultiWrite |= setStatement; } /* ** Indicate that the statement currently under construction might write ** more than one entry (example: deleting one row then inserting another, ** inserting multiple rows in a table, or inserting a row and index entries.) ** If an abort occurs after some of these writes have completed, then it will ** be necessary to undo the completed writes. */ SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->isMultiWrite = 1; } /* ** The code generator calls this routine if is discovers that it is ** possible to abort a statement prior to completion. In order to ** perform this abort without corrupting the database, we need to make ** sure that the statement is protected by a statement transaction. ** ** Technically, we only need to set the mayAbort flag if the ** isMultiWrite flag was previously set. There is a time dependency ** such that the abort must occur after the multiwrite. This makes ** some statements involving the REPLACE conflict resolution algorithm ** go a little faster. But taking advantage of this time dependency ** makes it more difficult to prove that the code is correct (in ** particular, it prevents us from writing an effective ** implementation of sqlite3AssertMayAbort()) and so we have chosen ** to take the safe route and skip the optimization. */ SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->mayAbort = 1; } /* ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT ** error. The onError parameter determines which (if any) of the statement ** and/or current transaction is rolled back. */ SQLITE_PRIVATE void sqlite3HaltConstraint( Parse *pParse, /* Parsing context */ int errCode, /* extended error code */ int onError, /* Constraint type */ char *p4, /* Error message */ i8 p4type, /* P4_STATIC or P4_TRANSIENT */ u8 p5Errmsg /* P5_ErrMsg type */ ){ Vdbe *v; assert( pParse->pVdbe!=0 ); v = sqlite3GetVdbe(pParse); assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); if( onError==OE_Abort ){ sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); sqlite3VdbeChangeP5(v, p5Errmsg); } /* ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. */ SQLITE_PRIVATE void sqlite3UniqueConstraint( Parse *pParse, /* Parsing context */ int onError, /* Constraint type */ Index *pIdx /* The index that triggers the constraint */ ){ char *zErr; int j; StrAccum errMsg; Table *pTab = pIdx->pTable; sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); if( pIdx->aColExpr ){ sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); }else{ for(j=0; jnKeyCol; j++){ char *zCol; assert( pIdx->aiColumn[j]>=0 ); zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; if( j ) sqlite3_str_append(&errMsg, ", ", 2); sqlite3_str_appendall(&errMsg, pTab->zName); sqlite3_str_append(&errMsg, ".", 1); sqlite3_str_appendall(&errMsg, zCol); } } zErr = sqlite3StrAccumFinish(&errMsg); sqlite3HaltConstraint(pParse, IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY : SQLITE_CONSTRAINT_UNIQUE, onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); } /* ** Code an OP_Halt due to non-unique rowid. */ SQLITE_PRIVATE void sqlite3RowidConstraint( Parse *pParse, /* Parsing context */ int onError, /* Conflict resolution algorithm */ Table *pTab /* The table with the non-unique rowid */ ){ char *zMsg; int rc; if( pTab->iPKey>=0 ){ zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, pTab->aCol[pTab->iPKey].zCnName); rc = SQLITE_CONSTRAINT_PRIMARYKEY; }else{ zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); rc = SQLITE_CONSTRAINT_ROWID; } sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, P5_ConstraintUnique); } /* ** Check to see if pIndex uses the collating sequence pColl. Return ** true if it does and false if it does not. */ #ifndef SQLITE_OMIT_REINDEX static int collationMatch(const char *zColl, Index *pIndex){ int i; assert( zColl!=0 ); for(i=0; inColumn; i++){ const char *z = pIndex->azColl[i]; assert( z!=0 || pIndex->aiColumn[i]<0 ); if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ return 1; } } return 0; } #endif /* ** Recompute all indices of pTab that use the collating sequence pColl. ** If pColl==0 then recompute all indices of pTab. */ #ifndef SQLITE_OMIT_REINDEX static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ if( !IsVirtual(pTab) ){ Index *pIndex; /* An index associated with pTab */ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( zColl==0 || collationMatch(zColl, pIndex) ){ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); } } } } #endif /* ** Recompute all indices of all tables in all databases where the ** indices use the collating sequence pColl. If pColl==0 then recompute ** all indices everywhere. */ #ifndef SQLITE_OMIT_REINDEX static void reindexDatabases(Parse *pParse, char const *zColl){ Db *pDb; /* A single database */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){ assert( pDb!=0 ); for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, zColl); } } } #endif /* ** Generate code for the REINDEX command. ** ** REINDEX -- 1 ** REINDEX -- 2 ** REINDEX ?.? -- 3 ** REINDEX ?.? -- 4 ** ** Form 1 causes all indices in all attached databases to be rebuilt. ** Form 2 rebuilds all indices in all databases that use the named ** collating function. Forms 3 and 4 rebuild the named index or all ** indices associated with the named table. */ #ifndef SQLITE_OMIT_REINDEX SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ char *z; /* Name of a table or index */ const char *zDb; /* Name of the database */ Table *pTab; /* A table in the database */ Index *pIndex; /* An index associated with pTab */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ Token *pObjName; /* Name of the table or index to be reindexed */ /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } if( pName1==0 ){ reindexDatabases(pParse, 0); return; }else if( NEVER(pName2==0) || pName2->z==0 ){ char *zColl; assert( pName1->z ); zColl = sqlite3NameFromToken(pParse->db, pName1); if( !zColl ) return; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); if( pColl ){ reindexDatabases(pParse, zColl); sqlite3DbFree(db, zColl); return; } sqlite3DbFree(db, zColl); } iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); if( iDb<0 ) return; z = sqlite3NameFromToken(db, pObjName); if( z==0 ) return; zDb = db->aDb[iDb].zDbSName; pTab = sqlite3FindTable(db, z, zDb); if( pTab ){ reindexTable(pParse, pTab, 0); sqlite3DbFree(db, z); return; } pIndex = sqlite3FindIndex(db, z, zDb); sqlite3DbFree(db, z); if( pIndex ){ sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); return; } sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); } #endif /* ** Return a KeyInfo structure that is appropriate for the given Index. ** ** The caller should invoke sqlite3KeyInfoUnref() on the returned object ** when it has finished using it. */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nKey = pIdx->nKeyCol; KeyInfo *pKey; if( pParse->nErr ) return 0; if( pIdx->uniqNotNull ){ pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); }else{ pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); } if( pKey ){ assert( sqlite3KeyInfoIsWriteable(pKey) ); for(i=0; iazColl[i]; pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : sqlite3LocateCollSeq(pParse, zColl); pKey->aSortFlags[i] = pIdx->aSortOrder[i]; assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); } if( pParse->nErr ){ assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); if( pIdx->bNoQuery==0 ){ /* Deactivate the index because it contains an unknown collating ** sequence. The only way to reactive the index is to reload the ** schema. Adding the missing collating sequence later does not ** reactive the index. The application had the chance to register ** the missing index using the collation-needed callback. For ** simplicity, SQLite will not give the application a second chance. */ pIdx->bNoQuery = 1; pParse->rc = SQLITE_ERROR_RETRY; } sqlite3KeyInfoUnref(pKey); pKey = 0; } } return pKey; } #ifndef SQLITE_OMIT_CTE /* ** Create a new CTE object */ SQLITE_PRIVATE Cte *sqlite3CteNew( Parse *pParse, /* Parsing context */ Token *pName, /* Name of the common-table */ ExprList *pArglist, /* Optional column name list for the table */ Select *pQuery, /* Query used to initialize the table */ u8 eM10d /* The MATERIALIZED flag */ ){ Cte *pNew; sqlite3 *db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); assert( pNew!=0 || db->mallocFailed ); if( db->mallocFailed ){ sqlite3ExprListDelete(db, pArglist); sqlite3SelectDelete(db, pQuery); }else{ pNew->pSelect = pQuery; pNew->pCols = pArglist; pNew->zName = sqlite3NameFromToken(pParse->db, pName); pNew->eM10d = eM10d; } return pNew; } /* ** Clear information from a Cte object, but do not deallocate storage ** for the object itself. */ static void cteClear(sqlite3 *db, Cte *pCte){ assert( pCte!=0 ); sqlite3ExprListDelete(db, pCte->pCols); sqlite3SelectDelete(db, pCte->pSelect); sqlite3DbFree(db, pCte->zName); } /* ** Free the contents of the CTE object passed as the second argument. */ SQLITE_PRIVATE void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ assert( pCte!=0 ); cteClear(db, pCte); sqlite3DbFree(db, pCte); } /* ** This routine is invoked once per CTE by the parser while parsing a ** WITH clause. The CTE described by the third argument is added to ** the WITH clause of the second argument. If the second argument is ** NULL, then a new WITH argument is created. */ SQLITE_PRIVATE With *sqlite3WithAdd( Parse *pParse, /* Parsing context */ With *pWith, /* Existing WITH clause, or NULL */ Cte *pCte /* CTE to add to the WITH clause */ ){ sqlite3 *db = pParse->db; With *pNew; char *zName; if( pCte==0 ){ return pWith; } /* Check that the CTE name is unique within this WITH clause. If ** not, store an error in the Parse structure. */ zName = pCte->zName; if( zName && pWith ){ int i; for(i=0; inCte; i++){ if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); } } } if( pWith ){ sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); pNew = sqlite3DbRealloc(db, pWith, nByte); }else{ pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); } assert( (pNew!=0 && zName!=0) || db->mallocFailed ); if( db->mallocFailed ){ sqlite3CteDelete(db, pCte); pNew = pWith; }else{ pNew->a[pNew->nCte++] = *pCte; sqlite3DbFree(db, pCte); } return pNew; } /* ** Free the contents of the With object passed as the second argument. */ SQLITE_PRIVATE void sqlite3WithDelete(sqlite3 *db, With *pWith){ if( pWith ){ int i; for(i=0; inCte; i++){ cteClear(db, &pWith->a[i]); } sqlite3DbFree(db, pWith); } } #endif /* !defined(SQLITE_OMIT_CTE) */ /************** End of build.c ***********************************************/ /************** Begin file callback.c ****************************************/ /* ** 2005 May 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains functions used to access the internal hash tables ** of user defined functions and collation sequences. */ /* #include "sqliteInt.h" */ /* ** Invoke the 'collation needed' callback to request a collation sequence ** in the encoding enc of name zName, length nName. */ static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ assert( !db->xCollNeeded || !db->xCollNeeded16 ); if( db->xCollNeeded ){ char *zExternal = sqlite3DbStrDup(db, zName); if( !zExternal ) return; db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); sqlite3DbFree(db, zExternal); } #ifndef SQLITE_OMIT_UTF16 if( db->xCollNeeded16 ){ char const *zExternal; sqlite3_value *pTmp = sqlite3ValueNew(db); sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); if( zExternal ){ db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); } sqlite3ValueFree(pTmp); } #endif } /* ** This routine is called if the collation factory fails to deliver a ** collation function in the best encoding but there may be other versions ** of this collation function (for other text encodings) available. Use one ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if ** possible. */ static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ CollSeq *pColl2; char *z = pColl->zName; int i; static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; for(i=0; i<3; i++){ pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0); if( pColl2->xCmp!=0 ){ memcpy(pColl, pColl2, sizeof(CollSeq)); pColl->xDel = 0; /* Do not copy the destructor */ return SQLITE_OK; } } return SQLITE_ERROR; } /* ** This routine is called on a collation sequence before it is used to ** check that it is defined. An undefined collation sequence exists when ** a database is loaded that contains references to collation sequences ** that have not been defined by sqlite3_create_collation() etc. ** ** If required, this routine calls the 'collation needed' callback to ** request a definition of the collating sequence. If this doesn't work, ** an equivalent collating sequence that uses a text encoding different ** from the main database is substituted, if one is available. */ SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ if( pColl && pColl->xCmp==0 ){ const char *zName = pColl->zName; sqlite3 *db = pParse->db; CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName); if( !p ){ return SQLITE_ERROR; } assert( p==pColl ); } return SQLITE_OK; } /* ** Locate and return an entry from the db.aCollSeq hash table. If the entry ** specified by zName and nName is not found and parameter 'create' is ** true, then create a new entry. Otherwise return NULL. ** ** Each pointer stored in the sqlite3.aCollSeq hash table contains an ** array of three CollSeq structures. The first is the collation sequence ** preferred for UTF-8, the second UTF-16le, and the third UTF-16be. ** ** Stored immediately after the three collation sequences is a copy of ** the collation sequence name. A pointer to this string is stored in ** each collation sequence structure. */ static CollSeq *findCollSeqEntry( sqlite3 *db, /* Database connection */ const char *zName, /* Name of the collating sequence */ int create /* Create a new entry if true */ ){ CollSeq *pColl; pColl = sqlite3HashFind(&db->aCollSeq, zName); if( 0==pColl && create ){ int nName = sqlite3Strlen30(zName) + 1; pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName); if( pColl ){ CollSeq *pDel = 0; pColl[0].zName = (char*)&pColl[3]; pColl[0].enc = SQLITE_UTF8; pColl[1].zName = (char*)&pColl[3]; pColl[1].enc = SQLITE_UTF16LE; pColl[2].zName = (char*)&pColl[3]; pColl[2].enc = SQLITE_UTF16BE; memcpy(pColl[0].zName, zName, nName); pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl); /* If a malloc() failure occurred in sqlite3HashInsert(), it will ** return the pColl pointer to be deleted (because it wasn't added ** to the hash table). */ assert( pDel==0 || pDel==pColl ); if( pDel!=0 ){ sqlite3OomFault(db); sqlite3DbFree(db, pDel); pColl = 0; } } } return pColl; } /* ** Parameter zName points to a UTF-8 encoded string nName bytes long. ** Return the CollSeq* pointer for the collation sequence named zName ** for the encoding 'enc' from the database 'db'. ** ** If the entry specified is not found and 'create' is true, then create a ** new entry. Otherwise return NULL. ** ** A separate function sqlite3LocateCollSeq() is a wrapper around ** this routine. sqlite3LocateCollSeq() invokes the collation factory ** if necessary and generates an error message if the collating sequence ** cannot be found. ** ** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq( sqlite3 *db, /* Database connection to search */ u8 enc, /* Desired text encoding */ const char *zName, /* Name of the collating sequence. Might be NULL */ int create /* True to create CollSeq if doesn't already exist */ ){ CollSeq *pColl; assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); if( zName ){ pColl = findCollSeqEntry(db, zName, create); if( pColl ) pColl += enc-1; }else{ pColl = db->pDfltColl; } return pColl; } /* ** Change the text encoding for a database connection. This means that ** the pDfltColl must change as well. */ SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); db->enc = enc; /* EVIDENCE-OF: R-08308-17224 The default collating function for all ** strings is BINARY. */ db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0); sqlite3ExpirePreparedStatements(db, 1); } /* ** This function is responsible for invoking the collation factory callback ** or substituting a collation sequence of a different encoding when the ** requested collation sequence is not available in the desired encoding. ** ** If it is not NULL, then pColl must point to the database native encoding ** collation sequence with name zName, length nName. ** ** The return value is either the collation sequence to be used in database ** db for collation type name zName, length nName, or NULL, if no collation ** sequence can be found. If no collation is found, leave an error message. ** ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq( Parse *pParse, /* Parsing context */ u8 enc, /* The desired encoding for the collating sequence */ CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ const char *zName /* Collating sequence name */ ){ CollSeq *p; sqlite3 *db = pParse->db; p = pColl; if( !p ){ p = sqlite3FindCollSeq(db, enc, zName, 0); } if( !p || !p->xCmp ){ /* No collation sequence of this type for this encoding is registered. ** Call the collation factory to see if it can supply us with one. */ callCollNeeded(db, enc, zName); p = sqlite3FindCollSeq(db, enc, zName, 0); } if( p && !p->xCmp && synthCollSeq(db, p) ){ p = 0; } assert( !p || p->xCmp ); if( p==0 ){ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); pParse->rc = SQLITE_ERROR_MISSING_COLLSEQ; } return p; } /* ** This function returns the collation sequence for database native text ** encoding identified by the string zName. ** ** If the requested collation sequence is not available, or not available ** in the database native encoding, the collation factory is invoked to ** request it. If the collation factory does not supply such a sequence, ** and the sequence is available in another text encoding, then that is ** returned instead. ** ** If no versions of the requested collations sequence are available, or ** another error occurs, NULL is returned and an error message written into ** pParse. ** ** This routine is a wrapper around sqlite3FindCollSeq(). This routine ** invokes the collation factory if the named collation cannot be found ** and generates an error message. ** ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ sqlite3 *db = pParse->db; u8 enc = ENC(db); u8 initbusy = db->init.busy; CollSeq *pColl; pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); if( !initbusy && (!pColl || !pColl->xCmp) ){ pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); } return pColl; } /* During the search for the best function definition, this procedure ** is called to test how well the function passed as the first argument ** matches the request for a function with nArg arguments in a system ** that uses encoding enc. The value returned indicates how well the ** request is matched. A higher value indicates a better match. ** ** If nArg is -1 that means to only return a match (non-zero) if p->nArg ** is also -1. In other words, we are searching for a function that ** takes a variable number of arguments. ** ** If nArg is -2 that means that we are searching for any function ** regardless of the number of arguments it uses, so return a positive ** match score for any ** ** The returned value is always between 0 and 6, as follows: ** ** 0: Not a match. ** 1: UTF8/16 conversion required and function takes any number of arguments. ** 2: UTF16 byte order change required and function takes any number of args. ** 3: encoding matches and function takes any number of arguments ** 4: UTF8/16 conversion required - argument count matches exactly ** 5: UTF16 byte order conversion required - argument count matches exactly ** 6: Perfect match: encoding and argument count match exactly. ** ** If nArg==(-2) then any function with a non-null xSFunc is ** a perfect match and any function with xSFunc NULL is ** a non-match. */ #define FUNC_PERFECT_MATCH 6 /* The score for a perfect match */ static int matchQuality( FuncDef *p, /* The function we are evaluating for match quality */ int nArg, /* Desired number of arguments. (-1)==any */ u8 enc /* Desired text encoding */ ){ int match; assert( p->nArg>=-1 ); /* Wrong number of arguments means "no match" */ if( p->nArg!=nArg ){ if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH; if( p->nArg>=0 ) return 0; } /* Give a better score to a function with a specific number of arguments ** than to function that accepts any number of arguments. */ if( p->nArg==nArg ){ match = 4; }else{ match = 1; } /* Bonus points if the text encoding matches */ if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){ match += 2; /* Exact encoding match */ }else if( (enc & p->funcFlags & 2)!=0 ){ match += 1; /* Both are UTF16, but with different byte orders */ } return match; } /* ** Search a FuncDefHash for a function with the given name. Return ** a pointer to the matching FuncDef if found, or 0 if there is no match. */ SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch( int h, /* Hash of the name */ const char *zFunc /* Name of function */ ){ FuncDef *p; for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){ assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); if( sqlite3StrICmp(p->zName, zFunc)==0 ){ return p; } } return 0; } /* ** Insert a new FuncDef into a FuncDefHash hash table. */ SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs( FuncDef *aDef, /* List of global functions to be inserted */ int nDef /* Length of the apDef[] list */ ){ int i; for(i=0; ipNext!=&aDef[i] ); aDef[i].pNext = pOther->pNext; pOther->pNext = &aDef[i]; }else{ aDef[i].pNext = 0; aDef[i].u.pHash = sqlite3BuiltinFunctions.a[h]; sqlite3BuiltinFunctions.a[h] = &aDef[i]; } } } /* ** Locate a user function given a name, a number of arguments and a flag ** indicating whether the function prefers UTF-16 over UTF-8. Return a ** pointer to the FuncDef structure that defines that function, or return ** NULL if the function does not exist. ** ** If the createFlag argument is true, then a new (blank) FuncDef ** structure is created and liked into the "db" structure if a ** no matching function previously existed. ** ** If nArg is -2, then the first valid function found is returned. A ** function is valid if xSFunc is non-zero. The nArg==(-2) ** case is used to see if zName is a valid function name for some number ** of arguments. If nArg is -2, then createFlag must be 0. ** ** If createFlag is false, then a function with the required name and ** number of arguments may be returned even if the eTextRep flag does not ** match that requested. */ SQLITE_PRIVATE FuncDef *sqlite3FindFunction( sqlite3 *db, /* An open database */ const char *zName, /* Name of the function. zero-terminated */ int nArg, /* Number of arguments. -1 means any number */ u8 enc, /* Preferred text encoding */ u8 createFlag /* Create new entry if true and does not otherwise exist */ ){ FuncDef *p; /* Iterator variable */ FuncDef *pBest = 0; /* Best match found so far */ int bestScore = 0; /* Score of best match */ int h; /* Hash value */ int nName; /* Length of the name */ assert( nArg>=(-2) ); assert( nArg>=(-1) || createFlag==0 ); nName = sqlite3Strlen30(zName); /* First search for a match amongst the application-defined functions. */ p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName); while( p ){ int score = matchQuality(p, nArg, enc); if( score>bestScore ){ pBest = p; bestScore = score; } p = p->pNext; } /* If no match is found, search the built-in functions. ** ** If the DBFLAG_PreferBuiltin flag is set, then search the built-in ** functions even if a prior app-defined function was found. And give ** priority to built-in functions. ** ** Except, if createFlag is true, that means that we are trying to ** install a new function. Whatever FuncDef structure is returned it will ** have fields overwritten with new information appropriate for the ** new function. But the FuncDefs for built-in functions are read-only. ** So we must not search for built-ins when creating a new function. */ if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){ bestScore = 0; h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName); p = sqlite3FunctionSearch(h, zName); while( p ){ int score = matchQuality(p, nArg, enc); if( score>bestScore ){ pBest = p; bestScore = score; } p = p->pNext; } } /* If the createFlag parameter is true and the search did not reveal an ** exact match for the name, number of arguments and encoding, then add a ** new entry to the hash table and return it. */ if( createFlag && bestScorezName = (const char*)&pBest[1]; pBest->nArg = (u16)nArg; pBest->funcFlags = enc; memcpy((char*)&pBest[1], zName, nName+1); for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z]; pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest); if( pOther==pBest ){ sqlite3DbFree(db, pBest); sqlite3OomFault(db); return 0; }else{ pBest->pNext = pOther; } } if( pBest && (pBest->xSFunc || createFlag) ){ return pBest; } return 0; } /* ** Free all resources held by the schema structure. The void* argument points ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the ** pointer itself, it just cleans up subsidiary resources (i.e. the contents ** of the schema hash tables). ** ** The Schema.cache_size variable is not cleared. */ SQLITE_PRIVATE void sqlite3SchemaClear(void *p){ Hash temp1; Hash temp2; HashElem *pElem; Schema *pSchema = (Schema *)p; sqlite3 xdb; memset(&xdb, 0, sizeof(xdb)); temp1 = pSchema->tblHash; temp2 = pSchema->trigHash; sqlite3HashInit(&pSchema->trigHash); sqlite3HashClear(&pSchema->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger(&xdb, (Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pSchema->tblHash); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(&xdb, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; if( pSchema->schemaFlags & DB_SchemaLoaded ){ pSchema->iGeneration++; } pSchema->schemaFlags &= ~(DB_SchemaLoaded|DB_ResetWanted); } /* ** Find and return the schema associated with a BTree. Create ** a new one if necessary. */ SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); }else{ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); } if( !p ){ sqlite3OomFault(db); }else if ( 0==p->file_format ){ sqlite3HashInit(&p->tblHash); sqlite3HashInit(&p->idxHash); sqlite3HashInit(&p->trigHash); sqlite3HashInit(&p->fkeyHash); p->enc = SQLITE_UTF8; } return p; } /************** End of callback.c ********************************************/ /************** Begin file delete.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. */ /* #include "sqliteInt.h" */ /* ** While a SrcList can in general represent multiple tables and subqueries ** (as in the FROM clause of a SELECT statement) in this case it contains ** the name of a single table, as one might find in an INSERT, DELETE, ** or UPDATE statement. Look up that table in the symbol table and ** return a pointer. Set an error message and return NULL if the table ** name is not found or if any other error occurs. ** ** The following fields are initialized appropriate in pSrc: ** ** pSrc->a[0].pTab Pointer to the Table object ** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one ** */ SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ SrcItem *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc>=1 ); pTab = sqlite3LocateTableItem(pParse, 0, pItem); if( pItem->pTab ) sqlite3DeleteTable(pParse->db, pItem->pTab); pItem->pTab = pTab; pItem->fg.notCte = 1; if( pTab ){ pTab->nTabRef++; if( pItem->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pItem) ){ pTab = 0; } } return pTab; } /* Generate byte-code that will report the number of rows modified ** by a DELETE, INSERT, or UPDATE statement. */ SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe *v, int regCounter, const char *zColName){ sqlite3VdbeAddOp0(v, OP_FkCheck); sqlite3VdbeAddOp2(v, OP_ResultRow, regCounter, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zColName, SQLITE_STATIC); } /* Return true if table pTab is read-only. ** ** A table is read-only if any of the following are true: ** ** 1) It is a virtual table and no implementation of the xUpdate method ** has been provided ** ** 2) A trigger is currently being coded and the table is a virtual table ** that is SQLITE_VTAB_DIRECTONLY or if PRAGMA trusted_schema=OFF and ** the table is not SQLITE_VTAB_INNOCUOUS. ** ** 3) It is a system table (i.e. sqlite_schema), this call is not ** part of a nested parse and writable_schema pragma has not ** been specified ** ** 4) The table is a shadow table, the database connection is in ** defensive mode, and the current sqlite3_prepare() ** is for a top-level SQL statement. */ static int vtabIsReadOnly(Parse *pParse, Table *pTab){ if( sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 ){ return 1; } /* Within triggers: ** * Do not allow DELETE, INSERT, or UPDATE of SQLITE_VTAB_DIRECTONLY ** virtual tables ** * Only allow DELETE, INSERT, or UPDATE of non-SQLITE_VTAB_INNOCUOUS ** virtual tables if PRAGMA trusted_schema=ON. */ if( pParse->pToplevel!=0 && pTab->u.vtab.p->eVtabRisk > ((pParse->db->flags & SQLITE_TrustedSchema)!=0) ){ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", pTab->zName); } return 0; } static int tabIsReadOnly(Parse *pParse, Table *pTab){ sqlite3 *db; if( IsVirtual(pTab) ){ return vtabIsReadOnly(pParse, pTab); } if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0; db = pParse->db; if( (pTab->tabFlags & TF_Readonly)!=0 ){ return sqlite3WritableSchema(db)==0 && pParse->nested==0; } assert( pTab->tabFlags & TF_Shadow ); return sqlite3ReadOnlyShadowTables(db); } /* ** Check to make sure the given table is writable. ** ** If pTab is not writable -> generate an error message and return 1. ** If pTab is writable but other errors have occurred -> return 1. ** If pTab is writable and no prior errors -> return 0; */ SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, Trigger *pTrigger){ if( tabIsReadOnly(pParse, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); return 1; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) && (pTrigger==0 || (pTrigger->bReturning && pTrigger->pNext==0)) ){ sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); return 1; } #endif return 0; } #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) /* ** Evaluate a view and store its result in an ephemeral table. The ** pWhere argument is an optional WHERE clause that restricts the ** set of rows in the view that are to be added to the ephemeral table. */ SQLITE_PRIVATE void sqlite3MaterializeView( Parse *pParse, /* Parsing context */ Table *pView, /* View definition */ Expr *pWhere, /* Optional WHERE clause to be added */ ExprList *pOrderBy, /* Optional ORDER BY clause */ Expr *pLimit, /* Optional LIMIT clause */ int iCur /* Cursor number for ephemeral table */ ){ SelectDest dest; Select *pSel; SrcList *pFrom; sqlite3 *db = pParse->db; int iDb = sqlite3SchemaToIndex(db, pView->pSchema); pWhere = sqlite3ExprDup(db, pWhere, 0); pFrom = sqlite3SrcListAppend(pParse, 0, 0, 0); if( pFrom ){ assert( pFrom->nSrc==1 ); pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName); pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName); assert( pFrom->a[0].fg.isUsing==0 ); assert( pFrom->a[0].u3.pOn==0 ); } pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, pOrderBy, SF_IncludeHidden, pLimit); sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur); sqlite3Select(pParse, pSel, &dest); sqlite3SelectDelete(db, pSel); } #endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */ #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Generate an expression tree to implement the WHERE, ORDER BY, ** and LIMIT/OFFSET portion of DELETE and UPDATE statements. ** ** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1; ** \__________________________/ ** pLimitWhere (pInClause) */ SQLITE_PRIVATE Expr *sqlite3LimitWhere( Parse *pParse, /* The parser context */ SrcList *pSrc, /* the FROM clause -- which tables to scan */ Expr *pWhere, /* The WHERE clause. May be null */ ExprList *pOrderBy, /* The ORDER BY clause. May be null */ Expr *pLimit, /* The LIMIT clause. May be null */ char *zStmtType /* Either DELETE or UPDATE. For err msgs. */ ){ sqlite3 *db = pParse->db; Expr *pLhs = NULL; /* LHS of IN(SELECT...) operator */ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */ ExprList *pEList = NULL; /* Expression list containing only pSelectRowid*/ SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */ Select *pSelect = NULL; /* Complete SELECT tree */ Table *pTab; /* Check that there isn't an ORDER BY without a LIMIT clause. */ if( pOrderBy && pLimit==0 ) { sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType); sqlite3ExprDelete(pParse->db, pWhere); sqlite3ExprListDelete(pParse->db, pOrderBy); return 0; } /* We only need to generate a select expression if there ** is a limit/offset term to enforce. */ if( pLimit == 0 ) { return pWhere; } /* Generate a select expression tree to enforce the limit/offset ** term for the DELETE or UPDATE statement. For example: ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** becomes: ** DELETE FROM table_a WHERE rowid IN ( ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** ); */ pTab = pSrc->a[0].pTab; if( HasRowid(pTab) ){ pLhs = sqlite3PExpr(pParse, TK_ROW, 0, 0); pEList = sqlite3ExprListAppend( pParse, 0, sqlite3PExpr(pParse, TK_ROW, 0, 0) ); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol>=1 ); if( pPk->nKeyCol==1 ){ const char *zName; assert( pPk->aiColumn[0]>=0 && pPk->aiColumn[0]nCol ); zName = pTab->aCol[pPk->aiColumn[0]].zCnName; pLhs = sqlite3Expr(db, TK_ID, zName); pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, zName)); }else{ int i; for(i=0; inKeyCol; i++){ Expr *p; assert( pPk->aiColumn[i]>=0 && pPk->aiColumn[i]nCol ); p = sqlite3Expr(db, TK_ID, pTab->aCol[pPk->aiColumn[i]].zCnName); pEList = sqlite3ExprListAppend(pParse, pEList, p); } pLhs = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); if( pLhs ){ pLhs->x.pList = sqlite3ExprListDup(db, pEList, 0); } } } /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree ** and the SELECT subtree. */ pSrc->a[0].pTab = 0; pSelectSrc = sqlite3SrcListDup(db, pSrc, 0); pSrc->a[0].pTab = pTab; if( pSrc->a[0].fg.isIndexedBy ){ assert( pSrc->a[0].fg.isCte==0 ); pSrc->a[0].u2.pIBIndex = 0; pSrc->a[0].fg.isIndexedBy = 0; sqlite3DbFree(db, pSrc->a[0].u1.zIndexedBy); }else if( pSrc->a[0].fg.isCte ){ pSrc->a[0].u2.pCteUse->nUse++; } /* generate the SELECT expression tree. */ pSelect = sqlite3SelectNew(pParse, pEList, pSelectSrc, pWhere, 0 ,0, pOrderBy,0,pLimit ); /* now generate the new WHERE rowid IN clause for the DELETE/UPDATE */ pInClause = sqlite3PExpr(pParse, TK_IN, pLhs, 0); sqlite3PExprAddSelect(pParse, pInClause, pSelect); return pInClause; } #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */ /* && !defined(SQLITE_OMIT_SUBQUERY) */ /* ** Generate code for a DELETE FROM statement. ** ** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL; ** \________/ \________________/ ** pTabList pWhere */ SQLITE_PRIVATE void sqlite3DeleteFrom( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table from which we should delete things */ Expr *pWhere, /* The WHERE clause. May be null */ ExprList *pOrderBy, /* ORDER BY clause. May be null */ Expr *pLimit /* LIMIT clause. May be null */ ){ Vdbe *v; /* The virtual database engine */ Table *pTab; /* The table from which records will be deleted */ int i; /* Loop counter */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iTabCur; /* Cursor number for the table */ int iDataCur = 0; /* VDBE cursor for the canonical data source */ int iIdxCur = 0; /* Cursor number of the first index */ int nIdx; /* Number of indices */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; /* Database number */ int memCnt = 0; /* Memory cell used for change counting */ int rcauth; /* Value returned by authorization callback */ int eOnePass; /* ONEPASS_OFF or _SINGLE or _MULTI */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ u8 *aToOpen = 0; /* Open cursor iTabCur+j if aToOpen[j] is true */ Index *pPk; /* The PRIMARY KEY index on the table */ int iPk = 0; /* First of nPk registers holding PRIMARY KEY value */ i16 nPk = 1; /* Number of columns in the PRIMARY KEY */ int iKey; /* Memory cell holding key of row to be deleted */ i16 nKey; /* Number of memory cells in the row key */ int iEphCur = 0; /* Ephemeral table holding all primary key values */ int iRowSet = 0; /* Register for rowset of rows to delete */ int addrBypass = 0; /* Address of jump over the delete logic */ int addrLoop = 0; /* Top of the delete loop */ int addrEphOpen = 0; /* Instruction to open the Ephemeral table */ int bComplex; /* True if there are triggers or FKs or ** subqueries in the WHERE clause */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ Trigger *pTrigger; /* List of table triggers, if required */ #endif memset(&sContext, 0, sizeof(sContext)); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto delete_from_cleanup; } assert( db->mallocFailed==0 ); assert( pTabList->nSrc==1 ); /* Locate the table which we want to delete. This table has to be ** put in an SrcList structure because some of the subroutines we ** will be calling are designed to work with multiple tables and expect ** an SrcList* parameter instead of just a Table* parameter. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto delete_from_cleanup; /* Figure out if we have any triggers and if the table being ** deleted from is a view */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); isView = IsView(pTab); #else # define pTrigger 0 # define isView 0 #endif bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0); #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Delete() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewDelete(pParse->pWith, pTabList, pWhere, pOrderBy, pLimit, pTrigger); } #endif #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( !isView ){ pWhere = sqlite3LimitWhere( pParse, pTabList, pWhere, pOrderBy, pLimit, "DELETE" ); pOrderBy = 0; pLimit = 0; } #endif /* If pTab is really a view, make sure it has been initialized. */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto delete_from_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto delete_from_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDbnDb ); rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, db->aDb[iDb].zDbSName); assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); if( rcauth==SQLITE_DENY ){ goto delete_from_cleanup; } assert(!isView || pTrigger); /* Assign cursor numbers to the table and all its indices. */ assert( pTabList->nSrc==1 ); iTabCur = pTabList->a[0].iCursor = pParse->nTab++; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ pParse->nTab++; } /* Start the view context */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, bComplex, iDb); /* If we are trying to delete from a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, pOrderBy, pLimit, iTabCur ); iDataCur = iIdxCur = iTabCur; pOrderBy = 0; pLimit = 0; } #endif /* Resolve the column names in the WHERE clause. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto delete_from_cleanup; } /* Initialize the counter of the number of rows deleted, if ** we are counting rows. */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab && !pParse->bReturning ){ memCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); } #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION /* Special case: A DELETE without a WHERE clause deletes everything. ** It is easier just to erase the whole table. Prior to version 3.6.5, ** this optimization caused the row change count (the value returned by ** API function sqlite3_count_changes) to be set incorrectly. ** ** The "rcauth==SQLITE_OK" terms is the ** IMPLEMENTATION-OF: R-17228-37124 If the action code is SQLITE_DELETE and ** the callback returns SQLITE_IGNORE then the DELETE operation proceeds but ** the truncate optimization is disabled and all rows are deleted ** individually. */ if( rcauth==SQLITE_OK && pWhere==0 && !bComplex && !IsVirtual(pTab) #ifdef SQLITE_ENABLE_PREUPDATE_HOOK && db->xPreUpdateCallback==0 #endif ){ assert( !isView ); sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); if( HasRowid(pTab) ){ sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt ? memCnt : -1, pTab->zName, P4_STATIC); } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Clear, pIdx->tnum, iDb, memCnt ? memCnt : -1); }else{ sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); } } }else #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ { u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK; if( sNC.ncFlags & NC_Subquery ) bComplex = 1; wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW); if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; assert( nPk==1 ); iRowSet = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); }else{ /* For a WITHOUT ROWID table, create an ephemeral table used to ** hold all primary keys for rows to be deleted. */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); nPk = pPk->nKeyCol; iPk = pParse->nMem+1; pParse->nMem += nPk; iEphCur = pParse->nTab++; addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } /* Construct a query to find the rowid or primary key for every row ** to be deleted, based on the WHERE clause. Set variable eOnePass ** to indicate the strategy used to implement this delete: ** ** ONEPASS_OFF: Two-pass approach - use a FIFO for rowids/PK values. ** ONEPASS_SINGLE: One-pass approach - at most one row deleted. ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,0,wcf,iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF || OptimizationDisabled(db, SQLITE_OnePass) ); if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse); if( sqlite3WhereUsesDeferredSeek(pWInfo) ){ sqlite3VdbeAddOp1(v, OP_FinishSeek, iTabCur); } /* Keep track of the number of rows to be deleted */ if( memCnt ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } /* Extract the rowid or primary key for the current row */ if( pPk ){ for(i=0; iaiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pPk->aiColumn[i], iPk+i); } iKey = iPk; }else{ iKey = ++pParse->nMem; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, -1, iKey); } if( eOnePass!=ONEPASS_OFF ){ /* For ONEPASS, no need to store the rowid/primary-key. There is only ** one, so just keep it in its register(s) and fall through to the ** delete code. */ nKey = nPk; /* OP_Found will use an unpacked key */ aToOpen = sqlite3DbMallocRawNN(db, nIdx+2); if( aToOpen==0 ){ sqlite3WhereEnd(pWInfo); goto delete_from_cleanup; } memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0; if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrBypass = sqlite3VdbeMakeLabel(pParse); }else{ if( pPk ){ /* Add the PK key for this row to the temporary table */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(pParse->db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEphCur, iKey, iPk, nPk); }else{ /* Add the rowid of the row to be deleted to the RowSet */ nKey = 1; /* OP_DeferredSeek always uses a single rowid */ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey); } sqlite3WhereEnd(pWInfo); } /* Unless this is a view, open cursors for the table we are ** deleting from and all its indices. If this is a view, then the ** only effect this statement has is to fire the INSTEAD OF ** triggers. */ if( !isView ){ int iAddrOnce = 0; if( eOnePass==ONEPASS_MULTI ){ iAddrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } testcase( IsVirtual(pTab) ); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, OPFLAG_FORDELETE, iTabCur, aToOpen, &iDataCur, &iIdxCur); assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur ); assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 ); if( eOnePass==ONEPASS_MULTI ){ sqlite3VdbeJumpHereOrPopInst(v, iAddrOnce); } } /* Set up a loop over the rowids/primary-keys that were found in the ** where-clause loop above. */ if( eOnePass!=ONEPASS_OFF ){ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 || IsView(pTab) ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); if( IsVirtual(pTab) ){ sqlite3VdbeAddOp3(v, OP_Column, iEphCur, 0, iKey); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iEphCur, iKey); } assert( nKey==0 ); /* OP_Found will use a composite key */ }else{ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey); VdbeCoverage(v); assert( nKey==1 ); } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); sqlite3MayAbort(pParse); if( eOnePass==ONEPASS_SINGLE ){ sqlite3VdbeAddOp1(v, OP_Close, iTabCur); if( sqlite3IsToplevel(pParse) ){ pParse->isMultiWrite = 0; } } sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, OE_Abort); }else #endif { int count = (pParse->nested==0); /* True to count changes */ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]); } /* End of the loop over all rowids/primary-keys. */ if( eOnePass!=ONEPASS_OFF ){ sqlite3VdbeResolveLabel(v, addrBypass); sqlite3WhereEnd(pWInfo); }else if( pPk ){ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrLoop); }else{ sqlite3VdbeGoto(v, addrLoop); sqlite3VdbeJumpHere(v, addrLoop); } } /* End non-truncate path */ /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* Return the number of rows that were deleted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( memCnt ){ sqlite3CodeChangeCount(v, memCnt, "rows deleted"); } delete_from_cleanup: sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) sqlite3ExprListDelete(db, pOrderBy); sqlite3ExprDelete(db, pLimit); #endif if( aToOpen ) sqlite3DbNNFreeNN(db, aToOpen); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif /* ** This routine generates VDBE code that causes a single row of a ** single table to be deleted. Both the original table entry and ** all indices are removed. ** ** Preconditions: ** ** 1. iDataCur is an open cursor on the btree that is the canonical data ** store for the table. (This will be either the table itself, ** in the case of a rowid table, or the PRIMARY KEY index in the case ** of a WITHOUT ROWID table.) ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number iIdxCur+i for the i-th index. ** ** 3. The primary key for the row to be deleted must be stored in a ** sequence of nPk memory cells starting at iPk. If nPk==0 that means ** that a search record formed from OP_MakeRecord is contained in the ** single memory location iPk. ** ** eMode: ** Parameter eMode may be passed either ONEPASS_OFF (0), ONEPASS_SINGLE, or ** ONEPASS_MULTI. If eMode is not ONEPASS_OFF, then the cursor ** iDataCur already points to the row to delete. If eMode is ONEPASS_OFF ** then this function must seek iDataCur to the entry identified by iPk ** and nPk before reading from it. ** ** If eMode is ONEPASS_MULTI, then this call is being made as part ** of a ONEPASS delete that affects multiple rows. In this case, if ** iIdxNoSeek is a valid cursor number (>=0) and is not the same as ** iDataCur, then its position should be preserved following the delete ** operation. Or, if iIdxNoSeek is not a valid cursor number, the ** position of iDataCur should be preserved instead. ** ** iIdxNoSeek: ** If iIdxNoSeek is a valid cursor number (>=0) not equal to iDataCur, ** then it identifies an index cursor (from within array of cursors ** starting at iIdxCur) that already points to the index entry to be deleted. ** Except, this optimization is disabled if there are BEFORE triggers since ** the trigger body might have moved the cursor. */ SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse *pParse, /* Parsing context */ Table *pTab, /* Table containing the row to be deleted */ Trigger *pTrigger, /* List of triggers to (potentially) fire */ int iDataCur, /* Cursor from which column data is extracted */ int iIdxCur, /* First index cursor */ int iPk, /* First memory cell containing the PRIMARY KEY */ i16 nPk, /* Number of PRIMARY KEY memory cells */ u8 count, /* If non-zero, increment the row change counter */ u8 onconf, /* Default ON CONFLICT policy for triggers */ u8 eMode, /* ONEPASS_OFF, _SINGLE, or _MULTI. See above */ int iIdxNoSeek /* Cursor number of cursor that does not need seeking */ ){ Vdbe *v = pParse->pVdbe; /* Vdbe */ int iOld = 0; /* First register in OLD.* array */ int iLabel; /* Label resolved to end of generated code */ u8 opSeek; /* Seek opcode */ /* Vdbe is guaranteed to have been allocated by this stage. */ assert( v ); VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)", iDataCur, iIdxCur, iPk, (int)nPk)); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(pParse); opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound; if( eMode==ONEPASS_OFF ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); VdbeCoverageIf(v, opSeek==OP_NotExists); VdbeCoverageIf(v, opSeek==OP_NotFound); } /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ int addrStart; /* Start of BEFORE trigger programs */ /* TODO: Could use temporary registers here. Also could attempt to ** avoid copying the contents of the rowid register. */ mask = sqlite3TriggerColmask( pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf ); mask |= sqlite3FkOldmask(pParse, pTab); iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld); for(iCol=0; iColnCol; iCol++){ testcase( mask!=0xffffffff && iCol==31 ); testcase( mask!=0xffffffff && iCol==32 ); if( mask==0xffffffff || (iCol<=31 && (mask & MASKBIT32(iCol))!=0) ){ int kk = sqlite3TableColumnToStorage(pTab, iCol); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+kk+1); } } /* Invoke BEFORE DELETE trigger programs. */ addrStart = sqlite3VdbeCurrentAddr(v); sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel ); /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or already deleted the row that the cursor was ** pointing to. ** ** Also disable the iIdxNoSeek optimization since the BEFORE trigger ** may have moved that cursor. */ if( addrStart=0 ); iIdxNoSeek = -1; } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } /* Delete the index and table entries. Skip this step if pTab is really ** a view (in which case the only effect of the DELETE statement is to ** fire the INSTEAD OF triggers). ** ** If variable 'count' is non-zero, then this OP_Delete instruction should ** invoke the update-hook. The pre-update-hook, on the other hand should ** be invoked unless table pTab is a system table. The difference is that ** the update-hook is not invoked for rows removed by REPLACE, but the ** pre-update-hook is. */ if( !IsView(pTab) ){ u8 p5 = 0; sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek); sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0)); if( pParse->nested==0 || 0==sqlite3_stricmp(pTab->zName, "sqlite_stat1") ){ sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE); } if( eMode!=ONEPASS_OFF ){ sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE); } if( iIdxNoSeek>=0 && iIdxNoSeek!=iDataCur ){ sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek); } if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION; sqlite3VdbeChangeP5(v, p5); } /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just deleted. */ sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0); /* Invoke AFTER DELETE trigger programs. */ if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel ); } /* Jump here if the row had already been deleted before any BEFORE ** trigger programs were invoked. Or if a trigger program throws a ** RAISE(IGNORE) exception. */ sqlite3VdbeResolveLabel(v, iLabel); VdbeModuleComment((v, "END: GenRowDel()")); } /* ** This routine generates VDBE code that causes the deletion of all ** index entries associated with a single row of a single table, pTab ** ** Preconditions: ** ** 1. A read/write cursor "iDataCur" must be open on the canonical storage ** btree for the table pTab. (This will be either the table itself ** for rowid tables or to the primary key index for WITHOUT ROWID ** tables.) ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number iIdxCur+i for the i-th index. (The pTab->pIndex ** index is the 0-th index.) ** ** 3. The "iDataCur" cursor must be already be positioned on the row ** that is to be deleted. */ SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Table containing the row to be deleted */ int iDataCur, /* Cursor of table holding data. */ int iIdxCur, /* First index cursor */ int *aRegIdx, /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ int iIdxNoSeek /* Do not delete from this cursor */ ){ int i; /* Index loop counter */ int r1 = -1; /* Register holding an index key */ int iPartIdxLabel; /* Jump destination for skipping partial index entries */ Index *pIdx; /* Current index */ Index *pPrior = 0; /* Prior index */ Vdbe *v; /* The prepared statement under construction */ Index *pPk; /* PRIMARY KEY index, or NULL for rowid tables */ v = pParse->pVdbe; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ assert( iIdxCur+i!=iDataCur || pPk==pIdx ); if( aRegIdx!=0 && aRegIdx[i]==0 ) continue; if( pIdx==pPk ) continue; if( iIdxCur+i==iIdxNoSeek ) continue; VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName)); r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1, &iPartIdxLabel, pPrior, r1); sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1, pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn); sqlite3VdbeChangeP5(v, 1); /* Cause IdxDelete to error if no entry found */ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); pPrior = pIdx; } } /* ** Generate code that will assemble an index key and stores it in register ** regOut. The key with be for index pIdx which is an index on pTab. ** iCur is the index of a cursor open on the pTab table and pointing to ** the entry that needs indexing. If pTab is a WITHOUT ROWID table, then ** iCur must be the cursor of the PRIMARY KEY index. ** ** Return a register number which is the first in a block of ** registers that holds the elements of the index key. The ** block of registers has already been deallocated by the time ** this routine returns. ** ** If *piPartIdxLabel is not NULL, fill it in with a label and jump ** to that label if pIdx is a partial index that should be skipped. ** The label should be resolved using sqlite3ResolvePartIdxLabel(). ** A partial index should be skipped if its WHERE clause evaluates ** to false or null. If pIdx is not a partial index, *piPartIdxLabel ** will be set to zero which is an empty label that is ignored by ** sqlite3ResolvePartIdxLabel(). ** ** The pPrior and regPrior parameters are used to implement a cache to ** avoid unnecessary register loads. If pPrior is not NULL, then it is ** a pointer to a different index for which an index key has just been ** computed into register regPrior. If the current pIdx index is generating ** its key into the same sequence of registers and if pPrior and pIdx share ** a column in common, then the register corresponding to that column already ** holds the correct value and the loading of that register is skipped. ** This optimization is helpful when doing a DELETE or an INTEGRITY_CHECK ** on a table with multiple indices, and especially with the ROWID or ** PRIMARY KEY columns of the index. */ SQLITE_PRIVATE int sqlite3GenerateIndexKey( Parse *pParse, /* Parsing context */ Index *pIdx, /* The index for which to generate a key */ int iDataCur, /* Cursor number from which to take column data */ int regOut, /* Put the new key into this register if not 0 */ int prefixOnly, /* Compute only a unique prefix of the key */ int *piPartIdxLabel, /* OUT: Jump to this label to skip partial index */ Index *pPrior, /* Previously generated index key */ int regPrior /* Register holding previous generated key */ ){ Vdbe *v = pParse->pVdbe; int j; int regBase; int nCol; if( piPartIdxLabel ){ if( pIdx->pPartIdxWhere ){ *piPartIdxLabel = sqlite3VdbeMakeLabel(pParse); pParse->iSelfTab = iDataCur + 1; sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel, SQLITE_JUMPIFNULL); pParse->iSelfTab = 0; pPrior = 0; /* Ticket a9efb42811fa41ee 2019-11-02; ** pPartIdxWhere may have corrupted regPrior registers */ }else{ *piPartIdxLabel = 0; } } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; regBase = sqlite3GetTempRange(pParse, nCol); if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0; for(j=0; jaiColumn[j]==pIdx->aiColumn[j] && pPrior->aiColumn[j]!=XN_EXPR ){ /* This column was already computed by the previous index */ continue; } sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iDataCur, j, regBase+j); if( pIdx->aiColumn[j]>=0 ){ /* If the column affinity is REAL but the number is an integer, then it ** might be stored in the table as an integer (using a compact ** representation) then converted to REAL by an OP_RealAffinity opcode. ** But we are getting ready to store this value back into an index, where ** it should be converted by to INTEGER again. So omit the ** OP_RealAffinity opcode if it is present */ sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity); } } if( regOut ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut); } sqlite3ReleaseTempRange(pParse, regBase, nCol); return regBase; } /* ** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label ** because it was a partial index, then this routine should be called to ** resolve that label. */ SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse *pParse, int iLabel){ if( iLabel ){ sqlite3VdbeResolveLabel(pParse->pVdbe, iLabel); } } /************** End of delete.c **********************************************/ /************** Begin file func.c ********************************************/ /* ** 2002 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C-language implementations for many of the SQL ** functions of SQLite. (Some function, and in particular the date and ** time functions, are implemented separately.) */ /* #include "sqliteInt.h" */ /* #include */ /* #include */ #ifndef SQLITE_OMIT_FLOATING_POINT /* #include */ #endif /* #include "vdbeInt.h" */ /* ** Return the collating function associated with a function. */ static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ VdbeOp *pOp; assert( context->pVdbe!=0 ); pOp = &context->pVdbe->aOp[context->iOp-1]; assert( pOp->opcode==OP_CollSeq ); assert( pOp->p4type==P4_COLLSEQ ); return pOp->p4.pColl; } /* ** Indicate that the accumulator load should be skipped on this ** iteration of the aggregate loop. */ static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ assert( context->isError<=0 ); context->isError = -1; context->skipFlag = 1; } /* ** Implementation of the non-aggregate min() and max() functions */ static void minmaxFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; int mask; /* 0 for min() or 0xffffffff for max() */ int iBest; CollSeq *pColl; assert( argc>1 ); mask = sqlite3_user_data(context)==0 ? 0 : -1; pColl = sqlite3GetFuncCollSeq(context); assert( pColl ); assert( mask==-1 || mask==0 ); iBest = 0; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; for(i=1; i=0 ){ testcase( mask==0 ); iBest = i; } } sqlite3_result_value(context, argv[iBest]); } /* ** Return the type of the argument. */ static void typeofFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ static const char *azType[] = { "integer", "real", "text", "blob", "null" }; int i = sqlite3_value_type(argv[0]) - 1; UNUSED_PARAMETER(NotUsed); assert( i>=0 && i=0xc0 ){ while( (*z & 0xc0)==0x80 ){ z++; z0++; } } } sqlite3_result_int(context, (int)(z-z0)); break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the octet_length() function */ static void bytelengthFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_BLOB: { sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); break; } case SQLITE_INTEGER: case SQLITE_FLOAT: { i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2; sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m); break; } case SQLITE_TEXT: { if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){ sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); }else{ sqlite3_result_int(context, sqlite3_value_bytes16(argv[0])); } break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the abs() function. ** ** IMP: R-23979-26855 The abs(X) function returns the absolute value of ** the numeric argument X. */ static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_INTEGER: { i64 iVal = sqlite3_value_int64(argv[0]); if( iVal<0 ){ if( iVal==SMALLEST_INT64 ){ /* IMP: R-31676-45509 If X is the integer -9223372036854775808 ** then abs(X) throws an integer overflow error since there is no ** equivalent positive 64-bit two complement value. */ sqlite3_result_error(context, "integer overflow", -1); return; } iVal = -iVal; } sqlite3_result_int64(context, iVal); break; } case SQLITE_NULL: { /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ sqlite3_result_null(context); break; } default: { /* Because sqlite3_value_double() returns 0.0 if the argument is not ** something that can be converted into a number, we have: ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob ** that cannot be converted to a numeric value. */ double rVal = sqlite3_value_double(argv[0]); if( rVal<0 ) rVal = -rVal; sqlite3_result_double(context, rVal); break; } } } /* ** Implementation of the instr() function. ** ** instr(haystack,needle) finds the first occurrence of needle ** in haystack and returns the number of previous characters plus 1, ** or 0 if needle does not occur within haystack. ** ** If both haystack and needle are BLOBs, then the result is one more than ** the number of bytes in haystack prior to the first occurrence of needle, ** or 0 if needle never occurs in haystack. */ static void instrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zHaystack; const unsigned char *zNeedle; int nHaystack; int nNeedle; int typeHaystack, typeNeedle; int N = 1; int isText; unsigned char firstChar; sqlite3_value *pC1 = 0; sqlite3_value *pC2 = 0; UNUSED_PARAMETER(argc); typeHaystack = sqlite3_value_type(argv[0]); typeNeedle = sqlite3_value_type(argv[1]); if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; nHaystack = sqlite3_value_bytes(argv[0]); nNeedle = sqlite3_value_bytes(argv[1]); if( nNeedle>0 ){ if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ zHaystack = sqlite3_value_blob(argv[0]); zNeedle = sqlite3_value_blob(argv[1]); isText = 0; }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){ zHaystack = sqlite3_value_text(argv[0]); zNeedle = sqlite3_value_text(argv[1]); isText = 1; }else{ pC1 = sqlite3_value_dup(argv[0]); zHaystack = sqlite3_value_text(pC1); if( zHaystack==0 ) goto endInstrOOM; nHaystack = sqlite3_value_bytes(pC1); pC2 = sqlite3_value_dup(argv[1]); zNeedle = sqlite3_value_text(pC2); if( zNeedle==0 ) goto endInstrOOM; nNeedle = sqlite3_value_bytes(pC2); isText = 1; } if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM; firstChar = zNeedle[0]; while( nNeedle<=nHaystack && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0) ){ N++; do{ nHaystack--; zHaystack++; }while( isText && (zHaystack[0]&0xc0)==0x80 ); } if( nNeedle>nHaystack ) N = 0; } sqlite3_result_int(context, N); endInstr: sqlite3_value_free(pC1); sqlite3_value_free(pC2); return; endInstrOOM: sqlite3_result_error_nomem(context); goto endInstr; } /* ** Implementation of the printf() (a.k.a. format()) SQL function. */ static void printfFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ PrintfArguments x; StrAccum str; const char *zFormat; int n; sqlite3 *db = sqlite3_context_db_handle(context); if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ x.nArg = argc-1; x.nUsed = 0; x.apArg = argv+1; sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); str.printfFlags = SQLITE_PRINTF_SQLFUNC; sqlite3_str_appendf(&str, zFormat, &x); n = str.nChar; sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, SQLITE_DYNAMIC); } } /* ** Implementation of the substr() function. ** ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. ** p1 is 1-indexed. So substr(x,1,1) returns the first character ** of x. If x is text, then we actually count UTF-8 characters. ** If x is a blob, then we count bytes. ** ** If p1 is negative, then we begin abs(p1) from the end of x[]. ** ** If p2 is negative, return the p2 characters preceding p1. */ static void substrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *z; const unsigned char *z2; int len; int p0type; i64 p1, p2; int negP2 = 0; assert( argc==3 || argc==2 ); if( sqlite3_value_type(argv[1])==SQLITE_NULL || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) ){ return; } p0type = sqlite3_value_type(argv[0]); p1 = sqlite3_value_int(argv[1]); if( p0type==SQLITE_BLOB ){ len = sqlite3_value_bytes(argv[0]); z = sqlite3_value_blob(argv[0]); if( z==0 ) return; assert( len==sqlite3_value_bytes(argv[0]) ); }else{ z = sqlite3_value_text(argv[0]); if( z==0 ) return; len = 0; if( p1<0 ){ for(z2=z; *z2; len++){ SQLITE_SKIP_UTF8(z2); } } } #ifdef SQLITE_SUBSTR_COMPATIBILITY /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as ** as substr(X,1,N) - it returns the first N characters of X. This ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8] ** from 2009-02-02 for compatibility of applications that exploited the ** old buggy behavior. */ if( p1==0 ) p1 = 1; /* */ #endif if( argc==3 ){ p2 = sqlite3_value_int(argv[2]); if( p2<0 ){ p2 = -p2; negP2 = 1; } }else{ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; } if( p1<0 ){ p1 += len; if( p1<0 ){ p2 += p1; if( p2<0 ) p2 = 0; p1 = 0; } }else if( p1>0 ){ p1--; }else if( p2>0 ){ p2--; } if( negP2 ){ p1 -= p2; if( p1<0 ){ p2 += p1; p1 = 0; } } assert( p1>=0 && p2>=0 ); if( p0type!=SQLITE_BLOB ){ while( *z && p1 ){ SQLITE_SKIP_UTF8(z); p1--; } for(z2=z; *z2 && p2; p2--){ SQLITE_SKIP_UTF8(z2); } sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, SQLITE_UTF8); }else{ if( p1+p2>len ){ p2 = len-p1; if( p2<0 ) p2 = 0; } sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); } } /* ** Implementation of the round() function */ #ifndef SQLITE_OMIT_FLOATING_POINT static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ int n = 0; double r; char *zBuf; assert( argc==1 || argc==2 ); if( argc==2 ){ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; n = sqlite3_value_int(argv[1]); if( n>30 ) n = 30; if( n<0 ) n = 0; } if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; r = sqlite3_value_double(argv[0]); /* If Y==0 and X will fit in a 64-bit int, ** handle the rounding directly, ** otherwise use printf. */ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){ /* The value has no fractional part so there is nothing to round */ }else if( n==0 ){ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5))); }else{ zBuf = sqlite3_mprintf("%!.*f",n,r); if( zBuf==0 ){ sqlite3_result_error_nomem(context); return; } sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); sqlite3_free(zBuf); } sqlite3_result_double(context, r); } #endif /* ** Allocate nByte bytes of space using sqlite3Malloc(). If the ** allocation fails, call sqlite3_result_error_nomem() to notify ** the database handle that malloc() has failed and return NULL. ** If nByte is larger than the maximum string or blob length, then ** raise an SQLITE_TOOBIG exception and return NULL. */ static void *contextMalloc(sqlite3_context *context, i64 nByte){ char *z; sqlite3 *db = sqlite3_context_db_handle(context); assert( nByte>0 ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); z = 0; }else{ z = sqlite3Malloc(nByte); if( !z ){ sqlite3_result_error_nomem(context); } } return z; } /* ** Implementation of the upper() and lower() SQL functions. */ static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ char *z1; const char *z2; int i, n; UNUSED_PARAMETER(argc); z2 = (char*)sqlite3_value_text(argv[0]); n = sqlite3_value_bytes(argv[0]); /* Verify that the call to _bytes() does not invalidate the _text() pointer */ assert( z2==(char*)sqlite3_value_text(argv[0]) ); if( z2 ){ z1 = contextMalloc(context, ((i64)n)+1); if( z1 ){ for(i=0; imatchOne; /* "?" or "_" */ u32 matchAll = pInfo->matchAll; /* "*" or "%" */ u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */ const u8 *zEscaped = 0; /* One past the last escaped input char */ while( (c = Utf8Read(zPattern))!=0 ){ if( c==matchAll ){ /* Match "*" */ /* Skip over multiple "*" characters in the pattern. If there ** are also "?" characters, skip those as well, but consume a ** single character of the input string for each "?" skipped */ while( (c=Utf8Read(zPattern)) == matchAll || (c == matchOne && matchOne!=0) ){ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ return SQLITE_NOWILDCARDMATCH; } } if( c==0 ){ return SQLITE_MATCH; /* "*" at the end of the pattern matches */ }else if( c==matchOther ){ if( pInfo->matchSet==0 ){ c = sqlite3Utf8Read(&zPattern); if( c==0 ) return SQLITE_NOWILDCARDMATCH; }else{ /* "[...]" immediately follows the "*". We have to do a slow ** recursive search in this case, but it is an unusual case. */ assert( matchOther<0x80 ); /* '[' is a single-byte character */ while( *zString ){ int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; SQLITE_SKIP_UTF8(zString); } return SQLITE_NOWILDCARDMATCH; } } /* At this point variable c contains the first character of the ** pattern string past the "*". Search in the input string for the ** first matching character and recursively continue the match from ** that point. ** ** For a case-insensitive search, set variable cx to be the same as ** c but in the other case and search the input string for either ** c or cx. */ if( c<0x80 ){ char zStop[3]; int bMatch; if( noCase ){ zStop[0] = sqlite3Toupper(c); zStop[1] = sqlite3Tolower(c); zStop[2] = 0; }else{ zStop[0] = c; zStop[1] = 0; } while(1){ zString += strcspn((const char*)zString, zStop); if( zString[0]==0 ) break; zString++; bMatch = patternCompare(zPattern,zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; } }else{ int bMatch; while( (c2 = Utf8Read(zString))!=0 ){ if( c2!=c ) continue; bMatch = patternCompare(zPattern,zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; } } return SQLITE_NOWILDCARDMATCH; } if( c==matchOther ){ if( pInfo->matchSet==0 ){ c = sqlite3Utf8Read(&zPattern); if( c==0 ) return SQLITE_NOMATCH; zEscaped = zPattern; }else{ u32 prior_c = 0; int seen = 0; int invert = 0; c = sqlite3Utf8Read(&zString); if( c==0 ) return SQLITE_NOMATCH; c2 = sqlite3Utf8Read(&zPattern); if( c2=='^' ){ invert = 1; c2 = sqlite3Utf8Read(&zPattern); } if( c2==']' ){ if( c==']' ) seen = 1; c2 = sqlite3Utf8Read(&zPattern); } while( c2 && c2!=']' ){ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ c2 = sqlite3Utf8Read(&zPattern); if( c>=prior_c && c<=c2 ) seen = 1; prior_c = 0; }else{ if( c==c2 ){ seen = 1; } prior_c = c2; } c2 = sqlite3Utf8Read(&zPattern); } if( c2==0 || (seen ^ invert)==0 ){ return SQLITE_NOMATCH; } continue; } } c2 = Utf8Read(zString); if( c==c2 ) continue; if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){ continue; } if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; return SQLITE_NOMATCH; } return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH; } /* ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and ** non-zero if there is no match. */ SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){ if( zString==0 ){ return zGlobPattern!=0; }else if( zGlobPattern==0 ){ return 1; }else { return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '['); } } /* ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for ** a miss - like strcmp(). */ SQLITE_API int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){ if( zStr==0 ){ return zPattern!=0; }else if( zPattern==0 ){ return 1; }else{ return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc); } } /* ** Count the number of times that the LIKE operator (or GLOB which is ** just a variation of LIKE) gets called. This is used for testing ** only. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_like_count = 0; #endif /* ** Implementation of the like() SQL function. This function implements ** the built-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B,A). ** ** This same function (with a different compareInfo structure) computes ** the GLOB operator. */ static void likeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA, *zB; u32 escape; int nPat; sqlite3 *db = sqlite3_context_db_handle(context); struct compareInfo *pInfo = sqlite3_user_data(context); struct compareInfo backupInfo; #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( sqlite3_value_type(argv[0])==SQLITE_BLOB || sqlite3_value_type(argv[1])==SQLITE_BLOB ){ #ifdef SQLITE_TEST sqlite3_like_count++; #endif sqlite3_result_int(context, 0); return; } #endif /* Limit the length of the LIKE or GLOB pattern to avoid problems ** of deep recursion and N*N behavior in patternCompare(). */ nPat = sqlite3_value_bytes(argv[0]); testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); return; } if( argc==3 ){ /* The escape character string must consist of a single UTF-8 character. ** Otherwise, return an error. */ const unsigned char *zEsc = sqlite3_value_text(argv[2]); if( zEsc==0 ) return; if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ sqlite3_result_error(context, "ESCAPE expression must be a single character", -1); return; } escape = sqlite3Utf8Read(&zEsc); if( escape==pInfo->matchAll || escape==pInfo->matchOne ){ memcpy(&backupInfo, pInfo, sizeof(backupInfo)); pInfo = &backupInfo; if( escape==pInfo->matchAll ) pInfo->matchAll = 0; if( escape==pInfo->matchOne ) pInfo->matchOne = 0; } }else{ escape = pInfo->matchSet; } zB = sqlite3_value_text(argv[0]); zA = sqlite3_value_text(argv[1]); if( zA && zB ){ #ifdef SQLITE_TEST sqlite3_like_count++; #endif sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH); } } /* ** Implementation of the NULLIF(x,y) function. The result is the first ** argument if the arguments are different. The result is NULL if the ** arguments are equal to each other. */ static void nullifFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ CollSeq *pColl = sqlite3GetFuncCollSeq(context); UNUSED_PARAMETER(NotUsed); if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ sqlite3_result_value(context, argv[0]); } } /* ** Implementation of the sqlite_version() function. The result is the version ** of the SQLite library that is running. */ static void versionFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); /* IMP: R-48699-48617 This function is an SQL wrapper around the ** sqlite3_libversion() C-interface. */ sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_source_id() function. The result is a string ** that identifies the particular version of the source code used to build ** SQLite. */ static void sourceidFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); /* IMP: R-24470-31136 This function is an SQL wrapper around the ** sqlite3_sourceid() C interface. */ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_log() function. This is a wrapper around ** sqlite3_log(). The return value is NULL. The function exists purely for ** its side-effects. */ static void errlogFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); UNUSED_PARAMETER(context); sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); } /* ** Implementation of the sqlite_compileoption_used() function. ** The result is an integer that identifies if the compiler option ** was used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS static void compileoptionusedFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zOptName; assert( argc==1 ); UNUSED_PARAMETER(argc); /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL ** function is a wrapper around the sqlite3_compileoption_used() C/C++ ** function. */ if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); } } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /* ** Implementation of the sqlite_compileoption_get() function. ** The result is a string that identifies the compiler options ** used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS static void compileoptiongetFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int n; assert( argc==1 ); UNUSED_PARAMETER(argc); /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. */ n = sqlite3_value_int(argv[0]); sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /* Array for converting from half-bytes (nybbles) into ASCII hex ** digits. */ static const char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; /* ** Append to pStr text that is the SQL literal representation of the ** value contained in pValue. */ SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){ /* As currently implemented, the string must be initially empty. ** we might relax this requirement in the future, but that will ** require enhancements to the implementation. */ assert( pStr!=0 && pStr->nChar==0 ); switch( sqlite3_value_type(pValue) ){ case SQLITE_FLOAT: { double r1, r2; const char *zVal; r1 = sqlite3_value_double(pValue); sqlite3_str_appendf(pStr, "%!.15g", r1); zVal = sqlite3_str_value(pStr); if( zVal ){ sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8); if( r1!=r2 ){ sqlite3_str_reset(pStr); sqlite3_str_appendf(pStr, "%!.20e", r1); } } break; } case SQLITE_INTEGER: { sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue)); break; } case SQLITE_BLOB: { char const *zBlob = sqlite3_value_blob(pValue); i64 nBlob = sqlite3_value_bytes(pValue); assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */ sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4); if( pStr->accError==0 ){ char *zText = pStr->zText; int i; for(i=0; i>4)&0x0F]; zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; } zText[(nBlob*2)+2] = '\''; zText[(nBlob*2)+3] = '\0'; zText[0] = 'X'; zText[1] = '\''; pStr->nChar = nBlob*2 + 3; } break; } case SQLITE_TEXT: { const unsigned char *zArg = sqlite3_value_text(pValue); sqlite3_str_appendf(pStr, "%Q", zArg); break; } default: { assert( sqlite3_value_type(pValue)==SQLITE_NULL ); sqlite3_str_append(pStr, "NULL", 4); break; } } } /* ** Implementation of the QUOTE() function. ** ** The quote(X) function returns the text of an SQL literal which is the ** value of its argument suitable for inclusion into an SQL statement. ** Strings are surrounded by single-quotes with escapes on interior quotes ** as needed. BLOBs are encoded as hexadecimal literals. Strings with ** embedded NUL characters cannot be represented as string literals in SQL ** and hence the returned string literal is truncated prior to the first NUL. */ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ sqlite3_str str; sqlite3 *db = sqlite3_context_db_handle(context); assert( argc==1 ); UNUSED_PARAMETER(argc); sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); sqlite3QuoteValue(&str,argv[0]); sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar, SQLITE_DYNAMIC); if( str.accError!=SQLITE_OK ){ sqlite3_result_null(context); sqlite3_result_error_code(context, str.accError); } } /* ** The unicode() function. Return the integer unicode code-point value ** for the first character of the input string. */ static void unicodeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *z = sqlite3_value_text(argv[0]); (void)argc; if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); } /* ** The char() function takes zero or more arguments, each of which is ** an integer. It constructs a string where each character of the string ** is the unicode character for the corresponding integer argument. */ static void charFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ unsigned char *z, *zOut; int i; zOut = z = sqlite3_malloc64( argc*4+1 ); if( z==0 ){ sqlite3_result_error_nomem(context); return; } for(i=0; i0x10ffff ) x = 0xfffd; c = (unsigned)(x & 0x1fffff); if( c<0x00080 ){ *zOut++ = (u8)(c&0xFF); }else if( c<0x00800 ){ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); *zOut++ = 0x80 + (u8)(c & 0x3F); }else if( c<0x10000 ){ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); }else{ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); } \ } *zOut = 0; sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); } /* ** The hex() function. Interpret the argument as a blob. Return ** a hexadecimal rendering as text. */ static void hexFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i, n; const unsigned char *pBlob; char *zHex, *z; assert( argc==1 ); UNUSED_PARAMETER(argc); pBlob = sqlite3_value_blob(argv[0]); n = sqlite3_value_bytes(argv[0]); assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ z = zHex = contextMalloc(context, ((i64)n)*2 + 1); if( zHex ){ for(i=0; i>4)&0xf]; *(z++) = hexdigits[c&0xf]; } *z = 0; sqlite3_result_text(context, zHex, n*2, sqlite3_free); } } /* ** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr ** contains character ch, or 0 if it does not. */ static int strContainsChar(const u8 *zStr, int nStr, u32 ch){ const u8 *zEnd = &zStr[nStr]; const u8 *z = zStr; while( zmallocFailed ); return; } if( zPattern[0]==0 ){ assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); sqlite3_result_value(context, argv[0]); return; } nPattern = sqlite3_value_bytes(argv[1]); assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ zRep = sqlite3_value_text(argv[2]); if( zRep==0 ) return; nRep = sqlite3_value_bytes(argv[2]); assert( zRep==sqlite3_value_text(argv[2]) ); nOut = nStr + 1; assert( nOutnPattern ){ nOut += nRep - nPattern; testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); sqlite3_free(zOut); return; } cntExpand++; if( (cntExpand&(cntExpand-1))==0 ){ /* Grow the size of the output buffer only on substitutions ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */ u8 *zOld; zOld = zOut; zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1)); if( zOut==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(zOld); return; } } } memcpy(&zOut[j], zRep, nRep); j += nRep; i += nPattern-1; } } assert( j+nStr-i+1<=nOut ); memcpy(&zOut[j], &zStr[i], nStr-i); j += nStr - i; assert( j<=nOut ); zOut[j] = 0; sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); } /* ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. */ static void trimFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zIn; /* Input string */ const unsigned char *zCharSet; /* Set of characters to trim */ unsigned int nIn; /* Number of bytes in input */ int flags; /* 1: trimleft 2: trimright 3: trim */ int i; /* Loop counter */ unsigned int *aLen = 0; /* Length of each character in zCharSet */ unsigned char **azChar = 0; /* Individual characters in zCharSet */ int nChar; /* Number of characters in zCharSet */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ return; } zIn = sqlite3_value_text(argv[0]); if( zIn==0 ) return; nIn = (unsigned)sqlite3_value_bytes(argv[0]); assert( zIn==sqlite3_value_text(argv[0]) ); if( argc==1 ){ static const unsigned lenOne[] = { 1 }; static unsigned char * const azOne[] = { (u8*)" " }; nChar = 1; aLen = (unsigned*)lenOne; azChar = (unsigned char **)azOne; zCharSet = 0; }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ return; }else{ const unsigned char *z; for(z=zCharSet, nChar=0; *z; nChar++){ SQLITE_SKIP_UTF8(z); } if( nChar>0 ){ azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+sizeof(unsigned))); if( azChar==0 ){ return; } aLen = (unsigned*)&azChar[nChar]; for(z=zCharSet, nChar=0; *z; nChar++){ azChar[nChar] = (unsigned char *)z; SQLITE_SKIP_UTF8(z); aLen[nChar] = (unsigned)(z - azChar[nChar]); } } } if( nChar>0 ){ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); if( flags & 1 ){ while( nIn>0 ){ unsigned int len = 0; for(i=0; i=nChar ) break; zIn += len; nIn -= len; } } if( flags & 2 ){ while( nIn>0 ){ unsigned int len = 0; for(i=0; i=nChar ) break; nIn -= len; } } if( zCharSet ){ sqlite3_free(azChar); } } sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); } #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION /* ** The "unknown" function is automatically substituted in place of ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN ** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used. ** When the "sqlite3" command-line shell is built using this functionality, ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries ** involving application-defined functions to be examined in a generic ** sqlite3 shell. */ static void unknownFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ /* no-op */ (void)context; (void)argc; (void)argv; } #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/ /* IMP: R-25361-16150 This function is omitted from SQLite by default. It ** is only available if the SQLITE_SOUNDEX compile-time option is used ** when SQLite is built. */ #ifdef SQLITE_SOUNDEX /* ** Compute the soundex encoding of a word. ** ** IMP: R-59782-00072 The soundex(X) function returns a string that is the ** soundex encoding of the string X. */ static void soundexFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ char zResult[8]; const u8 *zIn; int i, j; static const unsigned char iCode[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, }; assert( argc==1 ); zIn = (u8*)sqlite3_value_text(argv[0]); if( zIn==0 ) zIn = (u8*)""; for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} if( zIn[i] ){ u8 prevcode = iCode[zIn[i]&0x7f]; zResult[0] = sqlite3Toupper(zIn[i]); for(j=1; j<4 && zIn[i]; i++){ int code = iCode[zIn[i]&0x7f]; if( code>0 ){ if( code!=prevcode ){ prevcode = code; zResult[j++] = code + '0'; } }else{ prevcode = 0; } } while( j<4 ){ zResult[j++] = '0'; } zResult[j] = 0; sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); }else{ /* IMP: R-64894-50321 The string "?000" is returned if the argument ** is NULL or contains no ASCII alphabetic characters. */ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); } } #endif /* SQLITE_SOUNDEX */ #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** A function that loads a shared-library extension then returns NULL. */ static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ const char *zFile = (const char *)sqlite3_value_text(argv[0]); const char *zProc; sqlite3 *db = sqlite3_context_db_handle(context); char *zErrMsg = 0; /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc ** flag is set. See the sqlite3_enable_load_extension() API. */ if( (db->flags & SQLITE_LoadExtFunc)==0 ){ sqlite3_result_error(context, "not authorized", -1); return; } if( argc==2 ){ zProc = (const char *)sqlite3_value_text(argv[1]); }else{ zProc = 0; } if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ sqlite3_result_error(context, zErrMsg, -1); sqlite3_free(zErrMsg); } } #endif /* ** An instance of the following structure holds the context of a ** sum() or avg() aggregate computation. */ typedef struct SumCtx SumCtx; struct SumCtx { double rSum; /* Running sum as as a double */ double rErr; /* Error term for Kahan-Babushka-Neumaier summation */ i64 iSum; /* Running sum as a signed integer */ i64 cnt; /* Number of elements summed */ u8 approx; /* True if any non-integer value was input to the sum */ u8 ovrfl; /* Integer overflow seen */ }; /* ** Do one step of the Kahan-Babushka-Neumaier summation. ** ** https://en.wikipedia.org/wiki/Kahan_summation_algorithm ** ** Variables are marked "volatile" to defeat c89 x86 floating point ** optimizations can mess up this algorithm. */ static void kahanBabuskaNeumaierStep( volatile SumCtx *pSum, volatile double r ){ volatile double s = pSum->rSum; volatile double t = s + r; if( fabs(s) > fabs(r) ){ pSum->rErr += (s - t) + r; }else{ pSum->rErr += (r - t) + s; } pSum->rSum = t; } /* ** Add a (possibly large) integer to the running sum. */ static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){ i64 iBig, iSm; iSm = iVal % 16384; iBig = iVal - iSm; kahanBabuskaNeumaierStep(pSum, iBig); kahanBabuskaNeumaierStep(pSum, iSm); }else{ kahanBabuskaNeumaierStep(pSum, (double)iVal); } } /* ** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer */ static void kahanBabuskaNeumaierInit( volatile SumCtx *p, i64 iVal ){ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){ i64 iSm = iVal % 16384; p->rSum = (double)(iVal - iSm); p->rErr = (double)iSm; }else{ p->rSum = (double)iVal; p->rErr = 0.0; } } /* ** Routines used to compute the sum, average, and total. ** ** The SUM() function follows the (broken) SQL standard which means ** that it returns NULL if it sums over no inputs. TOTAL returns ** 0.0 in that case. In addition, TOTAL always returns a float where ** SUM might return an integer if it never encounters a floating point ** value. TOTAL never fails, but SUM might through an exception if ** it overflows an integer. */ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ SumCtx *p; int type; assert( argc==1 ); UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->cnt++; if( p->approx==0 ){ if( type!=SQLITE_INTEGER ){ kahanBabuskaNeumaierInit(p, p->iSum); p->approx = 1; kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0])); }else{ i64 x = p->iSum; if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){ p->iSum = x; }else{ p->ovrfl = 1; kahanBabuskaNeumaierInit(p, p->iSum); p->approx = 1; kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0])); } } }else{ if( type==SQLITE_INTEGER ){ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0])); }else{ p->ovrfl = 0; kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0])); } } } } #ifndef SQLITE_OMIT_WINDOWFUNC static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){ SumCtx *p; int type; assert( argc==1 ); UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); /* p is always non-NULL because sumStep() will have been called first ** to initialize it */ if( ALWAYS(p) && type!=SQLITE_NULL ){ assert( p->cnt>0 ); p->cnt--; if( !p->approx ){ p->iSum -= sqlite3_value_int64(argv[0]); }else if( type==SQLITE_INTEGER ){ i64 iVal = sqlite3_value_int64(argv[0]); if( iVal!=SMALLEST_INT64 ){ kahanBabuskaNeumaierStepInt64(p, -iVal); }else{ kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64); kahanBabuskaNeumaierStepInt64(p, 1); } }else{ kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0])); } } } #else # define sumInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void sumFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ if( p->approx ){ if( p->ovrfl ){ sqlite3_result_error(context,"integer overflow",-1); }else{ sqlite3_result_double(context, p->rSum+p->rErr); } }else{ sqlite3_result_int64(context, p->iSum); } } } static void avgFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ double r; if( p->approx ){ r = p->rSum+p->rErr; }else{ r = (double)(p->iSum); } sqlite3_result_double(context, r/(double)p->cnt); } } static void totalFinalize(sqlite3_context *context){ SumCtx *p; double r = 0.0; p = sqlite3_aggregate_context(context, 0); if( p ){ if( p->approx ){ r = p->rSum+p->rErr; }else{ r = (double)(p->iSum); } } sqlite3_result_double(context, r); } /* ** The following structure keeps track of state information for the ** count() aggregate function. */ typedef struct CountCtx CountCtx; struct CountCtx { i64 n; #ifdef SQLITE_DEBUG int bInverse; /* True if xInverse() ever called */ #endif }; /* ** Routines to implement the count() aggregate function. */ static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; } #ifndef SQLITE_OMIT_DEPRECATED /* The sqlite3_aggregate_count() function is deprecated. But just to make ** sure it still operates correctly, verify that its count agrees with our ** internal count when using count(*) and when the total count can be ** expressed as a 32-bit integer. */ assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse || p->n==sqlite3_aggregate_count(context) ); #endif } static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_int64(context, p ? p->n : 0); } #ifndef SQLITE_OMIT_WINDOWFUNC static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(ctx, sizeof(*p)); /* p is always non-NULL since countStep() will have been called first */ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){ p->n--; #ifdef SQLITE_DEBUG p->bInverse = 1; #endif } } #else # define countInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Routines to implement min() and max() aggregate functions. */ static void minmaxStep( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ Mem *pArg = (Mem *)argv[0]; Mem *pBest; UNUSED_PARAMETER(NotUsed); pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); if( !pBest ) return; if( sqlite3_value_type(pArg)==SQLITE_NULL ){ if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); }else if( pBest->flags ){ int max; int cmp; CollSeq *pColl = sqlite3GetFuncCollSeq(context); /* This step function is used for both the min() and max() aggregates, ** the only difference between the two being that the sense of the ** comparison is inverted. For the max() aggregate, the ** sqlite3_user_data() function returns (void *)-1. For min() it ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = sqlite3_user_data(context)!=0; cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ sqlite3VdbeMemCopy(pBest, pArg); }else{ sqlite3SkipAccumulatorLoad(context); } }else{ pBest->db = sqlite3_context_db_handle(context); sqlite3VdbeMemCopy(pBest, pArg); } } static void minMaxValueFinalize(sqlite3_context *context, int bValue){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); if( pRes ){ if( pRes->flags ){ sqlite3_result_value(context, pRes); } if( bValue==0 ) sqlite3VdbeMemRelease(pRes); } } #ifndef SQLITE_OMIT_WINDOWFUNC static void minMaxValue(sqlite3_context *context){ minMaxValueFinalize(context, 1); } #else # define minMaxValue 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void minMaxFinalize(sqlite3_context *context){ minMaxValueFinalize(context, 0); } /* ** group_concat(EXPR, ?SEPARATOR?) ** ** The SEPARATOR goes before the EXPR string. This is tragic. The ** groupConcatInverse() implementation would have been easier if the ** SEPARATOR were appended after EXPR. And the order is undocumented, ** so we could change it, in theory. But the old behavior has been ** around for so long that we dare not, for fear of breaking something. */ typedef struct { StrAccum str; /* The accumulated concatenation */ #ifndef SQLITE_OMIT_WINDOWFUNC int nAccum; /* Number of strings presently concatenated */ int nFirstSepLength; /* Used to detect separator length change */ /* If pnSepLengths!=0, refs an array of inter-string separator lengths, ** stored as actually incorporated into presently accumulated result. ** (Hence, its slots in use number nAccum-1 between method calls.) ** If pnSepLengths==0, nFirstSepLength is the length used throughout. */ int *pnSepLengths; #endif } GroupConcatCtx; static void groupConcatStep( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zVal; GroupConcatCtx *pGCC; const char *zSep; int nVal, nSep; assert( argc==1 || argc==2 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); if( pGCC ){ sqlite3 *db = sqlite3_context_db_handle(context); int firstTerm = pGCC->str.mxAlloc==0; pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; if( argc==1 ){ if( !firstTerm ){ sqlite3_str_appendchar(&pGCC->str, 1, ','); } #ifndef SQLITE_OMIT_WINDOWFUNC else{ pGCC->nFirstSepLength = 1; } #endif }else if( !firstTerm ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); if( zSep ){ sqlite3_str_append(&pGCC->str, zSep, nSep); } #ifndef SQLITE_OMIT_WINDOWFUNC else{ nSep = 0; } if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){ int *pnsl = pGCC->pnSepLengths; if( pnsl == 0 ){ /* First separator length variation seen, start tracking them. */ pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int)); if( pnsl!=0 ){ int i = 0, nA = pGCC->nAccum-1; while( inFirstSepLength; } }else{ pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int)); } if( pnsl!=0 ){ if( ALWAYS(pGCC->nAccum>0) ){ pnsl[pGCC->nAccum-1] = nSep; } pGCC->pnSepLengths = pnsl; }else{ sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM); } } #endif } #ifndef SQLITE_OMIT_WINDOWFUNC else{ pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]); } pGCC->nAccum += 1; #endif zVal = (char*)sqlite3_value_text(argv[0]); nVal = sqlite3_value_bytes(argv[0]); if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal); } } #ifndef SQLITE_OMIT_WINDOWFUNC static void groupConcatInverse( sqlite3_context *context, int argc, sqlite3_value **argv ){ GroupConcatCtx *pGCC; assert( argc==1 || argc==2 ); (void)argc; /* Suppress unused parameter warning */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); /* pGCC is always non-NULL since groupConcatStep() will have always ** run first to initialize it */ if( ALWAYS(pGCC) ){ int nVS; /* Must call sqlite3_value_text() to convert the argument into text prior ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */ (void)sqlite3_value_text(argv[0]); nVS = sqlite3_value_bytes(argv[0]); pGCC->nAccum -= 1; if( pGCC->pnSepLengths!=0 ){ assert(pGCC->nAccum >= 0); if( pGCC->nAccum>0 ){ nVS += *pGCC->pnSepLengths; memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1, (pGCC->nAccum-1)*sizeof(int)); } }else{ /* If removing single accumulated string, harmlessly over-do. */ nVS += pGCC->nFirstSepLength; } if( nVS>=(int)pGCC->str.nChar ){ pGCC->str.nChar = 0; }else{ pGCC->str.nChar -= nVS; memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar); } if( pGCC->str.nChar==0 ){ pGCC->str.mxAlloc = 0; sqlite3_free(pGCC->pnSepLengths); pGCC->pnSepLengths = 0; } } } #else # define groupConcatInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void groupConcatFinalize(sqlite3_context *context){ GroupConcatCtx *pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); if( pGCC ){ sqlite3ResultStrAccum(context, &pGCC->str); #ifndef SQLITE_OMIT_WINDOWFUNC sqlite3_free(pGCC->pnSepLengths); #endif } } #ifndef SQLITE_OMIT_WINDOWFUNC static void groupConcatValue(sqlite3_context *context){ GroupConcatCtx *pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); if( pGCC ){ StrAccum *pAccum = &pGCC->str; if( pAccum->accError==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(context); }else if( pAccum->accError==SQLITE_NOMEM ){ sqlite3_result_error_nomem(context); }else{ const char *zText = sqlite3_str_value(pAccum); sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT); } } } #else # define groupConcatValue 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** This routine does per-connection function registration. Most ** of the built-in functions above are part of the global function set. ** This routine only deals with those that are not global. */ SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){ int rc = sqlite3_overload_function(db, "MATCH", 2); assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } } /* ** Re-register the built-in LIKE functions. The caseSensitive ** parameter determines whether or not the LIKE operator is case ** sensitive. */ SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ FuncDef *pDef; struct compareInfo *pInfo; int flags; int nArg; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; flags = SQLITE_FUNC_LIKE; } for(nArg=2; nArg<=3; nArg++){ sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0); pDef->funcFlags |= flags; pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE; } } /* ** pExpr points to an expression which implements a function. If ** it is appropriate to apply the LIKE optimization to that function ** then set aWc[0] through aWc[2] to the wildcard characters and the ** escape character and then return TRUE. If the function is not a ** LIKE-style function then return FALSE. ** ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE ** operator if c is a string literal that is exactly one byte in length. ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is ** no ESCAPE clause. ** ** *pIsNocase is set to true if uppercase and lowercase are equivalent for ** the function (default for LIKE). If the function makes the distinction ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to ** false. */ SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; int nExpr; assert( pExpr!=0 ); assert( pExpr->op==TK_FUNCTION ); assert( ExprUseXList(pExpr) ); if( !pExpr->x.pList ){ return 0; } nExpr = pExpr->x.pList->nExpr; assert( !ExprHasProperty(pExpr, EP_IntValue) ); pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0); #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION if( pDef==0 ) return 0; #endif if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){ return 0; } /* The memcpy() statement assumes that the wildcard characters are ** the first three statements in the compareInfo structure. The ** asserts() that follow verify that assumption */ memcpy(aWc, pDef->pUserData, 3); assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); if( nExpr<3 ){ aWc[3] = 0; }else{ Expr *pEscape = pExpr->x.pList->a[2].pExpr; char *zEscape; if( pEscape->op!=TK_STRING ) return 0; assert( !ExprHasProperty(pEscape, EP_IntValue) ); zEscape = pEscape->u.zToken; if( zEscape[0]==0 || zEscape[1]!=0 ) return 0; if( zEscape[0]==aWc[0] ) return 0; if( zEscape[0]==aWc[1] ) return 0; aWc[3] = zEscape[0]; } *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; return 1; } /* Mathematical Constants */ #ifndef M_PI # define M_PI 3.141592653589793238462643383279502884 #endif #ifndef M_LN10 # define M_LN10 2.302585092994045684017991454684364208 #endif #ifndef M_LN2 # define M_LN2 0.693147180559945309417232121458176568 #endif /* Extra math functions that require linking with -lm */ #ifdef SQLITE_ENABLE_MATH_FUNCTIONS /* ** Implementation SQL functions: ** ** ceil(X) ** ceiling(X) ** floor(X) ** ** The sqlite3_user_data() pointer is a pointer to the libm implementation ** of the underlying C function. */ static void ceilingFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==1 ); switch( sqlite3_value_numeric_type(argv[0]) ){ case SQLITE_INTEGER: { sqlite3_result_int64(context, sqlite3_value_int64(argv[0])); break; } case SQLITE_FLOAT: { double (*x)(double) = (double(*)(double))sqlite3_user_data(context); sqlite3_result_double(context, x(sqlite3_value_double(argv[0]))); break; } default: { break; } } } /* ** On some systems, ceil() and floor() are intrinsic function. You are ** unable to take a pointer to these functions. Hence, we here wrap them ** in our own actual functions. */ static double xCeil(double x){ return ceil(x); } static double xFloor(double x){ return floor(x); } /* ** Some systems do not have log2() and log10() in their standard math ** libraries. */ #if defined(HAVE_LOG10) && HAVE_LOG10==0 # define log10(X) (0.4342944819032517867*log(X)) #endif #if defined(HAVE_LOG2) && HAVE_LOG2==0 # define log2(X) (1.442695040888963456*log(X)) #endif /* ** Implementation of SQL functions: ** ** ln(X) - natural logarithm ** log(X) - log X base 10 ** log10(X) - log X base 10 ** log(B,X) - log X base B */ static void logFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ double x, b, ans; assert( argc==1 || argc==2 ); switch( sqlite3_value_numeric_type(argv[0]) ){ case SQLITE_INTEGER: case SQLITE_FLOAT: x = sqlite3_value_double(argv[0]); if( x<=0.0 ) return; break; default: return; } if( argc==2 ){ switch( sqlite3_value_numeric_type(argv[0]) ){ case SQLITE_INTEGER: case SQLITE_FLOAT: b = log(x); if( b<=0.0 ) return; x = sqlite3_value_double(argv[1]); if( x<=0.0 ) return; break; default: return; } ans = log(x)/b; }else{ switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){ case 1: ans = log10(x); break; case 2: ans = log2(x); break; default: ans = log(x); break; } } sqlite3_result_double(context, ans); } /* ** Functions to converts degrees to radians and radians to degrees. */ static double degToRad(double x){ return x*(M_PI/180.0); } static double radToDeg(double x){ return x*(180.0/M_PI); } /* ** Implementation of 1-argument SQL math functions: ** ** exp(X) - Compute e to the X-th power */ static void math1Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ int type0; double v0, ans; double (*x)(double); assert( argc==1 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; v0 = sqlite3_value_double(argv[0]); x = (double(*)(double))sqlite3_user_data(context); ans = x(v0); sqlite3_result_double(context, ans); } /* ** Implementation of 2-argument SQL math functions: ** ** power(X,Y) - Compute X to the Y-th power */ static void math2Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ int type0, type1; double v0, v1, ans; double (*x)(double,double); assert( argc==2 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; type1 = sqlite3_value_numeric_type(argv[1]); if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return; v0 = sqlite3_value_double(argv[0]); v1 = sqlite3_value_double(argv[1]); x = (double(*)(double,double))sqlite3_user_data(context); ans = x(v0, v1); sqlite3_result_double(context, ans); } /* ** Implementation of 0-argument pi() function. */ static void piFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==0 ); (void)argv; sqlite3_result_double(context, M_PI); } #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ /* ** Implementation of sign(X) function. */ static void signFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int type0; double x; UNUSED_PARAMETER(argc); assert( argc==1 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; x = sqlite3_value_double(argv[0]); sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0); } #ifdef SQLITE_DEBUG /* ** Implementation of fpdecode(x,y,z) function. ** ** x is a real number that is to be decoded. y is the precision. ** z is the maximum real precision. */ static void fpdecodeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ FpDecode s; double x; int y, z; char zBuf[100]; UNUSED_PARAMETER(argc); assert( argc==3 ); x = sqlite3_value_double(argv[0]); y = sqlite3_value_int(argv[1]); z = sqlite3_value_int(argv[2]); sqlite3FpDecode(&s, x, y, z); if( s.isSpecial==2 ){ sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN"); }else{ sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP); } sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } #endif /* SQLITE_DEBUG */ /* ** All of the FuncDef structures in the aBuiltinFunc[] array above ** to the global function hash table. This occurs at start-time (as ** a consequence of calling sqlite3_initialize()). ** ** After this routine runs */ SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void){ /* ** The following array holds FuncDef structures for all of the functions ** defined in this file. ** ** The array cannot be constant since changes are made to the ** FuncDef.pHash elements at start-time. The elements of this array ** are read-only after initialization is complete. ** ** For peak efficiency, put the most frequently used function last. */ static FuncDef aBuiltinFunc[] = { /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/ #if !defined(SQLITE_UNTESTABLE) TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0), TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0), TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0), TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0), #endif /* !defined(SQLITE_UNTESTABLE) */ /***** Regular functions *****/ #ifdef SQLITE_SOUNDEX FUNCTION(soundex, 1, 0, 0, soundexFunc ), #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION SFUNCTION(load_extension, 1, 0, 0, loadExt ), SFUNCTION(load_extension, 2, 0, 0, loadExt ), #endif #if SQLITE_USER_AUTHENTICATION FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), #endif #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ), #endif FUNCTION(ltrim, 1, 1, 0, trimFunc ), FUNCTION(ltrim, 2, 1, 0, trimFunc ), FUNCTION(rtrim, 1, 2, 0, trimFunc ), FUNCTION(rtrim, 2, 2, 0, trimFunc ), FUNCTION(trim, 1, 3, 0, trimFunc ), FUNCTION(trim, 2, 3, 0, trimFunc ), FUNCTION(min, -1, 0, 1, minmaxFunc ), FUNCTION(min, 0, 0, 1, 0 ), WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), FUNCTION(max, -1, 1, 1, minmaxFunc ), FUNCTION(max, 0, 1, 1, 0 ), WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN), FUNCTION(instr, 2, 0, 0, instrFunc ), FUNCTION(printf, -1, 0, 0, printfFunc ), FUNCTION(format, -1, 0, 0, printfFunc ), FUNCTION(unicode, 1, 0, 0, unicodeFunc ), FUNCTION(char, -1, 0, 0, charFunc ), FUNCTION(abs, 1, 0, 0, absFunc ), #ifdef SQLITE_DEBUG FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ), #endif #ifndef SQLITE_OMIT_FLOATING_POINT FUNCTION(round, 1, 0, 0, roundFunc ), FUNCTION(round, 2, 0, 0, roundFunc ), #endif FUNCTION(upper, 1, 0, 0, upperFunc ), FUNCTION(lower, 1, 0, 0, lowerFunc ), FUNCTION(hex, 1, 0, 0, hexFunc ), FUNCTION(unhex, 1, 0, 0, unhexFunc ), FUNCTION(unhex, 2, 0, 0, unhexFunc ), INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ), VFUNCTION(random, 0, 0, 0, randomFunc ), VFUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ), DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), FUNCTION(quote, 1, 0, 0, quoteFunc ), VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), VFUNCTION(changes, 0, 0, 0, changes ), VFUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), FUNCTION(substr, 2, 0, 0, substrFunc ), FUNCTION(substr, 3, 0, 0, substrFunc ), FUNCTION(substring, 2, 0, 0, substrFunc ), FUNCTION(substring, 3, 0, 0, substrFunc ), WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0), WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0), WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0), WAGGREGATE(count, 0,0,0, countStep, countFinalize, countFinalize, countInverse, SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ), WAGGREGATE(count, 1,0,0, countStep, countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ), WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), #ifdef SQLITE_CASE_SENSITIVE_LIKE LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), #else LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), #endif #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION FUNCTION(unknown, -1, 0, 0, unknownFunc ), #endif FUNCTION(coalesce, 1, 0, 0, 0 ), FUNCTION(coalesce, 0, 0, 0, 0 ), #ifdef SQLITE_ENABLE_MATH_FUNCTIONS MFUNCTION(ceil, 1, xCeil, ceilingFunc ), MFUNCTION(ceiling, 1, xCeil, ceilingFunc ), MFUNCTION(floor, 1, xFloor, ceilingFunc ), #if SQLITE_HAVE_C99_MATH_FUNCS MFUNCTION(trunc, 1, trunc, ceilingFunc ), #endif FUNCTION(ln, 1, 0, 0, logFunc ), FUNCTION(log, 1, 1, 0, logFunc ), FUNCTION(log10, 1, 1, 0, logFunc ), FUNCTION(log2, 1, 2, 0, logFunc ), FUNCTION(log, 2, 0, 0, logFunc ), MFUNCTION(exp, 1, exp, math1Func ), MFUNCTION(pow, 2, pow, math2Func ), MFUNCTION(power, 2, pow, math2Func ), MFUNCTION(mod, 2, fmod, math2Func ), MFUNCTION(acos, 1, acos, math1Func ), MFUNCTION(asin, 1, asin, math1Func ), MFUNCTION(atan, 1, atan, math1Func ), MFUNCTION(atan2, 2, atan2, math2Func ), MFUNCTION(cos, 1, cos, math1Func ), MFUNCTION(sin, 1, sin, math1Func ), MFUNCTION(tan, 1, tan, math1Func ), MFUNCTION(cosh, 1, cosh, math1Func ), MFUNCTION(sinh, 1, sinh, math1Func ), MFUNCTION(tanh, 1, tanh, math1Func ), #if SQLITE_HAVE_C99_MATH_FUNCS MFUNCTION(acosh, 1, acosh, math1Func ), MFUNCTION(asinh, 1, asinh, math1Func ), MFUNCTION(atanh, 1, atanh, math1Func ), #endif MFUNCTION(sqrt, 1, sqrt, math1Func ), MFUNCTION(radians, 1, degToRad, math1Func ), MFUNCTION(degrees, 1, radToDeg, math1Func ), FUNCTION(pi, 0, 0, 0, piFunc ), #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ FUNCTION(sign, 1, 0, 0, signFunc ), INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ), INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ), }; #ifndef SQLITE_OMIT_ALTERTABLE sqlite3AlterFunctions(); #endif sqlite3WindowFunctions(); sqlite3RegisterDateTimeFunctions(); sqlite3RegisterJsonFunctions(); sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc)); #if 0 /* Enable to print out how the built-in functions are hashed */ { int i; FuncDef *p; for(i=0; iu.pHash){ int n = sqlite3Strlen30(p->zName); int h = p->zName[0] + n; assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); printf(" %s(%d)", p->zName, h); } printf("\n"); } } #endif } /************** End of func.c ************************************************/ /************** Begin file fkey.c ********************************************/ /* ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used by the compiler to add foreign key ** support to compiled SQL statements. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_FOREIGN_KEY #ifndef SQLITE_OMIT_TRIGGER /* ** Deferred and Immediate FKs ** -------------------------- ** ** Foreign keys in SQLite come in two flavours: deferred and immediate. ** If an immediate foreign key constraint is violated, ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current ** statement transaction rolled back. If a ** deferred foreign key constraint is violated, no action is taken ** immediately. However if the application attempts to commit the ** transaction before fixing the constraint violation, the attempt fails. ** ** Deferred constraints are implemented using a simple counter associated ** with the database handle. The counter is set to zero each time a ** database transaction is opened. Each time a statement is executed ** that causes a foreign key violation, the counter is incremented. Each ** time a statement is executed that removes an existing violation from ** the database, the counter is decremented. When the transaction is ** committed, the commit fails if the current value of the counter is ** greater than zero. This scheme has two big drawbacks: ** ** * When a commit fails due to a deferred foreign key constraint, ** there is no way to tell which foreign constraint is not satisfied, ** or which row it is not satisfied for. ** ** * If the database contains foreign key violations when the ** transaction is opened, this may cause the mechanism to malfunction. ** ** Despite these problems, this approach is adopted as it seems simpler ** than the alternatives. ** ** INSERT operations: ** ** I.1) For each FK for which the table is the child table, search ** the parent table for a match. If none is found increment the ** constraint counter. ** ** I.2) For each FK for which the table is the parent table, ** search the child table for rows that correspond to the new ** row in the parent table. Decrement the counter for each row ** found (as the constraint is now satisfied). ** ** DELETE operations: ** ** D.1) For each FK for which the table is the child table, ** search the parent table for a row that corresponds to the ** deleted row in the child table. If such a row is not found, ** decrement the counter. ** ** D.2) For each FK for which the table is the parent table, search ** the child table for rows that correspond to the deleted row ** in the parent table. For each found increment the counter. ** ** UPDATE operations: ** ** An UPDATE command requires that all 4 steps above are taken, but only ** for FK constraints for which the affected columns are actually ** modified (values must be compared at runtime). ** ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. ** This simplifies the implementation a bit. ** ** For the purposes of immediate FK constraints, the OR REPLACE conflict ** resolution is considered to delete rows before the new row is inserted. ** If a delete caused by OR REPLACE violates an FK constraint, an exception ** is thrown, even if the FK constraint would be satisfied after the new ** row is inserted. ** ** Immediate constraints are usually handled similarly. The only difference ** is that the counter used is stored as part of each individual statement ** object (struct Vdbe). If, after the statement has run, its immediate ** constraint counter is greater than zero, ** it returns SQLITE_CONSTRAINT_FOREIGNKEY ** and the statement transaction is rolled back. An exception is an INSERT ** statement that inserts a single row only (no triggers). In this case, ** instead of using a counter, an exception is thrown immediately if the ** INSERT violates a foreign key constraint. This is necessary as such ** an INSERT does not open a statement transaction. ** ** TODO: How should dropping a table be handled? How should renaming a ** table be handled? ** ** ** Query API Notes ** --------------- ** ** Before coding an UPDATE or DELETE row operation, the code-generator ** for those two operations needs to know whether or not the operation ** requires any FK processing and, if so, which columns of the original ** row are required by the FK processing VDBE code (i.e. if FKs were ** implemented using triggers, which of the old.* columns would be ** accessed). No information is required by the code-generator before ** coding an INSERT operation. The functions used by the UPDATE/DELETE ** generation code to query for this information are: ** ** sqlite3FkRequired() - Test to see if FK processing is required. ** sqlite3FkOldmask() - Query for the set of required old.* columns. ** ** ** Externally accessible module functions ** -------------------------------------- ** ** sqlite3FkCheck() - Check for foreign key violations. ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. ** sqlite3FkDelete() - Delete an FKey structure. */ /* ** VDBE Calling Convention ** ----------------------- ** ** Example: ** ** For the following INSERT statement: ** ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); ** INSERT INTO t1 VALUES(1, 2, 3.1); ** ** Register (x): 2 (type integer) ** Register (x+1): 1 (type integer) ** Register (x+2): NULL (type NULL) ** Register (x+3): 3.1 (type real) */ /* ** A foreign key constraint requires that the key columns in the parent ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. ** Given that pParent is the parent table for foreign key constraint pFKey, ** search the schema for a unique index on the parent key columns. ** ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx ** is set to point to the unique index. ** ** If the parent key consists of a single column (the foreign key constraint ** is not a composite foreign key), output variable *paiCol is set to NULL. ** Otherwise, it is set to point to an allocated array of size N, where ** N is the number of columns in the parent key. The first element of the ** array is the index of the child table column that is mapped by the FK ** constraint to the parent table column stored in the left-most column ** of index *ppIdx. The second element of the array is the index of the ** child table column that corresponds to the second left-most column of ** *ppIdx, and so on. ** ** If the required index cannot be found, either because: ** ** 1) The named parent key columns do not exist, or ** ** 2) The named parent key columns do exist, but are not subject to a ** UNIQUE or PRIMARY KEY constraint, or ** ** 3) No parent key columns were provided explicitly as part of the ** foreign key definition, and the parent table does not have a ** PRIMARY KEY, or ** ** 4) No parent key columns were provided explicitly as part of the ** foreign key definition, and the PRIMARY KEY of the parent table ** consists of a different number of columns to the child key in ** the child table. ** ** then non-zero is returned, and a "foreign key mismatch" error loaded ** into pParse. If an OOM error occurs, non-zero is returned and the ** pParse->db->mallocFailed flag is set. */ SQLITE_PRIVATE int sqlite3FkLocateIndex( Parse *pParse, /* Parse context to store any error in */ Table *pParent, /* Parent table of FK constraint pFKey */ FKey *pFKey, /* Foreign key to find index for */ Index **ppIdx, /* OUT: Unique index on parent table */ int **paiCol /* OUT: Map of index columns in pFKey */ ){ Index *pIdx = 0; /* Value to return via *ppIdx */ int *aiCol = 0; /* Value to return via *paiCol */ int nCol = pFKey->nCol; /* Number of columns in parent key */ char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ /* The caller is responsible for zeroing output parameters. */ assert( ppIdx && *ppIdx==0 ); assert( !paiCol || *paiCol==0 ); assert( pParse ); /* If this is a non-composite (single column) foreign key, check if it ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx ** and *paiCol set to zero and return early. ** ** Otherwise, for a composite foreign key (more than one column), allocate ** space for the aiCol array (returned via output parameter *paiCol). ** Non-composite foreign keys do not require the aiCol array. */ if( nCol==1 ){ /* The FK maps to the IPK if any of the following are true: ** ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly ** mapped to the primary key of table pParent, or ** 2) The FK is explicitly mapped to a column declared as INTEGER ** PRIMARY KEY. */ if( pParent->iPKey>=0 ){ if( !zKey ) return 0; if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){ return 0; } } }else if( paiCol ){ assert( nCol>1 ); aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); if( !aiCol ) return 1; *paiCol = aiCol; } for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number ** of columns. If each indexed column corresponds to a foreign key ** column of pFKey, then this index is a winner. */ if( zKey==0 ){ /* If zKey is NULL, then this foreign key is implicitly mapped to ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be ** identified by the test. */ if( IsPrimaryKeyIndex(pIdx) ){ if( aiCol ){ int i; for(i=0; iaCol[i].iFrom; } break; } }else{ /* If zKey is non-NULL, then this foreign key was declared to ** map to an explicit list of columns in table pParent. Check if this ** index matches those columns. Also, check that the index uses ** the default collation sequences for each column. */ int i, j; for(i=0; iaiColumn[i]; /* Index of column in parent tbl */ const char *zDfltColl; /* Def. collation for column */ char *zIdxCol; /* Name of indexed column */ if( iCol<0 ) break; /* No foreign keys against expression indexes */ /* If the index uses a collation sequence that is different from ** the default collation sequence for the column, this index is ** unusable. Bail out early in this case. */ zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]); if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; zIdxCol = pParent->aCol[iCol].zCnName; for(j=0; jaCol[j].zCol, zIdxCol)==0 ){ if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; break; } } if( j==nCol ) break; } if( i==nCol ) break; /* pIdx is usable */ } } } if( !pIdx ){ if( !pParse->disableTriggers ){ sqlite3ErrorMsg(pParse, "foreign key mismatch - \"%w\" referencing \"%w\"", pFKey->pFrom->zName, pFKey->zTo); } sqlite3DbFree(pParse->db, aiCol); return 1; } *ppIdx = pIdx; return 0; } /* ** This function is called when a row is inserted into or deleted from the ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed ** on the child table of pFKey, this function is invoked twice for each row ** affected - once to "delete" the old row, and then again to "insert" the ** new row. ** ** Each time it is called, this function generates VDBE code to locate the ** row in the parent table that corresponds to the row being inserted into ** or deleted from the child table. If the parent row can be found, no ** special action is taken. Otherwise, if the parent row can *not* be ** found in the parent table: ** ** Operation | FK type | Action taken ** -------------------------------------------------------------------------- ** INSERT immediate Increment the "immediate constraint counter". ** ** DELETE immediate Decrement the "immediate constraint counter". ** ** INSERT deferred Increment the "deferred constraint counter". ** ** DELETE deferred Decrement the "deferred constraint counter". ** ** These operations are identified in the comment at the top of this file ** (fkey.c) as "I.1" and "D.1". */ static void fkLookupParent( Parse *pParse, /* Parse context */ int iDb, /* Index of database housing pTab */ Table *pTab, /* Parent table of FK pFKey */ Index *pIdx, /* Unique index on parent key columns in pTab */ FKey *pFKey, /* Foreign key constraint */ int *aiCol, /* Map from parent key columns to child table columns */ int regData, /* Address of array containing child table row */ int nIncr, /* Increment constraint counter by this */ int isIgnore /* If true, pretend pTab contains all NULL values */ ){ int i; /* Iterator variable */ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ int iCur = pParse->nTab - 1; /* Cursor number to use */ int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ sqlite3VdbeVerifyAbortable(v, (!pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); /* If nIncr is less than zero, then check at runtime if there are any ** outstanding constraints to resolve. If there are not, there is no need ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ if( nIncr<0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); VdbeCoverage(v); } for(i=0; inCol; i++){ int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); } if( isIgnore==0 ){ if( pIdx==0 ){ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY ** column of the parent table (table pTab). */ int iMustBeInt; /* Address of MustBeInt instruction */ int regTemp = sqlite3GetTempReg(pParse); /* Invoke MustBeInt to coerce the child key value to an integer (i.e. ** apply the affinity of the parent key). If this fails, then there ** is no matching parent key. Before using MustBeInt, make a copy of ** the value. Otherwise, the value inserted into the child key column ** will have INTEGER affinity applied to it, which may not be correct. */ sqlite3VdbeAddOp2(v, OP_SCopy, sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); VdbeCoverage(v); /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. */ if( pTab==pFKey->pFrom && nIncr==1 ){ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); } sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); sqlite3VdbeGoto(v, iOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); sqlite3VdbeJumpHere(v, iMustBeInt); sqlite3ReleaseTempReg(pParse, regTemp); }else{ int nCol = pFKey->nCol; int regTemp = sqlite3GetTempRange(pParse, nCol); sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); for(i=0; ipFrom, aiCol[i])+1+regData, regTemp+i); } /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. ** ** If any of the parent-key values are NULL, then the row cannot match ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any ** of the parent-key values are NULL (at this point it is known that ** none of the child key values are). */ if( pTab==pFKey->pFrom && nIncr==1 ){ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; for(i=0; ipFrom,aiCol[i]) +1+regData; int iParent = 1+regData; iParent += sqlite3TableColumnToStorage(pIdx->pTable, pIdx->aiColumn[i]); assert( pIdx->aiColumn[i]>=0 ); assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); } sqlite3VdbeGoto(v, iOk); } sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0, sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol); VdbeCoverage(v); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite ){ /* Special case: If this is an INSERT statement that will insert exactly ** one row into the table, raise a constraint immediately instead of ** incrementing a counter. This is necessary as the VM code is being ** generated for will not open a statement transaction. */ assert( nIncr==1 ); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); }else{ if( nIncr>0 && pFKey->isDeferred==0 ){ sqlite3MayAbort(pParse); } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); } sqlite3VdbeResolveLabel(v, iOk); sqlite3VdbeAddOp1(v, OP_Close, iCur); } /* ** Return an Expr object that refers to a memory register corresponding ** to column iCol of table pTab. ** ** regBase is the first of an array of register that contains the data ** for pTab. regBase itself holds the rowid. regBase+1 holds the first ** column. regBase+2 holds the second column, and so forth. */ static Expr *exprTableRegister( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* The table whose content is at r[regBase]... */ int regBase, /* Contents of table pTab */ i16 iCol /* Which column of pTab is desired */ ){ Expr *pExpr; Column *pCol; const char *zColl; sqlite3 *db = pParse->db; pExpr = sqlite3Expr(db, TK_REGISTER, 0); if( pExpr ){ if( iCol>=0 && iCol!=pTab->iPKey ){ pCol = &pTab->aCol[iCol]; pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; pExpr->affExpr = pCol->affinity; zColl = sqlite3ColumnColl(pCol); if( zColl==0 ) zColl = db->pDfltColl->zName; pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); }else{ pExpr->iTable = regBase; pExpr->affExpr = SQLITE_AFF_INTEGER; } } return pExpr; } /* ** Return an Expr object that refers to column iCol of table pTab which ** has cursor iCur. */ static Expr *exprTableColumn( sqlite3 *db, /* The database connection */ Table *pTab, /* The table whose column is desired */ int iCursor, /* The open cursor on the table */ i16 iCol /* The column that is wanted */ ){ Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); if( pExpr ){ assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pTab; pExpr->iTable = iCursor; pExpr->iColumn = iCol; } return pExpr; } /* ** This function is called to generate code executed when a row is deleted ** from the parent table of foreign key constraint pFKey and, if pFKey is ** deferred, when a row is inserted into the same table. When generating ** code for an SQL UPDATE operation, this function may be called twice - ** once to "delete" the old row and once to "insert" the new row. ** ** Parameter nIncr is passed -1 when inserting a row (as this may decrease ** the number of FK violations in the db) or +1 when deleting one (as this ** may increase the number of FK constraint problems). ** ** The code generated by this function scans through the rows in the child ** table that correspond to the parent table row being deleted or inserted. ** For each child row found, one of the following actions is taken: ** ** Operation | FK type | Action taken ** -------------------------------------------------------------------------- ** DELETE immediate Increment the "immediate constraint counter". ** ** INSERT immediate Decrement the "immediate constraint counter". ** ** DELETE deferred Increment the "deferred constraint counter". ** ** INSERT deferred Decrement the "deferred constraint counter". ** ** These operations are identified in the comment at the top of this file ** (fkey.c) as "I.2" and "D.2". */ static void fkScanChildren( Parse *pParse, /* Parse context */ SrcList *pSrc, /* The child table to be scanned */ Table *pTab, /* The parent table */ Index *pIdx, /* Index on parent covering the foreign key */ FKey *pFKey, /* The foreign key linking pSrc to pTab */ int *aiCol, /* Map from pIdx cols to child table cols */ int regData, /* Parent row data starts here */ int nIncr /* Amount to increment deferred counter by */ ){ sqlite3 *db = pParse->db; /* Database handle */ int i; /* Iterator variable */ Expr *pWhere = 0; /* WHERE clause to scan with */ NameContext sNameContext; /* Context used to resolve WHERE clause */ WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ int iFkIfZero = 0; /* Address of OP_FkIfZero */ Vdbe *v = sqlite3GetVdbe(pParse); assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); VdbeCoverage(v); } /* Create an Expr object representing an SQL expression like: ** ** = AND = ... ** ** The collation sequence used for the comparison should be that of ** the parent key columns. The affinity of the parent key column should ** be applied to each child key value before the comparison takes place. */ for(i=0; inCol; i++){ Expr *pLeft; /* Value from parent table row */ Expr *pRight; /* Column ref to child table */ Expr *pEq; /* Expression (pLeft = pRight) */ i16 iCol; /* Index of column in child table */ const char *zCol; /* Name of column in child table */ iCol = pIdx ? pIdx->aiColumn[i] : -1; pLeft = exprTableRegister(pParse, pTab, regData, iCol); iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iCol>=0 ); zCol = pFKey->pFrom->aCol[iCol].zCnName; pRight = sqlite3Expr(db, TK_ID, zCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); } /* If the child table is the same as the parent table, then add terms ** to the WHERE clause that prevent this entry from being scanned. ** The added WHERE clause terms are like this: ** ** $current_rowid!=rowid ** NOT( $current_a==a AND $current_b==b AND ... ) ** ** The first form is used for rowid tables. The second form is used ** for WITHOUT ROWID tables. In the second form, the *parent* key is ** (a,b,...). Either the parent or primary key could be used to ** uniquely identify the current row, but the parent key is more convenient ** as the required values have already been loaded into registers ** by the caller. */ if( pTab==pFKey->pFrom && nIncr>0 ){ Expr *pNe; /* Expression (pLeft != pRight) */ Expr *pLeft; /* Value from parent table row */ Expr *pRight; /* Column ref to child table */ if( HasRowid(pTab) ){ pLeft = exprTableRegister(pParse, pTab, regData, -1); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); }else{ Expr *pEq, *pAll = 0; assert( pIdx!=0 ); for(i=0; inKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; assert( iCol>=0 ); pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName); pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); pAll = sqlite3ExprAnd(pParse, pAll, pEq); } pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); } pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); } /* Resolve the references in the WHERE clause. */ memset(&sNameContext, 0, sizeof(NameContext)); sNameContext.pSrcList = pSrc; sNameContext.pParse = pParse; sqlite3ResolveExprNames(&sNameContext, pWhere); /* Create VDBE to loop through the entries in pSrc that match the WHERE ** clause. For each row found, increment either the deferred or immediate ** foreign key constraint counter. */ if( pParse->nErr==0 ){ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0); sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); if( pWInfo ){ sqlite3WhereEnd(pWInfo); } } /* Clean up the WHERE clause constructed above. */ sqlite3ExprDelete(db, pWhere); if( iFkIfZero ){ sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); } } /* ** This function returns a linked list of FKey objects (connected by ** FKey.pNextTo) holding all children of table pTab. For example, ** given the following schema: ** ** CREATE TABLE t1(a PRIMARY KEY); ** CREATE TABLE t2(b REFERENCES t1(a); ** ** Calling this function with table "t1" as an argument returns a pointer ** to the FKey structure representing the foreign key constraint on table ** "t2". Calling this function with "t2" as the argument would return a ** NULL pointer (as there are no FK constraints for which t2 is the parent ** table). */ SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){ return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); } /* ** The second argument is a Trigger structure allocated by the ** fkActionTrigger() routine. This function deletes the Trigger structure ** and all of its sub-components. ** ** The Trigger structure or any of its sub-components may be allocated from ** the lookaside buffer belonging to database handle dbMem. */ static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ if( p ){ TriggerStep *pStep = p->step_list; sqlite3ExprDelete(dbMem, pStep->pWhere); sqlite3ExprListDelete(dbMem, pStep->pExprList); sqlite3SelectDelete(dbMem, pStep->pSelect); sqlite3ExprDelete(dbMem, p->pWhen); sqlite3DbFree(dbMem, p); } } /* ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys ** in a particular database. This needs to happen when the schema ** changes. */ SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){ HashElem *k; Hash *pHash = &db->aDb[iDb].pSchema->tblHash; for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){ Table *pTab = sqliteHashData(k); FKey *pFKey; if( !IsOrdinaryTable(pTab) ) continue; for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0; fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0; } } } /* ** This function is called to generate code that runs when table pTab is ** being dropped from the database. The SrcList passed as the second argument ** to this function contains a single entry guaranteed to resolve to ** table pTab. ** ** Normally, no code is required. However, if either ** ** (a) The table is the parent table of a FK constraint, or ** (b) The table is the child table of a deferred FK constraint and it is ** determined at runtime that there are outstanding deferred FK ** constraint violations in the database, ** ** then the equivalent of "DELETE FROM " is executed before dropping ** the table from the database. Triggers are disabled while running this ** DELETE, but foreign key actions are not. */ SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ sqlite3 *db = pParse->db; if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){ int iSkip = 0; Vdbe *v = sqlite3GetVdbe(pParse); assert( v ); /* VDBE has already been allocated */ assert( IsOrdinaryTable(pTab) ); if( sqlite3FkReferences(pTab)==0 ){ /* Search for a deferred foreign key constraint for which this table ** is the child table. If one cannot be found, return without ** generating any VDBE code. If one can be found, then jump over ** the entire DELETE if there are no outstanding deferred constraints ** when this statement is run. */ FKey *p; for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; } if( !p ) return; iSkip = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); } pParse->disableTriggers = 1; sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); pParse->disableTriggers = 0; /* If the DELETE has generated immediate foreign key constraint ** violations, halt the VDBE and return an error at this point, before ** any modifications to the schema are made. This is because statement ** transactions are not able to rollback schema changes. ** ** If the SQLITE_DeferFKs flag is set, then this is not required, as ** the statement transaction will not be rolled back even if FK ** constraints are violated. */ if( (db->flags & SQLITE_DeferFKs)==0 ){ sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); } if( iSkip ){ sqlite3VdbeResolveLabel(v, iSkip); } } } /* ** The second argument points to an FKey object representing a foreign key ** for which pTab is the child table. An UPDATE statement against pTab ** is currently being processed. For each column of the table that is ** actually updated, the corresponding element in the aChange[] array ** is zero or greater (if a column is unmodified the corresponding element ** is set to -1). If the rowid column is modified by the UPDATE statement ** the bChngRowid argument is non-zero. ** ** This function returns true if any of the columns that are part of the ** child key for FK constraint *p are modified. */ static int fkChildIsModified( Table *pTab, /* Table being updated */ FKey *p, /* Foreign key for which pTab is the child */ int *aChange, /* Array indicating modified columns */ int bChngRowid /* True if rowid is modified by this update */ ){ int i; for(i=0; inCol; i++){ int iChildKey = p->aCol[i].iFrom; if( aChange[iChildKey]>=0 ) return 1; if( iChildKey==pTab->iPKey && bChngRowid ) return 1; } return 0; } /* ** The second argument points to an FKey object representing a foreign key ** for which pTab is the parent table. An UPDATE statement against pTab ** is currently being processed. For each column of the table that is ** actually updated, the corresponding element in the aChange[] array ** is zero or greater (if a column is unmodified the corresponding element ** is set to -1). If the rowid column is modified by the UPDATE statement ** the bChngRowid argument is non-zero. ** ** This function returns true if any of the columns that are part of the ** parent key for FK constraint *p are modified. */ static int fkParentIsModified( Table *pTab, FKey *p, int *aChange, int bChngRowid ){ int i; for(i=0; inCol; i++){ char *zKey = p->aCol[i].zCol; int iKey; for(iKey=0; iKeynCol; iKey++){ if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ Column *pCol = &pTab->aCol[iKey]; if( zKey ){ if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1; }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ return 1; } } } } return 0; } /* ** Return true if the parser passed as the first argument is being ** used to code a trigger that is really a "SET NULL" action belonging ** to trigger pFKey. */ static int isSetNullAction(Parse *pParse, FKey *pFKey){ Parse *pTop = sqlite3ParseToplevel(pParse); if( pTop->pTriggerPrg ){ Trigger *p = pTop->pTriggerPrg->pTrigger; if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) ){ return 1; } } return 0; } /* ** This function is called when inserting, deleting or updating a row of ** table pTab to generate VDBE code to perform foreign key constraint ** processing for the operation. ** ** For a DELETE operation, parameter regOld is passed the index of the ** first register in an array of (pTab->nCol+1) registers containing the ** rowid of the row being deleted, followed by each of the column values ** of the row being deleted, from left to right. Parameter regNew is passed ** zero in this case. ** ** For an INSERT operation, regOld is passed zero and regNew is passed the ** first register of an array of (pTab->nCol+1) registers containing the new ** row data. ** ** For an UPDATE operation, this function is called twice. Once before ** the original record is deleted from the table using the calling convention ** described for DELETE. Then again after the original record is deleted ** but before the new record is inserted using the INSERT convention. */ SQLITE_PRIVATE void sqlite3FkCheck( Parse *pParse, /* Parse context */ Table *pTab, /* Row is being deleted from this table */ int regOld, /* Previous row data is stored here */ int regNew, /* New row data is stored here */ int *aChange, /* Array indicating UPDATEd columns (or 0) */ int bChngRowid /* True if rowid is UPDATEd */ ){ sqlite3 *db = pParse->db; /* Database handle */ FKey *pFKey; /* Used to iterate through FKs */ int iDb; /* Index of database containing pTab */ const char *zDb; /* Name of database containing pTab */ int isIgnoreErrors = pParse->disableTriggers; /* Exactly one of regOld and regNew should be non-zero. */ assert( (regOld==0)!=(regNew==0) ); /* If foreign-keys are disabled, this function is a no-op. */ if( (db->flags&SQLITE_ForeignKeys)==0 ) return; if( !IsOrdinaryTable(pTab) ) return; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zDb = db->aDb[iDb].zDbSName; /* Loop through all the foreign key constraints for which pTab is the ** child table (the table that the foreign key definition is part of). */ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ Table *pTo; /* Parent table of foreign key pFKey */ Index *pIdx = 0; /* Index on key columns in pTo */ int *aiFree = 0; int *aiCol; int iCol; int i; int bIgnore = 0; if( aChange && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ continue; } /* Find the parent table of this foreign key. Also find a unique index ** on the parent key columns in the parent table. If either of these ** schema items cannot be located, set an error in pParse and return ** early. */ if( pParse->disableTriggers ){ pTo = sqlite3FindTable(db, pFKey->zTo, zDb); }else{ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); } if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); if( !isIgnoreErrors || db->mallocFailed ) return; if( pTo==0 ){ /* If isIgnoreErrors is true, then a table is being dropped. In this ** case SQLite runs a "DELETE FROM xxx" on the table being dropped ** before actually dropping it in order to check FK constraints. ** If the parent table of an FK constraint on the current table is ** missing, behave as if it is empty. i.e. decrement the relevant ** FK counter for each row of the current table with non-NULL keys. */ Vdbe *v = sqlite3GetVdbe(pParse); int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; for(i=0; inCol; i++){ int iFromCol, iReg; iFromCol = pFKey->aCol[i].iFrom; iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); } continue; } assert( pFKey->nCol==1 || (aiFree && pIdx) ); if( aiFree ){ aiCol = aiFree; }else{ iCol = pFKey->aCol[0].iFrom; aiCol = &iCol; } for(i=0; inCol; i++){ if( aiCol[i]==pTab->iPKey ){ aiCol[i] = -1; } assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Request permission to read the parent key columns. If the ** authorization callback returns SQLITE_IGNORE, behave as if any ** values read from the parent table are NULL. */ if( db->xAuth ){ int rcauth; char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName; rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); bIgnore = (rcauth==SQLITE_IGNORE); } #endif } /* Take a shared-cache advisory read-lock on the parent table. Allocate ** a cursor to use to search the unique index on the parent key columns ** in the parent table. */ sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); pParse->nTab++; if( regOld!=0 ){ /* A row is being removed from the child table. Search for the parent. ** If the parent does not exist, removing the child row resolves an ** outstanding foreign key constraint violation. */ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); } if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ /* A row is being added to the child table. If a parent row cannot ** be found, adding the child row has violated the FK constraint. ** ** If this operation is being performed as part of a trigger program ** that is actually a "SET NULL" action belonging to this very ** foreign key, then omit this scan altogether. As all child key ** values are guaranteed to be NULL, it is not possible for adding ** this row to cause an FK violation. */ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); } sqlite3DbFree(db, aiFree); } /* Loop through all the foreign key constraints that refer to this table. ** (the "child" constraints) */ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ Index *pIdx = 0; /* Foreign key index for pFKey */ SrcList *pSrc; int *aiCol = 0; if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ continue; } if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite ){ assert( regOld==0 && regNew!=0 ); /* Inserting a single row into a parent table cannot cause (or fix) ** an immediate foreign key violation. So do nothing in this case. */ continue; } if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ if( !isIgnoreErrors || db->mallocFailed ) return; continue; } assert( aiCol || pFKey->nCol==1 ); /* Create a SrcList structure containing the child table. We need the ** child table as a SrcList for sqlite3WhereBegin() */ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); if( pSrc ){ SrcItem *pItem = pSrc->a; pItem->pTab = pFKey->pFrom; pItem->zName = pFKey->pFrom->zName; pItem->pTab->nTabRef++; pItem->iCursor = pParse->nTab++; if( regNew!=0 ){ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); } if( regOld!=0 ){ int eAction = pFKey->aAction[aChange!=0]; fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); /* If this is a deferred FK constraint, or a CASCADE or SET NULL ** action applies, then any foreign key violations caused by ** removing the parent key will be rectified by the action trigger. ** So do not set the "may-abort" flag in this case. ** ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the ** may-abort flag will eventually be set on this statement anyway ** (when this function is called as part of processing the UPDATE ** within the action trigger). ** ** Note 2: At first glance it may seem like SQLite could simply omit ** all OP_FkCounter related scans when either CASCADE or SET NULL ** applies. The trouble starts if the CASCADE or SET NULL action ** trigger causes other triggers or action rules attached to the ** child table to fire. In these cases the fk constraint counters ** might be set incorrectly if any OP_FkCounter related scans are ** omitted. */ if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ sqlite3MayAbort(pParse); } } pItem->zName = 0; sqlite3SrcListDelete(db, pSrc); } sqlite3DbFree(db, aiCol); } } #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) /* ** This function is called before generating code to update or delete a ** row contained in table pTab. */ SQLITE_PRIVATE u32 sqlite3FkOldmask( Parse *pParse, /* Parse context */ Table *pTab /* Table being modified */ ){ u32 mask = 0; if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ FKey *p; int i; for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ for(i=0; inCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); } for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ Index *pIdx = 0; sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); if( pIdx ){ for(i=0; inKeyCol; i++){ assert( pIdx->aiColumn[i]>=0 ); mask |= COLUMN_MASK(pIdx->aiColumn[i]); } } } } return mask; } /* ** This function is called before generating code to update or delete a ** row contained in table pTab. If the operation is a DELETE, then ** parameter aChange is passed a NULL value. For an UPDATE, aChange points ** to an array of size N, where N is the number of columns in table pTab. ** If the i'th column is not modified by the UPDATE, then the corresponding ** entry in the aChange[] array is set to -1. If the column is modified, ** the value is 0 or greater. Parameter chngRowid is set to true if the ** UPDATE statement modifies the rowid fields of the table. ** ** If any foreign key processing will be required, this function returns ** non-zero. If there is no foreign key related processing, this function ** returns zero. ** ** For an UPDATE, this function returns 2 if: ** ** * There are any FKs for which pTab is the child and the parent table ** and any FK processing at all is required (even of a different FK), or ** ** * the UPDATE modifies one or more parent keys for which the action is ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). ** ** Or, assuming some other foreign key processing is required, 1. */ SQLITE_PRIVATE int sqlite3FkRequired( Parse *pParse, /* Parse context */ Table *pTab, /* Table being modified */ int *aChange, /* Non-NULL for UPDATE operations */ int chngRowid /* True for UPDATE that affects rowid */ ){ int eRet = 1; /* Value to return if bHaveFK is true */ int bHaveFK = 0; /* If FK processing is required */ if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ if( !aChange ){ /* A DELETE operation. Foreign key processing is required if the ** table in question is either the child or parent table for any ** foreign key constraint. */ bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey); }else{ /* This is an UPDATE. Foreign key processing is only required if the ** operation modifies one or more child or parent key columns. */ FKey *p; /* Check if any child key columns are being modified. */ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; bHaveFK = 1; } } /* Check if any parent key columns are being modified. */ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ if( p->aAction[1]!=OE_None ) return 2; bHaveFK = 1; } } } } return bHaveFK ? eRet : 0; } /* ** This function is called when an UPDATE or DELETE operation is being ** compiled on table pTab, which is the parent table of foreign-key pFKey. ** If the current operation is an UPDATE, then the pChanges parameter is ** passed a pointer to the list of columns being modified. If it is a ** DELETE, pChanges is passed a NULL pointer. ** ** It returns a pointer to a Trigger structure containing a trigger ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. ** If the action is "NO ACTION" then a NULL pointer is returned (these actions ** require no special handling by the triggers sub-system, code for them is ** created by fkScanChildren()). ** ** For example, if pFKey is the foreign key and pTab is table "p" in ** the following schema: ** ** CREATE TABLE p(pk PRIMARY KEY); ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); ** ** then the returned trigger structure is equivalent to: ** ** CREATE TRIGGER ... DELETE ON p BEGIN ** DELETE FROM c WHERE ck = old.pk; ** END; ** ** The returned pointer is cached as part of the foreign key object. It ** is eventually freed along with the rest of the foreign key object by ** sqlite3FkDelete(). */ static Trigger *fkActionTrigger( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated or deleted from */ FKey *pFKey, /* Foreign key to get action for */ ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ ){ sqlite3 *db = pParse->db; /* Database handle */ int action; /* One of OE_None, OE_Cascade etc. */ Trigger *pTrigger; /* Trigger definition to return */ int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ action = pFKey->aAction[iAction]; if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ return 0; } pTrigger = pFKey->apTrigger[iAction]; if( action!=OE_None && !pTrigger ){ char const *zFrom; /* Name of child table */ int nFrom; /* Length in bytes of zFrom */ Index *pIdx = 0; /* Parent key index for this FK */ int *aiCol = 0; /* child table cols -> parent key cols */ TriggerStep *pStep = 0; /* First (only) step of trigger program */ Expr *pWhere = 0; /* WHERE clause of trigger step */ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ int i; /* Iterator variable */ Expr *pWhen = 0; /* WHEN clause for the trigger */ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; assert( aiCol || pFKey->nCol==1 ); for(i=0; inCol; i++){ Token tOld = { "old", 3 }; /* Literal "old" token */ Token tNew = { "new", 3 }; /* Literal "new" token */ Token tFromCol; /* Name of column in child table */ Token tToCol; /* Name of column in parent table */ int iFromCol; /* Idx of column in child table */ Expr *pEq; /* tFromCol = OLD.tToCol */ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iFromCol>=0 ); assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKeynCol) ); assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); sqlite3TokenInit(&tToCol, pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName); sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName); /* Create the expression "OLD.zToCol = zFromCol". It is important ** that the "OLD.zToCol" term is on the LHS of the = operator, so ** that the affinity and collation sequence associated with the ** parent table are used for the comparison. */ pEq = sqlite3PExpr(pParse, TK_EQ, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) ); pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); /* For ON UPDATE, construct the next term of the WHEN clause. ** The final WHEN clause will be like this: ** ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) */ if( pChanges ){ pEq = sqlite3PExpr(pParse, TK_IS, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) ); pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); } if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ Expr *pNew; if( action==OE_Cascade ){ pNew = sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); }else if( action==OE_SetDflt ){ Column *pCol = pFKey->pFrom->aCol + iFromCol; Expr *pDflt; if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); pDflt = 0; }else{ pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol); } if( pDflt ){ pNew = sqlite3ExprDup(db, pDflt, 0); }else{ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); } }else{ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); } pList = sqlite3ExprListAppend(pParse, pList, pNew); sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); } } sqlite3DbFree(db, aiCol); zFrom = pFKey->pFrom->zName; nFrom = sqlite3Strlen30(zFrom); if( action==OE_Restrict ){ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); SrcList *pSrc; Expr *pRaise; pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); if( pRaise ){ pRaise->affExpr = OE_Abort; } pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); if( pSrc ){ assert( pSrc->nSrc==1 ); pSrc->a[0].zName = sqlite3DbStrDup(db, zFrom); pSrc->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName); } pSelect = sqlite3SelectNew(pParse, sqlite3ExprListAppend(pParse, 0, pRaise), pSrc, pWhere, 0, 0, 0, 0, 0 ); pWhere = 0; } /* Disable lookaside memory allocation */ DisableLookaside; pTrigger = (Trigger *)sqlite3DbMallocZero(db, sizeof(Trigger) + /* struct Trigger */ sizeof(TriggerStep) + /* Single step in trigger program */ nFrom + 1 /* Space for pStep->zTarget */ ); if( pTrigger ){ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; pStep->zTarget = (char *)&pStep[1]; memcpy((char *)pStep->zTarget, zFrom, nFrom); pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); if( pWhen ){ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); } } /* Re-enable the lookaside buffer, if it was disabled earlier. */ EnableLookaside; sqlite3ExprDelete(db, pWhere); sqlite3ExprDelete(db, pWhen); sqlite3ExprListDelete(db, pList); sqlite3SelectDelete(db, pSelect); if( db->mallocFailed==1 ){ fkTriggerDelete(db, pTrigger); return 0; } assert( pStep!=0 ); assert( pTrigger!=0 ); switch( action ){ case OE_Restrict: pStep->op = TK_SELECT; break; case OE_Cascade: if( !pChanges ){ pStep->op = TK_DELETE; break; } /* no break */ deliberate_fall_through default: pStep->op = TK_UPDATE; } pStep->pTrig = pTrigger; pTrigger->pSchema = pTab->pSchema; pTrigger->pTabSchema = pTab->pSchema; pFKey->apTrigger[iAction] = pTrigger; pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); } return pTrigger; } /* ** This function is called when deleting or updating a row to implement ** any required CASCADE, SET NULL or SET DEFAULT actions. */ SQLITE_PRIVATE void sqlite3FkActions( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated or deleted from */ ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ int regOld, /* Address of array containing old row */ int *aChange, /* Array indicating UPDATEd columns (or 0) */ int bChngRowid /* True if rowid is UPDATEd */ ){ /* If foreign-key support is enabled, iterate through all FKs that ** refer to table pTab. If there is an action associated with the FK ** for this operation (either update or delete), invoke the associated ** trigger sub-program. */ if( pParse->db->flags&SQLITE_ForeignKeys ){ FKey *pFKey; /* Iterator variable */ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); if( pAct ){ sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); } } } } } #endif /* ifndef SQLITE_OMIT_TRIGGER */ /* ** Free all memory associated with foreign key definitions attached to ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash ** hash table. */ SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ assert( IsOrdinaryTable(pTab) ); assert( db!=0 ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); /* Remove the FK from the fkeyHash hash table. */ if( db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ const char *z = (pFKey->pNextTo ? pFKey->pNextTo->zTo : pFKey->zTo); sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, pFKey->pNextTo); } if( pFKey->pNextTo ){ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; } } /* EV: R-30323-21917 Each foreign key constraint in SQLite is ** classified as either immediate or deferred. */ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); /* Delete any triggers created to implement actions for this FK. */ #ifndef SQLITE_OMIT_TRIGGER fkTriggerDelete(db, pFKey->apTrigger[0]); fkTriggerDelete(db, pFKey->apTrigger[1]); #endif pNext = pFKey->pNextFrom; sqlite3DbFree(db, pFKey); } } #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ /************** End of fkey.c ************************************************/ /************** Begin file insert.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. */ /* #include "sqliteInt.h" */ /* ** Generate code that will ** ** (1) acquire a lock for table pTab then ** (2) open pTab as cursor iCur. ** ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index ** for that table that is actually opened. */ SQLITE_PRIVATE void sqlite3OpenTable( Parse *pParse, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab, /* The table to be opened */ int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; assert( !IsVirtual(pTab) ); assert( pParse->pVdbe!=0 ); v = pParse->pVdbe; assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); if( !pParse->db->noSharedCache ){ sqlite3TableLock(pParse, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); } if( HasRowid(pTab) ){ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); VdbeComment((v, "%s", pTab->zName)); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pPk); VdbeComment((v, "%s", pTab->zName)); } } /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'F' REAL ** ** An extra 'D' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. ** ** Memory for the buffer containing the column index affinity string ** is managed along with the rest of the Index structure. It will be ** released when sqlite3DeleteIndex() is called. */ static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ /* The first time a column affinity string for a particular index is ** required, it is allocated and populated here. It is then stored as ** a member of the Index structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); if( !pIdx->zColAff ){ sqlite3OomFault(db); return 0; } for(n=0; nnColumn; n++){ i16 x = pIdx->aiColumn[n]; char aff; if( x>=0 ){ aff = pTab->aCol[x].affinity; }else if( x==XN_ROWID ){ aff = SQLITE_AFF_INTEGER; }else{ assert( x==XN_EXPR ); assert( pIdx->bHasExpr ); assert( pIdx->aColExpr!=0 ); aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); } if( affSQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; pIdx->zColAff[n] = aff; } pIdx->zColAff[n] = 0; return pIdx->zColAff; } SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); return pIdx->zColAff; } /* ** Compute an affinity string for a table. Space is obtained ** from sqlite3DbMalloc(). The caller is responsible for freeing ** the space when done. */ SQLITE_PRIVATE char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ char *zColAff; zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); if( zColAff ){ int i, j; for(i=j=0; inCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ zColAff[j++] = pTab->aCol[i].affinity; } } do{ zColAff[j--] = 0; }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); } return zColAff; } /* ** Make changes to the evolving bytecode to do affinity transformations ** of values that are about to be gathered into a row for table pTab. ** ** For ordinary (legacy, non-strict) tables: ** ----------------------------------------- ** ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. ** ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries ** which were then optimized out) then this routine becomes a no-op. ** ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the ** affinities for register iReg and following. Or if iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character per column: ** ** Character Column affinity ** --------- --------------- ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'E' REAL ** ** For STRICT tables: ** ------------------ ** ** Generate an appropriate OP_TypeCheck opcode that will verify the ** datatypes against the column definitions in pTab. If iReg==0, that ** means an OP_MakeRecord opcode has already been generated and should be ** the last opcode generated. The new OP_TypeCheck needs to be inserted ** before the OP_MakeRecord. The new OP_TypeCheck should use the same ** register set as the OP_MakeRecord. If iReg>0 then register iReg is ** the first of a series of registers that will form the new record. ** Apply the type checking to that array of registers. */ SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ int i; char *zColAff; if( pTab->tabFlags & TF_Strict ){ if( iReg==0 ){ /* Move the previous opcode (which should be OP_MakeRecord) forward ** by one slot and insert a new OP_TypeCheck where the current ** OP_MakeRecord is found */ VdbeOp *pPrev; sqlite3VdbeAppendP4(v, pTab, P4_TABLE); pPrev = sqlite3VdbeGetLastOp(v); assert( pPrev!=0 ); assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); pPrev->opcode = OP_TypeCheck; sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); }else{ /* Insert an isolated OP_Typecheck */ sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } return; } zColAff = pTab->zColAff; if( zColAff==0 ){ zColAff = sqlite3TableAffinityStr(0, pTab); if( !zColAff ){ sqlite3OomFault(sqlite3VdbeDb(v)); return; } pTab->zColAff = zColAff; } assert( zColAff!=0 ); i = sqlite3Strlen30NN(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program. This is used to see if ** a statement of the form "INSERT INTO SELECT ..." can ** run without using a temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; #endif for(i=1; iopcode==OP_OpenRead && pOp->p3==iDb ){ Index *pIndex; Pgno tnum = pOp->p2; if( tnum==pTab->tnum ){ return 1; } for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( tnum==pIndex->tnum ){ return 1; } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ assert( pOp->p4.pVtab!=0 ); assert( pOp->p4type==P4_VTAB ); return 1; } #endif } return 0; } /* This walker callback will compute the union of colFlags flags for all ** referenced columns in a CHECK constraint or generated column expression. */ static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ assert( pExpr->iColumn < pWalker->u.pTab->nCol ); pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; } return WRC_Continue; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* ** All regular columns for table pTab have been puts into registers ** starting with iRegStore. The registers that correspond to STORED ** or VIRTUAL columns have not yet been initialized. This routine goes ** back and computes the values for those columns based on the previously ** computed normal columns. */ SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns( Parse *pParse, /* Parsing context */ int iRegStore, /* Register holding the first column */ Table *pTab /* The table */ ){ int i; Walker w; Column *pRedo; int eProgress; VdbeOp *pOp; assert( pTab->tabFlags & TF_HasGenerated ); testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); /* Before computing generated columns, first go through and make sure ** that appropriate affinity has been applied to the regular columns */ sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); if( (pTab->tabFlags & TF_HasStored)!=0 ){ pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Affinity ){ /* Change the OP_Affinity argument to '@' (NONE) for all stored ** columns. '@' is the no-op affinity and those columns have not ** yet been computed. */ int ii, jj; char *zP4 = pOp->p4.z; assert( zP4!=0 ); assert( pOp->p4type==P4_DYNAMIC ); for(ii=jj=0; zP4[jj]; ii++){ if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ continue; } if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ zP4[jj] = SQLITE_AFF_NONE; } jj++; } }else if( pOp->opcode==OP_TypeCheck ){ /* If an OP_TypeCheck was generated because the table is STRICT, ** then set the P3 operand to indicate that generated columns should ** not be checked */ pOp->p3 = 1; } } /* Because there can be multiple generated columns that refer to one another, ** this is a two-pass algorithm. On the first pass, mark all generated ** columns as "not available". */ for(i=0; inCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; } } w.u.pTab = pTab; w.xExprCallback = exprColumnFlagUnion; w.xSelectCallback = 0; w.xSelectCallback2 = 0; /* On the second pass, compute the value of each NOT-AVAILABLE column. ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as ** they are needed. */ pParse->iSelfTab = -iRegStore; do{ eProgress = 0; pRedo = 0; for(i=0; inCol; i++){ Column *pCol = pTab->aCol + i; if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ int x; pCol->colFlags |= COLFLAG_BUSY; w.eCode = 0; sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); pCol->colFlags &= ~COLFLAG_BUSY; if( w.eCode & COLFLAG_NOTAVAIL ){ pRedo = pCol; continue; } eProgress = 1; assert( pCol->colFlags & COLFLAG_GENERATED ); x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); pCol->colFlags &= ~COLFLAG_NOTAVAIL; } } }while( pRedo && eProgress ); if( pRedo ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); } pParse->iSelfTab = 0; } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* ** Locate or create an AutoincInfo structure associated with table pTab ** which is in database iDb. Return the register number for the register ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT ** table. (Also return zero when doing a VACUUM since we do not want to ** update the AUTOINCREMENT counters during a VACUUM.) ** ** There is at most one AutoincInfo structure per table even if the ** same table is autoincremented multiple times due to inserts within ** triggers. A new AutoincInfo structure is created if this is the ** first use of table pTab. On 2nd and subsequent uses, the original ** AutoincInfo structure is used. ** ** Four consecutive registers are allocated: ** ** (1) The name of the pTab table. ** (2) The maximum ROWID of pTab. ** (3) The rowid in sqlite_sequence of pTab ** (4) The original value of the max ROWID in pTab, or NULL if none ** ** The 2nd register is the one that is returned. That is all the ** insert routine needs to know about. */ static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ assert( pParse->db->aDb[iDb].pSchema!=0 ); if( (pTab->tabFlags & TF_Autoincrement)!=0 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; /* Verify that the sqlite_sequence table exists and is an ordinary ** rowid table with exactly two columns. ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ if( pSeqTab==0 || !HasRowid(pSeqTab) || NEVER(IsVirtual(pSeqTab)) || pSeqTab->nCol!=2 ){ pParse->nErr++; pParse->rc = SQLITE_CORRUPT_SEQUENCE; return 0; } pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); testcase( pParse->earlyCleanup ); if( pParse->db->mallocFailed ) return 0; pInfo->pNext = pToplevel->pAinc; pToplevel->pAinc = pInfo; pInfo->pTab = pTab; pInfo->iDb = iDb; pToplevel->nMem++; /* Register to hold name of table */ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ } memId = pInfo->regCtr; } return memId; } /* ** This routine generates code that will initialize all of the ** register used by the autoincrement tracker. */ SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){ AutoincInfo *p; /* Information about an AUTOINCREMENT */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* Database only autoinc table */ int memId; /* Register holding max rowid */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); assert( sqlite3IsToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList autoInc[] = { /* 0 */ {OP_Null, 0, 0, 0}, /* 1 */ {OP_Rewind, 0, 10, 0}, /* 2 */ {OP_Column, 0, 0, 0}, /* 3 */ {OP_Ne, 0, 9, 0}, /* 4 */ {OP_Rowid, 0, 0, 0}, /* 5 */ {OP_Column, 0, 1, 0}, /* 6 */ {OP_AddImm, 0, 0, 0}, /* 7 */ {OP_Copy, 0, 0, 0}, /* 8 */ {OP_Goto, 0, 11, 0}, /* 9 */ {OP_Next, 0, 2, 0}, /* 10 */ {OP_Integer, 0, 0, 0}, /* 11 */ {OP_Close, 0, 0, 0} }; VdbeOp *aOp; pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); if( aOp==0 ) break; aOp[0].p2 = memId; aOp[0].p3 = memId+2; aOp[2].p3 = memId; aOp[3].p1 = memId-1; aOp[3].p3 = memId; aOp[3].p5 = SQLITE_JUMPIFNULL; aOp[4].p2 = memId+1; aOp[5].p3 = memId; aOp[6].p1 = memId; aOp[7].p2 = memId+2; aOp[7].p1 = memId; aOp[10].p2 = memId; if( pParse->nTab==0 ) pParse->nTab = 1; } } /* ** Update the maximum rowid for an autoincrement calculation. ** ** This routine should be called when the regRowid register holds a ** new rowid that is about to be inserted. If that new rowid is ** larger than the maximum rowid in the memId memory cell, then the ** memory cell is updated. */ static void autoIncStep(Parse *pParse, int memId, int regRowid){ if( memId>0 ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); } } /* ** This routine generates the code needed to write autoincrement ** maximum rowid values back into the sqlite_sequence register. ** Every statement that might do an INSERT into an autoincrement ** table (either directly or through triggers) needs to call this ** routine just before the "exit" code. */ static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList autoIncEnd[] = { /* 0 */ {OP_NotNull, 0, 2, 0}, /* 1 */ {OP_NewRowid, 0, 0, 0}, /* 2 */ {OP_MakeRecord, 0, 2, 0}, /* 3 */ {OP_Insert, 0, 0, 0}, /* 4 */ {OP_Close, 0, 0, 0} }; VdbeOp *aOp; Db *pDb = &db->aDb[p->iDb]; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); VdbeCoverage(v); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); if( aOp==0 ) break; aOp[0].p1 = memId+1; aOp[1].p2 = memId+1; aOp[2].p1 = memId-1; aOp[2].p3 = iRec; aOp[3].p2 = iRec; aOp[3].p3 = memId+1; aOp[3].p5 = OPFLAG_APPEND; sqlite3ReleaseTempReg(pParse, iRec); } } SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){ if( pParse->pAinc ) autoIncrementEnd(pParse); } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines ** above are all no-ops */ # define autoIncBegin(A,B,C) (0) # define autoIncStep(A,B,C) #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Forward declaration */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ); /* ** This routine is called to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... ** insert into TABLE (IDLIST) select ** insert into TABLE (IDLIST) default values ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all (non-hidden) columns for the table is substituted. ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST ** is omitted. ** ** For the pSelect parameter holds the values to be inserted for the ** first two forms shown above. A VALUES clause is really just short-hand ** for a SELECT statement that omits the FROM clause and everything else ** that follows. If the pSelect parameter is NULL, that means that the ** DEFAULT VALUES form of the INSERT statement is intended. ** ** The code generated follows one of four templates. For a simple ** insert with data coming from a single-row VALUES clause, the code executes ** once straight down through. Pseudo-code follows (we call this ** the "1st template"): ** ** open write cursor to
    and its indices ** put VALUES clause expressions into registers ** write the resulting record into
    ** cleanup ** ** The three remaining templates assume the statement is of the form ** ** INSERT INTO
    SELECT ... ** ** If the SELECT clause is of the restricted form "SELECT * FROM " - ** in other words if the SELECT pulls all columns from a single table ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and ** if and are distinct tables but have identical ** schemas, including all the same indices, then a special optimization ** is invoked that copies raw records from over to . ** See the xferOptimization() function for the implementation of this ** template. This is the 2nd template. ** ** open a write cursor to
    ** open read cursor on ** transfer all records in over to
    ** close cursors ** foreach index on
    ** open a write cursor on the
    index ** open a read cursor on the corresponding index ** transfer all records from the read to the write cursors ** close cursors ** end foreach ** ** The 3rd template is for when the second template does not apply ** and the SELECT clause does not read from
    at any time. ** The generated code follows this template: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the rows in the SELECT ** load values into registers R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end-coroutine X ** B: open write cursor to
    and its indices ** C: yield X, at EOF goto D ** insert the select result into
    from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use an intermediate table to store the results of ** the select. The template is like this: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end co-routine R ** B: open temp table ** L: yield X, at EOF goto M ** insert row from R..R+n into temp table ** goto L ** M: open write cursor to
    and its indices ** rewind temp table ** C: loop over rows of intermediate table ** transfer values form intermediate table into
    ** end loop ** D: cleanup */ SQLITE_PRIVATE void sqlite3Insert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ int onError, /* How to handle constraint errors */ Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ ){ sqlite3 *db; /* The main database structure */ Table *pTab; /* The table to insert into. aka TABLE */ int i, j; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ u8 bIdListInOrder; /* True if IDLIST is in table order */ ExprList *pList = 0; /* List of VALUES() to be inserted */ int iRegStore; /* Register in which to store next column */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ #endif db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto insert_cleanup; } assert( db->mallocFailed==0 ); dest.iSDParm = 0; /* Suppress a harmless compiler warning */ /* If the Select object is really just a simple VALUES() list with a ** single row (the common case) then keep that one row of values ** and discard the other (unused) parts of the pSelect object */ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ pList = pSelect->pEList; pSelect->pEList = 0; sqlite3SelectDelete(db, pSelect); pSelect = 0; } /* Locate the table into which we will be inserting new information. */ assert( pTabList->nSrc==1 ); pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDbnDb ); if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, db->aDb[iDb].zDbSName) ){ goto insert_cleanup; } withoutRowid = !HasRowid(pTab); /* Figure out if we have any triggers and if the table being ** inserted into is a view */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); isView = IsView(pTab); #else # define pTrigger 0 # define tmask 0 # define isView 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, onError, pUpsert, pTrigger); } #endif /* If pTab is really a view, make sure it has been initialized. ** ViewGetColumnNames() is a no-op if pTab is not a view. */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto insert_cleanup; } /* Cannot insert into a read-only table. */ if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto insert_cleanup; } /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); #ifndef SQLITE_OMIT_XFER_OPT /* If the statement is of the form ** ** INSERT INTO SELECT * FROM ; ** ** Then special optimizations can be applied that make the transfer ** very fast and which reduce fragmentation of indices. ** ** This is the 2nd template. */ if( pColumn==0 && pSelect!=0 && pTrigger==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ assert( !pTrigger ); assert( pList==0 ); goto insert_end; } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate a block registers to hold the rowid and the values ** for all columns of the new row. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) After this ** loop, if ipkColumn==(-1), that means that integer primary key ** is unspecified, and hence the table is either WITHOUT ROWID or ** it will automatically generated an integer primary key. ** ** bIdListInOrder is true if the columns in IDLIST are in storage ** order. This enables an optimization that avoids shuffling the ** columns into storage order. False negatives are harmless, ** but false positives will cause database corruption. */ bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; if( pColumn ){ assert( pColumn->eU4!=EU4_EXPR ); pColumn->eU4 = EU4_IDX; for(i=0; inId; i++){ pColumn->a[i].u4.idx = -1; } for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ pColumn->a[i].u4.idx = j; if( i!=j ) bIdListInOrder = 0; if( j==pTab->iPKey ){ ipkColumn = i; assert( !withoutRowid ); } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ sqlite3ErrorMsg(pParse, "cannot INSERT into generated column \"%s\"", pTab->aCol[j].zCnName); goto insert_cleanup; } #endif break; } } if( j>=pTab->nCol ){ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ ipkColumn = i; bIdListInOrder = 0; }else{ sqlite3ErrorMsg(pParse, "table %S has no column named %s", pTabList->a, pColumn->a[i].zName); pParse->checkSchema = 1; goto insert_cleanup; } } } } /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT or from a multi-row VALUES clause. ** Generate a co-routine to run the SELECT. */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int rc; /* Result code */ regYield = ++pParse->nMem; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); dest.iSdst = bIdListInOrder ? regData : 0; dest.nSdst = pTab->nCol; rc = sqlite3Select(pParse, pSelect, &dest); regFromSelect = dest.iSdst; assert( db->pParse==pParse ); if( rc || pParse->nErr ) goto insert_cleanup; assert( db->mallocFailed==0 ); sqlite3VdbeEndCoroutine(v, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each output row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( pTrigger || readsTable(pParse, iDb, pTab) ){ useTempTable = 1; } if( useTempTable ){ /* Invoke the coroutine to extract information from the SELECT ** and add it to a transient table srcTab. The code generated ** here is from the 4th template: ** ** B: open temp table ** L: yield X, goto M at EOF ** insert row from R..R+n into temp table ** goto L ** M: ... */ int regRec; /* Register to hold packed record */ int regTempRowid; /* Register to hold temp table ROWID */ int addrL; /* Label "L" */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeGoto(v, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a ** single-row VALUES clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); if( pList ){ nColumn = pList->nExpr; if( sqlite3ResolveExprListNames(&sNC, pList) ){ goto insert_cleanup; } }else{ nColumn = 0; } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the ipkColumn variable to the integer primary key ** column index in the original table definition. */ if( pColumn==0 && nColumn>0 ){ ipkColumn = pTab->iPKey; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); for(i=ipkColumn-1; i>=0; i--){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); ipkColumn--; } } } #endif /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ assert( TF_HasHidden==COLFLAG_HIDDEN ); assert( TF_HasGenerated==COLFLAG_GENERATED ); assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ for(i=0; inCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; } } if( nColumn!=(pTab->nCol-nHidden) ){ sqlite3ErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList->a, pTab->nCol-nHidden, nColumn); goto insert_cleanup; } } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab && !pParse->bReturning ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, &iDataCur, &iIdxCur); aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); if( aRegIdx==0 ){ goto insert_cleanup; } for(i=0, pIdx=pTab->pIndex; ipNext, i++){ assert( pIdx ); aRegIdx[i] = ++pParse->nMem; pParse->nMem += pIdx->nColumn; } aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ } #ifndef SQLITE_OMIT_UPSERT if( pUpsert ){ Upsert *pNx; if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", pTab->zName); goto insert_cleanup; } if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); goto insert_cleanup; } if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ goto insert_cleanup; } pTabList->a[0].iCursor = iDataCur; pNx = pUpsert; do{ pNx->pUpsertSrc = pTabList; pNx->regData = regData; pNx->iDataCur = iDataCur; pNx->iIdxCur = iIdxCur; if( pNx->pUpsertTarget ){ if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ goto insert_cleanup; } } pNx = pNx->pNextUpsert; }while( pNx!=0 ); } #endif /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** ** rewind temp table, if empty goto D ** C: loop over rows of intermediate table ** transfer values form intermediate table into
    ** end loop ** D: ... */ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); addrCont = sqlite3VdbeCurrentAddr(v); }else if( pSelect ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 3): ** ** C: yield X, at EOF goto D ** insert the select result into
    from R..R+n ** goto C ** D: ... */ sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); if( ipkColumn>=0 ){ /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the ** SELECT, go ahead and copy the value into the rowid slot now, so that ** the value does not get overwritten by a NULL at tag-20191021-002. */ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); } } /* Compute data for ordinary columns of the new entry. Values ** are written in storage order into registers starting with regData. ** Only ordinary columns are computed in this loop. The rowid ** (if there is one) is computed later and generated columns are ** computed after the rowid since they might depend on the value ** of the rowid. */ nHidden = 0; iRegStore = regData; assert( regData==regRowid+1 ); for(i=0; inCol; i++, iRegStore++){ int k; u32 colFlags; assert( i>=nHidden ); if( i==pTab->iPKey ){ /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled ** using the rowid. So put a NULL in the IPK slot of the record to avoid ** using excess space. The file format definition requires this extra ** NULL - we cannot optimize further by skipping the column completely */ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); continue; } if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ nHidden++; if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ /* Virtual columns do not participate in OP_MakeRecord. So back up ** iRegStore by one slot to compensate for the iRegStore++ in the ** outer for() loop */ iRegStore--; continue; }else if( (colFlags & COLFLAG_STORED)!=0 ){ /* Stored columns are computed later. But if there are BEFORE ** triggers, the slots used for stored columns will be OP_Copy-ed ** to a second block of registers, so the register needs to be ** initialized to NULL to avoid an uninitialized register read */ if( tmask & TRIGGER_BEFORE ){ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); } continue; }else if( pColumn==0 ){ /* Hidden columns that are not explicitly named in the INSERT ** get there default value */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; } } if( pColumn ){ assert( pColumn->eU4==EU4_IDX ); for(j=0; jnId && pColumn->a[j].u4.idx!=i; j++){} if( j>=pColumn->nId ){ /* A column not named in the insert column list gets its ** default value */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; } k = j; }else if( nColumn==0 ){ /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; }else{ k = i - nHidden; } if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); }else if( pSelect ){ if( regFromSelect!=regData ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); } }else{ Expr *pX = pList->a[k].pExpr; int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); if( y!=iRegStore ){ sqlite3VdbeAddOp2(v, ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); } } } /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(pParse); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); /* build the NEW.* reference row. Note that if there is an INTEGER ** PRIMARY KEY into which a NULL is being inserted, that NULL will be ** translated into a unique ID for the row. But on a BEFORE trigger, ** we do not know what the unique ID will be (because the insert has ** not happened yet) so we substitute a rowid of -1 */ if( ipkColumn<0 ){ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); }else{ int addr1; assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); } /* Copy the new data already generated. */ assert( pTab->nNVCol>0 || pParse->nErr>0 ); sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Compute the new value for generated columns after all other ** columns have already been computed. This must be done after ** computing the ROWID in case one of the generated columns ** refers to the ROWID. */ if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); } #endif /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3TableAffinity(v, pTab, regCols+1); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); } if( !isView ){ if( IsVirtual(pTab) ){ /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ /* Compute the new rowid */ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ /* Rowid already initialized at tag-20191021-001 */ }else{ Expr *pIpk = pList->a[ipkColumn].pExpr; if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; }else{ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); } } /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid ** to generate a unique primary key value. */ if( !appendFlag ){ int addr1; if( !IsVirtual(pTab) ){ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); sqlite3VdbeJumpHere(v, addr1); }else{ addr1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); } }else if( IsVirtual(pTab) || withoutRowid ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); }else{ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; } autoIncStep(pParse, regAutoinc, regRowid); #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Compute the new value for generated columns after all other ** columns have already been computed. This must be done after ** computing the ROWID in case one of the generated columns ** is derived from the INTEGER PRIMARY KEY. */ if( pTab->tabFlags & TF_HasGenerated ){ sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); } #endif /* Generate code to check constraints and generate index keys and ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); }else #endif { int isReplace = 0;/* Set to true if constraints may cause a replace */ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert ); if( db->flags & SQLITE_ForeignKeys ){ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); } /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE ** constraints or (b) there are no triggers and this table is not a ** parent table in a foreign key constraint. It is safe to set the ** flag in the second case as if any REPLACE constraint is hit, an ** OP_Delete or OP_IdxDelete instruction will be executed on each ** cursor that is disturbed. And these instructions both clear the ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT ** functionality. */ bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, regIns, aRegIdx, 0, appendFlag, bUseSeek ); } #ifdef SQLITE_ALLOW_ROWID_IN_VIEW }else if( pParse->bReturning ){ /* If there is a RETURNING clause, populate the rowid register with ** constant value -1, in case one or more of the returned expressions ** refer to the "rowid" of the view. */ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); #endif } /* Update the count of rows that are inserted */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ /* Code AFTER triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, pTab, regData-2-pTab->nCol, onError, endOfLoop); } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrInsTop); sqlite3VdbeAddOp1(v, OP_Close, srcTab); }else if( pSelect ){ sqlite3VdbeGoto(v, addrCont); #ifdef SQLITE_DEBUG /* If we are jumping back to an OP_Yield that is preceded by an ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the ** OP_ReleaseReg will be included in the loop. */ if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); sqlite3VdbeChangeP5(v, 1); } #endif sqlite3VdbeJumpHere(v, addrInsTop); } #ifndef SQLITE_OMIT_XFER_OPT insert_end: #endif /* SQLITE_OMIT_XFER_OPT */ /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( regRowCount ){ sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); } insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3UpsertDelete(db, pUpsert); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifdef tmask #undef tmask #endif /* ** Meanings of bits in of pWalker->eCode for ** sqlite3ExprReferencesUpdatedColumn() */ #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this ** expression node references any of the ** columns that are being modified by an UPDATE statement. */ static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN ){ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); if( pExpr->iColumn>=0 ){ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ pWalker->eCode |= CKCNSTRNT_COLUMN; } }else{ pWalker->eCode |= CKCNSTRNT_ROWID; } } return WRC_Continue; } /* ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The ** only columns that are modified by the UPDATE are those for which ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. ** ** Return true if CHECK constraint pExpr uses any of the ** changing columns (or the rowid if it is changing). In other words, ** return true if this CHECK constraint must be validated for ** the new row in the UPDATE statement. ** ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. ** The operation of this routine is the same - return true if an only if ** the expression uses one or more of columns identified by the second and ** third arguments. */ SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn( Expr *pExpr, /* The expression to be checked */ int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ int chngRowid /* True if UPDATE changes the rowid */ ){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 0; w.xExprCallback = checkConstraintExprNode; w.u.aiCol = aiChng; sqlite3WalkExpr(&w, pExpr); if( !chngRowid ){ testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); w.eCode &= ~CKCNSTRNT_ROWID; } testcase( w.eCode==0 ); testcase( w.eCode==CKCNSTRNT_COLUMN ); testcase( w.eCode==CKCNSTRNT_ROWID ); testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); return w.eCode!=0; } /* ** The sqlite3GenerateConstraintChecks() routine usually wants to visit ** the indexes of a table in the order provided in the Table->pIndex list. ** However, sometimes (rarely - when there is an upsert) it wants to visit ** the indexes in a different order. The following data structures accomplish ** this. ** ** The IndexIterator object is used to walk through all of the indexes ** of a table in either Index.pNext order, or in some other order established ** by an array of IndexListTerm objects. */ typedef struct IndexListTerm IndexListTerm; typedef struct IndexIterator IndexIterator; struct IndexIterator { int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ int i; /* Index of the current item from the list */ union { struct { /* Use this object for eType==0: A Index.pNext list */ Index *pIdx; /* The current Index */ } lx; struct { /* Use this object for eType==1; Array of IndexListTerm */ int nIdx; /* Size of the array */ IndexListTerm *aIdx; /* Array of IndexListTerms */ } ax; } u; }; /* When IndexIterator.eType==1, then each index is an array of instances ** of the following object */ struct IndexListTerm { Index *p; /* The index */ int ix; /* Which entry in the original Table.pIndex list is this index*/ }; /* Return the first index on the list */ static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ assert( pIter->i==0 ); if( pIter->eType ){ *pIx = pIter->u.ax.aIdx[0].ix; return pIter->u.ax.aIdx[0].p; }else{ *pIx = 0; return pIter->u.lx.pIdx; } } /* Return the next index from the list. Return NULL when out of indexes */ static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ if( pIter->eType ){ int i = ++pIter->i; if( i>=pIter->u.ax.nIdx ){ *pIx = i; return 0; } *pIx = pIter->u.ax.aIdx[i].ix; return pIter->u.ax.aIdx[i].p; }else{ ++(*pIx); pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; return pIter->u.lx.pIdx; } } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE ** on table pTab. ** ** The regNewData parameter is the first register in a range that contains ** the data to be inserted or the data after the update. There will be ** pTab->nCol+1 registers in this range. The first register (the one ** that regNewData points to) will contain the new rowid, or NULL in the ** case of a WITHOUT ROWID table. The second register in the range will ** contain the content of the first table column. The third register will ** contain the content of the second table column. And so forth. ** ** The regOldData parameter is similar to regNewData except that it contains ** the data prior to an UPDATE rather than afterwards. regOldData is zero ** for an INSERT. This routine can distinguish between UPDATE and INSERT by ** checking regOldData for zero. ** ** For an UPDATE, the pkChng boolean is true if the true primary key (the ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) ** might be modified by the UPDATE. If pkChng is false, then the key of ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. ** ** For an INSERT, the pkChng boolean indicates whether or not the rowid ** was explicitly specified as part of the INSERT statement. If pkChng ** is zero, it means that the either rowid is computed automatically or ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, ** pkChng will only be true if the INSERT statement provides an integer ** value for either the rowid column or its INTEGER PRIMARY KEY alias. ** ** The code generated by this routine will store new index entries into ** registers identified by aRegIdx[]. No index entry is created for ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is ** the same as the order of indices on the linked list of indices ** at pTab->pIndex. ** ** (2019-05-07) The generated code also creates a new record for the ** main table, if pTab is a rowid table, and stores that record in the ** register identified by aRegIdx[nIdx] - in other words in the first ** entry of aRegIdx[] past the last index. It is important that the ** record be generated during constraint checks to avoid affinity changes ** to the register content that occur after constraint checks but before ** the new record is inserted. ** ** The caller must have already opened writeable cursors on the main ** table and all applicable indices (that is to say, all indices for which ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor ** for the first index in the pTab->pIndex list. Cursors for other indices ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. ** ** This routine also generates code to check constraints. NOT NULL, ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, ** then the appropriate action is performed. There are five possible ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. ** ** Constraint type Action What Happens ** --------------- ---------- ---------------------------------------- ** any ROLLBACK The current transaction is rolled back and ** sqlite3_step() returns immediately with a ** return code of SQLITE_CONSTRAINT. ** ** any ABORT Back out changes from the current command ** only (do not do a complete rollback) then ** cause sqlite3_step() to return immediately ** with SQLITE_CONSTRAINT. ** ** any FAIL Sqlite3_step() returns immediately with a ** return code of SQLITE_CONSTRAINT. The ** transaction is not rolled back and any ** changes to prior rows are retained. ** ** any IGNORE The attempt in insert or update the current ** row is skipped, without throwing an error. ** Processing continues with the next row. ** (There is an immediate jump to ignoreDest.) ** ** NOT NULL REPLACE The NULL value is replace by the default ** value for that column. If the default value ** is NULL, the action is the same as ABORT. ** ** UNIQUE REPLACE The other row that conflicts with the row ** being inserted is removed. ** ** CHECK REPLACE Illegal. The results in an exception. ** ** Which action to take is determined by the overrideError parameter. ** Or if overrideError==OE_Default, then the pParse->onError parameter ** is used. Or if pParse->onError==OE_Default then the onError value ** for the constraint is used. */ SQLITE_PRIVATE void sqlite3GenerateConstraintChecks( Parse *pParse, /* The parser context */ Table *pTab, /* The table being inserted or updated */ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ int iDataCur, /* Canonical data cursor (main table or PK index) */ int iIdxCur, /* First index cursor */ int regNewData, /* First register in a range holding values to insert */ int regOldData, /* Previous content. 0 for INSERTs */ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ int *aiChng, /* column i is unchanged if aiChng[i]<0 */ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ ){ Vdbe *v; /* VDBE under construction */ Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ int ipkTop = 0; /* Top of the IPK uniqueness check */ int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ /* Variables associated with retesting uniqueness constraints after ** replace triggers fire have run */ int regTrigCnt; /* Register used to count replace trigger invocations */ int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ int nReplaceTrig = 0; /* Number of replace triggers coded */ IndexIterator sIdxIter; /* Index iterator */ isUpdate = regOldData!=0; db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); assert( !IsView(pTab) ); /* This table is not a VIEW */ nCol = pTab->nCol; /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for ** normal rowid tables. nPkField is the number of key fields in the ** pPk index or 1 for a rowid table. In other words, nPkField is the ** number of fields in the true primary key of the table. */ if( HasRowid(pTab) ){ pPk = 0; nPkField = 1; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); nPkField = pPk->nKeyCol; } /* Record that this module has started */ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", iDataCur, iIdxCur, regNewData, regOldData, pkChng)); /* Test all NOT NULL constraints. */ if( pTab->tabFlags & TF_HasNotNull ){ int b2ndPass = 0; /* True if currently running 2nd pass */ int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ int nGenerated = 0; /* Number of generated columns with NOT NULL */ while(1){ /* Make 2 passes over columns. Exit loop via "break" */ for(i=0; iaCol[i]; /* The column to check for NOT NULL */ int isGenerated; /* non-zero if column is generated */ onError = pCol->notNull; if( onError==OE_None ) continue; /* No NOT NULL on this column */ if( i==pTab->iPKey ){ continue; /* ROWID is never NULL */ } isGenerated = pCol->colFlags & COLFLAG_GENERATED; if( isGenerated && !b2ndPass ){ nGenerated++; continue; /* Generated columns processed on 2nd pass */ } if( aiChng && aiChng[i]<0 && !isGenerated ){ /* Do not check NOT NULL on columns that do not change */ continue; } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError==OE_Replace ){ if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); testcase( pCol->colFlags & COLFLAG_GENERATED ); onError = OE_Abort; }else{ assert( !isGenerated ); } }else if( b2ndPass && !isGenerated ){ continue; } assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; switch( onError ){ case OE_Replace: { int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); VdbeCoverage(v); assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); nSeenReplace++; sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab, pCol), iReg); sqlite3VdbeJumpHere(v, addr1); break; } case OE_Abort: sqlite3MayAbort(pParse); /* no break */ deliberate_fall_through case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pCol->zCnName); testcase( zMsg==0 && db->mallocFailed==0 ); sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, iReg); sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); VdbeCoverage(v); break; } default: { assert( onError==OE_Ignore ); sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); VdbeCoverage(v); break; } } /* end switch(onError) */ } /* end loop i over columns */ if( nGenerated==0 && nSeenReplace==0 ){ /* If there are no generated columns with NOT NULL constraints ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single ** pass is sufficient */ break; } if( b2ndPass ) break; /* Never need more than 2 passes */ b2ndPass = 1; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the ** first pass, recomputed values for all generated columns, as ** those values might depend on columns affected by the REPLACE. */ sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); } #endif } /* end of 2-pass loop */ } /* end if( has-not-null-constraints ) */ /* Test all CHECK constraints */ #ifndef SQLITE_OMIT_CHECK if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; inExpr; i++){ int allOk; Expr *pCopy; Expr *pExpr = pCheck->a[i].pExpr; if( aiChng && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) ){ /* The check constraints do not reference any of the columns being ** updated so there is no point it verifying the check constraint */ continue; } if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } allOk = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeVerifyAbortable(v, onError); pCopy = sqlite3ExprDup(db, pExpr, 0); if( !db->mallocFailed ){ sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); } sqlite3ExprDelete(db, pCopy); if( onError==OE_Ignore ){ sqlite3VdbeGoto(v, ignoreDest); }else{ char *zName = pCheck->a[i].zEName; assert( zName!=0 || pParse->db->mallocFailed ); if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, onError, zName, P4_TRANSIENT, P5_ConstraintCheck); } sqlite3VdbeResolveLabel(v, allOk); } pParse->iSelfTab = 0; } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* UNIQUE and PRIMARY KEY constraints should be handled in the following ** order: ** ** (1) OE_Update ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore ** (3) OE_Replace ** ** OE_Fail and OE_Ignore must happen before any changes are made. ** OE_Update guarantees that only a single row will change, so it ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback ** could happen in any order, but they are grouped up front for ** convenience. ** ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 ** The order of constraints used to have OE_Update as (2) and OE_Abort ** and so forth as (1). But apparently PostgreSQL checks the OE_Update ** constraint before any others, so it had to be moved. ** ** Constraint checking code is generated in this order: ** (A) The rowid constraint ** (B) Unique index constraints that do not have OE_Replace as their ** default conflict resolution strategy ** (C) Unique index that do use OE_Replace by default. ** ** The ordering of (2) and (3) is accomplished by making sure the linked ** list of indexes attached to a table puts all OE_Replace indexes last ** in the list. See sqlite3CreateIndex() for where that happens. */ sIdxIter.eType = 0; sIdxIter.i = 0; sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ sIdxIter.u.lx.pIdx = pTab->pIndex; if( pUpsert ){ if( pUpsert->pUpsertTarget==0 ){ /* There is just on ON CONFLICT clause and it has no constraint-target */ assert( pUpsert->pNextUpsert==0 ); if( pUpsert->isDoUpdate==0 ){ /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. ** Make all unique constraint resolution be OE_Ignore */ overrideError = OE_Ignore; pUpsert = 0; }else{ /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ overrideError = OE_Update; } }else if( pTab->pIndex!=0 ){ /* Otherwise, we'll need to run the IndexListTerm array version of the ** iterator to ensure that all of the ON CONFLICT conditions are ** checked first and in order. */ int nIdx, jj; u64 nByte; Upsert *pTerm; u8 *bUsed; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ assert( aRegIdx[nIdx]>0 ); } sIdxIter.eType = 1; sIdxIter.u.ax.nIdx = nIdx; nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; pUpsert->pToFree = sIdxIter.u.ax.aIdx; for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ if( pTerm->pUpsertTarget==0 ) break; if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ jj = 0; pIdx = pTab->pIndex; while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ pIdx = pIdx->pNext; jj++; } if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ bUsed[jj] = 1; sIdxIter.u.ax.aIdx[i].p = pIdx; sIdxIter.u.ax.aIdx[i].ix = jj; i++; } for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ if( bUsed[jj] ) continue; sIdxIter.u.ax.aIdx[i].p = pIdx; sIdxIter.u.ax.aIdx[i].ix = jj; i++; } assert( i==nIdx ); } } /* Determine if it is possible that triggers (either explicitly coded ** triggers or FK resolution actions) might run as a result of deletes ** that happen when OE_Replace conflict resolution occurs. (Call these ** "replace triggers".) If any replace triggers run, we will need to ** recheck all of the uniqueness constraints after they have all run. ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. ** ** If replace triggers are a possibility, then ** ** (1) Allocate register regTrigCnt and initialize it to zero. ** That register will count the number of replace triggers that ** fire. Constraint recheck only occurs if the number is positive. ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. ** (3) Initialize addrRecheck and lblRecheckOk ** ** The uniqueness rechecking code will create a series of tests to run ** in a second pass. The addrRecheck and lblRecheckOk variables are ** used to link together these tests which are separated from each other ** in the generate bytecode. */ if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ /* There are not DELETE triggers nor FK constraints. No constraint ** rechecks are needed. */ pTrigger = 0; regTrigCnt = 0; }else{ if( db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); }else{ pTrigger = 0; regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); } if( regTrigCnt ){ /* Replace triggers might exist. Allocate the counter and ** initialize it to zero. */ regTrigCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); VdbeComment((v, "trigger count")); lblRecheckOk = sqlite3VdbeMakeLabel(pParse); addrRecheck = lblRecheckOk; } } /* If rowid is changing, make sure the new rowid does not previously ** exist in the table. */ if( pkChng && pPk==0 ){ int addrRowidOk = sqlite3VdbeMakeLabel(pParse); /* Figure out what action to take in case of a rowid collision */ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* figure out whether or not upsert applies in this case */ if( pUpsert ){ pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); if( pUpsertClause!=0 ){ if( pUpsertClause->isDoUpdate==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } if( pUpsertClause!=pUpsert ){ /* The first ON CONFLICT clause has a conflict target other than ** the IPK. We have to jump ahead to that first ON CONFLICT clause ** and then come back here and deal with the IPK afterwards */ upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); } } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace /* IPK rule is REPLACE */ && onError!=overrideError /* Rules for other constraints are different */ && pTab->pIndex /* There exist other constraints */ && !upsertIpkDelay /* IPK check already deferred by UPSERT */ ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; VdbeComment((v, "defer IPK REPLACE until last")); } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has changed, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ VdbeNoopComment((v, "uniqueness check for ROWID")); sqlite3VdbeVerifyAbortable(v, onError); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); switch( onError ){ default: { onError = OE_Abort; /* no break */ deliberate_fall_through } case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3RowidConstraint(pParse, onError, pTab); break; } case OE_Replace: { /* If there are DELETE triggers on this table and the ** recursive-triggers flag is set, call GenerateRowDelete() to ** remove the conflicting row from the table. This will fire ** the triggers and remove both the table and index b-tree entries. ** ** Otherwise, if there are no triggers or the recursive-triggers ** flag is not set, but the table has one or more indexes, call ** GenerateRowIndexDelete(). This removes the index b-tree entries ** only. The table b-tree entry will be replaced by the new entry ** when it is inserted. ** ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, ** also invoke MultiWrite() to indicate that this VDBE may require ** statement rollback (if the statement is aborted after the delete ** takes place). Earlier versions called sqlite3MultiWrite() regardless, ** but being more selective here allows statements like: ** ** REPLACE INTO t(rowid) VALUES($newrowid) ** ** to run without a statement journal if there are no indexes on the ** table. */ if( regTrigCnt ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regNewData, 1, 0, OE_Replace, 1, -1); sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ nReplaceTrig++; }else{ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK assert( HasRowid(pTab) ); /* This OP_Delete opcode fires the pre-update-hook only. It does ** not modify the b-tree. It is more efficient to let the coming ** OP_Insert replace the existing entry than it is to delete the ** existing entry and then insert a new one. */ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ if( pTab->pIndex ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); } } seenReplace = 1; break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); /* no break */ deliberate_fall_through } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } } sqlite3VdbeResolveLabel(v, addrRowidOk); if( pUpsert && pUpsertClause!=pUpsert ){ upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); }else if( ipkTop ){ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, ipkTop-1); } } /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Compute the revised record entries for indices as we go. ** ** This loop also handles the case of the PRIMARY KEY index for a ** WITHOUT ROWID table. */ for(pIdx = indexIteratorFirst(&sIdxIter, &ix); pIdx; pIdx = indexIteratorNext(&sIdxIter, &ix) ){ int regIdx; /* Range of registers holding content for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ int addrConflictCk; /* First opcode in the conflict check logic */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( pUpsert ){ pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); if( upsertIpkDelay && pUpsertClause==pUpsert ){ sqlite3VdbeJumpHere(v, upsertIpkDelay); } } addrUniqueOk = sqlite3VdbeMakeLabel(pParse); if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } VdbeNoopComment((v, "prep index %s", pIdx->zName)); iThisCur = iIdxCur+ix; /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->iSelfTab = -(regNewData+1); sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, SQLITE_JUMPIFNULL); pParse->iSelfTab = 0; } /* Create a record for this index entry as it should appear after ** the insert or update. Store that record in the aRegIdx[ix] register */ regIdx = aRegIdx[ix]+1; for(i=0; inColumn; i++){ int iField = pIdx->aiColumn[i]; int x; if( iField==XN_EXPR ){ pParse->iSelfTab = -(regNewData+1); sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); pParse->iSelfTab = 0; VdbeComment((v, "%s column %d", pIdx->zName, i)); }else if( iField==XN_ROWID || iField==pTab->iPKey ){ x = regNewData; sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); VdbeComment((v, "rowid")); }else{ testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); } } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); VdbeComment((v, "for %s", pIdx->zName)); #ifdef SQLITE_ENABLE_NULL_TRIM if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ sqlite3SetMakeRecordP5(v, pIdx->pTable); } #endif sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); /* In an UPDATE operation, if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table and there has been no change the ** primary key, then no collision is possible. The collision detection ** logic below can all be skipped. */ if( isUpdate && pPk==pIdx && pkChng==0 ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } /* Find out what action to take in case there is a uniqueness conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Figure out if the upsert clause applies to this index */ if( pUpsertClause ){ if( pUpsertClause->isDoUpdate==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } /* Collision detection may be omitted if all of the following are true: ** (1) The conflict resolution algorithm is REPLACE ** (2) The table is a WITHOUT ROWID table ** (3) There are no secondary indexes on the table ** (4) No delete triggers need to be fired if there is a conflict ** (5) No FK constraint counters need to be updated if a conflict occurs. ** ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row ** must be explicitly deleted in order to ensure any pre-update hook ** is invoked. */ assert( IsOrdinaryTable(pTab) ); #ifndef SQLITE_ENABLE_PREUPDATE_HOOK if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ && pPk==pIdx /* Condition 2 */ && onError==OE_Replace /* Condition 1 */ && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ /* Check to see if the new index entry will be unique */ sqlite3VdbeVerifyAbortable(v, onError); addrConflictCk = sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); /* Conflict only if the rowid of the existing index entry ** is different from old-rowid */ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; inKeyCol; i++){ assert( pPk->aiColumn[i]>=0 ); x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); VdbeComment((v, "%s.%s", pTab->zName, pTab->aCol[pPk->aiColumn[i]].zCnName)); } } if( isUpdate ){ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID ** table, only conflict if the new PRIMARY KEY values are actually ** different from the old. See TH3 withoutrowid04.test. ** ** For a UNIQUE index, only conflict if the PRIMARY KEY values ** of the matched index row are different from the original PRIMARY ** KEY values of this row before the update. */ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; int op = OP_Ne; int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); for(i=0; inKeyCol; i++){ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); x = pPk->aiColumn[i]; assert( x>=0 ); if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } x = sqlite3TableColumnToStorage(pTab, x); sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverageIf(v, op==OP_Eq); VdbeCoverageIf(v, op==OP_Ne); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3UniqueConstraint(pParse, onError, pIdx); break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); /* no break */ deliberate_fall_through } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } default: { int nConflictCk; /* Number of opcodes in conflict check logic */ assert( onError==OE_Replace ); nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; assert( nConflictCk>0 || db->mallocFailed ); testcase( nConflictCk<=0 ); testcase( nConflictCk>1 ); if( regTrigCnt ){ sqlite3MultiWrite(pParse); nReplaceTrig++; } if( pTrigger && isUpdate ){ sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); } sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regR, nPkField, 0, OE_Replace, (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); if( pTrigger && isUpdate ){ sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); } if( regTrigCnt ){ int addrBypass; /* Jump destination to bypass recheck logic */ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ VdbeComment((v, "bypass recheck")); /* Here we insert code that will be invoked after all constraint ** checks have run, if and only if one or more replace triggers ** fired. */ sqlite3VdbeResolveLabel(v, lblRecheckOk); lblRecheckOk = sqlite3VdbeMakeLabel(pParse); if( pIdx->pPartIdxWhere ){ /* Bypass the recheck if this partial index is not defined ** for the current row */ sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); VdbeCoverage(v); } /* Copy the constraint check code from above, except change ** the constraint-ok jump destination to be the address of ** the next retest block */ while( nConflictCk>0 ){ VdbeOp x; /* Conflict check opcode to copy */ /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. ** Hence, make a complete copy of the opcode, rather than using ** a pointer to the opcode. */ x = *sqlite3VdbeGetOp(v, addrConflictCk); if( x.opcode!=OP_IdxRowid ){ int p2; /* New P2 value for copied conflict check opcode */ const char *zP4; if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ p2 = lblRecheckOk; }else{ p2 = x.p2; } zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); sqlite3VdbeChangeP5(v, x.p5); VdbeCoverageIf(v, p2!=x.p2); } nConflictCk--; addrConflictCk++; } /* If the retest fails, issue an abort */ sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ } seenReplace = 1; break; } } sqlite3VdbeResolveLabel(v, addrUniqueOk); if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); if( pUpsertClause && upsertIpkReturn && sqlite3UpsertNextIsIPK(pUpsertClause) ){ sqlite3VdbeGoto(v, upsertIpkDelay+1); sqlite3VdbeJumpHere(v, upsertIpkReturn); upsertIpkReturn = 0; } } /* If the IPK constraint is a REPLACE, run it last */ if( ipkTop ){ sqlite3VdbeGoto(v, ipkTop); VdbeComment((v, "Do IPK REPLACE")); assert( ipkBottom>0 ); sqlite3VdbeJumpHere(v, ipkBottom); } /* Recheck all uniqueness constraints after replace triggers have run */ testcase( regTrigCnt!=0 && nReplaceTrig==0 ); assert( regTrigCnt!=0 || nReplaceTrig==0 ); if( nReplaceTrig ){ sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); if( !pPk ){ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); VdbeCoverage(v); sqlite3RowidConstraint(pParse, OE_Abort, pTab); }else{ sqlite3VdbeGoto(v, addrRecheck); } sqlite3VdbeResolveLabel(v, lblRecheckOk); } /* Generate the table record */ if( HasRowid(pTab) ){ int regRec = aRegIdx[ix]; sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); sqlite3SetMakeRecordP5(v, pTab); if( !bAffinityDone ){ sqlite3TableAffinity(v, pTab, 0); } } *pbMayReplace = seenReplace; VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); } #ifdef SQLITE_ENABLE_NULL_TRIM /* ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) ** to be the number of columns in table pTab that must not be NULL-trimmed. ** ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. */ SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ u16 i; /* Records with omitted columns are only allowed for schema format ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ if( pTab->pSchema->file_format<2 ) return; for(i=pTab->nCol-1; i>0; i--){ if( pTab->aCol[i].iDflt!=0 ) break; if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; } sqlite3VdbeChangeP5(v, i+1); } #endif /* ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor ** number is iCur, and register regData contains the new record for the ** PK index. This function adds code to invoke the pre-update hook, ** if one is registered. */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK static void codeWithoutRowidPreupdate( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated */ int iCur, /* Cursor number for table */ int regData /* Data containing new record */ ){ Vdbe *v = pParse->pVdbe; int r = sqlite3GetTempReg(pParse); assert( !HasRowid(pTab) ); assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); sqlite3VdbeAddOp2(v, OP_Integer, 0, r); sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); sqlite3ReleaseTempReg(pParse, r); } #else # define codeWithoutRowidPreupdate(a,b,c,d) #endif /* ** This routine generates code to finish the INSERT or UPDATE operation ** that was started by a prior call to sqlite3GenerateConstraintChecks. ** A consecutive range of registers starting at regNewData contains the ** rowid and the content to be inserted. ** ** The arguments to this routine should be the same as the first six ** arguments to sqlite3GenerateConstraintChecks. */ SQLITE_PRIVATE void sqlite3CompleteInsertion( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int iDataCur, /* Cursor of the canonical data source */ int iIdxCur, /* First index cursor */ int regNewData, /* Range of content */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int update_flags, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int i; /* Loop counter */ assert( update_flags==0 || update_flags==OPFLAG_ISUPDATE || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) ); v = pParse->pVdbe; assert( v!=0 ); assert( !IsView(pTab) ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ /* All REPLACE indexes are at the end of the list */ assert( pIdx->onError!=OE_Replace || pIdx->pNext==0 || pIdx->pNext->onError==OE_Replace ); if( aRegIdx[i]==0 ) continue; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); } pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ pik_flags |= OPFLAG_NCHANGE; pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); if( update_flags==0 ){ codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); } } sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], aRegIdx[i]+1, pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); } if( appendBias ){ pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } sqlite3VdbeChangeP5(v, pik_flags); } /* ** Allocate cursors for the pTab table and all its indices and generate ** code to open and initialized those cursors. ** ** The cursor for the object that contains the complete data (normally ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT ** ROWID table) is returned in *piDataCur. The first index cursor is ** returned in *piIdxCur. The number of indices is returned. ** ** Use iBase as the first cursor (either the *piDataCur for rowid tables ** or the first index for WITHOUT ROWID tables) if it is non-negative. ** If iBase is negative, then allocate the next available cursor. ** ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the ** pTab->pIndex list. ** ** If pTab is a virtual table, then this routine is a no-op and the ** *piDataCur and *piIdxCur values are left uninitialized. */ SQLITE_PRIVATE int sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int op, /* OP_OpenRead or OP_OpenWrite */ u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ int iBase, /* Use this for the table cursor, if there is one */ u8 *aToOpen, /* If not NULL: boolean for each table and index */ int *piDataCur, /* Write the database source cursor number here */ int *piIdxCur /* Write the first index cursor number here */ ){ int i; int iDb; int iDataCur; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); assert( op==OP_OpenWrite || p5==0 ); assert( piDataCur!=0 ); assert( piIdxCur!=0 ); if( IsVirtual(pTab) ){ /* This routine is a no-op for virtual tables. Leave the output ** variables *piDataCur and *piIdxCur set to illegal cursor numbers ** for improved error detection. */ *piDataCur = *piIdxCur = -999; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = pParse->pVdbe; assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; iDataCur = iBase++; *piDataCur = iDataCur; if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); }else if( pParse->db->noSharedCache==0 ){ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); } *piIdxCur = iBase; for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ int iIdxCur = iBase++; assert( pIdx->pSchema==pTab->pSchema ); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ *piDataCur = iIdxCur; p5 = 0; } if( aToOpen==0 || aToOpen[i+1] ){ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); sqlite3VdbeChangeP5(v, p5); VdbeComment((v, "%s", pIdx->zName)); } } if( iBase>pParse->nTab ) pParse->nTab = iBase; return i; } #ifdef SQLITE_TEST /* ** The following global variable is incremented whenever the ** transfer optimization is used. This is used for testing ** purposes only - to make sure the transfer optimization really ** is happening when it is supposed to. */ SQLITE_API int sqlite3_xferopt_count; #endif /* SQLITE_TEST */ #ifndef SQLITE_OMIT_XFER_OPT /* ** Check to see if index pSrc is compatible as a source of data ** for index pDest in an insert transfer optimization. The rules ** for a compatible index: ** ** * The index is over the same set of columns ** * The same DESC and ASC markings occurs on all columns ** * The same onError processing (OE_Abort, OE_Ignore, etc) ** * The same collating sequence on each column ** * The index has the exact same WHERE clause */ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ int i; assert( pDest && pSrc ); assert( pDest->pTable!=pSrc->pTable ); if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ return 0; /* Different number of columns */ } if( pDest->onError!=pSrc->onError ){ return 0; /* Different conflict resolution strategies */ } for(i=0; inKeyCol; i++){ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ return 0; /* Different columns indexed */ } if( pSrc->aiColumn[i]==XN_EXPR ){ assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, pDest->aColExpr->a[i].pExpr, -1)!=0 ){ return 0; /* Different expressions in the index */ } } if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ return 0; /* Different sort orders */ } if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ return 0; /* Different collating sequences */ } } if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ return 0; /* Different WHERE clauses */ } /* If no test above fails then the indices must be compatible */ return 1; } /* ** Attempt the transfer optimization on INSERTs of the form ** ** INSERT INTO tab1 SELECT * FROM tab2; ** ** The xfer optimization transfers raw records from tab2 over to tab1. ** Columns are not decoded and reassembled, which greatly improves ** performance. Raw index records are transferred in the same way. ** ** The xfer optimization is only attempted if tab1 and tab2 are compatible. ** There are lots of rules for determining compatibility - see comments ** embedded in the code for details. ** ** This routine returns TRUE if the optimization is guaranteed to be used. ** Sometimes the xfer optimization will only work if the destination table ** is empty - a factor that can only be determined at run-time. In that ** case, this routine generates code for the xfer optimization but also ** does a test to see if the destination table is empty and jumps over the ** xfer optimization code if the test fails. In that case, this routine ** returns FALSE so that the caller will know to go ahead and generate ** an unoptimized transfer. This routine also returns FALSE if there ** is no chance that the xfer optimization can be applied. ** ** This optimization is particularly useful at making VACUUM run faster. */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ){ sqlite3 *db = pParse->db; ExprList *pEList; /* The result set of the SELECT */ Table *pSrc; /* The table in the FROM clause of SELECT */ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ SrcItem *pItem; /* An element of pSelect->pSrc */ int i; /* Loop counter */ int iDbSrc; /* The database of pSrc */ int iSrc, iDest; /* Cursors from source and destination */ int addr1, addr2; /* Loop addresses */ int emptyDestTest = 0; /* Address of test for empty pDest */ int emptySrcTest = 0; /* Address of test for empty pSrc */ Vdbe *v; /* The VDBE we are building */ int regAutoinc; /* Memory register used by AUTOINC */ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ int regData, regRowid; /* Registers holding data and rowid */ assert( pSelect!=0 ); if( pParse->pWith || pSelect->pWith ){ /* Do not attempt to process this query if there are an WITH clauses ** attached to it. Proceeding may generate a false "no such table: xxx" ** error if pSelect reads from a CTE named "xxx". */ return 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pDest) ){ return 0; /* tab1 must not be a virtual table */ } #endif if( onError==OE_Default ){ if( pDest->iPKey>=0 ) onError = pDest->keyConf; if( onError==OE_Default ) onError = OE_Abort; } assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ if( pSelect->pSrc->nSrc!=1 ){ return 0; /* FROM clause must have exactly one term */ } if( pSelect->pSrc->a[0].pSelect ){ return 0; /* FROM clause cannot contain a subquery */ } if( pSelect->pWhere ){ return 0; /* SELECT may not have a WHERE clause */ } if( pSelect->pOrderBy ){ return 0; /* SELECT may not have an ORDER BY clause */ } /* Do not need to test for a HAVING clause. If HAVING is present but ** there is no ORDER BY, we will get an error. */ if( pSelect->pGroupBy ){ return 0; /* SELECT may not have a GROUP BY clause */ } if( pSelect->pLimit ){ return 0; /* SELECT may not have a LIMIT clause */ } if( pSelect->pPrior ){ return 0; /* SELECT may not be a compound query */ } if( pSelect->selFlags & SF_Distinct ){ return 0; /* SELECT may not be DISTINCT */ } pEList = pSelect->pEList; assert( pEList!=0 ); if( pEList->nExpr!=1 ){ return 0; /* The result set must have exactly one column */ } assert( pEList->a[0].pExpr ); if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ return 0; /* The result set must be the special operator "*" */ } /* At this point we have established that the statement is of the ** correct syntactic form to participate in this optimization. Now ** we have to check the semantics. */ pItem = pSelect->pSrc->a; pSrc = sqlite3LocateTableItem(pParse, 0, pItem); if( pSrc==0 ){ return 0; /* FROM clause does not contain a real table */ } if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ return 0; /* tab1 and tab2 may not be the same table */ } if( HasRowid(pDest)!=HasRowid(pSrc) ){ return 0; /* source and destination must both be WITHOUT ROWID or not */ } if( !IsOrdinaryTable(pSrc) ){ return 0; /* tab2 may not be a view or virtual table */ } if( pDest->nCol!=pSrc->nCol ){ return 0; /* Number of columns must be the same in tab1 and tab2 */ } if( pDest->iPKey!=pSrc->iPKey ){ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ } if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ return 0; /* Cannot feed from a non-strict into a strict table */ } for(i=0; inCol; i++){ Column *pDestCol = &pDest->aCol[i]; Column *pSrcCol = &pSrc->aCol[i]; #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN ){ return 0; /* Neither table may have __hidden__ columns */ } #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Even if tables t1 and t2 have identical schemas, if they contain ** generated columns, then this statement is semantically incorrect: ** ** INSERT INTO t2 SELECT * FROM t1; ** ** The reason is that generated column values are returned by the ** the SELECT statement on the right but the INSERT statement on the ** left wants them to be omitted. ** ** Nevertheless, this is a useful notational shorthand to tell SQLite ** to do a bulk transfer all of the content from t1 over to t2. ** ** We could, in theory, disable this (except for internal use by the ** VACUUM command where it is actually needed). But why do that? It ** seems harmless enough, and provides a useful service. */ if( (pDestCol->colFlags & COLFLAG_GENERATED) != (pSrcCol->colFlags & COLFLAG_GENERATED) ){ return 0; /* Both columns have the same generated-column type */ } /* But the transfer is only allowed if both the source and destination ** tables have the exact same expressions for generated columns. ** This requirement could be relaxed for VIRTUAL columns, I suppose. */ if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ if( sqlite3ExprCompare(0, sqlite3ColumnExpr(pSrc, pSrcCol), sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); testcase( pDestCol->colFlags & COLFLAG_STORED ); return 0; /* Different generator expressions */ } } #endif if( pDestCol->affinity!=pSrcCol->affinity ){ return 0; /* Affinity must be the same on all columns */ } if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), sqlite3ColumnColl(pSrcCol))!=0 ){ return 0; /* Collating sequence must be the same on all columns */ } if( pDestCol->notNull && !pSrcCol->notNull ){ return 0; /* tab2 must be NOT NULL if tab1 is */ } /* Default values for second and subsequent columns need to match. */ if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); if( (pDestExpr==0)!=(pSrcExpr==0) || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, pSrcExpr->u.zToken)!=0) ){ return 0; /* Default values must be the same for all columns */ } } } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ if( IsUniqueIndex(pDestIdx) ){ destHasUniqueIdx = 1; } for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ } if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema && sqlite3FaultSim(411)==SQLITE_OK ){ /* The sqlite3FaultSim() call allows this corruption test to be ** bypassed during testing, in order to exercise other corruption tests ** further downstream. */ return 0; /* Corrupt schema - two indexes on the same btree */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY /* Disallow the transfer optimization if the destination table contains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ assert( IsOrdinaryTable(pDest) ); if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ return 0; } #endif if( (db->flags & SQLITE_CountRows)!=0 ){ return 0; /* xfer opt does not play well with PRAGMA count_changes */ } /* If we get this far, it means that the xfer optimization is at ** least a possibility, though it might only work if the destination ** table (tab1) is initially empty. */ #ifdef SQLITE_TEST sqlite3_xferopt_count++; #endif iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); v = sqlite3GetVdbe(pParse); sqlite3CodeVerifySchema(pParse, iDbSrc); iSrc = pParse->nTab++; iDest = pParse->nTab++; regAutoinc = autoIncBegin(pParse, iDbDest, pDest); regData = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, regData); regRowid = sqlite3GetTempReg(pParse); sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); assert( HasRowid(pDest) || destHasUniqueIdx ); if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ || destHasUniqueIdx /* (2) */ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ )){ /* In some circumstances, we are able to run the xfer optimization ** only if the destination table is initially empty. Unless the ** DBFLAG_Vacuum flag is set, this block generates code to make ** that determination. If DBFLAG_Vacuum is set, then the destination ** table is always empty. ** ** Conditions under which the destination must be empty: ** ** (1) There is no INTEGER PRIMARY KEY but there are indices. ** (If the destination is not initially empty, the rowid fields ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, addr1); } if( HasRowid(pSrc) ){ u8 insFlags; sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeVerifyAbortable(v, onError); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); } autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); } if( db->mDbFlags & DBFLAG_Vacuum ){ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; }else{ insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); insFlags &= ~OPFLAG_PREFORMAT; }else #endif { sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); } sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); } sqlite3VdbeChangeP5(v, insFlags); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ u8 idxInsFlags = 0; for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( db->mDbFlags & DBFLAG_Vacuum ){ /* This INSERT command is part of a VACUUM operation, which guarantees ** that the destination table is empty. If all indexed columns use ** collation sequence BINARY, then it can also be assumed that the ** index will be populated by inserting keys in strictly sorted ** order. In this case, instead of seeking within the b-tree as part ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the ** OP_IdxInsert to seek to the point within the b-tree where each key ** should be inserted. This is faster. ** ** If any of the indexed columns use a collation sequence other than ** BINARY, this optimization is disabled. This is because the user ** might change the definition of a collation sequence and then run ** a VACUUM command. In that case keys may not be written in strictly ** sorted order. */ for(i=0; inColumn; i++){ const char *zColl = pSrcIdx->azColl[i]; if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; } if( i==pSrcIdx->nColumn ){ idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); } }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ idxInsFlags |= OPFLAG_NCHANGE; } if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); if( (db->mDbFlags & DBFLAG_Vacuum)==0 && !HasRowid(pDest) && IsPrimaryKeyIndex(pDestIdx) ){ codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); } } sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regData); if( emptyDestTest ){ sqlite3AutoincrementEnd(pParse); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); sqlite3VdbeJumpHere(v, emptyDestTest); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); return 0; }else{ return 1; } } #endif /* SQLITE_OMIT_XFER_OPT */ /************** End of insert.c **********************************************/ /************** Begin file legacy.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. */ /* #include "sqliteInt.h" */ /* ** Execute SQL code. Return one of the SQLITE_ success/failure ** codes. Also write an error message into memory obtained from ** malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result ** the xCallback() function is called. pArg becomes the first ** argument to xCallback(). If xCallback=NULL then no callback ** is invoked, even for queries. */ SQLITE_API int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; /* Return code */ const char *zLeftover; /* Tail of unprocessed SQL */ sqlite3_stmt *pStmt = 0; /* The current SQL statement */ char **azCols = 0; /* Names of result columns */ int callbackIsInit; /* True if callback data is initialized */ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK); while( rc==SQLITE_OK && zSql[0] ){ int nCol = 0; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } callbackIsInit = 0; while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ nCol = sqlite3_column_count(pStmt); azCols = sqlite3DbMallocRaw(db, (2*nCol+1)*sizeof(const char*)); if( azCols==0 ){ goto exec_out; } for(i=0; ierrMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; } /************** End of legacy.c **********************************************/ /************** Begin file loadext.c *****************************************/ /* ** 2006 June 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to dynamically load extensions into ** the SQLite library. */ #ifndef SQLITE_CORE #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ #endif /************** Include sqlite3ext.h in the middle of loadext.c **************/ /************** Begin file sqlite3ext.h **************************************/ /* ** 2006 June 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the SQLite interface for use by ** shared libraries that want to be imported as extensions into ** an SQLite instance. Shared libraries that intend to be loaded ** as extensions by SQLite should #include this file instead of ** sqlite3.h. */ #ifndef SQLITE3EXT_H #define SQLITE3EXT_H /* #include "sqlite3.h" */ /* ** The following structure holds pointers to all of the SQLite API ** routines. ** ** WARNING: In order to maintain backwards compatibility, add new ** interfaces to the end of this structure only. If you insert new ** interfaces in the middle of this structure, then older different ** versions of SQLite will not be able to load each other's shared ** libraries! */ struct sqlite3_api_routines { void * (*aggregate_context)(sqlite3_context*,int nBytes); int (*aggregate_count)(sqlite3_context*); int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); int (*bind_double)(sqlite3_stmt*,int,double); int (*bind_int)(sqlite3_stmt*,int,int); int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64); int (*bind_null)(sqlite3_stmt*,int); int (*bind_parameter_count)(sqlite3_stmt*); int (*bind_parameter_index)(sqlite3_stmt*,const char*zName); const char * (*bind_parameter_name)(sqlite3_stmt*,int); int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*)); int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*)); int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*); int (*busy_handler)(sqlite3*,int(*)(void*,int),void*); int (*busy_timeout)(sqlite3*,int ms); int (*changes)(sqlite3*); int (*close)(sqlite3*); int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*, int eTextRep,const char*)); int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*, int eTextRep,const void*)); const void * (*column_blob)(sqlite3_stmt*,int iCol); int (*column_bytes)(sqlite3_stmt*,int iCol); int (*column_bytes16)(sqlite3_stmt*,int iCol); int (*column_count)(sqlite3_stmt*pStmt); const char * (*column_database_name)(sqlite3_stmt*,int); const void * (*column_database_name16)(sqlite3_stmt*,int); const char * (*column_decltype)(sqlite3_stmt*,int i); const void * (*column_decltype16)(sqlite3_stmt*,int); double (*column_double)(sqlite3_stmt*,int iCol); int (*column_int)(sqlite3_stmt*,int iCol); sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol); const char * (*column_name)(sqlite3_stmt*,int); const void * (*column_name16)(sqlite3_stmt*,int); const char * (*column_origin_name)(sqlite3_stmt*,int); const void * (*column_origin_name16)(sqlite3_stmt*,int); const char * (*column_table_name)(sqlite3_stmt*,int); const void * (*column_table_name16)(sqlite3_stmt*,int); const unsigned char * (*column_text)(sqlite3_stmt*,int iCol); const void * (*column_text16)(sqlite3_stmt*,int iCol); int (*column_type)(sqlite3_stmt*,int iCol); sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol); void * (*commit_hook)(sqlite3*,int(*)(void*),void*); int (*complete)(const char*sql); int (*complete16)(const void*sql); int (*create_collation)(sqlite3*,const char*,int,void*, int(*)(void*,int,const void*,int,const void*)); int (*create_collation16)(sqlite3*,const void*,int,void*, int(*)(void*,int,const void*,int,const void*)); int (*create_function)(sqlite3*,const char*,int,int,void*, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*)); int (*create_function16)(sqlite3*,const void*,int,int,void*, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*)); int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*); int (*data_count)(sqlite3_stmt*pStmt); sqlite3 * (*db_handle)(sqlite3_stmt*); int (*declare_vtab)(sqlite3*,const char*); int (*enable_shared_cache)(int); int (*errcode)(sqlite3*db); const char * (*errmsg)(sqlite3*); const void * (*errmsg16)(sqlite3*); int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**); int (*expired)(sqlite3_stmt*); int (*finalize)(sqlite3_stmt*pStmt); void (*free)(void*); void (*free_table)(char**result); int (*get_autocommit)(sqlite3*); void * (*get_auxdata)(sqlite3_context*,int); int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**); int (*global_recover)(void); void (*interruptx)(sqlite3*); sqlite_int64 (*last_insert_rowid)(sqlite3*); const char * (*libversion)(void); int (*libversion_number)(void); void *(*malloc)(int); char * (*mprintf)(const char*,...); int (*open)(const char*,sqlite3**); int (*open16)(const void*,sqlite3**); int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*); void (*progress_handler)(sqlite3*,int,int(*)(void*),void*); void *(*realloc)(void*,int); int (*reset)(sqlite3_stmt*pStmt); void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_double)(sqlite3_context*,double); void (*result_error)(sqlite3_context*,const char*,int); void (*result_error16)(sqlite3_context*,const void*,int); void (*result_int)(sqlite3_context*,int); void (*result_int64)(sqlite3_context*,sqlite_int64); void (*result_null)(sqlite3_context*); void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*)); void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_value)(sqlite3_context*,sqlite3_value*); void * (*rollback_hook)(sqlite3*,void(*)(void*),void*); int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*, const char*,const char*),void*); void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*)); char * (*xsnprintf)(int,char*,const char*,...); int (*step)(sqlite3_stmt*); int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*, char const**,char const**,int*,int*,int*); void (*thread_cleanup)(void); int (*total_changes)(sqlite3*); void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*); int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*); void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*, sqlite_int64),void*); void * (*user_data)(sqlite3_context*); const void * (*value_blob)(sqlite3_value*); int (*value_bytes)(sqlite3_value*); int (*value_bytes16)(sqlite3_value*); double (*value_double)(sqlite3_value*); int (*value_int)(sqlite3_value*); sqlite_int64 (*value_int64)(sqlite3_value*); int (*value_numeric_type)(sqlite3_value*); const unsigned char * (*value_text)(sqlite3_value*); const void * (*value_text16)(sqlite3_value*); const void * (*value_text16be)(sqlite3_value*); const void * (*value_text16le)(sqlite3_value*); int (*value_type)(sqlite3_value*); char *(*vmprintf)(const char*,va_list); /* Added ??? */ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg); /* Added by 3.3.13 */ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); int (*clear_bindings)(sqlite3_stmt*); /* Added by 3.4.1 */ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*, void (*xDestroy)(void *)); /* Added by 3.5.0 */ int (*bind_zeroblob)(sqlite3_stmt*,int,int); int (*blob_bytes)(sqlite3_blob*); int (*blob_close)(sqlite3_blob*); int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64, int,sqlite3_blob**); int (*blob_read)(sqlite3_blob*,void*,int,int); int (*blob_write)(sqlite3_blob*,const void*,int,int); int (*create_collation_v2)(sqlite3*,const char*,int,void*, int(*)(void*,int,const void*,int,const void*), void(*)(void*)); int (*file_control)(sqlite3*,const char*,int,void*); sqlite3_int64 (*memory_highwater)(int); sqlite3_int64 (*memory_used)(void); sqlite3_mutex *(*mutex_alloc)(int); void (*mutex_enter)(sqlite3_mutex*); void (*mutex_free)(sqlite3_mutex*); void (*mutex_leave)(sqlite3_mutex*); int (*mutex_try)(sqlite3_mutex*); int (*open_v2)(const char*,sqlite3**,int,const char*); int (*release_memory)(int); void (*result_error_nomem)(sqlite3_context*); void (*result_error_toobig)(sqlite3_context*); int (*sleep)(int); void (*soft_heap_limit)(int); sqlite3_vfs *(*vfs_find)(const char*); int (*vfs_register)(sqlite3_vfs*,int); int (*vfs_unregister)(sqlite3_vfs*); int (*xthreadsafe)(void); void (*result_zeroblob)(sqlite3_context*,int); void (*result_error_code)(sqlite3_context*,int); int (*test_control)(int, ...); void (*randomness)(int,void*); sqlite3 *(*context_db_handle)(sqlite3_context*); int (*extended_result_codes)(sqlite3*,int); int (*limit)(sqlite3*,int,int); sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*); const char *(*sql)(sqlite3_stmt*); int (*status)(int,int*,int*,int); int (*backup_finish)(sqlite3_backup*); sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*); int (*backup_pagecount)(sqlite3_backup*); int (*backup_remaining)(sqlite3_backup*); int (*backup_step)(sqlite3_backup*,int); const char *(*compileoption_get)(int); int (*compileoption_used)(const char*); int (*create_function_v2)(sqlite3*,const char*,int,int,void*, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void(*xDestroy)(void*)); int (*db_config)(sqlite3*,int,...); sqlite3_mutex *(*db_mutex)(sqlite3*); int (*db_status)(sqlite3*,int,int*,int*,int); int (*extended_errcode)(sqlite3*); void (*log)(int,const char*,...); sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64); const char *(*sourceid)(void); int (*stmt_status)(sqlite3_stmt*,int,int); int (*strnicmp)(const char*,const char*,int); int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*); int (*wal_autocheckpoint)(sqlite3*,int); int (*wal_checkpoint)(sqlite3*,const char*); void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*); int (*blob_reopen)(sqlite3_blob*,sqlite3_int64); int (*vtab_config)(sqlite3*,int op,...); int (*vtab_on_conflict)(sqlite3*); /* Version 3.7.16 and later */ int (*close_v2)(sqlite3*); const char *(*db_filename)(sqlite3*,const char*); int (*db_readonly)(sqlite3*,const char*); int (*db_release_memory)(sqlite3*); const char *(*errstr)(int); int (*stmt_busy)(sqlite3_stmt*); int (*stmt_readonly)(sqlite3_stmt*); int (*stricmp)(const char*,const char*); int (*uri_boolean)(const char*,const char*,int); sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64); const char *(*uri_parameter)(const char*,const char*); char *(*xvsnprintf)(int,char*,const char*,va_list); int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*); /* Version 3.8.7 and later */ int (*auto_extension)(void(*)(void)); int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64, void(*)(void*)); int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64, void(*)(void*),unsigned char); int (*cancel_auto_extension)(void(*)(void)); int (*load_extension)(sqlite3*,const char*,const char*,char**); void *(*malloc64)(sqlite3_uint64); sqlite3_uint64 (*msize)(void*); void *(*realloc64)(void*,sqlite3_uint64); void (*reset_auto_extension)(void); void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64, void(*)(void*)); void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64, void(*)(void*), unsigned char); int (*strglob)(const char*,const char*); /* Version 3.8.11 and later */ sqlite3_value *(*value_dup)(const sqlite3_value*); void (*value_free)(sqlite3_value*); int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64); int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64); /* Version 3.9.0 and later */ unsigned int (*value_subtype)(sqlite3_value*); void (*result_subtype)(sqlite3_context*,unsigned int); /* Version 3.10.0 and later */ int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int); int (*strlike)(const char*,const char*,unsigned int); int (*db_cacheflush)(sqlite3*); /* Version 3.12.0 and later */ int (*system_errno)(sqlite3*); /* Version 3.14.0 and later */ int (*trace_v2)(sqlite3*,unsigned,int(*)(unsigned,void*,void*,void*),void*); char *(*expanded_sql)(sqlite3_stmt*); /* Version 3.18.0 and later */ void (*set_last_insert_rowid)(sqlite3*,sqlite3_int64); /* Version 3.20.0 and later */ int (*prepare_v3)(sqlite3*,const char*,int,unsigned int, sqlite3_stmt**,const char**); int (*prepare16_v3)(sqlite3*,const void*,int,unsigned int, sqlite3_stmt**,const void**); int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*)); void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*)); void *(*value_pointer)(sqlite3_value*,const char*); int (*vtab_nochange)(sqlite3_context*); int (*value_nochange)(sqlite3_value*); const char *(*vtab_collation)(sqlite3_index_info*,int); /* Version 3.24.0 and later */ int (*keyword_count)(void); int (*keyword_name)(int,const char**,int*); int (*keyword_check)(const char*,int); sqlite3_str *(*str_new)(sqlite3*); char *(*str_finish)(sqlite3_str*); void (*str_appendf)(sqlite3_str*, const char *zFormat, ...); void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list); void (*str_append)(sqlite3_str*, const char *zIn, int N); void (*str_appendall)(sqlite3_str*, const char *zIn); void (*str_appendchar)(sqlite3_str*, int N, char C); void (*str_reset)(sqlite3_str*); int (*str_errcode)(sqlite3_str*); int (*str_length)(sqlite3_str*); char *(*str_value)(sqlite3_str*); /* Version 3.25.0 and later */ int (*create_window_function)(sqlite3*,const char*,int,int,void*, void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInv)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*)); /* Version 3.26.0 and later */ const char *(*normalized_sql)(sqlite3_stmt*); /* Version 3.28.0 and later */ int (*stmt_isexplain)(sqlite3_stmt*); int (*value_frombind)(sqlite3_value*); /* Version 3.30.0 and later */ int (*drop_modules)(sqlite3*,const char**); /* Version 3.31.0 and later */ sqlite3_int64 (*hard_heap_limit64)(sqlite3_int64); const char *(*uri_key)(const char*,int); const char *(*filename_database)(const char*); const char *(*filename_journal)(const char*); const char *(*filename_wal)(const char*); /* Version 3.32.0 and later */ const char *(*create_filename)(const char*,const char*,const char*, int,const char**); void (*free_filename)(const char*); sqlite3_file *(*database_file_object)(const char*); /* Version 3.34.0 and later */ int (*txn_state)(sqlite3*,const char*); /* Version 3.36.1 and later */ sqlite3_int64 (*changes64)(sqlite3*); sqlite3_int64 (*total_changes64)(sqlite3*); /* Version 3.37.0 and later */ int (*autovacuum_pages)(sqlite3*, unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int), void*, void(*)(void*)); /* Version 3.38.0 and later */ int (*error_offset)(sqlite3*); int (*vtab_rhs_value)(sqlite3_index_info*,int,sqlite3_value**); int (*vtab_distinct)(sqlite3_index_info*); int (*vtab_in)(sqlite3_index_info*,int,int); int (*vtab_in_first)(sqlite3_value*,sqlite3_value**); int (*vtab_in_next)(sqlite3_value*,sqlite3_value**); /* Version 3.39.0 and later */ int (*deserialize)(sqlite3*,const char*,unsigned char*, sqlite3_int64,sqlite3_int64,unsigned); unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*, unsigned int); const char *(*db_name)(sqlite3*,int); /* Version 3.40.0 and later */ int (*value_encoding)(sqlite3_value*); /* Version 3.41.0 and later */ int (*is_interrupted)(sqlite3*); /* Version 3.43.0 and later */ int (*stmt_explain)(sqlite3_stmt*,int); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( sqlite3 *db, /* Handle to the database. */ char **pzErrMsg, /* Used to set error string on failure. */ const sqlite3_api_routines *pThunk /* Extension API function pointers. */ ); /* ** The following macros redefine the API routines so that they are ** redirected through the global sqlite3_api structure. ** ** This header file is also used by the loadext.c source file ** (part of the main SQLite library - not an extension) so that ** it can get access to the sqlite3_api_routines structure ** definition. But the main library does not want to redefine ** the API. So the redefinition macros are only valid if the ** SQLITE_CORE macros is undefined. */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) #define sqlite3_aggregate_context sqlite3_api->aggregate_context #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_aggregate_count sqlite3_api->aggregate_count #endif #define sqlite3_bind_blob sqlite3_api->bind_blob #define sqlite3_bind_double sqlite3_api->bind_double #define sqlite3_bind_int sqlite3_api->bind_int #define sqlite3_bind_int64 sqlite3_api->bind_int64 #define sqlite3_bind_null sqlite3_api->bind_null #define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count #define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index #define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name #define sqlite3_bind_text sqlite3_api->bind_text #define sqlite3_bind_text16 sqlite3_api->bind_text16 #define sqlite3_bind_value sqlite3_api->bind_value #define sqlite3_busy_handler sqlite3_api->busy_handler #define sqlite3_busy_timeout sqlite3_api->busy_timeout #define sqlite3_changes sqlite3_api->changes #define sqlite3_close sqlite3_api->close #define sqlite3_collation_needed sqlite3_api->collation_needed #define sqlite3_collation_needed16 sqlite3_api->collation_needed16 #define sqlite3_column_blob sqlite3_api->column_blob #define sqlite3_column_bytes sqlite3_api->column_bytes #define sqlite3_column_bytes16 sqlite3_api->column_bytes16 #define sqlite3_column_count sqlite3_api->column_count #define sqlite3_column_database_name sqlite3_api->column_database_name #define sqlite3_column_database_name16 sqlite3_api->column_database_name16 #define sqlite3_column_decltype sqlite3_api->column_decltype #define sqlite3_column_decltype16 sqlite3_api->column_decltype16 #define sqlite3_column_double sqlite3_api->column_double #define sqlite3_column_int sqlite3_api->column_int #define sqlite3_column_int64 sqlite3_api->column_int64 #define sqlite3_column_name sqlite3_api->column_name #define sqlite3_column_name16 sqlite3_api->column_name16 #define sqlite3_column_origin_name sqlite3_api->column_origin_name #define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16 #define sqlite3_column_table_name sqlite3_api->column_table_name #define sqlite3_column_table_name16 sqlite3_api->column_table_name16 #define sqlite3_column_text sqlite3_api->column_text #define sqlite3_column_text16 sqlite3_api->column_text16 #define sqlite3_column_type sqlite3_api->column_type #define sqlite3_column_value sqlite3_api->column_value #define sqlite3_commit_hook sqlite3_api->commit_hook #define sqlite3_complete sqlite3_api->complete #define sqlite3_complete16 sqlite3_api->complete16 #define sqlite3_create_collation sqlite3_api->create_collation #define sqlite3_create_collation16 sqlite3_api->create_collation16 #define sqlite3_create_function sqlite3_api->create_function #define sqlite3_create_function16 sqlite3_api->create_function16 #define sqlite3_create_module sqlite3_api->create_module #define sqlite3_create_module_v2 sqlite3_api->create_module_v2 #define sqlite3_data_count sqlite3_api->data_count #define sqlite3_db_handle sqlite3_api->db_handle #define sqlite3_declare_vtab sqlite3_api->declare_vtab #define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache #define sqlite3_errcode sqlite3_api->errcode #define sqlite3_errmsg sqlite3_api->errmsg #define sqlite3_errmsg16 sqlite3_api->errmsg16 #define sqlite3_exec sqlite3_api->exec #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_expired sqlite3_api->expired #endif #define sqlite3_finalize sqlite3_api->finalize #define sqlite3_free sqlite3_api->free #define sqlite3_free_table sqlite3_api->free_table #define sqlite3_get_autocommit sqlite3_api->get_autocommit #define sqlite3_get_auxdata sqlite3_api->get_auxdata #define sqlite3_get_table sqlite3_api->get_table #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_global_recover sqlite3_api->global_recover #endif #define sqlite3_interrupt sqlite3_api->interruptx #define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid #define sqlite3_libversion sqlite3_api->libversion #define sqlite3_libversion_number sqlite3_api->libversion_number #define sqlite3_malloc sqlite3_api->malloc #define sqlite3_mprintf sqlite3_api->mprintf #define sqlite3_open sqlite3_api->open #define sqlite3_open16 sqlite3_api->open16 #define sqlite3_prepare sqlite3_api->prepare #define sqlite3_prepare16 sqlite3_api->prepare16 #define sqlite3_prepare_v2 sqlite3_api->prepare_v2 #define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 #define sqlite3_profile sqlite3_api->profile #define sqlite3_progress_handler sqlite3_api->progress_handler #define sqlite3_realloc sqlite3_api->realloc #define sqlite3_reset sqlite3_api->reset #define sqlite3_result_blob sqlite3_api->result_blob #define sqlite3_result_double sqlite3_api->result_double #define sqlite3_result_error sqlite3_api->result_error #define sqlite3_result_error16 sqlite3_api->result_error16 #define sqlite3_result_int sqlite3_api->result_int #define sqlite3_result_int64 sqlite3_api->result_int64 #define sqlite3_result_null sqlite3_api->result_null #define sqlite3_result_text sqlite3_api->result_text #define sqlite3_result_text16 sqlite3_api->result_text16 #define sqlite3_result_text16be sqlite3_api->result_text16be #define sqlite3_result_text16le sqlite3_api->result_text16le #define sqlite3_result_value sqlite3_api->result_value #define sqlite3_rollback_hook sqlite3_api->rollback_hook #define sqlite3_set_authorizer sqlite3_api->set_authorizer #define sqlite3_set_auxdata sqlite3_api->set_auxdata #define sqlite3_snprintf sqlite3_api->xsnprintf #define sqlite3_step sqlite3_api->step #define sqlite3_table_column_metadata sqlite3_api->table_column_metadata #define sqlite3_thread_cleanup sqlite3_api->thread_cleanup #define sqlite3_total_changes sqlite3_api->total_changes #define sqlite3_trace sqlite3_api->trace #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_transfer_bindings sqlite3_api->transfer_bindings #endif #define sqlite3_update_hook sqlite3_api->update_hook #define sqlite3_user_data sqlite3_api->user_data #define sqlite3_value_blob sqlite3_api->value_blob #define sqlite3_value_bytes sqlite3_api->value_bytes #define sqlite3_value_bytes16 sqlite3_api->value_bytes16 #define sqlite3_value_double sqlite3_api->value_double #define sqlite3_value_int sqlite3_api->value_int #define sqlite3_value_int64 sqlite3_api->value_int64 #define sqlite3_value_numeric_type sqlite3_api->value_numeric_type #define sqlite3_value_text sqlite3_api->value_text #define sqlite3_value_text16 sqlite3_api->value_text16 #define sqlite3_value_text16be sqlite3_api->value_text16be #define sqlite3_value_text16le sqlite3_api->value_text16le #define sqlite3_value_type sqlite3_api->value_type #define sqlite3_vmprintf sqlite3_api->vmprintf #define sqlite3_vsnprintf sqlite3_api->xvsnprintf #define sqlite3_overload_function sqlite3_api->overload_function #define sqlite3_prepare_v2 sqlite3_api->prepare_v2 #define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 #define sqlite3_clear_bindings sqlite3_api->clear_bindings #define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob #define sqlite3_blob_bytes sqlite3_api->blob_bytes #define sqlite3_blob_close sqlite3_api->blob_close #define sqlite3_blob_open sqlite3_api->blob_open #define sqlite3_blob_read sqlite3_api->blob_read #define sqlite3_blob_write sqlite3_api->blob_write #define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2 #define sqlite3_file_control sqlite3_api->file_control #define sqlite3_memory_highwater sqlite3_api->memory_highwater #define sqlite3_memory_used sqlite3_api->memory_used #define sqlite3_mutex_alloc sqlite3_api->mutex_alloc #define sqlite3_mutex_enter sqlite3_api->mutex_enter #define sqlite3_mutex_free sqlite3_api->mutex_free #define sqlite3_mutex_leave sqlite3_api->mutex_leave #define sqlite3_mutex_try sqlite3_api->mutex_try #define sqlite3_open_v2 sqlite3_api->open_v2 #define sqlite3_release_memory sqlite3_api->release_memory #define sqlite3_result_error_nomem sqlite3_api->result_error_nomem #define sqlite3_result_error_toobig sqlite3_api->result_error_toobig #define sqlite3_sleep sqlite3_api->sleep #define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit #define sqlite3_vfs_find sqlite3_api->vfs_find #define sqlite3_vfs_register sqlite3_api->vfs_register #define sqlite3_vfs_unregister sqlite3_api->vfs_unregister #define sqlite3_threadsafe sqlite3_api->xthreadsafe #define sqlite3_result_zeroblob sqlite3_api->result_zeroblob #define sqlite3_result_error_code sqlite3_api->result_error_code #define sqlite3_test_control sqlite3_api->test_control #define sqlite3_randomness sqlite3_api->randomness #define sqlite3_context_db_handle sqlite3_api->context_db_handle #define sqlite3_extended_result_codes sqlite3_api->extended_result_codes #define sqlite3_limit sqlite3_api->limit #define sqlite3_next_stmt sqlite3_api->next_stmt #define sqlite3_sql sqlite3_api->sql #define sqlite3_status sqlite3_api->status #define sqlite3_backup_finish sqlite3_api->backup_finish #define sqlite3_backup_init sqlite3_api->backup_init #define sqlite3_backup_pagecount sqlite3_api->backup_pagecount #define sqlite3_backup_remaining sqlite3_api->backup_remaining #define sqlite3_backup_step sqlite3_api->backup_step #define sqlite3_compileoption_get sqlite3_api->compileoption_get #define sqlite3_compileoption_used sqlite3_api->compileoption_used #define sqlite3_create_function_v2 sqlite3_api->create_function_v2 #define sqlite3_db_config sqlite3_api->db_config #define sqlite3_db_mutex sqlite3_api->db_mutex #define sqlite3_db_status sqlite3_api->db_status #define sqlite3_extended_errcode sqlite3_api->extended_errcode #define sqlite3_log sqlite3_api->log #define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64 #define sqlite3_sourceid sqlite3_api->sourceid #define sqlite3_stmt_status sqlite3_api->stmt_status #define sqlite3_strnicmp sqlite3_api->strnicmp #define sqlite3_unlock_notify sqlite3_api->unlock_notify #define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint #define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint #define sqlite3_wal_hook sqlite3_api->wal_hook #define sqlite3_blob_reopen sqlite3_api->blob_reopen #define sqlite3_vtab_config sqlite3_api->vtab_config #define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict /* Version 3.7.16 and later */ #define sqlite3_close_v2 sqlite3_api->close_v2 #define sqlite3_db_filename sqlite3_api->db_filename #define sqlite3_db_readonly sqlite3_api->db_readonly #define sqlite3_db_release_memory sqlite3_api->db_release_memory #define sqlite3_errstr sqlite3_api->errstr #define sqlite3_stmt_busy sqlite3_api->stmt_busy #define sqlite3_stmt_readonly sqlite3_api->stmt_readonly #define sqlite3_stricmp sqlite3_api->stricmp #define sqlite3_uri_boolean sqlite3_api->uri_boolean #define sqlite3_uri_int64 sqlite3_api->uri_int64 #define sqlite3_uri_parameter sqlite3_api->uri_parameter #define sqlite3_uri_vsnprintf sqlite3_api->xvsnprintf #define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2 /* Version 3.8.7 and later */ #define sqlite3_auto_extension sqlite3_api->auto_extension #define sqlite3_bind_blob64 sqlite3_api->bind_blob64 #define sqlite3_bind_text64 sqlite3_api->bind_text64 #define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension #define sqlite3_load_extension sqlite3_api->load_extension #define sqlite3_malloc64 sqlite3_api->malloc64 #define sqlite3_msize sqlite3_api->msize #define sqlite3_realloc64 sqlite3_api->realloc64 #define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension #define sqlite3_result_blob64 sqlite3_api->result_blob64 #define sqlite3_result_text64 sqlite3_api->result_text64 #define sqlite3_strglob sqlite3_api->strglob /* Version 3.8.11 and later */ #define sqlite3_value_dup sqlite3_api->value_dup #define sqlite3_value_free sqlite3_api->value_free #define sqlite3_result_zeroblob64 sqlite3_api->result_zeroblob64 #define sqlite3_bind_zeroblob64 sqlite3_api->bind_zeroblob64 /* Version 3.9.0 and later */ #define sqlite3_value_subtype sqlite3_api->value_subtype #define sqlite3_result_subtype sqlite3_api->result_subtype /* Version 3.10.0 and later */ #define sqlite3_status64 sqlite3_api->status64 #define sqlite3_strlike sqlite3_api->strlike #define sqlite3_db_cacheflush sqlite3_api->db_cacheflush /* Version 3.12.0 and later */ #define sqlite3_system_errno sqlite3_api->system_errno /* Version 3.14.0 and later */ #define sqlite3_trace_v2 sqlite3_api->trace_v2 #define sqlite3_expanded_sql sqlite3_api->expanded_sql /* Version 3.18.0 and later */ #define sqlite3_set_last_insert_rowid sqlite3_api->set_last_insert_rowid /* Version 3.20.0 and later */ #define sqlite3_prepare_v3 sqlite3_api->prepare_v3 #define sqlite3_prepare16_v3 sqlite3_api->prepare16_v3 #define sqlite3_bind_pointer sqlite3_api->bind_pointer #define sqlite3_result_pointer sqlite3_api->result_pointer #define sqlite3_value_pointer sqlite3_api->value_pointer /* Version 3.22.0 and later */ #define sqlite3_vtab_nochange sqlite3_api->vtab_nochange #define sqlite3_value_nochange sqlite3_api->value_nochange #define sqlite3_vtab_collation sqlite3_api->vtab_collation /* Version 3.24.0 and later */ #define sqlite3_keyword_count sqlite3_api->keyword_count #define sqlite3_keyword_name sqlite3_api->keyword_name #define sqlite3_keyword_check sqlite3_api->keyword_check #define sqlite3_str_new sqlite3_api->str_new #define sqlite3_str_finish sqlite3_api->str_finish #define sqlite3_str_appendf sqlite3_api->str_appendf #define sqlite3_str_vappendf sqlite3_api->str_vappendf #define sqlite3_str_append sqlite3_api->str_append #define sqlite3_str_appendall sqlite3_api->str_appendall #define sqlite3_str_appendchar sqlite3_api->str_appendchar #define sqlite3_str_reset sqlite3_api->str_reset #define sqlite3_str_errcode sqlite3_api->str_errcode #define sqlite3_str_length sqlite3_api->str_length #define sqlite3_str_value sqlite3_api->str_value /* Version 3.25.0 and later */ #define sqlite3_create_window_function sqlite3_api->create_window_function /* Version 3.26.0 and later */ #define sqlite3_normalized_sql sqlite3_api->normalized_sql /* Version 3.28.0 and later */ #define sqlite3_stmt_isexplain sqlite3_api->stmt_isexplain #define sqlite3_value_frombind sqlite3_api->value_frombind /* Version 3.30.0 and later */ #define sqlite3_drop_modules sqlite3_api->drop_modules /* Version 3.31.0 and later */ #define sqlite3_hard_heap_limit64 sqlite3_api->hard_heap_limit64 #define sqlite3_uri_key sqlite3_api->uri_key #define sqlite3_filename_database sqlite3_api->filename_database #define sqlite3_filename_journal sqlite3_api->filename_journal #define sqlite3_filename_wal sqlite3_api->filename_wal /* Version 3.32.0 and later */ #define sqlite3_create_filename sqlite3_api->create_filename #define sqlite3_free_filename sqlite3_api->free_filename #define sqlite3_database_file_object sqlite3_api->database_file_object /* Version 3.34.0 and later */ #define sqlite3_txn_state sqlite3_api->txn_state /* Version 3.36.1 and later */ #define sqlite3_changes64 sqlite3_api->changes64 #define sqlite3_total_changes64 sqlite3_api->total_changes64 /* Version 3.37.0 and later */ #define sqlite3_autovacuum_pages sqlite3_api->autovacuum_pages /* Version 3.38.0 and later */ #define sqlite3_error_offset sqlite3_api->error_offset #define sqlite3_vtab_rhs_value sqlite3_api->vtab_rhs_value #define sqlite3_vtab_distinct sqlite3_api->vtab_distinct #define sqlite3_vtab_in sqlite3_api->vtab_in #define sqlite3_vtab_in_first sqlite3_api->vtab_in_first #define sqlite3_vtab_in_next sqlite3_api->vtab_in_next /* Version 3.39.0 and later */ #ifndef SQLITE_OMIT_DESERIALIZE #define sqlite3_deserialize sqlite3_api->deserialize #define sqlite3_serialize sqlite3_api->serialize #endif #define sqlite3_db_name sqlite3_api->db_name /* Version 3.40.0 and later */ #define sqlite3_value_encoding sqlite3_api->value_encoding /* Version 3.41.0 and later */ #define sqlite3_is_interrupted sqlite3_api->is_interrupted /* Version 3.43.0 and later */ #define sqlite3_stmt_explain sqlite3_api->stmt_explain #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; # define SQLITE_EXTENSION_INIT3 \ extern const sqlite3_api_routines *sqlite3_api; #else /* This case when the file is being statically linked into the ** application */ # define SQLITE_EXTENSION_INIT1 /*no-op*/ # define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */ # define SQLITE_EXTENSION_INIT3 /*no-op*/ #endif #endif /* SQLITE3EXT_H */ /************** End of sqlite3ext.h ******************************************/ /************** Continuing where we left off in loadext.c ********************/ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Some API routines are omitted when various features are ** excluded from a build of SQLite. Substitute a NULL pointer ** for any missing APIs. */ #ifndef SQLITE_ENABLE_COLUMN_METADATA # define sqlite3_column_database_name 0 # define sqlite3_column_database_name16 0 # define sqlite3_column_table_name 0 # define sqlite3_column_table_name16 0 # define sqlite3_column_origin_name 0 # define sqlite3_column_origin_name16 0 #endif #ifdef SQLITE_OMIT_AUTHORIZATION # define sqlite3_set_authorizer 0 #endif #ifdef SQLITE_OMIT_UTF16 # define sqlite3_bind_text16 0 # define sqlite3_collation_needed16 0 # define sqlite3_column_decltype16 0 # define sqlite3_column_name16 0 # define sqlite3_column_text16 0 # define sqlite3_complete16 0 # define sqlite3_create_collation16 0 # define sqlite3_create_function16 0 # define sqlite3_errmsg16 0 # define sqlite3_open16 0 # define sqlite3_prepare16 0 # define sqlite3_prepare16_v2 0 # define sqlite3_prepare16_v3 0 # define sqlite3_result_error16 0 # define sqlite3_result_text16 0 # define sqlite3_result_text16be 0 # define sqlite3_result_text16le 0 # define sqlite3_value_text16 0 # define sqlite3_value_text16be 0 # define sqlite3_value_text16le 0 # define sqlite3_column_database_name16 0 # define sqlite3_column_table_name16 0 # define sqlite3_column_origin_name16 0 #endif #ifdef SQLITE_OMIT_COMPLETE # define sqlite3_complete 0 # define sqlite3_complete16 0 #endif #ifdef SQLITE_OMIT_DECLTYPE # define sqlite3_column_decltype16 0 # define sqlite3_column_decltype 0 #endif #ifdef SQLITE_OMIT_PROGRESS_CALLBACK # define sqlite3_progress_handler 0 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3_create_module 0 # define sqlite3_create_module_v2 0 # define sqlite3_declare_vtab 0 # define sqlite3_vtab_config 0 # define sqlite3_vtab_on_conflict 0 # define sqlite3_vtab_collation 0 #endif #ifdef SQLITE_OMIT_SHARED_CACHE # define sqlite3_enable_shared_cache 0 #endif #if defined(SQLITE_OMIT_TRACE) || defined(SQLITE_OMIT_DEPRECATED) # define sqlite3_profile 0 # define sqlite3_trace 0 #endif #ifdef SQLITE_OMIT_GET_TABLE # define sqlite3_free_table 0 # define sqlite3_get_table 0 #endif #ifdef SQLITE_OMIT_INCRBLOB #define sqlite3_bind_zeroblob 0 #define sqlite3_blob_bytes 0 #define sqlite3_blob_close 0 #define sqlite3_blob_open 0 #define sqlite3_blob_read 0 #define sqlite3_blob_write 0 #define sqlite3_blob_reopen 0 #endif #if defined(SQLITE_OMIT_TRACE) # define sqlite3_trace_v2 0 #endif /* ** The following structure contains pointers to all SQLite API routines. ** A pointer to this structure is passed into extensions when they are ** loaded so that the extension can make calls back into the SQLite ** library. ** ** When adding new APIs, add them to the bottom of this structure ** in order to preserve backwards compatibility. ** ** Extensions that use newer APIs should first call the ** sqlite3_libversion_number() to make sure that the API they ** intend to use is supported by the library. Extensions should ** also check to make sure that the pointer to the function is ** not NULL before calling it. */ static const sqlite3_api_routines sqlite3Apis = { sqlite3_aggregate_context, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_aggregate_count, #else 0, #endif sqlite3_bind_blob, sqlite3_bind_double, sqlite3_bind_int, sqlite3_bind_int64, sqlite3_bind_null, sqlite3_bind_parameter_count, sqlite3_bind_parameter_index, sqlite3_bind_parameter_name, sqlite3_bind_text, sqlite3_bind_text16, sqlite3_bind_value, sqlite3_busy_handler, sqlite3_busy_timeout, sqlite3_changes, sqlite3_close, sqlite3_collation_needed, sqlite3_collation_needed16, sqlite3_column_blob, sqlite3_column_bytes, sqlite3_column_bytes16, sqlite3_column_count, sqlite3_column_database_name, sqlite3_column_database_name16, sqlite3_column_decltype, sqlite3_column_decltype16, sqlite3_column_double, sqlite3_column_int, sqlite3_column_int64, sqlite3_column_name, sqlite3_column_name16, sqlite3_column_origin_name, sqlite3_column_origin_name16, sqlite3_column_table_name, sqlite3_column_table_name16, sqlite3_column_text, sqlite3_column_text16, sqlite3_column_type, sqlite3_column_value, sqlite3_commit_hook, sqlite3_complete, sqlite3_complete16, sqlite3_create_collation, sqlite3_create_collation16, sqlite3_create_function, sqlite3_create_function16, sqlite3_create_module, sqlite3_data_count, sqlite3_db_handle, sqlite3_declare_vtab, sqlite3_enable_shared_cache, sqlite3_errcode, sqlite3_errmsg, sqlite3_errmsg16, sqlite3_exec, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_expired, #else 0, #endif sqlite3_finalize, sqlite3_free, sqlite3_free_table, sqlite3_get_autocommit, sqlite3_get_auxdata, sqlite3_get_table, 0, /* Was sqlite3_global_recover(), but that function is deprecated */ sqlite3_interrupt, sqlite3_last_insert_rowid, sqlite3_libversion, sqlite3_libversion_number, sqlite3_malloc, sqlite3_mprintf, sqlite3_open, sqlite3_open16, sqlite3_prepare, sqlite3_prepare16, sqlite3_profile, sqlite3_progress_handler, sqlite3_realloc, sqlite3_reset, sqlite3_result_blob, sqlite3_result_double, sqlite3_result_error, sqlite3_result_error16, sqlite3_result_int, sqlite3_result_int64, sqlite3_result_null, sqlite3_result_text, sqlite3_result_text16, sqlite3_result_text16be, sqlite3_result_text16le, sqlite3_result_value, sqlite3_rollback_hook, sqlite3_set_authorizer, sqlite3_set_auxdata, sqlite3_snprintf, sqlite3_step, sqlite3_table_column_metadata, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_thread_cleanup, #else 0, #endif sqlite3_total_changes, sqlite3_trace, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_transfer_bindings, #else 0, #endif sqlite3_update_hook, sqlite3_user_data, sqlite3_value_blob, sqlite3_value_bytes, sqlite3_value_bytes16, sqlite3_value_double, sqlite3_value_int, sqlite3_value_int64, sqlite3_value_numeric_type, sqlite3_value_text, sqlite3_value_text16, sqlite3_value_text16be, sqlite3_value_text16le, sqlite3_value_type, sqlite3_vmprintf, /* ** The original API set ends here. All extensions can call any ** of the APIs above provided that the pointer is not NULL. But ** before calling APIs that follow, extension should check the ** sqlite3_libversion_number() to make sure they are dealing with ** a library that is new enough to support that API. ************************************************************************* */ sqlite3_overload_function, /* ** Added after 3.3.13 */ sqlite3_prepare_v2, sqlite3_prepare16_v2, sqlite3_clear_bindings, /* ** Added for 3.4.1 */ sqlite3_create_module_v2, /* ** Added for 3.5.0 */ sqlite3_bind_zeroblob, sqlite3_blob_bytes, sqlite3_blob_close, sqlite3_blob_open, sqlite3_blob_read, sqlite3_blob_write, sqlite3_create_collation_v2, sqlite3_file_control, sqlite3_memory_highwater, sqlite3_memory_used, #ifdef SQLITE_MUTEX_OMIT 0, 0, 0, 0, 0, #else sqlite3_mutex_alloc, sqlite3_mutex_enter, sqlite3_mutex_free, sqlite3_mutex_leave, sqlite3_mutex_try, #endif sqlite3_open_v2, sqlite3_release_memory, sqlite3_result_error_nomem, sqlite3_result_error_toobig, sqlite3_sleep, sqlite3_soft_heap_limit, sqlite3_vfs_find, sqlite3_vfs_register, sqlite3_vfs_unregister, /* ** Added for 3.5.8 */ sqlite3_threadsafe, sqlite3_result_zeroblob, sqlite3_result_error_code, sqlite3_test_control, sqlite3_randomness, sqlite3_context_db_handle, /* ** Added for 3.6.0 */ sqlite3_extended_result_codes, sqlite3_limit, sqlite3_next_stmt, sqlite3_sql, sqlite3_status, /* ** Added for 3.7.4 */ sqlite3_backup_finish, sqlite3_backup_init, sqlite3_backup_pagecount, sqlite3_backup_remaining, sqlite3_backup_step, #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS sqlite3_compileoption_get, sqlite3_compileoption_used, #else 0, 0, #endif sqlite3_create_function_v2, sqlite3_db_config, sqlite3_db_mutex, sqlite3_db_status, sqlite3_extended_errcode, sqlite3_log, sqlite3_soft_heap_limit64, sqlite3_sourceid, sqlite3_stmt_status, sqlite3_strnicmp, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY sqlite3_unlock_notify, #else 0, #endif #ifndef SQLITE_OMIT_WAL sqlite3_wal_autocheckpoint, sqlite3_wal_checkpoint, sqlite3_wal_hook, #else 0, 0, 0, #endif sqlite3_blob_reopen, sqlite3_vtab_config, sqlite3_vtab_on_conflict, sqlite3_close_v2, sqlite3_db_filename, sqlite3_db_readonly, sqlite3_db_release_memory, sqlite3_errstr, sqlite3_stmt_busy, sqlite3_stmt_readonly, sqlite3_stricmp, sqlite3_uri_boolean, sqlite3_uri_int64, sqlite3_uri_parameter, sqlite3_vsnprintf, sqlite3_wal_checkpoint_v2, /* Version 3.8.7 and later */ sqlite3_auto_extension, sqlite3_bind_blob64, sqlite3_bind_text64, sqlite3_cancel_auto_extension, sqlite3_load_extension, sqlite3_malloc64, sqlite3_msize, sqlite3_realloc64, sqlite3_reset_auto_extension, sqlite3_result_blob64, sqlite3_result_text64, sqlite3_strglob, /* Version 3.8.11 and later */ (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup, sqlite3_value_free, sqlite3_result_zeroblob64, sqlite3_bind_zeroblob64, /* Version 3.9.0 and later */ sqlite3_value_subtype, sqlite3_result_subtype, /* Version 3.10.0 and later */ sqlite3_status64, sqlite3_strlike, sqlite3_db_cacheflush, /* Version 3.12.0 and later */ sqlite3_system_errno, /* Version 3.14.0 and later */ sqlite3_trace_v2, sqlite3_expanded_sql, /* Version 3.18.0 and later */ sqlite3_set_last_insert_rowid, /* Version 3.20.0 and later */ sqlite3_prepare_v3, sqlite3_prepare16_v3, sqlite3_bind_pointer, sqlite3_result_pointer, sqlite3_value_pointer, /* Version 3.22.0 and later */ sqlite3_vtab_nochange, sqlite3_value_nochange, sqlite3_vtab_collation, /* Version 3.24.0 and later */ sqlite3_keyword_count, sqlite3_keyword_name, sqlite3_keyword_check, sqlite3_str_new, sqlite3_str_finish, sqlite3_str_appendf, sqlite3_str_vappendf, sqlite3_str_append, sqlite3_str_appendall, sqlite3_str_appendchar, sqlite3_str_reset, sqlite3_str_errcode, sqlite3_str_length, sqlite3_str_value, /* Version 3.25.0 and later */ sqlite3_create_window_function, /* Version 3.26.0 and later */ #ifdef SQLITE_ENABLE_NORMALIZE sqlite3_normalized_sql, #else 0, #endif /* Version 3.28.0 and later */ sqlite3_stmt_isexplain, sqlite3_value_frombind, /* Version 3.30.0 and later */ #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_drop_modules, #else 0, #endif /* Version 3.31.0 and later */ sqlite3_hard_heap_limit64, sqlite3_uri_key, sqlite3_filename_database, sqlite3_filename_journal, sqlite3_filename_wal, /* Version 3.32.0 and later */ sqlite3_create_filename, sqlite3_free_filename, sqlite3_database_file_object, /* Version 3.34.0 and later */ sqlite3_txn_state, /* Version 3.36.1 and later */ sqlite3_changes64, sqlite3_total_changes64, /* Version 3.37.0 and later */ sqlite3_autovacuum_pages, /* Version 3.38.0 and later */ sqlite3_error_offset, #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_vtab_rhs_value, sqlite3_vtab_distinct, sqlite3_vtab_in, sqlite3_vtab_in_first, sqlite3_vtab_in_next, #else 0, 0, 0, 0, 0, #endif /* Version 3.39.0 and later */ #ifndef SQLITE_OMIT_DESERIALIZE sqlite3_deserialize, sqlite3_serialize, #else 0, 0, #endif sqlite3_db_name, /* Version 3.40.0 and later */ sqlite3_value_encoding, /* Version 3.41.0 and later */ sqlite3_is_interrupted, /* Version 3.43.0 and later */ sqlite3_stmt_explain }; /* True if x is the directory separator character */ #if SQLITE_OS_WIN # define DirSep(X) ((X)=='/'||(X)=='\\') #else # define DirSep(X) ((X)=='/') #endif /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. ** ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. ** ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with ** error message text. The calling function should free this memory ** by calling sqlite3DbFree(db, ). */ static int sqlite3LoadExtension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ){ sqlite3_vfs *pVfs = db->pVfs; void *handle; sqlite3_loadext_entry xInit; char *zErrmsg = 0; const char *zEntry; char *zAltEntry = 0; void **aHandle; u64 nMsg = strlen(zFile); int ii; int rc; /* Shared library endings to try if zFile cannot be loaded as written */ static const char *azEndings[] = { #if SQLITE_OS_WIN "dll" #elif defined(__APPLE__) "dylib" #else "so" #endif }; if( pzErrMsg ) *pzErrMsg = 0; /* Ticket #1863. To avoid a creating security problems for older ** applications that relink against newer versions of SQLite, the ** ability to run load_extension is turned off by default. One ** must call either sqlite3_enable_load_extension(db) or ** sqlite3_db_config(db, SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, 1, 0) ** to turn on extension loading. */ if( (db->flags & SQLITE_LoadExtension)==0 ){ if( pzErrMsg ){ *pzErrMsg = sqlite3_mprintf("not authorized"); } return SQLITE_ERROR; } zEntry = zProc ? zProc : "sqlite3_extension_init"; /* tag-20210611-1. Some dlopen() implementations will segfault if given ** an oversize filename. Most filesystems have a pathname limit of 4K, ** so limit the extension filename length to about twice that. ** https://sqlite.org/forum/forumpost/08a0d6d9bf ** ** Later (2023-03-25): Save an extra 6 bytes for the filename suffix. ** See https://sqlite.org/forum/forumpost/24083b579d. */ if( nMsg>SQLITE_MAX_PATHLEN ) goto extension_not_found; /* Do not allow sqlite3_load_extension() to link to a copy of the ** running application, by passing in an empty filename. */ if( nMsg==0 ) goto extension_not_found; handle = sqlite3OsDlOpen(pVfs, zFile); #if SQLITE_OS_UNIX || SQLITE_OS_WIN for(ii=0; ii sqlite3_example_init ** C:/lib/mathfuncs.dll ==> sqlite3_mathfuncs_init */ if( xInit==0 && zProc==0 ){ int iFile, iEntry, c; int ncFile = sqlite3Strlen30(zFile); zAltEntry = sqlite3_malloc64(ncFile+30); if( zAltEntry==0 ){ sqlite3OsDlClose(pVfs, handle); return SQLITE_NOMEM_BKPT; } memcpy(zAltEntry, "sqlite3_", 8); for(iFile=ncFile-1; iFile>=0 && !DirSep(zFile[iFile]); iFile--){} iFile++; if( sqlite3_strnicmp(zFile+iFile, "lib", 3)==0 ) iFile += 3; for(iEntry=8; (c = zFile[iFile])!=0 && c!='.'; iFile++){ if( sqlite3Isalpha(c) ){ zAltEntry[iEntry++] = (char)sqlite3UpperToLower[(unsigned)c]; } } memcpy(zAltEntry+iEntry, "_init", 6); zEntry = zAltEntry; xInit = (sqlite3_loadext_entry)sqlite3OsDlSym(pVfs, handle, zEntry); } if( xInit==0 ){ if( pzErrMsg ){ nMsg += strlen(zEntry) + 300; *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg); if( zErrmsg ){ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */ sqlite3_snprintf((int)nMsg, zErrmsg, "no entry point [%s] in shared library [%s]", zEntry, zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } } sqlite3OsDlClose(pVfs, handle); sqlite3_free(zAltEntry); return SQLITE_ERROR; } sqlite3_free(zAltEntry); rc = xInit(db, &zErrmsg, &sqlite3Apis); if( rc ){ if( rc==SQLITE_OK_LOAD_PERMANENTLY ) return SQLITE_OK; if( pzErrMsg ){ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); } sqlite3_free(zErrmsg); sqlite3OsDlClose(pVfs, handle); return SQLITE_ERROR; } /* Append the new shared library handle to the db->aExtension array. */ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1)); if( aHandle==0 ){ return SQLITE_NOMEM_BKPT; } if( db->nExtension>0 ){ memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension); } sqlite3DbFree(db, db->aExtension); db->aExtension = aHandle; db->aExtension[db->nExtension++] = handle; return SQLITE_OK; extension_not_found: if( pzErrMsg ){ nMsg += 300; *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg); if( zErrmsg ){ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */ sqlite3_snprintf((int)nMsg, zErrmsg, "unable to open shared library [%.*s]", SQLITE_MAX_PATHLEN, zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } } return SQLITE_ERROR; } SQLITE_API int sqlite3_load_extension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ){ int rc; sqlite3_mutex_enter(db->mutex); rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Call this routine when the database connection is closing in order ** to clean up loaded extensions */ SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){ int i; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; inExtension; i++){ sqlite3OsDlClose(db->pVfs, db->aExtension[i]); } sqlite3DbFree(db, db->aExtension); } /* ** Enable or disable extension loading. Extension loading is disabled by ** default so as not to open security holes in older applications. */ SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ sqlite3_mutex_enter(db->mutex); if( onoff ){ db->flags |= SQLITE_LoadExtension|SQLITE_LoadExtFunc; }else{ db->flags &= ~(u64)(SQLITE_LoadExtension|SQLITE_LoadExtFunc); } sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #endif /* !defined(SQLITE_OMIT_LOAD_EXTENSION) */ /* ** The following object holds the list of automatically loaded ** extensions. ** ** This list is shared across threads. The SQLITE_MUTEX_STATIC_MAIN ** mutex must be held while accessing this list. */ typedef struct sqlite3AutoExtList sqlite3AutoExtList; static SQLITE_WSD struct sqlite3AutoExtList { u32 nExt; /* Number of entries in aExt[] */ void (**aExt)(void); /* Pointers to the extension init functions */ } sqlite3Autoext = { 0, 0 }; /* The "wsdAutoext" macro will resolve to the autoextension ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdStat can refer directly ** to the "sqlite3Autoext" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdAutoextInit \ sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext) # define wsdAutoext x[0] #else # define wsdAutoextInit # define wsdAutoext sqlite3Autoext #endif /* ** Register a statically linked extension that is automatically ** loaded by every new database connection. */ SQLITE_API int sqlite3_auto_extension( void (*xInit)(void) ){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ){ return rc; }else #endif { u32 i; #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif wsdAutoextInit; sqlite3_mutex_enter(mutex); for(i=0; i=0; i--){ if( wsdAutoext.aExt[i]==xInit ){ wsdAutoext.nExt--; wsdAutoext.aExt[i] = wsdAutoext.aExt[wsdAutoext.nExt]; n++; break; } } sqlite3_mutex_leave(mutex); return n; } /* ** Reset the automatic extension loading mechanism. */ SQLITE_API void sqlite3_reset_auto_extension(void){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize()==SQLITE_OK ) #endif { #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif wsdAutoextInit; sqlite3_mutex_enter(mutex); sqlite3_free(wsdAutoext.aExt); wsdAutoext.aExt = 0; wsdAutoext.nExt = 0; sqlite3_mutex_leave(mutex); } } /* ** Load all automatic extensions. ** ** If anything goes wrong, set an error in the database connection. */ SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){ u32 i; int go = 1; int rc; sqlite3_loadext_entry xInit; wsdAutoextInit; if( wsdAutoext.nExt==0 ){ /* Common case: early out without every having to acquire a mutex */ return; } for(i=0; go; i++){ char *zErrmsg; #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif #ifdef SQLITE_OMIT_LOAD_EXTENSION const sqlite3_api_routines *pThunk = 0; #else const sqlite3_api_routines *pThunk = &sqlite3Apis; #endif sqlite3_mutex_enter(mutex); if( i>=wsdAutoext.nExt ){ xInit = 0; go = 0; }else{ xInit = (sqlite3_loadext_entry)wsdAutoext.aExt[i]; } sqlite3_mutex_leave(mutex); zErrmsg = 0; if( xInit && (rc = xInit(db, &zErrmsg, pThunk))!=0 ){ sqlite3ErrorWithMsg(db, rc, "automatic extension loading failed: %s", zErrmsg); go = 0; } sqlite3_free(zErrmsg); } } /************** End of loadext.c *********************************************/ /************** Begin file pragma.c ******************************************/ /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. */ /* #include "sqliteInt.h" */ #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif #endif /*************************************************************************** ** The "pragma.h" include file is an automatically generated file that ** that includes the PragType_XXXX macro definitions and the aPragmaName[] ** object. This ensures that the aPragmaName[] table is arranged in ** lexicographical order to facility a binary search of the pragma name. ** Do not edit pragma.h directly. Edit and rerun the script in at ** ../tool/mkpragmatab.tcl. */ /************** Include pragma.h in the middle of pragma.c *******************/ /************** Begin file pragma.h ******************************************/ /* DO NOT EDIT! ** This file is automatically generated by the script at ** ../tool/mkpragmatab.tcl. To update the set of pragmas, edit ** that script and rerun it. */ /* The various pragma types */ #define PragTyp_ACTIVATE_EXTENSIONS 0 #define PragTyp_ANALYSIS_LIMIT 1 #define PragTyp_HEADER_VALUE 2 #define PragTyp_AUTO_VACUUM 3 #define PragTyp_FLAG 4 #define PragTyp_BUSY_TIMEOUT 5 #define PragTyp_CACHE_SIZE 6 #define PragTyp_CACHE_SPILL 7 #define PragTyp_CASE_SENSITIVE_LIKE 8 #define PragTyp_COLLATION_LIST 9 #define PragTyp_COMPILE_OPTIONS 10 #define PragTyp_DATA_STORE_DIRECTORY 11 #define PragTyp_DATABASE_LIST 12 #define PragTyp_DEFAULT_CACHE_SIZE 13 #define PragTyp_ENCODING 14 #define PragTyp_FOREIGN_KEY_CHECK 15 #define PragTyp_FOREIGN_KEY_LIST 16 #define PragTyp_FUNCTION_LIST 17 #define PragTyp_HARD_HEAP_LIMIT 18 #define PragTyp_INCREMENTAL_VACUUM 19 #define PragTyp_INDEX_INFO 20 #define PragTyp_INDEX_LIST 21 #define PragTyp_INTEGRITY_CHECK 22 #define PragTyp_JOURNAL_MODE 23 #define PragTyp_JOURNAL_SIZE_LIMIT 24 #define PragTyp_LOCK_PROXY_FILE 25 #define PragTyp_LOCKING_MODE 26 #define PragTyp_PAGE_COUNT 27 #define PragTyp_MMAP_SIZE 28 #define PragTyp_MODULE_LIST 29 #define PragTyp_OPTIMIZE 30 #define PragTyp_PAGE_SIZE 31 #define PragTyp_PRAGMA_LIST 32 #define PragTyp_SECURE_DELETE 33 #define PragTyp_SHRINK_MEMORY 34 #define PragTyp_SOFT_HEAP_LIMIT 35 #define PragTyp_SYNCHRONOUS 36 #define PragTyp_TABLE_INFO 37 #define PragTyp_TABLE_LIST 38 #define PragTyp_TEMP_STORE 39 #define PragTyp_TEMP_STORE_DIRECTORY 40 #define PragTyp_THREADS 41 #define PragTyp_WAL_AUTOCHECKPOINT 42 #define PragTyp_WAL_CHECKPOINT 43 #define PragTyp_LOCK_STATUS 44 #define PragTyp_STATS 45 /* Property flags associated with various pragma. */ #define PragFlg_NeedSchema 0x01 /* Force schema load before running */ #define PragFlg_NoColumns 0x02 /* OP_ResultRow called with zero columns */ #define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */ #define PragFlg_ReadOnly 0x08 /* Read-only HEADER_VALUE */ #define PragFlg_Result0 0x10 /* Acts as query when no argument */ #define PragFlg_Result1 0x20 /* Acts as query when has one argument */ #define PragFlg_SchemaOpt 0x40 /* Schema restricts name search if present */ #define PragFlg_SchemaReq 0x80 /* Schema required - "main" is default */ /* Names of columns for pragmas that return multi-column result ** or that return single-column results where the name of the ** result column is different from the name of the pragma */ static const char *const pragCName[] = { /* 0 */ "id", /* Used by: foreign_key_list */ /* 1 */ "seq", /* 2 */ "table", /* 3 */ "from", /* 4 */ "to", /* 5 */ "on_update", /* 6 */ "on_delete", /* 7 */ "match", /* 8 */ "cid", /* Used by: table_xinfo */ /* 9 */ "name", /* 10 */ "type", /* 11 */ "notnull", /* 12 */ "dflt_value", /* 13 */ "pk", /* 14 */ "hidden", /* table_info reuses 8 */ /* 15 */ "schema", /* Used by: table_list */ /* 16 */ "name", /* 17 */ "type", /* 18 */ "ncol", /* 19 */ "wr", /* 20 */ "strict", /* 21 */ "seqno", /* Used by: index_xinfo */ /* 22 */ "cid", /* 23 */ "name", /* 24 */ "desc", /* 25 */ "coll", /* 26 */ "key", /* 27 */ "name", /* Used by: function_list */ /* 28 */ "builtin", /* 29 */ "type", /* 30 */ "enc", /* 31 */ "narg", /* 32 */ "flags", /* 33 */ "tbl", /* Used by: stats */ /* 34 */ "idx", /* 35 */ "wdth", /* 36 */ "hght", /* 37 */ "flgs", /* 38 */ "seq", /* Used by: index_list */ /* 39 */ "name", /* 40 */ "unique", /* 41 */ "origin", /* 42 */ "partial", /* 43 */ "table", /* Used by: foreign_key_check */ /* 44 */ "rowid", /* 45 */ "parent", /* 46 */ "fkid", /* index_info reuses 21 */ /* 47 */ "seq", /* Used by: database_list */ /* 48 */ "name", /* 49 */ "file", /* 50 */ "busy", /* Used by: wal_checkpoint */ /* 51 */ "log", /* 52 */ "checkpointed", /* collation_list reuses 38 */ /* 53 */ "database", /* Used by: lock_status */ /* 54 */ "status", /* 55 */ "cache_size", /* Used by: default_cache_size */ /* module_list pragma_list reuses 9 */ /* 56 */ "timeout", /* Used by: busy_timeout */ }; /* Definitions of all built-in pragmas */ typedef struct PragmaName { const char *const zName; /* Name of pragma */ u8 ePragTyp; /* PragTyp_XXX value */ u8 mPragFlg; /* Zero or more PragFlg_XXX values */ u8 iPragCName; /* Start of column names in pragCName[] */ u8 nPragCName; /* Num of col names. 0 means use pragma name */ u64 iArg; /* Extra argument */ } PragmaName; static const PragmaName aPragmaName[] = { #if defined(SQLITE_ENABLE_CEROD) {/* zName: */ "activate_extensions", /* ePragTyp: */ PragTyp_ACTIVATE_EXTENSIONS, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif {/* zName: */ "analysis_limit", /* ePragTyp: */ PragTyp_ANALYSIS_LIMIT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "application_id", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_APPLICATION_ID }, #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) {/* zName: */ "auto_vacuum", /* ePragTyp: */ PragTyp_AUTO_VACUUM, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_AUTOMATIC_INDEX) {/* zName: */ "automatic_index", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_AutoIndex }, #endif #endif {/* zName: */ "busy_timeout", /* ePragTyp: */ PragTyp_BUSY_TIMEOUT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 56, 1, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "cache_size", /* ePragTyp: */ PragTyp_CACHE_SIZE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "cache_spill", /* ePragTyp: */ PragTyp_CACHE_SPILL, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA) {/* zName: */ "case_sensitive_like", /* ePragTyp: */ PragTyp_CASE_SENSITIVE_LIKE, /* ePragFlg: */ PragFlg_NoColumns, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif {/* zName: */ "cell_size_check", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CellSizeCk }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "checkpoint_fullfsync", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CkptFullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "collation_list", /* ePragTyp: */ PragTyp_COLLATION_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 38, 2, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS) {/* zName: */ "compile_options", /* ePragTyp: */ PragTyp_COMPILE_OPTIONS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "count_changes", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CountRows }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN {/* zName: */ "data_store_directory", /* ePragTyp: */ PragTyp_DATA_STORE_DIRECTORY, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "data_version", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_DATA_VERSION }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "database_list", /* ePragTyp: */ PragTyp_DATABASE_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 47, 3, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) {/* zName: */ "default_cache_size", /* ePragTyp: */ PragTyp_DEFAULT_CACHE_SIZE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 55, 1, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "defer_foreign_keys", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_DeferFKs }, #endif #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "empty_result_callbacks", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_NullCallback }, #endif #if !defined(SQLITE_OMIT_UTF16) {/* zName: */ "encoding", /* ePragTyp: */ PragTyp_ENCODING, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_key_check", /* ePragTyp: */ PragTyp_FOREIGN_KEY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 43, 4, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) {/* zName: */ "foreign_key_list", /* ePragTyp: */ PragTyp_FOREIGN_KEY_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 8, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_keys", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ForeignKeys }, #endif #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "freelist_count", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_FREE_PAGE_COUNT }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "full_column_names", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_FullColNames }, {/* zName: */ "fullfsync", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_FullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) {/* zName: */ "function_list", /* ePragTyp: */ PragTyp_FUNCTION_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 27, 6, /* iArg: */ 0 }, #endif #endif {/* zName: */ "hard_heap_limit", /* ePragTyp: */ PragTyp_HARD_HEAP_LIMIT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_CHECK) {/* zName: */ "ignore_check_constraints", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_IgnoreChecks }, #endif #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) {/* zName: */ "incremental_vacuum", /* ePragTyp: */ PragTyp_INCREMENTAL_VACUUM, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_NoColumns, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "index_info", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 21, 3, /* iArg: */ 0 }, {/* zName: */ "index_list", /* ePragTyp: */ PragTyp_INDEX_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 38, 5, /* iArg: */ 0 }, {/* zName: */ "index_xinfo", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 21, 6, /* iArg: */ 1 }, #endif #if !defined(SQLITE_OMIT_INTEGRITY_CHECK) {/* zName: */ "integrity_check", /* ePragTyp: */ PragTyp_INTEGRITY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "journal_mode", /* ePragTyp: */ PragTyp_JOURNAL_MODE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "journal_size_limit", /* ePragTyp: */ PragTyp_JOURNAL_SIZE_LIMIT, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "legacy_alter_table", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_LegacyAlter }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE {/* zName: */ "lock_proxy_file", /* ePragTyp: */ PragTyp_LOCK_PROXY_FILE, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) {/* zName: */ "lock_status", /* ePragTyp: */ PragTyp_LOCK_STATUS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 53, 2, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "locking_mode", /* ePragTyp: */ PragTyp_LOCKING_MODE, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "max_page_count", /* ePragTyp: */ PragTyp_PAGE_COUNT, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "mmap_size", /* ePragTyp: */ PragTyp_MMAP_SIZE, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if !defined(SQLITE_OMIT_VIRTUALTABLE) #if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) {/* zName: */ "module_list", /* ePragTyp: */ PragTyp_MODULE_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 9, 1, /* iArg: */ 0 }, #endif #endif #endif {/* zName: */ "optimize", /* ePragTyp: */ PragTyp_OPTIMIZE, /* ePragFlg: */ PragFlg_Result1|PragFlg_NeedSchema, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "page_count", /* ePragTyp: */ PragTyp_PAGE_COUNT, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "page_size", /* ePragTyp: */ PragTyp_PAGE_SIZE, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if defined(SQLITE_DEBUG) {/* zName: */ "parser_trace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ParserTrace }, #endif #endif #if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) {/* zName: */ "pragma_list", /* ePragTyp: */ PragTyp_PRAGMA_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 9, 1, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "query_only", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_QueryOnly }, #endif #if !defined(SQLITE_OMIT_INTEGRITY_CHECK) {/* zName: */ "quick_check", /* ePragTyp: */ PragTyp_INTEGRITY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "read_uncommitted", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ReadUncommit }, {/* zName: */ "recursive_triggers", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_RecTriggers }, {/* zName: */ "reverse_unordered_selects", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ReverseOrder }, #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "schema_version", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_SCHEMA_VERSION }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "secure_delete", /* ePragTyp: */ PragTyp_SECURE_DELETE, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "short_column_names", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ShortColNames }, #endif {/* zName: */ "shrink_memory", /* ePragTyp: */ PragTyp_SHRINK_MEMORY, /* ePragFlg: */ PragFlg_NoColumns, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "soft_heap_limit", /* ePragTyp: */ PragTyp_SOFT_HEAP_LIMIT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if defined(SQLITE_DEBUG) {/* zName: */ "sql_trace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_SqlTrace }, #endif #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG) {/* zName: */ "stats", /* ePragTyp: */ PragTyp_STATS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 33, 5, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "synchronous", /* ePragTyp: */ PragTyp_SYNCHRONOUS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "table_info", /* ePragTyp: */ PragTyp_TABLE_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 8, 6, /* iArg: */ 0 }, {/* zName: */ "table_list", /* ePragTyp: */ PragTyp_TABLE_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1, /* ColNames: */ 15, 6, /* iArg: */ 0 }, {/* zName: */ "table_xinfo", /* ePragTyp: */ PragTyp_TABLE_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 8, 7, /* iArg: */ 1 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "temp_store", /* ePragTyp: */ PragTyp_TEMP_STORE, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "temp_store_directory", /* ePragTyp: */ PragTyp_TEMP_STORE_DIRECTORY, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif {/* zName: */ "threads", /* ePragTyp: */ PragTyp_THREADS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "trusted_schema", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_TrustedSchema }, #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "user_version", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_USER_VERSION }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if defined(SQLITE_DEBUG) {/* zName: */ "vdbe_addoptrace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeAddopTrace }, {/* zName: */ "vdbe_debug", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_SqlTrace|SQLITE_VdbeListing|SQLITE_VdbeTrace }, {/* zName: */ "vdbe_eqp", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeEQP }, {/* zName: */ "vdbe_listing", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeListing }, {/* zName: */ "vdbe_trace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeTrace }, #endif #endif #if !defined(SQLITE_OMIT_WAL) {/* zName: */ "wal_autocheckpoint", /* ePragTyp: */ PragTyp_WAL_AUTOCHECKPOINT, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "wal_checkpoint", /* ePragTyp: */ PragTyp_WAL_CHECKPOINT, /* ePragFlg: */ PragFlg_NeedSchema, /* ColNames: */ 50, 3, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "writable_schema", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_WriteSchema|SQLITE_NoSchemaError }, #endif }; /* Number of pragmas: 68 on by default, 78 total. */ /************** End of pragma.h **********************************************/ /************** Continuing where we left off in pragma.c *********************/ /* ** Interpret the given string as a safety level. Return 0 for OFF, ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or ** unrecognized string argument. The FULL and EXTRA option is disallowed ** if the omitFull parameter it 1. ** ** Note that the values returned are one less that the values that ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done ** to support legacy SQL code. The safety level used to be boolean ** and older scripts may have used numbers 0 for OFF and 1 for ON. */ static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ /* 123456789 123456789 123 */ static const char zText[] = "onoffalseyestruextrafull"; static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; /* on no off false yes true extra full */ int i, n; if( sqlite3Isdigit(*z) ){ return (u8)sqlite3Atoi(z); } n = sqlite3Strlen30(z); for(i=0; i=0&&i<=2)?i:0); } #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** Interpret the given string as a temp db location. Return 1 for file ** backed temporary databases, 2 for the Red-Black tree in memory database ** and 0 to use the compile-time default. */ static int getTempStore(const char *z){ if( z[0]>='0' && z[0]<='2' ){ return z[0] - '0'; }else if( sqlite3StrICmp(z, "file")==0 ){ return 1; }else if( sqlite3StrICmp(z, "memory")==0 ){ return 2; }else{ return 0; } } #endif /* SQLITE_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** Invalidate temp storage, either when the temp storage is changed ** from default, or when 'file' and the temp_store_directory has changed */ static int invalidateTempStorage(Parse *pParse){ sqlite3 *db = pParse->db; if( db->aDb[1].pBt!=0 ){ if( !db->autoCommit || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE ){ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " "from within a transaction"); return SQLITE_ERROR; } sqlite3BtreeClose(db->aDb[1].pBt); db->aDb[1].pBt = 0; sqlite3ResetAllSchemasOfConnection(db); } return SQLITE_OK; } #endif /* SQLITE_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** If the TEMP database is open, close it and mark the database schema ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE ** or DEFAULT_TEMP_STORE pragmas. */ static int changeTempStorage(Parse *pParse, const char *zStorageType){ int ts = getTempStore(zStorageType); sqlite3 *db = pParse->db; if( db->temp_store==ts ) return SQLITE_OK; if( invalidateTempStorage( pParse ) != SQLITE_OK ){ return SQLITE_ERROR; } db->temp_store = (u8)ts; return SQLITE_OK; } #endif /* SQLITE_PAGER_PRAGMAS */ /* ** Set result column names for a pragma. */ static void setPragmaResultColumnNames( Vdbe *v, /* The query under construction */ const PragmaName *pPragma /* The pragma */ ){ u8 n = pPragma->nPragCName; sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); if( n==0 ){ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); }else{ int i, j; for(i=0, j=pPragma->iPragCName; iautoCommit ){ Db *pDb = db->aDb; int n = db->nDb; assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) == PAGER_FLAGS_MASK ); assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); while( (n--) > 0 ){ if( pDb->pBt ){ sqlite3BtreeSetPagerFlags(pDb->pBt, pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); } pDb++; } } } #else # define setAllPagerFlags(X) /* no-op */ #endif /* ** Return a human-readable name for a constraint resolution action. */ #ifndef SQLITE_OMIT_FOREIGN_KEY static const char *actionName(u8 action){ const char *zName; switch( action ){ case OE_SetNull: zName = "SET NULL"; break; case OE_SetDflt: zName = "SET DEFAULT"; break; case OE_Cascade: zName = "CASCADE"; break; case OE_Restrict: zName = "RESTRICT"; break; default: zName = "NO ACTION"; assert( action==OE_None ); break; } return zName; } #endif /* ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants ** defined in pager.h. This function returns the associated lowercase ** journal-mode name. */ SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){ static char * const azModeName[] = { "delete", "persist", "off", "truncate", "memory" #ifndef SQLITE_OMIT_WAL , "wal" #endif }; assert( PAGER_JOURNALMODE_DELETE==0 ); assert( PAGER_JOURNALMODE_PERSIST==1 ); assert( PAGER_JOURNALMODE_OFF==2 ); assert( PAGER_JOURNALMODE_TRUNCATE==3 ); assert( PAGER_JOURNALMODE_MEMORY==4 ); assert( PAGER_JOURNALMODE_WAL==5 ); assert( eMode>=0 && eMode<=ArraySize(azModeName) ); if( eMode==ArraySize(azModeName) ) return 0; return azModeName[eMode]; } /* ** Locate a pragma in the aPragmaName[] array. */ static const PragmaName *pragmaLocate(const char *zName){ int upr, lwr, mid = 0, rc; lwr = 0; upr = ArraySize(aPragmaName)-1; while( lwr<=upr ){ mid = (lwr+upr)/2; rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); if( rc==0 ) break; if( rc<0 ){ upr = mid - 1; }else{ lwr = mid + 1; } } return lwr>upr ? 0 : &aPragmaName[mid]; } /* ** Create zero or more entries in the output for the SQL functions ** defined by FuncDef p. */ static void pragmaFunclistLine( Vdbe *v, /* The prepared statement being created */ FuncDef *p, /* A particular function definition */ int isBuiltin, /* True if this is a built-in function */ int showInternFuncs /* True if showing internal functions */ ){ u32 mask = SQLITE_DETERMINISTIC | SQLITE_DIRECTONLY | SQLITE_SUBTYPE | SQLITE_INNOCUOUS | SQLITE_FUNC_INTERNAL ; if( showInternFuncs ) mask = 0xffffffff; for(; p; p=p->pNext){ const char *zType; static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" }; assert( SQLITE_FUNC_ENCMASK==0x3 ); assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 ); assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 ); assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 ); if( p->xSFunc==0 ) continue; if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0 && showInternFuncs==0 ){ continue; } if( p->xValue!=0 ){ zType = "w"; }else if( p->xFinalize!=0 ){ zType = "a"; }else{ zType = "s"; } sqlite3VdbeMultiLoad(v, 1, "sissii", p->zName, isBuiltin, zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK], p->nArg, (p->funcFlags & mask) ^ SQLITE_INNOCUOUS ); } } /* ** Helper subroutine for PRAGMA integrity_check: ** ** Generate code to output a single-column result row with a value of the ** string held in register 3. Decrement the result count in register 1 ** and halt if the maximum number of result rows have been issued. */ static int integrityCheckResultRow(Vdbe *v){ int addr; sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); return addr; } /* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA [schema.]id [= value] ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. ** ** If the left side is "database.id" then pId1 is the database name ** and pId2 is the id. If the left side is just "id" then pId1 is the ** id and pId2 is any empty string. */ SQLITE_PRIVATE void sqlite3Pragma( Parse *pParse, Token *pId1, /* First part of [schema.]id field */ Token *pId2, /* Second part of [schema.]id field, or NULL */ Token *pValue, /* Token for , or NULL */ int minusFlag /* True if a '-' sign preceded */ ){ char *zLeft = 0; /* Nul-terminated UTF-8 string */ char *zRight = 0; /* Nul-terminated UTF-8 string , or NULL */ const char *zDb = 0; /* The database name */ Token *pId; /* Pointer to token */ char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ int iDb; /* Database index for */ int rc; /* return value form SQLITE_FCNTL_PRAGMA */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* The specific database being pragmaed */ Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ const PragmaName *pPragma; /* The pragma */ if( v==0 ) return; sqlite3VdbeRunOnlyOnce(v); pParse->nMem = 2; /* Interpret the [schema.] part of the pragma statement. iDb is the ** index of the database this pragma is being applied to in db.aDb[]. */ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); if( iDb<0 ) return; pDb = &db->aDb[iDb]; /* If the temp database has been explicitly named as part of the ** pragma, make sure it is open. */ if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ return; } zLeft = sqlite3NameFromToken(db, pId); if( !zLeft ) return; if( minusFlag ){ zRight = sqlite3MPrintf(db, "-%T", pValue); }else{ zRight = sqlite3NameFromToken(db, pValue); } assert( pId2 ); zDb = pId2->n>0 ? pDb->zDbSName : 0; if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS ** connection. If it returns SQLITE_OK, then assume that the VFS ** handled the pragma and generate a no-op prepared statement. ** ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file ** object corresponding to the database file to which the pragma ** statement refers. ** ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA ** file control is an array of pointers to strings (char**) in which the ** second element of the array is the name of the pragma and the third ** element is the argument to the pragma or NULL if the pragma has no ** argument. */ aFcntl[0] = 0; aFcntl[1] = zLeft; aFcntl[2] = zRight; aFcntl[3] = 0; db->busyHandler.nBusy = 0; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); if( rc==SQLITE_OK ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); returnSingleText(v, aFcntl[0]); sqlite3_free(aFcntl[0]); goto pragma_out; } if( rc!=SQLITE_NOTFOUND ){ if( aFcntl[0] ){ sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); sqlite3_free(aFcntl[0]); } pParse->nErr++; pParse->rc = rc; goto pragma_out; } /* Locate the pragma in the lookup table */ pPragma = pragmaLocate(zLeft); if( pPragma==0 ){ /* IMP: R-43042-22504 No error messages are generated if an ** unknown pragma is issued. */ goto pragma_out; } /* Make sure the database schema is loaded if the pragma requires that */ if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; } /* Register the result column names for pragmas that return results */ if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) ){ setPragmaResultColumnNames(v, pPragma); } /* Jump to the appropriate pragma handler */ switch( pPragma->ePragTyp ){ #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) /* ** PRAGMA [schema.]default_cache_size ** PRAGMA [schema.]default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** Older versions of SQLite would set the default cache size to a ** negative number to indicate synchronous=OFF. These days, synchronous ** is always on by default regardless of the sign of the default cache ** size. But continue to take the absolute value of the default cache ** size of historical compatibility. */ case PragTyp_DEFAULT_CACHE_SIZE: { static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList getCacheSize[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 1, 0}, /* 6 */ { OP_Noop, 0, 0, 0}, { OP_ResultRow, 1, 1, 0}, }; VdbeOp *aOp; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ pParse->nMem += 2; sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; }else{ int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } break; } #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) /* ** PRAGMA [schema.]page_size ** PRAGMA [schema.]page_size=N ** ** The first form reports the current setting for the ** database page size in bytes. The second form sets the ** database page size value. The value can only be set if ** the database has not yet been created. */ case PragTyp_PAGE_SIZE: { Btree *pBt = pDb->pBt; assert( pBt!=0 ); if( !zRight ){ int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; returnSingleInt(v, size); }else{ /* Malloc may fail when setting the page-size, as there is an internal ** buffer that the pager module resizes using sqlite3_realloc(). */ db->nextPagesize = sqlite3Atoi(zRight); if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){ sqlite3OomFault(db); } } break; } /* ** PRAGMA [schema.]secure_delete ** PRAGMA [schema.]secure_delete=ON/OFF/FAST ** ** The first form reports the current setting for the ** secure_delete flag. The second form changes the secure_delete ** flag setting and reports the new value. */ case PragTyp_SECURE_DELETE: { Btree *pBt = pDb->pBt; int b = -1; assert( pBt!=0 ); if( zRight ){ if( sqlite3_stricmp(zRight, "fast")==0 ){ b = 2; }else{ b = sqlite3GetBoolean(zRight, 0); } } if( pId2->n==0 && b>=0 ){ int ii; for(ii=0; iinDb; ii++){ sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); } } b = sqlite3BtreeSecureDelete(pBt, b); returnSingleInt(v, b); break; } /* ** PRAGMA [schema.]max_page_count ** PRAGMA [schema.]max_page_count=N ** ** The first form reports the current setting for the ** maximum number of pages in the database file. The ** second form attempts to change this setting. Both ** forms return the current setting. ** ** The absolute value of N is used. This is undocumented and might ** change. The only purpose is to provide an easy way to test ** the sqlite3AbsInt32() function. ** ** PRAGMA [schema.]page_count ** ** Return the number of pages in the specified database. */ case PragTyp_PAGE_COUNT: { int iReg; i64 x = 0; sqlite3CodeVerifySchema(pParse, iDb); iReg = ++pParse->nMem; if( sqlite3Tolower(zLeft[0])=='p' ){ sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); }else{ if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){ if( x<0 ) x = 0; else if( x>0xfffffffe ) x = 0xfffffffe; }else{ x = 0; } sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x); } sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); break; } /* ** PRAGMA [schema.]locking_mode ** PRAGMA [schema.]locking_mode = (normal|exclusive) */ case PragTyp_LOCKING_MODE: { const char *zRet = "normal"; int eMode = getLockingMode(zRight); if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ /* Simple "PRAGMA locking_mode;" statement. This is a query for ** the current default locking mode (which may be different to ** the locking-mode of the main database). */ eMode = db->dfltLockMode; }else{ Pager *pPager; if( pId2->n==0 ){ /* This indicates that no database name was specified as part ** of the PRAGMA command. In this case the locking-mode must be ** set on all attached databases, as well as the main db file. ** ** Also, the sqlite3.dfltLockMode variable is set so that ** any subsequently attached databases also use the specified ** locking mode. */ int ii; assert(pDb==&db->aDb[0]); for(ii=2; iinDb; ii++){ pPager = sqlite3BtreePager(db->aDb[ii].pBt); sqlite3PagerLockingMode(pPager, eMode); } db->dfltLockMode = (u8)eMode; } pPager = sqlite3BtreePager(pDb->pBt); eMode = sqlite3PagerLockingMode(pPager, eMode); } assert( eMode==PAGER_LOCKINGMODE_NORMAL || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ zRet = "exclusive"; } returnSingleText(v, zRet); break; } /* ** PRAGMA [schema.]journal_mode ** PRAGMA [schema.]journal_mode = ** (delete|persist|off|truncate|memory|wal|off) */ case PragTyp_JOURNAL_MODE: { int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ int ii; /* Loop counter */ if( zRight==0 ){ /* If there is no "=MODE" part of the pragma, do a query for the ** current mode */ eMode = PAGER_JOURNALMODE_QUERY; }else{ const char *zMode; int n = sqlite3Strlen30(zRight); for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; } if( !zMode ){ /* If the "=MODE" part does not match any known journal mode, ** then do a query */ eMode = PAGER_JOURNALMODE_QUERY; } if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){ /* Do not allow journal-mode "OFF" in defensive since the database ** can become corrupted using ordinary SQL when the journal is off */ eMode = PAGER_JOURNALMODE_QUERY; } } if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ iDb = 0; pId2->n = 1; } for(ii=db->nDb-1; ii>=0; ii--){ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ sqlite3VdbeUsesBtree(v, ii); sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); } } sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); break; } /* ** PRAGMA [schema.]journal_size_limit ** PRAGMA [schema.]journal_size_limit=N ** ** Get or set the size limit on rollback journal files. */ case PragTyp_JOURNAL_SIZE_LIMIT: { Pager *pPager = sqlite3BtreePager(pDb->pBt); i64 iLimit = -2; if( zRight ){ sqlite3DecOrHexToI64(zRight, &iLimit); if( iLimit<-1 ) iLimit = -1; } iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); returnSingleInt(v, iLimit); break; } #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ /* ** PRAGMA [schema.]auto_vacuum ** PRAGMA [schema.]auto_vacuum=N ** ** Get or set the value of the database 'auto-vacuum' parameter. ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL */ #ifndef SQLITE_OMIT_AUTOVACUUM case PragTyp_AUTO_VACUUM: { Btree *pBt = pDb->pBt; assert( pBt!=0 ); if( !zRight ){ returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); }else{ int eAuto = getAutoVacuum(zRight); assert( eAuto>=0 && eAuto<=2 ); db->nextAutovac = (u8)eAuto; /* Call SetAutoVacuum() to set initialize the internal auto and ** incr-vacuum flags. This is required in case this connection ** creates the database file. It is important that it is created ** as an auto-vacuum capable db. */ rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ }; VdbeOp *aOp; int iAddr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[2].p2 = iAddr+4; aOp[4].p1 = iDb; aOp[4].p3 = eAuto - 1; sqlite3VdbeUsesBtree(v, iDb); } } break; } #endif /* ** PRAGMA [schema.]incremental_vacuum(N) ** ** Do N steps of incremental vacuuming on a database. */ #ifndef SQLITE_OMIT_AUTOVACUUM case PragTyp_INCREMENTAL_VACUUM: { int iLimit = 0, addr; if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_ResultRow, 1); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** PRAGMA [schema.]cache_size ** PRAGMA [schema.]cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The second form sets the local ** page cache size value. If N is positive then that is the ** number of pages in the cache. If N is negative, then the ** number of pages is adjusted so that the cache uses -N kibibytes ** of memory. */ case PragTyp_CACHE_SIZE: { assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !zRight ){ returnSingleInt(v, pDb->pSchema->cache_size); }else{ int size = sqlite3Atoi(zRight); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } break; } /* ** PRAGMA [schema.]cache_spill ** PRAGMA cache_spill=BOOLEAN ** PRAGMA [schema.]cache_spill=N ** ** The first form reports the current local setting for the ** page cache spill size. The second form turns cache spill on ** or off. When turning cache spill on, the size is set to the ** current cache_size. The third form sets a spill size that ** may be different form the cache size. ** If N is positive then that is the ** number of pages in the cache. If N is negative, then the ** number of pages is adjusted so that the cache uses -N kibibytes ** of memory. ** ** If the number of cache_spill pages is less then the number of ** cache_size pages, no spilling occurs until the page count exceeds ** the number of cache_size pages. ** ** The cache_spill=BOOLEAN setting applies to all attached schemas, ** not just the schema specified. */ case PragTyp_CACHE_SPILL: { assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !zRight ){ returnSingleInt(v, (db->flags & SQLITE_CacheSpill)==0 ? 0 : sqlite3BtreeSetSpillSize(pDb->pBt,0)); }else{ int size = 1; if( sqlite3GetInt32(zRight, &size) ){ sqlite3BtreeSetSpillSize(pDb->pBt, size); } if( sqlite3GetBoolean(zRight, size!=0) ){ db->flags |= SQLITE_CacheSpill; }else{ db->flags &= ~(u64)SQLITE_CacheSpill; } setAllPagerFlags(db); } break; } /* ** PRAGMA [schema.]mmap_size(N) ** ** Used to set mapping size limit. The mapping size limit is ** used to limit the aggregate size of all memory mapped regions of the ** database file. If this parameter is set to zero, then memory mapping ** is not used at all. If N is negative, then the default memory map ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. ** The parameter N is measured in bytes. ** ** This value is advisory. The underlying VFS is free to memory map ** as little or as much as it wants. Except, if N is set to 0 then the ** upper layers will never invoke the xFetch interfaces to the VFS. */ case PragTyp_MMAP_SIZE: { sqlite3_int64 sz; #if SQLITE_MAX_MMAP_SIZE>0 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( zRight ){ int ii; sqlite3DecOrHexToI64(zRight, &sz); if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; if( pId2->n==0 ) db->szMmap = sz; for(ii=db->nDb-1; ii>=0; ii--){ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); } } } sz = -1; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); #else sz = 0; rc = SQLITE_OK; #endif if( rc==SQLITE_OK ){ returnSingleInt(v, sz); }else if( rc!=SQLITE_NOTFOUND ){ pParse->nErr++; pParse->rc = rc; } break; } /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ case PragTyp_TEMP_STORE: { if( !zRight ){ returnSingleInt(v, db->temp_store); }else{ changeTempStorage(pParse, zRight); } break; } /* ** PRAGMA temp_store_directory ** PRAGMA temp_store_directory = ""|"directory_name" ** ** Return or set the local value of the temp_store_directory flag. Changing ** the value sets a specific directory to be used for temporary files. ** Setting to a null string reverts to the default temporary directory search. ** If temporary directory is changed, then invalidateTempStorage. ** */ case PragTyp_TEMP_STORE_DIRECTORY: { sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); if( !zRight ){ returnSingleText(v, sqlite3_temp_directory); }else{ #ifndef SQLITE_OMIT_WSD if( zRight[0] ){ int res; rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); if( rc!=SQLITE_OK || res==0 ){ sqlite3ErrorMsg(pParse, "not a writable directory"); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); goto pragma_out; } } if( SQLITE_TEMP_STORE==0 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); }else{ sqlite3_temp_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); break; } #if SQLITE_OS_WIN /* ** PRAGMA data_store_directory ** PRAGMA data_store_directory = ""|"directory_name" ** ** Return or set the local value of the data_store_directory flag. Changing ** the value sets a specific directory to be used for database files that ** were specified with a relative pathname. Setting to a null string reverts ** to the default database directory, which for database files specified with ** a relative path will probably be based on the current directory for the ** process. Database file specified with an absolute path are not impacted ** by this setting, regardless of its value. ** */ case PragTyp_DATA_STORE_DIRECTORY: { sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); if( !zRight ){ returnSingleText(v, sqlite3_data_directory); }else{ #ifndef SQLITE_OMIT_WSD if( zRight[0] ){ int res; rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); if( rc!=SQLITE_OK || res==0 ){ sqlite3ErrorMsg(pParse, "not a writable directory"); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); goto pragma_out; } } sqlite3_free(sqlite3_data_directory); if( zRight[0] ){ sqlite3_data_directory = sqlite3_mprintf("%s", zRight); }else{ sqlite3_data_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); break; } #endif #if SQLITE_ENABLE_LOCKING_STYLE /* ** PRAGMA [schema.]lock_proxy_file ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" ** ** Return or set the value of the lock_proxy_file flag. Changing ** the value sets a specific file to be used for database access locks. ** */ case PragTyp_LOCK_PROXY_FILE: { if( !zRight ){ Pager *pPager = sqlite3BtreePager(pDb->pBt); char *proxy_file_path = NULL; sqlite3_file *pFile = sqlite3PagerFile(pPager); sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, &proxy_file_path); returnSingleText(v, proxy_file_path); }else{ Pager *pPager = sqlite3BtreePager(pDb->pBt); sqlite3_file *pFile = sqlite3PagerFile(pPager); int res; if( zRight[0] ){ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, zRight); } else { res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, NULL); } if( res!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); goto pragma_out; } } break; } #endif /* SQLITE_ENABLE_LOCKING_STYLE */ /* ** PRAGMA [schema.]synchronous ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ case PragTyp_SYNCHRONOUS: { if( !zRight ){ returnSingleInt(v, pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else if( iDb!=1 ){ int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; if( iLevel==0 ) iLevel = 1; pDb->safety_level = iLevel; pDb->bSyncSet = 1; setAllPagerFlags(db); } } break; } #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_FLAG_PRAGMAS case PragTyp_FLAG: { if( zRight==0 ){ setPragmaResultColumnNames(v, pPragma); returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); }else{ u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */ if( db->autoCommit==0 ){ /* Foreign key support may not be enabled or disabled while not ** in auto-commit mode. */ mask &= ~(SQLITE_ForeignKeys); } #if SQLITE_USER_AUTHENTICATION if( db->auth.authLevel==UAUTH_User ){ /* Do not allow non-admin users to modify the schema arbitrarily */ mask &= ~(SQLITE_WriteSchema); } #endif if( sqlite3GetBoolean(zRight, 0) ){ db->flags |= mask; }else{ db->flags &= ~mask; if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; if( (mask & SQLITE_WriteSchema)!=0 && sqlite3_stricmp(zRight, "reset")==0 ){ /* IMP: R-60817-01178 If the argument is "RESET" then schema ** writing is disabled (as with "PRAGMA writable_schema=OFF") and, ** in addition, the schema is reloaded. */ sqlite3ResetAllSchemasOfConnection(db); } } /* Many of the flag-pragmas modify the code generated by the SQL ** compiler (eg. count_changes). So add an opcode to expire all ** compiled SQL statements after modifying a pragma value. */ sqlite3VdbeAddOp0(v, OP_Expire); setAllPagerFlags(db); } break; } #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS /* ** PRAGMA table_info(
    ) ** ** Return a single row for each column of the named table. The columns of ** the returned data set are: ** ** cid: Column id (numbered from left to right, starting at 0) ** name: Column name ** type: Column declaration type. ** notnull: True if 'NOT NULL' is part of column declaration ** dflt_value: The default value for the column, if any. ** pk: Non-zero for PK fields. */ case PragTyp_TABLE_INFO: if( zRight ){ Table *pTab; sqlite3CodeVerifyNamedSchema(pParse, zDb); pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); if( pTab ){ int i, k; int nHidden = 0; Column *pCol; Index *pPk = sqlite3PrimaryKeyIndex(pTab); pParse->nMem = 7; sqlite3ViewGetColumnNames(pParse, pTab); for(i=0, pCol=pTab->aCol; inCol; i++, pCol++){ int isHidden = 0; const Expr *pColExpr; if( pCol->colFlags & COLFLAG_NOINSERT ){ if( pPragma->iArg==0 ){ nHidden++; continue; } if( pCol->colFlags & COLFLAG_VIRTUAL ){ isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */ }else if( pCol->colFlags & COLFLAG_STORED ){ isHidden = 3; /* GENERATED ALWAYS AS ... STORED */ }else{ assert( pCol->colFlags & COLFLAG_HIDDEN ); isHidden = 1; /* HIDDEN */ } } if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ k = 0; }else if( pPk==0 ){ k = 1; }else{ for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} } pColExpr = sqlite3ColumnExpr(pTab,pCol); assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 ); assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue) || isHidden>=2 ); sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi", i-nHidden, pCol->zCnName, sqlite3ColumnType(pCol,""), pCol->notNull ? 1 : 0, (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken, k, isHidden); } } } break; /* ** PRAGMA table_list ** ** Return a single row for each table, virtual table, or view in the ** entire schema. ** ** schema: Name of attached database hold this table ** name: Name of the table itself ** type: "table", "view", "virtual", "shadow" ** ncol: Number of columns ** wr: True for a WITHOUT ROWID table ** strict: True for a STRICT table */ case PragTyp_TABLE_LIST: { int ii; pParse->nMem = 6; sqlite3CodeVerifyNamedSchema(pParse, zDb); for(ii=0; iinDb; ii++){ HashElem *k; Hash *pHash; int initNCol; if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue; /* Ensure that the Table.nCol field is initialized for all views ** and virtual tables. Each time we initialize a Table.nCol value ** for a table, that can potentially disrupt the hash table, so restart ** the initialization scan. */ pHash = &db->aDb[ii].pSchema->tblHash; initNCol = sqliteHashCount(pHash); while( initNCol-- ){ for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){ Table *pTab; if( k==0 ){ initNCol = 0; break; } pTab = sqliteHashData(k); if( pTab->nCol==0 ){ char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName); if( zSql ){ sqlite3_stmt *pDummy = 0; (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0); (void)sqlite3_finalize(pDummy); sqlite3DbFree(db, zSql); } if( db->mallocFailed ){ sqlite3ErrorMsg(db->pParse, "out of memory"); db->pParse->rc = SQLITE_NOMEM_BKPT; } pHash = &db->aDb[ii].pSchema->tblHash; break; } } } for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){ Table *pTab = sqliteHashData(k); const char *zType; if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue; if( IsView(pTab) ){ zType = "view"; }else if( IsVirtual(pTab) ){ zType = "virtual"; }else if( pTab->tabFlags & TF_Shadow ){ zType = "shadow"; }else{ zType = "table"; } sqlite3VdbeMultiLoad(v, 1, "sssiii", db->aDb[ii].zDbSName, sqlite3PreferredTableName(pTab->zName), zType, pTab->nCol, (pTab->tabFlags & TF_WithoutRowid)!=0, (pTab->tabFlags & TF_Strict)!=0 ); } } } break; #ifdef SQLITE_DEBUG case PragTyp_STATS: { Index *pIdx; HashElem *i; pParse->nMem = 5; sqlite3CodeVerifySchema(pParse, iDb); for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); sqlite3VdbeMultiLoad(v, 1, "ssiii", sqlite3PreferredTableName(pTab->zName), 0, pTab->szTabRow, pTab->nRowLogEst, pTab->tabFlags); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeMultiLoad(v, 2, "siiiX", pIdx->zName, pIdx->szIdxRow, pIdx->aiRowLogEst[0], pIdx->hasStat1); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); } } } break; #endif case PragTyp_INDEX_INFO: if( zRight ){ Index *pIdx; Table *pTab; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx==0 ){ /* If there is no index named zRight, check to see if there is a ** WITHOUT ROWID table named zRight, and if there is, show the ** structure of the PRIMARY KEY index for that table. */ pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); if( pTab && !HasRowid(pTab) ){ pIdx = sqlite3PrimaryKeyIndex(pTab); } } if( pIdx ){ int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema); int i; int mx; if( pPragma->iArg ){ /* PRAGMA index_xinfo (newer version with more rows and columns) */ mx = pIdx->nColumn; pParse->nMem = 6; }else{ /* PRAGMA index_info (legacy version) */ mx = pIdx->nKeyCol; pParse->nMem = 3; } pTab = pIdx->pTable; sqlite3CodeVerifySchema(pParse, iIdxDb); assert( pParse->nMem<=pPragma->nPragCName ); for(i=0; iaiColumn[i]; sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, cnum<0 ? 0 : pTab->aCol[cnum].zCnName); if( pPragma->iArg ){ sqlite3VdbeMultiLoad(v, 4, "isiX", pIdx->aSortOrder[i], pIdx->azColl[i], inKeyCol); } sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); } } } break; case PragTyp_INDEX_LIST: if( zRight ){ Index *pIdx; Table *pTab; int i; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); pParse->nMem = 5; sqlite3CodeVerifySchema(pParse, iTabDb); for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ const char *azOrigin[] = { "c", "u", "pk" }; sqlite3VdbeMultiLoad(v, 1, "isisi", i, pIdx->zName, IsUniqueIndex(pIdx), azOrigin[pIdx->idxType], pIdx->pPartIdxWhere!=0); } } } break; case PragTyp_DATABASE_LIST: { int i; pParse->nMem = 3; for(i=0; inDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zDbSName!=0 ); sqlite3VdbeMultiLoad(v, 1, "iss", i, db->aDb[i].zDbSName, sqlite3BtreeGetFilename(db->aDb[i].pBt)); } } break; case PragTyp_COLLATION_LIST: { int i = 0; HashElem *p; pParse->nMem = 2; for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ CollSeq *pColl = (CollSeq *)sqliteHashData(p); sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); } } break; #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS case PragTyp_FUNCTION_LIST: { int i; HashElem *j; FuncDef *p; int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0; pParse->nMem = 6; for(i=0; iu.pHash ){ assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); pragmaFunclistLine(v, p, 1, showInternFunc); } } for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ p = (FuncDef*)sqliteHashData(j); assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); pragmaFunclistLine(v, p, 0, showInternFunc); } } break; #ifndef SQLITE_OMIT_VIRTUALTABLE case PragTyp_MODULE_LIST: { HashElem *j; pParse->nMem = 1; for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ Module *pMod = (Module*)sqliteHashData(j); sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); } } break; #endif /* SQLITE_OMIT_VIRTUALTABLE */ case PragTyp_PRAGMA_LIST: { int i; for(i=0; iu.tab.pFKey; if( pFK ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); int i = 0; pParse->nMem = 8; sqlite3CodeVerifySchema(pParse, iTabDb); while(pFK){ int j; for(j=0; jnCol; j++){ sqlite3VdbeMultiLoad(v, 1, "iissssss", i, j, pFK->zTo, pTab->aCol[pFK->aCol[j].iFrom].zCnName, pFK->aCol[j].zCol, actionName(pFK->aAction[1]), /* ON UPDATE */ actionName(pFK->aAction[0]), /* ON DELETE */ "NONE"); } ++i; pFK = pFK->pNextFrom; } } } } break; #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef SQLITE_OMIT_FOREIGN_KEY #ifndef SQLITE_OMIT_TRIGGER case PragTyp_FOREIGN_KEY_CHECK: { FKey *pFK; /* A foreign key constraint */ Table *pTab; /* Child table contain "REFERENCES" keyword */ Table *pParent; /* Parent table that child points to */ Index *pIdx; /* Index in the parent table */ int i; /* Loop counter: Foreign key number for pTab */ int j; /* Loop counter: Field of the foreign key */ HashElem *k; /* Loop counter: Next table in schema */ int x; /* result variable */ int regResult; /* 3 registers to hold a result row */ int regRow; /* Registers to hold a row from pTab */ int addrTop; /* Top of a loop checking foreign keys */ int addrOk; /* Jump here if the key is OK */ int *aiCols; /* child to parent column mapping */ regResult = pParse->nMem+1; pParse->nMem += 4; regRow = ++pParse->nMem; k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); while( k ){ if( zRight ){ pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); k = 0; }else{ pTab = (Table*)sqliteHashData(k); k = sqliteHashNext(k); } if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zDb = db->aDb[iDb].zDbSName; sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); sqlite3TouchRegister(pParse, pTab->nCol+regRow); sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); sqlite3VdbeLoadString(v, regResult, pTab->zName); assert( IsOrdinaryTable(pTab) ); for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); if( pParent==0 ) continue; pIdx = 0; sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); if( x==0 ){ if( pIdx==0 ){ sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); }else{ sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); } }else{ k = 0; break; } } assert( pParse->nErr>0 || pFK==0 ); if( pFK ) break; if( pParse->nTabnTab = i; addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); assert( IsOrdinaryTable(pTab) ); for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); pIdx = 0; aiCols = 0; if( pParent ){ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 || db->mallocFailed ); } addrOk = sqlite3VdbeMakeLabel(pParse); /* Generate code to read the child key values into registers ** regRow..regRow+n. If any of the child key values are NULL, this ** row cannot cause an FK violation. Jump directly to addrOk in ** this case. */ sqlite3TouchRegister(pParse, regRow + pFK->nCol); for(j=0; jnCol; j++){ int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); } /* Generate code to query the parent index for a matching parent ** key. If a match is found, jump to addrOk. */ if( pIdx ){ sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0, sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol); VdbeCoverage(v); }else if( pParent ){ int jmp = sqlite3VdbeCurrentAddr(v)+2; sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); sqlite3VdbeGoto(v, addrOk); assert( pFK->nCol==1 || db->mallocFailed ); } /* Generate code to report an FK violation to the caller. */ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); } sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); sqlite3VdbeResolveLabel(v, addrOk); sqlite3DbFree(db, aiCols); } sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); } } break; #endif /* !defined(SQLITE_OMIT_TRIGGER) */ #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA /* Reinstall the LIKE and GLOB functions. The variant of LIKE ** used will be case sensitive or not depending on the RHS. */ case PragTyp_CASE_SENSITIVE_LIKE: { if( zRight ){ sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); } } break; #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */ #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 #endif #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* PRAGMA integrity_check ** PRAGMA integrity_check(N) ** PRAGMA quick_check ** PRAGMA quick_check(N) ** ** Verify the integrity of the database. ** ** The "quick_check" is reduced version of ** integrity_check designed to detect most database corruption ** without the overhead of cross-checking indexes. Quick_check ** is linear time whereas integrity_check is O(NlogN). ** ** The maximum number of errors is 100 by default. A different default ** can be specified using a numeric parameter N. ** ** Or, the parameter N can be the name of a table. In that case, only ** the one table named is verified. The freelist is only verified if ** the named table is "sqlite_schema" (or one of its aliases). ** ** All schemas are checked by default. To check just a single ** schema, use the form: ** ** PRAGMA schema.integrity_check; */ case PragTyp_INTEGRITY_CHECK: { int i, j, addr, mxErr; Table *pObjTab = 0; /* Check only this one table, if not NULL */ int isQuick = (sqlite3Tolower(zLeft[0])=='q'); /* If the PRAGMA command was of the form "PRAGMA .integrity_check", ** then iDb is set to the index of the database identified by . ** In this case, the integrity of database iDb only is verified by ** the VDBE created below. ** ** Otherwise, if the command was simply "PRAGMA integrity_check" (or ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb ** to -1 here, to indicate that the VDBE should verify the integrity ** of all attached databases. */ assert( iDb>=0 ); assert( iDb==0 || pId2->z ); if( pId2->z==0 ) iDb = -1; /* Initialize the VDBE program */ pParse->nMem = 6; /* Set the maximum error count */ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; if( zRight ){ if( sqlite3GetInt32(zRight, &mxErr) ){ if( mxErr<=0 ){ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; } }else{ pObjTab = sqlite3LocateTable(pParse, 0, zRight, iDb>=0 ? db->aDb[iDb].zDbSName : 0); } } sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ /* Do an integrity check on each database file */ for(i=0; inDb; i++){ HashElem *x; /* For looping over tables in the schema */ Hash *pTbls; /* Set of all tables in the schema */ int *aRoot; /* Array of root page numbers of all btrees */ int cnt = 0; /* Number of entries in aRoot[] */ int mxIdx = 0; /* Maximum number of indexes for any table */ if( OMIT_TEMPDB && i==1 ) continue; if( iDb>=0 && i!=iDb ) continue; sqlite3CodeVerifySchema(pParse, i); pParse->okConstFactor = 0; /* tag-20230327-1 */ /* Do an integrity check of the B-Tree ** ** Begin by finding the root pages numbers ** for all tables and indices in the database. */ assert( sqlite3SchemaMutexHeld(db, i, 0) ); pTbls = &db->aDb[i].pSchema->tblHash; for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); /* Current table */ Index *pIdx; /* An index on pTab */ int nIdx; /* Number of indexes on pTab */ if( pObjTab && pObjTab!=pTab ) continue; if( HasRowid(pTab) ) cnt++; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } if( nIdx>mxIdx ) mxIdx = nIdx; } if( cnt==0 ) continue; if( pObjTab ) cnt++; aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); if( aRoot==0 ) break; cnt = 0; if( pObjTab ) aRoot[++cnt] = 0; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; if( pObjTab && pObjTab!=pTab ) continue; if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ aRoot[++cnt] = pIdx->tnum; } } aRoot[0] = cnt; /* Make sure sufficient number of registers have been allocated */ sqlite3TouchRegister(pParse, 8+mxIdx); sqlite3ClearTempRegCache(pParse); /* Do the b-tree integrity checks */ sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); sqlite3VdbeChangeP5(v, (u8)i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), P4_DYNAMIC); sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx, *pPk; Index *pPrior = 0; /* Previous index */ int loopTop; int iDataCur, iIdxCur; int r1 = -1; int bStrict; /* True for a STRICT table */ int r2; /* Previous key for WITHOUT ROWID tables */ int mxCol; /* Maximum non-virtual column number */ if( !IsOrdinaryTable(pTab) ) continue; if( pObjTab && pObjTab!=pTab ) continue; if( isQuick || HasRowid(pTab) ){ pPk = 0; r2 = 0; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol); sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1, 0, &iDataCur, &iIdxCur); /* reg[7] counts the number of entries in the table. ** reg[8+i] counts the number of entries in the i-th index */ sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } assert( pParse->nMem>=8+j ); assert( sqlite3NoTempsInRange(pParse,1,7+j) ); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); /* Fetch the right-most column from the table. This will cause ** the entire record header to be parsed and sanity checked. It ** will also prepopulate the cursor column cache that is used ** by the OP_IsType code, so it is a required step. */ assert( !IsVirtual(pTab) ); if( HasRowid(pTab) ){ mxCol = -1; for(j=0; jnCol; j++){ if( (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)==0 ) mxCol++; } if( mxCol==pTab->iPKey ) mxCol--; }else{ /* COLFLAG_VIRTUAL columns are not included in the WITHOUT ROWID ** PK index column-count, so there is no need to account for them ** in this case. */ mxCol = sqlite3PrimaryKeyIndex(pTab)->nColumn-1; } if( mxCol>=0 ){ sqlite3VdbeAddOp3(v, OP_Column, iDataCur, mxCol, 3); sqlite3VdbeTypeofColumn(v, 3); } if( !isQuick ){ if( pPk ){ /* Verify WITHOUT ROWID keys are in ascending order */ int a1; char *zErr; a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v); zErr = sqlite3MPrintf(db, "row not in PRIMARY KEY order for %s", pTab->zName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, a1); sqlite3VdbeJumpHere(v, a1+1); for(j=0; jnKeyCol; j++){ sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j); } } } /* Verify datatypes for all columns: ** ** (1) NOT NULL columns may not contain a NULL ** (2) Datatype must be exact for non-ANY columns in STRICT tables ** (3) Datatype for TEXT columns in non-STRICT tables must be ** NULL, TEXT, or BLOB. ** (4) Datatype for numeric columns in non-STRICT tables must not ** be a TEXT value that can be losslessly converted to numeric. */ bStrict = (pTab->tabFlags & TF_Strict)!=0; for(j=0; jnCol; j++){ char *zErr; Column *pCol = pTab->aCol + j; /* The column to be checked */ int labelError; /* Jump here to report an error */ int labelOk; /* Jump here if all looks ok */ int p1, p3, p4; /* Operands to the OP_IsType opcode */ int doTypeCheck; /* Check datatypes (besides NOT NULL) */ if( j==pTab->iPKey ) continue; if( bStrict ){ doTypeCheck = pCol->eCType>COLTYPE_ANY; }else{ doTypeCheck = pCol->affinity>SQLITE_AFF_BLOB; } if( pCol->notNull==0 && !doTypeCheck ) continue; /* Compute the operands that will be needed for OP_IsType */ p4 = SQLITE_NULL; if( pCol->colFlags & COLFLAG_VIRTUAL ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); p1 = -1; p3 = 3; }else{ if( pCol->iDflt ){ sqlite3_value *pDfltValue = 0; sqlite3ValueFromExpr(db, sqlite3ColumnExpr(pTab,pCol), ENC(db), pCol->affinity, &pDfltValue); if( pDfltValue ){ p4 = sqlite3_value_type(pDfltValue); sqlite3ValueFree(pDfltValue); } } p1 = iDataCur; if( !HasRowid(pTab) ){ testcase( j!=sqlite3TableColumnToStorage(pTab, j) ); p3 = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), j); }else{ p3 = sqlite3TableColumnToStorage(pTab,j); testcase( p3!=j); } } labelError = sqlite3VdbeMakeLabel(pParse); labelOk = sqlite3VdbeMakeLabel(pParse); if( pCol->notNull ){ /* (1) NOT NULL columns may not contain a NULL */ int jmp3; int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); VdbeCoverage(v); if( p1<0 ){ sqlite3VdbeChangeP5(v, 0x0f); /* INT, REAL, TEXT, or BLOB */ jmp3 = jmp2; }else{ sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */ /* OP_IsType does not detect NaN values in the database file ** which should be treated as a NULL. So if the header type ** is REAL, we have to load the actual data using OP_Column ** to reliably determine if the value is a NULL. */ sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3); jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk); VdbeCoverage(v); } zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, pCol->zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); if( doTypeCheck ){ sqlite3VdbeGoto(v, labelError); sqlite3VdbeJumpHere(v, jmp2); sqlite3VdbeJumpHere(v, jmp3); }else{ /* VDBE byte code will fall thru */ } } if( bStrict && doTypeCheck ){ /* (2) Datatype must be exact for non-ANY columns in STRICT tables*/ static unsigned char aStdTypeMask[] = { 0x1f, /* ANY */ 0x18, /* BLOB */ 0x11, /* INT */ 0x11, /* INTEGER */ 0x13, /* REAL */ 0x14 /* TEXT */ }; sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); assert( pCol->eCType>=1 && pCol->eCType<=sizeof(aStdTypeMask) ); sqlite3VdbeChangeP5(v, aStdTypeMask[pCol->eCType-1]); VdbeCoverage(v); zErr = sqlite3MPrintf(db, "non-%s value in %s.%s", sqlite3StdType[pCol->eCType-1], pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); }else if( !bStrict && pCol->affinity==SQLITE_AFF_TEXT ){ /* (3) Datatype for TEXT columns in non-STRICT tables must be ** NULL, TEXT, or BLOB. */ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */ VdbeCoverage(v); zErr = sqlite3MPrintf(db, "NUMERIC value in %s.%s", pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); }else if( !bStrict && pCol->affinity>=SQLITE_AFF_NUMERIC ){ /* (4) Datatype for numeric columns in non-STRICT tables must not ** be a TEXT value that can be converted to numeric. */ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); sqlite3VdbeChangeP5(v, 0x1b); /* NULL, INT, FLOAT, or BLOB */ VdbeCoverage(v); if( p1>=0 ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); } sqlite3VdbeAddOp4(v, OP_Affinity, 3, 1, 0, "C", P4_STATIC); sqlite3VdbeAddOp4Int(v, OP_IsType, -1, labelOk, 3, p4); sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */ VdbeCoverage(v); zErr = sqlite3MPrintf(db, "TEXT value in %s.%s", pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); } sqlite3VdbeResolveLabel(v, labelError); integrityCheckResultRow(v); sqlite3VdbeResolveLabel(v, labelOk); } /* Verify CHECK constraints */ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); if( db->mallocFailed==0 ){ int addrCkFault = sqlite3VdbeMakeLabel(pParse); int addrCkOk = sqlite3VdbeMakeLabel(pParse); char *zErr; int k; pParse->iSelfTab = iDataCur + 1; for(k=pCheck->nExpr-1; k>0; k--){ sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); } sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, SQLITE_JUMPIFNULL); sqlite3VdbeResolveLabel(v, addrCkFault); pParse->iSelfTab = 0; zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", pTab->zName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); integrityCheckResultRow(v); sqlite3VdbeResolveLabel(v, addrCkOk); } sqlite3ExprListDelete(db, pCheck); } if( !isQuick ){ /* Omit the remaining tests for quick_check */ /* Validate index entries for the current row */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2, jmp3, jmp4, jmp5, label6; int kk; int ckUniq = sqlite3VdbeMakeLabel(pParse); if( pPk==pIdx ) continue; r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, pPrior, r1); pPrior = pIdx; sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */ /* Verify that an index entry exists for the current table row */ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, pIdx->nColumn); VdbeCoverage(v); sqlite3VdbeLoadString(v, 3, "row "); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeLoadString(v, 4, " missing from index "); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); jmp4 = integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, jmp2); /* The OP_IdxRowid opcode is an optimized version of OP_Column ** that extracts the rowid off the end of the index record. ** But it only works correctly if index record does not have ** any extra bytes at the end. Verify that this is the case. */ if( HasRowid(pTab) ){ int jmp7; sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur+j, 3); jmp7 = sqlite3VdbeAddOp3(v, OP_Eq, 3, 0, r1+pIdx->nColumn-1); VdbeCoverageNeverNull(v); sqlite3VdbeLoadString(v, 3, "rowid not at end-of-record for row "); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeLoadString(v, 4, " of index "); sqlite3VdbeGoto(v, jmp5-1); sqlite3VdbeJumpHere(v, jmp7); } /* Any indexed columns with non-BINARY collations must still hold ** the exact same text value as the table. */ label6 = 0; for(kk=0; kknKeyCol; kk++){ if( pIdx->azColl[kk]==sqlite3StrBINARY ) continue; if( label6==0 ) label6 = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+j, kk, 3); sqlite3VdbeAddOp3(v, OP_Ne, 3, label6, r1+kk); VdbeCoverage(v); } if( label6 ){ int jmp6 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeResolveLabel(v, label6); sqlite3VdbeLoadString(v, 3, "row "); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeLoadString(v, 4, " values differ from index "); sqlite3VdbeGoto(v, jmp5-1); sqlite3VdbeJumpHere(v, jmp6); } /* For UNIQUE indexes, verify that only one entry exists with the ** current key. The entry is unique if (1) any column is NULL ** or (2) the next entry has a different key */ if( IsUniqueIndex(pIdx) ){ int uniqOk = sqlite3VdbeMakeLabel(pParse); int jmp6; for(kk=0; kknKeyCol; kk++){ int iCol = pIdx->aiColumn[kk]; assert( iCol!=XN_ROWID && iColnCol ); if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); VdbeCoverage(v); } jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); sqlite3VdbeGoto(v, uniqOk); sqlite3VdbeJumpHere(v, jmp6); sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, pIdx->nKeyCol); VdbeCoverage(v); sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); sqlite3VdbeGoto(v, jmp5); sqlite3VdbeResolveLabel(v, uniqOk); } sqlite3VdbeJumpHere(v, jmp4); sqlite3ResolvePartIdxLabel(pParse, jmp3); } } sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); sqlite3VdbeJumpHere(v, loopTop-1); if( !isQuick ){ sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( pPk==pIdx ) continue; sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); sqlite3VdbeLoadString(v, 4, pIdx->zName); sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, addr); } if( pPk ){ sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol); } } } } { static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNotZero, 1, 4, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, /* 3 */ { OP_Halt, 0, 0, 0}, /* 4 */ { OP_String8, 0, 3, 0}, /* 5 */ { OP_Goto, 0, 3, 0}, /* 6 */ }; VdbeOp *aOp; aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); if( aOp ){ aOp[0].p2 = 1-mxErr; aOp[2].p4type = P4_STATIC; aOp[2].p4.z = "ok"; aOp[5].p4type = P4_STATIC; aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT); } sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2); } } break; #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_UTF16 /* ** PRAGMA encoding ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" ** ** In its first form, this pragma returns the encoding of the main ** database. If the database is not initialized, it is initialized now. ** ** The second form of this pragma is a no-op if the main database file ** has not already been initialized. In this case it sets the default ** encoding that will be used for the main database file if a new file ** is created. If an existing main database file is opened, then the ** default text encoding for the existing database is used. ** ** In all cases new databases created using the ATTACH command are ** created to use the same default text encoding as the main database. If ** the main database has not been initialized and/or created when ATTACH ** is executed, this is done before the ATTACH operation. ** ** In the second form this pragma sets the text encoding to be used in ** new database files created using this database handle. It is only ** useful if invoked immediately after the main database i */ case PragTyp_ENCODING: { static const struct EncName { char *zName; u8 enc; } encnames[] = { { "UTF8", SQLITE_UTF8 }, { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ { "UTF16le", SQLITE_UTF16LE }, { "UTF16be", SQLITE_UTF16BE }, { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ { 0, 0 } }; const struct EncName *pEnc; if( !zRight ){ /* "PRAGMA encoding" */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); returnSingleText(v, encnames[ENC(pParse->db)].zName); }else{ /* "PRAGMA encoding = XXX" */ /* Only change the value of sqlite.enc if the database handle is not ** initialized. If the main database exists, the new sqlite.enc value ** will be overwritten when the schema is next loaded. If it does not ** already exists, it will be created to use the new encoding value. */ if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; SCHEMA_ENC(db) = enc; sqlite3SetTextEncoding(db, enc); break; } } if( !pEnc->zName ){ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); } } } } break; #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS /* ** PRAGMA [schema.]schema_version ** PRAGMA [schema.]schema_version = ** ** PRAGMA [schema.]user_version ** PRAGMA [schema.]user_version = ** ** PRAGMA [schema.]freelist_count ** ** PRAGMA [schema.]data_version ** ** PRAGMA [schema.]application_id ** PRAGMA [schema.]application_id = ** ** The pragma's schema_version and user_version are used to set or get ** the value of the schema-version and user-version, respectively. Both ** the schema-version and the user-version are 32-bit signed integers ** stored in the database header. ** ** The schema-cookie is usually only manipulated internally by SQLite. It ** is incremented by SQLite whenever the database schema is modified (by ** creating or dropping a table or index). The schema version is used by ** SQLite each time a query is executed to ensure that the internal cache ** of the schema used when compiling the SQL query matches the schema of ** the database against which the compiled query is actually executed. ** Subverting this mechanism by using "PRAGMA schema_version" to modify ** the schema-version is potentially dangerous and may lead to program ** crashes or database corruption. Use with caution! ** ** The user-version is not used internally by SQLite. It may be used by ** applications for any purpose. */ case PragTyp_HEADER_VALUE: { int iCookie = pPragma->iArg; /* Which cookie to read or write */ sqlite3VdbeUsesBtree(v, iDb); if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_SetCookie, 0, 0, 0}, /* 1 */ }; VdbeOp *aOp; sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[1].p2 = iCookie; aOp[1].p3 = sqlite3Atoi(zRight); aOp[1].p5 = 1; if( iCookie==BTREE_SCHEMA_VERSION && (db->flags & SQLITE_Defensive)!=0 ){ /* Do not allow the use of PRAGMA schema_version=VALUE in defensive ** mode. Change the OP_SetCookie opcode into a no-op. */ aOp[1].opcode = OP_Noop; } }else{ /* Read the specified cookie value */ static const VdbeOpList readCookie[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, 0}, /* 1 */ { OP_ResultRow, 1, 1, 0} }; VdbeOp *aOp; sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[1].p3 = iCookie; sqlite3VdbeReusable(v); } } break; #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* ** PRAGMA compile_options ** ** Return the names of all compile-time options used in this build, ** one option per row. */ case PragTyp_COMPILE_OPTIONS: { int i = 0; const char *zOpt; pParse->nMem = 1; while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ sqlite3VdbeLoadString(v, 1, zOpt); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } sqlite3VdbeReusable(v); } break; #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ #ifndef SQLITE_OMIT_WAL /* ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate ** ** Checkpoint the database. */ case PragTyp_WAL_CHECKPOINT: { int iBt = (pId2->z?iDb:SQLITE_MAX_DB); int eMode = SQLITE_CHECKPOINT_PASSIVE; if( zRight ){ if( sqlite3StrICmp(zRight, "full")==0 ){ eMode = SQLITE_CHECKPOINT_FULL; }else if( sqlite3StrICmp(zRight, "restart")==0 ){ eMode = SQLITE_CHECKPOINT_RESTART; }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ eMode = SQLITE_CHECKPOINT_TRUNCATE; } } pParse->nMem = 3; sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); } break; /* ** PRAGMA wal_autocheckpoint ** PRAGMA wal_autocheckpoint = N ** ** Configure a database connection to automatically checkpoint a database ** after accumulating N frames in the log. Or query for the current value ** of N. */ case PragTyp_WAL_AUTOCHECKPOINT: { if( zRight ){ sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); } returnSingleInt(v, db->xWalCallback==sqlite3WalDefaultHook ? SQLITE_PTR_TO_INT(db->pWalArg) : 0); } break; #endif /* ** PRAGMA shrink_memory ** ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database ** connection on which it is invoked to free up as much memory as it ** can, by calling sqlite3_db_release_memory(). */ case PragTyp_SHRINK_MEMORY: { sqlite3_db_release_memory(db); break; } /* ** PRAGMA optimize ** PRAGMA optimize(MASK) ** PRAGMA schema.optimize ** PRAGMA schema.optimize(MASK) ** ** Attempt to optimize the database. All schemas are optimized in the first ** two forms, and only the specified schema is optimized in the latter two. ** ** The details of optimizations performed by this pragma are expected ** to change and improve over time. Applications should anticipate that ** this pragma will perform new optimizations in future releases. ** ** The optional argument is a bitmask of optimizations to perform: ** ** 0x0001 Debugging mode. Do not actually perform any optimizations ** but instead return one line of text for each optimization ** that would have been done. Off by default. ** ** 0x0002 Run ANALYZE on tables that might benefit. On by default. ** See below for additional information. ** ** 0x0004 (Not yet implemented) Record usage and performance ** information from the current session in the ** database file so that it will be available to "optimize" ** pragmas run by future database connections. ** ** 0x0008 (Not yet implemented) Create indexes that might have ** been helpful to recent queries ** ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all ** of the optimizations listed above except Debug Mode, including new ** optimizations that have not yet been invented. If new optimizations are ** ever added that should be off by default, those off-by-default ** optimizations will have bitmasks of 0x10000 or larger. ** ** DETERMINATION OF WHEN TO RUN ANALYZE ** ** In the current implementation, a table is analyzed if only if all of ** the following are true: ** ** (1) MASK bit 0x02 is set. ** ** (2) The query planner used sqlite_stat1-style statistics for one or ** more indexes of the table at some point during the lifetime of ** the current connection. ** ** (3) One or more indexes of the table are currently unanalyzed OR ** the number of rows in the table has increased by 25 times or more ** since the last time ANALYZE was run. ** ** The rules for when tables are analyzed are likely to change in ** future releases. */ case PragTyp_OPTIMIZE: { int iDbLast; /* Loop termination point for the schema loop */ int iTabCur; /* Cursor for a table whose size needs checking */ HashElem *k; /* Loop over tables of a schema */ Schema *pSchema; /* The current schema */ Table *pTab; /* A table in the schema */ Index *pIdx; /* An index of the table */ LogEst szThreshold; /* Size threshold above which reanalysis needed */ char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ u32 opMask; /* Mask of operations to perform */ if( zRight ){ opMask = (u32)sqlite3Atoi(zRight); if( (opMask & 0x02)==0 ) break; }else{ opMask = 0xfffe; } iTabCur = pParse->nTab++; for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ if( iDb==1 ) continue; sqlite3CodeVerifySchema(pParse, iDb); pSchema = db->aDb[iDb].pSchema; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); /* If table pTab has not been used in a way that would benefit from ** having analysis statistics during the current session, then skip it. ** This also has the effect of skipping virtual tables and views */ if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; /* Reanalyze if the table is 25 times larger than the last analysis */ szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !pIdx->hasStat1 ){ szThreshold = 0; /* Always analyze if any index lacks statistics */ break; } } if( szThreshold ){ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); VdbeCoverage(v); } zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", db->aDb[iDb].zDbSName, pTab->zName); if( opMask & 0x01 ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); }else{ sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); } } } sqlite3VdbeAddOp0(v, OP_Expire); break; } /* ** PRAGMA busy_timeout ** PRAGMA busy_timeout = N ** ** Call sqlite3_busy_timeout(db, N). Return the current timeout value ** if one is set. If no busy handler or a different busy handler is set ** then 0 is returned. Setting the busy_timeout to 0 or negative ** disables the timeout. */ /*case PragTyp_BUSY_TIMEOUT*/ default: { assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); if( zRight ){ sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); } returnSingleInt(v, db->busyTimeout); break; } /* ** PRAGMA soft_heap_limit ** PRAGMA soft_heap_limit = N ** ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the ** sqlite3_soft_heap_limit64() interface with the argument N, if N is ** specified and is a non-negative integer. ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always ** returns the same integer that would be returned by the ** sqlite3_soft_heap_limit64(-1) C-language function. */ case PragTyp_SOFT_HEAP_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ sqlite3_soft_heap_limit64(N); } returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); break; } /* ** PRAGMA hard_heap_limit ** PRAGMA hard_heap_limit = N ** ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap ** limit. The hard heap limit can be activated or lowered by this ** pragma, but not raised or deactivated. Only the ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate ** the hard heap limit. This allows an application to set a heap limit ** constraint that cannot be relaxed by an untrusted SQL script. */ case PragTyp_HARD_HEAP_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1); if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N); } returnSingleInt(v, sqlite3_hard_heap_limit64(-1)); break; } /* ** PRAGMA threads ** PRAGMA threads = N ** ** Configure the maximum number of worker threads. Return the new ** maximum, which might be less than requested. */ case PragTyp_THREADS: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK && N>=0 ){ sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); } returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); break; } /* ** PRAGMA analysis_limit ** PRAGMA analysis_limit = N ** ** Configure the maximum number of rows that ANALYZE will examine ** in each index that it looks at. Return the new limit. */ case PragTyp_ANALYSIS_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */ && N>=0 ){ db->nAnalysisLimit = (int)(N&0x7fffffff); } returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */ break; } #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* ** Report the current state of file logs for all databases */ case PragTyp_LOCK_STATUS: { static const char *const azLockName[] = { "unlocked", "shared", "reserved", "pending", "exclusive" }; int i; pParse->nMem = 2; for(i=0; inDb; i++){ Btree *pBt; const char *zState = "unknown"; int j; if( db->aDb[i].zDbSName==0 ) continue; pBt = db->aDb[i].pBt; if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ zState = "closed"; }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ zState = azLockName[j]; } sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); } break; } #endif #if defined(SQLITE_ENABLE_CEROD) case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ sqlite3_activate_cerod(&zRight[6]); } } break; #endif } /* End of the PRAGMA switch */ /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only ** purpose is to execute assert() statements to verify that if the ** PragFlg_NoColumns1 flag is set and the caller specified an argument ** to the PRAGMA, the implementation has not added any OP_ResultRow ** instructions to the VM. */ if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ sqlite3VdbeVerifyNoResultRow(v); } pragma_out: sqlite3DbFree(db, zLeft); sqlite3DbFree(db, zRight); } #ifndef SQLITE_OMIT_VIRTUALTABLE /***************************************************************************** ** Implementation of an eponymous virtual table that runs a pragma. ** */ typedef struct PragmaVtab PragmaVtab; typedef struct PragmaVtabCursor PragmaVtabCursor; struct PragmaVtab { sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* The database connection to which it belongs */ const PragmaName *pName; /* Name of the pragma */ u8 nHidden; /* Number of hidden columns */ u8 iHidden; /* Index of the first hidden column */ }; struct PragmaVtabCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ sqlite3_stmt *pPragma; /* The pragma statement to run */ sqlite_int64 iRowid; /* Current rowid */ char *azArg[2]; /* Value of the argument and schema */ }; /* ** Pragma virtual table module xConnect method. */ static int pragmaVtabConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ const PragmaName *pPragma = (const PragmaName*)pAux; PragmaVtab *pTab = 0; int rc; int i, j; char cSep = '('; StrAccum acc; char zBuf[200]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3_str_appendall(&acc, "CREATE TABLE x"); for(i=0, j=pPragma->iPragCName; inPragCName; i++, j++){ sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]); cSep = ','; } if( i==0 ){ sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName); i++; } j = 0; if( pPragma->mPragFlg & PragFlg_Result1 ){ sqlite3_str_appendall(&acc, ",arg HIDDEN"); j++; } if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ sqlite3_str_appendall(&acc, ",schema HIDDEN"); j++; } sqlite3_str_append(&acc, ")", 1); sqlite3StrAccumFinish(&acc); assert( strlen(zBuf) < sizeof(zBuf)-1 ); rc = sqlite3_declare_vtab(db, zBuf); if( rc==SQLITE_OK ){ pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); if( pTab==0 ){ rc = SQLITE_NOMEM; }else{ memset(pTab, 0, sizeof(PragmaVtab)); pTab->pName = pPragma; pTab->db = db; pTab->iHidden = i; pTab->nHidden = j; } }else{ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } *ppVtab = (sqlite3_vtab*)pTab; return rc; } /* ** Pragma virtual table module xDisconnect method. */ static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ PragmaVtab *pTab = (PragmaVtab*)pVtab; sqlite3_free(pTab); return SQLITE_OK; } /* Figure out the best index to use to search a pragma virtual table. ** ** There are not really any index choices. But we want to encourage the ** query planner to give == constraints on as many hidden parameters as ** possible, and especially on the first hidden parameter. So return a ** high cost if hidden parameters are unconstrained. */ static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ PragmaVtab *pTab = (PragmaVtab*)tab; const struct sqlite3_index_constraint *pConstraint; int i, j; int seen[2]; pIdxInfo->estimatedCost = (double)1; if( pTab->nHidden==0 ){ return SQLITE_OK; } pConstraint = pIdxInfo->aConstraint; seen[0] = 0; seen[1] = 0; for(i=0; inConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; if( pConstraint->iColumn < pTab->iHidden ) continue; j = pConstraint->iColumn - pTab->iHidden; assert( j < 2 ); seen[j] = i+1; } if( seen[0]==0 ){ pIdxInfo->estimatedCost = (double)2147483647; pIdxInfo->estimatedRows = 2147483647; return SQLITE_OK; } j = seen[0]-1; pIdxInfo->aConstraintUsage[j].argvIndex = 1; pIdxInfo->aConstraintUsage[j].omit = 1; if( seen[1]==0 ) return SQLITE_OK; pIdxInfo->estimatedCost = (double)20; pIdxInfo->estimatedRows = 20; j = seen[1]-1; pIdxInfo->aConstraintUsage[j].argvIndex = 2; pIdxInfo->aConstraintUsage[j].omit = 1; return SQLITE_OK; } /* Create a new cursor for the pragma virtual table */ static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ PragmaVtabCursor *pCsr; pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); if( pCsr==0 ) return SQLITE_NOMEM; memset(pCsr, 0, sizeof(PragmaVtabCursor)); pCsr->base.pVtab = pVtab; *ppCursor = &pCsr->base; return SQLITE_OK; } /* Clear all content from pragma virtual table cursor. */ static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ int i; sqlite3_finalize(pCsr->pPragma); pCsr->pPragma = 0; for(i=0; iazArg); i++){ sqlite3_free(pCsr->azArg[i]); pCsr->azArg[i] = 0; } } /* Close a pragma virtual table cursor */ static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; pragmaVtabCursorClear(pCsr); sqlite3_free(pCsr); return SQLITE_OK; } /* Advance the pragma virtual table cursor to the next row */ static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; int rc = SQLITE_OK; /* Increment the xRowid value */ pCsr->iRowid++; assert( pCsr->pPragma ); if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ rc = sqlite3_finalize(pCsr->pPragma); pCsr->pPragma = 0; pragmaVtabCursorClear(pCsr); } return rc; } /* ** Pragma virtual table module xFilter method. */ static int pragmaVtabFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); int rc; int i, j; StrAccum acc; char *zSql; UNUSED_PARAMETER(idxNum); UNUSED_PARAMETER(idxStr); pragmaVtabCursorClear(pCsr); j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; for(i=0; iazArg) ); assert( pCsr->azArg[j]==0 ); if( zText ){ pCsr->azArg[j] = sqlite3_mprintf("%s", zText); if( pCsr->azArg[j]==0 ){ return SQLITE_NOMEM; } } } sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); sqlite3_str_appendall(&acc, "PRAGMA "); if( pCsr->azArg[1] ){ sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]); } sqlite3_str_appendall(&acc, pTab->pName->zName); if( pCsr->azArg[0] ){ sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]); } zSql = sqlite3StrAccumFinish(&acc); if( zSql==0 ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); return rc; } return pragmaVtabNext(pVtabCursor); } /* ** Pragma virtual table module xEof method. */ static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; return (pCsr->pPragma==0); } /* The xColumn method simply returns the corresponding column from ** the PRAGMA. */ static int pragmaVtabColumn( sqlite3_vtab_cursor *pVtabCursor, sqlite3_context *ctx, int i ){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); if( iiHidden ){ sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); }else{ sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); } return SQLITE_OK; } /* ** Pragma virtual table module xRowid method. */ static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; *p = pCsr->iRowid; return SQLITE_OK; } /* The pragma virtual table object */ static const sqlite3_module pragmaVtabModule = { 0, /* iVersion */ 0, /* xCreate - create a table */ pragmaVtabConnect, /* xConnect - connect to an existing table */ pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 0, /* xDestroy - Drop a table */ pragmaVtabOpen, /* xOpen - open a cursor */ pragmaVtabClose, /* xClose - close a cursor */ pragmaVtabFilter, /* xFilter - configure scan constraints */ pragmaVtabNext, /* xNext - advance a cursor */ pragmaVtabEof, /* xEof */ pragmaVtabColumn, /* xColumn - read data */ pragmaVtabRowid, /* xRowid - read data */ 0, /* xUpdate - write data */ 0, /* xBegin - begin transaction */ 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ 0, /* xRename - rename the table */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; /* ** Check to see if zTabName is really the name of a pragma. If it is, ** then register an eponymous virtual table for that pragma and return ** a pointer to the Module object for the new virtual table. */ SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ const PragmaName *pName; assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); pName = pragmaLocate(zName+7); if( pName==0 ) return 0; if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; assert( sqlite3HashFind(&db->aModule, zName)==0 ); return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #endif /* SQLITE_OMIT_PRAGMA */ /************** End of pragma.c **********************************************/ /************** Begin file prepare.c *****************************************/ /* ** 2005 May 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. */ /* #include "sqliteInt.h" */ /* ** Fill the InitData structure with an error message that indicates ** that the database is corrupt. */ static void corruptSchema( InitData *pData, /* Initialization context */ char **azObj, /* Type and name of object being parsed */ const char *zExtra /* Error information */ ){ sqlite3 *db = pData->db; if( db->mallocFailed ){ pData->rc = SQLITE_NOMEM_BKPT; }else if( pData->pzErrMsg[0]!=0 ){ /* A error message has already been generated. Do not overwrite it */ }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){ static const char *azAlterType[] = { "rename", "drop column", "add column" }; *pData->pzErrMsg = sqlite3MPrintf(db, "error in %s %s after %s: %s", azObj[0], azObj[1], azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1], zExtra ); pData->rc = SQLITE_ERROR; }else if( db->flags & SQLITE_WriteSchema ){ pData->rc = SQLITE_CORRUPT_BKPT; }else{ char *z; const char *zObj = azObj[1] ? azObj[1] : "?"; z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); *pData->pzErrMsg = z; pData->rc = SQLITE_CORRUPT_BKPT; } } /* ** Check to see if any sibling index (another index on the same table) ** of pIndex has the same root page number, and if it does, return true. ** This would indicate a corrupt schema. */ SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ Index *p; for(p=pIndex->pTable->pIndex; p; p=p->pNext){ if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; } return 0; } /* forward declaration */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pReprepare, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ); /* ** This is the callback routine for the code that initializes the ** database. See sqlite3Init() below for additional information. ** This routine is also called from the OP_ParseSchema opcode of the VDBE. ** ** Each callback contains the following information: ** ** argv[0] = type of object: "table", "index", "trigger", or "view". ** argv[1] = name of thing being created ** argv[2] = associated table if an index or trigger ** argv[3] = root page number for table or index. 0 for trigger or view. ** argv[4] = SQL text for the CREATE statement. ** */ SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ InitData *pData = (InitData*)pInit; sqlite3 *db = pData->db; int iDb = pData->iDb; assert( argc==5 ); UNUSED_PARAMETER2(NotUsed, argc); assert( sqlite3_mutex_held(db->mutex) ); db->mDbFlags |= DBFLAG_EncodingFixed; if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ pData->nInitRow++; if( db->mallocFailed ){ corruptSchema(pData, argv, 0); return 1; } assert( iDb>=0 && iDbnDb ); if( argv[3]==0 ){ corruptSchema(pData, argv, 0); }else if( argv[4] && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ /* Call the parser to process a CREATE TABLE, INDEX or VIEW. ** But because db->init.busy is set to 1, no VDBE code is generated ** or executed. All the parser does is build the internal data ** structures that describe the table, index, or view. ** ** No other valid SQL statement, other than the variable CREATE statements, ** can begin with the letters "C" and "R". Thus, it is not possible run ** any other kind of statement while parsing the schema, even a corrupt ** schema. */ int rc; u8 saved_iDb = db->init.iDb; sqlite3_stmt *pStmt; TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ assert( db->init.busy ); db->init.iDb = iDb; if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) ){ if( sqlite3Config.bExtraSchemaChecks ){ corruptSchema(pData, argv, "invalid rootpage"); } } db->init.orphanTrigger = 0; db->init.azInit = (const char**)argv; pStmt = 0; TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); rc = db->errCode; assert( (rc&0xFF)==(rcp&0xFF) ); db->init.iDb = saved_iDb; /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ if( SQLITE_OK!=rc ){ if( db->init.orphanTrigger ){ assert( iDb==1 ); }else{ if( rc > pData->rc ) pData->rc = rc; if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ corruptSchema(pData, argv, sqlite3_errmsg(db)); } } } db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ sqlite3_finalize(pStmt); }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ corruptSchema(pData, argv, 0); }else{ /* If the SQL column is blank it means this is an index that ** was created to be the PRIMARY KEY or to fulfill a UNIQUE ** constraint for a CREATE TABLE. The index should have already ** been created when we processed the CREATE TABLE. All we have ** to do here is record the root page number for that index. */ Index *pIndex; pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); if( pIndex==0 ){ corruptSchema(pData, argv, "orphan index"); }else if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 || pIndex->tnum<2 || pIndex->tnum>pData->mxPage || sqlite3IndexHasDuplicateRootPage(pIndex) ){ if( sqlite3Config.bExtraSchemaChecks ){ corruptSchema(pData, argv, "invalid rootpage"); } } } return 0; } /* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ SQLITE_PRIVATE int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ int rc; int i; #ifndef SQLITE_OMIT_DEPRECATED int size; #endif Db *pDb; char const *azArg[6]; int meta[5]; InitData initData; const char *zSchemaTabName; int openedTransaction = 0; int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); assert( iDb>=0 && iDbnDb ); assert( db->aDb[iDb].pSchema ); assert( sqlite3_mutex_held(db->mutex) ); assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); db->init.busy = 1; /* Construct the in-memory representation schema tables (sqlite_schema or ** sqlite_temp_schema) by invoking the parser directly. The appropriate ** table name will be inserted automatically by the parser so we can just ** use the abbreviation "x" here. The parser will also automatically tag ** the schema table as read-only. */ azArg[0] = "table"; azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); azArg[2] = azArg[1]; azArg[3] = "1"; azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," "rootpage int,sql text)"; azArg[5] = 0; initData.db = db; initData.iDb = iDb; initData.rc = SQLITE_OK; initData.pzErrMsg = pzErrMsg; initData.mInitFlags = mFlags; initData.nInitRow = 0; initData.mxPage = 0; sqlite3InitCallback(&initData, 5, (char **)azArg, 0); db->mDbFlags &= mask; if( initData.rc ){ rc = initData.rc; goto error_out; } /* Create a cursor to hold the database open */ pDb = &db->aDb[iDb]; if( pDb->pBt==0 ){ assert( iDb==1 ); DbSetProperty(db, 1, DB_SchemaLoaded); rc = SQLITE_OK; goto error_out; } /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed before this function returns. */ sqlite3BtreeEnter(pDb->pBt); if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); if( rc!=SQLITE_OK ){ sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); goto initone_error_out; } openedTransaction = 1; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Largest rootpage (auto/incr_vacuum mode) ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE ** meta[5] User version ** meta[6] Incremental vacuum mode ** meta[7] unused ** meta[8] unused ** meta[9] unused ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ for(i=0; ipBt, i+1, (u32 *)&meta[i]); } if( (db->flags & SQLITE_ResetDatabase)!=0 ){ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ u8 encoding; #ifndef SQLITE_OMIT_UTF16 /* If opening the main database, set ENC(db). */ encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; if( encoding==0 ) encoding = SQLITE_UTF8; #else encoding = SQLITE_UTF8; #endif if( db->nVdbeActive>0 && encoding!=ENC(db) && (db->mDbFlags & DBFLAG_Vacuum)==0 ){ rc = SQLITE_LOCKED; goto initone_error_out; }else{ sqlite3SetTextEncoding(db, encoding); } }else{ /* If opening an attached database, the encoding much match ENC(db) */ if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ sqlite3SetString(pzErrMsg, db, "attached databases must use the same" " text encoding as main database"); rc = SQLITE_ERROR; goto initone_error_out; } } } pDb->pSchema->enc = ENC(db); if( pDb->pSchema->cache_size==0 ){ #ifndef SQLITE_OMIT_DEPRECATED size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } pDb->pSchema->cache_size = size; #else pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; #endif sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; if( pDb->pSchema->file_format==0 ){ pDb->pSchema->file_format = 1; } if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ sqlite3SetString(pzErrMsg, db, "unsupported file format"); rc = SQLITE_ERROR; goto initone_error_out; } /* Ticket #2804: When we open a database in the newer file format, ** clear the legacy_file_format pragma flag so that a VACUUM will ** not downgrade the database and thus invalidate any descending ** indices that the user might have created. */ if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ db->flags &= ~(u64)SQLITE_LegacyFileFmt; } /* Read the schema information out of the schema tables */ assert( db->init.busy ); initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); { char *zSql; zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\".%s ORDER BY rowid", db->aDb[iDb].zDbSName, zSchemaTabName); #ifndef SQLITE_OMIT_AUTHORIZATION { sqlite3_xauth xAuth; xAuth = db->xAuth; db->xAuth = 0; #endif rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; } #endif if( rc==SQLITE_OK ) rc = initData.rc; sqlite3DbFree(db, zSql); #ifndef SQLITE_OMIT_ANALYZE if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif } assert( pDb == &(db->aDb[iDb]) ); if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; sqlite3ResetAllSchemasOfConnection(db); pDb = &db->aDb[iDb]; }else if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){ /* Hack: If the SQLITE_NoSchemaError flag is set, then consider ** the schema loaded, even if errors (other than OOM) occurred. In ** this situation the current sqlite3_prepare() operation will fail, ** but the following one will attempt to compile the supplied statement ** against whatever subset of the schema was loaded before the error ** occurred. ** ** The primary purpose of this is to allow access to the sqlite_schema ** table even when its contents have been corrupted. */ DbSetProperty(db, iDb, DB_SchemaLoaded); rc = SQLITE_OK; } /* Jump here for an error that occurs after successfully allocating ** curMain and calling sqlite3BtreeEnter(). For an error that occurs ** before that point, jump to error_out. */ initone_error_out: if( openedTransaction ){ sqlite3BtreeCommit(pDb->pBt); } sqlite3BtreeLeave(pDb->pBt); error_out: if( rc ){ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); } sqlite3ResetOneSchema(db, iDb); } db->init.busy = 0; return rc; } /* ** Initialize all database files - the main database file, the file ** used to store temporary tables, and any additional database files ** created using ATTACH statements. Return a success code. If an ** error occurs, write an error message into *pzErrMsg. ** ** After a database is initialized, the DB_SchemaLoaded bit is set ** bit is set in the flags field of the Db structure. */ SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){ int i, rc; int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); assert( sqlite3_mutex_held(db->mutex) ); assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); assert( db->init.busy==0 ); ENC(db) = SCHEMA_ENC(db); assert( db->nDb>0 ); /* Do the main schema first */ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 0, pzErrMsg, 0); if( rc ) return rc; } /* All other schemas after the main schema. The "temp" schema must be last */ for(i=db->nDb-1; i>0; i--){ assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, i, pzErrMsg, 0); if( rc ) return rc; } } if( commit_internal ){ sqlite3CommitInternalChanges(db); } return SQLITE_OK; } /* ** This routine is a no-op if the database schema is already initialized. ** Otherwise, the schema is loaded. An error code is returned. */ SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){ int rc = SQLITE_OK; sqlite3 *db = pParse->db; assert( sqlite3_mutex_held(db->mutex) ); if( !db->init.busy ){ rc = sqlite3Init(db, &pParse->zErrMsg); if( rc!=SQLITE_OK ){ pParse->rc = rc; pParse->nErr++; }else if( db->noSharedCache ){ db->mDbFlags |= DBFLAG_SchemaKnownOk; } } return rc; } /* ** Check schema cookies in all databases. If any cookie is out ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies ** make no changes to pParse->rc. */ static void schemaIsValid(Parse *pParse){ sqlite3 *db = pParse->db; int iDb; int rc; int cookie; assert( pParse->checkSchema ); assert( sqlite3_mutex_held(db->mutex) ); for(iDb=0; iDbnDb; iDb++){ int openedTransaction = 0; /* True if a transaction is opened */ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ if( pBt==0 ) continue; /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed immediately after reading the meta-value. */ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); pParse->rc = SQLITE_NOMEM; } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA; sqlite3ResetOneSchema(db, iDb); } /* Close the transaction, if one was opened. */ if( openedTransaction ){ sqlite3BtreeCommit(pBt); } } } /* ** Convert a schema pointer into the iDb index that indicates ** which database file in db->aDb[] the schema refers to. ** ** If the same database is attached more than once, the first ** attached database is returned. */ SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ int i = -32768; /* If pSchema is NULL, then return -32768. This happens when code in ** expr.c is trying to resolve a reference to a transient table (i.e. one ** created by a sub-select). In this case the return value of this ** function should never be used. ** ** We return -32768 instead of the more usual -1 simply because using ** -32768 as the incorrect index into db->aDb[] is much ** more likely to cause a segfault than -1 (of course there are assert() ** statements too, but it never hurts to play the odds) and ** -32768 will still fit into a 16-bit signed integer. */ assert( sqlite3_mutex_held(db->mutex) ); if( pSchema ){ for(i=0; 1; i++){ assert( inDb ); if( db->aDb[i].pSchema==pSchema ){ break; } } assert( i>=0 && inDb ); } return i; } /* ** Free all memory allocations in the pParse object */ SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse *pParse){ sqlite3 *db = pParse->db; assert( db!=0 ); assert( db->pParse==pParse ); assert( pParse->nested==0 ); #ifndef SQLITE_OMIT_SHARED_CACHE if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock); #endif while( pParse->pCleanup ){ ParseCleanup *pCleanup = pParse->pCleanup; pParse->pCleanup = pCleanup->pNext; pCleanup->xCleanup(db, pCleanup->pPtr); sqlite3DbNNFreeNN(db, pCleanup); } if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel); if( pParse->pConstExpr ){ sqlite3ExprListDelete(db, pParse->pConstExpr); } assert( db->lookaside.bDisable >= pParse->disableLookaside ); db->lookaside.bDisable -= pParse->disableLookaside; db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; assert( pParse->db->pParse==pParse ); db->pParse = pParse->pOuterParse; pParse->db = 0; pParse->disableLookaside = 0; } /* ** Add a new cleanup operation to a Parser. The cleanup should happen when ** the parser object is destroyed. But, beware: the cleanup might happen ** immediately. ** ** Use this mechanism for uncommon cleanups. There is a higher setup ** cost for this mechanism (an extra malloc), so it should not be used ** for common cleanups that happen on most calls. But for less ** common cleanups, we save a single NULL-pointer comparison in ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count. ** ** If a memory allocation error occurs, then the cleanup happens immediately. ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the ** pParse->earlyCleanup flag is set in that case. Calling code show verify ** that test cases exist for which this happens, to guard against possible ** use-after-free errors following an OOM. The preferred way to do this is ** to immediately follow the call to this routine with: ** ** testcase( pParse->earlyCleanup ); ** ** This routine returns a copy of its pPtr input (the third parameter) ** except if an early cleanup occurs, in which case it returns NULL. So ** another way to check for early cleanup is to check the return value. ** Or, stop using the pPtr parameter with this call and use only its ** return value thereafter. Something like this: ** ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); */ SQLITE_PRIVATE void *sqlite3ParserAddCleanup( Parse *pParse, /* Destroy when this Parser finishes */ void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ void *pPtr /* Pointer to object to be cleaned up */ ){ ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); if( pCleanup ){ pCleanup->pNext = pParse->pCleanup; pParse->pCleanup = pCleanup; pCleanup->pPtr = pPtr; pCleanup->xCleanup = xCleanup; }else{ xCleanup(pParse->db, pPtr); pPtr = 0; #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) pParse->earlyCleanup = 1; #endif } return pPtr; } /* ** Turn bulk memory into a valid Parse object and link that Parse object ** into database connection db. ** ** Call sqlite3ParseObjectReset() to undo this operation. ** ** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which ** is generated by Lemon. */ SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){ memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ); memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); assert( db->pParse!=pParse ); pParse->pOuterParse = db->pParse; db->pParse = pParse; pParse->db = db; if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory"); } /* ** Maximum number of times that we will try again to prepare a statement ** that returns SQLITE_ERROR_RETRY. */ #ifndef SQLITE_MAX_PREPARE_RETRY # define SQLITE_MAX_PREPARE_RETRY 25 #endif /* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pReprepare, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc = SQLITE_OK; /* Result code */ int i; /* Loop counter */ Parse sParse; /* Parsing context */ /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); sParse.pOuterParse = db->pParse; db->pParse = &sParse; sParse.db = db; if( pReprepare ){ sParse.pReprepare = pReprepare; sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare); }else{ assert( sParse.pReprepare==0 ); } assert( ppStmt && *ppStmt==0 ); if( db->mallocFailed ){ sqlite3ErrorMsg(&sParse, "out of memory"); db->errCode = rc = SQLITE_NOMEM; goto end_prepare; } assert( sqlite3_mutex_held(db->mutex) ); /* For a long-term use prepared statement avoid the use of ** lookaside memory. */ if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ sParse.disableLookaside++; DisableLookaside; } sParse.prepFlags = prepFlags & 0xff; /* Check to verify that it is possible to get a read lock on all ** database schemas. The inability to get a read lock indicates that ** some other database connection is holding a write-lock, which in ** turn means that the other connection has made uncommitted changes ** to the schema. ** ** Were we to proceed and prepare the statement against the uncommitted ** schema changes and if those schema changes are subsequently rolled ** back and different changes are made in their place, then when this ** prepared statement goes to run the schema cookie would fail to detect ** the schema change. Disaster would follow. ** ** This thread is currently holding mutexes on all Btrees (because ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it ** is not possible for another thread to start a new schema change ** while this routine is running. Hence, we do not need to hold ** locks on the schema, we just need to make sure nobody else is ** holding them. ** ** Note that setting READ_UNCOMMITTED overrides most lock detection, ** but it does *not* override schema lock detection, so this all still ** works even if READ_UNCOMMITTED is set. */ if( !db->noSharedCache ){ for(i=0; inDb; i++) { Btree *pBt = db->aDb[i].pBt; if( pBt ){ assert( sqlite3BtreeHoldsMutex(pBt) ); rc = sqlite3BtreeSchemaLocked(pBt); if( rc ){ const char *zDb = db->aDb[i].zDbSName; sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); testcase( db->flags & SQLITE_ReadUncommit ); goto end_prepare; } } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( db->pDisconnect ) sqlite3VtabUnlockList(db); #endif if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ char *zSqlCopy; int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; testcase( nBytes==mxLen ); testcase( nBytes==mxLen+1 ); if( nBytes>mxLen ){ sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); rc = sqlite3ApiExit(db, SQLITE_TOOBIG); goto end_prepare; } zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); if( zSqlCopy ){ sqlite3RunParser(&sParse, zSqlCopy); sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; sqlite3DbFree(db, zSqlCopy); }else{ sParse.zTail = &zSql[nBytes]; } }else{ sqlite3RunParser(&sParse, zSql); } assert( 0==sParse.nQueryLoop ); if( pzTail ){ *pzTail = sParse.zTail; } if( db->init.busy==0 ){ sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); } if( db->mallocFailed ){ sParse.rc = SQLITE_NOMEM_BKPT; sParse.checkSchema = 0; } if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ if( sParse.checkSchema && db->init.busy==0 ){ schemaIsValid(&sParse); } if( sParse.pVdbe ){ sqlite3VdbeFinalize(sParse.pVdbe); } assert( 0==(*ppStmt) ); rc = sParse.rc; if( sParse.zErrMsg ){ sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg); sqlite3DbFree(db, sParse.zErrMsg); }else{ sqlite3Error(db, rc); } }else{ assert( sParse.zErrMsg==0 ); *ppStmt = (sqlite3_stmt*)sParse.pVdbe; rc = SQLITE_OK; sqlite3ErrorClear(db); } /* Delete any TriggerPrg structures allocated while parsing this statement. */ while( sParse.pTriggerPrg ){ TriggerPrg *pT = sParse.pTriggerPrg; sParse.pTriggerPrg = pT->pNext; sqlite3DbFree(db, pT); } end_prepare: sqlite3ParseObjectReset(&sParse); return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pOld, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; int cnt = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); do{ /* Make multiple attempts to compile the SQL, until it either succeeds ** or encounters a permanent error. A schema problem after one schema ** reset is considered a permanent error. */ rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); assert( rc==SQLITE_OK || *ppStmt==0 ); if( rc==SQLITE_OK || db->mallocFailed ) break; }while( (rc==SQLITE_ERROR_RETRY && (cnt++)errMask)==rc ); db->busyHandler.nBusy = 0; sqlite3_mutex_leave(db->mutex); return rc; } /* ** Rerun the compilation of a statement after a schema change. ** ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, ** if the statement cannot be recompiled because another connection has ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error ** occurs, return SQLITE_SCHEMA. */ SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){ int rc; sqlite3_stmt *pNew; const char *zSql; sqlite3 *db; u8 prepFlags; assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); zSql = sqlite3_sql((sqlite3_stmt *)p); assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ db = sqlite3VdbeDb(p); assert( sqlite3_mutex_held(db->mutex) ); prepFlags = sqlite3VdbePrepareFlags(p); rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); if( rc ){ if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } assert( pNew==0 ); return rc; }else{ assert( pNew!=0 ); } sqlite3VdbeSwap((Vdbe*)pNew, p); sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); sqlite3VdbeResetStepResult((Vdbe*)pNew); sqlite3VdbeFinalize((Vdbe*)pNew); return SQLITE_OK; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained ** and the statement is automatically recompiled if an schema change ** occurs. */ SQLITE_API int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } SQLITE_API int sqlite3_prepare_v2( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags ** parameter. ** ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); return rc; } SQLITE_API int sqlite3_prepare_v3( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, ** which is a bit array consisting of zero or more of the ** SQLITE_PREPARE_* flags. ** ** Proof by comparison to the implementation of sqlite3_prepare_v2() ** directly above. */ rc = sqlite3LockAndPrepare(db,zSql,nBytes, SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ /* This function currently works by first transforming the UTF-16 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The ** tricky bit is figuring out the pointer to return in *pzTail. */ char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } if( nBytes>=0 ){ int sz; const char *z = (const char*)zSql; for(sz=0; szmutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); if( zSql8 ){ rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); } if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. */ int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); } sqlite3DbFree(db, zSql8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained ** and the statement is automatically recompiled if an schema change ** occurs. */ SQLITE_API int sqlite3_prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } SQLITE_API int sqlite3_prepare16_v2( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } SQLITE_API int sqlite3_prepare16_v3( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes, SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } #endif /* SQLITE_OMIT_UTF16 */ /************** End of prepare.c *********************************************/ /************** Begin file select.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. */ /* #include "sqliteInt.h" */ /* ** An instance of the following object is used to record information about ** how to process the DISTINCT keyword, to simplify passing that information ** into the selectInnerLoop() routine. */ typedef struct DistinctCtx DistinctCtx; struct DistinctCtx { u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ int tabTnct; /* Ephemeral table used for DISTINCT processing */ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ }; /* ** An instance of the following object is used to record information about ** the ORDER BY (or GROUP BY) clause of query is being coded. ** ** The aDefer[] array is used by the sorter-references optimization. For ** example, assuming there is no index that can be used for the ORDER BY, ** for the query: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; ** ** it may be more efficient to add just the "a" values to the sorter, and ** retrieve the associated "bigblob" values directly from table t1 as the ** 10 smallest "a" values are extracted from the sorter. ** ** When the sorter-reference optimization is used, there is one entry in the ** aDefer[] array for each database table that may be read as values are ** extracted from the sorter. */ typedef struct SortCtx SortCtx; struct SortCtx { ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ int nOBSat; /* Number of ORDER BY terms satisfied by indices */ int iECursor; /* Cursor number for the sorter */ int regReturn; /* Register holding block-output return address */ int labelBkOut; /* Start label for the block-output subroutine */ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ int labelDone; /* Jump here when done, ex: LIMIT reached */ int labelOBLopt; /* Jump here when sorter is full */ u8 sortFlags; /* Zero or more SORTFLAG_* bits */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES u8 nDefer; /* Number of valid entries in aDefer[] */ struct DeferredCsr { Table *pTab; /* Table definition */ int iCsr; /* Cursor number for table */ int nKey; /* Number of PK columns for table pTab (>=1) */ } aDefer[4]; #endif struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrPush; /* First instruction to push data into sorter */ int addrPushEnd; /* Last instruction that pushes data into sorter */ #endif }; #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ /* ** Delete all the content of a Select structure. Deallocate the structure ** itself depending on the value of bFree ** ** If bFree==1, call sqlite3DbFree() on the p object. ** If bFree==0, Leave the first Select object unfreed */ static void clearSelect(sqlite3 *db, Select *p, int bFree){ assert( db!=0 ); while( p ){ Select *pPrior = p->pPrior; sqlite3ExprListDelete(db, p->pEList); sqlite3SrcListDelete(db, p->pSrc); sqlite3ExprDelete(db, p->pWhere); sqlite3ExprListDelete(db, p->pGroupBy); sqlite3ExprDelete(db, p->pHaving); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pLimit); if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ sqlite3WindowListDelete(db, p->pWinDefn); } while( p->pWin ){ assert( p->pWin->ppThis==&p->pWin ); sqlite3WindowUnlinkFromSelect(p->pWin); } #endif if( bFree ) sqlite3DbNNFreeNN(db, p); p = pPrior; bFree = 1; } } /* ** Initialize a SelectDest structure. */ SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ pDest->eDest = (u8)eDest; pDest->iSDParm = iParm; pDest->iSDParm2 = 0; pDest->zAffSdst = 0; pDest->iSdst = 0; pDest->nSdst = 0; } /* ** Allocate a new Select structure and return a pointer to that ** structure. */ SQLITE_PRIVATE Select *sqlite3SelectNew( Parse *pParse, /* Parsing context */ ExprList *pEList, /* which columns to include in the result */ SrcList *pSrc, /* the FROM clause -- which tables to scan */ Expr *pWhere, /* the WHERE clause */ ExprList *pGroupBy, /* the GROUP BY clause */ Expr *pHaving, /* the HAVING clause */ ExprList *pOrderBy, /* the ORDER BY clause */ u32 selFlags, /* Flag parameters, such as SF_Distinct */ Expr *pLimit /* LIMIT value. NULL means not used */ ){ Select *pNew, *pAllocated; Select standin; pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); if( pNew==0 ){ assert( pParse->db->mallocFailed ); pNew = &standin; } if( pEList==0 ){ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); } pNew->pEList = pEList; pNew->op = TK_SELECT; pNew->selFlags = selFlags; pNew->iLimit = 0; pNew->iOffset = 0; pNew->selId = ++pParse->nSelect; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->nSelectRow = 0; if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); pNew->pSrc = pSrc; pNew->pWhere = pWhere; pNew->pGroupBy = pGroupBy; pNew->pHaving = pHaving; pNew->pOrderBy = pOrderBy; pNew->pPrior = 0; pNew->pNext = 0; pNew->pLimit = pLimit; pNew->pWith = 0; #ifndef SQLITE_OMIT_WINDOWFUNC pNew->pWin = 0; pNew->pWinDefn = 0; #endif if( pParse->db->mallocFailed ) { clearSelect(pParse->db, pNew, pNew!=&standin); pAllocated = 0; }else{ assert( pNew->pSrc!=0 || pParse->nErr>0 ); } return pAllocated; } /* ** Delete the given Select structure and all of its substructures. */ SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){ if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); } /* ** Return a pointer to the right-most SELECT statement in a compound. */ static Select *findRightmost(Select *p){ while( p->pNext ) p = p->pNext; return p; } /* ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER ** JT_CROSS ** JT_OUTER ** JT_NATURAL ** JT_LEFT ** JT_RIGHT ** ** A full outer join is the combination of JT_LEFT and JT_RIGHT. ** ** If an illegal or unsupported join type is seen, then still return ** a join type, but put an error in the pParse structure. ** ** These are the valid join types: ** ** ** pA pB pC Return Value ** ------- ----- ----- ------------ ** CROSS - - JT_CROSS ** INNER - - JT_INNER ** LEFT - - JT_LEFT|JT_OUTER ** LEFT OUTER - JT_LEFT|JT_OUTER ** RIGHT - - JT_RIGHT|JT_OUTER ** RIGHT OUTER - JT_RIGHT|JT_OUTER ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER ** NATURAL INNER - JT_NATURAL|JT_INNER ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT ** ** To preserve historical compatibly, SQLite also accepts a variety ** of other non-standard and in many cases nonsensical join types. ** This routine makes as much sense at it can from the nonsense join ** type and returns a result. Examples of accepted nonsense join types ** include but are not limited to: ** ** INNER CROSS JOIN -> same as JOIN ** NATURAL CROSS JOIN -> same as NATURAL JOIN ** OUTER LEFT JOIN -> same as LEFT JOIN ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN ** LEFT RIGHT JOIN -> same as FULL JOIN ** RIGHT OUTER FULL JOIN -> same as FULL JOIN ** CROSS CROSS CROSS JOIN -> same as JOIN ** ** The only restrictions on the join type name are: ** ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", ** or "FULL". ** ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, ** or "FULL". ** ** * If "OUTER" is present then there must also be one of ** "LEFT", "RIGHT", or "FULL" */ SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ int jointype = 0; Token *apAll[3]; Token *p; /* 0123456789 123456789 123456789 123 */ static const char zKeyText[] = "naturaleftouterightfullinnercross"; static const struct { u8 i; /* Beginning of keyword text in zKeyText[] */ u8 nChar; /* Length of the keyword in characters */ u8 code; /* Join type mask */ } aKeyword[] = { /* (0) natural */ { 0, 7, JT_NATURAL }, /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, /* (2) outer */ { 10, 5, JT_OUTER }, /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, /* (5) inner */ { 23, 5, JT_INNER }, /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, }; int i, j; apAll[0] = pA; apAll[1] = pB; apAll[2] = pC; for(i=0; i<3 && apAll[i]; i++){ p = apAll[i]; for(j=0; jn==aKeyword[j].nChar && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ jointype |= aKeyword[j].code; break; } } testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); if( j>=ArraySize(aKeyword) ){ jointype |= JT_ERROR; break; } } if( (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || (jointype & JT_ERROR)!=0 || (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER ){ const char *zSp1 = " "; const char *zSp2 = " "; if( pB==0 ){ zSp1++; } if( pC==0 ){ zSp2++; } sqlite3ErrorMsg(pParse, "unknown join type: " "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); jointype = JT_INNER; } return jointype; } /* ** Return the index of a column in a table. Return -1 if the column ** is not contained in the table. */ SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol){ int i; u8 h = sqlite3StrIHash(zCol); Column *pCol; for(pCol=pTab->aCol, i=0; inCol; pCol++, i++){ if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; } return -1; } /* ** Mark a subquery result column as having been used. */ SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ assert( pItem!=0 ); assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); if( pItem->fg.isNestedFrom ){ ExprList *pResults; assert( pItem->pSelect!=0 ); pResults = pItem->pSelect->pEList; assert( pResults!=0 ); assert( iCol>=0 && iColnExpr ); pResults->a[iCol].fg.bUsed = 1; } } /* ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a ** table that has a column named zCol. The search is left-to-right. ** The first match found is returned. ** ** When found, set *piTab and *piCol to the table index and column index ** of the matching column and return TRUE. ** ** If not found, return FALSE. */ static int tableAndColumnIndex( SrcList *pSrc, /* Array of tables to search */ int iStart, /* First member of pSrc->a[] to check */ int iEnd, /* Last member of pSrc->a[] to check */ const char *zCol, /* Name of the column we are looking for */ int *piTab, /* Write index of pSrc->a[] here */ int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ int bIgnoreHidden /* Ignore hidden columns */ ){ int i; /* For looping over tables in pSrc */ int iCol; /* Index of column matching zCol */ assert( iEndnSrc ); assert( iStart>=0 ); assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ for(i=iStart; i<=iEnd; i++){ iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); if( iCol>=0 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) ){ if( piTab ){ sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); *piTab = i; *piCol = iCol; } return 1; } } return 0; } /* ** Set the EP_OuterON property on all terms of the given expression. ** And set the Expr.w.iJoin to iTable for every term in the ** expression. ** ** The EP_OuterON property is used on terms of an expression to tell ** the OUTER JOIN processing logic that this term is part of the ** join restriction specified in the ON or USING clause and not a part ** of the more general WHERE clause. These terms are moved over to the ** WHERE clause during join processing but we need to remember that they ** originated in the ON or USING clause. ** ** The Expr.w.iJoin tells the WHERE clause processing that the ** expression depends on table w.iJoin even if that table is not ** explicitly mentioned in the expression. That information is needed ** for cases like this: ** ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 ** ** The where clause needs to defer the handling of the t1.x=5 ** term until after the t2 loop of the join. In that way, a ** NULL t2 row will be inserted whenever t1.x!=5. If we do not ** defer the handling of t1.x=5, it will be processed immediately ** after the t1 loop and rows with t1.x!=5 will never appear in ** the output, which is incorrect. */ SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); while( p ){ ExprSetProperty(p, joinFlag); assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(p, EP_NoReduce); p->w.iJoin = iTable; if( p->op==TK_FUNCTION ){ assert( ExprUseXList(p) ); if( p->x.pList ){ int i; for(i=0; ix.pList->nExpr; i++){ sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); } } } sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); p = p->pRight; } } /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN ** is simplified into an ordinary JOIN, and when an ON expression is ** "pushed down" into the WHERE clause of a subquery. ** ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. ** ** If nullable is true, that means that Expr p might evaluate to NULL even ** if it is a reference to a NOT NULL column. This can happen, for example, ** if the table that p references is on the left side of a RIGHT JOIN. ** If nullable is true, then take care to not remove the EP_CanBeNull bit. ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c */ static void unsetJoinExpr(Expr *p, int iTable, int nullable){ while( p ){ if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ ExprClearProperty(p, EP_OuterON|EP_InnerON); if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); } if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ ExprClearProperty(p, EP_CanBeNull); } if( p->op==TK_FUNCTION ){ assert( ExprUseXList(p) ); if( p->x.pList ){ int i; for(i=0; ix.pList->nExpr; i++){ unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); } } } unsetJoinExpr(p->pLeft, iTable, nullable); p = p->pRight; } } /* ** This routine processes the join information for a SELECT statement. ** ** * A NATURAL join is converted into a USING join. After that, we ** do not need to be concerned with NATURAL joins and we only have ** think about USING joins. ** ** * ON and USING clauses result in extra terms being added to the ** WHERE clause to enforce the specified constraints. The extra ** WHERE clause terms will be tagged with EP_OuterON or ** EP_InnerON so that we know that they originated in ON/USING. ** ** The terms of a FROM clause are contained in the Select.pSrc structure. ** The left most table is the first entry in Select.pSrc. The right-most ** table is the last entry. The join operator is held in the entry to ** the right. Thus entry 1 contains the join operator for the join between ** entries 0 and 1. Any ON or USING clauses associated with the join are ** also attached to the right entry. ** ** This routine returns the number of errors encountered. */ static int sqlite3ProcessJoin(Parse *pParse, Select *p){ SrcList *pSrc; /* All tables in the FROM clause */ int i, j; /* Loop counters */ SrcItem *pLeft; /* Left table being joined */ SrcItem *pRight; /* Right table being joined */ pSrc = p->pSrc; pLeft = &pSrc->a[0]; pRight = &pLeft[1]; for(i=0; inSrc-1; i++, pRight++, pLeft++){ Table *pRightTab = pRight->pTab; u32 joinType; if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; /* If this is a NATURAL join, synthesize an appropriate USING clause ** to specify which columns should be joined. */ if( pRight->fg.jointype & JT_NATURAL ){ IdList *pUsing = 0; if( pRight->fg.isUsing || pRight->u3.pOn ){ sqlite3ErrorMsg(pParse, "a NATURAL join may not have " "an ON or USING clause", 0); return 1; } for(j=0; jnCol; j++){ char *zName; /* Name of column in the right table */ if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; zName = pRightTab->aCol[j].zCnName; if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ pUsing = sqlite3IdListAppend(pParse, pUsing, 0); if( pUsing ){ assert( pUsing->nId>0 ); assert( pUsing->a[pUsing->nId-1].zName==0 ); pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); } } } if( pUsing ){ pRight->fg.isUsing = 1; pRight->fg.isSynthUsing = 1; pRight->u3.pUsing = pUsing; } if( pParse->nErr ) return 1; } /* Create extra terms on the WHERE clause for each column named ** in the USING clause. Example: If the two tables to be joined are ** A and B and the USING clause names X, Y, and Z, then add this ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z ** Report an error if any column mentioned in the USING clause is ** not contained in both tables to be joined. */ if( pRight->fg.isUsing ){ IdList *pList = pRight->u3.pUsing; sqlite3 *db = pParse->db; assert( pList!=0 ); for(j=0; jnId; j++){ char *zName; /* Name of the term in the USING clause */ int iLeft; /* Table on the left with matching column name */ int iLeftCol; /* Column number of matching column on the left */ int iRightCol; /* Column number of matching column on the right */ Expr *pE1; /* Reference to the column on the LEFT of the join */ Expr *pE2; /* Reference to the column on the RIGHT of the join */ Expr *pEq; /* Equality constraint. pE1 == pE2 */ zName = pList->a[j].zName; iRightCol = sqlite3ColumnIndex(pRightTab, zName); if( iRightCol<0 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, pRight->fg.isSynthUsing)==0 ){ sqlite3ErrorMsg(pParse, "cannot join using column %s - column " "not present in both tables", zName); return 1; } pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* This branch runs if the query contains one or more RIGHT or FULL ** JOINs. If only a single table on the left side of this join ** contains the zName column, then this branch is a no-op. ** But if there are two or more tables on the left side ** of the join, construct a coalesce() function that gathers all ** such tables. Raise an error if more than one of those references ** to zName is not also within a prior USING clause. ** ** We really ought to raise an error if there are two or more ** non-USING references to zName on the left of an INNER or LEFT ** JOIN. But older versions of SQLite do not do that, so we avoid ** adding a new error so as to not break legacy applications. */ ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ static const Token tkCoalesce = { "coalesce", 8 }; while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, pRight->fg.isSynthUsing)!=0 ){ if( pSrc->a[iLeft].fg.isUsing==0 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 ){ sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", zName); break; } pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); } if( pFuncArgs ){ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); } } pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); sqlite3SrcItemColumnUsed(pRight, iRightCol); pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); assert( pE2!=0 || pEq==0 ); if( pEq ){ ExprSetProperty(pEq, joinType); assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(pEq, EP_NoReduce); pEq->w.iJoin = pE2->iTable; } p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); } } /* Add the ON clause to the end of the WHERE clause, connected by ** an AND operator. */ else if( pRight->u3.pOn ){ sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); pRight->u3.pOn = 0; pRight->fg.isOn = 1; } } return 0; } /* ** An instance of this object holds information (beyond pParse and pSelect) ** needed to load the next result row that is to be added to the sorter. */ typedef struct RowLoadInfo RowLoadInfo; struct RowLoadInfo { int regResult; /* Store results in array of registers here */ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra; /* Extra columns needed by sorter refs */ int regExtraResult; /* Where to load the extra columns */ #endif }; /* ** This routine does the work of loading query data into an array of ** registers so that it can be added to the sorter. */ static void innerLoopLoadRow( Parse *pParse, /* Statement under construction */ Select *pSelect, /* The query being coded */ RowLoadInfo *pInfo /* Info needed to complete the row load */ ){ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 0, pInfo->ecelFlags); #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pInfo->pExtra ){ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); sqlite3ExprListDelete(pParse->db, pInfo->pExtra); } #endif } /* ** Code the OP_MakeRecord instruction that generates the entry to be ** added into the sorter. ** ** Return the register in which the result is stored. */ static int makeSorterRecord( Parse *pParse, SortCtx *pSort, Select *pSelect, int regBase, int nBase ){ int nOBSat = pSort->nOBSat; Vdbe *v = pParse->pVdbe; int regOut = ++pParse->nMem; if( pSort->pDeferredRowLoad ){ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); return regOut; } /* ** Generate code that will push the record in registers regData ** through regData+nData-1 onto the sorter. */ static void pushOntoSorter( Parse *pParse, /* Parser context */ SortCtx *pSort, /* Information about the ORDER BY clause */ Select *pSelect, /* The whole SELECT statement */ int regData, /* First register holding data to be sorted */ int regOrigData, /* First register holding data before packing */ int nData, /* Number of elements in the regData data array */ int nPrefixReg /* No. of reg prior to regData available for use */ ){ Vdbe *v = pParse->pVdbe; /* Stmt under construction */ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ int regBase; /* Regs for sorter record */ int regRecord = 0; /* Assembled sorter record */ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ int op; /* Opcode to add sorter record to sorter */ int iLimit; /* LIMIT counter */ int iSkip = 0; /* End of the sorter insert loop */ assert( bSeq==0 || bSeq==1 ); /* Three cases: ** (1) The data to be sorted has already been packed into a Record ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the ** SQLITE_ECEL_OMITREF optimization, or due to the ** SortCtx.pDeferredRowLoad optimization. In any of these cases ** regOrigData is 0 to prevent this routine from trying to copy ** values that might not yet exist. */ assert( nData==1 || regData==regOrigData || regOrigData==0 ); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPush = sqlite3VdbeCurrentAddr(v); #endif if( nPrefixReg ){ assert( nPrefixReg==nExpr+bSeq ); regBase = regData - nPrefixReg; }else{ regBase = pParse->nMem + 1; pParse->nMem += nBase; } assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; pSort->labelDone = sqlite3VdbeMakeLabel(pParse); sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); if( bSeq ){ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); } if( nPrefixReg==0 && nData>0 ){ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); } if( nOBSat>0 ){ int regPrevKey; /* The first nOBSat columns of the previous row */ int addrFirst; /* Address of the OP_IfNot opcode */ int addrJmp; /* Address of the OP_Jump opcode */ VdbeOp *pOp; /* Opcode that opens the sorter */ int nKey; /* Number of sorting key columns, including OP_Sequence */ KeyInfo *pKI; /* Original KeyInfo on the sorter table */ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); regPrevKey = pParse->nMem+1; pParse->nMem += pSort->nOBSat; nKey = nExpr - pSort->nOBSat + bSeq; if( bSeq ){ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); }else{ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); } VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); if( pParse->db->mallocFailed ) return; pOp->p2 = nKey + nData; pKI = pOp->p4.pKeyInfo; memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); testcase( pKI->nAllField > pKI->nKeyField+2 ); pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, pKI->nAllField-pKI->nKeyField-1); pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */ addrJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); pSort->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); if( iLimit ){ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); VdbeCoverage(v); } sqlite3VdbeJumpHere(v, addrFirst); sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); sqlite3VdbeJumpHere(v, addrJmp); } if( iLimit ){ /* At this point the values for the new sorter entry are stored ** in an array of registers. They need to be composed into a record ** and inserted into the sorter if either (a) there are currently ** less than LIMIT+OFFSET items or (b) the new record is smaller than ** the largest record currently in the sorter. If (b) is true and there ** are already LIMIT+OFFSET items in the sorter, delete the largest ** entry before inserting the new one. This way there are never more ** than LIMIT+OFFSET items in the sorter. ** ** If the new record does not need to be inserted into the sorter, ** jump to the next iteration of the loop. If the pSort->labelOBLopt ** value is not zero, then it is a label of where to jump. Otherwise, ** just bypass the row insert logic. See the header comment on the ** sqlite3WhereOrderByLimitOptLabel() function for additional info. */ int iCsr = pSort->iECursor; sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, 0, regBase+nOBSat, nExpr-nOBSat); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Delete, iCsr); } if( regRecord==0 ){ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); } if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, regBase+nOBSat, nBase-nOBSat); if( iSkip ){ sqlite3VdbeChangeP2(v, iSkip, pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1; #endif } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 ){ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); VdbeComment((v, "OFFSET")); } } /* ** Add code that will check to make sure the array of registers starting at ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and ** distinct aggregates ("SELECT count(DISTINCT ) ..."). Three strategies ** are available. Which is used depends on the value of parameter eTnctType, ** as follows: ** ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: ** Build an ephemeral table that contains all entries seen before and ** skip entries which have been seen before. ** ** Parameter iTab is the cursor number of an ephemeral table that must ** be opened before the VM code generated by this routine is executed. ** The ephemeral cursor table is queried for a record identical to the ** record formed by the current array of registers. If one is found, ** jump to VM address addrRepeat. Otherwise, insert a new record into ** the ephemeral cursor and proceed. ** ** The returned value in this case is a copy of parameter iTab. ** ** WHERE_DISTINCT_ORDERED: ** In this case rows are being delivered sorted order. The ephemeral ** table is not required. Instead, the current set of values ** is compared against previous row. If they match, the new row ** is not distinct and control jumps to VM address addrRepeat. Otherwise, ** the VM program proceeds with processing the new row. ** ** The returned value in this case is the register number of the first ** in an array of registers used to store the previous result row so that ** it can be compared to the next. The caller must ensure that this ** register is initialized to NULL. (The fixDistinctOpenEph() routine ** will take care of this initialization.) ** ** WHERE_DISTINCT_UNIQUE: ** In this case it has already been determined that the rows are distinct. ** No special action is required. The return value is zero. ** ** Parameter pEList is the list of expressions used to generated the ** contents of each row. It is used by this routine to determine (a) ** how many elements there are in the array of registers and (b) the ** collation sequences that should be used for the comparisons if ** eTnctType is WHERE_DISTINCT_ORDERED. */ static int codeDistinct( Parse *pParse, /* Parsing and code generating context */ int eTnctType, /* WHERE_DISTINCT_* value */ int iTab, /* A sorting index used to test for distinctness */ int addrRepeat, /* Jump to here if not distinct */ ExprList *pEList, /* Expression for each element */ int regElem /* First element */ ){ int iRet = 0; int nResultCol = pEList->nExpr; Vdbe *v = pParse->pVdbe; switch( eTnctType ){ case WHERE_DISTINCT_ORDERED: { int i; int iJump; /* Jump destination */ int regPrev; /* Previous row content */ /* Allocate space for the previous row */ iRet = regPrev = pParse->nMem+1; pParse->nMem += nResultCol; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; ia[i].pExpr); if( idb->mallocFailed ); sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); break; } case WHERE_DISTINCT_UNIQUE: { /* nothing to do */ break; } default: { int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, r1); iRet = iTab; break; } } return iRet; } /* ** This routine runs after codeDistinct(). It makes necessary ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() ** routine made use of. This processing must be done separately since ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually ** laid down. ** ** WHERE_DISTINCT_NOOP: ** WHERE_DISTINCT_UNORDERED: ** ** No adjustments necessary. This function is a no-op. ** ** WHERE_DISTINCT_UNIQUE: ** ** The ephemeral table is not needed. So change the ** OP_OpenEphemeral opcode into an OP_Noop. ** ** WHERE_DISTINCT_ORDERED: ** ** The ephemeral table is not needed. But we do need register ** iVal to be initialized to NULL. So change the OP_OpenEphemeral ** into an OP_Null on the iVal register. */ static void fixDistinctOpenEph( Parse *pParse, /* Parsing and code generating context */ int eTnctType, /* WHERE_DISTINCT_* value */ int iVal, /* Value returned by codeDistinct() */ int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ ){ if( pParse->nErr==0 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeChangeToNoop(v, iOpenEphAddr); if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); } if( eTnctType==WHERE_DISTINCT_ORDERED ){ /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared ** bit on the first register of the previous value. This will cause the ** OP_Ne added in codeDistinct() to always fail on the first iteration of ** the loop even if the first row is all NULLs. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); pOp->opcode = OP_Null; pOp->p1 = 1; pOp->p2 = iVal; } } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* ** This function is called as part of inner-loop generation for a SELECT ** statement with an ORDER BY that is not optimized by an index. It ** determines the expressions, if any, that the sorter-reference ** optimization should be used for. The sorter-reference optimization ** is used for SELECT queries like: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 ** ** If the optimization is used for expression "bigblob", then instead of ** storing values read from that column in the sorter records, the PK of ** the row from table t1 is stored instead. Then, as records are extracted from ** the sorter to return to the user, the required value of bigblob is ** retrieved directly from table t1. If the values are very large, this ** can be more efficient than storing them directly in the sorter records. ** ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList ** for which the sorter-reference optimization should be enabled. ** Additionally, the pSort->aDefer[] array is populated with entries ** for all cursors required to evaluate all selected expressions. Finally. ** output variable (*ppExtra) is set to an expression list containing ** expressions for all extra PK values that should be stored in the ** sorter records. */ static void selectExprDefer( Parse *pParse, /* Leave any error here */ SortCtx *pSort, /* Sorter context */ ExprList *pEList, /* Expressions destined for sorter */ ExprList **ppExtra /* Expressions to append to sorter record */ ){ int i; int nDefer = 0; ExprList *pExtra = 0; for(i=0; inExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab; if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && ALWAYS( ExprUseYTab(pExpr) ) && (pTab = pExpr->y.pTab)!=0 && IsOrdinaryTable(pTab) && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 ){ int j; for(j=0; jaDefer[j].iCsr==pExpr->iTable ) break; } if( j==nDefer ){ if( nDefer==ArraySize(pSort->aDefer) ){ continue; }else{ int nKey = 1; int k; Index *pPk = 0; if( !HasRowid(pTab) ){ pPk = sqlite3PrimaryKeyIndex(pTab); nKey = pPk->nKeyCol; } for(k=0; kiTable = pExpr->iTable; assert( ExprUseYTab(pNew) ); pNew->y.pTab = pExpr->y.pTab; pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); } } pSort->aDefer[nDefer].pTab = pExpr->y.pTab; pSort->aDefer[nDefer].iCsr = pExpr->iTable; pSort->aDefer[nDefer].nKey = nKey; nDefer++; } } pItem->fg.bSorterRef = 1; } } } pSort->nDefer = (u8)nDefer; *ppExtra = pExtra; } #endif /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** If srcTab is negative, then the p->pEList expressions ** are evaluated in order to get the data for this row. If srcTab is ** zero or more, then data is pulled from srcTab and p->pEList is used only ** to get the number of columns and the collation sequence for each column. */ static void selectInnerLoop( Parse *pParse, /* The parser context */ Select *p, /* The complete select statement being coded */ int srcTab, /* Pull data from this table if non-negative */ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ SelectDest *pDest, /* How to dispose of the results */ int iContinue, /* Jump here to continue with next row */ int iBreak /* Jump here to break out of the inner loop */ ){ Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iSDParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ int nPrefixReg = 0; /* Number of extra registers before regResult */ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ /* Usually, regResult is the first cell in an array of memory cells ** containing the current result row. In this case regOrig is set to the ** same value. However, if the results are being sent to the sorter, the ** values for any expressions that are also part of the sort-key are omitted ** from this array. In this case regOrig is set to zero. */ int regResult; /* Start of memory holding current results */ int regOrig; /* Start of memory holding full result (or 0) */ assert( v ); assert( p->pEList!=0 ); hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; if( pSort && pSort->pOrderBy==0 ) pSort = 0; if( pSort==0 && !hasDistinct ){ assert( iContinue!=0 ); codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = p->pEList->nExpr; if( pDest->iSdst==0 ){ if( pSort ){ nPrefixReg = pSort->pOrderBy->nExpr; if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; pParse->nMem += nPrefixReg; } pDest->iSdst = pParse->nMem+1; pParse->nMem += nResultCol; }else if( pDest->iSdst+nResultCol > pParse->nMem ){ /* This is an error condition that can result, for example, when a SELECT ** on the right-hand side of an INSERT contains more result columns than ** there are columns in the table on the left. The error will be caught ** and reported later. But we need to make sure enough memory is allocated ** to avoid other spurious errors in the meantime. */ pParse->nMem += nResultCol; } pDest->nSdst = nResultCol; regOrig = regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; ipEList->a[i].zEName)); } }else if( eDest!=SRT_Exists ){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra = 0; #endif /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ ExprList *pEList; if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ ecelFlags = SQLITE_ECEL_DUP; }else{ ecelFlags = 0; } if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ /* For each expression in p->pEList that is a copy of an expression in ** the ORDER BY clause (pSort->pOrderBy), set the associated ** iOrderByCol value to one more than the index of the ORDER BY ** expression within the sort-key that pushOntoSorter() will generate. ** This allows the p->pEList field to be omitted from the sorted record, ** saving space and CPU cycles. */ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); for(i=pSort->nOBSat; ipOrderBy->nExpr; i++){ int j; if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES selectExprDefer(pParse, pSort, p->pEList, &pExtra); if( pExtra && pParse->db->mallocFailed==0 ){ /* If there are any extra PK columns to add to the sorter records, ** allocate extra memory cells and adjust the OpenEphemeral ** instruction to account for the larger records. This is only ** required if there are one or more WITHOUT ROWID tables with ** composite primary keys in the SortCtx.aDefer[] array. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); pOp->p2 += (pExtra->nExpr - pSort->nDefer); pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); pParse->nMem += pExtra->nExpr; } #endif /* Adjust nResultCol to account for columns that are omitted ** from the sorter by the optimizations in this branch */ pEList = p->pEList; for(i=0; inExpr; i++){ if( pEList->a[i].u.x.iOrderByCol>0 #ifdef SQLITE_ENABLE_SORTER_REFERENCES || pEList->a[i].fg.bSorterRef #endif ){ nResultCol--; regOrig = 0; } } testcase( regOrig ); testcase( eDest==SRT_Set ); testcase( eDest==SRT_Mem ); testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); assert( eDest==SRT_Set || eDest==SRT_Mem || eDest==SRT_Coroutine || eDest==SRT_Output || eDest==SRT_Upfrom ); } sRowLoadInfo.regResult = regResult; sRowLoadInfo.ecelFlags = ecelFlags; #ifdef SQLITE_ENABLE_SORTER_REFERENCES sRowLoadInfo.pExtra = pExtra; sRowLoadInfo.regExtraResult = regResult + nResultCol; if( pExtra ) nResultCol += pExtra->nExpr; #endif if( p->iLimit && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 && nPrefixReg>0 ){ assert( pSort!=0 ); assert( hasDistinct==0 ); pSort->pDeferredRowLoad = &sRowLoadInfo; regOrig = 0; }else{ innerLoopLoadRow(pParse, p, &sRowLoadInfo); } } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ if( hasDistinct ){ int eType = pDistinct->eTnctType; int iTab = pDistinct->tabTnct; assert( nResultCol==p->pEList->nExpr ); iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); if( pSort==0 ){ codeOffset(v, p->iOffset, iContinue); } } switch( eDest ){ /* In this mode, write each query result to the key of the temporary ** table iParm. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT case SRT_Union: { int r1; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); sqlite3ReleaseTempReg(pParse, r1); break; } /* Construct a record from the query result, but instead of ** saving that record, use it as a key to delete elements from ** the temporary table iParm. */ case SRT_Except: { sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); break; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* Store the result as data using a unique key. */ case SRT_Fifo: case SRT_DistFifo: case SRT_Table: case SRT_EphemTab: { int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); testcase( eDest==SRT_Fifo ); testcase( eDest==SRT_DistFifo ); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG) /* A destination of SRT_Table and a non-zero iSDParm2 parameter means ** that this is an "UPDATE ... FROM" on a virtual table or view. In this ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC. ** This does not affect operation in any way - it just allows MakeRecord ** to process OPFLAG_NOCHANGE values without an assert() failing. */ if( eDest==SRT_Table && pDest->iSDParm2 ){ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); } #endif #ifndef SQLITE_OMIT_CTE if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); assert( pSort==0 ); } #endif if( pSort ){ assert( regResult==regOrig ); pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); }else{ int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); } sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); break; } case SRT_Upfrom: { if( pSort ){ pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ int i2 = pDest->iSDParm2; int r1 = sqlite3GetTempReg(pParse); /* If the UPDATE FROM join is an aggregate that matches no rows, it ** might still be trying to return one row, because that is what ** aggregates do. Don't record that empty row in the output table. */ sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult+(i2<0), nResultCol-(i2<0), r1); if( i2<0 ){ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); }else{ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); } } break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { if( pSort ){ /* At first glance you would think we could optimize out the ** ORDER BY in this case since the order of entries in the set ** does not matter. But there might be a LIMIT clause, in which ** case the order does matter */ pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ int r1 = sqlite3GetTempReg(pParse); assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, r1, pDest->zAffSdst, nResultCol); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); sqlite3ReleaseTempReg(pParse, r1); } break; } /* If any row exist in the result set, record that fact and abort. */ case SRT_Exists: { sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); /* The LIMIT clause will terminate the loop for us */ break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell or array of ** memory cells and break out of the scan loop. */ case SRT_Mem: { if( pSort ){ assert( nResultCol<=pDest->nSdst ); pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ assert( nResultCol==pDest->nSdst ); assert( regResult==iParm ); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ case SRT_Coroutine: /* Send data to a co-routine */ case SRT_Output: { /* Return the results */ testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); if( pSort ){ pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else if( eDest==SRT_Coroutine ){ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); }else{ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); } break; } #ifndef SQLITE_OMIT_CTE /* Write the results into a priority queue that is order according to ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an ** index with pSO->nExpr+2 columns. Build a key using pSO for the first ** pSO->nExpr columns, then make sure all keys are unique by adding a ** final OP_Sequence column. The last column is the record as a blob. */ case SRT_DistQueue: case SRT_Queue: { int nKey; int r1, r2, r3; int addrTest = 0; ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; if( eDest==SRT_DistQueue ){ /* If the destination is DistQueue, then cursor (iParm+1) is open ** on a second ephemeral index that holds all values every previously ** added to the queue. */ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, regResult, nResultCol); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); if( eDest==SRT_DistQueue ){ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } for(i=0; ia[i].u.x.iOrderByCol - 1, r2+i); } sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempRange(pParse, r2, nKey+2); break; } #endif /* SQLITE_OMIT_CTE */ #if !defined(SQLITE_OMIT_TRIGGER) /* Discard the results. This is used for SELECT statements inside ** the body of a TRIGGER. The purpose of such selects is to call ** user-defined functions that have side effects. We do not care ** about the actual results of the select. */ default: { assert( eDest==SRT_Discard ); break; } #endif } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pSort==0 && p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } } /* ** Allocate a KeyInfo object sufficient for an index of N key columns and ** X extra columns. */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); if( p ){ p->aSortFlags = (u8*)&p->aColl[N+X]; p->nKeyField = (u16)N; p->nAllField = (u16)(N+X); p->enc = ENC(db); p->db = db; p->nRef = 1; memset(&p[1], 0, nExtra); }else{ return (KeyInfo*)sqlite3OomFault(db); } return p; } /* ** Deallocate a KeyInfo object */ SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){ if( p ){ assert( p->db!=0 ); assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); } } /* ** Make a new pointer to a KeyInfo object */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } return p; } #ifdef SQLITE_DEBUG /* ** Return TRUE if a KeyInfo object can be change. The KeyInfo object ** can only be changed if this is just a single reference to the object. ** ** This routine is used only inside of assert() statements. */ SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } #endif /* SQLITE_DEBUG */ /* ** Given an expression list, generate a KeyInfo structure that records ** the collating sequence for each expression in that expression list. ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for seeing that this structure is eventually ** freed. */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* Form the KeyInfo object from this ExprList */ int iStart, /* Begin with this column of pList */ int nExtra /* Add this many extra columns to the end */ ){ int nExpr; KeyInfo *pInfo; struct ExprList_item *pItem; sqlite3 *db = pParse->db; int i; nExpr = pList->nExpr; pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); if( pInfo ){ assert( sqlite3KeyInfoIsWriteable(pInfo) ); for(i=iStart, pItem=pList->a+iStart; iaColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; } } return pInfo; } /* ** Name of the connection operator, used for error messages. */ SQLITE_PRIVATE const char *sqlite3SelectOpName(int id){ char *z; switch( id ){ case TK_ALL: z = "UNION ALL"; break; case TK_INTERSECT: z = "INTERSECT"; break; case TK_EXCEPT: z = "EXCEPT"; break; default: z = "UNION"; break; } return z; } #ifndef SQLITE_OMIT_EXPLAIN /* ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function ** is a no-op. Otherwise, it adds a single row of output to the EQP result, ** where the caption is of the form: ** ** "USE TEMP B-TREE FOR xxx" ** ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which ** is determined by the zUsage argument. */ static void explainTempTable(Parse *pParse, const char *zUsage){ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); } /* ** Assign expression b to lvalue a. A second, no-op, version of this macro ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code ** in sqlite3Select() to assign values to structure member variables that ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the ** code with #ifndef directives. */ # define explainSetInteger(a, b) a = b #else /* No-op versions of the explainXXX() functions and macros. */ # define explainTempTable(y,z) # define explainSetInteger(y,z) #endif /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. */ static void generateSortTail( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SortCtx *pSort, /* Information on the ORDER BY clause */ int nColumn, /* Number of columns of data */ SelectDest *pDest /* Write the sorted results here */ ){ Vdbe *v = pParse->pVdbe; /* The prepared statement */ int addrBreak = pSort->labelDone; /* Jump here to exit loop */ int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ int addr; /* Top of output loop. Jump for Next. */ int addrOnce = 0; int iTab; ExprList *pOrderBy = pSort->pOrderBy; int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; int iCol; int nKey; /* Number of key columns in sorter record */ int iSortTab; /* Sorter cursor to read from */ int i; int bSeq; /* True if sorter record includes seq. no. */ int nRefKey = 0; struct ExprList_item *aOutEx = p->pEList->a; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; /* Address of OP_Explain instruction */ #endif ExplainQueryPlan2(addrExplain, (pParse, 0, "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"") ); sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd); sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush); assert( addrBreak<0 ); if( pSort->labelBkOut ){ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeGoto(v, addrBreak); sqlite3VdbeResolveLabel(v, pSort->labelBkOut); } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* Open any cursors needed for sorter-reference expressions */ for(i=0; inDefer; i++){ Table *pTab = pSort->aDefer[i].pTab; int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); } #endif iTab = pSort->iECursor; if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ if( eDest==SRT_Mem && p->iOffset ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); } regRowid = 0; regRow = pDest->iSdst; }else{ regRowid = sqlite3GetTempReg(pParse); if( eDest==SRT_EphemTab || eDest==SRT_Table ){ regRow = sqlite3GetTempReg(pParse); nColumn = 0; }else{ regRow = sqlite3GetTempRange(pParse, nColumn); } } nKey = pOrderBy->nExpr - pSort->nOBSat; if( pSort->sortFlags & SORTFLAG_UseSorter ){ int regSortOut = ++pParse->nMem; iSortTab = pParse->nTab++; if( pSort->labelBkOut ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nColumn+nRefKey); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); assert( p->iLimit==0 && p->iOffset==0 ); sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); bSeq = 0; }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); iSortTab = iTab; bSeq = 1; if( p->iOffset>0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); } } for(i=0, iCol=nKey+bSeq-1; inDefer ){ int iKey = iCol+1; int regKey = sqlite3GetTempRange(pParse, nRefKey); for(i=0; inDefer; i++){ int iCsr = pSort->aDefer[i].iCsr; Table *pTab = pSort->aDefer[i].pTab; int nKey = pSort->aDefer[i].nKey; sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, sqlite3VdbeCurrentAddr(v)+1, regKey); }else{ int k; int iJmp; assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); for(k=0; k=0; i--){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( aOutEx[i].fg.bSorterRef ){ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); }else #endif { int iRead; if( aOutEx[i].u.x.iOrderByCol ){ iRead = aOutEx[i].u.x.iOrderByCol-1; }else{ iRead = iCol--; } sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); VdbeComment((v, "%s", aOutEx[i].zEName)); } } sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); switch( eDest ){ case SRT_Table: case SRT_EphemTab: { sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); break; } #ifndef SQLITE_OMIT_SUBQUERY case SRT_Set: { assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, pDest->zAffSdst, nColumn); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); break; } case SRT_Mem: { /* The LIMIT clause will terminate the loop for us */ break; } #endif case SRT_Upfrom: { int i2 = pDest->iSDParm2; int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); if( i2<0 ){ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); }else{ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); } break; } default: { assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); if( eDest==SRT_Output ){ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); }else{ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); } break; } } if( regRowid ){ if( eDest==SRT_Set ){ sqlite3ReleaseTempRange(pParse, regRow, nColumn); }else{ sqlite3ReleaseTempReg(pParse, regRow); } sqlite3ReleaseTempReg(pParse, regRowid); } /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( pSort->sortFlags & SORTFLAG_UseSorter ){ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); } sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1); if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); sqlite3VdbeResolveLabel(v, addrBreak); } /* ** Return a pointer to a string containing the 'declaration type' of the ** expression pExpr. The string may be treated as static by the caller. ** ** The declaration type is the exact datatype definition extracted from the ** original CREATE TABLE statement if the expression is a column. The ** declaration type for a ROWID field is INTEGER. Exactly when an expression ** is considered a column can be complex in the presence of subqueries. The ** result-set expression in all of the following SELECT statements is ** considered a column by this function. ** ** SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl); ** SELECT abc FROM (SELECT col AS abc FROM tbl); ** ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ # define columnType(A,B,C,D,E) columnTypeImpl(A,B) #endif static const char *columnTypeImpl( NameContext *pNC, #ifndef SQLITE_ENABLE_COLUMN_METADATA Expr *pExpr #else Expr *pExpr, const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol #endif ){ char const *zType = 0; int j; #ifdef SQLITE_ENABLE_COLUMN_METADATA char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; #endif assert( pExpr!=0 ); assert( pNC->pSrcList!=0 ); switch( pExpr->op ){ case TK_COLUMN: { /* The expression is a column. Locate the table the column is being ** extracted from in NameContext.pSrcList. This table may be real ** database table or a subquery. */ Table *pTab = 0; /* Table structure column is extracted from */ Select *pS = 0; /* Select the column is extracted from */ int iCol = pExpr->iColumn; /* Index of column in pTab */ while( pNC && !pTab ){ SrcList *pTabList = pNC->pSrcList; for(j=0;jnSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); if( jnSrc ){ pTab = pTabList->a[j].pTab; pS = pTabList->a[j].pSelect; }else{ pNC = pNC->pNext; } } if( pTab==0 ){ /* At one time, code such as "SELECT new.x" within a trigger would ** cause this condition to run. Since then, we have restructured how ** trigger code is generated and so this condition is no longer ** possible. However, it can still be true for statements like ** the following: ** ** CREATE TABLE t1(col INTEGER); ** SELECT (SELECT t1.col) FROM FROM t1; ** ** when columnType() is called on the expression "t1.col" in the ** sub-select. In this case, set the column type to NULL, even ** though it should really be "INTEGER". ** ** This is not a problem, as the column type of "t1.col" is never ** used. When columnType() is called on the expression ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT ** branch below. */ break; } assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iColpEList->nExpr #ifdef SQLITE_ALLOW_ROWID_IN_VIEW && iCol>=0 #else && ALWAYS(iCol>=0) #endif ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); } }else{ /* A real table or a CTE table */ assert( !pS ); #ifdef SQLITE_ENABLE_COLUMN_METADATA if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==XN_ROWID || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; zOrigCol = "rowid"; }else{ zOrigCol = pTab->aCol[iCol].zCnName; zType = sqlite3ColumnType(&pTab->aCol[iCol],0); } zOrigTab = pTab->zName; if( pNC->pParse && pTab->pSchema ){ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; } #else assert( iCol==XN_ROWID || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; }else{ zType = sqlite3ColumnType(&pTab->aCol[iCol],0); } #endif } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: { /* The expression is a sub-select. Return the declaration type and ** origin info for the single column in the result set of the SELECT ** statement. */ NameContext sNC; Select *pS; Expr *p; assert( ExprUseXSelect(pExpr) ); pS = pExpr->x.pSelect; p = pS->pEList->a[0].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); break; } #endif } #ifdef SQLITE_ENABLE_COLUMN_METADATA if( pzOrigDb ){ assert( pzOrigTab && pzOrigCol ); *pzOrigDb = zOrigDb; *pzOrigTab = zOrigTab; *pzOrigCol = zOrigCol; } #endif return zType; } /* ** Generate code that will tell the VDBE the declaration types of columns ** in the result set. */ static void generateColumnTypes( Parse *pParse, /* Parser context */ SrcList *pTabList, /* List of tables */ ExprList *pEList /* Expressions defining the result set */ ){ #ifndef SQLITE_OMIT_DECLTYPE Vdbe *v = pParse->pVdbe; int i; NameContext sNC; sNC.pSrcList = pTabList; sNC.pParse = pParse; sNC.pNext = 0; for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; const char *zType; #ifdef SQLITE_ENABLE_COLUMN_METADATA const char *zOrigDb = 0; const char *zOrigTab = 0; const char *zOrigCol = 0; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); /* The vdbe must make its own copy of the column-type and other ** column specific strings, in case the schema is reset before this ** virtual machine is deleted. */ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); #else zType = columnType(&sNC, p, 0, 0, 0); #endif sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); } #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ } /* ** Compute the column names for a SELECT statement. ** ** The only guarantee that SQLite makes about column names is that if the ** column has an AS clause assigning it a name, that will be the name used. ** That is the only documented guarantee. However, countless applications ** developed over the years have made baseless assumptions about column names ** and will break if those assumptions changes. Hence, use extreme caution ** when modifying this routine to avoid breaking legacy. ** ** See Also: sqlite3ColumnsFromExprList() ** ** The PRAGMA short_column_names and PRAGMA full_column_names settings are ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all ** applications should operate this way. Nevertheless, we need to support the ** other modes for legacy: ** ** short=OFF, full=OFF: Column name is the text of the expression has it ** originally appears in the SELECT statement. In ** other words, the zSpan of the result expression. ** ** short=ON, full=OFF: (This is the default setting). If the result ** refers directly to a table column, then the ** result column name is just the table column ** name: COLUMN. Otherwise use zSpan. ** ** full=ON, short=ANY: If the result refers directly to a table column, ** then the result column name with the table name ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. */ SQLITE_PRIVATE void sqlite3GenerateColumnNames( Parse *pParse, /* Parser context */ Select *pSelect /* Generate column names for this SELECT statement */ ){ Vdbe *v = pParse->pVdbe; int i; Table *pTab; SrcList *pTabList; ExprList *pEList; sqlite3 *db = pParse->db; int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ if( pParse->colNamesSet ) return; /* Column names are determined by the left-most term of a compound select */ while( pSelect->pPrior ) pSelect = pSelect->pPrior; TREETRACE(0x80,pParse,pSelect,("generating column names\n")); pTabList = pSelect->pSrc; pEList = pSelect->pEList; assert( v!=0 ); assert( pTabList!=0 ); pParse->colNamesSet = 1; fullName = (db->flags & SQLITE_FullColNames)!=0; srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ assert( p->op!=TK_COLUMN || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ /* An AS clause always takes first priority */ char *zName = pEList->a[i].zEName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); }else if( srcName && p->op==TK_COLUMN ){ char *zCol; int iCol = p->iColumn; pTab = p->y.pTab; assert( pTab!=0 ); if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==-1 || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zCol = "rowid"; }else{ zCol = pTab->aCol[iCol].zCnName; } if( fullName ){ char *zName = 0; zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); }else{ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); } }else{ const char *z = pEList->a[i].zEName; z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); } } generateColumnTypes(pParse, pTabList, pEList); } /* ** Given an expression list (which is really the list of expressions ** that form the result set of a SELECT statement) compute appropriate ** column names for a table that would hold the expression list. ** ** All column names will be unique. ** ** Only the column names are computed. Column.zType, Column.zColl, ** and other fields of Column are zeroed. ** ** Return SQLITE_OK on success. If a memory allocation error occurs, ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. ** ** The only guarantee that SQLite makes about column names is that if the ** column has an AS clause assigning it a name, that will be the name used. ** That is the only documented guarantee. However, countless applications ** developed over the years have made baseless assumptions about column names ** and will break if those assumptions changes. Hence, use extreme caution ** when modifying this routine to avoid breaking legacy. ** ** See Also: sqlite3GenerateColumnNames() */ SQLITE_PRIVATE int sqlite3ColumnsFromExprList( Parse *pParse, /* Parsing context */ ExprList *pEList, /* Expr list from which to derive column names */ i16 *pnCol, /* Write the number of columns here */ Column **paCol /* Write the new column list here */ ){ sqlite3 *db = pParse->db; /* Database connection */ int i, j; /* Loop counters */ u32 cnt; /* Index added to make the name unique */ Column *aCol, *pCol; /* For looping over result columns */ int nCol; /* Number of columns in the result set */ char *zName; /* Column name */ int nName; /* Size of name in zName[] */ Hash ht; /* Hash table of column names */ Table *pTab; sqlite3HashInit(&ht); if( pEList ){ nCol = pEList->nExpr; aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); testcase( aCol==0 ); if( NEVER(nCol>32767) ) nCol = 32767; }else{ nCol = 0; aCol = 0; } assert( nCol==(i16)nCol ); *pnCol = nCol; *paCol = aCol; for(i=0, pCol=aCol; inErr; i++, pCol++){ struct ExprList_item *pX = &pEList->a[i]; struct ExprList_item *pCollide; /* Get an appropriate name for the column */ if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ /* If the column contains an "AS " phrase, use as the name */ }else{ Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ pColExpr = pColExpr->pRight; assert( pColExpr!=0 ); } if( pColExpr->op==TK_COLUMN && ALWAYS( ExprUseYTab(pColExpr) ) && ALWAYS( pColExpr->y.pTab!=0 ) ){ /* For columns use the column name name */ int iCol = pColExpr->iColumn; pTab = pColExpr->y.pTab; if( iCol<0 ) iCol = pTab->iPKey; zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; }else if( pColExpr->op==TK_ID ){ assert( !ExprHasProperty(pColExpr, EP_IntValue) ); zName = pColExpr->u.zToken; }else{ /* Use the original text of the column expression as its name */ assert( zName==pX->zEName ); /* pointer comparison intended */ } } if( zName && !sqlite3IsTrueOrFalse(zName) ){ zName = sqlite3DbStrDup(db, zName); }else{ zName = sqlite3MPrintf(db,"column%d",i+1); } /* Make sure the column name is unique. If the name is not unique, ** append an integer to the name so that it becomes unique. */ cnt = 0; while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ if( pCollide->fg.bUsingTerm ){ pCol->colFlags |= COLFLAG_NOEXPAND; } nName = sqlite3Strlen30(zName); if( nName>0 ){ for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} if( zName[j]==':' ) nName = j; } zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); sqlite3ProgressCheck(pParse); if( cnt>3 ){ sqlite3_randomness(sizeof(cnt), &cnt); } } pCol->zCnName = zName; pCol->hName = sqlite3StrIHash(zName); if( pX->fg.bNoExpand ){ pCol->colFlags |= COLFLAG_NOEXPAND; } sqlite3ColumnPropertiesFromName(0, pCol); if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ sqlite3OomFault(db); } } sqlite3HashClear(&ht); if( pParse->nErr ){ for(j=0; jrc; } return SQLITE_OK; } /* ** pTab is a transient Table object that represents a subquery of some ** kind (maybe a parenthesized subquery in the FROM clause of a larger ** query, or a VIEW, or a CTE). This routine computes type information ** for that Table object based on the Select object that implements the ** subquery. For the purposes of this routine, "type information" means: ** ** * The datatype name, as it might appear in a CREATE TABLE statement ** * Which collating sequence to use for the column ** * The affinity of the column */ SQLITE_PRIVATE void sqlite3SubqueryColumnTypes( Parse *pParse, /* Parsing contexts */ Table *pTab, /* Add column type information to this table */ Select *pSelect, /* SELECT used to determine types and collations */ char aff /* Default affinity. */ ){ sqlite3 *db = pParse->db; Column *pCol; CollSeq *pColl; int i,j; Expr *p; struct ExprList_item *a; NameContext sNC; assert( pSelect!=0 ); assert( (pSelect->selFlags & SF_Resolved)!=0 ); assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 ); assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB ); if( db->mallocFailed || IN_RENAME_OBJECT ) return; while( pSelect->pPrior ) pSelect = pSelect->pPrior; a = pSelect->pEList->a; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; for(i=0, pCol=pTab->aCol; inCol; i++, pCol++){ const char *zType; i64 n; pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); p = a[i].pExpr; /* pCol->szEst = ... // Column size est for SELECT tables never used */ pCol->affinity = sqlite3ExprAffinity(p); if( pCol->affinity<=SQLITE_AFF_NONE ){ pCol->affinity = aff; } if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){ int m = 0; Select *pS2; for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){ m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr); } if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){ pCol->affinity = SQLITE_AFF_BLOB; }else if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){ pCol->affinity = SQLITE_AFF_BLOB; } if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){ pCol->affinity = SQLITE_AFF_FLEXNUM; } } zType = columnType(&sNC, p, 0, 0, 0); if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){ if( pCol->affinity==SQLITE_AFF_NUMERIC || pCol->affinity==SQLITE_AFF_FLEXNUM ){ zType = "NUM"; }else{ zType = 0; for(j=1; jaffinity ){ zType = sqlite3StdType[j]; break; } } } } if( zType ){ i64 m = sqlite3Strlen30(zType); n = sqlite3Strlen30(pCol->zCnName); pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); if( pCol->zCnName ){ memcpy(&pCol->zCnName[n+1], zType, m+1); pCol->colFlags |= COLFLAG_HASTYPE; } } pColl = sqlite3ExprCollSeq(pParse, p); if( pColl ){ assert( pTab->pIndex==0 ); sqlite3ColumnSetColl(db, pCol, pColl->zName); } } pTab->szTabRow = 1; /* Any non-zero value works */ } /* ** Given a SELECT statement, generate a Table structure that describes ** the result set of that SELECT. */ SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ Table *pTab; sqlite3 *db = pParse->db; u64 savedFlags; savedFlags = db->flags; db->flags &= ~(u64)SQLITE_FullColNames; db->flags |= SQLITE_ShortColNames; sqlite3SelectPrep(pParse, pSelect, 0); db->flags = savedFlags; if( pParse->nErr ) return 0; while( pSelect->pPrior ) pSelect = pSelect->pPrior; pTab = sqlite3DbMallocZero(db, sizeof(Table) ); if( pTab==0 ){ return 0; } pTab->nTabRef = 1; pTab->zName = 0; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff); pTab->iPKey = -1; if( db->mallocFailed ){ sqlite3DeleteTable(db, pTab); return 0; } return pTab; } /* ** Get a VDBE for the given parser context. Create a new one if necessary. ** If an error occurs, return NULL and leave a message in pParse. */ SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){ if( pParse->pVdbe ){ return pParse->pVdbe; } if( pParse->pToplevel==0 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) ){ pParse->okConstFactor = 1; } return sqlite3VdbeCreate(pParse); } /* ** Compute the iLimit and iOffset fields of the SELECT based on the ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions ** that appear in the original SQL statement after the LIMIT and OFFSET ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset ** are the integer memory register numbers for counters used to compute ** the limit and offset. If there is no limit and/or offset, then ** iLimit and iOffset are negative. ** ** This routine changes the values of iLimit and iOffset only if ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit ** and iOffset should have been preset to appropriate default values (zero) ** prior to calling this routine. ** ** The iOffset register (if it exists) is initialized to the value ** of the OFFSET. The iLimit register is initialized to LIMIT. Register ** iOffset+1 is initialized to LIMIT+OFFSET. ** ** Only if pLimit->pLeft!=0 do the limit registers get ** redefined. The UNION ALL operator uses this property to force ** the reuse of the same limit and offset registers across multiple ** SELECT statements. */ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ Vdbe *v = 0; int iLimit = 0; int iOffset; int n; Expr *pLimit = p->pLimit; if( p->iLimit ) return; /* ** "LIMIT -1" always shows all rows. There is some ** controversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. */ if( pLimit ){ assert( pLimit->op==TK_LIMIT ); assert( pLimit->pLeft!=0 ); p->iLimit = iLimit = ++pParse->nMem; v = sqlite3GetVdbe(pParse); assert( v!=0 ); if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); VdbeComment((v, "LIMIT counter")); if( n==0 ){ sqlite3VdbeGoto(v, iBreak); }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ p->nSelectRow = sqlite3LogEst((u64)n); p->selFlags |= SF_FixedLimit; } }else{ sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); } if( pLimit->pRight ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, pLimit->pRight, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); VdbeComment((v, "LIMIT+OFFSET")); } } } #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** Return the appropriate collating sequence for the iCol-th column of ** the result set for the compound-select statement "p". Return NULL if ** the column has no default collating sequence. ** ** The collating sequence for the compound select is taken from the ** left-most term of the select that has a collating sequence. */ static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ CollSeq *pRet; if( p->pPrior ){ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); }else{ pRet = 0; } assert( iCol>=0 ); /* iCol must be less than p->pEList->nExpr. Otherwise an error would ** have been thrown during name resolution and we would not have gotten ** this far */ if( pRet==0 && ALWAYS(iColpEList->nExpr) ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } /* ** The select statement passed as the second parameter is a compound SELECT ** with an ORDER BY clause. This function allocates and returns a KeyInfo ** structure suitable for implementing the ORDER BY. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for ensuring that this structure is eventually ** freed. */ static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ ExprList *pOrderBy = p->pOrderBy; int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; sqlite3 *db = pParse->db; KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); if( pRet ){ int i; for(i=0; ia[i]; Expr *pTerm = pItem->pExpr; CollSeq *pColl; if( pTerm->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pTerm); }else{ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); if( pColl==0 ) pColl = db->pDfltColl; pOrderBy->a[i].pExpr = sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); } assert( sqlite3KeyInfoIsWriteable(pRet) ); pRet->aColl[i] = pColl; pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; } } return pRet; } #ifndef SQLITE_OMIT_CTE /* ** This routine generates VDBE code to compute the content of a WITH RECURSIVE ** query of the form: ** ** AS ( UNION [ALL] ) ** \___________/ \_______________/ ** p->pPrior p ** ** ** There is exactly one reference to the recursive-table in the FROM clause ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. ** ** The setup-query runs once to generate an initial set of rows that go ** into a Queue table. Rows are extracted from the Queue table one by ** one. Each row extracted from Queue is output to pDest. Then the single ** extracted row (now in the iCurrent table) becomes the content of the ** recursive-table for a recursive-query run. The output of the recursive-query ** is added back into the Queue table. Then another row is extracted from Queue ** and the iteration continues until the Queue table is empty. ** ** If the compound query operator is UNION then no duplicate rows are ever ** inserted into the Queue table. The iDistinct table keeps a copy of all rows ** that have ever been inserted into Queue and causes duplicates to be ** discarded. If the operator is UNION ALL, then duplicates are allowed. ** ** If the query has an ORDER BY, then entries in the Queue table are kept in ** ORDER BY order and the first entry is extracted for each cycle. Without ** an ORDER BY, the Queue table is just a FIFO. ** ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows ** have been output to pDest. A LIMIT of zero means to output no rows and a ** negative LIMIT means to output all rows. If there is also an OFFSET clause ** with a positive value, then the first OFFSET outputs are discarded rather ** than being sent to pDest. The LIMIT count does not begin until after OFFSET ** rows have been skipped. */ static void generateWithRecursiveQuery( Parse *pParse, /* Parsing context */ Select *p, /* The recursive SELECT to be coded */ SelectDest *pDest /* What to do with query results */ ){ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ Select *pSetup; /* The setup query */ Select *pFirstRec; /* Left-most recursive term */ int addrTop; /* Top of the loop */ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ int iCurrent = 0; /* The Current table */ int regCurrent; /* Register holding Current table */ int iQueue; /* The Queue table */ int iDistinct = 0; /* To ensure unique results if UNION */ int eDest = SRT_Fifo; /* How to write to Queue */ SelectDest destQueue; /* SelectDest targeting the Queue table */ int i; /* Loop counter */ int rc; /* Result code */ ExprList *pOrderBy; /* The ORDER BY clause */ Expr *pLimit; /* Saved LIMIT and OFFSET */ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ){ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); return; } #endif /* Obtain authorization to do a recursive query */ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; /* Process the LIMIT and OFFSET clauses, if they exist */ addrBreak = sqlite3VdbeMakeLabel(pParse); p->nSelectRow = 320; /* 4 billion rows */ computeLimitRegisters(pParse, p, addrBreak); pLimit = p->pLimit; regLimit = p->iLimit; regOffset = p->iOffset; p->pLimit = 0; p->iLimit = p->iOffset = 0; pOrderBy = p->pOrderBy; /* Locate the cursor number of the Current table */ for(i=0; ALWAYS(inSrc); i++){ if( pSrc->a[i].fg.isRecursive ){ iCurrent = pSrc->a[i].iCursor; break; } } /* Allocate cursors numbers for Queue and Distinct. The cursor number for ** the Distinct table must be exactly one greater than Queue in order ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ iQueue = pParse->nTab++; if( p->op==TK_UNION ){ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; iDistinct = pParse->nTab++; }else{ eDest = pOrderBy ? SRT_Queue : SRT_Fifo; } sqlite3SelectDestInit(&destQueue, eDest, iQueue); /* Allocate cursors for Current, Queue, and Distinct. */ regCurrent = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); if( pOrderBy ){ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, (char*)pKeyInfo, P4_KEYINFO); destQueue.pOrderBy = pOrderBy; }else{ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); } VdbeComment((v, "Queue table")); if( iDistinct ){ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); p->selFlags |= SF_UsesEphemeral; } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Figure out how many elements of the compound SELECT are part of the ** recursive query. Make sure no recursive elements use aggregate ** functions. Mark the recursive elements as UNION ALL even if they ** are really UNION because the distinctness will be enforced by the ** iDistinct table. pFirstRec is left pointing to the left-most ** recursive term of the CTE. */ for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ if( pFirstRec->selFlags & SF_Aggregate ){ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); goto end_of_recursive_query; } pFirstRec->op = TK_ALL; if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; } /* Store the results of the setup-query in Queue. */ pSetup = pFirstRec->pPrior; pSetup->pNext = 0; ExplainQueryPlan((pParse, 1, "SETUP")); rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); /* Transfer the next row in Queue over to Current */ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ if( pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); } sqlite3VdbeAddOp1(v, OP_Delete, iQueue); /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(pParse); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrCont); /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ pFirstRec->pPrior = 0; ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); sqlite3Select(pParse, p, &destQueue); assert( pFirstRec->pPrior==0 ); pFirstRec->pPrior = pSetup; /* Keep running the loop until the Queue is empty */ sqlite3VdbeGoto(v, addrTop); sqlite3VdbeResolveLabel(v, addrBreak); end_of_recursive_query: sqlite3ExprListDelete(pParse->db, p->pOrderBy); p->pOrderBy = pOrderBy; p->pLimit = pLimit; return; } #endif /* SQLITE_OMIT_CTE */ /* Forward references */ static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ); /* ** Handle the special case of a compound-select that originates from a ** VALUES clause. By handling this as a special case, we avoid deep ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT ** on a VALUES clause. ** ** Because the Select object originates from a VALUES clause: ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 ** (2) All terms are UNION ALL ** (3) There is no ORDER BY clause ** ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int nRow = 1; int rc = 0; int bShowAll = p->pLimit==0; assert( p->selFlags & SF_MultiValue ); do{ assert( p->selFlags & SF_Values ); assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ) return -1; #endif if( p->pPrior==0 ) break; assert( p->pPrior->pNext==p ); p = p->pPrior; nRow += bShowAll; }while(1); ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, nRow==1 ? "" : "S")); while( p ){ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); if( !bShowAll ) break; p->nSelectRow = nRow; p = p->pNext; } return rc; } /* ** Return true if the SELECT statement which is known to be the recursive ** part of a recursive CTE still has its anchor terms attached. If the ** anchor terms have already been removed, then return false. */ static int hasAnchor(Select *p){ while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } return p!=0; } /* ** This routine is called to process a compound query form from ** two or more separate queries using UNION, UNION ALL, EXCEPT, or ** INTERSECT ** ** "p" points to the right-most of the two queries. the query on the ** left is p->pPrior. The left query could also be a compound query ** in which case this routine will be called recursively. ** ** The results of the total query are to be written into a destination ** of type eDest with parameter iParm. ** ** Example 1: Consider a three-way compound SQL statement. ** ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 ** ** This statement is parsed up as follows: ** ** SELECT c FROM t3 ** | ** `-----> SELECT b FROM t2 ** | ** `------> SELECT a FROM t1 ** ** The arrows in the diagram above represent the Select.pPrior pointer. ** So if this routine is called with p equal to the t3 query, then ** pPrior will be the t2 query. p->op will be TK_UNION in this case. ** ** Notice that because of the way SQLite parses compound SELECTs, the ** individual selects always group from left to right. */ static int multiSelect( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int rc = SQLITE_OK; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest dest; /* Alternative data destination */ Select *pDelete = 0; /* Chain of simple selects to delete */ sqlite3 *db; /* Database connection */ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ assert( p && p->pPrior ); /* Calling function guarantees this much */ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); assert( p->selFlags & SF_Compound ); db = pParse->db; pPrior = p->pPrior; dest = *pDest; assert( pPrior->pOrderBy==0 ); assert( pPrior->pLimit==0 ); v = sqlite3GetVdbe(pParse); assert( v!=0 ); /* The VDBE already created by calling function */ /* Create the destination temporary table if necessary */ if( dest.eDest==SRT_EphemTab ){ assert( p->pEList ); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); dest.eDest = SRT_Table; } /* Special handling for a compound-select that originates as a VALUES clause. */ if( p->selFlags & SF_MultiValue ){ rc = multiSelectValues(pParse, p, &dest); if( rc>=0 ) goto multi_select_end; rc = SQLITE_OK; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ assert( p->pEList && pPrior->pEList ); assert( p->pEList->nExpr==pPrior->pEList->nExpr ); #ifndef SQLITE_OMIT_CTE if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ generateWithRecursiveQuery(pParse, p, &dest); }else #endif /* Compound SELECTs that have an ORDER BY clause are handled separately. */ if( p->pOrderBy ){ return multiSelectOrderBy(pParse, p, pDest); }else{ #ifndef SQLITE_OMIT_EXPLAIN if( pPrior->pPrior==0 ){ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); } #endif /* Generate code for the left and right SELECT statements. */ switch( p->op ){ case TK_ALL: { int addr = 0; int nLimit = 0; /* Initialize to suppress harmless compiler warning */ assert( !pPrior->pLimit ); pPrior->iLimit = p->iLimit; pPrior->iOffset = p->iOffset; pPrior->pLimit = p->pLimit; TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n")); rc = sqlite3Select(pParse, pPrior, &dest); pPrior->pLimit = 0; if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); if( p->iOffset ){ sqlite3VdbeAddOp3(v, OP_OffsetLimit, p->iLimit, p->iOffset+1, p->iOffset); } } ExplainQueryPlan((pParse, 1, "UNION ALL")); TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n")); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); if( p->pLimit && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) ){ p->nSelectRow = sqlite3LogEst((u64)nLimit); } if( addr ){ sqlite3VdbeJumpHere(v, addr); } break; } case TK_EXCEPT: case TK_UNION: { int unionTab; /* Cursor number of the temp table holding result */ u8 op = 0; /* One of the SRT_ operations to apply to self */ int priorOp; /* The SRT_ operation to apply to prior selects */ Expr *pLimit; /* Saved values of p->nLimit */ int addr; SelectDest uniondest; testcase( p->op==TK_EXCEPT ); testcase( p->op==TK_UNION ); priorOp = SRT_Union; if( dest.eDest==priorOp ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ unionTab = dest.iSDParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); } /* Code the SELECT statements to our left */ assert( !pPrior->pOrderBy ); sqlite3SelectDestInit(&uniondest, priorOp, unionTab); TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); rc = sqlite3Select(pParse, pPrior, &uniondest); if( rc ){ goto multi_select_end; } /* Code the current SELECT statement */ if( p->op==TK_EXCEPT ){ op = SRT_Except; }else{ assert( p->op==TK_UNION ); op = SRT_Union; } p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; uniondest.eDest = op; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", sqlite3SelectOpName(p->op))); TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); rc = sqlite3Select(pParse, p, &uniondest); testcase( rc!=SQLITE_OK ); assert( p->pOrderBy==0 ); pDelete = p->pPrior; p->pPrior = pPrior; p->pOrderBy = 0; if( p->op==TK_UNION ){ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; p->iLimit = 0; p->iOffset = 0; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); assert( p->pEList || db->mallocFailed ); if( dest.eDest!=priorOp && db->mallocFailed==0 ){ int iCont, iBreak, iStart; iBreak = sqlite3VdbeMakeLabel(pParse); iCont = sqlite3VdbeMakeLabel(pParse); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, unionTab, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } default: assert( p->op==TK_INTERSECT ); { int tab1, tab2; int iCont, iBreak, iStart; Expr *pLimit; int addr; SelectDest intersectdest; int r1; /* INTERSECT is different from the others since it requires ** two temporary tables. Hence it has its own case. Begin ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); /* Code the SELECTs to our left into temporary table "tab1". */ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n")); rc = sqlite3Select(pParse, pPrior, &intersectdest); if( rc ){ goto multi_select_end; } /* Code the current SELECT into temporary table "tab2" */ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; intersectdest.iSDParm = tab2; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", sqlite3SelectOpName(p->op))); TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n")); rc = sqlite3Select(pParse, p, &intersectdest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; if( p->nSelectRow>pPrior->nSelectRow ){ p->nSelectRow = pPrior->nSelectRow; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; /* Generate code to take the intersection of the two temporary ** tables. */ if( rc ) break; assert( p->pEList ); iBreak = sqlite3VdbeMakeLabel(pParse); iCont = sqlite3VdbeMakeLabel(pParse); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } #ifndef SQLITE_OMIT_EXPLAIN if( p->pNext==0 ){ ExplainQueryPlanPop(pParse); } #endif } if( pParse->nErr ) goto multi_select_end; /* Compute collating sequences used by ** temporary tables needed to implement the compound select. ** Attach the KeyInfo structure to all temporary tables. ** ** This section is run by the right-most SELECT statement only. ** SELECT statements to the left always skip this part. The right-most ** SELECT might also skip this part if it has no ORDER BY clause and ** no temp tables are required. */ if( p->selFlags & SF_UsesEphemeral ){ int i; /* Loop counter */ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ assert( p->pNext==0 ); assert( p->pEList!=0 ); nCol = p->pEList->nExpr; pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); if( !pKeyInfo ){ rc = SQLITE_NOMEM_BKPT; goto multi_select_end; } for(i=0, apColl=pKeyInfo->aColl; ipDfltColl; } } for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ for(i=0; i<2; i++){ int addr = pLoop->addrOpenEphm[i]; if( addr<0 ){ /* If [0] is unused then [1] is also unused. So we can ** always safely abort as soon as the first unused slot is found */ assert( pLoop->addrOpenEphm[1]<0 ); break; } sqlite3VdbeChangeP2(v, addr, nCol); sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); pLoop->addrOpenEphm[i] = -1; } } sqlite3KeyInfoUnref(pKeyInfo); } multi_select_end: pDest->iSdst = dest.iSdst; pDest->nSdst = dest.nSdst; if( pDelete ){ sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3SelectDelete, pDelete); } return rc; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* ** Error message for when two or more terms of a compound select have different ** size result sets. */ SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ if( p->selFlags & SF_Values ){ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); }else{ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" " do not have the same number of result columns", sqlite3SelectOpName(p->op)); } } /* ** Code an output subroutine for a coroutine implementation of a ** SELECT statement. ** ** The data to be output is contained in pIn->iSdst. There are ** pIn->nSdst columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. ** ** If regPrev>0 then it is the first register in a vector that ** records the previous output. mem[regPrev] is a flag that is false ** if there has been no previous output. If regPrev>0 then code is ** generated to suppress duplicates. pKeyInfo is used for comparing ** keys. ** ** If the LIMIT found in p->iLimit is reached, jump immediately to ** iBreak. */ static int generateOutputSubroutine( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SelectDest *pIn, /* Coroutine supplying data */ SelectDest *pDest, /* Where to send the data */ int regReturn, /* The return address register */ int regPrev, /* Previous result register. No uniqueness if 0 */ KeyInfo *pKeyInfo, /* For comparing with previous entry */ int iBreak /* Jump here if we hit the LIMIT */ ){ Vdbe *v = pParse->pVdbe; int iContinue; int addr; addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(pParse); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int addr1, addr2; addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); } if( pParse->db->mallocFailed ) return 0; /* Suppress the first OFFSET entries if there is an OFFSET clause */ codeOffset(v, p->iOffset, iContinue); assert( pDest->eDest!=SRT_Exists ); assert( pDest->eDest!=SRT_Table ); switch( pDest->eDest ){ /* Store the result as data using a unique key. */ case SRT_EphemTab: { int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); sqlite3ReleaseTempReg(pParse, r1); break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)". */ case SRT_Set: { int r1; testcase( pIn->nSdst>1 ); r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1, pDest->zAffSdst, pIn->nSdst); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, pIn->iSdst, pIn->nSdst); sqlite3ReleaseTempReg(pParse, r1); break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. Note that the select might return multiple columns ** if it is the RHS of a row-value IN operator. */ case SRT_Mem: { testcase( pIn->nSdst>1 ); sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); /* The LIMIT clause will jump out of the loop for us */ break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ /* The results are stored in a sequence of registers ** starting at pDest->iSdst. Then the co-routine yields. */ case SRT_Coroutine: { if( pDest->iSdst==0 ){ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); pDest->nSdst = pIn->nSdst; } sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); break; } /* If none of the above, then the result destination must be ** SRT_Output. This routine is never called with any other ** destination other than the ones handled above or SRT_Output. ** ** For SRT_Output, results are stored in a sequence of registers. ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to ** return the next row of result. */ default: { assert( pDest->eDest==SRT_Output ); sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } /* Generate the subroutine return */ sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp1(v, OP_Return, regReturn); return addr; } /* ** Alternative compound select code generator for cases when there ** is an ORDER BY clause. ** ** We assume a query of the following form: ** ** ORDER BY ** ** is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea ** is to code both and with the ORDER BY clause as ** co-routines. Then run the co-routines in parallel and merge the results ** into the output. In addition to the two coroutines (called selectA and ** selectB) there are 7 subroutines: ** ** outA: Move the output of the selectA coroutine into the output ** of the compound query. ** ** outB: Move the output of the selectB coroutine into the output ** of the compound query. (Only generated for UNION and ** UNION ALL. EXCEPT and INSERTSECT never output a row that ** appears only in B.) ** ** AltB: Called when there is data from both coroutines and AB. ** ** EofA: Called when data is exhausted from selectA. ** ** EofB: Called when data is exhausted from selectB. ** ** The implementation of the latter five subroutines depend on which ** is used: ** ** ** UNION ALL UNION EXCEPT INTERSECT ** ------------- ----------------- -------------- ----------------- ** AltB: outA, nextA outA, nextA outA, nextA nextA ** ** AeqB: outA, nextA nextA nextA outA, nextA ** ** AgtB: outB, nextB outB, nextB nextB nextB ** ** EofA: outB, nextB outB, nextB halt halt ** ** EofB: outA, nextA outA, nextA outA, nextA halt ** ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA ** causes an immediate jump to EofA and an EOF on B following nextB causes ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or ** following nextX causes a jump to the end of the select processing. ** ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled ** within the output subroutine. The regPrev register set holds the previously ** output value. A comparison is made against this value and the output ** is skipped if the next results would be the same as the previous. ** ** The implementation plan is to implement the two coroutines and seven ** subroutines first, then put the control logic at the bottom. Like this: ** ** goto Init ** coA: coroutine for left query (A) ** coB: coroutine for right query (B) ** outA: output one row of A ** outB: output one row of B (UNION and UNION ALL only) ** EofA: ... ** EofB: ... ** AltB: ... ** AeqB: ... ** AgtB: ... ** Init: initialize coroutine registers ** yield coA ** if eof(A) goto EofA ** yield coB ** if eof(B) goto EofB ** Cmpr: Compare A, B ** Jump AltB, AeqB, AgtB ** End: ... ** ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not ** actually called using Gosub and they do not Return. EofA and EofB loop ** until all data is exhausted then jump to the "end" label. AltB, AeqB, ** and AgtB jump to either L2 or to one of EofA or EofB. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int i, j; /* Loop counters */ Select *pPrior; /* Another SELECT immediately to our left */ Select *pSplit; /* Left-most SELECT in the right-hand group */ int nSelect; /* Number of SELECT statements in the compound */ Vdbe *v; /* Generate code to this VDBE */ SelectDest destA; /* Destination for coroutine A */ SelectDest destB; /* Destination for coroutine B */ int regAddrA; /* Address register for select-A coroutine */ int regAddrB; /* Address register for select-B coroutine */ int addrSelectA; /* Address of the select-A coroutine */ int addrSelectB; /* Address of the select-B coroutine */ int regOutA; /* Address register for the output-A subroutine */ int regOutB; /* Address register for the output-B subroutine */ int addrOutA; /* Address of the output-A subroutine */ int addrOutB = 0; /* Address of the output-B subroutine */ int addrEofA; /* Address of the select-A-exhausted subroutine */ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ int addrEofB; /* Address of the select-B-exhausted subroutine */ int addrAltB; /* Address of the AB subroutine */ int regLimitA; /* Limit register for select-A */ int regLimitB; /* Limit register for select-A */ int regPrev; /* A range of registers to hold previous output */ int savedLimit; /* Saved value of p->iLimit */ int savedOffset; /* Saved value of p->iOffset */ int labelCmpr; /* Label for the start of the merge algorithm */ int labelEnd; /* Label for the end of the overall SELECT stmt */ int addr1; /* Jump instructions that get retargeted */ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sqlite3 *db; /* Database connection */ ExprList *pOrderBy; /* The ORDER BY clause */ int nOrderBy; /* Number of terms in the ORDER BY clause */ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ assert( p->pOrderBy!=0 ); assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ labelEnd = sqlite3VdbeMakeLabel(pParse); labelCmpr = sqlite3VdbeMakeLabel(pParse); /* Patch up the ORDER BY clause */ op = p->op; assert( p->pPrior->pOrderBy==0 ); pOrderBy = p->pOrderBy; assert( pOrderBy ); nOrderBy = pOrderBy->nExpr; /* For operators other than UNION ALL we have to make sure that ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; ju.x.iOrderByCol>0 ); if( pItem->u.x.iOrderByCol==i ) break; } if( j==nOrderBy ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return SQLITE_NOMEM_BKPT; pNew->flags |= EP_IntValue; pNew->u.iValue = i; p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; } } } /* Compute the comparison permutation and keyinfo that is used with ** the permutation used to determine if the next ** row of results comes from selectA or selectB. Also add explicit ** collations to the ORDER BY clause terms so that when the subqueries ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); if( aPermute ){ struct ExprList_item *pItem; aPermute[0] = nOrderBy; for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ assert( pItem!=0 ); assert( pItem->u.x.iOrderByCol>0 ); assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); }else{ pKeyMerge = 0; } /* Allocate a range of temporary registers and the KeyInfo needed ** for the logic that removes duplicate result rows when the ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). */ if( op==TK_ALL ){ regPrev = 0; }else{ int nExpr = p->pEList->nExpr; assert( nOrderBy>=nExpr || db->mallocFailed ); regPrev = pParse->nMem+1; pParse->nMem += nExpr+1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); if( pKeyDup ){ assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); for(i=0; iaColl[i] = multiSelectCollSeq(pParse, p, i); pKeyDup->aSortFlags[i] = 0; } } } /* Separate the left and the right query from one another */ nSelect = 1; if( (op==TK_ALL || op==TK_UNION) && OptimizationEnabled(db, SQLITE_BalancedMerge) ){ for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ nSelect++; assert( pSplit->pPrior->pNext==pSplit ); } } if( nSelect<=3 ){ pSplit = p; }else{ pSplit = p; for(i=2; ipPrior; } } pPrior = pSplit->pPrior; assert( pPrior!=0 ); pSplit->pPrior = 0; pPrior->pNext = 0; assert( p->pOrderBy == pOrderBy ); assert( pOrderBy!=0 || db->mallocFailed ); pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); /* Compute the limit registers */ computeLimitRegisters(pParse, p, labelEnd); if( p->iLimit && op==TK_ALL ){ regLimitA = ++pParse->nMem; regLimitB = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, regLimitA); sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); }else{ regLimitA = regLimitB = 0; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = 0; regAddrA = ++pParse->nMem; regAddrB = ++pParse->nMem; regOutA = ++pParse->nMem; regOutB = ++pParse->nMem; sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); /* Generate a coroutine to evaluate the SELECT statement to the ** left of the compound operator - the "A" select. */ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); VdbeComment((v, "left SELECT")); pPrior->iLimit = regLimitA; ExplainQueryPlan((pParse, 1, "LEFT")); sqlite3Select(pParse, pPrior, &destA); sqlite3VdbeEndCoroutine(v, regAddrA); sqlite3VdbeJumpHere(v, addr1); /* Generate a coroutine to evaluate the SELECT statement on ** the right - the "B" select */ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); VdbeComment((v, "right SELECT")); savedLimit = p->iLimit; savedOffset = p->iOffset; p->iLimit = regLimitB; p->iOffset = 0; ExplainQueryPlan((pParse, 1, "RIGHT")); sqlite3Select(pParse, p, &destB); p->iLimit = savedLimit; p->iOffset = savedOffset; sqlite3VdbeEndCoroutine(v, regAddrB); /* Generate a subroutine that outputs the current row of the A ** select as the next output row of the compound select. */ VdbeNoopComment((v, "Output routine for A")); addrOutA = generateOutputSubroutine(pParse, p, &destA, pDest, regOutA, regPrev, pKeyDup, labelEnd); /* Generate a subroutine that outputs the current row of the B ** select as the next output row of the compound select. */ if( op==TK_ALL || op==TK_UNION ){ VdbeNoopComment((v, "Output routine for B")); addrOutB = generateOutputSubroutine(pParse, p, &destB, pDest, regOutB, regPrev, pKeyDup, labelEnd); } sqlite3KeyInfoUnref(pKeyDup); /* Generate a subroutine to run when the results from select A ** are exhausted and only data in select B remains. */ if( op==TK_EXCEPT || op==TK_INTERSECT ){ addrEofA_noB = addrEofA = labelEnd; }else{ VdbeNoopComment((v, "eof-A subroutine")); addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); VdbeCoverage(v); sqlite3VdbeGoto(v, addrEofA); p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } /* Generate a subroutine to run when the results from select B ** are exhausted and only data in select A remains. */ if( op==TK_INTERSECT ){ addrEofB = addrEofA; if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; }else{ VdbeNoopComment((v, "eof-B subroutine")); addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); sqlite3VdbeGoto(v, addrEofB); } /* Generate code to handle the case of AB */ VdbeNoopComment((v, "A-gt-B subroutine")); addrAgtB = sqlite3VdbeCurrentAddr(v); if( op==TK_ALL || op==TK_UNION ){ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); } sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); sqlite3VdbeGoto(v, labelCmpr); /* This code runs once to initialize everything. */ sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); /* Jump to the this point in order to terminate the query. */ sqlite3VdbeResolveLabel(v, labelEnd); /* Make arrangements to free the 2nd and subsequent arms of the compound ** after the parse has finished */ if( pSplit->pPrior ){ sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior); } pSplit->pPrior = pPrior; pPrior->pNext = pSplit; sqlite3ExprListDelete(db, pPrior->pOrderBy); pPrior->pOrderBy = 0; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ ExplainQueryPlanPop(pParse); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* An instance of the SubstContext object describes an substitution edit ** to be performed on a parse tree. ** ** All references to columns in table iTable are to be replaced by corresponding ** expressions in pEList. ** ** ## About "isOuterJoin": ** ** The isOuterJoin column indicates that the replacement will occur into a ** position in the parent that NULL-able due to an OUTER JOIN. Either the ** target slot in the parent is the right operand of a LEFT JOIN, or one of ** the left operands of a RIGHT JOIN. In either case, we need to potentially ** bypass the substituted expression with OP_IfNullRow. ** ** Suppose the original expression is an integer constant. Even though the table ** has the nullRow flag set, because the expression is an integer constant, ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode ** that checks to see if the nullRow flag is set on the table. If the nullRow ** flag is set, then the value in the register is set to NULL and the original ** expression is bypassed. If the nullRow flag is not set, then the original ** expression runs to populate the register. ** ** Example where this is needed: ** ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); ** CREATE TABLE t2(x INT UNIQUE); ** ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; ** ** When the subquery on the right side of the LEFT JOIN is flattened, we ** have to add OP_IfNullRow in front of the OP_Integer that implements the ** "m" value of the subquery so that a NULL will be loaded instead of 59 ** when processing a non-matched row of the left. */ typedef struct SubstContext { Parse *pParse; /* The parsing context */ int iTable; /* Replace references to this table */ int iNewTable; /* New table number */ int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ ExprList *pEList; /* Replacement expressions */ ExprList *pCList; /* Collation sequences for replacement expr */ } SubstContext; /* Forward Declarations */ static void substExprList(SubstContext*, ExprList*); static void substSelect(SubstContext*, Select*, int); /* ** Scan through the expression pExpr. Replace every reference to ** a column in table number iTable with a copy of the iColumn-th ** entry in pEList. (But leave references to the ROWID column ** unchanged.) ** ** This routine is part of the flattening procedure. A subquery ** whose result set is defined by pEList appears as entry in the ** FROM clause of a SELECT such that the VDBE cursor assigned to that ** FORM clause entry is iTable. This routine makes the necessary ** changes to pExpr so that it refers directly to the source table ** of the subquery rather the result set of the subquery. */ static Expr *substExpr( SubstContext *pSubst, /* Description of the substitution */ Expr *pExpr /* Expr in which substitution occurs */ ){ if( pExpr==0 ) return 0; if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) && pExpr->w.iJoin==pSubst->iTable ){ testcase( ExprHasProperty(pExpr, EP_InnerON) ); pExpr->w.iJoin = pSubst->iNewTable; } if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable && !ExprHasProperty(pExpr, EP_FixedCol) ){ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else #endif { Expr *pNew; int iColumn; Expr *pCopy; Expr ifNullRow; iColumn = pExpr->iColumn; assert( iColumn>=0 ); assert( pSubst->pEList!=0 && iColumnpEList->nExpr ); assert( pExpr->pRight==0 ); pCopy = pSubst->pEList->a[iColumn].pExpr; if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pSubst->pParse, pCopy); }else{ sqlite3 *db = pSubst->pParse->db; if( pSubst->isOuterJoin && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable) ){ memset(&ifNullRow, 0, sizeof(ifNullRow)); ifNullRow.op = TK_IF_NULL_ROW; ifNullRow.pLeft = pCopy; ifNullRow.iTable = pSubst->iNewTable; ifNullRow.iColumn = -99; ifNullRow.flags = EP_IfNullRow; pCopy = &ifNullRow; } testcase( ExprHasProperty(pCopy, EP_Subquery) ); pNew = sqlite3ExprDup(db, pCopy, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pNew); return pExpr; } if( pSubst->isOuterJoin ){ ExprSetProperty(pNew, EP_CanBeNull); } if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, pExpr->flags & (EP_OuterON|EP_InnerON)); } sqlite3ExprDelete(db, pExpr); pExpr = pNew; if( pExpr->op==TK_TRUEFALSE ){ pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); pExpr->op = TK_INTEGER; ExprSetProperty(pExpr, EP_IntValue); } /* Ensure that the expression now has an implicit collation sequence, ** just as it did when it was a column of a view or sub-query. */ { CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr); CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pSubst->pCList->a[iColumn].pExpr ); if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){ pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, (pColl ? pColl->zName : "BINARY") ); } } ExprClearProperty(pExpr, EP_Collate); } } }else{ if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ pExpr->iTable = pSubst->iNewTable; } pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); pExpr->pRight = substExpr(pSubst, pExpr->pRight); if( ExprUseXSelect(pExpr) ){ substSelect(pSubst, pExpr->x.pSelect, 1); }else{ substExprList(pSubst, pExpr->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ Window *pWin = pExpr->y.pWin; pWin->pFilter = substExpr(pSubst, pWin->pFilter); substExprList(pSubst, pWin->pPartition); substExprList(pSubst, pWin->pOrderBy); } #endif } return pExpr; } static void substExprList( SubstContext *pSubst, /* Description of the substitution */ ExprList *pList /* List to scan and in which to make substitutes */ ){ int i; if( pList==0 ) return; for(i=0; inExpr; i++){ pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); } } static void substSelect( SubstContext *pSubst, /* Description of the substitution */ Select *p, /* SELECT statement in which to make substitutions */ int doPrior /* Do substitutes on p->pPrior too */ ){ SrcList *pSrc; SrcItem *pItem; int i; if( !p ) return; do{ substExprList(pSubst, p->pEList); substExprList(pSubst, p->pGroupBy); substExprList(pSubst, p->pOrderBy); p->pHaving = substExpr(pSubst, p->pHaving); p->pWhere = substExpr(pSubst, p->pWhere); pSrc = p->pSrc; assert( pSrc!=0 ); for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ substSelect(pSubst, pItem->pSelect, 1); if( pItem->fg.isTabFunc ){ substExprList(pSubst, pItem->u1.pFuncArg); } } }while( doPrior && (p = p->pPrior)!=0 ); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** pSelect is a SELECT statement and pSrcItem is one item in the FROM ** clause of that SELECT. ** ** This routine scans the entire SELECT statement and recomputes the ** pSrcItem->colUsed mask. */ static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ SrcItem *pItem; if( pExpr->op!=TK_COLUMN ) return WRC_Continue; pItem = pWalker->u.pSrcItem; if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; if( pExpr->iColumn<0 ) return WRC_Continue; pItem->colUsed |= sqlite3ExprColUsed(pExpr); return WRC_Continue; } static void recomputeColumnsUsed( Select *pSelect, /* The complete SELECT statement */ SrcItem *pSrcItem /* Which FROM clause item to recompute */ ){ Walker w; if( NEVER(pSrcItem->pTab==0) ) return; memset(&w, 0, sizeof(w)); w.xExprCallback = recomputeColumnsUsedExpr; w.xSelectCallback = sqlite3SelectWalkNoop; w.u.pSrcItem = pSrcItem; pSrcItem->colUsed = 0; sqlite3WalkSelect(&w, pSelect); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Assign new cursor numbers to each of the items in pSrc. For each ** new cursor number assigned, set an entry in the aCsrMap[] array ** to map the old cursor number to the new: ** ** aCsrMap[iOld+1] = iNew; ** ** The array is guaranteed by the caller to be large enough for all ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. ** ** If pSrc contains any sub-selects, call this routine recursively ** on the FROM clause of each such sub-select, with iExcept set to -1. */ static void srclistRenumberCursors( Parse *pParse, /* Parse context */ int *aCsrMap, /* Array to store cursor mappings in */ SrcList *pSrc, /* FROM clause to renumber */ int iExcept /* FROM clause item to skip */ ){ int i; SrcItem *pItem; for(i=0, pItem=pSrc->a; inSrc; i++, pItem++){ if( i!=iExcept ){ Select *p; assert( pItem->iCursor < aCsrMap[0] ); if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ aCsrMap[pItem->iCursor+1] = pParse->nTab++; } pItem->iCursor = aCsrMap[pItem->iCursor+1]; for(p=pItem->pSelect; p; p=p->pPrior){ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); } } } } /* ** *piCursor is a cursor number. Change it if it needs to be mapped. */ static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ int *aCsrMap = pWalker->u.aiCol; int iCsr = *piCursor; if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ *piCursor = aCsrMap[iCsr+1]; } } /* ** Expression walker callback used by renumberCursors() to update ** Expr objects to match newly assigned cursor numbers. */ static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ int op = pExpr->op; if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ renumberCursorDoMapping(pWalker, &pExpr->iTable); } if( ExprHasProperty(pExpr, EP_OuterON) ){ renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); } return WRC_Continue; } /* ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) ** of the SELECT statement passed as the second argument, and to each ** cursor in the FROM clause of any FROM clause sub-selects, recursively. ** Except, do not assign a new cursor number to the iExcept'th element in ** the FROM clause of (*p). Update all expressions and other references ** to refer to the new cursor numbers. ** ** Argument aCsrMap is an array that may be used for temporary working ** space. Two guarantees are made by the caller: ** ** * the array is larger than the largest cursor number used within the ** select statement passed as an argument, and ** ** * the array entries for all cursor numbers that do *not* appear in ** FROM clauses of the select statement as described above are ** initialized to zero. */ static void renumberCursors( Parse *pParse, /* Parse context */ Select *p, /* Select to renumber cursors within */ int iExcept, /* FROM clause item to skip */ int *aCsrMap /* Working space */ ){ Walker w; srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); memset(&w, 0, sizeof(w)); w.u.aiCol = aCsrMap; w.xExprCallback = renumberCursorsCb; w.xSelectCallback = sqlite3SelectWalkNoop; sqlite3WalkSelect(&w, p); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** If pSel is not part of a compound SELECT, return a pointer to its ** expression list. Otherwise, return a pointer to the expression list ** of the leftmost SELECT in the compound. */ static ExprList *findLeftmostExprlist(Select *pSel){ while( pSel->pPrior ){ pSel = pSel->pPrior; } return pSel->pEList; } /* ** Return true if any of the result-set columns in the compound query ** have incompatible affinities on one or more arms of the compound. */ static int compoundHasDifferentAffinities(Select *p){ int ii; ExprList *pList; assert( p!=0 ); assert( p->pEList!=0 ); assert( p->pPrior!=0 ); pList = p->pEList; for(ii=0; iinExpr; ii++){ char aff; Select *pSub1; assert( pList->a[ii].pExpr!=0 ); aff = sqlite3ExprAffinity(pList->a[ii].pExpr); for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){ assert( pSub1->pEList!=0 ); assert( pSub1->pEList->nExpr>ii ); assert( pSub1->pEList->a[ii].pExpr!=0 ); if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){ return 1; } } } return 0; } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** This routine attempts to flatten subqueries as a performance optimization. ** This routine returns 1 if it makes changes and 0 if no flattening occurs. ** ** To understand the concept of flattening, consider the following ** query: ** ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 ** ** The default way of implementing this query is to execute the ** subquery first and store the results in a temporary table, then ** run the outer query on that temporary table. This requires two ** passes over the data. Furthermore, because the temporary table ** has no indices, the WHERE clause on the outer query cannot be ** optimized. ** ** This routine attempts to rewrite queries such as the above into ** a single flat select, like this: ** ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 ** ** The code generated for this simplification gives the same result ** but only has to scan the data once. And because indices might ** exist on the table t1, a complete scan of the data might be ** avoided. ** ** Flattening is subject to the following constraints: ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** The subquery and the outer query cannot both be aggregates. ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** (2) If the subquery is an aggregate then ** (2a) the outer query must not be a join and ** (2b) the outer query must not use subqueries ** other than the one FROM-clause subquery that is a candidate ** for flattening. (This is due to ticket [2f7170d73bf9abf80] ** from 2015-02-09.) ** ** (3) If the subquery is the right operand of a LEFT JOIN then ** (3a) the subquery may not be a join and ** (3b) the FROM clause of the subquery may not contain a virtual ** table and ** (**) Was: "The outer query may not have a GROUP BY." This case ** is now managed correctly ** (3d) the outer query may not be DISTINCT. ** See also (26) for restrictions on RIGHT JOIN. ** ** (4) The subquery can not be DISTINCT. ** ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** If the subquery is aggregate, the outer query may not be DISTINCT. ** ** (7) The subquery must have a FROM clause. TODO: For subqueries without ** A FROM clause, consider adding a FROM clause with the special ** table sqlite_once that consists of a single row containing a ** single NULL. ** ** (8) If the subquery uses LIMIT then the outer query may not be a join. ** ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidentally carried the comment forward until 2014-09-15. Original ** constraint: "If the subquery is aggregate then the outer query ** may not use LIMIT." ** ** (11) The subquery and the outer query may not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query may not both use LIMIT. ** ** (14) The subquery may not use OFFSET. ** ** (15) If the outer query is part of a compound select, then the ** subquery may not use LIMIT. ** (See ticket #2339 and ticket [02a8e81d44]). ** ** (16) If the outer query is aggregate, then the subquery may not ** use ORDER BY. (Ticket #2942) This used to not matter ** until we introduced the group_concat() function. ** ** (17) If the subquery is a compound select, then ** (17a) all compound operators must be a UNION ALL, and ** (17b) no terms within the subquery compound may be aggregate ** or DISTINCT, and ** (17c) every term within the subquery compound must have a FROM clause ** (17d) the outer query may not be ** (17d1) aggregate, or ** (17d2) DISTINCT ** (17e) the subquery may not contain window functions, and ** (17f) the subquery must not be the RHS of a LEFT JOIN. ** (17g) either the subquery is the first element of the outer ** query or there are no RIGHT or FULL JOINs in any arm ** of the subquery. (This is a duplicate of condition (27b).) ** (17h) The corresponding result set expressions in all arms of the ** compound must have the same affinity. ** ** The parent and sub-query may contain WHERE clauses. Subject to ** rules (11), (13) and (14), they may also contain ORDER BY, ** LIMIT and OFFSET clauses. The subquery cannot use any compound ** operator other than UNION ALL because all the other compound ** operators have an implied DISTINCT which is disallowed by ** restriction (4). ** ** Also, each component of the sub-query must return the same number ** of result columns. This is actually a requirement for any compound ** SELECT statement, but all the code here does is make sure that no ** such (illegal) sub-query is flattened. The caller will detect the ** syntax error and return a detailed message. ** ** (18) If the sub-query is a compound select, then all terms of the ** ORDER BY clause of the parent must be copies of a term returned ** by the parent query. ** ** (19) If the subquery uses LIMIT then the outer query may not ** have a WHERE clause. ** ** (20) If the sub-query is a compound select, then it must not use ** an ORDER BY clause. Ticket #3773. We could relax this constraint ** somewhat by saying that the terms of the ORDER BY clause must ** appear as unmodified result columns in the outer query. But we ** have other optimizations in mind to deal with that case. ** ** (21) If the subquery uses LIMIT then the outer query may not be ** DISTINCT. (See ticket [752e1646fc]). ** ** (22) The subquery may not be a recursive CTE. ** ** (23) If the outer query is a recursive CTE, then the sub-query may not be ** a compound query. This restriction is because transforming the ** parent to a compound query confuses the code that handles ** recursive queries in multiSelect(). ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** The subquery may not be an aggregate that uses the built-in min() or ** or max() functions. (Without this restriction, a query like: ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily ** return the value X for which Y was maximal.) ** ** (25) If either the subquery or the parent query contains a window ** function in the select list or ORDER BY clause, flattening ** is not attempted. ** ** (26) The subquery may not be the right operand of a RIGHT JOIN. ** See also (3) for restrictions on LEFT JOIN. ** ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it ** is the first element of the parent query. Two subcases: ** (27a) the subquery is not a compound query. ** (27b) the subquery is a compound query and the RIGHT JOIN occurs ** in any arm of the compound query. (See also (17g).) ** ** (28) The subquery is not a MATERIALIZED CTE. (This is handled ** in the caller before ever reaching this routine.) ** ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. ** ** All of the expression analysis must occur on both the outer query and ** the subquery before this routine runs. */ static int flattenSubquery( Parse *pParse, /* Parsing context */ Select *p, /* The parent or outer SELECT statement */ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ int isAgg /* True if outer SELECT uses aggregate functions */ ){ const char *zSavedAuthContext = pParse->zAuthContext; Select *pParent; /* Current UNION ALL term of the other query */ Select *pSub; /* The inner query or "subquery" */ Select *pSub1; /* Pointer to the rightmost select in sub-query */ SrcList *pSrc; /* The FROM clause of the outer query */ SrcList *pSubSrc; /* The FROM clause of the subquery */ int iParent; /* VDBE cursor number of the pSub result set temp table */ int iNewParent = -1;/* Replacement table for iParent */ int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ int i; /* Loop counter */ Expr *pWhere; /* The WHERE clause */ SrcItem *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; Walker w; /* Walker to persist agginfo data */ int *aCsrMap = 0; /* Check to see if flattening is permitted. Return 0 if not. */ assert( p!=0 ); assert( p->pPrior==0 ); if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; pSrc = p->pSrc; assert( pSrc && iFrom>=0 && iFromnSrc ); pSubitem = &pSrc->a[iFrom]; iParent = pSubitem->iCursor; pSub = pSubitem->pSelect; assert( pSub!=0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ #endif pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ return 0; /* Restrictions (8)(9) */ } if( p->pOrderBy && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ return 0; /* Restriction (21) */ } if( pSub->selFlags & (SF_Recursive) ){ return 0; /* Restrictions (22) */ } /* ** If the subquery is the right operand of a LEFT JOIN, then the ** subquery may not be a join itself (3a). Example of why this is not ** allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) ** ** If we flatten the above, we would get ** ** (t1 LEFT OUTER JOIN t2) JOIN t3 ** ** which is not at all the same thing. ** ** See also tickets #306, #350, and #3300. */ if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ if( pSubSrc->nSrc>1 /* (3a) */ || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ || (p->selFlags & SF_Distinct)!=0 /* (3d) */ || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ ){ return 0; } isOuterJoin = 1; } assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* Restriction (27a) */ } /* Condition (28) is blocked by the caller */ assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes ); /* Restriction (17): If the sub-query is a compound SELECT, then it must ** use only the UNION ALL operator. And none of the simple select queries ** that make up the compound SELECT are allowed to be aggregate or distinct ** queries. */ if( pSub->pPrior ){ int ii; if( pSub->pOrderBy ){ return 0; /* Restriction (20) */ } if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ return 0; /* (17d1), (17d2), or (17f) */ } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); assert( pSub->pSrc!=0 ); assert( (pSub->selFlags & SF_Recursive)==0 ); assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ || pSub1->pSrc->nSrc<1 /* (17c) */ #ifndef SQLITE_OMIT_WINDOWFUNC || pSub1->pWin /* (17e) */ #endif ){ return 0; } if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* Without this restriction, the JT_LTORJ flag would end up being ** omitted on left-hand tables of the right join that is being ** flattened. */ return 0; /* Restrictions (17g), (27b) */ } testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction (18). */ if( p->pOrderBy ){ for(ii=0; iipOrderBy->nExpr; ii++){ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; } } /* Restriction (23) */ if( (p->selFlags & SF_Recursive) ) return 0; /* Restriction (17h) */ if( compoundHasDifferentAffinities(pSub) ) return 0; if( pSrc->nSrc>1 ){ if( pParse->nSelect>500 ) return 0; if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); if( aCsrMap ) aCsrMap[0] = pParse->nTab; } } /***** If we reach this point, flattening is permitted. *****/ TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n", pSub->selId, pSub, iFrom)); /* Authorize the subquery */ pParse->zAuthContext = pSubitem->zName; TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); testcase( i==SQLITE_DENY ); pParse->zAuthContext = zSavedAuthContext; /* Delete the transient structures associated with the subquery */ pSub1 = pSubitem->pSelect; sqlite3DbFree(db, pSubitem->zDatabase); sqlite3DbFree(db, pSubitem->zName); sqlite3DbFree(db, pSubitem->zAlias); pSubitem->zDatabase = 0; pSubitem->zName = 0; pSubitem->zAlias = 0; pSubitem->pSelect = 0; assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); /* If the sub-query is a compound SELECT statement, then (by restrictions ** 17 and 18 above) it must be a UNION ALL and the parent query must ** be of the form: ** ** SELECT FROM () ** ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or ** OFFSET clauses and joins them to the left-hand-side of the original ** using UNION ALL operators. In this case N is the number of simple ** select statements in the compound sub-query. ** ** Example: ** ** SELECT a+1 FROM ( ** SELECT x FROM tab ** UNION ALL ** SELECT y FROM tab ** UNION ALL ** SELECT abs(z*2) FROM tab2 ** ) WHERE a!=5 ORDER BY 1 ** ** Transformed into: ** ** SELECT x+1 FROM tab WHERE x+1!=5 ** UNION ALL ** SELECT y+1 FROM tab WHERE y+1!=5 ** UNION ALL ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 ** ORDER BY 1 ** ** We call this the "compound-subquery flattening". */ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ Select *pNew; ExprList *pOrderBy = p->pOrderBy; Expr *pLimit = p->pLimit; Select *pPrior = p->pPrior; Table *pItemTab = pSubitem->pTab; pSubitem->pTab = 0; p->pOrderBy = 0; p->pPrior = 0; p->pLimit = 0; pNew = sqlite3SelectDup(db, p, 0); p->pLimit = pLimit; p->pOrderBy = pOrderBy; p->op = TK_ALL; pSubitem->pTab = pItemTab; if( pNew==0 ){ p->pPrior = pPrior; }else{ pNew->selId = ++pParse->nSelect; if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ renumberCursors(pParse, pNew, iFrom, aCsrMap); } pNew->pPrior = pPrior; if( pPrior ) pPrior->pNext = pNew; pNew->pNext = p; p->pPrior = pNew; TREETRACE(0x4,pParse,p,("compound-subquery flattener" " creates %u as peer\n",pNew->selId)); } assert( pSubitem->pSelect==0 ); } sqlite3DbFree(db, aCsrMap); if( db->mallocFailed ){ pSubitem->pSelect = pSub1; return 1; } /* Defer deleting the Table object associated with the ** subquery until code generation is ** complete, since there may still exist Expr.pTab entries that ** refer to the subquery even after flattening. Ticket #3346. ** ** pSubitem->pTab is always non-NULL by test restrictions and tests above. */ if( ALWAYS(pSubitem->pTab!=0) ){ Table *pTabToDel = pSubitem->pTab; if( pTabToDel->nTabRef==1 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3ParserAddCleanup(pToplevel, (void(*)(sqlite3*,void*))sqlite3DeleteTable, pTabToDel); testcase( pToplevel->earlyCleanup ); }else{ pTabToDel->nTabRef--; } pSubitem->pTab = 0; } /* The following loop runs once for each term in a compound-subquery ** flattening (as described above). If we are doing a different kind ** of flattening - a flattening other than a compound-subquery flattening - ** then this loop only runs once. ** ** This loop moves all of the FROM elements of the subquery into the ** the FROM clause of the outer query. Before doing this, remember ** the cursor number for the original outer query FROM element in ** iParent. The iParent cursor will never be used. Subsequent code ** will scan expressions looking for iParent references and replace ** those references with expressions that resolve to the subquery FROM ** elements we are now copying in. */ pSub = pSub1; for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ int nSubSrc; u8 jointype = 0; u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; assert( pSub!=0 ); pSubSrc = pSub->pSrc; /* FROM clause of subquery */ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ pSrc = pParent->pSrc; /* FROM clause of the outer query */ if( pParent==p ){ jointype = pSubitem->fg.jointype; /* First time through the loop */ } /* The subquery uses a single slot of the FROM clause of the outer ** query. If the subquery has more than one element in its FROM clause, ** then expand the outer query to make space for it to hold all elements ** of the subquery. ** ** Example: ** ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; ** ** The outer query has 3 slots in its FROM clause. One slot of the ** outer query (the middle slot) is used by the subquery. The next ** block of code will expand the outer query FROM clause to 4 slots. ** The middle slot is expanded to two slots in order to make space ** for the two elements in the FROM clause of the subquery. */ if( nSubSrc>1 ){ pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); if( pSrc==0 ) break; pParent->pSrc = pSrc; } /* Transfer the FROM clause terms from the subquery into the ** outer query. */ for(i=0; ia[i+iFrom]; if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); assert( pItem->fg.isTabFunc==0 ); *pItem = pSubSrc->a[i]; pItem->fg.jointype |= ltorj; iNewParent = pSubSrc->a[i].iCursor; memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); } pSrc->a[iFrom].fg.jointype &= JT_LTORJ; pSrc->a[iFrom].fg.jointype |= jointype | ltorj; /* Now begin substituting subquery result set expressions for ** references to the iParent in the outer query. ** ** Example: ** ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; ** \ \_____________ subquery __________/ / ** \_____________________ outer query ______________________________/ ** ** We look at every expression in the outer query and every place we see ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". */ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ /* At this point, any non-zero iOrderByCol values indicate that the ** ORDER BY column expression is identical to the iOrderByCol'th ** expression returned by SELECT statement pSub. Since these values ** do not necessarily correspond to columns in SELECT statement pParent, ** zero them before transferring the ORDER BY clause. ** ** Not doing this may cause an error if a subsequent call to this ** function attempts to flatten a compound sub-query into pParent ** (the only way this can happen is if the compound sub-query is ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ ExprList *pOrderBy = pSub->pOrderBy; for(i=0; inExpr; i++){ pOrderBy->a[i].u.x.iOrderByCol = 0; } assert( pParent->pOrderBy==0 ); pParent->pOrderBy = pOrderBy; pSub->pOrderBy = 0; } pWhere = pSub->pWhere; pSub->pWhere = 0; if( isOuterJoin>0 ){ sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); } if( pWhere ){ if( pParent->pWhere ){ pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); }else{ pParent->pWhere = pWhere; } } if( db->mallocFailed==0 ){ SubstContext x; x.pParse = pParse; x.iTable = iParent; x.iNewTable = iNewParent; x.isOuterJoin = isOuterJoin; x.pEList = pSub->pEList; x.pCList = findLeftmostExprlist(pSub); substSelect(&x, pParent, 0); } /* The flattened query is a compound if either the inner or the ** outer query is a compound. */ pParent->selFlags |= pSub->selFlags & SF_Compound; assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ /* ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; ** ** One is tempted to try to add a and b to combine the limits. But this ** does not work if either limit is negative. */ if( pSub->pLimit ){ pParent->pLimit = pSub->pLimit; pSub->pLimit = 0; } /* Recompute the SrcItem.colUsed masks for the flattened ** tables. */ for(i=0; ia[i+iFrom]); } } /* Finally, delete what is left of the subquery and return success. */ sqlite3AggInfoPersistWalkerInit(&w, pParse); sqlite3WalkSelect(&w,pSub1); sqlite3SelectDelete(db, pSub1); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4 ){ TREETRACE(0x4,pParse,p,("After flattening:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** A structure to keep track of all of the column values that are fixed to ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. */ typedef struct WhereConst WhereConst; struct WhereConst { Parse *pParse; /* Parsing context */ u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ int nConst; /* Number for COLUMN=CONSTANT terms */ int nChng; /* Number of times a constant is propagated */ int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ u32 mExcludeOn; /* Which ON expressions to exclude from considertion. ** Either EP_OuterON or EP_InnerON|EP_OuterON */ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ }; /* ** Add a new entry to the pConst object. Except, do not add duplicate ** pColumn entries. Also, do not add if doing so would not be appropriate. ** ** The caller guarantees the pColumn is a column and pValue is a constant. ** This routine has to do some additional checks before completing the ** insert. */ static void constInsert( WhereConst *pConst, /* The WhereConst into which we are inserting */ Expr *pColumn, /* The COLUMN part of the constraint */ Expr *pValue, /* The VALUE part of the constraint */ Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ ){ int i; assert( pColumn->op==TK_COLUMN ); assert( sqlite3ExprIsConstant(pValue) ); if( ExprHasProperty(pColumn, EP_FixedCol) ) return; if( sqlite3ExprAffinity(pValue)!=0 ) return; if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ return; } /* 2018-10-25 ticket [cf5ed20f] ** Make sure the same pColumn is not inserted more than once */ for(i=0; inConst; i++){ const Expr *pE2 = pConst->apExpr[i*2]; assert( pE2->op==TK_COLUMN ); if( pE2->iTable==pColumn->iTable && pE2->iColumn==pColumn->iColumn ){ return; /* Already present. Return without doing anything. */ } } if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ pConst->bHasAffBlob = 1; } pConst->nConst++; pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, pConst->nConst*2*sizeof(Expr*)); if( pConst->apExpr==0 ){ pConst->nConst = 0; }else{ pConst->apExpr[pConst->nConst*2-2] = pColumn; pConst->apExpr[pConst->nConst*2-1] = pValue; } } /* ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE ** is a constant expression and where the term must be true because it ** is part of the AND-connected terms of the expression. For each term ** found, add it to the pConst structure. */ static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ Expr *pRight, *pLeft; if( NEVER(pExpr==0) ) return; if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ testcase( ExprHasProperty(pExpr, EP_OuterON) ); testcase( ExprHasProperty(pExpr, EP_InnerON) ); return; } if( pExpr->op==TK_AND ){ findConstInWhere(pConst, pExpr->pRight); findConstInWhere(pConst, pExpr->pLeft); return; } if( pExpr->op!=TK_EQ ) return; pRight = pExpr->pRight; pLeft = pExpr->pLeft; assert( pRight!=0 ); assert( pLeft!=0 ); if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ constInsert(pConst,pRight,pLeft,pExpr); } if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ constInsert(pConst,pLeft,pRight,pExpr); } } /* ** This is a helper function for Walker callback propagateConstantExprRewrite(). ** ** Argument pExpr is a candidate expression to be replaced by a value. If ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, ** then overwrite it with the corresponding value. Except, do not do so ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr ** is SQLITE_AFF_BLOB. */ static int propagateConstantExprRewriteOne( WhereConst *pConst, Expr *pExpr, int bIgnoreAffBlob ){ int i; if( pConst->pOomFault[0] ) return WRC_Prune; if( pExpr->op!=TK_COLUMN ) return WRC_Continue; if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ testcase( ExprHasProperty(pExpr, EP_FixedCol) ); testcase( ExprHasProperty(pExpr, EP_OuterON) ); testcase( ExprHasProperty(pExpr, EP_InnerON) ); return WRC_Continue; } for(i=0; inConst; i++){ Expr *pColumn = pConst->apExpr[i*2]; if( pColumn==pExpr ) continue; if( pColumn->iTable!=pExpr->iTable ) continue; if( pColumn->iColumn!=pExpr->iColumn ) continue; if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ break; } /* A match is found. Add the EP_FixedCol property */ pConst->nChng++; ExprClearProperty(pExpr, EP_Leaf); ExprSetProperty(pExpr, EP_FixedCol); assert( pExpr->pLeft==0 ); pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); if( pConst->pParse->db->mallocFailed ) return WRC_Prune; break; } return WRC_Prune; } /* ** This is a Walker expression callback. pExpr is a node from the WHERE ** clause of a SELECT statement. This function examines pExpr to see if ** any substitutions based on the contents of pWalker->u.pConst should ** be made to pExpr or its immediate children. ** ** A substitution is made if: ** ** + pExpr is a column with an affinity other than BLOB that matches ** one of the columns in pWalker->u.pConst, or ** ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that ** uses an affinity other than TEXT and one of its immediate ** children is a column that matches one of the columns in ** pWalker->u.pConst. */ static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ WhereConst *pConst = pWalker->u.pConst; assert( TK_GT==TK_EQ+1 ); assert( TK_LE==TK_EQ+2 ); assert( TK_LT==TK_EQ+3 ); assert( TK_GE==TK_EQ+4 ); if( pConst->bHasAffBlob ){ if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) || pExpr->op==TK_IS ){ propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); if( pConst->pOomFault[0] ) return WRC_Prune; if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); } } } return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); } /* ** The WHERE-clause constant propagation optimization. ** ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or ** CONSTANT=COLUMN that are top-level AND-connected terms that are not ** part of a ON clause from a LEFT JOIN, then throughout the query ** replace all other occurrences of COLUMN with CONSTANT. ** ** For example, the query: ** ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b ** ** Is transformed into ** ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 ** ** Return true if any transformations where made and false if not. ** ** Implementation note: Constant propagation is tricky due to affinity ** and collating sequence interactions. Consider this example: ** ** CREATE TABLE t1(a INT,b TEXT); ** INSERT INTO t1 VALUES(123,'0123'); ** SELECT * FROM t1 WHERE a=123 AND b=a; ** SELECT * FROM t1 WHERE a=123 AND b=123; ** ** The two SELECT statements above should return different answers. b=a ** is always true because the comparison uses numeric affinity, but b=123 ** is false because it uses text affinity and '0123' is not the same as '123'. ** To work around this, the expression tree is not actually changed from ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol ** and the "123" value is hung off of the pLeft pointer. Code generator ** routines know to generate the constant "123" instead of looking up the ** column value. Also, to avoid collation problems, this optimization is ** only attempted if the "a=123" term uses the default BINARY collation. ** ** 2021-05-25 forum post 6a06202608: Another troublesome case is... ** ** CREATE TABLE t1(x); ** INSERT INTO t1 VALUES(10.0); ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; ** ** The query should return no rows, because the t1.x value is '10.0' not '10' ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", ** resulting in a false positive. To avoid this, constant propagation for ** columns with BLOB affinity is only allowed if the constant is used with ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct ** type conversions to occur. See logic associated with the bHasAffBlob flag ** for details. */ static int propagateConstants( Parse *pParse, /* The parsing context */ Select *p /* The query in which to propagate constants */ ){ WhereConst x; Walker w; int nChng = 0; x.pParse = pParse; x.pOomFault = &pParse->db->mallocFailed; do{ x.nConst = 0; x.nChng = 0; x.apExpr = 0; x.bHasAffBlob = 0; if( ALWAYS(p->pSrc!=0) && p->pSrc->nSrc>0 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* Do not propagate constants on any ON clause if there is a ** RIGHT JOIN anywhere in the query */ x.mExcludeOn = EP_InnerON | EP_OuterON; }else{ /* Do not propagate constants through the ON clause of a LEFT JOIN */ x.mExcludeOn = EP_OuterON; } findConstInWhere(&x, p->pWhere); if( x.nConst ){ memset(&w, 0, sizeof(w)); w.pParse = pParse; w.xExprCallback = propagateConstantExprRewrite; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = 0; w.walkerDepth = 0; w.u.pConst = &x; sqlite3WalkExpr(&w, p->pWhere); sqlite3DbFree(x.pParse->db, x.apExpr); nChng += x.nChng; } }while( x.nChng ); return nChng; } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) # if !defined(SQLITE_OMIT_WINDOWFUNC) /* ** This function is called to determine whether or not it is safe to ** push WHERE clause expression pExpr down to FROM clause sub-query ** pSubq, which contains at least one window function. Return 1 ** if it is safe and the expression should be pushed down, or 0 ** otherwise. ** ** It is only safe to push the expression down if it consists only ** of constants and copies of expressions that appear in the PARTITION ** BY clause of all window function used by the sub-query. It is safe ** to filter out entire partitions, but not rows within partitions, as ** this may change the results of the window functions. ** ** At the time this function is called it is guaranteed that ** ** * the sub-query uses only one distinct window frame, and ** * that the window frame has a PARTITION BY clause. */ static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ assert( pSubq->pWin->pPartition ); assert( (pSubq->selFlags & SF_MultiPart)==0 ); assert( pSubq->pPrior==0 ); return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); } # endif /* SQLITE_OMIT_WINDOWFUNC */ #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Make copies of relevant WHERE clause terms of the outer query into ** the WHERE clause of subquery. Example: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; ** ** Transformed into: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) ** WHERE x=5 AND y=10; ** ** The hope is that the terms added to the inner query will make it more ** efficient. ** ** Do not attempt this optimization if: ** ** (1) (** This restriction was removed on 2017-09-29. We used to ** disallow this optimization for aggregate subqueries, but now ** it is allowed by putting the extra terms on the HAVING clause. ** The added HAVING clause is pointless if the subquery lacks ** a GROUP BY clause. But such a HAVING clause is also harmless ** so there does not appear to be any reason to add extra logic ** to suppress it. **) ** ** (2) The inner query is the recursive part of a common table expression. ** ** (3) The inner query has a LIMIT clause (since the changes to the WHERE ** clause would change the meaning of the LIMIT). ** ** (4) The inner query is the right operand of a LEFT JOIN and the ** expression to be pushed down does not come from the ON clause ** on that LEFT JOIN. ** ** (5) The WHERE clause expression originates in the ON or USING clause ** of a LEFT JOIN where iCursor is not the right-hand table of that ** left join. An example: ** ** SELECT * ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); ** ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). ** But if the (b2=2) term were to be pushed down into the bb subquery, ** then the (1,1,NULL) row would be suppressed. ** ** (6) Window functions make things tricky as changes to the WHERE clause ** of the inner query could change the window over which window ** functions are calculated. Therefore, do not attempt the optimization ** if: ** ** (6a) The inner query uses multiple incompatible window partitions. ** ** (6b) The inner query is a compound and uses window-functions. ** ** (6c) The WHERE clause does not consist entirely of constants and ** copies of expressions found in the PARTITION BY clause of ** all window-functions used by the sub-query. It is safe to ** filter out entire partitions, as this does not change the ** window over which any window-function is calculated. ** ** (7) The inner query is a Common Table Expression (CTE) that should ** be materialized. (This restriction is implemented in the calling ** routine.) ** ** (8) If the subquery is a compound that uses UNION, INTERSECT, ** or EXCEPT, then all of the result set columns for all arms of ** the compound must use the BINARY collating sequence. ** ** (9) All three of the following are true: ** ** (9a) The WHERE clause expression originates in the ON or USING clause ** of a join (either an INNER or an OUTER join), and ** ** (9b) The subquery is to the right of the ON/USING clause ** ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING ** clause and the subquery. ** ** Without this restriction, the push-down optimization might move ** the ON/USING filter expression from the left side of a RIGHT JOIN ** over to the right side, which leads to incorrect answers. See ** also restriction (6) in sqlite3ExprIsSingleTableConstraint(). ** ** (10) The inner query is not the right-hand table of a RIGHT JOIN. ** ** (11) The subquery is not a VALUES clause ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( Parse *pParse, /* Parse context (for malloc() and error reporting) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ SrcList *pSrcList, /* The complete from clause of the outer query */ int iSrc /* Which FROM clause term to try to push into */ ){ Expr *pNew; SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */ int nChng = 0; pSrc = &pSrcList->a[iSrc]; if( pWhere==0 ) return 0; if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){ return 0; /* restrictions (2) and (11) */ } if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){ return 0; /* restrictions (10) */ } if( pSubq->pPrior ){ Select *pSel; int notUnionAll = 0; for(pSel=pSubq; pSel; pSel=pSel->pPrior){ u8 op = pSel->op; assert( op==TK_ALL || op==TK_SELECT || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT ); if( op!=TK_ALL && op!=TK_SELECT ){ notUnionAll = 1; } #ifndef SQLITE_OMIT_WINDOWFUNC if( pSel->pWin ) return 0; /* restriction (6b) */ #endif } if( notUnionAll ){ /* If any of the compound arms are connected using UNION, INTERSECT, ** or EXCEPT, then we must ensure that none of the columns use a ** non-BINARY collating sequence. */ for(pSel=pSubq; pSel; pSel=pSel->pPrior){ int ii; const ExprList *pList = pSel->pEList; assert( pList!=0 ); for(ii=0; iinExpr; ii++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr); if( !sqlite3IsBinary(pColl) ){ return 0; /* Restriction (8) */ } } } } }else{ #ifndef SQLITE_OMIT_WINDOWFUNC if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; #endif } #ifdef SQLITE_DEBUG /* Only the first term of a compound can have a WITH clause. But make ** sure no other terms are marked SF_Recursive in case something changes ** in the future. */ { Select *pX; for(pX=pSubq; pX; pX=pX->pPrior){ assert( (pX->selFlags & (SF_Recursive))==0 ); } } #endif if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc); pWhere = pWhere->pLeft; } #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */ if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */ ){ int jj; for(jj=0; jjw.iJoin==pSrcList->a[jj].iCursor ){ /* If we reach this point, both (9a) and (9b) are satisfied. ** The following loop checks (9c): */ for(jj++; jja[jj].fg.jointype & JT_RIGHT)!=0 ){ return 0; /* restriction (9) */ } } } } } if( isLeftJoin && (ExprHasProperty(pWhere,EP_OuterON)==0 || pWhere->w.iJoin!=iCursor) ){ return 0; /* restriction (4) */ } if( ExprHasProperty(pWhere,EP_OuterON) && pWhere->w.iJoin!=iCursor ){ return 0; /* restriction (5) */ } #endif if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc) ){ nChng++; pSubq->selFlags |= SF_PushDown; while( pSubq ){ SubstContext x; pNew = sqlite3ExprDup(pParse->db, pWhere, 0); unsetJoinExpr(pNew, -1, 1); x.pParse = pParse; x.iTable = pSrc->iCursor; x.iNewTable = pSrc->iCursor; x.isOuterJoin = 0; x.pEList = pSubq->pEList; x.pCList = findLeftmostExprlist(pSubq); pNew = substExpr(&x, pNew); #ifndef SQLITE_OMIT_WINDOWFUNC if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ /* Restriction 6c has prevented push-down in this case */ sqlite3ExprDelete(pParse->db, pNew); nChng--; break; } #endif if( pSubq->selFlags & SF_Aggregate ){ pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); }else{ pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); } pSubq = pSubq->pPrior; } } return nChng; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** Check to see if a subquery contains result-set columns that are ** never used. If it does, change the value of those result-set columns ** to NULL so that they do not cause unnecessary work to compute. ** ** Return the number of column that were changed to NULL. */ static int disableUnusedSubqueryResultColumns(SrcItem *pItem){ int nCol; Select *pSub; /* The subquery to be simplified */ Select *pX; /* For looping over compound elements of pSub */ Table *pTab; /* The table that describes the subquery */ int j; /* Column number */ int nChng = 0; /* Number of columns converted to NULL */ Bitmask colUsed; /* Columns that may not be NULLed out */ assert( pItem!=0 ); if( pItem->fg.isCorrelated || pItem->fg.isCte ){ return 0; } assert( pItem->pTab!=0 ); pTab = pItem->pTab; assert( pItem->pSelect!=0 ); pSub = pItem->pSelect; assert( pSub->pEList->nExpr==pTab->nCol ); if( (pSub->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){ testcase( pSub->selFlags & SF_Distinct ); testcase( pSub->selFlags & SF_Aggregate ); return 0; } for(pX=pSub; pX; pX=pX->pPrior){ if( pX->pPrior && pX->op!=TK_ALL ){ /* This optimization does not work for compound subqueries that ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */ return 0; } #ifndef SQLITE_OMIT_WINDOWFUNC if( pX->pWin ){ /* This optimization does not work for subqueries that use window ** functions. */ return 0; } #endif } colUsed = pItem->colUsed; if( pSub->pOrderBy ){ ExprList *pList = pSub->pOrderBy; for(j=0; jnExpr; j++){ u16 iCol = pList->a[j].u.x.iOrderByCol; if( iCol>0 ){ iCol--; colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } } } nCol = pTab->nCol; for(j=0; jpPrior) { Expr *pY = pX->pEList->a[j].pExpr; if( pY->op==TK_NULL ) continue; pY->op = TK_NULL; ExprClearProperty(pY, EP_Skip|EP_Unlikely); pX->selFlags |= SF_PushDown; nChng++; } } return nChng; } /* ** The pFunc is the only aggregate function in the query. Check to see ** if the query is a candidate for the min/max optimization. ** ** If the query is a candidate for the min/max optimization, then set ** *ppMinMax to be an ORDER BY clause to be used for the optimization ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on ** whether pFunc is a min() or max() function. ** ** If the query is not a candidate for the min/max optimization, return ** WHERE_ORDERBY_NORMAL (which must be zero). ** ** This routine must be called after aggregate functions have been ** located but before their arguments have been subjected to aggregate ** analysis. */ static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ ExprList *pEList; /* Arguments to agg function */ const char *zFunc; /* Name of aggregate function pFunc */ ExprList *pOrderBy; u8 sortFlags = 0; assert( *ppMinMax==0 ); assert( pFunc->op==TK_AGG_FUNCTION ); assert( !IsWindowFunc(pFunc) ); assert( ExprUseXList(pFunc) ); pEList = pFunc->x.pList; if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) || OptimizationDisabled(db, SQLITE_MinMaxOpt) ){ return eRet; } assert( !ExprHasProperty(pFunc, EP_IntValue) ); zFunc = pFunc->u.zToken; if( sqlite3StrICmp(zFunc, "min")==0 ){ eRet = WHERE_ORDERBY_MIN; if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ sortFlags = KEYINFO_ORDER_BIGNULL; } }else if( sqlite3StrICmp(zFunc, "max")==0 ){ eRet = WHERE_ORDERBY_MAX; sortFlags = KEYINFO_ORDER_DESC; }else{ return eRet; } *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); assert( pOrderBy!=0 || db->mallocFailed ); if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; return eRet; } /* ** The select statement passed as the first argument is an aggregate query. ** The second argument is the associated aggregate-info object. This ** function tests if the SELECT is of the form: ** ** SELECT count(*) FROM ** ** where table is a database table, not a sub-select or view. If the query ** does match this pattern, then a pointer to the Table object representing ** is returned. Otherwise, NULL is returned. ** ** This routine checks to see if it is safe to use the count optimization. ** A correct answer is still obtained (though perhaps more slowly) if ** this routine returns NULL when it could have returned a table pointer. ** But returning the pointer when NULL should have been returned can ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. */ static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ Table *pTab; Expr *pExpr; assert( !p->pGroupBy ); if( p->pWhere || p->pEList->nExpr!=1 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect || pAggInfo->nFunc!=1 || p->pHaving ){ return 0; } pTab = p->pSrc->a[0].pTab; assert( pTab!=0 ); assert( !IsView(pTab) ); if( !IsOrdinaryTable(pTab) ) return 0; pExpr = p->pEList->a[0].pExpr; assert( pExpr!=0 ); if( pExpr->op!=TK_AGG_FUNCTION ) return 0; if( pExpr->pAggInfo!=pAggInfo ) return 0; if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; assert( pAggInfo->aFunc[0].pFExpr==pExpr ); testcase( ExprHasProperty(pExpr, EP_Distinct) ); testcase( ExprHasProperty(pExpr, EP_WinFunc) ); if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; return pTab; } /* ** If the source-list item passed as an argument was augmented with an ** INDEXED BY clause, then try to locate the specified index. If there ** was such a clause and the named index cannot be found, return ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate ** pFrom->pIndex and return SQLITE_OK. */ SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ Table *pTab = pFrom->pTab; char *zIndexedBy = pFrom->u1.zIndexedBy; Index *pIdx; assert( pTab!=0 ); assert( pFrom->fg.isIndexedBy!=0 ); for(pIdx=pTab->pIndex; pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); pIdx=pIdx->pNext ); if( !pIdx ){ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); pParse->checkSchema = 1; return SQLITE_ERROR; } assert( pFrom->fg.isCte==0 ); pFrom->u2.pIBIndex = pIdx; return SQLITE_OK; } /* ** Detect compound SELECT statements that use an ORDER BY clause with ** an alternative collating sequence. ** ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... ** ** These are rewritten as a subquery: ** ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) ** ORDER BY ... COLLATE ... ** ** This transformation is necessary because the multiSelectOrderBy() routine ** above that generates the code for a compound SELECT with an ORDER BY clause ** uses a merge algorithm that requires the same collating sequence on the ** result columns as on the ORDER BY clause. See ticket ** http://www.sqlite.org/src/info/6709574d2a ** ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. ** The UNION ALL operator works fine with multiSelectOrderBy() even when ** there are COLLATE terms in the ORDER BY. */ static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ int i; Select *pNew; Select *pX; sqlite3 *db; struct ExprList_item *a; SrcList *pNewSrc; Parse *pParse; Token dummy; if( p->pPrior==0 ) return WRC_Continue; if( p->pOrderBy==0 ) return WRC_Continue; for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} if( pX==0 ) return WRC_Continue; a = p->pOrderBy->a; #ifndef SQLITE_OMIT_WINDOWFUNC /* If iOrderByCol is already non-zero, then it has already been matched ** to a result column of the SELECT statement. This occurs when the ** SELECT is rewritten for window-functions processing and then passed ** to sqlite3SelectPrep() and similar a second time. The rewriting done ** by this function is not required in this case. */ if( a[0].u.x.iOrderByCol ) return WRC_Continue; #endif for(i=p->pOrderBy->nExpr-1; i>=0; i--){ if( a[i].pExpr->flags & EP_Collate ) break; } if( i<0 ) return WRC_Continue; /* If we reach this point, that means the transformation is required. */ pParse = pWalker->pParse; db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); if( pNew==0 ) return WRC_Abort; memset(&dummy, 0, sizeof(dummy)); pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); if( pNewSrc==0 ) return WRC_Abort; *pNew = *p; p->pSrc = pNewSrc; p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; p->pNext = 0; p->pWith = 0; #ifndef SQLITE_OMIT_WINDOWFUNC p->pWinDefn = 0; #endif p->selFlags &= ~SF_Compound; assert( (p->selFlags & SF_Converted)==0 ); p->selFlags |= SF_Converted; assert( pNew->pPrior!=0 ); pNew->pPrior->pNext = pNew; pNew->pLimit = 0; return WRC_Continue; } /* ** Check to see if the FROM clause term pFrom has table-valued function ** arguments. If it does, leave an error message in pParse and return ** non-zero, since pFrom is not allowed to be a table-valued function. */ static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ if( pFrom->fg.isTabFunc ){ sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); return 1; } return 0; } #ifndef SQLITE_OMIT_CTE /* ** Argument pWith (which may be NULL) points to a linked list of nested ** WITH contexts, from inner to outermost. If the table identified by ** FROM clause element pItem is really a common-table-expression (CTE) ** then return a pointer to the CTE definition for that table. Otherwise ** return NULL. ** ** If a non-NULL value is returned, set *ppContext to point to the With ** object that the returned CTE belongs to. */ static struct Cte *searchWith( With *pWith, /* Current innermost WITH clause */ SrcItem *pItem, /* FROM clause element to resolve */ With **ppContext /* OUT: WITH clause return value belongs to */ ){ const char *zName = pItem->zName; With *p; assert( pItem->zDatabase==0 ); assert( zName!=0 ); for(p=pWith; p; p=p->pOuter){ int i; for(i=0; inCte; i++){ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ *ppContext = p; return &p->a[i]; } } if( p->bView ) break; } return 0; } /* The code generator maintains a stack of active WITH clauses ** with the inner-most WITH clause being at the top of the stack. ** ** This routine pushes the WITH clause passed as the second argument ** onto the top of the stack. If argument bFree is true, then this ** WITH clause will never be popped from the stack but should instead ** be freed along with the Parse object. In other cases, when ** bFree==0, the With object will be freed along with the SELECT ** statement with which it is associated. ** ** This routine returns a copy of pWith. Or, if bFree is true and ** the pWith object is destroyed immediately due to an OOM condition, ** then this routine return NULL. ** ** If bFree is true, do not continue to use the pWith pointer after ** calling this routine, Instead, use only the return value. */ SQLITE_PRIVATE With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ if( pWith ){ if( bFree ){ pWith = (With*)sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3WithDelete, pWith); if( pWith==0 ) return 0; } if( pParse->nErr==0 ){ assert( pParse->pWith!=pWith ); pWith->pOuter = pParse->pWith; pParse->pWith = pWith; } } return pWith; } /* ** This function checks if argument pFrom refers to a CTE declared by ** a WITH clause on the stack currently maintained by the parser (on the ** pParse->pWith linked list). And if currently processing a CTE ** CTE expression, through routine checks to see if the reference is ** a recursive reference to the CTE. ** ** If pFrom matches a CTE according to either of these two above, pFrom->pTab ** and other fields are populated accordingly. ** ** Return 0 if no match is found. ** Return 1 if a match is found. ** Return 2 if an error condition is detected. */ static int resolveFromTermToCte( Parse *pParse, /* The parsing context */ Walker *pWalker, /* Current tree walker */ SrcItem *pFrom /* The FROM clause term to check */ ){ Cte *pCte; /* Matched CTE (or NULL if no match) */ With *pWith; /* The matching WITH */ assert( pFrom->pTab==0 ); if( pParse->pWith==0 ){ /* There are no WITH clauses in the stack. No match is possible */ return 0; } if( pParse->nErr ){ /* Prior errors might have left pParse->pWith in a goofy state, so ** go no further. */ return 0; } if( pFrom->zDatabase!=0 ){ /* The FROM term contains a schema qualifier (ex: main.t1) and so ** it cannot possibly be a CTE reference. */ return 0; } if( pFrom->fg.notCte ){ /* The FROM term is specifically excluded from matching a CTE. ** (1) It is part of a trigger that used to have zDatabase but had ** zDatabase removed by sqlite3FixTriggerStep(). ** (2) This is the first term in the FROM clause of an UPDATE. */ return 0; } pCte = searchWith(pParse->pWith, pFrom, &pWith); if( pCte ){ sqlite3 *db = pParse->db; Table *pTab; ExprList *pEList; Select *pSel; Select *pLeft; /* Left-most SELECT statement */ Select *pRecTerm; /* Left-most recursive term */ int bMayRecursive; /* True if compound joined by UNION [ALL] */ With *pSavedWith; /* Initial value of pParse->pWith */ int iRecTab = -1; /* Cursor for recursive table */ CteUse *pCteUse; /* If pCte->zCteErr is non-NULL at this point, then this is an illegal ** recursive reference to CTE pCte. Leave an error in pParse and return ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. ** In this case, proceed. */ if( pCte->zCteErr ){ sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); return 2; } if( cannotBeFunction(pParse, pFrom) ) return 2; assert( pFrom->pTab==0 ); pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return 2; pCteUse = pCte->pUse; if( pCteUse==0 ){ pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); if( pCteUse==0 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 ){ sqlite3DbFree(db, pTab); return 2; } pCteUse->eM10d = pCte->eM10d; } pFrom->pTab = pTab; pTab->nTabRef = 1; pTab->zName = sqlite3DbStrDup(db, pCte->zName); pTab->iPKey = -1; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); if( db->mallocFailed ) return 2; pFrom->pSelect->selFlags |= SF_CopyCte; assert( pFrom->pSelect ); if( pFrom->fg.isIndexedBy ){ sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); return 2; } pFrom->fg.isCte = 1; pFrom->u2.pCteUse = pCteUse; pCteUse->nUse++; /* Check if this is a recursive CTE. */ pRecTerm = pSel = pFrom->pSelect; bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); while( bMayRecursive && pRecTerm->op==pSel->op ){ int i; SrcList *pSrc = pRecTerm->pSrc; assert( pRecTerm->pPrior!=0 ); for(i=0; inSrc; i++){ SrcItem *pItem = &pSrc->a[i]; if( pItem->zDatabase==0 && pItem->zName!=0 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) ){ pItem->pTab = pTab; pTab->nTabRef++; pItem->fg.isRecursive = 1; if( pRecTerm->selFlags & SF_Recursive ){ sqlite3ErrorMsg(pParse, "multiple references to recursive table: %s", pCte->zName ); return 2; } pRecTerm->selFlags |= SF_Recursive; if( iRecTab<0 ) iRecTab = pParse->nTab++; pItem->iCursor = iRecTab; } } if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; pRecTerm = pRecTerm->pPrior; } pCte->zCteErr = "circular reference: %s"; pSavedWith = pParse->pWith; pParse->pWith = pWith; if( pSel->selFlags & SF_Recursive ){ int rc; assert( pRecTerm!=0 ); assert( (pRecTerm->selFlags & SF_Recursive)==0 ); assert( pRecTerm->pNext!=0 ); assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); assert( pRecTerm->pWith==0 ); pRecTerm->pWith = pSel->pWith; rc = sqlite3WalkSelect(pWalker, pRecTerm); pRecTerm->pWith = 0; if( rc ){ pParse->pWith = pSavedWith; return 2; } }else{ if( sqlite3WalkSelect(pWalker, pSel) ){ pParse->pWith = pSavedWith; return 2; } } pParse->pWith = pWith; for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); pEList = pLeft->pEList; if( pCte->pCols ){ if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", pCte->zName, pEList->nExpr, pCte->pCols->nExpr ); pParse->pWith = pSavedWith; return 2; } pEList = pCte->pCols; } sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); if( bMayRecursive ){ if( pSel->selFlags & SF_Recursive ){ pCte->zCteErr = "multiple recursive references: %s"; }else{ pCte->zCteErr = "recursive reference in a subquery: %s"; } sqlite3WalkSelect(pWalker, pSel); } pCte->zCteErr = 0; pParse->pWith = pSavedWith; return 1; /* Success */ } return 0; /* No match */ } #endif #ifndef SQLITE_OMIT_CTE /* ** If the SELECT passed as the second argument has an associated WITH ** clause, pop it from the stack stored as part of the Parse object. ** ** This function is used as the xSelectCallback2() callback by ** sqlite3SelectExpand() when walking a SELECT tree to resolve table ** names and other FROM clause elements. */ SQLITE_PRIVATE void sqlite3SelectPopWith(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ With *pWith = findRightmost(p)->pWith; if( pWith!=0 ){ assert( pParse->pWith==pWith || pParse->nErr ); pParse->pWith = pWith->pOuter; } } } #endif /* ** The SrcItem structure passed as the second argument represents a ** sub-query in the FROM clause of a SELECT statement. This function ** allocates and populates the SrcItem.pTab object. If successful, ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, ** SQLITE_NOMEM. */ SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ Select *pSel = pFrom->pSelect; Table *pTab; assert( pSel ); pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); if( pTab==0 ) return SQLITE_NOMEM; pTab->nTabRef = 1; if( pFrom->zAlias ){ pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); }else{ pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); } while( pSel->pPrior ){ pSel = pSel->pPrior; } sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); pTab->iPKey = -1; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #ifndef SQLITE_ALLOW_ROWID_IN_VIEW /* The usual case - do not allow ROWID on a subquery */ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; #else pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ #endif return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; } /* ** Check the N SrcItem objects to the right of pBase. (N might be zero!) ** If any of those SrcItem objects have a USING clause containing zName ** then return true. ** ** If N is zero, or none of the N SrcItem objects to the right of pBase ** contains a USING clause, or if none of the USING clauses contain zName, ** then return false. */ static int inAnyUsingClause( const char *zName, /* Name we are looking for */ SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ int N /* How many SrcItems to check */ ){ while( N>0 ){ N--; pBase++; if( pBase->fg.isUsing==0 ) continue; if( NEVER(pBase->u3.pUsing==0) ) continue; if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; } return 0; } /* ** This routine is a Walker callback for "expanding" a SELECT statement. ** "Expanding" means to do the following: ** ** (1) Make sure VDBE cursor numbers have been assigned to every ** element of the FROM clause. ** ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that ** defines FROM clause. When views appear in the FROM clause, ** fill pTabList->a[].pSelect with a copy of the SELECT statement ** that implements the view. A copy is made of the view's SELECT ** statement so that we can freely modify or delete that statement ** without worrying about messing up the persistent representation ** of the view. ** ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword ** on joins and the ON and USING clause of joins. ** ** (4) Scan the list of columns in the result set (pEList) looking ** for instances of the "*" operator or the TABLE.* operator. ** If found, expand each "*" to be every column in every table ** and TABLE.* to be every column in TABLE. ** */ static int selectExpander(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; int i, j, k, rc; SrcList *pTabList; ExprList *pEList; SrcItem *pFrom; sqlite3 *db = pParse->db; Expr *pE, *pRight, *pExpr; u16 selFlags = p->selFlags; u32 elistFlags = 0; p->selFlags |= SF_Expanded; if( db->mallocFailed ){ return WRC_Abort; } assert( p->pSrc!=0 ); if( (selFlags & SF_Expanded)!=0 ){ return WRC_Prune; } if( pWalker->eCode ){ /* Renumber selId because it has been copied from a view */ p->selId = ++pParse->nSelect; } pTabList = p->pSrc; pEList = p->pEList; if( pParse->pWith && (p->selFlags & SF_View) ){ if( p->pWith==0 ){ p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); if( p->pWith==0 ){ return WRC_Abort; } } p->pWith->bView = 1; } sqlite3WithPush(pParse, p->pWith, 0); /* Make sure cursor numbers have been assigned to all entries in ** the FROM clause of the SELECT statement. */ sqlite3SrcListAssignCursors(pParse, pTabList); /* Look up every table named in the FROM clause of the select. If ** an entry of the FROM clause is a subquery instead of a table or view, ** then create a transient table structure to describe the subquery. */ for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab; assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); if( pFrom->pTab ) continue; assert( pFrom->fg.isRecursive==0 ); if( pFrom->zName==0 ){ #ifndef SQLITE_OMIT_SUBQUERY Select *pSel = pFrom->pSelect; /* A sub-query in the FROM clause of a SELECT */ assert( pSel!=0 ); assert( pFrom->pTab==0 ); if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; #endif #ifndef SQLITE_OMIT_CTE }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ if( rc>1 ) return WRC_Abort; pTab = pFrom->pTab; assert( pTab!=0 ); #endif }else{ /* An ordinary table or view name in the FROM clause */ assert( pFrom->pTab==0 ); pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); if( pTab==0 ) return WRC_Abort; if( pTab->nTabRef>=0xffff ){ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", pTab->zName); pFrom->pTab = 0; return WRC_Abort; } pTab->nTabRef++; if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ return WRC_Abort; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( !IsOrdinaryTable(pTab) ){ i16 nCol; u8 eCodeOrig = pWalker->eCode; if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; assert( pFrom->pSelect==0 ); if( IsView(pTab) ){ if( (db->flags & SQLITE_EnableView)==0 && pTab->pSchema!=db->aDb[1].pSchema ){ sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", pTab->zName); } pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( ALWAYS(IsVirtual(pTab)) && pFrom->fg.fromDDL && ALWAYS(pTab->u.vtab.p!=0) && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) ){ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", pTab->zName); } assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); #endif nCol = pTab->nCol; pTab->nCol = -1; pWalker->eCode = 1; /* Turn on Select.selId renumbering */ sqlite3WalkSelect(pWalker, pFrom->pSelect); pWalker->eCode = eCodeOrig; pTab->nCol = nCol; } #endif } /* Locate the index named by the INDEXED BY clause, if any. */ if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ return WRC_Abort; } } /* Process NATURAL keywords, and ON and USING clauses of joins. */ assert( db->mallocFailed==0 || pParse->nErr!=0 ); if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ return WRC_Abort; } /* For every "*" that occurs in the column list, insert the names of ** all columns in all tables. And for every TABLE.* insert the names ** of all columns in TABLE. The parser inserted a special expression ** with the TK_ASTERISK operator for each "*" that it found in the column ** list. The following code just has to locate the TK_ASTERISK ** expressions and expand each one to the list of all columns in ** all tables. ** ** The first loop just checks to see if there are any "*" operators ** that need expanding. */ for(k=0; knExpr; k++){ pE = pEList->a[k].pExpr; if( pE->op==TK_ASTERISK ) break; assert( pE->op!=TK_DOT || pE->pRight!=0 ); assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; elistFlags |= pE->flags; } if( knExpr ){ /* ** If we get here it means the result set contains one or more "*" ** operators that need to be expanded. Loop through each expression ** in the result set and expand them one by one. */ struct ExprList_item *a = pEList->a; ExprList *pNew = 0; int flags = pParse->db->flags; int longNames = (flags & SQLITE_FullColNames)!=0 && (flags & SQLITE_ShortColNames)==0; for(k=0; knExpr; k++){ pE = a[k].pExpr; elistFlags |= pE->flags; pRight = pE->pRight; assert( pE->op!=TK_DOT || pRight!=0 ); if( pE->op!=TK_ASTERISK && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) ){ /* This particular expression does not need to be expanded. */ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); if( pNew ){ pNew->a[pNew->nExpr-1].zEName = a[k].zEName; pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; a[k].zEName = 0; } a[k].pExpr = 0; }else{ /* This expression is a "*" or a "TABLE.*" and needs to be ** expanded. */ int tableSeen = 0; /* Set to 1 when TABLE matches */ char *zTName = 0; /* text of name of TABLE */ int iErrOfst; if( pE->op==TK_DOT ){ assert( pE->pLeft!=0 ); assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); zTName = pE->pLeft->u.zToken; assert( ExprUseWOfst(pE->pLeft) ); iErrOfst = pE->pRight->w.iOfst; }else{ assert( ExprUseWOfst(pE) ); iErrOfst = pE->w.iOfst; } for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; /* Table for this data source */ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ char *zTabName; /* AS name for this data source */ const char *zSchemaName = 0; /* Schema name for this data source */ int iDb; /* Schema index for this data src */ IdList *pUsing; /* USING clause for pFrom[1] */ if( (zTabName = pFrom->zAlias)==0 ){ zTabName = pTab->zName; } if( db->mallocFailed ) break; assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); if( pFrom->fg.isNestedFrom ){ assert( pFrom->pSelect!=0 ); pNestedFrom = pFrom->pSelect->pEList; assert( pNestedFrom!=0 ); assert( pNestedFrom->nExpr==pTab->nCol ); }else{ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ continue; } pNestedFrom = 0; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; } if( i+1nSrc && pFrom[1].fg.isUsing && (selFlags & SF_NestedFrom)!=0 ){ int ii; pUsing = pFrom[1].u3.pUsing; for(ii=0; iinId; ii++){ const char *zUName = pUsing->a[ii].zName; pRight = sqlite3Expr(db, TK_ID, zUName); sqlite3ExprSetErrorOffset(pRight, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pRight); if( pNew ){ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); pX->zEName = sqlite3MPrintf(db,"..%s", zUName); pX->fg.eEName = ENAME_TAB; pX->fg.bUsingTerm = 1; } } }else{ pUsing = 0; } for(j=0; jnCol; j++){ char *zName = pTab->aCol[j].zCnName; struct ExprList_item *pX; /* Newly added ExprList term */ assert( zName ); if( zTName && pNestedFrom && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 ){ continue; } /* If a column is marked as 'hidden', omit it from the expanded ** result-set list unless the SELECT has the SF_IncludeHidden ** bit set. */ if( (p->selFlags & SF_IncludeHidden)==0 && IsHiddenColumn(&pTab->aCol[j]) ){ continue; } if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 && zTName==0 && (selFlags & (SF_NestedFrom))==0 ){ continue; } tableSeen = 1; if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ if( pFrom->fg.isUsing && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 ){ /* In a join with a USING clause, omit columns in the ** using clause from the table on the right. */ continue; } } pRight = sqlite3Expr(db, TK_ID, zName); if( (pTabList->nSrc>1 && ( (pFrom->fg.jointype & JT_LTORJ)==0 || (selFlags & SF_NestedFrom)!=0 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) ) ) || IN_RENAME_OBJECT ){ Expr *pLeft; pLeft = sqlite3Expr(db, TK_ID, zTabName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); if( IN_RENAME_OBJECT && pE->pLeft ){ sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); } if( zSchemaName ){ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); } }else{ pExpr = pRight; } sqlite3ExprSetErrorOffset(pExpr, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); if( pNew==0 ){ break; /* OOM */ } pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ if( pNestedFrom ){ pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); testcase( pX->zEName==0 ); }else{ pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", zSchemaName, zTabName, zName); testcase( pX->zEName==0 ); } pX->fg.eEName = ENAME_TAB; if( (pFrom->fg.isUsing && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 ){ pX->fg.bNoExpand = 1; } }else if( longNames ){ pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); pX->fg.eEName = ENAME_NAME; }else{ pX->zEName = sqlite3DbStrDup(db, zName); pX->fg.eEName = ENAME_NAME; } } } if( !tableSeen ){ if( zTName ){ sqlite3ErrorMsg(pParse, "no such table: %s", zTName); }else{ sqlite3ErrorMsg(pParse, "no tables specified"); } } } } sqlite3ExprListDelete(db, pEList); p->pEList = pNew; } if( p->pEList ){ if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns in result set"); return WRC_Abort; } if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ p->selFlags |= SF_ComplexResult; } } #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x8 ){ TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return WRC_Continue; } #if SQLITE_DEBUG /* ** Always assert. This xSelectCallback2 implementation proves that the ** xSelectCallback2 is never invoked. */ SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); assert( 0 ); } #endif /* ** This routine "expands" a SELECT statement and all of its subqueries. ** For additional information on what it means to "expand" a SELECT ** statement, see the comment on the selectExpand worker callback above. ** ** Expanding a SELECT statement is the first step in processing a ** SELECT statement. The SELECT statement must be expanded before ** name resolution is performed. ** ** If anything goes wrong, an error message is written into pParse. ** The calling function can detect the problem by looking at pParse->nErr ** and/or pParse->db->mallocFailed. */ static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ Walker w; w.xExprCallback = sqlite3ExprWalkNoop; w.pParse = pParse; if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ w.xSelectCallback = convertCompoundSelectToSubquery; w.xSelectCallback2 = 0; sqlite3WalkSelect(&w, pSelect); } w.xSelectCallback = selectExpander; w.xSelectCallback2 = sqlite3SelectPopWith; w.eCode = 0; sqlite3WalkSelect(&w, pSelect); } #ifndef SQLITE_OMIT_SUBQUERY /* ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() ** interface. ** ** For each FROM-clause subquery, add Column.zType, Column.zColl, and ** Column.affinity information to the Table structure that represents ** the result set of that subquery. ** ** The Table structure that represents the result set was constructed ** by selectExpander() but the type and collation and affinity information ** was omitted at that point because identifiers had not yet been resolved. ** This routine is called after identifier resolution. */ static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ Parse *pParse; int i; SrcList *pTabList; SrcItem *pFrom; assert( p->selFlags & SF_Resolved ); if( p->selFlags & SF_HasTypeInfo ) return; p->selFlags |= SF_HasTypeInfo; pParse = pWalker->pParse; pTabList = p->pSrc; for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; assert( pTab!=0 ); if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ /* A sub-query in the FROM clause of a SELECT */ Select *pSel = pFrom->pSelect; if( pSel ){ sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE); } } } } #endif /* ** This routine adds datatype and collating sequence information to ** the Table structures of all FROM-clause subqueries in a ** SELECT statement. ** ** Use this routine after name resolution. */ static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ #ifndef SQLITE_OMIT_SUBQUERY Walker w; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = selectAddSubqueryTypeInfo; w.xExprCallback = sqlite3ExprWalkNoop; w.pParse = pParse; sqlite3WalkSelect(&w, pSelect); #endif } /* ** This routine sets up a SELECT statement for processing. The ** following is accomplished: ** ** * VDBE Cursor numbers are assigned to all FROM-clause terms. ** * Ephemeral Table objects are created for all FROM-clause subqueries. ** * ON and USING clauses are shifted into WHERE statements ** * Wildcards "*" and "TABLE.*" in result sets are expanded. ** * Identifiers in expression are matched to tables. ** ** This routine acts recursively on all subqueries within the SELECT. */ SQLITE_PRIVATE void sqlite3SelectPrep( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ NameContext *pOuterNC /* Name context for container */ ){ assert( p!=0 || pParse->db->mallocFailed ); assert( pParse->db->pParse==pParse ); if( pParse->db->mallocFailed ) return; if( p->selFlags & SF_HasTypeInfo ) return; sqlite3SelectExpand(pParse, p); if( pParse->nErr ) return; sqlite3ResolveSelectNames(pParse, p, pOuterNC); if( pParse->nErr ) return; sqlite3SelectAddTypeInfo(pParse, p); } #if TREETRACE_ENABLED /* ** Display all information about an AggInfo object */ static void printAggInfo(AggInfo *pAggInfo){ int ii; for(ii=0; iinColumn; ii++){ struct AggInfo_col *pCol = &pAggInfo->aCol[ii]; sqlite3DebugPrintf( "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d" " iSorterColumn=%d %s\n", ii, pCol->pTab ? pCol->pTab->zName : "NULL", pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii, pCol->iSorterColumn, ii>=pAggInfo->nAccumulator ? "" : " Accumulator"); sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); } for(ii=0; iinFunc; ii++){ sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii); sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); } } #endif /* TREETRACE_ENABLED */ /* ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[] ** entries for columns that are arguments to aggregate functions but which ** are not otherwise used. ** ** The aCol[] entries in AggInfo prior to nAccumulator are columns that ** are referenced outside of aggregate functions. These might be columns ** that are part of the GROUP by clause, for example. Other database engines ** would throw an error if there is a column reference that is not in the ** GROUP BY clause and that is not part of an aggregate function argument. ** But SQLite allows this. ** ** The aCol[] entries beginning with the aCol[nAccumulator] and following ** are column references that are used exclusively as arguments to ** aggregate functions. This routine is responsible for computing ** (or recomputing) those aCol[] entries. */ static void analyzeAggFuncArgs( AggInfo *pAggInfo, NameContext *pNC ){ int i; assert( pAggInfo!=0 ); assert( pAggInfo->iFirstReg==0 ); pNC->ncFlags |= NC_InAggFunc; for(i=0; inFunc; i++){ Expr *pExpr = pAggInfo->aFunc[i].pFExpr; assert( ExprUseXList(pExpr) ); sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList); #ifndef SQLITE_OMIT_WINDOWFUNC assert( !IsWindowFunc(pExpr) ); if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter); } #endif } pNC->ncFlags &= ~NC_InAggFunc; } /* ** An index on expressions is being used in the inner loop of an ** aggregate query with a GROUP BY clause. This routine attempts ** to adjust the AggInfo object to take advantage of index and to ** perhaps use the index as a covering index. ** */ static void optimizeAggregateUseOfIndexedExpr( Parse *pParse, /* Parsing context */ Select *pSelect, /* The SELECT statement being processed */ AggInfo *pAggInfo, /* The aggregate info */ NameContext *pNC /* Name context used to resolve agg-func args */ ){ assert( pAggInfo->iFirstReg==0 ); assert( pSelect!=0 ); assert( pSelect->pGroupBy!=0 ); pAggInfo->nColumn = pAggInfo->nAccumulator; if( ALWAYS(pAggInfo->nSortingColumn>0) ){ int mx = pSelect->pGroupBy->nExpr - 1; int j, k; for(j=0; jnColumn; j++){ k = pAggInfo->aCol[j].iSorterColumn; if( k>mx ) mx = k; } pAggInfo->nSortingColumn = mx+1; } analyzeAggFuncArgs(pAggInfo, pNC); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ IndexedExpr *pIEpr; TREETRACE(0x20, pParse, pSelect, ("AggInfo (possibly) adjusted for Indexed Exprs\n")); sqlite3TreeViewSelect(0, pSelect, 0); for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ printf("data-cursor=%d index={%d,%d}\n", pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol); sqlite3TreeViewExpr(0, pIEpr->pExpr, 0); } printAggInfo(pAggInfo); } #else UNUSED_PARAMETER(pSelect); UNUSED_PARAMETER(pParse); #endif } /* ** Walker callback for aggregateConvertIndexedExprRefToColumn(). */ static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){ AggInfo *pAggInfo; struct AggInfo_col *pCol; UNUSED_PARAMETER(pWalker); if( pExpr->pAggInfo==0 ) return WRC_Continue; if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue; if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue; if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue; pAggInfo = pExpr->pAggInfo; if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue; assert( pExpr->iAgg>=0 ); pCol = &pAggInfo->aCol[pExpr->iAgg]; pExpr->op = TK_AGG_COLUMN; pExpr->iTable = pCol->iTable; pExpr->iColumn = pCol->iColumn; ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely); return WRC_Prune; } /* ** Convert every pAggInfo->aFunc[].pExpr such that any node within ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN ** opcode. */ static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){ int i; Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = aggregateIdxEprRefToColCallback; for(i=0; inFunc; i++){ sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr); } } /* ** Allocate a block of registers so that there is one register for each ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first ** register in this block is stored in pAggInfo->iFirstReg. ** ** This routine may only be called once for each AggInfo object. Prior ** to calling this routine: ** ** * The aCol[] and aFunc[] arrays may be modified ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used ** ** After calling this routine: ** ** * The aCol[] and aFunc[] arrays are fixed ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used ** */ static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){ assert( pAggInfo!=0 ); assert( pAggInfo->iFirstReg==0 ); pAggInfo->iFirstReg = pParse->nMem + 1; pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc; } /* ** Reset the aggregate accumulator. ** ** The aggregate accumulator is a set of memory cells that hold ** intermediate results while calculating an aggregate. This ** routine generates code that stores NULLs in all of those memory ** cells. */ static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pFunc; int nReg = pAggInfo->nFunc + pAggInfo->nColumn; assert( pAggInfo->iFirstReg>0 ); assert( pParse->db->pParse==pParse ); assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); if( nReg==0 ) return; if( pParse->nErr ) return; sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg, pAggInfo->iFirstReg+nReg-1); for(pFunc=pAggInfo->aFunc, i=0; inFunc; i++, pFunc++){ if( pFunc->iDistinct>=0 ){ Expr *pE = pFunc->pFExpr; assert( ExprUseXList(pE) ); if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " "argument"); pFunc->iDistinct = -1; }else{ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", pFunc->pFunc->zName)); } } } } /* ** Invoke the OP_AggFinalize opcode for every aggregate function ** in the AggInfo structure. */ static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ ExprList *pList; assert( ExprUseXList(pF->pFExpr) ); pList = pF->pFExpr->x.pList; sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i), pList ? pList->nExpr : 0); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); } } /* ** Generate code that will update the accumulator memory cells for an ** aggregate based on the current cursor position. ** ** If regAcc is non-zero and there are no min() or max() aggregates ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator ** registers if register regAcc contains 0. The caller will take care ** of setting and clearing regAcc. */ static void updateAccumulator( Parse *pParse, int regAcc, AggInfo *pAggInfo, int eDistinctType ){ Vdbe *v = pParse->pVdbe; int i; int regHit = 0; int addrHitTest = 0; struct AggInfo_func *pF; struct AggInfo_col *pC; assert( pAggInfo->iFirstReg>0 ); if( pParse->nErr ) return; pAggInfo->directMode = 1; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ int nArg; int addrNext = 0; int regAgg; ExprList *pList; assert( ExprUseXList(pF->pFExpr) ); assert( !IsWindowFunc(pF->pFExpr) ); pList = pF->pFExpr->x.pList; if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ Expr *pFilter = pF->pFExpr->y.pWin->pFilter; if( pAggInfo->nAccumulator && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) && regAcc ){ /* If regAcc==0, there there exists some min() or max() function ** without a FILTER clause that will ensure the magnet registers ** are populated. */ if( regHit==0 ) regHit = ++pParse->nMem; /* If this is the first row of the group (regAcc contains 0), clear the ** "magnet" register regHit so that the accumulator registers ** are populated if the FILTER clause jumps over the the ** invocation of min() or max() altogether. Or, if this is not ** the first row (regAcc contains 1), set the magnet register so that ** the accumulators are not populated unless the min()/max() is invoked ** and indicates that they should be. */ sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); } addrNext = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); } if( pList ){ nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 && pList ){ if( addrNext==0 ){ addrNext = sqlite3VdbeMakeLabel(pParse); } pF->iDistinct = codeDistinct(pParse, eDistinctType, pF->iDistinct, addrNext, pList, regAgg); } if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl = 0; struct ExprList_item *pItem; int j; assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ for(j=0, pItem=pList->a; !pColl && jpExpr); } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i)); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); } } if( regHit==0 && pAggInfo->nAccumulator ){ regHit = regAcc; } if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } for(i=0, pC=pAggInfo->aCol; inAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i)); } pAggInfo->directMode = 0; if( addrHitTest ){ sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); } } /* ** Add a single OP_Explain instruction to the VDBE to explain a simple ** count(*) query ("SELECT count(*) FROM pTab"). */ #ifndef SQLITE_OMIT_EXPLAIN static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", pTab->zName, bCover ? " USING COVERING INDEX " : "", bCover ? pIdx->zName : "" ); } } #else # define explainSimpleCount(a,b,c) #endif /* ** sqlite3WalkExpr() callback used by havingToWhere(). ** ** If the node passed to the callback is a TK_AND node, return ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. ** ** Otherwise, return WRC_Prune. In this case, also check if the ** sub-expression matches the criteria for being moved to the WHERE ** clause. If so, add it to the WHERE clause and replace the sub-expression ** within the HAVING expression with a constant "1". */ static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op!=TK_AND ){ Select *pS = pWalker->u.pSelect; /* This routine is called before the HAVING clause of the current ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set ** here, it indicates that the expression is a correlated reference to a ** column from an outer aggregate query, or an aggregate function that ** belongs to an outer query. Do not move the expression to the WHERE ** clause in this obscure case, as doing so may corrupt the outer Select ** statements AggInfo structure. */ if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) && ExprAlwaysFalse(pExpr)==0 && pExpr->pAggInfo==0 ){ sqlite3 *db = pWalker->pParse->db; Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); if( pNew ){ Expr *pWhere = pS->pWhere; SQ__SWAP(Expr, *pNew, *pExpr); pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); pS->pWhere = pNew; pWalker->eCode = 1; } } return WRC_Prune; } return WRC_Continue; } /* ** Transfer eligible terms from the HAVING clause of a query, which is ** processed after grouping, to the WHERE clause, which is processed before ** grouping. For example, the query: ** ** SELECT * FROM WHERE a=? GROUP BY b HAVING b=? AND c=? ** ** can be rewritten as: ** ** SELECT * FROM WHERE a=? AND b=? GROUP BY b HAVING c=? ** ** A term of the HAVING expression is eligible for transfer if it consists ** entirely of constants and expressions that are also GROUP BY terms that ** use the "BINARY" collation sequence. */ static void havingToWhere(Parse *pParse, Select *p){ Walker sWalker; memset(&sWalker, 0, sizeof(sWalker)); sWalker.pParse = pParse; sWalker.xExprCallback = havingToWhereExprCb; sWalker.u.pSelect = p; sqlite3WalkExpr(&sWalker, p->pHaving); #if TREETRACE_ENABLED if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* ** Check to see if the pThis entry of pTabList is a self-join of another view. ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst ** but stopping before iEnd. ** ** If pThis is a self-join, then return the SrcItem for the first other ** instance of that view found. If pThis is not a self-join then return 0. */ static SrcItem *isSelfJoinView( SrcList *pTabList, /* Search for self-joins in this FROM clause */ SrcItem *pThis, /* Search for prior reference to this subquery */ int iFirst, int iEnd /* Range of FROM-clause entries to search. */ ){ SrcItem *pItem; assert( pThis->pSelect!=0 ); if( pThis->pSelect->selFlags & SF_PushDown ) return 0; while( iFirsta[iFirst++]; if( pItem->pSelect==0 ) continue; if( pItem->fg.viaCoroutine ) continue; if( pItem->zName==0 ) continue; assert( pItem->pTab!=0 ); assert( pThis->pTab!=0 ); if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; pS1 = pItem->pSelect; if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ /* The query flattener left two different CTE tables with identical ** names in the same FROM clause. */ continue; } if( pItem->pSelect->selFlags & SF_PushDown ){ /* The view was modified by some other optimization such as ** pushDownWhereTerms() */ continue; } return pItem; } return 0; } /* ** Deallocate a single AggInfo object */ static void agginfoFree(sqlite3 *db, AggInfo *p){ sqlite3DbFree(db, p->aCol); sqlite3DbFree(db, p->aFunc); sqlite3DbFreeNN(db, p); } /* ** Attempt to transform a query of the form ** ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) ** ** Into this: ** ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) ** ** The transformation only works if all of the following are true: ** ** * The subquery is a UNION ALL of two or more terms ** * The subquery does not have a LIMIT clause ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries ** * The outer query is a simple count(*) with no WHERE clause or other ** extraneous syntax. ** ** Return TRUE if the optimization is undertaken. */ static int countOfViewOptimization(Parse *pParse, Select *p){ Select *pSub, *pPrior; Expr *pExpr; Expr *pCount; sqlite3 *db; if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ if( p->pWhere ) return 0; if( p->pHaving ) return 0; if( p->pGroupBy ) return 0; if( p->pOrderBy ) return 0; pExpr = p->pEList->a[0].pExpr; if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ assert( ExprUseUToken(pExpr) ); if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ assert( ExprUseXList(pExpr) ); if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */ pSub = p->pSrc->a[0].pSelect; if( pSub==0 ) return 0; /* The FROM is a subquery */ if( pSub->pPrior==0 ) return 0; /* Must be a compound */ if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */ do{ if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ if( pSub->pWhere ) return 0; /* No WHERE clause */ if( pSub->pLimit ) return 0; /* No LIMIT clause */ if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ assert( pSub->pHaving==0 ); /* Due to the previous */ pSub = pSub->pPrior; /* Repeat over compound */ }while( pSub ); /* If we reach this point then it is OK to perform the transformation */ db = pParse->db; pCount = pExpr; pExpr = 0; pSub = p->pSrc->a[0].pSelect; p->pSrc->a[0].pSelect = 0; sqlite3SrcListDelete(db, p->pSrc); p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); while( pSub ){ Expr *pTerm; pPrior = pSub->pPrior; pSub->pPrior = 0; pSub->pNext = 0; pSub->selFlags |= SF_Aggregate; pSub->selFlags &= ~SF_Compound; pSub->nSelectRow = 0; sqlite3ExprListDelete(db, pSub->pEList); pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); sqlite3PExprAddSelect(pParse, pTerm, pSub); if( pExpr==0 ){ pExpr = pTerm; }else{ pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); } pSub = pPrior; } p->pEList->a[0].pExpr = pExpr; p->selFlags &= ~SF_Aggregate; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x200 ){ TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } /* ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same ** as pSrcItem but has the same alias as p0, then return true. ** Otherwise return false. */ static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ int i; for(i=0; inSrc; i++){ SrcItem *p1 = &pSrc->a[i]; if( p1==p0 ) continue; if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ return 1; } if( p1->pSelect && (p1->pSelect->selFlags & SF_NestedFrom)!=0 && sameSrcAlias(p0, p1->pSelect->pSrc) ){ return 1; } } return 0; } /* ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can ** be implemented as a co-routine. The i-th entry is guaranteed to be ** a subquery. ** ** The subquery is implemented as a co-routine if all of the following are ** true: ** ** (1) The subquery will likely be implemented in the outer loop of ** the query. This will be the case if any one of the following ** conditions hold: ** (a) The subquery is the only term in the FROM clause ** (b) The subquery is the left-most term and a CROSS JOIN or similar ** requires it to be the outer loop ** (c) All of the following are true: ** (i) The subquery is the left-most subquery in the FROM clause ** (ii) There is nothing that would prevent the subquery from ** being used as the outer loop if the sqlite3WhereBegin() ** routine nominates it to that position. ** (iii) The query is not a UPDATE ... FROM ** (2) The subquery is not a CTE that should be materialized because ** (a) the AS MATERIALIZED keyword is used, or ** (b) the CTE is used multiple times and does not have the ** NOT MATERIALIZED keyword ** (3) The subquery is not part of a left operand for a RIGHT JOIN ** (4) The SQLITE_Coroutine optimization disable flag is not set ** (5) The subquery is not self-joined */ static int fromClauseTermCanBeCoroutine( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* FROM clause */ int i, /* Which term of the FROM clause holds the subquery */ int selFlags /* Flags on the SELECT statement */ ){ SrcItem *pItem = &pTabList->a[i]; if( pItem->fg.isCte ){ const CteUse *pCteUse = pItem->u2.pCteUse; if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */ if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */ } if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */ if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */ if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){ return 0; /* (5) */ } if( i==0 ){ if( pTabList->nSrc==1 ) return 1; /* (1a) */ if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */ if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ return 1; } if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ while( 1 /*exit-by-break*/ ){ if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */ if( i==0 ) break; i--; pItem--; if( pItem->pSelect!=0 ) return 0; /* (1c-i) */ } return 1; } /* ** Generate code for the SELECT statement given in the p argument. ** ** The results are returned according to the SelectDest structure. ** See comments in sqliteInt.h for further information. ** ** This routine returns the number of errors. If any errors are ** encountered, then an appropriate error message is left in ** pParse->zErrMsg. ** ** This routine does NOT free the Select structure passed in. The ** calling function needs to do that. */ SQLITE_PRIVATE int sqlite3Select( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ SelectDest *pDest /* What to do with the query results */ ){ int i, j; /* Loop counters */ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ Vdbe *v; /* The virtual machine under construction */ int isAgg; /* True for select lists like "count(*)" */ ExprList *pEList = 0; /* List of columns to extract. */ SrcList *pTabList; /* List of tables to select from */ Expr *pWhere; /* The WHERE clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ AggInfo *pAggInfo = 0; /* Aggregate information */ int rc = 1; /* Value to return from this function */ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ SortCtx sSort; /* Info on how to code the ORDER BY clause */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ u8 minMaxFlag; /* Flag for min/max queries */ db = pParse->db; assert( pParse==db->pParse ); v = sqlite3GetVdbe(pParse); if( p==0 || pParse->nErr ){ return 1; } assert( db->mallocFailed==0 ); if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; #if TREETRACE_ENABLED TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain)); if( sqlite3TreeTrace & 0x10000 ){ if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", __FILE__, __LINE__); } sqlite3ShowSelect(p); } #endif assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); if( IgnorableDistinct(pDest) ){ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); /* All of these destinations are also able to ignore the ORDER BY clause */ if( p->pOrderBy ){ #if TREETRACE_ENABLED TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n")); if( sqlite3TreeTrace & 0x800 ){ sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); } #endif sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3ExprListDelete, p->pOrderBy); testcase( pParse->earlyCleanup ); p->pOrderBy = 0; } p->selFlags &= ~SF_Distinct; p->selFlags |= SF_NoopOrderBy; } sqlite3SelectPrep(pParse, p, 0); if( pParse->nErr ){ goto select_end; } assert( db->mallocFailed==0 ); assert( p->pEList!=0 ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10 ){ TREETRACE(0x10,pParse,p, ("after name resolution:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the SF_UFSrcCheck flag is set, then this function is being called ** as part of populating the temp table for an UPDATE...FROM statement. ** In this case, it is an error if the target object (pSrc->a[0]) name ** or alias is duplicated within FROM clause (pSrc->a[1..n]). ** ** Postgres disallows this case too. The reason is that some other ** systems handle this case differently, and not all the same way, ** which is just confusing. To avoid this, we follow PG's lead and ** disallow it altogether. */ if( p->selFlags & SF_UFSrcCheck ){ SrcItem *p0 = &p->pSrc->a[0]; if( sameSrcAlias(p0, p->pSrc) ){ sqlite3ErrorMsg(pParse, "target object/alias may not appear in FROM clause: %s", p0->zAlias ? p0->zAlias : p0->pTab->zName ); goto select_end; } /* Clear the SF_UFSrcCheck flag. The check has already been performed, ** and leaving this flag set can cause errors if a compound sub-query ** in p->pSrc is flattened into this query and this function called ** again as part of compound SELECT processing. */ p->selFlags &= ~SF_UFSrcCheck; } if( pDest->eDest==SRT_Output ){ sqlite3GenerateColumnNames(pParse, p); } #ifndef SQLITE_OMIT_WINDOWFUNC if( sqlite3WindowRewrite(pParse, p) ){ assert( pParse->nErr ); goto select_end; } #if TREETRACE_ENABLED if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){ TREETRACE(0x40,pParse,p, ("after window rewrite:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif #endif /* SQLITE_OMIT_WINDOWFUNC */ pTabList = p->pSrc; isAgg = (p->selFlags & SF_Aggregate)!=0; memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; /* Try to do various optimizations (flattening subqueries, and strength ** reduction of join operators) in the FROM clause up into the main query */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; !p->pPrior && inSrc; i++){ SrcItem *pItem = &pTabList->a[i]; Select *pSub = pItem->pSelect; Table *pTab = pItem->pTab; /* The expander should have already created transient Table objects ** even for FROM clause elements such as subqueries that do not correspond ** to a real table */ assert( pTab!=0 ); /* Try to simplify joins: ** ** LEFT JOIN -> JOIN ** RIGHT JOIN -> JOIN ** FULL JOIN -> RIGHT JOIN ** ** If terms of the i-th table are used in the WHERE clause in such a ** way that the i-th table cannot be the NULL row of a join, then ** perform the appropriate simplification. This is called ** "OUTER JOIN strength reduction" in the SQLite documentation. */ if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor, pItem->fg.jointype & JT_LTORJ) && OptimizationEnabled(db, SQLITE_SimplifyJoin) ){ if( pItem->fg.jointype & JT_LEFT ){ if( pItem->fg.jointype & JT_RIGHT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i)); pItem->fg.jointype &= ~JT_LEFT; }else{ TREETRACE(0x1000,pParse,p, ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); } } if( pItem->fg.jointype & JT_LTORJ ){ for(j=i+1; jnSrc; j++){ SrcItem *pI2 = &pTabList->a[j]; if( pI2->fg.jointype & JT_RIGHT ){ if( pI2->fg.jointype & JT_LEFT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j)); pI2->fg.jointype &= ~JT_RIGHT; }else{ TREETRACE(0x1000,pParse,p, ("RIGHT-JOIN simplifies to JOIN on term %d\n",j)); pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER); } } } for(j=pTabList->nSrc-1; j>=i; j--){ pTabList->a[j].fg.jointype &= ~JT_LTORJ; if( pTabList->a[j].fg.jointype & JT_RIGHT ) break; } } assert( pItem->iCursor>=0 ); unsetJoinExpr(p->pWhere, pItem->iCursor, pTabList->a[0].fg.jointype & JT_LTORJ); } /* No further action if this term of the FROM clause is not a subquery */ if( pSub==0 ) continue; /* Catch mismatch in the declared columns of a view and the number of ** columns in the SELECT on the RHS */ if( pTab->nCol!=pSub->pEList->nExpr ){ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", pTab->nCol, pTab->zName, pSub->pEList->nExpr); goto select_end; } /* Do not attempt the usual optimizations (flattening and ORDER BY ** elimination) on a MATERIALIZED common table expression because ** a MATERIALIZED common table expression is an optimization fence. */ if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){ continue; } /* Do not try to flatten an aggregate subquery. ** ** Flattening an aggregate subquery is only possible if the outer query ** is not a join. But if the outer query is not a join, then the subquery ** will be implemented as a co-routine and there is no advantage to ** flattening in that case. */ if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; assert( pSub->pGroupBy==0 ); /* If a FROM-clause subquery has an ORDER BY clause that is not ** really doing anything, then delete it now so that it does not ** interfere with query flattening. See the discussion at ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a ** ** Beware of these cases where the ORDER BY clause may not be safely ** omitted: ** ** (1) There is also a LIMIT clause ** (2) The subquery was added to help with window-function ** processing ** (3) The subquery is in the FROM clause of an UPDATE ** (4) The outer query uses an aggregate function other than ** the built-in count(), min(), or max(). ** (5) The ORDER BY isn't going to accomplish anything because ** one of: ** (a) The outer query has a different ORDER BY clause ** (b) The subquery is part of a join ** See forum post 062d576715d277c8 ** ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled. */ if( pSub->pOrderBy!=0 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ && pSub->pLimit==0 /* Condition (1) */ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ && OptimizationEnabled(db, SQLITE_OmitOrderBy) ){ TREETRACE(0x800,pParse,p, ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3ExprListDelete, pSub->pOrderBy); pSub->pOrderBy = 0; } /* If the outer query contains a "complex" result set (that is, ** if the result set of the outer query uses functions or subqueries) ** and if the subquery contains an ORDER BY clause and if ** it will be implemented as a co-routine, then do not flatten. This ** restriction allows SQL constructs like this: ** ** SELECT expensive_function(x) ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); ** ** The expensive_function() is only computed on the 10 rows that ** are output, rather than every row of the table. ** ** The requirement that the outer query have a complex result set ** means that flattening does occur on simpler SQL constraints without ** the expensive_function() like: ** ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); */ if( pSub->pOrderBy!=0 && i==0 && (p->selFlags & SF_ComplexResult)!=0 && (pTabList->nSrc==1 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) ){ continue; } if( flattenSubquery(pParse, p, i, isAgg) ){ if( pParse->nErr ) goto select_end; /* This subquery can be absorbed into its parent. */ i = -1; } pTabList = p->pSrc; if( db->mallocFailed ) goto select_end; if( !IgnorableOrderby(pDest) ){ sSort.pOrderBy = p->pOrderBy; } } #endif #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); #if TREETRACE_ENABLED TREETRACE(0x400,pParse,p,("end compound-select processing\n")); if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif if( p->pNext==0 ) ExplainQueryPlanPop(pParse); return rc; } #endif /* Do the WHERE-clause constant propagation optimization if this is ** a join. No need to speed time on this operation for non-join queries ** as the equivalent optimization will be handled by query planner in ** sqlite3WhereBegin(). */ if( p->pWhere!=0 && p->pWhere->op==TK_AND && OptimizationEnabled(db, SQLITE_PropagateConst) && propagateConstants(pParse, p) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x2000 ){ TREETRACE(0x2000,pParse,p,("After constant propagation:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif }else{ TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n")); } if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) && countOfViewOptimization(pParse, p) ){ if( db->mallocFailed ) goto select_end; pTabList = p->pSrc; } /* For each term in the FROM clause, do two things: ** (1) Authorized unreferenced tables ** (2) Generate code for all sub-queries */ for(i=0; inSrc; i++){ SrcItem *pItem = &pTabList->a[i]; SrcItem *pPrior; SelectDest dest; Select *pSub; #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) const char *zSavedAuthContext; #endif /* Issue SQLITE_READ authorizations with a fake column name for any ** tables that are referenced but from which no values are extracted. ** Examples of where these kinds of null SQLITE_READ authorizations ** would occur: ** ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" ** ** The fake column name is an empty string. It is possible for a table to ** have a column named by the empty string, in which case there is no way to ** distinguish between an unreferenced table and an actual reference to the ** "" column. The original design was for the fake column name to be a NULL, ** which would be unambiguous. But legacy authorization callbacks might ** assume the column name is non-NULL and segfault. The use of an empty ** string for the fake column name seems safer. */ if( pItem->colUsed==0 && pItem->zName!=0 ){ sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* Generate code for all sub-queries in the FROM clause */ pSub = pItem->pSelect; if( pSub==0 ) continue; /* The code for a subquery should only be generated once. */ assert( pItem->addrFillSub==0 ); /* Increment Parse.nHeight by the height of the largest expression ** tree referred to by this, the parent select. The child select ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( OptimizationEnabled(db, SQLITE_PushDown) && (pItem->fg.isCte==0 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } #endif assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); }else{ TREETRACE(0x4000,pParse,p,("Push-down not possible\n")); } /* Convert unused result columns of the subquery into simple NULL ** expressions, to avoid unneeded searching and computation. */ if( OptimizationEnabled(db, SQLITE_NullUnusedCols) && disableUnusedSubqueryResultColumns(pItem) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("Change unused result columns to NULL for subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } #endif } zSavedAuthContext = pParse->zAuthContext; pParse->zAuthContext = pItem->zName; /* Generate code to implement the subquery */ if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){ /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%!S", pItem)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; pItem->fg.viaCoroutine = 1; pItem->regResult = dest.iSdst; sqlite3VdbeEndCoroutine(v, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ /* This is a CTE for which materialization code has already been ** generated. Invoke the subroutine to compute the materialization, ** the make the pItem->iCursor be a copy of the ephemeral table that ** holds the result of the materialization. */ CteUse *pCteUse = pItem->u2.pCteUse; sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); if( pItem->iCursor!=pCteUse->iCur ){ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); VdbeComment((v, "%!S", pItem)); } pSub->nSelectRow = pCteUse->nRowEst; }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){ /* This view has already been materialized by a prior entry in ** this same FROM clause. Reuse it. */ if( pPrior->addrFillSub ){ sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); } sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); pSub->nSelectRow = pPrior->pSelect->nSelectRow; }else{ /* Materialize the view. If the view is not correlated, generate a ** subroutine to do the materialization so that subsequent uses of ** the same view can reuse the materialization. */ int topAddr; int onceAddr = 0; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; #endif pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp0(v, OP_Goto); pItem->addrFillSub = topAddr+1; pItem->fg.isMaterialized = 1; if( pItem->fg.isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); VdbeComment((v, "materialize %!S", pItem)); }else{ VdbeNoopComment((v, "materialize %!S", pItem)); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); VdbeComment((v, "end %!S", pItem)); sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); sqlite3VdbeJumpHere(v, topAddr); sqlite3ClearTempRegCache(pParse); if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ CteUse *pCteUse = pItem->u2.pCteUse; pCteUse->addrM9e = pItem->addrFillSub; pCteUse->regRtn = pItem->regReturn; pCteUse->iCur = pItem->iCursor; pCteUse->nRowEst = pSub->nSelectRow; } } if( db->mallocFailed ) goto select_end; pParse->nHeight -= sqlite3SelectExprHeight(p); pParse->zAuthContext = zSavedAuthContext; #endif } /* Various elements of the SELECT copied into local variables for ** convenience */ pEList = p->pEList; pWhere = p->pWhere; pGroupBy = p->pGroupBy; pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x8000 ){ TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 #ifndef SQLITE_OMIT_WINDOWFUNC && p->pWin==0 #endif ){ p->selFlags &= ~SF_Distinct; pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); p->selFlags |= SF_Aggregate; /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the ** original setting of the SF_Distinct flag, not the current setting */ assert( sDistinct.isTnct ); sDistinct.isTnct = 2; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20000 ){ TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* If there is an ORDER BY clause, then create an ephemeral index to ** do the sorting. But this sorting ephemeral index might end up ** being unused if the data can be extracted in pre-sorted order. ** If that is the case, then the OP_OpenEphemeral instruction will be ** changed to an OP_Noop once we figure out that the sorting index is ** not needed. The sSort.addrSortIndex variable is used to facilitate ** that change. */ if( sSort.pOrderBy ){ KeyInfo *pKeyInfo; pKeyInfo = sqlite3KeyInfoFromExprList( pParse, sSort.pOrderBy, 0, pEList->nExpr); sSort.iECursor = pParse->nTab++; sSort.addrSortIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, (char*)pKeyInfo, P4_KEYINFO ); }else{ sSort.addrSortIndex = -1; } /* If the output is destined for a temporary table, open that table. */ if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); if( p->selFlags & SF_NestedFrom ){ /* Delete or NULL-out result columns that will never be used */ int ii; for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ sqlite3ExprDelete(db, pEList->a[ii].pExpr); sqlite3DbFree(db, pEList->a[ii].zEName); pEList->nExpr--; } for(ii=0; iinExpr; ii++){ if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; } } } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(pParse); if( (p->selFlags & SF_FixedLimit)==0 ){ p->nSelectRow = 320; /* 4 billion rows */ } if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); sSort.sortFlags |= SORTFLAG_UseSorter; } /* Open an ephemeral index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ sDistinct.tabTnct = pParse->nTab++; sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sDistinct.tabTnct, 0, 0, (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), P4_KEYINFO); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ /* No aggregate functions and no GROUP BY clause */ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) | (p->selFlags & SF_FixedLimit); #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin = p->pWin; /* Main window object (or NULL) */ if( pWin ){ sqlite3WindowCodeInit(pParse, p); } #endif assert( WHERE_USE_LIMIT==SF_FixedLimit ); /* Begin the database scan. */ TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, p->pEList, p, wctrlFlags, p->nSelectRow); if( pWInfo==0 ) goto select_end; if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); } if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); } if( sSort.pOrderBy ){ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ sSort.pOrderBy = 0; } } TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); /* If sorting index that was created by a prior OP_OpenEphemeral ** instruction ended up not being needed, then change the OP_OpenEphemeral ** into an OP_Noop. */ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); } assert( p->pEList==pEList ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ int addrGosub = sqlite3VdbeMakeLabel(pParse); int iCont = sqlite3VdbeMakeLabel(pParse); int iBreak = sqlite3VdbeMakeLabel(pParse); int regGosub = ++pParse->nMem; sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); sqlite3VdbeResolveLabel(v, addrGosub); VdbeNoopComment((v, "inner-loop subroutine")); sSort.labelOBLopt = 0; selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp1(v, OP_Return, regGosub); VdbeComment((v, "end inner-loop subroutine")); sqlite3VdbeResolveLabel(v, iBreak); }else #endif /* SQLITE_OMIT_WINDOWFUNC */ { /* Use the standard inner loop. */ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, sqlite3WhereContinueLabel(pWInfo), sqlite3WhereBreakLabel(pWInfo)); /* End the database scan loop. */ TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); } }else{ /* This case when there exist aggregate functions or a GROUP BY clause ** or both */ NameContext sNC; /* Name context for processing aggregate information */ int iAMem; /* First Mem address for storing current GROUP BY */ int iBMem; /* First Mem address for previous GROUP BY */ int iUseFlag; /* Mem address holding flag indicating that at least ** one row of the input to the aggregator has been ** processed */ int iAbortFlag; /* Mem address which causes query abort if positive */ int groupBySort; /* Rows come from source in GROUP BY order */ int addrEnd; /* End of processing for this SELECT */ int sortPTab = 0; /* Pseudotable used to decode sorting results */ int sortOut = 0; /* Output register from the sorter */ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ /* Remove any and all aliases between the result set and the ** GROUP BY clause. */ if( pGroupBy ){ int k; /* Loop counter */ struct ExprList_item *pItem; /* For looping over expression in a list */ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } assert( 66==sqlite3LogEst(100) ); if( p->nSelectRow>66 ) p->nSelectRow = 66; /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then it may be possible to disable the ORDER BY clause ** on the grounds that the GROUP BY will cause elements to come out ** in the correct order. It also may not - the GROUP BY might use a ** database index that causes rows to be grouped together as required ** but not actually sorted. Either way, record the fact that the ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp ** variable. */ if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ int ii; /* The GROUP BY processing doesn't care whether rows are delivered in ** ASC or DESC order - only that each group is returned contiguously. ** So set the ASC/DESC flags in the GROUP BY to match those in the ** ORDER BY to maximize the chances of rows being delivered in an ** order that makes the ORDER BY redundant. */ for(ii=0; iinExpr; ii++){ u8 sortFlags; sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; pGroupBy->a[ii].fg.sortFlags = sortFlags; } if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ orderByGrp = 1; } } }else{ assert( 0==sqlite3LogEst(1) ); p->nSelectRow = 0; } /* Create a label to jump to when we want to abort the query */ addrEnd = sqlite3VdbeMakeLabel(pParse); /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the ** SELECT statement. */ pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); if( pAggInfo ){ sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); testcase( pParse->earlyCleanup ); } if( db->mallocFailed ){ goto select_end; } pAggInfo->selId = p->selId; #ifdef SQLITE_DEBUG pAggInfo->pSelect = p; #endif memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pAggInfo = pAggInfo; VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; pAggInfo->pGroupBy = pGroupBy; sqlite3ExprAnalyzeAggList(&sNC, pEList); sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); if( pHaving ){ if( pGroupBy ){ assert( pWhere==p->pWhere ); assert( pHaving==p->pHaving ); assert( pGroupBy==p->pGroupBy ); havingToWhere(pParse, p); pWhere = p->pWhere; } sqlite3ExprAnalyzeAggregates(&sNC, pHaving); } pAggInfo->nAccumulator = pAggInfo->nColumn; if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); }else{ minMaxFlag = WHERE_ORDERBY_NORMAL; } analyzeAggFuncArgs(pAggInfo, &sNC); if( db->mallocFailed ) goto select_end; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); sqlite3TreeViewSelect(0, p, 0); if( minMaxFlag ){ sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); } printAggInfo(pAggInfo); } #endif /* Processing for aggregates with GROUP BY is very different and ** much more complex than aggregates without a GROUP BY. */ if( pGroupBy ){ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ int addr1; /* A-vs-B comparison jump */ int addrOutputRow; /* Start of subroutine that outputs a result row */ int regOutputRow; /* Return address register for output subroutine */ int addrSetAbort; /* Set the abort flag and return */ int addrTopOfLoop; /* Top of the input loop */ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ int addrReset; /* Subroutine for resetting the accumulator */ int regReset; /* Return address register for reset subroutine */ ExprList *pDistinct = 0; u16 distFlag = 0; int eDist = WHERE_DISTINCT_NOOP; if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) && pAggInfo->aFunc[0].pFExpr->x.pList!=0 ){ Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; pExpr = sqlite3ExprDup(db, pExpr, 0); pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; } /* If there is a GROUP BY clause we might need a sorting index to ** implement it. Allocate that sorting index now. If it turns out ** that we do not need it after all, the OP_SorterOpen instruction ** will be converted into a Noop. */ pAggInfo->sortingIdx = pParse->nTab++; pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 0, pAggInfo->nColumn); addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 0, (char*)pKeyInfo, P4_KEYINFO); /* Initialize memory locations used by GROUP BY aggregate processing */ iUseFlag = ++pParse->nMem; iAbortFlag = ++pParse->nMem; regOutputRow = ++pParse->nMem; addrOutputRow = sqlite3VdbeMakeLabel(pParse); regReset = ++pParse->nMem; addrReset = sqlite3VdbeMakeLabel(pParse); iAMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 ); if( pWInfo==0 ){ sqlite3ExprListDelete(db, pDistinct); goto select_end; } if( pParse->pIdxEpr ){ optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC); } assignAggregateRegisters(pParse, pAggInfo); eDist = sqlite3WhereIsDistinct(pWInfo); TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ /* The optimizer is able to deliver rows in group by order so ** we do not have to sort. The OP_OpenEphemeral table will be ** cancelled later because we still need to use the pKeyInfo */ groupBySort = 0; }else{ /* Rows are coming out in undetermined order. We have to push ** each row into a sorting index, terminate the first loop, ** then loop over the sorting index in order to get the output ** in sorted order */ int regBase; int regRecord; int nCol; int nGroupBy; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp; /* Address of OP_Explain instruction */ #endif ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s", (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? "DISTINCT" : "GROUP BY" )); groupBySort = 1; nGroupBy = pGroupBy->nExpr; nCol = nGroupBy; j = nGroupBy; for(i=0; inColumn; i++){ if( pAggInfo->aCol[i].iSorterColumn>=j ){ nCol++; j++; } } regBase = sqlite3GetTempRange(pParse, nCol); sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); j = nGroupBy; pAggInfo->directMode = 1; for(i=0; inColumn; i++){ struct AggInfo_col *pCol = &pAggInfo->aCol[i]; if( pCol->iSorterColumn>=j ){ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); j++; } } pAggInfo->directMode = 0; regRecord = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); pAggInfo->useSortingIdx = 1; sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab); sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx); } /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions ** that are indexed (and that were previously identified and tagged ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions ** must now be converted into a TK_AGG_COLUMN node so that the value ** is correctly pulled from the index rather than being recomputed. */ if( pParse->pIdxEpr ){ aggregateConvertIndexedExprRefToColumn(pAggInfo); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20, pParse, p, ("AggInfo function expressions converted to reference index\n")); sqlite3TreeViewSelect(0, p, 0); printAggInfo(pAggInfo); } #endif } /* If the index or temporary table used by the GROUP BY sort ** will naturally deliver rows in the order required by the ORDER BY ** clause, cancel the ephemeral table open coded earlier. ** ** This is an optimization - the correct answer should result regardless. ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to ** disable this optimization for testing purposes. */ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) && (groupBySort || sqlite3WhereIsSorted(pWInfo)) ){ sSort.pOrderBy = 0; sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); } /* Evaluate the current GROUP BY terms and store in b0, b1, b2... ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, sortOut, sortPTab); } for(j=0; jnExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); }else{ pAggInfo->directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); addr1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); /* Generate code that runs whenever the GROUP BY changes. ** Changes in the GROUP BY are detected by the previous code ** block. If there were no changes, this block is skipped. ** ** This code copies current group by terms in b0,b1,b2,... ** over to a0,a1,a2. It then calls the output subroutine ** and resets the aggregate accumulator registers in preparation ** for the next GROUP BY batch. */ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output one row")); sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); VdbeComment((v, "check abort flag")); sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, addr1); updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); VdbeCoverage(v); }else{ TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); sqlite3VdbeChangeToNoop(v, addrSortingIdx); } sqlite3ExprListDelete(db, pDistinct); /* Output the final row of result */ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output final row")); /* Jump over the subroutines */ sqlite3VdbeGoto(v, addrEnd); /* Generate a subroutine that outputs a single row of the result ** set. This subroutine first looks at the iUseFlag. If iUseFlag ** is less than or equal to zero, the subroutine is a no-op. If ** the processing calls for the query to abort, this subroutine ** increments the iAbortFlag memory location before returning in ** order to signal the caller to abort. */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, pAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); VdbeComment((v, "end groupby result generator")); /* Generate a subroutine that will reset the group-by accumulator */ sqlite3VdbeResolveLabel(v, addrReset); resetAccumulator(pParse, pAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); sqlite3VdbeAddOp1(v, OP_Return, regReset); if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ struct AggInfo_func *pF = &pAggInfo->aFunc[0]; fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); } } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ else { Table *pTab; if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ /* If isSimpleCount() returns a pointer to a Table structure, then ** the SQL statement is of the form: ** ** SELECT count(*) FROM ** ** where the Table structure returned represents table . ** ** This statement is so common that it is optimized specially. The ** OP_Count instruction is executed either on the intkey table that ** contains the data for table or on one of its indexes. It ** is better to execute the op on an index, as indexes are almost ** always spread across less pages than their corresponding tables. */ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ Index *pIdx; /* Iterator variable */ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ Index *pBest = 0; /* Best index found so far */ Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); /* Search for the index that has the lowest scan cost. ** ** (2011-04-15) Do not do a full scan of an unordered index. ** ** (2013-10-03) Do not count the entries in a partial index. ** ** In practice the KeyInfo structure will not be used. It is only ** passed to keep OP_OpenRead happy. */ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); if( !p->pSrc->a[0].fg.notIndexed ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->bUnordered==0 && pIdx->szIdxRowszTabRow && pIdx->pPartIdxWhere==0 && (!pBest || pIdx->szIdxRowszIdxRow) ){ pBest = pIdx; } } } if( pBest ){ iRoot = pBest->tnum; pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); } /* Open a read-only cursor, execute the OP_Count, close the cursor. */ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); if( pKeyInfo ){ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); } assignAggregateRegisters(pParse, pAggInfo); sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0)); sqlite3VdbeAddOp1(v, OP_Close, iCsr); explainSimpleCount(pParse, pTab, pBest); }else{ int regAcc = 0; /* "populate accumulators" flag */ ExprList *pDistinct = 0; u16 distFlag = 0; int eDist; /* If there are accumulator registers but no min() or max() functions ** without FILTER clauses, allocate register regAcc. Register regAcc ** will contain 0 the first time the inner loop runs, and 1 thereafter. ** The code generated by updateAccumulator() uses this to ensure ** that the accumulator registers are (a) updated only once if ** there are no min() or max functions or (b) always updated for the ** first row visited by the aggregate, so that they are updated at ** least once even if the FILTER clause means the min() or max() ** function visits zero rows. */ if( pAggInfo->nAccumulator ){ for(i=0; inFunc; i++){ if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ continue; } if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ break; } } if( i==pAggInfo->nFunc ){ regAcc = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); } }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; } assignAggregateRegisters(pParse, pAggInfo); /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ assert( p->pGroupBy==0 ); resetAccumulator(pParse, pAggInfo); /* If this query is a candidate for the min/max optimization, then ** minMaxFlag will have been previously set to either ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will ** be an appropriate ORDER BY expression for the optimization. */ assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, pDistinct, p, minMaxFlag|distFlag, 0); if( pWInfo==0 ){ goto select_end; } TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); eDist = sqlite3WhereIsDistinct(pWInfo); updateAccumulator(pParse, regAcc, pAggInfo, eDist); if( eDist!=WHERE_DISTINCT_NOOP ){ struct AggInfo_func *pF = pAggInfo->aFunc; if( pF ){ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); } } if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); if( minMaxFlag ){ sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); } TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); finalizeAggFunctions(pParse, pAggInfo); } sSort.pOrderBy = 0; sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, -1, 0, 0, pDest, addrEnd, addrEnd); } sqlite3VdbeResolveLabel(v, addrEnd); } /* endif aggregate query */ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ assert( p->pEList==pEList ); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT has been coded. If there is an error in the Parse structure, ** set the return code to 1. Otherwise 0. */ rc = (pParse->nErr>0); /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: assert( db->mallocFailed==0 || db->mallocFailed==1 ); assert( db->mallocFailed==0 || pParse->nErr!=0 ); sqlite3ExprListDelete(db, pMinMaxOrderBy); #ifdef SQLITE_DEBUG if( pAggInfo && !db->mallocFailed ){ for(i=0; inColumn; i++){ Expr *pExpr = pAggInfo->aCol[i].pCExpr; if( pExpr==0 ) continue; assert( pExpr->pAggInfo==pAggInfo ); assert( pExpr->iAgg==i ); } for(i=0; inFunc; i++){ Expr *pExpr = pAggInfo->aFunc[i].pFExpr; assert( pExpr!=0 ); assert( pExpr->pAggInfo==pAggInfo ); assert( pExpr->iAgg==i ); } } #endif #if TREETRACE_ENABLED TREETRACE(0x1,pParse,p,("end processing\n")); if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif ExplainQueryPlanPop(pParse); return rc; } /************** End of select.c **********************************************/ /************** Begin file table.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the sqlite3_get_table() and sqlite3_free_table() ** interface routines. These are just wrappers around the main ** interface routine of sqlite3_exec(). ** ** These routines are in a separate files so that they will not be linked ** if they are not used. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_GET_TABLE /* ** This structure is used to pass data from sqlite3_get_table() through ** to the callback function is uses to build the result. */ typedef struct TabResult { char **azResult; /* Accumulated output */ char *zErrMsg; /* Error message text, if an error occurs */ u32 nAlloc; /* Slots allocated for azResult[] */ u32 nRow; /* Number of rows in the result */ u32 nColumn; /* Number of columns in the result */ u32 nData; /* Slots used in azResult[]. (nRow+1)*nColumn */ int rc; /* Return code from sqlite3_exec() */ } TabResult; /* ** This routine is called once for each row in the result table. Its job ** is to fill in the TabResult structure appropriately, allocating new ** memory as necessary. */ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){ TabResult *p = (TabResult*)pArg; /* Result accumulator */ int need; /* Slots needed in p->azResult[] */ int i; /* Loop counter */ char *z; /* A single column of result */ /* Make sure there is enough space in p->azResult to hold everything ** we need to remember from this invocation of the callback. */ if( p->nRow==0 && argv!=0 ){ need = nCol*2; }else{ need = nCol; } if( p->nData + need > p->nAlloc ){ char **azNew; p->nAlloc = p->nAlloc*2 + need; azNew = sqlite3Realloc( p->azResult, sizeof(char*)*p->nAlloc ); if( azNew==0 ) goto malloc_failed; p->azResult = azNew; } /* If this is the first row, then generate an extra row containing ** the names of all columns. */ if( p->nRow==0 ){ p->nColumn = nCol; for(i=0; iazResult[p->nData++] = z; } }else if( (int)p->nColumn!=nCol ){ sqlite3_free(p->zErrMsg); p->zErrMsg = sqlite3_mprintf( "sqlite3_get_table() called with two or more incompatible queries" ); p->rc = SQLITE_ERROR; return 1; } /* Copy over the row data */ if( argv!=0 ){ for(i=0; iazResult[p->nData++] = z; } p->nRow++; } return 0; malloc_failed: p->rc = SQLITE_NOMEM_BKPT; return 1; } /* ** Query the database. But instead of invoking a callback for each row, ** malloc() for space to hold the result and return the entire results ** at the conclusion of the call. ** ** The result that is written to ***pazResult is held in memory obtained ** from malloc(). But the caller cannot free this memory directly. ** Instead, the entire table should be passed to sqlite3_free_table() when ** the calling procedure is finished using it. */ SQLITE_API int sqlite3_get_table( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ char ***pazResult, /* Write the result table here */ int *pnRow, /* Write the number of rows in the result here */ int *pnColumn, /* Write the number of columns of result here */ char **pzErrMsg /* Write error messages here */ ){ int rc; TabResult res; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || pazResult==0 ) return SQLITE_MISUSE_BKPT; #endif *pazResult = 0; if( pnColumn ) *pnColumn = 0; if( pnRow ) *pnRow = 0; if( pzErrMsg ) *pzErrMsg = 0; res.zErrMsg = 0; res.nRow = 0; res.nColumn = 0; res.nData = 1; res.nAlloc = 20; res.rc = SQLITE_OK; res.azResult = sqlite3_malloc64(sizeof(char*)*res.nAlloc ); if( res.azResult==0 ){ db->errCode = SQLITE_NOMEM; return SQLITE_NOMEM_BKPT; } res.azResult[0] = 0; rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg); assert( sizeof(res.azResult[0])>= sizeof(res.nData) ); res.azResult[0] = SQLITE_INT_TO_PTR(res.nData); if( (rc&0xff)==SQLITE_ABORT ){ sqlite3_free_table(&res.azResult[1]); if( res.zErrMsg ){ if( pzErrMsg ){ sqlite3_free(*pzErrMsg); *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg); } sqlite3_free(res.zErrMsg); } db->errCode = res.rc; /* Assume 32-bit assignment is atomic */ return res.rc; } sqlite3_free(res.zErrMsg); if( rc!=SQLITE_OK ){ sqlite3_free_table(&res.azResult[1]); return rc; } if( res.nAlloc>res.nData ){ char **azNew; azNew = sqlite3Realloc( res.azResult, sizeof(char*)*res.nData ); if( azNew==0 ){ sqlite3_free_table(&res.azResult[1]); db->errCode = SQLITE_NOMEM; return SQLITE_NOMEM_BKPT; } res.azResult = azNew; } *pazResult = &res.azResult[1]; if( pnColumn ) *pnColumn = res.nColumn; if( pnRow ) *pnRow = res.nRow; return rc; } /* ** This routine frees the space the sqlite3_get_table() malloced. */ SQLITE_API void sqlite3_free_table( char **azResult /* Result returned from sqlite3_get_table() */ ){ if( azResult ){ int i, n; azResult--; assert( azResult!=0 ); n = SQLITE_PTR_TO_INT(azResult[0]); for(i=1; ipNext; sqlite3ExprDelete(db, pTmp->pWhere); sqlite3ExprListDelete(db, pTmp->pExprList); sqlite3SelectDelete(db, pTmp->pSelect); sqlite3IdListDelete(db, pTmp->pIdList); sqlite3UpsertDelete(db, pTmp->pUpsert); sqlite3SrcListDelete(db, pTmp->pFrom); sqlite3DbFree(db, pTmp->zSpan); sqlite3DbFree(db, pTmp); } } /* ** Given table pTab, return a list of all the triggers attached to ** the table. The list is connected by Trigger.pNext pointers. ** ** All of the triggers on pTab that are in the same database as pTab ** are already attached to pTab->pTrigger. But there might be additional ** triggers on pTab in the TEMP schema. This routine prepends all ** TEMP triggers on pTab to the beginning of the pTab->pTrigger list ** and returns the combined list. ** ** To state it another way: This routine returns a list of all triggers ** that fire off of pTab. The list will include any TEMP triggers on ** pTab as well as the triggers lised in pTab->pTrigger. */ SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){ Schema *pTmpSchema; /* Schema of the pTab table */ Trigger *pList; /* List of triggers to return */ HashElem *p; /* Loop variable for TEMP triggers */ assert( pParse->disableTriggers==0 ); pTmpSchema = pParse->db->aDb[1].pSchema; p = sqliteHashFirst(&pTmpSchema->trigHash); pList = pTab->pTrigger; while( p ){ Trigger *pTrig = (Trigger *)sqliteHashData(p); if( pTrig->pTabSchema==pTab->pSchema && pTrig->table && 0==sqlite3StrICmp(pTrig->table, pTab->zName) && (pTrig->pTabSchema!=pTmpSchema || pTrig->bReturning) ){ pTrig->pNext = pList; pList = pTrig; }else if( pTrig->op==TK_RETURNING ){ #ifndef SQLITE_OMIT_VIRTUALTABLE assert( pParse->db->pVtabCtx==0 ); #endif assert( pParse->bReturning ); assert( &(pParse->u1.pReturning->retTrig) == pTrig ); pTrig->table = pTab->zName; pTrig->pTabSchema = pTab->pSchema; pTrig->pNext = pList; pList = pTrig; } p = sqliteHashNext(p); } #if 0 if( pList ){ Trigger *pX; printf("Triggers for %s:", pTab->zName); for(pX=pList; pX; pX=pX->pNext){ printf(" %s", pX->zName); } printf("\n"); fflush(stdout); } #endif return pList; } /* ** This is called by the parser when it sees a CREATE TRIGGER statement ** up to the point of the BEGIN before the trigger actions. A Trigger ** structure is generated based on the information available and stored ** in pParse->pNewTrigger. After the trigger actions have been parsed, the ** sqlite3FinishTrigger() function is called to complete the trigger ** construction process. */ SQLITE_PRIVATE void sqlite3BeginTrigger( Parse *pParse, /* The parse context of the CREATE TRIGGER statement */ Token *pName1, /* The name of the trigger */ Token *pName2, /* The name of the trigger */ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */ IdList *pColumns, /* column list if this is an UPDATE OF trigger */ SrcList *pTableName,/* The name of the table/view the trigger applies to */ Expr *pWhen, /* WHEN clause */ int isTemp, /* True if the TEMPORARY keyword is present */ int noErr /* Suppress errors if the trigger already exists */ ){ Trigger *pTrigger = 0; /* The new trigger */ Table *pTab; /* Table that the trigger fires off of */ char *zName = 0; /* Name of the trigger */ sqlite3 *db = pParse->db; /* The database connection */ int iDb; /* The database to store the trigger in */ Token *pName; /* The unqualified db name */ DbFixer sFix; /* State vector for the DB fixer */ assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */ assert( pName2!=0 ); assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE ); assert( op>0 && op<0xff ); if( isTemp ){ /* If TEMP was specified, then the trigger name may not be qualified. */ if( pName2->n>0 ){ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); goto trigger_cleanup; } iDb = 1; pName = pName1; }else{ /* Figure out the db that the trigger will be created in */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ){ goto trigger_cleanup; } } if( !pTableName || db->mallocFailed ){ goto trigger_cleanup; } /* A long-standing parser bug is that this syntax was allowed: ** ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab .... ** ^^^^^^^^ ** ** To maintain backwards compatibility, ignore the database ** name on pTableName if we are reparsing out of the schema table */ if( db->init.busy && iDb!=1 ){ sqlite3DbFree(db, pTableName->a[0].zDatabase); pTableName->a[0].zDatabase = 0; } /* If the trigger name was unqualified, and the table is a temp table, ** then set iDb to 1 to create the trigger in the temporary database. ** If sqlite3SrcListLookup() returns 0, indicating the table does not ** exist, the error is caught by the block below. */ pTab = sqlite3SrcListLookup(pParse, pTableName); if( db->init.busy==0 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } /* Ensure the table name matches database name and that the table exists */ if( db->mallocFailed ) goto trigger_cleanup; assert( pTableName->nSrc==1 ); sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName); if( sqlite3FixSrcList(&sFix, pTableName) ){ goto trigger_cleanup; } pTab = sqlite3SrcListLookup(pParse, pTableName); if( !pTab ){ /* The table does not exist. */ goto trigger_orphan_error; } if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables"); goto trigger_orphan_error; } /* Check that the trigger name is not reserved and that no trigger of the ** specified name exists */ zName = sqlite3NameFromToken(db, pName); if( zName==0 ){ assert( db->mallocFailed ); goto trigger_cleanup; } if( sqlite3CheckObjectName(pParse, zName, "trigger", pTab->zName) ){ goto trigger_cleanup; } assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !IN_RENAME_OBJECT ){ if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),zName) ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); VVA_ONLY( pParse->ifNotExists = 1; ) } goto trigger_cleanup; } } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); goto trigger_cleanup; } /* INSTEAD of triggers are only for views and views only support INSTEAD ** of triggers. */ if( IsView(pTab) && tr_tm!=TK_INSTEAD ){ sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S", (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName->a); goto trigger_orphan_error; } if( !IsView(pTab) && tr_tm==TK_INSTEAD ){ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" " trigger on table: %S", pTableName->a); goto trigger_orphan_error; } #ifndef SQLITE_OMIT_AUTHORIZATION if( !IN_RENAME_OBJECT ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); int code = SQLITE_CREATE_TRIGGER; const char *zDb = db->aDb[iTabDb].zDbSName; const char *zDbTrig = isTemp ? db->aDb[1].zDbSName : zDb; if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){ goto trigger_cleanup; } if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){ goto trigger_cleanup; } } #endif /* INSTEAD OF triggers can only appear on views and BEFORE triggers ** cannot appear on views. So we might as well translate every ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code ** elsewhere. */ if (tr_tm == TK_INSTEAD){ tr_tm = TK_BEFORE; } /* Build the Trigger object */ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger)); if( pTrigger==0 ) goto trigger_cleanup; pTrigger->zName = zName; zName = 0; pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName); pTrigger->pSchema = db->aDb[iDb].pSchema; pTrigger->pTabSchema = pTab->pSchema; pTrigger->op = (u8)op; pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, pTrigger->table, pTableName->a[0].zName); pTrigger->pWhen = pWhen; pWhen = 0; }else{ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); } pTrigger->pColumns = pColumns; pColumns = 0; assert( pParse->pNewTrigger==0 ); pParse->pNewTrigger = pTrigger; trigger_cleanup: sqlite3DbFree(db, zName); sqlite3SrcListDelete(db, pTableName); sqlite3IdListDelete(db, pColumns); sqlite3ExprDelete(db, pWhen); if( !pParse->pNewTrigger ){ sqlite3DeleteTrigger(db, pTrigger); }else{ assert( pParse->pNewTrigger==pTrigger ); } return; trigger_orphan_error: if( db->init.iDb==1 ){ /* Ticket #3810. ** Normally, whenever a table is dropped, all associated triggers are ** dropped too. But if a TEMP trigger is created on a non-TEMP table ** and the table is dropped by a different database connection, the ** trigger is not visible to the database connection that does the ** drop so the trigger cannot be dropped. This results in an ** "orphaned trigger" - a trigger whose associated table is missing. ** ** 2020-11-05 see also https://sqlite.org/forum/forumpost/157dc791df */ db->init.orphanTrigger = 1; } goto trigger_cleanup; } /* ** This routine is called after all of the trigger actions have been parsed ** in order to complete the process of building the trigger. */ SQLITE_PRIVATE void sqlite3FinishTrigger( Parse *pParse, /* Parser context */ TriggerStep *pStepList, /* The triggered program */ Token *pAll /* Token that describes the complete CREATE TRIGGER */ ){ Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */ char *zName; /* Name of trigger */ sqlite3 *db = pParse->db; /* The database */ DbFixer sFix; /* Fixer object */ int iDb; /* Database containing the trigger */ Token nameToken; /* Trigger name for error reporting */ pParse->pNewTrigger = 0; if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup; zName = pTrig->zName; iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); pTrig->step_list = pStepList; while( pStepList ){ pStepList->pTrig = pTrig; pStepList = pStepList->pNext; } sqlite3TokenInit(&nameToken, pTrig->zName); sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken); if( sqlite3FixTriggerStep(&sFix, pTrig->step_list) || sqlite3FixExpr(&sFix, pTrig->pWhen) ){ goto triggerfinish_cleanup; } #ifndef SQLITE_OMIT_ALTERTABLE if( IN_RENAME_OBJECT ){ assert( !db->init.busy ); pParse->pNewTrigger = pTrig; pTrig = 0; }else #endif /* if we are not initializing, ** build the sqlite_schema entry */ if( !db->init.busy ){ Vdbe *v; char *z; /* If this is a new CREATE TABLE statement, and if shadow tables ** are read-only, and the trigger makes a change to a shadow table, ** then raise an error - do not allow the trigger to be created. */ if( sqlite3ReadOnlyShadowTables(db) ){ TriggerStep *pStep; for(pStep=pTrig->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget!=0 && sqlite3ShadowTableName(db, pStep->zTarget) ){ sqlite3ErrorMsg(pParse, "trigger \"%s\" may not write to shadow table \"%s\"", pTrig->zName, pStep->zTarget); goto triggerfinish_cleanup; } } } /* Make an entry in the sqlite_schema table */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto triggerfinish_cleanup; sqlite3BeginWriteOperation(pParse, 0, iDb); z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n); testcase( z==0 ); sqlite3NestedParse(pParse, "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')", db->aDb[iDb].zDbSName, zName, pTrig->table, z); sqlite3DbFree(db, z); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName), 0); } if( db->init.busy ){ Trigger *pLink = pTrig; Hash *pHash = &db->aDb[iDb].pSchema->trigHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); assert( pLink!=0 ); pTrig = sqlite3HashInsert(pHash, zName, pTrig); if( pTrig ){ sqlite3OomFault(db); }else if( pLink->pSchema==pLink->pTabSchema ){ Table *pTab; pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table); assert( pTab!=0 ); pLink->pNext = pTab->pTrigger; pTab->pTrigger = pLink; } } triggerfinish_cleanup: sqlite3DeleteTrigger(db, pTrig); assert( IN_RENAME_OBJECT || !pParse->pNewTrigger ); sqlite3DeleteTriggerStep(db, pStepList); } /* ** Duplicate a range of text from an SQL statement, then convert all ** whitespace characters into ordinary space characters. */ static char *triggerSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ char *z = sqlite3DbSpanDup(db, zStart, zEnd); int i; if( z ) for(i=0; z[i]; i++) if( sqlite3Isspace(z[i]) ) z[i] = ' '; return z; } /* ** Turn a SELECT statement (that the pSelect parameter points to) into ** a trigger step. Return a pointer to a TriggerStep structure. ** ** The parser calls this routine when it finds a SELECT statement in ** body of a TRIGGER. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep( sqlite3 *db, /* Database connection */ Select *pSelect, /* The SELECT statement */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); if( pTriggerStep==0 ) { sqlite3SelectDelete(db, pSelect); return 0; } pTriggerStep->op = TK_SELECT; pTriggerStep->pSelect = pSelect; pTriggerStep->orconf = OE_Default; pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd); return pTriggerStep; } /* ** Allocate space to hold a new trigger step. The allocated space ** holds both the TriggerStep object and the TriggerStep.target.z string. ** ** If an OOM error occurs, NULL is returned and db->mallocFailed is set. */ static TriggerStep *triggerStepAllocate( Parse *pParse, /* Parser context */ u8 op, /* Trigger opcode */ Token *pName, /* The target name */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; if( pParse->nErr ) return 0; pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1); if( pTriggerStep ){ char *z = (char*)&pTriggerStep[1]; memcpy(z, pName->z, pName->n); sqlite3Dequote(z); pTriggerStep->zTarget = z; pTriggerStep->op = op; pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, pTriggerStep->zTarget, pName); } } return pTriggerStep; } /* ** Build a trigger step out of an INSERT statement. Return a pointer ** to the new trigger step. ** ** The parser calls this routine when it sees an INSERT inside the ** body of a trigger. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep( Parse *pParse, /* Parser */ Token *pTableName, /* Name of the table into which we insert */ IdList *pColumn, /* List of columns in pTableName to insert into */ Select *pSelect, /* A SELECT statement that supplies values */ u8 orconf, /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ Upsert *pUpsert, /* ON CONFLICT clauses for upsert */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; assert(pSelect != 0 || db->mallocFailed); pTriggerStep = triggerStepAllocate(pParse, TK_INSERT, pTableName,zStart,zEnd); if( pTriggerStep ){ if( IN_RENAME_OBJECT ){ pTriggerStep->pSelect = pSelect; pSelect = 0; }else{ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); } pTriggerStep->pIdList = pColumn; pTriggerStep->pUpsert = pUpsert; pTriggerStep->orconf = orconf; if( pUpsert ){ sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget); } }else{ testcase( pColumn ); sqlite3IdListDelete(db, pColumn); testcase( pUpsert ); sqlite3UpsertDelete(db, pUpsert); } sqlite3SelectDelete(db, pSelect); return pTriggerStep; } /* ** Construct a trigger step that implements an UPDATE statement and return ** a pointer to that trigger step. The parser calls this routine when it ** sees an UPDATE statement inside the body of a CREATE TRIGGER. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep( Parse *pParse, /* Parser */ Token *pTableName, /* Name of the table to be updated */ SrcList *pFrom, /* FROM clause for an UPDATE-FROM, or NULL */ ExprList *pEList, /* The SET clause: list of column and new values */ Expr *pWhere, /* The WHERE clause */ u8 orconf, /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; pTriggerStep = triggerStepAllocate(pParse, TK_UPDATE, pTableName,zStart,zEnd); if( pTriggerStep ){ if( IN_RENAME_OBJECT ){ pTriggerStep->pExprList = pEList; pTriggerStep->pWhere = pWhere; pTriggerStep->pFrom = pFrom; pEList = 0; pWhere = 0; pFrom = 0; }else{ pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE); pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pTriggerStep->pFrom = sqlite3SrcListDup(db, pFrom, EXPRDUP_REDUCE); } pTriggerStep->orconf = orconf; } sqlite3ExprListDelete(db, pEList); sqlite3ExprDelete(db, pWhere); sqlite3SrcListDelete(db, pFrom); return pTriggerStep; } /* ** Construct a trigger step that implements a DELETE statement and return ** a pointer to that trigger step. The parser calls this routine when it ** sees a DELETE statement inside the body of a CREATE TRIGGER. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep( Parse *pParse, /* Parser */ Token *pTableName, /* The table from which rows are deleted */ Expr *pWhere, /* The WHERE clause */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; pTriggerStep = triggerStepAllocate(pParse, TK_DELETE, pTableName,zStart,zEnd); if( pTriggerStep ){ if( IN_RENAME_OBJECT ){ pTriggerStep->pWhere = pWhere; pWhere = 0; }else{ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); } pTriggerStep->orconf = OE_Default; } sqlite3ExprDelete(db, pWhere); return pTriggerStep; } /* ** Recursively delete a Trigger structure */ SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){ if( pTrigger==0 || pTrigger->bReturning ) return; sqlite3DeleteTriggerStep(db, pTrigger->step_list); sqlite3DbFree(db, pTrigger->zName); sqlite3DbFree(db, pTrigger->table); sqlite3ExprDelete(db, pTrigger->pWhen); sqlite3IdListDelete(db, pTrigger->pColumns); sqlite3DbFree(db, pTrigger); } /* ** This function is called to drop a trigger from the database schema. ** ** This may be called directly from the parser and therefore identifies ** the trigger by name. The sqlite3DropTriggerPtr() routine does the ** same job as this routine except it takes a pointer to the trigger ** instead of the trigger name. **/ SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){ Trigger *pTrigger = 0; int i; const char *zDb; const char *zName; sqlite3 *db = pParse->db; if( db->mallocFailed ) goto drop_trigger_cleanup; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto drop_trigger_cleanup; } assert( pName->nSrc==1 ); zDb = pName->a[0].zDatabase; zName = pName->a[0].zName; assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName); if( pTrigger ) break; } if( !pTrigger ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName->a); }else{ sqlite3CodeVerifyNamedSchema(pParse, zDb); } pParse->checkSchema = 1; goto drop_trigger_cleanup; } sqlite3DropTriggerPtr(pParse, pTrigger); drop_trigger_cleanup: sqlite3SrcListDelete(db, pName); } /* ** Return a pointer to the Table structure for the table that a trigger ** is set on. */ static Table *tableOfTrigger(Trigger *pTrigger){ return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table); } /* ** Drop a trigger given a pointer to that trigger. */ SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){ Table *pTable; Vdbe *v; sqlite3 *db = pParse->db; int iDb; iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema); assert( iDb>=0 && iDbnDb ); pTable = tableOfTrigger(pTrigger); assert( (pTable && pTable->pSchema==pTrigger->pSchema) || iDb==1 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( pTable ){ int code = SQLITE_DROP_TRIGGER; const char *zDb = db->aDb[iDb].zDbSName; const char *zTab = SCHEMA_TABLE(iDb); if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) || sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ return; } } #endif /* Generate code to destroy the database record of the trigger. */ if( (v = sqlite3GetVdbe(pParse))!=0 ){ sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='trigger'", db->aDb[iDb].zDbSName, pTrigger->zName ); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); } } /* ** Remove a trigger from the hash tables of the sqlite* pointer. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ Trigger *pTrigger; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &(db->aDb[iDb].pSchema->trigHash); pTrigger = sqlite3HashInsert(pHash, zName, 0); if( ALWAYS(pTrigger) ){ if( pTrigger->pSchema==pTrigger->pTabSchema ){ Table *pTab = tableOfTrigger(pTrigger); if( pTab ){ Trigger **pp; for(pp=&pTab->pTrigger; *pp; pp=&((*pp)->pNext)){ if( *pp==pTrigger ){ *pp = (*pp)->pNext; break; } } } } sqlite3DeleteTrigger(db, pTrigger); db->mDbFlags |= DBFLAG_SchemaChange; } } /* ** pEList is the SET clause of an UPDATE statement. Each entry ** in pEList is of the format =. If any of the entries ** in pEList have an which matches an identifier in pIdList, ** then return TRUE. If pIdList==NULL, then it is considered a ** wildcard that matches anything. Likewise if pEList==NULL then ** it matches anything so always return true. Return false only ** if there is no match. */ static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){ int e; if( pIdList==0 || NEVER(pEList==0) ) return 1; for(e=0; enExpr; e++){ if( sqlite3IdListIndex(pIdList, pEList->a[e].zEName)>=0 ) return 1; } return 0; } /* ** Return true if any TEMP triggers exist */ static int tempTriggersExist(sqlite3 *db){ if( NEVER(db->aDb[1].pSchema==0) ) return 0; if( sqliteHashFirst(&db->aDb[1].pSchema->trigHash)==0 ) return 0; return 1; } /* ** Return a list of all triggers on table pTab if there exists at least ** one trigger that must be fired when an operation of type 'op' is ** performed on the table, and, if that operation is an UPDATE, if at ** least one of the columns in pChanges is being modified. */ static SQLITE_NOINLINE Trigger *triggersReallyExist( Parse *pParse, /* Parse context */ Table *pTab, /* The table the contains the triggers */ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ ExprList *pChanges, /* Columns that change in an UPDATE statement */ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ ){ int mask = 0; Trigger *pList = 0; Trigger *p; pList = sqlite3TriggerList(pParse, pTab); assert( pList==0 || IsVirtual(pTab)==0 || (pList->bReturning && pList->pNext==0) ); if( pList!=0 ){ p = pList; if( (pParse->db->flags & SQLITE_EnableTrigger)==0 && pTab->pTrigger!=0 ){ /* The SQLITE_DBCONFIG_ENABLE_TRIGGER setting is off. That means that ** only TEMP triggers are allowed. Truncate the pList so that it ** includes only TEMP triggers */ if( pList==pTab->pTrigger ){ pList = 0; goto exit_triggers_exist; } while( ALWAYS(p->pNext) && p->pNext!=pTab->pTrigger ) p = p->pNext; p->pNext = 0; p = pList; } do{ if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){ mask |= p->tr_tm; }else if( p->op==TK_RETURNING ){ /* The first time a RETURNING trigger is seen, the "op" value tells ** us what time of trigger it should be. */ assert( sqlite3IsToplevel(pParse) ); p->op = op; if( IsVirtual(pTab) ){ if( op!=TK_INSERT ){ sqlite3ErrorMsg(pParse, "%s RETURNING is not available on virtual tables", op==TK_DELETE ? "DELETE" : "UPDATE"); } p->tr_tm = TRIGGER_BEFORE; }else{ p->tr_tm = TRIGGER_AFTER; } mask |= p->tr_tm; }else if( p->bReturning && p->op==TK_INSERT && op==TK_UPDATE && sqlite3IsToplevel(pParse) ){ /* Also fire a RETURNING trigger for an UPSERT */ mask |= p->tr_tm; } p = p->pNext; }while( p ); } exit_triggers_exist: if( pMask ){ *pMask = mask; } return (mask ? pList : 0); } SQLITE_PRIVATE Trigger *sqlite3TriggersExist( Parse *pParse, /* Parse context */ Table *pTab, /* The table the contains the triggers */ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ ExprList *pChanges, /* Columns that change in an UPDATE statement */ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ ){ assert( pTab!=0 ); if( (pTab->pTrigger==0 && !tempTriggersExist(pParse->db)) || pParse->disableTriggers ){ if( pMask ) *pMask = 0; return 0; } return triggersReallyExist(pParse,pTab,op,pChanges,pMask); } /* ** Convert the pStep->zTarget string into a SrcList and return a pointer ** to that SrcList. ** ** This routine adds a specific database name, if needed, to the target when ** forming the SrcList. This prevents a trigger in one database from ** referring to a target in another database. An exception is when the ** trigger is in TEMP in which case it can refer to any other database it ** wants. */ SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc( Parse *pParse, /* The parsing context */ TriggerStep *pStep /* The trigger containing the target token */ ){ sqlite3 *db = pParse->db; SrcList *pSrc; /* SrcList to be returned */ char *zName = sqlite3DbStrDup(db, pStep->zTarget); pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); assert( pSrc==0 || pSrc->nSrc==1 ); assert( zName || pSrc==0 ); if( pSrc ){ Schema *pSchema = pStep->pTrig->pSchema; pSrc->a[0].zName = zName; if( pSchema!=db->aDb[1].pSchema ){ pSrc->a[0].pSchema = pSchema; } if( pStep->pFrom ){ SrcList *pDup = sqlite3SrcListDup(db, pStep->pFrom, 0); if( pDup && pDup->nSrc>1 && !IN_RENAME_OBJECT ){ Select *pSubquery; Token as; pSubquery = sqlite3SelectNew(pParse,0,pDup,0,0,0,0,SF_NestedFrom,0); as.n = 0; as.z = 0; pDup = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0); } pSrc = sqlite3SrcListAppendList(pParse, pSrc, pDup); } }else{ sqlite3DbFree(db, zName); } return pSrc; } /* ** Return true if the pExpr term from the RETURNING clause argument ** list is of the form "*". Raise an error if the terms if of the ** form "table.*". */ static int isAsteriskTerm( Parse *pParse, /* Parsing context */ Expr *pTerm /* A term in the RETURNING clause */ ){ assert( pTerm!=0 ); if( pTerm->op==TK_ASTERISK ) return 1; if( pTerm->op!=TK_DOT ) return 0; assert( pTerm->pRight!=0 ); assert( pTerm->pLeft!=0 ); if( pTerm->pRight->op!=TK_ASTERISK ) return 0; sqlite3ErrorMsg(pParse, "RETURNING may not use \"TABLE.*\" wildcards"); return 1; } /* The input list pList is the list of result set terms from a RETURNING ** clause. The table that we are returning from is pTab. ** ** This routine makes a copy of the pList, and at the same time expands ** any "*" wildcards to be the complete set of columns from pTab. */ static ExprList *sqlite3ExpandReturning( Parse *pParse, /* Parsing context */ ExprList *pList, /* The arguments to RETURNING */ Table *pTab /* The table being updated */ ){ ExprList *pNew = 0; sqlite3 *db = pParse->db; int i; for(i=0; inExpr; i++){ Expr *pOldExpr = pList->a[i].pExpr; if( NEVER(pOldExpr==0) ) continue; if( isAsteriskTerm(pParse, pOldExpr) ){ int jj; for(jj=0; jjnCol; jj++){ Expr *pNewExpr; if( IsHiddenColumn(pTab->aCol+jj) ) continue; pNewExpr = sqlite3Expr(db, TK_ID, pTab->aCol[jj].zCnName); pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr); if( !db->mallocFailed ){ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1]; pItem->zEName = sqlite3DbStrDup(db, pTab->aCol[jj].zCnName); pItem->fg.eEName = ENAME_NAME; } } }else{ Expr *pNewExpr = sqlite3ExprDup(db, pOldExpr, 0); pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr); if( !db->mallocFailed && ALWAYS(pList->a[i].zEName!=0) ){ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1]; pItem->zEName = sqlite3DbStrDup(db, pList->a[i].zEName); pItem->fg.eEName = pList->a[i].fg.eEName; } } } return pNew; } /* ** Generate code for the RETURNING trigger. Unlike other triggers ** that invoke a subprogram in the bytecode, the code for RETURNING ** is generated in-line. */ static void codeReturningTrigger( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* The trigger step that defines the RETURNING */ Table *pTab, /* The table to code triggers from */ int regIn /* The first in an array of registers */ ){ Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; ExprList *pNew; Returning *pReturning; Select sSelect; SrcList sFrom; assert( v!=0 ); assert( pParse->bReturning ); assert( db->pParse==pParse ); pReturning = pParse->u1.pReturning; assert( pTrigger == &(pReturning->retTrig) ); memset(&sSelect, 0, sizeof(sSelect)); memset(&sFrom, 0, sizeof(sFrom)); sSelect.pEList = sqlite3ExprListDup(db, pReturning->pReturnEL, 0); sSelect.pSrc = &sFrom; sFrom.nSrc = 1; sFrom.a[0].pTab = pTab; sFrom.a[0].iCursor = -1; sqlite3SelectPrep(pParse, &sSelect, 0); if( pParse->nErr==0 ){ assert( db->mallocFailed==0 ); sqlite3GenerateColumnNames(pParse, &sSelect); } sqlite3ExprListDelete(db, sSelect.pEList); pNew = sqlite3ExpandReturning(pParse, pReturning->pReturnEL, pTab); if( pParse->nErr==0 ){ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); if( pReturning->nRetCol==0 ){ pReturning->nRetCol = pNew->nExpr; pReturning->iRetCur = pParse->nTab++; } sNC.pParse = pParse; sNC.uNC.iBaseReg = regIn; sNC.ncFlags = NC_UBaseReg; pParse->eTriggerOp = pTrigger->op; pParse->pTriggerTab = pTab; if( sqlite3ResolveExprListNames(&sNC, pNew)==SQLITE_OK && ALWAYS(!db->mallocFailed) ){ int i; int nCol = pNew->nExpr; int reg = pParse->nMem+1; pParse->nMem += nCol+2; pReturning->iRetReg = reg; for(i=0; ia[i].pExpr; assert( pCol!=0 ); /* Due to !db->mallocFailed ~9 lines above */ sqlite3ExprCodeFactorable(pParse, pCol, reg+i); if( sqlite3ExprAffinity(pCol)==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, reg+i); } } sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, i, reg+i); sqlite3VdbeAddOp2(v, OP_NewRowid, pReturning->iRetCur, reg+i+1); sqlite3VdbeAddOp3(v, OP_Insert, pReturning->iRetCur, reg+i, reg+i+1); } } sqlite3ExprListDelete(db, pNew); pParse->eTriggerOp = 0; pParse->pTriggerTab = 0; } /* ** Generate VDBE code for the statements inside the body of a single ** trigger. */ static int codeTriggerProgram( Parse *pParse, /* The parser context */ TriggerStep *pStepList, /* List of statements inside the trigger body */ int orconf /* Conflict algorithm. (OE_Abort, etc) */ ){ TriggerStep *pStep; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( pParse->pTriggerTab && pParse->pToplevel ); assert( pStepList ); assert( v!=0 ); for(pStep=pStepList; pStep; pStep=pStep->pNext){ /* Figure out the ON CONFLICT policy that will be used for this step ** of the trigger program. If the statement that caused this trigger ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use ** the ON CONFLICT policy that was specified as part of the trigger ** step statement. Example: ** ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN; ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; assert( pParse->okConstFactor==0 ); #ifndef SQLITE_OMIT_TRACE if( pStep->zSpan ){ sqlite3VdbeAddOp4(v, OP_Trace, 0x7fffffff, 1, 0, sqlite3MPrintf(db, "-- %s", pStep->zSpan), P4_DYNAMIC); } #endif switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, sqlite3TriggerStepSrc(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), pParse->eOrconf, 0, 0, 0 ); sqlite3VdbeAddOp0(v, OP_ResetCount); break; } case TK_INSERT: { sqlite3Insert(pParse, sqlite3TriggerStepSrc(pParse, pStep), sqlite3SelectDup(db, pStep->pSelect, 0), sqlite3IdListDup(db, pStep->pIdList), pParse->eOrconf, sqlite3UpsertDup(db, pStep->pUpsert) ); sqlite3VdbeAddOp0(v, OP_ResetCount); break; } case TK_DELETE: { sqlite3DeleteFrom(pParse, sqlite3TriggerStepSrc(pParse, pStep), sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0 ); sqlite3VdbeAddOp0(v, OP_ResetCount); break; } default: assert( pStep->op==TK_SELECT ); { SelectDest sDest; Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0); sqlite3SelectDestInit(&sDest, SRT_Discard, 0); sqlite3Select(pParse, pSelect, &sDest); sqlite3SelectDelete(db, pSelect); break; } } } return 0; } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** This function is used to add VdbeComment() annotations to a VDBE ** program. It is not used in production code, only for debugging. */ static const char *onErrorText(int onError){ switch( onError ){ case OE_Abort: return "abort"; case OE_Rollback: return "rollback"; case OE_Fail: return "fail"; case OE_Replace: return "replace"; case OE_Ignore: return "ignore"; case OE_Default: return "default"; } return "n/a"; } #endif /* ** Parse context structure pFrom has just been used to create a sub-vdbe ** (trigger program). If an error has occurred, transfer error information ** from pFrom to pTo. */ static void transferParseError(Parse *pTo, Parse *pFrom){ assert( pFrom->zErrMsg==0 || pFrom->nErr ); assert( pTo->zErrMsg==0 || pTo->nErr ); if( pTo->nErr==0 ){ pTo->zErrMsg = pFrom->zErrMsg; pTo->nErr = pFrom->nErr; pTo->rc = pFrom->rc; }else{ sqlite3DbFree(pFrom->db, pFrom->zErrMsg); } } /* ** Create and populate a new TriggerPrg object with a sub-program ** implementing trigger pTrigger with ON CONFLICT policy orconf. */ static TriggerPrg *codeRowTrigger( Parse *pParse, /* Current parse context */ Trigger *pTrigger, /* Trigger to code */ Table *pTab, /* The table pTrigger is attached to */ int orconf /* ON CONFLICT policy to code trigger program with */ ){ Parse *pTop = sqlite3ParseToplevel(pParse); sqlite3 *db = pParse->db; /* Database handle */ TriggerPrg *pPrg; /* Value to return */ Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */ Vdbe *v; /* Temporary VM */ NameContext sNC; /* Name context for sub-vdbe */ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */ int iEndTrigger = 0; /* Label to jump to if WHEN is false */ Parse sSubParse; /* Parse context for sub-vdbe */ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); assert( pTop->pVdbe ); /* Allocate the TriggerPrg and SubProgram objects. To ensure that they ** are freed if an error occurs, link them into the Parse.pTriggerPrg ** list of the top-level Parse object sooner rather than later. */ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg)); if( !pPrg ) return 0; pPrg->pNext = pTop->pTriggerPrg; pTop->pTriggerPrg = pPrg; pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram)); if( !pProgram ) return 0; sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram); pPrg->pTrigger = pTrigger; pPrg->orconf = orconf; pPrg->aColmask[0] = 0xffffffff; pPrg->aColmask[1] = 0xffffffff; /* Allocate and populate a new Parse context to use for coding the ** trigger sub-program. */ sqlite3ParseObjectInit(&sSubParse, db); memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sSubParse; sSubParse.pTriggerTab = pTab; sSubParse.pToplevel = pTop; sSubParse.zAuthContext = pTrigger->zName; sSubParse.eTriggerOp = pTrigger->op; sSubParse.nQueryLoop = pParse->nQueryLoop; sSubParse.prepFlags = pParse->prepFlags; v = sqlite3GetVdbe(&sSubParse); if( v ){ VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)", pTrigger->zName, onErrorText(orconf), (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"), (pTrigger->op==TK_UPDATE ? "UPDATE" : ""), (pTrigger->op==TK_INSERT ? "INSERT" : ""), (pTrigger->op==TK_DELETE ? "DELETE" : ""), pTab->zName )); #ifndef SQLITE_OMIT_TRACE if( pTrigger->zName ){ sqlite3VdbeChangeP4(v, -1, sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC ); } #endif /* If one was specified, code the WHEN clause. If it evaluates to false ** (or NULL) the sub-vdbe is immediately halted by jumping to the ** OP_Halt inserted at the end of the program. */ if( pTrigger->pWhen ){ pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0); if( db->mallocFailed==0 && SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen) ){ iEndTrigger = sqlite3VdbeMakeLabel(&sSubParse); sqlite3ExprIfFalse(&sSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL); } sqlite3ExprDelete(db, pWhen); } /* Code the trigger program into the sub-vdbe. */ codeTriggerProgram(&sSubParse, pTrigger->step_list, orconf); /* Insert an OP_Halt at the end of the sub-program. */ if( iEndTrigger ){ sqlite3VdbeResolveLabel(v, iEndTrigger); } sqlite3VdbeAddOp0(v, OP_Halt); VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf))); transferParseError(pParse, &sSubParse); if( pParse->nErr==0 ){ assert( db->mallocFailed==0 ); pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg); } pProgram->nMem = sSubParse.nMem; pProgram->nCsr = sSubParse.nTab; pProgram->token = (void *)pTrigger; pPrg->aColmask[0] = sSubParse.oldmask; pPrg->aColmask[1] = sSubParse.newmask; sqlite3VdbeDelete(v); }else{ transferParseError(pParse, &sSubParse); } assert( !sSubParse.pTriggerPrg && !sSubParse.nMaxArg ); sqlite3ParseObjectReset(&sSubParse); return pPrg; } /* ** Return a pointer to a TriggerPrg object containing the sub-program for ** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such ** TriggerPrg object exists, a new object is allocated and populated before ** being returned. */ static TriggerPrg *getRowTrigger( Parse *pParse, /* Current parse context */ Trigger *pTrigger, /* Trigger to code */ Table *pTab, /* The table trigger pTrigger is attached to */ int orconf /* ON CONFLICT algorithm. */ ){ Parse *pRoot = sqlite3ParseToplevel(pParse); TriggerPrg *pPrg; assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); /* It may be that this trigger has already been coded (or is in the ** process of being coded). If this is the case, then an entry with ** a matching TriggerPrg.pTrigger field will be present somewhere ** in the Parse.pTriggerPrg list. Search for such an entry. */ for(pPrg=pRoot->pTriggerPrg; pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf); pPrg=pPrg->pNext ); /* If an existing TriggerPrg could not be located, create a new one. */ if( !pPrg ){ pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf); pParse->db->errByteOffset = -1; } return pPrg; } /* ** Generate code for the trigger program associated with trigger p on ** table pTab. The reg, orconf and ignoreJump parameters passed to this ** function are the same as those described in the header function for ** sqlite3CodeRowTrigger() */ SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect( Parse *pParse, /* Parse context */ Trigger *p, /* Trigger to code */ Table *pTab, /* The table to code triggers from */ int reg, /* Reg array containing OLD.* and NEW.* values */ int orconf, /* ON CONFLICT policy */ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ ){ Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */ TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); assert( pPrg || pParse->nErr ); /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program ** is a pointer to the sub-vdbe containing the trigger program. */ if( pPrg ){ int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers)); sqlite3VdbeAddOp4(v, OP_Program, reg, ignoreJump, ++pParse->nMem, (const char *)pPrg->pProgram, P4_SUBPROGRAM); VdbeComment( (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf))); /* Set the P5 operand of the OP_Program instruction to non-zero if ** recursive invocation of this trigger program is disallowed. Recursive ** invocation is disallowed if (a) the sub-program is really a trigger, ** not a foreign key action, and (b) the flag to enable recursive triggers ** is clear. */ sqlite3VdbeChangeP5(v, (u8)bRecursive); } } /* ** This is called to code the required FOR EACH ROW triggers for an operation ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE) ** is given by the op parameter. The tr_tm parameter determines whether the ** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then ** parameter pChanges is passed the list of columns being modified. ** ** If there are no triggers that fire at the specified time for the specified ** operation on pTab, this function is a no-op. ** ** The reg argument is the address of the first in an array of registers ** that contain the values substituted for the new.* and old.* references ** in the trigger program. If N is the number of columns in table pTab ** (a copy of pTab->nCol), then registers are populated as follows: ** ** Register Contains ** ------------------------------------------------------ ** reg+0 OLD.rowid ** reg+1 OLD.* value of left-most column of pTab ** ... ... ** reg+N OLD.* value of right-most column of pTab ** reg+N+1 NEW.rowid ** reg+N+2 NEW.* value of left-most column of pTab ** ... ... ** reg+N+N+1 NEW.* value of right-most column of pTab ** ** For ON DELETE triggers, the registers containing the NEW.* values will ** never be accessed by the trigger program, so they are not allocated or ** populated by the caller (there is no data to populate them with anyway). ** Similarly, for ON INSERT triggers the values stored in the OLD.* registers ** are never accessed, and so are not allocated by the caller. So, for an ** ON INSERT trigger, the value passed to this function as parameter reg ** is not a readable register, although registers (reg+N) through ** (reg+N+N+1) are. ** ** Parameter orconf is the default conflict resolution algorithm for the ** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump ** is the instruction that control should jump to if a trigger program ** raises an IGNORE exception. */ SQLITE_PRIVATE void sqlite3CodeRowTrigger( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* List of triggers on table pTab */ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ Table *pTab, /* The table to code triggers from */ int reg, /* The first in an array of registers (see above) */ int orconf, /* ON CONFLICT policy */ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ ){ Trigger *p; /* Used to iterate through pTrigger list */ assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE ); assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER ); assert( (op==TK_UPDATE)==(pChanges!=0) ); for(p=pTrigger; p; p=p->pNext){ /* Sanity checking: The schema for the trigger and for the table are ** always defined. The trigger must be in the same schema as the table ** or else it must be a TEMP trigger. */ assert( p->pSchema!=0 ); assert( p->pTabSchema!=0 ); assert( p->pSchema==p->pTabSchema || p->pSchema==pParse->db->aDb[1].pSchema ); /* Determine whether we should code this trigger. One of two choices: ** 1. The trigger is an exact match to the current DML statement ** 2. This is a RETURNING trigger for INSERT but we are currently ** doing the UPDATE part of an UPSERT. */ if( (p->op==op || (p->bReturning && p->op==TK_INSERT && op==TK_UPDATE)) && p->tr_tm==tr_tm && checkColumnOverlap(p->pColumns, pChanges) ){ if( !p->bReturning ){ sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump); }else if( sqlite3IsToplevel(pParse) ){ codeReturningTrigger(pParse, p, pTab, reg); } } } } /* ** Triggers may access values stored in the old.* or new.* pseudo-table. ** This function returns a 32-bit bitmask indicating which columns of the ** old.* or new.* tables actually are used by triggers. This information ** may be used by the caller, for example, to avoid having to load the entire ** old.* record into memory when executing an UPDATE or DELETE command. ** ** Bit 0 of the returned mask is set if the left-most column of the ** table may be accessed using an [old|new].reference. Bit 1 is set if ** the second leftmost column value is required, and so on. If there ** are more than 32 columns in the table, and at least one of the columns ** with an index greater than 32 may be accessed, 0xffffffff is returned. ** ** It is not possible to determine if the old.rowid or new.rowid column is ** accessed by triggers. The caller must always assume that it is. ** ** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned ** applies to the old.* table. If 1, the new.* table. ** ** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE ** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only ** included in the returned mask if the TRIGGER_BEFORE bit is set in the ** tr_tm parameter. Similarly, values accessed by AFTER triggers are only ** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm. */ SQLITE_PRIVATE u32 sqlite3TriggerColmask( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* List of triggers on table pTab */ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ int isNew, /* 1 for new.* ref mask, 0 for old.* ref mask */ int tr_tm, /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ Table *pTab, /* The table to code triggers from */ int orconf /* Default ON CONFLICT policy for trigger steps */ ){ const int op = pChanges ? TK_UPDATE : TK_DELETE; u32 mask = 0; Trigger *p; assert( isNew==1 || isNew==0 ); if( IsView(pTab) ){ return 0xffffffff; } for(p=pTrigger; p; p=p->pNext){ if( p->op==op && (tr_tm&p->tr_tm) && checkColumnOverlap(p->pColumns,pChanges) ){ if( p->bReturning ){ mask = 0xffffffff; }else{ TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); if( pPrg ){ mask |= pPrg->aColmask[isNew]; } } } } return mask; } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /************** End of trigger.c *********************************************/ /************** Begin file update.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Forward declaration */ static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowidExpr, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ); #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** The most recently coded instruction was an OP_Column to retrieve the ** i-th column of table pTab. This routine sets the P4 parameter of the ** OP_Column to the default value, if any. ** ** The default value of a column is specified by a DEFAULT clause in the ** column definition. This was either supplied by the user when the table ** was created, or added later to the table definition by an ALTER TABLE ** command. If the latter, then the row-records in the table btree on disk ** may not contain a value for the column and the default value, taken ** from the P4 parameter of the OP_Column instruction, is returned instead. ** If the former, then all row-records are guaranteed to include a value ** for the column and the P4 value is not required. ** ** Column definitions created by an ALTER TABLE command may only have ** literal default values specified: a number, null or a string. (If a more ** complicated default expression value was provided, it is evaluated ** when the ALTER TABLE is executed and one of the literal values written ** into the sqlite_schema table.) ** ** Therefore, the P4 parameter is only required if the default value for ** the column is a literal number, string or null. The sqlite3ValueFromExpr() ** function is capable of transforming these types of expressions into ** sqlite3_value objects. ** ** If column as REAL affinity and the table is an ordinary b-tree table ** (not a virtual table) then the value might have been stored as an ** integer. In that case, add an OP_RealAffinity opcode to make sure ** it has been converted into REAL. */ SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){ Column *pCol; assert( pTab!=0 ); assert( pTab->nCol>i ); pCol = &pTab->aCol[i]; if( pCol->iDflt ){ sqlite3_value *pValue = 0; u8 enc = ENC(sqlite3VdbeDb(v)); assert( !IsView(pTab) ); VdbeComment((v, "%s.%s", pTab->zName, pCol->zCnName)); assert( inCol ); sqlite3ValueFromExpr(sqlite3VdbeDb(v), sqlite3ColumnExpr(pTab,pCol), enc, pCol->affinity, &pValue); if( pValue ){ sqlite3VdbeAppendP4(v, pValue, P4_MEM); } } #ifndef SQLITE_OMIT_FLOATING_POINT if( pCol->affinity==SQLITE_AFF_REAL && !IsVirtual(pTab) ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); } #endif } /* ** Check to see if column iCol of index pIdx references any of the ** columns defined by aXRef and chngRowid. Return true if it does ** and false if not. This is an optimization. False-positives are a ** performance degradation, but false-negatives can result in a corrupt ** index and incorrect answers. ** ** aXRef[j] will be non-negative if column j of the original table is ** being updated. chngRowid will be true if the rowid of the table is ** being updated. */ static int indexColumnIsBeingUpdated( Index *pIdx, /* The index to check */ int iCol, /* Which column of the index to check */ int *aXRef, /* aXRef[j]>=0 if column j is being updated */ int chngRowid /* true if the rowid is being updated */ ){ i16 iIdxCol = pIdx->aiColumn[iCol]; assert( iIdxCol!=XN_ROWID ); /* Cannot index rowid */ if( iIdxCol>=0 ){ return aXRef[iIdxCol]>=0; } assert( iIdxCol==XN_EXPR ); assert( pIdx->aColExpr!=0 ); assert( pIdx->aColExpr->a[iCol].pExpr!=0 ); return sqlite3ExprReferencesUpdatedColumn(pIdx->aColExpr->a[iCol].pExpr, aXRef,chngRowid); } /* ** Check to see if index pIdx is a partial index whose conditional ** expression might change values due to an UPDATE. Return true if ** the index is subject to change and false if the index is guaranteed ** to be unchanged. This is an optimization. False-positives are a ** performance degradation, but false-negatives can result in a corrupt ** index and incorrect answers. ** ** aXRef[j] will be non-negative if column j of the original table is ** being updated. chngRowid will be true if the rowid of the table is ** being updated. */ static int indexWhereClauseMightChange( Index *pIdx, /* The index to check */ int *aXRef, /* aXRef[j]>=0 if column j is being updated */ int chngRowid /* true if the rowid is being updated */ ){ if( pIdx->pPartIdxWhere==0 ) return 0; return sqlite3ExprReferencesUpdatedColumn(pIdx->pPartIdxWhere, aXRef, chngRowid); } /* ** Allocate and return a pointer to an expression of type TK_ROW with ** Expr.iColumn set to value (iCol+1). The resolver will modify the ** expression to be a TK_COLUMN reading column iCol of the first ** table in the source-list (pSrc->a[0]). */ static Expr *exprRowColumn(Parse *pParse, int iCol){ Expr *pRet = sqlite3PExpr(pParse, TK_ROW, 0, 0); if( pRet ) pRet->iColumn = iCol+1; return pRet; } /* ** Assuming both the pLimit and pOrderBy parameters are NULL, this function ** generates VM code to run the query: ** ** SELECT , pChanges FROM pTabList WHERE pWhere ** ** and write the results to the ephemeral table already opened as cursor ** iEph. None of pChanges, pTabList or pWhere are modified or consumed by ** this function, they must be deleted by the caller. ** ** Or, if pLimit and pOrderBy are not NULL, and pTab is not a view: ** ** SELECT , pChanges FROM pTabList ** WHERE pWhere ** GROUP BY ** ORDER BY pOrderBy LIMIT pLimit ** ** If pTab is a view, the GROUP BY clause is omitted. ** ** Exactly how results are written to table iEph, and exactly what ** the in the query above are is determined by the type ** of table pTabList->a[0].pTab. ** ** If the table is a WITHOUT ROWID table, then argument pPk must be its ** PRIMARY KEY. In this case are the primary key columns ** of the table, in order. The results of the query are written to ephemeral ** table iEph as index keys, using OP_IdxInsert. ** ** If the table is actually a view, then are all columns of ** the view. The results are written to the ephemeral table iEph as records ** with automatically assigned integer keys. ** ** If the table is a virtual or ordinary intkey table, then ** is its rowid. For a virtual table, the results are written to iEph as ** records with automatically assigned integer keys For intkey tables, the ** rowid value in is used as the integer key, and the ** remaining fields make up the table record. */ static void updateFromSelect( Parse *pParse, /* Parse context */ int iEph, /* Cursor for open eph. table */ Index *pPk, /* PK if table 0 is WITHOUT ROWID */ ExprList *pChanges, /* List of expressions to return */ SrcList *pTabList, /* List of tables to select from */ Expr *pWhere, /* WHERE clause for query */ ExprList *pOrderBy, /* ORDER BY clause */ Expr *pLimit /* LIMIT clause */ ){ int i; SelectDest dest; Select *pSelect = 0; ExprList *pList = 0; ExprList *pGrp = 0; Expr *pLimit2 = 0; ExprList *pOrderBy2 = 0; sqlite3 *db = pParse->db; Table *pTab = pTabList->a[0].pTab; SrcList *pSrc; Expr *pWhere2; int eDest; #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( pOrderBy && pLimit==0 ) { sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on UPDATE"); return; } pOrderBy2 = sqlite3ExprListDup(db, pOrderBy, 0); pLimit2 = sqlite3ExprDup(db, pLimit, 0); #else UNUSED_PARAMETER(pOrderBy); UNUSED_PARAMETER(pLimit); #endif pSrc = sqlite3SrcListDup(db, pTabList, 0); pWhere2 = sqlite3ExprDup(db, pWhere, 0); assert( pTabList->nSrc>1 ); if( pSrc ){ assert( pSrc->a[0].fg.notCte ); pSrc->a[0].iCursor = -1; pSrc->a[0].pTab->nTabRef--; pSrc->a[0].pTab = 0; } if( pPk ){ for(i=0; inKeyCol; i++){ Expr *pNew = exprRowColumn(pParse, pPk->aiColumn[i]); #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( pLimit ){ pGrp = sqlite3ExprListAppend(pParse, pGrp, sqlite3ExprDup(db, pNew, 0)); } #endif pList = sqlite3ExprListAppend(pParse, pList, pNew); } eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom; }else if( IsView(pTab) ){ for(i=0; inCol; i++){ pList = sqlite3ExprListAppend(pParse, pList, exprRowColumn(pParse, i)); } eDest = SRT_Table; }else{ eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom; pList = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0)); #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( pLimit ){ pGrp = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0)); } #endif } assert( pChanges!=0 || pParse->db->mallocFailed ); if( pChanges ){ for(i=0; inExpr; i++){ pList = sqlite3ExprListAppend(pParse, pList, sqlite3ExprDup(db, pChanges->a[i].pExpr, 0) ); } } pSelect = sqlite3SelectNew(pParse, pList, pSrc, pWhere2, pGrp, 0, pOrderBy2, SF_UFSrcCheck|SF_IncludeHidden|SF_UpdateFrom, pLimit2 ); if( pSelect ) pSelect->selFlags |= SF_OrderByReqd; sqlite3SelectDestInit(&dest, eDest, iEph); dest.iSDParm2 = (pPk ? pPk->nKeyCol : -1); sqlite3Select(pParse, pSelect, &dest); sqlite3SelectDelete(db, pSelect); } /* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE tbl SET a=b, c=d FROM tbl2... WHERE e<5 AND f NOT NULL; ** \_______/ \_/ \______/ \_____/ \________________/ ** onError | pChanges | pWhere ** \_______________________/ ** pTabList */ SQLITE_PRIVATE void sqlite3Update( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table in which we should change things */ ExprList *pChanges, /* Things to be changed */ Expr *pWhere, /* The WHERE clause. May be null */ int onError, /* How to handle constraint errors */ ExprList *pOrderBy, /* ORDER BY clause. May be null */ Expr *pLimit, /* LIMIT clause. May be null */ Upsert *pUpsert /* ON CONFLICT clause, or null */ ){ int i, j, k; /* Loop counters */ Table *pTab; /* The table to be updated */ int addrTop = 0; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo = 0; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */ int nIdx; /* Number of indices that need updating */ int nAllIdx; /* Total number of indexes */ int iBaseCur; /* Base cursor number */ int iDataCur; /* Cursor for the canonical data btree */ int iIdxCur; /* Cursor for the first index */ sqlite3 *db; /* The database structure */ int *aRegIdx = 0; /* Registers for to each index and the main table */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ u8 *aToOpen; /* 1 for tables and indices to be opened */ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */ u8 chngRowid; /* Rowid changed in a normal table */ u8 chngKey; /* Either chngPk or chngRowid */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ int iRowidExpr = -1; /* Index of "rowid=" (or IPK) assignment in pChanges */ AuthContext sContext; /* The authorization context */ NameContext sNC; /* The name-context to resolve expressions in */ int iDb; /* Database containing the table being updated */ int eOnePass; /* ONEPASS_XXX value from where.c */ int hasFK; /* True if foreign key processing is required */ int labelBreak; /* Jump here to break out of UPDATE loop */ int labelContinue; /* Jump here to continue next step of UPDATE loop */ int flags; /* Flags for sqlite3WhereBegin() */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True when updating a view (INSTEAD OF trigger) */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ #endif int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ int iEph = 0; /* Ephemeral table holding all primary key values */ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ int addrOpen = 0; /* Address of OP_OpenEphemeral */ int iPk = 0; /* First of nPk cells holding PRIMARY KEY value */ i16 nPk = 0; /* Number of components of the PRIMARY KEY */ int bReplace = 0; /* True if REPLACE conflict resolution might happen */ int bFinishSeek = 1; /* The OP_FinishSeek opcode is needed */ int nChangeFrom = 0; /* If there is a FROM, pChanges->nExpr, else 0 */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid = 0; /* The old rowid */ int regNewRowid = 0; /* The new rowid */ int regNew = 0; /* Content of the NEW.* table in triggers */ int regOld = 0; /* Content of OLD.* table in triggers */ int regRowSet = 0; /* Rowset of rows to be updated */ int regKey = 0; /* composite PRIMARY KEY value */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto update_cleanup; } assert( db->mallocFailed==0 ); /* Locate the table which we want to update. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); /* Figure out if we have any triggers and if the table being ** updated is a view. */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask); isView = IsView(pTab); assert( pTrigger || tmask==0 ); #else # define pTrigger 0 # define isView 0 # define tmask 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Update() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewUpdate(pParse->pWith, pTabList, pChanges, pWhere, onError, pOrderBy, pLimit, pUpsert, pTrigger); } #endif /* If there was a FROM clause, set nChangeFrom to the number of expressions ** in the change-list. Otherwise, set it to 0. There cannot be a FROM ** clause if this function is being called to generate code for part of ** an UPSERT statement. */ nChangeFrom = (pTabList->nSrc>1) ? pChanges->nExpr : 0; assert( nChangeFrom==0 || pUpsert==0 ); #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( !isView && nChangeFrom==0 ){ pWhere = sqlite3LimitWhere( pParse, pTabList, pWhere, pOrderBy, pLimit, "UPDATE" ); pOrderBy = 0; pLimit = 0; } #endif if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto update_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto update_cleanup; } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ iBaseCur = iDataCur = pParse->nTab++; iIdxCur = iDataCur+1; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); testcase( pPk!=0 && pPk!=pTab->pIndex ); for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ if( pPk==pIdx ){ iDataCur = pParse->nTab; } pParse->nTab++; } if( pUpsert ){ /* On an UPSERT, reuse the same cursors already opened by INSERT */ iDataCur = pUpsert->iDataCur; iIdxCur = pUpsert->iIdxCur; pParse->nTab = iBaseCur; } pTabList->a[0].iCursor = iDataCur; /* Allocate space for aXRef[], aRegIdx[], and aToOpen[]. ** Initialize aXRef[] and aToOpen[] to their default values. */ aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx+1) + nIdx+2 ); if( aXRef==0 ) goto update_cleanup; aRegIdx = aXRef+pTab->nCol; aToOpen = (u8*)(aRegIdx+nIdx+1); memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; for(i=0; inCol; i++) aXRef[i] = -1; /* Initialize the name-context */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pUpsert = pUpsert; sNC.ncFlags = NC_UUpsert; /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; /* Resolve the column names in all the expressions of the ** of the UPDATE statement. Also find the column index ** for each column to be updated in the pChanges array. For each ** column to be updated, make sure we have authorization to change ** that column. */ chngRowid = chngPk = 0; for(i=0; inExpr; i++){ u8 hCol = sqlite3StrIHash(pChanges->a[i].zEName); /* If this is an UPDATE with a FROM clause, do not resolve expressions ** here. The call to sqlite3Select() below will do that. */ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){ goto update_cleanup; } for(j=0; jnCol; j++){ if( pTab->aCol[j].hName==hCol && sqlite3StrICmp(pTab->aCol[j].zCnName, pChanges->a[i].zEName)==0 ){ if( j==pTab->iPKey ){ chngRowid = 1; pRowidExpr = pChanges->a[i].pExpr; iRowidExpr = i; }else if( pPk && (pTab->aCol[j].colFlags & COLFLAG_PRIMKEY)!=0 ){ chngPk = 1; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS else if( pTab->aCol[j].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[j].colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "cannot UPDATE generated column \"%s\"", pTab->aCol[j].zCnName); goto update_cleanup; } #endif aXRef[j] = i; break; } } if( j>=pTab->nCol ){ if( pPk==0 && sqlite3IsRowid(pChanges->a[i].zEName) ){ j = -1; chngRowid = 1; pRowidExpr = pChanges->a[i].pExpr; iRowidExpr = i; }else{ sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zEName); pParse->checkSchema = 1; goto update_cleanup; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int rc; rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, j<0 ? "ROWID" : pTab->aCol[j].zCnName, db->aDb[iDb].zDbSName); if( rc==SQLITE_DENY ){ goto update_cleanup; }else if( rc==SQLITE_IGNORE ){ aXRef[j] = -1; } } #endif } assert( (chngRowid & chngPk)==0 ); assert( chngRowid==0 || chngRowid==1 ); assert( chngPk==0 || chngPk==1 ); chngKey = chngRowid + chngPk; #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Mark generated columns as changing if their generator expressions ** reference any changing column. The actual aXRef[] value for ** generated expressions is not used, other than to check to see that it ** is non-negative, so the value of aXRef[] for generated columns can be ** set to any non-negative number. We use 99999 so that the value is ** obvious when looking at aXRef[] in a symbolic debugger. */ if( pTab->tabFlags & TF_HasGenerated ){ int bProgress; testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); do{ bProgress = 0; for(i=0; inCol; i++){ if( aXRef[i]>=0 ) continue; if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ) continue; if( sqlite3ExprReferencesUpdatedColumn( sqlite3ColumnExpr(pTab, &pTab->aCol[i]), aXRef, chngRowid) ){ aXRef[i] = 99999; bProgress = 1; } } }while( bProgress ); } #endif /* The SET expressions are not actually used inside the WHERE loop. ** So reset the colUsed mask. Unless this is a virtual table. In that ** case, set all bits of the colUsed mask (to ensure that the virtual ** table implementation makes all columns available). */ pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); /* There is one entry in the aRegIdx[] array for each index on the table ** being updated. Fill in aRegIdx[] with a register number that will hold ** the key for accessing each index. */ if( onError==OE_Replace ) bReplace = 1; for(nAllIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nAllIdx++){ int reg; if( chngKey || hasFK>1 || pIdx==pPk || indexWhereClauseMightChange(pIdx,aXRef,chngRowid) ){ reg = ++pParse->nMem; pParse->nMem += pIdx->nColumn; }else{ reg = 0; for(i=0; inKeyCol; i++){ if( indexColumnIsBeingUpdated(pIdx, i, aXRef, chngRowid) ){ reg = ++pParse->nMem; pParse->nMem += pIdx->nColumn; if( onError==OE_Default && pIdx->onError==OE_Replace ){ bReplace = 1; } break; } } } if( reg==0 ) aToOpen[nAllIdx+1] = 0; aRegIdx[nAllIdx] = reg; } aRegIdx[nAllIdx] = ++pParse->nMem; /* Register storing the table record */ if( bReplace ){ /* If REPLACE conflict resolution might be invoked, open cursors on all ** indexes in case they are needed to delete records. */ memset(aToOpen, 1, nIdx+1); } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pTrigger || hasFK, iDb); /* Allocate required registers. */ if( !IsVirtual(pTab) ){ /* For now, regRowSet and aRegIdx[nAllIdx] share the same register. ** If regRowSet turns out to be needed, then aRegIdx[nAllIdx] will be ** reallocated. aRegIdx[nAllIdx] is the register in which the main ** table record is written. regRowSet holds the RowSet for the ** two-pass update algorithm. */ assert( aRegIdx[nAllIdx]==pParse->nMem ); regRowSet = aRegIdx[nAllIdx]; regOldRowid = regNewRowid = ++pParse->nMem; if( chngPk || pTrigger || hasFK ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngKey || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; } /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( nChangeFrom==0 && isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, pOrderBy, pLimit, iDataCur ); pOrderBy = 0; pLimit = 0; } #endif /* Resolve the column names in all the expressions in the ** WHERE clause. */ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); goto update_cleanup; } #endif /* Jump to labelBreak to abandon further processing of this UPDATE */ labelContinue = labelBreak = sqlite3VdbeMakeLabel(pParse); /* Not an UPSERT. Normal processing. Begin by ** initialize the count of updated rows */ if( (db->flags&SQLITE_CountRows)!=0 && !pParse->pTriggerTab && !pParse->nested && !pParse->bReturning && pUpsert==0 ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } if( nChangeFrom==0 && HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); iEph = pParse->nTab++; addrOpen = sqlite3VdbeAddOp3(v, OP_OpenEphemeral, iEph, 0, regRowSet); }else{ assert( pPk!=0 || HasRowid(pTab) ); nPk = pPk ? pPk->nKeyCol : 0; iPk = pParse->nMem+1; pParse->nMem += nPk; pParse->nMem += nChangeFrom; regKey = ++pParse->nMem; if( pUpsert==0 ){ int nEphCol = nPk + nChangeFrom + (isView ? pTab->nCol : 0); iEph = pParse->nTab++; if( pPk ) sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1); addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nEphCol); if( pPk ){ KeyInfo *pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pPk); if( pKeyInfo ){ pKeyInfo->nAllField = nEphCol; sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); } } if( nChangeFrom ){ updateFromSelect( pParse, iEph, pPk, pChanges, pTabList, pWhere, pOrderBy, pLimit ); #ifndef SQLITE_OMIT_SUBQUERY if( isView ) iDataCur = iEph; #endif } } } if( nChangeFrom ){ sqlite3MultiWrite(pParse); eOnePass = ONEPASS_OFF; nKey = nPk; regKey = iPk; }else{ if( pUpsert ){ /* If this is an UPSERT, then all cursors have already been opened by ** the outer INSERT and the data cursor should be pointing at the row ** that is to be updated. So bypass the code that searches for the ** row(s) to be updated. */ pWInfo = 0; eOnePass = ONEPASS_SINGLE; sqlite3ExprIfFalse(pParse, pWhere, labelBreak, SQLITE_JUMPIFNULL); bFinishSeek = 0; }else{ /* Begin the database scan. ** ** Do not consider a single-pass strategy for a multi-row update if ** there is anything that might disrupt the cursor being used to do ** the UPDATE: ** (1) This is a nested UPDATE ** (2) There are triggers ** (3) There are FOREIGN KEY constraints ** (4) There are REPLACE conflict handlers ** (5) There are subqueries in the WHERE clause */ flags = WHERE_ONEPASS_DESIRED; if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace && (pWhere==0 || !ExprHasProperty(pWhere, EP_Subquery)) ){ flags |= WHERE_ONEPASS_MULTIROW; } pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,0,0,flags,iIdxCur); if( pWInfo==0 ) goto update_cleanup; /* A one-pass strategy that might update more than one row may not ** be used if any column of the index used for the scan is being ** updated. Otherwise, if there is an index on "b", statements like ** the following could create an infinite loop: ** ** UPDATE t1 SET b=b+1 WHERE b>? ** ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI ** strategy that uses an index for which one or more columns are being ** updated. */ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); bFinishSeek = sqlite3WhereUsesDeferredSeek(pWInfo); if( eOnePass!=ONEPASS_SINGLE ){ sqlite3MultiWrite(pParse); if( eOnePass==ONEPASS_MULTI ){ int iCur = aiCurOnePass[1]; if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){ eOnePass = ONEPASS_OFF; } assert( iCur!=iDataCur || !HasRowid(pTab) ); } } } if( HasRowid(pTab) ){ /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF ** mode, write the rowid into the FIFO. In either of the one-pass modes, ** leave it in register regOldRowid. */ sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid); if( eOnePass==ONEPASS_OFF ){ aRegIdx[nAllIdx] = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_Insert, iEph, regRowSet, regOldRowid); }else{ if( ALWAYS(addrOpen) ) sqlite3VdbeChangeToNoop(v, addrOpen); } }else{ /* Read the PK of the current row into an array of registers. In ** ONEPASS_OFF mode, serialize the array into a record and store it in ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table ** is not required) and leave the PK fields in the array of registers. */ for(i=0; iaiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pPk->aiColumn[i], iPk+i); } if( eOnePass ){ if( addrOpen ) sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, sqlite3IndexAffinityStr(db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk); } } } if( pUpsert==0 ){ if( nChangeFrom==0 && eOnePass!=ONEPASS_MULTI ){ sqlite3WhereEnd(pWInfo); } if( !isView ){ int addrOnce = 0; int iNotUsed1 = 0; int iNotUsed2 = 0; /* Open every index that needs updating. */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen, &iNotUsed1, &iNotUsed2); if( addrOnce ){ sqlite3VdbeJumpHereOrPopInst(v, addrOnce); } } /* Top of the update loop */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]!=iDataCur && aiCurOnePass[1]!=iDataCur #ifdef SQLITE_ALLOW_ROWID_IN_VIEW && !isView #endif ){ assert( pPk ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey,nKey); VdbeCoverage(v); } if( eOnePass!=ONEPASS_SINGLE ){ labelContinue = sqlite3VdbeMakeLabel(pParse); } sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk || nChangeFrom ){ labelContinue = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeCurrentAddr(v); if( nChangeFrom ){ if( !isView ){ if( pPk ){ for(i=0; i=0 ); if( nChangeFrom==0 ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); }else{ sqlite3VdbeAddOp3(v, OP_Column, iEph, iRowidExpr, regNewRowid); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v); } /* Compute the old pre-UPDATE content of the row being changed, if that ** information is needed */ if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; inCol; i++){ u32 colFlags = pTab->aCol[i].colFlags; k = sqlite3TableColumnToStorage(pTab, i) + regOld; if( oldmask==0xffffffff || (i<32 && (oldmask & MASKBIT32(i))!=0) || (colFlags & COLFLAG_PRIMKEY)!=0 ){ testcase( oldmask!=0xffffffff && i==31 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, k); } } if( chngRowid==0 && pPk==0 ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); } } /* Populate the array of registers beginning at regNew with the new ** row data. This array is used to check constants, create the new ** table and index records, and as the values for any new.* references ** made by triggers. ** ** If there are one or more BEFORE triggers, then do not populate the ** registers associated with columns that are (a) not modified by ** this UPDATE statement and (b) not accessed by new.* references. The ** values for registers not modified by the UPDATE must be reloaded from ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); for(i=0, k=regNew; inCol; i++, k++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, k); }else if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)!=0 ){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--; }else{ j = aXRef[i]; if( j>=0 ){ if( nChangeFrom ){ int nOff = (isView ? pTab->nCol : nPk); assert( eOnePass==ONEPASS_OFF ); sqlite3VdbeAddOp3(v, OP_Column, iEph, nOff+j, k); }else{ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, k); } }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){ /* This branch loads the value of a column that will not be changed ** into a register. This is done if there are no BEFORE triggers, or ** if there are one or more BEFORE triggers that use this value via ** a new.* reference in a trigger program. */ testcase( i==31 ); testcase( i==32 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k); bFinishSeek = 0; }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, k); } } } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regNew, pTab); } #endif /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ sqlite3TableAffinity(v, pTab, regNew); sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue); if( !isView ){ /* The row-trigger may have deleted the row being updated. In this ** case, jump to the next row. No updates or AFTER triggers are ** required. This behavior - what happens when the row being updated ** is deleted or renamed by a BEFORE trigger - is left undefined in the ** documentation. */ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid); VdbeCoverage(v); } /* After-BEFORE-trigger-reload-loop: ** If it did not delete it, the BEFORE trigger may still have modified ** some of the columns of the row being updated. Load the values for ** all columns not modified by the update statement into their registers ** in case this has happened. Only unmodified columns are reloaded. ** The values computed for modified columns use the values before the ** BEFORE trigger runs. See test case trigger1-18.0 (added 2018-04-26) ** for an example. */ for(i=0, k=regNew; inCol; i++, k++){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--; }else if( aXRef[i]<0 && i!=pTab->iPKey ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k); } } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regNew, pTab); } #endif } } if( !isView ){ /* Do constraint checks. */ assert( regOldRowid>0 ); sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace, aXRef, 0); /* If REPLACE conflict handling may have been used, or if the PK of the ** row is changing, then the GenerateConstraintChecks() above may have ** moved cursor iDataCur. Reseek it. */ if( bReplace || chngKey ){ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid); } VdbeCoverage(v); } /* Do FK constraint checks. */ if( hasFK ){ sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey); } /* Delete the index entries associated with the current record. */ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx, -1); /* We must run the OP_FinishSeek opcode to resolve a prior ** OP_DeferredSeek if there is any possibility that there have been ** no OP_Column opcodes since the OP_DeferredSeek was issued. But ** we want to avoid the OP_FinishSeek if possible, as running it ** costs CPU cycles. */ if( bFinishSeek ){ sqlite3VdbeAddOp1(v, OP_FinishSeek, iDataCur); } /* If changing the rowid value, or if there are foreign key constraints ** to process, delete the old record. Otherwise, add a noop OP_Delete ** to invoke the pre-update hook. ** ** That (regNew==regnewRowid+1) is true is also important for the ** pre-update hook. If the caller invokes preupdate_new(), the returned ** value is copied from memory cell (regNewRowid+1+iCol), where iCol ** is the column index supplied by the user. */ assert( regNew==regNewRowid+1 ); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeAddOp3(v, OP_Delete, iDataCur, OPFLAG_ISUPDATE | ((hasFK>1 || chngKey) ? 0 : OPFLAG_ISNOOP), regNewRowid ); if( eOnePass==ONEPASS_MULTI ){ assert( hasFK==0 && chngKey==0 ); sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); } if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } #else if( hasFK>1 || chngKey ){ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0); } #endif if( hasFK ){ sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey); } /* Insert the new index entries and the new record. */ sqlite3CompleteInsertion( pParse, pTab, iDataCur, iIdxCur, regNewRowid, aRegIdx, OPFLAG_ISUPDATE | (eOnePass==ONEPASS_MULTI ? OPFLAG_SAVEPOSITION : 0), 0, 0 ); /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just updated. */ if( hasFK ){ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey); } } /* Increment the row counter */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue); } /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( eOnePass==ONEPASS_SINGLE ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( eOnePass==ONEPASS_MULTI ){ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3WhereEnd(pWInfo); }else{ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, labelBreak); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 && pUpsert==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows that were changed, if we are tracking ** that information. */ if( regRowCount ){ sqlite3CodeChangeCount(v, regRowCount, "rows updated"); } update_cleanup: sqlite3AuthContextPop(&sContext); sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */ sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pChanges); sqlite3ExprDelete(db, pWhere); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) sqlite3ExprListDelete(db, pOrderBy); sqlite3ExprDelete(db, pLimit); #endif return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Generate code for an UPDATE of a virtual table. ** ** There are two possible strategies - the default and the special ** "onepass" strategy. Onepass is only used if the virtual table ** implementation indicates that pWhere may match at most one row. ** ** The default strategy is to create an ephemeral table that contains ** for each row to be changed: ** ** (A) The original rowid of that row. ** (B) The revised rowid for the row. ** (C) The content of every column in the row. ** ** Then loop through the contents of this ephemeral table executing a ** VUpdate for each row. When finished, drop the ephemeral table. ** ** The "onepass" strategy does not use an ephemeral table. Instead, it ** stores the same values (A, B and C above) in a register array and ** makes a single invocation of VUpdate. */ static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowid, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ){ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */ int ephemTab; /* Table holding the result of the SELECT */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* Database connection */ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab); WhereInfo *pWInfo = 0; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ int regRowid; /* Register for ephemeral table rowid */ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */ int eOnePass; /* True to use onepass strategy */ int addr; /* Address of OP_OpenEphemeral */ /* Allocate nArg registers in which to gather the arguments for VUpdate. Then ** create and open the ephemeral table in which the records created from ** these arguments will be temporarily stored. */ assert( v ); ephemTab = pParse->nTab++; addr= sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, nArg); regArg = pParse->nMem + 1; pParse->nMem += nArg; if( pSrc->nSrc>1 ){ Index *pPk = 0; Expr *pRow; ExprList *pList; if( HasRowid(pTab) ){ if( pRowid ){ pRow = sqlite3ExprDup(db, pRowid, 0); }else{ pRow = sqlite3PExpr(pParse, TK_ROW, 0, 0); } }else{ i16 iPk; /* PRIMARY KEY column */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol==1 ); iPk = pPk->aiColumn[0]; if( aXRef[iPk]>=0 ){ pRow = sqlite3ExprDup(db, pChanges->a[aXRef[iPk]].pExpr, 0); }else{ pRow = exprRowColumn(pParse, iPk); } } pList = sqlite3ExprListAppend(pParse, 0, pRow); for(i=0; inCol; i++){ if( aXRef[i]>=0 ){ pList = sqlite3ExprListAppend(pParse, pList, sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0) ); }else{ Expr *pRowExpr = exprRowColumn(pParse, i); if( pRowExpr ) pRowExpr->op2 = OPFLAG_NOCHNG; pList = sqlite3ExprListAppend(pParse, pList, pRowExpr); } } updateFromSelect(pParse, ephemTab, pPk, pList, pSrc, pWhere, 0, 0); sqlite3ExprListDelete(db, pList); eOnePass = ONEPASS_OFF; }else{ regRec = ++pParse->nMem; regRowid = ++pParse->nMem; /* Start scanning the virtual table */ pWInfo = sqlite3WhereBegin( pParse, pSrc, pWhere, 0, 0, 0, WHERE_ONEPASS_DESIRED, 0 ); if( pWInfo==0 ) return; /* Populate the argument registers. */ for(i=0; inCol; i++){ assert( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ); if( aXRef[i]>=0 ){ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i); }else{ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i); sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG);/* For sqlite3_vtab_nochange() */ } } if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg); if( pRowid ){ sqlite3ExprCode(pParse, pRowid, regArg+1); }else{ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg+1); } }else{ Index *pPk; /* PRIMARY KEY index */ i16 iPk; /* PRIMARY KEY column */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol==1 ); iPk = pPk->aiColumn[0]; sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg); sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1); } eOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy); /* There is no ONEPASS_MULTI on virtual tables */ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); if( eOnePass ){ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded ** above. */ sqlite3VdbeChangeToNoop(v, addr); sqlite3VdbeAddOp1(v, OP_Close, iCsr); }else{ /* Create a record from the argument register contents and insert it into ** the ephemeral table. */ sqlite3MultiWrite(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec); #if defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_NULL_TRIM) /* Signal an assert() within OP_MakeRecord that it is allowed to ** accept no-change records with serial_type 10 */ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); #endif sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid); } } if( eOnePass==ONEPASS_OFF ){ /* End the virtual table scan */ if( pSrc->nSrc==1 ){ sqlite3WhereEnd(pWInfo); } /* Begin scanning through the ephemeral table. */ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v); /* Extract arguments from the current row of the ephemeral table and ** invoke the VUpdate method. */ for(i=0; ipNextUpsert; sqlite3ExprListDelete(db, p->pUpsertTarget); sqlite3ExprDelete(db, p->pUpsertTargetWhere); sqlite3ExprListDelete(db, p->pUpsertSet); sqlite3ExprDelete(db, p->pUpsertWhere); sqlite3DbFree(db, p->pToFree); sqlite3DbFree(db, p); p = pNext; }while( p ); } SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){ if( p ) upsertDelete(db, p); } /* ** Duplicate an Upsert object. */ SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){ if( p==0 ) return 0; return sqlite3UpsertNew(db, sqlite3ExprListDup(db, p->pUpsertTarget, 0), sqlite3ExprDup(db, p->pUpsertTargetWhere, 0), sqlite3ExprListDup(db, p->pUpsertSet, 0), sqlite3ExprDup(db, p->pUpsertWhere, 0), sqlite3UpsertDup(db, p->pNextUpsert) ); } /* ** Create a new Upsert object. */ SQLITE_PRIVATE Upsert *sqlite3UpsertNew( sqlite3 *db, /* Determines which memory allocator to use */ ExprList *pTarget, /* Target argument to ON CONFLICT, or NULL */ Expr *pTargetWhere, /* Optional WHERE clause on the target */ ExprList *pSet, /* UPDATE columns, or NULL for a DO NOTHING */ Expr *pWhere, /* WHERE clause for the ON CONFLICT UPDATE */ Upsert *pNext /* Next ON CONFLICT clause in the list */ ){ Upsert *pNew; pNew = sqlite3DbMallocZero(db, sizeof(Upsert)); if( pNew==0 ){ sqlite3ExprListDelete(db, pTarget); sqlite3ExprDelete(db, pTargetWhere); sqlite3ExprListDelete(db, pSet); sqlite3ExprDelete(db, pWhere); sqlite3UpsertDelete(db, pNext); return 0; }else{ pNew->pUpsertTarget = pTarget; pNew->pUpsertTargetWhere = pTargetWhere; pNew->pUpsertSet = pSet; pNew->pUpsertWhere = pWhere; pNew->isDoUpdate = pSet!=0; pNew->pNextUpsert = pNext; } return pNew; } /* ** Analyze the ON CONFLICT clause described by pUpsert. Resolve all ** symbols in the conflict-target. ** ** Return SQLITE_OK if everything works, or an error code is something ** is wrong. */ SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget( Parse *pParse, /* The parsing context */ SrcList *pTabList, /* Table into which we are inserting */ Upsert *pUpsert /* The ON CONFLICT clauses */ ){ Table *pTab; /* That table into which we are inserting */ int rc; /* Result code */ int iCursor; /* Cursor used by pTab */ Index *pIdx; /* One of the indexes of pTab */ ExprList *pTarget; /* The conflict-target clause */ Expr *pTerm; /* One term of the conflict-target clause */ NameContext sNC; /* Context for resolving symbolic names */ Expr sCol[2]; /* Index column converted into an Expr */ int nClause = 0; /* Counter of ON CONFLICT clauses */ assert( pTabList->nSrc==1 ); assert( pTabList->a[0].pTab!=0 ); assert( pUpsert!=0 ); assert( pUpsert->pUpsertTarget!=0 ); /* Resolve all symbolic names in the conflict-target clause, which ** includes both the list of columns and the optional partial-index ** WHERE clause. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; for(; pUpsert && pUpsert->pUpsertTarget; pUpsert=pUpsert->pNextUpsert, nClause++){ rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget); if( rc ) return rc; rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere); if( rc ) return rc; /* Check to see if the conflict target matches the rowid. */ pTab = pTabList->a[0].pTab; pTarget = pUpsert->pUpsertTarget; iCursor = pTabList->a[0].iCursor; if( HasRowid(pTab) && pTarget->nExpr==1 && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN && pTerm->iColumn==XN_ROWID ){ /* The conflict-target is the rowid of the primary table */ assert( pUpsert->pUpsertIdx==0 ); continue; } /* Initialize sCol[0..1] to be an expression parse tree for a ** single column of an index. The sCol[0] node will be the TK_COLLATE ** operator and sCol[1] will be the TK_COLUMN operator. Code below ** will populate the specific collation and column number values ** prior to comparing against the conflict-target expression. */ memset(sCol, 0, sizeof(sCol)); sCol[0].op = TK_COLLATE; sCol[0].pLeft = &sCol[1]; sCol[1].op = TK_COLUMN; sCol[1].iTable = pTabList->a[0].iCursor; /* Check for matches against other indexes */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int ii, jj, nn; if( !IsUniqueIndex(pIdx) ) continue; if( pTarget->nExpr!=pIdx->nKeyCol ) continue; if( pIdx->pPartIdxWhere ){ if( pUpsert->pUpsertTargetWhere==0 ) continue; if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere, pIdx->pPartIdxWhere, iCursor)!=0 ){ continue; } } nn = pIdx->nKeyCol; for(ii=0; iiazColl[ii]; if( pIdx->aiColumn[ii]==XN_EXPR ){ assert( pIdx->aColExpr!=0 ); assert( pIdx->aColExpr->nExpr>ii ); assert( pIdx->bHasExpr ); pExpr = pIdx->aColExpr->a[ii].pExpr; if( pExpr->op!=TK_COLLATE ){ sCol[0].pLeft = pExpr; pExpr = &sCol[0]; } }else{ sCol[0].pLeft = &sCol[1]; sCol[1].iColumn = pIdx->aiColumn[ii]; pExpr = &sCol[0]; } for(jj=0; jja[jj].pExpr,pExpr,iCursor)<2 ){ break; /* Column ii of the index matches column jj of target */ } } if( jj>=nn ){ /* The target contains no match for column jj of the index */ break; } } if( iipUpsertIdx = pIdx; break; } if( pUpsert->pUpsertIdx==0 ){ char zWhich[16]; if( nClause==0 && pUpsert->pNextUpsert==0 ){ zWhich[0] = 0; }else{ sqlite3_snprintf(sizeof(zWhich),zWhich,"%r ", nClause+1); } sqlite3ErrorMsg(pParse, "%sON CONFLICT clause does not match any " "PRIMARY KEY or UNIQUE constraint", zWhich); return SQLITE_ERROR; } } return SQLITE_OK; } /* ** Return true if pUpsert is the last ON CONFLICT clause with a ** conflict target, or if pUpsert is followed by another ON CONFLICT ** clause that targets the INTEGER PRIMARY KEY. */ SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert *pUpsert){ Upsert *pNext; if( NEVER(pUpsert==0) ) return 0; pNext = pUpsert->pNextUpsert; if( pNext==0 ) return 1; if( pNext->pUpsertTarget==0 ) return 1; if( pNext->pUpsertIdx==0 ) return 1; return 0; } /* ** Given the list of ON CONFLICT clauses described by pUpsert, and ** a particular index pIdx, return a pointer to the particular ON CONFLICT ** clause that applies to the index. Or, if the index is not subject to ** any ON CONFLICT clause, return NULL. */ SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert *pUpsert, Index *pIdx){ while( pUpsert && pUpsert->pUpsertTarget!=0 && pUpsert->pUpsertIdx!=pIdx ){ pUpsert = pUpsert->pNextUpsert; } return pUpsert; } /* ** Generate bytecode that does an UPDATE as part of an upsert. ** ** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK. ** In this case parameter iCur is a cursor open on the table b-tree that ** currently points to the conflicting table row. Otherwise, if pIdx ** is not NULL, then pIdx is the constraint that failed and iCur is a ** cursor points to the conflicting row. */ SQLITE_PRIVATE void sqlite3UpsertDoUpdate( Parse *pParse, /* The parsing and code-generating context */ Upsert *pUpsert, /* The ON CONFLICT clause for the upsert */ Table *pTab, /* The table being updated */ Index *pIdx, /* The UNIQUE constraint that failed */ int iCur /* Cursor for pIdx (or pTab if pIdx==NULL) */ ){ Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; SrcList *pSrc; /* FROM clause for the UPDATE */ int iDataCur; int i; Upsert *pTop = pUpsert; assert( v!=0 ); assert( pUpsert!=0 ); iDataCur = pUpsert->iDataCur; pUpsert = sqlite3UpsertOfIndex(pTop, pIdx); VdbeNoopComment((v, "Begin DO UPDATE of UPSERT")); if( pIdx && iCur!=iDataCur ){ if( HasRowid(pTab) ){ int regRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid); sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regRowid); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk = pParse->nMem+1; pParse->nMem += nPk; for(i=0; iaiColumn[i]>=0 ); k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i); VdbeComment((v, "%s.%s", pIdx->zName, pTab->aCol[pPk->aiColumn[i]].zCnName)); } sqlite3VdbeVerifyAbortable(v, OE_Abort); i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, "corrupt database", P4_STATIC); sqlite3MayAbort(pParse); sqlite3VdbeJumpHere(v, i); } } /* pUpsert does not own pTop->pUpsertSrc - the outer INSERT statement does. ** So we have to make a copy before passing it down into sqlite3Update() */ pSrc = sqlite3SrcListDup(db, pTop->pUpsertSrc, 0); /* excluded.* columns of type REAL need to be converted to a hard real */ for(i=0; inCol; i++){ if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, pTop->regData+i); } } sqlite3Update(pParse, pSrc, sqlite3ExprListDup(db,pUpsert->pUpsertSet,0), sqlite3ExprDup(db,pUpsert->pUpsertWhere,0), OE_Abort, 0, 0, pUpsert); VdbeNoopComment((v, "End DO UPDATE of UPSERT")); } #endif /* SQLITE_OMIT_UPSERT */ /************** End of upsert.c **********************************************/ /************** Begin file vacuum.c ******************************************/ /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the VACUUM command. ** ** Most of the code in this file may be omitted by defining the ** SQLITE_OMIT_VACUUM macro. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* ** Execute zSql on database db. ** ** If zSql returns rows, then each row will have exactly one ** column. (This will only happen if zSql begins with "SELECT".) ** Take each row of result and call execSql() again recursively. ** ** The execSqlF() routine does the same thing, except it accepts ** a format string as its third argument */ static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ sqlite3_stmt *pStmt; int rc; /* printf("SQL: [%s]\n", zSql); fflush(stdout); */ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0); assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 ); /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX, ** or INSERT. Historically there have been attacks that first ** corrupt the sqlite_schema.sql field with other kinds of statements ** then run VACUUM to get those statements to execute at inappropriate ** times. */ if( zSubSql && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0) ){ rc = execSql(db, pzErrMsg, zSubSql); if( rc!=SQLITE_OK ) break; } } assert( rc!=SQLITE_ROW ); if( rc==SQLITE_DONE ) rc = SQLITE_OK; if( rc ){ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); } (void)sqlite3_finalize(pStmt); return rc; } static int execSqlF(sqlite3 *db, char **pzErrMsg, const char *zSql, ...){ char *z; va_list ap; int rc; va_start(ap, zSql); z = sqlite3VMPrintf(db, zSql, ap); va_end(ap); if( z==0 ) return SQLITE_NOMEM; rc = execSql(db, pzErrMsg, z); sqlite3DbFree(db, z); return rc; } /* ** The VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. The VACUUM command works as follows: ** ** (1) Create a new transient database file ** (2) Copy all content from the database being vacuumed into ** the new transient database file ** (3) Copy content from the transient database back into the ** original database. ** ** The transient database requires temporary disk space approximately ** equal to the size of the original database. The copy operation of ** step (3) requires additional temporary disk space approximately equal ** to the size of the original database for the rollback journal. ** Hence, temporary disk space that is approximately 2x the size of the ** original database is required. Every page of the database is written ** approximately 3 times: Once for step (2) and twice for step (3). ** Two writes per page are required in step (3) because the original ** database content must be written into the rollback journal prior to ** overwriting the database with the vacuumed content. ** ** Only 1x temporary space and only 1x writes would be required if ** the copy of step (3) were replaced by deleting the original database ** and renaming the transient database as the original. But that will ** not work if other processes are attached to the original database. ** And a power loss in between deleting the original and renaming the ** transient would cause the database file to appear to be deleted ** following reboot. */ SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse, Token *pNm, Expr *pInto){ Vdbe *v = sqlite3GetVdbe(pParse); int iDb = 0; if( v==0 ) goto build_vacuum_end; if( pParse->nErr ) goto build_vacuum_end; if( pNm ){ #ifndef SQLITE_BUG_COMPATIBLE_20160819 /* Default behavior: Report an error if the argument to VACUUM is ** not recognized */ iDb = sqlite3TwoPartName(pParse, pNm, pNm, &pNm); if( iDb<0 ) goto build_vacuum_end; #else /* When SQLITE_BUG_COMPATIBLE_20160819 is defined, unrecognized arguments ** to VACUUM are silently ignored. This is a back-out of a bug fix that ** occurred on 2016-08-19 (https://www.sqlite.org/src/info/083f9e6270). ** The buggy behavior is required for binary compatibility with some ** legacy applications. */ iDb = sqlite3FindDb(pParse->db, pNm); if( iDb<0 ) iDb = 0; #endif } if( iDb!=1 ){ int iIntoReg = 0; if( pInto && sqlite3ResolveSelfReference(pParse,0,0,pInto,0)==0 ){ iIntoReg = ++pParse->nMem; sqlite3ExprCode(pParse, pInto, iIntoReg); } sqlite3VdbeAddOp2(v, OP_Vacuum, iDb, iIntoReg); sqlite3VdbeUsesBtree(v, iDb); } build_vacuum_end: sqlite3ExprDelete(pParse->db, pInto); return; } /* ** This routine implements the OP_Vacuum opcode of the VDBE. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3RunVacuum( char **pzErrMsg, /* Write error message here */ sqlite3 *db, /* Database connection */ int iDb, /* Which attached DB to vacuum */ sqlite3_value *pOut /* Write results here, if not NULL. VACUUM INTO */ ){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ u32 saved_mDbFlags; /* Saved value of db->mDbFlags */ u64 saved_flags; /* Saved value of db->flags */ i64 saved_nChange; /* Saved value of db->nChange */ i64 saved_nTotalChange; /* Saved value of db->nTotalChange */ u32 saved_openFlags; /* Saved value of db->openFlags */ u8 saved_mTrace; /* Saved trace settings */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ int nRes; /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ const char *zDbMain; /* Schema name of database to vacuum */ const char *zOut; /* Name of output file */ u32 pgflags = PAGER_SYNCHRONOUS_OFF; /* sync flags for output db */ if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; /* IMP: R-12218-18073 */ } if( db->nVdbeActive>1 ){ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress"); return SQLITE_ERROR; /* IMP: R-15610-35227 */ } saved_openFlags = db->openFlags; if( pOut ){ if( sqlite3_value_type(pOut)!=SQLITE_TEXT ){ sqlite3SetString(pzErrMsg, db, "non-text filename"); return SQLITE_ERROR; } zOut = (const char*)sqlite3_value_text(pOut); db->openFlags &= ~SQLITE_OPEN_READONLY; db->openFlags |= SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE; }else{ zOut = ""; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_Defensive | SQLITE_CountRows); db->mTrace = 0; zDbMain = db->aDb[iDb].zDbSName; pMain = db->aDb[iDb].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimization would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ nDb = db->nDb; rc = execSqlF(db, pzErrMsg, "ATTACH %Q AS vacuum_db", zOut); db->openFlags = saved_openFlags; if( rc!=SQLITE_OK ) goto end_of_vacuum; assert( (db->nDb-1)==nDb ); pDb = &db->aDb[nDb]; assert( strcmp(pDb->zDbSName,"vacuum_db")==0 ); pTemp = pDb->pBt; if( pOut ){ sqlite3_file *id = sqlite3PagerFile(sqlite3BtreePager(pTemp)); i64 sz = 0; if( id->pMethods!=0 && (sqlite3OsFileSize(id, &sz)!=SQLITE_OK || sz>0) ){ rc = SQLITE_ERROR; sqlite3SetString(pzErrMsg, db, "output file already exists"); goto end_of_vacuum; } db->mDbFlags |= DBFLAG_VacuumInto; /* For a VACUUM INTO, the pager-flags are set to the same values as ** they are for the database being vacuumed, except that PAGER_CACHESPILL ** is always set. */ pgflags = db->aDb[iDb].safety_level | (db->flags & PAGER_FLAGS_MASK); } nRes = sqlite3BtreeGetRequestedReserve(pMain); sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size); sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain,0)); sqlite3BtreeSetPagerFlags(pTemp, pgflags|PAGER_CACHESPILL); /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeBeginTrans(pMain, pOut==0 ? 2 : 0, 0); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Do not attempt to change the page size for a WAL database */ if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) ==PAGER_JOURNALMODE_WAL && pOut==0 ){ db->nextPagesize = 0; } if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) || NEVER(db->mallocFailed) ){ rc = SQLITE_NOMEM_BKPT; goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */ rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_schema" " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_schema" " WHERE type='index'", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; db->init.iDb = 0; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ rc = execSqlF(db, pzErrMsg, "SELECT'INSERT INTO vacuum_db.'||quote(name)" "||' SELECT*FROM\"%w\".'||quote(name)" "FROM vacuum_db.sqlite_schema " "WHERE type='table'AND coalesce(rootpage,1)>0", zDbMain ); assert( (db->mDbFlags & DBFLAG_Vacuum)!=0 ); db->mDbFlags &= ~DBFLAG_Vacuum; if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the schema table. */ rc = execSqlF(db, pzErrMsg, "INSERT INTO vacuum_db.sqlite_schema" " SELECT*FROM \"%w\".sqlite_schema" " WHERE type IN('view','trigger')" " OR(type='table'AND rootpage=0)", zDbMain ); if( rc ) goto end_of_vacuum; /* At this point, there is a write transaction open on both the ** vacuum database and the main database. Assuming no error occurs, ** both transactions are closed by this block - the main database ** transaction by sqlite3BtreeCopyFile() and the other by an explicit ** call to sqlite3BtreeCommit(). */ { u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; assert( SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pTemp) ); assert( pOut!=0 || SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pMain) ); /* Copy Btree meta values */ for(i=0; iflags */ db->init.iDb = 0; db->mDbFlags = saved_mDbFlags; db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->mTrace = saved_mTrace; sqlite3BtreeSetPageSize(pMain, -1, 0, 1); /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } /* This both clears the schemas and reduces the size of the db->aDb[] ** array. */ sqlite3ResetAllSchemasOfConnection(db); return rc; } #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */ /************** End of vacuum.c **********************************************/ /************** Begin file vtab.c ********************************************/ /* ** 2006 June 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to help implement virtual tables. */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* #include "sqliteInt.h" */ /* ** Before a virtual table xCreate() or xConnect() method is invoked, the ** sqlite3.pVtabCtx member variable is set to point to an instance of ** this struct allocated on the stack. It is used by the implementation of ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which ** are invoked only from within xCreate and xConnect methods. */ struct VtabCtx { VTable *pVTable; /* The virtual table being constructed */ Table *pTab; /* The Table object to which the virtual table belongs */ VtabCtx *pPrior; /* Parent context (if any) */ int bDeclared; /* True after sqlite3_declare_vtab() is called */ }; /* ** Construct and install a Module object for a virtual table. When this ** routine is called, it is guaranteed that all appropriate locks are held ** and the module is not already part of the connection. ** ** If there already exists a module with zName, replace it with the new one. ** If pModule==0, then delete the module zName if it exists. */ SQLITE_PRIVATE Module *sqlite3VtabCreateModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ Module *pMod; Module *pDel; char *zCopy; if( pModule==0 ){ zCopy = (char*)zName; pMod = 0; }else{ int nName = sqlite3Strlen30(zName); pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); if( pMod==0 ){ sqlite3OomFault(db); return 0; } zCopy = (char *)(&pMod[1]); memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pMod->pEpoTab = 0; pMod->nRefModule = 1; } pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); if( pDel ){ if( pDel==pMod ){ sqlite3OomFault(db); sqlite3DbFree(db, pDel); pMod = 0; }else{ sqlite3VtabEponymousTableClear(db, pDel); sqlite3VtabModuleUnref(db, pDel); } } return pMod; } /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ static int createModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); sqlite3_mutex_leave(db->mutex); return rc; } /* ** External API function used to create a new virtual-table module. */ SQLITE_API int sqlite3_create_module( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux /* Context pointer for xCreate/xConnect */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, 0); } /* ** External API function used to create a new virtual-table module. */ SQLITE_API int sqlite3_create_module_v2( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, xDestroy); } /* ** External API to drop all virtual-table modules, except those named ** on the azNames list. */ SQLITE_API int sqlite3_drop_modules(sqlite3 *db, const char** azNames){ HashElem *pThis, *pNext; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){ Module *pMod = (Module*)sqliteHashData(pThis); pNext = sqliteHashNext(pThis); if( azNames ){ int ii; for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){} if( azNames[ii]!=0 ) continue; } createModule(db, pMod->zName, 0, 0, 0); } return SQLITE_OK; } /* ** Decrement the reference count on a Module object. Destroy the ** module when the reference count reaches zero. */ SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){ assert( pMod->nRefModule>0 ); pMod->nRefModule--; if( pMod->nRefModule==0 ){ if( pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } assert( pMod->pEpoTab==0 ); sqlite3DbFree(db, pMod); } } /* ** Lock the virtual table so that it cannot be disconnected. ** Locks nest. Every lock should have a corresponding unlock. ** If an unlock is omitted, resources leaks will occur. ** ** If a disconnect is attempted while a virtual table is locked, ** the disconnect is deferred until all locks have been removed. */ SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){ pVTab->nRef++; } /* ** pTab is a pointer to a Table structure representing a virtual-table. ** Return a pointer to the VTable object used by connection db to access ** this virtual-table, if one has been created, or NULL otherwise. */ SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ VTable *pVtab; assert( IsVirtual(pTab) ); for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); return pVtab; } /* ** Decrement the ref-count on a virtual table object. When the ref-count ** reaches zero, call the xDisconnect() method to delete the object. */ SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){ sqlite3 *db = pVTab->db; assert( db ); assert( pVTab->nRef>0 ); assert( db->eOpenState==SQLITE_STATE_OPEN || db->eOpenState==SQLITE_STATE_ZOMBIE ); pVTab->nRef--; if( pVTab->nRef==0 ){ sqlite3_vtab *p = pVTab->pVtab; if( p ){ p->pModule->xDisconnect(p); } sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod); sqlite3DbFree(db, pVTab); } } /* ** Table p is a virtual table. This function moves all elements in the ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated ** database connections to be disconnected at the next opportunity. ** Except, if argument db is not NULL, then the entry associated with ** connection db is left in the p->u.vtab.p list. */ static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ VTable *pRet = 0; VTable *pVTable; assert( IsVirtual(p) ); pVTable = p->u.vtab.p; p->u.vtab.p = 0; /* Assert that the mutex (if any) associated with the BtShared database ** that contains table p is held by the caller. See header comments ** above function sqlite3VtabUnlockList() for an explanation of why ** this makes it safe to access the sqlite3.pDisconnect list of any ** database connection that may have an entry in the p->u.vtab.p list. */ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); while( pVTable ){ sqlite3 *db2 = pVTable->db; VTable *pNext = pVTable->pNext; assert( db2 ); if( db2==db ){ pRet = pVTable; p->u.vtab.p = pRet; pRet->pNext = 0; }else{ pVTable->pNext = db2->pDisconnect; db2->pDisconnect = pVTable; } pVTable = pNext; } assert( !db || pRet ); return pRet; } /* ** Table *p is a virtual table. This function removes the VTable object ** for table *p associated with database connection db from the linked ** list in p->pVTab. It also decrements the VTable ref count. This is ** used when closing database connection db to free all of its VTable ** objects without disturbing the rest of the Schema object (which may ** be being used by other shared-cache connections). */ SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ VTable **ppVTab; assert( IsVirtual(p) ); assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3_mutex_held(db->mutex) ); for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){ if( (*ppVTab)->db==db ){ VTable *pVTab = *ppVTab; *ppVTab = pVTab->pNext; sqlite3VtabUnlock(pVTab); break; } } } /* ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. ** ** This function may only be called when the mutexes associated with all ** shared b-tree databases opened using connection db are held by the ** caller. This is done to protect the sqlite3.pDisconnect list. The ** sqlite3.pDisconnect list is accessed only as follows: ** ** 1) By this function. In this case, all BtShared mutexes and the mutex ** associated with the database handle itself must be held. ** ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to ** the sqlite3.pDisconnect list. In this case either the BtShared mutex ** associated with the database the virtual table is stored in is held ** or, if the virtual table is stored in a non-sharable database, then ** the database handle mutex is held. ** ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously ** by multiple threads. It is thread-safe. */ SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){ VTable *p = db->pDisconnect; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3_mutex_held(db->mutex) ); if( p ){ db->pDisconnect = 0; sqlite3ExpirePreparedStatements(db, 0); do { VTable *pNext = p->pNext; sqlite3VtabUnlock(p); p = pNext; }while( p ); } } /* ** Clear any and all virtual-table information from the Table record. ** This routine is called, for example, just before deleting the Table ** record. ** ** Since it is a virtual-table, the Table structure contains a pointer ** to the head of a linked list of VTable structures. Each VTable ** structure is associated with a single sqlite3* user of the schema. ** The reference count of the VTable structure associated with database ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){ assert( IsVirtual(p) ); assert( db!=0 ); if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); if( p->u.vtab.azArg ){ int i; for(i=0; iu.vtab.nArg; i++){ if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]); } sqlite3DbFree(db, p->u.vtab.azArg); } } /* ** Add a new module argument to pTable->u.vtab.azArg[]. ** The string is not copied - the pointer is stored. The ** string will be freed automatically when the table is ** deleted. */ static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ sqlite3_int64 nBytes; char **azModuleArg; sqlite3 *db = pParse->db; assert( IsVirtual(pTable) ); nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg); if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName); } azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes); if( azModuleArg==0 ){ sqlite3DbFree(db, zArg); }else{ int i = pTable->u.vtab.nArg++; azModuleArg[i] = zArg; azModuleArg[i+1] = 0; pTable->u.vtab.azArg = azModuleArg; } } /* ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE ** statement. The module name has been parsed, but the optional list ** of parameters that follow the module name are still pending. */ SQLITE_PRIVATE void sqlite3VtabBeginParse( Parse *pParse, /* Parsing context */ Token *pName1, /* Name of new table, or database name */ Token *pName2, /* Name of new table or NULL */ Token *pModuleName, /* Name of the module for the virtual table */ int ifNotExists /* No error if the table already exists */ ){ Table *pTable; /* The new virtual table */ sqlite3 *db; /* Database connection */ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); pTable = pParse->pNewTable; if( pTable==0 ) return; assert( 0==pTable->pIndex ); pTable->eTabType = TABTYP_VTAB; db = pParse->db; assert( pTable->u.vtab.nArg==0 ); addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); addModuleArgument(pParse, pTable, 0); addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) || (pParse->sNameToken.z==pName1->z && pName2->z==0) ); pParse->sNameToken.n = (int)( &pModuleName->z[pModuleName->n] - pParse->sNameToken.z ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Creating a virtual table invokes the authorization callback twice. ** The first invocation, to obtain permission to INSERT a row into the ** sqlite_schema table, has already been made by sqlite3StartTable(). ** The second call, to obtain permission to create the table, is made now. */ if( pTable->u.vtab.azArg ){ int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); assert( iDb>=0 ); /* The database the table is being created in */ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName); } #endif } /* ** This routine takes the module argument that has been accumulating ** in pParse->zArg[] and appends it to the list of arguments on the ** virtual table currently under construction in pParse->pTable. */ static void addArgumentToVtab(Parse *pParse){ if( pParse->sArg.z && pParse->pNewTable ){ const char *z = (const char*)pParse->sArg.z; int n = pParse->sArg.n; sqlite3 *db = pParse->db; addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); } } /* ** The parser calls this routine after the CREATE VIRTUAL TABLE statement ** has been completely parsed. */ SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ Table *pTab = pParse->pNewTable; /* The table being constructed */ sqlite3 *db = pParse->db; /* The database connection */ if( pTab==0 ) return; assert( IsVirtual(pTab) ); addArgumentToVtab(pParse); pParse->sArg.z = 0; if( pTab->u.vtab.nArg<1 ) return; /* If the CREATE VIRTUAL TABLE statement is being entered for the ** first time (in other words if the virtual table is actually being ** created now instead of just being read out of sqlite_schema) then ** do additional initialization work and store the statement text ** in the sqlite_schema table. */ if( !db->init.busy ){ char *zStmt; char *zWhere; int iDb; int iReg; Vdbe *v; sqlite3MayAbort(pParse); /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ if( pEnd ){ pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; } zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. ** ** The VM register number pParse->regRowid holds the rowid of an ** entry in the sqlite_schema table that was created for this vtab ** by sqlite3StartTable(). */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " " "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " "WHERE rowid=#%d", db->aDb[iDb].zDbSName, pTab->zName, pTab->zName, zStmt, pParse->regRowid ); v = sqlite3GetVdbe(pParse); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp0(v, OP_Expire); zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt); sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0); sqlite3DbFree(db, zStmt); iReg = ++pParse->nMem; sqlite3VdbeLoadString(v, iReg, pTab->zName); sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); }else{ /* If we are rereading the sqlite_schema table create the in-memory ** record of the table. */ Table *pOld; Schema *pSchema = pTab->pSchema; const char *zName = pTab->zName; assert( zName!=0 ); sqlite3MarkAllShadowTablesOf(db, pTab); pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); if( pOld ){ sqlite3OomFault(db); assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } pParse->pNewTable = 0; } } /* ** The parser calls this routine when it sees the first token ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. */ SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){ addArgumentToVtab(pParse); pParse->sArg.z = 0; pParse->sArg.n = 0; } /* ** The parser calls this routine for each token after the first token ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. */ SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){ Token *pArg = &pParse->sArg; if( pArg->z==0 ){ pArg->z = p->z; pArg->n = p->n; }else{ assert(pArg->z <= p->z); pArg->n = (int)(&p->z[p->n] - pArg->z); } } /* ** Invoke a virtual table constructor (either xCreate or xConnect). The ** pointer to the function to invoke is passed as the fourth parameter ** to this procedure. */ static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ VtabCtx sCtx; VTable *pVTable; int rc; const char *const*azArg; int nArg = pTab->u.vtab.nArg; char *zErr = 0; char *zModuleName; int iDb; VtabCtx *pCtx; assert( IsVirtual(pTab) ); azArg = (const char *const*)pTab->u.vtab.azArg; /* Check that the virtual-table is not already being initialized */ for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ if( pCtx->pTab==pTab ){ *pzErr = sqlite3MPrintf(db, "vtable constructor called recursively: %s", pTab->zName ); return SQLITE_LOCKED; } } zModuleName = sqlite3DbStrDup(db, pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM_BKPT; } pVTable = sqlite3MallocZero(sizeof(VTable)); if( !pVTable ){ sqlite3OomFault(db); sqlite3DbFree(db, zModuleName); return SQLITE_NOMEM_BKPT; } pVTable->db = db; pVTable->pMod = pMod; pVTable->eVtabRisk = SQLITE_VTABRISK_Normal; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName; /* Invoke the virtual table constructor */ assert( &db->pVtabCtx ); assert( xConstruct ); sCtx.pTab = pTab; sCtx.pVTable = pVTable; sCtx.pPrior = db->pVtabCtx; sCtx.bDeclared = 0; db->pVtabCtx = &sCtx; pTab->nTabRef++; rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); sqlite3DeleteTable(db, pTab); db->pVtabCtx = sCtx.pPrior; if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); assert( sCtx.pTab==pTab ); if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); pVTable->pVtab->pModule = pMod->pModule; pMod->nRefModule++; pVTable->nRef = 1; if( sCtx.bDeclared==0 ){ const char *zFormat = "vtable constructor did not declare schema: %s"; *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); sqlite3VtabUnlock(pVTable); rc = SQLITE_ERROR; }else{ int iCol; u16 oooHidden = 0; /* If everything went according to plan, link the new VTable structure ** into the linked list headed by pTab->u.vtab.p. Then loop through the ** columns of the table to see if any of them contain the token "hidden". ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from ** the type string. */ pVTable->pNext = pTab->u.vtab.p; pTab->u.vtab.p = pVTable; for(iCol=0; iColnCol; iCol++){ char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); int nType; int i = 0; nType = sqlite3Strlen30(zType); for(i=0; i0 ){ assert(zType[i-1]==' '); zType[i-1] = '\0'; } pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; pTab->tabFlags |= TF_HasHidden; oooHidden = TF_OOOHidden; }else{ pTab->tabFlags |= oooHidden; } } } } sqlite3DbFree(db, zModuleName); return rc; } /* ** This function is invoked by the parser to call the xConnect() method ** of the virtual table pTab. If an error occurs, an error code is returned ** and an error left in pParse. ** ** This call is a no-op if table pTab is not a virtual table. */ SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ sqlite3 *db = pParse->db; const char *zMod; Module *pMod; int rc; assert( pTab ); assert( IsVirtual(pTab) ); if( sqlite3GetVTable(db, pTab) ){ return SQLITE_OK; } /* Locate the required virtual table module */ zMod = pTab->u.vtab.azArg[0]; pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); if( !pMod ){ const char *zModule = pTab->u.vtab.azArg[0]; sqlite3ErrorMsg(pParse, "no such module: %s", zModule); rc = SQLITE_ERROR; }else{ char *zErr = 0; rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "%s", zErr); pParse->rc = rc; } sqlite3DbFree(db, zErr); } return rc; } /* ** Grow the db->aVTrans[] array so that there is room for at least one ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. */ static int growVTrans(sqlite3 *db){ const int ARRAY_INCR = 5; /* Grow the sqlite3.aVTrans array if required */ if( (db->nVTrans%ARRAY_INCR)==0 ){ VTable **aVTrans; sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* ((sqlite3_int64)db->nVTrans + ARRAY_INCR); aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); if( !aVTrans ){ return SQLITE_NOMEM_BKPT; } memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); db->aVTrans = aVTrans; } return SQLITE_OK; } /* ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should ** have already been reserved using growVTrans(). */ static void addToVTrans(sqlite3 *db, VTable *pVTab){ /* Add pVtab to the end of sqlite3.aVTrans */ db->aVTrans[db->nVTrans++] = pVTab; sqlite3VtabLock(pVTab); } /* ** This function is invoked by the vdbe to call the xCreate method ** of the virtual table named zTab in database iDb. ** ** If an error occurs, *pzErr is set to point to an English language ** description of the error and an SQLITE_XXX error code is returned. ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. */ SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ int rc = SQLITE_OK; Table *pTab; Module *pMod; const char *zMod; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p ); /* Locate the required virtual table module */ zMod = pTab->u.vtab.azArg[0]; pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); /* If the module has been registered and includes a Create method, ** invoke it now. If the module has not been registered, return an ** error. Otherwise, do nothing. */ if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); rc = SQLITE_ERROR; }else{ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); } /* Justification of ALWAYS(): The xConstructor method is required to ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ rc = growVTrans(db); if( rc==SQLITE_OK ){ addToVTrans(db, sqlite3GetVTable(db, pTab)); } } return rc; } /* ** This function is used to set the schema of a virtual table. It is only ** valid to call this function from within the xCreate() or xConnect() of a ** virtual table module. */ SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ VtabCtx *pCtx; int rc = SQLITE_OK; Table *pTab; Parse sParse; int initBusy; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); pCtx = db->pVtabCtx; if( !pCtx || pCtx->bDeclared ){ sqlite3Error(db, SQLITE_MISUSE); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } pTab = pCtx->pTab; assert( IsVirtual(pTab) ); sqlite3ParseObjectInit(&sParse, db); sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; sParse.disableTriggers = 1; /* We should never be able to reach this point while loading the ** schema. Nevertheless, defend against that (turn off db->init.busy) ** in case a bug arises. */ assert( db->init.busy==0 ); initBusy = db->init.busy; db->init.busy = 0; sParse.nQueryLoop = 1; if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable) && ALWAYS(sParse.pNewTable!=0) && ALWAYS(!db->mallocFailed) && IsOrdinaryTable(sParse.pNewTable) ){ assert( sParse.zErrMsg==0 ); if( !pTab->aCol ){ Table *pNew = sParse.pNewTable; Index *pIdx; pTab->aCol = pNew->aCol; sqlite3ExprListDelete(db, pNew->u.tab.pDfltList); pTab->nNVCol = pTab->nCol = pNew->nCol; pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); pNew->nCol = 0; pNew->aCol = 0; assert( pTab->pIndex==0 ); assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 ){ /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) ** or else must have a single-column PRIMARY KEY */ rc = SQLITE_ERROR; } pIdx = pNew->pIndex; if( pIdx ){ assert( pIdx->pNext==0 ); pTab->pIndex = pIdx; pNew->pIndex = 0; pIdx->pTable = pTab; } } pCtx->bDeclared = 1; }else{ sqlite3ErrorWithMsg(db, SQLITE_ERROR, (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg); sqlite3DbFree(db, sParse.zErrMsg); rc = SQLITE_ERROR; } sParse.eParseMode = PARSE_MODE_NORMAL; if( sParse.pVdbe ){ sqlite3VdbeFinalize(sParse.pVdbe); } sqlite3DeleteTable(db, sParse.pNewTable); sqlite3ParseObjectReset(&sParse); db->init.busy = initBusy; assert( (rc&0xff)==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This function is invoked by the vdbe to call the xDestroy method ** of the virtual table named zTab in database iDb. This occurs ** when a DROP TABLE is mentioned. ** ** This call is a no-op if zTab is not a virtual table. */ SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ int rc = SQLITE_OK; Table *pTab; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); if( ALWAYS(pTab!=0) && ALWAYS(IsVirtual(pTab)) && ALWAYS(pTab->u.vtab.p!=0) ){ VTable *p; int (*xDestroy)(sqlite3_vtab *); for(p=pTab->u.vtab.p; p; p=p->pNext){ assert( p->pVtab ); if( p->pVtab->nRef>0 ){ return SQLITE_LOCKED; } } p = vtabDisconnectAll(db, pTab); xDestroy = p->pMod->pModule->xDestroy; if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect; assert( xDestroy!=0 ); pTab->nTabRef++; rc = xDestroy(p->pVtab); /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ if( rc==SQLITE_OK ){ assert( pTab->u.vtab.p==p && p->pNext==0 ); p->pVtab = 0; pTab->u.vtab.p = 0; sqlite3VtabUnlock(p); } sqlite3DeleteTable(db, pTab); } return rc; } /* ** This function invokes either the xRollback or xCommit method ** of each of the virtual tables in the sqlite3.aVTrans array. The method ** called is identified by the second argument, "offset", which is ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; inVTrans; i++){ VTable *pVTab = aVTrans[i]; sqlite3_vtab *p = pVTab->pVtab; if( p ){ int (*x)(sqlite3_vtab *); x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); if( x ) x(p); } pVTab->iSavepoint = 0; sqlite3VtabUnlock(pVTab); } sqlite3DbFree(db, aVTrans); db->nVTrans = 0; } } /* ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans ** array. Return the error code for the first error that occurs, or ** SQLITE_OK if all xSync operations are successful. ** ** If an error message is available, leave it in p->zErrMsg. */ SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ int i; int rc = SQLITE_OK; VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; rc==SQLITE_OK && inVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3VtabImportErrmsg(p, pVtab); } } db->aVTrans = aVTrans; return rc; } /* ** Invoke the xRollback method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){ callFinaliser(db, offsetof(sqlite3_module,xRollback)); return SQLITE_OK; } /* ** Invoke the xCommit method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){ callFinaliser(db, offsetof(sqlite3_module,xCommit)); return SQLITE_OK; } /* ** If the virtual table pVtab supports the transaction interface ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is ** not currently open, invoke the xBegin method now. ** ** If the xBegin call is successful, place the sqlite3_vtab pointer ** in the sqlite3.aVTrans array. */ SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ int rc = SQLITE_OK; const sqlite3_module *pModule; /* Special case: If db->aVTrans is NULL and db->nVTrans is greater ** than zero, then this function is being called from within a ** virtual module xSync() callback. It is illegal to write to ** virtual module tables in this case, so return SQLITE_LOCKED. */ if( sqlite3VtabInSync(db) ){ return SQLITE_LOCKED; } if( !pVTab ){ return SQLITE_OK; } pModule = pVTab->pVtab->pModule; if( pModule->xBegin ){ int i; /* If pVtab is already in the aVTrans array, return early */ for(i=0; inVTrans; i++){ if( db->aVTrans[i]==pVTab ){ return SQLITE_OK; } } /* Invoke the xBegin method. If successful, add the vtab to the ** sqlite3.aVTrans[] array. */ rc = growVTrans(db); if( rc==SQLITE_OK ){ rc = pModule->xBegin(pVTab->pVtab); if( rc==SQLITE_OK ){ int iSvpt = db->nStatement + db->nSavepoint; addToVTrans(db, pVTab); if( iSvpt && pModule->xSavepoint ){ pVTab->iSavepoint = iSvpt; rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); } } } } return rc; } /* ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all ** virtual tables that currently have an open transaction. Pass iSavepoint ** as the second argument to the virtual table method invoked. ** ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with ** an open transaction is invoked. ** ** If any virtual table method returns an error code other than SQLITE_OK, ** processing is abandoned and the error returned to the caller of this ** function immediately. If all calls to virtual table methods are successful, ** SQLITE_OK is returned. */ SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ int rc = SQLITE_OK; assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); assert( iSavepoint>=-1 ); if( db->aVTrans ){ int i; for(i=0; rc==SQLITE_OK && inVTrans; i++){ VTable *pVTab = db->aVTrans[i]; const sqlite3_module *pMod = pVTab->pMod->pModule; if( pVTab->pVtab && pMod->iVersion>=2 ){ int (*xMethod)(sqlite3_vtab *, int); sqlite3VtabLock(pVTab); switch( op ){ case SAVEPOINT_BEGIN: xMethod = pMod->xSavepoint; pVTab->iSavepoint = iSavepoint+1; break; case SAVEPOINT_ROLLBACK: xMethod = pMod->xRollbackTo; break; default: xMethod = pMod->xRelease; break; } if( xMethod && pVTab->iSavepoint>iSavepoint ){ u64 savedFlags = (db->flags & SQLITE_Defensive); db->flags &= ~(u64)SQLITE_Defensive; rc = xMethod(pVTab->pVtab, iSavepoint); db->flags |= savedFlags; } sqlite3VtabUnlock(pVTab); } } } return rc; } /* ** The first parameter (pDef) is a function implementation. The ** second parameter (pExpr) is the first argument to this function. ** If pExpr is a column in a virtual table, then let the virtual ** table implementation have an opportunity to overload the function. ** ** This routine is used to allow virtual table implementations to ** overload MATCH, LIKE, GLOB, and REGEXP operators. ** ** Return either the pDef argument (indicating no change) or a ** new FuncDef structure that is marked as ephemeral using the ** SQLITE_FUNC_EPHEM flag. */ SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction( sqlite3 *db, /* Database connection for reporting malloc problems */ FuncDef *pDef, /* Function to possibly overload */ int nArg, /* Number of arguments to the function */ Expr *pExpr /* First argument to the function */ ){ Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; void *pArg = 0; FuncDef *pNew; int rc = 0; /* Check to see the left operand is a column in a virtual table */ if( NEVER(pExpr==0) ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; assert( ExprUseYTab(pExpr) ); pTab = pExpr->y.pTab; if( NEVER(pTab==0) ) return pDef; if( !IsVirtual(pTab) ) return pDef; pVtab = sqlite3GetVTable(db, pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; /* Call the xFindFunction method on the virtual table implementation ** to see if the implementation wants to overload this function. ** ** Though undocumented, we have historically always invoked xFindFunction ** with an all lower-case function name. Continue in this tradition to ** avoid any chance of an incompatibility. */ #ifdef SQLITE_DEBUG { int i; for(i=0; pDef->zName[i]; i++){ unsigned char x = (unsigned char)pDef->zName[i]; assert( x==sqlite3UpperToLower[x] ); } } #endif rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); if( rc==0 ){ return pDef; } /* Create a new ephemeral function definition for the overloaded ** function */ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + sqlite3Strlen30(pDef->zName) + 1); if( pNew==0 ){ return pDef; } *pNew = *pDef; pNew->zName = (const char*)&pNew[1]; memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); pNew->xSFunc = xSFunc; pNew->pUserData = pArg; pNew->funcFlags |= SQLITE_FUNC_EPHEM; return pNew; } /* ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] ** array so that an OP_VBegin will get generated for it. Add pTab to the ** array if it is missing. If pTab is already in the array, this routine ** is a no-op. */ SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ Parse *pToplevel = sqlite3ParseToplevel(pParse); int i, n; Table **apVtabLock; assert( IsVirtual(pTab) ); for(i=0; inVtabLock; i++){ if( pTab==pToplevel->apVtabLock[i] ) return; } n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n); if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ sqlite3OomFault(pToplevel->db); } } /* ** Check to see if virtual table module pMod can be have an eponymous ** virtual table instance. If it can, create one if one does not already ** exist. Return non-zero if either the eponymous virtual table instance ** exists when this routine returns or if an attempt to create it failed ** and an error message was left in pParse. ** ** An eponymous virtual table instance is one that is named after its ** module, and more importantly, does not require a CREATE VIRTUAL TABLE ** statement in order to come into existence. Eponymous virtual table ** instances always exist. They cannot be DROP-ed. ** ** Any virtual table module for which xConnect and xCreate are the same ** method can have an eponymous virtual table instance. */ SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ const sqlite3_module *pModule = pMod->pModule; Table *pTab; char *zErr = 0; int rc; sqlite3 *db = pParse->db; if( pMod->pEpoTab ) return 1; if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return 0; pTab->zName = sqlite3DbStrDup(db, pMod->zName); if( pTab->zName==0 ){ sqlite3DbFree(db, pTab); return 0; } pMod->pEpoTab = pTab; pTab->nTabRef = 1; pTab->eTabType = TABTYP_VTAB; pTab->pSchema = db->aDb[0].pSchema; assert( pTab->u.vtab.nArg==0 ); pTab->iPKey = -1; pTab->tabFlags |= TF_Eponymous; addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); addModuleArgument(pParse, pTab, 0); addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); if( rc ){ sqlite3ErrorMsg(pParse, "%s", zErr); sqlite3DbFree(db, zErr); sqlite3VtabEponymousTableClear(db, pMod); } return 1; } /* ** Erase the eponymous virtual table instance associated with ** virtual table module pMod, if it exists. */ SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ Table *pTab = pMod->pEpoTab; if( pTab!=0 ){ /* Mark the table as Ephemeral prior to deleting it, so that the ** sqlite3DeleteTable() routine will know that it is not stored in ** the schema. */ pTab->tabFlags |= TF_Ephemeral; sqlite3DeleteTable(db, pTab); pMod->pEpoTab = 0; } } /* ** Return the ON CONFLICT resolution mode in effect for the virtual ** table update operation currently in progress. ** ** The results of this routine are undefined unless it is called from ** within an xUpdate method. */ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){ static const unsigned char aMap[] = { SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE }; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); assert( OE_Ignore==4 && OE_Replace==5 ); assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); return (int)aMap[db->vtabOnConflict-1]; } /* ** Call from within the xCreate() or xConnect() methods to provide ** the SQLite core with additional information about the behavior ** of the virtual table being implemented. */ SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){ va_list ap; int rc = SQLITE_OK; VtabCtx *p; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); p = db->pVtabCtx; if( !p ){ rc = SQLITE_MISUSE_BKPT; }else{ assert( p->pTab==0 || IsVirtual(p->pTab) ); va_start(ap, op); switch( op ){ case SQLITE_VTAB_CONSTRAINT_SUPPORT: { p->pVTable->bConstraint = (u8)va_arg(ap, int); break; } case SQLITE_VTAB_INNOCUOUS: { p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low; break; } case SQLITE_VTAB_DIRECTONLY: { p->pVTable->eVtabRisk = SQLITE_VTABRISK_High; break; } case SQLITE_VTAB_USES_ALL_SCHEMAS: { p->pVTable->bAllSchemas = 1; break; } default: { rc = SQLITE_MISUSE_BKPT; break; } } va_end(ap); } if( rc!=SQLITE_OK ) sqlite3Error(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /************** End of vtab.c ************************************************/ /************** Begin file wherecode.c ***************************************/ /* ** 2015-06-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was split off from where.c on 2015-06-06 in order to reduce the ** size of where.c and make it easier to edit. This file contains the routines ** that actually generate the bulk of the WHERE loop code. The original where.c ** file retains the code that does query planning and analysis. */ /* #include "sqliteInt.h" */ /************** Include whereInt.h in the middle of wherecode.c **************/ /************** Begin file whereInt.h ****************************************/ /* ** 2013-11-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains structure and macro definitions for the query ** planner logic in "where.c". These definitions are broken out into ** a separate source file for easier editing. */ #ifndef SQLITE_WHEREINT_H #define SQLITE_WHEREINT_H /* Forward references */ typedef struct WhereClause WhereClause; typedef struct WhereMaskSet WhereMaskSet; typedef struct WhereOrInfo WhereOrInfo; typedef struct WhereAndInfo WhereAndInfo; typedef struct WhereLevel WhereLevel; typedef struct WhereLoop WhereLoop; typedef struct WherePath WherePath; typedef struct WhereTerm WhereTerm; typedef struct WhereLoopBuilder WhereLoopBuilder; typedef struct WhereScan WhereScan; typedef struct WhereOrCost WhereOrCost; typedef struct WhereOrSet WhereOrSet; typedef struct WhereMemBlock WhereMemBlock; typedef struct WhereRightJoin WhereRightJoin; /* ** This object is a header on a block of allocated memory that will be ** automatically freed when its WInfo object is destructed. */ struct WhereMemBlock { WhereMemBlock *pNext; /* Next block in the chain */ u64 sz; /* Bytes of space */ }; /* ** Extra information attached to a WhereLevel that is a RIGHT JOIN. */ struct WhereRightJoin { int iMatch; /* Cursor used to determine prior matched rows */ int regBloom; /* Bloom filter for iRJMatch */ int regReturn; /* Return register for the interior subroutine */ int addrSubrtn; /* Starting address for the interior subroutine */ int endSubrtn; /* The last opcode in the interior subroutine */ }; /* ** This object contains information needed to implement a single nested ** loop in WHERE clause. ** ** Contrast this object with WhereLoop. This object describes the ** implementation of the loop. WhereLoop describes the algorithm. ** This object contains a pointer to the WhereLoop algorithm as one of ** its elements. ** ** The WhereInfo object contains a single instance of this object for ** each term in the FROM clause (which is to say, for each of the ** nested loops as implemented). The order of WhereLevel objects determines ** the loop nested order, with WhereInfo.a[0] being the outer loop and ** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop. */ struct WhereLevel { int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ int regBignull; /* big-null flag reg. True if a NULL-scan is needed */ int addrBignull; /* Jump here for next part of big-null scan */ #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS u32 iLikeRepCntr; /* LIKE range processing counter register (times 2) */ int addrLikeRep; /* LIKE range processing address */ #endif int regFilter; /* Bloom filter */ WhereRightJoin *pRJ; /* Extra information for RIGHT JOIN */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to end the loop */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ int iBase; /* Base register of multi-key index record */ int nPrefix; /* Number of prior entries in the key */ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ } *aInLoop; /* Information about each nested IN operator */ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */ Index *pCoveringIdx; /* Possible covering index for WHERE_MULTI_OR */ } u; struct WhereLoop *pWLoop; /* The selected WhereLoop object */ Bitmask notReady; /* FROM entries not usable at this level */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrVisit; /* Address at which row is visited */ #endif }; /* ** Each instance of this object represents an algorithm for evaluating one ** term of a join. Every term of the FROM clause will have at least ** one corresponding WhereLoop object (unless INDEXED BY constraints ** prevent a query solution - which is an error) and many terms of the ** FROM clause will have multiple WhereLoop objects, each describing a ** potential way of implementing that FROM-clause term, together with ** dependencies and cost estimates for using the chosen algorithm. ** ** Query planning consists of building up a collection of these WhereLoop ** objects, then computing a particular sequence of WhereLoop objects, with ** one WhereLoop object per FROM clause term, that satisfy all dependencies ** and that minimize the overall cost. */ struct WhereLoop { Bitmask prereq; /* Bitmask of other loops that must run first */ Bitmask maskSelf; /* Bitmask identifying table iTab */ #ifdef SQLITE_DEBUG char cId; /* Symbolic ID of this loop for debugging use */ #endif u8 iTab; /* Position in FROM clause of table for this loop */ u8 iSortIdx; /* Sorting index number. 0==None */ LogEst rSetup; /* One-time setup cost (ex: create transient index) */ LogEst rRun; /* Cost of running each loop */ LogEst nOut; /* Estimated number of output rows */ union { struct { /* Information for internal btree tables */ u16 nEq; /* Number of equality constraints */ u16 nBtm; /* Size of BTM vector */ u16 nTop; /* Size of TOP vector */ u16 nDistinctCol; /* Index columns used to sort for DISTINCT */ Index *pIndex; /* Index used, or NULL */ } btree; struct { /* Information for virtual tables */ int idxNum; /* Index number */ u32 needFree : 1; /* True if sqlite3_free(idxStr) is needed */ u32 bOmitOffset : 1; /* True to let virtual table handle offset */ i8 isOrdered; /* True if satisfies ORDER BY */ u16 omitMask; /* Terms that may be omitted */ char *idxStr; /* Index identifier string */ u32 mHandleIn; /* Terms to handle as IN(...) instead of == */ } vtab; } u; u32 wsFlags; /* WHERE_* flags describing the plan */ u16 nLTerm; /* Number of entries in aLTerm[] */ u16 nSkip; /* Number of NULL aLTerm[] entries */ /**** whereLoopXfer() copies fields above ***********************/ # define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot) u16 nLSlot; /* Number of slots allocated for aLTerm[] */ WhereTerm **aLTerm; /* WhereTerms used */ WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */ WhereTerm *aLTermSpace[3]; /* Initial aLTerm[] space */ }; /* This object holds the prerequisites and the cost of running a ** subquery on one operand of an OR operator in the WHERE clause. ** See WhereOrSet for additional information */ struct WhereOrCost { Bitmask prereq; /* Prerequisites */ LogEst rRun; /* Cost of running this subquery */ LogEst nOut; /* Number of outputs for this subquery */ }; /* The WhereOrSet object holds a set of possible WhereOrCosts that ** correspond to the subquery(s) of OR-clause processing. Only the ** best N_OR_COST elements are retained. */ #define N_OR_COST 3 struct WhereOrSet { u16 n; /* Number of valid a[] entries */ WhereOrCost a[N_OR_COST]; /* Set of best costs */ }; /* ** Each instance of this object holds a sequence of WhereLoop objects ** that implement some or all of a query plan. ** ** Think of each WhereLoop object as a node in a graph with arcs ** showing dependencies and costs for travelling between nodes. (That is ** not a completely accurate description because WhereLoop costs are a ** vector, not a scalar, and because dependencies are many-to-one, not ** one-to-one as are graph nodes. But it is a useful visualization aid.) ** Then a WherePath object is a path through the graph that visits some ** or all of the WhereLoop objects once. ** ** The "solver" works by creating the N best WherePath objects of length ** 1. Then using those as a basis to compute the N best WherePath objects ** of length 2. And so forth until the length of WherePaths equals the ** number of nodes in the FROM clause. The best (lowest cost) WherePath ** at the end is the chosen query plan. */ struct WherePath { Bitmask maskLoop; /* Bitmask of all WhereLoop objects in this path */ Bitmask revLoop; /* aLoop[]s that should be reversed for ORDER BY */ LogEst nRow; /* Estimated number of rows generated by this path */ LogEst rCost; /* Total cost of this path */ LogEst rUnsorted; /* Total cost of this path ignoring sorting costs */ i8 isOrdered; /* No. of ORDER BY terms satisfied. -1 for unknown */ WhereLoop **aLoop; /* Array of WhereLoop objects implementing this path */ }; /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by AND operators, ** usually, or sometimes subexpressions separated by OR. ** ** All WhereTerms are collected into a single WhereClause structure. ** The following identity holds: ** ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm ** ** When a term is of the form: ** ** X ** ** where X is a column name and is one of certain operators, ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the ** cursor number and column number for X. WhereTerm.eOperator records ** the using a bitmask encoding defined by WO_xxx below. The ** use of a bitmask encoding for the operator allows us to search ** quickly for terms that match any of several different operators. ** ** A WhereTerm might also be two or more subterms connected by OR: ** ** (t1.X ) OR (t1.Y ) OR .... ** ** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR ** and the WhereTerm.u.pOrInfo field points to auxiliary information that ** is collected about the OR clause. ** ** If a term in the WHERE clause does not match either of the two previous ** categories, then eOperator==0. The WhereTerm.pExpr field is still set ** to the original subexpression content and wtFlags is set up appropriately ** but no other fields in the WhereTerm object are meaningful. ** ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, ** but they do so indirectly. A single WhereMaskSet structure translates ** cursor number into bits and the translated bit is stored in the prereq ** fields. The translation is used in order to maximize the number of ** bits that will fit in a Bitmask. The VDBE cursor numbers might be ** spread out over the non-negative integers. For example, the cursor ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet ** translates these sparse cursor numbers into consecutive integers ** beginning with 0 in order to make the best possible use of the available ** bits in the Bitmask. So, in the example above, the cursor numbers ** would be mapped into integers 0 through 7. ** ** The number of terms in a join is limited by the number of bits ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite ** is only able to process joins with 64 or fewer tables. */ struct WhereTerm { Expr *pExpr; /* Pointer to the subexpression that is this term */ WhereClause *pWC; /* The clause this term is part of */ LogEst truthProb; /* Probability of truth for this expression */ u16 wtFlags; /* TERM_xxx bit flags. See below */ u16 eOperator; /* A WO_xx value describing */ u8 nChild; /* Number of children that must disable us */ u8 eMatchOp; /* Op for vtab MATCH/LIKE/GLOB/REGEXP terms */ int iParent; /* Disable pWC->a[iParent] when this term disabled */ int leftCursor; /* Cursor number of X in "X " */ union { struct { int leftColumn; /* Column number of X in "X " */ int iField; /* Field in (?,?,?) IN (SELECT...) vector */ } x; /* Opcode other than OP_OR or OP_AND */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */ } u; Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ }; /* ** Allowed values of WhereTerm.wtFlags */ #define TERM_DYNAMIC 0x0001 /* Need to call sqlite3ExprDelete(db, pExpr) */ #define TERM_VIRTUAL 0x0002 /* Added by the optimizer. Do not code */ #define TERM_CODED 0x0004 /* This term is already coded */ #define TERM_COPIED 0x0008 /* Has a child */ #define TERM_ORINFO 0x0010 /* Need to free the WhereTerm.u.pOrInfo object */ #define TERM_ANDINFO 0x0020 /* Need to free the WhereTerm.u.pAndInfo obj */ #define TERM_OK 0x0040 /* Used during OR-clause processing */ #define TERM_VNULL 0x0080 /* Manufactured x>NULL or x<=NULL term */ #define TERM_LIKEOPT 0x0100 /* Virtual terms from the LIKE optimization */ #define TERM_LIKECOND 0x0200 /* Conditionally this LIKE operator term */ #define TERM_LIKE 0x0400 /* The original LIKE operator */ #define TERM_IS 0x0800 /* Term.pExpr is an IS operator */ #define TERM_VARSELECT 0x1000 /* Term.pExpr contains a correlated sub-query */ #define TERM_HEURTRUTH 0x2000 /* Heuristic truthProb used */ #ifdef SQLITE_ENABLE_STAT4 # define TERM_HIGHTRUTH 0x4000 /* Term excludes few rows */ #else # define TERM_HIGHTRUTH 0 /* Only used with STAT4 */ #endif #define TERM_SLICE 0x8000 /* One slice of a row-value/vector comparison */ /* ** An instance of the WhereScan object is used as an iterator for locating ** terms in the WHERE clause that are useful to the query planner. */ struct WhereScan { WhereClause *pOrigWC; /* Original, innermost WhereClause */ WhereClause *pWC; /* WhereClause currently being scanned */ const char *zCollName; /* Required collating sequence, if not NULL */ Expr *pIdxExpr; /* Search for this index expression */ int k; /* Resume scanning at this->pWC->a[this->k] */ u32 opMask; /* Acceptable operators */ char idxaff; /* Must match this affinity, if zCollName!=NULL */ unsigned char iEquiv; /* Current slot in aiCur[] and aiColumn[] */ unsigned char nEquiv; /* Number of entries in aiCur[] and aiColumn[] */ int aiCur[11]; /* Cursors in the equivalence class */ i16 aiColumn[11]; /* Corresponding column number in the eq-class */ }; /* ** An instance of the following structure holds all information about a ** WHERE clause. Mostly this is a container for one or more WhereTerms. ** ** Explanation of pOuter: For a WHERE clause of the form ** ** a AND ((b AND c) OR (d AND e)) AND f ** ** There are separate WhereClause objects for the whole clause and for ** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the ** subclauses points to the WhereClause object for the whole clause. */ struct WhereClause { WhereInfo *pWInfo; /* WHERE clause processing context */ WhereClause *pOuter; /* Outer conjunction */ u8 op; /* Split operator. TK_AND or TK_OR */ u8 hasOr; /* True if any a[].eOperator is WO_OR */ int nTerm; /* Number of terms */ int nSlot; /* Number of entries in a[] */ int nBase; /* Number of terms through the last non-Virtual */ WhereTerm *a; /* Each a[] describes a term of the WHERE clause */ #if defined(SQLITE_SMALL_STACK) WhereTerm aStatic[1]; /* Initial static space for a[] */ #else WhereTerm aStatic[8]; /* Initial static space for a[] */ #endif }; /* ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to ** a dynamically allocated instance of the following structure. */ struct WhereOrInfo { WhereClause wc; /* Decomposition into subterms */ Bitmask indexable; /* Bitmask of all indexable tables in the clause */ }; /* ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to ** a dynamically allocated instance of the following structure. */ struct WhereAndInfo { WhereClause wc; /* The subexpression broken out */ }; /* ** An instance of the following structure keeps track of a mapping ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. ** ** The VDBE cursor numbers are small integers contained in ** SrcItem.iCursor and Expr.iTable fields. For any given WHERE ** clause, the cursor numbers might not begin with 0 and they might ** contain gaps in the numbering sequence. But we want to make maximum ** use of the bits in our bitmasks. This structure provides a mapping ** from the sparse cursor numbers into consecutive integers beginning ** with 0. ** ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<3, 5->1, 8->2, 29->0, ** 57->5, 73->4. Or one of 719 other combinations might be used. It ** does not really matter. What is important is that sparse cursor ** numbers all get mapped into bit numbers that begin with 0 and contain ** no gaps. */ struct WhereMaskSet { int bVarSelect; /* Used by sqlite3WhereExprUsage() */ int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** This object is a convenience wrapper holding all information needed ** to construct WhereLoop objects for a particular query. */ struct WhereLoopBuilder { WhereInfo *pWInfo; /* Information about this WHERE */ WhereClause *pWC; /* WHERE clause terms */ WhereLoop *pNew; /* Template WhereLoop */ WhereOrSet *pOrSet; /* Record best loops here, if not NULL */ #ifdef SQLITE_ENABLE_STAT4 UnpackedRecord *pRec; /* Probe for stat4 (if required) */ int nRecValid; /* Number of valid fields currently in pRec */ #endif unsigned char bldFlags1; /* First set of SQLITE_BLDF_* flags */ unsigned char bldFlags2; /* Second set of SQLITE_BLDF_* flags */ unsigned int iPlanLimit; /* Search limiter */ }; /* Allowed values for WhereLoopBuider.bldFlags */ #define SQLITE_BLDF1_INDEXED 0x0001 /* An index is used */ #define SQLITE_BLDF1_UNIQUE 0x0002 /* All keys of a UNIQUE index used */ #define SQLITE_BLDF2_2NDPASS 0x0004 /* Second builder pass needed */ /* The WhereLoopBuilder.iPlanLimit is used to limit the number of ** index+constraint combinations the query planner will consider for a ** particular query. If this parameter is unlimited, then certain ** pathological queries can spend excess time in the sqlite3WhereBegin() ** routine. The limit is high enough that is should not impact real-world ** queries. ** ** SQLITE_QUERY_PLANNER_LIMIT is the baseline limit. The limit is ** increased by SQLITE_QUERY_PLANNER_LIMIT_INCR before each term of the FROM ** clause is processed, so that every table in a join is guaranteed to be ** able to propose a some index+constraint combinations even if the initial ** baseline limit was exhausted by prior tables of the join. */ #ifndef SQLITE_QUERY_PLANNER_LIMIT # define SQLITE_QUERY_PLANNER_LIMIT 20000 #endif #ifndef SQLITE_QUERY_PLANNER_LIMIT_INCR # define SQLITE_QUERY_PLANNER_LIMIT_INCR 1000 #endif /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. ** ** An instance of this object holds the complete state of the query ** planner. */ struct WhereInfo { Parse *pParse; /* Parsing and code generating context */ SrcList *pTabList; /* List of tables in the join */ ExprList *pOrderBy; /* The ORDER BY clause or NULL */ ExprList *pResultSet; /* Result set of the query */ #if WHERETRACE_ENABLED Expr *pWhere; /* The complete WHERE clause */ #endif Select *pSelect; /* The entire SELECT statement containing WHERE */ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ LogEst iLimit; /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */ u8 nLevel; /* Number of nested loop */ i8 nOBSat; /* Number of ORDER BY terms satisfied by indices */ u8 eOnePass; /* ONEPASS_OFF, or _SINGLE, or _MULTI */ u8 eDistinct; /* One of the WHERE_DISTINCT_* values */ unsigned bDeferredSeek :1; /* Uses OP_DeferredSeek */ unsigned untestedTerms :1; /* Not all WHERE terms resolved by outer loop */ unsigned bOrderedInnerLoop:1;/* True if only the inner-most loop is ordered */ unsigned sorted :1; /* True if really sorted (not just grouped) */ LogEst nRowOut; /* Estimated number of output rows */ int iTop; /* The very beginning of the WHERE loop */ int iEndWhere; /* End of the WHERE clause itself */ WhereLoop *pLoops; /* List of all WhereLoop objects */ WhereMemBlock *pMemToFree;/* Memory to free when this object destroyed */ Bitmask revMask; /* Mask of ORDER BY terms that need reversing */ WhereClause sWC; /* Decomposition of the WHERE clause */ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** Private interfaces - callable only by other where.c routines. ** ** where.c: */ SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet*,int); #ifdef WHERETRACE_ENABLED SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC); SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm); SQLITE_PRIVATE void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC); #endif SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ); SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte); SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte); /* wherecode.c: */ #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ); SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter( const Parse *pParse, /* Parse context */ const WhereInfo *pWInfo, /* WHERE clause */ const WhereLevel *pLevel /* Bloom filter on this level */ ); #else # define sqlite3WhereExplainOneScan(u,v,w,x) 0 # define sqlite3WhereExplainBloomFilter(u,v,w) 0 #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ); #else # define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d) #endif SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart( Parse *pParse, /* Parsing context */ Vdbe *v, /* Prepared statement under construction */ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ WhereLevel *pLevel, /* The current level pointer */ Bitmask notReady /* Which tables are currently available */ ); SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( WhereInfo *pWInfo, int iLevel, WhereLevel *pLevel ); /* whereexpr.c: */ SQLITE_PRIVATE void sqlite3WhereClauseInit(WhereClause*,WhereInfo*); SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause*); SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause*,Expr*,u8); SQLITE_PRIVATE void sqlite3WhereAddLimit(WhereClause*, Select*); SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*); SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet*, Expr*); SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*); SQLITE_PRIVATE void sqlite3WhereExprAnalyze(SrcList*, WhereClause*); SQLITE_PRIVATE void sqlite3WhereTabFuncArgs(Parse*, SrcItem*, WhereClause*); /* ** Bitmasks for the operators on WhereTerm objects. These are all ** operators that are of interest to the query planner. An ** OR-ed combination of these values can be used when searching for ** particular WhereTerms within a WhereClause. ** ** Value constraints: ** WO_EQ == SQLITE_INDEX_CONSTRAINT_EQ ** WO_LT == SQLITE_INDEX_CONSTRAINT_LT ** WO_LE == SQLITE_INDEX_CONSTRAINT_LE ** WO_GT == SQLITE_INDEX_CONSTRAINT_GT ** WO_GE == SQLITE_INDEX_CONSTRAINT_GE */ #define WO_IN 0x0001 #define WO_EQ 0x0002 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_AUX 0x0040 /* Op useful to virtual tables only */ #define WO_IS 0x0080 #define WO_ISNULL 0x0100 #define WO_OR 0x0200 /* Two or more OR-connected terms */ #define WO_AND 0x0400 /* Two or more AND-connected terms */ #define WO_EQUIV 0x0800 /* Of the form A==B, both columns */ #define WO_NOOP 0x1000 /* This term does not restrict search space */ #define WO_ROWVAL 0x2000 /* A row-value term */ #define WO_ALL 0x3fff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x01ff /* Mask of all non-compound WO_* values */ /* ** These are definitions of bits in the WhereLoop.wsFlags field. ** The particular combination of bits in each WhereLoop help to ** determine the algorithm that WhereLoop represents. */ #define WHERE_COLUMN_EQ 0x00000001 /* x=EXPR */ #define WHERE_COLUMN_RANGE 0x00000002 /* xEXPR */ #define WHERE_COLUMN_IN 0x00000004 /* x IN (...) */ #define WHERE_COLUMN_NULL 0x00000008 /* x IS NULL */ #define WHERE_CONSTRAINT 0x0000000f /* Any of the WHERE_COLUMN_xxx values */ #define WHERE_TOP_LIMIT 0x00000010 /* xEXPR or x>=EXPR constraint */ #define WHERE_BOTH_LIMIT 0x00000030 /* Both x>EXPR and xaiColumn[i]; if( i==XN_EXPR ) return ""; if( i==XN_ROWID ) return "rowid"; return pIdx->pTable->aCol[i].zCnName; } /* ** This routine is a helper for explainIndexRange() below ** ** pStr holds the text of an expression that we are building up one term ** at a time. This routine adds a new term to the end of the expression. ** Terms are separated by AND so add the "AND" text for second and subsequent ** terms only. */ static void explainAppendTerm( StrAccum *pStr, /* The text expression being built */ Index *pIdx, /* Index to read column names from */ int nTerm, /* Number of terms */ int iTerm, /* Zero-based index of first term. */ int bAnd, /* Non-zero to append " AND " */ const char *zOp /* Name of the operator */ ){ int i; assert( nTerm>=1 ); if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); for(i=0; i1 ) sqlite3_str_append(pStr, ")", 1); sqlite3_str_append(pStr, zOp, 1); if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); for(i=0; i1 ) sqlite3_str_append(pStr, ")", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. ** ** For example, if the query: ** ** SELECT * FROM t1 WHERE a=1 AND b>2; ** ** is run and there is an index on (a, b), then this function returns a ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3_str_append(pStr, " (", 2); for(i=0; i=nSkip ? "%s=?" : "ANY(%s)", z); } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); i = 1; } if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); } sqlite3_str_append(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command, or if stmt_scanstatus_v2() stats are enabled, or if SQLITE_DEBUG ** was defined at compile-time. If it is not a no-op, a single OP_Explain ** opcode is added to the output to describe the table scan strategy in pLevel. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ int ret = 0; #if !defined(SQLITE_DEBUG) if( sqlite3ParseToplevel(pParse)->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) #endif { SrcItem *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); str.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ const char *zFmt = 0; Index *pIdx; assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_PARTIALIDX ){ zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ sqlite3_str_append(&str, " USING ", 7); sqlite3_str_appendf(&str, zFmt, pIdx->zName); explainIndexRange(&str, pLoop); } }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ char cRangeOp; #if 0 /* Better output, but breaks many tests */ const Table *pTab = pItem->pTab; const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: "rowid"; #else const char *zRowid = "rowid"; #endif sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ cRangeOp = '='; }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ sqlite3_str_appendf(&str, ">? AND %s", zRowid); cRangeOp = '<'; }else if( flags&WHERE_BTM_LIMIT ){ cRangeOp = '>'; }else{ assert( flags&WHERE_TOP_LIMIT); cRangeOp = '<'; } sqlite3_str_appendf(&str, "%c?)", cRangeOp); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); } #endif if( pItem->fg.jointype & JT_LEFT ){ sqlite3_str_appendf(&str, " LEFT-JOIN"); } #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS if( pLoop->nOut>=10 ){ sqlite3_str_appendf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3_str_append(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); sqlite3ExplainBreakpoint("",zMsg); ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), pParse->addrExplain, 0, zMsg,P4_DYNAMIC); } return ret; } /* ** Add a single OP_Explain opcode that describes a Bloom filter. ** ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not ** required and this routine is a no-op. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter( const Parse *pParse, /* Parse context */ const WhereInfo *pWInfo, /* WHERE clause */ const WhereLevel *pLevel /* Bloom filter on this level */ ){ int ret = 0; SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ char *zMsg; /* Text to add to EQP output */ int i; /* Loop counter */ WhereLoop *pLoop; /* The where loop */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); str.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); pLoop = pLevel->pWLoop; if( pLoop->wsFlags & WHERE_IPK ){ const Table *pTab = pItem->pTab; if( pTab->iPKey>=0 ){ sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); }else{ sqlite3_str_appendf(&str, "rowid=?"); } }else{ for(i=pLoop->nSkip; iu.btree.nEq; i++){ const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); sqlite3_str_appendf(&str, "%s=?", z); } } sqlite3_str_append(&str, ")", 1); zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), pParse->addrExplain, 0, zMsg,P4_DYNAMIC); sqlite3VdbeScanStatus(v, sqlite3VdbeCurrentAddr(v)-1, 0, 0, 0, 0); return ret; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Configure the VM passed as the first argument with an ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to ** implement level pLvl. Argument pSrclist is a pointer to the FROM ** clause that the scan reads data from. ** ** If argument addrExplain is not 0, it must be the address of an ** OP_Explain instruction that describes the same loop. */ SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ){ if( IS_STMT_SCANSTATUS( sqlite3VdbeDb(v) ) ){ const char *zObj = 0; WhereLoop *pLoop = pLvl->pWLoop; int wsFlags = pLoop->wsFlags; int viaCoroutine = 0; if( (wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ zObj = pLoop->u.btree.pIndex->zName; }else{ zObj = pSrclist->a[pLvl->iFrom].zName; viaCoroutine = pSrclist->a[pLvl->iFrom].fg.viaCoroutine; } sqlite3VdbeScanStatus( v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); if( viaCoroutine==0 ){ if( (wsFlags & (WHERE_MULTI_OR|WHERE_AUTO_INDEX))==0 ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iTabCur); } if( wsFlags & WHERE_INDEXED ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iIdxCur); } }else{ int addr = pSrclist->a[pLvl->iFrom].addrFillSub; VdbeOp *pOp = sqlite3VdbeGetOp(v, addr-1); assert( sqlite3VdbeDb(v)->mallocFailed || pOp->opcode==OP_InitCoroutine ); assert( sqlite3VdbeDb(v)->mallocFailed || pOp->p2>addr ); sqlite3VdbeScanStatusRange(v, addrExplain, addr, pOp->p2-1); } } } #endif /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. ** ** If all the children of a term are disabled, then that term is also ** automatically disabled. In this way, terms get disabled if derived ** virtual terms are tested first. For example: ** ** x GLOB 'abc*' AND x>='abc' AND x<'acd' ** \___________/ \______/ \_____/ ** parent child1 child2 ** ** Only the parent term was in the original WHERE clause. The child1 ** and child2 terms were added by the LIKE optimization. If both of ** the virtual child terms are valid, then testing of the parent can be ** skipped. ** ** Usually the parent term is marked as TERM_CODED. But if the parent ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. ** The TERM_LIKECOND marking indicates that the term should be coded inside ** a conditional such that is only evaluated on the second pass of a ** LIKE-optimization loop, when scanning BLOBs instead of strings. */ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ int nLoop = 0; assert( pTerm!=0 ); while( (pTerm->wtFlags & TERM_CODED)==0 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON)) && (pLevel->notReady & pTerm->prereqAll)==0 ){ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ pTerm->wtFlags |= TERM_LIKECOND; }else{ pTerm->wtFlags |= TERM_CODED; } #ifdef WHERETRACE_ENABLED if( (sqlite3WhereTrace & 0x4001)==0x4001 ){ sqlite3DebugPrintf("DISABLE-"); sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); } #endif if( pTerm->iParent<0 ) break; pTerm = &pTerm->pWC->a[pTerm->iParent]; assert( pTerm!=0 ); pTerm->nChild--; if( pTerm->nChild!=0 ) break; nLoop++; } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which ** are no-ops) at the beginning and end of zAff are ignored. If all entries ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. ** ** This routine makes its own copy of zAff so that the caller is free ** to modify zAff after this routine returns. */ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ Vdbe *v = pParse->pVdbe; if( zAff==0 ){ assert( pParse->db->mallocFailed ); return; } assert( v!=0 ); /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE ** entries at the beginning and end of the affinity string. */ assert( SQLITE_AFF_NONE0 && zAff[0]<=SQLITE_AFF_BLOB ){ n--; base++; zAff++; } while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ n--; } /* Code the OP_Affinity opcode if there is anything left to do. */ if( n>0 ){ sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); } } /* ** Expression pRight, which is the RHS of a comparison operation, is ** either a vector of n elements or, if n==1, a scalar expression. ** Before the comparison operation, affinity zAff is to be applied ** to the pRight values. This function modifies characters within the ** affinity string to SQLITE_AFF_BLOB if either: ** ** * the comparison will be performed with no affinity, or ** * the affinity change in zAff is guaranteed not to change the value. */ static void updateRangeAffinityStr( Expr *pRight, /* RHS of comparison */ int n, /* Number of vector elements in comparison */ char *zAff /* Affinity string to modify */ ){ int i; for(i=0; idb; Select *pSelect; /* Pointer to the SELECT on the RHS */ Expr *pNew; pNew = sqlite3ExprDup(db, pX, 0); if( db->mallocFailed==0 ){ for(pSelect=pNew->x.pSelect; pSelect; pSelect=pSelect->pPrior){ ExprList *pOrigRhs; /* Original unmodified RHS */ ExprList *pOrigLhs = 0; /* Original unmodified LHS */ ExprList *pRhs = 0; /* New RHS after modifications */ ExprList *pLhs = 0; /* New LHS after mods */ int i; /* Loop counter */ assert( ExprUseXSelect(pNew) ); pOrigRhs = pSelect->pEList; assert( pNew->pLeft!=0 ); assert( ExprUseXList(pNew->pLeft) ); if( pSelect==pNew->x.pSelect ){ pOrigLhs = pNew->pLeft->x.pList; } for(i=iEq; inLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iField; assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); iField = pLoop->aLTerm[i]->u.x.iField - 1; if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); pOrigRhs->a[iField].pExpr = 0; if( pOrigLhs ){ assert( pOrigLhs->a[iField].pExpr!=0 ); pLhs = sqlite3ExprListAppend(pParse,pLhs,pOrigLhs->a[iField].pExpr); pOrigLhs->a[iField].pExpr = 0; } } } sqlite3ExprListDelete(db, pOrigRhs); if( pOrigLhs ){ sqlite3ExprListDelete(db, pOrigLhs); pNew->pLeft->x.pList = pLhs; } pSelect->pEList = pRhs; if( pLhs && pLhs->nExpr==1 ){ /* Take care here not to generate a TK_VECTOR containing only a ** single value. Since the parser never creates such a vector, some ** of the subroutines do not handle this case. */ Expr *p = pLhs->a[0].pExpr; pLhs->a[0].pExpr = 0; sqlite3ExprDelete(db, pNew->pLeft); pNew->pLeft = p; } if( pSelect->pOrderBy ){ /* If the SELECT statement has an ORDER BY clause, zero the ** iOrderByCol variables. These are set to non-zero when an ** ORDER BY term exactly matches one of the terms of the ** result-set. Since the result-set of the SELECT statement may ** have been modified or reordered, these variables are no longer ** set correctly. Since setting them is just an optimization, ** it's easiest just to zero them here. */ ExprList *pOrderBy = pSelect->pOrderBy; for(i=0; inExpr; i++){ pOrderBy->a[i].u.x.iOrderByCol = 0; } } #if 0 printf("For indexing, change the IN expr:\n"); sqlite3TreeViewExpr(0, pX, 0); printf("Into:\n"); sqlite3TreeViewExpr(0, pNew, 0); #endif } } return pNew; } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** ** The current value for the constraint is left in a register, the index ** of which is returned. An attempt is made store the result in iTarget but ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the ** constraint is a TK_EQ or TK_IS, then the current value might be left in ** some other register and it is the caller's responsibility to compensate. ** ** For a constraint of the form X=expr, the expression is evaluated in ** straight-line code. For constraints of the form X IN (...) ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ int bRev, /* True for reverse-order IN operations */ int iTarget /* Attempt to leave results in this register */ ){ Expr *pX = pTerm->pExpr; Vdbe *v = pParse->pVdbe; int iReg; /* Register holding results */ assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); assert( iTarget>0 ); if( pX->op==TK_EQ || pX->op==TK_IS ){ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); }else if( pX->op==TK_ISNULL ){ iReg = iTarget; sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); #ifndef SQLITE_OMIT_SUBQUERY }else{ int eType = IN_INDEX_NOOP; int iTab; struct InLoop *pIn; WhereLoop *pLoop = pLevel->pWLoop; int i; int nEq = 0; int *aiMap = 0; if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 && pLoop->u.btree.pIndex->aSortOrder[iEq] ){ testcase( iEq==0 ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; for(i=0; iaLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ disableTerm(pLevel, pTerm); return iTarget; } } for(i=iEq;inLTerm; i++){ assert( pLoop->aLTerm[i]!=0 ); if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; } iTab = 0; if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); }else{ Expr *pExpr = pTerm->pExpr; if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){ sqlite3 *db = pParse->db; pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); if( !db->mallocFailed ){ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); pExpr->iTable = iTab; } sqlite3ExprDelete(db, pX); }else{ int n = sqlite3ExprVectorSize(pX->pLeft); aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n)); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); } pX = pExpr; } if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); VdbeCoverageIf(v, !bRev); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); } if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ pLoop->wsFlags |= WHERE_IN_EARLYOUT; } i = pLevel->u.in.nIn; pLevel->u.in.nIn += nEq; pLevel->u.in.aInLoop = sqlite3WhereRealloc(pTerm->pWC->pWInfo, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ int iMap = 0; /* Index in aiMap[] */ pIn += i; for(i=iEq;inLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iOut = iReg + i - iEq; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); }else{ int iCol = aiMap ? aiMap[iMap++] : 0; pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); } sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); if( i==iEq ){ pIn->iCur = iTab; pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; if( iEq>0 ){ pIn->iBase = iReg - i; pIn->nPrefix = i; }else{ pIn->nPrefix = 0; } }else{ pIn->eEndLoopOp = OP_Noop; } pIn++; } } testcase( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); if( iEq>0 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 ){ sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); } }else{ pLevel->u.in.nIn = 0; } sqlite3DbFree(pParse->db, aiMap); #endif } /* As an optimization, try to disable the WHERE clause term that is ** driving the index as it will always be true. The correct answer is ** obtained regardless, but we might get the answer with fewer CPU cycles ** by omitting the term. ** ** But do not disable the term unless we are certain that the term is ** not a transitive constraint. For an example of where that does not ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) */ if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 || (pTerm->eOperator & WO_EQUIV)==0 ){ disableTerm(pLevel, pTerm); } return iReg; } /* ** Generate code that will evaluate all == and IN constraints for an ** index scan. ** ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 ** The index has as many as three equality constraints, but in this ** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate ** a==5 and b IN (1,2,3). The current values for a and b will be stored ** in consecutive registers and the index of the first register is returned. ** ** In the example above nEq==2. But this subroutine works for any value ** of nEq including 0. If nEq==0, this routine is nearly a no-op. ** The only thing it does is allocate the pLevel->iMem memory cell and ** compute the affinity string. ** ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that ** occurs after the nEq quality constraints. ** ** This routine allocates a range of nEq+nExtraReg memory cells and returns ** the index of the first memory cell in that range. The code that ** calls this routine will use that memory range to store keys for ** start and termination conditions of the loop. ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use BLOB or NONE affinity are set to ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_BLOB. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ u16 nEq; /* The number of == or IN constraints to code */ u16 nSkip; /* Number of left-most columns to skip */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ WhereTerm *pTerm; /* A single constraint term */ WhereLoop *pLoop; /* The WhereLoop object */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); assert( zAff!=0 || pParse->db->mallocFailed ); if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); assert( pLevel->addrSkip==0 ); pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; jaiColumn[j]==XN_EXPR ); VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); } } /* Evaluate the equality constraints */ assert( zAff==0 || (int)strlen(zAff)>=nEq ); for(j=nSkip; jaLTerm[j]; assert( pTerm!=0 ); /* The following testcase is true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); } } if( pTerm->eOperator & WO_IN ){ if( pTerm->pExpr->flags & EP_xIsSelect ){ /* No affinity ever needs to be (or should be) applied to a value ** from the RHS of an "? IN (SELECT ...)" expression. The ** sqlite3FindInIndex() routine has already ensured that the ** affinity of the comparison has been applied to the value. */ if( zAff ) zAff[j] = SQLITE_AFF_BLOB; } }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ Expr *pRight = pTerm->pExpr->pRight; if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); VdbeCoverage(v); } if( pParse->nErr==0 ){ assert( pParse->db->mallocFailed==0 ); if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ zAff[j] = SQLITE_AFF_BLOB; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ zAff[j] = SQLITE_AFF_BLOB; } } } } *pzAff = zAff; return regBase; } #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS /* ** If the most recently coded instruction is a constant range constraint ** (a string literal) that originated from the LIKE optimization, then ** set P3 and P5 on the OP_String opcode so that the string will be cast ** to a BLOB at appropriate times. ** ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range ** expression: "x>='ABC' AND x<'abd'". But this requires that the range ** scan loop run twice, once for strings and a second time for BLOBs. ** The OP_String opcodes on the second pass convert the upper and lower ** bound string constants to blobs. This routine makes the necessary changes ** to the OP_String opcodes for that to happen. ** ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then ** only the one pass through the string space is required, so this routine ** becomes a no-op. */ static void whereLikeOptimizationStringFixup( Vdbe *v, /* prepared statement under construction */ WhereLevel *pLevel, /* The loop that contains the LIKE operator */ WhereTerm *pTerm /* The upper or lower bound just coded */ ){ if( pTerm->wtFlags & TERM_LIKEOPT ){ VdbeOp *pOp; assert( pLevel->iLikeRepCntr>0 ); pOp = sqlite3VdbeGetLastOp(v); assert( pOp!=0 ); assert( pOp->opcode==OP_String8 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ } } #else # define whereLikeOptimizationStringFixup(A,B,C) #endif #ifdef SQLITE_ENABLE_CURSOR_HINTS /* ** Information is passed from codeCursorHint() down to individual nodes of ** the expression tree (by sqlite3WalkExpr()) using an instance of this ** structure. */ struct CCurHint { int iTabCur; /* Cursor for the main table */ int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ Index *pIdx; /* The index used to access the table */ }; /* ** This function is called for every node of an expression that is a candidate ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference ** the table CCurHint.iTabCur, verify that the same column can be ** accessed through the index. If it cannot, then set pWalker->eCode to 1. */ static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ struct CCurHint *pHint = pWalker->u.pCCurHint; assert( pHint->pIdx!=0 ); if( pExpr->op==TK_COLUMN && pExpr->iTable==pHint->iTabCur && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 ){ pWalker->eCode = 1; } return WRC_Continue; } /* ** Test whether or not expression pExpr, which was part of a WHERE clause, ** should be included in the cursor-hint for a table that is on the rhs ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the ** expression is not suitable. ** ** An expression is unsuitable if it might evaluate to non NULL even if ** a TK_COLUMN node that does affect the value of the expression is set ** to NULL. For example: ** ** col IS NULL ** col IS NOT NULL ** coalesce(col, 1) ** CASE WHEN col THEN 0 ELSE 1 END */ static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_IS || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE ){ pWalker->eCode = 1; }else if( pExpr->op==TK_FUNCTION ){ int d1; char d2[4]; if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ pWalker->eCode = 1; } } return WRC_Continue; } /* ** This function is called on every node of an expression tree used as an ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN ** that accesses any table other than the one identified by ** CCurHint.iTabCur, then do the following: ** ** 1) allocate a register and code an OP_Column instruction to read ** the specified column into the new register, and ** ** 2) transform the expression node to a TK_REGISTER node that reads ** from the newly populated register. ** ** Also, if the node is a TK_COLUMN that does access the table identified ** by pCCurHint.iTabCur, and an index is being used (which we will ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into ** an access of the index rather than the original table. */ static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ int rc = WRC_Continue; int reg; struct CCurHint *pHint = pWalker->u.pCCurHint; if( pExpr->op==TK_COLUMN ){ if( pExpr->iTable!=pHint->iTabCur ){ reg = ++pWalker->pParse->nMem; /* Register for column value */ reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg); pExpr->op = TK_REGISTER; pExpr->iTable = reg; }else if( pHint->pIdx!=0 ){ pExpr->iTable = pHint->iIdxCur; pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); assert( pExpr->iColumn>=0 ); } }else if( pExpr->pAggInfo ){ rc = WRC_Prune; reg = ++pWalker->pParse->nMem; /* Register for column value */ reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg); pExpr->op = TK_REGISTER; pExpr->iTable = reg; }else if( pExpr->op==TK_TRUEFALSE ){ /* Do not walk disabled expressions. tag-20230504-1 */ return WRC_Prune; } return rc; } /* ** Insert an OP_CursorHint instruction if it is appropriate to do so. */ static void codeCursorHint( SrcItem *pTabItem, /* FROM clause item */ WhereInfo *pWInfo, /* The where clause */ WhereLevel *pLevel, /* Which loop to provide hints for */ WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ ){ Parse *pParse = pWInfo->pParse; sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; Expr *pExpr = 0; WhereLoop *pLoop = pLevel->pWLoop; int iCur; WhereClause *pWC; WhereTerm *pTerm; int i, j; struct CCurHint sHint; Walker sWalker; if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; iCur = pLevel->iTabCur; assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); sHint.iTabCur = iCur; sHint.iIdxCur = pLevel->iIdxCur; sHint.pIdx = pLoop->u.btree.pIndex; memset(&sWalker, 0, sizeof(sWalker)); sWalker.pParse = pParse; sWalker.u.pCCurHint = &sHint; pWC = &pWInfo->sWC; for(i=0; inBase; i++){ pTerm = &pWC->a[i]; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( pTerm->prereqAll & pLevel->notReady ) continue; /* Any terms specified as part of the ON(...) clause for any LEFT ** JOIN for which the current table is not the rhs are omitted ** from the cursor-hint. ** ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms ** that were specified as part of the WHERE clause must be excluded. ** This is to address the following: ** ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; ** ** Say there is a single row in t2 that matches (t1.a=t2.b), but its ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is ** pushed down to the cursor, this row is filtered out, causing ** SQLite to synthesize a row of NULL values. Which does match the ** WHERE clause, and so the query returns a row. Which is incorrect. ** ** For the same reason, WHERE terms such as: ** ** WHERE 1 = (t2.c IS NULL) ** ** are also excluded. See codeCursorHintIsOrFunction() for details. */ if( pTabItem->fg.jointype & JT_LEFT ){ Expr *pExpr = pTerm->pExpr; if( !ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin!=pTabItem->iCursor ){ sWalker.eCode = 0; sWalker.xExprCallback = codeCursorHintIsOrFunction; sqlite3WalkExpr(&sWalker, pTerm->pExpr); if( sWalker.eCode ) continue; } }else{ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue; } /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize ** the cursor. These terms are not needed as hints for a pure range ** scan (that has no == terms) so omit them. */ if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ for(j=0; jnLTerm && pLoop->aLTerm[j]!=pTerm; j++){} if( jnLTerm ) continue; } /* No subqueries or non-deterministic functions allowed */ if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; /* For an index scan, make sure referenced columns are actually in ** the index. */ if( sHint.pIdx!=0 ){ sWalker.eCode = 0; sWalker.xExprCallback = codeCursorHintCheckExpr; sqlite3WalkExpr(&sWalker, pTerm->pExpr); if( sWalker.eCode ) continue; } /* If we survive all prior tests, that means this term is worth hinting */ pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); } if( pExpr!=0 ){ sWalker.xExprCallback = codeCursorHintFixExpr; if( pParse->nErr==0 ) sqlite3WalkExpr(&sWalker, pExpr); sqlite3VdbeAddOp4(v, OP_CursorHint, (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, (const char*)pExpr, P4_EXPR); } } #else # define codeCursorHint(A,B,C,D) /* No-op */ #endif /* SQLITE_ENABLE_CURSOR_HINTS */ /* ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains ** a rowid value just read from cursor iIdxCur, open on index pIdx. This ** function generates code to do a deferred seek of cursor iCur to the ** rowid stored in register iRowid. ** ** Normally, this is just: ** ** OP_DeferredSeek $iCur $iRowid ** ** Which causes a seek on $iCur to the row with rowid $iRowid. ** ** However, if the scan currently being coded is a branch of an OR-loop and ** the statement currently being coded is a SELECT, then additional information ** is added that might allow OP_Column to omit the seek and instead do its ** lookup on the index, thus avoiding an expensive seek operation. To ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur ** and P4 is set to an array of integers containing one entry for each column ** in the table. For each table column, if the column is the i'th ** column of the index, then the corresponding array entry is set to (i+1). ** If the column does not appear in the index at all, the array entry is set ** to 0. The OP_Column opcode can check this array to see if the column it ** wants is in the index and if it is, it will substitute the index cursor ** and column number and continue with those new values, rather than seeking ** the table cursor. */ static void codeDeferredSeek( WhereInfo *pWInfo, /* Where clause context */ Index *pIdx, /* Index scan is using */ int iCur, /* Cursor for IPK b-tree */ int iIdxCur /* Index cursor */ ){ Parse *pParse = pWInfo->pParse; /* Parse context */ Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ assert( iIdxCur>0 ); assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); pWInfo->bDeferredSeek = 1; sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) ){ int i; Table *pTab = pIdx->pTable; u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); if( ai ){ ai[0] = pTab->nCol; for(i=0; inColumn-1; i++){ int x1, x2; assert( pIdx->aiColumn[i]nCol ); x1 = pIdx->aiColumn[i]; x2 = sqlite3TableColumnToStorage(pTab, x1); testcase( x1!=x2 ); if( x1>=0 ) ai[x2+1] = i+1; } sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); } } } /* ** If the expression passed as the second argument is a vector, generate ** code to write the first nReg elements of the vector into an array ** of registers starting with iReg. ** ** If the expression is not a vector, then nReg must be passed 1. In ** this case, generate code to evaluate the expression and leave the ** result in register iReg. */ static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ assert( nReg>0 ); if( p && sqlite3ExprIsVector(p) ){ #ifndef SQLITE_OMIT_SUBQUERY if( ExprUseXSelect(p) ){ Vdbe *v = pParse->pVdbe; int iSelect; assert( p->op==TK_SELECT ); iSelect = sqlite3CodeSubselect(pParse, p); sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); }else #endif { int i; const ExprList *pList; assert( ExprUseXList(p) ); pList = p->x.pList; assert( nReg<=pList->nExpr ); for(i=0; ia[i].pExpr, iReg+i); } } }else{ assert( nReg==1 || pParse->nErr ); sqlite3ExprCode(pParse, p, iReg); } } /* ** The pTruth expression is always true because it is the WHERE clause ** a partial index that is driving a query loop. Look through all of the ** WHERE clause terms on the query, and if any of those terms must be ** true because pTruth is true, then mark those WHERE clause terms as ** coded. */ static void whereApplyPartialIndexConstraints( Expr *pTruth, int iTabCur, WhereClause *pWC ){ int i; WhereTerm *pTerm; while( pTruth->op==TK_AND ){ whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); pTruth = pTruth->pRight; } for(i=0, pTerm=pWC->a; inTerm; i++, pTerm++){ Expr *pExpr; if( pTerm->wtFlags & TERM_CODED ) continue; pExpr = pTerm->pExpr; if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ pTerm->wtFlags |= TERM_CODED; } } } /* ** This routine is called right after An OP_Filter has been generated and ** before the corresponding index search has been performed. This routine ** checks to see if there are additional Bloom filters in inner loops that ** can be checked prior to doing the index lookup. If there are available ** inner-loop Bloom filters, then evaluate those filters now, before the ** index lookup. The idea is that a Bloom filter check is way faster than ** an index lookup, and the Bloom filter might return false, meaning that ** the index lookup can be skipped. ** ** We know that an inner loop uses a Bloom filter because it has the ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, ** then clear the WhereLevel.regFilter value to prevent the Bloom filter ** from being checked a second time when the inner loop is evaluated. */ static SQLITE_NOINLINE void filterPullDown( Parse *pParse, /* Parsing context */ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ int addrNxt, /* Jump here to bypass inner loops */ Bitmask notReady /* Loops that are not ready */ ){ while( ++iLevel < pWInfo->nLevel ){ WhereLevel *pLevel = &pWInfo->a[iLevel]; WhereLoop *pLoop = pLevel->pWLoop; if( pLevel->regFilter==0 ) continue; if( pLevel->pWLoop->nSkip ) continue; /* ,--- Because sqlite3ConstructBloomFilter() has will not have set ** vvvvv--' pLevel->regFilter if this were true. */ if( NEVER(pLoop->prereq & notReady) ) continue; assert( pLevel->addrBrk==0 ); pLevel->addrBrk = addrNxt; if( pLoop->wsFlags & WHERE_IPK ){ WhereTerm *pTerm = pLoop->aLTerm[0]; int regRowid; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); regRowid = sqlite3GetTempReg(pParse); regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt); VdbeCoverage(pParse->pVdbe); sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, addrNxt, regRowid, 1); VdbeCoverage(pParse->pVdbe); }else{ u16 nEq = pLoop->u.btree.nEq; int r1; char *zStartAff; assert( pLoop->wsFlags & WHERE_INDEXED ); assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); codeApplyAffinity(pParse, r1, nEq, zStartAff); sqlite3DbFree(pParse->db, zStartAff); sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, addrNxt, r1, nEq); VdbeCoverage(pParse->pVdbe); } pLevel->regFilter = 0; pLevel->addrBrk = 0; } } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart( Parse *pParse, /* Parsing context */ Vdbe *v, /* Prepared statement under construction */ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ WhereLevel *pLevel, /* The current level pointer */ Bitmask notReady /* Which tables are currently available */ ){ int j, k; /* Loop counters */ int iCur; /* The VDBE cursor for the table */ int addrNxt; /* Where to jump to continue with the next IN case */ int bRev; /* True if we need to scan in reverse order */ WhereLoop *pLoop; /* The WhereLoop object being coded */ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ WhereTerm *pTerm; /* A WHERE clause term */ sqlite3 *db; /* Database connection */ SrcItem *pTabItem; /* FROM clause term being coded */ int addrBrk; /* Jump here to break out of the loop */ int addrHalt; /* addrBrk for the outermost loop */ int addrCont; /* Jump here to continue with next cycle */ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ int iReleaseReg = 0; /* Temp register to free before returning */ Index *pIdx = 0; /* Index used by loop (if any) */ int iLoop; /* Iteration of constraint generator loop */ pWC = &pWInfo->sWC; db = pParse->db; pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); bRev = (pWInfo->revMask>>iLevel)&1; VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); #if WHERETRACE_ENABLED /* 0x4001 */ if( sqlite3WhereTrace & 0x1 ){ sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); if( sqlite3WhereTrace & 0x1000 ){ sqlite3WhereLoopPrint(pLoop, pWC); } } if( (sqlite3WhereTrace & 0x4001)==0x4001 ){ if( iLevel==0 ){ sqlite3DebugPrintf("WHERE clause being coded:\n"); sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); } sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); sqlite3WhereClausePrint(pWC); } #endif /* Create labels for the "break" and "continue" instructions ** for the current loop. Jump to addrBrk to break out of a loop. ** Jump to cont to go immediately to the next iteration of the ** loop. ** ** When there is an IN operator, we also have a "addrNxt" label that ** means to continue with the next IN value combination. When ** there are no IN operators in the constraints, the "addrNxt" label ** is the same as "addrBrk". */ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 ); if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ pLevel->iLeftJoin = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Compute a safe address to jump to if we discover that the table for ** this loop is empty and can never contribute content. */ for(j=iLevel; j>0; j--){ if( pWInfo->a[j].iLeftJoin ) break; if( pWInfo->a[j].pRJ ) break; } addrHalt = pWInfo->a[j].addrBrk; /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->fg.viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeCoverage(v); VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ int addrNotFound; int nConstraint = pLoop->nLTerm; iReg = sqlite3GetTempRange(pParse, nConstraint+2); addrNotFound = pLevel->addrBrk; for(j=0; jaLTerm[j]; if( NEVER(pTerm==0) ) continue; if( pTerm->eOperator & WO_IN ){ if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ int iTab = pParse->nTab++; int iCache = ++pParse->nMem; sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); }else{ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); addrNotFound = pLevel->addrNxt; } }else{ Expr *pRight = pTerm->pExpr->pRight; codeExprOrVector(pParse, pRight, iTarget, 1); if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET && pLoop->u.vtab.bOmitOffset ){ assert( pTerm->eOperator==WO_AUX ); assert( pWInfo->pSelect!=0 ); assert( pWInfo->pSelect->iOffset>0 ); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pSelect->iOffset); VdbeComment((v,"Zero OFFSET counter")); } } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; pLevel->p1 = iCur; pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; pLevel->p2 = sqlite3VdbeCurrentAddr(v); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); for(j=0; jaLTerm[j]; if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pTerm); continue; } if( (pTerm->eOperator & WO_IN)!=0 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 && !db->mallocFailed ){ Expr *pCompare; /* The comparison operator */ Expr *pRight; /* RHS of the comparison */ VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ int iIn; /* IN loop corresponding to the j-th constraint */ /* Reload the constraint value into reg[iReg+j+2]. The same value ** was loaded into the same register prior to the OP_VFilter, but ** the xFilter implementation might have changed the datatype or ** encoding of the value in the register, so it *must* be reloaded. */ for(iIn=0; ALWAYS(iInu.in.nIn); iIn++){ pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) ){ testcase( pOp->opcode==OP_Rowid ); sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); break; } } /* Generate code that will continue to the next row if ** the IN constraint is not satisfied */ pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); if( !db->mallocFailed ){ int iFld = pTerm->u.x.iField; Expr *pLeft = pTerm->pExpr->pLeft; assert( pLeft!=0 ); if( iFld>0 ){ assert( pLeft->op==TK_VECTOR ); assert( ExprUseXList(pLeft) ); assert( iFld<=pLeft->x.pList->nExpr ); pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; }else{ pCompare->pLeft = pLeft; } pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); if( pRight ){ pRight->iTable = iReg+j+2; sqlite3ExprIfFalse( pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL ); } pCompare->pLeft = 0; } sqlite3ExprDelete(db, pCompare); } } /* These registers need to be preserved in case there is an IN operator ** loop. So we could deallocate the registers here (and potentially ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems ** simpler and safer to simply not reuse the registers. ** ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); */ }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); iReleaseReg = ++pParse->nMem; iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); addrNxt = pLevel->addrNxt; if( pLevel->regFilter ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, iRowidReg, 1); VdbeCoverage(v); filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); } sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); VdbeCoverage(v); pLevel->op = OP_Noop; }else if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 ){ /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int memEndValue = 0; WhereTerm *pStart, *pEnd; j = 0; pStart = pEnd = 0; if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; assert( pStart!=0 || pEnd!=0 ); if( bRev ){ pTerm = pStart; pStart = pEnd; pEnd = pTerm; } codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); if( pStart ){ Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ int op; /* Cursor seek operation */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ if( sqlite3ExprIsVector(pX->pRight) ){ r1 = rTemp = sqlite3GetTempReg(pParse); codeExprOrVector(pParse, pX->pRight, r1, 1); testcase( pX->op==TK_GT ); testcase( pX->op==TK_GE ); testcase( pX->op==TK_LT ); testcase( pX->op==TK_LE ); op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; assert( pX->op!=TK_GT || op==OP_SeekGE ); assert( pX->op!=TK_GE || op==OP_SeekGE ); assert( pX->op!=TK_LT || op==OP_SeekLE ); assert( pX->op!=TK_LE || op==OP_SeekLE ); }else{ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); disableTerm(pLevel, pStart); op = aMoveOp[(pX->op - TK_GT)]; } sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); VdbeComment((v, "pk")); VdbeCoverageIf(v, pX->op==TK_GT); VdbeCoverageIf(v, pX->op==TK_LE); VdbeCoverageIf(v, pX->op==TK_LT); VdbeCoverageIf(v, pX->op==TK_GE); sqlite3ReleaseTempReg(pParse, rTemp); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( (pEnd->wtFlags & TERM_VNULL)==0 ); testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ testcase( pEnd->wtFlags & TERM_VIRTUAL ); memEndValue = ++pParse->nMem; codeExprOrVector(pParse, pX->pRight, memEndValue, 1); if( 0==sqlite3ExprIsVector(pX->pRight) && (pX->op==TK_LT || pX->op==TK_GT) ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } if( 0==sqlite3ExprIsVector(pX->pRight) ){ disableTerm(pLevel, pEnd); } } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); VdbeCoverageIf(v, testOp==OP_Le); VdbeCoverageIf(v, testOp==OP_Lt); VdbeCoverageIf(v, testOp==OP_Ge); VdbeCoverageIf(v, testOp==OP_Gt); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLoop->wsFlags & WHERE_INDEXED ){ /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N ** left-most columns of the index. It may also contain ** inequality constraints (>, <, >= or <=) on the indexed ** column that immediately follows the N equalities. Only ** the right-most column can be an inequality - the rest must ** use the "==" and "IN" operators. For example, if the ** index is on (x,y,z), then the following clauses are all ** optimized: ** ** x=5 ** x=5 AND y=10 ** x=5 AND y<10 ** x=5 AND y>5 AND y<10 ** x=5 AND y=5 AND z<=10 ** ** The z<10 term of the following cannot be used, only ** the x=5 term: ** ** x=5 AND z<10 ** ** N may be zero if there are inequality constraints. ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ int regBase; /* Base register holding constraint values */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char *zEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ int omitTable; /* True if we use the index only */ int regBignull = 0; /* big-null flag register */ int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->nSkip ); /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); /* Like optimization range constraints always occur in pairs */ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ assert( pRangeStart!=0 ); /* LIKE opt constraints */ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ pLevel->iLikeRepCntr = (u32)++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); VdbeComment((v, "LIKE loop counter")); pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); /* iLikeRepCntr actually stores 2x the counter register number. The ** bottom bit indicates whether the search order is ASC or DESC. */ testcase( bRev ); testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); assert( (bRev & ~1)==0 ); pLevel->iLikeRepCntr <<=1; pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); } #endif if( pRangeStart==0 ){ j = pIdx->aiColumn[nEq]; if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ bSeekPastNull = 1; } } } assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS ** FIRST). In both cases separate ordered scans are made of those ** index entries for which the column is null and for those for which ** it is not. For an ASC sort, the non-NULL entries are scanned first. ** For DESC, NULL entries are scanned first. */ if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 ){ assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); assert( pRangeEnd==0 && pRangeStart==0 ); testcase( pLoop->nSkip>0 ); nExtraReg = 1; bSeekPastNull = 1; pLevel->regBignull = regBignull = ++pParse->nMem; if( pLevel->iLeftJoin ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); } pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); } /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEqnColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ SQ__SWAP(WhereTerm *, pRangeEnd, pRangeStart); SQ__SWAP(u8, bSeekPastNull, bStopAtNull); SQ__SWAP(u8, nBtm, nTop); } if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ /* In case OP_SeekScan is used, ensure that the index cursor does not ** point to a valid row for the first iteration of this loop. */ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff && nTop ){ zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); } addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); } nConstraint += nBtm; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); if( sqlite3ExprIsVector(pRight)==0 ){ disableTerm(pLevel, pRangeStart); }else{ startEq = 1; } bSeekPastNull = 0; }else if( bSeekPastNull ){ startEq = 0; sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); start_constraints = 1; nConstraint++; }else if( regBignull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); start_constraints = 1; nConstraint++; } codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ /* The skip-scan logic inside the call to codeAllEqualityConstraints() ** above has already left the cursor sitting on the correct row, ** so no further seeking is needed */ }else{ if( regBignull ){ sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); VdbeComment((v, "NULL-scan pass ctr")); } if( pLevel->regFilter ){ sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, regBase, nEq); VdbeCoverage(v); filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); } op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ assert( regBignull==0 ); /* TUNING: The OP_SeekScan opcode seeks to reduce the number ** of expensive seek operations by replacing a single seek with ** 1 or more step operations. The question is, how many steps ** should we try before giving up and going with a seek. The cost ** of a seek is proportional to the logarithm of the of the number ** of entries in the tree, so basing the number of steps to try ** on the estimated number of rows in the btree seems like a good ** guess. */ addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, (pIdx->aiRowLogEst[0]+9)/10); if( pRangeStart || pRangeEnd ){ sqlite3VdbeChangeP5(v, 1); sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1); addrSeekScan = 0; } VdbeCoverage(v); } sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); assert( bSeekPastNull==0 || bStopAtNull==0 ); if( regBignull ){ assert( bSeekPastNull==1 || bStopAtNull==1 ); assert( bSeekPastNull==!bStopAtNull ); assert( bStopAtNull==startEq ); sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint-startEq); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); } } /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; assert( pLevel->p2==0 ); if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; assert( addrSeekScan==0 ); codeExprOrVector(pParse, pRight, regBase+nEq, nTop); whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zEndAff ){ updateRangeAffinityStr(pRight, nTop, zEndAff); codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); }else{ assert( pParse->db->mallocFailed ); } nConstraint += nTop; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); if( sqlite3ExprIsVector(pRight)==0 ){ disableTerm(pLevel, pRangeEnd); }else{ endEq = 1; } }else if( bStopAtNull ){ if( regBignull==0 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; } nConstraint++; } if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff); if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ if( regBignull ){ /* Except, skip the end-of-range check while doing the NULL-scan */ sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); VdbeComment((v, "If NULL-scan 2nd pass")); VdbeCoverage(v); } op = aEndOp[bRev*2 + endEq]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); } if( regBignull ){ /* During a NULL-scan, check to see if we have reached the end of ** the NULLs */ assert( bSeekPastNull==!bStopAtNull ); assert( bSeekPastNull+bStopAtNull==1 ); assert( nConstraint+bSeekPastNull>0 ); sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); VdbeComment((v, "If NULL-scan 1st pass")); VdbeCoverage(v); op = aEndOp[bRev*2 + bSeekPastNull]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint+bSeekPastNull); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); } if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); } /* Seek the table cursor, if required */ omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; if( omitTable ){ /* pIdx is a covering index. No need to access the main table. */ }else if( HasRowid(pIdx->pTable) ){ codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); }else if( iCur!=iIdxCur ){ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; jnKeyCol; j++){ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); } sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } if( pLevel->iLeftJoin==0 ){ /* If a partial index is driving the loop, try to eliminate WHERE clause ** terms from the query that must be true due to the WHERE clause of ** the partial index. ** ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work ** for a LEFT JOIN. */ if( pIdx->pPartIdxWhere ){ whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); } }else{ testcase( pIdx->pPartIdxWhere ); /* The following assert() is not a requirement, merely an observation: ** The OR-optimization doesn't work for the right hand table of ** a LEFT JOIN: */ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); } /* Record the instruction used to terminate the loop. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } if( omitTable ) pIdx = 0; }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION if( pLoop->wsFlags & WHERE_MULTI_OR ){ /* Case 5: Two or more separately indexed terms connected by OR ** ** Example: ** ** CREATE TABLE t1(a,b,c,d); ** CREATE INDEX i1 ON t1(a); ** CREATE INDEX i2 ON t1(b); ** CREATE INDEX i3 ON t1(c); ** ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) ** ** In the example, there are three indexed terms connected by OR. ** The top of the loop looks like this: ** ** Null 1 # Zero the rowset in reg 1 ** ** Then, for each indexed term, the following. The arguments to ** RowSetTest are such that the rowid of the current row is inserted ** into the RowSet. If it is already present, control skips the ** Gosub opcode and jumps straight to the code generated by WhereEnd(). ** ** sqlite3WhereBegin() ** RowSetTest # Insert rowid into rowset ** Gosub 2 A ** sqlite3WhereEnd() ** ** Following the above, code to terminate the loop. Label A, the target ** of the Gosub above, jumps to the instruction right after the Goto. ** ** Null 1 # Zero the rowset in reg 1 ** Goto B # The loop is finished. ** ** A: # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: ** ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then ** use an ephemeral index instead of a RowSet to record the primary ** keys of the rows we have already seen. ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ Index *pCov = 0; /* Potential covering index (or NULL) */ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ int regRowset = 0; /* Register for RowSet object */ int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ Table *pTab = pTabItem->pTab; pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ SrcItem *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3DbMallocRawNN(db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; pOrTab->nAlloc = (u8)(nNotReady + 1); pOrTab->nSrc = pOrTab->nAlloc; memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo->pTabList->a; for(k=1; k<=nNotReady; k++){ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is ** equivalent to an empty rowset. Or, create an ephemeral index ** capable of holding primary keys in the case of a WITHOUT ROWID. ** ** Also initialize regReturn to contain the address of the instruction ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ if( HasRowid(pTab) ){ regRowset = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); regRowset = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } regRowid = ++pParse->nMem; } iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y ** Then for every term xN, evaluate as the subexpression: xN AND y ** That way, terms in y that are factored into the disjunction will ** be picked up by the recursive calls to sqlite3WhereBegin() below. ** ** Actually, each subexpression is converted to "xN AND w" where w is ** the "interesting" terms of z - terms that did not originate in the ** ON or USING clause of a LEFT JOIN, and terms that are usable as ** indices. ** ** This optimization also only applies if the (x1 OR x2 OR ...) term ** is not contained in the ON clause of a LEFT JOIN. ** See ticket http://www.sqlite.org/src/info/f2369304e4 ** ** 2022-02-04: Do not push down slices of a row-value comparison. ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, ** the initialization of the right-hand operand of the vector comparison ** might not occur, or might occur only in an OR branch that is not ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. ** ** 2022-03-03: Do not push down expressions that involve subqueries. ** The subquery might get coded as a subroutine. Any table-references ** in the subquery might be resolved to index-references for the index on ** the OR branch in which the subroutine is coded. But if the subroutine ** is invoked from a different OR branch that uses a different index, such ** index-references will not work. tag-20220303a ** https://sqlite.org/forum/forumpost/36937b197273d403 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTermnTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ continue; } if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); } if( pAndExpr ){ /* The extra 0x10000 bit on the opcode is masked off and does not ** become part of the new Expr.op. However, it does make the ** op==TK_AND comparison inside of sqlite3PExpr() false, and this ** prevents sqlite3PExpr() from applying the AND short-circuit ** optimization, which we do not want here. */ pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); } } /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); for(ii=0; iinTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ Expr *pDelete; /* Local copy of OR clause term */ int jmp1 = 0; /* Address of jump operation */ testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 && !ExprHasProperty(pOrExpr, EP_OuterON) ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDelete); continue; } if( pAndExpr ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); WHERETRACE(0xffffffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, WHERE_OR_SUBCLAUSE, iCovCur); assert( pSubWInfo || pParse->nErr ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = sqlite3WhereExplainOneScan( pParse, pOrTab, &pSubWInfo->a[0], 0 ); sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); /* This is the sub-WHERE clause body. First skip over ** duplicate rows from prior sub-WHERE clauses, and record the ** rowid (or PRIMARY KEY) for the current row so that the same ** row will be skipped in subsequent sub-WHERE clauses. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); if( HasRowid(pTab) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, regRowid, iSet); VdbeCoverage(v); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk; int r; /* Read the PK into an array of temp registers. */ r = sqlite3GetTempRange(pParse, nPk); for(iPk=0; iPkaiColumn[iPk]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); } /* Check if the temp table already contains this key. If so, ** the row has already been included in the result set and ** can be ignored (by jumping past the Gosub below). Otherwise, ** insert the key into the temp table and proceed with processing ** the row. ** ** Use some of the same optimizations as OP_RowSetTest: If iSet ** is zero, assume that the key cannot already be present in ** the temp table. And if iSet is -1, assume that there is no ** need to insert the key into the temp table, as it will never ** be tested for. */ if( iSet ){ jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); VdbeCoverage(v); } if( iSet>=0 ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, r, nPk); if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } /* Release the array of temp registers */ sqlite3ReleaseTempRange(pParse, r, nPk); } } /* Invoke the main loop body as a subroutine */ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* Jump here (skipping the main loop body subroutine) if the ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. */ if( pSubWInfo->untestedTerms ) untestedTerms = 1; /* If all of the OR-connected terms are optimized using the same ** index, and the index is opened using the same cursor number ** by each call to sqlite3WhereBegin() made by this loop, it may ** be possible to use that index as a covering index. ** ** If the call to sqlite3WhereBegin() above resulted in a scan that ** uses an index, and this is either the first OR-connected term ** processed or the index is the same as that used by all previous ** terms, set pCov to the candidate covering index. Otherwise, set ** pCov to NULL to indicate that no candidate covering index will ** be available. */ pSubLoop = pSubWInfo->a[0].pWLoop; assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) ){ assert( pSubWInfo->a[0].iIdxCur==iCovCur ); pCov = pSubLoop->u.btree.pIndex; }else{ pCov = 0; } if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ pWInfo->bDeferredSeek = 1; } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); ExplainQueryPlanPop(pParse); } sqlite3ExprDelete(db, pDelete); } } ExplainQueryPlanPop(pParse); assert( pLevel->pWLoop==pLoop ); assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); pLevel->u.pCoveringIdx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeGoto(v, pLevel->addrBrk); sqlite3VdbeResolveLabel(v, iLoopBody); /* Set the P2 operand of the OP_Return opcode that will end the current ** loop to point to this spot, which is the top of the next containing ** loop. The byte-code formatter will use that P2 value as a hint to ** indent everything in between the this point and the final OP_Return. ** See tag-20220407a in vdbe.c and shell.c */ assert( pLevel->op==OP_Return ); pLevel->p2 = sqlite3VdbeCurrentAddr(v); if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); } if( !untestedTerms ) disableTerm(pLevel, pTerm); }else #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ { /* Case 6: There is no usable index. We must do a complete ** scan of the entire table. */ static const u8 aStep[] = { OP_Next, OP_Prev }; static const u8 aStart[] = { OP_Rewind, OP_Last }; assert( bRev==0 || bRev==1 ); if( pTabItem->fg.isRecursive ){ /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ codeCursorHint(pTabItem, pWInfo, pLevel, 0); pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** This loop may run between one and three times, depending on the ** constraints to be generated. The value of stack variable iLoop ** determines the constraints coded by each iteration, as follows: ** ** iLoop==1: Code only expressions that are entirely covered by pIdx. ** iLoop==2: Code remaining expressions that do not contain correlated ** sub-queries. ** iLoop==3: Code all remaining expressions. ** ** An effort is made to skip unnecessary iterations of the loop. */ iLoop = (pIdx ? 1 : 2); do{ int iNext = 0; /* Next value for iLoop */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; int skipLikeAddr = 0; testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){ if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){ /* Defer processing WHERE clause constraints until after outer ** join processing. tag-20220513a */ continue; }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT && !ExprHasProperty(pE,EP_OuterON) ){ continue; }else{ Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin); if( m & pLevel->notReady ){ /* An ON clause that is not ripe */ continue; } } } if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ iNext = 2; continue; } if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ if( iNext==0 ) iNext = 3; continue; } if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ /* If the TERM_LIKECOND flag is set, that means that the range search ** is sufficient to guarantee that the LIKE operator is true, so we ** can skip the call to the like(A,B) function. But this only works ** for strings. So do not skip the call to the function on the pass ** that compares BLOBs. */ #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS continue; #else u32 x = pLevel->iLikeRepCntr; if( x>0 ){ skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); VdbeCoverageIf(v, (x&1)==1); VdbeCoverageIf(v, (x&1)==0); } #endif } #ifdef WHERETRACE_ENABLED /* 0xffffffff */ if( sqlite3WhereTrace ){ VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", pWC->nTerm-j, pTerm, iLoop)); } if( sqlite3WhereTrace & 0x4000 ){ sqlite3DebugPrintf("Coding auxiliary constraint:\n"); sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); } #endif sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); pTerm->wtFlags |= TERM_CODED; } iLoop = iNext; }while( iLoop>0 ); /* Insert code to test for implied constraints based on transitivity ** of the "==" operator. ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" ** and we are coding the t1 loop and the t2 loop has not yet coded, ** then we cannot use the "t1.a=t2.b" constraint, but we can code ** the implied "t1.a=123" constraint. */ for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ Expr *pE, sEAlt; WhereTerm *pAlt; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; if( pTerm->leftCursor!=iCur ) continue; if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue; pE = pTerm->pExpr; #ifdef WHERETRACE_ENABLED /* 0x4001 */ if( (sqlite3WhereTrace & 0x4001)==0x4001 ){ sqlite3DebugPrintf("Coding transitive constraint:\n"); sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); } #endif assert( !ExprHasProperty(pE, EP_OuterON) ); assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, WO_EQ|WO_IN|WO_IS, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; if( (pAlt->eOperator & WO_IN) && ExprUseXSelect(pAlt->pExpr) && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) ){ continue; } testcase( pAlt->eOperator & WO_EQ ); testcase( pAlt->eOperator & WO_IS ); testcase( pAlt->eOperator & WO_IN ); VdbeModuleComment((v, "begin transitive constraint")); sEAlt = *pAlt->pExpr; sEAlt.pLeft = pE->pLeft; sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); pAlt->wtFlags |= TERM_CODED; } /* For a RIGHT OUTER JOIN, record the fact that the current row has ** been matched at least once. */ if( pLevel->pRJ ){ Table *pTab; int nPk; int r; int jmp1 = 0; WhereRightJoin *pRJ = pLevel->pRJ; /* pTab is the right-hand table of the RIGHT JOIN. Generate code that ** will record that the current row of that table has been matched at ** least once. This is accomplished by storing the PK for the row in ** both the iMatch index and the regBloom Bloom filter. */ pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; if( HasRowid(pTab) ){ r = sqlite3GetTempRange(pParse, 2); sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); nPk = 1; }else{ int iPk; Index *pPk = sqlite3PrimaryKeyIndex(pTab); nPk = pPk->nKeyCol; r = sqlite3GetTempRange(pParse, nPk+1); for(iPk=0; iPkaiColumn[iPk]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); } } jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); VdbeCoverage(v); VdbeComment((v, "match against %s", pTab->zName)); sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3VdbeJumpHere(v, jmp1); sqlite3ReleaseTempRange(pParse, r, nPk+1); } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); if( pLevel->pRJ==0 ){ goto code_outer_join_constraints; /* WHERE clause constraints */ } } if( pLevel->pRJ ){ /* Create a subroutine used to process all interior loops and code ** of the RIGHT JOIN. During normal operation, the subroutine will ** be in-line with the rest of the code. But at the end, a separate ** loop will run that invokes this subroutine for unmatched rows ** of pTab, with all tables to left begin set to NULL. */ WhereRightJoin *pRJ = pLevel->pRJ; sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); assert( pParse->withinRJSubrtn < 255 ); pParse->withinRJSubrtn++; /* WHERE clause constraints must be deferred until after outer join ** row elimination has completed, since WHERE clause constraints apply ** to the results of the OUTER JOIN. The following loop generates the ** appropriate WHERE clause constraint checks. tag-20220513a. */ code_outer_join_constraints: for(pTerm=pWC->a, j=0; jnBase; j++, pTerm++){ testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ assert( pWInfo->untestedTerms ); continue; } if( pTabItem->fg.jointype & JT_LTORJ ) continue; assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } #if WHERETRACE_ENABLED /* 0x4001 */ if( sqlite3WhereTrace & 0x4000 ){ sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", iLevel); sqlite3WhereClausePrint(pWC); } if( sqlite3WhereTrace & 0x1 ){ sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", iLevel, (u64)pLevel->notReady); } #endif return pLevel->notReady; } /* ** Generate the code for the loop that finds all non-matched terms ** for a RIGHT JOIN. */ SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( WhereInfo *pWInfo, int iLevel, WhereLevel *pLevel ){ Parse *pParse = pWInfo->pParse; Vdbe *v = pParse->pVdbe; WhereRightJoin *pRJ = pLevel->pRJ; Expr *pSubWhere = 0; WhereClause *pWC = &pWInfo->sWC; WhereInfo *pSubWInfo; WhereLoop *pLoop = pLevel->pWLoop; SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; SrcList sFrom; Bitmask mAll = 0; int k; ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName)); sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn, pRJ->regReturn); for(k=0; ka[k].pWLoop->maskSelf; sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur); iIdxCur = pWInfo->a[k].iIdxCur; if( iIdxCur ){ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); } } if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){ mAll |= pLoop->maskSelf; for(k=0; knTerm; k++){ WhereTerm *pTerm = &pWC->a[k]; if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0 && pTerm->eOperator!=WO_ROWVAL ){ break; } if( pTerm->prereqAll & ~mAll ) continue; if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue; pSubWhere = sqlite3ExprAnd(pParse, pSubWhere, sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); } } sFrom.nSrc = 1; sFrom.nAlloc = 1; memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem)); sFrom.a[0].fg.jointype = 0; assert( pParse->withinRJSubrtn < 100 ); pParse->withinRJSubrtn++; pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0, WHERE_RIGHT_JOIN, 0); if( pSubWInfo ){ int iCur = pLevel->iTabCur; int r = ++pParse->nMem; int nPk; int jmp; int addrCont = sqlite3WhereContinueLabel(pSubWInfo); Table *pTab = pTabItem->pTab; if( HasRowid(pTab) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r); nPk = 1; }else{ int iPk; Index *pPk = sqlite3PrimaryKeyIndex(pTab); nPk = pPk->nKeyCol; pParse->nMem += nPk - 1; for(iPk=0; iPkaiColumn[iPk]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); } } jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk); VdbeCoverage(v); sqlite3VdbeJumpHere(v, jmp); sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn); sqlite3WhereEnd(pSubWInfo); } sqlite3ExprDelete(pParse->db, pSubWhere); ExplainQueryPlanPop(pParse); assert( pParse->withinRJSubrtn>0 ); pParse->withinRJSubrtn--; } /************** End of wherecode.c *******************************************/ /************** Begin file whereexpr.c ***************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was originally part of where.c but was split out to improve ** readability and editability. This file contains utility routines for ** analyzing Expr objects in the WHERE clause. */ /* #include "sqliteInt.h" */ /* #include "whereInt.h" */ /* Forward declarations */ static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Deallocate all memory associated with a WhereOrInfo object. */ static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Deallocate all memory associated with a WhereAndInfo object. */ static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Add a single new WhereTerm entry to the WhereClause object pWC. ** The new WhereTerm object is constructed from Expr p and with wtFlags. ** The index in pWC->a[] of the new WhereTerm is returned on success. ** 0 is returned if the new WhereTerm could not be added due to a memory ** allocation error. The memory allocation failure will be recorded in ** the db->mallocFailed flag so that higher-level functions can detect it. ** ** This routine will increase the size of the pWC->a[] array as necessary. ** ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility ** for freeing the expression p is assumed by the WhereClause object pWC. ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pWInfo->pParse->db; pWC->a = sqlite3WhereMalloc(pWC->pWInfo, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); } pWC->a = pOld; return 0; } memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); pWC->nSlot = pWC->nSlot*2; } pTerm = &pWC->a[idx = pWC->nTerm++]; if( (wtFlags & TERM_VIRTUAL)==0 ) pWC->nBase = pWC->nTerm; if( p && ExprHasProperty(p, EP_Unlikely) ){ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; }else{ pTerm->truthProb = 1; } pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; memset(&pTerm->eOperator, 0, sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); return idx; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GTTK_EQ && TK_LTTK_EQ && TK_LE=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; } /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". */ static u16 exprCommute(Parse *pParse, Expr *pExpr){ if( pExpr->pLeft->op==TK_VECTOR || pExpr->pRight->op==TK_VECTOR || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) != sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft) ){ pExpr->flags ^= EP_Commuted; } SQ__SWAP(Expr*,pExpr->pRight,pExpr->pLeft); if( pExpr->op>=TK_GT ){ assert( TK_LT==TK_GT+2 ); assert( TK_GE==TK_LE+2 ); assert( TK_GT>TK_EQ ); assert( TK_GTop>=TK_GT && pExpr->op<=TK_GE ); pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; } return 0; } /* ** Translate from TK_xx operator to WO_xx bitmask. */ static u16 operatorMask(int op){ u16 c; assert( allowedOp(op) ); if( op==TK_IN ){ c = WO_IN; }else if( op==TK_ISNULL ){ c = WO_ISNULL; }else if( op==TK_IS ){ c = WO_IS; }else{ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); c = (u16)(WO_EQ<<(op-TK_EQ)); } assert( op!=TK_ISNULL || c==WO_ISNULL ); assert( op!=TK_IN || c==WO_IN ); assert( op!=TK_EQ || c==WO_EQ ); assert( op!=TK_LT || c==WO_LT ); assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); assert( op!=TK_IS || c==WO_IS ); return c; } #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. The LHS must be a column ** that may only be NULL, a string, or a BLOB, never a number. (This means ** that virtual tables cannot participate in the LIKE optimization.) The ** collating sequence for the column on the LHS must be appropriate for ** the operator. */ static int isLikeOrGlob( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* Test this expression */ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ int *pisComplete, /* True if the only wildcard is % in the last character */ int *pnoCase /* True if uppercase is equivalent to lowercase */ ){ const u8 *z = 0; /* String on RHS of LIKE operator */ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ ExprList *pList; /* List of operands to the LIKE operator */ u8 c; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ u8 wc[4]; /* Wildcard characters */ sqlite3 *db = pParse->db; /* Database connection */ sqlite3_value *pVal = 0; int op; /* Opcode of pRight */ int rc; /* Result code to return */ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){ return 0; } #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif assert( ExprUseXList(pExpr) ); pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); op = pRight->op; if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = sqlite3_value_text(pVal); } sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); }else if( op==TK_STRING ){ assert( !ExprHasProperty(pRight, EP_IntValue) ); z = (u8*)pRight->u.zToken; } if( z ){ /* Count the number of prefix characters prior to the first wildcard */ cnt = 0; while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; if( c==wc[3] && z[cnt]!=0 ) cnt++; } /* The optimization is possible only if (1) the pattern does not begin ** with a wildcard and if (2) the non-wildcard prefix does not end with ** an (illegal 0xff) character, or (3) the pattern does not consist of ** a single escape character. The second condition is necessary so ** that we can increment the prefix key to find an upper bound for the ** range search. The third is because the caller assumes that the pattern ** consists of at least one character after all escapes have been ** removed. */ if( (cnt>1 || (cnt>0 && z[0]!=wc[3])) && 255!=(u8)z[cnt-1] ){ Expr *pPrefix; /* A "complete" match if the pattern ends with "*" or "%" */ *pisComplete = c==wc[0] && z[cnt+1]==0; /* Get the pattern prefix. Remove all escapes from the prefix. */ pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); if( pPrefix ){ int iFrom, iTo; char *zNew; assert( !ExprHasProperty(pPrefix, EP_IntValue) ); zNew = pPrefix->u.zToken; zNew[cnt] = 0; for(iFrom=iTo=0; iFrom0 ); /* If the LHS is not an ordinary column with TEXT affinity, then the ** pattern prefix boundaries (both the start and end boundaries) must ** not look like a number. Otherwise the pattern might be treated as ** a number, which will invalidate the LIKE optimization. ** ** Getting this right has been a persistent source of bugs in the ** LIKE optimization. See, for example: ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a */ if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT || (ALWAYS( ExprUseYTab(pLeft) ) && ALWAYS(pLeft->y.pTab) && IsVirtual(pLeft->y.pTab)) /* Might be numeric */ ){ int isNum; double rDummy; isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); if( isNum<=0 ){ if( iTo==1 && zNew[0]=='-' ){ isNum = +1; }else{ zNew[iTo-1]++; isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); zNew[iTo-1]--; } } if( isNum>0 ){ sqlite3ExprDelete(db, pPrefix); sqlite3ValueFree(pVal); return 0; } } } *ppPrefix = pPrefix; /* If the RHS pattern is a bound parameter, make arrangements to ** reprepare the statement when that parameter is rebound */ if( op==TK_VARIABLE ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn); assert( !ExprHasProperty(pRight, EP_IntValue) ); if( *pisComplete && pRight->u.zToken[1] ){ /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() ** API. To work around them, add a dummy OP_Variable here. */ int r1 = sqlite3GetTempReg(pParse); sqlite3ExprCodeTarget(pParse, pRight, r1); sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); sqlite3ReleaseTempReg(pParse, r1); } } }else{ z = 0; } } rc = (z!=0); sqlite3ValueFree(pVal); return rc; } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Check to see if the pExpr expression is a form that needs to be passed ** to the xBestIndex method of virtual tables. Forms of interest include: ** ** Expression Virtual Table Operator ** ----------------------- --------------------------------- ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL ** ** In every case, "column" must be a column of a virtual table. If there ** is a match, set *ppLeft to the "column" expression, set *ppRight to the ** "expr" expression (even though in forms (6) and (8) the column is on the ** right and the expression is on the left). Also set *peOp2 to the ** appropriate virtual table operator. The return value is 1 or 2 if there ** is a match. The usual return is 1, but if the RHS is also a column ** of virtual table in forms (5) or (7) then return 2. ** ** If the expression matches none of the patterns above, return 0. */ static int isAuxiliaryVtabOperator( sqlite3 *db, /* Parsing context */ Expr *pExpr, /* Test this expression */ unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ Expr **ppLeft, /* Column expression to left of MATCH/op2 */ Expr **ppRight /* Expression to left of MATCH/op2 */ ){ if( pExpr->op==TK_FUNCTION ){ static const struct Op2 { const char *zOp; unsigned char eOp2; } aOp[] = { { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } }; ExprList *pList; Expr *pCol; /* Column reference */ int i; assert( ExprUseXList(pExpr) ); pList = pExpr->x.pList; if( pList==0 || pList->nExpr!=2 ){ return 0; } /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a ** virtual table on their second argument, which is the same as ** the left-hand side operand in their in-fix form. ** ** vtab_column MATCH expression ** MATCH(expression,vtab_column) */ pCol = pList->a[1].pExpr; assert( pCol->op!=TK_COLUMN || (ExprUseYTab(pCol) && pCol->y.pTab!=0) ); if( ExprIsVtab(pCol) ){ for(i=0; iu.zToken, aOp[i].zOp)==0 ){ *peOp2 = aOp[i].eOp2; *ppRight = pList->a[0].pExpr; *ppLeft = pCol; return 1; } } } /* We can also match against the first column of overloaded ** functions where xFindFunction returns a value of at least ** SQLITE_INDEX_CONSTRAINT_FUNCTION. ** ** OVERLOADED(vtab_column,expression) ** ** Historically, xFindFunction expected to see lower-case function ** names. But for this use case, xFindFunction is expected to deal ** with function names in an arbitrary case. */ pCol = pList->a[0].pExpr; assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) ); assert( pCol->op!=TK_COLUMN || (ExprUseYTab(pCol) && pCol->y.pTab!=0) ); if( ExprIsVtab(pCol) ){ sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**); void *pNotUsed; pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction!=0 ){ i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed); if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ *peOp2 = i; *ppRight = pList->a[1].pExpr; *ppLeft = pCol; return 1; } } } }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ int res = 0; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; assert( pLeft->op!=TK_COLUMN || (ExprUseYTab(pLeft) && pLeft->y.pTab!=0) ); if( ExprIsVtab(pLeft) ){ res++; } assert( pRight==0 || pRight->op!=TK_COLUMN || (ExprUseYTab(pRight) && pRight->y.pTab!=0) ); if( pRight && ExprIsVtab(pRight) ){ res++; SQ__SWAP(Expr*, pLeft, pRight); } *ppLeft = pLeft; *ppRight = pRight; if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; return res; } return 0; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** If the pBase expression originated in the ON or USING clause of ** a join, then transfer the appropriate markings over to derived. */ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ if( pDerived && ExprHasProperty(pBase, EP_OuterON|EP_InnerON) ){ pDerived->flags |= pBase->flags & (EP_OuterON|EP_InnerON); pDerived->w.iJoin = pBase->w.iJoin; } } /* ** Mark term iChild as being a child of term iParent */ static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ pWC->a[iChild].iParent = iParent; pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; pWC->a[iParent].nChild++; } /* ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not ** a conjunction, then return just pTerm when N==0. If N is exceeds ** the number of available subterms, return NULL. */ static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ if( pTerm->eOperator!=WO_AND ){ return N==0 ? pTerm : 0; } if( Nu.pAndInfo->wc.nTerm ){ return &pTerm->u.pAndInfo->wc.a[N]; } return 0; } /* ** Subterms pOne and pTwo are contained within WHERE clause pWC. The ** two subterms are in disjunction - they are OR-ed together. ** ** If these two terms are both of the form: "A op B" with the same ** A and B values but different operators and if the operators are ** compatible (if one is = and the other is <, for example) then ** add a new virtual AND term to pWC that is the combination of the ** two. ** ** Some examples: ** ** x x<=y ** x=y OR x=y --> x=y ** x<=y OR x x<=y ** ** The following is NOT generated: ** ** xy --> x!=y */ static void whereCombineDisjuncts( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* The complete WHERE clause */ WhereTerm *pOne, /* First disjunct */ WhereTerm *pTwo /* Second disjunct */ ){ u16 eOp = pOne->eOperator | pTwo->eOperator; sqlite3 *db; /* Database connection (for malloc) */ Expr *pNew; /* New virtual expression */ int op; /* Operator for the combined expression */ int idxNew; /* Index in pWC of the next virtual term */ if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return; if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; /* If we reach this point, it means the two subterms can be combined */ if( (eOp & (eOp-1))!=0 ){ if( eOp & (WO_LT|WO_LE) ){ eOp = WO_LE; }else{ assert( eOp & (WO_GT|WO_GE) ); eOp = WO_GE; } } db = pWC->pWInfo->pParse->db; pNew = sqlite3ExprDup(db, pOne->pExpr, 0); if( pNew==0 ) return; for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( opop = op; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); exprAnalyze(pSrc, pWC, idxNew); } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) ** ^^^^^^^^^^^^^^^^^^^^ ** ** This routine analyzes terms such as the middle term in the above example. ** A WhereOrTerm object is computed and attached to the term under ** analysis, regardless of the outcome of the analysis. Hence: ** ** WhereTerm.wtFlags |= TERM_ORINFO ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object ** ** The term being analyzed must have two or more of OR-connected subterms. ** A single subterm might be a set of AND-connected sub-subterms. ** Examples of terms under analysis: ** ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 ** (B) x=expr1 OR expr2=x OR x=expr3 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) ** (F) x>A OR (x=A AND y>=B) ** ** CASE 1: ** ** If all subterms are of the form T.C=expr for some single column of C and ** a single table T (as shown in example B above) then create a new virtual ** term that is an equivalent IN expression. In other words, if the term ** being analyzed is: ** ** x = expr1 OR expr2 = x OR x = expr3 ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If there are exactly two disjuncts and one side has x>A and the other side ** has x=A (for the same x and A) then add a new virtual conjunct term to the ** WHERE clause of the form "x>=A". Example: ** ** x>A OR (x=A AND y>B) adds: x>=A ** ** The added conjunct can sometimes be helpful in query planning. ** ** CASE 3: ** ** If all subterms are indexable by a single table T, then set ** ** WhereTerm.eOperator = WO_OR ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T ** ** A subterm is "indexable" if it is of the form ** "T.C " where C is any column of table T and ** is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". ** A subterm is also indexable if it is an AND of two or more ** subsubterms at least one of which is indexable. Indexable AND ** subterms have their eOperator set to WO_AND and they have ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** ** All examples A through E above satisfy case 3. But if a term ** also satisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 3 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** ** Terms that satisfy case 3 are candidates for lookup by using ** separate indices to find rowids for each subterm and composing ** the union of all rowids using a RowSet object. This is similar ** to "bitmap indices" in other database engines. ** ** OTHERWISE: ** ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ Parse *pParse = pWInfo->pParse; /* Parser context */ sqlite3 *db = pParse->db; /* Database connection */ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ int i; /* Loop counters */ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ Bitmask chngToIN; /* Tables that might satisfy case 1 */ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ /* ** Break the OR clause into its separate subterms. The subterms are ** stored in a WhereClause structure containing within the WhereOrInfo ** object that is attached to the original OR clause term. */ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); assert( pExpr->op==TK_OR ); pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if( pOrInfo==0 ) return; pTerm->wtFlags |= TERM_ORINFO; pOrWc = &pOrInfo->wc; memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); sqlite3WhereClauseInit(pOrWc, pWInfo); sqlite3WhereSplit(pOrWc, pExpr, TK_OR); sqlite3WhereExprAnalyze(pSrc, pOrWc); if( db->mallocFailed ) return; assert( pOrWc->nTerm>=2 ); /* ** Compute the set of tables that might satisfy cases 1 or 3. */ indexable = ~(Bitmask)0; chngToIN = ~(Bitmask)0; for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ WhereAndInfo *pAndInfo; assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); chngToIN = 0; pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); if( pAndInfo ){ WhereClause *pAndWC; WhereTerm *pAndTerm; int j; Bitmask b = 0; pOrTerm->u.pAndInfo = pAndInfo; pOrTerm->wtFlags |= TERM_ANDINFO; pOrTerm->eOperator = WO_AND; pOrTerm->leftCursor = -1; pAndWC = &pAndInfo->wc; memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); sqlite3WhereExprAnalyze(pSrc, pAndWC); pAndWC->pOuter = pWC; if( !db->mallocFailed ){ for(j=0, pAndTerm=pAndWC->a; jnTerm; j++, pAndTerm++){ assert( pAndTerm->pExpr ); if( allowedOp(pAndTerm->pExpr->op) || pAndTerm->eOperator==WO_AUX ){ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); } } } indexable &= b; } }else if( pOrTerm->wtFlags & TERM_COPIED ){ /* Skip this term for now. We revisit it when we process the ** corresponding TERM_VIRTUAL term */ }else{ Bitmask b; b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); } indexable &= b; if( (pOrTerm->eOperator & WO_EQ)==0 ){ chngToIN = 0; }else{ chngToIN &= b; } } } /* ** Record the set of tables that satisfy case 3. The set might be ** empty. */ pOrInfo->indexable = indexable; pTerm->eOperator = WO_OR; pTerm->leftCursor = -1; if( indexable ){ pWC->hasOr = 1; } /* For a two-way OR, attempt to implementation case 2. */ if( indexable && pOrWc->nTerm==2 ){ int iOne = 0; WhereTerm *pOne; while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ int iTwo = 0; WhereTerm *pTwo; while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); } } } /* ** chngToIN holds a set of tables that *might* satisfy case 1. But ** we have to do some additional checking to see if case 1 really ** is satisfied. ** ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means ** that there is no possibility of transforming the OR clause into an ** IN operator because one or more terms in the OR clause contain ** something other than == on a column in the single table. The 1-bit ** case means that every term of the OR clause is of the form ** "table.column=expr" for some single table. The one bit that is set ** will correspond to the common table. We still need to check to make ** sure the same column is used on all terms. The 2-bit case is when ** the all terms are of the form "table1.column=table2.column". It ** might be possible to form an IN operator with either table1.column ** or table2.column as the LHS if either is common to every term of ** the OR clause. ** ** Note that terms of the form "table.column1=table.column2" (the ** same table on both sizes of the ==) cannot be optimized. */ if( chngToIN ){ int okToChngToIN = 0; /* True if the conversion to IN is valid */ int iColumn = -1; /* Column index on lhs of IN operator */ int iCursor = -1; /* Table cursor common to all terms */ int j = 0; /* Loop counter */ /* Search for a table and column that appears on one side or the ** other of the == operator in every subterm. That table and column ** will be recorded in iCursor and iColumn. There might not be any ** such table and column. Set okToChngToIN if an appropriate table ** and column is found but leave okToChngToIN false if not found. */ for(j=0; j<2 && !okToChngToIN; j++){ Expr *pLeft = 0; pOrTerm = pOrWc->a; for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); pOrTerm->wtFlags &= ~TERM_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded ** or followed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); iColumn = pOrTerm->u.x.leftColumn; iCursor = pOrTerm->leftCursor; pLeft = pOrTerm->pExpr->pLeft; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); assert( IsPowerOfTwo(chngToIN) ); assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); break; } testcase( j==1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; for(; i>=0 && okToChngToIN; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); if( pOrTerm->leftCursor!=iCursor ){ pOrTerm->wtFlags &= ~TERM_OK; }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1) )){ okToChngToIN = 0; }else{ int affLeft, affRight; /* If the right-hand side is also a column, then the affinities ** of both right and left sides must be such that no type ** conversions are required on the right. (Ticket #2249) */ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); if( affRight!=0 && affRight!=affLeft ){ okToChngToIN = 0; }else{ pOrTerm->wtFlags |= TERM_OK; } } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OK)==0 ) continue; assert( pOrTerm->eOperator & WO_EQ ); assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); assert( pOrTerm->leftCursor==iCursor ); assert( pOrTerm->u.x.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); pDup = sqlite3ExprDup(db, pLeft, 0); pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); if( pNew ){ int idxNew; transferJoinMarkings(pNew, pExpr); assert( ExprUseXList(pNew) ); pNew->x.pList = pList; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */ markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** We already know that pExpr is a binary operator where both operands are ** column references. This routine checks to see if pExpr is an equivalence ** relation: ** 1. The SQLITE_Transitive optimization must be enabled ** 2. Must be either an == or an IS operator ** 3. Not originating in the ON clause of an OUTER JOIN ** 4. The affinities of A and B must be compatible ** 5a. Both operands use the same collating sequence OR ** 5b. The overall collating sequence is BINARY ** If this routine returns TRUE, that means that the RHS can be substituted ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. ** This is an optimization. No harm comes from returning 0. But if 1 is ** returned when it should not be, then incorrect answers might result. */ static int termIsEquivalence(Parse *pParse, Expr *pExpr){ char aff1, aff2; CollSeq *pColl; if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; aff1 = sqlite3ExprAffinity(pExpr->pLeft); aff2 = sqlite3ExprAffinity(pExpr->pRight); if( aff1!=aff2 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) ){ return 0; } pColl = sqlite3ExprCompareCollSeq(pParse, pExpr); if( sqlite3IsBinary(pColl) ) return 1; return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); } /* ** Recursively walk the expressions of a SELECT statement and generate ** a bitmask indicating which tables are used in that expression ** tree. */ static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ Bitmask mask = 0; while( pS ){ SrcList *pSrc = pS->pSrc; mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); if( ALWAYS(pSrc!=0) ){ int i; for(i=0; inSrc; i++){ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); if( pSrc->a[i].fg.isUsing==0 ){ mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].u3.pOn); } if( pSrc->a[i].fg.isTabFunc ){ mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); } } } pS = pS->pPrior; } return mask; } /* ** Expression pExpr is one operand of a comparison operator that might ** be useful for indexing. This routine checks to see if pExpr appears ** in any index. Return TRUE (1) if pExpr is an indexed term and return ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor ** number of the table that is indexed and aiCurCol[1] to the column number ** of the column that is indexed, or XN_EXPR (-2) if an expression is being ** indexed. ** ** If pExpr is a TK_COLUMN column reference, then this routine always returns ** true even if that particular column is not indexed, because the column ** might be added to an automatic index later. */ static SQLITE_NOINLINE int exprMightBeIndexed2( SrcList *pFrom, /* The FROM clause */ int *aiCurCol, /* Write the referenced table cursor and column here */ Expr *pExpr, /* An operand of a comparison operator */ int j /* Start looking with the j-th pFrom entry */ ){ Index *pIdx; int i; int iCur; do{ iCur = pFrom->a[j].iCursor; for(pIdx=pFrom->a[j].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->aColExpr==0 ) continue; for(i=0; inKeyCol; i++){ if( pIdx->aiColumn[i]!=XN_EXPR ) continue; assert( pIdx->bHasExpr ); if( sqlite3ExprCompareSkip(pExpr,pIdx->aColExpr->a[i].pExpr,iCur)==0 && pExpr->op!=TK_STRING ){ aiCurCol[0] = iCur; aiCurCol[1] = XN_EXPR; return 1; } } } }while( ++j < pFrom->nSrc ); return 0; } static int exprMightBeIndexed( SrcList *pFrom, /* The FROM clause */ int *aiCurCol, /* Write the referenced table cursor & column here */ Expr *pExpr, /* An operand of a comparison operator */ int op /* The specific comparison operator */ ){ int i; /* If this expression is a vector to the left or right of a ** inequality constraint (>, <, >= or <=), perform the processing ** on the first element of the vector. */ assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); assert( TK_ISop==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ assert( ExprUseXList(pExpr) ); pExpr = pExpr->x.pList->a[0].pExpr; } if( pExpr->op==TK_COLUMN ){ aiCurCol[0] = pExpr->iTable; aiCurCol[1] = pExpr->iColumn; return 1; } for(i=0; inSrc; i++){ Index *pIdx; for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->aColExpr ){ return exprMightBeIndexed2(pFrom,aiCurCol,pExpr,i); } } } return 0; } /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** ** If the expression is of the form " X" it gets commuted ** to the standard form of "X ". ** ** If the expression is of the form "X Y" where both X and Y are ** columns, then the original expression is unchanged and a new virtual ** term of the form "Y X" is added to the WHERE clause and ** analyzed separately. The original term is marked with TERM_COPIED ** and the new term is marked with TERM_DYNAMIC (because it's pExpr ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it ** is a commuted copy of a prior term.) The original term has nChild=1 ** and the copy has idxParent set to the index of the original term. */ static void exprAnalyze( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequisites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequisites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ int noCase = 0; /* uppercase equivalent to lowercase */ int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ int nLeft; /* Number of elements on left side vector */ if( db->mallocFailed ){ return; } assert( pWC->nTerm > idxTerm ); pTerm = &pWC->a[idxTerm]; pMaskSet = &pWInfo->sMaskSet; pExpr = pTerm->pExpr; assert( pExpr!=0 ); /* Because malloc() has not failed */ assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); pMaskSet->bVarSelect = 0; prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( sqlite3ExprCheckIN(pParse, pExpr) ) return; if( ExprUseXSelect(pExpr) ){ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); }else{ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); } prereqAll = prereqLeft | pTerm->prereqRight; }else{ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); if( pExpr->pLeft==0 || ExprHasProperty(pExpr, EP_xIsSelect|EP_IfNullRow) || pExpr->x.pList!=0 ){ prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr); }else{ prereqAll = prereqLeft | pTerm->prereqRight; } } if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; #ifdef SQLITE_DEBUG if( prereqAll!=sqlite3WhereExprUsageNN(pMaskSet, pExpr) ){ printf("\n*** Incorrect prereqAll computed for:\n"); sqlite3TreeViewExpr(0,pExpr,0); assert( 0 ); } #endif if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) ){ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->w.iJoin); if( ExprHasProperty(pExpr, EP_OuterON) ){ prereqAll |= x; extraRight = x-1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ if( (prereqAll>>1)>=x ){ sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); return; } }else if( (prereqAll>>1)>=x ){ /* The ON clause of an INNER JOIN references a table to its right. ** Most other SQL database engines raise an error. But SQLite versions ** 3.0 through 3.38 just put the ON clause constraint into the WHERE ** clause and carried on. Beginning with 3.39, raise an error only ** if there is a RIGHT or FULL JOIN in the query. This makes SQLite ** more like other systems, and also preserves legacy. */ if( ALWAYS(pSrc->nSrc>0) && (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); return; } ExprClearProperty(pExpr, EP_InnerON); } } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; if( allowedOp(op) ){ int aiCurCol[2]; Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; if( pTerm->u.x.iField>0 ){ assert( op==TK_IN ); assert( pLeft->op==TK_VECTOR ); assert( ExprUseXList(pLeft) ); pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr; } if( exprMightBeIndexed(pSrc, aiCurCol, pLeft, op) ){ pTerm->leftCursor = aiCurCol[0]; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); pTerm->u.x.leftColumn = aiCurCol[1]; pTerm->eOperator = operatorMask(op) & opMask; } if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; if( pRight && exprMightBeIndexed(pSrc, aiCurCol, pRight, op) && !ExprHasProperty(pRight, EP_FixedCol) ){ WhereTerm *pNew; Expr *pDup; u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ assert( pTerm->u.x.iField==0 ); if( pTerm->leftCursor>=0 ){ int idxNew; pDup = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); return; } idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); if( idxNew==0 ) return; pNew = &pWC->a[idxNew]; markTermAsChild(pWC, idxNew, idxTerm); if( op==TK_IS ) pNew->wtFlags |= TERM_IS; pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; if( termIsEquivalence(pParse, pDup) ){ pTerm->eOperator |= WO_EQUIV; eExtraOp = WO_EQUIV; } }else{ pDup = pExpr; pNew = pTerm; } pNew->wtFlags |= exprCommute(pParse, pDup); pNew->leftCursor = aiCurCol[0]; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); pNew->u.x.leftColumn = aiCurCol[1]; testcase( (prereqLeft | extraRight) != prereqLeft ); pNew->prereqRight = prereqLeft | extraRight; pNew->prereqAll = prereqAll; pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; }else if( op==TK_ISNULL && !ExprHasProperty(pExpr,EP_OuterON) && 0==sqlite3ExprCanBeNull(pLeft) ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); pExpr->op = TK_TRUEFALSE; /* See tag-20230504-1 */ pExpr->u.zToken = "false"; ExprSetProperty(pExpr, EP_IsFalse); pTerm->prereqAll = 0; pTerm->eOperator = 0; } } #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION /* If a term is the BETWEEN operator, create two new virtual terms ** that define the range that the BETWEEN implements. For example: ** ** a BETWEEN b AND c ** ** is converted into: ** ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) ** ** The two new terms are added onto the end of the WhereClause object. ** The new terms are "dynamic" and are children of the original BETWEEN ** term. That means that if the BETWEEN term is coded, the children are ** skipped. Or, if the children are satisfied by an index, the original ** BETWEEN term is skipped. */ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ ExprList *pList; int i; static const u8 ops[] = {TK_GE, TK_LE}; assert( ExprUseXList(pExpr) ); pList = pExpr->x.pList; assert( pList!=0 ); assert( pList->nExpr==2 ); for(i=0; i<2; i++){ Expr *pNewExpr; int idxNew; pNewExpr = sqlite3PExpr(pParse, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0), sqlite3ExprDup(db, pList->a[i].pExpr, 0)); transferJoinMarkings(pNewExpr, pExpr); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); } } #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* Analyze a term that is composed of two or more subterms connected by ** an OR operator. */ else if( pExpr->op==TK_OR ){ assert( pWC->op==TK_AND ); exprAnalyzeOrTerm(pSrc, pWC, idxTerm); pTerm = &pWC->a[idxTerm]; } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a ** virtual term of that form. ** ** The virtual term must be tagged with TERM_VNULL. */ else if( pExpr->op==TK_NOTNULL ){ if( pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 && !ExprHasProperty(pExpr, EP_OuterON) ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), sqlite3ExprAlloc(db, TK_NULL, 0, 0)); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); if( idxNew ){ pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = 0; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.x.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_GT; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } } #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* Add constraints to reduce the search space on a LIKE or GLOB ** operator. ** ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints ** ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". If case is not significant (the default ** for LIKE) then the lower-bound is made all uppercase and the upper- ** bound is made all lowercase so that the bounds also work when comparing ** BLOBs. */ else if( pExpr->op==TK_FUNCTION && pWC->op==TK_AND && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; const char *zCollSeqName; /* Name of collating sequence */ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; assert( ExprUseXList(pExpr) ); pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) ); assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) ); /* Convert the lower bound to upper-case and the upper bound to ** lower-case (upper-case is less than lower-case in ASCII) so that ** the range constraints also work for BLOBs */ if( noCase && !pParse->db->mallocFailed ){ int i; char c; pTerm->wtFlags |= TERM_LIKE; for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ pStr1->u.zToken[i] = sqlite3Toupper(c); pStr2->u.zToken[i] = sqlite3Tolower(c); } } if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if( c=='A'-1 ) isComplete = 0; c = sqlite3UpperToLower[c]; } *pC = c + 1; } zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), pStr1); transferJoinMarkings(pNewExpr1, pExpr); idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); testcase( idxNew1==0 ); pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), pStr2); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew1); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ markTermAsChild(pWC, idxNew1, idxTerm); markTermAsChild(pWC, idxNew2, idxTerm); } } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create ** new terms for each component comparison - "a = ?" and "b = ?". The ** new terms completely replace the original vector comparison, which is ** no longer used. ** ** This is only required if at least one side of the comparison operation ** is not a sub-select. ** ** tag-20220128a */ if( (pExpr->op==TK_EQ || pExpr->op==TK_IS) && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 || (pExpr->pRight->flags & EP_xIsSelect)==0) && pWC->op==TK_AND ){ int i; for(i=0; ipLeft, i, nLeft); Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft); pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); transferJoinMarkings(pNew, pExpr); idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_SLICE); exprAnalyze(pSrc, pWC, idxNew); } pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ pTerm->eOperator = WO_ROWVAL; } /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create ** a virtual term for each vector component. The expression object ** used by each such virtual term is pExpr (the full vector IN(...) ** expression). The WhereTerm.u.x.iField variable identifies the index within ** the vector on the LHS that the virtual term represents. ** ** This only works if the RHS is a simple SELECT (not a compound) that does ** not use window functions. */ else if( pExpr->op==TK_IN && pTerm->u.x.iField==0 && pExpr->pLeft->op==TK_VECTOR && ALWAYS( ExprUseXSelect(pExpr) ) && (pExpr->x.pSelect->pPrior==0 || (pExpr->x.pSelect->selFlags & SF_Values)) #ifndef SQLITE_OMIT_WINDOWFUNC && pExpr->x.pSelect->pWin==0 #endif && pWC->op==TK_AND ){ int i; for(i=0; ipLeft); i++){ int idxNew; idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL|TERM_SLICE); pWC->a[idxNew].u.x.iField = i+1; exprAnalyze(pSrc, pWC, idxNew); markTermAsChild(pWC, idxNew, idxTerm); } } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Add a WO_AUX auxiliary term to the constraint set if the ** current expression is of the form "column OP expr" where OP ** is an operator that gets passed into virtual tables but which is ** not normally optimized for ordinary tables. In other words, OP ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. ** This information is used by the xBestIndex methods of ** virtual tables. The native query optimizer does not attempt ** to do anything with MATCH functions. */ else if( pWC->op==TK_AND ){ Expr *pRight = 0, *pLeft = 0; int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight); while( res-- > 0 ){ int idxNew; WhereTerm *pNewTerm; Bitmask prereqColumn, prereqExpr; prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); if( (prereqExpr & prereqColumn)==0 ){ Expr *pNewExpr; pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0)); if( ExprHasProperty(pExpr, EP_OuterON) && pNewExpr ){ ExprSetProperty(pNewExpr, EP_OuterON); pNewExpr->w.iJoin = pExpr->w.iJoin; } idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = prereqExpr; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.x.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_AUX; pNewTerm->eMatchOp = eOp2; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } SQ__SWAP(Expr*, pLeft, pRight); } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ testcase( pTerm!=&pWC->a[idxTerm] ); pTerm = &pWC->a[idxTerm]; pTerm->prereqRight |= extraRight; } /*************************************************************************** ** Routines with file scope above. Interface to the rest of the where.c ** subsystem follows. ***************************************************************************/ /* ** This routine identifies subexpressions in the WHERE clause where ** each subexpression is separated by the AND operator or some other ** operator specified in the op parameter. The WhereClause structure ** is filled with pointers to subexpressions. For example: ** ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) ** \________/ \_______________/ \________________/ ** slot[0] slot[1] slot[2] ** ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr); pWC->op = op; assert( pE2!=0 || pExpr==0 ); if( pE2==0 ) return; if( pE2->op!=op ){ whereClauseInsert(pWC, pExpr, 0); }else{ sqlite3WhereSplit(pWC, pE2->pLeft, op); sqlite3WhereSplit(pWC, pE2->pRight, op); } } /* ** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or ** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the ** where-clause passed as the first argument. The value for the term ** is found in register iReg. ** ** In the common case where the value is a simple integer ** (example: "LIMIT 5 OFFSET 10") then the expression codes as a ** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value(). ** If not, then it codes as a TK_REGISTER expression. */ static void whereAddLimitExpr( WhereClause *pWC, /* Add the constraint to this WHERE clause */ int iReg, /* Register that will hold value of the limit/offset */ Expr *pExpr, /* Expression that defines the limit/offset */ int iCsr, /* Cursor to which the constraint applies */ int eMatchOp /* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */ ){ Parse *pParse = pWC->pWInfo->pParse; sqlite3 *db = pParse->db; Expr *pNew; int iVal = 0; if( sqlite3ExprIsInteger(pExpr, &iVal) && iVal>=0 ){ Expr *pVal = sqlite3Expr(db, TK_INTEGER, 0); if( pVal==0 ) return; ExprSetProperty(pVal, EP_IntValue); pVal->u.iValue = iVal; pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal); }else{ Expr *pVal = sqlite3Expr(db, TK_REGISTER, 0); if( pVal==0 ) return; pVal->iTable = iReg; pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal); } if( pNew ){ WhereTerm *pTerm; int idx; idx = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_VIRTUAL); pTerm = &pWC->a[idx]; pTerm->leftCursor = iCsr; pTerm->eOperator = WO_AUX; pTerm->eMatchOp = eMatchOp; } } /* ** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the ** SELECT statement passed as the second argument. These terms are only ** added if: ** ** 1. The SELECT statement has a LIMIT clause, and ** 2. The SELECT statement is not an aggregate or DISTINCT query, and ** 3. The SELECT statement has exactly one object in its from clause, and ** that object is a virtual table, and ** 4. There are no terms in the WHERE clause that will not be passed ** to the virtual table xBestIndex method. ** 5. The ORDER BY clause, if any, will be made available to the xBestIndex ** method. ** ** LIMIT and OFFSET terms are ignored by most of the planner code. They ** exist only so that they may be passed to the xBestIndex method of the ** single virtual table in the FROM clause of the SELECT. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3WhereAddLimit(WhereClause *pWC, Select *p){ assert( p!=0 && p->pLimit!=0 ); /* 1 -- checked by caller */ if( p->pGroupBy==0 && (p->selFlags & (SF_Distinct|SF_Aggregate))==0 /* 2 */ && (p->pSrc->nSrc==1 && IsVirtual(p->pSrc->a[0].pTab)) /* 3 */ ){ ExprList *pOrderBy = p->pOrderBy; int iCsr = p->pSrc->a[0].iCursor; int ii; /* Check condition (4). Return early if it is not met. */ for(ii=0; iinTerm; ii++){ if( pWC->a[ii].wtFlags & TERM_CODED ){ /* This term is a vector operation that has been decomposed into ** other, subsequent terms. It can be ignored. See tag-20220128a */ assert( pWC->a[ii].wtFlags & TERM_VIRTUAL ); assert( pWC->a[ii].eOperator==WO_ROWVAL ); continue; } if( pWC->a[ii].nChild ){ /* If this term has child terms, then they are also part of the ** pWC->a[] array. So this term can be ignored, as a LIMIT clause ** will only be added if each of the child terms passes the ** (leftCursor==iCsr) test below. */ continue; } if( pWC->a[ii].leftCursor!=iCsr ) return; } /* Check condition (5). Return early if it is not met. */ if( pOrderBy ){ for(ii=0; iinExpr; ii++){ Expr *pExpr = pOrderBy->a[ii].pExpr; if( pExpr->op!=TK_COLUMN ) return; if( pExpr->iTable!=iCsr ) return; if( pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) return; } } /* All conditions are met. Add the terms to the where-clause object. */ assert( p->pLimit->op==TK_LIMIT ); whereAddLimitExpr(pWC, p->iLimit, p->pLimit->pLeft, iCsr, SQLITE_INDEX_CONSTRAINT_LIMIT); if( p->iOffset>0 ){ whereAddLimitExpr(pWC, p->iOffset, p->pLimit->pRight, iCsr, SQLITE_INDEX_CONSTRAINT_OFFSET); } } } /* ** Initialize a preallocated WhereClause structure. */ SQLITE_PRIVATE void sqlite3WhereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ WhereInfo *pWInfo /* The WHERE processing context */ ){ pWC->pWInfo = pWInfo; pWC->hasOr = 0; pWC->pOuter = 0; pWC->nTerm = 0; pWC->nBase = 0; pWC->nSlot = ArraySize(pWC->aStatic); pWC->a = pWC->aStatic; } /* ** Deallocate a WhereClause structure. The WhereClause structure ** itself is not freed. This routine is the inverse of ** sqlite3WhereClauseInit(). */ SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){ sqlite3 *db = pWC->pWInfo->pParse->db; assert( pWC->nTerm>=pWC->nBase ); if( pWC->nTerm>0 ){ WhereTerm *a = pWC->a; WhereTerm *aLast = &pWC->a[pWC->nTerm-1]; #ifdef SQLITE_DEBUG int i; /* Verify that every term past pWC->nBase is virtual */ for(i=pWC->nBase; inTerm; i++){ assert( (pWC->a[i].wtFlags & TERM_VIRTUAL)!=0 ); } #endif while(1){ assert( a->eMatchOp==0 || a->eOperator==WO_AUX ); if( a->wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, a->pExpr); } if( a->wtFlags & (TERM_ORINFO|TERM_ANDINFO) ){ if( a->wtFlags & TERM_ORINFO ){ assert( (a->wtFlags & TERM_ANDINFO)==0 ); whereOrInfoDelete(db, a->u.pOrInfo); }else{ assert( (a->wtFlags & TERM_ANDINFO)!=0 ); whereAndInfoDelete(db, a->u.pAndInfo); } } if( a==aLast ) break; a++; } } } /* ** These routines walk (recursively) an expression tree and generate ** a bitmask indicating which tables are used in that expression ** tree. ** ** sqlite3WhereExprUsage(MaskSet, Expr) -> ** ** Return a Bitmask of all tables referenced by Expr. Expr can be ** be NULL, in which case 0 is returned. ** ** sqlite3WhereExprUsageNN(MaskSet, Expr) -> ** ** Same as sqlite3WhereExprUsage() except that Expr must not be ** NULL. The "NN" suffix on the name stands for "Not Null". ** ** sqlite3WhereExprListUsage(MaskSet, ExprList) -> ** ** Return a Bitmask of all tables referenced by every expression ** in the expression list ExprList. ExprList can be NULL, in which ** case 0 is returned. ** ** sqlite3WhereExprUsageFull(MaskSet, ExprList) -> ** ** Internal use only. Called only by sqlite3WhereExprUsageNN() for ** complex expressions that require pushing register values onto ** the stack. Many calls to sqlite3WhereExprUsageNN() do not need ** the more complex analysis done by this routine. Hence, the ** computations done by this routine are broken out into a separate ** "no-inline" function to avoid the stack push overhead in the ** common case where it is not needed. */ static SQLITE_NOINLINE Bitmask sqlite3WhereExprUsageFull( WhereMaskSet *pMaskSet, Expr *p ){ Bitmask mask; mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft); if( p->pRight ){ mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight); assert( p->x.pList==0 ); }else if( ExprUseXSelect(p) ){ if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; mask |= exprSelectUsage(pMaskSet, p->x.pSelect); }else if( p->x.pList ){ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){ assert( p->y.pWin!=0 ); mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition); mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy); mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter); } #endif return mask; } SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){ if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ return sqlite3WhereGetMask(pMaskSet, p->iTable); }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ assert( p->op!=TK_IF_NULL_ROW ); return 0; } return sqlite3WhereExprUsageFull(pMaskSet, p); } SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0; } SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ int i; Bitmask mask = 0; if( pList ){ for(i=0; inExpr; i++){ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); } } return mask; } /* ** Call exprAnalyze on all terms in a WHERE clause. ** ** Note that exprAnalyze() might add new virtual terms onto the ** end of the WHERE clause. We do not want to analyze these new ** virtual terms, so start analyzing at the end and work forward ** so that the added virtual terms are never processed. */ SQLITE_PRIVATE void sqlite3WhereExprAnalyze( SrcList *pTabList, /* the FROM clause */ WhereClause *pWC /* the WHERE clause to be analyzed */ ){ int i; for(i=pWC->nTerm-1; i>=0; i--){ exprAnalyze(pTabList, pWC, i); } } /* ** For table-valued-functions, transform the function arguments into ** new WHERE clause terms. ** ** Each function argument translates into an equality constraint against ** a HIDDEN column in the table. */ SQLITE_PRIVATE void sqlite3WhereTabFuncArgs( Parse *pParse, /* Parsing context */ SrcItem *pItem, /* The FROM clause term to process */ WhereClause *pWC /* Xfer function arguments to here */ ){ Table *pTab; int j, k; ExprList *pArgs; Expr *pColRef; Expr *pTerm; if( pItem->fg.isTabFunc==0 ) return; pTab = pItem->pTab; assert( pTab!=0 ); pArgs = pItem->u1.pFuncArg; if( pArgs==0 ) return; for(j=k=0; jnExpr; j++){ Expr *pRhs; u32 joinType; while( knCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} if( k>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", pTab->zName, j); return; } pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); if( pColRef==0 ) return; pColRef->iTable = pItem->iCursor; pColRef->iColumn = k++; assert( ExprUseYTab(pColRef) ); pColRef->y.pTab = pTab; pItem->colUsed |= sqlite3ExprColUsed(pColRef); pRhs = sqlite3PExpr(pParse, TK_UPLUS, sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs); if( pItem->fg.jointype & (JT_LEFT|JT_RIGHT) ){ testcase( pItem->fg.jointype & JT_LEFT ); /* testtag-20230227a */ testcase( pItem->fg.jointype & JT_RIGHT ); /* testtag-20230227b */ joinType = EP_OuterON; }else{ testcase( pItem->fg.jointype & JT_LTORJ ); /* testtag-20230227c */ joinType = EP_InnerON; } sqlite3SetJoinExpr(pTerm, pItem->iCursor, joinType); whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); } } /************** End of whereexpr.c *******************************************/ /************** Begin file where.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ /* #include "sqliteInt.h" */ /* #include "whereInt.h" */ /* ** Extra information appended to the end of sqlite3_index_info but not ** visible to the xBestIndex function, at least not directly. The ** sqlite3_vtab_collation() interface knows how to reach it, however. ** ** This object is not an API and can be changed from one release to the ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() ** agree on the structure, all will be well. */ typedef struct HiddenIndexInfo HiddenIndexInfo; struct HiddenIndexInfo { WhereClause *pWC; /* The Where clause being analyzed */ Parse *pParse; /* The parsing context */ int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ u32 mIn; /* Mask of terms that are IN (...) */ u32 mHandleIn; /* Terms that vtab will handle as IN (...) */ sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST ** because extra space is allocated to hold up ** to nTerm such values */ }; /* Forward declaration of methods */ static int whereLoopResize(sqlite3*, WhereLoop*, int); /* ** Return the estimated number of output rows from a WHERE clause */ SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ return pWInfo->nRowOut; } /* ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this ** WHERE clause returns outputs for DISTINCT processing. */ SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ return pWInfo->eDistinct; } /* ** Return the number of ORDER BY terms that are satisfied by the ** WHERE clause. A return of 0 means that the output must be ** completely sorted. A return equal to the number of ORDER BY ** terms means that no sorting is needed at all. A return that ** is positive but less than the number of ORDER BY terms means that ** block sorting is required. */ SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ return pWInfo->nOBSat<0 ? 0 : pWInfo->nOBSat; } /* ** In the ORDER BY LIMIT optimization, if the inner-most loop is known ** to emit rows in increasing order, and if the last row emitted by the ** inner-most loop did not fit within the sorter, then we can skip all ** subsequent rows for the current iteration of the inner loop (because they ** will not fit in the sorter either) and continue with the second inner ** loop - the loop immediately outside the inner-most. ** ** When a row does not fit in the sorter (because the sorter already ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the ** label returned by this function. ** ** If the ORDER BY LIMIT optimization applies, the jump destination should ** be the continuation for the second-inner-most loop. If the ORDER BY ** LIMIT optimization does not apply, then the jump destination should ** be the continuation for the inner-most loop. ** ** It is always safe for this routine to return the continuation of the ** inner-most loop, in the sense that a correct answer will result. ** Returning the continuation the second inner loop is an optimization ** that might make the code run a little faster, but should not change ** the final answer. */ SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ WhereLevel *pInner; if( !pWInfo->bOrderedInnerLoop ){ /* The ORDER BY LIMIT optimization does not apply. Jump to the ** continuation of the inner-most loop. */ return pWInfo->iContinue; } pInner = &pWInfo->a[pWInfo->nLevel-1]; assert( pInner->addrNxt!=0 ); return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; } /* ** While generating code for the min/max optimization, after handling ** the aggregate-step call to min() or max(), check to see if any ** additional looping is required. If the output order is such that ** we are certain that the correct answer has already been found, then ** code an OP_Goto to by pass subsequent processing. ** ** Any extra OP_Goto that is coded here is an optimization. The ** correct answer should be obtained regardless. This OP_Goto just ** makes the answer appear faster. */ SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ WhereLevel *pInner; int i; if( !pWInfo->bOrderedInnerLoop ) return; if( pWInfo->nOBSat==0 ) return; for(i=pWInfo->nLevel-1; i>=0; i--){ pInner = &pWInfo->a[i]; if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ sqlite3VdbeGoto(v, pInner->addrNxt); return; } } sqlite3VdbeGoto(v, pWInfo->iBreak); } /* ** Return the VDBE address or label to jump to in order to continue ** immediately with the next row of a WHERE clause. */ SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ assert( pWInfo->iContinue!=0 ); return pWInfo->iContinue; } /* ** Return the VDBE address or label to jump to in order to break ** out of a WHERE loop. */ SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ return pWInfo->iBreak; } /* ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to ** operate directly on the rowids returned by a WHERE clause. Return ** ONEPASS_SINGLE (1) if the statement can operation directly because only ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass ** optimization can be used on multiple ** ** If the ONEPASS optimization is used (if this routine returns true) ** then also write the indices of open cursors used by ONEPASS ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data ** table and iaCur[1] gets the cursor used by an auxiliary index. ** Either value may be -1, indicating that cursor is not used. ** Any cursors returned will have been opened for writing. ** ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is ** unable to use the ONEPASS optimization. */ SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ sqlite3DebugPrintf("%s cursors: %d %d\n", pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", aiCur[0], aiCur[1]); } #endif return pWInfo->eOnePass; } /* ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move ** the data cursor to the row selected by the index cursor. */ SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ return pWInfo->bDeferredSeek; } /* ** Move the content of pSrc into pDest */ static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ pDest->n = pSrc->n; memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); } /* ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. ** ** The new entry might overwrite an existing entry, or it might be ** appended, or it might be discarded. Do whatever is the right thing ** so that pSet keeps the N_OR_COST best entries seen so far. */ static int whereOrInsert( WhereOrSet *pSet, /* The WhereOrSet to be updated */ Bitmask prereq, /* Prerequisites of the new entry */ LogEst rRun, /* Run-cost of the new entry */ LogEst nOut /* Number of outputs for the new entry */ ){ u16 i; WhereOrCost *p; for(i=pSet->n, p=pSet->a; i>0; i--, p++){ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ goto whereOrInsert_done; } if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ return 0; } } if( pSet->na[pSet->n++]; p->nOut = nOut; }else{ p = pSet->a; for(i=1; in; i++){ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; } if( p->rRun<=rRun ) return 0; } whereOrInsert_done: p->prereq = prereq; p->rRun = rRun; if( p->nOut>nOut ) p->nOut = nOut; return 1; } /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); assert( iCursor>=-1 ); if( pMaskSet->ix[0]==iCursor ){ return 1; } for(i=1; in; i++){ if( pMaskSet->ix[i]==iCursor ){ return MASKBIT(i); } } return 0; } /* Allocate memory that is automatically freed when pWInfo is freed. */ SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ WhereMemBlock *pBlock; pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); if( pBlock ){ pBlock->pNext = pWInfo->pMemToFree; pBlock->sz = nByte; pWInfo->pMemToFree = pBlock; pBlock++; } return (void*)pBlock; } SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ void *pNew = sqlite3WhereMalloc(pWInfo, nByte); if( pNew && pOld ){ WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; pOldBlk--; assert( pOldBlk->szsz); } return pNew; } /* ** Create a new mask for cursor iCursor. ** ** There is one cursor per table in the FROM clause. The number of ** tables in the FROM clause is limited by a test early in the ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); pMaskSet->ix[pMaskSet->n++] = iCursor; } /* ** If the right-hand branch of the expression is a TK_COLUMN, then return ** a pointer to the right-hand branch. Otherwise, return NULL. */ static Expr *whereRightSubexprIsColumn(Expr *p){ p = sqlite3ExprSkipCollateAndLikely(p->pRight); if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ return p; } return 0; } /* ** Advance to the next WhereTerm that matches according to the criteria ** established when the pScan object was initialized by whereScanInit(). ** Return NULL if there are no more matching WhereTerms. */ static WhereTerm *whereScanNext(WhereScan *pScan){ int iCur; /* The cursor on the LHS of the term */ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ Expr *pX; /* An expression being tested */ WhereClause *pWC; /* Shorthand for pScan->pWC */ WhereTerm *pTerm; /* The term being tested */ int k = pScan->k; /* Where to start scanning */ assert( pScan->iEquiv<=pScan->nEquiv ); pWC = pScan->pWC; while(1){ iColumn = pScan->aiColumn[pScan->iEquiv-1]; iCur = pScan->aiCur[pScan->iEquiv-1]; assert( pWC!=0 ); assert( iCur>=0 ); do{ for(pTerm=pWC->a+k; knTerm; k++, pTerm++){ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); if( pTerm->leftCursor==iCur && pTerm->u.x.leftColumn==iColumn && (iColumn!=XN_EXPR || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, pScan->pIdxExpr,iCur)==0) && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) ){ if( (pTerm->eOperator & WO_EQUIV)!=0 && pScan->nEquivaiCur) && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 ){ int j; for(j=0; jnEquiv; j++){ if( pScan->aiCur[j]==pX->iTable && pScan->aiColumn[j]==pX->iColumn ){ break; } } if( j==pScan->nEquiv ){ pScan->aiCur[j] = pX->iTable; pScan->aiColumn[j] = pX->iColumn; pScan->nEquiv++; } } if( (pTerm->eOperator & pScan->opMask)!=0 ){ /* Verify the affinity and collating sequence match */ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ CollSeq *pColl; Parse *pParse = pWC->pWInfo->pParse; pX = pTerm->pExpr; if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ continue; } assert(pX->pLeft); pColl = sqlite3ExprCompareCollSeq(pParse, pX); if( pColl==0 ) pColl = pParse->db->pDfltColl; if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ continue; } } if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) && pX->op==TK_COLUMN && pX->iTable==pScan->aiCur[0] && pX->iColumn==pScan->aiColumn[0] ){ testcase( pTerm->eOperator & WO_IS ); continue; } pScan->pWC = pWC; pScan->k = k+1; #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x20000 ){ int ii; sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", pTerm, pScan->nEquiv); for(ii=0; iinEquiv; ii++){ sqlite3DebugPrintf(" {%d:%d}", pScan->aiCur[ii], pScan->aiColumn[ii]); } sqlite3DebugPrintf("\n"); } #endif return pTerm; } } } pWC = pWC->pOuter; k = 0; }while( pWC!=0 ); if( pScan->iEquiv>=pScan->nEquiv ) break; pWC = pScan->pOrigWC; k = 0; pScan->iEquiv++; } return 0; } /* ** This is whereScanInit() for the case of an index on an expression. ** It is factored out into a separate tail-recursion subroutine so that ** the normal whereScanInit() routine, which is a high-runner, does not ** need to push registers onto the stack as part of its prologue. */ static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); return whereScanNext(pScan); } /* ** Initialize a WHERE clause scanner object. Return a pointer to the ** first match. Return NULL if there are no matches. ** ** The scanner will be searching the WHERE clause pWC. It will look ** for terms of the form "X " where X is column iColumn of table ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx ** must be one of the indexes of table iCur. ** ** The must be one of the operators described by opMask. ** ** If the search is for X and the WHERE clause contains terms of the ** form X=Y then this routine might also return terms of the form ** "Y ". The number of levels of transitivity is limited, ** but is enough to handle most commonly occurring SQL statements. ** ** If X is not the INTEGER PRIMARY KEY then X must be compatible with ** index pIdx. */ static WhereTerm *whereScanInit( WhereScan *pScan, /* The WhereScan object being initialized */ WhereClause *pWC, /* The WHERE clause to be scanned */ int iCur, /* Cursor to scan for */ int iColumn, /* Column to scan for */ u32 opMask, /* Operator(s) to scan for */ Index *pIdx /* Must be compatible with this index */ ){ pScan->pOrigWC = pWC; pScan->pWC = pWC; pScan->pIdxExpr = 0; pScan->idxaff = 0; pScan->zCollName = 0; pScan->opMask = opMask; pScan->k = 0; pScan->aiCur[0] = iCur; pScan->nEquiv = 1; pScan->iEquiv = 1; if( pIdx ){ int j = iColumn; iColumn = pIdx->aiColumn[j]; if( iColumn==pIdx->pTable->iPKey ){ iColumn = XN_ROWID; }else if( iColumn>=0 ){ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; pScan->zCollName = pIdx->azColl[j]; }else if( iColumn==XN_EXPR ){ pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; pScan->zCollName = pIdx->azColl[j]; pScan->aiColumn[0] = XN_EXPR; return whereScanInitIndexExpr(pScan); } }else if( iColumn==XN_EXPR ){ return 0; } pScan->aiColumn[0] = iColumn; return whereScanNext(pScan); } /* ** Search for a term in the WHERE clause that is of the form "X " ** where X is a reference to the iColumn of table iCur or of index pIdx ** if pIdx!=0 and is one of the WO_xx operator codes specified by ** the op parameter. Return a pointer to the term. Return 0 if not found. ** ** If pIdx!=0 then it must be one of the indexes of table iCur. ** Search for terms matching the iColumn-th column of pIdx ** rather than the iColumn-th column of table iCur. ** ** The term returned might by Y= if there is another constraint in ** the WHERE clause that specifies that X=Y. Any such constraints will be ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 ** other equivalent values. Hence a search for X will return if X=A1 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=. ** ** If there are multiple terms in the WHERE clause of the form "X " ** then try for the one with no dependencies on - in other words where ** is a constant expression of some kind. Only return entries of ** the form "X Y" where Y is a column in another table if no terms of ** the form "X " exist. If no terms with a constant RHS ** exist, try to return a term that does not use WO_EQUIV. */ SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ WhereTerm *pResult = 0; WhereTerm *p; WhereScan scan; p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); op &= WO_EQ|WO_IS; while( p ){ if( (p->prereqRight & notReady)==0 ){ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ testcase( p->eOperator & WO_IS ); return p; } if( pResult==0 ) pResult = p; } p = whereScanNext(&scan); } return pResult; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ static int findIndexCol( Parse *pParse, /* Parse context */ ExprList *pList, /* Expression list to search */ int iBase, /* Cursor for table associated with pIdx */ Index *pIdx, /* Index to match column of */ int iCol /* Column of index to match */ ){ int i; const char *zColl = pIdx->azColl[iCol]; for(i=0; inExpr; i++){ Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); if( ALWAYS(p!=0) && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ){ CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ return i; } } } return -1; } /* ** Return TRUE if the iCol-th column of index pIdx is NOT NULL */ static int indexColumnNotNull(Index *pIdx, int iCol){ int j; assert( pIdx!=0 ); assert( iCol>=0 && iColnColumn ); j = pIdx->aiColumn[iCol]; if( j>=0 ){ return pIdx->pTable->aCol[j].notNull; }else if( j==(-1) ){ return 1; }else{ assert( j==(-2) ); return 0; /* Assume an indexed expression can always yield a NULL */ } } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** ** A DISTINCT list is redundant if any subset of the columns in the ** DISTINCT list are collectively unique and individually non-null. */ static int isDistinctRedundant( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* The FROM clause */ WhereClause *pWC, /* The WHERE clause */ ExprList *pDistinct /* The result set that needs to be DISTINCT */ ){ Table *pTab; Index *pIdx; int i; int iBase; /* If there is more than one table or sub-select in the FROM clause of ** this query, then it will not be possible to show that the DISTINCT ** clause is redundant. */ if( pTabList->nSrc!=1 ) return 0; iBase = pTabList->a[0].iCursor; pTab = pTabList->a[0].pTab; /* If any of the expressions is an IPK column on table iBase, then return ** true. Note: The (p->iTable==iBase) part of this test may be false if the ** current SELECT is a correlated sub-query. */ for(i=0; inExpr; i++){ Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); if( NEVER(p==0) ) continue; if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; if( p->iTable==iBase && p->iColumn<0 ) return 1; } /* Loop through all indices on the table, checking each to see if it makes ** the DISTINCT qualifier redundant. It does so if: ** ** 1. The index is itself UNIQUE, and ** ** 2. All of the columns in the index are either part of the pDistinct ** list, or else the WHERE clause contains a term of the form "col=X", ** where X is a constant value. The collation sequences of the ** comparison and select-list expressions must match those of the index. ** ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; if( pIdx->pPartIdxWhere ) continue; for(i=0; inKeyCol; i++){ if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; if( indexColumnNotNull(pIdx, i)==0 ) break; } } if( i==pIdx->nKeyCol ){ /* This index implies that the DISTINCT qualifier is redundant. */ return 1; } } return 0; } /* ** Estimate the logarithm of the input value to base 2. */ static LogEst estLog(LogEst N){ return N<=10 ? 0 : sqlite3LogEst(N) - 33; } /* ** Convert OP_Column opcodes to OP_Copy in previously generated code. ** ** This routine runs over generated VDBE code and translates OP_Column ** opcodes into OP_Copy when the table is being accessed via co-routine ** instead of via table lookup. ** ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on ** cursor iTabCur are transformed into OP_Sequence opcode for the ** iAutoidxCur cursor, in order to generate unique rowids for the ** automatic index being generated. */ static void translateColumnToCopy( Parse *pParse, /* Parsing context */ int iStart, /* Translate from this opcode to the end */ int iTabCur, /* OP_Column/OP_Rowid references to this table */ int iRegister, /* The first column is in this register */ int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ ){ Vdbe *v = pParse->pVdbe; VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); int iEnd = sqlite3VdbeCurrentAddr(v); if( pParse->db->mallocFailed ) return; for(; iStartp1!=iTabCur ) continue; if( pOp->opcode==OP_Column ){ pOp->opcode = OP_Copy; pOp->p1 = pOp->p2 + iRegister; pOp->p2 = pOp->p3; pOp->p3 = 0; pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ }else if( pOp->opcode==OP_Rowid ){ pOp->opcode = OP_Sequence; pOp->p1 = iAutoidxCur; #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( iAutoidxCur==0 ){ pOp->opcode = OP_Null; pOp->p3 = 0; } #endif } } } /* ** Two routines for printing the content of an sqlite3_index_info ** structure. Used for testing and debugging only. If neither ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines ** are no-ops. */ #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ int i; if( (sqlite3WhereTrace & 0x10)==0 ) return; for(i=0; inConstraint; i++){ sqlite3DebugPrintf( " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", i, p->aConstraint[i].iColumn, p->aConstraint[i].iTermOffset, p->aConstraint[i].op, p->aConstraint[i].usable, sqlite3_vtab_collation(p,i)); } for(i=0; inOrderBy; i++){ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", i, p->aOrderBy[i].iColumn, p->aOrderBy[i].desc); } } static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ int i; if( (sqlite3WhereTrace & 0x10)==0 ) return; for(i=0; inConstraint; i++){ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", i, p->aConstraintUsage[i].argvIndex, p->aConstraintUsage[i].omit); } sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); } #else #define whereTraceIndexInfoInputs(A) #define whereTraceIndexInfoOutputs(A) #endif /* ** We know that pSrc is an operand of an outer join. Return true if ** pTerm is a constraint that is compatible with that join. ** ** pTerm must be EP_OuterON if pSrc is the right operand of an ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc ** is the left operand of a RIGHT join. ** ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f ** for an example of a WHERE clause constraints that may not be used on ** the right table of a RIGHT JOIN because the constraint implies a ** not-NULL condition on the left table of the RIGHT JOIN. */ static int constraintCompatibleWithOuterJoin( const WhereTerm *pTerm, /* WHERE clause term to check */ const SrcItem *pSrc /* Table we are trying to access */ ){ assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) || pTerm->pExpr->w.iJoin != pSrc->iCursor ){ return 0; } if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0 && ExprHasProperty(pTerm->pExpr, EP_InnerON) ){ return 0; } return 1; } #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it ** could be used with an index to access pSrc, assuming an appropriate ** index existed. */ static int termCanDriveIndex( const WhereTerm *pTerm, /* WHERE clause term to check */ const SrcItem *pSrc, /* Table we are trying to access */ const Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if( pTerm->leftCursor!=pSrc->iCursor ) return 0; if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) ){ return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */ } if( (pTerm->prereqRight & notReady)!=0 ) return 0; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); if( pTerm->u.x.leftColumn<0 ) return 0; aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; testcase( pTerm->pExpr->op==TK_IS ); return 1; } #endif #ifndef SQLITE_OMIT_AUTOMATIC_INDEX #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Argument pIdx represents an automatic index that the current statement ** will create and populate. Add an OP_Explain with text of the form: ** ** CREATE AUTOMATIC INDEX ON
    () [WHERE ] ** ** This is only required if sqlite3_stmt_scanstatus() is enabled, to ** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP ** values with. In order to avoid breaking legacy code and test cases, ** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command. */ static void explainAutomaticIndex( Parse *pParse, Index *pIdx, /* Automatic index to explain */ int bPartial, /* True if pIdx is a partial index */ int *pAddrExplain /* OUT: Address of OP_Explain */ ){ if( IS_STMT_SCANSTATUS(pParse->db) && pParse->explain!=2 ){ Table *pTab = pIdx->pTable; const char *zSep = ""; char *zText = 0; int ii = 0; sqlite3_str *pStr = sqlite3_str_new(pParse->db); sqlite3_str_appendf(pStr,"CREATE AUTOMATIC INDEX ON %s(", pTab->zName); assert( pIdx->nColumn>1 ); assert( pIdx->aiColumn[pIdx->nColumn-1]==XN_ROWID ); for(ii=0; ii<(pIdx->nColumn-1); ii++){ const char *zName = 0; int iCol = pIdx->aiColumn[ii]; zName = pTab->aCol[iCol].zCnName; sqlite3_str_appendf(pStr, "%s%s", zSep, zName); zSep = ", "; } zText = sqlite3_str_finish(pStr); if( zText==0 ){ sqlite3OomFault(pParse->db); }else{ *pAddrExplain = sqlite3VdbeExplain( pParse, 0, "%s)%s", zText, (bPartial ? " WHERE " : "") ); sqlite3_free(zText); } } } #else # define explainAutomaticIndex(a,b,c,d) #endif /* ** Generate code to construct the Index object for an automatic index ** and to set up the WhereLevel object pLevel so that the code generator ** makes use of the automatic index. */ static SQLITE_NOINLINE void constructAutomaticIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ const Bitmask notReady, /* Mask of cursors that are not available */ WhereLevel *pLevel /* Write new index here */ ){ int nKeyCol; /* Number of columns in the constructed index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Index *pIdx; /* Object describing the transient index */ Vdbe *v; /* Prepared statement under construction */ int addrInit; /* Address of the initialization bypass jump */ Table *pTable; /* The table being indexed */ int addrTop; /* Top of the index fill loop */ int regRecord; /* Register holding an index record */ int n; /* Column counter */ int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ WhereLoop *pLoop; /* The Loop object */ char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warning has been issued */ u8 useBloomFilter = 0; /* True to also add a Bloom filter */ Expr *pPartial = 0; /* Partial Index Expression */ int iContinue = 0; /* Jump here to skip excluded rows */ SrcList *pTabList; /* The complete FROM clause */ SrcItem *pSrc; /* The FROM clause term to get the next index */ int addrCounter = 0; /* Address where integer counter is initialized */ int regBase; /* Array of registers where record is assembled */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp = 0; /* Address of OP_Explain */ #endif /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTabList = pWC->pWInfo->pTabList; pSrc = &pTabList->a[pLevel->iFrom]; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; idxCols = 0; for(pTerm=pWC->a; pTermpExpr; /* Make the automatic index a partial index if there are terms in the ** WHERE clause (or the ON clause of a LEFT join) that constrain which ** rows of the target table (pSrc) that can be used. */ if( (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom) ){ pPartial = sqlite3ExprAnd(pParse, pPartial, sqlite3ExprDup(pParse->db, pExpr, 0)); } if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol; Bitmask cMask; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); iCol = pTerm->u.x.leftColumn; cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS ); testcase( iCol==BMS-1 ); if( !sentWarning ){ sqlite3_log(SQLITE_WARNING_AUTOINDEX, "automatic index on %s(%s)", pTable->zName, pTable->aCol[iCol].zCnName); sentWarning = 1; } if( (idxCols & cMask)==0 ){ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ goto end_auto_index_create; } pLoop->aLTerm[nKeyCol++] = pTerm; idxCols |= cMask; } } } assert( nKeyCol>0 || pParse->db->mallocFailed ); pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | WHERE_AUTO_INDEX; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all ** columns that are needed by the query. With a covering index, the ** original table never needs to be accessed. Automatic indices must ** be a covering index because the index will not be updated if the ** original table changes and the index and table cannot both be used ** if they go out of sync. */ if( IsView(pTable) ){ extraCols = ALLBITS; }else{ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); } mxBitCol = MIN(BMS-1,pTable->nCol); testcase( pTable->nCol==BMS-1 ); testcase( pTable->nCol==BMS-2 ); for(i=0; icolUsed & MASKBIT(BMS-1) ){ nKeyCol += pTable->nCol - BMS + 1; } /* Construct the Index object to describe this index */ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); if( pIdx==0 ) goto end_auto_index_create; pLoop->u.btree.pIndex = pIdx; pIdx->zName = "auto-index"; pIdx->pTable = pTable; n = 0; idxCols = 0; for(pTerm=pWC->a; pTermeOperator & (WO_OR|WO_AND))==0 ); iCol = pTerm->u.x.leftColumn; cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS-1 ); testcase( iCol==BMS ); if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.x.leftColumn; pColl = sqlite3ExprCompareCollSeq(pParse, pX); assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; n++; if( ALWAYS(pX->pLeft!=0) && sqlite3ExprAffinity(pX->pLeft)!=SQLITE_AFF_TEXT ){ /* TUNING: only use a Bloom filter on an automatic index ** if one or more key columns has the ability to hold numeric ** values, since strings all have the same hash in the Bloom ** filter implementation and hence a Bloom filter on a text column ** is not usually helpful. */ useBloomFilter = 1; } } } } assert( (u32)n==pLoop->u.btree.nEq ); /* Add additional columns needed to make the automatic index into ** a covering index */ for(i=0; iaiColumn[n] = i; pIdx->azColl[n] = sqlite3StrBINARY; n++; } } if( pSrc->colUsed & MASKBIT(BMS-1) ){ for(i=BMS-1; inCol; i++){ pIdx->aiColumn[n] = i; pIdx->azColl[n] = sqlite3StrBINARY; n++; } } assert( n==nKeyCol ); pIdx->aiColumn[n] = XN_ROWID; pIdx->azColl[n] = sqlite3StrBINARY; /* Create the automatic index */ explainAutomaticIndex(pParse, pIdx, pPartial!=0, &addrExp); assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){ sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel); pLevel->regFilter = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); } /* Fill the automatic index with content */ assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] ); if( pSrc->fg.viaCoroutine ){ int regYield = pSrc->regReturn; addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub); addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); VdbeCoverage(v); VdbeComment((v, "next row of %s", pSrc->pTab->zName)); }else{ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); } if( pPartial ){ iContinue = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); pLoop->wsFlags |= WHERE_PARTIALIDX; } regRecord = sqlite3GetTempReg(pParse); regBase = sqlite3GenerateIndexKey( pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 ); if( pLevel->regFilter ){ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, regBase, pLoop->u.btree.nEq); } sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); if( pSrc->fg.viaCoroutine ){ sqlite3VdbeChangeP2(v, addrCounter, regBase+n); testcase( pParse->db->mallocFailed ); assert( pLevel->iIdxCur>0 ); translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, pSrc->regResult, pLevel->iIdxCur); sqlite3VdbeGoto(v, addrTop); pSrc->fg.viaCoroutine = 0; }else{ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); } sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); sqlite3VdbeScanStatusRange(v, addrExp, addrExp, -1); end_auto_index_create: sqlite3ExprDelete(pParse->db, pPartial); } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* ** Generate bytecode that will initialize a Bloom filter that is appropriate ** for pLevel. ** ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER ** flag set, initialize a Bloomfilter for them as well. Except don't do ** this recursive initialization if the SQLITE_BloomPulldown optimization has ** been turned off. ** ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared ** from the loop, but the regFilter value is set to a register that implements ** the Bloom filter. When regFilter is positive, the ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter ** and skip the subsequence B-Tree seek if the Bloom filter indicates that ** no matching rows exist. ** ** This routine may only be called if it has previously been determined that ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit ** is set. */ static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( WhereInfo *pWInfo, /* The WHERE clause */ int iLevel, /* Index in pWInfo->a[] that is pLevel */ WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ Bitmask notReady /* Loops that are not ready */ ){ int addrOnce; /* Address of opening OP_Once */ int addrTop; /* Address of OP_Rewind */ int addrCont; /* Jump here to skip a row */ const WhereTerm *pTerm; /* For looping over WHERE clause terms */ const WhereTerm *pWCEnd; /* Last WHERE clause term */ Parse *pParse = pWInfo->pParse; /* Parsing context */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ int iCur; /* Cursor for table getting the filter */ IndexedExpr *saved_pIdxEpr; /* saved copy of Parse.pIdxEpr */ saved_pIdxEpr = pParse->pIdxEpr; pParse->pIdxEpr = 0; assert( pLoop!=0 ); assert( v!=0 ); assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); do{ const SrcList *pTabList; const SrcItem *pItem; const Table *pTab; u64 sz; int iSrc; sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); addrCont = sqlite3VdbeMakeLabel(pParse); iCur = pLevel->iTabCur; pLevel->regFilter = ++pParse->nMem; /* The Bloom filter is a Blob held in a register. Initialize it ** to zero-filled blob of at least 80K bits, but maybe more if the ** estimated size of the table is larger. We could actually ** measure the size of the table at run-time using OP_Count with ** P3==1 and use that value to initialize the blob. But that makes ** testing complicated. By basing the blob size on the value in the ** sqlite_stat1 table, testing is much easier. */ pTabList = pWInfo->pTabList; iSrc = pLevel->iFrom; pItem = &pTabList->a[iSrc]; assert( pItem!=0 ); pTab = pItem->pTab; assert( pTab!=0 ); sz = sqlite3LogEstToInt(pTab->nRowLogEst); if( sz<10000 ){ sz = 10000; }else if( sz>10000000 ){ sz = 10000000; } sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; for(pTerm=pWInfo->sWC.a; pTermpExpr; if( (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc) ){ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); } } if( pLoop->wsFlags & WHERE_IPK ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); sqlite3ReleaseTempReg(pParse, r1); }else{ Index *pIdx = pLoop->u.btree.pIndex; int n = pLoop->u.btree.nEq; int r1 = sqlite3GetTempRange(pParse, n); int jj; for(jj=0; jjpTable==pItem->pTab ); sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iCur, jj, r1+jj); } sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); sqlite3ReleaseTempRange(pParse, r1, n); } sqlite3VdbeResolveLabel(v, addrCont); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); pLoop->wsFlags &= ~WHERE_BLOOMFILTER; if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; while( ++iLevel < pWInfo->nLevel ){ const SrcItem *pTabItem; pLevel = &pWInfo->a[iLevel]; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; pLoop = pLevel->pWLoop; if( NEVER(pLoop==0) ) continue; if( pLoop->prereq & notReady ) continue; if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) ==WHERE_BLOOMFILTER ){ /* This is a candidate for bloom-filter pull-down (early evaluation). ** The test that WHERE_COLUMN_IN is omitted is important, as we are ** not able to do early evaluation of bloom filters that make use of ** the IN operator */ break; } } }while( iLevel < pWInfo->nLevel ); sqlite3VdbeJumpHere(v, addrOnce); pParse->pIdxEpr = saved_pIdxEpr; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to freeIndexInfo(). */ static sqlite3_index_info *allocateIndexInfo( WhereInfo *pWInfo, /* The WHERE clause */ WhereClause *pWC, /* The WHERE clause being analyzed */ Bitmask mUnusable, /* Ignore terms with these prereqs */ SrcItem *pSrc, /* The FROM clause term that is the vtab */ u16 *pmNoOmit /* Mask of terms not to omit */ ){ int i, j; int nTerm; Parse *pParse = pWInfo->pParse; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_orderby *pIdxOrderBy; struct sqlite3_index_constraint_usage *pUsage; struct HiddenIndexInfo *pHidden; WhereTerm *pTerm; int nOrderBy; sqlite3_index_info *pIdxInfo; u16 mNoOmit = 0; const Table *pTab; int eDistinct = 0; ExprList *pOrderBy = pWInfo->pOrderBy; assert( pSrc!=0 ); pTab = pSrc->pTab; assert( pTab!=0 ); assert( IsVirtual(pTab) ); /* Find all WHERE clause constraints referring to this virtual table. ** Mark each term with the TERM_OK flag. Set nTerm to the number of ** terms found. */ for(i=nTerm=0, pTerm=pWC->a; inTerm; i++, pTerm++){ pTerm->wtFlags &= ~TERM_OK; if( pTerm->leftCursor != pSrc->iCursor ) continue; if( pTerm->prereqRight & mUnusable ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ALL ); if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); assert( pTerm->u.x.leftColumn>=XN_ROWID ); assert( pTerm->u.x.leftColumnnCol ); if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) ){ continue; } nTerm++; pTerm->wtFlags |= TERM_OK; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of ** the sqlite3_index_info structure. */ nOrderBy = 0; if( pOrderBy ){ int n = pOrderBy->nExpr; for(i=0; ia[i].pExpr; Expr *pE2; /* Skip over constant terms in the ORDER BY clause */ if( sqlite3ExprIsConstant(pExpr) ){ continue; } /* Virtual tables are unable to deal with NULLS FIRST */ if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; /* First case - a direct column references without a COLLATE operator */ if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumnnCol ); continue; } /* 2nd case - a column reference with a COLLATE operator. Only match ** of the COLLATE operator matches the collation of the column. */ if( pExpr->op==TK_COLLATE && (pE2 = pExpr->pLeft)->op==TK_COLUMN && pE2->iTable==pSrc->iCursor ){ const char *zColl; /* The collating sequence name */ assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pE2->iColumn>=XN_ROWID && pE2->iColumnnCol ); pExpr->iColumn = pE2->iColumn; if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); if( zColl==0 ) zColl = sqlite3StrBINARY; if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; } /* No matches cause a break out of the loop */ break; } if( i==n ){ nOrderBy = n; if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ eDistinct = 1; } } } /* Allocate the sqlite3_index_info structure */ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) + sizeof(sqlite3_value*)*nTerm ); if( pIdxInfo==0 ){ sqlite3ErrorMsg(pParse, "out of memory"); return 0; } pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; pIdxInfo->aConstraint = pIdxCons; pIdxInfo->aOrderBy = pIdxOrderBy; pIdxInfo->aConstraintUsage = pUsage; pHidden->pWC = pWC; pHidden->pParse = pParse; pHidden->eDistinct = eDistinct; pHidden->mIn = 0; for(i=j=0, pTerm=pWC->a; inTerm; i++, pTerm++){ u16 op; if( (pTerm->wtFlags & TERM_OK)==0 ) continue; pIdxCons[j].iColumn = pTerm->u.x.leftColumn; pIdxCons[j].iTermOffset = i; op = pTerm->eOperator & WO_ALL; if( op==WO_IN ){ if( (pTerm->wtFlags & TERM_SLICE)==0 ){ pHidden->mIn |= SMASKBIT32(j); } op = WO_EQ; } if( op==WO_AUX ){ pIdxCons[j].op = pTerm->eMatchOp; }else if( op & (WO_ISNULL|WO_IS) ){ if( op==WO_ISNULL ){ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; }else{ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; } }else{ pIdxCons[j].op = (u8)op; /* The direct assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following asserts verify this fact. */ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); if( op & (WO_LT|WO_LE|WO_GT|WO_GE) && sqlite3ExprIsVector(pTerm->pExpr->pRight) ){ testcase( j!=i ); if( j<16 ) mNoOmit |= (1 << j); if( op==WO_LT ) pIdxCons[j].op = WO_LE; if( op==WO_GT ) pIdxCons[j].op = WO_GE; } } j++; } assert( j==nTerm ); pIdxInfo->nConstraint = j; for(i=j=0; ia[i].pExpr; if( sqlite3ExprIsConstant(pExpr) ) continue; assert( pExpr->op==TK_COLUMN || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN && pExpr->iColumn==pExpr->pLeft->iColumn) ); pIdxOrderBy[j].iColumn = pExpr->iColumn; pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; j++; } pIdxInfo->nOrderBy = j; *pmNoOmit = mNoOmit; return pIdxInfo; } /* ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() ** and possibly modified by xBestIndex methods. */ static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ HiddenIndexInfo *pHidden; int i; assert( pIdxInfo!=0 ); pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; assert( pHidden->pParse!=0 ); assert( pHidden->pParse->db==db ); for(i=0; inConstraint; i++){ sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ pHidden->aRhs[i] = 0; } sqlite3DbFree(db, pIdxInfo); } /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info object that ** comes in as the 3rd argument to this function. ** ** If an error occurs, pParse is populated with an error message and an ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that ** the current configuration of "unusable" flags in sqlite3_index_info can ** not result in a valid plan. ** ** Whether or not an error is returned, it is the responsibility of the ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates ** that this is required. */ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; int rc; whereTraceIndexInfoInputs(p); pParse->db->nSchemaLock++; rc = pVtab->pModule->xBestIndex(pVtab, p); pParse->db->nSchemaLock--; whereTraceIndexInfoOutputs(p); if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ if( rc==SQLITE_NOMEM ){ sqlite3OomFault(pParse->db); }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } if( pTab->u.vtab.p->bAllSchemas ){ sqlite3VtabUsesAllSchemas(pParse); } sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; return rc; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** ** aStat[0] Est. number of rows less than pRec ** aStat[1] Est. number of rows equal to pRec ** ** Return the index of the sample that is the smallest sample that ** is greater than or equal to pRec. Note that this index is not an index ** into the aSample[] array - it is an index into a virtual set of samples ** based on the contents of aSample[] and the number of fields in record ** pRec. */ static int whereKeyStats( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ UnpackedRecord *pRec, /* Vector of values to consider */ int roundUp, /* Round up if true. Round down if false */ tRowcnt *aStat /* OUT: stats written here */ ){ IndexSample *aSample = pIdx->aSample; int iCol; /* Index of required stats in anEq[] etc. */ int i; /* Index of first sample >= pRec */ int iSample; /* Smallest sample larger than or equal to pRec */ int iMin = 0; /* Smallest sample not yet tested */ int iTest; /* Next sample to test */ int res; /* Result of comparison operation */ int nField; /* Number of fields in pRec */ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ #ifndef SQLITE_DEBUG UNUSED_PARAMETER( pParse ); #endif assert( pRec!=0 ); assert( pIdx->nSample>0 ); assert( pRec->nField>0 ); /* Do a binary search to find the first sample greater than or equal ** to pRec. If pRec contains a single field, the set of samples to search ** is simply the aSample[] array. If the samples in aSample[] contain more ** than one fields, all fields following the first are ignored. ** ** If pRec contains N fields, where N is more than one, then as well as the ** samples in aSample[] (truncated to N fields), the search also has to ** consider prefixes of those samples. For example, if the set of samples ** in aSample is: ** ** aSample[0] = (a, 5) ** aSample[1] = (a, 10) ** aSample[2] = (b, 5) ** aSample[3] = (c, 100) ** aSample[4] = (c, 105) ** ** Then the search space should ideally be the samples above and the ** unique prefixes [a], [b] and [c]. But since that is hard to organize, ** the code actually searches this set: ** ** 0: (a) ** 1: (a, 5) ** 2: (a, 10) ** 3: (a, 10) ** 4: (b) ** 5: (b, 5) ** 6: (c) ** 7: (c, 100) ** 8: (c, 105) ** 9: (c, 105) ** ** For each sample in the aSample[] array, N samples are present in the ** effective sample array. In the above, samples 0 and 1 are based on ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. ** ** Often, sample i of each block of N effective samples has (i+1) fields. ** Except, each sample may be extended to ensure that it is greater than or ** equal to the previous sample in the array. For example, in the above, ** sample 2 is the first sample of a block of N samples, so at first it ** appears that it should be 1 field in size. However, that would make it ** smaller than sample 1, so the binary search would not work. As a result, ** it is extended to two fields. The duplicates that this creates do not ** cause any problems. */ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ nField = pIdx->nKeyCol; }else{ nField = pIdx->nColumn; } nField = MIN(pRec->nField, nField); iCol = 0; iSample = pIdx->nSample * nField; do{ int iSamp; /* Index in aSample[] of test sample */ int n; /* Number of fields in test sample */ iTest = (iMin+iSample)/2; iSamp = iTest / nField; if( iSamp>0 ){ /* The proposed effective sample is a prefix of sample aSample[iSamp]. ** Specifically, the shortest prefix of at least (1 + iTest%nField) ** fields that is greater than the previous effective sample. */ for(n=(iTest % nField) + 1; nnField = n; res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); if( res<0 ){ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; iMin = iTest+1; }else if( res==0 && ndb->mallocFailed==0 ){ if( res==0 ){ /* If (res==0) is true, then pRec must be equal to sample i. */ assert( inSample ); assert( iCol==nField-1 ); pRec->nField = nField; assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) || pParse->db->mallocFailed ); }else{ /* Unless i==pIdx->nSample, indicating that pRec is larger than ** all samples in the aSample[] array, pRec must be smaller than the ** (iCol+1) field prefix of sample i. */ assert( i<=pIdx->nSample && i>=0 ); pRec->nField = iCol+1; assert( i==pIdx->nSample || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 || pParse->db->mallocFailed ); /* if i==0 and iCol==0, then record pRec is smaller than all samples ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must ** be greater than or equal to the (iCol) field prefix of sample i. ** If (i>0), then pRec must also be greater than sample (i-1). */ if( iCol>0 ){ pRec->nField = iCol; assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 || pParse->db->mallocFailed || CORRUPT_DB ); } if( i>0 ){ pRec->nField = nField; assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 || pParse->db->mallocFailed || CORRUPT_DB ); } } } #endif /* ifdef SQLITE_DEBUG */ if( res==0 ){ /* Record pRec is equal to sample i */ assert( iCol==nField-1 ); aStat[0] = aSample[i].anLt[iCol]; aStat[1] = aSample[i].anEq[iCol]; }else{ /* At this point, the (iCol+1) field prefix of aSample[i] is the first ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec ** is larger than all samples in the array. */ tRowcnt iUpper, iGap; if( i>=pIdx->nSample ){ iUpper = pIdx->nRowEst0; }else{ iUpper = aSample[i].anLt[iCol]; } if( iLower>=iUpper ){ iGap = 0; }else{ iGap = iUpper - iLower; } if( roundUp ){ iGap = (iGap*2)/3; }else{ iGap = iGap/3; } aStat[0] = iLower + iGap; aStat[1] = pIdx->aAvgEq[nField-1]; } /* Restore the pRec->nField value before returning. */ pRec->nField = nField; return i; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** If it is not NULL, pTerm is a term that provides an upper or lower ** bound on a range scan. Without considering pTerm, it is estimated ** that the scan will visit nNew rows. This function returns the number ** estimated to be visited after taking pTerm into account. ** ** If the user explicitly specified a likelihood() value for this term, ** then the return value is the likelihood multiplied by the number of ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term ** has a likelihood of 0.50, and any other term a likelihood of 0.25. */ static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ LogEst nRet = nNew; if( pTerm ){ if( pTerm->truthProb<=0 ){ nRet += pTerm->truthProb; }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ nRet -= 20; assert( 20==sqlite3LogEst(4) ); } } return nRet; } #ifdef SQLITE_ENABLE_STAT4 /* ** Return the affinity for a single column of an index. */ SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ assert( iCol>=0 && iColnColumn ); if( !pIdx->zColAff ){ if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; } assert( pIdx->zColAff[iCol]!=0 ); return pIdx->zColAff[iCol]; } #endif #ifdef SQLITE_ENABLE_STAT4 /* ** This function is called to estimate the number of rows visited by a ** range-scan on a skip-scan index. For example: ** ** CREATE INDEX i1 ON t1(a, b, c); ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; ** ** Value pLoop->nOut is currently set to the estimated number of rows ** visited for scanning (a=? AND b=?). This function reduces that estimate ** by some factor to account for the (c BETWEEN ? AND ?) expression based ** on the stat4 data for the index. this scan will be performed multiple ** times (once for each (a,b) combination that matches a=?) is dealt with ** by the caller. ** ** It does this by scanning through all stat4 samples, comparing values ** extracted from pLower and pUpper with the corresponding column in each ** sample. If L and U are the number of samples found to be less than or ** equal to the values extracted from pLower and pUpper respectively, and ** N is the total number of samples, the pLoop->nOut value is adjusted ** as follows: ** ** nOut = nOut * ( min(U - L, 1) / N ) ** ** If pLower is NULL, or a value cannot be extracted from the term, L is ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, ** U is set to N. ** ** Normally, this function sets *pbDone to 1 before returning. However, ** if no value can be extracted from either pLower or pUpper (and so the ** estimate of the number of rows delivered remains unchanged), *pbDone ** is left as is. ** ** If an error occurs, an SQLite error code is returned. Otherwise, ** SQLITE_OK. */ static int whereRangeSkipScanEst( Parse *pParse, /* Parsing & code generating context */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ WhereLoop *pLoop, /* Update the .nOut value of this loop */ int *pbDone /* Set to true if at least one expr. value extracted */ ){ Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; sqlite3 *db = pParse->db; int nLower = -1; int nUpper = p->nSample+1; int rc = SQLITE_OK; u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); CollSeq *pColl; sqlite3_value *p1 = 0; /* Value extracted from pLower */ sqlite3_value *p2 = 0; /* Value extracted from pUpper */ sqlite3_value *pVal = 0; /* Value extracted from record */ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); if( pLower ){ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); nLower = 0; } if( pUpper && rc==SQLITE_OK ){ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); nUpper = p2 ? 0 : p->nSample; } if( p1 || p2 ){ int i; int nDiff; for(i=0; rc==SQLITE_OK && inSample; i++){ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); if( rc==SQLITE_OK && p1 ){ int res = sqlite3MemCompare(p1, pVal, pColl); if( res>=0 ) nLower++; } if( rc==SQLITE_OK && p2 ){ int res = sqlite3MemCompare(p2, pVal, pColl); if( res>=0 ) nUpper++; } } nDiff = (nUpper - nLower); if( nDiff<=0 ) nDiff = 1; /* If there is both an upper and lower bound specified, and the ** comparisons indicate that they are close together, use the fallback ** method (assume that the scan visits 1/64 of the rows) for estimating ** the number of rows visited. Otherwise, estimate the number of rows ** using the method described in the header comment for this function. */ if( nDiff!=1 || pUpper==0 || pLower==0 ){ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); pLoop->nOut -= nAdjust; *pbDone = 1; WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", nLower, nUpper, nAdjust*-1, pLoop->nOut)); } }else{ assert( *pbDone==0 ); } sqlite3ValueFree(p1); sqlite3ValueFree(p2); sqlite3ValueFree(pVal); return rc; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index ** column subject to the range constraint. Or, equivalently, the number of ** equality constraints optimized by the proposed index scan. For example, ** assuming index p is on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq is set to 1 (as the range restricted column, b, is the second ** left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq is set to 0. ** ** When this function is called, *pnOut is set to the sqlite3LogEst() of the ** number of rows that the index scan is expected to visit without ** considering the range constraints. If nEq is 0, then *pnOut is the number of ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) ** to account for the range constraints pLower and pUpper. ** ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be ** used, a single range inequality reduces the search space by a factor of 4. ** and a pair of constraints (x>? AND x123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ ){ int rc = SQLITE_OK; int nOut = pLoop->nOut; LogEst nNew; #ifdef SQLITE_ENABLE_STAT4 Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; if( p->nSample>0 && ALWAYS(nEqnSampleCol) && OptimizationEnabled(pParse->db, SQLITE_Stat4) ){ if( nEq==pBuilder->nRecValid ){ UnpackedRecord *pRec = pBuilder->pRec; tRowcnt a[2]; int nBtm = pLoop->u.btree.nBtm; int nTop = pLoop->u.btree.nTop; /* Variable iLower will be set to the estimate of the number of rows in ** the index that are less than the lower bound of the range query. The ** lower bound being the concatenation of $P and $L, where $P is the ** key-prefix formed by the nEq values matched against the nEq left-most ** columns of the index, and $L is the value in pLower. ** ** Or, if pLower is NULL or $L cannot be extracted from it (because it ** is not a simple variable or literal value), the lower bound of the ** range is $P. Due to a quirk in the way whereKeyStats() works, even ** if $L is available, whereKeyStats() is called for both ($P) and ** ($P:$L) and the larger of the two returned values is used. ** ** Similarly, iUpper is to be set to the estimate of the number of rows ** less than the upper bound of the range query. Where the upper bound ** is either ($P) or ($P:$U). Again, even if $U is available, both values ** of iUpper are requested of whereKeyStats() and the smaller used. ** ** The number of rows between the two bounds is then just iUpper-iLower. */ tRowcnt iLower; /* Rows less than the lower bound */ tRowcnt iUpper; /* Rows less than the upper bound */ int iLwrIdx = -2; /* aSample[] for the lower bound */ int iUprIdx = -1; /* aSample[] for the upper bound */ if( pRec ){ testcase( pRec->nField!=pBuilder->nRecValid ); pRec->nField = pBuilder->nRecValid; } /* Determine iLower and iUpper using ($P) only. */ if( nEq==0 ){ iLower = 0; iUpper = p->nRowEst0; }else{ /* Note: this call could be optimized away - since the same values must ** have been requested when testing key $P in whereEqualScanEst(). */ whereKeyStats(pParse, p, pRec, 0, a); iLower = a[0]; iUpper = a[0] + a[1]; } assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); assert( p->aSortOrder!=0 ); if( p->aSortOrder[nEq] ){ /* The roles of pLower and pUpper are swapped for a DESC index */ SQ__SWAP(WhereTerm*, pLower, pUpper); SQ__SWAP(int, nBtm, nTop); } /* If possible, improve on the iLower estimate using ($P:$L). */ if( pLower ){ int n; /* Values extracted from pExpr */ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); if( rc==SQLITE_OK && n ){ tRowcnt iNew; u16 mask = WO_GT|WO_LE; if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); if( iNew>iLower ) iLower = iNew; nOut--; pLower = 0; } } /* If possible, improve on the iUpper estimate using ($P:$U). */ if( pUpper ){ int n; /* Values extracted from pExpr */ Expr *pExpr = pUpper->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); if( rc==SQLITE_OK && n ){ tRowcnt iNew; u16 mask = WO_GT|WO_LE; if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); if( iNewpRec = pRec; if( rc==SQLITE_OK ){ if( iUpper>iLower ){ nNew = sqlite3LogEst(iUpper - iLower); /* TUNING: If both iUpper and iLower are derived from the same ** sample, then assume they are 4x more selective. This brings ** the estimated selectivity more in line with what it would be ** if estimated without the use of STAT4 tables. */ if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); }else{ nNew = 10; assert( 10==sqlite3LogEst(2) ); } if( nNewwtFlags & TERM_VNULL)==0 || pParse->nErr>0 ); nNew = whereRangeAdjust(pLower, nOut); nNew = whereRangeAdjust(pUpper, nNew); /* TUNING: If there is both an upper and lower limit and neither limit ** has an application-defined likelihood(), assume the range is ** reduced by an additional 75%. This means that, by default, an open-ended ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to ** match 1/64 of the index. */ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ nNew -= 20; } nOut -= (pLower!=0) + (pUpper!=0); if( nNew<10 ) nNew = 10; if( nNewnOut>nOut ){ WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n", pLoop->nOut, nOut)); } #endif pLoop->nOut = (LogEst)nOut; return rc; } #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the number of rows that will be returned based on ** an equality constraint x=VALUE and where that VALUE occurs in ** the histogram data. This only works when x is the left-most ** column of an index and sqlite_stat4 histogram data is available ** for that index. When pExpr==NULL that means the constraint is ** "x IS NULL" instead of "x=VALUE". ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ tRowcnt *pnRow /* Write the revised row estimate here */ ){ Index *p = pBuilder->pNew->u.btree.pIndex; int nEq = pBuilder->pNew->u.btree.nEq; UnpackedRecord *pRec = pBuilder->pRec; int rc; /* Subfunction return code */ tRowcnt a[2]; /* Statistics */ int bOk; assert( nEq>=1 ); assert( nEq<=p->nColumn ); assert( p->aSample!=0 ); assert( p->nSample>0 ); assert( pBuilder->nRecValidnRecValid<(nEq-1) ){ return SQLITE_NOTFOUND; } /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() ** below would return the same value. */ if( nEq>=p->nColumn ){ *pnRow = 1; return SQLITE_OK; } rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); pBuilder->pRec = pRec; if( rc!=SQLITE_OK ) return rc; if( bOk==0 ) return SQLITE_NOTFOUND; pBuilder->nRecValid = nEq; whereKeyStats(pParse, p, pRec, 0, a); WHERETRACE(0x20,("equality scan regions %s(%d): %d\n", p->zName, nEq-1, (int)a[1])); *pnRow = a[1]; return rc; } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the number of rows that will be returned based on ** an IN constraint where the right-hand side of the IN operator ** is a list of values. Example: ** ** WHERE x IN (1,2,3,4) ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ tRowcnt *pnRow /* Write the revised row estimate here */ ){ Index *p = pBuilder->pNew->u.btree.pIndex; i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); int nRecValid = pBuilder->nRecValid; int rc = SQLITE_OK; /* Subfunction return code */ tRowcnt nEst; /* Number of rows for a single term */ tRowcnt nRowEst = 0; /* New estimate of the number of rows */ int i; /* Loop counter */ assert( p->aSample!=0 ); for(i=0; rc==SQLITE_OK && inExpr; i++){ nEst = nRow0; rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); nRowEst += nEst; pBuilder->nRecValid = nRecValid; } if( rc==SQLITE_OK ){ if( nRowEst > (tRowcnt)nRow0 ) nRowEst = nRow0; *pnRow = nRowEst; WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef WHERETRACE_ENABLED /* ** Print the content of a WhereTerm object */ SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ if( pTerm==0 ){ sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); }else{ char zType[8]; char zLeft[50]; memcpy(zType, "....", 5); if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; if( pTerm->eOperator & WO_SINGLE ){ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", pTerm->leftCursor, pTerm->u.x.leftColumn); }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", pTerm->u.pOrInfo->indexable); }else{ sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); } sqlite3DebugPrintf( "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); /* The 0x10000 .wheretrace flag causes extra information to be ** shown about each Term */ if( sqlite3WhereTrace & 0x10000 ){ sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); } if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); } if( pTerm->iParent>=0 ){ sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); } sqlite3DebugPrintf("\n"); sqlite3TreeViewExpr(0, pTerm->pExpr, 0); } } #endif #ifdef WHERETRACE_ENABLED /* ** Show the complete content of a WhereClause */ SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC){ int i; for(i=0; inTerm; i++){ sqlite3WhereTermPrint(&pWC->a[i], i); } } #endif #ifdef WHERETRACE_ENABLED /* ** Print a WhereLoop object for debugging purposes */ SQLITE_PRIVATE void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ WhereInfo *pWInfo = pWC->pWInfo; int nb = 1+(pWInfo->pTabList->nSrc+3)/4; SrcItem *pItem = pWInfo->pTabList->a + p->iTab; Table *pTab = pItem->pTab; Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); sqlite3DebugPrintf(" %12s", pItem->zAlias ? pItem->zAlias : pTab->zName); if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ const char *zName; if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ int i = sqlite3Strlen30(zName) - 1; while( zName[i]!='_' ) i--; zName += i; } sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); }else{ sqlite3DebugPrintf("%20s",""); } }else{ char *z; if( p->u.vtab.idxStr ){ z = sqlite3_mprintf("(%d,\"%s\",%#x)", p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); }else{ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); } sqlite3DebugPrintf(" %-19s", z); sqlite3_free(z); } if( p->wsFlags & WHERE_SKIPSCAN ){ sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); }else{ sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); } sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); if( p->nLTerm && (sqlite3WhereTrace & 0x4000)!=0 ){ int i; for(i=0; inLTerm; i++){ sqlite3WhereTermPrint(p->aLTerm[i], i); } } } #endif /* ** Convert bulk memory into a valid WhereLoop that can be passed ** to whereLoopClear harmlessly. */ static void whereLoopInit(WhereLoop *p){ p->aLTerm = p->aLTermSpace; p->nLTerm = 0; p->nLSlot = ArraySize(p->aLTermSpace); p->wsFlags = 0; } /* ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. */ static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ sqlite3_free(p->u.vtab.idxStr); p->u.vtab.needFree = 0; p->u.vtab.idxStr = 0; }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ sqlite3DbFree(db, p->u.btree.pIndex->zColAff); sqlite3DbFreeNN(db, p->u.btree.pIndex); p->u.btree.pIndex = 0; } } } /* ** Deallocate internal memory used by a WhereLoop object. Leave the ** object in an initialized state, as if it had been newly allocated. */ static void whereLoopClear(sqlite3 *db, WhereLoop *p){ if( p->aLTerm!=p->aLTermSpace ){ sqlite3DbFreeNN(db, p->aLTerm); p->aLTerm = p->aLTermSpace; p->nLSlot = ArraySize(p->aLTermSpace); } whereLoopClearUnion(db, p); p->nLTerm = 0; p->wsFlags = 0; } /* ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. */ static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ WhereTerm **paNew; if( p->nLSlot>=n ) return SQLITE_OK; n = (n+7)&~7; paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); if( paNew==0 ) return SQLITE_NOMEM_BKPT; memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); p->aLTerm = paNew; p->nLSlot = n; return SQLITE_OK; } /* ** Transfer content from the second pLoop into the first. */ static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ whereLoopClearUnion(db, pTo); if( pFrom->nLTerm > pTo->nLSlot && whereLoopResize(db, pTo, pFrom->nLTerm) ){ memset(pTo, 0, WHERE_LOOP_XFER_SZ); return SQLITE_NOMEM_BKPT; } memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ pFrom->u.vtab.needFree = 0; }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ pFrom->u.btree.pIndex = 0; } return SQLITE_OK; } /* ** Delete a WhereLoop object */ static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ assert( db!=0 ); whereLoopClear(db, p); sqlite3DbNNFreeNN(db, p); } /* ** Free a WhereInfo structure */ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ assert( pWInfo!=0 ); assert( db!=0 ); sqlite3WhereClauseClear(&pWInfo->sWC); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } while( pWInfo->pMemToFree ){ WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); pWInfo->pMemToFree = pNext; } sqlite3DbNNFreeNN(db, pWInfo); } /* ** Return TRUE if all of the following are true: ** ** (1) X has the same or lower cost, or returns the same or fewer rows, ** than Y. ** (2) X uses fewer WHERE clause terms than Y ** (3) Every WHERE clause term used by X is also used by Y ** (4) X skips at least as many columns as Y ** (5) If X is a covering index, than Y is too ** ** Conditions (2) and (3) mean that X is a "proper subset" of Y. ** If X is a proper subset of Y then Y is a better choice and ought ** to have a lower cost. This routine returns TRUE when that cost ** relationship is inverted and needs to be adjusted. Constraint (4) ** was added because if X uses skip-scan less than Y it still might ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) ** was added because a covering index probably deserves to have a lower cost ** than a non-covering index even if it is a proper subset. */ static int whereLoopCheaperProperSubset( const WhereLoop *pX, /* First WhereLoop to compare */ const WhereLoop *pY /* Compare against this WhereLoop */ ){ int i, j; if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ return 0; /* X is not a subset of Y */ } if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; if( pY->nSkip > pX->nSkip ) return 0; for(i=pX->nLTerm-1; i>=0; i--){ if( pX->aLTerm[i]==0 ) continue; for(j=pY->nLTerm-1; j>=0; j--){ if( pY->aLTerm[j]==pX->aLTerm[i] ) break; } if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ } if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ return 0; /* Constraint (5) */ } return 1; /* All conditions meet */ } /* ** Try to adjust the cost and number of output rows of WhereLoop pTemplate ** upwards or downwards so that: ** ** (1) pTemplate costs less than any other WhereLoops that are a proper ** subset of pTemplate ** ** (2) pTemplate costs more than any other WhereLoops for which pTemplate ** is a proper subset. ** ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer ** WHERE clause terms than Y and that every WHERE clause term used by X is ** also used by Y. */ static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; for(; p; p=p->pNextLoop){ if( p->iTab!=pTemplate->iTab ) continue; if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; if( whereLoopCheaperProperSubset(p, pTemplate) ){ /* Adjust pTemplate cost downward so that it is cheaper than its ** subset p. */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, MIN(p->rRun, pTemplate->rRun), MIN(p->nOut - 1, pTemplate->nOut))); pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ /* Adjust pTemplate cost upward so that it is costlier than p since ** pTemplate is a proper subset of p */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, MAX(p->rRun, pTemplate->rRun), MAX(p->nOut + 1, pTemplate->nOut))); pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); } } } /* ** Search the list of WhereLoops in *ppPrev looking for one that can be ** replaced by pTemplate. ** ** Return NULL if pTemplate does not belong on the WhereLoop list. ** In other words if pTemplate ought to be dropped from further consideration. ** ** If pX is a WhereLoop that pTemplate can replace, then return the ** link that points to pX. ** ** If pTemplate cannot replace any existing element of the list but needs ** to be added to the list as a new entry, then return a pointer to the ** tail of the list. */ static WhereLoop **whereLoopFindLesser( WhereLoop **ppPrev, const WhereLoop *pTemplate ){ WhereLoop *p; for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ /* If either the iTab or iSortIdx values for two WhereLoop are different ** then those WhereLoops need to be considered separately. Neither is ** a candidate to replace the other. */ continue; } /* In the current implementation, the rSetup value is either zero ** or the cost of building an automatic index (NlogN) and the NlogN ** is the same for compatible WhereLoops. */ assert( p->rSetup==0 || pTemplate->rSetup==0 || p->rSetup==pTemplate->rSetup ); /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* Any loop using an application-defined index (or PRIMARY KEY or ** UNIQUE constraint) with one or more == constraints is better ** than an automatic index. Unless it is a skip-scan. */ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && (pTemplate->nSkip)==0 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 && (p->prereq & pTemplate->prereq)==pTemplate->prereq ){ break; } /* If existing WhereLoop p is better than pTemplate, pTemplate can be ** discarded. WhereLoop p is better if: ** (1) p has no more dependencies than pTemplate, and ** (2) p has an equal or lower cost than pTemplate */ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ && p->rSetup<=pTemplate->rSetup /* (2a) */ && p->rRun<=pTemplate->rRun /* (2b) */ && p->nOut<=pTemplate->nOut /* (2c) */ ){ return 0; /* Discard pTemplate */ } /* If pTemplate is always better than p, then cause p to be overwritten ** with pTemplate. pTemplate is better than p if: ** (1) pTemplate has no more dependencies than p, and ** (2) pTemplate has an equal or lower cost than p. */ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ && p->rRun>=pTemplate->rRun /* (2a) */ && p->nOut>=pTemplate->nOut /* (2b) */ ){ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ break; /* Cause p to be overwritten by pTemplate */ } } return ppPrev; } /* ** Insert or replace a WhereLoop entry using the template supplied. ** ** An existing WhereLoop entry might be overwritten if the new template ** is better and has fewer dependencies. Or the template will be ignored ** and no insert will occur if an existing WhereLoop is faster and has ** fewer dependencies than the template. Otherwise a new WhereLoop is ** added based on the template. ** ** If pBuilder->pOrSet is not NULL then we care about only the ** prerequisites and rRun and nOut costs of the N best loops. That ** information is gathered in the pBuilder->pOrSet object. This special ** processing mode is used only for OR clause processing. ** ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we ** still might overwrite similar loops with the new template if the ** new template is better. Loops may be overwritten if the following ** conditions are met: ** ** (1) They have the same iTab. ** (2) They have the same iSortIdx. ** (3) The template has same or fewer dependencies than the current loop ** (4) The template has the same or lower cost than the current loop */ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ WhereLoop **ppPrev, *p; WhereInfo *pWInfo = pBuilder->pWInfo; sqlite3 *db = pWInfo->pParse->db; int rc; /* Stop the search once we hit the query planner search limit */ if( pBuilder->iPlanLimit==0 ){ WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; return SQLITE_DONE; } pBuilder->iPlanLimit--; whereLoopAdjustCost(pWInfo->pLoops, pTemplate); /* If pBuilder->pOrSet is defined, then only keep track of the costs ** and prereqs. */ if( pBuilder->pOrSet!=0 ){ if( pTemplate->nLTerm ){ #if WHERETRACE_ENABLED u16 n = pBuilder->pOrSet->n; int x = #endif whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, pTemplate->nOut); #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); } #endif } return SQLITE_OK; } /* Look for an existing WhereLoop to replace with pTemplate */ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); if( ppPrev==0 ){ /* There already exists a WhereLoop on the list that is better ** than pTemplate, so just ignore pTemplate */ #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf(" skip: "); sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); } #endif return SQLITE_OK; }else{ p = *ppPrev; } /* If we reach this point it means that either p[] should be overwritten ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new ** WhereLoop and insert it. */ #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ if( p!=0 ){ sqlite3DebugPrintf("replace: "); sqlite3WhereLoopPrint(p, pBuilder->pWC); sqlite3DebugPrintf(" with: "); }else{ sqlite3DebugPrintf(" add: "); } sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); } #endif if( p==0 ){ /* Allocate a new WhereLoop to add to the end of the list */ *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); if( p==0 ) return SQLITE_NOMEM_BKPT; whereLoopInit(p); p->pNextLoop = 0; }else{ /* We will be overwriting WhereLoop p[]. But before we do, first ** go through the rest of the list and delete any other entries besides ** p[] that are also supplanted by pTemplate */ WhereLoop **ppTail = &p->pNextLoop; WhereLoop *pToDel; while( *ppTail ){ ppTail = whereLoopFindLesser(ppTail, pTemplate); if( ppTail==0 ) break; pToDel = *ppTail; if( pToDel==0 ) break; *ppTail = pToDel->pNextLoop; #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf(" delete: "); sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); } #endif whereLoopDelete(db, pToDel); } } rc = whereLoopXfer(db, p, pTemplate); if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ Index *pIndex = p->u.btree.pIndex; if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ p->u.btree.pIndex = 0; } } return rc; } /* ** Adjust the WhereLoop.nOut value downward to account for terms of the ** WHERE clause that reference the loop but which are not used by an ** index. * ** For every WHERE clause term that is not used by the index ** and which has a truth probability assigned by one of the likelihood(), ** likely(), or unlikely() SQL functions, reduce the estimated number ** of output rows by the probability specified. ** ** TUNING: For every WHERE clause term that is not used by the index ** and which does not have an assigned truth probability, heuristics ** described below are used to try to estimate the truth probability. ** TODO --> Perhaps this is something that could be improved by better ** table statistics. ** ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% ** value corresponds to -1 in LogEst notation, so this means decrement ** the WhereLoop.nOut field for every such WHERE clause term. ** ** Heuristic 2: If there exists one or more WHERE clause terms of the ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the ** final output row estimate is no greater than 1/4 of the total number ** of rows in the table. In other words, assume that x==EXPR will filter ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the ** "x" column is boolean or else -1 or 0 or 1 is a common default value ** on the "x" column and so in that case only cap the output row estimate ** at 1/2 instead of 1/4. */ static void whereLoopOutputAdjust( WhereClause *pWC, /* The WHERE clause */ WhereLoop *pLoop, /* The loop to adjust downward */ LogEst nRow /* Number of rows in the entire table */ ){ WhereTerm *pTerm, *pX; Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); int i, j; LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ assert( pTerm!=0 ); if( (pTerm->prereqAll & notAllowed)!=0 ) continue; if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; for(j=pLoop->nLTerm-1; j>=0; j--){ pX = pLoop->aLTerm[j]; if( pX==0 ) continue; if( pX==pTerm ) break; if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; } if( j<0 ){ sqlite3ProgressCheck(pWC->pWInfo->pParse); if( pLoop->maskSelf==pTerm->prereqAll ){ /* If there are extra terms in the WHERE clause not used by an index ** that depend only on the table being scanned, and that will tend to ** cause many rows to be omitted, then mark that table as ** "self-culling". ** ** 2022-03-24: Self-culling only applies if either the extra terms ** are straight comparison operators that are non-true with NULL ** operand, or if the loop is not an OUTER JOIN. */ if( (pTerm->eOperator & 0x3f)!=0 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype & (JT_LEFT|JT_LTORJ))==0 ){ pLoop->wsFlags |= WHERE_SELFCULL; } } if( pTerm->truthProb<=0 ){ /* If a truth probability is specified using the likelihood() hints, ** then use the probability provided by the application. */ pLoop->nOut += pTerm->truthProb; }else{ /* In the absence of explicit truth probabilities, use heuristics to ** guess a reasonable truth probability. */ pLoop->nOut--; if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ ){ Expr *pRight = pTerm->pExpr->pRight; int k = 0; testcase( pTerm->pExpr->op==TK_IS ); if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ k = 10; }else{ k = 20; } if( iReducewtFlags |= TERM_HEURTRUTH; iReduce = k; } } } } } if( pLoop->nOut > nRow-iReduce ){ pLoop->nOut = nRow - iReduce; } } /* ** Term pTerm is a vector range comparison operation. The first comparison ** in the vector can be optimized using column nEq of the index. This ** function returns the total number of vector elements that can be used ** as part of the range comparison. ** ** For example, if the query is: ** ** WHERE a = ? AND (b, c, d) > (?, ?, ?) ** ** and the index: ** ** CREATE INDEX ... ON (a, b, c, d, e) ** ** then this function would be invoked with nEq=1. The value returned in ** this case is 3. */ static int whereRangeVectorLen( Parse *pParse, /* Parsing context */ int iCur, /* Cursor open on pIdx */ Index *pIdx, /* The index to be used for a inequality constraint */ int nEq, /* Number of prior equality constraints on same index */ WhereTerm *pTerm /* The vector inequality constraint */ ){ int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); int i; nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); for(i=1; ipExpr->pLeft) ); pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; pRhs = pTerm->pExpr->pRight; if( ExprUseXSelect(pRhs) ){ pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; }else{ pRhs = pRhs->x.pList->a[i].pExpr; } /* Check that the LHS of the comparison is a column reference to ** the right column of the right source table. And that the sort ** order of the index column is the same as the sort order of the ** leftmost index column. */ if( pLhs->op!=TK_COLUMN || pLhs->iTable!=iCur || pLhs->iColumn!=pIdx->aiColumn[i+nEq] || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] ){ break; } testcase( pLhs->iColumn==XN_ROWID ); aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); if( aff!=idxaff ) break; pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); if( pColl==0 ) break; if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; } return i; } /* ** Adjust the cost C by the costMult factor T. This only occurs if ** compiled with -DSQLITE_ENABLE_COSTMULT */ #ifdef SQLITE_ENABLE_COSTMULT # define ApplyCostMultiplier(C,T) C += T #else # define ApplyCostMultiplier(C,T) #endif /* ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the ** index pIndex. Try to match one more. ** ** When this function is called, pBuilder->pNew->nOut contains the ** number of rows expected to be visited by filtering using the nEq ** terms only. If it is modified, this value is restored before this ** function returns. ** ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is ** a fake index used for the INTEGER PRIMARY KEY. */ static int whereLoopAddBtreeIndex( WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ SrcItem *pSrc, /* FROM clause term being analyzed */ Index *pProbe, /* An index on pSrc */ LogEst nInMul /* log(Number of iterations due to IN) */ ){ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection malloc context */ WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ u16 saved_nSkip; /* Original value of pNew->nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int rc = SQLITE_OK; /* Return code */ LogEst rSize; /* Number of rows in the table */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ pNew = pBuilder->pNew; assert( db->mallocFailed==0 || pParse->nErr>0 ); if( pParse->nErr ){ return pParse->rc; } WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); if( pNew->wsFlags & WHERE_BTM_LIMIT ){ opMask = WO_LT|WO_LE; }else{ assert( pNew->u.btree.nBtm==0 ); opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; } if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); assert( pNew->u.btree.nEqnColumn ); assert( pNew->u.btree.nEqnKeyCol || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); saved_nEq = pNew->u.btree.nEq; saved_nBtm = pNew->u.btree.nBtm; saved_nTop = pNew->u.btree.nTop; saved_nSkip = pNew->nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, opMask, pProbe); pNew->rSetup = 0; rSize = pProbe->aiRowLogEst[0]; rLogSize = estLog(rSize); for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ LogEst rCostIdx; LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ int nIn = 0; #ifdef SQLITE_ENABLE_STAT4 int nRecValid = pBuilder->nRecValid; #endif if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && indexColumnNotNull(pProbe, saved_nEq) ){ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ } if( pTerm->prereqRight & pNew->maskSelf ) continue; /* Do not allow the upper bound of a LIKE optimization range constraint ** to mix with a lower range bound from some other source */ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) ){ continue; } if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; }else{ pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; } pNew->wsFlags = saved_wsFlags; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nBtm = saved_nBtm; pNew->u.btree.nTop = saved_nTop; pNew->nLTerm = saved_nLTerm; if( pNew->nLTerm>=pNew->nLSlot && whereLoopResize(db, pNew, pNew->nLTerm+1) ){ break; /* OOM while trying to enlarge the pNew->aLTerm array */ } pNew->aLTerm[pNew->nLTerm++] = pTerm; pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; assert( nInMul==0 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 ); if( eOp & WO_IN ){ Expr *pExpr = pTerm->pExpr; if( ExprUseXSelect(pExpr) ){ /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ int i; nIn = 46; assert( 46==sqlite3LogEst(25) ); /* The expression may actually be of the form (x, y) IN (SELECT...). ** In this case there is a separate term for each of (x) and (y). ** However, the nIn multiplier should only be applied once, not once ** for each such term. The following loop checks that pTerm is the ** first such term in use, and sets nIn back to 0 if it is not. */ for(i=0; inLTerm-1; i++){ if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; } }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ /* "x IN (value, value, ...)" */ nIn = sqlite3LogEst(pExpr->x.pList->nExpr); } if( pProbe->hasStat1 && rLogSize>=10 ){ LogEst M, logK, x; /* Let: ** N = the total number of rows in the table ** K = the number of entries on the RHS of the IN operator ** M = the number of rows in the table that match terms to the ** to the left in the same index. If the IN operator is on ** the left-most index column, M==N. ** ** Given the definitions above, it is better to omit the IN operator ** from the index lookup and instead do a scan of the M elements, ** testing each scanned row against the IN operator separately, if: ** ** M*log(K) < K*log(N) ** ** Our estimates for M, K, and N might be inaccurate, so we build in ** a safety margin of 2 (LogEst: 10) that favors using the IN operator ** with the index, as using an index has better worst-case behavior. ** If we do not have real sqlite_stat1 data, always prefer to use ** the index. Do not bother with this optimization on very small ** tables (less than 2 rows) as it is pointless in that case. */ M = pProbe->aiRowLogEst[saved_nEq]; logK = estLog(nIn); /* TUNING v----- 10 to bias toward indexed IN */ x = M + logK + 10 - (nIn + rLogSize); if( x>=0 ){ WHERETRACE(0x40, ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " "prefers indexed lookup\n", saved_nEq, M, logK, nIn, rLogSize, x)); }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ WHERETRACE(0x40, ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" " nInMul=%d) prefers skip-scan\n", saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); pNew->wsFlags |= WHERE_IN_SEEKSCAN; }else{ WHERETRACE(0x40, ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" " nInMul=%d) prefers normal scan\n", saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); continue; } } pNew->wsFlags |= WHERE_COLUMN_IN; }else if( eOp & (WO_EQ|WO_IS) ){ int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); if( iCol==XN_ROWID || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) ){ if( iCol==XN_ROWID || pProbe->uniqNotNull || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) ){ pNew->wsFlags |= WHERE_ONEROW; }else{ pNew->wsFlags |= WHERE_UNQ_WANTED; } } if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; }else if( eOp & WO_ISNULL ){ pNew->wsFlags |= WHERE_COLUMN_NULL; }else{ int nVecLen = whereRangeVectorLen( pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm ); if( eOp & (WO_GT|WO_GE) ){ testcase( eOp & WO_GT ); testcase( eOp & WO_GE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; pNew->u.btree.nBtm = nVecLen; pBtm = pTerm; pTop = 0; if( pTerm->wtFlags & TERM_LIKEOPT ){ /* Range constraints that come from the LIKE optimization are ** always used in pairs. */ pTop = &pTerm[1]; assert( (pTop-(pTerm->pWC->a))pWC->nTerm ); assert( pTop->wtFlags & TERM_LIKEOPT ); assert( pTop->eOperator==WO_LT ); if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTop; pNew->wsFlags |= WHERE_TOP_LIMIT; pNew->u.btree.nTop = 1; } }else{ assert( eOp & (WO_LT|WO_LE) ); testcase( eOp & WO_LT ); testcase( eOp & WO_LE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; pNew->u.btree.nTop = nVecLen; pTop = pTerm; pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? pNew->aLTerm[pNew->nLTerm-2] : 0; } } /* At this point pNew->nOut is set to the number of rows expected to ** be visited by the index scan before considering term pTerm, or the ** values of nIn and nInMul. In other words, assuming that all ** "x IN(...)" terms are replaced with "x = ?". This block updates ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ assert( pNew->nOut==saved_nOut ); if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ /* Adjust nOut using stat4 data. Or, if there is no stat4 ** data, using some other estimate. */ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); }else{ int nEq = ++pNew->u.btree.nEq; assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); assert( pNew->nOut==saved_nOut ); if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ assert( (eOp & WO_IN) || nIn==0 ); testcase( eOp & WO_IN ); pNew->nOut += pTerm->truthProb; pNew->nOut -= nIn; }else{ #ifdef SQLITE_ENABLE_STAT4 tRowcnt nOut = 0; if( nInMul==0 && pProbe->nSample && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) && OptimizationEnabled(db, SQLITE_Stat4) ){ Expr *pExpr = pTerm->pExpr; if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ testcase( eOp & WO_EQ ); testcase( eOp & WO_IS ); testcase( eOp & WO_ISNULL ); rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); }else{ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); } if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ if( nOut ){ pNew->nOut = sqlite3LogEst(nOut); if( nEq==1 /* TUNING: Mark terms as "low selectivity" if they seem likely ** to be true for half or more of the rows in the table. ** See tag-202002240-1 */ && pNew->nOut+10 > pProbe->aiRowLogEst[0] ){ #if WHERETRACE_ENABLED /* 0x01 */ if( sqlite3WhereTrace & 0x20 ){ sqlite3DebugPrintf( "STAT4 determines term has low selectivity:\n"); sqlite3WhereTermPrint(pTerm, 999); } #endif pTerm->wtFlags |= TERM_HIGHTRUTH; if( pTerm->wtFlags & TERM_HEURTRUTH ){ /* If the term has previously been used with an assumption of ** higher selectivity, then set the flag to rerun the ** loop computations. */ pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; } } if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; pNew->nOut -= nIn; } } if( nOut==0 ) #endif { pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); if( eOp & WO_ISNULL ){ /* TUNING: If there is no likelihood() value, assume that a ** "col IS NULL" expression matches twice as many rows ** as (col=?). */ pNew->nOut += 10; } } } } /* Set rCostIdx to the cost of visiting selected rows in index. Add ** it to pNew->rRun, which is currently set to the cost of the index ** seek only. Then, if this is a non-covering index, add the cost of ** visiting the rows in the main table. */ assert( pSrc->pTab->szTabRow>0 ); if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ /* The pProbe->szIdxRow is low for an IPK table since the interior ** pages are small. Thus szIdxRow gives a good estimate of seek cost. ** But the leaf pages are full-size, so pProbe->szIdxRow would badly ** under-estimate the scanning cost. */ rCostIdx = pNew->nOut + 16; }else{ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; } pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK|WHERE_EXPRIDX))==0 ){ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); } ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); nOutUnadjusted = pNew->nOut; pNew->rRun += nInMul + nIn; pNew->nOut += nInMul + nIn; whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ pNew->nOut = saved_nOut; }else{ pNew->nOut = nOutUnadjusted; } if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 && pNew->u.btree.nEqnColumn && (pNew->u.btree.nEqnKeyCol || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) ){ if( pNew->u.btree.nEq>3 ){ sqlite3ProgressCheck(pParse); } whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); } pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nBtm = saved_nBtm; pNew->u.btree.nTop = saved_nTop; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; pNew->nOut = saved_nOut; pNew->nLTerm = saved_nLTerm; /* Consider using a skip-scan if there are no WHERE clause constraints ** available for the left-most terms of the index, and if the average ** number of repeats in the left-most terms is at least 18. ** ** The magic number 18 is selected on the basis that scanning 17 rows ** is almost always quicker than an index seek (even though if the index ** contains fewer than 2^17 rows we assume otherwise in other parts of ** the code). And, even if it is not, it should not be too much slower. ** On the other hand, the extra seeks could end up being significantly ** more expensive. */ assert( 42==sqlite3LogEst(18) ); if( saved_nEq==saved_nSkip && saved_nEq+1nKeyCol && saved_nEq==pNew->nLTerm && pProbe->noSkipScan==0 && pProbe->hasStat1!=0 && OptimizationEnabled(db, SQLITE_SkipScan) && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK ){ LogEst nIter; pNew->u.btree.nEq++; pNew->nSkip++; pNew->aLTerm[pNew->nLTerm++] = 0; pNew->wsFlags |= WHERE_SKIPSCAN; nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; pNew->nOut -= nIter; /* TUNING: Because uncertainties in the estimates for skip-scan queries, ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ nIter += 5; whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); pNew->nOut = saved_nOut; pNew->u.btree.nEq = saved_nEq; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; } WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); return rc; } /* ** Return True if it is possible that pIndex might be useful in ** implementing the ORDER BY clause in pBuilder. ** ** Return False if pBuilder does not contain an ORDER BY clause or ** if there is no way for pIndex to be useful in implementing that ** ORDER BY clause. */ static int indexMightHelpWithOrderBy( WhereLoopBuilder *pBuilder, Index *pIndex, int iCursor ){ ExprList *pOB; ExprList *aColExpr; int ii, jj; if( pIndex->bUnordered ) return 0; if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; for(ii=0; iinExpr; ii++){ Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); if( NEVER(pExpr==0) ) continue; if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ if( pExpr->iColumn<0 ) return 1; for(jj=0; jjnKeyCol; jj++){ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; } }else if( (aColExpr = pIndex->aColExpr)!=0 ){ for(jj=0; jjnKeyCol; jj++){ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ return 1; } } } } return 0; } /* Check to see if a partial index with pPartIndexWhere can be used ** in the current query. Return true if it can be and false if not. */ static int whereUsablePartialIndex( int iTab, /* The table for which we want an index */ u8 jointype, /* The JT_* flags on the join */ WhereClause *pWC, /* The WHERE clause of the query */ Expr *pWhere /* The WHERE clause from the partial index */ ){ int i; WhereTerm *pTerm; Parse *pParse; if( jointype & JT_LTORJ ) return 0; pParse = pWC->pWInfo->pParse; while( pWhere->op==TK_AND ){ if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; pWhere = pWhere->pRight; } if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; for(i=0, pTerm=pWC->a; inTerm; i++, pTerm++){ Expr *pExpr; pExpr = pTerm->pExpr; if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) && (pTerm->wtFlags & TERM_VNULL)==0 ){ return 1; } } return 0; } /* ** pIdx is an index containing expressions. Check it see if any of the ** expressions in the index match the pExpr expression. */ static int exprIsCoveredByIndex( const Expr *pExpr, const Index *pIdx, int iTabCur ){ int i; for(i=0; inColumn; i++){ if( pIdx->aiColumn[i]==XN_EXPR && sqlite3ExprCompare(0, pExpr, pIdx->aColExpr->a[i].pExpr, iTabCur)==0 ){ return 1; } } return 0; } /* ** Structure passed to the whereIsCoveringIndex Walker callback. */ typedef struct CoveringIndexCheck CoveringIndexCheck; struct CoveringIndexCheck { Index *pIdx; /* The index */ int iTabCur; /* Cursor number for the corresponding table */ u8 bExpr; /* Uses an indexed expression */ u8 bUnidx; /* Uses an unindexed column not within an indexed expr */ }; /* ** Information passed in is pWalk->u.pCovIdxCk. Call it pCk. ** ** If the Expr node references the table with cursor pCk->iTabCur, then ** make sure that column is covered by the index pCk->pIdx. We know that ** all columns less than 63 (really BMS-1) are covered, so we don't need ** to check them. But we do need to check any column at 63 or greater. ** ** If the index does not cover the column, then set pWalk->eCode to ** non-zero and return WRC_Abort to stop the search. ** ** If this node does not disprove that the index can be a covering index, ** then just return WRC_Continue, to continue the search. ** ** If pCk->pIdx contains indexed expressions and one of those expressions ** matches pExpr, then prune the search. */ static int whereIsCoveringIndexWalkCallback(Walker *pWalk, Expr *pExpr){ int i; /* Loop counter */ const Index *pIdx; /* The index of interest */ const i16 *aiColumn; /* Columns contained in the index */ u16 nColumn; /* Number of columns in the index */ CoveringIndexCheck *pCk; /* Info about this search */ pCk = pWalk->u.pCovIdxCk; pIdx = pCk->pIdx; if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) ){ /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/ if( pExpr->iTable!=pCk->iTabCur ) return WRC_Continue; pIdx = pWalk->u.pCovIdxCk->pIdx; aiColumn = pIdx->aiColumn; nColumn = pIdx->nColumn; for(i=0; iiColumn ) return WRC_Continue; } pCk->bUnidx = 1; return WRC_Abort; }else if( pIdx->bHasExpr && exprIsCoveredByIndex(pExpr, pIdx, pWalk->u.pCovIdxCk->iTabCur) ){ pCk->bExpr = 1; return WRC_Prune; } return WRC_Continue; } /* ** pIdx is an index that covers all of the low-number columns used by ** pWInfo->pSelect (columns from 0 through 62) or an index that has ** expressions terms. Hence, we cannot determine whether or not it is ** a covering index by using the colUsed bitmasks. We have to do a search ** to see if the index is covering. This routine does that search. ** ** The return value is one of these: ** ** 0 The index is definitely not a covering index ** ** WHERE_IDX_ONLY The index is definitely a covering index ** ** WHERE_EXPRIDX The index is likely a covering index, but it is ** difficult to determine precisely because of the ** expressions that are indexed. Score it as a ** covering index, but still keep the main table open ** just in case we need it. ** ** This routine is an optimization. It is always safe to return zero. ** But returning one of the other two values when zero should have been ** returned can lead to incorrect bytecode and assertion faults. */ static SQLITE_NOINLINE u32 whereIsCoveringIndex( WhereInfo *pWInfo, /* The WHERE clause context */ Index *pIdx, /* Index that is being tested */ int iTabCur /* Cursor for the table being indexed */ ){ int i, rc; struct CoveringIndexCheck ck; Walker w; if( pWInfo->pSelect==0 ){ /* We don't have access to the full query, so we cannot check to see ** if pIdx is covering. Assume it is not. */ return 0; } if( pIdx->bHasExpr==0 ){ for(i=0; inColumn; i++){ if( pIdx->aiColumn[i]>=BMS-1 ) break; } if( i>=pIdx->nColumn ){ /* pIdx does not index any columns greater than 62, but we know from ** colMask that columns greater than 62 are used, so this is not a ** covering index */ return 0; } } ck.pIdx = pIdx; ck.iTabCur = iTabCur; ck.bExpr = 0; ck.bUnidx = 0; memset(&w, 0, sizeof(w)); w.xExprCallback = whereIsCoveringIndexWalkCallback; w.xSelectCallback = sqlite3SelectWalkNoop; w.u.pCovIdxCk = &ck; sqlite3WalkSelect(&w, pWInfo->pSelect); if( ck.bUnidx ){ rc = 0; }else if( ck.bExpr ){ rc = WHERE_EXPRIDX; }else{ rc = WHERE_IDX_ONLY; } return rc; } /* ** Add all WhereLoop objects for a single table of the join where the table ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be ** a b-tree table, not a virtual table. ** ** The costs (WhereLoop.rRun) of the b-tree loops added by this function ** are calculated as follows: ** ** For a full scan, assuming the table (or index) contains nRow rows: ** ** cost = nRow * 3.0 // full-table scan ** cost = nRow * K // scan of covering index ** cost = nRow * (K+3.0) // scan of non-covering index ** ** where K is a value between 1.1 and 3.0 set based on the relative ** estimated average size of the index and table records. ** ** For an index scan, where nVisit is the number of index rows visited ** by the scan, and nSeek is the number of seek operations required on ** the index b-tree: ** ** cost = nSeek * (log(nRow) + K * nVisit) // covering index ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index ** ** Normally, nSeek is 1. nSeek values greater than 1 come about if the ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. ** ** The estimated values (nRow, nVisit, nSeek) often contain a large amount ** of uncertainty. For this reason, scoring is designed to pick plans that ** "do the least harm" if the estimates are inaccurate. For example, a ** log(nRow) factor is omitted from a non-covering index scan in order to ** bias the scoring in favor of using an index, since the worst-case ** performance of using an index is far better than the worst-case performance ** of a full table scan. */ static int whereLoopAddBtree( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq /* Extra prerequisites for using this table */ ){ WhereInfo *pWInfo; /* WHERE analysis context */ Index *pProbe; /* An index we are evaluating */ Index sPk; /* A fake index object for the primary key */ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ SrcList *pTabList; /* The FROM clause */ SrcItem *pSrc; /* The FROM clause btree term to add */ WhereLoop *pNew; /* Template WhereLoop object */ int rc = SQLITE_OK; /* Return code */ int iSortIdx = 1; /* Index number */ int b; /* A boolean value */ LogEst rSize; /* number of rows in the table */ WhereClause *pWC; /* The parsed WHERE clause */ Table *pTab; /* Table being queried */ pNew = pBuilder->pNew; pWInfo = pBuilder->pWInfo; pTabList = pWInfo->pTabList; pSrc = pTabList->a + pNew->iTab; pTab = pSrc->pTab; pWC = pBuilder->pWC; assert( !IsVirtual(pSrc->pTab) ); if( pSrc->fg.isIndexedBy ){ assert( pSrc->fg.isCte==0 ); /* An INDEXED BY clause specifies a particular index to use */ pProbe = pSrc->u2.pIBIndex; }else if( !HasRowid(pTab) ){ pProbe = pTab->pIndex; }else{ /* There is no INDEXED BY clause. Create a fake Index object in local ** variable sPk to represent the rowid primary key index. Make this ** fake index the first in a chain of Index objects with all of the real ** indices to follow */ Index *pFirst; /* First of real indices on the table */ memset(&sPk, 0, sizeof(Index)); sPk.nKeyCol = 1; sPk.nColumn = 1; sPk.aiColumn = &aiColumnPk; sPk.aiRowLogEst = aiRowEstPk; sPk.onError = OE_Replace; sPk.pTable = pTab; sPk.szIdxRow = 3; /* TUNING: Interior rows of IPK table are very small */ sPk.idxType = SQLITE_IDXTYPE_IPK; aiRowEstPk[0] = pTab->nRowLogEst; aiRowEstPk[1] = 0; pFirst = pSrc->pTab->pIndex; if( pSrc->fg.notIndexed==0 ){ /* The real indices of the table are only considered if the ** NOT INDEXED qualifier is omitted from the FROM clause */ sPk.pNext = pFirst; } pProbe = &sPk; } rSize = pTab->nRowLogEst; #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* Automatic indexes */ if( !pBuilder->pOrSet /* Not part of an OR optimization */ && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ && !pSrc->fg.isCorrelated /* Not a correlated subquery */ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ ){ /* Generate auto-index WhereLoops */ LogEst rLogSize; /* Logarithm of the number of rows in the table */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; rLogSize = estLog(rSize); for(pTerm=pWC->a; rc==SQLITE_OK && pTermprereqRight & pNew->maskSelf ) continue; if( termCanDriveIndex(pTerm, pSrc, 0) ){ pNew->u.btree.nEq = 1; pNew->nSkip = 0; pNew->u.btree.pIndex = 0; pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; /* TUNING: One-time cost for computing the automatic index is ** estimated to be X*N*log2(N) where N is the number of rows in ** the table being indexed and where X is 7 (LogEst=28) for normal ** tables or 0.5 (LogEst=-10) for views and subqueries. The value ** of X is smaller for views and subqueries so that the query planner ** will be more aggressive about generating automatic indexes for ** those objects, since there is no opportunity to add schema ** indexes on subqueries and views. */ pNew->rSetup = rLogSize + rSize; if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ pNew->rSetup += 28; }else{ pNew->rSetup -= 25; /* Greatly reduced setup cost for auto indexes ** on ephemeral materializations of views */ } ApplyCostMultiplier(pNew->rSetup, pTab->costMult); if( pNew->rSetup<0 ) pNew->rSetup = 0; /* TUNING: Each index lookup yields 20 rows in the table. This ** is more than the usual guess of 10 rows, since we have no way ** of knowing how selective the index will ultimately be. It would ** not be unreasonable to make this value much larger. */ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); pNew->wsFlags = WHERE_AUTO_INDEX; pNew->prereq = mPrereq | pTerm->prereqRight; rc = whereLoopInsert(pBuilder, pNew); } } } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* Loop over all indices. If there was an INDEXED BY clause, then only ** consider index pProbe. */ for(; rc==SQLITE_OK && pProbe; pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ ){ if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, pProbe->pPartIdxWhere) ){ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ continue; /* Partial index inappropriate for this query */ } if( pProbe->bNoQuery ) continue; rSize = pProbe->aiRowLogEst[0]; pNew->u.btree.nEq = 0; pNew->u.btree.nBtm = 0; pNew->u.btree.nTop = 0; pNew->nSkip = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; pNew->rSetup = 0; pNew->prereq = mPrereq; pNew->nOut = rSize; pNew->u.btree.pIndex = pProbe; b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ /* Integer primary key index */ pNew->wsFlags = WHERE_IPK; /* Full table scan */ pNew->iSortIdx = b ? iSortIdx : 0; /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an ** extra cost designed to discourage the use of full table scans, ** since index lookups have better worst-case performance if our ** stat guesses are wrong. Reduce the 3.0 penalty slightly ** (to 2.75) if we have valid STAT4 information for the table. ** At 2.75, a full table scan is preferred over using an index on ** a column with just two distinct values where each value has about ** an equal number of appearances. Without STAT4 data, we still want ** to use an index in that case, since the constraint might be for ** the scarcer of the two values, and in that case an index lookup is ** better. */ #ifdef SQLITE_ENABLE_STAT4 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); #else pNew->rRun = rSize + 16; #endif if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){ pNew->wsFlags |= WHERE_VIEWSCAN; } ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); pNew->nOut = rSize; if( rc ) break; }else{ Bitmask m; if( pProbe->isCovering ){ m = 0; pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; }else{ m = pSrc->colUsed & pProbe->colNotIdxed; pNew->wsFlags = WHERE_INDEXED; if( m==TOPBIT || (pProbe->bHasExpr && !pProbe->bHasVCol && m!=0) ){ u32 isCov = whereIsCoveringIndex(pWInfo, pProbe, pSrc->iCursor); if( isCov==0 ){ WHERETRACE(0x200, ("-> %s is not a covering index" " according to whereIsCoveringIndex()\n", pProbe->zName)); assert( m!=0 ); }else{ m = 0; pNew->wsFlags |= isCov; if( isCov & WHERE_IDX_ONLY ){ WHERETRACE(0x200, ("-> %s is a covering expression index" " according to whereIsCoveringIndex()\n", pProbe->zName)); }else{ assert( isCov==WHERE_EXPRIDX ); WHERETRACE(0x200, ("-> %s might be a covering expression index" " according to whereIsCoveringIndex()\n", pProbe->zName)); } } }else if( m==0 ){ WHERETRACE(0x200, ("-> %s a covering index according to bitmasks\n", pProbe->zName, m==0 ? "is" : "is not")); pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; } } /* Full scan via index */ if( b || !HasRowid(pTab) || pProbe->pPartIdxWhere!=0 || pSrc->fg.isIndexedBy || ( m==0 && pProbe->bUnordered==0 && (pProbe->szIdxRowszTabRow) && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 && sqlite3GlobalConfig.bUseCis && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) ) ){ pNew->iSortIdx = b ? iSortIdx : 0; /* The cost of visiting the index rows is N*K, where K is ** between 1.1 and 3.0, depending on the relative sizes of the ** index and table rows. */ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; if( m!=0 ){ /* If this is a non-covering index scan, add in the cost of ** doing table lookups. The cost will be 3x the number of ** lookups. Take into account WHERE clause terms that can be ** satisfied using just the index, and that do not require a ** table lookup. */ LogEst nLookup = rSize + 16; /* Base cost: N*3 */ int ii; int iCur = pSrc->iCursor; WhereClause *pWC2 = &pWInfo->sWC; for(ii=0; iinTerm; ii++){ WhereTerm *pTerm = &pWC2->a[ii]; if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ break; } /* pTerm can be evaluated using just the index. So reduce ** the expected number of table lookups accordingly */ if( pTerm->truthProb<=0 ){ nLookup += pTerm->truthProb; }else{ nLookup--; if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; } } pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); } ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN ** because the cursor used to access the index might not be ** positioned to the correct row during the right-join no-match ** loop. */ }else{ rc = whereLoopInsert(pBuilder, pNew); } pNew->nOut = rSize; if( rc ) break; } } pBuilder->bldFlags1 = 0; rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ /* If a non-unique index is used, or if a prefix of the key for ** unique index is used (making the index functionally non-unique) ** then the sqlite_stat1 data becomes important for scoring the ** plan */ pTab->tabFlags |= TF_StatsUsed; } #ifdef SQLITE_ENABLE_STAT4 sqlite3Stat4ProbeFree(pBuilder->pRec); pBuilder->nRecValid = 0; pBuilder->pRec = 0; #endif } return rc; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if pTerm is a virtual table LIMIT or OFFSET term. */ static int isLimitTerm(WhereTerm *pTerm){ assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; } /* ** Argument pIdxInfo is already populated with all constraints that may ** be used by the virtual table identified by pBuilder->pNew->iTab. This ** function marks a subset of those constraints usable, invokes the ** xBestIndex method and adds the returned plan to pBuilder. ** ** A constraint is marked usable if: ** ** * Argument mUsable indicates that its prerequisites are available, and ** ** * It is not one of the operators specified in the mExclude mask passed ** as the fourth argument (which in practice is either WO_IN or 0). ** ** Argument mPrereq is a mask of tables that must be scanned before the ** virtual table in question. These are added to the plans prerequisites ** before it is added to pBuilder. ** ** Output parameter *pbIn is set to true if the plan added to pBuilder ** uses one or more WO_IN terms, or false otherwise. */ static int whereLoopAddVirtualOne( WhereLoopBuilder *pBuilder, Bitmask mPrereq, /* Mask of tables that must be used. */ Bitmask mUsable, /* Mask of usable tables */ u16 mExclude, /* Exclude terms using these operators */ sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ u16 mNoOmit, /* Do not omit these constraints */ int *pbIn, /* OUT: True if plan uses an IN(...) op */ int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ ){ WhereClause *pWC = pBuilder->pWC; HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; int i; int mxTerm; int rc = SQLITE_OK; WhereLoop *pNew = pBuilder->pNew; Parse *pParse = pBuilder->pWInfo->pParse; SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; int nConstraint = pIdxInfo->nConstraint; assert( (mUsable & mPrereq)==mPrereq ); *pbIn = 0; pNew->prereq = mPrereq; /* Set the usable flag on the subset of constraints identified by ** arguments mUsable and mExclude. */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; ia[pIdxCons->iTermOffset]; pIdxCons->usable = 0; if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight && (pTerm->eOperator & mExclude)==0 && (pbRetryLimit || !isLimitTerm(pTerm)) ){ pIdxCons->usable = 1; } } /* Initialize the output fields of the sqlite3_index_info structure */ memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); assert( pIdxInfo->needToFreeIdxStr==0 ); pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->orderByConsumed = 0; pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; pIdxInfo->idxFlags = 0; pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; pHidden->mHandleIn = 0; /* Invoke the virtual table xBestIndex() method */ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); if( rc ){ if( rc==SQLITE_CONSTRAINT ){ /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means ** that the particular combination of parameters provided is unusable. ** Make no entries in the loop table. */ WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n")); return SQLITE_OK; } return rc; } mxTerm = -1; assert( pNew->nLSlot>=nConstraint ); memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i=0 ){ WhereTerm *pTerm; int j = pIdxCons->iTermOffset; if( iTerm>=nConstraint || j<0 || j>=pWC->nTerm || pNew->aLTerm[iTerm]!=0 || pIdxCons->usable==0 ){ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); testcase( pIdxInfo->needToFreeIdxStr ); return SQLITE_ERROR; } testcase( iTerm==nConstraint-1 ); testcase( j==0 ); testcase( j==pWC->nTerm-1 ); pTerm = &pWC->a[j]; pNew->prereq |= pTerm->prereqRight; assert( iTermnLSlot ); pNew->aLTerm[iTerm] = pTerm; if( iTerm>mxTerm ) mxTerm = iTerm; testcase( iTerm==15 ); testcase( iTerm==16 ); if( pUsage[i].omit ){ if( i<16 && ((1<u.vtab.omitMask |= 1<eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ pNew->u.vtab.bOmitOffset = 1; } } if( SMASKBIT32(i) & pHidden->mHandleIn ){ pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); }else if( (pTerm->eOperator & WO_IN)!=0 ){ /* A virtual table that is constrained by an IN clause may not ** consume the ORDER BY clause because (1) the order of IN terms ** is not necessarily related to the order of output terms and ** (2) Multiple outputs from a single IN value will not merge ** together. */ pIdxInfo->orderByConsumed = 0; pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; *pbIn = 1; assert( (mExclude & WO_IN)==0 ); } assert( pbRetryLimit || !isLimitTerm(pTerm) ); if( isLimitTerm(pTerm) && *pbIn ){ /* If there is an IN(...) term handled as an == (separate call to ** xFilter for each value on the RHS of the IN) and a LIMIT or ** OFFSET term handled as well, the plan is unusable. Set output ** variable *pbRetryLimit to true to tell the caller to retry with ** LIMIT and OFFSET disabled. */ if( pIdxInfo->needToFreeIdxStr ){ sqlite3_free(pIdxInfo->idxStr); pIdxInfo->idxStr = 0; pIdxInfo->needToFreeIdxStr = 0; } *pbRetryLimit = 1; return SQLITE_OK; } } } pNew->nLTerm = mxTerm+1; for(i=0; i<=mxTerm; i++){ if( pNew->aLTerm[i]==0 ){ /* The non-zero argvIdx values must be contiguous. Raise an ** error if they are not */ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); testcase( pIdxInfo->needToFreeIdxStr ); return SQLITE_ERROR; } } assert( pNew->nLTerm<=pNew->nLSlot ); pNew->u.vtab.idxNum = pIdxInfo->idxNum; pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; pIdxInfo->needToFreeIdxStr = 0; pNew->u.vtab.idxStr = pIdxInfo->idxStr; pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? pIdxInfo->nOrderBy : 0); pNew->rSetup = 0; pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated ** that the scan will visit at most one row. Clear it otherwise. */ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ pNew->wsFlags |= WHERE_ONEROW; }else{ pNew->wsFlags &= ~WHERE_ONEROW; } rc = whereLoopInsert(pBuilder, pNew); if( pNew->u.vtab.needFree ){ sqlite3_free(pNew->u.vtab.idxStr); pNew->u.vtab.needFree = 0; } WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", *pbIn, (sqlite3_uint64)mPrereq, (sqlite3_uint64)(pNew->prereq & ~mPrereq))); return rc; } /* ** Return the collating sequence for a constraint passed into xBestIndex. ** ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. ** This routine depends on there being a HiddenIndexInfo structure immediately ** following the sqlite3_index_info structure. ** ** Return a pointer to the collation name: ** ** 1. If there is an explicit COLLATE operator on the constraint, return it. ** ** 2. Else, if the column has an alternative collation, return that. ** ** 3. Otherwise, return "BINARY". */ SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; const char *zRet = 0; if( iCons>=0 && iConsnConstraint ){ CollSeq *pC = 0; int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; Expr *pX = pHidden->pWC->a[iTerm].pExpr; if( pX->pLeft ){ pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); } zRet = (pC ? pC->zName : sqlite3StrBINARY); } return zRet; } /* ** Return true if constraint iCons is really an IN(...) constraint, or ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) ** or clear (if bHandle==0) the flag to handle it using an iterator. */ SQLITE_API int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; u32 m = SMASKBIT32(iCons); if( m & pHidden->mIn ){ if( bHandle==0 ){ pHidden->mHandleIn &= ~m; }else if( bHandle>0 ){ pHidden->mHandleIn |= m; } return 1; } return 0; } /* ** This interface is callable from within the xBestIndex callback only. ** ** If possible, set (*ppVal) to point to an object containing the value ** on the right-hand-side of constraint iCons. */ SQLITE_API int sqlite3_vtab_rhs_value( sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ int iCons, /* Constraint for which RHS is wanted */ sqlite3_value **ppVal /* Write value extracted here */ ){ HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; sqlite3_value *pVal = 0; int rc = SQLITE_OK; if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ }else{ if( pH->aRhs[iCons]==0 ){ WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; rc = sqlite3ValueFromExpr( pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), SQLITE_AFF_BLOB, &pH->aRhs[iCons] ); testcase( rc!=SQLITE_OK ); } pVal = pH->aRhs[iCons]; } *ppVal = pVal; if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ } return rc; } /* ** Return true if ORDER BY clause may be handled as DISTINCT. */ SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); return pHidden->eDistinct; } /* ** Cause the prepared statement that is associated with a call to ** xBestIndex to potentially use all schemas. If the statement being ** prepared is read-only, then just start read transactions on all ** schemas. But if this is a write operation, start writes on all ** schemas. ** ** This is used by the (built-in) sqlite_dbpage virtual table. */ SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(Parse *pParse){ int nDb = pParse->db->nDb; int i; for(i=0; iwriteMask) ){ for(i=0; ipNew->iTab. That table is guaranteed to be a virtual table. ** ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause ** entries that occur before the virtual table in the FROM clause and are ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the ** mUnusable mask contains all FROM clause entries that occur after the ** virtual table and are separated from it by at least one LEFT or ** CROSS JOIN. ** ** For example, if the query were: ** ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; ** ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). ** ** All the tables in mPrereq must be scanned before the current virtual ** table. So any terms for which all prerequisites are satisfied by ** mPrereq may be specified as "usable" in all calls to xBestIndex. ** Conversely, all tables in mUnusable must be scanned after the current ** virtual table, so any terms for which the prerequisites overlap with ** mUnusable should always be configured as "not-usable" for xBestIndex. */ static int whereLoopAddVirtual( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq, /* Tables that must be scanned before this one */ Bitmask mUnusable /* Tables that must be scanned after this one */ ){ int rc = SQLITE_OK; /* Return code */ WhereInfo *pWInfo; /* WHERE analysis context */ Parse *pParse; /* The parsing context */ WhereClause *pWC; /* The WHERE clause */ SrcItem *pSrc; /* The FROM clause term to search */ sqlite3_index_info *p; /* Object to pass to xBestIndex() */ int nConstraint; /* Number of constraints in p */ int bIn; /* True if plan uses IN(...) operator */ WhereLoop *pNew; Bitmask mBest; /* Tables used by best possible plan */ u16 mNoOmit; int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ assert( (mPrereq & mUnusable)==0 ); pWInfo = pBuilder->pWInfo; pParse = pWInfo->pParse; pWC = pBuilder->pWC; pNew = pBuilder->pNew; pSrc = &pWInfo->pTabList->a[pNew->iTab]; assert( IsVirtual(pSrc->pTab) ); p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); if( p==0 ) return SQLITE_NOMEM_BKPT; pNew->rSetup = 0; pNew->wsFlags = WHERE_VIRTUALTABLE; pNew->nLTerm = 0; pNew->u.vtab.needFree = 0; nConstraint = p->nConstraint; if( whereLoopResize(pParse->db, pNew, nConstraint) ){ freeIndexInfo(pParse->db, p); return SQLITE_NOMEM_BKPT; } /* First call xBestIndex() with all constraints usable. */ WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); WHERETRACE(0x800, (" VirtualOne: all usable\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry ); if( bRetry ){ assert( rc==SQLITE_OK ); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 ); } /* If the call to xBestIndex() with all terms enabled produced a plan ** that does not require any source tables (IOW: a plan with mBest==0) ** and does not use an IN(...) operator, then there is no point in making ** any further calls to xBestIndex() since they will all return the same ** result (if the xBestIndex() implementation is sane). */ if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ int seenZero = 0; /* True if a plan with no prereqs seen */ int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ Bitmask mPrev = 0; Bitmask mBestNoIn = 0; /* If the plan produced by the earlier call uses an IN(...) term, call ** xBestIndex again, this time with IN(...) terms disabled. */ if( bIn ){ WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); assert( bIn==0 ); mBestNoIn = pNew->prereq & ~mPrereq; if( mBestNoIn==0 ){ seenZero = 1; seenZeroNoIN = 1; } } /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) ** in the set of terms that apply to the current virtual table. */ while( rc==SQLITE_OK ){ int i; Bitmask mNext = ALLBITS; assert( mNext>0 ); for(i=0; ia[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq ); if( mThis>mPrev && mThisprereq==mPrereq ){ seenZero = 1; if( bIn==0 ) seenZeroNoIN = 1; } } /* If the calls to xBestIndex() in the above loop did not find a plan ** that requires no source tables at all (i.e. one guaranteed to be ** usable), make a call here with all source tables disabled */ if( rc==SQLITE_OK && seenZero==0 ){ WHERETRACE(0x800, (" VirtualOne: all disabled\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); if( bIn==0 ) seenZeroNoIN = 1; } /* If the calls to xBestIndex() have so far failed to find a plan ** that requires no source tables at all and does not use an IN(...) ** operator, make a final call to obtain one here. */ if( rc==SQLITE_OK && seenZeroNoIN==0 ){ WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); } } if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); freeIndexInfo(pParse->db, p); WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Add WhereLoop entries to handle OR terms. This works for either ** btrees or virtual tables. */ static int whereLoopAddOr( WhereLoopBuilder *pBuilder, Bitmask mPrereq, Bitmask mUnusable ){ WhereInfo *pWInfo = pBuilder->pWInfo; WhereClause *pWC; WhereLoop *pNew; WhereTerm *pTerm, *pWCEnd; int rc = SQLITE_OK; int iCur; WhereClause tempWC; WhereLoopBuilder sSubBuild; WhereOrSet sSum, sCur; SrcItem *pItem; pWC = pBuilder->pWC; pWCEnd = pWC->a + pWC->nTerm; pNew = pBuilder->pNew; memset(&sSum, 0, sizeof(sSum)); pItem = pWInfo->pTabList->a + pNew->iTab; iCur = pItem->iCursor; /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; for(pTerm=pWC->a; pTermeOperator & WO_OR)!=0 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 ){ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int once = 1; int i, j; sSubBuild = *pBuilder; sSubBuild.pOrSet = &sCur; WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm)); for(pOrTerm=pOrWC->a; pOrTermeOperator & WO_AND)!=0 ){ sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; }else if( pOrTerm->leftCursor==iCur ){ tempWC.pWInfo = pWC->pWInfo; tempWC.pOuter = pWC; tempWC.op = TK_AND; tempWC.nTerm = 1; tempWC.nBase = 1; tempWC.a = pOrTerm; sSubBuild.pWC = &tempWC; }else{ continue; } sCur.n = 0; #ifdef WHERETRACE_ENABLED WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n", (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); if( sqlite3WhereTrace & 0x20000 ){ sqlite3WhereClausePrint(sSubBuild.pWC); } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pItem->pTab) ){ rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); }else #endif { rc = whereLoopAddBtree(&sSubBuild, mPrereq); } if( rc==SQLITE_OK ){ rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); } testcase( rc==SQLITE_NOMEM && sCur.n>0 ); testcase( rc==SQLITE_DONE ); if( sCur.n==0 ){ sSum.n = 0; break; }else if( once ){ whereOrMove(&sSum, &sCur); once = 0; }else{ WhereOrSet sPrev; whereOrMove(&sPrev, &sSum); sSum.n = 0; for(i=0; inLTerm = 1; pNew->aLTerm[0] = pTerm; pNew->wsFlags = WHERE_MULTI_OR; pNew->rSetup = 0; pNew->iSortIdx = 0; memset(&pNew->u, 0, sizeof(pNew->u)); for(i=0; rc==SQLITE_OK && irRun = sSum.a[i].rRun + 1; pNew->nOut = sSum.a[i].nOut; pNew->prereq = sSum.a[i].prereq; rc = whereLoopInsert(pBuilder, pNew); } WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm)); } } return rc; } /* ** Add all WhereLoop objects for all tables */ static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo = pBuilder->pWInfo; Bitmask mPrereq = 0; Bitmask mPrior = 0; int iTab; SrcList *pTabList = pWInfo->pTabList; SrcItem *pItem; SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; sqlite3 *db = pWInfo->pParse->db; int rc = SQLITE_OK; int bFirstPastRJ = 0; int hasRightJoin = 0; WhereLoop *pNew; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; /* Verify that pNew has already been initialized */ assert( pNew->nLTerm==0 ); assert( pNew->wsFlags==0 ); assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); assert( pNew->aLTerm!=0 ); pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; for(iTab=0, pItem=pTabList->a; pItemiTab = iTab; pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if( bFirstPastRJ || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 ){ /* Add prerequisites to prevent reordering of FROM clause terms ** across CROSS joins and outer joins. The bFirstPastRJ boolean ** prevents the right operand of a RIGHT JOIN from being swapped with ** other elements even further to the right. ** ** The JT_LTORJ case and the hasRightJoin flag work together to ** prevent FROM-clause terms from moving from the right side of ** a LEFT JOIN over to the left side of that join if the LEFT JOIN ** is itself on the left side of a RIGHT JOIN. */ if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; mPrereq |= mPrior; bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; }else if( !hasRightJoin ){ mPrereq = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pItem->pTab) ){ SrcItem *p; for(p=&pItem[1]; pfg.jointype & (JT_OUTER|JT_CROSS)) ){ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); } } rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ { rc = whereLoopAddBtree(pBuilder, mPrereq); } if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); } mPrior |= pNew->maskSelf; if( rc || db->mallocFailed ){ if( rc==SQLITE_DONE ){ /* We hit the query planner search limit set by iPlanLimit */ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); rc = SQLITE_OK; }else{ break; } } } whereLoopClear(db, pNew); return rc; } /* ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th ** parameters) to see if it outputs rows in the requested ORDER BY ** (or GROUP BY) without requiring a separate sort operation. Return N: ** ** N>0: N terms of the ORDER BY clause are satisfied ** N==0: No terms of the ORDER BY clause are satisfied ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. ** ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as ** strict. With GROUP BY and DISTINCT the only requirement is that ** equivalent rows appear immediately adjacent to one another. GROUP BY ** and DISTINCT do not require rows to appear in any particular order as long ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT ** the pOrderBy terms can be matched in any order. With ORDER BY, the ** pOrderBy terms must be matched in strict left-to-right order. */ static i8 wherePathSatisfiesOrderBy( WhereInfo *pWInfo, /* The WHERE clause */ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ WherePath *pPath, /* The WherePath to check */ u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ u16 nLoop, /* Number of entries in pPath->aLoop[] */ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ ){ u8 revSet; /* True if rev is known */ u8 rev; /* Composite sort order */ u8 revIdx; /* Index sort order */ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ u16 eqOpMask; /* Allowed equality operators */ u16 nKeyCol; /* Number of key columns in pIndex */ u16 nColumn; /* Total number of ordered columns in the index */ u16 nOrderBy; /* Number terms in the ORDER BY clause */ int iLoop; /* Index of WhereLoop in pPath being processed */ int i, j; /* Loop counters */ int iCur; /* Cursor number for current WhereLoop */ int iColumn; /* A column number within table iCur */ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ WhereTerm *pTerm; /* A single term of the WHERE clause */ Expr *pOBExpr; /* An expression from the ORDER BY clause */ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ Index *pIndex; /* The index associated with pLoop */ sqlite3 *db = pWInfo->pParse->db; /* Database connection */ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ Bitmask obDone; /* Mask of all ORDER BY terms */ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ Bitmask ready; /* Mask of inner loops */ /* ** We say the WhereLoop is "one-row" if it generates no more than one ** row of output. A WhereLoop is one-row if all of the following are true: ** (a) All index columns match with WHERE_COLUMN_EQ. ** (b) The index is unique ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. ** ** We say the WhereLoop is "order-distinct" if the set of columns from ** that WhereLoop that are in the ORDER BY clause are different for every ** row of the WhereLoop. Every one-row WhereLoop is automatically ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause ** is not order-distinct. To be order-distinct is not quite the same as being ** UNIQUE since a UNIQUE column or index can have multiple rows that ** are NULL and NULL values are equivalent for the purpose of order-distinct. ** To be order-distinct, the columns must be UNIQUE and NOT NULL. ** ** The rowid for a table is always UNIQUE and NOT NULL so whenever the ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is ** automatically order-distinct. */ assert( pOrderBy!=0 ); if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; nOrderBy = pOrderBy->nExpr; testcase( nOrderBy==BMS-1 ); if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ isOrderDistinct = 1; obDone = MASKBIT(nOrderBy)-1; orderDistinctMask = 0; ready = 0; eqOpMask = WO_EQ | WO_IS | WO_ISNULL; if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ eqOpMask |= WO_IN; } for(iLoop=0; isOrderDistinct && obSat0 ) ready |= pLoop->maskSelf; if( iLoopaLoop[iLoop]; if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; }else{ pLoop = pLast; } if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ if( pLoop->u.vtab.isOrdered && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) ){ obSat = obDone; } break; }else if( wctrlFlags & WHERE_DISTINCTBY ){ pLoop->u.btree.nDistinctCol = 0; } iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; /* Mark off any ORDER BY term X that is a column in the table of ** the current loop for which there is term in the WHERE ** clause of the form X IS NULL or X=? that reference only outer ** loops. */ for(i=0; ia[i].pExpr); if( NEVER(pOBExpr==0) ) continue; if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, ~ready, eqOpMask, 0); if( pTerm==0 ) continue; if( pTerm->eOperator==WO_IN ){ /* IN terms are only valid for sorting in the ORDER BY LIMIT ** optimization, and then only if they are actually used ** by the query plan */ assert( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); for(j=0; jnLTerm && pTerm!=pLoop->aLTerm[j]; j++){} if( j>=pLoop->nLTerm ) continue; } if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ Parse *pParse = pWInfo->pParse; CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); assert( pColl1 ); if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ continue; } testcase( pTerm->pExpr->op==TK_IS ); } obSat |= MASKBIT(i); } if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ if( pLoop->wsFlags & WHERE_IPK ){ pIndex = 0; nKeyCol = 0; nColumn = 1; }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ return 0; }else{ nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); assert( pIndex->aiColumn[nColumn-1]==XN_ROWID || !HasRowid(pIndex->pTable)); /* All relevant terms of the index must also be non-NULL in order ** for isOrderDistinct to be true. So the isOrderDistint value ** computed here might be a false positive. Corrections will be ** made at tag-20210426-1 below */ isOrderDistinct = IsUniqueIndex(pIndex) && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; } /* Loop through all columns of the index and deal with the ones ** that are not constrained by == or IN. */ rev = revSet = 0; distinctColumns = 0; for(j=0; j=pLoop->u.btree.nEq || (pLoop->aLTerm[j]==0)==(jnSkip) ); if( ju.btree.nEq && j>=pLoop->nSkip ){ u16 eOp = pLoop->aLTerm[j]->eOperator; /* Skip over == and IS and ISNULL terms. (Also skip IN terms when ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL ** terms imply that the index is not UNIQUE NOT NULL in which case ** the loop need to be marked as not order-distinct because it can ** have repeated NULL rows. ** ** If the current term is a column of an ((?,?) IN (SELECT...)) ** expression for which the SELECT returns more than one column, ** check that it is the only column used by this loop. Otherwise, ** if it is one of two or more, none of the columns can be ** considered to match an ORDER BY term. */ if( (eOp & eqOpMask)!=0 ){ if( eOp & (WO_ISNULL|WO_IS) ){ testcase( eOp & WO_ISNULL ); testcase( eOp & WO_IS ); testcase( isOrderDistinct ); isOrderDistinct = 0; } continue; }else if( ALWAYS(eOp & WO_IN) ){ /* ALWAYS() justification: eOp is an equality operator due to the ** ju.btree.nEq constraint above. Any equality other ** than WO_IN is captured by the previous "if". So this one ** always has to be WO_IN. */ Expr *pX = pLoop->aLTerm[j]->pExpr; for(i=j+1; iu.btree.nEq; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); bOnce = 0; break; } } } } /* Get the column number in the table (iColumn) and sort order ** (revIdx) for the j-th column of the index. */ if( pIndex ){ iColumn = pIndex->aiColumn[j]; revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; }else{ iColumn = XN_ROWID; revIdx = 0; } /* An unconstrained column that might be NULL means that this ** WhereLoop is not well-ordered. tag-20210426-1 */ if( isOrderDistinct ){ if( iColumn>=0 && j>=pLoop->u.btree.nEq && pIndex->pTable->aCol[iColumn].notNull==0 ){ isOrderDistinct = 0; } if( iColumn==XN_EXPR ){ isOrderDistinct = 0; } } /* Find the ORDER BY term that corresponds to the j-th column ** of the index and mark that ORDER BY term off */ isMatch = 0; for(i=0; bOnce && ia[i].pExpr); testcase( wctrlFlags & WHERE_GROUPBY ); testcase( wctrlFlags & WHERE_DISTINCTBY ); if( NEVER(pOBExpr==0) ) continue; if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; if( iColumn>=XN_ROWID ){ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; if( pOBExpr->iColumn!=iColumn ) continue; }else{ Expr *pIxExpr = pIndex->aColExpr->a[j].pExpr; if( sqlite3ExprCompareSkip(pOBExpr, pIxExpr, iCur) ){ continue; } } if( iColumn!=XN_ROWID ){ pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; } if( wctrlFlags & WHERE_DISTINCTBY ){ pLoop->u.btree.nDistinctCol = j+1; } isMatch = 1; break; } if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ /* Make sure the sort order is compatible in an ORDER BY clause. ** Sort order is irrelevant for a GROUP BY clause. */ if( revSet ){ if( (rev ^ revIdx) != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) ){ isMatch = 0; } }else{ rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); if( rev ) *pRevMask |= MASKBIT(iLoop); revSet = 1; } } if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ if( j==pLoop->u.btree.nEq ){ pLoop->wsFlags |= WHERE_BIGNULL_SORT; }else{ isMatch = 0; } } if( isMatch ){ if( iColumn==XN_ROWID ){ testcase( distinctColumns==0 ); distinctColumns = 1; } obSat |= MASKBIT(i); }else{ /* No match found */ if( j==0 || jmaskSelf; for(i=0; ia[i].pExpr; mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; if( (mTerm&~orderDistinctMask)==0 ){ obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ if( obSat==obDone ) return (i8)nOrderBy; if( !isOrderDistinct ){ for(i=nOrderBy-1; i>0; i--){ Bitmask m = ALWAYS(iwctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); return pWInfo->sorted; } #ifdef WHERETRACE_ENABLED /* For debugging use only: */ static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ static char zName[65]; int i; for(i=0; iaLoop[i]->cId; } if( pLast ) zName[i++] = pLast->cId; zName[i] = 0; return zName; } #endif /* ** Return the cost of sorting nRow rows, assuming that the keys have ** nOrderby columns and that the first nSorted columns are already in ** order. */ static LogEst whereSortingCost( WhereInfo *pWInfo, /* Query planning context */ LogEst nRow, /* Estimated number of rows to sort */ int nOrderBy, /* Number of ORDER BY clause terms */ int nSorted /* Number of initial ORDER BY terms naturally in order */ ){ /* Estimated cost of a full external sort, where N is ** the number of rows to sort is: ** ** cost = (K * N * log(N)). ** ** Or, if the order-by clause has X terms but only the last Y ** terms are out of order, then block-sorting will reduce the ** sorting cost to: ** ** cost = (K * N * log(N)) * (Y/X) ** ** The constant K is at least 2.0 but will be larger if there are a ** large number of columns to be sorted, as the sorting time is ** proportional to the amount of content to be sorted. The algorithm ** does not currently distinguish between fat columns (BLOBs and TEXTs) ** and skinny columns (INTs). It just uses the number of columns as ** an approximation for the row width. ** ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert. */ LogEst rSortCost, nCol; assert( pWInfo->pSelect!=0 ); assert( pWInfo->pSelect->pEList!=0 ); /* TUNING: sorting cost proportional to the number of output columns: */ nCol = sqlite3LogEst((pWInfo->pSelect->pEList->nExpr+59)/30); rSortCost = nRow + nCol; if( nSorted>0 ){ /* Scale the result by (Y/X) */ rSortCost += sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; } /* Multiple by log(M) where M is the number of output rows. ** Use the LIMIT for M if it is smaller. Or if this sort is for ** a DISTINCT operator, M will be the number of distinct output ** rows, so fudge it downwards a bit. */ if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 ){ rSortCost += 10; /* TUNING: Extra 2.0x if using LIMIT */ if( nSorted!=0 ){ rSortCost += 6; /* TUNING: Extra 1.5x if also using partial sort */ } if( pWInfo->iLimitiLimit; } }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT ** reduces the number of output rows by a factor of 2 */ if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } } rSortCost += estLog(nRow); return rSortCost; } /* ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine ** attempts to find the lowest cost path that visits each WhereLoop ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. ** ** Assume that the total number of output rows that will need to be sorted ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting ** costs if nRowEst==0. ** ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation ** error occurs. */ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ int mxChoice; /* Maximum number of simultaneous paths tracked */ int nLoop; /* Number of terms in the join */ Parse *pParse; /* Parsing context */ int iLoop; /* Loop counter over the terms of the join */ int ii, jj; /* Loop counters */ int mxI = 0; /* Index of next entry to replace */ int nOrderBy; /* Number of ORDER BY clause terms */ LogEst mxCost = 0; /* Maximum cost of a set of paths */ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ WherePath *aFrom; /* All nFrom paths at the previous level */ WherePath *aTo; /* The nTo best paths at the current level */ WherePath *pFrom; /* An element of aFrom[] that we are working on */ WherePath *pTo; /* An element of aTo[] that we are working on */ WhereLoop *pWLoop; /* One of the WhereLoop objects */ WhereLoop **pX; /* Used to divy up the pSpace memory */ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ char *pSpace; /* Temporary memory used by this routine */ int nSpace; /* Bytes of space allocated at pSpace */ pParse = pWInfo->pParse; nLoop = pWInfo->nLevel; /* TUNING: For simple queries, only the best path is tracked. ** For 2-way joins, the 5 best paths are followed. ** For joins of 3 or more tables, track the 10 best paths */ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); assert( nLoop<=pWInfo->pTabList->nSrc ); WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n", nRowEst, pParse->nQueryLoop)); /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this ** case the purpose of this call is to estimate the number of rows returned ** by the overall query. Once this estimate has been obtained, the caller ** will invoke this function a second time, passing the estimate as the ** nRowEst parameter. */ if( pWInfo->pOrderBy==0 || nRowEst==0 ){ nOrderBy = 0; }else{ nOrderBy = pWInfo->pOrderBy->nExpr; } /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; nSpace += sizeof(LogEst) * nOrderBy; pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace); if( pSpace==0 ) return SQLITE_NOMEM_BKPT; aTo = (WherePath*)pSpace; aFrom = aTo+mxChoice; memset(aFrom, 0, sizeof(aFrom[0])); pX = (WhereLoop**)(aFrom+mxChoice); for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ pFrom->aLoop = pX; } if( nOrderBy ){ /* If there is an ORDER BY clause and it is not being ignored, set up ** space for the aSortCost[] array. Each element of the aSortCost array ** is either zero - meaning it has not yet been initialized - or the ** cost of sorting nRowEst rows of data where the first X terms of ** the ORDER BY clause are already in order, where X is the array ** index. */ aSortCost = (LogEst*)pX; memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); } assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); /* Seed the search with a single WherePath containing zero WhereLoops. ** ** TUNING: Do not let the number of iterations go above 28. If the cost ** of computing an automatic index is not paid back within the first 28 ** rows, then do not use the automatic index. */ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); nFrom = 1; assert( aFrom[0].isOrdered==0 ); if( nOrderBy ){ /* If nLoop is zero, then there are no FROM terms in the query. Since ** in this case the query may return a maximum of one row, the results ** are already in the requested order. Set isOrdered to nOrderBy to ** indicate this. Or, if nLoop is greater than zero, set isOrdered to ** -1, indicating that the result set may or may not be ordered, ** depending on the loops added to the current plan. */ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; } /* Compute successively longer WherePaths using the previous generation ** of WherePaths as the basis for the next. Keep track of the mxChoice ** best paths at each generation */ for(iLoop=0; iLooppLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ LogEst rCost; /* Cost of path (pFrom+pWLoop) */ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ Bitmask maskNew; /* Mask of src visited by (..) */ Bitmask revMask; /* Mask of rev-order loops for (..) */ if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ /* Do not use an automatic index if the this loop is expected ** to run less than 1.25 times. It is tempting to also exclude ** automatic index usage on an outer loop, but sometimes an automatic ** index is useful in the outer loop of a correlated subquery. */ assert( 10==sqlite3LogEst(2) ); continue; } /* At this point, pWLoop is a candidate to be the next loop. ** Compute its cost */ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); nOut = pFrom->nRow + pWLoop->nOut; maskNew = pFrom->maskLoop | pWLoop->maskSelf; isOrdered = pFrom->isOrdered; if( isOrdered<0 ){ revMask = 0; isOrdered = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, iLoop, pWLoop, &revMask); }else{ revMask = pFrom->revLoop; } if( isOrdered>=0 && isOrderedwsFlags & WHERE_VIEWSCAN)!=0 && nLoop>1 ){ rCost += -10; nOut += -30; WHERETRACE(0x80,("VIEWSCAN cost reduction for %c\n",pWLoop->cId)); } /* Check to see if pWLoop should be added to the set of ** mxChoice best-so-far paths. ** ** First look for an existing path among best-so-far paths ** that covers the same set of loops and has the same isOrdered ** setting as the current path candidate. ** ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range ** of legal values for isOrdered, -1..64. */ for(jj=0, pTo=aTo; jjmaskLoop==maskNew && ((pTo->isOrdered^isOrdered)&0x80)==0 ){ testcase( jj==nTo-1 ); break; } } if( jj>=nTo ){ /* None of the existing best-so-far paths match the candidate. */ if( nTo>=mxChoice && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) ){ /* The current candidate is no better than any of the mxChoice ** paths currently in the best-so-far buffer. So discard ** this candidate as not viable. */ #ifdef WHERETRACE_ENABLED /* 0x4 */ if( sqlite3WhereTrace&0x4 ){ sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); } #endif continue; } /* If we reach this points it means that the new candidate path ** needs to be added to the set of best-so-far paths. */ if( nTo=0 ? isOrdered+'0' : '?'); } #endif }else{ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the ** same set of loops and has the same isOrdered setting as the ** candidate path. Check to see if the candidate should replace ** pTo or if the candidate should be skipped. ** ** The conditional is an expanded vector comparison equivalent to: ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) */ if( pTo->rCostrCost==rCost && (pTo->nRownRow==nOut && pTo->rUnsorted<=rUnsorted) ) ) ){ #ifdef WHERETRACE_ENABLED /* 0x4 */ if( sqlite3WhereTrace&0x4 ){ sqlite3DebugPrintf( "Skip %s cost=%-3d,%3d,%3d order=%c", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); } #endif /* Discard the candidate path from further consideration */ testcase( pTo->rCost==rCost ); continue; } testcase( pTo->rCost==rCost+1 ); /* Control reaches here if the candidate path is better than the ** pTo path. Replace pTo with the candidate. */ #ifdef WHERETRACE_ENABLED /* 0x4 */ if( sqlite3WhereTrace&0x4 ){ sqlite3DebugPrintf( "Update %s cost=%-3d,%3d,%3d order=%c", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); } #endif } /* pWLoop is a winner. Add it to the set of best so far */ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; pTo->revLoop = revMask; pTo->nRow = nOut; pTo->rCost = rCost; pTo->rUnsorted = rUnsorted; pTo->isOrdered = isOrdered; memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); pTo->aLoop[iLoop] = pWLoop; if( nTo>=mxChoice ){ mxI = 0; mxCost = aTo[0].rCost; mxUnsorted = aTo[0].nRow; for(jj=1, pTo=&aTo[1]; jjrCost>mxCost || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) ){ mxCost = pTo->rCost; mxUnsorted = pTo->rUnsorted; mxI = jj; } } } } } #ifdef WHERETRACE_ENABLED /* >=2 */ if( sqlite3WhereTrace & 0x02 ){ sqlite3DebugPrintf("---- after round %d ----\n", iLoop); for(ii=0, pTo=aTo; iirCost, pTo->nRow, pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); if( pTo->isOrdered>0 ){ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); }else{ sqlite3DebugPrintf("\n"); } } } #endif /* Swap the roles of aFrom and aTo for the next generation */ pFrom = aTo; aTo = aFrom; aFrom = pFrom; nFrom = nTo; } if( nFrom==0 ){ sqlite3ErrorMsg(pParse, "no query solution"); sqlite3StackFreeNN(pParse->db, pSpace); return SQLITE_ERROR; } /* Find the lowest cost path. pFrom will be left pointing to that path */ pFrom = aFrom; for(ii=1; iirCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; } assert( pWInfo->nLevel==nLoop ); /* Load the lowest cost path into pWInfo */ for(iLoop=0; iLoopa + iLoop; pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; pLevel->iFrom = pWLoop->iTab; pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; } if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP && nRowEst ){ Bitmask notUsed; int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); if( rc==pWInfo->pResultSet->nExpr ){ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } } pWInfo->bOrderedInnerLoop = 0; if( pWInfo->pOrderBy ){ pWInfo->nOBSat = pFrom->isOrdered; if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } if( pWInfo->pSelect->pOrderBy && pWInfo->nOBSat > pWInfo->pSelect->pOrderBy->nExpr ){ pWInfo->nOBSat = pWInfo->pSelect->pOrderBy->nExpr; } }else{ pWInfo->revMask = pFrom->revLoop; if( pWInfo->nOBSat<=0 ){ pWInfo->nOBSat = 0; if( nLoop>0 ){ u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; if( (wsFlags & WHERE_ONEROW)==0 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) ){ Bitmask m = 0; int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); testcase( wsFlags & WHERE_IPK ); testcase( wsFlags & WHERE_COLUMN_IN ); if( rc==pWInfo->pOrderBy->nExpr ){ pWInfo->bOrderedInnerLoop = 1; pWInfo->revMask = m; } } } }else if( nLoop && pWInfo->nOBSat==1 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 ){ pWInfo->bOrderedInnerLoop = 1; } } if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 ){ Bitmask revMask = 0; int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask ); assert( pWInfo->sorted==0 ); if( nOrder==pWInfo->pOrderBy->nExpr ){ pWInfo->sorted = 1; pWInfo->revMask = revMask; } } } pWInfo->nRowOut = pFrom->nRow; /* Free temporary memory and return success */ sqlite3StackFreeNN(pParse->db, pSpace); return SQLITE_OK; } /* ** Most queries use only a single table (they are not joins) and have ** simple == constraints against indexed fields. This routine attempts ** to plan those simple cases using much less ceremony than the ** general-purpose query planner, and thereby yield faster sqlite3_prepare() ** times for the common case. ** ** Return non-zero on success, if this query can be handled by this ** no-frills query planner. Return zero if this query needs the ** general-purpose query planner. */ static int whereShortCut(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo; SrcItem *pItem; WhereClause *pWC; WhereTerm *pTerm; WhereLoop *pLoop; int iCur; int j; Table *pTab; Index *pIdx; WhereScan scan; pWInfo = pBuilder->pWInfo; if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; assert( pWInfo->pTabList->nSrc>=1 ); pItem = pWInfo->pTabList->a; pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ testcase( pItem->fg.isIndexedBy ); testcase( pItem->fg.notIndexed ); return 0; } iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); if( pTerm ){ testcase( pTerm->eOperator & WO_IS ); pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int opMask; assert( pLoop->aLTermSpace==pLoop->aLTerm ); if( !IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; for(j=0; jnKeyCol; j++){ pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); if( pTerm==0 ) break; testcase( pTerm->eOperator & WO_IS ); pLoop->aLTerm[j] = pTerm; } if( j!=pIdx->nKeyCol ) continue; pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ pLoop->wsFlags |= WHERE_IDX_ONLY; } pLoop->nLTerm = j; pLoop->u.btree.nEq = j; pLoop->u.btree.pIndex = pIdx; /* TUNING: Cost of a unique index lookup is 15 */ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ break; } } if( pLoop->wsFlags ){ pLoop->nOut = (LogEst)1; pWInfo->a[0].pWLoop = pLoop; assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ pWInfo->a[0].iTabCur = iCur; pWInfo->nRowOut = 1; if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; #ifdef SQLITE_DEBUG pLoop->cId = '0'; #endif #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x02 ){ sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); } #endif return 1; } return 0; } /* ** Helper function for exprIsDeterministic(). */ static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ pWalker->eCode = 0; return WRC_Abort; } return WRC_Continue; } /* ** Return true if the expression contains no non-deterministic SQL ** functions. Do not consider non-deterministic SQL functions that are ** part of sub-select statements. */ static int exprIsDeterministic(Expr *p){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 1; w.xExprCallback = exprNodeIsDeterministic; w.xSelectCallback = sqlite3SelectWalkFail; sqlite3WalkExpr(&w, p); return w.eCode; } #ifdef WHERETRACE_ENABLED /* ** Display all WhereLoops in pWInfo */ static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ WhereLoop *p; int i; static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ p->cId = zLabel[i%(sizeof(zLabel)-1)]; sqlite3WhereLoopPrint(p, pWC); } } } # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) #else # define WHERETRACE_ALL_LOOPS(W,C) #endif /* Attempt to omit tables from a join that do not affect the result. ** For a table to not affect the result, the following must be true: ** ** 1) The query must not be an aggregate. ** 2) The table must be the RHS of a LEFT JOIN. ** 3) Either the query must be DISTINCT, or else the ON or USING clause ** must contain a constraint that limits the scan of the table to ** at most a single row. ** 4) The table must not be referenced by any part of the query apart ** from its own USING or ON clause. ** 5) The table must not have an inner-join ON or USING clause if there is ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause ** might move from the right side to the left side of the RIGHT JOIN. ** Note: Due to (2), this condition can only arise if the table is ** the right-most table of a subquery that was flattened into the ** main query and that subquery was the right-hand operand of an ** inner join that held an ON or USING clause. ** ** For example, given: ** ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); ** ** then table t2 can be omitted from the following: ** ** SELECT v1, v3 FROM t1 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) ** ** or from: ** ** SELECT DISTINCT v1, v3 FROM t1 ** LEFT JOIN t2 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) */ static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( WhereInfo *pWInfo, Bitmask notReady ){ int i; Bitmask tabUsed; int hasRightJoin; /* Preconditions checked by the caller */ assert( pWInfo->nLevel>=2 ); assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); /* These two preconditions checked by the caller combine to guarantee ** condition (1) of the header comment */ assert( pWInfo->pResultSet!=0 ); assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); if( pWInfo->pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); } hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0; for(i=pWInfo->nLevel-1; i>=1; i--){ WhereTerm *pTerm, *pEnd; SrcItem *pItem; WhereLoop *pLoop; pLoop = pWInfo->a[i].pWLoop; pItem = &pWInfo->pTabList->a[pLoop->iTab]; if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 && (pLoop->wsFlags & WHERE_ONEROW)==0 ){ continue; } if( (tabUsed & pLoop->maskSelf)!=0 ) continue; pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; for(pTerm=pWInfo->sWC.a; pTermprereqAll & pLoop->maskSelf)!=0 ){ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) || pTerm->pExpr->w.iJoin!=pItem->iCursor ){ break; } } if( hasRightJoin && ExprHasProperty(pTerm->pExpr, EP_InnerON) && pTerm->pExpr->w.iJoin==pItem->iCursor ){ break; /* restriction (5) */ } } if( pTerm drop loop %c not used\n", pLoop->cId)); notReady &= ~pLoop->maskSelf; for(pTerm=pWInfo->sWC.a; pTermprereqAll & pLoop->maskSelf)!=0 ){ pTerm->wtFlags |= TERM_CODED; } } if( i!=pWInfo->nLevel-1 ){ int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); } pWInfo->nLevel--; assert( pWInfo->nLevel>0 ); } return notReady; } /* ** Check to see if there are any SEARCH loops that might benefit from ** using a Bloom filter. Consider a Bloom filter if: ** ** (1) The SEARCH happens more than N times where N is the number ** of rows in the table that is being considered for the Bloom ** filter. ** (2) Some searches are expected to find zero rows. (This is determined ** by the WHERE_SELFCULL flag on the term.) ** (3) Bloom-filter processing is not disabled. (Checked by the ** caller.) ** (4) The size of the table being searched is known by ANALYZE. ** ** This block of code merely checks to see if a Bloom filter would be ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the ** WhereLoop. The implementation of the Bloom filter comes further ** down where the code for each WhereLoop is generated. */ static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( const WhereInfo *pWInfo ){ int i; LogEst nSearch = 0; assert( pWInfo->nLevel>=2 ); assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); for(i=0; inLevel; i++){ WhereLoop *pLoop = pWInfo->a[i].pWLoop; const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; Table *pTab = pItem->pTab; if( (pTab->tabFlags & TF_HasStat1)==0 ) break; pTab->tabFlags |= TF_StatsUsed; if( i>=1 && (pLoop->wsFlags & reqFlags)==reqFlags /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) ){ if( nSearch > pTab->nRowLogEst ){ testcase( pItem->fg.jointype & JT_LEFT ); pLoop->wsFlags |= WHERE_BLOOMFILTER; pLoop->wsFlags &= ~WHERE_IDX_ONLY; WHERETRACE(0xffffffff, ( "-> use Bloom-filter on loop %c because there are ~%.1e " "lookups into %s which has only ~%.1e rows\n", pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, (double)sqlite3LogEstToInt(pTab->nRowLogEst))); } } nSearch += pLoop->nOut; } } /* ** This is an sqlite3ParserAddCleanup() callback that is invoked to ** free the Parse->pIdxEpr list when the Parse object is destroyed. */ static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){ Parse *pParse = (Parse*)pObject; while( pParse->pIdxEpr!=0 ){ IndexedExpr *p = pParse->pIdxEpr; pParse->pIdxEpr = p->pIENext; sqlite3ExprDelete(db, p->pExpr); sqlite3DbFreeNN(db, p); } } /* ** The index pIdx is used by a query and contains one or more expressions. ** In other words pIdx is an index on an expression. iIdxCur is the cursor ** number for the index and iDataCur is the cursor number for the corresponding ** table. ** ** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for ** each of the expressions in the index so that the expression code generator ** will know to replace occurrences of the indexed expression with ** references to the corresponding column of the index. */ static SQLITE_NOINLINE void whereAddIndexedExpr( Parse *pParse, /* Add IndexedExpr entries to pParse->pIdxEpr */ Index *pIdx, /* The index-on-expression that contains the expressions */ int iIdxCur, /* Cursor number for pIdx */ SrcItem *pTabItem /* The FROM clause entry for the table */ ){ int i; IndexedExpr *p; Table *pTab; assert( pIdx->bHasExpr ); pTab = pIdx->pTable; for(i=0; inColumn; i++){ Expr *pExpr; int j = pIdx->aiColumn[i]; int bMaybeNullRow; if( j==XN_EXPR ){ pExpr = pIdx->aColExpr->a[i].pExpr; testcase( pTabItem->fg.jointype & JT_LEFT ); testcase( pTabItem->fg.jointype & JT_RIGHT ); testcase( pTabItem->fg.jointype & JT_LTORJ ); bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0; }else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){ pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]); bMaybeNullRow = 0; }else{ continue; } if( sqlite3ExprIsConstant(pExpr) ) continue; p = sqlite3DbMallocRaw(pParse->db, sizeof(IndexedExpr)); if( p==0 ) break; p->pIENext = pParse->pIdxEpr; #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x200 ){ sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur, i); if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(pExpr); } #endif p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); p->iDataCur = pTabItem->iCursor; p->iIdxCur = iIdxCur; p->iIdxCol = i; p->bMaybeNullRow = bMaybeNullRow; if( sqlite3IndexAffinityStr(pParse->db, pIdx) ){ p->aff = pIdx->zColAff[i]; } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS p->zIdxName = pIdx->zName; #endif pParse->pIdxEpr = p; if( p->pIENext==0 ){ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pParse); } } } /* ** Set the reverse-scan order mask to one for all tables in the query ** with the exception of MATERIALIZED common table expressions that have ** their own internal ORDER BY clauses. ** ** This implements the PRAGMA reverse_unordered_selects=ON setting. ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER). */ static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){ int ii; for(ii=0; iipTabList->nSrc; ii++){ SrcItem *pItem = &pWInfo->pTabList->a[ii]; if( !pItem->fg.isCte || pItem->u2.pCteUse->eM10d!=M10d_Yes || NEVER(pItem->pSelect==0) || pItem->pSelect->pOrderBy==0 ){ pWInfo->revMask |= MASKBIT(ii); } } } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. ** ** The basic idea is to do a nested loop, one loop for each table in ** the FROM clause of a select. (INSERT and UPDATE statements are the ** same as a SELECT with only a single table in the FROM clause.) For ** example, if the SQL is this: ** ** SELECT * FROM t1, t2, t3 WHERE ...; ** ** Then the code generated is conceptually like the following: ** ** foreach row1 in t1 do \ Code generated ** foreach row2 in t2 do |-- by sqlite3WhereBegin() ** foreach row3 in t3 do / ** ... ** end \ Code generated ** end |-- by sqlite3WhereEnd() ** end / ** ** Note that the loops might not be nested in the order in which they ** appear in the FROM clause if a different order is better able to make ** use of indices. Note also that when the IN operator appears in ** the WHERE clause, it might result in additional nested loops for ** scanning through all values on the right-hand side of the IN. ** ** There are Btree cursors associated with each table. t1 uses cursor ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. ** And so forth. This routine generates code to open those VDBE cursors ** and sqlite3WhereEnd() generates the code to close them. ** ** The code that sqlite3WhereBegin() generates leaves the cursors named ** in pTabList pointing at their appropriate entries. The [...] code ** can use OP_Column and OP_Rowid opcodes on these cursors to extract ** data from the various tables of the loop. ** ** If the WHERE clause is empty, the foreach loops must each scan their ** entire tables. Thus a three-way join is an O(N^3) operation. But if ** the tables have indices and there are terms in the WHERE clause that ** refer to those indices, a complete table scan can be avoided and the ** code will run much faster. Most of the work of this routine is checking ** to see if there are indices that can be used to speed up the loop. ** ** Terms of the WHERE clause are also used to limit which rows actually ** make it to the "..." in the middle of the loop. After each "foreach", ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** ** An outer join of tables t1 and t2 is conceptually coded as follows: ** ** foreach row1 in t1 do ** flag = 0 ** foreach row2 in t2 do ** start: ** ... ** flag = 1 ** end ** if flag==0 then ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement ** if there is one. If there is no ORDER BY clause or if this routine ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. ** ** The iIdxCur parameter is the cursor number of an index. If ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index ** to use for OR clause processing. The WHERE clause should use this ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is ** the first cursor in an array of cursors for all indices. iIdxCur should ** be used to compute the appropriate cursor depending on which index is ** used. */ SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ Select *pSelect, /* The entire SELECT statement */ u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number ** If WHERE_USE_LIMIT, then the limit amount */ ){ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ Bitmask notReady; /* Cursors that are not yet positioned */ WhereLoopBuilder sWLB; /* The WhereLoop builder */ WhereMaskSet *pMaskSet; /* The expression mask set */ WhereLevel *pLevel; /* A single level in pWInfo->a[] */ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ int ii; /* Loop counter */ sqlite3 *db; /* Database connection */ int rc; /* Return code */ u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 )); /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); /* Variable initialization */ db = pParse->db; memset(&sWLB, 0, sizeof(sWLB)); /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; /* The number of tables in the FROM clause is limited by the number of ** bits in a Bitmask */ testcase( pTabList->nSrc==BMS ); if( pTabList->nSrc>BMS ){ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); return 0; } /* This function normally generates a nested loop for all tables in ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should ** only generate code for the first table in pTabList and assume that ** any cursors associated with subsequent tables are uninitialized. */ nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; /* Allocate and initialize the WhereInfo structure that will become the ** return value. A single allocation is used to store the WhereInfo ** struct, the contents of WhereInfo.a[], the WhereClause structure ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte ** field (type Bitmask) it must be aligned on an 8-byte boundary on ** some architectures. Hence the ROUND8() below. */ nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); if( db->mallocFailed ){ sqlite3DbFree(db, pWInfo); pWInfo = 0; goto whereBeginError; } pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->pOrderBy = pOrderBy; #if WHERETRACE_ENABLED pWInfo->pWhere = pWhere; #endif pWInfo->pResultSet = pResultSet; pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; pWInfo->nLevel = nTabList; pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); pWInfo->wctrlFlags = wctrlFlags; pWInfo->iLimit = iAuxArg; pWInfo->savedNQueryLoop = pParse->nQueryLoop; pWInfo->pSelect = pSelect; memset(&pWInfo->nOBSat, 0, offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ pMaskSet = &pWInfo->sMaskSet; pMaskSet->n = 0; pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be ** a valid cursor number, to avoid an initial ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ sWLB.pWInfo = pWInfo; sWLB.pWC = &pWInfo->sWC; sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); whereLoopInit(sWLB.pNew); #ifdef SQLITE_DEBUG sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); /* Special case: No FROM clause */ if( nTabList==0 ){ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 && OptimizationEnabled(db, SQLITE_DistinctOpt) ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); }else{ /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<nSrc tables in ** pTabList, not just the first nTabList tables. nTabList is normally ** equal to pTabList->nSrc but might be shortened to 1 if the ** WHERE_OR_SUBCLAUSE flag is set. */ ii = 0; do{ createMask(pMaskSet, pTabList->a[ii].iCursor); sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); }while( (++ii)nSrc ); #ifdef SQLITE_DEBUG { Bitmask mx = 0; for(ii=0; iinSrc; ii++){ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); assert( m>=mx ); mx = m; } } #endif } /* Analyze all of the subexpressions. */ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); if( pSelect && pSelect->pLimit ){ sqlite3WhereAddLimit(&pWInfo->sWC, pSelect); } if( pParse->nErr ) goto whereBeginError; /* The False-WHERE-Term-Bypass optimization: ** ** If there are WHERE terms that are false, then no rows will be output, ** so skip over all of the code generated here. ** ** Conditions: ** ** (1) The WHERE term must not refer to any tables in the join. ** (2) The term must not come from an ON clause on the ** right-hand side of a LEFT or FULL JOIN. ** (3) The term must not come from an ON clause, or there must be ** no RIGHT or FULL OUTER joins in pTabList. ** (4) If the expression contains non-deterministic functions ** that are not within a sub-select. This is not required ** for correctness but rather to preserves SQLite's legacy ** behaviour in the following two cases: ** ** WHERE random()>0; -- eval random() once per row ** WHERE (SELECT random())>0; -- eval random() just once overall ** ** Note that the Where term need not be a constant in order for this ** optimization to apply, though it does need to be constant relative to ** the current subquery (condition 1). The term might include variables ** from outer queries so that the value of the term changes from one ** invocation of the current subquery to the next. */ for(ii=0; iinBase; ii++){ WhereTerm *pT = &sWLB.pWC->a[ii]; /* A term of the WHERE clause */ Expr *pX; /* The expression of pT */ if( pT->wtFlags & TERM_VIRTUAL ) continue; pX = pT->pExpr; assert( pX!=0 ); assert( pT->prereqAll!=0 || !ExprHasProperty(pX, EP_OuterON) ); if( pT->prereqAll==0 /* Conditions (1) and (2) */ && (nTabList==0 || exprIsDeterministic(pX)) /* Condition (4) */ && !(ExprHasProperty(pX, EP_InnerON) /* Condition (3) */ && (pTabList->a[0].fg.jointype & JT_LTORJ)!=0 ) ){ sqlite3ExprIfFalse(pParse, pX, pWInfo->iBreak, SQLITE_JUMPIFNULL); pT->wtFlags |= TERM_CODED; } } if( wctrlFlags & WHERE_WANT_DISTINCT ){ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ wctrlFlags &= ~WHERE_WANT_DISTINCT; pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; }else if( pOrderBy==0 ){ /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0xffffffff ){ sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); if( wctrlFlags & WHERE_USE_LIMIT ){ sqlite3DebugPrintf(", limit: %d", iAuxArg); } sqlite3DebugPrintf(")\n"); if( sqlite3WhereTrace & 0x8000 ){ Select sSelect; memset(&sSelect, 0, sizeof(sSelect)); sSelect.selFlags = SF_WhereBegin; sSelect.pSrc = pTabList; sSelect.pWhere = pWhere; sSelect.pOrderBy = pOrderBy; sSelect.pEList = pResultSet; sqlite3TreeViewSelect(0, &sSelect, 0); } if( sqlite3WhereTrace & 0x4000 ){ /* Display all WHERE clause terms */ sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); sqlite3WhereClausePrint(sWLB.pWC); } } #endif if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ rc = whereLoopAddAll(&sWLB); if( rc ) goto whereBeginError; #ifdef SQLITE_ENABLE_STAT4 /* If one or more WhereTerm.truthProb values were used in estimating ** loop parameters, but then those truthProb values were subsequently ** changed based on STAT4 information while computing subsequent loops, ** then we need to rerun the whole loop building process so that all ** loops will be built using the revised truthProb values. */ if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); WHERETRACE(0xffffffff, ("**** Redo all loop computations due to" " TERM_HIGHTRUTH changes ****\n")); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } rc = whereLoopAddAll(&sWLB); if( rc ) goto whereBeginError; } #endif WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); wherePathSolver(pWInfo, 0); if( db->mallocFailed ) goto whereBeginError; if( pWInfo->pOrderBy ){ wherePathSolver(pWInfo, pWInfo->nRowOut+1); if( db->mallocFailed ) goto whereBeginError; } } assert( pWInfo->pTabList!=0 ); if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ whereReverseScanOrder(pWInfo); } if( pParse->nErr ){ goto whereBeginError; } assert( db->mallocFailed==0 ); #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); if( pWInfo->nOBSat>0 ){ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); } switch( pWInfo->eDistinct ){ case WHERE_DISTINCT_UNIQUE: { sqlite3DebugPrintf(" DISTINCT=unique"); break; } case WHERE_DISTINCT_ORDERED: { sqlite3DebugPrintf(" DISTINCT=ordered"); break; } case WHERE_DISTINCT_UNORDERED: { sqlite3DebugPrintf(" DISTINCT=unordered"); break; } } sqlite3DebugPrintf("\n"); for(ii=0; iinLevel; ii++){ sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); } } #endif /* Attempt to omit tables from a join that do not affect the result. ** See the comment on whereOmitNoopJoin() for further information. ** ** This query optimization is factored out into a separate "no-inline" ** procedure to keep the sqlite3WhereBegin() procedure from becoming ** too large. If sqlite3WhereBegin() becomes too large, that prevents ** some C-compiler optimizers from in-lining the ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. */ notReady = ~(Bitmask)0; if( pWInfo->nLevel>=2 && pResultSet!=0 /* these two combine to guarantee */ && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ notReady = whereOmitNoopJoin(pWInfo, notReady); nTabList = pWInfo->nLevel; assert( nTabList>0 ); } /* Check to see if there are any SEARCH loops that might benefit from ** using a Bloom filter. */ if( pWInfo->nLevel>=2 && OptimizationEnabled(db, SQLITE_BloomFilter) ){ whereCheckIfBloomFilterIsUseful(pWInfo); } #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0x4000 ){ /* Display all terms of the WHERE clause */ sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); sqlite3WhereClausePrint(sWLB.pWC); } WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n")); #endif pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** ** A one-pass approach can be used if the caller has requested one ** and either (a) the scan visits at most one row or (b) each ** of the following are true: ** ** * the caller has indicated that a one-pass approach can be used ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and ** * the table is not a virtual table, and ** * either the scan does not use the OR optimization or the caller ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified ** for DELETE). ** ** The last qualification is because an UPDATE statement uses ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can ** use a one-pass approach, and this is not set accurately for scans ** that use the OR optimization. */ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ int wsFlags = pWInfo->a[0].pWLoop->wsFlags; int bOnerow = (wsFlags & WHERE_ONEROW)!=0; assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); if( bOnerow || ( 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) && !IsVirtual(pTabList->a[0].pTab) && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) && OptimizationEnabled(db, SQLITE_OnePass) )){ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ bFordelete = OPFLAG_FORDELETE; } pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); } } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ for(ii=0, pLevel=pWInfo->a; iia[pLevel->iFrom]; pTab = pTabItem->pTab; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pLoop = pLevel->pWLoop; if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ /* Do nothing */ }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); }else if( IsVirtual(pTab) ){ /* noop */ }else #endif if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 ){ int op = OP_OpenRead; if( pWInfo->eOnePass!=ONEPASS_OFF ){ op = OP_OpenWrite; pWInfo->aiCurOnePass[0] = pTabItem->iCursor; }; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); assert( pTabItem->iCursor==pLevel->iTabCur ); testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nColtabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 ){ /* If we know that only a prefix of the record will be used, ** it is advantageous to reduce the "column count" field in ** the P4 operand of the OP_OpenRead/Write opcode. */ Bitmask b = pTabItem->colUsed; int n = 0; for(; b; b=b>>1, n++){} sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); assert( n<=pTab->nCol ); } #ifdef SQLITE_ENABLE_CURSOR_HINTS if( pLoop->u.btree.pIndex!=0 && (pTab->tabFlags & TF_WithoutRowid)==0 ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); }else #endif { sqlite3VdbeChangeP5(v, bFordelete); } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, (const u8*)&pTabItem->colUsed, P4_INT64); #endif }else{ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } if( pLoop->wsFlags & WHERE_INDEXED ){ Index *pIx = pLoop->u.btree.pIndex; int iIndexCur; int op = OP_OpenRead; /* iAuxArg is always set to a positive value if ONEPASS is possible */ assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ /* This is one term of an OR-optimization using the PRIMARY KEY of a ** WITHOUT ROWID table. No need for a separate index */ iIndexCur = pLevel->iTabCur; op = 0; }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ Index *pJ = pTabItem->pTab->pIndex; iIndexCur = iAuxArg; assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); while( ALWAYS(pJ) && pJ!=pIx ){ iIndexCur++; pJ = pJ->pNext; } op = OP_OpenWrite; pWInfo->aiCurOnePass[1] = iIndexCur; }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ iIndexCur = iAuxArg; op = OP_ReopenIdx; }else{ iIndexCur = pParse->nTab++; if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){ whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem); } } pLevel->iIdxCur = iIndexCur; assert( pIx!=0 ); assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); if( op ){ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); } VdbeComment((v, "%s", pIx->zName)); #ifdef SQLITE_ENABLE_COLUMN_USED_MASK { u64 colUsed = 0; int ii, jj; for(ii=0; iinColumn; ii++){ jj = pIx->aiColumn[ii]; if( jj<0 ) continue; if( jj>63 ) jj = 63; if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; colUsed |= ((u64)1)<<(ii<63 ? ii : 63); } sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, (u8*)&colUsed, P4_INT64); } #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ } } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); if( (pTabItem->fg.jointype & JT_RIGHT)!=0 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 ){ WhereRightJoin *pRJ = pLevel->pRJ; pRJ->iMatch = pParse->nTab++; pRJ->regBloom = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); pRJ->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); assert( pTab==pTabItem->pTab ); if( HasRowid(pTab) ){ KeyInfo *pInfo; sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); if( pInfo ){ pInfo->aColl[0] = 0; pInfo->aSortFlags[0] = 0; sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); } }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } pLoop->wsFlags &= ~WHERE_IDX_ONLY; /* The nature of RIGHT JOIN processing is such that it messes up ** the output order. So omit any ORDER BY/GROUP BY elimination ** optimizations. We need to do an actual sort for RIGHT JOIN. */ pWInfo->nOBSat = 0; pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; } } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ for(ii=0; iinErr ) goto whereBeginError; pLevel = &pWInfo->a[ii]; wsFlags = pLevel->pWLoop->wsFlags; pSrc = &pTabList->a[pLevel->iFrom]; if( pSrc->fg.isMaterialized ){ if( pSrc->fg.isCorrelated ){ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); }else{ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); sqlite3VdbeJumpHere(v, iOnce); } } assert( pTabList == pWInfo->pTabList ); if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ #ifndef SQLITE_OMIT_AUTOMATIC_INDEX constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel); #endif }else{ sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); } if( db->mallocFailed ) goto whereBeginError; } addrExplain = sqlite3WhereExplainOneScan( pParse, pTabList, pLevel, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); pWInfo->iContinue = pLevel->addrCont; if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); } } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); return pWInfo; /* Jump here if malloc fails */ whereBeginError: if( pWInfo ){ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); } return 0; } /* ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the ** index rather than the main table. In SQLITE_DEBUG mode, we want ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine ** does that. */ #ifndef SQLITE_DEBUG # define OpcodeRewriteTrace(D,K,P) /* no-op */ #else # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) static void sqlite3WhereOpcodeRewriteTrace( sqlite3 *db, int pc, VdbeOp *pOp ){ if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; sqlite3VdbePrintOp(0, pc, pOp); } #endif #ifdef SQLITE_DEBUG /* ** Return true if cursor iCur is opened by instruction k of the ** bytecode. Used inside of assert() only. */ static int cursorIsOpen(Vdbe *v, int iCur, int k){ while( k>=0 ){ VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); if( pOp->p1!=iCur ) continue; if( pOp->opcode==OP_Close ) return 0; if( pOp->opcode==OP_OpenRead ) return 1; if( pOp->opcode==OP_OpenWrite ) return 1; if( pOp->opcode==OP_OpenDup ) return 1; if( pOp->opcode==OP_OpenAutoindex ) return 1; if( pOp->opcode==OP_OpenEphemeral ) return 1; } return 0; } #endif /* SQLITE_DEBUG */ /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){ Parse *pParse = pWInfo->pParse; Vdbe *v = pParse->pVdbe; int i; WhereLevel *pLevel; WhereLoop *pLoop; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; int iEnd = sqlite3VdbeCurrentAddr(v); int nRJ = 0; /* Generate loop termination code. */ VdbeModuleComment((v, "End WHERE-core")); for(i=pWInfo->nLevel-1; i>=0; i--){ int addr; pLevel = &pWInfo->a[i]; if( pLevel->pRJ ){ /* Terminate the subroutine that forms the interior of the loop of ** the RIGHT JOIN table */ WhereRightJoin *pRJ = pLevel->pRJ; sqlite3VdbeResolveLabel(v, pLevel->addrCont); pLevel->addrCont = 0; pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); VdbeCoverage(v); nRJ++; } pLoop = pLevel->pWLoop; if( pLevel->op!=OP_Noop ){ #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT int addrSeek = 0; Index *pIdx; int n; if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ && (pLoop->wsFlags & WHERE_INDEXED)!=0 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 && (n = pLoop->u.btree.nDistinctCol)>0 && pIdx->aiRowLogEst[n]>=36 ){ int r1 = pParse->nMem+1; int j, op; for(j=0; jiIdxCur, j, r1+j); } pParse->nMem += n+1; op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); VdbeCoverageIf(v, op==OP_SeekLT); VdbeCoverageIf(v, op==OP_SeekGT); sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); } #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ /* The common case: Advance to the next row */ if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); sqlite3VdbeChangeP5(v, pLevel->p5); VdbeCoverage(v); VdbeCoverageIf(v, pLevel->op==OP_Next); VdbeCoverageIf(v, pLevel->op==OP_Prev); VdbeCoverageIf(v, pLevel->op==OP_VNext); if( pLevel->regBignull ){ sqlite3VdbeResolveLabel(v, pLevel->addrBignull); sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); VdbeCoverage(v); } #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); #endif }else if( pLevel->addrCont ){ sqlite3VdbeResolveLabel(v, pLevel->addrCont); } if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull || pParse->db->mallocFailed ); sqlite3VdbeJumpHere(v, pIn->addrInTop+1); if( pIn->eEndLoopOp!=OP_Noop ){ if( pIn->nPrefix ){ int bEarlyOut = (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; if( pLevel->iLeftJoin ){ /* For LEFT JOIN queries, cursor pIn->iCur may not have been ** opened yet. This occurs for WHERE clauses such as ** "a = ? AND b IN (...)", where the index is on (a, b). If ** the RHS of the (a=?) is NULL, then the "b IN (...)" may ** never have been coded, but the body of the loop run to ** return the null-row. So, if the cursor is not open yet, ** jump over the OP_Next or OP_Prev instruction about to ** be coded. */ sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); VdbeCoverage(v); } if( bEarlyOut ){ sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, sqlite3VdbeCurrentAddr(v)+2, pIn->iBase, pIn->nPrefix); VdbeCoverage(v); /* Retarget the OP_IsNull against the left operand of IN so ** it jumps past the OP_IfNoHope. This is because the ** OP_IsNull also bypasses the OP_Affinity opcode that is ** required by OP_IfNoHope. */ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); } } sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); VdbeCoverage(v); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); } sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->pRJ ){ sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); VdbeCoverage(v); } if( pLevel->addrSkip ){ sqlite3VdbeGoto(v, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( pLevel->addrLikeRep ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), pLevel->addrLikeRep); VdbeCoverage(v); } #endif if( pLevel->iLeftJoin ){ int ws = pLoop->wsFlags; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); if( (ws & WHERE_IDX_ONLY)==0 ){ assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); } if( (ws & WHERE_INDEXED) || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) ){ if( ws & WHERE_MULTI_OR ){ Index *pIx = pLevel->u.pCoveringIdx; int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); } sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); } if( pLevel->op==OP_Return ){ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); }else{ sqlite3VdbeGoto(v, pLevel->addrFirst); } sqlite3VdbeJumpHere(v, addr); } VdbeModuleComment((v, "End WHERE-loop%d: %s", i, pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); } assert( pWInfo->nLevel<=pTabList->nSrc ); for(i=0, pLevel=pWInfo->a; inLevel; i++, pLevel++){ int k, last; VdbeOp *pOp, *pLastOp; Index *pIdx = 0; SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* Do RIGHT JOIN processing. Generate code that will output the ** unmatched rows of the right operand of the RIGHT JOIN with ** all of the columns of the left operand set to NULL. */ if( pLevel->pRJ ){ sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); continue; } /* For a co-routine, change all OP_Column references to the table of ** the co-routine into OP_Copy of result contained in a register. ** OP_Rowid becomes OP_Null. */ if( pTabItem->fg.viaCoroutine ){ testcase( pParse->db->mallocFailed ); translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, pTabItem->regResult, 0); continue; } /* If this scan uses an index, make VDBE code substitutions to read data ** from the index instead of from the table where possible. In some cases ** this optimization prevents the table from ever being read, which can ** yield a significant performance boost. ** ** Calls to the code generator in between sqlite3WhereBegin and ** sqlite3WhereEnd will have created code that references the table ** directly. This loop scans all that code looking for opcodes ** that reference the table and converts them into opcodes that ** reference the index. */ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ pIdx = pLoop->u.btree.pIndex; }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ pIdx = pLevel->u.pCoveringIdx; } if( pIdx && !db->mallocFailed ){ if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ last = iEnd; }else{ last = pWInfo->iEndWhere; } if( pIdx->bHasExpr ){ IndexedExpr *p = pParse->pIdxEpr; while( p ){ if( p->iIdxCur==pLevel->iIdxCur ){ #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x200 ){ sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n", p->iIdxCur, p->iIdxCol); if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(p->pExpr); } #endif p->iDataCur = -1; p->iIdxCur = -1; } p = p->pIENext; } } k = pLevel->addrBody + 1; #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeAddopTrace ){ printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n", pLevel->iTabCur, pLevel->iIdxCur, k, last-1); } /* Proof that the "+1" on the k value above is safe */ pOp = sqlite3VdbeGetOp(v, k - 1); assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); #endif pOp = sqlite3VdbeGetOp(v, k); pLastOp = pOp + (last - k); assert( pOp<=pLastOp ); do{ if( pOp->p1!=pLevel->iTabCur ){ /* no-op */ }else if( pOp->opcode==OP_Column #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC || pOp->opcode==OP_Offset #endif ){ int x = pOp->p2; assert( pIdx->pTable==pTab ); #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC if( pOp->opcode==OP_Offset ){ /* Do not need to translate the column number */ }else #endif if( !HasRowid(pTab) ){ Index *pPk = sqlite3PrimaryKeyIndex(pTab); x = pPk->aiColumn[x]; assert( x>=0 ); }else{ testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); x = sqlite3StorageColumnToTable(pTab,x); } x = sqlite3TableColumnToIndex(pIdx, x); if( x>=0 ){ pOp->p2 = x; pOp->p1 = pLevel->iIdxCur; OpcodeRewriteTrace(db, k, pOp); }else{ /* Unable to translate the table reference into an index ** reference. Verify that this is harmless - that the ** table being referenced really is open. */ #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || cursorIsOpen(v,pOp->p1,k) || pOp->opcode==OP_Offset ); #else assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || cursorIsOpen(v,pOp->p1,k) ); #endif } }else if( pOp->opcode==OP_Rowid ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid; OpcodeRewriteTrace(db, k, pOp); }else if( pOp->opcode==OP_IfNullRow ){ pOp->p1 = pLevel->iIdxCur; OpcodeRewriteTrace(db, k, pOp); } #ifdef SQLITE_DEBUG k++; #endif }while( (++pOp)flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); #endif } } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); /* Final cleanup */ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); pParse->withinRJSubrtn -= nRJ; return; } /************** End of where.c ***********************************************/ /************** Begin file window.c ******************************************/ /* ** 2018 May 08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_WINDOWFUNC /* ** SELECT REWRITING ** ** Any SELECT statement that contains one or more window functions in ** either the select list or ORDER BY clause (the only two places window ** functions may be used) is transformed by function sqlite3WindowRewrite() ** in order to support window function processing. For example, with the ** schema: ** ** CREATE TABLE t1(a, b, c, d, e, f, g); ** ** the statement: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; ** ** is transformed to: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d ** ) ORDER BY e; ** ** The flattening optimization is disabled when processing this transformed ** SELECT statement. This allows the implementation of the window function ** (in this case max()) to process rows sorted in order of (c, d), which ** makes things easier for obvious reasons. More generally: ** ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to ** the sub-query. ** ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. ** ** * Terminals from each of the expression trees that make up the ** select-list and ORDER BY expressions in the parent query are ** selected by the sub-query. For the purposes of the transformation, ** terminals are column references and aggregate functions. ** ** If there is more than one window function in the SELECT that uses ** the same window declaration (the OVER bit), then a single scan may ** be used to process more than one window function. For example: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY c ORDER BY d) ** FROM t1; ** ** is transformed in the same way as the example above. However: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY a ORDER BY b) ** FROM t1; ** ** Must be transformed to: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b ** ) ORDER BY c, d ** ) ORDER BY e; ** ** so that both min() and max() may process rows in the order defined by ** their respective window declarations. ** ** INTERFACE WITH SELECT.C ** ** When processing the rewritten SELECT statement, code in select.c calls ** sqlite3WhereBegin() to begin iterating through the results of the ** sub-query, which is always implemented as a co-routine. It then calls ** sqlite3WindowCodeStep() to process rows and finish the scan by calling ** sqlite3WhereEnd(). ** ** sqlite3WindowCodeStep() generates VM code so that, for each row returned ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. ** When the sub-routine is invoked: ** ** * The results of all window-functions for the row are stored ** in the associated Window.regResult registers. ** ** * The required terminal values are stored in the current row of ** temp table Window.iEphCsr. ** ** In some cases, depending on the window frame and the specific window ** functions invoked, sqlite3WindowCodeStep() caches each entire partition ** in a temp table before returning any rows. In other cases it does not. ** This detail is encapsulated within this file, the code generated by ** select.c is the same in either case. ** ** BUILT-IN WINDOW FUNCTIONS ** ** This implementation features the following built-in window functions: ** ** row_number() ** rank() ** dense_rank() ** percent_rank() ** cume_dist() ** ntile(N) ** lead(expr [, offset [, default]]) ** lag(expr [, offset [, default]]) ** first_value(expr) ** last_value(expr) ** nth_value(expr, N) ** ** These are the same built-in window functions supported by Postgres. ** Although the behaviour of aggregate window functions (functions that ** can be used as either aggregates or window functions) allows them to ** be implemented using an API, built-in window functions are much more ** esoteric. Additionally, some window functions (e.g. nth_value()) ** may only be implemented by caching the entire partition in memory. ** As such, some built-in window functions use the same API as aggregate ** window functions and some are implemented directly using VDBE ** instructions. Additionally, for those functions that use the API, the ** window frame is sometimes modified before the SELECT statement is ** rewritten. For example, regardless of the specified window frame, the ** row_number() function always uses: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** See sqlite3WindowUpdate() for details. ** ** As well as some of the built-in window functions, aggregate window ** functions min() and max() are implemented using VDBE instructions if ** the start of the window frame is declared as anything other than ** UNBOUNDED PRECEDING. */ /* ** Implementation of built-in window function row_number(). Assumes that the ** window frame has been coerced to: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void row_numberStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) (*p)++; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void row_numberValueFunc(sqlite3_context *pCtx){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); sqlite3_result_int64(pCtx, (p ? *p : 0)); } /* ** Context object type used by rank(), dense_rank(), percent_rank() and ** cume_dist(). */ struct CallCount { i64 nValue; i64 nStep; i64 nTotal; }; /* ** Implementation of built-in window function dense_rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void dense_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) p->nStep = 1; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void dense_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nStep ){ p->nValue++; p->nStep = 0; } sqlite3_result_int64(pCtx, p->nValue); } } /* ** Implementation of built-in window function nth_value(). This ** implementation is used in "slow mode" only - when the EXCLUDE clause ** is not set to the default value "NO OTHERS". */ struct NthValueCtx { i64 nStep; sqlite3_value *pValue; }; static void nth_valueStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ i64 iVal; switch( sqlite3_value_numeric_type(apArg[1]) ){ case SQLITE_INTEGER: iVal = sqlite3_value_int64(apArg[1]); break; case SQLITE_FLOAT: { double fVal = sqlite3_value_double(apArg[1]); if( ((i64)fVal)!=fVal ) goto error_out; iVal = (i64)fVal; break; } default: goto error_out; } if( iVal<=0 ) goto error_out; p->nStep++; if( iVal==p->nStep ){ p->pValue = sqlite3_value_dup(apArg[0]); if( !p->pValue ){ sqlite3_result_error_nomem(pCtx); } } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); return; error_out: sqlite3_result_error( pCtx, "second argument to nth_value must be a positive integer", -1 ); } static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); if( p && p->pValue ){ sqlite3_result_value(pCtx, p->pValue); sqlite3_value_free(p->pValue); p->pValue = 0; } } #define nth_valueInvFunc noopStepFunc #define nth_valueValueFunc noopValueFunc static void first_valueStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pValue==0 ){ p->pValue = sqlite3_value_dup(apArg[0]); if( !p->pValue ){ sqlite3_result_error_nomem(pCtx); } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void first_valueFinalizeFunc(sqlite3_context *pCtx){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pValue ){ sqlite3_result_value(pCtx, p->pValue); sqlite3_value_free(p->pValue); p->pValue = 0; } } #define first_valueInvFunc noopStepFunc #define first_valueValueFunc noopValueFunc /* ** Implementation of built-in window function rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nStep++; if( p->nValue==0 ){ p->nValue = p->nStep; } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ sqlite3_result_int64(pCtx, p->nValue); p->nValue = 0; } } /* ** Implementation of built-in window function percent_rank(). Assumes that ** the window frame has been set to: ** ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING */ static void percent_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nTotal++; } } static void percent_rankInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->nStep++; } static void percent_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nValue = p->nStep; if( p->nTotal>1 ){ double r = (double)p->nValue / (double)(p->nTotal-1); sqlite3_result_double(pCtx, r); }else{ sqlite3_result_double(pCtx, 0.0); } } } #define percent_rankFinalizeFunc percent_rankValueFunc /* ** Implementation of built-in window function cume_dist(). Assumes that ** the window frame has been set to: ** ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING */ static void cume_distStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nTotal++; } } static void cume_distInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->nStep++; } static void cume_distValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); if( p ){ double r = (double)(p->nStep) / (double)(p->nTotal); sqlite3_result_double(pCtx, r); } } #define cume_distFinalizeFunc cume_distValueFunc /* ** Context object for ntile() window function. */ struct NtileCtx { i64 nTotal; /* Total rows in partition */ i64 nParam; /* Parameter passed to ntile(N) */ i64 iRow; /* Current row */ }; /* ** Implementation of ntile(). This assumes that the window frame has ** been coerced to: ** ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING */ static void ntileStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal==0 ){ p->nParam = sqlite3_value_int64(apArg[0]); if( p->nParam<=0 ){ sqlite3_result_error( pCtx, "argument of ntile must be a positive integer", -1 ); } } p->nTotal++; } } static void ntileInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->iRow++; } static void ntileValueFunc(sqlite3_context *pCtx){ struct NtileCtx *p; p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->nParam>0 ){ int nSize = (p->nTotal / p->nParam); if( nSize==0 ){ sqlite3_result_int64(pCtx, p->iRow+1); }else{ i64 nLarge = p->nTotal - p->nParam*nSize; i64 iSmall = nLarge*(nSize+1); i64 iRow = p->iRow; assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); if( iRowpVal); p->pVal = sqlite3_value_dup(apArg[0]); if( p->pVal==0 ){ sqlite3_result_error_nomem(pCtx); }else{ p->nVal++; } } } static void last_valueInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct LastValueCtx *p; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( ALWAYS(p) ){ p->nVal--; if( p->nVal==0 ){ sqlite3_value_free(p->pVal); p->pVal = 0; } } } static void last_valueValueFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); } } static void last_valueFinalizeFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); sqlite3_value_free(p->pVal); p->pVal = 0; } } /* ** Static names for the built-in window function names. These static ** names are used, rather than string literals, so that FuncDef objects ** can be associated with a particular window function by direct ** comparison of the zName pointer. Example: ** ** if( pFuncDef->zName==row_valueName ){ ... } */ static const char row_numberName[] = "row_number"; static const char dense_rankName[] = "dense_rank"; static const char rankName[] = "rank"; static const char percent_rankName[] = "percent_rank"; static const char cume_distName[] = "cume_dist"; static const char ntileName[] = "ntile"; static const char last_valueName[] = "last_value"; static const char nth_valueName[] = "nth_value"; static const char first_valueName[] = "first_value"; static const char leadName[] = "lead"; static const char lagName[] = "lag"; /* ** No-op implementations of xStep() and xFinalize(). Used as place-holders ** for built-in window functions that never call those interfaces. ** ** The noopValueFunc() is called but is expected to do nothing. The ** noopStepFunc() is never called, and so it is marked with NO_TEST to ** let the test coverage routine know not to expect this function to be ** invoked. */ static void noopStepFunc( /*NO_TEST*/ sqlite3_context *p, /*NO_TEST*/ int n, /*NO_TEST*/ sqlite3_value **a /*NO_TEST*/ ){ /*NO_TEST*/ UNUSED_PARAMETER(p); /*NO_TEST*/ UNUSED_PARAMETER(n); /*NO_TEST*/ UNUSED_PARAMETER(a); /*NO_TEST*/ assert(0); /*NO_TEST*/ } /*NO_TEST*/ static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } /* Window functions that use all window interfaces: xStep, xFinal, ** xValue, and xInverse */ #define WINDOWFUNCALL(name,nArg,extra) { \ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ name ## InvFunc, name ## Name, {0} \ } /* Window functions that are implemented using bytecode and thus have ** no-op routines for their methods */ #define WINDOWFUNCNOOP(name,nArg,extra) { \ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ noopStepFunc, noopValueFunc, noopValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* Window functions that use all window interfaces: xStep, the ** same routine for xFinalize and xValue and which never call ** xInverse. */ #define WINDOWFUNCX(name,nArg,extra) { \ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* ** Register those built-in window functions that are not also aggregates. */ SQLITE_PRIVATE void sqlite3WindowFunctions(void){ static FuncDef aWindowFuncs[] = { WINDOWFUNCX(row_number, 0, 0), WINDOWFUNCX(dense_rank, 0, 0), WINDOWFUNCX(rank, 0, 0), WINDOWFUNCALL(percent_rank, 0, 0), WINDOWFUNCALL(cume_dist, 0, 0), WINDOWFUNCALL(ntile, 1, 0), WINDOWFUNCALL(last_value, 1, 0), WINDOWFUNCALL(nth_value, 2, 0), WINDOWFUNCALL(first_value, 1, 0), WINDOWFUNCNOOP(lead, 1, 0), WINDOWFUNCNOOP(lead, 2, 0), WINDOWFUNCNOOP(lead, 3, 0), WINDOWFUNCNOOP(lag, 1, 0), WINDOWFUNCNOOP(lag, 2, 0), WINDOWFUNCNOOP(lag, 3, 0), }; sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); } static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ Window *p; for(p=pList; p; p=p->pNextWin){ if( sqlite3StrICmp(p->zName, zName)==0 ) break; } if( p==0 ){ sqlite3ErrorMsg(pParse, "no such window: %s", zName); } return p; } /* ** This function is called immediately after resolving the function name ** for a window function within a SELECT statement. Argument pList is a ** linked list of WINDOW definitions for the current SELECT statement. ** Argument pFunc is the function definition just resolved and pWin ** is the Window object representing the associated OVER clause. This ** function updates the contents of pWin as follows: ** ** * If the OVER clause referred to a named window (as in "max(x) OVER win"), ** search list pList for a matching WINDOW definition, and update pWin ** accordingly. If no such WINDOW clause can be found, leave an error ** in pParse. ** ** * If the function is a built-in window function that requires the ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top ** of this file), pWin is updated here. */ SQLITE_PRIVATE void sqlite3WindowUpdate( Parse *pParse, Window *pList, /* List of named windows for this SELECT */ Window *pWin, /* Window frame to update */ FuncDef *pFunc /* Window function definition */ ){ if( pWin->zName && pWin->eFrmType==0 ){ Window *p = windowFind(pParse, pList, pWin->zName); if( p==0 ) return; pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); pWin->eStart = p->eStart; pWin->eEnd = p->eEnd; pWin->eFrmType = p->eFrmType; pWin->eExclude = p->eExclude; }else{ sqlite3WindowChain(pParse, pWin, pList); } if( (pWin->eFrmType==TK_RANGE) && (pWin->pStart || pWin->pEnd) && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) ){ sqlite3ErrorMsg(pParse, "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" ); }else if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ sqlite3 *db = pParse->db; if( pWin->pFilter ){ sqlite3ErrorMsg(pParse, "FILTER clause may only be used with aggregate window functions" ); }else{ struct WindowUpdate { const char *zFunc; int eFrmType; int eStart; int eEnd; } aUp[] = { { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, }; int i; for(i=0; izName==aUp[i].zFunc ){ sqlite3ExprDelete(db, pWin->pStart); sqlite3ExprDelete(db, pWin->pEnd); pWin->pEnd = pWin->pStart = 0; pWin->eFrmType = aUp[i].eFrmType; pWin->eStart = aUp[i].eStart; pWin->eEnd = aUp[i].eEnd; pWin->eExclude = 0; if( pWin->eStart==TK_FOLLOWING ){ pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); } break; } } } } pWin->pWFunc = pFunc; } /* ** Context object passed through sqlite3WalkExprList() to ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). */ typedef struct WindowRewrite WindowRewrite; struct WindowRewrite { Window *pWin; SrcList *pSrc; ExprList *pSub; Table *pTab; Select *pSubSelect; /* Current sub-select, if any */ }; /* ** Callback function used by selectWindowRewriteEList(). If necessary, ** this function appends to the output expression-list and updates ** expression (*ppExpr) in place. */ static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ struct WindowRewrite *p = pWalker->u.pRewrite; Parse *pParse = pWalker->pParse; assert( p!=0 ); assert( p->pWin!=0 ); /* If this function is being called from within a scalar sub-select ** that used by the SELECT statement being processed, only process ** TK_COLUMN expressions that refer to it (the outer SELECT). Do ** not process aggregates or window functions at all, as they belong ** to the scalar sub-select. */ if( p->pSubSelect ){ if( pExpr->op!=TK_COLUMN ){ return WRC_Continue; }else{ int nSrc = p->pSrc->nSrc; int i; for(i=0; iiTable==p->pSrc->a[i].iCursor ) break; } if( i==nSrc ) return WRC_Continue; } } switch( pExpr->op ){ case TK_FUNCTION: if( !ExprHasProperty(pExpr, EP_WinFunc) ){ break; }else{ Window *pWin; for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ if( pExpr->y.pWin==pWin ){ assert( pWin->pOwner==pExpr ); return WRC_Prune; } } } /* no break */ deliberate_fall_through case TK_IF_NULL_ROW: case TK_AGG_FUNCTION: case TK_COLUMN: { int iCol = -1; if( pParse->db->mallocFailed ) return WRC_Abort; if( p->pSub ){ int i; for(i=0; ipSub->nExpr; i++){ if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ iCol = i; break; } } } if( iCol<0 ){ Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); } if( p->pSub ){ int f = pExpr->flags & EP_Collate; assert( ExprHasProperty(pExpr, EP_Static)==0 ); ExprSetProperty(pExpr, EP_Static); sqlite3ExprDelete(pParse->db, pExpr); ExprClearProperty(pExpr, EP_Static); memset(pExpr, 0, sizeof(Expr)); pExpr->op = TK_COLUMN; pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); pExpr->iTable = p->pWin->iEphCsr; pExpr->y.pTab = p->pTab; pExpr->flags = f; } if( pParse->db->mallocFailed ) return WRC_Abort; break; } default: /* no-op */ break; } return WRC_Continue; } static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ struct WindowRewrite *p = pWalker->u.pRewrite; Select *pSave = p->pSubSelect; if( pSave==pSelect ){ return WRC_Continue; }else{ p->pSubSelect = pSelect; sqlite3WalkSelect(pWalker, pSelect); p->pSubSelect = pSave; } return WRC_Prune; } /* ** Iterate through each expression in expression-list pEList. For each: ** ** * TK_COLUMN, ** * aggregate function, or ** * window function with a Window object that is not a member of the ** Window list passed as the second argument (pWin). ** ** Append the node to output expression-list (*ppSub). And replace it ** with a TK_COLUMN that reads the (N-1)th element of table ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after ** appending the new one. */ static void selectWindowRewriteEList( Parse *pParse, Window *pWin, SrcList *pSrc, ExprList *pEList, /* Rewrite expressions in this list */ Table *pTab, ExprList **ppSub /* IN/OUT: Sub-select expression-list */ ){ Walker sWalker; WindowRewrite sRewrite; assert( pWin!=0 ); memset(&sWalker, 0, sizeof(Walker)); memset(&sRewrite, 0, sizeof(WindowRewrite)); sRewrite.pSub = *ppSub; sRewrite.pWin = pWin; sRewrite.pSrc = pSrc; sRewrite.pTab = pTab; sWalker.pParse = pParse; sWalker.xExprCallback = selectWindowRewriteExprCb; sWalker.xSelectCallback = selectWindowRewriteSelectCb; sWalker.u.pRewrite = &sRewrite; (void)sqlite3WalkExprList(&sWalker, pEList); *ppSub = sRewrite.pSub; } /* ** Append a copy of each expression in expression-list pAppend to ** expression list pList. Return a pointer to the result list. */ static ExprList *exprListAppendList( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ ExprList *pAppend, /* List of values to append. Might be NULL */ int bIntToNull ){ if( pAppend ){ int i; int nInit = pList ? pList->nExpr : 0; for(i=0; inExpr; i++){ sqlite3 *db = pParse->db; Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); break; } if( bIntToNull ){ int iDummy; Expr *pSub; pSub = sqlite3ExprSkipCollateAndLikely(pDup); if( sqlite3ExprIsInteger(pSub, &iDummy) ){ pSub->op = TK_NULL; pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); pSub->u.zToken = 0; } } pList = sqlite3ExprListAppend(pParse, pList, pDup); if( pList ) pList->a[nInit+i].fg.sortFlags = pAppend->a[i].fg.sortFlags; } } return pList; } /* ** When rewriting a query, if the new subquery in the FROM clause ** contains TK_AGG_FUNCTION nodes that refer to an outer query, ** then we have to increase the Expr->op2 values of those nodes ** due to the extra subquery layer that was added. ** ** See also the incrAggDepth() routine in resolve.c */ static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION && pExpr->op2>=pWalker->walkerDepth ){ pExpr->op2++; } return WRC_Continue; } static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pWalker->pParse, "misuse of aggregate: %s()", pExpr->u.zToken); } return WRC_Continue; } /* ** If the SELECT statement passed as the second argument does not invoke ** any SQL window functions, this function is a no-op. Otherwise, it ** rewrites the SELECT statement so that window function xStep functions ** are invoked in the correct order as described under "SELECT REWRITING" ** at the top of this file. */ SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){ int rc = SQLITE_OK; if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) && ALWAYS(!IN_RENAME_OBJECT) ){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3 *db = pParse->db; Select *pSub = 0; /* The subquery */ SrcList *pSrc = p->pSrc; Expr *pWhere = p->pWhere; ExprList *pGroupBy = p->pGroupBy; Expr *pHaving = p->pHaving; ExprList *pSort = 0; ExprList *pSublist = 0; /* Expression list for sub-query */ Window *pMWin = p->pWin; /* Main window object */ Window *pWin; /* Window object iterator */ Table *pTab; Walker w; u32 selFlags = p->selFlags; pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ){ return sqlite3ErrorToParser(db, SQLITE_NOMEM); } sqlite3AggInfoPersistWalkerInit(&w, pParse); sqlite3WalkSelect(&w, p); if( (p->selFlags & SF_Aggregate)==0 ){ w.xExprCallback = disallowAggregatesInOrderByCb; w.xSelectCallback = 0; sqlite3WalkExprList(&w, p->pOrderBy); } p->pSrc = 0; p->pWhere = 0; p->pGroupBy = 0; p->pHaving = 0; p->selFlags &= ~SF_Aggregate; p->selFlags |= SF_WinRewrite; /* Create the ORDER BY clause for the sub-select. This is the concatenation ** of the window PARTITION and ORDER BY clauses. Then, if this makes it ** redundant, remove the ORDER BY from the parent SELECT. */ pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ int nSave = pSort->nExpr; pSort->nExpr = p->pOrderBy->nExpr; if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ sqlite3ExprListDelete(db, p->pOrderBy); p->pOrderBy = 0; } pSort->nExpr = nSave; } /* Assign a cursor number for the ephemeral table used to buffer rows. ** The OpenEphemeral instruction is coded later, after it is known how ** many columns the table will have. */ pMWin->iEphCsr = pParse->nTab++; pParse->nTab += 3; selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); /* Append the PARTITION BY and ORDER BY expressions to the to the ** sub-select expression list. They are required to figure out where ** boundaries for partitions and sets of peer rows lie. */ pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); /* Append the arguments passed to each window function to the ** sub-select expression list. Also allocate two registers for each ** window function - one for the accumulator, another for interim ** results. */ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ ExprList *pArgs; assert( ExprUseXList(pWin->pOwner) ); assert( pWin->pWFunc!=0 ); pArgs = pWin->pOwner->x.pList; if( pWin->pWFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pWin->bExprArgs = 1; }else{ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); } if( pWin->pFilter ){ Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); } pWin->regAccum = ++pParse->nMem; pWin->regResult = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } /* If there is no ORDER BY or PARTITION BY clause, and the window ** function accepts zero arguments, and there are no other columns ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible ** that pSublist is still NULL here. Add a constant expression here to ** keep everything legal in this case. */ if( pSublist==0 ){ pSublist = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_INTEGER, "0") ); } pSub = sqlite3SelectNew( pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 ); TREETRACE(0x40,pParse,pSub, ("New window-function subquery in FROM clause of (%u/%p)\n", p->selId, p)); p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside ** of sqlite3DbMallocRawNN() called from ** sqlite3SrcListAppend() */ if( p->pSrc ){ Table *pTab2; p->pSrc->a[0].pSelect = pSub; p->pSrc->a[0].fg.isCorrelated = 1; sqlite3SrcListAssignCursors(pParse, p->pSrc); pSub->selFlags |= SF_Expanded|SF_OrderByReqd; pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); pSub->selFlags |= (selFlags & SF_Aggregate); if( pTab2==0 ){ /* Might actually be some other kind of error, but in that case ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get ** the correct error message regardless. */ rc = SQLITE_NOMEM; }else{ memcpy(pTab, pTab2, sizeof(Table)); pTab->tabFlags |= TF_Ephemeral; p->pSrc->a[0].pTab = pTab; pTab = pTab2; memset(&w, 0, sizeof(w)); w.xExprCallback = sqlite3WindowExtraAggFuncDepth; w.xSelectCallback = sqlite3WalkerDepthIncrease; w.xSelectCallback2 = sqlite3WalkerDepthDecrease; sqlite3WalkSelect(&w, pSub); } }else{ sqlite3SelectDelete(db, pSub); } if( db->mallocFailed ) rc = SQLITE_NOMEM; /* Defer deleting the temporary table pTab because if an error occurred, ** there could still be references to that table embedded in the ** result-set or ORDER BY clause of the SELECT statement p. */ sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab); } assert( rc==SQLITE_OK || pParse->nErr!=0 ); return rc; } /* ** Unlink the Window object from the Select to which it is attached, ** if it is attached. */ SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window *p){ if( p->ppThis ){ *p->ppThis = p->pNextWin; if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; p->ppThis = 0; } } /* ** Free the Window object passed as the second argument. */ SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3 *db, Window *p){ if( p ){ sqlite3WindowUnlinkFromSelect(p); sqlite3ExprDelete(db, p->pFilter); sqlite3ExprListDelete(db, p->pPartition); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pEnd); sqlite3ExprDelete(db, p->pStart); sqlite3DbFree(db, p->zName); sqlite3DbFree(db, p->zBase); sqlite3DbFree(db, p); } } /* ** Free the linked list of Window objects starting at the second argument. */ SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p){ while( p ){ Window *pNext = p->pNextWin; sqlite3WindowDelete(db, p); p = pNext; } } /* ** The argument expression is an PRECEDING or FOLLOWING offset. The ** value should be a non-negative integer. If the value is not a ** constant, change it to NULL. The fact that it is then a non-negative ** integer will be caught later. But it is important not to leave ** variable values in the expression tree. */ static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ if( 0==sqlite3ExprIsConstant(pExpr) ){ if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); sqlite3ExprDelete(pParse->db, pExpr); pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); } return pExpr; } /* ** Allocate and return a new Window object describing a Window Definition. */ SQLITE_PRIVATE Window *sqlite3WindowAlloc( Parse *pParse, /* Parsing context */ int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ u8 eExclude /* EXCLUDE clause */ ){ Window *pWin = 0; int bImplicitFrame = 0; /* Parser assures the following: */ assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); assert( eStart==TK_CURRENT || eStart==TK_PRECEDING || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); if( eType==0 ){ bImplicitFrame = 1; eType = TK_RANGE; } /* Additionally, the ** starting boundary type may not occur earlier in the following list than ** the ending boundary type: ** ** UNBOUNDED PRECEDING ** PRECEDING ** CURRENT ROW ** FOLLOWING ** UNBOUNDED FOLLOWING ** ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting ** frame boundary. */ if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) ){ sqlite3ErrorMsg(pParse, "unsupported frame specification"); goto windowAllocErr; } pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( pWin==0 ) goto windowAllocErr; pWin->eFrmType = eType; pWin->eStart = eStart; pWin->eEnd = eEnd; if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ eExclude = TK_NO; } pWin->eExclude = eExclude; pWin->bImplicitFrame = bImplicitFrame; pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); return pWin; windowAllocErr: sqlite3ExprDelete(pParse->db, pEnd); sqlite3ExprDelete(pParse->db, pStart); return 0; } /* ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the ** equivalent nul-terminated string. */ SQLITE_PRIVATE Window *sqlite3WindowAssemble( Parse *pParse, Window *pWin, ExprList *pPartition, ExprList *pOrderBy, Token *pBase ){ if( pWin ){ pWin->pPartition = pPartition; pWin->pOrderBy = pOrderBy; if( pBase ){ pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); } }else{ sqlite3ExprListDelete(pParse->db, pPartition); sqlite3ExprListDelete(pParse->db, pOrderBy); } return pWin; } /* ** Window *pWin has just been created from a WINDOW clause. Token pBase ** is the base window. Earlier windows from the same WINDOW clause are ** stored in the linked list starting at pWin->pNextWin. This function ** either updates *pWin according to the base specification, or else ** leaves an error in pParse. */ SQLITE_PRIVATE void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ if( pWin->zBase ){ sqlite3 *db = pParse->db; Window *pExist = windowFind(pParse, pList, pWin->zBase); if( pExist ){ const char *zErr = 0; /* Check for errors */ if( pWin->pPartition ){ zErr = "PARTITION clause"; }else if( pExist->pOrderBy && pWin->pOrderBy ){ zErr = "ORDER BY clause"; }else if( pExist->bImplicitFrame==0 ){ zErr = "frame specification"; } if( zErr ){ sqlite3ErrorMsg(pParse, "cannot override %s of window: %s", zErr, pWin->zBase ); }else{ pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); if( pExist->pOrderBy ){ assert( pWin->pOrderBy==0 ); pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); } sqlite3DbFree(db, pWin->zBase); pWin->zBase = 0; } } } } /* ** Attach window object pWin to expression p. */ SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ if( p ){ assert( p->op==TK_FUNCTION ); assert( pWin ); p->y.pWin = pWin; ExprSetProperty(p, EP_WinFunc); pWin->pOwner = p; if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ sqlite3ErrorMsg(pParse, "DISTINCT is not supported for window functions" ); } }else{ sqlite3WindowDelete(pParse->db, pWin); } } /* ** Possibly link window pWin into the list at pSel->pWin (window functions ** to be processed as part of SELECT statement pSel). The window is linked ** in if either (a) there are no other windows already linked to this ** SELECT, or (b) the windows already linked use a compatible window frame. */ SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin){ if( pSel ){ if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ pWin->pNextWin = pSel->pWin; if( pSel->pWin ){ pSel->pWin->ppThis = &pWin->pNextWin; } pSel->pWin = pWin; pWin->ppThis = &pSel->pWin; }else{ if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ pSel->selFlags |= SF_MultiPart; } } } } /* ** Return 0 if the two window objects are identical, 1 if they are ** different, or 2 if it cannot be determined if the objects are identical ** or not. Identical window objects can be processed in a single scan. */ SQLITE_PRIVATE int sqlite3WindowCompare( const Parse *pParse, const Window *p1, const Window *p2, int bFilter ){ int res; if( NEVER(p1==0) || NEVER(p2==0) ) return 1; if( p1->eFrmType!=p2->eFrmType ) return 1; if( p1->eStart!=p2->eStart ) return 1; if( p1->eEnd!=p2->eEnd ) return 1; if( p1->eExclude!=p2->eExclude ) return 1; if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ return res; } if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ return res; } if( bFilter ){ if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ return res; } } return 0; } /* ** This is called by code in select.c before it calls sqlite3WhereBegin() ** to begin iterating through the sub-query results. It is used to allocate ** and initialize registers and cursors used by sqlite3WindowCodeStep(). */ SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; Window *pMWin = pSelect->pWin; Window *pWin; Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); /* Allocate registers to use for PARTITION BY values, if any. Initialize ** said registers to NULL. */ if( pMWin->pPartition ){ int nExpr = pMWin->pPartition->nExpr; pMWin->regPart = pParse->nMem+1; pParse->nMem += nExpr; sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); } pMWin->regOne = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); if( pMWin->eExclude ){ pMWin->regStartRowid = ++pParse->nMem; pMWin->regEndRowid = ++pParse->nMem; pMWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); return; } for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *p = pWin->pWFunc; if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ /* The inline versions of min() and max() require a single ephemeral ** table and 3 registers. The registers are used as follows: ** ** regApp+0: slot to copy min()/max() argument to for MakeRecord ** regApp+1: integer value used to ensure keys are unique ** regApp+2: output of MakeRecord */ ExprList *pList; KeyInfo *pKeyInfo; assert( ExprUseXList(pWin->pOwner) ); pList = pWin->pOwner->x.pList; pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); pWin->csrApp = pParse->nTab++; pWin->regApp = pParse->nMem+1; pParse->nMem += 3; if( pKeyInfo && pWin->pWFunc->zName[1]=='i' ){ assert( pKeyInfo->aSortFlags[0]==0 ); pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; } sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } else if( p->zName==nth_valueName || p->zName==first_valueName ){ /* Allocate two registers at pWin->regApp. These will be used to ** store the start and end index of the current frame. */ pWin->regApp = pParse->nMem+1; pWin->csrApp = pParse->nTab++; pParse->nMem += 2; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } else if( p->zName==leadName || p->zName==lagName ){ pWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } } } #define WINDOW_STARTING_INT 0 #define WINDOW_ENDING_INT 1 #define WINDOW_NTH_VALUE_INT 2 #define WINDOW_STARTING_NUM 3 #define WINDOW_ENDING_NUM 4 /* ** A "PRECEDING " (eCond==0) or "FOLLOWING " (eCond==1) or the ** value of the second argument to nth_value() (eCond==2) has just been ** evaluated and the result left in register reg. This function generates VM ** code to check that the value is a non-negative integer and throws an ** exception if it is not. */ static void windowCheckValue(Parse *pParse, int reg, int eCond){ static const char *azErr[] = { "frame starting offset must be a non-negative integer", "frame ending offset must be a non-negative integer", "second argument to nth_value must be a positive integer", "frame starting offset must be a non-negative number", "frame ending offset must be a non-negative number", }; static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; Vdbe *v = sqlite3GetVdbe(pParse); int regZero = sqlite3GetTempReg(pParse); assert( eCond>=0 && eCond=WINDOW_STARTING_NUM ){ int regString = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); VdbeCoverage(v); assert( eCond==3 || eCond==4 ); VdbeCoverageIf(v, eCond==3); VdbeCoverageIf(v, eCond==4); }else{ sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); assert( eCond==0 || eCond==1 || eCond==2 ); VdbeCoverageIf(v, eCond==0); VdbeCoverageIf(v, eCond==1); VdbeCoverageIf(v, eCond==2); } sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ VdbeCoverageNeverNullIf(v, eCond==2); VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); sqlite3ReleaseTempReg(pParse, regZero); } /* ** Return the number of arguments passed to the window-function associated ** with the object passed as the only argument to this function. */ static int windowArgCount(Window *pWin){ const ExprList *pList; assert( ExprUseXList(pWin->pOwner) ); pList = pWin->pOwner->x.pList; return (pList ? pList->nExpr : 0); } typedef struct WindowCodeArg WindowCodeArg; typedef struct WindowCsrAndReg WindowCsrAndReg; /* ** See comments above struct WindowCodeArg. */ struct WindowCsrAndReg { int csr; /* Cursor number */ int reg; /* First in array of peer values */ }; /* ** A single instance of this structure is allocated on the stack by ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper ** routines. This is to reduce the number of arguments required by each ** helper function. ** ** regArg: ** Each window function requires an accumulator register (just as an ** ordinary aggregate function does). This variable is set to the first ** in an array of accumulator registers - one for each window function ** in the WindowCodeArg.pMWin list. ** ** eDelete: ** The window functions implementation sometimes caches the input rows ** that it processes in a temporary table. If it is not zero, this ** variable indicates when rows may be removed from the temp table (in ** order to reduce memory requirements - it would always be safe just ** to leave them there). Possible values for eDelete are: ** ** WINDOW_RETURN_ROW: ** An input row can be discarded after it is returned to the caller. ** ** WINDOW_AGGINVERSE: ** An input row can be discarded after the window functions xInverse() ** callbacks have been invoked in it. ** ** WINDOW_AGGSTEP: ** An input row can be discarded after the window functions xStep() ** callbacks have been invoked in it. ** ** start,current,end ** Consider a window-frame similar to the following: ** ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) ** ** The windows functions implementation caches the input rows in a temp ** table, sorted by "a, b" (it actually populates the cache lazily, and ** aggressively removes rows once they are no longer required, but that's ** a mere detail). It keeps three cursors open on the temp table. One ** (current) that points to the next row to return to the query engine ** once its window function values have been calculated. Another (end) ** points to the next row to call the xStep() method of each window function ** on (so that it is 2 groups ahead of current). And a third (start) that ** points to the next row to call the xInverse() method of each window ** function on. ** ** Each cursor (start, current and end) consists of a VDBE cursor ** (WindowCsrAndReg.csr) and an array of registers (starting at ** WindowCodeArg.reg) that always contains a copy of the peer values ** read from the corresponding cursor. ** ** Depending on the window-frame in question, all three cursors may not ** be required. In this case both WindowCodeArg.csr and reg are set to ** 0. */ struct WindowCodeArg { Parse *pParse; /* Parse context */ Window *pMWin; /* First in list of functions being processed */ Vdbe *pVdbe; /* VDBE object */ int addrGosub; /* OP_Gosub to this address to return one row */ int regGosub; /* Register used with OP_Gosub(addrGosub) */ int regArg; /* First in array of accumulator registers */ int eDelete; /* See above */ int regRowid; WindowCsrAndReg start; WindowCsrAndReg current; WindowCsrAndReg end; }; /* ** Generate VM code to read the window frames peer values from cursor csr into ** an array of registers starting at reg. */ static void windowReadPeerValues( WindowCodeArg *p, int csr, int reg ){ Window *pMWin = p->pMWin; ExprList *pOrderBy = pMWin->pOrderBy; if( pOrderBy ){ Vdbe *v = sqlite3GetVdbe(p->pParse); ExprList *pPart = pMWin->pPartition; int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); int i; for(i=0; inExpr; i++){ sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); } } } /* ** Generate VM code to invoke either xStep() (if bInverse is 0) or ** xInverse (if bInverse is non-zero) for each window function in the ** linked list starting at pMWin. Or, for built-in window functions ** that do not use the standard function API, generate the required ** inline VM code. ** ** If argument csr is greater than or equal to 0, then argument reg is ** the first register in an array of registers guaranteed to be large ** enough to hold the array of arguments for each function. In this case ** the arguments are extracted from the current row of csr into the ** array of registers before invoking OP_AggStep or OP_AggInverse ** ** Or, if csr is less than zero, then the array of registers at reg is ** already populated with all columns from the current row of the sub-query. ** ** If argument regPartSize is non-zero, then it is a register containing the ** number of rows in the current partition. */ static void windowAggStep( WindowCodeArg *p, Window *pMWin, /* Linked list of window functions */ int csr, /* Read arguments from this cursor */ int bInverse, /* True to invoke xInverse instead of xStep */ int reg /* Array of registers */ ){ Parse *pParse = p->pParse; Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; int regArg; int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); int i; assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); /* All OVER clauses in the same window function aggregate step must ** be the same. */ assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); for(i=0; izName!=nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); }else{ sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); } } regArg = reg; if( pMWin->regStartRowid==0 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && (pWin->eStart!=TK_UNBOUNDED) ){ int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); VdbeCoverage(v); if( bInverse==0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); }else{ sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); } sqlite3VdbeJumpHere(v, addrIsNull); }else if( pWin->regApp ){ assert( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ); assert( bInverse==0 || bInverse==1 ); sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); }else if( pFunc->xSFunc!=noopStepFunc ){ int addrIf = 0; if( pWin->pFilter ){ int regTmp; assert( ExprUseXList(pWin->pOwner) ); assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); regTmp = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regTmp); } if( pWin->bExprArgs ){ int iOp = sqlite3VdbeCurrentAddr(v); int iEnd; assert( ExprUseXList(pWin->pOwner) ); nArg = pWin->pOwner->x.pList->nExpr; regArg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); for(iEnd=sqlite3VdbeCurrentAddr(v); iOpopcode==OP_Column && pOp->p1==pMWin->iEphCsr ){ pOp->p1 = csr; } } } if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl; assert( nArg>0 ); assert( ExprUseXList(pWin->pOwner) ); pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, bInverse, regArg, pWin->regAccum); sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); if( pWin->bExprArgs ){ sqlite3ReleaseTempRange(pParse, regArg, nArg); } if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); } } } /* ** Values that may be passed as the second argument to windowCodeOp(). */ #define WINDOW_RETURN_ROW 1 #define WINDOW_AGGINVERSE 2 #define WINDOW_AGGSTEP 3 /* ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() ** (bFin==1) for each window function in the linked list starting at ** pMWin. Or, for built-in window-functions that do not use the standard ** API, generate the equivalent VM code. */ static void windowAggFinal(WindowCodeArg *p, int bFin){ Parse *pParse = p->pParse; Window *pMWin = p->pMWin; Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ if( pMWin->regStartRowid==0 && (pWin->pWFunc->funcFlags & SQLITE_FUNC_MINMAX) && (pWin->eStart!=TK_UNBOUNDED) ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); }else if( pWin->regApp ){ assert( pMWin->regStartRowid==0 ); }else{ int nArg = windowArgCount(pWin); if( bFin ){ sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF); sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); }else{ sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF); } } } } /* ** Generate code to calculate the current values of all window functions in the ** p->pMWin list by doing a full scan of the current window frame. Store the ** results in the Window.regResult registers, ready to return the upper ** layer. */ static void windowFullScan(WindowCodeArg *p){ Window *pWin; Parse *pParse = p->pParse; Window *pMWin = p->pMWin; Vdbe *v = p->pVdbe; int regCRowid = 0; /* Current rowid value */ int regCPeer = 0; /* Current peer values */ int regRowid = 0; /* AggStep rowid value */ int regPeer = 0; /* AggStep peer values */ int nPeer; int lblNext; int lblBrk; int addrNext; int csr; VdbeModuleComment((v, "windowFullScan begin")); assert( pMWin!=0 ); csr = pMWin->csrApp; nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); lblNext = sqlite3VdbeMakeLabel(pParse); lblBrk = sqlite3VdbeMakeLabel(pParse); regCRowid = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); if( nPeer ){ regCPeer = sqlite3GetTempRange(pParse, nPeer); regPeer = sqlite3GetTempRange(pParse, nPeer); } sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); VdbeCoverage(v); addrNext = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); VdbeCoverageNeverNull(v); if( pMWin->eExclude==TK_CURRENT ){ sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); VdbeCoverageNeverNull(v); }else if( pMWin->eExclude!=TK_NO ){ int addr; int addrEq = 0; KeyInfo *pKeyInfo = 0; if( pMWin->pOrderBy ){ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); } if( pMWin->eExclude==TK_TIES ){ addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); VdbeCoverageNeverNull(v); } if( pKeyInfo ){ windowReadPeerValues(p, csr, regPeer); sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); addr = sqlite3VdbeCurrentAddr(v)+1; sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); VdbeCoverageEqNe(v); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); } if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); } windowAggStep(p, pMWin, csr, 0, p->regArg); sqlite3VdbeResolveLabel(v, lblNext); sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrNext-1); sqlite3VdbeJumpHere(v, addrNext+1); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regCRowid); if( nPeer ){ sqlite3ReleaseTempRange(pParse, regPeer, nPeer); sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); } windowAggFinal(p, 1); VdbeModuleComment((v, "windowFullScan end")); } /* ** Invoke the sub-routine at regGosub (generated by code in select.c) to ** return the current row of Window.iEphCsr. If all window functions are ** aggregate window functions that use the standard API, a single ** OP_Gosub instruction is all that this routine generates. Extra VM code ** for per-row processing is only generated for the following built-in window ** functions: ** ** nth_value() ** first_value() ** lag() ** lead() */ static void windowReturnOneRow(WindowCodeArg *p){ Window *pMWin = p->pMWin; Vdbe *v = p->pVdbe; if( pMWin->regStartRowid ){ windowFullScan(p); }else{ Parse *pParse = p->pParse; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; assert( ExprUseXList(pWin->pOwner) ); if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(pParse); int tmpReg = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); if( pFunc->zName==nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); windowCheckValue(pParse, tmpReg, 2); }else{ sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); } sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); VdbeCoverageNeverNull(v); sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } else if( pFunc->zName==leadName || pFunc->zName==lagName ){ int nArg = pWin->pOwner->x.pList->nExpr; int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(pParse); int tmpReg = sqlite3GetTempReg(pParse); int iEph = pMWin->iEphCsr; if( nArg<3 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); }else{ sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); } sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); if( nArg<2 ){ int val = (pFunc->zName==leadName ? 1 : -1); sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); }else{ int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); int tmpReg2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); sqlite3ReleaseTempReg(pParse, tmpReg2); } sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } } } sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); } /* ** Generate code to set the accumulator register for each window function ** in the linked list passed as the second argument to NULL. And perform ** any equivalent initialization required by any built-in window functions ** in the list. */ static int windowInitAccum(Parse *pParse, Window *pMWin){ Vdbe *v = sqlite3GetVdbe(pParse); int regArg; int nArg = 0; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; assert( pWin->regAccum ); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); nArg = MAX(nArg, windowArgCount(pWin)); if( pMWin->regStartRowid==0 ){ if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ assert( pWin->eStart!=TK_UNBOUNDED ); sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } } } regArg = pParse->nMem+1; pParse->nMem += nArg; return regArg; } /* ** Return true if the current frame should be cached in the ephemeral table, ** even if there are no xInverse() calls required. */ static int windowCacheFrame(Window *pMWin){ Window *pWin; if( pMWin->regStartRowid ) return 1; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; if( (pFunc->zName==nth_valueName) || (pFunc->zName==first_valueName) || (pFunc->zName==leadName) || (pFunc->zName==lagName) ){ return 1; } } return 0; } /* ** regOld and regNew are each the first register in an array of size ** pOrderBy->nExpr. This function generates code to compare the two ** arrays of registers using the collation sequences and other comparison ** parameters specified by pOrderBy. ** ** If the two arrays are not equal, the contents of regNew is copied to ** regOld and control falls through. Otherwise, if the contents of the arrays ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. */ static void windowIfNewPeer( Parse *pParse, ExprList *pOrderBy, int regNew, /* First in array of new values */ int regOld, /* First in array of old values */ int addr /* Jump here */ ){ Vdbe *v = sqlite3GetVdbe(pParse); if( pOrderBy ){ int nVal = pOrderBy->nExpr; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 ); VdbeCoverageEqNe(v); sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); } } /* ** This function is called as part of generating VM programs for RANGE ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates ** code equivalent to: ** ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; ** ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. ** ** If the sort-order for the ORDER BY term in the window is DESC, then the ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op ** is OP_Ge, the generated code is equivalent to: ** ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; ** ** A special type of arithmetic is used such that if csr1.peerVal is not ** a numeric type (real or integer), then the result of the addition ** or subtraction is a a copy of csr1.peerVal. */ static void windowCodeRangeTest( WindowCodeArg *p, int op, /* OP_Ge, OP_Gt, or OP_Le */ int csr1, /* Cursor number for cursor 1 */ int regVal, /* Register containing non-negative number */ int csr2, /* Cursor number for cursor 2 */ int lbl /* Jump destination if condition is true */ ){ Parse *pParse = p->pParse; Vdbe *v = sqlite3GetVdbe(pParse); ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ int regString = ++pParse->nMem; /* Reg. for constant value '' */ int arith = OP_Add; /* OP_Add or OP_Subtract */ int addrGe; /* Jump destination */ int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ CollSeq *pColl; /* Read the peer-value from each cursor into a register */ windowReadPeerValues(p, csr1, reg1); windowReadPeerValues(p, csr2, reg2); assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); assert( pOrderBy && pOrderBy->nExpr==1 ); if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_DESC ){ switch( op ){ case OP_Ge: op = OP_Le; break; case OP_Gt: op = OP_Lt; break; default: assert( op==OP_Le ); op = OP_Ge; break; } arith = OP_Subtract; } VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", reg1, (arith==OP_Add ? "+" : "-"), regVal, ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 )); /* If the BIGNULL flag is set for the ORDER BY, then it is required to ** consider NULL values to be larger than all other values, instead of ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this ** (and adding that capability causes a performance regression), so ** instead if the BIGNULL flag is set then cases where either reg1 or ** reg2 are NULL are handled separately in the following block. The code ** generated is equivalent to: ** ** if( reg1 IS NULL ){ ** if( op==OP_Ge ) goto lbl; ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; ** if( op==OP_Le && reg2 IS NULL ) goto lbl; ** }else if( reg2 IS NULL ){ ** if( op==OP_Le ) goto lbl; ** } ** ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is ** not taken, control jumps over the comparison operator coded below this ** block. */ if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_BIGNULL ){ /* This block runs if reg1 contains a NULL. */ int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); switch( op ){ case OP_Ge: sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); break; case OP_Gt: sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); VdbeCoverage(v); break; case OP_Le: sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); break; default: assert( op==OP_Lt ); /* no-op */ break; } sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); /* This block runs if reg1 is not NULL, but reg2 is. */ sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_IsNull, reg2, (op==OP_Gt || op==OP_Ge) ? addrDone : lbl); VdbeCoverage(v); } /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). ** This block adds (or subtracts for DESC) the numeric value in regVal ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), ** then leave reg1 as it is. In pseudo-code, this is implemented as: ** ** if( reg1>='' ) goto addrGe; ** reg1 = reg1 +/- regVal ** addrGe: ** ** Since all strings and blobs are greater-than-or-equal-to an empty string, ** the add/subtract is skipped for these, as required. If reg1 is a NULL, ** then the arithmetic is performed, but since adding or subtracting from ** NULL is always NULL anyway, this case is handled as required too. */ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); VdbeCoverage(v); if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); sqlite3VdbeJumpHere(v, addrGe); /* Compare registers reg2 and reg1, taking the jump if required. Note that ** control skips over this test if the BIGNULL flag is set and either ** reg1 or reg2 contain a NULL value. */ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); sqlite3VdbeResolveLabel(v, addrDone); assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); sqlite3ReleaseTempReg(pParse, reg1); sqlite3ReleaseTempReg(pParse, reg2); VdbeModuleComment((v, "CodeRangeTest: end")); } /* ** Helper function for sqlite3WindowCodeStep(). Each call to this function ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE ** operation. Refer to the header comment for sqlite3WindowCodeStep() for ** details. */ static int windowCodeOp( WindowCodeArg *p, /* Context object */ int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ int regCountdown, /* Register for OP_IfPos countdown */ int jumpOnEof /* Jump here if stepped cursor reaches EOF */ ){ int csr, reg; Parse *pParse = p->pParse; Window *pMWin = p->pMWin; int ret = 0; Vdbe *v = p->pVdbe; int addrContinue = 0; int bPeer = (pMWin->eFrmType!=TK_ROWS); int lblDone = sqlite3VdbeMakeLabel(pParse); int addrNextRange = 0; /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame ** starts with UNBOUNDED PRECEDING. */ if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ assert( regCountdown==0 && jumpOnEof==0 ); return 0; } if( regCountdown>0 ){ if( pMWin->eFrmType==TK_RANGE ){ addrNextRange = sqlite3VdbeCurrentAddr(v); assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); if( op==WINDOW_AGGINVERSE ){ if( pMWin->eStart==TK_FOLLOWING ){ windowCodeRangeTest( p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone ); }else{ windowCodeRangeTest( p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone ); } }else{ windowCodeRangeTest( p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone ); } }else{ sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); VdbeCoverage(v); } } if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ windowAggFinal(p, 0); } addrContinue = sqlite3VdbeCurrentAddr(v); /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the ** start cursor does not advance past the end cursor within the ** temporary table. It otherwise might, if (a>b). Also ensure that, ** if the input cursor is still finding new rows, that the end ** cursor does not go past it to EOF. */ if( pMWin->eStart==pMWin->eEnd && regCountdown && pMWin->eFrmType==TK_RANGE ){ int regRowid1 = sqlite3GetTempReg(pParse); int regRowid2 = sqlite3GetTempReg(pParse); if( op==WINDOW_AGGINVERSE ){ sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); VdbeCoverage(v); }else if( p->regRowid ){ sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1); sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1); VdbeCoverageNeverNull(v); } sqlite3ReleaseTempReg(pParse, regRowid1); sqlite3ReleaseTempReg(pParse, regRowid2); assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); } switch( op ){ case WINDOW_RETURN_ROW: csr = p->current.csr; reg = p->current.reg; windowReturnOneRow(p); break; case WINDOW_AGGINVERSE: csr = p->start.csr; reg = p->start.reg; if( pMWin->regStartRowid ){ assert( pMWin->regEndRowid ); sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); }else{ windowAggStep(p, pMWin, csr, 1, p->regArg); } break; default: assert( op==WINDOW_AGGSTEP ); csr = p->end.csr; reg = p->end.reg; if( pMWin->regStartRowid ){ assert( pMWin->regEndRowid ); sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); }else{ windowAggStep(p, pMWin, csr, 0, p->regArg); } break; } if( op==p->eDelete ){ sqlite3VdbeAddOp1(v, OP_Delete, csr); sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); } if( jumpOnEof ){ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); ret = sqlite3VdbeAddOp0(v, OP_Goto); }else{ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); VdbeCoverage(v); if( bPeer ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); } } if( bPeer ){ int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); windowReadPeerValues(p, csr, regTmp); windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); sqlite3ReleaseTempRange(pParse, regTmp, nReg); } if( addrNextRange ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); } sqlite3VdbeResolveLabel(v, lblDone); return ret; } /* ** Allocate and return a duplicate of the Window object indicated by the ** third argument. Set the Window.pOwner field of the new object to ** pOwner. */ SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ Window *pNew = 0; if( ALWAYS(p) ){ pNew = sqlite3DbMallocZero(db, sizeof(Window)); if( pNew ){ pNew->zName = sqlite3DbStrDup(db, p->zName); pNew->zBase = sqlite3DbStrDup(db, p->zBase); pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); pNew->pWFunc = p->pWFunc; pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); pNew->eFrmType = p->eFrmType; pNew->eEnd = p->eEnd; pNew->eStart = p->eStart; pNew->eExclude = p->eExclude; pNew->regResult = p->regResult; pNew->regAccum = p->regAccum; pNew->iArgCol = p->iArgCol; pNew->iEphCsr = p->iEphCsr; pNew->bExprArgs = p->bExprArgs; pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); pNew->pOwner = pOwner; pNew->bImplicitFrame = p->bImplicitFrame; } } return pNew; } /* ** Return a copy of the linked list of Window objects passed as the ** second argument. */ SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ Window *pWin; Window *pRet = 0; Window **pp = &pRet; for(pWin=p; pWin; pWin=pWin->pNextWin){ *pp = sqlite3WindowDup(db, 0, pWin); if( *pp==0 ) break; pp = &((*pp)->pNextWin); } return pRet; } /* ** Return true if it can be determined at compile time that expression ** pExpr evaluates to a value that, when cast to an integer, is greater ** than zero. False otherwise. ** ** If an OOM error occurs, this function sets the Parse.db.mallocFailed ** flag and returns zero. */ static int windowExprGtZero(Parse *pParse, Expr *pExpr){ int ret = 0; sqlite3 *db = pParse->db; sqlite3_value *pVal = 0; sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); if( pVal && sqlite3_value_int(pVal)>0 ){ ret = 1; } sqlite3ValueFree(pVal); return ret; } /* ** sqlite3WhereBegin() has already been called for the SELECT statement ** passed as the second argument when this function is invoked. It generates ** code to populate the Window.regResult register for each window function ** and invoke the sub-routine at instruction addrGosub once for each row. ** sqlite3WhereEnd() is always called before returning. ** ** This function handles several different types of window frames, which ** require slightly different processing. The following pseudo code is ** used to implement window frames of the form: ** ** ROWS BETWEEN PRECEDING AND FOLLOWING ** ** Other window frame types use variants of the following: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** ** if( first row of partition ){ ** // Rewind three cursors, all open on the eph table. ** Rewind(csrEnd); ** Rewind(csrStart); ** Rewind(csrCurrent); ** ** regEnd = // FOLLOWING expression ** regStart = // PRECEDING expression ** }else{ ** // First time this branch is taken, the eph table contains two ** // rows. The first row in the partition, which all three cursors ** // currently point to, and the following row. ** AGGSTEP ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** RETURN ROW ** if( csrCurrent is EOF ) break; ** if( (regStart--)<=0 ){ ** AggInverse(csrStart) ** Next(csrStart) ** } ** } ** ** The pseudo-code above uses the following shorthand: ** ** AGGSTEP: invoke the aggregate xStep() function for each window function ** with arguments read from the current row of cursor csrEnd, then ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). ** ** RETURN_ROW: return a row to the caller based on the contents of the ** current row of csrCurrent and the current state of all ** aggregates. Then step cursor csrCurrent forward one row. ** ** AGGINVERSE: invoke the aggregate xInverse() function for each window ** functions with arguments read from the current row of cursor ** csrStart. Then step csrStart forward one row. ** ** There are two other ROWS window frames that are handled significantly ** differently from the above - "BETWEEN PRECEDING AND PRECEDING" ** and "BETWEEN FOLLOWING AND FOLLOWING". These are special ** cases because they change the order in which the three cursors (csrStart, ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these ** three. ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** if( (regEnd--)<=0 ){ ** AGGSTEP ** } ** RETURN_ROW ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** flush: ** if( (regEnd--)<=0 ){ ** AGGSTEP ** } ** RETURN_ROW ** ** ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = regEnd - ** }else{ ** AGGSTEP ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** } ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** if( eof ) break; ** } ** if( (regStart--)<=0 ){ ** AGGINVERSE ** if( eof ) break ** } ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** For the most part, the patterns above are adapted to support UNBOUNDED by ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and ** CURRENT ROW by assuming that it is equivalent to "0 PRECEDING/FOLLOWING". ** This is optimized of course - branches that will never be taken and ** conditions that are always true are omitted from the VM code. The only ** exceptional case is: ** ** ROWS BETWEEN FOLLOWING AND UNBOUNDED FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regStart = ** }else{ ** AGGSTEP ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** if( (regStart--)<=0 ){ ** AGGINVERSE ** if( eof ) break ** } ** RETURN_ROW ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** Also requiring special handling are the cases: ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** when (expr1 < expr2). This is detected at runtime, not by this function. ** To handle this case, the pseudo-code programs depicted above are modified ** slightly to be: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** if( regEnd < regStart ){ ** RETURN_ROW ** delete eph table contents ** continue ** } ** ... ** ** The new "continue" statement in the above jumps to the next iteration ** of the outer loop - the one started by sqlite3WhereBegin(). ** ** The various GROUPS cases are implemented using the same patterns as ** ROWS. The VM code is modified slightly so that: ** ** 1. The else branch in the main loop is only taken if the row just ** added to the ephemeral table is the start of a new group. In ** other words, it becomes: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else if( new group ){ ** ... ** } ** } ** ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or ** AGGINVERSE step processes the current row of the relevant cursor and ** all subsequent rows belonging to the same group. ** ** RANGE window frames are a little different again. As for GROUPS, the ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE ** deal in groups instead of rows. As for ROWS and GROUPS, there are three ** basic cases: ** ** RANGE BETWEEN PRECEDING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** AGGSTEP ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ ** RETURN_ROW ** while( csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** RETURN ROW ** if( csrCurrent is EOF ) break; ** while( csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** } ** } ** ** In the above notation, "csr.key" means the current value of the ORDER BY ** expression (there is only ever 1 for a RANGE that uses an FOLLOWING ** or PRECEDING AND PRECEDING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ ** AGGSTEP ** } ** while( (csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** } ** } ** flush: ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ ** AGGSTEP ** } ** while( (csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** ** RANGE BETWEEN FOLLOWING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** AGGSTEP ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ ** while( (csrCurrent.key + regStart) > csrStart.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** while( (csrCurrent.key + regStart) > csrStart.key ){ ** AGGINVERSE ** if( eof ) break "while( 1 )" loop. ** } ** RETURN_ROW ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** The text above leaves out many details. Refer to the code and comments ** below for a more complete picture. */ SQLITE_PRIVATE void sqlite3WindowCodeStep( Parse *pParse, /* Parse context */ Select *p, /* Rewritten SELECT statement */ WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ int regGosub, /* Register for OP_Gosub */ int addrGosub /* OP_Gosub here to return each row */ ){ Window *pMWin = p->pWin; ExprList *pOrderBy = pMWin->pOrderBy; Vdbe *v = sqlite3GetVdbe(pParse); int csrWrite; /* Cursor used to write to eph. table */ int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ int iInput; /* To iterate through sub cols */ int addrNe; /* Address of OP_Ne */ int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ int addrInteger = 0; /* Address of OP_Integer */ int addrEmpty; /* Address of OP_Rewind in flush: */ int regNew; /* Array of registers holding new input row */ int regRecord; /* regNew array in record form */ int regNewPeer = 0; /* Peer values for new row (part of regNew) */ int regPeer = 0; /* Peer values for current row */ int regFlushPart = 0; /* Register for "Gosub flush_partition" */ WindowCodeArg s; /* Context object for sub-routines */ int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ int regStart = 0; /* Value of PRECEDING */ int regEnd = 0; /* Value of FOLLOWING */ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED ); assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING ); assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES || pMWin->eExclude==TK_NO ); lblWhereEnd = sqlite3VdbeMakeLabel(pParse); /* Fill in the context object */ memset(&s, 0, sizeof(WindowCodeArg)); s.pParse = pParse; s.pMWin = pMWin; s.pVdbe = v; s.regGosub = regGosub; s.addrGosub = addrGosub; s.current.csr = pMWin->iEphCsr; csrWrite = s.current.csr+1; s.start.csr = s.current.csr+2; s.end.csr = s.current.csr+3; /* Figure out when rows may be deleted from the ephemeral table. There ** are four options - they may never be deleted (eDelete==0), they may ** be deleted as soon as they are no longer part of the window frame ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row ** has been returned to the caller (WINDOW_RETURN_ROW), or they may ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ switch( pMWin->eStart ){ case TK_FOLLOWING: if( pMWin->eFrmType!=TK_RANGE && windowExprGtZero(pParse, pMWin->pStart) ){ s.eDelete = WINDOW_RETURN_ROW; } break; case TK_UNBOUNDED: if( windowCacheFrame(pMWin)==0 ){ if( pMWin->eEnd==TK_PRECEDING ){ if( pMWin->eFrmType!=TK_RANGE && windowExprGtZero(pParse, pMWin->pEnd) ){ s.eDelete = WINDOW_AGGSTEP; } }else{ s.eDelete = WINDOW_RETURN_ROW; } } break; default: s.eDelete = WINDOW_AGGINVERSE; break; } /* Allocate registers for the array of values from the sub-query, the ** same values in record form, and the rowid used to insert said record ** into the ephemeral table. */ regNew = pParse->nMem+1; pParse->nMem += nInput; regRecord = ++pParse->nMem; s.regRowid = ++pParse->nMem; /* If the window frame contains an " PRECEDING" or " FOLLOWING" ** clause, allocate registers to store the results of evaluating each ** . */ if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ regStart = ++pParse->nMem; } if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ regEnd = ++pParse->nMem; } /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of ** registers to store copies of the ORDER BY expressions (peer values) ** for the main loop, and for each cursor (start, current and end). */ if( pMWin->eFrmType!=TK_ROWS ){ int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); regNewPeer = regNew + pMWin->nBufferCol; if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; regPeer = pParse->nMem+1; pParse->nMem += nPeer; s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; } /* Load the column values for the row returned by the sub-select ** into an array of registers starting at regNew. Assemble them into ** a record in register regRecord. */ for(iInput=0; iInputpPartition ){ int addr; ExprList *pPart = pMWin->pPartition; int nPart = pPart->nExpr; int regNewPart = regNew + pMWin->nBufferCol; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); regFlushPart = ++pParse->nMem; addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); VdbeCoverageEqNe(v); addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); VdbeComment((v, "call flush_partition")); sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); } /* Insert the new row into the ephemeral table */ sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid); sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid); addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid); VdbeCoverageNeverNull(v); /* This block is run for the first row of each partition */ s.regArg = windowInitAccum(pParse, pMWin); if( regStart ){ sqlite3ExprCode(pParse, pMWin->pStart, regStart); windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); } if( regEnd ){ sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); } if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound */ VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ windowAggFinal(&s, 0); sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr); windowReturnOneRow(&s); sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); sqlite3VdbeJumpHere(v, addrGe); } if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ assert( pMWin->eEnd==TK_FOLLOWING ); sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); } if( pMWin->eStart!=TK_UNBOUNDED ){ sqlite3VdbeAddOp1(v, OP_Rewind, s.start.csr); } sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr); sqlite3VdbeAddOp1(v, OP_Rewind, s.end.csr); if( regPeer && pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); sqlite3VdbeJumpHere(v, addrNe); /* Beginning of the block executed for the second and subsequent rows. */ if( regPeer ){ windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); } if( pMWin->eStart==TK_FOLLOWING ){ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eEnd!=TK_UNBOUNDED ){ if( pMWin->eFrmType==TK_RANGE ){ int lbl = sqlite3VdbeMakeLabel(pParse); int addrNext = sqlite3VdbeCurrentAddr(v); windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); sqlite3VdbeResolveLabel(v, lbl); }else{ windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); } } }else if( pMWin->eEnd==TK_PRECEDING ){ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); }else{ int addr = 0; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eEnd!=TK_UNBOUNDED ){ if( pMWin->eFrmType==TK_RANGE ){ int lbl = 0; addr = sqlite3VdbeCurrentAddr(v); if( regEnd ){ lbl = sqlite3VdbeMakeLabel(pParse); windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); } windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); if( regEnd ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); sqlite3VdbeResolveLabel(v, lbl); } }else{ if( regEnd ){ addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); VdbeCoverage(v); } windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); if( regEnd ) sqlite3VdbeJumpHere(v, addr); } } } /* End of the main input loop */ sqlite3VdbeResolveLabel(v, lblWhereEnd); sqlite3WhereEnd(pWInfo); /* Fall through */ if( pMWin->pPartition ){ addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); sqlite3VdbeJumpHere(v, addrGosubFlush); } s.regRowid = 0; addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); VdbeCoverage(v); if( pMWin->eEnd==TK_PRECEDING ){ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); }else if( pMWin->eStart==TK_FOLLOWING ){ int addrStart; int addrBreak1; int addrBreak2; int addrBreak3; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eFrmType==TK_RANGE ){ addrStart = sqlite3VdbeCurrentAddr(v); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); }else if( pMWin->eEnd==TK_UNBOUNDED ){ addrStart = sqlite3VdbeCurrentAddr(v); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); }else{ assert( pMWin->eEnd==TK_FOLLOWING ); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak2); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak1); sqlite3VdbeJumpHere(v, addrBreak3); }else{ int addrBreak; int addrStart; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak); } sqlite3VdbeJumpHere(v, addrEmpty); sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); if( pMWin->pPartition ){ if( pMWin->regStartRowid ){ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); } sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); } } #endif /* SQLITE_OMIT_WINDOWFUNC */ /************** End of window.c **********************************************/ /************** Begin file parse.c *******************************************/ /* This file is automatically generated by Lemon from input grammar ** source file "parse.y". */ /* ** 2001-09-15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains SQLite's SQL parser. ** ** The canonical source code to this file ("parse.y") is a Lemon grammar ** file that specifies the input grammar and actions to take while parsing. ** That input file is processed by Lemon to generate a C-language ** implementation of a parser for the given grammar. You might be reading ** this comment as part of the translated C-code. Edits should be made ** to the original parse.y sources. */ /* #include "sqliteInt.h" */ /* ** Disable all error recovery processing in the parser push-down ** automaton. */ #define YYNOERRORRECOVERY 1 /* ** Make yytestcase() the same as testcase() */ #define yytestcase(X) testcase(X) /* ** Indicate that sqlite3ParserFree() will never be called with a null ** pointer. */ #define YYPARSEFREENEVERNULL 1 /* ** In the amalgamation, the parse.c file generated by lemon and the ** tokenize.c file are concatenated. In that case, sqlite3RunParser() ** has access to the the size of the yyParser object and so the parser ** engine can be allocated from stack. In that case, only the ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be ** omitted. */ #ifdef SQLITE_AMALGAMATION # define sqlite3Parser_ENGINEALWAYSONSTACK 1 #endif /* ** Alternative datatype for the argument to the malloc() routine passed ** into sqlite3ParserAlloc(). The default is size_t. */ #define YYMALLOCARGTYPE u64 /* ** An instance of the following structure describes the event of a ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, ** TK_DELETE, or TK_INSTEAD. If the event is of the form ** ** UPDATE ON (a,b,c) ** ** Then the "b" IdList records the list "a,b,c". */ struct TrigEvent { int a; IdList * b; }; struct FrameBound { int eType; Expr *pExpr; }; /* ** Disable lookaside memory allocation for objects that might be ** shared across database connections. */ static void disableLookaside(Parse *pParse){ sqlite3 *db = pParse->db; pParse->disableLookaside++; DisableLookaside; } #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \ && defined(SQLITE_UDL_CAPABLE_PARSER) /* ** Issue an error message if an ORDER BY or LIMIT clause occurs on an ** UPDATE or DELETE statement. */ static void updateDeleteLimitError( Parse *pParse, ExprList *pOrderBy, Expr *pLimit ){ if( pOrderBy ){ sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\""); }else{ sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\""); } sqlite3ExprListDelete(pParse->db, pOrderBy); sqlite3ExprDelete(pParse->db, pLimit); } #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */ /* ** For a compound SELECT statement, make sure p->pPrior->pNext==p for ** all elements in the list. And make sure list length does not exceed ** SQLITE_LIMIT_COMPOUND_SELECT. */ static void parserDoubleLinkSelect(Parse *pParse, Select *p){ assert( p!=0 ); if( p->pPrior ){ Select *pNext = 0, *pLoop = p; int mxSelect, cnt = 1; while(1){ pLoop->pNext = pNext; pLoop->selFlags |= SF_Compound; pNext = pLoop; pLoop = pLoop->pPrior; if( pLoop==0 ) break; cnt++; if( pLoop->pOrderBy || pLoop->pLimit ){ sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT", sqlite3SelectOpName(pNext->op)); break; } } if( (p->selFlags & SF_MultiValue)==0 && (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && cnt>mxSelect ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); } } } /* Attach a With object describing the WITH clause to a Select ** object describing the query for which the WITH clause is a prefix. */ static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){ if( pSelect ){ pSelect->pWith = pWith; parserDoubleLinkSelect(pParse, pSelect); }else{ sqlite3WithDelete(pParse->db, pWith); } return pSelect; } /* Construct a new Expr object from a single token */ static Expr *tokenExpr(Parse *pParse, int op, Token t){ Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); if( p ){ /* memset(p, 0, sizeof(Expr)); */ p->op = (u8)op; p->affExpr = 0; p->flags = EP_Leaf; ExprClearVVAProperties(p); /* p->iAgg = -1; // Not required */ p->pLeft = p->pRight = 0; p->pAggInfo = 0; memset(&p->x, 0, sizeof(p->x)); memset(&p->y, 0, sizeof(p->y)); p->op2 = 0; p->iTable = 0; p->iColumn = 0; p->u.zToken = (char*)&p[1]; memcpy(p->u.zToken, t.z, t.n); p->u.zToken[t.n] = 0; p->w.iOfst = (int)(t.z - pParse->zTail); if( sqlite3Isquote(p->u.zToken[0]) ){ sqlite3DequoteExpr(p); } #if SQLITE_MAX_EXPR_DEPTH>0 p->nHeight = 1; #endif if( IN_RENAME_OBJECT ){ return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); } } return p; } /* A routine to convert a binary TK_IS or TK_ISNOT expression into a ** unary TK_ISNULL or TK_NOTNULL expression. */ static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ sqlite3 *db = pParse->db; if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ pA->op = (u8)op; sqlite3ExprDelete(db, pA->pRight); pA->pRight = 0; } } /* Add a single new term to an ExprList that is used to store a ** list of identifiers. Report an error if the ID list contains ** a COLLATE clause or an ASC or DESC keyword, except ignore the ** error while parsing a legacy schema. */ static ExprList *parserAddExprIdListTerm( Parse *pParse, ExprList *pPrior, Token *pIdToken, int hasCollate, int sortOrder ){ ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) && pParse->db->init.busy==0 ){ sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", pIdToken->n, pIdToken->z); } sqlite3ExprListSetName(pParse, p, pIdToken, 1); return p; } #if TK_SPAN>255 # error too many tokens in the grammar #endif /**************** End of %include directives **********************************/ /* These constants specify the various numeric values for terminal symbols. ***************** Begin token definitions *************************************/ #ifndef TK_SEMI #define TK_SEMI 1 #define TK_EXPLAIN 2 #define TK_QUERY 3 #define TK_PLAN 4 #define TK_BEGIN 5 #define TK_TRANSACTION 6 #define TK_DEFERRED 7 #define TK_IMMEDIATE 8 #define TK_EXCLUSIVE 9 #define TK_COMMIT 10 #define TK_END 11 #define TK_ROLLBACK 12 #define TK_SAVEPOINT 13 #define TK_RELEASE 14 #define TK_TO 15 #define TK_TABLE 16 #define TK_CREATE 17 #define TK_IF 18 #define TK_NOT 19 #define TK_EXISTS 20 #define TK_TEMP 21 #define TK_LP 22 #define TK_RP 23 #define TK_AS 24 #define TK_COMMA 25 #define TK_WITHOUT 26 #define TK_ABORT 27 #define TK_ACTION 28 #define TK_AFTER 29 #define TK_ANALYZE 30 #define TK_ASC 31 #define TK_ATTACH 32 #define TK_BEFORE 33 #define TK_BY 34 #define TK_CASCADE 35 #define TK_CAST 36 #define TK_CONFLICT 37 #define TK_DATABASE 38 #define TK_DESC 39 #define TK_DETACH 40 #define TK_EACH 41 #define TK_FAIL 42 #define TK_OR 43 #define TK_AND 44 #define TK_IS 45 #define TK_MATCH 46 #define TK_LIKE_KW 47 #define TK_BETWEEN 48 #define TK_IN 49 #define TK_ISNULL 50 #define TK_NOTNULL 51 #define TK_NE 52 #define TK_EQ 53 #define TK_GT 54 #define TK_LE 55 #define TK_LT 56 #define TK_GE 57 #define TK_ESCAPE 58 #define TK_ID 59 #define TK_COLUMNKW 60 #define TK_DO 61 #define TK_FOR 62 #define TK_IGNORE 63 #define TK_INITIALLY 64 #define TK_INSTEAD 65 #define TK_NO 66 #define TK_KEY 67 #define TK_OF 68 #define TK_OFFSET 69 #define TK_PRAGMA 70 #define TK_RAISE 71 #define TK_RECURSIVE 72 #define TK_REPLACE 73 #define TK_RESTRICT 74 #define TK_ROW 75 #define TK_ROWS 76 #define TK_TRIGGER 77 #define TK_VACUUM 78 #define TK_VIEW 79 #define TK_VIRTUAL 80 #define TK_WITH 81 #define TK_NULLS 82 #define TK_FIRST 83 #define TK_LAST 84 #define TK_CURRENT 85 #define TK_FOLLOWING 86 #define TK_PARTITION 87 #define TK_PRECEDING 88 #define TK_RANGE 89 #define TK_UNBOUNDED 90 #define TK_EXCLUDE 91 #define TK_GROUPS 92 #define TK_OTHERS 93 #define TK_TIES 94 #define TK_GENERATED 95 #define TK_ALWAYS 96 #define TK_MATERIALIZED 97 #define TK_REINDEX 98 #define TK_RENAME 99 #define TK_CTIME_KW 100 #define TK_ANY 101 #define TK_BITAND 102 #define TK_BITOR 103 #define TK_LSHIFT 104 #define TK_RSHIFT 105 #define TK_PLUS 106 #define TK_MINUS 107 #define TK_STAR 108 #define TK_SLASH 109 #define TK_REM 110 #define TK_CONCAT 111 #define TK_PTR 112 #define TK_COLLATE 113 #define TK_BITNOT 114 #define TK_ON 115 #define TK_INDEXED 116 #define TK_STRING 117 #define TK_JOIN_KW 118 #define TK_CONSTRAINT 119 #define TK_DEFAULT 120 #define TK_NULL 121 #define TK_PRIMARY 122 #define TK_UNIQUE 123 #define TK_CHECK 124 #define TK_REFERENCES 125 #define TK_AUTOINCR 126 #define TK_INSERT 127 #define TK_DELETE 128 #define TK_UPDATE 129 #define TK_SET 130 #define TK_DEFERRABLE 131 #define TK_FOREIGN 132 #define TK_DROP 133 #define TK_UNION 134 #define TK_ALL 135 #define TK_EXCEPT 136 #define TK_INTERSECT 137 #define TK_SELECT 138 #define TK_VALUES 139 #define TK_DISTINCT 140 #define TK_DOT 141 #define TK_FROM 142 #define TK_JOIN 143 #define TK_USING 144 #define TK_ORDER 145 #define TK_GROUP 146 #define TK_HAVING 147 #define TK_LIMIT 148 #define TK_WHERE 149 #define TK_RETURNING 150 #define TK_INTO 151 #define TK_NOTHING 152 #define TK_FLOAT 153 #define TK_BLOB 154 #define TK_INTEGER 155 #define TK_VARIABLE 156 #define TK_CASE 157 #define TK_WHEN 158 #define TK_THEN 159 #define TK_ELSE 160 #define TK_INDEX 161 #define TK_ALTER 162 #define TK_ADD 163 #define TK_WINDOW 164 #define TK_OVER 165 #define TK_FILTER 166 #define TK_COLUMN 167 #define TK_AGG_FUNCTION 168 #define TK_AGG_COLUMN 169 #define TK_TRUEFALSE 170 #define TK_ISNOT 171 #define TK_FUNCTION 172 #define TK_UMINUS 173 #define TK_UPLUS 174 #define TK_TRUTH 175 #define TK_REGISTER 176 #define TK_VECTOR 177 #define TK_SELECT_COLUMN 178 #define TK_IF_NULL_ROW 179 #define TK_ASTERISK 180 #define TK_SPAN 181 #define TK_ERROR 182 #define TK_SPACE 183 #define TK_ILLEGAL 184 #endif /**************** End token definitions ***************************************/ /* The next sections is a series of control #defines. ** various aspects of the generated parser. ** YYCODETYPE is the data type used to store the integer codes ** that represent terminal and non-terminal symbols. ** "unsigned char" is used if there are fewer than ** 256 symbols. Larger types otherwise. ** YYNOCODE is a number of type YYCODETYPE that is not used for ** any terminal or nonterminal symbol. ** YYFALLBACK If defined, this indicates that one or more tokens ** (also known as: "terminal symbols") have fall-back ** values which should be used if the original symbol ** would not parse. This permits keywords to sometimes ** be used as identifiers, for example. ** YYACTIONTYPE is the data type used for "action codes" - numbers ** that indicate what to do in response to the next ** token. ** sqlite3ParserTOKENTYPE is the data type used for minor type for terminal ** symbols. Background: A "minor type" is a semantic ** value associated with a terminal or non-terminal ** symbols. For example, for an "ID" terminal symbol, ** the minor type might be the name of the identifier. ** Each non-terminal can have a different minor type. ** Terminal symbols all have the same minor type, though. ** This macros defines the minor type for terminal ** symbols. ** YYMINORTYPE is the data type used for all minor types. ** This is typically a union of many types, one of ** which is sqlite3ParserTOKENTYPE. The entry in the union ** for terminal symbols is called "yy0". ** YYSTACKDEPTH is the maximum depth of the parser's stack. If ** zero the stack is dynamically sized using realloc() ** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument ** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument ** sqlite3ParserARG_PARAM Code to pass %extra_argument as a subroutine parameter ** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser ** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser ** sqlite3ParserCTX_* As sqlite3ParserARG_ except for %extra_context ** YYERRORSYMBOL is the code number of the error symbol. If not ** defined, then do no error processing. ** YYNSTATE the combined number of states. ** YYNRULE the number of rules in the grammar ** YYNTOKEN Number of terminal symbols ** YY_MAX_SHIFT Maximum value for shift actions ** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions ** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions ** YY_ERROR_ACTION The yy_action[] code for syntax error ** YY_ACCEPT_ACTION The yy_action[] code for accept ** YY_NO_ACTION The yy_action[] code for no-op ** YY_MIN_REDUCE Minimum value for reduce actions ** YY_MAX_REDUCE Maximum value for reduce actions */ #ifndef INTERFACE # define INTERFACE 1 #endif /************* Begin control #defines *****************************************/ #define YYCODETYPE unsigned short int #define YYNOCODE 319 #define YYACTIONTYPE unsigned short int #define YYWILDCARD 101 #define sqlite3ParserTOKENTYPE Token typedef union { int yyinit; sqlite3ParserTOKENTYPE yy0; TriggerStep* yy33; Window* yy41; Select* yy47; SrcList* yy131; struct TrigEvent yy180; struct {int value; int mask;} yy231; IdList* yy254; u32 yy285; ExprList* yy322; Cte* yy385; int yy394; Upsert* yy444; u8 yy516; With* yy521; const char* yy522; Expr* yy528; OnOrUsing yy561; struct FrameBound yy595; } YYMINORTYPE; #ifndef YYSTACKDEPTH #define YYSTACKDEPTH 100 #endif #define sqlite3ParserARG_SDECL #define sqlite3ParserARG_PDECL #define sqlite3ParserARG_PARAM #define sqlite3ParserARG_FETCH #define sqlite3ParserARG_STORE #define sqlite3ParserCTX_SDECL Parse *pParse; #define sqlite3ParserCTX_PDECL ,Parse *pParse #define sqlite3ParserCTX_PARAM ,pParse #define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse; #define sqlite3ParserCTX_STORE yypParser->pParse=pParse; #define YYFALLBACK 1 #define YYNSTATE 575 #define YYNRULE 403 #define YYNRULE_WITH_ACTION 338 #define YYNTOKEN 185 #define YY_MAX_SHIFT 574 #define YY_MIN_SHIFTREDUCE 833 #define YY_MAX_SHIFTREDUCE 1235 #define YY_ERROR_ACTION 1236 #define YY_ACCEPT_ACTION 1237 #define YY_NO_ACTION 1238 #define YY_MIN_REDUCE 1239 #define YY_MAX_REDUCE 1641 /************* End control #defines *******************************************/ #define YY_NLOOKAHEAD ((int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0]))) /* Define the yytestcase() macro to be a no-op if is not already defined ** otherwise. ** ** Applications can choose to define yytestcase() in the %include section ** to a macro that can assist in verifying code coverage. For production ** code the yytestcase() macro should be turned off. But it is useful ** for testing. */ #ifndef yytestcase # define yytestcase(X) #endif /* Next are the tables used to determine what action to take based on the ** current state and lookahead token. These tables are used to implement ** functions that take a state number and lookahead value and return an ** action integer. ** ** Suppose the action integer is N. Then the action is determined as ** follows ** ** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead ** token onto the stack and goto state N. ** ** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then ** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE. ** ** N == YY_ERROR_ACTION A syntax error has occurred. ** ** N == YY_ACCEPT_ACTION The parser accepts its input. ** ** N == YY_NO_ACTION No such action. Denotes unused ** slots in the yy_action[] table. ** ** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE ** and YY_MAX_REDUCE ** ** The action table is constructed as a single large table named yy_action[]. ** Given state S and lookahead X, the action is computed as either: ** ** (A) N = yy_action[ yy_shift_ofst[S] + X ] ** (B) N = yy_default[S] ** ** The (A) formula is preferred. The B formula is used instead if ** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X. ** ** The formulas above are for computing the action when the lookahead is ** a terminal symbol. If the lookahead is a non-terminal (as occurs after ** a reduce action) then the yy_reduce_ofst[] array is used in place of ** the yy_shift_ofst[] array. ** ** The following are the tables generated in this section: ** ** yy_action[] A single table containing all actions. ** yy_lookahead[] A table containing the lookahead for each entry in ** yy_action. Used to detect hash collisions. ** yy_shift_ofst[] For each state, the offset into yy_action for ** shifting terminals. ** yy_reduce_ofst[] For each state, the offset into yy_action for ** shifting non-terminals after a reduce. ** yy_default[] Default action for each state. ** *********** Begin parsing tables **********************************************/ #define YY_ACTTAB_COUNT (2096) static const YYACTIONTYPE yy_action[] = { /* 0 */ 568, 208, 568, 118, 115, 229, 568, 118, 115, 229, /* 10 */ 568, 1310, 377, 1289, 408, 562, 562, 562, 568, 409, /* 20 */ 378, 1310, 1272, 41, 41, 41, 41, 208, 1520, 71, /* 30 */ 71, 969, 419, 41, 41, 491, 303, 279, 303, 970, /* 40 */ 397, 71, 71, 125, 126, 80, 1210, 1210, 1047, 1050, /* 50 */ 1037, 1037, 123, 123, 124, 124, 124, 124, 476, 409, /* 60 */ 1237, 1, 1, 574, 2, 1241, 550, 118, 115, 229, /* 70 */ 317, 480, 146, 480, 524, 118, 115, 229, 529, 1323, /* 80 */ 417, 523, 142, 125, 126, 80, 1210, 1210, 1047, 1050, /* 90 */ 1037, 1037, 123, 123, 124, 124, 124, 124, 118, 115, /* 100 */ 229, 327, 122, 122, 122, 122, 121, 121, 120, 120, /* 110 */ 120, 119, 116, 444, 284, 284, 284, 284, 442, 442, /* 120 */ 442, 1559, 376, 1561, 1186, 375, 1157, 565, 1157, 565, /* 130 */ 409, 1559, 537, 259, 226, 444, 101, 145, 449, 316, /* 140 */ 559, 240, 122, 122, 122, 122, 121, 121, 120, 120, /* 150 */ 120, 119, 116, 444, 125, 126, 80, 1210, 1210, 1047, /* 160 */ 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, 142, /* 170 */ 294, 1186, 339, 448, 120, 120, 120, 119, 116, 444, /* 180 */ 127, 1186, 1187, 1186, 148, 441, 440, 568, 119, 116, /* 190 */ 444, 124, 124, 124, 124, 117, 122, 122, 122, 122, /* 200 */ 121, 121, 120, 120, 120, 119, 116, 444, 454, 113, /* 210 */ 13, 13, 546, 122, 122, 122, 122, 121, 121, 120, /* 220 */ 120, 120, 119, 116, 444, 422, 316, 559, 1186, 1187, /* 230 */ 1186, 149, 1218, 409, 1218, 124, 124, 124, 124, 122, /* 240 */ 122, 122, 122, 121, 121, 120, 120, 120, 119, 116, /* 250 */ 444, 465, 342, 1034, 1034, 1048, 1051, 125, 126, 80, /* 260 */ 1210, 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, /* 270 */ 124, 124, 1275, 522, 222, 1186, 568, 409, 224, 514, /* 280 */ 175, 82, 83, 122, 122, 122, 122, 121, 121, 120, /* 290 */ 120, 120, 119, 116, 444, 1005, 16, 16, 1186, 133, /* 300 */ 133, 125, 126, 80, 1210, 1210, 1047, 1050, 1037, 1037, /* 310 */ 123, 123, 124, 124, 124, 124, 122, 122, 122, 122, /* 320 */ 121, 121, 120, 120, 120, 119, 116, 444, 1038, 546, /* 330 */ 1186, 373, 1186, 1187, 1186, 252, 1429, 399, 504, 501, /* 340 */ 500, 111, 560, 566, 4, 924, 924, 433, 499, 340, /* 350 */ 460, 328, 360, 394, 1231, 1186, 1187, 1186, 563, 568, /* 360 */ 122, 122, 122, 122, 121, 121, 120, 120, 120, 119, /* 370 */ 116, 444, 284, 284, 369, 1572, 1598, 441, 440, 154, /* 380 */ 409, 445, 71, 71, 1282, 565, 1215, 1186, 1187, 1186, /* 390 */ 85, 1217, 271, 557, 543, 515, 515, 568, 98, 1216, /* 400 */ 6, 1274, 472, 142, 125, 126, 80, 1210, 1210, 1047, /* 410 */ 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, 550, /* 420 */ 13, 13, 1024, 507, 1218, 1186, 1218, 549, 109, 109, /* 430 */ 222, 568, 1232, 175, 568, 427, 110, 197, 445, 569, /* 440 */ 445, 430, 1546, 1014, 325, 551, 1186, 270, 287, 368, /* 450 */ 510, 363, 509, 257, 71, 71, 543, 71, 71, 359, /* 460 */ 316, 559, 1604, 122, 122, 122, 122, 121, 121, 120, /* 470 */ 120, 120, 119, 116, 444, 1014, 1014, 1016, 1017, 27, /* 480 */ 284, 284, 1186, 1187, 1186, 1152, 568, 1603, 409, 899, /* 490 */ 190, 550, 356, 565, 550, 935, 533, 517, 1152, 516, /* 500 */ 413, 1152, 552, 1186, 1187, 1186, 568, 544, 544, 51, /* 510 */ 51, 214, 125, 126, 80, 1210, 1210, 1047, 1050, 1037, /* 520 */ 1037, 123, 123, 124, 124, 124, 124, 1186, 474, 135, /* 530 */ 135, 409, 284, 284, 1484, 505, 121, 121, 120, 120, /* 540 */ 120, 119, 116, 444, 1005, 565, 518, 217, 541, 541, /* 550 */ 316, 559, 142, 6, 532, 125, 126, 80, 1210, 1210, /* 560 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 570 */ 1548, 122, 122, 122, 122, 121, 121, 120, 120, 120, /* 580 */ 119, 116, 444, 485, 1186, 1187, 1186, 482, 281, 1263, /* 590 */ 955, 252, 1186, 373, 504, 501, 500, 1186, 340, 570, /* 600 */ 1186, 570, 409, 292, 499, 955, 874, 191, 480, 316, /* 610 */ 559, 384, 290, 380, 122, 122, 122, 122, 121, 121, /* 620 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 630 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 640 */ 124, 409, 394, 1132, 1186, 867, 100, 284, 284, 1186, /* 650 */ 1187, 1186, 373, 1089, 1186, 1187, 1186, 1186, 1187, 1186, /* 660 */ 565, 455, 32, 373, 233, 125, 126, 80, 1210, 1210, /* 670 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 680 */ 1428, 957, 568, 228, 956, 122, 122, 122, 122, 121, /* 690 */ 121, 120, 120, 120, 119, 116, 444, 1152, 228, 1186, /* 700 */ 157, 1186, 1187, 1186, 1547, 13, 13, 301, 955, 1226, /* 710 */ 1152, 153, 409, 1152, 373, 1575, 1170, 5, 369, 1572, /* 720 */ 429, 1232, 3, 955, 122, 122, 122, 122, 121, 121, /* 730 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 740 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 750 */ 124, 409, 208, 567, 1186, 1025, 1186, 1187, 1186, 1186, /* 760 */ 388, 850, 155, 1546, 286, 402, 1094, 1094, 488, 568, /* 770 */ 465, 342, 1315, 1315, 1546, 125, 126, 80, 1210, 1210, /* 780 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 790 */ 129, 568, 13, 13, 374, 122, 122, 122, 122, 121, /* 800 */ 121, 120, 120, 120, 119, 116, 444, 302, 568, 453, /* 810 */ 528, 1186, 1187, 1186, 13, 13, 1186, 1187, 1186, 1293, /* 820 */ 463, 1263, 409, 1313, 1313, 1546, 1010, 453, 452, 200, /* 830 */ 299, 71, 71, 1261, 122, 122, 122, 122, 121, 121, /* 840 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 850 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 860 */ 124, 409, 227, 1069, 1152, 284, 284, 419, 312, 278, /* 870 */ 278, 285, 285, 1415, 406, 405, 382, 1152, 565, 568, /* 880 */ 1152, 1189, 565, 1592, 565, 125, 126, 80, 1210, 1210, /* 890 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 900 */ 453, 1476, 13, 13, 1530, 122, 122, 122, 122, 121, /* 910 */ 121, 120, 120, 120, 119, 116, 444, 201, 568, 354, /* 920 */ 1578, 574, 2, 1241, 838, 839, 840, 1554, 317, 1205, /* 930 */ 146, 6, 409, 255, 254, 253, 206, 1323, 9, 1189, /* 940 */ 262, 71, 71, 424, 122, 122, 122, 122, 121, 121, /* 950 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 960 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 970 */ 124, 568, 284, 284, 568, 1206, 409, 573, 313, 1241, /* 980 */ 349, 1292, 352, 419, 317, 565, 146, 491, 525, 1635, /* 990 */ 395, 371, 491, 1323, 70, 70, 1291, 71, 71, 240, /* 1000 */ 1321, 104, 80, 1210, 1210, 1047, 1050, 1037, 1037, 123, /* 1010 */ 123, 124, 124, 124, 124, 122, 122, 122, 122, 121, /* 1020 */ 121, 120, 120, 120, 119, 116, 444, 1110, 284, 284, /* 1030 */ 428, 448, 1519, 1206, 439, 284, 284, 1483, 1348, 311, /* 1040 */ 474, 565, 1111, 969, 491, 491, 217, 1259, 565, 1532, /* 1050 */ 568, 970, 207, 568, 1024, 240, 383, 1112, 519, 122, /* 1060 */ 122, 122, 122, 121, 121, 120, 120, 120, 119, 116, /* 1070 */ 444, 1015, 107, 71, 71, 1014, 13, 13, 910, 568, /* 1080 */ 1489, 568, 284, 284, 97, 526, 491, 448, 911, 1322, /* 1090 */ 1318, 545, 409, 284, 284, 565, 151, 209, 1489, 1491, /* 1100 */ 262, 450, 55, 55, 56, 56, 565, 1014, 1014, 1016, /* 1110 */ 443, 332, 409, 527, 12, 295, 125, 126, 80, 1210, /* 1120 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 1130 */ 124, 347, 409, 862, 1528, 1206, 125, 126, 80, 1210, /* 1140 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 1150 */ 124, 1133, 1633, 474, 1633, 371, 125, 114, 80, 1210, /* 1160 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 1170 */ 124, 1489, 329, 474, 331, 122, 122, 122, 122, 121, /* 1180 */ 121, 120, 120, 120, 119, 116, 444, 203, 1415, 568, /* 1190 */ 1290, 862, 464, 1206, 436, 122, 122, 122, 122, 121, /* 1200 */ 121, 120, 120, 120, 119, 116, 444, 553, 1133, 1634, /* 1210 */ 539, 1634, 15, 15, 890, 122, 122, 122, 122, 121, /* 1220 */ 121, 120, 120, 120, 119, 116, 444, 568, 298, 538, /* 1230 */ 1131, 1415, 1552, 1553, 1327, 409, 6, 6, 1163, 1264, /* 1240 */ 415, 320, 284, 284, 1415, 508, 565, 525, 300, 457, /* 1250 */ 43, 43, 568, 891, 12, 565, 330, 478, 425, 407, /* 1260 */ 126, 80, 1210, 1210, 1047, 1050, 1037, 1037, 123, 123, /* 1270 */ 124, 124, 124, 124, 568, 57, 57, 288, 1186, 1415, /* 1280 */ 496, 458, 392, 392, 391, 273, 389, 1131, 1551, 847, /* 1290 */ 1163, 407, 6, 568, 321, 1152, 470, 44, 44, 1550, /* 1300 */ 1110, 426, 234, 6, 323, 256, 540, 256, 1152, 431, /* 1310 */ 568, 1152, 322, 17, 487, 1111, 58, 58, 122, 122, /* 1320 */ 122, 122, 121, 121, 120, 120, 120, 119, 116, 444, /* 1330 */ 1112, 216, 481, 59, 59, 1186, 1187, 1186, 111, 560, /* 1340 */ 324, 4, 236, 456, 526, 568, 237, 456, 568, 437, /* 1350 */ 168, 556, 420, 141, 479, 563, 568, 293, 568, 1091, /* 1360 */ 568, 293, 568, 1091, 531, 568, 870, 8, 60, 60, /* 1370 */ 235, 61, 61, 568, 414, 568, 414, 568, 445, 62, /* 1380 */ 62, 45, 45, 46, 46, 47, 47, 199, 49, 49, /* 1390 */ 557, 568, 359, 568, 100, 486, 50, 50, 63, 63, /* 1400 */ 64, 64, 561, 415, 535, 410, 568, 1024, 568, 534, /* 1410 */ 316, 559, 316, 559, 65, 65, 14, 14, 568, 1024, /* 1420 */ 568, 512, 930, 870, 1015, 109, 109, 929, 1014, 66, /* 1430 */ 66, 131, 131, 110, 451, 445, 569, 445, 416, 177, /* 1440 */ 1014, 132, 132, 67, 67, 568, 467, 568, 930, 471, /* 1450 */ 1360, 283, 226, 929, 315, 1359, 407, 568, 459, 407, /* 1460 */ 1014, 1014, 1016, 239, 407, 86, 213, 1346, 52, 52, /* 1470 */ 68, 68, 1014, 1014, 1016, 1017, 27, 1577, 1174, 447, /* 1480 */ 69, 69, 288, 97, 108, 1535, 106, 392, 392, 391, /* 1490 */ 273, 389, 568, 877, 847, 881, 568, 111, 560, 466, /* 1500 */ 4, 568, 152, 30, 38, 568, 1128, 234, 396, 323, /* 1510 */ 111, 560, 527, 4, 563, 53, 53, 322, 568, 163, /* 1520 */ 163, 568, 337, 468, 164, 164, 333, 563, 76, 76, /* 1530 */ 568, 289, 1508, 568, 31, 1507, 568, 445, 338, 483, /* 1540 */ 100, 54, 54, 344, 72, 72, 296, 236, 1076, 557, /* 1550 */ 445, 877, 1356, 134, 134, 168, 73, 73, 141, 161, /* 1560 */ 161, 1566, 557, 535, 568, 319, 568, 348, 536, 1007, /* 1570 */ 473, 261, 261, 889, 888, 235, 535, 568, 1024, 568, /* 1580 */ 475, 534, 261, 367, 109, 109, 521, 136, 136, 130, /* 1590 */ 130, 1024, 110, 366, 445, 569, 445, 109, 109, 1014, /* 1600 */ 162, 162, 156, 156, 568, 110, 1076, 445, 569, 445, /* 1610 */ 410, 351, 1014, 568, 353, 316, 559, 568, 343, 568, /* 1620 */ 100, 497, 357, 258, 100, 896, 897, 140, 140, 355, /* 1630 */ 1306, 1014, 1014, 1016, 1017, 27, 139, 139, 362, 451, /* 1640 */ 137, 137, 138, 138, 1014, 1014, 1016, 1017, 27, 1174, /* 1650 */ 447, 568, 372, 288, 111, 560, 1018, 4, 392, 392, /* 1660 */ 391, 273, 389, 568, 1137, 847, 568, 1072, 568, 258, /* 1670 */ 492, 563, 568, 211, 75, 75, 555, 960, 234, 261, /* 1680 */ 323, 111, 560, 927, 4, 113, 77, 77, 322, 74, /* 1690 */ 74, 42, 42, 1369, 445, 48, 48, 1414, 563, 972, /* 1700 */ 973, 1088, 1087, 1088, 1087, 860, 557, 150, 928, 1342, /* 1710 */ 113, 1354, 554, 1419, 1018, 1271, 1262, 1250, 236, 1249, /* 1720 */ 1251, 445, 1585, 1339, 308, 276, 168, 309, 11, 141, /* 1730 */ 393, 310, 232, 557, 1401, 1024, 335, 291, 1396, 219, /* 1740 */ 336, 109, 109, 934, 297, 1406, 235, 341, 477, 110, /* 1750 */ 502, 445, 569, 445, 1389, 1405, 1014, 400, 1289, 365, /* 1760 */ 223, 1480, 1024, 1479, 1351, 1352, 1350, 1349, 109, 109, /* 1770 */ 204, 1588, 1226, 558, 265, 218, 110, 205, 445, 569, /* 1780 */ 445, 410, 387, 1014, 1527, 179, 316, 559, 1014, 1014, /* 1790 */ 1016, 1017, 27, 230, 1525, 1223, 79, 560, 85, 4, /* 1800 */ 418, 215, 548, 81, 84, 188, 1402, 173, 181, 461, /* 1810 */ 451, 35, 462, 563, 183, 1014, 1014, 1016, 1017, 27, /* 1820 */ 184, 1485, 185, 186, 495, 242, 98, 398, 1408, 36, /* 1830 */ 1407, 484, 91, 469, 401, 1410, 445, 192, 1474, 246, /* 1840 */ 1496, 490, 346, 277, 248, 196, 493, 511, 557, 350, /* 1850 */ 1252, 249, 250, 403, 1309, 1308, 111, 560, 432, 4, /* 1860 */ 1307, 1300, 93, 1602, 881, 1601, 224, 404, 434, 520, /* 1870 */ 263, 435, 1571, 563, 1279, 1278, 364, 1024, 306, 1277, /* 1880 */ 264, 1600, 1557, 109, 109, 370, 1299, 307, 1556, 438, /* 1890 */ 128, 110, 1374, 445, 569, 445, 445, 546, 1014, 10, /* 1900 */ 1461, 105, 381, 1373, 34, 571, 99, 1332, 557, 314, /* 1910 */ 1180, 530, 272, 274, 379, 210, 1331, 547, 385, 386, /* 1920 */ 275, 572, 1247, 1242, 411, 412, 1512, 165, 178, 1513, /* 1930 */ 1014, 1014, 1016, 1017, 27, 1511, 1510, 1024, 78, 147, /* 1940 */ 166, 220, 221, 109, 109, 834, 304, 167, 446, 212, /* 1950 */ 318, 110, 231, 445, 569, 445, 144, 1086, 1014, 1084, /* 1960 */ 326, 180, 169, 1205, 182, 334, 238, 913, 241, 1100, /* 1970 */ 187, 170, 171, 421, 87, 88, 423, 189, 89, 90, /* 1980 */ 172, 1103, 243, 1099, 244, 158, 18, 245, 345, 247, /* 1990 */ 1014, 1014, 1016, 1017, 27, 261, 1092, 193, 1220, 489, /* 2000 */ 194, 37, 366, 849, 494, 251, 195, 506, 92, 19, /* 2010 */ 498, 358, 20, 503, 879, 361, 94, 892, 305, 159, /* 2020 */ 513, 39, 95, 1168, 160, 1053, 964, 1139, 96, 174, /* 2030 */ 1138, 225, 280, 282, 198, 958, 113, 1158, 1154, 260, /* 2040 */ 21, 22, 23, 1156, 1162, 1161, 1143, 24, 33, 25, /* 2050 */ 202, 542, 26, 100, 1067, 102, 1054, 103, 7, 1052, /* 2060 */ 1056, 1109, 1057, 1108, 266, 267, 28, 40, 390, 1019, /* 2070 */ 861, 112, 29, 564, 1176, 1175, 268, 176, 143, 923, /* 2080 */ 1238, 1238, 1238, 1238, 1238, 1238, 1238, 1238, 1238, 1238, /* 2090 */ 1238, 1238, 1238, 1238, 269, 1593, }; static const YYCODETYPE yy_lookahead[] = { /* 0 */ 193, 193, 193, 274, 275, 276, 193, 274, 275, 276, /* 10 */ 193, 223, 219, 225, 206, 210, 211, 212, 193, 19, /* 20 */ 219, 233, 216, 216, 217, 216, 217, 193, 295, 216, /* 30 */ 217, 31, 193, 216, 217, 193, 228, 213, 230, 39, /* 40 */ 206, 216, 217, 43, 44, 45, 46, 47, 48, 49, /* 50 */ 50, 51, 52, 53, 54, 55, 56, 57, 193, 19, /* 60 */ 185, 186, 187, 188, 189, 190, 253, 274, 275, 276, /* 70 */ 195, 193, 197, 193, 261, 274, 275, 276, 253, 204, /* 80 */ 238, 204, 81, 43, 44, 45, 46, 47, 48, 49, /* 90 */ 50, 51, 52, 53, 54, 55, 56, 57, 274, 275, /* 100 */ 276, 262, 102, 103, 104, 105, 106, 107, 108, 109, /* 110 */ 110, 111, 112, 113, 239, 240, 239, 240, 210, 211, /* 120 */ 212, 314, 315, 314, 59, 316, 86, 252, 88, 252, /* 130 */ 19, 314, 315, 256, 257, 113, 25, 72, 296, 138, /* 140 */ 139, 266, 102, 103, 104, 105, 106, 107, 108, 109, /* 150 */ 110, 111, 112, 113, 43, 44, 45, 46, 47, 48, /* 160 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 81, /* 170 */ 292, 59, 292, 298, 108, 109, 110, 111, 112, 113, /* 180 */ 69, 116, 117, 118, 72, 106, 107, 193, 111, 112, /* 190 */ 113, 54, 55, 56, 57, 58, 102, 103, 104, 105, /* 200 */ 106, 107, 108, 109, 110, 111, 112, 113, 120, 25, /* 210 */ 216, 217, 145, 102, 103, 104, 105, 106, 107, 108, /* 220 */ 109, 110, 111, 112, 113, 231, 138, 139, 116, 117, /* 230 */ 118, 164, 153, 19, 155, 54, 55, 56, 57, 102, /* 240 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, /* 250 */ 113, 128, 129, 46, 47, 48, 49, 43, 44, 45, /* 260 */ 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, /* 270 */ 56, 57, 216, 193, 25, 59, 193, 19, 165, 166, /* 280 */ 193, 67, 24, 102, 103, 104, 105, 106, 107, 108, /* 290 */ 109, 110, 111, 112, 113, 73, 216, 217, 59, 216, /* 300 */ 217, 43, 44, 45, 46, 47, 48, 49, 50, 51, /* 310 */ 52, 53, 54, 55, 56, 57, 102, 103, 104, 105, /* 320 */ 106, 107, 108, 109, 110, 111, 112, 113, 121, 145, /* 330 */ 59, 193, 116, 117, 118, 119, 273, 204, 122, 123, /* 340 */ 124, 19, 20, 134, 22, 136, 137, 19, 132, 127, /* 350 */ 128, 129, 24, 22, 23, 116, 117, 118, 36, 193, /* 360 */ 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, /* 370 */ 112, 113, 239, 240, 311, 312, 215, 106, 107, 241, /* 380 */ 19, 59, 216, 217, 223, 252, 115, 116, 117, 118, /* 390 */ 151, 120, 26, 71, 193, 308, 309, 193, 149, 128, /* 400 */ 313, 216, 269, 81, 43, 44, 45, 46, 47, 48, /* 410 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 253, /* 420 */ 216, 217, 100, 95, 153, 59, 155, 261, 106, 107, /* 430 */ 25, 193, 101, 193, 193, 231, 114, 25, 116, 117, /* 440 */ 118, 113, 304, 121, 193, 204, 59, 119, 120, 121, /* 450 */ 122, 123, 124, 125, 216, 217, 193, 216, 217, 131, /* 460 */ 138, 139, 230, 102, 103, 104, 105, 106, 107, 108, /* 470 */ 109, 110, 111, 112, 113, 153, 154, 155, 156, 157, /* 480 */ 239, 240, 116, 117, 118, 76, 193, 23, 19, 25, /* 490 */ 22, 253, 23, 252, 253, 108, 87, 204, 89, 261, /* 500 */ 198, 92, 261, 116, 117, 118, 193, 306, 307, 216, /* 510 */ 217, 150, 43, 44, 45, 46, 47, 48, 49, 50, /* 520 */ 51, 52, 53, 54, 55, 56, 57, 59, 193, 216, /* 530 */ 217, 19, 239, 240, 283, 23, 106, 107, 108, 109, /* 540 */ 110, 111, 112, 113, 73, 252, 253, 142, 308, 309, /* 550 */ 138, 139, 81, 313, 145, 43, 44, 45, 46, 47, /* 560 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 570 */ 307, 102, 103, 104, 105, 106, 107, 108, 109, 110, /* 580 */ 111, 112, 113, 281, 116, 117, 118, 285, 23, 193, /* 590 */ 25, 119, 59, 193, 122, 123, 124, 59, 127, 203, /* 600 */ 59, 205, 19, 268, 132, 25, 23, 22, 193, 138, /* 610 */ 139, 249, 204, 251, 102, 103, 104, 105, 106, 107, /* 620 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 630 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 640 */ 57, 19, 22, 23, 59, 23, 25, 239, 240, 116, /* 650 */ 117, 118, 193, 11, 116, 117, 118, 116, 117, 118, /* 660 */ 252, 269, 22, 193, 15, 43, 44, 45, 46, 47, /* 670 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 680 */ 273, 143, 193, 118, 143, 102, 103, 104, 105, 106, /* 690 */ 107, 108, 109, 110, 111, 112, 113, 76, 118, 59, /* 700 */ 241, 116, 117, 118, 304, 216, 217, 292, 143, 60, /* 710 */ 89, 241, 19, 92, 193, 193, 23, 22, 311, 312, /* 720 */ 231, 101, 22, 143, 102, 103, 104, 105, 106, 107, /* 730 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 740 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 750 */ 57, 19, 193, 193, 59, 23, 116, 117, 118, 59, /* 760 */ 201, 21, 241, 304, 22, 206, 127, 128, 129, 193, /* 770 */ 128, 129, 235, 236, 304, 43, 44, 45, 46, 47, /* 780 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 790 */ 22, 193, 216, 217, 193, 102, 103, 104, 105, 106, /* 800 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 193, /* 810 */ 193, 116, 117, 118, 216, 217, 116, 117, 118, 226, /* 820 */ 80, 193, 19, 235, 236, 304, 23, 211, 212, 231, /* 830 */ 204, 216, 217, 205, 102, 103, 104, 105, 106, 107, /* 840 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 850 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 860 */ 57, 19, 193, 123, 76, 239, 240, 193, 253, 239, /* 870 */ 240, 239, 240, 193, 106, 107, 193, 89, 252, 193, /* 880 */ 92, 59, 252, 141, 252, 43, 44, 45, 46, 47, /* 890 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 900 */ 284, 161, 216, 217, 193, 102, 103, 104, 105, 106, /* 910 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 16, /* 920 */ 187, 188, 189, 190, 7, 8, 9, 309, 195, 25, /* 930 */ 197, 313, 19, 127, 128, 129, 262, 204, 22, 117, /* 940 */ 24, 216, 217, 263, 102, 103, 104, 105, 106, 107, /* 950 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 960 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 970 */ 57, 193, 239, 240, 193, 59, 19, 188, 253, 190, /* 980 */ 77, 226, 79, 193, 195, 252, 197, 193, 19, 301, /* 990 */ 302, 193, 193, 204, 216, 217, 226, 216, 217, 266, /* 1000 */ 204, 159, 45, 46, 47, 48, 49, 50, 51, 52, /* 1010 */ 53, 54, 55, 56, 57, 102, 103, 104, 105, 106, /* 1020 */ 107, 108, 109, 110, 111, 112, 113, 12, 239, 240, /* 1030 */ 232, 298, 238, 117, 253, 239, 240, 238, 259, 260, /* 1040 */ 193, 252, 27, 31, 193, 193, 142, 204, 252, 193, /* 1050 */ 193, 39, 262, 193, 100, 266, 278, 42, 204, 102, /* 1060 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, /* 1070 */ 113, 117, 159, 216, 217, 121, 216, 217, 63, 193, /* 1080 */ 193, 193, 239, 240, 115, 116, 193, 298, 73, 238, /* 1090 */ 238, 231, 19, 239, 240, 252, 22, 24, 211, 212, /* 1100 */ 24, 193, 216, 217, 216, 217, 252, 153, 154, 155, /* 1110 */ 253, 16, 19, 144, 213, 268, 43, 44, 45, 46, /* 1120 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 1130 */ 57, 238, 19, 59, 193, 59, 43, 44, 45, 46, /* 1140 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 1150 */ 57, 22, 23, 193, 25, 193, 43, 44, 45, 46, /* 1160 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 1170 */ 57, 284, 77, 193, 79, 102, 103, 104, 105, 106, /* 1180 */ 107, 108, 109, 110, 111, 112, 113, 286, 193, 193, /* 1190 */ 193, 117, 291, 117, 232, 102, 103, 104, 105, 106, /* 1200 */ 107, 108, 109, 110, 111, 112, 113, 204, 22, 23, /* 1210 */ 66, 25, 216, 217, 35, 102, 103, 104, 105, 106, /* 1220 */ 107, 108, 109, 110, 111, 112, 113, 193, 268, 85, /* 1230 */ 101, 193, 309, 309, 240, 19, 313, 313, 94, 208, /* 1240 */ 209, 193, 239, 240, 193, 66, 252, 19, 268, 244, /* 1250 */ 216, 217, 193, 74, 213, 252, 161, 19, 263, 254, /* 1260 */ 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, /* 1270 */ 54, 55, 56, 57, 193, 216, 217, 5, 59, 193, /* 1280 */ 19, 244, 10, 11, 12, 13, 14, 101, 309, 17, /* 1290 */ 146, 254, 313, 193, 193, 76, 115, 216, 217, 309, /* 1300 */ 12, 263, 30, 313, 32, 46, 87, 46, 89, 130, /* 1310 */ 193, 92, 40, 22, 263, 27, 216, 217, 102, 103, /* 1320 */ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, /* 1330 */ 42, 150, 291, 216, 217, 116, 117, 118, 19, 20, /* 1340 */ 193, 22, 70, 260, 116, 193, 24, 264, 193, 263, /* 1350 */ 78, 63, 61, 81, 116, 36, 193, 260, 193, 29, /* 1360 */ 193, 264, 193, 33, 145, 193, 59, 48, 216, 217, /* 1370 */ 98, 216, 217, 193, 115, 193, 115, 193, 59, 216, /* 1380 */ 217, 216, 217, 216, 217, 216, 217, 255, 216, 217, /* 1390 */ 71, 193, 131, 193, 25, 65, 216, 217, 216, 217, /* 1400 */ 216, 217, 208, 209, 85, 133, 193, 100, 193, 90, /* 1410 */ 138, 139, 138, 139, 216, 217, 216, 217, 193, 100, /* 1420 */ 193, 108, 135, 116, 117, 106, 107, 140, 121, 216, /* 1430 */ 217, 216, 217, 114, 162, 116, 117, 118, 299, 300, /* 1440 */ 121, 216, 217, 216, 217, 193, 244, 193, 135, 244, /* 1450 */ 193, 256, 257, 140, 244, 193, 254, 193, 193, 254, /* 1460 */ 153, 154, 155, 141, 254, 149, 150, 258, 216, 217, /* 1470 */ 216, 217, 153, 154, 155, 156, 157, 0, 1, 2, /* 1480 */ 216, 217, 5, 115, 158, 193, 160, 10, 11, 12, /* 1490 */ 13, 14, 193, 59, 17, 126, 193, 19, 20, 129, /* 1500 */ 22, 193, 22, 22, 24, 193, 23, 30, 25, 32, /* 1510 */ 19, 20, 144, 22, 36, 216, 217, 40, 193, 216, /* 1520 */ 217, 193, 152, 129, 216, 217, 193, 36, 216, 217, /* 1530 */ 193, 99, 193, 193, 53, 193, 193, 59, 23, 193, /* 1540 */ 25, 216, 217, 193, 216, 217, 152, 70, 59, 71, /* 1550 */ 59, 117, 193, 216, 217, 78, 216, 217, 81, 216, /* 1560 */ 217, 318, 71, 85, 193, 133, 193, 193, 90, 23, /* 1570 */ 23, 25, 25, 120, 121, 98, 85, 193, 100, 193, /* 1580 */ 23, 90, 25, 121, 106, 107, 19, 216, 217, 216, /* 1590 */ 217, 100, 114, 131, 116, 117, 118, 106, 107, 121, /* 1600 */ 216, 217, 216, 217, 193, 114, 117, 116, 117, 118, /* 1610 */ 133, 193, 121, 193, 193, 138, 139, 193, 23, 193, /* 1620 */ 25, 23, 23, 25, 25, 7, 8, 216, 217, 193, /* 1630 */ 193, 153, 154, 155, 156, 157, 216, 217, 193, 162, /* 1640 */ 216, 217, 216, 217, 153, 154, 155, 156, 157, 1, /* 1650 */ 2, 193, 193, 5, 19, 20, 59, 22, 10, 11, /* 1660 */ 12, 13, 14, 193, 97, 17, 193, 23, 193, 25, /* 1670 */ 288, 36, 193, 242, 216, 217, 236, 23, 30, 25, /* 1680 */ 32, 19, 20, 23, 22, 25, 216, 217, 40, 216, /* 1690 */ 217, 216, 217, 193, 59, 216, 217, 193, 36, 83, /* 1700 */ 84, 153, 153, 155, 155, 23, 71, 25, 23, 193, /* 1710 */ 25, 193, 193, 193, 117, 193, 193, 193, 70, 193, /* 1720 */ 193, 59, 193, 255, 255, 287, 78, 255, 243, 81, /* 1730 */ 191, 255, 297, 71, 271, 100, 293, 245, 267, 214, /* 1740 */ 246, 106, 107, 108, 246, 271, 98, 245, 293, 114, /* 1750 */ 220, 116, 117, 118, 267, 271, 121, 271, 225, 219, /* 1760 */ 229, 219, 100, 219, 259, 259, 259, 259, 106, 107, /* 1770 */ 249, 196, 60, 280, 141, 243, 114, 249, 116, 117, /* 1780 */ 118, 133, 245, 121, 200, 297, 138, 139, 153, 154, /* 1790 */ 155, 156, 157, 297, 200, 38, 19, 20, 151, 22, /* 1800 */ 200, 150, 140, 294, 294, 22, 272, 43, 234, 18, /* 1810 */ 162, 270, 200, 36, 237, 153, 154, 155, 156, 157, /* 1820 */ 237, 283, 237, 237, 18, 199, 149, 246, 272, 270, /* 1830 */ 272, 200, 158, 246, 246, 234, 59, 234, 246, 199, /* 1840 */ 290, 62, 289, 200, 199, 22, 221, 115, 71, 200, /* 1850 */ 200, 199, 199, 221, 218, 218, 19, 20, 64, 22, /* 1860 */ 218, 227, 22, 224, 126, 224, 165, 221, 24, 305, /* 1870 */ 200, 113, 312, 36, 218, 220, 218, 100, 282, 218, /* 1880 */ 91, 218, 317, 106, 107, 221, 227, 282, 317, 82, /* 1890 */ 148, 114, 265, 116, 117, 118, 59, 145, 121, 22, /* 1900 */ 277, 158, 200, 265, 25, 202, 147, 250, 71, 279, /* 1910 */ 13, 146, 194, 194, 249, 248, 250, 140, 247, 246, /* 1920 */ 6, 192, 192, 192, 303, 303, 213, 207, 300, 213, /* 1930 */ 153, 154, 155, 156, 157, 213, 213, 100, 213, 222, /* 1940 */ 207, 214, 214, 106, 107, 4, 222, 207, 3, 22, /* 1950 */ 163, 114, 15, 116, 117, 118, 16, 23, 121, 23, /* 1960 */ 139, 151, 130, 25, 142, 16, 24, 20, 144, 1, /* 1970 */ 142, 130, 130, 61, 53, 53, 37, 151, 53, 53, /* 1980 */ 130, 116, 34, 1, 141, 5, 22, 115, 161, 141, /* 1990 */ 153, 154, 155, 156, 157, 25, 68, 68, 75, 41, /* 2000 */ 115, 24, 131, 20, 19, 125, 22, 96, 22, 22, /* 2010 */ 67, 23, 22, 67, 59, 24, 22, 28, 67, 23, /* 2020 */ 22, 22, 149, 23, 23, 23, 116, 23, 25, 37, /* 2030 */ 97, 141, 23, 23, 22, 143, 25, 75, 88, 34, /* 2040 */ 34, 34, 34, 86, 75, 93, 23, 34, 22, 34, /* 2050 */ 25, 24, 34, 25, 23, 142, 23, 142, 44, 23, /* 2060 */ 23, 23, 11, 23, 25, 22, 22, 22, 15, 23, /* 2070 */ 23, 22, 22, 25, 1, 1, 141, 25, 23, 135, /* 2080 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2090 */ 319, 319, 319, 319, 141, 141, 319, 319, 319, 319, /* 2100 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2110 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2120 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2130 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2140 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2150 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2160 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2170 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2180 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2190 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2200 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2210 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2220 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2230 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2240 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2250 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2260 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2270 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2280 */ 319, }; #define YY_SHIFT_COUNT (574) #define YY_SHIFT_MIN (0) #define YY_SHIFT_MAX (2074) static const unsigned short int yy_shift_ofst[] = { /* 0 */ 1648, 1477, 1272, 322, 322, 1, 1319, 1478, 1491, 1837, /* 10 */ 1837, 1837, 471, 0, 0, 214, 1093, 1837, 1837, 1837, /* 20 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 30 */ 271, 271, 1219, 1219, 216, 88, 1, 1, 1, 1, /* 40 */ 1, 40, 111, 258, 361, 469, 512, 583, 622, 693, /* 50 */ 732, 803, 842, 913, 1073, 1093, 1093, 1093, 1093, 1093, /* 60 */ 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, /* 70 */ 1093, 1093, 1093, 1113, 1093, 1216, 957, 957, 1635, 1662, /* 80 */ 1777, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 90 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 100 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 110 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 120 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 130 */ 137, 181, 181, 181, 181, 181, 181, 181, 94, 430, /* 140 */ 66, 65, 112, 366, 533, 533, 740, 1261, 533, 533, /* 150 */ 79, 79, 533, 412, 412, 412, 77, 412, 123, 113, /* 160 */ 113, 22, 22, 2096, 2096, 328, 328, 328, 239, 468, /* 170 */ 468, 468, 468, 1015, 1015, 409, 366, 1129, 1186, 533, /* 180 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 533, /* 190 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 969, /* 200 */ 621, 621, 533, 642, 788, 788, 1228, 1228, 822, 822, /* 210 */ 67, 1274, 2096, 2096, 2096, 2096, 2096, 2096, 2096, 1307, /* 220 */ 954, 954, 585, 472, 640, 387, 695, 538, 541, 700, /* 230 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 533, /* 240 */ 222, 533, 533, 533, 533, 533, 533, 533, 533, 533, /* 250 */ 533, 533, 533, 1179, 1179, 1179, 533, 533, 533, 565, /* 260 */ 533, 533, 533, 916, 1144, 533, 533, 1288, 533, 533, /* 270 */ 533, 533, 533, 533, 533, 533, 639, 1330, 209, 1076, /* 280 */ 1076, 1076, 1076, 580, 209, 209, 1313, 768, 917, 649, /* 290 */ 1181, 1316, 405, 1316, 1238, 249, 1181, 1181, 249, 1181, /* 300 */ 405, 1238, 1369, 464, 1259, 1012, 1012, 1012, 1368, 1368, /* 310 */ 1368, 1368, 184, 184, 1326, 904, 1287, 1480, 1712, 1712, /* 320 */ 1633, 1633, 1757, 1757, 1633, 1647, 1651, 1783, 1764, 1791, /* 330 */ 1791, 1791, 1791, 1633, 1806, 1677, 1651, 1651, 1677, 1783, /* 340 */ 1764, 1677, 1764, 1677, 1633, 1806, 1674, 1779, 1633, 1806, /* 350 */ 1823, 1633, 1806, 1633, 1806, 1823, 1732, 1732, 1732, 1794, /* 360 */ 1840, 1840, 1823, 1732, 1738, 1732, 1794, 1732, 1732, 1701, /* 370 */ 1844, 1758, 1758, 1823, 1633, 1789, 1789, 1807, 1807, 1742, /* 380 */ 1752, 1877, 1633, 1743, 1742, 1759, 1765, 1677, 1879, 1897, /* 390 */ 1897, 1914, 1914, 1914, 2096, 2096, 2096, 2096, 2096, 2096, /* 400 */ 2096, 2096, 2096, 2096, 2096, 2096, 2096, 2096, 2096, 207, /* 410 */ 1095, 331, 620, 903, 806, 1074, 1483, 1432, 1481, 1322, /* 420 */ 1370, 1394, 1515, 1291, 1546, 1547, 1557, 1595, 1598, 1599, /* 430 */ 1434, 1453, 1618, 1462, 1567, 1489, 1644, 1654, 1616, 1660, /* 440 */ 1548, 1549, 1682, 1685, 1597, 742, 1941, 1945, 1927, 1787, /* 450 */ 1937, 1940, 1934, 1936, 1821, 1810, 1832, 1938, 1938, 1942, /* 460 */ 1822, 1947, 1824, 1949, 1968, 1828, 1841, 1938, 1842, 1912, /* 470 */ 1939, 1938, 1826, 1921, 1922, 1925, 1926, 1850, 1865, 1948, /* 480 */ 1843, 1982, 1980, 1964, 1872, 1827, 1928, 1970, 1929, 1923, /* 490 */ 1958, 1848, 1885, 1977, 1983, 1985, 1871, 1880, 1984, 1943, /* 500 */ 1986, 1987, 1988, 1990, 1946, 1955, 1991, 1911, 1989, 1994, /* 510 */ 1951, 1992, 1996, 1873, 1998, 2000, 2001, 2002, 2003, 2004, /* 520 */ 1999, 1933, 1890, 2009, 2010, 1910, 2005, 2012, 1892, 2011, /* 530 */ 2006, 2007, 2008, 2013, 1950, 1962, 1957, 2014, 1969, 1952, /* 540 */ 2015, 2023, 2026, 2027, 2025, 2028, 2018, 1913, 1915, 2031, /* 550 */ 2011, 2033, 2036, 2037, 2038, 2039, 2040, 2043, 2051, 2044, /* 560 */ 2045, 2046, 2047, 2049, 2050, 2048, 1944, 1935, 1953, 1954, /* 570 */ 2052, 2055, 2053, 2073, 2074, }; #define YY_REDUCE_COUNT (408) #define YY_REDUCE_MIN (-271) #define YY_REDUCE_MAX (1740) static const short yy_reduce_ofst[] = { /* 0 */ -125, 733, 789, 241, 293, -123, -193, -191, -183, -187, /* 10 */ 166, 238, 133, -207, -199, -267, -176, -6, 204, 489, /* 20 */ 576, -175, 598, 686, 615, 725, 860, 778, 781, 857, /* 30 */ 616, 887, 87, 240, -192, 408, 626, 796, 843, 854, /* 40 */ 1003, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 50 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 60 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 70 */ -271, -271, -271, -271, -271, -271, -271, -271, 80, 83, /* 80 */ 313, 886, 888, 996, 1034, 1059, 1081, 1100, 1117, 1152, /* 90 */ 1155, 1163, 1165, 1167, 1169, 1172, 1180, 1182, 1184, 1198, /* 100 */ 1200, 1213, 1215, 1225, 1227, 1252, 1254, 1264, 1299, 1303, /* 110 */ 1308, 1312, 1325, 1328, 1337, 1340, 1343, 1371, 1373, 1384, /* 120 */ 1386, 1411, 1420, 1424, 1426, 1458, 1470, 1473, 1475, 1479, /* 130 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 140 */ -271, 138, 459, 396, -158, 470, 302, -212, 521, 201, /* 150 */ -195, -92, 559, 630, 632, 630, -271, 632, 901, 63, /* 160 */ 407, -271, -271, -271, -271, 161, 161, 161, 251, 335, /* 170 */ 847, 960, 980, 537, 588, 618, 628, 688, 688, -166, /* 180 */ -161, 674, 790, 794, 799, 851, 852, -122, 680, -120, /* 190 */ 995, 1038, 415, 1051, 893, 798, 962, 400, 1086, 779, /* 200 */ 923, 924, 263, 1041, 979, 990, 1083, 1097, 1031, 1194, /* 210 */ 362, 994, 1139, 1005, 1037, 1202, 1205, 1195, 1210, -194, /* 220 */ 56, 185, -135, 232, 522, 560, 601, 617, 669, 683, /* 230 */ 711, 856, 908, 941, 1048, 1101, 1147, 1257, 1262, 1265, /* 240 */ 392, 1292, 1333, 1339, 1342, 1346, 1350, 1359, 1374, 1418, /* 250 */ 1421, 1436, 1437, 593, 755, 770, 997, 1445, 1459, 1209, /* 260 */ 1500, 1504, 1516, 1132, 1243, 1518, 1519, 1440, 1520, 560, /* 270 */ 1522, 1523, 1524, 1526, 1527, 1529, 1382, 1438, 1431, 1468, /* 280 */ 1469, 1472, 1476, 1209, 1431, 1431, 1485, 1525, 1539, 1435, /* 290 */ 1463, 1471, 1492, 1487, 1443, 1494, 1474, 1484, 1498, 1486, /* 300 */ 1502, 1455, 1530, 1531, 1533, 1540, 1542, 1544, 1505, 1506, /* 310 */ 1507, 1508, 1521, 1528, 1493, 1537, 1532, 1575, 1488, 1496, /* 320 */ 1584, 1594, 1509, 1510, 1600, 1538, 1534, 1541, 1574, 1577, /* 330 */ 1583, 1585, 1586, 1612, 1626, 1581, 1556, 1558, 1587, 1559, /* 340 */ 1601, 1588, 1603, 1592, 1631, 1640, 1550, 1553, 1643, 1645, /* 350 */ 1625, 1649, 1652, 1650, 1653, 1632, 1636, 1637, 1642, 1634, /* 360 */ 1639, 1641, 1646, 1656, 1655, 1658, 1659, 1661, 1663, 1560, /* 370 */ 1564, 1596, 1605, 1664, 1670, 1565, 1571, 1627, 1638, 1657, /* 380 */ 1665, 1623, 1702, 1630, 1666, 1667, 1671, 1673, 1703, 1718, /* 390 */ 1719, 1729, 1730, 1731, 1621, 1622, 1628, 1720, 1713, 1716, /* 400 */ 1722, 1723, 1733, 1717, 1724, 1727, 1728, 1725, 1740, }; static const YYACTIONTYPE yy_default[] = { /* 0 */ 1639, 1639, 1639, 1469, 1236, 1347, 1236, 1236, 1236, 1469, /* 10 */ 1469, 1469, 1236, 1377, 1377, 1522, 1269, 1236, 1236, 1236, /* 20 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1468, 1236, 1236, /* 30 */ 1236, 1236, 1555, 1555, 1236, 1236, 1236, 1236, 1236, 1236, /* 40 */ 1236, 1236, 1386, 1236, 1393, 1236, 1236, 1236, 1236, 1236, /* 50 */ 1470, 1471, 1236, 1236, 1236, 1521, 1523, 1486, 1400, 1399, /* 60 */ 1398, 1397, 1504, 1365, 1391, 1384, 1388, 1465, 1466, 1464, /* 70 */ 1617, 1471, 1470, 1236, 1387, 1433, 1449, 1432, 1236, 1236, /* 80 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 90 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 100 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 110 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 120 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 130 */ 1441, 1448, 1447, 1446, 1455, 1445, 1442, 1435, 1434, 1436, /* 140 */ 1437, 1236, 1236, 1260, 1236, 1236, 1257, 1311, 1236, 1236, /* 150 */ 1236, 1236, 1236, 1541, 1540, 1236, 1438, 1236, 1269, 1427, /* 160 */ 1426, 1452, 1439, 1451, 1450, 1529, 1591, 1590, 1487, 1236, /* 170 */ 1236, 1236, 1236, 1236, 1236, 1555, 1236, 1236, 1236, 1236, /* 180 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 190 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1367, /* 200 */ 1555, 1555, 1236, 1269, 1555, 1555, 1368, 1368, 1265, 1265, /* 210 */ 1371, 1236, 1536, 1338, 1338, 1338, 1338, 1347, 1338, 1236, /* 220 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 230 */ 1236, 1236, 1236, 1236, 1526, 1524, 1236, 1236, 1236, 1236, /* 240 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 250 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 260 */ 1236, 1236, 1236, 1343, 1236, 1236, 1236, 1236, 1236, 1236, /* 270 */ 1236, 1236, 1236, 1236, 1236, 1584, 1236, 1499, 1325, 1343, /* 280 */ 1343, 1343, 1343, 1345, 1326, 1324, 1337, 1270, 1243, 1631, /* 290 */ 1403, 1392, 1344, 1392, 1628, 1390, 1403, 1403, 1390, 1403, /* 300 */ 1344, 1628, 1286, 1606, 1281, 1377, 1377, 1377, 1367, 1367, /* 310 */ 1367, 1367, 1371, 1371, 1467, 1344, 1337, 1236, 1631, 1631, /* 320 */ 1353, 1353, 1630, 1630, 1353, 1487, 1614, 1412, 1314, 1320, /* 330 */ 1320, 1320, 1320, 1353, 1254, 1390, 1614, 1614, 1390, 1412, /* 340 */ 1314, 1390, 1314, 1390, 1353, 1254, 1503, 1625, 1353, 1254, /* 350 */ 1477, 1353, 1254, 1353, 1254, 1477, 1312, 1312, 1312, 1301, /* 360 */ 1236, 1236, 1477, 1312, 1286, 1312, 1301, 1312, 1312, 1573, /* 370 */ 1236, 1481, 1481, 1477, 1353, 1565, 1565, 1380, 1380, 1385, /* 380 */ 1371, 1472, 1353, 1236, 1385, 1383, 1381, 1390, 1304, 1587, /* 390 */ 1587, 1583, 1583, 1583, 1636, 1636, 1536, 1599, 1269, 1269, /* 400 */ 1269, 1269, 1599, 1288, 1288, 1270, 1270, 1269, 1599, 1236, /* 410 */ 1236, 1236, 1236, 1236, 1236, 1594, 1236, 1531, 1488, 1357, /* 420 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 430 */ 1236, 1236, 1236, 1236, 1542, 1236, 1236, 1236, 1236, 1236, /* 440 */ 1236, 1236, 1236, 1236, 1236, 1417, 1236, 1239, 1533, 1236, /* 450 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1394, 1395, 1358, /* 460 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1409, 1236, 1236, /* 470 */ 1236, 1404, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 480 */ 1627, 1236, 1236, 1236, 1236, 1236, 1236, 1502, 1501, 1236, /* 490 */ 1236, 1355, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 500 */ 1236, 1236, 1236, 1236, 1236, 1284, 1236, 1236, 1236, 1236, /* 510 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 520 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1382, /* 530 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 540 */ 1236, 1236, 1236, 1236, 1570, 1372, 1236, 1236, 1236, 1236, /* 550 */ 1618, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 560 */ 1236, 1236, 1236, 1236, 1236, 1610, 1328, 1418, 1236, 1421, /* 570 */ 1258, 1236, 1248, 1236, 1236, }; /********** End of lemon-generated parsing tables *****************************/ /* The next table maps tokens (terminal symbols) into fallback tokens. ** If a construct like the following: ** ** %fallback ID X Y Z. ** ** appears in the grammar, then ID becomes a fallback token for X, Y, ** and Z. Whenever one of the tokens X, Y, or Z is input to the parser ** but it does not parse, the type of the token is changed to ID and ** the parse is retried before an error is thrown. ** ** This feature can be used, for example, to cause some keywords in a language ** to revert to identifiers if they keyword does not apply in the context where ** it appears. */ #ifdef YYFALLBACK static const YYCODETYPE yyFallback[] = { 0, /* $ => nothing */ 0, /* SEMI => nothing */ 59, /* EXPLAIN => ID */ 59, /* QUERY => ID */ 59, /* PLAN => ID */ 59, /* BEGIN => ID */ 0, /* TRANSACTION => nothing */ 59, /* DEFERRED => ID */ 59, /* IMMEDIATE => ID */ 59, /* EXCLUSIVE => ID */ 0, /* COMMIT => nothing */ 59, /* END => ID */ 59, /* ROLLBACK => ID */ 59, /* SAVEPOINT => ID */ 59, /* RELEASE => ID */ 0, /* TO => nothing */ 0, /* TABLE => nothing */ 0, /* CREATE => nothing */ 59, /* IF => ID */ 0, /* NOT => nothing */ 0, /* EXISTS => nothing */ 59, /* TEMP => ID */ 0, /* LP => nothing */ 0, /* RP => nothing */ 0, /* AS => nothing */ 0, /* COMMA => nothing */ 59, /* WITHOUT => ID */ 59, /* ABORT => ID */ 59, /* ACTION => ID */ 59, /* AFTER => ID */ 59, /* ANALYZE => ID */ 59, /* ASC => ID */ 59, /* ATTACH => ID */ 59, /* BEFORE => ID */ 59, /* BY => ID */ 59, /* CASCADE => ID */ 59, /* CAST => ID */ 59, /* CONFLICT => ID */ 59, /* DATABASE => ID */ 59, /* DESC => ID */ 59, /* DETACH => ID */ 59, /* EACH => ID */ 59, /* FAIL => ID */ 0, /* OR => nothing */ 0, /* AND => nothing */ 0, /* IS => nothing */ 59, /* MATCH => ID */ 59, /* LIKE_KW => ID */ 0, /* BETWEEN => nothing */ 0, /* IN => nothing */ 0, /* ISNULL => nothing */ 0, /* NOTNULL => nothing */ 0, /* NE => nothing */ 0, /* EQ => nothing */ 0, /* GT => nothing */ 0, /* LE => nothing */ 0, /* LT => nothing */ 0, /* GE => nothing */ 0, /* ESCAPE => nothing */ 0, /* ID => nothing */ 59, /* COLUMNKW => ID */ 59, /* DO => ID */ 59, /* FOR => ID */ 59, /* IGNORE => ID */ 59, /* INITIALLY => ID */ 59, /* INSTEAD => ID */ 59, /* NO => ID */ 59, /* KEY => ID */ 59, /* OF => ID */ 59, /* OFFSET => ID */ 59, /* PRAGMA => ID */ 59, /* RAISE => ID */ 59, /* RECURSIVE => ID */ 59, /* REPLACE => ID */ 59, /* RESTRICT => ID */ 59, /* ROW => ID */ 59, /* ROWS => ID */ 59, /* TRIGGER => ID */ 59, /* VACUUM => ID */ 59, /* VIEW => ID */ 59, /* VIRTUAL => ID */ 59, /* WITH => ID */ 59, /* NULLS => ID */ 59, /* FIRST => ID */ 59, /* LAST => ID */ 59, /* CURRENT => ID */ 59, /* FOLLOWING => ID */ 59, /* PARTITION => ID */ 59, /* PRECEDING => ID */ 59, /* RANGE => ID */ 59, /* UNBOUNDED => ID */ 59, /* EXCLUDE => ID */ 59, /* GROUPS => ID */ 59, /* OTHERS => ID */ 59, /* TIES => ID */ 59, /* GENERATED => ID */ 59, /* ALWAYS => ID */ 59, /* MATERIALIZED => ID */ 59, /* REINDEX => ID */ 59, /* RENAME => ID */ 59, /* CTIME_KW => ID */ 0, /* ANY => nothing */ 0, /* BITAND => nothing */ 0, /* BITOR => nothing */ 0, /* LSHIFT => nothing */ 0, /* RSHIFT => nothing */ 0, /* PLUS => nothing */ 0, /* MINUS => nothing */ 0, /* STAR => nothing */ 0, /* SLASH => nothing */ 0, /* REM => nothing */ 0, /* CONCAT => nothing */ 0, /* PTR => nothing */ 0, /* COLLATE => nothing */ 0, /* BITNOT => nothing */ 0, /* ON => nothing */ 0, /* INDEXED => nothing */ 0, /* STRING => nothing */ 0, /* JOIN_KW => nothing */ 0, /* CONSTRAINT => nothing */ 0, /* DEFAULT => nothing */ 0, /* NULL => nothing */ 0, /* PRIMARY => nothing */ 0, /* UNIQUE => nothing */ 0, /* CHECK => nothing */ 0, /* REFERENCES => nothing */ 0, /* AUTOINCR => nothing */ 0, /* INSERT => nothing */ 0, /* DELETE => nothing */ 0, /* UPDATE => nothing */ 0, /* SET => nothing */ 0, /* DEFERRABLE => nothing */ 0, /* FOREIGN => nothing */ 0, /* DROP => nothing */ 0, /* UNION => nothing */ 0, /* ALL => nothing */ 0, /* EXCEPT => nothing */ 0, /* INTERSECT => nothing */ 0, /* SELECT => nothing */ 0, /* VALUES => nothing */ 0, /* DISTINCT => nothing */ 0, /* DOT => nothing */ 0, /* FROM => nothing */ 0, /* JOIN => nothing */ 0, /* USING => nothing */ 0, /* ORDER => nothing */ 0, /* GROUP => nothing */ 0, /* HAVING => nothing */ 0, /* LIMIT => nothing */ 0, /* WHERE => nothing */ 0, /* RETURNING => nothing */ 0, /* INTO => nothing */ 0, /* NOTHING => nothing */ 0, /* FLOAT => nothing */ 0, /* BLOB => nothing */ 0, /* INTEGER => nothing */ 0, /* VARIABLE => nothing */ 0, /* CASE => nothing */ 0, /* WHEN => nothing */ 0, /* THEN => nothing */ 0, /* ELSE => nothing */ 0, /* INDEX => nothing */ 0, /* ALTER => nothing */ 0, /* ADD => nothing */ 0, /* WINDOW => nothing */ 0, /* OVER => nothing */ 0, /* FILTER => nothing */ 0, /* COLUMN => nothing */ 0, /* AGG_FUNCTION => nothing */ 0, /* AGG_COLUMN => nothing */ 0, /* TRUEFALSE => nothing */ 0, /* ISNOT => nothing */ 0, /* FUNCTION => nothing */ 0, /* UMINUS => nothing */ 0, /* UPLUS => nothing */ 0, /* TRUTH => nothing */ 0, /* REGISTER => nothing */ 0, /* VECTOR => nothing */ 0, /* SELECT_COLUMN => nothing */ 0, /* IF_NULL_ROW => nothing */ 0, /* ASTERISK => nothing */ 0, /* SPAN => nothing */ 0, /* ERROR => nothing */ 0, /* SPACE => nothing */ 0, /* ILLEGAL => nothing */ }; #endif /* YYFALLBACK */ /* The following structure represents a single element of the ** parser's stack. Information stored includes: ** ** + The state number for the parser at this level of the stack. ** ** + The value of the token stored at this level of the stack. ** (In other words, the "major" token.) ** ** + The semantic value stored at this level of the stack. This is ** the information used by the action routines in the grammar. ** It is sometimes called the "minor" token. ** ** After the "shift" half of a SHIFTREDUCE action, the stateno field ** actually contains the reduce action for the second half of the ** SHIFTREDUCE. */ struct yyStackEntry { YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */ YYCODETYPE major; /* The major token value. This is the code ** number for the token at this stack level */ YYMINORTYPE minor; /* The user-supplied minor token value. This ** is the value of the token */ }; typedef struct yyStackEntry yyStackEntry; /* The state of the parser is completely contained in an instance of ** the following structure */ struct yyParser { yyStackEntry *yytos; /* Pointer to top element of the stack */ #ifdef YYTRACKMAXSTACKDEPTH int yyhwm; /* High-water mark of the stack */ #endif #ifndef YYNOERRORRECOVERY int yyerrcnt; /* Shifts left before out of the error */ #endif sqlite3ParserARG_SDECL /* A place to hold %extra_argument */ sqlite3ParserCTX_SDECL /* A place to hold %extra_context */ #if YYSTACKDEPTH<=0 int yystksz; /* Current side of the stack */ yyStackEntry *yystack; /* The parser's stack */ yyStackEntry yystk0; /* First stack entry */ #else yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ yyStackEntry *yystackEnd; /* Last entry in the stack */ #endif }; typedef struct yyParser yyParser; /* #include */ #ifndef NDEBUG /* #include */ static FILE *yyTraceFILE = 0; static char *yyTracePrompt = 0; #endif /* NDEBUG */ #ifndef NDEBUG /* ** Turn parser tracing on by giving a stream to which to write the trace ** and a prompt to preface each trace message. Tracing is turned off ** by making either argument NULL ** ** Inputs: **
      **
    • A FILE* to which trace output should be written. ** If NULL, then tracing is turned off. **
    • A prefix string written at the beginning of every ** line of trace output. If NULL, then tracing is ** turned off. **
    ** ** Outputs: ** None. */ SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){ yyTraceFILE = TraceFILE; yyTracePrompt = zTracePrompt; if( yyTraceFILE==0 ) yyTracePrompt = 0; else if( yyTracePrompt==0 ) yyTraceFILE = 0; } #endif /* NDEBUG */ #if defined(YYCOVERAGE) || !defined(NDEBUG) /* For tracing shifts, the names of all terminals and nonterminals ** are required. The following table supplies these names */ static const char *const yyTokenName[] = { /* 0 */ "$", /* 1 */ "SEMI", /* 2 */ "EXPLAIN", /* 3 */ "QUERY", /* 4 */ "PLAN", /* 5 */ "BEGIN", /* 6 */ "TRANSACTION", /* 7 */ "DEFERRED", /* 8 */ "IMMEDIATE", /* 9 */ "EXCLUSIVE", /* 10 */ "COMMIT", /* 11 */ "END", /* 12 */ "ROLLBACK", /* 13 */ "SAVEPOINT", /* 14 */ "RELEASE", /* 15 */ "TO", /* 16 */ "TABLE", /* 17 */ "CREATE", /* 18 */ "IF", /* 19 */ "NOT", /* 20 */ "EXISTS", /* 21 */ "TEMP", /* 22 */ "LP", /* 23 */ "RP", /* 24 */ "AS", /* 25 */ "COMMA", /* 26 */ "WITHOUT", /* 27 */ "ABORT", /* 28 */ "ACTION", /* 29 */ "AFTER", /* 30 */ "ANALYZE", /* 31 */ "ASC", /* 32 */ "ATTACH", /* 33 */ "BEFORE", /* 34 */ "BY", /* 35 */ "CASCADE", /* 36 */ "CAST", /* 37 */ "CONFLICT", /* 38 */ "DATABASE", /* 39 */ "DESC", /* 40 */ "DETACH", /* 41 */ "EACH", /* 42 */ "FAIL", /* 43 */ "OR", /* 44 */ "AND", /* 45 */ "IS", /* 46 */ "MATCH", /* 47 */ "LIKE_KW", /* 48 */ "BETWEEN", /* 49 */ "IN", /* 50 */ "ISNULL", /* 51 */ "NOTNULL", /* 52 */ "NE", /* 53 */ "EQ", /* 54 */ "GT", /* 55 */ "LE", /* 56 */ "LT", /* 57 */ "GE", /* 58 */ "ESCAPE", /* 59 */ "ID", /* 60 */ "COLUMNKW", /* 61 */ "DO", /* 62 */ "FOR", /* 63 */ "IGNORE", /* 64 */ "INITIALLY", /* 65 */ "INSTEAD", /* 66 */ "NO", /* 67 */ "KEY", /* 68 */ "OF", /* 69 */ "OFFSET", /* 70 */ "PRAGMA", /* 71 */ "RAISE", /* 72 */ "RECURSIVE", /* 73 */ "REPLACE", /* 74 */ "RESTRICT", /* 75 */ "ROW", /* 76 */ "ROWS", /* 77 */ "TRIGGER", /* 78 */ "VACUUM", /* 79 */ "VIEW", /* 80 */ "VIRTUAL", /* 81 */ "WITH", /* 82 */ "NULLS", /* 83 */ "FIRST", /* 84 */ "LAST", /* 85 */ "CURRENT", /* 86 */ "FOLLOWING", /* 87 */ "PARTITION", /* 88 */ "PRECEDING", /* 89 */ "RANGE", /* 90 */ "UNBOUNDED", /* 91 */ "EXCLUDE", /* 92 */ "GROUPS", /* 93 */ "OTHERS", /* 94 */ "TIES", /* 95 */ "GENERATED", /* 96 */ "ALWAYS", /* 97 */ "MATERIALIZED", /* 98 */ "REINDEX", /* 99 */ "RENAME", /* 100 */ "CTIME_KW", /* 101 */ "ANY", /* 102 */ "BITAND", /* 103 */ "BITOR", /* 104 */ "LSHIFT", /* 105 */ "RSHIFT", /* 106 */ "PLUS", /* 107 */ "MINUS", /* 108 */ "STAR", /* 109 */ "SLASH", /* 110 */ "REM", /* 111 */ "CONCAT", /* 112 */ "PTR", /* 113 */ "COLLATE", /* 114 */ "BITNOT", /* 115 */ "ON", /* 116 */ "INDEXED", /* 117 */ "STRING", /* 118 */ "JOIN_KW", /* 119 */ "CONSTRAINT", /* 120 */ "DEFAULT", /* 121 */ "NULL", /* 122 */ "PRIMARY", /* 123 */ "UNIQUE", /* 124 */ "CHECK", /* 125 */ "REFERENCES", /* 126 */ "AUTOINCR", /* 127 */ "INSERT", /* 128 */ "DELETE", /* 129 */ "UPDATE", /* 130 */ "SET", /* 131 */ "DEFERRABLE", /* 132 */ "FOREIGN", /* 133 */ "DROP", /* 134 */ "UNION", /* 135 */ "ALL", /* 136 */ "EXCEPT", /* 137 */ "INTERSECT", /* 138 */ "SELECT", /* 139 */ "VALUES", /* 140 */ "DISTINCT", /* 141 */ "DOT", /* 142 */ "FROM", /* 143 */ "JOIN", /* 144 */ "USING", /* 145 */ "ORDER", /* 146 */ "GROUP", /* 147 */ "HAVING", /* 148 */ "LIMIT", /* 149 */ "WHERE", /* 150 */ "RETURNING", /* 151 */ "INTO", /* 152 */ "NOTHING", /* 153 */ "FLOAT", /* 154 */ "BLOB", /* 155 */ "INTEGER", /* 156 */ "VARIABLE", /* 157 */ "CASE", /* 158 */ "WHEN", /* 159 */ "THEN", /* 160 */ "ELSE", /* 161 */ "INDEX", /* 162 */ "ALTER", /* 163 */ "ADD", /* 164 */ "WINDOW", /* 165 */ "OVER", /* 166 */ "FILTER", /* 167 */ "COLUMN", /* 168 */ "AGG_FUNCTION", /* 169 */ "AGG_COLUMN", /* 170 */ "TRUEFALSE", /* 171 */ "ISNOT", /* 172 */ "FUNCTION", /* 173 */ "UMINUS", /* 174 */ "UPLUS", /* 175 */ "TRUTH", /* 176 */ "REGISTER", /* 177 */ "VECTOR", /* 178 */ "SELECT_COLUMN", /* 179 */ "IF_NULL_ROW", /* 180 */ "ASTERISK", /* 181 */ "SPAN", /* 182 */ "ERROR", /* 183 */ "SPACE", /* 184 */ "ILLEGAL", /* 185 */ "input", /* 186 */ "cmdlist", /* 187 */ "ecmd", /* 188 */ "cmdx", /* 189 */ "explain", /* 190 */ "cmd", /* 191 */ "transtype", /* 192 */ "trans_opt", /* 193 */ "nm", /* 194 */ "savepoint_opt", /* 195 */ "create_table", /* 196 */ "create_table_args", /* 197 */ "createkw", /* 198 */ "temp", /* 199 */ "ifnotexists", /* 200 */ "dbnm", /* 201 */ "columnlist", /* 202 */ "conslist_opt", /* 203 */ "table_option_set", /* 204 */ "select", /* 205 */ "table_option", /* 206 */ "columnname", /* 207 */ "carglist", /* 208 */ "typetoken", /* 209 */ "typename", /* 210 */ "signed", /* 211 */ "plus_num", /* 212 */ "minus_num", /* 213 */ "scanpt", /* 214 */ "scantok", /* 215 */ "ccons", /* 216 */ "term", /* 217 */ "expr", /* 218 */ "onconf", /* 219 */ "sortorder", /* 220 */ "autoinc", /* 221 */ "eidlist_opt", /* 222 */ "refargs", /* 223 */ "defer_subclause", /* 224 */ "generated", /* 225 */ "refarg", /* 226 */ "refact", /* 227 */ "init_deferred_pred_opt", /* 228 */ "conslist", /* 229 */ "tconscomma", /* 230 */ "tcons", /* 231 */ "sortlist", /* 232 */ "eidlist", /* 233 */ "defer_subclause_opt", /* 234 */ "orconf", /* 235 */ "resolvetype", /* 236 */ "raisetype", /* 237 */ "ifexists", /* 238 */ "fullname", /* 239 */ "selectnowith", /* 240 */ "oneselect", /* 241 */ "wqlist", /* 242 */ "multiselect_op", /* 243 */ "distinct", /* 244 */ "selcollist", /* 245 */ "from", /* 246 */ "where_opt", /* 247 */ "groupby_opt", /* 248 */ "having_opt", /* 249 */ "orderby_opt", /* 250 */ "limit_opt", /* 251 */ "window_clause", /* 252 */ "values", /* 253 */ "nexprlist", /* 254 */ "sclp", /* 255 */ "as", /* 256 */ "seltablist", /* 257 */ "stl_prefix", /* 258 */ "joinop", /* 259 */ "on_using", /* 260 */ "indexed_by", /* 261 */ "exprlist", /* 262 */ "xfullname", /* 263 */ "idlist", /* 264 */ "indexed_opt", /* 265 */ "nulls", /* 266 */ "with", /* 267 */ "where_opt_ret", /* 268 */ "setlist", /* 269 */ "insert_cmd", /* 270 */ "idlist_opt", /* 271 */ "upsert", /* 272 */ "returning", /* 273 */ "filter_over", /* 274 */ "likeop", /* 275 */ "between_op", /* 276 */ "in_op", /* 277 */ "paren_exprlist", /* 278 */ "case_operand", /* 279 */ "case_exprlist", /* 280 */ "case_else", /* 281 */ "uniqueflag", /* 282 */ "collate", /* 283 */ "vinto", /* 284 */ "nmnum", /* 285 */ "trigger_decl", /* 286 */ "trigger_cmd_list", /* 287 */ "trigger_time", /* 288 */ "trigger_event", /* 289 */ "foreach_clause", /* 290 */ "when_clause", /* 291 */ "trigger_cmd", /* 292 */ "trnm", /* 293 */ "tridxby", /* 294 */ "database_kw_opt", /* 295 */ "key_opt", /* 296 */ "add_column_fullname", /* 297 */ "kwcolumn_opt", /* 298 */ "create_vtab", /* 299 */ "vtabarglist", /* 300 */ "vtabarg", /* 301 */ "vtabargtoken", /* 302 */ "lp", /* 303 */ "anylist", /* 304 */ "wqitem", /* 305 */ "wqas", /* 306 */ "windowdefn_list", /* 307 */ "windowdefn", /* 308 */ "window", /* 309 */ "frame_opt", /* 310 */ "part_opt", /* 311 */ "filter_clause", /* 312 */ "over_clause", /* 313 */ "range_or_rows", /* 314 */ "frame_bound", /* 315 */ "frame_bound_s", /* 316 */ "frame_bound_e", /* 317 */ "frame_exclude_opt", /* 318 */ "frame_exclude", }; #endif /* defined(YYCOVERAGE) || !defined(NDEBUG) */ #ifndef NDEBUG /* For tracing reduce actions, the names of all rules are required. */ static const char *const yyRuleName[] = { /* 0 */ "explain ::= EXPLAIN", /* 1 */ "explain ::= EXPLAIN QUERY PLAN", /* 2 */ "cmdx ::= cmd", /* 3 */ "cmd ::= BEGIN transtype trans_opt", /* 4 */ "transtype ::=", /* 5 */ "transtype ::= DEFERRED", /* 6 */ "transtype ::= IMMEDIATE", /* 7 */ "transtype ::= EXCLUSIVE", /* 8 */ "cmd ::= COMMIT|END trans_opt", /* 9 */ "cmd ::= ROLLBACK trans_opt", /* 10 */ "cmd ::= SAVEPOINT nm", /* 11 */ "cmd ::= RELEASE savepoint_opt nm", /* 12 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm", /* 13 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm", /* 14 */ "createkw ::= CREATE", /* 15 */ "ifnotexists ::=", /* 16 */ "ifnotexists ::= IF NOT EXISTS", /* 17 */ "temp ::= TEMP", /* 18 */ "temp ::=", /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP table_option_set", /* 20 */ "create_table_args ::= AS select", /* 21 */ "table_option_set ::=", /* 22 */ "table_option_set ::= table_option_set COMMA table_option", /* 23 */ "table_option ::= WITHOUT nm", /* 24 */ "table_option ::= nm", /* 25 */ "columnname ::= nm typetoken", /* 26 */ "typetoken ::=", /* 27 */ "typetoken ::= typename LP signed RP", /* 28 */ "typetoken ::= typename LP signed COMMA signed RP", /* 29 */ "typename ::= typename ID|STRING", /* 30 */ "scanpt ::=", /* 31 */ "scantok ::=", /* 32 */ "ccons ::= CONSTRAINT nm", /* 33 */ "ccons ::= DEFAULT scantok term", /* 34 */ "ccons ::= DEFAULT LP expr RP", /* 35 */ "ccons ::= DEFAULT PLUS scantok term", /* 36 */ "ccons ::= DEFAULT MINUS scantok term", /* 37 */ "ccons ::= DEFAULT scantok ID|INDEXED", /* 38 */ "ccons ::= NOT NULL onconf", /* 39 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc", /* 40 */ "ccons ::= UNIQUE onconf", /* 41 */ "ccons ::= CHECK LP expr RP", /* 42 */ "ccons ::= REFERENCES nm eidlist_opt refargs", /* 43 */ "ccons ::= defer_subclause", /* 44 */ "ccons ::= COLLATE ID|STRING", /* 45 */ "generated ::= LP expr RP", /* 46 */ "generated ::= LP expr RP ID", /* 47 */ "autoinc ::=", /* 48 */ "autoinc ::= AUTOINCR", /* 49 */ "refargs ::=", /* 50 */ "refargs ::= refargs refarg", /* 51 */ "refarg ::= MATCH nm", /* 52 */ "refarg ::= ON INSERT refact", /* 53 */ "refarg ::= ON DELETE refact", /* 54 */ "refarg ::= ON UPDATE refact", /* 55 */ "refact ::= SET NULL", /* 56 */ "refact ::= SET DEFAULT", /* 57 */ "refact ::= CASCADE", /* 58 */ "refact ::= RESTRICT", /* 59 */ "refact ::= NO ACTION", /* 60 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt", /* 61 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt", /* 62 */ "init_deferred_pred_opt ::=", /* 63 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED", /* 64 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE", /* 65 */ "conslist_opt ::=", /* 66 */ "tconscomma ::= COMMA", /* 67 */ "tcons ::= CONSTRAINT nm", /* 68 */ "tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf", /* 69 */ "tcons ::= UNIQUE LP sortlist RP onconf", /* 70 */ "tcons ::= CHECK LP expr RP onconf", /* 71 */ "tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt", /* 72 */ "defer_subclause_opt ::=", /* 73 */ "onconf ::=", /* 74 */ "onconf ::= ON CONFLICT resolvetype", /* 75 */ "orconf ::=", /* 76 */ "orconf ::= OR resolvetype", /* 77 */ "resolvetype ::= IGNORE", /* 78 */ "resolvetype ::= REPLACE", /* 79 */ "cmd ::= DROP TABLE ifexists fullname", /* 80 */ "ifexists ::= IF EXISTS", /* 81 */ "ifexists ::=", /* 82 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select", /* 83 */ "cmd ::= DROP VIEW ifexists fullname", /* 84 */ "cmd ::= select", /* 85 */ "select ::= WITH wqlist selectnowith", /* 86 */ "select ::= WITH RECURSIVE wqlist selectnowith", /* 87 */ "select ::= selectnowith", /* 88 */ "selectnowith ::= selectnowith multiselect_op oneselect", /* 89 */ "multiselect_op ::= UNION", /* 90 */ "multiselect_op ::= UNION ALL", /* 91 */ "multiselect_op ::= EXCEPT|INTERSECT", /* 92 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt", /* 93 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt", /* 94 */ "values ::= VALUES LP nexprlist RP", /* 95 */ "values ::= values COMMA LP nexprlist RP", /* 96 */ "distinct ::= DISTINCT", /* 97 */ "distinct ::= ALL", /* 98 */ "distinct ::=", /* 99 */ "sclp ::=", /* 100 */ "selcollist ::= sclp scanpt expr scanpt as", /* 101 */ "selcollist ::= sclp scanpt STAR", /* 102 */ "selcollist ::= sclp scanpt nm DOT STAR", /* 103 */ "as ::= AS nm", /* 104 */ "as ::=", /* 105 */ "from ::=", /* 106 */ "from ::= FROM seltablist", /* 107 */ "stl_prefix ::= seltablist joinop", /* 108 */ "stl_prefix ::=", /* 109 */ "seltablist ::= stl_prefix nm dbnm as on_using", /* 110 */ "seltablist ::= stl_prefix nm dbnm as indexed_by on_using", /* 111 */ "seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using", /* 112 */ "seltablist ::= stl_prefix LP select RP as on_using", /* 113 */ "seltablist ::= stl_prefix LP seltablist RP as on_using", /* 114 */ "dbnm ::=", /* 115 */ "dbnm ::= DOT nm", /* 116 */ "fullname ::= nm", /* 117 */ "fullname ::= nm DOT nm", /* 118 */ "xfullname ::= nm", /* 119 */ "xfullname ::= nm DOT nm", /* 120 */ "xfullname ::= nm DOT nm AS nm", /* 121 */ "xfullname ::= nm AS nm", /* 122 */ "joinop ::= COMMA|JOIN", /* 123 */ "joinop ::= JOIN_KW JOIN", /* 124 */ "joinop ::= JOIN_KW nm JOIN", /* 125 */ "joinop ::= JOIN_KW nm nm JOIN", /* 126 */ "on_using ::= ON expr", /* 127 */ "on_using ::= USING LP idlist RP", /* 128 */ "on_using ::=", /* 129 */ "indexed_opt ::=", /* 130 */ "indexed_by ::= INDEXED BY nm", /* 131 */ "indexed_by ::= NOT INDEXED", /* 132 */ "orderby_opt ::=", /* 133 */ "orderby_opt ::= ORDER BY sortlist", /* 134 */ "sortlist ::= sortlist COMMA expr sortorder nulls", /* 135 */ "sortlist ::= expr sortorder nulls", /* 136 */ "sortorder ::= ASC", /* 137 */ "sortorder ::= DESC", /* 138 */ "sortorder ::=", /* 139 */ "nulls ::= NULLS FIRST", /* 140 */ "nulls ::= NULLS LAST", /* 141 */ "nulls ::=", /* 142 */ "groupby_opt ::=", /* 143 */ "groupby_opt ::= GROUP BY nexprlist", /* 144 */ "having_opt ::=", /* 145 */ "having_opt ::= HAVING expr", /* 146 */ "limit_opt ::=", /* 147 */ "limit_opt ::= LIMIT expr", /* 148 */ "limit_opt ::= LIMIT expr OFFSET expr", /* 149 */ "limit_opt ::= LIMIT expr COMMA expr", /* 150 */ "cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret", /* 151 */ "where_opt ::=", /* 152 */ "where_opt ::= WHERE expr", /* 153 */ "where_opt_ret ::=", /* 154 */ "where_opt_ret ::= WHERE expr", /* 155 */ "where_opt_ret ::= RETURNING selcollist", /* 156 */ "where_opt_ret ::= WHERE expr RETURNING selcollist", /* 157 */ "cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret", /* 158 */ "setlist ::= setlist COMMA nm EQ expr", /* 159 */ "setlist ::= setlist COMMA LP idlist RP EQ expr", /* 160 */ "setlist ::= nm EQ expr", /* 161 */ "setlist ::= LP idlist RP EQ expr", /* 162 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert", /* 163 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning", /* 164 */ "upsert ::=", /* 165 */ "upsert ::= RETURNING selcollist", /* 166 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert", /* 167 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert", /* 168 */ "upsert ::= ON CONFLICT DO NOTHING returning", /* 169 */ "upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning", /* 170 */ "returning ::= RETURNING selcollist", /* 171 */ "insert_cmd ::= INSERT orconf", /* 172 */ "insert_cmd ::= REPLACE", /* 173 */ "idlist_opt ::=", /* 174 */ "idlist_opt ::= LP idlist RP", /* 175 */ "idlist ::= idlist COMMA nm", /* 176 */ "idlist ::= nm", /* 177 */ "expr ::= LP expr RP", /* 178 */ "expr ::= ID|INDEXED|JOIN_KW", /* 179 */ "expr ::= nm DOT nm", /* 180 */ "expr ::= nm DOT nm DOT nm", /* 181 */ "term ::= NULL|FLOAT|BLOB", /* 182 */ "term ::= STRING", /* 183 */ "term ::= INTEGER", /* 184 */ "expr ::= VARIABLE", /* 185 */ "expr ::= expr COLLATE ID|STRING", /* 186 */ "expr ::= CAST LP expr AS typetoken RP", /* 187 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP", /* 188 */ "expr ::= ID|INDEXED|JOIN_KW LP STAR RP", /* 189 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over", /* 190 */ "expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over", /* 191 */ "term ::= CTIME_KW", /* 192 */ "expr ::= LP nexprlist COMMA expr RP", /* 193 */ "expr ::= expr AND expr", /* 194 */ "expr ::= expr OR expr", /* 195 */ "expr ::= expr LT|GT|GE|LE expr", /* 196 */ "expr ::= expr EQ|NE expr", /* 197 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr", /* 198 */ "expr ::= expr PLUS|MINUS expr", /* 199 */ "expr ::= expr STAR|SLASH|REM expr", /* 200 */ "expr ::= expr CONCAT expr", /* 201 */ "likeop ::= NOT LIKE_KW|MATCH", /* 202 */ "expr ::= expr likeop expr", /* 203 */ "expr ::= expr likeop expr ESCAPE expr", /* 204 */ "expr ::= expr ISNULL|NOTNULL", /* 205 */ "expr ::= expr NOT NULL", /* 206 */ "expr ::= expr IS expr", /* 207 */ "expr ::= expr IS NOT expr", /* 208 */ "expr ::= expr IS NOT DISTINCT FROM expr", /* 209 */ "expr ::= expr IS DISTINCT FROM expr", /* 210 */ "expr ::= NOT expr", /* 211 */ "expr ::= BITNOT expr", /* 212 */ "expr ::= PLUS|MINUS expr", /* 213 */ "expr ::= expr PTR expr", /* 214 */ "between_op ::= BETWEEN", /* 215 */ "between_op ::= NOT BETWEEN", /* 216 */ "expr ::= expr between_op expr AND expr", /* 217 */ "in_op ::= IN", /* 218 */ "in_op ::= NOT IN", /* 219 */ "expr ::= expr in_op LP exprlist RP", /* 220 */ "expr ::= LP select RP", /* 221 */ "expr ::= expr in_op LP select RP", /* 222 */ "expr ::= expr in_op nm dbnm paren_exprlist", /* 223 */ "expr ::= EXISTS LP select RP", /* 224 */ "expr ::= CASE case_operand case_exprlist case_else END", /* 225 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr", /* 226 */ "case_exprlist ::= WHEN expr THEN expr", /* 227 */ "case_else ::= ELSE expr", /* 228 */ "case_else ::=", /* 229 */ "case_operand ::=", /* 230 */ "exprlist ::=", /* 231 */ "nexprlist ::= nexprlist COMMA expr", /* 232 */ "nexprlist ::= expr", /* 233 */ "paren_exprlist ::=", /* 234 */ "paren_exprlist ::= LP exprlist RP", /* 235 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt", /* 236 */ "uniqueflag ::= UNIQUE", /* 237 */ "uniqueflag ::=", /* 238 */ "eidlist_opt ::=", /* 239 */ "eidlist_opt ::= LP eidlist RP", /* 240 */ "eidlist ::= eidlist COMMA nm collate sortorder", /* 241 */ "eidlist ::= nm collate sortorder", /* 242 */ "collate ::=", /* 243 */ "collate ::= COLLATE ID|STRING", /* 244 */ "cmd ::= DROP INDEX ifexists fullname", /* 245 */ "cmd ::= VACUUM vinto", /* 246 */ "cmd ::= VACUUM nm vinto", /* 247 */ "vinto ::= INTO expr", /* 248 */ "vinto ::=", /* 249 */ "cmd ::= PRAGMA nm dbnm", /* 250 */ "cmd ::= PRAGMA nm dbnm EQ nmnum", /* 251 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP", /* 252 */ "cmd ::= PRAGMA nm dbnm EQ minus_num", /* 253 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP", /* 254 */ "plus_num ::= PLUS INTEGER|FLOAT", /* 255 */ "minus_num ::= MINUS INTEGER|FLOAT", /* 256 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END", /* 257 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause", /* 258 */ "trigger_time ::= BEFORE|AFTER", /* 259 */ "trigger_time ::= INSTEAD OF", /* 260 */ "trigger_time ::=", /* 261 */ "trigger_event ::= DELETE|INSERT", /* 262 */ "trigger_event ::= UPDATE", /* 263 */ "trigger_event ::= UPDATE OF idlist", /* 264 */ "when_clause ::=", /* 265 */ "when_clause ::= WHEN expr", /* 266 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI", /* 267 */ "trigger_cmd_list ::= trigger_cmd SEMI", /* 268 */ "trnm ::= nm DOT nm", /* 269 */ "tridxby ::= INDEXED BY nm", /* 270 */ "tridxby ::= NOT INDEXED", /* 271 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt", /* 272 */ "trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt", /* 273 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt", /* 274 */ "trigger_cmd ::= scanpt select scanpt", /* 275 */ "expr ::= RAISE LP IGNORE RP", /* 276 */ "expr ::= RAISE LP raisetype COMMA nm RP", /* 277 */ "raisetype ::= ROLLBACK", /* 278 */ "raisetype ::= ABORT", /* 279 */ "raisetype ::= FAIL", /* 280 */ "cmd ::= DROP TRIGGER ifexists fullname", /* 281 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt", /* 282 */ "cmd ::= DETACH database_kw_opt expr", /* 283 */ "key_opt ::=", /* 284 */ "key_opt ::= KEY expr", /* 285 */ "cmd ::= REINDEX", /* 286 */ "cmd ::= REINDEX nm dbnm", /* 287 */ "cmd ::= ANALYZE", /* 288 */ "cmd ::= ANALYZE nm dbnm", /* 289 */ "cmd ::= ALTER TABLE fullname RENAME TO nm", /* 290 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist", /* 291 */ "cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm", /* 292 */ "add_column_fullname ::= fullname", /* 293 */ "cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm", /* 294 */ "cmd ::= create_vtab", /* 295 */ "cmd ::= create_vtab LP vtabarglist RP", /* 296 */ "create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm", /* 297 */ "vtabarg ::=", /* 298 */ "vtabargtoken ::= ANY", /* 299 */ "vtabargtoken ::= lp anylist RP", /* 300 */ "lp ::= LP", /* 301 */ "with ::= WITH wqlist", /* 302 */ "with ::= WITH RECURSIVE wqlist", /* 303 */ "wqas ::= AS", /* 304 */ "wqas ::= AS MATERIALIZED", /* 305 */ "wqas ::= AS NOT MATERIALIZED", /* 306 */ "wqitem ::= nm eidlist_opt wqas LP select RP", /* 307 */ "wqlist ::= wqitem", /* 308 */ "wqlist ::= wqlist COMMA wqitem", /* 309 */ "windowdefn_list ::= windowdefn_list COMMA windowdefn", /* 310 */ "windowdefn ::= nm AS LP window RP", /* 311 */ "window ::= PARTITION BY nexprlist orderby_opt frame_opt", /* 312 */ "window ::= nm PARTITION BY nexprlist orderby_opt frame_opt", /* 313 */ "window ::= ORDER BY sortlist frame_opt", /* 314 */ "window ::= nm ORDER BY sortlist frame_opt", /* 315 */ "window ::= nm frame_opt", /* 316 */ "frame_opt ::=", /* 317 */ "frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt", /* 318 */ "frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt", /* 319 */ "range_or_rows ::= RANGE|ROWS|GROUPS", /* 320 */ "frame_bound_s ::= frame_bound", /* 321 */ "frame_bound_s ::= UNBOUNDED PRECEDING", /* 322 */ "frame_bound_e ::= frame_bound", /* 323 */ "frame_bound_e ::= UNBOUNDED FOLLOWING", /* 324 */ "frame_bound ::= expr PRECEDING|FOLLOWING", /* 325 */ "frame_bound ::= CURRENT ROW", /* 326 */ "frame_exclude_opt ::=", /* 327 */ "frame_exclude_opt ::= EXCLUDE frame_exclude", /* 328 */ "frame_exclude ::= NO OTHERS", /* 329 */ "frame_exclude ::= CURRENT ROW", /* 330 */ "frame_exclude ::= GROUP|TIES", /* 331 */ "window_clause ::= WINDOW windowdefn_list", /* 332 */ "filter_over ::= filter_clause over_clause", /* 333 */ "filter_over ::= over_clause", /* 334 */ "filter_over ::= filter_clause", /* 335 */ "over_clause ::= OVER LP window RP", /* 336 */ "over_clause ::= OVER nm", /* 337 */ "filter_clause ::= FILTER LP WHERE expr RP", /* 338 */ "input ::= cmdlist", /* 339 */ "cmdlist ::= cmdlist ecmd", /* 340 */ "cmdlist ::= ecmd", /* 341 */ "ecmd ::= SEMI", /* 342 */ "ecmd ::= cmdx SEMI", /* 343 */ "ecmd ::= explain cmdx SEMI", /* 344 */ "trans_opt ::=", /* 345 */ "trans_opt ::= TRANSACTION", /* 346 */ "trans_opt ::= TRANSACTION nm", /* 347 */ "savepoint_opt ::= SAVEPOINT", /* 348 */ "savepoint_opt ::=", /* 349 */ "cmd ::= create_table create_table_args", /* 350 */ "table_option_set ::= table_option", /* 351 */ "columnlist ::= columnlist COMMA columnname carglist", /* 352 */ "columnlist ::= columnname carglist", /* 353 */ "nm ::= ID|INDEXED|JOIN_KW", /* 354 */ "nm ::= STRING", /* 355 */ "typetoken ::= typename", /* 356 */ "typename ::= ID|STRING", /* 357 */ "signed ::= plus_num", /* 358 */ "signed ::= minus_num", /* 359 */ "carglist ::= carglist ccons", /* 360 */ "carglist ::=", /* 361 */ "ccons ::= NULL onconf", /* 362 */ "ccons ::= GENERATED ALWAYS AS generated", /* 363 */ "ccons ::= AS generated", /* 364 */ "conslist_opt ::= COMMA conslist", /* 365 */ "conslist ::= conslist tconscomma tcons", /* 366 */ "conslist ::= tcons", /* 367 */ "tconscomma ::=", /* 368 */ "defer_subclause_opt ::= defer_subclause", /* 369 */ "resolvetype ::= raisetype", /* 370 */ "selectnowith ::= oneselect", /* 371 */ "oneselect ::= values", /* 372 */ "sclp ::= selcollist COMMA", /* 373 */ "as ::= ID|STRING", /* 374 */ "indexed_opt ::= indexed_by", /* 375 */ "returning ::=", /* 376 */ "expr ::= term", /* 377 */ "likeop ::= LIKE_KW|MATCH", /* 378 */ "case_operand ::= expr", /* 379 */ "exprlist ::= nexprlist", /* 380 */ "nmnum ::= plus_num", /* 381 */ "nmnum ::= nm", /* 382 */ "nmnum ::= ON", /* 383 */ "nmnum ::= DELETE", /* 384 */ "nmnum ::= DEFAULT", /* 385 */ "plus_num ::= INTEGER|FLOAT", /* 386 */ "foreach_clause ::=", /* 387 */ "foreach_clause ::= FOR EACH ROW", /* 388 */ "trnm ::= nm", /* 389 */ "tridxby ::=", /* 390 */ "database_kw_opt ::= DATABASE", /* 391 */ "database_kw_opt ::=", /* 392 */ "kwcolumn_opt ::=", /* 393 */ "kwcolumn_opt ::= COLUMNKW", /* 394 */ "vtabarglist ::= vtabarg", /* 395 */ "vtabarglist ::= vtabarglist COMMA vtabarg", /* 396 */ "vtabarg ::= vtabarg vtabargtoken", /* 397 */ "anylist ::=", /* 398 */ "anylist ::= anylist LP anylist RP", /* 399 */ "anylist ::= anylist ANY", /* 400 */ "with ::=", /* 401 */ "windowdefn_list ::= windowdefn", /* 402 */ "window ::= frame_opt", }; #endif /* NDEBUG */ #if YYSTACKDEPTH<=0 /* ** Try to increase the size of the parser stack. Return the number ** of errors. Return 0 on success. */ static int yyGrowStack(yyParser *p){ int newSize; int idx; yyStackEntry *pNew; newSize = p->yystksz*2 + 100; idx = p->yytos ? (int)(p->yytos - p->yystack) : 0; if( p->yystack==&p->yystk0 ){ pNew = malloc(newSize*sizeof(pNew[0])); if( pNew ) pNew[0] = p->yystk0; }else{ pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); } if( pNew ){ p->yystack = pNew; p->yytos = &p->yystack[idx]; #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n", yyTracePrompt, p->yystksz, newSize); } #endif p->yystksz = newSize; } return pNew==0; } #endif /* Datatype of the argument to the memory allocated passed as the ** second argument to sqlite3ParserAlloc() below. This can be changed by ** putting an appropriate #define in the %include section of the input ** grammar. */ #ifndef YYMALLOCARGTYPE # define YYMALLOCARGTYPE size_t #endif /* Initialize a new parser that has already been allocated. */ SQLITE_PRIVATE void sqlite3ParserInit(void *yypRawParser sqlite3ParserCTX_PDECL){ yyParser *yypParser = (yyParser*)yypRawParser; sqlite3ParserCTX_STORE #ifdef YYTRACKMAXSTACKDEPTH yypParser->yyhwm = 0; #endif #if YYSTACKDEPTH<=0 yypParser->yytos = NULL; yypParser->yystack = NULL; yypParser->yystksz = 0; if( yyGrowStack(yypParser) ){ yypParser->yystack = &yypParser->yystk0; yypParser->yystksz = 1; } #endif #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif yypParser->yytos = yypParser->yystack; yypParser->yystack[0].stateno = 0; yypParser->yystack[0].major = 0; #if YYSTACKDEPTH>0 yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1]; #endif } #ifndef sqlite3Parser_ENGINEALWAYSONSTACK /* ** This function allocates a new parser. ** The only argument is a pointer to a function which works like ** malloc. ** ** Inputs: ** A pointer to the function used to allocate memory. ** ** Outputs: ** A pointer to a parser. This pointer is used in subsequent calls ** to sqlite3Parser and sqlite3ParserFree. */ SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE) sqlite3ParserCTX_PDECL){ yyParser *yypParser; yypParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) ); if( yypParser ){ sqlite3ParserCTX_STORE sqlite3ParserInit(yypParser sqlite3ParserCTX_PARAM); } return (void*)yypParser; } #endif /* sqlite3Parser_ENGINEALWAYSONSTACK */ /* The following function deletes the "minor type" or semantic value ** associated with a symbol. The symbol can be either a terminal ** or nonterminal. "yymajor" is the symbol code, and "yypminor" is ** a pointer to the value to be deleted. The code used to do the ** deletions is derived from the %destructor and/or %token_destructor ** directives of the input grammar. */ static void yy_destructor( yyParser *yypParser, /* The parser */ YYCODETYPE yymajor, /* Type code for object to destroy */ YYMINORTYPE *yypminor /* The object to be destroyed */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH switch( yymajor ){ /* Here is inserted the actions which take place when a ** terminal or non-terminal is destroyed. This can happen ** when the symbol is popped from the stack during a ** reduce or during error processing or when a parser is ** being destroyed before it is finished parsing. ** ** Note: during a reduce, the only symbols destroyed are those ** which appear on the RHS of the rule, but which are *not* used ** inside the C code. */ /********* Begin destructor definitions ***************************************/ case 204: /* select */ case 239: /* selectnowith */ case 240: /* oneselect */ case 252: /* values */ { sqlite3SelectDelete(pParse->db, (yypminor->yy47)); } break; case 216: /* term */ case 217: /* expr */ case 246: /* where_opt */ case 248: /* having_opt */ case 267: /* where_opt_ret */ case 278: /* case_operand */ case 280: /* case_else */ case 283: /* vinto */ case 290: /* when_clause */ case 295: /* key_opt */ case 311: /* filter_clause */ { sqlite3ExprDelete(pParse->db, (yypminor->yy528)); } break; case 221: /* eidlist_opt */ case 231: /* sortlist */ case 232: /* eidlist */ case 244: /* selcollist */ case 247: /* groupby_opt */ case 249: /* orderby_opt */ case 253: /* nexprlist */ case 254: /* sclp */ case 261: /* exprlist */ case 268: /* setlist */ case 277: /* paren_exprlist */ case 279: /* case_exprlist */ case 310: /* part_opt */ { sqlite3ExprListDelete(pParse->db, (yypminor->yy322)); } break; case 238: /* fullname */ case 245: /* from */ case 256: /* seltablist */ case 257: /* stl_prefix */ case 262: /* xfullname */ { sqlite3SrcListDelete(pParse->db, (yypminor->yy131)); } break; case 241: /* wqlist */ { sqlite3WithDelete(pParse->db, (yypminor->yy521)); } break; case 251: /* window_clause */ case 306: /* windowdefn_list */ { sqlite3WindowListDelete(pParse->db, (yypminor->yy41)); } break; case 263: /* idlist */ case 270: /* idlist_opt */ { sqlite3IdListDelete(pParse->db, (yypminor->yy254)); } break; case 273: /* filter_over */ case 307: /* windowdefn */ case 308: /* window */ case 309: /* frame_opt */ case 312: /* over_clause */ { sqlite3WindowDelete(pParse->db, (yypminor->yy41)); } break; case 286: /* trigger_cmd_list */ case 291: /* trigger_cmd */ { sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy33)); } break; case 288: /* trigger_event */ { sqlite3IdListDelete(pParse->db, (yypminor->yy180).b); } break; case 314: /* frame_bound */ case 315: /* frame_bound_s */ case 316: /* frame_bound_e */ { sqlite3ExprDelete(pParse->db, (yypminor->yy595).pExpr); } break; /********* End destructor definitions *****************************************/ default: break; /* If no destructor action specified: do nothing */ } } /* ** Pop the parser's stack once. ** ** If there is a destructor routine associated with the token which ** is popped from the stack, then call it. */ static void yy_pop_parser_stack(yyParser *pParser){ yyStackEntry *yytos; assert( pParser->yytos!=0 ); assert( pParser->yytos > pParser->yystack ); yytos = pParser->yytos--; #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sPopping %s\n", yyTracePrompt, yyTokenName[yytos->major]); } #endif yy_destructor(pParser, yytos->major, &yytos->minor); } /* ** Clear all secondary memory allocations from the parser */ SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){ yyParser *pParser = (yyParser*)p; while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser); #if YYSTACKDEPTH<=0 if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack); #endif } #ifndef sqlite3Parser_ENGINEALWAYSONSTACK /* ** Deallocate and destroy a parser. Destructors are called for ** all stack elements before shutting the parser down. ** ** If the YYPARSEFREENEVERNULL macro exists (for example because it ** is defined in a %include section of the input grammar) then it is ** assumed that the input pointer is never NULL. */ SQLITE_PRIVATE void sqlite3ParserFree( void *p, /* The parser to be deleted */ void (*freeProc)(void*) /* Function used to reclaim memory */ ){ #ifndef YYPARSEFREENEVERNULL if( p==0 ) return; #endif sqlite3ParserFinalize(p); (*freeProc)(p); } #endif /* sqlite3Parser_ENGINEALWAYSONSTACK */ /* ** Return the peak depth of the stack for a parser. */ #ifdef YYTRACKMAXSTACKDEPTH SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){ yyParser *pParser = (yyParser*)p; return pParser->yyhwm; } #endif /* This array of booleans keeps track of the parser statement ** coverage. The element yycoverage[X][Y] is set when the parser ** is in state X and has a lookahead token Y. In a well-tested ** systems, every element of this matrix should end up being set. */ #if defined(YYCOVERAGE) static unsigned char yycoverage[YYNSTATE][YYNTOKEN]; #endif /* ** Write into out a description of every state/lookahead combination that ** ** (1) has not been used by the parser, and ** (2) is not a syntax error. ** ** Return the number of missed state/lookahead combinations. */ #if defined(YYCOVERAGE) SQLITE_PRIVATE int sqlite3ParserCoverage(FILE *out){ int stateno, iLookAhead, i; int nMissed = 0; for(stateno=0; statenoYY_MAX_SHIFT ) return stateno; assert( stateno <= YY_SHIFT_COUNT ); #if defined(YYCOVERAGE) yycoverage[stateno][iLookAhead] = 1; #endif do{ i = yy_shift_ofst[stateno]; assert( i>=0 ); assert( i<=YY_ACTTAB_COUNT ); assert( i+YYNTOKEN<=(int)YY_NLOOKAHEAD ); assert( iLookAhead!=YYNOCODE ); assert( iLookAhead < YYNTOKEN ); i += iLookAhead; assert( i<(int)YY_NLOOKAHEAD ); if( yy_lookahead[i]!=iLookAhead ){ #ifdef YYFALLBACK YYCODETYPE iFallback; /* Fallback token */ assert( iLookAhead %s\n", yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); } #endif assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */ iLookAhead = iFallback; continue; } #endif #ifdef YYWILDCARD { int j = i - iLookAhead + YYWILDCARD; assert( j<(int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])) ); if( yy_lookahead[j]==YYWILDCARD && iLookAhead>0 ){ #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n", yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); } #endif /* NDEBUG */ return yy_action[j]; } } #endif /* YYWILDCARD */ return yy_default[stateno]; }else{ assert( i>=0 && i<(int)(sizeof(yy_action)/sizeof(yy_action[0])) ); return yy_action[i]; } }while(1); } /* ** Find the appropriate action for a parser given the non-terminal ** look-ahead token iLookAhead. */ static YYACTIONTYPE yy_find_reduce_action( YYACTIONTYPE stateno, /* Current state number */ YYCODETYPE iLookAhead /* The look-ahead token */ ){ int i; #ifdef YYERRORSYMBOL if( stateno>YY_REDUCE_COUNT ){ return yy_default[stateno]; } #else assert( stateno<=YY_REDUCE_COUNT ); #endif i = yy_reduce_ofst[stateno]; assert( iLookAhead!=YYNOCODE ); i += iLookAhead; #ifdef YYERRORSYMBOL if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ return yy_default[stateno]; } #else assert( i>=0 && iyytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will execute if the parser ** stack every overflows */ /******** Begin %stack_overflow code ******************************************/ sqlite3ErrorMsg(pParse, "parser stack overflow"); /******** End %stack_overflow code ********************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument var */ sqlite3ParserCTX_STORE } /* ** Print tracing information for a SHIFT action */ #ifndef NDEBUG static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){ if( yyTraceFILE ){ if( yyNewStateyytos->major], yyNewState); }else{ fprintf(yyTraceFILE,"%s%s '%s', pending reduce %d\n", yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major], yyNewState - YY_MIN_REDUCE); } } } #else # define yyTraceShift(X,Y,Z) #endif /* ** Perform a shift action. */ static void yy_shift( yyParser *yypParser, /* The parser to be shifted */ YYACTIONTYPE yyNewState, /* The new state to shift in */ YYCODETYPE yyMajor, /* The major token to shift in */ sqlite3ParserTOKENTYPE yyMinor /* The minor token to shift in */ ){ yyStackEntry *yytos; yypParser->yytos++; #ifdef YYTRACKMAXSTACKDEPTH if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) ); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>yypParser->yystackEnd ){ yypParser->yytos--; yyStackOverflow(yypParser); return; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){ if( yyGrowStack(yypParser) ){ yypParser->yytos--; yyStackOverflow(yypParser); return; } } #endif if( yyNewState > YY_MAX_SHIFT ){ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE; } yytos = yypParser->yytos; yytos->stateno = yyNewState; yytos->major = yyMajor; yytos->minor.yy0 = yyMinor; yyTraceShift(yypParser, yyNewState, "Shift"); } /* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side ** of that rule */ static const YYCODETYPE yyRuleInfoLhs[] = { 189, /* (0) explain ::= EXPLAIN */ 189, /* (1) explain ::= EXPLAIN QUERY PLAN */ 188, /* (2) cmdx ::= cmd */ 190, /* (3) cmd ::= BEGIN transtype trans_opt */ 191, /* (4) transtype ::= */ 191, /* (5) transtype ::= DEFERRED */ 191, /* (6) transtype ::= IMMEDIATE */ 191, /* (7) transtype ::= EXCLUSIVE */ 190, /* (8) cmd ::= COMMIT|END trans_opt */ 190, /* (9) cmd ::= ROLLBACK trans_opt */ 190, /* (10) cmd ::= SAVEPOINT nm */ 190, /* (11) cmd ::= RELEASE savepoint_opt nm */ 190, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ 195, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */ 197, /* (14) createkw ::= CREATE */ 199, /* (15) ifnotexists ::= */ 199, /* (16) ifnotexists ::= IF NOT EXISTS */ 198, /* (17) temp ::= TEMP */ 198, /* (18) temp ::= */ 196, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */ 196, /* (20) create_table_args ::= AS select */ 203, /* (21) table_option_set ::= */ 203, /* (22) table_option_set ::= table_option_set COMMA table_option */ 205, /* (23) table_option ::= WITHOUT nm */ 205, /* (24) table_option ::= nm */ 206, /* (25) columnname ::= nm typetoken */ 208, /* (26) typetoken ::= */ 208, /* (27) typetoken ::= typename LP signed RP */ 208, /* (28) typetoken ::= typename LP signed COMMA signed RP */ 209, /* (29) typename ::= typename ID|STRING */ 213, /* (30) scanpt ::= */ 214, /* (31) scantok ::= */ 215, /* (32) ccons ::= CONSTRAINT nm */ 215, /* (33) ccons ::= DEFAULT scantok term */ 215, /* (34) ccons ::= DEFAULT LP expr RP */ 215, /* (35) ccons ::= DEFAULT PLUS scantok term */ 215, /* (36) ccons ::= DEFAULT MINUS scantok term */ 215, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */ 215, /* (38) ccons ::= NOT NULL onconf */ 215, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */ 215, /* (40) ccons ::= UNIQUE onconf */ 215, /* (41) ccons ::= CHECK LP expr RP */ 215, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */ 215, /* (43) ccons ::= defer_subclause */ 215, /* (44) ccons ::= COLLATE ID|STRING */ 224, /* (45) generated ::= LP expr RP */ 224, /* (46) generated ::= LP expr RP ID */ 220, /* (47) autoinc ::= */ 220, /* (48) autoinc ::= AUTOINCR */ 222, /* (49) refargs ::= */ 222, /* (50) refargs ::= refargs refarg */ 225, /* (51) refarg ::= MATCH nm */ 225, /* (52) refarg ::= ON INSERT refact */ 225, /* (53) refarg ::= ON DELETE refact */ 225, /* (54) refarg ::= ON UPDATE refact */ 226, /* (55) refact ::= SET NULL */ 226, /* (56) refact ::= SET DEFAULT */ 226, /* (57) refact ::= CASCADE */ 226, /* (58) refact ::= RESTRICT */ 226, /* (59) refact ::= NO ACTION */ 223, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ 223, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ 227, /* (62) init_deferred_pred_opt ::= */ 227, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */ 227, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ 202, /* (65) conslist_opt ::= */ 229, /* (66) tconscomma ::= COMMA */ 230, /* (67) tcons ::= CONSTRAINT nm */ 230, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */ 230, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */ 230, /* (70) tcons ::= CHECK LP expr RP onconf */ 230, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */ 233, /* (72) defer_subclause_opt ::= */ 218, /* (73) onconf ::= */ 218, /* (74) onconf ::= ON CONFLICT resolvetype */ 234, /* (75) orconf ::= */ 234, /* (76) orconf ::= OR resolvetype */ 235, /* (77) resolvetype ::= IGNORE */ 235, /* (78) resolvetype ::= REPLACE */ 190, /* (79) cmd ::= DROP TABLE ifexists fullname */ 237, /* (80) ifexists ::= IF EXISTS */ 237, /* (81) ifexists ::= */ 190, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */ 190, /* (83) cmd ::= DROP VIEW ifexists fullname */ 190, /* (84) cmd ::= select */ 204, /* (85) select ::= WITH wqlist selectnowith */ 204, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */ 204, /* (87) select ::= selectnowith */ 239, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */ 242, /* (89) multiselect_op ::= UNION */ 242, /* (90) multiselect_op ::= UNION ALL */ 242, /* (91) multiselect_op ::= EXCEPT|INTERSECT */ 240, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ 240, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */ 252, /* (94) values ::= VALUES LP nexprlist RP */ 252, /* (95) values ::= values COMMA LP nexprlist RP */ 243, /* (96) distinct ::= DISTINCT */ 243, /* (97) distinct ::= ALL */ 243, /* (98) distinct ::= */ 254, /* (99) sclp ::= */ 244, /* (100) selcollist ::= sclp scanpt expr scanpt as */ 244, /* (101) selcollist ::= sclp scanpt STAR */ 244, /* (102) selcollist ::= sclp scanpt nm DOT STAR */ 255, /* (103) as ::= AS nm */ 255, /* (104) as ::= */ 245, /* (105) from ::= */ 245, /* (106) from ::= FROM seltablist */ 257, /* (107) stl_prefix ::= seltablist joinop */ 257, /* (108) stl_prefix ::= */ 256, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */ 256, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */ 256, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */ 256, /* (112) seltablist ::= stl_prefix LP select RP as on_using */ 256, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */ 200, /* (114) dbnm ::= */ 200, /* (115) dbnm ::= DOT nm */ 238, /* (116) fullname ::= nm */ 238, /* (117) fullname ::= nm DOT nm */ 262, /* (118) xfullname ::= nm */ 262, /* (119) xfullname ::= nm DOT nm */ 262, /* (120) xfullname ::= nm DOT nm AS nm */ 262, /* (121) xfullname ::= nm AS nm */ 258, /* (122) joinop ::= COMMA|JOIN */ 258, /* (123) joinop ::= JOIN_KW JOIN */ 258, /* (124) joinop ::= JOIN_KW nm JOIN */ 258, /* (125) joinop ::= JOIN_KW nm nm JOIN */ 259, /* (126) on_using ::= ON expr */ 259, /* (127) on_using ::= USING LP idlist RP */ 259, /* (128) on_using ::= */ 264, /* (129) indexed_opt ::= */ 260, /* (130) indexed_by ::= INDEXED BY nm */ 260, /* (131) indexed_by ::= NOT INDEXED */ 249, /* (132) orderby_opt ::= */ 249, /* (133) orderby_opt ::= ORDER BY sortlist */ 231, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */ 231, /* (135) sortlist ::= expr sortorder nulls */ 219, /* (136) sortorder ::= ASC */ 219, /* (137) sortorder ::= DESC */ 219, /* (138) sortorder ::= */ 265, /* (139) nulls ::= NULLS FIRST */ 265, /* (140) nulls ::= NULLS LAST */ 265, /* (141) nulls ::= */ 247, /* (142) groupby_opt ::= */ 247, /* (143) groupby_opt ::= GROUP BY nexprlist */ 248, /* (144) having_opt ::= */ 248, /* (145) having_opt ::= HAVING expr */ 250, /* (146) limit_opt ::= */ 250, /* (147) limit_opt ::= LIMIT expr */ 250, /* (148) limit_opt ::= LIMIT expr OFFSET expr */ 250, /* (149) limit_opt ::= LIMIT expr COMMA expr */ 190, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */ 246, /* (151) where_opt ::= */ 246, /* (152) where_opt ::= WHERE expr */ 267, /* (153) where_opt_ret ::= */ 267, /* (154) where_opt_ret ::= WHERE expr */ 267, /* (155) where_opt_ret ::= RETURNING selcollist */ 267, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */ 190, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */ 268, /* (158) setlist ::= setlist COMMA nm EQ expr */ 268, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */ 268, /* (160) setlist ::= nm EQ expr */ 268, /* (161) setlist ::= LP idlist RP EQ expr */ 190, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */ 190, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */ 271, /* (164) upsert ::= */ 271, /* (165) upsert ::= RETURNING selcollist */ 271, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */ 271, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */ 271, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */ 271, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */ 272, /* (170) returning ::= RETURNING selcollist */ 269, /* (171) insert_cmd ::= INSERT orconf */ 269, /* (172) insert_cmd ::= REPLACE */ 270, /* (173) idlist_opt ::= */ 270, /* (174) idlist_opt ::= LP idlist RP */ 263, /* (175) idlist ::= idlist COMMA nm */ 263, /* (176) idlist ::= nm */ 217, /* (177) expr ::= LP expr RP */ 217, /* (178) expr ::= ID|INDEXED|JOIN_KW */ 217, /* (179) expr ::= nm DOT nm */ 217, /* (180) expr ::= nm DOT nm DOT nm */ 216, /* (181) term ::= NULL|FLOAT|BLOB */ 216, /* (182) term ::= STRING */ 216, /* (183) term ::= INTEGER */ 217, /* (184) expr ::= VARIABLE */ 217, /* (185) expr ::= expr COLLATE ID|STRING */ 217, /* (186) expr ::= CAST LP expr AS typetoken RP */ 217, /* (187) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */ 217, /* (188) expr ::= ID|INDEXED|JOIN_KW LP STAR RP */ 217, /* (189) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */ 217, /* (190) expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */ 216, /* (191) term ::= CTIME_KW */ 217, /* (192) expr ::= LP nexprlist COMMA expr RP */ 217, /* (193) expr ::= expr AND expr */ 217, /* (194) expr ::= expr OR expr */ 217, /* (195) expr ::= expr LT|GT|GE|LE expr */ 217, /* (196) expr ::= expr EQ|NE expr */ 217, /* (197) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ 217, /* (198) expr ::= expr PLUS|MINUS expr */ 217, /* (199) expr ::= expr STAR|SLASH|REM expr */ 217, /* (200) expr ::= expr CONCAT expr */ 274, /* (201) likeop ::= NOT LIKE_KW|MATCH */ 217, /* (202) expr ::= expr likeop expr */ 217, /* (203) expr ::= expr likeop expr ESCAPE expr */ 217, /* (204) expr ::= expr ISNULL|NOTNULL */ 217, /* (205) expr ::= expr NOT NULL */ 217, /* (206) expr ::= expr IS expr */ 217, /* (207) expr ::= expr IS NOT expr */ 217, /* (208) expr ::= expr IS NOT DISTINCT FROM expr */ 217, /* (209) expr ::= expr IS DISTINCT FROM expr */ 217, /* (210) expr ::= NOT expr */ 217, /* (211) expr ::= BITNOT expr */ 217, /* (212) expr ::= PLUS|MINUS expr */ 217, /* (213) expr ::= expr PTR expr */ 275, /* (214) between_op ::= BETWEEN */ 275, /* (215) between_op ::= NOT BETWEEN */ 217, /* (216) expr ::= expr between_op expr AND expr */ 276, /* (217) in_op ::= IN */ 276, /* (218) in_op ::= NOT IN */ 217, /* (219) expr ::= expr in_op LP exprlist RP */ 217, /* (220) expr ::= LP select RP */ 217, /* (221) expr ::= expr in_op LP select RP */ 217, /* (222) expr ::= expr in_op nm dbnm paren_exprlist */ 217, /* (223) expr ::= EXISTS LP select RP */ 217, /* (224) expr ::= CASE case_operand case_exprlist case_else END */ 279, /* (225) case_exprlist ::= case_exprlist WHEN expr THEN expr */ 279, /* (226) case_exprlist ::= WHEN expr THEN expr */ 280, /* (227) case_else ::= ELSE expr */ 280, /* (228) case_else ::= */ 278, /* (229) case_operand ::= */ 261, /* (230) exprlist ::= */ 253, /* (231) nexprlist ::= nexprlist COMMA expr */ 253, /* (232) nexprlist ::= expr */ 277, /* (233) paren_exprlist ::= */ 277, /* (234) paren_exprlist ::= LP exprlist RP */ 190, /* (235) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */ 281, /* (236) uniqueflag ::= UNIQUE */ 281, /* (237) uniqueflag ::= */ 221, /* (238) eidlist_opt ::= */ 221, /* (239) eidlist_opt ::= LP eidlist RP */ 232, /* (240) eidlist ::= eidlist COMMA nm collate sortorder */ 232, /* (241) eidlist ::= nm collate sortorder */ 282, /* (242) collate ::= */ 282, /* (243) collate ::= COLLATE ID|STRING */ 190, /* (244) cmd ::= DROP INDEX ifexists fullname */ 190, /* (245) cmd ::= VACUUM vinto */ 190, /* (246) cmd ::= VACUUM nm vinto */ 283, /* (247) vinto ::= INTO expr */ 283, /* (248) vinto ::= */ 190, /* (249) cmd ::= PRAGMA nm dbnm */ 190, /* (250) cmd ::= PRAGMA nm dbnm EQ nmnum */ 190, /* (251) cmd ::= PRAGMA nm dbnm LP nmnum RP */ 190, /* (252) cmd ::= PRAGMA nm dbnm EQ minus_num */ 190, /* (253) cmd ::= PRAGMA nm dbnm LP minus_num RP */ 211, /* (254) plus_num ::= PLUS INTEGER|FLOAT */ 212, /* (255) minus_num ::= MINUS INTEGER|FLOAT */ 190, /* (256) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ 285, /* (257) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ 287, /* (258) trigger_time ::= BEFORE|AFTER */ 287, /* (259) trigger_time ::= INSTEAD OF */ 287, /* (260) trigger_time ::= */ 288, /* (261) trigger_event ::= DELETE|INSERT */ 288, /* (262) trigger_event ::= UPDATE */ 288, /* (263) trigger_event ::= UPDATE OF idlist */ 290, /* (264) when_clause ::= */ 290, /* (265) when_clause ::= WHEN expr */ 286, /* (266) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ 286, /* (267) trigger_cmd_list ::= trigger_cmd SEMI */ 292, /* (268) trnm ::= nm DOT nm */ 293, /* (269) tridxby ::= INDEXED BY nm */ 293, /* (270) tridxby ::= NOT INDEXED */ 291, /* (271) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */ 291, /* (272) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */ 291, /* (273) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */ 291, /* (274) trigger_cmd ::= scanpt select scanpt */ 217, /* (275) expr ::= RAISE LP IGNORE RP */ 217, /* (276) expr ::= RAISE LP raisetype COMMA nm RP */ 236, /* (277) raisetype ::= ROLLBACK */ 236, /* (278) raisetype ::= ABORT */ 236, /* (279) raisetype ::= FAIL */ 190, /* (280) cmd ::= DROP TRIGGER ifexists fullname */ 190, /* (281) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ 190, /* (282) cmd ::= DETACH database_kw_opt expr */ 295, /* (283) key_opt ::= */ 295, /* (284) key_opt ::= KEY expr */ 190, /* (285) cmd ::= REINDEX */ 190, /* (286) cmd ::= REINDEX nm dbnm */ 190, /* (287) cmd ::= ANALYZE */ 190, /* (288) cmd ::= ANALYZE nm dbnm */ 190, /* (289) cmd ::= ALTER TABLE fullname RENAME TO nm */ 190, /* (290) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */ 190, /* (291) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */ 296, /* (292) add_column_fullname ::= fullname */ 190, /* (293) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */ 190, /* (294) cmd ::= create_vtab */ 190, /* (295) cmd ::= create_vtab LP vtabarglist RP */ 298, /* (296) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ 300, /* (297) vtabarg ::= */ 301, /* (298) vtabargtoken ::= ANY */ 301, /* (299) vtabargtoken ::= lp anylist RP */ 302, /* (300) lp ::= LP */ 266, /* (301) with ::= WITH wqlist */ 266, /* (302) with ::= WITH RECURSIVE wqlist */ 305, /* (303) wqas ::= AS */ 305, /* (304) wqas ::= AS MATERIALIZED */ 305, /* (305) wqas ::= AS NOT MATERIALIZED */ 304, /* (306) wqitem ::= nm eidlist_opt wqas LP select RP */ 241, /* (307) wqlist ::= wqitem */ 241, /* (308) wqlist ::= wqlist COMMA wqitem */ 306, /* (309) windowdefn_list ::= windowdefn_list COMMA windowdefn */ 307, /* (310) windowdefn ::= nm AS LP window RP */ 308, /* (311) window ::= PARTITION BY nexprlist orderby_opt frame_opt */ 308, /* (312) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ 308, /* (313) window ::= ORDER BY sortlist frame_opt */ 308, /* (314) window ::= nm ORDER BY sortlist frame_opt */ 308, /* (315) window ::= nm frame_opt */ 309, /* (316) frame_opt ::= */ 309, /* (317) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ 309, /* (318) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ 313, /* (319) range_or_rows ::= RANGE|ROWS|GROUPS */ 315, /* (320) frame_bound_s ::= frame_bound */ 315, /* (321) frame_bound_s ::= UNBOUNDED PRECEDING */ 316, /* (322) frame_bound_e ::= frame_bound */ 316, /* (323) frame_bound_e ::= UNBOUNDED FOLLOWING */ 314, /* (324) frame_bound ::= expr PRECEDING|FOLLOWING */ 314, /* (325) frame_bound ::= CURRENT ROW */ 317, /* (326) frame_exclude_opt ::= */ 317, /* (327) frame_exclude_opt ::= EXCLUDE frame_exclude */ 318, /* (328) frame_exclude ::= NO OTHERS */ 318, /* (329) frame_exclude ::= CURRENT ROW */ 318, /* (330) frame_exclude ::= GROUP|TIES */ 251, /* (331) window_clause ::= WINDOW windowdefn_list */ 273, /* (332) filter_over ::= filter_clause over_clause */ 273, /* (333) filter_over ::= over_clause */ 273, /* (334) filter_over ::= filter_clause */ 312, /* (335) over_clause ::= OVER LP window RP */ 312, /* (336) over_clause ::= OVER nm */ 311, /* (337) filter_clause ::= FILTER LP WHERE expr RP */ 185, /* (338) input ::= cmdlist */ 186, /* (339) cmdlist ::= cmdlist ecmd */ 186, /* (340) cmdlist ::= ecmd */ 187, /* (341) ecmd ::= SEMI */ 187, /* (342) ecmd ::= cmdx SEMI */ 187, /* (343) ecmd ::= explain cmdx SEMI */ 192, /* (344) trans_opt ::= */ 192, /* (345) trans_opt ::= TRANSACTION */ 192, /* (346) trans_opt ::= TRANSACTION nm */ 194, /* (347) savepoint_opt ::= SAVEPOINT */ 194, /* (348) savepoint_opt ::= */ 190, /* (349) cmd ::= create_table create_table_args */ 203, /* (350) table_option_set ::= table_option */ 201, /* (351) columnlist ::= columnlist COMMA columnname carglist */ 201, /* (352) columnlist ::= columnname carglist */ 193, /* (353) nm ::= ID|INDEXED|JOIN_KW */ 193, /* (354) nm ::= STRING */ 208, /* (355) typetoken ::= typename */ 209, /* (356) typename ::= ID|STRING */ 210, /* (357) signed ::= plus_num */ 210, /* (358) signed ::= minus_num */ 207, /* (359) carglist ::= carglist ccons */ 207, /* (360) carglist ::= */ 215, /* (361) ccons ::= NULL onconf */ 215, /* (362) ccons ::= GENERATED ALWAYS AS generated */ 215, /* (363) ccons ::= AS generated */ 202, /* (364) conslist_opt ::= COMMA conslist */ 228, /* (365) conslist ::= conslist tconscomma tcons */ 228, /* (366) conslist ::= tcons */ 229, /* (367) tconscomma ::= */ 233, /* (368) defer_subclause_opt ::= defer_subclause */ 235, /* (369) resolvetype ::= raisetype */ 239, /* (370) selectnowith ::= oneselect */ 240, /* (371) oneselect ::= values */ 254, /* (372) sclp ::= selcollist COMMA */ 255, /* (373) as ::= ID|STRING */ 264, /* (374) indexed_opt ::= indexed_by */ 272, /* (375) returning ::= */ 217, /* (376) expr ::= term */ 274, /* (377) likeop ::= LIKE_KW|MATCH */ 278, /* (378) case_operand ::= expr */ 261, /* (379) exprlist ::= nexprlist */ 284, /* (380) nmnum ::= plus_num */ 284, /* (381) nmnum ::= nm */ 284, /* (382) nmnum ::= ON */ 284, /* (383) nmnum ::= DELETE */ 284, /* (384) nmnum ::= DEFAULT */ 211, /* (385) plus_num ::= INTEGER|FLOAT */ 289, /* (386) foreach_clause ::= */ 289, /* (387) foreach_clause ::= FOR EACH ROW */ 292, /* (388) trnm ::= nm */ 293, /* (389) tridxby ::= */ 294, /* (390) database_kw_opt ::= DATABASE */ 294, /* (391) database_kw_opt ::= */ 297, /* (392) kwcolumn_opt ::= */ 297, /* (393) kwcolumn_opt ::= COLUMNKW */ 299, /* (394) vtabarglist ::= vtabarg */ 299, /* (395) vtabarglist ::= vtabarglist COMMA vtabarg */ 300, /* (396) vtabarg ::= vtabarg vtabargtoken */ 303, /* (397) anylist ::= */ 303, /* (398) anylist ::= anylist LP anylist RP */ 303, /* (399) anylist ::= anylist ANY */ 266, /* (400) with ::= */ 306, /* (401) windowdefn_list ::= windowdefn */ 308, /* (402) window ::= frame_opt */ }; /* For rule J, yyRuleInfoNRhs[J] contains the negative of the number ** of symbols on the right-hand side of that rule. */ static const signed char yyRuleInfoNRhs[] = { -1, /* (0) explain ::= EXPLAIN */ -3, /* (1) explain ::= EXPLAIN QUERY PLAN */ -1, /* (2) cmdx ::= cmd */ -3, /* (3) cmd ::= BEGIN transtype trans_opt */ 0, /* (4) transtype ::= */ -1, /* (5) transtype ::= DEFERRED */ -1, /* (6) transtype ::= IMMEDIATE */ -1, /* (7) transtype ::= EXCLUSIVE */ -2, /* (8) cmd ::= COMMIT|END trans_opt */ -2, /* (9) cmd ::= ROLLBACK trans_opt */ -2, /* (10) cmd ::= SAVEPOINT nm */ -3, /* (11) cmd ::= RELEASE savepoint_opt nm */ -5, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ -6, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */ -1, /* (14) createkw ::= CREATE */ 0, /* (15) ifnotexists ::= */ -3, /* (16) ifnotexists ::= IF NOT EXISTS */ -1, /* (17) temp ::= TEMP */ 0, /* (18) temp ::= */ -5, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */ -2, /* (20) create_table_args ::= AS select */ 0, /* (21) table_option_set ::= */ -3, /* (22) table_option_set ::= table_option_set COMMA table_option */ -2, /* (23) table_option ::= WITHOUT nm */ -1, /* (24) table_option ::= nm */ -2, /* (25) columnname ::= nm typetoken */ 0, /* (26) typetoken ::= */ -4, /* (27) typetoken ::= typename LP signed RP */ -6, /* (28) typetoken ::= typename LP signed COMMA signed RP */ -2, /* (29) typename ::= typename ID|STRING */ 0, /* (30) scanpt ::= */ 0, /* (31) scantok ::= */ -2, /* (32) ccons ::= CONSTRAINT nm */ -3, /* (33) ccons ::= DEFAULT scantok term */ -4, /* (34) ccons ::= DEFAULT LP expr RP */ -4, /* (35) ccons ::= DEFAULT PLUS scantok term */ -4, /* (36) ccons ::= DEFAULT MINUS scantok term */ -3, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */ -3, /* (38) ccons ::= NOT NULL onconf */ -5, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */ -2, /* (40) ccons ::= UNIQUE onconf */ -4, /* (41) ccons ::= CHECK LP expr RP */ -4, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */ -1, /* (43) ccons ::= defer_subclause */ -2, /* (44) ccons ::= COLLATE ID|STRING */ -3, /* (45) generated ::= LP expr RP */ -4, /* (46) generated ::= LP expr RP ID */ 0, /* (47) autoinc ::= */ -1, /* (48) autoinc ::= AUTOINCR */ 0, /* (49) refargs ::= */ -2, /* (50) refargs ::= refargs refarg */ -2, /* (51) refarg ::= MATCH nm */ -3, /* (52) refarg ::= ON INSERT refact */ -3, /* (53) refarg ::= ON DELETE refact */ -3, /* (54) refarg ::= ON UPDATE refact */ -2, /* (55) refact ::= SET NULL */ -2, /* (56) refact ::= SET DEFAULT */ -1, /* (57) refact ::= CASCADE */ -1, /* (58) refact ::= RESTRICT */ -2, /* (59) refact ::= NO ACTION */ -3, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ -2, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ 0, /* (62) init_deferred_pred_opt ::= */ -2, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */ -2, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ 0, /* (65) conslist_opt ::= */ -1, /* (66) tconscomma ::= COMMA */ -2, /* (67) tcons ::= CONSTRAINT nm */ -7, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */ -5, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */ -5, /* (70) tcons ::= CHECK LP expr RP onconf */ -10, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */ 0, /* (72) defer_subclause_opt ::= */ 0, /* (73) onconf ::= */ -3, /* (74) onconf ::= ON CONFLICT resolvetype */ 0, /* (75) orconf ::= */ -2, /* (76) orconf ::= OR resolvetype */ -1, /* (77) resolvetype ::= IGNORE */ -1, /* (78) resolvetype ::= REPLACE */ -4, /* (79) cmd ::= DROP TABLE ifexists fullname */ -2, /* (80) ifexists ::= IF EXISTS */ 0, /* (81) ifexists ::= */ -9, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */ -4, /* (83) cmd ::= DROP VIEW ifexists fullname */ -1, /* (84) cmd ::= select */ -3, /* (85) select ::= WITH wqlist selectnowith */ -4, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */ -1, /* (87) select ::= selectnowith */ -3, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */ -1, /* (89) multiselect_op ::= UNION */ -2, /* (90) multiselect_op ::= UNION ALL */ -1, /* (91) multiselect_op ::= EXCEPT|INTERSECT */ -9, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ -10, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */ -4, /* (94) values ::= VALUES LP nexprlist RP */ -5, /* (95) values ::= values COMMA LP nexprlist RP */ -1, /* (96) distinct ::= DISTINCT */ -1, /* (97) distinct ::= ALL */ 0, /* (98) distinct ::= */ 0, /* (99) sclp ::= */ -5, /* (100) selcollist ::= sclp scanpt expr scanpt as */ -3, /* (101) selcollist ::= sclp scanpt STAR */ -5, /* (102) selcollist ::= sclp scanpt nm DOT STAR */ -2, /* (103) as ::= AS nm */ 0, /* (104) as ::= */ 0, /* (105) from ::= */ -2, /* (106) from ::= FROM seltablist */ -2, /* (107) stl_prefix ::= seltablist joinop */ 0, /* (108) stl_prefix ::= */ -5, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */ -6, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */ -8, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */ -6, /* (112) seltablist ::= stl_prefix LP select RP as on_using */ -6, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */ 0, /* (114) dbnm ::= */ -2, /* (115) dbnm ::= DOT nm */ -1, /* (116) fullname ::= nm */ -3, /* (117) fullname ::= nm DOT nm */ -1, /* (118) xfullname ::= nm */ -3, /* (119) xfullname ::= nm DOT nm */ -5, /* (120) xfullname ::= nm DOT nm AS nm */ -3, /* (121) xfullname ::= nm AS nm */ -1, /* (122) joinop ::= COMMA|JOIN */ -2, /* (123) joinop ::= JOIN_KW JOIN */ -3, /* (124) joinop ::= JOIN_KW nm JOIN */ -4, /* (125) joinop ::= JOIN_KW nm nm JOIN */ -2, /* (126) on_using ::= ON expr */ -4, /* (127) on_using ::= USING LP idlist RP */ 0, /* (128) on_using ::= */ 0, /* (129) indexed_opt ::= */ -3, /* (130) indexed_by ::= INDEXED BY nm */ -2, /* (131) indexed_by ::= NOT INDEXED */ 0, /* (132) orderby_opt ::= */ -3, /* (133) orderby_opt ::= ORDER BY sortlist */ -5, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */ -3, /* (135) sortlist ::= expr sortorder nulls */ -1, /* (136) sortorder ::= ASC */ -1, /* (137) sortorder ::= DESC */ 0, /* (138) sortorder ::= */ -2, /* (139) nulls ::= NULLS FIRST */ -2, /* (140) nulls ::= NULLS LAST */ 0, /* (141) nulls ::= */ 0, /* (142) groupby_opt ::= */ -3, /* (143) groupby_opt ::= GROUP BY nexprlist */ 0, /* (144) having_opt ::= */ -2, /* (145) having_opt ::= HAVING expr */ 0, /* (146) limit_opt ::= */ -2, /* (147) limit_opt ::= LIMIT expr */ -4, /* (148) limit_opt ::= LIMIT expr OFFSET expr */ -4, /* (149) limit_opt ::= LIMIT expr COMMA expr */ -6, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */ 0, /* (151) where_opt ::= */ -2, /* (152) where_opt ::= WHERE expr */ 0, /* (153) where_opt_ret ::= */ -2, /* (154) where_opt_ret ::= WHERE expr */ -2, /* (155) where_opt_ret ::= RETURNING selcollist */ -4, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */ -9, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */ -5, /* (158) setlist ::= setlist COMMA nm EQ expr */ -7, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */ -3, /* (160) setlist ::= nm EQ expr */ -5, /* (161) setlist ::= LP idlist RP EQ expr */ -7, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */ -8, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */ 0, /* (164) upsert ::= */ -2, /* (165) upsert ::= RETURNING selcollist */ -12, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */ -9, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */ -5, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */ -8, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */ -2, /* (170) returning ::= RETURNING selcollist */ -2, /* (171) insert_cmd ::= INSERT orconf */ -1, /* (172) insert_cmd ::= REPLACE */ 0, /* (173) idlist_opt ::= */ -3, /* (174) idlist_opt ::= LP idlist RP */ -3, /* (175) idlist ::= idlist COMMA nm */ -1, /* (176) idlist ::= nm */ -3, /* (177) expr ::= LP expr RP */ -1, /* (178) expr ::= ID|INDEXED|JOIN_KW */ -3, /* (179) expr ::= nm DOT nm */ -5, /* (180) expr ::= nm DOT nm DOT nm */ -1, /* (181) term ::= NULL|FLOAT|BLOB */ -1, /* (182) term ::= STRING */ -1, /* (183) term ::= INTEGER */ -1, /* (184) expr ::= VARIABLE */ -3, /* (185) expr ::= expr COLLATE ID|STRING */ -6, /* (186) expr ::= CAST LP expr AS typetoken RP */ -5, /* (187) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */ -4, /* (188) expr ::= ID|INDEXED|JOIN_KW LP STAR RP */ -6, /* (189) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */ -5, /* (190) expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */ -1, /* (191) term ::= CTIME_KW */ -5, /* (192) expr ::= LP nexprlist COMMA expr RP */ -3, /* (193) expr ::= expr AND expr */ -3, /* (194) expr ::= expr OR expr */ -3, /* (195) expr ::= expr LT|GT|GE|LE expr */ -3, /* (196) expr ::= expr EQ|NE expr */ -3, /* (197) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ -3, /* (198) expr ::= expr PLUS|MINUS expr */ -3, /* (199) expr ::= expr STAR|SLASH|REM expr */ -3, /* (200) expr ::= expr CONCAT expr */ -2, /* (201) likeop ::= NOT LIKE_KW|MATCH */ -3, /* (202) expr ::= expr likeop expr */ -5, /* (203) expr ::= expr likeop expr ESCAPE expr */ -2, /* (204) expr ::= expr ISNULL|NOTNULL */ -3, /* (205) expr ::= expr NOT NULL */ -3, /* (206) expr ::= expr IS expr */ -4, /* (207) expr ::= expr IS NOT expr */ -6, /* (208) expr ::= expr IS NOT DISTINCT FROM expr */ -5, /* (209) expr ::= expr IS DISTINCT FROM expr */ -2, /* (210) expr ::= NOT expr */ -2, /* (211) expr ::= BITNOT expr */ -2, /* (212) expr ::= PLUS|MINUS expr */ -3, /* (213) expr ::= expr PTR expr */ -1, /* (214) between_op ::= BETWEEN */ -2, /* (215) between_op ::= NOT BETWEEN */ -5, /* (216) expr ::= expr between_op expr AND expr */ -1, /* (217) in_op ::= IN */ -2, /* (218) in_op ::= NOT IN */ -5, /* (219) expr ::= expr in_op LP exprlist RP */ -3, /* (220) expr ::= LP select RP */ -5, /* (221) expr ::= expr in_op LP select RP */ -5, /* (222) expr ::= expr in_op nm dbnm paren_exprlist */ -4, /* (223) expr ::= EXISTS LP select RP */ -5, /* (224) expr ::= CASE case_operand case_exprlist case_else END */ -5, /* (225) case_exprlist ::= case_exprlist WHEN expr THEN expr */ -4, /* (226) case_exprlist ::= WHEN expr THEN expr */ -2, /* (227) case_else ::= ELSE expr */ 0, /* (228) case_else ::= */ 0, /* (229) case_operand ::= */ 0, /* (230) exprlist ::= */ -3, /* (231) nexprlist ::= nexprlist COMMA expr */ -1, /* (232) nexprlist ::= expr */ 0, /* (233) paren_exprlist ::= */ -3, /* (234) paren_exprlist ::= LP exprlist RP */ -12, /* (235) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */ -1, /* (236) uniqueflag ::= UNIQUE */ 0, /* (237) uniqueflag ::= */ 0, /* (238) eidlist_opt ::= */ -3, /* (239) eidlist_opt ::= LP eidlist RP */ -5, /* (240) eidlist ::= eidlist COMMA nm collate sortorder */ -3, /* (241) eidlist ::= nm collate sortorder */ 0, /* (242) collate ::= */ -2, /* (243) collate ::= COLLATE ID|STRING */ -4, /* (244) cmd ::= DROP INDEX ifexists fullname */ -2, /* (245) cmd ::= VACUUM vinto */ -3, /* (246) cmd ::= VACUUM nm vinto */ -2, /* (247) vinto ::= INTO expr */ 0, /* (248) vinto ::= */ -3, /* (249) cmd ::= PRAGMA nm dbnm */ -5, /* (250) cmd ::= PRAGMA nm dbnm EQ nmnum */ -6, /* (251) cmd ::= PRAGMA nm dbnm LP nmnum RP */ -5, /* (252) cmd ::= PRAGMA nm dbnm EQ minus_num */ -6, /* (253) cmd ::= PRAGMA nm dbnm LP minus_num RP */ -2, /* (254) plus_num ::= PLUS INTEGER|FLOAT */ -2, /* (255) minus_num ::= MINUS INTEGER|FLOAT */ -5, /* (256) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ -11, /* (257) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ -1, /* (258) trigger_time ::= BEFORE|AFTER */ -2, /* (259) trigger_time ::= INSTEAD OF */ 0, /* (260) trigger_time ::= */ -1, /* (261) trigger_event ::= DELETE|INSERT */ -1, /* (262) trigger_event ::= UPDATE */ -3, /* (263) trigger_event ::= UPDATE OF idlist */ 0, /* (264) when_clause ::= */ -2, /* (265) when_clause ::= WHEN expr */ -3, /* (266) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ -2, /* (267) trigger_cmd_list ::= trigger_cmd SEMI */ -3, /* (268) trnm ::= nm DOT nm */ -3, /* (269) tridxby ::= INDEXED BY nm */ -2, /* (270) tridxby ::= NOT INDEXED */ -9, /* (271) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */ -8, /* (272) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */ -6, /* (273) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */ -3, /* (274) trigger_cmd ::= scanpt select scanpt */ -4, /* (275) expr ::= RAISE LP IGNORE RP */ -6, /* (276) expr ::= RAISE LP raisetype COMMA nm RP */ -1, /* (277) raisetype ::= ROLLBACK */ -1, /* (278) raisetype ::= ABORT */ -1, /* (279) raisetype ::= FAIL */ -4, /* (280) cmd ::= DROP TRIGGER ifexists fullname */ -6, /* (281) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ -3, /* (282) cmd ::= DETACH database_kw_opt expr */ 0, /* (283) key_opt ::= */ -2, /* (284) key_opt ::= KEY expr */ -1, /* (285) cmd ::= REINDEX */ -3, /* (286) cmd ::= REINDEX nm dbnm */ -1, /* (287) cmd ::= ANALYZE */ -3, /* (288) cmd ::= ANALYZE nm dbnm */ -6, /* (289) cmd ::= ALTER TABLE fullname RENAME TO nm */ -7, /* (290) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */ -6, /* (291) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */ -1, /* (292) add_column_fullname ::= fullname */ -8, /* (293) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */ -1, /* (294) cmd ::= create_vtab */ -4, /* (295) cmd ::= create_vtab LP vtabarglist RP */ -8, /* (296) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ 0, /* (297) vtabarg ::= */ -1, /* (298) vtabargtoken ::= ANY */ -3, /* (299) vtabargtoken ::= lp anylist RP */ -1, /* (300) lp ::= LP */ -2, /* (301) with ::= WITH wqlist */ -3, /* (302) with ::= WITH RECURSIVE wqlist */ -1, /* (303) wqas ::= AS */ -2, /* (304) wqas ::= AS MATERIALIZED */ -3, /* (305) wqas ::= AS NOT MATERIALIZED */ -6, /* (306) wqitem ::= nm eidlist_opt wqas LP select RP */ -1, /* (307) wqlist ::= wqitem */ -3, /* (308) wqlist ::= wqlist COMMA wqitem */ -3, /* (309) windowdefn_list ::= windowdefn_list COMMA windowdefn */ -5, /* (310) windowdefn ::= nm AS LP window RP */ -5, /* (311) window ::= PARTITION BY nexprlist orderby_opt frame_opt */ -6, /* (312) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ -4, /* (313) window ::= ORDER BY sortlist frame_opt */ -5, /* (314) window ::= nm ORDER BY sortlist frame_opt */ -2, /* (315) window ::= nm frame_opt */ 0, /* (316) frame_opt ::= */ -3, /* (317) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ -6, /* (318) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ -1, /* (319) range_or_rows ::= RANGE|ROWS|GROUPS */ -1, /* (320) frame_bound_s ::= frame_bound */ -2, /* (321) frame_bound_s ::= UNBOUNDED PRECEDING */ -1, /* (322) frame_bound_e ::= frame_bound */ -2, /* (323) frame_bound_e ::= UNBOUNDED FOLLOWING */ -2, /* (324) frame_bound ::= expr PRECEDING|FOLLOWING */ -2, /* (325) frame_bound ::= CURRENT ROW */ 0, /* (326) frame_exclude_opt ::= */ -2, /* (327) frame_exclude_opt ::= EXCLUDE frame_exclude */ -2, /* (328) frame_exclude ::= NO OTHERS */ -2, /* (329) frame_exclude ::= CURRENT ROW */ -1, /* (330) frame_exclude ::= GROUP|TIES */ -2, /* (331) window_clause ::= WINDOW windowdefn_list */ -2, /* (332) filter_over ::= filter_clause over_clause */ -1, /* (333) filter_over ::= over_clause */ -1, /* (334) filter_over ::= filter_clause */ -4, /* (335) over_clause ::= OVER LP window RP */ -2, /* (336) over_clause ::= OVER nm */ -5, /* (337) filter_clause ::= FILTER LP WHERE expr RP */ -1, /* (338) input ::= cmdlist */ -2, /* (339) cmdlist ::= cmdlist ecmd */ -1, /* (340) cmdlist ::= ecmd */ -1, /* (341) ecmd ::= SEMI */ -2, /* (342) ecmd ::= cmdx SEMI */ -3, /* (343) ecmd ::= explain cmdx SEMI */ 0, /* (344) trans_opt ::= */ -1, /* (345) trans_opt ::= TRANSACTION */ -2, /* (346) trans_opt ::= TRANSACTION nm */ -1, /* (347) savepoint_opt ::= SAVEPOINT */ 0, /* (348) savepoint_opt ::= */ -2, /* (349) cmd ::= create_table create_table_args */ -1, /* (350) table_option_set ::= table_option */ -4, /* (351) columnlist ::= columnlist COMMA columnname carglist */ -2, /* (352) columnlist ::= columnname carglist */ -1, /* (353) nm ::= ID|INDEXED|JOIN_KW */ -1, /* (354) nm ::= STRING */ -1, /* (355) typetoken ::= typename */ -1, /* (356) typename ::= ID|STRING */ -1, /* (357) signed ::= plus_num */ -1, /* (358) signed ::= minus_num */ -2, /* (359) carglist ::= carglist ccons */ 0, /* (360) carglist ::= */ -2, /* (361) ccons ::= NULL onconf */ -4, /* (362) ccons ::= GENERATED ALWAYS AS generated */ -2, /* (363) ccons ::= AS generated */ -2, /* (364) conslist_opt ::= COMMA conslist */ -3, /* (365) conslist ::= conslist tconscomma tcons */ -1, /* (366) conslist ::= tcons */ 0, /* (367) tconscomma ::= */ -1, /* (368) defer_subclause_opt ::= defer_subclause */ -1, /* (369) resolvetype ::= raisetype */ -1, /* (370) selectnowith ::= oneselect */ -1, /* (371) oneselect ::= values */ -2, /* (372) sclp ::= selcollist COMMA */ -1, /* (373) as ::= ID|STRING */ -1, /* (374) indexed_opt ::= indexed_by */ 0, /* (375) returning ::= */ -1, /* (376) expr ::= term */ -1, /* (377) likeop ::= LIKE_KW|MATCH */ -1, /* (378) case_operand ::= expr */ -1, /* (379) exprlist ::= nexprlist */ -1, /* (380) nmnum ::= plus_num */ -1, /* (381) nmnum ::= nm */ -1, /* (382) nmnum ::= ON */ -1, /* (383) nmnum ::= DELETE */ -1, /* (384) nmnum ::= DEFAULT */ -1, /* (385) plus_num ::= INTEGER|FLOAT */ 0, /* (386) foreach_clause ::= */ -3, /* (387) foreach_clause ::= FOR EACH ROW */ -1, /* (388) trnm ::= nm */ 0, /* (389) tridxby ::= */ -1, /* (390) database_kw_opt ::= DATABASE */ 0, /* (391) database_kw_opt ::= */ 0, /* (392) kwcolumn_opt ::= */ -1, /* (393) kwcolumn_opt ::= COLUMNKW */ -1, /* (394) vtabarglist ::= vtabarg */ -3, /* (395) vtabarglist ::= vtabarglist COMMA vtabarg */ -2, /* (396) vtabarg ::= vtabarg vtabargtoken */ 0, /* (397) anylist ::= */ -4, /* (398) anylist ::= anylist LP anylist RP */ -2, /* (399) anylist ::= anylist ANY */ 0, /* (400) with ::= */ -1, /* (401) windowdefn_list ::= windowdefn */ -1, /* (402) window ::= frame_opt */ }; static void yy_accept(yyParser*); /* Forward Declaration */ /* ** Perform a reduce action and the shift that must immediately ** follow the reduce. ** ** The yyLookahead and yyLookaheadToken parameters provide reduce actions ** access to the lookahead token (if any). The yyLookahead will be YYNOCODE ** if the lookahead token has already been consumed. As this procedure is ** only called from one place, optimizing compilers will in-line it, which ** means that the extra parameters have no performance impact. */ static YYACTIONTYPE yy_reduce( yyParser *yypParser, /* The parser */ unsigned int yyruleno, /* Number of the rule by which to reduce */ int yyLookahead, /* Lookahead token, or YYNOCODE if none */ sqlite3ParserTOKENTYPE yyLookaheadToken /* Value of the lookahead token */ sqlite3ParserCTX_PDECL /* %extra_context */ ){ int yygoto; /* The next state */ YYACTIONTYPE yyact; /* The next action */ yyStackEntry *yymsp; /* The top of the parser's stack */ int yysize; /* Amount to pop the stack */ sqlite3ParserARG_FETCH (void)yyLookahead; (void)yyLookaheadToken; yymsp = yypParser->yytos; switch( yyruleno ){ /* Beginning here are the reduction cases. A typical example ** follows: ** case 0: ** #line ** { ... } // User supplied code ** #line ** break; */ /********** Begin reduce actions **********************************************/ YYMINORTYPE yylhsminor; case 0: /* explain ::= EXPLAIN */ { if( pParse->pReprepare==0 ) pParse->explain = 1; } break; case 1: /* explain ::= EXPLAIN QUERY PLAN */ { if( pParse->pReprepare==0 ) pParse->explain = 2; } break; case 2: /* cmdx ::= cmd */ { sqlite3FinishCoding(pParse); } break; case 3: /* cmd ::= BEGIN transtype trans_opt */ {sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy394);} break; case 4: /* transtype ::= */ {yymsp[1].minor.yy394 = TK_DEFERRED;} break; case 5: /* transtype ::= DEFERRED */ case 6: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==6); case 7: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==7); case 319: /* range_or_rows ::= RANGE|ROWS|GROUPS */ yytestcase(yyruleno==319); {yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/} break; case 8: /* cmd ::= COMMIT|END trans_opt */ case 9: /* cmd ::= ROLLBACK trans_opt */ yytestcase(yyruleno==9); {sqlite3EndTransaction(pParse,yymsp[-1].major);} break; case 10: /* cmd ::= SAVEPOINT nm */ { sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0); } break; case 11: /* cmd ::= RELEASE savepoint_opt nm */ { sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0); } break; case 12: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ { sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0); } break; case 13: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */ { sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy394,0,0,yymsp[-2].minor.yy394); } break; case 14: /* createkw ::= CREATE */ {disableLookaside(pParse);} break; case 15: /* ifnotexists ::= */ case 18: /* temp ::= */ yytestcase(yyruleno==18); case 47: /* autoinc ::= */ yytestcase(yyruleno==47); case 62: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==62); case 72: /* defer_subclause_opt ::= */ yytestcase(yyruleno==72); case 81: /* ifexists ::= */ yytestcase(yyruleno==81); case 98: /* distinct ::= */ yytestcase(yyruleno==98); case 242: /* collate ::= */ yytestcase(yyruleno==242); {yymsp[1].minor.yy394 = 0;} break; case 16: /* ifnotexists ::= IF NOT EXISTS */ {yymsp[-2].minor.yy394 = 1;} break; case 17: /* temp ::= TEMP */ {yymsp[0].minor.yy394 = pParse->db->init.busy==0;} break; case 19: /* create_table_args ::= LP columnlist conslist_opt RP table_option_set */ { sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy285,0); } break; case 20: /* create_table_args ::= AS select */ { sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy47); sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47); } break; case 21: /* table_option_set ::= */ {yymsp[1].minor.yy285 = 0;} break; case 22: /* table_option_set ::= table_option_set COMMA table_option */ {yylhsminor.yy285 = yymsp[-2].minor.yy285|yymsp[0].minor.yy285;} yymsp[-2].minor.yy285 = yylhsminor.yy285; break; case 23: /* table_option ::= WITHOUT nm */ { if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){ yymsp[-1].minor.yy285 = TF_WithoutRowid | TF_NoVisibleRowid; }else{ yymsp[-1].minor.yy285 = 0; sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z); } } break; case 24: /* table_option ::= nm */ { if( yymsp[0].minor.yy0.n==6 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"strict",6)==0 ){ yylhsminor.yy285 = TF_Strict; }else{ yylhsminor.yy285 = 0; sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z); } } yymsp[0].minor.yy285 = yylhsminor.yy285; break; case 25: /* columnname ::= nm typetoken */ {sqlite3AddColumn(pParse,yymsp[-1].minor.yy0,yymsp[0].minor.yy0);} break; case 26: /* typetoken ::= */ case 65: /* conslist_opt ::= */ yytestcase(yyruleno==65); case 104: /* as ::= */ yytestcase(yyruleno==104); {yymsp[1].minor.yy0.n = 0; yymsp[1].minor.yy0.z = 0;} break; case 27: /* typetoken ::= typename LP signed RP */ { yymsp[-3].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z); } break; case 28: /* typetoken ::= typename LP signed COMMA signed RP */ { yymsp[-5].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z); } break; case 29: /* typename ::= typename ID|STRING */ {yymsp[-1].minor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);} break; case 30: /* scanpt ::= */ { assert( yyLookahead!=YYNOCODE ); yymsp[1].minor.yy522 = yyLookaheadToken.z; } break; case 31: /* scantok ::= */ { assert( yyLookahead!=YYNOCODE ); yymsp[1].minor.yy0 = yyLookaheadToken; } break; case 32: /* ccons ::= CONSTRAINT nm */ case 67: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==67); {pParse->constraintName = yymsp[0].minor.yy0;} break; case 33: /* ccons ::= DEFAULT scantok term */ {sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-1].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);} break; case 34: /* ccons ::= DEFAULT LP expr RP */ {sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z+1,yymsp[0].minor.yy0.z);} break; case 35: /* ccons ::= DEFAULT PLUS scantok term */ {sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);} break; case 36: /* ccons ::= DEFAULT MINUS scantok term */ { Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy528, 0); sqlite3AddDefaultValue(pParse,p,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]); } break; case 37: /* ccons ::= DEFAULT scantok ID|INDEXED */ { Expr *p = tokenExpr(pParse, TK_STRING, yymsp[0].minor.yy0); if( p ){ sqlite3ExprIdToTrueFalse(p); testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); } sqlite3AddDefaultValue(pParse,p,yymsp[0].minor.yy0.z,yymsp[0].minor.yy0.z+yymsp[0].minor.yy0.n); } break; case 38: /* ccons ::= NOT NULL onconf */ {sqlite3AddNotNull(pParse, yymsp[0].minor.yy394);} break; case 39: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */ {sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy394,yymsp[0].minor.yy394,yymsp[-2].minor.yy394);} break; case 40: /* ccons ::= UNIQUE onconf */ {sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy394,0,0,0,0, SQLITE_IDXTYPE_UNIQUE);} break; case 41: /* ccons ::= CHECK LP expr RP */ {sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z,yymsp[0].minor.yy0.z);} break; case 42: /* ccons ::= REFERENCES nm eidlist_opt refargs */ {sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy322,yymsp[0].minor.yy394);} break; case 43: /* ccons ::= defer_subclause */ {sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy394);} break; case 44: /* ccons ::= COLLATE ID|STRING */ {sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);} break; case 45: /* generated ::= LP expr RP */ {sqlite3AddGenerated(pParse,yymsp[-1].minor.yy528,0);} break; case 46: /* generated ::= LP expr RP ID */ {sqlite3AddGenerated(pParse,yymsp[-2].minor.yy528,&yymsp[0].minor.yy0);} break; case 48: /* autoinc ::= AUTOINCR */ {yymsp[0].minor.yy394 = 1;} break; case 49: /* refargs ::= */ { yymsp[1].minor.yy394 = OE_None*0x0101; /* EV: R-19803-45884 */} break; case 50: /* refargs ::= refargs refarg */ { yymsp[-1].minor.yy394 = (yymsp[-1].minor.yy394 & ~yymsp[0].minor.yy231.mask) | yymsp[0].minor.yy231.value; } break; case 51: /* refarg ::= MATCH nm */ { yymsp[-1].minor.yy231.value = 0; yymsp[-1].minor.yy231.mask = 0x000000; } break; case 52: /* refarg ::= ON INSERT refact */ { yymsp[-2].minor.yy231.value = 0; yymsp[-2].minor.yy231.mask = 0x000000; } break; case 53: /* refarg ::= ON DELETE refact */ { yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394; yymsp[-2].minor.yy231.mask = 0x0000ff; } break; case 54: /* refarg ::= ON UPDATE refact */ { yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394<<8; yymsp[-2].minor.yy231.mask = 0x00ff00; } break; case 55: /* refact ::= SET NULL */ { yymsp[-1].minor.yy394 = OE_SetNull; /* EV: R-33326-45252 */} break; case 56: /* refact ::= SET DEFAULT */ { yymsp[-1].minor.yy394 = OE_SetDflt; /* EV: R-33326-45252 */} break; case 57: /* refact ::= CASCADE */ { yymsp[0].minor.yy394 = OE_Cascade; /* EV: R-33326-45252 */} break; case 58: /* refact ::= RESTRICT */ { yymsp[0].minor.yy394 = OE_Restrict; /* EV: R-33326-45252 */} break; case 59: /* refact ::= NO ACTION */ { yymsp[-1].minor.yy394 = OE_None; /* EV: R-33326-45252 */} break; case 60: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ {yymsp[-2].minor.yy394 = 0;} break; case 61: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ case 76: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==76); case 171: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==171); {yymsp[-1].minor.yy394 = yymsp[0].minor.yy394;} break; case 63: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ case 80: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==80); case 215: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==215); case 218: /* in_op ::= NOT IN */ yytestcase(yyruleno==218); case 243: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==243); {yymsp[-1].minor.yy394 = 1;} break; case 64: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ {yymsp[-1].minor.yy394 = 0;} break; case 66: /* tconscomma ::= COMMA */ {pParse->constraintName.n = 0;} break; case 68: /* tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */ {sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy322,yymsp[0].minor.yy394,yymsp[-2].minor.yy394,0);} break; case 69: /* tcons ::= UNIQUE LP sortlist RP onconf */ {sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy322,yymsp[0].minor.yy394,0,0,0,0, SQLITE_IDXTYPE_UNIQUE);} break; case 70: /* tcons ::= CHECK LP expr RP onconf */ {sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy528,yymsp[-3].minor.yy0.z,yymsp[-1].minor.yy0.z);} break; case 71: /* tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */ { sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy322, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[-1].minor.yy394); sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy394); } break; case 73: /* onconf ::= */ case 75: /* orconf ::= */ yytestcase(yyruleno==75); {yymsp[1].minor.yy394 = OE_Default;} break; case 74: /* onconf ::= ON CONFLICT resolvetype */ {yymsp[-2].minor.yy394 = yymsp[0].minor.yy394;} break; case 77: /* resolvetype ::= IGNORE */ {yymsp[0].minor.yy394 = OE_Ignore;} break; case 78: /* resolvetype ::= REPLACE */ case 172: /* insert_cmd ::= REPLACE */ yytestcase(yyruleno==172); {yymsp[0].minor.yy394 = OE_Replace;} break; case 79: /* cmd ::= DROP TABLE ifexists fullname */ { sqlite3DropTable(pParse, yymsp[0].minor.yy131, 0, yymsp[-1].minor.yy394); } break; case 82: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */ { sqlite3CreateView(pParse, &yymsp[-8].minor.yy0, &yymsp[-4].minor.yy0, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[0].minor.yy47, yymsp[-7].minor.yy394, yymsp[-5].minor.yy394); } break; case 83: /* cmd ::= DROP VIEW ifexists fullname */ { sqlite3DropTable(pParse, yymsp[0].minor.yy131, 1, yymsp[-1].minor.yy394); } break; case 84: /* cmd ::= select */ { SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0}; sqlite3Select(pParse, yymsp[0].minor.yy47, &dest); sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47); } break; case 85: /* select ::= WITH wqlist selectnowith */ {yymsp[-2].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);} break; case 86: /* select ::= WITH RECURSIVE wqlist selectnowith */ {yymsp[-3].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);} break; case 87: /* select ::= selectnowith */ { Select *p = yymsp[0].minor.yy47; if( p ){ parserDoubleLinkSelect(pParse, p); } } break; case 88: /* selectnowith ::= selectnowith multiselect_op oneselect */ { Select *pRhs = yymsp[0].minor.yy47; Select *pLhs = yymsp[-2].minor.yy47; if( pRhs && pRhs->pPrior ){ SrcList *pFrom; Token x; x.n = 0; parserDoubleLinkSelect(pParse, pRhs); pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0); pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); } if( pRhs ){ pRhs->op = (u8)yymsp[-1].minor.yy394; pRhs->pPrior = pLhs; if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; pRhs->selFlags &= ~SF_MultiValue; if( yymsp[-1].minor.yy394!=TK_ALL ) pParse->hasCompound = 1; }else{ sqlite3SelectDelete(pParse->db, pLhs); } yymsp[-2].minor.yy47 = pRhs; } break; case 89: /* multiselect_op ::= UNION */ case 91: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==91); {yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-OP*/} break; case 90: /* multiselect_op ::= UNION ALL */ {yymsp[-1].minor.yy394 = TK_ALL;} break; case 92: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ { yymsp[-8].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy322,yymsp[-5].minor.yy131,yymsp[-4].minor.yy528,yymsp[-3].minor.yy322,yymsp[-2].minor.yy528,yymsp[-1].minor.yy322,yymsp[-7].minor.yy394,yymsp[0].minor.yy528); } break; case 93: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */ { yymsp[-9].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-7].minor.yy322,yymsp[-6].minor.yy131,yymsp[-5].minor.yy528,yymsp[-4].minor.yy322,yymsp[-3].minor.yy528,yymsp[-1].minor.yy322,yymsp[-8].minor.yy394,yymsp[0].minor.yy528); if( yymsp[-9].minor.yy47 ){ yymsp[-9].minor.yy47->pWinDefn = yymsp[-2].minor.yy41; }else{ sqlite3WindowListDelete(pParse->db, yymsp[-2].minor.yy41); } } break; case 94: /* values ::= VALUES LP nexprlist RP */ { yymsp[-3].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values,0); } break; case 95: /* values ::= values COMMA LP nexprlist RP */ { Select *pRight, *pLeft = yymsp[-4].minor.yy47; pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values|SF_MultiValue,0); if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; if( pRight ){ pRight->op = TK_ALL; pRight->pPrior = pLeft; yymsp[-4].minor.yy47 = pRight; }else{ yymsp[-4].minor.yy47 = pLeft; } } break; case 96: /* distinct ::= DISTINCT */ {yymsp[0].minor.yy394 = SF_Distinct;} break; case 97: /* distinct ::= ALL */ {yymsp[0].minor.yy394 = SF_All;} break; case 99: /* sclp ::= */ case 132: /* orderby_opt ::= */ yytestcase(yyruleno==132); case 142: /* groupby_opt ::= */ yytestcase(yyruleno==142); case 230: /* exprlist ::= */ yytestcase(yyruleno==230); case 233: /* paren_exprlist ::= */ yytestcase(yyruleno==233); case 238: /* eidlist_opt ::= */ yytestcase(yyruleno==238); {yymsp[1].minor.yy322 = 0;} break; case 100: /* selcollist ::= sclp scanpt expr scanpt as */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[-2].minor.yy528); if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[0].minor.yy0, 1); sqlite3ExprListSetSpan(pParse,yymsp[-4].minor.yy322,yymsp[-3].minor.yy522,yymsp[-1].minor.yy522); } break; case 101: /* selcollist ::= sclp scanpt STAR */ { Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); sqlite3ExprSetErrorOffset(p, (int)(yymsp[0].minor.yy0.z - pParse->zTail)); yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, p); } break; case 102: /* selcollist ::= sclp scanpt nm DOT STAR */ { Expr *pRight, *pLeft, *pDot; pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); sqlite3ExprSetErrorOffset(pRight, (int)(yymsp[0].minor.yy0.z - pParse->zTail)); pLeft = tokenExpr(pParse, TK_ID, yymsp[-2].minor.yy0); pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, pDot); } break; case 103: /* as ::= AS nm */ case 115: /* dbnm ::= DOT nm */ yytestcase(yyruleno==115); case 254: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==254); case 255: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==255); {yymsp[-1].minor.yy0 = yymsp[0].minor.yy0;} break; case 105: /* from ::= */ case 108: /* stl_prefix ::= */ yytestcase(yyruleno==108); {yymsp[1].minor.yy131 = 0;} break; case 106: /* from ::= FROM seltablist */ { yymsp[-1].minor.yy131 = yymsp[0].minor.yy131; sqlite3SrcListShiftJoinType(pParse,yymsp[-1].minor.yy131); } break; case 107: /* stl_prefix ::= seltablist joinop */ { if( ALWAYS(yymsp[-1].minor.yy131 && yymsp[-1].minor.yy131->nSrc>0) ) yymsp[-1].minor.yy131->a[yymsp[-1].minor.yy131->nSrc-1].fg.jointype = (u8)yymsp[0].minor.yy394; } break; case 109: /* seltablist ::= stl_prefix nm dbnm as on_using */ { yymsp[-4].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-4].minor.yy131,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561); } break; case 110: /* seltablist ::= stl_prefix nm dbnm as indexed_by on_using */ { yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,0,&yymsp[0].minor.yy561); sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-1].minor.yy0); } break; case 111: /* seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */ { yymsp[-7].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-7].minor.yy131,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561); sqlite3SrcListFuncArgs(pParse, yymsp[-7].minor.yy131, yymsp[-3].minor.yy322); } break; case 112: /* seltablist ::= stl_prefix LP select RP as on_using */ { yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,yymsp[-3].minor.yy47,&yymsp[0].minor.yy561); } break; case 113: /* seltablist ::= stl_prefix LP seltablist RP as on_using */ { if( yymsp[-5].minor.yy131==0 && yymsp[-1].minor.yy0.n==0 && yymsp[0].minor.yy561.pOn==0 && yymsp[0].minor.yy561.pUsing==0 ){ yymsp[-5].minor.yy131 = yymsp[-3].minor.yy131; }else if( ALWAYS(yymsp[-3].minor.yy131!=0) && yymsp[-3].minor.yy131->nSrc==1 ){ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561); if( yymsp[-5].minor.yy131 ){ SrcItem *pNew = &yymsp[-5].minor.yy131->a[yymsp[-5].minor.yy131->nSrc-1]; SrcItem *pOld = yymsp[-3].minor.yy131->a; pNew->zName = pOld->zName; pNew->zDatabase = pOld->zDatabase; pNew->pSelect = pOld->pSelect; if( pNew->pSelect && (pNew->pSelect->selFlags & SF_NestedFrom)!=0 ){ pNew->fg.isNestedFrom = 1; } if( pOld->fg.isTabFunc ){ pNew->u1.pFuncArg = pOld->u1.pFuncArg; pOld->u1.pFuncArg = 0; pOld->fg.isTabFunc = 0; pNew->fg.isTabFunc = 1; } pOld->zName = pOld->zDatabase = 0; pOld->pSelect = 0; } sqlite3SrcListDelete(pParse->db, yymsp[-3].minor.yy131); }else{ Select *pSubquery; sqlite3SrcListShiftJoinType(pParse,yymsp[-3].minor.yy131); pSubquery = sqlite3SelectNew(pParse,0,yymsp[-3].minor.yy131,0,0,0,0,SF_NestedFrom,0); yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,pSubquery,&yymsp[0].minor.yy561); } } break; case 114: /* dbnm ::= */ case 129: /* indexed_opt ::= */ yytestcase(yyruleno==129); {yymsp[1].minor.yy0.z=0; yymsp[1].minor.yy0.n=0;} break; case 116: /* fullname ::= nm */ { yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0); if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0); } yymsp[0].minor.yy131 = yylhsminor.yy131; break; case 117: /* fullname ::= nm DOT nm */ { yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0); } yymsp[-2].minor.yy131 = yylhsminor.yy131; break; case 118: /* xfullname ::= nm */ {yymsp[0].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0); /*A-overwrites-X*/} break; case 119: /* xfullname ::= nm DOT nm */ {yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 120: /* xfullname ::= nm DOT nm AS nm */ { yymsp[-4].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,&yymsp[-2].minor.yy0); /*A-overwrites-X*/ if( yymsp[-4].minor.yy131 ) yymsp[-4].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0); } break; case 121: /* xfullname ::= nm AS nm */ { yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,0); /*A-overwrites-X*/ if( yymsp[-2].minor.yy131 ) yymsp[-2].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0); } break; case 122: /* joinop ::= COMMA|JOIN */ { yymsp[0].minor.yy394 = JT_INNER; } break; case 123: /* joinop ::= JOIN_KW JOIN */ {yymsp[-1].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); /*X-overwrites-A*/} break; case 124: /* joinop ::= JOIN_KW nm JOIN */ {yymsp[-2].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); /*X-overwrites-A*/} break; case 125: /* joinop ::= JOIN_KW nm nm JOIN */ {yymsp[-3].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0);/*X-overwrites-A*/} break; case 126: /* on_using ::= ON expr */ {yymsp[-1].minor.yy561.pOn = yymsp[0].minor.yy528; yymsp[-1].minor.yy561.pUsing = 0;} break; case 127: /* on_using ::= USING LP idlist RP */ {yymsp[-3].minor.yy561.pOn = 0; yymsp[-3].minor.yy561.pUsing = yymsp[-1].minor.yy254;} break; case 128: /* on_using ::= */ {yymsp[1].minor.yy561.pOn = 0; yymsp[1].minor.yy561.pUsing = 0;} break; case 130: /* indexed_by ::= INDEXED BY nm */ {yymsp[-2].minor.yy0 = yymsp[0].minor.yy0;} break; case 131: /* indexed_by ::= NOT INDEXED */ {yymsp[-1].minor.yy0.z=0; yymsp[-1].minor.yy0.n=1;} break; case 133: /* orderby_opt ::= ORDER BY sortlist */ case 143: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==143); {yymsp[-2].minor.yy322 = yymsp[0].minor.yy322;} break; case 134: /* sortlist ::= sortlist COMMA expr sortorder nulls */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322,yymsp[-2].minor.yy528); sqlite3ExprListSetSortOrder(yymsp[-4].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394); } break; case 135: /* sortlist ::= expr sortorder nulls */ { yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[-2].minor.yy528); /*A-overwrites-Y*/ sqlite3ExprListSetSortOrder(yymsp[-2].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394); } break; case 136: /* sortorder ::= ASC */ {yymsp[0].minor.yy394 = SQLITE_SO_ASC;} break; case 137: /* sortorder ::= DESC */ {yymsp[0].minor.yy394 = SQLITE_SO_DESC;} break; case 138: /* sortorder ::= */ case 141: /* nulls ::= */ yytestcase(yyruleno==141); {yymsp[1].minor.yy394 = SQLITE_SO_UNDEFINED;} break; case 139: /* nulls ::= NULLS FIRST */ {yymsp[-1].minor.yy394 = SQLITE_SO_ASC;} break; case 140: /* nulls ::= NULLS LAST */ {yymsp[-1].minor.yy394 = SQLITE_SO_DESC;} break; case 144: /* having_opt ::= */ case 146: /* limit_opt ::= */ yytestcase(yyruleno==146); case 151: /* where_opt ::= */ yytestcase(yyruleno==151); case 153: /* where_opt_ret ::= */ yytestcase(yyruleno==153); case 228: /* case_else ::= */ yytestcase(yyruleno==228); case 229: /* case_operand ::= */ yytestcase(yyruleno==229); case 248: /* vinto ::= */ yytestcase(yyruleno==248); {yymsp[1].minor.yy528 = 0;} break; case 145: /* having_opt ::= HAVING expr */ case 152: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==152); case 154: /* where_opt_ret ::= WHERE expr */ yytestcase(yyruleno==154); case 227: /* case_else ::= ELSE expr */ yytestcase(yyruleno==227); case 247: /* vinto ::= INTO expr */ yytestcase(yyruleno==247); {yymsp[-1].minor.yy528 = yymsp[0].minor.yy528;} break; case 147: /* limit_opt ::= LIMIT expr */ {yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,0);} break; case 148: /* limit_opt ::= LIMIT expr OFFSET expr */ {yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);} break; case 149: /* limit_opt ::= LIMIT expr COMMA expr */ {yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,yymsp[-2].minor.yy528);} break; case 150: /* cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */ { sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy131, &yymsp[-1].minor.yy0); sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy131,yymsp[0].minor.yy528,0,0); } break; case 155: /* where_opt_ret ::= RETURNING selcollist */ {sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-1].minor.yy528 = 0;} break; case 156: /* where_opt_ret ::= WHERE expr RETURNING selcollist */ {sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-3].minor.yy528 = yymsp[-2].minor.yy528;} break; case 157: /* cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */ { sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-4].minor.yy0); sqlite3ExprListCheckLength(pParse,yymsp[-2].minor.yy322,"set list"); if( yymsp[-1].minor.yy131 ){ SrcList *pFromClause = yymsp[-1].minor.yy131; if( pFromClause->nSrc>1 ){ Select *pSubquery; Token as; pSubquery = sqlite3SelectNew(pParse,0,pFromClause,0,0,0,0,SF_NestedFrom,0); as.n = 0; as.z = 0; pFromClause = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0); } yymsp[-5].minor.yy131 = sqlite3SrcListAppendList(pParse, yymsp[-5].minor.yy131, pFromClause); } sqlite3Update(pParse,yymsp[-5].minor.yy131,yymsp[-2].minor.yy322,yymsp[0].minor.yy528,yymsp[-6].minor.yy394,0,0,0); } break; case 158: /* setlist ::= setlist COMMA nm EQ expr */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[0].minor.yy528); sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, 1); } break; case 159: /* setlist ::= setlist COMMA LP idlist RP EQ expr */ { yymsp[-6].minor.yy322 = sqlite3ExprListAppendVector(pParse, yymsp[-6].minor.yy322, yymsp[-3].minor.yy254, yymsp[0].minor.yy528); } break; case 160: /* setlist ::= nm EQ expr */ { yylhsminor.yy322 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy528); sqlite3ExprListSetName(pParse, yylhsminor.yy322, &yymsp[-2].minor.yy0, 1); } yymsp[-2].minor.yy322 = yylhsminor.yy322; break; case 161: /* setlist ::= LP idlist RP EQ expr */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppendVector(pParse, 0, yymsp[-3].minor.yy254, yymsp[0].minor.yy528); } break; case 162: /* cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */ { sqlite3Insert(pParse, yymsp[-3].minor.yy131, yymsp[-1].minor.yy47, yymsp[-2].minor.yy254, yymsp[-5].minor.yy394, yymsp[0].minor.yy444); } break; case 163: /* cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */ { sqlite3Insert(pParse, yymsp[-4].minor.yy131, 0, yymsp[-3].minor.yy254, yymsp[-6].minor.yy394, 0); } break; case 164: /* upsert ::= */ { yymsp[1].minor.yy444 = 0; } break; case 165: /* upsert ::= RETURNING selcollist */ { yymsp[-1].minor.yy444 = 0; sqlite3AddReturning(pParse,yymsp[0].minor.yy322); } break; case 166: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */ { yymsp[-11].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-8].minor.yy322,yymsp[-6].minor.yy528,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,yymsp[0].minor.yy444);} break; case 167: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */ { yymsp[-8].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-5].minor.yy322,yymsp[-3].minor.yy528,0,0,yymsp[0].minor.yy444); } break; case 168: /* upsert ::= ON CONFLICT DO NOTHING returning */ { yymsp[-4].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,0,0,0); } break; case 169: /* upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */ { yymsp[-7].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,0);} break; case 170: /* returning ::= RETURNING selcollist */ {sqlite3AddReturning(pParse,yymsp[0].minor.yy322);} break; case 173: /* idlist_opt ::= */ {yymsp[1].minor.yy254 = 0;} break; case 174: /* idlist_opt ::= LP idlist RP */ {yymsp[-2].minor.yy254 = yymsp[-1].minor.yy254;} break; case 175: /* idlist ::= idlist COMMA nm */ {yymsp[-2].minor.yy254 = sqlite3IdListAppend(pParse,yymsp[-2].minor.yy254,&yymsp[0].minor.yy0);} break; case 176: /* idlist ::= nm */ {yymsp[0].minor.yy254 = sqlite3IdListAppend(pParse,0,&yymsp[0].minor.yy0); /*A-overwrites-Y*/} break; case 177: /* expr ::= LP expr RP */ {yymsp[-2].minor.yy528 = yymsp[-1].minor.yy528;} break; case 178: /* expr ::= ID|INDEXED|JOIN_KW */ {yymsp[0].minor.yy528=tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 179: /* expr ::= nm DOT nm */ { Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0); Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); } yymsp[-2].minor.yy528 = yylhsminor.yy528; break; case 180: /* expr ::= nm DOT nm DOT nm */ { Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-4].minor.yy0); Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0); Expr *temp3 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, 0, temp1); } yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); } yymsp[-4].minor.yy528 = yylhsminor.yy528; break; case 181: /* term ::= NULL|FLOAT|BLOB */ case 182: /* term ::= STRING */ yytestcase(yyruleno==182); {yymsp[0].minor.yy528=tokenExpr(pParse,yymsp[0].major,yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 183: /* term ::= INTEGER */ { yylhsminor.yy528 = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &yymsp[0].minor.yy0, 1); if( yylhsminor.yy528 ) yylhsminor.yy528->w.iOfst = (int)(yymsp[0].minor.yy0.z - pParse->zTail); } yymsp[0].minor.yy528 = yylhsminor.yy528; break; case 184: /* expr ::= VARIABLE */ { if( !(yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1])) ){ u32 n = yymsp[0].minor.yy0.n; yymsp[0].minor.yy528 = tokenExpr(pParse, TK_VARIABLE, yymsp[0].minor.yy0); sqlite3ExprAssignVarNumber(pParse, yymsp[0].minor.yy528, n); }else{ /* When doing a nested parse, one can include terms in an expression ** that look like this: #1 #2 ... These terms refer to registers ** in the virtual machine. #N is the N-th register. */ Token t = yymsp[0].minor.yy0; /*A-overwrites-X*/ assert( t.n>=2 ); if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); yymsp[0].minor.yy528 = 0; }else{ yymsp[0].minor.yy528 = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); if( yymsp[0].minor.yy528 ) sqlite3GetInt32(&t.z[1], &yymsp[0].minor.yy528->iTable); } } } break; case 185: /* expr ::= expr COLLATE ID|STRING */ { yymsp[-2].minor.yy528 = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy528, &yymsp[0].minor.yy0, 1); } break; case 186: /* expr ::= CAST LP expr AS typetoken RP */ { yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_CAST, &yymsp[-1].minor.yy0, 1); sqlite3ExprAttachSubtrees(pParse->db, yymsp[-5].minor.yy528, yymsp[-3].minor.yy528, 0); } break; case 187: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0, yymsp[-2].minor.yy394); } yymsp[-4].minor.yy528 = yylhsminor.yy528; break; case 188: /* expr ::= ID|INDEXED|JOIN_KW LP STAR RP */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0, 0); } yymsp[-3].minor.yy528 = yylhsminor.yy528; break; case 189: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-2].minor.yy322, &yymsp[-5].minor.yy0, yymsp[-3].minor.yy394); sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41); } yymsp[-5].minor.yy528 = yylhsminor.yy528; break; case 190: /* expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-4].minor.yy0, 0); sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41); } yymsp[-4].minor.yy528 = yylhsminor.yy528; break; case 191: /* term ::= CTIME_KW */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0, 0); } yymsp[0].minor.yy528 = yylhsminor.yy528; break; case 192: /* expr ::= LP nexprlist COMMA expr RP */ { ExprList *pList = sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); if( yymsp[-4].minor.yy528 ){ yymsp[-4].minor.yy528->x.pList = pList; if( ALWAYS(pList->nExpr) ){ yymsp[-4].minor.yy528->flags |= pList->a[0].pExpr->flags & EP_Propagate; } }else{ sqlite3ExprListDelete(pParse->db, pList); } } break; case 193: /* expr ::= expr AND expr */ {yymsp[-2].minor.yy528=sqlite3ExprAnd(pParse,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);} break; case 194: /* expr ::= expr OR expr */ case 195: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==195); case 196: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==196); case 197: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==197); case 198: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==198); case 199: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==199); case 200: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==200); {yymsp[-2].minor.yy528=sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);} break; case 201: /* likeop ::= NOT LIKE_KW|MATCH */ {yymsp[-1].minor.yy0=yymsp[0].minor.yy0; yymsp[-1].minor.yy0.n|=0x80000000; /*yymsp[-1].minor.yy0-overwrite-yymsp[0].minor.yy0*/} break; case 202: /* expr ::= expr likeop expr */ { ExprList *pList; int bNot = yymsp[-1].minor.yy0.n & 0x80000000; yymsp[-1].minor.yy0.n &= 0x7fffffff; pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy528); yymsp[-2].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0); if( bNot ) yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-2].minor.yy528, 0); if( yymsp[-2].minor.yy528 ) yymsp[-2].minor.yy528->flags |= EP_InfixFunc; } break; case 203: /* expr ::= expr likeop expr ESCAPE expr */ { ExprList *pList; int bNot = yymsp[-3].minor.yy0.n & 0x80000000; yymsp[-3].minor.yy0.n &= 0x7fffffff; pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528); yymsp[-4].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy0, 0); if( bNot ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); if( yymsp[-4].minor.yy528 ) yymsp[-4].minor.yy528->flags |= EP_InfixFunc; } break; case 204: /* expr ::= expr ISNULL|NOTNULL */ {yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,yymsp[0].major,yymsp[-1].minor.yy528,0);} break; case 205: /* expr ::= expr NOT NULL */ {yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_NOTNULL,yymsp[-2].minor.yy528,0);} break; case 206: /* expr ::= expr IS expr */ { yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-2].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-2].minor.yy528, TK_ISNULL); } break; case 207: /* expr ::= expr IS NOT expr */ { yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-3].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-3].minor.yy528, TK_NOTNULL); } break; case 208: /* expr ::= expr IS NOT DISTINCT FROM expr */ { yymsp[-5].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-5].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-5].minor.yy528, TK_ISNULL); } break; case 209: /* expr ::= expr IS DISTINCT FROM expr */ { yymsp[-4].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-4].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-4].minor.yy528, TK_NOTNULL); } break; case 210: /* expr ::= NOT expr */ case 211: /* expr ::= BITNOT expr */ yytestcase(yyruleno==211); {yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy528, 0);/*A-overwrites-B*/} break; case 212: /* expr ::= PLUS|MINUS expr */ { yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major==TK_PLUS ? TK_UPLUS : TK_UMINUS, yymsp[0].minor.yy528, 0); /*A-overwrites-B*/ } break; case 213: /* expr ::= expr PTR expr */ { ExprList *pList = sqlite3ExprListAppend(pParse, 0, yymsp[-2].minor.yy528); pList = sqlite3ExprListAppend(pParse, pList, yymsp[0].minor.yy528); yylhsminor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0); } yymsp[-2].minor.yy528 = yylhsminor.yy528; break; case 214: /* between_op ::= BETWEEN */ case 217: /* in_op ::= IN */ yytestcase(yyruleno==217); {yymsp[0].minor.yy394 = 0;} break; case 216: /* expr ::= expr between_op expr AND expr */ { ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy528, 0); if( yymsp[-4].minor.yy528 ){ yymsp[-4].minor.yy528->x.pList = pList; }else{ sqlite3ExprListDelete(pParse->db, pList); } if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } break; case 219: /* expr ::= expr in_op LP exprlist RP */ { if( yymsp[-1].minor.yy322==0 ){ /* Expressions of the form ** ** expr1 IN () ** expr1 NOT IN () ** ** simplify to constants 0 (false) and 1 (true), respectively, ** regardless of the value of expr1. */ sqlite3ExprUnmapAndDelete(pParse, yymsp[-4].minor.yy528); yymsp[-4].minor.yy528 = sqlite3Expr(pParse->db, TK_STRING, yymsp[-3].minor.yy394 ? "true" : "false"); if( yymsp[-4].minor.yy528 ) sqlite3ExprIdToTrueFalse(yymsp[-4].minor.yy528); }else{ Expr *pRHS = yymsp[-1].minor.yy322->a[0].pExpr; if( yymsp[-1].minor.yy322->nExpr==1 && sqlite3ExprIsConstant(pRHS) && yymsp[-4].minor.yy528->op!=TK_VECTOR ){ yymsp[-1].minor.yy322->a[0].pExpr = 0; sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322); pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_EQ, yymsp[-4].minor.yy528, pRHS); }else if( yymsp[-1].minor.yy322->nExpr==1 && pRHS->op==TK_SELECT ){ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pRHS->x.pSelect); pRHS->x.pSelect = 0; sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322); }else{ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); if( yymsp[-4].minor.yy528==0 ){ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322); }else if( yymsp[-4].minor.yy528->pLeft->op==TK_VECTOR ){ int nExpr = yymsp[-4].minor.yy528->pLeft->x.pList->nExpr; Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, yymsp[-1].minor.yy322); if( pSelectRHS ){ parserDoubleLinkSelect(pParse, pSelectRHS); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelectRHS); } }else{ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy322; sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528); } } if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } } break; case 220: /* expr ::= LP select RP */ { yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_SELECT, 0, 0); sqlite3PExprAddSelect(pParse, yymsp[-2].minor.yy528, yymsp[-1].minor.yy47); } break; case 221: /* expr ::= expr in_op LP select RP */ { yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, yymsp[-1].minor.yy47); if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } break; case 222: /* expr ::= expr in_op nm dbnm paren_exprlist */ { SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); if( yymsp[0].minor.yy322 ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, yymsp[0].minor.yy322); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelect); if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } break; case 223: /* expr ::= EXISTS LP select RP */ { Expr *p; p = yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); sqlite3PExprAddSelect(pParse, p, yymsp[-1].minor.yy47); } break; case 224: /* expr ::= CASE case_operand case_exprlist case_else END */ { yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy528, 0); if( yymsp[-4].minor.yy528 ){ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy528 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528) : yymsp[-2].minor.yy322; sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528); }else{ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy322); sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528); } } break; case 225: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[-2].minor.yy528); yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[0].minor.yy528); } break; case 226: /* case_exprlist ::= WHEN expr THEN expr */ { yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528); yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322, yymsp[0].minor.yy528); } break; case 231: /* nexprlist ::= nexprlist COMMA expr */ {yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[0].minor.yy528);} break; case 232: /* nexprlist ::= expr */ {yymsp[0].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy528); /*A-overwrites-Y*/} break; case 234: /* paren_exprlist ::= LP exprlist RP */ case 239: /* eidlist_opt ::= LP eidlist RP */ yytestcase(yyruleno==239); {yymsp[-2].minor.yy322 = yymsp[-1].minor.yy322;} break; case 235: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */ { sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy322, yymsp[-10].minor.yy394, &yymsp[-11].minor.yy0, yymsp[0].minor.yy528, SQLITE_SO_ASC, yymsp[-8].minor.yy394, SQLITE_IDXTYPE_APPDEF); if( IN_RENAME_OBJECT && pParse->pNewIndex ){ sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &yymsp[-4].minor.yy0); } } break; case 236: /* uniqueflag ::= UNIQUE */ case 278: /* raisetype ::= ABORT */ yytestcase(yyruleno==278); {yymsp[0].minor.yy394 = OE_Abort;} break; case 237: /* uniqueflag ::= */ {yymsp[1].minor.yy394 = OE_None;} break; case 240: /* eidlist ::= eidlist COMMA nm collate sortorder */ { yymsp[-4].minor.yy322 = parserAddExprIdListTerm(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394); } break; case 241: /* eidlist ::= nm collate sortorder */ { yymsp[-2].minor.yy322 = parserAddExprIdListTerm(pParse, 0, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394); /*A-overwrites-Y*/ } break; case 244: /* cmd ::= DROP INDEX ifexists fullname */ {sqlite3DropIndex(pParse, yymsp[0].minor.yy131, yymsp[-1].minor.yy394);} break; case 245: /* cmd ::= VACUUM vinto */ {sqlite3Vacuum(pParse,0,yymsp[0].minor.yy528);} break; case 246: /* cmd ::= VACUUM nm vinto */ {sqlite3Vacuum(pParse,&yymsp[-1].minor.yy0,yymsp[0].minor.yy528);} break; case 249: /* cmd ::= PRAGMA nm dbnm */ {sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);} break; case 250: /* cmd ::= PRAGMA nm dbnm EQ nmnum */ {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);} break; case 251: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */ {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);} break; case 252: /* cmd ::= PRAGMA nm dbnm EQ minus_num */ {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);} break; case 253: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */ {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);} break; case 256: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ { Token all; all.z = yymsp[-3].minor.yy0.z; all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n; sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy33, &all); } break; case 257: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ { sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy394, yymsp[-4].minor.yy180.a, yymsp[-4].minor.yy180.b, yymsp[-2].minor.yy131, yymsp[0].minor.yy528, yymsp[-10].minor.yy394, yymsp[-8].minor.yy394); yymsp[-10].minor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0); /*A-overwrites-T*/ } break; case 258: /* trigger_time ::= BEFORE|AFTER */ { yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/ } break; case 259: /* trigger_time ::= INSTEAD OF */ { yymsp[-1].minor.yy394 = TK_INSTEAD;} break; case 260: /* trigger_time ::= */ { yymsp[1].minor.yy394 = TK_BEFORE; } break; case 261: /* trigger_event ::= DELETE|INSERT */ case 262: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==262); {yymsp[0].minor.yy180.a = yymsp[0].major; /*A-overwrites-X*/ yymsp[0].minor.yy180.b = 0;} break; case 263: /* trigger_event ::= UPDATE OF idlist */ {yymsp[-2].minor.yy180.a = TK_UPDATE; yymsp[-2].minor.yy180.b = yymsp[0].minor.yy254;} break; case 264: /* when_clause ::= */ case 283: /* key_opt ::= */ yytestcase(yyruleno==283); { yymsp[1].minor.yy528 = 0; } break; case 265: /* when_clause ::= WHEN expr */ case 284: /* key_opt ::= KEY expr */ yytestcase(yyruleno==284); { yymsp[-1].minor.yy528 = yymsp[0].minor.yy528; } break; case 266: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ { assert( yymsp[-2].minor.yy33!=0 ); yymsp[-2].minor.yy33->pLast->pNext = yymsp[-1].minor.yy33; yymsp[-2].minor.yy33->pLast = yymsp[-1].minor.yy33; } break; case 267: /* trigger_cmd_list ::= trigger_cmd SEMI */ { assert( yymsp[-1].minor.yy33!=0 ); yymsp[-1].minor.yy33->pLast = yymsp[-1].minor.yy33; } break; case 268: /* trnm ::= nm DOT nm */ { yymsp[-2].minor.yy0 = yymsp[0].minor.yy0; sqlite3ErrorMsg(pParse, "qualified table names are not allowed on INSERT, UPDATE, and DELETE " "statements within triggers"); } break; case 269: /* tridxby ::= INDEXED BY nm */ { sqlite3ErrorMsg(pParse, "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " "within triggers"); } break; case 270: /* tridxby ::= NOT INDEXED */ { sqlite3ErrorMsg(pParse, "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " "within triggers"); } break; case 271: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */ {yylhsminor.yy33 = sqlite3TriggerUpdateStep(pParse, &yymsp[-6].minor.yy0, yymsp[-2].minor.yy131, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528, yymsp[-7].minor.yy394, yymsp[-8].minor.yy0.z, yymsp[0].minor.yy522);} yymsp[-8].minor.yy33 = yylhsminor.yy33; break; case 272: /* trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */ { yylhsminor.yy33 = sqlite3TriggerInsertStep(pParse,&yymsp[-4].minor.yy0,yymsp[-3].minor.yy254,yymsp[-2].minor.yy47,yymsp[-6].minor.yy394,yymsp[-1].minor.yy444,yymsp[-7].minor.yy522,yymsp[0].minor.yy522);/*yylhsminor.yy33-overwrites-yymsp[-6].minor.yy394*/ } yymsp[-7].minor.yy33 = yylhsminor.yy33; break; case 273: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */ {yylhsminor.yy33 = sqlite3TriggerDeleteStep(pParse, &yymsp[-3].minor.yy0, yymsp[-1].minor.yy528, yymsp[-5].minor.yy0.z, yymsp[0].minor.yy522);} yymsp[-5].minor.yy33 = yylhsminor.yy33; break; case 274: /* trigger_cmd ::= scanpt select scanpt */ {yylhsminor.yy33 = sqlite3TriggerSelectStep(pParse->db, yymsp[-1].minor.yy47, yymsp[-2].minor.yy522, yymsp[0].minor.yy522); /*yylhsminor.yy33-overwrites-yymsp[-1].minor.yy47*/} yymsp[-2].minor.yy33 = yylhsminor.yy33; break; case 275: /* expr ::= RAISE LP IGNORE RP */ { yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_RAISE, 0, 0); if( yymsp[-3].minor.yy528 ){ yymsp[-3].minor.yy528->affExpr = OE_Ignore; } } break; case 276: /* expr ::= RAISE LP raisetype COMMA nm RP */ { yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_RAISE, &yymsp[-1].minor.yy0, 1); if( yymsp[-5].minor.yy528 ) { yymsp[-5].minor.yy528->affExpr = (char)yymsp[-3].minor.yy394; } } break; case 277: /* raisetype ::= ROLLBACK */ {yymsp[0].minor.yy394 = OE_Rollback;} break; case 279: /* raisetype ::= FAIL */ {yymsp[0].minor.yy394 = OE_Fail;} break; case 280: /* cmd ::= DROP TRIGGER ifexists fullname */ { sqlite3DropTrigger(pParse,yymsp[0].minor.yy131,yymsp[-1].minor.yy394); } break; case 281: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ { sqlite3Attach(pParse, yymsp[-3].minor.yy528, yymsp[-1].minor.yy528, yymsp[0].minor.yy528); } break; case 282: /* cmd ::= DETACH database_kw_opt expr */ { sqlite3Detach(pParse, yymsp[0].minor.yy528); } break; case 285: /* cmd ::= REINDEX */ {sqlite3Reindex(pParse, 0, 0);} break; case 286: /* cmd ::= REINDEX nm dbnm */ {sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);} break; case 287: /* cmd ::= ANALYZE */ {sqlite3Analyze(pParse, 0, 0);} break; case 288: /* cmd ::= ANALYZE nm dbnm */ {sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);} break; case 289: /* cmd ::= ALTER TABLE fullname RENAME TO nm */ { sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy131,&yymsp[0].minor.yy0); } break; case 290: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */ { yymsp[-1].minor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-1].minor.yy0.z) + pParse->sLastToken.n; sqlite3AlterFinishAddColumn(pParse, &yymsp[-1].minor.yy0); } break; case 291: /* cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */ { sqlite3AlterDropColumn(pParse, yymsp[-3].minor.yy131, &yymsp[0].minor.yy0); } break; case 292: /* add_column_fullname ::= fullname */ { disableLookaside(pParse); sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy131); } break; case 293: /* cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */ { sqlite3AlterRenameColumn(pParse, yymsp[-5].minor.yy131, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0); } break; case 294: /* cmd ::= create_vtab */ {sqlite3VtabFinishParse(pParse,0);} break; case 295: /* cmd ::= create_vtab LP vtabarglist RP */ {sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);} break; case 296: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ { sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy394); } break; case 297: /* vtabarg ::= */ {sqlite3VtabArgInit(pParse);} break; case 298: /* vtabargtoken ::= ANY */ case 299: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==299); case 300: /* lp ::= LP */ yytestcase(yyruleno==300); {sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);} break; case 301: /* with ::= WITH wqlist */ case 302: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==302); { sqlite3WithPush(pParse, yymsp[0].minor.yy521, 1); } break; case 303: /* wqas ::= AS */ {yymsp[0].minor.yy516 = M10d_Any;} break; case 304: /* wqas ::= AS MATERIALIZED */ {yymsp[-1].minor.yy516 = M10d_Yes;} break; case 305: /* wqas ::= AS NOT MATERIALIZED */ {yymsp[-2].minor.yy516 = M10d_No;} break; case 306: /* wqitem ::= nm eidlist_opt wqas LP select RP */ { yymsp[-5].minor.yy385 = sqlite3CteNew(pParse, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy322, yymsp[-1].minor.yy47, yymsp[-3].minor.yy516); /*A-overwrites-X*/ } break; case 307: /* wqlist ::= wqitem */ { yymsp[0].minor.yy521 = sqlite3WithAdd(pParse, 0, yymsp[0].minor.yy385); /*A-overwrites-X*/ } break; case 308: /* wqlist ::= wqlist COMMA wqitem */ { yymsp[-2].minor.yy521 = sqlite3WithAdd(pParse, yymsp[-2].minor.yy521, yymsp[0].minor.yy385); } break; case 309: /* windowdefn_list ::= windowdefn_list COMMA windowdefn */ { assert( yymsp[0].minor.yy41!=0 ); sqlite3WindowChain(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy41); yymsp[0].minor.yy41->pNextWin = yymsp[-2].minor.yy41; yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[-2].minor.yy41 = yylhsminor.yy41; break; case 310: /* windowdefn ::= nm AS LP window RP */ { if( ALWAYS(yymsp[-1].minor.yy41) ){ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[-4].minor.yy0.z, yymsp[-4].minor.yy0.n); } yylhsminor.yy41 = yymsp[-1].minor.yy41; } yymsp[-4].minor.yy41 = yylhsminor.yy41; break; case 311: /* window ::= PARTITION BY nexprlist orderby_opt frame_opt */ { yymsp[-4].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, 0); } break; case 312: /* window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, &yymsp[-5].minor.yy0); } yymsp[-5].minor.yy41 = yylhsminor.yy41; break; case 313: /* window ::= ORDER BY sortlist frame_opt */ { yymsp[-3].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, 0); } break; case 314: /* window ::= nm ORDER BY sortlist frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0); } yymsp[-4].minor.yy41 = yylhsminor.yy41; break; case 315: /* window ::= nm frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, 0, &yymsp[-1].minor.yy0); } yymsp[-1].minor.yy41 = yylhsminor.yy41; break; case 316: /* frame_opt ::= */ { yymsp[1].minor.yy41 = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); } break; case 317: /* frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ { yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-2].minor.yy394, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, TK_CURRENT, 0, yymsp[0].minor.yy516); } yymsp[-2].minor.yy41 = yylhsminor.yy41; break; case 318: /* frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ { yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-5].minor.yy394, yymsp[-3].minor.yy595.eType, yymsp[-3].minor.yy595.pExpr, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, yymsp[0].minor.yy516); } yymsp[-5].minor.yy41 = yylhsminor.yy41; break; case 320: /* frame_bound_s ::= frame_bound */ case 322: /* frame_bound_e ::= frame_bound */ yytestcase(yyruleno==322); {yylhsminor.yy595 = yymsp[0].minor.yy595;} yymsp[0].minor.yy595 = yylhsminor.yy595; break; case 321: /* frame_bound_s ::= UNBOUNDED PRECEDING */ case 323: /* frame_bound_e ::= UNBOUNDED FOLLOWING */ yytestcase(yyruleno==323); case 325: /* frame_bound ::= CURRENT ROW */ yytestcase(yyruleno==325); {yylhsminor.yy595.eType = yymsp[-1].major; yylhsminor.yy595.pExpr = 0;} yymsp[-1].minor.yy595 = yylhsminor.yy595; break; case 324: /* frame_bound ::= expr PRECEDING|FOLLOWING */ {yylhsminor.yy595.eType = yymsp[0].major; yylhsminor.yy595.pExpr = yymsp[-1].minor.yy528;} yymsp[-1].minor.yy595 = yylhsminor.yy595; break; case 326: /* frame_exclude_opt ::= */ {yymsp[1].minor.yy516 = 0;} break; case 327: /* frame_exclude_opt ::= EXCLUDE frame_exclude */ {yymsp[-1].minor.yy516 = yymsp[0].minor.yy516;} break; case 328: /* frame_exclude ::= NO OTHERS */ case 329: /* frame_exclude ::= CURRENT ROW */ yytestcase(yyruleno==329); {yymsp[-1].minor.yy516 = yymsp[-1].major; /*A-overwrites-X*/} break; case 330: /* frame_exclude ::= GROUP|TIES */ {yymsp[0].minor.yy516 = yymsp[0].major; /*A-overwrites-X*/} break; case 331: /* window_clause ::= WINDOW windowdefn_list */ { yymsp[-1].minor.yy41 = yymsp[0].minor.yy41; } break; case 332: /* filter_over ::= filter_clause over_clause */ { if( yymsp[0].minor.yy41 ){ yymsp[0].minor.yy41->pFilter = yymsp[-1].minor.yy528; }else{ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528); } yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[-1].minor.yy41 = yylhsminor.yy41; break; case 333: /* filter_over ::= over_clause */ { yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[0].minor.yy41 = yylhsminor.yy41; break; case 334: /* filter_over ::= filter_clause */ { yylhsminor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( yylhsminor.yy41 ){ yylhsminor.yy41->eFrmType = TK_FILTER; yylhsminor.yy41->pFilter = yymsp[0].minor.yy528; }else{ sqlite3ExprDelete(pParse->db, yymsp[0].minor.yy528); } } yymsp[0].minor.yy41 = yylhsminor.yy41; break; case 335: /* over_clause ::= OVER LP window RP */ { yymsp[-3].minor.yy41 = yymsp[-1].minor.yy41; assert( yymsp[-3].minor.yy41!=0 ); } break; case 336: /* over_clause ::= OVER nm */ { yymsp[-1].minor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( yymsp[-1].minor.yy41 ){ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n); } } break; case 337: /* filter_clause ::= FILTER LP WHERE expr RP */ { yymsp[-4].minor.yy528 = yymsp[-1].minor.yy528; } break; default: /* (338) input ::= cmdlist */ yytestcase(yyruleno==338); /* (339) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==339); /* (340) cmdlist ::= ecmd (OPTIMIZED OUT) */ assert(yyruleno!=340); /* (341) ecmd ::= SEMI */ yytestcase(yyruleno==341); /* (342) ecmd ::= cmdx SEMI */ yytestcase(yyruleno==342); /* (343) ecmd ::= explain cmdx SEMI (NEVER REDUCES) */ assert(yyruleno!=343); /* (344) trans_opt ::= */ yytestcase(yyruleno==344); /* (345) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==345); /* (346) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==346); /* (347) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==347); /* (348) savepoint_opt ::= */ yytestcase(yyruleno==348); /* (349) cmd ::= create_table create_table_args */ yytestcase(yyruleno==349); /* (350) table_option_set ::= table_option (OPTIMIZED OUT) */ assert(yyruleno!=350); /* (351) columnlist ::= columnlist COMMA columnname carglist */ yytestcase(yyruleno==351); /* (352) columnlist ::= columnname carglist */ yytestcase(yyruleno==352); /* (353) nm ::= ID|INDEXED|JOIN_KW */ yytestcase(yyruleno==353); /* (354) nm ::= STRING */ yytestcase(yyruleno==354); /* (355) typetoken ::= typename */ yytestcase(yyruleno==355); /* (356) typename ::= ID|STRING */ yytestcase(yyruleno==356); /* (357) signed ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=357); /* (358) signed ::= minus_num (OPTIMIZED OUT) */ assert(yyruleno!=358); /* (359) carglist ::= carglist ccons */ yytestcase(yyruleno==359); /* (360) carglist ::= */ yytestcase(yyruleno==360); /* (361) ccons ::= NULL onconf */ yytestcase(yyruleno==361); /* (362) ccons ::= GENERATED ALWAYS AS generated */ yytestcase(yyruleno==362); /* (363) ccons ::= AS generated */ yytestcase(yyruleno==363); /* (364) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==364); /* (365) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==365); /* (366) conslist ::= tcons (OPTIMIZED OUT) */ assert(yyruleno!=366); /* (367) tconscomma ::= */ yytestcase(yyruleno==367); /* (368) defer_subclause_opt ::= defer_subclause (OPTIMIZED OUT) */ assert(yyruleno!=368); /* (369) resolvetype ::= raisetype (OPTIMIZED OUT) */ assert(yyruleno!=369); /* (370) selectnowith ::= oneselect (OPTIMIZED OUT) */ assert(yyruleno!=370); /* (371) oneselect ::= values */ yytestcase(yyruleno==371); /* (372) sclp ::= selcollist COMMA */ yytestcase(yyruleno==372); /* (373) as ::= ID|STRING */ yytestcase(yyruleno==373); /* (374) indexed_opt ::= indexed_by (OPTIMIZED OUT) */ assert(yyruleno!=374); /* (375) returning ::= */ yytestcase(yyruleno==375); /* (376) expr ::= term (OPTIMIZED OUT) */ assert(yyruleno!=376); /* (377) likeop ::= LIKE_KW|MATCH */ yytestcase(yyruleno==377); /* (378) case_operand ::= expr */ yytestcase(yyruleno==378); /* (379) exprlist ::= nexprlist */ yytestcase(yyruleno==379); /* (380) nmnum ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=380); /* (381) nmnum ::= nm (OPTIMIZED OUT) */ assert(yyruleno!=381); /* (382) nmnum ::= ON */ yytestcase(yyruleno==382); /* (383) nmnum ::= DELETE */ yytestcase(yyruleno==383); /* (384) nmnum ::= DEFAULT */ yytestcase(yyruleno==384); /* (385) plus_num ::= INTEGER|FLOAT */ yytestcase(yyruleno==385); /* (386) foreach_clause ::= */ yytestcase(yyruleno==386); /* (387) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==387); /* (388) trnm ::= nm */ yytestcase(yyruleno==388); /* (389) tridxby ::= */ yytestcase(yyruleno==389); /* (390) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==390); /* (391) database_kw_opt ::= */ yytestcase(yyruleno==391); /* (392) kwcolumn_opt ::= */ yytestcase(yyruleno==392); /* (393) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==393); /* (394) vtabarglist ::= vtabarg */ yytestcase(yyruleno==394); /* (395) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==395); /* (396) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==396); /* (397) anylist ::= */ yytestcase(yyruleno==397); /* (398) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==398); /* (399) anylist ::= anylist ANY */ yytestcase(yyruleno==399); /* (400) with ::= */ yytestcase(yyruleno==400); /* (401) windowdefn_list ::= windowdefn (OPTIMIZED OUT) */ assert(yyruleno!=401); /* (402) window ::= frame_opt (OPTIMIZED OUT) */ assert(yyruleno!=402); break; /********** End reduce actions ************************************************/ }; assert( yyrulenoYY_MAX_SHIFT && yyact<=YY_MAX_SHIFTREDUCE) ); /* It is not possible for a REDUCE to be followed by an error */ assert( yyact!=YY_ERROR_ACTION ); yymsp += yysize+1; yypParser->yytos = yymsp; yymsp->stateno = (YYACTIONTYPE)yyact; yymsp->major = (YYCODETYPE)yygoto; yyTraceShift(yypParser, yyact, "... then shift"); return yyact; } /* ** The following code executes when the parse fails */ #ifndef YYNOERRORRECOVERY static void yy_parse_failed( yyParser *yypParser /* The parser */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); } #endif while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will be executed whenever the ** parser fails */ /************ Begin %parse_failure code ***************************************/ /************ End %parse_failure code *****************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */ sqlite3ParserCTX_STORE } #endif /* YYNOERRORRECOVERY */ /* ** The following code executes when a syntax error first occurs. */ static void yy_syntax_error( yyParser *yypParser, /* The parser */ int yymajor, /* The major type of the error token */ sqlite3ParserTOKENTYPE yyminor /* The minor type of the error token */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH #define TOKEN yyminor /************ Begin %syntax_error code ****************************************/ UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ if( TOKEN.z[0] ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); }else{ sqlite3ErrorMsg(pParse, "incomplete input"); } /************ End %syntax_error code ******************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */ sqlite3ParserCTX_STORE } /* ** The following is executed when the parser accepts */ static void yy_accept( yyParser *yypParser /* The parser */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); } #endif #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif assert( yypParser->yytos==yypParser->yystack ); /* Here code is inserted which will be executed whenever the ** parser accepts */ /*********** Begin %parse_accept code *****************************************/ /*********** End %parse_accept code *******************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */ sqlite3ParserCTX_STORE } /* The main parser program. ** The first argument is a pointer to a structure obtained from ** "sqlite3ParserAlloc" which describes the current state of the parser. ** The second argument is the major token number. The third is ** the minor token. The fourth optional argument is whatever the ** user wants (and specified in the grammar) and is available for ** use by the action routines. ** ** Inputs: **
      **
    • A pointer to the parser (an opaque structure.) **
    • The major token number. **
    • The minor token number. **
    • An option argument of a grammar-specified type. **
    ** ** Outputs: ** None. */ SQLITE_PRIVATE void sqlite3Parser( void *yyp, /* The parser */ int yymajor, /* The major token code number */ sqlite3ParserTOKENTYPE yyminor /* The value for the token */ sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */ ){ YYMINORTYPE yyminorunion; YYACTIONTYPE yyact; /* The parser action. */ #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) int yyendofinput; /* True if we are at the end of input */ #endif #ifdef YYERRORSYMBOL int yyerrorhit = 0; /* True if yymajor has invoked an error */ #endif yyParser *yypParser = (yyParser*)yyp; /* The parser */ sqlite3ParserCTX_FETCH sqlite3ParserARG_STORE assert( yypParser->yytos!=0 ); #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) yyendofinput = (yymajor==0); #endif yyact = yypParser->yytos->stateno; #ifndef NDEBUG if( yyTraceFILE ){ if( yyact < YY_MIN_REDUCE ){ fprintf(yyTraceFILE,"%sInput '%s' in state %d\n", yyTracePrompt,yyTokenName[yymajor],yyact); }else{ fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n", yyTracePrompt,yyTokenName[yymajor],yyact-YY_MIN_REDUCE); } } #endif while(1){ /* Exit by "break" */ assert( yypParser->yytos>=yypParser->yystack ); assert( yyact==yypParser->yytos->stateno ); yyact = yy_find_shift_action((YYCODETYPE)yymajor,yyact); if( yyact >= YY_MIN_REDUCE ){ unsigned int yyruleno = yyact - YY_MIN_REDUCE; /* Reduce by this rule */ #ifndef NDEBUG assert( yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ); if( yyTraceFILE ){ int yysize = yyRuleInfoNRhs[yyruleno]; if( yysize ){ fprintf(yyTraceFILE, "%sReduce %d [%s]%s, pop back to state %d.\n", yyTracePrompt, yyruleno, yyRuleName[yyruleno], yyrulenoyytos[yysize].stateno); }else{ fprintf(yyTraceFILE, "%sReduce %d [%s]%s.\n", yyTracePrompt, yyruleno, yyRuleName[yyruleno], yyrulenoyytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack)); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>=yypParser->yystackEnd ){ yyStackOverflow(yypParser); break; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){ if( yyGrowStack(yypParser) ){ yyStackOverflow(yypParser); break; } } #endif } yyact = yy_reduce(yypParser,yyruleno,yymajor,yyminor sqlite3ParserCTX_PARAM); }else if( yyact <= YY_MAX_SHIFTREDUCE ){ yy_shift(yypParser,yyact,(YYCODETYPE)yymajor,yyminor); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt--; #endif break; }else if( yyact==YY_ACCEPT_ACTION ){ yypParser->yytos--; yy_accept(yypParser); return; }else{ assert( yyact == YY_ERROR_ACTION ); yyminorunion.yy0 = yyminor; #ifdef YYERRORSYMBOL int yymx; #endif #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); } #endif #ifdef YYERRORSYMBOL /* A syntax error has occurred. ** The response to an error depends upon whether or not the ** grammar defines an error token "ERROR". ** ** This is what we do if the grammar does define ERROR: ** ** * Call the %syntax_error function. ** ** * Begin popping the stack until we enter a state where ** it is legal to shift the error symbol, then shift ** the error symbol. ** ** * Set the error count to three. ** ** * Begin accepting and shifting new tokens. No new error ** processing will occur until three tokens have been ** shifted successfully. ** */ if( yypParser->yyerrcnt<0 ){ yy_syntax_error(yypParser,yymajor,yyminor); } yymx = yypParser->yytos->major; if( yymx==YYERRORSYMBOL || yyerrorhit ){ #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sDiscard input token %s\n", yyTracePrompt,yyTokenName[yymajor]); } #endif yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion); yymajor = YYNOCODE; }else{ while( yypParser->yytos > yypParser->yystack ){ yyact = yy_find_reduce_action(yypParser->yytos->stateno, YYERRORSYMBOL); if( yyact<=YY_MAX_SHIFTREDUCE ) break; yy_pop_parser_stack(yypParser); } if( yypParser->yytos <= yypParser->yystack || yymajor==0 ){ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif yymajor = YYNOCODE; }else if( yymx!=YYERRORSYMBOL ){ yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor); } } yypParser->yyerrcnt = 3; yyerrorhit = 1; if( yymajor==YYNOCODE ) break; yyact = yypParser->yytos->stateno; #elif defined(YYNOERRORRECOVERY) /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to ** do any kind of error recovery. Instead, simply invoke the syntax ** error routine and continue going as if nothing had happened. ** ** Applications can set this macro (for example inside %include) if ** they intend to abandon the parse upon the first syntax error seen. */ yy_syntax_error(yypParser,yymajor, yyminor); yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); break; #else /* YYERRORSYMBOL is not defined */ /* This is what we do if the grammar does not define ERROR: ** ** * Report an error message, and throw away the input token. ** ** * If the input token is $, then fail the parse. ** ** As before, subsequent error messages are suppressed until ** three input tokens have been successfully shifted. */ if( yypParser->yyerrcnt<=0 ){ yy_syntax_error(yypParser,yymajor, yyminor); } yypParser->yyerrcnt = 3; yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); if( yyendofinput ){ yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif } break; #endif } } #ifndef NDEBUG if( yyTraceFILE ){ yyStackEntry *i; char cDiv = '['; fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt); for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){ fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]); cDiv = ' '; } fprintf(yyTraceFILE,"]\n"); } #endif return; } /* ** Return the fallback token corresponding to canonical token iToken, or ** 0 if iToken has no fallback. */ SQLITE_PRIVATE int sqlite3ParserFallback(int iToken){ #ifdef YYFALLBACK assert( iToken<(int)(sizeof(yyFallback)/sizeof(yyFallback[0])) ); return yyFallback[iToken]; #else (void)iToken; return 0; #endif } /************** End of parse.c ***********************************************/ /************** Begin file tokenize.c ****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** An tokenizer for SQL ** ** This file contains C code that splits an SQL input string up into ** individual tokens and sends those tokens one-by-one over to the ** parser for analysis. */ /* #include "sqliteInt.h" */ /* #include */ /* Character classes for tokenizing ** ** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented ** using a lookup table, whereas a switch() directly on c uses a binary search. ** The lookup table is much faster. To maximize speed, and to ensure that ** a lookup table is used, all of the classes need to be small integers and ** all of them need to be used within the switch. */ #define CC_X 0 /* The letter 'x', or start of BLOB literal */ #define CC_KYWD0 1 /* First letter of a keyword */ #define CC_KYWD 2 /* Alphabetics or '_'. Usable in a keyword */ #define CC_DIGIT 3 /* Digits */ #define CC_DOLLAR 4 /* '$' */ #define CC_VARALPHA 5 /* '@', '#', ':'. Alphabetic SQL variables */ #define CC_VARNUM 6 /* '?'. Numeric SQL variables */ #define CC_SPACE 7 /* Space characters */ #define CC_QUOTE 8 /* '"', '\'', or '`'. String literals, quoted ids */ #define CC_QUOTE2 9 /* '['. [...] style quoted ids */ #define CC_PIPE 10 /* '|'. Bitwise OR or concatenate */ #define CC_MINUS 11 /* '-'. Minus or SQL-style comment */ #define CC_LT 12 /* '<'. Part of < or <= or <> */ #define CC_GT 13 /* '>'. Part of > or >= */ #define CC_EQ 14 /* '='. Part of = or == */ #define CC_BANG 15 /* '!'. Part of != */ #define CC_SLASH 16 /* '/'. / or c-style comment */ #define CC_LP 17 /* '(' */ #define CC_RP 18 /* ')' */ #define CC_SEMI 19 /* ';' */ #define CC_PLUS 20 /* '+' */ #define CC_STAR 21 /* '*' */ #define CC_PERCENT 22 /* '%' */ #define CC_COMMA 23 /* ',' */ #define CC_AND 24 /* '&' */ #define CC_TILDA 25 /* '~' */ #define CC_DOT 26 /* '.' */ #define CC_ID 27 /* unicode characters usable in IDs */ #define CC_ILLEGAL 28 /* Illegal character */ #define CC_NUL 29 /* 0x00 */ #define CC_BOM 30 /* First byte of UTF8 BOM: 0xEF 0xBB 0xBF */ static const unsigned char aiClass[] = { #ifdef SQLITE_ASCII /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */ /* 0x */ 29, 28, 28, 28, 28, 28, 28, 28, 28, 7, 7, 28, 7, 7, 28, 28, /* 1x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 2x */ 7, 15, 8, 5, 4, 22, 24, 8, 17, 18, 21, 20, 23, 11, 26, 16, /* 3x */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 19, 12, 14, 13, 6, /* 4x */ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 5x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 9, 28, 28, 28, 2, /* 6x */ 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 28, 10, 28, 25, 28, /* 8x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* 9x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Ax */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Bx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Cx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Dx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Ex */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 30, /* Fx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27 #endif #ifdef SQLITE_EBCDIC /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */ /* 0x */ 29, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 7, 7, 28, 28, /* 1x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 2x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 3x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 4x */ 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 26, 12, 17, 20, 10, /* 5x */ 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 15, 4, 21, 18, 19, 28, /* 6x */ 11, 16, 28, 28, 28, 28, 28, 28, 28, 28, 28, 23, 22, 2, 13, 6, /* 7x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 8, 5, 5, 5, 8, 14, 8, /* 8x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* 9x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Ax */ 28, 25, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28, /* Bx */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 9, 28, 28, 28, 28, 28, /* Cx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Dx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Ex */ 28, 28, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28, /* Fx */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 28, 28, 28, 28, 28, 28, #endif }; /* ** The charMap() macro maps alphabetic characters (only) into their ** lower-case ASCII equivalent. On ASCII machines, this is just ** an upper-to-lower case map. On EBCDIC machines we also need ** to adjust the encoding. The mapping is only valid for alphabetics ** which are the only characters for which this feature is used. ** ** Used by keywordhash.h */ #ifdef SQLITE_ASCII # define charMap(X) sqlite3UpperToLower[(unsigned char)X] #endif #ifdef SQLITE_EBCDIC # define charMap(X) ebcdicToAscii[(unsigned char)X] const unsigned char ebcdicToAscii[] = { /* 0 1 2 3 4 5 6 7 8 9 A B C D E F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */ }; #endif /* ** The sqlite3KeywordCode function looks up an identifier to determine if ** it is a keyword. If it is a keyword, the token code of that keyword is ** returned. If the input is not a keyword, TK_ID is returned. ** ** The implementation of this routine was generated by a program, ** mkkeywordhash.c, located in the tool subdirectory of the distribution. ** The output of the mkkeywordhash.c program is written into a file ** named keywordhash.h and then included into this source file by ** the #include below. */ /************** Include keywordhash.h in the middle of tokenize.c ************/ /************** Begin file keywordhash.h *************************************/ /***** This file contains automatically generated code ****** ** ** The code in this file has been automatically generated by ** ** sqlite/tool/mkkeywordhash.c ** ** The code in this file implements a function that determines whether ** or not a given identifier is really an SQL keyword. The same thing ** might be implemented more directly using a hand-written hash table. ** But by using this automatically generated code, the size of the code ** is substantially reduced. This is important for embedded applications ** on platforms with limited memory. */ /* Hash score: 231 */ /* zKWText[] encodes 1007 bytes of keyword text in 667 bytes */ /* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */ /* ABLEFTHENDEFERRABLELSEXCLUDELETEMPORARYISNULLSAVEPOINTERSECT */ /* IESNOTNULLIKEXCEPTRANSACTIONATURALTERAISEXCLUSIVEXISTS */ /* CONSTRAINTOFFSETRIGGERANGENERATEDETACHAVINGLOBEGINNEREFERENCES */ /* UNIQUERYWITHOUTERELEASEATTACHBETWEENOTHINGROUPSCASCADEFAULT */ /* CASECOLLATECREATECURRENT_DATEIMMEDIATEJOINSERTMATCHPLANALYZE */ /* PRAGMATERIALIZEDEFERREDISTINCTUPDATEVALUESVIRTUALWAYSWHENWHERE */ /* CURSIVEABORTAFTERENAMEANDROPARTITIONAUTOINCREMENTCASTCOLUMN */ /* COMMITCONFLICTCROSSCURRENT_TIMESTAMPRECEDINGFAILASTFILTER */ /* EPLACEFIRSTFOLLOWINGFROMFULLIMITIFORDERESTRICTOTHERSOVER */ /* ETURNINGRIGHTROLLBACKROWSUNBOUNDEDUNIONUSINGVACUUMVIEWINDOWBY */ /* INITIALLYPRIMARY */ static const char zKWText[666] = { 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H', 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G', 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A', 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F', 'E','R','R','A','B','L','E','L','S','E','X','C','L','U','D','E','L','E', 'T','E','M','P','O','R','A','R','Y','I','S','N','U','L','L','S','A','V', 'E','P','O','I','N','T','E','R','S','E','C','T','I','E','S','N','O','T', 'N','U','L','L','I','K','E','X','C','E','P','T','R','A','N','S','A','C', 'T','I','O','N','A','T','U','R','A','L','T','E','R','A','I','S','E','X', 'C','L','U','S','I','V','E','X','I','S','T','S','C','O','N','S','T','R', 'A','I','N','T','O','F','F','S','E','T','R','I','G','G','E','R','A','N', 'G','E','N','E','R','A','T','E','D','E','T','A','C','H','A','V','I','N', 'G','L','O','B','E','G','I','N','N','E','R','E','F','E','R','E','N','C', 'E','S','U','N','I','Q','U','E','R','Y','W','I','T','H','O','U','T','E', 'R','E','L','E','A','S','E','A','T','T','A','C','H','B','E','T','W','E', 'E','N','O','T','H','I','N','G','R','O','U','P','S','C','A','S','C','A', 'D','E','F','A','U','L','T','C','A','S','E','C','O','L','L','A','T','E', 'C','R','E','A','T','E','C','U','R','R','E','N','T','_','D','A','T','E', 'I','M','M','E','D','I','A','T','E','J','O','I','N','S','E','R','T','M', 'A','T','C','H','P','L','A','N','A','L','Y','Z','E','P','R','A','G','M', 'A','T','E','R','I','A','L','I','Z','E','D','E','F','E','R','R','E','D', 'I','S','T','I','N','C','T','U','P','D','A','T','E','V','A','L','U','E', 'S','V','I','R','T','U','A','L','W','A','Y','S','W','H','E','N','W','H', 'E','R','E','C','U','R','S','I','V','E','A','B','O','R','T','A','F','T', 'E','R','E','N','A','M','E','A','N','D','R','O','P','A','R','T','I','T', 'I','O','N','A','U','T','O','I','N','C','R','E','M','E','N','T','C','A', 'S','T','C','O','L','U','M','N','C','O','M','M','I','T','C','O','N','F', 'L','I','C','T','C','R','O','S','S','C','U','R','R','E','N','T','_','T', 'I','M','E','S','T','A','M','P','R','E','C','E','D','I','N','G','F','A', 'I','L','A','S','T','F','I','L','T','E','R','E','P','L','A','C','E','F', 'I','R','S','T','F','O','L','L','O','W','I','N','G','F','R','O','M','F', 'U','L','L','I','M','I','T','I','F','O','R','D','E','R','E','S','T','R', 'I','C','T','O','T','H','E','R','S','O','V','E','R','E','T','U','R','N', 'I','N','G','R','I','G','H','T','R','O','L','L','B','A','C','K','R','O', 'W','S','U','N','B','O','U','N','D','E','D','U','N','I','O','N','U','S', 'I','N','G','V','A','C','U','U','M','V','I','E','W','I','N','D','O','W', 'B','Y','I','N','I','T','I','A','L','L','Y','P','R','I','M','A','R','Y', }; /* aKWHash[i] is the hash value for the i-th keyword */ static const unsigned char aKWHash[127] = { 84, 92, 134, 82, 105, 29, 0, 0, 94, 0, 85, 72, 0, 53, 35, 86, 15, 0, 42, 97, 54, 89, 135, 19, 0, 0, 140, 0, 40, 129, 0, 22, 107, 0, 9, 0, 0, 123, 80, 0, 78, 6, 0, 65, 103, 147, 0, 136, 115, 0, 0, 48, 0, 90, 24, 0, 17, 0, 27, 70, 23, 26, 5, 60, 142, 110, 122, 0, 73, 91, 71, 145, 61, 120, 74, 0, 49, 0, 11, 41, 0, 113, 0, 0, 0, 109, 10, 111, 116, 125, 14, 50, 124, 0, 100, 0, 18, 121, 144, 56, 130, 139, 88, 83, 37, 30, 126, 0, 0, 108, 51, 131, 128, 0, 34, 0, 0, 132, 0, 98, 38, 39, 0, 20, 45, 117, 93, }; /* aKWNext[] forms the hash collision chain. If aKWHash[i]==0 ** then the i-th keyword has no more hash collisions. Otherwise, ** the next keyword with the same hash is aKWHash[i]-1. */ static const unsigned char aKWNext[148] = {0, 0, 0, 0, 0, 4, 0, 43, 0, 0, 106, 114, 0, 0, 0, 2, 0, 0, 143, 0, 0, 0, 13, 0, 0, 0, 0, 141, 0, 0, 119, 52, 0, 0, 137, 12, 0, 0, 62, 0, 138, 0, 133, 0, 0, 36, 0, 0, 28, 77, 0, 0, 0, 0, 59, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 69, 0, 0, 0, 0, 0, 146, 3, 0, 58, 0, 1, 75, 0, 0, 0, 31, 0, 0, 0, 0, 0, 127, 0, 104, 0, 64, 66, 63, 0, 0, 0, 0, 0, 46, 0, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 101, 0, 112, 21, 7, 67, 0, 79, 96, 118, 0, 0, 68, 0, 0, 99, 44, 0, 55, 0, 76, 0, 95, 32, 33, 57, 25, 0, 102, 0, 0, 87, }; /* aKWLen[i] is the length (in bytes) of the i-th keyword */ static const unsigned char aKWLen[148] = {0, 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6, 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 7, 6, 9, 4, 2, 6, 5, 9, 9, 4, 7, 3, 2, 4, 4, 6, 11, 6, 2, 7, 5, 5, 9, 6, 10, 4, 6, 2, 3, 7, 5, 9, 6, 6, 4, 5, 5, 10, 6, 5, 7, 4, 5, 7, 6, 7, 7, 6, 5, 7, 3, 7, 4, 7, 6, 12, 9, 4, 6, 5, 4, 7, 6, 12, 8, 8, 2, 6, 6, 7, 6, 4, 5, 9, 5, 5, 6, 3, 4, 9, 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 9, 4, 4, 6, 7, 5, 9, 4, 4, 5, 2, 5, 8, 6, 4, 9, 5, 8, 4, 3, 9, 5, 5, 6, 4, 6, 2, 2, 9, 3, 7, }; /* aKWOffset[i] is the index into zKWText[] of the start of ** the text for the i-th keyword. */ static const unsigned short int aKWOffset[148] = {0, 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33, 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81, 86, 90, 90, 94, 99, 101, 105, 111, 119, 123, 123, 123, 126, 129, 132, 137, 142, 146, 147, 152, 156, 160, 168, 174, 181, 184, 184, 187, 189, 195, 198, 206, 211, 216, 219, 222, 226, 236, 239, 244, 244, 248, 252, 259, 265, 271, 277, 277, 283, 284, 288, 295, 299, 306, 312, 324, 333, 335, 341, 346, 348, 355, 359, 370, 377, 378, 385, 391, 397, 402, 408, 412, 415, 424, 429, 433, 439, 441, 444, 453, 455, 457, 466, 470, 476, 482, 490, 495, 495, 495, 511, 520, 523, 527, 532, 539, 544, 553, 557, 560, 565, 567, 571, 579, 585, 588, 597, 602, 610, 610, 614, 623, 628, 633, 639, 642, 645, 648, 650, 655, 659, }; /* aKWCode[i] is the parser symbol code for the i-th keyword */ static const unsigned char aKWCode[148] = {0, TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE, TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE, TK_EXCLUDE, TK_DELETE, TK_TEMP, TK_TEMP, TK_OR, TK_ISNULL, TK_NULLS, TK_SAVEPOINT, TK_INTERSECT, TK_TIES, TK_NOTNULL, TK_NOT, TK_NO, TK_NULL, TK_LIKE_KW, TK_EXCEPT, TK_TRANSACTION,TK_ACTION, TK_ON, TK_JOIN_KW, TK_ALTER, TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_CONSTRAINT, TK_INTO, TK_OFFSET, TK_OF, TK_SET, TK_TRIGGER, TK_RANGE, TK_GENERATED, TK_DETACH, TK_HAVING, TK_LIKE_KW, TK_BEGIN, TK_JOIN_KW, TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_WITHOUT, TK_WITH, TK_JOIN_KW, TK_RELEASE, TK_ATTACH, TK_BETWEEN, TK_NOTHING, TK_GROUPS, TK_GROUP, TK_CASCADE, TK_ASC, TK_DEFAULT, TK_CASE, TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_MATERIALIZED, TK_DEFERRED, TK_DISTINCT, TK_IS, TK_UPDATE, TK_VALUES, TK_VIRTUAL, TK_ALWAYS, TK_WHEN, TK_WHERE, TK_RECURSIVE, TK_ABORT, TK_AFTER, TK_RENAME, TK_AND, TK_DROP, TK_PARTITION, TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_CURRENT, TK_PRECEDING, TK_FAIL, TK_LAST, TK_FILTER, TK_REPLACE, TK_FIRST, TK_FOLLOWING, TK_FROM, TK_JOIN_KW, TK_LIMIT, TK_IF, TK_ORDER, TK_RESTRICT, TK_OTHERS, TK_OVER, TK_RETURNING, TK_JOIN_KW, TK_ROLLBACK, TK_ROWS, TK_ROW, TK_UNBOUNDED, TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_WINDOW, TK_DO, TK_BY, TK_INITIALLY, TK_ALL, TK_PRIMARY, }; /* Hash table decoded: ** 0: INSERT ** 1: IS ** 2: ROLLBACK TRIGGER ** 3: IMMEDIATE ** 4: PARTITION ** 5: TEMP ** 6: ** 7: ** 8: VALUES WITHOUT ** 9: ** 10: MATCH ** 11: NOTHING ** 12: ** 13: OF ** 14: TIES IGNORE ** 15: PLAN ** 16: INSTEAD INDEXED ** 17: ** 18: TRANSACTION RIGHT ** 19: WHEN ** 20: SET HAVING ** 21: MATERIALIZED IF ** 22: ROWS ** 23: SELECT ** 24: ** 25: ** 26: VACUUM SAVEPOINT ** 27: ** 28: LIKE UNION VIRTUAL REFERENCES ** 29: RESTRICT ** 30: ** 31: THEN REGEXP ** 32: TO ** 33: ** 34: BEFORE ** 35: ** 36: ** 37: FOLLOWING COLLATE CASCADE ** 38: CREATE ** 39: ** 40: CASE REINDEX ** 41: EACH ** 42: ** 43: QUERY ** 44: AND ADD ** 45: PRIMARY ANALYZE ** 46: ** 47: ROW ASC DETACH ** 48: CURRENT_TIME CURRENT_DATE ** 49: ** 50: ** 51: EXCLUSIVE TEMPORARY ** 52: ** 53: DEFERRED ** 54: DEFERRABLE ** 55: ** 56: DATABASE ** 57: ** 58: DELETE VIEW GENERATED ** 59: ATTACH ** 60: END ** 61: EXCLUDE ** 62: ESCAPE DESC ** 63: GLOB ** 64: WINDOW ELSE ** 65: COLUMN ** 66: FIRST ** 67: ** 68: GROUPS ALL ** 69: DISTINCT DROP KEY ** 70: BETWEEN ** 71: INITIALLY ** 72: BEGIN ** 73: FILTER CHECK ACTION ** 74: GROUP INDEX ** 75: ** 76: EXISTS DEFAULT ** 77: ** 78: FOR CURRENT_TIMESTAMP ** 79: EXCEPT ** 80: ** 81: CROSS ** 82: ** 83: ** 84: ** 85: CAST ** 86: FOREIGN AUTOINCREMENT ** 87: COMMIT ** 88: CURRENT AFTER ALTER ** 89: FULL FAIL CONFLICT ** 90: EXPLAIN ** 91: CONSTRAINT ** 92: FROM ALWAYS ** 93: ** 94: ABORT ** 95: ** 96: AS DO ** 97: REPLACE WITH RELEASE ** 98: BY RENAME ** 99: RANGE RAISE ** 100: OTHERS ** 101: USING NULLS ** 102: PRAGMA ** 103: JOIN ISNULL OFFSET ** 104: NOT ** 105: OR LAST LEFT ** 106: LIMIT ** 107: ** 108: ** 109: IN ** 110: INTO ** 111: OVER RECURSIVE ** 112: ORDER OUTER ** 113: ** 114: INTERSECT UNBOUNDED ** 115: ** 116: ** 117: RETURNING ON ** 118: ** 119: WHERE ** 120: NO INNER ** 121: NULL ** 122: ** 123: TABLE ** 124: NATURAL NOTNULL ** 125: PRECEDING ** 126: UPDATE UNIQUE */ /* Check to see if z[0..n-1] is a keyword. If it is, write the ** parser symbol code for that keyword into *pType. Always ** return the integer n (the length of the token). */ static int keywordCode(const char *z, int n, int *pType){ int i, j; const char *zKW; assert( n>=2 ); i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n*1) % 127; for(i=(int)aKWHash[i]; i>0; i=aKWNext[i]){ if( aKWLen[i]!=n ) continue; zKW = &zKWText[aKWOffset[i]]; #ifdef SQLITE_ASCII if( (z[0]&~0x20)!=zKW[0] ) continue; if( (z[1]&~0x20)!=zKW[1] ) continue; j = 2; while( j=2 ) keywordCode((char*)z, n, &id); return id; } #define SQLITE_N_KEYWORD 147 SQLITE_API int sqlite3_keyword_name(int i,const char **pzName,int *pnName){ if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR; i++; *pzName = zKWText + aKWOffset[i]; *pnName = aKWLen[i]; return SQLITE_OK; } SQLITE_API int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; } SQLITE_API int sqlite3_keyword_check(const char *zName, int nName){ return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName); } /************** End of keywordhash.h *****************************************/ /************** Continuing where we left off in tokenize.c *******************/ /* ** If X is a character that can be used in an identifier then ** IdChar(X) will be true. Otherwise it is false. ** ** For ASCII, any character with the high-order bit set is ** allowed in an identifier. For 7-bit characters, ** sqlite3IsIdChar[X] must be 1. ** ** For EBCDIC, the rules are more complex but have the same ** end result. ** ** Ticket #1066. the SQL standard does not allow '$' in the ** middle of identifiers. But many SQL implementations do. ** SQLite will allow '$' in identifiers for compatibility. ** But the feature is undocumented. */ #ifdef SQLITE_ASCII #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) #endif #ifdef SQLITE_EBCDIC SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ }; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif /* Make the IdChar function accessible from ctime.c and alter.c */ SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Return the id of the next token in string (*pz). Before returning, set ** (*pz) to point to the byte following the parsed token. */ static int getToken(const unsigned char **pz){ const unsigned char *z = *pz; int t; /* Token type to return */ do { z += sqlite3GetToken(z, &t); }while( t==TK_SPACE ); if( t==TK_ID || t==TK_STRING || t==TK_JOIN_KW || t==TK_WINDOW || t==TK_OVER || sqlite3ParserFallback(t)==TK_ID ){ t = TK_ID; } *pz = z; return t; } /* ** The following three functions are called immediately after the tokenizer ** reads the keywords WINDOW, OVER and FILTER, respectively, to determine ** whether the token should be treated as a keyword or an SQL identifier. ** This cannot be handled by the usual lemon %fallback method, due to ** the ambiguity in some constructions. e.g. ** ** SELECT sum(x) OVER ... ** ** In the above, "OVER" might be a keyword, or it might be an alias for the ** sum(x) expression. If a "%fallback ID OVER" directive were added to ** grammar, then SQLite would always treat "OVER" as an alias, making it ** impossible to call a window-function without a FILTER clause. ** ** WINDOW is treated as a keyword if: ** ** * the following token is an identifier, or a keyword that can fallback ** to being an identifier, and ** * the token after than one is TK_AS. ** ** OVER is a keyword if: ** ** * the previous token was TK_RP, and ** * the next token is either TK_LP or an identifier. ** ** FILTER is a keyword if: ** ** * the previous token was TK_RP, and ** * the next token is TK_LP. */ static int analyzeWindowKeyword(const unsigned char *z){ int t; t = getToken(&z); if( t!=TK_ID ) return TK_ID; t = getToken(&z); if( t!=TK_AS ) return TK_ID; return TK_WINDOW; } static int analyzeOverKeyword(const unsigned char *z, int lastToken){ if( lastToken==TK_RP ){ int t = getToken(&z); if( t==TK_LP || t==TK_ID ) return TK_OVER; } return TK_ID; } static int analyzeFilterKeyword(const unsigned char *z, int lastToken){ if( lastToken==TK_RP && getToken(&z)==TK_LP ){ return TK_FILTER; } return TK_ID; } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Return the length (in bytes) of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){ int i, c; switch( aiClass[*z] ){ /* Switch on the character-class of the first byte ** of the token. See the comment on the CC_ defines ** above. */ case CC_SPACE: { testcase( z[0]==' ' ); testcase( z[0]=='\t' ); testcase( z[0]=='\n' ); testcase( z[0]=='\f' ); testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case CC_MINUS: { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; }else if( z[1]=='>' ){ *tokenType = TK_PTR; return 2 + (z[2]=='>'); } *tokenType = TK_MINUS; return 1; } case CC_LP: { *tokenType = TK_LP; return 1; } case CC_RP: { *tokenType = TK_RP; return 1; } case CC_SEMI: { *tokenType = TK_SEMI; return 1; } case CC_PLUS: { *tokenType = TK_PLUS; return 1; } case CC_STAR: { *tokenType = TK_STAR; return 1; } case CC_SLASH: { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case CC_PERCENT: { *tokenType = TK_REM; return 1; } case CC_EQ: { *tokenType = TK_EQ; return 1 + (z[1]=='='); } case CC_LT: { if( (c=z[1])=='=' ){ *tokenType = TK_LE; return 2; }else if( c=='>' ){ *tokenType = TK_NE; return 2; }else if( c=='<' ){ *tokenType = TK_LSHIFT; return 2; }else{ *tokenType = TK_LT; return 1; } } case CC_GT: { if( (c=z[1])=='=' ){ *tokenType = TK_GE; return 2; }else if( c=='>' ){ *tokenType = TK_RSHIFT; return 2; }else{ *tokenType = TK_GT; return 1; } } case CC_BANG: { if( z[1]!='=' ){ *tokenType = TK_ILLEGAL; return 1; }else{ *tokenType = TK_NE; return 2; } } case CC_PIPE: { if( z[1]!='|' ){ *tokenType = TK_BITOR; return 1; }else{ *tokenType = TK_CONCAT; return 2; } } case CC_COMMA: { *tokenType = TK_COMMA; return 1; } case CC_AND: { *tokenType = TK_BITAND; return 1; } case CC_TILDA: { *tokenType = TK_BITNOT; return 1; } case CC_QUOTE: { int delim = z[0]; testcase( delim=='`' ); testcase( delim=='\'' ); testcase( delim=='"' ); for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } if( c=='\'' ){ *tokenType = TK_STRING; return i+1; }else if( c!=0 ){ *tokenType = TK_ID; return i+1; }else{ *tokenType = TK_ILLEGAL; return i; } } case CC_DOT: { #ifndef SQLITE_OMIT_FLOATING_POINT if( !sqlite3Isdigit(z[1]) ) #endif { *tokenType = TK_DOT; return 1; } /* If the next character is a digit, this is a floating point ** number that begins with ".". Fall thru into the next case */ /* no break */ deliberate_fall_through } case CC_DIGIT: { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); testcase( z[0]=='9' ); testcase( z[0]=='.' ); *tokenType = TK_INTEGER; #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){ for(i=3; sqlite3Isxdigit(z[i]); i++){} return i; } #endif for(i=0; sqlite3Isdigit(z[i]); i++){} #ifndef SQLITE_OMIT_FLOATING_POINT if( z[i]=='.' ){ i++; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } if( (z[i]=='e' || z[i]=='E') && ( sqlite3Isdigit(z[i+1]) || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) ) ){ i += 2; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } #endif while( IdChar(z[i]) ){ *tokenType = TK_ILLEGAL; i++; } return i; } case CC_QUOTE2: { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = c==']' ? TK_ID : TK_ILLEGAL; return i; } case CC_VARNUM: { *tokenType = TK_VARIABLE; for(i=1; sqlite3Isdigit(z[i]); i++){} return i; } case CC_DOLLAR: case CC_VARALPHA: { int n = 0; testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' ); testcase( z[0]=='#' ); *tokenType = TK_VARIABLE; for(i=1; (c=z[i])!=0; i++){ if( IdChar(c) ){ n++; #ifndef SQLITE_OMIT_TCL_VARIABLE }else if( c=='(' && n>0 ){ do{ i++; }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); if( c==')' ){ i++; }else{ *tokenType = TK_ILLEGAL; } break; }else if( c==':' && z[i+1]==':' ){ i++; #endif }else{ break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } case CC_KYWD0: { if( aiClass[z[1]]>CC_KYWD ){ i = 1; break; } for(i=2; aiClass[z[i]]<=CC_KYWD; i++){} if( IdChar(z[i]) ){ /* This token started out using characters that can appear in keywords, ** but z[i] is a character not allowed within keywords, so this must ** be an identifier instead */ i++; break; } *tokenType = TK_ID; return keywordCode((char*)z, i, tokenType); } case CC_X: { #ifndef SQLITE_OMIT_BLOB_LITERAL testcase( z[0]=='x' ); testcase( z[0]=='X' ); if( z[1]=='\'' ){ *tokenType = TK_BLOB; for(i=2; sqlite3Isxdigit(z[i]); i++){} if( z[i]!='\'' || i%2 ){ *tokenType = TK_ILLEGAL; while( z[i] && z[i]!='\'' ){ i++; } } if( z[i] ) i++; return i; } #endif /* If it is not a BLOB literal, then it must be an ID, since no ** SQL keywords start with the letter 'x'. Fall through */ /* no break */ deliberate_fall_through } case CC_KYWD: case CC_ID: { i = 1; break; } case CC_BOM: { if( z[1]==0xbb && z[2]==0xbf ){ *tokenType = TK_SPACE; return 3; } i = 1; break; } case CC_NUL: { *tokenType = TK_ILLEGAL; return 0; } default: { *tokenType = TK_ILLEGAL; return 1; } } while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; } /* ** Run the parser on the given SQL string. */ SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql){ int nErr = 0; /* Number of errors encountered */ void *pEngine; /* The LEMON-generated LALR(1) parser */ int n = 0; /* Length of the next token token */ int tokenType; /* type of the next token */ int lastTokenParsed = -1; /* type of the previous token */ sqlite3 *db = pParse->db; /* The database connection */ int mxSqlLen; /* Max length of an SQL string */ Parse *pParentParse = 0; /* Outer parse context, if any */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK yyParser sEngine; /* Space to hold the Lemon-generated Parser object */ #endif VVA_ONLY( u8 startedWithOom = db->mallocFailed ); assert( zSql!=0 ); mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } pParse->rc = SQLITE_OK; pParse->zTail = zSql; #ifdef SQLITE_DEBUG if( db->flags & SQLITE_ParserTrace ){ printf("parser: [[[%s]]]\n", zSql); sqlite3ParserTrace(stdout, "parser: "); }else{ sqlite3ParserTrace(0, 0); } #endif #ifdef sqlite3Parser_ENGINEALWAYSONSTACK pEngine = &sEngine; sqlite3ParserInit(pEngine, pParse); #else pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse); if( pEngine==0 ){ sqlite3OomFault(db); return SQLITE_NOMEM_BKPT; } #endif assert( pParse->pNewTable==0 ); assert( pParse->pNewTrigger==0 ); assert( pParse->nVar==0 ); assert( pParse->pVList==0 ); pParentParse = db->pParse; db->pParse = pParse; while( 1 ){ n = sqlite3GetToken((u8*)zSql, &tokenType); mxSqlLen -= n; if( mxSqlLen<0 ){ pParse->rc = SQLITE_TOOBIG; pParse->nErr++; break; } #ifndef SQLITE_OMIT_WINDOWFUNC if( tokenType>=TK_WINDOW ){ assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER || tokenType==TK_ILLEGAL || tokenType==TK_WINDOW ); #else if( tokenType>=TK_SPACE ){ assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL ); #endif /* SQLITE_OMIT_WINDOWFUNC */ if( AtomicLoad(&db->u1.isInterrupted) ){ pParse->rc = SQLITE_INTERRUPT; pParse->nErr++; break; } if( tokenType==TK_SPACE ){ zSql += n; continue; } if( zSql[0]==0 ){ /* Upon reaching the end of input, call the parser two more times ** with tokens TK_SEMI and 0, in that order. */ if( lastTokenParsed==TK_SEMI ){ tokenType = 0; }else if( lastTokenParsed==0 ){ break; }else{ tokenType = TK_SEMI; } n = 0; #ifndef SQLITE_OMIT_WINDOWFUNC }else if( tokenType==TK_WINDOW ){ assert( n==6 ); tokenType = analyzeWindowKeyword((const u8*)&zSql[6]); }else if( tokenType==TK_OVER ){ assert( n==4 ); tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed); }else if( tokenType==TK_FILTER ){ assert( n==6 ); tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed); #endif /* SQLITE_OMIT_WINDOWFUNC */ }else{ Token x; x.z = zSql; x.n = n; sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"", &x); break; } } pParse->sLastToken.z = zSql; pParse->sLastToken.n = n; sqlite3Parser(pEngine, tokenType, pParse->sLastToken); lastTokenParsed = tokenType; zSql += n; assert( db->mallocFailed==0 || pParse->rc!=SQLITE_OK || startedWithOom ); if( pParse->rc!=SQLITE_OK ) break; } assert( nErr==0 ); #ifdef YYTRACKMAXSTACKDEPTH sqlite3_mutex_enter(sqlite3MallocMutex()); sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK, sqlite3ParserStackPeak(pEngine) ); sqlite3_mutex_leave(sqlite3MallocMutex()); #endif /* YYDEBUG */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK sqlite3ParserFinalize(pEngine); #else sqlite3ParserFree(pEngine, sqlite3_free); #endif if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM_BKPT; } if( pParse->zErrMsg || (pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE) ){ if( pParse->zErrMsg==0 ){ pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc)); } sqlite3_log(pParse->rc, "%s in \"%s\"", pParse->zErrMsg, pParse->zTail); nErr++; } pParse->zTail = zSql; #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_free(pParse->apVtabLock); #endif if( pParse->pNewTable && !IN_SPECIAL_PARSE ){ /* If the pParse->declareVtab flag is set, do not delete any table ** structure built up in pParse->pNewTable. The calling code (see vtab.c) ** will take responsibility for freeing the Table structure. */ sqlite3DeleteTable(db, pParse->pNewTable); } if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){ sqlite3DeleteTrigger(db, pParse->pNewTrigger); } if( pParse->pVList ) sqlite3DbNNFreeNN(db, pParse->pVList); db->pParse = pParentParse; assert( nErr==0 || pParse->rc!=SQLITE_OK ); return nErr; } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Insert a single space character into pStr if the current string ** ends with an identifier */ static void addSpaceSeparator(sqlite3_str *pStr){ if( pStr->nChar && sqlite3IsIdChar(pStr->zText[pStr->nChar-1]) ){ sqlite3_str_append(pStr, " ", 1); } } /* ** Compute a normalization of the SQL given by zSql[0..nSql-1]. Return ** the normalization in space obtained from sqlite3DbMalloc(). Or return ** NULL if anything goes wrong or if zSql is NULL. */ SQLITE_PRIVATE char *sqlite3Normalize( Vdbe *pVdbe, /* VM being reprepared */ const char *zSql /* The original SQL string */ ){ sqlite3 *db; /* The database connection */ int i; /* Next unread byte of zSql[] */ int n; /* length of current token */ int tokenType; /* type of current token */ int prevType = 0; /* Previous non-whitespace token */ int nParen; /* Number of nested levels of parentheses */ int iStartIN; /* Start of RHS of IN operator in z[] */ int nParenAtIN; /* Value of nParent at start of RHS of IN operator */ u32 j; /* Bytes of normalized SQL generated so far */ sqlite3_str *pStr; /* The normalized SQL string under construction */ db = sqlite3VdbeDb(pVdbe); tokenType = -1; nParen = iStartIN = nParenAtIN = 0; pStr = sqlite3_str_new(db); assert( pStr!=0 ); /* sqlite3_str_new() never returns NULL */ for(i=0; zSql[i] && pStr->accError==0; i+=n){ if( tokenType!=TK_SPACE ){ prevType = tokenType; } n = sqlite3GetToken((unsigned char*)zSql+i, &tokenType); if( NEVER(n<=0) ) break; switch( tokenType ){ case TK_SPACE: { break; } case TK_NULL: { if( prevType==TK_IS || prevType==TK_NOT ){ sqlite3_str_append(pStr, " NULL", 5); break; } /* Fall through */ } case TK_STRING: case TK_INTEGER: case TK_FLOAT: case TK_VARIABLE: case TK_BLOB: { sqlite3_str_append(pStr, "?", 1); break; } case TK_LP: { nParen++; if( prevType==TK_IN ){ iStartIN = pStr->nChar; nParenAtIN = nParen; } sqlite3_str_append(pStr, "(", 1); break; } case TK_RP: { if( iStartIN>0 && nParen==nParenAtIN ){ assert( pStr->nChar>=(u32)iStartIN ); pStr->nChar = iStartIN+1; sqlite3_str_append(pStr, "?,?,?", 5); iStartIN = 0; } nParen--; sqlite3_str_append(pStr, ")", 1); break; } case TK_ID: { iStartIN = 0; j = pStr->nChar; if( sqlite3Isquote(zSql[i]) ){ char *zId = sqlite3DbStrNDup(db, zSql+i, n); int nId; int eType = 0; if( zId==0 ) break; sqlite3Dequote(zId); if( zSql[i]=='"' && sqlite3VdbeUsesDoubleQuotedString(pVdbe, zId) ){ sqlite3_str_append(pStr, "?", 1); sqlite3DbFree(db, zId); break; } nId = sqlite3Strlen30(zId); if( sqlite3GetToken((u8*)zId, &eType)==nId && eType==TK_ID ){ addSpaceSeparator(pStr); sqlite3_str_append(pStr, zId, nId); }else{ sqlite3_str_appendf(pStr, "\"%w\"", zId); } sqlite3DbFree(db, zId); }else{ addSpaceSeparator(pStr); sqlite3_str_append(pStr, zSql+i, n); } while( jnChar ){ pStr->zText[j] = sqlite3Tolower(pStr->zText[j]); j++; } break; } case TK_SELECT: { iStartIN = 0; /* fall through */ } default: { if( sqlite3IsIdChar(zSql[i]) ) addSpaceSeparator(pStr); j = pStr->nChar; sqlite3_str_append(pStr, zSql+i, n); while( jnChar ){ pStr->zText[j] = sqlite3Toupper(pStr->zText[j]); j++; } break; } } } if( tokenType!=TK_SEMI ) sqlite3_str_append(pStr, ";", 1); return sqlite3_str_finish(pStr); } #endif /* SQLITE_ENABLE_NORMALIZE */ /************** End of tokenize.c ********************************************/ /************** Begin file complete.c ****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** An tokenizer for SQL ** ** This file contains C code that implements the sqlite3_complete() API. ** This code used to be part of the tokenizer.c source file. But by ** separating it out, the code will be automatically omitted from ** static links that do not use it. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_COMPLETE /* ** This is defined in tokenize.c. We just have to import the definition. */ #ifndef SQLITE_AMALGAMATION #ifdef SQLITE_ASCII #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) #endif #ifdef SQLITE_EBCDIC SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[]; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif #endif /* SQLITE_AMALGAMATION */ /* ** Token types used by the sqlite3_complete() routine. See the header ** comments on that procedure for additional information. */ #define tkSEMI 0 #define tkWS 1 #define tkOTHER 2 #ifndef SQLITE_OMIT_TRIGGER #define tkEXPLAIN 3 #define tkCREATE 4 #define tkTEMP 5 #define tkTRIGGER 6 #define tkEND 7 #endif /* ** Return TRUE if the given SQL string ends in a semicolon. ** ** Special handling is require for CREATE TRIGGER statements. ** Whenever the CREATE TRIGGER keywords are seen, the statement ** must end with ";END;". ** ** This implementation uses a state machine with 8 states: ** ** (0) INVALID We have not yet seen a non-whitespace character. ** ** (1) START At the beginning or end of an SQL statement. This routine ** returns 1 if it ends in the START state and 0 if it ends ** in any other state. ** ** (2) NORMAL We are in the middle of statement which ends with a single ** semicolon. ** ** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of ** a statement. ** ** (4) CREATE The keyword CREATE has been seen at the beginning of a ** statement, possibly preceded by EXPLAIN and/or followed by ** TEMP or TEMPORARY ** ** (5) TRIGGER We are in the middle of a trigger definition that must be ** ended by a semicolon, the keyword END, and another semicolon. ** ** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at ** the end of a trigger definition. ** ** (7) END We've seen the ";END" of the ";END;" that occurs at the end ** of a trigger definition. ** ** Transitions between states above are determined by tokens extracted ** from the input. The following tokens are significant: ** ** (0) tkSEMI A semicolon. ** (1) tkWS Whitespace. ** (2) tkOTHER Any other SQL token. ** (3) tkEXPLAIN The "explain" keyword. ** (4) tkCREATE The "create" keyword. ** (5) tkTEMP The "temp" or "temporary" keyword. ** (6) tkTRIGGER The "trigger" keyword. ** (7) tkEND The "end" keyword. ** ** Whitespace never causes a state transition and is always ignored. ** This means that a SQL string of all whitespace is invalid. ** ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed ** to recognize the end of a trigger can be omitted. All we have to do ** is look for a semicolon that is not part of an string or comment. */ SQLITE_API int sqlite3_complete(const char *zSql){ u8 state = 0; /* Current state, using numbers defined in header comment */ u8 token; /* Value of the next token */ #ifndef SQLITE_OMIT_TRIGGER /* A complex statement machine used to detect the end of a CREATE TRIGGER ** statement. This is the normal case. */ static const u8 trans[8][8] = { /* Token: */ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */ /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, }, /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, }, /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, }, /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, }, /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, }; #else /* If triggers are not supported by this compile then the statement machine ** used to detect the end of a statement is much simpler */ static const u8 trans[3][3] = { /* Token: */ /* State: ** SEMI WS OTHER */ /* 0 INVALID: */ { 1, 0, 2, }, /* 1 START: */ { 1, 1, 2, }, /* 2 NORMAL: */ { 1, 2, 2, }, }; #endif /* SQLITE_OMIT_TRIGGER */ #ifdef SQLITE_ENABLE_API_ARMOR if( zSql==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif while( *zSql ){ switch( *zSql ){ case ';': { /* A semicolon */ token = tkSEMI; break; } case ' ': case '\r': case '\t': case '\n': case '\f': { /* White space is ignored */ token = tkWS; break; } case '/': { /* C-style comments */ if( zSql[1]!='*' ){ token = tkOTHER; break; } zSql += 2; while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; } if( zSql[0]==0 ) return 0; zSql++; token = tkWS; break; } case '-': { /* SQL-style comments from "--" to end of line */ if( zSql[1]!='-' ){ token = tkOTHER; break; } while( *zSql && *zSql!='\n' ){ zSql++; } if( *zSql==0 ) return state==1; token = tkWS; break; } case '[': { /* Microsoft-style identifiers in [...] */ zSql++; while( *zSql && *zSql!=']' ){ zSql++; } if( *zSql==0 ) return 0; token = tkOTHER; break; } case '`': /* Grave-accent quoted symbols used by MySQL */ case '"': /* single- and double-quoted strings */ case '\'': { int c = *zSql; zSql++; while( *zSql && *zSql!=c ){ zSql++; } if( *zSql==0 ) return 0; token = tkOTHER; break; } default: { #ifdef SQLITE_EBCDIC unsigned char c; #endif if( IdChar((u8)*zSql) ){ /* Keywords and unquoted identifiers */ int nId; for(nId=1; IdChar(zSql[nId]); nId++){} #ifdef SQLITE_OMIT_TRIGGER token = tkOTHER; #else switch( *zSql ){ case 'c': case 'C': { if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){ token = tkCREATE; }else{ token = tkOTHER; } break; } case 't': case 'T': { if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){ token = tkTRIGGER; }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){ token = tkTEMP; }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){ token = tkTEMP; }else{ token = tkOTHER; } break; } case 'e': case 'E': { if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){ token = tkEND; }else #ifndef SQLITE_OMIT_EXPLAIN if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){ token = tkEXPLAIN; }else #endif { token = tkOTHER; } break; } default: { token = tkOTHER; break; } } #endif /* SQLITE_OMIT_TRIGGER */ zSql += nId-1; }else{ /* Operators and special symbols */ token = tkOTHER; } break; } } state = trans[state][token]; zSql++; } return state==1; } #ifndef SQLITE_OMIT_UTF16 /* ** This routine is the same as the sqlite3_complete() routine described ** above, except that the parameter is required to be UTF-16 encoded, not ** UTF-8. */ SQLITE_API int sqlite3_complete16(const void *zSql){ sqlite3_value *pVal; char const *zSql8; int rc; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); }else{ rc = SQLITE_NOMEM_BKPT; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_COMPLETE */ /************** End of complete.c ********************************************/ /************** Begin file main.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. */ /* #include "sqliteInt.h" */ #ifdef SQLITE_ENABLE_FTS3 /************** Include fts3.h in the middle of main.c ***********************/ /************** Begin file fts3.h ********************************************/ /* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file is used by programs that want to link against the ** FTS3 library. All it does is declare the sqlite3Fts3Init() interface. */ /* #include "sqlite3.h" */ #if 0 extern "C" { #endif /* __cplusplus */ SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db); #if 0 } /* extern "C" */ #endif /* __cplusplus */ /************** End of fts3.h ************************************************/ /************** Continuing where we left off in main.c ***********************/ #endif #ifdef SQLITE_ENABLE_RTREE /************** Include rtree.h in the middle of main.c **********************/ /************** Begin file rtree.h *******************************************/ /* ** 2008 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file is used by programs that want to link against the ** RTREE library. All it does is declare the sqlite3RtreeInit() interface. */ /* #include "sqlite3.h" */ #ifdef SQLITE_OMIT_VIRTUALTABLE # undef SQLITE_ENABLE_RTREE #endif #if 0 extern "C" { #endif /* __cplusplus */ SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db); #if 0 } /* extern "C" */ #endif /* __cplusplus */ /************** End of rtree.h ***********************************************/ /************** Continuing where we left off in main.c ***********************/ #endif #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) /************** Include sqliteicu.h in the middle of main.c ******************/ /************** Begin file sqliteicu.h ***************************************/ /* ** 2008 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file is used by programs that want to link against the ** ICU extension. All it does is declare the sqlite3IcuInit() interface. */ /* #include "sqlite3.h" */ #if 0 extern "C" { #endif /* __cplusplus */ SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db); #if 0 } /* extern "C" */ #endif /* __cplusplus */ /************** End of sqliteicu.h *******************************************/ /************** Continuing where we left off in main.c ***********************/ #endif /* ** This is an extension initializer that is a no-op and always ** succeeds, except that it fails if the fault-simulation is set ** to 500. */ static int sqlite3TestExtInit(sqlite3 *db){ (void)db; return sqlite3FaultSim(500); } /* ** Forward declarations of external module initializer functions ** for modules that need them. */ #ifdef SQLITE_ENABLE_FTS5 SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3*); #endif #ifdef SQLITE_ENABLE_STMTVTAB SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3*); #endif /* ** An array of pointers to extension initializer functions for ** built-in extensions. */ static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = { #ifdef SQLITE_ENABLE_FTS3 sqlite3Fts3Init, #endif #ifdef SQLITE_ENABLE_FTS5 sqlite3Fts5Init, #endif #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) sqlite3IcuInit, #endif #ifdef SQLITE_ENABLE_RTREE sqlite3RtreeInit, #endif #ifdef SQLITE_ENABLE_DBPAGE_VTAB sqlite3DbpageRegister, #endif #ifdef SQLITE_ENABLE_DBSTAT_VTAB sqlite3DbstatRegister, #endif sqlite3TestExtInit, #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) sqlite3JsonTableFunctions, #endif #ifdef SQLITE_ENABLE_STMTVTAB sqlite3StmtVtabInit, #endif #ifdef SQLITE_ENABLE_BYTECODE_VTAB sqlite3VdbeBytecodeVtabInit, #endif }; #ifndef SQLITE_AMALGAMATION /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant ** contains the text of SQLITE_VERSION macro. */ SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; #endif /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns ** a pointer to the to the sqlite3_version[] string constant. */ SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; } /* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a ** pointer to a string constant whose value is the same as the ** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using ** an edited copy of the amalgamation, then the last four characters of ** the hash might be different from SQLITE_SOURCE_ID. */ /* SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } */ /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function ** returns an integer equal to SQLITE_VERSION_NUMBER. */ SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns ** zero if and only if SQLite was compiled with mutexing code omitted due to ** the SQLITE_THREADSAFE compile-time option being set to 0. */ SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } /* ** When compiling the test fixture or with debugging enabled (on Win32), ** this variable being set to non-zero will cause OSTRACE macros to emit ** extra diagnostic information. */ #ifdef SQLITE_HAVE_OS_TRACE # ifndef SQLITE_DEBUG_OS_TRACE # define SQLITE_DEBUG_OS_TRACE 0 # endif int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing ** I/O active are written using this function. These messages ** are intended for debugging activity only. */ SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; #endif /* ** If the following global variable points to a string which is the ** name of a directory, then that directory will be used to store ** temporary files. ** ** See also the "PRAGMA temp_store_directory" SQL command. */ SQLITE_API char *sqlite3_temp_directory = 0; /* ** If the following global variable points to a string which is the ** name of a directory, then that directory will be used to store ** all database files specified with a relative pathname. ** ** See also the "PRAGMA data_store_directory" SQL command. */ SQLITE_API char *sqlite3_data_directory = 0; /* ** Initialize SQLite. ** ** This routine must be called to initialize the memory allocation, ** VFS, and mutex subsystems prior to doing any serious work with ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT ** this routine will be called automatically by key routines such as ** sqlite3_open(). ** ** This routine is a no-op except on its very first call for the process, ** or for the first call after a call to sqlite3_shutdown. ** ** The first thread to call this routine runs the initialization to ** completion. If subsequent threads call this routine before the first ** thread has finished the initialization process, then the subsequent ** threads must block until the first thread finishes with the initialization. ** ** The first thread might call this routine recursively. Recursive ** calls to this routine should not block, of course. Otherwise the ** initialization process would never complete. ** ** Let X be the first thread to enter this routine. Let Y be some other ** thread. Then while the initial invocation of this routine by X is ** incomplete, it is required that: ** ** * Calls to this routine from Y must block until the outer-most ** call by X completes. ** ** * Recursive calls to this routine from thread X return immediately ** without blocking. */ SQLITE_API int sqlite3_initialize(void){ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */ int rc; /* Result code */ #ifdef SQLITE_EXTRA_INIT int bRunExtraInit = 0; /* Extra initialization needed */ #endif #ifdef SQLITE_OMIT_WSD rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif /* If the following assert() fails on some obscure processor/compiler ** combination, the work-around is to set the correct pointer ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ assert( SQLITE_PTRSIZE==sizeof(char*) ); /* If SQLite is already completely initialized, then this call ** to sqlite3_initialize() should be a no-op. But the initialization ** must be complete. So isInit must not be set until the very end ** of this routine. */ if( sqlite3GlobalConfig.isInit ){ sqlite3MemoryBarrier(); return SQLITE_OK; } /* Make sure the mutex subsystem is initialized. If unable to ** initialize the mutex subsystem, return early with the error. ** If the system is so sick that we are unable to allocate a mutex, ** there is not much SQLite is going to be able to do. ** ** The mutex subsystem must take care of serializing its own ** initialization. */ rc = sqlite3MutexInit(); if( rc ) return rc; /* Initialize the malloc() system and the recursive pInitMutex mutex. ** This operation is protected by the STATIC_MAIN mutex. Note that ** MutexAlloc() is called for a static mutex prior to initializing the ** malloc subsystem - this implies that the allocation of a static ** mutex must not require support from the malloc subsystem. */ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(pMainMtx); sqlite3GlobalConfig.isMutexInit = 1; if( !sqlite3GlobalConfig.isMallocInit ){ rc = sqlite3MallocInit(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isMallocInit = 1; if( !sqlite3GlobalConfig.pInitMutex ){ sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ rc = SQLITE_NOMEM_BKPT; } } } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.nRefInitMutex++; } sqlite3_mutex_leave(pMainMtx); /* If rc is not SQLITE_OK at this point, then either the malloc ** subsystem could not be initialized or the system failed to allocate ** the pInitMutex mutex. Return an error in either case. */ if( rc!=SQLITE_OK ){ return rc; } /* Do the rest of the initialization under the recursive mutex so ** that we will be able to handle recursive calls into ** sqlite3_initialize(). The recursive calls normally come through ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other ** recursive calls might also be possible. ** ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls ** to the xInit method, so the xInit method need not be threadsafe. ** ** The following mutex is what serializes access to the appdef pcache xInit ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the ** call to sqlite3PcacheInitialize(). */ sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ sqlite3GlobalConfig.inProgress = 1; #ifdef SQLITE_ENABLE_SQLLOG { extern void sqlite3_init_sqllog(void); sqlite3_init_sqllog(); } #endif memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); sqlite3RegisterBuiltinFunctions(); if( sqlite3GlobalConfig.isPCacheInit==0 ){ rc = sqlite3PcacheInitialize(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isPCacheInit = 1; rc = sqlite3OsInit(); } #ifndef SQLITE_OMIT_DESERIALIZE if( rc==SQLITE_OK ){ rc = sqlite3MemdbInit(); } #endif if( rc==SQLITE_OK ){ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); sqlite3MemoryBarrier(); sqlite3GlobalConfig.isInit = 1; #ifdef SQLITE_EXTRA_INIT bRunExtraInit = 1; #endif } sqlite3GlobalConfig.inProgress = 0; } sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); /* Go back under the static mutex and clean up the recursive ** mutex to prevent a resource leak. */ sqlite3_mutex_enter(pMainMtx); sqlite3GlobalConfig.nRefInitMutex--; if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ assert( sqlite3GlobalConfig.nRefInitMutex==0 ); sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); sqlite3GlobalConfig.pInitMutex = 0; } sqlite3_mutex_leave(pMainMtx); /* The following is just a sanity check to make sure SQLite has ** been compiled correctly. It is important to run this code, but ** we don't want to run it too often and soak up CPU cycles for no ** reason. So we run it once during initialization. */ #ifndef NDEBUG #ifndef SQLITE_OMIT_FLOATING_POINT /* This section of code's only "output" is via assert() statements. */ if( rc==SQLITE_OK ){ u64 x = (((u64)1)<<63)-1; double y; assert(sizeof(x)==8); assert(sizeof(x)==sizeof(y)); memcpy(&y, &x, 8); assert( sqlite3IsNaN(y) ); } #endif #endif /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT ** compile-time option. */ #ifdef SQLITE_EXTRA_INIT if( bRunExtraInit ){ int SQLITE_EXTRA_INIT(const char*); rc = SQLITE_EXTRA_INIT(0); } #endif return rc; } /* ** Undo the effects of sqlite3_initialize(). Must not be called while ** there are outstanding database connections or memory allocations or ** while any part of SQLite is otherwise in use in any thread. This ** routine is not threadsafe. But it is safe to invoke this routine ** on when SQLite is already shut down. If SQLite is already shut down ** when this routine is invoked, then this routine is a harmless no-op. */ SQLITE_API int sqlite3_shutdown(void){ #ifdef SQLITE_OMIT_WSD int rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif if( sqlite3GlobalConfig.isInit ){ #ifdef SQLITE_EXTRA_SHUTDOWN void SQLITE_EXTRA_SHUTDOWN(void); SQLITE_EXTRA_SHUTDOWN(); #endif sqlite3_os_end(); sqlite3_reset_auto_extension(); sqlite3GlobalConfig.isInit = 0; } if( sqlite3GlobalConfig.isPCacheInit ){ sqlite3PcacheShutdown(); sqlite3GlobalConfig.isPCacheInit = 0; } if( sqlite3GlobalConfig.isMallocInit ){ sqlite3MallocEnd(); sqlite3GlobalConfig.isMallocInit = 0; #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES /* The heap subsystem has now been shutdown and these values are supposed ** to be NULL or point to memory that was obtained from sqlite3_malloc(), ** which would rely on that heap subsystem; therefore, make sure these ** values cannot refer to heap memory that was just invalidated when the ** heap subsystem was shutdown. This is only done if the current call to ** this function resulted in the heap subsystem actually being shutdown. */ sqlite3_data_directory = 0; sqlite3_temp_directory = 0; #endif } if( sqlite3GlobalConfig.isMutexInit ){ sqlite3MutexEnd(); sqlite3GlobalConfig.isMutexInit = 0; } return SQLITE_OK; } /* ** This API allows applications to modify the global configuration of ** the SQLite library at run-time. ** ** This routine should only be called when there are no outstanding ** database connections or memory allocations. This routine is not ** threadsafe. Failure to heed these warnings can lead to unpredictable ** behavior. */ SQLITE_API int sqlite3_config(int op, ...){ va_list ap; int rc = SQLITE_OK; /* sqlite3_config() normally returns SQLITE_MISUSE if it is invoked while ** the SQLite library is in use. Except, a few selected opcodes ** are allowed. */ if( sqlite3GlobalConfig.isInit ){ static const u64 mAnytimeConfigOption = 0 | MASKBIT64( SQLITE_CONFIG_LOG ) | MASKBIT64( SQLITE_CONFIG_PCACHE_HDRSZ ) ; if( op<0 || op>63 || (MASKBIT64(op) & mAnytimeConfigOption)==0 ){ return SQLITE_MISUSE_BKPT; } testcase( op==SQLITE_CONFIG_LOG ); testcase( op==SQLITE_CONFIG_PCACHE_HDRSZ ); } va_start(ap, op); switch( op ){ /* Mutex configuration options are only available in a threadsafe ** compile. */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ case SQLITE_CONFIG_SINGLETHREAD: { /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to ** Single-thread. */ sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ case SQLITE_CONFIG_MULTITHREAD: { /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to ** Multi-thread. */ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ case SQLITE_CONFIG_SERIALIZED: { /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to ** Serialized. */ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ case SQLITE_CONFIG_MUTEX: { /* Specify an alternative mutex implementation */ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ case SQLITE_CONFIG_GETMUTEX: { /* Retrieve the current mutex implementation */ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; break; } #endif case SQLITE_CONFIG_MALLOC: { /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a ** single argument which is a pointer to an instance of the ** sqlite3_mem_methods structure. The argument specifies alternative ** low-level memory allocation routines to be used in place of the memory ** allocation routines built into SQLite. */ sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); break; } case SQLITE_CONFIG_GETMALLOC: { /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a ** single argument which is a pointer to an instance of the ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is ** filled with the currently defined memory allocation routines. */ if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; break; } case SQLITE_CONFIG_MEMSTATUS: { assert( !sqlite3GlobalConfig.isInit ); /* Cannot change at runtime */ /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes ** single argument of type int, interpreted as a boolean, which enables ** or disables the collection of memory allocation statistics. */ sqlite3GlobalConfig.bMemstat = va_arg(ap, int); break; } case SQLITE_CONFIG_SMALL_MALLOC: { sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int); break; } case SQLITE_CONFIG_PAGECACHE: { /* EVIDENCE-OF: R-18761-36601 There are three arguments to ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), ** the size of each page cache line (sz), and the number of cache lines ** (N). */ sqlite3GlobalConfig.pPage = va_arg(ap, void*); sqlite3GlobalConfig.szPage = va_arg(ap, int); sqlite3GlobalConfig.nPage = va_arg(ap, int); break; } case SQLITE_CONFIG_PCACHE_HDRSZ: { /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes ** a single parameter which is a pointer to an integer and writes into ** that integer the number of extra bytes per page required for each page ** in SQLITE_CONFIG_PAGECACHE. */ *va_arg(ap, int*) = sqlite3HeaderSizeBtree() + sqlite3HeaderSizePcache() + sqlite3HeaderSizePcache1(); break; } case SQLITE_CONFIG_PCACHE: { /* no-op */ break; } case SQLITE_CONFIG_GETPCACHE: { /* now an error */ rc = SQLITE_ERROR; break; } case SQLITE_CONFIG_PCACHE2: { /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a ** single argument which is a pointer to an sqlite3_pcache_methods2 ** object. This object specifies the interface to a custom page cache ** implementation. */ sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); break; } case SQLITE_CONFIG_GETPCACHE2: { /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a ** single argument which is a pointer to an sqlite3_pcache_methods2 ** object. SQLite copies of the current page cache implementation into ** that object. */ if( sqlite3GlobalConfig.pcache2.xInit==0 ){ sqlite3PCacheSetDefault(); } *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; break; } /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* EVIDENCE-OF: R-19854-42126 There are three arguments to ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the ** number of bytes in the memory buffer, and the minimum allocation size. */ sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sqlite3GlobalConfig.nHeap = va_arg(ap, int); sqlite3GlobalConfig.mnReq = va_arg(ap, int); if( sqlite3GlobalConfig.mnReq<1 ){ sqlite3GlobalConfig.mnReq = 1; }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ /* cap min request size at 2^12 */ sqlite3GlobalConfig.mnReq = (1<<12); } if( sqlite3GlobalConfig.pHeap==0 ){ /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) ** is NULL, then SQLite reverts to using its default memory allocator ** (the system malloc() implementation), undoing any prior invocation of ** SQLITE_CONFIG_MALLOC. ** ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to ** revert to its default implementation when sqlite3_initialize() is run */ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); }else{ /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the ** alternative memory allocator is engaged to handle all of SQLites ** memory allocation needs. */ #ifdef SQLITE_ENABLE_MEMSYS3 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); #endif #ifdef SQLITE_ENABLE_MEMSYS5 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); #endif } break; } #endif case SQLITE_CONFIG_LOOKASIDE: { sqlite3GlobalConfig.szLookaside = va_arg(ap, int); sqlite3GlobalConfig.nLookaside = va_arg(ap, int); break; } /* Record a pointer to the logger function and its first argument. ** The default is NULL. Logging is disabled if the function pointer is ** NULL. */ case SQLITE_CONFIG_LOG: { /* MSVC is picky about pulling func ptrs from va lists. ** http://support.microsoft.com/kb/47961 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); */ typedef void(*LOGFUNC_t)(void*,int,const char*); LOGFUNC_t xLog = va_arg(ap, LOGFUNC_t); void *pLogArg = va_arg(ap, void*); AtomicStore(&sqlite3GlobalConfig.xLog, xLog); AtomicStore(&sqlite3GlobalConfig.pLogArg, pLogArg); break; } /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames ** can be changed at start-time using the ** sqlite3_config(SQLITE_CONFIG_URI,1) or ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. */ case SQLITE_CONFIG_URI: { /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single ** argument of type int. If non-zero, then URI handling is globally ** enabled. If the parameter is zero, then URI handling is globally ** disabled. */ int bOpenUri = va_arg(ap, int); AtomicStore(&sqlite3GlobalConfig.bOpenUri, bOpenUri); break; } case SQLITE_CONFIG_COVERING_INDEX_SCAN: { /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN ** option takes a single integer argument which is interpreted as a ** boolean in order to enable or disable the use of covering indices for ** full table scans in the query optimizer. */ sqlite3GlobalConfig.bUseCis = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SQLLOG case SQLITE_CONFIG_SQLLOG: { typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); break; } #endif case SQLITE_CONFIG_MMAP_SIZE: { /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit ** integer (sqlite3_int64) values that are the default mmap size limit ** (the default setting for PRAGMA mmap_size) and the maximum allowed ** mmap size limit. */ sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); /* EVIDENCE-OF: R-53367-43190 If either argument to this option is ** negative, then that argument is changed to its compile-time default. ** ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be ** silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE ** compile-time option. */ if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ mxMmap = SQLITE_MAX_MMAP_SIZE; } if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; if( szMmap>mxMmap) szMmap = mxMmap; sqlite3GlobalConfig.mxMmap = mxMmap; sqlite3GlobalConfig.szMmap = szMmap; break; } #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ case SQLITE_CONFIG_WIN32_HEAPSIZE: { /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit ** unsigned integer value that specifies the maximum size of the created ** heap. */ sqlite3GlobalConfig.nHeap = va_arg(ap, int); break; } #endif case SQLITE_CONFIG_PMASZ: { sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); break; } case SQLITE_CONFIG_STMTJRNL_SPILL: { sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SORTER_REFERENCES case SQLITE_CONFIG_SORTERREF_SIZE: { int iVal = va_arg(ap, int); if( iVal<0 ){ iVal = SQLITE_DEFAULT_SORTERREF_SIZE; } sqlite3GlobalConfig.szSorterRef = (u32)iVal; break; } #endif /* SQLITE_ENABLE_SORTER_REFERENCES */ #ifndef SQLITE_OMIT_DESERIALIZE case SQLITE_CONFIG_MEMDB_MAXSIZE: { sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64); break; } #endif /* SQLITE_OMIT_DESERIALIZE */ default: { rc = SQLITE_ERROR; break; } } va_end(ap); return rc; } /* ** Set up the lookaside buffers for a database connection. ** Return SQLITE_OK on success. ** If lookaside is already active, return SQLITE_BUSY. ** ** The sz parameter is the number of bytes in each lookaside slot. ** The cnt parameter is the number of slots. If pStart is NULL the ** space for the lookaside memory is obtained from sqlite3_malloc(). ** If pStart is not NULL then it is sz*cnt bytes of memory to use for ** the lookaside memory. */ static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ #ifndef SQLITE_OMIT_LOOKASIDE void *pStart; sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt; int nBig; /* Number of full-size slots */ int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */ if( sqlite3LookasideUsed(db,0)>0 ){ return SQLITE_BUSY; } /* Free any existing lookaside buffer for this handle before ** allocating a new one so we don't have to have space for ** both at the same time. */ if( db->lookaside.bMalloced ){ sqlite3_free(db->lookaside.pStart); } /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger ** than a pointer to be useful. */ sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; if( cnt<0 ) cnt = 0; if( sz==0 || cnt==0 ){ sz = 0; pStart = 0; }else if( pBuf==0 ){ sqlite3BeginBenignMalloc(); pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */ sqlite3EndBenignMalloc(); if( pStart ) szAlloc = sqlite3MallocSize(pStart); }else{ pStart = pBuf; } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( sz>=LOOKASIDE_SMALL*3 ){ nBig = szAlloc/(3*LOOKASIDE_SMALL+sz); nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; }else if( sz>=LOOKASIDE_SMALL*2 ){ nBig = szAlloc/(LOOKASIDE_SMALL+sz); nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; }else #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( sz>0 ){ nBig = szAlloc/sz; nSm = 0; }else{ nBig = nSm = 0; } db->lookaside.pStart = pStart; db->lookaside.pInit = 0; db->lookaside.pFree = 0; db->lookaside.sz = (u16)sz; db->lookaside.szTrue = (u16)sz; if( pStart ){ int i; LookasideSlot *p; assert( sz > (int)sizeof(LookasideSlot*) ); p = (LookasideSlot*)pStart; for(i=0; ipNext = db->lookaside.pInit; db->lookaside.pInit = p; p = (LookasideSlot*)&((u8*)p)[sz]; } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE db->lookaside.pSmallInit = 0; db->lookaside.pSmallFree = 0; db->lookaside.pMiddle = p; for(i=0; ipNext = db->lookaside.pSmallInit; db->lookaside.pSmallInit = p; p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL]; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ assert( ((uptr)p)<=szAlloc + (uptr)pStart ); db->lookaside.pEnd = p; db->lookaside.bDisable = 0; db->lookaside.bMalloced = pBuf==0 ?1:0; db->lookaside.nSlot = nBig+nSm; }else{ db->lookaside.pStart = 0; #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE db->lookaside.pSmallInit = 0; db->lookaside.pSmallFree = 0; db->lookaside.pMiddle = 0; #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ db->lookaside.pEnd = 0; db->lookaside.bDisable = 1; db->lookaside.sz = 0; db->lookaside.bMalloced = 0; db->lookaside.nSlot = 0; } db->lookaside.pTrueEnd = db->lookaside.pEnd; assert( sqlite3LookasideUsed(db,0)==0 ); #endif /* SQLITE_OMIT_LOOKASIDE */ return SQLITE_OK; } /* ** Return the mutex associated with a database connection. */ SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->mutex; } /* ** Free up as much memory as we can from the given database ** connection. */ SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){ int i; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); sqlite3PagerShrink(pPager); } } sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Flush any dirty pages in the pager-cache for any attached database ** to disk. */ SQLITE_API int sqlite3_db_cacheflush(sqlite3 *db){ int i; int rc = SQLITE_OK; int bSeenBusy = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ Pager *pPager = sqlite3BtreePager(pBt); rc = sqlite3PagerFlush(pPager); if( rc==SQLITE_BUSY ){ bSeenBusy = 1; rc = SQLITE_OK; } } } sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); } /* ** Configuration settings for an individual database connection */ SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){ va_list ap; int rc; sqlite3_mutex_enter(db->mutex); va_start(ap, op); switch( op ){ case SQLITE_DBCONFIG_MAINDBNAME: { /* IMP: R-06824-28531 */ /* IMP: R-36257-52125 */ db->aDb[0].zDbSName = va_arg(ap,char*); rc = SQLITE_OK; break; } case SQLITE_DBCONFIG_LOOKASIDE: { void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ rc = setupLookaside(db, pBuf, sz, cnt); break; } default: { static const struct { int op; /* The opcode */ u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ } aFlagOp[] = { { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView }, { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive }, { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema| SQLITE_NoSchemaError }, { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter }, { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL }, { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML }, { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt }, { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema }, { SQLITE_DBCONFIG_STMT_SCANSTATUS, SQLITE_StmtScanStatus }, { SQLITE_DBCONFIG_REVERSE_SCANORDER, SQLITE_ReverseOrder }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; iflags; if( onoff>0 ){ db->flags |= aFlagOp[i].mask; }else if( onoff==0 ){ db->flags &= ~(u64)aFlagOp[i].mask; } if( oldFlags!=db->flags ){ sqlite3ExpirePreparedStatements(db, 0); } if( pRes ){ *pRes = (db->flags & aFlagOp[i].mask)!=0; } rc = SQLITE_OK; break; } } break; } } va_end(ap); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This is the default collating function named "BINARY" which is always ** available. */ static int binCollFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; UNUSED_PARAMETER(NotUsed); n = nKey1xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 ); return p==0 || p->xCmp==binCollFunc; } /* ** Another built-in collating sequence: NOCASE. ** ** This collating sequence is intended to be used for "case independent ** comparison". SQLite's knowledge of upper and lower case equivalents ** extends only to the 26 characters used in the English language. ** ** At the moment there is only a UTF-8 implementation. */ static int nocaseCollatingFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int r = sqlite3StrNICmp( (const char *)pKey1, (const char *)pKey2, (nKey1lastRowid; } /* ** Set the value returned by the sqlite3_last_insert_rowid() API function. */ SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif sqlite3_mutex_enter(db->mutex); db->lastRowid = iRowid; sqlite3_mutex_leave(db->mutex); } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->nChange; } SQLITE_API int sqlite3_changes(sqlite3 *db){ return (int)sqlite3_changes64(db); } /* ** Return the number of changes since the database handle was opened. */ SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->nTotalChange; } SQLITE_API int sqlite3_total_changes(sqlite3 *db){ return (int)sqlite3_total_changes64(db); } /* ** Close all open savepoints. This function only manipulates fields of the ** database handle object, it does not close any savepoints that may be open ** at the b-tree/pager level. */ SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){ while( db->pSavepoint ){ Savepoint *pTmp = db->pSavepoint; db->pSavepoint = pTmp->pNext; sqlite3DbFree(db, pTmp); } db->nSavepoint = 0; db->nStatement = 0; db->isTransactionSavepoint = 0; } /* ** Invoke the destructor function associated with FuncDef p, if any. Except, ** if this is not the last copy of the function, do not invoke it. Multiple ** copies of a single function are created when create_function() is called ** with SQLITE_ANY as the encoding. */ static void functionDestroy(sqlite3 *db, FuncDef *p){ FuncDestructor *pDestructor; assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); pDestructor = p->u.pDestructor; if( pDestructor ){ pDestructor->nRef--; if( pDestructor->nRef==0 ){ pDestructor->xDestroy(pDestructor->pUserData); sqlite3DbFree(db, pDestructor); } } } /* ** Disconnect all sqlite3_vtab objects that belong to database connection ** db. This is called when db is being closed. */ static void disconnectAllVtab(sqlite3 *db){ #ifndef SQLITE_OMIT_VIRTUALTABLE int i; HashElem *p; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( pSchema ){ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ Table *pTab = (Table *)sqliteHashData(p); if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); } } } for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ Module *pMod = (Module *)sqliteHashData(p); if( pMod->pEpoTab ){ sqlite3VtabDisconnect(db, pMod->pEpoTab); } } sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); #else UNUSED_PARAMETER(db); #endif } /* ** Return TRUE if database connection db has unfinalized prepared ** statements or unfinished sqlite3_backup objects. */ static int connectionIsBusy(sqlite3 *db){ int j; assert( sqlite3_mutex_held(db->mutex) ); if( db->pVdbe ) return 1; for(j=0; jnDb; j++){ Btree *pBt = db->aDb[j].pBt; if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; } return 0; } /* ** Close an existing SQLite database */ static int sqlite3Close(sqlite3 *db, int forceZombie){ if( !db ){ /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ return SQLITE_OK; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); if( db->mTrace & SQLITE_TRACE_CLOSE ){ db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); } /* Force xDisconnect calls on all virtual tables */ disconnectAllVtab(db); /* If a transaction is open, the disconnectAllVtab() call above ** will not have called the xDisconnect() method on any virtual ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() ** call will do so. We need to do this before the check for active ** SQL statements below, as the v-table implementation may be storing ** some prepared statements internally. */ sqlite3VtabRollback(db); /* Legacy behavior (sqlite3_close() behavior) is to return ** SQLITE_BUSY if the connection can not be closed immediately. */ if( !forceZombie && connectionIsBusy(db) ){ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " "statements or unfinished backups"); sqlite3_mutex_leave(db->mutex); return SQLITE_BUSY; } #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Closing the handle. Fourth parameter is passed the value 2. */ sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); } #endif /* Convert the connection into a zombie and then close it. */ db->eOpenState = SQLITE_STATE_ZOMBIE; sqlite3LeaveMutexAndCloseZombie(db); return SQLITE_OK; } /* ** Return the transaction state for a single databse, or the maximum ** transaction state over all attached databases if zSchema is null. */ SQLITE_API int sqlite3_txn_state(sqlite3 *db, const char *zSchema){ int iDb, nDb; int iTxn = -1; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif sqlite3_mutex_enter(db->mutex); if( zSchema ){ nDb = iDb = sqlite3FindDbName(db, zSchema); if( iDb<0 ) nDb--; }else{ iDb = 0; nDb = db->nDb-1; } for(; iDb<=nDb; iDb++){ Btree *pBt = db->aDb[iDb].pBt; int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE; if( x>iTxn ) iTxn = x; } sqlite3_mutex_leave(db->mutex); return iTxn; } /* ** Two variations on the public interface for closing a database ** connection. The sqlite3_close() version returns SQLITE_BUSY and ** leaves the connection open if there are unfinalized prepared ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() ** version forces the connection to become a zombie if there are ** unclosed resources, and arranges for deallocation when the last ** prepare statement or sqlite3_backup closes. */ SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } /* ** Close the mutex on database connection db. ** ** Furthermore, if database connection db is a zombie (meaning that there ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and ** every sqlite3_stmt has now been finalized and every sqlite3_backup has ** finished, then free all resources. */ SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ HashElem *i; /* Hash table iterator */ int j; /* If there are outstanding sqlite3_stmt or sqlite3_backup objects ** or if the connection has not yet been closed by sqlite3_close_v2(), ** then just leave the mutex and return. */ if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){ sqlite3_mutex_leave(db->mutex); return; } /* If we reach this point, it means that the database connection has ** closed all sqlite3_stmt and sqlite3_backup objects and has been ** passed to sqlite3_close (meaning that it is a zombie). Therefore, ** go ahead and free all resources. */ /* If a transaction is open, roll it back. This also ensures that if ** any database schemas have been modified by an uncommitted transaction ** they are reset. And that the required b-tree mutex is held to make ** the pager rollback and schema reset an atomic operation. */ sqlite3RollbackAll(db, SQLITE_OK); /* Free any outstanding Savepoint structures. */ sqlite3CloseSavepoints(db); /* Close all database connections */ for(j=0; jnDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } /* Clear the TEMP schema separately and last */ if( db->aDb[1].pSchema ){ sqlite3SchemaClear(db->aDb[1].pSchema); } sqlite3VtabUnlockList(db); /* Free up the array of auxiliary databases */ sqlite3CollapseDatabaseArray(db); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); /* Tell the code in notify.c that the connection no longer holds any ** locks and does not require any further unlock-notify callbacks. */ sqlite3ConnectionClosed(db); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pNext, *p; p = sqliteHashData(i); do{ functionDestroy(db, p); pNext = p->pNext; sqlite3DbFree(db, p); p = pNext; }while( p ); } sqlite3HashClear(&db->aFunc); for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); /* Invoke any destructors registered for collation sequence user data. */ for(j=0; j<3; j++){ if( pColl[j].xDel ){ pColl[j].xDel(pColl[j].pUser); } } sqlite3DbFree(db, pColl); } sqlite3HashClear(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ Module *pMod = (Module *)sqliteHashData(i); sqlite3VtabEponymousTableClear(db, pMod); sqlite3VtabModuleUnref(db, pMod); } sqlite3HashClear(&db->aModule); #endif sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ sqlite3ValueFree(db->pErr); sqlite3CloseExtensions(db); #if SQLITE_USER_AUTHENTICATION sqlite3_free(db->auth.zAuthUser); sqlite3_free(db->auth.zAuthPW); #endif db->eOpenState = SQLITE_STATE_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database ** structure? */ sqlite3DbFree(db, db->aDb[1].pSchema); if( db->xAutovacDestr ){ db->xAutovacDestr(db->pAutovacPagesArg); } sqlite3_mutex_leave(db->mutex); db->eOpenState = SQLITE_STATE_CLOSED; sqlite3_mutex_free(db->mutex); assert( sqlite3LookasideUsed(db,0)==0 ); if( db->lookaside.bMalloced ){ sqlite3_free(db->lookaside.pStart); } sqlite3_free(db); } /* ** Rollback all database files. If tripCode is not SQLITE_OK, then ** any write cursors are invalidated ("tripped" - as in "tripping a circuit ** breaker") and made to return tripCode if there are any further ** attempts to use that cursor. Read cursors remain open and valid ** but are "saved" in case the table pages are moved around. */ SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){ int i; int inTrans = 0; int schemaChange; assert( sqlite3_mutex_held(db->mutex) ); sqlite3BeginBenignMalloc(); /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). ** This is important in case the transaction being rolled back has ** modified the database schema. If the b-tree mutexes are not taken ** here, then another shared-cache connection might sneak in between ** the database rollback and schema reset, which can cause false ** corruption reports in some cases. */ sqlite3BtreeEnterAll(db); schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0; for(i=0; inDb; i++){ Btree *p = db->aDb[i].pBt; if( p ){ if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){ inTrans = 1; } sqlite3BtreeRollback(p, tripCode, !schemaChange); } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( schemaChange ){ sqlite3ExpirePreparedStatements(db, 0); sqlite3ResetAllSchemasOfConnection(db); } sqlite3BtreeLeaveAll(db); /* Any deferred constraint violations have now been resolved. */ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly); /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } } /* ** Return a static string containing the name corresponding to the error code ** specified in the argument. */ #if defined(SQLITE_NEED_ERR_NAME) SQLITE_PRIVATE const char *sqlite3ErrName(int rc){ const char *zName = 0; int i, origRc = rc; for(i=0; i<2 && zName==0; i++, rc &= 0xff){ switch( rc ){ case SQLITE_OK: zName = "SQLITE_OK"; break; case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break; case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; case SQLITE_PERM: zName = "SQLITE_PERM"; break; case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break; case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break; case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; case SQLITE_IOERR_CHECKRESERVEDLOCK: zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; case SQLITE_FULL: zName = "SQLITE_FULL"; break; case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break; case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; case SQLITE_CONSTRAINT_FOREIGNKEY: zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; case SQLITE_CONSTRAINT_PRIMARYKEY: zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; case SQLITE_CONSTRAINT_COMMITHOOK: zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; case SQLITE_CONSTRAINT_FUNCTION: zName = "SQLITE_CONSTRAINT_FUNCTION"; break; case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; case SQLITE_ROW: zName = "SQLITE_ROW"; break; case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; case SQLITE_NOTICE_RECOVER_ROLLBACK: zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; case SQLITE_NOTICE_RBU: zName = "SQLITE_NOTICE_RBU"; break; case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; case SQLITE_DONE: zName = "SQLITE_DONE"; break; } } if( zName==0 ){ static char zBuf[50]; sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); zName = zBuf; } return zName; } #endif /* ** Return a static string that describes the kind of error specified in the ** argument. */ SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){ static const char* const aMsg[] = { /* SQLITE_OK */ "not an error", /* SQLITE_ERROR */ "SQL logic error", /* SQLITE_INTERNAL */ 0, /* SQLITE_PERM */ "access permission denied", /* SQLITE_ABORT */ "query aborted", /* SQLITE_BUSY */ "database is locked", /* SQLITE_LOCKED */ "database table is locked", /* SQLITE_NOMEM */ "out of memory", /* SQLITE_READONLY */ "attempt to write a readonly database", /* SQLITE_INTERRUPT */ "interrupted", /* SQLITE_IOERR */ "disk I/O error", /* SQLITE_CORRUPT */ "database disk image is malformed", /* SQLITE_NOTFOUND */ "unknown operation", /* SQLITE_FULL */ "database or disk is full", /* SQLITE_CANTOPEN */ "unable to open database file", /* SQLITE_PROTOCOL */ "locking protocol", /* SQLITE_EMPTY */ 0, /* SQLITE_SCHEMA */ "database schema has changed", /* SQLITE_TOOBIG */ "string or blob too big", /* SQLITE_CONSTRAINT */ "constraint failed", /* SQLITE_MISMATCH */ "datatype mismatch", /* SQLITE_MISUSE */ "bad parameter or other API misuse", #ifdef SQLITE_DISABLE_LFS /* SQLITE_NOLFS */ "large file support is disabled", #else /* SQLITE_NOLFS */ 0, #endif /* SQLITE_AUTH */ "authorization denied", /* SQLITE_FORMAT */ 0, /* SQLITE_RANGE */ "column index out of range", /* SQLITE_NOTADB */ "file is not a database", /* SQLITE_NOTICE */ "notification message", /* SQLITE_WARNING */ "warning message", }; const char *zErr = "unknown error"; switch( rc ){ case SQLITE_ABORT_ROLLBACK: { zErr = "abort due to ROLLBACK"; break; } case SQLITE_ROW: { zErr = "another row available"; break; } case SQLITE_DONE: { zErr = "no more rows available"; break; } default: { rc &= 0xff; if( ALWAYS(rc>=0) && rcbusyTimeout; int delay, prior; assert( count>=0 ); if( count < NDELAY ){ delay = delays[count]; prior = totals[count]; }else{ delay = delays[NDELAY-1]; prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); } if( prior + delay > tmout ){ delay = tmout - prior; if( delay<=0 ) return 0; } sqlite3OsSleep(db->pVfs, delay*1000); return 1; #else /* This case for unix systems that lack usleep() support. Sleeping ** must be done in increments of whole seconds */ sqlite3 *db = (sqlite3 *)ptr; int tmout = ((sqlite3 *)ptr)->busyTimeout; if( (count+1)*1000 > tmout ){ return 0; } sqlite3OsSleep(db->pVfs, 1000000); return 1; #endif } /* ** Invoke the given busy handler. ** ** This routine is called when an operation failed to acquire a ** lock on VFS file pFile. ** ** If this routine returns non-zero, the lock is retried. If it ** returns 0, the operation aborts with an SQLITE_BUSY error. */ SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){ int rc; if( p->xBusyHandler==0 || p->nBusy<0 ) return 0; rc = p->xBusyHandler(p->pBusyArg, p->nBusy); if( rc==0 ){ p->nBusy = -1; }else{ p->nBusy++; } return rc; } /* ** This routine sets the busy callback for an Sqlite database to the ** given callback function with the given argument. */ SQLITE_API int sqlite3_busy_handler( sqlite3 *db, int (*xBusy)(void*,int), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->busyHandler.xBusyHandler = xBusy; db->busyHandler.pBusyArg = pArg; db->busyHandler.nBusy = 0; db->busyTimeout = 0; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* ** This routine sets the progress callback for an Sqlite database to the ** given callback function with the given argument. The progress callback will ** be invoked every nOps opcodes. */ SQLITE_API void sqlite3_progress_handler( sqlite3 *db, int nOps, int (*xProgress)(void*), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = (unsigned)nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } sqlite3_mutex_leave(db->mutex); } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif if( ms>0 ){ sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback, (void*)db); db->busyTimeout = ms; }else{ sqlite3_busy_handler(db, 0, 0); } return SQLITE_OK; } /* ** Cause any pending operation to stop at its earliest opportunity. */ SQLITE_API void sqlite3_interrupt(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif AtomicStore(&db->u1.isInterrupted, 1); } /* ** Return true or false depending on whether or not an interrupt is ** pending on connection db. */ SQLITE_API int sqlite3_is_interrupted(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return AtomicLoad(&db->u1.isInterrupted)!=0; } /* ** This function is exactly the same as sqlite3_create_function(), except ** that it is designed to be called by internal code. The difference is ** that if a malloc() fails in sqlite3_create_function(), an error code ** is returned and the mallocFailed flag cleared. */ SQLITE_PRIVATE int sqlite3CreateFunc( sqlite3 *db, const char *zFunctionName, int nArg, int enc, void *pUserData, void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value **), FuncDestructor *pDestructor ){ FuncDef *p; int extraFlags; assert( sqlite3_mutex_held(db->mutex) ); assert( xValue==0 || xSFunc==0 ); if( zFunctionName==0 /* Must have a valid name */ || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */ || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */ || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */ || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || (255funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){ if( db->nVdbeActive ){ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to delete/modify user-function due to active statements"); assert( !db->mallocFailed ); return SQLITE_BUSY; }else{ sqlite3ExpirePreparedStatements(db, 0); } }else if( xSFunc==0 && xFinal==0 ){ /* Trying to delete a function that does not exist. This is a no-op. ** https://sqlite.org/forum/forumpost/726219164b */ return SQLITE_OK; } p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); assert(p || db->mallocFailed); if( !p ){ return SQLITE_NOMEM_BKPT; } /* If an older version of the function with a configured destructor is ** being replaced invoke the destructor function here. */ functionDestroy(db, p); if( pDestructor ){ pDestructor->nRef++; } p->u.pDestructor = pDestructor; p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; testcase( p->funcFlags & SQLITE_DETERMINISTIC ); testcase( p->funcFlags & SQLITE_DIRECTONLY ); p->xSFunc = xSFunc ? xSFunc : xStep; p->xFinalize = xFinal; p->xValue = xValue; p->xInverse = xInverse; p->pUserData = pUserData; p->nArg = (u16)nArg; return SQLITE_OK; } /* ** Worker function used by utf-8 APIs that create new functions: ** ** sqlite3_create_function() ** sqlite3_create_function_v2() ** sqlite3_create_window_function() */ static int createFunctionApi( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*) ){ int rc = SQLITE_ERROR; FuncDestructor *pArg = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( xDestroy ){ pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor)); if( !pArg ){ sqlite3OomFault(db); xDestroy(p); goto out; } pArg->nRef = 0; pArg->xDestroy = xDestroy; pArg->pUserData = p; } rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, xValue, xInverse, pArg ); if( pArg && pArg->nRef==0 ){ assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) ); xDestroy(p); sqlite3_free(pArg); } out: rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Create new user functions. */ SQLITE_API int sqlite3_create_function( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*) ){ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, 0, 0, 0); } SQLITE_API int sqlite3_create_function_v2( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xDestroy)(void *) ){ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, 0, 0, xDestroy); } SQLITE_API int sqlite3_create_window_function( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value **), void (*xDestroy)(void *) ){ return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep, xFinal, xValue, xInverse, xDestroy); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ){ int rc; char *zFunc8; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0); sqlite3DbFree(db, zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* ** The following is the implementation of an SQL function that always ** fails with an error message stating that the function is used in the ** wrong context. The sqlite3_overload_function() API might construct ** SQL function that use this routine so that the functions will exist ** for name resolution but are actually overloaded by the xFindFunction ** method of virtual tables. */ static void sqlite3InvalidFunction( sqlite3_context *context, /* The function calling context */ int NotUsed, /* Number of arguments to the function */ sqlite3_value **NotUsed2 /* Value of each argument */ ){ const char *zName = (const char*)sqlite3_user_data(context); char *zErr; UNUSED_PARAMETER2(NotUsed, NotUsed2); zErr = sqlite3_mprintf( "unable to use function %s in the requested context", zName); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); } /* ** Declare that a function has been overloaded by a virtual table. ** ** If the function already exists as a regular global function, then ** this routine is a no-op. If the function does not exist, then create ** a new one that always throws a run-time error. ** ** When virtual tables intend to provide an overloaded function, they ** should call this routine to make sure the global function exists. ** A global function must exist in order for name resolution to work ** properly. */ SQLITE_API int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ int rc; char *zCopy; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0; sqlite3_mutex_leave(db->mutex); if( rc ) return SQLITE_OK; zCopy = sqlite3_mprintf("%s", zName); if( zCopy==0 ) return SQLITE_NOMEM; return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8, zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free); } #ifndef SQLITE_OMIT_TRACE /* ** Register a trace function. The pArg from the previously registered trace ** is returned. ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** SQL statement. */ #ifndef SQLITE_OMIT_DEPRECATED SQLITE_API void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pTraceArg; db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; db->trace.xLegacy = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_DEPRECATED */ /* Register a trace callback using the version-2 interface. */ SQLITE_API int sqlite3_trace_v2( sqlite3 *db, /* Trace this connection */ unsigned mTrace, /* Mask of events to be traced */ int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ void *pArg /* Context */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( mTrace==0 ) xTrace = 0; if( xTrace==0 ) mTrace = 0; db->mTrace = mTrace; db->trace.xV2 = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Register a profile function. The pArg from the previously registered ** profile function is returned. ** ** A NULL profile function means that no profiling is executes. A non-NULL ** profile is a pointer to a function that is invoked at the conclusion of ** each SQL statement that is run. */ SQLITE_API void *sqlite3_profile( sqlite3 *db, void (*xProfile)(void*,const char*,sqlite_uint64), void *pArg ){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pProfileArg; db->xProfile = xProfile; db->pProfileArg = pArg; db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK; if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_DEPRECATED */ #endif /* SQLITE_OMIT_TRACE */ /* ** Register a function to be invoked when a transaction commits. ** If the invoked function returns non-zero, then the commit becomes a ** rollback. */ SQLITE_API void *sqlite3_commit_hook( sqlite3 *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ SQLITE_API void *sqlite3_update_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), void *pArg /* Argument to the function */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pUpdateArg; db->xUpdateCallback = xCallback; db->pUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } /* ** Register a callback to be invoked each time a transaction is rolled ** back by this database connection. */ SQLITE_API void *sqlite3_rollback_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*), /* Callback function */ void *pArg /* Argument to the function */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pRollbackArg; db->xRollbackCallback = xCallback; db->pRollbackArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ SQLITE_API void *sqlite3_preupdate_hook( sqlite3 *db, /* Attach the hook to this database */ void(*xCallback)( /* Callback function */ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), void *pArg /* First callback argument */ ){ void *pRet; sqlite3_mutex_enter(db->mutex); pRet = db->pPreUpdateArg; db->xPreUpdateCallback = xCallback; db->pPreUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ /* ** Register a function to be invoked prior to each autovacuum that ** determines the number of pages to vacuum. */ SQLITE_API int sqlite3_autovacuum_pages( sqlite3 *db, /* Attach the hook to this database */ unsigned int (*xCallback)(void*,const char*,u32,u32,u32), void *pArg, /* Argument to the function */ void (*xDestructor)(void*) /* Destructor for pArg */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ if( xDestructor ) xDestructor(pArg); return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->xAutovacDestr ){ db->xAutovacDestr(db->pAutovacPagesArg); } db->xAutovacPages = xCallback; db->pAutovacPagesArg = pArg; db->xAutovacDestr = xDestructor; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_WAL /* ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file ** is greater than sqlite3.pWalArg cast to an integer (the value configured by ** wal_autocheckpoint()). */ SQLITE_PRIVATE int sqlite3WalDefaultHook( void *pClientData, /* Argument */ sqlite3 *db, /* Connection */ const char *zDb, /* Database */ int nFrame /* Size of WAL */ ){ if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ sqlite3BeginBenignMalloc(); sqlite3_wal_checkpoint(db, zDb); sqlite3EndBenignMalloc(); } return SQLITE_OK; } #endif /* SQLITE_OMIT_WAL */ /* ** Configure an sqlite3_wal_hook() callback to automatically checkpoint ** a database after committing a transaction if there are nFrame or ** more frames in the log file. Passing zero or a negative value as the ** nFrame parameter disables automatic checkpoints entirely. ** ** The callback registered by this function replaces any existing callback ** registered using sqlite3_wal_hook(). Likewise, registering a callback ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism ** configured by this function. */ SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ #ifdef SQLITE_OMIT_WAL UNUSED_PARAMETER(db); UNUSED_PARAMETER(nFrame); #else #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif if( nFrame>0 ){ sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); }else{ sqlite3_wal_hook(db, 0, 0); } #endif return SQLITE_OK; } /* ** Register a callback to be invoked each time a transaction is written ** into the write-ahead-log by this database connection. */ SQLITE_API void *sqlite3_wal_hook( sqlite3 *db, /* Attach the hook to this db handle */ int(*xCallback)(void *, sqlite3*, const char*, int), void *pArg /* First argument passed to xCallback() */ ){ #ifndef SQLITE_OMIT_WAL void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pWalArg; db->xWalCallback = xCallback; db->pWalArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; #else return 0; #endif } /* ** Checkpoint database zDb. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ){ #ifdef SQLITE_OMIT_WAL return SQLITE_OK; #else int rc; /* Return code */ int iDb; /* Schema to checkpoint */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif /* Initialize the output variables to -1 in case an error occurs. */ if( pnLog ) *pnLog = -1; if( pnCkpt ) *pnCkpt = -1; assert( SQLITE_CHECKPOINT_PASSIVE==0 ); assert( SQLITE_CHECKPOINT_FULL==1 ); assert( SQLITE_CHECKPOINT_RESTART==2 ); assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); if( eModeSQLITE_CHECKPOINT_TRUNCATE ){ /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint ** mode: */ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); if( zDb && zDb[0] ){ iDb = sqlite3FindDbName(db, zDb); }else{ iDb = SQLITE_MAX_DB; /* This means process all schemas */ } if( iDb<0 ){ rc = SQLITE_ERROR; sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); }else{ db->busyHandler.nBusy = 0; rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); sqlite3Error(db, rc); } rc = sqlite3ApiExit(db, rc); /* If there are no active statements, clear the interrupt flag at this ** point. */ if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } sqlite3_mutex_leave(db->mutex); return rc; #endif } /* ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points ** to contains a zero-length string, all attached databases are ** checkpointed. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); } #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on database iDb. This is a no-op if database iDb is ** not currently open in WAL mode. ** ** If a transaction is open on the database being checkpointed, this ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If ** an error occurs while running the checkpoint, an SQLite error code is ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. ** ** The mutex on database handle db should be held by the caller. The mutex ** associated with the specific b-tree being checkpointed is taken by ** this function while the checkpoint is running. ** ** If iDb is passed SQLITE_MAX_DB then all attached databases are ** checkpointed. If an error is encountered it is returned immediately - ** no attempt is made to checkpoint any remaining databases. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART ** or TRUNCATE. */ SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterate through attached dbs */ int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ assert( sqlite3_mutex_held(db->mutex) ); assert( !pnLog || *pnLog==-1 ); assert( !pnCkpt || *pnCkpt==-1 ); testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */ testcase( iDb==SQLITE_MAX_DB ); for(i=0; inDb && rc==SQLITE_OK; i++){ if( i==iDb || iDb==SQLITE_MAX_DB ){ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); pnLog = 0; pnCkpt = 0; if( rc==SQLITE_BUSY ){ bBusy = 1; rc = SQLITE_OK; } } } return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; } #endif /* SQLITE_OMIT_WAL */ /* ** This function returns true if main-memory should be used instead of ** a temporary file for transient pager files and statement journals. ** The value returned depends on the value of db->temp_store (runtime ** parameter) and the compile time value of SQLITE_TEMP_STORE. The ** following table describes the relationship between these two values ** and this functions return value. ** ** SQLITE_TEMP_STORE db->temp_store Location of temporary database ** ----------------- -------------- ------------------------------ ** 0 any file (return 0) ** 1 1 file (return 0) ** 1 2 memory (return 1) ** 1 0 file (return 0) ** 2 1 file (return 0) ** 2 2 memory (return 1) ** 2 0 memory (return 1) ** 3 any memory (return 1) */ SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){ #if SQLITE_TEMP_STORE==1 return ( db->temp_store==2 ); #endif #if SQLITE_TEMP_STORE==2 return ( db->temp_store!=1 ); #endif #if SQLITE_TEMP_STORE==3 UNUSED_PARAMETER(db); return 1; #endif #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 UNUSED_PARAMETER(db); return 0; #endif } /* ** Return UTF-8 encoded English language explanation of the most recent ** error. */ SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){ const char *z; if( !db ){ return sqlite3ErrStr(SQLITE_NOMEM_BKPT); } if( !sqlite3SafetyCheckSickOrOk(db) ){ return sqlite3ErrStr(SQLITE_MISUSE_BKPT); } sqlite3_mutex_enter(db->mutex); if( db->mallocFailed ){ z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); }else{ testcase( db->pErr==0 ); z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0; assert( !db->mallocFailed ); if( z==0 ){ z = sqlite3ErrStr(db->errCode); } } sqlite3_mutex_leave(db->mutex); return z; } /* ** Return the byte offset of the most recent error */ SQLITE_API int sqlite3_error_offset(sqlite3 *db){ int iOffset = -1; if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){ sqlite3_mutex_enter(db->mutex); iOffset = db->errByteOffset; sqlite3_mutex_leave(db->mutex); } return iOffset; } #ifndef SQLITE_OMIT_UTF16 /* ** Return UTF-16 encoded English language explanation of the most recent ** error. */ SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){ static const u16 outOfMem[] = { 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 }; static const u16 misuse[] = { 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ', 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ', 'm', 'i', 's', 'u', 's', 'e', 0 }; const void *z; if( !db ){ return (void *)outOfMem; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return (void *)misuse; } sqlite3_mutex_enter(db->mutex); if( db->mallocFailed ){ z = (void *)outOfMem; }else{ z = sqlite3_value_text16(db->pErr); if( z==0 ){ sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); z = sqlite3_value_text16(db->pErr); } /* A malloc() may have failed within the call to sqlite3_value_text16() ** above. If this is the case, then the db->mallocFailed flag needs to ** be cleared before returning. Do this directly, instead of via ** sqlite3ApiExit(), to avoid setting the database handle error message. */ sqlite3OomClear(db); } sqlite3_mutex_leave(db->mutex); return z; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the most recent error code generated by an SQLite routine. If NULL is ** passed to this function, we assume a malloc() failed during sqlite3_open(). */ SQLITE_API int sqlite3_errcode(sqlite3 *db){ if( db && !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } if( !db || db->mallocFailed ){ return SQLITE_NOMEM_BKPT; } return db->errCode & db->errMask; } SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){ if( db && !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } if( !db || db->mallocFailed ){ return SQLITE_NOMEM_BKPT; } return db->errCode; } SQLITE_API int sqlite3_system_errno(sqlite3 *db){ return db ? db->iSysErrno : 0; } /* ** Return a string that describes the kind of error specified in the ** argument. For now, this simply calls the internal sqlite3ErrStr() ** function. */ SQLITE_API const char *sqlite3_errstr(int rc){ return sqlite3ErrStr(rc); } /* ** Create a new collating function for database "db". The name is zName ** and the encoding is enc. */ static int createCollation( sqlite3* db, const char *zName, u8 enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ CollSeq *pColl; int enc2; assert( sqlite3_mutex_held(db->mutex) ); /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. */ enc2 = enc; testcase( enc2==SQLITE_UTF16 ); testcase( enc2==SQLITE_UTF16_ALIGNED ); if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ enc2 = SQLITE_UTF16NATIVE; } if( enc2SQLITE_UTF16BE ){ return SQLITE_MISUSE_BKPT; } /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); if( pColl && pColl->xCmp ){ if( db->nVdbeActive ){ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to delete/modify collation sequence due to active statements"); return SQLITE_BUSY; } sqlite3ExpirePreparedStatements(db, 0); /* If collation sequence pColl was created directly by a call to ** sqlite3_create_collation, and not generated by synthCollSeq(), ** then any copies made by synthCollSeq() need to be invalidated. ** Also, collation destructor - CollSeq.xDel() - function may need ** to be called. */ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); int j; for(j=0; j<3; j++){ CollSeq *p = &aColl[j]; if( p->enc==pColl->enc ){ if( p->xDel ){ p->xDel(p->pUser); } p->xCmp = 0; } } } } pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); if( pColl==0 ) return SQLITE_NOMEM_BKPT; pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->xDel = xDel; pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); sqlite3Error(db, SQLITE_OK); return SQLITE_OK; } /* ** This array defines hard upper bounds on limit values. The ** initializer must be kept in sync with the SQLITE_LIMIT_* ** #defines in sqlite3.h. */ static const int aHardLimit[] = { SQLITE_MAX_LENGTH, SQLITE_MAX_SQL_LENGTH, SQLITE_MAX_COLUMN, SQLITE_MAX_EXPR_DEPTH, SQLITE_MAX_COMPOUND_SELECT, SQLITE_MAX_VDBE_OP, SQLITE_MAX_FUNCTION_ARG, SQLITE_MAX_ATTACHED, SQLITE_MAX_LIKE_PATTERN_LENGTH, SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ SQLITE_MAX_TRIGGER_DEPTH, SQLITE_MAX_WORKER_THREADS, }; /* ** Make sure the hard limits are set to reasonable values */ #if SQLITE_MAX_LENGTH<100 # error SQLITE_MAX_LENGTH must be at least 100 #endif #if SQLITE_MAX_SQL_LENGTH<100 # error SQLITE_MAX_SQL_LENGTH must be at least 100 #endif #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH #endif #if SQLITE_MAX_COMPOUND_SELECT<2 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 #endif #if SQLITE_MAX_VDBE_OP<40 # error SQLITE_MAX_VDBE_OP must be at least 40 #endif #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 #endif #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 # error SQLITE_MAX_ATTACHED must be between 0 and 125 #endif #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 #endif #if SQLITE_MAX_COLUMN>32767 # error SQLITE_MAX_COLUMN must not exceed 32767 #endif #if SQLITE_MAX_TRIGGER_DEPTH<1 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 #endif #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 #endif /* ** Change the value of a limit. Report the old value. ** If an invalid limit index is supplied, report -1. ** Make no changes but still report the old value if the ** new limit is negative. ** ** A new lower limit does not shrink existing constructs. ** It merely prevents new constructs that exceed the limit ** from forming. */ SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ int oldLimit; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME ** there is a hard upper bound set at compile-time by a C preprocessor ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to ** "_MAX_".) */ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== SQLITE_MAX_LIKE_PATTERN_LENGTH ); assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ return -1; } oldLimit = db->aLimit[limitId]; if( newLimit>=0 ){ /* IMP: R-52476-28732 */ if( newLimit>aHardLimit[limitId] ){ newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ }else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){ newLimit = 1; } db->aLimit[limitId] = newLimit; } return oldLimit; /* IMP: R-53341-35419 */ } /* ** This function is used to parse both URIs and non-URI filenames passed by the ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database ** URIs specified as part of ATTACH statements. ** ** The first argument to this function is the name of the VFS to use (or ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" ** query parameter. The second argument contains the URI (or non-URI filename) ** itself. When this function is called the *pFlags variable should contain ** the default flags to open the database handle with. The value stored in ** *pFlags may be updated before returning if the URI filename contains ** "cache=xxx" or "mode=xxx" query parameters. ** ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to ** the VFS that should be used to open the database file. *pzFile is set to ** point to a buffer containing the name of the file to open. The value ** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter() ** and is in the same format as names created using sqlite3_create_filename(). ** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on ** the value returned in *pzFile to avoid a memory leak. ** ** If an error occurs, then an SQLite error code is returned and *pzErrMsg ** may be set to point to a buffer containing an English language error ** message. It is the responsibility of the caller to eventually release ** this buffer by calling sqlite3_free(). */ SQLITE_PRIVATE int sqlite3ParseUri( const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ const char *zUri, /* Nul-terminated URI to parse */ unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ sqlite3_vfs **ppVfs, /* OUT: VFS to use */ char **pzFile, /* OUT: Filename component of URI */ char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ ){ int rc = SQLITE_OK; unsigned int flags = *pFlags; const char *zVfs = zDefaultVfs; char *zFile; char c; int nUri = sqlite3Strlen30(zUri); assert( *pzErrMsg==0 ); if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ || AtomicLoad(&sqlite3GlobalConfig.bOpenUri)) /* IMP: R-51689-46548 */ && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ ){ char *zOpt; int eState; /* Parser state when parsing URI */ int iIn; /* Input character index */ int iOut = 0; /* Output character index */ u64 nByte = nUri+8; /* Bytes of space to allocate */ /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen ** method that there may be extra parameters following the file-name. */ flags |= SQLITE_OPEN_URI; for(iIn=0; iIn=0 && octet<256 ); if( octet==0 ){ #ifndef SQLITE_ENABLE_URI_00_ERROR /* This branch is taken when "%00" appears within the URI. In this ** case we ignore all text in the remainder of the path, name or ** value currently being parsed. So ignore the current character ** and skip to the next "?", "=" or "&", as appropriate. */ while( (c = zUri[iIn])!=0 && c!='#' && (eState!=0 || c!='?') && (eState!=1 || (c!='=' && c!='&')) && (eState!=2 || c!='&') ){ iIn++; } continue; #else /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); rc = SQLITE_ERROR; goto parse_uri_out; #endif } c = octet; }else if( eState==1 && (c=='&' || c=='=') ){ if( zFile[iOut-1]==0 ){ /* An empty option name. Ignore this option altogether. */ while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; continue; } if( c=='&' ){ zFile[iOut++] = '\0'; }else{ eState = 2; } c = 0; }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ c = 0; eState = 1; } zFile[iOut++] = c; } if( eState==1 ) zFile[iOut++] = '\0'; memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */ /* Check if there were any options specified that should be interpreted ** here. Options that are interpreted here include "vfs" and those that ** correspond to flags that may be passed to the sqlite3_open_v2() ** method. */ zOpt = &zFile[sqlite3Strlen30(zFile)+1]; while( zOpt[0] ){ int nOpt = sqlite3Strlen30(zOpt); char *zVal = &zOpt[nOpt+1]; int nVal = sqlite3Strlen30(zVal); if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ zVfs = zVal; }else{ struct OpenMode { const char *z; int mode; } *aMode = 0; char *zModeType = 0; int mask = 0; int limit = 0; if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ static struct OpenMode aCacheMode[] = { { "shared", SQLITE_OPEN_SHAREDCACHE }, { "private", SQLITE_OPEN_PRIVATECACHE }, { 0, 0 } }; mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; aMode = aCacheMode; limit = mask; zModeType = "cache"; } if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ static struct OpenMode aOpenMode[] = { { "ro", SQLITE_OPEN_READONLY }, { "rw", SQLITE_OPEN_READWRITE }, { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, { "memory", SQLITE_OPEN_MEMORY }, { 0, 0 } }; mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; aMode = aOpenMode; limit = mask & flags; zModeType = "access"; } if( aMode ){ int i; int mode = 0; for(i=0; aMode[i].z; i++){ const char *z = aMode[i].z; if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ mode = aMode[i].mode; break; } } if( mode==0 ){ *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); rc = SQLITE_ERROR; goto parse_uri_out; } if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", zModeType, zVal); rc = SQLITE_PERM; goto parse_uri_out; } flags = (flags & ~mask) | mode; } } zOpt = &zVal[nVal+1]; } }else{ zFile = sqlite3_malloc64(nUri+8); if( !zFile ) return SQLITE_NOMEM_BKPT; memset(zFile, 0, 4); zFile += 4; if( nUri ){ memcpy(zFile, zUri, nUri); } memset(zFile+nUri, 0, 4); flags &= ~SQLITE_OPEN_URI; } *ppVfs = sqlite3_vfs_find(zVfs); if( *ppVfs==0 ){ *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); rc = SQLITE_ERROR; } parse_uri_out: if( rc!=SQLITE_OK ){ sqlite3_free_filename(zFile); zFile = 0; } *pFlags = flags; *pzFile = zFile; return rc; } /* ** This routine does the core work of extracting URI parameters from a ** database filename for the sqlite3_uri_parameter() interface. */ static const char *uriParameter(const char *zFilename, const char *zParam){ zFilename += sqlite3Strlen30(zFilename) + 1; while( ALWAYS(zFilename!=0) && zFilename[0] ){ int x = strcmp(zFilename, zParam); zFilename += sqlite3Strlen30(zFilename) + 1; if( x==0 ) return zFilename; zFilename += sqlite3Strlen30(zFilename) + 1; } return 0; } /* ** This routine does the work of opening a database on behalf of ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" ** is UTF-8 encoded. */ static int openDatabase( const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb, /* OUT: Returned database handle */ unsigned int flags, /* Operational flags */ const char *zVfs /* Name of the VFS to use */ ){ sqlite3 *db; /* Store allocated handle here */ int rc; /* Return code */ int isThreadsafe; /* True for threadsafe connections */ char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ int i; /* Loop counter */ #ifdef SQLITE_ENABLE_API_ARMOR if( ppDb==0 ) return SQLITE_MISUSE_BKPT; #endif *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif if( sqlite3GlobalConfig.bCoreMutex==0 ){ isThreadsafe = 0; }else if( flags & SQLITE_OPEN_NOMUTEX ){ isThreadsafe = 0; }else if( flags & SQLITE_OPEN_FULLMUTEX ){ isThreadsafe = 1; }else{ isThreadsafe = sqlite3GlobalConfig.bFullMutex; } if( flags & SQLITE_OPEN_PRIVATECACHE ){ flags &= ~SQLITE_OPEN_SHAREDCACHE; }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ flags |= SQLITE_OPEN_SHAREDCACHE; } /* Remove harmful bits from the flags parameter ** ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were ** dealt with in the previous code block. Besides these, the only ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, ** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved ** bits. Silently mask off all other flags. */ flags &= ~( SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_MAIN_DB | SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TRANSIENT_DB | SQLITE_OPEN_MAIN_JOURNAL | SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_SUPER_JOURNAL | SQLITE_OPEN_NOMUTEX | SQLITE_OPEN_FULLMUTEX | SQLITE_OPEN_WAL ); /* Allocate the sqlite data structure */ db = sqlite3MallocZero( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; if( isThreadsafe #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS || sqlite3GlobalConfig.bCoreMutex #endif ){ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( db->mutex==0 ){ sqlite3_free(db); db = 0; goto opendb_out; } if( isThreadsafe==0 ){ sqlite3MutexWarnOnContention(db->mutex); } } sqlite3_mutex_enter(db->mutex); db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff; db->nDb = 2; db->eOpenState = SQLITE_STATE_BUSY; db->aDb = db->aDbStatic; db->lookaside.bDisable = 1; db->lookaside.sz = 0; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; db->autoCommit = 1; db->nextAutovac = -1; db->szMmap = sqlite3GlobalConfig.szMmap; db->nextPagesize = 0; db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ #ifdef SQLITE_ENABLE_SORTER_MMAP /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map ** the temporary files used to do external sorts (see code in vdbesort.c) ** is disabled. It can still be used either by defining ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */ db->nMaxSorterMmap = 0x7FFFFFFF; #endif db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_EnableView | SQLITE_CacheSpill #if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0 | SQLITE_TrustedSchema #endif /* The SQLITE_DQS compile-time option determines the default settings ** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML. ** ** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML ** ---------- ----------------------- ----------------------- ** undefined on on ** 3 on on ** 2 on off ** 1 off on ** 0 off off ** ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) ** and so that is the default. But developers are encouraged to use ** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible. */ #if !defined(SQLITE_DQS) # define SQLITE_DQS 3 #endif #if (SQLITE_DQS&1)==1 | SQLITE_DqsDML #endif #if (SQLITE_DQS&2)==2 | SQLITE_DqsDDL #endif #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX | SQLITE_AutoIndex #endif #if SQLITE_DEFAULT_CKPTFULLFSYNC | SQLITE_CkptFullFSync #endif #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS | SQLITE_RecTriggers #endif #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS | SQLITE_ForeignKeys #endif #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) | SQLITE_ReverseOrder #endif #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) | SQLITE_CellSizeCk #endif #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) | SQLITE_Fts3Tokenizer #endif #if defined(SQLITE_ENABLE_QPSG) | SQLITE_EnableQPSG #endif #if defined(SQLITE_DEFAULT_DEFENSIVE) | SQLITE_Defensive #endif #if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE) | SQLITE_LegacyAlter #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) | SQLITE_StmtScanStatus #endif ; sqlite3HashInit(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. ** ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating ** functions: */ createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0); if( db->mallocFailed ){ goto opendb_out; } #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) /* Process magic filenames ":localStorage:" and ":sessionStorage:" */ if( zFilename && zFilename[0]==':' ){ if( strcmp(zFilename, ":localStorage:")==0 ){ zFilename = "file:local?vfs=kvvfs"; flags |= SQLITE_OPEN_URI; }else if( strcmp(zFilename, ":sessionStorage:")==0 ){ zFilename = "file:session?vfs=kvvfs"; flags |= SQLITE_OPEN_URI; } } #endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */ /* Parse the filename/URI argument ** ** Only allow sensible combinations of bits in the flags argument. ** Throw an error if any non-sense combination is used. If we ** do not block illegal combinations here, it could trigger ** assert() statements in deeper layers. Sensible combinations ** are: ** ** 1: SQLITE_OPEN_READONLY ** 2: SQLITE_OPEN_READWRITE ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE */ db->openFlags = flags; assert( SQLITE_OPEN_READONLY == 0x01 ); assert( SQLITE_OPEN_READWRITE == 0x02 ); assert( SQLITE_OPEN_CREATE == 0x04 ); testcase( (1<<(flags&7))==0x02 ); /* READONLY */ testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ if( ((1<<(flags&7)) & 0x46)==0 ){ rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */ }else{ rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); } if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); sqlite3_free(zErrMsg); goto opendb_out; } assert( db->pVfs!=0 ); #if SQLITE_OS_KV || defined(SQLITE_OS_KV_OPTIONAL) if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){ db->temp_store = 2; } #endif /* Open the backend database driver */ rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, flags | SQLITE_OPEN_MAIN_DB); if( rc!=SQLITE_OK ){ if( rc==SQLITE_IOERR_NOMEM ){ rc = SQLITE_NOMEM_BKPT; } sqlite3Error(db, rc); goto opendb_out; } sqlite3BtreeEnter(db->aDb[0].pBt); db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); if( !db->mallocFailed ){ sqlite3SetTextEncoding(db, SCHEMA_ENC(db)); } sqlite3BtreeLeave(db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); /* The default safety_level for the main database is FULL; for the temp ** database it is OFF. This matches the pager layer defaults. */ db->aDb[0].zDbSName = "main"; db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; db->aDb[1].zDbSName = "temp"; db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; db->eOpenState = SQLITE_STATE_OPEN; if( db->mallocFailed ){ goto opendb_out; } /* Register all built-in functions, but do not attempt to read the ** database schema yet. This is delayed until the first time the database ** is accessed. */ sqlite3Error(db, SQLITE_OK); sqlite3RegisterPerConnectionBuiltinFunctions(db); rc = sqlite3_errcode(db); /* Load compiled-in extensions */ for(i=0; rc==SQLITE_OK && imDbFlags |= DBFLAG_InternalFunc; #endif /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking ** mode. Doing nothing at all also makes NORMAL the default. */ #ifdef SQLITE_DEFAULT_LOCKING_MODE db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), SQLITE_DEFAULT_LOCKING_MODE); #endif if( rc ) sqlite3Error(db, rc); /* Enable the lookaside-malloc subsystem */ setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, sqlite3GlobalConfig.nLookaside); sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); opendb_out: if( db ){ assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); sqlite3_mutex_leave(db->mutex); } rc = sqlite3_errcode(db); assert( db!=0 || (rc&0xff)==SQLITE_NOMEM ); if( (rc&0xff)==SQLITE_NOMEM ){ sqlite3_close(db); db = 0; }else if( rc!=SQLITE_OK ){ db->eOpenState = SQLITE_STATE_SICK; } *ppDb = db; #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Opening a db handle. Fourth parameter is passed 0. */ void *pArg = sqlite3GlobalConfig.pSqllogArg; sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); } #endif sqlite3_free_filename(zOpen); return rc; } /* ** Open a new database handle. */ SQLITE_API int sqlite3_open( const char *zFilename, sqlite3 **ppDb ){ return openDatabase(zFilename, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); } SQLITE_API int sqlite3_open_v2( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb, /* OUT: SQLite db handle */ int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ){ return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); } #ifndef SQLITE_OMIT_UTF16 /* ** Open a new database handle. */ SQLITE_API int sqlite3_open16( const void *zFilename, sqlite3 **ppDb ){ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ sqlite3_value *pVal; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( ppDb==0 ) return SQLITE_MISUSE_BKPT; #endif *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif if( zFilename==0 ) zFilename = "\000\000"; pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zFilename8 ){ rc = openDatabase(zFilename8, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); assert( *ppDb || rc==SQLITE_NOMEM ); if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM_BKPT; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); } /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation_v2( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation16( sqlite3* db, const void *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc = SQLITE_OK; char *zName8; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); if( zName8 ){ rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); sqlite3DbFree(db, zName8); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ SQLITE_API int sqlite3_collation_needed( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xCollNeeded = xCollNeeded; db->xCollNeeded16 = 0; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ SQLITE_API int sqlite3_collation_needed16( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xCollNeeded = 0; db->xCollNeeded16 = xCollNeeded16; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_DEPRECATED /* ** This function is now an anachronism. It used to be used to recover from a ** malloc() failure, but SQLite now does this automatically. */ SQLITE_API int sqlite3_global_recover(void){ return SQLITE_OK; } #endif /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. */ SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->autoCommit; } /* ** The following routines are substitutes for constants SQLITE_CORRUPT, ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error ** constants. They serve two purposes: ** ** 1. Serve as a convenient place to set a breakpoint in a debugger ** to detect when version error conditions occurs. ** ** 2. Invoke sqlite3_log() to provide the source code location where ** a low-level error is first detected. */ SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType){ sqlite3_log(iErr, "%s at line %d of [%.10s]", zType, lineno, 20+sqlite3_sourceid()); return iErr; } SQLITE_PRIVATE int sqlite3CorruptError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption"); } SQLITE_PRIVATE int sqlite3MisuseError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse"); } SQLITE_PRIVATE int sqlite3CantopenError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file"); } #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) SQLITE_PRIVATE int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ char zMsg[100]; sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); } #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NomemError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM"); } SQLITE_PRIVATE int sqlite3IoerrnomemError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); } #endif #ifndef SQLITE_OMIT_DEPRECATED /* ** This is a convenience routine that makes sure that all thread-specific ** data for this thread has been deallocated. ** ** SQLite no longer uses thread-specific data so this routine is now a ** no-op. It is retained for historical compatibility. */ SQLITE_API void sqlite3_thread_cleanup(void){ } #endif /* ** Return meta information about a specific column of a database table. ** See comment in sqlite3.h (sqlite.h.in) for details. */ SQLITE_API int sqlite3_table_column_metadata( sqlite3 *db, /* Connection handle */ const char *zDbName, /* Database name or NULL */ const char *zTableName, /* Table name */ const char *zColumnName, /* Column name */ char const **pzDataType, /* OUTPUT: Declared data type */ char const **pzCollSeq, /* OUTPUT: Collation sequence name */ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ){ int rc; char *zErrMsg = 0; Table *pTab = 0; Column *pCol = 0; int iCol = 0; char const *zDataType = 0; char const *zCollSeq = 0; int notnull = 0; int primarykey = 0; int autoinc = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ return SQLITE_MISUSE_BKPT; } #endif /* Ensure the database schema has been loaded */ sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); rc = sqlite3Init(db, &zErrMsg); if( SQLITE_OK!=rc ){ goto error_out; } /* Locate the table in question */ pTab = sqlite3FindTable(db, zTableName, zDbName); if( !pTab || IsView(pTab) ){ pTab = 0; goto error_out; } /* Find the column for which info is requested */ if( zColumnName==0 ){ /* Query for existence of table only */ }else{ for(iCol=0; iColnCol; iCol++){ pCol = &pTab->aCol[iCol]; if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){ break; } } if( iCol==pTab->nCol ){ if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ iCol = pTab->iPKey; pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; }else{ pTab = 0; goto error_out; } } } /* The following block stores the meta information that will be returned ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey ** and autoinc. At this point there are two possibilities: ** ** 1. The specified column name was rowid", "oid" or "_rowid_" ** and there is no explicitly declared IPK column. ** ** 2. The table is not a view and the column name identified an ** explicitly declared column. Copy meta information from *pCol. */ if( pCol ){ zDataType = sqlite3ColumnType(pCol,0); zCollSeq = sqlite3ColumnColl(pCol); notnull = pCol->notNull!=0; primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; }else{ zDataType = "INTEGER"; primarykey = 1; } if( !zCollSeq ){ zCollSeq = sqlite3StrBINARY; } error_out: sqlite3BtreeLeaveAll(db); /* Whether the function call succeeded or failed, set the output parameters ** to whatever their local counterparts contain. If an error did occur, ** this has the effect of zeroing all output parameters. */ if( pzDataType ) *pzDataType = zDataType; if( pzCollSeq ) *pzCollSeq = zCollSeq; if( pNotNull ) *pNotNull = notnull; if( pPrimaryKey ) *pPrimaryKey = primarykey; if( pAutoinc ) *pAutoinc = autoinc; if( SQLITE_OK==rc && !pTab ){ sqlite3DbFree(db, zErrMsg); zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, zColumnName); rc = SQLITE_ERROR; } sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); sqlite3DbFree(db, zErrMsg); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Sleep for a little while. Return the amount of time slept. */ SQLITE_API int sqlite3_sleep(int ms){ sqlite3_vfs *pVfs; int rc; pVfs = sqlite3_vfs_find(0); if( pVfs==0 ) return 0; /* This function works in milliseconds, but the underlying OsSleep() ** API uses microseconds. Hence the 1000's. */ rc = (sqlite3OsSleep(pVfs, ms<0 ? 0 : 1000*ms)/1000); return rc; } /* ** Enable or disable the extended result codes. */ SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->errMask = onoff ? 0xffffffff : 0xff; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Invoke the xFileControl method on a particular database. */ SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ int rc = SQLITE_ERROR; Btree *pBtree; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); pBtree = sqlite3DbNameToBtree(db, zDbName); if( pBtree ){ Pager *pPager; sqlite3_file *fd; sqlite3BtreeEnter(pBtree); pPager = sqlite3BtreePager(pBtree); assert( pPager!=0 ); fd = sqlite3PagerFile(pPager); assert( fd!=0 ); if( op==SQLITE_FCNTL_FILE_POINTER ){ *(sqlite3_file**)pArg = fd; rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_VFS_POINTER ){ *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_DATA_VERSION ){ *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager); rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){ int iNew = *(int*)pArg; *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree); if( iNew>=0 && iNew<=255 ){ sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0); } rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_RESET_CACHE ){ sqlite3BtreeClearCache(pBtree); rc = SQLITE_OK; }else{ int nSave = db->busyHandler.nBusy; rc = sqlite3OsFileControl(fd, op, pArg); db->busyHandler.nBusy = nSave; } sqlite3BtreeLeave(pBtree); } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Interface to the testing logic. */ SQLITE_API int sqlite3_test_control(int op, ...){ int rc = 0; #ifdef SQLITE_UNTESTABLE UNUSED_PARAMETER(op); #else va_list ap; va_start(ap, op); switch( op ){ /* ** Save the current state of the PRNG. */ case SQLITE_TESTCTRL_PRNG_SAVE: { sqlite3PrngSaveState(); break; } /* ** Restore the state of the PRNG to the last state saved using ** PRNG_SAVE. If PRNG_SAVE has never before been called, then ** this verb acts like PRNG_RESET. */ case SQLITE_TESTCTRL_PRNG_RESTORE: { sqlite3PrngRestoreState(); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db); ** ** Control the seed for the pseudo-random number generator (PRNG) that ** is built into SQLite. Cases: ** ** x!=0 && db!=0 Seed the PRNG to the current value of the ** schema cookie in the main database for db, or ** x if the schema cookie is zero. This case ** is convenient to use with database fuzzers ** as it allows the fuzzer some control over the ** the PRNG seed. ** ** x!=0 && db==0 Seed the PRNG to the value of x. ** ** x==0 && db==0 Revert to default behavior of using the ** xRandomness method on the primary VFS. ** ** This test-control also resets the PRNG so that the new seed will ** be used for the next call to sqlite3_randomness(). */ #ifndef SQLITE_OMIT_WSD case SQLITE_TESTCTRL_PRNG_SEED: { int x = va_arg(ap, int); int y; sqlite3 *db = va_arg(ap, sqlite3*); assert( db==0 || db->aDb[0].pSchema!=0 ); if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; } sqlite3Config.iPrngSeed = x; sqlite3_randomness(0,0); break; } #endif /* ** sqlite3_test_control(BITVEC_TEST, size, program) ** ** Run a test against a Bitvec object of size. The program argument ** is an array of integers that defines the test. Return -1 on a ** memory allocation error, 0 on success, or non-zero for an error. ** See the sqlite3BitvecBuiltinTest() for additional information. */ case SQLITE_TESTCTRL_BITVEC_TEST: { int sz = va_arg(ap, int); int *aProg = va_arg(ap, int*); rc = sqlite3BitvecBuiltinTest(sz, aProg); break; } /* ** sqlite3_test_control(FAULT_INSTALL, xCallback) ** ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, ** if xCallback is not NULL. ** ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) ** is called immediately after installing the new callback and the return ** value from sqlite3FaultSim(0) becomes the return from ** sqlite3_test_control(). */ case SQLITE_TESTCTRL_FAULT_INSTALL: { /* A bug in MSVC prevents it from understanding pointers to functions ** types in the second argument to va_arg(). Work around the problem ** using a typedef. ** http://support.microsoft.com/kb/47961 <-- dead hyperlink ** Search at http://web.archive.org/ to find the 2015-03-16 archive ** of the link above to see the original text. ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); */ typedef int(*sqlite3FaultFuncType)(int); sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType); rc = sqlite3FaultSim(0); break; } /* ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) ** ** Register hooks to call to indicate which malloc() failures ** are benign. */ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { typedef void (*void_function)(void); void_function xBenignBegin; void_function xBenignEnd; xBenignBegin = va_arg(ap, void_function); xBenignEnd = va_arg(ap, void_function); sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) ** ** Set the PENDING byte to the value in the argument, if X>0. ** Make no changes if X==0. Return the value of the pending byte ** as it existing before this routine was called. ** ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in ** an incompatible database file format. Changing the PENDING byte ** while any database connection is open results in undefined and ** deleterious behavior. */ case SQLITE_TESTCTRL_PENDING_BYTE: { rc = PENDING_BYTE; #ifndef SQLITE_OMIT_WSD { unsigned int newVal = va_arg(ap, unsigned int); if( newVal ) sqlite3PendingByte = newVal; } #endif break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) ** ** This action provides a run-time test to see whether or not ** assert() was enabled at compile-time. If X is true and assert() ** is enabled, then the return value is true. If X is true and ** assert() is disabled, then the return value is zero. If X is ** false and assert() is enabled, then the assertion fires and the ** process aborts. If X is false and assert() is disabled, then the ** return value is zero. */ case SQLITE_TESTCTRL_ASSERT: { volatile int x = 0; assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); rc = x; #if defined(SQLITE_DEBUG) /* Invoke these debugging routines so that the compiler does not ** issue "defined but not used" warnings. */ if( x==9999 ){ sqlite3ShowExpr(0); sqlite3ShowExpr(0); sqlite3ShowExprList(0); sqlite3ShowIdList(0); sqlite3ShowSrcList(0); sqlite3ShowWith(0); sqlite3ShowUpsert(0); #ifndef SQLITE_OMIT_TRIGGER sqlite3ShowTriggerStep(0); sqlite3ShowTriggerStepList(0); sqlite3ShowTrigger(0); sqlite3ShowTriggerList(0); #endif #ifndef SQLITE_OMIT_WINDOWFUNC sqlite3ShowWindow(0); sqlite3ShowWinFunc(0); #endif sqlite3ShowSelect(0); } #endif break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) ** ** This action provides a run-time test to see how the ALWAYS and ** NEVER macros were defined at compile-time. ** ** The return value is ALWAYS(X) if X is true, or 0 if X is false. ** ** The recommended test is X==2. If the return value is 2, that means ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the ** default setting. If the return value is 1, then ALWAYS() is either ** hard-coded to true or else it asserts if its argument is false. ** The first behavior (hard-coded to true) is the case if ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second ** behavior (assert if the argument to ALWAYS() is false) is the case if ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. ** ** The run-time test procedure might look something like this: ** ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ ** // ALWAYS() and NEVER() are no-op pass-through macros ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. ** }else{ ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. ** } */ case SQLITE_TESTCTRL_ALWAYS: { int x = va_arg(ap,int); rc = x ? ALWAYS(x) : 0; break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); ** ** The integer returned reveals the byte-order of the computer on which ** SQLite is running: ** ** 1 big-endian, determined at run-time ** 10 little-endian, determined at run-time ** 432101 big-endian, determined at compile-time ** 123410 little-endian, determined at compile-time */ case SQLITE_TESTCTRL_BYTEORDER: { rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) ** ** Enable or disable various optimizations for testing purposes. The ** argument N is a bitmask of optimizations to be disabled. For normal ** operation N should be 0. The idea is that a test program (like the ** SQL Logic Test or SLT test module) can run the same SQL multiple times ** with various optimizations disabled to verify that the same answer ** is obtained in every case. */ case SQLITE_TESTCTRL_OPTIMIZATIONS: { sqlite3 *db = va_arg(ap, sqlite3*); db->dbOptFlags = va_arg(ap, u32); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt); ** ** If parameter onoff is 1, subsequent calls to localtime() fail. ** If 2, then invoke xAlt() instead of localtime(). If 0, normal ** processing. ** ** xAlt arguments are void pointers, but they really want to be: ** ** int xAlt(const time_t*, struct tm*); ** ** xAlt should write results in to struct tm object of its 2nd argument ** and return zero on success, or return non-zero on failure. */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: { sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); if( sqlite3GlobalConfig.bLocaltimeFault==2 ){ typedef int(*sqlite3LocaltimeType)(const void*,void*); sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType); }else{ sqlite3GlobalConfig.xAltLocaltime = 0; } break; } /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*); ** ** Toggle the ability to use internal functions on or off for ** the database connection given in the argument. */ case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: { sqlite3 *db = va_arg(ap, sqlite3*); db->mDbFlags ^= DBFLAG_InternalFunc; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); ** ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated ** that demonstrate invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int); ** ** Set or clear a flag that causes SQLite to verify that type, name, ** and tbl_name fields of the sqlite_schema table. This is normally ** on, but it is sometimes useful to turn it off for testing. ** ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the ** verification of rootpage numbers when parsing the schema. This ** is useful to make it easier to reach strange internal error states ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled ** in production. */ case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: { sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int); break; } /* Set the threshold at which OP_Once counters reset back to zero. ** By default this is 0x7ffffffe (over 2 billion), but that value is ** too big to test in a reasonable amount of time, so this control is ** provided to set a small and easily reachable reset value. */ case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); ** ** Set the VDBE coverage callback function to xCallback with context ** pointer ptr. */ case SQLITE_TESTCTRL_VDBE_COVERAGE: { #ifdef SQLITE_VDBE_COVERAGE typedef void (*branch_callback)(void*,unsigned int, unsigned char,unsigned char); sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); #endif break; } /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ case SQLITE_TESTCTRL_SORTER_MMAP: { sqlite3 *db = va_arg(ap, sqlite3*); db->nMaxSorterMmap = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); ** ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if ** not. */ case SQLITE_TESTCTRL_ISINIT: { if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); ** ** This test control is used to create imposter tables. "db" is a pointer ** to the database connection. dbName is the database name (ex: "main" or ** "temp") which will receive the imposter. "onOff" turns imposter mode on ** or off. "tnum" is the root page of the b-tree to which the imposter ** table should connect. ** ** Enable imposter mode only when the schema has already been parsed. Then ** run a single CREATE TABLE statement to construct the imposter table in ** the parsed schema. Then turn imposter mode back off again. ** ** If onOff==0 and tnum>0 then reset the schema for all databases, causing ** the schema to be reparsed the next time it is needed. This has the ** effect of erasing all imposter tables. */ case SQLITE_TESTCTRL_IMPOSTER: { sqlite3 *db = va_arg(ap, sqlite3*); int iDb; sqlite3_mutex_enter(db->mutex); iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); if( iDb>=0 ){ db->init.iDb = iDb; db->init.busy = db->init.imposterTable = va_arg(ap,int); db->init.newTnum = va_arg(ap,int); if( db->init.busy==0 && db->init.newTnum>0 ){ sqlite3ResetAllSchemasOfConnection(db); } } sqlite3_mutex_leave(db->mutex); break; } #if defined(YYCOVERAGE) /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out) ** ** This test control (only available when SQLite is compiled with ** -DYYCOVERAGE) writes a report onto "out" that shows all ** state/lookahead combinations in the parser state machine ** which are never exercised. If any state is missed, make the ** return code SQLITE_ERROR. */ case SQLITE_TESTCTRL_PARSER_COVERAGE: { FILE *out = va_arg(ap, FILE*); if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; break; } #endif /* defined(YYCOVERAGE) */ /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*); ** ** This test-control causes the most recent sqlite3_result_int64() value ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally, ** MEM_IntReal values only arise during an INSERT operation of integer ** values into a REAL column, so they can be challenging to test. This ** test-control enables us to write an intreal() SQL function that can ** inject an intreal() value at arbitrary places in an SQL statement, ** for testing purposes. */ case SQLITE_TESTCTRL_RESULT_INTREAL: { sqlite3_context *pCtx = va_arg(ap, sqlite3_context*); sqlite3ResultIntReal(pCtx); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT, ** sqlite3 *db, // Database connection ** u64 *pnSeek // Write seek count here ** ); ** ** This test-control queries the seek-counter on the "main" database ** file. The seek-counter is written into *pnSeek and is then reset. ** The seek-count is only available if compiled with SQLITE_DEBUG. */ case SQLITE_TESTCTRL_SEEK_COUNT: { sqlite3 *db = va_arg(ap, sqlite3*); u64 *pn = va_arg(ap, sqlite3_uint64*); *pn = sqlite3BtreeSeekCount(db->aDb->pBt); (void)db; /* Silence harmless unused variable warning */ break; } /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) ** ** "ptr" is a pointer to a u32. ** ** op==0 Store the current sqlite3TreeTrace in *ptr ** op==1 Set sqlite3TreeTrace to the value *ptr ** op==2 Store the current sqlite3WhereTrace in *ptr ** op==3 Set sqlite3WhereTrace to the value *ptr */ case SQLITE_TESTCTRL_TRACEFLAGS: { int opTrace = va_arg(ap, int); u32 *ptr = va_arg(ap, u32*); switch( opTrace ){ case 0: *ptr = sqlite3TreeTrace; break; case 1: sqlite3TreeTrace = *ptr; break; case 2: *ptr = sqlite3WhereTrace; break; case 3: sqlite3WhereTrace = *ptr; break; } break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST, ** double fIn, // Input value ** int *pLogEst, // sqlite3LogEstFromDouble(fIn) ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst) ** int *pLogEst2 // sqlite3LogEst(*pInt) ** ); ** ** Test access for the LogEst conversion routines. */ case SQLITE_TESTCTRL_LOGEST: { double rIn = va_arg(ap, double); LogEst rLogEst = sqlite3LogEstFromDouble(rIn); int *pI1 = va_arg(ap,int*); u64 *pU64 = va_arg(ap,u64*); int *pI2 = va_arg(ap,int*); *pI1 = rLogEst; *pU64 = sqlite3LogEstToInt(rLogEst); *pI2 = sqlite3LogEst(*pU64); break; } #if !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_USELONGDOUBLE, int X); ** ** X<0 Make no changes to the bUseLongDouble. Just report value. ** X==0 Disable bUseLongDouble ** X==1 Enable bUseLongDouble ** X==2 Set bUseLongDouble to its default value for this platform */ case SQLITE_TESTCTRL_USELONGDOUBLE: { int b = va_arg(ap, int); if( b==2 ) b = sizeof(LONGDOUBLE_TYPE)>8; if( b>=0 ) sqlite3Config.bUseLongDouble = b>0; rc = sqlite3Config.bUseLongDouble!=0; break; } #endif #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) ** ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value ** of the id-th tuning parameter to *piValue. If "id" is between -1 ** and -SQLITE_NTUNE, then write the current value of the (-id)-th ** tuning parameter into *piValue. ** ** Tuning parameters are for use during transient development builds, ** to help find the best values for constants in the query planner. ** Access tuning parameters using the Tuning(ID) macro. Set the ** parameters in the CLI using ".testctrl tune ID VALUE". ** ** Transient use only. Tuning parameters should not be used in ** checked-in code. */ case SQLITE_TESTCTRL_TUNE: { int id = va_arg(ap, int); int *piValue = va_arg(ap, int*); if( id>0 && id<=SQLITE_NTUNE ){ Tuning(id) = *piValue; }else if( id<0 && id>=-SQLITE_NTUNE ){ *piValue = Tuning(-id); }else{ rc = SQLITE_NOTFOUND; } break; } #endif } va_end(ap); #endif /* SQLITE_UNTESTABLE */ return rc; } /* ** The Pager stores the Database filename, Journal filename, and WAL filename ** consecutively in memory, in that order. The database filename is prefixed ** by four zero bytes. Locate the start of the database filename by searching ** backwards for the first byte following four consecutive zero bytes. ** ** This only works if the filename passed in was obtained from the Pager. */ static const char *databaseName(const char *zName){ while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ zName--; } return zName; } /* ** Append text z[] to the end of p[]. Return a pointer to the first ** character after then zero terminator on the new text in p[]. */ static char *appendText(char *p, const char *z){ size_t n = strlen(z); memcpy(p, z, n+1); return p+n+1; } /* ** Allocate memory to hold names for a database, journal file, WAL file, ** and query parameters. The pointer returned is valid for use by ** sqlite3_filename_database() and sqlite3_uri_parameter() and related ** functions. ** ** Memory layout must be compatible with that generated by the pager ** and expected by sqlite3_uri_parameter() and databaseName(). */ SQLITE_API const char *sqlite3_create_filename( const char *zDatabase, const char *zJournal, const char *zWal, int nParam, const char **azParam ){ sqlite3_int64 nByte; int i; char *pResult, *p; nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10; for(i=0; i0 ){ zFilename += sqlite3Strlen30(zFilename) + 1; zFilename += sqlite3Strlen30(zFilename) + 1; } return zFilename[0] ? zFilename : 0; } /* ** Return a boolean value for a query parameter. */ SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ const char *z = sqlite3_uri_parameter(zFilename, zParam); bDflt = bDflt!=0; return z ? sqlite3GetBoolean(z, bDflt) : bDflt; } /* ** Return a 64-bit integer value for a query parameter. */ SQLITE_API sqlite3_int64 sqlite3_uri_int64( const char *zFilename, /* Filename as passed to xOpen */ const char *zParam, /* URI parameter sought */ sqlite3_int64 bDflt /* return if parameter is missing */ ){ const char *z = sqlite3_uri_parameter(zFilename, zParam); sqlite3_int64 v; if( z && sqlite3DecOrHexToI64(z, &v)==0 ){ bDflt = v; } return bDflt; } /* ** Translate a filename that was handed to a VFS routine into the corresponding ** database, journal, or WAL file. ** ** It is an error to pass this routine a filename string that was not ** passed into the VFS from the SQLite core. Doing so is similar to ** passing free() a pointer that was not obtained from malloc() - it is ** an error that we cannot easily detect but that will likely cause memory ** corruption. */ SQLITE_API const char *sqlite3_filename_database(const char *zFilename){ if( zFilename==0 ) return 0; return databaseName(zFilename); } SQLITE_API const char *sqlite3_filename_journal(const char *zFilename){ if( zFilename==0 ) return 0; zFilename = databaseName(zFilename); zFilename += sqlite3Strlen30(zFilename) + 1; while( ALWAYS(zFilename) && zFilename[0] ){ zFilename += sqlite3Strlen30(zFilename) + 1; zFilename += sqlite3Strlen30(zFilename) + 1; } return zFilename + 1; } SQLITE_API const char *sqlite3_filename_wal(const char *zFilename){ #ifdef SQLITE_OMIT_WAL return 0; #else zFilename = sqlite3_filename_journal(zFilename); if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1; return zFilename; #endif } /* ** Return the Btree pointer identified by zDbName. Return NULL if not found. */ SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; return iDb<0 ? 0 : db->aDb[iDb].pBt; } /* ** Return the name of the N-th database schema. Return NULL if N is out ** of range. */ SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( N<0 || N>=db->nDb ){ return 0; }else{ return db->aDb[N].zDbSName; } } /* ** Return the filename of the database associated with a database ** connection. */ SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ Btree *pBt; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeGetFilename(pBt) : 0; } /* ** Return 1 if database is read-only or 0 if read/write. Return -1 if ** no such database exists. */ SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ Btree *pBt; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; } #ifdef SQLITE_ENABLE_SNAPSHOT /* ** Obtain a snapshot handle for the snapshot of database zDb currently ** being read by handle db. */ SQLITE_API int sqlite3_snapshot_get( sqlite3 *db, const char *zDb, sqlite3_snapshot **ppSnapshot ){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->autoCommit==0 ){ int iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Open a read-transaction on the snapshot identified by pSnapshot. */ SQLITE_API int sqlite3_snapshot_open( sqlite3 *db, const char *zDb, sqlite3_snapshot *pSnapshot ){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->autoCommit==0 ){ int iDb; iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){ Pager *pPager = sqlite3BtreePager(pBt); int bUnlock = 0; if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){ if( db->nVdbeActive==0 ){ rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot); if( rc==SQLITE_OK ){ bUnlock = 1; rc = sqlite3BtreeCommit(pBt); } } }else{ rc = SQLITE_OK; } if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot); } if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); sqlite3PagerSnapshotOpen(pPager, 0); } if( bUnlock ){ sqlite3PagerSnapshotUnlock(pPager); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Recover as many snapshots as possible from the wal file associated with ** schema zDb of database db. */ SQLITE_API int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL int iDb; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); sqlite3BtreeCommit(pBt); } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Free a snapshot handle obtained from sqlite3_snapshot_get(). */ SQLITE_API void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ sqlite3_free(pSnapshot); } #endif /* SQLITE_ENABLE_SNAPSHOT */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* ** Given the name of a compile-time option, return true if that option ** was used and false if not. ** ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix ** is not required for a match. */ SQLITE_API int sqlite3_compileoption_used(const char *zOptName){ int i, n; int nOpt; const char **azCompileOpt; #if SQLITE_ENABLE_API_ARMOR if( zOptName==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif azCompileOpt = sqlite3CompileOptions(&nOpt); if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; n = sqlite3Strlen30(zOptName); /* Since nOpt is normally in single digits, a linear search is ** adequate. No need for a binary search. */ for(i=0; i=0 && NpNextBlocked){ int seen = 0; sqlite3 *p2; /* Verify property (1) */ assert( p->pUnlockConnection || p->pBlockingConnection ); /* Verify property (2) */ for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){ if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1; assert( p2->xUnlockNotify==p->xUnlockNotify || !seen ); assert( db==0 || p->pUnlockConnection!=db ); assert( db==0 || p->pBlockingConnection!=db ); } } } #else # define checkListProperties(x) #endif /* ** Remove connection db from the blocked connections list. If connection ** db is not currently a part of the list, this function is a no-op. */ static void removeFromBlockedList(sqlite3 *db){ sqlite3 **pp; assertMutexHeld(); for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){ if( *pp==db ){ *pp = (*pp)->pNextBlocked; break; } } } /* ** Add connection db to the blocked connections list. It is assumed ** that it is not already a part of the list. */ static void addToBlockedList(sqlite3 *db){ sqlite3 **pp; assertMutexHeld(); for( pp=&sqlite3BlockedList; *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify; pp=&(*pp)->pNextBlocked ); db->pNextBlocked = *pp; *pp = db; } /* ** Obtain the STATIC_MAIN mutex. */ static void enterMutex(void){ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); checkListProperties(0); } /* ** Release the STATIC_MAIN mutex. */ static void leaveMutex(void){ assertMutexHeld(); checkListProperties(0); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); } /* ** Register an unlock-notify callback. ** ** This is called after connection "db" has attempted some operation ** but has received an SQLITE_LOCKED error because another connection ** (call it pOther) in the same process was busy using the same shared ** cache. pOther is found by looking at db->pBlockingConnection. ** ** If there is no blocking connection, the callback is invoked immediately, ** before this routine returns. ** ** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate ** a deadlock. ** ** Otherwise, make arrangements to invoke xNotify when pOther drops ** its locks. ** ** Each call to this routine overrides any prior callbacks registered ** on the same "db". If xNotify==0 then any prior callbacks are immediately ** cancelled. */ SQLITE_API int sqlite3_unlock_notify( sqlite3 *db, void (*xNotify)(void **, int), void *pArg ){ int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); enterMutex(); if( xNotify==0 ){ removeFromBlockedList(db); db->pBlockingConnection = 0; db->pUnlockConnection = 0; db->xUnlockNotify = 0; db->pUnlockArg = 0; }else if( 0==db->pBlockingConnection ){ /* The blocking transaction has been concluded. Or there never was a ** blocking transaction. In either case, invoke the notify callback ** immediately. */ xNotify(&pArg, 1); }else{ sqlite3 *p; for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){} if( p ){ rc = SQLITE_LOCKED; /* Deadlock detected. */ }else{ db->pUnlockConnection = db->pBlockingConnection; db->xUnlockNotify = xNotify; db->pUnlockArg = pArg; removeFromBlockedList(db); addToBlockedList(db); } } leaveMutex(); assert( !db->mallocFailed ); sqlite3ErrorWithMsg(db, rc, (rc?"database is deadlocked":0)); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This function is called while stepping or preparing a statement ** associated with connection db. The operation will return SQLITE_LOCKED ** to the user because it requires a lock that will not be available ** until connection pBlocker concludes its current transaction. */ SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){ enterMutex(); if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){ addToBlockedList(db); } db->pBlockingConnection = pBlocker; leaveMutex(); } /* ** This function is called when ** the transaction opened by database db has just finished. Locks held ** by database connection db have been released. ** ** This function loops through each entry in the blocked connections ** list and does the following: ** ** 1) If the sqlite3.pBlockingConnection member of a list entry is ** set to db, then set pBlockingConnection=0. ** ** 2) If the sqlite3.pUnlockConnection member of a list entry is ** set to db, then invoke the configured unlock-notify callback and ** set pUnlockConnection=0. ** ** 3) If the two steps above mean that pBlockingConnection==0 and ** pUnlockConnection==0, remove the entry from the blocked connections ** list. */ SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){ void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */ int nArg = 0; /* Number of entries in aArg[] */ sqlite3 **pp; /* Iterator variable */ void **aArg; /* Arguments to the unlock callback */ void **aDyn = 0; /* Dynamically allocated space for aArg[] */ void *aStatic[16]; /* Starter space for aArg[]. No malloc required */ aArg = aStatic; enterMutex(); /* Enter STATIC_MAIN mutex */ /* This loop runs once for each entry in the blocked-connections list. */ for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){ sqlite3 *p = *pp; /* Step 1. */ if( p->pBlockingConnection==db ){ p->pBlockingConnection = 0; } /* Step 2. */ if( p->pUnlockConnection==db ){ assert( p->xUnlockNotify ); if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){ xUnlockNotify(aArg, nArg); nArg = 0; } sqlite3BeginBenignMalloc(); assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); if( (!aDyn && nArg==(int)ArraySize(aStatic)) || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*))) ){ /* The aArg[] array needs to grow. */ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2); if( pNew ){ memcpy(pNew, aArg, nArg*sizeof(void *)); sqlite3_free(aDyn); aDyn = aArg = pNew; }else{ /* This occurs when the array of context pointers that need to ** be passed to the unlock-notify callback is larger than the ** aStatic[] array allocated on the stack and the attempt to ** allocate a larger array from the heap has failed. ** ** This is a difficult situation to handle. Returning an error ** code to the caller is insufficient, as even if an error code ** is returned the transaction on connection db will still be ** closed and the unlock-notify callbacks on blocked connections ** will go unissued. This might cause the application to wait ** indefinitely for an unlock-notify callback that will never ** arrive. ** ** Instead, invoke the unlock-notify callback with the context ** array already accumulated. We can then clear the array and ** begin accumulating any further context pointers without ** requiring any dynamic allocation. This is sub-optimal because ** it means that instead of one callback with a large array of ** context pointers the application will receive two or more ** callbacks with smaller arrays of context pointers, which will ** reduce the applications ability to prioritize multiple ** connections. But it is the best that can be done under the ** circumstances. */ xUnlockNotify(aArg, nArg); nArg = 0; } } sqlite3EndBenignMalloc(); aArg[nArg++] = p->pUnlockArg; xUnlockNotify = p->xUnlockNotify; p->pUnlockConnection = 0; p->xUnlockNotify = 0; p->pUnlockArg = 0; } /* Step 3. */ if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){ /* Remove connection p from the blocked connections list. */ *pp = p->pNextBlocked; p->pNextBlocked = 0; }else{ pp = &p->pNextBlocked; } } if( nArg!=0 ){ xUnlockNotify(aArg, nArg); } sqlite3_free(aDyn); leaveMutex(); /* Leave STATIC_MAIN mutex */ } /* ** This is called when the database connection passed as an argument is ** being closed. The connection is removed from the blocked list. */ SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){ sqlite3ConnectionUnlocked(db); enterMutex(); removeFromBlockedList(db); checkListProperties(db); leaveMutex(); } #endif /************** End of notify.c **********************************************/ /************** Begin file fts3.c ********************************************/ /* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This is an SQLite module implementing full-text search. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* The full-text index is stored in a series of b+tree (-like) ** structures called segments which map terms to doclists. The ** structures are like b+trees in layout, but are constructed from the ** bottom up in optimal fashion and are not updatable. Since trees ** are built from the bottom up, things will be described from the ** bottom up. ** ** **** Varints **** ** The basic unit of encoding is a variable-length integer called a ** varint. We encode variable-length integers in little-endian order ** using seven bits * per byte as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** and so on. ** ** This is similar in concept to how sqlite encodes "varints" but ** the encoding is not the same. SQLite varints are big-endian ** are are limited to 9 bytes in length whereas FTS3 varints are ** little-endian and can be up to 10 bytes in length (in theory). ** ** Example encodings: ** ** 1: 0x01 ** 127: 0x7f ** 128: 0x81 0x00 ** ** **** Document lists **** ** A doclist (document list) holds a docid-sorted list of hits for a ** given term. Doclists hold docids and associated token positions. ** A docid is the unique integer identifier for a single document. ** A position is the index of a word within the document. The first ** word of the document has a position of 0. ** ** FTS3 used to optionally store character offsets using a compile-time ** option. But that functionality is no longer supported. ** ** A doclist is stored like this: ** ** array { ** varint docid; (delta from previous doclist) ** array { (position list for column 0) ** varint position; (2 more than the delta from previous position) ** } ** array { ** varint POS_COLUMN; (marks start of position list for new column) ** varint column; (index of new column) ** array { ** varint position; (2 more than the delta from previous position) ** } ** } ** varint POS_END; (marks end of positions for this document. ** } ** ** Here, array { X } means zero or more occurrences of X, adjacent in ** memory. A "position" is an index of a token in the token stream ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur ** in the same logical place as the position element, and act as sentinals ** ending a position list array. POS_END is 0. POS_COLUMN is 1. ** The positions numbers are not stored literally but rather as two more ** than the difference from the prior position, or the just the position plus ** 2 for the first position. Example: ** ** label: A B C D E F G H I J K ** value: 123 5 9 1 1 14 35 0 234 72 0 ** ** The 123 value is the first docid. For column zero in this document ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 ** at D signals the start of a new column; the 1 at E indicates that the ** new column is column number 1. There are two positions at 12 and 45 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The ** 234 at I is the delta to next docid (357). It has one position 70 ** (72-2) and then terminates with the 0 at K. ** ** A "position-list" is the list of positions for multiple columns for ** a single docid. A "column-list" is the set of positions for a single ** column. Hence, a position-list consists of one or more column-lists, ** a document record consists of a docid followed by a position-list and ** a doclist consists of one or more document records. ** ** A bare doclist omits the position information, becoming an ** array of varint-encoded docids. ** **** Segment leaf nodes **** ** Segment leaf nodes store terms and doclists, ordered by term. Leaf ** nodes are written using LeafWriter, and read using LeafReader (to ** iterate through a single leaf node's data) and LeavesReader (to ** iterate through a segment's entire leaf layer). Leaf nodes have ** the format: ** ** varint iHeight; (height from leaf level, always 0) ** varint nTerm; (length of first term) ** char pTerm[nTerm]; (content of first term) ** varint nDoclist; (length of term's associated doclist) ** char pDoclist[nDoclist]; (content of doclist) ** array { ** (further terms are delta-encoded) ** varint nPrefix; (length of prefix shared with previous term) ** varint nSuffix; (length of unshared suffix) ** char pTermSuffix[nSuffix];(unshared suffix of next term) ** varint nDoclist; (length of term's associated doclist) ** char pDoclist[nDoclist]; (content of doclist) ** } ** ** Here, array { X } means zero or more occurrences of X, adjacent in ** memory. ** ** Leaf nodes are broken into blocks which are stored contiguously in ** the %_segments table in sorted order. This means that when the end ** of a node is reached, the next term is in the node with the next ** greater node id. ** ** New data is spilled to a new leaf node when the current node ** exceeds LEAF_MAX bytes (default 2048). New data which itself is ** larger than STANDALONE_MIN (default 1024) is placed in a standalone ** node (a leaf node with a single term and doclist). The goal of ** these settings is to pack together groups of small doclists while ** making it efficient to directly access large doclists. The ** assumption is that large doclists represent terms which are more ** likely to be query targets. ** ** TODO(shess) It may be useful for blocking decisions to be more ** dynamic. For instance, it may make more sense to have a 2.5k leaf ** node rather than splitting into 2k and .5k nodes. My intuition is ** that this might extend through 2x or 4x the pagesize. ** ** **** Segment interior nodes **** ** Segment interior nodes store blockids for subtree nodes and terms ** to describe what data is stored by the each subtree. Interior ** nodes are written using InteriorWriter, and read using ** InteriorReader. InteriorWriters are created as needed when ** SegmentWriter creates new leaf nodes, or when an interior node ** itself grows too big and must be split. The format of interior ** nodes: ** ** varint iHeight; (height from leaf level, always >0) ** varint iBlockid; (block id of node's leftmost subtree) ** optional { ** varint nTerm; (length of first term) ** char pTerm[nTerm]; (content of first term) ** array { ** (further terms are delta-encoded) ** varint nPrefix; (length of shared prefix with previous term) ** varint nSuffix; (length of unshared suffix) ** char pTermSuffix[nSuffix]; (unshared suffix of next term) ** } ** } ** ** Here, optional { X } means an optional element, while array { X } ** means zero or more occurrences of X, adjacent in memory. ** ** An interior node encodes n terms separating n+1 subtrees. The ** subtree blocks are contiguous, so only the first subtree's blockid ** is encoded. The subtree at iBlockid will contain all terms less ** than the first term encoded (or all terms if no term is encoded). ** Otherwise, for terms greater than or equal to pTerm[i] but less ** than pTerm[i+1], the subtree for that term will be rooted at ** iBlockid+i. Interior nodes only store enough term data to ** distinguish adjacent children (if the rightmost term of the left ** child is "something", and the leftmost term of the right child is ** "wicked", only "w" is stored). ** ** New data is spilled to a new interior node at the same height when ** the current node exceeds INTERIOR_MAX bytes (default 2048). ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing ** interior nodes and making the tree too skinny. The interior nodes ** at a given height are naturally tracked by interior nodes at ** height+1, and so on. ** ** **** Segment directory **** ** The segment directory in table %_segdir stores meta-information for ** merging and deleting segments, and also the root node of the ** segment's tree. ** ** The root node is the top node of the segment's tree after encoding ** the entire segment, restricted to ROOT_MAX bytes (default 1024). ** This could be either a leaf node or an interior node. If the top ** node requires more than ROOT_MAX bytes, it is flushed to %_segments ** and a new root interior node is generated (which should always fit ** within ROOT_MAX because it only needs space for 2 varints, the ** height and the blockid of the previous root). ** ** The meta-information in the segment directory is: ** level - segment level (see below) ** idx - index within level ** - (level,idx uniquely identify a segment) ** start_block - first leaf node ** leaves_end_block - last leaf node ** end_block - last block (including interior nodes) ** root - contents of root node ** ** If the root node is a leaf node, then start_block, ** leaves_end_block, and end_block are all 0. ** ** **** Segment merging **** ** To amortize update costs, segments are grouped into levels and ** merged in batches. Each increase in level represents exponentially ** more documents. ** ** New documents (actually, document updates) are tokenized and ** written individually (using LeafWriter) to a level 0 segment, with ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all ** level 0 segments are merged into a single level 1 segment. Level 1 ** is populated like level 0, and eventually MERGE_COUNT level 1 ** segments are merged to a single level 2 segment (representing ** MERGE_COUNT^2 updates), and so on. ** ** A segment merge traverses all segments at a given level in ** parallel, performing a straightforward sorted merge. Since segment ** leaf nodes are written in to the %_segments table in order, this ** merge traverses the underlying sqlite disk structures efficiently. ** After the merge, all segment blocks from the merged level are ** deleted. ** ** MERGE_COUNT controls how often we merge segments. 16 seems to be ** somewhat of a sweet spot for insertion performance. 32 and 64 show ** very similar performance numbers to 16 on insertion, though they're ** a tiny bit slower (perhaps due to more overhead in merge-time ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than ** 16, 2 about 66% slower than 16. ** ** At query time, high MERGE_COUNT increases the number of segments ** which need to be scanned and merged. For instance, with 100k docs ** inserted: ** ** MERGE_COUNT segments ** 16 25 ** 8 12 ** 4 10 ** 2 6 ** ** This appears to have only a moderate impact on queries for very ** frequent terms (which are somewhat dominated by segment merge ** costs), and infrequent and non-existent terms still seem to be fast ** even with many segments. ** ** TODO(shess) That said, it would be nice to have a better query-side ** argument for MERGE_COUNT of 16. Also, it is possible/likely that ** optimizations to things like doclist merging will swing the sweet ** spot around. ** ** ** **** Handling of deletions and updates **** ** Since we're using a segmented structure, with no docid-oriented ** index into the term index, we clearly cannot simply update the term ** index when a document is deleted or updated. For deletions, we ** write an empty doclist (varint(docid) varint(POS_END)), for updates ** we simply write the new doclist. Segment merges overwrite older ** data for a particular docid with newer data, so deletes or updates ** will eventually overtake the earlier data and knock it out. The ** query logic likewise merges doclists so that newer data knocks out ** older data. */ /************** Include fts3Int.h in the middle of fts3.c ********************/ /************** Begin file fts3Int.h *****************************************/ /* ** 2009 Nov 12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ #ifndef _FTSINT_H #define _FTSINT_H #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif /* FTS3/FTS4 require virtual tables */ #ifdef SQLITE_OMIT_VIRTUALTABLE # undef SQLITE_ENABLE_FTS3 # undef SQLITE_ENABLE_FTS4 #endif /* ** FTS4 is really an extension for FTS3. It is enabled using the ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 #endif #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* If not building as part of the core, include sqlite3ext.h. */ #ifndef SQLITE_CORE /* # include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT3 #endif /* #include "sqlite3.h" */ /************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/ /************** Begin file fts3_tokenizer.h **********************************/ /* ** 2006 July 10 ** ** The author disclaims copyright to this source code. ** ************************************************************************* ** Defines the interface to tokenizers used by fulltext-search. There ** are three basic components: ** ** sqlite3_tokenizer_module is a singleton defining the tokenizer ** interface functions. This is essentially the class structure for ** tokenizers. ** ** sqlite3_tokenizer is used to define a particular tokenizer, perhaps ** including customization information defined at creation time. ** ** sqlite3_tokenizer_cursor is generated by a tokenizer to generate ** tokens from a particular input. */ #ifndef _FTS3_TOKENIZER_H_ #define _FTS3_TOKENIZER_H_ /* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. ** If tokenizers are to be allowed to call sqlite3_*() functions, then ** we will need a way to register the API consistently. */ /* #include "sqlite3.h" */ /* ** Structures used by the tokenizer interface. When a new tokenizer ** implementation is registered, the caller provides a pointer to ** an sqlite3_tokenizer_module containing pointers to the callback ** functions that make up an implementation. ** ** When an fts3 table is created, it passes any arguments passed to ** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the ** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer ** implementation. The xCreate() function in turn returns an ** sqlite3_tokenizer structure representing the specific tokenizer to ** be used for the fts3 table (customized by the tokenizer clause arguments). ** ** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() ** method is called. It returns an sqlite3_tokenizer_cursor object ** that may be used to tokenize a specific input buffer based on ** the tokenization rules supplied by a specific sqlite3_tokenizer ** object. */ typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; typedef struct sqlite3_tokenizer sqlite3_tokenizer; typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; struct sqlite3_tokenizer_module { /* ** Structure version. Should always be set to 0 or 1. */ int iVersion; /* ** Create a new tokenizer. The values in the argv[] array are the ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL ** TABLE statement that created the fts3 table. For example, if ** the following SQL is executed: ** ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) ** ** then argc is set to 2, and the argv[] array contains pointers ** to the strings "arg1" and "arg2". ** ** This method should return either SQLITE_OK (0), or an SQLite error ** code. If SQLITE_OK is returned, then *ppTokenizer should be set ** to point at the newly created tokenizer structure. The generic ** sqlite3_tokenizer.pModule variable should not be initialized by ** this callback. The caller will do so. */ int (*xCreate)( int argc, /* Size of argv array */ const char *const*argv, /* Tokenizer argument strings */ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ ); /* ** Destroy an existing tokenizer. The fts3 module calls this method ** exactly once for each successful call to xCreate(). */ int (*xDestroy)(sqlite3_tokenizer *pTokenizer); /* ** Create a tokenizer cursor to tokenize an input buffer. The caller ** is responsible for ensuring that the input buffer remains valid ** until the cursor is closed (using the xClose() method). */ int (*xOpen)( sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ const char *pInput, int nBytes, /* Input buffer */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ ); /* ** Destroy an existing tokenizer cursor. The fts3 module calls this ** method exactly once for each successful call to xOpen(). */ int (*xClose)(sqlite3_tokenizer_cursor *pCursor); /* ** Retrieve the next token from the tokenizer cursor pCursor. This ** method should either return SQLITE_OK and set the values of the ** "OUT" variables identified below, or SQLITE_DONE to indicate that ** the end of the buffer has been reached, or an SQLite error code. ** ** *ppToken should be set to point at a buffer containing the ** normalized version of the token (i.e. after any case-folding and/or ** stemming has been performed). *pnBytes should be set to the length ** of this buffer in bytes. The input text that generated the token is ** identified by the byte offsets returned in *piStartOffset and ** *piEndOffset. *piStartOffset should be set to the index of the first ** byte of the token in the input buffer. *piEndOffset should be set ** to the index of the first byte just past the end of the token in ** the input buffer. ** ** The buffer *ppToken is set to point at is managed by the tokenizer ** implementation. It is only required to be valid until the next call ** to xNext() or xClose(). */ /* TODO(shess) current implementation requires pInput to be ** nul-terminated. This should either be fixed, or pInput/nBytes ** should be converted to zInput. */ int (*xNext)( sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ int *piStartOffset, /* OUT: Byte offset of token in input buffer */ int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ int *piPosition /* OUT: Number of tokens returned before this one */ ); /*********************************************************************** ** Methods below this point are only available if iVersion>=1. */ /* ** Configure the language id of a tokenizer cursor. */ int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid); }; struct sqlite3_tokenizer { const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ /* Tokenizer implementations will typically add additional fields */ }; struct sqlite3_tokenizer_cursor { sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ /* Tokenizer implementations will typically add additional fields */ }; int fts3_global_term_cnt(int iTerm, int iCol); int fts3_term_cnt(int iTerm, int iCol); #endif /* _FTS3_TOKENIZER_H_ */ /************** End of fts3_tokenizer.h **************************************/ /************** Continuing where we left off in fts3Int.h ********************/ /************** Include fts3_hash.h in the middle of fts3Int.h ***************/ /************** Begin file fts3_hash.h ***************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the header file for the generic hash-table implementation ** used in SQLite. We've modified it slightly to serve as a standalone ** hash table implementation for the full-text indexing module. ** */ #ifndef _FTS3_HASH_H_ #define _FTS3_HASH_H_ /* Forward declarations of structures. */ typedef struct Fts3Hash Fts3Hash; typedef struct Fts3HashElem Fts3HashElem; /* A complete hash table is an instance of the following structure. ** The internals of this structure are intended to be opaque -- client ** code should not attempt to access or modify the fields of this structure ** directly. Change this structure only by using the routines below. ** However, many of the "procedures" and "functions" for modifying and ** accessing this structure are really macros, so we can't really make ** this structure opaque. */ struct Fts3Hash { char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ char copyKey; /* True if copy of key made on insert */ int count; /* Number of entries in this table */ Fts3HashElem *first; /* The first element of the array */ int htsize; /* Number of buckets in the hash table */ struct _fts3ht { /* the hash table */ int count; /* Number of entries with this hash */ Fts3HashElem *chain; /* Pointer to first entry with this hash */ } *ht; }; /* Each element in the hash table is an instance of the following ** structure. All elements are stored on a single doubly-linked list. ** ** Again, this structure is intended to be opaque, but it can't really ** be opaque because it is used by macros. */ struct Fts3HashElem { Fts3HashElem *next, *prev; /* Next and previous elements in the table */ void *data; /* Data associated with this element */ void *pKey; int nKey; /* Key associated with this element */ }; /* ** There are 2 different modes of operation for a hash table: ** ** FTS3_HASH_STRING pKey points to a string that is nKey bytes long ** (including the null-terminator, if any). Case ** is respected in comparisons. ** ** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. ** memcmp() is used to compare keys. ** ** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. */ #define FTS3_HASH_STRING 1 #define FTS3_HASH_BINARY 2 /* ** Access routines. To delete, insert a NULL pointer. */ SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey); SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData); SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey); SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*); SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int); /* ** Shorthand for the functions above */ #define fts3HashInit sqlite3Fts3HashInit #define fts3HashInsert sqlite3Fts3HashInsert #define fts3HashFind sqlite3Fts3HashFind #define fts3HashClear sqlite3Fts3HashClear #define fts3HashFindElem sqlite3Fts3HashFindElem /* ** Macros for looping over all elements of a hash table. The idiom is ** like this: ** ** Fts3Hash h; ** Fts3HashElem *p; ** ... ** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ ** SomeStructure *pData = fts3HashData(p); ** // do something with pData ** } */ #define fts3HashFirst(H) ((H)->first) #define fts3HashNext(E) ((E)->next) #define fts3HashData(E) ((E)->data) #define fts3HashKey(E) ((E)->pKey) #define fts3HashKeysize(E) ((E)->nKey) /* ** Number of entries in a hash table */ #define fts3HashCount(H) ((H)->count) #endif /* _FTS3_HASH_H_ */ /************** End of fts3_hash.h *******************************************/ /************** Continuing where we left off in fts3Int.h ********************/ /* ** This constant determines the maximum depth of an FTS expression tree ** that the library will create and use. FTS uses recursion to perform ** various operations on the query tree, so the disadvantage of a large ** limit is that it may allow very large queries to use large amounts ** of stack space (perhaps causing a stack overflow). */ #ifndef SQLITE_FTS3_MAX_EXPR_DEPTH # define SQLITE_FTS3_MAX_EXPR_DEPTH 12 #endif /* ** This constant controls how often segments are merged. Once there are ** FTS3_MERGE_COUNT segments of level N, they are merged into a single ** segment of level N+1. */ #define FTS3_MERGE_COUNT 16 /* ** This is the maximum amount of data (in bytes) to store in the ** Fts3Table.pendingTerms hash table. Normally, the hash table is ** populated as documents are inserted/updated/deleted in a transaction ** and used to create a new segment when the transaction is committed. ** However if this limit is reached midway through a transaction, a new ** segment is created and the hash table cleared immediately. */ #define FTS3_MAX_PENDING_DATA (1*1024*1024) /* ** Macro to return the number of elements in an array. SQLite has a ** similar macro called ArraySize(). Use a different name to avoid ** a collision when building an amalgamation with built-in FTS3. */ #define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0]))) #ifndef MIN # define MIN(x,y) ((x)<(y)?(x):(y)) #endif #ifndef MAX # define MAX(x,y) ((x)>(y)?(x):(y)) #endif /* ** Maximum length of a varint encoded integer. The varint format is different ** from that used by SQLite, so the maximum length is 10, not 9. */ #define FTS3_VARINT_MAX 10 #define FTS3_BUFFER_PADDING 8 /* ** FTS4 virtual tables may maintain multiple indexes - one index of all terms ** in the document set and zero or more prefix indexes. All indexes are stored ** as one or more b+-trees in the %_segments and %_segdir tables. ** ** It is possible to determine which index a b+-tree belongs to based on the ** value stored in the "%_segdir.level" column. Given this value L, the index ** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with ** level values between 0 and 1023 (inclusive) belong to index 0, all levels ** between 1024 and 2047 to index 1, and so on. ** ** It is considered impossible for an index to use more than 1024 levels. In ** theory though this may happen, but only after at least ** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables. */ #define FTS3_SEGDIR_MAXLEVEL 1024 #define FTS3_SEGDIR_MAXLEVEL_STR "1024" /* ** The testcase() macro is only used by the amalgamation. If undefined, ** make it a no-op. */ #ifndef testcase # define testcase(X) #endif /* ** Terminator values for position-lists and column-lists. */ #define POS_COLUMN (1) /* Column-list terminator */ #define POS_END (0) /* Position-list terminator */ /* ** The assert_fts3_nc() macro is similar to the assert() macro, except that it ** is used for assert() conditions that are true only if it can be ** guranteed that the database is not corrupt. */ #ifdef SQLITE_DEBUG SQLITE_API extern int sqlite3_fts3_may_be_corrupt; # define assert_fts3_nc(x) assert(sqlite3_fts3_may_be_corrupt || (x)) #else # define assert_fts3_nc(x) assert(x) #endif /* ** This section provides definitions to allow the ** FTS3 extension to be compiled outside of the ** amalgamation. */ #ifndef SQLITE_AMALGAMATION /* ** Macros indicating that conditional expressions are always true or ** false. */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif /* ** Internal types used by SQLite. */ typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ typedef short int i16; /* 2-byte (or larger) signed integer */ typedef unsigned int u32; /* 4-byte unsigned integer */ typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */ typedef sqlite3_int64 i64; /* 8-byte signed integer */ /* ** Macro used to suppress compiler warnings for unused parameters. */ #define UNUSED_PARAMETER(x) (void)(x) /* ** Activate assert() only if SQLITE_TEST is enabled. */ #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif /* ** The TESTONLY macro is used to enclose variable declarations or ** other bits of code that are needed to support the arguments ** within testcase() and assert() macros. */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) # define TESTONLY(X) X #else # define TESTONLY(X) #endif #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) #define deliberate_fall_through #endif /* SQLITE_AMALGAMATION */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3Fts3Corrupt(void); # define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt() #else # define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB #endif typedef struct Fts3Table Fts3Table; typedef struct Fts3Cursor Fts3Cursor; typedef struct Fts3Expr Fts3Expr; typedef struct Fts3Phrase Fts3Phrase; typedef struct Fts3PhraseToken Fts3PhraseToken; typedef struct Fts3Doclist Fts3Doclist; typedef struct Fts3SegFilter Fts3SegFilter; typedef struct Fts3DeferredToken Fts3DeferredToken; typedef struct Fts3SegReader Fts3SegReader; typedef struct Fts3MultiSegReader Fts3MultiSegReader; typedef struct MatchinfoBuffer MatchinfoBuffer; /* ** A connection to a fulltext index is an instance of the following ** structure. The xCreate and xConnect methods create an instance ** of this structure and xDestroy and xDisconnect free that instance. ** All other methods receive a pointer to the structure as one of their ** arguments. */ struct Fts3Table { sqlite3_vtab base; /* Base class used by SQLite core */ sqlite3 *db; /* The database connection */ const char *zDb; /* logical database name */ const char *zName; /* virtual table name */ int nColumn; /* number of named columns in virtual table */ char **azColumn; /* column names. malloced */ u8 *abNotindexed; /* True for 'notindexed' columns */ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ char *zContentTbl; /* content=xxx option, or NULL */ char *zLanguageid; /* languageid=xxx option, or NULL */ int nAutoincrmerge; /* Value configured by 'automerge' */ u32 nLeafAdd; /* Number of leaf blocks added this trans */ int bLock; /* Used to prevent recursive content= tbls */ /* Precompiled statements used by the implementation. Each of these ** statements is run and reset within a single virtual table API call. */ sqlite3_stmt *aStmt[40]; sqlite3_stmt *pSeekStmt; /* Cache for fts3CursorSeekStmt() */ char *zReadExprlist; char *zWriteExprlist; int nNodeSize; /* Soft limit for node size */ u8 bFts4; /* True for FTS4, false for FTS3 */ u8 bHasStat; /* True if %_stat table exists (2==unknown) */ u8 bHasDocsize; /* True if %_docsize table exists */ u8 bDescIdx; /* True if doclists are in reverse order */ u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */ int nPgsz; /* Page size for host database */ char *zSegmentsTbl; /* Name of %_segments table */ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ /* ** The following array of hash tables is used to buffer pending index ** updates during transactions. All pending updates buffered at any one ** time must share a common language-id (see the FTS4 langid= feature). ** The current language id is stored in variable iPrevLangid. ** ** A single FTS4 table may have multiple full-text indexes. For each index ** there is an entry in the aIndex[] array. Index 0 is an index of all the ** terms that appear in the document set. Each subsequent index in aIndex[] ** is an index of prefixes of a specific length. ** ** Variable nPendingData contains an estimate the memory consumed by the ** pending data structures, including hash table overhead, but not including ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash ** tables are flushed to disk. Variable iPrevDocid is the docid of the most ** recently inserted record. */ int nIndex; /* Size of aIndex[] */ struct Fts3Index { int nPrefix; /* Prefix length (0 for main terms index) */ Fts3Hash hPending; /* Pending terms table for this index */ } *aIndex; int nMaxPendingData; /* Max pending data before flush to disk */ int nPendingData; /* Current bytes of pending data */ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */ int iPrevLangid; /* Langid of recently inserted document */ int bPrevDelete; /* True if last operation was a delete */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* State variables used for validating that the transaction control ** methods of the virtual table are called at appropriate times. These ** values do not contribute to FTS functionality; they are used for ** verifying the operation of the SQLite core. */ int inTransaction; /* True after xBegin but before xCommit/xRollback */ int mxSavepoint; /* Largest valid xSavepoint integer */ #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* True to disable the incremental doclist optimization. This is controled ** by special insert command 'test-no-incr-doclist'. */ int bNoIncrDoclist; /* Number of segments in a level */ int nMergeCount; #endif }; /* Macro to find the number of segments to merge */ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) # define MergeCount(P) ((P)->nMergeCount) #else # define MergeCount(P) FTS3_MERGE_COUNT #endif /* ** When the core wants to read from the virtual table, it creates a ** virtual table cursor (an instance of the following structure) using ** the xOpen method. Cursors are destroyed using the xClose method. */ struct Fts3Cursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ i16 eSearch; /* Search strategy (see below) */ u8 isEof; /* True if at End Of Results */ u8 isRequireSeek; /* True if must seek pStmt to %_content row */ u8 bSeekStmt; /* True if pStmt is a seek */ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ Fts3Expr *pExpr; /* Parsed MATCH query string */ int iLangid; /* Language being queried for */ int nPhrase; /* Number of matchable phrases in query */ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ u8 bDesc; /* True to sort in descending order */ int eEvalmode; /* An FTS3_EVAL_XX constant */ int nRowAvg; /* Average size of database rows, in pages */ sqlite3_int64 nDoc; /* Documents in table */ i64 iMinDocid; /* Minimum docid to return */ i64 iMaxDocid; /* Maximum docid to return */ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */ MatchinfoBuffer *pMIBuffer; /* Buffer for matchinfo data */ }; #define FTS3_EVAL_FILTER 0 #define FTS3_EVAL_NEXT 1 #define FTS3_EVAL_MATCHINFO 2 /* ** The Fts3Cursor.eSearch member is always set to one of the following. ** Actualy, Fts3Cursor.eSearch can be greater than or equal to ** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index ** of the column to be searched. For example, in ** ** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d); ** SELECT docid FROM ex1 WHERE b MATCH 'one two three'; ** ** Because the LHS of the MATCH operator is 2nd column "b", ** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a, ** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1" ** indicating that all columns should be searched, ** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4. */ #define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */ #define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */ #define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */ /* ** The lower 16-bits of the sqlite3_index_info.idxNum value set by ** the xBestIndex() method contains the Fts3Cursor.eSearch value described ** above. The upper 16-bits contain a combination of the following ** bits, used to describe extra constraints on full-text searches. */ #define FTS3_HAVE_LANGID 0x00010000 /* languageid=? */ #define FTS3_HAVE_DOCID_GE 0x00020000 /* docid>=? */ #define FTS3_HAVE_DOCID_LE 0x00040000 /* docid<=? */ struct Fts3Doclist { char *aAll; /* Array containing doclist (or NULL) */ int nAll; /* Size of a[] in bytes */ char *pNextDocid; /* Pointer to next docid */ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */ int bFreeList; /* True if pList should be sqlite3_free()d */ char *pList; /* Pointer to position list following iDocid */ int nList; /* Length of position list */ }; /* ** A "phrase" is a sequence of one or more tokens that must match in ** sequence. A single token is the base case and the most common case. ** For a sequence of tokens contained in double-quotes (i.e. "one two three") ** nToken will be the number of tokens in the string. */ struct Fts3PhraseToken { char *z; /* Text of the token */ int n; /* Number of bytes in buffer z */ int isPrefix; /* True if token ends with a "*" character */ int bFirst; /* True if token must appear at position 0 */ /* Variables above this point are populated when the expression is ** parsed (by code in fts3_expr.c). Below this point the variables are ** used when evaluating the expression. */ Fts3DeferredToken *pDeferred; /* Deferred token object for this token */ Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */ }; struct Fts3Phrase { /* Cache of doclist for this phrase. */ Fts3Doclist doclist; int bIncr; /* True if doclist is loaded incrementally */ int iDoclistToken; /* Used by sqlite3Fts3EvalPhrasePoslist() if this is a descendent of an ** OR condition. */ char *pOrPoslist; i64 iOrDocid; /* Variables below this point are populated by fts3_expr.c when parsing ** a MATCH expression. Everything above is part of the evaluation phase. */ int nToken; /* Number of tokens in the phrase */ int iColumn; /* Index of column this phrase must match */ Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */ }; /* ** A tree of these objects forms the RHS of a MATCH operator. ** ** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist ** points to a malloced buffer, size nDoclist bytes, containing the results ** of this phrase query in FTS3 doclist format. As usual, the initial ** "Length" field found in doclists stored on disk is omitted from this ** buffer. ** ** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global ** matchinfo data. If it is not NULL, it points to an array of size nCol*3, ** where nCol is the number of columns in the queried FTS table. The array ** is populated as follows: ** ** aMI[iCol*3 + 0] = Undefined ** aMI[iCol*3 + 1] = Number of occurrences ** aMI[iCol*3 + 2] = Number of rows containing at least one instance ** ** The aMI array is allocated using sqlite3_malloc(). It should be freed ** when the expression node is. */ struct Fts3Expr { int eType; /* One of the FTSQUERY_XXX values defined below */ int nNear; /* Valid if eType==FTSQUERY_NEAR */ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */ Fts3Expr *pLeft; /* Left operand */ Fts3Expr *pRight; /* Right operand */ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */ /* The following are used by the fts3_eval.c module. */ sqlite3_int64 iDocid; /* Current docid */ u8 bEof; /* True this expression is at EOF already */ u8 bStart; /* True if iDocid is valid */ u8 bDeferred; /* True if this expression is entirely deferred */ /* The following are used by the fts3_snippet.c module. */ int iPhrase; /* Index of this phrase in matchinfo() results */ u32 *aMI; /* See above */ }; /* ** Candidate values for Fts3Query.eType. Note that the order of the first ** four values is in order of precedence when parsing expressions. For ** example, the following: ** ** "a OR b AND c NOT d NEAR e" ** ** is equivalent to: ** ** "a OR (b AND (c NOT (d NEAR e)))" */ #define FTSQUERY_NEAR 1 #define FTSQUERY_NOT 2 #define FTSQUERY_AND 3 #define FTSQUERY_OR 4 #define FTSQUERY_PHRASE 5 /* fts3_write.c */ SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*); SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *); SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); SQLITE_PRIVATE int sqlite3Fts3SegReaderPending( Fts3Table*,int,const char*,int,int,Fts3SegReader**); SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*); SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); #ifndef SQLITE_DISABLE_FTS4_DEFERRED SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *); #else # define sqlite3Fts3FreeDeferredTokens(x) # define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK # define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK # define sqlite3Fts3FreeDeferredDoclists(x) # define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK #endif SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *); /* Special values interpreted by sqlite3SegReaderCursor() */ #define FTS3_SEGCURSOR_PENDING -1 #define FTS3_SEGCURSOR_ALL -2 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*); SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *); SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *); SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(Fts3Table *, int, int, int, const char *, int, int, int, Fts3MultiSegReader *); /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ #define FTS3_SEGMENT_REQUIRE_POS 0x00000001 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 #define FTS3_SEGMENT_PREFIX 0x00000008 #define FTS3_SEGMENT_SCAN 0x00000010 #define FTS3_SEGMENT_FIRST 0x00000020 /* Type passed as 4th argument to SegmentReaderIterate() */ struct Fts3SegFilter { const char *zTerm; int nTerm; int iCol; int flags; }; struct Fts3MultiSegReader { /* Used internally by sqlite3Fts3SegReaderXXX() calls */ Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */ int nSegment; /* Size of apSegment array */ int nAdvance; /* How many seg-readers to advance */ Fts3SegFilter *pFilter; /* Pointer to filter object */ char *aBuffer; /* Buffer to merge doclists in */ i64 nBuffer; /* Allocated size of aBuffer[] in bytes */ int iColFilter; /* If >=0, filter for this column */ int bRestart; /* Used by fts3.c only. */ int nCost; /* Cost of running iterator */ int bLookup; /* True if a lookup of a single entry. */ /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */ char *zTerm; /* Pointer to term buffer */ int nTerm; /* Size of zTerm in bytes */ char *aDoclist; /* Pointer to doclist buffer */ int nDoclist; /* Size of aDoclist[] in bytes */ }; SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table*,int,int); #define fts3GetVarint32(p, piVal) ( \ (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \ ) /* fts3.c */ SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char**,const char*,...); SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64); SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *, sqlite_uint64 *); SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded(const char*,const char*,sqlite3_int64*); SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *); SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64); SQLITE_PRIVATE void sqlite3Fts3Dequote(char *); SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*); SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *); SQLITE_PRIVATE int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *); SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int*, Fts3Table*); SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc); SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut); /* fts3_tokenizer.c */ SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *); SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, sqlite3_tokenizer **, char ** ); SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char); /* fts3_snippet.c */ SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*); SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *, const char *, const char *, int, int ); SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *); SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p); /* fts3_expr.c */ SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int, char **, int, int, int, const char *, int, Fts3Expr **, char ** ); SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*); SQLITE_PRIVATE int sqlite3Fts3InitTerm(sqlite3 *db); #endif SQLITE_PRIVATE void *sqlite3Fts3MallocZero(i64 nByte); SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int, sqlite3_tokenizer_cursor ** ); /* fts3_aux.c */ SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db); SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *); SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart( Fts3Table*, Fts3MultiSegReader*, int, const char*, int); SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext( Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *); SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **); SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *); SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr); /* fts3_tokenize_vtab.c */ SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *, void(*xDestroy)(void*)); /* fts3_unicode2.c (functions generated by parsing unicode text files) */ #ifndef SQLITE_DISABLE_FTS3_UNICODE SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int); SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int); SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int); #endif SQLITE_PRIVATE int sqlite3Fts3ExprIterate(Fts3Expr*, int (*x)(Fts3Expr*,int,void*), void*); #endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */ #endif /* _FTSINT_H */ /************** End of fts3Int.h *********************************************/ /************** Continuing where we left off in fts3.c ***********************/ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) # define SQLITE_CORE 1 #endif /* #include */ /* #include */ /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3.h" */ #ifndef SQLITE_CORE /* # include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #endif typedef struct Fts3HashWrapper Fts3HashWrapper; struct Fts3HashWrapper { Fts3Hash hash; /* Hash table */ int nRef; /* Number of pointers to this object */ }; static int fts3EvalNext(Fts3Cursor *pCsr); static int fts3EvalStart(Fts3Cursor *pCsr); static int fts3TermSegReaderCursor( Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); /* ** This variable is set to false when running tests for which the on disk ** structures should not be corrupt. Otherwise, true. If it is false, extra ** assert() conditions in the fts3 code are activated - conditions that are ** only true if it is guaranteed that the fts3 database is not corrupt. */ #ifdef SQLITE_DEBUG SQLITE_API int sqlite3_fts3_may_be_corrupt = 1; #endif /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; sqlite_uint64 vu = v; do{ *q++ = (unsigned char) ((vu & 0x7f) | 0x80); vu >>= 7; }while( vu!=0 ); q[-1] &= 0x7f; /* turn off high bit in final byte */ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); return (int) (q - (unsigned char *)p); } #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \ if( (v & mask2)==0 ){ var = v; return ret; } #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \ v = (*ptr++); \ if( (v & mask2)==0 ){ var = v; return ret; } SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){ const unsigned char *p = (const unsigned char*)pBuf; const unsigned char *pStart = p; u32 a; u64 b; int shift; GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1); GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2); GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3); GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4); b = (a & 0x0FFFFFFF ); for(shift=28; shift<=63; shift+=7){ u64 c = *p++; b += (c&0x7F) << shift; if( (c & 0x80)==0 ) break; } *v = b; return (int)(p - pStart); } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){ return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v); } /* ** Read a 64-bit variable-length integer from memory starting at p[0] and ** not extending past pEnd[-1]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded( const char *pBuf, const char *pEnd, sqlite_int64 *v ){ const unsigned char *p = (const unsigned char*)pBuf; const unsigned char *pStart = p; const unsigned char *pX = (const unsigned char*)pEnd; u64 b = 0; int shift; for(shift=0; shift<=63; shift+=7){ u64 c = p=0 ); return 5; } /* ** Return the number of bytes required to encode v as a varint */ SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){ int i = 0; do{ i++; v >>= 7; }while( v!=0 ); return i; } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** Examples: ** ** "abc" becomes abc ** 'xyz' becomes xyz ** [pqr] becomes pqr ** `mno` becomes mno ** */ SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){ char quote; /* Quote character (if any ) */ quote = z[0]; if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ int iIn = 1; /* Index of next byte to read from input */ int iOut = 0; /* Index of next byte to write to output */ /* If the first byte was a '[', then the close-quote character is a ']' */ if( quote=='[' ) quote = ']'; while( z[iIn] ){ if( z[iIn]==quote ){ if( z[iIn+1]!=quote ) break; z[iOut++] = quote; iIn += 2; }else{ z[iOut++] = z[iIn++]; } } z[iOut] = '\0'; } } /* ** Read a single varint from the doclist at *pp and advance *pp to point ** to the first byte past the end of the varint. Add the value of the varint ** to *pVal. */ static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ sqlite3_int64 iVal; *pp += sqlite3Fts3GetVarint(*pp, &iVal); *pVal += iVal; } /* ** When this function is called, *pp points to the first byte following a ** varint that is part of a doclist (or position-list, or any other list ** of varints). This function moves *pp to point to the start of that varint, ** and sets *pVal by the varint value. ** ** Argument pStart points to the first byte of the doclist that the ** varint is part of. */ static void fts3GetReverseVarint( char **pp, char *pStart, sqlite3_int64 *pVal ){ sqlite3_int64 iVal; char *p; /* Pointer p now points at the first byte past the varint we are ** interested in. So, unless the doclist is corrupt, the 0x80 bit is ** clear on character p[-1]. */ for(p = (*pp)-2; p>=pStart && *p&0x80; p--); p++; *pp = p; sqlite3Fts3GetVarint(p, &iVal); *pVal = iVal; } /* ** The xDisconnect() virtual table method. */ static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int i; assert( p->nPendingData==0 ); assert( p->pSegments==0 ); /* Free any prepared statements held */ sqlite3_finalize(p->pSeekStmt); for(i=0; iaStmt); i++){ sqlite3_finalize(p->aStmt[i]); } sqlite3_free(p->zSegmentsTbl); sqlite3_free(p->zReadExprlist); sqlite3_free(p->zWriteExprlist); sqlite3_free(p->zContentTbl); sqlite3_free(p->zLanguageid); /* Invoke the tokenizer destructor to free the tokenizer. */ p->pTokenizer->pModule->xDestroy(p->pTokenizer); sqlite3_free(p); return SQLITE_OK; } /* ** Write an error message into *pzErr */ SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){ va_list ap; sqlite3_free(*pzErr); va_start(ap, zFormat); *pzErr = sqlite3_vmprintf(zFormat, ap); va_end(ap); } /* ** Construct one or more SQL statements from the format string given ** and then evaluate those statements. The success code is written ** into *pRc. ** ** If *pRc is initially non-zero then this routine is a no-op. */ static void fts3DbExec( int *pRc, /* Success code */ sqlite3 *db, /* Database in which to run SQL */ const char *zFormat, /* Format string for SQL */ ... /* Arguments to the format string */ ){ va_list ap; char *zSql; if( *pRc ) return; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( zSql==0 ){ *pRc = SQLITE_NOMEM; }else{ *pRc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); } } /* ** The xDestroy() virtual table method. */ static int fts3DestroyMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return code */ const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */ sqlite3 *db = p->db; /* Database handle */ /* Drop the shadow tables */ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments';" "DROP TABLE IF EXISTS %Q.'%q_segdir';" "DROP TABLE IF EXISTS %Q.'%q_docsize';" "DROP TABLE IF EXISTS %Q.'%q_stat';" "%s DROP TABLE IF EXISTS %Q.'%q_content';", zDb, p->zName, zDb, p->zName, zDb, p->zName, zDb, p->zName, (p->zContentTbl ? "--" : ""), zDb,p->zName ); /* If everything has worked, invoke fts3DisconnectMethod() to free the ** memory associated with the Fts3Table structure and return SQLITE_OK. ** Otherwise, return an SQLite error code. */ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); } /* ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table ** passed as the first argument. This is done as part of the xConnect() ** and xCreate() methods. ** ** If *pRc is non-zero when this function is called, it is a no-op. ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc ** before returning. */ static void fts3DeclareVtab(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int i; /* Iterator variable */ int rc; /* Return code */ char *zSql; /* SQL statement passed to declare_vtab() */ char *zCols; /* List of user defined columns */ const char *zLanguageid; zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid"); sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Create a list of user columns for the virtual table */ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); for(i=1; zCols && inColumn; i++){ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); } /* Create the whole "CREATE TABLE" statement to pass to SQLite */ zSql = sqlite3_mprintf( "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)", zCols, p->zName, zLanguageid ); if( !zCols || !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_declare_vtab(p->db, zSql); } sqlite3_free(zSql); sqlite3_free(zCols); *pRc = rc; } } /* ** Create the %_stat table if it does not already exist. */ SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){ fts3DbExec(pRc, p->db, "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'" "(id INTEGER PRIMARY KEY, value BLOB);", p->zDb, p->zName ); if( (*pRc)==SQLITE_OK ) p->bHasStat = 1; } /* ** Create the backing store tables (%_content, %_segments and %_segdir) ** required by the FTS3 table passed as the only argument. This is done ** as part of the vtab xCreate() method. ** ** If the p->bHasDocsize boolean is true (indicating that this is an ** FTS4 table, not an FTS3 table) then also create the %_docsize and ** %_stat tables required by FTS4. */ static int fts3CreateTables(Fts3Table *p){ int rc = SQLITE_OK; /* Return code */ int i; /* Iterator variable */ sqlite3 *db = p->db; /* The database connection */ if( p->zContentTbl==0 ){ const char *zLanguageid = p->zLanguageid; char *zContentCols; /* Columns of %_content table */ /* Create a list of user columns for the content table */ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); for(i=0; zContentCols && inColumn; i++){ char *z = p->azColumn[i]; zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); } if( zLanguageid && zContentCols ){ zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid); } if( zContentCols==0 ) rc = SQLITE_NOMEM; /* Create the content table */ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_content'(%s)", p->zDb, p->zName, zContentCols ); sqlite3_free(zContentCols); } /* Create other tables */ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", p->zDb, p->zName ); fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_segdir'(" "level INTEGER," "idx INTEGER," "start_block INTEGER," "leaves_end_block INTEGER," "end_block INTEGER," "root BLOB," "PRIMARY KEY(level, idx)" ");", p->zDb, p->zName ); if( p->bHasDocsize ){ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", p->zDb, p->zName ); } assert( p->bHasStat==p->bFts4 ); if( p->bHasStat ){ sqlite3Fts3CreateStatTable(&rc, p); } return rc; } /* ** Store the current database page-size in bytes in p->nPgsz. ** ** If *pRc is non-zero when this function is called, it is a no-op. ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc ** before returning. */ static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int rc; /* Return code */ char *zSql; /* SQL text "PRAGMA %Q.page_size" */ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_step(pStmt); p->nPgsz = sqlite3_column_int(pStmt, 0); rc = sqlite3_finalize(pStmt); }else if( rc==SQLITE_AUTH ){ p->nPgsz = 1024; rc = SQLITE_OK; } } assert( p->nPgsz>0 || rc!=SQLITE_OK ); sqlite3_free(zSql); *pRc = rc; } } /* ** "Special" FTS4 arguments are column specifications of the following form: ** ** = ** ** There may not be whitespace surrounding the "=" character. The ** term may be quoted, but the may not. */ static int fts3IsSpecialColumn( const char *z, int *pnKey, char **pzValue ){ char *zValue; const char *zCsr = z; while( *zCsr!='=' ){ if( *zCsr=='\0' ) return 0; zCsr++; } *pnKey = (int)(zCsr-z); zValue = sqlite3_mprintf("%s", &zCsr[1]); if( zValue ){ sqlite3Fts3Dequote(zValue); } *pzValue = zValue; return 1; } /* ** Append the output of a printf() style formatting to an existing string. */ static void fts3Appendf( int *pRc, /* IN/OUT: Error code */ char **pz, /* IN/OUT: Pointer to string buffer */ const char *zFormat, /* Printf format string to append */ ... /* Arguments for printf format string */ ){ if( *pRc==SQLITE_OK ){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( z && *pz ){ char *z2 = sqlite3_mprintf("%s%s", *pz, z); sqlite3_free(z); z = z2; } if( z==0 ) *pRc = SQLITE_NOMEM; sqlite3_free(*pz); *pz = z; } } /* ** Return a copy of input string zInput enclosed in double-quotes (") and ** with all double quote characters escaped. For example: ** ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" ** ** The pointer returned points to memory obtained from sqlite3_malloc(). It ** is the callers responsibility to call sqlite3_free() to release this ** memory. */ static char *fts3QuoteId(char const *zInput){ sqlite3_int64 nRet; char *zRet; nRet = 2 + (int)strlen(zInput)*2 + 1; zRet = sqlite3_malloc64(nRet); if( zRet ){ int i; char *z = zRet; *(z++) = '"'; for(i=0; zInput[i]; i++){ if( zInput[i]=='"' ) *(z++) = '"'; *(z++) = zInput[i]; } *(z++) = '"'; *(z++) = '\0'; } return zRet; } /* ** Return a list of comma separated SQL expressions and a FROM clause that ** could be used in a SELECT statement such as the following: ** ** SELECT FROM %_content AS x ... ** ** to return the docid, followed by each column of text data in order ** from left to write. If parameter zFunc is not NULL, then instead of ** being returned directly each column of text data is passed to an SQL ** function named zFunc first. For example, if zFunc is "unzip" and the ** table has the three user-defined columns "a", "b", and "c", the following ** string is returned: ** ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( p->zContentTbl==0 ){ if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "docid"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", x.%Q", "langid"); } sqlite3_free(zFree); }else{ fts3Appendf(pRc, &zRet, "rowid"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid); } } fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x", p->zDb, (p->zContentTbl ? p->zContentTbl : p->zName), (p->zContentTbl ? "" : "_content") ); return zRet; } /* ** Return a list of N comma separated question marks, where N is the number ** of columns in the %_content table (one for the docid plus one for each ** user-defined text column). ** ** If argument zFunc is not NULL, then all but the first question mark ** is preceded by zFunc and an open bracket, and followed by a closed ** bracket. For example, if zFunc is "zip" and the FTS3 table has three ** user-defined text columns, the following string is returned: ** ** "?, zip(?), zip(?), zip(?)" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "?"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", ?"); } sqlite3_free(zFree); return zRet; } /* ** Buffer z contains a positive integer value encoded as utf-8 text. ** Decode this value and store it in *pnOut, returning the number of bytes ** consumed. If an overflow error occurs return a negative value. */ SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut){ u64 iVal = 0; int i; for(i=0; z[i]>='0' && z[i]<='9'; i++){ iVal = iVal*10 + (z[i] - '0'); if( iVal>0x7FFFFFFF ) return -1; } *pnOut = (int)iVal; return i; } /* ** This function interprets the string at (*pp) as a non-negative integer ** value. It reads the integer and sets *pnOut to the value read, then ** sets *pp to point to the byte immediately following the last byte of ** the integer value. ** ** Only decimal digits ('0'..'9') may be part of an integer value. ** ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and ** the output value undefined. Otherwise SQLITE_OK is returned. ** ** This function is used when parsing the "prefix=" FTS4 parameter. */ static int fts3GobbleInt(const char **pp, int *pnOut){ const int MAX_NPREFIX = 10000000; int nInt = 0; /* Output value */ int nByte; nByte = sqlite3Fts3ReadInt(*pp, &nInt); if( nInt>MAX_NPREFIX ){ nInt = 0; } if( nByte==0 ){ return SQLITE_ERROR; } *pnOut = nInt; *pp += nByte; return SQLITE_OK; } /* ** This function is called to allocate an array of Fts3Index structures ** representing the indexes maintained by the current FTS table. FTS tables ** always maintain the main "terms" index, but may also maintain one or ** more "prefix" indexes, depending on the value of the "prefix=" parameter ** (if any) specified as part of the CREATE VIRTUAL TABLE statement. ** ** Argument zParam is passed the value of the "prefix=" option if one was ** specified, or NULL otherwise. ** ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to ** the allocated array. *pnIndex is set to the number of elements in the ** array. If an error does occur, an SQLite error code is returned. ** ** Regardless of whether or not an error is returned, it is the responsibility ** of the caller to call sqlite3_free() on the output array to free it. */ static int fts3PrefixParameter( const char *zParam, /* ABC in prefix=ABC parameter to parse */ int *pnIndex, /* OUT: size of *apIndex[] array */ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ ){ struct Fts3Index *aIndex; /* Allocated array */ int nIndex = 1; /* Number of entries in array */ if( zParam && zParam[0] ){ const char *p; nIndex++; for(p=zParam; *p; p++){ if( *p==',' ) nIndex++; } } aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex); *apIndex = aIndex; if( !aIndex ){ return SQLITE_NOMEM; } memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); if( zParam ){ const char *p = zParam; int i; for(i=1; i=0 ); if( nPrefix==0 ){ nIndex--; i--; }else{ aIndex[i].nPrefix = nPrefix; } p++; } } *pnIndex = nIndex; return SQLITE_OK; } /* ** This function is called when initializing an FTS4 table that uses the ** content=xxx option. It determines the number of and names of the columns ** of the new FTS4 table. ** ** The third argument passed to this function is the value passed to the ** config=xxx option (i.e. "xxx"). This function queries the database for ** a table of that name. If found, the output variables are populated ** as follows: ** ** *pnCol: Set to the number of columns table xxx has, ** ** *pnStr: Set to the total amount of space required to store a copy ** of each columns name, including the nul-terminator. ** ** *pazCol: Set to point to an array of *pnCol strings. Each string is ** the name of the corresponding column in table xxx. The array ** and its contents are allocated using a single allocation. It ** is the responsibility of the caller to free this allocation ** by eventually passing the *pazCol value to sqlite3_free(). ** ** If the table cannot be found, an error code is returned and the output ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is ** returned (and the output variables are undefined). */ static int fts3ContentColumns( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ const char *zTbl, /* Name of content table */ const char ***pazCol, /* OUT: Malloc'd array of column names */ int *pnCol, /* OUT: Size of array *pazCol */ int *pnStr, /* OUT: Bytes of string content */ char **pzErr /* OUT: error message */ ){ int rc = SQLITE_OK; /* Return code */ char *zSql; /* "SELECT *" statement on zTbl */ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db)); } } sqlite3_free(zSql); if( rc==SQLITE_OK ){ const char **azCol; /* Output array */ sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */ int nCol; /* Number of table columns */ int i; /* Used to iterate through columns */ /* Loop through the returned columns. Set nStr to the number of bytes of ** space required to store a copy of each column name, including the ** nul-terminator byte. */ nCol = sqlite3_column_count(pStmt); for(i=0; i module name ("fts3" or "fts4") ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> "column name" and other module argument fields. */ static int fts3InitVtab( int isCreate, /* True for xCreate, false for xConnect */ sqlite3 *db, /* The SQLite database connection */ void *pAux, /* Hash table containing tokenizers */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ char **pzErr /* Write any error message here */ ){ Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash; Fts3Table *p = 0; /* Pointer to allocated vtab */ int rc = SQLITE_OK; /* Return code */ int i; /* Iterator variable */ sqlite3_int64 nByte; /* Size of allocation used for *p */ int iCol; /* Column index */ int nString = 0; /* Bytes required to hold all column names */ int nCol = 0; /* Number of columns in the FTS table */ char *zCsr; /* Space for holding column names */ int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ int nIndex = 0; /* Size of aIndex[] array */ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ /* The results of parsing supported FTS4 key=value options: */ int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ char *zContent = 0; /* content=? parameter (or NULL) */ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ char **azNotindexed = 0; /* The set of notindexed= columns */ int nNotindexed = 0; /* Size of azNotindexed[] array */ assert( strlen(argv[0])==4 ); assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) ); nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; nByte = sizeof(const char *) * (argc-2); aCol = (const char **)sqlite3_malloc64(nByte); if( aCol ){ memset((void*)aCol, 0, nByte); azNotindexed = (char **)sqlite3_malloc64(nByte); } if( azNotindexed ){ memset(azNotindexed, 0, nByte); } if( !aCol || !azNotindexed ){ rc = SQLITE_NOMEM; goto fts3_init_out; } /* Loop through all of the arguments passed by the user to the FTS3/4 ** module (i.e. all the column names and special arguments). This loop ** does the following: ** ** + Figures out the number of columns the FTSX table will have, and ** the number of bytes of space that must be allocated to store copies ** of the column names. ** ** + If there is a tokenizer specification included in the arguments, ** initializes the tokenizer pTokenizer. */ for(i=3; rc==SQLITE_OK && i8 && 0==sqlite3_strnicmp(z, "tokenize", 8) && 0==sqlite3Fts3IsIdChar(z[8]) ){ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); } /* Check if it is an FTS4 special argument. */ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ struct Fts4Option { const char *zOpt; int nOpt; } aFts4Opt[] = { { "matchinfo", 9 }, /* 0 -> MATCHINFO */ { "prefix", 6 }, /* 1 -> PREFIX */ { "compress", 8 }, /* 2 -> COMPRESS */ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ { "order", 5 }, /* 4 -> ORDER */ { "content", 7 }, /* 5 -> CONTENT */ { "languageid", 10 }, /* 6 -> LANGUAGEID */ { "notindexed", 10 } /* 7 -> NOTINDEXED */ }; int iOpt; if( !zVal ){ rc = SQLITE_NOMEM; }else{ for(iOpt=0; iOptnOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ break; } } switch( iOpt ){ case 0: /* MATCHINFO */ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal); rc = SQLITE_ERROR; } bNoDocsize = 1; break; case 1: /* PREFIX */ sqlite3_free(zPrefix); zPrefix = zVal; zVal = 0; break; case 2: /* COMPRESS */ sqlite3_free(zCompress); zCompress = zVal; zVal = 0; break; case 3: /* UNCOMPRESS */ sqlite3_free(zUncompress); zUncompress = zVal; zVal = 0; break; case 4: /* ORDER */ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal); rc = SQLITE_ERROR; } bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); break; case 5: /* CONTENT */ sqlite3_free(zContent); zContent = zVal; zVal = 0; break; case 6: /* LANGUAGEID */ assert( iOpt==6 ); sqlite3_free(zLanguageid); zLanguageid = zVal; zVal = 0; break; case 7: /* NOTINDEXED */ azNotindexed[nNotindexed++] = zVal; zVal = 0; break; default: assert( iOpt==SizeofArray(aFts4Opt) ); sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z); rc = SQLITE_ERROR; break; } sqlite3_free(zVal); } } /* Otherwise, the argument is a column name. */ else { nString += (int)(strlen(z) + 1); aCol[nCol++] = z; } } /* If a content=xxx option was specified, the following: ** ** 1. Ignore any compress= and uncompress= options. ** ** 2. If no column names were specified as part of the CREATE VIRTUAL ** TABLE statement, use all columns from the content table. */ if( rc==SQLITE_OK && zContent ){ sqlite3_free(zCompress); sqlite3_free(zUncompress); zCompress = 0; zUncompress = 0; if( nCol==0 ){ sqlite3_free((void*)aCol); aCol = 0; rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr); /* If a languageid= option was specified, remove the language id ** column from the aCol[] array. */ if( rc==SQLITE_OK && zLanguageid ){ int j; for(j=0; jdb = db; p->nColumn = nCol; p->nPendingData = 0; p->azColumn = (char **)&p[1]; p->pTokenizer = pTokenizer; p->nMaxPendingData = FTS3_MAX_PENDING_DATA; p->bHasDocsize = (isFts4 && bNoDocsize==0); p->bHasStat = (u8)isFts4; p->bFts4 = (u8)isFts4; p->bDescIdx = (u8)bDescIdx; p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */ p->zContentTbl = zContent; p->zLanguageid = zLanguageid; zContent = 0; zLanguageid = 0; TESTONLY( p->inTransaction = -1 ); TESTONLY( p->mxSavepoint = -1 ); p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); p->nIndex = nIndex; for(i=0; iaIndex[i].hPending, FTS3_HASH_STRING, 1); } p->abNotindexed = (u8 *)&p->aIndex[nIndex]; /* Fill in the zName and zDb fields of the vtab structure. */ zCsr = (char *)&p->abNotindexed[nCol]; p->zName = zCsr; memcpy(zCsr, argv[2], nName); zCsr += nName; p->zDb = zCsr; memcpy(zCsr, argv[1], nDb); zCsr += nDb; /* Fill in the azColumn array */ for(iCol=0; iCol0 ){ memcpy(zCsr, z, n); } zCsr[n] = '\0'; sqlite3Fts3Dequote(zCsr); p->azColumn[iCol] = zCsr; zCsr += n+1; assert( zCsr <= &((char *)p)[nByte] ); } /* Fill in the abNotindexed array */ for(iCol=0; iColazColumn[iCol]); for(i=0; iazColumn[iCol], zNot, n) ){ p->abNotindexed[iCol] = 1; sqlite3_free(zNot); azNotindexed[i] = 0; } } } for(i=0; izReadExprlist = fts3ReadExprList(p, zUncompress, &rc); p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); if( rc!=SQLITE_OK ) goto fts3_init_out; /* If this is an xCreate call, create the underlying tables in the ** database. TODO: For xConnect(), it could verify that said tables exist. */ if( isCreate ){ rc = fts3CreateTables(p); } /* Check to see if a legacy fts3 table has been "upgraded" by the ** addition of a %_stat table so that it can use incremental merge. */ if( !isFts4 && !isCreate ){ p->bHasStat = 2; } /* Figure out the page-size for the database. This is required in order to ** estimate the cost of loading large doclists from the database. */ fts3DatabasePageSize(&rc, p); p->nNodeSize = p->nPgsz-35; #if defined(SQLITE_DEBUG)||defined(SQLITE_TEST) p->nMergeCount = FTS3_MERGE_COUNT; #endif /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: sqlite3_free(zPrefix); sqlite3_free(aIndex); sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free(zContent); sqlite3_free(zLanguageid); for(i=0; ipModule->xDestroy(pTokenizer); } }else{ assert( p->pSegments==0 ); *ppVTab = &p->base; } return rc; } /* ** The xConnect() and xCreate() methods for the virtual table. All the ** work is done in function fts3InitVtab(). */ static int fts3ConnectMethod( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to tokenizer hash table */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); } static int fts3CreateMethod( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to tokenizer hash table */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); } /* ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this ** extension is currently being used by a version of SQLite too old to ** support estimatedRows. In that case this function is a no-op. */ static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ #if SQLITE_VERSION_NUMBER>=3008002 if( sqlite3_libversion_number()>=3008002 ){ pIdxInfo->estimatedRows = nRow; } #endif } /* ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this ** extension is currently being used by a version of SQLite too old to ** support index-info flags. In that case this function is a no-op. */ static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){ #if SQLITE_VERSION_NUMBER>=3008012 if( sqlite3_libversion_number()>=3008012 ){ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE; } #endif } /* ** Implementation of the xBestIndex method for FTS3 tables. There ** are three possible strategies, in order of preference: ** ** 1. Direct lookup by rowid or docid. ** 2. Full-text search using a MATCH operator on a non-docid column. ** 3. Linear scan of %_content table. */ static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ Fts3Table *p = (Fts3Table *)pVTab; int i; /* Iterator variable */ int iCons = -1; /* Index of constraint to use */ int iLangidCons = -1; /* Index of langid=x constraint, if present */ int iDocidGe = -1; /* Index of docid>=x constraint, if present */ int iDocidLe = -1; /* Index of docid<=x constraint, if present */ int iIdx; if( p->bLock ){ return SQLITE_ERROR; } /* By default use a full table scan. This is an expensive option, ** so search through the constraints to see if a more efficient ** strategy is possible. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 5000000; for(i=0; inConstraint; i++){ int bDocid; /* True if this constraint is on docid */ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; if( pCons->usable==0 ){ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ /* There exists an unusable MATCH constraint. This means that if ** the planner does elect to use the results of this call as part ** of the overall query plan the user will see an "unable to use ** function MATCH in the requested context" error. To discourage ** this, return a very high cost here. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 1e50; fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50); return SQLITE_OK; } continue; } bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1); /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){ pInfo->idxNum = FTS3_DOCID_SEARCH; pInfo->estimatedCost = 1.0; iCons = i; } /* A MATCH constraint. Use a full-text search. ** ** If there is more than one MATCH constraint available, use the first ** one encountered. If there is both a MATCH constraint and a direct ** rowid/docid lookup, prefer the MATCH strategy. This is done even ** though the rowid/docid lookup is faster than a MATCH query, selecting ** it would lead to an "unable to use function MATCH in the requested ** context" error. */ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn ){ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; pInfo->estimatedCost = 2.0; iCons = i; } /* Equality constraint on the langid column */ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && pCons->iColumn==p->nColumn + 2 ){ iLangidCons = i; } if( bDocid ){ switch( pCons->op ){ case SQLITE_INDEX_CONSTRAINT_GE: case SQLITE_INDEX_CONSTRAINT_GT: iDocidGe = i; break; case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: iDocidLe = i; break; } } } /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */ if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo); iIdx = 1; if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; pInfo->aConstraintUsage[iCons].omit = 1; } if( iLangidCons>=0 ){ pInfo->idxNum |= FTS3_HAVE_LANGID; pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++; } if( iDocidGe>=0 ){ pInfo->idxNum |= FTS3_HAVE_DOCID_GE; pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++; } if( iDocidLe>=0 ){ pInfo->idxNum |= FTS3_HAVE_DOCID_LE; pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++; } /* Regardless of the strategy selected, FTS can deliver rows in rowid (or ** docid) order. Both ascending and descending are possible. */ if( pInfo->nOrderBy==1 ){ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ if( pOrder->desc ){ pInfo->idxStr = "DESC"; }else{ pInfo->idxStr = "ASC"; } pInfo->orderByConsumed = 1; } } assert( p->pSegments==0 ); return SQLITE_OK; } /* ** Implementation of xOpen method. */ static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ UNUSED_PARAMETER(pVTab); /* Allocate a buffer large enough for an Fts3Cursor structure. If the ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, ** if the allocation fails, return SQLITE_NOMEM. */ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); if( !pCsr ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(Fts3Cursor)); return SQLITE_OK; } /* ** Finalize the statement handle at pCsr->pStmt. ** ** Or, if that statement handle is one created by fts3CursorSeekStmt(), ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement ** pointer there instead of finalizing it. */ static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){ if( pCsr->bSeekStmt ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; if( p->pSeekStmt==0 ){ p->pSeekStmt = pCsr->pStmt; sqlite3_reset(pCsr->pStmt); pCsr->pStmt = 0; } pCsr->bSeekStmt = 0; } sqlite3_finalize(pCsr->pStmt); } /* ** Free all resources currently held by the cursor passed as the only ** argument. */ static void fts3ClearCursor(Fts3Cursor *pCsr){ fts3CursorFinalizeStmt(pCsr); sqlite3Fts3FreeDeferredTokens(pCsr); sqlite3_free(pCsr->aDoclist); sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); } /* ** Close the cursor. For additional information see the documentation ** on the xClose method of the virtual table interface. */ static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); fts3ClearCursor(pCsr); assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); sqlite3_free(pCsr); return SQLITE_OK; } /* ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then ** compose and prepare an SQL statement of the form: ** ** "SELECT FROM %_content WHERE rowid = ?" ** ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to ** it. If an error occurs, return an SQLite error code. */ static int fts3CursorSeekStmt(Fts3Cursor *pCsr){ int rc = SQLITE_OK; if( pCsr->pStmt==0 ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; char *zSql; if( p->pSeekStmt ){ pCsr->pStmt = p->pSeekStmt; p->pSeekStmt = 0; }else{ zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist); if( !zSql ) return SQLITE_NOMEM; p->bLock++; rc = sqlite3_prepare_v3( p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0 ); p->bLock--; sqlite3_free(zSql); } if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1; } return rc; } /* ** Position the pCsr->pStmt statement so that it is on the row ** of the %_content table that contains the last match. Return ** SQLITE_OK on success. */ static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ int rc = SQLITE_OK; if( pCsr->isRequireSeek ){ rc = fts3CursorSeekStmt(pCsr); if( rc==SQLITE_OK ){ Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab; pTab->bLock++; sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); pCsr->isRequireSeek = 0; if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ pTab->bLock--; return SQLITE_OK; }else{ pTab->bLock--; rc = sqlite3_reset(pCsr->pStmt); if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){ /* If no row was found and no error has occurred, then the %_content ** table is missing a row that is present in the full-text index. ** The data structures are corrupt. */ rc = FTS_CORRUPT_VTAB; pCsr->isEof = 1; } } } } if( rc!=SQLITE_OK && pContext ){ sqlite3_result_error_code(pContext, rc); } return rc; } /* ** This function is used to process a single interior node when searching ** a b-tree for a term or term prefix. The node data is passed to this ** function via the zNode/nNode parameters. The term to search for is ** passed in zTerm/nTerm. ** ** If piFirst is not NULL, then this function sets *piFirst to the blockid ** of the child node that heads the sub-tree that may contain the term. ** ** If piLast is not NULL, then *piLast is set to the right-most child node ** that heads a sub-tree that may contain a term for which zTerm/nTerm is ** a prefix. ** ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. */ static int fts3ScanInteriorNode( const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piFirst, /* OUT: Selected child node */ sqlite3_int64 *piLast /* OUT: Selected child node */ ){ int rc = SQLITE_OK; /* Return code */ const char *zCsr = zNode; /* Cursor to iterate through node */ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ char *zBuffer = 0; /* Buffer to load terms into */ i64 nAlloc = 0; /* Size of allocated buffer */ int isFirstTerm = 1; /* True when processing first term on page */ u64 iChild; /* Block id of child node to descend to */ int nBuffer = 0; /* Total term size */ /* Skip over the 'height' varint that occurs at the start of every ** interior node. Then load the blockid of the left-child of the b-tree ** node into variable iChild. ** ** Even if the data structure on disk is corrupted, this (reading two ** varints from the buffer) does not risk an overread. If zNode is a ** root node, then the buffer comes from a SELECT statement. SQLite does ** not make this guarantee explicitly, but in practice there are always ** either more than 20 bytes of allocated space following the nNode bytes of ** contents, or two zero bytes. Or, if the node is read from the %_segments ** table, then there are always 20 bytes of zeroed padding following the ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). */ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild); zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild); if( zCsr>zEnd ){ return FTS_CORRUPT_VTAB; } while( zCsrnBuffer ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); assert( nPrefix>=0 && nSuffix>=0 ); if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } if( (i64)nPrefix+nSuffix>nAlloc ){ char *zNew; nAlloc = ((i64)nPrefix+nSuffix) * 2; zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc); if( !zNew ){ rc = SQLITE_NOMEM; goto finish_scan; } zBuffer = zNew; } assert( zBuffer ); memcpy(&zBuffer[nPrefix], zCsr, nSuffix); nBuffer = nPrefix + nSuffix; zCsr += nSuffix; /* Compare the term we are searching for with the term just loaded from ** the interior node. If the specified term is greater than or equal ** to the term from the interior node, then all terms on the sub-tree ** headed by node iChild are smaller than zTerm. No need to search ** iChild. ** ** If the interior node term is larger than the specified term, then ** the tree headed by iChild may contain the specified term. */ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ *piFirst = (i64)iChild; piFirst = 0; } if( piLast && cmp<0 ){ *piLast = (i64)iChild; piLast = 0; } iChild++; }; if( piFirst ) *piFirst = (i64)iChild; if( piLast ) *piLast = (i64)iChild; finish_scan: sqlite3_free(zBuffer); return rc; } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains an ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) ** contains a term. This function searches the sub-tree headed by the zNode ** node for the range of leaf nodes that may contain the specified term ** or terms for which the specified term is a prefix. ** ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the ** left-most leaf node in the tree that may contain the specified term. ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the ** right-most leaf node that may contain a term for which the specified ** term is a prefix. ** ** It is possible that the range of returned leaf nodes does not contain ** the specified term or any terms for which it is a prefix. However, if the ** segment does contain any such terms, they are stored within the identified ** range. Because this function only inspects interior segment nodes (and ** never loads leaf nodes into memory), it is not possible to be sure. ** ** If an error occurs, an error code other than SQLITE_OK is returned. */ static int fts3SelectLeaf( Fts3Table *p, /* Virtual table handle */ const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piLeaf, /* Selected leaf node */ sqlite3_int64 *piLeaf2 /* Selected leaf node */ ){ int rc = SQLITE_OK; /* Return code */ int iHeight; /* Height of this node in tree */ assert( piLeaf || piLeaf2 ); fts3GetVarint32(zNode, &iHeight); rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); if( rc==SQLITE_OK && iHeight>1 ){ char *zBlob = 0; /* Blob read from %_segments table */ int nBlob = 0; /* Size of zBlob in bytes */ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0); if( rc==SQLITE_OK ){ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); } sqlite3_free(zBlob); piLeaf = 0; zBlob = 0; } if( rc==SQLITE_OK ){ rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0); } if( rc==SQLITE_OK ){ int iNewHeight = 0; fts3GetVarint32(zBlob, &iNewHeight); if( iNewHeight>=iHeight ){ rc = FTS_CORRUPT_VTAB; }else{ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); } } sqlite3_free(zBlob); } return rc; } /* ** This function is used to create delta-encoded serialized lists of FTS3 ** varints. Each call to this function appends a single varint to a list. */ static void fts3PutDeltaVarint( char **pp, /* IN/OUT: Output pointer */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ sqlite3_int64 iVal /* Write this value to the list */ ){ assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); *piPrev = iVal; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a position-list. After it returns, *ppPoslist points to the ** first byte after the position-list. ** ** A position list is list of positions (delta encoded) and columns for ** a single document record of a doclist. So, in other words, this ** routine advances *ppPoslist so that it points to the next docid in ** the doclist, or to the first byte past the end of the doclist. ** ** If pp is not NULL, then the contents of the position list are copied ** to *pp. *pp is set to point to the first byte past the last byte copied ** before this function returns. */ static void fts3PoslistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* The end of a position list is marked by a zero encoded as an FTS3 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail ** of some other, multi-byte, value. ** ** The following while-loop moves pEnd to point to the first byte that is not ** immediately preceded by a byte with the 0x80 bit set. Then increments ** pEnd once more so that it points to the byte immediately following the ** last byte in the position-list. */ while( *pEnd | c ){ c = *pEnd++ & 0x80; testcase( c!=0 && (*pEnd)==0 ); } pEnd++; /* Advance past the POS_END terminator byte */ if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } *ppPoslist = pEnd; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a column-list. After it returns, *ppPoslist points to the ** to the terminator (POS_COLUMN or POS_END) byte of the column-list. ** ** A column-list is list of delta-encoded positions for a single column ** within a single document within a doclist. ** ** The column-list is terminated either by a POS_COLUMN varint (1) or ** a POS_END varint (0). This routine leaves *ppPoslist pointing to ** the POS_COLUMN or POS_END that terminates the column-list. ** ** If pp is not NULL, then the contents of the column-list are copied ** to *pp. *pp is set to point to the first byte past the last byte copied ** before this function returns. The POS_COLUMN or POS_END terminator ** is not copied into *pp. */ static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* A column-list is terminated by either a 0x01 or 0x00 byte that is ** not part of a multi-byte varint. */ while( 0xFE & (*pEnd | c) ){ c = *pEnd++ & 0x80; testcase( c!=0 && ((*pEnd)&0xfe)==0 ); } if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } *ppPoslist = pEnd; } /* ** Value used to signify the end of an position-list. This must be ** as large or larger than any value that might appear on the ** position-list, even a position list that has been corrupted. */ #define POSITION_LIST_END LARGEST_INT64 /* ** This function is used to help parse position-lists. When this function is ** called, *pp may point to the start of the next varint in the position-list ** being parsed, or it may point to 1 byte past the end of the position-list ** (in which case **pp will be a terminator bytes POS_END (0) or ** (1)). ** ** If *pp points past the end of the current position-list, set *pi to ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, ** increment the current value of *pi by the value read, and set *pp to ** point to the next value before returning. ** ** Before calling this routine *pi must be initialized to the value of ** the previous position, or zero if we are reading the first position ** in the position-list. Because positions are delta-encoded, the value ** of the previous position is needed in order to compute the value of ** the next position. */ static void fts3ReadNextPos( char **pp, /* IN/OUT: Pointer into position-list buffer */ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ ){ if( (**pp)&0xFE ){ int iVal; *pp += fts3GetVarint32((*pp), &iVal); *pi += iVal; *pi -= 2; }else{ *pi = POSITION_LIST_END; } } /* ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by ** the value of iCol encoded as a varint to *pp. This will start a new ** column list. ** ** Set *pp to point to the byte just after the last byte written before ** returning (do not modify it if iCol==0). Return the total number of bytes ** written (0 if iCol==0). */ static int fts3PutColNumber(char **pp, int iCol){ int n = 0; /* Number of bytes written */ if( iCol ){ char *p = *pp; /* Output pointer */ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); *p = 0x01; *pp = &p[n]; } return n; } /* ** Compute the union of two position lists. The output written ** into *pp contains all positions of both *pp1 and *pp2 in sorted ** order and with any duplicates removed. All pointers are ** updated appropriately. The caller is responsible for insuring ** that there is enough space in *pp to hold the complete output. */ static int fts3PoslistMerge( char **pp, /* Output buffer */ char **pp1, /* Left input list */ char **pp2 /* Right input list */ ){ char *p = *pp; char *p1 = *pp1; char *p2 = *pp2; while( *p1 || *p2 ){ int iCol1; /* The current column index in pp1 */ int iCol2; /* The current column index in pp2 */ if( *p1==POS_COLUMN ){ fts3GetVarint32(&p1[1], &iCol1); if( iCol1==0 ) return FTS_CORRUPT_VTAB; } else if( *p1==POS_END ) iCol1 = 0x7fffffff; else iCol1 = 0; if( *p2==POS_COLUMN ){ fts3GetVarint32(&p2[1], &iCol2); if( iCol2==0 ) return FTS_CORRUPT_VTAB; } else if( *p2==POS_END ) iCol2 = 0x7fffffff; else iCol2 = 0; if( iCol1==iCol2 ){ sqlite3_int64 i1 = 0; /* Last position from pp1 */ sqlite3_int64 i2 = 0; /* Last position from pp2 */ sqlite3_int64 iPrev = 0; int n = fts3PutColNumber(&p, iCol1); p1 += n; p2 += n; /* At this point, both p1 and p2 point to the start of column-lists ** for the same column (the column with index iCol1 and iCol2). ** A column-list is a list of non-negative delta-encoded varints, each ** incremented by 2 before being stored. Each list is terminated by a ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists ** and writes the results to buffer p. p is left pointing to the byte ** after the list written. No terminator (POS_END or POS_COLUMN) is ** written to the output. */ fts3GetDeltaVarint(&p1, &i1); fts3GetDeltaVarint(&p2, &i2); if( i1<2 || i2<2 ){ break; } do { fts3PutDeltaVarint(&p, &iPrev, (i1pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. ** when the *pp1 token appears before the *pp2 token, but not more than nToken ** slots before it. ** ** e.g. nToken==1 searches for adjacent positions. */ static int fts3PoslistPhraseMerge( char **pp, /* IN/OUT: Preallocated output buffer */ int nToken, /* Maximum difference in token positions */ int isSaveLeft, /* Save the left position */ int isExact, /* If *pp1 is exactly nTokens before *pp2 */ char **pp1, /* IN/OUT: Left input list */ char **pp2 /* IN/OUT: Right input list */ ){ char *p = *pp; char *p1 = *pp1; char *p2 = *pp2; int iCol1 = 0; int iCol2 = 0; /* Never set both isSaveLeft and isExact for the same invocation. */ assert( isSaveLeft==0 || isExact==0 ); assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 ); if( *p1==POS_COLUMN ){ p1++; p1 += fts3GetVarint32(p1, &iCol1); } if( *p2==POS_COLUMN ){ p2++; p2 += fts3GetVarint32(p2, &iCol2); } while( 1 ){ if( iCol1==iCol2 ){ char *pSave = p; sqlite3_int64 iPrev = 0; sqlite3_int64 iPos1 = 0; sqlite3_int64 iPos2 = 0; if( iCol1 ){ *p++ = POS_COLUMN; p += sqlite3Fts3PutVarint(p, iCol1); } fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; if( iPos1<0 || iPos2<0 ) break; while( 1 ){ if( iPos2==iPos1+nToken || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) ){ sqlite3_int64 iSave; iSave = isSaveLeft ? iPos1 : iPos2; fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; pSave = 0; assert( p ); } if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ if( (*p2&0xFE)==0 ) break; fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; }else{ if( (*p1&0xFE)==0 ) break; fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; } } if( pSave ){ assert( pp && p ); p = pSave; } fts3ColumnlistCopy(0, &p1); fts3ColumnlistCopy(0, &p2); assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); if( 0==*p1 || 0==*p2 ) break; p1++; p1 += fts3GetVarint32(p1, &iCol1); p2++; p2 += fts3GetVarint32(p2, &iCol2); } /* Advance pointer p1 or p2 (whichever corresponds to the smaller of ** iCol1 and iCol2) so that it points to either the 0x00 that marks the ** end of the position list, or the 0x01 that precedes the next ** column-number in the position list. */ else if( iCol1=pEnd ){ *pp = 0; }else{ u64 iVal; *pp += sqlite3Fts3GetVarintU(*pp, &iVal); if( bDescIdx ){ *pVal = (i64)((u64)*pVal - iVal); }else{ *pVal = (i64)((u64)*pVal + iVal); } } } /* ** This function is used to write a single varint to a buffer. The varint ** is written to *pp. Before returning, *pp is set to point 1 byte past the ** end of the value written. ** ** If *pbFirst is zero when this function is called, the value written to ** the buffer is that of parameter iVal. ** ** If *pbFirst is non-zero when this function is called, then the value ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) ** (if bDescIdx is non-zero). ** ** Before returning, this function always sets *pbFirst to 1 and *piPrev ** to the value of parameter iVal. */ static void fts3PutDeltaVarint3( char **pp, /* IN/OUT: Output pointer */ int bDescIdx, /* True for descending docids */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ int *pbFirst, /* IN/OUT: True after first int written */ sqlite3_int64 iVal /* Write this value to the list */ ){ sqlite3_uint64 iWrite; if( bDescIdx==0 || *pbFirst==0 ){ assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev ); iWrite = (u64)iVal - (u64)*piPrev; }else{ assert_fts3_nc( *piPrev>=iVal ); iWrite = (u64)*piPrev - (u64)iVal; } assert( *pbFirst || *piPrev==0 ); assert_fts3_nc( *pbFirst==0 || iWrite>0 ); *pp += sqlite3Fts3PutVarint(*pp, iWrite); *piPrev = iVal; *pbFirst = 1; } /* ** This macro is used by various functions that merge doclists. The two ** arguments are 64-bit docid values. If the value of the stack variable ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). ** Otherwise, (i2-i1). ** ** Using this makes it easier to write code that can merge doclists that are ** sorted in either ascending or descending order. */ /* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */ #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1))) /* ** This function does an "OR" merge of two doclists (output contains all ** positions contained in either argument doclist). If the docids in the ** input doclists are sorted in ascending order, parameter bDescDoclist ** should be false. If they are sorted in ascending order, it should be ** passed a non-zero value. ** ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer ** containing the output doclist and SQLITE_OK is returned. In this case ** *pnOut is set to the number of bytes in the output doclist. ** ** If an error occurs, an SQLite error code is returned. The output values ** are undefined in this case. */ static int fts3DoclistOrMerge( int bDescDoclist, /* True if arguments are desc */ char *a1, int n1, /* First doclist */ char *a2, int n2, /* Second doclist */ char **paOut, int *pnOut /* OUT: Malloc'd doclist */ ){ int rc = SQLITE_OK; sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *pEnd1 = &a1[n1]; char *pEnd2 = &a2[n2]; char *p1 = a1; char *p2 = a2; char *p; char *aOut; int bFirstOut = 0; *paOut = 0; *pnOut = 0; /* Allocate space for the output. Both the input and output doclists ** are delta encoded. If they are in ascending order (bDescDoclist==0), ** then the first docid in each list is simply encoded as a varint. For ** each subsequent docid, the varint stored is the difference between the ** current and previous docid (a positive number - since the list is in ** ascending order). ** ** The first docid written to the output is therefore encoded using the ** same number of bytes as it is in whichever of the input lists it is ** read from. And each subsequent docid read from the same input list ** consumes either the same or less bytes as it did in the input (since ** the difference between it and the previous value in the output must ** be a positive value less than or equal to the delta value read from ** the input list). The same argument applies to all but the first docid ** read from the 'other' list. And to the contents of all position lists ** that will be copied and merged from the input to the output. ** ** However, if the first docid copied to the output is a negative number, ** then the encoding of the first docid from the 'other' input list may ** be larger in the output than it was in the input (since the delta value ** may be a larger positive integer than the actual docid). ** ** The space required to store the output is therefore the sum of the ** sizes of the two inputs, plus enough space for exactly one of the input ** docids to grow. ** ** A symetric argument may be made if the doclists are in descending ** order. */ aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING); if( !aOut ) return SQLITE_NOMEM; p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 || p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( p2 && p1 && iDiff==0 ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); rc = fts3PoslistMerge(&p, &p1, &p2); if( rc ) break; fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( !p2 || (p1 && iDiff<0) ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); fts3PoslistCopy(&p, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); fts3PoslistCopy(&p, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) ); } if( rc!=SQLITE_OK ){ sqlite3_free(aOut); p = aOut = 0; }else{ assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 ); memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING); } *paOut = aOut; *pnOut = (int)(p-aOut); return rc; } /* ** This function does a "phrase" merge of two doclists. In a phrase merge, ** the output contains a copy of each position from the right-hand input ** doclist for which there is a position in the left-hand input doclist ** exactly nDist tokens before it. ** ** If the docids in the input doclists are sorted in ascending order, ** parameter bDescDoclist should be false. If they are sorted in ascending ** order, it should be passed a non-zero value. ** ** The right-hand input doclist is overwritten by this function. */ static int fts3DoclistPhraseMerge( int bDescDoclist, /* True if arguments are desc */ int nDist, /* Distance from left to right (1=adjacent) */ char *aLeft, int nLeft, /* Left doclist */ char **paRight, int *pnRight /* IN/OUT: Right/output doclist */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *aRight = *paRight; char *pEnd1 = &aLeft[nLeft]; char *pEnd2 = &aRight[*pnRight]; char *p1 = aLeft; char *p2 = aRight; char *p; int bFirstOut = 0; char *aOut; assert( nDist>0 ); if( bDescDoclist ){ aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX); if( aOut==0 ) return SQLITE_NOMEM; }else{ aOut = aRight; } p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 && p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( iDiff==0 ){ char *pSave = p; sqlite3_int64 iPrevSave = iPrev; int bFirstOutSave = bFirstOut; fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ p = pSave; iPrev = iPrevSave; bFirstOut = bFirstOutSave; } fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( iDiff<0 ){ fts3PoslistCopy(0, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PoslistCopy(0, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *pnRight = (int)(p - aOut); if( bDescDoclist ){ sqlite3_free(aRight); *paRight = aOut; } return SQLITE_OK; } /* ** Argument pList points to a position list nList bytes in size. This ** function checks to see if the position list contains any entries for ** a token in position 0 (of any column). If so, it writes argument iDelta ** to the output buffer pOut, followed by a position list consisting only ** of the entries from pList at position 0, and terminated by an 0x00 byte. ** The value returned is the number of bytes written to pOut (if any). */ SQLITE_PRIVATE int sqlite3Fts3FirstFilter( sqlite3_int64 iDelta, /* Varint that may be written to pOut */ char *pList, /* Position list (no 0x00 term) */ int nList, /* Size of pList in bytes */ char *pOut /* Write output here */ ){ int nOut = 0; int bWritten = 0; /* True once iDelta has been written */ char *p = pList; char *pEnd = &pList[nList]; if( *p!=0x01 ){ if( *p==0x02 ){ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); pOut[nOut++] = 0x02; bWritten = 1; } fts3ColumnlistCopy(0, &p); } while( paaOutput); i++){ if( pTS->aaOutput[i] ){ if( !aOut ){ aOut = pTS->aaOutput[i]; nOut = pTS->anOutput[i]; pTS->aaOutput[i] = 0; }else{ int nNew; char *aNew; int rc = fts3DoclistOrMerge(p->bDescIdx, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew ); if( rc!=SQLITE_OK ){ sqlite3_free(aOut); return rc; } sqlite3_free(pTS->aaOutput[i]); sqlite3_free(aOut); pTS->aaOutput[i] = 0; aOut = aNew; nOut = nNew; } } } pTS->aaOutput[0] = aOut; pTS->anOutput[0] = nOut; return SQLITE_OK; } /* ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed ** as the first argument. The merge is an "OR" merge (see function ** fts3DoclistOrMerge() for details). ** ** This function is called with the doclist for each term that matches ** a queried prefix. It merges all these doclists into one, the doclist ** for the specified prefix. Since there can be a very large number of ** doclists to merge, the merging is done pair-wise using the TermSelect ** object. ** ** This function returns SQLITE_OK if the merge is successful, or an ** SQLite error code (SQLITE_NOMEM) if an error occurs. */ static int fts3TermSelectMerge( Fts3Table *p, /* FTS table handle */ TermSelect *pTS, /* TermSelect object to merge into */ char *aDoclist, /* Pointer to doclist */ int nDoclist /* Size of aDoclist in bytes */ ){ if( pTS->aaOutput[0]==0 ){ /* If this is the first term selected, copy the doclist to the output ** buffer using memcpy(). ** ** Add FTS3_VARINT_MAX bytes of unused space to the end of the ** allocation. This is so as to ensure that the buffer is big enough ** to hold the current doclist AND'd with any other doclist. If the ** doclists are stored in order=ASC order, this padding would not be ** required (since the size of [doclistA AND doclistB] is always less ** than or equal to the size of [doclistA] in that case). But this is ** not true for order=DESC. For example, a doclist containing (1, -1) ** may be smaller than (-1), as in the first example the -1 may be stored ** as a single-byte delta, whereas in the second it must be stored as a ** FTS3_VARINT_MAX byte varint. ** ** Similar padding is added in the fts3DoclistOrMerge() function. */ pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1); pTS->anOutput[0] = nDoclist; if( pTS->aaOutput[0] ){ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX); }else{ return SQLITE_NOMEM; } }else{ char *aMerge = aDoclist; int nMerge = nDoclist; int iOut; for(iOut=0; iOutaaOutput); iOut++){ if( pTS->aaOutput[iOut]==0 ){ assert( iOut>0 ); pTS->aaOutput[iOut] = aMerge; pTS->anOutput[iOut] = nMerge; break; }else{ char *aNew; int nNew; int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew ); if( rc!=SQLITE_OK ){ if( aMerge!=aDoclist ) sqlite3_free(aMerge); return rc; } if( aMerge!=aDoclist ) sqlite3_free(aMerge); sqlite3_free(pTS->aaOutput[iOut]); pTS->aaOutput[iOut] = 0; aMerge = aNew; nMerge = nNew; if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ pTS->aaOutput[iOut] = aMerge; pTS->anOutput[iOut] = nMerge; } } } } return SQLITE_OK; } /* ** Append SegReader object pNew to the end of the pCsr->apSegment[] array. */ static int fts3SegReaderCursorAppend( Fts3MultiSegReader *pCsr, Fts3SegReader *pNew ){ if( (pCsr->nSegment%16)==0 ){ Fts3SegReader **apNew; sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte); if( !apNew ){ sqlite3Fts3SegReaderFree(pNew); return SQLITE_NOMEM; } pCsr->apSegment = apNew; } pCsr->apSegment[pCsr->nSegment++] = pNew; return SQLITE_OK; } /* ** Add seg-reader objects to the Fts3MultiSegReader object passed as the ** 8th argument. ** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ static int fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language id */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc = SQLITE_OK; /* Error code */ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ int rc2; /* Result of sqlite3_reset() */ /* If iLevel is less than 0 and this is not a scan, include a seg-reader ** for the pending-terms. If this is a scan, then this call must be being ** made by an fts4aux module, not an FTS table. In this case calling ** Fts3SegReaderPending might segfault, as the data structures used by ** fts4aux are not completely populated. So it's easiest to filter these ** calls out here. */ if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){ Fts3SegReader *pSeg = 0; rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg); if( rc==SQLITE_OK && pSeg ){ rc = fts3SegReaderCursorAppend(pCsr, pSeg); } } if( iLevel!=FTS3_SEGCURSOR_PENDING ){ if( rc==SQLITE_OK ){ rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt); } while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ Fts3SegReader *pSeg = 0; /* Read the values returned by the SELECT into local variables. */ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); int nRoot = sqlite3_column_bytes(pStmt, 4); char const *zRoot = sqlite3_column_blob(pStmt, 4); /* If zTerm is not NULL, and this segment is not stored entirely on its ** root node, the range of leaves scanned can be reduced. Do this. */ if( iStartBlock && zTerm && zRoot ){ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); if( rc!=SQLITE_OK ) goto finished; if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; } rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, (isPrefix==0 && isScan==0), iStartBlock, iLeavesEndBlock, iEndBlock, zRoot, nRoot, &pSeg ); if( rc!=SQLITE_OK ) goto finished; rc = fts3SegReaderCursorAppend(pCsr, pSeg); } } finished: rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_DONE ) rc = rc2; return rc; } /* ** Set up a cursor object for iterating through a full-text index or a ** single level therein. */ SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language-id to search */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ assert( iIndex>=0 && iIndexnIndex ); assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( iLevelbase.pVtab; if( isPrefix ){ for(i=1; bFound==0 && inIndex; i++){ if( p->aIndex[i].nPrefix==nTerm ){ bFound = 1; rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr ); pSegcsr->bLookup = 1; } } for(i=1; bFound==0 && inIndex; i++){ if( p->aIndex[i].nPrefix==nTerm+1 ){ bFound = 1; rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr ); if( rc==SQLITE_OK ){ rc = fts3SegReaderCursorAddZero( p, pCsr->iLangid, zTerm, nTerm, pSegcsr ); } } } } if( bFound==0 ){ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr ); pSegcsr->bLookup = !isPrefix; } } *ppSegcsr = pSegcsr; return rc; } /* ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). */ static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ sqlite3Fts3SegReaderFinish(pSegcsr); sqlite3_free(pSegcsr); } /* ** This function retrieves the doclist for the specified term (or term ** prefix) from the database. */ static int fts3TermSelect( Fts3Table *p, /* Virtual table handle */ Fts3PhraseToken *pTok, /* Token to query for */ int iColumn, /* Column to query (or -ve for all columns) */ int *pnOut, /* OUT: Size of buffer at *ppOut */ char **ppOut /* OUT: Malloced result buffer */ ){ int rc; /* Return code */ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ TermSelect tsc; /* Object for pair-wise doclist merging */ Fts3SegFilter filter; /* Segment term filter configuration */ pSegcsr = pTok->pSegcsr; memset(&tsc, 0, sizeof(TermSelect)); filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0) | (iColumnnColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); filter.iCol = iColumn; filter.zTerm = pTok->z; filter.nTerm = pTok->n; rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); while( SQLITE_OK==rc && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) ){ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); } if( rc==SQLITE_OK ){ rc = fts3TermSelectFinishMerge(p, &tsc); } if( rc==SQLITE_OK ){ *ppOut = tsc.aaOutput[0]; *pnOut = tsc.anOutput[0]; }else{ int i; for(i=0; ipSegcsr = 0; return rc; } /* ** This function counts the total number of docids in the doclist stored ** in buffer aList[], size nList bytes. ** ** If the isPoslist argument is true, then it is assumed that the doclist ** contains a position-list following each docid. Otherwise, it is assumed ** that the doclist is simply a list of docids stored as delta encoded ** varints. */ static int fts3DoclistCountDocids(char *aList, int nList){ int nDoc = 0; /* Return value */ if( aList ){ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ char *p = aList; /* Cursor */ while( peSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){ Fts3Table *pTab = (Fts3Table*)pCursor->pVtab; pTab->bLock++; if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); }else{ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); rc = SQLITE_OK; } pTab->bLock--; }else{ rc = fts3EvalNext((Fts3Cursor *)pCursor); } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** If the numeric type of argument pVal is "integer", then return it ** converted to a 64-bit signed integer. Otherwise, return a copy of ** the second parameter, iDefault. */ static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){ if( pVal ){ int eType = sqlite3_value_numeric_type(pVal); if( eType==SQLITE_INTEGER ){ return sqlite3_value_int64(pVal); } } return iDefault; } /* ** This is the xFilter interface for the virtual table. See ** the virtual table xFilter method documentation for additional ** information. ** ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against ** the %_content table. ** ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry ** in the %_content table. ** ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The ** column on the left-hand side of the MATCH operator is column ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand ** side of the MATCH operator. */ static int fts3FilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ int rc = SQLITE_OK; char *zSql; /* SQL statement used to access %_content */ int eSearch; Fts3Table *p = (Fts3Table *)pCursor->pVtab; Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */ sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */ sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */ sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */ int iIdx; UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); if( p->bLock ){ return SQLITE_ERROR; } eSearch = (idxNum & 0x0000FFFF); assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); assert( p->pSegments==0 ); /* Collect arguments into local variables */ iIdx = 0; if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++]; if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; assert( iIdx==nVal ); /* In case the cursor has been used before, clear it now. */ fts3ClearCursor(pCsr); /* Set the lower and upper bounds on docids to return */ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); if( idxStr ){ pCsr->bDesc = (idxStr[0]=='D'); }else{ pCsr->bDesc = p->bDescIdx; } pCsr->eSearch = (i16)eSearch; if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){ int iCol = eSearch-FTS3_FULLTEXT_SEARCH; const char *zQuery = (const char *)sqlite3_value_text(pCons); if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){ return SQLITE_NOMEM; } pCsr->iLangid = 0; if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid); assert( p->base.zErrMsg==0 ); rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid, p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, &p->base.zErrMsg ); if( rc!=SQLITE_OK ){ return rc; } rc = fts3EvalStart(pCsr); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ if( eSearch==FTS3_FULLSCAN_SEARCH ){ if( pDocidGe || pDocidLe ){ zSql = sqlite3_mprintf( "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s", p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid, (pCsr->bDesc ? "DESC" : "ASC") ); }else{ zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s", p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC") ); } if( zSql ){ p->bLock++; rc = sqlite3_prepare_v3( p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0 ); p->bLock--; sqlite3_free(zSql); }else{ rc = SQLITE_NOMEM; } }else if( eSearch==FTS3_DOCID_SEARCH ){ rc = fts3CursorSeekStmt(pCsr); if( rc==SQLITE_OK ){ rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons); } } if( rc!=SQLITE_OK ) return rc; return fts3NextMethod(pCursor); } /* ** This is the xEof method of the virtual table. SQLite calls this ** routine to find out if it has reached the end of a result set. */ static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor*)pCursor; if( pCsr->isEof ){ fts3ClearCursor(pCsr); pCsr->isEof = 1; } return pCsr->isEof; } /* ** This is the xRowid method. The SQLite core calls this routine to ** retrieve the rowid for the current row of the result set. fts3 ** exposes %_content.docid as the rowid for the virtual table. The ** rowid should be written to *pRowid. */ static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; *pRowid = pCsr->iPrevId; return SQLITE_OK; } /* ** This is the xColumn method, called by SQLite to request a value from ** the row that the supplied cursor currently points to. ** ** If: ** ** (iCol < p->nColumn) -> The value of the iCol'th user column. ** (iCol == p->nColumn) -> Magic column with the same name as the table. ** (iCol == p->nColumn+1) -> Docid column ** (iCol == p->nColumn+2) -> Langid column */ static int fts3ColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ int rc = SQLITE_OK; /* Return Code */ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; Fts3Table *p = (Fts3Table *)pCursor->pVtab; /* The column value supplied by SQLite must be in range. */ assert( iCol>=0 && iCol<=p->nColumn+2 ); switch( iCol-p->nColumn ){ case 0: /* The special 'table-name' column */ sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0); break; case 1: /* The docid column */ sqlite3_result_int64(pCtx, pCsr->iPrevId); break; case 2: if( pCsr->pExpr ){ sqlite3_result_int64(pCtx, pCsr->iLangid); break; }else if( p->zLanguageid==0 ){ sqlite3_result_int(pCtx, 0); break; }else{ iCol = p->nColumn; /* no break */ deliberate_fall_through } default: /* A user column. Or, if this is a full-table scan, possibly the ** language-id column. Seek the cursor. */ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); } break; } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** This function is the implementation of the xUpdate callback used by ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be ** inserted, updated or deleted. */ static int fts3UpdateMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); } /* ** Implementation of xSync() method. Flush the contents of the pending-terms ** hash-table to the database. */ static int fts3SyncMethod(sqlite3_vtab *pVtab){ /* Following an incremental-merge operation, assuming that the input ** segments are not completely consumed (the usual case), they are updated ** in place to remove the entries that have already been merged. This ** involves updating the leaf block that contains the smallest unmerged ** entry and each block (if any) between the leaf and the root node. So ** if the height of the input segment b-trees is N, and input segments ** are merged eight at a time, updating the input segments at the end ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually ** small - often between 0 and 2. So the overhead of the incremental ** merge is somewhere between 8 and 24 blocks. To avoid this overhead ** dwarfing the actual productive work accomplished, the incremental merge ** is only attempted if it will write at least 64 leaf blocks. Hence ** nMinMerge. ** ** Of course, updating the input segments also involves deleting a bunch ** of blocks from the segments table. But this is not considered overhead ** as it would also be required by a crisis-merge that used the same input ** segments. */ const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */ Fts3Table *p = (Fts3Table*)pVtab; int rc; i64 iLastRowid = sqlite3_last_insert_rowid(p->db); rc = sqlite3Fts3PendingTermsFlush(p); if( rc==SQLITE_OK && p->nLeafAdd>(nMinMerge/16) && p->nAutoincrmerge && p->nAutoincrmerge!=0xff ){ int mxLevel = 0; /* Maximum relative level value in db */ int A; /* Incr-merge parameter A */ rc = sqlite3Fts3MaxLevel(p, &mxLevel); assert( rc==SQLITE_OK || mxLevel==0 ); A = p->nLeafAdd * mxLevel; A += (A/2); if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge); } sqlite3Fts3SegmentsClose(p); sqlite3_set_last_insert_rowid(p->db, iLastRowid); return rc; } /* ** If it is currently unknown whether or not the FTS table has an %_stat ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code ** if an error occurs. */ static int fts3SetHasStat(Fts3Table *p){ int rc = SQLITE_OK; if( p->bHasStat==2 ){ char *zTbl = sqlite3_mprintf("%s_stat", p->zName); if( zTbl ){ int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0); sqlite3_free(zTbl); p->bHasStat = (res==SQLITE_OK); }else{ rc = SQLITE_NOMEM; } } return rc; } /* ** Implementation of xBegin() method. */ static int fts3BeginMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table*)pVtab; int rc; UNUSED_PARAMETER(pVtab); assert( p->pSegments==0 ); assert( p->nPendingData==0 ); assert( p->inTransaction!=1 ); p->nLeafAdd = 0; rc = fts3SetHasStat(p); #ifdef SQLITE_DEBUG if( rc==SQLITE_OK ){ p->inTransaction = 1; p->mxSavepoint = -1; } #endif return rc; } /* ** Implementation of xCommit() method. This is a no-op. The contents of ** the pending-terms hash-table have already been flushed into the database ** by fts3SyncMethod(). */ static int fts3CommitMethod(sqlite3_vtab *pVtab){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(pVtab); assert( p->nPendingData==0 ); assert( p->inTransaction!=0 ); assert( p->pSegments==0 ); TESTONLY( p->inTransaction = 0 ); TESTONLY( p->mxSavepoint = -1; ); return SQLITE_OK; } /* ** Implementation of xRollback(). Discard the contents of the pending-terms ** hash-table. Any changes made to the database are reverted by SQLite. */ static int fts3RollbackMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table*)pVtab; sqlite3Fts3PendingTermsClear(p); assert( p->inTransaction!=0 ); TESTONLY( p->inTransaction = 0 ); TESTONLY( p->mxSavepoint = -1; ); return SQLITE_OK; } /* ** When called, *ppPoslist must point to the byte immediately following the ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function ** moves *ppPoslist so that it instead points to the first byte of the ** same position list. */ static void fts3ReversePoslist(char *pStart, char **ppPoslist){ char *p = &(*ppPoslist)[-2]; char c = 0; /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */ while( p>pStart && (c=*p--)==0 ); /* Search backwards for a varint with value zero (the end of the previous ** poslist). This is an 0x00 byte preceded by some byte that does not ** have the 0x80 bit set. */ while( p>pStart && (*p & 0x80) | c ){ c = *p--; } assert( p==pStart || c==0 ); /* At this point p points to that preceding byte without the 0x80 bit ** set. So to find the start of the poslist, skip forward 2 bytes then ** over a varint. ** ** Normally. The other case is that p==pStart and the poslist to return ** is the first in the doclist. In this case do not skip forward 2 bytes. ** The second part of the if condition (c==0 && *ppPoslist>&p[2]) ** is required for cases where the first byte of a doclist and the ** doclist is empty. For example, if the first docid is 10, a doclist ** that begins with: ** ** 0x0A 0x00 */ if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; } while( *p++&0x80 ); *ppPoslist = p; } /* ** Helper function used by the implementation of the overloaded snippet(), ** offsets() and optimize() SQL functions. ** ** If the value passed as the third argument is a blob of size ** sizeof(Fts3Cursor*), then the blob contents are copied to the ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error ** message is written to context pContext and SQLITE_ERROR returned. The ** string passed via zFunc is used as part of the error message. */ static int fts3FunctionArg( sqlite3_context *pContext, /* SQL function call context */ const char *zFunc, /* Function name */ sqlite3_value *pVal, /* argv[0] passed to function */ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ ){ int rc; *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor"); if( (*ppCsr)!=0 ){ rc = SQLITE_OK; }else{ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); sqlite3_result_error(pContext, zErr, -1); sqlite3_free(zErr); rc = SQLITE_ERROR; } return rc; } /* ** Implementation of the snippet() function for FTS3 */ static void fts3SnippetFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of apVal[] array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ const char *zStart = ""; const char *zEnd = ""; const char *zEllipsis = "..."; int iCol = -1; int nToken = 15; /* Default number of tokens in snippet */ /* There must be at least one argument passed to this function (otherwise ** the non-overloaded version would have been called instead of this one). */ assert( nVal>=1 ); if( nVal>6 ){ sqlite3_result_error(pContext, "wrong number of arguments to function snippet()", -1); return; } if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; switch( nVal ){ case 6: nToken = sqlite3_value_int(apVal[5]); /* no break */ deliberate_fall_through case 5: iCol = sqlite3_value_int(apVal[4]); /* no break */ deliberate_fall_through case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); /* no break */ deliberate_fall_through case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); /* no break */ deliberate_fall_through case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( nToken==0 ){ sqlite3_result_text(pContext, "", -1, SQLITE_STATIC); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); } } /* ** Implementation of the offsets() function for FTS3 */ static void fts3OffsetsFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ UNUSED_PARAMETER(nVal); assert( nVal==1 ); if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; assert( pCsr ); if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Offsets(pContext, pCsr); } } /* ** Implementation of the special optimize() function for FTS3. This ** function merges all segments in the database to a single segment. ** Example usage is: ** ** SELECT optimize(t) FROM t LIMIT 1; ** ** where 't' is the name of an FTS3 table. */ static void fts3OptimizeFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ int rc; /* Return code */ Fts3Table *p; /* Virtual table handle */ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ UNUSED_PARAMETER(nVal); assert( nVal==1 ); if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; p = (Fts3Table *)pCursor->base.pVtab; assert( p ); rc = sqlite3Fts3Optimize(p); switch( rc ){ case SQLITE_OK: sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); break; case SQLITE_DONE: sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); break; default: sqlite3_result_error_code(pContext, rc); break; } } /* ** Implementation of the matchinfo() function for FTS3 */ static void fts3MatchinfoFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ assert( nVal==1 || nVal==2 ); if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ const char *zArg = 0; if( nVal>1 ){ zArg = (const char *)sqlite3_value_text(apVal[1]); } sqlite3Fts3Matchinfo(pContext, pCsr, zArg); } } /* ** This routine implements the xFindFunction method for the FTS3 ** virtual table. */ static int fts3FindFunctionMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Number of SQL function arguments */ const char *zName, /* Name of SQL function */ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ void **ppArg /* Unused */ ){ struct Overloaded { const char *zName; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aOverload[] = { { "snippet", fts3SnippetFunc }, { "offsets", fts3OffsetsFunc }, { "optimize", fts3OptimizeFunc }, { "matchinfo", fts3MatchinfoFunc }, }; int i; /* Iterator variable */ UNUSED_PARAMETER(pVtab); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(ppArg); for(i=0; idb; /* Database connection */ int rc; /* Return Code */ /* At this point it must be known if the %_stat table exists or not. ** So bHasStat may not be 2. */ rc = fts3SetHasStat(p); /* As it happens, the pending terms table is always empty here. This is ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction ** always opens a savepoint transaction. And the xSavepoint() method ** flushes the pending terms table. But leave the (no-op) call to ** PendingTermsFlush() in in case that changes. */ assert( p->nPendingData==0 ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3PendingTermsFlush(p); } if( p->zContentTbl==0 ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", p->zDb, p->zName, zName ); } if( p->bHasDocsize ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", p->zDb, p->zName, zName ); } if( p->bHasStat ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", p->zDb, p->zName, zName ); } fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", p->zDb, p->zName, zName ); fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); return rc; } /* ** The xSavepoint() method. ** ** Flush the contents of the pending-terms table to disk. */ static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ int rc = SQLITE_OK; UNUSED_PARAMETER(iSavepoint); assert( ((Fts3Table *)pVtab)->inTransaction ); assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint ); TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){ rc = fts3SyncMethod(pVtab); } return rc; } /* ** The xRelease() method. ** ** This is a no-op. */ static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(iSavepoint); UNUSED_PARAMETER(pVtab); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint-1 ); return SQLITE_OK; } /* ** The xRollbackTo() method. ** ** Discard the contents of the pending terms table. */ static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ Fts3Table *p = (Fts3Table*)pVtab; UNUSED_PARAMETER(iSavepoint); assert( p->inTransaction ); TESTONLY( p->mxSavepoint = iSavepoint ); sqlite3Fts3PendingTermsClear(p); return SQLITE_OK; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts3ShadowName(const char *zName){ static const char *azName[] = { "content", "docsize", "segdir", "segments", "stat", }; unsigned int i; for(i=0; inRef--; if( pHash->nRef<=0 ){ sqlite3Fts3HashClear(&pHash->hash); sqlite3_free(pHash); } } /* ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c ** respectively. The following three forward declarations are for functions ** declared in these files used to retrieve the respective implementations. ** ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed ** to by the argument to point to the "simple" tokenizer implementation. ** And so on. */ SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); #ifndef SQLITE_DISABLE_FTS3_UNICODE SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule); #endif #ifdef SQLITE_ENABLE_ICU SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); #endif /* ** Initialize the fts3 extension. If this extension is built as part ** of the sqlite library, then this function is called directly by ** SQLite. If fts3 is built as a dynamically loadable extension, this ** function is called by the sqlite3_extension_init() entry point. */ SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){ int rc = SQLITE_OK; Fts3HashWrapper *pHash = 0; const sqlite3_tokenizer_module *pSimple = 0; const sqlite3_tokenizer_module *pPorter = 0; #ifndef SQLITE_DISABLE_FTS3_UNICODE const sqlite3_tokenizer_module *pUnicode = 0; #endif #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif #ifndef SQLITE_DISABLE_FTS3_UNICODE sqlite3Fts3UnicodeTokenizer(&pUnicode); #endif #ifdef SQLITE_TEST rc = sqlite3Fts3InitTerm(db); if( rc!=SQLITE_OK ) return rc; #endif rc = sqlite3Fts3InitAux(db); if( rc!=SQLITE_OK ) return rc; sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); /* Allocate and initialize the hash-table used to store tokenizers. */ pHash = sqlite3_malloc(sizeof(Fts3HashWrapper)); if( !pHash ){ rc = SQLITE_NOMEM; }else{ sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1); pHash->nRef = 0; } /* Load the built-in tokenizers into the hash table */ if( rc==SQLITE_OK ){ if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple) || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter) #ifndef SQLITE_DISABLE_FTS3_UNICODE || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode) #endif #ifdef SQLITE_ENABLE_ICU || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu)) #endif ){ rc = SQLITE_NOMEM; } } #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash); } #endif /* Create the virtual table wrapper around the hash-table and overload ** the four scalar functions. If this is successful, register the ** module with sqlite. */ if( SQLITE_OK==rc && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer")) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) ){ pHash->nRef++; rc = sqlite3_create_module_v2( db, "fts3", &fts3Module, (void *)pHash, hashDestroy ); if( rc==SQLITE_OK ){ pHash->nRef++; rc = sqlite3_create_module_v2( db, "fts4", &fts3Module, (void *)pHash, hashDestroy ); } if( rc==SQLITE_OK ){ pHash->nRef++; rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy); } return rc; } /* An error has occurred. Delete the hash table and return the error code. */ assert( rc!=SQLITE_OK ); if( pHash ){ sqlite3Fts3HashClear(&pHash->hash); sqlite3_free(pHash); } return rc; } /* ** Allocate an Fts3MultiSegReader for each token in the expression headed ** by pExpr. ** ** An Fts3SegReader object is a cursor that can seek or scan a range of ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple ** Fts3SegReader objects internally to provide an interface to seek or scan ** within the union of all segments of a b-tree. Hence the name. ** ** If the allocated Fts3MultiSegReader just seeks to a single entry in a ** segment b-tree (if the term is not a prefix or it is a prefix for which ** there exists prefix b-tree of the right length) then it may be traversed ** and merged incrementally. Otherwise, it has to be merged into an in-memory ** doclist and then traversed. */ static void fts3EvalAllocateReaders( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Allocate readers for this expression */ int *pnToken, /* OUT: Total number of tokens in phrase. */ int *pnOr, /* OUT: Total number of OR nodes in expr. */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int i; int nToken = pExpr->pPhrase->nToken; *pnToken += nToken; for(i=0; ipPhrase->aToken[i]; int rc = fts3TermSegReaderCursor(pCsr, pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr ); if( rc!=SQLITE_OK ){ *pRc = rc; return; } } assert( pExpr->pPhrase->iDoclistToken==0 ); pExpr->pPhrase->iDoclistToken = -1; }else{ *pnOr += (pExpr->eType==FTSQUERY_OR); fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); } } } /* ** Arguments pList/nList contain the doclist for token iToken of phrase p. ** It is merged into the main doclist stored in p->doclist.aAll/nAll. ** ** This function assumes that pList points to a buffer allocated using ** sqlite3_malloc(). This function takes responsibility for eventually ** freeing the buffer. ** ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs. */ static int fts3EvalPhraseMergeToken( Fts3Table *pTab, /* FTS Table pointer */ Fts3Phrase *p, /* Phrase to merge pList/nList into */ int iToken, /* Token pList/nList corresponds to */ char *pList, /* Pointer to doclist */ int nList /* Number of bytes in pList */ ){ int rc = SQLITE_OK; assert( iToken!=p->iDoclistToken ); if( pList==0 ){ sqlite3_free(p->doclist.aAll); p->doclist.aAll = 0; p->doclist.nAll = 0; } else if( p->iDoclistToken<0 ){ p->doclist.aAll = pList; p->doclist.nAll = nList; } else if( p->doclist.aAll==0 ){ sqlite3_free(pList); } else { char *pLeft; char *pRight; int nLeft; int nRight; int nDiff; if( p->iDoclistTokendoclist.aAll; nLeft = p->doclist.nAll; pRight = pList; nRight = nList; nDiff = iToken - p->iDoclistToken; }else{ pRight = p->doclist.aAll; nRight = p->doclist.nAll; pLeft = pList; nLeft = nList; nDiff = p->iDoclistToken - iToken; } rc = fts3DoclistPhraseMerge( pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight ); sqlite3_free(pLeft); p->doclist.aAll = pRight; p->doclist.nAll = nRight; } if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; return rc; } /* ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist ** does not take deferred tokens into account. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseLoad( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p /* Phrase object */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int iToken; int rc = SQLITE_OK; for(iToken=0; rc==SQLITE_OK && iTokennToken; iToken++){ Fts3PhraseToken *pToken = &p->aToken[iToken]; assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); if( pToken->pSegcsr ){ int nThis = 0; char *pThis = 0; rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); } } assert( pToken->pSegcsr==0 ); } return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** This function is called on each phrase after the position lists for ** any deferred tokens have been loaded into memory. It updates the phrases ** current position list to include only those positions that are really ** instances of the phrase (after considering deferred tokens). If this ** means that the phrase does not appear in the current row, doclist.pList ** and doclist.nList are both zeroed. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ int iToken; /* Used to iterate through phrase tokens */ char *aPoslist = 0; /* Position list for deferred tokens */ int nPoslist = 0; /* Number of bytes in aPoslist */ int iPrev = -1; /* Token number of previous deferred token */ char *aFree = (pPhrase->doclist.bFreeList ? pPhrase->doclist.pList : 0); for(iToken=0; iTokennToken; iToken++){ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; Fts3DeferredToken *pDeferred = pToken->pDeferred; if( pDeferred ){ char *pList; int nList; int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList); if( rc!=SQLITE_OK ) return rc; if( pList==0 ){ sqlite3_free(aPoslist); sqlite3_free(aFree); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; return SQLITE_OK; }else if( aPoslist==0 ){ aPoslist = pList; nPoslist = nList; }else{ char *aOut = pList; char *p1 = aPoslist; char *p2 = aOut; assert( iPrev>=0 ); fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2); sqlite3_free(aPoslist); aPoslist = pList; nPoslist = (int)(aOut - aPoslist); if( nPoslist==0 ){ sqlite3_free(aPoslist); sqlite3_free(aFree); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; return SQLITE_OK; } } iPrev = iToken; } } if( iPrev>=0 ){ int nMaxUndeferred = pPhrase->iDoclistToken; if( nMaxUndeferred<0 ){ pPhrase->doclist.pList = aPoslist; pPhrase->doclist.nList = nPoslist; pPhrase->doclist.iDocid = pCsr->iPrevId; pPhrase->doclist.bFreeList = 1; }else{ int nDistance; char *p1; char *p2; char *aOut; if( nMaxUndeferred>iPrev ){ p1 = aPoslist; p2 = pPhrase->doclist.pList; nDistance = nMaxUndeferred - iPrev; }else{ p1 = pPhrase->doclist.pList; p2 = aPoslist; nDistance = iPrev - nMaxUndeferred; } aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING); if( !aOut ){ sqlite3_free(aPoslist); return SQLITE_NOMEM; } pPhrase->doclist.pList = aOut; assert( p1 && p2 ); if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){ pPhrase->doclist.bFreeList = 1; pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList); }else{ sqlite3_free(aOut); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; } sqlite3_free(aPoslist); } } if( pPhrase->doclist.pList!=aFree ) sqlite3_free(aFree); return SQLITE_OK; } #endif /* SQLITE_DISABLE_FTS4_DEFERRED */ /* ** Maximum number of tokens a phrase may have to be considered for the ** incremental doclists strategy. */ #define MAX_INCR_PHRASE_TOKENS 4 /* ** This function is called for each Fts3Phrase in a full-text query ** expression to initialize the mechanism for returning rows. Once this ** function has been called successfully on an Fts3Phrase, it may be ** used with fts3EvalPhraseNext() to iterate through the matching docids. ** ** If parameter bOptOk is true, then the phrase may (or may not) use the ** incremental loading strategy. Otherwise, the entire doclist is loaded into ** memory within this call. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; /* Error code */ int i; /* Determine if doclists may be loaded from disk incrementally. This is ** possible if the bOptOk argument is true, the FTS doclists will be ** scanned in forward order, and the phrase consists of ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first" ** tokens or prefix tokens that cannot use a prefix-index. */ int bHaveIncr = 0; int bIncrOk = (bOptOk && pCsr->bDesc==pTab->bDescIdx && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) && pTab->bNoIncrDoclist==0 #endif ); for(i=0; bIncrOk==1 && inToken; i++){ Fts3PhraseToken *pToken = &p->aToken[i]; if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){ bIncrOk = 0; } if( pToken->pSegcsr ) bHaveIncr = 1; } if( bIncrOk && bHaveIncr ){ /* Use the incremental approach. */ int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn); for(i=0; rc==SQLITE_OK && inToken; i++){ Fts3PhraseToken *pToken = &p->aToken[i]; Fts3MultiSegReader *pSegcsr = pToken->pSegcsr; if( pSegcsr ){ rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n); } } p->bIncr = 1; }else{ /* Load the full doclist for the phrase into memory. */ rc = fts3EvalPhraseLoad(pCsr, p); p->bIncr = 0; } assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); return rc; } /* ** This function is used to iterate backwards (from the end to start) ** through doclists. It is used by this module to iterate through phrase ** doclists in reverse and by the fts3_write.c module to iterate through ** pending-terms lists when writing to databases with "order=desc". ** ** The doclist may be sorted in ascending (parameter bDescIdx==0) or ** descending (parameter bDescIdx==1) order of docid. Regardless, this ** function iterates from the end of the doclist to the beginning. */ SQLITE_PRIVATE void sqlite3Fts3DoclistPrev( int bDescIdx, /* True if the doclist is desc */ char *aDoclist, /* Pointer to entire doclist */ int nDoclist, /* Length of aDoclist in bytes */ char **ppIter, /* IN/OUT: Iterator pointer */ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ int *pnList, /* OUT: List length pointer */ u8 *pbEof /* OUT: End-of-file flag */ ){ char *p = *ppIter; assert( nDoclist>0 ); assert( *pbEof==0 ); assert_fts3_nc( p || *piDocid==0 ); assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) ); if( p==0 ){ sqlite3_int64 iDocid = 0; char *pNext = 0; char *pDocid = aDoclist; char *pEnd = &aDoclist[nDoclist]; int iMul = 1; while( pDocid0 ); assert( *pbEof==0 ); assert_fts3_nc( p || *piDocid==0 ); assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) ); if( p==0 ){ p = aDoclist; p += sqlite3Fts3GetVarint(p, piDocid); }else{ fts3PoslistCopy(0, &p); while( p<&aDoclist[nDoclist] && *p==0 ) p++; if( p>=&aDoclist[nDoclist] ){ *pbEof = 1; }else{ sqlite3_int64 iVar; p += sqlite3Fts3GetVarint(p, &iVar); *piDocid += ((bDescIdx ? -1 : 1) * iVar); } } *ppIter = p; } /* ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof ** to true if EOF is reached. */ static void fts3EvalDlPhraseNext( Fts3Table *pTab, Fts3Doclist *pDL, u8 *pbEof ){ char *pIter; /* Used to iterate through aAll */ char *pEnd; /* 1 byte past end of aAll */ if( pDL->pNextDocid ){ pIter = pDL->pNextDocid; assert( pDL->aAll!=0 || pIter==0 ); }else{ pIter = pDL->aAll; } if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){ /* We have already reached the end of this doclist. EOF. */ *pbEof = 1; }else{ sqlite3_int64 iDelta; pIter += sqlite3Fts3GetVarint(pIter, &iDelta); if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){ pDL->iDocid += iDelta; }else{ pDL->iDocid -= iDelta; } pDL->pList = pIter; fts3PoslistCopy(0, &pIter); pDL->nList = (int)(pIter - pDL->pList); /* pIter now points just past the 0x00 that terminates the position- ** list for document pDL->iDocid. However, if this position-list was ** edited in place by fts3EvalNearTrim(), then pIter may not actually ** point to the start of the next docid value. The following line deals ** with this case by advancing pIter past the zero-padding added by ** fts3EvalNearTrim(). */ while( pIterpNextDocid = pIter; assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); *pbEof = 0; } } /* ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext(). */ typedef struct TokenDoclist TokenDoclist; struct TokenDoclist { int bIgnore; sqlite3_int64 iDocid; char *pList; int nList; }; /* ** Token pToken is an incrementally loaded token that is part of a ** multi-token phrase. Advance it to the next matching document in the ** database and populate output variable *p with the details of the new ** entry. Or, if the iterator has reached EOF, set *pbEof to true. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. */ static int incrPhraseTokenNext( Fts3Table *pTab, /* Virtual table handle */ Fts3Phrase *pPhrase, /* Phrase to advance token of */ int iToken, /* Specific token to advance */ TokenDoclist *p, /* OUT: Docid and doclist for new entry */ u8 *pbEof /* OUT: True if iterator is at EOF */ ){ int rc = SQLITE_OK; if( pPhrase->iDoclistToken==iToken ){ assert( p->bIgnore==0 ); assert( pPhrase->aToken[iToken].pSegcsr==0 ); fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof); p->pList = pPhrase->doclist.pList; p->nList = pPhrase->doclist.nList; p->iDocid = pPhrase->doclist.iDocid; }else{ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; assert( pToken->pDeferred==0 ); assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 ); if( pToken->pSegcsr ){ assert( p->bIgnore==0 ); rc = sqlite3Fts3MsrIncrNext( pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList ); if( p->pList==0 ) *pbEof = 1; }else{ p->bIgnore = 1; } } return rc; } /* ** The phrase iterator passed as the second argument: ** ** * features at least one token that uses an incremental doclist, and ** ** * does not contain any deferred tokens. ** ** Advance it to the next matching documnent in the database and populate ** the Fts3Doclist.pList and nList fields. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. */ static int fts3EvalIncrPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; u8 bEof = 0; /* This is only called if it is guaranteed that the phrase has at least ** one incremental token. In which case the bIncr flag is set. */ assert( p->bIncr==1 ); if( p->nToken==1 ){ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, &pDL->iDocid, &pDL->pList, &pDL->nList ); if( pDL->pList==0 ) bEof = 1; }else{ int bDescDoclist = pCsr->bDesc; struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS]; memset(a, 0, sizeof(a)); assert( p->nToken<=MAX_INCR_PHRASE_TOKENS ); assert( p->iDoclistTokennToken && bEof==0; i++){ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){ iMax = a[i].iDocid; bMaxSet = 1; } } assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) ); assert( rc!=SQLITE_OK || bMaxSet ); /* Keep advancing iterators until they all point to the same document */ for(i=0; inToken; i++){ while( rc==SQLITE_OK && bEof==0 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 ){ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); if( DOCID_CMP(a[i].iDocid, iMax)>0 ){ iMax = a[i].iDocid; i = 0; } } } /* Check if the current entries really are a phrase match */ if( bEof==0 ){ int nList = 0; int nByte = a[p->nToken-1].nList; char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING); if( !aDoclist ) return SQLITE_NOMEM; memcpy(aDoclist, a[p->nToken-1].pList, nByte+1); memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING); for(i=0; i<(p->nToken-1); i++){ if( a[i].bIgnore==0 ){ char *pL = a[i].pList; char *pR = aDoclist; char *pOut = aDoclist; int nDist = p->nToken-1-i; int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR); if( res==0 ) break; nList = (int)(pOut - aDoclist); } } if( i==(p->nToken-1) ){ pDL->iDocid = iMax; pDL->pList = aDoclist; pDL->nList = nList; pDL->bFreeList = 1; break; } sqlite3_free(aDoclist); } } } *pbEof = bEof; return rc; } /* ** Attempt to move the phrase iterator to point to the next matching docid. ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. */ static int fts3EvalPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; if( p->bIncr ){ rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof); }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){ sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof ); pDL->pList = pDL->pNextDocid; }else{ fts3EvalDlPhraseNext(pTab, pDL, pbEof); } return rc; } /* ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the ** expression. Also the Fts3Expr.bDeferred variable is set to true for any ** expressions for which all descendent tokens are deferred. ** ** If parameter bOptOk is zero, then it is guaranteed that the ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for ** each phrase in the expression (subject to deferred token processing). ** Or, if bOptOk is non-zero, then one or more tokens within the expression ** may be loaded incrementally, meaning doclist.aAll/nAll is not available. ** ** If an error occurs within this function, *pRc is set to an SQLite error ** code before returning. */ static void fts3EvalStartReaders( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expression to initialize phrases in */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int nToken = pExpr->pPhrase->nToken; if( nToken ){ int i; for(i=0; ipPhrase->aToken[i].pDeferred==0 ) break; } pExpr->bDeferred = (i==nToken); } *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase); }else{ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc); fts3EvalStartReaders(pCsr, pExpr->pRight, pRc); pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); } } } /* ** An array of the following structures is assembled as part of the process ** of selecting tokens to defer before the query starts executing (as part ** of the xFilter() method). There is one element in the array for each ** token in the FTS expression. ** ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong ** to phrases that are connected only by AND and NEAR operators (not OR or ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered ** separately. The root of a tokens AND/NEAR cluster is stored in ** Fts3TokenAndCost.pRoot. */ typedef struct Fts3TokenAndCost Fts3TokenAndCost; struct Fts3TokenAndCost { Fts3Phrase *pPhrase; /* The phrase the token belongs to */ int iToken; /* Position of token in phrase */ Fts3PhraseToken *pToken; /* The token itself */ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ int nOvfl; /* Number of overflow pages to load doclist */ int iCol; /* The column the token must match */ }; /* ** This function is used to populate an allocated Fts3TokenAndCost array. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if an error occurs during execution, *pRc is set to an ** SQLite error code. */ static void fts3EvalTokenCosts( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ Fts3Expr *pExpr, /* Expression to consider */ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK ){ if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int i; for(i=0; *pRc==SQLITE_OK && inToken; i++){ Fts3TokenAndCost *pTC = (*ppTC)++; pTC->pPhrase = pPhrase; pTC->iToken = i; pTC->pRoot = pRoot; pTC->pToken = &pPhrase->aToken[i]; pTC->iCol = pPhrase->iColumn; *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl); } }else if( pExpr->eType!=FTSQUERY_NOT ){ assert( pExpr->eType==FTSQUERY_OR || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NEAR ); assert( pExpr->pLeft && pExpr->pRight ); if( pExpr->eType==FTSQUERY_OR ){ pRoot = pExpr->pLeft; **ppOr = pRoot; (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc); if( pExpr->eType==FTSQUERY_OR ){ pRoot = pExpr->pRight; **ppOr = pRoot; (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); } } } /* ** Determine the average document (row) size in pages. If successful, ** write this value to *pnPage and return SQLITE_OK. Otherwise, return ** an SQLite error code. ** ** The average document size in pages is calculated by first calculating ** determining the average size in bytes, B. If B is less than the amount ** of data that will fit on a single leaf page of an intkey table in ** this database, then the average docsize is 1. Otherwise, it is 1 plus ** the number of overflow pages consumed by a record B bytes in size. */ static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ int rc = SQLITE_OK; if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 ** varints, where nCol is the number of columns in the FTS3 table. ** The first varint is the number of documents currently stored in ** the table. The following nCol varints contain the total amount of ** data stored in all rows of each column of the table, from left ** to right. */ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; sqlite3_stmt *pStmt; sqlite3_int64 nDoc = 0; sqlite3_int64 nByte = 0; const char *pEnd; const char *a; rc = sqlite3Fts3SelectDoctotal(p, &pStmt); if( rc!=SQLITE_OK ) return rc; a = sqlite3_column_blob(pStmt, 0); testcase( a==0 ); /* If %_stat.value set to X'' */ if( a ){ pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc); while( anDoc = nDoc; pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); assert( pCsr->nRowAvg>0 ); rc = sqlite3_reset(pStmt); } *pnPage = pCsr->nRowAvg; return rc; } /* ** This function is called to select the tokens (if any) that will be ** deferred. The array aTC[] has already been populated when this is ** called. ** ** This function is called once for each AND/NEAR cluster in the ** expression. Each invocation determines which tokens to defer within ** the cluster with root node pRoot. See comments above the definition ** of struct Fts3TokenAndCost for more details. ** ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() ** called on each token to defer. Otherwise, an SQLite error code is ** returned. */ static int fts3EvalSelectDeferred( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Consider tokens with this root node */ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ int nTC /* Number of entries in aTC[] */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int nDocSize = 0; /* Number of pages per doc loaded */ int rc = SQLITE_OK; /* Return code */ int ii; /* Iterator variable for various purposes */ int nOvfl = 0; /* Total overflow pages used by doclists */ int nToken = 0; /* Total number of tokens in cluster */ int nMinEst = 0; /* The minimum count for any phrase so far. */ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ /* Tokens are never deferred for FTS tables created using the content=xxx ** option. The reason being that it is not guaranteed that the content ** table actually contains the same data as the index. To prevent this from ** causing any problems, the deferred token optimization is completely ** disabled for content=xxx tables. */ if( pTab->zContentTbl ){ return SQLITE_OK; } /* Count the tokens in this AND/NEAR cluster. If none of the doclists ** associated with the tokens spill onto overflow pages, or if there is ** only 1 token, exit early. No tokens to defer in this case. */ for(ii=0; ii0 ); /* Iterate through all tokens in this AND/NEAR cluster, in ascending order ** of the number of overflow pages that will be loaded by the pager layer ** to retrieve the entire doclist for the token from the full-text index. ** Load the doclists for tokens that are either: ** ** a. The cheapest token in the entire query (i.e. the one visited by the ** first iteration of this loop), or ** ** b. Part of a multi-token phrase. ** ** After each token doclist is loaded, merge it with the others from the ** same phrase and count the number of documents that the merged doclist ** contains. Set variable "nMinEst" to the smallest number of documents in ** any phrase doclist for which 1 or more token doclists have been loaded. ** Let nOther be the number of other phrases for which it is certain that ** one or more tokens will not be deferred. ** ** Then, for each token, defer it if loading the doclist would result in ** loading N or more overflow pages into memory, where N is computed as: ** ** (nMinEst + 4^nOther - 1) / (4^nOther) */ for(ii=0; iinOvfl) ){ pTC = &aTC[iTC]; } } assert( pTC ); if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ /* The number of overflow pages to load for this (and therefore all ** subsequent) tokens is greater than the estimated number of pages ** that will be loaded if all subsequent tokens are deferred. */ Fts3PhraseToken *pToken = pTC->pToken; rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); fts3SegReaderCursorFree(pToken->pSegcsr); pToken->pSegcsr = 0; }else{ /* Set nLoad4 to the value of (4^nOther) for the next iteration of the ** for-loop. Except, limit the value to 2^24 to prevent it from ** overflowing the 32-bit integer it is stored in. */ if( ii<12 ) nLoad4 = nLoad4*4; if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){ /* Either this is the cheapest token in the entire query, or it is ** part of a multi-token phrase. Either way, the entire doclist will ** (eventually) be loaded into memory. It may as well be now. */ Fts3PhraseToken *pToken = pTC->pToken; int nList = 0; char *pList = 0; rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); assert( rc==SQLITE_OK || pList==0 ); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken( pTab, pTC->pPhrase, pTC->iToken,pList,nList ); } if( rc==SQLITE_OK ){ int nCount; nCount = fts3DoclistCountDocids( pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll ); if( ii==0 || nCountpToken = 0; } return rc; } /* ** This function is called from within the xFilter method. It initializes ** the full-text query currently stored in pCsr->pExpr. To iterate through ** the results of a query, the caller does: ** ** fts3EvalStart(pCsr); ** while( 1 ){ ** fts3EvalNext(pCsr); ** if( pCsr->bEof ) break; ** ... return row pCsr->iPrevId to the caller ... ** } */ static int fts3EvalStart(Fts3Cursor *pCsr){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int nToken = 0; int nOr = 0; /* Allocate a MultiSegReader for each token in the expression. */ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); /* Determine which, if any, tokens in the expression should be deferred. */ #ifndef SQLITE_DISABLE_FTS4_DEFERRED if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){ Fts3TokenAndCost *aTC; aTC = (Fts3TokenAndCost *)sqlite3_malloc64( sizeof(Fts3TokenAndCost) * nToken + sizeof(Fts3Expr *) * nOr * 2 ); if( !aTC ){ rc = SQLITE_NOMEM; }else{ Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken]; int ii; Fts3TokenAndCost *pTC = aTC; Fts3Expr **ppOr = apOr; fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); nToken = (int)(pTC-aTC); nOr = (int)(ppOr-apOr); if( rc==SQLITE_OK ){ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); for(ii=0; rc==SQLITE_OK && iipExpr, &rc); return rc; } /* ** Invalidate the current position list for phrase pPhrase. */ static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ if( pPhrase->doclist.bFreeList ){ sqlite3_free(pPhrase->doclist.pList); } pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; pPhrase->doclist.bFreeList = 0; } /* ** This function is called to edit the position list associated with ** the phrase object passed as the fifth argument according to a NEAR ** condition. For example: ** ** abc NEAR/5 "def ghi" ** ** Parameter nNear is passed the NEAR distance of the expression (5 in ** the example above). When this function is called, *paPoslist points to ** the position list, and *pnToken is the number of phrase tokens in the ** phrase on the other side of the NEAR operator to pPhrase. For example, ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to ** the position list associated with phrase "abc". ** ** All positions in the pPhrase position list that are not sufficiently ** close to a position in the *paPoslist position list are removed. If this ** leaves 0 positions, zero is returned. Otherwise, non-zero. ** ** Before returning, *paPoslist is set to point to the position lsit ** associated with pPhrase. And *pnToken is set to the number of tokens in ** pPhrase. */ static int fts3EvalNearTrim( int nNear, /* NEAR distance. As in "NEAR/nNear". */ char *aTmp, /* Temporary space to use */ char **paPoslist, /* IN/OUT: Position list */ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ ){ int nParam1 = nNear + pPhrase->nToken; int nParam2 = nNear + *pnToken; int nNew; char *p2; char *pOut; int res; assert( pPhrase->doclist.pList ); p2 = pOut = pPhrase->doclist.pList; res = fts3PoslistNearMerge( &pOut, aTmp, nParam1, nParam2, paPoslist, &p2 ); if( res ){ nNew = (int)(pOut - pPhrase->doclist.pList) - 1; assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 ); if( nNew>=0 && nNew<=pPhrase->doclist.nList ){ assert( pPhrase->doclist.pList[nNew]=='\0' ); memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew); pPhrase->doclist.nList = nNew; } *paPoslist = pPhrase->doclist.pList; *pnToken = pPhrase->nToken; } return res; } /* ** This function is a no-op if *pRc is other than SQLITE_OK when it is called. ** Otherwise, it advances the expression passed as the second argument to ** point to the next matching row in the database. Expressions iterate through ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, ** or descending if it is non-zero. ** ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if ** successful, the following variables in pExpr are set: ** ** Fts3Expr.bEof (non-zero if EOF - there is no next row) ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) ** ** If the expression is of type FTSQUERY_PHRASE, and the expression is not ** at EOF, then the following variables are populated with the position list ** for the phrase for the visited row: ** ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) ** FTs3Expr.pPhrase->doclist.pList (pointer to position list) ** ** It says above that this function advances the expression to the next ** matching row. This is usually true, but there are the following exceptions: ** ** 1. Deferred tokens are not taken into account. If a phrase consists ** entirely of deferred tokens, it is assumed to match every row in ** the db. In this case the position-list is not populated at all. ** ** Or, if a phrase contains one or more deferred tokens and one or ** more non-deferred tokens, then the expression is advanced to the ** next possible match, considering only non-deferred tokens. In other ** words, if the phrase is "A B C", and "B" is deferred, the expression ** is advanced to the next row that contains an instance of "A * C", ** where "*" may match any single token. The position list in this case ** is populated as for "A * C" before returning. ** ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is ** advanced to point to the next row that matches "x AND y". ** ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is ** really a match, taking into account deferred tokens and NEAR operators. */ static void fts3EvalNextRow( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expr. to advance to next matching row */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK && pExpr->bEof==0 ){ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ pExpr->bStart = 1; switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; assert( !pLeft->bDeferred || !pRight->bDeferred ); if( pLeft->bDeferred ){ /* LHS is entirely deferred. So we assume it matches every row. ** Advance the RHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pRight, pRc); pExpr->iDocid = pRight->iDocid; pExpr->bEof = pRight->bEof; }else if( pRight->bDeferred ){ /* RHS is entirely deferred. So we assume it matches every row. ** Advance the LHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pLeft, pRc); pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; }else{ /* Neither the RHS or LHS are deferred. */ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( iDiff==0 ) break; if( iDiff<0 ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else{ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = (pLeft->bEof || pRight->bEof); if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){ assert( pRight->eType==FTSQUERY_PHRASE ); if( pRight->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pRight->pPhrase->doclist; while( *pRc==SQLITE_OK && pRight->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pRight, pRc); } } if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pLeft->pPhrase->doclist; while( *pRc==SQLITE_OK && pLeft->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pLeft, pRc); } } pRight->bEof = pLeft->bEof = 1; } } break; } case FTSQUERY_OR: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid ); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else if( pLeft->bEof || iCmp>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); }else{ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); } pExpr->bEof = (pLeft->bEof && pRight->bEof); iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ pExpr->iDocid = pLeft->iDocid; }else{ pExpr->iDocid = pRight->iDocid; } break; } case FTSQUERY_NOT: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; if( pRight->bStart==0 ){ fts3EvalNextRow(pCsr, pRight, pRc); assert( *pRc!=SQLITE_OK || pRight->bStart ); } fts3EvalNextRow(pCsr, pLeft, pRc); if( pLeft->bEof==0 ){ while( !*pRc && !pRight->bEof && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; break; } default: { Fts3Phrase *pPhrase = pExpr->pPhrase; fts3EvalInvalidatePoslist(pPhrase); *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); pExpr->iDocid = pPhrase->doclist.iDocid; break; } } } } /* ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR ** cluster, then this function returns 1 immediately. ** ** Otherwise, it checks if the current row really does match the NEAR ** expression, using the data currently stored in the position lists ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. ** ** If the current row is a match, the position list associated with each ** phrase in the NEAR expression is edited in place to contain only those ** phrase instances sufficiently close to their peers to satisfy all NEAR ** constraints. In this case it returns 1. If the NEAR expression does not ** match the current row, 0 is returned. The position lists may or may not ** be edited if 0 is returned. */ static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ int res = 1; /* The following block runs if pExpr is the root of a NEAR query. ** For example, the query: ** ** "w" NEAR "x" NEAR "y" NEAR "z" ** ** which is represented in tree form as: ** ** | ** +--NEAR--+ <-- root of NEAR query ** | | ** +--NEAR--+ "z" ** | | ** +--NEAR--+ "y" ** | | ** "w" "x" ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are ** no exceptions to this - it's the way the parser in fts3_expr.c works. */ if( *pRc==SQLITE_OK && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; sqlite3_int64 nTmp = 0; /* Bytes of temp space */ char *aTmp; /* Temp space for PoslistNearMerge() */ /* Allocate temporary working space. */ for(p=pExpr; p->pLeft; p=p->pLeft){ assert( p->pRight->pPhrase->doclist.nList>0 ); nTmp += p->pRight->pPhrase->doclist.nList; } nTmp += p->pPhrase->doclist.nList; aTmp = sqlite3_malloc64(nTmp*2); if( !aTmp ){ *pRc = SQLITE_NOMEM; res = 0; }else{ char *aPoslist = p->pPhrase->doclist.pList; int nToken = p->pPhrase->nToken; for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ Fts3Phrase *pPhrase = p->pRight->pPhrase; int nNear = p->nNear; res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } aPoslist = pExpr->pRight->pPhrase->doclist.pList; nToken = pExpr->pRight->pPhrase->nToken; for(p=pExpr->pLeft; p && res; p=p->pLeft){ int nNear; Fts3Phrase *pPhrase; assert( p->pParent && p->pParent->pLeft==p ); nNear = p->pParent->nNear; pPhrase = ( p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase ); res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } } sqlite3_free(aTmp); } return res; } /* ** This function is a helper function for sqlite3Fts3EvalTestDeferred(). ** Assuming no error occurs or has occurred, It returns non-zero if the ** expression passed as the second argument matches the row that pCsr ** currently points to, or zero if it does not. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** If an error occurs during execution of this function, *pRc is set to ** the appropriate SQLite error code. In this case the returned value is ** undefined. */ static int fts3EvalTestExpr( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ int *pRc /* IN/OUT: Error code */ ){ int bHit = 1; /* Return value */ if( *pRc==SQLITE_OK ){ switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) && fts3EvalNearTest(pExpr, pRc) ); /* If the NEAR expression does not match any rows, zero the doclist for ** all phrases involved in the NEAR. This is because the snippet(), ** offsets() and matchinfo() functions are not supposed to recognize ** any instances of phrases that are part of unmatched NEAR queries. ** For example if this expression: ** ** ... MATCH 'a OR (b NEAR c)' ** ** is matched against a row containing: ** ** 'a b d e' ** ** then any snippet() should ony highlight the "a" term, not the "b" ** (as "b" is part of a non-matching NEAR clause). */ if( bHit==0 && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; for(p=pExpr; p->pPhrase==0; p=p->pLeft){ if( p->pRight->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pRight->pPhrase); } } if( p->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pPhrase); } } break; case FTSQUERY_OR: { int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); bHit = bHit1 || bHit2; break; } case FTSQUERY_NOT: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) ); break; default: { #ifndef SQLITE_DISABLE_FTS4_DEFERRED if( pCsr->pDeferred && (pExpr->bDeferred || ( pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.pList ))){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pExpr->bDeferred ){ fts3EvalInvalidatePoslist(pPhrase); } *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); bHit = (pPhrase->doclist.pList!=0); pExpr->iDocid = pCsr->iPrevId; }else #endif { bHit = ( pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.nList>0 ); } break; } } } return bHit; } /* ** This function is called as the second part of each xNext operation when ** iterating through the results of a full-text query. At this point the ** cursor points to a row that matches the query expression, with the ** following caveats: ** ** * Up until this point, "NEAR" operators in the expression have been ** treated as "AND". ** ** * Deferred tokens have not yet been considered. ** ** If *pRc is not SQLITE_OK when this function is called, it immediately ** returns 0. Otherwise, it tests whether or not after considering NEAR ** operators and deferred tokens the current row is still a match for the ** expression. It returns 1 if both of the following are true: ** ** 1. *pRc is SQLITE_OK when this function returns, and ** ** 2. After scanning the current FTS table row for the deferred tokens, ** it is determined that the row does *not* match the query. ** ** Or, if no error occurs and it seems the current row does match the FTS ** query, return 0. */ SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){ int rc = *pRc; int bMiss = 0; if( rc==SQLITE_OK ){ /* If there are one or more deferred tokens, load the current row into ** memory and scan it to determine the position list for each deferred ** token. Then, see if this row is really a match, considering deferred ** tokens and NEAR operators (neither of which were taken into account ** earlier, by fts3EvalNextRow()). */ if( pCsr->pDeferred ){ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK ){ rc = sqlite3Fts3CacheDeferredDoclists(pCsr); } } bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); /* Free the position-lists accumulated for each deferred token above. */ sqlite3Fts3FreeDeferredDoclists(pCsr); *pRc = rc; } return (rc==SQLITE_OK && bMiss); } /* ** Advance to the next document that matches the FTS expression in ** Fts3Cursor.pExpr. */ static int fts3EvalNext(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return Code */ Fts3Expr *pExpr = pCsr->pExpr; assert( pCsr->isEof==0 ); if( pExpr==0 ){ pCsr->isEof = 1; }else{ do { if( pCsr->isRequireSeek==0 ){ sqlite3_reset(pCsr->pStmt); } assert( sqlite3_data_count(pCsr->pStmt)==0 ); fts3EvalNextRow(pCsr, pExpr, &rc); pCsr->isEof = pExpr->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pExpr->iDocid; }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); } /* Check if the cursor is past the end of the docid range specified ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */ if( rc==SQLITE_OK && ( (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid) || (pCsr->bDesc!=0 && pCsr->iPrevIdiMinDocid) )){ pCsr->isEof = 1; } return rc; } /* ** Restart interation for expression pExpr so that the next call to ** fts3EvalNext() visits the first row. Do not allow incremental ** loading or merging of phrase doclists for this iteration. ** ** If *pRc is other than SQLITE_OK when this function is called, it is ** a no-op. If an error occurs within this function, *pRc is set to an ** SQLite error code before returning. */ static void fts3EvalRestart( Fts3Cursor *pCsr, Fts3Expr *pExpr, int *pRc ){ if( pExpr && *pRc==SQLITE_OK ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase ){ fts3EvalInvalidatePoslist(pPhrase); if( pPhrase->bIncr ){ int i; for(i=0; inToken; i++){ Fts3PhraseToken *pToken = &pPhrase->aToken[i]; assert( pToken->pDeferred==0 ); if( pToken->pSegcsr ){ sqlite3Fts3MsrIncrRestart(pToken->pSegcsr); } } *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); } pPhrase->doclist.pNextDocid = 0; pPhrase->doclist.iDocid = 0; pPhrase->pOrPoslist = 0; } pExpr->iDocid = 0; pExpr->bEof = 0; pExpr->bStart = 0; fts3EvalRestart(pCsr, pExpr->pLeft, pRc); fts3EvalRestart(pCsr, pExpr->pRight, pRc); } } /* ** After allocating the Fts3Expr.aMI[] array for each phrase in the ** expression rooted at pExpr, the cursor iterates through all rows matched ** by pExpr, calling this function for each row. This function increments ** the values in Fts3Expr.aMI[] according to the position-list currently ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase ** expression nodes. */ static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){ if( pExpr ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase && pPhrase->doclist.pList ){ int iCol = 0; char *p = pPhrase->doclist.pList; do{ u8 c = 0; int iCnt = 0; while( 0xFE & (*p | c) ){ if( (c&0x80)==0 ) iCnt++; c = *p++ & 0x80; } /* aMI[iCol*3 + 1] = Number of occurrences ** aMI[iCol*3 + 2] = Number of rows containing at least one instance */ pExpr->aMI[iCol*3 + 1] += iCnt; pExpr->aMI[iCol*3 + 2] += (iCnt>0); if( *p==0x00 ) break; p++; p += fts3GetVarint32(p, &iCol); }while( iColpLeft, nCol); fts3EvalUpdateCounts(pExpr->pRight, nCol); } } /* ** This is an sqlite3Fts3ExprIterate() callback. If the Fts3Expr.aMI[] array ** has not yet been allocated, allocate and zero it. Otherwise, just zero ** it. */ static int fts3AllocateMSI(Fts3Expr *pExpr, int iPhrase, void *pCtx){ Fts3Table *pTab = (Fts3Table*)pCtx; UNUSED_PARAMETER(iPhrase); if( pExpr->aMI==0 ){ pExpr->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32)); if( pExpr->aMI==0 ) return SQLITE_NOMEM; } memset(pExpr->aMI, 0, pTab->nColumn * 3 * sizeof(u32)); return SQLITE_OK; } /* ** Expression pExpr must be of type FTSQUERY_PHRASE. ** ** If it is not already allocated and populated, this function allocates and ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part ** of a NEAR expression, then it also allocates and populates the same array ** for all other phrases that are part of the NEAR expression. ** ** SQLITE_OK is returned if the aMI[] array is successfully allocated and ** populated. Otherwise, if an error occurs, an SQLite error code is returned. */ static int fts3EvalGatherStats( Fts3Cursor *pCsr, /* Cursor object */ Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */ ){ int rc = SQLITE_OK; /* Return code */ assert( pExpr->eType==FTSQUERY_PHRASE ); if( pExpr->aMI==0 ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; Fts3Expr *pRoot; /* Root of NEAR expression */ sqlite3_int64 iPrevId = pCsr->iPrevId; sqlite3_int64 iDocid; u8 bEof; /* Find the root of the NEAR expression */ pRoot = pExpr; while( pRoot->pParent && (pRoot->pParent->eType==FTSQUERY_NEAR || pRoot->bDeferred) ){ pRoot = pRoot->pParent; } iDocid = pRoot->iDocid; bEof = pRoot->bEof; assert( pRoot->bStart ); /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */ rc = sqlite3Fts3ExprIterate(pRoot, fts3AllocateMSI, (void*)pTab); if( rc!=SQLITE_OK ) return rc; fts3EvalRestart(pCsr, pRoot, &rc); while( pCsr->isEof==0 && rc==SQLITE_OK ){ do { /* Ensure the %_content statement is reset. */ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); assert( sqlite3_data_count(pCsr->pStmt)==0 ); /* Advance to the next document */ fts3EvalNextRow(pCsr, pRoot, &rc); pCsr->isEof = pRoot->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pRoot->iDocid; }while( pCsr->isEof==0 && pRoot->eType==FTSQUERY_NEAR && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); if( rc==SQLITE_OK && pCsr->isEof==0 ){ fts3EvalUpdateCounts(pRoot, pTab->nColumn); } } pCsr->isEof = 0; pCsr->iPrevId = iPrevId; if( bEof ){ pRoot->bEof = bEof; }else{ /* Caution: pRoot may iterate through docids in ascending or descending ** order. For this reason, even though it seems more defensive, the ** do loop can not be written: ** ** do {...} while( pRoot->iDocidbEof==0 ); if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB; }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); } } return rc; } /* ** This function is used by the matchinfo() module to query a phrase ** expression node for the following information: ** ** 1. The total number of occurrences of the phrase in each column of ** the FTS table (considering all rows), and ** ** 2. For each column, the number of rows in the table for which the ** column contains at least one instance of the phrase. ** ** If no error occurs, SQLITE_OK is returned and the values for each column ** written into the array aiOut as follows: ** ** aiOut[iCol*3 + 1] = Number of occurrences ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance ** ** Caveats: ** ** * If a phrase consists entirely of deferred tokens, then all output ** values are set to the number of documents in the table. In other ** words we assume that very common tokens occur exactly once in each ** column of each row of the table. ** ** * If a phrase contains some deferred tokens (and some non-deferred ** tokens), count the potential occurrence identified by considering ** the non-deferred tokens instead of actual phrase occurrences. ** ** * If the phrase is part of a NEAR expression, then only phrase instances ** that meet the NEAR constraint are included in the counts. */ SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Phrase expression */ u32 *aiOut /* Array to write results into (see above) */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int iCol; if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){ assert( pCsr->nDoc>0 ); for(iCol=0; iColnColumn; iCol++){ aiOut[iCol*3 + 1] = (u32)pCsr->nDoc; aiOut[iCol*3 + 2] = (u32)pCsr->nDoc; } }else{ rc = fts3EvalGatherStats(pCsr, pExpr); if( rc==SQLITE_OK ){ assert( pExpr->aMI ); for(iCol=0; iColnColumn; iCol++){ aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1]; aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2]; } } } return rc; } /* ** The expression pExpr passed as the second argument to this function ** must be of type FTSQUERY_PHRASE. ** ** The returned value is either NULL or a pointer to a buffer containing ** a position-list indicating the occurrences of the phrase in column iCol ** of the current row. ** ** More specifically, the returned buffer contains 1 varint for each ** occurrence of the phrase in the column, stored using the normal (delta+2) ** compression and is terminated by either an 0x01 or 0x00 byte. For example, ** if the requested column contains "a b X c d X X" and the position-list ** for 'X' is requested, the buffer returned may contain: ** ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00 ** ** This function works regardless of whether or not the phrase is deferred, ** incremental, or neither. */ SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist( Fts3Cursor *pCsr, /* FTS3 cursor object */ Fts3Expr *pExpr, /* Phrase to return doclist for */ int iCol, /* Column to return position list for */ char **ppOut /* OUT: Pointer to position list */ ){ Fts3Phrase *pPhrase = pExpr->pPhrase; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; char *pIter; int iThis; sqlite3_int64 iDocid; /* If this phrase is applies specifically to some column other than ** column iCol, return a NULL pointer. */ *ppOut = 0; assert( iCol>=0 && iColnColumn ); if( (pPhrase->iColumnnColumn && pPhrase->iColumn!=iCol) ){ return SQLITE_OK; } iDocid = pExpr->iDocid; pIter = pPhrase->doclist.pList; if( iDocid!=pCsr->iPrevId || pExpr->bEof ){ int rc = SQLITE_OK; int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */ int bOr = 0; u8 bTreeEof = 0; Fts3Expr *p; /* Used to iterate from pExpr to root */ Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */ Fts3Expr *pRun; /* Closest non-deferred ancestor of pNear */ int bMatch; /* Check if this phrase descends from an OR expression node. If not, ** return NULL. Otherwise, the entry that corresponds to docid ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the ** tree that the node is part of has been marked as EOF, but the node ** itself is not EOF, then it may point to an earlier entry. */ pNear = pExpr; for(p=pExpr->pParent; p; p=p->pParent){ if( p->eType==FTSQUERY_OR ) bOr = 1; if( p->eType==FTSQUERY_NEAR ) pNear = p; if( p->bEof ) bTreeEof = 1; } if( bOr==0 ) return SQLITE_OK; pRun = pNear; while( pRun->bDeferred ){ assert( pRun->pParent ); pRun = pRun->pParent; } /* This is the descendent of an OR node. In this case we cannot use ** an incremental phrase. Load the entire doclist for the phrase ** into memory in this case. */ if( pPhrase->bIncr ){ int bEofSave = pRun->bEof; fts3EvalRestart(pCsr, pRun, &rc); while( rc==SQLITE_OK && !pRun->bEof ){ fts3EvalNextRow(pCsr, pRun, &rc); if( bEofSave==0 && pRun->iDocid==iDocid ) break; } assert( rc!=SQLITE_OK || pPhrase->bIncr==0 ); if( rc==SQLITE_OK && pRun->bEof!=bEofSave ){ rc = FTS_CORRUPT_VTAB; } } if( bTreeEof ){ while( rc==SQLITE_OK && !pRun->bEof ){ fts3EvalNextRow(pCsr, pRun, &rc); } } if( rc!=SQLITE_OK ) return rc; bMatch = 1; for(p=pNear; p; p=p->pLeft){ u8 bEof = 0; Fts3Expr *pTest = p; Fts3Phrase *pPh; assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE ); if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight; assert( pTest->eType==FTSQUERY_PHRASE ); pPh = pTest->pPhrase; pIter = pPh->pOrPoslist; iDocid = pPh->iOrDocid; if( pCsr->bDesc==bDescDoclist ){ bEof = !pPh->doclist.nAll || (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll)); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ sqlite3Fts3DoclistNext( bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, &pIter, &iDocid, &bEof ); } }else{ bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){ int dummy; sqlite3Fts3DoclistPrev( bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, &pIter, &iDocid, &dummy, &bEof ); } } pPh->pOrPoslist = pIter; pPh->iOrDocid = iDocid; if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0; } if( bMatch ){ pIter = pPhrase->pOrPoslist; }else{ pIter = 0; } } if( pIter==0 ) return SQLITE_OK; if( *pIter==0x01 ){ pIter++; pIter += fts3GetVarint32(pIter, &iThis); }else{ iThis = 0; } while( iThisdoclist, and ** * any Fts3MultiSegReader objects held by phrase tokens. */ SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ if( pPhrase ){ int i; sqlite3_free(pPhrase->doclist.aAll); fts3EvalInvalidatePoslist(pPhrase); memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); for(i=0; inToken; i++){ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); pPhrase->aToken[i].pSegcsr = 0; } } } /* ** Return SQLITE_CORRUPT_VTAB. */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3Fts3Corrupt(){ return SQLITE_CORRUPT_VTAB; } #endif #if !SQLITE_CORE /* ** Initialize API pointer table, if required. */ #ifdef _WIN32 __declspec(dllexport) #endif SQLITE_API int sqlite3_fts3_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts3Init(db); } #endif #endif /************** End of fts3.c ************************************************/ /************** Begin file fts3_aux.c ****************************************/ /* ** 2011 Jan 27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ typedef struct Fts3auxTable Fts3auxTable; typedef struct Fts3auxCursor Fts3auxCursor; struct Fts3auxTable { sqlite3_vtab base; /* Base class used by SQLite core */ Fts3Table *pFts3Tab; }; struct Fts3auxCursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ Fts3MultiSegReader csr; /* Must be right after "base" */ Fts3SegFilter filter; char *zStop; int nStop; /* Byte-length of string zStop */ int iLangid; /* Language id to query */ int isEof; /* True if cursor is at EOF */ sqlite3_int64 iRowid; /* Current rowid */ int iCol; /* Current value of 'col' column */ int nStat; /* Size of aStat[] array */ struct Fts3auxColstats { sqlite3_int64 nDoc; /* 'documents' values for current csr row */ sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */ } *aStat; }; /* ** Schema of the terms table. */ #define FTS3_AUX_SCHEMA \ "CREATE TABLE x(term, col, documents, occurrences, languageid HIDDEN)" /* ** This function does all the work for both the xConnect and xCreate methods. ** These tables have no persistent representation of their own, so xConnect ** and xCreate are identical operations. */ static int fts3auxConnectMethod( sqlite3 *db, /* Database connection */ void *pUnused, /* Unused */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ char const *zDb; /* Name of database (e.g. "main") */ char const *zFts3; /* Name of fts3 table */ int nDb; /* Result of strlen(zDb) */ int nFts3; /* Result of strlen(zFts3) */ sqlite3_int64 nByte; /* Bytes of space to allocate here */ int rc; /* value returned by declare_vtab() */ Fts3auxTable *p; /* Virtual table object to return */ UNUSED_PARAMETER(pUnused); /* The user should invoke this in one of two forms: ** ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table); ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table-db, fts4-table); */ if( argc!=4 && argc!=5 ) goto bad_args; zDb = argv[1]; nDb = (int)strlen(zDb); if( argc==5 ){ if( nDb==4 && 0==sqlite3_strnicmp("temp", zDb, 4) ){ zDb = argv[3]; nDb = (int)strlen(zDb); zFts3 = argv[4]; }else{ goto bad_args; } }else{ zFts3 = argv[3]; } nFts3 = (int)strlen(zFts3); rc = sqlite3_declare_vtab(db, FTS3_AUX_SCHEMA); if( rc!=SQLITE_OK ) return rc; nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2; p = (Fts3auxTable *)sqlite3_malloc64(nByte); if( !p ) return SQLITE_NOMEM; memset(p, 0, nByte); p->pFts3Tab = (Fts3Table *)&p[1]; p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1]; p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1]; p->pFts3Tab->db = db; p->pFts3Tab->nIndex = 1; memcpy((char *)p->pFts3Tab->zDb, zDb, nDb); memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3); sqlite3Fts3Dequote((char *)p->pFts3Tab->zName); *ppVtab = (sqlite3_vtab *)p; return SQLITE_OK; bad_args: sqlite3Fts3ErrMsg(pzErr, "invalid arguments to fts4aux constructor"); return SQLITE_ERROR; } /* ** This function does the work for both the xDisconnect and xDestroy methods. ** These tables have no persistent representation of their own, so xDisconnect ** and xDestroy are identical operations. */ static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){ Fts3auxTable *p = (Fts3auxTable *)pVtab; Fts3Table *pFts3 = p->pFts3Tab; int i; /* Free any prepared statements held */ for(i=0; iaStmt); i++){ sqlite3_finalize(pFts3->aStmt[i]); } sqlite3_free(pFts3->zSegmentsTbl); sqlite3_free(p); return SQLITE_OK; } #define FTS4AUX_EQ_CONSTRAINT 1 #define FTS4AUX_GE_CONSTRAINT 2 #define FTS4AUX_LE_CONSTRAINT 4 /* ** xBestIndex - Analyze a WHERE and ORDER BY clause. */ static int fts3auxBestIndexMethod( sqlite3_vtab *pVTab, sqlite3_index_info *pInfo ){ int i; int iEq = -1; int iGe = -1; int iLe = -1; int iLangid = -1; int iNext = 1; /* Next free argvIndex value */ UNUSED_PARAMETER(pVTab); /* This vtab delivers always results in "ORDER BY term ASC" order. */ if( pInfo->nOrderBy==1 && pInfo->aOrderBy[0].iColumn==0 && pInfo->aOrderBy[0].desc==0 ){ pInfo->orderByConsumed = 1; } /* Search for equality and range constraints on the "term" column. ** And equality constraints on the hidden "languageid" column. */ for(i=0; inConstraint; i++){ if( pInfo->aConstraint[i].usable ){ int op = pInfo->aConstraint[i].op; int iCol = pInfo->aConstraint[i].iColumn; if( iCol==0 ){ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i; if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i; if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i; if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i; if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i; } if( iCol==4 ){ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iLangid = i; } } } if( iEq>=0 ){ pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT; pInfo->aConstraintUsage[iEq].argvIndex = iNext++; pInfo->estimatedCost = 5; }else{ pInfo->idxNum = 0; pInfo->estimatedCost = 20000; if( iGe>=0 ){ pInfo->idxNum += FTS4AUX_GE_CONSTRAINT; pInfo->aConstraintUsage[iGe].argvIndex = iNext++; pInfo->estimatedCost /= 2; } if( iLe>=0 ){ pInfo->idxNum += FTS4AUX_LE_CONSTRAINT; pInfo->aConstraintUsage[iLe].argvIndex = iNext++; pInfo->estimatedCost /= 2; } } if( iLangid>=0 ){ pInfo->aConstraintUsage[iLangid].argvIndex = iNext++; pInfo->estimatedCost--; } return SQLITE_OK; } /* ** xOpen - Open a cursor. */ static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ Fts3auxCursor *pCsr; /* Pointer to cursor object to return */ UNUSED_PARAMETER(pVTab); pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor)); if( !pCsr ) return SQLITE_NOMEM; memset(pCsr, 0, sizeof(Fts3auxCursor)); *ppCsr = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** xClose - Close a cursor. */ static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; sqlite3Fts3SegmentsClose(pFts3); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free((void *)pCsr->filter.zTerm); sqlite3_free(pCsr->zStop); sqlite3_free(pCsr->aStat); sqlite3_free(pCsr); return SQLITE_OK; } static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){ if( nSize>pCsr->nStat ){ struct Fts3auxColstats *aNew; aNew = (struct Fts3auxColstats *)sqlite3_realloc64(pCsr->aStat, sizeof(struct Fts3auxColstats) * nSize ); if( aNew==0 ) return SQLITE_NOMEM; memset(&aNew[pCsr->nStat], 0, sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat) ); pCsr->aStat = aNew; pCsr->nStat = nSize; } return SQLITE_OK; } /* ** xNext - Advance the cursor to the next row, if any. */ static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; int rc; /* Increment our pretend rowid value. */ pCsr->iRowid++; for(pCsr->iCol++; pCsr->iColnStat; pCsr->iCol++){ if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK; } rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr); if( rc==SQLITE_ROW ){ int i = 0; int nDoclist = pCsr->csr.nDoclist; char *aDoclist = pCsr->csr.aDoclist; int iCol; int eState = 0; if( pCsr->zStop ){ int n = (pCsr->nStopcsr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm; int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n); if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){ pCsr->isEof = 1; return SQLITE_OK; } } if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM; memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat); iCol = 0; rc = SQLITE_OK; while( iaStat[0].nDoc++; eState = 1; iCol = 0; break; /* State 1. In this state we are expecting either a 1, indicating ** that the following integer will be a column number, or the ** start of a position list for column 0. ** ** The only difference between state 1 and state 2 is that if the ** integer encountered in state 1 is not 0 or 1, then we need to ** increment the column 0 "nDoc" count for this term. */ case 1: assert( iCol==0 ); if( v>1 ){ pCsr->aStat[1].nDoc++; } eState = 2; /* fall through */ case 2: if( v==0 ){ /* 0x00. Next integer will be a docid. */ eState = 0; }else if( v==1 ){ /* 0x01. Next integer will be a column number. */ eState = 3; }else{ /* 2 or greater. A position. */ pCsr->aStat[iCol+1].nOcc++; pCsr->aStat[0].nOcc++; } break; /* State 3. The integer just read is a column number. */ default: assert( eState==3 ); iCol = (int)v; if( iCol<1 ){ rc = SQLITE_CORRUPT_VTAB; break; } if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM; pCsr->aStat[iCol+1].nDoc++; eState = 2; break; } } pCsr->iCol = 0; }else{ pCsr->isEof = 1; } return rc; } /* ** xFilter - Initialize a cursor to point at the start of its data. */ static int fts3auxFilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; int rc; int isScan = 0; int iLangVal = 0; /* Language id to query */ int iEq = -1; /* Index of term=? value in apVal */ int iGe = -1; /* Index of term>=? value in apVal */ int iLe = -1; /* Index of term<=? value in apVal */ int iLangid = -1; /* Index of languageid=? value in apVal */ int iNext = 0; UNUSED_PARAMETER(nVal); UNUSED_PARAMETER(idxStr); assert( idxStr==0 ); assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0 || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ); if( idxNum==FTS4AUX_EQ_CONSTRAINT ){ iEq = iNext++; }else{ isScan = 1; if( idxNum & FTS4AUX_GE_CONSTRAINT ){ iGe = iNext++; } if( idxNum & FTS4AUX_LE_CONSTRAINT ){ iLe = iNext++; } } if( iNextfilter.zTerm); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free((void *)pCsr->filter.zTerm); sqlite3_free(pCsr->aStat); sqlite3_free(pCsr->zStop); memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr); pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN; if( iEq>=0 || iGe>=0 ){ const unsigned char *zStr = sqlite3_value_text(apVal[0]); assert( (iEq==0 && iGe==-1) || (iEq==-1 && iGe==0) ); if( zStr ){ pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr); if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM; pCsr->filter.nTerm = (int)strlen(pCsr->filter.zTerm); } } if( iLe>=0 ){ pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iLe])); if( pCsr->zStop==0 ) return SQLITE_NOMEM; pCsr->nStop = (int)strlen(pCsr->zStop); } if( iLangid>=0 ){ iLangVal = sqlite3_value_int(apVal[iLangid]); /* If the user specified a negative value for the languageid, use zero ** instead. This works, as the "languageid=?" constraint will also ** be tested by the VDBE layer. The test will always be false (since ** this module will not return a row with a negative languageid), and ** so the overall query will return zero rows. */ if( iLangVal<0 ) iLangVal = 0; } pCsr->iLangid = iLangVal; rc = sqlite3Fts3SegReaderCursor(pFts3, iLangVal, 0, FTS3_SEGCURSOR_ALL, pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter); } if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor); return rc; } /* ** xEof - Return true if the cursor is at EOF, or false otherwise. */ static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; return pCsr->isEof; } /* ** xColumn - Return a column value. */ static int fts3auxColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ Fts3auxCursor *p = (Fts3auxCursor *)pCursor; assert( p->isEof==0 ); switch( iCol ){ case 0: /* term */ sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT); break; case 1: /* col */ if( p->iCol ){ sqlite3_result_int(pCtx, p->iCol-1); }else{ sqlite3_result_text(pCtx, "*", -1, SQLITE_STATIC); } break; case 2: /* documents */ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nDoc); break; case 3: /* occurrences */ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nOcc); break; default: /* languageid */ assert( iCol==4 ); sqlite3_result_int(pCtx, p->iLangid); break; } return SQLITE_OK; } /* ** xRowid - Return the current rowid for the cursor. */ static int fts3auxRowidMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite_int64 *pRowid /* OUT: Rowid value */ ){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; *pRowid = pCsr->iRowid; return SQLITE_OK; } /* ** Register the fts3aux module with database connection db. Return SQLITE_OK ** if successful or an error code if sqlite3_create_module() fails. */ SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){ static const sqlite3_module fts3aux_module = { 0, /* iVersion */ fts3auxConnectMethod, /* xCreate */ fts3auxConnectMethod, /* xConnect */ fts3auxBestIndexMethod, /* xBestIndex */ fts3auxDisconnectMethod, /* xDisconnect */ fts3auxDisconnectMethod, /* xDestroy */ fts3auxOpenMethod, /* xOpen */ fts3auxCloseMethod, /* xClose */ fts3auxFilterMethod, /* xFilter */ fts3auxNextMethod, /* xNext */ fts3auxEofMethod, /* xEof */ fts3auxColumnMethod, /* xColumn */ fts3auxRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; int rc; /* Return code */ rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0); return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_aux.c ********************************************/ /************** Begin file fts3_expr.c ***************************************/ /* ** 2008 Nov 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This module contains code that implements a parser for fts3 query strings ** (the right-hand argument to the MATCH operator). Because the supported ** syntax is relatively simple, the whole tokenizer/parser system is ** hand-coded. */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* ** By default, this module parses the legacy syntax that has been ** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS ** is defined, then it uses the new syntax. The differences between ** the new and the old syntaxes are: ** ** a) The new syntax supports parenthesis. The old does not. ** ** b) The new syntax supports the AND and NOT operators. The old does not. ** ** c) The old syntax supports the "-" token qualifier. This is not ** supported by the new syntax (it is replaced by the NOT operator). ** ** d) When using the old syntax, the OR operator has a greater precedence ** than an implicit AND. When using the new, both implicity and explicit ** AND operators have a higher precedence than OR. ** ** If compiled with SQLITE_TEST defined, then this module exports the ** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable ** to zero causes the module to use the old syntax. If it is set to ** non-zero the new syntax is activated. This is so both syntaxes can ** be tested using a single build of testfixture. ** ** The following describes the syntax supported by the fts3 MATCH ** operator in a similar format to that used by the lemon parser ** generator. This module does not use actually lemon, it uses a ** custom parser. ** ** query ::= andexpr (OR andexpr)*. ** ** andexpr ::= notexpr (AND? notexpr)*. ** ** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*. ** notexpr ::= LP query RP. ** ** nearexpr ::= phrase (NEAR distance_opt nearexpr)*. ** ** distance_opt ::= . ** distance_opt ::= / INTEGER. ** ** phrase ::= TOKEN. ** phrase ::= COLUMN:TOKEN. ** phrase ::= "TOKEN TOKEN TOKEN...". */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_fts3_enable_parentheses = 0; #else # ifdef SQLITE_ENABLE_FTS3_PARENTHESIS # define sqlite3_fts3_enable_parentheses 1 # else # define sqlite3_fts3_enable_parentheses 0 # endif #endif /* ** Default span for NEAR operators. */ #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 /* #include */ /* #include */ /* ** isNot: ** This variable is used by function getNextNode(). When getNextNode() is ** called, it sets ParseContext.isNot to true if the 'next node' is a ** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the ** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to ** zero. */ typedef struct ParseContext ParseContext; struct ParseContext { sqlite3_tokenizer *pTokenizer; /* Tokenizer module */ int iLangid; /* Language id used with tokenizer */ const char **azCol; /* Array of column names for fts3 table */ int bFts4; /* True to allow FTS4-only syntax */ int nCol; /* Number of entries in azCol[] */ int iDefaultCol; /* Default column to query */ int isNot; /* True if getNextNode() sees a unary - */ sqlite3_context *pCtx; /* Write error message here */ int nNest; /* Number of nested brackets */ }; /* ** This function is equivalent to the standard isspace() function. ** ** The standard isspace() can be awkward to use safely, because although it ** is defined to accept an argument of type int, its behavior when passed ** an integer that falls outside of the range of the unsigned char type ** is undefined (and sometimes, "undefined" means segfault). This wrapper ** is defined to accept an argument of type char, and always returns 0 for ** any values that fall outside of the range of the unsigned char type (i.e. ** negative values). */ static int fts3isspace(char c){ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; } /* ** Allocate nByte bytes of memory using sqlite3_malloc(). If successful, ** zero the memory before returning a pointer to it. If unsuccessful, ** return NULL. */ SQLITE_PRIVATE void *sqlite3Fts3MallocZero(sqlite3_int64 nByte){ void *pRet = sqlite3_malloc64(nByte); if( pRet ) memset(pRet, 0, nByte); return pRet; } SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer( sqlite3_tokenizer *pTokenizer, int iLangid, const char *z, int n, sqlite3_tokenizer_cursor **ppCsr ){ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr = 0; int rc; rc = pModule->xOpen(pTokenizer, z, n, &pCsr); assert( rc==SQLITE_OK || pCsr==0 ); if( rc==SQLITE_OK ){ pCsr->pTokenizer = pTokenizer; if( pModule->iVersion>=1 ){ rc = pModule->xLanguageid(pCsr, iLangid); if( rc!=SQLITE_OK ){ pModule->xClose(pCsr); pCsr = 0; } } } *ppCsr = pCsr; return rc; } /* ** Function getNextNode(), which is called by fts3ExprParse(), may itself ** call fts3ExprParse(). So this forward declaration is required. */ static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *); /* ** Extract the next token from buffer z (length n) using the tokenizer ** and other information (column names etc.) in pParse. Create an Fts3Expr ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this ** single token and set *ppExpr to point to it. If the end of the buffer is ** reached before a token is found, set *ppExpr to zero. It is the ** responsibility of the caller to eventually deallocate the allocated ** Fts3Expr structure (if any) by passing it to sqlite3_free(). ** ** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation ** fails. */ static int getNextToken( ParseContext *pParse, /* fts3 query parse context */ int iCol, /* Value for Fts3Phrase.iColumn */ const char *z, int n, /* Input string */ Fts3Expr **ppExpr, /* OUT: expression */ int *pnConsumed /* OUT: Number of bytes consumed */ ){ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; int rc; sqlite3_tokenizer_cursor *pCursor; Fts3Expr *pRet = 0; int i = 0; /* Set variable i to the maximum number of bytes of input to tokenize. */ for(i=0; iiLangid, z, i, &pCursor); if( rc==SQLITE_OK ){ const char *zToken; int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0; sqlite3_int64 nByte; /* total space to allocate */ rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition); if( rc==SQLITE_OK ){ nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken; pRet = (Fts3Expr *)sqlite3Fts3MallocZero(nByte); if( !pRet ){ rc = SQLITE_NOMEM; }else{ pRet->eType = FTSQUERY_PHRASE; pRet->pPhrase = (Fts3Phrase *)&pRet[1]; pRet->pPhrase->nToken = 1; pRet->pPhrase->iColumn = iCol; pRet->pPhrase->aToken[0].n = nToken; pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1]; memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken); if( iEndpPhrase->aToken[0].isPrefix = 1; iEnd++; } while( 1 ){ if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){ pParse->isNot = 1; iStart--; }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){ pRet->pPhrase->aToken[0].bFirst = 1; iStart--; }else{ break; } } } *pnConsumed = iEnd; }else if( i && rc==SQLITE_DONE ){ rc = SQLITE_OK; } pModule->xClose(pCursor); } *ppExpr = pRet; return rc; } /* ** Enlarge a memory allocation. If an out-of-memory allocation occurs, ** then free the old allocation. */ static void *fts3ReallocOrFree(void *pOrig, sqlite3_int64 nNew){ void *pRet = sqlite3_realloc64(pOrig, nNew); if( !pRet ){ sqlite3_free(pOrig); } return pRet; } /* ** Buffer zInput, length nInput, contains the contents of a quoted string ** that appeared as part of an fts3 query expression. Neither quote character ** is included in the buffer. This function attempts to tokenize the entire ** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE ** containing the results. ** ** If successful, SQLITE_OK is returned and *ppExpr set to point at the ** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory ** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set ** to 0. */ static int getNextString( ParseContext *pParse, /* fts3 query parse context */ const char *zInput, int nInput, /* Input string */ Fts3Expr **ppExpr /* OUT: expression */ ){ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; int rc; Fts3Expr *p = 0; sqlite3_tokenizer_cursor *pCursor = 0; char *zTemp = 0; int nTemp = 0; const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase); int nToken = 0; /* The final Fts3Expr data structure, including the Fts3Phrase, ** Fts3PhraseToken structures token buffers are all stored as a single ** allocation so that the expression can be freed with a single call to ** sqlite3_free(). Setting this up requires a two pass approach. ** ** The first pass, in the block below, uses a tokenizer cursor to iterate ** through the tokens in the expression. This pass uses fts3ReallocOrFree() ** to assemble data in two dynamic buffers: ** ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase ** structure, followed by the array of Fts3PhraseToken ** structures. This pass only populates the Fts3PhraseToken array. ** ** Buffer zTemp: Contains copies of all tokens. ** ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below, ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase ** structures. */ rc = sqlite3Fts3OpenTokenizer( pTokenizer, pParse->iLangid, zInput, nInput, &pCursor); if( rc==SQLITE_OK ){ int ii; for(ii=0; rc==SQLITE_OK; ii++){ const char *zByte; int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0; rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos); if( rc==SQLITE_OK ){ Fts3PhraseToken *pToken; p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken)); if( !p ) goto no_mem; zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte); if( !zTemp ) goto no_mem; assert( nToken==ii ); pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii]; memset(pToken, 0, sizeof(Fts3PhraseToken)); memcpy(&zTemp[nTemp], zByte, nByte); nTemp += nByte; pToken->n = nByte; pToken->isPrefix = (iEndbFirst = (iBegin>0 && zInput[iBegin-1]=='^'); nToken = ii+1; } } pModule->xClose(pCursor); pCursor = 0; } if( rc==SQLITE_DONE ){ int jj; char *zBuf = 0; p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp); if( !p ) goto no_mem; memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p); p->eType = FTSQUERY_PHRASE; p->pPhrase = (Fts3Phrase *)&p[1]; p->pPhrase->iColumn = pParse->iDefaultCol; p->pPhrase->nToken = nToken; zBuf = (char *)&p->pPhrase->aToken[nToken]; if( zTemp ){ memcpy(zBuf, zTemp, nTemp); sqlite3_free(zTemp); }else{ assert( nTemp==0 ); } for(jj=0; jjpPhrase->nToken; jj++){ p->pPhrase->aToken[jj].z = zBuf; zBuf += p->pPhrase->aToken[jj].n; } rc = SQLITE_OK; } *ppExpr = p; return rc; no_mem: if( pCursor ){ pModule->xClose(pCursor); } sqlite3_free(zTemp); sqlite3_free(p); *ppExpr = 0; return SQLITE_NOMEM; } /* ** The output variable *ppExpr is populated with an allocated Fts3Expr ** structure, or set to 0 if the end of the input buffer is reached. ** ** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM ** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered. ** If SQLITE_ERROR is returned, pContext is populated with an error message. */ static int getNextNode( ParseContext *pParse, /* fts3 query parse context */ const char *z, int n, /* Input string */ Fts3Expr **ppExpr, /* OUT: expression */ int *pnConsumed /* OUT: Number of bytes consumed */ ){ static const struct Fts3Keyword { char *z; /* Keyword text */ unsigned char n; /* Length of the keyword */ unsigned char parenOnly; /* Only valid in paren mode */ unsigned char eType; /* Keyword code */ } aKeyword[] = { { "OR" , 2, 0, FTSQUERY_OR }, { "AND", 3, 1, FTSQUERY_AND }, { "NOT", 3, 1, FTSQUERY_NOT }, { "NEAR", 4, 0, FTSQUERY_NEAR } }; int ii; int iCol; int iColLen; int rc; Fts3Expr *pRet = 0; const char *zInput = z; int nInput = n; pParse->isNot = 0; /* Skip over any whitespace before checking for a keyword, an open or ** close bracket, or a quoted string. */ while( nInput>0 && fts3isspace(*zInput) ){ nInput--; zInput++; } if( nInput==0 ){ return SQLITE_DONE; } /* See if we are dealing with a keyword. */ for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){ const struct Fts3Keyword *pKey = &aKeyword[ii]; if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){ continue; } if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){ int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; int nKey = pKey->n; char cNext; /* If this is a "NEAR" keyword, check for an explicit nearness. */ if( pKey->eType==FTSQUERY_NEAR ){ assert( nKey==4 ); if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){ nKey += 1+sqlite3Fts3ReadInt(&zInput[nKey+1], &nNear); } } /* At this point this is probably a keyword. But for that to be true, ** the next byte must contain either whitespace, an open or close ** parenthesis, a quote character, or EOF. */ cNext = zInput[nKey]; if( fts3isspace(cNext) || cNext=='"' || cNext=='(' || cNext==')' || cNext==0 ){ pRet = (Fts3Expr *)sqlite3Fts3MallocZero(sizeof(Fts3Expr)); if( !pRet ){ return SQLITE_NOMEM; } pRet->eType = pKey->eType; pRet->nNear = nNear; *ppExpr = pRet; *pnConsumed = (int)((zInput - z) + nKey); return SQLITE_OK; } /* Turns out that wasn't a keyword after all. This happens if the ** user has supplied a token such as "ORacle". Continue. */ } } /* See if we are dealing with a quoted phrase. If this is the case, then ** search for the closing quote and pass the whole string to getNextString() ** for processing. This is easy to do, as fts3 has no syntax for escaping ** a quote character embedded in a string. */ if( *zInput=='"' ){ for(ii=1; iinNest++; #if !defined(SQLITE_MAX_EXPR_DEPTH) if( pParse->nNest>1000 ) return SQLITE_ERROR; #elif SQLITE_MAX_EXPR_DEPTH>0 if( pParse->nNest>SQLITE_MAX_EXPR_DEPTH ) return SQLITE_ERROR; #endif rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed); *pnConsumed = (int)(zInput - z) + 1 + nConsumed; return rc; }else if( *zInput==')' ){ pParse->nNest--; *pnConsumed = (int)((zInput - z) + 1); *ppExpr = 0; return SQLITE_DONE; } } /* If control flows to this point, this must be a regular token, or ** the end of the input. Read a regular token using the sqlite3_tokenizer ** interface. Before doing so, figure out if there is an explicit ** column specifier for the token. ** ** TODO: Strangely, it is not possible to associate a column specifier ** with a quoted phrase, only with a single token. Not sure if this was ** an implementation artifact or an intentional decision when fts3 was ** first implemented. Whichever it was, this module duplicates the ** limitation. */ iCol = pParse->iDefaultCol; iColLen = 0; for(ii=0; iinCol; ii++){ const char *zStr = pParse->azCol[ii]; int nStr = (int)strlen(zStr); if( nInput>nStr && zInput[nStr]==':' && sqlite3_strnicmp(zStr, zInput, nStr)==0 ){ iCol = ii; iColLen = (int)((zInput - z) + nStr + 1); break; } } rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed); *pnConsumed += iColLen; return rc; } /* ** The argument is an Fts3Expr structure for a binary operator (any type ** except an FTSQUERY_PHRASE). Return an integer value representing the ** precedence of the operator. Lower values have a higher precedence (i.e. ** group more tightly). For example, in the C language, the == operator ** groups more tightly than ||, and would therefore have a higher precedence. ** ** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS ** is defined), the order of the operators in precedence from highest to ** lowest is: ** ** NEAR ** NOT ** AND (including implicit ANDs) ** OR ** ** Note that when using the old query syntax, the OR operator has a higher ** precedence than the AND operator. */ static int opPrecedence(Fts3Expr *p){ assert( p->eType!=FTSQUERY_PHRASE ); if( sqlite3_fts3_enable_parentheses ){ return p->eType; }else if( p->eType==FTSQUERY_NEAR ){ return 1; }else if( p->eType==FTSQUERY_OR ){ return 2; } assert( p->eType==FTSQUERY_AND ); return 3; } /* ** Argument ppHead contains a pointer to the current head of a query ** expression tree being parsed. pPrev is the expression node most recently ** inserted into the tree. This function adds pNew, which is always a binary ** operator node, into the expression tree based on the relative precedence ** of pNew and the existing nodes of the tree. This may result in the head ** of the tree changing, in which case *ppHead is set to the new root node. */ static void insertBinaryOperator( Fts3Expr **ppHead, /* Pointer to the root node of a tree */ Fts3Expr *pPrev, /* Node most recently inserted into the tree */ Fts3Expr *pNew /* New binary node to insert into expression tree */ ){ Fts3Expr *pSplit = pPrev; while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){ pSplit = pSplit->pParent; } if( pSplit->pParent ){ assert( pSplit->pParent->pRight==pSplit ); pSplit->pParent->pRight = pNew; pNew->pParent = pSplit->pParent; }else{ *ppHead = pNew; } pNew->pLeft = pSplit; pSplit->pParent = pNew; } /* ** Parse the fts3 query expression found in buffer z, length n. This function ** returns either when the end of the buffer is reached or an unmatched ** closing bracket - ')' - is encountered. ** ** If successful, SQLITE_OK is returned, *ppExpr is set to point to the ** parsed form of the expression and *pnConsumed is set to the number of ** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM ** (out of memory error) or SQLITE_ERROR (parse error) is returned. */ static int fts3ExprParse( ParseContext *pParse, /* fts3 query parse context */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ int *pnConsumed /* OUT: Number of bytes consumed */ ){ Fts3Expr *pRet = 0; Fts3Expr *pPrev = 0; Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */ int nIn = n; const char *zIn = z; int rc = SQLITE_OK; int isRequirePhrase = 1; while( rc==SQLITE_OK ){ Fts3Expr *p = 0; int nByte = 0; rc = getNextNode(pParse, zIn, nIn, &p, &nByte); assert( nByte>0 || (rc!=SQLITE_OK && p==0) ); if( rc==SQLITE_OK ){ if( p ){ int isPhrase; if( !sqlite3_fts3_enable_parentheses && p->eType==FTSQUERY_PHRASE && pParse->isNot ){ /* Create an implicit NOT operator. */ Fts3Expr *pNot = sqlite3Fts3MallocZero(sizeof(Fts3Expr)); if( !pNot ){ sqlite3Fts3ExprFree(p); rc = SQLITE_NOMEM; goto exprparse_out; } pNot->eType = FTSQUERY_NOT; pNot->pRight = p; p->pParent = pNot; if( pNotBranch ){ pNot->pLeft = pNotBranch; pNotBranch->pParent = pNot; } pNotBranch = pNot; p = pPrev; }else{ int eType = p->eType; isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft); /* The isRequirePhrase variable is set to true if a phrase or ** an expression contained in parenthesis is required. If a ** binary operator (AND, OR, NOT or NEAR) is encounted when ** isRequirePhrase is set, this is a syntax error. */ if( !isPhrase && isRequirePhrase ){ sqlite3Fts3ExprFree(p); rc = SQLITE_ERROR; goto exprparse_out; } if( isPhrase && !isRequirePhrase ){ /* Insert an implicit AND operator. */ Fts3Expr *pAnd; assert( pRet && pPrev ); pAnd = sqlite3Fts3MallocZero(sizeof(Fts3Expr)); if( !pAnd ){ sqlite3Fts3ExprFree(p); rc = SQLITE_NOMEM; goto exprparse_out; } pAnd->eType = FTSQUERY_AND; insertBinaryOperator(&pRet, pPrev, pAnd); pPrev = pAnd; } /* This test catches attempts to make either operand of a NEAR ** operator something other than a phrase. For example, either of ** the following: ** ** (bracketed expression) NEAR phrase ** phrase NEAR (bracketed expression) ** ** Return an error in either case. */ if( pPrev && ( (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE) || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR) )){ sqlite3Fts3ExprFree(p); rc = SQLITE_ERROR; goto exprparse_out; } if( isPhrase ){ if( pRet ){ assert( pPrev && pPrev->pLeft && pPrev->pRight==0 ); pPrev->pRight = p; p->pParent = pPrev; }else{ pRet = p; } }else{ insertBinaryOperator(&pRet, pPrev, p); } isRequirePhrase = !isPhrase; } pPrev = p; } assert( nByte>0 ); } assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) ); nIn -= nByte; zIn += nByte; } if( rc==SQLITE_DONE && pRet && isRequirePhrase ){ rc = SQLITE_ERROR; } if( rc==SQLITE_DONE ){ rc = SQLITE_OK; if( !sqlite3_fts3_enable_parentheses && pNotBranch ){ if( !pRet ){ rc = SQLITE_ERROR; }else{ Fts3Expr *pIter = pNotBranch; while( pIter->pLeft ){ pIter = pIter->pLeft; } pIter->pLeft = pRet; pRet->pParent = pIter; pRet = pNotBranch; } } } *pnConsumed = n - nIn; exprparse_out: if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRet); sqlite3Fts3ExprFree(pNotBranch); pRet = 0; } *ppExpr = pRet; return rc; } /* ** Return SQLITE_ERROR if the maximum depth of the expression tree passed ** as the only argument is more than nMaxDepth. */ static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){ int rc = SQLITE_OK; if( p ){ if( nMaxDepth<0 ){ rc = SQLITE_TOOBIG; }else{ rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1); if( rc==SQLITE_OK ){ rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1); } } } return rc; } /* ** This function attempts to transform the expression tree at (*pp) to ** an equivalent but more balanced form. The tree is modified in place. ** If successful, SQLITE_OK is returned and (*pp) set to point to the ** new root expression node. ** ** nMaxDepth is the maximum allowable depth of the balanced sub-tree. ** ** Otherwise, if an error occurs, an SQLite error code is returned and ** expression (*pp) freed. */ static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){ int rc = SQLITE_OK; /* Return code */ Fts3Expr *pRoot = *pp; /* Initial root node */ Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */ int eType = pRoot->eType; /* Type of node in this tree */ if( nMaxDepth==0 ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){ Fts3Expr **apLeaf; apLeaf = (Fts3Expr **)sqlite3_malloc64(sizeof(Fts3Expr *) * nMaxDepth); if( 0==apLeaf ){ rc = SQLITE_NOMEM; }else{ memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth); } if( rc==SQLITE_OK ){ int i; Fts3Expr *p; /* Set $p to point to the left-most leaf in the tree of eType nodes. */ for(p=pRoot; p->eType==eType; p=p->pLeft){ assert( p->pParent==0 || p->pParent->pLeft==p ); assert( p->pLeft && p->pRight ); } /* This loop runs once for each leaf in the tree of eType nodes. */ while( 1 ){ int iLvl; Fts3Expr *pParent = p->pParent; /* Current parent of p */ assert( pParent==0 || pParent->pLeft==p ); p->pParent = 0; if( pParent ){ pParent->pLeft = 0; }else{ pRoot = 0; } rc = fts3ExprBalance(&p, nMaxDepth-1); if( rc!=SQLITE_OK ) break; for(iLvl=0; p && iLvlpLeft = apLeaf[iLvl]; pFree->pRight = p; pFree->pLeft->pParent = pFree; pFree->pRight->pParent = pFree; p = pFree; pFree = pFree->pParent; p->pParent = 0; apLeaf[iLvl] = 0; } } if( p ){ sqlite3Fts3ExprFree(p); rc = SQLITE_TOOBIG; break; } /* If that was the last leaf node, break out of the loop */ if( pParent==0 ) break; /* Set $p to point to the next leaf in the tree of eType nodes */ for(p=pParent->pRight; p->eType==eType; p=p->pLeft); /* Remove pParent from the original tree. */ assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent ); pParent->pRight->pParent = pParent->pParent; if( pParent->pParent ){ pParent->pParent->pLeft = pParent->pRight; }else{ assert( pParent==pRoot ); pRoot = pParent->pRight; } /* Link pParent into the free node list. It will be used as an ** internal node of the new tree. */ pParent->pParent = pFree; pFree = pParent; } if( rc==SQLITE_OK ){ p = 0; for(i=0; ipParent = 0; }else{ assert( pFree!=0 ); pFree->pRight = p; pFree->pLeft = apLeaf[i]; pFree->pLeft->pParent = pFree; pFree->pRight->pParent = pFree; p = pFree; pFree = pFree->pParent; p->pParent = 0; } } } pRoot = p; }else{ /* An error occurred. Delete the contents of the apLeaf[] array ** and pFree list. Everything else is cleaned up by the call to ** sqlite3Fts3ExprFree(pRoot) below. */ Fts3Expr *pDel; for(i=0; ipParent; sqlite3_free(pDel); } } assert( pFree==0 ); sqlite3_free( apLeaf ); } }else if( eType==FTSQUERY_NOT ){ Fts3Expr *pLeft = pRoot->pLeft; Fts3Expr *pRight = pRoot->pRight; pRoot->pLeft = 0; pRoot->pRight = 0; pLeft->pParent = 0; pRight->pParent = 0; rc = fts3ExprBalance(&pLeft, nMaxDepth-1); if( rc==SQLITE_OK ){ rc = fts3ExprBalance(&pRight, nMaxDepth-1); } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRight); sqlite3Fts3ExprFree(pLeft); }else{ assert( pLeft && pRight ); pRoot->pLeft = pLeft; pLeft->pParent = pRoot; pRoot->pRight = pRight; pRight->pParent = pRoot; } } } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRoot); pRoot = 0; } *pp = pRoot; return rc; } /* ** This function is similar to sqlite3Fts3ExprParse(), with the following ** differences: ** ** 1. It does not do expression rebalancing. ** 2. It does not check that the expression does not exceed the ** maximum allowable depth. ** 3. Even if it fails, *ppExpr may still be set to point to an ** expression tree. It should be deleted using sqlite3Fts3ExprFree() ** in this case. */ static int fts3ExprParseUnbalanced( sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ int iLangid, /* Language id for tokenizer */ char **azCol, /* Array of column names for fts3 table */ int bFts4, /* True to allow FTS4-only syntax */ int nCol, /* Number of entries in azCol[] */ int iDefaultCol, /* Default column to query */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr /* OUT: Parsed query structure */ ){ int nParsed; int rc; ParseContext sParse; memset(&sParse, 0, sizeof(ParseContext)); sParse.pTokenizer = pTokenizer; sParse.iLangid = iLangid; sParse.azCol = (const char **)azCol; sParse.nCol = nCol; sParse.iDefaultCol = iDefaultCol; sParse.bFts4 = bFts4; if( z==0 ){ *ppExpr = 0; return SQLITE_OK; } if( n<0 ){ n = (int)strlen(z); } rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed); assert( rc==SQLITE_OK || *ppExpr==0 ); /* Check for mismatched parenthesis */ if( rc==SQLITE_OK && sParse.nNest ){ rc = SQLITE_ERROR; } return rc; } /* ** Parameters z and n contain a pointer to and length of a buffer containing ** an fts3 query expression, respectively. This function attempts to parse the ** query expression and create a tree of Fts3Expr structures representing the ** parsed expression. If successful, *ppExpr is set to point to the head ** of the parsed expression tree and SQLITE_OK is returned. If an error ** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse ** error) is returned and *ppExpr is set to 0. ** ** If parameter n is a negative number, then z is assumed to point to a ** nul-terminated string and the length is determined using strlen(). ** ** The first parameter, pTokenizer, is passed the fts3 tokenizer module to ** use to normalize query tokens while parsing the expression. The azCol[] ** array, which is assumed to contain nCol entries, should contain the names ** of each column in the target fts3 table, in order from left to right. ** Column names must be nul-terminated strings. ** ** The iDefaultCol parameter should be passed the index of the table column ** that appears on the left-hand-side of the MATCH operator (the default ** column to match against for tokens for which a column name is not explicitly ** specified as part of the query string), or -1 if tokens may by default ** match any table column. */ SQLITE_PRIVATE int sqlite3Fts3ExprParse( sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ int iLangid, /* Language id for tokenizer */ char **azCol, /* Array of column names for fts3 table */ int bFts4, /* True to allow FTS4-only syntax */ int nCol, /* Number of entries in azCol[] */ int iDefaultCol, /* Default column to query */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ int rc = fts3ExprParseUnbalanced( pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr ); /* Rebalance the expression. And check that its depth does not exceed ** SQLITE_FTS3_MAX_EXPR_DEPTH. */ if( rc==SQLITE_OK && *ppExpr ){ rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH); if( rc==SQLITE_OK ){ rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH); } } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(*ppExpr); *ppExpr = 0; if( rc==SQLITE_TOOBIG ){ sqlite3Fts3ErrMsg(pzErr, "FTS expression tree is too large (maximum depth %d)", SQLITE_FTS3_MAX_EXPR_DEPTH ); rc = SQLITE_ERROR; }else if( rc==SQLITE_ERROR ){ sqlite3Fts3ErrMsg(pzErr, "malformed MATCH expression: [%s]", z); } } return rc; } /* ** Free a single node of an expression tree. */ static void fts3FreeExprNode(Fts3Expr *p){ assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 ); sqlite3Fts3EvalPhraseCleanup(p->pPhrase); sqlite3_free(p->aMI); sqlite3_free(p); } /* ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). ** ** This function would be simpler if it recursively called itself. But ** that would mean passing a sufficiently large expression to ExprParse() ** could cause a stack overflow. */ SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *pDel){ Fts3Expr *p; assert( pDel==0 || pDel->pParent==0 ); for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){ assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft ); } while( p ){ Fts3Expr *pParent = p->pParent; fts3FreeExprNode(p); if( pParent && p==pParent->pLeft && pParent->pRight ){ p = pParent->pRight; while( p && (p->pLeft || p->pRight) ){ assert( p==p->pParent->pRight || p==p->pParent->pLeft ); p = (p->pLeft ? p->pLeft : p->pRight); } }else{ p = pParent; } } } /**************************************************************************** ***************************************************************************** ** Everything after this point is just test code. */ #ifdef SQLITE_TEST /* #include */ /* ** Return a pointer to a buffer containing a text representation of the ** expression passed as the first argument. The buffer is obtained from ** sqlite3_malloc(). It is the responsibility of the caller to use ** sqlite3_free() to release the memory. If an OOM condition is encountered, ** NULL is returned. ** ** If the second argument is not NULL, then its contents are prepended to ** the returned expression text and then freed using sqlite3_free(). */ static char *exprToString(Fts3Expr *pExpr, char *zBuf){ if( pExpr==0 ){ return sqlite3_mprintf(""); } switch( pExpr->eType ){ case FTSQUERY_PHRASE: { Fts3Phrase *pPhrase = pExpr->pPhrase; int i; zBuf = sqlite3_mprintf( "%zPHRASE %d 0", zBuf, pPhrase->iColumn); for(i=0; zBuf && inToken; i++){ zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, pPhrase->aToken[i].n, pPhrase->aToken[i].z, (pPhrase->aToken[i].isPrefix?"+":"") ); } return zBuf; } case FTSQUERY_NEAR: zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear); break; case FTSQUERY_NOT: zBuf = sqlite3_mprintf("%zNOT ", zBuf); break; case FTSQUERY_AND: zBuf = sqlite3_mprintf("%zAND ", zBuf); break; case FTSQUERY_OR: zBuf = sqlite3_mprintf("%zOR ", zBuf); break; } if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf); if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf); if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf); if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf); if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf); return zBuf; } /* ** This is the implementation of a scalar SQL function used to test the ** expression parser. It should be called as follows: ** ** fts3_exprtest(, , , ...); ** ** The first argument, , is the name of the fts3 tokenizer used ** to parse the query expression (see README.tokenizers). The second argument ** is the query expression to parse. Each subsequent argument is the name ** of a column of the fts3 table that the query expression may refer to. ** For example: ** ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); */ static void fts3ExprTestCommon( int bRebalance, sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_tokenizer *pTokenizer = 0; int rc; char **azCol = 0; const char *zExpr; int nExpr; int nCol; int ii; Fts3Expr *pExpr; char *zBuf = 0; Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context); const char *zTokenizer = 0; char *zErr = 0; if( argc<3 ){ sqlite3_result_error(context, "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1 ); return; } zTokenizer = (const char*)sqlite3_value_text(argv[0]); rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_error(context, zErr, -1); } sqlite3_free(zErr); return; } zExpr = (const char *)sqlite3_value_text(argv[1]); nExpr = sqlite3_value_bytes(argv[1]); nCol = argc-2; azCol = (char **)sqlite3_malloc64(nCol*sizeof(char *)); if( !azCol ){ sqlite3_result_error_nomem(context); goto exprtest_out; } for(ii=0; iipModule->xDestroy(pTokenizer); } sqlite3_free(azCol); } static void fts3ExprTest( sqlite3_context *context, int argc, sqlite3_value **argv ){ fts3ExprTestCommon(0, context, argc, argv); } static void fts3ExprTestRebalance( sqlite3_context *context, int argc, sqlite3_value **argv ){ fts3ExprTestCommon(1, context, argc, argv); } /* ** Register the query expression parser test function fts3_exprtest() ** with database connection db. */ SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){ int rc = sqlite3_create_function( db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0 ); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0 ); } return rc; } #endif #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_expr.c *******************************************/ /************** Begin file fts3_hash.c ***************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the implementation of generic hash-tables used in SQLite. ** We've modified it slightly to serve as a standalone hash table ** implementation for the full-text indexing module. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include "fts3_hash.h" */ /* ** Malloc and Free functions */ static void *fts3HashMalloc(sqlite3_int64 n){ void *p = sqlite3_malloc64(n); if( p ){ memset(p, 0, n); } return p; } static void fts3HashFree(void *p){ sqlite3_free(p); } /* Turn bulk memory into a hash table object by initializing the ** fields of the Hash structure. ** ** "pNew" is a pointer to the hash table that is to be initialized. ** keyClass is one of the constants ** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass ** determines what kind of key the hash table will use. "copyKey" is ** true if the hash table should make its own private copy of keys and ** false if it should just use the supplied pointer. */ SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){ assert( pNew!=0 ); assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY ); pNew->keyClass = keyClass; pNew->copyKey = copyKey; pNew->first = 0; pNew->count = 0; pNew->htsize = 0; pNew->ht = 0; } /* Remove all entries from a hash table. Reclaim all memory. ** Call this routine to delete a hash table or to reset a hash table ** to the empty state. */ SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){ Fts3HashElem *elem; /* For looping over all elements of the table */ assert( pH!=0 ); elem = pH->first; pH->first = 0; fts3HashFree(pH->ht); pH->ht = 0; pH->htsize = 0; while( elem ){ Fts3HashElem *next_elem = elem->next; if( pH->copyKey && elem->pKey ){ fts3HashFree(elem->pKey); } fts3HashFree(elem); elem = next_elem; } pH->count = 0; } /* ** Hash and comparison functions when the mode is FTS3_HASH_STRING */ static int fts3StrHash(const void *pKey, int nKey){ const char *z = (const char *)pKey; unsigned h = 0; if( nKey<=0 ) nKey = (int) strlen(z); while( nKey > 0 ){ h = (h<<3) ^ h ^ *z++; nKey--; } return (int)(h & 0x7fffffff); } static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ if( n1!=n2 ) return 1; return strncmp((const char*)pKey1,(const char*)pKey2,n1); } /* ** Hash and comparison functions when the mode is FTS3_HASH_BINARY */ static int fts3BinHash(const void *pKey, int nKey){ int h = 0; const char *z = (const char *)pKey; while( nKey-- > 0 ){ h = (h<<3) ^ h ^ *(z++); } return h & 0x7fffffff; } static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){ if( n1!=n2 ) return 1; return memcmp(pKey1,pKey2,n1); } /* ** Return a pointer to the appropriate hash function given the key class. ** ** The C syntax in this function definition may be unfamilar to some ** programmers, so we provide the following additional explanation: ** ** The name of the function is "ftsHashFunction". The function takes a ** single parameter "keyClass". The return value of ftsHashFunction() ** is a pointer to another function. Specifically, the return value ** of ftsHashFunction() is a pointer to a function that takes two parameters ** with types "const void*" and "int" and returns an "int". */ static int (*ftsHashFunction(int keyClass))(const void*,int){ if( keyClass==FTS3_HASH_STRING ){ return &fts3StrHash; }else{ assert( keyClass==FTS3_HASH_BINARY ); return &fts3BinHash; } } /* ** Return a pointer to the appropriate hash function given the key class. ** ** For help in interpreted the obscure C code in the function definition, ** see the header comment on the previous function. */ static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){ if( keyClass==FTS3_HASH_STRING ){ return &fts3StrCompare; }else{ assert( keyClass==FTS3_HASH_BINARY ); return &fts3BinCompare; } } /* Link an element into the hash table */ static void fts3HashInsertElement( Fts3Hash *pH, /* The complete hash table */ struct _fts3ht *pEntry, /* The entry into which pNew is inserted */ Fts3HashElem *pNew /* The element to be inserted */ ){ Fts3HashElem *pHead; /* First element already in pEntry */ pHead = pEntry->chain; if( pHead ){ pNew->next = pHead; pNew->prev = pHead->prev; if( pHead->prev ){ pHead->prev->next = pNew; } else { pH->first = pNew; } pHead->prev = pNew; }else{ pNew->next = pH->first; if( pH->first ){ pH->first->prev = pNew; } pNew->prev = 0; pH->first = pNew; } pEntry->count++; pEntry->chain = pNew; } /* Resize the hash table so that it cantains "new_size" buckets. ** "new_size" must be a power of 2. The hash table might fail ** to resize if sqliteMalloc() fails. ** ** Return non-zero if a memory allocation error occurs. */ static int fts3Rehash(Fts3Hash *pH, int new_size){ struct _fts3ht *new_ht; /* The new hash table */ Fts3HashElem *elem, *next_elem; /* For looping over existing elements */ int (*xHash)(const void*,int); /* The hash function */ assert( (new_size & (new_size-1))==0 ); new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) ); if( new_ht==0 ) return 1; fts3HashFree(pH->ht); pH->ht = new_ht; pH->htsize = new_size; xHash = ftsHashFunction(pH->keyClass); for(elem=pH->first, pH->first=0; elem; elem = next_elem){ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); next_elem = elem->next; fts3HashInsertElement(pH, &new_ht[h], elem); } return 0; } /* This function (for internal use only) locates an element in an ** hash table that matches the given key. The hash for this key has ** already been computed and is passed as the 4th parameter. */ static Fts3HashElem *fts3FindElementByHash( const Fts3Hash *pH, /* The pH to be searched */ const void *pKey, /* The key we are searching for */ int nKey, int h /* The hash for this key. */ ){ Fts3HashElem *elem; /* Used to loop thru the element list */ int count; /* Number of elements left to test */ int (*xCompare)(const void*,int,const void*,int); /* comparison function */ if( pH->ht ){ struct _fts3ht *pEntry = &pH->ht[h]; elem = pEntry->chain; count = pEntry->count; xCompare = ftsCompareFunction(pH->keyClass); while( count-- && elem ){ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ return elem; } elem = elem->next; } } return 0; } /* Remove a single entry from the hash table given a pointer to that ** element and a hash on the element's key. */ static void fts3RemoveElementByHash( Fts3Hash *pH, /* The pH containing "elem" */ Fts3HashElem* elem, /* The element to be removed from the pH */ int h /* Hash value for the element */ ){ struct _fts3ht *pEntry; if( elem->prev ){ elem->prev->next = elem->next; }else{ pH->first = elem->next; } if( elem->next ){ elem->next->prev = elem->prev; } pEntry = &pH->ht[h]; if( pEntry->chain==elem ){ pEntry->chain = elem->next; } pEntry->count--; if( pEntry->count<=0 ){ pEntry->chain = 0; } if( pH->copyKey && elem->pKey ){ fts3HashFree(elem->pKey); } fts3HashFree( elem ); pH->count--; if( pH->count<=0 ){ assert( pH->first==0 ); assert( pH->count==0 ); fts3HashClear(pH); } } SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem( const Fts3Hash *pH, const void *pKey, int nKey ){ int h; /* A hash on key */ int (*xHash)(const void*,int); /* The hash function */ if( pH==0 || pH->ht==0 ) return 0; xHash = ftsHashFunction(pH->keyClass); assert( xHash!=0 ); h = (*xHash)(pKey,nKey); assert( (pH->htsize & (pH->htsize-1))==0 ); return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1)); } /* ** Attempt to locate an element of the hash table pH with a key ** that matches pKey,nKey. Return the data for this element if it is ** found, or NULL if there is no match. */ SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){ Fts3HashElem *pElem; /* The element that matches key (if any) */ pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey); return pElem ? pElem->data : 0; } /* Insert an element into the hash table pH. The key is pKey,nKey ** and the data is "data". ** ** If no element exists with a matching key, then a new ** element is created. A copy of the key is made if the copyKey ** flag is set. NULL is returned. ** ** If another element already exists with the same key, then the ** new data replaces the old data and the old data is returned. ** The key is not copied in this instance. If a malloc fails, then ** the new data is returned and the hash table is unchanged. ** ** If the "data" parameter to this function is NULL, then the ** element corresponding to "key" is removed from the hash table. */ SQLITE_PRIVATE void *sqlite3Fts3HashInsert( Fts3Hash *pH, /* The hash table to insert into */ const void *pKey, /* The key */ int nKey, /* Number of bytes in the key */ void *data /* The data */ ){ int hraw; /* Raw hash value of the key */ int h; /* the hash of the key modulo hash table size */ Fts3HashElem *elem; /* Used to loop thru the element list */ Fts3HashElem *new_elem; /* New element added to the pH */ int (*xHash)(const void*,int); /* The hash function */ assert( pH!=0 ); xHash = ftsHashFunction(pH->keyClass); assert( xHash!=0 ); hraw = (*xHash)(pKey, nKey); assert( (pH->htsize & (pH->htsize-1))==0 ); h = hraw & (pH->htsize-1); elem = fts3FindElementByHash(pH,pKey,nKey,h); if( elem ){ void *old_data = elem->data; if( data==0 ){ fts3RemoveElementByHash(pH,elem,h); }else{ elem->data = data; } return old_data; } if( data==0 ) return 0; if( (pH->htsize==0 && fts3Rehash(pH,8)) || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2)) ){ pH->count = 0; return data; } assert( pH->htsize>0 ); new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) ); if( new_elem==0 ) return data; if( pH->copyKey && pKey!=0 ){ new_elem->pKey = fts3HashMalloc( nKey ); if( new_elem->pKey==0 ){ fts3HashFree(new_elem); return data; } memcpy((void*)new_elem->pKey, pKey, nKey); }else{ new_elem->pKey = (void*)pKey; } new_elem->nKey = nKey; pH->count++; assert( pH->htsize>0 ); assert( (pH->htsize & (pH->htsize-1))==0 ); h = hraw & (pH->htsize-1); fts3HashInsertElement(pH, &pH->ht[h], new_elem); new_elem->data = data; return 0; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_hash.c *******************************************/ /************** Begin file fts3_porter.c *************************************/ /* ** 2006 September 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Implementation of the full-text-search tokenizer that implements ** a Porter stemmer. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ /* ** Class derived from sqlite3_tokenizer */ typedef struct porter_tokenizer { sqlite3_tokenizer base; /* Base class */ } porter_tokenizer; /* ** Class derived from sqlite3_tokenizer_cursor */ typedef struct porter_tokenizer_cursor { sqlite3_tokenizer_cursor base; const char *zInput; /* input we are tokenizing */ int nInput; /* size of the input */ int iOffset; /* current position in zInput */ int iToken; /* index of next token to be returned */ char *zToken; /* storage for current token */ int nAllocated; /* space allocated to zToken buffer */ } porter_tokenizer_cursor; /* ** Create a new tokenizer instance. */ static int porterCreate( int argc, const char * const *argv, sqlite3_tokenizer **ppTokenizer ){ porter_tokenizer *t; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); if( t==NULL ) return SQLITE_NOMEM; memset(t, 0, sizeof(*t)); *ppTokenizer = &t->base; return SQLITE_OK; } /* ** Destroy a tokenizer */ static int porterDestroy(sqlite3_tokenizer *pTokenizer){ sqlite3_free(pTokenizer); return SQLITE_OK; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is zInput[0..nInput-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int porterOpen( sqlite3_tokenizer *pTokenizer, /* The tokenizer */ const char *zInput, int nInput, /* String to be tokenized */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ ){ porter_tokenizer_cursor *c; UNUSED_PARAMETER(pTokenizer); c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); if( c==NULL ) return SQLITE_NOMEM; c->zInput = zInput; if( zInput==0 ){ c->nInput = 0; }else if( nInput<0 ){ c->nInput = (int)strlen(zInput); }else{ c->nInput = nInput; } c->iOffset = 0; /* start tokenizing at the beginning */ c->iToken = 0; c->zToken = NULL; /* no space allocated, yet. */ c->nAllocated = 0; *ppCursor = &c->base; return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to ** porterOpen() above. */ static int porterClose(sqlite3_tokenizer_cursor *pCursor){ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; sqlite3_free(c->zToken); sqlite3_free(c); return SQLITE_OK; } /* ** Vowel or consonant */ static const char cType[] = { 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1 }; /* ** isConsonant() and isVowel() determine if their first character in ** the string they point to is a consonant or a vowel, according ** to Porter ruls. ** ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. ** 'Y' is a consonant unless it follows another consonant, ** in which case it is a vowel. ** ** In these routine, the letters are in reverse order. So the 'y' rule ** is that 'y' is a consonant unless it is followed by another ** consonent. */ static int isVowel(const char*); static int isConsonant(const char *z){ int j; char x = *z; if( x==0 ) return 0; assert( x>='a' && x<='z' ); j = cType[x-'a']; if( j<2 ) return j; return z[1]==0 || isVowel(z + 1); } static int isVowel(const char *z){ int j; char x = *z; if( x==0 ) return 0; assert( x>='a' && x<='z' ); j = cType[x-'a']; if( j<2 ) return 1-j; return isConsonant(z + 1); } /* ** Let any sequence of one or more vowels be represented by V and let ** C be sequence of one or more consonants. Then every word can be ** represented as: ** ** [C] (VC){m} [V] ** ** In prose: A word is an optional consonant followed by zero or ** vowel-consonant pairs followed by an optional vowel. "m" is the ** number of vowel consonant pairs. This routine computes the value ** of m for the first i bytes of a word. ** ** Return true if the m-value for z is 1 or more. In other words, ** return true if z contains at least one vowel that is followed ** by a consonant. ** ** In this routine z[] is in reverse order. So we are really looking ** for an instance of a consonant followed by a vowel. */ static int m_gt_0(const char *z){ while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } return *z!=0; } /* Like mgt0 above except we are looking for a value of m which is ** exactly 1 */ static int m_eq_1(const char *z){ while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } if( *z==0 ) return 0; while( isVowel(z) ){ z++; } if( *z==0 ) return 1; while( isConsonant(z) ){ z++; } return *z==0; } /* Like mgt0 above except we are looking for a value of m>1 instead ** or m>0 */ static int m_gt_1(const char *z){ while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } if( *z==0 ) return 0; while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } return *z!=0; } /* ** Return TRUE if there is a vowel anywhere within z[0..n-1] */ static int hasVowel(const char *z){ while( isConsonant(z) ){ z++; } return *z!=0; } /* ** Return TRUE if the word ends in a double consonant. ** ** The text is reversed here. So we are really looking at ** the first two characters of z[]. */ static int doubleConsonant(const char *z){ return isConsonant(z) && z[0]==z[1]; } /* ** Return TRUE if the word ends with three letters which ** are consonant-vowel-consonent and where the final consonant ** is not 'w', 'x', or 'y'. ** ** The word is reversed here. So we are really checking the ** first three letters and the first one cannot be in [wxy]. */ static int star_oh(const char *z){ return isConsonant(z) && z[0]!='w' && z[0]!='x' && z[0]!='y' && isVowel(z+1) && isConsonant(z+2); } /* ** If the word ends with zFrom and xCond() is true for the stem ** of the word that preceeds the zFrom ending, then change the ** ending to zTo. ** ** The input word *pz and zFrom are both in reverse order. zTo ** is in normal order. ** ** Return TRUE if zFrom matches. Return FALSE if zFrom does not ** match. Not that TRUE is returned even if xCond() fails and ** no substitution occurs. */ static int stem( char **pz, /* The word being stemmed (Reversed) */ const char *zFrom, /* If the ending matches this... (Reversed) */ const char *zTo, /* ... change the ending to this (not reversed) */ int (*xCond)(const char*) /* Condition that must be true */ ){ char *z = *pz; while( *zFrom && *zFrom==*z ){ z++; zFrom++; } if( *zFrom!=0 ) return 0; if( xCond && !xCond(z) ) return 1; while( *zTo ){ *(--z) = *(zTo++); } *pz = z; return 1; } /* ** This is the fallback stemmer used when the porter stemmer is ** inappropriate. The input word is copied into the output with ** US-ASCII case folding. If the input word is too long (more ** than 20 bytes if it contains no digits or more than 6 bytes if ** it contains digits) then word is truncated to 20 or 6 bytes ** by taking 10 or 3 bytes from the beginning and end. */ static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ int i, mx, j; int hasDigit = 0; for(i=0; i='A' && c<='Z' ){ zOut[i] = c - 'A' + 'a'; }else{ if( c>='0' && c<='9' ) hasDigit = 1; zOut[i] = c; } } mx = hasDigit ? 3 : 10; if( nIn>mx*2 ){ for(j=mx, i=nIn-mx; i=(int)sizeof(zReverse)-7 ){ /* The word is too big or too small for the porter stemmer. ** Fallback to the copy stemmer */ copy_stemmer(zIn, nIn, zOut, pnOut); return; } for(i=0, j=sizeof(zReverse)-6; i='A' && c<='Z' ){ zReverse[j] = c + 'a' - 'A'; }else if( c>='a' && c<='z' ){ zReverse[j] = c; }else{ /* The use of a character not in [a-zA-Z] means that we fallback ** to the copy stemmer */ copy_stemmer(zIn, nIn, zOut, pnOut); return; } } memset(&zReverse[sizeof(zReverse)-5], 0, 5); z = &zReverse[j+1]; /* Step 1a */ if( z[0]=='s' ){ if( !stem(&z, "sess", "ss", 0) && !stem(&z, "sei", "i", 0) && !stem(&z, "ss", "ss", 0) ){ z++; } } /* Step 1b */ z2 = z; if( stem(&z, "dee", "ee", m_gt_0) ){ /* Do nothing. The work was all in the test */ }else if( (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) && z!=z2 ){ if( stem(&z, "ta", "ate", 0) || stem(&z, "lb", "ble", 0) || stem(&z, "zi", "ize", 0) ){ /* Do nothing. The work was all in the test */ }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ z++; }else if( m_eq_1(z) && star_oh(z) ){ *(--z) = 'e'; } } /* Step 1c */ if( z[0]=='y' && hasVowel(z+1) ){ z[0] = 'i'; } /* Step 2 */ switch( z[1] ){ case 'a': if( !stem(&z, "lanoita", "ate", m_gt_0) ){ stem(&z, "lanoit", "tion", m_gt_0); } break; case 'c': if( !stem(&z, "icne", "ence", m_gt_0) ){ stem(&z, "icna", "ance", m_gt_0); } break; case 'e': stem(&z, "rezi", "ize", m_gt_0); break; case 'g': stem(&z, "igol", "log", m_gt_0); break; case 'l': if( !stem(&z, "ilb", "ble", m_gt_0) && !stem(&z, "illa", "al", m_gt_0) && !stem(&z, "iltne", "ent", m_gt_0) && !stem(&z, "ile", "e", m_gt_0) ){ stem(&z, "ilsuo", "ous", m_gt_0); } break; case 'o': if( !stem(&z, "noitazi", "ize", m_gt_0) && !stem(&z, "noita", "ate", m_gt_0) ){ stem(&z, "rota", "ate", m_gt_0); } break; case 's': if( !stem(&z, "msila", "al", m_gt_0) && !stem(&z, "ssenevi", "ive", m_gt_0) && !stem(&z, "ssenluf", "ful", m_gt_0) ){ stem(&z, "ssensuo", "ous", m_gt_0); } break; case 't': if( !stem(&z, "itila", "al", m_gt_0) && !stem(&z, "itivi", "ive", m_gt_0) ){ stem(&z, "itilib", "ble", m_gt_0); } break; } /* Step 3 */ switch( z[0] ){ case 'e': if( !stem(&z, "etaci", "ic", m_gt_0) && !stem(&z, "evita", "", m_gt_0) ){ stem(&z, "ezila", "al", m_gt_0); } break; case 'i': stem(&z, "itici", "ic", m_gt_0); break; case 'l': if( !stem(&z, "laci", "ic", m_gt_0) ){ stem(&z, "luf", "", m_gt_0); } break; case 's': stem(&z, "ssen", "", m_gt_0); break; } /* Step 4 */ switch( z[1] ){ case 'a': if( z[0]=='l' && m_gt_1(z+2) ){ z += 2; } break; case 'c': if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ z += 4; } break; case 'e': if( z[0]=='r' && m_gt_1(z+2) ){ z += 2; } break; case 'i': if( z[0]=='c' && m_gt_1(z+2) ){ z += 2; } break; case 'l': if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ z += 4; } break; case 'n': if( z[0]=='t' ){ if( z[2]=='a' ){ if( m_gt_1(z+3) ){ z += 3; } }else if( z[2]=='e' ){ if( !stem(&z, "tneme", "", m_gt_1) && !stem(&z, "tnem", "", m_gt_1) ){ stem(&z, "tne", "", m_gt_1); } } } break; case 'o': if( z[0]=='u' ){ if( m_gt_1(z+2) ){ z += 2; } }else if( z[3]=='s' || z[3]=='t' ){ stem(&z, "noi", "", m_gt_1); } break; case 's': if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ z += 3; } break; case 't': if( !stem(&z, "eta", "", m_gt_1) ){ stem(&z, "iti", "", m_gt_1); } break; case 'u': if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ z += 3; } break; case 'v': case 'z': if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ z += 3; } break; } /* Step 5a */ if( z[0]=='e' ){ if( m_gt_1(z+1) ){ z++; }else if( m_eq_1(z+1) && !star_oh(z+1) ){ z++; } } /* Step 5b */ if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ z++; } /* z[] is now the stemmed word in reverse order. Flip it back ** around into forward order and return. */ *pnOut = i = (int)strlen(z); zOut[i] = 0; while( *z ){ zOut[--i] = *(z++); } } /* ** Characters that can be part of a token. We assume any character ** whose value is greater than 0x80 (any UTF character) can be ** part of a token. In other words, delimiters all must have ** values of 0x7f or lower. */ static const char porterIdChar[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ }; #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) /* ** Extract the next token from a tokenization cursor. The cursor must ** have been opened by a prior call to porterOpen(). */ static int porterNext( sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ const char **pzToken, /* OUT: *pzToken is the token text */ int *pnBytes, /* OUT: Number of bytes in token */ int *piStartOffset, /* OUT: Starting offset of token */ int *piEndOffset, /* OUT: Ending offset of token */ int *piPosition /* OUT: Position integer of token */ ){ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; const char *z = c->zInput; while( c->iOffsetnInput ){ int iStartOffset, ch; /* Scan past delimiter characters */ while( c->iOffsetnInput && isDelim(z[c->iOffset]) ){ c->iOffset++; } /* Count non-delimiter characters. */ iStartOffset = c->iOffset; while( c->iOffsetnInput && !isDelim(z[c->iOffset]) ){ c->iOffset++; } if( c->iOffset>iStartOffset ){ int n = c->iOffset-iStartOffset; if( n>c->nAllocated ){ char *pNew; c->nAllocated = n+20; pNew = sqlite3_realloc64(c->zToken, c->nAllocated); if( !pNew ) return SQLITE_NOMEM; c->zToken = pNew; } porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); *pzToken = c->zToken; *piStartOffset = iStartOffset; *piEndOffset = c->iOffset; *piPosition = c->iToken++; return SQLITE_OK; } } return SQLITE_DONE; } /* ** The set of routines that implement the porter-stemmer tokenizer */ static const sqlite3_tokenizer_module porterTokenizerModule = { 0, porterCreate, porterDestroy, porterOpen, porterClose, porterNext, 0 }; /* ** Allocate a new porter tokenizer. Return a pointer to the new ** tokenizer in *ppModule */ SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule( sqlite3_tokenizer_module const**ppModule ){ *ppModule = &porterTokenizerModule; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_porter.c *****************************************/ /************** Begin file fts3_tokenizer.c **********************************/ /* ** 2007 June 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This is part of an SQLite module implementing full-text search. ** This particular file implements the generic tokenizer interface. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* ** Return true if the two-argument version of fts3_tokenizer() ** has been activated via a prior call to sqlite3_db_config(db, ** SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, 1, 0); */ static int fts3TokenizerEnabled(sqlite3_context *context){ sqlite3 *db = sqlite3_context_db_handle(context); int isEnabled = 0; sqlite3_db_config(db,SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER,-1,&isEnabled); return isEnabled; } /* ** Implementation of the SQL scalar function for accessing the underlying ** hash table. This function may be called as follows: ** ** SELECT (); ** SELECT (, ); ** ** where is the name passed as the second argument ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer'). ** ** If the argument is specified, it must be a blob value ** containing a pointer to be stored as the hash data corresponding ** to the string . If is not specified, then ** the string must already exist in the has table. Otherwise, ** an error is returned. ** ** Whether or not the argument is specified, the value returned ** is a blob containing the pointer stored as the hash data corresponding ** to string (after the hash-table is updated, if applicable). */ static void fts3TokenizerFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Fts3Hash *pHash; void *pPtr = 0; const unsigned char *zName; int nName; assert( argc==1 || argc==2 ); pHash = (Fts3Hash *)sqlite3_user_data(context); zName = sqlite3_value_text(argv[0]); nName = sqlite3_value_bytes(argv[0])+1; if( argc==2 ){ if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[1]) ){ void *pOld; int n = sqlite3_value_bytes(argv[1]); if( zName==0 || n!=sizeof(pPtr) ){ sqlite3_result_error(context, "argument type mismatch", -1); return; } pPtr = *(void **)sqlite3_value_blob(argv[1]); pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr); if( pOld==pPtr ){ sqlite3_result_error(context, "out of memory", -1); } }else{ sqlite3_result_error(context, "fts3tokenize disabled", -1); return; } }else{ if( zName ){ pPtr = sqlite3Fts3HashFind(pHash, zName, nName); } if( !pPtr ){ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); return; } } if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[0]) ){ sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT); } } SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){ static const char isFtsIdChar[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ }; return (c&0x80 || isFtsIdChar[(int)(c)]); } SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){ const char *z1; const char *z2 = 0; /* Find the start of the next token. */ z1 = zStr; while( z2==0 ){ char c = *z1; switch( c ){ case '\0': return 0; /* No more tokens here */ case '\'': case '"': case '`': { z2 = z1; while( *++z2 && (*z2!=c || *++z2==c) ); break; } case '[': z2 = &z1[1]; while( *z2 && z2[0]!=']' ) z2++; if( *z2 ) z2++; break; default: if( sqlite3Fts3IsIdChar(*z1) ){ z2 = &z1[1]; while( sqlite3Fts3IsIdChar(*z2) ) z2++; }else{ z1++; } } } *pn = (int)(z2-z1); return z1; } SQLITE_PRIVATE int sqlite3Fts3InitTokenizer( Fts3Hash *pHash, /* Tokenizer hash table */ const char *zArg, /* Tokenizer name */ sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */ char **pzErr /* OUT: Set to malloced error message */ ){ int rc; char *z = (char *)zArg; int n = 0; char *zCopy; char *zEnd; /* Pointer to nul-term of zCopy */ sqlite3_tokenizer_module *m; zCopy = sqlite3_mprintf("%s", zArg); if( !zCopy ) return SQLITE_NOMEM; zEnd = &zCopy[strlen(zCopy)]; z = (char *)sqlite3Fts3NextToken(zCopy, &n); if( z==0 ){ assert( n==0 ); z = zCopy; } z[n] = '\0'; sqlite3Fts3Dequote(z); m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1); if( !m ){ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", z); rc = SQLITE_ERROR; }else{ char const **aArg = 0; int iArg = 0; z = &z[n+1]; while( zxCreate(iArg, aArg, ppTok); assert( rc!=SQLITE_OK || *ppTok ); if( rc!=SQLITE_OK ){ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer"); }else{ (*ppTok)->pModule = m; } sqlite3_free((void *)aArg); } sqlite3_free(zCopy); return rc; } #ifdef SQLITE_TEST #if defined(INCLUDE_SQLITE_TCL_H) # include "sqlite_tcl.h" #else # include "tcl.h" #endif /* #include */ /* ** Implementation of a special SQL scalar function for testing tokenizers ** designed to be used in concert with the Tcl testing framework. This ** function must be called with two or more arguments: ** ** SELECT (, ..., ); ** ** where is the name passed as the second argument ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer') ** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test'). ** ** The return value is a string that may be interpreted as a Tcl ** list. For each token in the , three elements are ** added to the returned list. The first is the token position, the ** second is the token text (folded, stemmed, etc.) and the third is the ** substring of associated with the token. For example, ** using the built-in "simple" tokenizer: ** ** SELECT fts_tokenizer_test('simple', 'I don't see how'); ** ** will return the string: ** ** "{0 i I 1 dont don't 2 see see 3 how how}" ** */ static void testFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Fts3Hash *pHash; sqlite3_tokenizer_module *p; sqlite3_tokenizer *pTokenizer = 0; sqlite3_tokenizer_cursor *pCsr = 0; const char *zErr = 0; const char *zName; int nName; const char *zInput; int nInput; const char *azArg[64]; const char *zToken; int nToken = 0; int iStart = 0; int iEnd = 0; int iPos = 0; int i; Tcl_Obj *pRet; if( argc<2 ){ sqlite3_result_error(context, "insufficient arguments", -1); return; } nName = sqlite3_value_bytes(argv[0]); zName = (const char *)sqlite3_value_text(argv[0]); nInput = sqlite3_value_bytes(argv[argc-1]); zInput = (const char *)sqlite3_value_text(argv[argc-1]); pHash = (Fts3Hash *)sqlite3_user_data(context); p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); if( !p ){ char *zErr2 = sqlite3_mprintf("unknown tokenizer: %s", zName); sqlite3_result_error(context, zErr2, -1); sqlite3_free(zErr2); return; } pRet = Tcl_NewObj(); Tcl_IncrRefCount(pRet); for(i=1; ixCreate(argc-2, azArg, &pTokenizer) ){ zErr = "error in xCreate()"; goto finish; } pTokenizer->pModule = p; if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){ zErr = "error in xOpen()"; goto finish; } while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){ Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); zToken = &zInput[iStart]; nToken = iEnd-iStart; Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); } if( SQLITE_OK!=p->xClose(pCsr) ){ zErr = "error in xClose()"; goto finish; } if( SQLITE_OK!=p->xDestroy(pTokenizer) ){ zErr = "error in xDestroy()"; goto finish; } finish: if( zErr ){ sqlite3_result_error(context, zErr, -1); }else{ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); } Tcl_DecrRefCount(pRet); } static int registerTokenizer( sqlite3 *db, char *zName, const sqlite3_tokenizer_module *p ){ int rc; sqlite3_stmt *pStmt; const char zSql[] = "SELECT fts3_tokenizer(?, ?)"; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC); sqlite3_step(pStmt); return sqlite3_finalize(pStmt); } static int queryTokenizer( sqlite3 *db, char *zName, const sqlite3_tokenizer_module **pp ){ int rc; sqlite3_stmt *pStmt; const char zSql[] = "SELECT fts3_tokenizer(?)"; *pp = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); if( SQLITE_ROW==sqlite3_step(pStmt) ){ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB && sqlite3_column_bytes(pStmt, 0)==sizeof(*pp) ){ memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); } } return sqlite3_finalize(pStmt); } SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); /* ** Implementation of the scalar function fts3_tokenizer_internal_test(). ** This function is used for testing only, it is not included in the ** build unless SQLITE_TEST is defined. ** ** The purpose of this is to test that the fts3_tokenizer() function ** can be used as designed by the C-code in the queryTokenizer and ** registerTokenizer() functions above. These two functions are repeated ** in the README.tokenizer file as an example, so it is important to ** test them. ** ** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar ** function with no arguments. An assert() will fail if a problem is ** detected. i.e.: ** ** SELECT fts3_tokenizer_internal_test(); ** */ static void intTestFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int rc; const sqlite3_tokenizer_module *p1; const sqlite3_tokenizer_module *p2; sqlite3 *db = (sqlite3 *)sqlite3_user_data(context); UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); /* Test the query function */ sqlite3Fts3SimpleTokenizerModule(&p1); rc = queryTokenizer(db, "simple", &p2); assert( rc==SQLITE_OK ); assert( p1==p2 ); rc = queryTokenizer(db, "nosuchtokenizer", &p2); assert( rc==SQLITE_ERROR ); assert( p2==0 ); assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") ); /* Test the storage function */ if( fts3TokenizerEnabled(context) ){ rc = registerTokenizer(db, "nosuchtokenizer", p1); assert( rc==SQLITE_OK ); rc = queryTokenizer(db, "nosuchtokenizer", &p2); assert( rc==SQLITE_OK ); assert( p2==p1 ); } sqlite3_result_text(context, "ok", -1, SQLITE_STATIC); } #endif /* ** Set up SQL objects in database db used to access the contents of ** the hash table pointed to by argument pHash. The hash table must ** been initialized to use string keys, and to take a private copy ** of the key when a value is inserted. i.e. by a call similar to: ** ** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); ** ** This function adds a scalar function (see header comment above ** fts3TokenizerFunc() in this file for details) and, if ENABLE_TABLE is ** defined at compilation time, a temporary virtual table (see header ** comment above struct HashTableVtab) to the database schema. Both ** provide read/write access to the contents of *pHash. ** ** The third argument to this function, zName, is used as the name ** of both the scalar and, if created, the virtual table. */ SQLITE_PRIVATE int sqlite3Fts3InitHashTable( sqlite3 *db, Fts3Hash *pHash, const char *zName ){ int rc = SQLITE_OK; void *p = (void *)pHash; const int any = SQLITE_UTF8|SQLITE_DIRECTONLY; #ifdef SQLITE_TEST char *zTest = 0; char *zTest2 = 0; void *pdb = (void *)db; zTest = sqlite3_mprintf("%s_test", zName); zTest2 = sqlite3_mprintf("%s_internal_test", zName); if( !zTest || !zTest2 ){ rc = SQLITE_NOMEM; } #endif if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zName, 1, any, p, fts3TokenizerFunc, 0, 0); } if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zName, 2, any, p, fts3TokenizerFunc, 0, 0); } #ifdef SQLITE_TEST if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0); } if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0); } #endif #ifdef SQLITE_TEST sqlite3_free(zTest); sqlite3_free(zTest2); #endif return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_tokenizer.c **************************************/ /************** Begin file fts3_tokenizer1.c *********************************/ /* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Implementation of the "simple" full-text-search tokenizer. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ typedef struct simple_tokenizer { sqlite3_tokenizer base; char delim[128]; /* flag ASCII delimiters */ } simple_tokenizer; typedef struct simple_tokenizer_cursor { sqlite3_tokenizer_cursor base; const char *pInput; /* input we are tokenizing */ int nBytes; /* size of the input */ int iOffset; /* current position in pInput */ int iToken; /* index of next token to be returned */ char *pToken; /* storage for current token */ int nTokenAllocated; /* space allocated to zToken buffer */ } simple_tokenizer_cursor; static int simpleDelim(simple_tokenizer *t, unsigned char c){ return c<0x80 && t->delim[c]; } static int fts3_isalnum(int x){ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z'); } /* ** Create a new tokenizer instance. */ static int simpleCreate( int argc, const char * const *argv, sqlite3_tokenizer **ppTokenizer ){ simple_tokenizer *t; t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t)); if( t==NULL ) return SQLITE_NOMEM; memset(t, 0, sizeof(*t)); /* TODO(shess) Delimiters need to remain the same from run to run, ** else we need to reindex. One solution would be a meta-table to ** track such information in the database, then we'd only want this ** information on the initial create. */ if( argc>1 ){ int i, n = (int)strlen(argv[1]); for(i=0; i=0x80 ){ sqlite3_free(t); return SQLITE_ERROR; } t->delim[ch] = 1; } } else { /* Mark non-alphanumeric ASCII characters as delimiters */ int i; for(i=1; i<0x80; i++){ t->delim[i] = !fts3_isalnum(i) ? -1 : 0; } } *ppTokenizer = &t->base; return SQLITE_OK; } /* ** Destroy a tokenizer */ static int simpleDestroy(sqlite3_tokenizer *pTokenizer){ sqlite3_free(pTokenizer); return SQLITE_OK; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is pInput[0..nBytes-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int simpleOpen( sqlite3_tokenizer *pTokenizer, /* The tokenizer */ const char *pInput, int nBytes, /* String to be tokenized */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ ){ simple_tokenizer_cursor *c; UNUSED_PARAMETER(pTokenizer); c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); if( c==NULL ) return SQLITE_NOMEM; c->pInput = pInput; if( pInput==0 ){ c->nBytes = 0; }else if( nBytes<0 ){ c->nBytes = (int)strlen(pInput); }else{ c->nBytes = nBytes; } c->iOffset = 0; /* start tokenizing at the beginning */ c->iToken = 0; c->pToken = NULL; /* no space allocated, yet. */ c->nTokenAllocated = 0; *ppCursor = &c->base; return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to ** simpleOpen() above. */ static int simpleClose(sqlite3_tokenizer_cursor *pCursor){ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; sqlite3_free(c->pToken); sqlite3_free(c); return SQLITE_OK; } /* ** Extract the next token from a tokenization cursor. The cursor must ** have been opened by a prior call to simpleOpen(). */ static int simpleNext( sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ const char **ppToken, /* OUT: *ppToken is the token text */ int *pnBytes, /* OUT: Number of bytes in token */ int *piStartOffset, /* OUT: Starting offset of token */ int *piEndOffset, /* OUT: Ending offset of token */ int *piPosition /* OUT: Position integer of token */ ){ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer; unsigned char *p = (unsigned char *)c->pInput; while( c->iOffsetnBytes ){ int iStartOffset; /* Scan past delimiter characters */ while( c->iOffsetnBytes && simpleDelim(t, p[c->iOffset]) ){ c->iOffset++; } /* Count non-delimiter characters. */ iStartOffset = c->iOffset; while( c->iOffsetnBytes && !simpleDelim(t, p[c->iOffset]) ){ c->iOffset++; } if( c->iOffset>iStartOffset ){ int i, n = c->iOffset-iStartOffset; if( n>c->nTokenAllocated ){ char *pNew; c->nTokenAllocated = n+20; pNew = sqlite3_realloc64(c->pToken, c->nTokenAllocated); if( !pNew ) return SQLITE_NOMEM; c->pToken = pNew; } for(i=0; ipToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch); } *ppToken = c->pToken; *pnBytes = n; *piStartOffset = iStartOffset; *piEndOffset = c->iOffset; *piPosition = c->iToken++; return SQLITE_OK; } } return SQLITE_DONE; } /* ** The set of routines that implement the simple tokenizer */ static const sqlite3_tokenizer_module simpleTokenizerModule = { 0, simpleCreate, simpleDestroy, simpleOpen, simpleClose, simpleNext, 0, }; /* ** Allocate a new simple tokenizer. Return a pointer to the new ** tokenizer in *ppModule */ SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule( sqlite3_tokenizer_module const**ppModule ){ *ppModule = &simpleTokenizerModule; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_tokenizer1.c *************************************/ /************** Begin file fts3_tokenize_vtab.c ******************************/ /* ** 2013 Apr 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code for the "fts3tokenize" virtual table module. ** An fts3tokenize virtual table is created as follows: ** ** CREATE VIRTUAL TABLE USING fts3tokenize( ** , , ... ** ); ** ** The table created has the following schema: ** ** CREATE TABLE (input, token, start, end, position) ** ** When queried, the query must include a WHERE clause of type: ** ** input = ** ** The virtual table module tokenizes this , using the FTS3 ** tokenizer specified by the arguments to the CREATE VIRTUAL TABLE ** statement and returns one row for each token in the result. With ** fields set as follows: ** ** input: Always set to a copy of ** token: A token from the input. ** start: Byte offset of the token within the input . ** end: Byte offset of the byte immediately following the end of the ** token within the input string. ** pos: Token offset of token within input. ** */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ typedef struct Fts3tokTable Fts3tokTable; typedef struct Fts3tokCursor Fts3tokCursor; /* ** Virtual table structure. */ struct Fts3tokTable { sqlite3_vtab base; /* Base class used by SQLite core */ const sqlite3_tokenizer_module *pMod; sqlite3_tokenizer *pTok; }; /* ** Virtual table cursor structure. */ struct Fts3tokCursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ char *zInput; /* Input string */ sqlite3_tokenizer_cursor *pCsr; /* Cursor to iterate through zInput */ int iRowid; /* Current 'rowid' value */ const char *zToken; /* Current 'token' value */ int nToken; /* Size of zToken in bytes */ int iStart; /* Current 'start' value */ int iEnd; /* Current 'end' value */ int iPos; /* Current 'pos' value */ }; /* ** Query FTS for the tokenizer implementation named zName. */ static int fts3tokQueryTokenizer( Fts3Hash *pHash, const char *zName, const sqlite3_tokenizer_module **pp, char **pzErr ){ sqlite3_tokenizer_module *p; int nName = (int)strlen(zName); p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); if( !p ){ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", zName); return SQLITE_ERROR; } *pp = p; return SQLITE_OK; } /* ** The second argument, argv[], is an array of pointers to nul-terminated ** strings. This function makes a copy of the array and strings into a ** single block of memory. It then dequotes any of the strings that appear ** to be quoted. ** ** If successful, output parameter *pazDequote is set to point at the ** array of dequoted strings and SQLITE_OK is returned. The caller is ** responsible for eventually calling sqlite3_free() to free the array ** in this case. Or, if an error occurs, an SQLite error code is returned. ** The final value of *pazDequote is undefined in this case. */ static int fts3tokDequoteArray( int argc, /* Number of elements in argv[] */ const char * const *argv, /* Input array */ char ***pazDequote /* Output array */ ){ int rc = SQLITE_OK; /* Return code */ if( argc==0 ){ *pazDequote = 0; }else{ int i; int nByte = 0; char **azDequote; for(i=0; i1 ) azArg = (const char * const *)&azDequote[1]; rc = pMod->xCreate((nDequote>1 ? nDequote-1 : 0), azArg, &pTok); } if( rc==SQLITE_OK ){ pTab = (Fts3tokTable *)sqlite3_malloc(sizeof(Fts3tokTable)); if( pTab==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ memset(pTab, 0, sizeof(Fts3tokTable)); pTab->pMod = pMod; pTab->pTok = pTok; *ppVtab = &pTab->base; }else{ if( pTok ){ pMod->xDestroy(pTok); } } sqlite3_free(azDequote); return rc; } /* ** This function does the work for both the xDisconnect and xDestroy methods. ** These tables have no persistent representation of their own, so xDisconnect ** and xDestroy are identical operations. */ static int fts3tokDisconnectMethod(sqlite3_vtab *pVtab){ Fts3tokTable *pTab = (Fts3tokTable *)pVtab; pTab->pMod->xDestroy(pTab->pTok); sqlite3_free(pTab); return SQLITE_OK; } /* ** xBestIndex - Analyze a WHERE and ORDER BY clause. */ static int fts3tokBestIndexMethod( sqlite3_vtab *pVTab, sqlite3_index_info *pInfo ){ int i; UNUSED_PARAMETER(pVTab); for(i=0; inConstraint; i++){ if( pInfo->aConstraint[i].usable && pInfo->aConstraint[i].iColumn==0 && pInfo->aConstraint[i].op==SQLITE_INDEX_CONSTRAINT_EQ ){ pInfo->idxNum = 1; pInfo->aConstraintUsage[i].argvIndex = 1; pInfo->aConstraintUsage[i].omit = 1; pInfo->estimatedCost = 1; return SQLITE_OK; } } pInfo->idxNum = 0; assert( pInfo->estimatedCost>1000000.0 ); return SQLITE_OK; } /* ** xOpen - Open a cursor. */ static int fts3tokOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ Fts3tokCursor *pCsr; UNUSED_PARAMETER(pVTab); pCsr = (Fts3tokCursor *)sqlite3_malloc(sizeof(Fts3tokCursor)); if( pCsr==0 ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(Fts3tokCursor)); *ppCsr = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** Reset the tokenizer cursor passed as the only argument. As if it had ** just been returned by fts3tokOpenMethod(). */ static void fts3tokResetCursor(Fts3tokCursor *pCsr){ if( pCsr->pCsr ){ Fts3tokTable *pTab = (Fts3tokTable *)(pCsr->base.pVtab); pTab->pMod->xClose(pCsr->pCsr); pCsr->pCsr = 0; } sqlite3_free(pCsr->zInput); pCsr->zInput = 0; pCsr->zToken = 0; pCsr->nToken = 0; pCsr->iStart = 0; pCsr->iEnd = 0; pCsr->iPos = 0; pCsr->iRowid = 0; } /* ** xClose - Close a cursor. */ static int fts3tokCloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; fts3tokResetCursor(pCsr); sqlite3_free(pCsr); return SQLITE_OK; } /* ** xNext - Advance the cursor to the next row, if any. */ static int fts3tokNextMethod(sqlite3_vtab_cursor *pCursor){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab); int rc; /* Return code */ pCsr->iRowid++; rc = pTab->pMod->xNext(pCsr->pCsr, &pCsr->zToken, &pCsr->nToken, &pCsr->iStart, &pCsr->iEnd, &pCsr->iPos ); if( rc!=SQLITE_OK ){ fts3tokResetCursor(pCsr); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } return rc; } /* ** xFilter - Initialize a cursor to point at the start of its data. */ static int fts3tokFilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ int rc = SQLITE_ERROR; Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab); UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); fts3tokResetCursor(pCsr); if( idxNum==1 ){ const char *zByte = (const char *)sqlite3_value_text(apVal[0]); int nByte = sqlite3_value_bytes(apVal[0]); pCsr->zInput = sqlite3_malloc64(nByte+1); if( pCsr->zInput==0 ){ rc = SQLITE_NOMEM; }else{ if( nByte>0 ) memcpy(pCsr->zInput, zByte, nByte); pCsr->zInput[nByte] = 0; rc = pTab->pMod->xOpen(pTab->pTok, pCsr->zInput, nByte, &pCsr->pCsr); if( rc==SQLITE_OK ){ pCsr->pCsr->pTokenizer = pTab->pTok; } } } if( rc!=SQLITE_OK ) return rc; return fts3tokNextMethod(pCursor); } /* ** xEof - Return true if the cursor is at EOF, or false otherwise. */ static int fts3tokEofMethod(sqlite3_vtab_cursor *pCursor){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; return (pCsr->zToken==0); } /* ** xColumn - Return a column value. */ static int fts3tokColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; /* CREATE TABLE x(input, token, start, end, position) */ switch( iCol ){ case 0: sqlite3_result_text(pCtx, pCsr->zInput, -1, SQLITE_TRANSIENT); break; case 1: sqlite3_result_text(pCtx, pCsr->zToken, pCsr->nToken, SQLITE_TRANSIENT); break; case 2: sqlite3_result_int(pCtx, pCsr->iStart); break; case 3: sqlite3_result_int(pCtx, pCsr->iEnd); break; default: assert( iCol==4 ); sqlite3_result_int(pCtx, pCsr->iPos); break; } return SQLITE_OK; } /* ** xRowid - Return the current rowid for the cursor. */ static int fts3tokRowidMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite_int64 *pRowid /* OUT: Rowid value */ ){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; *pRowid = (sqlite3_int64)pCsr->iRowid; return SQLITE_OK; } /* ** Register the fts3tok module with database connection db. Return SQLITE_OK ** if successful or an error code if sqlite3_create_module() fails. */ SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3 *db, Fts3Hash *pHash, void(*xDestroy)(void*)){ static const sqlite3_module fts3tok_module = { 0, /* iVersion */ fts3tokConnectMethod, /* xCreate */ fts3tokConnectMethod, /* xConnect */ fts3tokBestIndexMethod, /* xBestIndex */ fts3tokDisconnectMethod, /* xDisconnect */ fts3tokDisconnectMethod, /* xDestroy */ fts3tokOpenMethod, /* xOpen */ fts3tokCloseMethod, /* xClose */ fts3tokFilterMethod, /* xFilter */ fts3tokNextMethod, /* xNext */ fts3tokEofMethod, /* xEof */ fts3tokColumnMethod, /* xColumn */ fts3tokRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; int rc; /* Return code */ rc = sqlite3_create_module_v2( db, "fts3tokenize", &fts3tok_module, (void*)pHash, xDestroy ); return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_tokenize_vtab.c **********************************/ /************** Begin file fts3_write.c **************************************/ /* ** 2009 Oct 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file is part of the SQLite FTS3 extension module. Specifically, ** this file contains code to insert, update and delete rows from FTS3 ** tables. It also contains code to merge FTS3 b-tree segments. Some ** of the sub-routines used to merge segments are also used by the query ** code in fts3.c. */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ #define FTS_MAX_APPENDABLE_HEIGHT 16 /* ** When full-text index nodes are loaded from disk, the buffer that they ** are loaded into has the following number of bytes of padding at the end ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer ** of 920 bytes is allocated for it. ** ** This means that if we have a pointer into a buffer containing node data, ** it is always safe to read up to two varints from it without risking an ** overread, even if the node data is corrupted. */ #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) /* ** Under certain circumstances, b-tree nodes (doclists) can be loaded into ** memory incrementally instead of all at once. This can be a big performance ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() ** method before retrieving all query results (as may happen, for example, ** if a query has a LIMIT clause). ** ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. ** The code is written so that the hard lower-limit for each of these values ** is 1. Clearly such small values would be inefficient, but can be useful ** for testing purposes. ** ** If this module is built with SQLITE_TEST defined, these constants may ** be overridden at runtime for testing purposes. File fts3_test.c contains ** a Tcl interface to read and write the values. */ #ifdef SQLITE_TEST int test_fts3_node_chunksize = (4*1024); int test_fts3_node_chunk_threshold = (4*1024)*4; # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold #else # define FTS3_NODE_CHUNKSIZE (4*1024) # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) #endif /* ** The values that may be meaningfully bound to the :1 parameter in ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. */ #define FTS_STAT_DOCTOTAL 0 #define FTS_STAT_INCRMERGEHINT 1 #define FTS_STAT_AUTOINCRMERGE 2 /* ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic ** and incremental merge operation that takes place. This is used for ** debugging FTS only, it should not usually be turned on in production ** systems. */ #ifdef FTS3_LOG_MERGES static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); } #else #define fts3LogMerge(x, y) #endif typedef struct PendingList PendingList; typedef struct SegmentNode SegmentNode; typedef struct SegmentWriter SegmentWriter; /* ** An instance of the following data structure is used to build doclists ** incrementally. See function fts3PendingListAppend() for details. */ struct PendingList { int nData; char *aData; int nSpace; sqlite3_int64 iLastDocid; sqlite3_int64 iLastCol; sqlite3_int64 iLastPos; }; /* ** Each cursor has a (possibly empty) linked list of the following objects. */ struct Fts3DeferredToken { Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ int iCol; /* Column token must occur in */ Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ PendingList *pList; /* Doclist is assembled here */ }; /* ** An instance of this structure is used to iterate through the terms on ** a contiguous set of segment b-tree leaf nodes. Although the details of ** this structure are only manipulated by code in this file, opaque handles ** of type Fts3SegReader* are also used by code in fts3.c to iterate through ** terms when querying the full-text index. See functions: ** ** sqlite3Fts3SegReaderNew() ** sqlite3Fts3SegReaderFree() ** sqlite3Fts3SegReaderIterate() ** ** Methods used to manipulate Fts3SegReader structures: ** ** fts3SegReaderNext() ** fts3SegReaderFirstDocid() ** fts3SegReaderNextDocid() */ struct Fts3SegReader { int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ u8 bLookup; /* True for a lookup only */ u8 rootOnly; /* True for a root-only reader */ sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ char *aNode; /* Pointer to node data (or NULL) */ int nNode; /* Size of buffer at aNode (or 0) */ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ Fts3HashElem **ppNextElem; /* Variables set by fts3SegReaderNext(). These may be read directly ** by the caller. They are valid from the time SegmentReaderNew() returns ** until SegmentReaderNext() returns something other than SQLITE_OK ** (i.e. SQLITE_DONE). */ int nTerm; /* Number of bytes in current term */ char *zTerm; /* Pointer to current term */ int nTermAlloc; /* Allocated size of zTerm buffer */ char *aDoclist; /* Pointer to doclist of current entry */ int nDoclist; /* Size of doclist in current entry */ /* The following variables are used by fts3SegReaderNextDocid() to iterate ** through the current doclist (aDoclist/nDoclist). */ char *pOffsetList; int nOffsetList; /* For descending pending seg-readers only */ sqlite3_int64 iDocid; }; #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) /* ** An instance of this structure is used to create a segment b-tree in the ** database. The internal details of this type are only accessed by the ** following functions: ** ** fts3SegWriterAdd() ** fts3SegWriterFlush() ** fts3SegWriterFree() */ struct SegmentWriter { SegmentNode *pTree; /* Pointer to interior tree structure */ sqlite3_int64 iFirst; /* First slot in %_segments written */ sqlite3_int64 iFree; /* Next free slot in %_segments */ char *zTerm; /* Pointer to previous term buffer */ int nTerm; /* Number of bytes in zTerm */ int nMalloc; /* Size of malloc'd buffer at zMalloc */ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ int nSize; /* Size of allocation at aData */ int nData; /* Bytes of data in aData */ char *aData; /* Pointer to block from malloc() */ i64 nLeafData; /* Number of bytes of leaf data written */ }; /* ** Type SegmentNode is used by the following three functions to create ** the interior part of the segment b+-tree structures (everything except ** the leaf nodes). These functions and type are only ever used by code ** within the fts3SegWriterXXX() family of functions described above. ** ** fts3NodeAddTerm() ** fts3NodeWrite() ** fts3NodeFree() ** ** When a b+tree is written to the database (either as a result of a merge ** or the pending-terms table being flushed), leaves are written into the ** database file as soon as they are completely populated. The interior of ** the tree is assembled in memory and written out only once all leaves have ** been populated and stored. This is Ok, as the b+-tree fanout is usually ** very large, meaning that the interior of the tree consumes relatively ** little memory. */ struct SegmentNode { SegmentNode *pParent; /* Parent node (or NULL for root node) */ SegmentNode *pRight; /* Pointer to right-sibling */ SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ int nEntry; /* Number of terms written to node so far */ char *zTerm; /* Pointer to previous term buffer */ int nTerm; /* Number of bytes in zTerm */ int nMalloc; /* Size of malloc'd buffer at zMalloc */ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ int nData; /* Bytes of valid data so far */ char *aData; /* Node data */ }; /* ** Valid values for the second argument to fts3SqlStmt(). */ #define SQL_DELETE_CONTENT 0 #define SQL_IS_EMPTY 1 #define SQL_DELETE_ALL_CONTENT 2 #define SQL_DELETE_ALL_SEGMENTS 3 #define SQL_DELETE_ALL_SEGDIR 4 #define SQL_DELETE_ALL_DOCSIZE 5 #define SQL_DELETE_ALL_STAT 6 #define SQL_SELECT_CONTENT_BY_ROWID 7 #define SQL_NEXT_SEGMENT_INDEX 8 #define SQL_INSERT_SEGMENTS 9 #define SQL_NEXT_SEGMENTS_ID 10 #define SQL_INSERT_SEGDIR 11 #define SQL_SELECT_LEVEL 12 #define SQL_SELECT_LEVEL_RANGE 13 #define SQL_SELECT_LEVEL_COUNT 14 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15 #define SQL_DELETE_SEGDIR_LEVEL 16 #define SQL_DELETE_SEGMENTS_RANGE 17 #define SQL_CONTENT_INSERT 18 #define SQL_DELETE_DOCSIZE 19 #define SQL_REPLACE_DOCSIZE 20 #define SQL_SELECT_DOCSIZE 21 #define SQL_SELECT_STAT 22 #define SQL_REPLACE_STAT 23 #define SQL_SELECT_ALL_PREFIX_LEVEL 24 #define SQL_DELETE_ALL_TERMS_SEGDIR 25 #define SQL_DELETE_SEGDIR_RANGE 26 #define SQL_SELECT_ALL_LANGID 27 #define SQL_FIND_MERGE_LEVEL 28 #define SQL_MAX_LEAF_NODE_ESTIMATE 29 #define SQL_DELETE_SEGDIR_ENTRY 30 #define SQL_SHIFT_SEGDIR_ENTRY 31 #define SQL_SELECT_SEGDIR 32 #define SQL_CHOMP_SEGDIR 33 #define SQL_SEGMENT_IS_APPENDABLE 34 #define SQL_SELECT_INDEXES 35 #define SQL_SELECT_MXLEVEL 36 #define SQL_SELECT_LEVEL_RANGE2 37 #define SQL_UPDATE_LEVEL_IDX 38 #define SQL_UPDATE_LEVEL 39 /* ** This function is used to obtain an SQLite prepared statement handle ** for the statement identified by the second argument. If successful, ** *pp is set to the requested statement handle and SQLITE_OK returned. ** Otherwise, an SQLite error code is returned and *pp is set to 0. ** ** If argument apVal is not NULL, then it must point to an array with ** at least as many entries as the requested statement has bound ** parameters. The values are bound to the statements parameters before ** returning. */ static int fts3SqlStmt( Fts3Table *p, /* Virtual table handle */ int eStmt, /* One of the SQL_XXX constants above */ sqlite3_stmt **pp, /* OUT: Statement handle */ sqlite3_value **apVal /* Values to bind to statement */ ){ const char *azSql[] = { /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", /* 2 */ "DELETE FROM %Q.'%q_content'", /* 3 */ "DELETE FROM %Q.'%q_segments'", /* 4 */ "DELETE FROM %Q.'%q_segdir'", /* 5 */ "DELETE FROM %Q.'%q_docsize'", /* 6 */ "DELETE FROM %Q.'%q_stat'", /* 7 */ "SELECT %s WHERE rowid=?", /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", /* Return segments in order from oldest to newest.*/ /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" "ORDER BY level DESC, idx ASC", /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", /* 24 */ "", /* 25 */ "", /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'", /* This statement is used to determine which level to read the input from ** when performing an incremental merge. It returns the absolute level number ** of the oldest level in the db that contains at least ? segments. Or, ** if no level in the FTS index contains more than ? segments, the statement ** returns zero rows. */ /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' " " GROUP BY level HAVING cnt>=?" " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1", /* Estimate the upper limit on the number of leaf nodes in a new segment ** created by merging the oldest :2 segments from absolute level :1. See ** function sqlite3Fts3Incrmerge() for details. */ /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " " FROM (SELECT * FROM %Q.'%q_segdir' " " WHERE level = ? ORDER BY idx ASC LIMIT ?" " )", /* SQL_DELETE_SEGDIR_ENTRY ** Delete the %_segdir entry on absolute level :1 with index :2. */ /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", /* SQL_SHIFT_SEGDIR_ENTRY ** Modify the idx value for the segment with idx=:3 on absolute level :2 ** to :1. */ /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", /* SQL_SELECT_SEGDIR ** Read a single entry from the %_segdir table. The entry from absolute ** level :1 with index value :2. */ /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", /* SQL_CHOMP_SEGDIR ** Update the start_block (:1) and root (:2) fields of the %_segdir ** entry located on absolute level :3 with index :4. */ /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" "WHERE level = ? AND idx = ?", /* SQL_SEGMENT_IS_APPENDABLE ** Return a single row if the segment with end_block=? is appendable. Or ** no rows otherwise. */ /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", /* SQL_SELECT_INDEXES ** Return the list of valid segment indexes for absolute level ? */ /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", /* SQL_SELECT_MXLEVEL ** Return the largest relative level in the FTS index or indexes. */ /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", /* Return segments in order from oldest to newest.*/ /* 37 */ "SELECT level, idx, end_block " "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " "ORDER BY level DESC, idx ASC", /* Update statements used while promoting segments */ /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " "WHERE level=? AND idx=?", /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" }; int rc = SQLITE_OK; sqlite3_stmt *pStmt; assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); assert( eStmt=0 ); pStmt = p->aStmt[eStmt]; if( !pStmt ){ int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; char *zSql; if( eStmt==SQL_CONTENT_INSERT ){ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ f &= ~SQLITE_PREPARE_NO_VTAB; zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); }else{ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); } if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL); sqlite3_free(zSql); assert( rc==SQLITE_OK || pStmt==0 ); p->aStmt[eStmt] = pStmt; } } if( apVal ){ int i; int nParam = sqlite3_bind_parameter_count(pStmt); for(i=0; rc==SQLITE_OK && inPendingData==0 ){ sqlite3_stmt *pStmt; rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_null(pStmt, 1); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); } } return rc; } /* ** FTS maintains a separate indexes for each language-id (a 32-bit integer). ** Within each language id, a separate index is maintained to store the ** document terms, and each configured prefix size (configured the FTS ** "prefix=" option). And each index consists of multiple levels ("relative ** levels"). ** ** All three of these values (the language id, the specific index and the ** level within the index) are encoded in 64-bit integer values stored ** in the %_segdir table on disk. This function is used to convert three ** separate component values into the single 64-bit integer value that ** can be used to query the %_segdir table. ** ** Specifically, each language-id/index combination is allocated 1024 ** 64-bit integer level values ("absolute levels"). The main terms index ** for language-id 0 is allocate values 0-1023. The first prefix index ** (if any) for language-id 0 is allocated values 1024-2047. And so on. ** Language 1 indexes are allocated immediately following language 0. ** ** So, for a system with nPrefix prefix indexes configured, the block of ** absolute levels that corresponds to language-id iLangid and index ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). */ static sqlite3_int64 getAbsoluteLevel( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language id */ int iIndex, /* Index in p->aIndex[] */ int iLevel /* Level of segments */ ){ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ assert_fts3_nc( iLangid>=0 ); assert( p->nIndex>0 ); assert( iIndex>=0 && iIndexnIndex ); iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; return iBase + iLevel; } /* ** Set *ppStmt to a statement handle that may be used to iterate through ** all rows in the %_segdir table, from oldest to newest. If successful, ** return SQLITE_OK. If an error occurs while preparing the statement, ** return an SQLite error code. ** ** There is only ever one instance of this SQL statement compiled for ** each FTS3 table. ** ** The statement returns the following columns from the %_segdir table: ** ** 0: idx ** 1: start_block ** 2: leaves_end_block ** 3: end_block ** 4: root */ SQLITE_PRIVATE int sqlite3Fts3AllSegdirs( Fts3Table *p, /* FTS3 table */ int iLangid, /* Language being queried */ int iIndex, /* Index for p->aIndex[] */ int iLevel, /* Level to select (relative level) */ sqlite3_stmt **ppStmt /* OUT: Compiled statement */ ){ int rc; sqlite3_stmt *pStmt = 0; assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); assert( iLevel=0 && iIndexnIndex ); if( iLevel<0 ){ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pStmt, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); } }else{ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); } } *ppStmt = pStmt; return rc; } /* ** Append a single varint to a PendingList buffer. SQLITE_OK is returned ** if successful, or an SQLite error code otherwise. ** ** This function also serves to allocate the PendingList structure itself. ** For example, to create a new PendingList structure containing two ** varints: ** ** PendingList *p = 0; ** fts3PendingListAppendVarint(&p, 1); ** fts3PendingListAppendVarint(&p, 2); */ static int fts3PendingListAppendVarint( PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ sqlite3_int64 i /* Value to append to data */ ){ PendingList *p = *pp; /* Allocate or grow the PendingList as required. */ if( !p ){ p = sqlite3_malloc64(sizeof(*p) + 100); if( !p ){ return SQLITE_NOMEM; } p->nSpace = 100; p->aData = (char *)&p[1]; p->nData = 0; } else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ i64 nNew = p->nSpace * 2; p = sqlite3_realloc64(p, sizeof(*p) + nNew); if( !p ){ sqlite3_free(*pp); *pp = 0; return SQLITE_NOMEM; } p->nSpace = (int)nNew; p->aData = (char *)&p[1]; } /* Append the new serialized varint to the end of the list. */ p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); p->aData[p->nData] = '\0'; *pp = p; return SQLITE_OK; } /* ** Add a docid/column/position entry to a PendingList structure. Non-zero ** is returned if the structure is sqlite3_realloced as part of adding ** the entry. Otherwise, zero. ** ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. ** Zero is always returned in this case. Otherwise, if no OOM error occurs, ** it is set to SQLITE_OK. */ static int fts3PendingListAppend( PendingList **pp, /* IN/OUT: PendingList structure */ sqlite3_int64 iDocid, /* Docid for entry to add */ sqlite3_int64 iCol, /* Column for entry to add */ sqlite3_int64 iPos, /* Position of term for entry to add */ int *pRc /* OUT: Return code */ ){ PendingList *p = *pp; int rc = SQLITE_OK; assert( !p || p->iLastDocid<=iDocid ); if( !p || p->iLastDocid!=iDocid ){ u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0); if( p ){ assert( p->nDatanSpace ); assert( p->aData[p->nData]==0 ); p->nData++; } if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ goto pendinglistappend_out; } p->iLastCol = -1; p->iLastPos = 0; p->iLastDocid = iDocid; } if( iCol>0 && p->iLastCol!=iCol ){ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) ){ goto pendinglistappend_out; } p->iLastCol = iCol; p->iLastPos = 0; } if( iCol>=0 ){ assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); if( rc==SQLITE_OK ){ p->iLastPos = iPos; } } pendinglistappend_out: *pRc = rc; if( p!=*pp ){ *pp = p; return 1; } return 0; } /* ** Free a PendingList object allocated by fts3PendingListAppend(). */ static void fts3PendingListDelete(PendingList *pList){ sqlite3_free(pList); } /* ** Add an entry to one of the pending-terms hash tables. */ static int fts3PendingTermsAddOne( Fts3Table *p, int iCol, int iPos, Fts3Hash *pHash, /* Pending terms hash table to add entry to */ const char *zToken, int nToken ){ PendingList *pList; int rc = SQLITE_OK; pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); if( pList ){ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); } if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ /* Malloc failed while inserting the new entry. This can only ** happen if there was no previous entry for this token. */ assert( 0==fts3HashFind(pHash, zToken, nToken) ); sqlite3_free(pList); rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); } return rc; } /* ** Tokenize the nul-terminated string zText and add all tokens to the ** pending-terms hash-table. The docid used is that currently stored in ** p->iPrevDocid, and the column is specified by argument iCol. ** ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. */ static int fts3PendingTermsAdd( Fts3Table *p, /* Table into which text will be inserted */ int iLangid, /* Language id to use */ const char *zText, /* Text of document to be inserted */ int iCol, /* Column into which text is being inserted */ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ ){ int rc; int iStart = 0; int iEnd = 0; int iPos = 0; int nWord = 0; char const *zToken; int nToken = 0; sqlite3_tokenizer *pTokenizer = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr; int (*xNext)(sqlite3_tokenizer_cursor *pCursor, const char**,int*,int*,int*,int*); assert( pTokenizer && pModule ); /* If the user has inserted a NULL value, this function may be called with ** zText==0. In this case, add zero token entries to the hash table and ** return early. */ if( zText==0 ){ *pnWord = 0; return SQLITE_OK; } rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); if( rc!=SQLITE_OK ){ return rc; } xNext = pModule->xNext; while( SQLITE_OK==rc && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) ){ int i; if( iPos>=nWord ) nWord = iPos+1; /* Positions cannot be negative; we use -1 as a terminator internally. ** Tokens must have a non-zero length. */ if( iPos<0 || !zToken || nToken<=0 ){ rc = SQLITE_ERROR; break; } /* Add the term to the terms index */ rc = fts3PendingTermsAddOne( p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken ); /* Add the term to each of the prefix indexes that it is not too ** short for. */ for(i=1; rc==SQLITE_OK && inIndex; i++){ struct Fts3Index *pIndex = &p->aIndex[i]; if( nTokennPrefix ) continue; rc = fts3PendingTermsAddOne( p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix ); } } pModule->xClose(pCsr); *pnWord += nWord; return (rc==SQLITE_DONE ? SQLITE_OK : rc); } /* ** Calling this function indicates that subsequent calls to ** fts3PendingTermsAdd() are to add term/position-list pairs for the ** contents of the document with docid iDocid. */ static int fts3PendingTermsDocid( Fts3Table *p, /* Full-text table handle */ int bDelete, /* True if this op is a delete */ int iLangid, /* Language id of row being written */ sqlite_int64 iDocid /* Docid of row being written */ ){ assert( iLangid>=0 ); assert( bDelete==1 || bDelete==0 ); /* TODO(shess) Explore whether partially flushing the buffer on ** forced-flush would provide better performance. I suspect that if ** we ordered the doclists by size and flushed the largest until the ** buffer was half empty, that would let the less frequent terms ** generate longer doclists. */ if( iDocidiPrevDocid || (iDocid==p->iPrevDocid && p->bPrevDelete==0) || p->iPrevLangid!=iLangid || p->nPendingData>p->nMaxPendingData ){ int rc = sqlite3Fts3PendingTermsFlush(p); if( rc!=SQLITE_OK ) return rc; } p->iPrevDocid = iDocid; p->iPrevLangid = iLangid; p->bPrevDelete = bDelete; return SQLITE_OK; } /* ** Discard the contents of the pending-terms hash tables. */ SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){ int i; for(i=0; inIndex; i++){ Fts3HashElem *pElem; Fts3Hash *pHash = &p->aIndex[i].hPending; for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ PendingList *pList = (PendingList *)fts3HashData(pElem); fts3PendingListDelete(pList); } fts3HashClear(pHash); } p->nPendingData = 0; } /* ** This function is called by the xUpdate() method as part of an INSERT ** operation. It adds entries for each term in the new record to the ** pendingTerms hash table. ** ** Argument apVal is the same as the similarly named argument passed to ** fts3InsertData(). Parameter iDocid is the docid of the new row. */ static int fts3InsertTerms( Fts3Table *p, int iLangid, sqlite3_value **apVal, u32 *aSz ){ int i; /* Iterator variable */ for(i=2; inColumn+2; i++){ int iCol = i-2; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_value_text(apVal[i]); int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); if( rc!=SQLITE_OK ){ return rc; } aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); } } return SQLITE_OK; } /* ** This function is called by the xUpdate() method for an INSERT operation. ** The apVal parameter is passed a copy of the apVal argument passed by ** SQLite to the xUpdate() method. i.e: ** ** apVal[0] Not used for INSERT. ** apVal[1] rowid ** apVal[2] Left-most user-defined column ** ... ** apVal[p->nColumn+1] Right-most user-defined column ** apVal[p->nColumn+2] Hidden column with same name as table ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) ** apVal[p->nColumn+4] Hidden languageid column */ static int fts3InsertData( Fts3Table *p, /* Full-text table */ sqlite3_value **apVal, /* Array of values to insert */ sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ ){ int rc; /* Return code */ sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ if( p->zContentTbl ){ sqlite3_value *pRowid = apVal[p->nColumn+3]; if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ pRowid = apVal[1]; } if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ return SQLITE_CONSTRAINT; } *piDocid = sqlite3_value_int64(pRowid); return SQLITE_OK; } /* Locate the statement handle used to insert data into the %_content ** table. The SQL for this statement is: ** ** INSERT INTO %_content VALUES(?, ?, ?, ...) ** ** The statement features N '?' variables, where N is the number of user ** defined columns in the FTS3 table, plus one for the docid field. */ rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); if( rc==SQLITE_OK && p->zLanguageid ){ rc = sqlite3_bind_int( pContentInsert, p->nColumn+2, sqlite3_value_int(apVal[p->nColumn+4]) ); } if( rc!=SQLITE_OK ) return rc; /* There is a quirk here. The users INSERT statement may have specified ** a value for the "rowid" field, for the "docid" field, or for both. ** Which is a problem, since "rowid" and "docid" are aliases for the ** same value. For example: ** ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); ** ** In FTS3, this is an error. It is an error to specify non-NULL values ** for both docid and some other rowid alias. */ if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ if( SQLITE_NULL==sqlite3_value_type(apVal[0]) && SQLITE_NULL!=sqlite3_value_type(apVal[1]) ){ /* A rowid/docid conflict. */ return SQLITE_ERROR; } rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); if( rc!=SQLITE_OK ) return rc; } /* Execute the statement to insert the record. Set *piDocid to the ** new docid value. */ sqlite3_step(pContentInsert); rc = sqlite3_reset(pContentInsert); *piDocid = sqlite3_last_insert_rowid(p->db); return rc; } /* ** Remove all data from the FTS3 table. Clear the hash table containing ** pending terms. */ static int fts3DeleteAll(Fts3Table *p, int bContent){ int rc = SQLITE_OK; /* Return code */ /* Discard the contents of the pending-terms hash table. */ sqlite3Fts3PendingTermsClear(p); /* Delete everything from the shadow tables. Except, leave %_content as ** is if bContent is false. */ assert( p->zContentTbl==0 || bContent==0 ); if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); } if( p->bHasStat ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); } return rc; } /* ** */ static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ int iLangid = 0; if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); return iLangid; } /* ** The first element in the apVal[] array is assumed to contain the docid ** (an integer) of a row about to be deleted. Remove all terms from the ** full-text index. */ static void fts3DeleteTerms( int *pRC, /* Result code */ Fts3Table *p, /* The FTS table to delete from */ sqlite3_value *pRowid, /* The docid to be deleted */ u32 *aSz, /* Sizes of deleted document written here */ int *pbFound /* OUT: Set to true if row really does exist */ ){ int rc; sqlite3_stmt *pSelect; assert( *pbFound==0 ); if( *pRC ) return; rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); i64 iDocid = sqlite3_column_int64(pSelect, 0); rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid); for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ int iCol = i-1; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pSelect, i); rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); } } if( rc!=SQLITE_OK ){ sqlite3_reset(pSelect); *pRC = rc; return; } *pbFound = 1; } rc = sqlite3_reset(pSelect); }else{ sqlite3_reset(pSelect); } *pRC = rc; } /* ** Forward declaration to account for the circular dependency between ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). */ static int fts3SegmentMerge(Fts3Table *, int, int, int); /* ** This function allocates a new level iLevel index in the segdir table. ** Usually, indexes are allocated within a level sequentially starting ** with 0, so the allocated index is one greater than the value returned ** by: ** ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel ** ** However, if there are already FTS3_MERGE_COUNT indexes at the requested ** level, they are merged into a single level (iLevel+1) segment and the ** allocated index is 0. ** ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK ** returned. Otherwise, an SQLite error code is returned. */ static int fts3AllocateSegdirIdx( Fts3Table *p, int iLangid, /* Language id */ int iIndex, /* Index for p->aIndex */ int iLevel, int *piIdx ){ int rc; /* Return Code */ sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ int iNext = 0; /* Result of query pNextIdx */ assert( iLangid>=0 ); assert( p->nIndex>=1 ); /* Set variable iNext to the next available segdir index at level iLevel. */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64( pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) ); if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ iNext = sqlite3_column_int(pNextIdx, 0); } rc = sqlite3_reset(pNextIdx); } if( rc==SQLITE_OK ){ /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already ** full, merge all segments in level iLevel into a single iLevel+1 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. */ if( iNext>=MergeCount(p) ){ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); *piIdx = 0; }else{ *piIdx = iNext; } } return rc; } /* ** The %_segments table is declared as follows: ** ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) ** ** This function reads data from a single row of the %_segments table. The ** specific row is identified by the iBlockid parameter. If paBlob is not ** NULL, then a buffer is allocated using sqlite3_malloc() and populated ** with the contents of the blob stored in the "block" column of the ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set ** to the size of the blob in bytes before returning. ** ** If an error occurs, or the table does not contain the specified row, ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If ** paBlob is non-NULL, then it is the responsibility of the caller to ** eventually free the returned buffer. ** ** This function may leave an open sqlite3_blob* handle in the ** Fts3Table.pSegments variable. This handle is reused by subsequent calls ** to this function. The handle may be closed by calling the ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy ** performance improvement, but the blob handle should always be closed ** before control is returned to the user (to prevent a lock being held ** on the database file for longer than necessary). Thus, any virtual table ** method (xFilter etc.) that may directly or indirectly call this function ** must call sqlite3Fts3SegmentsClose() before returning. */ SQLITE_PRIVATE int sqlite3Fts3ReadBlock( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ char **paBlob, /* OUT: Blob data in malloc'd buffer */ int *pnBlob, /* OUT: Size of blob data */ int *pnLoad /* OUT: Bytes actually loaded */ ){ int rc; /* Return code */ /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ assert( pnBlob ); if( p->pSegments ){ rc = sqlite3_blob_reopen(p->pSegments, iBlockid); }else{ if( 0==p->zSegmentsTbl ){ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; } rc = sqlite3_blob_open( p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments ); } if( rc==SQLITE_OK ){ int nByte = sqlite3_blob_bytes(p->pSegments); *pnBlob = nByte; if( paBlob ){ char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING); if( !aByte ){ rc = SQLITE_NOMEM; }else{ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ nByte = FTS3_NODE_CHUNKSIZE; *pnLoad = nByte; } rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); memset(&aByte[nByte], 0, FTS3_NODE_PADDING); if( rc!=SQLITE_OK ){ sqlite3_free(aByte); aByte = 0; } } *paBlob = aByte; } }else if( rc==SQLITE_ERROR ){ rc = FTS_CORRUPT_VTAB; } return rc; } /* ** Close the blob handle at p->pSegments, if it is open. See comments above ** the sqlite3Fts3ReadBlock() function for details. */ SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){ sqlite3_blob_close(p->pSegments); p->pSegments = 0; } static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ int nRead; /* Number of bytes to read */ int rc; /* Return code */ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); rc = sqlite3_blob_read( pReader->pBlob, &pReader->aNode[pReader->nPopulate], nRead, pReader->nPopulate ); if( rc==SQLITE_OK ){ pReader->nPopulate += nRead; memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); if( pReader->nPopulate==pReader->nNode ){ sqlite3_blob_close(pReader->pBlob); pReader->pBlob = 0; pReader->nPopulate = 0; } } return rc; } static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ int rc = SQLITE_OK; assert( !pReader->pBlob || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) ); while( pReader->pBlob && rc==SQLITE_OK && (pFrom - pReader->aNode + nByte)>pReader->nPopulate ){ rc = fts3SegReaderIncrRead(pReader); } return rc; } /* ** Set an Fts3SegReader cursor to point at EOF. */ static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ if( !fts3SegReaderIsRootOnly(pSeg) ){ sqlite3_free(pSeg->aNode); sqlite3_blob_close(pSeg->pBlob); pSeg->pBlob = 0; } pSeg->aNode = 0; } /* ** Move the iterator passed as the first argument to the next term in the ** segment. If successful, SQLITE_OK is returned. If there is no next term, ** SQLITE_DONE. Otherwise, an SQLite error code. */ static int fts3SegReaderNext( Fts3Table *p, Fts3SegReader *pReader, int bIncr ){ int rc; /* Return code of various sub-routines */ char *pNext; /* Cursor variable */ int nPrefix; /* Number of bytes in term prefix */ int nSuffix; /* Number of bytes in term suffix */ if( !pReader->aDoclist ){ pNext = pReader->aNode; }else{ pNext = &pReader->aDoclist[pReader->nDoclist]; } if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ if( fts3SegReaderIsPending(pReader) ){ Fts3HashElem *pElem = *(pReader->ppNextElem); sqlite3_free(pReader->aNode); pReader->aNode = 0; if( pElem ){ char *aCopy; PendingList *pList = (PendingList *)fts3HashData(pElem); int nCopy = pList->nData+1; int nTerm = fts3HashKeysize(pElem); if( (nTerm+1)>pReader->nTermAlloc ){ sqlite3_free(pReader->zTerm); pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2); if( !pReader->zTerm ) return SQLITE_NOMEM; pReader->nTermAlloc = (nTerm+1)*2; } memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm); pReader->zTerm[nTerm] = '\0'; pReader->nTerm = nTerm; aCopy = (char*)sqlite3_malloc64(nCopy); if( !aCopy ) return SQLITE_NOMEM; memcpy(aCopy, pList->aData, nCopy); pReader->nNode = pReader->nDoclist = nCopy; pReader->aNode = pReader->aDoclist = aCopy; pReader->ppNextElem++; assert( pReader->aNode ); } return SQLITE_OK; } fts3SegReaderSetEof(pReader); /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf ** blocks have already been traversed. */ #ifdef CORRUPT_DB assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB ); #endif if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ return SQLITE_OK; } rc = sqlite3Fts3ReadBlock( p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, (bIncr ? &pReader->nPopulate : 0) ); if( rc!=SQLITE_OK ) return rc; assert( pReader->pBlob==0 ); if( bIncr && pReader->nPopulatenNode ){ pReader->pBlob = p->pSegments; p->pSegments = 0; } pNext = pReader->aNode; } assert( !fts3SegReaderIsPending(pReader) ); rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); if( rc!=SQLITE_OK ) return rc; /* Because of the FTS3_NODE_PADDING bytes of padding, the following is ** safe (no risk of overread) even if the node data is corrupted. */ pNext += fts3GetVarint32(pNext, &nPrefix); pNext += fts3GetVarint32(pNext, &nSuffix); if( nSuffix<=0 || (&pReader->aNode[pReader->nNode] - pNext)pReader->nTerm ){ return FTS_CORRUPT_VTAB; } /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer ** overflow - hence the (i64) casts. */ if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){ i64 nNew = ((i64)nPrefix+nSuffix)*2; char *zNew = sqlite3_realloc64(pReader->zTerm, nNew); if( !zNew ){ return SQLITE_NOMEM; } pReader->zTerm = zNew; pReader->nTermAlloc = nNew; } rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); if( rc!=SQLITE_OK ) return rc; memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); pReader->nTerm = nPrefix+nSuffix; pNext += nSuffix; pNext += fts3GetVarint32(pNext, &pReader->nDoclist); pReader->aDoclist = pNext; pReader->pOffsetList = 0; /* Check that the doclist does not appear to extend past the end of the ** b-tree node. And that the final byte of the doclist is 0x00. If either ** of these statements is untrue, then the data structure is corrupt. */ if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode) || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) || pReader->nDoclist==0 ){ return FTS_CORRUPT_VTAB; } return SQLITE_OK; } /* ** Set the SegReader to point to the first docid in the doclist associated ** with the current term. */ static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ int rc = SQLITE_OK; assert( pReader->aDoclist ); assert( !pReader->pOffsetList ); if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ u8 bEof = 0; pReader->iDocid = 0; pReader->nOffsetList = 0; sqlite3Fts3DoclistPrev(0, pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, &pReader->iDocid, &pReader->nOffsetList, &bEof ); }else{ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); if( rc==SQLITE_OK ){ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); pReader->pOffsetList = &pReader->aDoclist[n]; } } return rc; } /* ** Advance the SegReader to point to the next docid in the doclist ** associated with the current term. ** ** If arguments ppOffsetList and pnOffsetList are not NULL, then ** *ppOffsetList is set to point to the first column-offset list ** in the doclist entry (i.e. immediately past the docid varint). ** *pnOffsetList is set to the length of the set of column-offset ** lists, not including the nul-terminator byte. For example: */ static int fts3SegReaderNextDocid( Fts3Table *pTab, Fts3SegReader *pReader, /* Reader to advance to next docid */ char **ppOffsetList, /* OUT: Pointer to current position-list */ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ ){ int rc = SQLITE_OK; char *p = pReader->pOffsetList; char c = 0; assert( p ); if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ /* A pending-terms seg-reader for an FTS4 table that uses order=desc. ** Pending-terms doclists are always built up in ascending order, so ** we have to iterate through them backwards here. */ u8 bEof = 0; if( ppOffsetList ){ *ppOffsetList = pReader->pOffsetList; *pnOffsetList = pReader->nOffsetList - 1; } sqlite3Fts3DoclistPrev(0, pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, &pReader->nOffsetList, &bEof ); if( bEof ){ pReader->pOffsetList = 0; }else{ pReader->pOffsetList = p; } }else{ char *pEnd = &pReader->aDoclist[pReader->nDoclist]; /* Pointer p currently points at the first byte of an offset list. The ** following block advances it to point one byte past the end of ** the same offset list. */ while( 1 ){ /* The following line of code (and the "p++" below the while() loop) is ** normally all that is required to move pointer p to the desired ** position. The exception is if this node is being loaded from disk ** incrementally and pointer "p" now points to the first byte past ** the populated part of pReader->aNode[]. */ while( *p | c ) c = *p++ & 0x80; assert( *p==0 ); if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; rc = fts3SegReaderIncrRead(pReader); if( rc!=SQLITE_OK ) return rc; } p++; /* If required, populate the output variables with a pointer to and the ** size of the previous offset-list. */ if( ppOffsetList ){ *ppOffsetList = pReader->pOffsetList; *pnOffsetList = (int)(p - pReader->pOffsetList - 1); } /* List may have been edited in place by fts3EvalNearTrim() */ while( p=pEnd ){ pReader->pOffsetList = 0; }else{ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); if( rc==SQLITE_OK ){ u64 iDelta; pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta); if( pTab->bDescIdx ){ pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta); }else{ pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta); } } } } return rc; } SQLITE_PRIVATE int sqlite3Fts3MsrOvfl( Fts3Cursor *pCsr, Fts3MultiSegReader *pMsr, int *pnOvfl ){ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; int nOvfl = 0; int ii; int rc = SQLITE_OK; int pgsz = p->nPgsz; assert( p->bFts4 ); assert( pgsz>0 ); for(ii=0; rc==SQLITE_OK && iinSegment; ii++){ Fts3SegReader *pReader = pMsr->apSegment[ii]; if( !fts3SegReaderIsPending(pReader) && !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_int64 jj; for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ int nBlob; rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); if( rc!=SQLITE_OK ) break; if( (nBlob+35)>pgsz ){ nOvfl += (nBlob + 34)/pgsz; } } } } *pnOvfl = nOvfl; return rc; } /* ** Free all allocations associated with the iterator passed as the ** second argument. */ SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ if( pReader ){ sqlite3_free(pReader->zTerm); if( !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_free(pReader->aNode); } sqlite3_blob_close(pReader->pBlob); } sqlite3_free(pReader); } /* ** Allocate a new SegReader object. */ SQLITE_PRIVATE int sqlite3Fts3SegReaderNew( int iAge, /* Segment "age". */ int bLookup, /* True for a lookup only */ sqlite3_int64 iStartLeaf, /* First leaf to traverse */ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ sqlite3_int64 iEndBlock, /* Final block of segment */ const char *zRoot, /* Buffer containing root node */ int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ Fts3SegReader *pReader; /* Newly allocated SegReader object */ int nExtra = 0; /* Bytes to allocate segment root node */ assert( zRoot!=0 || nRoot==0 ); #ifdef CORRUPT_DB assert( zRoot!=0 || CORRUPT_DB ); #endif if( iStartLeaf==0 ){ if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB; nExtra = nRoot + FTS3_NODE_PADDING; } pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra); if( !pReader ){ return SQLITE_NOMEM; } memset(pReader, 0, sizeof(Fts3SegReader)); pReader->iIdx = iAge; pReader->bLookup = bLookup!=0; pReader->iStartBlock = iStartLeaf; pReader->iLeafEndBlock = iEndLeaf; pReader->iEndBlock = iEndBlock; if( nExtra ){ /* The entire segment is stored in the root node. */ pReader->aNode = (char *)&pReader[1]; pReader->rootOnly = 1; pReader->nNode = nRoot; if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot); memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); }else{ pReader->iCurrentBlock = iStartLeaf-1; } *ppReader = pReader; return SQLITE_OK; } /* ** This is a comparison function used as a qsort() callback when sorting ** an array of pending terms by term. This occurs as part of flushing ** the contents of the pending-terms hash table to the database. */ static int SQLITE_CDECL fts3CompareElemByTerm( const void *lhs, const void *rhs ){ char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); int n = (n1aIndex */ const char *zTerm, /* Term to search for */ int nTerm, /* Size of buffer zTerm */ int bPrefix, /* True for a prefix iterator */ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ ){ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ Fts3HashElem *pE; /* Iterator variable */ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ int nElem = 0; /* Size of array at aElem */ int rc = SQLITE_OK; /* Return Code */ Fts3Hash *pHash; pHash = &p->aIndex[iIndex].hPending; if( bPrefix ){ int nAlloc = 0; /* Size of allocated array at aElem */ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ char *zKey = (char *)fts3HashKey(pE); int nKey = fts3HashKeysize(pE); if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ if( nElem==nAlloc ){ Fts3HashElem **aElem2; nAlloc += 16; aElem2 = (Fts3HashElem **)sqlite3_realloc64( aElem, nAlloc*sizeof(Fts3HashElem *) ); if( !aElem2 ){ rc = SQLITE_NOMEM; nElem = 0; break; } aElem = aElem2; } aElem[nElem++] = pE; } } /* If more than one term matches the prefix, sort the Fts3HashElem ** objects in term order using qsort(). This uses the same comparison ** callback as is used when flushing terms to disk. */ if( nElem>1 ){ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); } }else{ /* The query is a simple term lookup that matches at most one term in ** the index. All that is required is a straight hash-lookup. ** ** Because the stack address of pE may be accessed via the aElem pointer ** below, the "Fts3HashElem *pE" must be declared so that it is valid ** within this entire function, not just this "else{...}" block. */ pE = fts3HashFindElem(pHash, zTerm, nTerm); if( pE ){ aElem = &pE; nElem = 1; } } if( nElem>0 ){ sqlite3_int64 nByte; nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); pReader = (Fts3SegReader *)sqlite3_malloc64(nByte); if( !pReader ){ rc = SQLITE_NOMEM; }else{ memset(pReader, 0, nByte); pReader->iIdx = 0x7FFFFFFF; pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); } } if( bPrefix ){ sqlite3_free(aElem); } *ppReader = pReader; return rc; } /* ** Compare the entries pointed to by two Fts3SegReader structures. ** Comparison is as follows: ** ** 1) EOF is greater than not EOF. ** ** 2) The current terms (if any) are compared using memcmp(). If one ** term is a prefix of another, the longer term is considered the ** larger. ** ** 3) By segment age. An older segment is considered larger. */ static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc; if( pLhs->aNode && pRhs->aNode ){ int rc2 = pLhs->nTerm - pRhs->nTerm; if( rc2<0 ){ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); }else{ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); } if( rc==0 ){ rc = rc2; } }else{ rc = (pLhs->aNode==0) - (pRhs->aNode==0); } if( rc==0 ){ rc = pRhs->iIdx - pLhs->iIdx; } assert_fts3_nc( rc!=0 ); return rc; } /* ** A different comparison function for SegReader structures. In this ** version, it is assumed that each SegReader points to an entry in ** a doclist for identical terms. Comparison is made as follows: ** ** 1) EOF (end of doclist in this case) is greater than not EOF. ** ** 2) By current docid. ** ** 3) By segment age. An older segment is considered larger. */ static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); if( rc==0 ){ if( pLhs->iDocid==pRhs->iDocid ){ rc = pRhs->iIdx - pLhs->iIdx; }else{ rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; } } assert( pLhs->aNode && pRhs->aNode ); return rc; } static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); if( rc==0 ){ if( pLhs->iDocid==pRhs->iDocid ){ rc = pRhs->iIdx - pLhs->iIdx; }else{ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; } } assert( pLhs->aNode && pRhs->aNode ); return rc; } /* ** Compare the term that the Fts3SegReader object passed as the first argument ** points to with the term specified by arguments zTerm and nTerm. ** ** If the pSeg iterator is already at EOF, return 0. Otherwise, return ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. */ static int fts3SegReaderTermCmp( Fts3SegReader *pSeg, /* Segment reader object */ const char *zTerm, /* Term to compare to */ int nTerm /* Size of term zTerm in bytes */ ){ int res = 0; if( pSeg->aNode ){ if( pSeg->nTerm>nTerm ){ res = memcmp(pSeg->zTerm, zTerm, nTerm); }else{ res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); } if( res==0 ){ res = pSeg->nTerm-nTerm; } } return res; } /* ** Argument apSegment is an array of nSegment elements. It is known that ** the final (nSegment-nSuspect) members are already in sorted order ** (according to the comparison function provided). This function shuffles ** the array around until all entries are in sorted order. */ static void fts3SegReaderSort( Fts3SegReader **apSegment, /* Array to sort entries of */ int nSegment, /* Size of apSegment array */ int nSuspect, /* Unsorted entry count */ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ ){ int i; /* Iterator variable */ assert( nSuspect<=nSegment ); if( nSuspect==nSegment ) nSuspect--; for(i=nSuspect-1; i>=0; i--){ int j; for(j=i; j<(nSegment-1); j++){ Fts3SegReader *pTmp; if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; pTmp = apSegment[j+1]; apSegment[j+1] = apSegment[j]; apSegment[j] = pTmp; } } #ifndef NDEBUG /* Check that the list really is sorted now. */ for(i=0; i<(nSuspect-1); i++){ assert( xCmp(apSegment[i], apSegment[i+1])<0 ); } #endif } /* ** Insert a record into the %_segments table. */ static int fts3WriteSegment( Fts3Table *p, /* Virtual table handle */ sqlite3_int64 iBlock, /* Block id for new block */ char *z, /* Pointer to buffer containing block data */ int n /* Size of buffer z in bytes */ ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, iBlock); sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 2); } return rc; } /* ** Find the largest relative level number in the table. If successful, set ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, ** set *pnMax to zero and return an SQLite error code. */ SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ int rc; int mxLevel = 0; sqlite3_stmt *pStmt = 0; rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ mxLevel = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } *pnMax = mxLevel; return rc; } /* ** Insert a record into the %_segdir table. */ static int fts3WriteSegdir( Fts3Table *p, /* Virtual table handle */ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ int iIdx, /* Value for "idx" field */ sqlite3_int64 iStartBlock, /* Value for "start_block" field */ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ sqlite3_int64 iEndBlock, /* Value for "end_block" field */ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ char *zRoot, /* Blob value for "root" field */ int nRoot /* Number of bytes in buffer zRoot */ ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, iLevel); sqlite3_bind_int(pStmt, 2, iIdx); sqlite3_bind_int64(pStmt, 3, iStartBlock); sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); if( nLeafData==0 ){ sqlite3_bind_int64(pStmt, 5, iEndBlock); }else{ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); if( !zEnd ) return SQLITE_NOMEM; sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); } sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 6); } return rc; } /* ** Return the size of the common prefix (if any) shared by zPrev and ** zNext, in bytes. For example, ** ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 */ static int fts3PrefixCompress( const char *zPrev, /* Buffer containing previous term */ int nPrev, /* Size of buffer zPrev in bytes */ const char *zNext, /* Buffer containing next term */ int nNext /* Size of buffer zNext in bytes */ ){ int n; for(n=0; nnData; /* Current size of node in bytes */ int nReq = nData; /* Required space after adding zTerm */ int nPrefix; /* Number of bytes of prefix compression */ int nSuffix; /* Suffix length */ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when ** compared with BINARY collation. This indicates corruption. */ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; if( nReq<=p->nNodeSize || !pTree->zTerm ){ if( nReq>p->nNodeSize ){ /* An unusual case: this is the first term to be added to the node ** and the static node buffer (p->nNodeSize bytes) is not large ** enough. Use a separately malloced buffer instead This wastes ** p->nNodeSize bytes, but since this scenario only comes about when ** the database contain two terms that share a prefix of almost 2KB, ** this is not expected to be a serious problem. */ assert( pTree->aData==(char *)&pTree[1] ); pTree->aData = (char *)sqlite3_malloc64(nReq); if( !pTree->aData ){ return SQLITE_NOMEM; } } if( pTree->zTerm ){ /* There is no prefix-length field for first term in a node */ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); } nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); pTree->nData = nData + nSuffix; pTree->nEntry++; if( isCopyTerm ){ if( pTree->nMalloczMalloc, (i64)nTerm*2); if( !zNew ){ return SQLITE_NOMEM; } pTree->nMalloc = nTerm*2; pTree->zMalloc = zNew; } pTree->zTerm = pTree->zMalloc; memcpy(pTree->zTerm, zTerm, nTerm); pTree->nTerm = nTerm; }else{ pTree->zTerm = (char *)zTerm; pTree->nTerm = nTerm; } return SQLITE_OK; } } /* If control flows to here, it was not possible to append zTerm to the ** current node. Create a new node (a right-sibling of the current node). ** If this is the first node in the tree, the term is added to it. ** ** Otherwise, the term is not added to the new node, it is left empty for ** now. Instead, the term is inserted into the parent of pTree. If pTree ** has no parent, one is created here. */ pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize); if( !pNew ){ return SQLITE_NOMEM; } memset(pNew, 0, sizeof(SegmentNode)); pNew->nData = 1 + FTS3_VARINT_MAX; pNew->aData = (char *)&pNew[1]; if( pTree ){ SegmentNode *pParent = pTree->pParent; rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); if( pTree->pParent==0 ){ pTree->pParent = pParent; } pTree->pRight = pNew; pNew->pLeftmost = pTree->pLeftmost; pNew->pParent = pParent; pNew->zMalloc = pTree->zMalloc; pNew->nMalloc = pTree->nMalloc; pTree->zMalloc = 0; }else{ pNew->pLeftmost = pNew; rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); } *ppTree = pNew; return rc; } /* ** Helper function for fts3NodeWrite(). */ static int fts3TreeFinishNode( SegmentNode *pTree, int iHeight, sqlite3_int64 iLeftChild ){ int nStart; assert( iHeight>=1 && iHeight<128 ); nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); pTree->aData[nStart] = (char)iHeight; sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); return nStart; } /* ** Write the buffer for the segment node pTree and all of its peers to the ** database. Then call this function recursively to write the parent of ** pTree and its peers to the database. ** ** Except, if pTree is a root node, do not write it to the database. Instead, ** set output variables *paRoot and *pnRoot to contain the root node. ** ** If successful, SQLITE_OK is returned and output variable *piLast is ** set to the largest blockid written to the database (or zero if no ** blocks were written to the db). Otherwise, an SQLite error code is ** returned. */ static int fts3NodeWrite( Fts3Table *p, /* Virtual table handle */ SegmentNode *pTree, /* SegmentNode handle */ int iHeight, /* Height of this node in tree */ sqlite3_int64 iLeaf, /* Block id of first leaf node */ sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ char **paRoot, /* OUT: Data for root node */ int *pnRoot /* OUT: Size of root node in bytes */ ){ int rc = SQLITE_OK; if( !pTree->pParent ){ /* Root node of the tree. */ int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); *piLast = iFree-1; *pnRoot = pTree->nData - nStart; *paRoot = &pTree->aData[nStart]; }else{ SegmentNode *pIter; sqlite3_int64 iNextFree = iFree; sqlite3_int64 iNextLeaf = iLeaf; for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); int nWrite = pIter->nData - nStart; rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); iNextFree++; iNextLeaf += (pIter->nEntry+1); } if( rc==SQLITE_OK ){ assert( iNextLeaf==iFree ); rc = fts3NodeWrite( p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot ); } } return rc; } /* ** Free all memory allocations associated with the tree pTree. */ static void fts3NodeFree(SegmentNode *pTree){ if( pTree ){ SegmentNode *p = pTree->pLeftmost; fts3NodeFree(p->pParent); while( p ){ SegmentNode *pRight = p->pRight; if( p->aData!=(char *)&p[1] ){ sqlite3_free(p->aData); } assert( pRight==0 || p->zMalloc==0 ); sqlite3_free(p->zMalloc); sqlite3_free(p); p = pRight; } } } /* ** Add a term to the segment being constructed by the SegmentWriter object ** *ppWriter. When adding the first term to a segment, *ppWriter should ** be passed NULL. This function will allocate a new SegmentWriter object ** and return it via the input/output variable *ppWriter in this case. ** ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. */ static int fts3SegWriterAdd( Fts3Table *p, /* Virtual table handle */ SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ int isCopyTerm, /* True if buffer zTerm must be copied */ const char *zTerm, /* Pointer to buffer containing term */ int nTerm, /* Size of term in bytes */ const char *aDoclist, /* Pointer to buffer containing doclist */ int nDoclist /* Size of doclist in bytes */ ){ int nPrefix; /* Size of term prefix in bytes */ int nSuffix; /* Size of term suffix in bytes */ i64 nReq; /* Number of bytes required on leaf page */ int nData; SegmentWriter *pWriter = *ppWriter; if( !pWriter ){ int rc; sqlite3_stmt *pStmt; /* Allocate the SegmentWriter structure */ pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter)); if( !pWriter ) return SQLITE_NOMEM; memset(pWriter, 0, sizeof(SegmentWriter)); *ppWriter = pWriter; /* Allocate a buffer in which to accumulate data */ pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize); if( !pWriter->aData ) return SQLITE_NOMEM; pWriter->nSize = p->nNodeSize; /* Find the next free blockid in the %_segments table */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; if( SQLITE_ROW==sqlite3_step(pStmt) ){ pWriter->iFree = sqlite3_column_int64(pStmt, 0); pWriter->iFirst = pWriter->iFree; } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ) return rc; } nData = pWriter->nData; nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when ** compared with BINARY collation. This indicates corruption. */ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; /* Figure out how many bytes are required by this new entry */ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ nSuffix + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ if( nData>0 && nData+nReq>p->nNodeSize ){ int rc; /* The current leaf node is full. Write it out to the database. */ if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB; rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); if( rc!=SQLITE_OK ) return rc; p->nLeafAdd++; /* Add the current term to the interior node tree. The term added to ** the interior tree must: ** ** a) be greater than the largest term on the leaf node just written ** to the database (still available in pWriter->zTerm), and ** ** b) be less than or equal to the term about to be added to the new ** leaf node (zTerm/nTerm). ** ** In other words, it must be the prefix of zTerm 1 byte longer than ** the common prefix (if any) of zTerm and pWriter->zTerm. */ assert( nPrefixpTree, isCopyTerm, zTerm, nPrefix+1); if( rc!=SQLITE_OK ) return rc; nData = 0; pWriter->nTerm = 0; nPrefix = 0; nSuffix = nTerm; nReq = 1 + /* varint containing prefix size */ sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ nTerm + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ } /* Increase the total number of bytes written to account for the new entry. */ pWriter->nLeafData += nReq; /* If the buffer currently allocated is too small for this entry, realloc ** the buffer to make it large enough. */ if( nReq>pWriter->nSize ){ char *aNew = sqlite3_realloc64(pWriter->aData, nReq); if( !aNew ) return SQLITE_NOMEM; pWriter->aData = aNew; pWriter->nSize = nReq; } assert( nData+nReq<=pWriter->nSize ); /* Append the prefix-compressed term and doclist to the buffer. */ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); assert( nSuffix>0 ); memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); nData += nSuffix; nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); assert( nDoclist>0 ); memcpy(&pWriter->aData[nData], aDoclist, nDoclist); pWriter->nData = nData + nDoclist; /* Save the current term so that it can be used to prefix-compress the next. ** If the isCopyTerm parameter is true, then the buffer pointed to by ** zTerm is transient, so take a copy of the term data. Otherwise, just ** store a copy of the pointer. */ if( isCopyTerm ){ if( nTerm>pWriter->nMalloc ){ char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2); if( !zNew ){ return SQLITE_NOMEM; } pWriter->nMalloc = nTerm*2; pWriter->zMalloc = zNew; pWriter->zTerm = zNew; } assert( pWriter->zTerm==pWriter->zMalloc ); assert( nTerm>0 ); memcpy(pWriter->zTerm, zTerm, nTerm); }else{ pWriter->zTerm = (char *)zTerm; } pWriter->nTerm = nTerm; return SQLITE_OK; } /* ** Flush all data associated with the SegmentWriter object pWriter to the ** database. This function must be called after all terms have been added ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is ** returned. Otherwise, an SQLite error code. */ static int fts3SegWriterFlush( Fts3Table *p, /* Virtual table handle */ SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ int iIdx /* Value for 'idx' column of %_segdir */ ){ int rc; /* Return code */ if( pWriter->pTree ){ sqlite3_int64 iLast = 0; /* Largest block id written to database */ sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ char *zRoot = NULL; /* Pointer to buffer containing root node */ int nRoot = 0; /* Size of buffer zRoot */ iLastLeaf = pWriter->iFree; rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); if( rc==SQLITE_OK ){ rc = fts3NodeWrite(p, pWriter->pTree, 1, pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); } if( rc==SQLITE_OK ){ rc = fts3WriteSegdir(p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); } }else{ /* The entire tree fits on the root node. Write it to the segdir table. */ rc = fts3WriteSegdir(p, iLevel, iIdx, 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); } p->nLeafAdd++; return rc; } /* ** Release all memory held by the SegmentWriter object passed as the ** first argument. */ static void fts3SegWriterFree(SegmentWriter *pWriter){ if( pWriter ){ sqlite3_free(pWriter->aData); sqlite3_free(pWriter->zMalloc); fts3NodeFree(pWriter->pTree); sqlite3_free(pWriter); } } /* ** The first value in the apVal[] array is assumed to contain an integer. ** This function tests if there exist any documents with docid values that ** are different from that integer. i.e. if deleting the document with docid ** pRowid would mean the FTS3 table were empty. ** ** If successful, *pisEmpty is set to true if the table is empty except for ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an ** error occurs, an SQLite error code is returned. */ static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ sqlite3_stmt *pStmt; int rc; if( p->zContentTbl ){ /* If using the content=xxx option, assume the table is never empty */ *pisEmpty = 0; rc = SQLITE_OK; }else{ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pisEmpty = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } } return rc; } /* ** Set *pnMax to the largest segment level in the database for the index ** iIndex. ** ** Segment levels are stored in the 'level' column of the %_segdir table. ** ** Return SQLITE_OK if successful, or an SQLite error code if not. */ static int fts3SegmentMaxLevel( Fts3Table *p, int iLangid, int iIndex, sqlite3_int64 *pnMax ){ sqlite3_stmt *pStmt; int rc; assert( iIndex>=0 && iIndexnIndex ); /* Set pStmt to the compiled version of: ** ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? ** ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pStmt, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pnMax = sqlite3_column_int64(pStmt, 0); } return sqlite3_reset(pStmt); } /* ** iAbsLevel is an absolute level that may be assumed to exist within ** the database. This function checks if it is the largest level number ** within its index. Assuming no error occurs, *pbMax is set to 1 if ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK ** is returned. If an error occurs, an error code is returned and the ** final value of *pbMax is undefined. */ static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ /* Set pStmt to the compiled version of: ** ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? ** ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). */ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); sqlite3_bind_int64(pStmt, 2, (((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL ); *pbMax = 0; if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; } return sqlite3_reset(pStmt); } /* ** Delete all entries in the %_segments table associated with the segment ** opened with seg-reader pSeg. This function does not affect the contents ** of the %_segdir table. */ static int fts3DeleteSegment( Fts3Table *p, /* FTS table handle */ Fts3SegReader *pSeg /* Segment to delete */ ){ int rc = SQLITE_OK; /* Return code */ if( pSeg->iStartBlock ){ sqlite3_stmt *pDelete; /* SQL statement to delete rows */ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } } return rc; } /* ** This function is used after merging multiple segments into a single large ** segment to delete the old, now redundant, segment b-trees. Specifically, ** it: ** ** 1) Deletes all %_segments entries for the segments associated with ** each of the SegReader objects in the array passed as the third ** argument, and ** ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir ** entries regardless of level if (iLevel<0). ** ** SQLITE_OK is returned if successful, otherwise an SQLite error code. */ static int fts3DeleteSegdir( Fts3Table *p, /* Virtual table handle */ int iLangid, /* Language id */ int iIndex, /* Index for p->aIndex */ int iLevel, /* Level of %_segdir entries to delete */ Fts3SegReader **apSegment, /* Array of SegReader objects */ int nReader /* Size of array apSegment */ ){ int rc = SQLITE_OK; /* Return Code */ int i; /* Iterator variable */ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ for(i=0; rc==SQLITE_OK && i=0 || iLevel==FTS3_SEGCURSOR_ALL ); if( iLevel==FTS3_SEGCURSOR_ALL ){ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pDelete, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); } }else{ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64( pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) ); } } if( rc==SQLITE_OK ){ sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } return rc; } /* ** When this function is called, buffer *ppList (size *pnList bytes) contains ** a position list that may (or may not) feature multiple columns. This ** function adjusts the pointer *ppList and the length *pnList so that they ** identify the subset of the position list that corresponds to column iCol. ** ** If there are no entries in the input position list for column iCol, then ** *pnList is set to zero before returning. ** ** If parameter bZero is non-zero, then any part of the input list following ** the end of the output list is zeroed before returning. */ static void fts3ColumnFilter( int iCol, /* Column to filter on */ int bZero, /* Zero out anything following *ppList */ char **ppList, /* IN/OUT: Pointer to position list */ int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ ){ char *pList = *ppList; int nList = *pnList; char *pEnd = &pList[nList]; int iCurrent = 0; char *p = pList; assert( iCol>=0 ); while( 1 ){ char c = 0; while( p0){ memset(&pList[nList], 0, pEnd - &pList[nList]); } *ppList = pList; *pnList = nList; } /* ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any ** existing data). Grow the buffer if required. ** ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered ** trying to resize the buffer, return SQLITE_NOMEM. */ static int fts3MsrBufferData( Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ char *pList, i64 nList ){ if( (nList+FTS3_NODE_PADDING)>pMsr->nBuffer ){ char *pNew; int nNew = nList*2 + FTS3_NODE_PADDING; pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, nNew); if( !pNew ) return SQLITE_NOMEM; pMsr->aBuffer = pNew; pMsr->nBuffer = nNew; } assert( nList>0 ); memcpy(pMsr->aBuffer, pList, nList); memset(&pMsr->aBuffer[nList], 0, FTS3_NODE_PADDING); return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ sqlite3_int64 *piDocid, /* OUT: Docid value */ char **paPoslist, /* OUT: Pointer to position list */ int *pnPoslist /* OUT: Size of position list in bytes */ ){ int nMerge = pMsr->nAdvance; Fts3SegReader **apSegment = pMsr->apSegment; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); if( nMerge==0 ){ *paPoslist = 0; return SQLITE_OK; } while( 1 ){ Fts3SegReader *pSeg; pSeg = pMsr->apSegment[0]; if( pSeg->pOffsetList==0 ){ *paPoslist = 0; break; }else{ int rc; char *pList; int nList; int j; sqlite3_int64 iDocid = apSegment[0]->iDocid; rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( rc==SQLITE_OK && jpOffsetList && apSegment[j]->iDocid==iDocid ){ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); j++; } if( rc!=SQLITE_OK ) return rc; fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1); if( rc!=SQLITE_OK ) return rc; assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); pList = pMsr->aBuffer; } if( pMsr->iColFilter>=0 ){ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); } if( nList>0 ){ *paPoslist = pList; *piDocid = iDocid; *pnPoslist = nList; break; } } } return SQLITE_OK; } static int fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ const char *zTerm, /* Term searched for (or NULL) */ int nTerm /* Length of zTerm in bytes */ ){ int i; int nSeg = pCsr->nSegment; /* If the Fts3SegFilter defines a specific term (or term prefix) to search ** for, then advance each segment iterator until it points to a term of ** equal or greater value than the specified term. This prevents many ** unnecessary merge/sort operations for the case where single segment ** b-tree leaf nodes contain more than one term. */ for(i=0; pCsr->bRestart==0 && inSegment; i++){ int res = 0; Fts3SegReader *pSeg = pCsr->apSegment[i]; do { int rc = fts3SegReaderNext(p, pSeg, 0); if( rc!=SQLITE_OK ) return rc; }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); if( pSeg->bLookup && res!=0 ){ fts3SegReaderSetEof(pSeg); } } fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ Fts3SegFilter *pFilter /* Restrictions on range of iteration */ ){ pCsr->pFilter = pFilter; return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); } SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ int iCol, /* Column to match on. */ const char *zTerm, /* Term to iterate through a doclist for */ int nTerm /* Number of bytes in zTerm */ ){ int i; int rc; int nSegment = pCsr->nSegment; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); assert( pCsr->pFilter==0 ); assert( zTerm && nTerm>0 ); /* Advance each segment iterator until it points to the term zTerm/nTerm. */ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); if( rc!=SQLITE_OK ) return rc; /* Determine how many of the segments actually point to zTerm/nTerm. */ for(i=0; iapSegment[i]; if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ break; } } pCsr->nAdvance = i; /* Advance each of the segments to point to the first docid. */ for(i=0; inAdvance; i++){ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); assert( iCol<0 || iColnColumn ); pCsr->iColFilter = iCol; return SQLITE_OK; } /* ** This function is called on a MultiSegReader that has been started using ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also ** have been made. Calling this function puts the MultiSegReader in such ** a state that if the next two calls are: ** ** sqlite3Fts3SegReaderStart() ** sqlite3Fts3SegReaderStep() ** ** then the entire doclist for the term is available in ** MultiSegReader.aDoclist/nDoclist. */ SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ int i; /* Used to iterate through segment-readers */ assert( pCsr->zTerm==0 ); assert( pCsr->nTerm==0 ); assert( pCsr->aDoclist==0 ); assert( pCsr->nDoclist==0 ); pCsr->nAdvance = 0; pCsr->bRestart = 1; for(i=0; inSegment; i++){ pCsr->apSegment[i]->pOffsetList = 0; pCsr->apSegment[i]->nOffsetList = 0; pCsr->apSegment[i]->iDocid = 0; } return SQLITE_OK; } static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){ if( nReq>pCsr->nBuffer ){ char *aNew; pCsr->nBuffer = nReq*2; aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer); if( !aNew ){ return SQLITE_NOMEM; } pCsr->aBuffer = aNew; } return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3SegReaderStep( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr /* Cursor object */ ){ int rc = SQLITE_OK; int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); Fts3SegReader **apSegment = pCsr->apSegment; int nSegment = pCsr->nSegment; Fts3SegFilter *pFilter = pCsr->pFilter; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); if( pCsr->nSegment==0 ) return SQLITE_OK; do { int nMerge; int i; /* Advance the first pCsr->nAdvance entries in the apSegment[] array ** forward. Then sort the list in order of current term again. */ for(i=0; inAdvance; i++){ Fts3SegReader *pSeg = apSegment[i]; if( pSeg->bLookup ){ fts3SegReaderSetEof(pSeg); }else{ rc = fts3SegReaderNext(p, pSeg, 0); } if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); pCsr->nAdvance = 0; /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ assert( rc==SQLITE_OK ); if( apSegment[0]->aNode==0 ) break; pCsr->nTerm = apSegment[0]->nTerm; pCsr->zTerm = apSegment[0]->zTerm; /* If this is a prefix-search, and if the term that apSegment[0] points ** to does not share a suffix with pFilter->zTerm/nTerm, then all ** required callbacks have been made. In this case exit early. ** ** Similarly, if this is a search for an exact match, and the first term ** of segment apSegment[0] is not a match, exit early. */ if( pFilter->zTerm && !isScan ){ if( pCsr->nTermnTerm || (!isPrefix && pCsr->nTerm>pFilter->nTerm) || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) ){ break; } } nMerge = 1; while( nMergeaNode && apSegment[nMerge]->nTerm==pCsr->nTerm && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) ){ nMerge++; } assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); if( nMerge==1 && !isIgnoreEmpty && !isFirst && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) ){ pCsr->nDoclist = apSegment[0]->nDoclist; if( fts3SegReaderIsPending(apSegment[0]) ){ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, (i64)pCsr->nDoclist); pCsr->aDoclist = pCsr->aBuffer; }else{ pCsr->aDoclist = apSegment[0]->aDoclist; } if( rc==SQLITE_OK ) rc = SQLITE_ROW; }else{ int nDoclist = 0; /* Size of doclist */ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ /* The current term of the first nMerge entries in the array ** of Fts3SegReader objects is the same. The doclists must be merged ** and a single term returned with the merged doclist. */ for(i=0; ipOffsetList ){ int j; /* Number of segments that share a docid */ char *pList = 0; int nList = 0; int nByte; sqlite3_int64 iDocid = apSegment[0]->iDocid; fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( jpOffsetList && apSegment[j]->iDocid==iDocid ){ fts3SegReaderNextDocid(p, apSegment[j], 0, 0); j++; } if( isColFilter ){ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); } if( !isIgnoreEmpty || nList>0 ){ /* Calculate the 'docid' delta value to write into the merged ** doclist. */ sqlite3_int64 iDelta; if( p->bDescIdx && nDoclist>0 ){ if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB; iDelta = (i64)((u64)iPrev - (u64)iDocid); }else{ if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB; iDelta = (i64)((u64)iDocid - (u64)iPrev); } nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); rc = fts3GrowSegReaderBuffer(pCsr, (i64)nByte+nDoclist+FTS3_NODE_PADDING); if( rc ) return rc; if( isFirst ){ char *a = &pCsr->aBuffer[nDoclist]; int nWrite; nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); if( nWrite ){ iPrev = iDocid; nDoclist += nWrite; } }else{ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); iPrev = iDocid; if( isRequirePos ){ memcpy(&pCsr->aBuffer[nDoclist], pList, nList); nDoclist += nList; pCsr->aBuffer[nDoclist++] = '\0'; } } } fts3SegReaderSort(apSegment, nMerge, j, xCmp); } if( nDoclist>0 ){ rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING); if( rc ) return rc; memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING); pCsr->aDoclist = pCsr->aBuffer; pCsr->nDoclist = nDoclist; rc = SQLITE_ROW; } } pCsr->nAdvance = nMerge; }while( rc==SQLITE_OK ); return rc; } SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish( Fts3MultiSegReader *pCsr /* Cursor object */ ){ if( pCsr ){ int i; for(i=0; inSegment; i++){ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); } sqlite3_free(pCsr->apSegment); sqlite3_free(pCsr->aBuffer); pCsr->nSegment = 0; pCsr->apSegment = 0; pCsr->aBuffer = 0; } } /* ** Decode the "end_block" field, selected by column iCol of the SELECT ** statement passed as the first argument. ** ** The "end_block" field may contain either an integer, or a text field ** containing the text representation of two non-negative integers separated ** by one or more space (0x20) characters. In the first case, set *piEndBlock ** to the integer value and *pnByte to zero before returning. In the second, ** set *piEndBlock to the first value and *pnByte to the second. */ static void fts3ReadEndBlockField( sqlite3_stmt *pStmt, int iCol, i64 *piEndBlock, i64 *pnByte ){ const unsigned char *zText = sqlite3_column_text(pStmt, iCol); if( zText ){ int i; int iMul = 1; u64 iVal = 0; for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ iVal = iVal*10 + (zText[i] - '0'); } *piEndBlock = (i64)iVal; while( zText[i]==' ' ) i++; iVal = 0; if( zText[i]=='-' ){ i++; iMul = -1; } for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ iVal = iVal*10 + (zText[i] - '0'); } *pnByte = ((i64)iVal * (i64)iMul); } } /* ** A segment of size nByte bytes has just been written to absolute level ** iAbsLevel. Promote any segments that should be promoted as a result. */ static int fts3PromoteSegments( Fts3Table *p, /* FTS table handle */ sqlite3_int64 iAbsLevel, /* Absolute level just updated */ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ ){ int rc = SQLITE_OK; sqlite3_stmt *pRange; rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); if( rc==SQLITE_OK ){ int bOk = 0; i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; i64 nLimit = (nByte*3)/2; /* Loop through all entries in the %_segdir table corresponding to ** segments in this index on levels greater than iAbsLevel. If there is ** at least one such segment, and it is possible to determine that all ** such segments are smaller than nLimit bytes in size, they will be ** promoted to level iAbsLevel. */ sqlite3_bind_int64(pRange, 1, iAbsLevel+1); sqlite3_bind_int64(pRange, 2, iLast); while( SQLITE_ROW==sqlite3_step(pRange) ){ i64 nSize = 0, dummy; fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); if( nSize<=0 || nSize>nLimit ){ /* If nSize==0, then the %_segdir.end_block field does not not ** contain a size value. This happens if it was written by an ** old version of FTS. In this case it is not possible to determine ** the size of the segment, and so segment promotion does not ** take place. */ bOk = 0; break; } bOk = 1; } rc = sqlite3_reset(pRange); if( bOk ){ int iIdx = 0; sqlite3_stmt *pUpdate1 = 0; sqlite3_stmt *pUpdate2 = 0; if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); } if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); } if( rc==SQLITE_OK ){ /* Loop through all %_segdir entries for segments in this index with ** levels equal to or greater than iAbsLevel. As each entry is visited, ** updated it to set (level = -1) and (idx = N), where N is 0 for the ** oldest segment in the range, 1 for the next oldest, and so on. ** ** In other words, move all segments being promoted to level -1, ** setting the "idx" fields as appropriate to keep them in the same ** order. The contents of level -1 (which is never used, except ** transiently here), will be moved back to level iAbsLevel below. */ sqlite3_bind_int64(pRange, 1, iAbsLevel); while( SQLITE_ROW==sqlite3_step(pRange) ){ sqlite3_bind_int(pUpdate1, 1, iIdx++); sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); sqlite3_step(pUpdate1); rc = sqlite3_reset(pUpdate1); if( rc!=SQLITE_OK ){ sqlite3_reset(pRange); break; } } } if( rc==SQLITE_OK ){ rc = sqlite3_reset(pRange); } /* Move level -1 to level iAbsLevel */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); sqlite3_step(pUpdate2); rc = sqlite3_reset(pUpdate2); } } } return rc; } /* ** Merge all level iLevel segments in the database into a single ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a ** single segment with a level equal to the numerically largest level ** currently present in the database. ** ** If this function is called with iLevel<0, but there is only one ** segment in the database, SQLITE_DONE is returned immediately. ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, ** an SQLite error code is returned. */ static int fts3SegmentMerge( Fts3Table *p, int iLangid, /* Language id to merge */ int iIndex, /* Index in p->aIndex[] to merge */ int iLevel /* Level to merge */ ){ int rc; /* Return code */ int iIdx = 0; /* Index of new segment */ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ Fts3SegFilter filter; /* Segment term filter condition */ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ int bIgnoreEmpty = 0; /* True to ignore empty segments */ i64 iMaxLevel = 0; /* Max level number for this index/langid */ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( iLevel=0 && iIndexnIndex ); rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; if( iLevel!=FTS3_SEGCURSOR_PENDING ){ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); if( rc!=SQLITE_OK ) goto finished; } if( iLevel==FTS3_SEGCURSOR_ALL ){ /* This call is to merge all segments in the database to a single ** segment. The level of the new segment is equal to the numerically ** greatest segment level currently present in the database for this ** index. The idx of the new segment is always 0. */ if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){ rc = SQLITE_DONE; goto finished; } iNewLevel = iMaxLevel; bIgnoreEmpty = 1; }else{ /* This call is to merge all segments at level iLevel. find the next ** available segment index at level iLevel+1. The call to ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to ** a single iLevel+2 segment if necessary. */ assert( FTS3_SEGCURSOR_PENDING==-1 ); iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); } if( rc!=SQLITE_OK ) goto finished; assert( csr.nSegment>0 ); assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); assert_fts3_nc( iNewLevelnLeafData); } } } finished: fts3SegWriterFree(pWriter); sqlite3Fts3SegReaderFinish(&csr); return rc; } /* ** Flush the contents of pendingTerms to level 0 segments. */ SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && inIndex; i++){ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } sqlite3Fts3PendingTermsClear(p); /* Determine the auto-incr-merge setting if unknown. If enabled, ** estimate the number of leaf blocks of content to be written */ if( rc==SQLITE_OK && p->bHasStat && p->nAutoincrmerge==0xff && p->nLeafAdd>0 ){ sqlite3_stmt *pStmt = 0; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW ){ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; }else if( rc==SQLITE_DONE ){ p->nAutoincrmerge = 0; } rc = sqlite3_reset(pStmt); } } return rc; } /* ** Encode N integers as varints into a blob. */ static void fts3EncodeIntArray( int N, /* The number of integers to encode */ u32 *a, /* The integer values */ char *zBuf, /* Write the BLOB here */ int *pNBuf /* Write number of bytes if zBuf[] used here */ ){ int i, j; for(i=j=0; iiPrevDocid. The sizes are encoded as ** a blob of varints. */ static void fts3InsertDocsize( int *pRC, /* Result code */ Fts3Table *p, /* Table into which to insert */ u32 *aSz /* Sizes of each column, in tokens */ ){ char *pBlob; /* The BLOB encoding of the document size */ int nBlob; /* Number of bytes in the BLOB */ sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ int rc; /* Result code from subfunctions */ if( *pRC ) return; pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn ); if( pBlob==0 ){ *pRC = SQLITE_NOMEM; return; } fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); if( rc ){ sqlite3_free(pBlob); *pRC = rc; return; } sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); sqlite3_step(pStmt); *pRC = sqlite3_reset(pStmt); } /* ** Record 0 of the %_stat table contains a blob consisting of N varints, ** where N is the number of user defined columns in the fts3 table plus ** two. If nCol is the number of user defined columns, then values of the ** varints are set as follows: ** ** Varint 0: Total number of rows in the table. ** ** Varint 1..nCol: For each column, the total number of tokens stored in ** the column for all rows of the table. ** ** Varint 1+nCol: The total size, in bytes, of all text values in all ** columns of all rows of the table. ** */ static void fts3UpdateDocTotals( int *pRC, /* The result code */ Fts3Table *p, /* Table being updated */ u32 *aSzIns, /* Size increases */ u32 *aSzDel, /* Size decreases */ int nChng /* Change in the number of documents */ ){ char *pBlob; /* Storage for BLOB written into %_stat */ int nBlob; /* Size of BLOB written into %_stat */ u32 *a; /* Array of integers that becomes the BLOB */ sqlite3_stmt *pStmt; /* Statement for reading and writing */ int i; /* Loop counter */ int rc; /* Result code from subfunctions */ const int nStat = p->nColumn+2; if( *pRC ) return; a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat ); if( a==0 ){ *pRC = SQLITE_NOMEM; return; } pBlob = (char*)&a[nStat]; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); if( rc ){ sqlite3_free(a); *pRC = rc; return; } sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); if( sqlite3_step(pStmt)==SQLITE_ROW ){ fts3DecodeIntArray(nStat, a, sqlite3_column_blob(pStmt, 0), sqlite3_column_bytes(pStmt, 0)); }else{ memset(a, 0, sizeof(u32)*(nStat) ); } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ sqlite3_free(a); *pRC = rc; return; } if( nChng<0 && a[0]<(u32)(-nChng) ){ a[0] = 0; }else{ a[0] += nChng; } for(i=0; inColumn+1; i++){ u32 x = a[i+1]; if( x+aSzIns[i] < aSzDel[i] ){ x = 0; }else{ x = x + aSzIns[i] - aSzDel[i]; } a[i+1] = x; } fts3EncodeIntArray(nStat, a, pBlob, &nBlob); rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); if( rc ){ sqlite3_free(a); *pRC = rc; return; } sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); sqlite3_step(pStmt); *pRC = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 2); sqlite3_free(a); } /* ** Merge the entire database so that there is one segment for each ** iIndex/iLangid combination. */ static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ int bSeenDone = 0; int rc; sqlite3_stmt *pAllLangid = 0; rc = sqlite3Fts3PendingTermsFlush(p); if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); } if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); sqlite3_bind_int(pAllLangid, 2, p->nIndex); while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ int i; int iLangid = sqlite3_column_int(pAllLangid, 0); for(i=0; rc==SQLITE_OK && inIndex; i++){ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); if( rc==SQLITE_DONE ){ bSeenDone = 1; rc = SQLITE_OK; } } } rc2 = sqlite3_reset(pAllLangid); if( rc==SQLITE_OK ) rc = rc2; } sqlite3Fts3SegmentsClose(p); return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; } /* ** This function is called when the user executes the following statement: ** ** INSERT INTO () VALUES('rebuild'); ** ** The entire FTS index is discarded and rebuilt. If the table is one ** created using the content=xxx option, then the new index is based on ** the current contents of the xxx table. Otherwise, it is rebuilt based ** on the contents of the %_content table. */ static int fts3DoRebuild(Fts3Table *p){ int rc; /* Return Code */ rc = fts3DeleteAll(p, 0); if( rc==SQLITE_OK ){ u32 *aSz = 0; u32 *aSzIns = 0; u32 *aSzDel = 0; sqlite3_stmt *pStmt = 0; int nEntry = 0; /* Compose and prepare an SQL statement to loop through the content table */ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } if( rc==SQLITE_OK ){ sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3; aSz = (u32 *)sqlite3_malloc64(nByte); if( aSz==0 ){ rc = SQLITE_NOMEM; }else{ memset(aSz, 0, nByte); aSzIns = &aSz[p->nColumn+1]; aSzDel = &aSzIns[p->nColumn+1]; } } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0)); memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); for(iCol=0; rc==SQLITE_OK && iColnColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); } } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSz); } if( rc!=SQLITE_OK ){ sqlite3_finalize(pStmt); pStmt = 0; }else{ nEntry++; for(iCol=0; iCol<=p->nColumn; iCol++){ aSzIns[iCol] += aSz[iCol]; } } } if( p->bFts4 ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); } sqlite3_free(aSz); if( pStmt ){ int rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** This function opens a cursor used to read the input data for an ** incremental merge operation. Specifically, it opens a cursor to scan ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute ** level iAbsLevel. */ static int fts3IncrmergeCsr( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level to open */ int nSeg, /* Number of segments to merge */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc; /* Return Code */ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ memset(pCsr, 0, sizeof(*pCsr)); nByte = sizeof(Fts3SegReader *) * nSeg; pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte); if( pCsr->apSegment==0 ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->apSegment, 0, nByte); rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); } if( rc==SQLITE_OK ){ int i; int rc2; sqlite3_bind_int64(pStmt, 1, iAbsLevel); assert( pCsr->nSegment==0 ); for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && iapSegment[i] ); pCsr->nSegment++; } rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_OK ) rc = rc2; } return rc; } typedef struct IncrmergeWriter IncrmergeWriter; typedef struct NodeWriter NodeWriter; typedef struct Blob Blob; typedef struct NodeReader NodeReader; /* ** An instance of the following structure is used as a dynamic buffer ** to build up nodes or other blobs of data in. ** ** The function blobGrowBuffer() is used to extend the allocation. */ struct Blob { char *a; /* Pointer to allocation */ int n; /* Number of valid bytes of data in a[] */ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ }; /* ** This structure is used to build up buffers containing segment b-tree ** nodes (blocks). */ struct NodeWriter { sqlite3_int64 iBlock; /* Current block id */ Blob key; /* Last key written to the current block */ Blob block; /* Current block image */ }; /* ** An object of this type contains the state required to create or append ** to an appendable b-tree segment. */ struct IncrmergeWriter { int nLeafEst; /* Space allocated for leaf blocks */ int nWork; /* Number of leaf pages flushed */ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ int iIdx; /* Index of *output* segment in iAbsLevel+1 */ sqlite3_int64 iStart; /* Block number of first allocated block */ sqlite3_int64 iEnd; /* Block number of last allocated block */ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ u8 bNoLeafData; /* If true, store 0 for segment size */ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; }; /* ** An object of the following type is used to read data from a single ** FTS segment node. See the following functions: ** ** nodeReaderInit() ** nodeReaderNext() ** nodeReaderRelease() */ struct NodeReader { const char *aNode; int nNode; int iOff; /* Current offset within aNode[] */ /* Output variables. Containing the current node entry. */ sqlite3_int64 iChild; /* Pointer to child node */ Blob term; /* Current term */ const char *aDoclist; /* Pointer to doclist */ int nDoclist; /* Size of doclist in bytes */ }; /* ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if the allocation at pBlob->a is not already at least nMin ** bytes in size, extend (realloc) it to be so. ** ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc ** to reflect the new size of the pBlob->a[] buffer. */ static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ int nAlloc = nMin; char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc); if( a ){ pBlob->nAlloc = nAlloc; pBlob->a = a; }else{ *pRc = SQLITE_NOMEM; } } } /* ** Attempt to advance the node-reader object passed as the first argument to ** the next entry on the node. ** ** Return an error code if an error occurs (SQLITE_NOMEM is possible). ** Otherwise return SQLITE_OK. If there is no next entry on the node ** (e.g. because the current entry is the last) set NodeReader->aNode to ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output ** variables for the new entry. */ static int nodeReaderNext(NodeReader *p){ int bFirst = (p->term.n==0); /* True for first term on the node */ int nPrefix = 0; /* Bytes to copy from previous term */ int nSuffix = 0; /* Bytes to append to the prefix */ int rc = SQLITE_OK; /* Return code */ assert( p->aNode ); if( p->iChild && bFirst==0 ) p->iChild++; if( p->iOff>=p->nNode ){ /* EOF */ p->aNode = 0; }else{ if( bFirst==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); } p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){ return FTS_CORRUPT_VTAB; } blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); p->term.n = nPrefix+nSuffix; p->iOff += nSuffix; if( p->iChild==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); if( (p->nNode-p->iOff)nDoclist ){ return FTS_CORRUPT_VTAB; } p->aDoclist = &p->aNode[p->iOff]; p->iOff += p->nDoclist; } } } assert_fts3_nc( p->iOff<=p->nNode ); return rc; } /* ** Release all dynamic resources held by node-reader object *p. */ static void nodeReaderRelease(NodeReader *p){ sqlite3_free(p->term.a); } /* ** Initialize a node-reader object to read the node in buffer aNode/nNode. ** ** If successful, SQLITE_OK is returned and the NodeReader object set to ** point to the first entry on the node (if any). Otherwise, an SQLite ** error code is returned. */ static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ memset(p, 0, sizeof(NodeReader)); p->aNode = aNode; p->nNode = nNode; /* Figure out if this is a leaf or an internal node. */ if( aNode && aNode[0] ){ /* An internal node. */ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); }else{ p->iOff = 1; } return aNode ? nodeReaderNext(p) : SQLITE_OK; } /* ** This function is called while writing an FTS segment each time a leaf o ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed ** to be greater than the largest key on the node just written, but smaller ** than or equal to the first key that will be written to the next leaf ** node. ** ** The block id of the leaf node just written to disk may be found in ** (pWriter->aNodeWriter[0].iBlock) when this function is called. */ static int fts3IncrmergePush( Fts3Table *p, /* Fts3 table handle */ IncrmergeWriter *pWriter, /* Writer object */ const char *zTerm, /* Term to write to internal node */ int nTerm /* Bytes at zTerm */ ){ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; int iLayer; assert( nTerm>0 ); for(iLayer=1; ALWAYS(iLayeraNodeWriter[iLayer]; int rc = SQLITE_OK; int nPrefix; int nSuffix; int nSpace; /* Figure out how much space the key will consume if it is written to ** the current node of layer iLayer. Due to the prefix compression, ** the space required changes depending on which node the key is to ** be added to. */ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); nSuffix = nTerm - nPrefix; if(nSuffix<=0 ) return FTS_CORRUPT_VTAB; nSpace = sqlite3Fts3VarintLen(nPrefix); nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ /* If the current node of layer iLayer contains zero keys, or if adding ** the key to it will not cause it to grow to larger than nNodeSize ** bytes in size, write the key here. */ Blob *pBlk = &pNode->block; if( pBlk->n==0 ){ blobGrowBuffer(pBlk, p->nNodeSize, &rc); if( rc==SQLITE_OK ){ pBlk->a[0] = (char)iLayer; pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); } } blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); blobGrowBuffer(&pNode->key, nTerm, &rc); if( rc==SQLITE_OK ){ if( pNode->key.n ){ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); } pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); assert( nPrefix+nSuffix<=nTerm ); assert( nPrefix>=0 ); memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); pBlk->n += nSuffix; memcpy(pNode->key.a, zTerm, nTerm); pNode->key.n = nTerm; } }else{ /* Otherwise, flush the current node of layer iLayer to disk. ** Then allocate a new, empty sibling node. The key will be written ** into the parent of this node. */ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); assert( pNode->block.nAlloc>=p->nNodeSize ); pNode->block.a[0] = (char)iLayer; pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); iNextPtr = pNode->iBlock; pNode->iBlock++; pNode->key.n = 0; } if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; iPtr = iNextPtr; } assert( 0 ); return 0; } /* ** Append a term and (optionally) doclist to the FTS segment node currently ** stored in blob *pNode. The node need not contain any terms, but the ** header must be written before this function is called. ** ** A node header is a single 0x00 byte for a leaf node, or a height varint ** followed by the left-hand-child varint for an internal node. ** ** The term to be appended is passed via arguments zTerm/nTerm. For a ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal ** node, both aDoclist and nDoclist must be passed 0. ** ** If the size of the value in blob pPrev is zero, then this is the first ** term written to the node. Otherwise, pPrev contains a copy of the ** previous term. Before this function returns, it is updated to contain a ** copy of zTerm/nTerm. ** ** It is assumed that the buffer associated with pNode is already large ** enough to accommodate the new entry. The buffer associated with pPrev ** is extended by this function if requrired. ** ** If an error (i.e. OOM condition) occurs, an SQLite error code is ** returned. Otherwise, SQLITE_OK. */ static int fts3AppendToNode( Blob *pNode, /* Current node image to append to */ Blob *pPrev, /* Buffer containing previous term written */ const char *zTerm, /* New term to write */ int nTerm, /* Size of zTerm in bytes */ const char *aDoclist, /* Doclist (or NULL) to write */ int nDoclist /* Size of aDoclist in bytes */ ){ int rc = SQLITE_OK; /* Return code */ int bFirst = (pPrev->n==0); /* True if this is the first term written */ int nPrefix; /* Size of term prefix in bytes */ int nSuffix; /* Size of term suffix in bytes */ /* Node must have already been started. There must be a doclist for a ** leaf node, and there must not be a doclist for an internal node. */ assert( pNode->n>0 ); assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) ); blobGrowBuffer(pPrev, nTerm, &rc); if( rc!=SQLITE_OK ) return rc; nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); nSuffix = nTerm - nPrefix; if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; memcpy(pPrev->a, zTerm, nTerm); pPrev->n = nTerm; if( bFirst==0 ){ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); } pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); pNode->n += nSuffix; if( aDoclist ){ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); pNode->n += nDoclist; } assert( pNode->n<=pNode->nAlloc ); return SQLITE_OK; } /* ** Append the current term and doclist pointed to by cursor pCsr to the ** appendable b-tree segment opened for writing by pWriter. ** ** Return SQLITE_OK if successful, or an SQLite error code otherwise. */ static int fts3IncrmergeAppend( Fts3Table *p, /* Fts3 table handle */ IncrmergeWriter *pWriter, /* Writer object */ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ ){ const char *zTerm = pCsr->zTerm; int nTerm = pCsr->nTerm; const char *aDoclist = pCsr->aDoclist; int nDoclist = pCsr->nDoclist; int rc = SQLITE_OK; /* Return code */ int nSpace; /* Total space in bytes required on leaf */ int nPrefix; /* Size of prefix shared with previous term */ int nSuffix; /* Size of suffix (nTerm - nPrefix) */ NodeWriter *pLeaf; /* Object used to write leaf nodes */ pLeaf = &pWriter->aNodeWriter[0]; nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); nSuffix = nTerm - nPrefix; if(nSuffix<=0 ) return FTS_CORRUPT_VTAB; nSpace = sqlite3Fts3VarintLen(nPrefix); nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; /* If the current block is not empty, and if adding this term/doclist ** to the current block would make it larger than Fts3Table.nNodeSize ** bytes, write this block out to the database. */ if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); pWriter->nWork++; /* Add the current term to the parent node. The term added to the ** parent must: ** ** a) be greater than the largest term on the leaf node just written ** to the database (still available in pLeaf->key), and ** ** b) be less than or equal to the term about to be added to the new ** leaf node (zTerm/nTerm). ** ** In other words, it must be the prefix of zTerm 1 byte longer than ** the common prefix (if any) of zTerm and pWriter->zTerm. */ if( rc==SQLITE_OK ){ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); } /* Advance to the next output block */ pLeaf->iBlock++; pLeaf->key.n = 0; pLeaf->block.n = 0; nSuffix = nTerm; nSpace = 1; nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; } pWriter->nLeafData += nSpace; blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); if( rc==SQLITE_OK ){ if( pLeaf->block.n==0 ){ pLeaf->block.n = 1; pLeaf->block.a[0] = '\0'; } rc = fts3AppendToNode( &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist ); } return rc; } /* ** This function is called to release all dynamic resources held by the ** merge-writer object pWriter, and if no error has occurred, to flush ** all outstanding node buffers held by pWriter to disk. ** ** If *pRc is not SQLITE_OK when this function is called, then no attempt ** is made to write any data to disk. Instead, this function serves only ** to release outstanding resources. ** ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while ** flushing buffers to disk, *pRc is set to an SQLite error code before ** returning. */ static void fts3IncrmergeRelease( Fts3Table *p, /* FTS3 table handle */ IncrmergeWriter *pWriter, /* Merge-writer object */ int *pRc /* IN/OUT: Error code */ ){ int i; /* Used to iterate through non-root layers */ int iRoot; /* Index of root in pWriter->aNodeWriter */ NodeWriter *pRoot; /* NodeWriter for root node */ int rc = *pRc; /* Error code */ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment ** root node. If the segment fits entirely on a single leaf node, iRoot ** will be set to 0. If the root node is the parent of the leaves, iRoot ** will be 1. And so on. */ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; if( pNode->block.n>0 ) break; assert( *pRc || pNode->block.nAlloc==0 ); assert( *pRc || pNode->key.nAlloc==0 ); sqlite3_free(pNode->block.a); sqlite3_free(pNode->key.a); } /* Empty output segment. This is a no-op. */ if( iRoot<0 ) return; /* The entire output segment fits on a single node. Normally, this means ** the node would be stored as a blob in the "root" column of the %_segdir ** table. However, this is not permitted in this case. The problem is that ** space has already been reserved in the %_segments table, and so the ** start_block and end_block fields of the %_segdir table must be populated. ** And, by design or by accident, released versions of FTS cannot handle ** segments that fit entirely on the root node with start_block!=0. ** ** Instead, create a synthetic root node that contains nothing but a ** pointer to the single content node. So that the segment consists of a ** single leaf and a single interior (root) node. ** ** Todo: Better might be to defer allocating space in the %_segments ** table until we are sure it is needed. */ if( iRoot==0 ){ Blob *pBlock = &pWriter->aNodeWriter[1].block; blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); if( rc==SQLITE_OK ){ pBlock->a[0] = 0x01; pBlock->n = 1 + sqlite3Fts3PutVarint( &pBlock->a[1], pWriter->aNodeWriter[0].iBlock ); } iRoot = 1; } pRoot = &pWriter->aNodeWriter[iRoot]; /* Flush all currently outstanding nodes to disk. */ for(i=0; iaNodeWriter[i]; if( pNode->block.n>0 && rc==SQLITE_OK ){ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); } sqlite3_free(pNode->block.a); sqlite3_free(pNode->key.a); } /* Write the %_segdir record. */ if( rc==SQLITE_OK ){ rc = fts3WriteSegdir(p, pWriter->iAbsLevel+1, /* level */ pWriter->iIdx, /* idx */ pWriter->iStart, /* start_block */ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ pWriter->iEnd, /* end_block */ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ pRoot->block.a, pRoot->block.n /* root */ ); } sqlite3_free(pRoot->block.a); sqlite3_free(pRoot->key.a); *pRc = rc; } /* ** Compare the term in buffer zLhs (size in bytes nLhs) with that in ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of ** the other, it is considered to be smaller than the other. ** ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve ** if it is greater. */ static int fts3TermCmp( const char *zLhs, int nLhs, /* LHS of comparison */ const char *zRhs, int nRhs /* RHS of comparison */ ){ int nCmp = MIN(nLhs, nRhs); int res; if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){ res = memcmp(zLhs, zRhs, nCmp); }else{ res = 0; } if( res==0 ) res = nLhs - nRhs; return res; } /* ** Query to see if the entry in the %_segments table with blockid iEnd is ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before ** returning. Otherwise, set *pbRes to 0. ** ** Or, if an error occurs while querying the database, return an SQLite ** error code. The final value of *pbRes is undefined in this case. ** ** This is used to test if a segment is an "appendable" segment. If it ** is, then a NULL entry has been inserted into the %_segments table ** with blockid %_segdir.end_block. */ static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ int bRes = 0; /* Result to set *pbRes to */ sqlite3_stmt *pCheck = 0; /* Statement to query database with */ int rc; /* Return code */ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck, 1, iEnd); if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; rc = sqlite3_reset(pCheck); } *pbRes = bRes; return rc; } /* ** This function is called when initializing an incremental-merge operation. ** It checks if the existing segment with index value iIdx at absolute level ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the ** merge-writer object *pWriter is initialized to write to it. ** ** An existing segment can be appended to by an incremental merge if: ** ** * It was initially created as an appendable segment (with all required ** space pre-allocated), and ** ** * The first key read from the input (arguments zKey and nKey) is ** greater than the largest key currently stored in the potential ** output segment. */ static int fts3IncrmergeLoad( Fts3Table *p, /* Fts3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ int iIdx, /* Index of candidate output segment */ const char *zKey, /* First key to write */ int nKey, /* Number of bytes in nKey */ IncrmergeWriter *pWriter /* Populate this object */ ){ int rc; /* Return code */ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); if( rc==SQLITE_OK ){ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ int nRoot = 0; /* Size of aRoot[] in bytes */ int rc2; /* Return code from sqlite3_reset() */ int bAppendable = 0; /* Set to true if segment is appendable */ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); sqlite3_bind_int(pSelect, 2, iIdx); if( sqlite3_step(pSelect)==SQLITE_ROW ){ iStart = sqlite3_column_int64(pSelect, 1); iLeafEnd = sqlite3_column_int64(pSelect, 2); fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); if( pWriter->nLeafData<0 ){ pWriter->nLeafData = pWriter->nLeafData * -1; } pWriter->bNoLeafData = (pWriter->nLeafData==0); nRoot = sqlite3_column_bytes(pSelect, 4); aRoot = sqlite3_column_blob(pSelect, 4); if( aRoot==0 ){ sqlite3_reset(pSelect); return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB; } }else{ return sqlite3_reset(pSelect); } /* Check for the zero-length marker in the %_segments table */ rc = fts3IsAppendable(p, iEnd, &bAppendable); /* Check that zKey/nKey is larger than the largest key the candidate */ if( rc==SQLITE_OK && bAppendable ){ char *aLeaf = 0; int nLeaf = 0; rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); if( rc==SQLITE_OK ){ NodeReader reader; for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ assert( reader.aNode ); } if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ bAppendable = 0; } nodeReaderRelease(&reader); } sqlite3_free(aLeaf); } if( rc==SQLITE_OK && bAppendable ){ /* It is possible to append to this segment. Set up the IncrmergeWriter ** object to do so. */ int i; int nHeight = (int)aRoot[0]; NodeWriter *pNode; if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){ sqlite3_reset(pSelect); return FTS_CORRUPT_VTAB; } pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; pWriter->iStart = iStart; pWriter->iEnd = iEnd; pWriter->iAbsLevel = iAbsLevel; pWriter->iIdx = iIdx; for(i=nHeight+1; iaNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; } pNode = &pWriter->aNodeWriter[nHeight]; pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc ); if( rc==SQLITE_OK ){ memcpy(pNode->block.a, aRoot, nRoot); pNode->block.n = nRoot; memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING); } for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ NodeReader reader; memset(&reader, 0, sizeof(reader)); pNode = &pWriter->aNodeWriter[i]; if( pNode->block.a){ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); blobGrowBuffer(&pNode->key, reader.term.n, &rc); if( rc==SQLITE_OK ){ assert_fts3_nc( reader.term.n>0 || reader.aNode==0 ); if( reader.term.n>0 ){ memcpy(pNode->key.a, reader.term.a, reader.term.n); } pNode->key.n = reader.term.n; if( i>0 ){ char *aBlock = 0; int nBlock = 0; pNode = &pWriter->aNodeWriter[i-1]; pNode->iBlock = reader.iChild; rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0); blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc ); if( rc==SQLITE_OK ){ memcpy(pNode->block.a, aBlock, nBlock); pNode->block.n = nBlock; memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING); } sqlite3_free(aBlock); } } } nodeReaderRelease(&reader); } } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** Determine the largest segment index value that exists within absolute ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus ** one before returning SQLITE_OK. Or, if there are no segments at all ** within level iAbsLevel, set *piIdx to zero. ** ** If an error occurs, return an SQLite error code. The final value of ** *piIdx is undefined in this case. */ static int fts3IncrmergeOutputIdx( Fts3Table *p, /* FTS Table handle */ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ int *piIdx /* OUT: Next free index at iAbsLevel+1 */ ){ int rc; sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); sqlite3_step(pOutputIdx); *piIdx = sqlite3_column_int(pOutputIdx, 0); rc = sqlite3_reset(pOutputIdx); } return rc; } /* ** Allocate an appendable output segment on absolute level iAbsLevel+1 ** with idx value iIdx. ** ** In the %_segdir table, a segment is defined by the values in three ** columns: ** ** start_block ** leaves_end_block ** end_block ** ** When an appendable segment is allocated, it is estimated that the ** maximum number of leaf blocks that may be required is the sum of the ** number of leaf blocks consumed by the input segments, plus the number ** of input segments, multiplied by two. This value is stored in stack ** variable nLeafEst. ** ** A total of 16*nLeafEst blocks are allocated when an appendable segment ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous ** array of leaf nodes starts at the first block allocated. The array ** of interior nodes that are parents of the leaf nodes start at block ** (start_block + (1 + end_block - start_block) / 16). And so on. ** ** In the actual code below, the value "16" is replaced with the ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. */ static int fts3IncrmergeWriter( Fts3Table *p, /* Fts3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ int iIdx, /* Index of new output segment */ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ IncrmergeWriter *pWriter /* Populate this object */ ){ int rc; /* Return Code */ int i; /* Iterator variable */ int nLeafEst = 0; /* Blocks allocated for leaf nodes */ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ /* Calculate nLeafEst. */ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ nLeafEst = sqlite3_column_int(pLeafEst, 0); } rc = sqlite3_reset(pLeafEst); } if( rc!=SQLITE_OK ) return rc; /* Calculate the first block to use in the output segment */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); pWriter->iEnd = pWriter->iStart - 1; pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; } rc = sqlite3_reset(pFirstBlock); } if( rc!=SQLITE_OK ) return rc; /* Insert the marker in the %_segments table to make sure nobody tries ** to steal the space just allocated. This is also used to identify ** appendable segments. */ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); if( rc!=SQLITE_OK ) return rc; pWriter->iAbsLevel = iAbsLevel; pWriter->nLeafEst = nLeafEst; pWriter->iIdx = iIdx; /* Set up the array of NodeWriter objects */ for(i=0; iaNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; } return SQLITE_OK; } /* ** Remove an entry from the %_segdir table. This involves running the ** following two statements: ** ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx ** ** The DELETE statement removes the specific %_segdir level. The UPDATE ** statement ensures that the remaining segments have contiguously allocated ** idx values. */ static int fts3RemoveSegdirEntry( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ int iIdx /* Index of %_segdir entry to delete */ ){ int rc; /* Return code */ sqlite3_stmt *pDelete = 0; /* DELETE statement */ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, iAbsLevel); sqlite3_bind_int(pDelete, 2, iIdx); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } return rc; } /* ** One or more segments have just been removed from absolute level iAbsLevel. ** Update the 'idx' values of the remaining segments in the level so that ** the idx values are a contiguous sequence starting from 0. */ static int fts3RepackSegdirLevel( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel /* Absolute level to repack */ ){ int rc; /* Return code */ int *aIdx = 0; /* Array of remaining idx values */ int nIdx = 0; /* Valid entries in aIdx[] */ int nAlloc = 0; /* Allocated size of aIdx[] */ int i; /* Iterator variable */ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int64(pSelect, 1, iAbsLevel); while( SQLITE_ROW==sqlite3_step(pSelect) ){ if( nIdx>=nAlloc ){ int *aNew; nAlloc += 16; aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int)); if( !aNew ){ rc = SQLITE_NOMEM; break; } aIdx = aNew; } aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); } if( rc==SQLITE_OK ){ sqlite3_bind_int64(pUpdate, 2, iAbsLevel); } assert( p->bIgnoreSavepoint==0 ); p->bIgnoreSavepoint = 1; for(i=0; rc==SQLITE_OK && ibIgnoreSavepoint = 0; sqlite3_free(aIdx); return rc; } static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ pNode->a[0] = (char)iHeight; if( iChild ){ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); }else{ assert( pNode->nAlloc>=1 ); pNode->n = 1; } } /* ** The first two arguments are a pointer to and the size of a segment b-tree ** node. The node may be a leaf or an internal node. ** ** This function creates a new node image in blob object *pNew by copying ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. */ static int fts3TruncateNode( const char *aNode, /* Current node image */ int nNode, /* Size of aNode in bytes */ Blob *pNew, /* OUT: Write new node image here */ const char *zTerm, /* Omit all terms smaller than this */ int nTerm, /* Size of zTerm in bytes */ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ ){ NodeReader reader; /* Reader object */ Blob prev = {0, 0, 0}; /* Previous term written to new node */ int rc = SQLITE_OK; /* Return code */ int bLeaf; /* True for a leaf node */ if( nNode<1 ) return FTS_CORRUPT_VTAB; bLeaf = aNode[0]=='\0'; /* Allocate required output space */ blobGrowBuffer(pNew, nNode, &rc); if( rc!=SQLITE_OK ) return rc; pNew->n = 0; /* Populate new node buffer */ for(rc = nodeReaderInit(&reader, aNode, nNode); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ if( pNew->n==0 ){ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); if( res<0 || (bLeaf==0 && res==0) ) continue; fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } rc = fts3AppendToNode( pNew, &prev, reader.term.a, reader.term.n, reader.aDoclist, reader.nDoclist ); if( rc!=SQLITE_OK ) break; } if( pNew->n==0 ){ fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } assert( pNew->n<=pNew->nAlloc ); nodeReaderRelease(&reader); sqlite3_free(prev.a); return rc; } /* ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute ** level iAbsLevel. This may involve deleting entries from the %_segments ** table, and modifying existing entries in both the %_segments and %_segdir ** tables. ** ** SQLITE_OK is returned if the segment is updated successfully. Or an ** SQLite error code otherwise. */ static int fts3TruncateSegment( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ int iIdx, /* Index within level of segment to modify */ const char *zTerm, /* Remove terms smaller than this */ int nTerm /* Number of bytes in buffer zTerm */ ){ int rc = SQLITE_OK; /* Return code */ Blob root = {0,0,0}; /* New root page image */ Blob block = {0,0,0}; /* Buffer used for any other block */ sqlite3_int64 iBlock = 0; /* Block id */ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); if( rc==SQLITE_OK ){ int rc2; /* sqlite3_reset() return code */ sqlite3_bind_int64(pFetch, 1, iAbsLevel); sqlite3_bind_int(pFetch, 2, iIdx); if( SQLITE_ROW==sqlite3_step(pFetch) ){ const char *aRoot = sqlite3_column_blob(pFetch, 4); int nRoot = sqlite3_column_bytes(pFetch, 4); iOldStart = sqlite3_column_int64(pFetch, 1); rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); } rc2 = sqlite3_reset(pFetch); if( rc==SQLITE_OK ) rc = rc2; } while( rc==SQLITE_OK && iBlock ){ char *aBlock = 0; int nBlock = 0; iNewStart = iBlock; rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); if( rc==SQLITE_OK ){ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); } if( rc==SQLITE_OK ){ rc = fts3WriteSegment(p, iNewStart, block.a, block.n); } sqlite3_free(aBlock); } /* Variable iNewStart now contains the first valid leaf node. */ if( rc==SQLITE_OK && iNewStart ){ sqlite3_stmt *pDel = 0; rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDel, 1, iOldStart); sqlite3_bind_int64(pDel, 2, iNewStart-1); sqlite3_step(pDel); rc = sqlite3_reset(pDel); } } if( rc==SQLITE_OK ){ sqlite3_stmt *pChomp = 0; rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pChomp, 1, iNewStart); sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); sqlite3_bind_int64(pChomp, 3, iAbsLevel); sqlite3_bind_int(pChomp, 4, iIdx); sqlite3_step(pChomp); rc = sqlite3_reset(pChomp); sqlite3_bind_null(pChomp, 2); } } sqlite3_free(root.a); sqlite3_free(block.a); return rc; } /* ** This function is called after an incrmental-merge operation has run to ** merge (or partially merge) two or more segments from absolute level ** iAbsLevel. ** ** Each input segment is either removed from the db completely (if all of ** its data was copied to the output segment by the incrmerge operation) ** or modified in place so that it no longer contains those entries that ** have been duplicated in the output segment. */ static int fts3IncrmergeChomp( Fts3Table *p, /* FTS table handle */ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ int *pnRem /* Number of segments not deleted */ ){ int i; int nRem = 0; int rc = SQLITE_OK; for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ Fts3SegReader *pSeg = 0; int j; /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding ** somewhere in the pCsr->apSegment[] array. */ for(j=0; ALWAYS(jnSegment); j++){ pSeg = pCsr->apSegment[j]; if( pSeg->iIdx==i ) break; } assert( jnSegment && pSeg->iIdx==i ); if( pSeg->aNode==0 ){ /* Seg-reader is at EOF. Remove the entire input segment. */ rc = fts3DeleteSegment(p, pSeg); if( rc==SQLITE_OK ){ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); } *pnRem = 0; }else{ /* The incremental merge did not copy all the data from this ** segment to the upper level. The segment is modified in place ** so that it contains no keys smaller than zTerm/nTerm. */ const char *zTerm = pSeg->zTerm; int nTerm = pSeg->nTerm; rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); nRem++; } } if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ rc = fts3RepackSegdirLevel(p, iAbsLevel); } *pnRem = nRem; return rc; } /* ** Store an incr-merge hint in the database. */ static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ sqlite3_stmt *pReplace = 0; int rc; /* Return code */ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); sqlite3_step(pReplace); rc = sqlite3_reset(pReplace); sqlite3_bind_null(pReplace, 2); } return rc; } /* ** Load an incr-merge hint from the database. The incr-merge hint, if one ** exists, is stored in the rowid==1 row of the %_stat table. ** ** If successful, populate blob *pHint with the value read from the %_stat ** table and return SQLITE_OK. Otherwise, if an error occurs, return an ** SQLite error code. */ static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ sqlite3_stmt *pSelect = 0; int rc; pHint->n = 0; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); if( SQLITE_ROW==sqlite3_step(pSelect) ){ const char *aHint = sqlite3_column_blob(pSelect, 0); int nHint = sqlite3_column_bytes(pSelect, 0); if( aHint ){ blobGrowBuffer(pHint, nHint, &rc); if( rc==SQLITE_OK ){ if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint); pHint->n = nHint; } } } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry ** consists of two varints, the absolute level number of the input segments ** and the number of input segments. ** ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, ** set *pRc to an SQLite error code before returning. */ static void fts3IncrmergeHintPush( Blob *pHint, /* Hint blob to append to */ i64 iAbsLevel, /* First varint to store in hint */ int nInput, /* Second varint to store in hint */ int *pRc /* IN/OUT: Error code */ ){ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); if( *pRc==SQLITE_OK ){ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); } } /* ** Read the last entry (most recently pushed) from the hint blob *pHint ** and then remove the entry. Write the two values read to *piAbsLevel and ** *pnInput before returning. ** ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. */ static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ const int nHint = pHint->n; int i; i = pHint->n-1; if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB; while( i>0 && (pHint->a[i-1] & 0x80) ) i--; if( i==0 ) return FTS_CORRUPT_VTAB; i--; while( i>0 && (pHint->a[i-1] & 0x80) ) i--; pHint->n = i; i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); i += fts3GetVarint32(&pHint->a[i], pnInput); assert( i<=nHint ); if( i!=nHint ) return FTS_CORRUPT_VTAB; return SQLITE_OK; } /* ** Attempt an incremental merge that writes nMerge leaf blocks. ** ** Incremental merges happen nMin segments at a time. The segments ** to be merged are the nMin oldest segments (the ones with the smallest ** values for the _segdir.idx field) in the highest level that contains ** at least nMin segments. Multiple merges might occur in an attempt to ** write the quota of nMerge leaf blocks. */ SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ int rc; /* Return code */ int nRem = nMerge; /* Number of leaf pages yet to be written */ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ IncrmergeWriter *pWriter; /* Writer object */ int nSeg = 0; /* Number of input segments */ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ int bDirtyHint = 0; /* True if blob 'hint' has been modified */ /* Allocate space for the cursor, filter and writer objects */ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc); if( !pWriter ) return SQLITE_NOMEM; pFilter = (Fts3SegFilter *)&pWriter[1]; pCsr = (Fts3MultiSegReader *)&pFilter[1]; rc = fts3IncrmergeHintLoad(p, &hint); while( rc==SQLITE_OK && nRem>0 ){ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ int bUseHint = 0; /* True if attempting to append */ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ /* Search the %_segdir table for the absolute level with the smallest ** relative level number that contains at least nMin segments, if any. ** If one is found, set iAbsLevel to the absolute level number and ** nSeg to nMin. If no level with at least nMin segments can be found, ** set nSeg to -1. */ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin)); if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ iAbsLevel = sqlite3_column_int64(pFindLevel, 0); nSeg = sqlite3_column_int(pFindLevel, 1); assert( nSeg>=2 ); }else{ nSeg = -1; } rc = sqlite3_reset(pFindLevel); /* If the hint read from the %_stat table is not empty, check if the ** last entry in it specifies a relative level smaller than or equal ** to the level identified by the block above (if any). If so, this ** iteration of the loop will work on merging at the hinted level. */ if( rc==SQLITE_OK && hint.n ){ int nHint = hint.n; sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ int nHintSeg = 0; /* Hint number of segments */ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ /* Based on the scan in the block above, it is known that there ** are no levels with a relative level smaller than that of ** iAbsLevel with more than nSeg segments, or if nSeg is -1, ** no levels with more than nMin segments. Use this to limit the ** value of nHintSeg to avoid a large memory allocation in case the ** merge-hint is corrupt*/ iAbsLevel = iHintAbsLevel; nSeg = MIN(MAX(nMin,nSeg), nHintSeg); bUseHint = 1; bDirtyHint = 1; }else{ /* This undoes the effect of the HintPop() above - so that no entry ** is removed from the hint blob. */ hint.n = nHint; } } /* If nSeg is less that zero, then there is no level with at least ** nMin segments and no hint in the %_stat table. No work to do. ** Exit early in this case. */ if( nSeg<=0 ) break; assert( nMod<=0x7FFFFFFF ); if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){ rc = FTS_CORRUPT_VTAB; break; } /* Open a cursor to iterate through the contents of the oldest nSeg ** indexes of absolute level iAbsLevel. If this cursor is opened using ** the 'hint' parameters, it is possible that there are less than nSeg ** segments available in level iAbsLevel. In this case, no work is ** done on iAbsLevel - fall through to the next iteration of the loop ** to start work on some other level. */ memset(pWriter, 0, nAlloc); pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; if( rc==SQLITE_OK ){ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); assert( bUseHint==1 || bUseHint==0 ); if( iIdx==0 || (bUseHint && iIdx==1) ){ int bIgnore = 0; rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); if( bIgnore ){ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; } } } if( rc==SQLITE_OK ){ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); } if( SQLITE_OK==rc && pCsr->nSegment==nSeg && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) ){ int bEmpty = 0; rc = sqlite3Fts3SegReaderStep(p, pCsr); if( rc==SQLITE_OK ){ bEmpty = 1; }else if( rc!=SQLITE_ROW ){ sqlite3Fts3SegReaderFinish(pCsr); break; } if( bUseHint && iIdx>0 ){ const char *zKey = pCsr->zTerm; int nKey = pCsr->nTerm; rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); }else{ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); } if( rc==SQLITE_OK && pWriter->nLeafEst ){ fts3LogMerge(nSeg, iAbsLevel); if( bEmpty==0 ){ do { rc = fts3IncrmergeAppend(p, pWriter, pCsr); if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; }while( rc==SQLITE_ROW ); } /* Update or delete the input segments */ if( rc==SQLITE_OK ){ nRem -= (1 + pWriter->nWork); rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); if( nSeg!=0 ){ bDirtyHint = 1; fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); } } } if( nSeg!=0 ){ pWriter->nLeafData = pWriter->nLeafData * -1; } fts3IncrmergeRelease(p, pWriter, &rc); if( nSeg==0 && pWriter->bNoLeafData==0 ){ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); } } sqlite3Fts3SegReaderFinish(pCsr); } /* Write the hint values into the %_stat table for the next incr-merger */ if( bDirtyHint && rc==SQLITE_OK ){ rc = fts3IncrmergeHintStore(p, &hint); } sqlite3_free(pWriter); sqlite3_free(hint.a); return rc; } /* ** Convert the text beginning at *pz into an integer and return ** its value. Advance *pz to point to the first character past ** the integer. ** ** This function used for parameters to merge= and incrmerge= ** commands. */ static int fts3Getint(const char **pz){ const char *z = *pz; int i = 0; while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0'; *pz = z; return i; } /* ** Process statements of the form: ** ** INSERT INTO table(table) VALUES('merge=A,B'); ** ** A and B are integers that decode to be the number of leaf pages ** written for the merge, and the minimum number of segments on a level ** before it will be selected for a merge, respectively. */ static int fts3DoIncrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing "A,B" */ ){ int rc; int nMin = (MergeCount(p) / 2); int nMerge = 0; const char *z = zParam; /* Read the first integer value */ nMerge = fts3Getint(&z); /* If the first integer value is followed by a ',', read the second ** integer value. */ if( z[0]==',' && z[1]!='\0' ){ z++; nMin = fts3Getint(&z); } if( z[0]!='\0' || nMin<2 ){ rc = SQLITE_ERROR; }else{ rc = SQLITE_OK; if( !p->bHasStat ){ assert( p->bFts4==0 ); sqlite3Fts3CreateStatTable(&rc, p); } if( rc==SQLITE_OK ){ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); } sqlite3Fts3SegmentsClose(p); } return rc; } /* ** Process statements of the form: ** ** INSERT INTO table(table) VALUES('automerge=X'); ** ** where X is an integer. X==0 means to turn automerge off. X!=0 means ** turn it on. The setting is persistent. */ static int fts3DoAutoincrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing boolean */ ){ int rc = SQLITE_OK; sqlite3_stmt *pStmt = 0; p->nAutoincrmerge = fts3Getint(&zParam); if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){ p->nAutoincrmerge = 8; } if( !p->bHasStat ){ assert( p->bFts4==0 ); sqlite3Fts3CreateStatTable(&rc, p); if( rc ) return rc; } rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); if( rc ) return rc; sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); return rc; } /* ** Return a 64-bit checksum for the FTS index entry specified by the ** arguments to this function. */ static u64 fts3ChecksumEntry( const char *zTerm, /* Pointer to buffer containing term */ int nTerm, /* Size of zTerm in bytes */ int iLangid, /* Language id for current row */ int iIndex, /* Index (0..Fts3Table.nIndex-1) */ i64 iDocid, /* Docid for current row. */ int iCol, /* Column number */ int iPos /* Position */ ){ int i; u64 ret = (u64)iDocid; ret += (ret<<3) + iLangid; ret += (ret<<3) + iIndex; ret += (ret<<3) + iCol; ret += (ret<<3) + iPos; for(i=0; inIndex-1) */ int *pRc /* OUT: Return code */ ){ Fts3SegFilter filter; Fts3MultiSegReader csr; int rc; u64 cksum = 0; assert( *pRc==SQLITE_OK ); memset(&filter, 0, sizeof(filter)); memset(&csr, 0, sizeof(csr)); filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; filter.flags |= FTS3_SEGMENT_SCAN; rc = sqlite3Fts3SegReaderCursor( p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); } if( rc==SQLITE_OK ){ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ char *pCsr = csr.aDoclist; char *pEnd = &pCsr[csr.nDoclist]; i64 iDocid = 0; i64 iCol = 0; u64 iPos = 0; pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); while( pCsrbDescIdx ){ iDocid = (i64)((u64)iDocid - iVal); }else{ iDocid = (i64)((u64)iDocid + iVal); } } }else{ iPos += (iVal - 2); cksum = cksum ^ fts3ChecksumEntry( csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, (int)iCol, (int)iPos ); } } } } } sqlite3Fts3SegReaderFinish(&csr); *pRc = rc; return cksum; } /* ** Check if the contents of the FTS index match the current contents of the ** content table. If no error occurs and the contents do match, set *pbOk ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk ** to false before returning. ** ** If an error occurs (e.g. an OOM or IO error), return an SQLite error ** code. The final value of *pbOk is undefined in this case. */ static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ int rc = SQLITE_OK; /* Return code */ u64 cksum1 = 0; /* Checksum based on FTS index contents */ u64 cksum2 = 0; /* Checksum based on %_content contents */ sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ /* This block calculates the checksum according to the FTS index. */ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); sqlite3_bind_int(pAllLangid, 2, p->nIndex); while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ int iLangid = sqlite3_column_int(pAllLangid, 0); int i; for(i=0; inIndex; i++){ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); } } rc2 = sqlite3_reset(pAllLangid); if( rc==SQLITE_OK ) rc = rc2; } /* This block calculates the checksum according to the %_content table */ if( rc==SQLITE_OK ){ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; sqlite3_stmt *pStmt = 0; char *zSql; zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ i64 iDocid = sqlite3_column_int64(pStmt, 0); int iLang = langidFromSelect(p, pStmt); int iCol; for(iCol=0; rc==SQLITE_OK && iColnColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); sqlite3_tokenizer_cursor *pT = 0; rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); if( rc==SQLITE_OK ){ int i; cksum2 = cksum2 ^ fts3ChecksumEntry( zToken, nToken, iLang, 0, iDocid, iCol, iPos ); for(i=1; inIndex; i++){ if( p->aIndex[i].nPrefix<=nToken ){ cksum2 = cksum2 ^ fts3ChecksumEntry( zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos ); } } } } if( pT ) pModule->xClose(pT); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } } } sqlite3_finalize(pStmt); } *pbOk = (cksum1==cksum2); return rc; } /* ** Run the integrity-check. If no error occurs and the current contents of ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. ** ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite ** error code. ** ** The integrity-check works as follows. For each token and indexed token ** prefix in the document set, a 64-bit checksum is calculated (by code ** in fts3ChecksumEntry()) based on the following: ** ** + The index number (0 for the main index, 1 for the first prefix ** index etc.), ** + The token (or token prefix) text itself, ** + The language-id of the row it appears in, ** + The docid of the row it appears in, ** + The column it appears in, and ** + The tokens position within that column. ** ** The checksums for all entries in the index are XORed together to create ** a single checksum for the entire index. ** ** The integrity-check code calculates the same checksum in two ways: ** ** 1. By scanning the contents of the FTS index, and ** 2. By scanning and tokenizing the content table. ** ** If the two checksums are identical, the integrity-check is deemed to have ** passed. */ static int fts3DoIntegrityCheck( Fts3Table *p /* FTS3 table handle */ ){ int rc; int bOk = 0; rc = fts3IntegrityCheck(p, &bOk); if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB; return rc; } /* ** Handle a 'special' INSERT of the form: ** ** "INSERT INTO tbl(tbl) VALUES()" ** ** Argument pVal contains the result of . Currently the only ** meaningful value to insert is the text 'optimize'. */ static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ int rc = SQLITE_ERROR; /* Return Code */ const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ rc = fts3DoOptimize(p, 0); }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ rc = fts3DoRebuild(p); }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ rc = fts3DoIntegrityCheck(p); }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ rc = fts3DoIncrmerge(p, &zVal[6]); }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ rc = fts3DoAutoincrmerge(p, &zVal[10]); #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) }else{ int v; if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ v = atoi(&zVal[9]); if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v; rc = SQLITE_OK; }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ v = atoi(&zVal[11]); if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v; rc = SQLITE_OK; }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){ p->bNoIncrDoclist = atoi(&zVal[21]); rc = SQLITE_OK; }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){ v = atoi(&zVal[11]); if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v; rc = SQLITE_OK; } #endif } return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** Delete all cached deferred doclists. Deferred doclists are cached ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. */ SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ Fts3DeferredToken *pDef; for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ fts3PendingListDelete(pDef->pList); pDef->pList = 0; } } /* ** Free all entries in the pCsr->pDeffered list. Entries are added to ** this list using sqlite3Fts3DeferToken(). */ SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ Fts3DeferredToken *pDef; Fts3DeferredToken *pNext; for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ pNext = pDef->pNext; fts3PendingListDelete(pDef->pList); sqlite3_free(pDef); } pCsr->pDeferred = 0; } /* ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list ** based on the row that pCsr currently points to. ** ** A deferred-doclist is like any other doclist with position information ** included, except that it only contains entries for a single row of the ** table, not for all rows. */ SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return code */ if( pCsr->pDeferred ){ int i; /* Used to iterate through table columns */ sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; sqlite3_tokenizer *pT = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pT->pModule; assert( pCsr->isRequireSeek==0 ); iDocid = sqlite3_column_int64(pCsr->pStmt, 0); for(i=0; inColumn && rc==SQLITE_OK; i++){ if( p->abNotindexed[i]==0 ){ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); sqlite3_tokenizer_cursor *pTC = 0; rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ Fts3PhraseToken *pPT = pDef->pToken; if( (pDef->iCol>=p->nColumn || pDef->iCol==i) && (pPT->bFirst==0 || iPos==0) && (pPT->n==nToken || (pPT->isPrefix && pPT->nz, pPT->n)) ){ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); } } } if( pTC ) pModule->xClose(pTC); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } } for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ if( pDef->pList ){ rc = fts3PendingListAppendVarint(&pDef->pList, 0); } } } return rc; } SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList( Fts3DeferredToken *p, char **ppData, int *pnData ){ char *pRet; int nSkip; sqlite3_int64 dummy; *ppData = 0; *pnData = 0; if( p->pList==0 ){ return SQLITE_OK; } pRet = (char *)sqlite3_malloc64(p->pList->nData); if( !pRet ) return SQLITE_NOMEM; nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); *pnData = p->pList->nData - nSkip; *ppData = pRet; memcpy(pRet, &p->pList->aData[nSkip], *pnData); return SQLITE_OK; } /* ** Add an entry for token pToken to the pCsr->pDeferred list. */ SQLITE_PRIVATE int sqlite3Fts3DeferToken( Fts3Cursor *pCsr, /* Fts3 table cursor */ Fts3PhraseToken *pToken, /* Token to defer */ int iCol /* Column that token must appear in (or -1) */ ){ Fts3DeferredToken *pDeferred; pDeferred = sqlite3_malloc64(sizeof(*pDeferred)); if( !pDeferred ){ return SQLITE_NOMEM; } memset(pDeferred, 0, sizeof(*pDeferred)); pDeferred->pToken = pToken; pDeferred->pNext = pCsr->pDeferred; pDeferred->iCol = iCol; pCsr->pDeferred = pDeferred; assert( pToken->pDeferred==0 ); pToken->pDeferred = pDeferred; return SQLITE_OK; } #endif /* ** SQLite value pRowid contains the rowid of a row that may or may not be ** present in the FTS3 table. If it is, delete it and adjust the contents ** of subsiduary data structures accordingly. */ static int fts3DeleteByRowid( Fts3Table *p, sqlite3_value *pRowid, int *pnChng, /* IN/OUT: Decrement if row is deleted */ u32 *aSzDel ){ int rc = SQLITE_OK; /* Return code */ int bFound = 0; /* True if *pRowid really is in the table */ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); if( bFound && rc==SQLITE_OK ){ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ rc = fts3IsEmpty(p, pRowid, &isEmpty); if( rc==SQLITE_OK ){ if( isEmpty ){ /* Deleting this row means the whole table is empty. In this case ** delete the contents of all three tables and throw away any ** data in the pendingTerms hash table. */ rc = fts3DeleteAll(p, 1); *pnChng = 0; memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); }else{ *pnChng = *pnChng - 1; if( p->zContentTbl==0 ){ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); } if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); } } } } return rc; } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. The schema of the virtual table being: ** ** CREATE TABLE
    ( ** , **
    HIDDEN, ** docid HIDDEN, ** HIDDEN ** ); ** ** */ SQLITE_PRIVATE int sqlite3Fts3UpdateMethod( sqlite3_vtab *pVtab, /* FTS3 vtab object */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ u32 *aSzIns = 0; /* Sizes of inserted documents */ u32 *aSzDel = 0; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ int bInsertDone = 0; /* At this point it must be known if the %_stat table exists or not. ** So bHasStat may not be 2. */ assert( p->bHasStat==0 || p->bHasStat==1 ); assert( p->pSegments==0 ); assert( nArg==1 /* DELETE operations */ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ ); /* Check for a "special" INSERT operation. One of the form: ** ** INSERT INTO xyz(xyz) VALUES('command'); */ if( nArg>1 && sqlite3_value_type(apVal[0])==SQLITE_NULL && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); goto update_out; } if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ rc = SQLITE_CONSTRAINT; goto update_out; } /* Allocate space to hold the change in document sizes */ aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2); if( aSzDel==0 ){ rc = SQLITE_NOMEM; goto update_out; } aSzIns = &aSzDel[p->nColumn+1]; memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); rc = fts3Writelock(p); if( rc!=SQLITE_OK ) goto update_out; /* If this is an INSERT operation, or an UPDATE that modifies the rowid ** value, then this operation requires constraint handling. ** ** If the on-conflict mode is REPLACE, this means that the existing row ** should be deleted from the database before inserting the new row. Or, ** if the on-conflict mode is other than REPLACE, then this method must ** detect the conflict and return SQLITE_CONSTRAINT before beginning to ** modify the database file. */ if( nArg>1 && p->zContentTbl==0 ){ /* Find the value object that holds the new rowid value. */ sqlite3_value *pNewRowid = apVal[3+p->nColumn]; if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ pNewRowid = apVal[1]; } if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( sqlite3_value_type(apVal[0])==SQLITE_NULL || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) )){ /* The new rowid is not NULL (in this case the rowid will be ** automatically assigned and there is no chance of a conflict), and ** the statement is either an INSERT or an UPDATE that modifies the ** rowid column. So if the conflict mode is REPLACE, then delete any ** existing row with rowid=pNewRowid. ** ** Or, if the conflict mode is not REPLACE, insert the new record into ** the %_content table. If we hit the duplicate rowid constraint (or any ** other error) while doing so, return immediately. ** ** This branch may also run if pNewRowid contains a value that cannot ** be losslessly converted to an integer. In this case, the eventual ** call to fts3InsertData() (either just below or further on in this ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is ** invoked, it will delete zero rows (since no row will have ** docid=$pNewRowid if $pNewRowid is not an integer value). */ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); }else{ rc = fts3InsertData(p, apVal, pRowid); bInsertDone = 1; } } } if( rc!=SQLITE_OK ){ goto update_out; } /* If this is a DELETE or UPDATE operation, remove the old record. */ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); } /* If this is an INSERT or UPDATE operation, insert the new record. */ if( nArg>1 && rc==SQLITE_OK ){ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); if( bInsertDone==0 ){ rc = fts3InsertData(p, apVal, pRowid); if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } if( rc==SQLITE_OK ){ rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid); } if( rc==SQLITE_OK ){ assert( p->iPrevDocid==*pRowid ); rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSzIns); } nChng++; } if( p->bFts4 ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); } update_out: sqlite3_free(aSzDel); sqlite3Fts3SegmentsClose(p); return rc; } /* ** Flush any data in the pending-terms hash table to disk. If successful, ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. */ SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){ int rc; rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); if( rc==SQLITE_OK ){ rc = fts3DoOptimize(p, 1); if( rc==SQLITE_OK || rc==SQLITE_DONE ){ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); if( rc2!=SQLITE_OK ) rc = rc2; }else{ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); } } sqlite3Fts3SegmentsClose(p); return rc; } #endif /************** End of fts3_write.c ******************************************/ /************** Begin file fts3_snippet.c ************************************/ /* ** 2009 Oct 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ #ifndef SQLITE_AMALGAMATION typedef sqlite3_int64 i64; #endif /* ** Characters that may appear in the second argument to matchinfo(). */ #define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */ #define FTS3_MATCHINFO_NCOL 'c' /* 1 value */ #define FTS3_MATCHINFO_NDOC 'n' /* 1 value */ #define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */ #define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */ #define FTS3_MATCHINFO_LCS 's' /* nCol values */ #define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */ #define FTS3_MATCHINFO_LHITS 'y' /* nCol*nPhrase values */ #define FTS3_MATCHINFO_LHITS_BM 'b' /* nCol*nPhrase values */ /* ** The default value for the second argument to matchinfo(). */ #define FTS3_MATCHINFO_DEFAULT "pcx" /* ** Used as an sqlite3Fts3ExprIterate() context when loading phrase doclists to ** Fts3Expr.aDoclist[]/nDoclist. */ typedef struct LoadDoclistCtx LoadDoclistCtx; struct LoadDoclistCtx { Fts3Cursor *pCsr; /* FTS3 Cursor */ int nPhrase; /* Number of phrases seen so far */ int nToken; /* Number of tokens seen so far */ }; /* ** The following types are used as part of the implementation of the ** fts3BestSnippet() routine. */ typedef struct SnippetIter SnippetIter; typedef struct SnippetPhrase SnippetPhrase; typedef struct SnippetFragment SnippetFragment; struct SnippetIter { Fts3Cursor *pCsr; /* Cursor snippet is being generated from */ int iCol; /* Extract snippet from this column */ int nSnippet; /* Requested snippet length (in tokens) */ int nPhrase; /* Number of phrases in query */ SnippetPhrase *aPhrase; /* Array of size nPhrase */ int iCurrent; /* First token of current snippet */ }; struct SnippetPhrase { int nToken; /* Number of tokens in phrase */ char *pList; /* Pointer to start of phrase position list */ i64 iHead; /* Next value in position list */ char *pHead; /* Position list data following iHead */ i64 iTail; /* Next value in trailing position list */ char *pTail; /* Position list data following iTail */ }; struct SnippetFragment { int iCol; /* Column snippet is extracted from */ int iPos; /* Index of first token in snippet */ u64 covered; /* Mask of query phrases covered */ u64 hlmask; /* Mask of snippet terms to highlight */ }; /* ** This type is used as an sqlite3Fts3ExprIterate() context object while ** accumulating the data returned by the matchinfo() function. */ typedef struct MatchInfo MatchInfo; struct MatchInfo { Fts3Cursor *pCursor; /* FTS3 Cursor */ int nCol; /* Number of columns in table */ int nPhrase; /* Number of matchable phrases in query */ sqlite3_int64 nDoc; /* Number of docs in database */ char flag; u32 *aMatchinfo; /* Pre-allocated buffer */ }; /* ** An instance of this structure is used to manage a pair of buffers, each ** (nElem * sizeof(u32)) bytes in size. See the MatchinfoBuffer code below ** for details. */ struct MatchinfoBuffer { u8 aRef[3]; int nElem; int bGlobal; /* Set if global data is loaded */ char *zMatchinfo; u32 aMatchinfo[1]; }; /* ** The snippet() and offsets() functions both return text values. An instance ** of the following structure is used to accumulate those values while the ** functions are running. See fts3StringAppend() for details. */ typedef struct StrBuffer StrBuffer; struct StrBuffer { char *z; /* Pointer to buffer containing string */ int n; /* Length of z in bytes (excl. nul-term) */ int nAlloc; /* Allocated size of buffer z in bytes */ }; /************************************************************************* ** Start of MatchinfoBuffer code. */ /* ** Allocate a two-slot MatchinfoBuffer object. */ static MatchinfoBuffer *fts3MIBufferNew(size_t nElem, const char *zMatchinfo){ MatchinfoBuffer *pRet; sqlite3_int64 nByte = sizeof(u32) * (2*(sqlite3_int64)nElem + 1) + sizeof(MatchinfoBuffer); sqlite3_int64 nStr = strlen(zMatchinfo); pRet = sqlite3Fts3MallocZero(nByte + nStr+1); if( pRet ){ pRet->aMatchinfo[0] = (u8*)(&pRet->aMatchinfo[1]) - (u8*)pRet; pRet->aMatchinfo[1+nElem] = pRet->aMatchinfo[0] + sizeof(u32)*((int)nElem+1); pRet->nElem = (int)nElem; pRet->zMatchinfo = ((char*)pRet) + nByte; memcpy(pRet->zMatchinfo, zMatchinfo, nStr+1); pRet->aRef[0] = 1; } return pRet; } static void fts3MIBufferFree(void *p){ MatchinfoBuffer *pBuf = (MatchinfoBuffer*)((u8*)p - ((u32*)p)[-1]); assert( (u32*)p==&pBuf->aMatchinfo[1] || (u32*)p==&pBuf->aMatchinfo[pBuf->nElem+2] ); if( (u32*)p==&pBuf->aMatchinfo[1] ){ pBuf->aRef[1] = 0; }else{ pBuf->aRef[2] = 0; } if( pBuf->aRef[0]==0 && pBuf->aRef[1]==0 && pBuf->aRef[2]==0 ){ sqlite3_free(pBuf); } } static void (*fts3MIBufferAlloc(MatchinfoBuffer *p, u32 **paOut))(void*){ void (*xRet)(void*) = 0; u32 *aOut = 0; if( p->aRef[1]==0 ){ p->aRef[1] = 1; aOut = &p->aMatchinfo[1]; xRet = fts3MIBufferFree; } else if( p->aRef[2]==0 ){ p->aRef[2] = 1; aOut = &p->aMatchinfo[p->nElem+2]; xRet = fts3MIBufferFree; }else{ aOut = (u32*)sqlite3_malloc64(p->nElem * sizeof(u32)); if( aOut ){ xRet = sqlite3_free; if( p->bGlobal ) memcpy(aOut, &p->aMatchinfo[1], p->nElem*sizeof(u32)); } } *paOut = aOut; return xRet; } static void fts3MIBufferSetGlobal(MatchinfoBuffer *p){ p->bGlobal = 1; memcpy(&p->aMatchinfo[2+p->nElem], &p->aMatchinfo[1], p->nElem*sizeof(u32)); } /* ** Free a MatchinfoBuffer object allocated using fts3MIBufferNew() */ SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p){ if( p ){ assert( p->aRef[0]==1 ); p->aRef[0] = 0; if( p->aRef[0]==0 && p->aRef[1]==0 && p->aRef[2]==0 ){ sqlite3_free(p); } } } /* ** End of MatchinfoBuffer code. *************************************************************************/ /* ** This function is used to help iterate through a position-list. A position ** list is a list of unique integers, sorted from smallest to largest. Each ** element of the list is represented by an FTS3 varint that takes the value ** of the difference between the current element and the previous one plus ** two. For example, to store the position-list: ** ** 4 9 113 ** ** the three varints: ** ** 6 7 106 ** ** are encoded. ** ** When this function is called, *pp points to the start of an element of ** the list. *piPos contains the value of the previous entry in the list. ** After it returns, *piPos contains the value of the next element of the ** list and *pp is advanced to the following varint. */ static void fts3GetDeltaPosition(char **pp, i64 *piPos){ int iVal; *pp += fts3GetVarint32(*pp, &iVal); *piPos += (iVal-2); } /* ** Helper function for sqlite3Fts3ExprIterate() (see below). */ static int fts3ExprIterate2( Fts3Expr *pExpr, /* Expression to iterate phrases of */ int *piPhrase, /* Pointer to phrase counter */ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */ void *pCtx /* Second argument to pass to callback */ ){ int rc; /* Return code */ int eType = pExpr->eType; /* Type of expression node pExpr */ if( eType!=FTSQUERY_PHRASE ){ assert( pExpr->pLeft && pExpr->pRight ); rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx); if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){ rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx); } }else{ rc = x(pExpr, *piPhrase, pCtx); (*piPhrase)++; } return rc; } /* ** Iterate through all phrase nodes in an FTS3 query, except those that ** are part of a sub-tree that is the right-hand-side of a NOT operator. ** For each phrase node found, the supplied callback function is invoked. ** ** If the callback function returns anything other than SQLITE_OK, ** the iteration is abandoned and the error code returned immediately. ** Otherwise, SQLITE_OK is returned after a callback has been made for ** all eligible phrase nodes. */ SQLITE_PRIVATE int sqlite3Fts3ExprIterate( Fts3Expr *pExpr, /* Expression to iterate phrases of */ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */ void *pCtx /* Second argument to pass to callback */ ){ int iPhrase = 0; /* Variable used as the phrase counter */ return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx); } /* ** This is an sqlite3Fts3ExprIterate() callback used while loading the ** doclists for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also ** fts3ExprLoadDoclists(). */ static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){ int rc = SQLITE_OK; Fts3Phrase *pPhrase = pExpr->pPhrase; LoadDoclistCtx *p = (LoadDoclistCtx *)ctx; UNUSED_PARAMETER(iPhrase); p->nPhrase++; p->nToken += pPhrase->nToken; return rc; } /* ** Load the doclists for each phrase in the query associated with FTS3 cursor ** pCsr. ** ** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable ** phrases in the expression (all phrases except those directly or ** indirectly descended from the right-hand-side of a NOT operator). If ** pnToken is not NULL, then it is set to the number of tokens in all ** matchable phrases of the expression. */ static int fts3ExprLoadDoclists( Fts3Cursor *pCsr, /* Fts3 cursor for current query */ int *pnPhrase, /* OUT: Number of phrases in query */ int *pnToken /* OUT: Number of tokens in query */ ){ int rc; /* Return Code */ LoadDoclistCtx sCtx = {0,0,0}; /* Context for sqlite3Fts3ExprIterate() */ sCtx.pCsr = pCsr; rc = sqlite3Fts3ExprIterate(pCsr->pExpr,fts3ExprLoadDoclistsCb,(void*)&sCtx); if( pnPhrase ) *pnPhrase = sCtx.nPhrase; if( pnToken ) *pnToken = sCtx.nToken; return rc; } static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){ (*(int *)ctx)++; pExpr->iPhrase = iPhrase; return SQLITE_OK; } static int fts3ExprPhraseCount(Fts3Expr *pExpr){ int nPhrase = 0; (void)sqlite3Fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase); return nPhrase; } /* ** Advance the position list iterator specified by the first two ** arguments so that it points to the first element with a value greater ** than or equal to parameter iNext. */ static void fts3SnippetAdvance(char **ppIter, i64 *piIter, int iNext){ char *pIter = *ppIter; if( pIter ){ i64 iIter = *piIter; while( iIteriCurrent<0 ){ /* The SnippetIter object has just been initialized. The first snippet ** candidate always starts at offset 0 (even if this candidate has a ** score of 0.0). */ pIter->iCurrent = 0; /* Advance the 'head' iterator of each phrase to the first offset that ** is greater than or equal to (iNext+nSnippet). */ for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet); } }else{ int iStart; int iEnd = 0x7FFFFFFF; for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; if( pPhrase->pHead && pPhrase->iHeadiHead; } } if( iEnd==0x7FFFFFFF ){ return 1; } pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1; for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1); fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart); } } return 0; } /* ** Retrieve information about the current candidate snippet of snippet ** iterator pIter. */ static void fts3SnippetDetails( SnippetIter *pIter, /* Snippet iterator */ u64 mCovered, /* Bitmask of phrases already covered */ int *piToken, /* OUT: First token of proposed snippet */ int *piScore, /* OUT: "Score" for this snippet */ u64 *pmCover, /* OUT: Bitmask of phrases covered */ u64 *pmHighlight /* OUT: Bitmask of terms to highlight */ ){ int iStart = pIter->iCurrent; /* First token of snippet */ int iScore = 0; /* Score of this snippet */ int i; /* Loop counter */ u64 mCover = 0; /* Mask of phrases covered by this snippet */ u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */ for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; if( pPhrase->pTail ){ char *pCsr = pPhrase->pTail; i64 iCsr = pPhrase->iTail; while( iCsr<(iStart+pIter->nSnippet) && iCsr>=iStart ){ int j; u64 mPhrase = (u64)1 << (i%64); u64 mPos = (u64)1 << (iCsr - iStart); assert( iCsr>=iStart && (iCsr - iStart)<=64 ); assert( i>=0 ); if( (mCover|mCovered)&mPhrase ){ iScore++; }else{ iScore += 1000; } mCover |= mPhrase; for(j=0; jnToken; j++){ mHighlight |= (mPos>>j); } if( 0==(*pCsr & 0x0FE) ) break; fts3GetDeltaPosition(&pCsr, &iCsr); } } } /* Set the output variables before returning. */ *piToken = iStart; *piScore = iScore; *pmCover = mCover; *pmHighlight = mHighlight; } /* ** This function is an sqlite3Fts3ExprIterate() callback used by ** fts3BestSnippet(). Each invocation populates an element of the ** SnippetIter.aPhrase[] array. */ static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){ SnippetIter *p = (SnippetIter *)ctx; SnippetPhrase *pPhrase = &p->aPhrase[iPhrase]; char *pCsr; int rc; pPhrase->nToken = pExpr->pPhrase->nToken; rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr); assert( rc==SQLITE_OK || pCsr==0 ); if( pCsr ){ i64 iFirst = 0; pPhrase->pList = pCsr; fts3GetDeltaPosition(&pCsr, &iFirst); if( iFirst<0 ){ rc = FTS_CORRUPT_VTAB; }else{ pPhrase->pHead = pCsr; pPhrase->pTail = pCsr; pPhrase->iHead = iFirst; pPhrase->iTail = iFirst; } }else{ assert( rc!=SQLITE_OK || ( pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0 )); } return rc; } /* ** Select the fragment of text consisting of nFragment contiguous tokens ** from column iCol that represent the "best" snippet. The best snippet ** is the snippet with the highest score, where scores are calculated ** by adding: ** ** (a) +1 point for each occurrence of a matchable phrase in the snippet. ** ** (b) +1000 points for the first occurrence of each matchable phrase in ** the snippet for which the corresponding mCovered bit is not set. ** ** The selected snippet parameters are stored in structure *pFragment before ** returning. The score of the selected snippet is stored in *piScore ** before returning. */ static int fts3BestSnippet( int nSnippet, /* Desired snippet length */ Fts3Cursor *pCsr, /* Cursor to create snippet for */ int iCol, /* Index of column to create snippet from */ u64 mCovered, /* Mask of phrases already covered */ u64 *pmSeen, /* IN/OUT: Mask of phrases seen */ SnippetFragment *pFragment, /* OUT: Best snippet found */ int *piScore /* OUT: Score of snippet pFragment */ ){ int rc; /* Return Code */ int nList; /* Number of phrases in expression */ SnippetIter sIter; /* Iterates through snippet candidates */ sqlite3_int64 nByte; /* Number of bytes of space to allocate */ int iBestScore = -1; /* Best snippet score found so far */ int i; /* Loop counter */ memset(&sIter, 0, sizeof(sIter)); /* Iterate through the phrases in the expression to count them. The same ** callback makes sure the doclists are loaded for each phrase. */ rc = fts3ExprLoadDoclists(pCsr, &nList, 0); if( rc!=SQLITE_OK ){ return rc; } /* Now that it is known how many phrases there are, allocate and zero ** the required space using malloc(). */ nByte = sizeof(SnippetPhrase) * nList; sIter.aPhrase = (SnippetPhrase *)sqlite3Fts3MallocZero(nByte); if( !sIter.aPhrase ){ return SQLITE_NOMEM; } /* Initialize the contents of the SnippetIter object. Then iterate through ** the set of phrases in the expression to populate the aPhrase[] array. */ sIter.pCsr = pCsr; sIter.iCol = iCol; sIter.nSnippet = nSnippet; sIter.nPhrase = nList; sIter.iCurrent = -1; rc = sqlite3Fts3ExprIterate( pCsr->pExpr, fts3SnippetFindPositions, (void*)&sIter ); if( rc==SQLITE_OK ){ /* Set the *pmSeen output variable. */ for(i=0; iiCol = iCol; while( !fts3SnippetNextCandidate(&sIter) ){ int iPos; int iScore; u64 mCover; u64 mHighlite; fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover,&mHighlite); assert( iScore>=0 ); if( iScore>iBestScore ){ pFragment->iPos = iPos; pFragment->hlmask = mHighlite; pFragment->covered = mCover; iBestScore = iScore; } } *piScore = iBestScore; } sqlite3_free(sIter.aPhrase); return rc; } /* ** Append a string to the string-buffer passed as the first argument. ** ** If nAppend is negative, then the length of the string zAppend is ** determined using strlen(). */ static int fts3StringAppend( StrBuffer *pStr, /* Buffer to append to */ const char *zAppend, /* Pointer to data to append to buffer */ int nAppend /* Size of zAppend in bytes (or -1) */ ){ if( nAppend<0 ){ nAppend = (int)strlen(zAppend); } /* If there is insufficient space allocated at StrBuffer.z, use realloc() ** to grow the buffer until so that it is big enough to accomadate the ** appended data. */ if( pStr->n+nAppend+1>=pStr->nAlloc ){ sqlite3_int64 nAlloc = pStr->nAlloc+(sqlite3_int64)nAppend+100; char *zNew = sqlite3_realloc64(pStr->z, nAlloc); if( !zNew ){ return SQLITE_NOMEM; } pStr->z = zNew; pStr->nAlloc = nAlloc; } assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) ); /* Append the data to the string buffer. */ memcpy(&pStr->z[pStr->n], zAppend, nAppend); pStr->n += nAppend; pStr->z[pStr->n] = '\0'; return SQLITE_OK; } /* ** The fts3BestSnippet() function often selects snippets that end with a ** query term. That is, the final term of the snippet is always a term ** that requires highlighting. For example, if 'X' is a highlighted term ** and '.' is a non-highlighted term, BestSnippet() may select: ** ** ........X.....X ** ** This function "shifts" the beginning of the snippet forward in the ** document so that there are approximately the same number of ** non-highlighted terms to the right of the final highlighted term as there ** are to the left of the first highlighted term. For example, to this: ** ** ....X.....X.... ** ** This is done as part of extracting the snippet text, not when selecting ** the snippet. Snippet selection is done based on doclists only, so there ** is no way for fts3BestSnippet() to know whether or not the document ** actually contains terms that follow the final highlighted term. */ static int fts3SnippetShift( Fts3Table *pTab, /* FTS3 table snippet comes from */ int iLangid, /* Language id to use in tokenizing */ int nSnippet, /* Number of tokens desired for snippet */ const char *zDoc, /* Document text to extract snippet from */ int nDoc, /* Size of buffer zDoc in bytes */ int *piPos, /* IN/OUT: First token of snippet */ u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */ ){ u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */ if( hlmask ){ int nLeft; /* Tokens to the left of first highlight */ int nRight; /* Tokens to the right of last highlight */ int nDesired; /* Ideal number of tokens to shift forward */ for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++); for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++); assert( (nSnippet-1-nRight)<=63 && (nSnippet-1-nRight)>=0 ); nDesired = (nLeft-nRight)/2; /* Ideally, the start of the snippet should be pushed forward in the ** document nDesired tokens. This block checks if there are actually ** nDesired tokens to the right of the snippet. If so, *piPos and ** *pHlMask are updated to shift the snippet nDesired tokens to the ** right. Otherwise, the snippet is shifted by the number of tokens ** available. */ if( nDesired>0 ){ int nShift; /* Number of tokens to shift snippet by */ int iCurrent = 0; /* Token counter */ int rc; /* Return Code */ sqlite3_tokenizer_module *pMod; sqlite3_tokenizer_cursor *pC; pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired) ** or more tokens in zDoc/nDoc. */ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC); if( rc!=SQLITE_OK ){ return rc; } while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){ const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0; rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent); } pMod->xClose(pC); if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; } nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet; assert( nShift<=nDesired ); if( nShift>0 ){ *piPos += nShift; *pHlmask = hlmask >> nShift; } } } return SQLITE_OK; } /* ** Extract the snippet text for fragment pFragment from cursor pCsr and ** append it to string buffer pOut. */ static int fts3SnippetText( Fts3Cursor *pCsr, /* FTS3 Cursor */ SnippetFragment *pFragment, /* Snippet to extract */ int iFragment, /* Fragment number */ int isLast, /* True for final fragment in snippet */ int nSnippet, /* Number of tokens in extracted snippet */ const char *zOpen, /* String inserted before highlighted term */ const char *zClose, /* String inserted after highlighted term */ const char *zEllipsis, /* String inserted between snippets */ StrBuffer *pOut /* Write output here */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc; /* Return code */ const char *zDoc; /* Document text to extract snippet from */ int nDoc; /* Size of zDoc in bytes */ int iCurrent = 0; /* Current token number of document */ int iEnd = 0; /* Byte offset of end of current token */ int isShiftDone = 0; /* True after snippet is shifted */ int iPos = pFragment->iPos; /* First token of snippet */ u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */ int iCol = pFragment->iCol+1; /* Query column to extract text from */ sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol); if( zDoc==0 ){ if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){ return SQLITE_NOMEM; } return SQLITE_OK; } nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol); /* Open a token cursor on the document. */ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC); if( rc!=SQLITE_OK ){ return rc; } while( rc==SQLITE_OK ){ const char *ZDUMMY; /* Dummy argument used with tokenizer */ int DUMMY1 = -1; /* Dummy argument used with tokenizer */ int iBegin = 0; /* Offset in zDoc of start of token */ int iFin = 0; /* Offset in zDoc of end of token */ int isHighlight = 0; /* True for highlighted terms */ /* Variable DUMMY1 is initialized to a negative value above. Elsewhere ** in the FTS code the variable that the third argument to xNext points to ** is initialized to zero before the first (*but not necessarily ** subsequent*) call to xNext(). This is done for a particular application ** that needs to know whether or not the tokenizer is being used for ** snippet generation or for some other purpose. ** ** Extreme care is required when writing code to depend on this ** initialization. It is not a documented part of the tokenizer interface. ** If a tokenizer is used directly by any code outside of FTS, this ** convention might not be respected. */ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ /* Special case - the last token of the snippet is also the last token ** of the column. Append any punctuation that occurred between the end ** of the previous token and the end of the document to the output. ** Then break out of the loop. */ rc = fts3StringAppend(pOut, &zDoc[iEnd], -1); } break; } if( iCurrentiLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask ); isShiftDone = 1; /* Now that the shift has been done, check if the initial "..." are ** required. They are required if (a) this is not the first fragment, ** or (b) this fragment does not begin at position 0 of its column. */ if( rc==SQLITE_OK ){ if( iPos>0 || iFragment>0 ){ rc = fts3StringAppend(pOut, zEllipsis, -1); }else if( iBegin ){ rc = fts3StringAppend(pOut, zDoc, iBegin); } } if( rc!=SQLITE_OK || iCurrent=(iPos+nSnippet) ){ if( isLast ){ rc = fts3StringAppend(pOut, zEllipsis, -1); } break; } /* Set isHighlight to true if this term should be highlighted. */ isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0; if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd); if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1); if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin); if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1); iEnd = iFin; } pMod->xClose(pC); return rc; } /* ** This function is used to count the entries in a column-list (a ** delta-encoded list of term offsets within a single column of a single ** row). When this function is called, *ppCollist should point to the ** beginning of the first varint in the column-list (the varint that ** contains the position of the first matching term in the column data). ** Before returning, *ppCollist is set to point to the first byte after ** the last varint in the column-list (either the 0x00 signifying the end ** of the position-list, or the 0x01 that precedes the column number of ** the next column in the position-list). ** ** The number of elements in the column-list is returned. */ static int fts3ColumnlistCount(char **ppCollist){ char *pEnd = *ppCollist; char c = 0; int nEntry = 0; /* A column-list is terminated by either a 0x01 or 0x00. */ while( 0xFE & (*pEnd | c) ){ c = *pEnd++ & 0x80; if( !c ) nEntry++; } *ppCollist = pEnd; return nEntry; } /* ** This function gathers 'y' or 'b' data for a single phrase. */ static int fts3ExprLHits( Fts3Expr *pExpr, /* Phrase expression node */ MatchInfo *p /* Matchinfo context */ ){ Fts3Table *pTab = (Fts3Table *)p->pCursor->base.pVtab; int iStart; Fts3Phrase *pPhrase = pExpr->pPhrase; char *pIter = pPhrase->doclist.pList; int iCol = 0; assert( p->flag==FTS3_MATCHINFO_LHITS_BM || p->flag==FTS3_MATCHINFO_LHITS ); if( p->flag==FTS3_MATCHINFO_LHITS ){ iStart = pExpr->iPhrase * p->nCol; }else{ iStart = pExpr->iPhrase * ((p->nCol + 31) / 32); } if( pIter ) while( 1 ){ int nHit = fts3ColumnlistCount(&pIter); if( (pPhrase->iColumn>=pTab->nColumn || pPhrase->iColumn==iCol) ){ if( p->flag==FTS3_MATCHINFO_LHITS ){ p->aMatchinfo[iStart + iCol] = (u32)nHit; }else if( nHit ){ p->aMatchinfo[iStart + (iCol+1)/32] |= (1 << (iCol&0x1F)); } } assert( *pIter==0x00 || *pIter==0x01 ); if( *pIter!=0x01 ) break; pIter++; pIter += fts3GetVarint32(pIter, &iCol); if( iCol>=p->nCol ) return FTS_CORRUPT_VTAB; } return SQLITE_OK; } /* ** Gather the results for matchinfo directives 'y' and 'b'. */ static int fts3ExprLHitGather( Fts3Expr *pExpr, MatchInfo *p ){ int rc = SQLITE_OK; assert( (pExpr->pLeft==0)==(pExpr->pRight==0) ); if( pExpr->bEof==0 && pExpr->iDocid==p->pCursor->iPrevId ){ if( pExpr->pLeft ){ rc = fts3ExprLHitGather(pExpr->pLeft, p); if( rc==SQLITE_OK ) rc = fts3ExprLHitGather(pExpr->pRight, p); }else{ rc = fts3ExprLHits(pExpr, p); } } return rc; } /* ** sqlite3Fts3ExprIterate() callback used to collect the "global" matchinfo ** stats for a single query. ** ** sqlite3Fts3ExprIterate() callback to load the 'global' elements of a ** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements ** of the matchinfo array that are constant for all rows returned by the ** current query. ** ** Argument pCtx is actually a pointer to a struct of type MatchInfo. This ** function populates Matchinfo.aMatchinfo[] as follows: ** ** for(iCol=0; iColpCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol] ); } /* ** sqlite3Fts3ExprIterate() callback used to collect the "local" part of the ** FTS3_MATCHINFO_HITS array. The local stats are those elements of the ** array that are different for each row returned by the query. */ static int fts3ExprLocalHitsCb( Fts3Expr *pExpr, /* Phrase expression node */ int iPhrase, /* Phrase number */ void *pCtx /* Pointer to MatchInfo structure */ ){ int rc = SQLITE_OK; MatchInfo *p = (MatchInfo *)pCtx; int iStart = iPhrase * p->nCol * 3; int i; for(i=0; inCol && rc==SQLITE_OK; i++){ char *pCsr; rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr); if( pCsr ){ p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr); }else{ p->aMatchinfo[iStart+i*3] = 0; } } return rc; } static int fts3MatchinfoCheck( Fts3Table *pTab, char cArg, char **pzErr ){ if( (cArg==FTS3_MATCHINFO_NPHRASE) || (cArg==FTS3_MATCHINFO_NCOL) || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4) || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4) || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize) || (cArg==FTS3_MATCHINFO_LCS) || (cArg==FTS3_MATCHINFO_HITS) || (cArg==FTS3_MATCHINFO_LHITS) || (cArg==FTS3_MATCHINFO_LHITS_BM) ){ return SQLITE_OK; } sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg); return SQLITE_ERROR; } static size_t fts3MatchinfoSize(MatchInfo *pInfo, char cArg){ size_t nVal; /* Number of integers output by cArg */ switch( cArg ){ case FTS3_MATCHINFO_NDOC: case FTS3_MATCHINFO_NPHRASE: case FTS3_MATCHINFO_NCOL: nVal = 1; break; case FTS3_MATCHINFO_AVGLENGTH: case FTS3_MATCHINFO_LENGTH: case FTS3_MATCHINFO_LCS: nVal = pInfo->nCol; break; case FTS3_MATCHINFO_LHITS: nVal = pInfo->nCol * pInfo->nPhrase; break; case FTS3_MATCHINFO_LHITS_BM: nVal = pInfo->nPhrase * ((pInfo->nCol + 31) / 32); break; default: assert( cArg==FTS3_MATCHINFO_HITS ); nVal = pInfo->nCol * pInfo->nPhrase * 3; break; } return nVal; } static int fts3MatchinfoSelectDoctotal( Fts3Table *pTab, sqlite3_stmt **ppStmt, sqlite3_int64 *pnDoc, const char **paLen, const char **ppEnd ){ sqlite3_stmt *pStmt; const char *a; const char *pEnd; sqlite3_int64 nDoc; int n; if( !*ppStmt ){ int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt); if( rc!=SQLITE_OK ) return rc; } pStmt = *ppStmt; assert( sqlite3_data_count(pStmt)==1 ); n = sqlite3_column_bytes(pStmt, 0); a = sqlite3_column_blob(pStmt, 0); if( a==0 ){ return FTS_CORRUPT_VTAB; } pEnd = a + n; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc); if( nDoc<=0 || a>pEnd ){ return FTS_CORRUPT_VTAB; } *pnDoc = nDoc; if( paLen ) *paLen = a; if( ppEnd ) *ppEnd = pEnd; return SQLITE_OK; } /* ** An instance of the following structure is used to store state while ** iterating through a multi-column position-list corresponding to the ** hits for a single phrase on a single row in order to calculate the ** values for a matchinfo() FTS3_MATCHINFO_LCS request. */ typedef struct LcsIterator LcsIterator; struct LcsIterator { Fts3Expr *pExpr; /* Pointer to phrase expression */ int iPosOffset; /* Tokens count up to end of this phrase */ char *pRead; /* Cursor used to iterate through aDoclist */ int iPos; /* Current position */ }; /* ** If LcsIterator.iCol is set to the following value, the iterator has ** finished iterating through all offsets for all columns. */ #define LCS_ITERATOR_FINISHED 0x7FFFFFFF; static int fts3MatchinfoLcsCb( Fts3Expr *pExpr, /* Phrase expression node */ int iPhrase, /* Phrase number (numbered from zero) */ void *pCtx /* Pointer to MatchInfo structure */ ){ LcsIterator *aIter = (LcsIterator *)pCtx; aIter[iPhrase].pExpr = pExpr; return SQLITE_OK; } /* ** Advance the iterator passed as an argument to the next position. Return ** 1 if the iterator is at EOF or if it now points to the start of the ** position list for the next column. */ static int fts3LcsIteratorAdvance(LcsIterator *pIter){ char *pRead; sqlite3_int64 iRead; int rc = 0; if( NEVER(pIter==0) ) return 1; pRead = pIter->pRead; pRead += sqlite3Fts3GetVarint(pRead, &iRead); if( iRead==0 || iRead==1 ){ pRead = 0; rc = 1; }else{ pIter->iPos += (int)(iRead-2); } pIter->pRead = pRead; return rc; } /* ** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag. ** ** If the call is successful, the longest-common-substring lengths for each ** column are written into the first nCol elements of the pInfo->aMatchinfo[] ** array before returning. SQLITE_OK is returned in this case. ** ** Otherwise, if an error occurs, an SQLite error code is returned and the ** data written to the first nCol elements of pInfo->aMatchinfo[] is ** undefined. */ static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){ LcsIterator *aIter; int i; int iCol; int nToken = 0; int rc = SQLITE_OK; /* Allocate and populate the array of LcsIterator objects. The array ** contains one element for each matchable phrase in the query. **/ aIter = sqlite3Fts3MallocZero(sizeof(LcsIterator) * pCsr->nPhrase); if( !aIter ) return SQLITE_NOMEM; (void)sqlite3Fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter); for(i=0; inPhrase; i++){ LcsIterator *pIter = &aIter[i]; nToken -= pIter->pExpr->pPhrase->nToken; pIter->iPosOffset = nToken; } for(iCol=0; iColnCol; iCol++){ int nLcs = 0; /* LCS value for this column */ int nLive = 0; /* Number of iterators in aIter not at EOF */ for(i=0; inPhrase; i++){ LcsIterator *pIt = &aIter[i]; rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead); if( rc!=SQLITE_OK ) goto matchinfo_lcs_out; if( pIt->pRead ){ pIt->iPos = pIt->iPosOffset; fts3LcsIteratorAdvance(pIt); if( pIt->pRead==0 ){ rc = FTS_CORRUPT_VTAB; goto matchinfo_lcs_out; } nLive++; } } while( nLive>0 ){ LcsIterator *pAdv = 0; /* The iterator to advance by one position */ int nThisLcs = 0; /* LCS for the current iterator positions */ for(i=0; inPhrase; i++){ LcsIterator *pIter = &aIter[i]; if( pIter->pRead==0 ){ /* This iterator is already at EOF for this column. */ nThisLcs = 0; }else{ if( pAdv==0 || pIter->iPosiPos ){ pAdv = pIter; } if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){ nThisLcs++; }else{ nThisLcs = 1; } if( nThisLcs>nLcs ) nLcs = nThisLcs; } } if( fts3LcsIteratorAdvance(pAdv) ) nLive--; } pInfo->aMatchinfo[iCol] = nLcs; } matchinfo_lcs_out: sqlite3_free(aIter); return rc; } /* ** Populate the buffer pInfo->aMatchinfo[] with an array of integers to ** be returned by the matchinfo() function. Argument zArg contains the ** format string passed as the second argument to matchinfo (or the ** default value "pcx" if no second argument was specified). The format ** string has already been validated and the pInfo->aMatchinfo[] array ** is guaranteed to be large enough for the output. ** ** If bGlobal is true, then populate all fields of the matchinfo() output. ** If it is false, then assume that those fields that do not change between ** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS) ** have already been populated. ** ** Return SQLITE_OK if successful, or an SQLite error code if an error ** occurs. If a value other than SQLITE_OK is returned, the state the ** pInfo->aMatchinfo[] buffer is left in is undefined. */ static int fts3MatchinfoValues( Fts3Cursor *pCsr, /* FTS3 cursor object */ int bGlobal, /* True to grab the global stats */ MatchInfo *pInfo, /* Matchinfo context object */ const char *zArg /* Matchinfo format string */ ){ int rc = SQLITE_OK; int i; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; sqlite3_stmt *pSelect = 0; for(i=0; rc==SQLITE_OK && zArg[i]; i++){ pInfo->flag = zArg[i]; switch( zArg[i] ){ case FTS3_MATCHINFO_NPHRASE: if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase; break; case FTS3_MATCHINFO_NCOL: if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol; break; case FTS3_MATCHINFO_NDOC: if( bGlobal ){ sqlite3_int64 nDoc = 0; rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0, 0); pInfo->aMatchinfo[0] = (u32)nDoc; } break; case FTS3_MATCHINFO_AVGLENGTH: if( bGlobal ){ sqlite3_int64 nDoc; /* Number of rows in table */ const char *a; /* Aggregate column length array */ const char *pEnd; /* First byte past end of length array */ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a, &pEnd); if( rc==SQLITE_OK ){ int iCol; for(iCol=0; iColnCol; iCol++){ u32 iVal; sqlite3_int64 nToken; a += sqlite3Fts3GetVarint(a, &nToken); if( a>pEnd ){ rc = SQLITE_CORRUPT_VTAB; break; } iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc); pInfo->aMatchinfo[iCol] = iVal; } } } break; case FTS3_MATCHINFO_LENGTH: { sqlite3_stmt *pSelectDocsize = 0; rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize); if( rc==SQLITE_OK ){ int iCol; const char *a = sqlite3_column_blob(pSelectDocsize, 0); const char *pEnd = a + sqlite3_column_bytes(pSelectDocsize, 0); for(iCol=0; iColnCol; iCol++){ sqlite3_int64 nToken; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nToken); if( a>pEnd ){ rc = SQLITE_CORRUPT_VTAB; break; } pInfo->aMatchinfo[iCol] = (u32)nToken; } } sqlite3_reset(pSelectDocsize); break; } case FTS3_MATCHINFO_LCS: rc = fts3ExprLoadDoclists(pCsr, 0, 0); if( rc==SQLITE_OK ){ rc = fts3MatchinfoLcs(pCsr, pInfo); } break; case FTS3_MATCHINFO_LHITS_BM: case FTS3_MATCHINFO_LHITS: { size_t nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32); memset(pInfo->aMatchinfo, 0, nZero); rc = fts3ExprLHitGather(pCsr->pExpr, pInfo); break; } default: { Fts3Expr *pExpr; assert( zArg[i]==FTS3_MATCHINFO_HITS ); pExpr = pCsr->pExpr; rc = fts3ExprLoadDoclists(pCsr, 0, 0); if( rc!=SQLITE_OK ) break; if( bGlobal ){ if( pCsr->pDeferred ){ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc,0,0); if( rc!=SQLITE_OK ) break; } rc = sqlite3Fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo); sqlite3Fts3EvalTestDeferred(pCsr, &rc); if( rc!=SQLITE_OK ) break; } (void)sqlite3Fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo); break; } } pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]); } sqlite3_reset(pSelect); return rc; } /* ** Populate pCsr->aMatchinfo[] with data for the current row. The ** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32). */ static void fts3GetMatchinfo( sqlite3_context *pCtx, /* Return results here */ Fts3Cursor *pCsr, /* FTS3 Cursor object */ const char *zArg /* Second argument to matchinfo() function */ ){ MatchInfo sInfo; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int bGlobal = 0; /* Collect 'global' stats as well as local */ u32 *aOut = 0; void (*xDestroyOut)(void*) = 0; memset(&sInfo, 0, sizeof(MatchInfo)); sInfo.pCursor = pCsr; sInfo.nCol = pTab->nColumn; /* If there is cached matchinfo() data, but the format string for the ** cache does not match the format string for this request, discard ** the cached data. */ if( pCsr->pMIBuffer && strcmp(pCsr->pMIBuffer->zMatchinfo, zArg) ){ sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); pCsr->pMIBuffer = 0; } /* If Fts3Cursor.pMIBuffer is NULL, then this is the first time the ** matchinfo function has been called for this query. In this case ** allocate the array used to accumulate the matchinfo data and ** initialize those elements that are constant for every row. */ if( pCsr->pMIBuffer==0 ){ size_t nMatchinfo = 0; /* Number of u32 elements in match-info */ int i; /* Used to iterate through zArg */ /* Determine the number of phrases in the query */ pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr); sInfo.nPhrase = pCsr->nPhrase; /* Determine the number of integers in the buffer returned by this call. */ for(i=0; zArg[i]; i++){ char *zErr = 0; if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){ sqlite3_result_error(pCtx, zErr, -1); sqlite3_free(zErr); return; } nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]); } /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */ pCsr->pMIBuffer = fts3MIBufferNew(nMatchinfo, zArg); if( !pCsr->pMIBuffer ) rc = SQLITE_NOMEM; pCsr->isMatchinfoNeeded = 1; bGlobal = 1; } if( rc==SQLITE_OK ){ xDestroyOut = fts3MIBufferAlloc(pCsr->pMIBuffer, &aOut); if( xDestroyOut==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ sInfo.aMatchinfo = aOut; sInfo.nPhrase = pCsr->nPhrase; rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg); if( bGlobal ){ fts3MIBufferSetGlobal(pCsr->pMIBuffer); } } if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); if( xDestroyOut ) xDestroyOut(aOut); }else{ int n = pCsr->pMIBuffer->nElem * sizeof(u32); sqlite3_result_blob(pCtx, aOut, n, xDestroyOut); } } /* ** Implementation of snippet() function. */ SQLITE_PRIVATE void sqlite3Fts3Snippet( sqlite3_context *pCtx, /* SQLite function call context */ Fts3Cursor *pCsr, /* Cursor object */ const char *zStart, /* Snippet start text - "" */ const char *zEnd, /* Snippet end text - "" */ const char *zEllipsis, /* Snippet ellipsis text - "..." */ int iCol, /* Extract snippet from this column */ int nToken /* Approximate number of tokens in snippet */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int i; StrBuffer res = {0, 0, 0}; /* The returned text includes up to four fragments of text extracted from ** the data in the current row. The first iteration of the for(...) loop ** below attempts to locate a single fragment of text nToken tokens in ** size that contains at least one instance of all phrases in the query ** expression that appear in the current row. If such a fragment of text ** cannot be found, the second iteration of the loop attempts to locate ** a pair of fragments, and so on. */ int nSnippet = 0; /* Number of fragments in this snippet */ SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */ int nFToken = -1; /* Number of tokens in each fragment */ if( !pCsr->pExpr ){ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); return; } /* Limit the snippet length to 64 tokens. */ if( nToken<-64 ) nToken = -64; if( nToken>+64 ) nToken = +64; for(nSnippet=1; 1; nSnippet++){ int iSnip; /* Loop counter 0..nSnippet-1 */ u64 mCovered = 0; /* Bitmask of phrases covered by snippet */ u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */ if( nToken>=0 ){ nFToken = (nToken+nSnippet-1) / nSnippet; }else{ nFToken = -1 * nToken; } for(iSnip=0; iSnipnColumn; iRead++){ SnippetFragment sF = {0, 0, 0, 0}; int iS = 0; if( iCol>=0 && iRead!=iCol ) continue; /* Find the best snippet of nFToken tokens in column iRead. */ rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS); if( rc!=SQLITE_OK ){ goto snippet_out; } if( iS>iBestScore ){ *pFragment = sF; iBestScore = iS; } } mCovered |= pFragment->covered; } /* If all query phrases seen by fts3BestSnippet() are present in at least ** one of the nSnippet snippet fragments, break out of the loop. */ assert( (mCovered&mSeen)==mCovered ); if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break; } assert( nFToken>0 ); for(i=0; ipCsr, pExpr, p->iCol, &pList); nTerm = pExpr->pPhrase->nToken; if( pList ){ fts3GetDeltaPosition(&pList, &iPos); assert_fts3_nc( iPos>=0 ); } for(iTerm=0; iTermaTerm[p->iTerm++]; pT->iOff = nTerm-iTerm-1; pT->pList = pList; pT->iPos = iPos; } return rc; } /* ** Implementation of offsets() function. */ SQLITE_PRIVATE void sqlite3Fts3Offsets( sqlite3_context *pCtx, /* SQLite function call context */ Fts3Cursor *pCsr /* Cursor object */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule; int rc; /* Return Code */ int nToken; /* Number of tokens in query */ int iCol; /* Column currently being processed */ StrBuffer res = {0, 0, 0}; /* Result string */ TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */ if( !pCsr->pExpr ){ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); return; } memset(&sCtx, 0, sizeof(sCtx)); assert( pCsr->isRequireSeek==0 ); /* Count the number of terms in the query */ rc = fts3ExprLoadDoclists(pCsr, 0, &nToken); if( rc!=SQLITE_OK ) goto offsets_out; /* Allocate the array of TermOffset iterators. */ sCtx.aTerm = (TermOffset *)sqlite3Fts3MallocZero(sizeof(TermOffset)*nToken); if( 0==sCtx.aTerm ){ rc = SQLITE_NOMEM; goto offsets_out; } sCtx.iDocid = pCsr->iPrevId; sCtx.pCsr = pCsr; /* Loop through the table columns, appending offset information to ** string-buffer res for each column. */ for(iCol=0; iColnColumn; iCol++){ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */ const char *ZDUMMY; /* Dummy argument used with xNext() */ int NDUMMY = 0; /* Dummy argument used with xNext() */ int iStart = 0; int iEnd = 0; int iCurrent = 0; const char *zDoc; int nDoc; /* Initialize the contents of sCtx.aTerm[] for column iCol. This ** operation may fail if the database contains corrupt records. */ sCtx.iCol = iCol; sCtx.iTerm = 0; rc = sqlite3Fts3ExprIterate( pCsr->pExpr, fts3ExprTermOffsetInit, (void*)&sCtx ); if( rc!=SQLITE_OK ) goto offsets_out; /* Retreive the text stored in column iCol. If an SQL NULL is stored ** in column iCol, jump immediately to the next iteration of the loop. ** If an OOM occurs while retrieving the data (this can happen if SQLite ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM ** to the caller. */ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1); nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1); if( zDoc==0 ){ if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){ continue; } rc = SQLITE_NOMEM; goto offsets_out; } /* Initialize a tokenizer iterator to iterate through column iCol. */ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc, nDoc, &pC ); if( rc!=SQLITE_OK ) goto offsets_out; rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent); while( rc==SQLITE_OK ){ int i; /* Used to loop through terms */ int iMinPos = 0x7FFFFFFF; /* Position of next token */ TermOffset *pTerm = 0; /* TermOffset associated with next token */ for(i=0; ipList && (pT->iPos-pT->iOff)iPos-pT->iOff; pTerm = pT; } } if( !pTerm ){ /* All offsets for this column have been gathered. */ rc = SQLITE_DONE; }else{ assert_fts3_nc( iCurrent<=iMinPos ); if( 0==(0xFE&*pTerm->pList) ){ pTerm->pList = 0; }else{ fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos); } while( rc==SQLITE_OK && iCurrentxNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent); } if( rc==SQLITE_OK ){ char aBuffer[64]; sqlite3_snprintf(sizeof(aBuffer), aBuffer, "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart ); rc = fts3StringAppend(&res, aBuffer, -1); }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } } if( rc==SQLITE_DONE ){ rc = SQLITE_OK; } pMod->xClose(pC); if( rc!=SQLITE_OK ) goto offsets_out; } offsets_out: sqlite3_free(sCtx.aTerm); assert( rc!=SQLITE_DONE ); sqlite3Fts3SegmentsClose(pTab); if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); sqlite3_free(res.z); }else{ sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free); } return; } /* ** Implementation of matchinfo() function. */ SQLITE_PRIVATE void sqlite3Fts3Matchinfo( sqlite3_context *pContext, /* Function call context */ Fts3Cursor *pCsr, /* FTS3 table cursor */ const char *zArg /* Second arg to matchinfo() function */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; const char *zFormat; if( zArg ){ zFormat = zArg; }else{ zFormat = FTS3_MATCHINFO_DEFAULT; } if( !pCsr->pExpr ){ sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC); return; }else{ /* Retrieve matchinfo() data. */ fts3GetMatchinfo(pContext, pCsr, zFormat); sqlite3Fts3SegmentsClose(pTab); } } #endif /************** End of fts3_snippet.c ****************************************/ /************** Begin file fts3_unicode.c ************************************/ /* ** 2012 May 24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Implementation of the "unicode" full-text-search tokenizer. */ #ifndef SQLITE_DISABLE_FTS3_UNICODE /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ /* ** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied ** from the sqlite3 source file utf.c. If this file is compiled as part ** of the amalgamation, they are not required. */ #ifndef SQLITE_AMALGAMATION static const unsigned char sqlite3Utf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define READ_UTF8(zIn, zTerm, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = sqlite3Utf8Trans1[c-0xc0]; \ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ if( c<0x80 \ || (c&0xFFFFF800)==0xD800 \ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ } #define WRITE_UTF8(zOut, c) { \ if( c<0x00080 ){ \ *zOut++ = (u8)(c&0xFF); \ } \ else if( c<0x00800 ){ \ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ else if( c<0x10000 ){ \ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ }else{ \ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ } #endif /* ifndef SQLITE_AMALGAMATION */ typedef struct unicode_tokenizer unicode_tokenizer; typedef struct unicode_cursor unicode_cursor; struct unicode_tokenizer { sqlite3_tokenizer base; int eRemoveDiacritic; int nException; int *aiException; }; struct unicode_cursor { sqlite3_tokenizer_cursor base; const unsigned char *aInput; /* Input text being tokenized */ int nInput; /* Size of aInput[] in bytes */ int iOff; /* Current offset within aInput[] */ int iToken; /* Index of next token to be returned */ char *zToken; /* storage for current token */ int nAlloc; /* space allocated at zToken */ }; /* ** Destroy a tokenizer allocated by unicodeCreate(). */ static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){ if( pTokenizer ){ unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer; sqlite3_free(p->aiException); sqlite3_free(p); } return SQLITE_OK; } /* ** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE ** statement has specified that the tokenizer for this table shall consider ** all characters in string zIn/nIn to be separators (if bAlnum==0) or ** token characters (if bAlnum==1). ** ** For each codepoint in the zIn/nIn string, this function checks if the ** sqlite3FtsUnicodeIsalnum() function already returns the desired result. ** If so, no action is taken. Otherwise, the codepoint is added to the ** unicode_tokenizer.aiException[] array. For the purposes of tokenization, ** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all ** codepoints in the aiException[] array. ** ** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic() ** identifies as a diacritic) occurs in the zIn/nIn string it is ignored. ** It is not possible to change the behavior of the tokenizer with respect ** to these codepoints. */ static int unicodeAddExceptions( unicode_tokenizer *p, /* Tokenizer to add exceptions to */ int bAlnum, /* Replace Isalnum() return value with this */ const char *zIn, /* Array of characters to make exceptions */ int nIn /* Length of z in bytes */ ){ const unsigned char *z = (const unsigned char *)zIn; const unsigned char *zTerm = &z[nIn]; unsigned int iCode; int nEntry = 0; assert( bAlnum==0 || bAlnum==1 ); while( zaiException,(p->nException+nEntry)*sizeof(int)); if( aNew==0 ) return SQLITE_NOMEM; nNew = p->nException; z = (const unsigned char *)zIn; while( zi; j--) aNew[j] = aNew[j-1]; aNew[i] = (int)iCode; nNew++; } } p->aiException = aNew; p->nException = nNew; } return SQLITE_OK; } /* ** Return true if the p->aiException[] array contains the value iCode. */ static int unicodeIsException(unicode_tokenizer *p, int iCode){ if( p->nException>0 ){ int *a = p->aiException; int iLo = 0; int iHi = p->nException-1; while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; if( iCode==a[iTest] ){ return 1; }else if( iCode>a[iTest] ){ iLo = iTest+1; }else{ iHi = iTest-1; } } } return 0; } /* ** Return true if, for the purposes of tokenization, codepoint iCode is ** considered a token character (not a separator). */ static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){ assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 ); return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode); } /* ** Create a new tokenizer instance. */ static int unicodeCreate( int nArg, /* Size of array argv[] */ const char * const *azArg, /* Tokenizer creation arguments */ sqlite3_tokenizer **pp /* OUT: New tokenizer handle */ ){ unicode_tokenizer *pNew; /* New tokenizer object */ int i; int rc = SQLITE_OK; pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer)); if( pNew==NULL ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(unicode_tokenizer)); pNew->eRemoveDiacritic = 1; for(i=0; rc==SQLITE_OK && ieRemoveDiacritic = 1; } else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){ pNew->eRemoveDiacritic = 0; } else if( n==19 && memcmp("remove_diacritics=2", z, 19)==0 ){ pNew->eRemoveDiacritic = 2; } else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){ rc = unicodeAddExceptions(pNew, 1, &z[11], n-11); } else if( n>=11 && memcmp("separators=", z, 11)==0 ){ rc = unicodeAddExceptions(pNew, 0, &z[11], n-11); } else{ /* Unrecognized argument */ rc = SQLITE_ERROR; } } if( rc!=SQLITE_OK ){ unicodeDestroy((sqlite3_tokenizer *)pNew); pNew = 0; } *pp = (sqlite3_tokenizer *)pNew; return rc; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is pInput[0..nBytes-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int unicodeOpen( sqlite3_tokenizer *p, /* The tokenizer */ const char *aInput, /* Input string */ int nInput, /* Size of string aInput in bytes */ sqlite3_tokenizer_cursor **pp /* OUT: New cursor object */ ){ unicode_cursor *pCsr; pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor)); if( pCsr==0 ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(unicode_cursor)); pCsr->aInput = (const unsigned char *)aInput; if( aInput==0 ){ pCsr->nInput = 0; pCsr->aInput = (const unsigned char*)""; }else if( nInput<0 ){ pCsr->nInput = (int)strlen(aInput); }else{ pCsr->nInput = nInput; } *pp = &pCsr->base; UNUSED_PARAMETER(p); return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to ** simpleOpen() above. */ static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){ unicode_cursor *pCsr = (unicode_cursor *) pCursor; sqlite3_free(pCsr->zToken); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Extract the next token from a tokenization cursor. The cursor must ** have been opened by a prior call to simpleOpen(). */ static int unicodeNext( sqlite3_tokenizer_cursor *pC, /* Cursor returned by simpleOpen */ const char **paToken, /* OUT: Token text */ int *pnToken, /* OUT: Number of bytes at *paToken */ int *piStart, /* OUT: Starting offset of token */ int *piEnd, /* OUT: Ending offset of token */ int *piPos /* OUT: Position integer of token */ ){ unicode_cursor *pCsr = (unicode_cursor *)pC; unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer); unsigned int iCode = 0; char *zOut; const unsigned char *z = &pCsr->aInput[pCsr->iOff]; const unsigned char *zStart = z; const unsigned char *zEnd; const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput]; /* Scan past any delimiter characters before the start of the next token. ** Return SQLITE_DONE early if this takes us all the way to the end of ** the input. */ while( z=zTerm ) return SQLITE_DONE; zOut = pCsr->zToken; do { int iOut; /* Grow the output buffer if required. */ if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){ char *zNew = sqlite3_realloc64(pCsr->zToken, pCsr->nAlloc+64); if( !zNew ) return SQLITE_NOMEM; zOut = &zNew[zOut - pCsr->zToken]; pCsr->zToken = zNew; pCsr->nAlloc += 64; } /* Write the folded case of the last character read to the output */ zEnd = z; iOut = sqlite3FtsUnicodeFold((int)iCode, p->eRemoveDiacritic); if( iOut ){ WRITE_UTF8(zOut, iOut); } /* If the cursor is not at EOF, read the next character */ if( z>=zTerm ) break; READ_UTF8(z, zTerm, iCode); }while( unicodeIsAlnum(p, (int)iCode) || sqlite3FtsUnicodeIsdiacritic((int)iCode) ); /* Set the output variables and return. */ pCsr->iOff = (int)(z - pCsr->aInput); *paToken = pCsr->zToken; *pnToken = (int)(zOut - pCsr->zToken); *piStart = (int)(zStart - pCsr->aInput); *piEnd = (int)(zEnd - pCsr->aInput); *piPos = pCsr->iToken++; return SQLITE_OK; } /* ** Set *ppModule to a pointer to the sqlite3_tokenizer_module ** structure for the unicode tokenizer. */ SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){ static const sqlite3_tokenizer_module module = { 0, unicodeCreate, unicodeDestroy, unicodeOpen, unicodeClose, unicodeNext, 0, }; *ppModule = &module; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ #endif /* ifndef SQLITE_DISABLE_FTS3_UNICODE */ /************** End of fts3_unicode.c ****************************************/ /************** Begin file fts3_unicode2.c ***********************************/ /* ** 2012-05-25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** */ /* ** DO NOT EDIT THIS MACHINE GENERATED FILE. */ #ifndef SQLITE_DISABLE_FTS3_UNICODE #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) /* #include */ /* ** Return true if the argument corresponds to a unicode codepoint ** classified as either a letter or a number. Otherwise false. ** ** The results are undefined if the value passed to this function ** is less than zero. */ SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int c){ /* Each unsigned integer in the following array corresponds to a contiguous ** range of unicode codepoints that are not either letters or numbers (i.e. ** codepoints for which this function should return 0). ** ** The most significant 22 bits in each 32-bit value contain the first ** codepoint in the range. The least significant 10 bits are used to store ** the size of the range (always at least 1). In other words, the value ** ((C<<22) + N) represents a range of N codepoints starting with codepoint ** C. It is not possible to represent a range larger than 1023 codepoints ** using this format. */ static const unsigned int aEntry[] = { 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07, 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01, 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401, 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01, 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01, 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802, 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F, 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401, 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804, 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403, 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812, 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001, 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802, 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805, 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401, 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03, 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807, 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001, 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01, 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804, 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001, 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802, 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01, 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06, 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007, 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006, 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417, 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14, 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07, 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01, 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001, 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802, 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F, 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002, 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802, 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006, 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D, 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802, 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027, 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403, 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805, 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04, 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401, 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005, 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B, 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A, 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001, 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59, 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807, 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01, 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E, 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100, 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10, 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402, 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804, 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012, 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004, 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002, 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803, 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07, 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02, 0x037FFC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802, 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013, 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06, 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003, 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01, 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403, 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009, 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003, 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003, 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E, 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046, 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401, 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401, 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F, 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C, 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002, 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025, 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6, 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46, 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060, 0x380400F0, }; static const unsigned int aAscii[4] = { 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001, }; if( (unsigned int)c<128 ){ return ( (aAscii[c >> 5] & ((unsigned int)1 << (c & 0x001F)))==0 ); }else if( (unsigned int)c<(1<<22) ){ unsigned int key = (((unsigned int)c)<<10) | 0x000003FF; int iRes = 0; int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1; int iLo = 0; while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; if( key >= aEntry[iTest] ){ iRes = iTest; iLo = iTest+1; }else{ iHi = iTest-1; } } assert( aEntry[0]=aEntry[iRes] ); return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF))); } return 1; } /* ** If the argument is a codepoint corresponding to a lowercase letter ** in the ASCII range with a diacritic added, return the codepoint ** of the ASCII letter only. For example, if passed 235 - "LATIN ** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER ** E"). The resuls of passing a codepoint that corresponds to an ** uppercase letter are undefined. */ static int remove_diacritic(int c, int bComplex){ unsigned short aDia[] = { 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995, 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286, 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732, 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336, 3456, 3696, 3712, 3728, 3744, 3766, 3832, 3896, 3912, 3928, 3944, 3968, 4008, 4040, 4056, 4106, 4138, 4170, 4202, 4234, 4266, 4296, 4312, 4344, 4408, 4424, 4442, 4472, 4488, 4504, 6148, 6198, 6264, 6280, 6360, 6429, 6505, 6529, 61448, 61468, 61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704, 61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914, 61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218, 62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766, 62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118, 63182, 63242, 63274, 63310, 63368, 63390, }; #define HIBIT ((unsigned char)0x80) unsigned char aChar[] = { '\0', 'a', 'c', 'e', 'i', 'n', 'o', 'u', 'y', 'y', 'a', 'c', 'd', 'e', 'e', 'g', 'h', 'i', 'j', 'k', 'l', 'n', 'o', 'r', 's', 't', 'u', 'u', 'w', 'y', 'z', 'o', 'u', 'a', 'i', 'o', 'u', 'u'|HIBIT, 'a'|HIBIT, 'g', 'k', 'o', 'o'|HIBIT, 'j', 'g', 'n', 'a'|HIBIT, 'a', 'e', 'i', 'o', 'r', 'u', 's', 't', 'h', 'a', 'e', 'o'|HIBIT, 'o', 'o'|HIBIT, 'y', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', 'a', 'b', 'c'|HIBIT, 'd', 'd', 'e'|HIBIT, 'e', 'e'|HIBIT, 'f', 'g', 'h', 'h', 'i', 'i'|HIBIT, 'k', 'l', 'l'|HIBIT, 'l', 'm', 'n', 'o'|HIBIT, 'p', 'r', 'r'|HIBIT, 'r', 's', 's'|HIBIT, 't', 'u', 'u'|HIBIT, 'v', 'w', 'w', 'x', 'y', 'z', 'h', 't', 'w', 'y', 'a', 'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT, 'e', 'e'|HIBIT, 'e'|HIBIT, 'i', 'o', 'o'|HIBIT, 'o'|HIBIT, 'o'|HIBIT, 'u', 'u'|HIBIT, 'u'|HIBIT, 'y', }; unsigned int key = (((unsigned int)c)<<3) | 0x00000007; int iRes = 0; int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1; int iLo = 0; while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; if( key >= aDia[iTest] ){ iRes = iTest; iLo = iTest+1; }else{ iHi = iTest-1; } } assert( key>=aDia[iRes] ); if( bComplex==0 && (aChar[iRes] & 0x80) ) return c; return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F); } /* ** Return true if the argument interpreted as a unicode codepoint ** is a diacritical modifier character. */ SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int c){ unsigned int mask0 = 0x08029FDF; unsigned int mask1 = 0x000361F8; if( c<768 || c>817 ) return 0; return (c < 768+32) ? (mask0 & ((unsigned int)1 << (c-768))) : (mask1 & ((unsigned int)1 << (c-768-32))); } /* ** Interpret the argument as a unicode codepoint. If the codepoint ** is an upper case character that has a lower case equivalent, ** return the codepoint corresponding to the lower case version. ** Otherwise, return a copy of the argument. ** ** The results are undefined if the value passed to this function ** is less than zero. */ SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int c, int eRemoveDiacritic){ /* Each entry in the following array defines a rule for folding a range ** of codepoints to lower case. The rule applies to a range of nRange ** codepoints starting at codepoint iCode. ** ** If the least significant bit in flags is clear, then the rule applies ** to all nRange codepoints (i.e. all nRange codepoints are upper case and ** need to be folded). Or, if it is set, then the rule only applies to ** every second codepoint in the range, starting with codepoint C. ** ** The 7 most significant bits in flags are an index into the aiOff[] ** array. If a specific codepoint C does require folding, then its lower ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF). ** ** The contents of this array are generated by parsing the CaseFolding.txt ** file distributed as part of the "Unicode Character Database". See ** http://www.unicode.org for details. */ static const struct TableEntry { unsigned short iCode; unsigned char flags; unsigned char nRange; } aEntry[] = { {65, 14, 26}, {181, 64, 1}, {192, 14, 23}, {216, 14, 7}, {256, 1, 48}, {306, 1, 6}, {313, 1, 16}, {330, 1, 46}, {376, 116, 1}, {377, 1, 6}, {383, 104, 1}, {385, 50, 1}, {386, 1, 4}, {390, 44, 1}, {391, 0, 1}, {393, 42, 2}, {395, 0, 1}, {398, 32, 1}, {399, 38, 1}, {400, 40, 1}, {401, 0, 1}, {403, 42, 1}, {404, 46, 1}, {406, 52, 1}, {407, 48, 1}, {408, 0, 1}, {412, 52, 1}, {413, 54, 1}, {415, 56, 1}, {416, 1, 6}, {422, 60, 1}, {423, 0, 1}, {425, 60, 1}, {428, 0, 1}, {430, 60, 1}, {431, 0, 1}, {433, 58, 2}, {435, 1, 4}, {439, 62, 1}, {440, 0, 1}, {444, 0, 1}, {452, 2, 1}, {453, 0, 1}, {455, 2, 1}, {456, 0, 1}, {458, 2, 1}, {459, 1, 18}, {478, 1, 18}, {497, 2, 1}, {498, 1, 4}, {502, 122, 1}, {503, 134, 1}, {504, 1, 40}, {544, 110, 1}, {546, 1, 18}, {570, 70, 1}, {571, 0, 1}, {573, 108, 1}, {574, 68, 1}, {577, 0, 1}, {579, 106, 1}, {580, 28, 1}, {581, 30, 1}, {582, 1, 10}, {837, 36, 1}, {880, 1, 4}, {886, 0, 1}, {902, 18, 1}, {904, 16, 3}, {908, 26, 1}, {910, 24, 2}, {913, 14, 17}, {931, 14, 9}, {962, 0, 1}, {975, 4, 1}, {976, 140, 1}, {977, 142, 1}, {981, 146, 1}, {982, 144, 1}, {984, 1, 24}, {1008, 136, 1}, {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1}, {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1}, {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32}, {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1}, {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38}, {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1}, {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1}, {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6}, {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6}, {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8}, {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2}, {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1}, {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2}, {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2}, {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2}, {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1}, {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16}, {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47}, {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1}, {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1}, {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1}, {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2}, {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1}, {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14}, {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1}, {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1}, {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1}, {65313, 14, 26}, }; static const unsigned short aiOff[] = { 1, 2, 8, 15, 16, 26, 28, 32, 37, 38, 40, 48, 63, 64, 69, 71, 79, 80, 116, 202, 203, 205, 206, 207, 209, 210, 211, 213, 214, 217, 218, 219, 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721, 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274, 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406, 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462, 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511, 65514, 65521, 65527, 65528, 65529, }; int ret = c; assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 ); if( c<128 ){ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A'); }else if( c<65536 ){ const struct TableEntry *p; int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1; int iLo = 0; int iRes = -1; assert( c>aEntry[0].iCode ); while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; int cmp = (c - aEntry[iTest].iCode); if( cmp>=0 ){ iRes = iTest; iLo = iTest+1; }else{ iHi = iTest-1; } } assert( iRes>=0 && c>=aEntry[iRes].iCode ); p = &aEntry[iRes]; if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF; assert( ret>0 ); } if( eRemoveDiacritic ){ ret = remove_diacritic(ret, eRemoveDiacritic==2); } } else if( c>=66560 && c<66600 ){ ret = c + 40; } return ret; } #endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */ #endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */ /************** End of fts3_unicode2.c ***************************************/ /************** Begin file json.c ********************************************/ /* ** 2015-08-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite JSON functions. ** ** This file began as an extension in ext/misc/json1.c in 2015. That ** extension proved so useful that it has now been moved into the core. ** ** For the time being, all JSON is stored as pure text. (We might add ** a JSONB type in the future which stores a binary encoding of JSON in ** a BLOB, but there is no support for JSONB in the current implementation. ** This implementation parses JSON text at 250 MB/s, so it is hard to see ** how JSONB might improve on that.) */ #ifndef SQLITE_OMIT_JSON /* #include "sqliteInt.h" */ /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function, resulting in a 7% overall performance ** increase for the parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os). */ static const char jsonIsSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define fast_isspace(x) (jsonIsSpace[(unsigned char)x]) /* ** Characters that are special to JSON. Control charaters, ** '"' and '\\'. */ static const char jsonIsOk[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; #if !defined(SQLITE_DEBUG) && !defined(SQLITE_COVERAGE_TEST) # define VVA(X) #else # define VVA(X) X #endif /* Objects */ typedef struct JsonString JsonString; typedef struct JsonNode JsonNode; typedef struct JsonParse JsonParse; typedef struct JsonCleanup JsonCleanup; /* An instance of this object represents a JSON string ** under construction. Really, this is a generic string accumulator ** that can be and is used to create strings other than JSON. */ struct JsonString { sqlite3_context *pCtx; /* Function context - put error messages here */ char *zBuf; /* Append JSON content here */ u64 nAlloc; /* Bytes of storage available in zBuf[] */ u64 nUsed; /* Bytes of zBuf[] currently used */ u8 bStatic; /* True if zBuf is static space */ u8 bErr; /* True if an error has been encountered */ char zSpace[100]; /* Initial static space */ }; /* A deferred cleanup task. A list of JsonCleanup objects might be ** run when the JsonParse object is destroyed. */ struct JsonCleanup { JsonCleanup *pJCNext; /* Next in a list */ void (*xOp)(void*); /* Routine to run */ void *pArg; /* Argument to xOp() */ }; /* JSON type values */ #define JSON_SUBST 0 /* Special edit node. Uses u.iPrev */ #define JSON_NULL 1 #define JSON_TRUE 2 #define JSON_FALSE 3 #define JSON_INT 4 #define JSON_REAL 5 #define JSON_STRING 6 #define JSON_ARRAY 7 #define JSON_OBJECT 8 /* The "subtype" set for JSON values */ #define JSON_SUBTYPE 74 /* Ascii for "J" */ /* ** Names of the various JSON types: */ static const char * const jsonType[] = { "subst", "null", "true", "false", "integer", "real", "text", "array", "object" }; /* Bit values for the JsonNode.jnFlag field */ #define JNODE_RAW 0x01 /* Content is raw, not JSON encoded */ #define JNODE_ESCAPE 0x02 /* Content is text with \ escapes */ #define JNODE_REMOVE 0x04 /* Do not output */ #define JNODE_REPLACE 0x08 /* Target of a JSON_SUBST node */ #define JNODE_APPEND 0x10 /* More ARRAY/OBJECT entries at u.iAppend */ #define JNODE_LABEL 0x20 /* Is a label of an object */ #define JNODE_JSON5 0x40 /* Node contains JSON5 enhancements */ /* A single node of parsed JSON. An array of these nodes describes ** a parse of JSON + edits. ** ** Use the json_parse() SQL function (available when compiled with ** -DSQLITE_DEBUG) to see a dump of complete JsonParse objects, including ** a complete listing and decoding of the array of JsonNodes. */ struct JsonNode { u8 eType; /* One of the JSON_ type values */ u8 jnFlags; /* JNODE flags */ u8 eU; /* Which union element to use */ u32 n; /* Bytes of content for INT, REAL or STRING ** Number of sub-nodes for ARRAY and OBJECT ** Node that SUBST applies to */ union { const char *zJContent; /* 1: Content for INT, REAL, and STRING */ u32 iAppend; /* 2: More terms for ARRAY and OBJECT */ u32 iKey; /* 3: Key for ARRAY objects in json_tree() */ u32 iPrev; /* 4: Previous SUBST node, or 0 */ } u; }; /* A parsed and possibly edited JSON string. Lifecycle: ** ** 1. JSON comes in and is parsed into an array aNode[]. The original ** JSON text is stored in zJson. ** ** 2. Zero or more changes are made (via json_remove() or json_replace() ** or similar) to the aNode[] array. ** ** 3. A new, edited and mimified JSON string is generated from aNode ** and stored in zAlt. The JsonParse object always owns zAlt. ** ** Step 1 always happens. Step 2 and 3 may or may not happen, depending ** on the operation. ** ** aNode[].u.zJContent entries typically point into zJson. Hence zJson ** must remain valid for the lifespan of the parse. For edits, ** aNode[].u.zJContent might point to malloced space other than zJson. ** Entries in pClup are responsible for freeing that extra malloced space. ** ** When walking the parse tree in aNode[], edits are ignored if useMod is ** false. */ struct JsonParse { u32 nNode; /* Number of slots of aNode[] used */ u32 nAlloc; /* Number of slots of aNode[] allocated */ JsonNode *aNode; /* Array of nodes containing the parse */ char *zJson; /* Original JSON string (before edits) */ char *zAlt; /* Revised and/or mimified JSON */ u32 *aUp; /* Index of parent of each node */ JsonCleanup *pClup;/* Cleanup operations prior to freeing this object */ u16 iDepth; /* Nesting depth */ u8 nErr; /* Number of errors seen */ u8 oom; /* Set to true if out of memory */ u8 bJsonIsRCStr; /* True if zJson is an RCStr */ u8 hasNonstd; /* True if input uses non-standard features like JSON5 */ u8 useMod; /* Actually use the edits contain inside aNode */ u8 hasMod; /* aNode contains edits from the original zJson */ u32 nJPRef; /* Number of references to this object */ int nJson; /* Length of the zJson string in bytes */ int nAlt; /* Length of alternative JSON string zAlt, in bytes */ u32 iErr; /* Error location in zJson[] */ u32 iSubst; /* Last JSON_SUBST entry in aNode[] */ u32 iHold; /* Age of this entry in the cache for LRU replacement */ }; /* ** Maximum nesting depth of JSON for this implementation. ** ** This limit is needed to avoid a stack overflow in the recursive ** descent parser. A depth of 1000 is far deeper than any sane JSON ** should go. Historical note: This limit was 2000 prior to version 3.42.0 */ #define JSON_MAX_DEPTH 1000 /************************************************************************** ** Utility routines for dealing with JsonString objects **************************************************************************/ /* Set the JsonString object to an empty string */ static void jsonZero(JsonString *p){ p->zBuf = p->zSpace; p->nAlloc = sizeof(p->zSpace); p->nUsed = 0; p->bStatic = 1; } /* Initialize the JsonString object */ static void jsonInit(JsonString *p, sqlite3_context *pCtx){ p->pCtx = pCtx; p->bErr = 0; jsonZero(p); } /* Free all allocated memory and reset the JsonString object back to its ** initial state. */ static void jsonReset(JsonString *p){ if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf); jsonZero(p); } /* Report an out-of-memory (OOM) condition */ static void jsonOom(JsonString *p){ p->bErr = 1; sqlite3_result_error_nomem(p->pCtx); jsonReset(p); } /* Enlarge pJson->zBuf so that it can hold at least N more bytes. ** Return zero on success. Return non-zero on an OOM error */ static int jsonGrow(JsonString *p, u32 N){ u64 nTotal = NnAlloc ? p->nAlloc*2 : p->nAlloc+N+10; char *zNew; if( p->bStatic ){ if( p->bErr ) return 1; zNew = sqlite3RCStrNew(nTotal); if( zNew==0 ){ jsonOom(p); return SQLITE_NOMEM; } memcpy(zNew, p->zBuf, (size_t)p->nUsed); p->zBuf = zNew; p->bStatic = 0; }else{ p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal); if( p->zBuf==0 ){ p->bErr = 1; jsonZero(p); return SQLITE_NOMEM; } } p->nAlloc = nTotal; return SQLITE_OK; } /* Append N bytes from zIn onto the end of the JsonString string. */ static SQLITE_NOINLINE void jsonAppendExpand( JsonString *p, const char *zIn, u32 N ){ assert( N>0 ); if( jsonGrow(p,N) ) return; memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){ if( N==0 ) return; if( N+p->nUsed >= p->nAlloc ){ jsonAppendExpand(p,zIn,N); }else{ memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } } static void jsonAppendRawNZ(JsonString *p, const char *zIn, u32 N){ assert( N>0 ); if( N+p->nUsed >= p->nAlloc ){ jsonAppendExpand(p,zIn,N); }else{ memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } } /* Append formatted text (not to exceed N bytes) to the JsonString. */ static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){ va_list ap; if( (p->nUsed + N >= p->nAlloc) && jsonGrow(p, N) ) return; va_start(ap, zFormat); sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap); va_end(ap); p->nUsed += (int)strlen(p->zBuf+p->nUsed); } /* Append a single character */ static SQLITE_NOINLINE void jsonAppendCharExpand(JsonString *p, char c){ if( jsonGrow(p,1) ) return; p->zBuf[p->nUsed++] = c; } static void jsonAppendChar(JsonString *p, char c){ if( p->nUsed>=p->nAlloc ){ jsonAppendCharExpand(p,c); }else{ p->zBuf[p->nUsed++] = c; } } /* Try to force the string to be a zero-terminated RCStr string. ** ** Return true on success. Return false if an OOM prevents this ** from happening. */ static int jsonForceRCStr(JsonString *p){ jsonAppendChar(p, 0); if( p->bErr ) return 0; p->nUsed--; if( p->bStatic==0 ) return 1; p->nAlloc = 0; p->nUsed++; jsonGrow(p, p->nUsed); p->nUsed--; return p->bStatic==0; } /* Append a comma separator to the output buffer, if the previous ** character is not '[' or '{'. */ static void jsonAppendSeparator(JsonString *p){ char c; if( p->nUsed==0 ) return; c = p->zBuf[p->nUsed-1]; if( c=='[' || c=='{' ) return; jsonAppendChar(p, ','); } /* Append the N-byte string in zIn to the end of the JsonString string ** under construction. Enclose the string in "..." and escape ** any double-quotes or backslash characters contained within the ** string. */ static void jsonAppendString(JsonString *p, const char *zIn, u32 N){ u32 i; if( zIn==0 || ((N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0) ) return; p->zBuf[p->nUsed++] = '"'; for(i=0; izBuf[p->nUsed++] = c; }else if( c=='"' || c=='\\' ){ json_simple_escape: if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = c; }else if( c=='\'' ){ p->zBuf[p->nUsed++] = c; }else{ static const char aSpecial[] = { 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; assert( sizeof(aSpecial)==32 ); assert( aSpecial['\b']=='b' ); assert( aSpecial['\f']=='f' ); assert( aSpecial['\n']=='n' ); assert( aSpecial['\r']=='r' ); assert( aSpecial['\t']=='t' ); assert( c>=0 && cnUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = 'u'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = "0123456789abcdef"[c>>4]; p->zBuf[p->nUsed++] = "0123456789abcdef"[c&0xf]; } } p->zBuf[p->nUsed++] = '"'; assert( p->nUsednAlloc ); } /* ** The zIn[0..N] string is a JSON5 string literal. Append to p a translation ** of the string literal that standard JSON and that omits all JSON5 ** features. */ static void jsonAppendNormalizedString(JsonString *p, const char *zIn, u32 N){ u32 i; jsonAppendChar(p, '"'); zIn++; N -= 2; while( N>0 ){ for(i=0; i0 ){ jsonAppendRawNZ(p, zIn, i); zIn += i; N -= i; if( N==0 ) break; } assert( zIn[0]=='\\' ); switch( (u8)zIn[1] ){ case '\'': jsonAppendChar(p, '\''); break; case 'v': jsonAppendRawNZ(p, "\\u0009", 6); break; case 'x': jsonAppendRawNZ(p, "\\u00", 4); jsonAppendRawNZ(p, &zIn[2], 2); zIn += 2; N -= 2; break; case '0': jsonAppendRawNZ(p, "\\u0000", 6); break; case '\r': if( zIn[2]=='\n' ){ zIn++; N--; } break; case '\n': break; case 0xe2: assert( N>=4 ); assert( 0x80==(u8)zIn[2] ); assert( 0xa8==(u8)zIn[3] || 0xa9==(u8)zIn[3] ); zIn += 2; N -= 2; break; default: jsonAppendRawNZ(p, zIn, 2); break; } zIn += 2; N -= 2; } jsonAppendChar(p, '"'); } /* ** The zIn[0..N] string is a JSON5 integer literal. Append to p a translation ** of the string literal that standard JSON and that omits all JSON5 ** features. */ static void jsonAppendNormalizedInt(JsonString *p, const char *zIn, u32 N){ if( zIn[0]=='+' ){ zIn++; N--; }else if( zIn[0]=='-' ){ jsonAppendChar(p, '-'); zIn++; N--; } if( zIn[0]=='0' && (zIn[1]=='x' || zIn[1]=='X') ){ sqlite3_int64 i = 0; int rc = sqlite3DecOrHexToI64(zIn, &i); if( rc<=1 ){ jsonPrintf(100,p,"%lld",i); }else{ assert( rc==2 ); jsonAppendRawNZ(p, "9.0e999", 7); } return; } assert( N>0 ); jsonAppendRawNZ(p, zIn, N); } /* ** The zIn[0..N] string is a JSON5 real literal. Append to p a translation ** of the string literal that standard JSON and that omits all JSON5 ** features. */ static void jsonAppendNormalizedReal(JsonString *p, const char *zIn, u32 N){ u32 i; if( zIn[0]=='+' ){ zIn++; N--; }else if( zIn[0]=='-' ){ jsonAppendChar(p, '-'); zIn++; N--; } if( zIn[0]=='.' ){ jsonAppendChar(p, '0'); } for(i=0; i0 ){ jsonAppendRawNZ(p, zIn, N); } } /* ** Append a function parameter value to the JSON string under ** construction. */ static void jsonAppendValue( JsonString *p, /* Append to this JSON string */ sqlite3_value *pValue /* Value to append */ ){ switch( sqlite3_value_type(pValue) ){ case SQLITE_NULL: { jsonAppendRawNZ(p, "null", 4); break; } case SQLITE_FLOAT: { jsonPrintf(100, p, "%!0.15g", sqlite3_value_double(pValue)); break; } case SQLITE_INTEGER: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); jsonAppendRaw(p, z, n); break; } case SQLITE_TEXT: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){ jsonAppendRaw(p, z, n); }else{ jsonAppendString(p, z, n); } break; } default: { if( p->bErr==0 ){ sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1); p->bErr = 2; jsonReset(p); } break; } } } /* Make the JSON in p the result of the SQL function. ** ** The JSON string is reset. */ static void jsonResult(JsonString *p){ if( p->bErr==0 ){ if( p->bStatic ){ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, SQLITE_TRANSIENT, SQLITE_UTF8); }else if( jsonForceRCStr(p) ){ sqlite3RCStrRef(p->zBuf); sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, (void(*)(void*))sqlite3RCStrUnref, SQLITE_UTF8); } } if( p->bErr==1 ){ sqlite3_result_error_nomem(p->pCtx); } jsonReset(p); } /************************************************************************** ** Utility routines for dealing with JsonNode and JsonParse objects **************************************************************************/ /* ** Return the number of consecutive JsonNode slots need to represent ** the parsed JSON at pNode. The minimum answer is 1. For ARRAY and ** OBJECT types, the number might be larger. ** ** Appended elements are not counted. The value returned is the number ** by which the JsonNode counter should increment in order to go to the ** next peer value. */ static u32 jsonNodeSize(JsonNode *pNode){ return pNode->eType>=JSON_ARRAY ? pNode->n+1 : 1; } /* ** Reclaim all memory allocated by a JsonParse object. But do not ** delete the JsonParse object itself. */ static void jsonParseReset(JsonParse *pParse){ while( pParse->pClup ){ JsonCleanup *pTask = pParse->pClup; pParse->pClup = pTask->pJCNext; pTask->xOp(pTask->pArg); sqlite3_free(pTask); } assert( pParse->nJPRef<=1 ); if( pParse->aNode ){ sqlite3_free(pParse->aNode); pParse->aNode = 0; } pParse->nNode = 0; pParse->nAlloc = 0; if( pParse->aUp ){ sqlite3_free(pParse->aUp); pParse->aUp = 0; } if( pParse->bJsonIsRCStr ){ sqlite3RCStrUnref(pParse->zJson); pParse->zJson = 0; pParse->bJsonIsRCStr = 0; } if( pParse->zAlt ){ sqlite3RCStrUnref(pParse->zAlt); pParse->zAlt = 0; } } /* ** Free a JsonParse object that was obtained from sqlite3_malloc(). ** ** Note that destroying JsonParse might call sqlite3RCStrUnref() to ** destroy the zJson value. The RCStr object might recursively invoke ** JsonParse to destroy this pParse object again. Take care to ensure ** that this recursive destructor sequence terminates harmlessly. */ static void jsonParseFree(JsonParse *pParse){ if( pParse->nJPRef>1 ){ pParse->nJPRef--; }else{ jsonParseReset(pParse); sqlite3_free(pParse); } } /* ** Add a cleanup task to the JsonParse object. ** ** If an OOM occurs, the cleanup operation happens immediately ** and this function returns SQLITE_NOMEM. */ static int jsonParseAddCleanup( JsonParse *pParse, /* Add the cleanup task to this parser */ void(*xOp)(void*), /* The cleanup task */ void *pArg /* Argument to the cleanup */ ){ JsonCleanup *pTask = sqlite3_malloc64( sizeof(*pTask) ); if( pTask==0 ){ pParse->oom = 1; xOp(pArg); return SQLITE_ERROR; } pTask->pJCNext = pParse->pClup; pParse->pClup = pTask; pTask->xOp = xOp; pTask->pArg = pArg; return SQLITE_OK; } /* ** Convert the JsonNode pNode into a pure JSON string and ** append to pOut. Subsubstructure is also included. Return ** the number of JsonNode objects that are encoded. */ static void jsonRenderNode( JsonParse *pParse, /* the complete parse of the JSON */ JsonNode *pNode, /* The node to render */ JsonString *pOut /* Write JSON here */ ){ assert( pNode!=0 ); while( (pNode->jnFlags & JNODE_REPLACE)!=0 && pParse->useMod ){ u32 idx = (u32)(pNode - pParse->aNode); u32 i = pParse->iSubst; while( 1 /*exit-by-break*/ ){ assert( inNode ); assert( pParse->aNode[i].eType==JSON_SUBST ); assert( pParse->aNode[i].eU==4 ); assert( pParse->aNode[i].u.iPrevaNode[i].n==idx ){ pNode = &pParse->aNode[i+1]; break; } i = pParse->aNode[i].u.iPrev; } } switch( pNode->eType ){ default: { assert( pNode->eType==JSON_NULL ); jsonAppendRawNZ(pOut, "null", 4); break; } case JSON_TRUE: { jsonAppendRawNZ(pOut, "true", 4); break; } case JSON_FALSE: { jsonAppendRawNZ(pOut, "false", 5); break; } case JSON_STRING: { assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_RAW ){ if( pNode->jnFlags & JNODE_LABEL ){ jsonAppendChar(pOut, '"'); jsonAppendRaw(pOut, pNode->u.zJContent, pNode->n); jsonAppendChar(pOut, '"'); }else{ jsonAppendString(pOut, pNode->u.zJContent, pNode->n); } }else if( pNode->jnFlags & JNODE_JSON5 ){ jsonAppendNormalizedString(pOut, pNode->u.zJContent, pNode->n); }else{ assert( pNode->n>0 ); jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n); } break; } case JSON_REAL: { assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_JSON5 ){ jsonAppendNormalizedReal(pOut, pNode->u.zJContent, pNode->n); }else{ assert( pNode->n>0 ); jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n); } break; } case JSON_INT: { assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_JSON5 ){ jsonAppendNormalizedInt(pOut, pNode->u.zJContent, pNode->n); }else{ assert( pNode->n>0 ); jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n); } break; } case JSON_ARRAY: { u32 j = 1; jsonAppendChar(pOut, '['); for(;;){ while( j<=pNode->n ){ if( (pNode[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){ jsonAppendSeparator(pOut); jsonRenderNode(pParse, &pNode[j], pOut); } j += jsonNodeSize(&pNode[j]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pNode->eU==2 ); pNode = &pParse->aNode[pNode->u.iAppend]; j = 1; } jsonAppendChar(pOut, ']'); break; } case JSON_OBJECT: { u32 j = 1; jsonAppendChar(pOut, '{'); for(;;){ while( j<=pNode->n ){ if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){ jsonAppendSeparator(pOut); jsonRenderNode(pParse, &pNode[j], pOut); jsonAppendChar(pOut, ':'); jsonRenderNode(pParse, &pNode[j+1], pOut); } j += 1 + jsonNodeSize(&pNode[j+1]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pNode->eU==2 ); pNode = &pParse->aNode[pNode->u.iAppend]; j = 1; } jsonAppendChar(pOut, '}'); break; } } } /* ** Return a JsonNode and all its descendants as a JSON string. */ static void jsonReturnJson( JsonParse *pParse, /* The complete JSON */ JsonNode *pNode, /* Node to return */ sqlite3_context *pCtx, /* Return value for this function */ int bGenerateAlt /* Also store the rendered text in zAlt */ ){ JsonString s; if( pParse->oom ){ sqlite3_result_error_nomem(pCtx); return; } if( pParse->nErr==0 ){ jsonInit(&s, pCtx); jsonRenderNode(pParse, pNode, &s); if( bGenerateAlt && pParse->zAlt==0 && jsonForceRCStr(&s) ){ pParse->zAlt = sqlite3RCStrRef(s.zBuf); pParse->nAlt = s.nUsed; } jsonResult(&s); sqlite3_result_subtype(pCtx, JSON_SUBTYPE); } } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ static u8 jsonHexToInt(int h){ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); #ifdef SQLITE_EBCDIC h += 9*(1&~(h>>4)); #else h += 9*(1&(h>>6)); #endif return (u8)(h & 0xf); } /* ** Convert a 4-byte hex string into an integer */ static u32 jsonHexToInt4(const char *z){ u32 v; assert( sqlite3Isxdigit(z[0]) ); assert( sqlite3Isxdigit(z[1]) ); assert( sqlite3Isxdigit(z[2]) ); assert( sqlite3Isxdigit(z[3]) ); v = (jsonHexToInt(z[0])<<12) + (jsonHexToInt(z[1])<<8) + (jsonHexToInt(z[2])<<4) + jsonHexToInt(z[3]); return v; } /* ** Make the JsonNode the return value of the function. */ static void jsonReturn( JsonParse *pParse, /* Complete JSON parse tree */ JsonNode *pNode, /* Node to return */ sqlite3_context *pCtx /* Return value for this function */ ){ switch( pNode->eType ){ default: { assert( pNode->eType==JSON_NULL ); sqlite3_result_null(pCtx); break; } case JSON_TRUE: { sqlite3_result_int(pCtx, 1); break; } case JSON_FALSE: { sqlite3_result_int(pCtx, 0); break; } case JSON_INT: { sqlite3_int64 i = 0; int rc; int bNeg = 0; const char *z; assert( pNode->eU==1 ); z = pNode->u.zJContent; if( z[0]=='-' ){ z++; bNeg = 1; } else if( z[0]=='+' ){ z++; } rc = sqlite3DecOrHexToI64(z, &i); if( rc<=1 ){ sqlite3_result_int64(pCtx, bNeg ? -i : i); }else if( rc==3 && bNeg ){ sqlite3_result_int64(pCtx, SMALLEST_INT64); }else{ goto to_double; } break; } case JSON_REAL: { double r; const char *z; assert( pNode->eU==1 ); to_double: z = pNode->u.zJContent; sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8); sqlite3_result_double(pCtx, r); break; } case JSON_STRING: { if( pNode->jnFlags & JNODE_RAW ){ assert( pNode->eU==1 ); sqlite3_result_text(pCtx, pNode->u.zJContent, pNode->n, SQLITE_TRANSIENT); }else if( (pNode->jnFlags & JNODE_ESCAPE)==0 ){ /* JSON formatted without any backslash-escapes */ assert( pNode->eU==1 ); sqlite3_result_text(pCtx, pNode->u.zJContent+1, pNode->n-2, SQLITE_TRANSIENT); }else{ /* Translate JSON formatted string into raw text */ u32 i; u32 n = pNode->n; const char *z; char *zOut; u32 j; u32 nOut = n; assert( pNode->eU==1 ); z = pNode->u.zJContent; zOut = sqlite3_malloc( nOut+1 ); if( zOut==0 ){ sqlite3_result_error_nomem(pCtx); break; } for(i=1, j=0; i>6)); zOut[j++] = 0x80 | (v&0x3f); }else{ u32 vlo; if( (v&0xfc00)==0xd800 && i>18); zOut[j++] = 0x80 | ((v>>12)&0x3f); zOut[j++] = 0x80 | ((v>>6)&0x3f); zOut[j++] = 0x80 | (v&0x3f); }else{ zOut[j++] = 0xe0 | (v>>12); zOut[j++] = 0x80 | ((v>>6)&0x3f); zOut[j++] = 0x80 | (v&0x3f); } } continue; }else if( c=='b' ){ c = '\b'; }else if( c=='f' ){ c = '\f'; }else if( c=='n' ){ c = '\n'; }else if( c=='r' ){ c = '\r'; }else if( c=='t' ){ c = '\t'; }else if( c=='v' ){ c = '\v'; }else if( c=='\'' || c=='"' || c=='/' || c=='\\' ){ /* pass through unchanged */ }else if( c=='0' ){ c = 0; }else if( c=='x' ){ c = (jsonHexToInt(z[i+1])<<4) | jsonHexToInt(z[i+2]); i += 2; }else if( c=='\r' && z[i+1]=='\n' ){ i++; continue; }else if( 0xe2==(u8)c ){ assert( 0x80==(u8)z[i+1] ); assert( 0xa8==(u8)z[i+2] || 0xa9==(u8)z[i+2] ); i += 2; continue; }else{ continue; } } /* end if( c=='\\' ) */ zOut[j++] = c; } /* end for() */ zOut[j] = 0; sqlite3_result_text(pCtx, zOut, j, sqlite3_free); } break; } case JSON_ARRAY: case JSON_OBJECT: { jsonReturnJson(pParse, pNode, pCtx, 0); break; } } } /* Forward reference */ static int jsonParseAddNode(JsonParse*,u32,u32,const char*); /* ** A macro to hint to the compiler that a function should not be ** inlined. */ #if defined(__GNUC__) # define JSON_NOINLINE __attribute__((noinline)) #elif defined(_MSC_VER) && _MSC_VER>=1310 # define JSON_NOINLINE __declspec(noinline) #else # define JSON_NOINLINE #endif /* ** Add a single node to pParse->aNode after first expanding the ** size of the aNode array. Return the index of the new node. ** ** If an OOM error occurs, set pParse->oom and return -1. */ static JSON_NOINLINE int jsonParseAddNodeExpand( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ u32 nNew; JsonNode *pNew; assert( pParse->nNode>=pParse->nAlloc ); if( pParse->oom ) return -1; nNew = pParse->nAlloc*2 + 10; pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew); if( pNew==0 ){ pParse->oom = 1; return -1; } pParse->nAlloc = sqlite3_msize(pNew)/sizeof(JsonNode); pParse->aNode = pNew; assert( pParse->nNodenAlloc ); return jsonParseAddNode(pParse, eType, n, zContent); } /* ** Create a new JsonNode instance based on the arguments and append that ** instance to the JsonParse. Return the index in pParse->aNode[] of the ** new node, or -1 if a memory allocation fails. */ static int jsonParseAddNode( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ JsonNode *p; assert( pParse->aNode!=0 || pParse->nNode>=pParse->nAlloc ); if( pParse->nNode>=pParse->nAlloc ){ return jsonParseAddNodeExpand(pParse, eType, n, zContent); } assert( pParse->aNode!=0 ); p = &pParse->aNode[pParse->nNode]; assert( p!=0 ); p->eType = (u8)(eType & 0xff); p->jnFlags = (u8)(eType >> 8); VVA( p->eU = zContent ? 1 : 0 ); p->n = n; p->u.zJContent = zContent; return pParse->nNode++; } /* ** Add an array of new nodes to the current pParse->aNode array. ** Return the index of the first node added. ** ** If an OOM error occurs, set pParse->oom. */ static void jsonParseAddNodeArray( JsonParse *pParse, /* Append the node to this object */ JsonNode *aNode, /* Array of nodes to add */ u32 nNode /* Number of elements in aNew */ ){ assert( aNode!=0 ); assert( nNode>=1 ); if( pParse->nNode + nNode > pParse->nAlloc ){ u32 nNew = pParse->nNode + nNode; JsonNode *aNew = sqlite3_realloc64(pParse->aNode, nNew*sizeof(JsonNode)); if( aNew==0 ){ pParse->oom = 1; return; } pParse->nAlloc = sqlite3_msize(aNew)/sizeof(JsonNode); pParse->aNode = aNew; } memcpy(&pParse->aNode[pParse->nNode], aNode, nNode*sizeof(JsonNode)); pParse->nNode += nNode; } /* ** Add a new JSON_SUBST node. The node immediately following ** this new node will be the substitute content for iNode. */ static int jsonParseAddSubstNode( JsonParse *pParse, /* Add the JSON_SUBST here */ u32 iNode /* References this node */ ){ int idx = jsonParseAddNode(pParse, JSON_SUBST, iNode, 0); if( pParse->oom ) return -1; pParse->aNode[iNode].jnFlags |= JNODE_REPLACE; pParse->aNode[idx].eU = 4; pParse->aNode[idx].u.iPrev = pParse->iSubst; pParse->iSubst = idx; pParse->hasMod = 1; pParse->useMod = 1; return idx; } /* ** Return true if z[] begins with 2 (or more) hexadecimal digits */ static int jsonIs2Hex(const char *z){ return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]); } /* ** Return true if z[] begins with 4 (or more) hexadecimal digits */ static int jsonIs4Hex(const char *z){ return jsonIs2Hex(z) && jsonIs2Hex(&z[2]); } /* ** Return the number of bytes of JSON5 whitespace at the beginning of ** the input string z[]. ** ** JSON5 whitespace consists of any of the following characters: ** ** Unicode UTF-8 Name ** U+0009 09 horizontal tab ** U+000a 0a line feed ** U+000b 0b vertical tab ** U+000c 0c form feed ** U+000d 0d carriage return ** U+0020 20 space ** U+00a0 c2 a0 non-breaking space ** U+1680 e1 9a 80 ogham space mark ** U+2000 e2 80 80 en quad ** U+2001 e2 80 81 em quad ** U+2002 e2 80 82 en space ** U+2003 e2 80 83 em space ** U+2004 e2 80 84 three-per-em space ** U+2005 e2 80 85 four-per-em space ** U+2006 e2 80 86 six-per-em space ** U+2007 e2 80 87 figure space ** U+2008 e2 80 88 punctuation space ** U+2009 e2 80 89 thin space ** U+200a e2 80 8a hair space ** U+2028 e2 80 a8 line separator ** U+2029 e2 80 a9 paragraph separator ** U+202f e2 80 af narrow no-break space (NNBSP) ** U+205f e2 81 9f medium mathematical space (MMSP) ** U+3000 e3 80 80 ideographical space ** U+FEFF ef bb bf byte order mark ** ** In addition, comments between '/', '*' and '*', '/' and ** from '/', '/' to end-of-line are also considered to be whitespace. */ static int json5Whitespace(const char *zIn){ int n = 0; const u8 *z = (u8*)zIn; while( 1 /*exit by "goto whitespace_done"*/ ){ switch( z[n] ){ case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x20: { n++; break; } case '/': { if( z[n+1]=='*' && z[n+2]!=0 ){ int j; for(j=n+3; z[j]!='/' || z[j-1]!='*'; j++){ if( z[j]==0 ) goto whitespace_done; } n = j+1; break; }else if( z[n+1]=='/' ){ int j; char c; for(j=n+2; (c = z[j])!=0; j++){ if( c=='\n' || c=='\r' ) break; if( 0xe2==(u8)c && 0x80==(u8)z[j+1] && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2]) ){ j += 2; break; } } n = j; if( z[n] ) n++; break; } goto whitespace_done; } case 0xc2: { if( z[n+1]==0xa0 ){ n += 2; break; } goto whitespace_done; } case 0xe1: { if( z[n+1]==0x9a && z[n+2]==0x80 ){ n += 3; break; } goto whitespace_done; } case 0xe2: { if( z[n+1]==0x80 ){ u8 c = z[n+2]; if( c<0x80 ) goto whitespace_done; if( c<=0x8a || c==0xa8 || c==0xa9 || c==0xaf ){ n += 3; break; } }else if( z[n+1]==0x81 && z[n+2]==0x9f ){ n += 3; break; } goto whitespace_done; } case 0xe3: { if( z[n+1]==0x80 && z[n+2]==0x80 ){ n += 3; break; } goto whitespace_done; } case 0xef: { if( z[n+1]==0xbb && z[n+2]==0xbf ){ n += 3; break; } goto whitespace_done; } default: { goto whitespace_done; } } } whitespace_done: return n; } /* ** Extra floating-point literals to allow in JSON. */ static const struct NanInfName { char c1; char c2; char n; char eType; char nRepl; char *zMatch; char *zRepl; } aNanInfName[] = { { 'i', 'I', 3, JSON_REAL, 7, "inf", "9.0e999" }, { 'i', 'I', 8, JSON_REAL, 7, "infinity", "9.0e999" }, { 'n', 'N', 3, JSON_NULL, 4, "NaN", "null" }, { 'q', 'Q', 4, JSON_NULL, 4, "QNaN", "null" }, { 's', 'S', 4, JSON_NULL, 4, "SNaN", "null" }, }; /* ** Parse a single JSON value which begins at pParse->zJson[i]. Return the ** index of the first character past the end of the value parsed. ** ** Special return values: ** ** 0 End of input ** -1 Syntax error ** -2 '}' seen ** -3 ']' seen ** -4 ',' seen ** -5 ':' seen */ static int jsonParseValue(JsonParse *pParse, u32 i){ char c; u32 j; int iThis; int x; JsonNode *pNode; const char *z = pParse->zJson; json_parse_restart: switch( (u8)z[i] ){ case '{': { /* Parse object */ iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); if( iThis<0 ) return -1; if( ++pParse->iDepth > JSON_MAX_DEPTH ){ pParse->iErr = i; return -1; } for(j=i+1;;j++){ u32 nNode = pParse->nNode; x = jsonParseValue(pParse, j); if( x<=0 ){ if( x==(-2) ){ j = pParse->iErr; if( pParse->nNode!=(u32)iThis+1 ) pParse->hasNonstd = 1; break; } j += json5Whitespace(&z[j]); if( sqlite3JsonId1(z[j]) || (z[j]=='\\' && z[j+1]=='u' && jsonIs4Hex(&z[j+2])) ){ int k = j+1; while( (sqlite3JsonId2(z[k]) && json5Whitespace(&z[k])==0) || (z[k]=='\\' && z[k+1]=='u' && jsonIs4Hex(&z[k+2])) ){ k++; } jsonParseAddNode(pParse, JSON_STRING | (JNODE_RAW<<8), k-j, &z[j]); pParse->hasNonstd = 1; x = k; }else{ if( x!=-1 ) pParse->iErr = j; return -1; } } if( pParse->oom ) return -1; pNode = &pParse->aNode[nNode]; if( pNode->eType!=JSON_STRING ){ pParse->iErr = j; return -1; } pNode->jnFlags |= JNODE_LABEL; j = x; if( z[j]==':' ){ j++; }else{ if( fast_isspace(z[j]) ){ do{ j++; }while( fast_isspace(z[j]) ); if( z[j]==':' ){ j++; goto parse_object_value; } } x = jsonParseValue(pParse, j); if( x!=(-5) ){ if( x!=(-1) ) pParse->iErr = j; return -1; } j = pParse->iErr+1; } parse_object_value: x = jsonParseValue(pParse, j); if( x<=0 ){ if( x!=(-1) ) pParse->iErr = j; return -1; } j = x; if( z[j]==',' ){ continue; }else if( z[j]=='}' ){ break; }else{ if( fast_isspace(z[j]) ){ do{ j++; }while( fast_isspace(z[j]) ); if( z[j]==',' ){ continue; }else if( z[j]=='}' ){ break; } } x = jsonParseValue(pParse, j); if( x==(-4) ){ j = pParse->iErr; continue; } if( x==(-2) ){ j = pParse->iErr; break; } } pParse->iErr = j; return -1; } pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1; pParse->iDepth--; return j+1; } case '[': { /* Parse array */ iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0); if( iThis<0 ) return -1; if( ++pParse->iDepth > JSON_MAX_DEPTH ){ pParse->iErr = i; return -1; } memset(&pParse->aNode[iThis].u, 0, sizeof(pParse->aNode[iThis].u)); for(j=i+1;;j++){ x = jsonParseValue(pParse, j); if( x<=0 ){ if( x==(-3) ){ j = pParse->iErr; if( pParse->nNode!=(u32)iThis+1 ) pParse->hasNonstd = 1; break; } if( x!=(-1) ) pParse->iErr = j; return -1; } j = x; if( z[j]==',' ){ continue; }else if( z[j]==']' ){ break; }else{ if( fast_isspace(z[j]) ){ do{ j++; }while( fast_isspace(z[j]) ); if( z[j]==',' ){ continue; }else if( z[j]==']' ){ break; } } x = jsonParseValue(pParse, j); if( x==(-4) ){ j = pParse->iErr; continue; } if( x==(-3) ){ j = pParse->iErr; break; } } pParse->iErr = j; return -1; } pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1; pParse->iDepth--; return j+1; } case '\'': { u8 jnFlags; char cDelim; pParse->hasNonstd = 1; jnFlags = JNODE_JSON5; goto parse_string; case '"': /* Parse string */ jnFlags = 0; parse_string: cDelim = z[i]; for(j=i+1; 1; j++){ if( jsonIsOk[(unsigned char)z[j]] ) continue; c = z[j]; if( c==cDelim ){ break; }else if( c=='\\' ){ c = z[++j]; if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f' || c=='n' || c=='r' || c=='t' || (c=='u' && jsonIs4Hex(&z[j+1])) ){ jnFlags |= JNODE_ESCAPE; }else if( c=='\'' || c=='0' || c=='v' || c=='\n' || (0xe2==(u8)c && 0x80==(u8)z[j+1] && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2])) || (c=='x' && jsonIs2Hex(&z[j+1])) ){ jnFlags |= (JNODE_ESCAPE|JNODE_JSON5); pParse->hasNonstd = 1; }else if( c=='\r' ){ if( z[j+1]=='\n' ) j++; jnFlags |= (JNODE_ESCAPE|JNODE_JSON5); pParse->hasNonstd = 1; }else{ pParse->iErr = j; return -1; } }else if( c<=0x1f ){ /* Control characters are not allowed in strings */ pParse->iErr = j; return -1; } } jsonParseAddNode(pParse, JSON_STRING | (jnFlags<<8), j+1-i, &z[i]); return j+1; } case 't': { if( strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonParseAddNode(pParse, JSON_TRUE, 0, 0); return i+4; } pParse->iErr = i; return -1; } case 'f': { if( strncmp(z+i,"false",5)==0 && !sqlite3Isalnum(z[i+5]) ){ jsonParseAddNode(pParse, JSON_FALSE, 0, 0); return i+5; } pParse->iErr = i; return -1; } case '+': { u8 seenDP, seenE, jnFlags; pParse->hasNonstd = 1; jnFlags = JNODE_JSON5; goto parse_number; case '.': if( sqlite3Isdigit(z[i+1]) ){ pParse->hasNonstd = 1; jnFlags = JNODE_JSON5; seenE = 0; seenDP = JSON_REAL; goto parse_number_2; } pParse->iErr = i; return -1; case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* Parse number */ jnFlags = 0; parse_number: seenDP = JSON_INT; seenE = 0; assert( '-' < '0' ); assert( '+' < '0' ); assert( '.' < '0' ); c = z[i]; if( c<='0' ){ if( c=='0' ){ if( (z[i+1]=='x' || z[i+1]=='X') && sqlite3Isxdigit(z[i+2]) ){ assert( seenDP==JSON_INT ); pParse->hasNonstd = 1; jnFlags |= JNODE_JSON5; for(j=i+3; sqlite3Isxdigit(z[j]); j++){} goto parse_number_finish; }else if( sqlite3Isdigit(z[i+1]) ){ pParse->iErr = i+1; return -1; } }else{ if( !sqlite3Isdigit(z[i+1]) ){ /* JSON5 allows for "+Infinity" and "-Infinity" using exactly ** that case. SQLite also allows these in any case and it allows ** "+inf" and "-inf". */ if( (z[i+1]=='I' || z[i+1]=='i') && sqlite3StrNICmp(&z[i+1], "inf",3)==0 ){ pParse->hasNonstd = 1; if( z[i]=='-' ){ jsonParseAddNode(pParse, JSON_REAL, 8, "-9.0e999"); }else{ jsonParseAddNode(pParse, JSON_REAL, 7, "9.0e999"); } return i + (sqlite3StrNICmp(&z[i+4],"inity",5)==0 ? 9 : 4); } if( z[i+1]=='.' ){ pParse->hasNonstd = 1; jnFlags |= JNODE_JSON5; goto parse_number_2; } pParse->iErr = i; return -1; } if( z[i+1]=='0' ){ if( sqlite3Isdigit(z[i+2]) ){ pParse->iErr = i+1; return -1; }else if( (z[i+2]=='x' || z[i+2]=='X') && sqlite3Isxdigit(z[i+3]) ){ pParse->hasNonstd = 1; jnFlags |= JNODE_JSON5; for(j=i+4; sqlite3Isxdigit(z[j]); j++){} goto parse_number_finish; } } } } parse_number_2: for(j=i+1;; j++){ c = z[j]; if( sqlite3Isdigit(c) ) continue; if( c=='.' ){ if( seenDP==JSON_REAL ){ pParse->iErr = j; return -1; } seenDP = JSON_REAL; continue; } if( c=='e' || c=='E' ){ if( z[j-1]<'0' ){ if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){ pParse->hasNonstd = 1; jnFlags |= JNODE_JSON5; }else{ pParse->iErr = j; return -1; } } if( seenE ){ pParse->iErr = j; return -1; } seenDP = JSON_REAL; seenE = 1; c = z[j+1]; if( c=='+' || c=='-' ){ j++; c = z[j+1]; } if( c<'0' || c>'9' ){ pParse->iErr = j; return -1; } continue; } break; } if( z[j-1]<'0' ){ if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){ pParse->hasNonstd = 1; jnFlags |= JNODE_JSON5; }else{ pParse->iErr = j; return -1; } } parse_number_finish: jsonParseAddNode(pParse, seenDP | (jnFlags<<8), j - i, &z[i]); return j; } case '}': { pParse->iErr = i; return -2; /* End of {...} */ } case ']': { pParse->iErr = i; return -3; /* End of [...] */ } case ',': { pParse->iErr = i; return -4; /* List separator */ } case ':': { pParse->iErr = i; return -5; /* Object label/value separator */ } case 0: { return 0; /* End of file */ } case 0x09: case 0x0a: case 0x0d: case 0x20: { do{ i++; }while( fast_isspace(z[i]) ); goto json_parse_restart; } case 0x0b: case 0x0c: case '/': case 0xc2: case 0xe1: case 0xe2: case 0xe3: case 0xef: { j = json5Whitespace(&z[i]); if( j>0 ){ i += j; pParse->hasNonstd = 1; goto json_parse_restart; } pParse->iErr = i; return -1; } case 'n': { if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonParseAddNode(pParse, JSON_NULL, 0, 0); return i+4; } /* fall-through into the default case that checks for NaN */ } default: { u32 k; int nn; c = z[i]; for(k=0; khasNonstd = 1; return i + nn; } pParse->iErr = i; return -1; /* Syntax error */ } } /* End switch(z[i]) */ } /* ** Parse a complete JSON string. Return 0 on success or non-zero if there ** are any errors. If an error occurs, free all memory held by pParse, ** but not pParse itself. ** ** pParse must be initialized to an empty parse object prior to calling ** this routine. */ static int jsonParse( JsonParse *pParse, /* Initialize and fill this JsonParse object */ sqlite3_context *pCtx /* Report errors here */ ){ int i; const char *zJson = pParse->zJson; i = jsonParseValue(pParse, 0); if( pParse->oom ) i = -1; if( i>0 ){ assert( pParse->iDepth==0 ); while( fast_isspace(zJson[i]) ) i++; if( zJson[i] ){ i += json5Whitespace(&zJson[i]); if( zJson[i] ){ jsonParseReset(pParse); return 1; } pParse->hasNonstd = 1; } } if( i<=0 ){ if( pCtx!=0 ){ if( pParse->oom ){ sqlite3_result_error_nomem(pCtx); }else{ sqlite3_result_error(pCtx, "malformed JSON", -1); } } jsonParseReset(pParse); return 1; } return 0; } /* Mark node i of pParse as being a child of iParent. Call recursively ** to fill in all the descendants of node i. */ static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){ JsonNode *pNode = &pParse->aNode[i]; u32 j; pParse->aUp[i] = iParent; switch( pNode->eType ){ case JSON_ARRAY: { for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j)){ jsonParseFillInParentage(pParse, i+j, i); } break; } case JSON_OBJECT: { for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j+1)+1){ pParse->aUp[i+j] = i; jsonParseFillInParentage(pParse, i+j+1, i); } break; } default: { break; } } } /* ** Compute the parentage of all nodes in a completed parse. */ static int jsonParseFindParents(JsonParse *pParse){ u32 *aUp; assert( pParse->aUp==0 ); aUp = pParse->aUp = sqlite3_malloc64( sizeof(u32)*pParse->nNode ); if( aUp==0 ){ pParse->oom = 1; return SQLITE_NOMEM; } jsonParseFillInParentage(pParse, 0, 0); return SQLITE_OK; } /* ** Magic number used for the JSON parse cache in sqlite3_get_auxdata() */ #define JSON_CACHE_ID (-429938) /* First cache entry */ #define JSON_CACHE_SZ 4 /* Max number of cache entries */ /* ** Obtain a complete parse of the JSON found in the pJson argument ** ** Use the sqlite3_get_auxdata() cache to find a preexisting parse ** if it is available. If the cache is not available or if it ** is no longer valid, parse the JSON again and return the new parse. ** Also register the new parse so that it will be available for ** future sqlite3_get_auxdata() calls. ** ** If an error occurs and pErrCtx!=0 then report the error on pErrCtx ** and return NULL. ** ** The returned pointer (if it is not NULL) is owned by the cache in ** most cases, not the caller. The caller does NOT need to invoke ** jsonParseFree(), in most cases. ** ** Except, if an error occurs and pErrCtx==0 then return the JsonParse ** object with JsonParse.nErr non-zero and the caller will own the JsonParse ** object. In that case, it will be the responsibility of the caller to ** invoke jsonParseFree(). To summarize: ** ** pErrCtx!=0 || p->nErr==0 ==> Return value p is owned by the ** cache. Call does not need to ** free it. ** ** pErrCtx==0 && p->nErr!=0 ==> Return value is owned by the caller ** and so the caller must free it. */ static JsonParse *jsonParseCached( sqlite3_context *pCtx, /* Context to use for cache search */ sqlite3_value *pJson, /* Function param containing JSON text */ sqlite3_context *pErrCtx, /* Write parse errors here if not NULL */ int bUnedited /* No prior edits allowed */ ){ char *zJson = (char*)sqlite3_value_text(pJson); int nJson = sqlite3_value_bytes(pJson); JsonParse *p; JsonParse *pMatch = 0; int iKey; int iMinKey = 0; u32 iMinHold = 0xffffffff; u32 iMaxHold = 0; int bJsonRCStr; if( zJson==0 ) return 0; for(iKey=0; iKeynJson==nJson && (p->hasMod==0 || bUnedited==0) && (p->zJson==zJson || memcmp(p->zJson,zJson,nJson)==0) ){ p->nErr = 0; p->useMod = 0; pMatch = p; }else if( pMatch==0 && p->zAlt!=0 && bUnedited==0 && p->nAlt==nJson && memcmp(p->zAlt, zJson, nJson)==0 ){ p->nErr = 0; p->useMod = 1; pMatch = p; }else if( p->iHoldiHold; iMinKey = iKey; } if( p->iHold>iMaxHold ){ iMaxHold = p->iHold; } } if( pMatch ){ /* The input JSON text was found in the cache. Use the preexisting ** parse of this JSON */ pMatch->nErr = 0; pMatch->iHold = iMaxHold+1; assert( pMatch->nJPRef>0 ); /* pMatch is owned by the cache */ return pMatch; } /* The input JSON was not found anywhere in the cache. We will need ** to parse it ourselves and generate a new JsonParse object. */ bJsonRCStr = sqlite3ValueIsOfClass(pJson,(void(*)(void*))sqlite3RCStrUnref); p = sqlite3_malloc64( sizeof(*p) + (bJsonRCStr ? 0 : nJson+1) ); if( p==0 ){ sqlite3_result_error_nomem(pCtx); return 0; } memset(p, 0, sizeof(*p)); if( bJsonRCStr ){ p->zJson = sqlite3RCStrRef(zJson); p->bJsonIsRCStr = 1; }else{ p->zJson = (char*)&p[1]; memcpy(p->zJson, zJson, nJson+1); } p->nJPRef = 1; if( jsonParse(p, pErrCtx) ){ if( pErrCtx==0 ){ p->nErr = 1; assert( p->nJPRef==1 ); /* Caller will own the new JsonParse object p */ return p; } jsonParseFree(p); return 0; } p->nJson = nJson; p->iHold = iMaxHold+1; /* Transfer ownership of the new JsonParse to the cache */ sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p, (void(*)(void*))jsonParseFree); return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey); } /* ** Compare the OBJECT label at pNode against zKey,nKey. Return true on ** a match. */ static int jsonLabelCompare(const JsonNode *pNode, const char *zKey, u32 nKey){ assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_RAW ){ if( pNode->n!=nKey ) return 0; return strncmp(pNode->u.zJContent, zKey, nKey)==0; }else{ if( pNode->n!=nKey+2 ) return 0; return strncmp(pNode->u.zJContent+1, zKey, nKey)==0; } } static int jsonSameLabel(const JsonNode *p1, const JsonNode *p2){ if( p1->jnFlags & JNODE_RAW ){ return jsonLabelCompare(p2, p1->u.zJContent, p1->n); }else if( p2->jnFlags & JNODE_RAW ){ return jsonLabelCompare(p1, p2->u.zJContent, p2->n); }else{ return p1->n==p2->n && strncmp(p1->u.zJContent,p2->u.zJContent,p1->n)==0; } } /* forward declaration */ static JsonNode *jsonLookupAppend(JsonParse*,const char*,int*,const char**); /* ** Search along zPath to find the node specified. Return a pointer ** to that node, or NULL if zPath is malformed or if there is no such ** node. ** ** If pApnd!=0, then try to append new nodes to complete zPath if it is ** possible to do so and if no existing node corresponds to zPath. If ** new nodes are appended *pApnd is set to 1. */ static JsonNode *jsonLookupStep( JsonParse *pParse, /* The JSON to search */ u32 iRoot, /* Begin the search at this node */ const char *zPath, /* The path to search */ int *pApnd, /* Append nodes to complete path if not NULL */ const char **pzErr /* Make *pzErr point to any syntax error in zPath */ ){ u32 i, j, nKey; const char *zKey; JsonNode *pRoot; if( pParse->oom ) return 0; pRoot = &pParse->aNode[iRoot]; if( pRoot->jnFlags & (JNODE_REPLACE|JNODE_REMOVE) && pParse->useMod ){ while( (pRoot->jnFlags & JNODE_REPLACE)!=0 ){ u32 idx = (u32)(pRoot - pParse->aNode); i = pParse->iSubst; while( 1 /*exit-by-break*/ ){ assert( inNode ); assert( pParse->aNode[i].eType==JSON_SUBST ); assert( pParse->aNode[i].eU==4 ); assert( pParse->aNode[i].u.iPrevaNode[i].n==idx ){ pRoot = &pParse->aNode[i+1]; iRoot = i+1; break; } i = pParse->aNode[i].u.iPrev; } } if( pRoot->jnFlags & JNODE_REMOVE ){ return 0; } } if( zPath[0]==0 ) return pRoot; if( zPath[0]=='.' ){ if( pRoot->eType!=JSON_OBJECT ) return 0; zPath++; if( zPath[0]=='"' ){ zKey = zPath + 1; for(i=1; zPath[i] && zPath[i]!='"'; i++){} nKey = i-1; if( zPath[i] ){ i++; }else{ *pzErr = zPath; return 0; } testcase( nKey==0 ); }else{ zKey = zPath; for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){} nKey = i; if( nKey==0 ){ *pzErr = zPath; return 0; } } j = 1; for(;;){ while( j<=pRoot->n ){ if( jsonLabelCompare(pRoot+j, zKey, nKey) ){ return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr); } j++; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pRoot->eU==2 ); iRoot = pRoot->u.iAppend; pRoot = &pParse->aNode[iRoot]; j = 1; } if( pApnd ){ u32 iStart, iLabel; JsonNode *pNode; assert( pParse->useMod ); iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0); iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey); zPath += i; pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr); if( pParse->oom ) return 0; if( pNode ){ pRoot = &pParse->aNode[iRoot]; assert( pRoot->eU==0 ); pRoot->u.iAppend = iStart; pRoot->jnFlags |= JNODE_APPEND; VVA( pRoot->eU = 2 ); pParse->aNode[iLabel].jnFlags |= JNODE_RAW; } return pNode; } }else if( zPath[0]=='[' ){ i = 0; j = 1; while( sqlite3Isdigit(zPath[j]) ){ i = i*10 + zPath[j] - '0'; j++; } if( j<2 || zPath[j]!=']' ){ if( zPath[1]=='#' ){ JsonNode *pBase = pRoot; int iBase = iRoot; if( pRoot->eType!=JSON_ARRAY ) return 0; for(;;){ while( j<=pBase->n ){ if( (pBase[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i++; j += jsonNodeSize(&pBase[j]); } if( (pBase->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pBase->eU==2 ); iBase = pBase->u.iAppend; pBase = &pParse->aNode[iBase]; j = 1; } j = 2; if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){ unsigned int x = 0; j = 3; do{ x = x*10 + zPath[j] - '0'; j++; }while( sqlite3Isdigit(zPath[j]) ); if( x>i ) return 0; i -= x; } if( zPath[j]!=']' ){ *pzErr = zPath; return 0; } }else{ *pzErr = zPath; return 0; } } if( pRoot->eType!=JSON_ARRAY ) return 0; zPath += j + 1; j = 1; for(;;){ while( j<=pRoot->n && (i>0 || ((pRoot[j].jnFlags & JNODE_REMOVE)!=0 && pParse->useMod)) ){ if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i--; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pRoot->eU==2 ); iRoot = pRoot->u.iAppend; pRoot = &pParse->aNode[iRoot]; j = 1; } if( j<=pRoot->n ){ return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr); } if( i==0 && pApnd ){ u32 iStart; JsonNode *pNode; assert( pParse->useMod ); iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0); pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr); if( pParse->oom ) return 0; if( pNode ){ pRoot = &pParse->aNode[iRoot]; assert( pRoot->eU==0 ); pRoot->u.iAppend = iStart; pRoot->jnFlags |= JNODE_APPEND; VVA( pRoot->eU = 2 ); } return pNode; } }else{ *pzErr = zPath; } return 0; } /* ** Append content to pParse that will complete zPath. Return a pointer ** to the inserted node, or return NULL if the append fails. */ static JsonNode *jsonLookupAppend( JsonParse *pParse, /* Append content to the JSON parse */ const char *zPath, /* Description of content to append */ int *pApnd, /* Set this flag to 1 */ const char **pzErr /* Make this point to any syntax error */ ){ *pApnd = 1; if( zPath[0]==0 ){ jsonParseAddNode(pParse, JSON_NULL, 0, 0); return pParse->oom ? 0 : &pParse->aNode[pParse->nNode-1]; } if( zPath[0]=='.' ){ jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); }else if( strncmp(zPath,"[0]",3)==0 ){ jsonParseAddNode(pParse, JSON_ARRAY, 0, 0); }else{ return 0; } if( pParse->oom ) return 0; return jsonLookupStep(pParse, pParse->nNode-1, zPath, pApnd, pzErr); } /* ** Return the text of a syntax error message on a JSON path. Space is ** obtained from sqlite3_malloc(). */ static char *jsonPathSyntaxError(const char *zErr){ return sqlite3_mprintf("JSON path error near '%q'", zErr); } /* ** Do a node lookup using zPath. Return a pointer to the node on success. ** Return NULL if not found or if there is an error. ** ** On an error, write an error message into pCtx and increment the ** pParse->nErr counter. ** ** If pApnd!=NULL then try to append missing nodes and set *pApnd = 1 if ** nodes are appended. */ static JsonNode *jsonLookup( JsonParse *pParse, /* The JSON to search */ const char *zPath, /* The path to search */ int *pApnd, /* Append nodes to complete path if not NULL */ sqlite3_context *pCtx /* Report errors here, if not NULL */ ){ const char *zErr = 0; JsonNode *pNode = 0; char *zMsg; if( zPath==0 ) return 0; if( zPath[0]!='$' ){ zErr = zPath; goto lookup_err; } zPath++; pNode = jsonLookupStep(pParse, 0, zPath, pApnd, &zErr); if( zErr==0 ) return pNode; lookup_err: pParse->nErr++; assert( zErr!=0 && pCtx!=0 ); zMsg = jsonPathSyntaxError(zErr); if( zMsg ){ sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); }else{ sqlite3_result_error_nomem(pCtx); } return 0; } /* ** Report the wrong number of arguments for json_insert(), json_replace() ** or json_set(). */ static void jsonWrongNumArgs( sqlite3_context *pCtx, const char *zFuncName ){ char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments", zFuncName); sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); } /* ** Mark all NULL entries in the Object passed in as JNODE_REMOVE. */ static void jsonRemoveAllNulls(JsonNode *pNode){ int i, n; assert( pNode->eType==JSON_OBJECT ); n = pNode->n; for(i=2; i<=n; i += jsonNodeSize(&pNode[i])+1){ switch( pNode[i].eType ){ case JSON_NULL: pNode[i].jnFlags |= JNODE_REMOVE; break; case JSON_OBJECT: jsonRemoveAllNulls(&pNode[i]); break; } } } /**************************************************************************** ** SQL functions used for testing and debugging ****************************************************************************/ #if SQLITE_DEBUG /* ** Print N node entries. */ static void jsonDebugPrintNodeEntries( JsonNode *aNode, /* First node entry to print */ int N /* Number of node entries to print */ ){ int i; for(i=0; iaNode, p->nNode); } static void jsonDebugPrintNode(JsonNode *pNode){ jsonDebugPrintNodeEntries(pNode, jsonNodeSize(pNode)); } #else /* The usual case */ # define jsonDebugPrintNode(X) # define jsonDebugPrintParse(X) #endif #ifdef SQLITE_DEBUG /* ** SQL function: json_parse(JSON) ** ** Parse JSON using jsonParseCached(). Then print a dump of that ** parse on standard output. Return the mimified JSON result, just ** like the json() function. */ static void jsonParseFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ assert( argc==1 ); p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; printf("nNode = %u\n", p->nNode); printf("nAlloc = %u\n", p->nAlloc); printf("nJson = %d\n", p->nJson); printf("nAlt = %d\n", p->nAlt); printf("nErr = %u\n", p->nErr); printf("oom = %u\n", p->oom); printf("hasNonstd = %u\n", p->hasNonstd); printf("useMod = %u\n", p->useMod); printf("hasMod = %u\n", p->hasMod); printf("nJPRef = %u\n", p->nJPRef); printf("iSubst = %u\n", p->iSubst); printf("iHold = %u\n", p->iHold); jsonDebugPrintNodeEntries(p->aNode, p->nNode); jsonReturnJson(p, p->aNode, ctx, 1); } /* ** The json_test1(JSON) function return true (1) if the input is JSON ** text generated by another json function. It returns (0) if the input ** is not known to be JSON. */ static void jsonTest1Func( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE); } #endif /* SQLITE_DEBUG */ /**************************************************************************** ** Scalar SQL function implementations ****************************************************************************/ /* ** Implementation of the json_QUOTE(VALUE) function. Return a JSON value ** corresponding to the SQL value input. Mostly this means putting ** double-quotes around strings and returning the unquoted string "null" ** when given a NULL input. */ static void jsonQuoteFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString jx; UNUSED_PARAMETER(argc); jsonInit(&jx, ctx); jsonAppendValue(&jx, argv[0]); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } /* ** Implementation of the json_array(VALUE,...) function. Return a JSON ** array that contains all values given in arguments. Or if any argument ** is a BLOB, throw an error. */ static void jsonArrayFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int i; JsonString jx; jsonInit(&jx, ctx); jsonAppendChar(&jx, '['); for(i=0; inNode ); if( argc==2 ){ const char *zPath = (const char*)sqlite3_value_text(argv[1]); pNode = jsonLookup(p, zPath, 0, ctx); }else{ pNode = p->aNode; } if( pNode==0 ){ return; } if( pNode->eType==JSON_ARRAY ){ while( 1 /*exit-by-break*/ ){ for(i=1; i<=pNode->n; n++){ i += jsonNodeSize(&pNode[i]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; if( p->useMod==0 ) break; assert( pNode->eU==2 ); pNode = &p->aNode[pNode->u.iAppend]; } } sqlite3_result_int64(ctx, n); } /* ** Bit values for the flags passed into jsonExtractFunc() or ** jsonSetFunc() via the user-data value. */ #define JSON_JSON 0x01 /* Result is always JSON */ #define JSON_SQL 0x02 /* Result is always SQL */ #define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */ #define JSON_ISSET 0x04 /* json_set(), not json_insert() */ /* ** json_extract(JSON, PATH, ...) ** "->"(JSON,PATH) ** "->>"(JSON,PATH) ** ** Return the element described by PATH. Return NULL if that PATH element ** is not found. ** ** If JSON_JSON is set or if more that one PATH argument is supplied then ** always return a JSON representation of the result. If JSON_SQL is set, ** then always return an SQL representation of the result. If neither flag ** is present and argc==2, then return JSON for objects and arrays and SQL ** for all other values. ** ** When multiple PATH arguments are supplied, the result is a JSON array ** containing the result of each PATH. ** ** Abbreviated JSON path expressions are allows if JSON_ABPATH, for ** compatibility with PG. */ static void jsonExtractFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ JsonNode *pNode; const char *zPath; int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); JsonString jx; if( argc<2 ) return; p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; if( argc==2 ){ /* With a single PATH argument */ zPath = (const char*)sqlite3_value_text(argv[1]); if( zPath==0 ) return; if( flags & JSON_ABPATH ){ if( zPath[0]!='$' || (zPath[1]!='.' && zPath[1]!='[' && zPath[1]!=0) ){ /* The -> and ->> operators accept abbreviated PATH arguments. This ** is mostly for compatibility with PostgreSQL, but also for ** convenience. ** ** NUMBER ==> $[NUMBER] // PG compatible ** LABEL ==> $.LABEL // PG compatible ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience */ jsonInit(&jx, ctx); if( sqlite3Isdigit(zPath[0]) ){ jsonAppendRawNZ(&jx, "$[", 2); jsonAppendRaw(&jx, zPath, (int)strlen(zPath)); jsonAppendRawNZ(&jx, "]", 2); }else{ jsonAppendRawNZ(&jx, "$.", 1 + (zPath[0]!='[')); jsonAppendRaw(&jx, zPath, (int)strlen(zPath)); jsonAppendChar(&jx, 0); } pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx); jsonReset(&jx); }else{ pNode = jsonLookup(p, zPath, 0, ctx); } if( pNode ){ if( flags & JSON_JSON ){ jsonReturnJson(p, pNode, ctx, 0); }else{ jsonReturn(p, pNode, ctx); sqlite3_result_subtype(ctx, 0); } } }else{ pNode = jsonLookup(p, zPath, 0, ctx); if( p->nErr==0 && pNode ) jsonReturn(p, pNode, ctx); } }else{ /* Two or more PATH arguments results in a JSON array with each ** element of the array being the value selected by one of the PATHs */ int i; jsonInit(&jx, ctx); jsonAppendChar(&jx, '['); for(i=1; inErr ) break; jsonAppendSeparator(&jx); if( pNode ){ jsonRenderNode(p, pNode, &jx); }else{ jsonAppendRawNZ(&jx, "null", 4); } } if( i==argc ){ jsonAppendChar(&jx, ']'); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } jsonReset(&jx); } } /* This is the RFC 7396 MergePatch algorithm. */ static JsonNode *jsonMergePatch( JsonParse *pParse, /* The JSON parser that contains the TARGET */ u32 iTarget, /* Node of the TARGET in pParse */ JsonNode *pPatch /* The PATCH */ ){ u32 i, j; u32 iRoot; JsonNode *pTarget; if( pPatch->eType!=JSON_OBJECT ){ return pPatch; } assert( iTargetnNode ); pTarget = &pParse->aNode[iTarget]; assert( (pPatch->jnFlags & JNODE_APPEND)==0 ); if( pTarget->eType!=JSON_OBJECT ){ jsonRemoveAllNulls(pPatch); return pPatch; } iRoot = iTarget; for(i=1; in; i += jsonNodeSize(&pPatch[i+1])+1){ u32 nKey; const char *zKey; assert( pPatch[i].eType==JSON_STRING ); assert( pPatch[i].jnFlags & JNODE_LABEL ); assert( pPatch[i].eU==1 ); nKey = pPatch[i].n; zKey = pPatch[i].u.zJContent; for(j=1; jn; j += jsonNodeSize(&pTarget[j+1])+1 ){ assert( pTarget[j].eType==JSON_STRING ); assert( pTarget[j].jnFlags & JNODE_LABEL ); if( jsonSameLabel(&pPatch[i], &pTarget[j]) ){ if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_REPLACE) ) break; if( pPatch[i+1].eType==JSON_NULL ){ pTarget[j+1].jnFlags |= JNODE_REMOVE; }else{ JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]); if( pNew==0 ) return 0; if( pNew!=&pParse->aNode[iTarget+j+1] ){ jsonParseAddSubstNode(pParse, iTarget+j+1); jsonParseAddNodeArray(pParse, pNew, jsonNodeSize(pNew)); } pTarget = &pParse->aNode[iTarget]; } break; } } if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){ int iStart; JsonNode *pApnd; u32 nApnd; iStart = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); jsonParseAddNode(pParse, JSON_STRING, nKey, zKey); pApnd = &pPatch[i+1]; if( pApnd->eType==JSON_OBJECT ) jsonRemoveAllNulls(pApnd); nApnd = jsonNodeSize(pApnd); jsonParseAddNodeArray(pParse, pApnd, jsonNodeSize(pApnd)); if( pParse->oom ) return 0; pParse->aNode[iStart].n = 1+nApnd; pParse->aNode[iRoot].jnFlags |= JNODE_APPEND; pParse->aNode[iRoot].u.iAppend = iStart; VVA( pParse->aNode[iRoot].eU = 2 ); iRoot = iStart; pTarget = &pParse->aNode[iTarget]; } } return pTarget; } /* ** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON ** object that is the result of running the RFC 7396 MergePatch() algorithm ** on the two arguments. */ static void jsonPatchFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pX; /* The JSON that is being patched */ JsonParse *pY; /* The patch */ JsonNode *pResult; /* The result of the merge */ UNUSED_PARAMETER(argc); pX = jsonParseCached(ctx, argv[0], ctx, 1); if( pX==0 ) return; assert( pX->hasMod==0 ); pX->hasMod = 1; pY = jsonParseCached(ctx, argv[1], ctx, 1); if( pY==0 ) return; pX->useMod = 1; pY->useMod = 1; pResult = jsonMergePatch(pX, 0, pY->aNode); assert( pResult!=0 || pX->oom ); if( pResult && pX->oom==0 ){ jsonDebugPrintParse(pX); jsonDebugPrintNode(pResult); jsonReturnJson(pX, pResult, ctx, 0); }else{ sqlite3_result_error_nomem(ctx); } } /* ** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON ** object that contains all name/value given in arguments. Or if any name ** is not a string or if any value is a BLOB, throw an error. */ static void jsonObjectFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int i; JsonString jx; const char *z; u32 n; if( argc&1 ){ sqlite3_result_error(ctx, "json_object() requires an even number " "of arguments", -1); return; } jsonInit(&jx, ctx); jsonAppendChar(&jx, '{'); for(i=0; i1); if( pParse==0 ) return; for(i=1; i<(u32)argc; i++){ zPath = (const char*)sqlite3_value_text(argv[i]); if( zPath==0 ) goto remove_done; pNode = jsonLookup(pParse, zPath, 0, ctx); if( pParse->nErr ) goto remove_done; if( pNode ){ pNode->jnFlags |= JNODE_REMOVE; pParse->hasMod = 1; pParse->useMod = 1; } } if( (pParse->aNode[0].jnFlags & JNODE_REMOVE)==0 ){ jsonReturnJson(pParse, pParse->aNode, ctx, 1); } remove_done: jsonDebugPrintParse(p); } /* ** Substitute the value at iNode with the pValue parameter. */ static void jsonReplaceNode( sqlite3_context *pCtx, JsonParse *p, int iNode, sqlite3_value *pValue ){ int idx = jsonParseAddSubstNode(p, iNode); if( idx<=0 ){ assert( p->oom ); return; } switch( sqlite3_value_type(pValue) ){ case SQLITE_NULL: { jsonParseAddNode(p, JSON_NULL, 0, 0); break; } case SQLITE_FLOAT: { char *z = sqlite3_mprintf("%!0.15g", sqlite3_value_double(pValue)); int n; if( z==0 ){ p->oom = 1; break; } n = sqlite3Strlen30(z); jsonParseAddNode(p, JSON_REAL, n, z); jsonParseAddCleanup(p, sqlite3_free, z); break; } case SQLITE_INTEGER: { char *z = sqlite3_mprintf("%lld", sqlite3_value_int64(pValue)); int n; if( z==0 ){ p->oom = 1; break; } n = sqlite3Strlen30(z); jsonParseAddNode(p, JSON_INT, n, z); jsonParseAddCleanup(p, sqlite3_free, z); break; } case SQLITE_TEXT: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); if( z==0 ){ p->oom = 1; break; } if( sqlite3_value_subtype(pValue)!=JSON_SUBTYPE ){ char *zCopy = sqlite3DbStrDup(0, z); int k; if( zCopy ){ jsonParseAddCleanup(p, sqlite3_free, zCopy); }else{ p->oom = 1; sqlite3_result_error_nomem(pCtx); } k = jsonParseAddNode(p, JSON_STRING, n, zCopy); assert( k>0 || p->oom ); if( p->oom==0 ) p->aNode[k].jnFlags |= JNODE_RAW; }else{ JsonParse *pPatch = jsonParseCached(pCtx, pValue, pCtx, 1); if( pPatch==0 ){ p->oom = 1; break; } jsonParseAddNodeArray(p, pPatch->aNode, pPatch->nNode); /* The nodes copied out of pPatch and into p likely contain ** u.zJContent pointers into pPatch->zJson. So preserve the ** content of pPatch until p is destroyed. */ assert( pPatch->nJPRef>=1 ); pPatch->nJPRef++; jsonParseAddCleanup(p, (void(*)(void*))jsonParseFree, pPatch); } break; } default: { jsonParseAddNode(p, JSON_NULL, 0, 0); sqlite3_result_error(pCtx, "JSON cannot hold BLOB values", -1); p->nErr++; break; } } } /* ** json_replace(JSON, PATH, VALUE, ...) ** ** Replace the value at PATH with VALUE. If PATH does not already exist, ** this routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonReplaceFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pParse; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, "replace"); return; } pParse = jsonParseCached(ctx, argv[0], ctx, argc>1); if( pParse==0 ) return; for(i=1; i<(u32)argc; i+=2){ zPath = (const char*)sqlite3_value_text(argv[i]); pParse->useMod = 1; pNode = jsonLookup(pParse, zPath, 0, ctx); if( pParse->nErr ) goto replace_err; if( pNode ){ jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]); } } jsonReturnJson(pParse, pParse->aNode, ctx, 1); replace_err: jsonDebugPrintParse(pParse); } /* ** json_set(JSON, PATH, VALUE, ...) ** ** Set the value at PATH to VALUE. Create the PATH if it does not already ** exist. Overwrite existing values that do exist. ** If JSON or PATH is malformed, throw an error. ** ** json_insert(JSON, PATH, VALUE, ...) ** ** Create PATH and initialize it to VALUE. If PATH already exists, this ** routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonSetFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pParse; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; int bApnd; int bIsSet = sqlite3_user_data(ctx)!=0; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert"); return; } pParse = jsonParseCached(ctx, argv[0], ctx, argc>1); if( pParse==0 ) return; for(i=1; i<(u32)argc; i+=2){ zPath = (const char*)sqlite3_value_text(argv[i]); bApnd = 0; pParse->useMod = 1; pNode = jsonLookup(pParse, zPath, &bApnd, ctx); if( pParse->oom ){ sqlite3_result_error_nomem(ctx); goto jsonSetDone; }else if( pParse->nErr ){ goto jsonSetDone; }else if( pNode && (bApnd || bIsSet) ){ jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]); } } jsonDebugPrintParse(pParse); jsonReturnJson(pParse, pParse->aNode, ctx, 1); jsonSetDone: /* no cleanup required */; } /* ** json_type(JSON) ** json_type(JSON, PATH) ** ** Return the top-level "type" of a JSON string. json_type() raises an ** error if either the JSON or PATH inputs are not well-formed. */ static void jsonTypeFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ const char *zPath; JsonNode *pNode; p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; if( argc==2 ){ zPath = (const char*)sqlite3_value_text(argv[1]); pNode = jsonLookup(p, zPath, 0, ctx); }else{ pNode = p->aNode; } if( pNode ){ sqlite3_result_text(ctx, jsonType[pNode->eType], -1, SQLITE_STATIC); } } /* ** json_valid(JSON) ** ** Return 1 if JSON is a well-formed canonical JSON string according ** to RFC-7159. Return 0 otherwise. */ static void jsonValidFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ #ifdef SQLITE_LEGACY_JSON_VALID /* Incorrect legacy behavior was to return FALSE for a NULL input */ sqlite3_result_int(ctx, 0); #endif return; } p = jsonParseCached(ctx, argv[0], 0, 0); if( p==0 || p->oom ){ sqlite3_result_error_nomem(ctx); sqlite3_free(p); }else{ sqlite3_result_int(ctx, p->nErr==0 && (p->hasNonstd==0 || p->useMod)); if( p->nErr ) jsonParseFree(p); } } /* ** json_error_position(JSON) ** ** If the argument is not an interpretable JSON string, then return the 1-based ** character position at which the parser first recognized that the input ** was in error. The left-most character is 1. If the string is valid ** JSON, then return 0. ** ** Note that json_valid() is only true for strictly conforming canonical JSON. ** But this routine returns zero if the input contains extension. Thus: ** ** (1) If the input X is strictly conforming canonical JSON: ** ** json_valid(X) returns true ** json_error_position(X) returns 0 ** ** (2) If the input X is JSON but it includes extension (such as JSON5) that ** are not part of RFC-8259: ** ** json_valid(X) returns false ** json_error_position(X) return 0 ** ** (3) If the input X cannot be interpreted as JSON even taking extensions ** into account: ** ** json_valid(X) return false ** json_error_position(X) returns 1 or more */ static void jsonErrorFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; p = jsonParseCached(ctx, argv[0], 0, 0); if( p==0 || p->oom ){ sqlite3_result_error_nomem(ctx); sqlite3_free(p); }else if( p->nErr==0 ){ sqlite3_result_int(ctx, 0); }else{ int n = 1; u32 i; const char *z = (const char*)sqlite3_value_text(argv[0]); for(i=0; iiErr && ALWAYS(z[i]); i++){ if( (z[i]&0xc0)!=0x80 ) n++; } sqlite3_result_int(ctx, n); jsonParseFree(p); } } /**************************************************************************** ** Aggregate SQL function implementations ****************************************************************************/ /* ** json_group_array(VALUE) ** ** Return a JSON array composed of all values in the aggregate. */ static void jsonArrayStep( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString *pStr; UNUSED_PARAMETER(argc); pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); if( pStr ){ if( pStr->zBuf==0 ){ jsonInit(pStr, ctx); jsonAppendChar(pStr, '['); }else if( pStr->nUsed>1 ){ jsonAppendChar(pStr, ','); } pStr->pCtx = ctx; jsonAppendValue(pStr, argv[0]); } } static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){ JsonString *pStr; pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); if( pStr ){ pStr->pCtx = ctx; jsonAppendChar(pStr, ']'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : (void(*)(void*))sqlite3RCStrUnref); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); pStr->nUsed--; } }else{ sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC); } sqlite3_result_subtype(ctx, JSON_SUBTYPE); } static void jsonArrayValue(sqlite3_context *ctx){ jsonArrayCompute(ctx, 0); } static void jsonArrayFinal(sqlite3_context *ctx){ jsonArrayCompute(ctx, 1); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** This method works for both json_group_array() and json_group_object(). ** It works by removing the first element of the group by searching forward ** to the first comma (",") that is not within a string and deleting all ** text through that comma. */ static void jsonGroupInverse( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ unsigned int i; int inStr = 0; int nNest = 0; char *z; char c; JsonString *pStr; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); #ifdef NEVER /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will ** always have been called to initialize it */ if( NEVER(!pStr) ) return; #endif z = pStr->zBuf; for(i=1; inUsed && ((c = z[i])!=',' || inStr || nNest); i++){ if( c=='"' ){ inStr = !inStr; }else if( c=='\\' ){ i++; }else if( !inStr ){ if( c=='{' || c=='[' ) nNest++; if( c=='}' || c==']' ) nNest--; } } if( inUsed ){ pStr->nUsed -= i; memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1); z[pStr->nUsed] = 0; }else{ pStr->nUsed = 1; } } #else # define jsonGroupInverse 0 #endif /* ** json_group_obj(NAME,VALUE) ** ** Return a JSON object composed of all names and values in the aggregate. */ static void jsonObjectStep( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString *pStr; const char *z; u32 n; UNUSED_PARAMETER(argc); pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); if( pStr ){ if( pStr->zBuf==0 ){ jsonInit(pStr, ctx); jsonAppendChar(pStr, '{'); }else if( pStr->nUsed>1 ){ jsonAppendChar(pStr, ','); } pStr->pCtx = ctx; z = (const char*)sqlite3_value_text(argv[0]); n = (u32)sqlite3_value_bytes(argv[0]); jsonAppendString(pStr, z, n); jsonAppendChar(pStr, ':'); jsonAppendValue(pStr, argv[1]); } } static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){ JsonString *pStr; pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); if( pStr ){ jsonAppendChar(pStr, '}'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : (void(*)(void*))sqlite3RCStrUnref); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); pStr->nUsed--; } }else{ sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC); } sqlite3_result_subtype(ctx, JSON_SUBTYPE); } static void jsonObjectValue(sqlite3_context *ctx){ jsonObjectCompute(ctx, 0); } static void jsonObjectFinal(sqlite3_context *ctx){ jsonObjectCompute(ctx, 1); } #ifndef SQLITE_OMIT_VIRTUALTABLE /**************************************************************************** ** The json_each virtual table ****************************************************************************/ typedef struct JsonEachCursor JsonEachCursor; struct JsonEachCursor { sqlite3_vtab_cursor base; /* Base class - must be first */ u32 iRowid; /* The rowid */ u32 iBegin; /* The first node of the scan */ u32 i; /* Index in sParse.aNode[] of current row */ u32 iEnd; /* EOF when i equals or exceeds this value */ u8 eType; /* Type of top-level element */ u8 bRecursive; /* True for json_tree(). False for json_each() */ char *zJson; /* Input JSON */ char *zRoot; /* Path by which to filter zJson */ JsonParse sParse; /* Parse of the input JSON */ }; /* Constructor for the json_each virtual table */ static int jsonEachConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ sqlite3_vtab *pNew; int rc; /* Column numbers */ #define JEACH_KEY 0 #define JEACH_VALUE 1 #define JEACH_TYPE 2 #define JEACH_ATOM 3 #define JEACH_ID 4 #define JEACH_PARENT 5 #define JEACH_FULLKEY 6 #define JEACH_PATH 7 /* The xBestIndex method assumes that the JSON and ROOT columns are ** the last two columns in the table. Should this ever changes, be ** sure to update the xBestIndex method. */ #define JEACH_JSON 8 #define JEACH_ROOT 9 UNUSED_PARAMETER(pzErr); UNUSED_PARAMETER(argv); UNUSED_PARAMETER(argc); UNUSED_PARAMETER(pAux); rc = sqlite3_declare_vtab(db, "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path," "json HIDDEN,root HIDDEN)"); if( rc==SQLITE_OK ){ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); } return rc; } /* destructor for json_each virtual table */ static int jsonEachDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* constructor for a JsonEachCursor object for json_each(). */ static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ JsonEachCursor *pCur; UNUSED_PARAMETER(p); pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); *ppCursor = &pCur->base; return SQLITE_OK; } /* constructor for a JsonEachCursor object for json_tree(). */ static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ int rc = jsonEachOpenEach(p, ppCursor); if( rc==SQLITE_OK ){ JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor; pCur->bRecursive = 1; } return rc; } /* Reset a JsonEachCursor back to its original state. Free any memory ** held. */ static void jsonEachCursorReset(JsonEachCursor *p){ sqlite3_free(p->zRoot); jsonParseReset(&p->sParse); p->iRowid = 0; p->i = 0; p->iEnd = 0; p->eType = 0; p->zJson = 0; p->zRoot = 0; } /* Destructor for a jsonEachCursor object */ static int jsonEachClose(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; jsonEachCursorReset(p); sqlite3_free(cur); return SQLITE_OK; } /* Return TRUE if the jsonEachCursor object has been advanced off the end ** of the JSON object */ static int jsonEachEof(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; return p->i >= p->iEnd; } /* Advance the cursor to the next element for json_tree() */ static int jsonEachNext(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; if( p->bRecursive ){ if( p->sParse.aNode[p->i].jnFlags & JNODE_LABEL ) p->i++; p->i++; p->iRowid++; if( p->iiEnd ){ u32 iUp = p->sParse.aUp[p->i]; JsonNode *pUp = &p->sParse.aNode[iUp]; p->eType = pUp->eType; if( pUp->eType==JSON_ARRAY ){ assert( pUp->eU==0 || pUp->eU==3 ); testcase( pUp->eU==3 ); VVA( pUp->eU = 3 ); if( iUp==p->i-1 ){ pUp->u.iKey = 0; }else{ pUp->u.iKey++; } } } }else{ switch( p->eType ){ case JSON_ARRAY: { p->i += jsonNodeSize(&p->sParse.aNode[p->i]); p->iRowid++; break; } case JSON_OBJECT: { p->i += 1 + jsonNodeSize(&p->sParse.aNode[p->i+1]); p->iRowid++; break; } default: { p->i = p->iEnd; break; } } } return SQLITE_OK; } /* Append an object label to the JSON Path being constructed ** in pStr. */ static void jsonAppendObjectPathElement( JsonString *pStr, JsonNode *pNode ){ int jj, nn; const char *z; assert( pNode->eType==JSON_STRING ); assert( pNode->jnFlags & JNODE_LABEL ); assert( pNode->eU==1 ); z = pNode->u.zJContent; nn = pNode->n; if( (pNode->jnFlags & JNODE_RAW)==0 ){ assert( nn>=2 ); assert( z[0]=='"' || z[0]=='\'' ); assert( z[nn-1]=='"' || z[0]=='\'' ); if( nn>2 && sqlite3Isalpha(z[1]) ){ for(jj=2; jjsParse.aUp[i]; jsonEachComputePath(p, pStr, iUp); pNode = &p->sParse.aNode[i]; pUp = &p->sParse.aNode[iUp]; if( pUp->eType==JSON_ARRAY ){ assert( pUp->eU==3 || (pUp->eU==0 && pUp->u.iKey==0) ); testcase( pUp->eU==0 ); jsonPrintf(30, pStr, "[%d]", pUp->u.iKey); }else{ assert( pUp->eType==JSON_OBJECT ); if( (pNode->jnFlags & JNODE_LABEL)==0 ) pNode--; jsonAppendObjectPathElement(pStr, pNode); } } /* Return the value of a column */ static int jsonEachColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ JsonEachCursor *p = (JsonEachCursor*)cur; JsonNode *pThis = &p->sParse.aNode[p->i]; switch( i ){ case JEACH_KEY: { if( p->i==0 ) break; if( p->eType==JSON_OBJECT ){ jsonReturn(&p->sParse, pThis, ctx); }else if( p->eType==JSON_ARRAY ){ u32 iKey; if( p->bRecursive ){ if( p->iRowid==0 ) break; assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 ); iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey; }else{ iKey = p->iRowid; } sqlite3_result_int64(ctx, (sqlite3_int64)iKey); } break; } case JEACH_VALUE: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; jsonReturn(&p->sParse, pThis, ctx); break; } case JEACH_TYPE: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC); break; } case JEACH_ATOM: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; if( pThis->eType>=JSON_ARRAY ) break; jsonReturn(&p->sParse, pThis, ctx); break; } case JEACH_ID: { sqlite3_result_int64(ctx, (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0)); break; } case JEACH_PARENT: { if( p->i>p->iBegin && p->bRecursive ){ sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]); } break; } case JEACH_FULLKEY: { JsonString x; jsonInit(&x, ctx); if( p->bRecursive ){ jsonEachComputePath(p, &x, p->i); }else{ if( p->zRoot ){ jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot)); }else{ jsonAppendChar(&x, '$'); } if( p->eType==JSON_ARRAY ){ jsonPrintf(30, &x, "[%d]", p->iRowid); }else if( p->eType==JSON_OBJECT ){ jsonAppendObjectPathElement(&x, pThis); } } jsonResult(&x); break; } case JEACH_PATH: { if( p->bRecursive ){ JsonString x; jsonInit(&x, ctx); jsonEachComputePath(p, &x, p->sParse.aUp[p->i]); jsonResult(&x); break; } /* For json_each() path and root are the same so fall through ** into the root case */ /* no break */ deliberate_fall_through } default: { const char *zRoot = p->zRoot; if( zRoot==0 ) zRoot = "$"; sqlite3_result_text(ctx, zRoot, -1, SQLITE_STATIC); break; } case JEACH_JSON: { assert( i==JEACH_JSON ); sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_STATIC); break; } } return SQLITE_OK; } /* Return the current rowid value */ static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ JsonEachCursor *p = (JsonEachCursor*)cur; *pRowid = p->iRowid; return SQLITE_OK; } /* The query strategy is to look for an equality constraint on the json ** column. Without such a constraint, the table cannot operate. idxNum is ** 1 if the constraint is found, 3 if the constraint and zRoot are found, ** and 0 otherwise. */ static int jsonEachBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop counter or computed array index */ int aIdx[2]; /* Index of constraints for JSON and ROOT */ int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */ int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */ const struct sqlite3_index_constraint *pConstraint; /* This implementation assumes that JSON and ROOT are the last two ** columns in the table */ assert( JEACH_ROOT == JEACH_JSON+1 ); UNUSED_PARAMETER(tab); aIdx[0] = aIdx[1] = -1; pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ int iCol; int iMask; if( pConstraint->iColumn < JEACH_JSON ) continue; iCol = pConstraint->iColumn - JEACH_JSON; assert( iCol==0 || iCol==1 ); testcase( iCol==0 ); iMask = 1 << iCol; if( pConstraint->usable==0 ){ unusableMask |= iMask; }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ aIdx[iCol] = i; idxMask |= iMask; } } if( pIdxInfo->nOrderBy>0 && pIdxInfo->aOrderBy[0].iColumn<0 && pIdxInfo->aOrderBy[0].desc==0 ){ pIdxInfo->orderByConsumed = 1; } if( (unusableMask & ~idxMask)!=0 ){ /* If there are any unusable constraints on JSON or ROOT, then reject ** this entire plan */ return SQLITE_CONSTRAINT; } if( aIdx[0]<0 ){ /* No JSON input. Leave estimatedCost at the huge value that it was ** initialized to to discourage the query planner from selecting this ** plan. */ pIdxInfo->idxNum = 0; }else{ pIdxInfo->estimatedCost = 1.0; i = aIdx[0]; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; if( aIdx[1]<0 ){ pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */ }else{ i = aIdx[1]; pIdxInfo->aConstraintUsage[i].argvIndex = 2; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */ } } return SQLITE_OK; } /* Start a search on a new JSON string */ static int jsonEachFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ JsonEachCursor *p = (JsonEachCursor*)cur; const char *z; const char *zRoot = 0; sqlite3_int64 n; UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(argc); jsonEachCursorReset(p); if( idxNum==0 ) return SQLITE_OK; z = (const char*)sqlite3_value_text(argv[0]); if( z==0 ) return SQLITE_OK; memset(&p->sParse, 0, sizeof(p->sParse)); p->sParse.nJPRef = 1; if( sqlite3ValueIsOfClass(argv[0], (void(*)(void*))sqlite3RCStrUnref) ){ p->sParse.zJson = sqlite3RCStrRef((char*)z); }else{ n = sqlite3_value_bytes(argv[0]); p->sParse.zJson = sqlite3RCStrNew( n+1 ); if( p->sParse.zJson==0 ) return SQLITE_NOMEM; memcpy(p->sParse.zJson, z, (size_t)n+1); } p->sParse.bJsonIsRCStr = 1; p->zJson = p->sParse.zJson; if( jsonParse(&p->sParse, 0) ){ int rc = SQLITE_NOMEM; if( p->sParse.oom==0 ){ sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON"); if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR; } jsonEachCursorReset(p); return rc; }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){ jsonEachCursorReset(p); return SQLITE_NOMEM; }else{ JsonNode *pNode = 0; if( idxNum==3 ){ const char *zErr = 0; zRoot = (const char*)sqlite3_value_text(argv[1]); if( zRoot==0 ) return SQLITE_OK; n = sqlite3_value_bytes(argv[1]); p->zRoot = sqlite3_malloc64( n+1 ); if( p->zRoot==0 ) return SQLITE_NOMEM; memcpy(p->zRoot, zRoot, (size_t)n+1); if( zRoot[0]!='$' ){ zErr = zRoot; }else{ pNode = jsonLookupStep(&p->sParse, 0, p->zRoot+1, 0, &zErr); } if( zErr ){ sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = jsonPathSyntaxError(zErr); jsonEachCursorReset(p); return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; }else if( pNode==0 ){ return SQLITE_OK; } }else{ pNode = p->sParse.aNode; } p->iBegin = p->i = (int)(pNode - p->sParse.aNode); p->eType = pNode->eType; if( p->eType>=JSON_ARRAY ){ assert( pNode->eU==0 ); VVA( pNode->eU = 3 ); pNode->u.iKey = 0; p->iEnd = p->i + pNode->n + 1; if( p->bRecursive ){ p->eType = p->sParse.aNode[p->sParse.aUp[p->i]].eType; if( p->i>0 && (p->sParse.aNode[p->i-1].jnFlags & JNODE_LABEL)!=0 ){ p->i--; } }else{ p->i++; } }else{ p->iEnd = p->i+1; } } return SQLITE_OK; } /* The methods of the json_each virtual table */ static sqlite3_module jsonEachModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ jsonEachBestIndex, /* xBestIndex */ jsonEachDisconnect, /* xDisconnect */ 0, /* xDestroy */ jsonEachOpenEach, /* xOpen - open a cursor */ jsonEachClose, /* xClose - close a cursor */ jsonEachFilter, /* xFilter - configure scan constraints */ jsonEachNext, /* xNext - advance a cursor */ jsonEachEof, /* xEof - check for end of scan */ jsonEachColumn, /* xColumn - read data */ jsonEachRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; /* The methods of the json_tree virtual table. */ static sqlite3_module jsonTreeModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ jsonEachBestIndex, /* xBestIndex */ jsonEachDisconnect, /* xDisconnect */ 0, /* xDestroy */ jsonEachOpenTree, /* xOpen - open a cursor */ jsonEachClose, /* xClose - close a cursor */ jsonEachFilter, /* xFilter - configure scan constraints */ jsonEachNext, /* xNext - advance a cursor */ jsonEachEof, /* xEof - check for end of scan */ jsonEachColumn, /* xColumn - read data */ jsonEachRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ #endif /* !defined(SQLITE_OMIT_JSON) */ /* ** Register JSON functions. */ SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void){ #ifndef SQLITE_OMIT_JSON static FuncDef aJsonFunc[] = { JFUNCTION(json, 1, 0, jsonRemoveFunc), JFUNCTION(json_array, -1, 0, jsonArrayFunc), JFUNCTION(json_array_length, 1, 0, jsonArrayLengthFunc), JFUNCTION(json_array_length, 2, 0, jsonArrayLengthFunc), JFUNCTION(json_error_position,1, 0, jsonErrorFunc), JFUNCTION(json_extract, -1, 0, jsonExtractFunc), JFUNCTION(->, 2, JSON_JSON, jsonExtractFunc), JFUNCTION(->>, 2, JSON_SQL, jsonExtractFunc), JFUNCTION(json_insert, -1, 0, jsonSetFunc), JFUNCTION(json_object, -1, 0, jsonObjectFunc), JFUNCTION(json_patch, 2, 0, jsonPatchFunc), JFUNCTION(json_quote, 1, 0, jsonQuoteFunc), JFUNCTION(json_remove, -1, 0, jsonRemoveFunc), JFUNCTION(json_replace, -1, 0, jsonReplaceFunc), JFUNCTION(json_set, -1, JSON_ISSET, jsonSetFunc), JFUNCTION(json_type, 1, 0, jsonTypeFunc), JFUNCTION(json_type, 2, 0, jsonTypeFunc), JFUNCTION(json_valid, 1, 0, jsonValidFunc), #if SQLITE_DEBUG JFUNCTION(json_parse, 1, 0, jsonParseFunc), JFUNCTION(json_test1, 1, 0, jsonTest1Func), #endif WAGGREGATE(json_group_array, 1, 0, 0, jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC), WAGGREGATE(json_group_object, 2, 0, 0, jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC) }; sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc)); #endif } #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) /* ** Register the JSON table-valued functions */ SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3 *db){ int rc = SQLITE_OK; static const struct { const char *zName; sqlite3_module *pModule; } aMod[] = { { "json_each", &jsonEachModule }, { "json_tree", &jsonTreeModule }, }; unsigned int i; for(i=0; i */ /* #include */ /* #include */ /* #include */ /* The following macro is used to suppress compiler warnings. */ #ifndef UNUSED_PARAMETER # define UNUSED_PARAMETER(x) (void)(x) #endif typedef struct Rtree Rtree; typedef struct RtreeCursor RtreeCursor; typedef struct RtreeNode RtreeNode; typedef struct RtreeCell RtreeCell; typedef struct RtreeConstraint RtreeConstraint; typedef struct RtreeMatchArg RtreeMatchArg; typedef struct RtreeGeomCallback RtreeGeomCallback; typedef union RtreeCoord RtreeCoord; typedef struct RtreeSearchPoint RtreeSearchPoint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Maximum number of auxiliary columns */ #define RTREE_MAX_AUX_COLUMN 100 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 97 /* The xBestIndex method of this virtual table requires an estimate of ** the number of rows in the virtual table to calculate the costs of ** various strategies. If possible, this estimate is loaded from the ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). ** Otherwise, if no sqlite_stat1 entry is available, use ** RTREE_DEFAULT_ROWEST. */ #define RTREE_DEFAULT_ROWEST 1048576 #define RTREE_MIN_ROWEST 100 /* ** An rtree virtual-table object. */ struct Rtree { sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ u8 nDim; /* Number of dimensions */ u8 nDim2; /* Twice the number of dimensions */ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ u8 nBytesPerCell; /* Bytes consumed per cell */ u8 inWrTrans; /* True if inside write transaction */ u8 nAux; /* # of auxiliary columns in %_rowid */ #ifdef SQLITE_ENABLE_GEOPOLY u8 nAuxNotNull; /* Number of initial not-null aux columns */ #endif #ifdef SQLITE_DEBUG u8 bCorrupt; /* Shadow table corruption detected */ #endif int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ u32 nBusy; /* Current number of users of this structure */ i64 nRowEst; /* Estimated number of rows in this table */ u32 nCursor; /* Number of open cursors */ u32 nNodeRef; /* Number RtreeNodes with positive nRef */ char *zReadAuxSql; /* SQL for statement to read aux data */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ /* Blob I/O on xxx_node */ sqlite3_blob *pNodeBlob; /* Statements to read/write/delete a record from xxx_node */ sqlite3_stmt *pWriteNode; sqlite3_stmt *pDeleteNode; /* Statements to read/write/delete a record from xxx_rowid */ sqlite3_stmt *pReadRowid; sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; /* Statement for writing to the "aux:" fields, if there are any */ sqlite3_stmt *pWriteAux; RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ }; /* Possible values for Rtree.eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will ** only deal with integer coordinates. No floating point operations ** will be done. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ typedef int RtreeValue; /* Low accuracy coordinate */ # define RTREE_ZERO 0 #else typedef double RtreeDValue; /* High accuracy coordinate */ typedef float RtreeValue; /* Low accuracy coordinate */ # define RTREE_ZERO 0.0 #endif /* ** Set the Rtree.bCorrupt flag */ #ifdef SQLITE_DEBUG # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) #else # define RTREE_IS_CORRUPT(X) #endif /* ** When doing a search of an r-tree, instances of the following structure ** record intermediate results from the tree walk. ** ** The id is always a node-id. For iLevel>=1 the id is the node-id of ** the node that the RtreeSearchPoint represents. When iLevel==0, however, ** the id is of the parent node and the cell that RtreeSearchPoint ** represents is the iCell-th entry in the parent node. */ struct RtreeSearchPoint { RtreeDValue rScore; /* The score for this node. Smallest goes first. */ sqlite3_int64 id; /* Node ID */ u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ u8 iCell; /* Cell index within the node */ }; /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of ** cells are removed from the overfull node and reinserted into the tree. */ #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) #define RTREE_REINSERT(p) RTREE_MINCELLS(p) #define RTREE_MAXCELLS 51 /* ** The smallest possible node-size is (512-64)==448 bytes. And the largest ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). ** Therefore all non-root nodes must contain at least 3 entries. Since ** 3^40 is greater than 2^64, an r-tree structure always has a depth of ** 40 or less. */ #define RTREE_MAX_DEPTH 40 /* ** Number of entries in the cursor RtreeNode cache. The first entry is ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining ** entries cache the RtreeNode for the first elements of the priority queue. */ #define RTREE_CACHE_SZ 5 /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ u8 atEOF; /* True if at end of search */ u8 bPoint; /* True if sPoint is valid */ u8 bAuxValid; /* True if pReadAux is valid */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ int nPointAlloc; /* Number of slots allocated for aPoint[] */ int nPoint; /* Number of slots used in aPoint[] */ int mxLevel; /* iLevel value for root of the tree */ RtreeSearchPoint *aPoint; /* Priority queue for search points */ sqlite3_stmt *pReadAux; /* Statement to read aux-data */ RtreeSearchPoint sPoint; /* Cached next search point */ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ }; /* Return the Rtree of a RtreeCursor */ #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) /* ** A coordinate can be either a floating point number or a integer. All ** coordinates within a single R-Tree are always of the same time. */ union RtreeCoord { RtreeValue f; /* Floating point value */ int i; /* Integer value */ u32 u; /* Unsigned for byte-order conversions */ }; /* ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord ** formatted as a RtreeDValue (double or int64). This macro assumes that local ** variable pRtree points to the Rtree structure associated with the ** RtreeCoord. */ #ifdef SQLITE_RTREE_INT_ONLY # define DCOORD(coord) ((RtreeDValue)coord.i) #else # define DCOORD(coord) ( \ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ ((double)coord.f) : \ ((double)coord.i) \ ) #endif /* ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ union { RtreeDValue rValue; /* Constraint value. */ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); int (*xQueryFunc)(sqlite3_rtree_query_info*); } u; sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ }; /* Possible values for RtreeConstraint.op */ #define RTREE_EQ 0x41 /* A */ #define RTREE_LE 0x42 /* B */ #define RTREE_LT 0x43 /* C */ #define RTREE_GE 0x44 /* D */ #define RTREE_GT 0x45 /* E */ #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ /* Special operators available only on cursors. Needs to be consecutive ** with the normal values above, but must be less than RTREE_MATCH. These ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or ** x<'xyz' (RTREE_TRUE) */ #define RTREE_TRUE 0x3f /* ? */ #define RTREE_FALSE 0x40 /* @ */ /* ** An rtree structure node. */ struct RtreeNode { RtreeNode *pParent; /* Parent node */ i64 iNode; /* The node number */ int nRef; /* Number of references to this node */ int isDirty; /* True if the node needs to be written to disk */ u8 *zData; /* Content of the node, as should be on disk */ RtreeNode *pNext; /* Next node in this hash collision chain */ }; /* Return the number of cells in a node */ #define NCELL(pNode) readInt16(&(pNode)->zData[2]) /* ** A single cell from a node, deserialized */ struct RtreeCell { i64 iRowid; /* Node or entry ID */ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ }; /* ** This object becomes the sqlite3_user_data() for the SQL functions ** that are created by sqlite3_rtree_geometry_callback() and ** sqlite3_rtree_query_callback() and which appear on the right of MATCH ** operators in order to constrain a search. ** ** xGeom and xQueryFunc are the callback functions. Exactly one of ** xGeom and xQueryFunc fields is non-NULL, depending on whether the ** SQL function was created using sqlite3_rtree_geometry_callback() or ** sqlite3_rtree_query_callback(). ** ** This object is deleted automatically by the destructor mechanism in ** sqlite3_create_function_v2(). */ struct RtreeGeomCallback { int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); int (*xQueryFunc)(sqlite3_rtree_query_info*); void (*xDestructor)(void*); void *pContext; }; /* ** An instance of this structure (in the form of a BLOB) is returned by ** the SQL functions that sqlite3_rtree_geometry_callback() and ** sqlite3_rtree_query_callback() create, and is read as the right-hand ** operand to the MATCH operator of an R-Tree. */ struct RtreeMatchArg { u32 iSize; /* Size of this object */ RtreeGeomCallback cb; /* Info about the callback functions */ int nParam; /* Number of parameters to the SQL function */ sqlite3_value **apSqlParam; /* Original SQL parameter values */ RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ }; #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN # define MIN(x,y) ((x) > (y) ? (y) : (x)) #endif /* What version of GCC is being used. 0 means GCC is not being used . ** Note that the GCC_VERSION macro will also be set correctly when using ** clang, since clang works hard to be gcc compatible. So the gcc ** optimizations will also work when compiling with clang. */ #ifndef GCC_VERSION #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #endif /* The testcase() macro should already be defined in the amalgamation. If ** it is not, make it a no-op. */ #ifndef SQLITE_AMALGAMATION # if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) unsigned int sqlite3RtreeTestcase = 0; # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; } # else # define testcase(X) # endif #endif /* ** Make sure that the compiler intrinsics we desire are enabled when ** compiling with an appropriate version of MSVC unless prevented by ** the SQLITE_DISABLE_INTRINSIC define. */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1400 # if !defined(_WIN32_WCE) /* # include */ # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_byteswap_uint64) # else /* # include */ # endif # endif #endif /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined ** at run-time. */ #ifndef SQLITE_BYTEORDER # if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) # define SQLITE_BYTEORDER 1234 # elif defined(sparc) || defined(__ppc__) || \ defined(__ARMEB__) || defined(__AARCH64EB__) # define SQLITE_BYTEORDER 4321 # else # define SQLITE_BYTEORDER 0 # endif #endif /* What version of MSVC is being used. 0 means MSVC is not being used */ #ifndef MSVC_VERSION #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif #endif /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ assert( FOUR_BYTE_ALIGNED(p) ); #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 pCoord->u = _byteswap_ulong(*(u32*)p); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 pCoord->u = __builtin_bswap32(*(u32*)p); #elif SQLITE_BYTEORDER==4321 pCoord->u = *(u32*)p; #else pCoord->u = ( (((u32)p[0]) << 24) + (((u32)p[1]) << 16) + (((u32)p[2]) << 8) + (((u32)p[3]) << 0) ); #endif } static i64 readInt64(u8 *p){ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u64 x; memcpy(&x, p, 8); return (i64)_byteswap_uint64(x); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u64 x; memcpy(&x, p, 8); return (i64)__builtin_bswap64(x); #elif SQLITE_BYTEORDER==4321 i64 x; memcpy(&x, p, 8); return x; #else return (i64)( (((u64)p[0]) << 56) + (((u64)p[1]) << 48) + (((u64)p[2]) << 40) + (((u64)p[3]) << 32) + (((u64)p[4]) << 24) + (((u64)p[5]) << 16) + (((u64)p[6]) << 8) + (((u64)p[7]) << 0) ); #endif } /* ** Functions to serialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The value returned is the number of bytes written ** to the argument buffer (always 2, 4 and 8 respectively). */ static void writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; assert( FOUR_BYTE_ALIGNED(p) ); assert( sizeof(RtreeCoord)==4 ); assert( sizeof(u32)==4 ); #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = __builtin_bswap32(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = _byteswap_ulong(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==4321 i = pCoord->u; memcpy(p, &i, 4); #else i = pCoord->u; p[0] = (i>>24)&0xFF; p[1] = (i>>16)&0xFF; p[2] = (i>> 8)&0xFF; p[3] = (i>> 0)&0xFF; #endif return 4; } static int writeInt64(u8 *p, i64 i){ #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = (i64)__builtin_bswap64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = (i64)_byteswap_uint64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==4321 memcpy(p, &i, 8); #else p[0] = (i>>56)&0xFF; p[1] = (i>>48)&0xFF; p[2] = (i>>40)&0xFF; p[3] = (i>>32)&0xFF; p[4] = (i>>24)&0xFF; p[5] = (i>>16)&0xFF; p[6] = (i>> 8)&0xFF; p[7] = (i>> 0)&0xFF; #endif return 8; } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ static void nodeZero(Rtree *pRtree, RtreeNode *p){ memset(&p->zData[2], 0, pRtree->iNodeSize-2); p->isDirty = 1; } /* ** Given a node number iNode, return the corresponding key to use ** in the Rtree.aHash table. */ static unsigned int nodeHash(i64 iNode){ return ((unsigned)iNode) % HASHSIZE; } /* ** Search the node hash table for node iNode. If found, return a pointer ** to it. Otherwise, return 0. */ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ RtreeNode *p; for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); return p; } /* ** Add node pNode to the node hash table. */ static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ int iHash; assert( pNode->pNext==0 ); iHash = nodeHash(pNode->iNode); pNode->pNext = pRtree->aHash[iHash]; pRtree->aHash[iHash] = pNode; } /* ** Remove node pNode from the node hash table. */ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ RtreeNode **pp; if( pNode->iNode!=0 ){ pp = &pRtree->aHash[nodeHash(pNode->iNode)]; for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } *pp = pNode->pNext; pNode->pNext = 0; } } /* ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), ** indicating that node has not yet been assigned a node number. It is ** assigned a node number when nodeWrite() is called to write the ** node contents out to the database. */ static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } /* ** Clear the Rtree.pNodeBlob object */ static void nodeBlobReset(Rtree *pRtree){ if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){ sqlite3_blob *pBlob = pRtree->pNodeBlob; pRtree->pNodeBlob = 0; sqlite3_blob_close(pBlob); } } /* ** Obtain a reference to an r-tree node. */ static int nodeAcquire( Rtree *pRtree, /* R-tree structure */ i64 iNode, /* Node number to load */ RtreeNode *pParent, /* Either the parent node or NULL */ RtreeNode **ppNode /* OUT: Acquired node */ ){ int rc = SQLITE_OK; RtreeNode *pNode = 0; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ if( pParent && pParent!=pNode->pParent ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } pNode->nRef++; *ppNode = pNode; return SQLITE_OK; } if( pRtree->pNodeBlob ){ sqlite3_blob *pBlob = pRtree->pNodeBlob; pRtree->pNodeBlob = 0; rc = sqlite3_blob_reopen(pBlob, iNode); pRtree->pNodeBlob = pBlob; if( rc ){ nodeBlobReset(pRtree); if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; } } if( pRtree->pNodeBlob==0 ){ char *zTab = sqlite3_mprintf("%s_node", pRtree->zName); if( zTab==0 ) return SQLITE_NOMEM; rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0, &pRtree->pNodeBlob); sqlite3_free(zTab); } if( rc ){ nodeBlobReset(pRtree); *ppNode = 0; /* If unable to open an sqlite3_blob on the desired row, that can only ** be because the shadow tables hold erroneous data. */ if( rc==SQLITE_ERROR ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize); if( !pNode ){ rc = SQLITE_NOMEM; }else{ pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, pRtree->iNodeSize, 0); } } /* If the root node was just loaded, set pRtree->iDepth to the height ** of the r-tree structure. A height of zero means all data is stored on ** the root node. A height of one means the children of the root node ** are the leaves, and so on. If the depth as specified on the root node ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. */ if( rc==SQLITE_OK && pNode && iNode==1 ){ pRtree->iDepth = readInt16(pNode->zData); if( pRtree->iDepth>RTREE_MAX_DEPTH ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } } /* If no error has occurred so far, check if the "number of entries" ** field on the node is too large. If so, set the return code to ** SQLITE_CORRUPT_VTAB. */ if( pNode && rc==SQLITE_OK ){ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } } if( rc==SQLITE_OK ){ if( pNode!=0 ){ nodeReference(pParent); nodeHashInsert(pRtree, pNode); }else{ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } *ppNode = pNode; }else{ if( pNode ){ pRtree->nNodeRef--; sqlite3_free(pNode); } *ppNode = 0; } return rc; } /* ** Overwrite cell iCell of node pNode with the contents of pCell. */ static void nodeOverwriteCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node into which the cell is to be written */ RtreeCell *pCell, /* The cell to write */ int iCell /* Index into pNode into which pCell is written */ ){ int ii; u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; p += writeInt64(p, pCell->iRowid); for(ii=0; iinDim2; ii++){ p += writeCoord(p, &pCell->aCoord[ii]); } pNode->isDirty = 1; } /* ** Remove the cell with index iCell from node pNode. */ static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; u8 *pSrc = &pDst[pRtree->nBytesPerCell]; int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; memmove(pDst, pSrc, nByte); writeInt16(&pNode->zData[2], NCELL(pNode)-1); pNode->isDirty = 1; } /* ** Insert the contents of cell pCell into node pNode. If the insert ** is successful, return SQLITE_OK. ** ** If there is not enough free space in pNode, return SQLITE_FULL. */ static int nodeInsertCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* Write new cell into this node */ RtreeCell *pCell /* The cell to be inserted */ ){ int nCell; /* Current number of cells in pNode */ int nMaxCell; /* Maximum number of cells for pNode */ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; nCell = NCELL(pNode); assert( nCell<=nMaxCell ); if( nCellzData[2], nCell+1); pNode->isDirty = 1; } return (nCell==nMaxCell); } /* ** If the node is dirty, write it out to the database. */ static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode->isDirty ){ sqlite3_stmt *p = pRtree->pWriteNode; if( pNode->iNode ){ sqlite3_bind_int64(p, 1, pNode->iNode); }else{ sqlite3_bind_null(p, 1); } sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); sqlite3_step(p); pNode->isDirty = 0; rc = sqlite3_reset(p); sqlite3_bind_null(p, 2); if( pNode->iNode==0 && rc==SQLITE_OK ){ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); nodeHashInsert(pRtree, pNode); } } return rc; } /* ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); assert( pRtree->nNodeRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ pRtree->nNodeRef--; if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ rc = nodeWrite(pRtree, pNode); } nodeHashDelete(pRtree, pNode); sqlite3_free(pNode); } } return rc; } /* ** Return the 64-bit integer value associated with cell iCell of ** node pNode. If pNode is a leaf node, this is a rowid. If it is ** an internal node, then the 64-bit integer is a child page number. */ static i64 nodeGetRowid( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node from which to extract the ID */ int iCell /* The cell index from which to extract the ID */ ){ assert( iCellzData[4 + pRtree->nBytesPerCell*iCell]); } /* ** Return coordinate iCoord from cell iCell in node pNode. */ static void nodeGetCoord( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node from which to extract a coordinate */ int iCell, /* The index of the cell within the node */ int iCoord, /* Which coordinate to extract */ RtreeCoord *pCoord /* OUT: Space to write result to */ ){ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); } /* ** Deserialize cell iCell of node pNode. Populate the structure pointed ** to by pCell with the results. */ static void nodeGetCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node containing the cell to be read */ int iCell, /* Index of the cell within the node */ RtreeCell *pCell /* OUT: Write the cell contents here */ ){ u8 *pData; RtreeCoord *pCoord; int ii = 0; pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); pCoord = pCell->aCoord; do{ readCoord(pData, &pCoord[ii]); readCoord(pData+4, &pCoord[ii+1]); pData += 8; ii += 2; }while( iinDim2 ); } /* Forward declaration for the function that does the work of ** the virtual table module xCreate() and xConnect() methods. */ static int rtreeInit( sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int ); /* ** Rtree virtual table module xCreate method. */ static int rtreeCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** Rtree virtual table module xConnect method. */ static int rtreeConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** Increment the r-tree reference count. */ static void rtreeReference(Rtree *pRtree){ pRtree->nBusy++; } /* ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ pRtree->inWrTrans = 0; assert( pRtree->nCursor==0 ); nodeBlobReset(pRtree); assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); sqlite3_finalize(pRtree->pWriteNode); sqlite3_finalize(pRtree->pDeleteNode); sqlite3_finalize(pRtree->pReadRowid); sqlite3_finalize(pRtree->pWriteRowid); sqlite3_finalize(pRtree->pDeleteRowid); sqlite3_finalize(pRtree->pReadParent); sqlite3_finalize(pRtree->pWriteParent); sqlite3_finalize(pRtree->pDeleteParent); sqlite3_finalize(pRtree->pWriteAux); sqlite3_free(pRtree->zReadAuxSql); sqlite3_free(pRtree); } } /* ** Rtree virtual table module xDisconnect method. */ static int rtreeDisconnect(sqlite3_vtab *pVtab){ rtreeRelease((Rtree *)pVtab); return SQLITE_OK; } /* ** Rtree virtual table module xDestroy method. */ static int rtreeDestroy(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; int rc; char *zCreate = sqlite3_mprintf( "DROP TABLE '%q'.'%q_node';" "DROP TABLE '%q'.'%q_rowid';" "DROP TABLE '%q'.'%q_parent';", pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName ); if( !zCreate ){ rc = SQLITE_NOMEM; }else{ nodeBlobReset(pRtree); rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); sqlite3_free(zCreate); } if( rc==SQLITE_OK ){ rtreeRelease(pRtree); } return rc; } /* ** Rtree virtual table module xOpen method. */ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_NOMEM; Rtree *pRtree = (Rtree *)pVTab; RtreeCursor *pCsr; pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor)); if( pCsr ){ memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = pVTab; rc = SQLITE_OK; pRtree->nCursor++; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return rc; } /* ** Reset a cursor back to its initial state. */ static void resetCursor(RtreeCursor *pCsr){ Rtree *pRtree = (Rtree *)(pCsr->base.pVtab); int ii; sqlite3_stmt *pStmt; if( pCsr->aConstraint ){ int i; /* Used to iterate through constraint array */ for(i=0; inConstraint; i++){ sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; if( pInfo ){ if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); sqlite3_free(pInfo); } } sqlite3_free(pCsr->aConstraint); pCsr->aConstraint = 0; } for(ii=0; iiaNode[ii]); sqlite3_free(pCsr->aPoint); pStmt = pCsr->pReadAux; memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = (sqlite3_vtab*)pRtree; pCsr->pReadAux = pStmt; } /* ** Rtree virtual table module xClose method. */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); RtreeCursor *pCsr = (RtreeCursor *)cur; assert( pRtree->nCursor>0 ); resetCursor(pCsr); sqlite3_finalize(pCsr->pReadAux); sqlite3_free(pCsr); pRtree->nCursor--; nodeBlobReset(pRtree); return SQLITE_OK; } /* ** Rtree virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int rtreeEof(sqlite3_vtab_cursor *cur){ RtreeCursor *pCsr = (RtreeCursor *)cur; return pCsr->atEOF; } /* ** Convert raw bits from the on-disk RTree record into a coordinate value. ** The on-disk format is big-endian and needs to be converted for little- ** endian platforms. The on-disk record stores integer coordinates if ** eInt is true and it stores 32-bit floating point records if eInt is ** false. a[] is the four bytes of the on-disk record to be decoded. ** Store the results in "r". ** ** There are five versions of this macro. The last one is generic. The ** other four are various architectures-specific optimizations. */ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = _byteswap_ulong(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = __builtin_bswap32(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==4321 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #else #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ +((u32)a[2]<<8) + a[3]; \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #endif /* ** Check the RTree node or entry given by pCellData and p against the MATCH ** constraint pConstraint. */ static int rtreeCallbackConstraint( RtreeConstraint *pConstraint, /* The constraint to test */ int eInt, /* True if RTree holding integer coordinates */ u8 *pCellData, /* Raw cell content */ RtreeSearchPoint *pSearch, /* Container of this cell */ sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ int *peWithin /* OUT: visibility of the cell */ ){ sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ int nCoord = pInfo->nCoord; /* No. of coordinates */ int rc; /* Callback return code */ RtreeCoord c; /* Translator union */ sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ pInfo->iRowid = readInt64(pCellData); } pCellData += 8; #ifndef SQLITE_RTREE_INT_ONLY if( eInt==0 ){ switch( nCoord ){ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; readCoord(pCellData+32, &c); aCoord[8] = c.f; case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; readCoord(pCellData+24, &c); aCoord[6] = c.f; case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; readCoord(pCellData+16, &c); aCoord[4] = c.f; case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; readCoord(pCellData+8, &c); aCoord[2] = c.f; default: readCoord(pCellData+4, &c); aCoord[1] = c.f; readCoord(pCellData, &c); aCoord[0] = c.f; } }else #endif { switch( nCoord ){ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; readCoord(pCellData+32, &c); aCoord[8] = c.i; case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; readCoord(pCellData+24, &c); aCoord[6] = c.i; case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; readCoord(pCellData+16, &c); aCoord[4] = c.i; case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; readCoord(pCellData+8, &c); aCoord[2] = c.i; default: readCoord(pCellData+4, &c); aCoord[1] = c.i; readCoord(pCellData, &c); aCoord[0] = c.i; } } if( pConstraint->op==RTREE_MATCH ){ int eWithin = 0; rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, nCoord, aCoord, &eWithin); if( eWithin==0 ) *peWithin = NOT_WITHIN; *prScore = RTREE_ZERO; }else{ pInfo->aCoord = aCoord; pInfo->iLevel = pSearch->iLevel - 1; pInfo->rScore = pInfo->rParentScore = pSearch->rScore; pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; rc = pConstraint->u.xQueryFunc(pInfo); if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; if( pInfo->rScore<*prScore || *prScorerScore; } } return rc; } /* ** Check the internal RTree node given by pCellData against constraint p. ** If this constraint cannot be satisfied by any child within the node, ** set *peWithin to NOT_WITHIN. */ static void rtreeNonleafConstraint( RtreeConstraint *p, /* The constraint to test */ int eInt, /* True if RTree holds integer coordinates */ u8 *pCellData, /* Raw cell content as appears on disk */ int *peWithin /* Adjust downward, as appropriate */ ){ sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ /* p->iCoord might point to either a lower or upper bound coordinate ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); assert( FOUR_BYTE_ALIGNED(pCellData) ); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_EQ: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ){ pCellData += 4; RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the upper bound of the coordinate pair */ if( p->u.rValue<=val ) return; } break; case RTREE_LE: case RTREE_LT: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ) return; break; default: pCellData += 4; RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the upper bound of the coordinate pair */ if( p->u.rValue<=val ) return; break; } *peWithin = NOT_WITHIN; } /* ** Check the leaf RTree cell given by pCellData against constraint p. ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. ** If the constraint is satisfied, leave *peWithin unchanged. ** ** The constraint is of the form: xN op $val ** ** The op is given by p->op. The xN is p->iCoord-th coordinate in ** pCellData. $val is given by p->u.rValue. */ static void rtreeLeafConstraint( RtreeConstraint *p, /* The constraint to test */ int eInt, /* True if RTree holds integer coordinates */ u8 *pCellData, /* Raw cell content as appears on disk */ int *peWithin /* Adjust downward, as appropriate */ ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); pCellData += 8 + p->iCoord*4; assert( FOUR_BYTE_ALIGNED(pCellData) ); RTREE_DECODE_COORD(eInt, pCellData, xN); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_LE: if( xN <= p->u.rValue ) return; break; case RTREE_LT: if( xN < p->u.rValue ) return; break; case RTREE_GE: if( xN >= p->u.rValue ) return; break; case RTREE_GT: if( xN > p->u.rValue ) return; break; default: if( xN == p->u.rValue ) return; break; } *peWithin = NOT_WITHIN; } /* ** One of the cells in node pNode is guaranteed to have a 64-bit ** integer value equal to iRowid. Return the index of this cell. */ static int nodeRowidIndex( Rtree *pRtree, RtreeNode *pNode, i64 iRowid, int *piIndex ){ int ii; int nCell = NCELL(pNode); assert( nCell<200 ); for(ii=0; iipParent; if( ALWAYS(pParent) ){ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); }else{ *piIndex = -1; return SQLITE_OK; } } /* ** Compare two search points. Return negative, zero, or positive if the first ** is less than, equal to, or greater than the second. ** ** The rScore is the primary key. Smaller rScore values come first. ** If the rScore is a tie, then use iLevel as the tie breaker with smaller ** iLevel values coming first. In this way, if rScore is the same for all ** SearchPoints, then iLevel becomes the deciding factor and the result ** is a depth-first search, which is the desired default behavior. */ static int rtreeSearchPointCompare( const RtreeSearchPoint *pA, const RtreeSearchPoint *pB ){ if( pA->rScorerScore ) return -1; if( pA->rScore>pB->rScore ) return +1; if( pA->iLeveliLevel ) return -1; if( pA->iLevel>pB->iLevel ) return +1; return 0; } /* ** Interchange two search points in a cursor. */ static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ RtreeSearchPoint t = p->aPoint[i]; assert( iaPoint[i] = p->aPoint[j]; p->aPoint[j] = t; i++; j++; if( i=RTREE_CACHE_SZ ){ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); p->aNode[i] = 0; }else{ RtreeNode *pTemp = p->aNode[i]; p->aNode[i] = p->aNode[j]; p->aNode[j] = pTemp; } } } /* ** Return the search point with the lowest current score. */ static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; } /* ** Get the RtreeNode for the search point with the lowest score. */ static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ sqlite3_int64 id; int ii = 1 - pCur->bPoint; assert( ii==0 || ii==1 ); assert( pCur->bPoint || pCur->nPoint ); if( pCur->aNode[ii]==0 ){ assert( pRC!=0 ); id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); } return pCur->aNode[ii]; } /* ** Push a new element onto the priority queue */ static RtreeSearchPoint *rtreeEnqueue( RtreeCursor *pCur, /* The cursor */ RtreeDValue rScore, /* Score for the new search point */ u8 iLevel /* Level for the new search point */ ){ int i, j; RtreeSearchPoint *pNew; if( pCur->nPoint>=pCur->nPointAlloc ){ int nNew = pCur->nPointAlloc*2 + 8; pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); if( pNew==0 ) return 0; pCur->aPoint = pNew; pCur->nPointAlloc = nNew; } i = pCur->nPoint++; pNew = pCur->aPoint + i; pNew->rScore = rScore; pNew->iLevel = iLevel; assert( iLevel<=RTREE_MAX_DEPTH ); while( i>0 ){ RtreeSearchPoint *pParent; j = (i-1)/2; pParent = pCur->aPoint + j; if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; rtreeSearchPointSwap(pCur, j, i); i = j; pNew = pParent; } return pNew; } /* ** Allocate a new RtreeSearchPoint and return a pointer to it. Return ** NULL if malloc fails. */ static RtreeSearchPoint *rtreeSearchPointNew( RtreeCursor *pCur, /* The cursor */ RtreeDValue rScore, /* Score for the new search point */ u8 iLevel /* Level for the new search point */ ){ RtreeSearchPoint *pNew, *pFirst; pFirst = rtreeSearchPointFirst(pCur); pCur->anQueue[iLevel]++; if( pFirst==0 || pFirst->rScore>rScore || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) ){ if( pCur->bPoint ){ int ii; pNew = rtreeEnqueue(pCur, rScore, iLevel); if( pNew==0 ) return 0; ii = (int)(pNew - pCur->aPoint) + 1; assert( ii==1 ); if( ALWAYS(iiaNode[ii]==0 ); pCur->aNode[ii] = pCur->aNode[0]; }else{ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); } pCur->aNode[0] = 0; *pNew = pCur->sPoint; } pCur->sPoint.rScore = rScore; pCur->sPoint.iLevel = iLevel; pCur->bPoint = 1; return &pCur->sPoint; }else{ return rtreeEnqueue(pCur, rScore, iLevel); } } #if 0 /* Tracing routines for the RtreeSearchPoint queue */ static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } printf(" %d.%05lld.%02d %g %d", p->iLevel, p->id, p->iCell, p->rScore, p->eWithin ); idx++; if( idxaNode[idx]); }else{ printf("\n"); } } static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ int ii; printf("=== %9s ", zPrefix); if( pCur->bPoint ){ tracePoint(&pCur->sPoint, -1, pCur); } for(ii=0; iinPoint; ii++){ if( ii>0 || pCur->bPoint ) printf(" "); tracePoint(&pCur->aPoint[ii], ii, pCur); } } # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) #else # define RTREE_QUEUE_TRACE(A,B) /* no-op */ #endif /* Remove the search point with the lowest current score. */ static void rtreeSearchPointPop(RtreeCursor *p){ int i, j, k, n; i = 1 - p->bPoint; assert( i==0 || i==1 ); if( p->aNode[i] ){ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); p->aNode[i] = 0; } if( p->bPoint ){ p->anQueue[p->sPoint.iLevel]--; p->bPoint = 0; }else if( ALWAYS(p->nPoint) ){ p->anQueue[p->aPoint[0].iLevel]--; n = --p->nPoint; p->aPoint[0] = p->aPoint[n]; if( naNode[1] = p->aNode[n+1]; p->aNode[n+1] = 0; } i = 0; while( (j = i*2+1)aPoint[k], &p->aPoint[j])<0 ){ if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ rtreeSearchPointSwap(p, i, k); i = k; }else{ break; } }else{ if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ rtreeSearchPointSwap(p, i, j); i = j; }else{ break; } } } } } /* ** Continue the search on cursor pCur until the front of the queue ** contains an entry suitable for returning as a result-set row, ** or until the RtreeSearchPoint queue is empty, indicating that the ** query has completed. */ static int rtreeStepToLeaf(RtreeCursor *pCur){ RtreeSearchPoint *p; Rtree *pRtree = RTREE_OF_CURSOR(pCur); RtreeNode *pNode; int eWithin; int rc = SQLITE_OK; int nCell; int nConstraint = pCur->nConstraint; int ii; int eInt; RtreeSearchPoint x; eInt = pRtree->eCoordType==RTREE_COORD_INT32; while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ u8 *pCellData; pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); if( rc ) return rc; nCell = NCELL(pNode); assert( nCell<200 ); pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); while( p->iCellaConstraint + ii; if( pConstraint->op>=RTREE_MATCH ){ rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, &rScore, &eWithin); if( rc ) return rc; }else if( p->iLevel==1 ){ rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); }else{ rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); } if( eWithin==NOT_WITHIN ){ p->iCell++; pCellData += pRtree->nBytesPerCell; break; } } if( eWithin==NOT_WITHIN ) continue; p->iCell++; x.iLevel = p->iLevel - 1; if( x.iLevel ){ x.id = readInt64(pCellData); for(ii=0; iinPoint; ii++){ if( pCur->aPoint[ii].id==x.id ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } } x.iCell = 0; }else{ x.id = p->id; x.iCell = p->iCell - 1; } if( p->iCell>=nCell ){ RTREE_QUEUE_TRACE(pCur, "POP-S:"); rtreeSearchPointPop(pCur); } if( rScoreeWithin = (u8)eWithin; p->id = x.id; p->iCell = x.iCell; RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); break; } if( p->iCell>=nCell ){ RTREE_QUEUE_TRACE(pCur, "POP-Se:"); rtreeSearchPointPop(pCur); } } pCur->atEOF = p==0; return SQLITE_OK; } /* ** Rtree virtual table module xNext method. */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; /* Move to the next entry that matches the configured constraints. */ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); if( pCsr->bAuxValid ){ pCsr->bAuxValid = 0; sqlite3_reset(pCsr->pReadAux); } rtreeSearchPointPop(pCsr); rc = rtreeStepToLeaf(pCsr); return rc; } /* ** Rtree virtual table module xRowid method. */ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc==SQLITE_OK && ALWAYS(p) ){ *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); } return rc; } /* ** Rtree virtual table module xColumn method. */ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); RtreeCoord c; int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( NEVER(p==0) ) return SQLITE_OK; if( i==0 ){ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); }else if( i<=pRtree->nDim2 ){ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else #endif { assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } }else{ if( !pCsr->bAuxValid ){ if( pCsr->pReadAux==0 ){ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, &pCsr->pReadAux, 0); if( rc ) return rc; } sqlite3_bind_int64(pCsr->pReadAux, 1, nodeGetRowid(pRtree, pNode, p->iCell)); rc = sqlite3_step(pCsr->pReadAux); if( rc==SQLITE_ROW ){ pCsr->bAuxValid = 1; }else{ sqlite3_reset(pCsr->pReadAux); if( rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } } sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); } return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf ** to zero and return an SQLite error code. */ static int findLeafNode( Rtree *pRtree, /* RTree to search */ i64 iRowid, /* The rowid searching for */ RtreeNode **ppLeaf, /* Write the node here */ sqlite3_int64 *piNode /* Write the node-id here */ ){ int rc; *ppLeaf = 0; sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); if( piNode ) *piNode = iNode; rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); sqlite3_reset(pRtree->pReadRowid); }else{ rc = sqlite3_reset(pRtree->pReadRowid); } return rc; } /* ** This function is called to configure the RtreeConstraint object passed ** as the second argument for a MATCH constraint. The value passed as the ** first argument to this function is the right-hand operand to the MATCH ** operator. */ static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ sqlite3_rtree_query_info *pInfo; /* Callback information */ pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); if( pSrc==0 ) return SQLITE_ERROR; pInfo = (sqlite3_rtree_query_info*) sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); if( !pInfo ) return SQLITE_NOMEM; memset(pInfo, 0, sizeof(*pInfo)); pBlob = (RtreeMatchArg*)&pInfo[1]; memcpy(pBlob, pSrc, pSrc->iSize); pInfo->pContext = pBlob->cb.pContext; pInfo->nParam = pBlob->nParam; pInfo->aParam = pBlob->aParam; pInfo->apSqlParam = pBlob->apSqlParam; if( pBlob->cb.xGeom ){ pCons->u.xGeom = pBlob->cb.xGeom; }else{ pCons->op = RTREE_QUERY; pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; } pCons->pInfo = pInfo; return SQLITE_OK; } /* ** Rtree virtual table module xFilter method. */ static int rtreeFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; int iCell = 0; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ resetCursor(pCsr); pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); i64 iNode = 0; int eType = sqlite3_value_numeric_type(argv[0]); if( eType==SQLITE_INTEGER || (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid) ){ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); }else{ rc = SQLITE_OK; pLeaf = 0; } if( rc==SQLITE_OK && pLeaf!=0 ){ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); assert( p!=0 ); /* Always returns pCsr->sPoint */ pCsr->aNode[0] = pLeaf; p->id = iNode; p->eWithin = PARTLY_WITHIN; rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); p->iCell = (u8)iCell; RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); }else{ pCsr->atEOF = 1; } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); if( rc==SQLITE_OK && argc>0 ){ pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); assert( (idxStr==0 && argc==0) || (idxStr && (int)strlen(idxStr)==argc*2) ); for(ii=0; iiaConstraint[ii]; int eType = sqlite3_value_numeric_type(argv[ii]); p->op = idxStr[ii*2]; p->iCoord = idxStr[ii*2+1]-'0'; if( p->op>=RTREE_MATCH ){ /* A MATCH operator. The right-hand-side must be a blob that ** can be cast into an RtreeMatchArg object. One created using ** an sqlite3_rtree_geometry_callback() SQL user function. */ rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } p->pInfo->nCoord = pRtree->nDim2; p->pInfo->anQueue = pCsr->anQueue; p->pInfo->mxLevel = pRtree->iDepth + 1; }else if( eType==SQLITE_INTEGER ){ sqlite3_int64 iVal = sqlite3_value_int64(argv[ii]); #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = iVal; #else p->u.rValue = (double)iVal; if( iVal>=((sqlite3_int64)1)<<48 || iVal<=-(((sqlite3_int64)1)<<48) ){ if( p->op==RTREE_LT ) p->op = RTREE_LE; if( p->op==RTREE_GT ) p->op = RTREE_GE; } #endif }else if( eType==SQLITE_FLOAT ){ #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = sqlite3_value_int64(argv[ii]); #else p->u.rValue = sqlite3_value_double(argv[ii]); #endif }else{ p->u.rValue = RTREE_ZERO; if( eType==SQLITE_NULL ){ p->op = RTREE_FALSE; }else if( p->op==RTREE_LT || p->op==RTREE_LE ){ p->op = RTREE_TRUE; }else{ p->op = RTREE_FALSE; } } } } } if( rc==SQLITE_OK ){ RtreeSearchPoint *pNew; assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */ return SQLITE_NOMEM; } pNew->id = 1; pNew->iCell = 0; pNew->eWithin = PARTLY_WITHIN; assert( pCsr->bPoint==1 ); pCsr->aNode[0] = pRoot; pRoot = 0; RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); rc = rtreeStepToLeaf(pCsr); } } nodeRelease(pRtree, pRoot); rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. ** 2 See below R-tree query or full-table scan. ** ------------------------------------------------ ** ** If strategy 1 is used, then idxStr is not meaningful. If strategy ** 2 is used, idxStr is formatted to contain 2 bytes for each ** constraint used. The first two bytes of idxStr correspond to ** the constraint in sqlite3_index_info.aConstraintUsage[] with ** (argvIndex==1) etc. ** ** The first of each pair of bytes in idxStr identifies the constraint ** operator as follows: ** ** Operator Byte Value ** ---------------------- ** = 0x41 ('A') ** <= 0x42 ('B') ** < 0x43 ('C') ** >= 0x44 ('D') ** > 0x45 ('E') ** MATCH 0x46 ('F') ** ---------------------- ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ Rtree *pRtree = (Rtree*)tab; int rc = SQLITE_OK; int ii; int bMatch = 0; /* True if there exists a MATCH constraint */ i64 nRow; /* Estimated rows returned by this scan */ int iIdx = 0; char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; memset(zIdxStr, 0, sizeof(zIdxStr)); /* Check if there exists a MATCH constraint - even an unusable one. If there ** is, do not consider the lookup-by-rowid plan as using such a plan would ** require the VDBE to evaluate the MATCH constraint, which is not currently ** possible. */ for(ii=0; iinConstraint; ii++){ if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ bMatch = 1; } } assert( pIdxInfo->idxStr==0 ); for(ii=0; iinConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( bMatch==0 && p->usable && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ /* We have an equality constraint on the rowid. Use strategy 1. */ int jj; for(jj=0; jjaConstraintUsage[jj].argvIndex = 0; pIdxInfo->aConstraintUsage[jj].omit = 0; } pIdxInfo->idxNum = 1; pIdxInfo->aConstraintUsage[ii].argvIndex = 1; pIdxInfo->aConstraintUsage[jj].omit = 1; /* This strategy involves a two rowid lookups on an B-Tree structures ** and then a linear search of an R-Tree node. This should be ** considered almost as quick as a direct rowid lookup (for which ** sqlite uses an internal cost of 0.0). It is expected to return ** a single row. */ pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; return SQLITE_OK; } if( p->usable && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; u8 doOmit = 1; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; default: op = 0; break; } if( op ){ zIdxStr[iIdx++] = op; zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = doOmit; } } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ return SQLITE_NOMEM; } nRow = pRtree->nRowEst >> (iIdx/2); pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; pIdxInfo->estimatedRows = nRow; return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ RtreeDValue area = (RtreeDValue)1; assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ switch( pRtree->nDim ){ case 5: area = p->aCoord[9].f - p->aCoord[8].f; case 4: area *= p->aCoord[7].f - p->aCoord[6].f; case 3: area *= p->aCoord[5].f - p->aCoord[4].f; case 2: area *= p->aCoord[3].f - p->aCoord[2].f; default: area *= p->aCoord[1].f - p->aCoord[0].f; } }else #endif { switch( pRtree->nDim ){ case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i; case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i; case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i; case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i; default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i; } } return area; } /* ** Return the margin length of cell p. The margin length is the sum ** of the objects size in each dimension. */ static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ RtreeDValue margin = 0; int ii = pRtree->nDim2 - 2; do{ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); ii -= 2; }while( ii>=0 ); return margin; } /* ** Store the union of cells p1 and p2 in p1. */ static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii = 0; if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ do{ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); ii += 2; }while( iinDim2 ); }else{ do{ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); ii += 2; }while( iinDim2 ); } } /* ** Return true if the area covered by p2 is a subset of the area covered ** by p1. False otherwise. */ static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii; int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); for(ii=0; iinDim2; ii+=2){ RtreeCoord *a1 = &p1->aCoord[ii]; RtreeCoord *a2 = &p2->aCoord[ii]; if( (!isInt && (a2[0].fa1[1].f)) || ( isInt && (a2[0].ia1[1].i)) ){ return 0; } } return 1; } /* ** Return the amount cell p would grow by if it were unioned with pCell. */ static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ RtreeDValue area; RtreeCell cell; memcpy(&cell, p, sizeof(RtreeCell)); area = cellArea(pRtree, &cell); cellUnion(pRtree, &cell, pCell); return (cellArea(pRtree, &cell)-area); } static RtreeDValue cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, int nCell ){ int ii; RtreeDValue overlap = RTREE_ZERO; for(ii=0; iinDim2; jj+=2){ RtreeDValue x1, x2; x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); if( x2iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest = 0; RtreeDValue fMinGrowth = RTREE_ZERO; RtreeDValue fMinArea = RTREE_ZERO; int nCell = NCELL(pNode); RtreeCell cell; RtreeNode *pChild = 0; RtreeCell *aCell = 0; /* Select the child node which will be enlarged the least if pCell ** is inserted into it. Resolve ties by choosing the entry with ** the smallest area. */ for(iCell=0; iCellpParent ){ RtreeNode *pParent = p->pParent; RtreeCell cell; int iCell; cnt++; if( NEVER(cnt>100) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } rc = nodeParentIndex(pRtree, p, &iCell); if( NEVER(rc!=SQLITE_OK) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } nodeGetCell(pRtree, pParent, iCell, &cell); if( !cellContains(pRtree, &cell, pCell) ){ cellUnion(pRtree, &cell, pCell); nodeOverwriteCell(pRtree, pParent, &cell, iCell); } p = pParent; } return SQLITE_OK; } /* ** Write mapping (iRowid->iNode) to the _rowid table. */ static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); sqlite3_step(pRtree->pWriteRowid); return sqlite3_reset(pRtree->pWriteRowid); } /* ** Write mapping (iNode->iPar) to the _parent table. */ static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); sqlite3_step(pRtree->pWriteParent); return sqlite3_reset(pRtree->pWriteParent); } static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); /* ** Arguments aIdx, aDistance and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values ** in aIdx according to the indexed values in aDistance. For ** example, assuming the inputs: ** ** aIdx = { 0, 1, 2, 3 } ** aDistance = { 5.0, 2.0, 7.0, 6.0 } ** ** this function sets the aIdx array to contain: ** ** aIdx = { 0, 1, 2, 3 } ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDistance( int *aIdx, int nIdx, RtreeDValue *aDistance, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDistance(aLeft, nLeft, aDistance, aSpare); SortByDistance(aRight, nRight, aDistance, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeft1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeftnDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc64(nByte); if( !aaSorted ){ return SQLITE_NOMEM; } aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; memset(aaSorted, 0, nByte); for(ii=0; iinDim; ii++){ int jj; aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; for(jj=0; jjnDim; ii++){ RtreeDValue margin = RTREE_ZERO; RtreeDValue fBestOverlap = RTREE_ZERO; RtreeDValue fBestArea = RTREE_ZERO; int iBestLeft = 0; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); nLeft<=(nCell-RTREE_MINCELLS(pRtree)); nLeft++ ){ RtreeCell left; RtreeCell right; int kk; RtreeDValue overlap; RtreeDValue area; memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); for(kk=1; kk<(nCell-1); kk++){ if( kk0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); RtreeNode *p; for(p=pNode; p; p=p->pParent){ if( p==pChild ) return SQLITE_CORRUPT_VTAB; } if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( NEVER(pNode==0) ) return SQLITE_ERROR; return xSetMapping(pRtree, iRowid, pNode->iNode); } static int SplitNode( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int i; int newCellIsRight = 0; int rc = SQLITE_OK; int nCell = NCELL(pNode); RtreeCell *aCell; int *aiUsed; RtreeNode *pLeft = 0; RtreeNode *pRight = 0; RtreeCell leftbbox; RtreeCell rightbbox; /* Allocate an array and populate it with a copy of pCell and ** all cells from node pLeft. Then zero the original node. */ aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); if( !aCell ){ rc = SQLITE_NOMEM; goto splitnode_out; } aiUsed = (int *)&aCell[nCell+1]; memset(aiUsed, 0, sizeof(int)*(nCell+1)); for(i=0; iiNode==1 ){ pRight = nodeNew(pRtree, pNode); pLeft = nodeNew(pRtree, pNode); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent); pLeft->nRef++; } if( !pLeft || !pRight ){ rc = SQLITE_NOMEM; goto splitnode_out; } memset(pLeft->zData, 0, pRtree->iNodeSize); memset(pRight->zData, 0, pRtree->iNodeSize); rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); if( rc!=SQLITE_OK ){ goto splitnode_out; } /* Ensure both child nodes have node numbers assigned to them by calling ** nodeWrite(). Node pRight always needs a node number, as it was created ** by nodeNew() above. But node pLeft sometimes already has a node number. ** In this case avoid the all to nodeWrite(). */ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) ){ goto splitnode_out; } rightbbox.iRowid = pRight->iNode; leftbbox.iRowid = pLeft->iNode; if( pNode->iNode==1 ){ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); if( rc!=SQLITE_OK ){ goto splitnode_out; } }else{ RtreeNode *pParent = pLeft->pParent; int iCell; rc = nodeParentIndex(pRtree, pLeft, &iCell); if( ALWAYS(rc==SQLITE_OK) ){ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); rc = AdjustTree(pRtree, pParent, &leftbbox); assert( rc==SQLITE_OK ); } if( NEVER(rc!=SQLITE_OK) ){ goto splitnode_out; } } if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ goto splitnode_out; } for(i=0; iiRowid ){ newCellIsRight = 1; } if( rc!=SQLITE_OK ){ goto splitnode_out; } } if( pNode->iNode==1 ){ for(i=0; iiRowid, pLeft, iHeight); } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRight); pRight = 0; } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pLeft); pLeft = 0; } splitnode_out: nodeRelease(pRtree, pRight); nodeRelease(pRtree, pLeft); sqlite3_free(aCell); return rc; } /* ** If node pLeaf is not the root of the r-tree and its pParent pointer is ** still NULL, load all ancestor nodes of pLeaf into memory and populate ** the pLeaf->pParent chain all the way up to the root node. ** ** This operation is required when a row is deleted (or updated - an update ** is implemented as a delete followed by an insert). SQLite provides the ** rowid of the row to delete, which can be used to find the leaf on which ** the entry resides (argument pLeaf). Once the leaf is located, this ** function is called to determine its ancestry. */ static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ int rc = SQLITE_OK; RtreeNode *pChild = pLeaf; while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); rc = sqlite3_step(pRtree->pReadParent); if( rc==SQLITE_ROW ){ RtreeNode *pTest; /* Used to test for reference loops */ i64 iNode; /* Node number of parent node */ /* Before setting pChild->pParent, test that we are not creating a ** loop of references (as we would if, say, pChild==pParent). We don't ** want to do this as it leads to a memory leak when trying to delete ** the referenced counted node structures. */ iNode = sqlite3_column_int64(pRtree->pReadParent, 0); for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); if( pTest==0 ){ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); } } rc = sqlite3_reset(pRtree->pReadParent); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK && !pChild->pParent ){ RTREE_IS_CORRUPT(pRtree); rc = SQLITE_CORRUPT_VTAB; } pChild = pChild->pParent; } return rc; } static int deleteCell(Rtree *, RtreeNode *, int, int); static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ int rc; int rc2; RtreeNode *pParent = 0; int iCell; assert( pNode->nRef==1 ); /* Remove the entry in the parent cell. */ rc = nodeParentIndex(pRtree, pNode, &iCell); if( rc==SQLITE_OK ){ pParent = pNode->pParent; pNode->pParent = 0; rc = deleteCell(pRtree, pParent, iCell, iHeight+1); testcase( rc!=SQLITE_OK ); } rc2 = nodeRelease(pRtree, pParent); if( rc==SQLITE_OK ){ rc = rc2; } if( rc!=SQLITE_OK ){ return rc; } /* Remove the xxx_node entry. */ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteNode); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ return rc; } /* Remove the xxx_parent entry. */ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteParent); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ return rc; } /* Remove the node from the in-memory hash table and link it into ** the Rtree.pDeleted list. Its contents will be re-inserted later on. */ nodeHashDelete(pRtree, pNode); pNode->iNode = iHeight; pNode->pNext = pRtree->pDeleted; pNode->nRef++; pRtree->pDeleted = pNode; return SQLITE_OK; } static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; int rc = SQLITE_OK; if( pParent ){ int ii; int nCell = NCELL(pNode); RtreeCell box; /* Bounding box for pNode */ nodeGetCell(pRtree, pNode, 0, &box); for(ii=1; iiiNode; rc = nodeParentIndex(pRtree, pNode, &ii); if( rc==SQLITE_OK ){ nodeOverwriteCell(pRtree, pParent, &box, ii); rc = fixBoundingBox(pRtree, pParent); } } return rc; } /* ** Delete the cell at index iCell of node pNode. After removing the ** cell, adjust the r-tree data structure if required. */ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ RtreeNode *pParent; int rc; if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ return rc; } /* Remove the cell from the node. This call just moves bytes around ** the in-memory node image, so it cannot fail. */ nodeDeleteCell(pRtree, pNode, iCell); /* If the node is not the tree root and now has less than the minimum ** number of cells, remove it from the tree. Otherwise, update the ** cell in the parent node so that it tightly contains the updated ** node. */ pParent = pNode->pParent; assert( pParent || pNode->iNode==1 ); if( pParent ){ if( NCELL(pNode)nDim; iDim++){ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); } } for(iDim=0; iDimnDim; iDim++){ aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); } for(ii=0; iinDim; iDim++){ RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - DCOORD(aCell[ii].aCoord[iDim*2])); aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); } } SortByDistance(aOrder, nCell, aDistance, aSpare); nodeZero(pRtree, pNode); for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ RtreeCell *p = &aCell[aOrder[ii]]; nodeInsertCell(pRtree, pNode, p); if( p->iRowid==pCell->iRowid ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, p->iRowid, pNode->iNode); } } } if( rc==SQLITE_OK ){ rc = fixBoundingBox(pRtree, pNode); } for(; rc==SQLITE_OK && iiiNode currently contains ** the height of the sub-tree headed by the cell. */ RtreeNode *pInsert; RtreeCell *p = &aCell[aOrder[ii]]; rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } sqlite3_free(aCell); return rc; } /* ** Insert cell pCell into node pNode. Node pNode is the head of a ** subtree iHeight high (leaf nodes have iHeight==0). */ static int rtreeInsertCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int rc = SQLITE_OK; if( iHeight>0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( nodeInsertCell(pRtree, pNode, pCell) ){ if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ rc = SplitNode(pRtree, pNode, pCell, iHeight); }else{ pRtree->iReinsertHeight = iHeight; rc = Reinsert(pRtree, pNode, pCell, iHeight); } }else{ rc = AdjustTree(pRtree, pNode, pCell); if( ALWAYS(rc==SQLITE_OK) ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); } } } return rc; } static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ int ii; int rc = SQLITE_OK; int nCell = NCELL(pNode); for(ii=0; rc==SQLITE_OK && iiiNode currently contains ** the height of the sub-tree headed by the cell. */ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** Select a currently unused rowid for a new r-tree record. */ static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ int rc; sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } /* ** Remove the entry with rowid=iDelete from the r-tree structure. */ static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ int rc; /* Return code */ RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ int iCell; /* Index of iDelete cell in pLeaf */ RtreeNode *pRoot = 0; /* Root node of rtree structure */ /* Obtain a reference to the root node to initialize Rtree.iDepth */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); } #ifdef CORRUPT_DB assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB ); #endif /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK && pLeaf ){ int rc2; rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); if( rc==SQLITE_OK ){ rc = deleteCell(pRtree, pLeaf, iCell, 0); } rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } /* Delete the corresponding entry in the _rowid table. */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); sqlite3_step(pRtree->pDeleteRowid); rc = sqlite3_reset(pRtree->pDeleteRowid); } /* Check if the root node now has exactly one child. If so, remove ** it, schedule the contents of the child for reinsertion and ** reduce the tree height by one. ** ** This is equivalent to copying the contents of the child into ** the root node (the operation that Gutman's paper says to perform ** in this scenario). */ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ int rc2; RtreeNode *pChild = 0; i64 iChild = nodeGetRowid(pRtree, pRoot, 0); rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); /* tag-20210916a */ if( rc==SQLITE_OK ){ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); } rc2 = nodeRelease(pRtree, pChild); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK ){ pRtree->iDepth--; writeInt16(pRoot->zData, pRtree->iDepth); pRoot->isDirty = 1; } } /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; pRtree->nNodeRef--; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ nodeRelease(pRtree, pRoot); } return rc; } /* ** Rounding constants for float->double conversion. */ #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ #if !defined(SQLITE_RTREE_INT_ONLY) /* ** Convert an sqlite3_value into an RtreeValue (presumably a float) ** while taking care to round toward negative or positive, respectively. */ static RtreeValue rtreeValueDown(sqlite3_value *v){ double d = sqlite3_value_double(v); float f = (float)d; if( f>d ){ f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); } return f; } static RtreeValue rtreeValueUp(sqlite3_value *v){ double d = sqlite3_value_double(v); float f = (float)d; if( fbase.zErrMsg) to an appropriate value and returns ** SQLITE_CONSTRAINT. ** ** Parameter iCol is the index of the leftmost column involved in the ** constraint failure. If it is 0, then the constraint that failed is ** the unique constraint on the id column. Otherwise, it is the rtree ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. ** ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. */ static int rtreeConstraintError(Rtree *pRtree, int iCol){ sqlite3_stmt *pStmt = 0; char *zSql; int rc; assert( iCol==0 || iCol%2 ); zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); if( zSql ){ rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); if( rc==SQLITE_OK ){ if( iCol==0 ){ const char *zCol = sqlite3_column_name(pStmt, 0); pRtree->base.zErrMsg = sqlite3_mprintf( "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol ); }else{ const char *zCol1 = sqlite3_column_name(pStmt, iCol); const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); pRtree->base.zErrMsg = sqlite3_mprintf( "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 ); } } sqlite3_finalize(pStmt); return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); } /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **aData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ if( pRtree->nNodeRef ){ /* Unable to write to the btree while another cursor is reading from it, ** since the write might do a rebalance which would disrupt the read ** cursor. */ return SQLITE_LOCKED_VTAB; } rtreeReference(pRtree); assert(nData>=1); memset(&cell, 0, sizeof(cell)); /* Constraint handling. A write operation on an r-tree table may return ** SQLITE_CONSTRAINT for two reasons: ** ** 1. A duplicate rowid value, or ** 2. The supplied data violates the "x2>=x1" constraint. ** ** In the first case, if the conflict-handling mode is REPLACE, then ** the conflicting row can be removed before proceeding. In the second ** case, SQLITE_CONSTRAINT must be returned regardless of the ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; int nn = nData - 4; if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. ** ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared ** with "column" that are interpreted as table constraints. ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); ** This problem was discovered after years of use, so we silently ignore ** these kinds of misdeclared tables to avoid breaking any legacy. */ #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; iicell.aCoord[ii+1].f ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } }else #endif { for(ii=0; iicell.aCoord[ii+1].i ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } } /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ cell.iRowid = sqlite3_value_int64(aData[2]); if( sqlite3_value_type(aData[0])==SQLITE_NULL || sqlite3_value_int64(aData[0])!=cell.iRowid ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = rtreeConstraintError(pRtree, 0); goto constraint; } } } bHaveRowid = 1; } } /* If aData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); } /* If the aData[] array contains more than one element, elements ** (aData[2]..aData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf = 0; /* Figure out the rowid of the new row. */ if( bHaveRowid==0 ){ rc = rtreeNewRowid(pRtree, &cell.iRowid); } *pRowid = cell.iRowid; if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; pRtree->iReinsertHeight = -1; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } if( rc==SQLITE_OK && pRtree->nAux ){ sqlite3_stmt *pUp = pRtree->pWriteAux; int jj; sqlite3_bind_int64(pUp, 1, *pRowid); for(jj=0; jjnAux; jj++){ sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); } sqlite3_step(pUp); rc = sqlite3_reset(pUp); } } constraint: rtreeRelease(pRtree); return rc; } /* ** Called when a transaction starts. */ static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; assert( pRtree->inWrTrans==0 ); pRtree->inWrTrans++; return SQLITE_OK; } /* ** Called when a transaction completes (either by COMMIT or ROLLBACK). ** The sqlite3_blob object should be released at this point. */ static int rtreeEndTransaction(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; pRtree->inWrTrans = 0; nodeBlobReset(pRtree); return SQLITE_OK; } /* ** The xRename method for rtree module virtual tables. */ static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_NOMEM; char *zSql = sqlite3_mprintf( "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName ); if( zSql ){ nodeBlobReset(pRtree); rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); sqlite3_free(zSql); } return rc; } /* ** The xSavepoint method. ** ** This module does not need to do anything to support savepoints. However, ** it uses this hook to close any open blob handle. This is done because a ** DROP TABLE command - which fortunately always opens a savepoint - cannot ** succeed if there are any open blob handles. i.e. if the blob handle were ** not closed here, the following would fail: ** ** BEGIN; ** INSERT INTO rtree... ** DROP TABLE ; -- Would fail with SQLITE_LOCKED ** COMMIT; */ static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){ Rtree *pRtree = (Rtree *)pVtab; u8 iwt = pRtree->inWrTrans; UNUSED_PARAMETER(iSavepoint); pRtree->inWrTrans = 0; nodeBlobReset(pRtree); pRtree->inWrTrans = iwt; return SQLITE_OK; } /* ** This function populates the pRtree->nRowEst variable with an estimate ** of the number of rows in the virtual table. If possible, this is based ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. */ static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; char *zSql; sqlite3_stmt *p; int rc; i64 nRow = RTREE_MIN_ROWEST; rc = sqlite3_table_column_metadata( db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 ); if( rc!=SQLITE_OK ){ pRtree->nRowEst = RTREE_DEFAULT_ROWEST; return rc==SQLITE_ERROR ? SQLITE_OK : rc; } zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); if( rc==SQLITE_OK ){ if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); rc = sqlite3_finalize(p); } sqlite3_free(zSql); } pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); return rc; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int rtreeShadowName(const char *zName){ static const char *azName[] = { "node", "parent", "rowid" }; unsigned int i; for(i=0; idb = db; if( isCreate ){ char *zCreate; sqlite3_str *p = sqlite3_str_new(db); int ii; sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", zDb, zPrefix); for(ii=0; iinAux; ii++){ sqlite3_str_appendf(p,",a%d",ii); } sqlite3_str_appendf(p, ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", zDb, zPrefix); sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", zDb, zPrefix); sqlite3_str_appendf(p, "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", zDb, zPrefix, pRtree->iNodeSize); zCreate = sqlite3_str_finish(p); if( !zCreate ){ return SQLITE_NOMEM; } rc = sqlite3_exec(db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc!=SQLITE_OK ){ return rc; } } appStmt[0] = &pRtree->pWriteNode; appStmt[1] = &pRtree->pDeleteNode; appStmt[2] = &pRtree->pReadRowid; appStmt[3] = &pRtree->pWriteRowid; appStmt[4] = &pRtree->pDeleteRowid; appStmt[5] = &pRtree->pReadParent; appStmt[6] = &pRtree->pWriteParent; appStmt[7] = &pRtree->pDeleteParent; rc = rtreeQueryStat1(db, pRtree); for(i=0; inAux==0 ){ zFormat = azSql[i]; }else { /* An UPSERT is very slightly slower than REPLACE, but it is needed ** if there are auxiliary columns */ zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; } zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); if( zSql ){ rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); } if( pRtree->nAux ){ pRtree->zReadAuxSql = sqlite3_mprintf( "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", zDb, zPrefix); if( pRtree->zReadAuxSql==0 ){ rc = SQLITE_NOMEM; }else{ sqlite3_str *p = sqlite3_str_new(db); int ii; char *zSql; sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); for(ii=0; iinAux; ii++){ if( ii ) sqlite3_str_append(p, ",", 1); #ifdef SQLITE_ENABLE_GEOPOLY if( iinAuxNotNull ){ sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii); }else #endif { sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); } } sqlite3_str_appendf(p, " WHERE rowid=?1"); zSql = sqlite3_str_finish(p); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0); sqlite3_free(zSql); } } } return rc; } /* ** The second argument to this function contains the text of an SQL statement ** that returns a single integer value. The statement is compiled and executed ** using database connection db. If successful, the integer value returned ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error ** code is returned and the value of *piVal after returning is not defined. */ static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ int rc = SQLITE_NOMEM; if( zSql ){ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *piVal = sqlite3_column_int(pStmt, 0); } rc = sqlite3_finalize(pStmt); } } return rc; } /* ** This function is called from within the xConnect() or xCreate() method to ** determine the node-size used by the rtree table being created or connected ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. ** Otherwise, an SQLite error code is returned. ** ** If this function is being called as part of an xConnect(), then the rtree ** table already exists. In this case the node-size is determined by inspecting ** the root node of the tree. ** ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. ** This ensures that each node is stored on a single database page. If the ** database page-size is so large that more than RTREE_MAXCELLS entries ** would fit in a single node, use a smaller node-size. */ static int getNodeSize( sqlite3 *db, /* Database handle */ Rtree *pRtree, /* Rtree handle */ int isCreate, /* True for xCreate, false for xConnect */ char **pzErr /* OUT: Error message, if any */ ){ int rc; char *zSql; if( isCreate ){ int iPageSize = 0; zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); rc = getIntFromStmt(db, zSql, &iPageSize); if( rc==SQLITE_OK ){ pRtree->iNodeSize = iPageSize-64; if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)iNodeSize ){ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; } }else{ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } }else{ zSql = sqlite3_mprintf( "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", pRtree->zDb, pRtree->zName ); rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); }else if( pRtree->iNodeSize<(512-64) ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"", pRtree->zName); } } sqlite3_free(zSql); return rc; } /* ** Return the length of a token */ static int rtreeTokenLength(const char *z){ int dummy = 0; return sqlite3GetToken((const unsigned char*)z,&dummy); } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the r-tree virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int rtreeInit( sqlite3 *db, /* Database connection */ void *pAux, /* One of the RTREE_COORD_* constants */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); sqlite3_str *pSql; char *zSql; int ii = 4; int iErr; const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ "Too many columns for an rtree table", /* 3 */ "Auxiliary rtree columns must be last" /* 4 */ }; assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]); return SQLITE_ERROR; } sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Allocate the sqlite3_vtab structure */ nDb = (int)strlen(argv[1]); nName = (int)strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->eCoordType = (u8)eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ pSql = sqlite3_str_new(db); sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT", rtreeTokenLength(argv[3]), argv[3]); for(ii=4; iinAux++; sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1); }else if( pRtree->nAux>0 ){ break; }else{ static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"}; pRtree->nDim2++; sqlite3_str_appendf(pSql, azFormat[eCoordType], rtreeTokenLength(zArg), zArg); } } sqlite3_str_appendf(pSql, ");"); zSql = sqlite3_str_finish(pSql); if( !zSql ){ rc = SQLITE_NOMEM; }else if( iinDim = pRtree->nDim2/2; if( pRtree->nDim<1 ){ iErr = 2; }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ iErr = 3; }else if( pRtree->nDim2 % 2 ){ iErr = 1; }else{ iErr = 0; } if( iErr ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); goto rtreeInit_fail; } pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); if( rc ) goto rtreeInit_fail; rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); if( rc ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); goto rtreeInit_fail; } *ppVtab = (sqlite3_vtab *)pRtree; return SQLITE_OK; rtreeInit_fail: if( rc==SQLITE_OK ) rc = SQLITE_ERROR; assert( *ppVtab==0 ); assert( pRtree->nBusy==1 ); rtreeRelease(pRtree); return rc; } /* ** Implementation of a scalar function that decodes r-tree nodes to ** human readable strings. This can be used for debugging and analysis. ** ** The scalar function takes two arguments: (1) the number of dimensions ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing ** an r-tree node. For a two-dimensional r-tree structure called "rt", to ** deserialize all nodes, a statement like: ** ** SELECT rtreenode(2, data) FROM rt_node; ** ** The human readable string takes the form of a Tcl list with one ** entry for each cell in the r-tree node. Each entry is itself a ** list, containing the 8-byte rowid/pageno followed by the ** *2 coordinates. */ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ RtreeNode node; Rtree tree; int ii; int nData; int errCode; sqlite3_str *pOut; UNUSED_PARAMETER(nArg); memset(&node, 0, sizeof(RtreeNode)); memset(&tree, 0, sizeof(Rtree)); tree.nDim = (u8)sqlite3_value_int(apArg[0]); if( tree.nDim<1 || tree.nDim>5 ) return; tree.nDim2 = tree.nDim*2; tree.nBytesPerCell = 8 + 8 * tree.nDim; node.zData = (u8 *)sqlite3_value_blob(apArg[1]); if( node.zData==0 ) return; nData = sqlite3_value_bytes(apArg[1]); if( nData<4 ) return; if( nData0 ) sqlite3_str_append(pOut, " ", 1); sqlite3_str_appendf(pOut, "{%lld", cell.iRowid); for(jj=0; jjrc==SQLITE_OK ) pCheck->rc = rc; } /* ** The second and subsequent arguments to this function are a format string ** and printf style arguments. This function formats the string and attempts ** to compile it as an SQL statement. ** ** If successful, a pointer to the new SQL statement is returned. Otherwise, ** NULL is returned and an error code left in RtreeCheck.rc. */ static sqlite3_stmt *rtreeCheckPrepare( RtreeCheck *pCheck, /* RtreeCheck object */ const char *zFmt, ... /* Format string and trailing args */ ){ va_list ap; char *z; sqlite3_stmt *pRet = 0; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); if( pCheck->rc==SQLITE_OK ){ if( z==0 ){ pCheck->rc = SQLITE_NOMEM; }else{ pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0); } } sqlite3_free(z); va_end(ap); return pRet; } /* ** The second and subsequent arguments to this function are a printf() ** style format string and arguments. This function formats the string and ** appends it to the report being accumuated in pCheck. */ static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); if( pCheck->rc==SQLITE_OK && pCheck->nErrrc = SQLITE_NOMEM; }else{ pCheck->zReport = sqlite3_mprintf("%z%s%z", pCheck->zReport, (pCheck->zReport ? "\n" : ""), z ); if( pCheck->zReport==0 ){ pCheck->rc = SQLITE_NOMEM; } } pCheck->nErr++; } va_end(ap); } /* ** This function is a no-op if there is already an error code stored ** in the RtreeCheck object indicated by the first argument. NULL is ** returned in this case. ** ** Otherwise, the contents of rtree table node iNode are loaded from ** the database and copied into a buffer obtained from sqlite3_malloc(). ** If no error occurs, a pointer to the buffer is returned and (*pnNode) ** is set to the size of the buffer in bytes. ** ** Or, if an error does occur, NULL is returned and an error code left ** in the RtreeCheck object. The final value of *pnNode is undefined in ** this case. */ static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){ u8 *pRet = 0; /* Return value */ if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){ pCheck->pGetNode = rtreeCheckPrepare(pCheck, "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", pCheck->zDb, pCheck->zTab ); } if( pCheck->rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck->pGetNode, 1, iNode); if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){ int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0); const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0); pRet = sqlite3_malloc64(nNode); if( pRet==0 ){ pCheck->rc = SQLITE_NOMEM; }else{ memcpy(pRet, pNode, nNode); *pnNode = nNode; } } rtreeCheckReset(pCheck, pCheck->pGetNode); if( pCheck->rc==SQLITE_OK && pRet==0 ){ rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode); } } return pRet; } /* ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid ** (if bLeaf==1) table contains a specified entry. The schemas of the ** two tables are: ** ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) ** ** In both cases, this function checks that there exists an entry with ** IPK value iKey and the second column set to iVal. ** */ static void rtreeCheckMapping( RtreeCheck *pCheck, /* RtreeCheck object */ int bLeaf, /* True for a leaf cell, false for interior */ i64 iKey, /* Key for mapping */ i64 iVal /* Expected value for mapping */ ){ int rc; sqlite3_stmt *pStmt; const char *azSql[2] = { "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" }; assert( bLeaf==0 || bLeaf==1 ); if( pCheck->aCheckMapping[bLeaf]==0 ){ pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, azSql[bLeaf], pCheck->zDb, pCheck->zTab ); } if( pCheck->rc!=SQLITE_OK ) return; pStmt = pCheck->aCheckMapping[bLeaf]; sqlite3_bind_int64(pStmt, 1, iKey); rc = sqlite3_step(pStmt); if( rc==SQLITE_DONE ){ rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table", iKey, iVal, (bLeaf ? "%_rowid" : "%_parent") ); }else if( rc==SQLITE_ROW ){ i64 ii = sqlite3_column_int64(pStmt, 0); if( ii!=iVal ){ rtreeCheckAppendMsg(pCheck, "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)", iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal ); } } rtreeCheckReset(pCheck, pStmt); } /* ** Argument pCell points to an array of coordinates stored on an rtree page. ** This function checks that the coordinates are internally consistent (no ** x1>x2 conditions) and adds an error message to the RtreeCheck object ** if they are not. ** ** Additionally, if pParent is not NULL, then it is assumed to point to ** the array of coordinates on the parent page that bound the page ** containing pCell. In this case it is also verified that the two ** sets of coordinates are mutually consistent and an error message added ** to the RtreeCheck object if they are not. */ static void rtreeCheckCellCoord( RtreeCheck *pCheck, i64 iNode, /* Node id to use in error messages */ int iCell, /* Cell number to use in error messages */ u8 *pCell, /* Pointer to cell coordinates */ u8 *pParent /* Pointer to parent coordinates */ ){ RtreeCoord c1, c2; RtreeCoord p1, p2; int i; for(i=0; inDim; i++){ readCoord(&pCell[4*2*i], &c1); readCoord(&pCell[4*(2*i + 1)], &c2); /* printf("%e, %e\n", c1.u.f, c2.u.f); */ if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){ rtreeCheckAppendMsg(pCheck, "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode ); } if( pParent ){ readCoord(&pParent[4*2*i], &p1); readCoord(&pParent[4*(2*i + 1)], &p2); if( (pCheck->bInt ? c1.ibInt ? c2.i>p2.i : c2.f>p2.f) ){ rtreeCheckAppendMsg(pCheck, "Dimension %d of cell %d on node %lld is corrupt relative to parent" , i, iCell, iNode ); } } } } /* ** Run rtreecheck() checks on node iNode, which is at depth iDepth within ** the r-tree structure. Argument aParent points to the array of coordinates ** that bound node iNode on the parent node. ** ** If any problems are discovered, an error message is appended to the ** report accumulated in the RtreeCheck object. */ static void rtreeCheckNode( RtreeCheck *pCheck, int iDepth, /* Depth of iNode (0==leaf) */ u8 *aParent, /* Buffer containing parent coords */ i64 iNode /* Node to check */ ){ u8 *aNode = 0; int nNode = 0; assert( iNode==1 || aParent!=0 ); assert( pCheck->nDim>0 ); aNode = rtreeCheckGetNode(pCheck, iNode, &nNode); if( aNode ){ if( nNode<4 ){ rtreeCheckAppendMsg(pCheck, "Node %lld is too small (%d bytes)", iNode, nNode ); }else{ int nCell; /* Number of cells on page */ int i; /* Used to iterate through cells */ if( aParent==0 ){ iDepth = readInt16(aNode); if( iDepth>RTREE_MAX_DEPTH ){ rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth); sqlite3_free(aNode); return; } } nCell = readInt16(&aNode[2]); if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){ rtreeCheckAppendMsg(pCheck, "Node %lld is too small for cell count of %d (%d bytes)", iNode, nCell, nNode ); }else{ for(i=0; inDim*2*4)]; i64 iVal = readInt64(pCell); rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent); if( iDepth>0 ){ rtreeCheckMapping(pCheck, 0, iVal, iNode); rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal); pCheck->nNonLeaf++; }else{ rtreeCheckMapping(pCheck, 1, iVal, iNode); pCheck->nLeaf++; } } } } sqlite3_free(aNode); } } /* ** The second argument to this function must be either "_rowid" or ** "_parent". This function checks that the number of entries in the ** %_rowid or %_parent table is exactly nExpect. If not, it adds ** an error message to the report in the RtreeCheck object indicated ** by the first argument. */ static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){ if( pCheck->rc==SQLITE_OK ){ sqlite3_stmt *pCount; pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'", pCheck->zDb, pCheck->zTab, zTbl ); if( pCount ){ if( sqlite3_step(pCount)==SQLITE_ROW ){ i64 nActual = sqlite3_column_int64(pCount, 0); if( nActual!=nExpect ){ rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table" " - expected %lld, actual %lld" , zTbl, nExpect, nActual ); } } pCheck->rc = sqlite3_finalize(pCount); } } } /* ** This function does the bulk of the work for the rtree integrity-check. ** It is called by rtreecheck(), which is the SQL function implementation. */ static int rtreeCheckTable( sqlite3 *db, /* Database handle to access db through */ const char *zDb, /* Name of db ("main", "temp" etc.) */ const char *zTab, /* Name of rtree table to check */ char **pzReport /* OUT: sqlite3_malloc'd report text */ ){ RtreeCheck check; /* Common context for various routines */ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ int bEnd = 0; /* True if transaction should be closed */ int nAux = 0; /* Number of extra columns. */ /* Initialize the context object */ memset(&check, 0, sizeof(check)); check.db = db; check.zDb = zDb; check.zTab = zTab; /* If there is not already an open transaction, open one now. This is ** to ensure that the queries run as part of this integrity-check operate ** on a consistent snapshot. */ if( sqlite3_get_autocommit(db) ){ check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0); bEnd = 1; } /* Find the number of auxiliary columns */ if( check.rc==SQLITE_OK ){ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); if( pStmt ){ nAux = sqlite3_column_count(pStmt) - 2; sqlite3_finalize(pStmt); }else if( check.rc!=SQLITE_NOMEM ){ check.rc = SQLITE_OK; } } /* Find number of dimensions in the rtree table. */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); if( pStmt ){ int rc; check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; if( check.nDim<1 ){ rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); } rc = sqlite3_finalize(pStmt); if( rc!=SQLITE_CORRUPT ) check.rc = rc; } /* Do the actual integrity-check */ if( check.nDim>=1 ){ if( check.rc==SQLITE_OK ){ rtreeCheckNode(&check, 0, 0, 1); } rtreeCheckCount(&check, "_rowid", check.nLeaf); rtreeCheckCount(&check, "_parent", check.nNonLeaf); } /* Finalize SQL statements used by the integrity-check */ sqlite3_finalize(check.pGetNode); sqlite3_finalize(check.aCheckMapping[0]); sqlite3_finalize(check.aCheckMapping[1]); /* If one was opened, close the transaction */ if( bEnd ){ int rc = sqlite3_exec(db, "END", 0, 0, 0); if( check.rc==SQLITE_OK ) check.rc = rc; } *pzReport = check.zReport; return check.rc; } /* ** Usage: ** ** rtreecheck(); ** rtreecheck(, ); ** ** Invoking this SQL function runs an integrity-check on the named rtree ** table. The integrity-check verifies the following: ** ** 1. For each cell in the r-tree structure (%_node table), that: ** ** a) for each dimension, (coord1 <= coord2). ** ** b) unless the cell is on the root node, that the cell is bounded ** by the parent cell on the parent node. ** ** c) for leaf nodes, that there is an entry in the %_rowid ** table corresponding to the cell's rowid value that ** points to the correct node. ** ** d) for cells on non-leaf nodes, that there is an entry in the ** %_parent table mapping from the cell's child node to the ** node that it resides on. ** ** 2. That there are the same number of entries in the %_rowid table ** as there are leaf cells in the r-tree structure, and that there ** is a leaf cell that corresponds to each entry in the %_rowid table. ** ** 3. That there are the same number of entries in the %_parent table ** as there are non-leaf cells in the r-tree structure, and that ** there is a non-leaf cell that corresponds to each entry in the ** %_parent table. */ static void rtreecheck( sqlite3_context *ctx, int nArg, sqlite3_value **apArg ){ if( nArg!=1 && nArg!=2 ){ sqlite3_result_error(ctx, "wrong number of arguments to function rtreecheck()", -1 ); }else{ int rc; char *zReport = 0; const char *zDb = (const char*)sqlite3_value_text(apArg[0]); const char *zTab; if( nArg==1 ){ zTab = zDb; zDb = "main"; }else{ zTab = (const char*)sqlite3_value_text(apArg[1]); } rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport); if( rc==SQLITE_OK ){ sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT); }else{ sqlite3_result_error_code(ctx, rc); } sqlite3_free(zReport); } } /* Conditionally include the geopoly code */ #ifdef SQLITE_ENABLE_GEOPOLY /************** Include geopoly.c in the middle of rtree.c *******************/ /************** Begin file geopoly.c *****************************************/ /* ** 2018-05-25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file implements an alternative R-Tree virtual table that ** uses polygons to express the boundaries of 2-dimensional objects. ** ** This file is #include-ed onto the end of "rtree.c" so that it has ** access to all of the R-Tree internals. */ /* #include */ /* Enable -DGEOPOLY_ENABLE_DEBUG for debugging facilities */ #ifdef GEOPOLY_ENABLE_DEBUG static int geo_debug = 0; # define GEODEBUG(X) if(geo_debug)printf X #else # define GEODEBUG(X) #endif /* Character class routines */ #ifdef sqlite3Isdigit /* Use the SQLite core versions if this routine is part of the ** SQLite amalgamation */ # define safe_isdigit(x) sqlite3Isdigit(x) # define safe_isalnum(x) sqlite3Isalnum(x) # define safe_isxdigit(x) sqlite3Isxdigit(x) #else /* Use the standard library for separate compilation */ #include /* amalgamator: keep */ # define safe_isdigit(x) isdigit((unsigned char)(x)) # define safe_isalnum(x) isalnum((unsigned char)(x)) # define safe_isxdigit(x) isxdigit((unsigned char)(x)) #endif #ifndef JSON_NULL /* The following stuff repeats things found in json1 */ /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function. */ static const char geopolyIsSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define fast_isspace(x) (geopolyIsSpace[(unsigned char)x]) #endif /* JSON NULL - back to original code */ /* Compiler and version */ #ifndef GCC_VERSION #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #endif #ifndef MSVC_VERSION #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif #endif /* Datatype for coordinates */ typedef float GeoCoord; /* ** Internal representation of a polygon. ** ** The polygon consists of a sequence of vertexes. There is a line ** segment between each pair of vertexes, and one final segment from ** the last vertex back to the first. (This differs from the GeoJSON ** standard in which the final vertex is a repeat of the first.) ** ** The polygon follows the right-hand rule. The area to the right of ** each segment is "outside" and the area to the left is "inside". ** ** The on-disk representation consists of a 4-byte header followed by ** the values. The 4-byte header is: ** ** encoding (1 byte) 0=big-endian, 1=little-endian ** nvertex (3 bytes) Number of vertexes as a big-endian integer ** ** Enough space is allocated for 4 coordinates, to work around over-zealous ** warnings coming from some compiler (notably, clang). In reality, the size ** of each GeoPoly memory allocate is adjusted as necessary so that the ** GeoPoly.a[] array at the end is the appropriate size. */ typedef struct GeoPoly GeoPoly; struct GeoPoly { int nVertex; /* Number of vertexes */ unsigned char hdr[4]; /* Header for on-disk representation */ GeoCoord a[8]; /* 2*nVertex values. X (longitude) first, then Y */ }; /* The size of a memory allocation needed for a GeoPoly object sufficient ** to hold N coordinate pairs. */ #define GEOPOLY_SZ(N) (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4)) /* Macros to access coordinates of a GeoPoly. ** We have to use these macros, rather than just say p->a[i] in order ** to silence (incorrect) UBSAN warnings if the array index is too large. */ #define GeoX(P,I) (((GeoCoord*)(P)->a)[(I)*2]) #define GeoY(P,I) (((GeoCoord*)(P)->a)[(I)*2+1]) /* ** State of a parse of a GeoJSON input. */ typedef struct GeoParse GeoParse; struct GeoParse { const unsigned char *z; /* Unparsed input */ int nVertex; /* Number of vertexes in a[] */ int nAlloc; /* Space allocated to a[] */ int nErr; /* Number of errors encountered */ GeoCoord *a; /* Array of vertexes. From sqlite3_malloc64() */ }; /* Do a 4-byte byte swap */ static void geopolySwab32(unsigned char *a){ unsigned char t = a[0]; a[0] = a[3]; a[3] = t; t = a[1]; a[1] = a[2]; a[2] = t; } /* Skip whitespace. Return the next non-whitespace character. */ static char geopolySkipSpace(GeoParse *p){ while( fast_isspace(p->z[0]) ) p->z++; return p->z[0]; } /* Parse out a number. Write the value into *pVal if pVal!=0. ** return non-zero on success and zero if the next token is not a number. */ static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){ char c = geopolySkipSpace(p); const unsigned char *z = p->z; int j = 0; int seenDP = 0; int seenE = 0; if( c=='-' ){ j = 1; c = z[j]; } if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0; for(;; j++){ c = z[j]; if( safe_isdigit(c) ) continue; if( c=='.' ){ if( z[j-1]=='-' ) return 0; if( seenDP ) return 0; seenDP = 1; continue; } if( c=='e' || c=='E' ){ if( z[j-1]<'0' ) return 0; if( seenE ) return -1; seenDP = seenE = 1; c = z[j+1]; if( c=='+' || c=='-' ){ j++; c = z[j+1]; } if( c<'0' || c>'9' ) return 0; continue; } break; } if( z[j-1]<'0' ) return 0; if( pVal ){ #ifdef SQLITE_AMALGAMATION /* The sqlite3AtoF() routine is much much faster than atof(), if it ** is available */ double r; (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8); *pVal = r; #else *pVal = (GeoCoord)atof((const char*)p->z); #endif } p->z += j; return 1; } /* ** If the input is a well-formed JSON array of coordinates with at least ** four coordinates and where each coordinate is itself a two-value array, ** then convert the JSON into a GeoPoly object and return a pointer to ** that object. ** ** If any error occurs, return NULL. */ static GeoPoly *geopolyParseJson(const unsigned char *z, int *pRc){ GeoParse s; int rc = SQLITE_OK; memset(&s, 0, sizeof(s)); s.z = z; if( geopolySkipSpace(&s)=='[' ){ s.z++; while( geopolySkipSpace(&s)=='[' ){ int ii = 0; char c; s.z++; if( s.nVertex>=s.nAlloc ){ GeoCoord *aNew; s.nAlloc = s.nAlloc*2 + 16; aNew = sqlite3_realloc64(s.a, s.nAlloc*sizeof(GeoCoord)*2 ); if( aNew==0 ){ rc = SQLITE_NOMEM; s.nErr++; break; } s.a = aNew; } while( geopolyParseNumber(&s, ii<=1 ? &s.a[s.nVertex*2+ii] : 0) ){ ii++; if( ii==2 ) s.nVertex++; c = geopolySkipSpace(&s); s.z++; if( c==',' ) continue; if( c==']' && ii>=2 ) break; s.nErr++; rc = SQLITE_ERROR; goto parse_json_err; } if( geopolySkipSpace(&s)==',' ){ s.z++; continue; } break; } if( geopolySkipSpace(&s)==']' && s.nVertex>=4 && s.a[0]==s.a[s.nVertex*2-2] && s.a[1]==s.a[s.nVertex*2-1] && (s.z++, geopolySkipSpace(&s)==0) ){ GeoPoly *pOut; int x = 1; s.nVertex--; /* Remove the redundant vertex at the end */ pOut = sqlite3_malloc64( GEOPOLY_SZ((sqlite3_int64)s.nVertex) ); x = 1; if( pOut==0 ) goto parse_json_err; pOut->nVertex = s.nVertex; memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord)); pOut->hdr[0] = *(unsigned char*)&x; pOut->hdr[1] = (s.nVertex>>16)&0xff; pOut->hdr[2] = (s.nVertex>>8)&0xff; pOut->hdr[3] = s.nVertex&0xff; sqlite3_free(s.a); if( pRc ) *pRc = SQLITE_OK; return pOut; }else{ s.nErr++; rc = SQLITE_ERROR; } } parse_json_err: if( pRc ) *pRc = rc; sqlite3_free(s.a); return 0; } /* ** Given a function parameter, try to interpret it as a polygon, either ** in the binary format or JSON text. Compute a GeoPoly object and ** return a pointer to that object. Or if the input is not a well-formed ** polygon, put an error message in sqlite3_context and return NULL. */ static GeoPoly *geopolyFuncParam( sqlite3_context *pCtx, /* Context for error messages */ sqlite3_value *pVal, /* The value to decode */ int *pRc /* Write error here */ ){ GeoPoly *p = 0; int nByte; testcase( pCtx==0 ); if( sqlite3_value_type(pVal)==SQLITE_BLOB && (nByte = sqlite3_value_bytes(pVal))>=(int)(4+6*sizeof(GeoCoord)) ){ const unsigned char *a = sqlite3_value_blob(pVal); int nVertex; if( a==0 ){ if( pCtx ) sqlite3_result_error_nomem(pCtx); return 0; } nVertex = (a[1]<<16) + (a[2]<<8) + a[3]; if( (a[0]==0 || a[0]==1) && (nVertex*2*sizeof(GeoCoord) + 4)==(unsigned int)nByte ){ p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) ); if( p==0 ){ if( pRc ) *pRc = SQLITE_NOMEM; if( pCtx ) sqlite3_result_error_nomem(pCtx); }else{ int x = 1; p->nVertex = nVertex; memcpy(p->hdr, a, nByte); if( a[0] != *(unsigned char*)&x ){ int ii; for(ii=0; iihdr[0] ^= 1; } } } if( pRc ) *pRc = SQLITE_OK; return p; }else if( sqlite3_value_type(pVal)==SQLITE_TEXT ){ const unsigned char *zJson = sqlite3_value_text(pVal); if( zJson==0 ){ if( pRc ) *pRc = SQLITE_NOMEM; return 0; } return geopolyParseJson(zJson, pRc); }else{ if( pRc ) *pRc = SQLITE_ERROR; return 0; } } /* ** Implementation of the geopoly_blob(X) function. ** ** If the input is a well-formed Geopoly BLOB or JSON string ** then return the BLOB representation of the polygon. Otherwise ** return NULL. */ static void geopolyBlobFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** SQL function: geopoly_json(X) ** ** Interpret X as a polygon and render it as a JSON array ** of coordinates. Or, if X is not a valid polygon, return NULL. */ static void geopolyJsonFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ sqlite3 *db = sqlite3_context_db_handle(context); sqlite3_str *x = sqlite3_str_new(db); int i; sqlite3_str_append(x, "[", 1); for(i=0; inVertex; i++){ sqlite3_str_appendf(x, "[%!g,%!g],", GeoX(p,i), GeoY(p,i)); } sqlite3_str_appendf(x, "[%!g,%!g]]", GeoX(p,0), GeoY(p,0)); sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free); sqlite3_free(p); } } /* ** SQL function: geopoly_svg(X, ....) ** ** Interpret X as a polygon and render it as a SVG . ** Additional arguments are added as attributes to the . */ static void geopolySvgFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p; if( argc<1 ) return; p = geopolyFuncParam(context, argv[0], 0); if( p ){ sqlite3 *db = sqlite3_context_db_handle(context); sqlite3_str *x = sqlite3_str_new(db); int i; char cSep = '\''; sqlite3_str_appendf(x, ""); sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free); sqlite3_free(p); } } /* ** SQL Function: geopoly_xform(poly, A, B, C, D, E, F) ** ** Transform and/or translate a polygon as follows: ** ** x1 = A*x0 + B*y0 + E ** y1 = C*x0 + D*y0 + F ** ** For a translation: ** ** geopoly_xform(poly, 1, 0, 0, 1, x-offset, y-offset) ** ** Rotate by R around the point (0,0): ** ** geopoly_xform(poly, cos(R), sin(R), -sin(R), cos(R), 0, 0) */ static void geopolyXformFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); double A = sqlite3_value_double(argv[1]); double B = sqlite3_value_double(argv[2]); double C = sqlite3_value_double(argv[3]); double D = sqlite3_value_double(argv[4]); double E = sqlite3_value_double(argv[5]); double F = sqlite3_value_double(argv[6]); GeoCoord x1, y1, x0, y0; int ii; (void)argc; if( p ){ for(ii=0; iinVertex; ii++){ x0 = GeoX(p,ii); y0 = GeoY(p,ii); x1 = (GeoCoord)(A*x0 + B*y0 + E); y1 = (GeoCoord)(C*x0 + D*y0 + F); GeoX(p,ii) = x1; GeoY(p,ii) = y1; } sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** Compute the area enclosed by the polygon. ** ** This routine can also be used to detect polygons that rotate in ** the wrong direction. Polygons are suppose to be counter-clockwise (CCW). ** This routine returns a negative value for clockwise (CW) polygons. */ static double geopolyArea(GeoPoly *p){ double rArea = 0.0; int ii; for(ii=0; iinVertex-1; ii++){ rArea += (GeoX(p,ii) - GeoX(p,ii+1)) /* (x0 - x1) */ * (GeoY(p,ii) + GeoY(p,ii+1)) /* (y0 + y1) */ * 0.5; } rArea += (GeoX(p,ii) - GeoX(p,0)) /* (xN - x0) */ * (GeoY(p,ii) + GeoY(p,0)) /* (yN + y0) */ * 0.5; return rArea; } /* ** Implementation of the geopoly_area(X) function. ** ** If the input is a well-formed Geopoly BLOB then return the area ** enclosed by the polygon. If the polygon circulates clockwise instead ** of counterclockwise (as it should) then return the negative of the ** enclosed area. Otherwise return NULL. */ static void geopolyAreaFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ sqlite3_result_double(context, geopolyArea(p)); sqlite3_free(p); } } /* ** Implementation of the geopoly_ccw(X) function. ** ** If the rotation of polygon X is clockwise (incorrect) instead of ** counter-clockwise (the correct winding order according to RFC7946) ** then reverse the order of the vertexes in polygon X. ** ** In other words, this routine returns a CCW polygon regardless of the ** winding order of its input. ** ** Use this routine to sanitize historical inputs that that sometimes ** contain polygons that wind in the wrong direction. */ static void geopolyCcwFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ if( geopolyArea(p)<0.0 ){ int ii, jj; for(ii=1, jj=p->nVertex-1; iihdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } #define GEOPOLY_PI 3.1415926535897932385 /* Fast approximation for sine(X) for X between -0.5*pi and 2*pi */ static double geopolySine(double r){ assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI ); if( r>=1.5*GEOPOLY_PI ){ r -= 2.0*GEOPOLY_PI; } if( r>=0.5*GEOPOLY_PI ){ return -geopolySine(r-GEOPOLY_PI); }else{ double r2 = r*r; double r3 = r2*r; double r5 = r3*r2; return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5; } } /* ** Function: geopoly_regular(X,Y,R,N) ** ** Construct a simple, convex, regular polygon centered at X, Y ** with circumradius R and with N sides. */ static void geopolyRegularFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ double x = sqlite3_value_double(argv[0]); double y = sqlite3_value_double(argv[1]); double r = sqlite3_value_double(argv[2]); int n = sqlite3_value_int(argv[3]); int i; GeoPoly *p; (void)argc; if( n<3 || r<=0.0 ) return; if( n>1000 ) n = 1000; p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) ); if( p==0 ){ sqlite3_result_error_nomem(context); return; } i = 1; p->hdr[0] = *(unsigned char*)&i; p->hdr[1] = 0; p->hdr[2] = (n>>8)&0xff; p->hdr[3] = n&0xff; for(i=0; ihdr, 4+8*n, SQLITE_TRANSIENT); sqlite3_free(p); } /* ** If pPoly is a polygon, compute its bounding box. Then: ** ** (1) if aCoord!=0 store the bounding box in aCoord, returning NULL ** (2) otherwise, compute a GeoPoly for the bounding box and return the ** new GeoPoly ** ** If pPoly is NULL but aCoord is not NULL, then compute a new GeoPoly from ** the bounding box in aCoord and return a pointer to that GeoPoly. */ static GeoPoly *geopolyBBox( sqlite3_context *context, /* For recording the error */ sqlite3_value *pPoly, /* The polygon */ RtreeCoord *aCoord, /* Results here */ int *pRc /* Error code here */ ){ GeoPoly *pOut = 0; GeoPoly *p; float mnX, mxX, mnY, mxY; if( pPoly==0 && aCoord!=0 ){ p = 0; mnX = aCoord[0].f; mxX = aCoord[1].f; mnY = aCoord[2].f; mxY = aCoord[3].f; goto geopolyBboxFill; }else{ p = geopolyFuncParam(context, pPoly, pRc); } if( p ){ int ii; mnX = mxX = GeoX(p,0); mnY = mxY = GeoY(p,0); for(ii=1; iinVertex; ii++){ double r = GeoX(p,ii); if( rmxX ) mxX = (float)r; r = GeoY(p,ii); if( rmxY ) mxY = (float)r; } if( pRc ) *pRc = SQLITE_OK; if( aCoord==0 ){ geopolyBboxFill: pOut = sqlite3_realloc64(p, GEOPOLY_SZ(4)); if( pOut==0 ){ sqlite3_free(p); if( context ) sqlite3_result_error_nomem(context); if( pRc ) *pRc = SQLITE_NOMEM; return 0; } pOut->nVertex = 4; ii = 1; pOut->hdr[0] = *(unsigned char*)ⅈ pOut->hdr[1] = 0; pOut->hdr[2] = 0; pOut->hdr[3] = 4; GeoX(pOut,0) = mnX; GeoY(pOut,0) = mnY; GeoX(pOut,1) = mxX; GeoY(pOut,1) = mnY; GeoX(pOut,2) = mxX; GeoY(pOut,2) = mxY; GeoX(pOut,3) = mnX; GeoY(pOut,3) = mxY; }else{ sqlite3_free(p); aCoord[0].f = mnX; aCoord[1].f = mxX; aCoord[2].f = mnY; aCoord[3].f = mxY; } }else if( aCoord ){ memset(aCoord, 0, sizeof(RtreeCoord)*4); } return pOut; } /* ** Implementation of the geopoly_bbox(X) SQL function. */ static void geopolyBBoxFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyBBox(context, argv[0], 0, 0); (void)argc; if( p ){ sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** State vector for the geopoly_group_bbox() aggregate function. */ typedef struct GeoBBox GeoBBox; struct GeoBBox { int isInit; RtreeCoord a[4]; }; /* ** Implementation of the geopoly_group_bbox(X) aggregate SQL function. */ static void geopolyBBoxStep( sqlite3_context *context, int argc, sqlite3_value **argv ){ RtreeCoord a[4]; int rc = SQLITE_OK; (void)argc; (void)geopolyBBox(context, argv[0], a, &rc); if( rc==SQLITE_OK ){ GeoBBox *pBBox; pBBox = (GeoBBox*)sqlite3_aggregate_context(context, sizeof(*pBBox)); if( pBBox==0 ) return; if( pBBox->isInit==0 ){ pBBox->isInit = 1; memcpy(pBBox->a, a, sizeof(RtreeCoord)*4); }else{ if( a[0].f < pBBox->a[0].f ) pBBox->a[0] = a[0]; if( a[1].f > pBBox->a[1].f ) pBBox->a[1] = a[1]; if( a[2].f < pBBox->a[2].f ) pBBox->a[2] = a[2]; if( a[3].f > pBBox->a[3].f ) pBBox->a[3] = a[3]; } } } static void geopolyBBoxFinal( sqlite3_context *context ){ GeoPoly *p; GeoBBox *pBBox; pBBox = (GeoBBox*)sqlite3_aggregate_context(context, 0); if( pBBox==0 ) return; p = geopolyBBox(context, 0, pBBox->a, 0); if( p ){ sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2). ** Returns: ** ** +2 x0,y0 is on the line segement ** ** +1 x0,y0 is beneath line segment ** ** 0 x0,y0 is not on or beneath the line segment or the line segment ** is vertical and x0,y0 is not on the line segment ** ** The left-most coordinate min(x1,x2) is not considered to be part of ** the line segment for the purposes of this analysis. */ static int pointBeneathLine( double x0, double y0, double x1, double y1, double x2, double y2 ){ double y; if( x0==x1 && y0==y1 ) return 2; if( x1x2 ) return 0; }else if( x1>x2 ){ if( x0<=x2 || x0>x1 ) return 0; }else{ /* Vertical line segment */ if( x0!=x1 ) return 0; if( y0y1 && y0>y2 ) return 0; return 2; } y = y1 + (y2-y1)*(x0-x1)/(x2-x1); if( y0==y ) return 2; if( y0nVertex-1; ii++){ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii), GeoX(p1,ii+1),GeoY(p1,ii+1)); if( v==2 ) break; cnt += v; } if( v!=2 ){ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii), GeoX(p1,0), GeoY(p1,0)); } if( v==2 ){ sqlite3_result_int(context, 1); }else if( ((v+cnt)&1)==0 ){ sqlite3_result_int(context, 0); }else{ sqlite3_result_int(context, 2); } sqlite3_free(p1); } /* Forward declaration */ static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2); /* ** SQL function: geopoly_within(P1,P2) ** ** Return +2 if P1 and P2 are the same polygon ** Return +1 if P2 is contained within P1 ** Return 0 if any part of P2 is on the outside of P1 ** */ static void geopolyWithinFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0); GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0); (void)argc; if( p1 && p2 ){ int x = geopolyOverlap(p1, p2); if( x<0 ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_int(context, x==2 ? 1 : x==4 ? 2 : 0); } } sqlite3_free(p1); sqlite3_free(p2); } /* Objects used by the overlap algorihm. */ typedef struct GeoEvent GeoEvent; typedef struct GeoSegment GeoSegment; typedef struct GeoOverlap GeoOverlap; struct GeoEvent { double x; /* X coordinate at which event occurs */ int eType; /* 0 for ADD, 1 for REMOVE */ GeoSegment *pSeg; /* The segment to be added or removed */ GeoEvent *pNext; /* Next event in the sorted list */ }; struct GeoSegment { double C, B; /* y = C*x + B */ double y; /* Current y value */ float y0; /* Initial y value */ unsigned char side; /* 1 for p1, 2 for p2 */ unsigned int idx; /* Which segment within the side */ GeoSegment *pNext; /* Next segment in a list sorted by y */ }; struct GeoOverlap { GeoEvent *aEvent; /* Array of all events */ GeoSegment *aSegment; /* Array of all segments */ int nEvent; /* Number of events */ int nSegment; /* Number of segments */ }; /* ** Add a single segment and its associated events. */ static void geopolyAddOneSegment( GeoOverlap *p, GeoCoord x0, GeoCoord y0, GeoCoord x1, GeoCoord y1, unsigned char side, unsigned int idx ){ GeoSegment *pSeg; GeoEvent *pEvent; if( x0==x1 ) return; /* Ignore vertical segments */ if( x0>x1 ){ GeoCoord t = x0; x0 = x1; x1 = t; t = y0; y0 = y1; y1 = t; } pSeg = p->aSegment + p->nSegment; p->nSegment++; pSeg->C = (y1-y0)/(x1-x0); pSeg->B = y1 - x1*pSeg->C; pSeg->y0 = y0; pSeg->side = side; pSeg->idx = idx; pEvent = p->aEvent + p->nEvent; p->nEvent++; pEvent->x = x0; pEvent->eType = 0; pEvent->pSeg = pSeg; pEvent = p->aEvent + p->nEvent; p->nEvent++; pEvent->x = x1; pEvent->eType = 1; pEvent->pSeg = pSeg; } /* ** Insert all segments and events for polygon pPoly. */ static void geopolyAddSegments( GeoOverlap *p, /* Add segments to this Overlap object */ GeoPoly *pPoly, /* Take all segments from this polygon */ unsigned char side /* The side of pPoly */ ){ unsigned int i; GeoCoord *x; for(i=0; i<(unsigned)pPoly->nVertex-1; i++){ x = &GeoX(pPoly,i); geopolyAddOneSegment(p, x[0], x[1], x[2], x[3], side, i); } x = &GeoX(pPoly,i); geopolyAddOneSegment(p, x[0], x[1], pPoly->a[0], pPoly->a[1], side, i); } /* ** Merge two lists of sorted events by X coordinate */ static GeoEvent *geopolyEventMerge(GeoEvent *pLeft, GeoEvent *pRight){ GeoEvent head, *pLast; head.pNext = 0; pLast = &head; while( pRight && pLeft ){ if( pRight->x <= pLeft->x ){ pLast->pNext = pRight; pLast = pRight; pRight = pRight->pNext; }else{ pLast->pNext = pLeft; pLast = pLeft; pLeft = pLeft->pNext; } } pLast->pNext = pRight ? pRight : pLeft; return head.pNext; } /* ** Sort an array of nEvent event objects into a list. */ static GeoEvent *geopolySortEventsByX(GeoEvent *aEvent, int nEvent){ int mx = 0; int i, j; GeoEvent *p; GeoEvent *a[50]; for(i=0; ipNext = 0; for(j=0; j=mx ) mx = j+1; } p = 0; for(i=0; iy - pLeft->y; if( r==0.0 ) r = pRight->C - pLeft->C; if( r<0.0 ){ pLast->pNext = pRight; pLast = pRight; pRight = pRight->pNext; }else{ pLast->pNext = pLeft; pLast = pLeft; pLeft = pLeft->pNext; } } pLast->pNext = pRight ? pRight : pLeft; return head.pNext; } /* ** Sort a list of GeoSegments in order of increasing Y and in the event of ** a tie, increasing C (slope). */ static GeoSegment *geopolySortSegmentsByYAndC(GeoSegment *pList){ int mx = 0; int i; GeoSegment *p; GeoSegment *a[50]; while( pList ){ p = pList; pList = pList->pNext; p->pNext = 0; for(i=0; i=mx ) mx = i+1; } p = 0; for(i=0; inVertex + p2->nVertex + 2; GeoOverlap *p; sqlite3_int64 nByte; GeoEvent *pThisEvent; double rX; int rc = 0; int needSort = 0; GeoSegment *pActive = 0; GeoSegment *pSeg; unsigned char aOverlap[4]; nByte = sizeof(GeoEvent)*nVertex*2 + sizeof(GeoSegment)*nVertex + sizeof(GeoOverlap); p = sqlite3_malloc64( nByte ); if( p==0 ) return -1; p->aEvent = (GeoEvent*)&p[1]; p->aSegment = (GeoSegment*)&p->aEvent[nVertex*2]; p->nEvent = p->nSegment = 0; geopolyAddSegments(p, p1, 1); geopolyAddSegments(p, p2, 2); pThisEvent = geopolySortEventsByX(p->aEvent, p->nEvent); rX = pThisEvent && pThisEvent->x==0.0 ? -1.0 : 0.0; memset(aOverlap, 0, sizeof(aOverlap)); while( pThisEvent ){ if( pThisEvent->x!=rX ){ GeoSegment *pPrev = 0; int iMask = 0; GEODEBUG(("Distinct X: %g\n", pThisEvent->x)); rX = pThisEvent->x; if( needSort ){ GEODEBUG(("SORT\n")); pActive = geopolySortSegmentsByYAndC(pActive); needSort = 0; } for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){ if( pPrev ){ if( pPrev->y!=pSeg->y ){ GEODEBUG(("MASK: %d\n", iMask)); aOverlap[iMask] = 1; } } iMask ^= pSeg->side; pPrev = pSeg; } pPrev = 0; for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){ double y = pSeg->C*rX + pSeg->B; GEODEBUG(("Segment %d.%d %g->%g\n", pSeg->side, pSeg->idx, pSeg->y, y)); pSeg->y = y; if( pPrev ){ if( pPrev->y>pSeg->y && pPrev->side!=pSeg->side ){ rc = 1; GEODEBUG(("Crossing: %d.%d and %d.%d\n", pPrev->side, pPrev->idx, pSeg->side, pSeg->idx)); goto geopolyOverlapDone; }else if( pPrev->y!=pSeg->y ){ GEODEBUG(("MASK: %d\n", iMask)); aOverlap[iMask] = 1; } } iMask ^= pSeg->side; pPrev = pSeg; } } GEODEBUG(("%s %d.%d C=%g B=%g\n", pThisEvent->eType ? "RM " : "ADD", pThisEvent->pSeg->side, pThisEvent->pSeg->idx, pThisEvent->pSeg->C, pThisEvent->pSeg->B)); if( pThisEvent->eType==0 ){ /* Add a segment */ pSeg = pThisEvent->pSeg; pSeg->y = pSeg->y0; pSeg->pNext = pActive; pActive = pSeg; needSort = 1; }else{ /* Remove a segment */ if( pActive==pThisEvent->pSeg ){ pActive = ALWAYS(pActive) ? pActive->pNext : 0; }else{ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){ if( pSeg->pNext==pThisEvent->pSeg ){ pSeg->pNext = ALWAYS(pSeg->pNext) ? pSeg->pNext->pNext : 0; break; } } } } pThisEvent = pThisEvent->pNext; } if( aOverlap[3]==0 ){ rc = 0; }else if( aOverlap[1]!=0 && aOverlap[2]==0 ){ rc = 3; }else if( aOverlap[1]==0 && aOverlap[2]!=0 ){ rc = 2; }else if( aOverlap[1]==0 && aOverlap[2]==0 ){ rc = 4; }else{ rc = 1; } geopolyOverlapDone: sqlite3_free(p); return rc; } /* ** SQL function: geopoly_overlap(P1,P2) ** ** Determine whether or not P1 and P2 overlap. Return value: ** ** 0 The two polygons are disjoint ** 1 They overlap ** 2 P1 is completely contained within P2 ** 3 P2 is completely contained within P1 ** 4 P1 and P2 are the same polygon ** NULL Either P1 or P2 or both are not valid polygons */ static void geopolyOverlapFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0); GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0); (void)argc; if( p1 && p2 ){ int x = geopolyOverlap(p1, p2); if( x<0 ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_int(context, x); } } sqlite3_free(p1); sqlite3_free(p2); } /* ** Enable or disable debugging output */ static void geopolyDebugFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ (void)context; (void)argc; #ifdef GEOPOLY_ENABLE_DEBUG geo_debug = sqlite3_value_int(argv[0]); #else (void)argv; #endif } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the geopoly virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int geopolyInit( sqlite3 *db, /* Database connection */ void *pAux, /* One of the RTREE_COORD_* constants */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; sqlite3_int64 nDb; /* Length of string argv[1] */ sqlite3_int64 nName; /* Length of string argv[2] */ sqlite3_str *pSql; char *zSql; int ii; (void)pAux; sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Allocate the sqlite3_vtab structure */ nDb = strlen(argv[1]); nName = strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->eCoordType = RTREE_COORD_REAL32; pRtree->nDim = 2; pRtree->nDim2 = 4; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ pSql = sqlite3_str_new(db); sqlite3_str_appendf(pSql, "CREATE TABLE x(_shape"); pRtree->nAux = 1; /* Add one for _shape */ pRtree->nAuxNotNull = 1; /* The _shape column is always not-null */ for(ii=3; iinAux++; sqlite3_str_appendf(pSql, ",%s", argv[ii]); } sqlite3_str_appendf(pSql, ");"); zSql = sqlite3_str_finish(pSql); if( !zSql ){ rc = SQLITE_NOMEM; }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } sqlite3_free(zSql); if( rc ) goto geopolyInit_fail; pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); if( rc ) goto geopolyInit_fail; rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); if( rc ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); goto geopolyInit_fail; } *ppVtab = (sqlite3_vtab *)pRtree; return SQLITE_OK; geopolyInit_fail: if( rc==SQLITE_OK ) rc = SQLITE_ERROR; assert( *ppVtab==0 ); assert( pRtree->nBusy==1 ); rtreeRelease(pRtree); return rc; } /* ** GEOPOLY virtual table module xCreate method. */ static int geopolyCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** GEOPOLY virtual table module xConnect method. */ static int geopolyConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** GEOPOLY virtual table module xFilter method. ** ** Query plans: ** ** 1 rowid lookup ** 2 search for objects overlapping the same bounding box ** that contains polygon argv[0] ** 3 search for objects overlapping the same bounding box ** that contains polygon argv[0] ** 4 full table scan */ static int geopolyFilter( sqlite3_vtab_cursor *pVtabCursor, /* The cursor to initialize */ int idxNum, /* Query plan */ const char *idxStr, /* Not Used */ int argc, sqlite3_value **argv /* Parameters to the query plan */ ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int rc = SQLITE_OK; int iCell = 0; (void)idxStr; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ resetCursor(pCsr); pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); i64 iNode = 0; rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); if( rc==SQLITE_OK && pLeaf!=0 ){ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); assert( p!=0 ); /* Always returns pCsr->sPoint */ pCsr->aNode[0] = pLeaf; p->id = iNode; p->eWithin = PARTLY_WITHIN; rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); p->iCell = (u8)iCell; RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); }else{ pCsr->atEOF = 1; } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); if( rc==SQLITE_OK && idxNum<=3 ){ RtreeCoord bbox[4]; RtreeConstraint *p; assert( argc==1 ); assert( argv[0]!=0 ); geopolyBBox(0, argv[0], bbox, &rc); if( rc ){ goto geopoly_filter_end; } pCsr->aConstraint = p = sqlite3_malloc(sizeof(RtreeConstraint)*4); pCsr->nConstraint = 4; if( p==0 ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*4); memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); if( idxNum==2 ){ /* Overlap query */ p->op = 'B'; p->iCoord = 0; p->u.rValue = bbox[1].f; p++; p->op = 'D'; p->iCoord = 1; p->u.rValue = bbox[0].f; p++; p->op = 'B'; p->iCoord = 2; p->u.rValue = bbox[3].f; p++; p->op = 'D'; p->iCoord = 3; p->u.rValue = bbox[2].f; }else{ /* Within query */ p->op = 'D'; p->iCoord = 0; p->u.rValue = bbox[0].f; p++; p->op = 'B'; p->iCoord = 1; p->u.rValue = bbox[1].f; p++; p->op = 'D'; p->iCoord = 2; p->u.rValue = bbox[2].f; p++; p->op = 'B'; p->iCoord = 3; p->u.rValue = bbox[3].f; } } } if( rc==SQLITE_OK ){ RtreeSearchPoint *pNew; pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); if( pNew==0 ){ rc = SQLITE_NOMEM; goto geopoly_filter_end; } pNew->id = 1; pNew->iCell = 0; pNew->eWithin = PARTLY_WITHIN; assert( pCsr->bPoint==1 ); pCsr->aNode[0] = pRoot; pRoot = 0; RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); rc = rtreeStepToLeaf(pCsr); } } geopoly_filter_end: nodeRelease(pRtree, pRoot); rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 "rowid" Direct lookup by rowid. ** 2 "rtree" R-tree overlap query using geopoly_overlap() ** 3 "rtree" R-tree within query using geopoly_within() ** 4 "fullscan" full-table scan. ** ------------------------------------------------ */ static int geopolyBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int ii; int iRowidTerm = -1; int iFuncTerm = -1; int idxNum = 0; (void)tab; for(ii=0; iinConstraint; ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( !p->usable ) continue; if( p->iColumn<0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ iRowidTerm = ii; break; } if( p->iColumn==0 && p->op>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ /* p->op==SQLITE_INDEX_CONSTRAINT_FUNCTION for geopoly_overlap() ** p->op==(SQLITE_INDEX_CONTRAINT_FUNCTION+1) for geopoly_within(). ** See geopolyFindFunction() */ iFuncTerm = ii; idxNum = p->op - SQLITE_INDEX_CONSTRAINT_FUNCTION + 2; } } if( iRowidTerm>=0 ){ pIdxInfo->idxNum = 1; pIdxInfo->idxStr = "rowid"; pIdxInfo->aConstraintUsage[iRowidTerm].argvIndex = 1; pIdxInfo->aConstraintUsage[iRowidTerm].omit = 1; pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; return SQLITE_OK; } if( iFuncTerm>=0 ){ pIdxInfo->idxNum = idxNum; pIdxInfo->idxStr = "rtree"; pIdxInfo->aConstraintUsage[iFuncTerm].argvIndex = 1; pIdxInfo->aConstraintUsage[iFuncTerm].omit = 0; pIdxInfo->estimatedCost = 300.0; pIdxInfo->estimatedRows = 10; return SQLITE_OK; } pIdxInfo->idxNum = 4; pIdxInfo->idxStr = "fullscan"; pIdxInfo->estimatedCost = 3000000.0; pIdxInfo->estimatedRows = 100000; return SQLITE_OK; } /* ** GEOPOLY virtual table module xColumn method. */ static int geopolyColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( p==0 ) return SQLITE_OK; if( i==0 && sqlite3_vtab_nochange(ctx) ) return SQLITE_OK; if( i<=pRtree->nAux ){ if( !pCsr->bAuxValid ){ if( pCsr->pReadAux==0 ){ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, &pCsr->pReadAux, 0); if( rc ) return rc; } sqlite3_bind_int64(pCsr->pReadAux, 1, nodeGetRowid(pRtree, pNode, p->iCell)); rc = sqlite3_step(pCsr->pReadAux); if( rc==SQLITE_ROW ){ pCsr->bAuxValid = 1; }else{ sqlite3_reset(pCsr->pReadAux); if( rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } } sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i+2)); } return SQLITE_OK; } /* ** The xUpdate method for GEOPOLY module virtual tables. ** ** For DELETE: ** ** argv[0] = the rowid to be deleted ** ** For INSERT: ** ** argv[0] = SQL NULL ** argv[1] = rowid to insert, or an SQL NULL to select automatically ** argv[2] = _shape column ** argv[3] = first application-defined column.... ** ** For UPDATE: ** ** argv[0] = rowid to modify. Never NULL ** argv[1] = rowid after the change. Never NULL ** argv[2] = new value for _shape ** argv[3] = new value for first application-defined column.... */ static int geopolyUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **aData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ i64 oldRowid; /* The old rowid */ int oldRowidValid; /* True if oldRowid is valid */ i64 newRowid; /* The new rowid */ int newRowidValid; /* True if newRowid is valid */ int coordChange = 0; /* Change in coordinates */ if( pRtree->nNodeRef ){ /* Unable to write to the btree while another cursor is reading from it, ** since the write might do a rebalance which would disrupt the read ** cursor. */ return SQLITE_LOCKED_VTAB; } rtreeReference(pRtree); assert(nData>=1); oldRowidValid = sqlite3_value_type(aData[0])!=SQLITE_NULL;; oldRowid = oldRowidValid ? sqlite3_value_int64(aData[0]) : 0; newRowidValid = nData>1 && sqlite3_value_type(aData[1])!=SQLITE_NULL; newRowid = newRowidValid ? sqlite3_value_int64(aData[1]) : 0; cell.iRowid = newRowid; if( nData>1 /* not a DELETE */ && (!oldRowidValid /* INSERT */ || !sqlite3_value_nochange(aData[2]) /* UPDATE _shape */ || oldRowid!=newRowid) /* Rowid change */ ){ assert( aData[2]!=0 ); geopolyBBox(0, aData[2], cell.aCoord, &rc); if( rc ){ if( rc==SQLITE_ERROR ){ pVtab->zErrMsg = sqlite3_mprintf("_shape does not contain a valid polygon"); } goto geopoly_update_end; } coordChange = 1; /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( newRowidValid && (!oldRowidValid || oldRowid!=newRowid) ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = rtreeConstraintError(pRtree, 0); } } } } /* If aData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( rc==SQLITE_OK && (nData==1 || (coordChange && oldRowidValid)) ){ rc = rtreeDeleteRowid(pRtree, oldRowid); } /* If the aData[] array contains more than one element, elements ** (aData[2]..aData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 && coordChange ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf = 0; if( !newRowidValid ){ rc = rtreeNewRowid(pRtree, &cell.iRowid); } *pRowid = cell.iRowid; if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; pRtree->iReinsertHeight = -1; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } } /* Change the data */ if( rc==SQLITE_OK && nData>1 ){ sqlite3_stmt *pUp = pRtree->pWriteAux; int jj; int nChange = 0; sqlite3_bind_int64(pUp, 1, cell.iRowid); assert( pRtree->nAux>=1 ); if( sqlite3_value_nochange(aData[2]) ){ sqlite3_bind_null(pUp, 2); }else{ GeoPoly *p = 0; if( sqlite3_value_type(aData[2])==SQLITE_TEXT && (p = geopolyFuncParam(0, aData[2], &rc))!=0 && rc==SQLITE_OK ){ sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); }else{ sqlite3_bind_value(pUp, 2, aData[2]); } sqlite3_free(p); nChange = 1; } for(jj=1; jjxDestructor ) pInfo->xDestructor(pInfo->pContext); sqlite3_free(p); } /* ** This routine frees the BLOB that is returned by geomCallback(). */ static void rtreeMatchArgFree(void *pArg){ int i; RtreeMatchArg *p = (RtreeMatchArg*)pArg; for(i=0; inParam; i++){ sqlite3_value_free(p->apSqlParam[i]); } sqlite3_free(p); } /* ** Each call to sqlite3_rtree_geometry_callback() or ** sqlite3_rtree_query_callback() creates an ordinary SQLite ** scalar function that is implemented by this routine. ** ** All this function does is construct an RtreeMatchArg object that ** contains the geometry-checking callback routines and a list of ** parameters to this function, then return that RtreeMatchArg object ** as a BLOB. ** ** The R-Tree MATCH operator will read the returned BLOB, deserialize ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure ** out which elements of the R-Tree should be returned by the query. */ static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); RtreeMatchArg *pBlob; sqlite3_int64 nBlob; int memErr = 0; nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) + nArg*sizeof(sqlite3_value*); pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob); if( !pBlob ){ sqlite3_result_error_nomem(ctx); }else{ int i; pBlob->iSize = nBlob; pBlob->cb = pGeomCtx[0]; pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; pBlob->nParam = nArg; for(i=0; iapSqlParam[i] = sqlite3_value_dup(aArg[i]); if( pBlob->apSqlParam[i]==0 ) memErr = 1; #ifdef SQLITE_RTREE_INT_ONLY pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); #else pBlob->aParam[i] = sqlite3_value_double(aArg[i]); #endif } if( memErr ){ sqlite3_result_error_nomem(ctx); rtreeMatchArgFree(pBlob); }else{ sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree); } } } /* ** Register a new geometry function for use with the r-tree MATCH operator. */ SQLITE_API int sqlite3_rtree_geometry_callback( sqlite3 *db, /* Register SQL function on this connection */ const char *zGeom, /* Name of the new SQL function */ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ void *pContext /* Extra data associated with the callback */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ) return SQLITE_NOMEM; pGeomCtx->xGeom = xGeom; pGeomCtx->xQueryFunc = 0; pGeomCtx->xDestructor = 0; pGeomCtx->pContext = pContext; return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } /* ** Register a new 2nd-generation geometry function for use with the ** r-tree MATCH operator. */ SQLITE_API int sqlite3_rtree_query_callback( sqlite3 *db, /* Register SQL function on this connection */ const char *zQueryFunc, /* Name of new SQL function */ int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ void *pContext, /* Extra data passed into the callback */ void (*xDestructor)(void*) /* Destructor for the extra data */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ){ if( xDestructor ) xDestructor(pContext); return SQLITE_NOMEM; } pGeomCtx->xGeom = 0; pGeomCtx->xQueryFunc = xQueryFunc; pGeomCtx->xDestructor = xDestructor; pGeomCtx->pContext = pContext; return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } #if !SQLITE_CORE #ifdef _WIN32 __declspec(dllexport) #endif SQLITE_API int sqlite3_rtree_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3RtreeInit(db); } #endif #endif /************** End of rtree.c ***********************************************/ /************** Begin file icu.c *********************************************/ /* ** 2007 May 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $ ** ** This file implements an integration between the ICU library ** ("International Components for Unicode", an open-source library ** for handling unicode data) and SQLite. The integration uses ** ICU to provide the following to SQLite: ** ** * An implementation of the SQL regexp() function (and hence REGEXP ** operator) using the ICU uregex_XX() APIs. ** ** * Implementations of the SQL scalar upper() and lower() functions ** for case mapping. ** ** * Integration of ICU and SQLite collation sequences. ** ** * An implementation of the LIKE operator that uses ICU to ** provide case-independent matching. */ #if !defined(SQLITE_CORE) \ || defined(SQLITE_ENABLE_ICU) \ || defined(SQLITE_ENABLE_ICU_COLLATIONS) /* Include ICU headers */ #include #include #include #include /* #include */ #ifndef SQLITE_CORE /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #else /* #include "sqlite3.h" */ #endif /* ** This function is called when an ICU function called from within ** the implementation of an SQL scalar function returns an error. ** ** The scalar function context passed as the first argument is ** loaded with an error message based on the following two args. */ static void icuFunctionError( sqlite3_context *pCtx, /* SQLite scalar function context */ const char *zName, /* Name of ICU function that failed */ UErrorCode e /* Error code returned by ICU function */ ){ char zBuf[128]; sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e)); zBuf[127] = '\0'; sqlite3_result_error(pCtx, zBuf, -1); } #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) /* ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /* ** Version of sqlite3_free() that is always a function, never a macro. */ static void xFree(void *p){ sqlite3_free(p); } /* ** This lookup table is used to help decode the first byte of ** a multi-byte UTF8 character. It is copied here from SQLite source ** code file utf8.c. */ static const unsigned char icuUtf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define SQLITE_ICU_READ_UTF8(zIn, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = icuUtf8Trans1[c-0xc0]; \ while( (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ } #define SQLITE_ICU_SKIP_UTF8(zIn) \ assert( *zIn ); \ if( *(zIn++)>=0xc0 ){ \ while( (*zIn & 0xc0)==0x80 ){zIn++;} \ } /* ** Compare two UTF-8 strings for equality where the first string is ** a "LIKE" expression. Return true (1) if they are the same and ** false (0) if they are different. */ static int icuLikeCompare( const uint8_t *zPattern, /* LIKE pattern */ const uint8_t *zString, /* The UTF-8 string to compare against */ const UChar32 uEsc /* The escape character */ ){ static const uint32_t MATCH_ONE = (uint32_t)'_'; static const uint32_t MATCH_ALL = (uint32_t)'%'; int prevEscape = 0; /* True if the previous character was uEsc */ while( 1 ){ /* Read (and consume) the next character from the input pattern. */ uint32_t uPattern; SQLITE_ICU_READ_UTF8(zPattern, uPattern); if( uPattern==0 ) break; /* There are now 4 possibilities: ** ** 1. uPattern is an unescaped match-all character "%", ** 2. uPattern is an unescaped match-one character "_", ** 3. uPattern is an unescaped escape character, or ** 4. uPattern is to be handled as an ordinary character */ if( uPattern==MATCH_ALL && !prevEscape && uPattern!=(uint32_t)uEsc ){ /* Case 1. */ uint8_t c; /* Skip any MATCH_ALL or MATCH_ONE characters that follow a ** MATCH_ALL. For each MATCH_ONE, skip one character in the ** test string. */ while( (c=*zPattern) == MATCH_ALL || c == MATCH_ONE ){ if( c==MATCH_ONE ){ if( *zString==0 ) return 0; SQLITE_ICU_SKIP_UTF8(zString); } zPattern++; } if( *zPattern==0 ) return 1; while( *zString ){ if( icuLikeCompare(zPattern, zString, uEsc) ){ return 1; } SQLITE_ICU_SKIP_UTF8(zString); } return 0; }else if( uPattern==MATCH_ONE && !prevEscape && uPattern!=(uint32_t)uEsc ){ /* Case 2. */ if( *zString==0 ) return 0; SQLITE_ICU_SKIP_UTF8(zString); }else if( uPattern==(uint32_t)uEsc && !prevEscape ){ /* Case 3. */ prevEscape = 1; }else{ /* Case 4. */ uint32_t uString; SQLITE_ICU_READ_UTF8(zString, uString); uString = (uint32_t)u_foldCase((UChar32)uString, U_FOLD_CASE_DEFAULT); uPattern = (uint32_t)u_foldCase((UChar32)uPattern, U_FOLD_CASE_DEFAULT); if( uString!=uPattern ){ return 0; } prevEscape = 0; } } return *zString==0; } /* ** Implementation of the like() SQL function. This function implements ** the build-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B, A). If there is an escape character E, ** ** A LIKE B ESCAPE E ** ** is mapped to like(B, A, E). */ static void icuLikeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA = sqlite3_value_text(argv[0]); const unsigned char *zB = sqlite3_value_text(argv[1]); UChar32 uEsc = 0; /* Limit the length of the LIKE or GLOB pattern to avoid problems ** of deep recursion and N*N behavior in patternCompare(). */ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); return; } if( argc==3 ){ /* The escape character string must consist of a single UTF-8 character. ** Otherwise, return an error. */ int nE= sqlite3_value_bytes(argv[2]); const unsigned char *zE = sqlite3_value_text(argv[2]); int i = 0; if( zE==0 ) return; U8_NEXT(zE, i, nE, uEsc); if( i!=nE){ sqlite3_result_error(context, "ESCAPE expression must be a single character", -1); return; } } if( zA && zB ){ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc)); } } /* ** Function to delete compiled regexp objects. Registered as ** a destructor function with sqlite3_set_auxdata(). */ static void icuRegexpDelete(void *p){ URegularExpression *pExpr = (URegularExpression *)p; uregex_close(pExpr); } /* ** Implementation of SQLite REGEXP operator. This scalar function takes ** two arguments. The first is a regular expression pattern to compile ** the second is a string to match against that pattern. If either ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result ** is 1 if the string matches the pattern, or 0 otherwise. ** ** SQLite maps the regexp() function to the regexp() operator such ** that the following two are equivalent: ** ** zString REGEXP zPattern ** regexp(zPattern, zString) ** ** Uses the following ICU regexp APIs: ** ** uregex_open() ** uregex_matches() ** uregex_close() */ static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ UErrorCode status = U_ZERO_ERROR; URegularExpression *pExpr; UBool res; const UChar *zString = sqlite3_value_text16(apArg[1]); (void)nArg; /* Unused parameter */ /* If the left hand side of the regexp operator is NULL, ** then the result is also NULL. */ if( !zString ){ return; } pExpr = sqlite3_get_auxdata(p, 0); if( !pExpr ){ const UChar *zPattern = sqlite3_value_text16(apArg[0]); if( !zPattern ){ return; } pExpr = uregex_open(zPattern, -1, 0, 0, &status); if( U_SUCCESS(status) ){ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete); pExpr = sqlite3_get_auxdata(p, 0); } if( !pExpr ){ icuFunctionError(p, "uregex_open", status); return; } } /* Configure the text that the regular expression operates on. */ uregex_setText(pExpr, zString, -1, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "uregex_setText", status); return; } /* Attempt the match */ res = uregex_matches(pExpr, 0, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "uregex_matches", status); return; } /* Set the text that the regular expression operates on to a NULL ** pointer. This is not really necessary, but it is tidier than ** leaving the regular expression object configured with an invalid ** pointer after this function returns. */ uregex_setText(pExpr, 0, 0, &status); /* Return 1 or 0. */ sqlite3_result_int(p, res ? 1 : 0); } /* ** Implementations of scalar functions for case mapping - upper() and ** lower(). Function upper() converts its input to upper-case (ABC). ** Function lower() converts to lower-case (abc). ** ** ICU provides two types of case mapping, "general" case mapping and ** "language specific". Refer to ICU documentation for the differences ** between the two. ** ** To utilise "general" case mapping, the upper() or lower() scalar ** functions are invoked with one argument: ** ** upper('ABC') -> 'abc' ** lower('abc') -> 'ABC' ** ** To access ICU "language specific" case mapping, upper() or lower() ** should be invoked with two arguments. The second argument is the name ** of the locale to use. Passing an empty string ("") or SQL NULL value ** as the second argument is the same as invoking the 1 argument version ** of upper() or lower(). ** ** lower('I', 'en_us') -> 'i' ** lower('I', 'tr_tr') -> '\u131' (small dotless i) ** ** http://www.icu-project.org/userguide/posix.html#case_mappings */ static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){ const UChar *zInput; /* Pointer to input string */ UChar *zOutput = 0; /* Pointer to output buffer */ int nInput; /* Size of utf-16 input string in bytes */ int nOut; /* Size of output buffer in bytes */ int cnt; int bToUpper; /* True for toupper(), false for tolower() */ UErrorCode status; const char *zLocale = 0; assert(nArg==1 || nArg==2); bToUpper = (sqlite3_user_data(p)!=0); if( nArg==2 ){ zLocale = (const char *)sqlite3_value_text(apArg[1]); } zInput = sqlite3_value_text16(apArg[0]); if( !zInput ){ return; } nOut = nInput = sqlite3_value_bytes16(apArg[0]); if( nOut==0 ){ sqlite3_result_text16(p, "", 0, SQLITE_STATIC); return; } for(cnt=0; cnt<2; cnt++){ UChar *zNew = sqlite3_realloc(zOutput, nOut); if( zNew==0 ){ sqlite3_free(zOutput); sqlite3_result_error_nomem(p); return; } zOutput = zNew; status = U_ZERO_ERROR; if( bToUpper ){ nOut = 2*u_strToUpper(zOutput,nOut/2,zInput,nInput/2,zLocale,&status); }else{ nOut = 2*u_strToLower(zOutput,nOut/2,zInput,nInput/2,zLocale,&status); } if( U_SUCCESS(status) ){ sqlite3_result_text16(p, zOutput, nOut, xFree); }else if( status==U_BUFFER_OVERFLOW_ERROR ){ assert( cnt==0 ); continue; }else{ icuFunctionError(p, bToUpper ? "u_strToUpper" : "u_strToLower", status); } return; } assert( 0 ); /* Unreachable */ } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */ /* ** Collation sequence destructor function. The pCtx argument points to ** a UCollator structure previously allocated using ucol_open(). */ static void icuCollationDel(void *pCtx){ UCollator *p = (UCollator *)pCtx; ucol_close(p); } /* ** Collation sequence comparison function. The pCtx argument points to ** a UCollator structure previously allocated using ucol_open(). */ static int icuCollationColl( void *pCtx, int nLeft, const void *zLeft, int nRight, const void *zRight ){ UCollationResult res; UCollator *p = (UCollator *)pCtx; res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2); switch( res ){ case UCOL_LESS: return -1; case UCOL_GREATER: return +1; case UCOL_EQUAL: return 0; } assert(!"Unexpected return value from ucol_strcoll()"); return 0; } /* ** Implementation of the scalar function icu_load_collation(). ** ** This scalar function is used to add ICU collation based collation ** types to an SQLite database connection. It is intended to be called ** as follows: ** ** SELECT icu_load_collation(, ); ** ** Where is a string containing an ICU locale identifier (i.e. ** "en_AU", "tr_TR" etc.) and is the name of the ** collation sequence to create. */ static void icuLoadCollation( sqlite3_context *p, int nArg, sqlite3_value **apArg ){ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p); UErrorCode status = U_ZERO_ERROR; const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ const char *zName; /* SQL Collation sequence name (eg. "japanese") */ UCollator *pUCollator; /* ICU library collation object */ int rc; /* Return code from sqlite3_create_collation_x() */ assert(nArg==2); (void)nArg; /* Unused parameter */ zLocale = (const char *)sqlite3_value_text(apArg[0]); zName = (const char *)sqlite3_value_text(apArg[1]); if( !zLocale || !zName ){ return; } pUCollator = ucol_open(zLocale, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "ucol_open", status); return; } assert(p); rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator, icuCollationColl, icuCollationDel ); if( rc!=SQLITE_OK ){ ucol_close(pUCollator); sqlite3_result_error(p, "Error registering collation function", -1); } } /* ** Register the ICU extension functions with database db. */ SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){ # define SQLITEICU_EXTRAFLAGS (SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS) static const struct IcuScalar { const char *zName; /* Function name */ unsigned char nArg; /* Number of arguments */ unsigned int enc; /* Optimal text encoding */ unsigned char iContext; /* sqlite3_user_data() context */ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } scalars[] = { {"icu_load_collation",2,SQLITE_UTF8|SQLITE_DIRECTONLY,1, icuLoadCollation}, #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) {"regexp", 2, SQLITE_ANY|SQLITEICU_EXTRAFLAGS, 0, icuRegexpFunc}, {"lower", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"lower", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"like", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc}, {"like", 3, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc}, #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */ }; int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){ const struct IcuScalar *p = &scalars[i]; rc = sqlite3_create_function( db, p->zName, p->nArg, p->enc, p->iContext ? (void*)db : (void*)0, p->xFunc, 0, 0 ); } return rc; } #if !SQLITE_CORE #ifdef _WIN32 __declspec(dllexport) #endif SQLITE_API int sqlite3_icu_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3IcuInit(db); } #endif #endif /************** End of icu.c *************************************************/ /************** Begin file fts3_icu.c ****************************************/ /* ** 2007 June 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements a tokenizer for fts3 based on the ICU library. */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #ifdef SQLITE_ENABLE_ICU /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ #include /* #include */ /* #include */ #include typedef struct IcuTokenizer IcuTokenizer; typedef struct IcuCursor IcuCursor; struct IcuTokenizer { sqlite3_tokenizer base; char *zLocale; }; struct IcuCursor { sqlite3_tokenizer_cursor base; UBreakIterator *pIter; /* ICU break-iterator object */ int nChar; /* Number of UChar elements in pInput */ UChar *aChar; /* Copy of input using utf-16 encoding */ int *aOffset; /* Offsets of each character in utf-8 input */ int nBuffer; char *zBuffer; int iToken; }; /* ** Create a new tokenizer instance. */ static int icuCreate( int argc, /* Number of entries in argv[] */ const char * const *argv, /* Tokenizer creation arguments */ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ ){ IcuTokenizer *p; int n = 0; if( argc>0 ){ n = strlen(argv[0])+1; } p = (IcuTokenizer *)sqlite3_malloc64(sizeof(IcuTokenizer)+n); if( !p ){ return SQLITE_NOMEM; } memset(p, 0, sizeof(IcuTokenizer)); if( n ){ p->zLocale = (char *)&p[1]; memcpy(p->zLocale, argv[0], n); } *ppTokenizer = (sqlite3_tokenizer *)p; return SQLITE_OK; } /* ** Destroy a tokenizer */ static int icuDestroy(sqlite3_tokenizer *pTokenizer){ IcuTokenizer *p = (IcuTokenizer *)pTokenizer; sqlite3_free(p); return SQLITE_OK; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is pInput[0..nBytes-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int icuOpen( sqlite3_tokenizer *pTokenizer, /* The tokenizer */ const char *zInput, /* Input string */ int nInput, /* Length of zInput in bytes */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ ){ IcuTokenizer *p = (IcuTokenizer *)pTokenizer; IcuCursor *pCsr; const int32_t opt = U_FOLD_CASE_DEFAULT; UErrorCode status = U_ZERO_ERROR; int nChar; UChar32 c; int iInput = 0; int iOut = 0; *ppCursor = 0; if( zInput==0 ){ nInput = 0; zInput = ""; }else if( nInput<0 ){ nInput = strlen(zInput); } nChar = nInput+1; pCsr = (IcuCursor *)sqlite3_malloc64( sizeof(IcuCursor) + /* IcuCursor */ ((nChar+3)&~3) * sizeof(UChar) + /* IcuCursor.aChar[] */ (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */ ); if( !pCsr ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(IcuCursor)); pCsr->aChar = (UChar *)&pCsr[1]; pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3]; pCsr->aOffset[iOut] = iInput; U8_NEXT(zInput, iInput, nInput, c); while( c>0 ){ int isError = 0; c = u_foldCase(c, opt); U16_APPEND(pCsr->aChar, iOut, nChar, c, isError); if( isError ){ sqlite3_free(pCsr); return SQLITE_ERROR; } pCsr->aOffset[iOut] = iInput; if( iInputpIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status); if( !U_SUCCESS(status) ){ sqlite3_free(pCsr); return SQLITE_ERROR; } pCsr->nChar = iOut; ubrk_first(pCsr->pIter); *ppCursor = (sqlite3_tokenizer_cursor *)pCsr; return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to icuOpen(). */ static int icuClose(sqlite3_tokenizer_cursor *pCursor){ IcuCursor *pCsr = (IcuCursor *)pCursor; ubrk_close(pCsr->pIter); sqlite3_free(pCsr->zBuffer); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Extract the next token from a tokenization cursor. */ static int icuNext( sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ const char **ppToken, /* OUT: *ppToken is the token text */ int *pnBytes, /* OUT: Number of bytes in token */ int *piStartOffset, /* OUT: Starting offset of token */ int *piEndOffset, /* OUT: Ending offset of token */ int *piPosition /* OUT: Position integer of token */ ){ IcuCursor *pCsr = (IcuCursor *)pCursor; int iStart = 0; int iEnd = 0; int nByte = 0; while( iStart==iEnd ){ UChar32 c; iStart = ubrk_current(pCsr->pIter); iEnd = ubrk_next(pCsr->pIter); if( iEnd==UBRK_DONE ){ return SQLITE_DONE; } while( iStartaChar, iWhite, pCsr->nChar, c); if( u_isspace(c) ){ iStart = iWhite; }else{ break; } } assert(iStart<=iEnd); } do { UErrorCode status = U_ZERO_ERROR; if( nByte ){ char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte); if( !zNew ){ return SQLITE_NOMEM; } pCsr->zBuffer = zNew; pCsr->nBuffer = nByte; } u_strToUTF8( pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */ &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */ &status /* Output success/failure */ ); } while( nByte>pCsr->nBuffer ); *ppToken = pCsr->zBuffer; *pnBytes = nByte; *piStartOffset = pCsr->aOffset[iStart]; *piEndOffset = pCsr->aOffset[iEnd]; *piPosition = pCsr->iToken++; return SQLITE_OK; } /* ** The set of routines that implement the simple tokenizer */ static const sqlite3_tokenizer_module icuTokenizerModule = { 0, /* iVersion */ icuCreate, /* xCreate */ icuDestroy, /* xCreate */ icuOpen, /* xOpen */ icuClose, /* xClose */ icuNext, /* xNext */ 0, /* xLanguageid */ }; /* ** Set *ppModule to point at the implementation of the ICU tokenizer. */ SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule( sqlite3_tokenizer_module const**ppModule ){ *ppModule = &icuTokenizerModule; } #endif /* defined(SQLITE_ENABLE_ICU) */ #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_icu.c ********************************************/ /************** Begin file sqlite3rbu.c **************************************/ /* ** 2014 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** ** OVERVIEW ** ** The RBU extension requires that the RBU update be packaged as an ** SQLite database. The tables it expects to find are described in ** sqlite3rbu.h. Essentially, for each table xyz in the target database ** that the user wishes to write to, a corresponding data_xyz table is ** created in the RBU database and populated with one row for each row to ** update, insert or delete from the target table. ** ** The update proceeds in three stages: ** ** 1) The database is updated. The modified database pages are written ** to a *-oal file. A *-oal file is just like a *-wal file, except ** that it is named "-oal" instead of "-wal". ** Because regular SQLite clients do not look for file named ** "-oal", they go on using the original database in ** rollback mode while the *-oal file is being generated. ** ** During this stage RBU does not update the database by writing ** directly to the target tables. Instead it creates "imposter" ** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses ** to update each b-tree individually. All updates required by each ** b-tree are completed before moving on to the next, and all ** updates are done in sorted key order. ** ** 2) The "-oal" file is moved to the equivalent "-wal" ** location using a call to rename(2). Before doing this the RBU ** module takes an EXCLUSIVE lock on the database file, ensuring ** that there are no other active readers. ** ** Once the EXCLUSIVE lock is released, any other database readers ** detect the new *-wal file and read the database in wal mode. At ** this point they see the new version of the database - including ** the updates made as part of the RBU update. ** ** 3) The new *-wal file is checkpointed. This proceeds in the same way ** as a regular database checkpoint, except that a single frame is ** checkpointed each time sqlite3rbu_step() is called. If the RBU ** handle is closed before the entire *-wal file is checkpointed, ** the checkpoint progress is saved in the RBU database and the ** checkpoint can be resumed by another RBU client at some point in ** the future. ** ** POTENTIAL PROBLEMS ** ** The rename() call might not be portable. And RBU is not currently ** syncing the directory after renaming the file. ** ** When state is saved, any commit to the *-oal file and the commit to ** the RBU update database are not atomic. So if the power fails at the ** wrong moment they might get out of sync. As the main database will be ** committed before the RBU update database this will likely either just ** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE ** constraint violations). ** ** If some client does modify the target database mid RBU update, or some ** other error occurs, the RBU extension will keep throwing errors. It's ** not really clear how to get out of this state. The system could just ** by delete the RBU update database and *-oal file and have the device ** download the update again and start over. ** ** At present, for an UPDATE, both the new.* and old.* records are ** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all ** fields are collected. This means we're probably writing a lot more ** data to disk when saving the state of an ongoing update to the RBU ** update database than is strictly necessary. ** */ /* #include */ /* #include */ /* #include */ /* #include "sqlite3.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) /************** Include sqlite3rbu.h in the middle of sqlite3rbu.c ***********/ /************** Begin file sqlite3rbu.h **************************************/ /* ** 2014 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the public interface for the RBU extension. */ /* ** SUMMARY ** ** Writing a transaction containing a large number of operations on ** b-tree indexes that are collectively larger than the available cache ** memory can be very inefficient. ** ** The problem is that in order to update a b-tree, the leaf page (at least) ** containing the entry being inserted or deleted must be modified. If the ** working set of leaves is larger than the available cache memory, then a ** single leaf that is modified more than once as part of the transaction ** may be loaded from or written to the persistent media multiple times. ** Additionally, because the index updates are likely to be applied in ** random order, access to pages within the database is also likely to be in ** random order, which is itself quite inefficient. ** ** One way to improve the situation is to sort the operations on each index ** by index key before applying them to the b-tree. This leads to an IO ** pattern that resembles a single linear scan through the index b-tree, ** and all but guarantees each modified leaf page is loaded and stored ** exactly once. SQLite uses this trick to improve the performance of ** CREATE INDEX commands. This extension allows it to be used to improve ** the performance of large transactions on existing databases. ** ** Additionally, this extension allows the work involved in writing the ** large transaction to be broken down into sub-transactions performed ** sequentially by separate processes. This is useful if the system cannot ** guarantee that a single update process will run for long enough to apply ** the entire update, for example because the update is being applied on a ** mobile device that is frequently rebooted. Even after the writer process ** has committed one or more sub-transactions, other database clients continue ** to read from the original database snapshot. In other words, partially ** applied transactions are not visible to other clients. ** ** "RBU" stands for "Resumable Bulk Update". As in a large database update ** transmitted via a wireless network to a mobile device. A transaction ** applied using this extension is hence refered to as an "RBU update". ** ** ** LIMITATIONS ** ** An "RBU update" transaction is subject to the following limitations: ** ** * The transaction must consist of INSERT, UPDATE and DELETE operations ** only. ** ** * INSERT statements may not use any default values. ** ** * UPDATE and DELETE statements must identify their target rows by ** non-NULL PRIMARY KEY values. Rows with NULL values stored in PRIMARY ** KEY fields may not be updated or deleted. If the table being written ** has no PRIMARY KEY, affected rows must be identified by rowid. ** ** * UPDATE statements may not modify PRIMARY KEY columns. ** ** * No triggers will be fired. ** ** * No foreign key violations are detected or reported. ** ** * CHECK constraints are not enforced. ** ** * No constraint handling mode except for "OR ROLLBACK" is supported. ** ** ** PREPARATION ** ** An "RBU update" is stored as a separate SQLite database. A database ** containing an RBU update is an "RBU database". For each table in the ** target database to be updated, the RBU database should contain a table ** named "data_" containing the same set of columns as the ** target table, and one more - "rbu_control". The data_% table should ** have no PRIMARY KEY or UNIQUE constraints, but each column should have ** the same type as the corresponding column in the target database. ** The "rbu_control" column should have no type at all. For example, if ** the target database contains: ** ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c UNIQUE); ** ** Then the RBU database should contain: ** ** CREATE TABLE data_t1(a INTEGER, b TEXT, c, rbu_control); ** ** The order of the columns in the data_% table does not matter. ** ** Instead of a regular table, the RBU database may also contain virtual ** tables or views named using the data_ naming scheme. ** ** Instead of the plain data_ naming scheme, RBU database tables ** may also be named data_, where is any sequence ** of zero or more numeric characters (0-9). This can be significant because ** tables within the RBU database are always processed in order sorted by ** name. By judicious selection of the portion of the names ** of the RBU tables the user can therefore control the order in which they ** are processed. This can be useful, for example, to ensure that "external ** content" FTS4 tables are updated before their underlying content tables. ** ** If the target database table is a virtual table or a table that has no ** PRIMARY KEY declaration, the data_% table must also contain a column ** named "rbu_rowid". This column is mapped to the table's implicit primary ** key column - "rowid". Virtual tables for which the "rowid" column does ** not function like a primary key value cannot be updated using RBU. For ** example, if the target db contains either of the following: ** ** CREATE VIRTUAL TABLE x1 USING fts3(a, b); ** CREATE TABLE x1(a, b) ** ** then the RBU database should contain: ** ** CREATE TABLE data_x1(a, b, rbu_rowid, rbu_control); ** ** All non-hidden columns (i.e. all columns matched by "SELECT *") of the ** target table must be present in the input table. For virtual tables, ** hidden columns are optional - they are updated by RBU if present in ** the input table, or not otherwise. For example, to write to an fts4 ** table with a hidden languageid column such as: ** ** CREATE VIRTUAL TABLE ft1 USING fts4(a, b, languageid='langid'); ** ** Either of the following input table schemas may be used: ** ** CREATE TABLE data_ft1(a, b, langid, rbu_rowid, rbu_control); ** CREATE TABLE data_ft1(a, b, rbu_rowid, rbu_control); ** ** For each row to INSERT into the target database as part of the RBU ** update, the corresponding data_% table should contain a single record ** with the "rbu_control" column set to contain integer value 0. The ** other columns should be set to the values that make up the new record ** to insert. ** ** If the target database table has an INTEGER PRIMARY KEY, it is not ** possible to insert a NULL value into the IPK column. Attempting to ** do so results in an SQLITE_MISMATCH error. ** ** For each row to DELETE from the target database as part of the RBU ** update, the corresponding data_% table should contain a single record ** with the "rbu_control" column set to contain integer value 1. The ** real primary key values of the row to delete should be stored in the ** corresponding columns of the data_% table. The values stored in the ** other columns are not used. ** ** For each row to UPDATE from the target database as part of the RBU ** update, the corresponding data_% table should contain a single record ** with the "rbu_control" column set to contain a value of type text. ** The real primary key values identifying the row to update should be ** stored in the corresponding columns of the data_% table row, as should ** the new values of all columns being update. The text value in the ** "rbu_control" column must contain the same number of characters as ** there are columns in the target database table, and must consist entirely ** of 'x' and '.' characters (or in some special cases 'd' - see below). For ** each column that is being updated, the corresponding character is set to ** 'x'. For those that remain as they are, the corresponding character of the ** rbu_control value should be set to '.'. For example, given the tables ** above, the update statement: ** ** UPDATE t1 SET c = 'usa' WHERE a = 4; ** ** is represented by the data_t1 row created by: ** ** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..x'); ** ** Instead of an 'x' character, characters of the rbu_control value specified ** for UPDATEs may also be set to 'd'. In this case, instead of updating the ** target table with the value stored in the corresponding data_% column, the ** user-defined SQL function "rbu_delta()" is invoked and the result stored in ** the target table column. rbu_delta() is invoked with two arguments - the ** original value currently stored in the target table column and the ** value specified in the data_xxx table. ** ** For example, this row: ** ** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..d'); ** ** is similar to an UPDATE statement such as: ** ** UPDATE t1 SET c = rbu_delta(c, 'usa') WHERE a = 4; ** ** Finally, if an 'f' character appears in place of a 'd' or 's' in an ** ota_control string, the contents of the data_xxx table column is assumed ** to be a "fossil delta" - a patch to be applied to a blob value in the ** format used by the fossil source-code management system. In this case ** the existing value within the target database table must be of type BLOB. ** It is replaced by the result of applying the specified fossil delta to ** itself. ** ** If the target database table is a virtual table or a table with no PRIMARY ** KEY, the rbu_control value should not include a character corresponding ** to the rbu_rowid value. For example, this: ** ** INSERT INTO data_ft1(a, b, rbu_rowid, rbu_control) ** VALUES(NULL, 'usa', 12, '.x'); ** ** causes a result similar to: ** ** UPDATE ft1 SET b = 'usa' WHERE rowid = 12; ** ** The data_xxx tables themselves should have no PRIMARY KEY declarations. ** However, RBU is more efficient if reading the rows in from each data_xxx ** table in "rowid" order is roughly the same as reading them sorted by ** the PRIMARY KEY of the corresponding target database table. In other ** words, rows should be sorted using the destination table PRIMARY KEY ** fields before they are inserted into the data_xxx tables. ** ** USAGE ** ** The API declared below allows an application to apply an RBU update ** stored on disk to an existing target database. Essentially, the ** application: ** ** 1) Opens an RBU handle using the sqlite3rbu_open() function. ** ** 2) Registers any required virtual table modules with the database ** handle returned by sqlite3rbu_db(). Also, if required, register ** the rbu_delta() implementation. ** ** 3) Calls the sqlite3rbu_step() function one or more times on ** the new handle. Each call to sqlite3rbu_step() performs a single ** b-tree operation, so thousands of calls may be required to apply ** a complete update. ** ** 4) Calls sqlite3rbu_close() to close the RBU update handle. If ** sqlite3rbu_step() has been called enough times to completely ** apply the update to the target database, then the RBU database ** is marked as fully applied. Otherwise, the state of the RBU ** update application is saved in the RBU database for later ** resumption. ** ** See comments below for more detail on APIs. ** ** If an update is only partially applied to the target database by the ** time sqlite3rbu_close() is called, various state information is saved ** within the RBU database. This allows subsequent processes to automatically ** resume the RBU update from where it left off. ** ** To remove all RBU extension state information, returning an RBU database ** to its original contents, it is sufficient to drop all tables that begin ** with the prefix "rbu_" ** ** DATABASE LOCKING ** ** An RBU update may not be applied to a database in WAL mode. Attempting ** to do so is an error (SQLITE_ERROR). ** ** While an RBU handle is open, a SHARED lock may be held on the target ** database file. This means it is possible for other clients to read the ** database, but not to write it. ** ** If an RBU update is started and then suspended before it is completed, ** then an external client writes to the database, then attempting to resume ** the suspended RBU update is also an error (SQLITE_BUSY). */ #ifndef _SQLITE3RBU_H #define _SQLITE3RBU_H /* #include "sqlite3.h" ** Required for error code definitions ** */ #if 0 extern "C" { #endif typedef struct sqlite3rbu sqlite3rbu; /* ** Open an RBU handle. ** ** Argument zTarget is the path to the target database. Argument zRbu is ** the path to the RBU database. Each call to this function must be matched ** by a call to sqlite3rbu_close(). When opening the databases, RBU passes ** the SQLITE_CONFIG_URI flag to sqlite3_open_v2(). So if either zTarget ** or zRbu begin with "file:", it will be interpreted as an SQLite ** database URI, not a regular file name. ** ** If the zState argument is passed a NULL value, the RBU extension stores ** the current state of the update (how many rows have been updated, which ** indexes are yet to be updated etc.) within the RBU database itself. This ** can be convenient, as it means that the RBU application does not need to ** organize removing a separate state file after the update is concluded. ** Or, if zState is non-NULL, it must be a path to a database file in which ** the RBU extension can store the state of the update. ** ** When resuming an RBU update, the zState argument must be passed the same ** value as when the RBU update was started. ** ** Once the RBU update is finished, the RBU extension does not ** automatically remove any zState database file, even if it created it. ** ** By default, RBU uses the default VFS to access the files on disk. To ** use a VFS other than the default, an SQLite "file:" URI containing a ** "vfs=..." option may be passed as the zTarget option. ** ** IMPORTANT NOTE FOR ZIPVFS USERS: The RBU extension works with all of ** SQLite's built-in VFSs, including the multiplexor VFS. However it does ** not work out of the box with zipvfs. Refer to the comment describing ** the zipvfs_create_vfs() API below for details on using RBU with zipvfs. */ SQLITE_API sqlite3rbu *sqlite3rbu_open( const char *zTarget, const char *zRbu, const char *zState ); /* ** Open an RBU handle to perform an RBU vacuum on database file zTarget. ** An RBU vacuum is similar to SQLite's built-in VACUUM command, except ** that it can be suspended and resumed like an RBU update. ** ** The second argument to this function identifies a database in which ** to store the state of the RBU vacuum operation if it is suspended. The ** first time sqlite3rbu_vacuum() is called, to start an RBU vacuum ** operation, the state database should either not exist or be empty ** (contain no tables). If an RBU vacuum is suspended by calling ** sqlite3rbu_close() on the RBU handle before sqlite3rbu_step() has ** returned SQLITE_DONE, the vacuum state is stored in the state database. ** The vacuum can be resumed by calling this function to open a new RBU ** handle specifying the same target and state databases. ** ** If the second argument passed to this function is NULL, then the ** name of the state database is "-vacuum", where ** is the name of the target database file. In this case, on UNIX, if the ** state database is not already present in the file-system, it is created ** with the same permissions as the target db is made. ** ** With an RBU vacuum, it is an SQLITE_MISUSE error if the name of the ** state database ends with "-vactmp". This name is reserved for internal ** use. ** ** This function does not delete the state database after an RBU vacuum ** is completed, even if it created it. However, if the call to ** sqlite3rbu_close() returns any value other than SQLITE_OK, the contents ** of the state tables within the state database are zeroed. This way, ** the next call to sqlite3rbu_vacuum() opens a handle that starts a ** new RBU vacuum operation. ** ** As with sqlite3rbu_open(), Zipvfs users should rever to the comment ** describing the sqlite3rbu_create_vfs() API function below for ** a description of the complications associated with using RBU with ** zipvfs databases. */ SQLITE_API sqlite3rbu *sqlite3rbu_vacuum( const char *zTarget, const char *zState ); /* ** Configure a limit for the amount of temp space that may be used by ** the RBU handle passed as the first argument. The new limit is specified ** in bytes by the second parameter. If it is positive, the limit is updated. ** If the second parameter to this function is passed zero, then the limit ** is removed entirely. If the second parameter is negative, the limit is ** not modified (this is useful for querying the current limit). ** ** In all cases the returned value is the current limit in bytes (zero ** indicates unlimited). ** ** If the temp space limit is exceeded during operation, an SQLITE_FULL ** error is returned. */ SQLITE_API sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu*, sqlite3_int64); /* ** Return the current amount of temp file space, in bytes, currently used by ** the RBU handle passed as the only argument. */ SQLITE_API sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu*); /* ** Internally, each RBU connection uses a separate SQLite database ** connection to access the target and rbu update databases. This ** API allows the application direct access to these database handles. ** ** The first argument passed to this function must be a valid, open, RBU ** handle. The second argument should be passed zero to access the target ** database handle, or non-zero to access the rbu update database handle. ** Accessing the underlying database handles may be useful in the ** following scenarios: ** ** * If any target tables are virtual tables, it may be necessary to ** call sqlite3_create_module() on the target database handle to ** register the required virtual table implementations. ** ** * If the data_xxx tables in the RBU source database are virtual ** tables, the application may need to call sqlite3_create_module() on ** the rbu update db handle to any required virtual table ** implementations. ** ** * If the application uses the "rbu_delta()" feature described above, ** it must use sqlite3_create_function() or similar to register the ** rbu_delta() implementation with the target database handle. ** ** If an error has occurred, either while opening or stepping the RBU object, ** this function may return NULL. The error code and message may be collected ** when sqlite3rbu_close() is called. ** ** Database handles returned by this function remain valid until the next ** call to any sqlite3rbu_xxx() function other than sqlite3rbu_db(). */ SQLITE_API sqlite3 *sqlite3rbu_db(sqlite3rbu*, int bRbu); /* ** Do some work towards applying the RBU update to the target db. ** ** Return SQLITE_DONE if the update has been completely applied, or ** SQLITE_OK if no error occurs but there remains work to do to apply ** the RBU update. If an error does occur, some other error code is ** returned. ** ** Once a call to sqlite3rbu_step() has returned a value other than ** SQLITE_OK, all subsequent calls on the same RBU handle are no-ops ** that immediately return the same value. */ SQLITE_API int sqlite3rbu_step(sqlite3rbu *pRbu); /* ** Force RBU to save its state to disk. ** ** If a power failure or application crash occurs during an update, following ** system recovery RBU may resume the update from the point at which the state ** was last saved. In other words, from the most recent successful call to ** sqlite3rbu_close() or this function. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_API int sqlite3rbu_savestate(sqlite3rbu *pRbu); /* ** Close an RBU handle. ** ** If the RBU update has been completely applied, mark the RBU database ** as fully applied. Otherwise, assuming no error has occurred, save the ** current state of the RBU update appliation to the RBU database. ** ** If an error has already occurred as part of an sqlite3rbu_step() ** or sqlite3rbu_open() call, or if one occurs within this function, an ** SQLite error code is returned. Additionally, if pzErrmsg is not NULL, ** *pzErrmsg may be set to point to a buffer containing a utf-8 formatted ** English language error message. It is the responsibility of the caller to ** eventually free any such buffer using sqlite3_free(). ** ** Otherwise, if no error occurs, this function returns SQLITE_OK if the ** update has been partially applied, or SQLITE_DONE if it has been ** completely applied. */ SQLITE_API int sqlite3rbu_close(sqlite3rbu *pRbu, char **pzErrmsg); /* ** Return the total number of key-value operations (inserts, deletes or ** updates) that have been performed on the target database since the ** current RBU update was started. */ SQLITE_API sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu); /* ** Obtain permyriadage (permyriadage is to 10000 as percentage is to 100) ** progress indications for the two stages of an RBU update. This API may ** be useful for driving GUI progress indicators and similar. ** ** An RBU update is divided into two stages: ** ** * Stage 1, in which changes are accumulated in an oal/wal file, and ** * Stage 2, in which the contents of the wal file are copied into the ** main database. ** ** The update is visible to non-RBU clients during stage 2. During stage 1 ** non-RBU reader clients may see the original database. ** ** If this API is called during stage 2 of the update, output variable ** (*pnOne) is set to 10000 to indicate that stage 1 has finished and (*pnTwo) ** to a value between 0 and 10000 to indicate the permyriadage progress of ** stage 2. A value of 5000 indicates that stage 2 is half finished, ** 9000 indicates that it is 90% finished, and so on. ** ** If this API is called during stage 1 of the update, output variable ** (*pnTwo) is set to 0 to indicate that stage 2 has not yet started. The ** value to which (*pnOne) is set depends on whether or not the RBU ** database contains an "rbu_count" table. The rbu_count table, if it ** exists, must contain the same columns as the following: ** ** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID; ** ** There must be one row in the table for each source (data_xxx) table within ** the RBU database. The 'tbl' column should contain the name of the source ** table. The 'cnt' column should contain the number of rows within the ** source table. ** ** If the rbu_count table is present and populated correctly and this ** API is called during stage 1, the *pnOne output variable is set to the ** permyriadage progress of the same stage. If the rbu_count table does ** not exist, then (*pnOne) is set to -1 during stage 1. If the rbu_count ** table exists but is not correctly populated, the value of the *pnOne ** output variable during stage 1 is undefined. */ SQLITE_API void sqlite3rbu_bp_progress(sqlite3rbu *pRbu, int *pnOne, int*pnTwo); /* ** Obtain an indication as to the current stage of an RBU update or vacuum. ** This function always returns one of the SQLITE_RBU_STATE_XXX constants ** defined in this file. Return values should be interpreted as follows: ** ** SQLITE_RBU_STATE_OAL: ** RBU is currently building a *-oal file. The next call to sqlite3rbu_step() ** may either add further data to the *-oal file, or compute data that will ** be added by a subsequent call. ** ** SQLITE_RBU_STATE_MOVE: ** RBU has finished building the *-oal file. The next call to sqlite3rbu_step() ** will move the *-oal file to the equivalent *-wal path. If the current ** operation is an RBU update, then the updated version of the database ** file will become visible to ordinary SQLite clients following the next ** call to sqlite3rbu_step(). ** ** SQLITE_RBU_STATE_CHECKPOINT: ** RBU is currently performing an incremental checkpoint. The next call to ** sqlite3rbu_step() will copy a page of data from the *-wal file into ** the target database file. ** ** SQLITE_RBU_STATE_DONE: ** The RBU operation has finished. Any subsequent calls to sqlite3rbu_step() ** will immediately return SQLITE_DONE. ** ** SQLITE_RBU_STATE_ERROR: ** An error has occurred. Any subsequent calls to sqlite3rbu_step() will ** immediately return the SQLite error code associated with the error. */ #define SQLITE_RBU_STATE_OAL 1 #define SQLITE_RBU_STATE_MOVE 2 #define SQLITE_RBU_STATE_CHECKPOINT 3 #define SQLITE_RBU_STATE_DONE 4 #define SQLITE_RBU_STATE_ERROR 5 SQLITE_API int sqlite3rbu_state(sqlite3rbu *pRbu); /* ** As part of applying an RBU update or performing an RBU vacuum operation, ** the system must at one point move the *-oal file to the equivalent *-wal ** path. Normally, it does this by invoking POSIX function rename(2) directly. ** Except on WINCE platforms, where it uses win32 API MoveFileW(). This ** function may be used to register a callback that the RBU module will invoke ** instead of one of these APIs. ** ** If a callback is registered with an RBU handle, it invokes it instead ** of rename(2) when it needs to move a file within the file-system. The ** first argument passed to the xRename() callback is a copy of the second ** argument (pArg) passed to this function. The second is the full path ** to the file to move and the third the full path to which it should be ** moved. The callback function should return SQLITE_OK to indicate ** success. If an error occurs, it should return an SQLite error code. ** In this case the RBU operation will be abandoned and the error returned ** to the RBU user. ** ** Passing a NULL pointer in place of the xRename argument to this function ** restores the default behaviour. */ SQLITE_API void sqlite3rbu_rename_handler( sqlite3rbu *pRbu, void *pArg, int (*xRename)(void *pArg, const char *zOld, const char *zNew) ); /* ** Create an RBU VFS named zName that accesses the underlying file-system ** via existing VFS zParent. Or, if the zParent parameter is passed NULL, ** then the new RBU VFS uses the default system VFS to access the file-system. ** The new object is registered as a non-default VFS with SQLite before ** returning. ** ** Part of the RBU implementation uses a custom VFS object. Usually, this ** object is created and deleted automatically by RBU. ** ** The exception is for applications that also use zipvfs. In this case, ** the custom VFS must be explicitly created by the user before the RBU ** handle is opened. The RBU VFS should be installed so that the zipvfs ** VFS uses the RBU VFS, which in turn uses any other VFS layers in use ** (for example multiplexor) to access the file-system. For example, ** to assemble an RBU enabled VFS stack that uses both zipvfs and ** multiplexor (error checking omitted): ** ** // Create a VFS named "multiplex" (not the default). ** sqlite3_multiplex_initialize(0, 0); ** ** // Create an rbu VFS named "rbu" that uses multiplexor. If the ** // second argument were replaced with NULL, the "rbu" VFS would ** // access the file-system via the system default VFS, bypassing the ** // multiplexor. ** sqlite3rbu_create_vfs("rbu", "multiplex"); ** ** // Create a zipvfs VFS named "zipvfs" that uses rbu. ** zipvfs_create_vfs_v3("zipvfs", "rbu", 0, xCompressorAlgorithmDetector); ** ** // Make zipvfs the default VFS. ** sqlite3_vfs_register(sqlite3_vfs_find("zipvfs"), 1); ** ** Because the default VFS created above includes a RBU functionality, it ** may be used by RBU clients. Attempting to use RBU with a zipvfs VFS stack ** that does not include the RBU layer results in an error. ** ** The overhead of adding the "rbu" VFS to the system is negligible for ** non-RBU users. There is no harm in an application accessing the ** file-system via "rbu" all the time, even if it only uses RBU functionality ** occasionally. */ SQLITE_API int sqlite3rbu_create_vfs(const char *zName, const char *zParent); /* ** Deregister and destroy an RBU vfs created by an earlier call to ** sqlite3rbu_create_vfs(). ** ** VFS objects are not reference counted. If a VFS object is destroyed ** before all database handles that use it have been closed, the results ** are undefined. */ SQLITE_API void sqlite3rbu_destroy_vfs(const char *zName); #if 0 } /* end of the 'extern "C"' block */ #endif #endif /* _SQLITE3RBU_H */ /************** End of sqlite3rbu.h ******************************************/ /************** Continuing where we left off in sqlite3rbu.c *****************/ #if defined(_WIN32_WCE) /* #include "windows.h" */ #endif /* Maximum number of prepared UPDATE statements held by this module */ #define SQLITE_RBU_UPDATE_CACHESIZE 16 /* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM ** to enable checksum verification. */ #ifndef RBU_ENABLE_DELTA_CKSUM # define RBU_ENABLE_DELTA_CKSUM 0 #endif /* ** Swap two objects of type TYPE. */ #if !defined(SQLITE_AMALGAMATION) # define SQ__SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} #endif /* ** Name of the URI option that causes RBU to take an exclusive lock as ** part of the incremental checkpoint operation. */ #define RBU_EXCLUSIVE_CHECKPOINT "rbu_exclusive_checkpoint" /* ** The rbu_state table is used to save the state of a partially applied ** update so that it can be resumed later. The table consists of integer ** keys mapped to values as follows: ** ** RBU_STATE_STAGE: ** May be set to integer values 1, 2, 4 or 5. As follows: ** 1: the *-rbu file is currently under construction. ** 2: the *-rbu file has been constructed, but not yet moved ** to the *-wal path. ** 4: the checkpoint is underway. ** 5: the rbu update has been checkpointed. ** ** RBU_STATE_TBL: ** Only valid if STAGE==1. The target database name of the table ** currently being written. ** ** RBU_STATE_IDX: ** Only valid if STAGE==1. The target database name of the index ** currently being written, or NULL if the main table is currently being ** updated. ** ** RBU_STATE_ROW: ** Only valid if STAGE==1. Number of rows already processed for the current ** table/index. ** ** RBU_STATE_PROGRESS: ** Trbul number of sqlite3rbu_step() calls made so far as part of this ** rbu update. ** ** RBU_STATE_CKPT: ** Valid if STAGE==4. The 64-bit checksum associated with the wal-index ** header created by recovering the *-wal file. This is used to detect ** cases when another client appends frames to the *-wal file in the ** middle of an incremental checkpoint (an incremental checkpoint cannot ** be continued if this happens). ** ** RBU_STATE_COOKIE: ** Valid if STAGE==1. The current change-counter cookie value in the ** target db file. ** ** RBU_STATE_OALSZ: ** Valid if STAGE==1. The size in bytes of the *-oal file. ** ** RBU_STATE_DATATBL: ** Only valid if STAGE==1. The RBU database name of the table ** currently being read. */ #define RBU_STATE_STAGE 1 #define RBU_STATE_TBL 2 #define RBU_STATE_IDX 3 #define RBU_STATE_ROW 4 #define RBU_STATE_PROGRESS 5 #define RBU_STATE_CKPT 6 #define RBU_STATE_COOKIE 7 #define RBU_STATE_OALSZ 8 #define RBU_STATE_PHASEONESTEP 9 #define RBU_STATE_DATATBL 10 #define RBU_STAGE_OAL 1 #define RBU_STAGE_MOVE 2 #define RBU_STAGE_CAPTURE 3 #define RBU_STAGE_CKPT 4 #define RBU_STAGE_DONE 5 #define RBU_CREATE_STATE \ "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)" typedef struct RbuFrame RbuFrame; typedef struct RbuObjIter RbuObjIter; typedef struct RbuState RbuState; typedef struct RbuSpan RbuSpan; typedef struct rbu_vfs rbu_vfs; typedef struct rbu_file rbu_file; typedef struct RbuUpdateStmt RbuUpdateStmt; #if !defined(SQLITE_AMALGAMATION) typedef unsigned int u32; typedef unsigned short u16; typedef unsigned char u8; typedef sqlite3_int64 i64; #endif /* ** These values must match the values defined in wal.c for the equivalent ** locks. These are not magic numbers as they are part of the SQLite file ** format. */ #define WAL_LOCK_WRITE 0 #define WAL_LOCK_CKPT 1 #define WAL_LOCK_READ0 3 #define SQLITE_FCNTL_RBUCNT 5149216 /* ** A structure to store values read from the rbu_state table in memory. */ struct RbuState { int eStage; char *zTbl; char *zDataTbl; char *zIdx; i64 iWalCksum; int nRow; i64 nProgress; u32 iCookie; i64 iOalSz; i64 nPhaseOneStep; }; struct RbuUpdateStmt { char *zMask; /* Copy of update mask used with pUpdate */ sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */ RbuUpdateStmt *pNext; }; struct RbuSpan { const char *zSpan; int nSpan; }; /* ** An iterator of this type is used to iterate through all objects in ** the target database that require updating. For each such table, the ** iterator visits, in order: ** ** * the table itself, ** * each index of the table (zero or more points to visit), and ** * a special "cleanup table" state. ** ** abIndexed: ** If the table has no indexes on it, abIndexed is set to NULL. Otherwise, ** it points to an array of flags nTblCol elements in size. The flag is ** set for each column that is either a part of the PK or a part of an ** index. Or clear otherwise. ** ** If there are one or more partial indexes on the table, all fields of ** this array set set to 1. This is because in that case, the module has ** no way to tell which fields will be required to add and remove entries ** from the partial indexes. ** */ struct RbuObjIter { sqlite3_stmt *pTblIter; /* Iterate through tables */ sqlite3_stmt *pIdxIter; /* Index iterator */ int nTblCol; /* Size of azTblCol[] array */ char **azTblCol; /* Array of unquoted target column names */ char **azTblType; /* Array of target column types */ int *aiSrcOrder; /* src table col -> target table col */ u8 *abTblPk; /* Array of flags, set on target PK columns */ u8 *abNotNull; /* Array of flags, set on NOT NULL columns */ u8 *abIndexed; /* Array of flags, set on indexed & PK cols */ int eType; /* Table type - an RBU_PK_XXX value */ /* Output variables. zTbl==0 implies EOF. */ int bCleanup; /* True in "cleanup" state */ const char *zTbl; /* Name of target db table */ const char *zDataTbl; /* Name of rbu db table (or null) */ const char *zIdx; /* Name of target db index (or null) */ int iTnum; /* Root page of current object */ int iPkTnum; /* If eType==EXTERNAL, root of PK index */ int bUnique; /* Current index is unique */ int nIndex; /* Number of aux. indexes on table zTbl */ /* Statements created by rbuObjIterPrepareAll() */ int nCol; /* Number of columns in current object */ sqlite3_stmt *pSelect; /* Source data */ sqlite3_stmt *pInsert; /* Statement for INSERT operations */ sqlite3_stmt *pDelete; /* Statement for DELETE ops */ sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */ int nIdxCol; RbuSpan *aIdxCol; char *zIdxSql; /* Last UPDATE used (for PK b-tree updates only), or NULL. */ RbuUpdateStmt *pRbuUpdate; }; /* ** Values for RbuObjIter.eType ** ** 0: Table does not exist (error) ** 1: Table has an implicit rowid. ** 2: Table has an explicit IPK column. ** 3: Table has an external PK index. ** 4: Table is WITHOUT ROWID. ** 5: Table is a virtual table. */ #define RBU_PK_NOTABLE 0 #define RBU_PK_NONE 1 #define RBU_PK_IPK 2 #define RBU_PK_EXTERNAL 3 #define RBU_PK_WITHOUT_ROWID 4 #define RBU_PK_VTAB 5 /* ** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs ** one of the following operations. */ #define RBU_INSERT 1 /* Insert on a main table b-tree */ #define RBU_DELETE 2 /* Delete a row from a main table b-tree */ #define RBU_REPLACE 3 /* Delete and then insert a row */ #define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */ #define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */ #define RBU_UPDATE 6 /* Update a row in a main table b-tree */ /* ** A single step of an incremental checkpoint - frame iWalFrame of the wal ** file should be copied to page iDbPage of the database file. */ struct RbuFrame { u32 iDbPage; u32 iWalFrame; }; /* ** RBU handle. ** ** nPhaseOneStep: ** If the RBU database contains an rbu_count table, this value is set to ** a running estimate of the number of b-tree operations required to ** finish populating the *-oal file. This allows the sqlite3_bp_progress() ** API to calculate the permyriadage progress of populating the *-oal file ** using the formula: ** ** permyriadage = (10000 * nProgress) / nPhaseOneStep ** ** nPhaseOneStep is initialized to the sum of: ** ** nRow * (nIndex + 1) ** ** for all source tables in the RBU database, where nRow is the number ** of rows in the source table and nIndex the number of indexes on the ** corresponding target database table. ** ** This estimate is accurate if the RBU update consists entirely of ** INSERT operations. However, it is inaccurate if: ** ** * the RBU update contains any UPDATE operations. If the PK specified ** for an UPDATE operation does not exist in the target table, then ** no b-tree operations are required on index b-trees. Or if the ** specified PK does exist, then (nIndex*2) such operations are ** required (one delete and one insert on each index b-tree). ** ** * the RBU update contains any DELETE operations for which the specified ** PK does not exist. In this case no operations are required on index ** b-trees. ** ** * the RBU update contains REPLACE operations. These are similar to ** UPDATE operations. ** ** nPhaseOneStep is updated to account for the conditions above during the ** first pass of each source table. The updated nPhaseOneStep value is ** stored in the rbu_state table if the RBU update is suspended. */ struct sqlite3rbu { int eStage; /* Value of RBU_STATE_STAGE field */ sqlite3 *dbMain; /* target database handle */ sqlite3 *dbRbu; /* rbu database handle */ char *zTarget; /* Path to target db */ char *zRbu; /* Path to rbu db */ char *zState; /* Path to state db (or NULL if zRbu) */ char zStateDb[5]; /* Db name for state ("stat" or "main") */ int rc; /* Value returned by last rbu_step() call */ char *zErrmsg; /* Error message if rc!=SQLITE_OK */ int nStep; /* Rows processed for current object */ int nProgress; /* Rows processed for all objects */ RbuObjIter objiter; /* Iterator for skipping through tbl/idx */ const char *zVfsName; /* Name of automatically created rbu vfs */ rbu_file *pTargetFd; /* File handle open on target db */ int nPagePerSector; /* Pages per sector for pTargetFd */ i64 iOalSz; i64 nPhaseOneStep; void *pRenameArg; int (*xRename)(void*, const char*, const char*); /* The following state variables are used as part of the incremental ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding ** function rbuSetupCheckpoint() for details. */ u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */ u32 mLock; int nFrame; /* Entries in aFrame[] array */ int nFrameAlloc; /* Allocated size of aFrame[] array */ RbuFrame *aFrame; int pgsz; u8 *aBuf; i64 iWalCksum; i64 szTemp; /* Current size of all temp files in use */ i64 szTempLimit; /* Total size limit for temp files */ /* Used in RBU vacuum mode only */ int nRbu; /* Number of RBU VFS in the stack */ rbu_file *pRbuFd; /* Fd for main db of dbRbu */ }; /* ** An rbu VFS is implemented using an instance of this structure. ** ** Variable pRbu is only non-NULL for automatically created RBU VFS objects. ** It is NULL for RBU VFS objects created explicitly using ** sqlite3rbu_create_vfs(). It is used to track the total amount of temp ** space used by the RBU handle. */ struct rbu_vfs { sqlite3_vfs base; /* rbu VFS shim methods */ sqlite3_vfs *pRealVfs; /* Underlying VFS */ sqlite3_mutex *mutex; /* Mutex to protect pMain */ sqlite3rbu *pRbu; /* Owner RBU object */ rbu_file *pMain; /* List of main db files */ rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */ }; /* ** Each file opened by an rbu VFS is represented by an instance of ** the following structure. ** ** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable ** "sz" is set to the current size of the database file. */ struct rbu_file { sqlite3_file base; /* sqlite3_file methods */ sqlite3_file *pReal; /* Underlying file handle */ rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */ sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */ i64 sz; /* Size of file in bytes (temp only) */ int openFlags; /* Flags this file was opened with */ u32 iCookie; /* Cookie value for main db files */ u8 iWriteVer; /* "write-version" value for main db files */ u8 bNolock; /* True to fail EXCLUSIVE locks */ int nShm; /* Number of entries in apShm[] array */ char **apShm; /* Array of mmap'd *-shm regions */ char *zDel; /* Delete this when closing file */ const char *zWal; /* Wal filename for this main db file */ rbu_file *pWalFd; /* Wal file descriptor for this main db */ rbu_file *pMainNext; /* Next MAIN_DB file */ rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */ }; /* ** True for an RBU vacuum handle, or false otherwise. */ #define rbuIsVacuum(p) ((p)->zTarget==0) /************************************************************************* ** The following three functions, found below: ** ** rbuDeltaGetInt() ** rbuDeltaChecksum() ** rbuDeltaApply() ** ** are lifted from the fossil source code (http://fossil-scm.org). They ** are used to implement the scalar SQL function rbu_fossil_delta(). */ /* ** Read bytes from *pz and convert them into a positive integer. When ** finished, leave *pz pointing to the first character past the end of ** the integer. The *pLen parameter holds the length of the string ** in *pz and is decremented once for each character in the integer. */ static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){ static const signed char zValue[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36, -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1, }; unsigned int v = 0; int c; unsigned char *z = (unsigned char*)*pz; unsigned char *zStart = z; while( (c = zValue[0x7f&*(z++)])>=0 ){ v = (v<<6) + c; } z--; *pLen -= z - zStart; *pz = (char*)z; return v; } #if RBU_ENABLE_DELTA_CKSUM /* ** Compute a 32-bit checksum on the N-byte buffer. Return the result. */ static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){ const unsigned char *z = (const unsigned char *)zIn; unsigned sum0 = 0; unsigned sum1 = 0; unsigned sum2 = 0; unsigned sum3 = 0; while(N >= 16){ sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]); sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]); sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]); sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]); z += 16; N -= 16; } while(N >= 4){ sum0 += z[0]; sum1 += z[1]; sum2 += z[2]; sum3 += z[3]; z += 4; N -= 4; } sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24); switch(N){ case 3: sum3 += (z[2] << 8); case 2: sum3 += (z[1] << 16); case 1: sum3 += (z[0] << 24); default: ; } return sum3; } #endif /* ** Apply a delta. ** ** The output buffer should be big enough to hold the whole output ** file and a NUL terminator at the end. The delta_output_size() ** routine will determine this size for you. ** ** The delta string should be null-terminated. But the delta string ** may contain embedded NUL characters (if the input and output are ** binary files) so we also have to pass in the length of the delta in ** the lenDelta parameter. ** ** This function returns the size of the output file in bytes (excluding ** the final NUL terminator character). Except, if the delta string is ** malformed or intended for use with a source file other than zSrc, ** then this routine returns -1. ** ** Refer to the delta_create() documentation above for a description ** of the delta file format. */ static int rbuDeltaApply( const char *zSrc, /* The source or pattern file */ int lenSrc, /* Length of the source file */ const char *zDelta, /* Delta to apply to the pattern */ int lenDelta, /* Length of the delta */ char *zOut /* Write the output into this preallocated buffer */ ){ unsigned int limit; unsigned int total = 0; #if RBU_ENABLE_DELTA_CKSUM char *zOrigOut = zOut; #endif limit = rbuDeltaGetInt(&zDelta, &lenDelta); if( *zDelta!='\n' ){ /* ERROR: size integer not terminated by "\n" */ return -1; } zDelta++; lenDelta--; while( *zDelta && lenDelta>0 ){ unsigned int cnt, ofst; cnt = rbuDeltaGetInt(&zDelta, &lenDelta); switch( zDelta[0] ){ case '@': { zDelta++; lenDelta--; ofst = rbuDeltaGetInt(&zDelta, &lenDelta); if( lenDelta>0 && zDelta[0]!=',' ){ /* ERROR: copy command not terminated by ',' */ return -1; } zDelta++; lenDelta--; total += cnt; if( total>limit ){ /* ERROR: copy exceeds output file size */ return -1; } if( (int)(ofst+cnt) > lenSrc ){ /* ERROR: copy extends past end of input */ return -1; } memcpy(zOut, &zSrc[ofst], cnt); zOut += cnt; break; } case ':': { zDelta++; lenDelta--; total += cnt; if( total>limit ){ /* ERROR: insert command gives an output larger than predicted */ return -1; } if( (int)cnt>lenDelta ){ /* ERROR: insert count exceeds size of delta */ return -1; } memcpy(zOut, zDelta, cnt); zOut += cnt; zDelta += cnt; lenDelta -= cnt; break; } case ';': { zDelta++; lenDelta--; zOut[0] = 0; #if RBU_ENABLE_DELTA_CKSUM if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){ /* ERROR: bad checksum */ return -1; } #endif if( total!=limit ){ /* ERROR: generated size does not match predicted size */ return -1; } return total; } default: { /* ERROR: unknown delta operator */ return -1; } } } /* ERROR: unterminated delta */ return -1; } static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){ int size; size = rbuDeltaGetInt(&zDelta, &lenDelta); if( *zDelta!='\n' ){ /* ERROR: size integer not terminated by "\n" */ return -1; } return size; } /* ** End of code taken from fossil. *************************************************************************/ /* ** Implementation of SQL scalar function rbu_fossil_delta(). ** ** This function applies a fossil delta patch to a blob. Exactly two ** arguments must be passed to this function. The first is the blob to ** patch and the second the patch to apply. If no error occurs, this ** function returns the patched blob. */ static void rbuFossilDeltaFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *aDelta; int nDelta; const char *aOrig; int nOrig; int nOut; int nOut2; char *aOut; assert( argc==2 ); nOrig = sqlite3_value_bytes(argv[0]); aOrig = (const char*)sqlite3_value_blob(argv[0]); nDelta = sqlite3_value_bytes(argv[1]); aDelta = (const char*)sqlite3_value_blob(argv[1]); /* Figure out the size of the output */ nOut = rbuDeltaOutputSize(aDelta, nDelta); if( nOut<0 ){ sqlite3_result_error(context, "corrupt fossil delta", -1); return; } aOut = sqlite3_malloc(nOut+1); if( aOut==0 ){ sqlite3_result_error_nomem(context); }else{ nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut); if( nOut2!=nOut ){ sqlite3_free(aOut); sqlite3_result_error(context, "corrupt fossil delta", -1); }else{ sqlite3_result_blob(context, aOut, nOut, sqlite3_free); } } } /* ** Prepare the SQL statement in buffer zSql against database handle db. ** If successful, set *ppStmt to point to the new statement and return ** SQLITE_OK. ** ** Otherwise, if an error does occur, set *ppStmt to NULL and return ** an SQLite error code. Additionally, set output variable *pzErrmsg to ** point to a buffer containing an error message. It is the responsibility ** of the caller to (eventually) free this buffer using sqlite3_free(). */ static int prepareAndCollectError( sqlite3 *db, sqlite3_stmt **ppStmt, char **pzErrmsg, const char *zSql ){ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); if( rc!=SQLITE_OK ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); *ppStmt = 0; } return rc; } /* ** Reset the SQL statement passed as the first argument. Return a copy ** of the value returned by sqlite3_reset(). ** ** If an error has occurred, then set *pzErrmsg to point to a buffer ** containing an error message. It is the responsibility of the caller ** to eventually free this buffer using sqlite3_free(). */ static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){ int rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt))); } return rc; } /* ** Unless it is NULL, argument zSql points to a buffer allocated using ** sqlite3_malloc containing an SQL statement. This function prepares the SQL ** statement against database db and frees the buffer. If statement ** compilation is successful, *ppStmt is set to point to the new statement ** handle and SQLITE_OK is returned. ** ** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code ** returned. In this case, *pzErrmsg may also be set to point to an error ** message. It is the responsibility of the caller to free this error message ** buffer using sqlite3_free(). ** ** If argument zSql is NULL, this function assumes that an OOM has occurred. ** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL. */ static int prepareFreeAndCollectError( sqlite3 *db, sqlite3_stmt **ppStmt, char **pzErrmsg, char *zSql ){ int rc; assert( *pzErrmsg==0 ); if( zSql==0 ){ rc = SQLITE_NOMEM; *ppStmt = 0; }else{ rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql); sqlite3_free(zSql); } return rc; } /* ** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated ** by an earlier call to rbuObjIterCacheTableInfo(). */ static void rbuObjIterFreeCols(RbuObjIter *pIter){ int i; for(i=0; inTblCol; i++){ sqlite3_free(pIter->azTblCol[i]); sqlite3_free(pIter->azTblType[i]); } sqlite3_free(pIter->azTblCol); pIter->azTblCol = 0; pIter->azTblType = 0; pIter->aiSrcOrder = 0; pIter->abTblPk = 0; pIter->abNotNull = 0; pIter->nTblCol = 0; pIter->eType = 0; /* Invalid value */ } /* ** Finalize all statements and free all allocations that are specific to ** the current object (table/index pair). */ static void rbuObjIterClearStatements(RbuObjIter *pIter){ RbuUpdateStmt *pUp; sqlite3_finalize(pIter->pSelect); sqlite3_finalize(pIter->pInsert); sqlite3_finalize(pIter->pDelete); sqlite3_finalize(pIter->pTmpInsert); pUp = pIter->pRbuUpdate; while( pUp ){ RbuUpdateStmt *pTmp = pUp->pNext; sqlite3_finalize(pUp->pUpdate); sqlite3_free(pUp); pUp = pTmp; } sqlite3_free(pIter->aIdxCol); sqlite3_free(pIter->zIdxSql); pIter->pSelect = 0; pIter->pInsert = 0; pIter->pDelete = 0; pIter->pRbuUpdate = 0; pIter->pTmpInsert = 0; pIter->nCol = 0; pIter->nIdxCol = 0; pIter->aIdxCol = 0; pIter->zIdxSql = 0; } /* ** Clean up any resources allocated as part of the iterator object passed ** as the only argument. */ static void rbuObjIterFinalize(RbuObjIter *pIter){ rbuObjIterClearStatements(pIter); sqlite3_finalize(pIter->pTblIter); sqlite3_finalize(pIter->pIdxIter); rbuObjIterFreeCols(pIter); memset(pIter, 0, sizeof(RbuObjIter)); } /* ** Advance the iterator to the next position. ** ** If no error occurs, SQLITE_OK is returned and the iterator is left ** pointing to the next entry. Otherwise, an error code and message is ** left in the RBU handle passed as the first argument. A copy of the ** error code is returned. */ static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){ int rc = p->rc; if( rc==SQLITE_OK ){ /* Free any SQLite statements used while processing the previous object */ rbuObjIterClearStatements(pIter); if( pIter->zIdx==0 ){ rc = sqlite3_exec(p->dbMain, "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;" "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;" "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;" "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;" , 0, 0, &p->zErrmsg ); } if( rc==SQLITE_OK ){ if( pIter->bCleanup ){ rbuObjIterFreeCols(pIter); pIter->bCleanup = 0; rc = sqlite3_step(pIter->pTblIter); if( rc!=SQLITE_ROW ){ rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg); pIter->zTbl = 0; }else{ pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0); pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1); rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM; } }else{ if( pIter->zIdx==0 ){ sqlite3_stmt *pIdx = pIter->pIdxIter; rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC); } if( rc==SQLITE_OK ){ rc = sqlite3_step(pIter->pIdxIter); if( rc!=SQLITE_ROW ){ rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg); pIter->bCleanup = 1; pIter->zIdx = 0; }else{ pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0); pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1); pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2); rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM; } } } } } if( rc!=SQLITE_OK ){ rbuObjIterFinalize(pIter); p->rc = rc; } return rc; } /* ** The implementation of the rbu_target_name() SQL function. This function ** accepts one or two arguments. The first argument is the name of a table - ** the name of a table in the RBU database. The second, if it is present, is 1 ** for a view or 0 for a table. ** ** For a non-vacuum RBU handle, if the table name matches the pattern: ** ** data[0-9]_ ** ** where is any sequence of 1 or more characters, is returned. ** Otherwise, if the only argument does not match the above pattern, an SQL ** NULL is returned. ** ** "data_t1" -> "t1" ** "data0123_t2" -> "t2" ** "dataAB_t3" -> NULL ** ** For an rbu vacuum handle, a copy of the first argument is returned if ** the second argument is either missing or 0 (not a view). */ static void rbuTargetNameFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ sqlite3rbu *p = sqlite3_user_data(pCtx); const char *zIn; assert( argc==1 || argc==2 ); zIn = (const char*)sqlite3_value_text(argv[0]); if( zIn ){ if( rbuIsVacuum(p) ){ assert( argc==2 || argc==1 ); if( argc==1 || 0==sqlite3_value_int(argv[1]) ){ sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC); } }else{ if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){ int i; for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++); if( zIn[i]=='_' && zIn[i+1] ){ sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC); } } } } } /* ** Initialize the iterator structure passed as the second argument. ** ** If no error occurs, SQLITE_OK is returned and the iterator is left ** pointing to the first entry. Otherwise, an error code and message is ** left in the RBU handle passed as the first argument. A copy of the ** error code is returned. */ static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){ int rc; memset(pIter, 0, sizeof(RbuObjIter)); rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg, sqlite3_mprintf( "SELECT rbu_target_name(name, type='view') AS target, name " "FROM sqlite_schema " "WHERE type IN ('table', 'view') AND target IS NOT NULL " " %s " "ORDER BY name" , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : "")); if( rc==SQLITE_OK ){ rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg, "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' " " FROM main.sqlite_schema " " WHERE type='index' AND tbl_name = ?" ); } pIter->bCleanup = 1; p->rc = rc; return rbuObjIterNext(p, pIter); } /* ** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs, ** an error code is stored in the RBU handle passed as the first argument. ** ** If an error has already occurred (p->rc is already set to something other ** than SQLITE_OK), then this function returns NULL without modifying the ** stored error code. In this case it still calls sqlite3_free() on any ** printf() parameters associated with %z conversions. */ static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){ char *zSql = 0; va_list ap; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( p->rc==SQLITE_OK ){ if( zSql==0 ) p->rc = SQLITE_NOMEM; }else{ sqlite3_free(zSql); zSql = 0; } va_end(ap); return zSql; } /* ** Argument zFmt is a sqlite3_mprintf() style format string. The trailing ** arguments are the usual subsitution values. This function performs ** the printf() style substitutions and executes the result as an SQL ** statement on the RBU handles database. ** ** If an error occurs, an error code and error message is stored in the ** RBU handle. If an error has already occurred when this function is ** called, it is a no-op. */ static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){ va_list ap; char *zSql; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( p->rc==SQLITE_OK ){ if( zSql==0 ){ p->rc = SQLITE_NOMEM; }else{ p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg); } } sqlite3_free(zSql); va_end(ap); return p->rc; } /* ** Attempt to allocate and return a pointer to a zeroed block of nByte ** bytes. ** ** If an error (i.e. an OOM condition) occurs, return NULL and leave an ** error code in the rbu handle passed as the first argument. Or, if an ** error has already occurred when this function is called, return NULL ** immediately without attempting the allocation or modifying the stored ** error code. */ static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){ void *pRet = 0; if( p->rc==SQLITE_OK ){ assert( nByte>0 ); pRet = sqlite3_malloc64(nByte); if( pRet==0 ){ p->rc = SQLITE_NOMEM; }else{ memset(pRet, 0, nByte); } } return pRet; } /* ** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that ** there is room for at least nCol elements. If an OOM occurs, store an ** error code in the RBU handle passed as the first argument. */ static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){ sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol; char **azNew; azNew = (char**)rbuMalloc(p, nByte); if( azNew ){ pIter->azTblCol = azNew; pIter->azTblType = &azNew[nCol]; pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol]; pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol]; pIter->abNotNull = (u8*)&pIter->abTblPk[nCol]; pIter->abIndexed = (u8*)&pIter->abNotNull[nCol]; } } /* ** The first argument must be a nul-terminated string. This function ** returns a copy of the string in memory obtained from sqlite3_malloc(). ** It is the responsibility of the caller to eventually free this memory ** using sqlite3_free(). ** ** If an OOM condition is encountered when attempting to allocate memory, ** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise, ** if the allocation succeeds, (*pRc) is left unchanged. */ static char *rbuStrndup(const char *zStr, int *pRc){ char *zRet = 0; if( *pRc==SQLITE_OK ){ if( zStr ){ size_t nCopy = strlen(zStr) + 1; zRet = (char*)sqlite3_malloc64(nCopy); if( zRet ){ memcpy(zRet, zStr, nCopy); }else{ *pRc = SQLITE_NOMEM; } } } return zRet; } /* ** Finalize the statement passed as the second argument. ** ** If the sqlite3_finalize() call indicates that an error occurs, and the ** rbu handle error code is not already set, set the error code and error ** message accordingly. */ static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){ sqlite3 *db = sqlite3_db_handle(pStmt); int rc = sqlite3_finalize(pStmt); if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){ p->rc = rc; p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } } /* Determine the type of a table. ** ** peType is of type (int*), a pointer to an output parameter of type ** (int). This call sets the output parameter as follows, depending ** on the type of the table specified by parameters dbName and zTbl. ** ** RBU_PK_NOTABLE: No such table. ** RBU_PK_NONE: Table has an implicit rowid. ** RBU_PK_IPK: Table has an explicit IPK column. ** RBU_PK_EXTERNAL: Table has an external PK index. ** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID. ** RBU_PK_VTAB: Table is a virtual table. ** ** Argument *piPk is also of type (int*), and also points to an output ** parameter. Unless the table has an external primary key index ** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or, ** if the table does have an external primary key index, then *piPk ** is set to the root page number of the primary key index before ** returning. ** ** ALGORITHM: ** ** if( no entry exists in sqlite_schema ){ ** return RBU_PK_NOTABLE ** }else if( sql for the entry starts with "CREATE VIRTUAL" ){ ** return RBU_PK_VTAB ** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){ ** if( the index that is the pk exists in sqlite_schema ){ ** *piPK = rootpage of that index. ** return RBU_PK_EXTERNAL ** }else{ ** return RBU_PK_WITHOUT_ROWID ** } ** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){ ** return RBU_PK_IPK ** }else{ ** return RBU_PK_NONE ** } */ static void rbuTableType( sqlite3rbu *p, const char *zTab, int *peType, int *piTnum, int *piPk ){ /* ** 0) SELECT count(*) FROM sqlite_schema where name=%Q AND IsVirtual(%Q) ** 1) PRAGMA index_list = ? ** 2) SELECT count(*) FROM sqlite_schema where name=%Q ** 3) PRAGMA table_info = ? */ sqlite3_stmt *aStmt[4] = {0, 0, 0, 0}; *peType = RBU_PK_NOTABLE; *piPk = 0; assert( p->rc==SQLITE_OK ); p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg, sqlite3_mprintf( "SELECT " " (sql COLLATE nocase BETWEEN 'CREATE VIRTUAL' AND 'CREATE VIRTUAM')," " rootpage" " FROM sqlite_schema" " WHERE name=%Q", zTab )); if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){ /* Either an error, or no such table. */ goto rbuTableType_end; } if( sqlite3_column_int(aStmt[0], 0) ){ *peType = RBU_PK_VTAB; /* virtual table */ goto rbuTableType_end; } *piTnum = sqlite3_column_int(aStmt[0], 1); p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg, sqlite3_mprintf("PRAGMA index_list=%Q",zTab) ); if( p->rc ) goto rbuTableType_end; while( sqlite3_step(aStmt[1])==SQLITE_ROW ){ const u8 *zOrig = sqlite3_column_text(aStmt[1], 3); const u8 *zIdx = sqlite3_column_text(aStmt[1], 1); if( zOrig && zIdx && zOrig[0]=='p' ){ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg, sqlite3_mprintf( "SELECT rootpage FROM sqlite_schema WHERE name = %Q", zIdx )); if( p->rc==SQLITE_OK ){ if( sqlite3_step(aStmt[2])==SQLITE_ROW ){ *piPk = sqlite3_column_int(aStmt[2], 0); *peType = RBU_PK_EXTERNAL; }else{ *peType = RBU_PK_WITHOUT_ROWID; } } goto rbuTableType_end; } } p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg, sqlite3_mprintf("PRAGMA table_info=%Q",zTab) ); if( p->rc==SQLITE_OK ){ while( sqlite3_step(aStmt[3])==SQLITE_ROW ){ if( sqlite3_column_int(aStmt[3],5)>0 ){ *peType = RBU_PK_IPK; /* explicit IPK column */ goto rbuTableType_end; } } *peType = RBU_PK_NONE; } rbuTableType_end: { unsigned int i; for(i=0; iabIndexed[] array. */ static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){ sqlite3_stmt *pList = 0; int bIndex = 0; if( p->rc==SQLITE_OK ){ memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol); p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl) ); } pIter->nIndex = 0; while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){ const char *zIdx = (const char*)sqlite3_column_text(pList, 1); int bPartial = sqlite3_column_int(pList, 4); sqlite3_stmt *pXInfo = 0; if( zIdx==0 ) break; if( bPartial ){ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol); } p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) ); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int iCid = sqlite3_column_int(pXInfo, 1); if( iCid>=0 ) pIter->abIndexed[iCid] = 1; if( iCid==-2 ){ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol); } } rbuFinalize(p, pXInfo); bIndex = 1; pIter->nIndex++; } if( pIter->eType==RBU_PK_WITHOUT_ROWID ){ /* "PRAGMA index_list" includes the main PK b-tree */ pIter->nIndex--; } rbuFinalize(p, pList); if( bIndex==0 ) pIter->abIndexed = 0; } /* ** If they are not already populated, populate the pIter->azTblCol[], ** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to ** the table (not index) that the iterator currently points to. ** ** Return SQLITE_OK if successful, or an SQLite error code otherwise. If ** an error does occur, an error code and error message are also left in ** the RBU handle. */ static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){ if( pIter->azTblCol==0 ){ sqlite3_stmt *pStmt = 0; int nCol = 0; int i; /* for() loop iterator variable */ int bRbuRowid = 0; /* If input table has column "rbu_rowid" */ int iOrder = 0; int iTnum = 0; /* Figure out the type of table this step will deal with. */ assert( pIter->eType==0 ); rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum); if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl); } if( p->rc ) return p->rc; if( pIter->zIdx==0 ) pIter->iTnum = iTnum; assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID || pIter->eType==RBU_PK_VTAB ); /* Populate the azTblCol[] and nTblCol variables based on the columns ** of the input table. Ignore any input table columns that begin with ** "rbu_". */ p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl) ); if( p->rc==SQLITE_OK ){ nCol = sqlite3_column_count(pStmt); rbuAllocateIterArrays(p, pIter, nCol); } for(i=0; p->rc==SQLITE_OK && irc); pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol; pIter->azTblCol[pIter->nTblCol++] = zCopy; } else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){ bRbuRowid = 1; } } sqlite3_finalize(pStmt); pStmt = 0; if( p->rc==SQLITE_OK && rbuIsVacuum(p)==0 && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE) ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf( "table %q %s rbu_rowid column", pIter->zDataTbl, (bRbuRowid ? "may not have" : "requires") ); } /* Check that all non-HIDDEN columns in the destination table are also ** present in the input table. Populate the abTblPk[], azTblType[] and ** aiTblOrder[] arrays at the same time. */ if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg, sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl) ); } while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ const char *zName = (const char*)sqlite3_column_text(pStmt, 1); if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */ for(i=iOrder; inTblCol; i++){ if( 0==strcmp(zName, pIter->azTblCol[i]) ) break; } if( i==pIter->nTblCol ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("column missing from %q: %s", pIter->zDataTbl, zName ); }else{ int iPk = sqlite3_column_int(pStmt, 5); int bNotNull = sqlite3_column_int(pStmt, 3); const char *zType = (const char*)sqlite3_column_text(pStmt, 2); if( i!=iOrder ){ SQ__SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]); SQ__SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]); } pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc); assert( iPk>=0 ); pIter->abTblPk[iOrder] = (u8)iPk; pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0); iOrder++; } } rbuFinalize(p, pStmt); rbuObjIterCacheIndexedCols(p, pIter); assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 ); assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 ); } return p->rc; } /* ** This function constructs and returns a pointer to a nul-terminated ** string containing some SQL clause or list based on one or more of the ** column names currently stored in the pIter->azTblCol[] array. */ static char *rbuObjIterGetCollist( sqlite3rbu *p, /* RBU object */ RbuObjIter *pIter /* Object iterator for column names */ ){ char *zList = 0; const char *zSep = ""; int i; for(i=0; inTblCol; i++){ const char *z = pIter->azTblCol[i]; zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z); zSep = ", "; } return zList; } /* ** Return a comma separated list of the quoted PRIMARY KEY column names, ** in order, for the current table. Before each column name, add the text ** zPre. After each column name, add the zPost text. Use zSeparator as ** the separator text (usually ", "). */ static char *rbuObjIterGetPkList( sqlite3rbu *p, /* RBU object */ RbuObjIter *pIter, /* Object iterator for column names */ const char *zPre, /* Before each quoted column name */ const char *zSeparator, /* Separator to use between columns */ const char *zPost /* After each quoted column name */ ){ int iPk = 1; char *zRet = 0; const char *zSep = ""; while( 1 ){ int i; for(i=0; inTblCol; i++){ if( (int)pIter->abTblPk[i]==iPk ){ const char *zCol = pIter->azTblCol[i]; zRet = rbuMPrintf(p, "%z%s%s\"%w\"%s", zRet, zSep, zPre, zCol, zPost); zSep = zSeparator; break; } } if( i==pIter->nTblCol ) break; iPk++; } return zRet; } /* ** This function is called as part of restarting an RBU vacuum within ** stage 1 of the process (while the *-oal file is being built) while ** updating a table (not an index). The table may be a rowid table or ** a WITHOUT ROWID table. It queries the target database to find the ** largest key that has already been written to the target table and ** constructs a WHERE clause that can be used to extract the remaining ** rows from the source table. For a rowid table, the WHERE clause ** is of the form: ** ** "WHERE _rowid_ > ?" ** ** and for WITHOUT ROWID tables: ** ** "WHERE (key1, key2) > (?, ?)" ** ** Instead of "?" placeholders, the actual WHERE clauses created by ** this function contain literal SQL values. */ static char *rbuVacuumTableStart( sqlite3rbu *p, /* RBU handle */ RbuObjIter *pIter, /* RBU iterator object */ int bRowid, /* True for a rowid table */ const char *zWrite /* Target table name prefix */ ){ sqlite3_stmt *pMax = 0; char *zRet = 0; if( bRowid ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg, sqlite3_mprintf( "SELECT max(_rowid_) FROM \"%s%w\"", zWrite, pIter->zTbl ) ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ sqlite3_int64 iMax = sqlite3_column_int64(pMax, 0); zRet = rbuMPrintf(p, " WHERE _rowid_ > %lld ", iMax); } rbuFinalize(p, pMax); }else{ char *zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", " DESC"); char *zSelect = rbuObjIterGetPkList(p, pIter, "quote(", "||','||", ")"); char *zList = rbuObjIterGetPkList(p, pIter, "", ", ", ""); if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg, sqlite3_mprintf( "SELECT %s FROM \"%s%w\" ORDER BY %s LIMIT 1", zSelect, zWrite, pIter->zTbl, zOrder ) ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ const char *zVal = (const char*)sqlite3_column_text(pMax, 0); zRet = rbuMPrintf(p, " WHERE (%s) > (%s) ", zList, zVal); } rbuFinalize(p, pMax); } sqlite3_free(zOrder); sqlite3_free(zSelect); sqlite3_free(zList); } return zRet; } /* ** This function is called as part of restating an RBU vacuum when the ** current operation is writing content to an index. If possible, it ** queries the target index b-tree for the largest key already written to ** it, then composes and returns an expression that can be used in a WHERE ** clause to select the remaining required rows from the source table. ** It is only possible to return such an expression if: ** ** * The index contains no DESC columns, and ** * The last key written to the index before the operation was ** suspended does not contain any NULL values. ** ** The expression is of the form: ** ** (index-field1, index-field2, ...) > (?, ?, ...) ** ** except that the "?" placeholders are replaced with literal values. ** ** If the expression cannot be created, NULL is returned. In this case, ** the caller has to use an OFFSET clause to extract only the required ** rows from the sourct table, just as it does for an RBU update operation. */ static char *rbuVacuumIndexStart( sqlite3rbu *p, /* RBU handle */ RbuObjIter *pIter /* RBU iterator object */ ){ char *zOrder = 0; char *zLhs = 0; char *zSelect = 0; char *zVector = 0; char *zRet = 0; int bFailed = 0; const char *zSep = ""; int iCol = 0; sqlite3_stmt *pXInfo = 0; p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx) ); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int iCid = sqlite3_column_int(pXInfo, 1); const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); const char *zCol; if( sqlite3_column_int(pXInfo, 3) ){ bFailed = 1; break; } if( iCid<0 ){ if( pIter->eType==RBU_PK_IPK ){ int i; for(i=0; pIter->abTblPk[i]==0; i++); assert( inTblCol ); zCol = pIter->azTblCol[i]; }else{ zCol = "_rowid_"; } }else{ zCol = pIter->azTblCol[iCid]; } zLhs = rbuMPrintf(p, "%z%s \"%w\" COLLATE %Q", zLhs, zSep, zCol, zCollate ); zOrder = rbuMPrintf(p, "%z%s \"rbu_imp_%d%w\" COLLATE %Q DESC", zOrder, zSep, iCol, zCol, zCollate ); zSelect = rbuMPrintf(p, "%z%s quote(\"rbu_imp_%d%w\")", zSelect, zSep, iCol, zCol ); zSep = ", "; iCol++; } rbuFinalize(p, pXInfo); if( bFailed ) goto index_start_out; if( p->rc==SQLITE_OK ){ sqlite3_stmt *pSel = 0; p->rc = prepareFreeAndCollectError(p->dbMain, &pSel, &p->zErrmsg, sqlite3_mprintf("SELECT %s FROM \"rbu_imp_%w\" ORDER BY %s LIMIT 1", zSelect, pIter->zTbl, zOrder ) ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSel) ){ zSep = ""; for(iCol=0; iColnCol; iCol++){ const char *zQuoted = (const char*)sqlite3_column_text(pSel, iCol); if( zQuoted==0 ){ p->rc = SQLITE_NOMEM; }else if( zQuoted[0]=='N' ){ bFailed = 1; break; } zVector = rbuMPrintf(p, "%z%s%s", zVector, zSep, zQuoted); zSep = ", "; } if( !bFailed ){ zRet = rbuMPrintf(p, "(%s) > (%s)", zLhs, zVector); } } rbuFinalize(p, pSel); } index_start_out: sqlite3_free(zOrder); sqlite3_free(zSelect); sqlite3_free(zVector); sqlite3_free(zLhs); return zRet; } /* ** This function is used to create a SELECT list (the list of SQL ** expressions that follows a SELECT keyword) for a SELECT statement ** used to read from an data_xxx or rbu_tmp_xxx table while updating the ** index object currently indicated by the iterator object passed as the ** second argument. A "PRAGMA index_xinfo = " statement is used ** to obtain the required information. ** ** If the index is of the following form: ** ** CREATE INDEX i1 ON t1(c, b COLLATE nocase); ** ** and "t1" is a table with an explicit INTEGER PRIMARY KEY column ** "ipk", the returned string is: ** ** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'" ** ** As well as the returned string, three other malloc'd strings are ** returned via output parameters. As follows: ** ** pzImposterCols: ... ** pzImposterPk: ... ** pzWhere: ... */ static char *rbuObjIterGetIndexCols( sqlite3rbu *p, /* RBU object */ RbuObjIter *pIter, /* Object iterator for column names */ char **pzImposterCols, /* OUT: Columns for imposter table */ char **pzImposterPk, /* OUT: Imposter PK clause */ char **pzWhere, /* OUT: WHERE clause */ int *pnBind /* OUT: Trbul number of columns */ ){ int rc = p->rc; /* Error code */ int rc2; /* sqlite3_finalize() return code */ char *zRet = 0; /* String to return */ char *zImpCols = 0; /* String to return via *pzImposterCols */ char *zImpPK = 0; /* String to return via *pzImposterPK */ char *zWhere = 0; /* String to return via *pzWhere */ int nBind = 0; /* Value to return via *pnBind */ const char *zCom = ""; /* Set to ", " later on */ const char *zAnd = ""; /* Set to " AND " later on */ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */ if( rc==SQLITE_OK ){ assert( p->zErrmsg==0 ); rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx) ); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int iCid = sqlite3_column_int(pXInfo, 1); int bDesc = sqlite3_column_int(pXInfo, 3); const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); const char *zCol = 0; const char *zType; if( iCid==-2 ){ int iSeq = sqlite3_column_int(pXInfo, 0); zRet = sqlite3_mprintf("%z%s(%.*s) COLLATE %Q", zRet, zCom, pIter->aIdxCol[iSeq].nSpan, pIter->aIdxCol[iSeq].zSpan, zCollate ); zType = ""; }else { if( iCid<0 ){ /* An integer primary key. If the table has an explicit IPK, use ** its name. Otherwise, use "rbu_rowid". */ if( pIter->eType==RBU_PK_IPK ){ int i; for(i=0; pIter->abTblPk[i]==0; i++); assert( inTblCol ); zCol = pIter->azTblCol[i]; }else if( rbuIsVacuum(p) ){ zCol = "_rowid_"; }else{ zCol = "rbu_rowid"; } zType = "INTEGER"; }else{ zCol = pIter->azTblCol[iCid]; zType = pIter->azTblType[iCid]; } zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom,zCol,zCollate); } if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){ const char *zOrder = (bDesc ? " DESC" : ""); zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s", zImpPK, zCom, nBind, zCol, zOrder ); } zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q", zImpCols, zCom, nBind, zCol, zType, zCollate ); zWhere = sqlite3_mprintf( "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol ); if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM; zCom = ", "; zAnd = " AND "; nBind++; } rc2 = sqlite3_finalize(pXInfo); if( rc==SQLITE_OK ) rc = rc2; if( rc!=SQLITE_OK ){ sqlite3_free(zRet); sqlite3_free(zImpCols); sqlite3_free(zImpPK); sqlite3_free(zWhere); zRet = 0; zImpCols = 0; zImpPK = 0; zWhere = 0; p->rc = rc; } *pzImposterCols = zImpCols; *pzImposterPk = zImpPK; *pzWhere = zWhere; *pnBind = nBind; return zRet; } /* ** Assuming the current table columns are "a", "b" and "c", and the zObj ** paramter is passed "old", return a string of the form: ** ** "old.a, old.b, old.b" ** ** With the column names escaped. ** ** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append ** the text ", old._rowid_" to the returned value. */ static char *rbuObjIterGetOldlist( sqlite3rbu *p, RbuObjIter *pIter, const char *zObj ){ char *zList = 0; if( p->rc==SQLITE_OK && pIter->abIndexed ){ const char *zS = ""; int i; for(i=0; inTblCol; i++){ if( pIter->abIndexed[i] ){ const char *zCol = pIter->azTblCol[i]; zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol); }else{ zList = sqlite3_mprintf("%z%sNULL", zList, zS); } zS = ", "; if( zList==0 ){ p->rc = SQLITE_NOMEM; break; } } /* For a table with implicit rowids, append "old._rowid_" to the list. */ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj); } } return zList; } /* ** Return an expression that can be used in a WHERE clause to match the ** primary key of the current table. For example, if the table is: ** ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)); ** ** Return the string: ** ** "b = ?1 AND c = ?2" */ static char *rbuObjIterGetWhere( sqlite3rbu *p, RbuObjIter *pIter ){ char *zList = 0; if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){ zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1); }else if( pIter->eType==RBU_PK_EXTERNAL ){ const char *zSep = ""; int i; for(i=0; inTblCol; i++){ if( pIter->abTblPk[i] ){ zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1); zSep = " AND "; } } zList = rbuMPrintf(p, "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList ); }else{ const char *zSep = ""; int i; for(i=0; inTblCol; i++){ if( pIter->abTblPk[i] ){ const char *zCol = pIter->azTblCol[i]; zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1); zSep = " AND "; } } } return zList; } /* ** The SELECT statement iterating through the keys for the current object ** (p->objiter.pSelect) currently points to a valid row. However, there ** is something wrong with the rbu_control value in the rbu_control value ** stored in the (p->nCol+1)'th column. Set the error code and error message ** of the RBU handle to something reflecting this. */ static void rbuBadControlError(sqlite3rbu *p){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("invalid rbu_control value"); } /* ** Return a nul-terminated string containing the comma separated list of ** assignments that should be included following the "SET" keyword of ** an UPDATE statement used to update the table object that the iterator ** passed as the second argument currently points to if the rbu_control ** column of the data_xxx table entry is set to zMask. ** ** The memory for the returned string is obtained from sqlite3_malloc(). ** It is the responsibility of the caller to eventually free it using ** sqlite3_free(). ** ** If an OOM error is encountered when allocating space for the new ** string, an error code is left in the rbu handle passed as the first ** argument and NULL is returned. Or, if an error has already occurred ** when this function is called, NULL is returned immediately, without ** attempting the allocation or modifying the stored error code. */ static char *rbuObjIterGetSetlist( sqlite3rbu *p, RbuObjIter *pIter, const char *zMask ){ char *zList = 0; if( p->rc==SQLITE_OK ){ int i; if( (int)strlen(zMask)!=pIter->nTblCol ){ rbuBadControlError(p); }else{ const char *zSep = ""; for(i=0; inTblCol; i++){ char c = zMask[pIter->aiSrcOrder[i]]; if( c=='x' ){ zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, pIter->azTblCol[i], i+1 ); zSep = ", "; } else if( c=='d' ){ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)", zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1 ); zSep = ", "; } else if( c=='f' ){ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)", zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1 ); zSep = ", "; } } } } return zList; } /* ** Return a nul-terminated string consisting of nByte comma separated ** "?" expressions. For example, if nByte is 3, return a pointer to ** a buffer containing the string "?,?,?". ** ** The memory for the returned string is obtained from sqlite3_malloc(). ** It is the responsibility of the caller to eventually free it using ** sqlite3_free(). ** ** If an OOM error is encountered when allocating space for the new ** string, an error code is left in the rbu handle passed as the first ** argument and NULL is returned. Or, if an error has already occurred ** when this function is called, NULL is returned immediately, without ** attempting the allocation or modifying the stored error code. */ static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){ char *zRet = 0; sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1; zRet = (char*)rbuMalloc(p, nByte); if( zRet ){ int i; for(i=0; izIdx==0 ); if( p->rc==SQLITE_OK ){ const char *zSep = "PRIMARY KEY("; sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = */ p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl) ); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){ const char *zOrig = (const char*)sqlite3_column_text(pXList,3); if( zOrig && strcmp(zOrig, "pk")==0 ){ const char *zIdx = (const char*)sqlite3_column_text(pXList,1); if( zIdx ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) ); } break; } } rbuFinalize(p, pXList); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ if( sqlite3_column_int(pXInfo, 5) ){ /* int iCid = sqlite3_column_int(pXInfo, 0); */ const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2); const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : ""; z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc); zSep = ", "; } } z = rbuMPrintf(p, "%z)", z); rbuFinalize(p, pXInfo); } return z; } /* ** This function creates the second imposter table used when writing to ** a table b-tree where the table has an external primary key. If the ** iterator passed as the second argument does not currently point to ** a table (not index) with an external primary key, this function is a ** no-op. ** ** Assuming the iterator does point to a table with an external PK, this ** function creates a WITHOUT ROWID imposter table named "rbu_imposter2" ** used to access that PK index. For example, if the target table is ** declared as follows: ** ** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c)); ** ** then the imposter table schema is: ** ** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID; ** */ static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){ if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){ int tnum = pIter->iPkTnum; /* Root page of PK index */ sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */ const char *zIdx = 0; /* Name of PK index */ sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */ const char *zComma = ""; char *zCols = 0; /* Used to build up list of table cols */ char *zPk = 0; /* Used to build up table PK declaration */ /* Figure out the name of the primary key index for the current table. ** This is needed for the argument to "PRAGMA index_xinfo". Set ** zIdx to point to a nul-terminated string containing this name. */ p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg, "SELECT name FROM sqlite_schema WHERE rootpage = ?" ); if( p->rc==SQLITE_OK ){ sqlite3_bind_int(pQuery, 1, tnum); if( SQLITE_ROW==sqlite3_step(pQuery) ){ zIdx = (const char*)sqlite3_column_text(pQuery, 0); } } if( zIdx ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) ); } rbuFinalize(p, pQuery); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int bKey = sqlite3_column_int(pXInfo, 5); if( bKey ){ int iCid = sqlite3_column_int(pXInfo, 1); int bDesc = sqlite3_column_int(pXInfo, 3); const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma, iCid, pIter->azTblType[iCid], zCollate ); zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":""); zComma = ", "; } } zCols = rbuMPrintf(p, "%z, id INTEGER", zCols); rbuFinalize(p, pXInfo); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum); rbuMPrintfExec(p, p->dbMain, "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID", zCols, zPk ); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); } } /* ** If an error has already occurred when this function is called, it ** immediately returns zero (without doing any work). Or, if an error ** occurs during the execution of this function, it sets the error code ** in the sqlite3rbu object indicated by the first argument and returns ** zero. ** ** The iterator passed as the second argument is guaranteed to point to ** a table (not an index) when this function is called. This function ** attempts to create any imposter table required to write to the main ** table b-tree of the table before returning. Non-zero is returned if ** an imposter table are created, or zero otherwise. ** ** An imposter table is required in all cases except RBU_PK_VTAB. Only ** virtual tables are written to directly. The imposter table has the ** same schema as the actual target table (less any UNIQUE constraints). ** More precisely, the "same schema" means the same columns, types, ** collation sequences. For tables that do not have an external PRIMARY ** KEY, it also means the same PRIMARY KEY declaration. */ static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){ if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){ int tnum = pIter->iTnum; const char *zComma = ""; char *zSql = 0; int iCol; sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1); for(iCol=0; p->rc==SQLITE_OK && iColnTblCol; iCol++){ const char *zPk = ""; const char *zCol = pIter->azTblCol[iCol]; const char *zColl = 0; p->rc = sqlite3_table_column_metadata( p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0 ); if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){ /* If the target table column is an "INTEGER PRIMARY KEY", add ** "PRIMARY KEY" to the imposter table column declaration. */ zPk = "PRIMARY KEY "; } zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s", zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl, (pIter->abNotNull[iCol] ? " NOT NULL" : "") ); zComma = ", "; } if( pIter->eType==RBU_PK_WITHOUT_ROWID ){ char *zPk = rbuWithoutRowidPK(p, pIter); if( zPk ){ zSql = rbuMPrintf(p, "%z, %z", zSql, zPk); } } sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum); rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s", pIter->zTbl, zSql, (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "") ); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); } } /* ** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table. ** Specifically a statement of the form: ** ** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...); ** ** The number of bound variables is equal to the number of columns in ** the target table, plus one (for the rbu_control column), plus one more ** (for the rbu_rowid column) if the target table is an implicit IPK or ** virtual table. */ static void rbuObjIterPrepareTmpInsert( sqlite3rbu *p, RbuObjIter *pIter, const char *zCollist, const char *zRbuRowid ){ int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE); char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid); if( zBind ){ assert( pIter->pTmpInsert==0 ); p->rc = prepareFreeAndCollectError( p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf( "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)", p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind )); } } static void rbuTmpInsertFunc( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ sqlite3rbu *p = sqlite3_user_data(pCtx); int rc = SQLITE_OK; int i; assert( sqlite3_value_int(apVal[0])!=0 || p->objiter.eType==RBU_PK_EXTERNAL || p->objiter.eType==RBU_PK_NONE ); if( sqlite3_value_int(apVal[0])!=0 ){ p->nPhaseOneStep += p->objiter.nIndex; } for(i=0; rc==SQLITE_OK && iobjiter.pTmpInsert, i+1, apVal[i]); } if( rc==SQLITE_OK ){ sqlite3_step(p->objiter.pTmpInsert); rc = sqlite3_reset(p->objiter.pTmpInsert); } if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); } } static char *rbuObjIterGetIndexWhere(sqlite3rbu *p, RbuObjIter *pIter){ sqlite3_stmt *pStmt = 0; int rc = p->rc; char *zRet = 0; assert( pIter->zIdxSql==0 && pIter->nIdxCol==0 && pIter->aIdxCol==0 ); if( rc==SQLITE_OK ){ rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg, "SELECT trim(sql) FROM sqlite_schema WHERE type='index' AND name=?" ); } if( rc==SQLITE_OK ){ int rc2; rc = sqlite3_bind_text(pStmt, 1, pIter->zIdx, -1, SQLITE_STATIC); if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ char *zSql = (char*)sqlite3_column_text(pStmt, 0); if( zSql ){ pIter->zIdxSql = zSql = rbuStrndup(zSql, &rc); } if( zSql ){ int nParen = 0; /* Number of open parenthesis */ int i; int iIdxCol = 0; int nIdxAlloc = 0; for(i=0; zSql[i]; i++){ char c = zSql[i]; /* If necessary, grow the pIter->aIdxCol[] array */ if( iIdxCol==nIdxAlloc ){ RbuSpan *aIdxCol = (RbuSpan*)sqlite3_realloc( pIter->aIdxCol, (nIdxAlloc+16)*sizeof(RbuSpan) ); if( aIdxCol==0 ){ rc = SQLITE_NOMEM; break; } pIter->aIdxCol = aIdxCol; nIdxAlloc += 16; } if( c=='(' ){ if( nParen==0 ){ assert( iIdxCol==0 ); pIter->aIdxCol[0].zSpan = &zSql[i+1]; } nParen++; } else if( c==')' ){ nParen--; if( nParen==0 ){ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan; pIter->aIdxCol[iIdxCol++].nSpan = nSpan; i++; break; } }else if( c==',' && nParen==1 ){ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan; pIter->aIdxCol[iIdxCol++].nSpan = nSpan; pIter->aIdxCol[iIdxCol].zSpan = &zSql[i+1]; }else if( c=='"' || c=='\'' || c=='`' ){ for(i++; 1; i++){ if( zSql[i]==c ){ if( zSql[i+1]!=c ) break; i++; } } }else if( c=='[' ){ for(i++; 1; i++){ if( zSql[i]==']' ) break; } }else if( c=='-' && zSql[i+1]=='-' ){ for(i=i+2; zSql[i] && zSql[i]!='\n'; i++); if( zSql[i]=='\0' ) break; }else if( c=='/' && zSql[i+1]=='*' ){ for(i=i+2; zSql[i] && (zSql[i]!='*' || zSql[i+1]!='/'); i++); if( zSql[i]=='\0' ) break; i++; } } if( zSql[i] ){ zRet = rbuStrndup(&zSql[i], &rc); } pIter->nIdxCol = iIdxCol; } } rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) rc = rc2; } p->rc = rc; return zRet; } /* ** Ensure that the SQLite statement handles required to update the ** target database object currently indicated by the iterator passed ** as the second argument are available. */ static int rbuObjIterPrepareAll( sqlite3rbu *p, RbuObjIter *pIter, int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */ ){ assert( pIter->bCleanup==0 ); if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){ const int tnum = pIter->iTnum; char *zCollist = 0; /* List of indexed columns */ char **pz = &p->zErrmsg; const char *zIdx = pIter->zIdx; char *zLimit = 0; if( nOffset ){ zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset); if( !zLimit ) p->rc = SQLITE_NOMEM; } if( zIdx ){ const char *zTbl = pIter->zTbl; char *zImposterCols = 0; /* Columns for imposter table */ char *zImposterPK = 0; /* Primary key declaration for imposter */ char *zWhere = 0; /* WHERE clause on PK columns */ char *zBind = 0; char *zPart = 0; int nBind = 0; assert( pIter->eType!=RBU_PK_VTAB ); zPart = rbuObjIterGetIndexWhere(p, pIter); zCollist = rbuObjIterGetIndexCols( p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind ); zBind = rbuObjIterGetBindlist(p, nBind); /* Create the imposter table used to write to this index. */ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum); rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID", zTbl, zImposterCols, zImposterPK ); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); /* Create the statement to insert index entries */ pIter->nCol = nBind; if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError( p->dbMain, &pIter->pInsert, &p->zErrmsg, sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind) ); } /* And to delete index entries */ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError( p->dbMain, &pIter->pDelete, &p->zErrmsg, sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere) ); } /* Create the SELECT statement to read keys in sorted order */ if( p->rc==SQLITE_OK ){ char *zSql; if( rbuIsVacuum(p) ){ char *zStart = 0; if( nOffset ){ zStart = rbuVacuumIndexStart(p, pIter); if( zStart ){ sqlite3_free(zLimit); zLimit = 0; } } zSql = sqlite3_mprintf( "SELECT %s, 0 AS rbu_control FROM '%q' %s %s %s ORDER BY %s%s", zCollist, pIter->zDataTbl, zPart, (zStart ? (zPart ? "AND" : "WHERE") : ""), zStart, zCollist, zLimit ); sqlite3_free(zStart); }else if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ zSql = sqlite3_mprintf( "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s ORDER BY %s%s", zCollist, p->zStateDb, pIter->zDataTbl, zPart, zCollist, zLimit ); }else{ zSql = sqlite3_mprintf( "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s " "UNION ALL " "SELECT %s, rbu_control FROM '%q' " "%s %s typeof(rbu_control)='integer' AND rbu_control!=1 " "ORDER BY %s%s", zCollist, p->zStateDb, pIter->zDataTbl, zPart, zCollist, pIter->zDataTbl, zPart, (zPart ? "AND" : "WHERE"), zCollist, zLimit ); } if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbRbu,&pIter->pSelect,pz,zSql); }else{ sqlite3_free(zSql); } } sqlite3_free(zImposterCols); sqlite3_free(zImposterPK); sqlite3_free(zWhere); sqlite3_free(zBind); sqlite3_free(zPart); }else{ int bRbuRowid = (pIter->eType==RBU_PK_VTAB) ||(pIter->eType==RBU_PK_NONE) ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p)); const char *zTbl = pIter->zTbl; /* Table this step applies to */ const char *zWrite; /* Imposter table name */ char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid); char *zWhere = rbuObjIterGetWhere(p, pIter); char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old"); char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new"); zCollist = rbuObjIterGetCollist(p, pIter); pIter->nCol = pIter->nTblCol; /* Create the imposter table or tables (if required). */ rbuCreateImposterTable(p, pIter); rbuCreateImposterTable2(p, pIter); zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_"); /* Create the INSERT statement to write to the target PK b-tree */ if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz, sqlite3_mprintf( "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)", zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings ) ); } /* Create the DELETE statement to write to the target PK b-tree. ** Because it only performs INSERT operations, this is not required for ** an rbu vacuum handle. */ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz, sqlite3_mprintf( "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere ) ); } if( rbuIsVacuum(p)==0 && pIter->abIndexed ){ const char *zRbuRowid = ""; if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ zRbuRowid = ", rbu_rowid"; } /* Create the rbu_tmp_xxx table and the triggers to populate it. */ rbuMPrintfExec(p, p->dbRbu, "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS " "SELECT *%s FROM '%q' WHERE 0;" , p->zStateDb, pIter->zDataTbl , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "") , pIter->zDataTbl ); rbuMPrintfExec(p, p->dbMain, "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(3, %s);" "END;" "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(3, %s);" "END;" "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(4, %s);" "END;", zWrite, zTbl, zOldlist, zWrite, zTbl, zOldlist, zWrite, zTbl, zNewlist ); if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ rbuMPrintfExec(p, p->dbMain, "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(0, %s);" "END;", zWrite, zTbl, zNewlist ); } rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid); } /* Create the SELECT statement to read keys from data_xxx */ if( p->rc==SQLITE_OK ){ const char *zRbuRowid = ""; char *zStart = 0; char *zOrder = 0; if( bRbuRowid ){ zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid"; } if( rbuIsVacuum(p) ){ if( nOffset ){ zStart = rbuVacuumTableStart(p, pIter, bRbuRowid, zWrite); if( zStart ){ sqlite3_free(zLimit); zLimit = 0; } } if( bRbuRowid ){ zOrder = rbuMPrintf(p, "_rowid_"); }else{ zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", ""); } } if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz, sqlite3_mprintf( "SELECT %s,%s rbu_control%s FROM '%q'%s %s %s %s", zCollist, (rbuIsVacuum(p) ? "0 AS " : ""), zRbuRowid, pIter->zDataTbl, (zStart ? zStart : ""), (zOrder ? "ORDER BY" : ""), zOrder, zLimit ) ); } sqlite3_free(zStart); sqlite3_free(zOrder); } sqlite3_free(zWhere); sqlite3_free(zOldlist); sqlite3_free(zNewlist); sqlite3_free(zBindings); } sqlite3_free(zCollist); sqlite3_free(zLimit); } return p->rc; } /* ** Set output variable *ppStmt to point to an UPDATE statement that may ** be used to update the imposter table for the main table b-tree of the ** table object that pIter currently points to, assuming that the ** rbu_control column of the data_xyz table contains zMask. ** ** If the zMask string does not specify any columns to update, then this ** is not an error. Output variable *ppStmt is set to NULL in this case. */ static int rbuGetUpdateStmt( sqlite3rbu *p, /* RBU handle */ RbuObjIter *pIter, /* Object iterator */ const char *zMask, /* rbu_control value ('x.x.') */ sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */ ){ RbuUpdateStmt **pp; RbuUpdateStmt *pUp = 0; int nUp = 0; /* In case an error occurs */ *ppStmt = 0; /* Search for an existing statement. If one is found, shift it to the front ** of the LRU queue and return immediately. Otherwise, leave nUp pointing ** to the number of statements currently in the cache and pUp to the ** last object in the list. */ for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){ pUp = *pp; if( strcmp(pUp->zMask, zMask)==0 ){ *pp = pUp->pNext; pUp->pNext = pIter->pRbuUpdate; pIter->pRbuUpdate = pUp; *ppStmt = pUp->pUpdate; return SQLITE_OK; } nUp++; } assert( pUp==0 || pUp->pNext==0 ); if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){ for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext)); *pp = 0; sqlite3_finalize(pUp->pUpdate); pUp->pUpdate = 0; }else{ pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1); } if( pUp ){ char *zWhere = rbuObjIterGetWhere(p, pIter); char *zSet = rbuObjIterGetSetlist(p, pIter, zMask); char *zUpdate = 0; pUp->zMask = (char*)&pUp[1]; memcpy(pUp->zMask, zMask, pIter->nTblCol); pUp->pNext = pIter->pRbuUpdate; pIter->pRbuUpdate = pUp; if( zSet ){ const char *zPrefix = ""; if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_"; zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s", zPrefix, pIter->zTbl, zSet, zWhere ); p->rc = prepareFreeAndCollectError( p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate ); *ppStmt = pUp->pUpdate; } sqlite3_free(zWhere); sqlite3_free(zSet); } return p->rc; } static sqlite3 *rbuOpenDbhandle( sqlite3rbu *p, const char *zName, int bUseVfs ){ sqlite3 *db = 0; if( p->rc==SQLITE_OK ){ const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI; p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0); if( p->rc ){ p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); sqlite3_close(db); db = 0; } } return db; } /* ** Free an RbuState object allocated by rbuLoadState(). */ static void rbuFreeState(RbuState *p){ if( p ){ sqlite3_free(p->zTbl); sqlite3_free(p->zDataTbl); sqlite3_free(p->zIdx); sqlite3_free(p); } } /* ** Allocate an RbuState object and load the contents of the rbu_state ** table into it. Return a pointer to the new object. It is the ** responsibility of the caller to eventually free the object using ** sqlite3_free(). ** ** If an error occurs, leave an error code and message in the rbu handle ** and return NULL. */ static RbuState *rbuLoadState(sqlite3rbu *p){ RbuState *pRet = 0; sqlite3_stmt *pStmt = 0; int rc; int rc2; pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState)); if( pRet==0 ) return 0; rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb) ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ switch( sqlite3_column_int(pStmt, 0) ){ case RBU_STATE_STAGE: pRet->eStage = sqlite3_column_int(pStmt, 1); if( pRet->eStage!=RBU_STAGE_OAL && pRet->eStage!=RBU_STAGE_MOVE && pRet->eStage!=RBU_STAGE_CKPT ){ p->rc = SQLITE_CORRUPT; } break; case RBU_STATE_TBL: pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; case RBU_STATE_IDX: pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; case RBU_STATE_ROW: pRet->nRow = sqlite3_column_int(pStmt, 1); break; case RBU_STATE_PROGRESS: pRet->nProgress = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_CKPT: pRet->iWalCksum = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_COOKIE: pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_OALSZ: pRet->iOalSz = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_PHASEONESTEP: pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_DATATBL: pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; default: rc = SQLITE_CORRUPT; break; } } rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) rc = rc2; p->rc = rc; return pRet; } /* ** Open the database handle and attach the RBU database as "rbu". If an ** error occurs, leave an error code and message in the RBU handle. ** ** If argument dbMain is not NULL, then it is a database handle already ** open on the target database. Use this handle instead of opening a new ** one. */ static void rbuOpenDatabase(sqlite3rbu *p, sqlite3 *dbMain, int *pbRetry){ assert( p->rc || (p->dbMain==0 && p->dbRbu==0) ); assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 ); assert( dbMain==0 || rbuIsVacuum(p)==0 ); /* Open the RBU database */ p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1); p->dbMain = dbMain; if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p); if( p->zState==0 ){ const char *zFile = sqlite3_db_filename(p->dbRbu, "main"); p->zState = rbuMPrintf(p, "file:///%s-vacuum?modeof=%s", zFile, zFile); } } /* If using separate RBU and state databases, attach the state database to ** the RBU db handle now. */ if( p->zState ){ rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState); memcpy(p->zStateDb, "stat", 4); }else{ memcpy(p->zStateDb, "main", 4); } #if 0 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0); } #endif /* If it has not already been created, create the rbu_state table */ rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb); #if 0 if( rbuIsVacuum(p) ){ if( p->rc==SQLITE_OK ){ int rc2; int bOk = 0; sqlite3_stmt *pCnt = 0; p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg, "SELECT count(*) FROM stat.sqlite_schema" ); if( p->rc==SQLITE_OK && sqlite3_step(pCnt)==SQLITE_ROW && 1==sqlite3_column_int(pCnt, 0) ){ bOk = 1; } rc2 = sqlite3_finalize(pCnt); if( p->rc==SQLITE_OK ) p->rc = rc2; if( p->rc==SQLITE_OK && bOk==0 ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("invalid state database"); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0); } } } #endif if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ int bOpen = 0; int rc; p->nRbu = 0; p->pRbuFd = 0; rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p); if( rc!=SQLITE_NOTFOUND ) p->rc = rc; if( p->eStage>=RBU_STAGE_MOVE ){ bOpen = 1; }else{ RbuState *pState = rbuLoadState(p); if( pState ){ bOpen = (pState->eStage>=RBU_STAGE_MOVE); rbuFreeState(pState); } } if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1); } p->eStage = 0; if( p->rc==SQLITE_OK && p->dbMain==0 ){ if( !rbuIsVacuum(p) ){ p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1); }else if( p->pRbuFd->pWalFd ){ if( pbRetry ){ p->pRbuFd->bNolock = 0; sqlite3_close(p->dbRbu); sqlite3_close(p->dbMain); p->dbMain = 0; p->dbRbu = 0; *pbRetry = 1; return; } p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database"); }else{ char *zTarget; char *zExtra = 0; if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){ zExtra = &p->zRbu[5]; while( *zExtra ){ if( *zExtra++=='?' ) break; } if( *zExtra=='\0' ) zExtra = 0; } zTarget = sqlite3_mprintf("file:%s-vactmp?rbu_memory=1%s%s", sqlite3_db_filename(p->dbRbu, "main"), (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra) ); if( zTarget==0 ){ p->rc = SQLITE_NOMEM; return; } p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1); sqlite3_free(zTarget); } } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_create_function(p->dbMain, "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0 ); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_create_function(p->dbMain, "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0 ); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_create_function(p->dbRbu, "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0 ); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p); } rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_schema"); /* Mark the database file just opened as an RBU target database. If ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use. ** This is an error. */ if( p->rc==SQLITE_OK ){ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p); } if( p->rc==SQLITE_NOTFOUND ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("rbu vfs not found"); } } /* ** This routine is a copy of the sqlite3FileSuffix3() routine from the core. ** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined. ** ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm ** test.db-mj7f3319fa => test.9fa */ static void rbuFileSuffix3(const char *zBase, char *z){ #ifdef SQLITE_ENABLE_8_3_NAMES #if SQLITE_ENABLE_8_3_NAMES<2 if( sqlite3_uri_boolean(zBase, "8_3_names", 0) ) #endif { int i, sz; sz = (int)strlen(z)&0xffffff; for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4); } #endif } /* ** Return the current wal-index header checksum for the target database ** as a 64-bit integer. ** ** The checksum is store in the first page of xShmMap memory as an 8-byte ** blob starting at byte offset 40. */ static i64 rbuShmChecksum(sqlite3rbu *p){ i64 iRet = 0; if( p->rc==SQLITE_OK ){ sqlite3_file *pDb = p->pTargetFd->pReal; u32 volatile *ptr; p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr); if( p->rc==SQLITE_OK ){ iRet = ((i64)ptr[10] << 32) + ptr[11]; } } return iRet; } /* ** This function is called as part of initializing or reinitializing an ** incremental checkpoint. ** ** It populates the sqlite3rbu.aFrame[] array with the set of ** (wal frame -> db page) copy operations required to checkpoint the ** current wal file, and obtains the set of shm locks required to safely ** perform the copy operations directly on the file-system. ** ** If argument pState is not NULL, then the incremental checkpoint is ** being resumed. In this case, if the checksum of the wal-index-header ** following recovery is not the same as the checksum saved in the RbuState ** object, then the rbu handle is set to DONE state. This occurs if some ** other client appends a transaction to the wal file in the middle of ** an incremental checkpoint. */ static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){ /* If pState is NULL, then the wal file may not have been opened and ** recovered. Running a read-statement here to ensure that doing so ** does not interfere with the "capture" process below. */ if( pState==0 ){ p->eStage = 0; if( p->rc==SQLITE_OK ){ p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_schema", 0, 0, 0); } } /* Assuming no error has occurred, run a "restart" checkpoint with the ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following ** special behaviour in the rbu VFS: ** ** * If the exclusive shm WRITER or READ0 lock cannot be obtained, ** the checkpoint fails with SQLITE_BUSY (normally SQLite would ** proceed with running a passive checkpoint instead of failing). ** ** * Attempts to read from the *-wal file or write to the database file ** do not perform any IO. Instead, the frame/page combinations that ** would be read/written are recorded in the sqlite3rbu.aFrame[] ** array. ** ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER, ** READ0 and CHECKPOINT locks taken as part of the checkpoint are ** no-ops. These locks will not be released until the connection ** is closed. ** ** * Attempting to xSync() the database file causes an SQLITE_NOTICE ** error. ** ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the ** checkpoint below fails with SQLITE_NOTICE, and leaves the aFrame[] ** array populated with a set of (frame -> page) mappings. Because the ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy ** data from the wal file into the database file according to the ** contents of aFrame[]. */ if( p->rc==SQLITE_OK ){ int rc2; p->eStage = RBU_STAGE_CAPTURE; rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0); if( rc2!=SQLITE_NOTICE ) p->rc = rc2; } if( p->rc==SQLITE_OK && p->nFrame>0 ){ p->eStage = RBU_STAGE_CKPT; p->nStep = (pState ? pState->nRow : 0); p->aBuf = rbuMalloc(p, p->pgsz); p->iWalCksum = rbuShmChecksum(p); } if( p->rc==SQLITE_OK ){ if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){ p->rc = SQLITE_DONE; p->eStage = RBU_STAGE_DONE; }else{ int nSectorSize; sqlite3_file *pDb = p->pTargetFd->pReal; sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal; assert( p->nPagePerSector==0 ); nSectorSize = pDb->pMethods->xSectorSize(pDb); if( nSectorSize>p->pgsz ){ p->nPagePerSector = nSectorSize / p->pgsz; }else{ p->nPagePerSector = 1; } /* Call xSync() on the wal file. This causes SQLite to sync the ** directory in which the target database and the wal file reside, in ** case it has not been synced since the rename() call in ** rbuMoveOalFile(). */ p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL); } } } /* ** Called when iAmt bytes are read from offset iOff of the wal file while ** the rbu object is in capture mode. Record the frame number of the frame ** being read in the aFrame[] array. */ static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){ const u32 mReq = (1<mLock!=mReq ){ pRbu->rc = SQLITE_BUSY; return SQLITE_NOTICE_RBU; } pRbu->pgsz = iAmt; if( pRbu->nFrame==pRbu->nFrameAlloc ){ int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2; RbuFrame *aNew; aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame)); if( aNew==0 ) return SQLITE_NOMEM; pRbu->aFrame = aNew; pRbu->nFrameAlloc = nNew; } iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1; if( pRbu->iMaxFrame